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“The important thing is not
to stop questioning.
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—Albert Einstein






ABSTRACT

Flexoelectricity at surface instabilities and stress singularities

Hossein Mohammadi

The flexoelectric effect, the two-way linear coupling between strain gradient and electric
polarization (direct flexoelectricity) or electric field gradient and strain (converse flexoelec-
tricity) universally present in any dielectric, has given rise to a new research area referred to
as strain gradient engineering in which in contrast to the conventional wisdom that views
strain gradients as undesirable, researchers seek to mobilize strain gradients in a smart way
to design sensors, actuators, and energy harvesting devises for next-generation micro/nano
electromechanical systems. Ionic crystals with high dielectricity, such as ferroelectric per-
ovskites at their paraelectric phase, achieve the best flexoelectric properties and have thus been
a favorite to explore the flexoelectric effect. Nevertheless, large strain gradients are required
for the flexoelectric effect to be noticeable. In these materials, large enough strain gradients
are only achieved at very small scales. Soft and deformable materials, on the other hand, can
endure large strains at larger scales before failure making them suitable candidates for the
development of electromechanical devices. The focus of this thesis is two-fold, on the one hand,
it explores novel ways to generate electricity in soft materials, including non-piezoelectric
dielectric elastomers, under non-homogeneous fields. In particular, surface instabilities in flex-
oelectric film/ dielectric substrate are explored in depth. On the other hand, the manifestations

of flexoelectricity on material behavior, in particular around stress singularities are explored.

Keywords: Flexoelectricity, Continuum mechanics, Mathematical modeling, Computational modeling, Surface

instability.
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Chapter 1

Introduction

1.1 Motivation

Electromechanical effects, the couplings between mechanical and electrical fields, have found
significant applications in electromechanical transduction devices including sensors, actuators,
and energy harvesters (Fig. 1.1) (Dagdeviren et al, 2016). Sustainable power sources in
consumer electronics (Beeby et al.,, 2006), MEMS resonators for timing applications (Ng et al.,
2015), and sensors for blood pressure measurements (Terry et al., 1990) are a few examples of
the broad applications of electromechanics.

These effects are present in a wide variety of materials from engineered to biological
materials and have been shown to play an important role in biological functions such as
auditory sensing, swelling of neurons associated with action potentials, and protein mechanical
motors including stress-activated ion channels (Nguyen et al, 2013a).

Most current technologies for electromechanical transduction rely on the well-known
piezoelectric effect. It refers to the two-way linear coupling between mechanical deformation
and electric field (Fig. 1.2a) (Ikeda, 1996). This effect is present only in a specific class of
dielectric materials, namely those exhibiting a non-centrosymmetric atomic or molecular
structure. This intrinsic material polarity is an essential property of all piezoelectrics, from
ionic crystals such as ferroelectrics, e.g Lead zirconate titanate (PZT) or barium titanate (Jaffe
et al., 1955), to piezoelectric polymers such as polyvinylidene difluoride (PVDF). The best-
known piezoelectrics are ubiquitous in current technologies but exhibit limitations such as
brittleness, toxicity, lack of biocompatibility, and a small range of operating temperatures
(Haertling, 1999, Jaffe, 1958, Saito et al., 2004, Stevenson et al., 2015, Wu, 2020).

Beyond piezoelectricity, other electromechanical couplings have also been studied exten-
sively, also as potential alternatives to piezoelectricity. On one hand, electrostriction, or the
Maxwell-stress effect has received significant attention. It refers to the deformation univer-
sally induced in all dielectrics by an applied electric field, through the Coulombic attraction
between the charges of the opposite sign located on both sides of the material (Fig. 1.2b).



2 INTRODUCTION

Breathing Implantable Devices

Blood Flow &|
Heart Beating

Wireless Sensors

A\
05\0‘ 4 . ! Nanorobots

windl % &°

pefense Technolog¥

Mechanical Energy

) Nanosensors
Harvesting

Mechanical
Energy Electrical Energy

MEMS &
Nanodevices

Movements [

s 1 Music Players

Cell Phones

%

E—

Air Flow |_ Laptops

Figure 1.1: Broad applications of electromechanical transduction. Possible sources of energy harvesting
(left) and its usage for sensing and actuation (right). Figure adapted from (Dagdeviren et al., 2016).

The resulting strain depends quadratically on the applied electric field. Being significant in
dielectric elastomers, it has been explored for technological applications (Kornbluh et al., 1998,
Lallart et al., 2012, Pelrine et al., 1997, 1998). These applications are limited to actuation since
it is a one-way coupling as the deformation of a dielectric does not produce an electric field by
electrostriction. Furthermore, this actuation is limited by the quadratic nature of the effect, as
the reversal of the electric field does not reverse the sign of the deformation, and by the need
for high voltages for actuation in most elastomers.

The third branch of electromechanical couplings namely flexoelectricity has been com-
paratively less understood and studied. In recent decades, due to its potential applications to
overcome some of the limitations of other electromechanical couplings, flexoelectricity is in-
creasingly attracting researchers’ interest. A brief comparison between the electromechanical
coupling mechanisms has been provided in Fig. 1.2.
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1.2 Flexoelectricity

The flexoelectric effect is a two-way linear coupling between strain gradient and electric field
(direct flexoelectricity) or between electric field gradient and strain (converse flexoelectricity).
However, unlike piezoelectricity, which is only present in non-centrosymmetric dielectrics,
flexoelectricity is a property of all dielectric materials including crystals, polymers, biomaterials,
liquid crystals, etc. (Jiang et al., 2013, Nguyen et al., 2013b, Wang et al., 2019a, Zubko et al.,
2013). In piezoelectric materials, under the application of a homogeneous mechanical loading,
due to a lack of symmetry in the atomic structure of the material, an electric field is generated
(Fig. 1.2a). In flexoelectric materials on the other hand, as a result of a non-uniform deformation
applied on a crystalline dielectric material, regardless of its initial atomic structure symmetry,
strain gradient can break its spatial inversion symmetry resulting in inducing electric response
(Fig. 1.2c). Ionic crystals with high dielectric constant, such as ferroelectric perovskites at their
paraelectric phase, exhibit the largest flexoelectric properties. Nevertheless, large enough field
gradients are required for a noticeable flexoelectric response. Since gradients scale up with
the decrease of the specimen size, large gradients can usually be found only at small-length
scales. This implies that flexoelectricity may not be noticeable in larger scales (Jiang et al.,
2013, Nguyen et al., 2013b, Wang et al., 2019a).

The first theoretical (Mashkevich and Tolpygo, 1957), and experimental (Bursian and
Zaikovskii, 1968) studies on flexoelectricity date back to the 50s and 60s. Over the past decade,
several flexoelectric-based electromechanical prototypes such as sensors (Huang et al., 2014,
2012, Kwon et al, 2016, Merupo et al., 2017), actuators (Bhaskar et al.,, 2016, Zhang et al., 2017) or
energy harvesters (Choi and Kim, 2017, Deng et al., 2014a, Zhu et al., 2018) have been designed
and fabricated. The concept of piezoelectric composites without piezoelectric materials (Sharma
et al., 2007) has enabled the design of geometrically polarized non-piezoelectric dielectrics
with apparent piezoelectricity through flexoelectricity (Mocci et al, 2021). In this concept, the
flexoelectric response at small structural components is up-scaled to the macroscale, avoiding
internal cancellation through geometrical polarization.

Apart from applications, several physical and biological phenomena such as triboelectricity
(Fig. 1.3a) (Mizzi et al,, 2019, Mizzi and Marks, 2022), flexo-caloric effect (Liu et al., 2016), flexo-
photovoltaic effect (Fig. 1.3b) (Shu et al, 2020, Yang et al., 2018), auditory sensing (Breneman
et al., 2009, Deng et al., 2019), bone self-repair and remodeling (Fig. 1.3c) (Vasquez-Sancho
et al., 2018) among others, have been explained by flexoelectricity which implies the growing
significance of this electromechanical mechanism. Also, it has been shown that flexoelectricity
can affect the physics of crack formation and propagation (Abdollahi et al, 2015b, Cordero-
Edwards et al, 2019, Nufiez-Toldra et al, 2020, Wang et al., 2019¢c). Abdollahi et al. (2015b)
showed that flexoelectricity can cause a toughening effect as well as a toughness asymmetry.
The predicted toughness asymmetry (Abdollahi et al., 2015b), has recently been evidenced in
an experimental study (Fig 1.3d) (Cordero-Edwards et al, 2019). Besides, Wang et al. (2019c)
demonstrated the presence of a huge flexoelectric polarization around the crack tip which
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(a) Flexoelectricity as a potential driver of triboelectricity. (b) Strain gradient induces bulk photovoltaic effect in
centrosymmetric single crystals.

(c) Flexoelectricity has been suggested to be a potential (d) Toughness asymmetry due to flexoelectricity.
mechanism behind bone self-repair and remodeling.

Figure 1.3: Some examples of the physical manifestations of flexoelectricity. Figure adapted from
(Cordero-Edwards et al., 2019, Mizzi and Marks, 2022, Vasquez-Sancho et al, 2018, Yang et al., 2018).

reveals the relevance of flexoelectricity in the fracture phenomenon.

1.2.1 Flexoelectricity in soft materials

Soft robotics, biomedical devices, flexible electronics, energy harvesting, and sensors are some
of the applications enabled by electroactive soft materials. In soft electromechanics, a device is
generally required to simultaneously be able to (1) undergo large deformation under a moderate
electric field and (2) generate a noticeable electric field under the application of moderate
deformation. In the context of flexoelectricity, soft materials such as dielectric polymers
can undergo large deformation enabling the possibility of achieving higher strain gradients
and thus a potentially higher electric response at larger scales compared to hard crystalline
materials. This can provide further opportunities to design soft functional biocompatible
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Figure 1.4: Schematic image of the mechanism of flexoelectrets. Figure adapted from (Wen et al., 2019).

and environmentally friendly (soft and non-toxic) materials. Flexoelectricity emerges in soft
materials such as liquid crystals or lipid bilayers due to the reorientation of irregularly shaped
polarized molecules under strain gradients (Ahmadpoor et al,, 2013, Ahmadpoor and Sharma,
2015, Liu and Sharma, 2013, Meyer, 1969, Mohammadi et al., 2014, Morozovska et al., 2018,
Petrov, 1999, Rey, 2006). However, since flexoelectricity is a size-dependent property being
weaker at large scales, and the fact that the intrinsic flexoelectric coefficients of soft materials
are considerably lower than that of dielectric ceramics (Wen et al,, 2019), how to enhance
flexoelectric properties in soft materials has been an important question.

Deng et al. (2014b) developed a one-dimensional theoretical model for flexoelectricity in
solids. They showed that the electromechanical coupling can be enhanced by combining the
electret-Maxwell stress mechanism and flexoelectricity.

By depositing a layer of electrical charges on the middle plane of a soft beam and forming
an electret (Fig.1.4-a,b), Rahmati et al. (2019) and Wen et al. (2019) proposed the generation
of a flexoelectric-like effect in electrets under bending deformation. Under the application of
uniform compression (Fig.1.4-c), the shape of the beam changes but remains symmetric with
respect to the middle plane resulting in zero net polarization between upper and lower surfaces.
Under bending (Fig.1.4-d), the symmetry of the bar is broken which causes a generation of
net polarization along the thickness direction. Wen et al. (2019) showed that by depositing a
charge layer with a surface potential of -5723 V, the apparent material’s flexoelectric coefficient
can be enhanced by two orders of magnitude. The same group in another study (Wen et al.,
2021) showed that the electrets can generate curvature in response to a uniform electric field.

Grasinger et al. (2021) developed a statistical-mechanics theory underpinning flexoelectric-
ity in elastomers. They showed that giant flexoelectricity can be achieved in incompressible
elastomers if the material is prestretched in the direction of the strain gradient.

Through a phenomenological model verified with experiments, Zhang et. al. (Zhang et al,
2020a) showed that the flexoelectric coefficient of elastomers can be enhanced by increasing
the cross-linking density of the elastomers.
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1.2.2 Continuum modeling of flexoelectricity

The first continuum theory of flexoelectricity in soft materials goes back to the paper by Liu (Liu,
2014a) in which he proposed an energy formulation for a coupled magneto-electro-elasticity
continuum in which based on the principle of minimum free energy, he derived the linear
and nonlinear theories for different materials including dielectric elastomers, piezoelectric
ceramics, ferroelectrics, flexoelectric materials, etc. Following that work, a few papers further
developed the continuum theory of flexoelectricity in soft materials (McBride et al., 2020,
Nguyen et al.,, 2019, Poya et al,, 2019, Thai et al., 2018, Yvonnet and Liu, 2017, Zhuang et al.,
2020a). In contrast with previous works, Codony et al. (2020) presented a formulation with a
fully material flexoelectric coupling between strain gradient and electric polarization, which
yields an objective enthalpy functional by construction. Nevertheless, this and the previous
works postulate an energy contribution for bulk flexoelectricity in which the strain gradient
is coupled with a measure of electric response (either the electric displacement, the electric
field, or the electric polarization), but neglecting the explicit coupling between the gradient of
electric responses with strain (converse flexoelectricity). Although converse flexoelectricity is
implicitly modeled in these formulations, this causes a non-symmetric flexoelectric response
for direct and converse flexoelectricity unless boundary conditions are treated adequately.
Besides, to model flexoelectricity in soft materials such as polymers, it is important to consider
the incompressibility constraint in the elastic material model. Neglecting the incompressibility
constraint may compromise the validity of the models for polymers and rubber-like materials.

Regardless of considering hard or soft materials, the governing equations of flexoelectricity
are a coupled system of 4th-order partial differential equations. Solving them in the weak
form, we require C1-continuous basis functions. This precludes the use of the standard finite
element technique and commercial software such as ABAQUS using the C0-continuous basis
function (which is continuous itself but not the derivatives). Meshfree (Abdollahi et al., 2014),
immersed boundary B-spline (Codony et al., 2019), and body fitted B-spline (Codony et al.,
2020) approaches have been employed in our group to solve the governing equations of
flexoelectricity. Several approaches have also been proposed in the literature including mixed
finite element formulation (Deng et al,, 2017, Mao et al,, 2016), isogeometric analysis (Liu et al.,
2019, Thai et al., 2018), C1 discretization with triangular elements (Yvonnet and Liu, 2017),
and CO interior penalty methods (Ventura et al, 2021).

1.3 Surface instabilities in film/substrate systems

In recent years, several potential functionalities of surface instability-based systems have been
demonstrated including biomimetic cell-culture substrates, stretchable super-hydrophobic
coatings, pressure and strain sensors, supercapacitors, artificial muscle actuators, etc. (Bowden
et al., 1998, Cao et al., 2014, Chen et al., 2013, Park et al., 2016, Stafford et al., 2004, Wang et al,
2011, Zang et al, 2013).



8 INTRODUCTION

24 54 \AAAA J

Figure 1.5: Schematics of surface instability patterns (a) Wrinkle, (b) Crease, (c) Fold, (d) Period-double,
(e) Ridge. Figure adapted from (Wang and Zhao, 2015).

The early studies of wrinkling of film/substrate systems go back to the theoretical study
of Allen (Allen, 1969) which focused on the prevention of instability of layered composites
such as sandwich panels. Several papers in recent years have focused on the identification of
various surface instability patterns (Fig. 1.5.) namely wrinkle (Cao and Hutchinson, 2012b),
crease (Cai et al., 2012), fold (Sun et al, 2011), period-double (Budday et al., 2015), and ridge
(Cao et al, 2014, Zang et al., 2012) and the transitions between them (Auguste et al., 2014,
Brau et al, 2013, 2011, Jin et al, 2015, Wang and Zhao, 2014, 2015). In a two-dimensional
case of a perfectly bound thin film/substrate system in which the substrate has been subjected
to a prestretch, it has been shown that the bifurcation strain and surface instability patterns
depend only on the modulus ratio and mismatch strain between film and substrate (Auguste
et al., 2014, Wang and Zhao, 2015).

