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Abstract

The project consists in studying bifurcations of invariant tori for one-dimensional dynamical sys-
tems under external quasi—periodic forcing. The (extended) phase space is a bundle whose base is
a torus of dimension d, and the real-line is the fiber. The systems themselves are bundle maps
over translations on the torus with d frequencies.

The methodology involves KAM theory, bifurcation theory, modifying term techniques and trans-
lated curve theorems (in the spirit of Moser, Rifimann, Herman, Delshams and Ortega).

The goal of the project is to obtain rigorous results in an a posteriori format for the existence of
families of translated tori, and establishing a methodology for studying the bifurcations of invariant
tori. The a posteriori format is suitable for numerical and rigorous computations.

IX






Introduction

The aim of this work is to understand the general dynamics of quasi—periodic forced skew—products
in which the phase space is a bundle whose base is the torus T = R/Z and the real line is the
fiber:

U: TxR — TxR
(6.0) — Vl2)=(@+w f0.2) °

where R, (0) = 6 + w is an ergodic rigid rotation with a Diophantine frequency w € DC(v,v) and
f is analytic.

Due to the irrationality of the frequency w there are no fixed points nor periodic orbits. Thus, the
first part of the work is devoted to obtain sufficient conditions to find invariant tori, proving the
existence and the analyticity of these invariant curves' by means of an iterative procedure whose
methodology involves KAM theory?. In addition to the aforementioned non-resonance condition,
certain non-degeneracy conditions are necessary to guarantee the constructability of the proce-
dure and their convergence. In the context of analytic functions, formal solutions to the invariance
equation, expressed by means of their Fourier series expansions, can be find. The convergence of
these Fourier series leads to the problem of small divisors and cohomological equations. The con-
structability of the formal Fourier series satisfying the cohomological equation is feasible whenever
the frequency is an irrational number. In spite os this fact, there is a set of Fourier coefficients
with small denominators whose effect can lead to the non-convergence of the series or, in the case
of being convergent, its regularity may not be guaranteed. These problem was resolved by the
founders of KAM theory. There are different ways to prove the existence of invariant curves in
these kind of skew—products (Hermann, De la Llave, Haro, Fontich, and others), even in the context
of non—analytic functions (e.g. R. Ortega, Invariant curves for skew product diffeomorphisms, Mi-
lano September 1999). Regarding cohomological equations, Riifimann ([49],[51],[50],[48]) provided
sharp estimates for the solutions to these kind of difference equations, demanding the Diophantine
character of the frequency. We give in Chapter 1 a detailed version of their estimates, adapted to
the framework that concerns us (see Theorem 1.20).

In the spirit of Delshams and De la Llave ([16]), we adopt then the so—called translated graph
method, also adapted to our framework. This method consists essentially of fixing an average
p € R (in addition to the frequency w, which is also fixed a priori) and finding p—average invariant
translated curves following a Newton—like iterative procedure.

In Chapter 2, before dealing with the translated graph method and the KAM procedure, we

'Briefly speaking, curves of the form x : T — R such that the invariance equation, f(6,x(0)) = k(0 + w) is
satisfied.

2The acronym KAM stands for Kolmogorov [39] (1954), Arnold [3] (1961) and Moser [43] (1962), the founders
of the theory. Other recent contributions: [14], [15] , [46], [7], [24], [27].



discuss the concept of reducibility of a skew-product, which is essential in the construction of the
process and we show, as it is well known, that every non—singular one—dimensional linear quasi—
periodic skew—product is reducible (see Theorem 2.6). This fact, and the explicit expression of the
Floquet transformation that relates the reducibility with the Lyapunov exponents by means of the
cohomological operator will be used later to simplify some computations and obtain important
dynamical properties. Nevertheless, the first attempt to build the KAM iterative procedure elapses
simultaneously combining two procedures. On the one hand, the invariance of the translated curve
and, on the other hand, the reducibility of the skew—product without using the aforementioned
explicit expression of the reducibility function (Floquet transformation).

Henceforth, our challenge consists, briefly speaking, in proving the following result:

If we have a good enough approzimation of a translated invariant curve, then under
certain non—degeneracy and non—resonance conditions, there exists a true invariant
translated curve nearby.

In Section 2.4 the whole process is performed, starting with the non—degeneracy conditions needed
for one step, the corresponding estimates (Lemma 2.16), the iterative lemma (Lemma 2.18), and
finally, the KAM theorem (Theorem 2.19), in which the convergence and the analyticity of the
solutions are proved. This is one of the most important results obtained in this work.
Chapter 3 is devoted to showing the translated graph method with a slightly different approach. In
this case the reducibility of the skew—product is taken for granted, and we use, at every step of the
process, the expression of the Floquet transformation obtained in Theorem 2.6. Consequently, the
part of the process described in Section 2.4 corresponding to the reducibility is avoided. Moreover,
the average of the reducibility function does not need to be the same value at each step. In fact,
it can be chosen freely at every step. This allows to reduce the obtained error estimates. Another
difference that is taken in account here is that the spatial partial derivative of the function which
describes the skew—product is assumed to be bounded from below (in modulus). This restriction
allows to assure that the Lyapunov exponents obtained at every step are globally bounded. Under
these conditions, we can obtain sharp explicit estimates for one step and for the corrections
generated along the whole iterative procedure (Lemma 3.5 and Lemma 3.9).
These expressions can be significantly simplified by assuming some a priori conditions that do
not detract from the generality of the approach. For instance, the first guess of the procedure
can be a p—average curve where p is the value previously fixed, and then all the average errors
given by e,(p) =< kn > —p (n € N) vanish. Moreover, since the average of the n—th Floquet
transformation ¢, o = f,ﬂ. cn(0)df can be freely chosen at every step, we opt to take its value such
that

Cn,0

=1(neN).
/eml(log(gi(a,nn(e))An))de
T

Qp —

This is what we do in Section 3.6, obtaining as a result a narrow version of the aforementioned
estimates. With these new bounds, we are in a position to state another version of the KAM
theorem (see Theorem 3.15).

It is worth mentioning that there are examples of skew product systems without invariant curves.
In [2] the authors (Alseda et al.) construct an example in a domain  C S! x R limited by an
upper and a lower circle that are permuted by the map and do not have any invariant curve in its
interior.

Delshams and Ortega [17] provided the existence of translated curves for quasi-periodically forced
maps which was established, under very mild regularity hypotheses, for rotation numbers of con-
stant type. Among the translated curves, the invariant curves are characterized as the solutions



of an scalar bifurcation equation, from which their existence, stability as well as bifurcation can
be easily described.

Once the existence of invariant curves has been determined, under the non—degeneracy conditions
required by the translated graph method described above, the next objective consists in the es-
tablishment of a methodology to study the local bifurcation theory of one parametric families of
skew—products as they were considered previously. The approach starts with a family of invariant
translated curves {(k(-; i1, p), 7(11,)) } (u,p)ezxr, i-€. solutions of a system of the form

{f(9,f<c(9;u,p);u)—H(9+w;/‘7p)+7(“7p) = % eTiuez per)
< K(5p,p) > = P

In this scenario we are mostly interested in the study of qualitative geometric properties of the
family of invariant curves, namely, those invariant translated curves whose translation parameter
is equal to zero, i.e.

7(i,p) = 0.

Here, we have two parameters: on the one hand, the bifurcation parameter, 4 € Z C R; and, on
the other hand, the average parameter, p € R.

The implicit function theorem (IFT) provides the appropriate framework for this study, through
sufficient conditions that allow information to be obtained from one of the parameters as a function
of the other. This is the content of Chapter 4.

The approach focuses specifically on the study of several concrete types of bifurcations: saddle—
node or fold bifurcations (Section 4.2), transcritical and pitchfork bifurcations (Section 4.3), and
period—doubling or flip bifurcations (Section 4.4).

Another objective of this thesis is to implement numerical procedures that allow validating the
theoretical results, as well as reinforcing the numerical results obtained by applying them to specific
examples. To achieve these objectives, it is necessary to implement programs that allow the
reproduction of the KAM procedures described above. Among others, the study of the numerical
representation of functions defined by their Fourier coefficients is required, for which the most
efficient tool is the Discrete Fourier Transform (DFT) and its inverse (IDFT).

Chapter 5, Chapter 6 and Appendix II are devoted to this purpose.






General summary of the thesis

Chapter 1.

This chapter is dedicated to introducing cohomological equations and the spaces of real analytic
functions, the problem of small divisors and how the Diophantine condition affects the convergence
and analyticity of the solutions to these cohomological equations. Some properties of these func-
tions are discussed. Among them their Fourier expansions, Cauchy’s inequality, the exponential
decay of their Fourier coefficients and the uniform convergence. Next, there is a brief presentation
of the Diophantine condition which leads to the important lemma of small divisors. The most
important result of this chapter, due to Riifmann [51], is stated in Theorem 1.20, showing what
we call Rifimann estimates for the solutions to the cohomological equation. The complete proof
provided here is adapted, in all of its terms, to the one dimensional frame. The chapter concludes
with the definition of the cohomological operator and a detailed description of its properties.
Among them, it is remarkable that Proposition 1.26 shows two slightly different ways to estimate
cohomological operator corrections, one of them sharper than the one obtained by applying the
RiiBmann estimates twice. Some references related to this chapter are [49], [51], [50], [10], [11],
[14], [31], and [18].

Chapter 2.

In this chapter we face up to one of the main objectives of this work. Our challenge is to design
a KAM procedure to demonstrate the existence of invariant curves for one—dimensional quasi—
periodic skew—products under certain non—degeneracy conditions. We will use the translated
graph method for the very particular frame in which the base is the torus, T = R/Z, and the fiber
is the real line, R, giving sufficient conditions for which the Newton-like method to be designed
converges quadratically, and thus formulate them in a posteriori format. The challenge, on the one
hand, is to fertilize the land for the creation of a methodology for the study and classification of
bifurcations of invariant curves related to perturbations of this kind of skew—products, and on the
other hand, implement numerical methods of representation. We will employ all the tools which
were described in the corresponding sections (as the invariance equation, topological and linear
conjugacy of skew-products, small denominators and cohomological equations,...)? plus new ones
(as linearization of a skew—product, reducibility, the translated graph method itself, and KAM
theory).

Some references for this chapter are [24], [22], [10]

3See Appendix I. and Chapter 1.



Chapter 3.

This chapter is devoted to showing the translated graph method with a slightly different approach.
In this case the reducibility of the skew—product is taken for granted, and we use, at every step of
the process, the expression of the Floquet transformation obtained in Theorem 2.6. Consequently,
the part of the process described in Section 2.4 corresponding to the reducibility is avoided.
Moreover, the average of the reducibility function does not need to be the same value at each
step. In fact, it can be chosen freely at every step. This allows to reduce the obtained error
estimates. Another difference that is taken in account here is that the spatial partial derivative of
the function which describes the skew—product is assumed to be bounded from below (in modulus).
This restriction allows to assure that the Lyapunov exponents obtained at every step are globally
bounded. Under these conditions, we can obtain sharp explicit estimates for one step and for the
corrections generated along the whole iterative procedure (Lemma 3.5 and Lemma 3.9).
These expressions can be significantly simplified by assuming some a priori conditions that do
not detract from the generality of the approach. For instance, the first guess of the procedure
can be a p-average curve where p is the value previously fixed, and then all the average errors
given by e,(p) =< kn, > —p (n € N) vanish. Moreover, since the average of the n—th Floquet
transformation ¢, 0 = fT cn(0)df can be freely chosen at every step, we opt to take its value such
that

Cn,0

/e‘ﬁl(log(gi(@,ﬁn(G))—An))dQ
T

=1(neN).

Qy —

This is what we do in Section 3.6, obtaining as a result a narrow version of the aforementioned
estimates. With these new bounds, we are in a position to state another version of the KAM
theorem (see Theorem 3.15).

Section 3.1 reproduces the translation graph method with the reducibility of the skew—product
taken for granted.

Section 3.2 speaks about the details on the non—degeneracy condition in one step of the KAM
procedure.

Section 3.3 gives the expresion of the invariance error produced in one step.

Section 3.4 and Section 3.5 show the explicit form of the estimates and correction estimates
obtained for one step in the most general and sharp way.

In Section 3.6 we come out with some reductions to obtain explicit estimates with simpler expres-
sions although less precise.

Section 3.7 shows a new version of the KAM theorem for skew—products bases on the estimates
obtained in the above section.

Some references for this chpther: [36], [10], [24], [22].

Chapter 4.

This chapter establishes a methodology to study the local bifurcation theory of one parametric
families of skew—products as they were considered in previous chapters. The approach starts with
a family of invariant translated curves {(x(-; i, p), T(t, )} (up)ezxr; i-€. solutions of a system of
the form

,P)
{f(G,H(H;u,p);u)—ﬁ(9+w;u,p)+7(u,p) = 0, (OcT uel, peR)
< K(3p,p) > = p.

In this scenario we are mostly interested in the study of qualitative geometric properties of the
family of invariant curves, namely, those invariant translated curves whose translation parameter



is equal to zero, i.e.

7(p, p) = 0.

Here, we have two parameters: on the one hand, the bifurcation parameter, y € Z C R; and, on
the other hand, the average parameter, p € R.

The implicit function theorem (IFT) provides the appropriate framework for this study, through
sufficient conditions that allow information to be obtained from one of the parameters as a function
of the other.

This approach focuses specifically on the study of several concrete types of bifurcations: saddle—
node or fold bifurcations (Section 4.2), Trancritical and pitchfork bifurcations (Section 4.3), and
period—doubling or flip bifurcations (Section 4.4).

Chapter 5.

The fundamental objective of this chapter is the introduction of all those concepts necessary for
the numerical implementation of the procedures described in the previous chapters?.

Section 5.2 is devoted to introduce the discrete Fourier transform (DFT) and its inverse (IDFT),
definitions and some of those properties which will be used later on in the computations. These
tools constitute an efficient way to compute functions given by their Fourier series expansion on
the torus. In Section 5.3 we introduce a method to compute numerically the Fourier coefficients
of a function by means of the DFT, providing moreover an estimate of the error made in the
aforementioned approximation. With a finite collection of Fourier coefficients it is possible to
reconstruct, by means of the convolution with the Dirichlet kernel, the partial sums of the Fourier
series. This is explained in Section 5.4. Moreover, there is an efficient way to reconstruct functions
from their Fourier coefficients employing the inverse discrete Fourier transform (IDFT). Once we
have solved the problem of the numerical implementation for Fourier series and Fourier coefficients,
we are in a position to solve cohomological equations and, as a particular case, to compute the
Floquet transformation of a given curve, which is necessary in the reducibility process of skew—
products. These aspects will be dealt with in the last section of the chapter, Section 5.6.

Chapter 6.

In this section, the model presented will serve as a support to develop all the algorithms built
in previous sections and chapters, as well as their subsequent numerical implementation. This
model, with slight differences, was presented by Tobias H. Jager in 2003 [34] and has been deeply
analyzed by Angel Jorba, Francisco Javier Munoz—Almaraz, and Joan Carles Tatjer in 2018 [36].
Here we expose an extended version complexified with the aim of adapting the model to the
previous exposition.

4Mainly, cohomological equations and the derived computation of the Floquet transformation of a curve. Subject
to these procedures everything is related to the numerical implementation of Fourier series and the Fourier coefficients
of a function.



Appendix I.

This appendix lays the foundations in a more general context of the background in which the
entire thesis is focused. It is devoted to introduce the notion of skew—product and some general
definitions related with this smattering. In particular, the concept of invariant section. First,
there is a description of fiber and vector bundles, bundle maps and vector bundle maps, and the
concept of cross sections over fiber bundles and vector bundles. For a more complete account on
these topics, we refer the reader to [55], [32], [47], [1], and [33].

In this context, it is introduced the definition of skew—product dynamical system, giving rise to
the concept of invariant section which justifies what is called invariance equation, and is the basis
to understand what are invariant tori in skew—products. Additionally, the concept of invertibility
in skew-products is described and, above all, topological conjugacy and linear conjugacy of skew-
products.

Appendix II.

Based on the numerical aspects developed in Chapter 5 this appendix shows some of the algorithms
which are implemented in Matlab® programming environment (R2022b).

e Orbits and the error function;
e Complex Fourier series estimates by means of the Discrete Fourier Transform (DFT);

e The cohomological operator; and

e The KAM step.

Appendix III.

This appendix provides an important matrix lemma (Lemma III.1) which is often used to obtain
several estimates needed in the KAM procedure (see Lemma 2.18).



Chapter 1

Cohomological equation and
Ruflmann estimates

The first part of this introductory chapter (Section 1.1) is devoted to introducing the spaces
of real analytic periodic functions defined in a complex strip that will appear throughout the
upcoming exposition. This implies the fact of precisely defining topological aspects and other
features of these spaces.

Before facing up the main problem (I1.9), we still need some more background.

1.1 Analytic periodic functions

Definition 1.1 Complex strip
We define the complex strip of width o > 0 as the set

To={2€C/Z: |Im(z)| < o} .

o
Definition 1.2 Analytic periodic functions
Let o > 0. We define the set of analytic periodic functions on the complex strip T, as:
A, = {u:T,CC/Z — C|uis analytic in Int(T,),
and continuously extendable to OT,} .
Moreover, we say that uw € A, is real analytic on T, if it takes real values for real arguments.
o

REMARK 1.3

We identify functions defined on T, ,
vw: T,CC/Z — C

with 1-periodic functions defined on the complex strip S, = {z € C: |Im(z)| < o},
u: S,cC — C.

Thus, we say that u € A, is holomorphic (analytic) in an open set U C T, if the corresponding
1-periodic function defined on S, is holomorphic (analytic) in an open set V. C S,, such that
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U={2+Z€T,:2€V CS,} =V/Z. Notice that T, is a topological space endowed with the
topology inherited from the usual topology of C and A, is a C—vector space. In short, we can write:

Ay, = H(Int(T,)) NC(T,).

Definition 1.4 Pre—Hilbert structure of the space of analytic periodic functions
We define the inner product for analytic periodic functions:
<>t Agx Ay — C

(u,v) +— <wu,v >::/Tu(9)v( ) de .

This inner product endows A, with a structure of a pre-Hilbert space. Furthermore,
{e¥™F . | e 7}
is an orthonormal set in A,.
Notice that A, is a subspace of the usual Hilbert space L*(T,) := {u: T, — C| / [u(6)]?df < oo},
and the inner product defined above in A, is the restriction of the inner produc;f]r
<> L*T,) x L*(T,) — C

(u,v) — <u,v>:= /Tu(e)v(ﬁ) do

to the complex strip A,.
The L?-norm in A, is, accordingly, defined by:

:
lull =< w,u >3= ( / \u<9>|2dz) |
T

whereas the supremum norm or uniform norm is defined as

lulle = sup [u(2)] -
zel,

If u e A, for some o > 0, the Fourier coefficients of u are defined as:

Ug ::/u(ﬂ)e_%keidﬁ (keZ), (1.1)
T
and the Fourier expansion of u is the formal series
Fu(z) =Y W™ (2 €Ty). (1.2)
keZ
o
REMARK 1.5
(L3(T,), ]| - llo) is @ Banach space. The uniform norm satisfies the inequality:
> il < fullg, Vu € A, (1.3)
kEZ

Indeed, by Parseval’s Theorem,

Sl = ull? = [ Ju@) d6 < sup @) | db < sup [u(:)P = ul
keZ T 0T T 2€T,
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Moreover, (C°(T,), || - |l) is also a Banach space, since it is a closed subspace of (L*(T,), || - ||o)-
(Ap), |l - llo) is a Fréchet space.

Finally, as a consequence of Morera’s theorem, uniform limits on compact sets of analytic functions
in an open set are analytic.

REMARK 1.6
Define
Ag,o—{ueAg:<u>_/u(0)d6_0} ,
T

that is, the subspace of A, of that analytic functions over the complex strip T, with zero—average.
Notice that A, is a closed subspace of A, and thus it is also a Fréchet space.
In what follows, if u € A,, for some o >0, we will write:

u=ug+u,

being uo the average of w and w € A, a zero-average function, namely:

ug =< u >:= / u(6) df
T

and

<a>:/a(9)d9:o.
T
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Lemma 1.7 (Cauchy inequality') Fourier coefficients of an analytic 1-periodic function

If u € A, is an analytic 1-periodic function defined on the complex strip T, for some o > 0, then
the Fourier coefficients of u,

Uy = / u(@)e " 7Midg (k€ 7), (1.4)
T
satisfy the following estimate:
| < e 2 kle||y]|, , Yk € Z, (1.5)
where |lul|, = sup |u(2)|. That is, the Fourier coefficients of an analytic 1-periodic function decay
z€T,
exponentially.

Proof.

Let § € (0, ) be the height of the rectangle Rs = [0, 1] x [0, d] C Int(S,).
Since u € A, and Rs C Int(S,), then u € H(Rs). Therefore, for every k € Z, the function

vp(2) = u(z)e 2™ (2 € 8,),

is holomorphic in Ss (and also 1—periodic). By Cauchy’s integral theorem the contour integral of
vy along the boundary of Rs vanishes:

7{ vg(2)dz=0.
ORs

Im z
1 1 o1
5i Y3 1+ 48
Y4 Rs Y2
Rez
0 Y1 1

Ss

Ficure 1.1: Upper integration path.

The boundary of the rectangle Rs, counterclockwise oriented, is the juxtaposition of four line
segments,

ORs =v1 4+ +73+ 7,

cf. [14] A tutorial on KAM theory. Smooth Ergodic Theory and its Applications.
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that can be parameterized, respectively, by

7 [0,1] — C 2: 0,1 — C
t o )=t ’ t o ) =1+t6i
v3: [0,1] — C v : [0,1] — C
t — yt)=1—-t+d t o ya(t)=(1—-1t)d
Accordingly,

E

1
0= 74 o()dz = / oy () (1)t
OR; 0

1

1 1
u(t)e 2t + / w(1 + t8i)e” 2RO+ 5 gt
0

1 1
w(l — t + §i)e 2Rt _1yqt 4 / w((1 = )5i)e 205 (_ 55yt
0

1

_l_
S— — 7

1
u(t)e 2t 4 52'/ u(1 + t0i)e* ™ gt
0

1 1
627”“5/ w(l —t + 6i)e 2 =gy _ 52'/ u((1 —t)6i)e2™*—tgy
0 0

where we have used Euler’s formula, e*™ = 1. Now we show that the second integral and the
fourth one are equal. On the one hand, since u is 1—periodic,

1 1
/ u(1 + t5i)e* ™t = / w(t8i)e>™ 0t .
0 0

On the other hand, by means of the change of variable § = 1 — ¢, we have

! 1
/ w((1 — )83)e2™ =10 gy — / u(06i)e2 ™9340 .
0

0
Thence,
0= /01 u(t)e 2Rty — e2mko /01 u(l—t+ 5i)e_27rk(1_t)idt )
Equivalently,
U = ™0 /1 w(l —t+ 0i)e 2™ A-igt vk eZ ,
or ’

1
up = 62”]“5/ u(t + di)e *™idt Yk € Z (0<6< o). (1.6)
0

In particular, if k£ < 0,

1 1
| = e 2rIkl / u(t+5i)e‘2”k(1_t)ldt‘ < e 2mlkld / lu(t + 6i)|dt < e 2™*I0 sup |u(2)]
0 0 z€Rs
< e P sup Ju(z)] < M sup fu(z)] = e sup [u(z)| = e 2O ull, .
z€Ss z€8, z€T,
Summarizing,
k| < e 27M9 |, V6 € (0,0) and Vk € Z, k < 0. (1.7)

In like manner, we consider now the rectangle R§ = [0, 1] x [—6,0] C Int(T,).
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Since u € A, and R C Int(S,), then u € H(Rs). Again, by Cauchy’s integral theorem the contour
integral of v;, along the boundary of Rj vanishes:

f vp(2)dz = 0.
OR),

Im z
1 4+
0 Uit 1
Rez
Ss M2 Rj M4
—&i 73 1—6i
1 o1

FiGure 1.2: Lower integration path.

The boundary of the rectangle R}, counterclockwise oriented, is the juxtaposition of four line

segments,
ORs =m + 12 +n3 +n4

that can be parameterized, respectively, by

m: [0,1] — C nz: [0,1] — C

t o m)=1-t t o ap(t) = —oti ’
n3: [0,1] — C m: [0,1] — C

t o mg(t)=t—6 t = m(t)=1-(1-1t)di

It follows that:
4 1
0= ws = Y [ b

ORs j=1 0

1 1
+ / w(t — 6i)e” 2RI gy 4 / w(l — (1 — t)8i)e 2mF=(=050i 5t
0 0
1 . 1
= / u(1 t)e_%k(l_t)zdt&/ w(—8ti)e 2™kt gy
0 0
1 . 1
+ 6_2”]“5/ u(t — 6i)e” ™t 4 (51'/ w(1 — &ti)e 2ot gt
0 0
where we have used again Euler’s formula, e2mt — 1. Now, the second integral and the fourth

one are equal by the 1—periodicity of u. On the other hand, by means of the change of variable
0 =1—1t, we have

1 1
/ u(l — t)e 2mk1=tig — / u(B)e 2™k qp .
0 0
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Thence,
1 1
0= —/ u(t)e 2L 4 e%ké/ u(t — di)e2™*idt .
0 0

Equivalently,
1
Uy, = e~ 27k0 / u(t — di)e ™ gt Yk €7 (0<6< o). (1.8)
0

In particular, if k£ > 0,

1 1
G| = e 2k / u(t—éi)e%kmdt‘ < 62“|k|5/ |u(t — 01)|dt
0 0
< e 2R gup Ju(z2)| < e 2 HP sup |u(z))|
zERgs z€Ss
< e sup Ju(z)] = e M sup fu(z)] = 2 ],
z€S, z€T,
Summarizing,
k| < e 27 M9 |, V6 € (0,0) and Vk € Z, k> 0. (1.9)
Finally, joining (1.7) and (1.9) we have:
|G| < e 2F9 ||y||,, W5 € (0, 0) and Vk € Z. (1.10)

It follows, from (1.10), that:
Vk € Z, |ug| < inf{e"2*0 ||ul, : 0 < & < o} = e~ 2mIkle |jy]|,

which is the estimate (1.5) that we wanted to prove. O

Lemma 1.8 2

Let u € A, for some o > 0 and assume that there exist a positive constant M > 0 such that
lu(z)] < M, VzeT,, ie |ul,=sup|u(z)| < oo.

zely,

Then:
> fagPet e < 2fjul|? (1.11)
kEZ

1
where Uy, = / u(0)e= 240 (k € Z) are the Fourier coefficients of u.
0

Proof. Let s € (—p, 0) and define

Ps : SQ_|S|Q(C — C

Notice that whenever 2z € S,_|,,

[Tm(z + si)| = [Im(2) + s| < [Im(z)[ +|s| <o —|s| +[s| = ¢

2¢f. [49] Lemma 2.1 p. 605 . The proof is essentially the same, but here it has been adapted to the one
dimensional frame.



16 Cohomological equation and Riifmann estimates

Hence, z 4 st € S, and ¢, is well defined. Moreover, since u € A, then ¢, € A
The Fourier coefficients of ¢, are given by:

o—|s|

1 1
I / %(9)6—2wkaid9 = / u( + Si)e—zwkeide
0 0

1
_ 627rks/ u(@ + Si)efQﬂk(GJrsi)ide '
0

Let us define, for each k € Z, the function

Pp: (0,00 CR — C

_ ! N 1.12
s — Dp(s) = 2™y, = / w(f + si)e 2mkO+sigy (1.12)
0

We claim that @, is a constant function. Indeed, its derivative vanishes everywhere. Since w is
analytic, we can differentiate under the the integral sign, that is, applying the Leibnitz integral
rule:

/ _ i ! o —2mk(0+si)i 39 _ ! 2 N\ —2mk(0+si)i
Di(s) = y u(f + si)e dh = 3 u(f + si)e db
S Jo 0 S

1
- / <u’(0 + si)ie 2ROTDi L 4 si)e’2”k(9+8i)i2wk> df
0
= 27r/<:/ w(f + si)e”2RO+s0igy 4 Z/ u' (0 + si)e” 2RO+s)igg
0 0
Now, we integrate by parts the last term:

1 )% L .10=1 1 N
/ u/(O + Si)e*Qﬂ'k(@Jrs%)ZdH = u(@ 4 Si)efQWk(9+sz)z]0 ) 4 271_]%./ u(@ n si)e*Qﬂ'k(aJrSl)Zde
i - 0
= u(l + Si)e_QWk(l"'Si)i _ u(si)e%rks
1
+ 27rki/ u(f + Si)e—27rk(9+si)id9
0
and hence,
Oi(s) = i (u(l + si)e2mk(rsi)i u(si)ezﬂks)
= Z'627Tk8 (U(l + SZ) B U(SZ)) _ O?

since u is 1—periodic.

1
It follows that @y (s) = ®4(0) = / u(f)e M4 = Uy, ¥s € (—o,0) and k € Z. Thus:
0

S/O\Sk _ ake—%rks

and

Gl =l et (1.13)

keZ keZ

Furthermore, Bessel’s inequality gives, for the Fourier coefficients of og:

1 2
Yo Elt < /OIU(9+Si)I2d9§<sup !MZ)!) = |lull3 - (1.14)

kezZ Z€5
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Equations (1.13) and (1.14) together imply:

D et < ull} Vs € (—e,0) - (1.15)
kEZ

Thus, for every s € (—p, ), we can write:

Z’uk’2 dr|kls Z |ak|2647r|k|8+ Z |ak|2647r|k|s

ke keZ keZ
k<0 E>0
_ Z ‘ak‘2874ﬂ'ks + Z ‘ak‘2 6747rk(75)
kEZ keZ
k<0 k>0
< Z WHZ e—47rks + Z ’ak’2 6—47rk(—s) )
keZ keZ

Since s € (—p, 0), then —s € (—p, p) too, and we can apply (1.15) to both of the latter sums:

>l e < 27, Vs € (o, 0)-
keZ
To end the proof we take limits as s — ¢ and we have:
DLl et e < 2)luf
kEZ

as we wanted to prove. O

Lemma 1.9 Uniform convergence

Let uw € A, for some 0 > 0. Then u can be expanded in its Fourier series:

= Zﬁk 2k vy e T, ,
keZ

where
i = / w(®)e=2™ ke 7.
T

The series is absolutely and uniformly convergent in every complex strip of the form:
Tos={2€C/Z:|Im(z)| <p—0d} with0<d<op.

Furthermore, if 0 < § < g, then we have the following estimate:

Ju(z)| < V2 HUHQ’V'ZGTQ 5 -

Proof. 2 Since u is continuous in T, and 1-periodic, then

[ullg-s = sup |u(2)] < +oo, V4 € (0,0) .

ZETQ_g

3¢f. Lemma 2.4 p. 610 On optimal estimates for the solutions of linear partial differential equations of first
order with constant coefficients on the torus [49].
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Let us denote the Fourier series of u by

Su(z) = Zﬁk ™ 2 e T,. (1.16)
kEZ

This series converges absolutely and uniformly in every complex strip T,_s, with 0 < d < p, and
consequently the series converges uniformly in every compact subset of the strip T,. Therefore,
Fu is analytic in Int(T,) and it is well defined® in T,.

Next, we would like to find an estimate for the Fourier series.

Vz € T,_s, we have:
< Z |ak| ‘627rkzi

kEZ

[Su(z)] =

§ :ak 627rkzz

kEZ

Since z € T,_s5, we may write z = x 4 yi, with |y| < o — 4. So,
|627rkzi| _ 6727rky < 627r\k\(976)’ Vi € Z.

It follows that:
Fu(2)] <D [ag] @0 = 3™ (g5, | 2mlkle g=2mlklo

keZ keZ
Applying now the Cauchy-Schwartz inequality to the latter sum, we get:

|gu(z)’ < (Z ‘ak‘2 647rk9> : <Z 6—47rk6) : .

kEZ keZ

The first factor of this product can be estimated by means of Lemma 1.8. Thus:

|SU(Z)| < (QHUHZ)% (Z e4ﬂ|k|6> — \/§||U”g (Z 647r|k|5>

k€EZ keZ

=

[o.¢]
k
Notice that the geometric series Z (e_47r5) is convergent since ‘6_4“5‘ <1,Vé6>0.

k=1
Hence, we can compute directly the series:

Ze—4w|k\5 _ Z 6—47r|k|§+1+ Z 6_47r‘k‘6

k€Z keZ keZ
k<0 k>0
[o.¢] oo k
-1 +2Z€—4ﬂk5 -1 +22 (6—47“5)
k=1 k=1
_ 4o e—47r6 e47r5 +1

1— 6—471'6 = e47r5 -1 :
It follows that:

edm™ 1
Fu(z)| < V2 WHUHQ vz eTyps.

‘cf. Theorem 9.12.1 Foundations of Modern Analysis [18)
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To finish the proof we show that u(z) = Fu(z) ,Vz € T,.

On one side, u(z) = Fu(z) ,Vx € R, since u and Fu have the same Fourier coefficients and the set
of exponentials {€*™** : k € Z} is complete®. On the other hand, by analytical continuation® we
obtain as a consequence the desired result. O

Lemma 1.10 Cauchy estimates

Let 0> 0,v:T, — C, and m € N. Ifv € A,, then for every § € (0, %g) d”v Apms and

7 dzm

d™v Isom
I le—ms < mld™" vl - (1.17)

Proof. Let 6" =md. Then 0 < 6* < ¢ and for any z € Ty, D(z,8) C Int(T,—s+). Since v € A,,
then v is holomorphic in a neighborhood of the closed disk D(z, d). By the Cauchy integral formula,

d™v m! v(¢)
’]T _§* —— _ B — .
2 € Toans 2 = o0 /BD(Z,a) (= Z)m“dC

Taking modulus on both sides, we have

d™v m! v(Q)
Ty s+, |—— = — —_
vz € To-sr, dzm (Z)‘ 27 /8]]])(;;75) (¢ —z)m+l dC|

m!/ [v({)] m! 1

< = T —]d(| < = sup |v(¢ T (8
27 Jo(z,6) !C—Z\m“‘ | 2 Ce@]l])(z,é)‘ (©I aD(2,5) |C—Z\m+1‘ |
m! 15-m

= gcsgﬁ\v(é)\i(;mﬂ%é—m- [[vl| -

1.2 Liouville numbers and the Diophantine condition

The following bi-decomposition of irrational numbers, in Liouville numbers and Diophantine num-
bers, plays a special role in the dynamics of a skew—product and the related KAM process that
we will build to look for invariant tori, as will be brought out later. For this reason we refer now
the main concepts which are needed to know about the arithmetics of these real numbers.

Recall first that a real number w € R is said to be algebraic if there exists a polynomial P(z) =
ar2" + ap_ 12"+ - + a1z + ap € Q[z], with rational coefficients, a; € Q, such that P(w) = 0.
The set of all algebraic numbers is a subfield of R. Indeed, it is the algebraic closure of Q, which
is denoted by @, that is, the minimal subfield of R which contains all the real roots of polynomials
with coefficients in Q. The complement of algebraic numbers with respect to R is the set of
transcendental numbers, R \ Q.

Scf. Chapter II. §4., Methods of Mathematical Physics [31]

Scf. §(9.4.4), p.203, Foundations of Modern Analysis [18]
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REMARK 1.11

For every algebraic number w € Q, there is a polynomial Q € Q[z] of least degree, denoted by
Q = Irr(w,Q), for which w is a root. Q is also known as the irreducible polynomial of w over the
field of the rational numbers. Namely:

(Z) Q(Z) =2+ a2 gz +ag € Q[Z], e qj = %, with bj,c; € Z, c; #0(j =
0,1,...,7);
(1) Qw)=0;

(#ii) Q is irreducible, that is, if Q(z) = Q1(2)Q2(z), with Q1, Q2 € Q[z], then either Q1 is constant
or Qg is constant. In other words @ cannot be factorized in Q|z] as a product of non—trivial
polynomials.

By (i), Q can be expressed in the following way:
1

= T
[T
7=0

(arz" +ar—12" 1+ + a1z +ap),

Q(2)

.
with a; = bj H ¢ € 7.
1=0
i F ]
T
Let us call P(2) = a;2" + ar—12" ' + -+ a1z +ag € Z[z]. Thus, Q(z) = 1P(2), with ¢ = H cj.
=0

Observe that the roots of Q and the roots of P are the same. Furthermore, by Gauss Lemma, Q
is irreducible in Q[z] if and only if P is irreducible in Z|z].

Definition 1.12 Liouville numbers

It is said that a real number w € R is a Liouville number if for any v > 1 there is a positive integer
keN, k>2, andl € Z such that

1
0 ko -1 < — .
< |kw |_k‘”

o
Lemma 1.13 (Liouville, 1844)
For any algebraic irrational number w € Q, there are constants v > 0 and v > 1 such that:
mw—uzﬁ%,VkeZk#OJeZ. (1.18)

REMARK 1.14

This lemma means that every irrational Liouville number is transcendental.

Proof. Let @ = Irr(w,Q) be the irreducible polynomial of w over Q. This polynomial can be
written as
Q) = 2" + 12" M+ -+ a1z + ap € Q[z], with o = %7 with bj,¢; € Z, ¢; # 0 (j =
0,1,...,7).
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T

Define P(2) = a,2" + ar—12" 1 + -+ + a1z + ag € Z[2], with a; = b; H ¢ €Z.

1 =20
i F ]
T
Thus, Q(z) = %P(z), with ¢ = H ¢;j. The irreducibility properties of () and the definition of P
j=0
lead us to the following properties for P:

(i) P(w)=0;

(ii) P is irreducible in Z[z], that is, if P(z) = P1(z)P(2), with Py, Py € Z[z], then either P; is
constant or P» is constant, i.e. P cannot be factorized in Z[z] as a product of non-trivial
polynomials.

(iii) For any k,l € Z, with k # 0,

l
k" P (k) —al"+ar_1kl"  + -+ k" 4 ag € Z.

iv) P (L) #£0, Vk,l € Z, k # 0. Otherwise, w and £ would be distinct roots of P, which is not
k 2
possible due to the irreducibility.

On one side, the degree of the polynomial P is r = deg(Irr(Q,w)) > 2. Otherwise, if r = 1, since
P(w) =0, w would be rational, against our assumption. We take now v =r —1 > 1.
On the other hand we can express P centered at w, namely

2=z~ w)
j=0

~ 1 . . : . . .
Observe that a; = ,—'P(])(w), Vj =0,1,...,r. Furthermore, since @ is the irreducible polynomial
J!
of w over Q, then P(w) = ap = 0 and P'(w) = a1 # 0. Otherwise P would have w as a multiple
T

root, which is not possible because of the irreducibility. Now, if we call M = Z |a;|, then M >0,
j=1

since a1 # 0. So, we can define v = min {1, ]\14} > 0. Notice that the constant v depends only

on w.

To finish the proof, we check that with these definitions for v and v the inequalities (1.18) hold.

Let k € Z\ {0} and | € Z. If |kw —1] > 1, |kw = 1] > v > # If |[kw — 1] < 1, then

lkw — 17 <1, Vj =1,...r, and we can write:

(O] - o ()] <o

Jj=1

Jwk =1
‘“‘ Z“ R

whk — 1| e~ - |wk—l]3_1 _ lwk— I| wk — 1
= > lal : Z\ a;| = M.
j=1

I L/ [ ||

Therefore,

l
k" P <k) ‘ <|wk =1 k"™t M = |wk — 1] |K]" - M

Sincek"P( )EZandP( )7&0 we have:

1< |wk — 1| |k - M
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It follows that: 1
wk =1 > —k|7" > ~|k[™"

which is the inequality (1.18) that we wanted to prove. O
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Definition 1.15 Diophantine condition

It is said that w € T satisfies the Diophantine condition if
lwk — 1| > ~|k|™", Yk e Z\ {0},l € Z (1.19)

for some suitable constants v > 0 and v > 1. In this case, we say that w is Diophantine of class

v and constant .

The set of all Diophantine frequencies’ w € T of class v and constant v will be denoted by DC(~y, V).
o

REMARK 1.16

Given an irrational algebraic number w € Q, Liouville’s Lemma 1.13 assures that w is Diophan-
tine. Namely, w € DC(~y,v) for some v >0 and v > 1. Our proof of the lemma brings out a way
to obtain v and v explicitly.

For instance, the irreducible polynomial of the golden ratio w = 1+T\/5 is P(z) = 22— 2 —1. So, we
can take v = deg(Irr(w,Q)) — 1 = 1, and v = min{1, 13}, with M = |P'(w)| + |P"(w)| = 2+ V/5.
Thus, v = ﬁ = -2+ /5, and we have w = 1+72\/5 € DC(—2+ V/5,1).

In general, the set of the so—called Diophantine numbers of class v > 1 is

DC(v) = | ] DC(v,v)

>0

and the set of all Diophantine numbers is defined as

DC(c0) = | J DC(v).

v>1

In particular, DC(1) is known as the class of bad approximable numbers. Of course, every quadratic
wrrational number belongs to this class, for instance, the golden ratio.
With these notations, we can mention the following properties that we are not going to prove:

(i) Vy >0 and v > 1, DC(v,v) is a set of full Lebesgue measure in R.
(i) DC(v) has zero Lebesque measure but it is everywhere dense.

(#ii) If 1 < vy < vy then:
DC(1) € DC(v1) & DC(v2) & DC(00) .

"With this notation we mean implicitly that v > 0 and v > 1 are given.
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1.3 Small denominators

In order to help proving the following Lemma 1.19 which concerns some arithmetical properties
relative to the so—called small denominators, we define now some auxiliary real functions.

Definition 1.17 Some auxiliary functions

(i) d:R — R the 1—periodic function, i.e. d(x + 1) = d(x), Vx € R, given by d(x) = x on the

interval (—3, 3].

AN A0 A
VARV IR VAR Ve

FIGURE 1.3: d(z) =z, Vz € (=%, and d(z + 1) = d(z), Vz € R

(i1) 1 : R — R given by l(x) = x — d(z), Vo € R.

I(x)

I
I
I
I
I
1 | I
1 | I
1 | I
1 | I
. 1 1
| 1 | I
| 1 | I
| 1 | I
I 0 Py L 1 I ! I 1
-5 -1 -0.5 05 1 15 2 25 3 3.5
[
[
|

FIGURE 1.4: [(z) =2 —d(z), Vx € R
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(iii) D : R — R defined as D(x) = |d(x)|.

FIGURE 1.5: D(z) = |d(z)|, Yz € R

o
REMARK 1.18
Observe that, from the above definitions, the following properties become obvious:
(1) d(x+1)=d(x) =z, Vz € (—%,%] andl € Z.
(2) d(z) =0 <=z € Z.
(3) l(x) € Z, Yz € R.
(4) D(—z) = D(z), Yz € R.
(5) 0< D(x) < 3, Vo €R.
(6) D(x) =0<=z € Z.
(7) D(z) = %@)x:L;lforsomekeZ.
(8) Vx € R, D(z) = |d(z)| = |z — l(x)| = Ilann |z — | which is the minimum distance from x to an
€
integer number.
Lemma 1.19 Small denominators
Let w € R\Q be any irrational number. Lets call
Dy = min |wk — |, k € Z
€T
and
D; = min Dy, neN.
1<k<n
Then:
(a) For every A >0, '
2™kt _ N > 2(1 + \)Dy, Vk € Z. (1.20)
()
Y i<2§(2m)# Vn € N m>1 (1.21)
2 g = %My e m 2 g |

o0

1

where ((z) = Z = is the Riemann zeta function.
k=1
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(¢) If, besides, w is Diophantine, i.e. w € DC(v,v), then for every A > 0,
2Rl _ X[ > 2(1 4+ A)y|k| 7Y, Vk € 2\ {0}, (1.22)

and

n
1 1
> T < 2¢0(2m)y~ 2 * ™ Yn e N, m > 3 (1.23)
k=1""Fk

Proof. Once w € R\ Q is fixed, we define the following sequences:
d, = dkw), keZ,
lp = l(kw)=kw—d, k€Z, and
Dy = D(k:w):\dk]:|kw—lk|:linzf;\kw—l\, keZ.
€

Due to the irrationality of w and the remarked properties of the auxiliary functions which were
described in Definition 1.17, Vk € Z , kw € R\ Q, —% < dg < %, di 20, and 0 < Dy < %
Notice also that D_j, = D, = DW,Vk € 7Z since D is an even function.

(a) On one side,

2™kt _ N2 = (1 — A% cos?(mkw) + (1 + \)? sin?(mhw), Vk € Z. (1.24)

Indeed,

2™kt _ N2 = | cos(2mkw) + isin(2mkw) — A = (= + cos(2mkw))? + sin?(27mkw)
= A — 2\ cos(2mkw) + cos?(2mkw) + sin?(2wkw)
= 1—2\cos(2mkw) + A% = 1 — 2\(cos? (mhw) — sin? (1kw)) + A2
= 1-2X\(1 —2sin®(7kw)) + A% = (1 — \)? + 4\ sin® (7hw)
= (1 —N?(cos*(mkw) + sin®(mkw))) + 4\ sin®(mkw)
= (1 —)\)?cos?(mhw) + ((1 — A)? + 4\) sin?(7hw)
= (1—\)?cos*(mhw) + (1 + \)?sin®(rkw) .

Thus, from (1.24), it follows that:

|2l _ X120 > (14 M) %sin®(mkw) = (1 + A2 sin?(nkw — 7l},)
(14 N2 sin?(r(kw — 1)) = (1 + \)?sin?(ndy,) , (1.25)

for every k € Z, since the square of the sinus is a m—periodic function and [ € Z.

Furthermore, since —3 < dy, < , dr # 0 then the following estimate

2 sin x
— <

™ €T

<1, Vxe (—g,g), x # 0,

can be applied to wdy.
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FIGURE 1.6: 2 < 8B <] Vg e (=2, 7), z #0.

So, we get: Vk € Z, % < % < 1, or equivalently:

sin(mdy,) -
— <7

VkeZ,2< (1.26)

k

From (1.25) and (1.26) we have, finally:
2™kt N2 > (14 M\)%4di = (14 \)%4D? Yk € 7Z.

Therefore,
2™kl _ \| > 2(1 + \)Dy, Vk € Z,

and (1.20) is proved.

8 Given n € N let us consider the set
{di,da,...,dy} .

These numbers are all different from each other in view of the irrationality of w.

Indeed, if dj = jw —l; = kw — l, = dj, for some j # k, then w = l;j{’“ € Q which is a

contradiction.

Since all of these numbers are different from zero, we can assume that p of them are negative
and the remainder ¢ = n — p are positive. Therefore, we can choose a permutation o € S, in
order to sort the set {dy,ds,...,d,} so that

)

N

1
T <o) <o) < <o) <O <dopi1) <dopr2) < < do(prg) <

8cf. [51] Lemma 2.1. p. 36 On Optimal Estimates for the Solutions of Linear Differences Equations on the Circle.

1
See also [50] Note on sums containing small denominators.
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where p 4+ g = n. For the sake of clarity we denote

a; = da(j)a j = 1,...,p (127)
Bj = da(p+j)7 j = 1,...,(] . (128)
3 o1 =do1) a2 =do(z)  ap =dy(p) v B1 = do(py1) B2 = do(pt2) Pa = do(ptq)

FIGURE 1.7: Sorting denominators {dy,ds,...,d,}.
Then, we can write for every j =2,...,¢q,
J
By = B+ Z(ﬁz — Bi-1)
i=2
Taking in account now the distribution of the positive values we have, for i = 2,..., j:

0<Bi—Bic1 = |Bi— Bi1l

|do(p+i) = do(pti-1)]

|Dcr(p+i) - Do(p+i—1)|

[(wo(p+1) = o)) — (wolp+i—1) = lygppi1)|
lw(o(p+1i) —olp+i—1)) = (Uspri) = lopri-1)l

2 minfw(o(p+i) —olp+i-1) |
= Il%m\wb(p—i—z) olp+i—1)|—1
= Dio@pti)-o(p+i-1)|
> min Dy =D, ,

1<k<n

since [o(p+1i) —o(p+i—1) € {1,2,...,n—1}.
Thus:

61+Z —Bil) > B+ (i —1)DE, Vi=2....q.
Furthermore, for j = 1 we have:

Bl = da(p+1 ‘d p+1)‘ o(p+1)
= min]wa p+1)—1

> min Dy =D,
1<k<n

since o(p+1) € {1,2,...,n}.

Hence,
B> jDp Vi=1,...,q. (1.29)
On the other hand, we consider now the negative values, o;j , j = 1,...,p , and argue with
them in a similar way. For every j =1,...,p — 1 we have,
p—1

aj = Z(ai — i) +ap
i=
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Now we have, for i = j,...,p — 1:

0>a;—ait1 = dy) — do(ir)

_|da(i - da(i+1)|
—[(wo (i) = o)) — (wo(i + 1) = lg@g1)]
—|w(o(i) —o(i+1)) = (o) — logirn))|

frlréiél lw(o(i) —o(i+1)) —

= —Ds@i)—o(it1)

IN

= —Dio(i)—o(i+1)|

— min Dy =-D?
1<k<n ne

IN

since |o(i) —o(i+1)] € {1,...,n —1}. Thence,

a; Z ai — 1) +op < —(p— §)Dj + oy -

Moreover,
ap = dop) = ’da(p)’ = —Ds(p)
= —min|wo(p) -]
leZ

< — min D, =-D’
> 1<k<n k n o

since o(p) € {1,2,...,n} and then,
0 < —(p—j+)D5 Vi=1,....p. (1.30)
To end the proof of this part we write:

n n n

1 1 1
ZW = Z QmZZ 2m

k=1""k iz Do) i do(k)
P n
1 1
= z :d 2m + z : 2m
j=1 %) j=p+1 Yold)
P q
1 1
j=1 "7 j=1"J
From (1.29) and (1.30) we have also:
1 1 1
< 4 L Yi=1,...,p, (1.32)
ajZm (p — + 1)2m D;Qm
1 1 1 .
7 n
Finally, from (1.31), (1.32), and (1.33) we conclude,
n q
1 1 1 1
; Dim ]; (p —j+ 1)2m ]; ij D;2m
P q
1 1 1
= -+ 5
Z 2 E : 2 2

IN
Do
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o0
as we wanted to prove’. Notice that the series ((2m) = Z T2m is convergent since m > %
k=1

(c) Tt follows directly from part (a) and the Diophantine condition of w.
w e DC(vy,v) = |wk =1 >~lk|™, Vk € Z\ {0}, € Z = Vk € Z\ {0}, D), = rlniZn]wk—l\ >
€
K| = [T — A > 2(1+ Ay k|
(d) The last part follows immediately from (b) and the Diophantine condition of w.
Indeed, if w € DC(~,v) then |wk — 1| > ~|k|™%, VkE € Z\ {0} and | € Z.

Thus, Vn € N, Dy = min Dy = min min |wk —1| > mln 'y]k| ¥ = ~yn~" and hence, by (b):
T 1<k<n 1<k<n l€Z 1<k

n

1 1 1
< 20(2m)—— < 2C(2m)y 2™ n*™  VneN, m > = .
> po < 20m) o < 2¢(2m)y ;

1 oo
IE. In particular, {(2) = kzz:l =l i and

Mg

“Recall that the Riemann zeta function is defined by ¢(z) =

?..
Il

e} 1 4
=Y -

k=1
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1.4 Cohomological equation

Theorem 1.20 Riilmann estimates

Let X € (a, 1) for some a € (0,1) and w € DC(v,v) be a Diophantine frequency'® satisfying the
Diophantine condition (1.19) for some constants v € (0,4+00) and v € [1,+00).
Let us consider the so—called cohomological equation:

u(l +w) —Au@) =v0),0ecT (1.34)

or some function u, where v € A, is given, with 0 > 0 and ||v]|, < co. Assume moreover that v
) 0 g ) e

is a zero-average function, i.e. < v >= / v(0)dOd = 0. Then:
T

(a) There is one and only one solution to (1.34), u € H(Int(T,)), with zero average. This solution
u can be expanded in Fourier series

u(z) = ape?™* 2 € Int(T,),
keZ

where Uy = 0 and
. Uk
Uk = e2mkwi _ )\

, Vk € Z\ {0}. (1.35)

(b) The series is absolutely and uniformly convergent in every strip T,_5, with 0 < 6 < p.

(¢) The solution u holds the following Rifimann estimate:
lulle—s < €ry ™17 |ulle, VO € (0, 0). (1.36)
where the constant €r = Cg(a,v) is independent of v, uniform in X\, and it is given by

1 /22T (2w + 1) 1 7 /T2 +1)

R (4m) 1+a3 (4m)” (137)
Note:
— 1 : : ,
((z) = Z W (Re(z) > 1), is the Riemann zeta function.
k=1

Proof.

(a) Assuming that such a solution u exist, notice that, by Lemma 1.9, both functions v and v can
be expandable in Fourier series since they are both analytic in a complex strip. If we consider
the Fourier expansions of u and v,

() = Te*™ (1.38)

kEZ

10Gee Definition 1.15.
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which is given, and

u(f) =Y tpe®™ (1.39)

keZ
which is unknown, then for every 6 € T, we have:
u(® +w) — Au(0) = v(0) &> Upe®™ I NN "Gt =) " et
kez keZ keZ
U (2™ — \) =y, Vk € Z.
Since A € R and w € R\ Q then Vk € Z \ {0}, e?™«i — X £ 0.

It turns out that the following formal solution is obtained. Let us define the series:

Ryv(z) = Zﬂke%k” (z € Tp—s) » (1.40)
kEZ
where g = 0 and R
—~ (%

In the next part of this proof we show that this series actually belongs to A,_s and it is,
therefore, the unique solution to the cohomological equation (1.34) with zero—average.

(b) In spite of the fact that the coefficients uy are well defined, one cannot assure the regularity of
the solution if the irrationality of w is the only property required. As we show here, a sufficient
condition for that regularity is the Diophantine character of the frequency.

If we take s € (—p,0) and z € T we can write z = x 4+ y¢ and then

o—|s|»

‘eQﬂkzz

_ ’627rk:(a:+yi)i

_ ‘eQkaie—Qﬂ'ky‘ _ 6—27rky < 627r|k|(,9—|s\)’ V2 e Tg—\s|'

It follows that:

|9%)\’U(Z)| — Z ak€27rk2i < Z ’ake%rkzi _ Z ‘ake%rkzi
kEZ keZ kez\{0}
_ Z Yk omkzi| Z o ki
= e2mkwi _ )\ - ’627rkwi _ )\|
kez\{0} kezZ\{0}
v —on|k||s|
< Z ﬂe%lk\(g—\s\) — Z |i}‘k|€27r|k|967
a |e2mhwi — Al |e2rkwi )|
kez\{0} kezZ\{0}

Using now the Cauchy—Schwartz’s inequality we obtain the following estimate:

1

D=

—47|k||s]
O I S e B D D T
kez\{0} kez\{0}
1 o—4mlk|ls| 3 9¢—4mlkl|s| :
< (QHUHQ)Q Z |e2mhwi — )2 = Z |e2mhwi — )2 o]l
keZ\{0} kezZ\{0}

= V(s) [lvlle
where the first factor has been bounded by means of Lemma 1.8. and
P (_Q7 Q) — R

o4 lk]ls i
s B(s)i= Y |e2mkwi _ A2 ()
kez\{0}
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As long as ®(s) is finite, all of the above inequalities hold. So, we are going to prove now that
®(s) < o0, Vs € (—0,0).

