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Abstract

Flexoelectricity at surface instabilities and stress singularities

Hossein Mohammadi

The �exoelectric e�ect, the two-way linear coupling between strain gradient and electric
polarization (direct �exoelectricity) or electric �eld gradient and strain (converse �exoelec-
tricity) universally present in any dielectric, has given rise to a new research area referred to
as strain gradient engineering in which in contrast to the conventional wisdom that views
strain gradients as undesirable, researchers seek to mobilize strain gradients in a smart way
to design sensors, actuators, and energy harvesting devises for next-generation micro/nano
electromechanical systems. Ionic crystals with high dielectricity, such as ferroelectric per-
ovskites at their paraelectric phase, achieve the best �exoelectric properties and have thus been
a favorite to explore the �exoelectric e�ect. Nevertheless, large strain gradients are required
for the �exoelectric e�ect to be noticeable. In these materials, large enough strain gradients
are only achieved at very small scales. Soft and deformable materials, on the other hand, can
endure large strains at larger scales before failure making them suitable candidates for the
development of electromechanical devices. The focus of this thesis is two-fold, on the one hand,
it explores novel ways to generate electricity in soft materials, including non-piezoelectric
dielectric elastomers, under non-homogeneous �elds. In particular, surface instabilities in �ex-
oelectric �lm/ dielectric substrate are explored in depth. On the other hand, the manifestations
of �exoelectricity on material behavior, in particular around stress singularities are explored.

Keywords: Flexoelectricity, Continuum mechanics, Mathematical modeling, Computational modeling, Surface
instability.
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4 Ñ 3

2i+1 + 1
2 Ñ 3
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Chapter 1

Introduction

1.1 Motivation

Electromechanical e�ects, the couplings between mechanical and electrical �elds, have found
signi�cant applications in electromechanical transduction devices including sensors, actuators,
and energy harvesters (Fig. 1.1) (Dagdeviren et al., 2016). Sustainable power sources in
consumer electronics (Beeby et al., 2006), MEMS resonators for timing applications (Ng et al.,
2015), and sensors for blood pressure measurements (Terry et al., 1990) are a few examples of
the broad applications of electromechanics.

These e�ects are present in a wide variety of materials from engineered to biological
materials and have been shown to play an important role in biological functions such as
auditory sensing, swelling of neurons associated with action potentials, and protein mechanical
motors including stress-activated ion channels (Nguyen et al., 2013a).

Most current technologies for electromechanical transduction rely on the well-known
piezoelectric e�ect. It refers to the two-way linear coupling between mechanical deformation
and electric �eld (Fig. 1.2a) (Ikeda, 1996). This e�ect is present only in a speci�c class of
dielectric materials, namely those exhibiting a non-centrosymmetric atomic or molecular
structure. This intrinsic material polarity is an essential property of all piezoelectrics, from
ionic crystals such as ferroelectrics, e.g Lead zirconate titanate (PZT) or barium titanate (Ja�e
et al., 1955), to piezoelectric polymers such as polyvinylidene di�uoride (PVDF). The best-
known piezoelectrics are ubiquitous in current technologies but exhibit limitations such as
brittleness, toxicity, lack of biocompatibility, and a small range of operating temperatures
(Haertling, 1999, Ja�e, 1958, Saito et al., 2004, Stevenson et al., 2015, Wu, 2020).

Beyond piezoelectricity, other electromechanical couplings have also been studied exten-
sively, also as potential alternatives to piezoelectricity. On one hand, electrostriction, or the
Maxwell-stress e�ect has received signi�cant attention. It refers to the deformation univer-
sally induced in all dielectrics by an applied electric �eld, through the Coulombic attraction
between the charges of the opposite sign located on both sides of the material (Fig. 1.2b).
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Figure 1.1: Broad applications of electromechanical transduction. Possible sources of energy harvesting
(left) and its usage for sensing and actuation (right). Figure adapted from (Dagdeviren et al., 2016).

The resulting strain depends quadratically on the applied electric �eld. Being signi�cant in
dielectric elastomers, it has been explored for technological applications (Kornbluh et al., 1998,
Lallart et al., 2012, Pelrine et al., 1997, 1998). These applications are limited to actuation since
it is a one-way coupling as the deformation of a dielectric does not produce an electric �eld by
electrostriction. Furthermore, this actuation is limited by the quadratic nature of the e�ect, as
the reversal of the electric �eld does not reverse the sign of the deformation, and by the need
for high voltages for actuation in most elastomers.

The third branch of electromechanical couplings namely �exoelectricity has been com-
paratively less understood and studied. In recent decades, due to its potential applications to
overcome some of the limitations of other electromechanical couplings, �exoelectricity is in-
creasingly attracting researchers’ interest. A brief comparison between the electromechanical
coupling mechanisms has been provided in Fig. 1.2.



1.1 Motivation 3

σ Stressε Strain e Electric field p Polarization

Piezoelectricity
εp dl lij ij

Two-way coupling
Reversibility
Only non-centrosym-
metric dielectrics

Linear

(a) Piezoelectricity

Electrostriction
σ em kklijij e l

V

+V

One-way coupling
Irreversibility
All dielectrics

Quadratic

(b) Electrostriction

Flexoelectricity
εp fl lijk ij∇k

Two-way coupling
Reversibility
All dielectrics

Linear

(c) Flexoelectricity

Figure 1.2: 2D sketches of di�erent physics for electromechanical transduction in a crystalline dielectric.
Figure adapted from (Codony, 2021).
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1.2 Flexoelectricity

The �exoelectric e�ect is a two-way linear coupling between strain gradient and electric �eld
(direct �exoelectricity) or between electric �eld gradient and strain (converse �exoelectricity).
However, unlike piezoelectricity, which is only present in non-centrosymmetric dielectrics,
�exoelectricity is a property of all dielectric materials including crystals, polymers, biomaterials,
liquid crystals, etc. (Jiang et al., 2013, Nguyen et al., 2013b, Wang et al., 2019a, Zubko et al.,
2013). In piezoelectric materials, under the application of a homogeneous mechanical loading,
due to a lack of symmetry in the atomic structure of the material, an electric �eld is generated
(Fig. 1.2a). In �exoelectric materials on the other hand, as a result of a non-uniform deformation
applied on a crystalline dielectric material, regardless of its initial atomic structure symmetry,
strain gradient can break its spatial inversion symmetry resulting in inducing electric response
(Fig. 1.2c). Ionic crystals with high dielectric constant, such as ferroelectric perovskites at their
paraelectric phase, exhibit the largest �exoelectric properties. Nevertheless, large enough �eld
gradients are required for a noticeable �exoelectric response. Since gradients scale up with
the decrease of the specimen size, large gradients can usually be found only at small-length
scales. This implies that �exoelectricity may not be noticeable in larger scales (Jiang et al.,
2013, Nguyen et al., 2013b, Wang et al., 2019a).

The �rst theoretical (Mashkevich and Tolpygo, 1957), and experimental (Bursian and
Zaikovskii, 1968) studies on �exoelectricity date back to the 50s and 60s. Over the past decade,
several �exoelectric-based electromechanical prototypes such as sensors (Huang et al., 2014,
2012, Kwon et al., 2016, Merupo et al., 2017), actuators (Bhaskar et al., 2016, Zhang et al., 2017) or
energy harvesters (Choi and Kim, 2017, Deng et al., 2014a, Zhu et al., 2018) have been designed
and fabricated. The concept of piezoelectric composites without piezoelectric materials (Sharma
et al., 2007) has enabled the design of geometrically polarized non-piezoelectric dielectrics
with apparent piezoelectricity through �exoelectricity (Mocci et al., 2021). In this concept, the
�exoelectric response at small structural components is up-scaled to the macroscale, avoiding
internal cancellation through geometrical polarization.

Apart from applications, several physical and biological phenomena such as triboelectricity
(Fig. 1.3a) (Mizzi et al., 2019, Mizzi and Marks, 2022), �exo-caloric e�ect (Liu et al., 2016), �exo-
photovoltaic e�ect (Fig. 1.3b) (Shu et al., 2020, Yang et al., 2018), auditory sensing (Breneman
et al., 2009, Deng et al., 2019), bone self-repair and remodeling (Fig. 1.3c) (Vasquez-Sancho
et al., 2018) among others, have been explained by �exoelectricity which implies the growing
signi�cance of this electromechanical mechanism. Also, it has been shown that �exoelectricity
can a�ect the physics of crack formation and propagation (Abdollahi et al., 2015b, Cordero-
Edwards et al., 2019, Núñez-Toldrà et al., 2020, Wang et al., 2019c). Abdollahi et al. (2015b)
showed that �exoelectricity can cause a toughening e�ect as well as a toughness asymmetry.
The predicted toughness asymmetry (Abdollahi et al., 2015b), has recently been evidenced in
an experimental study (Fig 1.3d) (Cordero-Edwards et al., 2019). Besides, Wang et al. (2019c)
demonstrated the presence of a huge �exoelectric polarization around the crack tip which
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(a) Flexoelectricity as a potential driver of triboelectricity. (b) Strain gradient induces bulk photovoltaic e�ect in
centrosymmetric single crystals.

(c) Flexoelectricity has been suggested to be a potential
mechanism behind bone self-repair and remodeling.

(d) Toughness asymmetry due to �exoelectricity.

Figure 1.3: Some examples of the physical manifestations of �exoelectricity. Figure adapted from
(Cordero-Edwards et al., 2019, Mizzi and Marks, 2022, Vasquez-Sancho et al., 2018, Yang et al., 2018).

reveals the relevance of �exoelectricity in the fracture phenomenon.

1.2.1 Flexoelectricity in soft materials

Soft robotics, biomedical devices, �exible electronics, energy harvesting, and sensors are some
of the applications enabled by electroactive soft materials. In soft electromechanics, a device is
generally required to simultaneously be able to (1) undergo large deformation under a moderate
electric �eld and (2) generate a noticeable electric �eld under the application of moderate
deformation. In the context of �exoelectricity, soft materials such as dielectric polymers
can undergo large deformation enabling the possibility of achieving higher strain gradients
and thus a potentially higher electric response at larger scales compared to hard crystalline
materials. This can provide further opportunities to design soft functional biocompatible
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Figure 1.4: Schematic image of the mechanism of �exoelectrets. Figure adapted from (Wen et al., 2019).

and environmentally friendly (soft and non-toxic) materials. Flexoelectricity emerges in soft
materials such as liquid crystals or lipid bilayers due to the reorientation of irregularly shaped
polarized molecules under strain gradients (Ahmadpoor et al., 2013, Ahmadpoor and Sharma,
2015, Liu and Sharma, 2013, Meyer, 1969, Mohammadi et al., 2014, Morozovska et al., 2018,
Petrov, 1999, Rey, 2006). However, since �exoelectricity is a size-dependent property being
weaker at large scales, and the fact that the intrinsic �exoelectric coe�cients of soft materials
are considerably lower than that of dielectric ceramics (Wen et al., 2019), how to enhance
�exoelectric properties in soft materials has been an important question.

Deng et al. (2014b) developed a one-dimensional theoretical model for �exoelectricity in
solids. They showed that the electromechanical coupling can be enhanced by combining the
electret-Maxwell stress mechanism and �exoelectricity.

By depositing a layer of electrical charges on the middle plane of a soft beam and forming
an electret (Fig.1.4-a,b), Rahmati et al. (2019) and Wen et al. (2019) proposed the generation
of a �exoelectric-like e�ect in electrets under bending deformation. Under the application of
uniform compression (Fig.1.4-c), the shape of the beam changes but remains symmetric with
respect to the middle plane resulting in zero net polarization between upper and lower surfaces.
Under bending (Fig.1.4-d), the symmetry of the bar is broken which causes a generation of
net polarization along the thickness direction. Wen et al. (2019) showed that by depositing a
charge layer with a surface potential of -5723 V, the apparent material’s �exoelectric coe�cient
can be enhanced by two orders of magnitude. The same group in another study (Wen et al.,
2021) showed that the electrets can generate curvature in response to a uniform electric �eld.

Grasinger et al. (2021) developed a statistical-mechanics theory underpinning �exoelectric-
ity in elastomers. They showed that giant �exoelectricity can be achieved in incompressible
elastomers if the material is prestretched in the direction of the strain gradient.

Through a phenomenological model veri�ed with experiments, Zhang et. al. (Zhang et al.,
2020a) showed that the �exoelectric coe�cient of elastomers can be enhanced by increasing
the cross-linking density of the elastomers.
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1.2.2 Continuum modeling of �exoelectricity

The �rst continuum theory of �exoelectricity in soft materials goes back to the paper by Liu (Liu,
2014a) in which he proposed an energy formulation for a coupled magneto-electro-elasticity
continuum in which based on the principle of minimum free energy, he derived the linear
and nonlinear theories for di�erent materials including dielectric elastomers, piezoelectric
ceramics, ferroelectrics, �exoelectric materials, etc. Following that work, a few papers further
developed the continuum theory of �exoelectricity in soft materials (McBride et al., 2020,
Nguyen et al., 2019, Poya et al., 2019, Thai et al., 2018, Yvonnet and Liu, 2017, Zhuang et al.,
2020a). In contrast with previous works, Codony et al. (2020) presented a formulation with a
fully material �exoelectric coupling between strain gradient and electric polarization, which
yields an objective enthalpy functional by construction. Nevertheless, this and the previous
works postulate an energy contribution for bulk �exoelectricity in which the strain gradient
is coupled with a measure of electric response (either the electric displacement, the electric
�eld, or the electric polarization), but neglecting the explicit coupling between the gradient of
electric responses with strain (converse �exoelectricity). Although converse �exoelectricity is
implicitly modeled in these formulations, this causes a non-symmetric �exoelectric response
for direct and converse �exoelectricity unless boundary conditions are treated adequately.
Besides, to model �exoelectricity in soft materials such as polymers, it is important to consider
the incompressibility constraint in the elastic material model. Neglecting the incompressibility
constraint may compromise the validity of the models for polymers and rubber-like materials.

Regardless of considering hard or soft materials, the governing equations of �exoelectricity
are a coupled system of 4th-order partial di�erential equations. Solving them in the weak
form, we require C1-continuous basis functions. This precludes the use of the standard �nite
element technique and commercial software such as ABAQUS using the C0-continuous basis
function (which is continuous itself but not the derivatives). Meshfree (Abdollahi et al., 2014),
immersed boundary B-spline (Codony et al., 2019), and body �tted B-spline (Codony et al.,
2020) approaches have been employed in our group to solve the governing equations of
�exoelectricity. Several approaches have also been proposed in the literature including mixed
�nite element formulation (Deng et al., 2017, Mao et al., 2016), isogeometric analysis (Liu et al.,
2019, Thai et al., 2018), C1 discretization with triangular elements (Yvonnet and Liu, 2017),
and C0 interior penalty methods (Ventura et al., 2021).

1.3 Surface instabilities in �lm/substrate systems

In recent years, several potential functionalities of surface instability-based systems have been
demonstrated including biomimetic cell-culture substrates, stretchable super-hydrophobic
coatings, pressure and strain sensors, supercapacitors, arti�cial muscle actuators, etc. (Bowden
et al., 1998, Cao et al., 2014, Chen et al., 2013, Park et al., 2016, Sta�ord et al., 2004, Wang et al.,
2011, Zang et al., 2013).
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Figure 1.5: Schematics of surface instability patterns (a) Wrinkle, (b) Crease, (c) Fold, (d) Period-double,
(e) Ridge. Figure adapted from (Wang and Zhao, 2015).

The early studies of wrinkling of �lm/substrate systems go back to the theoretical study
of Allen (Allen, 1969) which focused on the prevention of instability of layered composites
such as sandwich panels. Several papers in recent years have focused on the identi�cation of
various surface instability patterns (Fig. 1.5.) namely wrinkle (Cao and Hutchinson, 2012b),
crease (Cai et al., 2012), fold (Sun et al., 2011), period-double (Budday et al., 2015), and ridge
(Cao et al., 2014, Zang et al., 2012) and the transitions between them (Auguste et al., 2014,
Brau et al., 2013, 2011, Jin et al., 2015, Wang and Zhao, 2014, 2015). In a two-dimensional
case of a perfectly bound thin �lm/substrate system in which the substrate has been subjected
to a prestretch, it has been shown that the bifurcation strain and surface instability patterns
depend only on the modulus ratio and mismatch strain between �lm and substrate (Auguste
et al., 2014, Wang and Zhao, 2015).

Wang and Zhao (Wang and Zhao, 2015) constructed a three-dimensional phase diagram
for the instability patterns in which three non-dimensional parameters (1) mismatch strain,
(2) modulus ratio, and (3) normalized adhesion energy determine the instability pattern. The
phase diagram for cases with high adhesion energies can be seen in Fig. 1.6.
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Figure 1.6: Phase diagram for instability patterns in a perfectly bound �lm/substrate system and its
experimental validation. Figure adapted from (Wang and Zhao, 2015).
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1.3.1 Electromechanical studies on surface instabilities

Several papers have studied the electromechanical instabilities of dielectric elastomers. Zhao
and Suo (Zhao and Suo, 2007), proposed an approach for analyzing the electromechanical
stability of dielectric elastomers. They showed that electromechanical instability occurs when
the Hessian of free-energy function discontinues being positive de�nite. Stability analysis of
min-max problems requires a di�erent approach, i.e. the instability occurs when the signature
of the global sti�ness matrix changes (Dortdivanlioglu and Linder, 2019).

The wrinkling of dielectric elastomers has been investigated experimentally and theoreti-
cally (Kollosche et al., 2012, Shui et al., 2019, Su et al., 2018b, Wang and Zhao, 2013, Zhu et al.,
2012). Su et al. (2019) investigated the bending deformation of a dielectric-elastic bilayer based
on the nonlinear theory of electroelasticity and the associated linearized incremental �eld
theory. They studied the stability of the bilayer and showed that the formation of patterns in
the wrinkled bilayer can be controlled by tuning the physical properties of the bilayer and the
applied voltage.

Surface instabilities such as wrinkling are sources of strain gradients, making this subject an
attractive area for further investigations in the �exoelectric community. A common structure
in stretchable electronics is a �lm/substrate system in which a thin layer of active material is
bonded to a passive mostly compliant substrate (Dickey, 2017, Gong and Cheng, 2017, Wang
et al., 2018) which may develop surface instabilities due to strain mismatch between �lm and
substrate.

Regarding the study of the surface instabilities in �exoelectric materials, through a theoret-
ical study, Su et al. (2018a) investigated the wrinkling of a �exoelectric nano-�lm/substrate
system and showed that both �exoelectricity and surface e�ects signi�cantly change wrinkling
critical condition and wrinkling deformation, especially at very small length scales. The same
group in a theoretical study (Su et al., 2021) proposed a �exoelectric energy harvester based
on controllable wrinkling mechanism to enhance the energy harvesting e�ciency. Shang
et al. (2022) studied �exoelectricity in wrinkled thin �lms and demonstrated that increased
�exoelectricity in thinner �lms can enhance the available energy and stretchability of the
wrinkled thin �lms. Nevertheless, to the best of our knowledge, to this date, no computational
framework is present in the literature to study surface instabilities in �exoelectric bilayers. In
particular, a computational model that is able to study complex nonlinear instabilities such as
folding and creasing in �exoelectric materials is not present in the literature.

1.4 Goals and objectives

The main objective of this thesis is to explore surface instabilities in soft materials to harness
strain inhomogeneities and the �exoelectric e�ect. In particular, surface instabilities occurring
in a �lm/substrate system are studied in detail. Surface instabilities in �lm/substrate systems
have been shown to provide signi�cant potential applications in the design of advanced
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materials. As a result of surface instability in a �lm/substrate system, di�erent patterns are
formed on the surface in which a noticeable local strain gradient is generated. In dielectrics,
this results in the generation of a localized electric response through direct �exoelectricity.
Furthermore, as shown in (Wang and Zhao, 2015), depending on the relative sti�ness of the thin
�lm and the substrate, the adhesion energy, and strain, one can produce surface morphologies
that are noncentrosymmetric, including buckle delaminations, folding, period doubling, and
ridging (see Section 1.3). In these patterns, the geometrical polarization deriving from the lack
of up-down symmetry gives rise to a net electrical response through the �exoelectric e�ect.
In other situations without signi�cant up-down symmetry, the internal cancellation of the
�exoelectric �elds should be prevented through proper device design. Therefore, the study of
surface instabilities in an electromechanical continuum can provide further opportunities to
design sensors, actuators, and energy harvesting systems exploiting the �exoelectric e�ect.
Besides, it can highlight some fundamental manifestations of �exoelectricity on material
behavior. Towards this goal, the speci�c objectives are:

• Study the surface e�ects that inherently exist in �exoelectric continuum models. We will
study a general form of �exoelectric coupling in in�nitesimal strains from which direct,
converse, and Lifshitz-invariant �exoelectric models can be obtained. We will �rst show
that when the body is in�nite, �exoelectric materials do not show electromechanical
response under homogeneous loading. However, when the size of the body is �nite,
due to the symmetry-breaking nature of surfaces, homogeneous loading (mechanical or
electrical) can cause an electromechanical response near the surfaces. We will show that
the electromechanical response is similar to surface piezoelectricity causing boundary
layers in components of strains and electric �elds near the surfaces. We will obtain
closed-form solutions that can accurately describe the boundary layers.

• Extend the large deformation framework in (Codony et al., 2020) to a symmetric �exo-
electric formulation explicitly accounting for converse �exoelectricity ( Lifshitz-invariant
model), and to account for incompressibility and material interfaces. We will extend and
implement the weak enforcement of interface conditions reported in (Barceló-Mercader
et al., 2022) to the large deformation setting. We will also implement the subdivision
stabilization technique to circumvent the well-known locking phenomenon for the
incompressibility constraint (Dortdivanlioglu et al., 2018).

• Validate the formulation and implementation. Several numerical tests such as gradi-
ent checking, veri�cation with the in�nitesimal strain formulation for small loadings,
convergence tests, etc. will be performed.

• Explore surface instabilities in a �exoelectric �lm/substrate system. First, we will
study the system without �exoelectricity for validation. Then, we will address the
full electromechanical problem and will aim at capturing the well-known mechanical
instability patterns of wrinkling, creasing, folding, period-doubling, and ridging. In
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order to gain understanding and ultimately control over the instability patterns, we
will study in detail the transitions between them and their dependence on the model
parameters (moduli ratio, substrate pre-stretch, etc.).

• Study the �exoelectricity-induced electromechanical response of each family of insta-
bility patterns and extract the design criteria for large-area �exoelectric devices with
optimal �exoelectric performance. In particular, the e�ect of model parameters on the
�exoelectricity-induced electrical response will be studied in detail. Possibilities for
enhancing the response will be explored.

• Propose potential applications for �exoelectric devices employing surface instabilities.

• Explore the manifestations of �exoelectricity in stress singularities such as folds and
sharp notches. We will show that �exoelectricity can result in a delaying e�ect in the
formation of folds. Besides, we will show that �exoelectricity can contribute to notch
strengthening e�ect and �aw-insensitive fracture.

1.5 Outline

The manuscript is organized as follows. Chapter 2 is devoted to the theoretical modeling of
�exoelectricity. We �rst review the di�erent formulations of �exoelectricity at in�nitesimal
strains (accounting explicitly for only direct or converse or both direct and converse �ex-
oelectricity) regarding inherent �nite sample e�ects. We then present a large-deformation
continuum model for �exoelectricity accounting for converse �exoelectricity explicitly, mate-
rial incompressibility, and multimaterial con�gurations. Chapter 3 explores di�erent instability
patterns in �exoelectric-dielectric bilayers and their �exoelectric-induced electromechanical
response. Based on the understanding gained in this chapter, we propose in Chapter 4 several
conceptual designs that lay the ground for soft large-area electromechanical materials and
devices harnessing �exoelectricity as a functional property. Chapter 5 explores the e�ect
of �exoelectricity on stress singularities such as folds in soft materials and notches in hard
materials. Finally, Chapter 6 summarizes and concludes the dissertation.

1.6 List of publications

This manuscript gathers most of the published and unpublished (to this date) original research
done by the author during his PhD. They are provided in the following lists.

1.6.1 Journal papers

• H. Mohammadi, O. Marco, I. Arias, Continuum modeling of surface instabilities in
�exoelectric materials (To be submitted).
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• H. Mohammadi, D. Codony, I. Arias, Flexoelectricity causes surface piezoelectric-like
e�ect in dielectrics (To be submitted).

• H. Mohammadi, I. Arias, Gradient e�ects cause notch-strengthening and �aw insensitive
fracture – contribution of �exoelectricity (To be submitted).

1.6.2 Other related publications

• F. Greco, D. Codony, H. Mohammadi, S. Fernandez, I. Arias, Topology optimization of
�exoelectric metamaterials with apparent piezoelectricity (to be submitted).

1.6.3 Conference presentations

• H. Mohammadi, I. Arias, Computational modelling of surface instabilities in �exoelectric
materials, 18th European Mechanics of Materials Conference (EMMC18) April 4 - 6,
2022, Oxford, UK.