Wang and Zhao (Wang and Zhao, 2015) constructed a three-dimensional phase diagram
for the instability patterns in which three non-dimensional parameters (1) mismatch strain,
(2) modulus ratio, and (3) normalized adhesion energy determine the instability pattern. The
phase diagram for cases with high adhesion energies can be seen in Fig. 1.6.
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Figure 1.6: Phase diagram for instability patterns in a perfectly bound film/substrate system and its
experimental validation. Figure adapted from (Wang and Zhao, 2015).
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1.3.1 Electromechanical studies on surface instabilities

Several papers have studied the electromechanical instabilities of dielectric elastomers. Zhao
and Suo (Zhao and Suo, 2007), proposed an approach for analyzing the electromechanical
stability of dielectric elastomers. They showed that electromechanical instability occurs when
the Hessian of free-energy function discontinues being positive definite. Stability analysis of
min-max problems requires a different approach, i.e. the instability occurs when the signature
of the global stiffness matrix changes (Dortdivanlioglu and Linder, 2019).

The wrinkling of dielectric elastomers has been investigated experimentally and theoreti-
cally (Kollosche et al., 2012, Shui et al., 2019, Su et al., 2018b, Wang and Zhao, 2013, Zhu et al.,
2012). Su et al. (2019) investigated the bending deformation of a dielectric-elastic bilayer based
on the nonlinear theory of electroelasticity and the associated linearized incremental field
theory. They studied the stability of the bilayer and showed that the formation of patterns in
the wrinkled bilayer can be controlled by tuning the physical properties of the bilayer and the
applied voltage.

Surface instabilities such as wrinkling are sources of strain gradients, making this subject an
attractive area for further investigations in the flexoelectric community. A common structure
in stretchable electronics is a film/substrate system in which a thin layer of active material is
bonded to a passive mostly compliant substrate (Dickey, 2017, Gong and Cheng, 2017, Wang
et al., 2018) which may develop surface instabilities due to strain mismatch between film and
substrate.

Regarding the study of the surface instabilities in flexoelectric materials, through a theoret-
ical study, Su et al. (2018a) investigated the wrinkling of a flexoelectric nano-film/substrate
system and showed that both flexoelectricity and surface effects significantly change wrinkling
critical condition and wrinkling deformation, especially at very small length scales. The same
group in a theoretical study (Su et al, 2021) proposed a flexoelectric energy harvester based
on controllable wrinkling mechanism to enhance the energy harvesting efficiency. Shang
et al. (2022) studied flexoelectricity in wrinkled thin films and demonstrated that increased
flexoelectricity in thinner films can enhance the available energy and stretchability of the
wrinkled thin films. Nevertheless, to the best of our knowledge, to this date, no computational
framework is present in the literature to study surface instabilities in flexoelectric bilayers. In
particular, a computational model that is able to study complex nonlinear instabilities such as
folding and creasing in flexoelectric materials is not present in the literature.

1.4 Goals and objectives

The main objective of this thesis is to explore surface instabilities in soft materials to harness
strain inhomogeneities and the flexoelectric effect. In particular, surface instabilities occurring
in a film/substrate system are studied in detail. Surface instabilities in film/substrate systems
have been shown to provide significant potential applications in the design of advanced
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materials. As a result of surface instability in a film/substrate system, different patterns are
formed on the surface in which a noticeable local strain gradient is generated. In dielectrics,
this results in the generation of a localized electric response through direct flexoelectricity.
Furthermore, as shown in (Wang and Zhao, 2015), depending on the relative stiffness of the thin
film and the substrate, the adhesion energy, and strain, one can produce surface morphologies
that are noncentrosymmetric, including buckle delaminations, folding, period doubling, and
ridging (see Section 1.3). In these patterns, the geometrical polarization deriving from the lack
of up-down symmetry gives rise to a net electrical response through the flexoelectric effect.
In other situations without significant up-down symmetry, the internal cancellation of the
flexoelectric fields should be prevented through proper device design. Therefore, the study of
surface instabilities in an electromechanical continuum can provide further opportunities to
design sensors, actuators, and energy harvesting systems exploiting the flexoelectric effect.
Besides, it can highlight some fundamental manifestations of flexoelectricity on material

behavior. Towards this goal, the specific objectives are:

+ Study the surface effects that inherently exist in flexoelectric continuum models. We will
study a general form of flexoelectric coupling in infinitesimal strains from which direct,
converse, and Lifshitz-invariant flexoelectric models can be obtained. We will first show
that when the body is infinite, flexoelectric materials do not show electromechanical
response under homogeneous loading. However, when the size of the body is finite,
due to the symmetry-breaking nature of surfaces, homogeneous loading (mechanical or
electrical) can cause an electromechanical response near the surfaces. We will show that
the electromechanical response is similar to surface piezoelectricity causing boundary
layers in components of strains and electric fields near the surfaces. We will obtain

closed-form solutions that can accurately describe the boundary layers.

+ Extend the large deformation framework in (Codony et al, 2020) to a symmetric flexo-
electric formulation explicitly accounting for converse flexoelectricity ( Lifshitz-invariant
model), and to account for incompressibility and material interfaces. We will extend and
implement the weak enforcement of interface conditions reported in (Barcel6-Mercader
et al., 2022) to the large deformation setting. We will also implement the subdivision
stabilization technique to circumvent the well-known locking phenomenon for the
incompressibility constraint (Dortdivanlioglu et al., 2018).

« Validate the formulation and implementation. Several numerical tests such as gradi-
ent checking, verification with the infinitesimal strain formulation for small loadings,

convergence tests, etc. will be performed.

» Explore surface instabilities in a flexoelectric film/substrate system. First, we will
study the system without flexoelectricity for validation. Then, we will address the
full electromechanical problem and will aim at capturing the well-known mechanical
instability patterns of wrinkling, creasing, folding, period-doubling, and ridging. In
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order to gain understanding and ultimately control over the instability patterns, we
will study in detail the transitions between them and their dependence on the model
parameters (moduli ratio, substrate pre-stretch, etc.).

« Study the flexoelectricity-induced electromechanical response of each family of insta-
bility patterns and extract the design criteria for large-area flexoelectric devices with
optimal flexoelectric performance. In particular, the effect of model parameters on the
flexoelectricity-induced electrical response will be studied in detail. Possibilities for
enhancing the response will be explored.

« Propose potential applications for flexoelectric devices employing surface instabilities.

« Explore the manifestations of flexoelectricity in stress singularities such as folds and
sharp notches. We will show that flexoelectricity can result in a delaying effect in the
formation of folds. Besides, we will show that flexoelectricity can contribute to notch
strengthening effect and flaw-insensitive fracture.

1.5 Outline

The manuscript is organized as follows. Chapter 2 is devoted to the theoretical modeling of
flexoelectricity. We first review the different formulations of flexoelectricity at infinitesimal
strains (accounting explicitly for only direct or converse or both direct and converse flex-
oelectricity) regarding inherent finite sample effects. We then present a large-deformation
continuum model for flexoelectricity accounting for converse flexoelectricity explicitly, mate-
rial incompressibility, and multimaterial configurations. Chapter 3 explores different instability
patterns in flexoelectric-dielectric bilayers and their flexoelectric-induced electromechanical
response. Based on the understanding gained in this chapter, we propose in Chapter 4 several
conceptual designs that lay the ground for soft large-area electromechanical materials and
devices harnessing flexoelectricity as a functional property. Chapter 5 explores the effect
of flexoelectricity on stress singularities such as folds in soft materials and notches in hard
materials. Finally, Chapter 6 summarizes and concludes the dissertation.

1.6 List of publications

This manuscript gathers most of the published and unpublished (to this date) original research
done by the author during his PhD. They are provided in the following lists.

1.6.1 Journal papers

« H. Mohammadi, O. Marco, 1. Arias, Continuum modeling of surface instabilities in
flexoelectric materials (To be submitted).
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« H. Mohammadi, D. Codony, I. Arias, Flexoelectricity causes surface piezoelectric-like
effect in dielectrics (To be submitted).

« H. Mohammadi, I. Arias, Gradient effects cause notch-strengthening and flaw insensitive

fracture — contribution of flexoelectricity (To be submitted).

1.6.2 Other related publications

« F. Greco, D. Codony, H. Mohammadi, S. Fernandez, I. Arias, Topology optimization of
flexoelectric metamaterials with apparent piezoelectricity (to be submitted).

1.6.3 Conference presentations

« H. Mohammadi, I. Arias, Computational modelling of surface instabilities in flexoelectric
materials, 18th European Mechanics of Materials Conference (EMMC18) April 4 - 6,
2022, Oxford, UK.






Chapter 2

Continuum and computational
modeling of flexoelectricity

In this chapter, with the aim of better understanding the flexoelectricity models, we first
study finite sample effects in the different existing formulations of flexoelectricity, and in
particular the emergence of surface-piezoelectric effects. For simplicity, we focus at this
point on infinitesimal strains, but all drawn conclusions apply also to the large deformation
setting. Next, following Codony et al. (2020), we present a Lifshitz-invariant formulation
for flexoelectricity, explicitly accounting for both direct and converse flexoelectricity. This
formulation is extended to multimaterial configurations and to material incompressibility.
Finally, we present the computational model.

2.1 State of the art

After the early theoretical studies by Mashkevich and Tolpygo (1957) and Tolpygo (1963),
Kogan (1964) proposed a phenomenological model for flexoelectricity in crystalline dielectrics.
The distinction between piezoelectricity and flexoelectricity was clarified in Tagantsev (1986,
1991)’s first comprehensive theoretical works. Mindlin (1968) formalized the converse flexo-
electric effect in elastic dielectrics in the mechanics community. Later, Sahin and Dost (1988)
proposed a complete unified continuum framework that included strain gradient elasticity,
direct and converse flexoelectric couplings, and the polarization inertia effect. Maranganti
et al. (2006) recently proposed a simplified framework for isotropic dielectrics.

There are numerous continuum flexoelectricity theories currently available. Some of them
reformulate the models using gradient elasticity theory (Askes and Aifantis, 2011b, Mindlin
and Eshel, 1968b) variants such as couple-stress theory (Hadjesfandiari, 2013, Mindlin and
Tiersten, 1962, Poya et al, 2019) and rotation-gradient theory (Anqing et al, 2015, Li et al,
2015). Other authors consider couplings with additional physics, such as the flexoelectric
effect in ferroelectrics (Catalan et al., 2004, Eliseev et al, 2009), coupling with magnetic fields
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(Eliseev et al., 2011, Liu, 2014b), or photovoltaics (Shu et al., 2020, Yang et al., 2018), as well as
surface effects (Shen and Hu, 2010). General variational principles for flexoelectric materials
can be found in Hu and Shen (2010), Liu (2014b), Shen and Hu (2010).

All of the aforementioned flexoelectricity theories can be classified based on the following
criteria:

« The choice of variables describing the flexoelectric effect. For the mechanics, either the
displacement gradient or its symmetrized form (i.e. strain) can be used, which gives rise
to type-I or type-II flexoelectricity, respectively. For the dielectrics, either the electric
polarization, the electric field, or the electric displacement is used.

+ The considered flexoelectric coupling, either the direct, the converse, both, or the
Lifshitz-invariant form.

2.1.1 Different flexoelectric models

The direct flexoelectric effect is defined as material polarization caused by inhomogeneous
deformation (for example, bending or twisting) and is expressed mathematically as
8517

oxi’

P1 = fuijk (2.1)

where f is the flexocoupling tensor. There is also a thermodynamically conjugate converse
flexoelectric effect, which involves the generation of stress o as a result of the application of
an inhomogeneous electric field e, i.e.

de;
O-ij =flijk87xk. (22)

Describing the bulk static flexoelectric effect in centrosymmetric dielectrics, the internal
energy density under the assumption of infinitesimal deformations can be written in terms of
the strain tensor ¢, the electric polarization field P and their corresponding spatial gradients
in the following form (Codony et al., 2021):

¢(0)(g, Ve, P,VP) Z%Cijklgijgkl + %hijklmngij,kglm,n + %aklPkPl + %bijklPi,kPj’l
- fikeikPi = fikesPres (2.3)
where
« c is the usual fourth-order elasticity tensor,

+ ais the usual second-order reciprocal dielectric susceptibility tensor,

+ his the sixth-order strain gradient elasticity tensor, representing the purely non-local
elastic effects,
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+ b is the fourth-order polarization gradient tensor, representing the purely non-local
effects of polarization,

« fW is the direct flexocoupling tensor,
« f® is the polarization gradient-strain coupling tensor, also known as the converse

flexocoupling tensor.

Assuming uniform material constants, the two latter terms in Eq. (2.3) can be rewritten as
follows (Codony et al.,, 2021):

1 2
_fl(ijigij,kpl _fl(ijzcgijplk =

£ P]
~fuijk€ijkPr - f,,]k (U )= (2.4a)

(Eufﬁ)
ijk€ij P = 2.4b
fuijkeijPric - fzuk Fo (2.4b)

1 9 (e5P1)
_Eflijk (é'ij,kPl SUPlk) - (fll}k fl,]k) Tox (2.4¢)
with the (effective) flexocoupling tensor
2

ik = Fije = i (25)

The first terms in (2.4a)-(2.4c) are referred to, respectively, as the direct, converse and Lifshitz
invariant flexocouplings (Landau and Lifshitz, 2013, Lifshitz and Landau, 1984, Sharma et al.,
2010), and all of them implicitly represent both the direct and converse flexoelectric effects.
The second terms in (2.4a)-(2.4c) are null-Lagrangians (Evans, 2010), as such their bulk integral
can be written as a surface integral using the divergence theorem, e.g. for (2.4c):

9 (eyP1)
/ (flzjk —flljk) X dQ =
/ (0 f,(l.ﬁ) Py dT. (2.6)
Despite the fact that they affect boundary conditions, null Lagrangians are frequently over-
looked in the literature (Sharma et al, 2010, Yudin and Tagantsev, 2013), resulting in different

internal energy densities to Eq. (2.3) as

. 1 1 1 1
D
YO (g, Ve, P,VP) = 5 CifkI€ij kL + Ehijklmnfij,kflm,n + EaklPkPl + Ebijklpi,jpk,l - fuijk€ijiPr (2.7)

1 1 1 1
c
Y (g, Ve, P,VP) = 5 CifkI€ij kL + Ehijklmngij,kglm,n + Eaklpkpl + gbijklpi,jplgl + flijk€ijPr, (2.8)
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and
: 1 1 1 1 1
yUih(g, Ve, P,VP) = 2 Ciik1€ij €kl + Ehijklmnfij,kflm,n + EaklPkPl + Ebijklpi,jpk,l - Eflijk (Eij,kPI - fijPI,k) (2.9)

Taking polarization field P as the electrical state variable results in a variational formulation
in terms of the free energy of the system such that, upon minimization over the admissible
states, Euler-Lagrange equations and boundary conditions follow as necessary conditions.
However, in these formulations, the irrotationality of the electric field emerges as a constraint
that complicates the numerical treatment. Therefore, many authors prefer electric field-
based models to polarization-based models because the electric field can be irrotational by
construction yielding an unconstrained min-max problem. The connection between the two
families of models is Legendre transformation. Therefore, in this dissertation, we resort to
electric field-based formulations.

2.1.2 Flexoelectric formulation based on electromechanical enthalpy

We consider a general form of flexoelectric coupling from which different forms such as direct,
converse, and Lifshitz-invariant flexoelectric models can be derived. In the limit of infinitesimal
deformations, the electromechanical enthalpy can be written as:

1 1
H (&ij, €ij Bt Em) =§Cijklfij5kl + Ehijklmngij,kglm,n + CuijreiiErk — (1= OpijreijkEr

1 1
_EKlmElEm - EMijklEi,jEk,l, (2.10)

where { = 0 is related to the direct model, { = 1 is related to the converse model, and { = 0.5
is related to the Lifshitz-invariant model. In Eq. (2.10), C is the elasticity tensor, h is the strain
gradient elasticity tensor, p is the flexoelectricity tensor, « is the dielectricity tensor, and M is
the gradient dielectricity tensor. The material tensors have been defined in Appendix A. The
constitutive equations are:

N oH
0jj = = Cijkrr + SpuijkErk, (2.11)
8&]-
~ oH
Gijk = = hijkimn€imn — (1 = OpuijrEr (2.12)
aEij)k
A oH
Dy = -—— = KimEm + (1 = Opiijicéi s (2.13)
0E;
~ oH
Djj = ~——— = MjjiEr1 - Suijkeij- (2.14)

The physical stress and physical electric displacement are:



2.2 Finite sample effects 19

oH oH
Ojj =5 - = Cijkikl + HijkErk = Rijkimn€im,nks (2.15)
ae,-j ab‘ij’k k > s
and
oH oH
D; = 9E <3Ei,j>j = KijEj + pijki€jks = MijkiEx.1j- (2.16)

The strong form of the problem can be written as:

ciii+ =0 inQ,
{ i * Ji (2.17)

Dl,l—qZO in Q,

where f#*! is the external body forces per unit volume, and g represents the external electric
free charges per unit volume. The strong form is complemented with the following Neumann
boundary conditions (Codony et al., 2021):

(64 - Gy + Vls(nl)5ijknk) nj = vf(a'ijknk) =t on dy, (2.18)
Ojjknjng = ;. on 99, (2.19)
- (Dl - blk,k + Vf(ni)ﬁlknk) n; + v?(ﬁlknk) =w ondQ,, (2.20)
- Ejknjnk =v onodQy,, (2.21)

where n is the normal vector to the surface, t is traction, r is double traction, w is surface
charge density, o is double charge density. In regions where the boundary is not smooth, some
additional boundary conditions arise. The reader is referred to (Codony et al., 2021) for more
details.