First of all, we express the denominators in the same way as in (1.24), namely:

2™kt _ N2 = (1 — A)% cos?(mkw) 4 (1 + \)? sin?(7hw) . (1.42)
Thus, we get:
B(s) = i 1 e~4m™lsl s e (—p,0) . (1.43)
= (1= A)?cos?(mnw) + (1 4 A)? sin? (mnw)
Let us call now A
Cp = ,neN (1.44)

(1 — A)2cos?(mnw) + (1 + A)2sin?(mnw)
and

Co=) cx,neN. (1.45)
k=1

We also denote
x: [L,+00) X (—0,0) — R
(t,s) — x(t,s) = et

Thus, ®(s) = Y _cnx(n,s), Vs € (—0,0).

n=1

As we have seen, if s € (—p, o) then:

Vz € Ty_ss [Rav(2)] < V(5) (], (1.46)

and we want to obtain an estimate of the square root of ®.

First, we prove that the function ® can be expressed in the following way'':

P(s) = Z Cn(X(”? S) - X(TL +1,5)), Vs € (_97 Q) . (1'47)
n=1
®(s) = Z cnX(n, s) = nh—>nc}o Z crx(k,s) = nh—{go <61X(17 s)+ Z(Ck — Cr—1)x(k, 5))
n=1 k=1 k=2
= nlgxgo (Z Crx(k,s) — Z Cr—1x(k, s))
k=1 k=2
n—1 n—1
= nhar{olo (CnX(n7 S) + Z CkX(k7 S) - Z CkX(k +1, S))
k=1 k=1
n—1
= nh—>n,olo (CHX(nv 3) + Z Ck(X(ka S) - X(k +1, 5))) :
k=1

"For this purpose we use the technique based on Abel’s summation formula.
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Now, by means of Lemma 1.19, we can see that

20(2)  _y 9
Cn < (1_+_(>\))2’}’ 2712 s (148)
and hence liﬁ\m Crnx(n,s) = 0.
Thus:
hm ZC’k x(k+1,s)) ZC’ —x(n+1,s)), Vs € (—o,0) , and

this is the expressmn (1.47) that we wanted to prove.

Furthermore, we deduce finally the following estimate:

B(s) < *QZW —x(n+1,8)). (1.49)

1+)\

To finish the proof of the finiteness of ® we can estimate the latter sum by an integral:

22U 22U + 2V8X
§ jn x(n+1,s) § s)dt = § j ,s)dt
< E — 222 (¢ 8)dt = — 22t 8)dt < — 2 22 (¢, 8)dLt.
_n:1 /n 8t( ’S) /1v at( ?S)d — 0 8t( 75)

The last integral is related with the gamma function:

I': {zeC:Re(2) >0} — C
z — I'(2) :/ * e % .
0

/ t2"8( s)dt = / Arr|s|t?ve4lsl gy,
0 ot 0

With the change of variable x = 47|s|t we have:

Indeed,

| =Ky = aals) > [ e o = (nlsh) 2T+ 1),
0 0

The convergence of the integral that defines the gamma function leads us to the finiteness of
®. In fact, from (1.49), we get:

B(s) < (123_(2)\))27_2(47T|s|)_2yf(21/ L) (1.50)
Since ®(s) < +oo, Vs € (—p, ) then the series given by Ryv in (1.40) converges absolutely
and uniformly in every compact subset of Int(T,) and hence represents an analytic function
in this open strip, which satisfies obviously the cohomological equation (1.34). By analytic
continuation R yv, analytic a priori in Int(T,_;) can be extended continuously to the boundary
of this strip 0T ,_s5. Hence, Ryv € A,_s, for every § € (0, o).

Taking in account (1.50) and getting back to (1.46) we finally obtain the desired estimate,
that is, for any 0 < § < o:

VIR LD v, sy

1
< <
vz € Toos, [Bav(2)] < V) Ivlle < 75~ 7y
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1 A/2¢2)T(2v+1)

Since 0 < @ < A and calling!? €p = Cr(a,v) = e (= IJ%G%W we have:
Ve € Ty g, [930(2)] < V/BE) lolly < €yl (1.52)

which leads to the desired Rifmann estimate (1.36).

REMARK 1.21

In what follows we will denote by u = Ryv the unique solution to a cohomological equation (1.34)
obtained under the same conditions as in Theorem 1.20.

In spite of the fact that Ryv € A,_5, V6 € (0,0), one cannot assure that Ryv € A, unless that it
is bounded in Int(T,) and hence extendable by continuity to the boundary of the strip.

Corollary 1.22

Let p € (0,1/2), v >0, v>1, A >0, and w € DC(, V).
Ifve Ay, then

Im =m(y,v) € N, such that V6 € (0, ), ||RV]|o—s <6 "|[Ulo < 2070, - (1.53)

REMARK 1.23

More specifically, we can take m € N such that
lo my/T(2v+1)y ™1
&\ T vy
log 2

m> v+

Proof. Let a € (0,1) such that a < A < 1. By Theorem 1.20 we know that there is a unique
solution u = R)\v to the cohomological equation

u(f) — (0 +w)=1v(0), 0 T,
and u is extendable analytically to the complex strip T,_s, V8 € (0, o), being ||ul|,—s < €ry~ 157 |[7]],-

Let us call O(y,v) = (a + 1)€xry~! = %'

Since a € (0,1), €g < (a+ 1)€g. Therefore, €xy~1 < C(v,v). It follows that
V6 € (0,0), [Rvllo-5 < C (v, )07 [0l

We need to find m € N sufficiently large so that C'(y,v)d™" <57, ie. §™ 7 < ﬁ

2Recall that ¢(2) = Z .

3Gee also Definition 1.24.
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Since we have taken o < 1/2, then §™™" < WL,. Hence, if Qm%l, < ﬁ, then the condition

holds. So, we must solve the unknown m € N of the latter inequality. Thus,

log C (v, v)

>
v log 2

With this value of m € N we have, finally:
V6 € (0,0), [Ravllo-s <070l

and |7, < 2[lv],. 0

EXAMPLE

Ifw= 1+2‘/‘F’, then w € DC(v,v), withy = -2+ 5 and v = 1.
Thus, C(y,v) = ¥8(2 + \/(5)) ~ 0.864683755051501...

With these values we obtain,

log(C(v,v))

>1
" * log 2

= 0.790244490531274...

For instance, we can take m = 1.
If we choose 0 < o < %, it turns out that

193x3llg-5 < 6717l , V0 € (0, 0).
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1.5 The cohomological operator

According to Theorem 1.20 we can define an specific operator related with the solutions of
cohomological equations.

Definition 1.24 Cohomological operator

Given 9 > 0 and w € DC(~,v) with v > 0 and v > 1, we define for each X > 0 and 6 € (0, o),
the so—called cohomological operator Ry over the space of analytic 1-periodic functions with zero—
average A, (endowed with the uniform convergence topology) by:

Ra: Ago — Ag_&o
v — Ryw: T,5 — C

Uk 2rkzi
2= )= ) e

keZ\{0}

(1.54)

Proposition 1.25 Properties of the cohomological operator

The cohomological operator Ry (see Definition 1.24) holds the following properties:

(i) My is well defined and for each v € A,o, Ryv is the unique solution in A, 5o for any
0 € (0,0) to the cohomological equation:

u(f +w) — Au(f) = v(0), V0 € T. (1.55)

(17) V6 € (0,0), R € L(Ay0, Ap—s50), i-e. it is a continuous linear operator.

(7i1) Let
2)\ : -AQ:O — A@o
u — Lyu=uoR,— Iu (1.56)
where R,(0) = 0 + w is the ergodic rigid rotation with the Diophantine frequency
w € DC(v,v).
Then, the compositions Ryo Ly : Ayo0 — Ap—s0 and £xoNRy : Ay o — Ap—s50 are well defined.
Moreover:
(9%,\ o S)\)u = u|1rg_6, Yu € .AQ,() s (1.57)
(ExoRN)v = v, Yv € Ao - (1.58)

() Ifv e Apyp is real for real values, so is Ryv.

Proof.

(7) This can be seen at once from Theorem 1.20.

(7i) The linearity of the cohomological operator Ry is obvious from the linearity of the Fourier
coefficients. The continuity follows from (1.36).

(13i) Let u € Ayo. Then, £yu € A, since £yu = uo R, — Au is analytic in T, and also
has zero average, by the 1-periodicity of u. Therefore, (M) o £3)u € Ay_s0. Let us call
u* = (Ry o £))u. We want to show that u* = ulr, ;.
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u* is, by the definition of %) the unique solution in T,_s to the cohomological equation
w(f +w) — Aw(f) = Lru(h),
but
u(f +w) — Au(f) = L\u(0), V8 € T,,.
In particular,
u(f 4+ w) — Au(f) = L yu(0), VO € T,_;.
Therefore, u*(0) = u(0), v0 € T, s, i.e. u* = ulr,_;.

For the second part, let v € A,o9. Then Ryv € A, 50 and (£) 0 Ry)v € A, 50 since
(£xoRy)v = Lr(Ryv) = Ryw(f + w) — MR v(0) and by the linearity of the average:

< (LroRy)v >=<R)(voRy) > —A <Ryv >= 0, inasmuch as < v >= 0.
Let us call v* = (£) 0o Ry)v. We want to show that v* = v|r,_;.
We argue V0 € T,_;:

v*(0) = (LxoRN)v(0) = Ryv(0 +w) — AMR)\v(6). By the definition of Ry, Ryv € A,_s is the
unique solution to the cohomological equation u(6 + w) — Au(f) = v(#) in T,_s.

Therefore, V0 € T, s, v*(0) = Ryv(0 +w) — MR\w(0) = v(0), i.e. v* = v, ;.
(iv) Assume that Vz =z 4+ yi € T,, with y =0, Im(v(2)) = 0. Then,
(a)

U(9)€*2ﬂ'k0i de = /1}(0)6271'1691 d@ :/,U(G)EQTF]CGZ da
T T

v(0)e 2 R gg =5, Vk e 2\ {0}.

S—5—

(b) e2rhwi _ \ = e2rhwi _ X = e=2mhwi _ )\ — @27(=k)wi _ \ ‘gince A is real.

(C) e2mkzi — o—2mkzi _ 627r(—k)zi.

From these three facts we get:

Uk ‘ [ —
M) = ) g ™= )
ke (o) © A kez\{o} € A
v —k)zi v Tkzi
= Y e = Y e = R
kez\{0} keZ\{0}

In other words, if z is real, Ryv(z) is real.

Next proposition shows two slightly different ways to estimate some cohomological operator cor-
rections.
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Proposition 1.26 Cohomological operator correction estimates

Let A\, )\ € [a, é] for some a € (0,1) and w € DC(v,v) be a Diophantine frequency'® satisfying the
Diophantine condition (1.19) for some constants v € (0,4+00) and v € [1,+00).
Given o0 > 0, let us consider the cohomological operator':

Ry Ao — Aysp

v o Ryw: Ty — C R L5
R _ Uk 2mkzi ( ’ )
z — /\U(Z) Z 627rk:wi _ )\6 ’

kez\{0}

where the series is absolutely and uniformly convergent in every strip T,_s5, with 0 < < o.
Let us denote AN = X\ — \ and ARy = R5 — R).
Then, the following properties hold, for every v € A,p:

(a) ARYv(2) = ANRR\w(2) V2 € Tyons, VI € (0,10).

(0) AR5 < [ANCE A6 o], ¥6 € (0, 3),
EONezD)
(

where € = Tra g

is the Rif$mann constant.

(o) AR5 < [AN €Ly 2672 |ully, V6 € (0, 0),
11 V/2C4)y/Tr+1)
) .

2 (14a)? (4m)2v

ko
where € =

is independent of v and uniform in X and .

Proof.

(a) Let 0 € (0, %Q) and v € Apo. Then, AR\ = Ry — R\ € A,50. Now, take 0" = p — 9 and
u=MR\v € Ay o. Applying (1.57) we obtain:

Ry 0 Ly)u=ulr,._, ,

that is,
(AR5 0 £5)AR\v(2) = ARyv(z), Vze T, 9, (1.60)

since o* — & = p — 20. Moreover, developing the first term of (1.60) and using the definition
of the left cohomological operator £5, we can write:

(AR50 £5)ARww(z) = R5(L3R;5v(2) — £5R\0(2))
= Ry (v(z) — (Rw(z +w) — MR (2)))
= 9 (0(2) — (Rau(z + @) — (A + ANT(2)))
= R;(v(z) — (Rav(z +w) — AMRyv(z)) + AR v(z))
= R;(v(z) —v(z) + AR \v(2))
= R (ANMR\v(2)) = AR R)\w(2) .

Gee Definition 1.15.

5See Definition 1.24.
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Notice that, since v € A, 0 € Ap+ 0, then by (1.58),
LR50(2) = v(2), Vz € Tye_s.
Summarizing,
AR\v(z) = AAXRR\(2), Vze Ty, (1.61)
as we wanted to prove.
(b) Let ¢ € (0, %Q), 0* =p—90,and v € A,o. Then, by part (a) and applying Theorem 1.20
(Rufmann estimates) twice, we have:
[AR\|[gr—5 = [[AAR R gr—s
= [AXN9R5
< |AXNCryto
= |A)| 637_15_”]\9%,\1)”@_5
< AN Cry oV E Ryl
= AN €k 207 o], (1.62)
i.e. 1
1A% ][o-25 < |AN €hy ™25~ |[ull,, V6 € (0, 0). (1.63)
(¢) The proof of this part is carried out, in some sense, in a parallel way to the one of the previous

Theorem 1.20 (Riiflimann estimates). First of all, we know from the above theorem that

SR,\’U(Q) = Z Uil.{e%rkgi s RS Tg_g

e27rl€wz -\
kezZ\{0}
and .
v
%S\U(Q) = Z 27rkwliC 27Tk91 0 = TQ g
e — )\
kezZ\{0}

are the unique zero—average solutions to the cohomological equations
u(d +w) — Au(f) = v(0)

and B
u(d +w) — Au(f) =v(0)
respectively.
It follows that the difference of the cohomological operators applied to a given zero—average
function v € A, is given by:

AR (0) = Rsv(f) —Riv(d)

_ Z 1 . 1 ) e27rk9i
- e2mkwi _ ) e2mkwi _ )\ k

keZ\{0}

_ A=A . ork6i
- Z (627rkwi _ 5\)(6271'1%.:1' _ >\) Uk €

keZ\{0}
= Uk 27k0i
— A)\ Z eQﬂkwl _ )\ (627Tkw7‘ - )\) € . (164)
keZ\{O}

Notice that (1.64) fits with (1.61) obtained previously in part (a).
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Again, if we take s € (—p,0) and 0 € T,_,, we can write § = x + yi and then

o]

2wkOi
‘6 o—|s|*

_ ’ 627rk(x+y1)2

_ ’627rka:i€7271'ky’ _ 6727rky < 627r|k\(gf\s\)’ Vo €T

Therefore,
e 2mlk[ |s]

AR ()] < AN D o] ¥ IHe (1.65)

2mkwi _ ) 2mkwi _ \|°
rCZN (0} le Al le Al

By the Cauchy-Schwartz’s inequality and applying also Lemma 1.8, we have:

2

N

—AmlK]Is|

ARw@] < 1AM D [l D e
keZ\{0} keZ\{0}

1 6747Tn|s| %
S |A)\| 2||UH 2 Z | 2mnwi __ 5\|2 |e27rnw'i _ )\‘2
1
ee] 2
2/a) (Z e s>> ol (1.66)

-

n=1

where )

= S , ,neN

¢ |627'rnw1 _ )\’2 |627'rnw1 _ )\|2 n
and

X ¢ (07 —|—OO) X (_Qv Q) — R
(t,s) — x(t,s) == e~ 4tsl
Let us denote Y(s chx (n,s), s € (—o,0). Thus, (1.66) is written as
IAR0(0)] < AN VTS 0], Y0 € Typy 5 € (—0,0) - (1.67)

Our aim now is to obtain an estimate for Y(s).

Let (Cy)nen be the sequence given by

n

Cn=)Y cx,neN. (1.68)
k=1
By the argument of the Abel’s summation formula'®, we can write:
[ee] oo
= ZCnX(n7 S) = ch(X(na ‘9) —X(1’L—|—1,8)) ) (169)
n=1 n=1

whenever le Crnx(n,s) =0.

!6See Theorem 1.20, part (c), (1.47) .
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Notice that

1
n |e27rnwi _ 5\‘2 |627rnwi _ )\‘2
B 1
(1= N)2cos?(mnw) + (1 + )2 sin?(mnw)
1
(1= N2 cos?(mnw) + (1 + A2 sin?(rnw)
1 1
< = : 1.70
= (T4 X)2(1 4 A\)? sin*(mnw) (1.70)
Therefore,
G = Yo=Y
|62ﬂ'sz _ )\’2 |627rsz _ )\‘2
<
1+ A)? Z sin? 7rkw
As it was seen in Theorem 1.19, sin?(rkw) = sin?(nd},). Then, from (1.26) we have:
ravvarmali - < = = — (1.71)
; sin(mkw) ; sin(7dy) ; 42d3 Z 42D4 42 kg
and hence
1 1
C, < — — — . 1.72
T (N2 +N)? 42;D% (172)
We now make the following claim!:
Z — )y VneN. (1.73)
k=1 k
Joining (1.72), and (1.73),
) < ! L oc(ayytnt (1.74)
n = N 5 n . .
1+ N2 +a2az 7
This inequality implies that
lim Cpx(n,s) < ! i2C(4)’)/*4 lim n*e~4m™lsl =
n—soo ’ - (1 + )\>2(1 + )\)2 42 n—00 ’
which proves the veracity of (1.69).
Moreover,
1 1 —4 4V
T(s) < — - Zn —x(n+1,5)). (1.75)

n fact, this inequality is a particular case of (1.23) for m = 2, see Lemma 1.19 Small denominators.
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From (1.67) and (1.75) we obtain: V0 € T,_|,

o0

2¢(4)~* )
T N0 +)\)2nz:”4 (x(n,5) = x(n +1,5)) |[vll,

1
[ARw(0)] < QA)\J@(

2(1+ M) (1+A)

1 |AN]
f—\/ 4)y~ JZW”(X(H,S) —x(n+1,5)) [[v]l,-
It only remains to estimate the series:

ZOO 4 ZOO av s Ix

n (X(TL,S) —X(TL+1,S)) = n:1n /n _8t (ta S)dt
0 n+1 o 0 n+1 o

_ o 49X < _ 4w 9X

= E /n o (t,s)dt < nE:1 /n t 5t (t,s)dt

ox Ox
4v < 4v )
= /1 —t . —(t,s)dt /0 —t . ——=(t,s)dt

The last integral is related with the gamma function:

' {zeC:Re(2) >0} — C
z — I'(z2) :/ * e % .
0

o0 a [e.9]
Indeed, / v IX (t,s)dt = / Arr|s|tt e AmIslt gt
0 ot 0

and with the change of variable x = 47|s|t we have:

/ —t4”(?9>t<(t, s)dt = (47T\s|)4”/ s e dx = (4n|s|) "W T(4v + 1) .
0 0

Thus,
Zn4” x(n+1,s)) < (4n|s)) " #T(4r +1) .

Finally, introducing (1.77) in (1.76) we get:

1 AN
ARO] < iy VIO VAR 1) o)
— 1 LA)" \/QC \/F v + 1) —2|S|—21/ ||U||
2(14+N)(1+N) (4)2v ¢

In particular, if § € (0, ¢) and taking limits in (1.78) as s — 0,

P |AN| V2¢(4)/T(4v + 1)
T 21+ N(14N) (4m)2v

| AR\ ()] 27 ol

Since \, \ € (a, é), (1+5\)1(1+A) < (Hla)Q and we may write: V8 € (0,0 —9),6 € (0, o),

1 /2¢(4)y/T(dr +1)
(1+a)? (4m)2

2 ol

1
ARw(0)] < 5|AN

(1.76)

(1.77)

(1.78)

(1.79)

(1.80)
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Denoting
. L1 /T )
¢h = Chla,v) XL T : (1.81)
we obtain finally:
ARN0(6)] < [AN €y 252 [[oll,, VB € (0,0 - ), 5 € (0,0), (1.82)
or equivalently,
[ARvl,m5 < [AN €57 2672 [Joll,e 6 € (0,0). (1.83)
O

REMARK 1.27

We should make a comparison between the constants €r and Cp in order to determine whether
estimate (1.63) is sharper than estimate (1.83).

To do this we must make the comparison in the same complex strip.

Let 6 € (0, %g) On the one hand, we have by Proposition 1.26 part (b),

|ARyol-25 < [ANCE 252 ] (1.84)
On the other hand, since 20 € (0, 0), then by Proposition 1.26 part (c),
AR V]|p-05 < [ANCE 272 77267 v, (1.85)

Thus, the comparison that we must carry out must be made between Q% and € 272,

1 2¢(2)I'(2v+1)
€2 Tra™ (407 22V__\/8¢(2PI(2V-+1)224V

¢, 272 11 2C(H)T(4v+1) C(4)T(4r +1)
2 (1+a)? (4m)2v

2
2
8 <?> F(QI/ —+ 1)224V B \/5 . 94v+2 F(?I/ 4 1)2

T (4v +1) [(dv +1)
= o TR BB an s

We have used the property: I'(z + 1) = zI'(z), for Re(z) > 0.
Moreover, a good approzimation for the gamma function is given by Stirling’s formula:

I(z) = \/? Y (1 +0 <i>> (Re(z) > 0). (1.87)

From (1.86)and (1.87) we obtain:

or (2v\
Q:%% 200 - 241/F(2V)2 20”@ (?V) 24
¢ 272 ['(4v) 2 (41/)41/

= W = (8007v)T (v >1). (1.88)
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2
FIGURE 1.8: gty = /200 - 20 5E ~ (800m)

Q;E 2—2v

e I'(2v)2

= /200 - 202

Ch o~ (800m)T

AP

© o0 N O Ot e W N

—_
o

7.3029674334022152

8.5523597411975807

9.4158381813839949
10.0917315582136773
10.6540732633396313
11.1393301229580857
11.5683888457418096
11.9544238169449581
12.3063245811731967
12.6303967775344343

7.0804354027573764

8.4201041582762297

9.3183770339577983
10.0132477740860892
10.5877204500288240
11.0814802690605649
11.5168702727403698
11.9078254972283375
12.2636738572851822
12.5909924908340898
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text file in which the results will be

Juan
’

maximun value of the nu variable to be considered

January 2022
'filename_table.tex'
’

written in LaTeX code
numax

RussmannRatioTable.m

Pello Garcia,

PhD

Author
Subject
Date
File
Input

46

with

(tabular)

and the Stirling approximation

o
—
Q
©
)
©
(5
o «©
D
(0] =
o ©
o} 2
o N 19
— =
[l — o
< 2] o
+2 a
o
e o~ =
) | G
A - e
= < 7]
o~ 5]
— —~ 3
X x M
[0) <N
R
-0 | — O
~ g 0 <
£ - ~ <
0 5~ 3 0
4 N g o0
A O < 5]
HOO oM A
| Q4
X 0 0 o
v 0 (et
= 4 <o g
g o 3 o O
a4 P a~-0
«©
-
i) 0
=] Q9
Q s}
2 IS
=) >
o &}

R e

RussmannRatioTable ('filename_table.tex', numax)

Syntax

o

RA*\\:
RA*A\N\: !

i

R*2}{\\mathfrak{C}

\\sgrt{20\\nu\\cdot 2~ {4\\nu}\\frac{\\Gamma (2\\nu) ~2}"'
R*2} {\\mathfrak{C}

27 {=-2\\nu}}\\simeq (800 \\pi\\nu) *{\\frac{1}{4}}$ \\\\\n']);

fprintf (fichero, '&&\\\\ \\cline{1-3}&&\\\\\n");

L16E£$ \\\\[2mm]\n", ...

Writing the header of the table
k,RussmannRatio (k), RussmannRatioStirling(k)) ;

fprintf (fichero, '\\begin{center}\n');
Writing the foot of the table

Opening the output file

o
5
%

.16£$ & $%

;

.*gamma (2*nu) .~2./gamma (4*nu) )

;

$%d$ & $%

RussmannRatioTable ('RussmannRatio.tex',10)
.M (1/4)

RussmannRatioStirling(t)

RussmannRatio (t)

fopen (filename, 'w')

1:numax

'{\\Gamma (4\\nu) }}$ & $\\frac{\\mathfrak{C}

fprintf (fichero, '

h(t);

@ (nu) sgrt (20*nu*2.” (4*nu)
h(t);

Example
2~ {-2\\nu}}
@ (nu) (800*pi*nu)

format long

function mu
function mu

function RussmannRatioTable (filename, numax)
fprintf (fichero, '\\begin{tabular}{|clrlr|}\n");
fprintf (fichero, '\\hline\\cline{1-3}&&\\\\ \n');
fprintf (fichero, ['$\\nu$ & $\\frac{\\mathfrak{C}

fprintf (fichero, '\\end{tabular}\n');
fprintf (fichero, '\\end{center}\n');

fichero

format long

for k

end

fprintf (fichero, '\\hline\n");
fclose (fichero);

h

mu

h

mu:

%



The cohomological operator 47

Corollary 1.28

Let 0 >0, meN, ae (0,1), X € [a, %], w € D(v,v), and § € (O,%ﬂg).
The following estimates hold, Yv € Ay_mso:

(a)
B0 (O)] < Cr 75 ollgmns. V8 € Ty (1.5
o) 1
Roav(0)] < (m+1)"Cry™ 0 |[vllg-ms, VO €T m_pps. (1.90)
(c)
Rav(0)] < (m+1)"€r ’y_lg_”HvH%Q, v € T. (1.91)
Proof.

(a) First, fix any § € (0, #HQ) and call o* = 9 — md. According with Theorem 1.20 we know
that for every 0* € (0, 0*),

Br0(6)] < Cry ' (6) ol VO E Ty (1.92)

Notice that due to our choice we have 0 < § < #_HQ <o"=p—mb < p.

Therefore, if we choose * = ¢ in (1.92), we obtain

Br0(0)] < Cr v 6 ollgms, V8 € Ty minys: (1.93)

b) If we choose §* = —t—p in (1.92), we obtain
m—+1

[FRav(0)] < (m+ 1) Cry 0" [Vllo-ms, V0T s (1.94)
(c) Taking limits in (a) or (b) as § — #H 0~ we get straightforward the desired result:
B (O)] < (m+ 1€y g ol 1, VOET. (1.95)
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Chapter 2

Invariant curves in 1-D
skew—products

In this chapter we face up to the initial objective of this work. Our aim is to design a KAM
procedure to demonstrate the existence of invariant curves for one—dimensional quasi—periodic
skew—products under certain non—-degeneracy conditions. We will use the translated graph method
for the very particular frame in which the base is the torus, T = R/Z, and the fiber is the real
line, R, giving sufficient conditions for which the Newton—like method to be designed converges
quadratically, and thus formulate them in a posteriori format. The challenge, on the one hand, is
to fertilize the land for the creation of a methodology for the study and classification of bifurcations
of invariant curves related to perturbations of this kind of skew—products, and on the other hand,
implement numerical methods of representation. We will employ all the tools which were described
in the corresponding sections (as the invariance equation, topological and linear conjugacy of skew—
products, small denominators and cohomological equations,...)! plus new ones (as linearization
of a skew—product, reducibility, the translated graph method itself, and KAM theory). We start
describing in detail the setting with the explicit conditions that we assume for granted henceforth.
Consider a quasi—periodic skew—product of the form:

Pp: TxR — TxR

0,2) — »(0,2)=(0+w, f(0,1)), (2.1)

where the frequency is given, w € DC(v,v), and it is Diophantine with constant v > 0 and class
v > 1, and the function f: T x R — R is real analytic in T x R.
In other words, we can think of f as the restriction to T x R of a function

f:ToxUCC—C

which we denote in the same manner, taking real values for real arguments and such that for every
k € A, the composition f o (It, xx) € A, is also a real analytic function on the same strip T,.
Notice that for every = € R the restriction to the one dimensional torus

f(oyz): T — R
0 — f(6,x)

is a real analytic function, i.e. f(-,z) € A,, Vo € R.

!See Appendix I. and Chapter 1.
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Once we have established this starting point, we want to find sufficient conditions in order to prove
the existence of invariant curves for this kind of skew—products, namely, functions x : T — R
such that the invariance equation,

£(0,5(0)) = k(0 +w), VO €T (2.2)

holds?.

Henceforth, our challenge consists, briefly speaking, in proving the following result:

If we have a good enough approximation of an invariant curve with frequency w, then, under
certain non—-degeneracy and non-resonance conditions, there exists a true invariant curve nearby.
After finding such conditions, we also analyze the regularity and local uniqueness of these invariant
curves.

REMARK 2.1
Let us assume the specified properties for f.

o Ifo =1xk eI'(T,R) is a cross section with k € A,, then foo € A, as well.

o If
E: T, — C
0 — E0)=f(0,k0)) —rO+w)

is the so—called error function related to 1 w.r.t. k and k € A,, then E € A, too.

®Recall that this is equivalent to the existence of a cross section o € T(T x R) such that 1) o0 = 0 0 R., (see
Definition I.15 and Proposition 1.16). We know that, under these conditions, the invariant section is of the
form o = It XK.
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2.1 Linearization of a skew—product

Before going on to describe the translated graph method, we dedicate this section to providing
the specific definition of linearization of a skew—product.
Let us consider a skew—product of the form

p: TExR® — T¢xR®
(0,2)  — P(0,2) = (p(0), (0, ),

where ¢ : T¢ — T? is a diffeomorphism and the function
f: T*xR* — R"
satisfies:
(i) feco(T,R™);
(ii) If we consider the fiber maps

fo: R* — R" (
v folz) = f(6,2)

then fp € CK(R™) (k > 1), VO € T

0 cT?),

Fixing some # € T and applying the Taylor expansion of 1)y = 9(6, -) about ¢ € R™, there exists
r > 0 such that for every h € B(zo,r),

vo(zo+h) = (o) + Dibg(zo)h+ o([|h]?).

Equivalently,

(0,20 +h) = (p(0), f(0,70)) + (0, Daf(0,70)h) + O([[(0,h) |3 )
= ((0), f(0,20) + Do f(0,20)h) + O(|[(0, k) |2 n) -

This fact gives rise to the following definition.

Definition 2.2 Linearization of a skew—product

We call linearization of the skew—product (2.3) at a point xg € R™ to the linear skew—product given
by
Dy(zg): T¢xR* — T xR"
(071‘) — D¢($0)(9»$) = ((,0(9),D$f(9,5130)«'17) ;

This definition can be extended to a map parameterized by k : T¢ — R™ in a way that the
linearization of (2.3) about k is the linear skew-product

(2.4)

Dy(k): T¢xR* — T¢xR"

(0,2) > DY(e)(6,2) = (9(0), Daf (0, 5(6))a) (25)

<

Thereby, the dynamics of ¢ at a point xg (resp. about a map k(6)), is determined by the linear
skew—product given by its linearization, Di(xg) (resp. D(k)).
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2.2 Reducibility and the Lyapunov exponent

We set aside for a while the translated graph method in order to define, in this section, the
reducibility property for linear skew—products in general, give a characterization, and thereafter
we return to it. Furthermore, we prove here that one-dimensional non—singular quasi—periodic
skew-products are always reducible®.

Definition 2.3 Reducibility for linear skew—products

Let (p,7) be a linear skew—product defined over the trivial vector bundle* (E = B x F, B, w, F),
with
Yv: BXxF — BXF
(0,z) — P(0,z) = (e(0), m(0)x)
where ¢ is a homeomorphism of B and m : B — M, (K) is continuous.

It is said that (p, 1)) is reducible if it is linearly conjugate to another linear skew—product (p, {/;) of
the form:

(2.6)

Y: BxF — BxF

(0,2) — 9(0,2) = (3(0), Aa) (2.7)

where A € M,,(K) is independent of 6, namely it is a constant n x n—dimensional matriz, being
n = dimg (F).

REMARK 2.4

A linear quasi—periodic skew—product of the form
(0, z) = (0 +w,m0)z), (§,z) € T¢ x R"

is invertible if and only if det(m(6)) # 0, VO € T9.
This is an immediate consequence of Proposition 1.19. Furthermore, in this case the inverse is
given by:

Y0,2) = (0 —w,m(0 —w) tx), (0,x) € T? x R".

In the one dimensional case, n = 1, the condition for the invertibility becomes into
m(0) #0, ¥ € T<.

Such an invertible skew—product will be referred from now on as a non—singular skew—product.
Notice that, by continuity, m(6) > 0, V0 € T¢ or m(0) < 0, V6 € T?. Henceforth, we may
assume that m(0) > 0, V0 € T without mentioning it. This assumption will not entail any loss of
generality in what has to do with our challenges.

3This property will allow us to make a change of variable in the system (3.5) that will lead us to obtain solutions
by means of cohomological equations.

4Here we assume that F is a topological finite dimensional K—vector space with K =R or K = C,
and n = dimg (F') < co. The base space B is a topological space.
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Definition 2.5 Lyapunov exponent

Let us consider a linear quasi—periodic skew—product over the real line defined by

Yv: TxR — TxR

(0,2) — P(0,x)= (04w ,m0)x) (2.8)

where m : T — R is continuous and positive, and w € DC(v,v) is Diophantine®.
The Lyapunov exponent of the linear skew-product (2.8) is defined® as

A= /Tlog(m(é)) do . (2.9)

We say that ¢ is a non—singular quasi—periodic skew—product if its Lyapunov exponent is finite.
o

Theorem 2.6 Reducibility of one-dimensional skew—products

Every non—singular one—dimensional linear quasi—periodic skew—product is reducible.

Proof. Let (p,1)) be a linear quasi—periodic skew—product defined on the cylinder T x R, that is,
¢ = R, be an ergodic rigid rotation with a Diophantine frequency, w € DC(~,v), and

Yv: TxR — TxR
0,2) — (0,2) = (0 +w,m@0)z) °

with m : T — R a non—vanishing continuous function.
We have to prove that there exist another linear skew-product (h, H) which is invertible and
conjugates (¢, 1) to the quasi—periodic skew—product (g, ) given by:

v: TxR — TxR
(0,2) — P(0,2) = (0 +,m(0)x)

and such that m(f) = X is a real constant, independent of . We are going to show that (h, H)
can be chosen also to be quasi-—periodic, that is, h(f) = 0 + v, and

H: TxR — TxR
0,z) — H,2)=@+v,c0)x)

with ¢ : T — R a non-vanishing continuous function, since H must be invertible’.

According to Proposition I1.27, and translating terms to this case, (R,,%) and (Rg),@z) are
linearly conjugate, by means of (R,, H) if and only if the following conditions hold:

5See Definition 1.15

n—1
5Tn fact, the Lyapunov exponent is defined as limsup — log H m(0 + jw), but this limsup, when m(0) never

vanishes, does not depend on 6 and coincides with the value taken in our definition.This is a consequence of the
unique ergodicity of irrational rotations on T and the Birkhoff Ergodic Theorem. cf. [19], [38].

"In fact, we can chose v = 0 and ¢(6) > 0,V0 € T.
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(i) ¢(@) #0, V8 € T,
(ii) Rg =R, ' oR, o0R,,ie R, and Ry are topologically conjugate in T, by means of R,;
(iii) m(0 + v)c(f) = c(0 + @)\, VO € T.

Since R, = R_,, condition (i) holds if and only if @ = w, no matter the value of v.
Then, condition (4i) writes

m(0 +v)c(0) = c(0 +w)\, V0 € T. (2.10)

which is equivalent to
m(@)c(@ —v) =c(@ —v+w)A, VO eT. (2.11)

Taking natural logarithms in this equation we have:
log(m(0)) + log(c(6 — v)) = log(c(0 — v + w)) + log(A), VO € T. (2.12)

Choose A = e, where A is the Lyapunov exponent of the linear skew—product (R,,,), that is,
A= / log(m(6)) df, and define the following functions:
T

u(@) = log(c(d —v)), (2.13)
v(0) = log(m(6)) — A. (2.14)

Notice that v is a zero—average function which is known. Indeed,
<v> = /U(G) df = /(log(m(&)) —A)do = / log(m(#)) do — A/ db
T T T T
= / log(m(#)) dd — A =0.
T

Moreover, (2.10) is equivalent, by means of (2.11), (2.12), (2.13), and (2.14), to the small denom-
inators equation:

u(l +w) —u@)=v(), 0T. (2.15)

As long as the frequency w is Diophantine, that is, it satisfies the Diophantine condition (1.19),
the small denominators equation (2.15) has only one solution with zero average, which can be
denoted by u(f) = Riv(f). Namely, according to Theorem 1.20, u is a 1-periodic function
which is defined by its Fourier expansion:

ul@) = > Ge™ (9eT), (2.16)
kezZ\{0}
where R
—~ Vg
U = o Yk € Z\ {0}, (2.17)

Here, v}, represents the Fourier coefficients of the function v defined in (2.14), that is:

P —27k6i _ _ e—27rk9i
5 = /T o(0)e—201 g — /T (log(m(8)) — A) d

= / log(m(6))e~ 2™ % dp — A / e~ 2k qp
T T

= /log(m(e))e_%kgi e,
T
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since / e ™0 4p =0, Vk € Z\ {0}.
T
Thus,
/log(m(ﬂ))e%k‘% dg
T

u(f) = Ryv(0) = ™0 (g e T) (2.18)

e2mkwi _ 1
keZ\{0}
Finally, we have, from (2.13):
c(f) = e+ (2.19)
where wu is given by (2.18) and v € T can be chosen freely. To end the proof, we define:
HO,z)=(0+v,c(0)x), (0,z)eTxR, (2.20)

and we only need to check that QZ =H 'oyoH.

Indeed, from (2.10) and the fact that H=1(,z2) = (0 — v,¢c(0 — v)~tx), V(0,7) € T x R we have:
(H opo H)(0,0) = H\@(H(0,2)) = H- (0 + v, c(0)x))

HY0+v+wm@+v)cd)z)

(O+v+w) —v,e((0+v+w) —v) 'm0+ v)c(f)x)

0+ w, (0 +w) " tm(0 4+ v)e(0)z) = (6 4+ w, \x)

= ¢(0,z), ¥(0,2) €T xR,

and the proof is complete. O

REMARK 2.7

In the above exposition, we have proved the reducibility of a one dimensional non—singular linear
quasi—periodic skew—product. Furthermore, we have seen that the frequency v € T can be chosen
freely. In practical cases we will take usually v = 0. With all, we can restate the results obtained
summarizing them in the following way:

Given a one dimensional non—singular linear quasi—periodic skew—product,

Pp: TxR — TxR
0,z) — YP(b,x)=0+wm(@)z)

where w € DC(v,v) is Diophantine, if m : T — R is a continuous positive function, there exist a
positive constant X > 0 which is called reducibility constant or Lyapunov multiplier and a so—called
Floquet transformation ¢ : T — R, which is continuous and positive, such that the skew—product
1 is linearly conjugate to the one of the form.:

v: TxR — TxR
0,2) — P(0,2)=(0+w,\x)
where A = c(0 + w) " m(0)c(0) does not depend on 0.

More precisely:
A=eM, with A = /Tlog(m(e)) do (2.21)
the Lyapunov exponent of 1 and
c(0) = e (2.22)
with u(0) = Ry (log(m(0)) — A), that is:
/Tlog(m(ﬂ))e_%km dd

u@® = > e ™0 (peT). (2.23)
kezZ\{0}
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Under these conditions, if H(0,x) = (0,¢(0)x), ¥(0,2) € T X R, then ¢ = H ' o4po H.

Under the same conditions as in Theorem 2.6 we have the following result.

Corollary 2.8 Normalization

Given any co > 0, there exist a reducibility constant X > 0 and a Floquet transformationc: T — R
(continuous and positive) such that:

(i) m(0)c(0) = c(0+w)A, 0 €T.

(i) <c>=cp.

Proof. Take A = e, with A = / log(m(6)) df the Lyapunov exponent of the linear skew—product.
T
Now, define:

c(0) =a O geT. (2.24)

where o = ——0—— () = log(m(#)) — A, 0 € T, and R;v is the unique solution with zero
") gy

T
average to the cohomological equation:
u(d +w) —u(f) =v(), 0 €T.

(i) Let u(0) = log(c(f)) = up + u(f) ,0 € T, where ug =< u > and < @ >= 0. Then:

u(@+w)—uld) = (u(l+w)—ug)— (u(l)—up) =uld+w) —ud)
= log(c(6 +w)) —log(c(0))
= log (a em1“(9+w)> — log <a em1”(9)>

_ log( 0+w) log<m1”(9)>
= R0 +w) — Rw(8) =v(0) .

Therefore,

v(0) = u(f +w) —u(d) = (v(0) +A) + (u(f) + uo) = (u(d +w) +uo) + A
= log(m(#)) + log(c(0)) = log(c(f + w)) + log(N)

= m(0)c(f) = c(0 +w)\, 0 €T.

(i) <e>= / c(0)dd = / a0 qp — a/ 1O dp = ¢,
T T T
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2.3 The translated graph method

Definition 2.9 Translated curves
Given a quasi—periodic skew—product as (2.1), which is of the form ¥ = R, x f, and a cross section
o =Ipxk € I(T x R), we say that T = o(T) = {(0,k(0) : 0 € T)} (which is the graph of k) is a
translated curve w.r.t. v if there exists a real number T € R, which is called translation number,
such that:

Y(E)=FT+77, (2.25)

where 3= {(0,1)} C T x R.

Definition 2.10 Error function

Given a quasi—periodic skew—product as (2.1), ¥ = R, X f, the error function related to v is
defined by:
Ey: T'(TxR) — C(T,TxR)

o=Irxk = Ey(o)=19ooc—00oR, (2.26)

<&

REMARK 2.11

The error function Ey, when applied to a cross section o, is a measure of how far o is from
being an invariant section with respect to the skew—product v, as will become clear in the following
proposition..

Proposition 2.12 Translated curves

Let » =Ry, X f be a quasi—periodic skew—product (2.1), o = Iy xx € I'(T x R) be a cross section,
and 7 € R. Then, the following statements are equivalent:
(i) T = o(T) is ¢ —invariant, that is, V(%) = T, where 1, is the translated quasi-periodic skew—
product 1y = 1 + 73 with translation number 7 (i.e. - (0,x) = (0,x) + (0,7), V(0,z) €
T x R).

(i) Ey (o) = 0, where Ey_(0) = ¢, 00 — 0 o Ry, is the error function w.r.t the translated
quasi—periodic skew—product .

(iii) f(0,K(0)) — k(0 +w)+7 =0, V0 € T.

Proof. First of all, observe that:

VO €T, Ey (0)(0) = (¢Yro0)(0) = (00Ry)(0) = ¢r(a(0)) — 0(Ru)(0)
= ;(0,k(0) —c(@+w)=(O0+w, f(0,:0) +7)— (0 +w,k(d +w))
= (0,f(0,k(0)) — k(@ +w)+T).
Therefore, By, (0) =0 < Ey (0)(0) =0,V0 € T & f(0,k(0)) — k(0 +w) +7 =10,V € T. And
(ii) < (iii) is proved.
On the other hand, if T = o(T) = {(0,k(0)) : 0 € T} is ¢,—invariant, then ¥.(c(T)) = o(T).
Namely,
VO €T,30 €T suchthat 1, (0(0)) = o

a(f), and
VO €T,30 €T suchthat . (0(0)) = o(0).

)
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Since (0) = (0, x(0)) and 1, (0 (0)) = ¥, (0,k(0)) = (0 + w, f(0, k() +7) , we have:

0,k(0)) = (0 + w, f(0,K(0)) + 7) and hence, § = 6 + w and k(0) = f(6,x()) + 7, that is,
f(0,6(0)) + 7 =r(0+w) or, f(0,k(0)) +T — k(0 +w) +7 = 0. This proves (i) = (iii).

We end the proof showing (iii) = (i). Assume that (iii) holds. Then, given 6 € T we can take
0 =0+ w and then: 0(0) = (0,k(0)) = (0 +w, k(0 +w)) = (0 +w, f(0,k(0)) +7) =, (0,k(0)) =
Ue((0)).

In the same manner, if § € T we can take § = § — w, and hence: o(0) = o(0 + w) = - (c(0)). O

Definition 2.13 Family of invariant translated curves

Given a quasi—periodic skew—product as (2.1), of the form ¢» = R, X f, we define the family of
invariant translated curves related to v as the collection

{(H(p) ) T(p))}pER

where kP € A, is an invariant translated curve w.r.t 1 with translation number @ e R, ie.

{f(e,;ap)(e))—m<ﬁ>(9+w)+7<p> = 0 ,VheT

AN _ (2.27)

Another way to refer to this family is to consider the following functions:

k: ToxR — C
(0;p) — K(0;p) = KP)(0)
and
7: R —
p — 7(p)=7"

Thus, we may write equations (2.27) as

{f(9,f€(0;p))—H(9+w;p)+7(p) = 0 (0eT)

< nlip) > _ (2.28)

REMARK 2.14

Among all the invariant translated curves we are mostly interested in that ones whose translation
number is T = 0, because those are, obviously, the invariant curves of the original skew—product.
This is, in essence, the objective of the so called translated graph method. Next, we give a complete
and detailed description of the modus operandsi.
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2.4 KAM procedure

The objective of this section is to obtain invariant translated curves by simultaneously combining
two procedures. On the one hand the invariance of the translated curve and, on the other hand,
the reducibility of the skew—product.

Given a skew—product

v: TxR — TxR
0,2) — Y(O0,z)=0+w,f(0,x))

and p € R, we look for k: T — R and 7 € R such that

{ F0,6(0) =k +w)+7 = 0

Che — (2.29)

In an iteration procedure, we assume that we have an approximated solution such that

f0,6(0)) — k(0 +w)+7 = €(0) (2.30)
gi(ﬁ, k(0)) c(0) —c(0 +w)X = €"(0) (2.31)
<K> = p (2.32)

<c> = ¢ (2.33)

where ¢o can be freely chosen a priori. We may take, for simplicity, ¢g = 1.

We have introduced new conditions that deal with the reducibility.

Here ¢'(6) and e"(f) are error functions measuring how far x(#) is from being an invariant trans-
lated curve with translation parameter 7, and what extent the function ¢(f) is a reducibility
function with A > 0 as the corresponding reducibility constant, respectively. That is, we assume
the linearized skew—product be reduced up to an error e’ ().

In these equations, p € R, and ¢y > 0 are fixed, x(0), ¢(0), 7, and A will change through the
iterative process:

K(0) — r1(0) = K(0)+c(0)E(0)
c(0) — al@) = ) +c0)5(0)
T — T = T+AT
A — N = A+ AN
with specially chosen £4(0) , £7(6), A7, and AN.

Next, we look for the corrections £4(6) , €7(6), Ar, and A\ such that the new objects k1, c1, 71,
and \; are better approximations, essentially the new error is the square of the previous one.

We use here these notations:

c = c0) cr = c(f+w)
€ = €0+w) & = C0+w)

n = cjrlei n = c e
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Starting from eqgs. (2.30) and (2.32), that is,

{f(e,ﬁ(e))—m(ww)w - e'(0) (2.34)
<K> = p

the error of the invariance condition after one step, with x1(6) = x(6) +¢(0)€4(0) and 7 = 7+ AT,
is:

el(f) = f(ﬁ,m(@))—m(e—i-u))—i—ﬁ A
= f(0,k(0)+c(0)(0)) — (k(O+w)+c(@+w)E(O+w))+T+ AT

= 10500+ L0 ropee 0 + [ 1-0TL0.50) 4100 0) (c010)
—k(0+w) + T — (04 w)E(0 + w) +0A7'
= ¢'(0) + (gi(e, 1(0))c(0) — (6 + w))\> €1(0) 4 c(6 + w)AE(0)
—c(0 +w)€'(0 +w) + AT + RY(0)
= €(0) + e (0)E(0) — c(0 + w)(E'(0 + w) — AE(B)) + AT + R'(6) , (2.35)
where 1 )
R0) = [ (1= 0F50.50) 41O )it (0 (0)* (2.36)
In order to reduce the error £(6) and the remainder R() as much as possible, we ask
c(0 4 w)(E1(O +w) — AEYB)) = €' (0) + AT . (2.37)
Notice that, in such a case, | | |
el (0) = e"(0)E1(0) + R (D). (2.38)
Dividing (2.37) by ¢,
(6 +w) ~AE(6) = - (‘;l(fi)) o 1+ AT =0+ (0) (2.39)
Taking averages on both sides,
E-Ni=n+<c'>Ar=ni+<ct>ArT
that is,
(1-Né—<ct>Ar=<cile > . (2.40)

Eq. (2.39) can also be written as

G+ - M+ =n +1 + (i +c7H)AT.
Since g = ¢ and c? =c 1,
(1= NE + & — A =i+ i+ < > Ar 4 ¢ A,
Subtracting (2.40) from the latter,
€L —Ag = +e)lAr,

that means,

& =R + ¢ A7) = Ran + AT Roey (2.41)
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where ) is the cohomological operator®.
Additionally, from (2.32), p =< k1 >=< k+ &’ >=< Kk > + < c€! >= p+ < c€' >, which implies
that < € >= 0. Therefore, by (2.41),

0=<ct >= <c(£l—|—£z)> <c>£2—|—<c8> <c>£”+<ci)%,\77 >+A7’<ci){>\cJr >, or

<c>§+<cﬂ%,\c;1>AT:—<ciR>ﬁi> (2.42)

Equations (2.40) and (2.42) can be written as the linear system,

I1-XA —<ct> & <cilel >
— = . (2.43)
<e> <cRag > At — <cRycye >
1-X —<ct
<c> <cb>

i <c, e >
D( ¢ >: ez ) (2.44)
AT — < cRye e >

Next we deal with egs. (2.31) and (2.33), that is, the error of the reducibility condition after one
step. From

Denoting b = 9%\011 and D = < - ), eq. (2.43) can be written as

{ 910, 5(0))c(0) — c(@+w)A = €(0) (2.45)

<c> = ¢,
with ¢1(0) = ¢(0)(1 4+ £7(0)) and Ay = XA + A\, we write:

o) = gf (0, 51(0))e1(8) — e1(0 + W)y
= O 0.000) + cO)EO)eO)(1 + € 0)) 8-+ )1+ €0+ )+ AN
= (Boson+ [ 510.00)+1e0)5 @) e O)) 011+ 0)

(9 +w)(1+£(0+w)(A+ A)\)

r(0))e(0) — (0 +w)A +

0

(6, #(0))c(0)87(0) — c(6 + w)AX = c(6 + w)&T (0 + w)(A + AN)

)+ (W (0. 5(6)) <>—c<e+w>A) E°(0) + (0 + W)AE(0)
—e(0+ W) AN — (0 + w)E" (0 + w)(A + AX) + R7(0)

2 .
( 9 J;(9 k(0) + te(0)€'(0))dt c(0)*€' (0)(1 +€7(0))

i

8
e’(0

= €"(0) +e"(0)§7(0) — c(f +w)(§"(0 +w) — £ ()
—c(0+w)(1+E (04 w)AXN+ R} (9)(1 +£7(9)), (2.46)
2
o°f

where R7(0) = R (0)(1+¢"(0)) and R{(0) = v 775 (0,K(0) + te(9)E'(6))dt c(0)€'(0) -

In order to reduce the error €/ () as much as possible, we ask

e"(0) + Ri(0) — (0 + w)(E"(0 +w) — £"(0))\ — (0 + w)AX = 0. (2.47)

8¢.f. Definition 1.24.
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Notice that, in such a case, €] () = (e () + R (0))£7(0) — c(0 4+ w)E™(0 + w)AN.
Dividing eq. (2.47) by c4,

e’(0) R (0)

"(6 —£"(0)N+ AN = . 2.48
(€0 +w) ~ € )N+ DN = s+ T (2.48)
Taking averages, ‘
o - T Rl
€ —EA+AA=< — + L >
C+ Cyt
Since E = £7, we have _
AN=<cle" >+ <c 'R > . (2.49)

In eq. (2.48) each function can be decomposed in the sum of the average plus the oscillatory part:

(E+6) — (F + NI+ A =< c;le" > +c e+ < ¢ 'RL > +¢ 'R,
i.e. —

(ET = €A+ (€7 — €A+ Ar =< T te" > +cter+ < 'Ry > +¢; 'R} .

Since &, = ¢ and subtracting eq.(2.49), we have

(Eﬁ: — A =cter + ¢RI (2.50)

This means that

AT =Ry (cTler + ¢T1RY), (2.51)
where fR) is the cohomological operator.
Finally, by eq.(2.33), co =< c1 >=< c(1+£") >=<c¢ >+ <€ >=cp+ < " >, ie. < >=0.
Therefore, 0 =< £ >=< c(£" + £7) >=< ¢ > £+ < c&" >, and

<cér>.

57‘:_

<c>

From eq. (2.51) we get

T L =1 —1ps
AE :—<c><c%1(c+e +c Ry > (2.52)
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SUMMARY
The invariance system
{ f(0,k(0) — k(@ +w)+17 = €'(0) (2.53)
<Kk> = p

with x1(0) = K(0) + c¢(0)£4(0) and 7 = 7 + AT, produces

— —1 4
i < >
AT - < cf)%\cjrle’ >

—_~ ——

g = Ry(citel + e 'AT), and
g=g+,

1-\ —<ct> -
<ec> <cb> )andb:ip‘%@rl'

where D = (

The reducibility system

{ 800, k(0))c(0) — c(O+w)A = " (B) (2.54)

<c> = o
with ¢1(0) = ¢(0)(1 +£7(0)) and Ay = A+ A\, produces

AT = ——L < cRi(cTer + ' RY) >,

AT = Ry (¢ lem + ¢TI RY),

& =¢+¢, and

AXN=<c'e" >+ <c 'R} >,
1 82f

where R:(0) = i w(e,m(euc(e)gi(e))dt c(0)%€1(0) .

Notice that x1(0),71,c1(6), and A; are uniquely determined whenever the non-degeneracy condi-
tions det(D) # 0 and \ # 0 are satisfied.

Moreover, if the domain of analyticity of x and ¢ is Tp, i.e. k,c € A,, then k1 € A, 5 and
c1 € Ap—2s, due to the clipping in the analyticity domain that occurs each time the cohomological
operator is applied. Notice that ' € A, 5 but £ € A,_ss, since the integral remainder R} € A,_s.
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Once we have &4, ¢ < € >, < £ >, A7, and A\, we can compute the new errors, e} and ef:

d0) = SO0 +RO) (255)
@) = " (O)E(O) + R (0) — c(f +w)E (6 + w)AN, (2.56)
where
R(0) = /0 (1 =02 L(0.5(0) + 1c(0)€ (0))dt (c(0)€'(6)” and (257)
2 .
#o) = [ 200+ @ o0 o), (259)
REMARK 2.15
If we call 52
o= [ aﬁ(e (0) + 1e(0)€1(6))dt c(6)” €'(0)
and o2
Ry0) = [ 1950, 5(0) + teO)EO))dt (0 €10),

then RY(0) = (R} (0) — R5(0))¢4(0 ) and R™(0) = R (0)£7(0). Therefore,

10) = (e"(0) + Ri(0) — R5(0))€°(0), 0 € T, s (2.59)
rO) = ("(0) + Ri(0)E(0) — Are(f + w)E™ (0 +w), 0 € Ty . (2.60)

Next, we compute the estimates for one step. Recall from eq.(2.44) that if the non—degeneracy
condition det(D) # 0 holds, then

— -1 i
< 3 > — p1 <O e/\1>/'
AT —<cRyc, e >

To bound the solution < ) we use the co-norm in C?, ||z« = max{|z1], |22/} and the matrix

9

3
AT
norm

D] = mjaxz |di;], if D= (di),

that is, the maximum 1-norm of the columns of D.

