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June 2023



II



This project has been supported and founded by a fellowship BES-2017-081246
Agencia Estatal de Investigación. Ministerio de Economı́a, Industria y Competitividad.





Contents

Cover page I

Contents VI

Acknowledgments VII

Abstract IX

Introduction 1

1 Cohomological equation and Rüßmann estimates 9
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value of friendship and without his unconditional support I would not have been able to get here.
I dedicate this work to the memory of my father, José Jesús Pello Muñ́ız, professor of Geology at
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Abstract

The project consists in studying bifurcations of invariant tori for one-dimensional dynamical sys-
tems under external quasi–periodic forcing. The (extended) phase space is a bundle whose base is
a torus of dimension d, and the real-line is the fiber. The systems themselves are bundle maps
over translations on the torus with d frequencies.
The methodology involves KAM theory, bifurcation theory, modifying term techniques and trans-
lated curve theorems (in the spirit of Moser, Rüßmann, Herman, Delshams and Ortega).
The goal of the project is to obtain rigorous results in an a posteriori format for the existence of
families of translated tori, and establishing a methodology for studying the bifurcations of invariant
tori. The a posteriori format is suitable for numerical and rigorous computations.
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Introduction

The aim of this work is to understand the general dynamics of quasi–periodic forced skew–products
in which the phase space is a bundle whose base is the torus T = R/Z and the real line is the
fiber:

Ψ : T× R −→ T× R
(θ, x) �−→ Ψ(θ, x) = (θ + ω, f(θ, x))

,

where Rω(θ) = θ + ω is an ergodic rigid rotation with a Diophantine frequency ω ∈ DC(γ, ν) and
f is analytic.

Due to the irrationality of the frequency ω there are no fixed points nor periodic orbits. Thus, the
first part of the work is devoted to obtain sufficient conditions to find invariant tori, proving the
existence and the analyticity of these invariant curves1 by means of an iterative procedure whose
methodology involves KAM theory2. In addition to the aforementioned non-resonance condition,
certain non-degeneracy conditions are necessary to guarantee the constructability of the proce-
dure and their convergence. In the context of analytic functions, formal solutions to the invariance
equation, expressed by means of their Fourier series expansions, can be find. The convergence of
these Fourier series leads to the problem of small divisors and cohomological equations. The con-
structability of the formal Fourier series satisfying the cohomological equation is feasible whenever
the frequency is an irrational number. In spite os this fact, there is a set of Fourier coefficients
with small denominators whose effect can lead to the non-convergence of the series or, in the case
of being convergent, its regularity may not be guaranteed. These problem was resolved by the
founders of KAM theory. There are different ways to prove the existence of invariant curves in
these kind of skew–products (Hermann, De la Llave, Haro, Fontich, and others), even in the context
of non–analytic functions (e.g. R. Ortega, Invariant curves for skew product diffeomorphisms, Mi-
lano September 1999). Regarding cohomological equations, Rüßmann ([49],[51],[50],[48]) provided
sharp estimates for the solutions to these kind of difference equations, demanding the Diophantine
character of the frequency. We give in Chapter 1 a detailed version of their estimates, adapted to
the framework that concerns us (see Theorem 1.20).

In the spirit of Delshams and De la Llave ([16]), we adopt then the so–called translated graph
method, also adapted to our framework. This method consists essentially of fixing an average
p ∈ R (in addition to the frequency ω, which is also fixed a priori) and finding p–average invariant
translated curves following a Newton–like iterative procedure.

In Chapter 2, before dealing with the translated graph method and the KAM procedure, we

1Briefly speaking, curves of the form κ : T −→ R such that the invariance equation, f(θ, κ(θ)) = κ(θ + ω) is
satisfied.

2The acronym KAM stands for Kolmogorov [39] (1954), Arnold [3] (1961) and Moser [43] (1962), the founders
of the theory. Other recent contributions: [14], [15] , [46], [7], [24], [27].
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discuss the concept of reducibility of a skew-product, which is essential in the construction of the
process and we show, as it is well known, that every non–singular one–dimensional linear quasi–
periodic skew–product is reducible (see Theorem 2.6). This fact, and the explicit expression of the
Floquet transformation that relates the reducibility with the Lyapunov exponents by means of the
cohomological operator will be used later to simplify some computations and obtain important
dynamical properties. Nevertheless, the first attempt to build the KAM iterative procedure elapses
simultaneously combining two procedures. On the one hand, the invariance of the translated curve
and, on the other hand, the reducibility of the skew–product without using the aforementioned
explicit expression of the reducibility function (Floquet transformation).

Henceforth, our challenge consists, briefly speaking, in proving the following result:

If we have a good enough approximation of a translated invariant curve, then under
certain non–degeneracy and non–resonance conditions, there exists a true invariant
translated curve nearby.

In Section 2.4 the whole process is performed, starting with the non–degeneracy conditions needed
for one step, the corresponding estimates (Lemma 2.16), the iterative lemma (Lemma 2.18), and
finally, the KAM theorem (Theorem 2.19), in which the convergence and the analyticity of the
solutions are proved. This is one of the most important results obtained in this work.

Chapter 3 is devoted to showing the translated graph method with a slightly different approach. In
this case the reducibility of the skew–product is taken for granted, and we use, at every step of the
process, the expression of the Floquet transformation obtained in Theorem 2.6. Consequently, the
part of the process described in Section 2.4 corresponding to the reducibility is avoided. Moreover,
the average of the reducibility function does not need to be the same value at each step. In fact,
it can be chosen freely at every step. This allows to reduce the obtained error estimates. Another
difference that is taken in account here is that the spatial partial derivative of the function which
describes the skew–product is assumed to be bounded from below (in modulus). This restriction
allows to assure that the Lyapunov exponents obtained at every step are globally bounded. Under
these conditions, we can obtain sharp explicit estimates for one step and for the corrections
generated along the whole iterative procedure (Lemma 3.5 and Lemma 3.9).

These expressions can be significantly simplified by assuming some a priori conditions that do
not detract from the generality of the approach. For instance, the first guess of the procedure
can be a p–average curve where p is the value previously fixed, and then all the average errors
given by en(p) =< κn > −p (n ∈ N) vanish. Moreover, since the average of the n–th Floquet
transformation cn,0 =

∫
T cn(θ)dθ can be freely chosen at every step, we opt to take its value such

that

αn =
cn,0∫

T
eR1(log( ∂f

∂x
(θ,κn(θ))−Λn))dθ

= 1 (n ∈ N).

This is what we do in Section 3.6, obtaining as a result a narrow version of the aforementioned
estimates. With these new bounds, we are in a position to state another version of the KAM
theorem (see Theorem 3.15).

It is worth mentioning that there are examples of skew product systems without invariant curves.
In [2] the authors (Alsedà et al.) construct an example in a domain Ω ⊂ S1 × R limited by an
upper and a lower circle that are permuted by the map and do not have any invariant curve in its
interior.

Delshams and Ortega [17] provided the existence of translated curves for quasi-periodically forced
maps which was established, under very mild regularity hypotheses, for rotation numbers of con-
stant type. Among the translated curves, the invariant curves are characterized as the solutions
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of an scalar bifurcation equation, from which their existence, stability as well as bifurcation can
be easily described.

Once the existence of invariant curves has been determined, under the non–degeneracy conditions
required by the translated graph method described above, the next objective consists in the es-
tablishment of a methodology to study the local bifurcation theory of one parametric families of
skew–products as they were considered previously. The approach starts with a family of invariant
translated curves {(κ(·;μ, p), τ(μ, p))}(μ,p)∈I×R, i.e. solutions of a system of the form{

f(θ, κ(θ;μ, p);μ)− κ(θ + ω;μ, p) + τ(μ, p) = 0 ,
< κ(· ;μ, p) > = p .

(θ ∈ T;μ ∈ I, p ∈ R)

In this scenario we are mostly interested in the study of qualitative geometric properties of the
family of invariant curves, namely, those invariant translated curves whose translation parameter
is equal to zero, i.e.

τ(μ, p) = 0.

Here, we have two parameters: on the one hand, the bifurcation parameter, μ ∈ I ⊆ R; and, on
the other hand, the average parameter, p ∈ R.
The implicit function theorem (IFT) provides the appropriate framework for this study, through
sufficient conditions that allow information to be obtained from one of the parameters as a function
of the other. This is the content of Chapter 4.
The approach focuses specifically on the study of several concrete types of bifurcations: saddle–
node or fold bifurcations (Section 4.2), transcritical and pitchfork bifurcations (Section 4.3), and
period–doubling or flip bifurcations (Section 4.4).

Another objective of this thesis is to implement numerical procedures that allow validating the
theoretical results, as well as reinforcing the numerical results obtained by applying them to specific
examples. To achieve these objectives, it is necessary to implement programs that allow the
reproduction of the KAM procedures described above. Among others, the study of the numerical
representation of functions defined by their Fourier coefficients is required, for which the most
efficient tool is the Discrete Fourier Transform (DFT) and its inverse (IDFT).
Chapter 5, Chapter 6 and Appendix II are devoted to this purpose.
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General summary of the thesis

Chapter 1.

This chapter is dedicated to introducing cohomological equations and the spaces of real analytic
functions, the problem of small divisors and how the Diophantine condition affects the convergence
and analyticity of the solutions to these cohomological equations. Some properties of these func-
tions are discussed. Among them their Fourier expansions, Cauchy’s inequality, the exponential
decay of their Fourier coefficients and the uniform convergence. Next, there is a brief presentation
of the Diophantine condition which leads to the important lemma of small divisors. The most
important result of this chapter, due to Rüßmann [51], is stated in Theorem 1.20, showing what
we call Rüßmann estimates for the solutions to the cohomological equation. The complete proof
provided here is adapted, in all of its terms, to the one dimensional frame. The chapter concludes
with the definition of the cohomological operator and a detailed description of its properties.
Among them, it is remarkable that Proposition 1.26 shows two slightly different ways to estimate
cohomological operator corrections, one of them sharper than the one obtained by applying the
Rüßmann estimates twice. Some references related to this chapter are [49], [51], [50], [10], [11],
[14], [31], and [18].

Chapter 2.

In this chapter we face up to one of the main objectives of this work. Our challenge is to design
a KAM procedure to demonstrate the existence of invariant curves for one–dimensional quasi–
periodic skew–products under certain non–degeneracy conditions. We will use the translated
graph method for the very particular frame in which the base is the torus, T = R/Z, and the fiber
is the real line, R, giving sufficient conditions for which the Newton–like method to be designed
converges quadratically, and thus formulate them in a posteriori format. The challenge, on the one
hand, is to fertilize the land for the creation of a methodology for the study and classification of
bifurcations of invariant curves related to perturbations of this kind of skew–products, and on the
other hand, implement numerical methods of representation. We will employ all the tools which
were described in the corresponding sections (as the invariance equation, topological and linear
conjugacy of skew–products, small denominators and cohomological equations,...)3 plus new ones
(as linearization of a skew–product, reducibility, the translated graph method itself, and KAM
theory).

Some references for this chapter are [24], [22], [10]

3See Appendix I. and Chapter 1.
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Chapter 3.

This chapter is devoted to showing the translated graph method with a slightly different approach.

In this case the reducibility of the skew–product is taken for granted, and we use, at every step of
the process, the expression of the Floquet transformation obtained in Theorem 2.6. Consequently,
the part of the process described in Section 2.4 corresponding to the reducibility is avoided.
Moreover, the average of the reducibility function does not need to be the same value at each
step. In fact, it can be chosen freely at every step. This allows to reduce the obtained error
estimates. Another difference that is taken in account here is that the spatial partial derivative of
the function which describes the skew–product is assumed to be bounded from below (in modulus).
This restriction allows to assure that the Lyapunov exponents obtained at every step are globally
bounded. Under these conditions, we can obtain sharp explicit estimates for one step and for the
corrections generated along the whole iterative procedure (Lemma 3.5 and Lemma 3.9).

These expressions can be significantly simplified by assuming some a priori conditions that do
not detract from the generality of the approach. For instance, the first guess of the procedure
can be a p–average curve where p is the value previously fixed, and then all the average errors
given by en(p) =< κn > −p (n ∈ N) vanish. Moreover, since the average of the n–th Floquet
transformation cn,0 =

∫
T cn(θ)dθ can be freely chosen at every step, we opt to take its value such

that

αn =
cn,0∫

T
eR1(log( ∂f

∂x
(θ,κn(θ))−Λn))dθ

= 1 (n ∈ N).

This is what we do in Section 3.6, obtaining as a result a narrow version of the aforementioned
estimates. With these new bounds, we are in a position to state another version of the KAM
theorem (see Theorem 3.15).

Section 3.1 reproduces the translation graph method with the reducibility of the skew–product
taken for granted.

Section 3.2 speaks about the details on the non–degeneracy condition in one step of the KAM
procedure.

Section 3.3 gives the expresion of the invariance error produced in one step.

Section 3.4 and Section 3.5 show the explicit form of the estimates and correction estimates
obtained for one step in the most general and sharp way.

In Section 3.6 we come out with some reductions to obtain explicit estimates with simpler expres-
sions although less precise.

Section 3.7 shows a new version of the KAM theorem for skew–products bases on the estimates
obtained in the above section.

Some references for this chpther: [36], [10], [24], [22].

Chapter 4.

This chapter establishes a methodology to study the local bifurcation theory of one parametric
families of skew–products as they were considered in previous chapters. The approach starts with
a family of invariant translated curves {(κ(·;μ, p), τ(μ, p))}(μ,p)∈I×R, i.e. solutions of a system of
the form {

f(θ, κ(θ;μ, p);μ)− κ(θ + ω;μ, p) + τ(μ, p) = 0 ,
< κ(· ;μ, p) > = p .

(θ ∈ T;μ ∈ I, p ∈ R)

In this scenario we are mostly interested in the study of qualitative geometric properties of the
family of invariant curves, namely, those invariant translated curves whose translation parameter
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is equal to zero, i.e.

τ(μ, p) = 0.

Here, we have two parameters: on the one hand, the bifurcation parameter, μ ∈ I ⊆ R; and, on
the other hand, the average parameter, p ∈ R.
The implicit function theorem (IFT) provides the appropriate framework for this study, through
sufficient conditions that allow information to be obtained from one of the parameters as a function
of the other.

This approach focuses specifically on the study of several concrete types of bifurcations: saddle–
node or fold bifurcations (Section 4.2), Trancritical and pitchfork bifurcations (Section 4.3), and
period–doubling or flip bifurcations (Section 4.4).

Chapter 5.

The fundamental objective of this chapter is the introduction of all those concepts necessary for
the numerical implementation of the procedures described in the previous chapters4.

Section 5.2 is devoted to introduce the discrete Fourier transform (DFT) and its inverse (IDFT),
definitions and some of those properties which will be used later on in the computations. These
tools constitute an efficient way to compute functions given by their Fourier series expansion on
the torus. In Section 5.3 we introduce a method to compute numerically the Fourier coefficients
of a function by means of the DFT, providing moreover an estimate of the error made in the
aforementioned approximation. With a finite collection of Fourier coefficients it is possible to
reconstruct, by means of the convolution with the Dirichlet kernel, the partial sums of the Fourier
series. This is explained in Section 5.4. Moreover, there is an efficient way to reconstruct functions
from their Fourier coefficients employing the inverse discrete Fourier transform (IDFT). Once we
have solved the problem of the numerical implementation for Fourier series and Fourier coefficients,
we are in a position to solve cohomological equations and, as a particular case, to compute the
Floquet transformation of a given curve, which is necessary in the reducibility process of skew–
products. These aspects will be dealt with in the last section of the chapter, Section 5.6.

Chapter 6.

In this section, the model presented will serve as a support to develop all the algorithms built
in previous sections and chapters, as well as their subsequent numerical implementation. This
model, with slight differences, was presented by Tobias H. Jäger in 2003 [34] and has been deeply
analyzed by Àngel Jorba, Francisco Javier Muñoz–Almaraz, and Joan Carles Tatjer in 2018 [36].
Here we expose an extended version complexified with the aim of adapting the model to the
previous exposition.

4Mainly, cohomological equations and the derived computation of the Floquet transformation of a curve. Subject
to these procedures everything is related to the numerical implementation of Fourier series and the Fourier coefficients
of a function.
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Appendix I.

This appendix lays the foundations in a more general context of the background in which the
entire thesis is focused. It is devoted to introduce the notion of skew–product and some general
definitions related with this smattering. In particular, the concept of invariant section. First,
there is a description of fiber and vector bundles, bundle maps and vector bundle maps, and the
concept of cross sections over fiber bundles and vector bundles. For a more complete account on
these topics, we refer the reader to [55], [32], [47], [1], and [33].
In this context, it is introduced the definition of skew–product dynamical system, giving rise to
the concept of invariant section which justifies what is called invariance equation, and is the basis
to understand what are invariant tori in skew–products. Additionally, the concept of invertibility
in skew-products is described and, above all, topological conjugacy and linear conjugacy of skew-
products.

Appendix II.

Based on the numerical aspects developed in Chapter 5 this appendix shows some of the algorithms
which are implemented in Matlab� programming environment (R2022b).

� Orbits and the error function;

� Complex Fourier series estimates by means of the Discrete Fourier Transform (DFT);

� The cohomological operator; and

� The KAM step.

Appendix III.

This appendix provides an important matrix lemma (Lemma III.1) which is often used to obtain
several estimates needed in the KAM procedure (see Lemma 2.18).



Chapter 1

Cohomological equation and
Rüßmann estimates

The first part of this introductory chapter (Section 1.1) is devoted to introducing the spaces
of real analytic periodic functions defined in a complex strip that will appear throughout the
upcoming exposition. This implies the fact of precisely defining topological aspects and other
features of these spaces.
Before facing up the main problem (I.9), we still need some more background.

1.1 Analytic periodic functions

Definition 1.1 Complex strip

We define the complex strip of width 	 > 0 as the set

T� = {z ∈ C/Z : | Im(z)| ≤ 	} .
�

Definition 1.2 Analytic periodic functions

Let 	 > 0. We define the set of analytic periodic functions on the complex strip T� as:

A� = {u : T� ⊆ C/Z → C | u is analytic in Int(T�),

and continuously extendable to ∂T�} .

Moreover, we say that u ∈ A� is real analytic on T� if it takes real values for real arguments.
�

Remark 1.3

We identify functions defined on T� ,

u : T� ⊆ C/Z −→ C

with 1–periodic functions defined on the complex strip S� = {z ∈ C : | Im(z)| ≤ 	},
u : S� ⊆ C −→ C .

Thus, we say that u ∈ A� is holomorphic (analytic) in an open set U ⊆ T� if the corresponding
1–periodic function defined on S� is holomorphic (analytic) in an open set V ⊆ S�, such that



10 Cohomological equation and Rüßmann estimates

U = {z + Z ∈ T� : z ∈ V ⊆ S�} = V/Z. Notice that T� is a topological space endowed with the
topology inherited from the usual topology of C and A� is a C–vector space. In short, we can write:
A� = H(Int(T�)) ∩ C(T�).

Definition 1.4 Pre–Hilbert structure of the space of analytic periodic functions

We define the inner product for analytic periodic functions:

< ·, · >: A� ×A� −→ C

(u, v) �−→ < u, v >:=

∫
T
u(θ)v(θ) dθ .

This inner product endows A� with a structure of a pre–Hilbert space. Furthermore,

{e2πkzi : k ∈ Z}
is an orthonormal set in A�.

Notice that A� is a subspace of the usual Hilbert space L2(T�) := {u : T� → C |
∫
T
|u(θ)|2dθ < ∞},

and the inner product defined above in A� is the restriction of the inner product

< ·, · >: L2(T�)× L2(T�) −→ C

(u, v) �−→ < u, v >:=

∫
T
u(θ)v(θ) dθ

to the complex strip A�.
The L2–norm in A� is, accordingly, defined by:

‖u‖ =< u, u >
1
2=

(∫
T
|u(θ)|2 dz

) 1
2

,

whereas the supremum norm or uniform norm is defined as

‖u‖� = sup
z∈T�

|u(z)| .

If u ∈ A� for some 	 > 0, the Fourier coefficients of u are defined as:

ûk :=

∫
T
u(θ)e−2πkθidθ (k ∈ Z), (1.1)

and the Fourier expansion of u is the formal series

Fu(z) :=
∑
k∈Z

ûke
2πkzi (z ∈ T�). (1.2)

�

Remark 1.5

(L2(T�), ‖ · ‖�) is a Banach space. The uniform norm satisfies the inequality:∑
k∈Z

|ûk|2 ≤ ‖u‖2�, ∀u ∈ A�. (1.3)

Indeed, by Parseval’s Theorem,∑
k∈Z

|ûk|2 = ‖u‖2 =
∫
T
|u(θ)|2 dθ ≤ sup

θ∈T
|u(θ)|2

∫
T
dθ ≤ sup

z∈T�

|u(z)|2 = ‖u‖2� .



Analytic periodic functions 11

Moreover, (C0(T�), ‖ · ‖�) is also a Banach space, since it is a closed subspace of (L2(T�), ‖ · ‖�).
(A�), ‖ · ‖�) is a Fréchet space.
Finally, as a consequence of Morera’s theorem, uniform limits on compact sets of analytic functions
in an open set are analytic.

Remark 1.6

Define

A�,0 =

{
u ∈ A� : < u >=

∫
T
u(θ) dθ = 0

}
,

that is, the subspace of A� of that analytic functions over the complex strip T� with zero–average.
Notice that A�,0 is a closed subspace of A� and thus it is also a Fréchet space.
In what follows, if u ∈ A�, for some 	 > 0, we will write:

u = u0 + ũ ,

being u0 the average of u and ũ ∈ A�,0 a zero-average function, namely:

u0 =< u >:=

∫
T
u(θ) dθ

and

< ũ >=

∫
T
ũ(θ) dθ = 0 .
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Lemma 1.7 (Cauchy inequality1) Fourier coefficients of an analytic 1–periodic function

If u ∈ A� is an analytic 1–periodic function defined on the complex strip T� for some 	 > 0, then
the Fourier coefficients of u,

ûk :=

∫
T
u(θ)e−2πkθidθ (k ∈ Z), (1.4)

satisfy the following estimate:

|ûk| ≤ e−2π|k|�‖u‖� , ∀k ∈ Z, (1.5)

where ‖u‖� = sup
z∈T�

|u(z)|. That is, the Fourier coefficients of an analytic 1–periodic function decay

exponentially.

Proof.

Let δ ∈ (0, 	) be the height of the rectangle Rδ = [0, 1]× [0, δ] ⊂ Int(S�).

Since u ∈ A� and Rδ ⊂ Int(S�), then u ∈ H(Rδ). Therefore, for every k ∈ Z, the function

vk(z) := u(z)e−2πkzi (z ∈ S�) ,

is holomorphic in Sδ (and also 1−periodic). By Cauchy’s integral theorem the contour integral of
vk along the boundary of Rδ vanishes: ∮

∂Rδ

vk(z)dz = 0 .

Re z

Im z

γ1

γ2

γ3

γ4

0 1

1 + δiδi

−�i 1 − �i

�i 1 + �i

Rδ

Sδ

Figure 1.1: Upper integration path.

The boundary of the rectangle Rδ, counterclockwise oriented, is the juxtaposition of four line
segments,

∂Rδ = γ1 + γ2 + γ3 + γ4 ,

1cf. [14] A tutorial on KAM theory. Smooth Ergodic Theory and its Applications.
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that can be parameterized, respectively, by

γ1 : [0, 1] −→ C
t �−→ γ1(t) = t

,
γ2 : [0, 1] −→ C

t �−→ γ2(t) = 1 + tδi
,

γ3 : [0, 1] −→ C
t �−→ γ3(t) = 1− t+ δi

,
γ4 : [0, 1] −→ C

t �−→ γ4(t) = (1− t)δi
.

Accordingly,

0 =

∮
∂Rδ

vk(z)dz =

4∑
j=1

∫ 1

0
vk(γj(t))γ

′
j(t)dt

=

∫ 1

0
u(t)e−2πktidt+

∫ 1

0
u(1 + tδi)e−2πk(1+tδi)iδidt

+

∫ 1

0
u(1− t+ δi)e−2πk(1−t+δi)i(−1)dt+

∫ 1

0
u((1− t)δi)e−2πk(1−t)δi2(−δi)dt

=

∫ 1

0
u(t)e−2πktidt+ δi

∫ 1

0
u(1 + tδi)e2πktδdt

− e2πkδ
∫ 1

0
u(1− t+ δi)e−2πk(1−t)idt− δi

∫ 1

0
u((1− t)δi)e2πk(1−t)δdt ,

where we have used Euler’s formula, e2πi = 1. Now we show that the second integral and the
fourth one are equal. On the one hand, since u is 1−periodic,∫ 1

0
u(1 + tδi)e2πktδdt =

∫ 1

0
u(tδi)e2πktδdt .

On the other hand, by means of the change of variable θ = 1− t, we have∫ 1

0
u((1− t)δi)e2πk(1−t)δdt =

∫ 1

0
u(θδi)e2πkθδdθ .

Thence,

0 =

∫ 1

0
u(t)e−2πktidt− e2πkδ

∫ 1

0
u(1− t+ δi)e−2πk(1−t)idt .

Equivalently,

ûk = e2πkδ
∫ 1

0
u(1− t+ δi)e−2πk(1−t)idt , ∀k ∈ Z ,

or

ûk = e2πkδ
∫ 1

0
u(t+ δi)e−2πktidt , ∀k ∈ Z (0 < δ < 	) . (1.6)

In particular, if k < 0,

|ûk| = e−2π|k|δ
∣∣∣∣∫ 1

0
u(t+ δi)e−2πk(1−t)idt

∣∣∣∣ ≤ e−2π|k|δ
∫ 1

0
|u(t+ δi)|dt ≤ e−2π|k|δ sup

z∈Rδ

|u(z)|

≤ e−2π|k|δ sup
z∈Sδ

|u(z)| ≤ e−2π|k|δ sup
z∈S�

|u(z)| = e−2π|k|δ sup
z∈T�

|u(z)| = e−2π|k|δ ‖u‖� .

Summarizing,

|ûk| ≤ e−2π|k|δ ‖u‖�, ∀δ ∈ (0, 	) and ∀k ∈ Z, k < 0 . (1.7)

In like manner, we consider now the rectangle R′
δ = [0, 1]× [−δ, 0] ⊂ Int(T�).
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Since u ∈ A� and R′
δ ⊂ Int(S�), then u ∈ H(Rδ). Again, by Cauchy’s integral theorem the contour

integral of vk along the boundary of R′
δ vanishes:∮

∂R′
δ

vk(z)dz = 0 .

Re z

Im z

η1

η2

η3

η4

0 1

1 − δi−δi

−�i 1 − �i

�i 1 + �i

R′
δSδ

Figure 1.2: Lower integration path.

The boundary of the rectangle R′
δ, counterclockwise oriented, is the juxtaposition of four line

segments,
∂R′

δ = η1 + η2 + η3 + η4 ,

that can be parameterized, respectively, by

η1 : [0, 1] −→ C
t �−→ η1(t) = 1− t

,
η2 : [0, 1] −→ C

t �−→ η2(t) = −δti
,

η3 : [0, 1] −→ C
t �−→ η3(t) = t− δi

,
η4 : [0, 1] −→ C

t �−→ η4(t) = 1− (1− t)δi
.

It follows that:

0 =

∮
∂Rδ

vk(z)dz =

4∑
j=1

∫ 1

0
vk(ηj(t))η

′
j(t)dt

=

∫ 1

0
u(1− t)e−2πk(1−t)i(−1)dt+

∫ 1

0
u(−δti)e−2πk(−δti)i(−δi)dt

+

∫ 1

0
u(t− δi)e−2πk(t−δi)idt+

∫ 1

0
u(1− (1− t)δi)e−2πk(1−(1−t)δi)iδidt

= −
∫ 1

0
u(1− t)e−2πk(1−t)idt− δi

∫ 1

0
u(−δti)e−2πkδtdt

+ e−2πkδ

∫ 1

0
u(t− δi)e−2πktidt+ δi

∫ 1

0
u(1− δti)e−2πkδtdt

where we have used again Euler’s formula, e2πi = 1. Now, the second integral and the fourth
one are equal by the 1−periodicity of u. On the other hand, by means of the change of variable
θ = 1− t, we have ∫ 1

0
u(1− t)e−2πk(1−t)idt =

∫ 1

0
u(θ)e−2πkθidθ .
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Thence,

0 = −
∫ 1

0
u(t)e−2πktidt+ e−2πkδ

∫ 1

0
u(t− δi)e−2πktidt .

Equivalently,

ûk = e−2πkδ

∫ 1

0
u(t− δi)e−2πktidt , ∀k ∈ Z (0 < δ < 	) . (1.8)

In particular, if k > 0,

|ûk| = e−2π|k|δ
∣∣∣∣∫ 1

0
u(t− δi)e−2πktidt

∣∣∣∣ ≤ e−2π|k|δ
∫ 1

0
|u(t− δi)|dt

≤ e−2π|k|δ sup
z∈Rδ

|u(z)| ≤ e−2π|k|δ sup
z∈Sδ

|u(z)|

≤ e−2π|k|δ sup
z∈S�

|u(z)| = e−2π|k|δ sup
z∈T�

|u(z)| = e−2π|k|δ ‖u‖� .

Summarizing,
|ûk| ≤ e−2π|k|δ ‖u‖�, ∀δ ∈ (0, 	) and ∀k ∈ Z, k > 0 . (1.9)

Finally, joining (1.7) and (1.9) we have:

|ûk| ≤ e−2π|k|δ ‖u‖�, ∀δ ∈ (0, 	) and ∀k ∈ Z. (1.10)

It follows, from (1.10), that:

∀k ∈ Z, |ûk| ≤ inf{e−2π|k|δ ‖u‖� : 0 < δ < 	} = e−2π|k|� ‖u‖� ,

which is the estimate (1.5) that we wanted to prove.

Lemma 1.8 2

Let u ∈ A� for some 	 > 0 and assume that there exist a positive constant M > 0 such that
|u(z)| ≤ M, ∀z ∈ T�, i.e. ‖u‖� = sup

z∈T�

|u(z)| < ∞.

Then: ∑
k∈Z

|ûk|2e4π�|k| ≤ 2‖u‖2� , (1.11)

where ûk =

∫ 1

0
u(θ)e−2πkθidθ (k ∈ Z) are the Fourier coefficients of u.

Proof. Let s ∈ (−	, 	) and define

ϕs : S�−|s| ⊆ C −→ C
z �−→ ϕs(z) := u(z + si)

.

Notice that whenever z ∈ S�−|s|,

| Im(z + si)| = | Im(z) + s| ≤ | Im(z)|+ |s| ≤ 	− |s|+ |s| = 	 .

2cf. [49] Lemma 2.1 p. 605 . The proof is essentially the same, but here it has been adapted to the one
dimensional frame.
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Hence, z + si ∈ S� and ϕs is well defined. Moreover, since u ∈ A� then ϕs ∈ A�−|s|.
The Fourier coefficients of ϕs are given by:

ϕ̂sk =

∫ 1

0
ϕs(θ)e

−2πkθidθ =

∫ 1

0
u(θ + si)e−2πkθidθ

= e−2πks

∫ 1

0
u(θ + si)e−2πk(θ+si)idθ .

Let us define, for each k ∈ Z, the function

Φk : (−	, 	) ⊆ R −→ C

s �−→ Φk(s) := e2πksϕ̂sk =

∫ 1

0
u(θ + si)e−2πk(θ+si)idθ .

(1.12)

We claim that Φk is a constant function. Indeed, its derivative vanishes everywhere. Since u is
analytic, we can differentiate under the the integral sign, that is, applying the Leibnitz integral
rule:

Φ′
k(s) =

d

ds

∫ 1

0
u(θ + si)e−2πk(θ+si)idθ =

∫ 1

0

∂

∂s

(
u(θ + si)e−2πk(θ+si)i

)
dθ

=

∫ 1

0

(
u′(θ + si)ie−2πk(θ+si)i + u(θ + si)e−2πk(θ+si)i2πk

)
dθ

= 2πk

∫ 1

0
u(θ + si)e−2πk(θ+si)idθ + i

∫ 1

0
u′(θ + si)e−2πk(θ+si)idθ

Now, we integrate by parts the last term:∫ 1

0
u′(θ + si)e−2πk(θ+si)idθ = u(θ + si)e−2πk(θ+si)i

]θ=1

θ=0
+ 2πki

∫ 1

0
u(θ + si)e−2πk(θ+si)idθ

= u(1 + si)e−2πk(1+si)i − u(si)e2πks

+ 2πki

∫ 1

0
u(θ + si)e−2πk(θ+si)idθ

and hence,

Φ′
k(s) = i

(
u(1 + si)e−2πk(1+si)i − u(si)e2πks

)
= ie2πks (u(1 + si)− u(si)) = 0,

since u is 1−periodic.

It follows that Φk(s) = Φk(0) =

∫ 1

0
u(θ)e−2πkθidθ = ûk, ∀s ∈ (−	, 	) and k ∈ Z. Thus:

ϕ̂sk = ûke
−2πks

and ∑
k∈Z

|ϕ̂sk|2 =
∑
k∈Z

|ûk|2 e−4πks. (1.13)

Furthermore, Bessel’s inequality gives, for the Fourier coefficients of ϕs:

∑
k∈Z

|ϕ̂sk|2 ≤
∫ 1

0
|u(θ + si)|2dθ ≤

(
sup
z∈S�

|u(z)|
)2

= ‖u‖2� . (1.14)
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Equations (1.13) and (1.14) together imply:∑
k∈Z

|ûk|2 e−4πks ≤ ‖u‖2� , ∀s ∈ (−	, 	) . (1.15)

Thus, for every s ∈ (−	, 	), we can write:∑
k∈Z

|ûk|2 e4π|k|s =
∑
k∈Z
k<0

|ûk|2 e4π|k|s +
∑
k∈Z
k≥0

|ûk|2 e4π|k|s

=
∑
k∈Z
k<0

|ûk|2 e−4πks +
∑
k∈Z
k≥0

|ûk|2 e−4πk(−s)

≤
∑
k∈Z

|ûk|2 e−4πks +
∑
k∈Z

|ûk|2 e−4πk(−s) .

Since s ∈ (−	, 	), then −s ∈ (−	, 	) too, and we can apply (1.15) to both of the latter sums:∑
k∈Z

|ûk|2 e4π|k|s ≤ 2‖u‖2� , ∀s ∈ (−	, 	).

To end the proof we take limits as s → 	 and we have:∑
k∈Z

|ûk|2 e4π|k|� ≤ 2‖u‖2� ,

as we wanted to prove.

Lemma 1.9 Uniform convergence

Let u ∈ A� for some 	 > 0. Then u can be expanded in its Fourier series:

u(z) =
∑
k∈Z

ûk e
2πkzi, ∀z ∈ T� ,

where

ûk :=

∫
T
u(θ)e−2πkθi, ∀k ∈ Z .

The series is absolutely and uniformly convergent in every complex strip of the form:

T�−δ = {z ∈ C/Z : | Im(z)| ≤ 	− δ} with 0 < δ < 	 .

Furthermore, if 0 < δ < 	, then we have the following estimate:

|u(z)| ≤
√
2

√
e4πδ + 1

e4πδ − 1
‖u‖� , ∀z ∈ T�−δ .

Proof. 3 Since u is continuous in T� and 1–periodic, then

‖u‖�−δ = sup
z∈T�−δ

|u(z)| < +∞, ∀ δ ∈ (0, 	) .

3cf. Lemma 2.4 p. 610 On optimal estimates for the solutions of linear partial differential equations of first
order with constant coefficients on the torus [49].
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Let us denote the Fourier series of u by

Fu(z) =
∑
k∈Z

ûk e
2πkzi, ∀z ∈ T� . (1.16)

This series converges absolutely and uniformly in every complex strip T�−δ, with 0 < δ < 	, and
consequently the series converges uniformly in every compact subset of the strip T�. Therefore,
Fu is analytic in Int(T�) and it is well defined4 in T�.
Next, we would like to find an estimate for the Fourier series.
∀z ∈ T�−δ, we have:

|Fu(z)| =
∣∣∣∣∣∑
k∈Z

ûk e
2πkzi

∣∣∣∣∣ ≤∑
k∈Z

|ûk|
∣∣∣e2πkzi∣∣∣ .

Since z ∈ T�−δ, we may write z = x+ yi, with |y| ≤ 	− δ. So,

|e2πkzi| = e−2πky ≤ e2π|k|(�−δ), ∀k ∈ Z.

It follows that:
|Fu(z)| ≤

∑
k∈Z

|ûk| e2π|k|(�−δ) =
∑
k∈Z

|ûk| e2π|k|� e−2π|k|δ .

Applying now the Cauchy-Schwartz inequality to the latter sum, we get:

|Fu(z)| ≤
(∑

k∈Z
|ûk|2 e4π|k|�

) 1
2
(∑

k∈Z
e−4π|k|δ

) 1
2

.

The first factor of this product can be estimated by means of Lemma 1.8. Thus:

|Fu(z)| ≤ (2‖u‖2�) 12
(∑

k∈Z
e−4π|k|δ

) 1
2

=
√
2‖u‖�

(∑
k∈Z

e−4π|k|δ
) 1

2

.

Notice that the geometric series
∞∑
k=1

(
e−4πδ

)k
is convergent since

∣∣e−4πδ
∣∣ < 1 , ∀δ > 0.

Hence, we can compute directly the series:∑
k∈Z

e−4π|k|δ =
∑
k∈Z
k<0

e−4π|k|δ + 1 +
∑
k∈Z
k>0

e−4π|k|δ

= 1 + 2

∞∑
k=1

e−4πkδ = 1 + 2

∞∑
k=1

(
e−4πδ

)k
= 1 + 2

e−4πδ

1− e−4πδ
=

e4πδ + 1

e4πδ − 1
.

It follows that:

|Fu(z)| ≤
√
2

√
e4πδ + 1

e4πδ − 1
‖u‖� , ∀z ∈ T�−δ .

4cf. Theorem 9.12.1 Foundations of Modern Analysis [18]
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To finish the proof we show that u(z) = Fu(z) , ∀z ∈ T�.

On one side, u(x) = Fu(x) , ∀x ∈ R, since u and Fu have the same Fourier coefficients and the set
of exponentials {e2πkxi : k ∈ Z} is complete5. On the other hand, by analytical continuation6 we
obtain as a consequence the desired result.

Lemma 1.10 Cauchy estimates

Let 	 > 0, v : T� −→ C, and m ∈ N. If v ∈ A�, then for every δ ∈ (0, 1
m	), dmv

dzm ∈ A�−mδ and

‖d
mv

dzm
‖�−mδ ≤ m!δ−m‖v‖� . (1.17)

Proof. Let δ∗ = mδ. Then 0 < δ∗ < 	 and for any z ∈ T�−δ∗ , D(z, δ) ⊂ Int(T�−δ∗). Since v ∈ A�,
then v is holomorphic in a neighborhood of the closed disk D(z, δ). By the Cauchy integral formula,

∀z ∈ T�−δ∗ ,
dmv

dzm
(z) =

m!

2πi

∫
∂D(z,δ)

v(ζ)

(ζ − z)m+1
dζ .

Taking modulus on both sides, we have

∀z ∈ T�−δ∗ ,

∣∣∣∣dmv

dzm
(z)

∣∣∣∣ =
m!

2π

∣∣∣∣∣
∫
∂D(z,δ)

v(ζ)

(ζ − z)m+1
dζ

∣∣∣∣∣
≤ m!

2π

∫
∂D(z,δ)

|v(ζ)|
|ζ − z|m+1

|dζ| ≤ m!

2π
sup

ζ∈∂D(z,δ)
|v(ζ)|

∫
∂D(z,δ)

1

|ζ − z|m+1
|dζ|

=
m!

2π
sup
ζ∈T�

|v(ζ)| 1

δm+12πδ
= m!δ−m‖v�‖ .

1.2 Liouville numbers and the Diophantine condition

The following bi-decomposition of irrational numbers, in Liouville numbers and Diophantine num-
bers, plays a special role in the dynamics of a skew–product and the related KAM process that
we will build to look for invariant tori, as will be brought out later. For this reason we refer now
the main concepts which are needed to know about the arithmetics of these real numbers.

Recall first that a real number ω ∈ R is said to be algebraic if there exists a polynomial P (z) =
arz

r + ar−1z
r−1 + · · · + a1z + a0 ∈ Q[z], with rational coefficients, ai ∈ Q, such that P (ω) = 0.

The set of all algebraic numbers is a subfield of R. Indeed, it is the algebraic closure of Q, which
is denoted by Q, that is, the minimal subfield of R which contains all the real roots of polynomials
with coefficients in Q. The complement of algebraic numbers with respect to R is the set of
transcendental numbers, R \Q.

5cf. Chapter II. �4., Methods of Mathematical Physics [31]

6cf. �(9.4.4), p.203, Foundations of Modern Analysis [18]
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Remark 1.11

For every algebraic number ω ∈ Q, there is a polynomial Q ∈ Q[z] of least degree, denoted by
Q = Irr(ω,Q), for which ω is a root. Q is also known as the irreducible polynomial of ω over the
field of the rational numbers. Namely:

(i) Q(z) = αrz
r + αr−1z

r−1 + · · · + α1z + α0 ∈ Q[z], i.e. αj =
bj
cj
, with bj , cj ∈ Z, cj �= 0 (j =

0, 1, . . . , r);

(ii) Q(ω) = 0;

(iii) Q is irreducible, that is, if Q(z) = Q1(z)Q2(z), with Q1, Q2 ∈ Q[z], then either Q1 is constant
or Q2 is constant. In other words Q cannot be factorized in Q[z] as a product of non–trivial
polynomials.

By (i), Q can be expressed in the following way:

Q(z) =
1

r∏
j=0

cj

(arz
r + ar−1z

r−1 + · · ·+ a1z + a0) ,

with aj = bj

r∏
i = 0
i �= j

ci ∈ Z.

Let us call P (z) = arz
r + ar−1z

r−1 + · · ·+ a1z + a0 ∈ Z[z]. Thus, Q(z) = 1
cP (z), with c =

r∏
j=0

cj.

Observe that the roots of Q and the roots of P are the same. Furthermore, by Gauss Lemma, Q
is irreducible in Q[z] if and only if P is irreducible in Z[z].

Definition 1.12 Liouville numbers

It is said that a real number ω ∈ R is a Liouville number if for any ν ≥ 1 there is a positive integer
k ∈ N, k ≥ 2, and l ∈ Z such that

0 < |kω − l| ≤ 1

kν
.

�

Lemma 1.13 (Liouville, 1844)

For any algebraic irrational number ω ∈ Q, there are constants γ > 0 and ν ≥ 1 such that:

|kω − l| ≥ γ

|k|ν , ∀k ∈ Z, k �= 0, l ∈ Z. (1.18)

Remark 1.14

This lemma means that every irrational Liouville number is transcendental.

Proof. Let Q = Irr(ω,Q) be the irreducible polynomial of ω over Q. This polynomial can be
written as
Q(z) = αrz

r + αr−1z
r−1 + · · · + α1z + α0 ∈ Q[z], with αj =

bj
cj
, with bj , cj ∈ Z, cj �= 0 (j =

0, 1, . . . , r).
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Define P (z) = arz
r + ar−1z

r−1 + · · ·+ a1z + a0 ∈ Z[z], with aj = bj

r∏
i = 0
i �= j

ci ∈ Z.

Thus, Q(z) = 1
cP (z), with c =

r∏
j=0

cj . The irreducibility properties of Q and the definition of P

lead us to the following properties for P :

(i) P (ω) = 0;

(ii) P is irreducible in Z[z], that is, if P (z) = P1(z)P2(z), with P1, P2 ∈ Z[z], then either P1 is
constant or P2 is constant, i.e. P cannot be factorized in Z[z] as a product of non–trivial
polynomials.

(iii) For any k, l ∈ Z, with k �= 0,

krP

(
l

k

)
= arl

r + ar−1kl
r−1 + · · ·+ a1k

r−1l + a0 ∈ Z.

(iv) P
(
l
k

) �= 0, ∀k, l ∈ Z, k �= 0. Otherwise, ω and l
k would be distinct roots of P , which is not

possible due to the irreducibility.

On one side, the degree of the polynomial P is r = deg(Irr(Q, ω)) ≥ 2. Otherwise, if r = 1, since
P (ω) = 0, ω would be rational, against our assumption. We take now ν = r − 1 ≥ 1.
On the other hand we can express P centered at ω, namely

P (z) =

r∑
j=0

ãj(z − ω)j .

Observe that ãj =
1

j!
P (j)(ω), ∀j = 0, 1, . . . , r. Furthermore, since Q is the irreducible polynomial

of ω over Q, then P (ω) = ã0 = 0 and P ′(ω) = ã1 �= 0. Otherwise P would have ω as a multiple

root, which is not possible because of the irreducibility. Now, if we call M =

r∑
j=1

|ãj |, then M > 0,

since ã1 �= 0. So, we can define γ = min

{
1,

1

M

}
> 0. Notice that the constant γ depends only

on ω.
To finish the proof, we check that with these definitions for γ and ν the inequalities (1.18) hold.
Let k ∈ Z \ {0} and l ∈ Z. If |kω − l| ≥ 1, |kω − l| ≥ γ ≥ γ

|k|ν . If |kω − l| < 1, then

|kω − l|j ≤ 1, ∀j = 1, . . . r, and we can write:∣∣∣∣P ( l

k

)∣∣∣∣ =

∣∣∣∣∣∣
r∑

j=1

ãj

(
l

k
− ω

)j
∣∣∣∣∣∣ ≤

r∑
j=1

|ãj |
∣∣∣∣ lk − ω

∣∣∣∣j = r∑
j=1

|ãj | |ωk − l|j
|k|j

=
|ωk − l|

|k|
r∑

j=1

|ãj | |ωk − l|j−1

|k|j−1
≤ |ωk − l|

|k|
r∑

j=1

|ãj | = |ωk − l|
|k| ·M .

Therefore, ∣∣∣∣krP ( l

k

)∣∣∣∣ ≤ |ωk − l| |k|r−1 ·M = |ωk − l| |k|ν ·M .

Since krP
(
l
k

) ∈ Z and P
(
l
k

) �= 0, we have:

1 ≤ |ωk − l| |k|ν ·M .
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It follows that:

|ωk − l| ≥ 1

M
|k|−ν ≥ γ|k|−ν ,

which is the inequality (1.18) that we wanted to prove.
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Definition 1.15 Diophantine condition

It is said that ω ∈ T satisfies the Diophantine condition if

|ωk − l| ≥ γ|k|−ν , ∀k ∈ Z \ {0}, l ∈ Z (1.19)

for some suitable constants γ > 0 and ν ≥ 1. In this case, we say that ω is Diophantine of class
ν and constant γ.
The set of all Diophantine frequencies7 ω ∈ T of class ν and constant γ will be denoted by DC(γ, ν).

�

Remark 1.16

Given an irrational algebraic number ω ∈ Q, Liouville’s Lemma 1.13 assures that ω is Diophan-
tine. Namely, ω ∈ DC(γ, ν) for some γ > 0 and ν ≥ 1. Our proof of the lemma brings out a way
to obtain γ and ν explicitly.

For instance, the irreducible polynomial of the golden ratio ω = 1+
√
5

2 is P (z) = z2− z− 1. So, we

can take ν = deg(Irr(ω,Q))− 1 = 1, and γ = min{1, 1
M }, with M = |P ′(ω)|+ |P ′′(ω)| = 2 +

√
5.

Thus, γ = 1
M = −2 +

√
5, and we have ω = 1+

√
5

2 ∈ DC(−2 +
√
5, 1).

In general, the set of the so–called Diophantine numbers of class ν ≥ 1 is

DC(ν) =
⋃
γ>0

DC(γ, ν)

and the set of all Diophantine numbers is defined as

DC(∞) =
⋃
ν≥1

DC(ν) .

In particular, DC(1) is known as the class of bad approximable numbers. Of course, every quadratic
irrational number belongs to this class, for instance, the golden ratio.
With these notations, we can mention the following properties that we are not going to prove:

(i) ∀γ > 0 and ν ≥ 1, DC(γ, ν) is a set of full Lebesgue measure in R.

(ii) DC(ν) has zero Lebesgue measure but it is everywhere dense.

(iii) If 1 < ν1 < ν2 then:
DC(1) � DC(ν1) � DC(ν2) � DC(∞) .

7With this notation we mean implicitly that γ > 0 and ν ≥ 1 are given.
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1.3 Small denominators

In order to help proving the following Lemma 1.19 which concerns some arithmetical properties
relative to the so–called small denominators, we define now some auxiliary real functions.

Definition 1.17 Some auxiliary functions

(i) d : R −→ R the 1−periodic function, i.e. d(x+ 1) = d(x), ∀x ∈ R, given by d(x) = x on the
interval (−1

2 ,
1
2 ].

Figure 1.3: d(x) = x, ∀x ∈ (−1
2 ,

1
2 ] and d(x+ 1) = d(x), ∀x ∈ R

(ii) l : R −→ R given by l(x) = x− d(x), ∀x ∈ R.

Figure 1.4: l(x) = x− d(x), ∀x ∈ R
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(iii) D : R −→ R defined as D(x) = |d(x)|.

Figure 1.5: D(x) = |d(x)|, ∀x ∈ R

�

Remark 1.18

Observe that, from the above definitions, the following properties become obvious:

(1) d(x+ l) = d(x) = x, ∀x ∈ (−1
2 ,

1
2 ] and l ∈ Z.

(2) d(x) = 0 ⇐⇒ x ∈ Z.

(3) l(x) ∈ Z, ∀x ∈ R.

(4) D(−x) = D(x), ∀x ∈ R.

(5) 0 ≤ D(x) ≤ 1
2 , ∀x ∈ R.

(6) D(x) = 0 ⇐⇒ x ∈ Z.

(7) D(x) = 1
2 ⇐⇒ x = 2k+1

2 for some k ∈ Z.

(8) ∀x ∈ R, D(x) = |d(x)| = |x− l(x)| = min
l∈Z

|x− l| which is the minimum distance from x to an

integer number.

Lemma 1.19 Small denominators

Let ω ∈ R\Q be any irrational number. Lets call

Dk = min
l∈Z

|ωk − l|, k ∈ Z

and
D∗

n = min
1≤k≤n

Dk, n ∈ N .

Then:

(a) For every λ > 0,
|e2πkωi − λ| ≥ 2(1 + λ)Dk, ∀k ∈ Z. (1.20)

(b)
n∑

k=1

1

D2m
k

≤ 2ζ(2m)
1

(D∗
n)

2m
, ∀n ∈ N , m >

1

2
, (1.21)

where ζ(z) =

∞∑
k=1

1

kz
is the Riemann zeta function.
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(c) If, besides, ω is Diophantine, i.e. ω ∈ DC(γ, ν), then for every λ > 0,

|e2πkωi − λ| ≥ 2(1 + λ)γ|k|−ν , ∀k ∈ Z \ {0}, (1.22)

and

(d)
n∑

k=1

1

D2m
k

≤ 2ζ(2m)γ−2mn2mν , ∀n ∈ N , m >
1

2
. (1.23)

Proof. Once ω ∈ R \Q is fixed, we define the following sequences:

dk = d(kω), k ∈ Z ,

lk = l(kω) = kω − dk, k ∈ Z , and

Dk = D(kω) = |dk| = |kω − lk| = inf
l∈Z

|kω − l|, k ∈ Z .

Due to the irrationality of ω and the remarked properties of the auxiliary functions which were
described in Definition 1.17, ∀k ∈ Z , kω ∈ R \ Q, −1

2 < dk < 1
2 , dk �= 0 , and 0 < Dk < 1

2 .
Notice also that D−k = Dk = D|k|, ∀k ∈ Z since D is an even function.

(a) On one side,

|e2πkωi − λ|2 = (1− λ)2 cos2(πkω) + (1 + λ)2 sin2(πkω), ∀k ∈ Z. (1.24)

Indeed,

|e2πkωi − λ|2 = | cos(2πkω) + i sin(2πkω)− λ|2 = (−λ+ cos(2πkω))2 + sin2(2πkω)

= λ2 − 2λ cos(2πkω) + cos2(2πkω) + sin2(2πkω)

= 1− 2λ cos(2πkω) + λ2 = 1− 2λ(cos2(πkω)− sin2(πkω)) + λ2

= 1− 2λ(1− 2 sin2(πkω)) + λ2 = (1− λ)2 + 4λ sin2(πkω)

= (1− λ)2(cos2(πkω) + sin2(πkω))) + 4λ sin2(πkω)

= (1− λ)2 cos2(πkω) + ((1− λ)2 + 4λ) sin2(πkω)

= (1− λ)2 cos2(πkω) + (1 + λ)2 sin2(πkω) .

Thus, from (1.24), it follows that:

|e2πkωi − λ|2 ≥ (1 + λ)2 sin2(πkω) = (1 + λ)2 sin2(πkω − πlk)

= (1 + λ)2 sin2(π(kω − lk)) = (1 + λ)2 sin2(πdk) , (1.25)

for every k ∈ Z, since the square of the sinus is a π–periodic function and lk ∈ Z.

Furthermore, since −1
2 < dk < 1

2 , dk �= 0 then the following estimate

2

π
<

sinx

x
< 1, ∀x ∈ (−π

2
,
π

2
), x �= 0,

can be applied to πdk.
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Figure 1.6:
2
π < sinx

x < 1, ∀x ∈ (−π
2 ,

π
2 ), x �= 0.

So, we get: ∀k ∈ Z, 2
π < sin(πdk)

πdk
< 1, or equivalently:

∀k ∈ Z, 2 <
sin(πdk)

dk
< π. (1.26)

From (1.25) and (1.26) we have, finally:

|e2πkωi − λ|2 ≥ (1 + λ)24d2k = (1 + λ)24D2
k , ∀k ∈ Z.

Therefore,

|e2πkωi − λ| ≥ 2(1 + λ)Dk, ∀k ∈ Z,

and (1.20) is proved.

(b) 8 Given n ∈ N let us consider the set

{d1, d2, . . . , dn} .

These numbers are all different from each other in view of the irrationality of ω.

Indeed, if dj = jω − lj = kω − lk = dk for some j �= k, then ω =
lj−lk
j−k ∈ Q which is a

contradiction.

Since all of these numbers are different from zero, we can assume that p of them are negative
and the remainder q = n− p are positive. Therefore, we can choose a permutation σ ∈ Sn in
order to sort the set {d1, d2, . . . , dn} so that

−1

2
< dσ(1) < dσ(2) < · · · < dσ(p) < 0 < dσ(p+1) < dσ(p+2) < · · · < dσ(p+q) <

1

2
,

8cf. [51] Lemma 2.1. p. 36 On Optimal Estimates for the Solutions of Linear Differences Equations on the Circle.
See also [50] Note on sums containing small denominators.
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where p+ q = n. For the sake of clarity we denote

αj = dσ(j), j = 1, . . . , p (1.27)

βj = dσ(p+j), j = 1, . . . , q . (1.28)

− 1
2 0 1

2α1 = dσ(1) α2 = dσ(2) αp = dσ(p) β1 = dσ(p+1) β2 = dσ(p+2) βq = dσ(p+q)

Figure 1.7: Sorting denominators {d1, d2, . . . , dn}.
Then, we can write for every j = 2, . . . , q,

βj = β1 +

j∑
i=2

(βi − βi−1)

Taking in account now the distribution of the positive values we have, for i = 2, . . . , j:

0 < βi − βi−1 = |βi − βi−1|
= |dσ(p+i) − dσ(p+i−1)|
= |Dσ(p+i) −Dσ(p+i−1)|
= |(ωσ(p+ i)− lσ(p+i))− (ωσ(p+ i− 1)− lσ(p+i−1))|
= |ω(σ(p+ i)− σ(p+ i− 1))− (lσ(p+i) − lσ(p+i−1))|
≥ min

l∈Z
|ω(σ(p+ i)− σ(p+ i− 1))− l|

= min
l∈Z

|ω|σ(p+ i)− σ(p+ i− 1)| − l|
= D|σ(p+i)−σ(p+i−1)|
≥ min

1≤k≤n
Dk = D∗

n ,

since |σ(p+ i)− σ(p+ i− 1)| ∈ {1, 2, . . . , n− 1}.
Thus:

βj = β1 +

j∑
i=2

(βi − βi−1) ≥ β1 + (j − 1)D∗
n, ∀j = 2, . . . , q .

Furthermore, for j = 1 we have:

β1 = dσ(p+1) = |dσ(p+1)| = Dσ(p+1)

= min
l∈Z

|ωσ(p+ 1)− l|
≥ min

1≤k≤n
Dk = D∗

n ,

since σ(p+ 1) ∈ {1, 2, . . . , n}.
Hence,

βj ≥ jD∗
n, ∀j = 1, . . . , q . (1.29)

On the other hand, we consider now the negative values, αj , j = 1, . . . , p , and argue with
them in a similar way. For every j = 1, . . . , p− 1 we have,

αj =

p−1∑
i=j

(αi − αi+1) + αp
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Now we have, for i = j, . . . , p− 1:

0 > αi − αi+1 = dσ(i) − dσ(i+1)

= −|dσ(i) − dσ(i+1)|
= −|(ωσ(i)− lσ(i)) − (ωσ(i+ 1)− lσ(i+1))|
= −|ω(σ(i)− σ(i+ 1))− (lσ(i) − lσ(i+1))|
≤ −min

l∈Z
|ω(σ(i)− σ(i+ 1))− l|

= −Dσ(i)−σ(i+1)

= −D|σ(i)−σ(i+1)|
≤ − min

1≤k≤n
Dk = −D∗

n ,

since |σ(i)− σ(i+ 1)| ∈ {1, . . . , n− 1}. Thence,

αj =

p−1∑
i=j

(αi − αi+1) + αp ≤ −(p− j)D∗
n + αp .

Moreover,

αp = dσ(p) = −|dσ(p)| = −Dσ(p)

= −min
l∈Z

|ωσ(p)− l|
≤ − min

1≤k≤n
Dk = −D∗

n ,

since σ(p) ∈ {1, 2, . . . , n} and then,

αj ≤ −(p− j + 1)D∗
n, ∀j = 1, . . . , p . (1.30)

To end the proof of this part we write:
n∑

k=1

1

D2m
k

=
n∑

k=1

1

Dσ(k)
2m =

n∑
k=1

1

dσ(k)
2m

=

p∑
j=1

1

dσ(j)
2m +

n∑
j=p+1

1

dσ(j)
2m

=

p∑
j=1

1

α2m
j

+

q∑
j=1

1

β2m
j

. (1.31)

From (1.29) and (1.30) we have also:

1

α2m
j

≤ 1

(p− j + 1)2m
1

D∗
n
2m , ∀j = 1, . . . , p , (1.32)

1

β2m
j

≤ 1

j2m
1

D∗
n
2m , ∀j = 1, . . . , q . (1.33)

Finally, from (1.31), (1.32), and (1.33) we conclude,

n∑
k=1

1

D2m
k

≤
⎛⎝ p∑

j=1

1

(p− j + 1)2m
+

q∑
j=1

1

j2m

⎞⎠ 1

D∗
n
2m

=

⎛⎝ p∑
j=1

1

j2m
+

q∑
j=1

1

j2m

⎞⎠ 1

D∗
n
2m

≤ 2

n∑
k=1

1

k2m
1

D∗
n
2m ≤ 2

∞∑
k=1

1

k2m
1

D∗
n
2m = 2ζ(2m)

1

D∗
n
2m ,
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as we wanted to prove9. Notice that the series ζ(2m) =

∞∑
k=1

1

k2m
is convergent since m > 1

2 .

(c) It follows directly from part (a) and the Diophantine condition of ω.

ω ∈ DC(γ, ν) ⇒ |ωk − l| ≥ γ|k|−ν , ∀k ∈ Z \ {0}, l ∈ Z ⇒ ∀k ∈ Z \ {0}, Dk = min
l∈Z

|ωk − l| ≥
γ|k|−ν ⇒ |e2πkω − λ| ≥ 2(1 + λ)γ|k|−ν .

(d) The last part follows immediately from (b) and the Diophantine condition of ω.

Indeed, if ω ∈ DC(γ, ν) then |ωk − l| ≥ γ|k|−ν , ∀k ∈ Z \ {0} and l ∈ Z.

Thus, ∀n ∈ N, D∗
n = min

1≤k≤n
Dk = min

1≤k≤n
min
l∈Z

|ωk− l| ≥ min
1≤k≤n

γ|k|−ν = γn−ν and hence, by (b):

n∑
k=1

1

Dk
2m ≤ 2ζ(2m)

1

D∗
n
2m ≤ 2ζ(2m)γ−2mn2mν , ∀n ∈ N , m >

1

2
.

9Recall that the Riemann zeta function is defined by ζ(z) =

∞∑
k=1

1

kz
. In particular, ζ(2) =

∞∑
k=1

1

k2
=

π2

6
and

ζ(4) =
∞∑

k=1

1

k4
=

π4

90
.
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1.4 Cohomological equation

Theorem 1.20 Rüßmann estimates

Let λ ∈ (a, 1a) for some a ∈ (0, 1) and ω ∈ DC(γ, ν) be a Diophantine frequency10 satisfying the
Diophantine condition (1.19) for some constants γ ∈ (0,+∞) and ν ∈ [1,+∞).