Chapter 2

Continuum and computational
modeling of �exoelectricity

In this chapter, with the aim of better understanding the �exoelectricity models, we �rst
study �nite sample e�ects in the di�erent existing formulations of �exoelectricity, and in
particular the emergence of surface-piezoelectric e�ects. For simplicity, we focus at this
point on in�nitesimal strains, but all drawn conclusions apply also to the large deformation
setting. Next, following Codony et al. (2020), we present a Lifshitz-invariant formulation
for �exoelectricity, explicitly accounting for both direct and converse �exoelectricity. This
formulation is extended to multimaterial con�gurations and to material incompressibility.
Finally, we present the computational model.

2.1 State of the art

After the early theoretical studies by Mashkevich and Tolpygo (1957) and Tolpygo (1963),
Kogan (1964) proposed a phenomenological model for �exoelectricity in crystalline dielectrics.
The distinction between piezoelectricity and �exoelectricity was clari�ed in Tagantsev (1986,
1991)’s �rst comprehensive theoretical works. Mindlin (1968) formalized the converse �exo-
electric e�ect in elastic dielectrics in the mechanics community. Later, Sahin and Dost (1988)
proposed a complete uni�ed continuum framework that included strain gradient elasticity,
direct and converse �exoelectric couplings, and the polarization inertia e�ect. Maranganti
et al. (2006) recently proposed a simpli�ed framework for isotropic dielectrics.

There are numerous continuum �exoelectricity theories currently available. Some of them
reformulate the models using gradient elasticity theory (Askes and Aifantis, 2011b, Mindlin
and Eshel, 1968b) variants such as couple-stress theory (Hadjesfandiari, 2013, Mindlin and
Tiersten, 1962, Poya et al., 2019) and rotation-gradient theory (Anqing et al., 2015, Li et al.,
2015). Other authors consider couplings with additional physics, such as the �exoelectric
e�ect in ferroelectrics (Catalan et al., 2004, Eliseev et al., 2009), coupling with magnetic �elds
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(Eliseev et al., 2011, Liu, 2014b), or photovoltaics (Shu et al., 2020, Yang et al., 2018), as well as
surface e�ects (Shen and Hu, 2010). General variational principles for �exoelectric materials
can be found in Hu and Shen (2010), Liu (2014b), Shen and Hu (2010).

All of the aforementioned �exoelectricity theories can be classi�ed based on the following
criteria:

• The choice of variables describing the �exoelectric e�ect. For the mechanics, either the
displacement gradient or its symmetrized form (i.e. strain) can be used, which gives rise
to type-I or type-II �exoelectricity, respectively. For the dielectrics, either the electric
polarization, the electric �eld, or the electric displacement is used.

• The considered �exoelectric coupling, either the direct, the converse, both, or the
Lifshitz-invariant form.

2.1.1 Di�erent �exoelectric models

The direct �exoelectric e�ect is de�ned as material polarization caused by inhomogeneous
deformation (for example, bending or twisting) and is expressed mathematically as

pl = flijk
)"ij
)xk

, (2.1)

where f is the �exocoupling tensor. There is also a thermodynamically conjugate converse
�exoelectric e�ect, which involves the generation of stress � as a result of the application of
an inhomogeneous electric �eld e, i.e.

�ij = flijk
)el
)xk

. (2.2)

Describing the bulk static �exoelectric e�ect in centrosymmetric dielectrics, the internal
energy density under the assumption of in�nitesimal deformations can be written in terms of
the strain tensor ", the electric polarization �eld P and their corresponding spatial gradients
in the following form (Codony et al., 2021):

 (0)(",∇", P ,∇P) =12cijkl"ij"kl +
1
2ℎijklmn"ij,k"lm,n +

1
2aklPkPl +

1
2bijklPi,kPj,l

− f (1)lijk"ij,kPl − f
(2)
lijk"ijPl,k , (2.3)

where

• c is the usual fourth-order elasticity tensor,

• a is the usual second-order reciprocal dielectric susceptibility tensor,

• h is the sixth-order strain gradient elasticity tensor, representing the purely non-local
elastic e�ects,



2.1 State of the art 17

• b is the fourth-order polarization gradient tensor, representing the purely non-local
e�ects of polarization,

• f (1) is the direct �exocoupling tensor,

• f (2) is the polarization gradient-strain coupling tensor, also known as the converse
�exocoupling tensor.

Assuming uniform material constants, the two latter terms in Eq. (2.3) can be rewritten as
follows (Codony et al., 2021):

−f (1)lijk"ij,kPl − f
(2)
lijk"ijPl,k =

−flijk"ij,kPl − f (2)lijk
) ("ijPl)
)xk

= (2.4a)

flijk"ijPl,k − f (1)lijk
) ("ijPl)
)xk

= (2.4b)

−12 flijk ("ij,kPl − "ijPl,k) −
1
2 (f

(1)
lijk + f

(2)
lijk)

) ("ijPl)
)xk

, (2.4c)

with the (e�ective) �exocoupling tensor

flijk = f (1)lijk − f
(2)
lijk . (2.5)

The �rst terms in (2.4a)-(2.4c) are referred to, respectively, as the direct, converse and Lifshitz
invariant �exocouplings (Landau and Lifshitz, 2013, Lifshitz and Landau, 1984, Sharma et al.,
2010), and all of them implicitly represent both the direct and converse �exoelectric e�ects.
The second terms in (2.4a)-(2.4c) are null-Lagrangians (Evans, 2010), as such their bulk integral
can be written as a surface integral using the divergence theorem, e.g. for (2.4c):

∫Ω
1
2 (f
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(2)
lijk)

) ("ijPl)
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dΩ =

∫Γ
1
2 (f

(1)
lijk + f

(2)
lijk) "ijPlnk dΓ. (2.6)

Despite the fact that they a�ect boundary conditions, null Lagrangians are frequently over-
looked in the literature (Sharma et al., 2010, Yudin and Tagantsev, 2013), resulting in di�erent
internal energy densities to Eq. (2.3) as

 (Dir)(",∇", P ,∇P) = 12cijkl"ij"kl +
1
2ℎijklmn"ij,k"lm,n +

1
2aklPkPl +

1
2bijklPi,jPk,l − flijk"ij,kPl , (2.7)

 (Con)(",∇", P ,∇P) = 12cijkl"ij"kl +
1
2ℎijklmn"ij,k"lm,n +

1
2aklPkPl +

1
2bijklPi,jPk,l + flijk"ijPl,k , (2.8)
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and

 (Lif)(",∇", P ,∇P) = 12cijkl"ij"kl +
1
2ℎijklmn"ij,k"lm,n +

1
2aklPkPl +

1
2bijklPi,jPk,l −

1
2 flijk ("ij,kPl − "ijPl,k) .(2.9)

Taking polarization �eld P as the electrical state variable results in a variational formulation
in terms of the free energy of the system such that, upon minimization over the admissible
states, Euler-Lagrange equations and boundary conditions follow as necessary conditions.
However, in these formulations, the irrotationality of the electric �eld emerges as a constraint
that complicates the numerical treatment. Therefore, many authors prefer electric �eld-
based models to polarization-based models because the electric �eld can be irrotational by
construction yielding an unconstrained min-max problem. The connection between the two
families of models is Legendre transformation. Therefore, in this dissertation, we resort to
electric �eld-based formulations.

2.1.2 Flexoelectric formulation based on electromechanical enthalpy

We consider a general form of �exoelectric coupling from which di�erent forms such as direct,
converse, and Lifshitz-invariant �exoelectric models can be derived. In the limit of in�nitesimal
deformations, the electromechanical enthalpy can be written as:

("ij , "ij,k , El , El,m) =
1
2ℂijkl"ij"kl +

1
2ℎijklmn"ij,k"lm,n + � �lijk"ijEl,k − (1 − � )�lijk"ij,kEl

−12�lmElEm −
1
2MijklEi,jEk,l , (2.10)

where � = 0 is related to the direct model, � = 1 is related to the converse model, and � = 0.5
is related to the Lifshitz-invariant model. In Eq. (2.10), ℂ is the elasticity tensor, h is the strain
gradient elasticity tensor, � is the �exoelectricity tensor, � is the dielectricity tensor, and M is
the gradient dielectricity tensor. The material tensors have been de�ned in Appendix A. The
constitutive equations are:

�̂ij =
)
)"ij

= ℂijkl"kl + � �lijkEl,k , (2.11)

�̃ijk =
)
)"ij,k

= ℎijklmn"lm,n − (1 − � )�lijkEl , (2.12)

D̂l = −
)
)El

= �lmEm + (1 − � )�lijk"ij,k , (2.13)

D̃ij = −
)
)Ei,j

= MijklEk,l − � �lijk"ij . (2.14)

The physical stress and physical electric displacement are:
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�ij =
)
)"ij

−(
)
)"ij,k),k

= ℂijkl"kl + �lijkEl,k − ℎijklmn"lm,nk , (2.15)

and

Di =
)
)Ei

−(
)
)Ei,j),j

= �ijEj + �ijkl"jk,l −MijklEk,lj . (2.16)

The strong form of the problem can be written as:
{

�ij,j + f exti = 0 in Ω,
Dl,l − q = 0 in Ω,

(2.17)

where f exti is the external body forces per unit volume, and q represents the external electric
free charges per unit volume. The strong form is complemented with the following Neumann
boundary conditions (Codony et al., 2021):

(�̂ij − �̃ijk,k + ∇Sl (nl )�̃ijknk) nj − ∇Sj (�̃ijknk) = ti on )Ωt , (2.18)
�̃ijknjnk = ri on )Ωr , (2.19)

− (D̂l − D̃lk,k + ∇
S
i (ni)D̃lknk) nl + ∇

S
l (D̃lknk) = w on )Ωw , (2.20)

− D̃jknjnk = v on )Ωv , (2.21)

where n is the normal vector to the surface, t is traction, r is double traction, w is surface
charge density, v is double charge density. In regions where the boundary is not smooth, some
additional boundary conditions arise. The reader is referred to (Codony et al., 2021) for more
details.

2.2 Finite sample e�ects

The �exoelectric couplings, which were �rst predicted theoretically (Mashkevich and Tolpygo,
1957) have since been con�rmed experimentally. Bursian and Zaikovskii (1968) demonstrated
beam bending of non-piezoelectric thin cantilever beams under applied electric bias in closed
circuit (Fig. 2.1a), an evidence of inverse �exoelectricity producing non-homogeneous de-
formations in response to an applied homogeneous electric �eld (see Eq. (2.1)). This e�ect
has been later used in proof-of-concept �exoelectric MEMS (Bhaskar et al., 2016). Ma and
Cross (2001, 2002) and Cross (2006) conducted a series of experiments showing electric �elds
emerging in cantilever nanobeams under bending and nanopyramids under compression,
a testament of the direct �exoelectric e�ect (Fig. 2.1b). The �exoelectric response induced
by mechanical gradients has been shown to be strong enough to: (1) switch polarization in
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ferroelectrics, which opens avenues for mechanical writing of ferroelectric memories without
any electrical bias (Lu et al., 2012), (2) change the conductivity of LAO/STO interfaces by
purely mechanical means, which can �nd application in transistors (Sharma et al., 2015), and
(3) provide a charge separation mechanism in non-centrosymmetric materials for photovoltaic
applications (Yang et al., 2018). Finally, deformation under in-homogeneous electric �elds
due to converse �exoelectricity has been observed in Piezoresponse Force Microscopy (PFM)
(Fig. 2.1c) (Abdollahi et al., 2019). All these settings have been successfully modeled with
the self-consistent two-way coupled electromechanical continuum framework described in
Section 2.1.2, demonstrating the ability of the model to capture �exoelectric physics (Abdollahi
et al., 2015a, 2019, 2014, Codony et al., 2021).

In all three �exoelectric mechanisms, the actuating �eld, namely a mechanical gradient
(direct), an electric �eld (inverse) and an electric �eld gradient (converse) are polar in nature
and thus able by themselves to break material centro-symmetry. This is not expected to
happen under homogeneous strain, cf. Section 1.2. Indeed, the self-consistent simulation of
a non-piezoelectric dielectric square sample with generalized periodic boundaries (Barceló-
Mercader et al., 2023), i.e. representing an in�nite medium, under uniform compression shows
no �exoelectric response as expected (Fig. 2.2b). Interestingly, simulations in �nite samples for
all three models in Section 2.1.2 exhibit a boundary layer in the electric potential or the strain,
which vanishes in the bulk as expected (Fig. 2.2c). This boundary layer emerges naturally
from the model in the presence of a free surface. Intuitively, this localized electric response
can be viewed as the piezoelectric-like response of a thin layer of material close to the free
surface. It is thus reminiscent of surface piezoelectricity. This e�ect manifests itself in �nite
samples as an emerging thin piezoelectric boundary layer resulting from symmetry loss at the
surface (Fig. 2.3) (Zubko et al., 2013).

Regardless of the intrinsic symmetry of the bulk material, the presence of a free surface
breaks the symmetry by surface relaxation and induces the emergence of a thin layer of
non-centrosymmetric material with piezoelectric-like behavior. Surface piezoelectricity has
been modeled as a zero-thickness layer of piezoelectric material, in the spirit of (Tagantsev
and Yurkov, 2012, Yudin and Tagantsev, 2013, Yurkov and Tagantsev, 2016). However, it is
known that surface relaxation can be described by strain gradient elasticity (Danescu, 2012).
Similarly, here a piezoelectric-like boundary layer emerges naturally from the rich continuum
model, without a speci�c ad-hoc model for surface piezoelectricity. Similar to the boundary
layers in strain gradient elasticity models (Lam et al., 2003, Shu et al., 1999), the observed
boundary layers present an exponential growth near the surfaces, and their width is directly
related to the length scale parameters of the inherent higher-order physics.

An in-depth understanding of the inherent surface e�ects of �exoelectric models is essential
from modeling, computational, and physical perspectives. From the modeling side, the emer-
gence of boundary layers from surface relaxation in the �exoelectric models in Section 2.1.2
needs to be taken into account when incorporating ad-hoc surface piezoelectricity models such
as the zero-thickness piezoelectric surface layer as done in Dai et al. (2011) and Pan et al. (2011).



2.2 Finite sample e�ects 21

Furthermore, a rigorous characterization of the boundary layers provides an opportunity to
model surface e�ects resulting from surface relaxation as an emergent property. Obviously,
surface e�ects resulting from physical or chemical surface speci�city cannot be captured by
the present rich continuum models. On the computational side, the inherent surface e�ects of
the �exoelectric models can cause steep boundary layers resulting in numerical instabilities if
the computational mesh is not su�ciently �ne. Quantitative knowledge of the inherent surface
e�ects of the �exoelectric models can be a useful guide for careful consideration of the mesh
size and/or regularization parameters. Finally, the detailed study of speci�c boundary value
problems based on the rich continuum models can provide further insights on the physics of
the free surface e�ects.

In the following sections, we present a theoretical exploration and characterization of the
observed boundary layers. We �rst study two examples in which a homogeneous electric
�eld or strain causes surface e�ects in a thin �exoelectric �lm. As an additional example, we
then explore the uniform bending of a �exoelectric beam showing that it exhibits surface
e�ects that could be well-explained with the surface e�ects seen due to the application of
homogeneous strain.
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(a) Inverse �exoelectricity in experiments and simulations. Figure adapted from (Bursian and
Zaikovskii, 1968, Codony et al., 2021).

(b) Direct �exoelectricity in experiments and simulations. Figure adapted from (Abdollahi et al.,
2014, Ma and Cross, 2001).

(c) Converse �exoelectricity in experiments and simulations. Figure adapted from (Abdollahi et al.,
2019).

Figure 2.1: Inverse, direct, and converse �exoelectricity has been observed in experiments and self-
consistent computational simulations.
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(a) Four-way coupling in the continuum models of �ex-
oelectricity namely (1) direct �exoelectricity, (2) inverse
�exoelectricity, (3) converse �exoelectricity, (4) inverse-
converse �exoelectricity. The �rst three phenomena have
been con�rmed experimentally, while the fourth one has
not yet been observed.

(b) Horizontal Compression of an in�nite �ex-
oelectric body (periodic in x and y directions)
does not induce any electric response, as sym-
metry is not broken with compression. The
distribution of electric potential has been plot-
ted. The Lifshitz-invariant model has been
used.

(c) Horizontal compression of an in�nite �ex-
oelectric �lm (periodic in x but not in y direc-
tion) induces an electric response close to the
free top and bottom boundaries, as surfaces
are sources of symmetry-breaking. The distri-
bution of electric potential has been plotted.
Horizontal surfaces are assumed to be free of
tractions and surface charges. The Lifshitz-
invariant model has been used.

Figure 2.2: The inverse phenomena (couplings shown with red arrows) can cause surface e�ects in
�exoelectric models in �nite samples.
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Figure 2.3: Symmetry breaking nature of surfaces causes a piezoelectric-like behavior of a thin layer of
material close to free surfaces. Figure adapted from (Zubko et al., 2013).
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2.2.1 Analytical solutions for di�erent cases

We provide next the analytical solution for three boundary value problems corresponding to
a plane-strain microbeam under three loading conditions: axial electric actuation (Fig. 2.4a),
axial compression (Fig. 2.4b), and uniform bending (Fig. 2.4c). For all the examples, we consider
a thin �exoelectric �lm along the x-direction occupying [−T /2, T /2] in the y-coordinate. The
thin �lm is modeled as being in�nite along x and z directions, for one-dimensional kinematics.
For the described geometry, the boundary conditions presented in Eqs. (2.18)-(2.21) simplify
to:

ti = �i2 sign(y) on y = ±T /2, (2.22)
ri = �̃i22 on y = ±T /2, (2.23)
w = −D2 sign(y) on y = ±T /2, (2.24)
v = −D̃22 on y = ±T /2. (2.25)

Homogeneous Neumann mechanical and electric boundary conditions have been considered
on the free surfaces for all the cases, i.e. ti = 0, ri = 0, w = 0, and v = 0. The obtained analytical
results have been illustrated for each case considering a BST microbeam of thickness T = 1
micrometer. The material properties are given in Table 2.1. Worth noting that all analytical
results have been veri�ed against numerical simulations.

(a) Electrical actuation of a thin �lm along its length.

(b) In-plane compression of a thin �lm along its length.

(c) Uniform bending of a thin �lm.

Figure 2.4: Loadings and boundary conditions of three cases studied in the paper. Dark dashed lines
represent the deformed shape.
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Table 2.1: Material parameters used in the simulation.

E � l1 � l2 �L �T �S
[Gpa] [nm] [nC/Vm] [nm] [�C/m] [�C/m] [�C/m]
152 0.33 20 8 30 1.21 1.10 0.055

2.2.1.1 Axial Electric actuation of a microbeam

Suppose we apply a far-�eld horizontal electric �eld Ēx to the system. Fig. 2.4a shows the
boundary conditions and loadings for this case. Consequently, the applied electric �eld results
in y-dependent shear strain "xy (y) = "yx (y). Here we consider strain-free conditions at in�nity
so that "xx = "yy = 0 and Ey = 0. However, as shown in Appendix H, the stress �xx = 0 on each
cross-section which implies that the conclusions are not a�ected by the choice of stress or
strain-free boundary conditions at in�nity. Therefore:

" = [
0 "xy (y)

"xy (y) 0 ] , E = [
Ēx
0 ] . (2.26)

Considering homogeneous Neumann boundary conditions on the free surfaces, "xy (y) can be
obtained as:

"xy (y) =
−(1 − � )�S Ēx

(1 + exp(−T /l1))CS l1 [
exp(

−y − T /2
l1 ) − exp(

y − T /2
l1 )] . (2.27)

The details of the derivation of the solution are provided in Appendix H.

Figure 2.5: Electrical actuation of a thin �exoelectric �lm made of BST along its length with Ēx = 1V /�m
shows inverse surface piezoelectric-like e�ect. The thickness considered here is 1 �m.
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Fig. 2.5, depicts "xy along the cross-section, Eq. (2.27), for di�erent �exoelectric models.
Fig. 2.5 shows that for direct and Lifshitz-invariant models, as a result of the applied in-plane
electric �eld the top and bottom surfaces of the body experience shear strains. The shear strain
vanishes at a certain distance from the surfaces. The pro�le of the shear strain is controlled by
the strain gradient elasticity length scale l1 and its magnitude is proportional to the applied
electric �eld Ēx and the shear �exoelectric coe�cient �S , and is inversely proportional to the
shear component of the elasticity tensor CS , and the strain gradient elasticity length scale l1.
This behavior is similar to the actuation of a thin layer of a piezoelectric surface due to an
application of external voltage, or inverse surface piezoelectricity. Fig. 2.5 shows that for this
case, the converse model does not show surface e�ect.

2.2.1.2 Axial compression of a microbeam

Suppose we apply far-�eld plane-strain axial compression "̄xx to the microbeam, Fig. 2.4b.
Both the deformation �eld and electric potential are independent of the x-direction. Therefore,
the applied compression results in y-dependent vertical strain "yy (y) and electric �eld Ey (y).
Note that "xy = "yx = 0 and Ex = 0. Therefore:

" = [
"̄xx 0
0 "yy (y)]

, E = [
0

Ey (y)]
. (2.28)

Considering homogeneous Neumann boundary conditions on the free surfaces, Ey (y) and
"yy (y) can be obtained with the following expressions:

Ey (y) = K
"̄xx (CL�T − CT �L)

�CL [ − �2 [exp(
−y − T /2

a1 ) − exp(
y − T /2
a1 )]

+ �1 [exp(
−y − T /2

a2 ) − exp(
y − T /2
a2 )]], (2.29)

"yy (y) = K
"̄xx (CL�T − CT �L)

�LCL [ − a1�1�2 [exp(
−y − T /2

a1 ) + exp(
y − T /2
a1 )]

+ a2�2�1 [exp(
−y − T /2

a2 ) + exp(
y − T /2
a2 )]] −

CT
CL

"̄xx ,

(2.30)

where

K = �
a1�21 − a2�12

, (2.31)

a1, a2 =
√
l1l2

√
A

1 ±
√
1 − A2

, A = 2l1l2
l21 + l22 + l2�

, (2.32)
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l2� =
�2L
CL�

, (2.33)

�i =1 −
l22
a2i
, (2.34)

�i = (1 − exp(−T /ai))(
l21
l2�
�i + 1 − �) , (2.35)

i = (1 + exp(−T /ai))(
l22
a2i
(1 − � ) + �) . (2.36)

The details of the derivation of the solution are provided in Appendix I. Note that in Eqs. (2.35),
and (2.36), the thickness dependence of �i and i vanishes if T ≫ ai .

Figure 2.6: In-plane compression of a thin �exoelectric �lm made of BST along its length with
"̄xx = −0.01 shows surface-piezoelectric like e�ect. The thickness considered here is 1 �m.

Fig. 2.6, depicts Ey and "yy along the beam cross-section, Eqs. (2.29) and (2.30), respectively,
for di�erent �exoelectric models. Fig. 2.6 shows that for Lifshitz-invariant and converse
models, a boundary layer develops on the transversal electric �eld Ey , which vanishes away
from the surface. This behavior is inherently similar to direct surface piezoelectricity in non-
piezoelectric materials, where a thin layer of the surface shows an electric response under
mechanical deformation. Due to the generated electric �eld gradient near the surfaces, the
strain "yy also experiences a boundary layer due to converse �exoelectricity.

2.2.1.3 Uniform bending of a microbeam

Suppose the beam is uniformly bent so that the curvature of the beam � is the same in all
cross-sections normal to it. Fig. 2.4c shows the boundary conditions and loadings for this case.
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Following a slender beam approximation, the strains and electric �elds can be written as:

" = [
−�y 0
0 "yy (y)]

, E = [
0

Ey (y)]
. (2.37)

Considering homogeneous Neumann boundary conditions on the free surfaces, Ey (y) and
"yy (y) can be obtained with the following expressions:

Ey (y) =
−�(CL�T − CT �L)

CL� [k̂1 [exp(
−y − T /2

a1 ) + exp(
y − T /2
a1 )]

− k̂2 [exp(
−y − T /2

a2 ) + exp(
y − T /2
a2 )]] −

�
� (�L

CT
CL

− �T) ,

(2.38)

"yy (y) =
−�(CL�T − CT �L)

CL�L [k̂5 [exp(
−y − T /2

a1 ) − exp(
y − T /2
a1 )]

− k̂6 [exp(
−y − T /2

a2 ) − exp(
y − T /2
a2 )]] +

CT
CL

�y. (2.39)

where

k̂1 =
(2a2̂2(� − 1) + �̂2T�)
2(a1�̂2̂1 − a2�̂1̂2)

, (2.40)

k̂2 =
(2a1̂1(� − 1) + �̂1T�)
2(a1�̂2̂1 − a2�̂1̂2)

, (2.41)

k̂5 =
a1�1 (2a2̂2(� − 1) + �̂2T�)

2(a1�̂2̂1 − a2�̂1̂2)
, (2.42)

k̂6 =
a2�2 (2a1̂1(� − 1) + �̂1T�)

2(a1�̂2̂1 − a2�̂1̂2)
, (2.43)

�̂i =(1 + exp(−T /ai))(
l21
l2�
�i + 1 − �) , (2.44)

̂i =(1 − exp(−T /ai))(
l22
a2i
(1 − � ) + �) . (2.45)

where ai , l� , and �i have been de�ned in Eqs. (2.32)-(2.34). The details of the derivation of the
solution have been provided in J. Note that in Eqs. (2.44), and (2.45), the thickness dependence
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of �̂i and ̂i vanishes if T ≫ ai .
Fig. 2.7, depicts Ey and "yy along the cross-section, Eqs. (2.38) and (2.39), respectively, for

di�erent �exoelectric models. It is important to note that the surface e�ects seen in the case
of bending are mainly a combination of the surface e�ects in the compression case, yet with
opposite signs of the applied compression on two sides of the neutral axis. That is why the
results shown in Fig. 2.7 exhibit an opposite symmetry compared to Fig. 2.6. Furthermore, the
coupling between "yy,y and Ey through �L causes an additional surface e�ect. That is why a
small surface e�ect can be seen with the direct model in the case of bending.