9This matrix norm is compatible with the co-norm in C?, that is, || Dz|/ec < || D] ||2]lec, ¥z = (21, 22) € C?
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Assume that there exists x* : Ty, — C such that if
Q=Qpr ={(0,2) € C/Z x C:|Imb| < gy, |z —r"(0)] <10},

the map f is defined in €, ,, and we have

Iflle < Cf (2.61)
of
Ha”ﬂ < Cozy (2.62)
0% f
”ﬁ”ﬁ < Ca..f (2.63)
We consider the following condition numbers:
lelle < o le™Hlg < o
D7 <op a< |\ <1 withae(0,1)
I — 71l < 7o B
||9C{)\Cll||g_5 < oy (b= 9:{)\6;1 € A,—s with 0 <4 < 0)

We expect in the iterative procedure, something like

ch”@oné < 0Oc Hcr,;lHQ—Qn(S < Oq-1
1D < op a < |A| <1 withae(0,1)
H’in _/’ji||g—2n6 <70

19800, 0 llg—sns < 0

The following lemma provides a number of estimates obtained in one step of the KAM procedure
whenever certain non-degeneracy conditions hold.

Lemma 2.16 Estimates for one step

b
v 0¥
vd¥ < 1. If the non—degeneracy conditions det(D) # 0 and X\ # 0 are satisfied, then the following
estimates hold:

Let ¢ = max < ||€"||,, ||ei||9}, where 0 < § < Lo. Assume that § is sufficiently small so that

(i) max{|€i|,|AT|} < o 7%HeiHQ, with 05 = op-10.-1 max{l,20.Cr};
(i) €llo-s < 05 555llellor with og = 2€Ro.1 + 703
(i) 1€'0-5 < 0gs el with o = 0 + 0
(iv) |€7] < Ogr ﬁs, with og = 25.0,1CR(1+ 020:iCa..1);
(v) €7 lo-25 < 05 e, with 05 = 20,1€R(1 + 020:iCa,. f);
(vi) 1€ |lo—26 < o¢r ﬁa, with o¢r = (1 + O'C)O'é;,'
(vit) ||Acllp—25 < oAC #E, with oae = 0c0¢r;
)

(viii) |AN < oare, with oay = o.-1(1 + U?O’giC@zzf).
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Proof.

i <c,p e >
(i) Since ( ¢ ) =D ! - T , then
AT — < cRycj e >

max{[¢'], [AT[} <

IN

IN

IN

IN

<

op-1 maxs | <cilel > || < cRyeitel > \}

o max { oo el o [Rner e, 5}

0p-1 max

Op-1 maX{HC+ e[|, HC%A% €[l- 5}

1 —_~—
e =
o max { o, 1€l 20— o lel],

v 0
1 .
op-10.-1 max {7y d”,20.Cr} - lle']l
,-)/ 1%

1. 1.
op-10.-1max{1,20.&p} 5o l€e*]lo = T v le*]lo

where 03 = op-10,-1 max {1,20.CR} .

Since 5’ Ri(cy lei 4 At c 1), then

1€i]lp-5 < Crtr20,1[el]l, +

< (2€Ro.-1 + gsab)wHeng =0

fi

< (o Oci +05) st e’ lo =

== /\<c> < le(ch e +C+1R’) >. Hence, [£7] <

Ogi 7%Heiﬂg, where o¢i = 0

1
AT [Rac lo—s < Cram20e-1lle’lo + oszglle’lo o

z #Heiﬂg, where o5 = 2CRO 1 + 050p.

— €+ &. Therefore, [[€,-5 < [§l-s + 7] < oz s lleillo + o s Il

& + 0s.

w51 Oe 757 Cr20e ([l o+ R [l o-5)-

Now we bound the integral remainder,

Ry(0) =

0
IRi(6 |</|

L g2y
a 9.2

Thus,

€7 < 75

1

(0, 5(0) +t c(0)€'(0))dt c(0)*€'(9) , 0 € Ty-s.

. , 1.
0) + tc(0)'(0))ldt |lc[l} 1€ lo—5 < Co..joi0¢ Wlle’llg-

20c oo 1(le" |, + Co..jo20es 5lleflly) < 2€R 00,1(1+ Co._jo20e) iy e

= 0 g7 € where 05 = %Q:R ocoe—1(1+ C’azzfagaéi).

Since " = lﬂ‘il(c;ler +c;'RY), then

1€ g25 < (5 €r=Ys 20,1 (le |, + Co_po2oe L llflly) < 2€r o, (1 +cazzfazag>ﬁ :

= 0z

é"f'

&r 75” &r

e, where 05 = 2€g 0,1 (1 + Ca..fo20¢i). Notice that Ogr

gT

= & + & Then, [|€]—25 < [I€"lo—26 + |€7] < (05 + o) S5 € = 0¢r g € where
Ogr =05 +0g = 05(1 + oc).



KAM procedure 67

(vii) ¢1 = e¢(14+&") = c+ " = c+ Ac. Therefore, [|Ac||p—25 = || € |lo—26 < |lcllo €7 |lo=26 <
0c 0w € llo < oncssw lle"|lp where oac = 0. 0.

(viii) AN =< c'e" > + < c;'RY >. Hence, |AXN < | < c'e" > |+ | < c 'R} > |
< oei(lle"llo + IRillo-6) < oe1(lle”[lo + Co..poioei 5wllell,)

< 01(1+Cy, j0l0¢i) € = opan €, where oay = 0-1(1 4 Cy,_pol0ei).

Corollary 2.17

Under the same conditions as in the previous Lemma 2.16, 3 Q.i, Qe > 0, such that
(a) lletllo—s < Qei €%

(5) l1eflp-25 < Qer 55 <.

Proof.

(a) €1(0) = (e"(0) + Ry (0) — R5(0))'(0), VO € Ty

. . , , 1 , .
le1llo—s < (l€"[lo + [[RT — Rallo-8)[1€" ][0~ < ([l€"[|o + §CazszCHZH§ZHgfa)HfS’H@fé-

Since [|€]|,—5 < Ufi#Heng, then
A 1 1 , 1 ;
i _ < T 70 2 i 7 i 7
leillo-s = (lle"lle + 5 Co..rllcllgoe 75V||€ le)oe 7(Sl,lle o
< = L 20Nt = o (Lt 2Co rer) &2 = O &2
< = (e+ 5 0..f0:0¢i€)0gie = ogi(1 + 5 9..f0¢1) €" = Qei €7,
where Qi = o¢i (1 + %C@zzfo'gi).
(b) €1(6) = (¢7(6) + RL(6))E7(8) — AN (0 +w)&T (0 +w), Y6 € T, 5.

(le"llo + 111l o-6)11€" [l o-25 + [AAL llelle 1€ 1025
(le"l + Co..ro2 1€ lo—s + AN ) € [l 25

letllo—2s <
<

1
< (e+ C’azzfagags + oare)oger T 5V5 =oer(1+ Cazzfazag + UA)\)T 5 &2
1
= Qer Wa )

where Qer = o¢r (1 + Cazzfagagi +oAn).



68 Invariant curves in 1-D skew—products

In the following lemma, all the conditions of the previous Lemma 2.16 are assumed.

Lemma 2.18 Iterative step
Let 0 < 6 < 30 and € = max{|[e"[|,, 7—%1,||ei||g}. If the following conditions hold:

(HI) — 8% o<1
ro — ||k — r*l,

- 1
TAc Iact —e<1
—llelle” oe-1—jery, | ¥

(H3) m {_’/\| |)\| }UA)\E<1

U%) 1 OAD } 1
(y8v)?

(H4) m e<l1,

et
then
(i) <ki>=pand <c >=1;
(%) ||k1 — K"|[o=5 < 10, .. K1(Ty) € Qpry and ||Akllp—s < oAk €
(iii) |AT| < oare and |AN < oan€;
)

(1v) ||c1]lp—2s < 0c and ||cy || p—25 < Te-1. Moreover,

1 1 1
HACH@—% < OAc W e and [|Ac ||9—25 < Opc-t ~ §v &5

1
(v a <<

(99 onl-as < o and 8] 35 < 020 7= ;”)2 ¢ (whencver 0 <6 < Lo) ;
.. —1 A 1 A —1 1

(vit) |Dy || < op-1, ||AD|| < oap CYBE e and [|[AD™ || < oap-1 W €,
where

OAxk = 0.0

OAc = O¢ Ufr

Ope-1 = 0(23,1 O Ogr

OAN = o1(1+020:Co..5)

OAb = QQ:RUC—I(U?,l Oc O¢r +0'A/\Q:R)

OAD = max{oax, Oac—1 + OcOABOAOD}

OAD-1 = 0% 10AD

OAr = op-10.1max{l,20.Cr}.

Additionally, 3 Qei, Qer > 0 such that ||€}]|,—s < Qui €2 and ||€]]|p—25 < Qer 7% 2.
Proof.

(i) Recall that x1(0),71,c1(0), and A; are uniquely determined whenever the non-degeneracy
conditions det(D) # 0 and A\ # 0 are satisfied. In such a case, < K] >=p and < ¢; >=1 by
construction. Moreover, k1 € A,_; for every 6 € (0, 0) , and ¢; € A,_o5 for every ¢ € (0, %g)
We can also say that ki,c1 € Ay—_2s, for every d € (0, %g)
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(i) Ak = k1 — K = c& = [Aklp—s < llello €05 < ocoi v% |e’]|,- This means that

| AL p—s < oAk # €'l < oar €, With oAk = 0co¢i. Moreover,

|Ak| o5 OcO¢i 1 i OAR 1 i
Pt o T ey = A ],
ro — ||k = r*[l, ro— |k —r*lle ro— |k —r*lly
OAk .
= —— <1 by hypothesis (H1
TR R | )
= [ Aklg-s <10 — Ik = K[| o—s-
Thus,
et = llgs = It A g < 5o+ Akl s < 5= st ro—I5—" o5 = To.

(iii) Consequence of Lemma 2.16, parts (i) and (viii).

(iv) On the one hand,

1
[Acllg-25 = [lc€"l[g~25 < lello 1€ lo—26 < Uc%rﬁl\er\lg

1, 1
5 [e"]le < T8 5

= OAc
where oa. = 0. 0¢r. Then,

1 .
lerllo—2s = lle+ Acllo—as - < el +[|1Acllo-25 < llelle +onc=me < (by hypothesis (H2) )

< lellg +0c = llelle = oc -
On the other hand, if ¢ # 0, |[c7Y|, < 041, €1 = ¢+ Ac, and we take
OAc—1 = 0210Ac = 02 ,0.0¢r, then using hypothesis (H2) we have

o2 [Aclgns _ open

— — — ¢ < 1. Applying now Lemma III.1, we get
o1 = [l ot = lleTHlo v d

ey Hlg—25 < 0.

Moreover, by the same lemma,

1
o7t [|Ac]p-26 < Uf—lacafrwl\e’”!\g

A

1A gm2s = lle7" = ¢ Hlg-2s <

1, 1
UAC*1WH6 HQ < O-Acflﬁga

: _ 2
with o1 = 071006

[Ax] = Al

N

A1 = Al = AN < oare ( by hypothesis (H3) )
1

o }:min{i—|/\|,|/\|—a}.

1_ A [N=a
a

IN

Therefore, a < [A1] < .
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(vi) First, we bound Ab.
Notice that,

AB(B) = bi(6) = b(B) = Ry L (6) — Racy (6)
= Ry L (0) — R 1 (0) + R, o1 (0) — R 1 (0)

= Ry, (e} = i)0) + (R, — Ra)ei ' (0)
= 9, (AT (0) + (AR )eT1(0), VO € Tyess.

By Proposition 1.26, part (a),
ARy (0) = ARy, Rye; (0), VO € Tyss.

Thus, - -
Ab(9) = Ry, (Ac)(0) + AXNRy, Rac 1 (0), VO € Tyss.
It follows that

gy 1 1
[Abllp-35 < Cr |Ac o256 + [AA| €R ~5 on

oy e

— — |lc
v oV v yov T Ne
1
v 0¥

1 1 1

2Q:R W <0Acl WE + OAN €¢R W0'61>
1 1

(yo)2 © T TR (v

(VAN

[\)
c
=

— 1 -
<|Ac 1||@_25+|AA|6375V le 1IIQ>

IN

= 2€Rp(0ac1 + CROANO 1) €,

where oap = 2Q:R(UAC*1 + Q:RO'A)\O'C—l) =2CRo.1 (O'C—lUCO',ET + Q:RJA)\).

1b1llo-ss = [lb+ Abllo—35 < [[bllo—5 + [Abllo—35  ( by hypothesis (H4) )

< [bllo-s +oa0 e < [bllo—s + o6 — [[bllo—5 = -

1
(v 6v)?
(vii) Next, we bound AD.

B 1=\ —<cf1> 1-A —<c¢t> [ AN —<Act>
AD =Dy D_<<c1> <clbl>> <<c> <cb> )\ 0 <Alb)> )

Thus,
|AD|| = ||Dy—D| =max {|AX,| < Ac™' > | +[ < Aled) > |}
< max {JAN, [|AcT [ g-25 + [[A(ch) o35}
| <Acb)>| = |<abi>—<cb>|=|<ec1(by—b)+(c1—¢c)b>|
< [lerddl|p-s5 + [[Ac bllg—25 < [leallp—25 [[Abl o35 + | Acllp—25 [bll s
! €+ ! € ( 8+ b) ! £
OcOAp ———= OAe —— €0p = (000 0§5c.0b) ————

1 1
LD R CT O

IN

(0conp + oAcOD)
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where OA(cb) = OcOAb T TAOb.

Thus,
AD max § 0 OAe— +o 9
> ANy O Ac—1 N AV A(cb) (’Y 5y)2
< max{oax0 +o } ! e=o0 ! €
1 B —— =
AN T Ac A(cb) ( 51,)2 AD ('Y 5,/)2 )

where oAp = max {O’A/\,O'Acfl + UA(cb)}.

As a consequence of this bound, we can write

O‘%)*l ||ADH 0-2D71 OAD 1
op-1 = [|[D7H| T op-1r = [D7H] (v6)

5 € <1 ( by hypothesis (H4)).
Now, we apply again Lemma ITI.1:

o3 |AD]| IDT < ops
op-1 = [|ID7 IAD™Y| = Dyt = D7V < 0%, |AD]

Moreover, since ||[AD|| < oap W g, then
IAD™H| < of1 |AD|| < 0f-10aD 75

where oap-1 = a%_laAD.
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Theorem 2.19 (KAM Theorem)
Let W =R, X f be a quasi—periodic skew-product

UV: TxR — TxR
0,2) — Y(O,z2)=(0+w,f(0,2))

where the frequency w € DC(v,v) is Diophantine and f : T x R — R is a real analytic function.
Assume that there is a complex extension of f,

fiT,x U —»C,

where ¢ > 0 and U C C is an open connected set such that exist k* : Tp,, — C, k% € A,,, with
0 < 00 < o, and ro > 0 satisfying the following properties:

If Q= Quyry = {(0,2) € Tyy x C: |z —Kk*(0)| <10}, then
(@) Qoo € Tox U,

of of

(b) 'Gz . (;SEQ 8z(c9,z) < Cp. ¢, and
0% f °f

(C) '822 o0 (@oen| 02 02| < Couet:

Let p € R be a fized average.
Assume that we have ko, co € Ay, and 19, Ao € R satisfying the following conditions:

(Z < Ko >=Dp;

(i) (ko — K]l g0 < 7o, ice. {(8,50(6)) : 6 € Ty} € Tyy x U

1-X —<c'>
Dy = =) , and
<cyp> < coi)ﬁi,\oco’Jr >

)

(i) <cop>=1.
)
)

(iv) det(Dyp) # 0, where

(’U) )\0 75 0.
Define,
eh(0) = f(0,r0(0)) — ro(0 +w) + 70, 8 € Ty,
en(0) = 910, k0(0))co(0) — co(0 + w)ro, 0 € Ty,
; . 1
€0 = max | [l€fllo0: a7 lleblloo  » where do = min{Feo, 77},
Q= = max{Qer,” Qeé} , and
Yelp, ) = Zas”jp2j_1 (s =-1,0,1), where « > 1 and p € (0,1) .

Assume that €y satisfy the following smallness condition:

Qsoio S,u<17
v 0f

where 1 = %0
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Under these conditions, if moreover rko(0),co(0), 0, and Ao satisfy the following hypothesis:

UAnozfl
o — [[Ko — &%l g0

(H.I) eg <1

1 1
1 bl
2 =1l [Xo| —a

(H.I[) max{ } TANg Y_1e0<1

(o) —Zae*0 1y
e — llcolloo ¥ 08
UAC—lz() 1
(H.IV) —OH =y w0 <1
O-cal CU |Q0 v 0
O’AD—lzl
(H.V) — g0 <1
e R NCEE
> 1
(H.VI) —TAb=1 se0 < 1

Obg — HbOHQO*ﬁo (v 56)
then 3 k € Ay (for some 0 < 0o < 00) and T € R such that

{f(e,ff(e))—ﬁ(ew)ﬂ -
< K > = p

i.e. K 1s an analytic invariant translated curve of the skew—product ¥ with translation parameter T.
In particular, if T = 0 then k is an invariant curve.

Additionally, 3 c € A, and A € R\ {0} such that

{ 900, k(0)) c(8) — (0 +w)A =
<c> = 1

Moreover, k,c, and ¢~ satisfy the desired bounds.

Proof. The proof consist in the generation of a sequence of objects {x;, 7j,¢;, A} (j € N) with
kj,cj: Ty, —> C, 75, \; € R, which produce errors {e}, eg}, ej, e+ Ty — C and

5 = max 3 16}y, —s ]

J Jhes» '75; ghes (-

When the guess functions £, ¢; are analytic in the complex strip T,,, the new ones rj11, ¢j1 will
turn out to be analytic in a reduced strip Ty, ,, with g1 = 0; — 24;, for some §; € (0, %Qj). This
fact is a consequence of the required application of the cohomological operator at each step of the
procedure. So, during the procedure and in the limit, we want each curve to be analytic in a strip
T, , with oo > 0. This can be achieved with an adequate choice of the d;’s, so that oo, = ]lggo 0j

with oo < 05, Vj € N.
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The choice of the deltas

. _1 .
60:m1n{%go,’y v} @z%,ij,l,...
O<QO<Q Q]+1:Q]_26]7]:O’17
0o = 00 — 2200 € (0,00) | o = L=E= € (1,00).

Observe that, with this choice, the following properties hold:

o (0j)jen and (9;)jen are strictly decreasing sequences with 0 < 20; < g;, Vj € N;

oo .
« 5= Ve,
i1
© 0 =002 8 — 0.
=0

Next, we bound the errors produced at each step of the procedure.

1 ; 1 1
R T ) o2 T 0, g2
g = max{He]HQj, 257 ||e]\|9]} < max {er—lfy 5}:15]_1, 7 Q€§-1€J—1}

It follows that

IN

2
1, 1 L
. ) - &4 < ) _ . ;
&j Qe; ~ 6Y 1= Qejy : (Q‘EJQ Y0 €J2>

IN
R
00
L
R
SR
S
)
-
™
o

2 21 —1\”
52 27
T (0, 0
_ 271 v
20491 4. 491 1 . 50 523
€0 720+21+._,+23—1 ()[237].71 0
v 27-1\ 7" _
_ QZLI 1 9% 1 &2
€0 21-1 \ o201 avi 70

271 991

— Q l 570_115 L g0 = QEOEO _LE
S\ e ) e T Uy a7

IN

(2.64)
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Moreover, by assumption p € [Qg%io’ 1>. Therefore,
7 o1
<1 o vienN (2.65)
5] =W O[Vj €0, V] . .

REMARK 2.20

2 271 5!
6]_15]*25]0 = O[2j—j—1'
Proof.
5102 s27 5 \* 5 \* 50\*
jfl j_2 e jO f— ajfl . aj—Q ..... @
142442771
B sirett
T QU204 (—2)-2 41202
j—1
If we call, S; = ZT and T = Zz 2!, then
— ;
i i
G-1-204G=2) 2"+ +1-22=> (j-1-)2 = (j - 1)S; - T.
i=0

On the one hand, S; = 11:2; =2 —1.

On the other hand, —T; = T; — 27; = 2! + 22 + ... 42071 — (j — 1)27 = 2_2j —(j—1)27, and
T, =2-21+(—-1)2=2-21(1-(j—-1)=2-2/(1-(j - 1)). Therefore
(=1)-20+(=2)-2' -+ 12777 = (j=1)8;-T; = (=D& 1) @=2(1—(=1))) = ¥ —j—1.
It follows from (2.64), that

2 27-1 58j_1
6]—16]_2 5]0 = a2j—j—1.
O
Notice that, from (2.65) we also have
7j—1 7j—1 ) 1 00 _ 1
201 211 _
Zei < ' I amfg < Z,u WEO =3_1¢0. (2.66)
= =0 7=0
oo
This means that the series Z €; is convergent as well and hence,
j=0
lim e; =0. (2.67)

j—)OO

Next, we check the following conditions:
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(D) llwj — &*lg; <70, Vj=0,1,..., and hence x;(Ty,) € Qpyry, Vj =0, 1,....
) a< [N\ < i, vji=0,1,....
(II1) lcjllo; < 0eqs Y3 =0,1,....
(IV) lle; Hll; < -1, Vi =0,1,...
(V) ||D;1|| <op-1, Vi =0,1,....
(VD) [1bll ;41 < by, Vi =0,1,....

() ||kj — K*[lg; <710, ¥j =0,1,..., and hence x;(T,,) € Qpgry, Vi =0,1,....

j—1 Jj—1
ks = K"llo; < Nlmo = Koo + D ki1 = Rillois = 5o = £ llog + D 1 AKillgsy,

i=0 i=0
j—1 Jj—1

< ko = H*”Qo + ZUAHO & < [[ko — H*‘|Q0 + 0Akg Zgi
i=0 i=0

< ko = K| g + TAke Z i 20 < ko = K" |lgo + oAk Z i 0

i=0 i=0

= lxo = K"lloo + Tane0X-1 < [lKo = K [0o + 70 = [[K0 = K" [lgo = T0-

) a< [N < i, vji=0,1,....

Jj—1 Jj—1
Ml < Dol + D 1AM < ol + D oan &
i=0 i=0
j—1 j—1 [eS)
< ol oan Y e <ol +0oar D& =Xl +oax, Y s
i=0 i=0 i=0
1 1
= ‘)\0| + O’A)\Oz_le’;‘o < ‘)\0| + a — ’/\0’ = 5.

1 1
Since (H.I') implies that oa),2_160 < = min { — o, [Ao| — a},
S S S ¢
g—|)\0‘ [Xo|—a

and therefore oay, X160 < % — [Xo] and oA, X—180 < |Ao| — a.
On the other hand,
j—1
M=ol < 1A =l €D IAN] < oarSo180 < [Ao| —a.
i=0

Hence, a < |\j].

() [lejllo; < Tegs Vi =0, 1.
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(i

leille;

IN

IN

IN

<

<

j—1 Jj—1
”COHQO + Z [eit1 — Ci”Qi+1 = ||CO||QO + Z HACiHQiH
=0 =0
Jj-1 J—1
1 1
lleolleo + ZO—AQ ~ Y & < HCOHQO + 0Ac Z v Y &i
=0 i= 0 v
Jj—1 7j—1
1 i 1 4 1
llcoll o +0ACOZ 5 MW ! t 0Ac Zﬂz ! 5”8
im0 1Y% i=0
T __
[colleo + Tac Z:UQ ! o€ = llcolleo + oacoT0 — Ve
— v 05 (5
lcolleo + 0o — llcolloo = Tco-

Notice that &; o’ = &y. The last inequality is due to (H.III).

(V) [ o, < 1. ¥5 = 0.1,...

In a completely analogous way,

ez le;

<

IN

IN

<

<

e Hleo + Z lleits = ¢ llogs = llcg HHleo + Z 1AC g1

7—1
1
Hcolugo"‘ZUAal 51_”% “90+UAC Z oY €

Jj—1 1

- 1 oy 1 B
”Collleowco—lzw.u - R R D Mt
=0 g

o
; 1 1
-1 211 -1
||00 ||go + UAcgl ;/‘ 75(1)/50 = HCO ||go + UAcalzo 7’7 66,50

leg Hleo + ezt = g oo = 01

Notice that §; o' = §. The last inequality is due to (H.IV ).

(V) ||DJ_1H < O—Dal’ VJ = Oala

107

IN

IN

<

<

j—1
1D | +Z IDZ, = Dl = 1D M+ Y IAD |
1=0
Jj—1 7—1 1

126143 77 M 7o <100 +oup 2 (s @

i 1 i «
DY + o q 1 p2t —-€0 < || Dy N4o p?t
H 0 H ADy ; (7 5;/)2 ” H ADy Z (’Y 56/>2

Jj—1 1 Jj—1 vi

1=0
1

1 i
105 )+ 0apt g 0" T eo = 1D | 4+ 0151 o
o I+ 7ang wag)?; N CT e

1D + ot — D51 = ot

Notice that §; o' = dy. The last inequality is due to (H.V ).
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(VI) ||b]ng+1 < abo? v] - 0, 1, ce e

j—1 Jj—1
1ollgss < Mbolloy + D bics = billgiz = bolloy + D 1Abillgy
=0 =0
Jj—1 1 Jj—1 1
< loollos +20Ab & < lbollo, +‘7N’OZW€Z
) =0 (v 67)
Jj—1 1 j—1
< ”bOHQI + 0Ab Z 5’/ ! (51/ 20 < HbOHQl + O0Ac ZM2 -
i= 0 ( ) =0
o 1
< lbolloy + 0nce 5 Y a1 a0 = [[bollgy + oAb
01 co (’}/ 56/)2 ; 01 0 (’}/ 501/)2

S Hbngl +0b0 - HbOHQl = Opg-

Again we have used that &; o’ = dy and the last inequality in this case is due to (H.VI).

Finally, we prove the convergence of the generated sequences.

Notice that g < 0j, Vj = 0,1,... and therefore x;,c; € A, , ¥j = 0,1,.... By the uniform
convergence of the series ¥_; and ¥g, we can see that (k;);en, (¢j);jen are Cauchy sequences in

Ay and (75)jen, (Aj)jen are Cauchy sequences in R.
j—1

Since k;j = Ko + Z AkK;, then, V4,1 € N, with [ > j, we have
=0

151 = #jllow =

-1 J—1 =1

D A=Y Arif < AR g
i=0 i=0 00 0=

-1 -1

ZO’COU%EZ' = Ucoo'g(i) ZQ’

IN

< 0000512@ — 0 as j — o0,
i=j

Indeed, (r;)jen is Cauchy in A, , which is a Banach space. Therefore, 3k € A,

lim k; = K.

]—)OO
j—1 -1 -1 -1
Similarly, 7; = 70 + Z A7; and hence, |7 — 75| = Z Ar| < Z |ATi| < oA, Z&;
i=0 i=j i=j i=j

< oA Zsl — 0 as j — oo. Consequently, 37 € R such that lim 7; = 7.

Jj—o0
i=j
j—1
In the same manner, since ¢; = co + Z Ac;, then, Vj,l € N, with [ > j, we have
i=0
j—1 -1
Hcl_chQoo = _ZACZ S ZHACZHQOO

Qoo

-, such that

< ZUACZ 5u€l<0ACOZ 51, < OAc (5”ZM 60—>OaSJ—>OO
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o0

. i1 . .

since g = g 1%~ is uniformly convergent.
j=0

Thus, (¢;)jen is Cauchy in A, and therefore, 3¢ € A, , such that lim ¢; = c.

j*}OO
j—1 -1 -1 -1
Finally, Aj = Ao + Z A); and hence, [N\ — \j| = Z ANl < Z AN < oan, Zei
i=0 i=j i=j i=j

(0.]
< OAN Zsi — 0as j — oo. Consequently, I\ € R such that lim A\; = A\. Moreover, A # 0,

— Jj—00
i=j
since a < [Aj| < I, Vj € N,
Furthermore,
1 )
g; = max < [lef]lo;; HZH} — 0 as j — oo implies that [||o; — 0 and [[e}l,; — 0 as j — oo.
T 11€5lle;

Taking limits as 7 — oo in

f(0,5;00) —kj(0+w)+175 = eé(@),@é'ﬂ'gm and

0L (0. k1(0)es0) 4 50+ 01N = €(0),0 €T,
we obtain
f(0,k(0) —k(@+w)+7 = 0,0€T,, and
Z(Q,ﬁ(@))(j(@)—i—c(@—l—w))\ — 0.0eT,. .

So, k € A, is an invariant translated curve of the skew-product with translation parameter
7 €Rand c € A, is a reducibility function for x with reducibility constant A # 0.

Additionally, if we call v(0) = log

%(9, n(@))‘ and u(0) = log |c(#)| and taking in account that

of

L6100 10} = e+ ) A

we obtain, taking logarithms,
u(f +w) —u(f) =v(0) —log |\l

Taking averages,

0= / v(0)df — log |A|.
T

Therefore, |\| = e/t log| 3L (6.1(6)) |6

If %(9,/—@(0)) >0, V0 € T, then [A| = €*, with A = /bg (gJZ[(W(ﬁ)O df, the Lyapunov
T
exponent of k. O
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Chapter 3

The translated graph method

3.1 The KAM procedure: one step of the Newton-like method

The key point of the method for finding invariant translated curves is to restrict the search to
those whose average is a fixed number. More explicitly: Given an average p € R our aim is to
find, according to Proposition 2.12, solutions (k(6),7) to the system:

{f(9,n(9))<—:(>9+w)+7 - 2 (0 T) (3.1)

where f: T xR — R is the fiber map of a given skew—product of the form described in (2.1), with
the frequency w € DC(v,v) being Diophantine, whereas x : T — R and the translation number
7 € R are unknown.

We are going to show the constructability, under certain non-degeneracy conditions, of a sequence

{(’{n(e)aTn)}nEN (3.2)

which converges to such a solution, i.e. k,(0) — k() (6 € T) and 7, — T as n — 0.
Let us proceed by recurrence, that is, assume that we are given an approximation (k,(0), ), and
we want to build a new one, (Kn+1(0), T41) with

Ent1(0) = Kn(0) + Ary(0) (3.3)
Tn+1 = T, + AT, '
We denote the invariance error for the n*"—terms by:
En(e) = f(9, ’in(a)) - Rn(g + w) + T (3 4)
en(p) = <knp>-p ’
The new approximation (3.3) is obtained by solving the system:
My (0)Arp(0) — Ak (0 +w) + A1, = —E,(0) (3.5)
< Ak, > = —en(p) ‘
where!
mnp(0) = Do f(0,k,(0)), 0 €T | (3.6)

'From now on we assume that D, f(0,z) > 0, V(0,z) € T x R. Accordingly, m, () > 0, V0 € T.
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and the unknowns are Ak, (f) and Ar,.

The motivation for this approach lies in the following argument:

The first equation of (3.5) comes from the first order approximation of the new error, by means
of the Taylor expansion of f with respect to the second variable at (6, x(6)). Namely,

E,i1(0) = f(0,6n41(0)) — fny1(0 + w) + Tt
= f(0,6n(0) + Akp(0)) — (kn(0 + w) + Arp (6 +w)) + 7 + ATy
= [(0,5a(0)) + Do f(0, £ (0)) Ak (0) + O (Akin(6)?)
—kn(0 +w) — Akp(0 +w) + 17, + ATy
= En(0) + mp(0)Akn(8) — Akp (0 +w) + AT, + O (Akp(6)?)

So that, when (3.5) holds, then:
Ent1(0) = O (Akn(0)%) |

and the order of convergence is quadratic?.
On the other hand, by the linearity of the average,

ent1(p) = < HKpy1>—p
= <kpt+Akr,>-—p
= <HKp>+ <Ak, >-p
= en(p)+ < Akp >

Hence, e,+1(p) = 0 whenever the second condition of (3.5) holds.
Observe that, in such a case, < Knp4+1 >= p.

3.2 The non—degeneracy condition

Let us now return to the problem of finding translated invariant curves, i.e. solutions of the system
(3.1), where we left off. More precisely, we need to investigate, first, sufficient conditions under
which the system (3.5), scilicet,

{ Mmn(0) Ak (0) — Akp(0 + w) + A1, = —E,(0) (3.7)

< AHn > —€n(p) ’

is solvable.
According to Theorem 2.6 and Corollary 2.8, the reducibility of the linear quasi—periodic

skew—product
Dy(ky): TxR — TxR

0,2) — Dp(rn)(0,2) = (6 + w,mn(0)z) , (3.8)

where m,(0) = D,f(0,r,(0)), which is the linearization® of 1, about r,, allows us finding a
positive reducibility constant A, > 0 and a Floquet transformation ¢, : T — R, such that for a
given ¢, 0 > 0 (average which can be chosen freely a priori):

An = (0 +w) Imp (0)cn(0) = e | (3.9)

2We provide more details about this fact later on. See Proposition 3.4.

3See Definition 2.2.



The non—degeneracy condition 83

with
A, = /Tlog(mn(e))dQ, (3.10)

and

() = “n,0 . PR(log(mn(6)—An) (3.11)
/ (P 10g(mn (6) ~An) gg
T

Now, we put forward the following change of variable:
Ak (0) = cn(0)sn(0) . (3.12)
In this way, the first equation of (3.7) is transformed into the following one:
M (0)cn(0)5n(0) — cn(0 + w)en (8 + w) + AT, = —E,(0) . (3.13)
Since my (0)cn(0) = cn(0 + w) Ay, we have

(0 +w) — Asn(8) = Cn?gnfl)) * cn(91+ w) Atn

or, in other words,

(0 +w) — A6 (0) = £,(0) + nn(0) ATy, (3.14)
where we have defined the functions:
_ Ey(09)
&n(0) = @+w)’ and (3.15)
1
m(0) = PCETOE (3.16)

being, both of them, known.
Summarizing, the main problem, given by the equations (3.5), is converted now into the following:

{ w0 +w) = Xn(0) = &(0) +mm(0)AT, (0 ET) (3.17)

< CpSn > = en(p> .

Here, the unknowns are the curve g, (#) and the deviation of the translation parameter Ar,.
Recall the notation pointed out at REMARK 1.6. In this case, we write:

S = Sno+Sn, With ¢, 0=<¢, >= / sn(0) do (3.18)
T
én = &not En, with &, 0 =< &, >= / &n(0) do (3.19)
T
M = Mno+ 77m with Mo =< Tp >= / 77n(9) do . (3'20)
T

Thus, the first equation of (3.17) can be written as:

6.0 + G (0 + @) = Aa(Sn0 + 5n(0)) = &m0 + &n(0) + (Mo + Tin(0)) AT, . (3.21)
Taking the average on both sides of (3.21) we have:

(1 = An)$n,0 = Mn,0ATn = &no - (3.22)
Subtracting (3.22) from (3.21) we also have:

G0+ w) — MG (0) = En(0) + T (0) Ay, . (3.23)
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Observe that the average of the right hand side of this equation is zero.
Consequently, it turns out that ¢, is, in accordance with Theorem 1.20, the unique solution to
the cohomological equation (3.23) with zero average, that is, ¢,(0) = Ry, (§.(0) + 7n.(0)ATy,), iee.

(0) = R, (6a(0)) + R, (T (0) AT, (3.24)
since Ry, is linear.
Additionally, from the second equation of (3.17), we obtain:

<ensn > = < (ot ) (Sn,0 1 Sn) >=< €n0Sn,0 t Cn,08n T+ Sn,0Cn + CnSp >
= Cp,0Sn,0t+ < CnSy >, since < ¢, >=< ¢, >=0.
Hence,
Cn,0Sn,0+ < CnSn >= —en(p) . (3.25)
Now, from (3.24) and (3.25) we have:
—en(p) = cnoSnot < CnSp >

Cn,0Sn,0t < En(%kn (fn) + iR}\n (ﬁn)ATn) >
= CpoSn,o0tT < EnmAn(fn) >4+ < En%)\n(ﬁn) > AT, s

that is, ~
Cn,0Sn,0+ < R, () > AT, = —en(p)— < R, (&) > - (3.26)

Equations (3.22) and (3.26) joined together, provide us with the following linear system:

1-— An —T]n70 gn70 - én,o N
< cno < R, (M) > ) < A, ) a ( —en(p)— < &M, (&) > ) : (3.27)

This linear system is the key point in the construction of one step in this process.

Let us denote
1-— )\ —Mn,0
Q, = " - Y 3.28
" < Cn,0 < Cnmkn(nn) > > ( )

and

gn 0 >
b, = L ~ . 3.29
(e <Eon 2> 22
The system (3.27) is then expressed as:

Sn,0 _
QO ( Ay > = by. (3.30)

Notice that (3.30) has a unique solution if and only if the following non—degeneracy condition is
satisfied:

_ 1- )\n —7In,0
det(Q2,) = det ( o < D () > ) #0 . (3.31)

Equivalently, we may write (3.31) as:

< (1 — An)gn%)\n (ﬁn) + Cn,0Mn,0 >7é 0 . (3.32)

REMARK 3.1

The non-degeneracy condition (3.31) is independent of the chosen value for the average ¢y, o of the
Floquet transformation. Henceforth, for the sake of simplicity we may take ¢, 0 = 1. However, we
can also consider other options, as we will see below.

All the previous arguments are fully resumed in the following statement.
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Lemma 3.2 Constructability of one step of the KAM process

Let » =R, x [ be a quasi—periodic skew—product defined under the same conditions as in (2.1).
Let (kn(0), 1) be an approximation of a solution to the system (3.1), and E,(0) and e,(p) the
corresponding invariance errors given by (3.4).
Consider the following constants and functions:

mn©®) = L0, k60(0)), 0 €T, |

ox
A, = /log(mn(ﬁ))dﬁ, the Lyapunov exponent ,
T

An = eA", the Lyapunov multiplier
v (0) = log(m,(6)) —A,,V0eT,,
un(0) = uno+un(f),0 € Ty_s, 0 € (0,0) with
un(0) = Rwp(d), V0 €Ty s,
Upo = logay, ,with
a, = _ &0 and cp0 > 0 freely chosen ,
[ e @as
T
cn(0) = e'n(®) = o0  vp e To—s , the Floquet transformation,
£a(8) = Qﬁﬁﬁﬂ,WeTk%
(0) = %JQM,WETQw
Finally, define:
Q, = ( 1;2” _ Eﬂ;&%ﬂ N > and (3.33)
= e Sames ) 230
If the non—degeneracy condition
det(Qn,) = < (1= M)A\, 7 + Cnotno > # 0 (3.35)
holds, then there exist a new approzimation (Kn4+1(0), Tht1) for the system (3.1) of the form:
kn+1(0) = kKn(0)+ Arp(6), V0 €T (3.36)
Tnel = Tn+ ATy, (3.37)

satisfying equations (3.5).

Furthermore, this new approzimation can be obtained explicitly, solving the linear system:

(6.0, ATR) T = by, . (3.38)
Namely, on the one hand
Akp(0) = cn(0)sn(9) , VO €T, (3.39)
where
n(@) = <no+n(d),V9eT, (3.40)
- < &n 0GRy, T + 7(7;225(—2:1)1(?) — &R ) > and (3.41)

G(0) = R, (6n(0) + Tu(0)AT,) , VO € T. (3.42)
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and, on the other hand

< (1 - )‘n)(_en(p) — 5nmAngn) - Cn,Ofn,O >
det(2) :

AT, = (3.43)

REMARK 3.3

We should point out that, in the described construction process, the domain of some functions
involved 1is broader than the one-dimensional torus. More specifically, if o > 0 and v, € A,,
then we can take § € (0,%) so that ¢, = apefivn ¢ Ay—s, since Riv, € Ay_s as it was seen

in Theorem 1.20. Moreover, n, = 173 € Ay_s and &, = cnf%w € A,_s, too. Calling now
0* = 0—0 we can say that n, € Ay, cmd 0€ (0 0%). Again by Theorem 1.20, %Anﬁn € Ay_s =
A,_95. By the same argument, D‘b\nfn € A5 = Ay_95. Moreover, since ¢ = Ry, (fn + AT,

then ¢ € A,—25, too. It follows that Ak, = cnsp = cn(Sn,0 +Sn) € Ap—2s. Finally, we can conclude
that

1g)- (3.44)

Knt1l = kn + Ak € Ay_as, V6 € (0, 5

3.3 Error estimates

In this section we show a number of estimates regarding the control of some geometric properties
of an approximately invariant curve.

First, we come back to the expressions of the invariance error (3.4). For the sake of simplicity, we
write these expressions as follows:

E®) = f0,k0)—r@+w)+T (3.45)
ep = <K>-—p (3.46)
For the new approximation the error is given by:

E0) = f0,50)—-rO+w)+7 (3.47)
€ = <RE>-p (3.48

Our goal is to express E(f) and €, in terms of Ax(f) and Ar.

Proposition 3.4 Invariance error in the KAM iterative step

(a)

_ Lorf

m(0) = m(0) + o oa2 (0,k(0) + sAk(8))ds Ar(0) ; (3.49)
(b)

_ Lo2f 2

E0) = N (0,k(0) + sAr(0))(1 — s)ds Ax(0)* . (3.50)

Proof. To demonstrate parts (a) and (b) we use a technique based upon the first-order Taylor
expansion with integral remainder.

(a)
(6, () + Ar(8)) —

of
e (0,x(0))
r(0) 82
- / 8x2 dr .

of
ox



Error estimates 87

Apply now the following change of variable x = h(s) with

h: [0,1] — [x(6),%(0)]

s h(s) = r(0) + sAK(6) (3.51)

and hence

_ Lorf

m(0) —m(0) = N (0, k(0) + sAk(0)) Ax(0)ds
= 82f(0 k(0) + sAk(6))ds Ax(0)
N 0 81)2 '

(b) First we write f(0,%(0)) = f(0, 5(0))+/ gf (0, z)dx . Now, we integrate by parts, taking:
K(0)

u = a—(@,x)

dv = dzx

du = —5(0,2)d

u . (0, z)dx

v = x—k(0)
Therefore,

) ) of » x:E(G)_ RO) g2 f R i
sor0) = 0800+ |goae-wo)] [ Tl w- sy
of

= 0.5(0) + 5L 0.7O)AR0) ~ [

®(0) 52
= f(0,k(0)) + m(0)Ar(0) — /(0) g;;(@ x) (x — k(0)) dx .

w(0) 92 f

" 922 (0,x) (x — k(0)) dx

For the integral we apply again the change (3.51), that is,

®(0) 52 9
[iy 0 o = [ G060 o000 s 3002
2
= g “5(9 k(0) 4+ sAk(0)) s ds Ax(0)?
0

It follows that:
2
f(0,7(0)) = f(0,k(0)) +m(0)Ar(8) — ; gx]; (0, 5(0) + sAkK(0)) s ds Ax(h)? . (3.52)

Finally, with 7) and (3.52), we can compute the new invariance error:

(3.4
E©O) = f(O,7(0)-FO+w)+7

= \

2
= f(0,k(0)) + m(0)Ak(0) — ; g 5(9 k(0) 4+ sAk(0)) s ds Ax(0)?
—(k(0+w) + A0 +w))+ 7+ AT
= f(0,k(0)) — k(@ +w)+T
1 2f

+ TOARD) = An(0 +w) + AT — |2

0, k(0) + sAr(0)) s ds Ak(0)?

— 82f
= B +m(O)As(0) - BO) -mO)AR6) - | F
1 2

o°f
0 8.’132<

(0, k(0) + sAK(0)) s ds Ar(6)*

= (m(f) —m(0))Ar(f) — 0,k(0) + sAk(0)) sds A/i(9>2 ,
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where we have used (3.5). Now for the first part we apply (3.49):

1 92 1 92
E) = i %(9, k(0) 4+ sAk(6)) ds Ak(h)? — ; %(9, k(0) + sAr()) s Ar(0))? ds
1 82f
= ; w(@, k(0) 4+ sAk(6)) (1 — s) ds Ar(F)? ,

and (3.50) is proved.
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3.4 KAM procedure estimates

Next we show a number of estimates satisfied under certain sufficient conditions and lead to the
convergence of the KAM process described before.

Lemma 3.5 Estimates

Let v = Ry, x [ be a quasi—periodic skew—product defined under the same conditions as in (2.1),
with the frequency w € DC(vy,v) being Diophantine.

Let (kn(0),1n) be an approximation of a solution to the system (3.1), and E,(0) and e,(p) the
corresponding invariance errors given by (3.4). Assume that the following conditions are fulfilled:

(a) The new approximation (Kn+1(0), Tni1) is constructible in the sense of Lemma 3.2.

Moreover, assume for now that there is a (global) positive constant op such that for every real
analytic curve, £y, : Ty — C, 0 < op < |[det(£2,)].

. of of
b) 0< K{ = inf —(0,2)| < su —(0,2)] = K1 < c©
( ) ! (0,2)€T,xC al'( ) (G,Z)E'HI‘)QXC aZE( ) !
and for real arguments a—f(Q,x) >0,Y(0,z) € T x R.
x
(¢)  sup ﬁ(9 2)| < Ky < 00
(0.yeT,xc 022" | =2 '

(d) 3o € (0,7) such that ‘Arg %(G,z)) <a, VY(0,2)eT, xC.

Im z
A

FIGURE 3.1: K = {z=re : K} <r < K, | Arg(2)| < a} with o € (0, 7).
K is a compact annulus sector containing the image of
the derivative, i.e., 22(6,2) € K, ¥(0,2) € T, x C.
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Let a = min{K}, K", 2} and A = \/max{|log K|, |log K1[}? + a2
1 <AQ:R

Call C5 = EeXp o T(2v+1)

S VA i
1+a /3  (4m)¥

), for any § € (0,0), where € = s the Riffimann

constant®.

Then, the following estimates hold:

(i) a <Ay <L withae(0,1).

(i1) |Amn(0)] < Ko Aky(0)], VO € Tyoas, 6 € (0, 30).
(iii) |Eps1(0)] < SK2|Akn(0)]*, V0 € Tyoss, 6 € (0,20).
(10) lonlly < 24 and [Rro,],-5 < 2log(a Cs), 6 € (0, 0).

In particular, |Riv,(0)] < 2log(aC,), VO € T.

(v) For any § € (0, 0), |cn(8)] < ana®*C%, V8 € T,—s and m < iaQCg, Vo e T,_s.
In particular, |cn(0)] < ana®C2, V0 € T and ﬁ < iaQCg, vo e T.
Moreover, o, < cppa C and 1 - < o= 26’2

Consequently, for any ¢ € (0, o), max{ entllo=s} < a4CQC’5

Cn,0 ”anQ 05
Additionally, if we choose o, = 1, then we have the sharper estimate:

max{||enlo—s, [l lo—s} < a?CF, 6 € (0, 0).

(vi) [Innllo-s < 2-C3Z, V5 € (0, 0).
Moreover, for any cno > 0 we have |[1nll,—5 < 55a*C3C3, 0 € (0, 0).

In particular, Y9 € T, |n,(0)] < 2 L C2 2C4

Q—Co

Besides this, if o, = 1, then ||na]|,—s < CZ, 6 € (0, ).

(i) [&nllo-s < lmllo-sEnlle < 5 C3lEnll, 0 € (0, ).
Consequently, for any c,o >0, ||&nllp—s < —a202C§HEan, 0 €(0,0).

= ¢n,0

Moreover, if an = 1, then [nllo—s < I1allo—slEully < G Eulls 3 € (0,0).
In particular, ¥ € T, [£,(0)| < L C2||E, |, < %agCgHEnH@.

— ap

(witi) Wnllo—s < Wnllo—s + 1o < L (C2+C2), 6 € (0,0)
Thus, for any cnp >0, ||/ p—s < HCLZCQ(CZ +C2%), 6 € (0,0).

Ifan = 1; Hﬁan—& < Cg +C§, b€ (O Q).
In particular, V0 € T, [7,(0)] < = 02 a*Cy.

Q—CQ

4c.f. Theorem 1.20.
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(iz) énllo—s < lgnllo—s + [¢nol < 2=(C2 + CH|Enll,, 6 € (0, 0).
Thus, for any c,0 > 0, Hgn”g 5 < maQC’Z(C2 + CH||Enllo, 6 € (0,0).

If an =1, ”gan—rS < (Cg + Cé)HEnHQa 6 €(0,0).
In particular, ¥8 € T, |Eu(8)] < 2C2| Eully < 22 a>CH|Enll,

Cn,0
() R, 7nllo—25 < 3= log(aCs)(Ca + Cg), 5 € (0,%0).
For any eno > 0, |0, 7nllo-25 < 15 % 108(aCs)C5(CG + CF), 3 € (0, 50).
In the case where oy, =1, H%Anﬁnng—?é < Llog(aCs)(C2 + C2), 6 € (0, 30).
In particular, V0 € T, Ry, 7,(0)] < ﬁ% IOg(aC%g)(Cg + Cég)'

(1) (195, Enllo-25 < o % 108(aCs) (C5 + C3) | Bull,, 8 € (0, 30).
For any c,0 > 0, [|R, fn”g 25 < %%2 g(aC’(g)C’g(Cg + O Enll,, 0 € (0, %Q)
In the case where ay =1, |]9‘i/\ngn||g_2(S < llog(aC’(s)(C’gQ + Cg)HEana 5 (0,10).

2
In particular, ¥0 € T, Ry, £,(0)] < 24 log(aC1 ) (C2 + CE )IEnll,-
n 2

l\:)\»—‘

(1:”) "7n0 = o, 02
For any ¢, 0 > 0, a? < Cn,0 Mo < a2C’3.

If v, = 1, then we also have 1,9 < C’f,.

(wiii) [én0] < Mol Bnlle < 2=CallEnll,-
For any ¢, 0 > 0, |§n,o| < 77n,0||En||,g > —a204|]Ean.

Cn,0

If on = 1, then [&n.0] < 1ol Enlly < CHIEnll,-

. ~ ~ - 2a>
(xiv) | < R, > | < 2¢n0 zu%)|9%,\nnn| < jlog(ac Q)C'g(Cg + Cé@).
€

1
2

log(aCy,)C3(CF + C2 )| Enll-

1
2

- ~ ~ 2a?
(.T’U) ‘ < Cng{)\nfn > | S 2071,0 sup ‘%An§n| S —
9T A

. a2
(wvi) Il < raetay 2 C3 (% 108(aC3,C2(CE +C3 )1 Eullo + lew(p)] )

n)| Qn

Furthermore, for any cno >0, |sno] < ——(Pl(C

— 0D €n,0

I Enllo + Q1(Co)len(p)]), where

l
20

da* ¢ 5
Pi(s,t) = ——s°(s”+t7)log(at),

A
Qi(s) = a%st.

If a, = 1, then

o5 (PH(Co, C1 )| Enllo + Q1(Co)len(p)]), where

* 4a® 4 5 | 2
Pf(s,t) = s (s” + t) log(at)

Qi(s) = s
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(zvit) |ATa| < 75 (Pa(Co, C1 )| Enllo + Qalen(p)]), where

Pals,t) = a%2(1+2q;]”@2+t%k%ww),

1—a

Q =
o)

a

(zviii) | det(Q,)] < Po(C,, C

1

2

(ziz) For any § € (0, 30),
15lo-25 < sty o 4 108(aC) (C2 + C3) (2Po(C,
Furthermore, for any c,o0 > 0,

[Gallo-25 < & 21 (Ps(CorCo o Co) | Bully + Q5(Cor Co)len(p) ) where

Eally + Qalen(p)]).

C1
2@

~ 2a 20—a), 5
Ps(s,t,u) = oS s(s? + u?) log(au) (1+ ) (s* +t°)log(at) |,
1—
Qs(s,u) = o T @) s%(s? + u?) log(au).
If cn =1, then [l 25 < 2 (P§(Cor €y C5) 1 Bullo + Q3(Con Co)lea(p)] ). with
2 _
Py (s, t,u) = QLSQ(SQ + ut?) log(au) {1+ 21 —a) (s* +t*)log(at) |,
A aA
Q5 (s,u) Lo a(32 + u?) log(au)
3 ? CLA g :
(zx) For any ¢ € (0, %9)7 ||A“n(0)||.9—26 < %(P(Cgacégacd)HEan + Q(Cg,05)|en(p)|),
where
P(Sat7u) - a2u2(P1*(s,t) + P;(S,t, u))
2a*

= 7(52 + tH)u? log(at) (254

+ (1 + 2(1(1;1 @) (s* +1?) log(at)> log(au)> ,
Q(s,u) = a’u(Qi(s) + Q5(s, u))

2.2, 2

1—
= a‘s‘u” + ¢ 5% 4+ u?) log(au).

aA(

In particular,
1 *
|Arn(0)] < —(P*(Co, C1, )| Enlle + Q7(Cy, C1,)len(p)l), VO €T,
ap 2 2

where

P*(s,t) = P(s,t,t) = a*t*(P{(s,t) + P5(s,t,1))
2a*

= 7(52 + t3)t% log(at) <254

+ (1 + 2(2; @) (s* +t2) log(at)> log(at)) )
Q*(s,1) = Q(s,1)) = a**(Q1(s) + Q5(s.1))

l1—-a
2,242 2 42
= t°+ +t7)1 t).
a”s (s ) log(at)
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Proof.
First of all, notice that since a = min{K7, K; ', 2} and A = \/max{|log K], [log K1[}? + o2,
then

a < Kf < Ky < 1 (3.53)
1 1 1
o« < 5 < ®m < o> (3.54)
and — = ! < L < L1 (3.55)
A vmax{|log K|, [log K1[}2 + a2 — <« = ™ ‘
Additionally, define
I, = / a0 gy / e Ten@)gp | (3.56)
T T
By Cauchy-Schwartz’s inequality,
1= / df = / e%m“’"w) e_%m“’"(e)dﬁ
T T
2 \3 2 \3
< ( / Gl d6> ( / (e 3men®) da)
T T
3 1
= < / eTon (@ g / eml””(e)d6>2 =17 .
T T
Hence,
I,>1. (3.57)
We will use these inequalities many times throughout the proof.
(1) The Lyapunov multiplier is the exponential of the Lyapunov exponent, that is
A = e = exp ( / log(my (6)) d9> ,
T
where m,,(0) = %(9,/%(0)). Thus,
1
0<a< K] <|mp0)| <K <—- = (taking logarithms)
a
log(K7) <log|my(0)] <log(K;1) = (integrating over the torus)
log(K7) < / log |m,(0)| df <log(K;) = (taking exponentials)
T
1
a<Kj<el =\ <K <-. (3.58)
a

(13) Let § € (0, %Q) Notice that by Theorem 1.20 and according to REMARK 3.3, we know
that the domain of k,41 is the complex strip T,_25. More exactly, the new approximation
is analytic in that domain, i.e. K1 € Ap_25, V0 € (0, %g)

Since A, € [a, 1], then by Proposition 3.4 (part (a)), we can write:
1 82f

Mpt1(0) = my(0) + @(0, kn(0) + sAk,(0)) ds Akn (), VO € T,_o5.
0
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It follows that

[Amn(0)] =

IN

IN

IN

Hence,

In particular,

2
ps0) = )] = | [ 2L 0.00)+ 523000 5 50
2
/ a TT 9, 1 (6) —i—sA/@n(H))‘ ds | A (0)]
0

2
sup a—é(@, kn(0) + sAnn(Q))) Ak (6)]
s€[0,1] Oz
2

sup W(G,z) |AKR(0)] < Ko|Akp(0)] . (3.59)
z€C | OF

|Am, (0)] < Kao| Akp(0)], V0 € Ty_os . (3.60)

|Amy,(0)| < Kaysup |Ak,(0)], V0 € T . (3.61)

0eT

(7i7) By Proposition 3.4 (part (b)), for any ¢ € (0, %Q),

En-i—l(e) =
Then,
|Ent1(0)]
(iv) vn(0) = log(mn(0)) —
v (0)] <

IA

IN

IN

<

lan

@(07 Kin(0) + 8Dk (0))(1 — 5) ds - Arp(0)? V0 € T, o5.
0

< /01 gi‘é(ﬁ kn(0) + sAk,(0))(1 —s)| ds - |Af<;n(0)|2
62 1 5
< s:g)l] W(G kn(0) + sAk,(0)) /0 (1 —s)ds-|Akr,(0)]
82 1
< sw(L0a)| [0 an o
1
< Kg/ (1= 5) ds - | A (0)2 = %Kﬂmn(en? VO ET, 5. (3.62)
0
An, VO ET,.
(i, ()] + 10| = g (0) + | [ 10e(on,(0)) at

| log(ma(8))] + / log(ma(8))] d6

2 sup [log(mn(6))] = 2 sup v/(log [mn(6)[)? + (Arg(mn(6)))?