Let us consider the so–called cohomological equation:

u(θ + ω)− λu(θ) = v(θ) , θ ∈ T (1.34)

for some function u, where v ∈ A� is given, with 	 > 0 and ‖v‖� < ∞. Assume moreover that v

is a zero-average function, i.e. < v >=

∫
T
v(θ)dθ = 0. Then:

(a) There is one and only one solution to (1.34), u ∈ H(Int(T�)), with zero average. This solution
u can be expanded in Fourier series

u(z) =
∑
k∈Z

ûke
2πkzi, z ∈ Int(T�),

where û0 = 0 and

ûk =
v̂k

e2πkωi − λ
, ∀k ∈ Z \ {0}. (1.35)

(b) The series is absolutely and uniformly convergent in every strip T�−δ, with 0 < δ < 	.

(c) The solution u holds the following Rüßmann estimate:

‖u‖�−δ ≤ CR γ−1δ−ν‖v‖�, ∀δ ∈ (0, 	). (1.36)

where the constant CR = CR(a, ν) is independent of γ, uniform in λ, and it is given by

CR =
1

1 + a

√
2ζ(2)Γ(2ν + 1)

(4π)ν
=

1

1 + a

π√
3

√
Γ(2ν + 1)

(4π)ν
. (1.37)

Note:

ζ(z) =
∞∑
k=1

1

kz
(Re(z) > 1), is the Riemann zeta function.

Γ(z) =

∫ ∞

0
xz−1e−xdx (Re(z) > 0), is the gamma function.

Proof.

(a) Assuming that such a solution u exist, notice that, by Lemma 1.9, both functions u and v can
be expandable in Fourier series since they are both analytic in a complex strip. If we consider
the Fourier expansions of u and v,

v(θ) =
∑
k∈Z

v̂ke
2πkθi (1.38)

10See Definition 1.15.
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which is given, and

u(θ) =
∑
k∈Z

ûke
2πkθi (1.39)

which is unknown, then for every θ ∈ T, we have:

u(θ + ω)− λu(θ) = v(θ) ⇔
∑
k∈Z

ûke
2πkωie2πkθi − λ

∑
k∈Z

ûke
2πkθi =

∑
k∈Z

v̂ke
2πkθi ⇔

ûk(e
2πkωi − λ) = v̂k , ∀k ∈ Z.

Since λ ∈ R and ω ∈ R \Q then ∀k ∈ Z \ {0}, e2πkωi − λ �= 0.

It turns out that the following formal solution is obtained. Let us define the series:

Rλv(z) =
∑
k∈Z

ûke
2πkzi (z ∈ T�−δ) , (1.40)

where û0 = 0 and

ûk =
v̂k

e2πkωi − λ
, ∀k ∈ Z \ {0} .

In the next part of this proof we show that this series actually belongs to A�−δ and it is,
therefore, the unique solution to the cohomological equation (1.34) with zero–average.

(b) In spite of the fact that the coefficients ûk are well defined, one cannot assure the regularity of
the solution if the irrationality of ω is the only property required. As we show here, a sufficient
condition for that regularity is the Diophantine character of the frequency.

If we take s ∈ (−	, 	) and z ∈ T�−|s|, we can write z = x+ yi and then∣∣∣e2πkzi∣∣∣ = ∣∣∣e2πk(x+yi)i
∣∣∣ = ∣∣∣e2πkxie−2πky

∣∣∣ = e−2πky ≤ e2π|k|(�−|s|), ∀z ∈ T�−|s|.

It follows that:

|Rλv(z)| =

∣∣∣∣∣∑
k∈Z

ûke
2πkzi

∣∣∣∣∣ ≤∑
k∈Z

∣∣∣ûke2πkzi∣∣∣ = ∑
k∈Z\{0}

∣∣∣ûke2πkzi∣∣∣
=

∑
k∈Z\{0}

∣∣∣∣ v̂k
e2πkωi − λ

e2πkzi
∣∣∣∣ = ∑

k∈Z\{0}

|v̂k|
|e2πkωi − λ|

∣∣∣e2πkzi∣∣∣
≤

∑
k∈Z\{0}

|v̂k|
|e2πkωi − λ|e

2π|k|(�−|s|) =
∑

k∈Z\{0}
|v̂k|e2π|k|� e−2π|k||s|

|e2πkωi − λ|

Using now the Cauchy–Schwartz’s inequality we obtain the following estimate:

|Rλv(z)| ≤
⎛⎝ ∑

k∈Z\{0}
|v̂k|2e4π|k|�

⎞⎠ 1
2
⎛⎝ ∑

k∈Z\{0}

e−4π|k||s|

|e2πkωi − λ|2

⎞⎠ 1
2

≤ (
2‖v‖2�

) 1
2

⎛⎝ ∑
k∈Z\{0}

e−4π|k||s|

|e2πkωi − λ|2

⎞⎠ 1
2

=

⎛⎝ ∑
k∈Z\{0}

2e−4π|k||s|

|e2πkωi − λ|2

⎞⎠ 1
2

‖v‖�

=
√

Φ(s) ‖v‖� ,

where the first factor has been bounded by means of Lemma 1.8. and

Φ : (−	, 	) −→ R

s �−→ Φ(s) :=
∑

k∈Z\{0}

2e−4π|k||s|

|e2πkωi − λ|2
(1.41)
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As long as Φ(s) is finite, all of the above inequalities hold. So, we are going to prove now that
Φ(s) < ∞, ∀s ∈ (−	, 	).

First of all, we express the denominators in the same way as in (1.24), namely:

|e2πkωi − λ|2 = (1− λ)2 cos2(πkω) + (1 + λ)2 sin2(πkω) . (1.42)

Thus, we get:

Φ(s) =

∞∑
n=1

4

(1− λ)2 cos2(πnω) + (1 + λ)2 sin2(πnω)
e−4πn|s| , ∀s ∈ (−	, 	) . (1.43)

Let us call now

cn =
4

(1− λ)2 cos2(πnω) + (1 + λ)2 sin2(πnω)
, n ∈ N (1.44)

and

Cn =

n∑
k=1

ck , n ∈ N . (1.45)

We also denote
χ : [1,+∞)× (−	, 	) −→ R

(t, s) �−→ χ(t, s) := e−4πt|s| .

Thus, Φ(s) =
∞∑
n=1

cnχ(n, s), ∀s ∈ (−	, 	).

As we have seen, if s ∈ (−	, 	) then:

∀z ∈ T�−|s|, |Rλv(z)| ≤
√

Φ(s) ‖v‖� (1.46)

and we want to obtain an estimate of the square root of Φ.

First, we prove that the function Φ can be expressed in the following way11:

Φ(s) =

∞∑
n=1

Cn(χ(n, s)− χ(n+ 1, s)) , ∀s ∈ (−	, 	) . (1.47)

Φ(s) =

∞∑
n=1

cnχ(n, s) = lim
n→∞

n∑
k=1

ckχ(k, s) = lim
n→∞

(
c1χ(1, s) +

n∑
k=2

(Ck − Ck−1)χ(k, s)

)

= lim
n→∞

(
n∑

k=1

Ckχ(k, s)−
n∑

k=2

Ck−1χ(k, s)

)

= lim
n→∞

(
Cnχ(n, s) +

n−1∑
k=1

Ckχ(k, s)−
n−1∑
k=1

Ckχ(k + 1, s)

)

= lim
n→∞

(
Cnχ(n, s) +

n−1∑
k=1

Ck(χ(k, s)− χ(k + 1, s))

)
.

11For this purpose we use the technique based on Abel’s summation formula.
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Now, by means of Lemma 1.19, we can see that

Cn ≤ 2ζ(2)

(1 + λ)2
γ−2n2ν , (1.48)

and hence lim
n→∞Cnχ(n, s) = 0.

Thus:

Φ(s) = lim
n→∞

n−1∑
k=1

Ck(χ(k, s) − χ(k + 1, s)) =

∞∑
n=1

Cn(χ(n, s) − χ(n + 1, s)) , ∀s ∈ (−	, 	) , and

this is the expression (1.47) that we wanted to prove.

Furthermore, we deduce finally the following estimate:

Φ(s) ≤ 2ζ(2)

(1 + λ)2
γ−2

∞∑
n=1

n2ν(χ(n, s)− χ(n+ 1, s)) . (1.49)

To finish the proof of the finiteness of Φ we can estimate the latter sum by an integral:
∞∑
n=1

n2ν(χ(n, s)− χ(n+ 1, s)) =
∞∑
n=1

n2ν

∫ n+1

n
−∂χ

∂t
(t, s)dt =

∞∑
n=1

−
∫ n+1

n
n2ν ∂χ

∂t
(t, s)dt

≤
∞∑
n=1

−
∫ n+1

n
t2ν

∂χ

∂t
(t, s)dt =

∫ ∞

1
−t2ν

∂χ

∂t
(t, s)dt ≤

∫ ∞

0
−t2ν

∂χ

∂t
(t, s)dt.

The last integral is related with the gamma function:

Γ : {z ∈ C : Re(z) > 0} −→ C

z �−→ Γ(z) =

∫ ∞

0
xz−1e−xdx .

Indeed, ∫ ∞

0
−t2ν

∂χ

∂t
(t, s)dt =

∫ ∞

0
4π|s|t2νe−4π|s|tdt.

With the change of variable x = 4π|s|t we have:∫ ∞

0
−t2ν

∂χ

∂t
(t, s)dt = (4π|s|)−2ν

∫ ∞

0
x2νe−xdx = (4π|s|)−2νΓ(2ν + 1).

The convergence of the integral that defines the gamma function leads us to the finiteness of
Φ. In fact, from (1.49), we get:

Φ(s) ≤ 2ζ(2)

(1 + λ)2
γ−2(4π|s|)−2νΓ(2ν + 1) . (1.50)

Since Φ(s) < +∞, ∀s ∈ (−	, 	) then the series given by Rλv in (1.40) converges absolutely
and uniformly in every compact subset of Int(T�) and hence represents an analytic function
in this open strip, which satisfies obviously the cohomological equation (1.34). By analytic
continuation Rλv, analytic a priori in Int(T�−δ) can be extended continuously to the boundary
of this strip ∂T�−δ. Hence, Rλv ∈ A�−δ, for every δ ∈ (0, 	).

(c) Taking in account (1.50) and getting back to (1.46) we finally obtain the desired estimate,
that is, for any 0 < δ < 	:

∀z ∈ T�−δ, |Rλv(z)| ≤
√

Φ(δ) ‖v‖� ≤ 1

1 + λ

√
2ζ(2)Γ(2ν + 1)

(4π)ν
γ−1δ−ν‖v‖� . (1.51)
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Since 0 < a < λ and calling12 CR = CR(a, ν) =
1

1+a

√
2ζ(2)Γ(2ν+1)

(4π)ν = 1
1+a

π√
3

√
Γ(2ν+1)

(4π)ν we have:

∀z ∈ T�−δ, |Rλv(z)| ≤
√

Φ(δ) ‖v‖� ≤ CRγ
−1δ−ν‖v‖� , (1.52)

which leads to the desired Rüßmann estimate (1.36).

Remark 1.21

In what follows we will denote by u = Rλv the unique solution to a cohomological equation (1.34)
obtained under the same conditions as in Theorem 1.2013.
In spite of the fact that Rλv ∈ A�−δ, ∀δ ∈ (0, 	), one cannot assure that Rλv ∈ A� unless that it
is bounded in Int(T�) and hence extendable by continuity to the boundary of the strip.

Corollary 1.22

Let 	 ∈ (0, 1/2), γ > 0, ν ≥ 1, λ > 0, and ω ∈ DC(γ, ν).
If v ∈ A�, then

∃m = m(γ, ν) ∈ N , such that ∀δ ∈ (0, 	), ‖Rλṽ‖�−δ ≤ δ−m‖ṽ‖� ≤ 2δ−m‖v‖� . (1.53)

Remark 1.23

More specifically, we can take m ∈ N such that

m ≥ ν +

log

(
π
√

Γ(2ν+1)γ−1

2
√
3(4π)ν

)
log 2

.

Proof. Let a ∈ (0, 1) such that a < λ < 1
a . By Theorem 1.20 we know that there is a unique

solution u = Rλṽ to the cohomological equation

u(θ)− λu(θ + ω) = ṽ(θ), θ ∈ T,

and u is extendable analytically to the complex strip T�−δ, ∀δ ∈ (0, 	), being ‖u‖�−δ ≤ CRγ
−1δ−ν‖ṽ‖�.

Let us call C(γ, ν) = (a+ 1)CRγ
−1 =

π
√

Γ(2ν+1)γ−1

√
3(4π)ν

.

Since a ∈ (0, 1), CR ≤ (a+ 1)CR. Therefore, CRγ
−1 ≤ C(γ, ν). It follows that

∀δ ∈ (0, 	), ‖Rλv‖�−δ ≤ C(γ, ν)δ−ν‖v‖�.

We need to find m ∈ N sufficiently large so that C(γ, ν)δ−ν ≤ δ−m, i.e. δm−ν ≤ 1
C(γ,ν) .

12Recall that ζ(2) =

∞∑
n=1

1

n2
=

π2

6
.

13See also Definition 1.24.
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Since we have taken 	 < 1/2, then δm−ν < 1
2m−ν . Hence, if 1

2m−ν ≤ 1
C(γ,ν) , then the condition

holds. So, we must solve the unknown m ∈ N of the latter inequality. Thus,

m ≥ ν +
logC(γ, ν)

log 2
.

With this value of m ∈ N we have, finally:

∀δ ∈ (0, 	), ‖Rλv‖�−δ ≤ δ−m‖ṽ‖� ,

and ‖ṽ‖� ≤ 2‖v‖�.

Example

If ω = 1+
√
5

2 , then ω ∈ DC(γ, ν), with γ = −2 +
√
5 and ν = 1.

Thus, C(γ, ν) =
√
6

12 (2 +
√

(5)) ≈ 0.864683755051501...
With these values we obtain,

m ≥ 1 +
log(C(γ, ν))

log 2
= 0.790244490531274...

For instance, we can take m = 1.
If we choose 0 < 	 < 1

2 , it turns out that

‖Rλṽ‖�−δ ≤ δ−1‖ṽ‖� , ∀δ ∈ (0, 	).
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1.5 The cohomological operator

According to Theorem 1.20 we can define an specific operator related with the solutions of
cohomological equations.

Definition 1.24 Cohomological operator

Given 	 > 0 and ω ∈ DC(γ, ν) with γ > 0 and ν ≥ 1, we define for each λ > 0 and δ ∈ (0, 	),
the so–called cohomological operator Rλ over the space of analytic 1–periodic functions with zero–
average A�,0 (endowed with the uniform convergence topology) by:

Rλ : A�,0 −→ A�−δ,0

v �−→ Rλv : T�−δ −→ C

z �−→ Rλv(z) =
∑

k∈Z\{0}

v̂k
e2πkωi − λ

e2πkzi .
(1.54)

�

Proposition 1.25 Properties of the cohomological operator

The cohomological operator Rλ (see Definition 1.24) holds the following properties:

(i) Rλ is well defined and for each v ∈ A�,0, Rλv is the unique solution in A�−δ,0 for any
δ ∈ (0, 	) to the cohomological equation:

u(θ + ω)− λu(θ) = v(θ), ∀θ ∈ T. (1.55)

(ii) ∀δ ∈ (0, 	), Rλ ∈ L(A�,0,A�−δ,0), i.e. it is a continuous linear operator.

(iii) Let
Lλ : A�,0 −→ A�,0

u �−→ Lλu = u ◦ Rω − λu
(1.56)

where Rω(θ) = θ + ω is the ergodic rigid rotation with the Diophantine frequency

ω ∈ DC(γ, ν).
Then, the compositions Rλ◦Lλ : A�,0 → A�−δ,0 and Lλ◦Rλ : A�,0 → A�−δ,0 are well defined.
Moreover:

(Rλ ◦ Lλ)u = u|T�−δ
, ∀u ∈ A�,0 , (1.57)

(Lλ ◦Rλ)v = v|T�−δ
, ∀v ∈ A�,0 . (1.58)

(iv) If v ∈ A�,0 is real for real values, so is Rλv.

Proof.

(i) This can be seen at once from Theorem 1.20.

(ii) The linearity of the cohomological operator Rλ is obvious from the linearity of the Fourier
coefficients. The continuity follows from (1.36).

(iii) Let u ∈ A�,0. Then, Lλu ∈ A�,0 since Lλu = u ◦ Rω − λu is analytic in T� and also
has zero average, by the 1–periodicity of u. Therefore, (Rλ ◦ Lλ)u ∈ A�−δ,0. Let us call
u∗ = (Rλ ◦ Lλ)u. We want to show that u∗ = u|T�−δ

.
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u∗ is, by the definition of Rλ the unique solution in T�−δ to the cohomological equation

w(θ + ω)− λw(θ) = Lλu(θ),

but
u(θ + ω)− λu(θ) = Lλu(θ), ∀θ ∈ T�.

In particular,
u(θ + ω)− λu(θ) = Lλu(θ), ∀θ ∈ T�−δ.

Therefore, u∗(θ) = u(θ), ∀θ ∈ T�−δ, i.e. u
∗ = u|T�−δ

.

For the second part, let v ∈ A�,0. Then Rλv ∈ A�−δ,0 and (Lλ ◦ Rλ)v ∈ A�−δ,0 since
(Lλ ◦Rλ)v = Lλ(Rλv) = Rλv(θ + ω)− λRλv(θ) and by the linearity of the average:

< (Lλ ◦Rλ)v >=< Rλ(v ◦ Rω) > −λ < Rλv >= 0, inasmuch as < v >= 0.

Let us call v∗ = (Lλ ◦Rλ)v. We want to show that v∗ = v|T�−δ
.

We argue ∀θ ∈ T�−δ:

v∗(θ) = (Lλ ◦Rλ)v(θ) = Rλv(θ+ω)− λRλv(θ). By the definition of Rλ, Rλv ∈ A�−δ is the
unique solution to the cohomological equation u(θ + ω)− λu(θ) = v(θ) in T�−δ.

Therefore, ∀θ ∈ T�−δ, v
∗(θ) = Rλv(θ + ω)− λRλv(θ) = v(θ), i.e. v∗ = v|T�−δ

.

(iv) Assume that ∀z = x+ yi ∈ T�, with y = 0, Im(v(z)) = 0. Then,

(a)

v̂k =

∫
T
v(θ)e−2πkθi dθ =

∫
T
v(θ)e−2πkθi dθ =

∫
T
v(θ)e2πkθi dθ

=

∫
T
v(θ)e−2π(−k)θi dθ = v̂−k, ∀k ∈ Z \ {0}.

(b) e2πkωi − λ = e2πkωi − λ = e−2πkωi − λ = e2π(−k)ωi − λ, since λ is real.

(c) e2πkzi = e−2πkzi = e2π(−k)zi.

From these three facts we get:

Rλv(z) =
∑

k∈Z\{0}

v̂k
e2πkωi − λ

e2πkzi =
∑

k∈Z\{0}

v̂k

e2πkωi − λ
e2πkzi

=
∑

k∈Z\{0}

v̂−k

e2π(−k)ωi − λ
e2π(−k)zi =

∑
k∈Z\{0}

v̂k
e2πkωi − λ

e2πkzi = Rλv(z) .

In other words, if z is real, Rλv(z) is real.

Next proposition shows two slightly different ways to estimate some cohomological operator cor-
rections.
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Proposition 1.26 Cohomological operator correction estimates

Let λ, λ̄ ∈ [a, 1a ] for some a ∈ (0, 1) and ω ∈ DC(γ, ν) be a Diophantine frequency14 satisfying the
Diophantine condition (1.19) for some constants γ ∈ (0,+∞) and ν ∈ [1,+∞).

Given 	 > 0, let us consider the cohomological operator15:

Rλ : A�,0 −→ A�−δ,0

v �−→ Rλv : T�−δ −→ C

z �−→ Rλv(z) =
∑

k∈Z\{0}

v̂k
e2πkωi − λ

e2πkzi ,
(1.59)

where the series is absolutely and uniformly convergent in every strip T�−δ, with 0 < δ < 	.

Let us denote Δλ = λ̄− λ and ΔRλ = Rλ̄ −Rλ.

Then, the following properties hold, for every v ∈ A�,0:

(a) ΔRλv(z) = ΔλRλ̄Rλv(z) , ∀z ∈ T�−2δ, ∀δ ∈ (0, 12	).

(b) ‖ΔRλv‖�−2δ ≤ |Δλ|C2
R γ−2δ−2ν ‖v‖�, ∀δ ∈ (0, 12	),

where CR = 1
1+a

√
2ζ(2)

√
Γ(2ν+1)

(4π)ν is the Rüßmann constant.

(c) ‖ΔRλv‖�−δ ≤ |Δλ| C∗
R γ−2δ−2ν ‖v‖�, ∀δ ∈ (0, 	),

where C∗
R = 1

2
1

(1+a)2

√
2ζ(4)

√
Γ(4ν+1)

(4π)2ν
.

is independent of γ and uniform in λ and λ̄.

Proof.

(a) Let δ ∈ (0, 12	) and v ∈ A�,0. Then, ΔRλ = Rλ̄ − Rλ ∈ A�−δ,0. Now, take 	∗ = 	 − δ and
u = Rλv ∈ A�∗,0. Applying (1.57) we obtain:

(Rλ̄ ◦ Lλ̄)u = u|T�∗−δ
,

that is,

(Rλ̄ ◦ Lλ̄)ΔRλv(z) = ΔRλv(z), ∀z ∈ T�−2δ, (1.60)

since 	∗ − δ = 	 − 2δ. Moreover, developing the first term of (1.60) and using the definition
of the left cohomological operator Lλ̄, we can write:

(Rλ̄ ◦ Lλ̄)ΔRλv(z) = Rλ̄(Lλ̄Rλ̄v(z)− Lλ̄Rλv(z))

= Rλ̄(v(z)− (Rλv(z + ω)− λ̄Rλv(z)))

= Rλ̄(v(z)− (Rλv(z + ω)− (λ+Δλ)Rλv(z)))

= Rλ̄(v(z)− (Rλv(z + ω)− λRλv(z)) + ΔλRλv(z))

= Rλ̄(v(z)− v(z) + ΔλRλv(z))

= Rλ̄(ΔλRλv(z)) = ΔλRλ̄Rλv(z) .

14See Definition 1.15.

15See Definition 1.24.
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Notice that, since v ∈ A�,0 ⊆ A�∗,0, then by (1.58),

Lλ̄Rλ̄v(z) = v(z), ∀z ∈ T�∗−δ.

Summarizing,
ΔRλv(z) = ΔλRλ̄Rλv(z), ∀z ∈ T�−2δ, (1.61)

as we wanted to prove.

(b) Let δ ∈ (0, 12	), 	
∗ = 	 − δ, and v ∈ A�,0. Then, by part (a) and applying Theorem 1.20

(Rüßmann estimates) twice, we have:

‖ΔRλv‖�∗−δ = ‖ΔλRλ̄Rλ‖�∗−δ

= |Δλ| ‖Rλ̄Rλ‖�∗−δ

≤ |Δλ| CRγ
−1δ−ν‖Rλv‖�∗

= |Δλ| CRγ
−1δ−ν‖Rλv‖�−δ

≤ |Δλ| CRγ
−1δ−νCRγ

−1δ−ν‖v‖�
= |Δλ| C2

Rγ
−2δ−2ν‖v‖� , (1.62)

i.e.

‖ΔRλv‖�−2δ ≤ |Δλ| C2
Rγ

−2δ−2ν‖v‖�, ∀δ ∈ (0,
1

2
	). (1.63)

(c) The proof of this part is carried out, in some sense, in a parallel way to the one of the previous
Theorem 1.20 (Rüßmann estimates). First of all, we know from the above theorem that

Rλv(θ) =
∑

k∈Z\{0}

v̂k
e2πkωi − λ

e2πkθi , θ ∈ T�−δ

and

Rλ̄v(θ) =
∑

k∈Z\{0}

v̂k
e2πkωi − λ̄

e2πkθi , θ ∈ T�−δ

are the unique zero–average solutions to the cohomological equations

u(θ + ω)− λu(θ) = v(θ)

and
u(θ + ω)− λ̄u(θ) = v(θ) ,

respectively.

It follows that the difference of the cohomological operators applied to a given zero–average
function v ∈ A�,0 is given by:

ΔRλv(θ) = Rλ̄v(θ)−Rλv(θ)

=
∑

k∈Z\{0}

(
1

e2πkωi − λ̄
− 1

e2πkωi − λ

)
v̂k e

2πkθi

=
∑

k∈Z\{0}

λ̄− λ

(e2πkωi − λ̄)(e2πkωi − λ)
v̂k e

2πkθi

= Δλ
∑

k∈Z\{0}

v̂k
(e2πkωi − λ̄)(e2πkωi − λ)

e2πkθi . (1.64)

Notice that (1.64) fits with (1.61) obtained previously in part (a).
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Again, if we take s ∈ (−	, 	) and θ ∈ T�−|s|, we can write θ = x+ yi and then∣∣∣e2πkθi∣∣∣ = ∣∣∣e2πk(x+yi)i
∣∣∣ = ∣∣∣e2πkxie−2πky

∣∣∣ = e−2πky ≤ e2π|k|(�−|s|), ∀θ ∈ T�−|s|.

Therefore,

|ΔRλv(θ)| ≤ |Δλ|
∑

k∈Z\{0}
|v̂k| e2π|k|� e−2π|k| |s|

|e2πkωi − λ̄| |e2πkωi − λ| . (1.65)

By the Cauchy-Schwartz’s inequality and applying also Lemma 1.8, we have:

|ΔRλv(θ)| ≤ |Δλ|
⎛⎝ ∑

k∈Z\{0}
|v̂k|2 e4π|k|�

⎞⎠ 1
2
⎛⎝ ∑

k∈Z\{0}

e−4π|k||s|

|e2πkωi − λ̄|2 |e2πkωi − λ|2

⎞⎠ 1
2

≤ |Δλ| (2‖v‖2�) 12
(
2

∞∑
n=1

e−4πn|s|

|e2πnωi − λ̄|2 |e2πnωi − λ|2
) 1

2

= 2|Δλ|
( ∞∑

n=1

cnχ(n, s)

) 1
2

‖v‖� , (1.66)

where

cn =
1

|e2πnωi − λ̄|2 |e2πnωi − λ|2 , n ∈ N

and
χ : (0,+∞)× (−	, 	) −→ R

(t, s) �−→ χ(t, s) := e−4πt|s| .

Let us denote Υ(s) =

∞∑
n=1

cnχ(n, s), s ∈ (−	, 	). Thus, (1.66) is written as

|ΔRλv(θ)| ≤ 2|Δλ|
√

Υ(s)‖v‖� , ∀θ ∈ T�−|s| , s ∈ (−	, 	) . (1.67)

Our aim now is to obtain an estimate for Υ(s).

Let (Cn)n∈N be the sequence given by

Cn =

n∑
k=1

ck , n ∈ N . (1.68)

By the argument of the Abel’s summation formula16, we can write:

Υ(s) =

∞∑
n=1

cnχ(n, s) =

∞∑
n=1

Cn(χ(n, s)− χ(n+ 1, s)) , (1.69)

whenever lim
n→∞Cnχ(n, s) = 0.

16See Theorem 1.20, part (c), (1.47) .
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Notice that

cn =
1

|e2πnωi − λ̄|2 |e2πnωi − λ|2

=
1

(1− λ)2 cos2(πnω) + (1 + λ)2 sin2(πnω)

· 1

(1− λ̄)2 cos2(πnω) + (1 + λ̄)2 sin2(πnω)

≤ 1

(1 + λ̄)2(1 + λ)2
1

sin4(πnω)
. (1.70)

Therefore,

Cn =

n∑
k=1

ck =

n∑
k=1

1

|e2πkωi − λ̄|2 |e2πkωi − λ|2

≤ 1

(1 + λ̄)2(1 + λ)2

n∑
k=1

1

sin4(πkω)
.

As it was seen in Theorem 1.19, sin2(πkω) = sin2(πdk). Then, from (1.26) we have:

n∑
k=1

1

sin4(πkω)
=

n∑
k=1

1

sin4(πdk)
≤

n∑
k=1

1

42d4k
=

n∑
k=1

1

42D4
k

=
1

42

n∑
k=1

1

D4
k

(1.71)

and hence

Cn ≤ 1

(1 + λ̄)2(1 + λ)2
1

42

n∑
k=1

1

D4
k

. (1.72)

We now make the following claim17:

n∑
k=1

1

D4
k

≤ 2ζ(4)γ−4n4ν , ∀n ∈ N . (1.73)

Joining (1.72), and (1.73),

Cn ≤ 1

(1 + λ̄)2(1 + λ)2
1

42
2ζ(4)γ−4n4ν . (1.74)

This inequality implies that

lim
n→∞Cnχ(n, s) ≤ 1

(1 + λ̄)2(1 + λ)2
1

42
2ζ(4)γ−4 lim

n→∞n4νe−4πn|s| = 0,

which proves the veracity of (1.69).

Moreover,

Υ(s) ≤ 1

42
1

(1 + λ̄)2(1 + λ)2
2 ζ(4)γ−4

∞∑
n=1

n4ν(χ(n, s)− χ(n+ 1, s)) . (1.75)

17In fact, this inequality is a particular case of (1.23) for m = 2, see Lemma 1.19 Small denominators.
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From (1.67) and (1.75) we obtain: ∀θ ∈ T�−|s|,

|ΔRλv(θ)| ≤ 2|Δλ|
√√√√ 1

42
2 ζ(4)γ−4

(1 + λ̄)2(1 + λ)2

∞∑
n=1

n4ν(χ(n, s)− χ(n+ 1, s)) ‖v‖�

=
1

2

|Δλ|
(1 + λ̄)(1 + λ)

√
2ζ(4)γ−2

√√√√ ∞∑
n=1

n4ν(χ(n, s)− χ(n+ 1, s)) ‖v‖�. (1.76)

It only remains to estimate the series:

∞∑
n=1

n4ν(χ(n, s)− χ(n+ 1, s)) =

∞∑
n=1

n4ν

∫ n+1

n
−∂χ

∂t
(t, s)dt

=
∞∑
n=1

−
∫ n+1

n
n4ν ∂χ

∂t
(t, s)dt ≤

∞∑
n=1

−
∫ n+1

n
t4ν

∂χ

∂t
(t, s)dt

=

∫ ∞

1
−t4ν

∂χ

∂t
(t, s)dt ≤

∫ ∞

0
−t4ν

∂χ

∂t
(t, s)dt .

The last integral is related with the gamma function:

Γ : {z ∈ C : Re(z) > 0} −→ C

z �−→ Γ(z) =

∫ ∞

0
xz−1e−xdx .

Indeed,

∫ ∞

0
−t4ν

∂χ

∂t
(t, s)dt =

∫ ∞

0
4π|s|t4νe−4π|s|tdt,

and with the change of variable x = 4π|s|t we have:∫ ∞

0
−t4ν

∂χ

∂t
(t, s)dt = (4π|s|)−4ν

∫ ∞

0
x4νe−xdx = (4π|s|)−4νΓ(4ν + 1) .

Thus,
∞∑
n=1

n4ν(χ(n, s)− χ(n+ 1, s)) ≤ (4π|s|)−4νΓ(4ν + 1) . (1.77)

Finally, introducing (1.77) in (1.76) we get:

|ΔRλv(θ)| ≤ 1

2

|Δλ|
(1 + λ̄)(1 + λ)

√
2ζ(4)γ−2

√
(4π|s|)−4νΓ(4ν + 1) ‖v‖�

=
1

2

|Δλ|
(1 + λ̄)(1 + λ)

√
2ζ(4)

√
Γ(4ν + 1)

(4π)2ν
γ−2|s|−2ν ‖v‖� . (1.78)

In particular, if δ ∈ (0, 	) and taking limits in (1.78) as s → δ,

|ΔRλv(θ)| ≤ 1

2

|Δλ|
(1 + λ̄)(1 + λ)

√
2ζ(4)

√
Γ(4ν + 1)

(4π)2ν
γ−2δ−2ν ‖v‖�,

∀θ ∈ (0, 	− δ), δ ∈ (0, 	). (1.79)

Since λ, λ̄ ∈ (a, 1a),
1

(1+λ̄)(1+λ)
≤ 1

(1+a)2
and we may write: ∀ θ ∈ (0, 	− δ), δ ∈ (0, 	),

|ΔRλv(θ)| ≤ 1

2
|Δλ| 1

(1 + a)2

√
2ζ(4)

√
Γ(4ν + 1)

(4π)2ν
γ−2δ−2ν ‖v‖� , (1.80)
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Denoting

C∗
R = C∗

R(a, ν) :=
1

2

1

(1 + a)2

√
2ζ(4)

√
Γ(4ν + 1)

(4π)2ν
, (1.81)

we obtain finally:

|ΔRλv(θ)| ≤ |Δλ| C∗
R γ−2δ−2ν ‖v‖�, ∀θ ∈ (0, 	− δ), δ ∈ (0, 	), (1.82)

or equivalently,

‖ΔRλv‖�−δ ≤ |Δλ| C∗
R γ−2δ−2ν ‖v‖�, δ ∈ (0, 	). (1.83)

Remark 1.27

We should make a comparison between the constants CR and C∗
R in order to determine whether

estimate (1.63) is sharper than estimate (1.83).

To do this we must make the comparison in the same complex strip.

Let δ ∈ (0, 12	). On the one hand, we have by Proposition 1.26 part (b),

‖ΔRλv‖�−2δ ≤ |Δλ|C2
R γ−2δ−2ν ‖v‖�. (1.84)

On the other hand, since 2δ ∈ (0, 	), then by Proposition 1.26 part (c),

‖ΔRλv‖�−2δ ≤ |Δλ|C∗
R 2−2ν γ−2δ−2ν ‖v‖�. (1.85)

Thus, the comparison that we must carry out must be made between C2
R and C∗

R 2−2ν .

C2
R

C∗
R 2−2ν

=

(
1

1+a

√
2ζ(2)Γ(2ν+1)

(4π)ν

)2

1
2

1
(1+a)2

√
2ζ(4)Γ(4ν+1)

(4π)2ν

22ν =

√
8ζ(2)2Γ(2ν + 1)2 24ν

ζ(4)Γ(4ν + 1)

=

√√√√√8
(
π2

6

)2
Γ(2ν + 1)224ν

π4

90Γ(4ν + 1)
=

√
5 · 24ν+2 · Γ(2ν + 1)2

Γ(4ν + 1)

=

√
5 · (2νΓ(2ν))

224ν22

4νΓ(4ν)
=

√
20ν · 24ν Γ(2ν)

2

Γ(4ν)
(ν ≥ 1). (1.86)

We have used the property: Γ(z + 1) = zΓ(z), for Re(z) > 0.

Moreover, a good approximation for the gamma function is given by Stirling’s formula:

Γ(z) =

√
2π

z

(z
e

)z (
1 + O

(
1

z

))
(Re(z) > 0). (1.87)

From (1.86)and (1.87) we obtain:

C2
R

C∗
R 2−2ν

=

√
20ν · 24ν Γ(2ν)

2

Γ(4ν)
�

√√√√√20ν 2π
2ν

(
2ν
e

)4ν
24ν√

2π
4ν

(
4ν
e

)4ν
=

√
20
√
2πν = (800πν)

1
4 (ν ≥ 1). (1.88)
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Figure 1.8:
C2
R

C∗
R 2−2ν =

√
20ν · 24ν Γ(2ν)2

Γ(4ν) � (800πν)
1
4

ν
C2
R

C∗
R 2−2ν =

√
20ν · 24ν Γ(2ν)2

Γ(4ν)

C2
R

C∗
R 2−2ν � (800πν)

1
4

1 7.3029674334022152 7.0804354027573764

2 8.5523597411975807 8.4201041582762297

3 9.4158381813839949 9.3183770339577983

4 10.0917315582136773 10.0132477740860892

5 10.6540732633396313 10.5877204500288240

6 11.1393301229580857 11.0814802690605649

7 11.5683888457418096 11.5168702727403698

8 11.9544238169449581 11.9078254972283375

9 12.3063245811731967 12.2636738572851822

10 12.6303967775344343 12.5909924908340898
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    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    % Author   :     Pello Garcia, Juan
    % Subject  :     PhD
    % Date     :     January 2022
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    % File     :     RussmannRatioTable.m
    % Input    :     'filename_table.tex', text file in which the results will be
    %                written in LaTeX code 
    %                numax , maximun value of the nu variable to be considered
    % Output   :     LaTeX file (.tex) with the code of a table (tabular) with
    %                three columns:
    %                nu, C_r^2/(C_r^* 2^(-2 nu)), and the Stirling approximation
    %                (800 pi nu)^(1/4)
    % Synopsis :     Comparisson of Rüssmann constants
    % Syntax   :     RussmannRatioTable('filename_table.tex',numax)
    % Example  :     RussmannRatioTable('RussmannRatio.tex',10)
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    function RussmannRatioTable(filename,numax)
                     
    fichero = fopen(filename,'w');  % Opening the output file
                                    % Writing the header of the table
    fprintf(fichero,'\\begin{center}\n');
    fprintf(fichero,'\\begin{tabular}{|c|r|r|}\n');
    fprintf(fichero,'\\hline\\cline{1-3}&&\\\\ \n');
    fprintf(fichero,['$\\nu$ & $\\frac{\\mathfrak{C}_R^2}{\\mathfrak{C}_R^*\\: ' ...
    ' 2^{-2\\nu}}=\\sqrt{20\\nu\\cdot 2^{4\\nu}\\frac{\\Gamma(2\\nu)^2}' ...
        '{\\Gamma(4\\nu)}}$ & $\\frac{\\mathfrak{C}_R^2}{\\mathfrak{C}_R^*\\:' ...
        ' 2^{-2\\nu}}\\simeq(800\\pi\\nu)^{\\frac{1}{4}}$ \\\\\n']);
    fprintf(fichero,'&&\\\\ \\cline{1-3}&&\\\\\n');
 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    format long
 
    for k=1:numax
        fprintf(fichero,' $%d$ & $%.16f$ & $%.16f$ \\\\[2mm]\n',...
            k,RussmannRatio(k),RussmannRatioStirling(k));
    end
 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    fprintf(fichero,'\\hline\n');   % Writing the foot of the table
    fprintf(fichero,'\\end{tabular}\n');
    fprintf(fichero,'\\end{center}\n');
    fclose(fichero);
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
    function mu=RussmannRatio(t)
 
    h=@(nu)sqrt(20*nu*2.^(4*nu).*gamma(2*nu).^2./gamma(4*nu));
    mu=h(t);
 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
    function mu=RussmannRatioStirling(t)
 
    format long
    h=@(nu)(800*pi*nu).^(1/4);
    mu=h(t);
 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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Corollary 1.28

Let 	 > 0, m ∈ N, a ∈ (0, 1), λ ∈ [a, 1a ], ω ∈ D(γ, ν), and δ ∈ (0, 1
m+1	).

The following estimates hold, ∀v ∈ A�−mδ,0:

(a)
|Rλv(θ)| ≤ CR γ−1δ−ν‖v‖�−mδ, ∀θ ∈ T�−(m+1)δ. (1.89)

(b)
|Rλv(θ)| ≤ (m+ 1)νCR γ−1	−ν‖v‖�−mδ, ∀θ ∈ T m

m+1
�−mδ. (1.90)

(c)
|Rλv(θ)| ≤ (m+ 1)νCR γ−1	−ν‖v‖ 1

m+1
�, ∀θ ∈ T. (1.91)

Proof.

(a) First, fix any δ ∈ (0, 1
m+1	) and call 	∗ = 	 −mδ. According with Theorem 1.20 we know

that for every δ∗ ∈ (0, 	∗),

|Rλv(θ)| ≤ CR γ−1(δ∗)−ν‖v‖�∗ , ∀θ ∈ T�∗−δ∗ . (1.92)

Notice that due to our choice we have 0 < δ < 1
m+1	 < 	∗ = 	−mδ < 	.

Therefore, if we choose δ∗ = δ in (1.92), we obtain

|Rλv(θ)| ≤ CR γ−1δ−ν‖v‖�−mδ, ∀θ ∈ T�−(m+1)δ. (1.93)

(b) If we choose δ∗ = 1
m+1	 in (1.92), we obtain

|Rλv(θ)| ≤ (m+ 1)νCR γ−1	−ν‖v‖�−mδ, ∀θ∈T m
m+1 �−mδ . (1.94)

(c) Taking limits in (a) or (b) as δ → 1
m+1	

− we get straightforward the desired result:

|Rλv(θ)| ≤ (m+ 1)νCR γ−1	−ν‖v‖ 1
m+1

�, ∀θ ∈ T. (1.95)
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Chapter 2

Invariant curves in 1–D
skew–products

In this chapter we face up to the initial objective of this work. Our aim is to design a KAM
procedure to demonstrate the existence of invariant curves for one–dimensional quasi–periodic
skew–products under certain non–degeneracy conditions. We will use the translated graph method
for the very particular frame in which the base is the torus, T = R/Z, and the fiber is the real
line, R, giving sufficient conditions for which the Newton–like method to be designed converges
quadratically, and thus formulate them in a posteriori format. The challenge, on the one hand, is
to fertilize the land for the creation of a methodology for the study and classification of bifurcations
of invariant curves related to perturbations of this kind of skew–products, and on the other hand,
implement numerical methods of representation. We will employ all the tools which were described
in the corresponding sections (as the invariance equation, topological and linear conjugacy of skew–
products, small denominators and cohomological equations,...)1 plus new ones (as linearization
of a skew–product, reducibility, the translated graph method itself, and KAM theory). We start
describing in detail the setting with the explicit conditions that we assume for granted henceforth.

Consider a quasi–periodic skew–product of the form:

ψ : T× R −→ T× R
(θ, x) �−→ ψ(θ, x) = (θ + ω, f(θ, x)) ,

(2.1)

where the frequency is given, ω ∈ DC(γ, ν), and it is Diophantine with constant γ > 0 and class
ν ≥ 1, and the function f : T× R −→ R is real analytic in T× R.
In other words, we can think of f as the restriction to T× R of a function

f : T� × U ⊆ C −→ C

which we denote in the same manner, taking real values for real arguments and such that for every
κ ∈ A� the composition f ◦ (IT� ×κ) ∈ A� is also a real analytic function on the same strip T�.

Notice that for every x ∈ R the restriction to the one dimensional torus

f( · , x) : T −→ R
θ �−→ f(θ, x)

is a real analytic function, i.e. f( · , x) ∈ A�, ∀x ∈ R.

1See Appendix I. and Chapter 1.
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Once we have established this starting point, we want to find sufficient conditions in order to prove
the existence of invariant curves for this kind of skew–products, namely, functions κ : T −→ R
such that the invariance equation,

f(θ, κ(θ)) = κ(θ + ω) , ∀θ ∈ T (2.2)

holds2.
Henceforth, our challenge consists, briefly speaking, in proving the following result:
If we have a good enough approximation of an invariant curve with frequency ω, then, under
certain non–degeneracy and non–resonance conditions, there exists a true invariant curve nearby.
After finding such conditions, we also analyze the regularity and local uniqueness of these invariant
curves.

Remark 2.1

Let us assume the specified properties for f .

� If σ = I×κ ∈ Γ(T,R) is a cross section with κ ∈ A�, then f ◦ σ ∈ A� as well.

� If
E : T� −→ C

θ �−→ E(θ) = f(θ, κ(θ))− κ(θ + ω)

is the so–called error function related to ψ w.r.t. κ and κ ∈ A�, then E ∈ A� too.

2Recall that this is equivalent to the existence of a cross section σ ∈ Γ(T × R) such that ψ ◦ σ = σ ◦ Rω (see
Definition I.15 and Proposition I.16). We know that, under these conditions, the invariant section is of the
form σ = IT ×κ.
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2.1 Linearization of a skew–product

Before going on to describe the translated graph method, we dedicate this section to providing
the specific definition of linearization of a skew–product.
Let us consider a skew–product of the form

ψ : Td × Rn −→ Td × Rn

(θ, x) �−→ ψ(θ, x) = (ϕ(θ), f(θ, x)) ,
(2.3)

where ϕ : Td −→ Td is a diffeomorphism and the function

f : Td × Rn −→ Rn

satisfies:

(i) f ∈ C0(Td,Rn);

(ii) If we consider the fiber maps

fθ : Rn −→ Rn

x �−→ fθ(x) = f(θ, x)
(θ ∈ Td) ,

then fθ ∈ Ck(Rn) (k ≥ 1), ∀θ ∈ Td.

Fixing some θ ∈ Td and applying the Taylor expansion of ψθ = ψ(θ, · ) about x0 ∈ Rn, there exists
r > 0 such that for every h ∈ B(x0, r),

ψθ(x0 + h) = ψθ(x0) +Dψθ(x0)h+ o(‖h‖2).

Equivalently,

ψ(θ, x0 + h) = (ϕ(θ), f(θ, x0)) + (0, Dxf(θ, x0)h) +O(‖(0, h)‖2Tn×Rd)

= (ϕ(θ), f(θ, x0) +Dxf(θ, x0)h) +O(‖(0, h)‖2Td×Rn) .

This fact gives rise to the following definition.

Definition 2.2 Linearization of a skew–product

We call linearization of the skew–product (2.3) at a point x0 ∈ Rn to the linear skew–product given
by

Dψ(x0) : Td × Rn −→ Td × Rn

(θ, x) �−→ Dψ(x0)(θ, x) = (ϕ(θ), Dxf(θ, x0)x) ,
(2.4)

This definition can be extended to a map parameterized by κ : Td −→ Rn in a way that the
linearization of (2.3) about κ is the linear skew–product

Dψ(κ) : Td × Rn −→ Td × Rn

(θ, x) �−→ Dψ(κ)(θ, x) = (ϕ(θ), Dxf(θ, κ(θ))x) .
(2.5)

�

Thereby, the dynamics of ψ at a point x0 (resp. about a map κ(θ)), is determined by the linear
skew–product given by its linearization, Dψ(x0) (resp. Dψ(κ)).
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2.2 Reducibility and the Lyapunov exponent

We set aside for a while the translated graph method in order to define, in this section, the
reducibility property for linear skew–products in general, give a characterization, and thereafter
we return to it. Furthermore, we prove here that one-dimensional non–singular quasi–periodic
skew–products are always reducible3.

Definition 2.3 Reducibility for linear skew–products

Let (ϕ, ψ) be a linear skew–product defined over the trivial vector bundle4 (E = B × F,B, π, F ),
with

ψ : B × F −→ B × F
(θ, x) �−→ ψ(θ, x) = (ϕ(θ),m(θ)x)

(2.6)

where ϕ is a homeomorphism of B and m : B −→ Mn(K) is continuous.

It is said that (ϕ, ψ) is reducible if it is linearly conjugate to another linear skew–product (ϕ̃, ψ̃) of
the form:

ψ̃ : B × F −→ B × F

(θ, x) �−→ ψ̃(θ, x) = (ϕ̃(θ), λx)
(2.7)

where λ ∈ Mn(K) is independent of θ, namely it is a constant n × n−dimensional matrix, being
n = dimK(F ).

�

Remark 2.4

A linear quasi–periodic skew–product of the form

ψ(θ, x) = (θ + ω,m(θ)x), (θ, x) ∈ Td × Rn

is invertible if and only if det(m(θ)) �= 0, ∀θ ∈ Td.

This is an immediate consequence of Proposition I.19. Furthermore, in this case the inverse is
given by:

ψ−1(θ, x) = (θ − ω,m(θ − ω)−1x), (θ, x) ∈ Td × Rn.

In the one dimensional case, n = 1, the condition for the invertibility becomes into

m(θ) �= 0, ∀θ ∈ Td.

Such an invertible skew–product will be referred from now on as a non–singular skew–product.

Notice that, by continuity, m(θ) > 0, ∀θ ∈ Td or m(θ) < 0, ∀θ ∈ Td. Henceforth, we may
assume that m(θ) > 0, ∀θ ∈ T without mentioning it. This assumption will not entail any loss of
generality in what has to do with our challenges.

3This property will allow us to make a change of variable in the system (3.5) that will lead us to obtain solutions
by means of cohomological equations.

4Here we assume that F is a topological finite dimensional K−vector space with K = R or K = C,
and n = dimK(F ) < ∞. The base space B is a topological space.
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Definition 2.5 Lyapunov exponent

Let us consider a linear quasi–periodic skew–product over the real line defined by

ψ : T× R −→ T× R
(θ, x) �−→ ψ(θ, x) = (θ + ω,m(θ)x)

(2.8)

where m : T −→ R is continuous and positive, and ω ∈ DC(γ, ν) is Diophantine5.
The Lyapunov exponent of the linear skew–product (2.8) is defined6 as

Λ =

∫
T
log(m(θ)) dθ . (2.9)

We say that ψ is a non–singular quasi–periodic skew–product if its Lyapunov exponent is finite.
�

Theorem 2.6 Reducibility of one-dimensional skew–products

Every non–singular one–dimensional linear quasi–periodic skew–product is reducible.

Proof. Let (ϕ, ψ) be a linear quasi–periodic skew–product defined on the cylinder T× R, that is,
ϕ = Rω be an ergodic rigid rotation with a Diophantine frequency, ω ∈ DC(γ, ν), and

ψ : T× R −→ T× R
(θ, x) �−→ ψ(θ, x) = (θ + ω,m(θ)x)

,

with m : T −→ R a non–vanishing continuous function.
We have to prove that there exist another linear skew–product (h,H) which is invertible and
conjugates (ϕ, ψ) to the quasi–periodic skew–product (ϕ̃, ψ̃) given by:

ψ̃ : T× R −→ T× R
(θ, x) �−→ ψ̃(θ, x) = (θ + ω̃, m̃(θ)x)

,

and such that m̃(θ) = λ is a real constant, independent of θ. We are going to show that (h,H)
can be chosen also to be quasi–periodic, that is, h(θ) = θ + ν, and

H : T× R −→ T× R
(θ, x) �−→ H(θ, x) = (θ + ν, c(θ)x)

,

with c : T −→ R a non–vanishing continuous function, since H must be invertible7.

According to Proposition I.27, and translating terms to this case, (Rω, ψ) and (Rω̃, ψ̃) are
linearly conjugate, by means of (Rν , H) if and only if the following conditions hold:

5See Definition 1.15

6In fact, the Lyapunov exponent is defined as lim sup
n→∞

1

n
log

n−1∏
j=0

m(θ + jω), but this lim sup, when m(θ) never

vanishes, does not depend on θ and coincides with the value taken in our definition.This is a consequence of the
unique ergodicity of irrational rotations on T and the Birkhoff Ergodic Theorem. cf. [19], [38].

7In fact, we can chose ν = 0 and c(θ) > 0, ∀θ ∈ T.
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(i) c(θ) �= 0, ∀θ ∈ T;

(ii) Rω̃ = Rν
−1 ◦ Rω ◦ Rν , i.e. Rω and Rω̃ are topologically conjugate in T, by means of Rν ;

(iii) m(θ + ν)c(θ) = c(θ + ω̃)λ, ∀θ ∈ T.

Since Rν
−1 = R−ν , condition (ii) holds if and only if ω̃ = ω, no matter the value of ν.

Then, condition (iii) writes

m(θ + ν)c(θ) = c(θ + ω)λ, ∀θ ∈ T. (2.10)

which is equivalent to

m(θ)c(θ − ν) = c(θ − ν + ω)λ, ∀θ ∈ T. (2.11)

Taking natural logarithms in this equation we have:

log(m(θ)) + log(c(θ − ν)) = log(c(θ − ν + ω)) + log(λ), ∀θ ∈ T. (2.12)

Choose λ = eΛ, where Λ is the Lyapunov exponent of the linear skew–product (Rω, ψ), that is,

Λ =

∫
T
log(m(θ)) dθ, and define the following functions:

u(θ) = log(c(θ − ν)), (2.13)

v(θ) = log(m(θ))− Λ. (2.14)

Notice that v is a zero–average function which is known. Indeed,

< v > =

∫
T
v(θ) dθ =

∫
T
(log(m(θ))− Λ) dθ =

∫
T
log(m(θ)) dθ − Λ

∫
T
dθ

=

∫
T
log(m(θ)) dθ − Λ = 0 .

Moreover, (2.10) is equivalent, by means of (2.11), (2.12), (2.13), and (2.14), to the small denom-
inators equation:

u(θ + ω)− u(θ) = v(θ), θ ∈ T . (2.15)

As long as the frequency ω is Diophantine, that is, it satisfies the Diophantine condition (1.19),
the small denominators equation (2.15) has only one solution with zero average, which can be
denoted by u(θ) = R1v(θ). Namely, according to Theorem 1.20, u is a 1–periodic function
which is defined by its Fourier expansion:

u(θ) =
∑

k∈Z\{0}
ûk e

2πkθi (θ ∈ T) , (2.16)

where

ûk =
v̂k

e2πkωi − 1
, ∀k ∈ Z \ {0}. (2.17)

Here, v̂k represents the Fourier coefficients of the function v defined in (2.14), that is:

v̂k =

∫
T
v(θ)e−2πkθi dθ =

∫
T
(log(m(θ))− Λ)e−2πkθi dθ

=

∫
T
log(m(θ))e−2πkθi dθ − Λ

∫
T
e−2πkθi dθ

=

∫
T
log(m(θ))e−2πkθi dθ ,
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since

∫
T
e−2πkθi dθ = 0, ∀k ∈ Z \ {0}.

Thus,

u(θ) = R1v(θ) =
∑

k∈Z\{0}

∫
T
log(m(ϑ))e−2πkϑi dϑ

e2πkωi − 1
e2πkθi (θ ∈ T) , (2.18)

Finally, we have, from (2.13):
c(θ) = eu(θ+ν) , (2.19)

where u is given by (2.18) and ν ∈ T can be chosen freely. To end the proof, we define:

H(θ, x) = (θ + ν, c(θ)x), (θ, x) ∈ T× R, (2.20)

and we only need to check that ψ̃ = H−1 ◦ ψ ◦H.
Indeed, from (2.10) and the fact that H−1(θ, x) = (θ − ν, c(θ − ν)−1x), ∀(θ, x) ∈ T× R we have:

(H−1 ◦ ψ ◦H)(θ, x) = H−1(ψ(H(θ, x))) = H−1(ψ(θ + ν, c(θ)x))

= H−1(θ + ν + ω,m(θ + ν)c(θ)x)

= ((θ + ν + ω)− ν, c((θ + ν + ω)− ν)−1m(θ + ν)c(θ)x)

= (θ + ω, c(θ + ω)−1m(θ + ν)c(θ)x) = (θ + ω, λx)

= ψ̃(θ, x) , ∀(θ, x) ∈ T× R,

and the proof is complete.

Remark 2.7

In the above exposition, we have proved the reducibility of a one dimensional non–singular linear
quasi–periodic skew–product. Furthermore, we have seen that the frequency ν ∈ T can be chosen
freely. In practical cases we will take usually ν = 0. With all, we can restate the results obtained
summarizing them in the following way:
Given a one dimensional non–singular linear quasi–periodic skew–product,

ψ : T× R −→ T× R
(θ, x) �−→ ψ(θ, x) = (θ + ω,m(θ)x)

,

where ω ∈ DC(γ, ν) is Diophantine, if m : T −→ R is a continuous positive function, there exist a
positive constant λ > 0 which is called reducibility constant or Lyapunov multiplier and a so–called
Floquet transformation c : T −→ R, which is continuous and positive, such that the skew–product
ψ is linearly conjugate to the one of the form:

ψ̃ : T× R −→ T× R
(θ, x) �−→ ψ̃(θ, x) = (θ + ω, λx)

,

where λ = c(θ + ω)−1m(θ)c(θ) does not depend on θ.
More precisely:

λ = eΛ , with Λ =

∫
T
log(m(θ)) dθ (2.21)

the Lyapunov exponent of ψ and
c(θ) = eu(θ) (2.22)

with u(θ) = R1(log(m(θ))− Λ), that is:

u(θ) =
∑

k∈Z\{0}

∫
T
log(m(ϑ))e−2πkϑi dϑ

e2πkωi − 1
e2πkθi (θ ∈ T) . (2.23)
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Under these conditions, if H(θ, x) = (θ, c(θ)x), ∀(θ, x) ∈ T× R, then ψ̃ = H−1 ◦ ψ ◦H.

Under the same conditions as in Theorem 2.6 we have the following result.

Corollary 2.8 Normalization

Given any c0 > 0, there exist a reducibility constant λ > 0 and a Floquet transformation c : T −→ R
(continuous and positive) such that:

(i) m(θ)c(θ) = c(θ + ω)λ, θ ∈ T.

(ii) < c >= c0.

Proof. Take λ = eΛ, with Λ =

∫
T
log(m(θ))dθ the Lyapunov exponent of the linear skew–product.

Now, define:

c(θ) = α eR1v(θ), θ ∈ T. (2.24)

where α = c0∫
T
eR1v(ϑ)dϑ

, v(θ) = log(m(θ)) − Λ, θ ∈ T, and R1v is the unique solution with zero

average to the cohomological equation:

u(θ + ω)− u(θ) = v(θ), θ ∈ T.

(i) Let u(θ) = log(c(θ)) = u0 + ũ(θ) , θ ∈ T, where u0 =< u > and < ũ >= 0. Then:

ũ(θ + ω)− ũ(θ) = (u(θ + ω)− u0)− (u(θ)− u0) = u(θ + ω)− u(θ)

= log(c(θ + ω))− log(c(θ))

= log
(
α eR1v(θ+ω)

)
− log

(
α eR1v(θ)

)
= log

(
eR1v(θ+ω)

)
− log

(
eR1v(θ)

)
= R1v(θ + ω)−R1v(θ) = v(θ) .

Therefore,

v(θ) = ũ(θ + ω)− ũ(θ) ⇒ (v(θ) + Λ) + (ũ(θ) + u0) = (ũ(θ + ω) + u0) + Λ

⇒ log(m(θ)) + log(c(θ)) = log(c(θ + ω)) + log(λ)

⇒ m(θ)c(θ) = c(θ + ω)λ, θ ∈ T.

(ii) < c >=

∫
T
c(θ)dθ =

∫
T
αeR1v(θ)dθ = α

∫
T
eR1v(θ)dθ = c0.
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2.3 The translated graph method

Definition 2.9 Translated curves

Given a quasi–periodic skew–product as (2.1), which is of the form ψ = Rω×f , and a cross section
σ = IT×κ ∈ Γ(T × R), we say that T = σ(T) = {(θ, κ(θ) : θ ∈ T)} (which is the graph of κ) is a
translated curve w.r.t. ψ if there exists a real number τ ∈ R, which is called translation number,
such that:

ψ(T) = T+ τI , (2.25)

where I = {(0, 1)} ⊆ T× R.
�

Definition 2.10 Error function

Given a quasi–periodic skew–product as (2.1), ψ = Rω × f , the error function related to ψ is
defined by:

Eψ : Γ(T× R) −→ C(T,T× R)
σ = IT×κ �−→ Eψ(σ) = ψ ◦ σ − σ ◦ Rω

(2.26)

�

Remark 2.11

The error function Eψ, when applied to a cross section σ, is a measure of how far σ is from
being an invariant section with respect to the skew–product ψ, as will become clear in the following
proposition..

Proposition 2.12 Translated curves

Let ψ = Rω × f be a quasi–periodic skew–product (2.1), σ = IT×κ ∈ Γ(T×R) be a cross section,
and τ ∈ R. Then, the following statements are equivalent:

(i) T = σ(T) is ψτ–invariant, that is, ψτ (T) = T, where ψτ is the translated quasi–periodic skew–
product ψτ = ψ + τI with translation number τ (i.e. ψτ (θ, x) = ψ(θ, x) + (0, τ), ∀(θ, x) ∈
T× R).

(ii) Eψτ (σ) = 0, where Eψτ (σ) = ψτ ◦ σ − σ ◦ Rω is the error function w.r.t the translated
quasi–periodic skew–product ψτ .

(iii) f(θ, κ(θ))− κ(θ + ω) + τ = 0, ∀θ ∈ T.

Proof. First of all, observe that:

∀θ ∈ T, Eψτ (σ)(θ) = (ψτ ◦ σ)(θ)− (σ ◦ Rω)(θ) = ψτ (σ(θ))− σ(Rω)(θ)

= ψτ (θ, κ(θ))− σ(θ + ω) = (θ + ω, f(θ, κ(θ)) + τ)− (θ + ω, κ(θ + ω))

= (0, f(θ, κ(θ))− κ(θ + ω) + τ) .