Figure 2.7: Surface e�ects of a �exoelectric thin �lm made of BST under uniform bending with
� = 50[1/m]. The thickness considered here is 1 �m.

2.2.2 Discussion

Three forms of coupling are mainly considered in the �exoelectric literature. Direct �exo-
electricity is modeled as −�lijk�ij,kEl , converse �exoelectricity is modeled as �lijk�ijEl,k , and
Lifshitz-invariant �exoelectricity is modeled as 1

2�lijk�ijEl,k − 1
2�lijk�ij,kEl . As shown in Section

2.1.2, considering any of the mentioned coupling terms explicitely in the electromechanical
enthalpy would not change the governing equations, yet the de�nition of Neumann bound-
ary conditions is di�erent in the three �exoelectric models. This results in solving di�erent
boundary value problems if the Neumann boundary condition is imposed anywhere on the
boundaries. Table 2.2 summarizes the components of the strain and electric �eld that exhibit
boundary layers for the di�erent case studies and di�erent �exoelectric models. Electrical ac-
tuation and compression cases are of particular importance as the electromechanical response
is isolated from the bulk �exoelectric response. As explained in Section 2.2.1.1, a homogeneous
electric �eld can cause a shear strain gradient due to inverse �exoelectricity. This means that
the surface of the body exhibits a mechanical response due to the application of an external
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Table 2.2: The components of the strain or electric �eld that exhibit boundary layers for di�erent cases
and di�erent �exoelectric models

Case Direct Lifshitz-invariant Converse
(� = 0) (� = 0.5) (� = 1)

Electric actuation "xy "xy -
Compression - "yy , Ey "yy , Ey
Bending "yy , Ey "yy , Ey "yy , Ey

electrical stimulus, or inverse surface piezoelectricity. Besides, as shown in Section 2.2.1.2, a
homogeneous strain can cause an electric �eld gradient due to inverse converse �exoelectricity,
a behavior that is similar to direct surface piezoelectricity. Considering either the direct or the
converse �exoelectric models result in a one-way surface piezoelectric-like e�ect (direct or
inverse), while the Lifshitz-invariant model shows a two-way surface piezoelectric-like e�ect
(direct and inverse). The inherent surface e�ects of �exoelectricity with di�erent models have
already been seen in di�erent studies (Abdollahi et al., 2014, Codony et al., 2021, Yurkov and
Tagantsev, 2016, Zhuang et al., 2020b). In particular, (Codony et al., 2021) studied a cantilever
beam under bending and showed that the Lifshitz-invariant model exhibits a boundary layer on
Ey . This is in agreement with the results of this paper. However, as in (Codony et al., 2021) the
longitudinal �exoelectric coe�cient �L was neglected, no boundary layer in Ey was observed
in the direct model. The boundary layers have also been seen in a cantilever beam actuator
(Abdollahi et al., 2014, Codony et al., 2021, He et al., 2019, Zhuang et al., 2020b). One could
perform a similar exercise as Section 2.2.1.1 by changing the boundary conditions (applying
Dirichlet electric boundary conditions instead of homogeneous Neumann electric boundary
conditions on free surfaces), and explaining the boundary layers seen in the vertical electric
�eld of the cantilever beam actuator. However, as our aim was to shed light on the origins of
the surface e�ects in the �exoelectricity models and not explain every single example, we did
not provide more examples.

2.2.3 Concluding remarks

In this section, we explored the continuum models of �exoelectricity in dielectrics. We
showed that when the size of the body is �nite, the continuum models of �exoelectricity in
bulk exhibit surface piezoelectric-like e�ects. We attributed the surface e�ects to be due to
inverse �exoelectricity and inverse converse �exoelectricity. Comparing di�erent �exoelectric
couplings, we showed that the direct and converse �exoelectric models exhibit a one-way
surface piezoelectric-like e�ect, while the Lifshitz-invariant model shows a two-way surface
piezoelectric-like e�ect. Furthermore, we characterized the observed boundary layers in terms
of the length scales of the model. Future research can be carried out to explore the interaction
of the inherent surface e�ects of �exoelectricity with other physics (bulk piezoelectricity,
surface piezoelectricity, and surface �exoelectricity). Besides, how to model �exoelectricity is
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still an open question (there is no clear physical understanding that which � parameter can
well describe reality). There are also no clear insights into the high-order boundary conditions
for which homogeneous Neumann conditions are commonly imposed in the literature for
convenience. Furthermore, characterization of the physical length scales of the model still
needs to be further researched. By comparing with other approaches (atomistic simulations or
experiments), the results provided here may be useful to �nd some of the parameters that are
not yet well understood.

2.3 Variational formulation for �exoelectric solids at �nite
deformation

After exploring the continuum models of �exoelectricity in in�nitesimal strains, in this section,
we aim to extend the continuum models of �exoelectricity for �nite deformation. We extend
the formulation presented in (Codony et al., 2020) to a Lifshitz-invariant �exoelectric model
accounting for material incompressibility and material interfaces.

2.3.1 Preliminaries

Consider a deformable continuum dielectric body denoted by Ω0 in the undeformed con�gu-
ration, and by Ω in the deformed con�guration. The deformation map � ∶ Ω0 → Ω carries
every material point X ∈ Ω0 to a spatial point x = � (X ) ∈ Ω. Let FiI (X ) = )�i(X )/)XI be the
deformation gradient, J ∶= det(F) be the Jacobian, CI J ∶= FkI FkJ be the right Cauchy-Green
tensor and EI J ∶= 1

2 (CI J − δI J) be the Green-Lagrange strain tensor, with δI J the Kronecker
delta. The theory of �exoelectricity involves higher order derivatives of deformation. We
introduce the gradients of the deformation gradient, the right Cauchy-Green tensor and the
Green-Lagrange strain tensor as

F̃iJK ∶=
)FiJ
)XK

= )2�i
)XJ)XK

, C̃I JK ∶=
)CI J
)XK

= 2 symm
I J

(F̃kIKFkJ) , ẼI JK ∶=
)EI J
)XK

= 12 C̃I JK ,

(2.46)

where symmI J (AI J) ∶= (AI J + AJ I) /2.
The electric potential in the material frame is denoted by Φ(X ). Then, the nominal electric
�eld E and its �rst gradient Ẽ are de�ned as

EI ∶= −
)Φ
)XI

, ẼI J ∶=
)EI
)XJ

= − )2Φ
)XI)XJ

. (2.47)

2.3.2 Variational formulation in material form

Largely following (Codony et al., 2020), the total electromechanical enthalpy density of a
�exoelectric solid in the absence of piezoelectricity consists of �ve contributions namely the
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elastic ΨElast, the strain gradient elastic ΨSGEla, the �exoelectric ΨFlexo, the dielectric ΨDiele and
the gradient dielectric ΨGDiele energy densities:

ΨEnth(E, Ẽ, E , Ẽ) = ΨElast(E) + ΨSGEla(Ẽ) + ΨFlexo(E, Ẽ, E , Ẽ) + ΨDiele(E, E) + ΨGDiele(Ẽ).
(2.48)

For the elastic contribution, a conventional Neo-Hookean model is chosen to model the
shear elasticity of the incompressible solid,

ΨElast(E) =12G (tr C − 2) − G ln(J ), (2.49)

where G is the shear modulus. The strain gradient elastic contribution is written as

ΨSGEla(Ẽ) =12 ẼI JKℎI JKLMN ẼLMN , (2.50)

where h is a sixth-order strain gradient elasticity tensor given by Eq. (B.1) in terms of an
elastic material length scale �1.

In contrast to (Codony et al., 2020), we consider here a symmetric form for the �exoelectric
energy density taking into account contributions of both direct and converse �exoelectricity
(Codony et al., 2021, Sharma et al., 2010, Zhuang et al., 2020b) given by

ΨFlexo(E, Ẽ, E , Ẽ) = − 12 JC
−1
AB�AI JKEBẼI JK +

1
2 JC

−1
AB�AI JK ẼBKEI J , (2.51)

where � is the �exoelectricity tensor described in Eq. (B.2). The dielectric energy density is

ΨDiele(E, E) = − 12 J �EKC
−1
KLEL, (2.52)

where � is the electric permittivity of the material. The gradient dielectric energy density
contribution can be de�ned as (Zhuang et al., 2020b)

ΨGDiele(Ẽ) = − 12 ẼI JMI JKLẼKL, (2.53)

where M is the fourth-order gradient dielectricity tensor de�ned in Eq. (B.4) in terms of a
dielectric material length scale �2. Similarly to the linear case, see Eq. A.6, a third material
length scale arises, the �exoelectric length scale as de�ned in Eq. B.3.

We note that one can formulate the theory in terms of a Lagrangian internal energy density
that, instead of E and Ẽ , depends on Lagrangian polarization P and its gradient P̃ . In Appendix
F, we assess the relation of such model with that considered in the present study.

The boundary of the body in the undeformed con�guration, )Ω0, is split into several
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disjoint Dirichlet and Neumann sets as follows:

)Ω0 = )Ω�
0 ∪ )ΩT

0 = )ΩV
0 ∪ )ΩR

0 = )ΩΦ0 ∪ )ΩW
0 = )ΩM

0 ∪ )ΩO
0 . (2.54)

On the Dirichlet boundaries )Ω�
0 , )ΩV

0 , )ΩΦ0 and )ΩM
0 , the deformation map � , normal deriva-

tives of the deformation map )N � , the electric potential Φ, and the normal derivative of the
electric potential )NΦ are prescribed. On the Neumann boundaries )ΩT

0 , )ΩR
0 , )ΩW

0 and )ΩO
0

their associated work conjugate quantities (per unit undeformed area) are prescribed. The
Neumann boundary data consists of the surface traction T , the surface double traction R, the
surface charge density W and the surface double charge O. Because of the strain gradient
elasticity and the gradient dielectricity terms in the electromechanical enthalpy, additional
boundary conditions emerge on the non-smooth regions of )Ω0, i.e. edges (corners) C0 in a 3D
(2D) domain. We also split them into Dirichlet and Neumann sets as follows:

C0 = C�
0 ∪ C J

0 = CΦ0 ∪ CK
0 . (2.55)

On the Dirichlet sets C�
0 and CΦ0 , the deformation map � and the electric potential Φ are

prescribed, while on the Neumann sets C J
0 and CK

0 , the edge force per unit length in 3D (or
corner force in 2D) J and the charge density per unit length in 3D (or charge in 2D) K are
prescribed. We consider dead loads for simplicity.

The total electromechanical enthalpy of an incompressible �exoelectric material in 3D can
be written as

Π[� ,Φ, p] = ∫Ω0
[ΨEnth(E, Ẽ, E , Ẽ) + p(J − 1) − Bi�i + QΦ] dΩ0

− ∫)ΩT0
Ti�i dΓ0 − ∫)ΩR0

Ri)N �i dΓ0 − ∫C J0
Ji�i ds0

+ ∫)ΩW0
WΦdΓ0 + ∫)ΩO0

O)NΦdΓ0 + ∫CK0
KΦds0, (2.56)

where the pressure �eld p is the Lagrange multiplier imposing point-wise the incompressibility
constraint J = 1, and B and Q are body force and and electric charge per unit undeformed
volume. In 2D, dΩ0 is an area element, dΓ0 a line element, and ds0 just denotes evaluation of
the integrand at corner points.

In equilibrium, the �rst variation of Π[� ,Φ, p] must vanish yielding

0 =�Π[� ,Φ, p; �� , �Φ, �p]

= ∫Ω0 (
)ΨEnth

)EI J
�EI J +

)ΨEnth

)ẼI JK
�ẼI JK +

)ΨEnth

)EL
�EL +

)ΨEnth

)ẼLM
�ẼLM + (J − 1)�p − Bi��i + Q�Φ) dΩ0

− ∫)ΩT0
Ti��i dΓ0 − ∫)ΩR0

Ri)N ��i dΓ0 − ∫C J0
Ji��i ds0
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+ ∫)ΩW0
W�ΦdΓ0 + ∫)ΩO0

O)N �ΦdΓ0 + ∫CK0
K�Φds0

= ∫Ω0 (
ŜI J �EI J + S̃I JK�ẼI JK − D̂L�EL − D̃LM�ẼLM + (J − 1)�p − Bi��i + Q�Φ) dΩ0

− ∫)ΩT0
Ti��i dΓ0 − ∫)ΩR0

Ri)N ��i dΓ0 − ∫C J0
Ji��i ds0

+ ∫)ΩW0
W�ΦdΓ0 + ∫)ΩO0

O)N �ΦdΓ0 + ∫CK0
K�Φds0, (2.57)

for all admissible variations �� , �Φ and �p consistent with the Dirichlet boundary conditions,
where

�EL ∶= −
)(�Φ)
)XL

, �ẼLM ∶= − )2(�Φ)
)XL)XM

, �FiI ∶=
)(��i)
)XI

, � F̃iI J ∶=
)2(��i)
)XI)XJ

,

(2.58)

�EI J =
1
2�CI J ∶= symmI J

(�FkI FkJ) , �ẼI JK =
1
2�C̃I JK ∶= symmI J

(�FkI F̃kJK + FkI �F̃kJK) .

(2.59)

The local second Piola-Kirchho� stress Ŝ, the second Piola-Kirchho� double stress S̃, the
electric displacement D̂ and the double electric displacement D̃ are given by

ŜI J = G (�I J − C−1I J ) + pC−1I J +
1
2CMLI J (�ELEM + �LABKEM ẼABK − �LABK ẼMKEAB)

+ 12C
−1
AB�AI JK ẼBK , (2.60)

S̃I JK = ℎI JKLMN ẼLMN −
1
2C

−1
LMEM�LI JK , (2.61)

D̂L = C−1KL (�EK +
1
2�KI JM ẼI JM) , (2.62)

D̃LM = −12C
−1
AL�AI JMEI J + ẼI JMI J LM , (2.63)

where CABCD = (C−1ACC−1BD + C−1BCC−1AD − C−1ABC−1CD). These equations clearly highlight the elec-
tromechanical couplings, the in�uence of each material tensor, and the strong nonlinearity
introduced by large deformations.

Equation (2.57) can be integrated by parts and by invoking the divergence, surface diver-
gence and Stokes’s theorems (for more details on the derivation see Appendix C), to obtain
the strong form of the governing equations:

{
(FiI SI J ),J + Bi = 0 in Ω0,
DL,L − Q = 0 in Ω0,

(2.64)
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where the physical second Piola-Kirchho� stress S and physical electric displacement D can
be de�ned as

SI J = ŜI J − S̃I JK ,K , (2.65)
DL = D̂L − D̃LM,M . (2.66)

This procedure also identi�es the de�nitions of the surface traction T , the surface double
traction R, the surface charge density W , the surface double charge density O, the edge forces
J and the edge charge K as

Ti = [FiI ŜI J + F̃iIK S̃I JK − (FiI S̃I JK),K − (FiI S̃IKJ),L ℙKL]NJ + FiI S̃I JK ÑJK , (2.67)

Ri = FiI S̃I JKNJNK , (2.68)
Ji = JFiI S̃I JKMJNK K, (2.69)

W = [−D̂L + D̃LM,M + (D̃ML),K ℙKM]NL − D̃LM ÑLM , (2.70)

O = −D̃LMNLNM , (2.71)
K = −JD̃LMMLNMK, (2.72)

where N is the outward unit normal vector on )Ω0, M is the outward unit co-normal vector
on C0, ℙ = I −N ⊗N is the projection operator on )Ω0, Ñ = (∇0N ∶ ℙ)N ×N − ∇0N ⋅ ℙ, or in
components, ÑI J = ()NK /)XL ℙKL)NINJ − )NI /)XK ℙKJ is the second-order geometry tensor
on )Ω0 and J K is the jump operator de�ned on C as the signed sum of its argument evaluated
at each boundary adjacent to C . A detailed derivation of the mentioned geometrical quantities
can be found in (Codony et al., 2019).

2.3.3 Variational formulation in material form including an internal
material interface

Nitsche’s method formulation for weak enforcement of interface conditions has been derived for
in�nitesimal strains (Barceló-Mercader et al., 2022). In this section, the mentioned formulation
has been extended for large deformations. Weak enforcement of the interface conditions
can give us the �exibility to enforce the required continuities on the interfaces of arbitrary
geometry (Wang et al., 2015). Besides, weak enforcement enables us to deal with imposing the
continuity conditions for non-conforming meshes. However, these are the future work and
thus are out of the scope of this thesis.

Consider a physical domain in the undeformed con�guration denoted by Ω0 composed of
two non-overlapping sub-domains as Ω0 = Ω(1)0 ∪ Ω(2)0 . Each sub-domain has a boundary )Ω(i)0 .
The material interface is de�ned as 0 = )Ω(1)0 ∩ )Ω(2)0 . We de�ne the weighted mean operator
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and jump operator for a function A that can be discontinuous across 0 as

{A} = A1 + (1 −  )A2 on 0, (2.73)
JAK = A1 + A2 on 0, (2.74)

where  ∈ (0, 1) and Ai denotes the value of A from sub-domain Ω(i)0 .
The energy potential of Nitsche’s method associated with the interface can be written as

ΠInterface[� ,Φ, p] = ∫I0 [
1
2�

�I J�iNJ K2 − J�iNJ K
{
TiNJ

}
] dΓ0

+ ∫I0 [
1
2�

)N �I
r
)N �i

z2
−

r
)N �i

z{
Ri
}
] dΓ0

+ ∫I0 [
− 12�

ΦI
r
ΦNI

z2
+

r
ΦNI

z{
WNI

}
] dΓ0

+ ∫I0 [
− 12�

)NΦI
r
)NΦ

z2
+

r
)NΦ

z{
O
}
] dΓ0

+
H
∑
k=1

∫Ck0 [
1
2�

�c (� 1i − � 2i )2 − (� 1i − � 2i )(J 1i − J 2i )] ds0

+
H
∑
k=1

∫Ck0 [
− 12�

Φc (Φ1 − Φ2)2 + (Φ1 − Φ2)(K 1 − K 2)] ds0, (2.75)

where H is the numbers of edges (corners) in a 3D (2D) domain on the interface, ��I , �)N �I , �ΦI ,
�)NΦI , ��c and �Φc are penalty parameters of Nitsche’s method to ensure energy being concave
up with respect to the deformation � and concave down with respect to electric potential Φ.
The penalty parameters should be large enough but in practice do not need to be too large,
which would cause ill-conditioning. Note that at the solution, the penalty terms vanish and we
recover the physical work at the interface, and hence the method is variationally consistent.
This method can be trivially applied to enforce Dirichlet boundary conditions at the domain
boundary, see (Codony et al., 2019) for the derivation in the in�nite deformation setting.

Enforcing Dirichlet boundary conditions strongly, the total energy of the domain Ω0
including Nitsche’s functional to deal with internal interfaces is then

ΠBimaterial[� ,Φ, p] = Π[� ,Φ, p] + ΠInterface[� ,Φ, p]. (2.76)

The necessary condition for electromechanical equilibrium is that the �rst variation ofΠBimaterial

vanishes, yielding

�ΠBimaterial[� ,Φ, p; �� , �Φ, �p] = �Π[� ,Φ, p; �� , �Φ, �p]+�ΠInterface[� ,Φ, p; �� , �Φ, �p] = 0,
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(2.77)

for all admissible variations �� , �Φ, �p consistent with the Dirichlet boundary conditions. The
variation �Π has been derived in Eq. (2.57) and �ΠInterface can be written as

�ΠInterface[� ,Φ, p; �� ,�Φ, �p] = ∫I [
��I J��iNJ K J�iNJ K − J��iNJ K

{
TiNJ

}

− J�iNJ K

{
�TiNJ

}
] dΓ

+ ∫I [
�)N �I

r
)N ��i

zr
)N �i

z
−

r
)N ��i

z{
Ri
}

−

r
)N �i

z{
�Ri

}
] dΓ

+ ∫I [
− �ΦI

r
�ΦNI

zr
ΦNI

z
+

r
�ΦNI

z{
WNI

}

+

r
ΦNI

z{
�WNI

}
] dΓ

+ ∫I [
− �)NΦI

r
)N �Φ

zr
)NΦ

z
−

r
)N �Φ

z{
O
}

+

r
)NΦ

z{
�O

}
] dΓ

+
H
∑
k=1

∫Ck [
��c (� 1i − � 2i )(�� 1i − �� 2i ) − (�� 1i − �� 2i )(J 1i − J 2i ) − (� 1i − � 2i )(�J 1i − �J 2i )] ds

+
H
∑
k=1

∫Ck [
− �Φc (Φ1 − Φ2)(�Φ1 − �Φ2) + (�Φ1 − �Φ2)(K 1 − K 2) + (Φ1 − Φ2)(�K 1 − �K 2)] ds,

(2.78)

where the variations of the Neumann terms �Ti , �Ri , �Ji , �W , �O and �K expressed in terms
of �� , �Φ, �p can be found in Appendix D.

2.4 Numerical approximation

C1continuty of the basis functions is required to approximate fourth-order PDEs. B-splines
are piecewise polynomial functions that meet the high-order continuity requirement. In this
section, we brifely discuss about B-splines and their two-scale re�nement property which is
used in subdivision-stabilization technique to satisfy the numerical inf-sup condition (Dortdi-
vanlioglu et al., 2018, Dortdivanlioglu and Linder, 2019, Kadapa et al., 2016, Rüberg and Cirak,
2012). We then introduce the numerical approximation used in this paper. Consider a uniform
knot vector Ξ = {�1, �2, ..., �n+p+1} formed by a set of n + p + 1 non-decreasing evenly-spaced
real numbers �i called knots, where p is the polynomial order and n is the number of control
points and basis functions used to form the B-spline curve. Each knot �i is a coordinate in
the parameter space and they partition the parameter space into elements, also known as
knot spans. Using the knot vector Ξ, the uniform B-spline basis functions can be recursively
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constructed for piecewise constants (p = 0) using

N 0
i (� ) =

{
1 �i ≤ � < �i+1
0 otherwise.

(2.79)

and for p > 0 using

N p
i (� ) =

� − �i
�i+p − �i

N p−1
i (� ) + �i+p+1 − �

�i+p+1 − �i+1
N p−1
i+1 (� ). (2.80)

Note that each basis function N p
i (� ) constructs a partition of unity, i.e., ∑n

i=1 N p
i (� ) = 1, and

it is positive over a knot interval �i ≤ � < �i+1. By taking a linear combination of the basis
functions N p

i (� ), a B-spline curve of the order p in ℝd can be formed as

C(� ) =
n
∑
i=1

N p
i (� )Bi , (2.81)

B being the set of n control points with Bi ∈ ℝd . Being analogous to the nodal coordinates
in the standard �nite element method, the control points have a distinctive feature that they
are not interpolated by the B-spline basis functions when p ≥ 2. Using open knot vectors,
B-spline curves can be constructed which are interpolated at the ends. Open knot vectors can
be constructed by increasing the multiplicity of the initial and the �nal knot values to p + 1, i.e.
�1 = �2 = ... = �p+1 and �n+1 = �n+2 = ... = �n+p+1. A pth order B-spline constructed by a uniform
open knot vector shows Cp−1 continuity over the whole domain except at the ends where C−1
continuity exists.

One of the remarkable features of the B-splines is their re�nability, also referred to as
the two-scale relation. Consider a non-decreasing uniform knot vector Ξ = {�1, �2, �3, ...} =
{0, 1, 2, ...} forming basis functions N p . Finer basis functions Ñ p can be formed by using a new
knot vector Ξ̃ = {�̃1, �̃2, �̃3, ...} = {0, 1/2, 1, ...} constructed by bisecting the knot intervals in Ξ.
It can be shown that the coarse basis functions N p and the �ne basis functions Ñ p have the
following relation

Ñ p
i (� ) = N p

1 (2� − i). (2.82)

From Eq. 2.82, it can be noted the support size of the coarse basis functions N p is twice that of
the �ne basis functions Ñ p . More imporantly, each coarse basis function N p

i can be expressed
as a linear combination of p+2 �ne basis functions Ñ p

k as shown in Fig. 2.8, using the two-scale
relation as
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(a) Quadratic basis functions (p = 2) (b) Cubic basis functions (p = 3)

Figure 2.8: Two-scale relation for quadratic and cubic B-splines. The coarse basis functions are con-
structed by a linear combination of p + 2 �ne basis functions. For p = 2 the coarse basis function is
formed as N 2

i = 1
4 Ñ 2

2i−1 + 3
4 Ñ 2

2i + 3
4 Ñ 2

2i+1 + 1
4 Ñ 2

2i+2, and for p = 3 the coarse basis function is obtained as
N 3
i = 1

8 Ñ 3
2i−1 + 1

2 Ñ 3
2i + 3

4 Ñ 3
2i+1 + 1

2 Ñ 3
2i+2 + 1

8 Ñ 3
2i+3.