0eT, 0€T,

2\/max{\ log(K1)], [log(KT)[}? + (Arg(ma(6)))?

2, /max{| log(K1)], | log(K7)|}2 + a2 = 24 (3.63)

Additionally, by Theorem 1.20,

1 AQ:R

A (5” H nHQ
1
< Zlog(a Cs)||vnllo < Zlog(a Cs)2A

= 2log(aCs), V0 € Ty—5,6 € (0,0) . (3.64)

¢
Rrvn@ < lvalle =
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In particular®, for every o > 0, if we restrict ourselves only to real values of the argument,
we have the following bound:
2A Cg

R0, (0)] < oy = 2log(aC,), VO€T, (3.65)

_ 1 AcCgr
where C, = aexp(,ygu).

The Floquet transformation, for any § € (0, g), is of the form®:

cn(0) = ane1m®) g e T,_s, where o, = 0 and cn,0 > 0 can be chosen freely.
/ﬁw@w
T
Thus,
O] = anle™ O] acRehn®)
< el < g g2108(0Cs) — o 202 (3.66)

Regardless of the choice we make of the average, a,, can be estimated in the following way,
using (3.56) and (3.57) together with (3.65):

A Cn,0 _ Cno / o—F1vn(0) gp
/eiﬁlvn(Q) A6 In T
T

< Cn,o/ e~ Fivn(0) g9 < Cp o SUP |e—9‘i1vn(9)‘
T 0eT
< cnosup el = ¢ g exp(sup [R1v,(6)])
0T 0eT
< ey e2108(aC) — Cn,0 aQCg ) (3.67)
Thus,
lcn(0)] < eno a’CECF VO € Tyes . (3.68)
Notice that if we choose ¢, 0 = / eTavn(f) df, i.e. oy, = 1, then
T
lcn(0)] < a®C2 V0 €T, s . (3.69)
In a similar way, we can write:
LI LR 1 _ L Re@uva0)
|cn(6)‘ ay, |e%1vn(9) | aneRe(Q’hvn (6)) o
< Lommo) ¢ 1 2ontacs) = L 202 (3.70
7 ooy oy,

®Notice that when § — g, T,—s — To = T.

5See Corollary 2.8 .
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Rivn(6) d
1 T 1 Ry vn (6)
e ]
[679) Cn,0 Cn,0 6T
< e e2log(aCy) _ B a2C? . (3.71)
T Cpyo Cn,0 ¢
Thus,
1 [P g
< dfC2CE VWHET, 5. 3.72
@) = g ¢ T T 7
In the same manner, notice that if we choose ¢, 0 = / eTvn(9) df, i.e. a, =1, then
T
L —2c2 e, ;. (3.73)
len(0)] ’ ‘
. 1 1
(vi) Mu(0) = 0+ o) = )’ VO € T,_s5, where u,(6) = log(ay) + Rivn(6).
Taking in account that wu, satisfies the cohomological equation” u, (6 + w) — u, () = v, (6),
we can write:
Me(0) = e 0w — o=(un@)+vn(9)) — —un(0)c=vn(6)
— o (logan+Rivn(0) ,—(log(mn (6))—An)
_ A %0a0) A log(ma ()
On
_ L LI ()
a,, " elog(mn(0))
_ 1 1 o~ F10n(0)
ay " elog(jmn (0)))+i Arg(mn (6))
= L i) ) g e, (3.74)

Thanks to (3.74) we are

. (0)] =

IN

IN

IN

A [mn ()]

in a position to estimate |9, |lo—5, [|7nllo—s, |Pr, 70| o—25, and np 0.

1
My (0)]
1o

an [may(0)]

‘ —R1vp () ‘
Re(—%R1vn(0))

LA mion@) = L_An onon®) (1 (3.64))

an [mn(0)] an [mn(0)]

1 A\
—— = — Ve T, 5.
aga 05 o C(; y S 0—0

n

2log(aCs) _ L An
an, [ma(0)]

"See Corollary 2.8.

(3.75)
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In particular,
1
17,(0)] < 0703, v e T. (3.76)
As a consequence of (3.75) we can highlight the following estimates:
On one side, if a,, = 1, then
[N (0)] < C3 V0 €T, 5 (3.77)
or, equivalently
110llo-5 < CF ¥ € (0, 0) - (3.78)
And, on the other side, without this assumption, we obtain from (3.71) and (3.75),
1
17.(0)] < C—aQCgcg VO €T, s, (3.79)
namely,
[P
HnnH.Q—(S < aa CQC§ 7V5 € (Oa Q) . (380)
E,
(vii) By definition, &, (6) = cn(ﬁf)w) = n,(0)E,(0).
Therefore, by (3.75),
1En(O)] = [n(0)[| En ()]
1 1
< —Ci|Eu(0)] < —CF sup |Eq(0)
Qp Qn  0eT,_s
1 1
= —C}sup |E,(0) = —C3|Eull,, ¥0€T, 5. (3.81)
Qp 0T, Qn
Clearly, if o, = 1,
6,(0)] < CF| Bnlly , VY0 € Tpes - (3.82)
In general, from (3.71) and (3.81), we obtain
L 922
§n(0)] < P CoCsllEnllg V0 € Tps . (3.83)
(viii) Since 7, (0) = 1, (0) — 1.0, then
O] < 1O+ il < lnllo-s + | [ () a0
< Uallos+ [ ()]0 = Inalo-s + [ mlo)ds
1 1 1
= lnllo—s +mo < —Ci+ —Cy = —(C;+C5) , V0 € Tys. (3.84)
Now, from (3.80) and (3.84) follows
~ 1
[nlo-s < ——a*CH(CE+C), Wi € (0.0). (3.85)
If o, = 1, then from (3.77) and (3.84), we have
[7nllo—5 < C3 + C§ , Y3 € (0, 0) - (3.86)
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(¢z) On the one hand, by the definition of &, and applying (vii) and (xiii), we can write:

I€nllo—s = sup [€.(8) = sup [€.(0) — Enol
0cT,—5 0cTy—5
< sup ([€a(0)] + €nol) < sup [€2(0)] + [€nol
GTQ_(; QETQ_(;

= ||£n||g—5 + |£n,0‘ < ||77n||g—6||En||g + 77n,0||En”g
= (Innllo=s + 1m.0) |1 Enlle < —(C2 4+ C§)[|Enlly , Y0 € Tos,  (3.87)

1
On
where we have used (vi) and (xii).
Again, for any ¢, o > 0 we have, from (3.87) and (v):

~ 1

[Eullo—s < ——a*C(C2+ C)|Eull , W6 € (0,0) (3.9

On the other hand, if o, = 1, then from (3.87),

léallo-5 < (C3 + CF) | Ball, » V6 € (0,0) - (3.89)

(z) Since < 7, >= 0, then by Riilimann estimates (Theorem 1.20) and applying (viii),

- . Cr ., -
’%Annn(e)’ < H%Annan—%SWH%HH

1 - 1
= 1og(aCs)[[Mnllo—s < - log(aCs)([|1mllo—5 + 7n.0)

A A
1 1
< log(aCs)——(C; +C5) , ¥ € Tyoss (3.90)
If v, = 1, then by (3.90),
_ 1 s 1
190, 7l 25 < < oa(aCa)(C + CF) , V8 € (0, L0) (3.91)
In any case, from (3.90) and (3.80), we have
190,725 < -— 7 10g(aCs)C(C) + CF) , ¥a € (0, 50) (3.92)

and, in particular, taking limits® in (3.90) as § — %Q,

~ 11
VO € T, |Ry, 7 (0)] < ——

-~ log(aC%Q)(Cg + cé@). (3.93)

Since C, < C’;g, we can also write:
2

W0 € T, |Ry i (0)] < aiz log(aC’

¥ )Cé . (3.94)

1
20 0

8 According to Corollary 1.28, with m = 1,
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(z

i) Again, by Riifmann estimates (Theorem 1.20) and (viii),

- - Cp ~
Forn&nO) < PxGnllo-20 < 57 lEnllo—s

1 ~ 1
- Zlog(aCJ)H&LHH < < 108(aCs) (Il + o) | Eal,

< 108(aCs) o (C2 4+ CHEully . ¥6 € Tyoas

In particular, taking limits in (3.95) as 6 — %Q,

1
2

~ 11
< —
VO € T, |, 6n(0)] log(aC'

n

J(CE+C3 B,

If o, = 1, then by (3.95),

~ 1
9%, Eully 25 < 5 108(aCs)(CE + CR|Eul, . 6 € (0, 50)

In particular,

~ 1
VO ET, |Rr.En(0)] < — log(aC )(C + ng)llEan :

1
2

Finally, for any ¢, o > 0, from (3.95) and (3.71), we have

[\

~ 1 a 1
1980, -2 < = loB(aCs)CHCE + C Bl 98 € (0. 50)

and, in particular,

[\

~ 1 a
v € T, [R),8n(0)] < 711 g(aC )CZ’(CQ+C2 JEnllo-

1
2@

(xii) By (3.74) we can write the average of 7, as

Mo = <1Np>= / nn(e) df = / i A e*iArg(mn(e))efmlvn(a) df
T

T O [ (6)]
An / L 0. (0)
= — e 1\ de |
o Jr [mn(0))
Since I% < |mnl(9)| < I%

An 1 —Rivn(0) An 1 / —R1un(0)
PR Un < < - 1VUn .
o I /e do < nn0 . de

Now, by (3.54) and (3.58),

L2 / ) g < g < L L / ¢ Tan®) gg
T T

Qap a

Cn,0

W, then from the former inequality of (3.103),

Since a,, =

ia2 / e~ 0 qg — ioz2 / Tvn0) qg [ e=Mvn(0) gg = iGLZIH < Mo
T Cn,0 T T

o, Cn,0

(3.95)

(3.96)

(3.97)

(3.98)

(3.99)

(3.100)

(3.101)

(3.102)

(3.103)

(3.104)
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We also know that I, > 1 by (3.57). Therefore:
a? < 0o - (3.105)
On the other hand, from the latter inequality of (3.103) and applying (3.71) we have,
Mo < i% e M0 gp < —a2C2 12 / e ) gp = icj / e Mn® qp .
Qn = JT Cn,0 ®a? Jr Cn,0 T
(3.106)
Finally, by means of (3.64), we can write:
/ eR10®) g < sup e M1 O] = gup eRe(-Rrva(6)
T 0eT 0T
< supel POl = gup elP1on (O] < 2log(aCe)
0eT 0cT
= a°C}. (3.107)
Joining (3.106) and (3.107),
1 1
< —C2a°C2 = —d’C, 3.108
Tin,0 > 0 0 a 0 Cn,Oa 0 ( )
i.e.
Cn0tn,0 < a*Cly . (3.109)
Additionally, when «,, = 1, from (3.103) and (3.107) we have:
1 R0 (6 L 52 2
o< 5 | e we0dg < —a?Ch = C7 . (3.110)
(2iii)
-1 = |[e) de\ < [l as
T
= [ B@1d = [ n@)1E0)] o
T
< [ mu(6)do sup|,(6)
T 0eT
= 7,0 SUp[En(0)] < nno sup [En(0)]
9T 9cT,
1
= 77n,0||En”9 = 7C§‘|En||g . (3.111)
an
Thus, from (3.111) and (xii), we have:
For any ¢, 0 > 0,
1
[€n0l < ——a*Cyl| Enll, - (3.112)
Cn,0
If o, = 1, then
|§n,0’ < CS”ETLHQ : (3-113)
xziv) For this part and the next one, recall again that for every § € T, 8 € R and hence
(wiv) g y

Rivn(0) € R. Thus ¢,(0) = ™) € R, Therefore,

[@nas = [ lea®) = cuol b < [ (ea(®)]+ o) at

_ / len(8)] d6 + cno = / en(0)d0+ eno = 2en0 . (3.114)
T T
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From (3.93) and (3.114), we can develop the following estimate:

’ < En%)\nﬁn > ‘ =

[ 20, 1.00) de\ [ @13, 7m(0)] a9
< / ()] 40 519 190, 7,(0)] < 2610 51p (9%, 7,(0)]
S

20n0 log(aC1 J(C + Cig)
2

- an A
1
2 2 2
< 2enp mOCQZlog( C% ), +C )
2a* 202 2

(zv) In a similar way, from (3.100) and (3.114), we can develop the following estimate as well:

| < Enfﬁ)\ngn > | =

[aom.& dej < [ i@ 19,& )] o
T T

IN

/ [ (0)] 6 sup R, Ea(6)] < 2¢0,0 sup [R, En(0)]
T 0eT 0T

11
< an,oafnz IOg(aC%Q)(Cg + CEQ)HE’HHQ

1 1
2c O—C’Q— log(aC
" Cn,0 ¢A g(

IN

1O+ IE,
2a 2

= 71og( aC g)og(c§+cég)||Ean. (3.116)

1
2

Notice that this estimate (3.116) and the one before (3.115) do not depend on the value
assigned to ¢, .

(wvi) By (3.41), Sn,0 = < gn,OEn%)\nﬁn + nn,O(_en(p) - En%kngn) >

1
det(2y,)
Therefore, by (3.111), (3.115), (3.116), and at last (3.108), we have:

[n.0] ERn, T > |+ 1ol | < @R, > [+ ol \%(p)l)

2a?
= Tder(y) \mollEnle - loslaCy,

1
2

1
| det(Qn))] (
1
( )C2(C2 + cgg)

2

o log(aC

+ Tin,0 - A

1
2

DCHCE +CE ) Bulle + malen(s)]

o log(aC

1
2@

JCECE+ C2 Bl + |en<p>|>

1
2

4a?
— 02 (ST 10a(aCs )CHCE + C2 )| Bully + len®)]) . (3.117)
0 1o

Now, for any ¢, 0 > 0 we have

< _
lsno] < ]det(Qn)] Cn,oa CQ < log(a C%Q)CQ(CQ + C%g)HEan + |en(p)|

RN (Pic,.C

0D Cn0

Bl + QuCylen®)]) (3.118)

1
20
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(zvit)

where
da* ¢ 5
Py(s,t) = S (s* +t7) log(at), (3.119)
Qi(s) = a’s’. (3.120)

Moreover, in case where o = 1 we have 7, < Cg. Therefore,

onol = iy O (o los(aCy,ICECE + OBl + ealp)]
- (PHCor Oy Il + Qi(Collealr)) (3.121)
where
Pi(s,t) = Z{3234(32—|—t2)log(at), (3.122)
Qi(s) = s (3.123)

As we saw in (3.43), the translation correction is of the form

At = det(lQn) (< (0= M) (—en®) ~ TP, E) — enotno >) (3.124)

Hence,

|AT,| <

1 - ~
= m (|1 — Al <|€n(p)’ + | <R, 6n) > |> + Cno

fal) 129

Taking in account now parts (xiii) and (xv), we have
Al < (1l (len)] + 22 tog(aCs ) C2(C2 + €3 )| Bl
TS e\ eI T Rt SR e R Bl
+ cn,onn,oHEan> (3.126)

Moreover, by part (xii),

242

1 2 2 2
Anl < gy (1= Ml (len] + 25 tostaCy )2CE + €2 IEL)

1
2

+aQC§HEnHQ> (3.127)
Notice that [1—X,| < =2 Indeed, by (i), a < A\, < 1 s0ifa < A, <1, then [1-),| < 1—a,

<
and if 1 <\, < %, then |1 — \,| < % —-1= 177“ Thence, |\, — 1| < max{l — a, 177“} But
a€(0,1),s01—a< 177‘1 Therefore,

1—
Ao — 1< —2 (3.128)
It follows, from (3.127) and (3.128), that
1 l—a 2a* 9 o o
anl < gy (e (I + %5 toxtacy JC2(CE + €I,

+ azcguEnHQ) (3.129)
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Rearranging terms, we have finally:

1 21—-a

1—-a
e )
1
= = (PlCo. Oy Eally + Qulen(p)]) (3.130)
where
2(1 —

Py(s,t) = a’s? (1 + (aAa)(s2 + %) log(at)> , (3.131)

1—
Q2 = = (3.132)

a

(zviii) From (3.33) we get the determinant,
det(Qn) = (1 — )\n) < 5n9{,\nﬁn > +Cn,07Mn,0 > (3.133)

whose value can be therefore estimated, according to (3.128), (3.115), and (3.109), as

‘det(Qn)‘ < ‘1 - )\n| | < 5719%/\”?]/71 > | + Cn,0Mn,0

1—a 2d° 2/ 2 2 2 4
< Tlog(aC%Q)CQ(CQ + C%g) +a*C,
= 20t (1425292 4 02 Y loglaCh )| = Po(C,.Ch ) . (3.134)
‘ A (CotCyy) loglaCy,) | = B(Cp, Cyp) - (3

(xiz) According to (3.42),
G(0) = R, (6n(0) + Tin(0) A7) , YO ET .

In fact, for any ¢ € (0, %Q), Sn € Ay_95. From Theorem 1.20 (Riifmann estimates) we
obtain:

~ 1 >~
I<nlle—26 = — 10g(aCh) [[€n + T ATll s - (3.135)

By the triangular inequality,

~ 1 = -
[Gallo-2s < 2 108(aCs) (l€allo-s + lnllo-s 1A7al) -

Notice that, by (3.87), ||En\|g_5 < (IInnllo=5 + Mm0) || Enlle, and from (3.84), we have also

Hﬁan*cS < Hnan—é + 7n,0- Therefore,

E

A
1

=~ 108(aCs)(llmllo-s + 1mn0) ([ Enlle + |ATa]) - (3.136)

[Snllo—26 < —10g(aCs) ((Imnlle-5 + 1n,0) [ Enllo + (110l o~5 + 1n.0) |ATH])

Now, by the estimate of the translation parameter correction (3.130) and the estimate of the
determinant (3.134), we have:
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A

Gallo2s < 5 l08(aCs)lmallo-s
#100) (1Bl + ey (PG €y 1Bl + Qulen()) )
1
= mAIOg(aC(S)(H??nH@ s
+1.0) (1 det(20)| + Po(Cps C3, )| Ball + Qelen(p)])
1
mAIOg(aCa)(Hnnllg g
+10) (2P2(Cos O3 | Ball + Q2(Co)len(p) ) - (3.137)

Finally, from (vi) and (xii), ||9n| o—s + 7m0 < é(CS + C%). Therefore,

~ 1 11
[Salle25 < [qoranian 4 98W@CR)(CE + CB) (2P2(Cor Cy DI Enlly + Q(Collenp)])
(3.138)

Clearly, if o, = 1, then from (3.138) we obtain:

~ 1
Filas < ey 8(@CR)(CE +CB) (2PaCor Oy I+ QalCollen ()
1
= qery (P (Co Crp OBl + Q3(Cor Colentp)])
1 * *
< = (Pi(Co,Cyp Co)ll Enlly + Q3(Cos Collenl)]) (3.139)
op 2
with
Pi(s,t,u) = QZ 2(s? 4+ u?) log(au) <1 + 2(22(1)(82 +t2)log(at)) ,
(3.140)
Q3(s,u) = lc;la(sQ—i—uQ)log(au). (3.141)
In general, for any ¢, ¢ > 0, from (3.138) and applying (v), we get the estimate:
~ T 22
< -
[Snllo—26 < et ()] ono A log(a05)0 (C24CF)
- (2P(Co) | Enlle + Q2(Co)len(p)])
1 1
= Tat@ e (B(CoChp Co)lIEnlla + Qs(Cor Co)len(v)])
1 1
S o (PCo Oy OB+ Q(Co Colleali)]) . (3:142)
with
2a* 4 5 o 20—a), o
Ps(s,t,u) = oS (s* +u®)log(au) [ 1+ ) (s“+t°)log(at) |, (3.143)
Qs(s,u) = a(l —a) s%(s* 4 u*) log(au). (3.144)

A
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(zz) Let & € (0, 30). From (3.12) and (3.18), the correction of the curve , is given by
Akp(0) = cn(0)sn(0) = cn(0)(sn0 +Sn(8)), VO € T,_25.
Therefore, by the previous parts (v) (3.66), (xvi), and (xix) of this lemma, we have:
[Aknllg—25 < lenllo-s(llsnllo- ol)
11
202 ( L 1
< a0 (S (R (CoCy )|l + QH(C)
11 .
b RGOy OBl + QH(CrC) )
D Qn
1 * *
2526 1@7%9 3@’%9’6 nilo
a“C§ (P (Cy,C1,) + P5(Cy, C1,,Cs) ) || Byl
+ (Q1(C,) + Q3(Cy, Cs)) len(p)])
1
= — (P(CosCy s Gl Bully + Q(Co, C)len(p)]) (3.145)
op 2
where
P(s,t,u) = a®u?(P(s,t) + Py (s,t,u))
9 4
= %(32 + t*)u? log(at) (234
+ (1 + 2(16;1 D (s? + 1) log(at)> log(au)> , (3.146)
Q(s,u) = a*u®(Qi(s) + Q5(s,u))
= a%s%u? + — a(32 + u?) log(au). (3.147)
aA
In particular,
1 *
[Arn(0)] < (PH(Co, O p) [ Enlle + @7(Co, Oy p)len(p)]), VO €T, (3.148)
where
P*(s,t) = P(s,t,t) = a*t*(Pj(s,t) + P;(s,t,1))
4
= 2%(52 + t3)t? log(at) (284
2(1 —
n <1 n (a — 9) (52 —|—t2)log(at)> 10g(at)> . (3.149)
Q*(s,t) = Q(s,1)) = 02752(67{( )+Q§(S t)
1-
_ 2
= a’stP 4 —— ) (s + %) log(at). (3.150)
O

REMARK 3.6

Notice that estimates (3.130) and (3.145) obtained for |At,| and ||Ary, | ,—25, respectively, do not
depend on the value assigned to ¢y, p.
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Corollary

Under the same conditions as in Lemma 3.5 we have the following estimate V5 € (0, 30)-
1 1 2
[Bui1(0)] < 3K =5 (P(CprC1y Co)l[Bully+ Q(Co Collen@)l) W0 € Tyzs.  (3151)
9D

In particular,

2
Baa(0)] < Koy (P*(Cor O )| Bully + @*(Cor Cs lentp)l), W0 € T. (3.152)
o 20 30
Proof. Tt is a consequence of parts (7ii) and (zz) of the previous lemma. O
REMARK 3.8
1
B 0)] < 5 R(Cp, Oy Co)1Bnlly + len(p)])?, 90 € Tya5 (3.153)
D
with 1 )
R(Cy, Cy,, Cs) = 5K max {P(Og,c%g,cg),cg(cg, 05)} (3.154)
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3.5 KAM correction estimates

Lemma 3.9 Correction estimates

Under the same hypothesis as in the previous Lemma 3.5 the corresponding corrections satisfy
the following estimates:

(i) |Am,(0)] < Ka|Akn(0)], V0 € T, 05, 6 € (0, 30).

(i1) |Ent1(0)] < $K2|Akn(0)]?, V0 € Ty_2s , 6 € (0, 30).

From now on we will consider the following additional hypothesis that will be useful in con-
cluding many of the new correction estimates:

1
37 € (0,1) such that |Amy(0)] < r|my,(0)], V0 € Ty_ss, 6 € (0, 5@) (H)

1
(7it) For any d € (0, 5@),

log (1 + mn(é)))’ < %logl—iT"mn(é)f‘, VO € Tyos.

(iv) Whenever (H) holds, the correction of the Lyapunov multiplier can be estimated by
AN, | < thelTp |Akn(0)|, where L = Ko a% =+

(v) For any ¢ € (0, %g) the correction of the function v, can be estimated by
|Avy, (0)] < L*||Akpl|g—25 , VO € Ty_os, where L* = % Zlog .
In particular, [Av,(0)] < L*sup |k, (0)], V0 € T.
0eT

(vi) Let ¢ € (0, %g) If a1 = o, Aug(0) = R1Av,(0), V0 € Ty_35 and
1
|Au,(0)] < 1 log(aCs)||Avy || g—25 , V8 € Ty_3s .

Additionally, whenever (H) holds, |Au,(0)] < % log(aCs)||Akn| -2 , VO € T35 .
L*
In particular, V0 € T, [Au,(0)] < 3¥—log(aC,) sup |Ar,(0)].
A 0T,
30
(vii) For any ¢ € (0, %g), the correction of the Floquet transformation Ac, is given by:

1

Acn(0) = cn(0) Aun (0) / etBun@ gt v e T, 35.
0

If a1 = g, Acy, can be estimated by:

a

<
|Ac,(0)] < an4A

C2(a*Cf — 1) Avpllp—as , VO € Ty_35.

Additionally, whenever (H) holds,

a’l*

|Ac,(0)] < anHCg(a‘lC'g — D)||Aknllp—25 , V0 € Tp_35.
In particular, V0 € T,
a’L* 5 4
|Ac,(0)] < ay 1A C%g(a C%g — l)HAnnH%Q.
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(viti) Let 6 € (0, %Q) The correction of the function n, is given by
1
A () = =1, (0) Aun (0 + w) / e"tAun(0+9) gt o € T, s5.
0

Whenever ani1 = oy, and (H) holds,

1 L*

4A05( Mt Cf — 1) Akinl|g-25 , V0 € Ty35 -

|An, (0)] <

In particular, V0 € T,

1
[Ann ()] < *ECQ (e 4’4&40‘;9 = Dl[Arall1,

(i) For any 5 € (0,30), %r,, ATn(0)] < 4 1og(aCs) | ATlly 35, Y6 € T, s5.
Additionally, whenever a1 = oy and (H) holds:

an 4A2
+ 3 (Ma'CE = Dl|Akally, ) Y0 € Tymss.

9, AT(0)] < log(aCs) <c§<e4Aa4c§ ) Akl

In particular, V6 € T,

1 L
o, 4A2
+ 3 (el - 1)||Amn||%g> :

R A (0)] - < log(aC1,) (Oye“f“a“cig — Dl Asnlly,

(z) The correction of the translation parameter T, can be estimated by

1
|ATa] < ——(P2(Cp, C1 )| Enlle + Q2len(p)]),
D

20

where

Py(s,t) = a’s? (1 + 2(2;@(82 + %) log(at)> , (3.155)

0y = 1;‘1_ (3.156)

(xi) The correction of the curve k, may be estimated for any é € (0, %g), by

1
[ AR (0)][g—26 < UD( (Co, Clg’CJ)HEnHQ"‘Q(Cga06)|en(p)|)a
where

P(s,t,u) = a*u®(Pf(s,t) 4+ Pi(s,t,u))
= QZ (5% + t*)u? log(at) (254 + <1 + 2(16;1 %) (s +17) log(at)> log(au)> ,
Q(s,u) = a*u*(Qi(s) + Q5(s,u))

1—
= a*s*u’ + Aa (5% + u?) log(au). (3.157)
a
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In particular, |Ar,(0)] < %(P*(CQ,C%Q)HENHQ + Q*(CQ,C%Q)\en(p)D, V8 € T, where
P*(s,t) = P(s,t,t)
2% 5 | o0 4
= 7(8 + t)t"log(at) [ 2s* + [ 1+
Q(s,t) = Qs,1)
= a%s*? + %(82 + %) log(at). (3.159)

2(1 —a)

) (5% +t2) log(at)> log(at)(>.,158)

(zii) The correction of the cohomological operator may be estimated by:

~ e 99y 1~ 1
(AR )7 (O)] < (AN € 77257 [inllo—s > V0 € To-a5, 8 € (0, 50) »
where
1 1 I'(dv +1)
N =0 == 20(4) Y
Q:R Q:R(a,lj) 2 (1 +a)2 C( ) (47‘()2”

1s independent of .

(ziii) Let 0 € (0, %Q) The correction of the cohomological operator may be also estimated in this
alternative way:

~ 1 ~
(A%, )70 ()] < [AA] ﬁ(log(aca))gllnn!!g—aa V0 € Ty-ss,

from which is derived the following

_ 1 L
[(A%R,)(0)] < — 75 (Cg + C?)(log(ac‘a))gzlenﬂ? | Akin (6)], VO € Tyss.

(xiv) Whenever a1 = a, and (H) holds:

a’l*

‘Acn,O‘ S (679 AA

Cé@(a‘*cig — DAk,
(xv) Whenever ani1 = oy and (H) holds:

L*
o] < an 7 C3 (@O, = V[ Asnlly,,

Proof.

(i) See Lemma 3.5, part (ii).

(77) See Lemma 3.5, part (7i).

Before proving next parts, consider the following remark about complex logarithms.

REMARK 3.10
Some local bounds of the complex logarithm.
(a) If 0 <r < 1, then ¥z € D(0,7):
(1=R)|z| <|log(l+2)| < (1+ R)|7|, (3.160)

T

— 1l r
where R = 515
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(b) If 0 <r <1, then Vz € D(0,7):

|log(1+ 2)| < R|z| . (3.161)
where R = %log ﬁ
Proof. The function
o (1"
log(1 = —z" D(0,1
og(1+2) nZ::o”“Z , 2€D(0,1)

is analytic in the unit open disk, and the series is absolute and uniformly convergent over
compact sets. In particular, the convergence of the series is uniform over the compact closed
disk D(0,r) € (0, 1).

(a) For any z € D(0,r) \ {0} we can write:

log(1 (=) o (1)t
1_og( +Z):1_Z( )anz( ) o
z n+1 n+1
n=0 n=1
By the triangular inequality,
log(1 + 2) - =1
1-— n o< n
R R W
=1 n=1
I, ., 1 |z 1 r
2712221'2 21— |2 — 21—~

It follows that
(1—R)|z| <|log(1+2)| < (1+ R)|z] ,Vz € D(0,7) ,

as we stated.
(b) On the other hand, for any z € D(0,7) \ {0} we can also write:

log(1 + 2) e - |
o 7 < n
z Zn+1‘Z| _Zn—i—lT
- 1 Eoo:ﬂ(_r)nﬂ
T n+1
n=0
1

=R.

1 1
= ——log(l—r)=-1
rog( ) T‘Ogl—r

It follows that
[log(1 +2)| < R 2| ,V2 € D(0,7) ,

as we wanted to prove.

As far as the upper bound of the logarithm module is concerned, the latter option (3.161)
is sharper than the former (3.160), since log 2 < 1+ 272, Vr € (0,1). O

Amp (0)

1
(73i) Let 0 € (0, 59) Assuming (H) holds, we may apply (3.161) to z = (o) OPtaining

Am,, (0 1 1 [Am,(6
lOg (1—'—())‘ < TlOgl_rW, VHETQ_Q(;. (3162)
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(iv) The Lyapunov multiplier of s, is A, = e, with A, = / log(m,(0)) df, where
T
mp(0) = %(9, kn(0)), 0 € T,. In like manner, the Lyapunov multiplier of r,41 is

A1 = €Mt with Ay = / log(my,+1(0)) df, where my,41(0) = %(9, kn+1(0)), 0 € Tp_o5
T

(see REMARK 3.3).

)\ 1 eAn+1 _ .
Thus, ntl = = ehnt1mhn — Al So, we can write:

An ehn

Our claim now is that

AN < A (aAAnl - 1) . (3.163)

Indeed, if A\, > 0, equality holds. Notice that A\, > 0.
On the other hand, if A\, <0,

[An] = —AN, = —An(eAM — 1) = — Ay (e A0 - 1) = ), €00 <\ (elAM] 1) since

Due to the identity”:

1
ez—lzz/ e*dt, zeC, (3.164)
0

with z = AA,,, the modulus of the correction of the Lyapunov multiplier can be estimated
by

1
A < A (e\AAn\ - 1) < )\n]AAn\/ etdnnlgy (3.165)
0
Next, we estimate the Lyapunov exponent correction:

AAn = An+1 - An

S— 55— 55—

log(m,1(6)) 49 — | Tog(m () df

(log(1mn11(0)) — log(mn(0))) do

o (587) o (40 350)
— [ log <1+AZ:((99) do. (3.166)

It follows that

AN, =

/Tlog <1+ A;Z:ég)> de‘ S/T

1 tz 1 1
- d
9 ez—l:[etz}tl— ¢ dt:/zetzdt:z/ e’ dt.
0 0



112

The translated graph method

Now, on the one hand, from (3.162) and (3.59) we obtain

AN, = /log<1+Amn(0)>’d0§/ll ! ‘Am”( I
T 0 TT S

1 1 |Amy, (6)] 1 /|Amn(9)]
= -1 <,1
; °g1—r/qr ma@) = 78T, o K
= /|Amn |d9<—710g /]Amn )|d6
< fflog /K2|Amn |d0<K27710g sup |Ak,(0)| . (3.168)
L =7 ger

On the other hand, by hypothesis (H) we can also write

AN, = /log (1+Am”(9))’ dGS/lloglmmn(@'d@
T 9 7T 1

My, =7 |mu(0)]
1 1 | A (0)] 1 1
= -1 do < —1 =1 3.169
rOgl—r/T |my, (6)] =P ST T T T ( )
and then
1 1 _
/ ANl gy < / og L : [etlogﬁ]t—l
0 0 logﬂ t=0
_ 1 (elog = _ 1) _ 1 - ( 1 - )
IOg i log i 1—r
1
_ " (3.170)
log = 1- T

Since 0 < a < A\, < 1, then joining together (3.165), (3.168), and (3.170) we can finally
write:

1
Aha| < )\n|AAn/ AN gy
0

< lﬁllog ! sup |Ar,(0)| 11 "

aa r " 1=7ger logr—1-r

Ky 1
= =3 sup|Ar,(0)] = L sup|An,(6), (3.171)

as L =T ger feT

(v) Given d € (0, 30), the correction of the function v, can be written as

Avp(0) = vpg1(0) — v(0) = log(mp41(0)) — Any1 — (log(mn(0)) — Ay)

= log (W) = (Aps1 — An)

— log (m””)ﬂ;(@;”"”)) - ( [ toetmaa (8))d0 [ 1ogm(9) de)

log <1 n Aﬁfﬁg)) - /T log (1 + Aﬂzg)) b, VO €T, o5. (3.172)
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Taking moduli on both sides and applying the triangular inequality, we can write:

|Av,(0)] < |log <1+ Aﬂ::éé?)'Jr /Tlog <1+ An:j:zé?) d@’
< Jos (e Sy )|+ L o (1 )|
< 20551325 log (1+ %Z?é?)‘ . (3.173)

As to obtain an estimate of (3.173) we may apply local bounds of the complex logarithm.
Whenever (H) holds, i.e. |Am,(0)] < r|m,(0)|, as a consequence of (3.173), and by means
of (3.162), we have:

1 1 A 0 2 1 A 0
|Av,(0)] < 2 sup —log M )' = ~log sup [Am (6)]
0eT, 55 T 1—7r| mu(0) r R |, (0)]
2 1 1 21 1
< Zlog L s |Ama@) < 2 log—— sup KolAwa(0)
T L =7 K7 ger, o ar L =7 ger, o
21 1 21 1
= Ky——log sup |Akrn(0)| = Ka—-log | Akpl p—25
ar 1—7‘96%725 ar 1—r
B 1
= L ”AﬂnH@—?é , VO € T@—?E , 0 € (0 Q) ’ (3174)

"2

On the other hand, restricting 6 to the real torus T in (3.172), we can obtain with similar
arguments:

|Avn(0)] < 2sup
0eT

Amy,
log (1—1— m (6)>’ < L*sup |Ak,(0)] ,V0 € T.
mn(e) 0T

(vi) up(0) = R, (0) + log(ay,). Thus,

Aun(0) = upt1(0) —un(0) =log(ant1) + Rivp41(0) — (log(ay,) + Riv,(6))

— log O‘ZH + Ry (Uns1(8) — vn(0)) = log O‘;“ R Avn(6) . (3.175)
Whenever a1 = a,, we have
Auy,(0) = Ri1Avp(0) , VO € Ty_3s . (3.176)

Additionally, in such a case, we can apply Corollary 1.28 to Awv, ( with m = 2), thus
obtaining the following estimates:

1
At (0)] = 134 Av, (0)] < log(aCy)| Avally 25, VO ETy 5. (3177)

In particular,

* VT *

L 3L
|[Aup (0)] < — log(aCL ) | Aknllz, <

3

log(an)HAHnH%g, v € T. (3.178)

(vii) Let 6 € (0, 10).
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The correction of the Floquet transformation can be written as

- . o Cn+1(9) .
Acy(0) = cpt1(0) — cn(0) = cn(0) < o (0) 1)
eun+1(9)
- _ - Unt1(0)—un(0) _
= calh) ( e 1) = ca(0) (e 1)
1
— ¢n(6) (eMnW) - 1) = ¢ (0) Aun () / ethun(®) gt | (3.179)
0
The last step is due to the identity'*:
1
ez—lzz/ edt, zeC, (3.180)
0

with z = Auy,(0).
By (3.176), whenever o, 41 = oy, Aup(0) = Ri1Av, (), V8 € T,_35. Thus, in such a case
1
Acn(0) = cp(0)R1A0,(0) / A g ¥h € T, 35, (3.181)
0
Notice that, applying Lemma 3.5, part (iv), we may narrow down the norm of Aw,:

”Avn”gf% = || vat1 — Un”g*% < an—&-ng*% + ||”UnHQ*25 <2A+24=4A

Thus, taking moduli on both sides of (3.181), and taking in account (3.177), we can write:

1
|Aca(0)] = !cn<9)H%Avn(9)\‘/ 151 A0 (6) dt'
0
1
< !cn(e)HmlAvn(g)\/ ‘emlmn(e)‘ dt
0
1
< lea(8)][9% Av, (0)] / 1% A0 O)] gy
0
L b L log(aCy))la
= ’Cn(e)‘Alog(acé)”AvnHQ—%/ elx 0g(aCs)[| Avnlo—25 dt
0
1 1
< Jen(8)] 5 108(aCs) | Avally-29 / ot lor(aCs)aA gy
0

1 /1
= e, Avp || p—os— 410g aCls)ettlos(aCs) gy
en @1 Avallp-257

t=1

1
= A
Ol [

= Jen(@)/18valp-257 5 (&m“*—)

= len (@) Avnllo-25 7 (a4 3—1) . (3.182)

[ 4t log(aCL;)}
t=0

Now, we can use the estimates obtained for the Floquet transformation (3.66) and, whenever
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(H) holds, the estimate of the correction of the function v, (3.174).

|Acn ()] < @nGQCzSL*”A’anQ 20 4C§L_1)

4A(

= 4ACM4QW4NAMM2& V8 € Ty-35. (3.183)

In particular, taking limits as § — gg, according with Corollary 1.28, we obtain,
a2

T Acy, < n
VO eT, |Ac,(0) < « 1A

02 [a'CL, = Dl Ak, (3.184)

(viii) The correction of the function n, may be written as

A8 = i ®) = 1,(6) = a(6) (585 1)

1
_ ent1(04w) | _ cn (0 + w)
B nn(e) < Cn(01+w) ) %(9) (Cn-i-l(@ + OU)>

_ 1) — 1 (6) (efwm(ew)fun(ew)) . 1)

eun+1(9+w)

1
E——0) (e—AuMM - 1) = 1 (0) Aun (0 + w) / e~ tAun(0+9) g1 (3.185)
0

where the last step is due again to the identity (3.180).

On the one hand, recall that u, satisfies the cohomological equation!!
Un (0 + w) — up(0) = vy (6) .
And, in the same manner,
Unt1(0 + w) — unt1(0) = vn41(0) -
Thus,

Aun (0 +w) = tng1(0 +w) — un(0 + w) = (Unt1(0) + vn11(0)) — (un(0) + va(0))
= (unt1(0) — un(9)) + (vn11(6) — vn(0))
= Auy(0) + Av,(0) .

On the other hand, whenever ay,+1 = o,
Aup(0) = Ri1Av,(0) , VO € Ty_35 (3.186)
s0, Anp(0 4+ w) = R1Av,(0) + Av,(f) and
[An(0 +w)| < [RiAv(0)] + [Av,(6)]

1
A log(aC(;)HAvan,Q(; + HAvan*%

1
= (1+ 5 10g(aCy)) | Avallp-2s - (3.187)

IN

M (0+w) —un(0) = log cn(0+w)—log cn (0) = log <= 9&;;”) = log mﬂwc)z?g()e)/kn —log m;fle) = logmn(0)—log A, =

logmn (0) — Ap = v, (0). See more details in Corollary 2.8.
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From (3.185) and (3.187) we obtain:
1
@) = @) [Bun 0+ )| [ et
0

1
|"7n(9)| |Aun(9 + w)’ / ‘e—tAun(G—I—w)‘ dt
0

IN

1 ! — u w
< IO+ og(aCo)|Avaly-as [ A Dar . (3188)
The integral can be estimated as follows:

1 1 1
/ CRe(—tAun(6+0)) gy < / ol —tAun (9w)] gy / ol Aun (040)] gy
0 0 0

1
< / otk 108(aC5)) | Avnll 25 g4
0

IN

1 1
[ s - [ sassoc, s
0 0

where we have used the fact that, by (3.63),
[Avn|lo—26 = [[vnt1 — vnllo—25 < [[vnt1llo—25 + l[vnllo—26 < 24 +2A = 4A.
Finally, from (3.188) and (3.189) we get:

1 ! - u w
An(8)] < ]nn(ﬁ)](l—i-Alog(aC(;))HAvan25/0 oRe(—tAu (6:4)) gy

1 1

S“MWO+AWM@WM%M%AemMmmwﬁ

1 1
= [ (O)l|Avallo—25 7 | (4(A + log( (aC))) et (Atlos(aCs)) gy

0

= i 4t(A+log(aCs)) _ t=1
= na ()l Avall-2s 5 |e ]
= i 4(A+log(aCys))
= [na ()l Avalo-2s 5 (¢ 1)

1

= [m(O)|Avnllo-25 5 (¥a’Cy — 1) . (3.190)

Now, it only remains to consider the estimates obtained previously for 7, and Awv, in each
of the respective cases.

Namely, from (3.174) we know that whenever (H) holds,
‘Avn(g)‘ < L*”AHTLH.Q—ZS , V0 € Tg—25

and hence,

. 1
A7 (0)] < |na(0)] L* [|Aknllo-s35 7 (e*a’Cf — 1). (3.191)

4A(
Regarding the estimate of 7, we will use the previous Lemma 3.5, part (vi). More specif-

ically, from (3.75) we have
1
m(0)] < —C5, VOET,
79

and consequently

1 L*

YIIG e*a’Cy — 1)|| Akinllg25 , V0 € Ty 35 - (3.192)

|Ana(0)] <
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In particular, taking limits as § — %g, we obtain V0 € T,

1 L*
[Ana(0)] < =708 (Ma’ Tt = Dlmally, - (3.193)
(iz) Any is defined in T,_35, with § € (0, %g) Therefore, by Theorem 1.20, R, ., A, is
defined and analytic in T,_45 for any ¢ € (0, %g), and the following estimate holds:
~ 1 ~ 1
[Pnn 1 AT (0)] < — 1og(aCs)| Afn| 35, V0 € To-a5, 6 € (0, 70) - (3.194)

On the other hand, |Any,|lo—35 < ||7n]lp—35 + Zqu |An,(0)].
€

Indeed, A7, (0) = 17n41(0) — 70(0) = (M0+1(0) — Mus1.0) — (10(0) — M)
= (Ms1(0) — u(0)) — (nn+1,o - 77n,0) = Anp(0) — A o-

Thus, |A7,(0)] < |Ana(0) _ \Ann<e>|+\ [ 2o de\ < [8m(0) + [ 180,(0) a9

< |Ann(0)] + sup |An,(0)].
ocT

From (3.192) and (3.193) we have, whenever ay,4+1 = o, and (H) holds,

MO = G — 1) A2
+ ;LC?Q(eMa‘lC% —I)H/-an%Q
— o (creraet - )am
+ O3 (eMatCt = Dlaly,) (3.195)

The statements of this part follow straightforward from (3.194) and (3.195).

~ 1 L
R, AT (0)] - < o 4A2 log(aCs) <C§(€4AG4C§ — Dllrnllo—26
+ O3, (Ma'Ct, = Dllkally, ) V0 € Tymss. (3.196)

In particular, V0 € T,

n 1L 2 4A 4 4
P A6 < g losla cp(o (Ma'Cy )t = Dllsally,
+ 03, (Matct, = Dlikalls,) (3.197)

REMARK 3.11

Since Cp < C1, < C1,<C1, and ||Akn|1, 1, < | Ak L 1y we could also have written
2 3 4

1 L*
ay, 2A2

|m)\n+1Aﬁn(9)‘ < g( C )02 ( 4Aa4CéQ — 1)”/1',1”%9, Vo € T. (3.198)

1
2@

(x) See Lemma 3.5, part (xvii).
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(xi) See Lemma 3.5, part (zx).
(x4i) On the one hand, < 7, >=0, 1, € A,_50.
Moreover, (AR, )7, (0) = R, 170 (0) — R, 00 (0), VO € Ty_os.
On the other hand, by Lemma 3.5, \,, \,11 € [a, %], so Proposition 1.26 part (c) is
applicable and we have:
~ * =2 52U ~ 1
|AR, 70 (0)] < TRy 26 |AXn| 17 llo—6 » VO € Tp—25 , 6 € (0, 59) . (3.199)
(ziii) Let 6 € (0, %0).
By Lemma 3.5, part (i), Ay, Ant1 € [a, %] and we can apply Proposition 1.26, parts (a)
and (b). So, we have on one side:
Am)\nﬁn(e) = A)\n %Awlﬂ%,\nﬁn(ﬂ) ,Va € Tgfg(g. (3200)
On the other side,
AR (O] < 1AM CHy 207 il -5
1 ~
= \A/\n]ﬁ(log(an)FHnan,g V0 € Ty_3s. (3.201)
Moreover, we can use the estimate obtained for A\, in (3.171) and the corresponding for 7,
in (3.84). Thus, we finally have:
~ 1 L
(A, )7 (0)] < = 5(CE + C3)(108(aC))* sup | Ary (0)]. Y0 € Tyoss. (3202
n €
(ziv) First of all, notice that the correction of the Floquet transformation average can be written
as
Acmo = Cn+1,0 — Cn,0 = / cn+1((9)d(9 - / Cn(e)de
T T
_ / (Cnin(6) — en(6))d0 = / Acn(0)d0 -
T T
Thus,
|Acy 0| < / |Acy,(0)|d8 < sup |Acy,(0)]. (3.203)
T 0T
According to (3.184) we obtain
|Acno] < a L o (@t — 1) Al (3.204)
w0l =TT 50 Ve "lze '
whenever o, 11 = a,, and (H) holds, so the statement of this part is proved.
(zv) In like manner as the part before, notice that the correction of the function 7, can be written

as

Anpo = 77n+1,0—77n,0—/"7n+1(9)d9—/77n(9)d9
T T

- / (s1(6) — 1(6))d6 = / An(6)d6 .
T T

M0l < / 1(6)[d0 < sup [n,,(0)]. (3.205)
T 0eT
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According to (3.193) we obtain

L*
Mol < anmCég(a“ng—l)HMnH%g (3.206)

whenever a1 = «, and (H) holds.

REMARK 3.12

To state the KAM theorem, in a posteriori format, we need to control the size of the deltas at
every step of the process in such a way that the non—degeneracy condition holds along the whole
process. Moreover, we need to impose, in addition to the hypotheses of the previous lemma, a new
one that guarantees the convergence based on the error estimate that we have found here.

The following proposition allows to find sufficient conditions for the constructability.

Proposition 3.13 Determinant correction estimate

Under the same conditions as in Lemma 3.5 and Lemma 3.9 there is a real function
G :RT — RT such that:
|A det(2,)] < G(C%Q)HA/%H%Q. (3.207)

Proof.

Adet(€,) = det(Qny1) —det ()

= <(I=Mg1)Cnt 1R nrt + ng1,0Mnt1,0 — (1= An) R0, 1 + Cn0mn0) >
= < (1 — )\n)EnA%/\nﬁn + (1 — An)gn%An+1Aﬁn +
+ (1 - )\n+1)AEnmAn+1 ﬁn—l—l + Cn,OAT]n,O + ACn,()nn,O + AC’rL,OAT/n,O >

Thus,

A det(€,)

IN

1=\ /T @0(6)] | AR, 710 (6)]d6

I /T 30 (0)] [, ATTa(0)|d0

+

1 A /T (A, (6)] 985, 11 (6)]d0

+ |Cn,OA77n,0 + ACn,OUn,O + Acn,OAnn,Ol'
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3.6 The iterative step of the KAM procedure

Lemma 3.14 KAM step
Let W =R, x f be the skew—product

U: TyxU — TyxC

(0,2) > U(0,2)=(0+w,f(6,2), (3.208)

where w € DC(v,v) is Diophantine and 0 < o < %
Assume that f is a real analytic function on the spatial component satisfying the following global
conditions:

(a) 3Ky, Kt > 0,K} < ‘%{(9, z)‘ < K1, ¥(0,2) € T, x U;
(b) 3Ky > 0, (327{(0,2:)) < Ky, V(0,2) € T, x U;

(¢) 3a € (0,7), |Arg(BL(0,2))| < @, (6,2) € T, x .

Let p € R be a given average and suppose that there exists (k,(0), ) € A, X R such that:
(4) f(O,k,(0)) €U, VO € T,;

(7i) |det(€2,)| > 0O

(iii) < kip >=p.

Then, there exist (tn41(0), Th+1) € Ag—2s X R for any & € (0, 50) such that:

{ mp(0)Akp(0) — As(0 +w) + A1, = —E,(0)

“ Any > - 0 (3.209)

where
kn+1(0) = Kn(0) + Arn(0)
Tn+1 = Tn + ATn

Here E,, denotes the error function E,(6) = f(0,kn(0)) — kn(0+w)+7, and m,(6) = %(0, kn(0)),
for any 0 € T,.

Additionally, denoting v,(0) = log(my,(0)) and v,(0) = v,(0) — A, with A,, = /log(mn(H))dG,
T
the Lyapunov exponent of the curve k,, and assuming that

(i) 3r € (0,1) such that ‘Aﬂ?g)‘ <, V0 €T, s,

the following estimates hold for some m = m(vy,v) > 0:

(D) [1Aknllo-25 < ey - 507 2meB4 ™ | Eylly, V6 € (0, 50)
(D) [|Ent1llg—25 < %KQHA/{TLHZ_%, V8 € (0, 30),
(III) |AT,| < ngn)' F257medAT N Bl,, V6 € (0, 50), and

(IV) |A det(Qu)] < 5202 | Al g2, V8 € (0, 30)-
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Proof. Under the conditions of the statement, all the estimates found in Lemma 3.5 and Lemma
3.9 hold. Here we consider the particular case where «a,, = 1, that is,

e = / 7 (108 32 (6,50 (0)) )0
T

which is feasible because ¢, can be freely chosen. Moreover, since we are assuming now that
< Kp >= p, then e,(p) = 0, and this term disappears in those estimates where it was present
before. Additionally, we will apply Corollary 1.22 which assures that

Im = m(y,v) € N, such that ¥6 € (0, ), [|Rx3]l,—s < 5™ 7]l, < 26~™[|v]l, ,

for any v € A,. Recall that m = m(v,v) depends only on w.
Taking in account these facts and following the same scheme as in Lemma 3.5 we obtain the
following estimates:

(i) a <\, <%, where a = min{K}, K[!, &} € (0,1);
(1) [|Amnllo-25 < Kol| AKn|o-25, 0 € (0, 30);
(i) | Ensillo-2s < K2 AR5 o5, 6 € (0, 50);

(iv) ||onll, < 24, where A = (max{|log K}/, |log K1|}? + aQ)%;
1100l g5 < 6™ I[vnlle, & € (0, 50);

(v) max{|leallg-s, 5 llo-s} < e "Il 5 € (0, 0);
(Vi) [lnllg—s < € "Ionle, 6 € (0, 0);
(vii) [lenllg-s < e "Il By, 6 € (0, 0);
(viid) [[7nllg—s < 2l[mnllo—s < 2¢* " Ille, 5 € (0, 0);
(%) Nl€nllo—s < 2liénllo—s < 267 " I7lle|| Byl & € (0, 0);
() 1BRx. 7T llo-26 < 0" [l g—s < 207 "IPnlle 5 € (0, 50);
(xd) |90, Enllg—25 < 67 [Enllg—s < 257 "Il | By, 6 € (0, 50);

(xii) a? < % < Cp0Mn,o < %In < ?12[”7 with 1 <1, = fT eFvndp fT e~ Mvngp < 6257m||ﬁ||g, and
1

whenever oy, = 1, 7,0 < 0 "Inlle 5 € (0, 0);
(xiil) [&n,0] < Mn0llEnllo;
(xiv) | < R, 7 > | < 26000 "lnlle, 5 € (0,10);
(xv) | < cniﬁ,\n& > | < 20,1705—7”65””“175”9HE”HQ’ 5 € (0, %9);
(xvi) [en0l < mélé_me%*m||17ﬁ||g||En||g7 5 €(0,10);
(xvii) [ATa] < ramrkey 2677 Il § € (0, Lo);

(xviii) |det(€2,)] < 26-me20 " onlle, § € (0,1 0);

(XiX) ||§1||g—26 < m%(sﬁmegéim”ﬁ”gHEnHw 0 € (0> %Q)S
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(xx) [[Asinllg-25 < q072med M enle || By, 6 € (0, 50).