Therefore, Eψτ (σ) = 0 ⇔ Eψτ (σ)(θ) = 0, ∀θ ∈ T ⇔ f(θ, κ(θ)) − κ(θ + ω) + τ = 0, ∀θ ∈ T. And
(ii) ⇔ (iii) is proved.
On the other hand, if T = σ(T) = {(θ, κ(θ)) : θ ∈ T} is ψτ–invariant, then ψτ (σ(T)) = σ(T).
Namely,

∀θ ∈ T, ∃ θ ∈ T such that ψτ (σ(θ)) = σ(θ), and

∀θ ∈ T, ∃ θ ∈ T such that ψτ (σ(θ)) = σ(θ).
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Since σ(θ) = (θ, κ(θ)) and ψτ (σ(θ)) = ψτ (θ, κ(θ)) = (θ + ω, f(θ, κ(θ)) + τ) , we have:
(θ, κ(θ)) = (θ + ω, f(θ, κ(θ)) + τ) and hence, θ = θ + ω and κ(θ) = f(θ, κ(θ)) + τ , that is,
f(θ, κ(θ)) + τ = κ(θ + ω) or, f(θ, κ(θ)) + τ − κ(θ + ω) + τ = 0. This proves (i) ⇒ (iii).
We end the proof showing (iii) ⇒ (i). Assume that (iii) holds. Then, given θ ∈ T we can take
θ = θ + ω and then: σ(θ) = (θ, κ(θ)) = (θ + ω, κ(θ + ω)) = (θ + ω, f(θ, κ(θ)) + τ) = ψτ (θ, κ(θ)) =
ψτ (σ(θ)).
In the same manner, if θ ∈ T we can take θ = θ − ω, and hence: σ(θ) = σ(θ + ω) = ψτ (σ(θ)).

Definition 2.13 Family of invariant translated curves

Given a quasi–periodic skew–product as (2.1), of the form ψ = Rω × f , we define the family of
invariant translated curves related to ψ as the collection

{(κ(p), τ (p))}p∈R
where κ(p) ∈ A� is an invariant translated curve w.r.t ψ with translation number τ (p) ∈ R, i.e.{

f(θ, κ(p)(θ))− κ(p)(θ + ω) + τ (p) = 0 , ∀θ ∈ T
< κ(p) > = p

(2.27)

Another way to refer to this family is to consider the following functions:

κ : T� × R −→ C
(θ; p) �−→ κ(θ; p) = κ(p)(θ)

and
τ : R −→ R

p �−→ τ(p) = τ (p)
.

Thus, we may write equations (2.27) as{
f(θ, κ(θ; p))− κ(θ + ω; p) + τ(p) = 0 (θ ∈ T)

< κ(· ; p) > = p
(2.28)

�

Remark 2.14

Among all the invariant translated curves we are mostly interested in that ones whose translation
number is τ = 0, because those are, obviously, the invariant curves of the original skew–product.
This is, in essence, the objective of the so called translated graph method. Next, we give a complete
and detailed description of the modus operandi.
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2.4 KAM procedure

The objective of this section is to obtain invariant translated curves by simultaneously combining
two procedures. On the one hand the invariance of the translated curve and, on the other hand,
the reducibility of the skew–product.
Given a skew–product

Ψ : T× R −→ T× R
(θ, x) �−→ Ψ((θ, x) = (θ + ω, f(θ, x))

and p ∈ R, we look for κ : T −→ R and τ ∈ R such that{
f(θ, κ(θ))− κ(θ + ω) + τ = 0

< κ > = p
(2.29)

In an iteration procedure, we assume that we have an approximated solution such that

f(θ, κ(θ))− κ(θ + ω) + τ = ei(θ) (2.30)

∂f

∂x
(θ, κ(θ)) c(θ)− c(θ + ω)λ = er(θ) (2.31)

< κ > = p (2.32)

< c > = c0 (2.33)

where c0 can be freely chosen a priori. We may take, for simplicity, c0 = 1.
We have introduced new conditions that deal with the reducibility.
Here ei(θ) and er(θ) are error functions measuring how far κ(θ) is from being an invariant trans-
lated curve with translation parameter τ , and what extent the function c(θ) is a reducibility
function with λ > 0 as the corresponding reducibility constant, respectively. That is, we assume
the linearized skew–product be reduced up to an error er(θ).
In these equations, p ∈ R, and c0 > 0 are fixed, κ(θ), c(θ), τ , and λ will change through the
iterative process: ⎧⎪⎪⎨⎪⎪⎩

κ(θ) �−→ κ1(θ) = κ(θ) + c(θ)ξi(θ)
c(θ) �−→ c1(θ) = c(θ) + c(θ)ξr(θ)

τ �−→ τ1 = τ +Δτ
λ �−→ λ1 = λ+Δλ

with specially chosen ξi(θ) , ξr(θ), Δτ , and Δλ.
Next, we look for the corrections ξi(θ) , ξr(θ), Δτ , and Δλ such that the new objects κ1, c1, τ1,
and λ1 are better approximations, essentially the new error is the square of the previous one.

We use here these notations:

c = c(θ) c+ = c(θ + ω)
ξi+ = ξi(θ + ω) ξr+ = ξr(θ + ω)

ηi = c−1
+ ei ηr = c−1

+ er
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Starting from eqs. (2.30) and (2.32), that is,{
f(θ, κ(θ))− κ(θ + ω) + τ = ei(θ)

< κ > = p
(2.34)

the error of the invariance condition after one step, with κ1(θ) = κ(θ)+c(θ)ξi(θ) and τ1 = τ +Δτ ,
is:

ei1(θ) = f(θ, κ1(θ))− κ1(θ + ω) + τ1

= f(θ, κ(θ) + c(θ)ξi(θ))− (κ(θ + ω) + c(θ + ω)ξi(θ + ω)) + τ +Δτ

= f(θ, κ(θ)) +
∂f

∂x
(θ, κ(θ))c(θ)ξi(θ) +

∫ 1

0

(1− t)
∂2f

∂x2
(θ, κ(θ) + tc(θ)ξi(θ))

(
c(θ)ξi(θ)

)2
dt

−κ(θ + ω) + τ − c(θ + ω)ξi(θ + ω) + Δτ

= ei(θ) +

(
∂f

∂x
(θ, κ(θ))c(θ)− c(θ + ω)λ

)
ξi(θ) + c(θ + ω)λξi(θ)

−c(θ + ω)ξi(θ + ω) + Δτ +Ri(θ)

= ei(θ) + er(θ)ξi(θ)− c(θ + ω)(ξi(θ + ω)− λξi(θ)) + Δτ +Ri(θ) , (2.35)

where

Ri(θ) =

∫ 1

0

(1− t)
∂2f

∂x2
(θ, κ(θ) + tc(θ)ξi(θ))dt

(
c(θ)ξi(θ)

)2
. (2.36)

In order to reduce the error ξi(θ) and the remainder Ri(θ) as much as possible, we ask

c(θ + ω)(ξi(θ + ω)− λξi(θ)) = ei(θ) + Δτ . (2.37)

Notice that, in such a case,
ei1(θ) = er(θ)ξi(θ) +Ri(θ). (2.38)

Dividing (2.37) by c+,

ξi(θ + ω)− λξi(θ) =
ei(θ)

c(θ + ω)
+

1

c(θ + ω)
Δτ = ηi(θ) + c−1

+ (θ)Δτ. (2.39)

Taking averages on both sides,

ξi − λξi = ηi+ < c−1
+ > Δτ = ηi+ < c−1 > Δτ

that is,
(1− λ)ξi− < c−1 > Δτ =< c−1

+ ei > . (2.40)

Eq. (2.39) can also be written as

ξi+ + ξ̃i − λ(ξi + ξ̃i) = ηi + η̃i + (c−1
+ + c̃−1

+ )Δτ .

Since ξi+ = ξi and c−1
+ = c−1,

(1− λ)ξi + ξ̃i+ − λξ̃i = ηi + η̃i+ < c−1 > Δτ + c̃−1
+ Δτ.

Subtracting (2.40) from the latter,

ξ̃i+ − λξ̃i = η̃i + c̃−1
+ Δτ,

that means,

ξ̃i = Rλ(η̃i + c̃−1
+ Δτ) = Rλη̃i +Δτ Rλc̃

−1
+ , (2.41)
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where Rλ is the cohomological operator8.
Additionally, from (2.32), p =< κ1 >=< κ+ cξi >=< κ > + < cξi >= p+ < cξi >, which implies
that < cξi >= 0. Therefore, by (2.41),

0 =< cξi >=< c(ξi + ξ̃i) >=< c > ξi+ < c ξ̃i >=< c > ξi+ < cRλη̃i > +Δτ < cRλc̃
−1
+ >, or

< c > ξi+ < cRλc̃
−1
+ > Δτ = − < cRλη̃i > (2.42)

Equations (2.40) and (2.42) can be written as the linear system,(
1− λ − < c−1 >

< c > < cRλc̃
−1
+ >

)(
ξi

Δτ

)
=

(
< c−1

+ ei >

− < cRλc̃
−1
+ ei >

)
(2.43)

Denoting b = Rλc̃
−1
+ and D =

(
1− λ − < c−1 >
< c > < c b >

)
, eq. (2.43) can be written as

D

(
ξi

Δτ

)
=

(
< c−1

+ ei >

− < cRλc̃
−1
+ ei >

)
. (2.44)

Next we deal with eqs. (2.31) and (2.33), that is, the error of the reducibility condition after one
step. From {

∂f
∂x (θ, κ(θ))c(θ)− c(θ + ω)λ = er(θ)

< c > = c0 ,
(2.45)

with c1(θ) = c(θ)(1 + ξr(θ)) and λ1 = λ+Δλ, we write:

er1(θ) =
∂f

∂x
(θ, κ1(θ))c1(θ)− c1(θ + ω)λ1

=
∂f

∂x
(θ, κ(θ) + c(θ)ξi(θ))c(θ)(1 + ξr(θ))− c(θ + ω)(1 + ξr(θ + ω))(λ+Δλ)

=

(
∂f

∂x
(θ, κ(θ)) +

∫ 1

0

∂2f

∂x2
(θ, κ(θ) + tc(θ)ξi(θ)) c(θ)ξi(θ)dt

)
c(θ)(1 + ξr(θ))

−c(θ + ω)(1 + ξr(θ + ω))(λ+Δλ)

=
∂f

∂x
(θ, κ(θ))c(θ)− c(θ + ω)λ+

∫ 1

0

∂2f

∂x2
(θ, κ(θ) + tc(θ)ξi(θ))dt c(θ)2ξi(θ)(1 + ξr(θ))

+
∂f

∂x
(θ, κ(θ))c(θ)ξr(θ)− c(θ + ω)Δλ− c(θ + ω)ξr(θ + ω)(λ+Δλ)

= er(θ) +

(
∂f

∂x
(θ, κ(θ))c(θ)− c(θ + ω)λ

)
ξr(θ) + c(θ + ω)λξr(θ)

−c(θ + ω)Δλ− c(θ + ω)ξr(θ + ω)(λ+Δλ) +Rr(θ)

= er(θ) + er(θ)ξr(θ)− c(θ + ω)(ξr(θ + ω)− ξr(θ))λ

−c(θ + ω)(1 + ξr(θ + ω))Δλ+Ri
1(θ)(1 + ξr(θ)) , (2.46)

where Rr(θ) = Ri
1(θ)(1 + ξr(θ)) and Ri

1(θ) =

∫ 1

0

∂2f

∂x2
(θ, κ(θ) + tc(θ)ξi(θ))dt c(θ)2ξi(θ) .

In order to reduce the error er1(θ) as much as possible, we ask

er(θ) +Ri
1(θ)− c(θ + ω)(ξr(θ + ω)− ξr(θ))λ− c(θ + ω)Δλ = 0. (2.47)

8c.f. Definition 1.24.
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Notice that, in such a case, er1(θ) = (er(θ) +Ri
1(θ))ξ

r(θ)− c(θ + ω)ξr(θ + ω)Δλ.
Dividing eq. (2.47) by c+,

(ξr(θ + ω)− ξr(θ))λ+Δλ =
er(θ)

c(θ + ω)
+

Ri
1(θ)

c(θ + ω)
. (2.48)

Taking averages,

(ξr+ − ξr)λ+Δλ =<
er

c+
+

Ri
1

c+
> .

Since ξr+ = ξr, we have
Δλ =< c−1

+ er > + < c−1
+ Ri

1 > . (2.49)

In eq. (2.48) each function can be decomposed in the sum of the average plus the oscillatory part:

((ξr+ + ξ̃r+)− (ξr + ξ̃r))λ+Δλ =< c−1
+ er > +c̃−1

+ er+ < c−1
+ Ri

1 > +c̃−1
+ Ri

1 ,

i.e.

((ξr+ − ξr)λ+ (ξ̃r+ − ξ̃r))λ+Δλ =< c−1
+ er > +c̃−1

+ er+ < c−1
+ Ri

1 > +c̃−1
+ Ri

1 .

Since ξr+ = ξr and subtracting eq.(2.49), we have

(ξ̃r+ − ξ̃r)λ = c̃−1
+ er + c̃−1

+ Ri
1. (2.50)

This means that

λξ̃r = R1(c̃
−1
+ er + c̃−1

+ Ri
1) , (2.51)

where Rλ is the cohomological operator.
Finally, by eq.(2.33), c0 =< c1 >=< c(1+ξr) >=< c > + < cξr >= c0+ < cξr >, i.e. < cξr >= 0.

Therefore, 0 =< cξr >=< c(ξr + ξ̃r) >=< c > ξr+ < c ξ̃r >, and

ξr = − 1

< c >
< c ξ̃r > .

From eq. (2.51) we get

λξr = − 1

< c >
< cR1(c̃

−1
+ er + c̃−1

+ Ri
1) > . (2.52)
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Summary

The invariance system {
f(θ, κ(θ))− κ(θ + ω) + τ = ei(θ)

< κ > = p
(2.53)

with κ1(θ) = κ(θ) + c(θ)ξi(θ) and τ1 = τ +Δτ , produces

D

(
ξi

Δτ

)
=

(
< c−1

+ ei >

− < cRλc̃
−1
+ ei >

)
ξ̃i = Rλ(c̃

−1
+ ei + c̃−1

+ Δτ), and

ξi = ξ̃i + ξi ,

where D =

(
1− λ − < c−1 >
< c > < c b >

)
and b = Rλc̃

−1
+ .

The reducibility system {
∂f
∂x (θ, κ(θ))c(θ)− c(θ + ω)λ = er(θ)

< c > = c0
(2.54)

with c1(θ) = c(θ)(1 + ξr(θ)) and λ1 = λ+Δλ, produces

λξr = − 1
<c> < cR1(c̃

−1
+ er + c̃−1

+ Ri
1) >,

λξ̃r = R1(c̃
−1
+ er + c̃−1

+ Ri
1),

ξr = ξ̃r + ξr , and

Δλ =< c−1
+ er > + < c−1

+ Ri
1 > ,

where Ri
1(θ) =

∫ 1

0

∂2f

∂x2
(θ, κ(θ + tc(θ)ξi(θ))dt c(θ)2ξi(θ) .

Notice that κ1(θ), τ1, c1(θ), and λ1 are uniquely determined whenever the non-degeneracy condi-
tions det(D) �= 0 and λ �= 0 are satisfied.
Moreover, if the domain of analyticity of κ and c is T�, i.e. κ, c ∈ A�, then κ1 ∈ A�−δ and
c1 ∈ A�−2δ, due to the clipping in the analyticity domain that occurs each time the cohomological
operator is applied. Notice that ξi ∈ A�−δ but ξ

r ∈ A�−2δ, since the integral remainder Ri
1 ∈ A�−δ.
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Once we have ξ̃i, ξ̃r, < ξi >, < ξr >, Δτ , and Δλ, we can compute the new errors, ei1 and er1:

ei1(θ) = er(θ)ξi(θ) +Ri(θ) (2.55)

er1(θ) = er(θ)ξr(θ) +Rr(θ) − c(θ + ω)ξr(θ + ω)Δλ, (2.56)

where

Ri(θ) =

∫ 1

0
(1− t)

∂2f

∂x2
(θ, κ(θ) + tc(θ)ξi(θ))dt

(
c(θ)ξi(θ)

)2
and (2.57)

Rr(θ) =

∫ 1

0

∂2f

∂x2
(θ, κ(θ) + tc(θ)ξi(θ))dt c(θ)2ξi(θ)ξr(θ). (2.58)

Remark 2.15

If we call

Ri
1(θ) =

∫ 1

0

∂2f

∂x2
(θ, κ(θ) + tc(θ)ξi(θ))dt c(θ)2 ξi(θ)

and

Ri
2(θ) =

∫ 1

0
t
∂2f

∂x2
(θ, κ(θ) + tc(θ)ξi(θ))dt c(θ)2 ξi(θ),

then Ri(θ) = (Ri
1(θ)−Ri

2(θ))ξ
i(θ) and Rr(θ) = Ri

1(θ)ξ
r(θ). Therefore,

ei1(θ) = (er(θ) +Ri
1(θ)−Ri

2(θ))ξ
i(θ), θ ∈ T�−δ (2.59)

er1(θ) = (er(θ) +Ri
1(θ))ξ

r(θ)−Δλc(θ + ω)ξr(θ + ω), θ ∈ T�−2δ . (2.60)

Next, we compute the estimates for one step. Recall from eq.(2.44) that if the non–degeneracy
condition det(D) �= 0 holds, then(

ξi

Δτ

)
= D−1

(
< c−1

+ ei >

− < cRλc̃
−1
+ ei >

)

To bound the solution

(
ξi

Δτ

)
we use the ∞–norm in C2, ‖z‖∞ = max{|z1|, |z2|} and the matrix

norm9

‖D‖ = max
j

∑
i

|dij |, if D = (dij),

that is, the maximum 1–norm of the columns of D.

9This matrix norm is compatible with the ∞–norm in C2, that is, ‖Dz‖∞ ≤ ‖D‖ ‖z‖∞, ∀z = (z1, z2) ∈ C2
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Assume that there exists κ∗ : T�0 −→ C such that if

Ω = Ω�0,r0 = {(θ, z) ∈ C/Z× C : | Im θ| ≤ 	0, |z − κ∗(θ)| ≤ r0} ,

the map f is defined in Ω�0,r0 and we have

‖f‖Ω < Cf (2.61)

‖∂f
∂z

‖Ω < C∂zf (2.62)

‖∂
2f

∂z2
‖Ω < C∂zzf (2.63)

We consider the following condition numbers:

‖c‖� < σc ‖c−1‖� < σc−1

‖D−1‖ < σD−1 a < |λ| < 1
a , with a ∈ (0, 1)

‖κ− κ∗‖� < r0

‖Rλc̃
−1
+ ‖�−δ < σb (b = Rλc̃

−1
+ ∈ A�−δ with 0 < δ < 	)

We expect in the iterative procedure, something like

‖cn‖�−2nδ < σc ‖c−1
n ‖�−2nδ < σc−1

‖D−1
n ‖ < σD−1 a < |λn| < 1

a , with a ∈ (0, 1)
‖κn − κ∗‖�−2nδ < r0

‖Rλn c̃
−1
n,+‖�−3nδ < σb

The following lemma provides a number of estimates obtained in one step of the KAM procedure
whenever certain non-degeneracy conditions hold.

Lemma 2.16 Estimates for one step

Let ε = max

{
‖er‖�, 1

γ δν
‖ei‖�

}
, where 0 < δ < 1

2	. Assume that δ is sufficiently small so that

γδν < 1. If the non–degeneracy conditions det(D) �= 0 and λ �= 0 are satisfied, then the following
estimates hold:

(i) max{|ξi|, |Δτ |} ≤ σs
1

γ δν ‖ei‖�, with σs = σD−1σc−1 max{1, 2σcCR};

(ii) ‖ξ̃i‖�−δ ≤ σ
ξ̃i

1
γ δν ‖ei‖�, with σ

ξ̃i
= 2CRσc−1 + σsσb;

(iii) ‖ξi‖�−δ ≤ σξi
1

γ δν ‖ei‖�, with σξi = σ
ξ̃i
+ σs;

(iv) |ξr| ≤ σξr
1

γ δν ε, with σξr = 2
aσcσc−1CR(1 + σ2

cσξiC∂zzf );

(v) ‖ξ̃r‖�−2δ ≤ σ
ξ̃r

1
γ δν ε, with σ

ξ̃r
= 2

aσc−1CR(1 + σ2
cσξiC∂zzf );

(vi) ‖ξr‖�−2δ ≤ σξr
1

γ δν ε, with σξr = (1 + σc)σξ̃r ;

(vii) ‖Δc‖�−2δ ≤ σΔc
1

γ δν ε, with σΔc = σcσξr ;

(viii) |Δλ| ≤ σΔλε, with σΔλ = σc−1(1 + σ2
cσξiC∂zzf ).
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Proof.

(i) Since

(
ξi

Δτ

)
= D−1

(
< c−1

+ ei >

− < cRλc̃
−1
+ ei >

)
, then

max{|ξi|, |Δτ |} ≤ σD−1 max

{
| < c−1

+ ei > |, | < cRλc̃
−1
+ ei > |

}
≤ σD−1 max

{
‖c−1

+ ei‖�, ‖cRλc̃
−1
+ ei‖�−δ

}
≤ σD−1 max

{
σc−1‖ei‖�, σc‖Rλc̃

−1
+ ei‖�−δ

}
≤ σD−1 max

{
σc−1‖ei‖�, σc 1

γ δν
CR ‖c̃−1

+ ei‖�
}

≤ σD−1 max

{
σc−1‖ei‖�, 2σc 1

γ δν
CR σc−1‖ei‖�

}
= σD−1σc−1 max {γ δν , 2σcCR} 1

γ δν
‖ei‖�

≤ σD−1σc−1 max {1, 2σcCR} 1

γ δν
‖ei‖� = σs

1

γ δν
‖ei‖� ,

where σs = σD−1σc−1 max {1, 2σcCR} .

(ii) Since ξ̃i = Rλ(c̃
−1
+ ei +Δτ c̃−1

+ ), then

‖ξ̃i‖�−δ ≤ CR
1

γ δν 2σc−1‖ei‖� + |Δτ | ‖Rλc̃
−1
+ ‖�−δ ≤ CR

1
γ δν 2σc−1‖ei‖� + σs

1
γ δν ‖ei‖� σb

≤ (2CRσc−1 + σsσb)
1

γ δν ‖ei‖� = σ
ξ̃i

1
γ δν ‖ei‖�, where σ

ξ̃i
= 2CRσc−1 + σsσb.

(iii) ξi = ξ̃i + ξi. Therefore, ‖ξi‖�−δ ≤ ‖ξ̃i‖�−δ + |ξi| ≤ σ
ξ̃i

1
γ δν ‖ei‖� + σs

1
γ δν ‖ei‖�

≤ (σ
ξ̃i
+ σs)

1
γ δν ‖ei‖� = σξi

1
γ δν ‖ei‖�, where σξi = σ

ξ̃i
+ σs.

(iv) ξr = − 1
λ <c> < cR1(c̃

−1
+ er+c̃−1

+ Ri
1) >. Hence, |ξr| ≤ 1

|λ| |<c>|σc
1

γ δν CR2σc−1(‖er‖�+‖Ri
1‖�−δ).

Now we bound the integral remainder,

Ri
1(θ) =

∫ 1

0

∂2f

∂x2
(θ, κ(θ) + t c(θ)ξi(θ))dt c(θ)2ξi(θ) , θ ∈ T�−δ.

|Ri
1(θ)| ≤

∫ 1

0
|∂

2f

∂x2
(θ, κ(θ) + tc(θ)ξi(θ))|dt ‖c‖2� ‖ξi‖�−δ < C∂zzfσ

2
cσξi

1

γ δν
‖ei‖�.

Thus,

|ξr| ≤ 1
|λ|

1
γ δν CR 2σc σc−1(‖er‖� + C∂zzfσ

2
cσξi

1
γ δν ‖ei‖�) ≤ 2

aCR σcσc−1(1 + C∂zzfσ
2
cσξi)

1
γ δν ε

= σξr
1

γ δν ε, where σξr = 2
aCR σcσc−1(1 + C∂zzfσ

2
cσξi).

(v) Since ξ̃r = 1
λR1(c̃

−1
+ er + c̃−1

+ Ri
1), then

‖ξ̃r‖�−2δ ≤ 1
|λ|CR

1
γ δν 2σc−1(‖er‖� + C∂zzfσ

2
cσξi

1
γ δν ‖ei‖�) ≤ 2

aCR σc−1(1 + C∂zzfσ
2
cσξi)

1
γ δν ε

= σ
ξ̃r

1
γ δν ε, where σ

ξ̃r
= 2

aCR σc−1(1 + C∂zzfσ
2
cσξi). Notice that σξr = σ

ξ̃r
σc.

(vi) ξr = ξ̃r + ξr. Then, ‖ξr‖�−2δ ≤ ‖ξ̃r‖�−2δ + |ξr| ≤ (σ
ξ̃r

+ σξr)
1

γ δν ε = σξr
1

γ δν ε, where

σξr = σ
ξ̃r

+ σξr = σ
ξ̃r
(1 + σc).
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(vii) c1 = c(1 + ξr) = c + cξr = c + Δc. Therefore, ‖Δc‖�−2δ = ‖ cξr‖�−2δ ≤ ‖c‖� ‖ξr‖�−2δ ≤
σc σξr

1
γ δν ‖er‖� ≤ σΔc

1
γ δν ‖er‖�, where σΔc = σc σξr .

(viii) Δλ =< c−1
+ er > + < c−1

+ Ri
1 >. Hence, |Δλ| ≤ | < c−1

+ er > |+ | < c−1
+ Ri

1 > |
≤ σc−1(‖er‖� + ‖Ri

1‖�−δ) ≤ σc−1(‖er‖� + C∂zzfσ
2
cσξi

1
γ δν ‖ei‖�)

≤ σc−1(1 + C∂zzfσ
2
cσξi) ε = σΔλ ε, where σΔλ = σc−1(1 + C∂zzfσ

2
cσξi).

Corollary 2.17

Under the same conditions as in the previous Lemma 2.16, ∃Qei , Qer > 0, such that

(a) ‖ei1‖�−δ < Qei ε
2;

(b) ‖er1‖�−2δ < Qer
1

γ δν ε2.

Proof.

(a) ei1(θ) = (er(θ) +Ri
1(θ)−Ri

2(θ))ξ
i(θ), ∀θ ∈ T�−δ.

‖ei1‖�−δ ≤ (‖er‖� + ‖Ri
1 −Ri

2‖�−δ)‖ξi‖�−δ ≤ (‖er‖� + 1

2
C∂zzf‖c‖2�‖ξi‖�−δ)‖ξi‖�−δ.

Since ‖ξi‖�−δ ≤ σξi
1

γδν ‖ei‖�, then

‖ei1‖�−δ ≤ (‖er‖� + 1

2
C∂zzf‖c‖2�σξi

1

γδν
‖ei‖�)σξi

1

γδν
‖ei‖�

≤ = (ε+
1

2
C∂zzfσ

2
cσξiε)σξiε = σξi(1 +

1

2
C∂zzfσξi) ε

2 = Qei ε
2 ,

where Qei = σξi(1 +
1
2C∂zzfσξi).

(b) er1(θ) = (er(θ) +Ri
1(θ))ξ

r(θ)−Δλ c(θ + ω)ξr(θ + ω), ∀θ ∈ T�−2δ.

‖er1‖�−2δ ≤ (‖er‖� + ‖Ri
1‖�−δ)‖ξr‖�−2δ + |Δλ| ‖c‖� ‖ξr‖�−2δ

≤ (‖er‖� + C∂zzfσ
2
c ‖ξi‖�−δ + |Δλ| σc)‖ξr‖�−2δ

≤ (ε+ C∂zzfσ
2
cσξiε+ σΔλε)σξr

1

γ δν
ε = σξr(1 + C∂zzfσ

2
cσξi + σΔλ)

1

γ δν
ε2

= Qer
1

γ δν
ε2,

where Qer = σξr(1 + C∂zzfσ
2
cσξi + σΔλ).
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In the following lemma, all the conditions of the previous Lemma 2.16 are assumed.

Lemma 2.18 Iterative step

Let 0 < δ < 1
2	 and ε = max{‖er‖�, 1

γ δν ‖ei‖�}. If the following conditions hold:

(H1)
σΔκ

r0 − ‖κ− κ∗‖� ε < 1

(H2) max

{
σΔc

σc − ‖c‖� ,
σΔc−1

σc−1−‖c−1‖�

}
1

γ δν
ε < 1

(H3) max

{
1

1
a − |λ| ,

1

|λ| − a

}
σΔλ ε < 1

(H4) max

{
σΔb

σb − ‖b‖�−δ
,

σ2
D−1 σΔD

σD−1 − ‖D−1‖
}

1

(γ δν)2
ε < 1 ,

then

(i) < κ1 >= p and < c1 >= 1;

(ii) ‖κ1 − κ∗‖�−δ < r0, i.e. κ1(T�) ⊆ Ω�,r0 and ‖Δκ‖�−δ < σΔκ ε;

(iii) |Δτ | < σΔτ ε and |Δλ| < σΔλ ε;

(iv) ‖c1‖�−2δ < σc and ‖c−1
1 ‖�−2δ < σc−1. Moreover,

‖Δc‖�−2δ < σΔc
1

γ δν
ε and ‖Δc−1‖�−2δ < σΔc−1

1

γ δν
ε;

(v) a < |λ1| < 1

a
;

(vi) ‖b1‖�−3δ < σb and ‖Δb‖�−3δ < σΔb
1

(γ δν)2
ε (whenever 0 < δ < 1

3	) ;

(vii) ‖D−1
1 ‖ < σD−1, ‖ΔD‖ < σΔD

1

(γ δν)2
ε and ‖ΔD−1‖ < σΔD−1

1

(γ δν)2
ε,

where
σΔκ = σc σξi
σΔc = σc σξr

σΔc−1 = σ2
c−1 σc σξr

σΔλ = σc−1(1 + σ2
cσξiC∂zzf )

σΔb = 2CRσc−1(σ2
c−1 σc σξr + σΔλCR)

σΔD = max{σΔλ, σΔc−1 + σcσΔbσΔcσb}
σΔD−1 = σ2

D−1σΔD

σΔτ = σD−1 σc−1 max{1, 2σcCR} .
Additionally, ∃Qei , Qer > 0 such that ‖ei1‖�−δ < Qei ε

2 and ‖er1‖�−2δ < Qer
1

γδν ε2.

Proof.

(i) Recall that κ1(θ), τ1, c1(θ), and λ1 are uniquely determined whenever the non-degeneracy
conditions det(D) �= 0 and λ �= 0 are satisfied. In such a case, < κ1 >= p and < c1 >= 1 by
construction. Moreover, κ1 ∈ A�−δ for every δ ∈ (0, 	) , and c1 ∈ A�−2δ for every δ ∈ (0, 12	).
We can also say that k1, c1 ∈ A�−2δ, for every δ ∈ (0, 12	).
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(ii) Δκ = κ1 − κ = c ξi ⇒ ‖Δκ‖�−δ ≤ ‖c‖� ‖ξi‖�−δ < σcσξi
1

γ δν ‖ei‖�. This means that

‖Δκ‖�−δ ≤ σΔκ
1

γ δν ‖ei‖� < σΔκ ε, with σΔκ = σcσξi . Moreover,

‖Δκ‖�−δ

r0 − ‖κ− κ∗‖� ≤ σcσξi

r0 − ‖κ− κ∗‖� · 1

γ δν
‖ei‖� =

σΔκ

r0 − ‖κ− κ∗‖� · 1

γ δν
‖ei‖�

=
σΔκ

r0 − ‖κ− κ∗‖� · ε < 1 ( by hypothesis (H1) )

⇒ ‖Δκ‖�−δ < r0 − ‖κ− κ∗‖�−δ.

Thus,

‖κ1−κ∗‖�−δ = ‖κ+Δκ−κ∗‖�−δ ≤ ‖κ−κ∗‖�−δ+‖Δκ‖�−δ ≤ ‖κ−κ∗‖�−δ+r0−‖κ−κ∗‖�−δ = r0.

(iii) Consequence of Lemma 2.16, parts (i) and (viii).

(iv) On the one hand,

‖Δc‖�−2δ = ‖cξr‖�−2δ ≤ ‖c‖� ‖ξr‖�−2δ ≤ σcσξr
1

γ δν
‖er‖�

= σΔc
1

γ δν
‖er‖� ≤ σΔc

1

γ δν
ε,

where σΔc = σc σξr . Then,

‖c1‖�−2δ = ‖c+Δc‖�−2δ ≤ ‖c‖� + ‖Δc‖�−2δ ≤ ‖c‖� + σΔc
1

γ δν
ε < ( by hypothesis (H2) )

< ‖c‖� + σc − ‖c‖� = σc .

On the other hand, if c �= 0, ‖c−1‖� < σc−1 , c1 = c+Δc, and we take

σΔc−1 = σ2
c−1σΔc = σ2

c−1σcσξr , then using hypothesis (H2) we have

σ2
c−1 ‖Δc‖�−2δ

σc−1 − ‖c−1‖� <
σΔc−1

σc−1 − ‖c−1‖�
1

γ δν
ε < 1. Applying now Lemma III.1, we get

‖c−1
1 ‖�−2δ < σc−1 .

Moreover, by the same lemma,

‖Δc−1‖�−2δ = ‖c−1
1 − c−1‖�−2δ ≤ σ2

c−1 ‖Δc‖�−2δ < σ2
c−1σcσξr

1

γ δμ
‖er‖�

= σΔc−1

1

γ δν
‖er‖� ≤ σΔc−1

1

γ δν
ε ,

with σΔc−1 = σ2
c−1σcσξr .

(v)

||λ1| − |λ|| ≤ |λ1 − λ| = |Δλ| < σΔλ ε ( by hypothesis (H3) )

≤ 1

max
{

1
1
a
−|λ| ,

1
|λ|−a

} = min

{
1

a
− |λ|, |λ| − a

}
.

Therefore, a < |λ1| < 1
a .
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(vi) First, we bound Δb.

Notice that,

Δb(θ) = b1(θ)− b(θ) = Rλ1 c̃
−1
1,+(θ)−Rλc̃

−1
+ (θ)

= Rλ1 c̃
−1
1,+(θ)−Rλ1 c̃

−1
+ (θ) +Rλ1 c̃

−1
+ (θ)−Rλc̃

−1
+ (θ)

= Rλ1(c̃
−1
1,+ − c̃−1

+ )(θ) + (Rλ1 −Rλ)c̃
−1
+ (θ)

= Rλ1(Δc̃−1
+ )(θ) + (ΔRλ)c̃

−1
+ (θ), ∀θ ∈ T�−3δ.

By Proposition 1.26, part (a),

ΔRλc̃
−1
+ (θ) = ΔλRλ1Rλc̃

−1
+ (θ), ∀θ ∈ T�−2δ.

Thus,

Δb(θ) = Rλ1(Δc̃−1
+ )(θ) + ΔλRλ1Rλc̃

−1
+ (θ), ∀θ ∈ T�−3δ.

It follows that

‖Δb‖�−3δ ≤ CR
1

γ δν
‖Δc̃−1

+ ‖�−2δ + |Δλ| CR
1

γ δν
CR

1

γ δν
‖c̃−1

+ ‖�

≤ 2CR
1

γ δν

(
‖Δc−1‖�−2δ + |Δλ|CR

1

γ δν
‖c−1‖�

)
≤ 2CR

1

γ δν

(
σΔc−1

1

γ δν
ε+ σΔλ εCR

1

γ δν
σc−1

)
= 2CR(σΔc−1 + CRσΔλσc−1)

1

(γ δν)2
ε = σΔb

1

(γ δν)2
ε,

where σΔb = 2CR(σΔc−1 + CRσΔλσc−1) = 2CRσc−1(σc−1σcσξr + CRσΔλ).

‖b1‖�−3δ = ‖b+Δb‖�−3δ ≤ ‖b‖�−δ + ‖Δb‖�−3δ ( by hypothesis (H4) )

< ‖b‖�−δ + σΔb
1

(γ δν)2
ε < ‖b‖�−δ + σb − ‖b‖�−δ = σb.

(vii) Next, we bound ΔD.

ΔD = D1−D =

(
1− λ1 − < c−1

1 >
< c1 > < c1b1 >

)
−
(

1− λ − < c−1 >
< c > < cb >

)
=

( −Δλ − < Δc−1 >
0 < Δ(c b) >

)
.

Thus,

‖ΔD‖ = ‖D1 −D‖ = max
{|Δλ|, | < Δc−1 > |+ | < Δ(c b) > |}

≤ max
{|Δλ|, ‖Δc−1‖�−2δ + ‖Δ(cb)‖�−3δ

}

| < Δ(c b) > | = | < c1 b1 > − < c b > | = | < c1 (b1 − b) + (c1 − c) b > |
≤ ‖c1Δb‖�−3δ + ‖Δc b‖�−2δ ≤ ‖c1‖�−2δ ‖Δb‖�−3δ + ‖Δc‖�−2δ ‖b‖�−δ

= σc σΔb
1

(γ δν)2
ε+ σΔc

1

γ δν
ε σb = (σcσΔb γδ

ν + σδcσb)
1

(γ Δν)2
ε

≤ (σcσΔb + σΔcσb)
1

(γ δν)2
ε = σΔ(c b)

1

(γ δν)2
ε,
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where σΔ(c b) = σcσΔb + σΔcσb.

Thus,

‖ΔD‖ ≤ max

{
σΔλ, σΔc−1

1

γ Δν
+ σΔ(c b)

1

(γ δν)2
ε

}
< max

{
σΔλ, σΔc−1 + σΔ(c b)

} 1

(γ δν)2
ε = σΔD

1

(γ δν)2
ε,

where σΔD = max
{
σΔλ, σΔc−1 + σΔ(c b)

}
.

As a consequence of this bound, we can write

σ2
D−1 ‖ΔD‖

σD−1 − ‖D−1‖ ≤ σ2
D−1 σΔD

σD−1 − ‖D−1‖
1

(γ δν)2
ε < 1 ( by hypothesis (H4)).

Now, we apply again Lemma III.1:

σ2
D−1 ‖ΔD‖

σD−1 − ‖D−1‖ < 1 ⇒
{ ‖D−1

1 ‖ < σD−1

‖ΔD−1‖ = ‖D−1
1 −D−1‖ < σ2

D−1 ‖ΔD‖
.

Moreover, since ‖ΔD‖ < σΔD
1

(γ δν)2
ε, then

‖ΔD−1‖ < σ2
D−1 ‖ΔD‖ < σ2

D−1σΔD
1

(γ δν)2
ε = σΔD−1

1

(γ δν)2
ε,

where σΔD−1 = σ2
D−1σΔD.
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Theorem 2.19 (KAM Theorem)

Let Ψ = Rω × f be a quasi–periodic skew-product

Ψ : T× R −→ T× R
(θ, x) �−→ Ψ(θ, x) = (θ + ω, f(θ, x))

where the frequency ω ∈ DC(γ, ν) is Diophantine and f : T× R −→ R is a real analytic function.
Assume that there is a complex extension of f ,

f : T� × U −→ C,

where 	 > 0 and U ⊆ C is an open connected set such that exist κ∗ : T�0 −→ C, κ∗ ∈ A�0, with
0 < 	0 < 	, and r0 > 0 satisfying the following properties:

If Ω = Ω�0,r0 := {(θ, z) ∈ T�0 × C : |z − κ∗(θ)| ≤ r0}, then
(a) Ω�0,r0 ⊆ T� × U ,

(b)

∥∥∥∥∂f∂z
∥∥∥∥
Ω

:= sup
(θ,z)∈Ω

∣∣∣∣∂f∂z (θ, z)
∣∣∣∣ < C∂zf , and

(c)

∥∥∥∥∂2f

∂z2

∥∥∥∥
Ω

:= sup
(θ,z)∈Ω

∣∣∣∣∂2f

∂z2
(θ, z)

∣∣∣∣ < C∂zzf .

Let p ∈ R be a fixed average.
Assume that we have κ0, c0 ∈ A�0, and τ0, λ0 ∈ R satisfying the following conditions:

(i) < κ0 >= p;

(ii) < c0 >= 1.

(iii) ‖κ0 − κ∗‖�0 ≤ r0, i.e. {(θ, κ0(θ)) : θ ∈ T�0} ⊆ T�0 × U ;

(iv) det(D0) �= 0, where

D0 =

(
1− λ0 − < c−1

0 >

< c0 > < c0Rλ0 c̃
−1
0,+ >

)
, and

(v) λ0 �= 0.

Define,

ei0(θ) = f(θ, κ0(θ))− κ0(θ + ω) + τ0, θ ∈ T�0

er0(θ) = ∂f
∂z (θ, κ0(θ))c0(θ)− c0(θ + ω)λ0, θ ∈ T�0

ε0 = max
{
‖er0‖�0 , 1

γ δν0
‖ei0‖�0

}
, where δ0 = min{1

4	0, γ
1
ν } ,

Qε0 = max{Qer0
, αν Qei0

} , and

Σs(μ, α) =

∞∑
j=0

αsνjμ2j−1 (s = −1, 0, 1) , where α > 1 and μ ∈ (0, 1) .

Assume that ε0 satisfy the following smallness condition:

Qε0 ε0
γ δν1

≤ μ < 1 ,

where δ1 =
δ0
α .
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Under these conditions, if moreover κ0(θ), c0(θ), τ0, and λ0 satisfy the following hypothesis:

(H.I )
σΔκ0Σ−1

r0 − ‖κ0 − κ∗‖�0
ε0 < 1

(H.II ) max

{
1

1
a − |λ0|

,
1

|λ0| − a

}
σΔλ0 Σ−1ε0 < 1

(H.III )
σΔc0Σ0

σc0 − ‖c0‖�0
1

γ δν0
ε0 < 1

(H.IV )
σΔc−1

0
Σ0

σc−1
0

− ‖c−1
0 ‖�0

1

γ δν0
ε0 < 1

(H.V )
σΔD−1

0
Σ1

σD−1
0

− ‖D−1
0 ‖

1

(γ δν0 )
2
ε0 < 1

(H.VI )
σΔb0Σ1

σb0 − ‖b0‖�0−δ0

1

(γ δν0 )
2
ε0 < 1

then ∃ κ ∈ A�∞ (for some 0 < 	∞ < 	0) and τ ∈ R such that{
f(θ, κ(θ))− κ(θ + ω) + τ = 0

< κ > = p

i.e. κ is an analytic invariant translated curve of the skew–product Ψ with translation parameter τ .
In particular, if τ = 0 then κ is an invariant curve.

Additionally, ∃ c ∈ A�∞ and λ ∈ R \ {0} such that{
∂f
∂z (θ, κ(θ)) c(θ)− c(θ + ω)λ = 0

< c > = 1

Moreover, κ, c, and c−1 satisfy the desired bounds.

Proof. The proof consist in the generation of a sequence of objects {κj , τj , cj , λj} (j ∈ N) with
κj , cj : T�j −→ C, τj , λj ∈ R, which produce errors {eij , erj}, eij , erj : T�j −→ C and

εj = max

{
‖erj‖�j ,

1

γ δνj
‖eij‖�j

}
.

When the guess functions κj , cj are analytic in the complex strip T�j , the new ones κj+1, cj+1 will
turn out to be analytic in a reduced strip T�j+1 , with 	j+1 = 	j − 2δj , for some δj ∈ (0, 12	j). This
fact is a consequence of the required application of the cohomological operator at each step of the
procedure. So, during the procedure and in the limit, we want each curve to be analytic in a strip
T�∞ , with 	∞ > 0. This can be achieved with an adequate choice of the δj ’s, so that 	∞ = lim

j→∞
	j

with 	∞ < 	j , ∀j ∈ N.
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The choice of the deltas

δ0 = min{1
4	0, γ

− 1
ν } δj =

δ0
αj , j = 0, 1, . . .

0 < 	0 < 	 	j+1 = 	j − 2δj , j = 0, 1, . . .

	∞ = 	0 − 2α
α−1δ0 ∈ (0, 	0) α = �0−�∞

�1−�∞ ∈ (1,∞).

Observe that, with this choice, the following properties hold:

� (	j)j∈N and (δj)j∈N are strictly decreasing sequences with 0 < 2δj < 	j , ∀j ∈ N;

� δj =
δ0
αj

, ∀j ∈ N;

� 	j = 	0 − 2

j−1∑
i=0

δi −→ 	∞.

Next, we bound the errors produced at each step of the procedure.

εj = max

{
‖erj‖�j ,

1

γδνj
‖eij‖�j

}
≤ max

{
Qerj−1

1

γ δνj−1

ε2j−1,
1

γ δνj
Qeij−1

ε2j−1

}

= max

{
Qerj−1

1

δνj−1

,
1

δνj
Qeij−1

}
1

γ
ε2j−1 = max

⎧⎨⎩Qerj−1

1

δνj−1

,
1(

δj−1

α

)νQeij−1

⎫⎬⎭ 1

γ
ε2j−1

= max
{
Qerj−1

, Qeij−1
αν
} 1

γ δνj−1

ε2j−1 = Qεj−1

1

γ δνj−1

ε2j−1 ,

where Qεj := max
{
Qerj

, Qeij
αν
}

(j = 0, 1, . . . ).

It follows that

εj ≤ Qεj−1

1

γ δνj−1

ε2j−1 ≤ Qεj−1

1

γ δνj−1

(
Qεj−2

1

γ δνj−2

ε2j−2

)2

= Qεj−1 Q
2
εj−2

1

γ γ2
· 1(

δj−1 δ2j−2

)ν · ε22j−2 ≤ . . .

≤ Q20

εj−1
Q21

εj−2
. . . Q2j−2

ε1 Q2j−1

ε0

1

γ γ2 . . . γ2j−1 · 1(
δj−1δ2j−2 . . . δ

2j−1

0

)ν · ε2j0

≤ Q20+21+···+2j−1

ε0

1

γ20+21+···+2j−1 ·
(

δ2
j−1

0

α2j−j−1

)−ν

ε2
j

0

= Q2j−1
ε0

1

γ2j−1

(
δ2

j−1
0

α2j−1

)−ν
1

ανj
ε2

j

0

=

(
Qε0

1

γ

(
δ0
α

)−ν

ε0

)2j−1
1

ανj
· ε0 =

(
Qε0 ε0
γ δν1

)2j−1 1

ανj
ε0. (2.64)
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Moreover, by assumption μ ∈
[
Qε0 ε0
γ δν1

, 1

)
. Therefore,

εj ≤ μ2j−1 1

ανj
ε0, ∀j ∈ N. (2.65)

Remark 2.20

δj−1δ
2
j−2 . . . δ

2j−1

j0 =
δ2

j−1
0

α2j−j−1
.

Proof.

δj−1δ
2
j−2 . . . δ

2j−1

j0 =

(
δ0

αj−1

)20

·
(

δ0
αj−2

)21

· · · · ·
(
δ0
α0

)2j−1

=
δ1+2+···+2j−1

0

α(j−1)·20+(j−2)·21+···+1·2j−2 .

If we call, Sj =

j−1∑
i=0

2i and Tj =

j−1∑
i=0

i 2i, then

(j − 1) · 20 + (j − 2) · 21 + · · ·+ 1 · 2j−2 =

j−1∑
i=0

(j − 1− i)2i = (j − 1)Sj − Tj .

On the one hand, Sj =
1−2j

1−2 = 2j − 1.

On the other hand, −Tj = Tj − 2Tj = 21 + 22 + · · · + 2j−1 − (j − 1)2j = 2−2j

1−2 − (j − 1)2j , and

Tj = 2− 2j + (j − 1)2j = 2− 2j(1− (j − 1)) = 2− 2j(1− (j − 1)). Therefore,
(j−1)·20+(j−2)·21+· · ·+1·2j−2 = (j−1)Sj−Tj = (j−1)(2j−1)−(2−2j(1−(j−1))) = 2j−j−1.
It follows from (2.64), that

δj−1δ
2
j−2 . . . δ

2j−1

j0 =
δ2

j−1
0

α2j−j−1
.

Notice that, from (2.65) we also have

j−1∑
i=0

εi ≤
j−1∑
i=0

μ2i−1 1

ανi
ε0 ≤

∞∑
j=0

μ2i−1 1

ανi
ε0 = Σ−1 ε0. (2.66)

This means that the series

∞∑
j=0

εj is convergent as well and hence,

lim
j→∞

εj = 0 . (2.67)

Next, we check the following conditions:
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(I) ‖κj − κ∗‖�j < r0, ∀j = 0, 1, . . . , and hence κj(T�j ) ⊆ Ω�0,r0 , ∀j = 0, 1, . . . .

(II) a < |λj | < 1
a , ∀j = 0, 1, . . . .

(III) ‖cj‖�j < σc0 , ∀j = 0, 1, . . . .

(IV) ‖c−1
j ‖�j < σc−1

0
, ∀j = 0, 1, . . . .

(V) ‖D−1
j ‖ < σD−1

0
, ∀j = 0, 1, . . . .

(VI) ‖bj‖�j+1 < σb0 , ∀j = 0, 1, . . . .

(I) ‖κj − κ∗‖�j < r0, ∀j = 0, 1, . . . , and hence κj(T�j ) ⊆ Ω�0,r0 , ∀j = 0, 1, . . . .

‖κj − κ∗‖�j ≤ ‖κ0 − κ∗‖�0 +
j−1∑
i=0

‖κi+1 − κi‖�i+1 = ‖κ0 − κ∗‖�0 +
j−1∑
i=0

‖Δκi‖�i+1

≤ ‖κ0 − κ∗‖�0 +
j−1∑
i=0

σΔκ0 εi ≤ ‖κ0 − κ∗‖�0 + σΔκ0

j−1∑
i=0

εi

≤ ‖κ0 − κ∗‖�0 + σΔκ0

j−1∑
i=0

μ2i−1

ανi
ε0 < ‖κ0 − κ∗‖�0 + σΔκ0

∞∑
i=0

μ2i−1

ανi
ε0

= ‖κ0 − κ∗‖�0 + σΔκ0ε0Σ−1 ≤ ‖κ0 − κ∗‖�0 + r0 − ‖κ0 − κ∗‖�0 = r0.

(II) a < |λj | < 1
a , ∀j = 0, 1, . . . .

|λj | ≤ |λ0|+
j−1∑
i=0

|Δλi| ≤ |λ0|+
j−1∑
i=0

σΔλi
εi

≤ |λ0|+ σΔλ0

j−1∑
i=0

εi < |λ0|+ σΔλ0

j−1∑
i=0

εi = |λ0|+ σΔλ0

∞∑
i=0

εi

= |λ0|+ σΔλ0Σ−1ε0 < |λ0|+ 1

a
− |λ0| = 1

a
.

Since (H.I ) implies that σΔλ0Σ−1ε0 <
1

max
{

1
1
a
−|λ0| ,

1
|λ0|−a

} = min

{
1

a
− |λ0|, |λ0| − a

}
,

and therefore σΔλ0Σ−1ε0 <
1
a − |λ0| and σΔλ0Σ−1ε0 < |λ0| − a.

On the other hand,

||λj | − |λ0|| ≤ |λj − λ0| ≤
j−1∑
i=0

|Δλi| ≤ σΔλ0Σ−1ε0 < |λ0| − a.

Hence, a < |λj |.

(III) ‖cj‖�j < σc0 , ∀j = 0, 1, . . . .
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‖cj‖�j ≤ ‖c0‖�0 +
j−1∑
i=0

‖ci+1 − ci‖�i+1 = ‖c0‖�0 +
j−1∑
i=0

‖Δci‖�i+1

≤ ‖c0‖�0 +
j−1∑
i=0

σΔci

1

γ δνi
εi ≤ ‖c0‖�0 + σΔc0

j−1∑
i=0

1

γ δνi
εi

≤ ‖c0‖�0 + σΔc0

j−1∑
i=0

1

γ δνi
μ2i−1 1

ανi
ε0 ≤ ‖c0‖�0 + σΔc0

j−1∑
i=0

μ2i−1 1

γ δν0
ε0

< ‖c0‖�0 + σΔc0

∞∑
i=0

μ2i−1 1

γ δν0
ε0 = ‖c0‖�0 + σΔc0Σ0

1

γ δν0
ε0

≤ ‖c0‖�0 + σc0 − ‖c0‖�0 = σc0 .

Notice that δi α
i = δ0. The last inequality is due to (H.III ).

(IV) ‖c−1
j ‖�j < σc−1

0
, ∀j = 0, 1, . . . .

In a completely analogous way,

‖c−1
j ‖�j ≤ ‖c−1

0 ‖�0 +
j−1∑
i=0

‖c−1
i+1 − c−1

i ‖�i+1 = ‖c−1
0 ‖�0 +

j−1∑
i=0

‖Δc−1
i ‖�i+1

≤ ‖c−1
0 ‖�0 +

j−1∑
i=0

σΔc−1
i

1

γ δνi
εi ≤ ‖c−1

0 ‖�0 + σΔc−1
0

j−1∑
i=0

1

γ δνi
εi

≤ ‖c−1
0 ‖�0 + σΔc−1

0

j−1∑
i=0

1

γ δνi
μ2i−1 1

ανi
ε0 ≤ ‖c−1

0 ‖�0 + σΔc−1
0

j−1∑
i=0

μ2i−1 1

γ δν0
ε0

< ‖c−1
0 ‖�0 + σΔc−1

0

∞∑
i=0

μ2i−1 1

γ δν0
ε0 = ‖c−1

0 ‖�0 + σΔc−1
0
Σ0

1

γ δν0
ε0

≤ ‖c−1
0 ‖�0 + σc−1

0
− ‖c−1

0 ‖�0 = σc−1
0
.

Notice that δi α
i = δ0. The last inequality is due to (H.IV ).

(V) ‖D−1
j ‖ < σD−1

0
, ∀j = 0, 1, . . . .

‖D−1
j ‖ ≤ ‖D−1

0 ‖+
j−1∑
i=0

‖D−1
i+1 −D−1

i ‖ = ‖D−1
0 ‖+

j−1∑
i=0

‖ΔD−1
i ‖

≤ ‖D−1
0 ‖+

j−1∑
i=0

σΔD−1
i

1

(γ δνi )
2
εi ≤ ‖D−1

0 ‖+ σΔD−1
0

j−1∑
i=0

1

(γ δνi )
2
εi

≤ ‖D−1
0 ‖+ σΔD−1

0

j−1∑
i=0

1

(γ δνi )
2
μ2i−1 1

ανi
ε0 ≤ ‖D−1

0 ‖+ σΔD−1
0

j−1∑
i=0

μ2i−1 ανi

(γ δν0 )
2
ε0

< ‖D−1
0 ‖+ σΔD−1

0

1

(γ δν0 )
2

∞∑
i=0

ανiμ2i−1ε0 = ‖D−1
0 ‖+ σΔD−1

0
Σ1

1

(γ δν0 )
2
ε0

≤ ‖D−1
0 ‖+ σD−1

0
− ‖D−1

0 ‖ = σD−1
0
.

Notice that δi α
i = δ0. The last inequality is due to (H.V ).
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(VI) ‖bj‖�j+1 < σb0 , ∀j = 0, 1, . . . .

‖bj‖�j+1 ≤ ‖b0‖�1 +
j−1∑
i=0

‖bi+1 − bi‖�i+2 = ‖b0‖�1 +
j−1∑
i=0

‖Δbi‖�i+2

≤ ‖b0‖�1 +
j−1∑
i=0

σΔbi

1

(γ δνi )
2
εi ≤ ‖b0‖�1 + σΔb0

j−1∑
i=0

1

(γ δνi )
2
εi

≤ ‖b0‖�1 + σΔb0

j−1∑
i=0

1

γ δνi
μ2i−1 1

(γ δνi )
2
ε0 ≤ ‖b0‖�1 + σΔc0

j−1∑
i=0

μ2i−1 ανi

(γ δν0 )
2
ε0

< ‖b0‖�1 + σΔc0

1

(γ δν0 )
2

∞∑
i=0

ανiμ2i−1ε0 = ‖b0‖�1 + σΔb0Σ1
1

(γ δν0 )
2
ε0

≤ ‖b0‖�1 + σb0 − ‖b0‖�1 = σb0 .

Again we have used that δi α
i = δ0 and the last inequality in this case is due to (H.VI ).

Finally, we prove the convergence of the generated sequences.
Notice that 	∞ < 	j , ∀j = 0, 1, . . . and therefore κj , cj ∈ A�∞ , ∀j = 0, 1, . . . . By the uniform
convergence of the series Σ−1 and Σ0, we can see that (κj)j∈N, (cj)j∈N are Cauchy sequences in
A�∞ and (τj)j∈N, (λj)j∈N are Cauchy sequences in R.

Since κj = κ0 +

j−1∑
i=0

Δκi, then, ∀j, l ∈ N, with l > j, we have

‖κl − κj‖�∞ =

∥∥∥∥∥
l−1∑
i=0

Δκi −
j−1∑
i=0

Δκi

∥∥∥∥∥
�∞

≤
l−1∑
i=j

‖Δκi‖�∞

≤
l−1∑
i=j

σc0σξi0
εi = σc0σξi0

l−1∑
i=j

εi

< σc0σξi0

∞∑
i=j

εi → 0 as j → ∞,

Indeed, (κj)j∈N is Cauchy in A�∞ , which is a Banach space. Therefore, ∃κ ∈ A�∞ , such that
lim
j→∞

κj = κ.

Similarly, τj = τ0 +

j−1∑
i=0

Δτi and hence, |τl − τj | =
∣∣∣∣∣∣
l−1∑
i=j

Δτi

∣∣∣∣∣∣ ≤
l−1∑
i=j

|Δτi| ≤ σΔτ0

l−1∑
i=j

εi

< σΔτ0

∞∑
i=j

εi → 0 as j → ∞. Consequently, ∃τ ∈ R such that lim
j→∞

τj = τ .

In the same manner, since cj = c0 +

j−1∑
i=0

Δci, then, ∀j, l ∈ N, with l > j, we have

‖cl − cj‖�∞ =

∥∥∥∥∥
l−1∑
i=0

Δci −
j−1∑
i=0

Δci

∥∥∥∥∥
�∞

≤
l−1∑
i=j

‖Δci‖�∞

≤
l−1∑
i=j

σΔci

1

γ δνi
εi < σΔc0

∞∑
i=j

1

γ δνi
εi ≤ σΔc0

1

γ δν0

∞∑
i=j

μ2i−1ε0 → 0 as j → ∞,
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since Σ0 =

∞∑
j=0

μ2j−1 is uniformly convergent.

Thus, (cj)j∈N is Cauchy in A�∞ and therefore, ∃c ∈ A�∞ , such that lim
j→∞

cj = c.

Finally, λj = λ0 +

j−1∑
i=0

Δλi and hence, |λl − λj | =
∣∣∣∣∣∣
l−1∑
i=j

Δλi

∣∣∣∣∣∣ ≤
l−1∑
i=j

|Δλi| ≤ σΔλ0

l−1∑
i=j

εi

< σΔλ0

∞∑
i=j

εi → 0 as j → ∞. Consequently, ∃λ ∈ R such that lim
j→∞

λj = λ. Moreover, λ �= 0,

since a < |λj | < 1
a , ∀j ∈ N.

Furthermore,

εj = max

{
‖erj‖�j ,

1

γ ‖eij‖�j

}
→ 0 as j → ∞ implies that ‖erj‖�j → 0 and ‖eij‖�j → 0 as j → ∞.

Taking limits as j → ∞ in

f(θ, κj(θ))− κj(θ + ω) + τj = eij(θ) , θ ∈ T�∞ and

∂f

∂z
(θ, κj(θ))cj(θ) + cj(θ + ω)λj = erj(θ) , θ ∈ T�∞

we obtain

f(θ, κ(θ))− κ(θ + ω) + τ = 0 , θ ∈ T�∞ and

∂f

∂z
(θ, κ(θ))c(θ) + c(θ + ω)λ = 0 , θ ∈ T�∞ .

So, κ ∈ A�∞ is an invariant translated curve of the skew–product with translation parameter
τ ∈ R and c ∈ A�∞ is a reducibility function for κ with reducibility constant λ �= 0.

Additionally, if we call v(θ) = log
∣∣∣∂f∂z (θ, κ(θ))∣∣∣ and u(θ) = log |c(θ)| and taking in account that∣∣∣∣∂f∂z (θ, κ(θ))

∣∣∣∣ |c(θ)| = |c(θ + ω)| |λ|,

we obtain, taking logarithms,

u(θ + ω)− u(θ) = v(θ)− log |λ|.

Taking averages,

0 =

∫
T
v(θ)dθ − log |λ|.

Therefore, |λ| = e
∫
T
log| ∂f∂z (θ,κ(θ))|dθ.

If
∂f

∂z
(θ, κ(θ)) > 0, ∀θ ∈ T, then |λ| = eΛ, with Λ =

∫
T
log

(
∂f

∂z
(θ, κ(θ))

)
dθ, the Lyapunov

exponent of κ.
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Chapter 3

The translated graph method

3.1 The KAM procedure: one step of the Newton-like method

The key point of the method for finding invariant translated curves is to restrict the search to
those whose average is a fixed number. More explicitly: Given an average p ∈ R our aim is to
find, according to Proposition 2.12, solutions (κ(θ), τ) to the system:{

f(θ, κ(θ))− κ(θ + ω) + τ = 0
< κ > = p

(θ ∈ T) (3.1)

where f : T×R → R is the fiber map of a given skew–product of the form described in (2.1), with
the frequency ω ∈ DC(γ, ν) being Diophantine, whereas κ : T → R and the translation number
τ ∈ R are unknown.
We are going to show the constructability, under certain non-degeneracy conditions, of a sequence

{(κn(θ), τn)}n∈N (3.2)

which converges to such a solution, i.e. κn(θ) −→ κ(θ) (θ ∈ T) and τn −→ τ as n → ∞.
Let us proceed by recurrence, that is, assume that we are given an approximation (κn(θ), τn), and
we want to build a new one, (κn+1(θ), τn+1) with{

κn+1(θ) = κn(θ) + Δκn(θ)
τn+1 = τn +Δτn .