2.2 Finite sample effects

The flexoelectric couplings, which were first predicted theoretically (Mashkevich and Tolpygo,
1957) have since been confirmed experimentally. Bursian and Zaikovskii (1968) demonstrated
beam bending of non-piezoelectric thin cantilever beams under applied electric bias in closed
circuit (Fig. 2.1a), an evidence of inverse flexoelectricity producing non-homogeneous de-
formations in response to an applied homogeneous electric field (see Eq. (2.1)). This effect
has been later used in proof-of-concept flexoelectric MEMS (Bhaskar et al., 2016). Ma and
Cross (2001, 2002) and Cross (2006) conducted a series of experiments showing electric fields
emerging in cantilever nanobeams under bending and nanopyramids under compression,
a testament of the direct flexoelectric effect (Fig. 2.1b). The flexoelectric response induced
by mechanical gradients has been shown to be strong enough to: (1) switch polarization in
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ferroelectrics, which opens avenues for mechanical writing of ferroelectric memories without
any electrical bias (Lu et al, 2012), (2) change the conductivity of LAO/STO interfaces by
purely mechanical means, which can find application in transistors (Sharma et al, 2015), and
(3) provide a charge separation mechanism in non-centrosymmetric materials for photovoltaic
applications (Yang et al, 2018). Finally, deformation under in-homogeneous electric fields
due to converse flexoelectricity has been observed in Piezoresponse Force Microscopy (PFM)
(Fig. 2.1c) (Abdollahi et al, 2019). All these settings have been successfully modeled with
the self-consistent two-way coupled electromechanical continuum framework described in
Section 2.1.2, demonstrating the ability of the model to capture flexoelectric physics (Abdollahi
et al., 2015a, 2019, 2014, Codony et al,, 2021).

In all three flexoelectric mechanisms, the actuating field, namely a mechanical gradient
(direct), an electric field (inverse) and an electric field gradient (converse) are polar in nature
and thus able by themselves to break material centro-symmetry. This is not expected to
happen under homogeneous strain, cf. Section 1.2. Indeed, the self-consistent simulation of
a non-piezoelectric dielectric square sample with generalized periodic boundaries (Barcelo-
Mercader et al., 2023), i.e. representing an infinite medium, under uniform compression shows
no flexoelectric response as expected (Fig. 2.2b). Interestingly, simulations in finite samples for
all three models in Section 2.1.2 exhibit a boundary layer in the electric potential or the strain,
which vanishes in the bulk as expected (Fig. 2.2c). This boundary layer emerges naturally
from the model in the presence of a free surface. Intuitively, this localized electric response
can be viewed as the piezoelectric-like response of a thin layer of material close to the free
surface. It is thus reminiscent of surface piezoelectricity. This effect manifests itself in finite
samples as an emerging thin piezoelectric boundary layer resulting from symmetry loss at the
surface (Fig. 2.3) (Zubko et al., 2013).

Regardless of the intrinsic symmetry of the bulk material, the presence of a free surface
breaks the symmetry by surface relaxation and induces the emergence of a thin layer of
non-centrosymmetric material with piezoelectric-like behavior. Surface piezoelectricity has
been modeled as a zero-thickness layer of piezoelectric material, in the spirit of (Tagantsev
and Yurkov, 2012, Yudin and Tagantsev, 2013, Yurkov and Tagantsev, 2016). However, it is
known that surface relaxation can be described by strain gradient elasticity (Danescu, 2012).
Similarly, here a piezoelectric-like boundary layer emerges naturally from the rich continuum
model, without a specific ad-hoc model for surface piezoelectricity. Similar to the boundary
layers in strain gradient elasticity models (Lam et al, 2003, Shu et al., 1999), the observed
boundary layers present an exponential growth near the surfaces, and their width is directly
related to the length scale parameters of the inherent higher-order physics.

An in-depth understanding of the inherent surface effects of flexoelectric models is essential
from modeling, computational, and physical perspectives. From the modeling side, the emer-
gence of boundary layers from surface relaxation in the flexoelectric models in Section 2.1.2
needs to be taken into account when incorporating ad-hoc surface piezoelectricity models such
as the zero-thickness piezoelectric surface layer as done in Dai et al. (2011) and Pan et al. (2011).
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Furthermore, a rigorous characterization of the boundary layers provides an opportunity to
model surface effects resulting from surface relaxation as an emergent property. Obviously,
surface effects resulting from physical or chemical surface specificity cannot be captured by
the present rich continuum models. On the computational side, the inherent surface effects of
the flexoelectric models can cause steep boundary layers resulting in numerical instabilities if
the computational mesh is not sufficiently fine. Quantitative knowledge of the inherent surface
effects of the flexoelectric models can be a useful guide for careful consideration of the mesh
size and/or regularization parameters. Finally, the detailed study of specific boundary value
problems based on the rich continuum models can provide further insights on the physics of
the free surface effects.

In the following sections, we present a theoretical exploration and characterization of the
observed boundary layers. We first study two examples in which a homogeneous electric
field or strain causes surface effects in a thin flexoelectric film. As an additional example, we
then explore the uniform bending of a flexoelectric beam showing that it exhibits surface
effects that could be well-explained with the surface effects seen due to the application of

homogeneous strain.
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photograph gives the edge-on view in reflected light.

(a) Inverse flexoelectricity in experiments and simulations. Figure adapted from (Bursian and
Zaikovskii, 1968, Codony et al., 2021).
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(b) Direct flexoelectricity in experiments and simulations. Figure adapted from (Abdollahi et al,
2014, Ma and Cross, 2001).
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(c) Converse flexoelectricity in experiments and simulations. Figure adapted from (Abdollahi et al,
2019).

Figure 2.1: Inverse, direct, and converse flexoelectricity has been observed in experiments and self-
consistent computational simulations.
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Ve

g=”

(a) Four-way coupling in the continuum models of flex-
oelectricity namely (1) direct flexoelectricity, (2) inverse
flexoelectricity, (3) converse flexoelectricity, (4) inverse-
converse flexoelectricity. The first three phenomena have
been confirmed experimentally, while the fourth one has
not yet been observed.

B . ‘

e =========

(b) Horizontal Compression of an infinite flex- (c) Horizontal compression of an infinite flex-
oelectric body (periodic in x and y directions) oelectric film (periodic in x but not in y direc-
does not induce any electric response, as sym- tion) induces an electric response close to the
metry is not broken with compression. The free top and bottom boundaries, as surfaces
distribution of electric potential has been plot- are sources of symmetry-breaking. The distri-
ted. The Lifshitz-invariant model has been bution of electric potential has been plotted.
used. Horizontal surfaces are assumed to be free of

tractions and surface charges. The Lifshitz-
invariant model has been used.

Figure 2.2: The inverse phenomena (couplings shown with red arrows) can cause surface effects in
flexoelectric models in finite samples.



24 CONTINUUM AND COMPUTATIONAL MODELING OF FLEXOELECTRICITY

Figure 2.3: Symmetry breaking nature of surfaces causes a piezoelectric-like behavior of a thin layer of
material close to free surfaces. Figure adapted from (Zubko et al, 2013).
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2.2.1 Analytical solutions for different cases

We provide next the analytical solution for three boundary value problems corresponding to
a plane-strain microbeam under three loading conditions: axial electric actuation (Fig. 2.4a),
axial compression (Fig. 2.4b), and uniform bending (Fig. 2.4c). For all the examples, we consider
a thin flexoelectric film along the x-direction occupying [-7/2, T/2] in the y-coordinate. The
thin film is modeled as being infinite along x and z directions, for one-dimensional kinematics.
For the described geometry, the boundary conditions presented in Egs. (2.18)-(2.21) simplify
to:

t; = opp sign(y) ony==T/2, (2.22)
r; = O ony=x+T/2, (2.23)
w = -D; sign(y) ony==T/2, (2.24)
v=-Dy ony==+T/2. (2.25)

Homogeneous Neumann mechanical and electric boundary conditions have been considered
on the free surfaces for all the cases, i.e. t; = 0, r; = 0, w = 0, and v = 0. The obtained analytical
results have been illustrated for each case considering a BST microbeam of thickness T = 1
micrometer. The material properties are given in Table 2.1. Worth noting that all analytical
results have been verified against numerical simulations.

dl
O IT X |—l

(a) Electrical actuation of a thin film along its length.

(¢) Uniform bending of a thin film.

Figure 2.4: Loadings and boundary conditions of three cases studied in the paper. Dark dashed lines
represent the deformed shape.
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Table 2.1: Material parameters used in the simulation.

E v L K L, 4 HT Us
[Gpa] [nm] | [nC/Vm] | [nm] | [pC/m] | [pC/m] | [pC/m]
152 0.33 20 8 30 1.21 1.10 0.055

2.2.1.1 Axial Electric actuation of a microbeam

Suppose we apply a far-field horizontal electric field E, to the system. Fig. 2.4a shows the
boundary conditions and loadings for this case. Consequently, the applied electric field results
in y-dependent shear strain &,,(y) = £,x(y). Here we consider strain-free conditions at infinity
so that &, = £, = 0 and E,, = 0. However, as shown in Appendix H, the stress oy, = 0 on each
cross-section which implies that the conclusions are not affected by the choice of stress or
strain-free boundary conditions at infinity. Therefore:

_ 0 exy(y) 3 E,
Lo 0 =[] 029

Considering homogeneous Neumann boundary conditions on the free surfaces, £,,(y) can be
obtained as:

_ (- QpsE, —y- T2\ y-T/2
) G e T) Gl [exp (h) exp( ; )} 20

The details of the derivation of the solution are provided in Appendix H.

x107°

5

------ Direct (¢ =0)
—— Lifshitz-invariant (¢ = 0.5)
— =Converse (¢ =1)

-0.5 0 0.5
y-axis [um)]

Figure 2.5: Electrical actuation of a thin flexoelectric film made of BST along its length with Ex = 1V/um
shows inverse surface piezoelectric-like effect. The thickness considered here is 1 pum.
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Fig. 2.5, depicts &y, along the cross-section, Eq. (2.27), for different flexoelectric models.
Fig. 2.5 shows that for direct and Lifshitz-invariant models, as a result of the applied in-plane
electric field the top and bottom surfaces of the body experience shear strains. The shear strain
vanishes at a certain distance from the surfaces. The profile of the shear strain is controlled by
the strain gradient elasticity length scale [; and its magnitude is proportional to the applied
electric field E, and the shear flexoelectric coefficient ys, and is inversely proportional to the
shear component of the elasticity tensor Cs, and the strain gradient elasticity length scale 1.
This behavior is similar to the actuation of a thin layer of a piezoelectric surface due to an
application of external voltage, or inverse surface piezoelectricity. Fig. 2.5 shows that for this
case, the converse model does not show surface effect.

2.2.1.2 Axial compression of a microbeam

Suppose we apply far-field plane-strain axial compression &, to the microbeam, Fig. 2.4b.
Both the deformation field and electric potential are independent of the x-direction. Therefore,
the applied compression results in y-dependent vertical strain ¢),,(y) and electric field E,(y).
Note that &, = £)x = 0 and Ey = 0. Therefore:

Ex O To
‘[0 eyy<y>}’ k- [Eym}' 228

Considering homogeneous Neumann boundary conditions on the free surfaces, E,(y) and
£yy(y) can be obtained with the following expressions:

Eex(Crpr = Crpr)

-y-T/2 y-T/2
E =K - EANN Sl I
y(¥) o, P [eXp ( o ) exp < o
-y-T/2 -T/2
+ 1 [exp (y / ) —exp(y / )H, (2.29)
az as
Exxc -C - —T/Z —T/z
e,(y) = K ( LﬂTC THL) ~ ayny |exp (y) + exp (y )}
HLCL a a
-y-T/2 -T/2 C
+ azazﬁl |:exp (:)//> + exp <y / >:| _ lgx?ﬁ
az az CL
(2.30)
where
¢ (2.31)

- 01,52 - (12,31 )’2,

A 2L
yap =L | ——, A= ——, 2.32
a, a 162 1im llz+l22+lﬁ ( )
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_H
Ik = o (2.33)
3

o =1- 5, (2.34)

Bi = (1 - exp(-T/a;)) (gai +1- {) , (2.35)
1
l2

vi =1 + exp(-T/a;)) <azg(1 -{)+ §> . (2.36)

The details of the derivation of the solution are provided in Appendix I. Note that in Egs. (2.35),
and (2.36), the thickness dependence of f§; and y; vanishes if T » a;.

20 6.5 10"
««== Direct (¢ = 0) \ «+== Direct (¢ = 0)
15 — Lifshitz-invariant (¢ = 0.5) \ — Lifshitz-invariant ({ = 0.5) !
\ — =Converse (( =1) \ — =Converse (( =1) !
10 1y ' 6Fy ' .
\ \ !
AN ' '
3 \§ - > \ !
S 0 beeeerss g SH5E |
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y-axis [pm)] y-axis [um)

Figure 2.6: In-plane compression of a thin flexoelectric film made of BST along its length with
&xx = —0.01 shows surface-piezoelectric like effect. The thickness considered here is 1 ym.

Fig. 2.6, depicts E, and ¢, along the beam cross-section, Egs. (2.29) and (2.30), respectively,
for different flexoelectric models. Fig. 2.6 shows that for Lifshitz-invariant and converse
models, a boundary layer develops on the transversal electric field E,, which vanishes away
from the surface. This behavior is inherently similar to direct surface piezoelectricity in non-
piezoelectric materials, where a thin layer of the surface shows an electric response under
mechanical deformation. Due to the generated electric field gradient near the surfaces, the

strain ¢y, also experiences a boundary layer due to converse flexoelectricity.

2.2.1.3 Uniform bending of a microbeam

Suppose the beam is uniformly bent so that the curvature of the beam « is the same in all
cross-sections normal to it. Fig. 2.4c shows the boundary conditions and loadings for this case.
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Following a slender beam approximation, the strains and electric fields can be written as:

_|-xy 0 _ 0
T [ 0 5yy()’)j| , F [Ey(Y)} ' (237)

Considering homogeneous Neumann boundary conditions on the free surfaces, E,(y) and
£yy(y) can be obtained with the following expressions:

-k(Crur — Cryp) | ~ -y-T/2 -T/2
By () = UL [ (T2 o (L12)]
. -y-T/2 y-T/2 K Cr
—k e - = =L _
2 [exp < - > + exp ( m |\ C UT
(2.38)
-k(Crpr - Crpp) | 2 -y-T/2 y-T/2
eyy(y) = Coi ks [exp ) exp o
- -y-T/2 -T/2 C
- ks [exp <y/) —exp<y / )” +—Ticy. (2.39)
ay ay CL
where

(2aioc -1+ 77

Py = . g , (2.40)
2 (a1ﬁ2)71 - ap ?2)
(2611 n(@ -1+ ﬁl Tév>
k= i ! , (2.41)
2 (111,32)71 - 112,31)72)
a o (2a2)72(§ -1+ ,BAZTSV)
s = i i , (2.42)
2 (alﬁZ}All - azﬁlffz)
[25X09) (2611)71(%/ - 1) + ﬁAng)
ke = - - , (2.43)
2 (alﬁszl - apy }72)
2
Bi =(1 + exp(~T/ay)) (?2051‘ +1- §> ; (2.49)
u
lZ
ji=-espl-tian (- 0+ ¢)). (2:45

where a;, [, and a; have been defined in Eqs. (2.32)-(2.34). The details of the derivation of the
solution have been provided in J. Note that in Egs. (2.44), and (2.45), the thickness dependence

).
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of /%,- and y; vanishes if T » a;.