N p
i (� ) =

1
2p

p+1
∑
k=0(

p + 1
k )Ñ

p
2i+k−1(� ) or in matrix notation N p(� ) = SÑ p(� ),

(2.83)

where S is known as the subdivision matrix formed by the elements Spk = 1
2p (

p+1
k ). In case

the B-spline basis functions are constructed with open knot vectors, the subdivision matrix
is modi�ed at the boundaries. Since the B-splines have a local support over the knot vector,
only the p consecutive coarse basis functions at the boundaries are modi�ed. For quadratic
basis functions (p = 2), the two consecutive modi�ed basis functions are obtained as N 2

1 =
Ñ 2
1 + 1

2 Ñ 2
2 and N 2

2 = 1
2 Ñ 2

2 + 3
4 Ñ 2

3 + 1
4 Ñ 2

4 . For cubic basis functions (p = 3), the three consecutive
modi�ed basis functions are obtained as N 3

1 = Ñ 3
1 + 1

2 Ñ 3
2 , N 3

2 = 1
2 Ñ 3

2 + 3
4 Ñ 3

3 + 3
16 Ñ 3

4 and
N 3
3 = 1

4 Ñ 3
3 + 11

16 Ñ 3
4 + 1

2 Ñ 3
5 + 1

8 Ñ 3
6 . The modi�cations of the coe�cients in the two-scale relation

for B-splines formed with a uniform open knot vector are shown in Fig. 2.9. Surface B-spline
functions can be obtained as a tensor product of two univariate B-spline functions.

For the numerical examples, we restrict ourselves to the setup of interest which is a
�lm/substrate system composed of two rectangular geometries. Cartesian grid is used to
discretize the geometries. Uniform open B-spline basis functions are adopted to approximate
the state variables � , Φ and p. The same approximation spaces are considered for � and Φ, but
a di�erent one for Lagrange multiplier p. The B-spline space for p is obtained by coarsening
the �ne space of � or Φ using the two-scale relation discussed earlier in this section. Therefore,
the basis functions of all the state variables have the same polynomial degree. Dirichlet
boundary conditions are strongly enforced, because the basis functions are interpolant at the
boundaries of the domain in the reference con�guration. The standard Gaussian quadrature
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(a) The �rst basis function
close to the boundary (p =
2)

(b) The second basis function close to the
boundary (p = 2)

(c) The �rst basis
function close to the
boundary (p = 3)

(d) The second basis function close to the
boundary (p = 3)

(e) The third basis function close to the boundary (p = 3)

Figure 2.9: The modi�cations to the two-scale relation for the p successive basis functions in the vicinity
of the boundary.

rules are employed to approximate the domain and the boundary integrals. Discretizing the
weak form of the problem Eq. (2.77), a nonlinear system of equations is obtained which is
solved using Newton-Raphson method. In Newton-Raphson method, the �rst order Taylor
expansion of the residual Bimaterial in Eq. (2.77) around the solution of the previous iteration
{� ,Φ, p}(k−1) must be vanished yielding an increment of the solution of the system at k-th
iteration {Δ� ,ΔΦ,Δp}(k) as

Bimaterial[� (k),Φ(k), p(k); �� , �Φ, �p] ≈
+Bimaterial[� (k−1),Φ(k−1), p(k−1); �� , �Φ, �p]

+ )
Bimaterial[� (k−1),Φ(k−1), p(k−1); �� , �Φ, �p]

)� Δ� (k)

+ )
Bimaterial[� (k−1),Φ(k−1), p(k−1); �� , �Φ, �p]

)Φ ΔΦ(k)

+ )
Bimaterial[� (k−1),Φ(k−1), p(k−1); �� , �Φ, �p]

)p Δp(k) = 0. (2.84)



42 Continuum and computational modeling of flexoelectricity

Equivalently, Eq. (2.84) can be written as

⎡
⎢
⎢
⎢
⎣

H�� H�Φ H�p
HΦ� HΦΦ 0
Hp� 0 0

⎤
⎥
⎥
⎥
⎦

(k−1)

⋅
⎡
⎢
⎢
⎢
⎣

Δ�
ΔΦ
Δp

⎤
⎥
⎥
⎥
⎦

(k)

= −
⎡
⎢
⎢
⎢
⎣

R�
RΦ
Rp

⎤
⎥
⎥
⎥
⎦

(k−1)

, (2.85)

which reads �nd {Δ� ,ΔΦ,Δp}(k) given {� ,Φ, p}(k−1). The variation of the residual functional
Bimaterial has been derived in Appendix D. We identify the instability points once the smallest
eigenvalue in magnitude of the global sti�ness matrix in (2.85) becomes zero (Dortdivanlioglu
and Linder, 2019). We then slightly perturb the solution in the direction of the associated
eigenvector to reach stable solution.

2.5 On-going and future work

The continuum model derived here can be extended to account for other surface e�ects, i.e.
surface tension, surface chemistry, and absorption. The incorporation of surface tensions, in
particular, can be of great importance when dealing with very soft materials in which the
elastocappilarity e�ects play a signi�cant role (Wang and Zhao, 2013). In very soft materials,
chemical reactions on the surface can also induce surface instabilities (Li et al., 2013). Therefore,
the incorporation of these e�ects may be important. Besides, as the Neo-Hookean hyperelastic
model is mainly considered a valid material model for �nite deformation yet with small strains,
di�erent elastic material models such as Gent hyperelastic model can be substituted in our
formulation which may solve the challenges that may arise when dealing with large strains,
for example in the simulation of creasing. We will comment on the challenges of simulation of
creasing in the next chapter.

2.6 Concluding remarks

In this chapter, we �rst shed light on the inherent surface e�ects of the �exoelectricity models
in bulk. We showed that a reversible surface piezoelectric-like e�ect exists in the Lifshitz-
invariant �exoelectric model, while the direct and converse models exhibit a one-way surface
piezoelectric-like e�ect. Furthermore, we characterized the observed boundary layers in terms
of the length scales of the model.

Then, we developed a continuum model for �exoelectricity in soft materials considering
a symmetric contribution of direct and converse �exoelectricity (Lifshitz-invariant model)
as well as material incompressibility. We developed the formulation of weak enforcement of
interface conditions with Nitsche’s method. Using open B-spline basis functions and employing
the subdivision stabilization technique, the governing equations can be solved in a robust
way.



Chapter 3

Surface instabilities in a �exoelectric
�lm/ dielectric substrate

In this chapter, using the computational framework described in the previous chapter, we
aim to capture the well-known surface instability patterns namely wrinkle, ridge, period-
doubling, fold, and crease in a �exoelectric/dielectric bilayer. In an elastic bilayer, the instability
patterns are controlled by modulus ratio and prestretch (Wang and Zhao, 2015). To capture
the instability patterns, after validation of the implementation, we �rst study the e�ect of
substrate shear modulus and prestretch on the �exoelectric/dielectric bilayer and explore the
electromechanical response of each family of instability patterns. Then, focusing on wrinkling
instability, we study the e�ect of the material’s electrical and �exoelectric properties on the
�exoelectricity-induced electric response, to gain a better understanding of these parameters.

3.1 Setup

We consider a �exoelectric �lm with a length L and a dielectric substrate with a length L0 in
the undeformed state (Fig. 3.1a). Plane strain prestretch �0 = L/L0 is applied to the substrate
elongating it to a length L. The prestretched substrate is then bonded to a stress-free �lm (Fig.
3.1b). In the bonded state, the �lm and the substrate have thickness ℎf and ℎs , respectively.
The bonded state is the reference con�guration in our numerical examples. The bilayer is then
compressed to a length l under plane strain condition, and the overall compressive strain can
be de�ned as " = (L − l)/L (Fig. 3.1c). Details on how we deal with prestretch can be found in
Appendix G.

In the examples shown in this chapter, we consider ℎf = 1µm and (ℎs + ℎf )/ℎf = 40. We
simulate displacement-controlled compression of the bilayer. The vertical displacement and
shear traction on the bottom of the substrate are set to zero. On the left and right faces of
the �lm and substrate, we set the shear traction to zero, while imposing a displacement to
generate the overall compressive strain ". The top layer of the �lm is traction-free. Lower
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face of the substrate is connected to the ground, i.e. the electric potential is �xed to zero. We
consider two cases for the electric boundary condition of the top of the �lm, either we connect
it to the ground (closed-circuit), or we consider charge free boundary condition (open circuit).
Other outer faces are considered to be charge free. On the interface, we assume the �lm and
the substrate are perfectly bonded mechanically and electrically, therefore no delamination is
allowed. The electric boundary conditions are shown in Fig. 3.2

The following material parameters are considered in the simulations shown in 3.3-3.7.
For the �lm we consider:

Gf = 575MPa, � = 9.2nJ/V2m, �L = 100nJ/Vm, �T = 50nJ/Vm, �2 = 0.5µm,
�S = �1 = 0, (3.1)

Gf being the shear modulus of the �lm.
For the substrate, a set of material parameters are considered as:

Gs = 0.575 − 1150MPa, � = 9.2nJ/V2m, �2 = 10µm, �L = �T = �S = �1 = 0, (3.2)

Gs being the shear modulus of the substrate. Note that the shear moduli described above are
ground state shear moduli associated to the state shown in Fig. 3.1a. Worth mentioning that
the shear moduli ranges considered here are in the range between the shear moduli of PDMS
and PVDF. The electric permittivity is in the same order as polymer-based dielectrics (Zha
et al., 2021). The magnitude of �exoelectric coe�cients was chosen as � = (� − �0)f , where �0 is
the vacuum permittivity and f is the �exocoupling coe�cient. We consider f ≈ 12. The values
of �1 are set to 0. This allows us to be able to compare our results (transition strains) with
the results available in the literature for purely elastic bilayers. The values of �2 are chosen
such that for the considered range of material parameters and the mesh sizes, we obtain stable
results.
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(a) Undeformed state (b) Bonded state (c) Deformed state

Figure 3.1: A �lm/substrate system in di�erent states. (a) In the undeformed state, the �lm has a length
L, while the substrate has a length L0 (b) In the bonded state, the substrate is prestretched to length L
and bonded with a stress-free �lm where �0 = L/L0 is the prestretch. (c) In the deformed state, both the
�lm and the substrate are compressed together to length l , where the compressive strain is " = (L − l)/L.

(a) Closed circuit. (b) Open circuit.

Figure 3.2: Electric boundary conditions of the bilayer.

3.2 Validation

In this section, we �rst partially validate our implementation by comparing the critical wrin-
kling strains in an elastic bilayer with the results available in the literature. We then comment
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on the other tests that were performed to check the validity of the implementation. We consider
the �lm/substrate system shown in Fig. 3.1, in which the incompressible substrate in plane
strain conditions has undergone a prestretch of (�0, 1/�0) prior to attaching to the �lm. The
compressive strain in the �lm at the onset of wrinkling can be predicted by a simple formula
(Cao and Hutchinson, 2012b):

"w =
1
4(Λ

3Gs
Gf

)2/3. (3.3)

where Gs and Gf are the shear modulus of substrate and �lm, respectively and Λ = 1
2 (1 + �20).

As discussed in (Cao and Hutchinson, 2012b), this formula is expected to predict the wrinkling
critical strains of bilayers with a good accuracy when the wrinkling critical strain is small. Here,
the only nonzero material parameters are Gf and Gs which are considered from Eq. 3.1 and
Eq. 3.2, respectively. We consider Gf /Gs = 5 − 1000, and �0 = {1, 2}. For validation purposes,
we compare in Fig. 3.3 the compressive strain in the �lm at the onset of wrinkling computed
from the simulations to the theoretical results of Eq. (3.3). As shown, numerical and theoretical
results match perfectly for large Gf /Gs for which the critical wrinkling strain is small. The
�gure shows that without prestretch, Eq. (3.3) can predict the wrinkle critical strain with a good
accuracy even for small moduli ratios. Furthermore, Cao and Hutchinson (2012b) obtained
the wrinkle critical strains "w ≈ {0.166, 0.171} for �0 = {1, 2}, respectively, and Gf /Gs = 5. This
agrees perfectly with our calculated wrinkle critical strains "w = {0.166, 0.1715}.

Apart from the validation of the elastic case, we performed gradient checking to make sure
that the implementation of the residual and the hessian of the electromechanical enthalpy
is correct. Besides, we checked that by applying small loadings in the nonlinear model, we
retrieve the solution obtained from the linear model. Furthermore, mesh convergence of the
results shown in 3.4-3.7 has been performed.

Figure 3.3: Compressive strain in �lm at the onset of wrinkling.
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3.3 Wrinkling

We consider L = 160µm, Gf /Gs = {100, 200, 400, 800}, �0 = {1, 1.5, 2}. Both closed circuit and
open circuit boundary conditions have been considered. The number of �nest elements of
the �lm (elements to discretize displacement and electric potential �elds) is considered to be
{160, 8} for width and thickness, respectively, while that of the substrate is {160, 40}. The
bilayer is loaded to an overall compressive strain " = 0.05 so that wrinkle is the only instability
pattern obtained in this set of simulations.

For the case of closed circuit, Fig. 3.4a compares the net vertical electric �eld across the �lm
thickness ĒY , on a wrinkle peak for the case �0 = 1. The net vertical electric �eld across the �lm
is de�ned as ĒY = −(Φtf ilm − Φbf ilm)/ℎf , where Φtf ilm and Φbf ilm are the electric potentials of the
points with the same X-coordinate on top and bottom of the �lm, respectively. Interestingly, it
can be seen that before the onset of wrinkle instability, the ĒY increases linearly. While this
linear increase of ĒY may be surprising, as before the start of wrinkling, the system is �at
and thus no strain gradient is generated, the response is related to converse �exoelectricity
term in Eq. (2.51) which couples uniform strain with electric �eld gradient. As a result of
this, compression of a �exoelectric thin �lm induces electric �eld gradients near its surfaces,
as discussed in detail in Section 2.2.1.2. Since there is a lack of symmetry in the boundary
conditions of the �lm (the top having an electrode with zero potential and the bottom having a
substrate with interface continuities), under compression, a mean electric �eld in the thickness
direction of the �lm is induced. Besides, this behavior is similar to the behavior of a closed

(a) Net vertical electric �eld ĒY of the wrinkle peak for
the case �0 = 1 and di�erent modulus ratios Gf /Gs .

(b) Net vertical electric �eld ĒY of the wrinkle peak
for the case Gf /Gs = 100 and di�erent substrate pre-
stretches �0.

Figure 3.4: E�ect of modulus ratio and substrate prestretch on the electric �eld generated on a wrinkle
peak in closed circuit.



48 Surface instabilities in a flexoelectric film/ dielectric substrate

circuit electret under homogeneous deformation which further reveals the similarities between
electrets and �exoelectric materials (Wen et al., 2019). For a given prestretch, increasing the
modulus ratio leads to a decrease in the wrinkle critical strain "w and wrinkle wavenumber.
Furthermore, Fig. 3.4a shows that the rate of the increase of ĒY on a wrinkle peak decreases as
the modulus ratio increases. Fig. 3.4b shows that increasing prestretch has a similar e�ect to
decreasing modulus ratio (Fig. 3.4a) on "w , ĒY generated on the wrinkle peak as well as wrinkle
wavenumber. This is because prestretch causes an anisotropic sti�ening of the substrate, as
discussed by Cao and Hutchinson (2012b).

Fig. 3.5 summarizes the results of the open circuit case. Comparing the insets in Figs. 3.5
and 3.4, it is clear that the change of the electrical boundary conditions did not noticeably
change the deformations, i.e. the wavenumbers remained unchanged. Besides, this �gure
shows that the rate of the increase of the absolute value of Φtf ilm on a wrinkle peak increases
by decreasing modulus ratio and increasing prestretch.

(a) Electric potential of the top of the �lm Φtf ilm on a
wrinkle peak for the case �0 = 1 and di�erent modulus
ratios Gf /Gs .

(b) Electric potential of the top of the �lm Φtf ilm on a
wrinkle peak for the case Gf /Gs = 100 and di�erent
substrate prestretches �0.

Figure 3.5: E�ect of modulus ratio and substrate prestretch on electric potential Φtf ilm generated on a
wrinkle peak in open circuit case.

3.4 Wrinkle/ridge transition

We study next the transition between wrinkle and ridge instability patterns in a �exoelec-
tric/dielectric bilayer. In this example, we consider L = 160µm , Gf /Gs = 1000, �0 = 2, and
closed circuit boundary conditions. The number of �nest elements of the �lm (elements to
discretize displacement and electric potential �elds) is considered to be {Nx , 8} for width and
thickness, respectively, while that of the substrate is {Nx , Nx /4}. The presented results are
obtained with to Nx = 160.

Fig. 3.6 shows the evolution of instability patterns in a �lm/substrate system subjected to
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an overall compressive strain " and the resulting electric potential distribution. From the �gure,
it can be observed that as we compress the �lm/substrate system, wrinkle instability pattern
appears (Figs. 3.6a) followed by a transition to localized ridge pattern (Fig. 3.6b). Increasing
the overall compressive strain " results in an increase in the height to thickness aspect ratio of
the ridge (Figs. 3.6c).

To quantify the transition between wrinkle and localized ridge patterns, we incrementally
load the �lm/substrate system to compressive strain " = 0.04, and then incrementally unloading
it to the bonded state. Fig. 3.7a shows the normalized relative vertical displacement of the
ridge peak ūY for the stable equilibrium states. The normalized relative vertical displacement
can be de�ned as ūY = (uY −u0Y )/ℎf , where uY is the vertical displacement of a point on the top
of the �lm, u0Y is the vertical displacement of the same system in homogeneous deformation
state. From the �gure, we identify three critical compressive strains namely wrinkle critical
strain "w = 0.00932 ± 0.00004, wrinkle to ridge transition strain "w→r = 0.0300 ± 0.0004 ,
and ridge to wrinkle transition strain "r→w = 0.0244 ± 0.0004. When " ≤ "w , the �lm is �at.
When "w < " < "r→w , wrinkle state appears and it is the only stable equilibrium state. When
"r→w ≤ " ≤ "w→r , wrinkle and ridge states are both the equilibrium states, formation of
each of which depends on the prior compression history. When "w→r < ", ridge is the only
stable equilibrium state. It is worthwhile to note that the mentioned transitions in an elastic
continuum have been studied by Jin et al. (2015). In the electromechanical problem, these
transitions can also occur with electrically loading the system. In Section 4.1, we provide
examples of such electrically activated transitions. Fig. 3.7b shows the net vertical electric
�eld across the �lm thickness on the ridge peak, for the di�erent states described above. The
transition between wrinkle and ridge state is abrupt causing a sharp change in the displacement
and the resulting vertical electric �eld ĒY on the ridge peak. This �gure shows that in ridge
state, the net vertical electric �eld ĒY increases faster than that in the wrinkle state. This is due
to the fact that the curvature of the ridge peak increases faster than that of a wrinkle peak as a
result of deformation localization. This causes a faster rate of increase of the strain gradients

(a) " = 0.024 (b) " = 0.04 (c) " = 0.16

Figure 3.6: A �exoelectric/dielectric bilayer with Gf /Gs = 1000, and �0 = 2 subjected to di�erent
compressive strains " and the distribution of the electric potential [V].
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(a) Normalized relative vertical displacement of the ridge
peak.

(b) Net vertical electric �eld ĒY of the ridge peak.

(c) Minimum eigenvalue in magnitude of the system. (d) Convergence of "w , "w→r and "r→w compressive strains
with respect to mesh size.

Figure 3.7: Wrinkle-ridge transition in a �exoelectric/dielectric bilayer with Gf /Gs = 1000 and �0 = 2.

and thus the electric �eld generated due to direct �exoelectricity. The smallest eigenvalue in
magnitude of the global sti�ness matrix is depicted in Fig. 3.7c as a function of ", which shows
that tracking the changes in the signature of the global sti�ness matrix is a powerful method
for identifying instability points in an indeterminate system. To check the convergence of
the critical compressive strains "w , "r→w and "w→r , we simulated the same problem with a
di�erent number of elements. Fig. 3.7d shows the convergence of the critical compressive
strains by re�ning the mesh size.
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3.5 Period-doubling bifurcation

We show how period-doubling bifurcation in a �exoelectric/dielectric bilayer a�ects the elec-
trical response of the system. We consider L = 160µm , Gf /Gs = 100, �0 = 1, and closed
circuit boundary conditions. The number of �nest elements of the �lm (elements to discretize
displacement and electric potential �elds) is considered to be {Nx , 8} for width and thickness,
respectively, while that of the substrate is {Nx , Nx /4}. The presented results are obtained
with Nx = 200. Fig. 3.8 shows the instability patterns in the mentioned �lm/substrate system
subjected to an overall compressive strain " and the resulting electric potential distribution.
As we compress the system, wrinkle instability pattern is formed followed by period-doubling
bifurcation. The period-doubling bifurcation can be tracked by tracing the vertical displace-
ments of two neighboring wrinkle valleys, where following the period-doubling bifurcation
strain "PD , one of the valleys goes deeper to the substrate, while the other takes a reverse path.

Fig. 3.9a shows the normalized relative vertical displacement ūY of two neighboring wrinkle
valleys (points A and B depicted in Figs. 3.8a and 3.8b). From this �gure, wrinkle critical strain
"w = 0.02325 ± 0.0015 and period-doubling bifurcation strain "PD = 0.18675 ± 0.0015 can be
identi�ed. Fig. 3.9b shows how period-doubling bifurcation a�ects the net vertical electric �eld
ĒY generated on two neighboring wrinkle valleys. On point A, the magnitude of ĒY decreases
since the curvature decreases, whereas, on point B, the magnitude of ĒY increases due to a
rise in the curvature. Fig.3.9c shows the behavior of the smallest eigenvalue in magnitude
of the global sti�ness matrix where a sharp change of the eigenvalue in the wrinkle and
period-doubling critical strains is evident. The convergence of the critical compressive strains
"w and "PD for a di�erent number of elements is shown in Fig. 3.9d.

(a) " = 0.18 (b) " = 0.225 (c) " = 0.27

Figure 3.8: A �exoelectric/dielectric bilayer with Gf /Gs = 100, and �0 = 1 subjected to di�erent
compressive strains " and the distribution of the electric potential [V].
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(a) Normalized relative vertical displacement ūY of two
neighboring wrinkle valleys.

(b) Net vertical electric �eld ĒY of two neighboring wrin-
kle valleys.

(c) Minimum eigenvalue in magnitude of the system. (d) Convergence of "w and "PD compressive strains with
respect to mesh size.

Figure 3.9: Period-doubling bifurcation in a �exoelectric/dielectric bilayer with Gf /Gs = 100, and �0 = 1.

3.6 Folding

This example is devoted to the formation of folds in a �exoelectric/dielectric bilayer. We
consider L = 36µm , Gf /Gs = 8, �0 = 1, and closed circuit boundary conditions. The number of
�nest elements of the �lm (elements to discretize displacement and electric potential �elds)
is considered to be {Nx , 8} for width and thickness, respectively, while that of the substrate
is {Nx , ∼ (10Nx /9)}. The presented results are obtained with Nx = 90. Fig. 3.10 shows the
instability patterns in the mentioned �lm/substrate system subjected to an overall compressive
strain " and the resulting electric potential distribution. Compressing the system results in
formation of wrinkles as the primary instability pattern (Fig. 3.10a). After that, a localization
process occurs causing the folds to emerge in the system (Fig. 3.10b).
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Fig. 3.11a shows the normalized relative vertical displacement ūY of the fold tip. From
this �gure, the wrinkle critical strain "w = 0.1225 ± 0.00833 and the fold critical strain "f =
0.16028 ± 0.000278 can be identi�ed. Our calculated wrinkle and fold critical strains for
the �exoelectric/dielectric bilayer agree well with the critical strains reported in (Cao and
Hutchinson, 2012b) ("w ≈ 0.1226 and "f ≈ 0.1651) for elastic bilayer of Neo-Hookean materials.
Fig. 3.11b depicts the net vertical electric �eld on the fold tip ĒY across the �lm thickness
which shows a sudden change in the ĒY due to the localization process causing folds to form.
The behavior of the smallest eigenvalue in magnitude of the global sti�ness matrix has been
shown in Fig.3.11c where a sharp change of the eigenvalue in the wrinkle and fold critical
strains can be seen. The convergence of the critical compressive strains "w and "f for di�erent
number of elements is shown in Fig. 3.11d.

(a) " = 0.1589 (b) " = 0.1606

Figure 3.10: Distribution of electric potential Φ on a �exoelectric/dielectric bilayer with Gf /Gs = 8, and
�0 = 1 subjected to two di�erent compressive strains ".
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(a) Normalized relative vertical displacement ūY of the
fold tip.

(b) Net vertical electric �eld ĒY of fold tip.

(c) Minimum eigenvalue in magnitude of the system. (d) Convergence of "w and "f compressive strains with
respect to mesh size.

Figure 3.11: Wrinkle to fold transition in a �exoelectric/dielectric bilayer with Gf /Gs = 8, and �0 = 1.