(3.3)

We denote the invariance error for the nth–terms by:{
En(θ) = f(θ, κn(θ))− κn(θ + ω) + τn
en(p) = < κn > −p

(3.4)

The new approximation (3.3) is obtained by solving the system:{
mn(θ)Δκn(θ)−Δκn(θ + ω) + Δτn = −En(θ)

< Δκn > = −en(p)
(3.5)

where1

mn(θ) = Dxf(θ, κn(θ)) , θ ∈ T , (3.6)

1From now on we assume that Dxf(θ, x) > 0, ∀(θ, x) ∈ T× R. Accordingly, mn(θ) > 0, ∀θ ∈ T.
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and the unknowns are Δκn(θ) and Δτn.
The motivation for this approach lies in the following argument:
The first equation of (3.5) comes from the first order approximation of the new error, by means
of the Taylor expansion of f with respect to the second variable at (θ, κ(θ)). Namely,

En+1(θ) = f(θ, κn+1(θ))− κn+1(θ + ω) + τn+1

= f(θ, κn(θ) + Δκn(θ))− (κn(θ + ω) + Δκn(θ + ω)) + τn +Δτn
= f(θ, κn(θ)) +Dxf(θ, κn(θ))Δκn(θ) + O

(
Δκn(θ)

2
)

−κn(θ + ω)−Δκn(θ + ω) + τn +Δτn
= En(θ) +mn(θ)Δκn(θ)−Δκn(θ + ω) + Δτn +O

(
Δκn(θ)

2
)

So that, when (3.5) holds, then:

En+1(θ) = O
(
Δκn(θ)

2
)
,

and the order of convergence is quadratic2.
On the other hand, by the linearity of the average,

en+1(p) = < κn+1 > −p
= < κn +Δκn > −p
= < κn > + < Δκn > −p
= en(p)+ < Δκn > .

Hence, en+1(p) = 0 whenever the second condition of (3.5) holds.
Observe that, in such a case, < κn+1 >= p.

3.2 The non–degeneracy condition

Let us now return to the problem of finding translated invariant curves, i.e. solutions of the system
(3.1), where we left off. More precisely, we need to investigate, first, sufficient conditions under
which the system (3.5), scilicet,{

mn(θ)Δκn(θ)−Δκn(θ + ω) + Δτn = −En(θ)
< Δκn > = −en(p) ,

(3.7)

is solvable.
According to Theorem 2.6 and Corollary 2.8, the reducibility of the linear quasi–periodic
skew–product

Dψ(κn) : T× R −→ T× R
(θ, x) �−→ Dψ(κn)(θ, x) = (θ + ω,mn(θ)x) ,

(3.8)

where mn(θ) = Dxf(θ, κn(θ)), which is the linearization3 of ψτ about κn, allows us finding a
positive reducibility constant λn > 0 and a Floquet transformation cn : T −→ R, such that for a
given cn,0 > 0 (average which can be chosen freely a priori):

λn = cn(θ + ω)−1mn(θ)cn(θ) = eΛn , (3.9)

2We provide more details about this fact later on. See Proposition 3.4.

3See Definition 2.2.
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with

Λn =

∫
T
log(mn(θ))dθ , (3.10)

and
cn(θ) =

cn,0∫
T
eR1(log(mn(θ))−Λn)dθ

· eR1(log(mn(θ))−Λn) . (3.11)

Now, we put forward the following change of variable:

Δκn(θ) = cn(θ)ςn(θ) . (3.12)

In this way, the first equation of (3.7) is transformed into the following one:

mn(θ)cn(θ)ςn(θ)− cn(θ + ω)ςn(θ + ω) + Δτn = −En(θ) . (3.13)

Since mn(θ)cn(θ) = cn(θ + ω)λn, we have

ςn(θ + ω)− λnςn(θ) =
En(θ)

cn(θ + ω)
+

1

cn(θ + ω)
Δτn

or, in other words,
ςn(θ + ω)− λςn(θ) = ξn(θ) + ηn(θ)Δτn , (3.14)

where we have defined the functions:

ξn(θ) =
En(θ)

cn(θ + ω)
, and (3.15)

ηn(θ) =
1

cn(θ + ω)
, (3.16)

being, both of them, known.
Summarizing, the main problem, given by the equations (3.5), is converted now into the following:{

ςn(θ + ω)− λςn(θ) = ξn(θ) + ηn(θ)Δτn (θ ∈ T)
< cnςn > = −en(p) .

(3.17)

Here, the unknowns are the curve ςn(θ) and the deviation of the translation parameter Δτn.
Recall the notation pointed out at Remark 1.6. In this case, we write:

ςn = ςn,0 + ς̃n, with ςn,0 =< ςn >=

∫
T
ςn(θ) dθ , (3.18)

ξn = ξn,0 + ξ̃n, with ξn,0 =< ξn >=

∫
T
ξn(θ) dθ , (3.19)

ηn = ηn,0 + η̃n, with ηn,0 =< ηn >=

∫
T
ηn(θ) dθ . (3.20)

Thus, the first equation of (3.17) can be written as:

ςn,0 + ς̃n(θ + ω)− λn(ςn,0 + ς̃n(θ)) = ξn,0 + ξ̃n(θ) + (ηn,0 + η̃n(θ))Δτn . (3.21)

Taking the average on both sides of (3.21) we have:

(1− λn)ςn,0 − ηn,0Δτn = ξn,0 . (3.22)

Subtracting (3.22) from (3.21) we also have:

ς̃n(θ + ω)− λnς̃n(θ) = ξ̃n(θ) + η̃n(θ)Δτn . (3.23)
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Observe that the average of the right hand side of this equation is zero.
Consequently, it turns out that ς̃n is, in accordance with Theorem 1.20, the unique solution to
the cohomological equation (3.23) with zero average, that is, ς̃n(θ) = Rλn(ξ̃n(θ) + η̃n(θ)Δτn), i.e.

ς̃n(θ) = Rλn(ξ̃n(θ)) +Rλn(η̃n(θ))Δτn , (3.24)

since Rλn is linear.
Additionally, from the second equation of (3.17), we obtain:

< cnςn > = < (cn,0 + c̃n)(ςn,0 + ς̃n) >=< cn,0ςn,0 + cn,0ς̃n + ςn,0c̃n + c̃nς̃n >

= cn,0ςn,0+ < c̃nς̃n >, since < ς̃n >=< c̃n >= 0.

Hence,
cn,0ςn,0+ < c̃nς̃n >= −en(p) . (3.25)

Now, from (3.24) and (3.25) we have:

−en(p) = cn,0ςn,0+ < c̃nς̃n >

= cn,0ςn,0+ < c̃n(Rλn(ξ̃n) +Rλn(η̃n)Δτn) >

= cn,0ςn,0+ < c̃nRλn(ξ̃n) > + < c̃nRλn(η̃n) > Δτn ,

that is,
cn,0ςn,0+ < c̃nRλn(η̃n) > Δτn = −en(p)− < c̃nRλn(ξ̃n) > . (3.26)

Equations (3.22) and (3.26) joined together, provide us with the following linear system:(
1− λn −ηn,0
cn,0 < c̃nRλn(η̃n) >

)(
ςn,0
Δτn

)
=

(
ξn,0

−en(p)− < c̃nRλn(ξ̃n) >

)
. (3.27)

This linear system is the key point in the construction of one step in this process.
Let us denote

Ωn =

(
1− λn −ηn,0
cn,0 < c̃nRλn(η̃n) >

)
(3.28)

and

bn =

(
ξn,0

−en(p)− < c̃nRλn(ξ̃n) >

)
. (3.29)

The system (3.27) is then expressed as:

Ωn

(
ςn,0
Δτn

)
= bn. (3.30)

Notice that (3.30) has a unique solution if and only if the following non–degeneracy condition is
satisfied:

det(Ωn) = det

(
1− λn −ηn,0
cn,0 < c̃nRλn(η̃n) >

)
�= 0 . (3.31)

Equivalently, we may write (3.31) as:

< (1− λn)c̃nRλn(η̃n) + cn,0ηn,0 > �= 0 . (3.32)

Remark 3.1

The non–degeneracy condition (3.31) is independent of the chosen value for the average cn,0 of the
Floquet transformation. Henceforth, for the sake of simplicity we may take cn,0 = 1. However, we
can also consider other options, as we will see below.

All the previous arguments are fully resumed in the following statement.
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Lemma 3.2 Constructability of one step of the KAM process

Let ψ = Rω × f be a quasi–periodic skew–product defined under the same conditions as in (2.1).
Let (κn(θ), τn) be an approximation of a solution to the system (3.1), and En(θ) and en(p) the
corresponding invariance errors given by (3.4).
Consider the following constants and functions:

mn(θ) =
∂f

∂x
(θ, κn(θ)), θ ∈ T� ,

Λn =

∫
T
log(mn(θ)) dθ, the Lyapunov exponent ,

λn = eΛn , the Lyapunov multiplier ,

vn(θ) = log(mn(θ))− Λn , ∀θ ∈ T� ,

un(θ) = un,0 + ũn(θ), θ ∈ T�−δ, δ ∈ (0, 	) with

ũn(θ) = R1vn(θ) , ∀θ ∈ T�−δ ,

un,0 = logαn ,with

αn =
cn,0∫

T
eũn(θ)dθ

and cn,0 > 0 freely chosen ,

cn(θ) = eun(θ) = αne
ũn(θ) , ∀θ ∈ T�−δ , the Floquet transformation,

ξn(θ) =
En(θ)

cn(θ + ω)
, ∀θ ∈ T�−δ ,

ηn(θ) =
1

cn(θ + ω)
, ∀θ ∈ T�−δ .

Finally, define:

Ωn =

(
1− λn −ηn,0
cn,0 < c̃nRλn η̃n >

)
and (3.33)

bn =

(
ξn,0

−en(p)− < c̃nRλn ξ̃n >

)
. (3.34)

If the non–degeneracy condition

det(Ωn) = < (1− λn)c̃nRλn η̃n + cn,0ηn,0 > �= 0 (3.35)

holds, then there exist a new approximation (κn+1(θ), τn+1) for the system (3.1) of the form:

κn+1(θ) = κn(θ) + Δκn(θ) , ∀θ ∈ T (3.36)

τn+1 = τn +Δτn , (3.37)

satisfying equations (3.5).

Furthermore, this new approximation can be obtained explicitly, solving the linear system:

Ωn(ςn,0,Δτn)
� = bn . (3.38)

Namely, on the one hand
Δκn(θ) = cn(θ)ςn(θ) , ∀θ ∈ T , (3.39)

where

ςn(θ) = ςn,0 + ς̃n(θ) , ∀θ ∈ T , (3.40)

ςn,0 =
< ξn,0c̃nRλn η̃n + ηn,0(−en(p)− c̃nRλn ξ̃n) >

det(Ωn)
, and (3.41)

ς̃n(θ) = Rλn(ξ̃n(θ) + η̃n(θ)Δτn) , ∀θ ∈ T. (3.42)
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and, on the other hand

Δτn =
< (1− λn)(−en(p)− c̃nRλn ξ̃n)− cn,0ξn,0 >

det(Ωn)
, (3.43)

Remark 3.3

We should point out that, in the described construction process, the domain of some functions
involved is broader than the one–dimensional torus. More specifically, if 	 > 0 and vn ∈ A�,
then we can take δ ∈ (0, �2) so that cn = αne

R1vn ∈ A�−δ, since R1vn ∈ A�−δ as it was seen

in Theorem 1.20. Moreover, ηn = 1
cn◦Rω

∈ A�−δ and ξn = En
cn◦Rω

∈ A�−δ, too. Calling now
	∗ = 	− δ we can say that η̃n ∈ A�∗, and δ ∈ (0, 	∗). Again by Theorem 1.20, Rλn η̃n ∈ A�∗−δ =

A�−2δ. By the same argument, Rλn ξ̃n ∈ A�∗−δ = A�−2δ. Moreover, since ς̃ = Rλn(ξ̃n + η̃nΔτn),
then ς̃ ∈ A�−2δ, too. It follows that Δκn = cnςn = cn(ςn,0+ ς̃n) ∈ A�−2δ. Finally, we can conclude
that

κn+1 = κn +Δκn ∈ A�−2δ, ∀δ ∈ (0,
1

2
	). (3.44)

3.3 Error estimates

In this section we show a number of estimates regarding the control of some geometric properties
of an approximately invariant curve.
First, we come back to the expressions of the invariance error (3.4). For the sake of simplicity, we
write these expressions as follows:

E(θ) = f(θ, κ(θ))− κ(θ + ω) + τ (3.45)

ep = < κ > −p (3.46)

For the new approximation the error is given by:

E(θ) = f(θ, κ(θ))− κ(θ + ω) + τ (3.47)

ep = < κ > −p (3.48)

Our goal is to express E(θ) and ep in terms of Δκ(θ) and Δτ .

Proposition 3.4 Invariance error in the KAM iterative step

(a)

m(θ) = m(θ) +

∫ 1

0

∂2f

∂x2
(θ, κ(θ) + sΔκ(θ))ds Δκ(θ) ; (3.49)

(b)

E(θ) =

∫ 1

0

∂2f

∂x2
(θ, κ(θ) + sΔκ(θ))(1− s)dsΔκ(θ)2 . (3.50)

Proof. To demonstrate parts (a) and (b) we use a technique based upon the first-order Taylor
expansion with integral remainder.

(a)

m(θ)−m(θ) =
∂f

∂x
(θ, κ(θ) + Δκ(θ))− ∂f

∂x
(θ, κ(θ))

=

∫ κ(θ)

κ(θ)

∂2f

∂x2
(θ, x)dx .
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Apply now the following change of variable x = h(s) with

h : [0, 1] −→ [κ(θ), κ(θ)]
s �−→ h(s) = κ(θ) + sΔκ(θ)

(3.51)

and hence

m(θ)−m(θ) =

∫ 1

0

∂2f

∂x2
(θ, κ(θ) + sΔκ(θ)) Δκ(θ)ds

=

∫ 1

0

∂2f

∂x2
(θ, κ(θ) + sΔκ(θ))ds Δκ(θ) .

(b) First we write f(θ, κ(θ)) = f(θ, κ(θ))+

∫ κ(θ)

κ(θ)

∂f

∂x
(θ, x)dx . Now, we integrate by parts, taking:

u =
∂f

∂x
(θ, x)

dv = dx

du =
∂2f

∂x2
(θ, x)dx

v = x− κ(θ)

Therefore,

f(θ, κ(θ)) = f(θ, κ(θ)) +

[
∂f

∂x
(θ, x)(x− κ(θ))

]x=κ(θ)

x=κ(θ)

−
∫ κ(θ)

κ(θ)

∂2f

∂x2
(θ, x) (x− κ(θ)) dx

= f(θ, κ(θ)) +
∂f

∂x
(θ, κ(θ))Δκ(θ)−

∫ κ(θ)

κ(θ)

∂2f

∂x2
(θ, x) (x− κ(θ)) dx

= f(θ, κ(θ)) +m(θ)Δκ(θ)−
∫ κ(θ)

κ(θ)

∂2f

∂x2
(θ, x) (x− κ(θ)) dx .

For the integral we apply again the change (3.51), that is,∫ κ(θ)

κ(θ)

∂2f

∂x2
(θ, x) (x− κ(θ)) dx =

∫ 1

0

∂2f

∂x2
(θ, κ(θ) + sΔκ(θ)) sΔκ(θ)2 ds

=

∫ 1

0

∂2f

∂x2
(θ, κ(θ) + sΔκ(θ)) s dsΔκ(θ)2 .

It follows that:

f(θ, κ(θ)) = f(θ, κ(θ)) +m(θ)Δκ(θ)−
∫ 1

0

∂2f

∂x2
(θ, κ(θ) + sΔκ(θ)) s dsΔκ(θ)2 . (3.52)

Finally, with (3.47) and (3.52), we can compute the new invariance error:

E(θ) = f(θ, κ(θ))− κ(θ + ω) + τ

= f(θ, κ(θ)) +m(θ)Δκ(θ)−
∫ 1

0

∂2f

∂x2
(θ, κ(θ) + sΔκ(θ)) s dsΔκ(θ)2

−(κ(θ + ω) + Δκ(θ + ω)) + τ +Δτ

= f(θ, κ(θ))− κ(θ + ω) + τ

+ m(θ)Δκ(θ)−Δκ(θ + ω)) + Δτ −
∫ 1

0

∂2f

∂x2
(θ, κ(θ) + sΔκ(θ)) s dsΔκ(θ)2

= E(θ) +m(θ)Δκ(θ)− E(θ)−m(θ)Δκ(θ)−
∫ 1

0

∂2f

∂x2
(θ, κ(θ) + sΔκ(θ)) s dsΔκ(θ)2

= (m(θ)−m(θ))Δκ(θ)−
∫ 1

0

∂2f

∂x2
(θ, κ(θ) + sΔκ(θ)) s dsΔκ(θ)2 ,
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where we have used (3.5). Now for the first part we apply (3.49):

E(θ) =

∫ 1

0

∂2f

∂x2
(θ, κ(θ) + sΔκ(θ)) dsΔκ(θ)2 −

∫ 1

0

∂2f

∂x2
(θ, κ(θ) + sΔκ(θ)) sΔκ(θ))2 ds

=

∫ 1

0

∂2f

∂x2
(θ, κ(θ) + sΔκ(θ)) (1− s) dsΔκ(θ)2 ,

and (3.50) is proved.
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3.4 KAM procedure estimates

Next we show a number of estimates satisfied under certain sufficient conditions and lead to the
convergence of the KAM process described before.

Lemma 3.5 Estimates

Let ψ = Rω × f be a quasi–periodic skew–product defined under the same conditions as in (2.1),
with the frequency ω ∈ DC(γ, ν) being Diophantine.
Let (κn(θ), τn) be an approximation of a solution to the system (3.1), and En(θ) and en(p) the
corresponding invariance errors given by (3.4). Assume that the following conditions are fulfilled:

(a) The new approximation (κn+1(θ), τn+1) is constructible in the sense of Lemma 3.2.

Moreover, assume for now that there is a (global) positive constant σD such that for every real
analytic curve, κn : T� → C, 0 < σD ≤ | det(Ωn)|.

(b) 0 < K∗
1 = inf

(θ,z)∈T�×C

∣∣∣∣∂f∂x (θ, z)
∣∣∣∣ < sup

(θ,z)∈T�×C

∣∣∣∣∂f∂x (θ, z)
∣∣∣∣ = K1 < ∞

and for real arguments
∂f

∂x
(θ, x) > 0, ∀(θ, x) ∈ T× R.

(c) sup
(θ,z)∈T�×C

∣∣∣∣∂2f

∂x2
(θ, z)

∣∣∣∣ ≤ K2 < ∞.

(d) ∃ α ∈ (0, π) such that
∣∣∣Arg ∂f

∂x (θ, z)
∣∣∣ ≤ α, ∀(θ, z) ∈ T� × C.

Re z

Im z

K1K∗
1

K

α

−α

Figure 3.1: K = {z = reθi : K∗
1 ≤ r ≤ K1, |Arg(z)| ≤ α} with α ∈ (0, π).

K is a compact annulus sector containing the image of
the derivative, i.e., ∂f

∂x (θ, z) ∈ K, ∀(θ, z) ∈ T� × C.
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Let a = min{K∗
1 ,K

−1
1 , απ} and A =

√
max{| logK∗

1 |, | logK1|}2 + α2.

Call Cδ =
1

a
exp

(
A CR

γ δν

)
, for any δ ∈ (0, 	), where CR = 1

1+a
π√
3

√
Γ(2ν+1)

(4π)ν is the Rüßmann

constant4.

Then, the following estimates hold:

(i) a ≤ λn ≤ 1
a , with a ∈ (0, 1).

(ii) |Δmn(θ)| ≤ K2|Δκn(θ)|, ∀θ ∈ T�−2δ, δ ∈ (0, 12	).

(iii) |En+1(θ)| ≤ 1
2K2 |Δκn(θ)|2 , ∀θ ∈ T�−2δ, δ ∈ (0, 12	).

(iv) ‖vn‖� ≤ 2A and ‖R1vn‖�−δ ≤ 2 log(a Cδ), δ ∈ (0, 	).

In particular, |R1vn(θ)| ≤ 2 log(aC�), ∀θ ∈ T.

(v) For any δ ∈ (0, 	), |cn(θ)| ≤ αna
2C2

δ , ∀θ ∈ T�−δ and 1
|cn(θ)| ≤ 1

αn
a2C2

δ , ∀θ ∈ T�−δ.

In particular, |cn(θ)| ≤ αna
2C2

� , ∀θ ∈ T and 1
|cn(θ)| ≤ 1

αn
a2C2

� , ∀θ ∈ T.

Moreover, αn ≤ cn,0 a
2C2

� and 1
αn

≤ 1
cn,0

a2C2
� .

Consequently, for any δ ∈ (0, 	), max{ 1
cn,0

‖cn‖�−δ, cn,0‖c−1
n ‖�−δ} ≤ a4C2

�C
2
δ .

Additionally, if we choose αn = 1, then we have the sharper estimate:

max{‖cn‖�−δ, ‖c−1
n ‖�−δ} ≤ a2C2

δ , δ ∈ (0, 	).

(vi) ‖ηn‖�−δ ≤ 1
αn

C2
δ , ∀δ ∈ (0, 	).

Moreover, for any cn,0 > 0 we have ‖ηn‖�−δ ≤ 1
cn,0

a2C2
�C

2
δ , δ ∈ (0, 	).

In particular, ∀θ ∈ T, |ηn(θ)| ≤ 1
αn

C2
� ≤ 1

cn,0
a2C4

� .

Besides this, if αn = 1, then ‖ηn‖�−δ ≤ C2
δ , δ ∈ (0, 	).

(vii) ‖ξn‖�−δ ≤ ‖ηn‖�−δ‖En‖� ≤ 1
αn

C2
δ ‖En‖�, δ ∈ (0, 	).

Consequently, for any cn,0 > 0, ‖ξn‖�−δ ≤ 1
cn,0

a2C2
�C

2
δ ‖En‖�, δ ∈ (0, 	).

Moreover, if αn = 1, then ‖ξn‖�−δ ≤ ‖ηn‖�−δ‖En‖� ≤ C2
δ ‖En‖�, δ ∈ (0, 	).

In particular, ∀θ ∈ T, |ξn(θ)| ≤ 1
αn

C2
�‖En‖� ≤ 1

cn,0
a2C4

�‖En‖�.

(viii) ‖η̃n‖�−δ ≤ ‖ηn‖�−δ + ηn,0 ≤ 1
αn

(C2
� + C2

δ ), δ ∈ (0, 	).

Thus, for any cn,0 > 0, ‖η̃n‖�−δ ≤ 1
cn,0

a2C2
�(C

2
� + C2

δ ), δ ∈ (0, 	).

If αn = 1, ‖η̃n‖�−δ ≤ C2
� + C2

δ , δ ∈ (0, 	).

In particular, ∀θ ∈ T, |η̃n(θ)| ≤ 2
αn

C2
� ≤ 2

cn,0
a2C4

� .

4c.f. Theorem 1.20.
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(ix) ‖ξ̃n‖�−δ ≤ ‖ξn‖�−δ + |ξn,0| ≤ 1
αn

(C2
� + C2

δ )‖En‖�, δ ∈ (0, 	).

Thus, for any cn,0 > 0, ‖ξ̃n‖�−δ ≤ 1
cn,0

a2C2
�(C

2
� + C2

δ )‖En‖�, δ ∈ (0, 	).

If αn = 1, ‖ξ̃n‖�−δ ≤ (C2
� + C2

δ )‖En‖�, δ ∈ (0, 	).

In particular, ∀θ ∈ T, |ξ̃n(θ)| ≤ 2
αn

C2
�‖En‖� ≤ 2

cn,0
a2C4

�‖En‖�.

(x) ‖Rλn η̃n‖�−2δ ≤ 1
αn

1
A log(aCδ)(C

2
� + C2

δ ), δ ∈ (0, 12	).

For any cn,0 > 0, ‖Rλn η̃n‖�−2δ ≤ 1
cn,0

a2

A log(aCδ)C
2
�(C

2
� + C2

δ ), δ ∈ (0, 12	).

In the case where αn = 1, ‖Rλn η̃n‖�−2δ ≤ 1
A log(aCδ)(C

2
� + C2

δ ), δ ∈ (0, 12	).

In particular, ∀θ ∈ T, |Rλn η̃n(θ)| ≤ 1
αn

1
A log(aC 1

2
�)(C

2
� + C2

1
2
�
).

(xi) ‖Rλn ξ̃n‖�−2δ ≤ 1
αn

1
A log(aCδ)(C

2
� + C2

δ )‖En‖�, δ ∈ (0, 12	).

For any cn,0 > 0, ‖Rλn ξ̃n‖�−2δ ≤ 1
cn,0

a2

A log(aCδ)C
2
�(C

2
� + C2

δ )‖En‖�, δ ∈ (0, 12	).

In the case where αn = 1, ‖Rλn ξ̃n‖�−2δ ≤ 1
A log(aCδ)(C

2
� + C2

δ )‖En‖�, δ ∈ (0, 12	).

In particular, ∀θ ∈ T, |Rλn ξ̃n(θ)| ≤ 1
αn

1
A log(aC 1

2
�)(C

2
� + C2

1
2
�
)‖En‖�.

(xii) ηn,0 ≤ 1
αn

C2
� .

For any cn,0 > 0, a2 ≤ cn,0 ηn,0 ≤ a2C4
� .

If αn = 1, then we also have ηn,0 ≤ C2
� .

(xiii) |ξn,0| ≤ ηn,0‖En‖� ≤ 1
αn

C2
�‖En‖�.

For any cn,0 > 0, |ξn,0| ≤ ηn,0‖En‖� ≤ 1
cn,0

a2C4
�‖En‖�.

If αn = 1, then |ξn,0| ≤ ηn,0‖En‖� ≤ C2
�‖En‖�.

(xiv) | < c̃nRλn η̃n > | ≤ 2cn,0 sup
θ∈T

|Rλn η̃n| ≤
2a2

A
log(aC 1

2
�)C

2
�(C

2
� + C2

1
2
�
).

(xv) | < c̃nRλn ξ̃n > | ≤ 2cn,0 sup
θ∈T

|Rλn ξ̃n| ≤
2a2

A
log(aC 1

2
�)C

2
�(C

2
� + C2

1
2
�
)‖En‖�.

(xvi) |ςn,0| ≤ 1
| det(Ωn)|

1
αn

C2
�

(
4a2

A log(aC 1
2
�C

2
�(C

2
� + C2

1
2
�
)‖En‖� + |en(p)|

)
.

Furthermore, for any cn,0 > 0, |ςn,0| ≤ 1
σD

1
cn,0

(P1(C�, C 1
2
�)‖En‖� +Q1(C�)|en(p)|), where

P1(s, t) =
4a4

A
s6(s2 + t2) log(at),

Q1(s) = a2s4.

If αn = 1, then |ςn,0| ≤ 1
σD

(P ∗
1 (C�, C 1

2
�)‖En‖� +Q∗

1(C�)|en(p)|), where

P ∗
1 (s, t) =

4a2

A
s4(s2 + t2) log(at)

Q∗
1(s) = s2.
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(xvii) |�τn| ≤ 1
σD

(P2(C�, C 1
2
�)‖En‖� +Q2|en(p)|), where

P2(s, t) = a2s2
(
1 +

2(1− a)

aA
(s2 + t2) log(at)

)
,

Q2 =
1− a

a
.

(xviii) | det(Ωn)| ≤ P2(C�, C 1
2
�).

(xix) For any δ ∈ (0, 12	),

‖ς̃n‖�−2δ ≤ 1
| det(Ωn)|

1
αn

1
A log(aCδ)(C

2
� + C2

δ )
(
2P2(C�, C 1

2
�)‖En‖� +Q2|en(p)|

)
.

Furthermore, for any cn,0 > 0,

‖ς̃n‖�−2δ ≤ 1
σD

1
cn,0

(
P3(C�, C 1

2
�, Cδ)‖En‖� +Q3(C�, Cδ)|en(p)|

)
, where

P3(s, t, u) =
2a4

A
s4(s2 + u2) log(au)

(
1 +

2(1− a)

aA
(s2 + t2) log(at)

)
,

Q3(s, u) =
a(1− a)

A
s2(s2 + u2) log(au).

If αn = 1, then ‖ς̃n‖�−2δ ≤ 1
σD

(
P ∗
3 (C�, C 1

2
�, Cδ)‖En‖� +Q∗

3(C�, Cδ)|en(p)|
)
, with

P ∗
3 (s, t, u) =

2a2

A
s2(s2 + ut2) log(au)

(
1 +

2(1− a)

aA
(s2 + t2) log(at)

)
,

Q∗
3(s, u) =

1− a

aA
(s2 + u2) log(au).

(xx) For any δ ∈ (0, 12	), ‖Δκn(θ)‖�−2δ ≤ 1
σD

(P (C�, C 1
2
�, Cδ)‖En‖� +Q(C�, Cδ)|en(p)|),

where

P (s, t, u) = a2u2(P ∗
1 (s, t) + P ∗

3 (s, t, u))

=
2a4

A
(s2 + t2)u2 log(at)

(
2s4

+

(
1 +

2(1− a)

aA
(s2 + t2) log(at)

)
log(au)

)
,

Q(s, u) = a2u2(Q∗
1(s) +Q∗

3(s, u))

= a2s2u2 +
1− a

aA
(s2 + u2) log(au).

In particular,

|Δκn(θ)| ≤ 1

σD
(P ∗(C�, C 1

2
�)‖En‖� +Q∗(C�, C 1

2
�)|en(p)|), ∀θ ∈ T,

where

P ∗(s, t) = P (s, t, t) = a2t2(P ∗
1 (s, t) + P ∗

3 (s, t, t))

=
2a4

A
(s2 + t2)t2 log(at)

(
2s4

+

(
1 +

2(1− a)

aA
(s2 + t2) log(at)

)
log(at)

)
,

Q∗(s, t) = Q(s, t)) = a2t2(Q∗
1(s) +Q∗

3(s, t))

= a2s2t2 +
1− a

aA
(s2 + t2) log(at).
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Proof.

First of all, notice that since a = min{K∗
1 ,K

−1
1 , απ} and A =

√
max{| logK∗

1 |, | logK1|}2 + α2,
then

a ≤ K∗
1 < K1 ≤ 1

a , (3.53)

a ≤ 1
K1

< 1
K∗

1
≤ 1

a , (3.54)

and
1

A
=

1√
max{| logK∗

1 |, | logK1|}2 + α2
≤ 1

α ≤ 1
πa . (3.55)

Additionally, define

In =

∫
T
eR1vn(θ)dθ

∫
T
e−R1vn(θ)dθ . (3.56)

By Cauchy-Schwartz’s inequality,

1 =

∫
T
dθ =

∫
T
e

1
2
R1vn(θ) e−

1
2
R1vn(θ)dθ

≤
(∫

T

(
e

1
2
R1vn(θ)

)2
dθ

) 1
2
(∫

T

(
e−

1
2
R1vn(θ)

)2
dθ

) 1
2

=

(∫
T
eR1vn(θ)dθ

∫
T
e−R1vn(θ)dθ

) 1
2

= I
1
2
n .

Hence,

In ≥ 1 . (3.57)

We will use these inequalities many times throughout the proof.

(i) The Lyapunov multiplier is the exponential of the Lyapunov exponent, that is

λn = eΛn = exp

(∫
T
log(mn(θ)) dθ

)
,

where mn(θ) =
∂f
∂x (θ, κn(θ)). Thus,

0 < a ≤ K∗
1 ≤ |mn(θ)| ≤ K1 ≤ 1

a
⇒ (taking logarithms)

log(K∗
1 ) ≤ log |mn(θ)| ≤ log(K1) ⇒ (integrating over the torus)

log(K∗
1 ) ≤

∫
T
log |mn(θ)| dθ ≤ log(K1) ⇒ (taking exponentials)

a ≤ K∗
1 ≤ eΛn = λn ≤ K1 ≤ 1

a
. (3.58)

(ii) Let δ ∈ (0, 12	). Notice that by Theorem 1.20 and according to Remark 3.3, we know
that the domain of κn+1 is the complex strip T�−2δ. More exactly, the new approximation
is analytic in that domain, i.e. κn+1 ∈ A�−2δ, ∀δ ∈ (0, 12	).

Since λn ∈ [a, 1a ], then by Proposition 3.4 (part (a)), we can write:

mn+1(θ) = mn(θ) +

∫ 1

0

∂2f

∂x2
(θ, κn(θ) + sΔκn(θ)) dsΔκn(θ) , ∀θ ∈ T�−2δ.
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It follows that

|Δmn(θ)| = |mn+1(θ)−mn(θ)| =
∣∣∣∣∫ 1

0

∂2f

∂x2
(θ, κn(θ) + sΔκn(θ)) dsΔκn(θ)

∣∣∣∣
≤
∫ 1

0

∣∣∣∣∂2f

∂x2
(θ, κn(θ) + sΔκn(θ))

∣∣∣∣ ds |Δκn(θ)|

≤ sup
s∈[0,1]

∣∣∣∣∂2f

∂x2
(θ, κn(θ) + sΔκn(θ))

∣∣∣∣ · |Δκn(θ)|

≤ sup
z∈C

∣∣∣∣∂2f

∂x2
(θ, z)

∣∣∣∣ · |Δκn(θ)| ≤ K2|Δκn(θ)| . (3.59)

Hence,
|Δmn(θ)| ≤ K2|Δκn(θ)|, ∀θ ∈ T�−2δ . (3.60)

In particular,
|Δmn(θ)| ≤ K2 sup

θ∈T
|Δκn(θ)|, ∀θ ∈ T . (3.61)

(iii) By Proposition 3.4 (part (b)), for any δ ∈ (0, 12	),

En+1(θ) =

∫ 1

0

∂2f

∂x2
(θ, κn(θ) + sΔκn(θ))(1− s) ds ·Δκn(θ)

2 , ∀θ ∈ T�−2δ.

Then,

|En+1(θ)| ≤
∫ 1

0

∣∣∣∣∂2f

∂x2
(θ, κn(θ) + sΔκn(θ))(1− s)

∣∣∣∣ ds · |Δκn(θ)|2

≤ sup
s∈[0,1]

∣∣∣∣∂2f

∂x2
(θ, κn(θ) + sΔκn(θ))

∣∣∣∣ ∫ 1

0
(1− s) ds · |Δκn(θ)|2

≤ sup
z∈C

∣∣∣∣∂2f

∂x2
(θ, z)

∣∣∣∣ ∫ 1

0
(1− s) ds · |Δκn(θ)|2

≤ K2

∫ 1

0
(1− s) ds · |Δκn(θ)|2 = 1

2
K2|Δκn(θ)|2 , ∀θ ∈ T�−2δ . (3.62)

(iv) vn(θ) = log(mn(θ))− Λn, ∀θ ∈ T�.

|vn(θ)| ≤ | log(mn(θ))|+ |Λn| = | log(mn(θ))|+
∣∣∣∣∫

T
log(mn(θ)) dθ

∣∣∣∣
≤ | log(mn(θ))|+

∫
T
|log(mn(θ))| dθ

≤ 2 sup
θ∈T�

|log(mn(θ))| = 2 sup
θ∈T�

√
(log |mn(θ)|)2 + (Arg(mn(θ)))2

≤ 2
√

max{| log(K1)|, | log(K∗
1 )|}2 + (Arg(mn(θ)))2

≤ 2
√

max{| log(K1)|, | log(K∗
1 )|}2 + α2 = 2A . (3.63)

Additionally, by Theorem 1.20,

|R1vn(θ)| ≤ CR

γ δν
‖vn‖� =

1

A
· A CR

γ δν
‖vn‖�

≤ 1

A
log(a Cδ)‖vn‖� ≤ 1

A
log(a Cδ)2A

= 2 log(a Cδ), ∀θ ∈ T�−δ , δ ∈ (0, 	) . (3.64)
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In particular5, for every 	 > 0, if we restrict ourselves only to real values of the argument,
we have the following bound:

|R1vn(θ)| ≤ 2A CR

γ 	ν
= 2 log(aC�), ∀θ ∈ T, (3.65)

where C� = 1
a exp

(
A CR
γ �ν

)
.

(v) The Floquet transformation, for any δ ∈ (0, 	), is of the form6:

cn(θ) = αne
R1vn(θ), ∀θ ∈ T�−δ, where αn =

cn,0∫
T
eR1vn(θ) dθ

and cn,0 > 0 can be chosen freely.

Thus,

|cn(θ)| = αn|eR1vn(θ)| = αne
Re(R1vn(θ))

≤ αne
|R1vn(θ| ≤ αne

2 log(aCδ) = αna
2C2

δ . (3.66)

Regardless of the choice we make of the average, αn can be estimated in the following way,
using (3.56) and (3.57) together with (3.65):

αn =
cn,0∫

T
eR1vn(θ) dθ

=
cn,0
In

∫
T
e−R1vn(θ) dθ

≤ cn,0

∫
T
e−R1vn(θ) dθ ≤ cn,0 sup

θ∈T
|e−R1vn(θ)|

≤ cn,0 sup
θ∈T

e|R1vn(θ)| = cn,0 exp(sup
θ∈T

|R1vn(θ)|)

≤ cn,0 e
2 log(aC�) = cn,0 a

2C2
� . (3.67)

Thus,
|cn(θ)| ≤ cn,0 a

4C2
�C

2
δ , ∀θ ∈ T�−δ . (3.68)

Notice that if we choose cn,0 =

∫
T
eR1vn(θ) dθ, i.e. αn = 1, then

|cn(θ)| ≤ a2C2
δ , ∀θ ∈ T�−δ . (3.69)

In a similar way, we can write:

1

|cn(θ)| =
1

αn|eR1vn(θ)| =
1

αneRe(R1vn(θ))
=

1

αn
e−Re(R1vn(θ))

≤ 1

αn
e|R1vn(θ)| ≤ 1

αn
e2 log(aCδ) =

1

αn
a2C2

δ . (3.70)

5Notice that when δ → 
, T�−δ → T0 = T.

6See Corollary 2.8 .
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1

αn
=

∫
T
eR1vn(θ) dθ

cn,0
≤ 1

cn,0
sup
θ∈T

|eR1vn(θ)|

≤ 1

cn,0
e2 log(aC�) =

1

cn,0
a2C2

� . (3.71)

Thus,
1

|cn(θ)| ≤
1

cn,0
a4C2

�C
2
δ , ∀θ ∈ T�−δ . (3.72)

In the same manner, notice that if we choose cn,0 =

∫
T
eR1vn(θ) dθ, i.e. αn = 1, then

1

|cn(θ)| ≤ a2C2
δ , ∀θ ∈ T�−δ . (3.73)

(vi) ηn(θ) =
1

cn(θ + ω)
=

1

eun(θ+ω)
, ∀θ ∈ T�−δ, where un(θ) = log(αn) +R1vn(θ).

Taking in account that un satisfies the cohomological equation7 un(θ + ω)− un(θ) = vn(θ),
we can write:

ηn(θ) = e−un(θ+ω) = e−(un(θ)+vn(θ)) = e−un(θ)e−vn(θ)

= e−(logαn+R1vn(θ)e−(log(mn(θ))−Λn)

=
1

αn
e−R1vn(θ)eΛne− log(mn(θ))

=
1

αn
λn

1

elog(mn(θ))
e−R1vn(θ)

=
1

αn
λn

1

elog(|mn(θ)|)+iArg(mn(θ))
e−R1vn(θ)

=
1

αn

λn

|mn(θ)|e
−iArg(mn(θ))e−R1vn(θ), ∀θ ∈ T�−δ . (3.74)

Thanks to (3.74) we are in a position to estimate ‖ηn‖�−δ, ‖η̃n‖�−δ, ‖Rλn η̃n‖�−2δ, and ηn,0.

|ηn(θ)| =
1

αn

λn

|mn(θ)|
∣∣∣e−R1vn(θ)

∣∣∣
=

1

αn

λn

|mn(θ)|e
Re(−R1vn(θ))

≤ 1

αn

λn

|mn(θ)|e
|−R1vn(θ)| =

1

αn

λn

|mn(θ)|e
|R1vn(θ)| (by (3.64))

≤ 1

αn

λn

|mn(θ)|e
2 log(aCδ) =

1

αn

λn

|mn(θ)|a
2C2

δ (by (3.58))

≤ 1

αn

1

a2
a2C2

δ =
1

αn
C2
δ , ∀θ ∈ T�−δ . (3.75)

7See Corollary 2.8.
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In particular,

|ηn(θ)| ≤ 1

αn
C2
� , ∀θ ∈ T. (3.76)

As a consequence of (3.75) we can highlight the following estimates:

On one side, if αn = 1, then
|ηn(θ)| ≤ C2

δ , ∀θ ∈ T�−δ (3.77)

or, equivalently
‖ηn‖�−δ ≤ C2

δ , ∀δ ∈ (0, 	) . (3.78)

And, on the other side, without this assumption, we obtain from (3.71) and (3.75),

|ηn(θ)| ≤ 1

cn,0
a2C2

�C
2
δ , ∀θ ∈ T�−δ , (3.79)

namely,

‖ηn‖�−δ ≤ 1

cn,0
a2C2

�C
2
δ , ∀δ ∈ (0, 	) . (3.80)

(vii) By definition, ξn(θ) =
En(θ)

cn(θ + ω)
= ηn(θ)En(θ).

Therefore, by (3.75),

|ξn(θ)| = |ηn(θ)||En(θ)|
≤ 1

αn
C2
δ |En(θ)| ≤ 1

αn
C2
δ sup
θ∈T�−δ

|En(θ)|

=
1

αn
C2
δ sup
θ∈T�

|En(θ)| = 1

αn
C2
δ ‖En‖� , ∀θ ∈ T�−δ . (3.81)

Clearly, if αn = 1 ,
|ξn(θ)| ≤ C2

δ ‖En‖� , ∀θ ∈ T�−δ . (3.82)

In general, from (3.71) and (3.81), we obtain

|ξn(θ)| ≤ 1

cn,0
a2C2

�C
2
δ ‖En‖� , ∀θ ∈ T�−δ . (3.83)

(viii) Since η̃n(θ) = ηn(θ)− ηn,0, then

|η̃n(θ)| ≤ |ηn(θ)|+ |ηn,0| ≤ ‖ηn‖�−δ +

∣∣∣∣∫
T
ηn(θ) dθ

∣∣∣∣
≤ ‖ηn‖�−δ +

∫
T
|ηn(θ)| dθ = ‖ηn‖�−δ +

∫
T
ηn(θ) dθ

= ‖ηn‖�−δ + ηn,0 ≤ 1

αn
C2
δ +

1

αn
C2
� =

1

αn
(C2

� + C2
δ ) , ∀θ ∈ T�−δ . (3.84)

Now, from (3.80) and (3.84) follows

‖η̃n‖�−δ ≤ 1

cn,0
a2C2

�(C
2
� + C2

δ ) , ∀δ ∈ (0, 	) . (3.85)

If αn = 1, then from (3.77) and (3.84), we have

‖η̃n‖�−δ ≤ C2
� + C2

δ , ∀δ ∈ (0, 	) . (3.86)
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(ix) On the one hand, by the definition of ξn and applying (vii) and (xiii), we can write:

‖ξ̃n‖�−δ = sup
θ∈T�−δ

|ξ̃n(θ)| = sup
θ∈T�−δ

|ξn(θ)− ξn,0|

≤ sup
θ∈T�−δ

(|ξn(θ)|+ |ξn,0|) ≤ sup
θ∈T�−δ

|ξn(θ)|+ |ξn,0|

= ‖ξn‖�−δ + |ξn,0| ≤ ‖ηn‖�−δ‖En‖� + ηn,0‖En‖�
= (‖ηn‖�−δ + ηn,0) ‖En‖� ≤ 1

αn
(C2

� + C2
δ )‖En‖� , ∀θ ∈ T�−δ , (3.87)

where we have used (vi) and (xii).

Again, for any cn,0 > 0 we have, from (3.87) and (v):

‖ξ̃n‖�−δ ≤ 1

cn,0
a2C2

�(C
2
� + C2

δ )‖En‖� , ∀δ ∈ (0, 	) . (3.88)

On the other hand, if αn = 1, then from (3.87),

‖ξ̃n‖�−δ ≤
(
C2
� + C2

δ

) ‖En‖� , ∀δ ∈ (0, 	) . (3.89)

(x) Since < η̃n >= 0, then by Rüßmann estimates (Theorem 1.20) and applying (viii),

|Rλn η̃n(θ)| ≤ ‖Rλn η̃n‖�−2δ ≤ CR

γδν
‖η̃n‖�−δ

=
1

A
log(aCδ)‖η̃n‖�−δ ≤ 1

A
log(aCδ)(‖ηn‖�−δ + ηn,0)

≤ 1

A
log(aCδ)

1

αn
(C2

� + C2
δ ) , ∀θ ∈ T�−2δ . (3.90)

If αn = 1, then by (3.90),

‖Rλn η̃n‖�−2δ ≤ 1

A
log(aCδ)(C

2
� + C2

δ ) , ∀δ ∈ (0,
1

2
	) . (3.91)

In any case, from (3.90) and (3.80), we have

‖Rλn η̃n‖�−2δ ≤ 1

cn,0

a2

A
log(aCδ)C

2
�(C

2
� + C2

δ ) , ∀δ ∈ (0,
1

2
	) , (3.92)

and, in particular, taking limits8 in (3.90) as δ → 1
2	,

∀θ ∈ T, |Rλn η̃n(θ)| ≤
1

αn

1

A
log(aC 1

2
�)(C

2
� + C2

1
2
�
). (3.93)

Since C� < C 1
2
�, we can also write:

∀θ ∈ T, |Rλn η̃n(θ)| ≤
1

αn

2

A
log(aC 1

2
�)C

2
1
2
�
. (3.94)

8According to Corollary 1.28, with m = 1,
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(xi) Again, by Rüßmann estimates (Theorem 1.20) and (viii),

|Rλn ξ̃n(θ)| ≤ ‖Rλn ξ̃n‖�−2δ ≤ CR

γ δν
‖ξ̃n‖�−δ

=
1

A
log(aCδ)‖ξ̃n‖�−δ ≤ 1

A
log(aCδ)(‖ηn‖� + ηn,0)‖En‖�

≤ 1

A
log(aCδ)

1

αn
(C2

� + C2
δ )‖En‖� , ∀θ ∈ T�−2δ . (3.95)

In particular, taking limits in (3.95) as δ → 1
2	,

∀θ ∈ T, |Rλn ξ̃n(θ)| ≤
1

αn

1

A
log(aC 1

2
�)(C

2
� + C2

1
2
�
)‖En‖�. (3.96)

If αn = 1, then by (3.95),

‖Rλn ξ̃n‖�−2δ ≤ 1

A
log(aCδ)(C

2
� + C2

δ )‖En‖� , ∀δ ∈ (0,
1

2
	) . (3.97)

In particular,

∀θ ∈ T, |Rλn ξ̃n(θ)| ≤
1

A
log(aC 1

2
�)(C

2
� + C2

1
2
�
)‖En‖� . (3.98)

Finally, for any cn,0 > 0, from (3.95) and (3.71), we have

‖Rλn ξ̃n‖�−2δ ≤ 1

cn,0

a2

A
log(aCδ)C

2
�(C

2
� + C2

δ )‖En‖� , ∀δ ∈ (0,
1

2
	) , (3.99)

and, in particular,

∀θ ∈ T, |Rλn ξ̃n(θ)| ≤
1

cn,0

a2

A
log(aC 1

2
�)C

2
�(C

2
� + C2

1
2
�
)‖En‖�. (3.100)

(xii) By (3.74) we can write the average of ηn as

ηn,0 = < ηn > =

∫
T
ηn(θ) dθ =

∫
T

1

αn

λn

|mn(θ)|e
−iArg(mn(θ))e−R1vn(θ) dθ

=
λn

αn

∫
T

1

|mn(θ)|e
−R1vn(θ) dθ . (3.101)

Since 1
K1

≤ 1
|mn(θ)| ≤ 1

K∗
1
, it follows that

λn

αn

1

K1

∫
T
e−R1vn(θ) dθ ≤ ηn,0 ≤ λn

αn

1

K∗
1

∫
T
e−R1vn(θ) dθ . (3.102)

Now, by (3.54) and (3.58),

1

αn
a2
∫
T
e−R1vn(θ) dθ ≤ ηn,0 ≤ 1

αn

1

a2

∫
T
e−R1vn(θ) dθ . (3.103)

Since αn =
cn,0∫

T e
R1vn(θ) dθ

, then from the former inequality of (3.103),

1

αn
a2
∫
T
e−R1vn(θ) dθ =

1

cn,0
a2
∫
T
eR1vn(θ) dθ

∫
T
e−R1vn(θ) dθ =

1

cn,0
a2In ≤ ηn,0 (3.104)
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We also know that In ≥ 1 by (3.57). Therefore:

a2 ≤ cn,0ηn,0 . (3.105)

On the other hand, from the latter inequality of (3.103) and applying (3.71) we have,

ηn,0 ≤ 1

αn

1

a2

∫
T
e−R1vn(θ) dθ ≤ 1

cn,0
a2C2

�

1

a2

∫
T
e−R1vn(θ) dθ =

1

cn,0
C2
�

∫
T
e−R1vn(θ) dθ .

(3.106)
Finally, by means of (3.64), we can write:∫

T
e−R1vn(θ) dθ ≤ sup

θ∈T

∣∣∣e−R1vn(θ)
∣∣∣ = sup

θ∈T
eRe(−R1vn(θ))

≤ sup
θ∈T

e|−R1vn(θ)| = sup
θ∈T

e|R1vn(θ)| ≤ e2 log(aC�)

= a2C2
� . (3.107)

Joining (3.106) and (3.107),

ηn,0 ≤ 1

cn,0
C2
� a2C2

� =
1

cn,0
a2C4

� , (3.108)

i.e.
cn,0ηn,0 ≤ a2C4

� . (3.109)

Additionally, when αn = 1, from (3.103) and (3.107) we have:

ηn,0 ≤ 1

a2

∫
T
e−R1vn(θ)dθ ≤ 1

a2
a2C2

� = C2
� . (3.110)

(xiii)

|ξn,0| = | < ξn > | =

∣∣∣∣∫
T
ξn(θ) dθ

∣∣∣∣ ≤ ∫
T
|ξn(θ)| dθ

=

∫
T
|ηn(θ)En(θ)| dθ =

∫
T
ηn(θ)|En(θ)| dθ

≤
∫
T
ηn(θ) dθ sup

θ∈T
|En(θ)|

= ηn,0 sup
θ∈T

|En(θ)| ≤ ηn,0 sup
θ∈T�

|En(θ)|

= ηn,0‖En‖� ≤ 1

αn
C2
�‖En‖� . (3.111)

Thus, from (3.111) and (xii), we have:

For any cn,0 > 0,

|ξn,0| ≤ 1

cn,0
a2C4

�‖En‖� . (3.112)

If αn = 1, then
|ξn,0| ≤ C2

�‖En‖� . (3.113)

(xiv) For this part and the next one, recall again that for every θ ∈ T, θ ∈ R and hence
R1vn(θ) ∈ R. Thus cn(θ) = αne

R1vn(θ) ∈ R+. Therefore,∫
T
|c̃n(θ)| dθ =

∫
T
|cn(θ)− cn,0| dθ ≤

∫
T
(|cn(θ)|+ cn,0) dθ

=

∫
T
|cn(θ)| dθ + cn,0 =

∫
T
cn(θ) dθ + cn,0 = 2cn,0 . (3.114)
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From (3.93) and (3.114), we can develop the following estimate:

| < c̃nRλn η̃n > | =

∣∣∣∣∫
T
c̃n(θ)Rλn η̃n(θ) dθ

∣∣∣∣ ≤ ∫
T
|c̃n(θ)| |Rλn η̃n(θ)| dθ

≤
∫
T
|c̃n(θ)| dθ sup

θ∈T
|Rλn η̃n(θ)| ≤ 2cn,0 sup

θ∈T
|Rλn η̃n(θ)|

≤ 2cn,0
1

αn

1

A
log(aC 1

2
�)(C

2
� + C2

1
2
�
)

≤ 2cn,0
1

cn,0
C2
�

1

A
log(aC 1

2
�)(C

2
� + C2

1
2
�
)

=
2a2

A
log(aC 1

2
�)C

2
�(C

2
� + C2

1
2
�
) . (3.115)

(xv) In a similar way, from (3.100) and (3.114), we can develop the following estimate as well:

| < c̃nRλn ξ̃n > | =

∣∣∣∣∫
T
c̃n(θ)Rλn ξ̃n(θ) dθ

∣∣∣∣ ≤ ∫
T
|c̃n(θ)| |Rλn ξ̃n(θ)| dθ

≤
∫
T
|c̃n(θ)| dθ sup

θ∈T
|Rλn ξ̃n(θ)| ≤ 2cn,0 sup

θ∈T
|Rλn ξ̃n(θ)|

≤ 2cn,0
1

αn

1

A
log(aC 1

2
�)(C

2
� + C2

1
2
�
)‖En‖�

≤ 2cn,0
1

cn,0
C2
�

1

A
log(aC 1

2
�)(C

2
� + C2

1
2
�
)‖En‖�

=
2a2

A
log(aC 1

2
�)C

2
�(C

2
� + C2

1
2
�
)‖En‖� . (3.116)

Notice that this estimate (3.116) and the one before (3.115) do not depend on the value
assigned to cn,0.

(xvi) By (3.41), ςn,0 =
1

det(Ωn)
< ξn,0c̃nRλn η̃n + ηn,0(−en(p)− c̃nRλn ξ̃n) >.

Therefore, by (3.111), (3.115), (3.116), and at last (3.108), we have:

|ςn,0| =
1

| det(Ωn)|
(
|ξn,0| | < c̃nRλn η̃n > |+ |ηn,0| | < c̃nRλn ξ̃n > |+ |ηn,0| |en(p)|

)
≤ 1

| det(Ωn)|
(
ηn,0‖En‖� · 2a

2

A
log(aC 1

2
�)C

2
�(C

2
� + C2

1
2
�
)

+ ηn,0 · 2a
2

A
log(aC 1

2
�)C

2
�(C

2
� + C2

1
2
�
)‖En‖� + ηn,0|en(p)|

)
=

1

| det(Ωn)|ηn,0
(
4a2

A
log(aC 1

2
�)C

2
�(C

2
� + C2

1
2
�
)‖En‖� + |en(p)|

)
≤ 1

| det(Ωn)|
1

αn
C2
�

(
4a2

A
log(aC 1

2
�)C

2
�(C

2
� + C2

1
2
�
)‖En‖� + |en(p)|

)
, (3.117)

Now, for any cn,0 > 0 we have

|ςn,0| ≤ 1

| det(Ωn)|
1

cn,0
a2C4

�

(
4a2

A
log(aC 1

2
�)C

2
�(C

2
� + C2

1
2
�
)‖En‖� + |en(p)|

)
1

σD

1

cn,0

(
P1(C�, C 1

2
�)‖En‖� +Q1(C�)|en(p)|

)
, (3.118)
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where

P1(s, t) =
4a4

A
s6(s2 + t2) log(at), (3.119)

Q1(s) = a2s4. (3.120)

Moreover, in case where α = 1 we have ηn,0 ≤ C2
� . Therefore,

|ςn,0| ≤ 1

| det(Ωn)|C
2
�

(
4a2

A
log(aC 1

2
�)C

2
�(C

2
� + C2

1
2
�
)‖En‖� + |en(p)|

)
1

σD

(
P ∗
1 (C�, C 1

2
�)‖En‖� +Q∗

1(C�)|en(p)|
)

, (3.121)

where

P ∗
1 (s, t) =

4a2

A
s4(s2 + t2) log(at), (3.122)

Q∗
1(s) = s2. (3.123)

(xvii) As we saw in (3.43), the translation correction is of the form

Δτn =
1

det(Ωn)

(
< (1− λn)(−en(p)− c̃nRλn ξ̃n)− cn,0ξn,0 >

)
(3.124)

Hence,

|Δτn| ≤ 1

| det(Ωn)|
(
|1− λn|

(
|en(p)|+ | < c̃nRλn ξ̃n) > |

)
+ cn,0|ξn,0|

)
(3.125)

Taking in account now parts (xiii) and (xv), we have

|Δτn| ≤ 1

| det(Ωn)|
(
|1− λn|

(
|en(p)|+ 2a2

A
log(aC 1

2
�)C

2
�(C

2
� + C2

1
2
�
)‖En‖�

)
+ cn,0ηn,0‖En‖�

)
(3.126)

Moreover, by part (xii),

|Δτn| ≤ 1

| det(Ωn)|
(
|1− λn|

(
|en(p)|+ 2a2

A
log(aC 1

2
�)C

2
�(C

2
� + C2

1
2
�
)‖En‖�

)
+ a2C4

�‖En‖�
)

(3.127)

Notice that |1−λn| ≤ 1−a
a . Indeed, by (i), a ≤ λn ≤ 1

a , so if a ≤ λn ≤ 1, then |1−λn| ≤ 1−a,
and if 1 ≤ λn ≤ 1

a , then |1− λn| ≤ 1
a − 1 = 1−a

a . Thence, |λn − 1| ≤ max{1− a, 1−a
a }. But

a ∈ (0, 1), so 1− a ≤ 1−a
a . Therefore,

|λn − 1| ≤ 1− a

a
. (3.128)

It follows, from (3.127) and (3.128), that

|Δτn| ≤ 1

| det(Ωn)|
(
1− a

a

(
|en(p)|+ 2a2

A
log(aC 1

2
�)C

2
�(C

2
� + C2

1
2
�
)‖En‖�

)
+ a2C4

�‖En‖�
)

(3.129)
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Rearranging terms, we have finally:

|Δτn| ≤ 1

| det(Ωn)|
(
a2C2

�

(
1 +

2(1− a)

aA
(C2

� + C2
1
2
�
) log(aC 1

2
�)

)
‖En‖�

+
1− a

a
|en(p)|

)
=

1

σD

(
P2(C�, C 1

2
�)‖En‖� +Q2|en(p)|

)
, (3.130)

where

P2(s, t) = a2s2
(
1 +

2(1− a)

aA
(s2 + t2) log(at)

)
, (3.131)

Q2 =
1− a

a
. (3.132)

(xviii) From (3.33) we get the determinant,

det(Ωn) = (1− λn) < c̃nRλn η̃n > +cn,0ηn,0 , (3.133)

whose value can be therefore estimated, according to (3.128), (3.115), and (3.109), as

| det(Ωn)| ≤ |1− λn| | < c̃nRλn η̃n > |+ cn,0ηn,0

≤ 1− a

a

2a2

A
log(aC 1

2
�)C

2
�(C

2
� + C2

1
2
�
) + a2C4

�

= a2C4
�

(
1 +

2(1− a)

aA
(C2

� + C2
1
2
�
) log(aC 1

2
�)

)
= P2(C�, C 1

2
�) . (3.134)

(xix) According to (3.42),

ς̃n(θ) = Rλn(ξ̃n(θ) + η̃n(θ)Δτn) , ∀θ ∈ T .

In fact, for any δ ∈ (0, 12	), ς̃n ∈ A�−2δ. From Theorem 1.20 (Rüßmann estimates) we
obtain:

‖ς̃n‖�−2δ ≤ 1

A
log(aCδ) ‖ξ̃n + η̃n Δτn‖�−δ . (3.135)

By the triangular inequality,

‖ς̃n‖�−2δ ≤ 1

A
log(aCδ)

(
‖ξ̃n‖�−δ + ‖η̃n‖�−δ |Δτn|

)
.

Notice that, by (3.87), ‖ξ̃n‖�−δ ≤ (‖ηn‖�−δ + ηn,0)‖En‖�, and from (3.84), we have also
‖η̃n‖�−δ ≤ ‖ηn‖�−δ + ηn,0. Therefore,

‖ς̃n‖�−2δ ≤ 1

A
log(aCδ) ((‖ηn‖�−δ + ηn,0)‖En‖� + (‖ηn‖�−δ + ηn,0) |Δτn|)

=
1

A
log(aCδ)(‖ηn‖�−δ + ηn,0) (‖En‖� + |Δτn|) . (3.136)

Now, by the estimate of the translation parameter correction (3.130) and the estimate of the
determinant (3.134), we have:
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‖ς̃n‖�−2δ ≤ 1

A
log(aCδ)(‖ηn‖�−δ

+ηn,0)

(
‖En‖� + 1

| det(Ωn)|
(
P2(C�, C 1

2
�)‖En‖� +Q2|en(p)|

))
=

1

| det(Ωn)|
1

A
log(aCδ)(‖ηn‖�−δ

+ηn,0)
(
(| det(Ωn)|+ P2(C�, C 1

2
�)‖En‖� +Q2|en(p)|

)
≤ 1

| det(Ωn)|
1

A
log(aCδ)(‖ηn‖�−δ

+ηn,0)
(
2P2(C�, C 1

2
�)‖En‖� +Q2(C�)|en(p)|

)
. (3.137)

Finally, from (vi) and (xii), ‖ηn‖�−δ + ηn,0 ≤ 1
αn

(C2
� + C2

δ ). Therefore,

‖ς̃n‖�−2δ ≤ 1

| det(Ωn)|
1

αn

1

A
log(aCδ)(C

2
� + C2

δ )
(
2P2(C�, C 1

2
�)‖En‖� +Q2(C�)|en(p)|

)
.