Fig. 2.7, depicts E, and ¢y, along the cross-section, Egs. (2.38) and (2.39), respectively, for
different flexoelectric models. It is important to note that the surface effects seen in the case
of bending are mainly a combination of the surface effects in the compression case, yet with
opposite signs of the applied compression on two sides of the neutral axis. That is why the
results shown in Fig. 2.7 exhibit an opposite symmetry compared to Fig. 2.6. Furthermore, the
coupling between ¢,,,, and E,, through y; causes an additional surface effect. That is why a
small surface effect can be seen with the direct model in the case of bending.

0.01 ‘ 2 MO
------ Direct (¢ =0)
1.5% —— Lifshitz-invariant (¢ = 0.5) ’
0k — =Converse (¢ =1) -
"2 0014
3
=
= 1
$-0.02
& 0.0 . 1
|
: 1
0.035 Direct (¢ =0) !
—— Lifshitz-invariant (¢ = 0.5)
— =Converse (¢ =1)
-0.04 : -2
-0.5 0 0.5 -0.5 0
y-axis [um)] y-axis [um]

Figure 2.7: Surface effects of a flexoelectric thin film made of BST under uniform bending with
k = 50[1/m]. The thickness considered here is 1 um.

2.2.2 Discussion

Three forms of coupling are mainly considered in the flexoelectric literature. Direct flexo-
electricity is modeled as —p;jx€;5 k E;, converse flexoelectricity is modeled as p;jx€;E ., and
Lifshitz-invariant flexoelectricity is modeled as % Miijk€iiErg — % Hiijk€ij kEr. As shown in Section
2.1.2, considering any of the mentioned coupling terms explicitely in the electromechanical
enthalpy would not change the governing equations, yet the definition of Neumann bound-
ary conditions is different in the three flexoelectric models. This results in solving different
boundary value problems if the Neumann boundary condition is imposed anywhere on the
boundaries. Table 2.2 summarizes the components of the strain and electric field that exhibit
boundary layers for the different case studies and different flexoelectric models. Electrical ac-
tuation and compression cases are of particular importance as the electromechanical response
is isolated from the bulk flexoelectric response. As explained in Section 2.2.1.1, a homogeneous
electric field can cause a shear strain gradient due to inverse flexoelectricity. This means that
the surface of the body exhibits a mechanical response due to the application of an external

0.5
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Table 2.2: The components of the strain or electric field that exhibit boundary layers for different cases
and different flexoelectric models

Case Direct Lifshitz-invariant Converse
(=0 (¢ = 05) =1
Electric actuation Exy Exy -
Compression - €yy, Ey €yys Ey
Bending eyy, Ey gyy, Ey &yy, Ey

electrical stimulus, or inverse surface piezoelectricity. Besides, as shown in Section 2.2.1.2, a
homogeneous strain can cause an electric field gradient due to inverse converse flexoelectricity,
a behavior that is similar to direct surface piezoelectricity. Considering either the direct or the
converse flexoelectric models result in a one-way surface piezoelectric-like effect (direct or
inverse), while the Lifshitz-invariant model shows a two-way surface piezoelectric-like effect
(direct and inverse). The inherent surface effects of flexoelectricity with different models have
already been seen in different studies (Abdollahi et al, 2014, Codony et al, 2021, Yurkov and
Tagantsev, 2016, Zhuang et al, 2020b). In particular, (Codony et al.,, 2021) studied a cantilever
beam under bending and showed that the Lifshitz-invariant model exhibits a boundary layer on
E,,. This is in agreement with the results of this paper. However, as in (Codony et al, 2021) the
longitudinal flexoelectric coefficient yi; was neglected, no boundary layer in E;, was observed
in the direct model. The boundary layers have also been seen in a cantilever beam actuator
(Abdollahi et al, 2014, Codony et al, 2021, He et al.,, 2019, Zhuang et al., 2020b). One could
perform a similar exercise as Section 2.2.1.1 by changing the boundary conditions (applying
Dirichlet electric boundary conditions instead of homogeneous Neumann electric boundary
conditions on free surfaces), and explaining the boundary layers seen in the vertical electric
field of the cantilever beam actuator. However, as our aim was to shed light on the origins of
the surface effects in the flexoelectricity models and not explain every single example, we did
not provide more examples.

2.2.3 Concluding remarks

In this section, we explored the continuum models of flexoelectricity in dielectrics. We
showed that when the size of the body is finite, the continuum models of flexoelectricity in
bulk exhibit surface piezoelectric-like effects. We attributed the surface effects to be due to
inverse flexoelectricity and inverse converse flexoelectricity. Comparing different flexoelectric
couplings, we showed that the direct and converse flexoelectric models exhibit a one-way
surface piezoelectric-like effect, while the Lifshitz-invariant model shows a two-way surface
piezoelectric-like effect. Furthermore, we characterized the observed boundary layers in terms
of the length scales of the model. Future research can be carried out to explore the interaction
of the inherent surface effects of flexoelectricity with other physics (bulk piezoelectricity,
surface piezoelectricity, and surface flexoelectricity). Besides, how to model flexoelectricity is
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still an open question (there is no clear physical understanding that which { parameter can
well describe reality). There are also no clear insights into the high-order boundary conditions
for which homogeneous Neumann conditions are commonly imposed in the literature for
convenience. Furthermore, characterization of the physical length scales of the model still
needs to be further researched. By comparing with other approaches (atomistic simulations or
experiments), the results provided here may be useful to find some of the parameters that are

not yet well understood.

2.3 Variational formulation for flexoelectric solids at finite

deformation

After exploring the continuum models of flexoelectricity in infinitesimal strains, in this section,
we aim to extend the continuum models of flexoelectricity for finite deformation. We extend
the formulation presented in (Codony et al., 2020) to a Lifshitz-invariant flexoelectric model

accounting for material incompressibility and material interfaces.

2.3.1 Preliminaries

Consider a deformable continuum dielectric body denoted by g in the undeformed configu-
ration, and by Q in the deformed configuration. The deformation map y : Qy — Q carries
every material point X € Q to a spatial point x = y(X) € Q. Let Fi;(X) = 9yi(X)/9X; be the
deformation gradient, J := det(F) be the Jacobian, Cj; := Fi;Fi; be the right Cauchy-Green
tensor and €y := 3 (Ciy - 817) be the Green-Lagrange strain tensor, with §;; the Kronecker
delta. The theory of flexoelectricity involves higher order derivatives of deformation. We
introduce the gradients of the deformation gradient, the right Cauchy-Green tensor and the
Green-Lagrange strain tensor as

~ aFi] 32)(,' ~ aCU ~ ~ an 1~
Fyk = = ———, Cyg = — =2symm (FyxFy), €pyx = — = -Cyx,
iJK aXK aX]aXK IJK (9XK YU ( kIK kj) IJK aXK 2 IJK
(2.46)

where symmy; (AIJ) 1= (AU + Aﬂ) /2.
The electric potential in the material frame is denoted by ®(X). Then, the nominal electric
field E and its first gradient E are defined as

od ~ oF; 2*d

E i=———, Ejp i=—=- . 2.47
T Tex TUTex, T axi0X, (2:47)

2.3.2 Variational formulation in material form

Largely following (Codony et al., 2020), the total electromechanical enthalpy density of a
flexoelectric solid in the absence of piezoelectricity consists of five contributions namely the
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elastic YEast the strain gradient elastic PSGEla the flexoelectric ¥Flex°, the dielectric ¥Ple and

the gradient dielectric ¥°P¥¢ energy densities:

\I,Enth(e, Aé’ E, E) _ \PElaSt(Q) 4 \PSGEla(Fé) + \PFleXO(e’ @’ E, E) 4 \I,Diele(e’ E) : \PGDiEIe(E).
(2.48)

For the elastic contribution, a conventional Neo-Hookean model is chosen to model the
shear elasticity of the incompressible solid,

1
pElast @) =5 G(trC-2) - GIn()), (2.49)
where G is the shear modulus. The strain gradient elastic contribution is written as
— 1~ —
PSCEla (@) =5@1]KhUKLMN€LMN, (2.50)

where h is a sixth-order strain gradient elasticity tensor given by Eq. (B.1) in terms of an
elastic material length scale ¢;.

In contrast to (Codony et al.,, 2020), we consider here a symmetric form for the flexoelectric
energy density taking into account contributions of both direct and converse flexoelectricity
(Codony et al, 2021, Sharma et al, 2010, Zhuang et al, 2020b) given by

- . 1. —~ 1. -
yhlexo(¢ ¢ E,E) = - ) CapparkEs€ryx + U Capharrk Esk €1y, (2.51)
where p is the flexoelectricity tensor described in Eq. (B.2). The dielectric energy density is
: 1
W€, E) = - _JeB Cii B, (2.52)

where € is the electric permittivity of the material. The gradient dielectric energy density
contribution can be defined as (Zhuang et al, 2020b)

o 1.~ .
pODiele() = EEI]MI]KLEKL, (2.53)

where M is the fourth-order gradient dielectricity tensor defined in Eq. (B.4) in terms of a
dielectric material length scale #,. Similarly to the linear case, see Eq. A.6, a third material
length scale arises, the flexoelectric length scale as defined in Eq. B.3.

We note that one can formulate the theory in terms of a Lagrangian internal energy density
that, instead of E and E, depends on Lagrangian polarization P and its gradient P. In Appendix
F, we assess the relation of such model with that considered in the present study.

The boundary of the body in the undeformed configuration, 9Q, is split into several
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disjoint Dirichlet and Neumann sets as follows:
0Qy = 9 v aQl = aQy v aQk = 90T u Q) = a0 U QY. (2.54)

On the Dirichlet boundaries 9Qf, 9Q), 9Q% and 9QY, the deformation map y, normal deriva-
tives of the deformation map 9" y, the electric potential ®, and the normal derivative of the
electric potential 3V ® are prescribed. On the Neumann boundaries 9Q(, 9QF, 90" and 9Qf
their associated work conjugate quantities (per unit undeformed area) are prescribed. The
Neumann boundary data consists of the surface traction T, the surface double traction R, the
surface charge density W and the surface double charge O. Because of the strain gradient
elasticity and the gradient dielectricity terms in the electromechanical enthalpy, additional
boundary conditions emerge on the non-smooth regions of 9Qy, i.e. edges (corners) C, in a 3D
(2D) domain. We also split them into Dirichlet and Neumann sets as follows:

Co=Clud=ctuck (2.55)

On the Dirichlet sets C} and C¢, the deformation map y and the electric potential ® are
prescribed, while on the Neumann sets Cg and CX, the edge force per unit length in 3D (or
corner force in 2D) J and the charge density per unit length in 3D (or charge in 2D) K are
prescribed. We consider dead loads for simplicity.

The total electromechanical enthalpy of an incompressible flexoelectric material in 3D can

be written as

[y, ®, p] = / [¥E"h(e, €, E, E) + p(J - 1) - Biy; + Q@] d
Qo

—/ Ti)(idro_/ RiaNXidro_/]i)(idSO
oQl QR c

+ W dr, + / 0N dr, + / K dso, (2.56)
Yy ElorY ck
where the pressure field p is the Lagrange multiplier imposing point-wise the incompressibility
constraint J = 1, and B and Q are body force and and electric charge per unit undeformed
volume. In 2D, dQ is an area element, d[ a line element, and ds; just denotes evaluation of
the integrand at corner points.
In equilibrium, the first variation of II[ y, ®, p] must vanish yielding

0 =8I[y, D, p; Sy, 6O, 6p]

a\IjEnth a Enth . a\IjEl‘lth a\IjEl‘lth -
= O0Cr + ——O8C 7 + O0E; + —=—0Ep +(J - 1)6p — B;Oy; + Q6P | dQ
/Qo ( ae, % P UK+ o Okt g Ok (J-1)dp-Bidyi+ Q ) 0

_ / T5,dT, - / RiaV 6y T - / T dso
ool QR ol
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+ WDl + /

oy ElorY

0N 50 dT + / K5dds,
c¥

:/ (S\I](S@U + §UK5@UK - BL5EL - BLMCSELM + (] - 1)5}) - Bi5Xi + Q(S(D) on
Qo

_ / T5,dT, - / Rid™ 6, dT - / Ti: dso
QT a0k cl

0 0

+ WD AT, + / 0N 5D dry + / K8® dso, (2.57)
Yy ElorY ck

for all admissible variations dy, & and dp consistent with the Dirichlet boundary conditions,
where

(5P - (5P Sy ~ O (Syi
5EL = - ( )’ 5ELM = _L’ 5FZ'I = ( Xl)’ 5Fi[] - ( Xl)’
0X; dXL0Xs 0X; 0X10X;
(2.58)
1 ~ 1 ~ ~ ~
8¢ = 55(31] ‘= Ssymm (5FkIFk]) , 0€k = 55C1]K ‘= symm (5FkIFk]K + FklaFk]K) .
I 1
(2.59)

The local second Piola-Kirchhoff stress §, the second Piola-Kirchhoff double stress S, the
electric displacement D and the double electric displacement D are given by

~ _ _ 1 — -
Sy =G (8y-Cjf) +pCift + E(gMLI] (€ELEm + praskEm€apk - praskEvk € ap)

1, .
+ 5 Captajk Epk, (2.60)
Sk = hikivn €mn - %CL_]%AEM,ULI]K: (2.61)
Dy = Cgl <6EK + %ﬂKIJMéI]M> , (2.62)
Dyy = _%C;\LUAUMGU + EyMyyu, (2.63)

where €apcp = (Cab-Cih + CeCab — CasCeb)- These equations clearly highlight the elec-
tromechanical couplings, the influence of each material tensor, and the strong nonlinearity
introduced by large deformations.

Equation (2.57) can be integrated by parts and by invoking the divergence, surface diver-
gence and Stokes’s theorems (for more details on the derivation see Appendix C), to obtain
the strong form of the governing equations:

F;;S +B; =0 1inQy,
{ (FirSiy)g 0 (2.64)

DL,L_ Q =0 in Qo,
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where the physical second Piola-Kirchhoff stress S and physical electric displacement D can
be defined as

Sty = Siy - Syk ks (2.65)
Dy = Dy - Doy (2.66)

This procedure also identifies the definitions of the surface traction T, the surface double

traction R, the surface charge density W, the surface double charge density O, the edge forces

J and the edge charge K as
T; = [FiI§U + FikSiyk - (Filgle)’K - (FiISNIK])’L ]PKL] Ny + Fi Sy Ny, (2.67)
R; = FilgUKN]NK, (2.68)
Ji = [FuSuyx My Nk], (2.69)
W= [_BL + Dpau + (BML)’K ]PKM] Np, - DyvNiw, (2.70)
O = -Dyy NNy, (2.71)
K = —[DpyM N, (2.72)

where N is the outward unit normal vector on 99, 9t is the outward unit co-normal vector
on Cyp, P =I- N ® N is the projection operator on 9<Q, N = (VoN : PPN xN -VyN - P, or in
components, NI] = (ONk /90Xy Px1)NIN; — ON1/0Xk Pk is the second-order geometry tensor
on 9Qg and [ ] is the jump operator defined on C as the signed sum of its argument evaluated
at each boundary adjacent to C. A detailed derivation of the mentioned geometrical quantities
can be found in (Codony et al., 2019).

2.3.3 Variational formulation in material form including an internal
material interface

Nitsche’s method formulation for weak enforcement of interface conditions has been derived for
infinitesimal strains (Barcel6-Mercader et al., 2022). In this section, the mentioned formulation
has been extended for large deformations. Weak enforcement of the interface conditions
can give us the flexibility to enforce the required continuities on the interfaces of arbitrary
geometry (Wang et al, 2015). Besides, weak enforcement enables us to deal with imposing the
continuity conditions for non-conforming meshes. However, these are the future work and
thus are out of the scope of this thesis.

Consider a physical domain in the undeformed configuration denoted by Q composed of
two non-overlapping sub-domains as Q) = le) u ng) . Each sub-domain has a boundary 6Q§)i).
The material interface is defined as I, = 8981) n 6982). We define the weighted mean operator
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and jump operator for a function A that can be discontinuous across 7, as

A}, = yA'+(1-y)A? on I, 2.73
y=Y Y
[A] = A"+ A> on I, (2.74)

where y € (0,1) and A’ denotes the value of A from sub-domain Qgi).