3.7 Creasing

In this example, we study the emergence of creases in a �exoelectric/dielectric bilayer. We
consider L = 20µm , Gf /Gs = 0.5, �0 = 1, and closed circuit boundary conditions. The number of
�nest elements (elements to discretize displacement and electric potential �elds) is considered
to be {Nx , 8} for width and thickness, respectively, while those of the substrate are {Nx , Nx /2}.
As we compress the system, above a critical overall compressive strain "sw , surface of �lm
starts to wrinkle (Fig. 3.12a). Note that this surface wrinkling is di�erent than the wrinkling
of the �lm/substrate system described in the previous examples in which both �lm and the
substrate wrinkle together. By increasing the overall compressive strain, the surface wrinkles
collapse to form creases (Figs. 3.12b, 3.12c). Our simulations show that at a critical overall
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compressive strain "sw = 0.2325 ± 0.00083, surface of �lm starts to wrinkle. It is important to
note that both surface wrinkle and crease have an unusual feature that their wavelength is
undetermined (Cao and Hutchinson, 2012a). In our simulations, although we achieved the
convergence of "sw , we observed a dependence of the wavelength on the mesh size.

(a) " = 0.235 (b) " = 0.3 (c) " = 0.35

Figure 3.12: Creasing instability in a �exoelectric/dielectric bilayer with Gf /Gs = 0.5, and �0 = 1
subjected to di�erent compressive strains " and the distribution of the electric potential [V]. In this
�gure, only the �lm is shown.

3.8 E�ect of material’s electrical and �exoelectric properties
on the electric response in wrinkling

In this section, with the �nal goal of optimizing the electromechanical response of the
instability-based �exoelectric devices, we study the e�ect of the material properties (electrical
properties and �exoelectric coe�cients) on the �exoelectricity-induced electric response. For
this, focusing on wrinkling instability, we systematically study the e�ect of electrical properties
of the �lm or the substrate on the net vertical electric �eld generated on a wrinkle peak.

In all the examples, the setup and boundary conditions are the same as Section 3.1. Closed
circuit boundary condition is considered. We consider ℎf = 1μm and (ℎs + ℎf )/ℎf = 40, and
L = 160μm. The number of �nest elements of the �lm (elements to discretize displacement and
electric potential �elds) is considered to be {160, 8} for width and thickness, respectively, while
that of the substrate is {160, 40}. The material properties are chosen such that the wrinkle
pattern is obtained. It is worthwhile to mention that in all the cases below, the changes in
the material properties did not noticeably change the deformation �elds. In other words, the
wavelength of the wrinkles remained unchanged. Therefore, the cross e�ects due to changes
in the deformation �eld have been excluded from the results provided in this section.

3.8.1 E�ect of �lm electric permittivity on the net electric vertical �eld
generated on a wrinkle peak

In the �rst example, the e�ect of the electric permittivity of the �lm on the generated net
vertical electric �eld on a wrinkle peak has been studied. All the material properties are kept
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constant except the electric permittivity of the �lm. The following material properties have
been considered for the �lm:

Gf = 575MPa, �f = {9.2, 92}nJ /V 2m, �L = 100nJ /Vm, �T = 50nJ /Vm,
�2 = 0.5�m, �S = �1 = 0, (3.4)

Gf being the shear modulus of the �lm, and �f is the �lm electric permittivity. For the substrate,
the following material properties are considered:

Gs = 5.75MPa, �s = 9.2nJ /V 2m, �2 = 1�m, �L = �T = �S = �1 = 0. (3.5)

Gs being the shear modulus of the substrate, and �s is the substrate electric permittivity. No
prestretch in the substrate has been considered (�0 = 1). It should be noted that physically
speaking, the �exoelectric coe�cients linearly depend on electric permittivity. However, in
this section, to gain intuition about the sole e�ect of �lm electric permittivity, we neglect this
dependence. Fig. 3.13 shows that decreasing the electric permittivity results in an increase in
the net vertical electric �eld. This is because the lower the electric permittivity is the more
polarizable the material becomes. Therefore, �xing the other material properties and for the
same deformation, the electric �eld is inversely proportional to the electric permittivity of the
�lm.

Figure 3.13: E�ect of �lm electric permittivity on the net vertical electric �eld generated on a wrinkle
peak.
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3.8.2 E�ect of substrate electric permittivity on the net vertical electric �eld
generated on a wrinkle peak.

This example studies the e�ect of the electric permittivity of the substrate on the induced
net vertical electric �eld generated on a wrinkle peak. All the material properties are kept
constant except the substrate electric permittivity. The following material properties have
been considered for the �lm:

Gf = 575MPa, �f = 9.2nJ /V 2m, �L = 100nJ /Vm, �T = 50nJ /Vm,
�2 = 0.5�m, �S = �1 = 0, (3.6)

Gf being the shear modulus of the �lm, and �f is the �lm electric permittivity. For the substrate,
a set of material parameters are considered:

Gs = 5.75MPa, �s = {0.92, 9.2, 92}nJ /V 2m, �2 = 1�m, �L = �T = �S = �1 = 0. (3.7)

Gs being the shear modulus of the substrate, and �s is the substrate electric permittivity. No
prestretch in the substrate has been considered (�0 = 1). Fig. 3.14 shows that similar to the

Figure 3.14: E�ect of substrate electric permittivity on the net vertical electric �eld generated on a
wrinkle peak.

�lm, increasing the electric permittivity of the substrate results in a decrease in the net vertical
electric �eld generated on a wrinkle peak. It is worthwhile to note that the electric permittivity
of the conductors is in�nite. Therefore, increasing the electric permittivity of the substrate to
in�nity is equivalent to applying electrode boundary conditions on the bottom of the �lm.
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3.8.3 E�ect of �lm �exoelectric coe�cients on the net vertical electric �eld
generated on a wrinkle peak.

In this example, the e�ect of �lm �exoelectric coe�cients on the net vertical electric �eld
generated on a wrinkle peak is studied. All the material properties are kept constant except the
�exoelectric coe�cients �L, �T , and �S . A combination of these coe�cients has been considered
to better understand their e�ect on the generated electric response in wrinkling. The following
material properties have been considered for the �lm:

Gf = 575MPa, � = 9.2nJ /V 2m, �L = {0, 100}nJ /Vm, �T = {0, 50, 100}nJ /Vm,
�S = {0, 100}, �2 = 0.5�m, �1 = 0, (3.8)

Gf being the shear modulus of the �lm. For the substrate, the following material parameters
are considered:

Gs = 5.75MPa, � = 9.2nJ /V 2m, �2 = 1�m, �L = �T = �S = �1 = 0. (3.9)

Gs being the shear modulus of the substrate. No prestretch in the substrate has been considered
(�0 = 1). Fig. 3.15 shows that �L and �T induce electric �eld of approximately the same

Figure 3.15: E�ect of �lm �exoelectric coe�cients on the net vertical electric �eld generated on a
wrinkle peak.

magnitude but with a di�erent sign, in the �at and wrinkle states. Also, the contribution
of �S in the generated electric �eld on a winkle peak in this example is small. Besides, as
the coupling is linear, for the same deformation, the electric response of any combination of
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�exoelectric coe�cients can be obtained by superposing their response. So, considering an
isotropic �exoelectric tensor, i.e. �S = (�L − �T )/2, the optimal choice is �L = −�T = �S .

3.8.4 E�ect of �lm l2 on the net vertical electric �eld generated on a wrinkle
peak.

In this example, we study the e�ect of gradient dielectricity length scale l2 on the net vertical
electric �eld generated on a wrinkle peak. All the material properties are kept constant except
the �lm l2. The following material properties have been considered for the �lm:

Gf = 575MPa, � = 9.2nJ /V 2m, �L = 100nJ /Vm, �T = 50nJ /Vm,
�2�lm = {0.125, 0.25, 0.5}�m, �S = �1 = 0, (3.10)

Gf being the shear modulus of the �lm. For the substrate, the following material parameters
are considered:

Gs = 5.75MPa, � = 9.2nJ /V 2m, �2substrate = 1�m, �L = �T = �S = �1 = 0. (3.11)

Gs being the shear modulus of the substrate. No prestretch in the substrate has been considered
(�0 = 1). Fig. 3.16 shows that the �exoelectric-induced electric �eld is inversely proportional

Figure 3.16: E�ect of �lm l2 on the net vertical electric �eld generated on a wrinkle peak.

to the �lm l2. This is because, in the electromechanical enthalpy, the gradient dielectricity
term penalizes high gradients of the electric �eld consequently regularizing the electric �eld.
Increasing l2 enhances the contribution of this term which results in a decrease in the electric
�eld. From this �gure, it can be noted that to obtain accurate quantitative simulation results, l2
should be physically characterized, as the solutions are considerably sensitive to this parameter.
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3.8.5 E�ect of substrate l2 on the net vertical electric �eld generated on a
wrinkle peak.

In this example, we study the e�ect of substrate l2 on the net vertical electric �eld generated
on a wrinkle peak. All the material properties are kept constant except the substrate l2. The
following material properties have been considered for the �lm:

Gf = 575MPa, � = 9.2nJ /V 2m, �L = 100nJ /Vm, �T = 50nJ /Vm,
�2�lm = 0.5�m, �S = �1 = 0, (3.12)

Gf being the shear modulus of the �lm. For the substrate, the following material parameters
are considered:

Gs = 5.75MPa, � = 9.2nJ /V 2m, �2substrate = {1, 2, 4}�m, �L = �T = �S = �1 = 0.
(3.13)

Gs being the shear modulus of the substrate. No prestretch in the substrate has been considered
(�0 = 1). Fig. 3.17 shows that increasing substrate l2 causes a decrease in the electric �eld

Figure 3.17: E�ect of substrate l2 on the net vertical electric �eld generated on a wrinkle peak.

generated on a winkle peak. However, the e�ect is modest compared to that of the �lm shown
in 3.16.
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3.9 Enhancing the electromechanical response using the
concept of electrets

As discussed in Section 1.2.1, depositing permanent electrical charges on the interface of
bilayers and forming electrets is an e�ective way to enhance the apparent �exoelectric response
(Wen et al., 2019). In this section, we test this idea in our setup. The boundary conditions
and the setup are the same as Section 3.1 except on the interface on which we introduce a
surface charge density of {0, 0.25}[C/m2]. Closed circuit boundary condition is considered.
The boundary conditions are shown in Fig. 3.18. We consider ℎf = 1μm and (ℎs + ℎf )/ℎf = 40,
and L = 160μm. The material properties are chosen such that the wrinkle pattern is obtained.

Figure 3.18: Boundary conditions for the bilayer with a layer of electrical charges on the interface.

The following material properties have been considered for the �lm:

Gf = 575MPa, � = 9.2nJ /V 2m, �L = {0, 100}nJ /Vm, �T = {0, 50}nJ /Vm,
�2 = 0.5�m, �S = �1 = 0, (3.14)

Gf being the shear modulus of the �lm.
For the substrate, the following material parameters are considered:

Gs = 9.583MPa, � = 9.2nJ /V 2m, �2 = 0.1�m, �L = �T = �S = �1 = 0. (3.15)

Gs being the shear modulus of the substrate. No prestretch in the substrate has been considered
(�0 = 1).

As can be seen in Fig. 3.19, the introduction of permanent electrical charges on the interface
signi�cantly improves the electric response of this system. This idea therefore can be very
useful in improving the electromechanical performance of potential devices.
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Figure 3.19: Net vertical electric �eld generated on a wrinkle peak minus the initial vertical electric
�eld as a function of overall compressive strain ": E�ect of charge density on the interface.

3.9.1 Electret with no �exoelectricity: E�ect of l2 on the net vertical electric
�eld generated on a wrinkle peak.

One important question from the last example is in electrets, how sensitive are the results of the
electric response to l2? To shed light on this issue, for this example, we neglect �exoelectricity
in the �lm. The charge density on the interface is equal to 0.5 [C/m2].

The following material properties have been considered for the �lm:

Gf = 575MPa, � = 9.2nJ /V 2m, �2�lm = 0.5�m, �L = �T = �S = �1 = 0, (3.16)

Gf being the shear modulus of the �lm.
For the substrate, a set of material parameters are considered:

Gs = 5.75MPa, � = 9.2nJ /V 2m, �2substrate = {0, 0.1, 0.4, 1.6}�m, �L = �T = �S = �1 = 0,
(3.17)

Gs being the shear modulus of the substrate. No prestretch in the substrate has been considered
(�0 = 1). Fig. 3.20 shows that in electrets, the electric �eld generated on a wrinkle peak is
highly sensitive to the ratio between l2 of the �lm and the substrate. From this �gure, one
may conclude that in electrets, this ratio needs to be as low as possible, since the response
obtained from the higher ratios does not seem to be physical. Note that, for electret without
�exoelectricity, there is no need to solve the high-order electric problems. Therefore one could
set the l2 of the �lm and the substrate to be equal to zero.



3.10 Ongoing and future work 63

Figure 3.20: E�ect of l2 ratio on the net vertical electric �eld generated on a wrinkle peak.

3.10 Ongoing and future work

3.10.1 Phase diagrams in electromechanical bilayers

As shown in this chapter, the well-known mechanical surface instabilities can be captured
with our model. This means that this computational model can be used as an infrastructure
for constructing phase diagrams in electromechanical bilayers. One interesting avenue for
further investigation is to explore how the combination of electrical and mechanical loadings
can change the phase diagrams. Also, it is important to know how �exoelectricity may a�ect
the phase diagrams. Also, constructing phase diagrams in dielectric/dielectric bilayers with a
layer of electrical charges on the interface may be interesting, since electrets have been shown
to be an e�ective way to enhance the �exoelectric-like response of the system (Wen et al.,
2019).

As the �rst step towards this goal, let us take one step back and construct a phase diagram
for the elastic/elastic �lm/substrate system. To construct this phase diagram, we followed a
similar approach as (Wang and Zhao, 2015). Fig. 3.21 shows the phase diagram of a perfectly
bound elastic/elastic bilayer by changing the modulus ratio and strain mismatch. This phase
diagram is similar to the results of (Wang and Zhao, 2015) (Fig. 1.6).

Now, let us study a dielectric-dielectric bilayer having surface charges on the interface. In
this section, the following material properties have been considered for the �lm:

Gf = 575MPa, � = 9.2nJ /V 2m, �L = �T = �S = �1 = �2 = 0, (3.18)

Gf being the shear modulus of the �lm.
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Figure 3.21: Phase diagram of elastic-elastic �lm/substrate system.

For the substrate, a set of material parameters are considered as:

Gs = 0.575 − 575MPa, � = 9.2nJ /V 2m, �L = �T = �S = �1 = �2 = 0, (3.19)

Gs being the shear modulus of the substrate. No substrate prestretch (�0 = 1) has been
considered. The X displacement on the vertical surfaces of the system and the Y displacement
on the lower surface of the substrate are set to zero. The upper surface of the �lm and the
lower surface of the substrate have been grounded. We increase the surface charge on the
interface. The boundary conditions are shown in Fig. 3.18. Neglecting the possibility of electric
breakdown, the system starts to wrinkle at a critical charge density. Fig. 3.22 shows an example
of electrically induced wrinkles in a system with a modulus ratio of 200.

The onset of wrinkling is shown in Fig. 3.23. This �gure shows that increasing the modulus
ratio results in a decrease in the interface’s critical wrinkling charge density. So, considering
charge density or the initial electric �eld across �lm thickness adds a third dimension to the
phase diagrams. It may be interesting to construct a 3D phase diagram with modulus ratio,
strain mismatch, and interface charge density, to understand how instability patterns change
in electrets. Another question that requires further study is what parameters determine the
wavelength of the wrinkles in the electrically-induced instability. To explore this, analytical
approaches can complement our simulations.

Beyond the setup studied here, it would also be interesting to understand the e�ect of
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Figure 3.22: A sample of electrically induced wrinkles in a system with a modulus ratio of 200. The
colormap shows the distribution of electric potential [V].

Figure 3.23: Onset of wrinkling in electrets.

the interface conditions, including delamination. Of particular interest are the high-order
conditions, which similarly to the free boundary high-order conditions, still lack a clear
physical interpretation.
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3.11 Concluding remarks

In this chapter, studying the e�ect of modulus ratio and the substrate prestretch, we captured
the well-known mechanical instability patterns of wrinkle, period-double, ridge, fold, and
crease in a �exoelectric/dielectric bilayer. We explored the transition between the instability
patterns and investigated the �exoelectricity-induced electrical response of each family of
instability patterns. The present exploration has allowed us to understand the e�ect of material
parameters. As shown, no e�ect of �exoelectricity on the onset of wrinkling and folding
instabilities is apparent in the present settings. In principle, no direct bulk �exoelectric e�ect
would be expected in the uniform deformation state studied here. Nevertheless, as explained in
detail in Section 2.2, boundary layers in the vertical electric �eld and in the vertical strain com-
ponents develop under homogeneous macroscopic deformations as a result of surface-induced
symmetry breaking and surface relaxation. These boundary and interface layers manifest here
in the emergence of a linear electric response upon uniform horizontal compression of the
�lm/substrate system before buckling. These �exoelectric responses however do not seem to
signi�cantly a�ect the critical wrinkling and folding strains in the present simulations. Further
exploration with enhanced �exoelectric properties would be necessary to reveal these e�ects
before the onset of the surface instabilities. At the onset of instabilities, large strain gradients
develop within the �lm that causes the observed �exoelectric response. These large strain
gradients penetrate well into the substrate, which is assumed here to be a non �exoelectric
dielectric. The overall electric response would be signi�cantly enhanced in a �exoelectric
�lm on a �exoelectric substrate system. The observations and insights obtained from these
exploratory studies motivate the proof-of-concept devices proposed in the next chapter.



Chapter 4

Towards �exoelectric-based
electromechanical devices

In this section, in light of the insights gained from the exploration presented in Chapter
3, we propose here several device concepts exploiting surface instabilities patterns and the
�exoelectric e�ect.

4.1 Electrically activated pattern change in dielectrics

In Sections 3.4-3.7, we studied the instability patterns in a thin �exoelectric �lm on a dielectric
substrate prestretched incompressible system in closed circuit. Depending on the elastic moduli
ratio between the �lm and the substrate, and the level of prestretch, we have identi�ed the
critical horizontal compressive strain for the di�erent instability patterns. We have shown
that, for the parameter range under consideration, these critical loads are not signi�cantly
a�ected by �exoelectricity in these settings, see discussion in Section 3.11. Once instability
occurs, however, �exoelectricity is the driving mechanism for the overall electric response as
shown in Section 3.8.3. In particular, depending on the combination of the three independent
parameters in the cubic �exoelectric tensor, the sign of the net electric �eld at the wrinkle peak
can be reversed. Some of the observed patterns in the previous section present a clear up-down
symmetry. Intuitively, an external bias could then favor some patterns over others, thus
providing a means to control surface instabilities pattern formation. We explore this concept
next. The setup considered in this example is similar to Section 3.1, except for the electrical
boundary conditions and the specimen size. We consider ℎf = 100nm and (ℎf + ℎs)/ℎf = 40.
The loading and boundary conditions are depicted in Fig. 4.1. The bottom of the substrate
and the interface are grounded. Also, from the start to the end of mechanical loading, the top
of the �lm is grounded. However, once the mechanical loading is �nished, we incrementally
apply a voltage to the top of the �lm. The other faces are considered to be charge free. The
material properties are chosen such that a mechanically bi-stable state exists (see section 3.4).
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Figure 4.1: Schematic of the loading procedure.

The material considered for �lm in this example is PVDF for which the following material
properties are considered:

Gf = 575MPa, � = 0.1151nJ/V2m, �L = 2�T = 4�S = 2.3nJ/Vm, �2 = 50nm, �1 = 0.
(4.1)

Note that although PVDF is piezoelectric, its piezoelectricity has been neglected. For the
substrate, we consider PDMS with the following material properties:

Gs = 0.575MPa, � = 0.028067nJ/V2m, �2 = 0.5µm, �L = �T = �S = �1 = 0, (4.2)

�0 = 2 is considered. The mesh size is similar to Section 3.4. We mechanically load the system
to overall compressive strain " = 0.0293, just before the onset of the ridge instability pattern.
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It is worthwhile noting that the mechanical deformation seen in this example (not shown)
was similar to Fig. 3.7a. This is because this �gure is mainly governed by modulus ratio and
substrate prestretch when the �exoelectric length scale is much smaller than the �lm thickness.
This means that �exoelectricity cannot a�ect deformations unless the �exoelectricity length
scale is comparable to the specimen size. After �nishing the mechanical loading, we start
incrementally applying a voltage on the thin �lm. Both positive and negative voltages are
considered. At a critical electric �eld, the wrinkle instability pattern becomes unstable and the
ridge state appears as the only stable state in the system (Fig. 4.2). This transition which is
mainly due to electrostriction is not reversible, i.e. we cannot go back to the wrinkle state by
decreasing the applied voltage. Our simulation shows that there is a slight asymmetry (< 3%)
in the critical transition electric �eld. This asymmetry is due to �exoelectricity because the
�exoelectricity-induced electric �eld can accommodate or act against the transition depending
on the sign of the external bias. Also, we observe a very slight asymmetry in the normalized
vertical displacement of the ridge peak (< 0.2%) due to the application of positive and negative
bias.

Figure 4.2: Electrically activated wrinkle to ridge transition. u0Y has been computed from the maximum
mechanical strain applied (" = 0.0293).

To better reveal the role of �exoelectricity, we simulate the same system with softer
materials (reducing the shear moduli of the �lm and the substrate by a factor of 10). This
way the relative importance of �exoelectricity is increased without the need to use larger
�exoelectric coe�cients, thus revealing its role more clearly. In this example, we mechanically
load the system to overall compressive strain " = 0.028, just before the onset of the ridge



70 Towards flexoelectric-based electromechanical devices

instability pattern. It is worth noting that, similarly to the previous example, up to the end
of the mechanical loading, the mechanical deformation seen in this example is similar to Fig.
3.7a, however, the wrinkle-to-ridge transition happens slightly sooner than in Fig. 3.7a. From
this point, we electrically load the bilayer, similar to the previous example. Fig. 4.3 shows
the results for this case. Compared to the previous example, there is a bigger asymmetry
(< 6%) in the critical transition electric �eld as well as an asymmetry in the normalized vertical
displacement of the ridge peak (< 0.5%) due to the application of positive and negative bias.

Figure 4.3: Electrically activated wrinkle to ridge transition for a soft bilayer. u0Y has been computed
from the maximum mechanical strain applied (" = 0.028).

4.2 Lateral compression sensor

As shown in Fig. 3.5, the absolute value of electric potential on wrinkled peak increases with the
increase of overall compressive strain. Therefore, in this system, there is an overall potential
di�erence between the outermost part of the wrinkle (wrinkle peak) and the bottom of the
substrate. Here, we propose a novel design for an e�ectively piezoelectric lateral compression
sensor, made from non-piezoelectric materials, that allows us to collect this �exoelectrically-
generated potential di�erence, see Fig. 4.4, thus showing an e�ective ℎ31 piezoelectric property,
which is often used in energy harvesting applications (Priya et al., 2008). ℎ31 is the slope of the
generated lateral electric �eld due to axial strain (Ikeda, 1996). Such a device presents some
advantages over other proposed �exoelectricity-exploiting devices, see Section 1.2, such as easy
fabrication of large-area apparent piezoelectrics. Such a device would be particularly useful
for �exophotovoltaic applications (Yang et al., 2018). So, we consider a similar system to Fig.
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3.5 with the same boundary conditions and we study the e�ect of electric permittivity in the
substrate. We consider ℎf = 100nm and (ℎf + ℎs)/ℎf = 40. We account also for �exoelectricity
in the substrate since we expect large gradients to develop in the substrate as well, see Fig.
3.5, and thus the �exoelectric response of the substrate should signi�cantly contribute to the
overall electric response.

The material considered for the �lm in this example is PVDF with the following material
properties:

Gf = 575MPa, � = 0.1151nJ/V2m, �L = 2�T = 4�S = 2.3nJ/Vm, �2 = 50nm, �1 = 0.
(4.3)

We consider a substrate with the following material properties:

Gs = 718.75kPa, � = �rs �0 = 0.028067nJ/V2m, �L = 2�T = 4�S = f (� − �0)nJ/Vm,
�2 = 0.5µm, �1 = 0, (4.4)

where �0 = 8.854×10−12JV 2/m is the vacuum permittivity, and f is the �exocoupling coe�cient.
No prestretch is considered (�0 = 1). Fig 4.5 shows the electric potential of a wrinkle peak,
as a function of applied compressive strain, for two di�erent �exocoupling values. A large
contribution of substrate �exoelectricity becomes apparent. Also, from this �gure, it is clear
that increasing electric permittivity of the substrate improves the rate of the increase of the
absolute value of the electric potential, at constant �exocoupling. In the range of compressive
strains [0.02−0.05]where the increase of the potential is almost linear, considering thickness of
the specimen being ℎf +ℎs = 4µm, we can obtain ℎ31 = −[Φtf ilm(0.05)−Φtf ilm(0.02)]/[(0.05−0.02)×
4 × 10−6]. For the yellow curve, we obtain ℎ31 = 0.014GV /m. To compute the g piezoelectric
coe�cient , which relates the resulting potential di�erence to applied force (Ikeda, 1996), the

Figure 4.4: Lateral compression sensor.
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e�ective sti�ness of the system is required. Neglecting the sti�ening e�ects of �exoelectricity,
we can approximately compute the e�ective elasticity modulus of the composite in its ground
state by Eef f = (Ef ℎf + Esℎs)/(ℎf + ℎs), where Ef and Es are the elasticity modulus of �lm and
substrate. Note that the e�ective sti�ness computed with this approach in this system may be
on the conservative side since after wrinkling the system is more compliant than the ground
state. With this, we obtain g31 = ℎ31/Eef f = 309.2mVm/N . This is already comparable to PVDF
(g33 = −339mVm/N ).