(3.138)

Clearly, if αn = 1, then from (3.138) we obtain:

‖ς̃n‖�−2δ ≤ 1

| det(Ωn)|
1

A
log(aCδ)(C

2
� + C2

δ )
(
2P2(C�, C 1

2
�)‖En‖� +Q2(C�)|en(p)|

)
=

1

| det(Ωn)|
(
P ∗
3 (C�, C 1

2
�, Cδ)‖En‖� +Q∗

3(C�, Cδ)|en(p)|
)

≤ 1

σD

(
P ∗
3 (C�, C 1

2
�, Cδ)‖En‖� +Q∗

3(C�, Cδ)|en(p)|
)
, (3.139)

with

P ∗
3 (s, t, u) =

2a2

A
s2(s2 + u2) log(au)

(
1 +

2(1− a)

aA
(s2 + t2) log(at)

)
,

(3.140)

Q∗
3(s, u) =

1− a

aA
(s2 + u2) log(au) . (3.141)

In general, for any cn,0 > 0, from (3.138) and applying (v), we get the estimate:

‖ς̃n‖�−2δ ≤ 1

| det(Ωn)|
1

cn,0

a2

A
log(aCδ)C

2
�(C

2
� + C2

δ )

· (2P2(C�)‖En‖� +Q2(C�)|en(p)|)
=

1

| det(Ωn)|
1

cn,0

(
P3(C�, C 1

2
�, Cδ)‖En‖� +Q3(C�, Cδ)|en(p)|

)
≤ 1

σD

1

cn,0

(
P3(C�, C 1

2
�, Cδ)‖En‖� +Q3(C�, Cδ)|en(p)|

)
, (3.142)

with

P3(s, t, u) =
2a4

A
s4(s2 + u2) log(au)

(
1 +

2(1− a)

aA
(s2 + t2) log(at)

)
, (3.143)

Q3(s, u) =
a(1− a)

A
s2(s2 + u2) log(au). (3.144)
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(xx) Let δ ∈ (0, 12	). From (3.12) and (3.18), the correction of the curve κn is given by

Δκn(θ) = cn(θ)ςn(θ) = cn(θ)(ςn,0 + ς̃n(θ)), ∀θ ∈ T�−2δ.

Therefore, by the previous parts (v) (3.66), (xvi), and (xix) of this lemma, we have:

‖Δκn‖�−2δ ≤ ‖cn‖�−δ(‖ς̃n‖�−2δ + |ςn,0|)
≤ αna

2C2
δ

(
1

σD

1

αn
(P ∗

1 (C�, C 1
2
�)‖En‖� +Q∗

1(C�))

+
1

σD

1

αn
(P ∗

3 (C�, C 1
2
�, Cδ)‖En‖� +Q∗

3(C�, Cδ))

)
=

1

σD
a2C2

δ

((
P ∗
1 (C�, C 1

2
�) + P ∗

3 (C�, C 1
2
�, Cδ)

)
‖En‖�

+ (Q∗
1(C�) +Q∗

3(C�, Cδ)) |en(p)|)
=

1

σD

(
P (C�, C 1

2
�, Cδ)‖En‖� +Q(C�, Cδ)|en(p)|

)
, (3.145)

where

P (s, t, u) = a2u2(P ∗
1 (s, t) + P ∗

3 (s, t, u))

=
2a4

A
(s2 + t2)u2 log(at)

(
2s4

+

(
1 +

2(1− a)

aA
(s2 + t2) log(at)

)
log(au)

)
, (3.146)

Q(s, u) = a2u2(Q∗
1(s) +Q∗

3(s, u))

= a2s2u2 +
1− a

aA
(s2 + u2) log(au). (3.147)

In particular,

|Δκn(θ)| ≤ 1

σD
(P ∗(C�, C 1

2
�)‖En‖� +Q∗(C�, C 1

2
�)|en(p)|), ∀θ ∈ T, (3.148)

where

P ∗(s, t) = P (s, t, t) = a2t2(P ∗
1 (s, t) + P ∗

3 (s, t, t))

=
2a4

A
(s2 + t2)t2 log(at)

(
2s4

+

(
1 +

2(1− a)

aA
(s2 + t2) log(at)

)
log(at)

)
, (3.149)

Q∗(s, t) = Q(s, t)) = a2t2(Q∗
1(s) +Q∗

3(s, t))

= a2s2t2 +
1− a

aA
(s2 + t2) log(at). (3.150)

Remark 3.6

Notice that estimates (3.130) and (3.145) obtained for |Δτn| and ‖Δκn‖�−2δ, respectively, do not
depend on the value assigned to cn,0.
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Corollary

Under the same conditions as in Lemma 3.5 we have the following estimate ∀δ ∈ (0, 12	):

|En+1(θ)| ≤ 1

2
K2

1

σ2
D

(
P (C�, C 1

2
�, Cδ)‖En‖� +Q(C�, Cδ)|en(p)|

)2
, ∀θ ∈ T�−2δ. (3.151)

In particular,

|En+1(θ)| ≤ 1

2
K2

1

σ2
D

(
P ∗(C�, C 1

2
�)‖En‖� +Q∗(C�, C 1

2
�)|en(p)|

)2
, ∀θ ∈ T. (3.152)

Proof. It is a consequence of parts (iii) and (xx ) of the previous lemma.

Remark 3.8

|En+1(θ)| ≤ 1

σ2
D

R(C�, C 1
2
�, Cδ)(‖En‖� + |en(p)|)2, ∀θ ∈ T�−2δ. (3.153)

with

R(C�, C 1
2
�, Cδ) =

1

2
K2max

{
P (C�, C 1

2
�, Cδ), Q(C�, Cδ)

}2
(3.154)
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3.5 KAM correction estimates

Lemma 3.9 Correction estimates

Under the same hypothesis as in the previous Lemma 3.5 the corresponding corrections satisfy
the following estimates:

(i) |Δmn(θ)| ≤ K2|Δκn(θ)| , ∀θ ∈ T�−2δ , δ ∈ (0, 12	).

(ii) |En+1(θ)| ≤ 1
2K2|Δκn(θ)|2 , ∀θ ∈ T�−2δ , δ ∈ (0, 12	).

From now on we will consider the following additional hypothesis that will be useful in con-
cluding many of the new correction estimates:

∃ r ∈ (0, 1) such that |Δmn(θ)| ≤ r|mn(θ)|, ∀θ ∈ T�−2δ, δ ∈ (0,
1

2
	). (H)

(iii) For any δ ∈ (0,
1

2
	),
∣∣∣log (1 + Δmn(θ)

mn(θ)

)∣∣∣ ≤ 1
r log

1
1−r

|Δmn(θ)|
|mn(θ)| , ∀θ ∈ T�−2δ.

(iv) Whenever (H) holds, the correction of the Lyapunov multiplier can be estimated by

|Δλn| ≤ L sup
θ∈T

|Δκn(θ)| , where L = K2
1
a2

1
1−r .

(v) For any δ ∈ (0, 12	) the correction of the function vn can be estimated by

|Δvn(θ)| ≤ L∗‖Δκn‖�−2δ , ∀θ ∈ T�−2δ, where L∗ = K2
a

2
r log

1
1−r .

In particular, |Δvn(θ)| ≤ L∗ sup
θ∈T

|κn(θ)|, ∀θ ∈ T.

(vi) Let δ ∈ (0, 13	). If αn+1 = αn, Δun(θ) = R1Δvn(θ), ∀θ ∈ T�−3δ and

|Δun(θ)| ≤ 1

A
log(aCδ)‖Δvn‖�−2δ , ∀θ ∈ T�−3δ .

Additionally, whenever (H) holds, |Δun(θ)| ≤ L∗
A log(aCδ)‖Δκn‖�−2δ , ∀θ ∈ T�−3δ .

In particular, ∀θ ∈ T, |Δun(θ)| ≤ 3ν
L∗

A
log(aC�) sup

θ∈T 1
3 �

|Δκn(θ)|.

(vii) For any δ ∈ (0, 13	), the correction of the Floquet transformation Δcn is given by:

Δcn(θ) = cn(θ)Δun(θ)

∫ 1

0
etΔun(θ)dt, ∀θ ∈ T�−3δ.

If αn+1 = αn, Δcn can be estimated by:

|Δcn(θ)| ≤ αn
a2

4A
C2
δ (a

4C4
δ − 1)‖Δvn‖�−2δ , ∀θ ∈ T�−3δ.

Additionally, whenever (H) holds,

|Δcn(θ)| ≤ αn
a2L∗

4A
C2
δ (a

4C4
δ − 1)‖Δκn‖�−2δ , ∀θ ∈ T�−3δ.

In particular, ∀θ ∈ T,

|Δcn(θ)| ≤ αn
a2L∗

4A
C2

1
3
�
(a4C4

1
3
�
− 1)‖Δκn‖ 1

3
�.
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(viii) Let δ ∈ (0, 13	). The correction of the function ηn is given by

Δηn(θ) = −ηn(θ) Δun(θ + ω)

∫ 1

0
e−tΔun(θ+ω)dt, ∀θ ∈ T�−3δ.

Whenever αn+1 = αn and (H) holds,

|Δηn(θ)| ≤ 1

αn

L∗

4A
C2
δ (e

4Aa4C4
δ − 1)‖Δκn‖�−2δ , ∀θ ∈ T�−3δ .

In particular, ∀θ ∈ T,

|Δηn(θ)| ≤ 1

αn

L∗

4A
C2

1
3
�
(e4Aa4C4

1
3
�
− 1)‖Δκn‖ 1

3
� .

(ix) For any δ ∈ (0, 14	), |Rλn+1Δη̃n(θ)| ≤ 1
A log(aCδ)‖Δη̃n‖�−3δ, ∀θ ∈ T�−3δ.

Additionally, whenever αn+1 = αn and (H) holds:

|Rλn+1Δη̃n(θ)| ≤ 1

αn

L∗

4A2
log(aCδ)

(
C2
δ (e

4Aa4C4
δ − 1)‖Δκn‖�−2δ

+ C2
1
3
�
(e4Aa4C4

1
3
�
− 1)‖Δκn‖ 1

3
�

)
, ∀θ ∈ T�−4δ.

In particular, ∀θ ∈ T,

|Rλn+1Δη̃n(θ)| ≤ 1

αn

L∗

4A2
log(aC 1

4
�)

(
C2

1
4
�
(e4Aa4C4

1
4
�
− 1)‖Δκn‖ 1

2
�

+ C2
1
3
�
(e4Aa4C4

1
3
�
− 1)‖Δκn‖ 1

3
�

)
.

(x) The correction of the translation parameter τn can be estimated by

|�τn| ≤ 1

σD
(P2(C�, C 1

2
�)‖En‖� +Q2|en(p)|),

where

P2(s, t) = a2s2
(
1 +

2(1− a)

aA
(s2 + t2) log(at)

)
, (3.155)

Q2 =
1− a

a
. (3.156)

(xi) The correction of the curve κn may be estimated for any δ ∈ (0, 12	), by

‖Δκn(θ)‖�−2δ ≤ 1

σD
(P (C�, C 1

2
�, Cδ)‖En‖� +Q(C�, Cδ)|en(p)|),

where

P (s, t, u) = a2u2(P ∗
1 (s, t) + P ∗

3 (s, t, u))

=
2a4

A
(s2 + t2)u2 log(at)

(
2s4 +

(
1 +

2(1− a)

aA
(s2 + t2) log(at)

)
log(au)

)
,

Q(s, u) = a2u2(Q∗
1(s) +Q∗

3(s, u))

= a2s2u2 +
1− a

aA
(s2 + u2) log(au). (3.157)
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In particular, |Δκn(θ)| ≤ 1
σD

(P ∗(C�, C 1
2
�)‖En‖� +Q∗(C�, C 1

2
�)|en(p)|), ∀θ ∈ T, where

P ∗(s, t) = P (s, t, t)

=
2a4

A
(s2 + t2)t2 log(at)

(
2s4 +

(
1 +

2(1− a)

aA
(s2 + t2) log(at)

)
log(at)

)
,(3.158)

Q∗(s, t) = Q(s, t)

= a2s2t2 +
1− a

aA
(s2 + t2) log(at). (3.159)

(xii) The correction of the cohomological operator may be estimated by:

|(ΔRλn)η̃n(θ)| ≤ |Δλn| C∗
R γ−2δ−2ν ‖η̃n‖�−δ , ∀θ ∈ T�−2δ , δ ∈ (0,

1

2
	) ,

where

C∗
R = C∗

R(a, ν) =
1

2

1

(1 + a)2

√
2ζ(4)

√
Γ(4ν + 1)

(4π)2ν

is independent of γ.

(xiii) Let δ ∈ (0, 13	). The correction of the cohomological operator may be also estimated in this
alternative way:

|(ΔRλn)η̃n(θ)| ≤ |Δλn| 1

A2
(log(aCδ))

2‖η̃n‖�−δ, ∀θ ∈ T�−3δ,

from which is derived the following

|(ΔRλn)η̃n(θ)| ≤
1

αn

L

A2
(C2

� + C2
δ )(log(aCδ))

2 sup
θ∈T

|Δκn(θ)|, ∀θ ∈ T�−3δ.

(xiv) Whenever αn+1 = αn and (H) holds:

|Δcn,0| ≤ αn
a2L∗

4A
C2

1
3
�
(a4C4

1
3
�
− 1)‖Δκn‖ 1

3
�.

(xv) Whenever αn+1 = αn and (H) holds:

|Δηn,0| ≤ αn
L∗

4A
C2

1
3
�
(a4C4

1
3
�
− 1)‖Δκn‖ 1

3
�.

Proof.

(i) See Lemma 3.5, part (ii).

(ii) See Lemma 3.5, part (iii).

Before proving next parts, consider the following remark about complex logarithms.

Remark 3.10

Some local bounds of the complex logarithm.

(a) If 0 < r < 1, then ∀z ∈ D(0, r):

(1−R)|z| ≤ | log(1 + z)| ≤ (1 +R)|z| , (3.160)

where R = 1
2

r
1−r .
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(b) If 0 < r < 1, then ∀z ∈ D(0, r):

| log(1 + z)| ≤ R|z| . (3.161)

where R = 1
r log

1
1−r .

Proof. The function

log(1 + z) =
∞∑
n=0

(−1)n

n+ 1
zn+1 , z ∈ D(0, 1)

is analytic in the unit open disk, and the series is absolute and uniformly convergent over
compact sets. In particular, the convergence of the series is uniform over the compact closed
disk D(0, r) ⊂ D(0, 1).

(a) For any z ∈ D(0, r) \ {0} we can write:

1− log(1 + z)

z
= 1−

∞∑
n=0

(−1)n

n+ 1
zn =

∞∑
n=1

(−1)n+1

n+ 1
zn .

By the triangular inequality,∣∣∣∣1− log(1 + z)

z

∣∣∣∣ ≤
∞∑
n=1

1

n+ 1
|z|n ≤

∞∑
n=1

1

2
|z|n

=
1

2

∞∑
n=1

|z|n =
1

2

|z|
1− |z| ≤

1

2

r

1− r
= R .

It follows that

(1−R)|z| ≤ | log(1 + z)| ≤ (1 +R)|z| , ∀z ∈ D(0, r) ,

as we stated.

(b) On the other hand, for any z ∈ D(0, r) \ {0} we can also write:∣∣∣∣ log(1 + z)

z

∣∣∣∣ ≤
∞∑
n=0

1

n+ 1
|z|n ≤

∞∑
n=0

1

n+ 1
rn

= −1

r

∞∑
n=0

(−1)n

n+ 1
(−r)n+1

= −1

r
log(1− r) =

1

r
log

1

1− r
= R .

It follows that
| log(1 + z)| ≤ R |z| , ∀z ∈ D(0, r) ,

as we wanted to prove.

As far as the upper bound of the logarithm module is concerned, the latter option (3.161)
is sharper than the former (3.160), since 1

r log
1

1−r < 1 + 1
2

r
1−r , ∀r ∈ (0, 1).

(iii) Let δ ∈ (0,
1

2
	). Assuming (H) holds, we may apply (3.161) to z = Δmn(θ)

mn(θ)
obtaining∣∣∣∣log(1 + Δmn(θ)

mn(θ)

)∣∣∣∣ ≤ 1

r
log

1

1− r

|Δmn(θ)|
|mn(θ)| , ∀θ ∈ T�−2δ. (3.162)
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(iv) The Lyapunov multiplier of κn is λn = eΛn , with Λn =

∫
T
log(mn(θ)) dθ, where

mn(θ) = ∂f
∂x (θ, κn(θ)), θ ∈ T�. In like manner, the Lyapunov multiplier of κn+1 is

λn+1 = eΛn+1 , with Λn+1 =

∫
T
log(mn+1(θ)) dθ, where mn+1(θ) =

∂f
∂x (θ, κn+1(θ)), θ ∈ T�−2δ

(see Remark 3.3).

Thus,
λn+1

λn
=

eΛn+1

eΛn
= eΛn+1−Λn = eΔΛn . So, we can write:

Δλn = λn+1 − λn = λn

(
λn+1

λn
− 1
)
= λn(e

ΔΛn − 1).

Our claim now is that

|Δλ| ≤ λn

(
e|ΔΛn| − 1

)
. (3.163)

Indeed, if Δλn ≥ 0, equality holds. Notice that λn > 0.

On the other hand, if Δλn < 0,

|Δλn| = −Δλn = −λn(e
ΔΛn − 1) = −λn(e

−|ΔΛn| − 1) = λn
e|ΔΛn|−1
e|ΔΛn| ≤ λn(e

|ΔΛn| − 1) since
1

e|ΔΛn| < 1.

Due to the identity9:

ez − 1 = z

∫ 1

0
etz dt , z ∈ C , (3.164)

with z = ΔΛn, the modulus of the correction of the Lyapunov multiplier can be estimated
by

|Δλn| ≤ λn

(
e|ΔΛn| − 1

)
≤ λn|ΔΛn|

∫ 1

0
et|ΔΛn|dt . (3.165)

Next, we estimate the Lyapunov exponent correction:

ΔΛn = Λn+1 − Λn =

∫
T
log(mn+1(θ)) dθ −

∫
T
log(mn(θ)) dθ

=

∫
T
(log(mn+1(θ))− log(mn(θ))) dθ

=

∫
T
log

(
mn+1(θ)

mn(θ)

)
dθ =

∫
T
log

(
mn(θ) + Δmn(θ)

mn(θ)

)
dθ

=

∫
T
log

(
1 +

Δmn(θ)

mnθ

)
dθ. (3.166)

It follows that

|ΔΛn| =

∣∣∣∣∫
T
log

(
1 +

Δmn(θ)

mnθ

)
dθ

∣∣∣∣ ≤ ∫
T

∣∣∣∣log(1 + Δmn(θ)

mnθ

)∣∣∣∣ dθ . (3.167)

9 ez − 1 =
[
etz

]t=1

t=0
=

∫ 1

0

detz

dt
dt =

∫ 1

0

zetz dt = z

∫ 1

0

etz dt.
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Now, on the one hand, from (3.162) and (3.59) we obtain

|ΔΛn| =

∫
T

∣∣∣∣log(1 + Δmn(θ)

mnθ

)∣∣∣∣ dθ ≤
∫
T

1

r
log

1

1− r

|Δmn(θ)|
|mn(θ)| dθ

=
1

r
log

1

1− r

∫
T

|Δmn(θ)|
|mn(θ)| dθ ≤ 1

r
log

1

1− r

∫
T

|Δmn(θ)|
K∗

1

dθ

=
1

K∗
1

1

r
log

1

1− r

∫
T
|Δmn(θ)|dθ ≤ 1

a

1

r
log

1

1− r

∫
T
|Δmn(θ)|dθ

≤ 1

a

1

r
log

1

1− r

∫
T
K2|Δκn(θ)|dθ ≤ K2

1

a

1

r
log

1

1− r
sup
θ∈T

|Δκn(θ)| . (3.168)

On the other hand, by hypothesis (H) we can also write

|ΔΛn| =

∫
T

∣∣∣∣log(1 + Δmn(θ)

mnθ

)∣∣∣∣ dθ ≤
∫
T

1

r
log

1

1− r

|Δmn(θ)|
|mn(θ)| dθ

=
1

r
log

1

1− r

∫
T

|Δmn(θ)|
|mn(θ)| dθ ≤ 1

r
log

1

1− r
r = log

1

1− r
, (3.169)

and then ∫ 1

0
et|ΔΛn|dt ≤

∫ 1

0
et log

1
1−r dt =

1

log 1
1−r

[
et log

1
1−r

]t=1

t=0

=
1

log 1
1−r

(
elog

1
1−r − 1

)
=

1

log 1
1−r

(
1

1− r
− 1

)
=

1

log 1
1−r

r

1− r
. (3.170)

Since 0 < a ≤ λn ≤ 1
a , then joining together (3.165), (3.168), and (3.170) we can finally

write:

|Δλn| ≤ λn |ΔΛn|
∫ 1

0
et|ΔΛn|dt

≤ 1

a

K2

a

1

r
log

1

1− r
sup
θ∈T

|Δκn(θ)| 1

log 1
1−r

r

1− r

=
K2

a2
1

1− r
sup
θ∈T

|Δκn(θ)| = L sup
θ∈T

|Δκn(θ)|, (3.171)

with L = K2
a2

1
1−r .

(v) Given δ ∈ (0, 12	), the correction of the function vn can be written as

Δvn(θ) = vn+1(θ)− vn(θ) = log(mn+1(θ))− Λn+1 − (log(mn(θ))− Λn)

= log

(
mn+1(θ)

mn(θ)

)
− (Λn+1 − Λn)

= log

(
mn(θ) + Δmn(θ)

mn(θ)

)
−
(∫

T
log(mn+1(θ)) dθ −

∫
T
log(mn(θ)) dθ

)
= log

(
1 +

Δmn(θ)

mn(θ)

)
−
∫
T
log

(
1 +

Δmn(θ)

mn(θ)

)
dθ, ∀θ ∈ T�−2δ . (3.172)
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Taking moduli on both sides and applying the triangular inequality, we can write:

|Δvn(θ)| ≤
∣∣∣∣log(1 + Δmn(θ)

mn(θ)

)∣∣∣∣+ ∣∣∣∣∫
T
log

(
1 +

Δmn(θ)

mn(θ)

)
dθ

∣∣∣∣
≤
∣∣∣∣log(1 + Δmn(θ)

mn(θ)

)∣∣∣∣+ ∫
T

∣∣∣∣log(1 + Δmn(θ)

mn(θ)

)∣∣∣∣ dθ
≤ 2 sup

θ∈T�−2δ

∣∣∣∣log(1 + Δmn(θ)

mn(θ)

)∣∣∣∣ . (3.173)

As to obtain an estimate of (3.173) we may apply local bounds of the complex logarithm.
Whenever (H) holds, i.e. |Δmn(θ)| ≤ r|mn(θ)|, as a consequence of (3.173), and by means
of (3.162), we have:

|Δvn(θ)| ≤ 2 sup
θ∈T�−2δ

1

r
log

1

1− r

∣∣∣∣Δmn(θ)

mn(θ)

∣∣∣∣ = 2

r
log

1

1− r
sup

θ∈T�−2δ

|Δmn(θ)|
|mn(θ)|

≤ 2

r
log

1

1− r

1

K∗
1

sup
θ∈T�−2δ

|Δmn(θ)| ≤ 2

a

1

r
log

1

1− r
sup

θ∈T�−2δ

K2|Δκn(θ)|

= K2
2

a

1

r
log

1

1− r
sup

θ∈T�−2δ

|Δκn(θ)| = K2
2

a

1

r
log

1

1− r
‖Δκn‖�−2δ

= L∗‖Δκn‖�−2δ , ∀θ ∈ T�−2δ , δ ∈ (0,
1

2
	) , (3.174)

where L∗ = K2
2
a
1
r log

1
1−r .

On the other hand, restricting θ to the real torus T in (3.172), we can obtain with similar
arguments:

|Δvn(θ)| ≤ 2 sup
θ∈T

∣∣∣∣log(1 + Δmn(θ)

mn(θ)

)∣∣∣∣ ≤ L∗ sup
θ∈T

|Δκn(θ)| , ∀θ ∈ T.

(vi) un(θ) = R1vn(θ) + log(αn). Thus,

Δun(θ) = un+1(θ)− un(θ) = log(αn+1) +R1vn+1(θ)− (log(αn) +R1vn(θ))

= log
αn+1

αn
+R1(vn+1(θ)− vn(θ)) = log

αn+1

αn
+R1Δvn(θ) . (3.175)

Whenever αn+1 = αn we have

Δun(θ) = R1Δvn(θ) , ∀θ ∈ T�−3δ . (3.176)

Additionally, in such a case, we can apply Corollary 1.28 to Δvn ( with m = 2), thus
obtaining the following estimates:

|Δun(θ)| = |R1Δvn(θ)| ≤ 1

A
log(aCδ)‖Δvn‖�−2δ, ∀θ ∈ T�−3δ. (3.177)

In particular,

|Δun(θ)| ≤ L∗

A
log(aC 1

3
�)‖Δκn‖ 1

3
� ≤ 3νL∗

A
log(aC�)‖Δκn‖ 1

3
�, ∀θ ∈ T. (3.178)

(vii) Let δ ∈ (0, 13	).
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The correction of the Floquet transformation can be written as

Δcn(θ) = cn+1(θ)− cn(θ) = cn(θ)

(
cn+1(θ)

cn(θ)
− 1

)
= cn(θ)

(
eun+1(θ)

eun(θ)
− 1

)
= cn(θ)

(
eun+1(θ)−un(θ) − 1

)
= cn(θ)

(
eΔun(θ) − 1

)
= cn(θ)Δun(θ)

∫ 1

0
etΔun(θ) dt . (3.179)

The last step is due to the identity10:

ez − 1 = z

∫ 1

0
etz dt , z ∈ C , (3.180)

with z = Δun(θ).

By (3.176), whenever αn+1 = αn, Δun(θ) = R1Δvn(θ) , ∀θ ∈ T�−3δ. Thus, in such a case

Δcn(θ) = cn(θ)R1Δvn(θ)

∫ 1

0
etR1Δvn(θ) dt, ∀θ ∈ T�−3δ. (3.181)

Notice that, applying Lemma 3.5, part (iv), we may narrow down the norm of Δvn:

‖Δvn‖�−2δ = ‖ vn+1 − vn‖�−2δ ≤ ‖vn+1‖�−2δ + ‖vn‖�−2δ ≤ 2A+ 2A = 4A.

Thus, taking moduli on both sides of (3.181), and taking in account (3.177), we can write:

|Δcn(θ)| = |cn(θ)||R1Δvn(θ)|
∣∣∣∣∫ 1

0
etR1Δvn(θ) dt

∣∣∣∣
≤ |cn(θ)||R1Δvn(θ)|

∫ 1

0

∣∣∣etR1Δvn(θ)
∣∣∣ dt

≤ |cn(θ)||R1Δvn(θ)|
∫ 1

0
et|R1Δvn(θ)| dt

≤ |cn(θ)| 1
A

log(aCδ)‖Δvn‖�−2δ

∫ 1

0
et

1
A

log(aCδ)‖Δvn‖�−2δ dt

≤ |cn(θ)| 1
A

log(aCδ)‖Δvn‖�−2δ

∫ 1

0
et

1
A

log(aCδ)4A dt

= |cn(θ)|‖Δvn‖�−2δ
1

4A

∫ 1

0
4 log(aCδ)e

4t log(aCδ) dt

= |cn(θ)|‖Δvn‖�−2δ
1

4A

[
e4t log(aCδ)

]t=1

t=0

= |cn(θ)|‖Δvn‖�−2δ
1

4A

(
e4 log(aCδ) − 1

)
= |cn(θ)|‖Δvn‖�−2δ

1

4A

(
a4C4

δ − 1
)
. (3.182)

Now, we can use the estimates obtained for the Floquet transformation (3.66) and, whenever

10 ez − 1 =
[
etz

]t=1

t=0
=

∫ 1

0

detz

dt
dt =

∫ 1

0

zetz dt = z

∫ 1

0

etz dt.
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(H) holds, the estimate of the correction of the function vn (3.174).

|Δcn(θ)| ≤ αna
2C2

δL
∗‖Δκn‖�−2δ

1

4A
(a4C4

δ − 1)

= αn
a2L∗

4A
C2
δ (a

4C4
δ − 1)‖Δκn‖�−2δ, ∀θ ∈ T�−3δ. (3.183)

In particular, taking limits as δ → 1
3	, according with Corollary 1.28, we obtain,

∀θ ∈ T, |Δcn(θ)| ≤ αn
a2L∗

4A
C2

1
3
�
(a4C4

1
3
�
− 1)‖Δκn‖ 1

3
�. (3.184)

(viii) The correction of the function ηn may be written as

Δηn(θ) = ηn+1(θ)− ηn(θ) = ηn(θ)

(
ηn+1(θ)

ηn(θ)
− 1

)
= ηn(θ)

(
1

cn+1(θ+ω)

1
cn(θ+ω)

)
= ηn(θ)

(
cn(θ + ω)

cn+1(θ + ω)

)

= ηn(θ)

(
eun(θ+ω)

eun+1(θ+ω)
− 1

)
= ηn(θ)

(
e−(un+1(θ+ω)−un(θ+ω)) − 1

)
= ηn(θ)

(
e−Δun(θ+ω) − 1

)
= −ηn(θ)Δun(θ + ω)

∫ 1

0
e−tΔun(θ+ω) dt ,(3.185)

where the last step is due again to the identity (3.180).

On the one hand, recall that un satisfies the cohomological equation11

un(θ + ω)− un(θ) = vn(θ) .

And, in the same manner,

un+1(θ + ω)− un+1(θ) = vn+1(θ) .

Thus,

Δun(θ + ω) = un+1(θ + ω)− un(θ + ω) = (un+1(θ) + vn+1(θ))− (un(θ) + vn(θ))

= (un+1(θ)− un(θ)) + (vn+1(θ)− vn(θ))

= Δun(θ) + Δvn(θ) .

On the other hand, whenever αn+1 = αn,

Δun(θ) = R1Δvn(θ) , ∀θ ∈ T�−3δ (3.186)

so, Δηn(θ + ω) = R1Δvn(θ) + Δvn(θ) and

|Δη(θ + ω)| ≤ |R1Δvn(θ)|+ |Δvn(θ)|
≤ 1

A
log(aCδ)‖Δvn‖�−2δ + ‖Δvn‖�−2δ

= (1 +
1

A
log(aCδ))‖Δvn‖�−2δ . (3.187)

11un(θ+ω)−un(θ) = log cn(θ+ω)−log cn(θ) = log cn(θ+ω)
cn(θ)

= log mn(θ)cn(θ)/λn

cn(θ)
= log mn(θ)

λn
= logmn(θ)−log λn =

logmn(θ)− Λn = vn(θ). See more details in Corollary 2.8.
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From (3.185) and (3.187) we obtain:

|Δηn(θ)| = |ηn(θ)| |Δun(θ + ω)|
∣∣∣∣∫ 1

0
e−tΔun(θ+ω)dt

∣∣∣∣
≤ |ηn(θ)| |Δun(θ + ω)|

∫ 1

0

∣∣∣e−tΔun(θ+ω)
∣∣∣ dt

≤ |ηn(θ)|(1 + 1

A
log(aCδ))‖Δvn‖�−2δ

∫ 1

0
eRe(−tΔun(θ+ω))dt . (3.188)

The integral can be estimated as follows:∫ 1

0
eRe(−tΔun(θ+ω))dt ≤

∫ 1

0
e|−tΔun(θ+ω)|dt =

∫ 1

0
et|Δun(θ+ω)|dt

≤
∫ 1

0
et(1+

1
A

log(aCδ))‖Δvn‖�−2δdt

≤
∫ 1

0
et(1+

1
A

log(aCδ))4Adt =

∫ 1

0
e4t(A+log(aCδ))dt , (3.189)

where we have used the fact that, by (3.63),

‖Δvn‖�−2δ = ‖vn+1 − vn‖�−2δ ≤ ‖vn+1‖�−2δ + ‖vn‖�−2δ ≤ 2A+ 2A = 4A.

Finally, from (3.188) and (3.189) we get:

|Δηn(θ)| ≤ |ηn(θ)|(1 + 1

A
log(aCδ))‖Δvn‖�−2δ

∫ 1

0
eRe(−tΔun(θ+ω))dt

≤ |ηn(θ)|(1 + 1

A
log(aCδ))‖Δvn‖�−2δ

∫ 1

0
e4t(A+log(aCδ))dt

= |ηn(θ)|‖Δvn‖�−2δ
1

4A

∫ 1

0
(4(A+ log(aCδ)))e

4t(A+log(aCδ))dt

= |ηn(θ)|‖Δvn‖�−2δ
1

4A

[
e4t(A+log(aCδ)) − 1

]t=1

t=0

= |ηn(θ)|‖Δvn‖�−2δ
1

4A

(
e4(A+log(aCδ)) − 1

)
= |ηn(θ)|‖Δvn‖�−2δ

1

4A

(
e4Aa4C4

δ − 1
)
. (3.190)

Now, it only remains to consider the estimates obtained previously for ηn and Δvn in each
of the respective cases.

Namely, from (3.174) we know that whenever (H) holds,

|Δvn(θ)| ≤ L∗‖Δκn‖�−2δ , ∀θ ∈ T�−2δ

and hence,

|Δηn(θ)| ≤ |ηn(θ)| L∗ ‖Δκn‖�−3δ
1

4A
(e4Aa4C4

δ − 1). (3.191)

Regarding the estimate of ηn, we will use the previous Lemma 3.5, part (vi). More specif-
ically, from (3.75) we have

|ηn(θ)| ≤ 1

αn
C2
δ , ∀θ ∈ T,

and consequently

|Δηn(θ)| ≤ 1

αn

L∗

4A
C2
δ (e

4Aa4C4
δ − 1)‖Δκn‖�−2δ , ∀θ ∈ T�−3δ . (3.192)
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In particular, taking limits as δ → 1
3	, we obtain ∀θ ∈ T,

|Δηn(θ)| ≤ 1

αn

L∗

4A
C2

1
3
�
(e4Aa4C4

1
3
�
− 1)‖κn‖ 1

3
� . (3.193)

(ix) Δη̃n is defined in T�−3δ, with δ ∈ (0, 13	). Therefore, by Theorem 1.20, Rλn+1Δη̃n is
defined and analytic in T�−4δ for any δ ∈ (0, 14	), and the following estimate holds:

|Rλn+1Δη̃n(θ)| ≤ 1

A
log(aCδ)‖Δη̃n‖�−3δ, ∀θ ∈ T�−4δ , δ ∈ (0,

1

4
	) . (3.194)

On the other hand, ‖Δη̃n‖�−3δ ≤ ‖ηn‖�−3δ + sup
θ∈T

|Δηn(θ)|.

Indeed, Δη̃n(θ) = η̃n+1(θ)− η̃n(θ) = (ηn+1(θ)− ηn+1,0)− (ηn(θ)− ηn,0)

= (ηn+1(θ)− ηn(θ))− (ηn+1,0 − ηn,0) = Δηn(θ)−Δηn,0.

Thus, |Δη̃n(θ)| ≤ |Δηn(θ)|+ |Δηn,0| = |Δηn(θ)|+
∣∣∣∣∫

T
Δηn(θ) dθ

∣∣∣∣ ≤ |Δηn(θ)|+
∫
T
|Δηn(θ)| dθ

≤ |Δηn(θ)|+ sup
θ∈T

|Δηn(θ)|.

From (3.192) and (3.193) we have, whenever αn+1 = αn and (H) holds,

|Δη̃n(θ)| =
1

αn

L∗

4A
C2
δ (e

4Aa4C4
δ − 1)‖Δκn‖�−2δ

+
1

αn

L∗

4A
C2

1
3
�
(e4Aa4C4

1
3
�
− 1)‖κn‖ 1

3
�

=
1

αn

L∗

4A

(
C2
δ (e

4Aa4C4
δ − 1)‖Δκn‖�−2δ

+ C2
1
3
�
(e4Aa4C4

1
3
�
− 1)‖κn‖ 1

3
�

)
(3.195)

The statements of this part follow straightforward from (3.194) and (3.195).

|Rλn+1Δη̃n(θ)| ≤ 1

αn

L∗

4A2
log(aCδ)

(
C2
δ (e

4Aa4C4
δ − 1)‖κn‖�−2δ

+ C2
1
3
�
(e4Aa4C4

1
3
�
− 1)‖κn‖ 1

3
�

)
, ∀θ ∈ T�−4δ. (3.196)

In particular, ∀θ ∈ T,

|Rλn+1Δη̃n(θ)| ≤ 1

αn

L∗

4A2
log(aC 1

4
�)

(
C2

1
4
�
(e4Aa4C 1

4
�)

4 − 1)‖κn‖ 1
2
�

+ C2
1
3
�
(e4Aa4C4

1
3
�
− 1)‖κn‖ 1

3
�

)
. (3.197)

Remark 3.11

Since C� < C 1
2
� < C 1

3
� < C 1

4
� and ‖Δκn‖ 1

3
� ≤ ‖Δκn‖ 1

2
�, we could also have written

|Rλn+1Δη̃n(θ)| ≤ 1

αn

L∗

2A2
log(aC 1

4
�)C

2
1
3
�
(e4Aa4C4

1
4
�
− 1)‖κn‖ 1

2
�, ∀θ ∈ T. (3.198)

(x) See Lemma 3.5, part (xvii).
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(xi) See Lemma 3.5, part (xx).

(xii) On the one hand, < η̃n >= 0, η̃n ∈ A�−δ,0.

Moreover, (ΔRλn)η̃n(θ) = Rλn+1 η̃n(θ)−Rλn η̃n(θ), ∀θ ∈ T�−2δ.

On the other hand, by Lemma 3.5, λn, λn+1 ∈ [a, 1a ], so Proposition 1.26 part (c) is
applicable and we have:

|ΔRλn η̃n(θ)| ≤ C∗
R γ−2δ−2ν |Δλn| ‖η̃n‖�−δ , ∀θ ∈ T�−2δ , δ ∈ (0,

1

2
	) . (3.199)

(xiii) Let δ ∈ (0, 13	).

By Lemma 3.5, part (i), λn, λn+1 ∈ [a, 1a ] and we can apply Proposition 1.26, parts (a)
and (b). So, we have on one side:

ΔRλn η̃n(θ) = Δλn Rλn+1Rλn η̃n(θ) , ∀θ ∈ T�−3δ. (3.200)

On the other side,

|ΔRλn η̃n(θ)| ≤ |Δλn|C2
Rγ

−2δ−2ν‖η̃n‖�−δ

= |Δλn| 1
A2

(log(aCδ))
2‖η̃n‖�−δ , ∀θ ∈ T�−3δ. (3.201)

Moreover, we can use the estimate obtained for Δλn in (3.171) and the corresponding for η̃n
in (3.84). Thus, we finally have:

|(ΔRλn)η̃n(θ)| ≤
1

αn

L

A2
(C2

� + C2
δ )(log(aCδ))

2 sup
θ∈T

|Δκn(θ)|, ∀θ ∈ T�−3δ. (3.202)

(xiv) First of all, notice that the correction of the Floquet transformation average can be written
as

Δcn,0 = cn+1,0 − cn,0 =

∫
T
cn+1(θ)dθ −

∫
T
cn(θ)dθ

=

∫
T
(cn+1(θ)− cn(θ))dθ =

∫
T
Δcn(θ)dθ .

Thus,

|Δcn,0| ≤
∫
T
|Δcn(θ)|dθ ≤ sup

θ∈T
|Δcn(θ)|. (3.203)

According to (3.184) we obtain

|Δcn,0| ≤ αn
a2L∗

4A
C2

1
3
�
(a4C4

1
3
�
− 1)‖Δκn‖ 1

3
� (3.204)

whenever αn+1 = αn and (H) holds, so the statement of this part is proved.

(xv) In like manner as the part before, notice that the correction of the function ηn can be written
as

Δηn,0 = ηn+1,0 − ηn,0 =

∫
T
ηn+1(θ)dθ −

∫
T
ηn(θ)dθ

=

∫
T
(ηn+1(θ)− ηn(θ))dθ =

∫
T
Δηn(θ)dθ .

Thus,

|ηn,0| ≤
∫
T
|ηn(θ)|dθ ≤ sup

θ∈T
|ηn(θ)|. (3.205)
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According to (3.193) we obtain

|ηn,0| ≤ αn
L∗

4A
C2

1
3
�
(a4C4

1
3
�
− 1)‖Δκn‖ 1

3
� (3.206)

whenever αn+1 = αn and (H) holds.

Remark 3.12

To state the KAM theorem, in a posteriori format, we need to control the size of the deltas at
every step of the process in such a way that the non–degeneracy condition holds along the whole
process. Moreover, we need to impose, in addition to the hypotheses of the previous lemma, a new
one that guarantees the convergence based on the error estimate that we have found here.

The following proposition allows to find sufficient conditions for the constructability.

Proposition 3.13 Determinant correction estimate

Under the same conditions as in Lemma 3.5 and Lemma 3.9 there is a real function
G : R+ −→ R+ such that:

|Δdet(Ωn)| ≤ G(C 1
4
�)‖Δκn‖ 1

2
�. (3.207)

Proof.

Δdet(Ωn) = det(Ωn+1)− det(Ωn)

= < (1− λn+1)c̃n+1Rλn+1 η̃n+1 + cn+1,0ηn+1,0 − ((1− λn)c̃nRλn η̃n + cn,0ηn,0) >

= < (1− λn)c̃nΔRλn η̃n + (1− λn)c̃nRλn+1Δη̃n +

+ (1− λn+1)Δc̃nRλn+1 η̃n+1 + cn,0Δηn,0 +Δcn,0ηn,0 +Δcn,0Δηn,0 > .

Thus,

|Δdet(Ωn)| ≤ |1− λn|
∫
T
|c̃n(θ)| |ΔRλn η̃n(θ)|dθ

+ |1− λn|
∫
T
|c̃n(θ)| |Rλn+1Δη̃n(θ)|dθ

+ |1− λn+1|
∫
T
|Δc̃n(θ)| |Rλn+1 η̃n+1(θ)|dθ

+ |cn,0Δηn,0 +Δcn,0ηn,0 +Δcn,0Δηn,0|.
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3.6 The iterative step of the KAM procedure

Lemma 3.14 KAM step

Let Ψ = Rω × f be the skew–product

Ψ : T� × U −→ T� × C
(θ, z) �−→ Ψ(θ, z) = (θ + ω, f(θ, z)) ,

(3.208)

where ω ∈ DC(γ, ν) is Diophantine and 0 < 	 < 1
2 .

Assume that f is a real analytic function on the spatial component satisfying the following global
conditions:

(a) ∃K1,K
∗
1 > 0,K∗

1 ≤
∣∣∣∂f∂z (θ, z)∣∣∣ ≤ K1, ∀(θ, z) ∈ T� × U ;

(b) ∃K2 > 0,
∣∣∣∂2f
∂z2

(θ, z)
∣∣∣ ≤ K2, ∀(θ, z) ∈ T� × U ;

(c) ∃α ∈ (0, π),
∣∣∣Arg(∂f∂z (θ, z))

∣∣∣ ≤ α, ∀(θ, z) ∈ T� × U .

Let p ∈ R be a given average and suppose that there exists (κn(θ), τn) ∈ A� × R such that:

(i) f(θ, κn(θ)) ∈ U , ∀θ ∈ T�;

(ii) |det(Ωn)| > 0;

(iii) < κn >= p.

Then, there exist (κn+1(θ), τn+1) ∈ A�−2δ × R for any δ ∈ (0, 12	) such that:{
mn(θ)Δκn(θ)−Δκ(θ + ω) + Δτn = −En(θ)

< Δκn > = 0 ,
(3.209)

where {
κn+1(θ) = κn(θ) + Δκn(θ)
τn+1 = τn +Δτn

Here En denotes the error function En(θ) = f(θ, κn(θ))−κn(θ+ω)+τn and mn(θ) =
∂f
∂z (θ, κn(θ)),

for any θ ∈ T�.

Additionally, denoting vn(θ) = log(mn(θ)) and ṽn(θ) = vn(θ) − Λn, with Λn =

∫
T
log(mn(θ))dθ,

the Lyapunov exponent of the curve κn, and assuming that

(iv) ∃r ∈ (0, 1) such that
∣∣∣Δmn(θ)

mn(θ)

∣∣∣ ≤ r, ∀θ ∈ T�−2δ,

the following estimates hold for some m = m(γ, ν) > 0:

(I) ‖Δκn‖�−2δ ≤ 1
|det(Ωn)| · 8

aδ
−2me8Aδ−m ‖En‖�, ∀δ ∈ (0, 12	) ,

(II) ‖En+1‖�−2δ ≤ 1
2K2‖Δκn‖2�−2δ, ∀δ ∈ (0, 12	),

(III) |Δτn| ≤ 1
|det(Ωn)| · 2

aδ
−me4Aδ−m ‖En‖�, ∀δ ∈ (0, 12	), and

(IV) |Δdet(Ωn)| ≤ 1
d
10
a2
δ−me2(2A+B)δ−m‖Δκn‖�−2δ, ∀δ ∈ (0, 14	).
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Proof. Under the conditions of the statement, all the estimates found in Lemma 3.5 and Lemma
3.9 hold. Here we consider the particular case where αn = 1, that is,

cn,0 =

∫
T
eR1(log( ∂f

∂x
(θ,κn(θ)))−Λn)dθ,

which is feasible because cn,0 can be freely chosen. Moreover, since we are assuming now that
< κn >= p, then en(p) = 0, and this term disappears in those estimates where it was present
before. Additionally, we will apply Corollary 1.22 which assures that

∃m = m(γ, ν) ∈ N , such that ∀δ ∈ (0, 	), ‖Rλṽ‖�−δ ≤ δ−m‖ṽ‖� ≤ 2δ−m‖v‖� ,

for any v ∈ A�. Recall that m = m(γ, ν) depends only on ω.

Taking in account these facts and following the same scheme as in Lemma 3.5 we obtain the
following estimates:

(i) a ≤ λn ≤ 1
a , where a = min{K∗

1 ,K
−1
1 , α

2π} ∈ (0, 1);

(ii) ‖Δmn‖�−2δ ≤ K2‖ΔKn‖�−2δ, δ ∈ (0, 12	);

(iii) ‖En+1‖�−2δ ≤ 1
2K2‖ΔKn‖2�−2δ, δ ∈ (0, 12	);

(iv) ‖ṽn‖� ≤ 2A, where A = (max{| logK∗
1 |, | logK1|}2 + α2)

1
2 ;

‖R1ṽn‖�−δ ≤ δ−m‖ṽn‖�, δ ∈ (0, 12	);

(v) max{‖cn‖�−δ, ‖ 1
cn
‖�−δ} ≤ eδ

−m‖ṽn‖� , δ ∈ (0, 	);

(vi) ‖ηn‖�−δ ≤ eδ
−m‖ṽn‖� , δ ∈ (0, 	);

(vii) ‖ξn‖�−δ ≤ eδ
−m‖ṽn‖�‖En‖�, δ ∈ (0, 	);

(viii) ‖η̃n‖�−δ ≤ 2‖ηn‖�−δ ≤ 2eδ
−m‖ṽn‖� , δ ∈ (0, 	);

(ix) ‖ξ̃n‖�−δ ≤ 2‖ξn‖�−δ ≤ 2eδ
−m‖ṽn‖�‖En‖�, δ ∈ (0, 	);

(x) ‖Rλn η̃n‖�−2δ ≤ δ−m‖η̃n‖�−δ ≤ 2δ−meδ
−m‖ṽn‖� , δ ∈ (0, 12	);

(xi) ‖Rλn ξ̃n‖�−2δ ≤ δ−m‖ξ̃n‖�−δ ≤ 2δ−meδ
−m‖ṽn‖�‖En‖�, δ ∈ (0, 12	);

(xii) a2 ≤ K∗
1

K1
≤ cn,0ηn,0 ≤ K1

K∗
1
In ≤ 1

a2
In, with 1 ≤ In =

∫
T e

R1ṽndθ
∫
T e

−R1ṽndθ ≤ e2δ
−m‖ṽn‖� , and

whenever αn = 1, ηn,0 ≤ eδ
−m‖ṽn‖� , δ ∈ (0, 	);

(xiii) |ξn,0| ≤ ηn,0‖En‖�;

(xiv) | < cnRλn η̃n > | ≤ 2cn,0δ
−meδ

−m‖ṽn‖� , δ ∈ (0, 12	);

(xv) | < cnRλn ξ̃n > | ≤ 2cn,0δ
−meδ

−m‖ṽn‖�‖En‖�, δ ∈ (0, 12	);

(xvi) |ςn,0| ≤ 1
| det(Ωn)|4δ

−me2δ
−m‖ṽn‖�‖En‖�, δ ∈ (0, 12	);

(xvii) |Δτn| ≤ 1
| det(Ωn)|

2
aδ

−me2δ
−m‖ṽn‖� , δ ∈ (0, 12	);

(xviii) | det(Ωn)| ≤ 2
aδ

−me2δ
−m‖ṽn‖� , δ ∈ (0, 12	);

(xix) ‖ς̃n‖�−2δ ≤ 1
| det(Ωn)|

8
aδ

−2me3δ
−m‖ṽn‖�‖En‖�, δ ∈ (0, 12	);
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(xx) ‖Δκn‖�−2δ ≤ 1
| det(Ωn)|

8
aδ

−2me3δ
−m‖ṽn‖�‖En‖�, δ ∈ (0, 12	).

Next, we follow the same scheme of Lemma 3.9 to obtain the correction estimates. Notice first

that if
∣∣∣Δmn(θ)

mn(θ)

∣∣∣ ≤ r < 1, then
∣∣∣log (1 + Δmn(θ)

mn(θ)

)∣∣∣ ≤ 1
r log

1
1−r

∣∣∣Δmn(θ)
mn(θ)

∣∣∣ ≤ log 1
1−r =: B. After the

corresponding computations, we have:

(1) |Δλn| ≤ L‖Δκn‖�−2δ, with L = K1K2
K∗

1
· 1
1−r ;

(2) |Δṽn(θ)| ≤ 2B and |Δṽn(θ)| ≤ L∗‖Δκn‖�−2δ, with L∗ := K2
K∗

1

2
r log

1
1−r = 2B

d ;

(3) |RλnΔṽn(θ)| ≤ L∗δ−m‖Δκn‖�−2δ, θ ∈ T�−3δ, δ ∈ (0, 13	);

(4) |Δcn(θ)| ≤ 1
de

2(A+B)δ−m‖Δκn‖�−2δ, θ ∈ T�−3δ, δ ∈ (0, 13	);

(5) |Δηn(θ)| ≤ ‖Δηn‖�−3δ ≤ 1
de

2(A+B)δ−m‖Δκn‖�−2δ, θ ∈ T�−3δ, δ ∈ (0, 13	);

(6) ‖Rλn+1Δη̃n‖�−4δ ≤ ‖Δη̃n‖�−3δ ≤ 1
dδ

−me2(A+B)δ−m‖Δκn‖�−2δ, θ ∈ T�−4δ, δ ∈ (0, 14	);

(7) ΔRλn η̃n(θ) = ΔλnRλn+1Rλn η̃n(θ), ∀θ ∈ T�−4δ, δ ∈ (0, 14	), and

‖ΔRλn η̃n‖�−4δ ≤ |Δλn|‖Rλn+1Rλn η̃n‖�−4δ ≤ |Δλn|δ−2m‖η̃n‖�−2δ ≤ Lδ−2me2Aδ−m‖Δκn‖�−2δ,

∀θ ∈ T�−4δ, δ ∈ (0, 14	);

(8) |Δcn,0| ≤ ‖Δcn‖�−3δ ≤ 1
de

2(A+B)δ−m‖Δκn‖�−2δ, δ ∈ (0, 13	);

(9) |Δηn,0| ≤ ‖Δηn‖�−3δ ≤ 1
de

2(A+B)δ−m‖Δκn‖�−2δ, δ ∈ (0, 13	).

Summary of constants

a = min{K∗
1 ,K

−1
1 ,

α

2π
} ∈ (0, 1);

A = (max{| logK∗
1 |, | logK1|}2 + α2)

1
2 ;

B = log
1

1− r
;

L =
K1K2

K∗
1

· 1

1− r
;

L∗ =
K2

K∗
1

2

r
log

1

1− r
=

2B

d
;

d =
K∗

1

K2
r.

With all the estimates obtained above and after some substitutions and computations we get:

(I) ‖Δκn‖�−2δ ≤ 1
|det(Ωn)| · 8

aδ
−2me8Aδ−m ‖En‖�, ∀δ ∈ (0, 12	) ,

(II) ‖En+1‖�−2δ ≤ 1
2K2‖Δκn‖2�−2δ, ∀δ ∈ (0, 12	),

(III) |Δτn| ≤ 1
|det(Ωn)| · 2

aδ
−me4Aδ−m ‖En‖�, ∀δ ∈ (0, 12	), and

(IV) |Δdet(Ωn)| ≤ 1
d
10
a2
δ−me2(2A+B)δ−m‖Δκn‖�−2δ, ∀δ ∈ (0, 14	).
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It is worth to mention that

Δdet(Ωn) = det(Ωn+1)− det(Ωn)

= < (1− λn+1)c̃n+1Rλn+1 η̃n+1 + cn+1,0ηn+1,0 − ((1− λn)c̃nRλn η̃n + cn,0ηn,0) >

= (1− (λn+1λn))(Δλn < cnRλn+1Rλn η̃n > + < cn+1Rλn+1Δη̃n >)

+ cn,0Δηn,0 +Δcn,0ηn+1,0.

Therefore,

|Δdet(Ωn)| ≤ |1− (λn+1λn)|(|Δλn|| < cnRλn+1Rλn η̃n > |+ | < cn+1Rλn+1Δη̃n > |)
+ cn,0|Δηn,0|+ |Δcn,0|ηn+1,0.

Now, we have

� |1− (λn+1λn)| ≤ 2
a ;

� |Δλn| ≤ L‖Δκn‖�−2δ;

� | < cnRλn+1Rλn η̃n > | ≤ 2cn,0δ
−2me2Aδ−m ≤ 2δ−2me4Aδ−m

;

� | < cn+1Rλn+1Δη̃n > | ≤ 2
dcn+1,0δ

−me2(A+B)δ−m‖Δκn‖�−2δ ≤ 2
dδ

−me2(2A+B)δ−m‖Δκn‖�−2δ;

� cn,0|Δηn,0|+ |Δcn,0|ηn+1,0 ≤ 2
de

2(2A+B)δ−m‖Δκn‖�−2δ.

It follows that |Δdet(Ωn)| ≤ 1
d
10
a2
δ−me2(2A+B)δ−m‖Δκn‖�−2δ, ∀δ ∈ (0, 14	).
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3.7 The KAM theorem

Thanks to Lemma 3.14 we are in a position now to state a new version of a KAM theorem,
which determines sufficient conditions for the KAM procedure convergence and the analyticity of
the invariant translated curves found12.

Theorem 3.15 KAM

Let Ψ = Rω × f be a quasi–periodic skew-product

Ψ : T× R −→ T× R
(θ, x) �−→ Ψ(θ, x) = (θ + ω, f(θ, x))

where the frequency ω ∈ DC(γ, ν) is Diophantine and f : T× R −→ R is a real analytic function.
Assume that there is a complex extension of f ,

f : T� × U −→ C,

where 	 > 0 and U ⊆ C is an open connected set such that exist κ∗ : T�0 −→ C, κ∗ ∈ A�0, with
0 < 	0 < 	, and r0 > 0 satisfying:

If Υ = Υ�0,r0 := {(θ, z) ∈ T�0 × C : |z − κ∗(θ)| ≤ r0}, then Υ�0,r0 ⊆ T� × U .

Assume, additionally, that f satisfies the following global conditions:

(a) ∃K1,K
∗
1 > 0,K∗

1 ≤
∣∣∣∂f∂z (θ, z)∣∣∣ ≤ K1, ∀(θ, z) ∈ T� × U ;

(b) ∃K2 > 0,
∣∣∣∂2f
∂z2

(θ, z)
∣∣∣ ≤ K2, ∀(θ, z) ∈ T� × U ;

(c) ∃α ∈ (0, π),
∣∣∣Arg(∂f∂z (θ, z))

∣∣∣ ≤ α, ∀(θ, z) ∈ T� × U .

Let p ∈ R be a fixed average. Then, ∃ ε = ε(K1,K
∗
1 ,K2, α, γ, ν) > 0, i.e. depending only on global

constants of the skew–product, such that if κ0 ∈ A�0 is a an analytic curve and τ0(p) ∈ R a real
number satisfying:

(i) f(θ, κ0(θ)) ∈ U , ∀θ ∈ T�0;

(ii) < κ0 >= p;

(iii) det(Ω0) �= 0; where

Ω0 =

(
1− λ0 − < η0 >
< c0 > < c0Rλ0 η̃0 >

)
(3.210)

12In [36] Jorba, Tatjer and Muñoz–Almaraz give a proof of a KAM theorem for affine skew–products with certain
kind of additional symmetries.
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with

λ0 = eΛ0 the Lyapunov multiplier of κ0 ,

Λ0 =

∫
T
log

(
∂f

∂x
(θ, κ0(θ))

)
dθ the Lyapunov exponent of κ0 ,

c0(θ) = eR1(log( ∂f
∂x

(θ,κ0(θ)))−Λ0) , θ ∈ T�0 , and

η0(θ) =
1

c0(θ + ω)
, θ ∈ T�0 ,

and

(iv) ‖E0‖�0 < D0 ε, with D0 = d0 e
−2βδ−m

0 Σ,

where E0 denotes the error function

E0(θ) = f(θ, κ0(θ))− κ0(θ + ω) + τ0 , θ ∈ T�0 ,

and
δ0 = 6

π2 δ, with δ < 1
4	0 ,

Σ =

(
π2

6

)m ∞∑
k=0

(k + 1)2m2−k .

then ∃ κ ∈ Aρ0/2 and τ(p) ∈ R such that{
f(θ, κ(θ))− κ(θ + ω) + τ(p) = 0

< κ > = p .
(3.211)

This means that κ is an analytic invariant translated curve of the skew–product Ψ with translation
number τ(p).
In the case where the translation parameter τ(p) is zero, κ is an invariant curve.
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Chapter 4

Bifurcation theory: local analysis and
stability

In this chapter the framework to be considered consists of a one–parameter family of quasi–periodic
skew–products {ψμ}μ∈I , where I ⊆ R is an open interval of the real line, and for each μ ∈ I,
ψμ = Rω × fμ, and fμ : T� × C −→ C satisfies the properties described in (2.1).
This means that, for any μ ∈ I, there is in the family a discrete dynamical system of the form:

ψμ : T� × C −→ T� × C
(θ, z) �−→ ψμ(θ, z) = (θ + ω, fμ(θ, z))

.

If we define
f : T� × C× I −→ C

(θ, z;μ) �−→ f(θ, z;μ) = fμ(θ, z)
, (4.1)

we can refer to the one–parameter family of skew–products by only mentioning the function f .
In what follows, we assume that this family of skew–products represented by (4.1) is depending
analytically on the parameter μ, denoting this fact by saying that f ∈ Cω(T� × C× I,C).

Definition 4.1 Family of invariant translated curves of a one–parameter family of
skew–products

Given a one–parameter family of quasi–periodic skew–products {ψμ}μ∈I of the form ψμ = Rω×fμ,
we define the family of invariant translated curves associated to {ψμ}μ∈I as the collection{

{(κ(p)μ , τ (p)μ )}p∈R
}
μ∈I

,

where κ
(p)
μ ∈ A� is an invariant translated curve w.r.t ψμ with translation number1 τ

(p)
μ ∈ R, i.e.{

f(θ, κ
(p)
μ (θ))− κ

(p)
μ (θ + ω) + τ

(p)
μ = 0,

< κ
(p)
μ > = p

(θ ∈ T;μ ∈ I, p ∈ R) (4.2)

Another way to refer to this family is to consider the following functions:

κ : T� × I × R −→ C

(θ;μ, p) �−→ κ(θ;μ, p) = κ
(p)
μ (θ)

1See Definition 2.13.
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and
τ : I × R −→ R

(μ, p) �−→ τμ(p) = τ
(p)
μ

.

Thus, we may write equations (4.2) as{
f(θ, κ(θ;μ, p);μ)− κ(θ + ω;μ, p) + τ(μ, p) = 0 ,

< κ(· ;μ, p) > = p .
(θ ∈ T;μ ∈ I, p ∈ R) (4.3)

�

In this scenario we are mostly interested in the study of qualitative geometric properties of the
family of invariant curves, namely, those invariant translated curves whose translation parameter
is equal to zero, i.e.