The energy potential of Nitsche’s method associated with the interface can be written as

I

Sl el (5),

nterrace Vl T
tertace [y, @, p] =/ P LeNi1? - DNl {T,N]}y} dlo

dly

+/1 B %ﬁ@ [{@Nlﬂz v H@NIH{WNI}Y dr,
+/1 B %/3‘%’ [[aNcbﬂz . [[a%ﬂ{O}y dry

’ /ck [;ﬂxc()(il —Xi2)2 - (v _Xiz)(]il _]iz) dso
1 0

M= M=

dso, (2.75)

/ [ i %ﬁq)”(q’l - 0%+ (@' - @*)(K' - K)
ct

=~
I

1

where H is the numbers of edges (corners) in a 3D (2D) domain on the interface, f¥, ﬁaNXI , ﬁq’f ,
ﬂaNd’l , X< and f® are penalty parameters of Nitsche’s method to ensure energy being concave
up with respect to the deformation y and concave down with respect to electric potential .
The penalty parameters should be large enough but in practice do not need to be too large,
which would cause ill-conditioning. Note that at the solution, the penalty terms vanish and we
recover the physical work at the interface, and hence the method is variationally consistent.
This method can be trivially applied to enforce Dirichlet boundary conditions at the domain
boundary, see (Codony et al., 2019) for the derivation in the infinite deformation setting.

Enforcing Dirichlet boundary conditions strongly, the total energy of the domain Q,
including Nitsche’s functional to deal with internal interfaces is then

HBimaterial[X’ P, P] _ H[X’ P, p] + Hlnterface[)(, (D,P] (2.76)

The necessary condition for electromechanical equilibrium is that the first variation of [T>imaterial

vanishes, yielding

srBimateriall v '@ - Sy, 50, 5p] = ST[x, D, p; Sx, 5D, 5p]+ ST v & p: Sy, 5, 5p] = 0,
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(2.77)

for all admissible variations Sy, ®, §p consistent with the Dirichlet boundary conditions. The
variation dII has been derived in Eq. (2.57) and SIT™erface can be written as

5H1nterface[x’ CD,P; 5)(,5(1)’ 5P] _ ‘/I

dr

. /ﬁ [ o] [#x] - [o*ax] {=} - [#*x]{or}
+ /I:_ﬂ% [son ] [on] + [ooni] {wni} « [oni] {swni}
+ / p'u [s0] [0] - [#*00] {0} + [#*a]{s0}
L.

dr

dr

B = xH)(Sxi = 8x?) - (8xi = SxDUL - T7) = (i = xD)(ST - 8T7)

(2.78)

where the variations of the Neumann terms 67T;, dR;, 8J;, SW, 0O and 5K expressed in terms
of §x, 8@, §p can be found in Appendix D.

2.4 Numerical approximation

C!continuty of the basis functions is required to approximate fourth-order PDEs. B-splines
are piecewise polynomial functions that meet the high-order continuity requirement. In this
section, we brifely discuss about B-splines and their two-scale refinement property which is
used in subdivision-stabilization technique to satisfy the numerical inf-sup condition (Dortdi-
vanlioglu et al,, 2018, Dortdivanlioglu and Linder, 2019, Kadapa et al.,, 2016, Riberg and Cirak,
2012). We then introduce the numerical approximation used in this paper. Consider a uniform
knot vector E = {&, &, ..., &nips1} formed by a set of n + p + 1 non-decreasing evenly-spaced
real numbers ¢; called knots, where p is the polynomial order and n is the number of control
points and basis functions used to form the B-spline curve. Each knot & is a coordinate in
the parameter space and they partition the parameter space into elements, also known as
knot spans. Using the knot vector Z, the uniform B-spline basis functions can be recursively

p 1o L] - ] {1} - Do {07} | ar

- BP(D! - D)(5D! - 5D?) + (5! - D) (K! - K?) + (D' - B?)(SK! - 6K?)

ds,
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constructed for piecewise constants (p = 0) using

NP(£) = { DoGsEsm (2.79)

0 otherwise.
and for p > 0 using

E=& pigyy, S =€
§i+p - §1Nl (5) §i+p+1 - §i+1

-1
Nf(§) = NiT (). (2.80)
Note that each basis function Nf (&) constructs a partition of unity, i.e, Y,1; N¥(€) = 1, and
it is positive over a knot interval & < & < &,1. By taking a linear combination of the basis
functions N¥(£), a B-spline curve of the order p in R? can be formed as

C(&) = ), NF(&)B,, (2.81)
i=1

B being the set of n control points with B; € R?. Being analogous to the nodal coordinates
in the standard finite element method, the control points have a distinctive feature that they
are not interpolated by the B-spline basis functions when p = 2. Using open knot vectors,
B-spline curves can be constructed which are interpolated at the ends. Open knot vectors can
be constructed by increasing the multiplicity of the initial and the final knot values to p + 1, i.e.
=8 == and &y = G = = Snpet A p™ order B-spline constructed by a uniform
open knot vector shows CP~! continuity over the whole domain except at the ends where C™!
continuity exists.

One of the remarkable features of the B-splines is their refinability, also referred to as
the two-scale relation. Consider a non-decreasing uniform knot vector = = {, &, &, ...} =
{0,1,2, ...} forming basis functions N?. Finer basis functions N’ can be formed by using a new
knot vector = = {51, 52, 53, ..} ={0,1/2,1, ...} constructed by bisecting the knot intervals in =.
It can be shown that the coarse basis functions N? and the fine basis functions N” have the
following relation

NP(£) = Nf (28 - i). (2.82)

From Eq. 2.82, it can be noted the support size of the coarse basis functions N? is twice that of
the fine basis functions N”. More imporantly, each coarse basis function N can be expressed
as a linear combination of p + 2 fine basis functions N,f as shown in Fig. 2.8, using the two-scale
relation as
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(a) Quadratic basis functions (p = 2) (b) Cubic basis functions (p = 3)

Figure 2.8: Two-scale relation for quadratic and cubic B-splines. The coarse basis functions are con-
structed by a linear combination of p + 2 fine basis functions. For p = 2 the coarse basis function is

formed as N? = %NZZH + %szi + %sziu + %Nszi +9» and for p = 3 the coarse basis function is obtained as

3 _ 1573 1x73 , 3X73 1X73 1x73
N} = §N3i_q + N3 + 1N3iq + N30 + 5 N33

p+1
NP(§) = ZLP Z <p; 1)N£+k_1(§) or in matrix notation NP(£) = SNP(¢),

(2.83)

where S is known as the subdivision matrix formed by the elements Si = zip (p ;1) In case
the B-spline basis functions are constructed with open knot vectors, the subdivision matrix
is modified at the boundaries. Since the B-splines have a local support over the knot vector,
only the p consecutive coarse basis functions at the boundaries are modified. For quadratic
basis functions (p = 2), the two consecutive modified basis functions are obtained as N7 =
NZ + 1N? and N} = N7 + 2NZ + 1NZ. For cubic basis functions (p = 3), the three consecutive
modified basis functions are obtained as N} = N + N7, N} = IN} + 3Nj + 2N} and
N3 = IN3 + LN} + IN3 + IN?. The modifications of the coefficients in the two-scale relation
for B-splines formed with a uniform open knot vector are shown in Fig. 2.9. Surface B-spline
functions can be obtained as a tensor product of two univariate B-spline functions.

For the numerical examples, we restrict ourselves to the setup of interest which is a
film/substrate system composed of two rectangular geometries. Cartesian grid is used to
discretize the geometries. Uniform open B-spline basis functions are adopted to approximate
the state variables y, ® and p. The same approximation spaces are considered for y and &, but
a different one for Lagrange multiplier p. The B-spline space for p is obtained by coarsening
the fine space of y or ® using the two-scale relation discussed earlier in this section. Therefore,
the basis functions of all the state variables have the same polynomial degree. Dirichlet
boundary conditions are strongly enforced, because the basis functions are interpolant at the
boundaries of the domain in the reference configuration. The standard Gaussian quadrature
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0f ~ ~ 0f ~ ~ ~
& & & & & & & &
(a) The first basis function (b) The second basis function close to the
close to the boundary (p = boundary (p = 2)
2)
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(c) The first basis (d) The second basis function close to the  (e) The third basis function close to the boundary (p = 3)
function close to the boundary (p = 3)
boundary (p = 3)

Figure 2.9: The modifications to the two-scale relation for the p successive basis functions in the vicinity
of the boundary.

rules are employed to approximate the domain and the boundary integrals. Discretizing the
weak form of the problem Eq. (2.77), a nonlinear system of equations is obtained which is
solved using Newton-Raphson method. In Newton-Raphson method, the first order Taylor
expansion of the residual RBmaterial i Eq. (2.77) around the solution of the previous iteration
{x,®, p}**Y must be vanished yielding an increment of the solution of the system at k-th
iteration {Ay, A®, Ap} ) as

RBimaterial[X(k), q)(k), p(k); 5x, 5(1)’ 5p] ~

+ RBimaterial[X(kfl)’ q)(k—l)’p(k—l); ox, 69, 5p]

. aRBimaterial[X(kfl), ok-1) p(k—l); dx, 0@, op]
ox

. aRBimaterial[X(k—l), q)(k—l)’ p(k—l); 5X, 5(1), 5p] Aq)(k)
od

aRBimaterial (k-1) q)(k—l) (k—l).(s 5.5
+ ™ O T 0xs 00 0p1 )y (2.84)
ap

Ay
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Equivalently, Eq. (2.84) can be written as

(k-1) (k) (k-1)

Hyy Hye Hy Ax Ry
Hoy Hpo O JAe| = -|Rg| (2.85)
Hpy 0 0 Ap R,

which reads find {Ay, A®, Ap}(k) given {x, ®, p}(k‘l). The variation of the residual functional
RBimaterial has been derived in Appendix D. We identify the instability points once the smallest
eigenvalue in magnitude of the global stiffness matrix in (2.85) becomes zero (Dortdivanlioglu
and Linder, 2019). We then slightly perturb the solution in the direction of the associated
eigenvector to reach stable solution.

2.5 On-going and future work

The continuum model derived here can be extended to account for other surface effects, i.e.
surface tension, surface chemistry, and absorption. The incorporation of surface tensions, in
particular, can be of great importance when dealing with very soft materials in which the
elastocappilarity effects play a significant role (Wang and Zhao, 2013). In very soft materials,
chemical reactions on the surface can also induce surface instabilities (Li et al., 2013). Therefore,
the incorporation of these effects may be important. Besides, as the Neo-Hookean hyperelastic
model is mainly considered a valid material model for finite deformation yet with small strains,
different elastic material models such as Gent hyperelastic model can be substituted in our
formulation which may solve the challenges that may arise when dealing with large strains,
for example in the simulation of creasing. We will comment on the challenges of simulation of
creasing in the next chapter.

2.6 Concluding remarks

In this chapter, we first shed light on the inherent surface effects of the flexoelectricity models
in bulk. We showed that a reversible surface piezoelectric-like effect exists in the Lifshitz-
invariant flexoelectric model, while the direct and converse models exhibit a one-way surface
piezoelectric-like effect. Furthermore, we characterized the observed boundary layers in terms
of the length scales of the model.

Then, we developed a continuum model for flexoelectricity in soft materials considering
a symmetric contribution of direct and converse flexoelectricity (Lifshitz-invariant model)
as well as material incompressibility. We developed the formulation of weak enforcement of
interface conditions with Nitsche’s method. Using open B-spline basis functions and employing
the subdivision stabilization technique, the governing equations can be solved in a robust
way.



Chapter 3

Surface instabilities in a flexoelectric
film/ dielectric substrate

In this chapter, using the computational framework described in the previous chapter, we
aim to capture the well-known surface instability patterns namely wrinkle, ridge, period-
doubling, fold, and crease in a flexoelectric/dielectric bilayer. In an elastic bilayer, the instability
patterns are controlled by modulus ratio and prestretch (Wang and Zhao, 2015). To capture
the instability patterns, after validation of the implementation, we first study the effect of
substrate shear modulus and prestretch on the flexoelectric/dielectric bilayer and explore the
electromechanical response of each family of instability patterns. Then, focusing on wrinkling
instability, we study the effect of the material’s electrical and flexoelectric properties on the
flexoelectricity-induced electric response, to gain a better understanding of these parameters.

3.1 Setup

We consider a flexoelectric film with a length L and a dielectric substrate with a length L, in
the undeformed state (Fig. 3.1a). Plane strain prestretch Ay = L/Ly is applied to the substrate
elongating it to a length L. The prestretched substrate is then bonded to a stress-free film (Fig.
3.1b). In the bonded state, the film and the substrate have thickness hy and h;, respectively.
The bonded state is the reference configuration in our numerical examples. The bilayer is then
compressed to a length [ under plane strain condition, and the overall compressive strain can
be defined as ¢ = (L - I)/L (Fig. 3.1c). Details on how we deal with prestretch can be found in
Appendix G.

In the examples shown in this chapter, we consider ks = 1um and (hs + hs)/hy = 40. We
simulate displacement-controlled compression of the bilayer. The vertical displacement and
shear traction on the bottom of the substrate are set to zero. On the left and right faces of
the film and substrate, we set the shear traction to zero, while imposing a displacement to
generate the overall compressive strain ¢. The top layer of the film is traction-free. Lower
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face of the substrate is connected to the ground, i.e. the electric potential is fixed to zero. We
consider two cases for the electric boundary condition of the top of the film, either we connect
it to the ground (closed-circuit), or we consider charge free boundary condition (open circuit).
Other outer faces are considered to be charge free. On the interface, we assume the film and
the substrate are perfectly bonded mechanically and electrically, therefore no delamination is
allowed. The electric boundary conditions are shown in Fig. 3.2

The following material parameters are considered in the simulations shown in 3.3-3.7.

For the film we consider:

Gf = 575MPa, € = 9.2nJ/V?m, g =100nJ/Vm, pr=50n)/Vm, £ = 0.5um,
pis = £, = 0, (3.1)

Gy being the shear modulus of the film.
For the substrate, a set of material parameters are considered as:

G, = 0.575 - 1150MPa, € = 9.2n]/V’m, ¢ = 0um, p=pr=ps=4=0, (3.2

G; being the shear modulus of the substrate. Note that the shear moduli described above are
ground state shear moduli associated to the state shown in Fig. 3.1a. Worth mentioning that
the shear moduli ranges considered here are in the range between the shear moduli of PDMS
and PVDF. The electric permittivity is in the same order as polymer-based dielectrics (Zha
et al., 2021). The magnitude of flexoelectric coefficients was chosen as y = (€ - €)f, where ¢ is
the vacuum permittivity and f is the flexocoupling coefficient. We consider f = 12. The values
of ¢; are set to 0. This allows us to be able to compare our results (transition strains) with
the results available in the literature for purely elastic bilayers. The values of ¢, are chosen
such that for the considered range of material parameters and the mesh sizes, we obtain stable
results.
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(a) Undeformed state (b) Bonded state (c) Deformed state

Figure 3.1: A film/substrate system in different states. (a) In the undeformed state, the film has a length
L, while the substrate has a length Ly (b) In the bonded state, the substrate is prestretched to length L
and bonded with a stress-free film where Ay = L/L is the prestretch. (c) In the deformed state, both the
film and the substrate are compressed together to length I, where the compressive strain is ¢ = (L - I)/L.

(a) Closed circuit. (b) Open circuit.

Figure 3.2: Electric boundary conditions of the bilayer.

3.2 Validation

In this section, we first partially validate our implementation by comparing the critical wrin-
kling strains in an elastic bilayer with the results available in the literature. We then comment
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on the other tests that were performed to check the validity of the implementation. We consider
the film/substrate system shown in Fig. 3.1, in which the incompressible substrate in plane
strain conditions has undergone a prestretch of (4o, 1/A¢) prior to attaching to the film. The
compressive strain in the film at the onset of wrinkling can be predicted by a simple formula
(Cao and Hutchinson, 2012b):

1
€W=Z

(ABG(;’;)M. (3.3)
where G; and Gy are the shear modulus of substrate and film, respectively and A = %(1 +A2).
As discussed in (Cao and Hutchinson, 2012b), this formula is expected to predict the wrinkling
critical strains of bilayers with a good accuracy when the wrinkling critical strain is small. Here,
the only nonzero material parameters are Gy and G; which are considered from Eq. 3.1 and
Eq. 3.2, respectively. We consider G¢/G;s = 5 - 1000, and A = {1, 2}. For validation purposes,
we compare in Fig. 3.3 the compressive strain in the film at the onset of wrinkling computed
from the simulations to the theoretical results of Eq. (3.3). As shown, numerical and theoretical
results match perfectly for large G;/G, for which the critical wrinkling strain is small. The
figure shows that without prestretch, Eq. (3.3) can predict the wrinkle critical strain with a good
accuracy even for small moduli ratios. Furthermore, Cao and Hutchinson (2012b) obtained
the wrinkle critical strains ¢,, ~ {0.166,0.171} for Ay = {1, 2}, respectively, and Gf/Gs = 5. This
agrees perfectly with our calculated wrinkle critical strains ¢, = {0.166,0.1715}.