The performance of this system can be optimized by changing the modulus ratio, substrate
prestretch, as well as the electrical properties of the substrate. Besides, using the concept of
electrets and introducing electric charges on the interface should signi�cantly enhance the
performance of the mentioned device.

Figure 4.5: E�ect of dielectric permittivity of the substrate.

4.3 Conceptual design of �exoelectric-based self-powered
supercapacitive pressure sensors

Being a property of all dielectric materials, �exoelectricity opens new doors for the design
of biocompatible (non-toxic) smart electromechanical devices. One of the exciting relevant
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lines of research has been to develop �exible electronic skin (e-skin). The capacity to perceive
and di�erentiate between multiple spatiotemporal tactile stimuli, such as static and dynamic
pressure, temperature, and vibration, is a crucial requirement for using the e-skins for human
skin-like tactile sensor applications. Recently, signi�cant progress has been made in the design
of multifunctional e-skins (Chortos et al., 2016, Hammock et al., 2013, Ji et al., 2019, Park
et al., 2015, Qiu et al., 2018, Sun et al., 2014, Yang et al., 2019c). As an important part of
e-skins, various researchers have focused on the development of soft pressure and tactile
sensors (Amoli et al., 2020, Chen et al., 2014, Cho et al., 2017, Joo et al., 2015, Li et al., 2016,
Mannsfeld et al., 2010, Nie et al., 2015, Peng et al., 2020, Ruth et al., 2020, Wang et al., 2019b,
Yang et al., 2019a,b, Yin et al., 2019, Zou et al., 2020a,b). Ridges (Zou et al., 2020b), pyramids
(Cho et al., 2017), pillars (Yang et al., 2019a), domes (Park et al., 2015), wrinkles (Chen et al.,
2014), etc. have been proposed to increase the sensitivity of the pressure sensors. In this
section, informed by diverse literature on tactile and pressure sensors, we seek to conceptually
design a �exoelectric-based pressure sensor.

The surface instabilities in bilayers result in a local symmetry breaking in the system. If
the �lm is �exoelectric, the local symmetry breaking causes a local charge separation. The
local vertical electric �elds on di�erent points of the �lm can be a meaningful indicator of
this. However, one important question is how to e�ectively extract the generated electrical
response to design a �exoelectric-based pressure sensor. In the previous section, we provided
a design concept for a lateral compression sensor, with ℎ31 and g31 apparent piezoelectric
properties. Here, we restrict ourselves to capacitive or supercapacitive sensing mechanisms.
In the capacitive sensing mechanism, the capacitance of the sensor changes due to external
stimuli. This results in the generation of an electric signal. The capacitance of a parallel plate
capacitor can be computed by a simple formula C = �A/d , where � is the permittivity of the
material between the two plates, A is the area of the smallest of the two plates, and d is the
distance between two plates. Therefore, by changing the distance between the two plates of
the capacitor, as well as the e�ective area of the capacitor, one can change its capacitance.

With this background, let us now explain the conceptual design of a pressure sensor. This
design is partially informed by several research papers in the literature and in particular (Sun
et al., 2014, Zhang et al., 2020b). The conceptual design of this system is shown in Fig. 4.6.
The �rst step is to build a properly patterned bilayer. This can be done by stretching the
substrate, bonding the thin dielectric �lm on the substrate, and releasing it. Wrinkles may
form in this system. The top of the �lm needs to be grounded, therefore, using a deformable
electrode such as ionic conductors (Keplinger et al., 2013) on top of the �lm and connecting
it to the ground can be an e�ective way of grounding the top of the dielectric �lm. Due to
�exoelectricity, charge separation takes place on the wrinkle peaks and valleys. In other words,
mechanical deformation results in charge separation in the vertical direction on the wrinkled
�lm. Therefore, on the peaks and valleys, charges of the di�erent signs will concentrate. Now,
one can place another conductor on top of this system and connect it to the ground. On the
interface between the ionic conductor and the other conductor, electric double layers (EDL)
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will form, i.e. charges of opposite signs on the two electrodes will be attracted to each other.
Since the distance between the charges is on the nanometer scale, the EDL is equivalent to a
capacitor of very high capacitance, i.e. supercapacitor. Now, applying a force on the surface of
the conductor, the capacitance of the EDL will change due to a change in the distance and the
e�ective area of the two plates of the EDL. This results in an electrical signal.

Figure 4.6: Conceptual design of �exoelectric-based self-powered supercapacitive pressure sensor.

It is worthwhile to note that without �exoelectricity, this system could also work if a small
external voltage is applied to form the EDLs. Therefore, the contribution of �exoelectricity
here is to make this system self-powered. This system can also be regarded as an energy
harvester. It is important to note that although we explained this design for wrinkles, other
instability patterns can also be employed in the design and they may have advantages over
wrinkles.

4.4 Conclusion

In this chapter, we explored three potential applications for instability-based devices. We
�rst studied the possibility of electrically activating the pattern change in dielectric bilayers
commenting on the role of �exoelectricity to cause an asymmetrical response with positive
and negative external bias. We then presented the design of a lateral compression sensor and
a pressure sensor.
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E�ect of �exoelectricity on stress
singularities

On a crack tip, sharp notch, fold, crease, etc. stress singularities exist which provide the largest
local strain gradients. In this chapter, we focus on the manifestations of �exoelectricity in
stress singularities, and in particular, we will show that �exoelectricity can result in a delay
in the formation of folds in bilayers. Furthermore, we will explore the notch strengthening
e�ect and �aw-insensitive fracture and will show that �exoelectricity can contribute to these
phenomena.

5.1 E�ect of �exoelectricity on the formation of folds in
bilayers

This section has been devoted to studying the e�ect of �exoelectricity and strain gradient
elasticity on the fold instability in a �exoelectric/dielectric bilayer. First, we study the e�ect of
�exoelectric coe�cients as well as the strain gradient elasticity length scale l1 on the local
electromechanical response. Then we show that �exoelectricity may result in a delayed fold
formation in �exoelectric/dielectric bilayers.

In all the examples provided in this section, the setup and boundary conditions are the
same as those in Section 3.1. Closed circuit boundary condition is considered. The material
properties and the prestretch in the substrate have been chosen such that folding develops.

5.1.1 E�ect of �lm �exoelectric coe�cients on the mean vertical electric
�eld generated on a fold tip

The e�ect of �lm �exoelectricity coe�cients on the net vertical electric �eld on a fold tip is
studied. We consider ℎf = 1μm, (ℎs +ℎf )/ℎf = 40, and L = 60μm. The number of �nest elements
of the �lm (elements to discretize displacement and electric potential �elds) is considered to be
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{96, 8} for width and thickness, respectively, while that of the substrate is {96, 64}, for width
and thickness, respectively. The following material properties have been considered for the
�lm:

Gf = 575MPa, � = 9.2nJ /V 2m, �L = {0, 100}nJ /Vm, �T = {0, 50, 100}nJ /Vm,
�S = {0, 100}, �2 = 0.5μm, �1 = 0, (5.1)

Gf being the shear modulus of the �lm.
For the substrate, the material parameters are:

Gs = 47.917MPa, � = 9.2nJ /V 2m, �2 = 1μm, �L = �T = �S = �1 = 0, (5.2)

Gs being the shear modulus of the substrate. A substrate prestretch �0 = 1.4 has been consid-
ered.

Fig. 5.1 shows the net vertical electric �eld on a fold tip for di�erent combinations of
�exoelectric coe�cients, as lateral compression increases and through the �at/wrinkle and
wrinkle/fold transitions. It can be seen in Fig. 5.1a that �L and �T result in the generation of
electric �eld of opposite sign in wrinkling state, but not in the fold state. Besides, �S does
not generate a noticeable ĒY in the �at state, while it causes the generation of the ĒY of the
opposite sign compared to �T in the wrinkle and fold states. It is worthwhile to note that in all
the examples shown in this section, the deformation �eld did not considerably change with
the change of the �exoelectric coe�cients (see Fig. 5.2 for example). Therefore, for the chosen
material properties, the coupling is inclined to be one-way. To better understand the reasons
behind these trends, one can plot the components of strain gradient in the di�erent states
bearing in mind that ẼXXY is coupled with EY through �T, ẼYYY is coupled with EY through
�L, and ẼXYX and ẼYXX are coupled with EY through �S (Fig. 5.3). As an example, it can be
seen that the di�erence in the component ẼXXY between fold and wrinkle states (slope of
strain gradient - overall compression) at the fold tip position is negative, similar to that of
ẼYYY . However, in the wrinkling state, the slope of strain gradient - overall compression curve
(not shown) is positive for ẼYYY , and negative for ẼXXY . These types of arguments (reducing
the complexity of the model and focusing on the most relevant features) can be very useful to
interpret the results of complex simulations with multiple cross e�ects.
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(a) E�ect of �lm �exoelectric coe�cients on the net
electric �eld.

(b) E�ect of �lm �exoelectric coe�cients on the net
electric �eld.

(c) E�ect of �lm �exoelectric coe�cients on the net
electric �eld.

(d) E�ect of �lm �exoelectric coe�cients on the net
electric �eld.

Figure 5.1: Folding in a �exoelectric/dielectric �lm/substrate system. E�ect of �lm �exoelectric co-
e�cients on the net vertical electric �eld generated on a wrinkle valley (fold tip). For visualization
purposes, the plots have been separated into 4 �gures for easier comparison.
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Figure 5.2: Normalized relative displacement of the fold tip (wrinkle valley) around the wrinkle-to-fold
transition strain for di�erent �exoelectric coe�cients.

Figure 5.3: Relevant strain gradient components before (left) and after (right) the wrinkle/fold transition.
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5.1.2 E�ect of �lm l1 on the generated mean vertical electric �eld and fold
formation

We study the e�ect of �lm’s strain gradient elasticity length scale, l1, on the electromechanical
response of a �exoelectric/dielectric bilayer undergoing folding. We consider ℎf = 1μm,
(ℎs + ℎf )/ℎf = 40, and L = 60μm. The number of �nest elements of the �lm (elements to
discretize displacement and electric potential �elds) is considered to be {96, 8} for width and
thickness, respectively, while that of the substrate is {96, 64}. In this section, the following
material properties have been considered for the �lm:

Gf = 575MPa, � = 9.2nJ /V 2m, �L = 100nJ /Vm, �T = 50nJ /Vm,
�2 = 0.5μm, �1 = {0, 0.125, 0.25, 0.5}�m, �S = 0, (5.3)

Gf being the shear modulus of the �lm.
For the substrate, the following material parameters are considered:

Gs = 47.917MPa, � = 9.2nJ /V 2m, �2 = 1μm, �L = �T = �S = �1 = 0, (5.4)

Gs being the shear modulus of the substrate. A substrate prestretch �0 = 1.4 has been consid-
ered.

Figure 5.4a shows the normalized relative vertical displacement, ūY , as a function of overall
compressive strain. From this �gure, it can be seen that increasing �lm l1 can signi�cantly
delay the formation of folds in the bilayers. The resulting net vertical electric �eld on a wrinkle
valley (fold tip) has been depicted in Fig. 5.4b. From this �gure, it is important to note that l1
does not noticeably change the electrical response of the system unless through a change in
the deformation of the system.

Overall, we showed that the strain gradient elasticity length scale l1 can contribute to
delaying the formation of the folds. Therefore, a natural question to ask is whether other
gradient e�ects e.g. �exoelectricity can contribute to this phenomenon as well. In the next
section, we will try to answer this question.
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(a) Normalized relative vertical displacement, ūY , of the
wrinkle valley (fold tip) for di�erent values of the �lm’s
strain gradient elasticity length scale, �1.

(b) Net vertical electric �eld at the wrinkle valley (fold
tip) for di�erent values of the �lm’s strain gradient
elasticity length scale, �1.

Figure 5.4: Folding in a �exoelectric/dielectric �lm/substrate system. E�ect of �lm l1.

5.1.3 Delayed fold formation due to strain gradient elasticity and
�exoelectricity

We have shown that strain gradient elasticity can delay the formation of folds in bilayers. In
this section, we try to better explore this e�ect. In all the examples in this section, we consider
ℎf = 1μm and (ℎs + ℎf )/ℎf = 20, and L = 60μm. The number of �nest elements of the �lm
(elements to discretize displacement and electric potential �elds) is considered to be {96, 8}
for width and thickness, respectively, while that of the substrate is {96, 32}, for width and
thickness, respectively. In this section, let us consider a more compliant �lm/substrate system
compared to what we considered in previous examples. This is because higher compliance
induces higher strains and strain gradients, and thus larger electric response for a given
�exoelectric tensor. The following material properties have been considered for the �lm:

Gf = 19.17MPa, � = 9.2nJ /V 2m, �L = {0, 100}nJ /Vm,
�T = {−100, 0, 100, 300}nJ /Vm, �S = {−100, 0, 100}, �2 = 0.5μm,
�1 = {0, 0.125}�m, (5.5)

Gf being the shear modulus of the �lm.
For the substrate, the following material parameters are considered:

Gs = 1.60MPa, � = 9.2nJ /V 2m, �2 = 1μm, �L = �T = �S = �1 = 0, (5.6)

Gs being the shear modulus of the substrate. A substrate prestretch �0 = 1.4 has been considered.
Note that although we are considering a relatively low-sti�ness system, we are still far from
very soft materials, so the elastocapillarity e�ects do not play a relevant role (Wang and Zhao,
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2013).
Figure 5.5a shows the normalized relative vertical displacement, ūY , as a function of overall

compressive strain. From this �gure, it can be clearly seen that both strain gradient elasticity
and �exoelectricity can delay the onset of folding. To better understand the reason behind this
behavior, we plot di�erent terms of the energy density in Eq. 2.48 averaged over a semicircular
control volume of 1�m radius around the fold tip as shown in Fig. 5.6, as a function of overall
compressive strain. It should be noted that as the electromechanical enthalpy in Eq. 2.48 is
related to a Min-Max problem, careful consideration has to be taken to interpret the energies
since a physical interpretation of the electromechanical enthalpy is not clear. However, without
�exoelectricity, the electromechanical enthalpy is reduced to a mechanical energy density
which is related to a minimization problem for which a clear physical interpretation exists.
This mechanical energy density is the sum of the strain and strain gradient energy densities
shown in Figs. 5.7a and 5.7b. From Figs, 5.7c, 5.7d, and 5.7e it can be seen that for the �rst
two cases (cases without �exoelectricity), the non-mechanical energy densities are zero. So,
comparing the �rst two cases, it can be seen that folding generates very large strain gradients
which activate the strain gradient elasticity energy term. As both of the terms have the same
sign, the energy required for folds to form is higher for the case with strain gradient elasticity
compared to the case without it. As a consequence, this results in a delay in the formation of
folds.

To interpret the contribution of �exoelectricity, one may argue that �exoelectricity results
in the generation of electric �elds that can resist the formation of folds. This can be better
understood with the help of Figs. 5.1, 5.5, and 5.7. As discussed, the results provided in Section
5.1.1 are related to a mostly one-way coupled problem (strain gradient generates electric �eld,
but the e�ect of the electric �eld on the strain gradient is small). Besides, as the coupling is
linear in Fig. 5.1, one could roughly estimate the mean vertical electric �eld generated on the
fold tip for an arbitrary combination (yet in the same order such that the deformations are
not a�ected signi�cantly) of �exoelectric coe�cients by superposing the response of each of
the coe�cients. In the transition from wrinkle to fold, a requirement for the electric �eld to
a�ect the strain gradient and consequently the deformation state is the change in the slope
of the electric �eld as the system goes from wrinkle to fold. In other words, if the slope of
the electric �eld around the fold tip remains constant during the transition from wrinkle to
fold, the generated electric �eld is decoupled from the change of the strain gradient as the
system goes from wrinkle to fold. From Fig. 5.1a, it can be seen that in transition from wrinkle
to fold, �L and �T generate a net vertical electric �eld of a similar slope (positive), while �S
generates a net vertical electric �eld of an opposite slope (negative). With this background,
one may expect that the combination of �L and �T of a similar sign and �S of the opposite
sign can signi�cantly change the slope of the vertical electric �eld (concluded from Fig. 5.1)
in the transition from wrinkle to fold. Therefore, this case should be signi�cantly a�ected
by the generated electric �eld. As can be seen in 5.5a, the formation of the folds has been
suppressed by �exoelectricity for this case. Besides, for other �exoelectric cases, it can be seen
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from 5.5b and 5.5a that the e�ect of �exoelectricity and the generated electric �eld on the
onset of folding is small for a case where the slope of the mean vertical electric �eld-overall
compressive strain does not noticeably change (the yellow curve).

(a) Normalized relative vertical displacement of a
fold tip (wrinkle valley) as a function of macroscopic
compressive strain ": Change of the onset of folding
due to strain gradient elasticity and �exoelectricity.

(b) Net vertical electric �eld generated on a fold
tip (wrinkle valley) as a function of macroscopic
compressive strain ".

Figure 5.5: Change of the onset of folding due to strain gradient elasticity and �exoelectricity.

Figure 5.6: A control volume on the fold tip to compute di�erent terms of the energy density in the
electromechanical enthalpy (Eq. 2.48).



5.1 E�ect of �exoelectricity on the formation of folds in bilayers 83

(a) Strain energy density (in MPa) in a semi-
circular control volume of radius 1�m around
the fold tip (wrinkle valley) as a function of
macroscopic comprehensive strain.

(b) Strain gradient energy density (in MPa) in
a semicircular control volume of radius 1�m
around the fold tip (wrinkle valley) as a func-
tion of macroscopic comprehensive strain.

(c) Flexoelectric energy density (in MPa) in
a semicircular control volume of radius 1�m
around the fold tip (wrinkle valley) as a func-
tion of macroscopic comprehensive strain.

(d) Dielectric energy density (in MPa) in a
semicircular control volume of radius 1�m
around the fold tip (wrinkle valley) as a func-
tion of macroscopic comprehensive strain.

(e) Gradient dielectric energy density (in MPa)
in a semicircular control volume of radius 1�m
around the fold tip (wrinkle valley) as a func-
tion of macroscopic comprehensive strain.

Figure 5.7: Terms of energy density averaged over a semicircular control volume of radius 1�m around
the fold tip (wrinkle valley).
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5.2 Gradient e�ects cause notch strengthening and
�aw-insensitive fracture

It is well known that the presence of �aws e.g. cracks and notches in structural components
results in a stress concentration in the vicinity of the crack/notch tip and consequently a
weakening e�ect in brittle or quasi-brittle materials. Cracks and notches are mainly considered
to be the critical parts of the structures from which fracture initiates. However, experimental
observations on micrometer-sized notched aluminum specimens with average grain size of 50
nm and notch depth of 400-1000 nm showed an absence of any measurable stress concentration
in the close vicinity of the notch tip (Kumar et al., 2011). Besides, a few experimental inves-
tigations on nanoscale notched specimens demonstrated the possibility of �aw-insensitive
fracture (Gu et al., 2013, Kumar et al., 2009). The �aw-insensitivity can be de�ned as the
insensitivity of either the location of the initiation of fracture or the strength of the material
to the presence of �aws in a component (Gao et al., 2003, Gu et al., 2013). By in situ fracture
tests on aluminum nanoscale thin �lm with average grain size of 50 nm and notch depth
of 500-800 nm, Kumar et al. (2009) observed that the brittle fracture occurred far from the
preexisting notch. Furthermore, a well-controlled experimental study on nanoscale notched
platinum cylinders with an average grain size of 6 nm and circumferential length of 40-200
nm was carried out which showed the possibility of the initiation of brittle fracture far from
the prefabricated notch and demonstrated that the strength of the specimens was independent
of whether or not the fracture occurred at the notch (Gu et al., 2013). In addition, employing
Molecular Dynamics (MD) simulations, Zhang et al. (2012) found that although nanocrystalline
graphene became �aw tolerant below a critical structural size, the strength of single-crystalline
graphene was sensitive to the aspect ratio of the �aw. While di�erent arguments have been
raised to explain how the local stress around the �aw tip is relaxed, there has not yet been a
consensus about this matter. It appears that the size e�ect character of these observations is
central to the observed material behavior.

A fundamentally relevant phenomenon to the �aw-insensitive fracture is the so-called
notch strengthening e�ect which can be de�ned as follows: the more severe the notch is in
terms of the notch stress intensity factors exhibited at the notch tip, the tougher it becomes.
Notch strengthening or weakening was conventionally thought to depend on ductility or
brittleness of the material (Hertzberg and Hauser, 1977), but, recent studies suggest that this
traditional assumption is not physically sound. Instead, a transition between failure modes
may play a pivotal role in this phenomenon (Lei et al., 2015, Qu et al., 2014, Sha et al., 2015,
2019). Recently, it has been observed that bone with a fatigue pre-crack is two times tougher
than that with a blunt notch (Tertuliano et al., 2020).

The mentioned observations imply that the classical Linear Elastic Fracture Mechanics
(LEFM) and the classical continuum models are not valid tools to accurately describe the
stress �eld in the vicinity of crack/notch tip and therefore to describe material behavior when
the main source of heterogeneity in the material e.g. grain size in crystalline materials is
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comparable to the size of specimen and external �aw (Mindlin, 1963, Shimada et al., 2015). In
other words, LEFM is not able to predict the notch strengthening e�ect and �aw-insensitive
fracture.

Strain gradient enrichment of classical continuum theories has been shown to be successful
in reproducing size e�ects (Askes and Aifantis, 2011a, Mindlin and Eshel, 1968a). Even
though non-local enriched continuum models have been well studied in the context of fracture
mechanics (Bazant, 1999, 2000, Peerlings et al., 1996, Placidi and Barchiesi, 2018, Zhang and
Luo, 2021), surprisingly, they have been barely explored in the context of notch fracture
mechanics (Askes et al., 2013, Bagni et al., 2016, Susmel et al., 2013). We will show that
continuum simulations based on strain gradient elasticity theories are able to capture the
�aw-insensitivity and notch strengthening e�ect. So, one can introduce the �aw-insensitivity
and notch strengthening as gradient e�ects. With this argument, we expect any physical
mechanism related to strain gradients, e.g. �exoelectricity and �exomagnetism (Lee et al.,
2017) to have a contribution towards �aw-insensitive fracture and notch strengthening e�ect.
Flexoelectricity has been shown to a�ect the physics of crack formation and propagation
(Abdollahi et al., 2015b, Cordero-Edwards et al., 2019, Núñez-Toldrà et al., 2020, Wang et al.,
2019c). Through a computational study, Abdollahi et al. (2015b) showed that �exoelectricity
produces a toughening e�ect as well as a toughness asymmetry. The toughness asymmetry
predicted by Abdollahi et al. (2015b), has recently been observed in an experimental study
(Cordero-Edwards et al., 2019). Besides, Wang et al. (2019c) demonstrated the presence of a huge
�exoelectric polarization around the crack tip which reveals the relevance of �exoelectricity
in the fracture phenomenon.

In this study, a higher-order continuum model with the contribution of �exoelectricity
will be employed to study the gradient e�ects in brittle or quasi-brittle materials. Immersed
boundary B-Spline method (Codony et al., 2019) is used to solve the fourth-order governing
di�erential equations of the �exoelectric/strain-gradient solid. An energy-based notch fracture
criterion namely Averaged Strain Energy Density (ASED) (Lazzarin and Zambardi, 2001) will
be employed to evaluate the onset of brittle fracture. ASED has been a powerful method to
predict the brittle fracture of notched components made of di�erent materials (Berto and
Lazzarin, 2014). This study introduces notch strengthening and �aw-insensitive fracture
as gradient e�ects, provides new insights on gradient e�ects in the fracture physics of the
materials, and shows the contribution of �exoelectricity. This understanding can provide
insights into other types of materials, for instance bones (Gao et al., 2003, Núñez-Toldrà et al.,
2020, Tertuliano et al., 2020, Vasquez-Sancho et al., 2018), and open a new route to model and
optimize �aw-tolerant meta-materials (Montemayor et al., 2016, Zhang et al., 2019).

5.2.1 Methodology

The electromechanical enthalpy density considered in this study has been provided in Eq. 2.10.
Lifshitz-invariant �exoelectric model is considered. For details, the reader is invited to refer
to Section 2.1.2. To evaluate the gradient e�ects on the fracture of notched components, we
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Figure 5.8: Geometry of the specimen under three-point bending con�guration and the boundary
conditions.

employ an approach based on the well-known ASED fracture criterion (Berto and Lazzarin,
2014, Lazzarin and Zambardi, 2001) which states that the brittle or quasi-brittle fracture occurs,
when the averaged value of the strain energy density over a control volume reaches a critical
value. The size of the control volume is determined based on material properties, i.e. plain
strain fracture toughness, tensile strength, and poisson’s ratio (Berto and Lazzarin, 2014). In
linear elastic materials, the averaged value of the strain energy density over a small control
volume of arbitrary size around the notch tip is directly correlated to the Notch Stress Intensity
Factor (NSIF) (Lazzarin et al., 2010). Therefore, under the same loading condition and the
specimen size, the inverse of the square root of the ratio between the ASED over a control
volume of the same size around two di�erent notches can directly give a meaningful estimate
of the ratio between their toughness.