τ(μ, p) = 0. (4.4)

This is the so–called bifurcation equation of the one–parameter family of skew–products. The
equation leads to the points of the parameter space where the local behavior of the invariant
translated curves changes.
Thus, the objective is to study geometric properties of the level curve τ(μ, p) = 0 or, the so–called
bifurcation diagram,

Bτ := {(μ, p) ∈ I ×R : τ(μ, p) = 0} .

4.1 Local bifurcation theory of invariant curves in 1–D quasi–
periodic skew–products

On the context described above, we are going to establish a methodology to study the theory
of bifurcations that concerns us. The implicit function theorem (IFT) provides the appropriate
framework for this study, through sufficient conditions that allow information to be obtained from
one of the parameters as a function of the other. Therefore, the starting point is made up by the
equations of the invariant translated curves (4.3).

In the KAM prodedure applied to (4.3), all the objects involved are considered to be depending,
in addition to their own variables, on the parameters μ and p in an open set of the complex plane,
I×R ⊆ U×V ⊆ C×C. Using bounds of the objects delimiting for all the values of the parameters,
the whole process converges in the considered domain in the same way that has been indicated
in the corresponding KAM theorem stated previously (Theorem 2.19). Since we have analytic
functions over open domains of the complex plane, the limit is analytic in all of its variables,
including the parameters.

With this objective, we start by considering that the analyticity of the functions involved in (4.3)
allows us to take derivatives of any order w.r.t. both parameters. As we will see, we may obtain
these derivatives of any order under a unique non–degeneracy condition. As a consequence, the
conditions that we need to apply the IFT to the bifurcation equation may be related to the
equations of the invariant translated curves and their correspondent derivatives. In short, this is
the common link between the type of dynamics of invariant curves and the type of root of the
bifurcation equation (4.4).
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Thus, we start with the equations:

f(θ, κ(θ;μ, p);μ)− κ(θ + ω;μ, p) + τ(μ, p) = 0 , ∀θ ∈ T (4.5)

< κ(· ;μ, p) > = p . (4.6)

Taking derivatives, first, in (4.5) and (4.6) with respect to the average parameter p, we obtain:

∂f

∂x
(θ, κ(θ;μ, p);μ)

∂κ

∂p
(θ;μ, p)− ∂κ

∂p
(θ + ω;μ, p) +

∂τ

∂p
(μ, p) = 0 , ∀θ ∈ T (4.7)

<
∂κ

∂p
(· ;μ, p) > = 1. (4.8)

Indeed,
∂

∂p
< κ(· ;μ, p) >=

∂

∂p

∫
T
κ(θ;μ, p)dθ =

∫
T

∂κ

∂p
(θ;μ, p)dθ =<

∂κ

∂p
(· ;μ, p) >, where we

have applied derivation under the integral sign, which is feasible because of the analyticity of the
integrand.
On the other hand, if we take derivatives in (4.5) and (4.6) with respect to the bifurcation param-
eter μ, we obtain:

∂f

∂x
(θ, κ(θ;μ, p);μ)

∂κ

∂μ
(θ;μ, p)− ∂κ

∂μ
(θ + ω;μ, p)

+
∂f

∂μ
(θ, κ(θ;μ, p);μ) +

∂τ

∂μ
(μ, p) = 0 , ∀θ ∈ T (4.9)

<
∂κ

∂μ
(· ;μ, p) > = 0. (4.10)

Now, we are in a position to take derivatives again in (4.7), (4.8), (4.9), and (4.10).
This process can be generalized to obtain all the corresponding equations at once. For this purpose
we will use the following notation: For i, j = 0, 1, 2, . . .

κij(θ;μ, p) =
∂i+jκ

∂μi∂pj
(θ;μ, p) (4.11)

τ ij(μ, p) =
∂i+jτ

∂μi∂pj
(μ, p). (4.12)

Additionally, to state the general result, we call2:

m(θ;μ, p) =
∂f

∂x
(θ, κ(θ;μ, p);μ) (4.13)

n(θ;μ, p) =
∂f

∂μ
(θ, κ(θ;μ, p);μ) (4.14)

c(θ;μ, p) = α(μ, p)eR1v(θ;μ,p) (4.15)

α(μ, p) =
c0(μ, p)∫

T
eR1v(θ;μ,p)dθ

, with c0(μ, p) > 0 freely chosen, (4.16)

v(θ;μ, p) = log(m(θ;μ, p))− Λ(μ, p) (4.17)

Λ(μ, p) =

∫
T
log(m(θ;μ, p))dθ (4.18)

λ(μ, p) = eΛ(μ,p) (4.19)

η(θ;μ, p) =
1

c(θ + ω;μ, p)
. (4.20)

2By analogy with Lemma 3.2
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Theorem 4.2 Derivatives of the invariant translated curves

Let (κ(· ;μ, p), τ(μ, p)) be an invariant translated curve for some (μ, p) ∈ I × R. Then:

(a) For i, j = 0, 1, 2, . . . and whenever i+ j > 0,

m(θ;μ, p)κij(θ;μ, p)− κij(θ + ω;μ, p) + ζij(θ;μ, p) + τ ij(μ, p) = 0 , ∀θ ∈ T (4.21)

< κij(· ;μ, p) > = εij . (4.22)

where

εij =

{
1 , (i, j) = (0, 1)
0 , otherwise

, (4.23)

and the functions ζij are given by

ζ10(θ;μ, p) = n(θ;μ, p) =
∂f

∂μ
(θ, κ(θ;μ, p);μ), (4.24)

ζ01(θ;μ, p) = 0 (4.25)

ζij(θ;μ, p) =

{
∂m
∂p (θ;μ, p)κ

i,j−1(θ;μ, p) + ∂ζi,j−1

∂p (θ;μ, p) , 0 < i ≤ j
∂m
∂μ (θ;μ, p)κ

i−1,j(θ;μ, p) + ∂ζi−1,j

∂μ (θ;μ, p) , 0 < j ≤ i .
(4.26)

In particular, for lower indices,

ζij(θ;μ, p) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 , (i, j) = (0, 1)
n(θ;μ, p) , (i, j) = (1, 0)
∂m
∂μ (θ;μ, p)κ

01(θ;μ, p) , (i, j) = (1, 1)
∂m
∂p (θ;μ, p)κ

01(θ;μ, p) , (i, j) = (0, 2)
∂m
∂μ (θ;μ, p)κ

10(θ;μ, p) + ∂n
∂μ(θ;μ, p) , (i, j) = (2, 0)

. (4.27)

(b) Under the change of variable

κij(θ;μ, p) = c(θ;μ, p)χij(θ;μ, p) (4.28)

equations (4.21) and (4.22) take the form:

χij(θ + ω;μ, p)− λ(μ, p)χij(θ;μ, p) = ξij(θ;μ, p) + η(θ;μ, p)τ ij(μ, p) , ∀θ ∈ T (4.29)

< c(· ;μ, p)χij(· ;μ, p) > = εij , (4.30)

where

ξij(θ;μ, p) = η(θ;μ, p)ζij(θ;μ, p). (4.31)

In what follows, we consider the usual decomposition of a function as the sum of its average
plus the oscillating part. More specifically:

χij(θ;μ, p) = χij
0 (μ, p) + χ̃ij(θ;μ, p)

η(θ;μ, p) = η0(μ, p) + η̃(θ;μ, p)

ξij(θ;μ, p) = ξij0 (μ, p) + ξ̃ij(θ;μ, p)

ζij(θ;μ, p) = ζij0 (μ, p) + ζ̃ij(θ;μ, p)

with < χ̃ij(· ;μ, p) >=< η̃ij(· ;μ, p) >=< ξ̃ij(· ;μ, p) >=< ζ̃ij(· ;μ, p) >= 0.
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(c) Let Ω(μ, p) be the matrix

Ω(μ, p) =

(
1− λ(μ, p) −η0(μ, p)
c0(μ, p) < c̃Rλ(μ,p)η̃(· ;μ, p) >

)
(4.32)

and

bij(μ, p) =
(
ξij0 (μ, p) , ε

ij− < c̃Rλ(μ,p)ξ̃ij(· ;μ, p) >
)�

. (4.33)

If the non–degeneracy condition det(Ω(μ, p)) �= 0 holds, then the system (4.29)–(4.30) has a
unique solution

(
χij(θ;μ, p), τ ij(μ, p)

)
:

χij(θ;μ, p) = χij
0 (μ, p) +Rλ(μ,p)η̃(θ;μ, p) τ

ij(μ, p) +Rλ(μ,p)ξ̃ij(θ;μ, p), (4.34)

where χij
0 (μ, p), τ

ij(μ, p) are the unique solutions to the linear system

Ω(μ, p)

(
χij
0 (μ, p)

τ ij(μ, p)

)
= bij(μ, p) , (4.35)

namely,

χij
0 (μ, p) =

ξij0 (μ, p) < c̃Rλ(μ,p)η̃(· ;μ, p) > +(εij− < c̃Rλ(μ,p)ξ̃ij(· ;μ, p) >)η0(μ, p)

(1− λ(μ, p)) < c̃Rλ(μ,p)η̃(· ;μ, p) > +c0(μ, p)η0(μ, p)
(4.36)

τ ij(μ, p) =
(1− λ(μ, p))(εij− < c̃Rλ(μ,p)ξ̃ij(· ;μ, p) >)− c0(μ, p)ξ

ij
0 (μ, p)

(1− λ(μ, p)) < c̃Rλ(μ,p)η̃(· ;μ, p) > +c0(μ, p)η0(μ, p)
(4.37)

Proof.

(a) This part can be proved by induction.

Starting from eqs. (4.5) and (4.6), taking derivatives w.r.t. p we obtain eqs. (4.7) and (4.8),
which can be expressed as

m(θ;μ, p)κ01(θ;μ, p)− κ01(θ + ω;μ, p) + ζ01(θ;μ, p) + τ01(μ, p) = 0 , ∀θ ∈ T (4.38)

< κ01(· ;μ, p) > = ε01 , (4.39)

where ε01 = 1 and ζ01(θ;μ, p) = 0.

Similarly, starting from eqs. (4.5) and (4.6), taking derivatives w.r.t. μ we obtain eqs. (4.9)
and (4.10), which can be expressed as

m(θ;μ, p)κ10(θ;μ, p)− κ10(θ + ω;μ, p) + ζ10(θ;μ, p) + τ10(μ, p) = 0 , ∀θ ∈ T (4.40)

< κ10(· ;μ, p) > = ε10 , (4.41)

where ε10 = 0 and ζ10(θ;μ, p) = n(θ;μ, p) = ∂f
∂μ(θ, κ(θ;μ, p);μ).

Assume now that for every k = 0, 1, . . . i and l = 0, 1, . . . j, with k + l > 1 we have

m(θ;μ, p)κkl(θ;μ, p)− κkl(θ + ω;μ, p) + ζkl(θ;μ, p) + τkl(μ, p) = 0 , ∀θ ∈ T (4.42)

< κkl(· ;μ, p) > = εkl . (4.43)

Then, taking derivatives again w.r.t.μ in these equations for k = i and l = j, we have

∂m

∂μ
(θ;μ, p)κij(θ;μ, p) +m(θ;μ, p)κi+1,j(θ;μ, p)

−κi+1,j(θ + ω;μ, p) +
∂ζij

∂μ
(θ;μ, p) + τ i+1,j(μ, p) =

m(θ;μ, p)κi+1,j(θ;μ, p)− κi+1,j(θ + ω;μ, p)

+ζi+1,j(θ;μ, p) + τ i+1,j(μ, p) = 0 , ∀θ ∈ T (4.44)

< κi+1,j(· ;μ, p) > = 0 , (4.45)
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where

ζi+1,j(θ;μ, p) =
∂m

∂μ
(θ;μ, p)κij(θ;μ, p) +

∂ζij

∂μ
(θ;μ, p). (4.46)

In the same way, taking derivatives w.r.t. p in eqs. (4.42) and (4.43) for k = i and l = j, we
have

∂m

∂p
(θ;μ, p)κij(θ;μ, p) +m(θ;μ, p)κi,j+1(θ;μ, p)

−κi,j+1(θ + ω;μ, p) +
∂ζij

∂p
(θ;μ, p) + τ i,j+1(μ, p) =

m(θ;μ, p)κi+1,j(θ;μ, p)− κi+1,j(θ + ω;μ, p)

+ζi,j+1(θ;μ, p) + τ i,j+1(μ, p) = 0 , ∀θ ∈ T (4.47)

< κi,j+1(· ;μ, p) > = 0 , (4.48)

where

ζi,j+1(θ;μ, p) =
∂m

∂p
(θ;μ, p)κij(θ;μ, p) +

∂ζij

∂p
(θ;μ, p). (4.49)

(b) Under the change of variable

κij(θ;μ, p) = c(θ;μ, p)χij(θ;μ, p) (4.50)

eq. (4.21) can be written as

m(θ;μ, p)c(θ;μ, p)χij(θ;μ, p)− c(θ + ω;μ, p)χij(θ + ω;μ, p)

+ζij(θ;μ, p) + τ ij(θ;μ, p) = 0.

By construction, c is a Floquet transformation (cf. (4.15)), that is,

m(θ;μ, p)c(θ;μ, p) = λ(μ, p)c(θ + ω;μ, p),

and hence

c(θ + ω;μ, p)
(
χij(θ + ω;μ, p)− λ(μ, p)χij(θ;μ, p)

)
= ζij(θ;μ, p) + τ ij(μ, p).

Calling

η(θ;μ, p) =
1

c(θ + ω;μ, p)
and

ξij(θ;μ, p) = η(θ;μ, p)ζij(θ;μ, p) ,

we have
χij(θ + ω;μ, p)− λ(μ, p)χij(θ;μ, p) = ξij(θ;μ, p) + η(θ;μ, p)τ ij(μ, p). (4.51)

Thus, equations (4.21) and (4.22) take the form:

χij(θ + ω;μ, p)− λ(μ, p)χij(θ;μ, p) = ξij(θ;μ, p) + η(θ;μ, p)τ ij(μ, p) , ∀θ ∈ T (4.52)

< c(· ;μ, p)χij(· ;μ, p) > = εij . (4.53)

(c) With the usual decomposition of a function as the sum of its average plus the oscillating part,

χij(θ;μ, p) = χij
0 (μ, p) + χ̃ij(θ;μ, p)

η(θ;μ, p) = η0(μ, p) + η̃(θ;μ, p)

ξij(θ;μ, p) = ξij0 (μ, p) + ξ̃ij(θ;μ, p)

ζij(θ;μ, p) = ζij0 (μ, p) + ζ̃ij(θ;μ, p)
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eq. (4.51) is written as(
χij
0 (μ, p) + χ̃ij(θ + ω;μ, p)

)
− λ(μ, p)

(
χij
0 (μ, p) + χ̃ij(θ;μ, p)

)
= ξij0 (μ, p) + ξ̃ij(θ;μ, p) + (η0(μ, p) + η̃(θ;μ, p)) τ ij(μ, p). (4.54)

Taking averages in eq. (4.54), we have

χij
0 (μ, p)− λ(μ, p)χij

0 (μ, p) = ξij0 (μ, p) + η0(μ, p)τ
ij(μ, p), (4.55)

and subtracting eq. (4.55) from (4.54),

χ̃ij(θ + ω;μ, p)− λ(μ, p)χ̃ij(θ;μ, p) = ξ̃ij(θ;μ, p) + η̃(θ;μ, p)τ ij(μ, p). (4.56)

This is a cohomological equation. Therefore, there is a unique zero–average solution which is
written as

χ̃ij(θ;μ, p) = Rλ(μ,p)ξ̃ij(θ;μ, p) +Rλ(μ,p)η̃(θ;μ, p) τ
ij(μ, p), (4.57)

where R is the cohomological operator.

On the other hand,

κij(θ;μ, p) = c(θ;μ, p)χij(θ;μ, p) = (c0(μ, p) + c̃(θ;μ, p)) · (χ0(μ, p) + χ̃ij(θ;μ, p))

= c0(μ, p)χ
ij
0 (μ, p) + c0(μ, p)χ̃ij(θ;μ, p) + χ0(μ, p)c̃(θ;μ, p) + c̃(θ;μ, p)χ̃ij(θ;μ, p).

Now, taking averages on both sides,

< κij(θ;μ, p) > = c0(μ, p)χ
ij
0 (μ, p)+ < c̃χ̃ij(θ;μ, p) >

= c0(μ, p)χ
ij
0 (μ, p)+ < c̃Rλ(μ,p)ξ̃ij(θ;μ, p) > + < c̃Rλ(μ,p)η̃(θ;μ, p) > τ ij(μ, p)

= εij . (4.58)

Finally, eqs. (4.55) and (4.58) can be written as

(1− λ(μ, p))χij
0 (μ, p)− η0(μ, p)τ

ij(μ, p) = ξij0 (μ, p) , (4.59)

c0(μ, p)χ0(μ, p)+ < c̃Rλ(μ,p)η̃(θ;μ, p) > τ ij(μ, p) = εij− < c̃Rλ(μ,p)ξ̃ij(θ;μ, p) >,(4.60)

which is the linear system

Ω(μ, p)

(
χij
0 (μ, p)

τ ij(μ, p)

)
= bij(μ, p) , (4.61)

where

Ω(μ, p) =

(
1− λ(μ, p) −η0(μ, p)
c0(μ, p) < c̃Rλ(μ,p)η̃(· ;μ, p) >

)
(4.62)

and

bij(μ, p) =
(
ξij0 (μ, p) , ε

ij− < c̃Rλ(μ,p)ξ̃ij(· ;μ, p) >
)�

. (4.63)

If the non–degeneracy condition det(Ω(μ, p)) �= 0 holds, then the system (4.59) has a unique

solution
(
χij
0 (θ;μ, p), τ

ij(μ, p)
)
and then

χij(θ;μ, p) = χij
0 (μ, p) +Rλ(μ,p)η̃(θ;μ, p) τ

ij(μ, p) +Rλ(μ,p)ξ̃ij(θ;μ, p). (4.64)

With all, this part is proved.
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Remark 4.3

∂i+jκ

∂μi∂pj
(θ;μ, p) = κij(θ;μ, p) = c(θ;μ, p)χij(θ;μ, p)

= (c0(μ, p) + c̃(θ;μ, p))
(
χij
0 (μ, p) + χ̃ij(θ;μ, p)

)
= (c0(μ, p) + c̃(θ;μ, p))

(
χij
0 (μ, p) +Rλ(μ,p)η̃(θ;μ, p) τ

ij(μ, p)

+ Rλ(μ,p)ξ̃ij(θ;μ, p)
)

=
1

det(Ω(μ, p))
(c0(μ, p) + c̃(θ;μ, p))

(
< c̃Rλ(μ,p)η̃(· ;μ, p) >

(
ξij0 (μ, p)

+(1− λ(μ, p))Rλ(μ,p)ξ̃ij(θ;μ, p)
)

+
(
εij− < c̃Rλ(μ,p)ξ̃ij(· ;μ, p) >

)
(η0(μ, p)

+(1− λ(μ, p))Rλ(μ,p)η̃(θ;μ, p)
)

+c0(μ, p)
(
η0(μ, p)Rλ(μ,p)ξ̃ij(θ;μ, p)− ξij0 (μ, p)Rλ(μ,p)η̃(θ;μ, p)

))
.(4.65)

Corollary 4.4

Let (κ(· ;μ, p), τ(μ, p)) be an invariant translated curve for some (μ, p) ∈ I × R. Then:

∂τ

∂p
(μ, p) = 0 ⇐⇒ λ(μ, p) = 1 .

Moreover, in general,

∂κ

∂p
(θ;μ, p) = c(θ;μ, p)

(
χ01
0 (μ, p) +Rλ(μ,p)η̃(· ;μ, p)

∂τ

∂p
(μ, p)

)
.

In the particular case where λ(μ, p) = 1,

det(Ω(μ, p)) = c0(μ, p)η0(μ, p) ≥ a2 > 0 and

∂κ

∂p
(θ;μ, p) =

1

c0(μ, p)
c(θ;μ, p) =

eR1v(θ;μ,p)∫
T
eR1v(θ;μ,p)dθ

.

Proof. According to Theorem 4.2, the linear system (4.35) in the case where i = 0, j = 1 has
the form: (

1− λ(μ, p) −η0(μ, p)
c0(μ, p) < c̃Rλ(μ,p)η̃(· ;μ, p) >

)(
χ01
0 (μ, p)
∂τ
∂p (μ, p)

)
=

(
0
1

)
(4.66)

(⇒) If ∂τ
∂p (μ, p) = 0, then (1− λ(μ, p))χ01

0 (μ, p) = 0 and c0(μ, p)χ
01
0 (μ, p) = 1.

Thus, χ01
0 (μ, p) = 1

c0(μ,p)
> 0 and 1− λ(μ, p) = 0.

Moreover, whenever λ(μ, p) = 1 , det(Ω(μ, p)) = c0(μ, p)η0(μ, p).

In the same way as in the previous Lemma 3.5, part (xii), c0(μ, p)η0(μ, p) ≥ a2 > 0.

(⇐) If λ(μ, p) = 1, from (4.66), we have:(
0 −η0(μ, p)

c0(μ, p) < c̃Rλ(μ,p)η̃(· ;μ, p) >
)(

χ01
0 (μ, p)
∂τ
∂p (μ, p)

)
=

(
0
1

)
(4.67)

Thus, −η0(μ, p)
∂τ
∂p (μ, p) = 0 =⇒ ∂τ

∂p (μ, p) = 0.
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Additionally, from (4.11), (4.28), and (4.34), we have for i = 0, j = 1:

∂κ

∂p
(θ;μ, p) = c(θ;μ, p)χ01(θ;μ, p)

= c(θ;μ, p)

(
χ01
0 (μ, p) +Rλ(μ,p)η̃(θ;μ, p)

∂τ

∂p
(μ, p) +Rλ(μ,p)ξ̃01(θ;μ, p)

)
= c(θ;μ, p)

(
χ01
0 (μ, p) +Rλ(μ,p)η̃(· ;μ, p)

∂τ

∂p
(μ, p)

)
. (4.68)

since ζ01(θ;μ, p) = 0 ⇒ ξ01(θ;μ, p) = η(θ;μ, p)ζ01(θ;μ, p) = 0 ⇒ ξ̃01(θ;μ, p) = 0

⇒ Rλ(μ,p)ξ̃01(θ;μ, p) = 0.

Thus, in the particular case where λ(μ, p) = 1:

∂τ

∂p
(μ, p) = 0, χ01

0 (μ, p) =
1

c0(μ, p)
, Λ(μ, p) = 0, v(θ;μ, p) = log(m(θ;μ, p)),

det(Ω(μ, p)) = c0(μ, p)η0(μ, p) ≥ a2 > 0 and (4.69)

∂κ

∂p
(θ;μ, p) =

1

c0(μ, p)
c(θ;μ, p) =

α(μ, p)eR1v(θ;μ,p)∫
T
α(μ, p)eR1v(θ;μ,p)dθ

=
eR1v(θ;μ,p)∫

T
eR1v(θ;μ,p)dθ

. (4.70)

Notice that ∀θ ∈ T, ∂κ∂p (θ;μ, p) > 0 and < ∂κ
∂p (· ;μ, p) >= 1. These facts do not depend on the

chosen value for c0(μ, p).

Corollary 4.5

Let (κ(· ;μ, p), τ(μ, p)) ∈ A� be an invariant translated curve for some (μ, p) ∈ I × R such that

λ(μ, p) = 1, or equivalently Λ(μ, p) =

∫
T
log

(
∂f

∂x
(θ, κ(θ;μ, p))

)
dθ = 0. Then:

∂i+jτ

∂μi∂pj
(μ, p) = −< η(·;μ, p)ζij(·;μ, p) >

< η(·;μ, p) > , ∀i, j = 0, 1, 2, . . . , i+ j > 1 , (4.71)

where η(θ;μ, p) =
1

c(θ + ω;μ, p)
, ∀ θ ∈ T�, and the functions ζij are given by eqs. (4.24), (4.25),

and (4.26).

Proof. It is a consequence of (4.37) with λ(μ, p) = 1, which gives

τ ij(μ, p) = −ξij0 (μ, p)

η0(μ, p)
. (4.72)

Since ξij(θ;μ, p) = η(θ;μ, p)ζij(θ;μ, p), then

τ ij(μ, p) =
∂i+jτ

∂μi∂pj
(μ, p) = −< η(·;μ, p)ζij(·;μ, p) >

< η(·;μ, p) > , ∀i, j = 0, 1, 2, . . . , i+ j > 1 . (4.73)
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4.2 Saddle–node or fold bifurcation

If (μ0, p0) ∈ Bτ and
∂τ

∂μ
(μ0, p0) �= 0, then by the implicit function theorem, there exits I0,J0 open

intervals, with I0 ⊆ I, J0 ⊆ R and μ0 ∈ I0, p0 ∈ J0, and there exists a function μ : I0 −→ J0

with the same regularity as τ , such that

{(μ, p) ∈ I0 × J0 : τ(μ, p) = 0} = {(μ(p), p) : p ∈ J0} .
Thus, τ(μ0, p0) = 0 and τ(μ(p), p) = 0 , ∀p ∈ J0.
Taking derivatives,

∂τ

∂μ
(μ(p), p) · μ′(p) +

∂τ

∂p
(μ(p), p) = 0 , ∀p ∈ J0. (4.74)

In particular, for p = p0,
∂τ

∂μ
(μ0, p0) · μ′(p0) +

∂τ

∂p
(μ0, p0) = 0 .

Therefore,

μ′(p0) = −
∂τ
∂p (μ0, p0)

∂τ
∂μ(μ0, p0)

. (4.75)

Taking derivatives again in (4.74),(
∂2τ

∂μ2
(μ(p), p) · μ′(p) +

∂2τ

∂μ∂p
(μ(p), p)

)
μ′(p) +

∂τ

∂μ
(μ(p), p) · μ′′(p)

+
∂2τ

∂μ∂p
(μ(p), p) · μ′(p) +

∂2τ

∂p2
(μ(p), p) = 0, ∀p ∈ J0. (4.76)

Particularizing again for p = p0,(
∂2τ

∂μ2
(μ0, p0) · μ′(p0) +

∂2τ

∂μ∂p
(μ0, p0)

)
μ′(p0) +

∂τ

∂μ
(μ0, p0) · μ′′(p0)

+
∂2τ

∂p∂μ
(μ0, p0) · μ′(p0) +

∂2τ

∂p2
(μ0, p0) = 0. (4.77)

Whenever
∂τ

∂p
(μ0, p0) = 0, we obtain:

μ(p0) = μ0 ,

μ′(p0) = 0 , and

μ′′(p0) = −
∂2τ
∂p2

(μ0,p0)

∂τ
∂μ

(μ0,p0)
.

(4.78)

Assume, additionally, that
∂2τ

∂p2
(μ0, p0) �= 0, and define

Ψ(p) =
∂τ

∂p
(μ(p), p), p ∈ J0.

Then,

Ψ(p0) =
∂τ

∂p
(μ0, p0) = 0 (4.79)

Ψ′(p0) =
d

dp

(
∂τ

∂p
(μ(p), p)

)
p=p0

=

(
∂2τ

∂μ∂p
(μ(p), p) · μ′(p) +

∂2τ

∂p2
(μ(p), p)

)
p=p0

=
∂2τ

∂μ∂p
(μ0, p0) · μ′(p0) +

∂2τ

∂p2
(μ0, p0) =

∂2τ

∂p2
(μ0, p0) �= 0. (4.80)



Saddle–node or fold bifurcation 137

It follows that, ∃δ > 0, such that ∀p ∈ (p0 − δ, p0 + δ) ⊆ J0,

Ψ(p) = Ψ(p0) + Ψ′(p0)(p− p0) +O(p− p0)
2,

that is,

∂τ

∂p
(μ(p), p) =

∂2τ

∂p2
(μ0, p0)(p− p0) +O(p− p0)

2 , ∀p ∈ (p0 − δ, p0 + δ) ⊆ J0. (4.81)

We say that τ has a saddle–node bifurcation or fold bifurcation at (μ0, p0) if

SN(a). τ(μ0, p0) = 0;

SN(b). ∂τ
∂p (μ0, p0) = 0;

SN(c). ∂τ
∂μ(μ0, p0) �= 0; and

SN(d). ∂2τ
∂p2

(μ0, p0) �= 0.
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Theorem 4.6 Saddle-node or fold bifurcation

Let (μ0, p0) ∈ I × R such that:

(a) κ(·;μ0, p0) ∈ A� is an invariant curve;

(b) λ(μ0, p0) = 1 or, equivalently, Λ(μ0, p0) = 0;

(c)

∫
T
η(θ;μ0, p0)n(θ;μ0, p0)dθ �= 0;

(d)

∫
T
η(θ;μ0, p0)

∂m

∂p
(θ;μ0, p0)

∂κ

∂p
(θ;μ0, p0)dθ �= 0.

Then, τ has a saddle–node bifurcation or fold bifurcation at (μ0, p0), that is,

(i) (μ0, p0) ∈ Bτ , i.e. τ(μ0, p0) = 0;

(ii)
∂τ

∂p
(μ0, p0) = 0;

(iii)
∂τ

∂μ
(μ0, p0) �= 0; and

(iv)
∂2τ

∂p2
(μ0, p0) �= 0.

Additionally, ∃ I0 × J0 ⊆ I × R (I0,J0 open intervals) and μ : J0 −→ I0, μ ∈ C∞, such that:

{(μ, p) ∈ I0 × J0 : τ(μ, p) = 0} = {(μ(p), p) : p ∈ J0} .
Moreover,

μ(p0) = μ0

μ′(p0) = 0

μ′′(p0) = −
∂2τ
∂p2

(μ0,p0)

∂τ
∂μ

(μ0,p0)
�= 0.

(4.82)

and for some δ > 0,

∂τ

∂p
(μ(p), p) =

∂2τ

∂p2
(μ0, p0)(p− p0) +O(p− p0)

2 , ∀p ∈ (p0 − δ, p0 + δ) ⊆ J0. (4.83)

Consequently, there are four cases depending on the sign of ∂τ
∂μ(μ0, p0) and

∂2τ
∂p2

(μ0, p0), correspond-
ing to four respective bifurcation diagrams.

Proof. (i) If κ(·;μ0, p0) ∈ A� is an invariant curve, then the translation parameter is zero, i.e.
τ(μ0, p0) = 0 and (μ0, p0) ∈ Bτ .

(ii) Since λ(μ0, p0) = 1, then by Corollary 4.4,
∂τ

∂p
(μ0, p0) = 0;

(iii) By Corollary 4.5

∂τ

∂μ
(μ0, p0) = τ10(μ0, p0) = −ξ100 (μ0, p0)

η0(μ0, p0)

= −< η(·;μ0, p0)ζ
10(·;μ0, p0) >

η(·;μ0, p0)
= −< η(·;μ0, p0)n(·;μ0, p0) >

η(·;μ0, p0)
.

Thus,
∂τ

∂μ
(μ0, p0) �= 0 ⇔< η(·;μ0, p0)n(·;μ0, p0) > �= 0 ⇔

∫
T
η(θ;μ0, p0)n(θ;μ0, p0)dθ �= 0.
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(iv) By Corollary 4.5

∂2τ

∂p2
(μ0, p0) = τ02(μ0, p0) = −ξ020 (μ0, p0)

η0(μ0, p0)

= −< η(·;μ0, p0)ζ
02(·;μ0, p0) >

η(·;μ0, p0)
= −

< η(·;μ0, p0)
∂m
∂p (·;μ0, p0)

∂κ
∂p (·;μ0, p0) >

η(·;μ0, p0)
.

Thus,

∂2τ

∂p2
(μ0, p0) �= 0 ⇔< η(·;μ0, p0)n(·;μ0, p0) > �= 0 ⇔

∫
T
η(θ;μ0, p0)

∂m

∂p
(θ;μ0, p0)

∂κ

∂p
(θ;μ0, p0)dθ �= 0.

The remainder of the theorem is already proved just before the statement.
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4.3 Transcritical and Pitchfork bifurcations

Let (μ0, p0) ∈ Bτ be a critical point of τ , that is:{
∂τ
∂μ(μ0, p0) = 0
∂τ
∂p (μ0, p0) = 0 .

(4.84)

Assume that (μ0, p0) is a non–degenerate critical point, i.e. det(Hess τ)(μ0, p0) �= 0, namely:

det

(
∂2τ
∂μ2 (μ0, p0)

∂2τ
∂μ∂p(μ0, p0)

∂2τ
∂μ∂p(μ0, p0)

∂2τ
∂p2

(μ0, p0)

)
�= 0. (4.85)

Morse’s theorem assures that there exist a local diffeomorphism

h : Λ1 × Λ2 −→ I0 × J0

(y1, y2) �−→ (μ, p) ,

with (0, 0) ∈ Λ1 × Λ2 ⊆ R2, Λ1,Λ2 open intervals, such that h(0, 0) = (μ0, p0) and

(a) If ∂2τ
∂μ2 (μ0, p0) > 0 and det(Hess τ)(μ0, p0) > 0, then

(τ ◦ h)(y1, y2) = y21 + y22 ,

and τ has a local minimum at (μ0, p0).

(b) If ∂2τ
∂μ2 (μ0, p0) < 0 and det(Hess τ)(μ0, p0) > 0, then

(τ ◦ h)(y1, y2) = −(y21 + y22) ,

and τ has a local maximum at (μ0, p0).

(c) If det(Hess τ)(μ0, p0) < 0, then

(τ ◦ h)(y1, y2) = y1 y2 ,

and τ has a local saddle point at (μ0, p0).

In the first two cases the point (μ0, p0) ∈ Bτ is isolated. In the last case, Bτ is a product of two
curves in a neighborhood of (μ0, p0):
Notice that

det(Hess τ)(μ0, p0) < 0 ⇐⇒
(
∂2τ

∂μ2

∂2τ

∂p2
−
(

∂2τ

∂μ∂p

)2
)∣∣∣∣∣

(μ0,p0)

< 0. (4.86)

Since h is a diffeomorphism,

∃y1, y2 : I0 × J0 −→ R , y1, y2 ∈ C∞ such that ∀(μ, p) ∈ I0 × J0, τ(μ, p) = y1(μ, p) · y2(μ, p).
Moreover,

y1(μ0, p0) = y2(μ0, p0) = 0 , (4.87)

and

det

(
∂y1
∂μ

∂y1
∂p

∂y2
∂μ

∂y2
∂p

)
(μ0,p0)

�= 0. (4.88)

Thus,
Bτ ∩ (I0 × J0) = B1 ∪ B2 , (4.89)
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where

B1 = {(μ, p) ∈ I0 × J0 : y1(μ, p) = 0} and (4.90)

B2 = {(μ, p) ∈ I0 × J0 : y2(μ, p) = 0} . (4.91)

From (4.88) we know that, at least one of the partial derivatives, ∂y1
∂p or ∂y2

∂p is different from zero
at (μ0, p0).
If ∂y1

∂p (μ0, p0) · ∂y2
∂p (μ0, p0) �= 0 we say that τ has a transcritical bifurcation at (μ0, p0).

If ∂y1
∂p (μ0, p0) · ∂y2

∂p (μ0, p0) = 0 we say that τ has a pitchfork bifurcation at (μ0, p0).

To be more explicit, transcritical bifurcations are characterized, in terms of y1 and y2 by the
following conditions:

TB1 y1(μ0, p0) = y2(μ0, p0) = 0;

TB2 det

(
∂y1
∂μ

∂y1
∂p

∂y2
∂μ

∂y2
∂p

)∣∣∣∣∣
(μ0,p0)

�= 0;

TB3 ∂y1
∂p (μ0, p0) · ∂y2

∂p (μ0, p0) �= 0,

while pitchfork bifurcations are characterized by

PB1 y1(μ0, p0) = y2(μ0, p0) = 0;

PB2 det

(
∂y1
∂μ

∂y1
∂p

∂y2
∂μ

∂y2
∂p

)∣∣∣∣∣
(μ0,p0)

�= 0;

PB3 ∂y1
∂p (μ0, p0) �= 0 and ∂y2

∂p (μ0, p0) = 0 or

∂y1
∂p (μ0, p0) = 0 and ∂y2

∂p (μ0, p0) �= 0.

Next, we want to express these conditions over y1, y2 into conditions over τ , i.e. μ, p.

(i)
τ(μ, p) = y1(μ, p) · y2(μ, p). (4.92)

τ(μ0, p0) = 0. (4.93)

(ii)
∂τ

∂μ
(μ, p) =

∂y1
∂μ

(μ, p)y2(μ, p) + y1(μ, p)
∂y2
∂μ

(μ, p). (4.94)

∂τ

∂μ
(μ0, p0) = 0. (4.95)

(iii)
∂τ

∂p
(μ, p) =

∂y1
∂p

(μ, p)y2(μ, p) + y1(μ, p)
∂y2
∂p

(μ, p). (4.96)

∂τ

∂p
(μ0, p0) = 0. (4.97)

(iv)
∂2τ

∂μ2
(μ, p) =

∂2y1
∂μ2

(μ, p)y2(μ, p) + 2
∂y1
∂μ

(μ, p)
∂y2
∂μ

(μ, p) + y1(μ, p)
∂2y2
∂μ2

(μ, p). (4.98)

∂2τ

∂μ2
(μ0, p0) = 2

∂y1
∂μ

(μ0, p0)
∂y2
∂μ

(μ0, p0). (4.99)
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(v)
∂2τ

∂p2
(μ, p) =

∂2y1
∂p2

(μ, p)y2(μ, p) + 2
∂y1
∂p

(μ, p)
∂y2
∂p

(μ, p) + y1(μ, p)
∂2y2
∂p2

(μ, p). (4.100)

∂2τ

∂p2
(μ0, p0) = 2

∂y1
∂p

(μ0, p0)
∂y2
∂p

(μ0, p0). (4.101)

(vi)

∂2τ

∂μ∂p
(μ, p) =

∂2y1
∂μ∂p

(μ, p)y2(μ, p)+
∂y1
∂μ

(μ, p)
∂y2
∂p

(μ, p)+
∂y1
∂p

(μ, p)
∂y2
∂μ

(μ, p)+y1(μ, p)
∂2y2
∂μ∂p

(μ, p).

(4.102)

∂2τ

∂μ∂p
(μ0, p0) =

∂y1
∂μ

(μ0, p0)
∂y2
∂p

(μ0, p0) +
∂y1
∂p

(μ0, p0)
∂y2
∂μ

(μ0, p0). (4.103)

(vii)

det(Hess τ)(μ, p) = det

(
∂2τ
∂μ2 (μ, p)

∂τ

∂μ∂p(μ, p)
∂τ

∂μ∂p(μ, p)
∂2τ
∂p2

(μ, p)

)
(4.104)

det(Hess τ)(μ0, p0) = det

(
∂2τ
∂μ2 (μ0, p0)

∂τ

∂μ∂p(μ0, p0)
∂τ

∂μ∂p(μ0, p0)
∂2τ
∂p2

(μ0, p0)

)

=

(
2∂y1

∂μ
∂y2
∂μ

∂y1
∂μ

∂y2
∂p + ∂y1

∂p
∂y2
∂μ

∂y1
∂μ

∂y2
∂p + ∂y1

∂p
∂y2
∂μ 2∂y1

∂p
∂y2
∂p

)∣∣∣∣∣
(μ0,p0)

= 4
∂y1
∂μ

∂y1
∂p

∂y2
∂μ

∂y2
∂p

−
(
∂y1
∂μ

∂y2
∂p

+
∂y1
∂p

∂y2
∂μ

)2
∣∣∣∣∣
(μ0,p0)

= −
(
∂y1
∂μ

∂y2
∂p

− ∂y1
∂p

∂y2
∂μ

)2
∣∣∣∣∣
(μ0,p0)

= −
⎛⎝det

(
∂y1
∂μ

∂y1
∂p

∂y2
∂μ

∂y2
∂p

)∣∣∣∣∣
(μ0,p0)

⎞⎠2

< 0 (4.105)

(viii)

∂3τ

∂p3
(μ, p) =

∂3y1
∂p3

y2 +
∂2y1
∂p2

∂y2
∂p

+ 2

(
∂2y1
∂p2

∂y2
∂p

+
∂y1
∂p

∂2y2
∂p2

)
+

∂y1
∂p

∂2y2
∂p2

+ y1
∂y32
∂p3

=
∂3y1
∂p3

y2 + 3
∂2y1
∂p2

∂y2
∂p

+ 3
∂y1
∂p

∂2y2
∂p2

+ y1
∂y32
∂p3

. (4.106)

∂3τ

∂p3
(μ0, p0) = 3

∂2y1
∂p2

∂y2
∂p

+ 3
∂y1
∂p

∂2y2
∂p2

∣∣∣∣
(μ0,p0)

. (4.107)
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Accordingly, transcritical bifurcations are characterized, in terms of τ and the parameters μ, p by:

T(a). τ(μ0, p0) = 0;

T(b). ∂τ
∂μ(μ0, p0) = 0;

T(c). ∂τ
∂p (μ0, p0) = 0;

T(d). ∂2τ
∂p2

(μ0, p0) �= 0;

T(e). det(Hess τ)(μ0, p0) < 0,

while pitchfork bifurcations by:

P(a). τ(μ0, p0) = 0;

P(b). ∂τ
∂μ(μ0, p0) = 0;

P(c). ∂τ
∂p (μ0, p0) = 0;

P(d). ∂2τ
∂p2

(μ0, p0) = 0;

P(e). ∂2τ
∂μ∂p(μ0, p0) �= 0;

P(f). ∂3τ
∂p3

(μ0, p0) �= 0;

Remark 4.7

Notice that, in this case, det(Hess τ)(μ0, p0) < 0 as well, since

det(Hess τ)(μ0, p0) = −
⎛⎝det

(
∂y1
∂μ

∂y1
∂p

∂y2
∂μ

∂y2
∂p

)∣∣∣∣∣
(μ0,p0)

⎞⎠2

= −
(

∂2τ

∂μ∂p
(μ0, p0)

)2

,

due to the conditions P(d). and P(e).

Next we carry out the local analysis and stability of both bifurcations.

In the case of the transcritical bifurcation, by the implicit function theorem,

∃ p1, p2 : I0 −→ J0, p1, p2 ∈ C∞,

such that

{(μ, p) ∈ I0 × J0 : τ(μ, p) = 0} = {(μ, p1(μ)) : μ ∈ I0} ∪ {(μ, p2(μ)) : μ ∈ I0}.
Hence, τ(μ, pi(μ)) = 0, ∀μ ∈ I0. In particular, for μ = μ0, τ(μ0, p0) = 0. Taking derivatives,

∂τ

∂μ
(μ, pi(μ)) +

∂τ

∂p
(μ, pi(μ)) · p′i(μ) = 0, ∀μ ∈ I0 (i = 1, 2) . (4.108)

Taking derivatives again,

0 =
∂2τ

∂μ2
(μ, pi(μ)) +

∂2τ

∂μ∂p
(μ, pi(μ)) · p′i(μ) +

(
∂2τ

∂μ∂p
(μ, pi(μ)) +

∂2τ

∂p2
(μ, pi(μ)) · p′i(μ)

)
· p′i(μ)

+
∂τ

∂p
(μ, pi(μ)) · p′′i (μ), ∀μ ∈ I0. (4.109)
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Particularizing (4.109) for μ = μ0,

0 =
∂2τ

∂μ2
(μ0, p0) +

∂2τ

∂μ∂p
(μ0, p0) · p′i(μ0) +

(
∂2τ

∂μ∂p
(μ0, p0) +

∂2τ

∂p2
(μ0, p0) · p′i(μ0)

)
· p′i(μ0)

+
∂τ

∂p
(μ0, p0) · p′′i (μ0). (4.110)

Since ∂τ
∂p (μ0, p0) = 0, we obtain

∂2τ

∂p2
(μ0, p0)(p

′
i(μ0))

2 + 2
∂2τ

∂μ∂p
(μ0, p0)p

′
i(μ0) +

∂2τ

∂μ2
(μ0, p0) = 0 . (4.111)

This is a quadratic equation with leading coefficient ∂2τ
∂p2

(μ0, p0) �= 0 and positive discriminant:

Δ =

(
2
∂2τ

∂μ∂p
(μ0, p0)

)2

− 4
∂2τ

∂p2
(μ0, p0)

∂2τ

∂μ2
(μ0, p0)

= −4

(
∂2τ

∂p2
(μ0, p0)

∂2τ

∂μ2
(μ0, p0)−

(
∂2τ

∂μ∂p
(μ0, p0)

)2
)

= −4 det(Hess τ)(μ0, p0) > 0.

Accordingly, (4.111) has two different real solutions:

p′i(μ0) =
− ∂2τ

∂μ∂p(μ0, p0)±
√− det(Hess τ)(μ0, p0)

∂2τ
∂p2

(μ0, p0)
(i = 1, 2) . (4.112)

If we call

Φi(μ) =
∂τ

∂p
(μ, pi(μ)), μ ∈ I0 (i = 1, 2),

then ∃δ > 0, such that

Φi(μ) = Φi(μ0) + Φ′
i(μ0)(μ− μ0) +O(μ− μ0)

2, ∀μ ∈ (μ0 − δ, μ0 + δ) ⊆ I0,

and we have

Φi(μ0) =
∂τ

∂p
(μ0, p0) = 0 and

Φ′
i(μ0) =

d

dμ

(
∂τ

∂p
(μ, pi(μ))

)∣∣∣∣
μ=μ0

=

(
∂2τ

∂μ∂p
(μ, pi(μ)) +

∂2τ

∂p2
(μ, pi(μ)) · p′i(μ)

)∣∣∣∣
μ=μ0

=
∂2τ

∂μ∂p
(μ0, p0) +

∂2τ

∂p2
(μ0, p0) · p′i(μ0) = ±

√
− det(Hess τ)(μ0, p0).

Therefore,

∂τ

∂p
(μ, pi(μ)) = ±

√
− det(Hess τ)(μ0, p0)(μ−μ0)+O(μ−μ0)

2, ∀μ ∈ (μ0−δ, μ0+δ) ⊆ I0, (i = 1, 2).

(4.113)
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In the case of the pitchfork bifurcation we have two possibilities, since ∂y1
∂p (μ0, p0) · ∂y2∂p (μ0, p0) = 0:

Case 1. ∂y1
∂p (μ0, p0) �= 0 and ∂y2

∂p (μ0, p0) = 0;

Case 2. ∂y1
∂p (μ0, p0) = 0 and ∂y2

∂p (μ0, p0) �= 0.

In the first one, we have additionally ∂y2
∂μ (μ0, p0) �= 0, since

det

(
∂y1
∂μ (μ0, p0)

∂y1
∂p (μ0, p0)

∂y2
∂μ (μ0, p0)

∂y2
∂p (μ0, p0)

)
= det

(
∂y1
∂μ (μ0, p0)

∂y1
∂p (μ0, p0)

∂y2
∂μ (μ0, p0) 0

)
= −∂y1

∂p (μ0, p0)·∂y2∂μ (μ0, p0) �= 0.

In the second one, we have additionally ∂y1
∂μ (μ0, p0) �= 0 as well, since

det

(
∂y1
∂μ (μ0, p0)

∂y1
∂p (μ0, p0)

∂y2
∂μ (μ0, p0)

∂y2
∂p (μ0, p0)

)
= det

(
∂y1
∂μ (μ0, p0) 0
∂y2
∂μ (μ0, p0)

∂y2
∂p (μ0, p0)

)
= ∂y1

∂μ (μ0, p0)·∂y2∂p (μ0, p0) �= 0.

We then analyze Case 1., that is:

(a) y1(μ0, p0) = 0 and ∂y1
∂p (μ0, p0) �= 0 and

(b) y2(μ0, p0) = 0 and ∂y2
∂μ (μ0, p0) �= 0.

It follows, by the implicit function theorem,

∃ μ : J0 −→ I0 and p : I0 −→ J0 , μ, p ∈ C∞ such that

{(μ, p) ∈ I0 × J0 : y1(μ, p) = 0} = {(μ, p(μ)) : μ ∈ I0},
and

{(μ, p) ∈ I0 × J0 : y2(μ, p) = 0} = {(μ(p), p) : p ∈ J0}.
Equivalently,

{(μ, p) ∈ I0 × J0 : τ(μ, p) = 0} = {(μ, p(μ)) : μ ∈ I0} ∪ {(μ(p), p) : p ∈ J0}.
Thus, on the one hand:
y1(μ, p(μ)) = 0, ∀μ ∈ I0. In particular, for μ = μ0, y1(μ0, p0) = 0.
Taking derivatives,

∂y1
∂μ

(μ, p(μ)) +
∂y1
∂p

(μ, p(μ)) · p′(μ) = 0, ∀μ ∈ I0 . (4.114)

Particularizing for μ = μ0,

∂y1
∂μ

(μ0, p0) +
∂y1
∂p

(μ0, p0) · p′(μ0) = 0, ∀μ ∈ I0 . (4.115)

Since ∂y1
∂p (μ0, p0) �= 0,

p′(μ0) = −
∂y1
∂μ (μ0, p0)

∂y1
∂p (μ0, p0)

(4.116)

Moreover,

∂2τ
∂μ2 (μ0, p0)

∂2τ
∂μ∂p(μ0, p0)

=
2∂y1

∂μ (μ0, p0)
∂y2
∂μ (μ0, p0)

∂y1
∂μ (μ0, p0)

∂y2
∂p (μ0, p0) +

∂y1
∂p (μ0, p0)

∂y2
∂μ (μ0, p0)

= 2

∂y1
∂μ (μ0, p0)

∂y1
∂p (μ0, p0)

= −2p′(μ0).
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Hence,

p′(μ0) = −1

2

∂2τ
∂μ2 (μ0, p0)

∂2τ
∂μ∂p(μ0, p0)

. (4.117)

On the other hand:

y2(μ(p), p) = 0, ∀p ∈ J0. In particular, for p = p0, y2(μ0, p0) = 0.

Taking derivatives,
∂y2
∂μ

(μ(p), p) · μ′(p) +
∂y2
∂p

(μ(p), p) = 0, ∀p ∈ J0. (4.118)

In particular, for p = p0,
∂y2
∂μ

(μ0, p0) · μ′(p0) +
∂y2
∂p

(μ0, p0) = 0. (4.119)

Since ∂y2
∂μ (μ0, p0) �= 0,

μ′(p0) = −
∂y2
∂p (μ0, p0)

∂y2
∂μ (μ0, p0)

= 0. (4.120)

Taking derivatives again,

0 =

(
∂2y2
∂μ2

(μ(p), p) · μ′(p) +
∂2y2
∂μ∂p

(μ(p), p)

)
· μ′(p)

+
∂y2
∂μ

(μ(p), p) · μ′′(p) +
∂2y2
∂μ∂p

(μ(p), p) · μ′(p) +
∂2y2
∂p2

(μ(p), p), ∀p ∈ J0. (4.121)

In particular, for p = p0,

0 =

(
∂2y2
∂μ2

(μ0, p0) · μ′(p0) +
∂2y2
∂μ∂p

(μ0, p0)

)
· μ′(p0)

+
∂y2
∂μ

(μ0, p0) · μ′′(p0) +
∂2y2
∂μ∂p

(μ0, p0) · μ′(p0) +
∂2y2
∂p2

(μ0, p0). (4.122)

Since μ′(p0) = 0 and ∂y2
∂μ (μ0, p0) �= 0, we have

μ′′(p0) = −
∂2y2
∂p2

(μ0, p0)

∂y2
∂μ (μ0, p0)

. (4.123)

Furthermore,

∂3τ
∂p3

(μ0, p0)

∂2τ
∂μ∂p(μ0, p0)

=
3∂2y1

∂p2
(μ0, p0)

∂y2
∂p (μ0, p0) + 3∂y1

∂p (μ0, p0)
∂2y2
∂p2

(μ0, p0)

∂y1
∂μ (μ0, p0)

∂y2
∂p (μ0, p0) +

∂y1
∂p (μ0, p0)

∂y2
∂μ (μ0, p0)

= 3

∂2y2
∂p2

(μ0, p0)

∂y2
∂μ (μ0, p0)

= −3μ′′(p0),

since ∂y2
∂p (μ0, p0) = 0, ∂y1

∂p (μ0, p0) �= 0, and ∂y2
∂μ (μ0, p0) = 0.

Thus,

μ′′(p0) = −1

3

∂3τ
∂p3

(μ0, p0)

∂2τ
∂μ∂p(μ0, p0)

. (4.124)



Transcritical and Pitchfork bifurcations 147

Summarizing,

p(μ0) = p0 μ(p0) = μ0

p′(μ0) = −1
2

∂2τ
∂μ2

(μ0,p0)

∂2τ
∂μ∂p

(μ0,p0)
�= 0 μ′(p0) = 0

μ′′(p0) = −1
3

∂3τ
∂p3

(μ0,p0)

∂2τ
∂μ∂p

(μ0,p0)
�= 0

(4.125)

Next, in order to determine the stability of the bifurcation points, we define the functions:

Φ(μ) = ∂τ
∂p (μ, p(μ)) , μ ∈ I0 and

Ψ(p) = ∂τ
∂p (μ(p), p) , p ∈ J0.

(4.126)

On the one hand,

Φ(μ0) =
∂τ

∂p
(μ0, p0), (4.127)

Φ′(μ0) =
d

dμ

(
∂τ

∂p
(μ, p(μ))

)
μ=μ0

=

(
∂2τ

∂μ∂p
(μ, p(μ)) +

∂2τ

∂p2
(μ, p(μ)) · p′(μ)

)
μ=μ0

=
∂2τ

∂μ∂p
(μ0, p0) +

∂2τ

∂p2
(μ0, p0) · p′(μ0) =

∂2τ

∂μ∂p
(μ0, p0), (4.128)

since ∂2τ
∂p2

(μ0, p0) = 0.
On the other hand:

Ψ(p0) =
∂τ

∂p
(μ0, p0) = 0, (4.129)

Ψ′(p0) =
d

dp

(
∂τ

∂p
(μ(p), p)

)
p=p0

=

(
∂2τ

∂μ∂p
(μ(p), p) · μ′(p) +

∂2τ

∂p2
(μ(p), p)

)
p=p0

=
∂2τ

∂μ∂p
(μ0, p0) · μ′(p0) +

∂2τ

∂p2
(μ0, p0) = 0, (4.130)

since μ′(p0) = 0 and ∂2τ
∂p2

(μ0, p0) = 0.

Ψ′′(p0) =
d

dp

(
∂2τ

∂μ∂p
(μ(p), p) · μ′(p) +

∂2τ

∂p2
(μ(p), p)

)
p=p0

=

((
∂3τ

∂μ2∂p
(μ(p), p) · μ′(p) +

∂3τ

∂μ∂p2
(μ(p), p)

)
· μ′(p)

+
∂2τ

∂μ∂p
(μ(p), p) · μ′′(p) +

∂3τ

∂μ∂p2
(μ(p), p) · μ0

′(p) +
∂3τ

∂p3
(μ(p), p)

)
p=p0

=

(
∂3τ

∂μ2∂p
(μ0, p0) · μ0

′(p0) +
∂3τ

∂μ∂p2
(μ0, p0)

)
· μ′(p0)

+
∂2τ

∂μ∂p
(μ0, p0) · μ′′(p0) +

∂3τ

∂μ∂p2
(μ0, p0) · μ0

′(p0) +
∂3τ

∂p3
(μ0, p0)

=
∂2τ

∂μ∂p
(μ0, p0) · μ′′(p0) +

∂3τ

∂p3
(μ0, p0)

=
∂2τ

∂μ∂p
(μ0, p0) ·

(
−1

3

∂3τ
∂p3

(μ0, p0)

∂2τ
∂μ∂p(μ0, p0)

)
+

∂3τ

∂p3
(μ0, p0) =

2

3

∂3τ

∂p3
(μ0, p0). (4.131)
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Summarizing,

Φ(μ0) = 0 Ψ(p0) = 0

Φ′(μ0) = ∂τ2

∂μ∂p(μ0, p0) �= 0 Ψ′(p0) = 0

Ψ′′(p0) = 2
3
∂3τ
∂p3

(μ0, p0) �= 0

(4.132)

It follows that, ∃δ > 0 such that

Φ(μ) = Φ(μ0) + Φ′(μ0)(μ− μ0) +O(μ− μ0)
2 , ∀μ ∈ (μ0 − δ, μ0 + δ) ⊆ I0 (4.133)

and

Ψ(p) = Ψ(p0)+Φ′(p0)(p−p0)+
1

2
Φ′′(p0)(p−p0)

2+O(p−p0)
3 , ∀p ∈ (p0−δ, p0+δ) ⊆ J0. (4.134)

Namely,

∂τ

∂p
(μ, p(μ)) =

∂τ2

∂μ∂p
(μ0, p0)(μ− μ0) +O(μ− μ0)

2 , ∀μ ∈ (μ0 − δ, μ0 + δ) ⊆ I0 (4.135)

and

∂τ

∂p
(μ(p), p) =

1

3

∂3τ

∂p3
(μ0, p0)(p− p0)

2 +O(p− p0)
3 , ∀p ∈ (p0 − δ, p0 + δ) ⊆ J0. (4.136)

Case 2. is obtained from Case 1. exchanging the roles of y1 and y2.
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Theorem 4.8 Transcritical bifurcations

Let (μ0, p0) ∈ I × R such that:

(a) κ(·;μ0, p0) ∈ A� is an invariant curve;

(b) λ(μ0, p0) = 1 or, equivalently, Λ(μ0, p0) = 0;

(c)

∫
T
η(θ;μ0, p0)n(θ;μ0, p0)dθ �= 0;

(d)

∫
T
η(θ;μ0, p0)

∂m

∂p
(θ;μ0, p0)

∂κ

∂p
(θ;μ0, p0)dθ �= 0.

(e)

∫
T
η(θ;μ0, p0)

(
∂m

∂μ
(θ;μ0, p0)

∂κ

∂μ
(θ;μ0, p0) +

∂n

∂μ
(θ;μ0, p0)

)
dθ·
∫
T
η(θ;μ0, p0)

∂m

∂p
(θ;μ0, p0)

∂κ

∂p
(θ;μ0, p0)dθ

<

(∫
T
η(θ;μ0, p0)

∂m

∂p
(θ;μ0, p0)

∂κ

∂p
(θ;μ0, p0)dθ

)2

.

Then, τ has a transcritical bifurcation at (μ0, p0), that is,

(i) (μ0, p0) ∈ Bτ , i.e. τ(μ0, p0) = 0;

(ii)
∂τ

∂μ
(μ0, p0) = 0;

(iii)
∂τ

∂p
(μ0, p0) = 0;

(iv)
∂2τ

∂p2
(μ0, p0) �= 0; and

(v) det(Hess τ)(μ0, p0) < 0.

Additionally, ∃ I0 ×J0 ⊆ I ×R (I0,J0 open intervals) and ∃ p1, p2 : I0 −→ J0, p1, p2 ∈ C∞, such
that:

{(μ, p) ∈ I0 × J0 : τ(μ, p) = 0} = {(μ, p1(μ)) : μ ∈ I0} ∪ {(μ, p2(μ)) : μ ∈ I0}.
Moreover,

pi(μ0) = p0

p′i(μ0) =
− ∂2τ

∂μ∂p
(μ0,p0)±

√
− det(Hess τ)(μ0,p0)

∂2τ
∂p2

(μ0,p0)
(i = 1, 2) .

(4.137)

and for some δ > 0,

∂τ

∂p
(μ, pi(μ)) = ±

√
− det(Hess τ)(μ0, p0)(μ−μ0)+O(μ−μ0)

2, ∀μ ∈ (μ0−δ, μ0+δ) ⊆ I0, (i = 1, 2).

(4.138)

Proof. It only remains to prove that conditions (a)−(e) are equivalent to conditions (i)−(v) since
the remainder of the statement is already proved above.

(i) If κ(·;μ0, p0) ∈ A� is an invariant curve, then the translation parameter is zero, i.e. τ(μ0, p0) = 0
and (μ0, p0) ∈ Bτ .

(ii) Since λ(μ0, p0) = 1, then by Corollary 4.4,
∂τ

∂p
(μ0, p0) = 0;
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(iii) By Corollary 4.5

∂τ

∂μ
(μ0, p0) = τ10(μ0, p0) = −ξ100 (μ0, p0)

η0(μ0, p0)

= −< η(·;μ0, p0)ζ
10(·;μ0, p0) >

< η(·;μ0, p0) >
= −< η(·;μ0, p0)n(·;μ0, p0) >

< η(·;μ0, p0) >
.

Thus,
∂τ

∂μ
(μ0, p0) �= 0 ⇔< η(·;μ0, p0)n(·;μ0, p0) >= 0 ⇔

∫
T
η(θ;μ0, p0)n(θ;μ0, p0)dθ �= 0.

(iv) By Corollary 4.5

∂2τ

∂μ∂p
(μ0, p0) = τ11(μ0, p0) = −ξ110 (μ0, p0)

η0(μ0, p0)

= −< η(·;μ0, p0)ζ
11(·;μ0, p0) >

< η(·;μ0, p0) >
= −

< η(·;μ0, p0)
∂m
∂μ (·;μ0, p0)

∂κ
∂p (·;μ0, p0) >

< η(·;μ0, p0) >
.

Thus,

∂2τ

∂μ∂p
(μ0, p0) �= 0 ⇔< η(·;μ0, p0)n(·;μ0, p0) > �= 0 ⇔

∫
T
η(θ;μ0, p0)

∂m

∂μ
(θ;μ0, p0)

∂κ

∂p
(θ;μ0, p0)dθ �= 0.