Apart from the validation of the elastic case, we performed gradient checking to make sure
that the implementation of the residual and the hessian of the electromechanical enthalpy
is correct. Besides, we checked that by applying small loadings in the nonlinear model, we
retrieve the solution obtained from the linear model. Furthermore, mesh convergence of the
results shown in 3.4-3.7 has been performed.

——Theoretical (A\g = 2)
0.3F —— Theoretical (A\g = 1)
x Numerical (A\g = 2)
0.25k x Numerical (\g =1) |]

€ w

10! 10? 10°

Gyr/Gs

Figure 3.3: Compressive strain in film at the onset of wrinkling.
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3.3 Wrinkling

We consider L = 160um, G¢/G; = {100, 200, 400, 800}, Ay = {1, 1.5, 2}. Both closed circuit and
open circuit boundary conditions have been considered. The number of finest elements of
the film (elements to discretize displacement and electric potential fields) is considered to be
{160, 8} for width and thickness, respectively, while that of the substrate is {160,40}. The
bilayer is loaded to an overall compressive strain ¢ = 0.05 so that wrinkle is the only instability
pattern obtained in this set of simulations.

For the case of closed circuit, Fig. 3.4a compares the net vertical electric field across the film
thickness Ey, on a wrinkle peak for the case Ay = 1. The net vertical electric field across the film
is defined as Ey = —(@}ilm - @;ﬂm)/hf, where (D}ilm and q)]éi,m are the electric potentials of the
points with the same X-coordinate on top and bottom of the film, respectively. Interestingly, it
can be seen that before the onset of wrinkle instability, the Ey increases linearly. While this
linear increase of Ey may be surprising, as before the start of wrinkling, the system is flat
and thus no strain gradient is generated, the response is related to converse flexoelectricity
term in Eq. (2.51) which couples uniform strain with electric field gradient. As a result of
this, compression of a flexoelectric thin film induces electric field gradients near its surfaces,
as discussed in detail in Section 2.2.1.2. Since there is a lack of symmetry in the boundary
conditions of the film (the top having an electrode with zero potential and the bottom having a
substrate with interface continuities), under compression, a mean electric field in the thickness
direction of the film is induced. Besides, this behavior is similar to the behavior of a closed

1.5 .
—G/G,=100| T T T~ T~ T~ T
—Gy/Gs =200
—G;/G, = 400
—G//G, = 800

Ey [kV/cm]

0 0.01 0.02 0.03 0.04 0.05 0 0.01 0.02 0.03 0.04 0.05

e=(L-1)/L e=(L-1)/L

(a) Net vertical electric field Ey of the wrinkle peak for (b) Net vertical electric field Ey of the wrinkle peak
the case Ay = 1 and different modulus ratios G;/G;. for the case G;/G, = 100 and different substrate pre-
stretches A,.

Figure 3.4: Effect of modulus ratio and substrate prestretch on the electric field generated on a wrinkle
peak in closed circuit.
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circuit electret under homogeneous deformation which further reveals the similarities between
electrets and flexoelectric materials (Wen et al, 2019). For a given prestretch, increasing the
modulus ratio leads to a decrease in the wrinkle critical strain ¢,, and wrinkle wavenumber.
Furthermore, Fig. 3.4a shows that the rate of the increase of Ey on a wrinkle peak decreases as
the modulus ratio increases. Fig. 3.4b shows that increasing prestretch has a similar effect to
decreasing modulus ratio (Fig. 3.4a) on &, Ey generated on the wrinkle peak as well as wrinkle
wavenumber. This is because prestretch causes an anisotropic stiffening of the substrate, as
discussed by Cao and Hutchinson (2012b).

Fig. 3.5 summarizes the results of the open circuit case. Comparing the insets in Figs. 3.5
and 3.4, it is clear that the change of the electrical boundary conditions did not noticeably
change the deformations, i.e. the wavenumbers remained unchanged. Besides, this figure

shows that the rate of the increase of the absolute value of (D} on a wrinkle peak increases

ilm
by decreasing modulus ratio and increasing prestretch.
50 ; : 50 .
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(a) Electric potential of the top of the film ®};,, ona  (b) Electric potential of the top of the film @};, ona
wrinkle peak for the case A, = 1 and different modulus ~ wrinkle peak for the case G;/G, = 100 and different
ratios Gy/G;. substrate prestretches Aq.

Figure 3.5: Effect of modulus ratio and substrate prestretch on electric potential fID} generated on a

ilm
wrinkle peak in open circuit case.

3.4 Wrinkle/ridge transition

We study next the transition between wrinkle and ridge instability patterns in a flexoelec-
tric/dielectric bilayer. In this example, we consider L = 160pm , G¢/Gg = 1000, Ay = 2, and
closed circuit boundary conditions. The number of finest elements of the film (elements to
discretize displacement and electric potential fields) is considered to be { N, 8} for width and
thickness, respectively, while that of the substrate is {N,, N,/4}. The presented results are
obtained with to N, = 160.

Fig. 3.6 shows the evolution of instability patterns in a film/substrate system subjected to



3.4 Wrinkle/ridge transition 49

an overall compressive strain ¢ and the resulting electric potential distribution. From the figure,
it can be observed that as we compress the film/substrate system, wrinkle instability pattern
appears (Figs. 3.6a) followed by a transition to localized ridge pattern (Fig. 3.6b). Increasing
the overall compressive strain ¢ results in an increase in the height to thickness aspect ratio of
the ridge (Figs. 3.6¢).

To quantify the transition between wrinkle and localized ridge patterns, we incrementally
load the film/substrate system to compressive strain ¢ = 0.04, and then incrementally unloading
it to the bonded state. Fig. 3.7a shows the normalized relative vertical displacement of the
ridge peak @y for the stable equilibrium states. The normalized relative vertical displacement
can be defined as iy = (uy — u$)/hy, where uy is the vertical displacement of a point on the top
of the film, 4 is the vertical displacement of the same system in homogeneous deformation
state. From the figure, we identify three critical compressive strains namely wrinkle critical
strain &, = 0.00932 + 0.00004, wrinkle to ridge transition strain &,_,, = 0.0300 + 0.0004 ,
and ridge to wrinkle transition strain &,_,,, = 0.0244 + 0.0004. When ¢ < ¢, the film is flat.
When ¢, < € < &, wrinkle state appears and it is the only stable equilibrium state. When
&r—w < € = &y, wrinkle and ridge states are both the equilibrium states, formation of
each of which depends on the prior compression history. When ¢,,_,, < ¢, ridge is the only
stable equilibrium state. It is worthwhile to note that the mentioned transitions in an elastic
continuum have been studied by Jin et al. (2015). In the electromechanical problem, these
transitions can also occur with electrically loading the system. In Section 4.1, we provide
examples of such electrically activated transitions. Fig. 3.7b shows the net vertical electric
field across the film thickness on the ridge peak, for the different states described above. The
transition between wrinkle and ridge state is abrupt causing a sharp change in the displacement
and the resulting vertical electric field Ey on the ridge peak. This figure shows that in ridge
state, the net vertical electric field Ey increases faster than that in the wrinkle state. This is due
to the fact that the curvature of the ridge peak increases faster than that of a wrinkle peak as a

result of deformation localization. This causes a faster rate of increase of the strain gradients

O[V]

,———— {AAA% 777777777 —
I-0.4
(a) € = 0.024 (b) £ = 0.04 (c)e=0.16

Figure 3.6: A flexoelectric/dielectric bilayer with G/Gs = 1000, and 49 = 2 subjected to different
compressive strains ¢ and the distribution of the electric potential [V].
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(c) Minimum eigenvalue in magnitude of the system. (d) Convergence of ¢, ¢,,,, and ¢,_,,, compressive strains
with respect to mesh size.

Figure 3.7: Wrinkle-ridge transition in a flexoelectric/dielectric bilayer with G¢/Gs = 1000 and Ay = 2.

and thus the electric field generated due to direct flexoelectricity. The smallest eigenvalue in
magnitude of the global stiffness matrix is depicted in Fig. 3.7c as a function of ¢, which shows
that tracking the changes in the signature of the global stiffness matrix is a powerful method
for identifying instability points in an indeterminate system. To check the convergence of
the critical compressive strains ¢, &_,,, and ¢,_,,, we simulated the same problem with a
different number of elements. Fig. 3.7d shows the convergence of the critical compressive
strains by refining the mesh size.
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3.5 Period-doubling bifurcation

We show how period-doubling bifurcation in a flexoelectric/dielectric bilayer affects the elec-
trical response of the system. We consider L = 160um , Gf/Gs = 100, Ay = 1, and closed
circuit boundary conditions. The number of finest elements of the film (elements to discretize
displacement and electric potential fields) is considered to be { Ny, 8} for width and thickness,
respectively, while that of the substrate is { Ny, N;/4}. The presented results are obtained
with Ny = 200. Fig. 3.8 shows the instability patterns in the mentioned film/substrate system
subjected to an overall compressive strain ¢ and the resulting electric potential distribution.
As we compress the system, wrinkle instability pattern is formed followed by period-doubling
bifurcation. The period-doubling bifurcation can be tracked by tracing the vertical displace-
ments of two neighboring wrinkle valleys, where following the period-doubling bifurcation
strain epp, one of the valleys goes deeper to the substrate, while the other takes a reverse path.

Fig. 3.9a shows the normalized relative vertical displacement @iy of two neighboring wrinkle
valleys (points A and B depicted in Figs. 3.8a and 3.8b). From this figure, wrinkle critical strain
&y = 0.02325 + 0.0015 and period-doubling bifurcation strain epp = 0.18675 + 0.0015 can be
identified. Fig. 3.9b shows how period-doubling bifurcation affects the net vertical electric field
Ey generated on two neighboring wrinkle valleys. On point A, the magnitude of Ey decreases
since the curvature decreases, whereas, on point B, the magnitude of Ey increases due to a
rise in the curvature. Fig.3.9c shows the behavior of the smallest eigenvalue in magnitude
of the global stiffness matrix where a sharp change of the eigenvalue in the wrinkle and
period-doubling critical strains is evident. The convergence of the critical compressive strains
&, and epp for a different number of elements is shown in Fig. 3.9d.

-0.4

(a) £ =0.18 (b) € = 0.225 (c)e=027

Figure 3.8: A flexoelectric/dielectric bilayer with Gf/Gs = 100, and Ay = 1 subjected to different
compressive strains ¢ and the distribution of the electric potential [V].
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(c) Minimum eigenvalue in magnitude of the system. (d) Convergence of ¢, and epp compressive strains with
respect to mesh size.

Figure 3.9: Period-doubling bifurcation in a flexoelectric/dielectric bilayer with G¢/Gs = 100, and A9 = 1.

3.6 Folding

This example is devoted to the formation of folds in a flexoelectric/dielectric bilayer. We
consider L = 36um , Gf/Gs = 8, A9 = 1, and closed circuit boundary conditions. The number of
finest elements of the film (elements to discretize displacement and electric potential fields)
is considered to be {N,, 8} for width and thickness, respectively, while that of the substrate
is {Ny,~ (10N,/9)}. The presented results are obtained with Ny = 90. Fig. 3.10 shows the
instability patterns in the mentioned film/substrate system subjected to an overall compressive
strain ¢ and the resulting electric potential distribution. Compressing the system results in
formation of wrinkles as the primary instability pattern (Fig. 3.10a). After that, a localization
process occurs causing the folds to emerge in the system (Fig. 3.10b).
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Fig. 3.11a shows the normalized relative vertical displacement @y of the fold tip. From
this figure, the wrinkle critical strain ¢, = 0.1225 + 0.00833 and the fold critical strain & =
0.16028 + 0.000278 can be identified. Our calculated wrinkle and fold critical strains for
the flexoelectric/dielectric bilayer agree well with the critical strains reported in (Cao and
Hutchinson, 2012b) (&,, = 0.1226 and &; ~ 0.1651) for elastic bilayer of Neo-Hookean materials.
Fig. 3.11b depicts the net vertical electric field on the fold tip Ey across the film thickness
which shows a sudden change in the Ey due to the localization process causing folds to form.
The behavior of the smallest eigenvalue in magnitude of the global stiffness matrix has been
shown in Fig.3.11c where a sharp change of the eigenvalue in the wrinkle and fold critical
strains can be seen. The convergence of the critical compressive strains ¢,, and & for different
number of elements is shown in Fig. 3.11d.

(a) & = 0.1589 (b) € = 0.1606

Figure 3.10: Distribution of electric potential ® on a flexoelectric/dielectric bilayer with G¢/Gs = 8, and
Ao = 1 subjected to two different compressive strains ¢.
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(c) Minimum eigenvalue in magnitude of the system. (d) Convergence of &, and & compressive strains with
respect to mesh size.

Figure 3.11: Wrinkle to fold transition in a flexoelectric/dielectric bilayer with G¢/Gs = 8, and A = 1.

3.7 Creasing

In this example, we study the emergence of creases in a flexoelectric/dielectric bilayer. We
consider L = 20pm, G¢/Gs = 0.5, Ay = 1, and closed circuit boundary conditions. The number of
finest elements (elements to discretize displacement and electric potential fields) is considered
to be { Ny, 8} for width and thickness, respectively, while those of the substrate are { N, N,/2}.
As we compress the system, above a critical overall compressive strain ¢, surface of film
starts to wrinkle (Fig. 3.12a). Note that this surface wrinkling is different than the wrinkling
of the film/substrate system described in the previous examples in which both film and the
substrate wrinkle together. By increasing the overall compressive strain, the surface wrinkles
collapse to form creases (Figs. 3.12b, 3.12c). Our simulations show that at a critical overall
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compressive strain &, = 0.2325 £ 0.00083, surface of film starts to wrinkle. It is important to
note that both surface wrinkle and crease have an unusual feature that their wavelength is
undetermined (Cao and Hutchinson, 2012a). In our simulations, although we achieved the
convergence of &, we observed a dependence of the wavelength on the mesh size.

(a) £ =0.235 (b)e=0.3 (c)£=0.35

Figure 3.12: Creasing instability in a flexoelectric/dielectric bilayer with G¢/Gs = 0.5, and A9 = 1
subjected to different compressive strains ¢ and the distribution of the electric potential [V]. In this
figure, only the film is shown.

3.8 Effect of material’s electrical and flexoelectric properties
on the electric response in wrinkling

In this section, with the final goal of optimizing the electromechanical response of the
instability-based flexoelectric devices, we study the effect of the material properties (electrical
properties and flexoelectric coefficients) on the flexoelectricity-induced electric response. For
this, focusing on wrinkling instability, we systematically study the effect of electrical properties
of the film or the substrate on the net vertical electric field generated on a wrinkle peak.

In all the examples, the setup and boundary conditions are the same as Section 3.1. Closed
circuit boundary condition is considered. We consider hy = 1pm and (h, + hy)/hy = 40, and
L = 160pm. The number of finest elements of the film (elements to discretize displacement and
electric potential fields) is considered to be {160, 8} for width and thickness, respectively, while
that of the substrate is {160,40}. The material properties are chosen such that the wrinkle
pattern is obtained. It is worthwhile to mention that in all the cases below, the changes in
the material properties did not noticeably change the deformation fields. In other words, the
wavelength of the wrinkles remained unchanged. Therefore, the cross effects due to changes
in the deformation field have been excluded from the results provided in this section.