Idet( n)l a

Next, we follow the same scheme of Lemma 3.9 to obtain the correction estimates. Notice first
Amn Amy, (0 Amaqy, (0

that if | <2455 < 7 < 1, then [log (1+ 52443 )| < Hlog oL |25 < low ok =c B. Afer the

corresponding computations, we have:

(1) |AN,| < L||Akyl|p—25, with L = K1K2- L.

1—r>

(2) |Av,(0)] < 2B and |Av,(0)| < La||Akn || p—2s, With Ly := glz 2log ;L = 2B,

(3) 9B, A0 (0)] < Lud™ ™| Ainlg-25, 6 € Ty35, 6 € (0, 50);

(4) [Acn(0)] < 52 ATBIT Ayl p-05, 0 € To35, 8 € (0, §0);

(5) 1A ()] < | A7l g-35 < 32 AT | Al 25, 0 € Ty35, 6 € (0, 50);

(6) [19Rx,01 ATl g—a5 < | ATnllg—35 < 56~ ATE | Akl 25, 6 € Tyus, 6 € (0, Jo);

() A%y, 70(0) = ANuRa, R, n(0), V0 € Ty 5, 8 € (0, o), and
|AT, T llo-as < AR, 1 Fr, Tallo—ss < AN 2™ [allg25 < L6224 | Aty |25,
V0 € Tyus, 6 € (0, }0);

n+1

(8) [Acnol < [|Acnllg-s5 < e | Akallp-25, 6 € (0, 50);

(9) [0 < | Atnllg-s5 < e | Akallp-25, 6 € (0, 30)-

Summary of constants

a = min{K}, K" 2=} € (0,1)

A = (max{|log K7, |log K1[}? + a?)2;

B = log

1—17r
. KlKQ. 1
Ky 1-7’
Ky 2 1 2B
Kir 81-r d
K*
d = —r
K,

With all the estimates obtained above and after some substitutions and computations we get:
(M) [Aknllo-25 < gaziery - a0 2" " [ Enllo, V8 € (0, 30) »
(1) [|Ensillo-25 < 5Kl Akn?_o5, V6 € (0, 50),

(III) |A7,| < 25 met AT B, WO € (0, S0), and

7|d tQ)

(IV) A det(,)] < L1062 2A B | Ar, [, 35, Y6 € (0, do).
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It is worth to mention that

Adet(,) = det(Qyy1) —det ()
= < (1 =Mg1)Cnt 1R st + Cng1,0Mn41,0 — (1= An) R0, 1 + Cn0mn0) >
= (1= Mg1A)) ANy < e, R Tin > + < cngp 1R, AT >)
+  Cn0ANn0 + Acn0Mn+1,0-

Therefore,

[Adet(2,)] < |1 = (Ans1An)|(|AMN]] < R
+ Cn,0|Ann,0| + |Acn,0

w1 BT > |+ | < cp1Rn, A > )

TIn+1,0-

Now, we have

’1 - (An—l—lAn)‘ < %;

|AAn| < LI[Afinl 253

< R R > | < 20,00 2Me2ATT < 95 2medAdT
n+1 nn )

| < Cn+1%/\n+1Aﬁ; > < %CnJrl,O‘s_meQ(A—'—B)&m||A“n||@—26 < %5_m62(2A+B)57mHA”nHQ—%;

2 _2(2A+B)s—™
a¢ |

CTL,O‘AT/TL,O‘ + ’Acn,Olnn—H,O < ‘Al‘in”g_g(;.

It follows that |A det(€,)| < é;—gé—meﬂ“w)‘s‘mHA/%HQ,%, Vs € (0, 1p).
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3.7 The KAM theorem

Thanks to Lemma 3.14 we are in a position now to state a new version of a KAM theorem,
which determines sufficient conditions for the KAM procedure convergence and the analyticity of
the invariant translated curves found!?.

Theorem 3.15 KAM
Let W =R, X f be a quasi—periodic skew-product

¥: TxR — TxR
0,z) — VY(0,x)=(0+w,f(0,x))

where the frequency w € DC(v,v) is Diophantine and f : T x R — R is a real analytic function.
Assume that there is a complex extension of f,

f:TexU —C,

where ¢ > 0 and U C C is an open connected set such that exist k* : T,y — C, k* € A,,, with
0 < oo <o, and rg > 0 satisfying:

If Y ="Ypr ={(0,2) € Tyy x C: |z —r*(0)| < 1o}, then Ty, g €Ty xU.

Assume, additionally, that [ satisfies the following global conditions:

(a) 3K, K} > 0,KF < ‘%(9, z)‘ < K1, ¥(0,2) € T, x U;
(b) 3Ks > 0, ‘3275(0,2)) < Ky, ¥(0,2) € Ty x U;

(¢) 3a € (0,7), ‘Arg(g—ﬁ(ﬁ, z))’ <a, Y(0,2) €T, x U.

Let p € R be a fized average. Then, 3¢ = (K1, K], K2, a,v,v) > 0, i.e. depending only on global
constants of the skew-product, such that if ko € Ay, is a an analytic curve and 19(p) € R a real
number satisfying:

(Z) f(ea /4,0(9)) € Z/{> NS TQO;
(i) < Ko >=p;

(4ii) det() # 0; where

_ 1— X — <y >
o = ( <o > <Rl > ) (3:210)

1211 [36] Jorba, Tatjer and Mufioz—Almaraz give a proof of a KAM theorem for affine skew—products with certain
kind of additional symmetries.
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with
N = €0 the Lyapunov multiplier of kg ,
Ay = /Tlog (gi(@, /{0(0))> df the Lyapunov exponent of kg ,
wf) = MOEEORO) ) T, and
n(0) = M 0 ET,, .
and

(i) |Eolley < Doe, with Dy = dge 2% "%,
where Ey denotes the error function

EO(G) = f(ea K:O(H)) - H()(e + w) + 70 70 € Tgo y

and
by = %5, with § < %QO ,
7T2 = 2meo—k
Y = <6> D (k+1)m2k
k=0
then 3k € A,y /2 and 7(p) € R such that
< K> = p . '

This means that k is an analytic invariant translated curve of the skew—product ¥ with translation
number 7(p).
In the case where the translation parameter T(p) is zero, k is an invariant curve.
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Chapter 4

Bifurcation theory: local analysis and
stability

In this chapter the framework to be considered consists of a one—parameter family of quasi—periodic
skew—products {t,},ez, where Z C R is an open interval of the real line, and for each p € Z,
Yy =Ry X fu, and f, : T, x C — C satisfies the properties described in (2.1).

This means that, for any p € Z, there is in the family a discrete dynamical system of the form:

Yy ToxC — T,xC
(0,2) = Pu(0,2) = (0 +w, fu(0,2))
If we define
fi: TegxCxZ — C
(07'2;”) — f(eazvu) :f“(e,z) ’
we can refer to the one—parameter family of skew—products by only mentioning the function f.

In what follows, we assume that this family of skew—products represented by (4.1) is depending
analytically on the parameter p, denoting this fact by saying that f € C“(T, x C x Z,C).

(4.1)

Definition 4.1 Family of invariant translated curves of a one—parameter family of
skew—products

Given a one-parameter family of quasi-periodic skew-products {1} ez of the form 1, = Ry, X fu,
we define the family of invariant translated curves associated to {1, },e1 as the collection

{2 7 hper}

neL
(p)

where Ky, € Ap is an invariant translated curve w.r.t 1, with translation number! Tlsp) eR, e

(p) _ . () _
{ f0,6:°(8) —kpy ' (0 +w)+157 = 0, @ecT;uel, peR) (4.2)

<kP > = p
Another way to refer to this family is to consider the following functions:

k: TexIxR — C
O:p)  — k(0 p,p) = KL (6)

1See Definition 2.13.
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and
7: ITxR — R
(») -

(,p) = Tulp) =74

Thus, we may write equations (4.2) as

FO, 50 1, p)s 1) — K0+ wipp) +7(up) = 0, .
{ <A(-5mp) > _ . @eTpelpeR)  (43)
<&

In this scenario we are mostly interested in the study of qualitative geometric properties of the
family of invariant curves, namely, those invariant translated curves whose translation parameter
is equal to zero, i.e.

7(u,p) = 0. (4.4)

This is the so—called bifurcation equation of the one-parameter family of skew—products. The
equation leads to the points of the parameter space where the local behavior of the invariant
translated curves changes.

Thus, the objective is to study geometric properties of the level curve 7(u, p) = 0 or, the so—called
bifurcation diagram,

B::={(n,p) €I xR :7(p,p) =0}.

4.1 Local bifurcation theory of invariant curves in 1-D quasi—
periodic skew—products

On the context described above, we are going to establish a methodology to study the theory
of bifurcations that concerns us. The implicit function theorem (IFT) provides the appropriate
framework for this study, through sufficient conditions that allow information to be obtained from
one of the parameters as a function of the other. Therefore, the starting point is made up by the
equations of the invariant translated curves (4.3).

In the KAM prodedure applied to (4.3), all the objects involved are considered to be depending,
in addition to their own variables, on the parameters p and p in an open set of the complex plane,
IxR CUxVY C CxC. Using bounds of the objects delimiting for all the values of the parameters,
the whole process converges in the considered domain in the same way that has been indicated
in the corresponding KAM theorem stated previously (Theorem 2.19). Since we have analytic
functions over open domains of the complex plane, the limit is analytic in all of its variables,
including the parameters.

With this objective, we start by considering that the analyticity of the functions involved in (4.3)
allows us to take derivatives of any order w.r.t. both parameters. As we will see, we may obtain
these derivatives of any order under a unique non—degeneracy condition. As a consequence, the
conditions that we need to apply the IFT to the bifurcation equation may be related to the
equations of the invariant translated curves and their correspondent derivatives. In short, this is
the common link between the type of dynamics of invariant curves and the type of root of the
bifurcation equation (4.4).
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Thus, we start with the equations:

f(O, k(05 1, p); ) — k(0 +ws p,p) +7(p,p) = 0,V0€T (4.5)
<K(5mp)> = p. (4.6)
Taking derivatives, first, in (4.5) and (4.6) with respect to the average parameter p, we obtain:
af Ok Ok or
vJ . N, _ . Z = T 4.
ax(&H(G,u,p),u)ap(H,u,p) 8p(ﬁJraw,p)Jr ap(u,p) 0 ,V0e (4.7)
Ok
— (- = 1. 4.
<S> (4.9
0 0 Ok Ok
Indeed, — < k(- ;u, >://£9;, d9:/9;, df =< —(-;u,p) >, where we
op (-5 1,p) 8pT( 14, D) T(‘?p( 11, D) 8p( 14, p)

have applied derivation under the integral sign, which is feasible because of the analyticity of the
integrand.

On the other hand, if we take derivatives in (4.5) and (4.6) with respect to the bifurcation param-
eter u, we obtain:

of oy g oy O .
%(9) "{(97 Map)a :U’) alu (07 Mvp) a'u(e + W,u,p)

af ‘ ‘ or B
ok
< @(' su,p) > = 0. (4.10)

Now, we are in a position to take derivatives again in (4.7), (4.8), (4.9), and (4.10).
This process can be generalized to obtain all the corresponding equations at once. For this purpose
we will use the following notation: For ¢,7 =0,1,2,...

Otk

(6; = _—_(0; 4.11
K (6; 1, p) apiop i1 P) (4.11)
B o tir
ij = —— . 4.12
7 (1, p) ooy (1, p) (4.12)
Additionally, to state the general result, we call®:

0
m(0; p,p) = afi(@,ﬁ(@;u,p);u) (4.13)

0
n(0;p,p) = 8‘;(9#(9;#@);#) (4.14)
(O p.p) = o, p)erv@nr) (4.15)
alp,p) = M, with ¢o(p, p) > 0 freely chosen, (4.16)

/e%1v(9;u,p)d9

T
v(0;p,p) = log(m(0;p,p)) — Alu,p) (4.17)
Ap,p) = /Tlog(m(ﬁ;u,p))de (4.18)
Ap,p) = M) (4.19)

1

O;pn,p) = — . 4.20
n(0; p, p) Ot o) (4.20)

?By analogy with Lemma 3.2
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Theorem 4.2 Derivatives of the invariant translated curves

Let (k(-;u,p), 7(1,p)) be an invariant translated curve for some (u,p) € Z x R. Then:

(a) Fori,j=0,1,2,...

where

m(0; 1, )Y (05, p) — K9 (0 + w; py p) + C9(0; 11, p) + 7 (1, p)
< K9( 5 p,p) >

and whenever i + j > 0,

e¥ =

and the functions ¥ are given by

¢M(0; p,p)
¢ (0; 1, p)

¢ (0; p, p)

{

L,
0,

(4,7) = (0,1)
otherwise

0
n(0; p, p) = a/‘i(&ﬁ(ﬂ;u,p);u),

In particular, for lower indices,

C9(0; p,p) =

0
. ij—1
& (0: j )11 (0; 1, ) + %55
. . i-1,5
%7 s, p)KST (0 1, p) Bcau :
0
2(9; Y9
G (05 11, 0) 5" (05 1, p)
G(0; 1, p) <" (0; 11, p)
92 (05 11, p)R" (05 1, p) + G2(05 1, D)

(b) Under the change of variable

I

(0; 1, p)
(0; 1, p)

K9 (03 1, p) = c(0; 11, 9)x" (6; 11, )

equations (4.21) and (4.22) take the form:

X0+ wi pp) = A D)XV (0; 11, )
< (-5 )X (-5, p) >

where

= £9(0; ,p) +n(0; 1, p) 7 (11, p) , VO € T
Sij

9

€905 p, p) = n(0; 11, p)C (03 1, p).

)

)

0<i<j
0<j<i

0,veeT
— G

(4.24)

(4.25)

(4.26)

(4.27)

(4.31)

In what follows, we consider the usual decomposition of a function as the sum of its average
plus the oscillating part. More specifically:

X" (0; p,p

Ui

£

(
(
(
(

)
0; p, p)
0; 1, p)

)

¢ (05, p

= XG (1) + X9 (0; 1, p)
= no(p,p) +1(0; 1, p)

(1, p) + €7 (6;
o (1, p) + C(0;

D)
1, D)

with < XU (-3 p,p) >=< 19 (- ; j1, p) >=< (- ; pi, p) >=< (U (- ; ji, p) >= 0.



Local bifurcation theory of invariant curves in 1-D quasi—periodic skew—products 131

(¢) Let Q(u,p) be the matriz
1= A, p) —no(4, p) )
O, p) = ~ H 4.32
(k:2) < co(pp) < ERnupni(-51.0) > (432)

and

. g . _ _ T
b (. p) = (ééj(u,p), e = <CRy (8§ (5 11, p) >> : (4.33)
If the non-degeneracy condition det(2(u,p)) # 0 holds, then the system (4.29)-(4.30) has a
unique solution (Xij(ﬁ; u,p),Tij(,u,p)):
X7 (0; 1, 0) = XG (1, D) + Ry 7105 18, D) 79 (18, p) + Ron( ) €9 (05 11, p), (4.34)

where ng (i, p), 79 (1, p) are the unique solutions to the linear system

X6 (1p) \ _ i
Q(u, p) ( T%(M’p) ) = 0" (u,p), (4.35)

namely,

() = & (11:p) < TRyl ) > HEV = < ERpup€Y (5 1:p) >0l p) (4.36)
(L= Xy p)) < ER\up)i(- 11, 0) > +co(p, P10 (12, )

iy = (T AP)ET- < ER €9 (-5 19) >) = ol DE (11,p) (437
e (1= Ak, p)) < CRnupn(- 5 15 0) > +colp, p)mo(, p) '

Proof.

(a) This part can be proved by induction.
Starting from egs. (4.5) and (4.6), taking derivatives w.r.t. p we obtain eqgs. (4.7) and (4.8),
which can be expressed as
m(0; 1, )K" (05 1, p) — K1 (0 + wi g, p) + ¢ (O; o p) + TN (o) = 0, VO ET (4.38)
<k up) > = &%, (4.39)
where €% =1 and ¢"'(0; i, p) = 0.
Similarly, starting from eqs. (4.5) and (4.6), taking derivatives w.r.t. p we obtain egs. (4.9)
and (4.10), which can be expressed as
m(0; p1, p)&"0(0; 1, p) — K00 + wi p,p) + ¢0O; . p) + 7'0(,p) = 0,VOET (4.40)
<k 5mp) > = €7, (4.41)
where £'0 = 0 and ¢'°(60; 1, p) = n(0; 1, p) = 550, 5(6; 11, p); ).
Assume now that for every k =0,1,...i and [ =0,1,...j, with k+1 > 1 we have
m(6; g, p) K (0; 11, p) — K¥O + w;p, p) + Oy p) + TR (p) = 0,V0 T (4.42)
<KMo > = M. (4.43)

Then, taking derivatives again w.r.t.u in these equations for k =4 and [ = j, we have

om

676(9; 11, 9)&Y (0 1, p) + m(0; p, p) K" (

0; 1, p)
ij o
o (0; 1, p) + 7 (, p) =
m (0 1, p) " (05 . p) — £ (0 + wi s, p)
FCHYI@ pyp) + T (p) = 0,V €T (4.44)
<KMW (up) > = 0, (4.45)

—KTH (0 + w;p,p) +
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where 5 i
ij
i+1,j (g _ M. i (g ¢ 0: . 4.46
¢ (0; 1, p) au( s 1, p)EY (05 1, p) + 8“( ; 1y D) (4.46)
In the same way, taking derivatives w.r.t. p in eqs. (4.42) and (4.43) for k =i and [ = j, we
have
om ij i,j+1
379(9;%1?)% (05 11, p) +m(0; p, p)™ 7 (0; 1, p)
ij d¢ i
—K"HH O + w;s p,p) + 2y Gimp) 47 I (p,p) =
m(0; p, p)& T (0; p,p) — KT (0 + w; p, p)
+CITH O p) + T (pp) = 0,9 E€T (4.47)
<K pp) > = 0, (4.48
where 5 i
ij
ij+1(p. _oam 0: (g ¢ - . 4.49
¢HTH0; 1, p) ap( s 1, p)RY (65 1, p) + 9 (05 1, p) (4.49)
(b) Under the change of variable
k(05 11, p) = e(0; 1, 0)x" (605 1, p) (4.50)

eq. (4.21) can be written as

m(0; p, p)e(0; 1, )X (03 11, p) — (0 + w; 1, p) X" (0 + w; 1, p)
+¢(0; ) + 77 (03 ) =

By construction, ¢ is a Floquet transformation (cf. (4.15)), that is,

e

m(0; i, p)e(0; 11, p) = A(p, p)e(0 + w; 1, p),

and hence

(0 + w; 11, p) (X7 (0 4 w; p,p) — A, )XY (05 1, p)) = €7 (0; 11, p) + 77 (11, p).

Calling
1
n(0;u,p) = mand
90 mp) = 10 11, p)CV (0 )
we have

X7 (0 + w; i, p) — At )X (05 1, p) = €7(0; 1, ) + (05 1, )77 (11, p).- (4.51)
Thus, equations (4.21) and (4.22) take the form:

X790+ w1, p) = M, p)X7 (03 1,0) = €7(0; 11, p) + 105, p) 7 (11, p) , VO €T (4.52)
<c(sppx(ipp) > = €Y. (4.53)

(¢) With the usual decomposition of a function as the sum of its average plus the oscillating part,

X905 0) = X (1 p) + X7 (051, p)
n(0; 1, p) = nolp,p) +10(0; 1, p)

€90 m,p) = & (1p) +E9(0;p,p)
CIO;mp) = C(u,p) +C (0 1, p)
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eq. (4.51) is written as
(56 11,2 + X33 (0 + i p1,2) ) = Aat,p) (X (10 2) + X903 11,) )
= & (1, p) + €9(0; 11, p) + (no (11, p) + 7103 1, 9)) 7 (11, ). (4.54)
Taking averages in eq. (4.54), we have

X6 (1, 9) = Mp, PIXG (11 9) = &5 (1 0) + 10 (11, )7 (11, ), (4.55)

and subtracting eq. (4.55) from (4.54),

X9 (0 + w; 1, p) — A, )XY (05 1, ) = €905 1, p) + 705 1, p) 7 (1, p). (4.56)

This is a cohomological equation. Therefore, there is a unique zero—average solution which is
written as

X9 (05 11, ) = R () 69(0; 11, D) + Rn(upy (03 18, 9) 79 (1, p), (4.57)
where R is the cohomological operator.
On the other hand,

K70 ,p) = (O 1,p)x"7 (0 11, p) = (co(s2:p) +€(6; 1. p)) - (xol, ) + ;{j(@;H,P))N
= co(p, P)XG (11, 1) + o, )X (05 1, ) + X0 (4, D)E(0; 1, p) + (05 12, p) X (05 1, p).

Now, taking averages on both sides,

< K905 p1,p) > = colp, P)x (1t 0)+ < X9 (0; 11, p) >
= ol P)xg (1:0)+ < R &9 (03 11, 0) > + < By 7103 11, 0) > 7 (1, p)
_ (4.58)

Finally, egs. (4.55) and (4.58) can be written as

(1= A 2)XG (11 0) — 10, )7 (,p) = & (1. p) (4.59)
co(t; P)X0 (ks D)+ < R (up)1(0: 11, 0) > 7 (1,p) = 79— < ERy\(up)$9(0; 1, p) >(4.60)

which is the linear system

) ( X518 ) =), (4.61)
where
_( 1=A(wp) —no(1,p)
2. p) = ( co(p,p) < ERy(up i1 pp) > ) (4.62)
and

g . g _ —~ T
bl](u7p) = <§(Z)J(M7p) 3 8”_ < C%)\(u,p)gw(' 7/'L7p) >> . (463)
If the non—degeneracy condition det(Q2(u,p)) # 0 holds, then the system (4.59) has a unique
solution (Xéj(e;,u,p), T (u,p)) and then
X7(0; 1, 0) = XG (1, D) + Ry 7105 18, 9) 9 (18, 9) + Rin( ) €9 (05 11, p). (4.64)

With all, this part is proved.
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REMARK 4.3

8“‘3 K

1ap]

(0;,p) = KY(6; 1, p) = c(6; 11, p)X7 (6; 11, p)
= (co(p,p) + c(8; p,p))

= (co(p, p) +c(0; 1, p))

X¢ (11, p) + X9 (0; M,p))

TN TN

X6 (14 2) + Rrup) 103 1, 0) 7 (1, )

+ 9C{)\(,u,p)gij(g; ,U,,p))
= L (0 ~ ~ . ij
= T Q0 p) (co(p,p) + (05 11, p)) << R (up) (- 5 1, p) > ( 7 (1, p)

+(1 A(u,pm(mf (0:1,))

+( — < TR (5 ) (10(1, p)
(1= A1 2)Rr () 165 12, D) )
+co(p,p) (no(mp)%(u,p)gj (0; 11,2) — &5 (18, D) Ror oy (0 1. p))) (4.65)

Corollary 4.4

Let (k(-; u,p), 7(11,p)) be an invariant translated curve for some (u,p) € Z x R. Then:
or
—(u,p) =0<= Au,p) =1.
p (1:p) (1:p)

Moreover, in general,

Ok . or
870(9; pyp) = c(0; 1, p) <x81(u,p) + R )15 15 D) 8p(um)> :

In the particular case where A\(u,p) =1,

det(Qw,p)) = co(p, )0, p) > a® >0 and
Ok 1 eR1v(0;p,p)
5,05 1p) ﬁcw;u,p) S Ae—
D o, P /emlv(ﬂ;mp)dg
T
Proof. According to Theorem 4.2, the linear system (4.35) in the case where i = 0,5 = 1 has
the form:
1= A, p) —70 (14, p) X0 (1) 0
~ ;. (4.66)
co(psp) < CRypupn(-;1,p) > 9 (1 p)

(=) If §2 (1, p) = 0, then (1 — A, p))XQ (1, p) = 0 and ¢o(p, p) X9 (11, ) =
Thus, X§'(1,p) = gy > 0 and 1= A(u, p) = 0.

Moreover, whenever Ay, p) = 1 , det(Rss,p)) = co(t p)7ols ).
In the same way as in the previous Lemma 3.5, part (xii), co(i, p)no(p, p) > a? > 0.

(<) If Mu,p) =1, from (4.66), we have:

( 60(2,10) < Em;ﬁo)(#(,.l?)% p) > ) ( %1((:’5)) ) = ( ? ) (4.67)

Thus, —no (g, p) 95 (11, p) = 0 = GE (11, p) = 0.
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Additionally, from (4.11), (4.28), and (4.34), we have for i = 0,5 = 1:

Ok
5, Omp) = c(0; 11, p) X" (6; 1, p)
p
- or —~
= c(0;p,p) (xgl(ﬂ,p) + R\ (up)1(0; 1, p) %(u,p) + R () €01 (6 u,p)>
. or
= ¢(0;u,p) (X81(u,p)+%(u,p)n(-;u,p) ap(u,p)) : (4.68)

since COL(6; 1, p) = 0 = €°1(6; 11, p) = n(6; 11, p)COL (G 11, p) = 0 = E01(; 1, p) = 0

= R0 (05 1, p) = 0.

Thus, in the particular case where A(u,p) = 1:

or 1

afp(u,p) =0, x0'(u,p)= D)’ A(p,p) =0, v(0;p,p) =log(m(6; i, p)),

det(Qu,p)) = colp, P)no(p,p) > a® > 0 and (4.69)
Ok 1 o, p)eXrv@smp) P (63p.p)

- (O n,p) = ———c(O;p,p) = = . (4.70)
8]? €0 (,u, p) / O‘(Nv p)eiﬁw(ﬁ;u,p)d& / eiﬁw(@;u,p)dg
T T

Notice that V0 € T, g—;(&; w,p) > 0 and < g—;(' ;i,p) >= 1. These facts do not depend on the
chosen value for co(p, p). O

Corollary 4.5
Let (k(- 5 p,p), 7(1,0)) € Ap be an invariant translated curve for some (pu,p) € Z x R such that
Ap,p) = 1, or equivalently A(p, p) = / log <8f (0, K(0; u,p))) df =0. Then:

T

ox
otir < (5, )¢ (5 1, p) >
; : yP) = — - —— 7Viaj2071727"'a Z+]>17 471
Opidpd (:p) < puyp) > o
1

where n(0; p,p) = i , V0 € T,, and the functions Y are given by egs. (4.24), (4.25),

0 + w; u, p)
and (4.26).

Proof. 1t is a consequence of (4.37) with A(u,p) = 1, which gives

ij _ &)
™ (p,p) = op) (4.72)

Since £Y(0; , p) = 1(0; 11, p)¢ (0; 11, p), then

ditir (p) = = (- 1, p)CY (5 1, p) >

T, p) = ———
(k) Optopl < (-5 p,p) >
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4.2 Saddle—node or fold bifurcation

0
If (uo, po) € Br and —T(uo, po) # 0, then by the implicit function theorem, there exits Zy, Jp open

O
intervals, with Zg C Z, Jop C R and pg € Zy, po € Jo, and there exists a function g : Zy — Jo
with the same regularity as 7, such that

{(1,p) € Zo x Jo : 7(p,p) = 0} = {(E(p),p) : p € Jo}-

Thus, T(Mo,pO) =0 and T(ﬁ(p)ap) =0, vp € Jo.
Taking derivatives,

g;(ﬂ(p),p) 7(p) + §;< (0).p) =0, ¥p € . (4.74)

In particular, for p = po,

0 0
é(uoapo) 7 (po) + a*;m(),m =0.
Therefore,
ar(
140, Po)
o (po) = — 27— (4.75)

(1o, po)
Taking derivatives again in (4.74),

0*r — 0*r — or —n
(5200 FO)+ 5 )) ) 7+ 5 o)) 5 ()
L o)) 7 )+ ) =0, pedn  (4.76)
Particularizing again for p = po,
0? 0? 0
<8;;2—(N0’p0) -7 (po) + aﬂgp(wm@) 7 (po) + i(uo,m) - 7" (po)
82 0?
5 100 P0) T (00) + 5 1o, po) = 0. (4.77)
or .
Whenever 8—1)(/1,0, po) = 0, we obtain:
A(po) Ho
7 (po) 0 ,B%I:d (4.78)
7//( ) _ W(H‘O 7P0)
#ipo gﬁ(uo,po)'
2.
Assume, additionally, that a2 (,uo,po) # 0, and define
or,_
\Ij(p) ?(M(p)vp)a pe \70-
Then,
ar
U(po) = %(Moapo) 0 (4.79)
d (01
o - & (o)
(po) a0 \ ap (7i(p), p) .
Pr _ P
— (4 @010 T ) + S0 )
p=po
0t 0t 0*r
= uop ———— (10, o) - 7' (po) + ap 5 (1o, po) = ap 2(”07p0)7é0' (4.80)
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It follows that, 30 > 0, such that Vp € (pg — 0, po + 6) € Jo,

U (p) = ¥(po) + V' (po)(p — po) + O(p — po)?,
that is,

or 0%r
a*p(ﬁ(p),p) = 87192(“07}70)(}7 —po) +O(p — po)*, ¥p € (po — 8,po +6) C Jo. (4.81)

We say that 7 has a saddle-node bifurcation or fold bifurcation at (ug,pg) if
SN(a). 7(uo,po) = 0;

SN(b). 57 (k0. po) = 0;

SN(©). 42 (o, po) # 0; and

SN(d). 95 (10, po) # 0.
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Theorem 4.6 Saddle-node or fold bifurcation
Let (po,po) € Z x R such that:

(a) k(-3 po,p0) € A, is an invariant curve;

(b) Ao, po) = 1 or, equivalently, A(uo,po) = 0;
(¢) /Tn(ﬁ; 110, P0)1(0; 110, po)d # 0;

om Ok

(d) /Tn(H; uo,po)afp(&uo,po)afpw;uo,po)de # 0.

Then, T has a saddle-node bifurcation or fold bifurcation at (ug,po), that is,

.0
(i) a{)wo,pg) — 0;

or

(i) o (10, p0) # 0; and

NG ats
) o2

Additionally, 3Zo x Jo CZ x R (Zy, Jo open intervals) and i : Jo — Ly, i € C*°, such that:

{(u,p) €Zo x Jo = 7(p,p) = 0} = {(zu(p),p) : p€ Jo}-

(p0,p0) # 0.

Moreover,
A(po) = o
w(po) = 0 - (4.82)
— o op2 H0,P0
/‘L (pO) - %;(MO,PO) #0
and for some § > 0,
or 07 9
a*p(u(p),p) = @(uo,po)(p —po) +O(p—po)”, Vp € (po — d,po + ) € Jo. (4.83)

Consequently, there are four cases depending on the sign ofg—;(uo,po) and %(Mo,pg), correspond-
ing to four respective bifurcation diagrams.

Proof. (i) If k(-; o, po) € A, is an invariant curve, then the translation parameter is zero, i.e.
7(10, po) = 0 and (p0,po) € Br.

(ii) Since A(uo,po) = 1, then by Corollary 4.4, gT(,uO,pO) =0;
p

(iii) By Corollary 4.5

or 10 §éo(u0,po)
- \Mo,Po) = T (MHo,Po) = ———F
5M( ) ( ) n0( o, Po)
_ < 0(ip0,20)¢" (5 o, p0) > < (5 po, po)n(s 0, po) >
n(+; po, o) (-5 to, Po)

or

Thus, o (o, po) # 0 =< n(-; po, po)n(-; o, po) ># 0 & / (05 1o, po)n(0; 1o, po)df # 0.
T
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(iv) By Corollary 4.5

2 02
<0, po)CO% (o, po) > < (50, p0) G (5 o, po) G (5 10, Po) >
- 1+ 110, o) o 1(-: 1o, po) '
Thus,
2
gp;(uo,po) # 0 =< n(-; po, po)n(-; po, po) ># 0 & An(&mm@%ﬁ(& uo,p())g’;(e; 10, Po)dd # 0.

The remainder of the theorem is already proved just before the statement.
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4.3 Transcritical and Pitchfork bifurcations

Let (o, p0) € B; be a critical point of 7, that is:

{g;(,uovpo) =0

T 4.84
g*p(ﬂojpo) = 0. ( )

Assume that (po,po) is a non—degenerate critical point, i.e. det(Hess7)(uo,po) # 0, namely:
o2t 9T
det 35,,227—(1u07p0) g/;fp (u(vaO) ?é 0. (485)
audp (10, P0) gz (Ko, Po)
Morse’s theorem assures that there exist a local diffeomorphism

h: A1XA2 — I(]Xj()
(y1,92) +—  (w,p),

with (0,0) € Ay x Ay € R%, Ay, Ay open intervals, such that h(0,0) = (uo, po) and

(a) If g%g(ug,po) > 0 and det(Hess 7) (10, po) > 0, then

(Toh)(y1,y2) = yi + 93 ,
and 7 has a local minimum at (o, po).

(b) If g%(uo,po) < 0 and det(Hess 7)(uo, po) > 0, then

(Toh)(y1,y2) = —(yi +13) ,

and 7 has a local maximum at (po,po)-
(c) If det(Hess 7)(mo, po) < 0, then
(Toh)(y1,y2) =v1 92,

and 7 has a local saddle point at (uo, po).

In the first two cases the point (uo,po) € B is isolated. In the last case, B; is a product of two
curves in a neighborhood of (g, po):

Notice that
0’1 O*r o1\
det(Hess 7) (10, po) < 0 <= (alu2 ap? (8,u8p> >

<0. (4.86)

(10,p0)

Since h is a diffeomorphism,

Jyi,y2 : Lo x Jo — R, y1,y2 € C* such that V(u,p) € o x Jo, 7(it, ) = y1 (6, p) - Y211, D).

Moreover,
Y1 (10, po) = y2(po,po) =0, (4.87)
and
Oy1 Oyr
det( FA A ) £ 0. (4.88)
O/ (uo.po)
Thus,

B, N (Ty x Jo) = BruB?, (4.89)
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where

B = {(u.p) €To x Jo:y1(n,p) = 0} and (4.90)
B* = {(u.p) € Lo x Jo:y2(p,p) = 0}. (4.91)

From (4.88) we know that, at least one of the partial derivatives, %Zﬁ or %ﬂ is different from zero

at (110, po).
If y1 o (Ko, po) - %—p(,uo, po) # 0 we say that 7 has a transcritical bifurcation at (0, po)-
If Byl (MO,PO) ai

To be more explicit, transcritical bifurcations are characterized, in terms of y; and y» by the
following conditions:

(120, p0) = 0 we say that 7 has a pitchfork bifurcation at (uo, po).

TB1 y1(uo, po) = y2(po, po) = 0;

dy1 o
TB2 det | F* 5P £0;

(.U‘O 7P0)

dy2  Oy2
on  Op

TB3 %2 (10, po) - %2 (10, p0) # 0,

while pitchfork bifurcations are characterized by
PB1 y1(po,po) = y2(po, po) = 0;

9y1 Oy
PB2 det | 21 5P
o Op

# 0;

(10,p0)

PB3 24 . (k0,p0) # 0 and % (1o, po) = 0 or

8y1 o (10, p0) = 0 and ay2 = (10, po) # 0.

Next, we want to express these conditions over yi1,ys into conditions over 7, i.e. u,p.

. (1 p) = y1 (1, p) - y2 (1, p).- (4.92)
7(t0, po) = 0. (4.93)

) or Ay Ay
@(u,p) o —— (1, 2)y2 (1 p) + y1 (1 p) - o (1, p)- (4.94)
(1 o) =0 (4.95)

i or Ay Ay
gp(u,p) 9 — (1 p)y2 (s p) + 91 (p, p) = o (1, p)- (4.96)
o (0s o) = 0 (4.97)

" 027 02y, Ay Ay 02ys

372(;1,1?) = =3 (1, 2)y2(p, ) + 287(u P)5 - o 2 (1,p) + 1 (11, P) 5 o 2 (11, ). (4.98)

827— 83/1 8y2
c‘)Tﬁ(MO’pO) = QaTL(No,PO)a(Momo). (4.99)
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(v)
0% 0%y Ay oy 0%y
aipg(:uap) = W;(u,p)w(u?m + 27;%17)3732(#,1?) +y1 (%P)W;(H,P)- (4.100)
0% oY1 0ya
o _ %Y 4.101
a2 (1105 Po) op (10, P0) 7~ o (1105 Po)- (4.101)
(vi)
0*r 0%, oy 0o oY1 0o 0%y
8Map(u,p) = 8M@p(u,p)yz(u,p)Jr((TM(u,p)aT?(u,p)Jr o9 (1, 0) =~ o (1, p)+y1 (1, p)(9 9 2 (11, p).
(4 102)
0% oy Oy oy1 0y
10p (1o, po) = m —— (1o, po) = o (10, p0) + — - op (1ospo) =— m (10, po).- (4.103)
(vii)
o>t o
det(Hess 7)(u, p) = det %’f (1) 85‘2‘37’ (1) (4.104)
a0 (D) 5E (ks p)
02T o7
det(Hess T) (,LL(), po) —  det %%2 (:U'Oa pO) 8;2{3—1) (MO) pO)
m(MO,Po) 372(#0,190)
Ay1 Oya Ay1 Oy2 Oy1 0y2
_ 299w on T oo
oy Byz + 9u dy2 99y1 9y2
Op Dy T Op Op o 0y (1o.0)
0y 0y 02 Oy> (O Dy | O Oy’
ou Op Ou Op du Op dp Ou
(10:p0)
Oy 0y> Oy1 Oy \®
o Ip dp Ou
(10,P0)
2
Jdy1 Oy
= — (det( A ) ) <0 (4.105)
O 9/ l(uo,po)
(viii)
Pro oy = P, Py 0%y1 dya | Oyr Oyo +%8yz+ Oy3
aps 1P a3 2T p2 ap ap2 Bp | op ap2 ) " ap op2 | N op3
PPy O%y1 Oya ., Oy1 Oy dys
— e . 4.1
03 Yo + 8p2 3p+33p ap? +y16p3 (4.106)
P 0%y1 Oy dy1 0%ys
o _ 39 JNI Y2 , 4.1
T I I T o
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Accordingly, transcritical bifurcations are characterized, in terms of 7 and the parameters u, p by:
T(a). 7(po,po) = 0;

T(b). §=(p0:po) = 0;

T(c). G5 (1o,p0) = 0;

T(d). 55 (10, po) # 05

T(e). det(HessT)(ko,po) <0,
while pitchfork bifurcations by:
P(a). 7(uo,po) = 0;

P(b). §%(1o,p0) = 0;

P(c). %;(Ho,po) =0;

P(d). % (10, p0) = 0;

P(e). %(Ho;]ﬂo) # 0;

P(f). 5% (10, po) # 0;

REMARK 4.7

Notice that, in this case, det(Hess T) (o, po) < 0 as well, since

det(Hess 7) (1o, po) = — | det A 4 = - ((M(]’pO)) )

(10,po)

due to the conditions P(d). and P(e).

Next we carry out the local analysis and stability of both bifurcations.
In the case of the transcritical bifurcation, by the implicit function theorem,
3P1,02 : Lo — Jo, P1,P2 €C™,
such that
{(,p) € Zo x Jo = (1, p) = 0} = { (1, D1 (1)) : o € o} U {(1, Pa(pr)) = 1 € Lo}

Hence, 7(u,p;(1)) = 0, Vi € Zy. In particular, for u = po, 7(uo, po) = 0. Taking derivatives,

S B) + 5 B() B =0, Vi€ Ty (1=1,2). (4.108)

Taking derivatives again,

27_ 27_ 27_ 27_
0 = guz(u,pi(u)) + 8iap(“’pi(“)) - Pi(p) + (iap(u,pi(u)) + gpg(u,pi(u)) ~p2(u)> - i(1)
+ IT 0B B, Vi € T, (4.100)

dp
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Particularizing (4.109) for pu = po,

827' 827' _ 827' 627' — —
0= 872(“0’1’0) dudp Buap Moo Po) - Pilko) + (W(Mo’po)—i_apg(ﬂﬁvpo)'pi<ﬂ0)> - P (o)
or
+ gyt ) +Pi (ho)- (4.110)
Since g—;(uo,po) = 0, we obtain
82T - 2 827' _ 627'
aT)g(HoaPO)(P;;(HO)) + Qauap(ﬂovpo)p;(ﬂo) + ai'ug(lu’07p0) =0. (4.111)

This is a quadratic equation with leading coefficient gipg(,uo, po) # 0 and positive discriminant:

0*r s 0*r
A = <8 R (uojp0)> —487172(%7170)872(%1)0)

%7 %7 %7 ?
= —4 (W(HO,PO)W(MO,PO) (8 ap (Mmpo)) )

= —4det(Hess ) (10, po) > 0.

Accordingly, (4.111) has two different real solutions:

2
—fa%p (10, 0) £ +/— det(Hess 7) (o, po)
%(/‘LOJPO)

P (10) = (i=12). (4.112)

If we call 5
T .
Qi(p) = ap(ﬂ D), pey (i=1,2),

then 36 > 0, such that

®;(1) = Pilpo) + ®}(p0) (1 — po) + O(p — po)?, Y € (no — 6, o + 6) € To,

and we have

Bi() = 5 (o,pn) = 0 and
d or o%r o%r
W) = - <<u,pi<u>>> _ ( .5 ) + L (0, () -p;m))
dp \ Op K=o Oudp Op? =10
02 L
= 5y 10 P0) 53 (10, p0) - Bi(j0) = /= det (Fless 7) (o, o).
Therefore,
0 )
a;( 11,75 (1)) = 41/ — det(Hess 7) (110, po) (11— 110) +O(p—p0)?, Y € (po—0, po+9) € Zo, (i =1,2).

(4.113)
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In the case of the pitchfork bifurcation we have two possibilities, since 83”1 (M07 Po) - pQ(,uo, po) = 0:

Case 1. %—Zg(uo,po) #0and 2 (Mo,po) 0;

Case 2. %%(uo,po) =0 and a3fyp2(/£0,}00) # 0.

In the first one, we have addltlonally (,uo, po) # 0, since

3?;1( Jy1 3y1
1o, po) Gy (Hos o) (119, po) 92 (10, Po) P
det P = det P — y1 D p 0
(8y2(uo,po) &2 (110, po) 0 (g, py) 0 (10, Po)- G2 (o, po) #

In the second one, we have addltlonally (,uo, po) # 0 as well, since

(1o, o) T(MO,PO) 8y1 - (10, o) 0 P P
det ) = det = G- (1o, po)- g2 (1o, po) # 0.
( bue (10, P0) %(Mo,po) 8y2 (10, o) %(Mo;po) o i )

We then analyze Case 1., that is:

(a) y1(to,po) =0 and %—%(ug,po) # 0 and

(b) y2(p0,po) = 0 and G2 (uo, po) # 0.

It follows, by the implicit function theorem,

da:Jo — Zopand p: Zy — Jo , i, p € C™ such that

{(sp) € Zo x Jo = ya(p,p) = 0} = {(1, p(1)) : 1 € Lo},
and

{(u,p) € Ty x Jo : y2(p,p) = 0} = {(z(p), p) : p € Jo}-
Equivalently,

{(1,p) € Zo x Jo : 7(p,p) = 0} = {(11, (1)) : € Lo} U{(7a(p),p) : p € Jo}-

Thus, on the one hand:

y1(p, p(p)) = 0, Y € Zo. In particular, for p = pg, y1(p0, po) = 0.
Taking derivatives,

oy, _ oy, _ _
— (1, P() + -~ (1, (1)) - P (1) = 0, Vu € Iy . (4.114)
ou dp
Particularizing for u = puo,
oy oy o
YL 0 90) + 22 (1o o) - —0,VueT. 4.115
o (110, o) + o (10, p0) - P (10) n €Iy ( )
Since ayl (10, po) # 0,
oy
3, M0, Po
Plpo) =5 (0. o) (4.116)
7(#071)0)
Moreover,
2T
92 (1o, o) - 294 (110, po) 32 8u 7 (10, po)
%(Momo) %(HOapO)@i(lu’(pr) +9 p (Moapo)ai(uoapo)
7(”07]90)
S = —27 (j10).
ayl 2 (110, o)
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Hence,

2
» 1 —3; (1o, o)
() = — 1 S0P
auap(NOapo)

On the other hand:

y2(R(p), p) =0, Vp € Jo. In particular, for p = po,y2(xo,po) = 0.
Taking derivatives,
e
O

In particular, for p = po,

(z(p),p) - 1w (p) + =~ (@(p), p) = 0, ¥p € J.

y2 — y2 _
i (1o, p0) - 7' (po) + ap (to, o) = 0.

Since & % (1o, po) # 0,

Taking derivatives again,

(521/2 _ *ya

0 = (52000 70+ 52w 7

T aljj(u(p»p) )+

In particular, for p = po,

2 2
0 = (5% 0nr) o) + 52 o) ) oo

o o i
G toro) (o) + 558 (o, po) < 7 (po) + 5 5 (1o o).

Since @' (po) = 0 and %—Zﬁ(uo,po) # 0, we have

82

L
7 (po) = (10, Po)
’ ayz(:u’()ap())
Furthermore,
O (no,po) 3% (o, po) B2 >+3( )5 (10, po)
op3 Ho, Po - Mo, Po dp Ho, Po Ho, Po Mo, Po
2 = T Byz B
anp (110, D) G (1o, po) G (1o, po) + ap * (105 Po) ayj (110, o)
7(/1’07])0)
= 3 = 30" (n).

0
BL:(M(LPO)

since 92 (110, po) = 0, %2 (1o, po) # 0, and G2 (119, po) = 0.
Thus
37—
., 1 555 (1o, po)

B (po) = —5 :
3 m(uomo)

(4.117)

(4.118)

(4.119)

(4.120)

(4.121)

(4.122)

(4.123)

(4.124)
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Summarizing,
p(ko) = po ; Alpo) = po
P'(mo) = —é(m#o w(po) = 0 (4.125)
3
W) = 4 2

Next, in order to determine the stability of the bifurcation points, we define the functions:

o) = Z5(up(w), p€Loand
5 (4.126)
Y(p) = G (ap).p), pe
On the one hand,
or
(po) = a*p(,uovpo)a (4.127)
d or 82 827'
(I), = — ( N ) ( + —(u,p = )
(10) W ap(” p(p)) . 90 (1, (1)) 052 (1, (1)) - P (1) .
07 07 B 0%t
= 90p (1o, po) + 671)2(#07]90)']9/(/"0)ZM(:UO’pO)? (4.128)
since 25 10, 0) = 0.
On the other hand:
or
(po) = 879(/107]30)—0, (4.129)
d 67' 827- 827_
o = £ ()~ (o o)
(o) a ap(u(p) ) . awp(u(p) p) - ®(p) )2 (7i(p), p) .
02T 02T
= Bu0p = (1o, po) - u’(po)+a—]92(uo,po)=0, (4.130)

. o 2
since ' (pg) = 0 and gﬁ(#oapo) =0.

d 9%r 9%r
‘I’// = _ ( m , T _|_ — (77 , >
(po) i \ oy (z(p),p) - 1 (p) 2 (7(p), p) .
o3r _ 3r _,
= (o 0100 7 0) + o 6).9)) 70
0% " 3T , 3T )
+ wp),p)-p + —=5Wp),p) o + —=(u(p),
90 (z(p), p) - 1" (p) 0P (z(p), p) - Fio' () 073 ((p), p) .
3T _, BT .,
= (W(Mo,po) “ o (po) + W(HOWO)) -1 (po)
827' o 837' - 837_
+ 10p (1o, p0) - 71" (po) + W(Momo) -0’ (po) + 87])3(%,1?0)
02 o3
= Gy Hoop0) (o) + 5 (o, o)
0*r ( ) 1 g%f(uo,po) N 837( ) = 2031 ( | (4131)
= 5 5 \Mo,P0) "\ =5 52 Ho,s Po Mo, Po .
oudp 3 a:gp(ﬂ07p0) op3 3 0p3
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Summarizing,
®(uo) = 0 i W(po) 0
(o) = o (p0,p0) 20 | U'(py) = 0 (4.132)
3
W (po) %875(#0,2?0) # 0

It follows that, 3§ > 0 such that

®(1) = (o) + ' (o) (1 — po) + O(p — po)* , Ypu € (o — 6, o + 6) € o (4.133)

and

¥(p) = ‘I’(PO)+‘I’/(p0)(p—P0)+%@”(po)(p—Po)Q—i—O(p—po)?' , Vp € (po—0,po+0) C Jo. (4.134)

Namely,

or, or? 9

%(um(u)) = 8Map(uo,zoo)(u — o) + O(p — po)” , Vi € (po — 6, o + 6) < Zo (4.135)
and

or 103t

a*p(ﬁ(p),p) = gafﬁ,(uo,po)(p — o) +O(p—po)*, ¥p € (po— 6, p0 +9) C Jo. (4.136)

Case 2. is obtained from Case 1. exchanging the roles of y; and ys.
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Theorem 4.8 Transcritical bifurcations

Let (po,po) € Z x R such that:
(a) k(3 po0,p0) € Ay is an invariant curve;

(b) A(po,po) =1 or, equivalently, A(uo,po) = 0;
(¢) /Tn(e; 110, o)1 (65 po, po)do # 0;

om Ox

o (05 1o, Po) 5~ (05 o, po)df # 0.

(d) /Tn(H; 140, Po) o

om 0K on om 0K
& [ 10: 10.00) [ 226 0. 70) 22 60: 10 po) + 226 1o, )de-/ 6 110, 70) 2 (60; 10, po) 2 (0: 10, po) 6
(e) /TU( 140, Do) <3u( 10 po)aﬂ( 140, Do) 3u( 1405 P0) TU( 10, o) o (0; o po)ap( 1405 Po)

om Ok

2
< (/TU(G;HO,PO)%(QQMovpo)%(‘g;Movpo)d@) :

Then, T has a transcritical bifurcation at (po,po), that is,

(Z) (/’L07p0) S Bq—, i.€. T(/,L07p0) = O;
. 0
1 2 ) =0

.0
(1ii) a*;(uo,po) =0;

0?2
(iv) a—plm,po) £ 0; and

(v) det(Hess7)(po,p0) < 0.

Additionally, 37y x Jo CZ x R (Zy, Jo open intervals) and 3 py,ps : Lo — Jo, Py, P2 € C°, such
that:

{(1,p) € Zo x Jo : (1, p) = 0} = { (11, 1 (1)) = 1 € Zo} U{ (1, Ba()) = 1 € Lo}
Moreover,
pi(ko) = po

_%(umpo)i\/— det(Hess 7)(120,p0) (i=1,2). (4.137)

P (o)

82
222 (uo.p0)

and for some § > 0,

) .
a*;(u,@(u)) = £/~ det(Hess 7) (110, po) (11— 10) +O(pi—p10)?, Yu € (p10—0, juo+9) C Io, (i =1,2).

(4.138)

Proof. Tt only remains to prove that conditions (a) — (e) are equivalent to conditions (i) — (v) since
the remainder of the statement is already proved above.

(i) If w(; o, po) € A, is an invariant curve, then the translation parameter is zero, i.e. 7(uo,po) = 0
and (/Lo,po) € B-.
or

(ii) Since A(po,po) = 1, then by Corollary 4.4, a—(,uo,po) = 0;
p
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(iii) By Corollary 4.5

or 10 &80 (o, o)
—(po,po) = 7°(po,po) = —2r—"—=
8u( ) ( ) 1o(#05 Do)
<03 p0,20)¢" (5 10, p0) > < (5 po, o) 0, o) >
<n(*; po> po) > <n(+; po, po) >

or

Thus, on (1o, po) # 0 =< (-5 po, po)n(+; po, po) >=0 & / (05 1o, po)n(0; po, po)dd # 0.
T

(iv) By Corollary 4.5

Ot 11 (I)I(HO,PO)
8Map(uo,po) = 7 (Mo, po) = 1010, 70)
< p0,p0)SM (5 pospo) > < 1+ 110, P0) (-5 110, o) G (-5 10, P0) >
< (- po, po) > < (- po, po) > '
Thus,
9?2 0 0
8m;p(uomo) # 0 &< n(:; po, po)n(-; po, po) ># 0 & /Tn(ﬁ; Mmpo)%(@; uo,po)a—Z(e; 110, po)df # 0.
9%t 9%t 0T 2
det(H = . - .
(v des(Hess ) o o) = 57 . ) 5 % i) — (o)

Applying again Corollary 4.5,

5 20

22 (nop) = (0, po) = — L Lot0)
2 502 P

25 (o, p) = (o, o) = — ko)
2 511 )

%(MOaPO) = 7—11(”07100) - 7;]0(%00,500))

Therefore,

det (Hess 7) (0, po) = ( ! (580(M07p0)§82(l£0,170) - (fél(uo,po))Q)

no(o, po))?
Thus,

2
det(Hess 7) (110, po) < 0 < &% (10, p0)&0* (110, po) < (&5 (10, p0)) "

and the latter is equivalent to

0 0 0 0 0
/T??(9;/~LO,P0) <£(9;M0,P0)82(9; to, Po) + (.;;(H;Mo,po)) d@'/T 77(9;,u07p0)877;(0;N07p0)£(0;M07p0)d0

) ) 2
< (/Tﬁw;uo,po)5;(9;#0,290)(3/;(9;#0,110)(19) :
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Theorem 4.9 Pitchfork bifurcations
Let (po,po) € Z x R such that:

(a) k(5 po0,p0) € Ay is an invariant curve;

(b) Ao, po) = 1 or, equivalently, A(uo, po) = 0;

(c) /77(9; Lo, po)n(8; po, po)do = 0;
T

0 0
(d) /Tn(9; uo,po)£(9;uo,po)£(9;uo,po)d9 = 0.
0 0
(e) /TU(H; uo,po)£(9;uo,po)£(9;uo,po)d9 # 0.
om 0%k 9%m Ok
() /Tn(9; 110, Po) (28p(9;uo,po)8pQ(9;uo,po) + 8pQ(9;uo,po)ap(ﬂ;uo,po)) dg # 0.

Then, T has a pitchfork bifurcation at (uo,po), that is,
(4) 7(po,po) = 0;
(i) F5 (1o, o) = 0;
(i) 9= (110, p0) = 0;
(i) 55 (1o, po) = 0;
(v) Gy (1. po) # 0
(vi) 5% (110, p0) # 0;
Additionally, 3Zo x Jo CZ x R (Zy, Jo open intervals) and

A0 :Jo —To andp: Ty — Jo , 1, p € C*° such that

{(sp) € Zo x Jo = ya(p,p) = 0} = {(1,p(1)) : 1 € Lo},

and
{(,p) € Lo x Jo = ya(p, p) = 0} = {(7E(p),p) : p € Jo}-
Equivalently,
{(,p) € Zo x Jo = T(p,p) = 0} = {(, B(w)) = 1 € To} U{(Fa(p), p) : p € Jo}-

Moreover,

p(ro) = po

&(Mo Po)

—/ — _l 6M2 ). 0

P'{no) 2 5 io0) 7

Ap) = o | (4.139)

w(po) = 0 ,

ﬁ”(po) _ 1 gT):JT,(Mo,Po) 7é 0

= 3

52
Bpop (Ho:P0)
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and for some § > 0,

or o2

%(Mvﬁ(ﬂ)) = m(uomo)(ﬂ — p10) + O(p — po)? , Y € (o — 8, 110 +6) € Io (4.140)
and

0 193

é(ﬁ(p),p) = gaT)g(uo,po)(p —p0)*>+O(p—po)*, ¥p € (po— 6, p0 + ) C Jo. (4.141)

Proof. 1t only remains to prove that conditions (a) — (f) are equivalent to conditions (i) — (vi)
since the remainder of the statement is already proved above.