(v) det(Hess τ)(μ0, p0) =
∂2τ

∂μ2
(μ0, p0)

∂2τ

∂p2
(μ0, p0)−

(
∂2τ

∂μ∂p
(μ0, p0)

)2

.

Applying again Corollary 4.5,

∂2τ
∂μ2 (μ0, p0) = τ20(μ0, p0) = − ξ200 (μ0,p0)

η0(μ0,p0)

∂2τ
∂p2

(μ0, p0) = τ02(μ0, p0) = − ξ020 (μ0,p0)
η0(μ0,p0)

∂2τ
∂μ∂p(μ0, p0) = τ11(μ0, p0) = − ξ110 (μ0,p0)

η0(μ0,p0)

Therefore,

det(Hess τ)(μ0, p0) =
1

(η0(μ0, p0))2

(
ξ200 (μ0, p0)ξ

02
0 (μ0, p0)−

(
ξ110 (μ0, p0)

)2)
.

Thus,

det(Hess τ)(μ0, p0) < 0 ⇔ ξ200 (μ0, p0)ξ
02
0 (μ0, p0) <

(
ξ110 (μ0, p0)

)2
.

and the latter is equivalent to∫
T
η(θ;μ0, p0)

(
∂m

∂μ
(θ;μ0, p0)

∂κ

∂μ
(θ;μ0, p0) +

∂n

∂μ
(θ;μ0, p0)

)
dθ·
∫
T
η(θ;μ0, p0)

∂m

∂p
(θ;μ0, p0)

∂κ

∂p
(θ;μ0, p0)dθ

<

(∫
T
η(θ;μ0, p0)

∂m

∂p
(θ;μ0, p0)

∂κ

∂p
(θ;μ0, p0)dθ

)2

.
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Theorem 4.9 Pitchfork bifurcations

Let (μ0, p0) ∈ I × R such that:

(a) κ(·;μ0, p0) ∈ A� is an invariant curve;

(b) λ(μ0, p0) = 1 or, equivalently, Λ(μ0, p0) = 0;

(c)

∫
T
η(θ;μ0, p0)n(θ;μ0, p0)dθ = 0;

(d)

∫
T
η(θ;μ0, p0)

∂m

∂p
(θ;μ0, p0)

∂κ

∂p
(θ;μ0, p0)dθ = 0.

(e)

∫
T
η(θ;μ0, p0)

∂m

∂μ
(θ;μ0, p0)

∂κ

∂p
(θ;μ0, p0)dθ �= 0.

(f)

∫
T
η(θ;μ0, p0)

(
2
∂m

∂p
(θ;μ0, p0)

∂2κ

∂p2
(θ;μ0, p0) +

∂2m

∂p2
(θ;μ0, p0)

∂κ

∂p
(θ;μ0, p0)

)
dθ �= 0.

Then, τ has a pitchfork bifurcation at (μ0, p0), that is,

(i) τ(μ0, p0) = 0;

(ii) ∂τ
∂p (μ0, p0) = 0;

(iii) ∂τ
∂μ(μ0, p0) = 0;

(iv) ∂2τ
∂p2

(μ0, p0) = 0;

(v) ∂2τ
∂μ∂p(μ0, p0) �= 0;

(vi) ∂3τ
∂p3

(μ0, p0) �= 0;

Additionally, ∃ I0 × J0 ⊆ I × R (I0,J0 open intervals) and

∃ μ : J0 −→ I0 and p : I0 −→ J0 , μ, p ∈ C∞ such that

{(μ, p) ∈ I0 × J0 : y1(μ, p) = 0} = {(μ, p(μ)) : μ ∈ I0},
and

{(μ, p) ∈ I0 × J0 : y2(μ, p) = 0} = {(μ(p), p) : p ∈ J0}.
Equivalently,

{(μ, p) ∈ I0 × J0 : τ(μ, p) = 0} = {(μ, p(μ)) : μ ∈ I0} ∪ {(μ(p), p) : p ∈ J0}.

Moreover,
p(μ0) = p0

p′(μ0) = −1
2

∂2τ
∂μ2

(μ0,p0)

∂2τ
∂μ∂p

(μ0,p0)
�= 0

μ(p0) = μ0

μ′(p0) = 0

μ′′(p0) = −1
3

∂3τ
∂p3

(μ0,p0)

∂2τ
∂μ∂p

(μ0,p0)
�= 0

. (4.139)
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and for some δ > 0,

∂τ

∂p
(μ, p(μ)) =

∂τ2

∂μ∂p
(μ0, p0)(μ− μ0) +O(μ− μ0)

2 , ∀μ ∈ (μ0 − δ, μ0 + δ) ⊆ I0 (4.140)

and

∂τ

∂p
(μ(p), p) =

1

3

∂3τ

∂p3
(μ0, p0)(p− p0)

2 +O(p− p0)
3 , ∀p ∈ (p0 − δ, p0 + δ) ⊆ J0. (4.141)

Proof. It only remains to prove that conditions (a) − (f) are equivalent to conditions (i) − (vi)
since the remainder of the statement is already proved above.

(i) If κ(·;μ0, p0) ∈ A� is an invariant curve, then the translation parameter is zero, i.e. τ(μ0, p0) = 0
and (μ0, p0) ∈ Bτ .

(ii) Since λ(μ0, p0) = 1, then by Corollary 4.4,
∂τ

∂p
(μ0, p0) = 0;

(iii) By Corollary 4.5

∂τ

∂μ
(μ0, p0) = τ10(μ0, p0) = −ξ100 (μ0, p0)

η0(μ0, p0)

= −< η(·;μ0, p0)ζ
10(·;μ0, p0) >

< η(·;μ0, p0) >
= −< η(·;μ0, p0)n(·;μ0, p0) >

< η(·;μ0, p0) >
.

Thus,
∂τ

∂μ
(μ0, p0) = 0 ⇔< η(·;μ0, p0)n(·;μ0, p0) >= 0 ⇔

∫
T
η(θ;μ0, p0)n(θ;μ0, p0)dθ = 0.

(iv) By Corollary 4.5

∂2τ

∂p2
(μ0, p0) = τ02(μ0, p0) = −ξ020 (μ0, p0)

η0(μ0, p0)

= −< η(·;μ0, p0)ζ
02(·;μ0, p0) >

< η(·;μ0, p0) >
= −

< η(·;μ0, p0)
∂m
∂p (·;μ0, p0)

∂κ
∂p (·;μ0, p0) >

< η(·;μ0, p0) >
.

Thus,

∂2τ

∂p2
(μ0, p0) = 0 ⇔ < η(·;μ0, p0)

∂m

∂p
(·;μ0, p0)

∂κ

∂p
(·;μ0, p0) >= 0

⇔
∫
T
η(θ;μ0, p0)

∂m

∂p
(θ;μ0, p0)

∂κ

∂p
(θ;μ0, p0)dθ = 0 .

(v) By Corollary 4.5

∂2τ

∂μ∂p
(μ0, p0) = τ11(μ0, p0) = −ξ110 (μ0, p0)

η0(μ0, p0)

= −< η(·;μ0, p0)ζ
11(·;μ0, p0) >

< η(·;μ0, p0) >
= −

< η(·;μ0, p0)
∂m
∂μ (·;μ0, p0)

∂κ
∂p (·;μ0, p0) >

< η(·;μ0, p0) >
.

Thus,

∂2τ

∂μ∂p
(μ0, p0) �= 0 ⇔ < η(·;μ0, p0)

∂m

∂μ
(·;μ0, p0)

∂κ

∂p
(·;μ0, p0) > �= 0

⇔
∫
T
η(θ;μ0, p0)

∂m

∂μ
(θ;μ0, p0)

∂κ

∂p
(θ;μ0, p0)dθ �= 0 .
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(vi) By Corollary 4.5

∂3τ

∂p3
(μ0, p0) = τ03(μ0, p0) = −ξ030 (μ0, p0)

η0(μ0, p0)

= −< η(·;μ0, p0)ζ
03(·;μ0, p0) >

< η(·;μ0, p0) >

= −
< η(·;μ0, p0)

(
2∂m

∂p (·;μ0, p0)
∂2κ
∂p2

(·;μ0, p0) +
∂2m
∂p2

(·;μ0, p0)
∂κ
∂p (·;μ0, p0)

)
>

< η(·;μ0, p0) >
.

Thus,

0 �= ∂3τ

∂p3
(μ0, p0)

⇔ 0 �= < η(·;μ0, p0)

(
2
∂m

∂p
(·;μ0, p0)

∂2κ

∂p2
(·;μ0, p0) +

∂2m

∂p2
(·;μ0, p0)

∂κ

∂p
(·;μ0, p0)

)
>

⇔ 0 �=
∫
T
η(θ;μ0, p0)

(
2
∂m

∂p
(θ;μ0, p0)

∂2κ

∂p2
(θ;μ0, p0) +

∂2m

∂p2
(θ;μ0, p0)

∂κ

∂p
(θ;μ0, p0)

)
dθ.
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4.4 Period–doubling or flip bifurcations

Remark 4.10

The bifurcation diagram can be expressed in the following way:

Bτ = {(μ, p) ∈ I × R : τ(μ, p) = 0} = {(μ, p) ∈ I × R : υ(μ, p) = p} ,
where υ(μ, p) = τ(μ, p) + p.
Thus, the bifurcation points (μ0, p0) are fixed points of the function υ(μ0, ·), i.e.

(μ0, p0) ∈ Bτ ⇐⇒ p0 ∈ Fix τ(μ0, ·),
where Fix τ(μ0, ·) := {p ∈ R : υ(μ0, p) = p}, for a given μ0 ∈ I.
Then, different kind of bifurcation points can be described in terms of υ. For instance, pitchfork
bifurcations are characterized by the following conditions:

P(a). υ(μ0, p0) = p0;

P(b). ∂υ
∂μ(μ0, p0) = 0;

P(c). ∂υ
∂p (μ0, p0) = 1;

P(d). ∂2υ
∂p2

(μ0, p0) = 0;

P(e). ∂2υ
∂μ∂p(μ0, p0) �= 0;

P(f). ∂3υ
∂p3

(μ0, p0) �= 0;

Let us consider a bifurcation point (μ0, p0) ∈ Bτ such that
∂υ

∂p
(μ0, p0) = −1, that is, (μ0, p0) is a

continuable point w.r.t μ, or p0 is a non–hyperbolic fixed point of υ(μ0, ·).
By the IFT, ∃I0 ⊆ I, J0 ⊆ R, open intervals such that (μ0, p0) ∈ I0 × J0, and ∃ p : I0 −→ J0,
p ∈ C∞(I0), such that p(μ0) = p0 and

{(μ, p) ∈ I0 × J0 : υ(μ, p) = p} = {(μ, p(μ) : μ ∈ I0}.
Thus,

υ(μ, p(μ) = p(μ), ∀μ ∈ I0. (4.142)

In particular, υ(μ0, p0) = p0. Taking derivatives in (4.142),

∂υ

∂μ
(μ, p(μ)) +

∂υ

∂p
(μ, p(μ)) · p′(μ) = p′(μ), ∀μ ∈ I0. (4.143)

In particular, for μ = μ0,

∂υ

∂μ
(μ0, p0) +

∂υ

∂p
(μ0, p0) · p′(μ0) = p′(μ0). (4.144)

Since ∂υ
∂p (μ0, p0) = −1, then

p′(μ0) =
1

2

∂υ

∂μ
(μ0, p0). (4.145)

Let Φ(μ) = ∂υ
∂p (μ, p(μ)), μ ∈ I0. Then,

Φ(μ0) =
∂υ

∂p
(μ0, p0) = −1. (4.146)



Period–doubling or flip bifurcations 155

Moreover,

Φ′(μ0) =
d

dμ

(
∂υ

∂p
(μ, p(μ))

)∣∣∣∣
μ=μ0

=

(
∂2υ

∂μ∂p
(μ, p(μ)) +

∂2υ

∂p2
(μ, p(μ)) · p′(μ)

)
μ=μ0

=
∂2υ

∂μ∂p
(μ0, p0) +

∂2υ

∂p2
(μ0, p0) · p′(μ0) (4.147)

=
1

2

∂2υ

∂p2
(μ0, p0)

∂υ

∂μ
(μ0, p0) +

∂2υ

∂μ∂p
(μ0, p0).

If we assume that 1
2
∂2υ
∂p2

(μ0, p0)
∂υ
∂μ(μ0, p0) +

∂2υ
∂μ∂p(μ0, p0) �= 0, then ∃δ > 0 such that

∀μ ∈ (μ0 − δ, μ0 + δ) ⊆ I0, Φ(μ) = Ψ(μ0) + Ψ′(μ0)(μ− μ0) +O(μ− μ0)
2, that is,

∂υ

∂p
(μ, p(μ)) = −1 +

(
1

2

∂2υ

∂p2
(μ0, p0)

∂υ

∂μ
(μ0, p0) +

∂2υ

∂μ∂p
(μ0, p0)

)
(μ− μ0) +O(μ− μ0)

2. (4.148)

Consider now the function given by the second iterate,

υ2(μ, p) = υ(μ, υ(μ, p)) , (μ, p) ∈ I∗
0 × J0, (4.149)

where I∗
0 = {μ ∈ I0 : υ(μ, p) ∈ J0, ∀p ∈ I0}.

Notice that υ2(μ0, p0) = υ(μ0, υ(μ0, p0)) = υ(μ0, p0) = p0.

Differentiating (4.149),

∂υ2

∂μ
(μ, p) =

∂υ

∂μ
(μ, υ(μ, p)) +

∂υ

∂p
(μ, υ(μ, p)) · ∂υ

∂μ
(μ, p) (4.150)

∂υ2

∂p
(μ, p) =

∂υ

∂p
(μ, υ(μ, p)) · ∂υ

∂p
(μ, p). (4.151)

In particular, for μ = μ0 and p = p(μ0) = p0,

∂υ2

∂μ
(μ0, p0) =

∂υ

∂μ
(μ0, p0) +

∂υ

∂p
(μ0, p0) · ∂υ

∂μ
(μ0, p0)

=
∂υ

∂μ
(μ0, p0)

(
1 +

∂υ

∂p
(μ0, p0)

)
= 0 (4.152)

∂υ2

∂p
(μ0, p0) =

∂υ

∂p
(μ0, p0) · ∂υ

∂p
(μ, p) = (−1)2 = 1. (4.153)

Derivating (4.150) w.r.t μ,

∂2υ2

∂μ2
(μ, p) =

∂2υ

∂μ2
(μ, υ(μ, p)) +

∂2υ

∂μ∂p
(μ, υ(μ, p)) · ∂υ

∂μ
(μ, p)

+

(
∂2υ

∂μ∂p
(μ, υ(μ, p)) +

∂2υ

∂p2
(μ, υ(μ, p)) · ∂υ

∂μ
(μ, p)

)
· ∂υ
∂μ

(μ, p)

+
∂υ

∂p
(μ, p) · ∂

2υ

∂μ2
(μ, p) , ∀(μ, p) ∈ I∗

0 × J0.
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In particular, for μ = μ0 and p = p(μ0) = p0,

∂2υ2

∂μ2
(μ0, p0) =

∂2υ

∂μ2
(μ0, p0) +

∂2υ

∂μ∂p
(μ0, p0) · ∂υ

∂μ
(μ0, p0)

+

(
∂2υ

∂μ∂p
(μ0, p0) +

∂2υ

∂p2
(μ0, p0) · ∂υ

∂μ
(μ0, p0)

)
· ∂υ
∂μ

(μ0, p0)

+
∂υ

∂p
(μ0, p0) · ∂

2υ

∂μ2
(μ0, p0)

= 2

(
1

2

∂υ2

∂p2
(μ0, p0)

∂υ

∂μ
(μ0, p0) +

∂2υ

∂μ∂p
(μ0, p0)

)
· ∂υ
∂μ

(μ0, p0)

= 2Φ′(μ0) · ∂υ
∂μ

(μ0, p0). (4.154)

Derivating (4.151) w.r.t p,

∂2υ2

∂p2
(μ, p) =

∂2υ

∂p2
(μ, υ(μ, p))

(
∂υ

∂p
(μ, p)

)2

+
∂υ

∂p
(μ, υ(μ, p)) · ∂

2υ

∂p2
(μ, p) , ∀(μ, p) ∈ I∗

0 × J0. (4.155)

In particular, for μ = μ0 and p = p(μ0) = p0,

∂2υ2

∂p2
(μ0, p0) =

∂2υ

∂p2
(μ0, p0)

(
∂υ

∂p
(μ0, p0)

)2

+
∂υ

∂p
(μ0, p0) · ∂

2υ

∂p2
(μ0, p0)

=
∂2

∂p2
(μ0, p0)(−1)2 − ∂2υ

∂p2
(μ0, p0) = 0. (4.156)

Derivating (4.151) w.r.t μ,

∂2υ2

∂μ∂p
(μ, p) =

(
∂2υ

∂μ∂p
(μ, υ(μ, p)) +

∂2υ

∂p2
(μ, υ(μ, p)) · ∂υ

∂μ
(μ, p)

)
· ∂υ
∂p

(μ, p)

+
∂υ

∂p
(μ, υ(μ, p)) · ∂2υ

∂μ∂p
(μ, p) , ∀(μ, p) ∈ I∗

0 × J0. (4.157)

In particular, for μ = μ0 and p = p(μ0) = p0,

∂2υ2

∂μ∂p
(μ0, p0) =

(
∂2υ

∂μ∂p
(μ0, p0) +

∂2υ

∂p2
(μ0, p0) · ∂υ

∂μ
(μ0, p0)

)
· ∂υ
∂p

(μ0, p0)

+
∂υ

∂p
(μ0, p0) · ∂2υ

∂μ∂p
(μ0, p0) (4.158)

= −2

(
1

2

∂υ2

∂p2
(μ0, p0)

∂υ

∂μ
(μ0, p0) +

∂2υ

∂μ∂p
(μ0, p0)

)
= −2Φ′(μ0) �= 0. (4.159)

Finally, taking derivatives in (4.155) w.r.t. p,

∂3υ2

∂p3
(μ, p) =

∂3υ

∂p3
(μ, υ(μ, p))

(
∂υ

∂p
(μ, p)

)3

+ 3
∂2υ

∂p2
(μ, υ(μ, p))

∂υ

∂p
(μ, p)

∂2υ

∂p2
(μ, p) (4.160)

+
∂υ

∂p
(μ, υ(μ, p))

∂3υ

∂p3
(μ, p) , ∀(μ, p) ∈ I∗

0 × J0. (4.161)
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Particularizing for μ = μ0 and p = p(μ0) = p0,

∂3υ2

∂p3
(μ0, p0) =

∂3υ

∂p3
(μ0, p0)

(
∂υ

∂p
(μ0, p0)

)3

+ 3
∂2υ

∂p2
(μ0, p0)

∂υ

∂p
(μ0, p0)

∂2υ

∂p2
(μ0, p0)

+
∂υ

∂p
(μ0, p0)

∂3υ

∂p3
(μ0, p0)

= −2
∂3υ

∂p3
(μ0, p0)− 3

(
∂2υ

∂p2
(μ0, p0)

)2

= 2Spυ(μ0, p0), (4.162)

where

Spυ(μ0, p0) :=

∂3υ
∂p3

(μ0, p0)

∂υ
∂p (μ0, p0)

− 3

2

(
∂2υ
∂p2

(μ0, p0)

∂υ
∂p (μ0, p0)

)2

=
1

2

(
−2

∂3υ

∂p3
(μ0, p0)− 3

(
∂2υ

∂p2
(μ0, p0)

)2
)

=
1

2

∂3υ2

∂p3
(μ0, p0) (4.163)

is the Schwarzian derivative of υ(μ0, ·) at p0.
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Chapter 5

Numerical aspects related to Fourier
series, discrete Fourier transform
(DFT), and cohomological equations

5.1 Introduction

The fundamental objective of this chapter is the introduction of all those concepts necessary
for the numerical implementation of the procedures described in the previous chapters. Mainly,
cohomological equations and the derived computation of the Floquet transformation of a curve.
Subject to these procedures is everything related to the numerical implementation of Fourier series
and the Fourier coefficients of a function.

Section 5.2 is devoted to introduce the discrete Fourier transform (DFT) and its inverse (IDFT),
definitions and some of those properties which will be used later on in the computations. These
tools constitute an efficient way to compute functions given by their Fourier series expansion on
the torus. In Section 5.3 we introduce a method to compute numerically the Fourier coefficients
of a function by means of the DFT, providing moreover an estimate of the error made in the
aforementioned approximation. With a finite collection of Fourier coefficients it is possible to
reconstruct, by means of the convolution with the Dirichlet kernel, the partial sums of the Fourier
series. This is explained in Section 5.4. Moreover, there is an efficient way to reconstruct functions
from their Fourier coefficients employing the inverse discrete Fourier transform (IDFT). Once we
have solved the problem of the numerical implementation for Fourier series and Fourier coefficients,
we are in a position to solve cohomological equations and, as a particular case, to compute the
Floquet transformation of a given curve, which is necessary in the reducibility process of skew–
products. These aspects will be dealt with in the last section of the chapter, Section 5.6.

5.2 The discrete Fourier Transform (DFT) and its inverse (IDFT)

This section is devoted to providing definitions and fundamental properties of the Discrete Fourier
Transform (DFT) and its inverse (IDFT). It is not intended to make an exhaustive study of digital
signal processing (DSP), but only of some tools necessary for implementing those procedures
involved in the numerical simulation of the KAM algorithm designed in previous chapters and the
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corresponding error control1, as will be shown in the following sections2.

Given N ∈ N define the set3 ZN = {1, 2, . . . , N} and let

l2(ZN ) = {x = (xk)k∈Z : xk ∈ C, xk+N = xk, ∀k ∈ Z}.

that is, the set of all the both–sided N–periodic sequences of complex numbers.
One element x = (xk)k∈Z of l2(ZN ) can be represented by the terms corresponding to one period.
We will consider here the convention of denoting by x = [x(1), x(2), . . . , x(N)] the elements of
l2(ZN ). This space has a natural structure of a C–vector space. Moreover, it is a Hilbert space
with the inner product

< ·, · > : l2(ZN )× l2(ZN ) −→ C

(x = [x(1), x(2), . . . , x(N)], y = [y(1), y(2), . . . , y(N)]) �−→ < x, y >:=
N∑
k=1

x(k)y(k) .

One orthonormal basis is E = {e1, . . . , eN} with ej(k) = δjk, ∀j, k ∈ ZN , and the dimension of the
space is dimC(l

2(ZN )) = N , hence it is isomorphic to CN .

Definition 5.1 DFT, IDFT

Given N ∈ N, the Discrete Fourier Transform (DFT) is defined as the linear operator

FN : l2(ZN ) −→ l2(ZN )
x = [x(1), x(2), . . . , x(N)] �−→ FNx := X = [X(1), X(2), . . . , X(N)]

where

X(k + 1) =

N−1∑
n=0

x(n+ 1)W kn
N , ∀k = 0, 1, . . . , N − 1 (5.1)

and WN = e−
2π
N

i. This operator is invertible and the inverse is the so–called Inverse Discrete
Fourier Transform (IDFT) which, in fact, is defined by

F−1
N : l2(ZN ) −→ l2(ZN )

X = [X(1), X(2), . . . , X(N)] �−→ F−1
N X := x = [x(1), x(2), . . . , x(N)]

with

x(n+ 1) =
1

N

N−1∑
k=0

X(k + 1)W−kn
N , ∀n = 0, 1, . . . , N − 1 . (5.2)

�

1For extended documentation and more details the reader is referred to the voluminous literature about the DFT
e.g. [6, 13, 20, 56, 28]. .

2In this way, it is about justifying the programming making exposed in Appendix II, which are implemented
in Matlab� programming environment (R2022b).

3This set can be considered as a representative of the cyclic Abelian group of order N , typically represented as
Z/NZ = {0, 1, . . . , N − 1} = {1, 2, . . . , N}. In our case, the operation of the group is derived from the usual sum of
integers modulus N and the zero element is 0 = N .
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Remark 5.2

The factor WN = e−
2π
N

i is an N–th root of the unity, that is, WN
N = 1 . Moreover, given any

m ∈ Z,

1 +Wm
N +W 2m

N + · · ·+W
(N−1)m
N =

{
N , if m = Ṅ
0 , otherwise

Notice that G = {WN ,W 2
N , . . . ,WN−1

N ,WN
N = 1} is an Abelian cyclic group and G ∼= ZN .

Thus, the above definitions are consistent with the fact that the sequences involved are N–periodic.
Indeed,

X(k +N + 1) =
N−1∑
n=0

x(n+ 1)W
(k+N)n
N =

N−1∑
n=0

x(n+ 1)W kn
N WNn

N

=

N−1∑
n=0

x(n+ 1)W kn
N = X(k + 1), ∀k ∈ Z.

In the same manner,

x(n+N + 1) =
1

N

N−1∑
k=0

X(k + 1)W
−(n+N)k
N =

1

N

N−1∑
k=0

X(k + 1)W−nk
N W−Nk

N

=
1

N

N−1∑
k=0

X(k + 1)W−nk
N = x(n+ 1), ∀n ∈ Z.

Notice that F−1
N is effectively the inverse operator of FN and this fact justifies the notation.

Indeed, for any x = [x(1), x(2), . . . , x(N)] ∈ l2(ZN ) we have:

F−1
N (FNx)(n+ 1) =

1

N

N−1∑
k=0

(FNx)(n+ 1)W−nk
N =

1

N

N−1∑
k=0

N−1∑
m=0

x(m+ 1)Wmk
N W−nk

N

=
1

N

N−1∑
m=0

x(m+ 1)
N−1∑
k=0

W
k(m−n)
N =

1

N

N−1∑
m=0

x(m+ 1)Nδmn

=
1

N
x(n+ 1)N = x(n+ 1), ∀n ∈ 0, 1, . . . , N − 1.

Therefore, F−1
N FNx = x, ∀x ∈ l2(ZN ). Analogously, FNF−1

N X = X, ∀X ∈ l2(ZN ).

Before stating some properties of the DFT we need to define some linear operators.

Definition 5.3 Conjugation, shift, reversal, and rotation operators

The conjugation operator produces the complex conjugation of all the terms of the sequence.

CN : l2(ZN ) −→ l2(ZN )

x = [x(1), x(2), . . . , x(N)] �−→ CNx = x̄ = [x(1), x(2), . . . , x(N)] .
(5.3)

The shift operator displaces the terms of the sequence one position to the right.

SN : l2(ZN ) −→ l2(ZN )
x = [x(1), x(2), . . . , x(N)] �−→ SNx = [x(N), x(1), . . . , x(N − 1)] .

(5.4)

The reversal operator reverses the order of the elements in a period.

IN : l2(ZN ) −→ l2(ZN )
x = [x(1), x(2), . . . , x(N)] �−→ INx = [x(N), x(N − 1), . . . , x(1)] .

(5.5)
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The rotation operator rotates each element x(n+ 1) by multiplication by the factor Wn
N .

RN : l2(ZN ) −→ l2(ZN )

x = [x(1), x(2), . . . , x(N)] �−→ RNx = [W 0
Nx(1),W 1

Nx(2), . . . ,WN−1
N x(N)] .

(5.6)

�

Remark 5.4

Notice that C2
N = IN , SN

N = IN , I2N = IN , and RN
N = IN , where IN denotes here the identity

operator.

Moreover, SN = F−1
N RNFN , i.e. SN is the conjugate of RN by means of the DFT FN .

Proof. Let x = [x(1), x(2), . . . , x(N)] ∈ l2(ZN ), X = FNx = [X(1), X(2), . . . , X(N)],

y = SNx = [y(1), y(2), . . . , y(N)], Y = FNy = [Y (1), Y (2), . . . , Y (N)], and

Z = RNX = [Z(1), Z(2), . . . , Z(N)]. Then, Z = RNFNx = [W 0
NX(1),W 1

NX(2), . . . ,WN−1
N X(N)].

Thus,

Z(k + 1) = W k
NX(k + 1) = W k

N

N−1∑
n=0

x(n+ 1)W kn
N =

N−1∑
n=0

x(n+ 1)W
k(n+1)
N

=

N−1∑
n=0

x(n)W kn
N =

N−1∑
n=0

y(n+ 1)W kn
N = Y (k + 1), ∀k = 0, 1, . . . , N − 1.

Therefore, Z = Y and this implies that RNX = FNy ⇒ RNFNx = FNSNx, ∀x ∈ l2(ZN ) ⇒
RNFN = FNSN ⇒ SN = F−1

N RNFN . Moreover, Sm
N = (F−1

N RNFN )m = F−1
N Rm

NFN , ∀m ∈ Z.

For the sake of clarity, one may omit the subindex N in the notation of the operators, at least
when there is no ambiguity.

Next we state a series of fundamental properties of the DFT that can be demonstrated by applying
the definitions.

Proposition 5.5 Properties of the DFT

(a) Linearity ∀x, y ∈ l2(ZN ), α, β ∈ C,FN (αx+ βy) = αFNx+ βFNy.

(b) Orthogonality

{ek = [W 0k
N ,W 1k

N , . . . ,W
(N−1)k
N ] : k = 0, 1, . . . , N − 1} is an orthogonal basis of l2(ZN ).

(c) Plancherel theorem and Parseval’s identity

(Plancherel) Let x = [x(1), x(2), . . . , x(N)] ∈ l2(ZN ), X = FNx = [X(1), X(2), . . . , X(N)],

y = [y(1), y(2), . . . , y(N)] ∈ l2(ZN ), and Y = FNy = [Y (1), Y (2), . . . , Y (N)]. Then,

N−1∑
n=0

x(n+ 1)y(n+ 1) =
1

N

N−1∑
k=0

X(k + 1)Y (k + 1),

that is, < x, y >= 1
N < FNx,FNy >, ∀x, y ∈ l2(ZN ).
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(Parseval) Let x = [x(1), x(2), . . . , x(N)] ∈ l2(ZN ). Then,

N−1∑
n=0

|x(n+ 1)|2 = 1

N

N−1∑
k=0

|X(k + 1)|2 ,

that is,

‖x‖l2(ZN ) =
1√
N

‖FNx‖l2(ZN ).

(d) Shift theorem.

Let x, y ∈ l2(ZN ), X = FNx, Y = FNy, and m ∈ {0, 1, . . . , N − 1}.

Time shifting If y(n+ 1) = x(n+ 1−m), ∀n = 0, 1, . . . , N − 1 (i.e. y = Sm
Nx),

then Y (k + 1) = X(k + 1)Wmk
N , ∀k = 0, 1, . . . , N − 1 (i.e. Y = Rm

NX).

Frequency shifting If y(n+1) = x(n+1)W−mn
N , ∀n = 0, 1, . . . , N −1 (i.e. x = Rm

Ny), then

Y (k + 1) = X(k + 1−m), ∀k = 0, 1, . . . , N − 1 (i.e. Y = Sm
NX).

(e) Time and frequency reversal

Time reversal ∀x ∈ l2(ZN ), FNINx = SNINFNSNx.

Frequency reversal ∀x ∈ l2(ZN ), INFNx = FNRNSNINx.

(f) Conjugacy

F−1
N = 1

N CNFNCN .

(g) Complex conjugate

Time conjugate FNCN = CNSNINFN .

Frequency conjugate CNFN = FNCNSNIN .

Proof.

(a) Linearity The linearity of the DFT is immediate from the definition.

Matrix representation of the DFT

Let E = {ej+1}N−1
j=0 be the canonical basis of l2(ZN ).

The DFT of the basis elements is given by êj+1 = FNej+1, j = 0, 1, . . . , N , where

êj+1(k + 1) =

N−1∑
n=0

ej+1(n+ 1)W kn
N = W jk

N , ∀j, k = 0, 1, . . . , N . Thus,

êj+1 = [1,W j
N ,W 2j

N , . . . ,WNj
N ,W

(N+1)j
N ], ∀j = 0, 1, . . . , N.

The consequent matrix representation of these identities has the form

⎛⎜⎜⎜⎝
ê1
ê2
...
êN

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
1 1 1 . . . 1

1 WN W 2
N . . . WN−1

N

1 W 2
N W 4

N . . . W
2(N−1)j
N

. . . . . . . . . . . . . . .

1 WN−1
N W

2(N−1)
N . . . W

(N−1)(N−1)
N

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝

e1
e2
...
eN

⎞⎟⎟⎟⎠ . (5.7)
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The square matrix A(WN ) ∈ GLN (C) which appears in the above representation is useful to
prove some important properties4 of the DFT.

In a first sight, one can see that the matrix is symmetric. Some terms of the matrix can be
often reduced using the fact that W jN

N = 1, ∀j ∈ Z. Despite this, if N is a prime number this
reduction is not feasible. On the other hand note that A(WN )A(WN ) = NIN , where IN is
the identity matrix, so FN is, indeed, invertible and the matrix of the IDFT, F−1

N , w.r.t the
canonical basis is A(WN )−1 = 1

NA(WN ).

(b) Orthogonality

< ek, el >=
N−1∑
n=0

Wnk
N WN

nl
=

N−1∑
n=0

W
n(k−l)
N = Nδkl.

(c) Plancherel theorem and Parseval’s identity

Plancherel

< x, y > =

N−1∑
n=0

x(n+ 1)y(n+ 1) =

N−1∑
n=0

(
1

N

N−1∑
k=0

X(k + 1)W kn
N

1

N

N−1∑
l=0

Y (k + 1)W−ln
N

)

=
1

N2

N−1∑
n=0

N−1∑
k=0

N−1∑
l=0

X(k + 1)Y (k + 1)W
n(k−l)
N

=
1

N2

N−1∑
n=0

N−1∑
k=0

N−1∑
l=0

X(k + 1)Y (k + 1)Nδk(n−l)

=
1

N

N−1∑
k=0

X(k + 1)Y (k + 1) =
1

N
< FNx,FNy > .

Parseval This identity is a particular case of the latter, when y = x.

(d) Shift theorem

Let x, y ∈ l2(ZN ), X = FNx, Y = FNy, and m ∈ {0, 1, . . . , N − 1}.

Time shifting If y(n+ 1) = x(n+ 1−m), ∀n = 0, 1, . . . , N − 1 (i.e. y = Sm
Nx), then

Y (k + 1) =

N−1∑
n=0

y(n+ 1)W kn
N =

N−1∑
n=0

x(n+ 1−m)W kn
N (making ν = n−m)

=
N−1−m∑
ν=−m

x(ν + 1)W
k(ν+m)
N =

N−1−m∑
ν=−m

x(ν + 1)W νk
N Wmk

N

(by the N–periodicity)

=

N−1∑
ν=0

x(ν + 1)W νk
N Wmk

N = X(k + 1)Wmk
N , ∀k = 0, 1, . . . , N − 1.

4For more information about the eigenstructure of DFT matrices see [12].
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Frequency shifting If y(n+ 1) = x(n+ 1)W−mn
N , ∀n = 0, 1, . . . , N − 1, then

Y (k + 1) =
N−1∑
n=0

y(n+ 1)W kn
N =

N−1∑
n=0

x(n+ 1)W−nm
N W kn

N

=
N−1∑
n=0

x(n+ 1)W
n(k−m)
N (calling k̄ = k −m)

=
N−1∑
n=0

y(n+ 1)W k̄n
N = X(k̄ + 1) = X(k −m+ 1), ∀k = 0, 1, . . . , N − 1.

(e) Time and frequency reversal

Let x = [x(1), x(2), . . . , x(N)] ∈ l2(ZN ), X = FNx = [X(1), X(2), . . . , X(N)],

y = INx = [y(1), y(2), . . . , y(N)], and Y = FNy = [Y (1), Y (2), . . . , Y (N)]. Then,

Y (k + 1) =
N−1∑
n=0

y(n+ 1)Wnk
N =

N−1∑
n=0

x(N − n)Wnk
N (inverting the order of the sum)

=

N−1∑
n=0

x(n+ 1)W
(N−1−n)k
N =

N−1∑
n=0

x(n+ 1)W
N(n−k)
N WN−k

N

= WN−k
N

N−1∑
n=0

x(n+ 1)W
n(n−k)
N = WN−k

N X(N − k − 1), ∀k = 0, 1, . . . , N − 1 .

(f) Conjugacy

Let x = [x(1), x(2), . . . , x(N)] ∈ l2(ZN ), X = [X(1), X(2), . . . , X(N)] = FNx,

y = [y(1), y(2), . . . , y(N)] = CNX = [X(1), X(2), . . . , X(N)],

Y = [Y (1), Y (2), . . . , Y (N)] = FNy, and

z = [z(1), z(2), . . . , z(N)] = CNY = [Y (1), Y (2), . . . , Y (N)].

Then, ∀n = 0, 1, . . . , N − 1,

z(n+ 1) = Y (n+ 1) =

N−1∑
l=0

y(l + 1)W ln
N =

N−1∑
l=0

X(l + 1)W ln
N

=

N−1∑
l=0

N−1∑
k=0

x(k + 1)W kl
N W ln

N =

N−1∑
l=0

N−1∑
k=0

x(k + 1)W kl
N W−ln

N

=

N−1∑
k=0

x(k + 1)

N−1∑
l=0

W
l(k−n)
N =

N−1∑
k=0

x(k + 1)Nδkn = Nx(n+ 1).

Therefore, x(n+ 1) = 1
N z(n+ 1), ∀n = 0, 1, . . . , N , and then

x = 1
N z = 1

N CNY = 1
N CNFNy = 1

N CNFNCNX = 1
N CNFNCNFNx, that is, IN = 1

N CNFNCNFN

or equivalently, F−1
N = 1

N CNFNCN .

This property allows to compute the IDFT using the direct DFT.

(g) Complex conjugate
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Proposition 5.6 Properties of the DFT operators

(i) C2
N = IN ;

(ii) I2N = IN ;

(iii) SN
N = IN ;

(iv) RN
N = IN ;

Let x = [x(1), x(2), . . . , x(N)] ∈ l2(ZN ), X = FNx = [X(1), X(2), . . . , X(N)],

y = INx = [y(1), y(2), . . . , y(N)], and Y = FNy = [Y (1), Y (2), . . . , Y (N)]. Then,

(v) Time conjugation y = CNx ⇒ Y = CNSNINX, i.e. FNCN = CNSNINFN ;

(vi) Frequency conjugation Y = CNX ⇒ y = SNINCNx, i.e. CNFN = FNCNSNIN ;

(vii) Time reversal y = INx ⇒ Y = SNINRNX, i.e. FNIN = SNINRNFN ;

(viii) Frequency reversal Y = INX ⇒ y = RNSNINx, i.e. INFN = FNRNSNIN ;

(ix) Time shifting y = SNx ⇒ Y = RNX, i.e. FNSN = RNFN ;

(x) Frequency shifting y = SNX ⇒ y = R−1
N x,i.e. SNFN = FNR−1

N .

Definition 5.7 Periodic Discrete Convolution (PDC)

The periodic discrete convolution is defined as the following inner operation in l2(ZN ).

� : l2(ZN )× l2(ZN ) −→ l2(ZN )
(x = [x(1), x(2), . . . , x(N)], y = [y(1), y(2), . . . , y(N)]) �−→ z = x � y

where

(x � y)(n+ 1) :=
N−1∑
m=0

x(m+ 1)y(n−m+ 1) , ∀n = 0, 1, . . . , N − 1 . (5.8)

�

Theorem 5.8 (PDC)

Let x, y ∈ l2(ZN ). Then

FN (x � y)(k + 1) = FNx(k + 1)FNy(k + 1), ∀k = 0, 1, . . . N − 1 .

Proof.

Let X = [X(1), X(2), . . . , X(N)] = FNx, Y = [Y (1), Y (2), . . . , Y (N)] = FNy, and

Z = [Z(1), Z(2), . . . , Z(N)] = FN (x � y). Then:

X(k + 1)Y (k + 1) =

N−1∑
m=0

x(m+ 1)W kn
N

N−1∑
l=0

y(l + 1)W kl
N =

N−1∑
m=0

N−1∑
l=0

x(m+ 1)y(l + 1)W
k(m+l)
N .

Now, taking n = m+ l, we get:
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X(k + 1)Y (k + 1) =
N−1∑
m=0

N+m−1∑
n=m

x(m+ 1)y(n−m+ 1)W kn
N ( by the N − periodicity)

=
N−1∑
m=0

N−1∑
n=0

x(m+ 1)y(n−m+ 1)W kn
N

=

N−1∑
n=0

N−1∑
m=0

x(m+ 1)y(n−m+ 1)W kn
N

=

N−1∑
n=0

z(n+ 1)W kn
N = Z(k + 1), ∀k = 0, 1, . . . , N − 1.

Remark 5.9

If X,Y ∈ l2(ZN ),

(F−1
N X � F−1

N Y )(n+ 1) = X(n+ 1)Y (n+ 1) , ∀n = 0, 1, . . . , N − 1.

This property is obtained directly from the PDC theorem taking x = F−1
N X and y = F−1

N Y .
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5.3 Fourier coefficients and the DFT approximation: error esti-
mates

Lemma 5.10 Approximation of the Fourier coefficients

Let u ∈ C1(T,R) and ûk =

∫
T
u(θ)e−2πkθidθ, k ∈ Z the Fourier coefficients of u. If we choose

a partition (θ0, θ1, . . . , θN ) on the torus T, i.e. 0 = θ0 < θ1 < · · · < θN−1 < θN = 1, then, for
every n = 0, 1, . . . , N − 1 there exists ξn ∈ [θn, θn+1] such that the error in the approximation of
the Fourier coefficient ûk by means of

û∗k =
N−1∑
n=0

(θn+1 − θn)u(θn)e
−2πkθni, k ∈ Z (5.9)

is given by

Ek = ûk − û∗k =
1

2

N−1∑
n=0

w′
k(ξn)(θn+1 − θn)

2 , (5.10)

where wk(θ) = u(θ)e−2πkθi, ∀θ ∈ T.

Proof. First of all, the k–th Fourier coefficient of u can be expressed in the following way:

ûk =

∫
T
u(θ)e−2πkθidθ =

N−1∑
n=0

∫ θn+1

θn

u(θ)e−2πkθidθ =
N−1∑
n=0

∫ θn+1

θn

wk(θ)dθ , (5.11)

where we have called wk(θ) = u(θ)e−2πkθi. Now, each of the integrals in the above sum can be
approximated by means of any method among the extensive family of methods that are based
on approximating the function to integrate. The simplest of all this methods is the so–called left
rectangle rule: ∫ θn+1

θn

wk(θ)dθ ≈ (θn+1 − θn)wk(θn), n = 0, 1, . . . , N − 1. (5.12)

Set

û∗k =

N−1∑
n=0

(θn+1 − θn)wk(θn) (5.13)

the approximation of ûk.
The error in the approximation is

Ek = ûk − û∗k =

N−1∑
n=0

(∫ θn+1

θn

wk(θ)dθ − (θn+1 − θn)wk(θn)

)
. (5.14)

Now, we denote In,k =
∫ θn+1

θn
wk(θ)dθ and I∗n,k = (θn+1 − θn)wk(θn).

Thus,

Ek =

N−1∑
n=0

(In,k − I∗n,k) =
N−1∑
n=0

∫ θn+1

θn

(wk(θ)− wk(θn))dθ. (5.15)

Since u ∈ C1(T,R), then wk ∈ C1(T,R), too. By the fundamental theorem of calculus, we can
write

wk(θ) = wk(θn) +

∫ θ

θn

w′
k(t)dt, ∀θ ∈ T. (5.16)

It follows that

In,k − I∗n,k =

∫ θn+1

θn

∫ θ

θn

w′
k(t)dtdθ. (5.17)
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Let Dn = {(θ, t) ∈ R2 : θn ≤ θ ≤ θn+1, θn ≤ t ≤ θ}.
One can write Dn = {(θ, t) ∈ R2 : θn ≤ t ≤ θn+1, t ≤ θ ≤ θn+1}.
Consequently, by Fubini’s theorem, the order of integration can be changed and the result is

In,k − I∗n,k =

∫ θn+1

θn

∫ θn+1

t
w′
k(t)dθdt =

∫ θn+1

θn

w′
k(t)(θn+1 − t)dt. (5.18)

Now, we come with the following change of variable in the integral:

[−1, 1] −→ [θn, θn+1]

s �−→ t = θn+θn+1

2 + θn+1−θn
2 s ,

obtaining, after calling hn = θn+1 − θn,

Ek =
N−1∑
n=0

(In,k − I∗n,k)

=
N−1∑
n=0

∫ 1

−1
w′
k(θn +

hn
2
(1 + s))

hn
2
(1− s)

hn
2
)ds

=

N−1∑
n=0

h2n
4

∫ 1

−1
w′
k(θn +

hn
2
(1 + s))(1− s)ds .

By the mean value theorem for integrals, ∀n = 0, 1, . . . , N there exist ξn ∈ [θn, θn+1], such that∫ 1

−1
w′
k(θn +

hn
2
(1 + s))(1− s)ds = w′

k(ξn)

∫ 1

−1
(1− s)ds = 2w′

k(ξn).

Therefore,

Ek =
1

2

N−1∑
n=0

w′
k(ξn)h

2
n =

1

2

N−1∑
n=0

w′
k(ξn)(θn+1 − θn)

2, with ξn ∈ [θn, θn+1], ∀n = 0, 1, . . . N − 1.

(5.19)

Corollary 5.11 Approximation of the Fourier coefficients by means of the DFT

Taking θn = n
N , ∀n = 0, 1, . . . , N − 1, N in the above lemma, and calling

x = [x(1), x(2), . . . , x(N)]

with x(n+ 1) = u(θn) and the DFT of x,

X = [X(1), X(2), . . . , X(N)] = Fx

i.e. X(k+1) =

N−1∑
n=0

x(n+1)W−nk
N , ∀k = 0, 1, . . . , N − 1 where WN = e−

2π
N

i, then the error in the

approximation of ûk by

û∗k =
1

N
X(k + 1), ∀k = 0, 1, . . . , N − 1, (5.20)

is given, for some ξn ∈ [ nN , n+1
N ], n = 0, 1, . . . , N − 1, by

Ek = ûk − û∗k =
1

2N2

N−1∑
n=0

w′
k(ξn) , (5.21)

where wk(θ) = u(θ)e−2πkθi, ∀θ ∈ T.
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Proof.

Example

Take the function

u : T −→ R

θ �−→ u(θ) =

⎧⎨⎩
1 , 0 < θ < 1

2
0 , θ = 0, 12 , 0
−1 , 1

2 < θ < 1
,

whose Fourier coefficients are given by

û0 = 0

ûk = −1− (−1)k

πk
, k ∈ Z \ {0}.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.5

0

0.5

1

Figure 5.1: Heavyside function
x = u(θ)(purple) (top left);
Fourier coefficients of u(θ), ûk (magenta) (top right);
Approximate Fourier coefficients of u(θ), û∗k (magenta) (bottom left);
u versus w = F−1

N FNu (bottom right).

Example

Take the function

u : T −→ R
θ �−→ u(θ) = 1

2 − |θ − 1
2 | ,
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whose Fourier coefficients are given by

û0 =
1

4

ûk = −1− (−1)k

2π2k2
, k ∈ Z \ {0}.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

Figure 5.2: Small denominators function
x = u(θ)(purple) (top left);
Fourier coefficients of u(θ), ûk (magenta) (top right);
Approximate Fourier coefficients of u(θ), û∗k (magenta) (bottom left);
u versus w = F−1

N FNu (bottom right).
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5.4 Fourier series approximation: the Dirichlet Kernel

The objective of this section is to obtain numerical approximations of functions expressed by their
Fourier series expansion on the torus, i.e.

u(θ) =
∑
k∈Z

ûke
2πkθi, θ ∈ T . (5.22)

We assume here that u ∈ A� for some 	 > 0 and u takes real values for real arguments, i.e.

u(θ) = u(θ), ∀θ ∈ T.

The Fourier coefficients of u are defined by

ûk =

∫
T
u(θ)e−2πkθidθ, k ∈ Z. (5.23)

Since u takes real values for real arguments, û−k = ûk, ∀k ∈ Z.

Indeed, û−k =
∫
T u(θ)e

−2π(−k)θidθ =
∫
T u(θ)e

−2πkθidθ =
∫
T u(θ)e

−2πkθidθ = ûk.

Thanks to this property we can express u in the following way:

u(θ) =

∞∑
k=1

û−ke
2π(−k)θi + û0 +

∞∑
k=1

ûke
2πkθi

=

∞∑
k=1

ûke2πkθi + û0 +

∞∑
k=1

ûke
2πkθi

= û0 + 2Re

( ∞∑
k=1

ûke
2πkθi

)
, θ ∈ T. (5.24)

Definition 5.12 Dirichlet Kernel

Given M ∈ N, the Dirichlet Kernel of order M is the function:

DM : T −→ R

θ �−→ DM (θ) :=

M∑
k=−M

e2πkθi .
(5.25)

�

Proposition

DM (θ) = 1 + 2
M∑
k=1

cos(2πkθ) =
sin((2M + 1)πθ)

sin(πθ)
, ∀θ ∈ T.

Proof.
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Figure 5.3: Dirichlet Kernel DM (θ) =

M∑
k=−M

e2πkθi, θ ∈ T.

Definition 5.14 Convolution

The convolution between two functions u, v : T −→ C is the function u ∗ v defined by

u ∗ v : T −→ C

θ �−→ (u ∗ v)(θ) :=
∫
T
u(η)v(θ − η)dη .

(5.26)

�

Proposition

The convolution of a real analytic function u : T −→ R with the M−th order Dirichlet Kernel DM

is the M−th partial sum approximation of the Fourier series expansion of u.

More explicitly, if u(θ) =
∑
k∈Z

ûke
2kπθi and uM (θ) =

M∑
k=−M

ûke
2kπθi, then:

uM = u ∗DM . (5.27)
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5.5 Fourier series approximation by means of the IDFT

This section is devoted to providing the numerical procedures necessary to approximate a function
defined by its Fourier series expansion approximated from a finite list of its Fourier coefficients.
It must be taken into account that what is sought is to obtain the evaluation of the function in
a finite collection of points, in each of which the series must be approximated by a finite partial
sum.
As seen in the previous Section 5.4, functions given by their Fourier series expansion on the
torus, i.e.

u(θ) =
∑
k∈Z

ûke
2πkθi, θ ∈ T . (5.28)

with Fourier coefficients

ûk =

∫
T
u(θ)e−2πkθidθ, k ∈ Z. (5.29)

can be expressed as

u(θ) = û0 + 2Re

( ∞∑
k=1

ûke
2πkθi

)
, θ ∈ T. (5.30)

Let

uM (θ) = û0 + 2Re

(
M∑
k=1

ûke
2πkθi

)
, θ ∈ T (5.31)

be the M–th partial sum of (5.30).
Given û0, û1, . . . , ûM , we want to compute uM (θ) by evaluation in a mesh (equidistibuted)
(t0, t1, . . . , tN−1, tN ), with N = 2M and tn = n

N , ∀n = 0, 1, . . . , N . Notice that the partition has
N + 1 terminal points. Nonetheless, u(tM ) = u(t0), since e2πi = 1. Therefore, it is enough to
evaluate uM in (t0, t1, . . . , tN−1).
Let w = [w(1), w(2), . . . , w(N)] ∈ l2(ZN ) with

w(n+1) = uM (tn) = û0+2Re

(
M∑
k=1

ûke
2πktni

)
= û0+2Re

(
M∑
k=1

ûkW
−kn
N

)
, ∀n = 0, 1, . . . , N−1 ,

where WN = e−
2π
N

i.
We will distinguish two cases5:

(i) n = 2m, m = 0, 1, . . . ,M − 1.

w(2m+ 1) = û0 + 2Re

(
M∑
k=1

ûkW
−2km
N

)
= û0 + 2Re

(
M∑
k=1

ûkW
−km
M

)

= û0 + 2Re

(
M−1∑
k=0

ûk+1W
−km
M W−m

M

)
= û0 + 2Re

(
W−m

M

M−1∑
k=0

ûk+1W
−km
M

)

= û0 + 2Re

(
W−m

M

M−1∑
k=0

X(k + 1)W−km
M

)
= û0 + 2Re

(
MW−m

M x(m+ 1)
)
= û0 + 2M Re

(
W−m

M x(m+ 1)
)
,

where x = F−1
M X, X = [X(1), X(2), . . . , X(M)] and X(k + 1) = ûk+1, ∀k = 0, 1, . . . ,M − 1.

5Notice that WM = W 2
N .
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(ii) n = 2m+ 1, m = 0, 1, . . . ,M − 1.

w(2m+ 2) = û0 + 2Re

(
M∑
k=1

ûkW
−k(2m+1)
N

)
= û0 + 2Re

(
M∑
k=1

ûkW
−2km
M W−k

N

)

= û0 + 2Re

(
M∑
k=1

ûk+1W
−km
M W−k

M

)

= û0 + 2Re

(
M−1∑
k=0

ûk+1W
−(k+1)m
M W

−(k+1)
N

)

= û0 + 2Re

(
W−m

M

M−1∑
k=0

ûk+1W
−(k+1)
N W−km

M

)

= û0 + 2Re

(
W−m

M

M−1∑
k=0

Y (k + 1)W−km
M

)
= û0 + 2Re

(
M(W−m

M y(m+ 1)
)
= û0 + 2M Re

(
W−m

M y(m+ 1)
)
,

where

y = F−1
M Y , Y = [Y (1), Y (2), . . . , Y (M)] and Y (k+ 1) = ûk+1W

−(k+1)
N , ∀k = 0, 1, . . . ,M − 1.

Summarizing,

w(2m+ 1) = û0 + 2M Re
(
W−m

M x(m+ 1)
)
, ∀m = 0, 1, . . . ,M − 1, (5.32)

w(2m+ 2) = û0 + 2M Re
(
W−m

M y(m+ 1)
)
, ∀m = 0, 1, . . . ,M − 1. (5.33)

with

x = F−1
M X, X(k + 1) = ûk+1, ∀k = 0, 1, . . . ,M − 1

y = F−1
M Y , Y (k + 1) = ûk+1W

−(k+1)
N , ∀k = 0, 1, . . . ,M − 1

Now, by the shift theorem (Proposition 5.5 part (d) frequency shifting, m = 1)

FM [W 0
Mx(1),W−1

M x(2), . . . ,W
−(M−1)
M x(M)] = [X(M), X(1), . . . , X(M − 1)] = SMX . (5.34)

On the other hand, by the same argument,

FM [W 0
My(1),W−1

M y(2), . . . ,W
−(M−1)
M y(M)] = [Y (M), Y (1), . . . , Y (M − 1)] = SMY . (5.35)

Consequently, relations (5.32) and (5.33) can be written as

[w(1), w(3), . . . , w(2M − 1)] = û0 + 2M Re
(
F−1
M SMX

)
(5.36)

[w(2), w(4), . . . , w(2M)] = û0 + 2M Re
(
F−1
M SMY

)
, (5.37)

with

X = [X(1), X(2), . . . X(M)] = [û1, û2, . . . , ûM ] = FMx

Y = [Y (1), Y (2), . . . Y (M)] = [û1W
−1
N , û2W

−2
N , . . . , ûMW−M

N ] = FMy .

Finally, in spite of the fact that X is known and Y can be therefore computed directly, we go
further providing a relationship between X and Y through the DFT that will turn out to be more
efficient as far as numerical computation is concerned.



176 Numerical aspects related to Fourier series, discrete Fourier transform (DFT), and cohomological equations

Let Z = [Z(1), Z(2), . . . , Z(N)] = [0·W 0
N , û1 ·W−1

N , . . . , ûM ·W−M
N , 0·W−(M+1)

N , . . . , 0·W−(N−1)
N ] =

[0, Y, 0M−1] = SN [Y, 0M ] ∈ l2(ZN ), and T = SN [X, 0M ] = [0, X, 0M ] = [0, v̂1, . . . , v̂M , 0, . . . , 0︸ ︷︷ ︸
M−1zeros

].

Thus, R−1
N T = [0 ·W 0

N , v̂1 ·W−1
N , . . . , v̂M ·W−M

N , 0, . . . , 0] = [0, Y, 0M−1] = SN [Y, 0M ] = Z.
Hence, T = RNZ and By the shift theorem (Proposition 5.5 part (d) time shifting, m = 1)
F−1
N T = SNF−1

N Z. Therefore, Z = FNS−1
N F−1

N T = FNS−1
N F−1

N SN [X, 0M ].
On the other hand, Z = SN [Y, 0M ], so

[Y, 0M ] = FNS−1
N F−1

N T = FNS−1
N F−1

N SN [X, 0M ].

Then, Y is performed by the M first components of the latter vector, which does nor require the
products [û1 ·W−1

N , . . . , ûM ·W−M
N ] =: Y to be computed directly, being the time of computation

and the corresponding error reduced6.

6This algorithm has been implemented in a Matlab� function named IDFTAPPROX.m which is showed inAppendix
II.2
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5.6 Cohomological equations and the Floquet transformation

See Appendix II.3.
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5.7 The KAM procedure

The algorithm followed to implement the KAM procedure ws described in 2.4 and 3.2 with the
corresponding links to that parts which are necessary to reproduce the whole process (See II.4).
The following tables show the results obtained in one particular example which is detailed in
greater extension in Chapter 6.
Let 	 > 0, a, b ∈ R+, ω ∈ DC(γ, ν), and U = C \ {− 1

a i,
1
a i}.

The exapmple is defined by:

ψ : T� × U −→ T� × C
(θ, z) �−→ ψ(θ, z) := (θ + ω, arctan(az) + b sin(2πθ)) .

(5.38)

As usual, we denote by f(θ, z) the second component of the skew–product, that is,

f : T� × U −→ C
(θ, z) �−→ f(θ, z) := arctan(az) + b sin(2πθ) .

(5.39)

�
The initial guess is a curve κ0 obtained from the orbit of a point (θ0, x0) (forward or backward)
subjected to a previous smoothing process. N is the number of points calculated for the orbit
and N0 is the number of them discarded. The average of the curve is p. Λ0 and λ0 represent the
Lyapunov exponent and the Lyapunov multiplier of the curve κ0, respectively. τ0 is the initial
guess for the translation parameter and τn is the translation parameter obtained after n iterations.
Finally, ‖En‖ is the invariance error after n iterations and en(p) is the average error. This value
should be zero when the average of κ0 is equal to p. The difference is produced because of the
propagation of computational errors.

Stable invariant curves

n < κn > Λn λn ‖En‖ = supθ∈T |En(θ)| |en(p)| = | < κn > −p|

0 1.11530030834 −1.42097756798 0.241477840472 4.93328710727e− 06 0

1 1.11530030834 −1.42097771529 0.241477804901 8.19850516867e− 09 0

2 1.11530030834 −1.42097771529 0.241477804901 9.31448094501e− 11 0

Parameters
a = 6.8
b = 1.62
ω = 1+

√
5

2 ≈ 1.618033988749895
Initial proposal (κ0, τ0)
θ0 = 0
x0 = 1
N = 10000000
N0 = 128
Initial characteristic features
p = 1.115300308339138
Λ0 = −1.420977567979511
λ0 = 0.2414778404719825
det(Ω0) = 1.996578052326427
τ0 = 0
‖E0‖ = max

θ∈T
(|E0(θ)|) = 4.933287107267148e− 06
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|e0(p)| = | < κ0 > −p| = 0

Number of KAM iterations: n = 2

Final characteristic features

Λn = −1.420977715285497

λn = 0.2414778049008537

τn = −3.900965064576669e− 08

det(Ωn) = 1.996577812178111

‖En‖ = max
θ∈T

(|E(θ)|) = 9.314480945012101e− 11

|en(p)| = | < κn > −p| = 0

Figure 5.4: Curve obtained after n iterations
x = κn(θ)(magenta) (left);
Translated curve x = κn(θ + ω) (light green) (center);
x = f(θ, κn(θ)) (dark green) and the error function En(θ) (right).

Figure 5.5: Symmetry curves θ0 = 0 , x0 = 1 with N = 107.
x = κn(θ) (magenta)
x = γn(θ) = −κn(θ +

1
2) (purple)

x = ηn(θ) =
1
2(κn(θ) + γn(θ)) (light green)
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n < κn > Λn λn ‖En‖ = supθ∈T |En(θ)| |en(p)| = | < κn > −p|

0 1.11530030834 −1.42097756798 0.241477840472 3.13447635114e− 06 0

1 1.11530030834 −1.42097754127 0.241477846923 1.04472829751e− 08 4.4408920985e− 16

2 1.11530030834 −1.42097754127 0.241477846923 1.25859706492e− 10 4.4408920985e− 16

Parameters

a = 6.8

b = 1.62

ω = 1+
√
5

2 ≈ 1.618033988749895

Initial proposal (κ0, τ0)

θ0 = 0

x0 = 1

N = 10000000

N0 = 128

Initial characteristic features

p = 1.115300308339138

Λ0 = −1.420977567979511

λ0 = 0.2414778404719825

det(Ω0) = 1.996578052326427

τ0 = 0

‖E0‖ = max
θ∈T

(|E0(θ)|) = 3.134476351140947e− 06

|e0(p)| = | < κ0 > −p| = 0

Number of KAM iterations: n = 2

Final characteristic features

Λn = −1.420977541265186

λn = 0.2414778469229001

τn = −5.25003669794802e− 08

det(Ωn) = 1.996578138176017

‖En‖ = max
θ∈T

(|E(θ)|) = 1.258597064916809e− 10

|en(p)| = | < κn > −p| = 4.440892098500626e− 16
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Figure 5.6: Curve obtained after n iterations
x = κn(θ)(magenta) (left);
Translated curve x = κn(θ + ω) (light green) (center);
x = f(θ, κn(θ)) (dark green) and the error function En(θ) (right).