3.8.1 Effect of film electric permittivity on the net electric vertical field
generated on a wrinkle peak

In the first example, the effect of the electric permittivity of the film on the generated net
vertical electric field on a wrinkle peak has been studied. All the material properties are kept
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constant except the electric permittivity of the film. The following material properties have
been considered for the film:

Gs = 575MPa, e = {9.2,92}n]/V?m, = 100n]/Vm, pr = 50n]/Vm,
t, = 0.5um, us = £ =0, (3.4)

Gy being the shear modulus of the film, and ¢ is the film electric permittivity. For the substrate,

the following material properties are considered:
G; = 5.75MPa, € =9.2nJ/Vim, = 1um, pL = pir = pis = £ = 0. (3.5)

G; being the shear modulus of the substrate, and «; is the substrate electric permittivity. No
prestretch in the substrate has been considered (4y = 1). It should be noted that physically
speaking, the flexoelectric coefficients linearly depend on electric permittivity. However, in
this section, to gain intuition about the sole effect of film electric permittivity, we neglect this
dependence. Fig. 3.13 shows that decreasing the electric permittivity results in an increase in
the net vertical electric field. This is because the lower the electric permittivity is the more
polarizable the material becomes. Therefore, fixing the other material properties and for the
same deformation, the electric field is inversely proportional to the electric permittivity of the

film.
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Figure 3.13: Effect of film electric permittivity on the net vertical electric field generated on a wrinkle
peak.
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3.8.2 Effect of substrate electric permittivity on the net vertical electric field
generated on a wrinkle peak.

This example studies the effect of the electric permittivity of the substrate on the induced
net vertical electric field generated on a wrinkle peak. All the material properties are kept
constant except the substrate electric permittivity. The following material properties have
been considered for the film:

Gf = 575MPa, €f = 9.2n]/V2m, L, = 100nJ/Vm, pr =50n]/Vm,
£ = 0.5um, us =1 =0, (3.6)

Gy being the shear modulus of the film, and ¢ is the film electric permittivity. For the substrate,
a set of material parameters are considered:

G, = 5.75MPa, ¢ = {0.92,9.2,92}n]/Vzm, l=1uym, p =pr=ps=4¢=0. (3.7)

G; being the shear modulus of the substrate, and ¢ is the substrate electric permittivity. No
prestretch in the substrate has been considered (4 = 1). Fig. 3.14 shows that similar to the
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Figure 3.14: Effect of substrate electric permittivity on the net vertical electric field generated on a
wrinkle peak.

film, increasing the electric permittivity of the substrate results in a decrease in the net vertical
electric field generated on a wrinkle peak. It is worthwhile to note that the electric permittivity
of the conductors is infinite. Therefore, increasing the electric permittivity of the substrate to
infinity is equivalent to applying electrode boundary conditions on the bottom of the film.
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3.8.3 Effect of film flexoelectric coefficients on the net vertical electric field
generated on a wrinkle peak.

In this example, the effect of film flexoelectric coefficients on the net vertical electric field
generated on a wrinkle peak is studied. All the material properties are kept constant except the
flexoelectric coefficients py, pr, and ps. A combination of these coefficients has been considered
to better understand their effect on the generated electric response in wrinkling. The following

material properties have been considered for the film:

Gy = 575MPa, €= 9.2nJ/V:m, ., =1{0,100}nJ/Vm, pr={0,50,100}nJ/Vm,
us = {0,100}, £ = 0.5um, 6 =0, (3.8)

Gy being the shear modulus of the film. For the substrate, the following material parameters
are considered:

G, = 5.75MPa, €=9.2n]/V:m, t, = 1um, pL = pr = s = £ = 0. (3.9)

G, being the shear modulus of the substrate. No prestretch in the substrate has been considered
(Ao = 1). Fig. 3.15 shows that yy and pr induce electric field of approximately the same

x10°

------ ML = 100,/1]‘ = 50,;145 =0
""" pr =100, pr = 0,ps =0
""" ML = Oa/‘LT = 1007#5 =0
""" KL = Oa/‘LT = 07#5 =100
ML = 100, MT = 100,#5 =0
ML = 100, HT = 0, Hs = 100
------ pr =0, ur = 100, ug = 100
iz = 100, pr = 100, ps = 100

0 002 004 006 008 01
e=(L—-1)/L

Figure 3.15: Effect of film flexoelectric coefficients on the net vertical electric field generated on a
wrinkle peak.

magnitude but with a different sign, in the flat and wrinkle states. Also, the contribution
of us in the generated electric field on a winkle peak in this example is small. Besides, as
the coupling is linear, for the same deformation, the electric response of any combination of
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flexoelectric coefficients can be obtained by superposing their response. So, considering an
isotropic flexoelectric tensor, i.e. ps = (ur — ur)/2, the optimal choice is yp = —pr = ps.

3.8.4 Effect of film [, on the net vertical electric field generated on a wrinkle
peak.

In this example, we study the effect of gradient dielectricity length scale I, on the net vertical
electric field generated on a wrinkle peak. All the material properties are kept constant except
the film . The following material properties have been considered for the film:

Gy = 575MPa, €=9.2n]/Vim, g =100nJ/Vm, pr=50n]/Vm,
£,film = {0.125,0.25,0.5} pm, s = £ =0, (3.10)

Gy being the shear modulus of the film. For the substrate, the following material parameters

are considered:
Gs = 5.75MPa, €=9.2nJ/V?m, ¢substrate = luym, p=pr=ps=14=0.(3.11)

G; being the shear modulus of the substrate. No prestretch in the substrate has been considered
(Ao = 1). Fig. 3.16 shows that the flexoelectric-induced electric field is inversely proportional
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Figure 3.16: Effect of film I, on the net vertical electric field generated on a wrinkle peak.

to the film L. This is because, in the electromechanical enthalpy, the gradient dielectricity
term penalizes high gradients of the electric field consequently regularizing the electric field.
Increasing I, enhances the contribution of this term which results in a decrease in the electric
field. From this figure, it can be noted that to obtain accurate quantitative simulation results, J,
should be physically characterized, as the solutions are considerably sensitive to this parameter.
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3.8.5 Effect of substrate [, on the net vertical electric field generated on a

wrinkle peak.
In this example, we study the effect of substrate I, on the net vertical electric field generated
on a wrinkle peak. All the material properties are kept constant except the substrate ,. The

following material properties have been considered for the film:
p, = 100nJ/Vm, pr =50n]/Vm,
(3.12)

Gs = 575MPa, €=9.2nJ/V:m,
Lfilm = 0.5um, Uus =t =0,

Gy being the shear modulus of the film. For the substrate, the following material parameters

are considered:
G; = 5.75MPa, € =9.2n]/V:m, tysubstrate = {1,2,4}um, = pr=ps =4 = 0.
(3.13)

G; being the shear modulus of the substrate. No prestretch in the substrate has been considered
1). Fig. 3.17 shows that increasing substrate [, causes a decrease in the electric field
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Figure 3.17: Effect of substrate [, on the net vertical electric field generated on a wrinkle peak

generated on a winkle peak. However, the effect is modest compared to that of the film shown

in 3.16.
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3.9 Enhancing the electromechanical response using the
concept of electrets

As discussed in Section 1.2.1, depositing permanent electrical charges on the interface of
bilayers and forming electrets is an effective way to enhance the apparent flexoelectric response
(Wen et al, 2019). In this section, we test this idea in our setup. The boundary conditions
and the setup are the same as Section 3.1 except on the interface on which we introduce a
surface charge density of {0, 0.25}[C/m?]. Closed circuit boundary condition is considered.
The boundary conditions are shown in Fig. 3.18. We consider hy = 1um and (hs + hg)/hs = 40,
and L = 160pm. The material properties are chosen such that the wrinkle pattern is obtained.

Charge density on the interface

Figure 3.18: Boundary conditions for the bilayer with a layer of electrical charges on the interface.
The following material properties have been considered for the film:

G =575MPa,  €=9.2nJ/V®m,  p ={0,100}nJ/Vm,  pr=1{0,50}n]/Vm,
£y = 0.5um, s = £ = 0, (3.14)

Gy being the shear modulus of the film.
For the substrate, the following material parameters are considered:

G; = 9.583MPa,  €=92nJ/V:m, £ =01um, L =pr=ps=4=0  (3.15)

G; being the shear modulus of the substrate. No prestretch in the substrate has been considered
(Ao = 1).

As can be seen in Fig. 3.19, the introduction of permanent electrical charges on the interface
significantly improves the electric response of this system. This idea therefore can be very

useful in improving the electromechanical performance of potential devices.
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Figure 3.19: Net vertical electric field generated on a wrinkle peak minus the initial vertical electric
field as a function of overall compressive strain ¢: Effect of charge density on the interface.

3.9.1 Electret with no flexoelectricity: Effect of /, on the net vertical electric
field generated on a wrinkle peak.

One important question from the last example is in electrets, how sensitive are the results of the
electric response to [;? To shed light on this issue, for this example, we neglect flexoelectricity
in the film. The charge density on the interface is equal to 0.5 [C/m?].

The following material properties have been considered for the film:

Gf =575MPa, €=9.2n]/V®m, Gfilm=05um, jp=pr=ps=106=0, (3.16)

Gy being the shear modulus of the film.
For the substrate, a set of material parameters are considered:

G, = 5.75MPa, € =9.2n]/V®m, {fysubstrate = {0,0.1,0.4,1.6}um, pg = pir = ps = £1 = 0,
(3.17)

G; being the shear modulus of the substrate. No prestretch in the substrate has been considered
(Ao = 1). Fig. 3.20 shows that in electrets, the electric field generated on a wrinkle peak is
highly sensitive to the ratio between [, of the film and the substrate. From this figure, one
may conclude that in electrets, this ratio needs to be as low as possible, since the response
obtained from the higher ratios does not seem to be physical. Note that, for electret without
flexoelectricity, there is no need to solve the high-order electric problems. Therefore one could
set the I, of the film and the substrate to be equal to zero.
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Figure 3.20: Effect of Iy ratio on the net vertical electric field generated on a wrinkle peak.

3.10 Ongoing and future work

3.10.1 Phase diagrams in electromechanical bilayers

As shown in this chapter, the well-known mechanical surface instabilities can be captured
with our model. This means that this computational model can be used as an infrastructure
for constructing phase diagrams in electromechanical bilayers. One interesting avenue for
further investigation is to explore how the combination of electrical and mechanical loadings
can change the phase diagrams. Also, it is important to know how flexoelectricity may affect
the phase diagrams. Also, constructing phase diagrams in dielectric/dielectric bilayers with a
layer of electrical charges on the interface may be interesting, since electrets have been shown
to be an effective way to enhance the flexoelectric-like response of the system (Wen et al,
2019).

As the first step towards this goal, let us take one step back and construct a phase diagram
for the elastic/elastic film/substrate system. To construct this phase diagram, we followed a
similar approach as (Wang and Zhao, 2015). Fig. 3.21 shows the phase diagram of a perfectly
bound elastic/elastic bilayer by changing the modulus ratio and strain mismatch. This phase
diagram is similar to the results of (Wang and Zhao, 2015) (Fig. 1.6).

Now, let us study a dielectric-dielectric bilayer having surface charges on the interface. In
this section, the following material properties have been considered for the film:

Gs = 575MPa, €=9.2nJ/Vim, p = pr o= ps = £ = £ = 0, (3.18)

Gy being the shear modulus of the film.
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Figure 3.21: Phase diagram of elastic-elastic film/substrate system.
For the substrate, a set of material parameters are considered as:
G; = 0.575 - 575MPa, €=92n]/V?m, o= pr=ps =4 = =0, (3.19)

G; being the shear modulus of the substrate. No substrate prestretch (4 = 1) has been
considered. The X displacement on the vertical surfaces of the system and the Y displacement
on the lower surface of the substrate are set to zero. The upper surface of the film and the
lower surface of the substrate have been grounded. We increase the surface charge on the
interface. The boundary conditions are shown in Fig. 3.18. Neglecting the possibility of electric
breakdown, the system starts to wrinkle at a critical charge density. Fig. 3.22 shows an example
of electrically induced wrinkles in a system with a modulus ratio of 200.

The onset of wrinkling is shown in Fig. 3.23. This figure shows that increasing the modulus
ratio results in a decrease in the interface’s critical wrinkling charge density. So, considering
charge density or the initial electric field across film thickness adds a third dimension to the
phase diagrams. It may be interesting to construct a 3D phase diagram with modulus ratio,
strain mismatch, and interface charge density, to understand how instability patterns change
in electrets. Another question that requires further study is what parameters determine the
wavelength of the wrinkles in the electrically-induced instability. To explore this, analytical
approaches can complement our simulations.

Beyond the setup studied here, it would also be interesting to understand the effect of
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Figure 3.22: A sample of electrically induced wrinkles in a system with a modulus ratio of 200. The
colormap shows the distribution of electric potential [V].
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Figure 3.23: Onset of wrinkling in electrets.
the interface conditions, including delamination. Of particular interest are the high-order

conditions, which similarly to the free boundary high-order conditions, still lack a clear
physical interpretation.
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3.11 Concluding remarks

In this chapter, studying the effect of modulus ratio and the substrate prestretch, we captured
the well-known mechanical instability patterns of wrinkle, period-double, ridge, fold, and
crease in a flexoelectric/dielectric bilayer. We explored the transition between the instability
patterns and investigated the flexoelectricity-induced electrical response of each family of
instability patterns. The present exploration has allowed us to understand the effect of material
parameters. As shown, no effect of flexoelectricity on the onset of wrinkling and folding
instabilities is apparent in the present settings. In principle, no direct bulk flexoelectric effect
would be expected in the uniform deformation state studied here. Nevertheless, as explained in
detail in Section 2.2, boundary layers in the vertical electric field and in the vertical strain com-
ponents develop under homogeneous macroscopic deformations as a result of surface-induced
symmetry breaking and surface relaxation. These boundary and interface layers manifest here
in the emergence of a linear electric response upon uniform horizontal compression of the
film/substrate system before buckling. These flexoelectric responses however do not seem to
significantly affect the critical wrinkling and folding strains in the present simulations. Further
exploration with enhanced flexoelectric properties would be necessary to reveal these effects
before the onset of the surface instabilities. At the onset of instabilities, large strain gradients
develop within the film that causes the observed flexoelectric response. These large strain
gradients penetrate well into the substrate, which is assumed here to be a non flexoelectric
dielectric. The overall electric response would be significantly enhanced in a flexoelectric
film on a flexoelectric substrate system. The observations and insights obtained from these
exploratory studies motivate the proof-of-concept devices proposed in the next chapter.



Chapter 4

Towards flexoelectric-based
electromechanical devices

In this section, in light of the insights gained from the exploration presented in Chapter
3, we propose here several device concepts exploiting surface instabilities patterns and the
flexoelectric effect.

4.1 Electrically activated pattern change in dielectrics

In Sections 3.4-3.7, we studied the instability patterns in a thin flexoelectric film on a dielectric
substrate prestretched incompressible system in closed circuit. Depending on the elastic moduli
ratio between the film and the substrate, and the level of prestretch, we have identified the
critical horizontal compressive strain for the different instability patterns. We have shown
that, for the parameter range under consideration, these critical loads are not significantly
affected by flexoelectricity in these settings, see discussion in Section 3.11. Once instability
occurs, however, flexoelectricity is the driving mechanism for the overall electric response as
shown in Section 3.8.3. In particular, depending on the combination of the three independent
parameters in the cubic flexoelectric tensor, the sign of the net electric field at the wrinkle peak
can be reversed. Some of the observed patterns in the previous section present a clear up-down
symmetry. Intuitively, an external bias could then favor some patterns over others, thus
providing a means to control surface instabilities pattern formation. We explore this concept
next. The setup considered in this example is similar to Section 3.1, except for the electrical
boundary conditions and the specimen size. We consider h; = 100nm and (ks + hy)/hs = 40.
The loading and boundary conditions are depicted in Fig. 4.1. The bottom of the substrate
and the interface are grounded. Also, from the start to the end of mechanical loading, the top
of the film is grounded. However, once the mechanical loading is finished, we incrementally
apply a voltage to the top of the film. The other faces are considered to be charge free. The
material properties are chosen such that a mechanically bi-stable state exists (see section 3.4).
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Figure 4.1: Schematic of the loading procedure.