To study the notch strengthening e�ect, two sharp V-notched beams are considered with
notch opening angles (2�) equal to 30° and 150° and a notch depth (a) of W/2, where W is
the specimen width. In linear elastic materials, for a sharp V-notch, an increase in the notch
opening angle reduces the degree of singularity of the stress �eld (Filippi et al., 2002), therefore,
a notched beam with an opening angle of 30° experiences a more severe stress condition than
a notch with an opening angle of 150°. The three-point bending test is simulated, where the
specimens are under mode I loading condition (Fig. 5.8). In agreement with ASTM E1820, the
aspect ratio of the beam is �xed to L/W=5, L being the length of the notched beam, and the
span/width ratio is �xed to S/W=4. A small control volume of the radius R=0.02W is considered
to calculate the averaged value of the strain energy density in the vicinity of the notch tip.
Although the results may be a�ected by the chosen size of the control volume, the overall
behavior is expected to remain unchanged. All the simulations are carried out under plane
strain condition. The right and left faces of the notched beams are assumed to be connected to
the ground; i.e. the electric potential is �xed to zero, while the other sides are considered to be
charge-free. Due to symmetry, only half of the notched beams are analyzed.

The following material parameters have been considered in the simulations to �t the
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behavior of nanocrystalline Barium Strontium Titanate (BST) at its paraelectric phase (Zubko
et al., 2013):

Y = 152GPa, � = 0.25, �1 = 1nm, � = 11nC/Vm, �L = �T = {0.121, 121}µC/m,
�2 = 1nm, �S = 0. (5.7)

For the �exoelectric coe�cients, �L and �T, two values have been considered, the larger is
associated to BST at its paraelectric phase (Zubko et al., 2013), while the smaller have been
considered to represent the behavior of a considerably weaker �exoelectric material. The
�exoelectric length scale (Eq. A.6) for BST and the weaker �exoelectric material are �� ∼ 3�m
and �� =∼ 3nm, respectively, the latter is comparable to the strain gradient elasticity length
scale, �1.

5.2.2 Results and discussion

From the simulations, the ASED around the notch tip was calculated. In the remainder, the
square root of the ratio between ASED in a control volume around a notch with an opening
angle of 30° and that of a notch with an opening angle of 150° is named toughness ratio. A
toughness ratio larger than 1 means that a notch with opening angle of 150° is tougher than a
notch with opening angle 30°, while a toughness ratio less than 1 means the opposite.

Figure 5.9 shows the toughness ratio as a function of the normalized width of the beam for
di�erent physics and material parameters. As expected, without considering strain gradient
elasticity and �exoelectricity, for a linear elastic material, the toughness ratio is independent
of the size of the specimen which con�rms the inability of LEFM and classical continuum
theories to predict any size e�ect such as the notch strengthening e�ect. By introducing the
strain gradient elasticity term, decreasing the specimen’s size causes a signi�cant decrease
in the toughness ratio followed by a modest increase in very small specimens. Furthermore,
the toughness ratio is larger than 1, as expected at the macroscale. Below a certain size, the
notch strengthening happens where the severe notch (30°) becomes tougher than a gentle
notch (150°). Introducing �exoelectricity increases the notch strengthening e�ect. This �gure
predicts that for BST, the notch strengthening e�ect occurs even in micrometer scales. The
increase in the toughness ratio at very small specimens is related to a transition from tensile
fracture mode (mode I) to shear mode (mode II). By decreasing the size of the specimens, a
sti�ening phenomenon happens, so that at very small specimens the contribution of shear
stress exceeds that of normal stress (Aifantis, 1999). This can be clearly seen in Fig. 5.10 in
which the components of strain of the 30° notched specimen are shown for various normalized
specimen’s widths W /l1.

To investigate the �aw-insensitive fracture, let us focus on the V-notched specimen with
an opening angle of 30°. From the simulations, a control volume in which the ASED takes
its maximum value is found. Then, the square root of the ratio between the maximum ASED
and the ASED computed around the notch tip is calculated. The ratio equal to 1 implies that
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Figure 5.9: Toughness ratio as a function of normalized specimen’s width W /l1.

Figure 5.10: Strain components for di�erent specimen size for the case with �L = �T = 121µC/m.

the critical point in the specimen having the maximum ASED is exactly at the notch tip. Any
value larger than 1 means that the critical point of the specimen is no longer placed on the
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notch tip. From our calculations, it can be seen that �aw-insensitivity does not occur in a
linear elastic material. By introducing strain gradient elasticity term, the specimen becomes
notch-insensitive for normalized specimen’s widths W /l1 <∼ 18. For �exoelectric materials,
the specimen becomes insensitive to the notch at higher scales. In particular, our calculations
show that BST becomes notch insensitive for normalized specimen’s widths W /l1 <∼ 94.

To better interpret the results, the length scale parameter l1 can be described in terms of the
size of the Representative Volume Element (RVE), denoted as LRVE. The expression l21 = 1

12L2RVE
has been found in the literature (Askes and Aifantis, 2011a). In crystalline materials, assuming
LRVE to be 20 times as large as the grain size LGrain (Gitman, 2006), we can obtain l1 ≈ 6LGrain.
Therefore, based on the results provided here, without considering �exoelectricity, a strain
gradient material can become �aw-insensitive when W /lGrain <∼ 108. This is in agreement
with the results provided in (Gu et al., 2013, Kumar et al., 2009, 2011, Zhang et al., 2012). The
results show that �exoelectric dielectrics may become �aw-insensitive at larger W /lGrain

Figure 5.11: Square root of the ratio between maximum averaged strain energy density (ASEDMax ) and
averaged strain energy density computed around the notch tip (ASEDT ip) as a function of normalized
specimen’s width W /l1 for a 30° notched specimen.

5.3 Conclusions

The focus of this chapter was to explore how �exoelectricity can a�ect material behaviour. In
particular, we put our attention to stress singularities around which very large strain gradients
exist. First, we studied folding instability in soft bilyers and showed that �exoelectricity can
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cause a delay in the formation of folds, i.e. larger macroscopic compressive strain is needed for
the �lm to fold with �exoelectricity. Then, we studied the fracture of notched specimens made
of brittle materials and suggested that �aw-insensitive fracture and notch strengthening are
gradient e�ects. Based on this suggestion, we expect any physical mechanism coupled with
strain gradients to have a contribution towards these phenomena. By means of a self-consistent
continuum model, we showed that �exoelectricity can have a signi�cant contribution towards
notch strengthening and �aw-insensitive fracture, predicting that Barium Strontium Titanate
(BST) in its paraelectric phase may exhibit notch strengthening in micrometer scales and
become �aw-insensitive below 94 nm.



Chapter 6

Conclusions

In this Ph.D. thesis, we have addressed several questions about the continuum modeling of �ex-
oelectricity in dielectric elastomers, its fundamental manifestations, and potential applications
of �exoelectricity in solids. The main contributions can be summarized as follows:

• We started the thesis by exploring the inherent surface e�ects of �exoelectricity models
in in�nitesimal strains. We put our main attention to the Lifshitz-invariant model of
�exoelectricity and showed that under the application of a homogeneous compression
or electric �eld along the length of a thin �lm, the surface of the material shows two-way
piezoelectric-like behavior. We attributed this behavior to the symmetry-breaking na-
ture of the surfaces and argued that the origin of these e�ects is inverse �exoelectricity
(generation of strain gradient due to the application of homogeneous electric �eld), and
inverse-converse �exoelectricity (generation of electric �eld gradient due to applica-
tion of homogeneous deformation). Considering only the direct or converse model of
�exoelectricity in the electromechanical enthalpy leads to losing one of the mentioned
inherent surface e�ects which eventually results in a one-way surface piezoelectric-like
behavior. We provided closed-form solutions that can describe the inherent surface
e�ects of �exoelectricity and their dependencies.

• We formulated the Lifshitz-invariant model of �exoelectricity for �nite strains taking
into account material incompressibility and material interfaces. We commented on the
connection between energy and enthalpy forms of the Lifshitz-invariant �exoelectricity
models for �nite deformations.

• We studied surface instabilities in �exoelectric/dielectric bilayers and successfully cap-
tured the well-known surface instability patterns namely wrinkle, ridge, period-double,
fold, and crease which shows the robustness of our approach for modeling and simulation
of surface instabilities. To provide insights into the surface instabilities in �exoelec-
tric/dielectric bilayers, we explored the electromechanical response of each family of
instability patterns.
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• We observed a linear increase in the electric �eld in �exoelectric/dielectric bilayers
subjected to macroscopic strain in the �at state. With the lessons learned from Section 2,
we explained this behavior to be due to the boundary layers that develop under homo-
geneous macroscopic deformations as a result of surface-induced symmetry breaking
and surface relaxation.

• We explored three potential applications for instability-based devices. We �rst studied the
possibility of electrically activating the pattern change in dielectric bilayers commenting
on the role of �exoelectricity to cause an asymmetrical response with positive and
negative external bias. We then presented the design of a lateral compression sensor
and a pressure sensor.

• With the aim to explore the fundamental manifestations of �exoelectricity, we focused
on stress singularities such as folds in soft bilayers and notches in hard materials. We
showed that �exoelectricity can result in a delay in the formation of folds. Besides,
we introduced the notch-strengthening e�ect and �aw-insensitive fracture as gradient
e�ects and showed that �exoelectricity can contribute to these phenomena. We showed
that BST in its paraelectric phase may exhibit notch strengthening in micrometer scale
and become �aw tolerant below 94 nm.
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A Material characterization for the linear model

The electromechanical enthalpy density described in Eq. 2.10 involves �ve material tensors.
We de�ne them in this appendix.

Isotropic elasticity tensor is considered here as

ℂiiii = CL, i = 1, 2,
ℂiijj = CT , i, j = 1, 2 with i ≠ j,

ℂijij = ℂijji = CS , i, j = 1, 2 with i ≠ j. (A.1)

In plain strain condition, CL,CT and CS are de�ned in terms of elasticity modulus Y and
Poisson’s ratio � as

CL ∶=
Y (1 − �)

(1 + �)(1 − 2�) , CT ∶=
Y�

(1 + �)(1 − 2�) , CS ∶=
Y

2(1 + �) . (A.2)

We use a simpli�ed form of isotropic strain elasticity tensor which depends on the elasticity
modulus Y , the Poisson ratio � and the internal length scale l1 as (Altan and Aifantis, 1997,
Mindlin, 1964)

ℎiikiik = l21CL, i, k = 1, 2,
ℎiikjjk = l21CT , i, j, k = 1, 2 with i ≠ j,

ℎijkijk = ℎijkjik = l21CS , i, j, k = 1, 2 with i ≠ j. (A.3)

where the parameters CL, CS and CT are de�ned in Eq. (A.2).
We use a second-order tensor to describe isotropic dielectricity � , which depends on the

electric permittivity � as

�ii = �, i = 1, 2. (A.4)

Flexoelectricity is represented by a fourth-order tensor �. Ferroelectric perovskites in their
paraelectric phase are characterized by a cubic-symmetric �exoelectricity tensor involving
only three independent �exoelectric coe�cients, namely longitudinal �L, transverse �T and
shear �S.

�iiii = �L, i = 1, 2,
�ijji = �T , i, j = 1, 2 with i ≠ j,

�iijj = �ijij = �S , i, j = 1, 2 with i ≠ j. (A.5)
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The �exoelectric length scale can be de�ned as

�f lexo =
�2
Y� . (A.6)

We consider a simpli�ed isotropic gradient dielectricity tensor which depend on electric
permittivity of the material � and the length scale �2 in the following form (Mindlin, 1968):

Mijij = �� 22 . (A.7)

B Material characterization for the nonlinear model

The material is fully characterized by specifying the material tensors of strain gradient elasticity
h, �exoelectricity �, and gradient dielectricity M .

Strain gradient elasticity tensor h.
We consider an isotropic simpli�ed strain gradient elasticity tensor, which depends on shear
modulus G and the length scale �1 in the following form:

ℎI JKLMN = 2GδI LδJMδKN � 21 . (B.1)

Flexoelectricity tensor �.
The cubic �exoelectric tensor depends on the longitudinal �L, transversal �T and shear �S
parameters (Codony et al., 2019). In the Cartesian axes, it takes the following form:

�LI JK =

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎩

�L, for L = I = J = K,
�T, for I = J ≠ K = L,
�S, for L = I ≠ J = K or L = J ≠ I = K,
0 otherwise.

(B.2)

The �exoelectric length scale can be de�ned as

�f lexo =
�2
Y� , (B.3)

where Y = 3G is the elasticity modulus for incompressible materials.
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Gradient dielectricity tensorM.

We consider a simpli�ed gradient dielectricity tensor which depend on electric permittivity of
the material � and the length scale �2 in the following form (Mindlin, 1968):

MI JKL = �δI JKL� 22 , (B.4)

where δI JKL is unity if all indices are identical and zero otherwise.
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C Application of divergence, the surface divergence and Stokes
theorems on the �rst variation of Π[� ,Φ]

The divergence, the surface divergence and Stokes theorems can be applied to Eq. (2.57)
in order to obtain the de�nitions of the Neumann terms as well as the strong form of the
problem. In the following, we separate the terms on the integrals on the domain in Eq. (2.57)
and integrate them by parts. The terms including variations ��i,J and �Φ,L which are not
independent of ��i and �Φ are further expanded using the surface divergence and Stokes
theorems. For a detailed discussion please refer to (Hu and Shen, 2010). The resulting terms
are written as

∫Ω0 (
)Ψ̄Enth

)EI J
�EI J) dΩ0 = ∫)Ω0

FiI ŜI JNJ �xi dΓ0 − ∫Ω0 (
FiI ŜI J),J ��i dΩ0, (C.1)

∫Ω0 (
)Ψ̄Enth

)ẼI JK
�ẼI JK) dΩ0 = ∫)Ω0

F̃iIK S̃I JKNJ ��i dΓ0 − ∫Ω0
(F̃iIK S̃I JK),J ��i dΩ0

+ ∫)Ω0
FiI S̃I JKNK��i,J dΓ0 − ∫Ω0

(FiI S̃I JK),K ��i,J dΩ0

= ∫)Ω0
F̃iIK S̃I JKNJ ��i dΓ0 − ∫Ω0

(F̃iIK S̃I JK),J ��i dΩ0

− ∫)Ω0
(FiI S̃I JK),K NJ ��i dΓ0 + ∫Ω0

(FiI S̃I JK),JK ��i dΩ0

− ∫)Ω0
(FiI S̃I JK),L ℙJ LNK��i dΓ0 + ∫)Ω0

FiI S̃I JK [Ñ ]JK ��i dΓ0

+ ∫)Ω0
FiI S̃I JKNJNK)N ��i dΓ0 + ∫C0

JFiI S̃I JKMJNK K��i ds0,

(C.2)

∫Ω0 (
)Ψ̄Enth

)EL
�EL) dΩ0 = ∫)Ω0

D̂LNL�ΦdΓ0 − ∫Ω0
D̂L,L�ΦdΩ0, (C.3)

∫Ω0 (
)Ψ̄Enth

)ẼLM
�ẼLM) dΩ0 = ∫)Ω0

D̃LMNM�Φ,L dΓ0 − ∫Ω0
D̃LM,M�Φ,L dΩ0

= − ∫)Ω0
D̃LM,MNL�ΦdΓ0 + ∫Ω0

D̃LM,LM�ΦdΩ0

− ∫)Ω0
(D̃LM),K ℙLKNM�ΦdΓ0 + ∫)Ω0

D̃LM [Ñ ]LM �ΦdΓ0

+ ∫)Ω0
D̃LMNLNM)N �ΦdΓ0 + ∫C0

JD̃LMMLNMK�Φds0. (C.4)
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D Second variation of the enthalpy functional

The second variation of the total energy of the domain including the material interface is given
by

�2ΠBimaterial = �2Π + �2ΠInterface = �Bimaterial = � + �Interface. (D.1)

The second variation of Π can be written as

�2Π[� ,Φ, p; �� , �Φ, �p; Δ� ,ΔΦ,Δp]
=� ([� ,Φ, p; �� , �Φ, �p]) [Δ� ,ΔΦ,Δp]

=)[� ,Φ, p; �� , �Φ, �p])� Δ� + )[� ,Φ, p; �� , �Φ, �p])Φ ΔΦ + )[� ,Φ, p; �� , �Φ, �p])p Δp

= ∫Ω0

{

(
)2Ψ̄Enth

)EI J)EKL)
�EI JΔEKL +(

)Ψ̄Enth

)EI J )Δ�EI J +(
)2Ψ̄Enth

)ẼI JK)ẼLMN ) �ẼI JKΔẼLMN

+(
)Ψ̄Enth

)ẼI JK )Δ�ẼI JK +(
)2Ψ̄Enth

)EL)EM ) �ELΔEM (
)2Ψ̄Enth

)ẼLK)ẼMN ) �ẼKLΔẼMN

+(
)2Ψ̄Enth

)EI J)ẼKLM )(�EI JΔẼKLM + �ẼKLMΔEI J) +(
)2Ψ̄Enth

)EI J)EK )(�EI JΔEK + �EKΔEI J)

+(
)2Ψ̄Enth

)EI J)ẼKL)(�EI JΔẼKL + �ẼKLΔEI J) +(
)2Ψ̄Enth

)EI J)p )(�EI JΔp + �pΔEI J)

+(
)2Ψ̄Enth

)ẼI JK)EL)
(�ẼI JKΔEL + �ELΔẼI JK)

}
dΩ0,

(D.2)

where Δ� , ΔΦ and Δp are variations of � , Φ and p, respectively, Ψ̄Enth = ΨEnth + p(J − 1) and

ΔEL ∶= −
)(ΔΦ)
)XL

, (D.3a)

ΔẼLM ∶= − )2(ΔΦ)
)XL)XM

, (D.3b)

ΔFiI ∶=
)(Δ�i)
)XI

, (D.3c)

ΔF̃iI J ∶=
)2(Δ�i)
)XI)XJ

, (D.3d)

ΔEI J =
ΔCI J
2 ∶= symm

I J
(ΔFkI FkJ) , (D.3e)

ΔẼI JK =
ΔC̃I JK
2 ∶= symm

I J
(ΔFkI F̃kJK + FkIΔF̃kJK) , (D.3f)

(Δ�)EI J =
(Δ�)CI J

2 ∶= symm
I J

(ΔFkI �FkJ) , (D.3g)
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(Δ�)ẼI JK =
(Δ�)C̃I JK

2 ∶= symm
I J

(ΔFkI �F̃kJK + �FkIΔF̃kJK) . (D.3h)

The second variation of ΠInterface can be written as

�2ΠInterface[� ,Φ, p; �� , �Φ, �p; Δ� ,ΔΦ,Δp]
=� (Interface[� ,Φ, p; �� , �Φ, �p]) [Δ� ,ΔΦ,Δp]

=)
Interface[� ,Φ, p; �� , �Φ, �p]

)� Δ� + )
Interface[� ,Φ, p; �� , �Φ, �p]

)Φ ΔΦ

+ )
Interface[� ,Φ, p; �� , �Φ, �p]

)p Δp =

∫I [
��I J��iNJ K JΔ�iNJ K − J��iNJ K

{
ΔTiNJ

}


− JΔ�iNJ K
{
�TiNJ

}

− J�iNJ K

{
(Δ�)TiNJ

}
] dΓ

+ ∫I [
�)N �I

r
)N ��i

zr
)NΔ�i

z
−

r
)N ��i

z{
ΔRi

}


−
r
)NΔ�i

z{
�Ri

}

−

r
)N �i

z{
(Δ�)Ri

}
] dΓ

+ ∫I [
− �ΦI

r
�ΦNI

zr
ΔΦNI

z
+

r
�ΦNI

z{
ΔWNI

}


+
r
ΔΦNI

z{
�WNI

}

+

r
ΦNI

z{
(Δ�)WNI

}
] dΓ

+ ∫I [
− �)NΦI

r
)N �Φ

zr
)NΔΦ

z
+

r
)N �Φ

z{
ΔO

}


+
r
)NΔΦ

z{
�O

}

+

r
)NΦ

z{
(Δ�)O

}
] dΓ

+
H
∑
k=1

∫Ck [
��c (Δ� 1i − Δ� 2i )(�� 1i − �� 2i ) − (�� 1i − �� 2i )(ΔJ 1i − ΔJ 2i )

− (Δ� 1i − Δ� 2i )(�J 1i − �J 2i ) − (� 1i − � 2i )((Δ�)J 1i − (Δ�)J 2i )] ds

+
H
∑
k=1

∫Ck [
− �Φc (ΔΦ1 − ΔΦ2)(�Φ1 − �Φ2) + (�Φ1 − �Φ2)(ΔK 1 − ΔK 2)
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+ (ΔΦ1 − ΔΦ2)(�K 1 − �K 2) + (Φ1 − Φ2)((Δ�)K 1 − (Δ�)K 2)] ds, (D.4)

where the variations of Neumann terms are de�ned as

ΔTi ∶= Δ�Ti + ΔΦTi + ΔpTi , (D.5a)
ΔRi ∶= Δ�Ri + ΔΦRi , (D.5b)
ΔJi ∶= Δ� Ji + ΔΦJi , (D.5c)
ΔW ∶= Δ�W + ΔΦW, (D.5d)
ΔO ∶= Δ�O + ΔΦO, (D.5e)
ΔK ∶= Δ�K + ΔΦK. (D.5f)

In the equations above, the variations of Nuemann terms with respect to the �eld variables
can be obtained as

Δ�Ti ∶=(ΔFiI ŜI J + FiIΔ� ŜI J + ΔF̃iIK S̃I JK + F̃iIKΔ� S̃I JK , (D.6)

− Δ� (
)(FiI S̃I JK )
)XL

)�KL − Δ� (
)(FiI S̃IKJ )
)XL

)ℙKL)NJ , (D.7)

+(ΔFiI S̃I JK + FiIΔ� S̃I JK)[Ñ ]JK , (D.8)

ΔΦTi ∶=(FiIΔΦŜI J + F̃iIKΔΦS̃I JK − ΔΦ(
)(FiI S̃I JK )
)XL

)�KL − ΔΦ(
)(FiI S̃IKJ )
)XL

)ℙKL)NJ , (D.9)

+(FiIΔΦS̃I JK)[Ñ ]JK , (D.10)

ΔpTi ∶=FiIΔp ŜI JNJ , (D.11)

Δ�Ri ∶=(ΔFiI S̃I JK + FiIΔ� S̃I JK)NJNK , (D.12)

ΔΦRi ∶=(FiIΔΦS̃I JK)NJNK , (D.13)

Δ� Ji ∶=J(ΔFiI S̃I JK + FiIΔ� S̃I JK )MJNK K, (D.14)
ΔΦJi ∶=J(FiIΔΦS̃I JK )MJNK K, (D.15)

Δ�W ∶=( − Δ� D̂L + Δ� (
)D̃LM
)XK

)�KM + Δ� (
)D̃ML
)XK

)ℙKM)NL − Δ� D̃LM [Ñ ]LM , (D.16)
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ΔΦW ∶=( − ΔΦD̂L + ΔΦ(
)D̃LM
)XK

)�KM + ΔΦ(
)D̃ML
)XK

)ℙKM)NL − ΔΦD̃LM [Ñ ]LM , (D.17)

Δ�O ∶= − Δ� D̃LMNLNM , (D.18)
ΔΦO ∶= − ΔΦD̃LMNLNM , (D.19)
Δ�K ∶= − JΔ� D̃LMMLNMK, (D.20)
ΔΦK ∶= − JΔΦD̃LMMLNMK, (D.21)

where

Δ� ŜI J ∶=((
)2Ψ̄Enth

)EI J)EKL)
ΔEKL +(

)2Ψ̄Enth

)EI J)ẼKLM )ΔẼKLM), (D.22)

Δ� S̃I JK ∶=((
)2Ψ̄Enth

)ELM)ẼI JK )ΔELM +(
)2Ψ̄Enth

)ẼI JK)ẼLMN )ΔẼLMN), (D.23)

Δ� (
)(FiI S̃I JK )
)XL

) ∶=ΔF̃iI LS̃I JK + ΔFiI
)S̃I JK
)XL

+ F̃iI LΔ� S̃I JK + FiIΔ� (
)S̃I JK
)XL

), (D.24)

)S̃I JK
)XL

=(
)2Ψ̄Enth

)EMN )ẼI JK ) ẼMNL +(
)2Ψ̄Enth

)ẼI JK)ẼMNO)
̃̃EMNOL +(

)2Ψ̄Enth

)ẼI JK)EM ) ẼML,

(D.25)

Δ� (
)S̃I JK
)XL

) ∶=(
)3Ψ̄Enth

)EOP)EMN )ẼI JK ) ẼMNLΔEOP +(
)2Ψ̄Enth

)EMN )ẼI JK )ΔẼMNL (D.26)

+(
)2Ψ̄Enth

)ẼI JK)ẼMNO)Δ̃̃EMNOL +(
)3Ψ̄Enth

)EOP)ẼI JK)EM ) ẼMLΔEOP , (D.27)

ΔΦŜI J ∶=(
)2Ψ̄Enth

)EI J)EL)
ΔEL +(

)2Ψ̄Enth

)EI J)ẼLM )ΔẼLM , (D.28)