(i) If k(- 1o, po) € A, is an invariant curve, then the translation parameter is zero, i.e. 7(uo,po) = 0
and (MO?p()) € B;.

(ii) Since A(uo,po) = 1, then by Corollary 4.4, g (10, p0) = 0;

(iii) By Corollary 4.5

or 10 géo(u[)?po)
- \Mo,Po) = T \MHo,Po) = ———F
3M( ) ( ) 0 (10, Po)
<05 00,20)6™ (5 pos po) > _ <l po,po)n(s po, po) >
< n(; o, po) > < (s po,po) >

or
Thus, afﬂ(uo,po) =0 << (5 o, po)n(-; po, po) >= 0= / 1(0; 110, po)1(0; o, po)dd = 0.
T

(iv) By Corollary 4.5

O’r 02 582@07170)
5 9 \M0,P0) = T \Ho,P0) = ———F
op? ( ) ( ) 1005 Po)
< n(500,00)6% (5 p0sp0) > < 77('?#07170)% (5 ko, po) & (5 1o, po) >
< (3 po, po) > < n(; o, po) >
Thus,
9T om Ok

_— g 0 3 RE— (.- — 0
a2 (10, 10) < < (s po, po) 8p ( ,Moypo)ap( ; 10, Do) >
ok
& / (6; Mo,po (9 Moypo)ap(@uoypo)w =0.

(v) By Corollary 4.5

1 11 (1)1(,“0,2?0)
) = T ) = -
8Ma (MO pO) (/.LO pO) 770(,“07170)
_ < n(+; to, po)CH (5 o, po) > _ _< W('%Mo,po)% (5 Mojpo) ( 1o, Po) >
< n(; o, po) > < n(; o, po) >
Thus,

0?2 0 0
ng(uo,po)#o & <77(‘;Mo&o)%(-;ﬂmﬁo)%(ﬁMO,PO) ># 0

0K
& / (6; Momo (9 Movpo)apw; 1o, po)df # 0.
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(vi) By Corollary 4.5

&t 03 3 (10, p0)
a2 \Mo,Po) = T \Mo,P0) = ———
op3 ( ) ( ) no (1o, Po)
<05 10,20)6% (-5 g0, po) >
< (5 po, po) >
. 9dm (.. %k (. *m .. Ori (..
< 7]( 7”07p0) (91) ( 7/’6071)0) ap2( 7,“07])0) + 8p2 ( 7“07])0) ap( 7#07190) >
a < (- po, po) > '
Thus,

BT
0 # 87)3(#07290)

om 0%k 0%m Ok

&0 # <n(;po,po) (281)(-;Mo,po)8]32(-;uo,po) + 8pg(-;uo,po)810(-;#0490)) >
om 0%k 0%m Ok

=0 # /TTI(G;MOJ?O) (2329(9;M0,P0)6p2(9;1107p0) + ap2(9;M0,P0)ap(9;Mo,Po)) de.

O
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4.4 Period—doubling or flip bifurcations
REMARK 4.10
The bifurcation diagram can be expressed in the following way:
Br ={(n,p) €T xR:7(p,p) =0} ={(,p) €T x R:v(p,p) =p},

where v(p, p) = 7(p1,p) + p-
Thus, the bifurcation points (1o, po) are fixed points of the function v(uo,-), i.e.

(110, o) € By <= po € Fix (1o, -),

where Fix 7(po,-) := {p € R : v(po,p) = p}, for a given py € Z.
Then, different kind of bifurcation points can be described in terms of v. For instance, pitchfork
bifurcations are characterized by the following conditions:

P(a). v(po,po) = po;
P(b). %Z(MO,PO) =0;
P(c). §¢(no,po) = 1;
P(d). 55 (1o, po) = 0;
Pe). %(Mo,po) #0;

P(f). 9% (110, po) # 0;

0
Let us consider a bifurcation point (po,po) € B, such that 8—U(u0,po) = —1, that is, (po,po) is a
p

continuable point w.r.t p, or po is a non—hyperbolic fixed point of v(uyg,-).
By the IFT, 37y C Z, Jp € R, open intervals such that (ug,po) € Zo X Jo, and 3p : Zy — Jo,
p € C*(Zy), such that p(uo) = po and

{(1,p) € Zo x Jo - v(p,p) = p} = { (1, p(1) : p € Lo}

Thus,
v(p, p(p) =p(p), Yo € Zo. (4.142)
In particular, v(ug, po) = po. Taking derivatives in (4.142),
ov _ ov _ — —/
- (1 P(w) + 5~ (1, D(p)) - 7 () = P'(1), Vi € Zo. (4.143)
ou Op
In particular, for p = ug,
ov ov —/ —/
et e . = . 4.144
o (10, 10) + o (10, p0) - P'(10) = D' (ko) (4.144)
Since %(/Lo,po) = —1, then
_, 10v
=—-— . 4.145
P (ko) =3 o (10, Do) (4.145)

Let ®(p) = 92(1,p(1)), p € To. Then,

®(po) = 5~ (1o, po) = —1. (4.146)
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Moreover,
d [ov 9%v 9%v
¥io) = g (Gelept)| = (o P00 + 5 p) 70 )

dp \ Op =10 opudp op? [1=pio
82 82

= Budp == (1o, o) + 07;2)(#07]30)‘]3'(#0) (4.147)
10%v ov d%v

- Qap (Moup())a#(HOapO) 8 8 (/107]70)

If we assume that %a 5 (M07P0)5M(M0»P0) + 8M6p 2 (10, p0) # 0, then 35 > 0 such that
Vi € (o — 8, p1o +8) C Zo, ®(u) = V(o) + ' (o) (1 — o) + Ot — pio)?, that is,

ov, _ 1030 ov 02v
a*p(u,p(u)):—ﬂr (QW(uo,po)%(uo,po) 10p (Mo,po)> (1 — o) + O(p — po)?. (4.148)

Consider now the function given by the second iterate,

0?1, p) = V(g v(p,p)) , (1,9) € Tg X Jo, (4.149)

where Z5 = {p € Zp : v(p, p) € Jo, Vp € Lo }.

Notice that v*(0,po) = v (0, v(p0, po)) = v(k0, Po) = Po-
Differentiating (4.149),

U2 v ()
%H(um) = gﬂ(u,v(u,p)) +gp(u,v(u7p)) g(ﬂ p) (4.150)
ov? _Ov ov 4151
Tp(ﬂap) = %(Mav(u7p)) ) a*p(lhp)- (4. )

In particular, for g = pop and p = p(uo) = po,

02 op0) = 2% Gu0,p0) + 22 (0, 20) - 22 (0, po)
BN 1o, Po En o, Po ap 1o, Po En 1o, Po
0 0
= %(uo,po) (1 + aZ(uo,po)) =0 (4.152)
o2 ov ov
Tp(ﬂoapo) = a*p(ﬂod?o) : afp(u,p) =(-1)?=1. (4.153)

Derivating (4.150) w.r.t u,

821)2 821) 62,0 v
T ) = Gl vlnp)) + o v p)) - 5o )
821) 82’() v v
+ <M,(“7“(%p)) g (v p) - 8M(um)) g P)
ov d%v

+ a*p(%?) : W(M?p) (. p) € Iy x Jo.
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In particular, for u = up and p = p(1o) = po,

020? 9%v 9%v ov
TMQ(MOJ)O) = Tug(ﬂoypo) + 8u8p(uo’p0) ' @(Moapo)
+ ﬁ( )+ai“( ).@( ) .871)( )
ov 9%v
+ 87)(#0,190) : W(Moapo)
1 9v? ov 9%v ov
f— 2 —_—— e e
(5 50 20) o) + 5 o)) - 5 oo
ov
= 29 - — (1o, po)- 4.154
(10) on (110, 10) ( )
Derivating (4.151) w.r.t p,
0202 9%v ov 2
Tpg(lhp) = Tpg(u’v(/}ﬂp)) (ap(/iap)>
ov 9%v .
+ a*p(u,v(u,p)) : 8TOQ(u,p) Y, p) € Iy x Jo. (4.155)
In particular, for u = ug and p = p(up) = po,
9?02 ) ov 2 v 9%v
Tpg(,uﬂvp()) = TpQ(MOapﬂ) (819(#0,1?0)> + a*p(/m,m) ' aT)g(/ioypo)
9?2 9%u
= Tpg(:u(]va)(_l)Q - aT)g(Mmpo) = 0. (4.156)
Derivating (4.151) w.r.t p,
9?02 0%v 0%v ov ov
aMap(u,p) = <8M8p(u,v(ﬂ,p)) + sz(u,v(ﬂ,p)) : (f)u(u,p)> : a*p(u,p)
ov 9%v .
+ a*p(u,v(u,p)) : auap(“’p) V(u,p) € Iy x Jo. (4.157)
In particular, for u = ug and p = p(uo) = po,
9%0? d%*v d%v ov ov
m(ﬂomo) <auap(uo,l?o) + aTDQ(Mo,po) ' aﬂ(ﬂomo)) : a*p(uoapo)
ov 9%v
+ gp(uo,po) : Tuap(“o’p()) (4.158)

1 0v? ov v /
= -2 (28?@(#07]30)@(#07170) + M(Momo)) = —2®"(po) # 0. (4.159)

Finally, taking derivatives in (4.155) w.r.t. p,

9302 v ov 3
Tpg(uap) = Tﬁ,(#av(#,l’)) <ap(/%p)>
9%v ov 9%v
- — — 4.1
+ 38p2(u,v(u,p))ap(u,p)apg(u,p) (4.160)
ov v

+ afp(ﬂ,v(u,p))a—pg,(u,p) Y, p) € I x Jo. (4.161)
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Particularizing for p = po and p = p(po) = po,

030? v ov
Tpg(uo,po) = aipg(:U’OapO)
9%v ov

Sop
ov o3

Op

+ a*p(ﬂmpo)afpg(ﬂoapo)

0%v
= —27 [e—
9P (10, P0) — 3

where

3
&5 (10, o)

3
870('“0’ p0)>

(MO@O)f(MOyPO)

2
(Momo)) = 25,v(Ho, po),

2
& (10, po)

Sp'U(,LLO7p0) =

v

1
= 3 (‘28103(#071?0) -3

1 03v?
iaipg(,uo,po)

is the Schwarzian derivative of v(uyg,-) at po.

92 (1o, po)

(Mo,p0)>2>

(4.162)

(4.163)
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Chapter 5

Numerical aspects related to Fourier
series, discrete Fourier transform
(DFT), and cohomological equations

5.1 Introduction

The fundamental objective of this chapter is the introduction of all those concepts necessary
for the numerical implementation of the procedures described in the previous chapters. Mainly,
cohomological equations and the derived computation of the Floquet transformation of a curve.
Subject to these procedures is everything related to the numerical implementation of Fourier series
and the Fourier coefficients of a function.

Section 5.2 is devoted to introduce the discrete Fourier transform (DFT) and its inverse (IDFT),
definitions and some of those properties which will be used later on in the computations. These
tools constitute an efficient way to compute functions given by their Fourier series expansion on
the torus. In Section 5.3 we introduce a method to compute numerically the Fourier coefficients
of a function by means of the DFT, providing moreover an estimate of the error made in the
aforementioned approximation. With a finite collection of Fourier coefficients it is possible to
reconstruct, by means of the convolution with the Dirichlet kernel, the partial sums of the Fourier
series. This is explained in Section 5.4. Moreover, there is an efficient way to reconstruct functions
from their Fourier coefficients employing the inverse discrete Fourier transform (IDFT). Once we
have solved the problem of the numerical implementation for Fourier series and Fourier coefficients,
we are in a position to solve cohomological equations and, as a particular case, to compute the
Floquet transformation of a given curve, which is necessary in the reducibility process of skew—
products. These aspects will be dealt with in the last section of the chapter, Section 5.6.

5.2 The discrete Fourier Transform (DFT) and its inverse (IDFT)

This section is devoted to providing definitions and fundamental properties of the Discrete Fourier
Transform (DFT) and its inverse (IDFT). It is not intended to make an exhaustive study of digital
signal processing (DSP), but only of some tools necessary for implementing those procedures
involved in the numerical simulation of the KAM algorithm designed in previous chapters and the



160  Numerical aspects related to Fourier series, discrete Fourier transform (DFT), and cohomological equations

corresponding error control!, as will be shown in the following sections?.

Given N € N define the set® Zy = {1,2,..., N} and let
lQ(ZN) = {ac = (xk)keZ XL € (C,xk+N =uxp, Vk € Z}.

that is, the set of all the both—sided N—periodic sequences of complex numbers.

One element x = (z)rez of 1?(Zy) can be represented by the terms corresponding to one period.
We will consider here the convention of denoting by = = [z(1),z(2),...,z(N)| the elements of
I2(Zy). This space has a natural structure of a C-vector space. Moreover, it is a Hilbert space
with the inner product

<L >0 ZZ(ZN) X ZZ(ZN) — C
N
(@ = [2(1),2(2),...,x(N)],y = [y(1),4(2),...,y(N)]) +— <a,y>= a(k)yk).
k=1
One orthonormal basis is £ = {e1,...,en} with e;(k) = 0z, Vj,k € Zn, and the dimension of the

space is dim¢(12(Zy)) = N, hence it is isomorphic to CV

Definition 5.1 DFT, IDFT
Given N € N, the Discrete Fourier Transform (DFT) is defined as the linear operator

SN 1*(Zn) — *(Zn)
2= [2(1),2(2), ..., 2(N)] — Fnzi= X = [X(1), X(2),..., X(N)]

where

N—
X(k+1) Z HWE Yk =0,1,...,N -1 (5.1)

and Wy = e~ N1, This operator is invertible and the inverse is the so—called Inverse Discrete
Fourier Transform (IDFT) which, in fact, is defined by

S 12(Zy) — 1*(Zy)
X =[X(1),X(2),....,X(N)] +— FyX:=z=[z(1),2(2),...,2(N)
with
1 N-1
(n+1) =+ X(k+1)Wy* vn=0,1,...,N —1. (5.2)
k=0

IFor extended documentation and more details the reader is referred to the voluminous literature about the DET
e.g. [6, 13, 20, 56, 28]. .

’In this way, it is about justifying the programming making exposed in Appendix II, which are implemented
in Matlab® programming environment (R2022b).

3This set can be considered as a representative of the cyclic Abelian group of order N, typically represented as
Z/NZ ={0,1,...,N —1} ={1,2,...,N}. In our case, the operation of the group is derived from the usual sum of
integers modulus N and the zero element is 0 = N.
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REMARK 5.2

The factor Wy = e~ is an N-th root of the unity, that is, W]]\\/ =1 . Moreover, given any
m € Z,

N-1 N ifm=N
1+Wﬁ+WJ%;m+--~+WJ(\, )m:{ 0 ({therwise

Notice that G = {Wn,W3,..., W]]\\/_l, W =1} is an Abelian cyclic group and G = Zy.
Thus, the above definitions are consistent with the fact that the sequences involved are N —periodic.

Indeed,

N—-1 N—-1
X(k+N+1) = en+ DW= N a(n+ HWEWAT
n=0 n=0
N—-1
= r(n+ D)W = X(k+1), Vk € Z.
n=0
In the same manner,
1 N—-1 ( N)k:
o n-+ —nk: —Nk
s+ N+1) = <> X(k+1)Wy ZXk:Jrl Wy
k=0
1 N—-1
= 52 X(k+ DWY™ =z(n+1), Yn € Z.
k=0

Notice that S]_Vl is effectively the inverse operator of §x and this fact justifies the notation.
Indeed, for any z = [z(1),2(2),...,z(N)] € I*(Zy) we have:

1 N-1 1 N—1N-1
_ nk __ mkyrr—nk
I Brz)(n+1) = N (Fnz)(n+ )Wy =N Z Z x(m + L)W "Wy
k=0 k=0 m=0
1 N—-1 N—-1 1 N—-1
= N x(m+ 1) W _N x(m + 1)Nopn
m=0 k=0 m=0
1
= N:c(n—i—l)N::c(n—i—l), Vne0,1,...,N —1.

Therefore, Sjvl&vm = z,Vz € [*(Zy). Analogously, SNSR}X = X,VX € I*(Zy).

Before stating some properties of the DFT we need to define some linear operators.

Definition 5.3 Conjugation, shift, reversal, and rotation operators
The conjugation operator produces the complex conjugation of all the terms of the sequence.

QtN : ZQ(ZN) — ZQ(ZN)

v = [2(1),2(2),.. ., 2(N)] — Cyw == [2(1),2(2),...,2(V)] . (5:3)
The shift operator displaces the terms of the sequence one position to the right.
Sy : *(Zn) — *(Z) (5.4)
x=[z(1),2(2),...,z(N)] — 6nyz=[z(N),z(1),...,z(N—-1)].
The reversal operator reverses the order of the elements in a period.
Iy *(Zn) — 1*(Zy) (5.5)

x=[z(1),2(2),...,2(N)] — Iyz=[z(N),z(N-1),...,2(1)].
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The rotation operator rotates each element x(n + 1) by multiplication by the factor W§.

m]\[ : l2(ZN) — ZZ(ZN)

= [2(1),2(2),.... 2(N)] — Ryx = [Wha(1), Wha(@),...,wiay . 9

o

REMARK 5.4

Notice that C?V = Iy, 6% = Iy, 3%\, = Iy, and 9%% = Iy, where Iy denotes here the identity
operator.
Moreover, G = SjvliﬁN{s"N, i.e. Gy 1s the conjugate of Ry by means of the DFT §y.

Proof. Let a = [¢(1),2(2), ..., ]<N>1ez2<zN>X Sne = [X(1),X(2),...,X(N)],

v = 6nz = [y(1),y(2), . y(N)], ¥ = 3wy = [Y(1), Y (2),...., Y(N)], and
7 =RnX =[Z(1),Z(2),...,Z(N)]. Then, Z = RnInz = [W X(1), WhX(2),..., Wy LX(N)].
Thus,
N-1 N-1
Zk+1) = WEX(k+1) =Wk > e+ D)W =3 e+ 1wy
v N_ln:O n=0
= Z W =Y yn+ )W =Y (k+1), Vk=0,1,...,N — 1.
n=0 n=0

Therefore, Z = Y and this implies that Ry X = Fny = Rndnr = FnGya, Vo € 12(Zy) =
RNIN = INGN = Gy = Ty AT Moreover, B = (T RNIN)™ = TN REZN, Vm € Z.
O

For the sake of clarity, one may omit the subindex N in the notation of the operators, at least
when there is no ambiguity.

Next we state a series of fundamental properties of the DFT that can be demonstrated by applying
the definitions.

Proposition 5.5 Properties of the DFT

(a) Linearity Yo,y € I>(Zy), o, 8 € C,Fn(ax + By) = aFnz + BINY-
(b) Orthogonality
{ep = WO Wik ... ,W](\[Nfl)k] :k=0,1,...,N — 1} is an orthogonal basis of I>(Zy).

(¢) Plancherel theorem and Parseval’s identity

(Plancherel) Let z = [2(1),2(2),...,2(N)] € 2(Zy), X = Fyz = [X(1), X(2),..., X(N)],
v = 91 5(2)....y(N)] € B(Zy). and Y = Fxy = [Y(1).Y(2)..... Y (N)]. Then,
N—-1

MZ

z(n+1y(n+1) Xk+1D)Y(E+1),

HM

k:

that is, < x,y >= + < Fnz,Fny >, Va,y € 12(Zy).
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(d)

(Parseval) Let x = [2(1),2(2),...,2(N)] € *(Zy). Then,

N-1 | V-l
rn+ 1= = X(k+1)%,
;\( )| NkZ:OI (k+1)]

that is,
1
zlli2zy) = WHSNHSHP(ZN)-

Shift theorem.
Let v,y € 12(Zy), X =3Fnz, Y =Fny, and m € {0,1,..., N — 1}.
Time shifting Ify(n+1)=z(n+1—-m), Vn=0,1,...,N —1 (i.e. y = 6Rx),

then Y(k+1) = X(k+ )Wk VE=0,1,...,N =1 (i.e. Y = REX).
Frequency shifting Ify(n+1) = z(n+1)W™", Vn=0,1,...,N =1 (i.e. x = Ry), then

Y(k+1)=X(k+1-m), Vk=0,1,...,N—1 (ie. ¥ = &TX).

Time and frequency reversal

Time reversal Vz € I?(Zy), InIne = GNINFNO .

Frequency reversal Vz € I?(Zy), IngnT = SNANCNINT.

Conjugacy
In = 2ENINCN.

Complex conjugate

Time conjugate FnCxy = ENGNINTN-

Frequency conjugate Cxgy = SnENGNTN.

Proof.

(a)

Linearity The linearity of the DFT is immediate from the definition.
Matrix representation of the DFT
Let £ = {€j+l}‘§y:61 be the canonical basis of 12(Zy).

The DFT of the basis elements is given by €11 = §nej+1, j =0,1,..., N, where

N-1
Gk +1) = eja(n+ HWE = Wi, Vj,k=0,1,...,N. Thus,
n=0

e = (LWL, W W w (N =01, N

The consequent matrix representation of these identities has the form

- 1 1 1 . 1 .
1 — 1
- 1 Wy wz oo Wit .
2| _ 2 4 2(N-1)j 2
1 W3 W Wy ] (5.7)

EN - _ 2.}\}71 N;l N—-1 eN
1wyt owp L whee
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The square matrix A(Wy) € GLy(C) which appears in the above representation is useful to
prove some important properties® of the DFT.

In a first sight, one can see that the matrix is symmetric. Some terms of the matrix can be
often reduced using the fact that WJJVN =1, Vj € Z. Despite this, if IV is a prime number this
reduction is not feasible. On the other hand note that A(Wx)A(Wx) = NIy, where Iy is
the identity matrix, so §y is, indeed, invertible and the matrix of the IDFT, 3]_\,1, w.r.t the
canonical basis is A(Wy)~! = 4+ A(Wy).

Orthogonality
N-1 l N-1
< e,e >= Z W]T\L;kWN = Z W;\l/(kil) = Nby;.
n=0 n=0
Plancherel theorem and Parseval’s identity

Plancherel

N—-1 N—-1 1 N—-1 1 N—-1
<my> = Y aln+yn+1) = (NZX(k‘H)WJ’%”N Y<k+1>WNl“>

|~
i
i
;

- X(k+ 1Yk + HwekD

=0

3
3
Il
o
i
=)

F
i
=

X(k+1)Y (k+ 1)Ng(n

[
e
(]

7

Lo
o
iy
o
]
o

X(k+1)Y(k+1)= % <IN, INY >

=2l
ol
I
o

Parseval This identity is a particular case of the latter, when y = x.

Shift theorem
Let 7,y € I2(Zy), X =§nw, Y =Fnyy, and m € {0,1,..., N — 1}.

Time shifting If y(n+1) =2(n+1—-m), Yn=0,1,...,N — 1 (i.e. y = &), then

N-1 N—-1
Y(k+1) = y(n+1)Whn = Z z(n+1—m)Whr (making v =n — m)

n=0 n=0
N—-1-m N—-1-m

= Y e+ W\ = T a(w + HWEWEE

(by the N—periodicity)

N-1

= > a(+ DWW = X (k+ )We*, vk =0,1,...,N — 1.
v=0

“For more information about the eigenstructure of DFT matrices see [12].
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Frequency shifting If y(n +1) = 2(n + 1)W ™", Vn =0,1,..., N — 1, then

N-1 N—-1
Y(k+1) = y(n+ W' = > a(n+ HWL"" WA

n=0 n=0
N-1

= x(n+ 1)W]7\7’,(k7m) (calling k = k —m)
n=0
N-1 B

= yin+ DW= X(k+1)=X(k—m+1), Vk=0,1,...,N — 1.
n=0

(e) Time and frequency reversal
Let = [z(1),2(2),...,2(N)] € I*(Zy), X = Fnz = [X (1), X(2),..., X(N)],
y=70nz = [y(1),y(2),...,y(N)],and Y = Fny = [Y(1),Y(2),...,Y(N)]. Then,

N-1 N-1
Y(k+1) = y(n + 1)WRE = Z (N — n)W& (inverting the order of the sum)
n=0 n=0
N-1 N-1
= x(n+ l)W(N 1=k Z x(n+ 1)W]]\,V(n_k)W]]\\,[_k
n=0 n=0
N-1
= WS e+ Wit = W TEX(N k- 1),VE=0,1,...,N ~ 1.
n=0
(f) Conjugacy
Let z = [z(1),z(2),...,z(N)] € I*(Zn), X = [X(1),X(2),..., X (N)] = Fnz,
y=[y1),y(2),...,y(N)] = en X = [X(1),X(2),..., X(N)],

Y =[Y(1),Y(2 ) -, Y(N)] = Fny, and
2= (1), 2(2), ..., 2(N)] = €Y = V(D). V(2),..., V(N
Then, Vn =0,1,...,N — 1,

N-1 N-1
sn+1) = Y(n+1)=> yl+)Wh=> X(I+1)W
=0 =0
N—-1N-1 N—-1N-1
= ok + )WEWE =33 " a(k+ DWW
=0 k=0 =0 k=0
N-1 N-1 N-1
. w(k+1) S W = N 2k + 1) N6, = Nao(n + 1)
k=0 =0 k=0

Therefore, z(n + 1) = 2(n+1), ¥n =0,1,..., N, and then
= 4z2=3CNY = LENFNY = RENFNENX = FENTNENFNT, that is, Iy = HENFNENTN
or equivalently, 3;]1 = %(’:N&VQ:N.

This property allows to compute the IDFT using the direct DFT.

(g) Complex conjugate
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Proposition 5.6 Properties of the DFT operators

(1) € =1y

(%) 3% = In;
(iii) &N =1Iy;
(iv) RY = 1n;

Let v = [2(1),2(2),...,2(N)] € *(Zyn), X = Fnz = [X(1), X(2),..., X (N)],
y=0nz=[y(1),y2),....,y(N)], and Y = Fny = [Y(1),Y(2),...,Y(N)]. Then,

(v) Time conjugation y=Cnz =Y = ENONINKX, i.e. FNEN = ENCNINTN;
(vi) Frequency conjugation Y = €y X = y = SNInCnx, i.e. ENFN = SNENONTIN;
(vii) Time reversal y = Iyz =Y = GyINRNX, i.e. FNIN = ONINRNTN;
(viii) Frequency reversal Y = InX = y=RyGnInz, i.e. INFN = SNRNONIN;
(ir) Time shifting y = Gyz =Y = RN X, i.e. SNON = RNEN;

(z) Frequency shiftingy = GyX =y = %]}lx,i.e. SNSN = SN,‘R]_VI.

Definition 5.7 Periodic Discrete Convolution (PDC)

The periodic discrete convolution is defined as the following inner operation in 1*(Zy).

* l2(ZN)><l2(ZN) — ZZ(ZN)
(l‘:[l‘(l),$(2),,$(N)],y:[y(1),y(2),,y(N)D — Z=Ixy
where
N-—1
(x*xy)(n+1) Zazm—i—l (n—m+1),¥n=0,1,...,.N—1. (5.8)
m=0

Theorem 5.8 (PDC)
Let z,y € 1*(Zy). Then

Snlaxy)(k+1) =Fyak+ DIyy(k+1), Ve =0,1,... N —1.

Proof.

Let X =[X(1),X(2),..., =8Nz, Y =[Y(1),Y(2),...,Y(N)] = Fny, and
7 (20,2, 500 = Snton). Them
N—-1

Xk+1D)Yk+1) =Y azm+ 1)WY yl+ )W = 2(m + Dy(l + WD,

Now, taking n = m + [, we get:
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N—-1N+m—1
Xk+1)Y(k+1) = Z z(m + 1)y(n —m + )WL ( by the N — periodicity)

m=0 n=m
N-1N-1

= z(m + Dy(n —m + 1)WEr
m=0 n=0
N-1N-1

= z(m + Dy(n —m + )W
n=0 m=0
N-1

= zn+ D)W= Z(k+1), Vk=0,1,...,N — 1.
n=0

REMARK 5.9

If X, Y € 1*(Zn),
FNX*FyYV)n+1)=X(n+1)Y(n+1), ¥n=0,1,...,N — 1.

This property is obtained directly from the PDC theorem taking x = ijle and y = S#Y.
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5.3 Fourier coefficients and the DFT approximation: error esti-
mates

Lemma 5.10 Approximation of the Fourier coefficients

Let u € CYT,R) and Uy, = /u(@)e_zﬂkeicw7 k € Z the Fourier coefficients of u. If we choose

T
a partition (6p,01,...,0n) on the torus T, i.e. 0 =6y < 0 < --- < Ony_1 < Oy = 1, then, for
everyn = 0,1,...,N — 1 there exists &, € [0n,On+1] such that the error in the approrimation of
the Fourier coefficient Uy by means of

N-1
U= (Ony1— Op)u(0n)e ™ ke Z (5.9)
n=0
s given by
N-1
o, 1
Ey =t — U = 5 ) wh(&n) (On1 — 0n)? (5.10)
n=0

where wy,(0) = u(f)e 2™ vo € T.

Proof. First of all, the k—th Fourier coefficient of u can be expressed in the following way:

) N—-1 9n+1 . N-1 9n+1
i = / u(@)e 2 = 3 / u(@)e2™0idp = 3 / we@)do,  (5.11)
T n:[) 071 TL:O en

where we have called wy,(0) = u(0)e 2. Now, each of the integrals in the above sum can be

approximated by means of any method among the extensive family of methods that are based
on approximating the function to integrate. The simplest of all this methods is the so—called left
rectangle rule:

€n+1
/ wi(0)dl ~ (01 — Op)wi(0,), n=0,1,..., N — 1. (5.12)
On
Set
N-—1
Uy = (Oni1 — 0n)wp(0n) (5.13)
n=0

the approximation of .
The error in the approximation is

N—-1 Oni1
By=mp—m=3 ( /9 w(0)d0 — (Bt — Hn)wk(Hn)> . (5.14)
n=>0 n
Now, we denote I,, , = f::“ wy(0)dh and I = (Ont1 — O0p)wi(0y).
Thus,
N-1 N-1 Oni1
By=S (=I5 =3 /6 (13 (8) — wi(0,))d0. (5.15)
n=0 n=0 """

Since v € CY(T,R), then wy € C'(T,R), too. By the fundamental theorem of calculus, we can
write

7
wi(0) = wi(6r) + / wl(t)dt, V0 € T. (5.16)

It follows that
Opi1 0
J / / Wl (£)dtdo. (5.17)
O On
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Let D, = {(0,t) €R?:0,, <0 < 0p11,0, <t <06}
One can write D, = {(0,t) € R? : 0, <t < 0p41,t <0 <041}
Consequently, by Fubini’s theorem, the order of integration can be changed and the result is

9n+1 9n+1 0n+1
J / / W (#)d0dt = /9 W (1) (Bt — 1), (5.18)
n t n

Now, we come with the following change of variable in the integral:

[_171] — [0n70n+1]

— 9n+6n+1 0n+1_0n
S — = 5 + 55,

obtaining, after calling h, = 60,+1 — 05,

N-1

Ey = Z (In,k - I;,k)
n=0
N-1 .1
h h

= / wk(&n—i-?(l—i-s))—(l—s)?n)ds
n=0"7 "1
N-1 h2 1 h

_ n/ WO+ (1 4 8))(1 = 5)ds .

4 J_4 2
n=0
By the mean value theorem for integrals, ¥n = 0,1,..., N there exist &, € [0y, 0p,+1], such that

1 1
[ w0+ S )1 = s = i) [ (1= s = 20460

-1

Therefore,
N1 | N1
By =3 1;) wh ()02 = 3 ;) W (€0)(Ons1 — 0,)%, with &, € [0, Ops1], Y0 =0,1,...N —1.
(5.19)
O
Corollary 5.11 Approximation of the Fourier coefficients by means of the DFT
Taking 0, = &, Vn=0,1,..., N — 1, N in the above lemma, and calling
x=[z(1),2(2),...,2(N)]
with x(n + 1) = u(0,) and the DFT of x,
N-1 ,
ie. X(k+1)= Z x(n+ I)W]Q"k, Vk=0,1,...,N —1 where Wy = e~ ~N°, then the error in the
n=0
approzimation of uy by
N 1
u",;:NX(k:—kl), vVk=0,1,...,N — 1, (5.20)
is given, for some &, € [, ”TH], n=0,1,....,N —1, by
| Nl
By =t — U, = 735 > wi(&) (5.21)
n=0

where wi(0) = u(f)e 2% v c T.
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Proof. O
EXAMPLE

Take the function

u: T — R

1
1 0<b<s3
1
0 — u@)={ 0 ., =030 ,
1, 3 1
53 <0<
whose Fourier coej i ZCZ@ntS are given by
~
uyg = 0
- 1- (="
i = -~ ez o).
k
z = u(6) Fourier coefficients (spectrum)
. Heavyside function o [l > N =10000000 M =64 €=0.01
06l
|
05 0.5 \‘
04l
5 Ol . o & |
0.3}
|
0.5+
L]
1 . . . . Yy ._.'_f"!!g-v--.---...-...
0 01 02 03 04 05 06 07 08 09 1 0 10 20 30 40 50 60 70
0 k
Approx. Fourier coefficients (spectrum) u(f) = w() = IDFT(DFT(u))
0\1:12‘.\ >e N =10000000 M =64 c=0.01 maxl|a—a;|=2¢c-07 [l — wl| = max(|u(0) — w(0)|) = 3.4416914e — 15
7 - - - - - ; 1 - - T T
0.6 ,T
|
05| 05t
|
04l
& | 5 0@ ] L
03
|
|
0.2t ¢
[l 05
0.1+
| I L]
l)-ii YV\RR22000000000000000000000 a1
0 10 20 30 40 50 60 70 0 01 02 03 04 05 06 07 08 09 1
k 4

F1GURE 5.1: Heavyside function

x = u(f)(purple) (top left);
Fourier coefficients of u(f), uj (magenta) (top right);

Approximate Fourier coefficients of u(f), u; (magenta) (bottom left);

U Versus w = 31_\,1§Nu (bottom right).

EXAMPLE

Take the function
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171

whose Fourier coefficients are given by

, ke Z\ {0}

Fourier coefficients (spectrum)
[ > e N =10000000 M =100 &= le—05

N 1
1—(—=1)*
~
uk‘ = —_—
272 k2
z=u(f)
Small divisors function .
0.5 T T T T 0.25
|
0.2 H
|
0.15
& & |
0.1e
|
|
0.05 ||
|
"
L 0
. 0
0

Approx. Fourier coefficients (spectrum)

[ 2, N = 10000000 M =100 c=1lc—05 max|i - | = 33404667 - 08

|
0.2
|

=

0.05 - |

0 10 20 30 40 50 60 70 80 90 100
k

FIGURE 5.2: Small denominators function
x = u(0)(purple) (top left);

-

u(f) = w() = IDFT(DFT(u))
flu— w]| = max(|u(6) — w(6)]) = 4.4408921e — 16

Fourier coefficients of u(#), uy (magenta) (top right);

Approximate Fourier coefficients of u(f), u; (magenta) (bottom left);

U VEersus w = 3]_\,131\;14 (bottom right).
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5.4 Fourier series approximation: the Dirichlet Kernel

The objective of this section is to obtain numerical approximations of functions expressed by their
Fourier series expansion on the torus, i.e.

u(@) =Y Upe®™, 0 T. (5.22)
keZ

We assume here that v € A, for some p > 0 and u takes real values for real arguments, i.e.
u(0) = u(f), V0 € T.

The Fourier coefficients of u are defined by
iy = / w(®)e=2™0iqg | € 7. (5.23)
T

Since u takes real values for real arguments, u_j = Uy, Vk € Z.
Indeed, U_g = [pu(0)e 27RO = [ u(0)e=2mR0id0 = [ u(0)e2H0idl) = Ty,

Thanks to this property we can express u in the following way:

oo
7ke27r(7k)91+a0+§ :ake2ﬂ'k01

V]2
<)

u(f) =
k=1 k=1
00 00
= Z ak62ﬂk9i + g + Z ﬂke%kei
k=1 k=1

9]
— 7o+ 2Re (Z ake%*“%) , B€T. (5.24)
k=1

Definition 5.12 Dirichlet Kernel
Given M € N, the Dirichlet Kernel of order M is the function:

Dy: T — R
M .
0 — Dy(0):= Z e?mhoi
M

(5.25)

Proposition
M :
2M + 1)76
Dyr(0) =1+2 cos(2nk6) = Sm((sin (W;) ™) wer.
k=1

Proof. O
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120 -

100

60

FIGURE 5.3: Dirichlet Kernel Dy (6) = > e”™% 6 €T.
k=—M

Definition 5.14 Convolution

The convolution between two functions u,v : T —> C is the function u v defined by

uxv: T — C

0 — (uxv)(0) :—/TU(H)U(@—n)dn. (5.26)

Proposition

The convolution of a real analytic function u : T — R with the M —th order Dirichlet Kernel Dy
is the M —th partial sum approximation of the Fourier series expansion of u.

M
More explicitly, if u(f) = Zﬁke%’rei and up(0) = Z e then:
kEZ k=—M

uM:u*DM. (5.27)
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5.5 Fourier series approximation by means of the IDFT

This section is devoted to providing the numerical procedures necessary to approximate a function
defined by its Fourier series expansion approximated from a finite list of its Fourier coefficients.
It must be taken into account that what is sought is to obtain the evaluation of the function in
a finite collection of points, in each of which the series must be approximated by a finite partial
sum.

As seen in the previous Section 5.4, functions given by their Fourier series expansion on the
torus, i.e.

u(0) =Y U™, 0T, (5.28)
keZ
with Fourier coeflicients
Uy = / u(0)e~ i, |k e 7. (5.29)
T

can be expressed as
e}
u(f) = Ty + 2 Re (Z ake%’f‘”) , HeT. (5.30)

Let
ﬁke%kai) , 6eT (5.31)
1

be the M—th partial sum of (5.30).

Given g, uy,. .., Uy, we want to compute ups(#) by evaluation in a mesh (equidistibuted)
(tost1,...,tn—1,tN), with N = 2M and t, = &, ¥n = 0,1,..., N. Notice that the partition has
N + 1 terminal points. Nonetheless, u(ty;) = u(to), since 2™ = 1. Therefore, it is enough to
evaluate ups in (to,t1,...,tN—1).

Let w = [w(1),w(2),...,w(N)] € I*(Zy) with

M M
w(n+1) = up(ty) = Uo+2 Re (Z akemtni) = Up+2Re (Z akW];’“"> . Vn=0,1,...,N—1,
k=1 k=1

27
where Wy = e N
We will distinguish two cases®:

(i) n=2m,m=0,1,...,M — 1.

M M
w(2m + = ug -+ e U, =ug + e U,
(2m +1) o+ 2R (ZA W];%m> o+ 2R <ZA Wﬂgkm>
k=1 k=1
M-1

M—-1
= g+ 2Re ( akHW;me]\;m> =1y + 2Re (W;ﬁ > akHWA—fm)

k=0

—1
= o+ 2Re (WMm > X(k+ 1)WM’””>
k=0

= o+ 2Re (MW,"x(m + 1)) = Uy + 2M Re (W;,"z(m + 1)) ,
where z = §,/ X, X = [X(1),X(2),..., X(M)] and X (k + 1) = tp11, Vb =0,1,..., M — 1.

®Notice that W = W]%
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(i) n=2m+1, m=0,1,...,M —
M M
w2m+2) = o+ 2Re <Z W 2’”*1)) o+ 2Re (Z akwﬂf’“mwjg’f>
k=1 k=1
M
= UO + 2Re <Z ak+1W ka >
k=1
-1
— G0+ 2Re ( k+1)mW (k+1)>
=0
M—1
= o+ 2Re <WMm S Gyt ”W;fm>
k=0
M—1
= Up+2Re <WMm S Y(k+ )W, )
k=0
= U+ 2Re (MW, y(m+ 1)) = o+ 2M Re (W, "y(m + 1)) ,
where
Yy = SEY, Y=[Y(1),Y(?2),...,.Y(M)]and Y(k+1) = akHW];(kH), Vk=0,1,...,M — 1.
Summarizing,
w(2m + 1) = U + 2M Re (W, "2(m + 1)), Ym =0,1,..., M — 1, (5.32)
w(2m +2) = U + 2M Re (W, "y(m + 1)), Ym =0,1,..., M — 1. (5.33)
with
v = X, X(k+1) =g, Ve=0,1,...,M 1
y = FY, Y(k+1) =Wy " vk =0,1,... .M —1
Now, by the shift theorem (Proposition 5.5 part (d) frequency shifting, m = 1)
FuWoz(1), Witz(@),. .., W, M Va(M)] = [X (M), X(1),...,X(M—1)] =Gy X . (5.34)
On the other hand, by the same argument,
Wy, Wity(@),..., W, M Dy = [Y(M),Y(1),...,Y(M —1)] =&Y . (5.35)
Consequently, relations (5.32) and (5.33) can be written as
[w(l),w(3),...,w(2M — 1)] = U + 2M Re (§,; Sm X) (5.36)
[w(2), w(4),...,w(2M)] =ty + 2M Re (§,/6mY) , (5.37)

with

X = [X(l),X(Q),...X(M)]:[ﬂl,ag,...,ﬂM]:ng
Y = [Y(1),Y(2),...Y(M)] = [iWy, aaWx2, ..., i WM = Fmy -

Finally, in spite of the fact that X is known and Y can be therefore computed directly, we go
further providing a relationship between X and Y through the DFT that will turn out to be more

efficient as far as numerical computation is concerned.
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Let Z = [Z(1), Z(2),..., Z(N)] = [0-W9, @, - W', ... - WM, 0wy MY 0w ) =
[0,Y,00_1] = SN[Y,00] € 2(Zy), and T = Sn[X, 0] = [0, X,05/] = [0,71,...,00,0,...,0].

M —1zeros
Thus, Ry T = [0- WS, 01 - Wi, .., o - W, 0,...,0] = [0,Y,04-1] = Gn[Y, 00] = Z.
Hence, T'= 9 Z and By the shift theorem (Proposition 5.5 part (d) time shifting, m = 1)
Sn'T = 6Ny Z. Therefore, Z = FnSN' Ty T = FnG ' Ty ON[X, Ou].
On the other hand, Z = Sy|[Y,0,/], so

Y, 00] = INSN'TN'T = InS N TN SN[ X, 0]

Then, Y is performed by the M first components of the latter vector, which does nor require the
products [u; - Wl - WJQM] =:Y to be computed directly, being the time of computation
and the corresponding error reduced®.

5This algorithm has been implemented in a Matlab® function named IDFTAPPROX .m which is showed in Appendix
11.2
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5.6 Cohomological equations and the Floquet transformation

See Appendix I1.3.
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5.7 The KAM procedure

The algorithm followed to implement the KAM procedure ws described in 2.4 and 3.2 with the
corresponding links to that parts which are necessary to reproduce the whole process (See 11.4).
The following tables show the results obtained in one particular example which is detailed in
greater extension in Chapter 6.

Let 0 >0, a,b € RY, w € DC(v,v), and U = C\ {—1i, Li}.

The exapmple is defined by:

Pp: ToxUd — TyxC

0,2) +—— Y(0,2):= (0 + w,arctan(az) + bsin(276)) (5.38)
As usual, we denote by f(0, z) the second component of the skew—product, that is,
f: ToxUd — C (5.39)
(0,2) — f(0,z):= arctan(az) + bsin(270) ’
o

The initial guess is a curve kg obtained from the orbit of a point (g, xg) (forward or backward)
subjected to a previous smoothing process. N is the number of points calculated for the orbit
and Nj is the number of them discarded. The average of the curve is p. Ag and Ay represent the
Lyapunov exponent and the Lyapunov multiplier of the curve kg, respectively. 7y is the initial
guess for the translation parameter and 7,, is the translation parameter obtained after n iterations.
Finally, ||E,|| is the invariance error after n iterations and e, (p) is the average error. This value
should be zero when the average of kg is equal to p. The difference is produced because of the
propagation of computational errors.

Stable invariant curves

An )\n

n < Kn > [ Enll = supper [En(0)] | len(p)] = | < £n > —p|

0 | 1.11530030834 | —1.42097756798 | 0.241477840472 | 4.93328710727¢ — 06 0
1 | 1.11530030834 | —1.42097771529 | 0.241477804901 | 8.19850516867¢ — 09 0
2 | 1.11530030834 | —1.42097771529 | 0.241477804901 | 9.31448094501e — 11 0

Parameters

a=06.8

b=1.62

w = 15/5 & 1,618033988749895
Initial proposal (kg, 70)

=0

Trog = 1

N = 10000000
Np = 128

Initial characteristic features
p = 1.115300308339138

Ap = —1.420977567979511
Ao = 0.2414778404719825

det(Qp) = 1.996578052326427

TOZO

| Boll = max(|Eo(6)]) = 4.933287107267148¢ — 06
€
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leo(p)| = | <Ko > —p| =0

Number of KAM iterations: n = 2

Final characteristic features

A, = —1.420977715285497

An = 0.2414778049008537

Trn = —3.900965064576669¢ — 08

det(9,,) = 1.996577812178111

| Eull = max(|E(6)]) = 9.314480945012101e — 11

len(p) =] < kn>-p/=0

E(0) = f(60,r(0)) — k(0 +w) + 7

a=68 b=162 w=157~1618033989 ||E|| = max(|E(0)]) = 9.3144809¢ — 11

05 L L L L L L L L L 0.5 L L L L L L L L L 0.5 L L L L L L L L L
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
0 0

FIGURE 5.4: Curve obtained after n iterations
xr = kn(0)(magenta) (left);
Translated curve z = k(0 + w) (light green) (center);
x = f(0,k,(0)) (dark green) and the error function F,,(f) (right).

Symmetry orbits = x(6)
a=68 b=162 6=0 m=1 N=09999872 Ny=128

-3

FIGURE 5.5: Symmetry curves 6y =0, xi) =1 with N =107,
x = kp(0) (magenta)
z =n(0) = —k,(0 + 3) (purple)
2 =na(0) = 3(kn(0) + 7a(0)) (light green)
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n < Ky > A, An |En]l = supger | En(0)] | len(®)| = | < kn > —p|
0 | 1.11530030834 | —1.42097756798 | 0.241477840472 | 3.13447635114e — 06 0
1 | 1.11530030834 | —1.42097754127 | 0.241477846923 | 1.04472829751e — 08 4.4408920985¢ — 16
2 | 1.11530030834 | —1.42097754127 | 0.241477846923 | 1.25859706492¢ — 10 4.4408920985¢ — 16
Parameters
a=06.8
b=1.62

w =115 ~1,618033988749895

Initial proposal (kg, 70)

6o=0

xg =1

N = 10000000
No =128

Initial characteristic features
p = 1.115300308339138

Ap = —1.420977567979511

Ao = 0.2414778404719825

det () = 1.996578052326427
75 =0

1|l = max(|Eo(6)]) = 3.134476351140947¢ — 06
S

leo(p)| = | < ko> —p| =0
Number of KAM iterations: n =2
Final characteristic features

A, = —1.420977541265186

An = 0.2414778469229001

Tn = —5.25003669794802¢ — 08
det(2,,) = 1.996578138176017

|Eall = max(|E(0)]) = 1.258597064916809¢ — 10
S

len(p)] = | < Kin > —p| = 4.440892098500626¢ — 16
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z=r(0

=68 b=162 w='35~1618033989

05 L L L L L L L L L
0 01 02 03 04 05 06 07 08 09 1

E(6) = £(6,5(0)) — h( +w) + 7

|E|| = max(|E(0)]) = 1.2585971e — 10

205 L L L L L L L L L
0 01 02 03 04 05 06 07 08 09 1

0

FIGURE 5.6: Curve obtained after n iterations
x = kin(0)(magenta) (left);
Translated curve z = k(0 + w) (light green) (center);
x = f(0,kn(0)) (dark green) and the error function FE, () (right).

FIGURE 5.7: Symmetry curves 0y =0, a::) =1 with N =107,
kn(0) (magenta)
W(0) = —kn(0 + 3) (purple)

xr =
€Tr =

Symmetry orbits

r = K(0)

a=68 b=162 6y—=0 wo—=1 N=9999872 N, =128

-3

0 0.1

0.3 0.4 0.5

0.7 0.8 0.9 1

2= 1 (6) = L(5n(6) + 7a(9)) (light green)

< Kp >

A

)\n

| Enll = supger | En(0)

len(®)| = | < kn > —pl

—1.11530055032
—1.11530055032
—1.11530055032

—1.42097805145
—1.42097795532
—1.42097795532

0.241477723726
0.241477746939
0.241477746939

3.05875921325¢ — 06
3.34431080571e — 08
4.57780300568¢ — 11

0

4.4408920985e — 16
1.99840144433e — 15

Parameters
a=06.8
b=1.62

w = 15 ~ 1.618033988749895
Initial proposal (kg, 70)

6o=0

0 01 02 03 04 05 06 07 08 09
o

1
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Trog = -1
N = 10000000
Ny = 128

Initial characteristic features
p = —1.115300550317159

Ap = —1.420978051445764

Ao = 0.2414777237256241
det(Qp) = 1.996577577281046
T0=20

| Boll = max(|Eo(6)]) = 3.058759213248052¢ — 06
€

leo(p)| = | < Ko > —p[ =0

Number of KAM iterations: n = 2

Final characteristic features

Ay, = —1.420977955316531

A = 0.2414777469386935

Tn = —5.744774538529812e — 08

det(€2,) = 1.996578028748249

|En|l = %S%UE(G)D = 4.577803005676686e — 11

len(p)] = | < K > —p| = 1.998401444325282¢ — 15

a=68 b=162 w="19"~ 1618033989

E(6) = £(6,5(0)) — r(0 +w) + 7
| E|| = max(|E(9)]) = 4.577803¢ — 11

0

FIGURE 5.8: Curve obtained after n iterations

x = kp(0)(magenta) (left);

3 L L L L L L L L L 3 L L L L L L L L L
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

0

3 L L L L L L L L L
0 01 02 03 04 05 06 07 08 09 1
0

Translated curve z = k(0 + w) (light green) (center);
x = f(0,k,(0)) (dark green) and the error function FE, () (right).
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FIGURE 5.9: Symmetry curves 0y =0, a::) =1 with N = 107.

metry orbits

z = K(0)

Symmetr
=68 b=162 6,=0 z=—1 N=9099872 Np=128

-3

0 0.1

0.3 0.4 0.5

x = Kp(0) (magenta)

0.7 08 0.9 1

r=v,(0) = —kn(0 + %) (purple)
x=n,(0) = %(Iin(e) + 7 (0)) (light green)
n < Kp > A, An [|1En]| = supger |En(0)] | len(p)| =| < £n > —p|

—1.11530055032
—1.11530055032
—1.11530055032

—1.42097805145
—1.42097787817
—1.42097787817

0.241477723726
0.241477765567
0.241477765567

1.03987595645¢ — 06
3.69311680115¢ — 08
3.58276588012¢ — 09

0
8.881784197e — 16
2.44249065418e — 15

0

1

2
Parameters
a=06.8
b=1.62

w =155 & 1,618033988749895
Initial proposal (g, 70)

0o =0

Tro = —1

N = 10000000
No = 128

Initial characteristic features
p = —1.115300550317159

Ay = —1.420978051445764
Ao = 0.2414777237256241

det(€) = 1.996577577281046

7’0:0

[ Eoll = %a%qu(e)y) = 1.039875956454495¢ — 06
S

leo(p)| = | < ko > —p| =0

Number of KAM iterations: n = 2
Final characteristic features

Ay, = —1.42097787817254
An = 0.2414777655672513

T = —1.402031841840645¢ — 07

det(Q,) = 1.996577368507178

| Enll = réla%(]E(G)D = 3.582765880120126¢ — 09
S

len(p)] = | < fin > —p| = 2.442490654175344¢ — 15
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z=r(0

=68 b=162 w='35~1618033989

3 L L L L L L L L L
0 01 02 03 04 05 06 07 08 09 1

E(0) = f(0,5(6)) — x(0+w) + 7
|E|| = max(|E(6)]) = 3.5827659¢ — 09

0.5

3 L L L L L L L L L
0 01 02 03 04 05 06 07 08 09 1

0

FIGURE 5.10: Curve obtained after n iterations
x = kin(0)(magenta) (left);
Translated curve z = k(0 + w) (light green) (center);
x = f(0,kn(0)) (dark green) and the error function FE, () (right).

Symmetry orbits z = k(6)

a=68 b=162 6=0 z=-1 N=9099872 Np=128

-3

0 0.1 0.2

FIGURE 5.11: Symmetry curves 6y =0, ”xo =1 with N = 107.

x = Kp(0) (magenta)
x=v,(0) = —kn(0 + %) (purple)
£ = 1 (8) = b(sn(6) + 70 (6) (light green)

3 L L L L L L L L L
0 01 02 03 04 05 06 07 08 09 1
o

The following example shows an unstable invariant curve with spline interpolation for the seed.

n < kp > An

An

£l = supper | En(0)

len(p)| = | < fin > —pl

0 | —3.29574701041e — 08 | 0.751526426994
1| —3.29574703253¢ — 08 | 0.751526498008
2 | —3.29574704534e — 08 | 0.751526498008

2.12023393012
2.12023408069
2.12023408069

3.1482287252¢ — 06
2.8583364213¢ — 09
6.66282955708¢e — 12

0
2.21191940532¢ — 16
3.49250437992¢ — 16

Parameters
a=06.8
b=1.62

w = 15 ~ 1.618033988749895
Initial proposal (kg, 7o)
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6p=0

g =20

N = 10000000
Ny = 128

Initial characteristic features

p = —3.295747010411697¢ — 08
Ao = 0.7515264269943018

Ao = 2.120233930123497

det () = 1.983649446320672
T0=0

1| = max(|Eo(6)]) = 3.148228725199931¢ — 06
S

leo(p)| = | < Ko > —p[ =0

Number of KAM iterations: n =2

Final characteristic features

Ay, = 0.7515264980077757

An = 2.120234080688679

T, = —6.547116112843343e — 08

det(£2,,) = 1.98364969603699

|En| = %?%OE(Q)D = 6.662829557082055e — 12

len(p)| = | < kn > —p| = 3.492504379917958¢ — 16

a=68 b=162 w="19"~ 1618033989

E(0) = £(60,5(0)) — k(0 +w) + 7
|E|| = max(|E(6))) = 6.6628296¢ — 12

0

FIGURE 5.12: Curve obtained after n iterations

x = kp(0)(magenta) (left);

0.8 L L i L L L L L L 0.8 L L f L L L L L L 08 L L L L L L L L L
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

0

Translated curve z = k(0 + w) (light green) (center);
x = f(0,k,(0)) (dark green) and the error function FE, () (right).
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Symmetry orbits = ()
a=68 b=162 6,=0 z=0 N =0999872 N, =128

FIGURE 5.13: Symmetry curves 6y =0, uﬂco =1 with N = 107.
x = Kp(0) (magenta)
z =7,(0) = —kn(0 + 3) (purple)
2 =na(0) = 3(kn(0) + 72(0)) (light green)

n < Kp > Ay, An [|En|| = supger | En(0)

len(®)| = | < kin > —p]

0 | 1.86330473196e — 09 | 0.75152651734 | 2.12023412168 5.8619805865¢ — 07 0
1| 1.8633049648e — 09 | 0.751526498008 | 2.12023408069 5.1409186815e — 12 2.32833624225e — 16
2 | 1.86330520927e — 09 | 0.751526498008 | 2.12023408069 | 7.01423272764e — 12 4.77308929248e — 16

Parameters
a=26.8
b=1.62

w =155 & 1,618033988749895
Initial proposal (g, 70)

0o =0

Tro = 0

N = 10000000
No = 128

Initial characteristic features

p = 1.863304731962491e — 09

Ao = 0.7515265173397319

Ao = 2.120234121676952

det(Qp) = 1.983649244512972

T0 — 0

| Eoll = %1311{{(|E0(9)]) = 5.861980586496784¢ — 07

leo(p)| = | < Ko > —p| =0

Number of KAM iterations: n = 2

Final characteristic features

A, = 0.7515264980077548

A = 2.120234080688635

T, = —8.513563132896642¢ — 08

det(€2,) = 1.983649696036903

| Enll = %12%( |E(6)]) = 7.014232727641702¢ — 12

len(p)| = | < kin > —p| = 4.773089292475703¢ — 16
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= k(0 T.k(0) = K(0 +w E(#) = f(6,5(0) — (0 +w) + 7
=68 b=162 w='35~1618033989 = (0 |E|| = max(|E(0)]) = 7.0142327¢ — 12

0.6 1 0.6 0.6 1

02 021

02t

0.6+ 06+ 0.6 F

208 L L f L L L L L L 208 L L L L L L L L L 08 L L L L L L L L L
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
o

0

FIGURE 5.14: Curve obtained after n iterations
x = kin(0)(magenta) (left);
Translated curve z = k(0 + w) (light green) (center);
x = f(0,kn(0)) (dark green) and the error function FE, () (right).