The material considered for film in this example is PVDF for which the following material
properties are considered:

Gy = 575MPa, € = 0.1151n]/V?m, p = 2pr = 45 = 2.3n]/Vm, £ =50nm, £ = 0.
(4.1)

Note that although PVDF is piezoelectric, its piezoelectricity has been neglected. For the
substrate, we consider PDMS with the following material properties:

Gs = 0.575MPa, € = 0.028067n)/V’m, £, = 0.5um, L =pr=ps=46=0, (4.2)

Ao = 2 is considered. The mesh size is similar to Section 3.4. We mechanically load the system
to overall compressive strain ¢ = 0.0293, just before the onset of the ridge instability pattern.
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It is worthwhile noting that the mechanical deformation seen in this example (not shown)
was similar to Fig. 3.7a. This is because this figure is mainly governed by modulus ratio and
substrate prestretch when the flexoelectric length scale is much smaller than the film thickness.
This means that flexoelectricity cannot affect deformations unless the flexoelectricity length
scale is comparable to the specimen size. After finishing the mechanical loading, we start
incrementally applying a voltage on the thin film. Both positive and negative voltages are
considered. At a critical electric field, the wrinkle instability pattern becomes unstable and the
ridge state appears as the only stable state in the system (Fig. 4.2). This transition which is
mainly due to electrostriction is not reversible, i.e. we cannot go back to the wrinkle state by
decreasing the applied voltage. Our simulation shows that there is a slight asymmetry (< 3%)
in the critical transition electric field. This asymmetry is due to flexoelectricity because the
flexoelectricity-induced electric field can accommodate or act against the transition depending
on the sign of the external bias. Also, we observe a very slight asymmetry in the normalized
vertical displacement of the ridge peak (< 0.2%) due to the application of positive and negative

bias.

—— Stable solutions
- - Wrinkle to ridge transition

-600 -400 -200 O 200 400 600

Figure 4.2: Electrically activated wrinkle to ridge transition. ug’, has been computed from the maximum
mechanical strain applied (¢ = 0.0293).

To better reveal the role of flexoelectricity, we simulate the same system with softer
materials (reducing the shear moduli of the film and the substrate by a factor of 10). This
way the relative importance of flexoelectricity is increased without the need to use larger
flexoelectric coefficients, thus revealing its role more clearly. In this example, we mechanically
load the system to overall compressive strain ¢ = 0.028, just before the onset of the ridge
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instability pattern. It is worth noting that, similarly to the previous example, up to the end
of the mechanical loading, the mechanical deformation seen in this example is similar to Fig.
3.7a, however, the wrinkle-to-ridge transition happens slightly sooner than in Fig. 3.7a. From
this point, we electrically load the bilayer, similar to the previous example. Fig. 4.3 shows
the results for this case. Compared to the previous example, there is a bigger asymmetry
(< 6%) in the critical transition electric field as well as an asymmetry in the normalized vertical
displacement of the ridge peak (< 0.5%) due to the application of positive and negative bias.

——Stable solutions
- - Wrinkle to ridge transition

1 1 1 1 1 1
-100 -50 0 50 100

Ey [MV/m]

Figure 4.3: Electrically activated wrinkle to ridge transition for a soft bilayer. u?, has been computed
from the maximum mechanical strain applied (¢ = 0.028).

4.2 Lateral compression sensor

As shown in Fig. 3.5, the absolute value of electric potential on wrinkled peak increases with the
increase of overall compressive strain. Therefore, in this system, there is an overall potential
difference between the outermost part of the wrinkle (wrinkle peak) and the bottom of the
substrate. Here, we propose a novel design for an effectively piezoelectric lateral compression
sensor, made from non-piezoelectric materials, that allows us to collect this flexoelectrically-
generated potential difference, see Fig. 4.4, thus showing an effective hs; piezoelectric property,
which is often used in energy harvesting applications (Priya et al., 2008). hs; is the slope of the
generated lateral electric field due to axial strain (Ikeda, 1996). Such a device presents some
advantages over other proposed flexoelectricity-exploiting devices, see Section 1.2, such as easy
fabrication of large-area apparent piezoelectrics. Such a device would be particularly useful
for flexophotovoltaic applications (Yang et al., 2018). So, we consider a similar system to Fig.
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3.5 with the same boundary conditions and we study the effect of electric permittivity in the
substrate. We consider hy = 100nm and (hy + hs)/hs = 40. We account also for flexoelectricity
in the substrate since we expect large gradients to develop in the substrate as well, see Fig.
3.5, and thus the flexoelectric response of the substrate should significantly contribute to the
overall electric response.

The material considered for the film in this example is PVDF with the following material
properties:

Gf = 575MPa, € =0.1151nJ/V’m, pg = 2pr = 4ps = 2.30]/Vm, £ = 50nm, £ = 0.

(4.3)
We consider a substrate with the following material properties:
G, = 718.75kPa, € = €/ey = 0.028067n]/V*m, pp = 2pr = 4us = f(€ - €)nJ/Vm,
fr = 0.5pm, £ =0, (4.4)

where € = 8.854x10712]V2/m is the vacuum permittivity, and f is the flexocoupling coefficient.
No prestretch is considered (1 = 1). Fig 4.5 shows the electric potential of a wrinkle peak,
as a function of applied compressive strain, for two different flexocoupling values. A large
contribution of substrate flexoelectricity becomes apparent. Also, from this figure, it is clear
that increasing electric permittivity of the substrate improves the rate of the increase of the
absolute value of the electric potential, at constant flexocoupling. In the range of compressive
strains [0.02 - 0.05] where the increase of the potential is almost linear, considering thickness of
the specimen being h¢+hg = 4um, we can obtain hs; = —[@}ilm(0.0S)—d>}ilm(0.02)]/[(0.05—0.02)><
4 x 107°]. For the yellow curve, we obtain h3; = 0.014GV/m. To compute the g piezoelectric
coefficient , which relates the resulting potential difference to applied force (Ikeda, 1996), the

T

Figure 4.4: Lateral compression sensor.
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effective stiffness of the system is required. Neglecting the stiffening effects of flexoelectricity,
we can approximately compute the effective elasticity modulus of the composite in its ground
state by E.¢r = (Efhy + Esh)/(hs + hs), where Ef and E; are the elasticity modulus of film and
substrate. Note that the effective stiffness computed with this approach in this system may be
on the conservative side since after wrinkling the system is more compliant than the ground
state. With this, we obtain g3; = h31/E.¢f = 309.2mVm/N. This is already comparable to PVDF
(g33 = -339mVm/N).

The performance of this system can be optimized by changing the modulus ratio, substrate
prestretch, as well as the electrical properties of the substrate. Besides, using the concept of
electrets and introducing electric charges on the interface should significantly enhance the
performance of the mentioned device.
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Figure 4.5: Effect of dielectric permittivity of the substrate.

4.3 Conceptual design of flexoelectric-based self-powered
supercapacitive pressure sensors

Being a property of all dielectric materials, flexoelectricity opens new doors for the design
of biocompatible (non-toxic) smart electromechanical devices. One of the exciting relevant
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lines of research has been to develop flexible electronic skin (e-skin). The capacity to perceive
and differentiate between multiple spatiotemporal tactile stimuli, such as static and dynamic
pressure, temperature, and vibration, is a crucial requirement for using the e-skins for human
skin-like tactile sensor applications. Recently, significant progress has been made in the design
of multifunctional e-skins (Chortos et al, 2016, Hammock ef al.,, 2013, Ji et al, 2019, Park
et al.,, 2015, Qiu et al.,, 2018, Sun et al., 2014, Yang et al, 2019¢c). As an important part of
e-skins, various researchers have focused on the development of soft pressure and tactile
sensors (Amoli et al., 2020, Chen et al., 2014, Cho et al., 2017, Joo et al., 2015, Li et al., 2016,
Mannsfeld et al., 2010, Nie et al., 2015, Peng et al., 2020, Ruth et al., 2020, Wang et al., 2019b,
Yang et al., 2019a,b, Yin et al,, 2019, Zou et al,, 2020a,b). Ridges (Zou et al., 2020b), pyramids
(Cho et al., 2017), pillars (Yang et al., 2019a), domes (Park et al,, 2015), wrinkles (Chen et al.,
2014), etc. have been proposed to increase the sensitivity of the pressure sensors. In this
section, informed by diverse literature on tactile and pressure sensors, we seek to conceptually
design a flexoelectric-based pressure sensor.

The surface instabilities in bilayers result in a local symmetry breaking in the system. If
the film is flexoelectric, the local symmetry breaking causes a local charge separation. The
local vertical electric fields on different points of the film can be a meaningful indicator of
this. However, one important question is how to effectively extract the generated electrical
response to design a flexoelectric-based pressure sensor. In the previous section, we provided
a design concept for a lateral compression sensor, with hs; and gs; apparent piezoelectric
properties. Here, we restrict ourselves to capacitive or supercapacitive sensing mechanisms.
In the capacitive sensing mechanism, the capacitance of the sensor changes due to external
stimuli. This results in the generation of an electric signal. The capacitance of a parallel plate
capacitor can be computed by a simple formula C = €A/d, where € is the permittivity of the
material between the two plates, A is the area of the smallest of the two plates, and d is the
distance between two plates. Therefore, by changing the distance between the two plates of
the capacitor, as well as the effective area of the capacitor, one can change its capacitance.

With this background, let us now explain the conceptual design of a pressure sensor. This
design is partially informed by several research papers in the literature and in particular (Sun
et al., 2014, Zhang et al, 2020b). The conceptual design of this system is shown in Fig. 4.6.
The first step is to build a properly patterned bilayer. This can be done by stretching the
substrate, bonding the thin dielectric film on the substrate, and releasing it. Wrinkles may
form in this system. The top of the film needs to be grounded, therefore, using a deformable
electrode such as ionic conductors (Keplinger et al., 2013) on top of the film and connecting
it to the ground can be an effective way of grounding the top of the dielectric film. Due to
flexoelectricity, charge separation takes place on the wrinkle peaks and valleys. In other words,
mechanical deformation results in charge separation in the vertical direction on the wrinkled
film. Therefore, on the peaks and valleys, charges of the different signs will concentrate. Now,
one can place another conductor on top of this system and connect it to the ground. On the
interface between the ionic conductor and the other conductor, electric double layers (EDL)
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will form, i.e. charges of opposite signs on the two electrodes will be attracted to each other.
Since the distance between the charges is on the nanometer scale, the EDL is equivalent to a
capacitor of very high capacitance, i.e. supercapacitor. Now, applying a force on the surface of
the conductor, the capacitance of the EDL will change due to a change in the distance and the
effective area of the two plates of the EDL. This results in an electrical signal.

| Q

Conductor

Flexoelectric film /

Elastic substrate +—

Figure 4.6: Conceptual design of flexoelectric-based self-powered supercapacitive pressure sensor.

It is worthwhile to note that without flexoelectricity, this system could also work if a small
external voltage is applied to form the EDLs. Therefore, the contribution of flexoelectricity
here is to make this system self-powered. This system can also be regarded as an energy
harvester. It is important to note that although we explained this design for wrinkles, other
instability patterns can also be employed in the design and they may have advantages over
wrinkles.

4.4 Conclusion

In this chapter, we explored three potential applications for instability-based devices. We
first studied the possibility of electrically activating the pattern change in dielectric bilayers
commenting on the role of flexoelectricity to cause an asymmetrical response with positive
and negative external bias. We then presented the design of a lateral compression sensor and
a pressure sensor.



Chapter 5

Effect of flexoelectricity on stress
singularities

On a crack tip, sharp notch, fold, crease, etc. stress singularities exist which provide the largest
local strain gradients. In this chapter, we focus on the manifestations of flexoelectricity in
stress singularities, and in particular, we will show that flexoelectricity can result in a delay
in the formation of folds in bilayers. Furthermore, we will explore the notch strengthening
effect and flaw-insensitive fracture and will show that flexoelectricity can contribute to these
phenomena.

5.1 Effect of flexoelectricity on the formation of folds in
bilayers

This section has been devoted to studying the effect of flexoelectricity and strain gradient
elasticity on the fold instability in a flexoelectric/dielectric bilayer. First, we study the effect of
flexoelectric coeflicients as well as the strain gradient elasticity length scale /; on the local
electromechanical response. Then we show that flexoelectricity may result in a delayed fold
formation in flexoelectric/dielectric bilayers.

In all the examples provided in this section, the setup and boundary conditions are the
same as those in Section 3.1. Closed circuit boundary condition is considered. The material
properties and the prestretch in the substrate have been chosen such that folding develops.

5.1.1 Effect of film flexoelectric coefficients on the mean vertical electric
field generated on a fold tip

The effect of film flexoelectricity coefficients on the net vertical electric field on a fold tip is
studied. We consider hy = 1pum, (hg+hs)/hs = 40, and L = 60um. The number of finest elements
of the film (elements to discretize displacement and electric potential fields) is considered to be
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{96, 8} for width and thickness, respectively, while that of the substrate is {96, 64}, for width
and thickness, respectively. The following material properties have been considered for the
film:

Gy = 575MPa, €= 9.2nJ/V:m, p =1{0,100}nJ/Vm, pr =1{0,50,100}nJ/Vm,
s = {0,100}, & = 0.5um, £ =0, (5.1)

Gy being the shear modulus of the film.
For the substrate, the material parameters are:

G = 47.917MPa,  €=92nJ/V:m,  f=1pm, jp=pr=ps=46=0, (5.2)

G; being the shear modulus of the substrate. A substrate prestretch Ay = 1.4 has been consid-
ered.

Fig. 5.1 shows the net vertical electric field on a fold tip for different combinations of
flexoelectric coefficients, as lateral compression increases and through the flat/wrinkle and
wrinkle/fold transitions. It can be seen in Fig. 5.1a that g1, and pr result in the generation of
electric field of opposite sign in wrinkling state, but not in the fold state. Besides, ys does
not generate a noticeable Ey in the flat state, while it causes the generation of the Ey of the
opposite sign compared to yr in the wrinkle and fold states. It is worthwhile to note that in all
the examples shown in this section, the deformation field did not considerably change with
the change of the flexoelectric coefficients (see Fig. 5.2 for example). Therefore, for the chosen
material properties, the coupling is inclined to be one-way. To better understand the reasons
behind these trends, one can plot the components of strain gradient in the different states
bearing in mind that EXXY is coupled with Ey through pr, @yyy is coupled with Ey through
., and @XYX and @YXX are coupled with Ey through us (Fig. 5.3). As an example, it can be
seen that the difference in the component @XXY between fold and wrinkle states (slope of
strain gradient - overall compression) at the fold tip position is negative, similar to that of
€yyy. However, in the wrinkling state, the slope of strain gradient - overall compression curve
(not shown) is positive for @yyy, and negative for Exxy. These types of arguments (reducing
the complexity of the model and focusing on the most relevant features) can be very useful to
interpret the results of complex simulations with multiple cross effects.
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Figure 5.1: Folding in a flexoelectric/dielectric film/substrate system. Effect of film flexoelectric co-
efficients on the net vertical electric field generated on a wrinkle valley (fold tip). For visualization

purposes, the plots have been separated into 4 figures for easier comparison.
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Figure 5.2: Normalized relative displacement of the fold tip (wrinkle valley) around the wrinkle-to-fold

transition strain for different flexoelectric coefficients.
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Figure 5.3: Relevant strain gradient components before (left) and after (right) the wrinkle/fold transition.
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5.1.2 Effect of film /; on the generated mean vertical electric field and fold
formation

We study the effect of film’s strain gradient elasticity length scale, [;, on the electromechanical
response of a flexoelectric/dielectric bilayer undergoing folding. We consider hy = 1um,
(hs + hy)/hy = 40, and L = 60pm. The number of finest elements of the film (elements to
discretize displacement and electric potential fields) is considered to be {96, 8} for width and
thickness, respectively, while that of the substrate is {96, 64}. In this section, the following
material properties have been considered for the film:

Gs = 575MPa, € =9.2n]/V’m, p =100n]/Vm,  pr=50n]/Vm,
£ = 0.5um, £ ={0,0.125,0.25,0.5}um, s = 0, (5.3)

Gy being the shear modulus of the film.
For the substrate, the following material parameters are considered:

G, = 47.917MPa, €=9.2nJ/V?m, ly = 1um, = pr =ps =4 =0, (5.4)

G; being the shear modulus of the substrate. A substrate prestretch Ay = 1.4 has been consid-
ered.

Figure 5.4a shows the normalized relative vertical displacement, iy, as a function of overall
compressive strain. From this figure, it can be seen that increasing film ; can significantly
delay the formation of folds in the bilayers. The resulting net vertical electric field on a wrinkle
valley (fold tip) has been de<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>