ΔΦS̃I JK ∶=(
)2Ψ̄Enth

)ẼI JK)EL)
ΔEL, (D.29)

ΔΦ(
)S̃I JK
)XL

) ∶=(
)3Ψ̄Enth

)EMN )ẼI JK)EO) ẼMNLΔEO +(
)2Ψ̄Enth

)ẼI JK)EM )ΔẼML, (D.30)

Δp ŜI J ∶=(
)2Ψ̄Enth

)EI J)p )Δp, (D.31)

Δ� D̂L ∶= −(
)2Ψ̄Enth

)EI J)EL)
ΔEI J −(

)2Ψ̄Enth

)ẼI JK)EL)
ΔẼI JK , (D.32)

Δ� D̃LM ∶= −(
)2Ψ̄Enth

)EI J)ẼLM )ΔEI J , (D.33)

)D̃LM
)XK

= −(
)2Ψ̄Enth

)EI J)ẼLM ) ẼI JK −(
)2Ψ̄Enth

)ẼOP)ẼLM )
̃̃EOPK , (D.34)
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Δ� (
)D̃LM
)XK

) ∶= −(
)3Ψ̄Enth

)EQR)EI J)ẼLM ) ẼI JKΔEQR −(
)2Ψ̄Enth

)EI J)ẼLM )ΔẼI JK , (D.35)

ΔΦD̂L ∶= −(
)2Ψ̄Enth

)EM)EL)
ΔEM , (D.36)

ΔΦD̃LM ∶= −(
)2Ψ̄Enth

)ẼOP)ẼLM )ΔẼOP , (D.37)

ΔΦ(
)D̃LM
)XK

) ∶= −(
)2Ψ̄Enth

)ẼOP)ẼLM )Δ ̃̃EOPK . (D.38)

In the equations above, we have introduced the second gradients of deformation given by

̃̃F iJKL ∶=
)F̃iJK
)XL

= )3�i
)XJ)XK)XL

, ̃̃C I JKL ∶=
)C̃I JK
)XL

= 2 symm
I J ( ̃̃F kIKLFkJ + F̃kIK F̃kJL) ,

̃̃EI JKL ∶=
)ẼI JK
)XL

= 12
̃̃C I JKL, (D.39)

and the second gradient of the nominal electric �eld given by

̃̃EI JK ∶=
)ẼI J
)XK

= − )3Φ
)XI)XJ)XK

. (D.40)

The derivatives of enthalpy are explicitly derived in E. Note that in the numerical imple-
mentation of the variation of the interface residual functional, similar to (Rüberg et al., 2016)
the terms containing (Δ�)Ti , (Δ�)Ri , (Δ�)W , (Δ�)O, (Δ�)Ji and (Δ�)K in Eq. (D.4) have been
neglected, since consideration of these terms are very computationally expensive.
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E Derivatives of the enthalpy

The derivatives of enthalpy Ψ̄Enth = ΨEnth + p(J − 1) can be derived as follows

ŜI J ∶=
)Ψ̄Enth

)EI J
= G(�I J − C−1I J ) + pJC−1I J +

J
2CMLI J (�ELEM + �LABKEM ẼABK − �LABK ẼMKEAB)

+ 12 JC
−1
AB�AI JK ẼBK , (E.1)

S̃I JK ∶=
)Ψ̄Enth

)ẼI JK
= ℎI JKLMN ẼLMN −

1
2 JC

−1
LMEM�LI JK , (E.2)

−D̂L ∶=
)Ψ̄Enth

)EL
= −JC−1KL (�EK +

1
2�KI JM ẼI JM) , (E.3)

−D̃LM ∶= )Ψ̄Enth

)ẼLM
= 12 JC

−1
AL�AI JMEI J − ẼI JMI J LM , (E.4)

)2Ψ̄Enth

)EXY )EPQ
= G(C−1XPC−1YQ + C−1XQC−1YP ) − pJCXYPQ +

J
2 C̃MNXYPQ�EMEN (E.5)

+ J
2 C̃MNXYPQ�MIJK (EN ẼI JK − ẼNKEI J )

− J
2 ẼNK (CMNXY �MPQK + CMNPQ�MXYK ), (E.6)

)2Ψ̄Enth

)ẼI JK)ẼLMN
= ℎI JKLMN , (E.7)

)2Ψ̄Enth

)EL)EM
= −�JC−1LM , (E.8)

)2Ψ̄Enth

)ẼLK)ẼMN
= −MLKMN , (E.9)

)2Ψ̄Enth

)EI J)ẼABK
= J
2CMLI J �LABKEM , (E.10)

)2Ψ̄Enth

)EI J)EL
= JCKLI J (�EK +

1
2�KABC ẼABC) , (E.11)

)2Ψ̄Enth

)EI J)ẼMK
= 12 JC

−1
AM�AI JK −

J
2CMLI J �LABKEAB, (E.12)

)2Ψ̄Enth

)EI J)p
= JC−1I J , (E.13)

)2Ψ̄Enth

)ẼI JK)EM
= −12 JC

−1
LM�LI JK , (E.14)

)3Ψ̄Enth

)EXY )EPQ)ẼI JK
= J
2 C̃MNXYPQ�MIJKEN , (E.15)



Appendix E 105

)3Ψ̄Enth

)EI J)ẼABK)EM
= J
2CMLI J �LABK , (E.16)

)3Ψ̄Enth

)EXY )EPQ)ẼNK
= − J2 C̃MNXYPQ�MIJKEI J −

J
2(CMNXY �MPQK + CMNPQ�MXYK ), (E.17)

with

CABCD ∶= −
2
J
) (JC−1AB)
)CCD

= (C−1ACC−1BD + C−1BCC−1AD − C−1ABC−1CD) , (E.18)

C̃ABCDEF ∶=
2
J
) (JCABCD)

)CEF
= (DACBDEF +DBDACEF +DADBCEF +DBCADEF −DABCDEF −DCDABEF ) ,

(E.19)

where DABCDEF ∶= C−1AB ( 12C−1CDC−1EF − C−1CEC−1DF − C−1CFC−1DE) .
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F Assessment of the equivalence of the �exoelectric models
based on internal energy and electromechanical enthalpy

In a �exoelectric continuum, neglecting the term quadratic to polarization gradient for sim-
plicity, the Lagrangian internal energy density per unit undeformed volume can be written
as

Ψ̃Int(E, Ẽ, P , P̃) =ΨElast(E) + ΨSGEla(Ẽ) + Ψ̃Diele(E, P) + Ψ̃Flexo(E, Ẽ, P , P̃) (F.1)

whereΨElast andΨSGEla have been de�ned in Eq. (2.49) and Eq. (2.50), respectively. The isotropic
dielectric energy density per unit undeformed volume (Codony et al., 2020) can be expressed
as

Ψ̃Diele(E, P) = 1
2J (� − �0)

PICI JPJ , (F.2)

where �0 is the electric permittivity of vacuum. One can postulate a �exoelectric energy
density per unit undeformed volume which explicitly takes into the account the direct and the
converse �exoelectricity as

Ψ̃Flexo(E, Ẽ, P , P̃) = − 12 fLI JK (PLẼI JK − P̃LKEI J) , (F.3)

where f is a Lagrangian tensor discussed in detail in (Codony et al., 2020). A partial Legendre
transformation can be employed to �nd an internal energy density in terms of E and Ẽ as

ΨInt(E, Ẽ, E , Ẽ) =min
P ,P̃

(Ψ̃Int(E, Ẽ, P , P̃) − P .E). (F.4)

The associated stationary conditions of minimization result in de�nition of the following
variables

ĚL =
)Ψ̃Int

)PL
= 1
J (� − �0)

CLJPJ −
1
2 fLI JK ẼI JK (F.5)

ĔLK =
)Ψ̃Int

)P̃LK
= 12 fLI JKEI J . (F.6)

The nominal electric �eld and its gradient can be expressed as

EL =ĚL − ĔLK,K = ĚL −
1
2 fLI JK ẼI JK (F.7)

ẼLM =EL,M = ) (ĚL − 1
2 fLI JK ẼI JK)
)XM

(F.8)
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Invoking Eq. (F.5) results in �nding P and its gradient P̃ as

PM =JC−1ML(� − �0)(ĚL +
1
2 fLI JK ẼI JK) (F.9)

P̃MK =
)PJ
)XK

= )(JC−1ML)
)XK

(� − �0)(ĚL +
1
2 fLI JK ẼI JK) + JC

−1
ML(� − �0)

) (ĚL + 1
2 fLI JK ẼI JK)
)XK

(F.10)

Substituting Eq. (F.7), Eq. (F.9) and Eq. (F.10) in Eq. (F.4) and invoking Eq. (F.8) result in

ΨInt(E, Ẽ, E , Ẽ) =ΨElast(E) + ΨSGEla(Ẽ) − 12 J (� − �0)EKC
−1
KLEL −

1
2 JC

−1
AB(� − �0)fAI JKEBẼI JK

+12 JC
−1
AB(� − �0)fAI JK ẼBKEI J +

1
2
)(JC−1ML)
)XK

(� − �0)fLI JKEI J (EM + fMABC ẼABC )

1
2 JC

−1
ML(� − �0)fLI JKEI J fMABC

)ẼABC
)XK

(F.11)

The total electromechanical enthalpy including electrostatic energy density (Codony et al.,
2020) can be written as

ΨEnth* = ΨInt − 12 J �0EKC
−1
KLEL =ΨElast(E) + ΨSGEla(Ẽ) − 12 J �EKC

−1
KLEL −

1
2 JC

−1
AB�AI JKEBẼI JK

+12 JC
−1
AB�AI JK ẼBKEI J +

1
2
)(JC−1ML)
)XK

�LI JKEI J (EM + fMABC ẼABC )

1
2 JC

−1
ML�LI JKEI J fMABC

)ẼABC
)XK

(F.12)

where � = (� − �0)f is the �exoelectric tensor. Note that the last term will vanish since it
involves a higher-order measure of deformation. Comparing Eq. (F.12) with Eq. (2.48), it can
be observed that both models incorporate similar �exoelectric terms. Eq. (F.12) involves an
additional term (sixth term) which we do not consider in our model.
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G Modeling pre-deformation

To mathematically model the pre-deformation, let us consider a deformable continuum body
denoted by Ω0 in the undeformed con�guration, by Ωp in the pre-deformed con�guration,
and by Ω in the deformed con�guration. The deformation map �p ∶ Ω0 → Ωp carries every
point X ∈ Ω0 to a point xp = �p(X ) ∈ Ωp , Fp being its deformation gradient. Similarly, the
deformation map � ∶ Ωp → Ω carries every point xp ∈ Ωp to a point x = � (xp) ∈ Ω, F being
its deformation gradient. Note that the total deformation gradient between undeformed and
deformed con�gurations can be written as Ftot = F.Fp . The energy used for two consecutive
deformations must be equal to that of the total deformation which yields

∫Ω0
Ψ̄Enth(Etot , Ẽ, E , Ẽ , p) dΩ0 = ∫Ω0

Ψ̄Enth(Ep , 0, 0, 0, 0) dΩ0 + ∫Ωp
Ψ̄Enth
p (E, Ẽ, E , Ẽ , p) dΩp

= ∫Ω0
Ψ̄Enth(Ep , 0, 0, 0, 0) dΩ0 + ∫Ωp

Ψ̄Enth
p (E, Ẽ, E , Ẽ , p)Jp dΩ0

(G.1)

where Etot and Ep are the Green-Lagrange strains resulting from Ftot and Fp , respectively,
Jp ∶= det(Fp), and Ψ̄Enth = ΨEnth + p(J −1). Therefore, the enthalpy density of the pre-deformed
state can be written as:

Ψ̄Enth
p (E, Ẽ, E , Ẽ , p) = 1

Jp(
Ψ̄Enth(Etot , Ẽ, E , Ẽ , p) − Ψ̄Enth(Ep , 0, 0, 0, 0)) (G.2)

Therefore:

)Ψ̄Enth
p (E, Ẽ, E , Ẽ , p)

)E = 1
Jp(

)Ψ̄Enth(Etot , Ẽ, E , Ẽ , p)
)E ) = 1

Jp(
)Ψ̄Enth(Etot )

)Etot

)Etot
)E ). (G.3)

Similarly, other required derivatives can be obtained.
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H Analytical derivation for the case of electrical actuation of a
thin �exoelectric �lm along its length

Consider a thin �exoelectric �lm along the x-direction occupying [−T /2, T /2] in the y-coordinate.
Suppose we apply far-�eld horizontal electric �eld Ēx to the system. Consequently, the applied
electric �eld results in y-dependent shear strain "xy (y) = "yx (y). Note that "xx = "yy = 0 and
Ey = 0. Therefore:

" = [
0 "xy (y)

"xy (y) 0 ] , E = [
Ēx
0 ] . (H.1)

Accordingly, components of the constitutive equations can be written as:

�̂xy = �̂yx = 2CS"xy (y), (H.2)
�̂xx = �̂yy = 0, (H.3)

�̃xyy = �̃yxy = 2CS l21 "xy,y − 2(1 − � )�S Ēx , (H.4)
�̃xxx = −(1 − � )�LĒx , (H.5)
�̃yyx = −(1 − � )�T Ēx , (H.6)
�̃yyy = �̃xyx = �̃yxx = �̃xxy = 0, (H.7)

D̂x = �Ēx + 2(1 − � )�S"xy,y (y), (H.8)
D̂y = 0, (H.9)

D̃xy = D̃yx = −2� �S"xy (y), (H.10)
D̃xx = D̃yy = 0. (H.11)

Therefore, the components of physical stress and physical electric displacement are:

�xy =�yx = 2CS"xy (y) − 2CS l21"xy,yy (y), (H.12)
�xx =�yy = 0, (H.13)

Dx =�Ēx + 2�S"xy,y (y) (H.14)
Dy =0. (H.15)

Therefore, the following equilibrium equation in the y-direction is the only non-trivial
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equation that needs to be satis�ed:

2CS"xy,y (y) − 2l21CS"xy,yyy (y) = 0, (H.16)

Note that the electrical equilibrium equation and its associated boundary conditions in the y-
direction are trivially satis�ed. The solution of the ODE (H.16) must then satisfy the following
non-trivial boundary condition that is the homogeneous Neumann boundary condition related
to double traction (Eq. (2.23)):

2l21CS"xy,y (y) − 2(1 − � )�S Ēx = 0, on y = {−T /2, T /2}. (H.17)

Note that the low-order mechanical boundary condition (Eq. (2.22)) in the y-direction is also
trivially satis�ed. The following is the solution for the above ODE (H.16) satisfying Eq. (H.17):

"xy (y) =
−(1 − � )�S Ēx

(1 + exp(−T /l1))CS l1 [
exp(

−y − T /2
l1 ) − exp(

y − T /2
l1 )] . (H.18)

I Analytical derivation for the case of in-plane compression of
a thin �exoelectric �lm along its length

Consider a thin �exoelectric �lm along the x-direction occupying [−T /2, T /2] in the y-coordinate.
Suppose we apply far-�eld plane-strain horizontal compression "̄xx to the system. Both the
deformation �eld and electric potential are independent of x-direction. Therefore, the applied
compression results in y-dependent vertical strain "yy (y) and electric �eld Ey (y). Note that
"xy = "yx = 0 and Ex = 0. Therefore:

" = [
"̄xx 0
0 "yy (y)]

, E = [
0

Ey (y)]
. (I.1)

Accordingly, components of the constitutive equations can be written as:

�̂xx = CL"̄xx + CT "yy (y) + � �TEy,y (y), (I.2)
�̂yy = CT "̄xx + CL"yy (y) + � �LEy,y (y), (I.3)
�̂xy = �̂yx = 0, (I.4)

�̃yyy = l21CL"yy,y (y) − (1 − � )�LEy (y), (I.5)
�̃xyx = �̃yxx = −(1 − � )�SEy (y), (I.6)
�̃xxy = l21CT "yy,y (y) − (1 − � )�TEy (y), (I.7)
�̃xxx = �̃xyy = �̃yyx = �̃yxy = 0, (I.8)
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D̂y = �Ey (y) + (1 − � )�L"yy,y (y), (I.9)
D̂x = 0, (I.10)

D̃xx = −� �L"̄xx − � �T "yy (y), (I.11)
D̃yy = l22�Ey,y (y) − � �L"yy (y) − � �T "̄xx , (I.12)
D̃xy = D̃yx = 0. (I.13)

Therefore, the components of physical stress and physical electric displacement are:

�xx =CL"̄xx + CT "yy (y) + �TEy,y (y) − l21CT "yy,yy (y), (I.14)
�yy =CT "̄xx + CL"yy (y) + �LEy,y (y) − l21CL"yy,yy (y), (I.15)
�xy =�yx = 0, (I.16)

Dy =�Ey (y) + �L"yy,y (y) − l22�Ey,yy (y), (I.17)
Dx =0. (I.18)

Therefore, equilibrium equations in y-direction read:

CL"yy,y (y) + �LEy,yy (y) − l21CL"yy,yyy (y) = 0, (I.19)
�Ey,y (y) + �L"yy,yy (y) − l22�Ey,yyy (y) = 0, (I.20)

subjected to high-order homogeneous Neumann boundary conditions (Eqs. (2.23), (2.25)):

l21CL"yy,y (y) − (1 − � )�LEy (y) = 0, on y = {−T /2, T /2}, (I.21)
l22�Ey,y (y) − � �L"yy (y) − � �T "̄xx = 0, on y = {−T /2, T /2}. (I.22)

The low-order homogeneous Neumann boundary conditions (Eqs. (2.22),(2.24)) will naturally
be satis�ed with the solution we will postulate.

Extracting Ey,y and "yy,y from (I.15) and (I.17), respectively, and replacing them into (I.19)
and (I.20), respectively, we obtain:

(l21 l22 )Ey,yyyy (y) − (l21 + l22 + l2� )Ey,yy (y) + Ey (y) =
Dy − l21Dy,yy

� , (I.23)

(l21 l22 )"yy,yyyy (y) − (l21 + l22 + l2� )"yy,yy (y) + "yy (y) =
�yy − l22�yy,yy

CL
− CTCL

"̄xx . (I.24)

where l2� = �2L
CL� .
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One can postulate the solutions to be of the form:

Ey =k1 exp(
−y − T /2

a1 ) + k2 exp(
−y − T /2

a2 ) + k3 exp(
y − T /2
a1 ) + k4 exp(

y − T /2
a2 ) ,

(I.25)

"yy (y) =k5 exp(
−y − T /2

a1 ) + k6 exp(
−y − T /2

a2 ) + k7 exp(
y − T /2
a1 ) + k8 exp(

y − T /2
a2 ) − CTCL

"̄xx ,

(I.26)

for y ∈ [−T /2, T /2], with:

a1, a2 =
√

2l21 l22
l21 + l22 + l2� ±

√
(l21 + l22 + l2� )2 − 4l21 l22

. (I.27)

Note that k1 = −k3, k2 = −k4, k5 = k7, k6 = k8 due to symmetry. Substituting the Ey and "yy
from Eqs. (I.25) and (I.26) to Eqs. (I.19), (I.20), (I.21) and (I.22), we obtain the unknowns ki .

k1 = −k3 =
−�2"̄xx� (CL�T − CT �L)
CL�(a1�21 − a2�12)

, (I.28)

k2 = −k4 =
�1"̄xx� (CL�T − CT �L)
CL�(a1�21 − a2�12)

, (I.29)

k5 = k7 =
−a1�1�2"̄xx� (CL�T − CT �L)
CL�L(a1�21 − a2�12)

, (I.30)

k6 = k8 =
a2�2�1"̄xx� (CL�T − CT �L)
CL�L(a1�21 − a2�12)

. (I.31)

where

�i =1 −
l22
a2i
, (I.32)

�i = (1 − exp(−T /ai))(
l21
l2�
�i + 1 − �) , (I.33)

i = (1 + exp(−T /ai))(
l22
a2i
(1 − � ) + �) . (I.34)

J Analytical derivation for the case of uniform bending of a
slender beam

Consider thin �exoelectric �lm along the x-direction occupying [−T /2, T /2] in the y-coordinate.
The beam is uniformly bent so that the curvature of the beam � is the same in all cross-sections
normal to it. Following a slender beam approximation, the strains and electric �elds can be



Appendix J 113

written as:

" = [
−�y 0
0 "yy (y)]

, E = [
0

Ey (y)]
. (J.1)

Accordingly, components of the constitutive equations can be written as:

�̂xx = −CL�y + CT "yy (y) + � �TEy,y (y), (J.2)
�̂yy = −CT�y + CL"yy (y) + � �LEy,y (y), (J.3)
�̂xy = �̂yx = 0, (J.4)

�̃yyy = l21CL"yy,y (y) − (1 − � )�LEy (y) − l21CT�, (J.5)
�̃xyx = �̃yxx = −(1 − � )�SEy (y), (J.6)
�̃xxy = l21CT "yy,y (y) − (1 − � )�TEy (y) − l21CL�, (J.7)
�̃xxx = �̃xyy = �̃yyx = �̃yxy = 0, (J.8)

D̂y = �Ey (y) + (1 − � )�L"yy,y (y) − (1 − � )�T�, (J.9)
D̂x = 0, (J.10)

D̃xx = � �L�y − � �T "yy (y), (J.11)
D̃yy = l22�Ey,y (y) − � �L"yy (y) + � �T�y, (J.12)
D̃xy = D̃yx = 0. (J.13)

Therefore, the components of physical stress and physical electric displacement are:

�xx = − CL�y + CT "yy (y) + �TEy,y (y) − l21CT "yy,yy (y), (J.14)
�yy = − CT�y + CL"yy (y) + �LEy,y (y) − l21CL"yy,yy (y), (J.15)
�xy =�yx = 0, (J.16)

Dy =�Ey (y) + �L"yy,y (y) − �T� − l22�Ey,yy (y), (J.17)
Dx =0. (J.18)

Therefore, equilibrium equations in y-direction read:

− CT� + CL"yy,y (y) + �LEy,yy (y) − l21CL"yy,yyy (y) = 0, (J.19)
�Ey,y (y) + �L"yy,yy (y) − l22�Ey,yyy (y) = 0, (J.20)
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subjected to homogeneous Neumann boundary conditions (Eqs. (2.23),(2.25)):

l21CL"yy,y (y) − (1 − � )�LEy (y) − l21CT� = 0, on y = {−T2 ,
T
2 }, (J.21)

l22�Ey,y (y) − � �L"yy (y) + � �T�y = 0, on y = {−T2 ,
T
2 }. (J.22)

The low-order homogeneous Neumann boundary conditions (Eqs. (2.22),(2.24)) will be satis�ed
with the solution we will postulate.

Extracting Ey,y and "yy,y from (J.15) and (J.17), respectively, and replacing them into (J.19)
and (J.20), respectively, we obtain:

(l21 l22 )Ey,yyyy (y) − (l21 + l22 + l2� )Ey,yy (y) + Ey (y) =
Dy − l21Dy,yy

� − �� (�L
CT
CL

− �T ), (J.23)

(l21 l22 )"yy,yyyy (y) − (l21 + l22 + l2� )"yy,yy (y) + "yy (y) =
�yy − l22�yy,yy

CL
+ CTCL

�y. (J.24)

where l2� = �2L
CL� .

One can postulate the solutions to be of the form:

Ey =k1 exp(
−y − T /2

a1 ) + k2 exp(
−y − T /2

a2 ) + k3 exp(
y − T /2
a1 ) + k4 exp(

y − T /2
a2 )

−�� (�L
CT
CL

− �T) , (J.25)

"yy (y) =k5 exp(
−y − T /2

a1 ) + k6 exp(
−y − T /2

a2 ) + k7 exp(
y − T /2
a1 ) + k8 exp(

y − T /2
a2 )

+CTCL
�y, (J.26)

for y ∈ [−T /2, T /2], with:

a1, a2 =
√

2l21 l22
l21 + l22 + l2� ±

√
(l21 + l22 + l2� )2 − 4l21 l22

. (J.27)

Note that k1 = k3, k2 = k4, k5 = −k7, k6 = −k8 due to symmetry. Substituting the Ey and "yy
from Eqs. (J.25) and (J.26) to Eqs. (J.19), (J.20), (J.21) and (J.22), we obtain the unknowns ki .

k1 = k3 =
−�(CL�T − CT �L)(2a2̂2(� − 1) + �̂2T� )

2CL�(a1�̂2̂1 − a2�̂1̂2)
, (J.28)

k2 = k4 =
�(CL�T − CT �L)(2a1̂1(� − 1) + �̂1T� )

2CL�(a1�̂2̂1 − a2�̂1̂2)
, (J.29)
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k5 = −k7 =
−a1�1�(CL�T − CT �L)(2a2̂2(� − 1) + �̂2T� )

2CL�L(a1�̂2̂1 − a2�̂1̂2)
, (J.30)

k6 = −k8 =
a2�2�(CL�T − CT �L)(2a1̂1(� − 1) + �̂1T� )

2CL�L(a1�̂2̂1 − a2�̂1̂2)
. (J.31)

where

�i =1 −
l22
a2i
, (J.32)

�̂i =(1 + exp(−T /ai))(
l21
l2�
�i + 1 − �) , (J.33)

̂i =(1 − exp(−T /ai))(
l22
a2i
(1 − � ) + �) . (J.34)
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