Symmetry orbits z = x(6)

s a=68 b=162 6,=0 z=0 N=9999872 Ny=128

0.6 1

02

0.6 F

FIGURE 5.15: Symmetry curves 6y =0, nﬂvo =1 with N =107.
x = Kp(0) (magenta)
2 =7n(0) = —kn(0 + }) (purple)
2 = 1(0) = 1(5a(6) + 7 (0)) (light green)
Notice that the three curves are, in fact, the same since this curve
is self-symmetric.

n < Kp > An An HEnH = SUPgeT ‘En(e)‘ ‘Cn(p)‘ = ‘ < Kp > _p‘
0 | 0.590406740555 | —0.509019427517 | 0.601084697043 | 6.07732360267¢ — 05 0
Parameters
a=06.8
b=1.82

w= 1+T*/5 ~ 1.618033988749895
Initial proposal (kg, 70)
6o=0
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Trog = 1
N = 10000000
Ny = 1024

Initial characteristic features
p = 0.5904067405545206

Aoy = —0.5090194275165796
Ao = 0.6010846970426238
det () = 46.1951214269993
T0=20

| Boll = max(|Eo(6)]) = 6.077323602671214c — 05
€

leo(p)| = [ < Ko > —p[ =0

Number of KAM iterations: n =0

Final characteristic features

Ay, = —0.5090194275165796

An = 0.6010846970426238

T, = —7.324208908281058e — 08

det(€,) = 46.1951214269993

|En|l = 1512%(]]5’(9)\) = 6.077323602671214e — 05

len(P)| =] < fn>—p|=0

= k(6 Tok(0) = &

a=68 b=182 w=19"~ 1618033989

E(0) = £(60,5(0)) — k(0 +w) + 7
|E|| = max(|E(6)]) = 6.0773236¢ — 05

Ny

U

15 L L L L L L L L L 15 L L L L L L L L L
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

0

FIGURE 5.16: Curve obtained after n iterations
x = Kp(0)(magenta) (left);

0

15 L L
0 01 02

Translated curve z = k(0 + w) (light green) (center);
x = f(0,k,(0)) (dark green) and the error function FE, () (right).

03 04 05 06 07 08 09 1
0
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Symmetry
a=68 b=182 6,=0 =

orbits z = x(6)
0=1 N =09998976 Ny = 1024

0 0.1 0.2

FIGURE 5.17: Symmetry curves 6y =0, ”wo =1 with N = 107.

0.3 0.4 0.5

x = Kp(0) (magenta)
z =7,(0) = —kn(0 + 3) (purple)
& = 1u(8) = L(n(6) + 1 (0)) (light green)

0.6

0.7 0.8 0.9 1

< Kp >

An

/\n

[ £nll = supger [ En ()]

len(®)| = | < fin > —p]

0 | —0.590406726398 | —0.509019376445

0.601084727741

3.98600345086e — 05

0

Parameters
a=26.8
b=1.82

w= 1+T\/5 ~ 1.618033988749895
Initial proposal (kg, 7o)

6p=0

Trog — -1

N = 10000000
Ny = 1024

Initial characteristic features
p = —0.5904067263981806

Ao = —0.5090193764446215
Ao = 0.601084727741197

det () = 46.19558497466932

T0=0

1 Eoll = max(| Eo(6)]) = 3.986003450862086¢ — 05
€

leo(p)| = [ < Ko > —p[=0
Number of KAM iterations: n = 0
Final characteristic features

A, = —0.5090193764446215

A = 0.601084727741197

7, = —1.358955629788376e — 07
det(92,) = 46.19558497466932
|En| = rglea%(]E(G)\) = 3.986003450862086¢ — 05

len(Pp)| =] < kn>-p[=0
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v = k(0 v = T.k(0) = K E(0) = f(60,r(0)) = 5(0 +w) +7
15 . a*‘liS {)*l%l u‘*%ﬁlt‘ilBUBS?S’:} . 15 x ‘MU 15 \“EH :‘mnx(\‘E(f))\)‘:3.9‘8(5003?1‘*0?
0.5
0
-UD\//
Ll
-2.5
S
e 0 ()‘l 0‘2 ()‘J 0‘4 ()"v 0‘(‘ 0‘7 0‘8 0“) 1 @ 50 l]‘l []‘2 0‘3 014 0"» 0‘(‘ ()‘T 0‘5 l]‘!) 1 ? ry\) 0‘1 012 (\‘J 0‘4 ()‘5 0“5 l]‘T U‘H O‘U
] ] 6
FIGURE 5.18: Curve obtained after n iterations
x = kin(0)(magenta) (left);
Translated curve z = k(0 + w) (light green) (center);
x = f(0,kn(0)) (dark green) and the error function FE, () (right).
Symmetry orbits = = k(f)
. a=68 b=182 6 =0 zg=-1 N=09998076 N,= 1024
d‘U U‘l U‘l U‘d 0‘4 U‘G U‘b (Y‘7 U‘S U‘U l‘
0
FIGURE 5.19: Symmetry curves fy =0, zg = 1 with N = 107.
x = Kp(0) (magenta)
1
= v(0) = —kn(0 + 3) (purple)
1 .
= 1,(0) = 5(kn(0) +vn(0)) (light green)
n < HKp > Ap An [|1En | = supger |En(0)] | len(p)| = | < n > —pl
0 | 3.13072670441e — 09 | 0.193406444853 | 1.21337586368 | 1.87069028474¢ — 05 0
1| 3.13072665784¢ — 09 | 0.193403136375 | 1.21337184926 | 7.72329917504¢ — 09 | 4.65708975576¢ — 17
2 | 3.13072696055¢ — 09 | 0.193403136048 | 1.21337184887 | 1.8461432323%¢ — 08 | 2.56139936774c — 16
Parameters
a=06.8
b=1.82
w = 15 ~ 1.618033988749895

Initial proposal (kg, 70)
0o =0

1
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zg=20

N = 10000000

Ny = 1024

Initial characteristic features
p = 3.130726704412596e — 09
Ao = 0.1934064448532904

Ao = 1.213375863684317

det () = 19.49054356302629

T0=20

| Boll = max(|Eo(6)]) = 1.870690284744292¢ — 05
€

leo(p)| = | < Ko > —p[ =0
Number of KAM iterations: n = 2
Final characteristic features

A, = 0.1934031360480563

An = 1.213371848866551

Tn = —1.05779693622118e — 07
det(€,) = 19.49275527026337

|1 Enll = max(|E(0)[) = 1.846143232392429¢ — 08

len(p)] = | < kn > —p| = 2.561399367735473¢ — 16

a=68 b=182 w=19"~ 1618033989

3 L L L L L L L L
0 01 02 03 04 05 06 07 08 09 1
0

3 L L L L L L L
0 01 02 03 04 05 06 07 08 09 1

E(0) = £(0,5(6)) — k(0 +w) + 7
|E|| = max(|E(9)|) = 1.8461432¢ — 08

3

0

FI1GURE 5.20: Curve obtained after n iterations
x = Kp(0)(magenta) (left);
Translated curve z = k(0 + w) (light green) (center);
x = f(0,k,(0)) (dark green) and the error function FE, () (right).

3 L L L L L L
0 01 02 03 04 05 06 07 08 09 1

0
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orbits  z = k(6)

Symmetry
4=68 b=182 6,=0 xy=0 N =9998976 Ny= 1024

FIGURE 5.21: Symmetry curves 6y =0, ”wo =1 with N = 107.
x = Kp(0) (magenta)
z =7,(0) = —kn(0 + 3) (purple)
2 =na(0) = 3(kn(0) + 72(0)) (light green)

n < HKp > Ay An 1 Enll = supger [En(0)] | len(p)| = | < 5 > —pl
0 | 8.05162793094¢ — 09 | —0.407063725217 | 0.665601773333 0.00070520531343 0
Parameters
a=6.8
b=1.84

w= 1+T\/5 ~ 1.618033988749895
Initial proposal (kg, 7o)

6p=0

Trog — 1

N = 10000000
Ny =128

Initial characteristic features

p = 8.051627930935152¢ — 09

Ao = —0.4070637252170804

Ao = 0.6656017733325256

det (o) = 23.31026525875345

=0

| Eoll = I;Iéi%(]Eo(H)]) = 0.0007052053134297687

leo(p)| = [ < Ko > —p[=0

Number of KAM iterations: n =0

Final characteristic features

A, = —0.4070637252170804

A = 0.6656017733325256

7, = —1.041867063577868¢ — 07

det(92,,) = 23.31026525875345

|En| = %?%(’E(Q)D = 0.0007052053134297687

len(P)| =] < #kn>-p/=0
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= k(0 v = Tok(8) = £(0 +w) E(#) = f(60,5(0)) — 5(0 +w) + 7
a=68 b=184 w=135~161803398 = (0 . |E]| = max(|E(6)]) = 0.00070520531

4 L L L L L L L L L 4 L L L L L L L L L 4 L L L L L L L L L
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
0 o

FIGURE 5.22: Curve obtained after n iterations
x = Kp(0)(magenta) (left);
Translated curve z = k(0 + w) (light green) (center);
x = f(0,kn(0)) (dark green) and the error function FE, () (right).

Symmetry orbits = = x(6)
a=68 b=184 6=0 m=1 N=9999872 N, =128

FIGURE 5.23: Symmetry curves 6y =0, Zvo =1 with N =107.
x = Kp(0) (magenta)
z =7,(0) = —kn(0 + 3) (purple)
z = nn(0) = 1(kn(0) + 1n(0)) (light green)

n < Kp > Ay An | Enll = supger [En(0)] | len(p)| = | < Kn > —p|
0 | 1.11530031925 | —1.42097748324 | 0.241477860935 | 2.81484447884¢ — 06 0
1 | 1.11530031925 | —1.42097749529 | 0.241477858024 | 2.04363060521¢ — 08 4.4408920985¢ — 16
2 | 1.11530031925 | —1.42097749529 | 0.241477858024 1.22414088392¢ — 09 0
Parameters
a=06.8
b=1.62

w

— 1+T\/5 ~ 1.618033988749895

Initial proposal (kg, 70)

6o=0



194  Numerical aspects related to Fourier series, discrete Fourier transform (DFT), and cohomological equations
Trog = 1

N = 10000000

Ny = 256

Initial characteristic features

p = 1.115300319245528

Ao = —1.420977483238893

Ao = 0.2414778609349648

det(Qp) = 1.996578066171518

70 = —9.182297182144148¢ — 08

[ Eoll = rélg%c(lEo(H)]) — 2.814844478837841¢ — 06

leo(p)| = [ < ko> —p| =0

Number of KAM iterations: n = 2

Final characteristic features

A, = —1.4209774952928

A = 0.2414778580242132

T = —9.182294006889637¢ — 08

det(2,,) = 1.996578275066772

| En|l = Iéléi%(lE(G)D = 1.224140883923697¢ — 09

len(P)| = | < Fn>—p| =0

n < Kp > An An | Enll = supger [En(0)] | [en(p)| =1 < Kn > —p|
0 | 1.11530031925 | —1.42097748324 | 0.241477860935 | 2.81484447884¢ — 06 0
1 | 1.11530031925 | —1.42097749529 | 0.241477858024 | 2.04363060521¢ — 08 4.4408920985¢ — 16
2 | 1.11530031925 | —1.42097749529 | 0.241477858024 1.22414088392¢ — 09 0
3 | 1.11530031925 | —1.42097749529 | 0.241477858024 | 4.93978905902¢ — 11 1.7763568394¢ — 15
4 | 1.11530031925 | —1.42097749529 | 0.241477858024 | 3.66341938488¢ — 11 3.77475828373¢ — 15
Parameters
a=06.8
b=1.62

w= 1+T\/5 ~ 1.618033988749895
Initial proposal (kg, 70)

0p=0

Trog — 1

N = 10000000
Ny = 256

Initial characteristic features

p = 1.115300319245528

Ao = —1.420977483238893

Ao = 0.2414778609349648

det () = 1.996578066171518

7 =0

[ Boll = max(|Eo(9)]) = 2.814844478837841e — 06

leo(p)| = [ < Ko > —p[=0
Number of KAM iterations: n = 4
Final characteristic features

A, = —1.420977495292836

A, = 0.2414778580242045
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T = —9.182293798437145¢ — 08

det(Q,) = 1.996578274678293

| Enll = réla%(]E(H)D — 3.663419384884819¢ — 11
€

len(p)| = | < kn > —p| = 3.774758283725532¢ — 15

< Kp >

An

)\n

| Enll = supger | £n(6)

len(p)| = | < fin > —p

1.11530031341
1.11530031341
1.11530031341
1.11530031341
1.11530031341

—1.42097761065
—1.42097772454
—1.42097772454
—1.42097772454
—1.42097772454

0.241477830169
0.241477802666
0.241477802666
0.241477802666
0.241477802666

1.81826142032¢ — 06
3.31766090047¢ — 12
3.66339903764e — 13
5.22675299156e — 13
1.46968662239%¢ — 12

0
6.66133814775¢ — 16
1.33226762955¢ — 15
2.44249065418e — 15
5.10702591328e — 15

0
1
2
3
4
Parameters
a=06.8
b=1.62

w = 15 ~ 1.618033988749895

Initial proposal (kg, 7o)

=0

T =1

N = 10000000
Ny = 256

Initial characteristic features

p = 1.115300313413207

Ap = —1.420977610646873
Ao = 0.2414778301687604

det(29) = 1.996578017355469

T0=20

| Boll = max(|Eo(6)]) = 1.818261420316603¢ — 06
S

leo(p)| = | < ko > —p| =0

Number of KAM iterations: n = 4

Final characteristic features

A, = —1.420977724538793
An = 0.2414778026663881

Tn = —3.708213172918934¢ — 08

det(€2,) = 1.99657780883491

| Eall = max(|E(8)]) = 1.469686622302079¢ — 12
S

len(p)| = | < kin > —p| = 5.10702591327572¢ — 15
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n < Kp > An )\n HETLH = SquET |ETI(0)‘ ‘en(p)l = ‘ < Kp > _p‘
0 | —2.68897208283e — 09 | 0.751526320597 | 2.12023370454 | 9.03460874557e — 07 0
1 | —2.68897197805e — 09 | 0.751526428125 | 2.12023393252 | 4.22203411101e — 09 1.04776472175e — 16
2 | —2.68897189656e — 09 | 0.751526428125 | 2.12023393252 | 5.87811104465e¢ — 12 1.86269283314e — 16
3 | —2.68897167536e — 09 | 0.751526428125 | 2.12023393252 | 1.17963579637e¢ — 12 4.07464057354e — 16
4 | —2.68897127954e — 09 | 0.751526428125 | 2.12023393252 2.931912132e — 13 8.03286284604e — 16
5 | —2.68897049954e — 09 | 0.751526428125 | 2.12023393252 | 4.14899322049¢ — 13 1.583288909¢e — 15
6 | —2.68896885804e — 09 | 0.751526428125 | 2.12023393252 | 2.32362458953¢ — 13 3.22478696935e — 15
7 | —2.68896557505e — 09 | 0.751526428125 | 2.12023393252 | 2.09432034022¢ — 13 6.50778308963¢ — 15
8 | —2.68895917204e — 09 | 0.751526428125 | 2.12023393252 | 1.59154098468¢ — 13 1.29107897071e — 14
9 | —2.68894636603¢ — 09 | 0.751526428125 | 2.12023393252 | 1.32320667309¢ — 13 2.5716802942¢ — 14

Parameters

a=06.8

b=1.62

w = 15 ~ 1.618033988749895

Initial proposal (kg, 70)

0p=0

zg =0

N = 10000000
Np = 256

Initial characteristic features

p = —2.688972082828913¢ — 09
Ao = 0.7515263205973447

Ao = 2.120233704537071
det(Qp) = 1.98364937809758
775 =0

[ Eoll = Igla%(|Eo(9)|) = 9.034608745572825¢ — 07
S

leo(p)] = | < ko >—p[=0

Number of KAM iterations: n =9

Final characteristic features

A, = 0.7515264281245346

An = 2.120233932519855

Tn = —1.085811362433058¢ — 08

det(92,,) = 1.983648720495918

|En| = rgg%(]E(G)\) = 1.323206673085968¢ — 13

len(p)| = | < kn > —p| = 2.571680294197911¢ — 14
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< Kp >

An

/\rz

| Enll = supger | En(0)|

len(P)| = | < fin > —p]

1.86332048016e — 09
1.86332055001e — 09
1.86332058494¢ — 09
1.86332073628¢ — 09
1.86332100404¢ — 09
1.86332158613e — 09
1.86332250584¢ — 09
1.8633245548¢ — 09
1.86332868765¢ — 09
1.86333679036e — 09

0.751526517341
0.751526498009
0.751526498009
0.751526498009
0.751526498009
0.751526498009
0.751526498009
0.751526498009
0.751526498009
0.751526498009

2.12023412168
2.12023408069
2.12023408069
2.12023408069
2.12023408069
2.12023408069
2.12023408069
2.12023408069
2.12023408069
2.12023408069

5.86419266924e — 07
1.13568007919e — 12
5.70862191743e — 14
7.40865459657¢ — 14
2.88680339999¢ — 14
3.07942539434e — 14
2.06818218507e — 14
1.79229880944¢ — 14
1.45149622014e — 14
1.23151604097e — 14

0
6.98509810361e — 17
1.04776471761e — 16
2.56120264764e — 16
5.23882359632¢ — 16

1.1059738702¢ — 15
2.02567845708e — 15
4.07464057478e — 15
8.20749030049¢ — 15
1.63102041292¢ — 14

n
0
1
2
3
4
5
6
7
8
9
Parameters
a=06.8
b=1.62

w = 15 ~ 1.618033988749895

Initial proposal (kg, 70)

0p=0

zg =0

N = 10000000
Np = 256

Initial characteristic features

p = 1.863320480159815e — 09

Ap = 0.7515265173412089
Ao = 2.120234121680084

det(€) = 1.98364924451342

T0=20

1| = max(|Eo(6)]) = 5.86419266923599¢ — 07
S

leo(p)| = | < ko > —p[ =0
Number of KAM iterations: n =9

Final characteristic features

A, = 0.7515264980089791
An = 2.120234080691231
Tn = —8.513673455284271e — 08

det(92,,) = 1.98364969604328

1 En|| = max(|E(0)]) = 1.231516040971472¢ — 14
S

len(p)| = | < kn > —p| = 1.631020412922066¢ — 14
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< Fp >

An

)\n

HEnH = SUPgeT |En<0)

len(®)| = | < kn > —pl

N=RENe IS = T U =)

= = = =
= W N = O

1.86332048016e — 09
1.86332055001e — 09
1.86332058494¢ — 09
1.86332073628¢ — 09
1.86332100404¢ — 09
1.86332158613¢ — 09
1.86332250584¢ — 09
1.8633245548¢ — 09
1.86332868765¢ — 09
1.86333679036e — 09
1.86335306564e — 09
1.86338565113e — 09
1.86345084537¢ — 09
1.86358136193¢ — 09
1.86384222042¢ — 09

0.751526517341
0.751526498009
0.751526498009
0.751526498009
0.751526498009
0.751526498009
0.751526498009
0.751526498009
0.751526498009
0.751526498009
0.751526498009
0.751526498009
0.751526498009
0.751526498009
0.751526498009

2.12023412168
2.12023408069
2.12023408069
2.12023408069
2.12023408069
2.12023408069
2.12023408069
2.12023408069
2.12023408069
2.12023408069
2.12023408069
2.12023408069
2.12023408069
2.12023408069
2.12023408069

5.86419266924e — 07
1.13568007919¢ — 12
5.70862191743e — 14
7.40865459657¢ — 14
2.88680339999¢ — 14
3.07942539434e — 14
2.06818218507e — 14
1.79229880944¢ — 14
1.45149622014e — 14
1.23151604097e — 14
1.07708782497e — 14
8.96764415492¢ — 15
7.85407353697e — 15
6.61832414709¢ — 15
6.15525422591e — 15

0
6.98509810361e — 17
1.04776471761e — 16
2.56120264764e — 16
5.23882359632¢ — 16
1.1059738702¢ — 15
2.02567845708e — 15
4.07464057478¢ — 15
8.20749030049¢ — 15
1.63102041292¢ — 14
3.25854827677e — 14
6.51709655354e — 14
1.30365214731e — 13
2.60881773255¢ — 13
5.2174026285e — 13

Parameters
a=06.8
b=1.62

w =115 ~1,618033988749895

Initial proposal (kg, 7o)

0o =0

9 =0

N = 10000000
Ny = 256

Initial characteristic features
p = 1.863320480159815e — 09

Ap = 0.7515265173412089
Ao = 2.120234121680084

det(€p) = 1.98364924451342

T0=20

[ Eoll = Iga%(|E0(9)|) = 5.86419266923599¢ — 07
S

leo(p)| = | < ko > —p[ =0
Number of KAM iterations: n = 14

Final characteristic features

A, = 0.7515264980089793
An = 2.120234080691231
7, = —8.513730535354296¢ — 08
det(£2,) = 1.983649696043277
| Enll = max(|E(9)]) = 6.15525422591442¢ — 15

len(p)] = | < Kin > —p| = 5.217402628500924¢ — 13




The KAM procedure

199

< Fp >

An

)\n

HEnH = SUPgeT |En<0)

len(®)| = | < kn > —pl

N=RENe IS = T U =)

= = = =
= W N = O

1.86332048016e — 09
1.86332055001e — 09
1.86332058494¢ — 09
1.86332073628¢ — 09
1.86332100404¢ — 09
1.86332158613¢ — 09
1.86332250584¢ — 09
1.8633245548¢ — 09
1.86332868765¢ — 09
1.86333679036e — 09
1.86335306564e — 09
1.86338565113e — 09
1.86345084537¢ — 09
1.86358136193¢ — 09
1.86384222042¢ — 09

0.751526517341
0.751526498009
0.751526498009
0.751526498009
0.751526498009
0.751526498009
0.751526498009
0.751526498009
0.751526498009
0.751526498009
0.751526498009
0.751526498009
0.751526498009
0.751526498009
0.751526498009

2.12023412168
2.12023408069
2.12023408069
2.12023408069
2.12023408069
2.12023408069
2.12023408069
2.12023408069
2.12023408069
2.12023408069
2.12023408069
2.12023408069
2.12023408069
2.12023408069
2.12023408069

5.86419266924e — 07
1.13568007919¢ — 12
5.70862191743e — 14
7.40865459657¢ — 14
2.88680339999¢ — 14
3.07942539434e — 14
2.06818218507e — 14
1.79229880944¢ — 14
1.45149622014e — 14
1.23151604097e — 14
1.07708782497e — 14
8.96764415492¢ — 15
7.85407353697e — 15
6.61832414709¢ — 15
6.15525422591e — 15

0
6.98509810361e — 17
1.04776471761e — 16
2.56120264764e — 16
5.23882359632¢ — 16
1.1059738702¢ — 15
2.02567845708e — 15
4.07464057478¢ — 15
8.20749030049¢ — 15
1.63102041292¢ — 14
3.25854827677e — 14
6.51709655354e — 14
1.30365214731e — 13
2.60881773255¢ — 13
5.2174026285e — 13

Parameters
a=06.8
b=1.62

w =115 ~1,618033988749895

Initial proposal (kg, 7o)

0o =0

9 =0

N = 10000000
Ny = 256

Initial characteristic features
p = 1.863320480159815e — 09

Ap = 0.7515265173412089
Ao = 2.120234121680084

det(€p) = 1.98364924451342

T0=20

[ Eoll = Iga%(|E0(9)|) = 5.86419266923599¢ — 07
S

leo(p)| = | < ko > —p[ =0
Number of KAM iterations: n = 14

Final characteristic features

A, = 0.7515264980089793
An = 2.120234080691231
7, = —8.513730535354296¢ — 08
det(£2,) = 1.983649696043277
| Enll = max(|E(9)]) = 6.15525422591442¢ — 15

len(p)] = | < Kin > —p| = 5.217402628500924¢ — 13



200 Numerical aspects related to Fourier series, discrete Fourier transform (DFT), and cohomological equations
n < Ko > Ay An |En]l = supger | En(0)] | len(®)| = | < kn > —p|
0 | 1.11530031341 | —1.42097761065 | 0.241477830169 | 1.81826142032¢ — 06 0
1 | 1.11530031341 | —1.42097772454 | 0.241477802666 | 3.31766090047¢ — 12 6.66133814775e — 16
2 | 1.11530031341 | —1.42097772454 | 0.241477802666 | 3.66339903764e — 13 1.33226762955e — 15
3 | 1.11530031341 | —1.42097772454 | 0.241477802666 | 5.22675299156e — 13 2.44249065418¢ — 15
4 | 1.11530031341 | —1.42097772454 | 0.241477802666 | 1.46968662239¢ — 12 5.10702591328¢ — 15

a=06.8

b=1.62

N = 10000000

Ny = 256

w = 15 ~ 1.618033988749895

p = 1.115300313413207

n=4

A, = —1.420977724538793

An = 0.2414778026663881

T = —3.708213172918934¢ — 08

| Eo|l = sup(| Eq(8)]) = 1.818261420316603¢ — 06
oeT

| E,|| = sup(|E(0)|) = 1.469686622392079¢ — 12
0eT

det(€) = 1.996578017355469
det(€2,) = 1.99657780883491

| Enll = supger | £ (6)]

len(p)] = < fn > —pl

1.14711105148e — 06
2.44644605755¢ — 12
7.24616551907e — 13
2.0928732574e — 12
6.02923071497e — 12

0
1.11022302463e — 15
1.7763568394¢ — 15
3.99680288865¢ — 15
7.1054273576e — 15

n < Kp > An An
0 | —1.11530030417 | —1.42097757442 | 0.241477838916
1| —1.11530030417 | —1.42097750652 | 0.241477855312
2 | —1.11530030417 | —1.42097750652 | 0.241477855312
3 | —1.11530030417 | —1.42097750652 | 0.241477855312
4 | —1.11530030417 | —1.42097750652 | 0.241477855312

a=6.8

b=1.62

N = 10000000

Ny = 256

w = 11/5 ~1,618033988749895

p = —1.115300304170598

n=4

A, = —1.420977506523903

A = 0.2414778553121505

T = 3.606618546312675¢ — 08

| Eoll = max(|Eo(6)]) = 1.147111051480465¢ — 06

1 En|| = max(|E(6)]) = 6.029230714966026¢ — 12
€

det(€) = 1.996577861978446
det(Q,) = 1.996578190831171
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n < Kp > An An HETLH = SUPgeT |En(0)‘ ‘en(p)l = ‘ < Knp > —P‘
0 | —2.68897208283e — 09 | 0.751526320597 | 2.12023370454 | 9.03460874557e — 07 0
1| —2.68897197805e — 09 | 0.751526428125 | 2.12023393252 | 4.22203411101e — 09 1.04776472175e — 16
2 | —2.68897189656e — 09 | 0.751526428125 | 2.12023393252 | 5.87811104465¢ — 12 1.86269283314e — 16
3 | —2.68897167536e — 09 | 0.751526428125 | 2.12023393252 | 1.17963579637e — 12 4.07464057354e — 16
4 | —2.68897127954e — 09 | 0.751526428125 | 2.12023393252 2.931912132¢ — 13 8.03286284604¢ — 16

a=26.8

b=1.62

N = 10000000

Ny = 256

w = 15 ~ 1.618033988749895
p = —2.688972082828913¢ — 09

n=4

A, = 0.7515264281245347
An = 2.120233932519855

7, = —1.08580854217983¢ — 08
| Boll = max(| Eo(6)]) = 9.034608745572825¢ — 07

| Bull = max(|E(9)]) = 2.931912132003164¢ — 13
€

det(Qo)
det(€2,)

= 1.98364937809758
= 1.983648720495924

n < Kp >

A'rL

An

[ Enll = supger [ En(0)

len(p)] = | < Ky > —pl

(=)

1.11530031925

—1.42097748324

0.241477860935

2.81484447884e — 06

0

1| 1.11530031925 | —1.42097749529 | 0.241477858024 | 2.04363060521e — 08 4.4408920985¢ — 16
2 | 1.11530031925 | —1.42097749529 | 0.241477858024 | 1.22414088392¢ — 09 0

3 | 1.11530031925 | —1.42097749529 | 0.241477858024 | 4.93978905902¢ — 11 1.7763568394e — 15
4| 1.11530031925 | —1.42097749529 | 0.241477858024 | 3.66341938488e — 11 3.77475828373e — 15
n < fn > An An £l = supger [En(0)] | len(p)| = [ < % > —p|
0 | 1.11530031341 | —1.42097761065 | 0.241477830169 | 1.81826142032¢ — 06 0

1| 1.11530031341 | —1.42097772454 | 0.241477802666 | 3.31766090047e — 12 6.66133814775¢ — 16
2 | 1.11530031341 | —1.42097772454 | 0.241477802666 | 3.66339903764e — 13 1.33226762955¢ — 15
3| 1.11530031341 | —1.42097772454 | 0.241477802666 | 5.22675299156e — 13 2.44249065418e — 15
4 ] 1.11530031341 | —1.42097772454 | 0.241477802666 | 1.46968662239¢ — 12 5.10702591328e — 15




202 Numerical aspects related to Fourier series, discrete Fourier transform (DFT), and cohomological equations
n < knp > A An [ Enll = supper [En(0)] | lea(p)| = | < fin > —p|
0 | —1.11530030417 | —1.42097757442 | 0.241477838916 | 1.14711105148e — 06 0
1 | —1.11530030417 | —1.42097750652 | 0.241477855312 | 2.44644605755e — 12 1.11022302463e — 15
2 | —1.11530030417 | —1.42097750652 | 0.241477855312 | 7.24616551907e — 13 1.7763568394e — 15
3 | —1.11530030417 | —1.42097750652 | 0.241477855312 2.0928732574e — 12 3.99680288865¢ — 15
4 | —1.11530030417 | —1.42097750652 | 0.241477855312 | 6.02923071497e — 12 7.1054273576e — 15
n < Kn > Ay An 1 Enll = supger [ En(0)] | len(p)| = | < ki > —p
0 | —3.29574701041e — 08 | 0.751526426994 | 2.12023393012 | 1.00495609567¢ — 06 0
1 | —3.29574702787e — 08 | 0.75152651564 | 2.12023411807 | 2.59163795774e — 09 1.74625218996e — 16
2 | —3.29574703602e — 08 | 0.75152651564 | 2.12023411807 | 1.28089691143e — 11 2.56116988302¢ — 16
3 | —3.29574705814e — 08 | 0.75152651564 | 2.12023411807 | 4.61497552674e — 12 4.77308928834e — 16
4| —3.29574710471e — 08 | 0.75152651564 | 2.12023411807 | 7.10349142546e — 12 9.42976177284¢ — 16
Parameters
a=06.8
b=1.62
w = 15~ 1,618033988749895

Initial proposal (kg, 70)

0p=0

ro = 1

N = 10000000
Ny =128

Initial characteristic features

p = —3.295747010411697¢e — 08
Ap = 0.7515264269943018
Ao = 2.120233930123497

det(9) = 1.983649446320672

T0=20

1 Eoll = max(| Eo(6)]) = 1.004956095673748¢ — 06
€

leo(p)| = | < ko> —p[=0
Number of KAM iterations: n = 4
Final characteristic features
A, = 0.7515265156396997
Ap = 2.120234118072486

7, = —1.19051621416144¢ — 09

det(€2,) = 1.983649153752742

1En|l = max(|E(6)]) = 7.103491425456302¢ — 12
€
len(p)| = | < kn > —p| = 9.429761772838928¢ — 16

Unstable invariant curve
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< Fip >

An

>\7L

[ Enll = supger [ En (0)]

len(®)| = | < kin > —p|

© 00 N O Ut e W N = O

e e e =
= W NN = O

16
17
18
19

—2.68897208283¢ — 09
—2.68897197805¢ — 09
—2.68897189656e — 09
—2.68897167536e — 09
—2.68897127954¢e — 09
—2.68897049954¢ — 09
—2.68896885804¢ — 09
—2.68896557505¢ — 09
—2.68895917204e — 09
—2.68894636603¢ — 09
—2.68892068415¢ — 09
—2.68886907592¢ — 09
—2.68876623199¢ — 09
—2.68856047428¢ — 09
—2.68814870275¢ — 09
—2.68732534595¢ — 09
—2.6856786207e — 09
—2.68238520515¢ — 09
—2.67579825761e — 09
—2.66262438582¢ — 09

0.751526320597
0.751526428125
0.751526428125
0.751526428125
0.751526428125
0.751526428125
0.751526428125
0.751526428125
0.751526428125
0.751526428125
0.751526428125
0.751526428125
0.751526428125
0.751526428125
0.751526428125
0.751526428125
0.751526428125
0.751526428125
0.751526428125
0.751526428125

2.12023370454
2.12023393252
2.12023393252
2.12023393252
2.12023393252
2.12023393252
2.12023393252
2.12023393252
2.12023393252
2.12023393252
2.12023393252
2.12023393252
2.12023393252
2.12023393252
2.12023393252
2.12023393252
2.12023393252
2.12023393252
2.12023393252
2.12023393252

9.03460874557¢ — 07
4.22203411101e — 09
5.87811104465e — 12
1.17963579637¢ — 12
2.931912132e — 13
4.14899322049¢ — 13
2.32362458953e — 13
2.09432034022¢ — 13
1.59154098468¢ — 13
1.32320667309e — 13
1.09474100512e — 13
9.10874111954e — 14
7.65636248248¢ — 14
6.47806102933e — 14
5.43810413504e — 14
4.61384775104e — 14
3.89824875914e — 14
3.29066115874e — 14
2.79883448273e — 14
2.38898097364e — 14

0
1.04776472175¢ — 16
1.86269283314¢ — 16
4.07464057354¢ — 16
8.03286284604¢ — 16

1.583288909¢ — 15
3.22478696935¢ — 15
6.50778308963¢ — 15
1.29107897071e — 14
2.5716802942¢ — 14
5.13986803928e — 14
1.0300691373e — 13
2.05850841836¢e — 13
4.1160854903e — 13
8.23380083684¢ — 13
1.64673688371e — 12
3.29346212558e — 12
6.58687768384e — 12
1.31738252187e — 11
2.63476970047e — 11

< Fp >

An

)\n

1 Enll = supger [ En(0)

len(®)| = | < kn > —pl

NoRENe RS = T I R =]

= = = =
= W N = O

16
17
18
19

1.86332048016e — 09
1.86332055001e — 09
1.86332058494¢ — 09
1.86332073628¢ — 09
1.86332100404¢ — 09
1.86332158613e — 09
1.86332250584¢ — 09
1.8633245548¢ — 09
1.86332868765¢ — 09
1.86333679036e — 09
1.86335306564e — 09
1.86338565113e — 09
1.86345084537¢ — 09
1.86358136193¢ — 09
1.86384222042¢ — 09
1.86436396069¢ — 09
1.86540748778e — 09
1.86749444883e — 09
1.87166831272¢ — 09
1.880016122¢ — 09

0.751526517341
0.751526498009
0.751526498009
0.751526498009
0.751526498009
0.751526498009
0.751526498009
0.751526498009
0.751526498009
0.751526498009
0.751526498009
0.751526498009
0.751526498009
0.751526498009
0.751526498009
0.751526498009
0.751526498009
0.751526498009
0.751526498009
0.751526498009

2.12023412168
2.12023408069
2.12023408069
2.12023408069
2.12023408069
2.12023408069
2.12023408069
2.12023408069
2.12023408069
2.12023408069
2.12023408069
2.12023408069
2.12023408069
2.12023408069
2.12023408069
2.12023408069
2.12023408069
2.12023408069
2.12023408069
2.12023408069

5.86419266924¢ — 07
1.13568007919¢ — 12
5.70862191743e — 14
7.40865459657¢ — 14
2.88680339999¢ — 14
3.07942539434e — 14
2.06818218507e — 14
1.79229880944¢ — 14
1.45149622014e — 14
1.23151604097e — 14
1.07708782497e — 14
8.96764415492¢ — 15
7.85407353697e — 15
6.61832414709¢ — 15
6.15525422591e — 15
5.25480641486e — 15
4.90313839925¢ — 15
4.12317228992¢ — 15
3.63126669377e — 15
3.48808445612¢ — 15

0
6.98509810361e — 17
1.04776471761e — 16
2.56120264764e — 16
5.23882359632¢ — 16
1.1059738702¢ — 15
2.02567845708e — 15
4.07464057478¢ — 15
8.20749030049¢ — 15
1.63102041292¢ — 14
3.25854827677e — 14
6.51709655354e — 14
1.30365214731e — 13
2.60881773255¢ — 13
5.2174026285e — 13
1.0434805257e — 12
2.08700761872e — 12
4.17396867012e — 12
8.34783256377e — 12
1.66956418439¢ — 11




204

Numerical aspects related to Fourier series, discrete Fourier transform (DFT), and cohomological equations

< Fp >

An

)\n

HEnH = SUPgeT |En<0)

len(®)| = | < kn > —pl

N=RENe IS = T U =)

= = = =
= W N = O

16
17
18
19

1.86332048016e — 09
1.86332055001e — 09
1.86332058494¢ — 09
1.86332073628¢ — 09
1.86332100404¢ — 09
1.86332158613¢ — 09
1.86332250584¢ — 09
1.8633245548¢ — 09
1.86332868765¢ — 09
1.86333679036e — 09
1.86335306564e — 09
1.86338565113e — 09
1.86345084537¢ — 09
1.86358136193¢ — 09
1.86384222042¢ — 09
1.86436396069¢ — 09
1.86540748778e — 09
1.86749444883e — 09
1.87166831272¢ — 09
1.880016122¢ — 09

0.751526517341
0.751526498009
0.751526498009
0.751526498009
0.751526498009
0.751526498009
0.751526498009
0.751526498009
0.751526498009
0.751526498009
0.751526498009
0.751526498009
0.751526498009
0.751526498009
0.751526498009
0.751526498009
0.751526498009
0.751526498009
0.751526498009
0.751526498009

2.12023412168
2.12023408069
2.12023408069
2.12023408069
2.12023408069
2.12023408069
2.12023408069
2.12023408069
2.12023408069
2.12023408069
2.12023408069
2.12023408069
2.12023408069
2.12023408069
2.12023408069
2.12023408069
2.12023408069
2.12023408069
2.12023408069
2.12023408069

5.86419266924e — 07
1.13568007919¢ — 12
5.70862191743e — 14
7.40865459657¢ — 14
2.88680339999¢ — 14
3.07942539434e — 14
2.06818218507e — 14
1.79229880944¢ — 14
1.45149622014e — 14
1.23151604097e — 14
1.07708782497e — 14
8.96764415492¢ — 15
7.85407353697e — 15
6.61832414709¢ — 15
6.15525422591e — 15
5.25480641486e — 15
4.90313839925¢ — 15
4.12317228992¢ — 15
3.63126669377e — 15
3.48808445612¢ — 15

0
6.98509810361e — 17
1.04776471761e — 16
2.56120264764e — 16
5.23882359632¢ — 16
1.1059738702¢ — 15
2.02567845708e — 15
4.07464057478¢ — 15
8.20749030049¢ — 15
1.63102041292¢ — 14
3.25854827677e — 14
6.51709655354e — 14
1.30365214731e — 13
2.60881773255¢ — 13
5.2174026285e — 13
1.0434805257e — 12
2.08700761872e — 12
4.17396867012e — 12
8.34783256377e — 12
1.66956418439¢ — 11

< Kp >

An

/\n

| Enll = supger | En(0)]

len(P)| = | < fin > —p]

=W N = O

4.76471550321e — 10
4.76471591067¢ — 10
4.76471628903¢e — 10
4.7647170312e — 10
4.76471832635¢ — 10

1.7811320816
1.78113208167
1.78113208167
1.78113208167
1.78113208167

5.93657330125
5.93657330164
5.93657330164
5.93657330164
5.93657330164

2.31443690966e — 08
6.44256392132¢ — 15
4.93920067974e — 15
3.79540287878e — 15
2.94401836263e — 15

4.07464057767e — 17

0

7.85823539242¢ — 17
1.52799021559¢ — 16
2.82314382704e — 16

< Kp >

An

An

1 Enll = supger | En(0)

len(P)| = | < fin > —p]

S

3.98768775472e — 07
3.98768775361e — 07
3.98768775361e — 07
3.98768775027e — 07
3.98768774138¢e — 07

—3.01060856251
—3.01060791127
—3.01060791127
—3.01060791127
—3.01060791127

0.0492616908183
0.0492617228997
0.0492617228996
0.0492617228996
0.0492617228996

2.30120842322¢ — 05
1.9509617846e — 10
9.75242654723¢ — 10
7.6948926864¢ — 09
6.05788270823¢ — 08

0
1.11130828559¢ — 16
1.11130828559¢ — 16
4.44523314236¢e — 16
1.33356994271e — 15
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< bip >

An

)\n

HEHH = SUPgeT |En(0)

en(p)| = | < K > —p|

=W NN = O

1.67096936354e — 07
1.6709693654e — 07
1.67096936633¢ — 07
1.67096937099e — 07
1.67096937006e — 07

—3.01060857585
—3.01060830296
—3.01060830296
—3.01060830296
—3.01060830296

0.0492616901613
0.0492617036044
0.0492617036044
0.0492617036044
0.0492617036044

9.936411417¢ — 06
2.81870667586e — 11
2.11359268164e — 10
2.3440134395¢ — 09
2.50229554579¢ — 08

0
1.86269268425e — 16
2.79403902638e — 16
7.45077126641e — 16
6.51942492428¢ — 16
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Chapter 6

Numerical aspects related to some

examples

6.1 Jager’s model

In this section, the model presented will serve as a support to develop all the algorithms built in

previous sections and chapters, as well as their subsequent numerical implementation’.

Let us define the extended quasi-—periodic skew—product:

Definition 6.1 Jager’s model

Let 0> 0, a,b € RT, we DC(vy,v), andU = C\ {—%i, éz}

p: ToxU — TyxC
(0,2) = (0,2):= (0 +w,arctan(az) + bsin(278))

As usual, we denote by f(0,z) the second component of the skew—product, that is,

f: TyxUd — C
(0,2) +—— f(0,z):= arctan(az) + bsin(270)

REMARK 6.2

1 is invertible and

Pl TexV — Ty xU
0,2) — ¥7(0,2) = (0 —w,g(0,2)) ,

where g(6, z) = L tan(z — bsin(27 (0 — w))), V(0, 2) € T, x V.

(6.1)

(6.2)

(6.3)

'This model, with slight differences, was presented by Tobias H. Jiger in 2003 [34] and has been deeply analyzed
by Angel Jorba, Francisco Javier Munioz—Almaraz, and Joan Carles Tatjer in 2018 [36]. Here we expose an extended

version complexified with the aim of adapting the model to the previous exposition.
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We take Lemma 3.5 as a starting point to certify the performance of the algorithms described for
obtaining invariant curves. And we will do it without taking into account some specific symmetry
properties of this particular example that, on the other hand, may be used for other specific
purposes. Thus, the study of this skew—product does not detract from the generality of the
example. We will see, first of all, that the hypotheses for the KAM procedure are satisfied. In this
sense we remark the following properties of the skew—product (6.1).

Proposition 6.3

Let ) = R, x f be the skew-product (6.1). We consider the closed disk D(0, R), with 0 < R < L.
Then, the following properties hold:

(i) The spatial derivative of the function f (6.2) is

of a
5(0,2) = m, V(Q,Z) S TQ X Z/{ (64)
and g—’; (E(O,R)) = D(z0, R*), with zy = T—aigr and R = %.
Moreover, there are positive constants K1 and K| such that
¥ a af a _
0< Kl = m S 5(072) S m = Kl, V(H,Z) S TQ X ]D)(O,R) (65)

(it) The second spatial derivative of the function f is

0% f 2032

@(9,2) = —m, v<072) S TQ X Z/{ (66)

Moreover, there is a positive constant Ko such that

0% f 203R

6,2’2(072:)‘ S m = KQ, \VI(Q,Z) S TQ X E(O,R) (67)
(ii1) Ja € (0,7) such that
of _
Arg 5(0,2) <a, V(0,2) e T, xD0,R) . (6.8)
2 P2
More specifically, o = arctan € (0,7/2).

V1—a*R*
Proof.

(i) The first partial derivative of f with respect to the spatial coordinate is

af B a B 1.1,
a(G,Z)—1+(aZ)2,Vz€L{—(C\{ az,az}.

The image of the closed disk
D(0,R) = {z = geti : (r,t) € [0,aR] x (—m, 7]}

can be written as

of — B
= (D0, ) = {

i e () € LR x (<),
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First we show that, given any r € [0,aR)], the 2imauge of the circle 9D(0, %7‘) under g—ﬁ is the

circle dD(cy, Ry), with ¢, = %7 and R, = {#5.

On the one hand, if z = éreti, with (r,t) € [0,aR] X (—m, 7], then

of a a
—(0,2) = = .
0z 1+ (az)? 1+ 7r2e2t
a 1+ r2e2t a

— _ 2 —2ti
T 1221 + 26260 ‘1+r2€2ti’2( +riem™).

By Euler’s formula, e?** = cos(2t) + isin(2t) and e=2% = cos(2t) — isin(2t). Therefore,
11+ 722 = (14 r?cos(2t))? + r? sin?(2t) = 1 4 22 cos(2t) + r?

It follows that, (9 z) = u(r,t) +iv(r,t) with

u(r,t) = —5o—2o(1+1r2cos(2t
(r,t) 11212 cc;;(?t)+7“4< ) (21)) (r,t) € [0,aR] x (—m, 7] . (6.9)
'U(?“, t) = W(—T Sln(2t))

On the other hand, for each r € [0, aR], the distance from %(9 Lret?) to the real point ¢, is

af( t') a a
re | = -
0z " 14 r2e2tt 1 —p4
1 ar? 9 oti
- ‘1—T41+T262ti(r +e™)

ar? |r? + 2"
1—r4 |1+ r2e2t|

Since |r? + €| = |1 + r2e2!| = (1 + 2r? cos(2t) + 7’4)%, we have

CL?“2

1—r4

of
0z

ro.

1 .
(0, are”) —c¢| =

This proves that 2L (8]1))( r)) = 0D(c,, Ry), Vr € [0,aR). These non-concentric circles
are all centered in the real hne, and the corresponding closed disks D(¢,, R,) constitute an
increasing family of sets with respect to r. In particular,

a a a a
K{ =cap—Rop = ——— < ¢,—R, = < =¢+R < ———5 = captRar = K1.
L= CaR™MaR = 7 ape = € T2 =12 O s T ppe = Corttllan !
Thus, we may write finally:
af _of 1 B of 1
“oom = L oo, a”) = U £ @D0,-1)
re(0,aR] rel0,aR]
= |J (e, R)= |J D(e Ry) = lim D(c,,R,)
r—a
r€[0,aR] rel0,aR]

= D(car, Rar) = D(z20, R).
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FIGURE 6.1: Tmage of the closed disk D(0, R) underg—lzt

(ii) The second partial derivative of f with respect to the spatial coordinate is

0% f 2032 1.1,
@(0,2) = —W, VZ S Z/{ = (C\{—EZ, 57/}

The image of the closed disk
D(0,R) = {z = geti : (r,t) € [0,aR] x (—m, 7]}
can be written as

asz 1
gﬁ(]D)(O’R)):{— 2 'z:lTetZ:(r,t)G[O,aR]X(_ﬂ—vﬂ]}‘

(1+(a2))? " a

Let z = +yi = Lre" € D(0, R), ie. (r,t) € [0,aR] x (—m,x]. Then,

ﬁ(e 2) = 827]"(9 lren) _ 2a3%reti o 2a2retl (14 r2e=2ti)2
922\ 922" a (1 + (reti)2)2 (1 + r2e2t)2 (1 + r2e—2ti)2
ti 2,—2ti)2 2
_ o (1 4r2e72)2  —2a% s o 4
= —2a°r ‘1+T2€2ti‘4 - ’14—7“262152"46 Y14 2r%e M 4 rtem )
—24° . . ’
= e e 2 e,

By means of Euler’s formula, complex exponentials can be written as follows:

ety 2r2em 4 pteT3 = cost +isint + 2r%(cos(—t) + isin(—t)) + r*(cos(—3t) 4 i sin(—3t))
= cost+ 2r¥cost + r*cos(3t) +i(sint — 2r?sint — r¥ sin(3t))
= (1+2r%) cost + r*cos(3t) +i((1 — 2r?)sint — r*sin(3t)),
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and
11+ 72e2)? = (14 r%cos(2t))? + rtsin?(2t) = 14 2r2 cos(2t) + rt cos?(2t) + rt sin?(2t)
14 2r2 cos(2t) + .
It follows that o2 o2
1 .
010, = 210, e =) +iv(r)

with
u(r,t) = — 2a’r 14 2r%) cost + r cos(3t
( ) (14272 C2(;s2(3t)+r4)2(( 2) ‘ L ( )) (T‘,t) c [O,GR] % (—7T,7r] '
v(r,t) = — (757 o2 1T ((1 —2r*)sint — r* sin(3t))

(6.10)
For each r € [0,aR] these equations represent a closed curve. All the curves of the family
together constitute the image of the closed disk D(0, R), and they are all enclosed inside the
curve corresponding to r = aR. (See FIGURE 6.2).

Consequently, they are also enclosed inside the close disk D(0, K3), where K» is the maximum
distance to the origin. In other words,

0% f 2a3|7|
az2<972>‘ Trazrp B2 €Text
0%f 1 2a°r
—_ 4 0 - te — t o
8,22( 2 e ) 1+ 2r2cos(2t) + rt’ (r;t) € [0, aR] x (=, 7]
Moreover,
2a%r - 2a°r B 2a°r 2a°R K
T+2r2cos(2) +rd — 1—2r2 474 (1—12)2 — (1—a2R2)2 %7
Thus,
0% f 2a3R _
‘M(H,Z)’ < m =: KQ, V(Q, Z) S TQ X D(O,R) (611)

FIGURE 6.2: Image of the closed disk D(0, R) under%
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REMARK 6.4

Curves given by (6.10) are symmetric with respect to the axes, and there are some points
lying on the real axis:

r = O 5 U(O, t) - 0
2
) t=20 . u(rt) = (IS_TZ)Q
Im (6‘2(9, 17"6“)) e =T ;o m) = ﬁ
0z “ t = arccos | — 1_T2> u(r,t) = 201
o 2r2 ’ )T (1-r2)(1—rt)
| = arccos 1;;) , u(rt) = (1_326‘)2(2‘3_T4)

(iii) The image of the closed disk D(0, R) under % is the closed disk D(zg, R*), which is centered
at 20 = -5z placed on the real line and whose radius R* = % is small enough so
that the disc does not reach to cut the imaginary axis (See FIGURE 6.1). Therefore, the
maximum principal argument of the disk is the angle a € (0, §) between the positive real
semiaxis and the tangent line from the origin to the circumference 0D(zy, R*). By means of

. . R*
geometric arguments it can be shown that a = arctan Nt

Let zo = x4 + 1y, be the tangent point. z, may be written as

jus ; . .
Zo = 20 + R*e(3TY" = 2y — R*sina + R*icosa.

Thus,
To = 20— Rsina,
Yo = Rcosa.

Since triangles 0zq,x, and 0z,2¢ are right—angled triangles we have:

* 3p3 /(1 _ APl 2 2
toma = Yo R a’R?/(1 — a*R?) a*R

ta JZ-R?  a/0-dRY) ~ VI-aRV

Moreover,

. 1 4 P4
cose = ——— =+v1—a*R
V1+tan? a

sinae = tanacosa = a’R?.
It follows that

_ a®R?

To = 29— R'sina = a
* J—
Yo = Rcosa = Viaim

a = arctan \/%, and ‘Arg (%(9, z))‘ <a, Y(0,2) € T, x D(0, R).

O

There are some important symmetry additional properties in this example. Some of the numerical
results obtained can be better understood if these properties are taken into account, to which we
allude in the following statement.
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Proposition 6.5 Symmetry properties

Let ¢» = R, x f be the skew—product (6.1). Then, the following properties hold:

(i) v is invariant under conjugation by the symmetry

S: ToxU — T,xU
0,2) — S(0,z):= (9+%,—z),

(6.12)
namely, Soyp =1 o S.
(it) If k : T — R is an invariant curve for 1, i.e.
f0,k(0)) = k(0 +w), VO € T,

then the symmetric curve

v: T — R
0 — ~(0):=—-r(0+3),

is also an invariant curve for 1, i.e.

f(0,7(0)) =~(0 +w), VO €T,

(i) If k: T — R is a curve (not necessary invariant for 1) whose Lyapunov exponent is

Alk) = /T log (gi(&;ﬂ@))) a9 |

then the symmetric curve ¥(0)) = —k(0 + ), V0 € T, has the same Lyapunov exponent, i.e.

A0 = [1og (G000 ) as = a0

(i) If K : T — R is a curve and (0)) = —k(0 + %), V0 € T, is the corresponding symmetric,
then their Fourier coefficients are related by

A = / v(0)e 2™ = (—1)FH1 / K(0)e 20 = (—1)FHIR, VE € Z.
T T

If k is self-symmetric, all its even Fourier coefficients vanish. In particular, < kK >= 750 =0.

(v) Let k: T — R be a curve (not necessary invariant for 1) and define the matriz

1— (k) —no(kK)
Q(’%) - ( CO(K') < E(N)%A(ﬁ)ﬁ(’i) > ) ,

where A(k) is the Lyapunov multiplier of the curve, c(k) is the corresponding Floquet transfor-
mation, and n(k)(0) = m (0 € T), then the symmetric curve ¥(0) = —k(0+3), V0 € T,
has the same determinant, i.e,

det Q(vy) = det Q(k).
In fact Q(v) = Q(k).
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Proof.

(i)

(iii)

(v)

Let (0,2) € T, x U. Then,
(So)(0,2) = S(0,2) = SO +w, f(0,2) = (0 + % +w,—f(0,2)).
(108)(0,2) = (S(0,2)) = Y(0+3,—2) = (O+i+w, f(0+3,—2)) = (O+3+w, (fo5)(0,2)).

Since f(0,z) = arctan(az) + bsin(270), then (f o S)(0,2) = f(0 + 3, —z) = arctan(—az) +
bsin(2m(0 + 1)) = — arctan(az) + bsin(2r0 4+ ) = — arctan(az) — bsin(270) = — f(0, 2).

Thus, foS = —f and therefore Soy =1 o S.

REMARK 6.6

Notice that, in general

Sop=1YoS<= foS=-—Ff.

Furthermore, differentiating f o S = —f we obtain % oS = %. Moreover, inductively we
may also write,

o*f 10" f

—2 oS = (-1 vEk=0,1,2,.... 6.13

Assume that x is invariant. Then:
YO +w) =—rO+w+35)=—fO0+5,60+73) =—F(0+35 —0) =—(foS5)(0,7(0) =
f(0,7(0)). Therefore, v is invariant.

Let my(0) = g—z(ﬁ,/ﬁ(ﬁ)), 0 € T, and my(0) = g—ﬁ(ﬁ,’y(@)), 0 € T,. Then, applying de
definition of v and taking into account (6.13), we have:

ma(0) = 5£0.70) = (% 05) 0.10) = 5O+ 3,-10) = O + 350+ })) =
me(0+ 3), V0 € T,. It follows that A(k) = [ logm,(0)df = [logm.(0 + &)d6.

Taking into account the 1—periodicity of the integrand and applying the change of variable
C=0+1, weget A(y) = [plogm,()d¢ = A(xk).

Since ¢™ = (—1)* Vk € Z and applying the change of variable ¢ = 6 + %, the Fourier
coeflicients of v can be written as

. 1 . . 1 .
ak _ / 7(0)6—27rk€zd9 _ / —n(@ + 7)6—27rk:91d9 — _rki / ,{(9 + *)6_27Tk(9+%)1d9
T T 2 T 2

— (_1)k+1/ﬁ(<)62”k<idg = (—1)" R, VR EZ .
T

k+1/l€\

If x is self-symmetric, v = k and then kK = (—1) k. Therefore, if k is even, kK = 0. In

particular, kg =< kK >= 0.

This property can be proved following the same scheme as in the above properties.



Appendix I. Fiber bundles, bundle
maps and invariant curves in

skew—products

This appendix lays the foundations in a more general context of the background in which the
entire thesis is focused. It is devoted to introduce the notion of skew—product and some general
definitions related with this smattering. In particular, the concept of invariant section. For a more
complete account on the topic, we refer the reader to [55], [32], [47], [1]. Let us start with some
definitions and basic properties.

1.1 Fiber bundles

Definition I.1 Fiber bundle
Formally, a fiber bundle is a structure (E, B, p, F) where

(1) E is a topological space called bundle space or total space;

(ii) B is a topological space, usually connected, called base space;
(iii) p: E — B is a continuous surjective map of E onto B called the bundle projection; and
(iv) F' is a topological space called the fiber,
satisfying the following local triviality condition:

VO € B,3Uy € 7(B), namely an open set, and exists a fiber preserving homeomorphism
vu, 0 ' (Up) — Ug x F

such that the diagram

PUy

p HUp) CE

Uy x FCBxF

Uy CHB

commutes, that is,
p=moqy,, overp " (Up)

where 7 1s the canonical projection of the product space Ug X F', endowed with the product topology,
onto the so—called trivializing neighborhood Uy.

We denote Fy = p~1(0), VO € B which is called the fiber over the point 6 of B and it is required
that each Fy be homeomorphic to F'.

We say that a fiber bundle (E, B,p, F) is differentiable, respectively holomorphic, if E, B, and F
are differentiable manifolds, respectively complex manifolds, and the trivializing maps are diffeo-

morphisms, respectively biholomorphisms.
o
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REMARK 1.2

The product BX F' defines a trivial fiber bundle, (Bx F, B, m, F'), where 7 is the canonical projection
over the base.

REMARK 1.3

In the above definition we say that the homeomorphism g, is fiber preserving because it transforms
fibers over (E, B, p, F) into the corresponding fibers over (Bx F, B,w, F), that is ¢y, (Fp) = 7~ (0),
where Fp = p~1(0) is the fiber of the point § € B with respect to (E, B,p, F) and 7=1(0) = {0} x F
is the fiber of the same point with respect to the trivial fiber bundle (B x F, B, F).

Proof.

(C) Let (0,%) € wu,(Fy) C Uy x F. Then 3§ € Fp such that ¢y, (§) = (0,7). Since £ € Fy
then p(€) — 6 and we have 8 — 7(8,5) = (s, (€) = (7 © pu,)(€) = p(§) = 6. Thus,
(6,9) € 71(0).

(D) Let (A,9) € #%(0) C Uy x F. Then w(0,y) = 6 = 6 = 0. Since pp, is a homeomorphism
there is a unique & € p~1(Up) such that ¢, (€) = (0, 7). Let 0 = p(&) € Up. Since p = oy,

we have: § = p(&) = (7 0 ¢y,)(€) = w(py, () == Thence ¢y, (§) = (6,)
with p(¢) = 0, i.e. £ € p~1(0) = Fy. And this means

—~
&
<
N—
I
|
I
>

1.2 Bundle maps

Definition I.4 Bundle maps and isomorphisms of fiber bundles

A bundle map is a morphism in the category of fiber bundles.

More precisely, if (E,B,p,F) and (E',B',p', F") are fiber bundles, then a bundle map between
them is a couple of continuous functions (p, 1) with ¢ : B — B’ and ¢ : E — E’ such that the
following diagram commutes,

E ¥ )4
p p
B B’
)

i.e. pop=7p o).

We define the composition of bundle maps as follows: if (¢,%) is a bundle map between the
fiber bundles (E,B,p,F) and (E',B",p', F') and (¢, {/;) is a bundle map between the fiber bundles
(E',B',p',F") and (E",B",p", F") then the composition is the bundle map

(&7{5) O(@7¢) = (QZO@’JOQZ}) )

which is a bundle map between the the fiber bundles (E, B,p, F) and (E", B",p", F") as it is shown
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in the following diagram.

E ’ B v fol
p p/ p//
B BI B//

® @

Since pop=p ot and Fop' = p" o1 then (Fop)op=Fo(pop)=Fo(p o) = (Fop)or =
(p o IZ) op=p"o (1’/30 ). And this proves the assertion.

On the other hand, a bundle map (p,1)) between the fiber bundles (E, B,p, F) and (E', B',p', F")
is an isomorphism of fiber bundles if there is another bundle map (3,1) between (E', B',p/, F')
and (E, B,p, F) such that

(@,¢) o (p,¢¥) = (Ip,1g) ,
i.e. pop=1Ip andlzow:IE.

1.3 Cross sections over fiber bundles

Definition 1.5 Cross section

A cross section of a fiber bundle (E, B, p, F) is a continuous map o : B — E such that poo = 1p.
IS

Proposition 1.6 (Cross sections)
Every cross section of a trivial fiber bundle (B x F, B, 7, F') has the form:
c: B — E=BXxF
0 — o(0)=(0,x(0)) ,

where Kk : B — F' is a continuous map uniquely determined by o.

Proof. Every continuous map o : B — E = B x F has the form o(0) = (4(0),x(0)), 0 € B,
where ¢ : B — B and k : B — I are continuous maps uniquely determined by o. Hence, o is
a cross section of (K = B x F,B,m, F) if, and only if, m o 0 = Ip, that is, V0 € B,(ro00)(0) =
m(1(0),k(0)) = () = 0. Thus, o(0) = (6,x(0)), V0 € B.
Conversely, if kK : B — F' is a continuous map and
c: B — E=BxF
0 — o(0)=(0,k(0)) |,

then o is continuous. Furthermore, V0 € B, (moo)(0) = 7(6,k(0)) =
moo =1Ip and o is a cross section of the trivial fiber bundle (

= I1p(0). Therefore,
O

W
X
)
&
3
:lj =

REMARK 1.7

It is usual for short to denote the fiber bundle by means of the bundle space, E, when there is no
ambiguity. Then, the set of cross sections is denoted by

I(E)={o: B — E | o cross section over (E,B,p, F)} .

The latter proposition tells that when it comes to a trivial fiber bundle there is a bijection between
the set of cross sections I'(B x F) and the set of continuous functions C°(B, F).
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I.4 Vector bundles, vector bundle maps and cross sections over
vector bundles

Definition 1.8 Vector bundle
Let (E, B,p, F) be a fiber bundle. We say that it is a vector bundle if:

(i) F is a topological vector space over a field K (usually K =R or K= C);
(it) For each 6 € B, the fiber Fy = p~1(0) C E is a K—vector space isomorphic to F;

(ii1) The trivializing homeomorphisms restricted to the corresponding fibers are vector spaces iso-
morphisms, that is
(,OUGIFQ  Fy — {(9} x F

is K—linear and bijective for every fized 0 € B.
The dimension of I' is called the rank of the vector bundle.

A vector bundle may be viewed as a parameterized family of vector spaces.

REMARK 1.9

The prototypical example of vector bundle is the tangent bundle of a smooth manifold. More
precisely, if M is a smooth n—dimensional manifold, then (TM, M, 7,R™) is a vector bundle of
rank n, where m : TM — M is the canonical projection of the tangent bundle onto the manifold.
In this case, the cross sections are the vector fields over the manifold.

REMARK 1.10

A trivial fiber bundle (B x F, B, 7, F) where F is a K—wvector space is a trivial vector bundle. In
this case, all the fibers are isomorphic to F.

Furthermore, if F' is a normed space and the base B is compact, then there is an induced normed
structure over the set of cross sections of the trivial vector bundle E = B x F' by means of the

norm:
I vy : I'(E) — R -
o= (15,%) — lolrm =sup[x(0)r - (I.1)
S

Proposition 1.11 Module structure

Let (E, B,p, F') be an n—dimensional K—vector bundle. Then the set of cross sections I'(E) is a
module over the ring C°(B,K) of continuous K—wvalued functions on B.

Proof. In general, the existence of cross sections in fiber bundles can not be guaranteed. But in
the particular case of a vector bundle, there are always cross sections. Indeed, the so—called zero
section is defined as follows: Given 6 € B, the fiber Fy = p~1(6) is a K—vector space. Therefore

the map
e: B — FE
0 +— e(0)=0g

is well defined. Furthermore, (p o e)(0) = p(e(f)) = p(0r,) = 6. Thus, poe = Ip. Additionally,
the zero map is continuous as we will see later. Consequently e € I'(E) is a cross section.
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Now we define the module operations.

Notice first that for every o € I'(E) and every § € B, o(f) € Fp = p~1() which is a K—vector
space and then we can define the sum of cross sections and the product of continuous functions
times cross sections in the following natural way.

with (o +0)(0) = 0(0) +a(0), V0 € B;

with (A\o)(6) = A(0)a(0), ¥ € B.

Definition 1.12 Vector bundle map

A vector bundle map between two vector bundles (E,B,p,F) and (E',B',p', F') (over the same
field K) is a bundle map (¢, 1) with the additional requirement that, when restricted to each fiber,
¥ is K—linear, that is, for every 6 € B:

¢|Fg—>F;(0)  Fy=p ') CE — F:o(e) = ()" e0) C E

1s well defined and it is a homomorphism of K—wvector spaces.

I.5 Skew—product dynamical systems and invariant sections

Definition 1.13 Skew—product dynamical system

Let (B x F,B,m, F) be a trivial fiber bundle with E = B x F' the bundle space and let ¢ : B — B
be a homeomorphism. A skew—product dynamical system in F over ¢ is a bundle map (p,1) of
the fiber bundle (E, B, 7, F') onto itself,

E=BxF E=BxF
K ™
B B

that is, pom™ = T o 1.

REMARK 1.14

From this definition we can identify the skew—product with a discrete dynamical system given by
the map v which is of the form:

¢: E=BxF — E=BxF
@,2)  — P(0,x) = (0(0), f(0,2)) ,
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where
f: E=BxF — F

0.z)  — f(0,2) =7(¥(0,2))
is continuous' and 7 : B x F — F the natural projection onto the second component.
Indeed, w(1(6,2)) = (r 0 ¥)(0,2)) = (¢ 0 )(6,) = @(r(0,2)) = (0), ¥(8,7) € B x F.
Due to this fact, a skew—product (p,1) can be referred simply by the map ¢ which is written as
Y =@ X f, with © a homeomorphism of the base B and f: E =B X F' — F continuous.

Definition I.15 Invariant section

Let (p,) be a skew—product dynamical system over (E = B x F,B,n,F) and o € T'(E) a cross

section. We say that o is an invariant section if c o p =1 oo.
o

Proposition 1.16 Invariant sections

Let (Bx F, B, m, F) be a trivial fiber bundle with E = BxF' the bundle space, (¢, ) a skew—product,
and o € T'(E) a cross section. Then,

cop=1oo<= f(0,k(0)) =r(e)), V8 € B, (1.2)

where f: B — F and k : B — F are continuous maps such that 0 = 1p Xk and ¥ = ¢ X f.

Proof. Lets consider the following commutative diagram:

P

F=BxF F=BxF
B . B
E=BxF v E=BxF

By Proposition 1.6, every cross section o € I'(E) of a trivial fiber bundle (B x F, B,m, F') has

the form:
c: B — E=BxF

0 — o(f)=(0,r(0) |,

where k : B — F is a continuous map uniquely determined by o. Hence, for every € B we
have on one side,

(0 09)(8) =a(p(0)) = (¢(0), x(¢(0)))
and, on the other side, taking in account that (y,1) is a skew—product, that is
Yv: E=BxF — E=BXF
(0,2)  — (0,2) = (p(0), f(0,2)) |,

We will assume, from the moment being, that f is C' with respect to the second variable.
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with f: E — F continuous, we have:

(Y 00)(0) = ¢(a(8)) = (0, x(0)) = (p(0), (0, £(0)))-

It follows that:
cgop=1voc <= f(0,k(0))) = r(p(0)), V0 € B.

Corollary

Let (Bx F, B, m, F) be a trivial fiber bundle with E = BxF the bundle space, (¢, ) a skew—product,
with ¥ =@ X f, and 0 =1g xk € T'(E) a cross section. Then,
o is an invariant section under (v, 1) <= k is a fized point of the graph functional

G: C°B,F) — C%B,F)
K — G(k) =K

where

that is, G(k) = k.

Proof.
Since ¢ : B — B is a homeomorphism, for every § € B, 3! € B such that § = ¢~ 1(#). Hence,
by Proposition 1.16:

G(r)=r <= VYO€B, flp '(0),x(p1(0))) = x(0)
— VOeB, fle ' (p(0), ke (¢(0)))) = K(e(0))
s V0eB, f(6,5(0)) = r(4(0))

<= o0 =Ip xk is an invariant section over (¢,) .

I.6 Invertibility of bundle maps and skew—products

In this section, we describe the meaning of the invertibility of a bundle map and how it can
be characterized for the particular case of a skew—product. Later we will come up with the
application of these concepts to quasi—periodic skew—products and linear quasi—periodic skew—
products, in order to enable the management of notions like topological conjugacy, linear conjugacy,
and reducibility.

Definition 1.18 Invertibility of a bundle map

Let (E,B,p,F) and (E', B',p', F') be two fiber bundles, and (h, H) be a bundle map between them.

Thus, the diagram
H

E E
p '
B B’
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commutes, i.e. hop=1p' o H. o
We say that (h, H) is invertible if there exist another bundle map (h, H) from (E’, B',p', F') onto
(E,B,p, F), of the form:

E A E
P P
B’ — B

h

with h o p=po I;T, and such that
h,H)o(h,H) = (Ig,1g)

(h,H)o(h,H) = (Ip,lg)

—

or, equivalently:

hoh = Ig , HoH = Ig
hoh = IB/ y HoH IE/
Ig Ig
E a E a E E' a E a E
p P’ p P D %
B B’ _ B B B B
h\_/ h\/
s T

Proposition 1.19 Invertibility of skew—products

Let (h,H) be a skew-product® defined over the trivial fiber bundle (E = B x F,B,n,F). Assume

that
H(0,x) = (h(0),9(0,x)), Y(0,x) € E,

where h: B — B and g: E = B X F — F are continuous.
Then, (h, H) is invertible if and only if the following two conditions hold:

(1) h is invertible>.

2See Definition 1.13.

3Notice that in our definition of skew—product we have assumed that the first component map h is, in any case,
a homeomorphism, so it is always invertible and moreover, ™' is also a homeomorphism. With these assumptions,
the inverse of a skew—product remains being a skew—product.
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(i) For every 6 € B, the map

1s invertible.

Moreover, in such a case, (h, H)™' = (h™', H™1), with

H(0,2) = (h_l(é),g;,ll(e)(w), V(0,x) e E.

Proof.

(=) Suppose that (h, H) is invertible. Then, there exist a skew—product (h, H), with

H(9,z) = (h(6),3(0,2)), V(0,2) € E,

such that
hoh = Ig (1.3)
hoh = 1Ip (1.4)
HoH = I (15)
HoH = Ig (1.6)

From (L.3) and (L4) we have that h is invertible and h~! = h.

From (L.5) and (L.6) we have that H is invertible and H~' = H, namely V¥(n,y) € E, there
exist a unique (0, z) € E such that H(0,z) = (n,y).

Thus, given § € B and y € F, we take n = h(f) € B and hence Jlz € F, such that
9(0,z) = go(x) = y. Therefore, VO € B, 3z € F such that gg(x) =y and gy is invertible for
every 0 € B.

(<) Let us assume now that (i) and (iz) hold.
Define h = h~! and

H: E=BxF —s F
(0,) — H(0,7):= (h*1(9),g;31(9)(:v)) ’

ie. h(6) = h71(0) and (0, x) = g; s ) (@))-

Now we show that HoH = HoH = Ig. Hence (h, H) is invertible as we stated, and
(h, H)™' = (h, H).

Indeed,

(Ho H)(6,x) = H(H(6,x)) = H(h(6), 9(6, )

= (A (h(0)), g5 oy (9(6.2))) = (0, 95 (90(2) = (0.2), ¥(6,) € E.

In the same manner,

(H o H)(0,x) = H(H(6,x)) = H(h™ (h(0)), g, s ) ()

= (W(h=1(0)), g(h=(60). 9711 ) (@))) = (0. 90 -10) (95 (@) = (0.2), ¥(6,) € E.
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I.7 Topological conjugacy and linear conjugacy of skew—products

Definition 1.20 Topologically conjugate skew—products

Let (p,v) and (@, J) be skew—product dynamical systems over the trivial fiber bundle
(E =B x F, B, F), with

P(0,t) = (p(0),1(0,1))

(O,x) = (9(0), f(0,2))

We say that (¢,v) and (@, 1;) are topologically conjugate skew—products if there is another skew—
product (h, H), with H(0,z) = (h(6),9(0,z)), which is invertible* and such that

(&,9) = (h, H) " o (9,00) o (h, H)

REMARK 1.21

According to the definition of bundle maps and their composition®, the following diagram com-
mutes:

E v E il E
s WB ? Bﬂ h Bﬂ I
Iy WE il Eﬂ v E7r I
WB h B7r 4 B:r

and, equivalently, we have,

© htopoh

v = H'loyoH

whenever (p,1) and (@, {/;) are topologically conjugate skew—products.

Proposition 1.22 Topologically conjugate skew—products
Let (p,7) and (@, 1;) be skew—product dynamical systems over the trivial fiber bundle

4See Proposition 1.19 for the characterization of the invertibility of a skew—product.

®See Definition I1.4.
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(E = B x F,B,n, F), with
v(0,2) = (p(0), f(0,z))

v(ox) = (3(0), [(6,2))
Then, (p,9) and (@, {ﬁv) are topologically conjugate if and only if the following two conditions hold:
(i) There exist a homeomorphism h : B — B such that § = h™' o poh, i.e. ¢ and & are
topologically conjugate in B.
(it) There exist a map, g: E = B x F — F, such that VY0 € B, the map

g: F — F
r — go(z) =g(0,2)

)

is a homeomorphism and

9((h(0)), [(0,2)) = f(n(0),9(0,2)), V(0,z) € E.
In such a case, if we call H(0,x) = (h(0),9(0,x)), (8,x) € E, then:
(&,9) = (b, H) " o (p,90) 0 (h, H)

Proof. O

Definition 1.23 Linear skew—products

Let (E =B x F,B,m, F) be a trivial vector bundle® and let (p,1)) be a skew-product where
Y0, 2) = (p(0), f(0,2)), (0,z) € E.

We say that (p, 1)) is a linear skew—product if f is linear w.r.t. the second component, that is, for

every 0 € B, the map,
fo: F — F

o folx) = f(0,z)

is a homomorphism (of the K—wvector space F' onto itself).

REMARK I.24
Whenever F' is finite dimensional, with n = dimg (F), and f is linear w.r.t the second component,
it can be expressed as f(0,x) =m(0)x, ¥Y(0,z) € E, where

m: B — M, (K)

is continuous, i.e. m(0) is an n—dimensional square matriz, which is called transfer matrix, of
continuous functions. Thus, a linear skew—product may be identified with a map of the form:

¢: E=BxF — E=BxF
,2) > P, x) = (p(0), m(0)x)

where ¢ is a homeomorphism over the base B and m : B — M,,(K) is continuous.

SRecall that in this case, by Definition 1.8, we assume that F' is a K—vector space, where usually K = R or
K=_C.
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Definition I.25 Linearly conjugate skew—products

Let (p,v) and (@, 1’/;) be linear skew—products over the vector bundle (F = B x F,B,w, F), with

1{(9,.%) = (gp(@),m
Y(0,x) = (@(0),m(0)x)

We say that (,v) and (@, {/;) are linear conjugate skew—products if there is another linear skew-
product (h, H), with H(0,z) = (h(0),c(0)x), which is invertible and such that

(&71;) = (h7 H)il o (9077/}) o (th)

REMARK 1.26

Observe that, according to Proposition 1.19, a linear skew-product H(0,x) = (h(0),c(0)x) is
invertible if and only if det(c(6)) # 0, V0 € B.

Proposition 1.27 Linearly conjugate skew—products

Let (p,v) and (@, 1;) be linear skew-products over the vector bundle (E = B x F,B,w, F), with

v0.2) = (p(0)m(O))
v(,x) = (9(0),m(0)z) .
Then, (¢, %) and (@, 1;) are linearly conjugate if and only if there exist another linear skew—product,

(h, H), with
H(0,x) = (h(0),c(0)x)V(0,z) € E

such that the following properties hold:

(i) det(c(f)) #0, V0 € B;

(it) p=h"topoh, ie ¢ and @ are topologically conjugate in B;
(#ii) m(h(0))c(0) = c(p(8))m(0), V0 € B.

Proof.

(=) Let (h,H), with H(0,z) = (h(0),c(0)z), (0,z) € E, be an invertible linear skew—product
such that B
(8:0) = (h, H)" o (p,9) o (h, H)

Since (h, H) is invertible then, by Proposition 1.19, & is invertible and for every 6 € B the
map
g: F — F
z — go(x):=c(l)z ’

is invertible. Since gy is a homomorphlsm then ¢(d) € M, (K) is invertible and hence
det(c(0)) # 0. Furthermore, H (0, z) = (h=*(0),c(h=1(0))"'x), V(0,2) € E. Moreover,
V(0,2) = (H oo H)O,2),Y(0,z) € E. Therefore,

)
(@(0),m(0)x) = H'(Y(H(0,x)) = H (p(h(0), c(0)x))
“He(h(0)), m(h(9))c()z)
(

H (6));
= (h7H(@(h(0))), c(h™ (o (h(6)))) "' m(h(0))c(0)z), ¥(0,2) € E
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Identifying components, we have, on one side,

2(0) = h=Y(p(h(0))) = (L owoh)(H), VO € B, that is, p=h Lo poh.

On the other side,

(0)a = c(h=(p(h(0))) " m(h(0))c(O)x = c(@(6)) m(h(6))c(6), ¥(0,) € E.
Consequently:

m(0) = c(@(0)) " 'm(h(0))c(0), Y0 € B, which is equivalent to:

m(h(0))c(8) = c(p(8))m(0), V0 € B.

Thus, (7), (ii), and (7i) are satisfied.

(<) Assume that there exists a skew—product (h, H), with
H(0,z) = (h(8),c(0)), (0,2) € E

holding (), (4), and ().

Notice that h is invertible, since it is a homeomorphism. On the other hand, H is invertible
since det(c(0)) # 0. Moreover, H=1(6,z) = (h=1(0),c(h=1(0))) ¢, V(0,z) € E.

Then, (h, H)™ ' o (p,) o (h,H) = (h"*opoh,H topo H) = (p,H L orpoH).
It only remains to show that H L oo H = 1.

Indeed, by means of (i), and (ii7) we have:

(H_loon)(e,x) =

Thus, H ' oo H = {/;, as we wanted to prove.

O

I.8 The framework under study: quasi—periodic skew—products.

Let (E = B x F, B, F) be a trivial fiber bundle. Let (¢, 1) be a skew—product in F' with
f:E=DBxF — F continuous, and 0 = Ip xx € I'(F) a cross section where k : B — F'is
assumed to be continuous.
Henceforth, we shall mainly deal with a particular case. From now on we will consider under study
only the frame in which the base space is the torus, B = T, the fiber is the real line, F' = R, i.e.
E=T¢xR, f:T¢xR — R, and the homeomorphism ¢ is an ergodic rigid rotation , ¢ = R,
that is:

Ry: T4 — T¢

0 s Ru(0)=0+w (L.7)

where the frequency w € T is rationally independent, namely a - w ¢ Z, Ya € Z\ {0}. In such a
case we say that the frequency w is ergodic or non—resonant.

In this setting, the system is being undergone to an external quasi—periodic force and we will refer
to it as a quasi—periodic skew—product.

Thus ¢ = R, x f is of the form:



228 Appendix I. Fiber bundles, bundle maps and invariant curves in skew—products

p: T¢xR — T¢xR
0,2) r— P(0,z)=(0+w,[f(0,z))
More particularly, we will concentrate our efforts on the case d = 1, and postpone the study of
higher dimensions for later works. Furthermore, from now on we assume that the frequency w is
Diophantine (see Definition 1.15).
Summarizing, henceforth our target is the study of one-dimensional quasi—periodic skew—products

of the form:
Pp: TxR — TxR

(9,$) — ¢(97$) - (9 +w7f(97x)) )

where w € T is a fixed Diophantine frequency and f € C"(T x R), with r > 1.
Our next goal is to analyze the existence of invariant curves for the skew—product (I.8), that is,
according to Proposition 1.16, continuous maps « : T — R such that:

(1.8)

f(0,k(0) = k(0 +w), VO T. (1.9)
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Appendix II. Matlab® programming

of numerical procedures

II.1  Orbits and the error function

Facultat de Matematiques i Informatica
'Degenerate invariant tori in KAM theory'

PhD Thesis

Universitat de Barcelona
52485

m
=]
=

o0 o° o° of

Degree

(Sl ToRNe)

(mod 1)

theta (n) +tomega
vector with the values of the skew

point of the orbit

Number of iterates

by the given skew product f (theta,x)
=0;

product at the points of the partition

x (n+l1)=f (theta(n),x(n))
Computation of the forward orbit for the point

Partition of the torus with N-NO
(theta_0,x_0)

terminal points with

Parameters of the skew product
theta(n+1)

Diophantine frequency
Number of discarded iterations

25 &

x_0
Orbit (a,b, omega, theta_0,x_0,N,NO0);

Orbit (a,b, omega, theta_0,x_0,N,NO0)

1623

x_0 Initial

0;

NO

’

(1+sgrt(5) ) /2;

theta_0

b

;

Orbit.m
omega
theta_0
theta
[theta, x]
=6.8;
omega
=10"7
[theta, x]

December 2022
N=

NO

i

)i

i

Orbit (a, b, omega, theta_0,x_0,N,NO)

ga*linspace (0,N-1,N);

end)

.','"MarkerSize',1, 'Color', [0.48 0.06 0.89])

1,8);

f (theta(n),x(n),a,b);
f (theta,z,a,b)

theta-floor (theta)

sort (theta (1,

theta (

x(:,8);

end) ;

i
N-1

theta (NO+1

theta_0O+ome

x_0
=1
il

s]
43 theta

44 x

atani(a*z)+tb*sin(2*pi*t)

theta-floor (theta)

Date

File

Input
Output
Synopsis
Syntax
zeros (1,N);
x (NO+1

9
5d: €
52 F

10
30 function [theta,x]

23

32 theta

33 theta

34 x

35 x(1)

36 for n

37

38 end

39 theta

40 x

42 [~,

45 length(theta)
46 length (x)

47 plot (theta,x,'
49 function F
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5555555555555 %%%%0050555555555%5%5%5%%%%%%%%%%0055555%5%5%5%5%5%5%%%5%%%%%%%%%%
Juan Pello Garcia
Degree § Universitat de Barcelona

Facultat de Matematiques i Informatica

PhD Thesis 'Degenerate invariant tori in KAM theory'

~
B
g
=8
=
o
R

W J o s W
o° o° o o° of

NUB s 52485
Date 8 December 2022
B R R R E R R R R R R R R A R R R R R LR R R R R e R R R R R e R R R R R R R R R e R Rt e R R e R L]
9 % File 2 BackwardOrbit.m

10 % Input g a,b Parameters of the skew product
11 & omega Diophantine frequency
12 % theta_0,x_0 Initial point of the orbit
13 % N Number of iterates
14 % 2 NO Number of discarded iterations
15 % Output H theta Partition of the torus with N-NO
16 % terminal points with
17 % theta (n+l)=theta(n)-omega (mod 1)
18 % X vector with the values of the inverse skew
19 % product at the points of the partition
20 % x (n+1)=£"(-1) (theta(n),x(n))
21 % Synopsis 8 Computation of the backward orbit for the point
22 % (theta_0,x_0) by the given skew product f (theta,x)
23 % Syntax ] [theta, x]=BackwardOrbit (a,b, omega, theta_0,x_0,N,NO)
24 % Example ] [1] a=6.8; b=1.62;
25 % omega= (1+sqrt (5))/2;
26 % theta_0=0; x_0=0;
27 % N=10"7;N0=2"7;
28 % [theta, x]=BackwardOrbit (a,b, omega, theta_0,x_0,N,NO) ;
PR R R R e e e R Lt e
30 function [theta,x]=BackwardOrbit (a,b,omega,theta_0,x_0,N,N0)
3l TN TN IITII N TTINTTT NI IIILIIITISLLNSS
32 theta=theta_0O-omega*linspace(0,N-1,N);
33 theta=theta-floor (theta);
34 x=zeros(1,N);
35 x(1)=x_0;
36 for n=1:N-1
3% x(n+l)=h(theta(n),x(n),a,b);
38 end
39 theta=theta(NO:end);
40 x=x(NO:end);
4]l ST TN T NI NN IIINLLTIIILLLLILLLLSY%S
42 [~, s] = sort(theta(l,:));
43 theta=theta(:,s);
44 x=x(:,8);
45 BT T TN TN TN T TN T TN TIILLILIININNNY
46 function H=h(theta,z,a,b)
YA R R R R R e R R R e R R R R R R e R R R R R e R L L
48 omega=(l+sqrt (5))/2;
49 t=theta-floor (theta);
50 % F=atan(a*z)+b*sin(2*pi*t);
51 H=1/a*tan(z-b*sin (2*pi* (t-omega)));

w
N

AR R AR A R R A A A R A R A R A A R A R A R A R R R A A R AR R A R A AR AR A R A R R A A R Ak k]
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Orbits @ = k(0)
a=68 b=162 0=0 wo=—1 N =10000000 N,=128

-3 L L ! L L L L L L )
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

FiGURE 11.1: Orbits of the skew—product with a = 6.8, b = 1.62,
N =107, Ny =27
Forward orbit of the point 8y =0, xg = 1(top);
Backward orbit of the point 8y = 0, xo = 0(middle);
Forward orbit of the point 6y =0, xo = —1(bottom).

Orbits = = r(6)
L a=08 b=182 f=0 m=-1 N=10000000 No=1024

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

F1GURE 11.2: Orbits of the skew—product with a = 6.8, b = 1.82,
N =107, No=2%0
Forward orbit of the point 8y =0, xg = 1(top);
Backward orbit of the point 6y = 0, xy = 0(middle);
Forward orbit of the point §y =0, xop = —1(bottom).
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Orbits @ = k(0)
a=68 b=18204 6=0 z9=—1 N =10000000 N = 1024

L L L L L L L L L )
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

FiGURE 11.3: Orbits of the skew—product with a = 6.8, b = 1.8204,
N =107, No=2%0
Forward orbit of the point 8y =0, xg = 1(top);
Backward orbit of the point 8y = 0, xo = 0(middle);
Forward orbit of the point 6y =0, xo = —1(bottom).

Forward orbit z = x(0)
4 0= 0:348847 b=190599 6, =0 @ =0 N =10000000 No= 8192

"o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

F1GURE 11.4: Forward orbit of the skew—product with
a = 5.348847, b =1.905990, N = 107, Ny = 213,
90 =0 , Lo = 0.
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1 function [Error,NormError]=ErrorFunction(theta,kappa,omegaa,b)

2 96969 %6% 96%.% 96% 969696 9% 969696 9696 %% 96969 %696 969696 96% 969696 %96 969696 9696 969696 9696 969696 %696 969696 9696 969696 9696 969696 %696 969696 9696 9696969
3 % clear;a=6.8; b=1.62; omega=(1+sqrt{5))/2

4 % theta 0=0; x_0=0;

5 % N=1e07;

6 % [theta kappa] =Ordered_Curve(theta 0,x_0,omega,a,bN);

7 % [Error,NormError}=ErrorFunction(theta kappa,omega,a b);

8 969696 96% 969696966 96969 9696 969696 96 % 9696 969696 9696 969696 9696 96969 9696 969696 9696 969696 9696 96 9696 9696 969696 %696 9696 % 9696 969696 9696 969696 96969696969
9 [t,T_kappa]=Translation_omegaltheta kappa omega);

10 y=fit.kappaa,b);

11 Error=y-T_kappa;

12 NormError=max(abs(Error));

13 969699696 9%6.%6% %696 969696 9696 969696 9696 %696 969696 9696 969696 9696 969696 966 96969 9696 969696 969 969696 9696 969696 9696 969696 %696 9696.%6 9696 969696 969 969696
14 % PLOTS

15 9696969696 9699 9696 969696 969 9696 % 9696 9696 969696 9696 969696 9696 969696 9696 96969 9696 969696 96.% 969696 9696 969696 9696 969696 9696 969696 9696 969696 96 % 969696
16 figure

17 set{gca,'FontSize' 8);

18 set{gcf, Color',[1,1,1]);

19 axis square

20 hold on

21 96969969 969696 %% 96969 9696 969696 9696 9696 969696 9696 969696 9696 96969 9696 969696 96.% 969696 9696 969696 9696 969696 96% 969696 9696 969696 9696 969696 9696 9696%
22 plot(t, T_kappa'--','MarkerSize',1,'Color},[0.7 0.7 0.7])

23 hold on

24 96%% 9696969696 %% 969696 9696 969696 9696 9696 969696 %6 %6 969696 9696 969696 9696 969696 9696 969696 9696 969696 9696 969696 9696 969696 9696 969696 %696 969696 9696 96969
25 plot(t,T_kappa,.', MarkerSize'.2,'Color'[0.7 0.7 0.7])

26 %6969 9696 96969 %% 96969 9696 96969 9696 9696 969696 %6 %6 969696 9696 96969 9696 969696 9696 969696 9696 969696 9696 969696 9696 96%6.% 9696 969696 %696 969696 9696 9696.%
27 plot(t,Error,"', MarkerSize',1,'Color',[0 0 O]

28 9699 9696 969696 96% 969696 9696 %6966 9696 9696 969696 9696 969696 9696 96969 9696 969696 96 % 969696 9696 969696 9696 969696 9696 96969 9696 969696 969 969696 9696 9696%
29 plot(t,y,"', MarkerSize', 1,'Color',[1 0 0))

30 96969 969 969696 96% 969696 9696 969696 96% 9696 969696 9696 969696 9696 969696 9696 969696 9696 969696 9696 969696 9696 969696 9696 9696% 9696 969696 9696 969696 9696 96969
31 % TITLE SUBTITLE AND LABELS

32 96%%6.9%6% %9696 969 96969 %696 969696 9696 969 969696 %696 96996 9696 969696 9696 96969 9696 969696 9696 969696 96% 969696 9696 969696 9696 969696 9696 969696 9696 96965
33 TITLE = '$E(\theta)=Ff(\theta\kappa(\theta))-\kappa(\theta+\omega)$';

34 formatSpec = '%.8g’

35 SUBTITLE=['$\|E\|= \max(|E(\theta)|)=",num2str(NormError,formatSpec),'$'L

36 [TITLE,SUBTITLE)=title(TITLE SUBTITLE, interpreter’, |atex’, FontSize!, 18);

37 TITLE.Color = [0 0 0);

38 SUBTITLE.Color = '[000]';

39 96969 969 969696 9% 96969 9696 969696 9696 9696 %6966 9% 969696 9696 96969 9696 969696 9696 969696 9696 969696 969 969696 9696 969696 9696 969696 9696 969696 9696 96%6.%
40 xlabel('$\theta$', interpreter’, latex', FontSize',18);

41 ylabel('$x$', interpreter’,'latex!, FontSize',18);

42 969696969 %9696 9696 969696 %696 9696.% 9696 9696 96969 9696 969696 6% 969696 9696 96969 9696 969696 %696 969696 9696 969696 969 969696 %696 96969 9696 969696 9696 96969

E(0) = f(0, 5(8)) — (0 +w)
||E|| = max(|E(9)]) = 0.21407715

3 T S, P —
0 010203 04 0506 07 08 09 1
0

F1GURE I1.5: Error of the orbit with 6y =0, 29 = 0 with N = 107.



234 Appendix II. Matlab® programming of numerical procedures

v = K(0) &= Tor(0) = n(0 +w E(0) = £(6,5(6)) — 5(0+ )

4=08 b=162 w= 1/5 & 1618033980 5 x = (0) 5 Bl =max(|E®)]) = 9.1640763¢ - 07
2.5 2.5 2.5
2 2
1.5 1.5
8 L] 8
1 1
0.5 0.5
0 0
0.5 -0.5 0.5
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
0 0 0

FIGURE 11.6: Forward orbit of the point 6y = 0,29 = 1
x = k(0)(magenta) (left);
Translated curve z = k(0 + w) (light green) (center);
x = f(0,k(0)) (dark green) and the error function E(f) (right).

v = r(6) v = T,n(0) = (0 +w B(0) = £(0,5(8)) — r(0 +w)
=68 b=162 w= 105~ 1.618033989 05 = r(6) o5 Bl =max(B@)]) = 1.5197522¢ — 06
.5 5 .5
0 0
-0.5 -0.5 -0.5
1 - 1
B 8 8
-1.5 -1.5 -1.5
-2 - -2
-2.5 -2.5 -2.5
-3 -2 -3
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

FiGuURrE 11.7: Forward orbit of the point 6§y = 0,29 = —1
x = k(0)(magenta) (left);
Translated curve x = k(0 + w) (light green) (center);
x = f(0,k(0)) (dark green) and the error function F(6) (right).

v =n(0) v = T,h(0) = k(0 +w E(0) = £(0,5(0)) — £(0 + w)
0=68 b=162 w= 155~ 1618033989 z = K(0) | E|| = max(|E(0)[) = 2.0487533¢ — 07
3 2 0.8 - - 0.8
0.6 [\ 0.6
2 |
0.4 0.4
1
0.2 02
s 0 \V—A 5 0 5 0
0.2 0.2
-1
0.4 0.4
2
0.6 0.6
3 0.8 0.8
0 02 04 06 08 1 0 02 04 06 08 1
0 6 0

FIGURE II.8: Forward orbits (purple) and backward orbit
x = k(f)(magenta) (left);
Translated curve z = k(0 4+ w) (light green) (center);
x = f(0,k(0)) (dark green) and the error function E(6) (right).
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II.2 Complex Four

discrete Fourier transform (DFT)
The performance of the following algorithm is based on the properties of the DFT developed in

Section 5.5 and the computational error produced attends to Corollary 5.11.

.,upr), the output is a vec-

ug, U, . -

~

Given W containing the Fourier coefficients of a function (

ﬁke%kel), evaluated in an

M
k=1

+2Re(

tor w containing the values of the function u(0)

equidistributed partition of the torus of length N = 2M.
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5 M=length (W)-1;
6 N=2*M
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exp (-2*pi*1i/M);
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[X,zeros (1,M)];

13 XN
14 ZN
15 zN:
16 zN
17 YN
18 YN

19 »

circshift (XN,1);
ifft (zZN)

i

cireshift (ZNH=1) §
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ifft (circshift (X,1));
1 fft (eireshift (¥; 1) ).
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IDFT(DFT(u))

lu = w]| = max(ju(9) — w(6)

IDFT(DFT(u))
||lu — wl|| = max(|u(f) — w(8)|) = 1.047773¢ — 15

IDFT(DFT(u))

lw = w|| = max(ju(8) —w(6)])

1.2212453e — 15
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IDFT(DFT(u))

8.8817842¢ — 16 [lu — w| = max(|u(f) — w(6)|)

= IDFT(DFT(u))

u(0) ~ w(0)
lu = w] = max(|u(9) — w(0)])

6.6613381e — 16

[lu — wl| = max(|u(d) — w(6)])

1.110223e — 15

0

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

0.8

0.4

0.2

FIGURE 11.9: Bump functions
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u(0) ~ w(8) = IDFT(DFT(u)) u(0) ~ w(h) = IDFT(DFT(u)) u(0) ~ w(8) = IDFT(DFT(u))
H%; w| = max(|u(f) —w(0)]) = 1.5942803e — 13 ||u B w| = max(ju(f) — w(f)|) = 5.2415405e — 11 [ju 3 w| = max(|u(f) — w(0)]) = 7.7034112¢ — 10
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Appendix II. Matlab® programming of numerical procedures

I1.3 Cohomological operator and the Floquet transformation

0 J o0 b W N

e e e e el
0 J oUW R O W

function [Rv,W]=R(lambda, omega,t,v)
900000000000 000000000000000000000000000000000000000000000000000000000000000000000
R R R R R R R b E R R R iR bR bR R R R R R bR R R bR b b R R R R b b b R b E Rt b bk

This function computes the solution u to the cohomological equation

u(thetatomega)-lambda u(theta)= v~ (theta), thetal\in T=R/Z,

by approximation of its Fourier series, where v=v”"_0+v~, i.e. v~ is the

(zero—average) oscillatory part of the given function v.
cooo coo o

Leoe0000000000000008000000000000000080000000000000000800000
S 6666606066606 066066066066G606066066060606%6

o o9 o° o°

N=length(t); % N must be even

M=N/2;

V=£ft (v);

W=V (1:M+1)/N; % W=[v*_0,v*_1,...,v"_M] are fue Fourier coefficients of v
% Average_v=mean (v)

W(l)=0; % w=[0,v"_1,...,v"_M] Fourier coefficients of v~

s

for k=1:M
W (k+1)=W(k+1)/ (exp (2*pi*k*omega*1i)-lambda) ;
end $ W=[0,u”_1,...,u”_M] Fourier coefficients of the solution u=R_lambda v
Rv=IDFT_APPROX (W) ;
2990000000000 0000000000000000000000000000000000090000000000000000000000000000000000
5555555555555 5555555555555 5555555555555 %55555555%5555%5%%%%%
z=5(8) = v(8) — u(8) = Ryo(8) Ly(RA5(6)) = Ry3(6 + w) — AR\#(0)
1 a=68 b=162 1 A = 0.2414777970140124 1 ||LA(RyD) — T = 2.762234885267389%¢ — 13
5 5
A //
1 05 // / 1
= f .
0.5 [/ 0.5
\
ot | \/
| \
| \
0 3 \ 0
5051 \ s
0.5 | \ 0.5
| \
1l \
1 Lo \777 1
/
15 Lo \/ 15
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Ficure 11.14: Cohomological operator

v(0) = v(0) — vy where v(#) is the orbit for a = 6.8
and b = 1.62 with N = 107 + 1, Ny = 2% (left) ;

M \v(f) in red and R)\v(0 + w) in gray (center);
LA\R)\U ~ v (right).
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m=df (kappa, a) ;
v=1log (m) ;
Lambda=mean (v) ;
v_TILDE=v-Lambda;

W oUW N

(0) = v(6) — A
a=68 b=162 A= —1420977747946227

Tu(6) — u(6) ~ 7(6)
max | T.u(f) —u(8) — 7(6)| = 2.873543845716308¢ — 11

Fiqure 11.15: Floquet transformation

o 4 M w s e o N ® ©

c(6) = e"®
cp = 1.722504810202886

v(0) =v(0) — A where v(f) = log(%(ﬁ,m(ﬁ))) (top left);
M10(0) in magenta and R;v(0 + w) in gray (top right);
R10(0 +w) — R1v(0) = v() in blue (bottom left);

¢(#) = ™7 in red (bottom right).
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II.4 KAM step

(theta, kappa, tau,a,b, omega, p)

KAM_STEP

[Kappa, Tau,DET]

2 function

7

=df (kappa, a)
log (m);

6 m

7 v

double (v) ;

8 v=

©

Q

M M T 0 O~ ©

de oo o° de d° o oe

9 Lambda=mean (V) ;

10 lambda
11 v_TILDE

exp (Lambda) ;

v—-Lambda;
R(1,omega,theta, v_TILDE);

[u,~]=

12

=exp (u) ;

13 ¢

Translation (c, omega) ;

14 Tc=
15 eta

16

1./Tc;

[E,~]

(theta, kappa, omega, a, b, tau) ;

=ERROR_FUNCTION

o

o

=E.*eta;

17 xi

©
o
—

a°

_O=mean (eta) ;
mean (xi)
mean (c) ;

18 eta_0
19 x1_0

.b

10
11
11
12

o

7

20 c_0

o

21 c_TILDE

o

7

=c-c_0
eta-eta_0

22 eta_TILDE

a°

;

R (lambda, omega, theta, eta

xi-xi_0;

[Rega,~]

Q
~
e

o

TILDE);

23

o
(a0}
—

o

24 xi_TILDE

7

R (lambda, omega, theta,xi_ TILDE);

[Rxi, ~]

13
14
14
15
15

o

25

o

c_TILDE

26 ETA

. *Reta;
mean (ETA) ;

c_TILDE

o

27 ETA_O=

o

28 XI

L*Rx1;

o

7

30 e=mean (kappa) -p;

31 A

mean (XI)

29 XI_0

o
~ oo o - N

—

—

—

o~

~

~

de oo o oo de or

,ETA_O 1;

; c_0

0

e-XI_0];

[1-1lambda, —eta,

_0;
det (A);

32 B=[xi
33 DET

=B'/A';
35 sigma_0

34 s

=5(1);

22

R (lambda, omega, theta, xi_TILDE+eta_TILDE*Delta_tau);

sigma_TILDE+sigma_0;

o

=S(2);

36 Delta_tau
37 sigma_TILDE

o° do o° oe

38 sigma
39 Kappa
40 Tau

7

kappa+c.*sigma

7

taut+Delta_tau;

R (lambda, omega, t, v)

[Rv, W]

44 function

This function computes the solution u to the cohomological equation

46 %
47
48

=R/Z,

thetal\in T

u(thetatomega)-lambda u(theta)= v~ (theta),

o
s

.e. v~ is the

i

0+v~,

oscillatory part of the given function v.

=y

where v

by approximation of its Fourier series,

o
s

(zero-average)

o
s

49

N must be even

o
s

;

=length(t)
N/2

51 N

i

52 M

fft(v);
V(1:M+1) /N

55 W(1)

53 V:

are fue Fourier coefficients of v

., vA_M]
Fourier coefficients of v~

W=[v"~_0,v~_1,..

o
s

7

54 W

., VA_M]

:O;

56 for k=1:M
wW(k+1)

57

W(k+1)/ (exp (2*pi*k*omega*1i)-lambda) ;

R_lambda v

Fourier coefficients of the solution u

., u”_M]

% W=[0,u”
IDFT_APPROX

58 end
59 Rv

(W) ;



KAM step

241

Unstable invariant curve

n < Kp >

An

)\n

| Enll = supger | En(9)|

len(®)| = | < fin > —pl

0 | 4.76471550321e — 10
1 | 4.76471591067e — 10

1.7811320816
1.78113208167

5.93657330125
5.93657330164

2.31443690966e — 08
6.44256392132e — 15

0
4.07464057767e — 17
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I1.5 Bifurcations

m(6; a,b) = log(5 (6, x(6; a,b)))
A(a,b) :/m(o;a, b)do A(a,b) = eV
T

4.5

3.5

FiGure 11.16: Lyapunov exponents on the parameter space, based on the back-
ward orbits of the origin.
In red those points with zero Lyapunov exponent.
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m(6;a,b) = log(%(& k(0 a,b)))
A(a,b) = / m(0;a,b)dd A(a,b) = @V
T

FIGURE 11.17: Lyapunov exponents on the parameter space, based on the forward
orbits of the origin.
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m(6;a,b) = log(%(& k(0 a,b)))
A(a,b) = / m(0;a,b)dd A(a,b) = @V
T

FiGUuRE 11.18: Lyapunov exponents on the parameter space, based on the forward
orbits of the point (0, 1).
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m(6;a,b) = log(%(& k(0 a,b)))
A(a,b) = / m(0;a,b)dd A(a,b) = @V
T

5

FiGURE 11.19: Lyapunov exponents on the parameter space, based on the forward
orbits of the point (0, —1).
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m(0;a,b) = log(3 (0, k(6; a,b)))

A(a,b) = / m(0;a,b)dd A(a,b) = eV
T

-2.5

-3
-3.5

Ficure 11.20: Lyapunov exponents on the parameter space, based on the back-
ward orbits of the origin.
In red those points with zero Lyapunov exponent.

m(0; a,b) = log(5L (6, 5(0; a,0)))
A(a,b) = / m(0;a,b)d0 A(a,b) = @V
T

Ficure I1.21: Lyapunov exponents on the parameter space, based on the back-
ward orbits of the origin.
In red those points with zero Lyapunov exponent.



Appendix III. Matrix condition
numbers and estimates

I11.1 Matrix condition numbers and estimates

The following lemma is often used to obtain several estimates needed in the KAM procedure.

Lemma III.1 Matrix condition numbers and estimates

Let M € GL,, i.e. a square invertible matriz (det(M) # 0).
Assume that |M|| < o, |M 7Y < op-1 and let My = M + AM, with AM € M,,.

If
2 AM
oyl I <1

7 (H)
OM—1—|| M1
then the following properties hold:
(a’) My € GLy;
(0) 1M < o1
(o) 1M = M7Y| < oy [lAM].
Proof.
First, observe that the approximating matrix can be written as
My =M +AM =M +M 'AM) = M(I — A), where A= —M'AM ,
oo
and consider the so—called Neumann series S = ZAI“ .
k=0
If ||A]| < 1, then S is normally convergent
k
Denoting Sy = Z Al the sequence of partial sums of S, then Sp(I—A)=1— A kEecN.
1=0
Taking limits as k — oo, we get S(I — A) = 1.
In such a case, S € GL,,, I — A € GL,, and M; = M(I — A) € GL,,.
Furthermore, (I — A)™' = S and M;' = (I - A)~"'M~' = SM~,
(a) It is enough to see that || Al < 1.
From the hypothesis (H) we obtain
2 -1 ~1 M7
o1 [AM|| < op-1 = [[M77| = o1 [[AM]] < (op—1 = |M77 ) =1—-—— <1,

Opr—1 Opnr—1

since |M~1|| < ops-1. Therefore, |A|| = |[M~TAM]| < ||[M~Y] |AM| < oy | AM]| < 1.
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1||AM
Ly AM]
IM—1—|| M|
From this, we obtain, ||[M Y| < op-1(1 — |M 7| |AM]|) and finally

_ _ _ _ M
I = ISMY < ISIHIM Y < g 1M < =il < oara

(b) Again, from the hypothesis (H), we also have ||M

(¢) The difference of the inverses can be expressed as

MY -MTY = (I-MTPMy)MT = (MM - M M) MY
MYM — MM = —M P AMM

Then, |[M; " — M7Y| < [M7H|AMIMT < of 1 |AM]) .

REMARK I11.2

In fact,
a2 _|AM 1
el TS
TM— M 4
and consequently,
[AM] _ 1
< —.
M|~ 4

Proof.

o2 L |AM 1 M1
O-M_17||M_1|| Opr—1 Opr—1

On the one hand,
|AM|| _ [|[MM TAM|

= < [|M~TAM| = || A].
1] M

On the other hand,

[Pl [
1Al < 1M AM]) < 2 ~ o ) Tt —ta).

where t); = ”M H € (0,1).

Calling h(t) = t(l —t) with ¢ € (0,1), we can see that h has an absolute maximum value at t = %
Therefore, [|A| < h(tar) < h(1/2) =1/4. O
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bifurcation
pitchfork, 141, 151
saddle-node, 137, 138
transcritical, 141, 149
bifurcation diagram, 128
bifurcation equation, 128
bundle map, 216
bundle projection, 215
bundle space, 215

cohomological equation, 31
cohomological operator, 37
composition of bundle maps, 216
conjugation operator, 161
convolution, 173

periodic discrete, 166
cross section, 217

DFT, 160

Diophantine condition, 23
Dirichlet Kernel, 172

Discrete Fourier Transform, 160

ergodic rigid rotation, 227
error function, 57

family of invariant translated curves, 58, 127
fiber, 215

fiber bundle, 215

fiber over a point, 215

Floquet transformation, 55

fold bifurcation, 137, 138

frequency rationally independent, 227

IDFT, 160

invariance error, 81

invariance errors, 81

invariant section, 220

Inverse Discrete Fourier Transform, 160
isomorphism of fiber bundles, 217

linear conjugacy of skew—products, 226
linear skew—product, 225

linearization of a skew—product, 51
Liouville number, 20

local triviality condition, 215
Lyapunov exponent, 53

Lyapunov multiplier, 55

operator
conjugation, 161
reversal, 161
rotation, 162
shift, 161

periodic discrete convolution, 166
pitchfork bifurcation, 141, 151

quasi—periodic skew—product, 227

rank, 218

rationally independent, 227

reducibility constant, 55

reducibility for linear skew—products, 52
reversal operator, 161

rotation operator, 162

saddle—node bifurcation, 137, 138
Schwarzian derivative, 157
Schwarzian derivative, 157

shift operator, 161
skew—product, 219

topological conjugacy of skew—products, 224
transcritical bifurcation, 141, 149

transfer matrix, 225

translated curve, 57

translated graph method, 58

translation number, 57

trivializing neighborhood, 215

vector bundle, 218
rank of a , 218
vector bundle map, 219

zero section, 218
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