Figure 5.7: Symmetry curves θ0 = 0 , x0 = 1 with N = 107.
x = κn(θ) (magenta)
x = γn(θ) = −κn(θ +

1
2) (purple)

x = ηn(θ) =
1
2(κn(θ) + γn(θ)) (light green)

n < κn > Λn λn ‖En‖ = supθ∈T |En(θ)| |en(p)| = | < κn > −p|

0 −1.11530055032 −1.42097805145 0.241477723726 3.05875921325e− 06 0

1 −1.11530055032 −1.42097795532 0.241477746939 3.34431080571e− 08 4.4408920985e− 16

2 −1.11530055032 −1.42097795532 0.241477746939 4.57780300568e− 11 1.99840144433e− 15

Parameters

a = 6.8

b = 1.62

ω = 1+
√
5

2 ≈ 1.618033988749895

Initial proposal (κ0, τ0)

θ0 = 0
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x0 = −1

N = 10000000

N0 = 128

Initial characteristic features

p = −1.115300550317159

Λ0 = −1.420978051445764

λ0 = 0.2414777237256241

det(Ω0) = 1.996577577281046

τ0 = 0

‖E0‖ = max
θ∈T

(|E0(θ)|) = 3.058759213248052e− 06

|e0(p)| = | < κ0 > −p| = 0

Number of KAM iterations: n = 2

Final characteristic features

Λn = −1.420977955316531

λn = 0.2414777469386935

τn = −5.744774538529812e− 08

det(Ωn) = 1.996578028748249

‖En‖ = max
θ∈T

(|E(θ)|) = 4.577803005676686e− 11

|en(p)| = | < κn > −p| = 1.998401444325282e− 15

Figure 5.8: Curve obtained after n iterations
x = κn(θ)(magenta) (left);
Translated curve x = κn(θ + ω) (light green) (center);
x = f(θ, κn(θ)) (dark green) and the error function En(θ) (right).
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Figure 5.9: Symmetry curves θ0 = 0 , x0 = 1 with N = 107.
x = κn(θ) (magenta)
x = γn(θ) = −κn(θ +

1
2) (purple)

x = ηn(θ) =
1
2(κn(θ) + γn(θ)) (light green)

n < κn > Λn λn ‖En‖ = supθ∈T |En(θ)| |en(p)| = | < κn > −p|

0 −1.11530055032 −1.42097805145 0.241477723726 1.03987595645e− 06 0

1 −1.11530055032 −1.42097787817 0.241477765567 3.69311680115e− 08 8.881784197e− 16

2 −1.11530055032 −1.42097787817 0.241477765567 3.58276588012e− 09 2.44249065418e− 15

Parameters
a = 6.8
b = 1.62
ω = 1+

√
5

2 ≈ 1.618033988749895
Initial proposal (κ0, τ0)
θ0 = 0
x0 = −1
N = 10000000
N0 = 128
Initial characteristic features
p = −1.115300550317159
Λ0 = −1.420978051445764
λ0 = 0.2414777237256241
det(Ω0) = 1.996577577281046
τ0 = 0
‖E0‖ = max

θ∈T
(|E0(θ)|) = 1.039875956454495e− 06

|e0(p)| = | < κ0 > −p| = 0
Number of KAM iterations: n = 2
Final characteristic features
Λn = −1.42097787817254
λn = 0.2414777655672513
τn = −1.402031841840645e− 07
det(Ωn) = 1.996577368507178
‖En‖ = max

θ∈T
(|E(θ)|) = 3.582765880120126e− 09

|en(p)| = | < κn > −p| = 2.442490654175344e− 15
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Figure 5.10: Curve obtained after n iterations
x = κn(θ)(magenta) (left);
Translated curve x = κn(θ + ω) (light green) (center);
x = f(θ, κn(θ)) (dark green) and the error function En(θ) (right).

Figure 5.11: Symmetry curves θ0 = 0 , x0 = 1 with N = 107.
x = κn(θ) (magenta)
x = γn(θ) = −κn(θ +

1
2) (purple)

x = ηn(θ) =
1
2(κn(θ) + γn(θ)) (light green)

The following example shows an unstable invariant curve with spline interpolation for the seed.

n < κn > Λn λn ‖En‖ = supθ∈T |En(θ)| |en(p)| = | < κn > −p|

0 −3.29574701041e− 08 0.751526426994 2.12023393012 3.1482287252e− 06 0

1 −3.29574703253e− 08 0.751526498008 2.12023408069 2.8583364213e− 09 2.21191940532e− 16

2 −3.29574704534e− 08 0.751526498008 2.12023408069 6.66282955708e− 12 3.49250437992e− 16

Parameters

a = 6.8

b = 1.62

ω = 1+
√
5

2 ≈ 1.618033988749895

Initial proposal (κ0, τ0)
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θ0 = 0

x0 = 0

N = 10000000

N0 = 128

Initial characteristic features

p = −3.295747010411697e− 08

Λ0 = 0.7515264269943018

λ0 = 2.120233930123497

det(Ω0) = 1.983649446320672

τ0 = 0

‖E0‖ = max
θ∈T

(|E0(θ)|) = 3.148228725199931e− 06

|e0(p)| = | < κ0 > −p| = 0

Number of KAM iterations: n = 2

Final characteristic features

Λn = 0.7515264980077757

λn = 2.120234080688679

τn = −6.547116112843343e− 08

det(Ωn) = 1.98364969603699

‖En‖ = max
θ∈T

(|E(θ)|) = 6.662829557082055e− 12

|en(p)| = | < κn > −p| = 3.492504379917958e− 16

Figure 5.12: Curve obtained after n iterations
x = κn(θ)(magenta) (left);
Translated curve x = κn(θ + ω) (light green) (center);
x = f(θ, κn(θ)) (dark green) and the error function En(θ) (right).
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Figure 5.13: Symmetry curves θ0 = 0 , x0 = 1 with N = 107.
x = κn(θ) (magenta)
x = γn(θ) = −κn(θ +

1
2) (purple)

x = ηn(θ) =
1
2(κn(θ) + γn(θ)) (light green)

n < κn > Λn λn ‖En‖ = supθ∈T |En(θ)| |en(p)| = | < κn > −p|

0 1.86330473196e− 09 0.75152651734 2.12023412168 5.8619805865e− 07 0

1 1.8633049648e− 09 0.751526498008 2.12023408069 5.1409186815e− 12 2.32833624225e− 16

2 1.86330520927e− 09 0.751526498008 2.12023408069 7.01423272764e− 12 4.77308929248e− 16

Parameters
a = 6.8
b = 1.62
ω = 1+

√
5

2 ≈ 1.618033988749895
Initial proposal (κ0, τ0)
θ0 = 0
x0 = 0
N = 10000000
N0 = 128
Initial characteristic features
p = 1.863304731962491e− 09
Λ0 = 0.7515265173397319
λ0 = 2.120234121676952
det(Ω0) = 1.983649244512972
τ0 = 0
‖E0‖ = max

θ∈T
(|E0(θ)|) = 5.861980586496784e− 07

|e0(p)| = | < κ0 > −p| = 0
Number of KAM iterations: n = 2
Final characteristic features
Λn = 0.7515264980077548
λn = 2.120234080688635
τn = −8.513563132896642e− 08
det(Ωn) = 1.983649696036903
‖En‖ = max

θ∈T
(|E(θ)|) = 7.014232727641702e− 12

|en(p)| = | < κn > −p| = 4.773089292475703e− 16
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Figure 5.14: Curve obtained after n iterations
x = κn(θ)(magenta) (left);
Translated curve x = κn(θ + ω) (light green) (center);
x = f(θ, κn(θ)) (dark green) and the error function En(θ) (right).

Figure 5.15: Symmetry curves θ0 = 0 , x0 = 1 with N = 107.
x = κn(θ) (magenta)
x = γn(θ) = −κn(θ +

1
2) (purple)

x = ηn(θ) =
1
2(κn(θ) + γn(θ)) (light green)

Notice that the three curves are, in fact, the same since this curve
is self–symmetric.

n < κn > Λn λn ‖En‖ = supθ∈T |En(θ)| |en(p)| = | < κn > −p|

0 0.590406740555 −0.509019427517 0.601084697043 6.07732360267e− 05 0

Parameters

a = 6.8

b = 1.82

ω = 1+
√
5

2 ≈ 1.618033988749895

Initial proposal (κ0, τ0)

θ0 = 0
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x0 = 1

N = 10000000

N0 = 1024

Initial characteristic features

p = 0.5904067405545206

Λ0 = −0.5090194275165796

λ0 = 0.6010846970426238

det(Ω0) = 46.1951214269993

τ0 = 0

‖E0‖ = max
θ∈T

(|E0(θ)|) = 6.077323602671214e− 05

|e0(p)| = | < κ0 > −p| = 0

Number of KAM iterations: n = 0

Final characteristic features

Λn = −0.5090194275165796

λn = 0.6010846970426238

τn = −7.324208908281058e− 08

det(Ωn) = 46.1951214269993

‖En‖ = max
θ∈T

(|E(θ)|) = 6.077323602671214e− 05

|en(p)| = | < κn > −p| = 0

Figure 5.16: Curve obtained after n iterations
x = κn(θ)(magenta) (left);
Translated curve x = κn(θ + ω) (light green) (center);
x = f(θ, κn(θ)) (dark green) and the error function En(θ) (right).
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Figure 5.17: Symmetry curves θ0 = 0 , x0 = 1 with N = 107.
x = κn(θ) (magenta)
x = γn(θ) = −κn(θ +

1
2) (purple)

x = ηn(θ) =
1
2(κn(θ) + γn(θ)) (light green)

n < κn > Λn λn ‖En‖ = supθ∈T |En(θ)| |en(p)| = | < κn > −p|

0 −0.590406726398 −0.509019376445 0.601084727741 3.98600345086e− 05 0

Parameters

a = 6.8

b = 1.82

ω = 1+
√
5

2 ≈ 1.618033988749895

Initial proposal (κ0, τ0)

θ0 = 0

x0 = −1

N = 10000000

N0 = 1024

Initial characteristic features

p = −0.5904067263981806

Λ0 = −0.5090193764446215

λ0 = 0.601084727741197

det(Ω0) = 46.19558497466932

τ0 = 0

‖E0‖ = max
θ∈T

(|E0(θ)|) = 3.986003450862086e− 05

|e0(p)| = | < κ0 > −p| = 0

Number of KAM iterations: n = 0

Final characteristic features

Λn = −0.5090193764446215

λn = 0.601084727741197

τn = −1.358955629788376e− 07

det(Ωn) = 46.19558497466932

‖En‖ = max
θ∈T

(|E(θ)|) = 3.986003450862086e− 05

|en(p)| = | < κn > −p| = 0
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Figure 5.18: Curve obtained after n iterations
x = κn(θ)(magenta) (left);
Translated curve x = κn(θ + ω) (light green) (center);
x = f(θ, κn(θ)) (dark green) and the error function En(θ) (right).

Figure 5.19: Symmetry curves θ0 = 0 , x0 = 1 with N = 107.
x = κn(θ) (magenta)
x = γn(θ) = −κn(θ +

1
2) (purple)

x = ηn(θ) =
1
2(κn(θ) + γn(θ)) (light green)

n < κn > Λn λn ‖En‖ = supθ∈T |En(θ)| |en(p)| = | < κn > −p|

0 3.13072670441e− 09 0.193406444853 1.21337586368 1.87069028474e− 05 0

1 3.13072665784e− 09 0.193403136375 1.21337184926 7.72329917504e− 09 4.65708975576e− 17

2 3.13072696055e− 09 0.193403136048 1.21337184887 1.84614323239e− 08 2.56139936774e− 16

Parameters

a = 6.8

b = 1.82

ω = 1+
√
5

2 ≈ 1.618033988749895

Initial proposal (κ0, τ0)

θ0 = 0
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x0 = 0

N = 10000000

N0 = 1024

Initial characteristic features

p = 3.130726704412596e− 09

Λ0 = 0.1934064448532904

λ0 = 1.213375863684317

det(Ω0) = 19.49054356302629

τ0 = 0

‖E0‖ = max
θ∈T

(|E0(θ)|) = 1.870690284744292e− 05

|e0(p)| = | < κ0 > −p| = 0

Number of KAM iterations: n = 2

Final characteristic features

Λn = 0.1934031360480563

λn = 1.213371848866551

τn = −1.05779693622118e− 07

det(Ωn) = 19.49275527026337

‖En‖ = max
θ∈T

(|E(θ)|) = 1.846143232392429e− 08

|en(p)| = | < κn > −p| = 2.561399367735473e− 16

Figure 5.20: Curve obtained after n iterations
x = κn(θ)(magenta) (left);
Translated curve x = κn(θ + ω) (light green) (center);
x = f(θ, κn(θ)) (dark green) and the error function En(θ) (right).
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Figure 5.21: Symmetry curves θ0 = 0 , x0 = 1 with N = 107.
x = κn(θ) (magenta)
x = γn(θ) = −κn(θ +

1
2) (purple)

x = ηn(θ) =
1
2(κn(θ) + γn(θ)) (light green)

n < κn > Λn λn ‖En‖ = supθ∈T |En(θ)| |en(p)| = | < κn > −p|

0 8.05162793094e− 09 −0.407063725217 0.665601773333 0.00070520531343 0

Parameters

a = 6.8

b = 1.84

ω = 1+
√
5

2 ≈ 1.618033988749895

Initial proposal (κ0, τ0)

θ0 = 0

x0 = 1

N = 10000000

N0 = 128

Initial characteristic features

p = 8.051627930935152e− 09

Λ0 = −0.4070637252170804

λ0 = 0.6656017733325256

det(Ω0) = 23.31026525875345

τ0 = 0

‖E0‖ = max
θ∈T

(|E0(θ)|) = 0.0007052053134297687

|e0(p)| = | < κ0 > −p| = 0

Number of KAM iterations: n = 0

Final characteristic features

Λn = −0.4070637252170804

λn = 0.6656017733325256

τn = −1.041867063577868e− 07

det(Ωn) = 23.31026525875345

‖En‖ = max
θ∈T

(|E(θ)|) = 0.0007052053134297687

|en(p)| = | < κn > −p| = 0
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Figure 5.22: Curve obtained after n iterations
x = κn(θ)(magenta) (left);
Translated curve x = κn(θ + ω) (light green) (center);
x = f(θ, κn(θ)) (dark green) and the error function En(θ) (right).

Figure 5.23: Symmetry curves θ0 = 0 , x0 = 1 with N = 107.
x = κn(θ) (magenta)
x = γn(θ) = −κn(θ +

1
2) (purple)

x = ηn(θ) =
1
2(κn(θ) + γn(θ)) (light green)

n < κn > Λn λn ‖En‖ = supθ∈T |En(θ)| |en(p)| = | < κn > −p|

0 1.11530031925 −1.42097748324 0.241477860935 2.81484447884e− 06 0

1 1.11530031925 −1.42097749529 0.241477858024 2.04363060521e− 08 4.4408920985e− 16

2 1.11530031925 −1.42097749529 0.241477858024 1.22414088392e− 09 0

Parameters

a = 6.8

b = 1.62

ω = 1+
√
5

2 ≈ 1.618033988749895

Initial proposal (κ0, τ0)

θ0 = 0
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x0 = 1

N = 10000000

N0 = 256

Initial characteristic features

p = 1.115300319245528

Λ0 = −1.420977483238893

λ0 = 0.2414778609349648

det(Ω0) = 1.996578066171518

τ0 = −9.182297182144148e− 08

‖E0‖ = max
θ∈T

(|E0(θ)|) = 2.814844478837841e− 06

|e0(p)| = | < κ0 > −p| = 0

Number of KAM iterations: n = 2

Final characteristic features

Λn = −1.4209774952928

λn = 0.2414778580242132

τn = −9.182294006889637e− 08

det(Ωn) = 1.996578275066772

‖En‖ = max
θ∈T

(|E(θ)|) = 1.224140883923697e− 09

|en(p)| = | < κn > −p| = 0

n < κn > Λn λn ‖En‖ = supθ∈T |En(θ)| |en(p)| = | < κn > −p|

0 1.11530031925 −1.42097748324 0.241477860935 2.81484447884e− 06 0

1 1.11530031925 −1.42097749529 0.241477858024 2.04363060521e− 08 4.4408920985e− 16

2 1.11530031925 −1.42097749529 0.241477858024 1.22414088392e− 09 0

3 1.11530031925 −1.42097749529 0.241477858024 4.93978905902e− 11 1.7763568394e− 15

4 1.11530031925 −1.42097749529 0.241477858024 3.66341938488e− 11 3.77475828373e− 15

Parameters

a = 6.8

b = 1.62

ω = 1+
√
5

2 ≈ 1.618033988749895

Initial proposal (κ0, τ0)

θ0 = 0

x0 = 1

N = 10000000

N0 = 256

Initial characteristic features

p = 1.115300319245528

Λ0 = −1.420977483238893

λ0 = 0.2414778609349648

det(Ω0) = 1.996578066171518

τ0 = 0

‖E0‖ = max
θ∈T

(|E0(θ)|) = 2.814844478837841e− 06

|e0(p)| = | < κ0 > −p| = 0

Number of KAM iterations: n = 4

Final characteristic features

Λn = −1.420977495292836

λn = 0.2414778580242045
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τn = −9.182293798437145e− 08

det(Ωn) = 1.996578274678293

‖En‖ = max
θ∈T

(|E(θ)|) = 3.663419384884819e− 11

|en(p)| = | < κn > −p| = 3.774758283725532e− 15

n < κn > Λn λn ‖En‖ = supθ∈T |En(θ)| |en(p)| = | < κn > −p|

0 1.11530031341 −1.42097761065 0.241477830169 1.81826142032e− 06 0

1 1.11530031341 −1.42097772454 0.241477802666 3.31766090047e− 12 6.66133814775e− 16

2 1.11530031341 −1.42097772454 0.241477802666 3.66339903764e− 13 1.33226762955e− 15

3 1.11530031341 −1.42097772454 0.241477802666 5.22675299156e− 13 2.44249065418e− 15

4 1.11530031341 −1.42097772454 0.241477802666 1.46968662239e− 12 5.10702591328e− 15

Parameters

a = 6.8

b = 1.62

ω = 1+
√
5

2 ≈ 1.618033988749895

Initial proposal (κ0, τ0)

θ0 = 0

x0 = 1

N = 10000000

N0 = 256

Initial characteristic features

p = 1.115300313413207

Λ0 = −1.420977610646873

λ0 = 0.2414778301687604

det(Ω0) = 1.996578017355469

τ0 = 0

‖E0‖ = max
θ∈T

(|E0(θ)|) = 1.818261420316603e− 06

|e0(p)| = | < κ0 > −p| = 0

Number of KAM iterations: n = 4

Final characteristic features

Λn = −1.420977724538793

λn = 0.2414778026663881

τn = −3.708213172918934e− 08

det(Ωn) = 1.99657780883491

‖En‖ = max
θ∈T

(|E(θ)|) = 1.469686622392079e− 12

|en(p)| = | < κn > −p| = 5.10702591327572e− 15
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n < κn > Λn λn ‖En‖ = supθ∈T |En(θ)| |en(p)| = | < κn > −p|

0 −2.68897208283e− 09 0.751526320597 2.12023370454 9.03460874557e− 07 0

1 −2.68897197805e− 09 0.751526428125 2.12023393252 4.22203411101e− 09 1.04776472175e− 16

2 −2.68897189656e− 09 0.751526428125 2.12023393252 5.87811104465e− 12 1.86269283314e− 16

3 −2.68897167536e− 09 0.751526428125 2.12023393252 1.17963579637e− 12 4.07464057354e− 16

4 −2.68897127954e− 09 0.751526428125 2.12023393252 2.931912132e− 13 8.03286284604e− 16

5 −2.68897049954e− 09 0.751526428125 2.12023393252 4.14899322049e− 13 1.583288909e− 15

6 −2.68896885804e− 09 0.751526428125 2.12023393252 2.32362458953e− 13 3.22478696935e− 15

7 −2.68896557505e− 09 0.751526428125 2.12023393252 2.09432034022e− 13 6.50778308963e− 15

8 −2.68895917204e− 09 0.751526428125 2.12023393252 1.59154098468e− 13 1.29107897071e− 14

9 −2.68894636603e− 09 0.751526428125 2.12023393252 1.32320667309e− 13 2.5716802942e− 14

Parameters

a = 6.8

b = 1.62

ω = 1+
√
5

2 ≈ 1.618033988749895

Initial proposal (κ0, τ0)

θ0 = 0

x0 = 0

N = 10000000

N0 = 256

Initial characteristic features

p = −2.688972082828913e− 09

Λ0 = 0.7515263205973447

λ0 = 2.120233704537071

det(Ω0) = 1.98364937809758

τ0 = 0

‖E0‖ = max
θ∈T

(|E0(θ)|) = 9.034608745572825e− 07

|e0(p)| = | < κ0 > −p| = 0

Number of KAM iterations: n = 9

Final characteristic features

Λn = 0.7515264281245346

λn = 2.120233932519855

τn = −1.085811362433058e− 08

det(Ωn) = 1.983648720495918

‖En‖ = max
θ∈T

(|E(θ)|) = 1.323206673085968e− 13

|en(p)| = | < κn > −p| = 2.571680294197911e− 14
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n < κn > Λn λn ‖En‖ = supθ∈T |En(θ)| |en(p)| = | < κn > −p|

0 1.86332048016e− 09 0.751526517341 2.12023412168 5.86419266924e− 07 0

1 1.86332055001e− 09 0.751526498009 2.12023408069 1.13568007919e− 12 6.98509810361e− 17

2 1.86332058494e− 09 0.751526498009 2.12023408069 5.70862191743e− 14 1.04776471761e− 16

3 1.86332073628e− 09 0.751526498009 2.12023408069 7.40865459657e− 14 2.56120264764e− 16

4 1.86332100404e− 09 0.751526498009 2.12023408069 2.88680339999e− 14 5.23882359632e− 16

5 1.86332158613e− 09 0.751526498009 2.12023408069 3.07942539434e− 14 1.1059738702e− 15

6 1.86332250584e− 09 0.751526498009 2.12023408069 2.06818218507e− 14 2.02567845708e− 15

7 1.8633245548e− 09 0.751526498009 2.12023408069 1.79229880944e− 14 4.07464057478e− 15

8 1.86332868765e− 09 0.751526498009 2.12023408069 1.45149622014e− 14 8.20749030049e− 15

9 1.86333679036e− 09 0.751526498009 2.12023408069 1.23151604097e− 14 1.63102041292e− 14

Parameters

a = 6.8

b = 1.62

ω = 1+
√
5

2 ≈ 1.618033988749895

Initial proposal (κ0, τ0)

θ0 = 0

x0 = 0

N = 10000000

N0 = 256

Initial characteristic features

p = 1.863320480159815e− 09

Λ0 = 0.7515265173412089

λ0 = 2.120234121680084

det(Ω0) = 1.98364924451342

τ0 = 0

‖E0‖ = max
θ∈T

(|E0(θ)|) = 5.86419266923599e− 07

|e0(p)| = | < κ0 > −p| = 0

Number of KAM iterations: n = 9

Final characteristic features

Λn = 0.7515264980089791

λn = 2.120234080691231

τn = −8.513673455284271e− 08

det(Ωn) = 1.98364969604328

‖En‖ = max
θ∈T

(|E(θ)|) = 1.231516040971472e− 14

|en(p)| = | < κn > −p| = 1.631020412922066e− 14
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n < κn > Λn λn ‖En‖ = supθ∈T |En(θ)| |en(p)| = | < κn > −p|

0 1.86332048016e− 09 0.751526517341 2.12023412168 5.86419266924e− 07 0

1 1.86332055001e− 09 0.751526498009 2.12023408069 1.13568007919e− 12 6.98509810361e− 17

2 1.86332058494e− 09 0.751526498009 2.12023408069 5.70862191743e− 14 1.04776471761e− 16

3 1.86332073628e− 09 0.751526498009 2.12023408069 7.40865459657e− 14 2.56120264764e− 16

4 1.86332100404e− 09 0.751526498009 2.12023408069 2.88680339999e− 14 5.23882359632e− 16

5 1.86332158613e− 09 0.751526498009 2.12023408069 3.07942539434e− 14 1.1059738702e− 15

6 1.86332250584e− 09 0.751526498009 2.12023408069 2.06818218507e− 14 2.02567845708e− 15

7 1.8633245548e− 09 0.751526498009 2.12023408069 1.79229880944e− 14 4.07464057478e− 15

8 1.86332868765e− 09 0.751526498009 2.12023408069 1.45149622014e− 14 8.20749030049e− 15

9 1.86333679036e− 09 0.751526498009 2.12023408069 1.23151604097e− 14 1.63102041292e− 14

10 1.86335306564e− 09 0.751526498009 2.12023408069 1.07708782497e− 14 3.25854827677e− 14

11 1.86338565113e− 09 0.751526498009 2.12023408069 8.96764415492e− 15 6.51709655354e− 14

12 1.86345084537e− 09 0.751526498009 2.12023408069 7.85407353697e− 15 1.30365214731e− 13

13 1.86358136193e− 09 0.751526498009 2.12023408069 6.61832414709e− 15 2.60881773255e− 13

14 1.86384222042e− 09 0.751526498009 2.12023408069 6.15525422591e− 15 5.2174026285e− 13

Parameters

a = 6.8

b = 1.62

ω = 1+
√
5

2 ≈ 1.618033988749895

Initial proposal (κ0, τ0)

θ0 = 0

x0 = 0

N = 10000000

N0 = 256

Initial characteristic features

p = 1.863320480159815e− 09

Λ0 = 0.7515265173412089

λ0 = 2.120234121680084

det(Ω0) = 1.98364924451342

τ0 = 0

‖E0‖ = max
θ∈T

(|E0(θ)|) = 5.86419266923599e− 07

|e0(p)| = | < κ0 > −p| = 0

Number of KAM iterations: n = 14

Final characteristic features

Λn = 0.7515264980089793

λn = 2.120234080691231

τn = −8.513730535354296e− 08

det(Ωn) = 1.983649696043277

‖En‖ = max
θ∈T

(|E(θ)|) = 6.15525422591442e− 15

|en(p)| = | < κn > −p| = 5.217402628500924e− 13
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n < κn > Λn λn ‖En‖ = supθ∈T |En(θ)| |en(p)| = | < κn > −p|

0 1.86332048016e− 09 0.751526517341 2.12023412168 5.86419266924e− 07 0

1 1.86332055001e− 09 0.751526498009 2.12023408069 1.13568007919e− 12 6.98509810361e− 17

2 1.86332058494e− 09 0.751526498009 2.12023408069 5.70862191743e− 14 1.04776471761e− 16

3 1.86332073628e− 09 0.751526498009 2.12023408069 7.40865459657e− 14 2.56120264764e− 16

4 1.86332100404e− 09 0.751526498009 2.12023408069 2.88680339999e− 14 5.23882359632e− 16

5 1.86332158613e− 09 0.751526498009 2.12023408069 3.07942539434e− 14 1.1059738702e− 15

6 1.86332250584e− 09 0.751526498009 2.12023408069 2.06818218507e− 14 2.02567845708e− 15

7 1.8633245548e− 09 0.751526498009 2.12023408069 1.79229880944e− 14 4.07464057478e− 15

8 1.86332868765e− 09 0.751526498009 2.12023408069 1.45149622014e− 14 8.20749030049e− 15

9 1.86333679036e− 09 0.751526498009 2.12023408069 1.23151604097e− 14 1.63102041292e− 14

10 1.86335306564e− 09 0.751526498009 2.12023408069 1.07708782497e− 14 3.25854827677e− 14

11 1.86338565113e− 09 0.751526498009 2.12023408069 8.96764415492e− 15 6.51709655354e− 14

12 1.86345084537e− 09 0.751526498009 2.12023408069 7.85407353697e− 15 1.30365214731e− 13

13 1.86358136193e− 09 0.751526498009 2.12023408069 6.61832414709e− 15 2.60881773255e− 13

14 1.86384222042e− 09 0.751526498009 2.12023408069 6.15525422591e− 15 5.2174026285e− 13

Parameters

a = 6.8

b = 1.62

ω = 1+
√
5

2 ≈ 1.618033988749895

Initial proposal (κ0, τ0)

θ0 = 0

x0 = 0

N = 10000000

N0 = 256

Initial characteristic features

p = 1.863320480159815e− 09

Λ0 = 0.7515265173412089

λ0 = 2.120234121680084

det(Ω0) = 1.98364924451342

τ0 = 0

‖E0‖ = max
θ∈T

(|E0(θ)|) = 5.86419266923599e− 07

|e0(p)| = | < κ0 > −p| = 0

Number of KAM iterations: n = 14

Final characteristic features

Λn = 0.7515264980089793

λn = 2.120234080691231

τn = −8.513730535354296e− 08

det(Ωn) = 1.983649696043277

‖En‖ = max
θ∈T

(|E(θ)|) = 6.15525422591442e− 15

|en(p)| = | < κn > −p| = 5.217402628500924e− 13
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n < κn > Λn λn ‖En‖ = supθ∈T |En(θ)| |en(p)| = | < κn > −p|

0 1.11530031341 −1.42097761065 0.241477830169 1.81826142032e− 06 0

1 1.11530031341 −1.42097772454 0.241477802666 3.31766090047e− 12 6.66133814775e− 16

2 1.11530031341 −1.42097772454 0.241477802666 3.66339903764e− 13 1.33226762955e− 15

3 1.11530031341 −1.42097772454 0.241477802666 5.22675299156e− 13 2.44249065418e− 15

4 1.11530031341 −1.42097772454 0.241477802666 1.46968662239e− 12 5.10702591328e− 15

a = 6.8

b = 1.62

N = 10000000

N0 = 256

ω = 1+
√
5

2 ≈ 1.618033988749895

p = 1.115300313413207

n = 4

Λn = −1.420977724538793

λn = 0.2414778026663881

τn = −3.708213172918934e− 08

‖E0‖ = sup
θ∈T

(|E0(θ)|) = 1.818261420316603e− 06

‖En‖ = sup
θ∈T

(|E(θ)|) = 1.469686622392079e− 12

det(Ω0) = 1.996578017355469

det(Ωn) = 1.99657780883491

n < κn > Λn λn ‖En‖ = supθ∈T |En(θ)| |en(p)| = | < κn > −p|

0 −1.11530030417 −1.42097757442 0.241477838916 1.14711105148e− 06 0

1 −1.11530030417 −1.42097750652 0.241477855312 2.44644605755e− 12 1.11022302463e− 15

2 −1.11530030417 −1.42097750652 0.241477855312 7.24616551907e− 13 1.7763568394e− 15

3 −1.11530030417 −1.42097750652 0.241477855312 2.0928732574e− 12 3.99680288865e− 15

4 −1.11530030417 −1.42097750652 0.241477855312 6.02923071497e− 12 7.1054273576e− 15

a = 6.8

b = 1.62

N = 10000000

N0 = 256

ω = 1+
√
5

2 ≈ 1.618033988749895

p = −1.115300304170598

n = 4

Λn = −1.420977506523903

λn = 0.2414778553121505

τn = 3.606618546312675e− 08

‖E0‖ = max
θ∈T

(|E0(θ)|) = 1.147111051480465e− 06

‖En‖ = max
θ∈T

(|E(θ)|) = 6.029230714966026e− 12

det(Ω0) = 1.996577861978446

det(Ωn) = 1.996578190831171
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n < κn > Λn λn ‖En‖ = supθ∈T |En(θ)| |en(p)| = | < κn > −p|

0 −2.68897208283e− 09 0.751526320597 2.12023370454 9.03460874557e− 07 0

1 −2.68897197805e− 09 0.751526428125 2.12023393252 4.22203411101e− 09 1.04776472175e− 16

2 −2.68897189656e− 09 0.751526428125 2.12023393252 5.87811104465e− 12 1.86269283314e− 16

3 −2.68897167536e− 09 0.751526428125 2.12023393252 1.17963579637e− 12 4.07464057354e− 16

4 −2.68897127954e− 09 0.751526428125 2.12023393252 2.931912132e− 13 8.03286284604e− 16

a = 6.8

b = 1.62

N = 10000000

N0 = 256

ω = 1+
√
5

2 ≈ 1.618033988749895

p = −2.688972082828913e− 09

n = 4

Λn = 0.7515264281245347

λn = 2.120233932519855

τn = −1.08580854217983e− 08

‖E0‖ = max
θ∈T

(|E0(θ)|) = 9.034608745572825e− 07

‖En‖ = max
θ∈T

(|E(θ)|) = 2.931912132003164e− 13

det(Ω0) = 1.98364937809758

det(Ωn) = 1.983648720495924

n < κn > Λn λn ‖En‖ = supθ∈T |En(θ)| |en(p)| = | < κn > −p|

0 1.11530031925 −1.42097748324 0.241477860935 2.81484447884e− 06 0

1 1.11530031925 −1.42097749529 0.241477858024 2.04363060521e− 08 4.4408920985e− 16

2 1.11530031925 −1.42097749529 0.241477858024 1.22414088392e− 09 0

3 1.11530031925 −1.42097749529 0.241477858024 4.93978905902e− 11 1.7763568394e− 15

4 1.11530031925 −1.42097749529 0.241477858024 3.66341938488e− 11 3.77475828373e− 15

n < κn > Λn λn ‖En‖ = supθ∈T |En(θ)| |en(p)| = | < κn > −p|

0 1.11530031341 −1.42097761065 0.241477830169 1.81826142032e− 06 0

1 1.11530031341 −1.42097772454 0.241477802666 3.31766090047e− 12 6.66133814775e− 16

2 1.11530031341 −1.42097772454 0.241477802666 3.66339903764e− 13 1.33226762955e− 15

3 1.11530031341 −1.42097772454 0.241477802666 5.22675299156e− 13 2.44249065418e− 15

4 1.11530031341 −1.42097772454 0.241477802666 1.46968662239e− 12 5.10702591328e− 15
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n < κn > Λn λn ‖En‖ = supθ∈T |En(θ)| |en(p)| = | < κn > −p|

0 −1.11530030417 −1.42097757442 0.241477838916 1.14711105148e− 06 0

1 −1.11530030417 −1.42097750652 0.241477855312 2.44644605755e− 12 1.11022302463e− 15

2 −1.11530030417 −1.42097750652 0.241477855312 7.24616551907e− 13 1.7763568394e− 15

3 −1.11530030417 −1.42097750652 0.241477855312 2.0928732574e− 12 3.99680288865e− 15

4 −1.11530030417 −1.42097750652 0.241477855312 6.02923071497e− 12 7.1054273576e− 15

n < κn > Λn λn ‖En‖ = supθ∈T |En(θ)| |en(p)| = | < κn > −p|

0 −3.29574701041e− 08 0.751526426994 2.12023393012 1.00495609567e− 06 0

1 −3.29574702787e− 08 0.75152651564 2.12023411807 2.59163795774e− 09 1.74625218996e− 16

2 −3.29574703602e− 08 0.75152651564 2.12023411807 1.28089691143e− 11 2.56116988302e− 16

3 −3.29574705814e− 08 0.75152651564 2.12023411807 4.61497552674e− 12 4.77308928834e− 16

4 −3.29574710471e− 08 0.75152651564 2.12023411807 7.10349142546e− 12 9.42976177284e− 16

Parameters

a = 6.8

b = 1.62

ω = 1+
√
5

2 ≈ 1.618033988749895

Initial proposal (κ0, τ0)

θ0 = 0

x0 = 1

N = 10000000

N0 = 128

Initial characteristic features

p = −3.295747010411697e− 08

Λ0 = 0.7515264269943018

λ0 = 2.120233930123497

det(Ω0) = 1.983649446320672

τ0 = 0

‖E0‖ = max
θ∈T

(|E0(θ)|) = 1.004956095673748e− 06

|e0(p)| = | < κ0 > −p| = 0

Number of KAM iterations: n = 4

Final characteristic features

Λn = 0.7515265156396997

λn = 2.120234118072486

τn = −1.19051621416144e− 09

det(Ωn) = 1.983649153752742

‖En‖ = max
θ∈T

(|E(θ)|) = 7.103491425456302e− 12

|en(p)| = | < κn > −p| = 9.429761772838928e− 16

Unstable invariant curve
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n < κn > Λn λn ‖En‖ = supθ∈T |En(θ)| |en(p)| = | < κn > −p|

0 −2.68897208283e− 09 0.751526320597 2.12023370454 9.03460874557e− 07 0

1 −2.68897197805e− 09 0.751526428125 2.12023393252 4.22203411101e− 09 1.04776472175e− 16

2 −2.68897189656e− 09 0.751526428125 2.12023393252 5.87811104465e− 12 1.86269283314e− 16

3 −2.68897167536e− 09 0.751526428125 2.12023393252 1.17963579637e− 12 4.07464057354e− 16

4 −2.68897127954e− 09 0.751526428125 2.12023393252 2.931912132e− 13 8.03286284604e− 16

5 −2.68897049954e− 09 0.751526428125 2.12023393252 4.14899322049e− 13 1.583288909e− 15

6 −2.68896885804e− 09 0.751526428125 2.12023393252 2.32362458953e− 13 3.22478696935e− 15

7 −2.68896557505e− 09 0.751526428125 2.12023393252 2.09432034022e− 13 6.50778308963e− 15

8 −2.68895917204e− 09 0.751526428125 2.12023393252 1.59154098468e− 13 1.29107897071e− 14

9 −2.68894636603e− 09 0.751526428125 2.12023393252 1.32320667309e− 13 2.5716802942e− 14

10 −2.68892068415e− 09 0.751526428125 2.12023393252 1.09474100512e− 13 5.13986803928e− 14

11 −2.68886907592e− 09 0.751526428125 2.12023393252 9.10874111954e− 14 1.0300691373e− 13

12 −2.68876623199e− 09 0.751526428125 2.12023393252 7.65636248248e− 14 2.05850841836e− 13

13 −2.68856047428e− 09 0.751526428125 2.12023393252 6.47806102933e− 14 4.1160854903e− 13

14 −2.68814870275e− 09 0.751526428125 2.12023393252 5.43810413504e− 14 8.23380083684e− 13

15 −2.68732534595e− 09 0.751526428125 2.12023393252 4.61384775104e− 14 1.64673688371e− 12

16 −2.6856786207e− 09 0.751526428125 2.12023393252 3.89824875914e− 14 3.29346212558e− 12

17 −2.68238520515e− 09 0.751526428125 2.12023393252 3.29066115874e− 14 6.58687768384e− 12

18 −2.67579825761e− 09 0.751526428125 2.12023393252 2.79883448273e− 14 1.31738252187e− 11

19 −2.66262438582e− 09 0.751526428125 2.12023393252 2.38898097364e− 14 2.63476970047e− 11

n < κn > Λn λn ‖En‖ = supθ∈T |En(θ)| |en(p)| = | < κn > −p|

0 1.86332048016e− 09 0.751526517341 2.12023412168 5.86419266924e− 07 0

1 1.86332055001e− 09 0.751526498009 2.12023408069 1.13568007919e− 12 6.98509810361e− 17

2 1.86332058494e− 09 0.751526498009 2.12023408069 5.70862191743e− 14 1.04776471761e− 16

3 1.86332073628e− 09 0.751526498009 2.12023408069 7.40865459657e− 14 2.56120264764e− 16

4 1.86332100404e− 09 0.751526498009 2.12023408069 2.88680339999e− 14 5.23882359632e− 16

5 1.86332158613e− 09 0.751526498009 2.12023408069 3.07942539434e− 14 1.1059738702e− 15

6 1.86332250584e− 09 0.751526498009 2.12023408069 2.06818218507e− 14 2.02567845708e− 15

7 1.8633245548e− 09 0.751526498009 2.12023408069 1.79229880944e− 14 4.07464057478e− 15

8 1.86332868765e− 09 0.751526498009 2.12023408069 1.45149622014e− 14 8.20749030049e− 15

9 1.86333679036e− 09 0.751526498009 2.12023408069 1.23151604097e− 14 1.63102041292e− 14

10 1.86335306564e− 09 0.751526498009 2.12023408069 1.07708782497e− 14 3.25854827677e− 14

11 1.86338565113e− 09 0.751526498009 2.12023408069 8.96764415492e− 15 6.51709655354e− 14

12 1.86345084537e− 09 0.751526498009 2.12023408069 7.85407353697e− 15 1.30365214731e− 13

13 1.86358136193e− 09 0.751526498009 2.12023408069 6.61832414709e− 15 2.60881773255e− 13

14 1.86384222042e− 09 0.751526498009 2.12023408069 6.15525422591e− 15 5.2174026285e− 13

15 1.86436396069e− 09 0.751526498009 2.12023408069 5.25480641486e− 15 1.0434805257e− 12

16 1.86540748778e− 09 0.751526498009 2.12023408069 4.90313839925e− 15 2.08700761872e− 12

17 1.86749444883e− 09 0.751526498009 2.12023408069 4.12317228992e− 15 4.17396867012e− 12

18 1.87166831272e− 09 0.751526498009 2.12023408069 3.63126669377e− 15 8.34783256377e− 12

19 1.880016122e− 09 0.751526498009 2.12023408069 3.48808445612e− 15 1.66956418439e− 11
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n < κn > Λn λn ‖En‖ = supθ∈T |En(θ)| |en(p)| = | < κn > −p|

0 1.86332048016e− 09 0.751526517341 2.12023412168 5.86419266924e− 07 0

1 1.86332055001e− 09 0.751526498009 2.12023408069 1.13568007919e− 12 6.98509810361e− 17

2 1.86332058494e− 09 0.751526498009 2.12023408069 5.70862191743e− 14 1.04776471761e− 16

3 1.86332073628e− 09 0.751526498009 2.12023408069 7.40865459657e− 14 2.56120264764e− 16

4 1.86332100404e− 09 0.751526498009 2.12023408069 2.88680339999e− 14 5.23882359632e− 16

5 1.86332158613e− 09 0.751526498009 2.12023408069 3.07942539434e− 14 1.1059738702e− 15

6 1.86332250584e− 09 0.751526498009 2.12023408069 2.06818218507e− 14 2.02567845708e− 15

7 1.8633245548e− 09 0.751526498009 2.12023408069 1.79229880944e− 14 4.07464057478e− 15

8 1.86332868765e− 09 0.751526498009 2.12023408069 1.45149622014e− 14 8.20749030049e− 15

9 1.86333679036e− 09 0.751526498009 2.12023408069 1.23151604097e− 14 1.63102041292e− 14

10 1.86335306564e− 09 0.751526498009 2.12023408069 1.07708782497e− 14 3.25854827677e− 14

11 1.86338565113e− 09 0.751526498009 2.12023408069 8.96764415492e− 15 6.51709655354e− 14

12 1.86345084537e− 09 0.751526498009 2.12023408069 7.85407353697e− 15 1.30365214731e− 13

13 1.86358136193e− 09 0.751526498009 2.12023408069 6.61832414709e− 15 2.60881773255e− 13

14 1.86384222042e− 09 0.751526498009 2.12023408069 6.15525422591e− 15 5.2174026285e− 13

15 1.86436396069e− 09 0.751526498009 2.12023408069 5.25480641486e− 15 1.0434805257e− 12

16 1.86540748778e− 09 0.751526498009 2.12023408069 4.90313839925e− 15 2.08700761872e− 12

17 1.86749444883e− 09 0.751526498009 2.12023408069 4.12317228992e− 15 4.17396867012e− 12

18 1.87166831272e− 09 0.751526498009 2.12023408069 3.63126669377e− 15 8.34783256377e− 12

19 1.880016122e− 09 0.751526498009 2.12023408069 3.48808445612e− 15 1.66956418439e− 11

n < κn > Λn λn ‖En‖ = supθ∈T |En(θ)| |en(p)| = | < κn > −p|

0 4.76471550321e− 10 1.7811320816 5.93657330125 2.31443690966e− 08 0

1 4.76471591067e− 10 1.78113208167 5.93657330164 6.44256392132e− 15 4.07464057767e− 17

2 4.76471628903e− 10 1.78113208167 5.93657330164 4.93920067974e− 15 7.85823539242e− 17

3 4.7647170312e− 10 1.78113208167 5.93657330164 3.79540287878e− 15 1.52799021559e− 16

4 4.76471832635e− 10 1.78113208167 5.93657330164 2.94401836263e− 15 2.82314382704e− 16

n < κn > Λn λn ‖En‖ = supθ∈T |En(θ)| |en(p)| = | < κn > −p|

0 3.98768775472e− 07 −3.01060856251 0.0492616908183 2.30120842322e− 05 0

1 3.98768775361e− 07 −3.01060791127 0.0492617228997 1.9509617846e− 10 1.11130828559e− 16

2 3.98768775361e− 07 −3.01060791127 0.0492617228996 9.75242654723e− 10 1.11130828559e− 16

3 3.98768775027e− 07 −3.01060791127 0.0492617228996 7.6948926864e− 09 4.44523314236e− 16

4 3.98768774138e− 07 −3.01060791127 0.0492617228996 6.05788270823e− 08 1.33356994271e− 15
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n < κn > Λn λn ‖En‖ = supθ∈T |En(θ)| |en(p)| = | < κn > −p|

0 1.67096936354e− 07 −3.01060857585 0.0492616901613 9.936411417e− 06 0

1 1.6709693654e− 07 −3.01060830296 0.0492617036044 2.81870667586e− 11 1.86269268425e− 16

2 1.67096936633e− 07 −3.01060830296 0.0492617036044 2.11359268164e− 10 2.79403902638e− 16

3 1.67096937099e− 07 −3.01060830296 0.0492617036044 2.3440134395e− 09 7.45077126641e− 16

4 1.67096937006e− 07 −3.01060830296 0.0492617036044 2.50229554579e− 08 6.51942492428e− 16
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Chapter 6

Numerical aspects related to some
examples

6.1 Jäger’s model

In this section, the model presented will serve as a support to develop all the algorithms built in
previous sections and chapters, as well as their subsequent numerical implementation1.

Let us define the extended quasi–periodic skew–product:

Definition 6.1 Jäger’s model

Let 	 > 0, a, b ∈ R+, ω ∈ DC(γ, ν), and U = C \ {− 1
a i,

1
a i}.

ψ : T� × U −→ T� × C
(θ, z) �−→ ψ(θ, z) := (θ + ω, arctan(az) + b sin(2πθ)) .

(6.1)

As usual, we denote by f(θ, z) the second component of the skew–product, that is,

f : T� × U −→ C
(θ, z) �−→ f(θ, z) := arctan(az) + b sin(2πθ) .

(6.2)

�

Remark 6.2

ψ is invertible and

ψ−1 : T� × V −→ T� × U
(θ, z) �−→ ψ−1(θ, z) := (θ − ω, g(θ, z)) ,

(6.3)

where g(θ, z) = 1
a tan(z − b sin(2π(θ − ω))), ∀(θ, z) ∈ T� × V.

1This model, with slight differences, was presented by Tobias H. Jäger in 2003 [34] and has been deeply analyzed
by Àngel Jorba, Francisco Javier Muñoz–Almaraz, and Joan Carles Tatjer in 2018 [36]. Here we expose an extended
version complexified with the aim of adapting the model to the previous exposition.
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We take Lemma 3.5 as a starting point to certify the performance of the algorithms described for
obtaining invariant curves. And we will do it without taking into account some specific symmetry
properties of this particular example that, on the other hand, may be used for other specific
purposes. Thus, the study of this skew–product does not detract from the generality of the
example. We will see, first of all, that the hypotheses for the KAM procedure are satisfied. In this
sense we remark the following properties of the skew–product (6.1).

Proposition 6.3

Let ψ = Rω × f be the skew–product (6.1). We consider the closed disk D(0, R), with 0 < R < 1
a .

Then, the following properties hold:

(i) The spatial derivative of the function f (6.2) is

∂f

∂z
(θ, z) =

a

1 + a2z2
, ∀(θ, z) ∈ T� × U . (6.4)

and ∂f
∂z

(
D(0, R)

)
= D(z0, R∗), with z0 =

a
1−a4R4 and R∗ = a3R2

1−a4R4 .

Moreover, there are positive constants K1 and K∗
1 such that

0 < K∗
1 :=

a

1 + a2R2
≤
∣∣∣∣∂f∂z (θ, z)

∣∣∣∣ ≤ a

1− a2R2
:= K1, ∀(θ, z) ∈ T� × D(0, R). (6.5)

(ii) The second spatial derivative of the function f is

∂2f

∂z2
(θ, z) = − 2a3z

(1 + a2z2)2
, ∀(θ, z) ∈ T� × U . (6.6)

Moreover, there is a positive constant K2 such that∣∣∣∣∂2f

∂z2
(θ, z)

∣∣∣∣ ≤ 2a3R

(1− a2R2)2
:= K2, ∀(θ, z) ∈ T� × D(0, R). (6.7)

(iii) ∃α ∈ (0, π) such that ∣∣∣∣Arg
∂f

∂z
(θ, z)

∣∣∣∣ ≤ α, ∀(θ, z) ∈ T� × D(0, R) . (6.8)

More specifically, α = arctan
a2R2

√
1− a4R4

∈ (0, π/2).

Proof.

(i) The first partial derivative of f with respect to the spatial coordinate is

∂f

∂z
(θ, z) =

a

1 + (az)2
, ∀z ∈ U = C \ {−1

a
i,
1

a
i}.

The image of the closed disk

D(0, R) = {z =
r

a
eti : (r, t) ∈ [0, aR]× (−π, π]}

can be written as

∂f

∂z

(
D(0, R)

)
= { a

1 + (az)2
: z =

1

a
reti : (r, t) ∈ [0, aR]× (−π, π]}.
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First we show that, given any r ∈ [0, aR], the image of the circle ∂D(0, 1ar) under
∂f
∂z is the

circle ∂D(cr, Rr), with cr =
a

1−r4
and Rr =

ar2

1−r4
.

On the one hand, if z = 1
are

ti, with (r, t) ∈ [0, aR]× (−π, π], then

∂f

∂z
(θ, z) =

a

1 + (az)2
=

a

1 + r2e2ti

=
a

1 + r2e2ti
1 + r2e−2ti

1 + r2e−2ti
=

a

|1 + r2e2ti|2 (1 + r2e−2ti).

By Euler’s formula, e2ti = cos(2t) + i sin(2t) and e−2ti = cos(2t)− i sin(2t). Therefore,

|1 + r2e2ti|2 = (1 + r2 cos(2t))2 + r2 sin2(2t) = 1 + 2r2 cos(2t) + r4 .

It follows that, ∂f
∂z (θ, z) = u(r, t) + iv(r, t) with

{
u(r, t) = a

1+2r2 cos(2t)+r4
(1 + r2 cos(2t))

v(r, t) = a
1+2r2 cos(2t)+r4

(−r2 sin(2t))
(r, t) ∈ [0, aR]× (−π, π] . (6.9)

On the other hand, for each r ∈ [0, aR], the distance from ∂f
∂z (θ,

1
are

ti) to the real point cr is

∣∣∣∣∂f∂z (θ, 1areti)− cr

∣∣∣∣ =

∣∣∣∣ a

1 + r2e2ti
− a

1− r4

∣∣∣∣
=

∣∣∣∣ 1

1− r4
ar2

1 + r2e2ti
(r2 + e2ti)

∣∣∣∣
=

ar2

1− r4
|r2 + e2ti|
|1 + r2e2ti| .

Since |r2 + e2ti| = |1 + r2e2ti| = (1 + 2r2 cos(2t) + r4)
1
2 , we have∣∣∣∣∂f∂z (θ, 1areti)− cr

∣∣∣∣ = ar2

1− r4
= Rr .

This proves that ∂f
∂z

(
∂D(0, 1ar)

)
= ∂D(cr, Rr), ∀r ∈ [0, aR]. These non-concentric circles

are all centered in the real line, and the corresponding closed disks D(cr, Rr) constitute an
increasing family of sets with respect to r. In particular,

K∗
1 = caR−RaR =

a

1 + a2R2
≤ cr−Rr =

a

1 + r2
≤ a

1− r2
= cr+Rr ≤ a

1− a2R2
= caR+RaR = K1.

Thus, we may write finally:

∂f

∂z
(D(0, R)) =

∂f

∂z

⎛⎝ ⋃
r∈[0,aR]

∂D(0,
1

a
r)

⎞⎠ =
⋃

r∈[0,aR]

∂f

∂z
(∂D(0,

1

a
r))

=
⋃

r∈[0,aR]

∂D(cr, Rr) =
⋃

r∈[0,aR]

D(cr, Rr) = lim
r→aR

D(cr, Rr)

= D(caR, RaR) = D(z0, R∗).
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Figure 6.1: Image of the closed disk D(0, R) under∂f∂z

(ii) The second partial derivative of f with respect to the spatial coordinate is

∂2f

∂z2
(θ, z) = − 2a3z

(1 + (az)2)2
, ∀z ∈ U = C \ {−1

a
i,
1

a
i}.

The image of the closed disk

D(0, R) = {z =
r

a
eti : (r, t) ∈ [0, aR]× (−π, π]}

can be written as

∂f

∂z

(
D(0, R)

)
=

{
− 2a3z

(1 + (az)2)2
: z =

1

a
reti : (r, t) ∈ [0, aR]× (−π, π]

}
.

Let z = x+ yi = 1
are

ti ∈ D(0, R), i.e. (r, t) ∈ [0, aR]× (−π, π]. Then,

∂2f

∂z2
(θ, z) =

∂2f

∂z2
(θ,

1

a
reti) = − 2a3 1

are
ti

(1 + (reti)2)2
= − 2a2reti

(1 + r2e2ti)2
(1 + r2e−2ti)2

(1 + r2e−2ti)2

= −2a2r
eti(1 + r2e−2ti)2

|1 + r2e2ti|4 =
−2a2r

|1 + r2e2ti|4 e
ti(1 + 2r2e−2ti + r4e−4ti)

=
−2a3r

|1 + r2e2ti|4 (e
ti + 2r2e−ti + r4e−3ti) .

By means of Euler’s formula, complex exponentials can be written as follows:

eti + 2r2e−ti + r4e−3ti = cos t+ i sin t+ 2r2(cos(−t) + i sin(−t)) + r4(cos(−3t) + i sin(−3t))

= cos t+ 2r2 cos t+ r4 cos(3t) + i(sin t− 2r2 sin t− r4 sin(3t))

= (1 + 2r2) cos t+ r4 cos(3t) + i((1− 2r2) sin t− r4 sin(3t)) ,
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and

|1 + r2e2ti|2 = (1 + r2 cos(2t))2 + r4 sin2(2t) = 1 + 2r2 cos(2t) + r4 cos2(2t) + r4 sin2(2t)

= 1 + 2r2 cos(2t) + r4 .

It follows that
∂2f

∂z2
(θ, z) =

∂2f

∂z2
(θ,

1

a
reti) = u(r, t) + iv(r, t) ,

with{
u(r, t) = − 2a2r

(1+2r2 cos(2t)+r4)2
((1 + 2r2) cos t+ r4 cos(3t))

v(r, t) = − 2a2r
(1+2r2 cos(2t)+r4)2

((1− 2r2) sin t− r4 sin(3t))
(r, t) ∈ [0, aR]× (−π, π] .

(6.10)
For each r ∈ [0, aR] these equations represent a closed curve. All the curves of the family
together constitute the image of the closed disk D(0, R), and they are all enclosed inside the
curve corresponding to r = aR. (See Figure 6.2).

Consequently, they are also enclosed inside the close disk D(0,K2), where K2 is the maximum
distance to the origin. In other words,∣∣∣∣∂2f

∂z2
(θ, z)

∣∣∣∣ =
2a3|z|

|1 + a2z2|2 , (θ, z) ∈ T� × U∣∣∣∣∂2f

∂z2
(θ,

1

a
reti)

∣∣∣∣ =
2a2r

1 + 2r2 cos(2t) + r4
, (r, t) ∈ [0, aR]× (−π, π]

Moreover,

2a2r

1 + 2r2 cos(2t) + r4
≤ 2a2r

1− 2r2 + r4
=

2a2r

(1− r2)2
≤ 2a3R

(1− a2R2)2
=: K2 .

Thus, ∣∣∣∣∂2f

∂z2
(θ, z)

∣∣∣∣ ≤ 2a3R

(1− a2R2)2
=: K2, ∀(θ, z) ∈ T� × D(0, R). (6.11)

Figure 6.2: Image of the closed disk D(0, R) under∂
2f

∂z2
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Remark 6.4

Curves given by (6.10) are symmetric with respect to the axes, and there are some points
lying on the real axis:

Im

(
∂2f

∂z2
(θ,

1

a
reti)

)
= 0 ⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

r = 0 , u(0, t) = 0

t = 0 , u(r, t) = − a2r
(1+r2)2

t = π , u(r, π) = a2r
(1+r2)2

t = arccos
(
−1−r2

2r2

)
, u(r, t) = 2a2r3

(1−r2)(1−r4)

t = arccos
(
1−r2

2r2

)
, u(r, t) = − 2a2r3

(1−r2)(1−r4)

.

(iii) The image of the closed disk D(0, R) under ∂f
∂z is the closed disk D(z0, R∗), which is centered

at z0 = a
1−a4R4 placed on the real line and whose radius R∗ = a3R2

a−a4R4 is small enough so
that the disc does not reach to cut the imaginary axis (See Figure 6.1). Therefore, the
maximum principal argument of the disk is the angle α ∈ (0, π2 ) between the positive real
semiaxis and the tangent line from the origin to the circumference ∂D(z0, R∗). By means of
geometric arguments it can be shown that α = arctan R∗√

z20−R∗2 .

Let zα = xα + iyα be the tangent point. zα may be written as

zα = z0 +R∗e(
π
2
+α)i = z0 −R∗ sinα+R∗i cosα.

Thus, {
xα = z0 −R∗ sinα ,
yα = R∗ cosα .

Since triangles 0zαxα and 0zαz0 are right–angled triangles we have:

tanα =
yα
xα

=
R∗√

z20 −R∗2 =
a3R3/(1− a4R4)

a/(1− a4R4)
=

a2R2

√
1− a4R4

.

Moreover,
cosα = 1√

1+tan2 α
=

√
1− a4R4

sinα = tanα cosα = a2R2 .

It follows that {
xα = z0 −R∗ sinα = a

yα = R∗ cosα = a3R2√
1−a4R4

,

α = arctan a2R2√
1−a4R4

, and
∣∣∣Arg

(
∂f
∂z (θ, z)

)∣∣∣ ≤ α, ∀(θ, z) ∈ T� × D(0, R).

There are some important symmetry additional properties in this example. Some of the numerical
results obtained can be better understood if these properties are taken into account, to which we
allude in the following statement.
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Proposition 6.5 Symmetry properties

Let ψ = Rω × f be the skew–product (6.1). Then, the following properties hold:

(i) ψ is invariant under conjugation by the symmetry

S : T� × U −→ T� × U
(θ, z) �−→ S(θ, z) := (θ + 1

2 ,−z) ,
(6.12)

namely, S ◦ ψ = ψ ◦ S.
(ii) If κ : T −→ R is an invariant curve for ψ, i.e.

f(θ, κ(θ)) = κ(θ + ω), ∀θ ∈ T,

then the symmetric curve

γ : T −→ R
θ �−→ γ(θ) := −κ(θ + 1

2) ,

is also an invariant curve for ψ, i.e.

f(θ, γ(θ)) = γ(θ + ω), ∀θ ∈ T,

(iii) If κ : T −→ R is a curve (not necessary invariant for ψ) whose Lyapunov exponent is

Λ(κ) =

∫
T
log

(
∂f

∂z
(θ, κ(θ))

)
dθ ,

then the symmetric curve γ(θ)) = −κ(θ + 1
2), ∀θ ∈ T, has the same Lyapunov exponent, i.e.

Λ(γ) =

∫
T
log

(
∂f

∂z
(θ, γ(θ))

)
dθ = Λ(κ).

(iv) If κ : T −→ R is a curve and γ(θ)) = −κ(θ + 1
2), ∀θ ∈ T, is the corresponding symmetric,

then their Fourier coefficients are related by

γ̂k =

∫
T
γ(θ)e−2πkθidθ = (−1)k+1

∫
T
κ(θ)e−2πkθidθ = (−1)k+1κ̂k, ∀k ∈ Z.

If κ is self–symmetric, all its even Fourier coefficients vanish. In particular, < κ >= k̂0 = 0.

(v) Let κ : T −→ R be a curve (not necessary invariant for ψ) and define the matrix

Ω(κ) =

(
1− λ(κ) −η0(κ)
c0(κ) < c̃(κ)Rλ(κ)η̃(κ) >

)
,

where λ(κ) is the Lyapunov multiplier of the curve, c(κ) is the corresponding Floquet transfor-
mation, and η(κ)(θ) = 1

c(κ)(θ+ω) (θ ∈ T), then the symmetric curve γ(θ) = −κ(θ+ 1
2), ∀θ ∈ T,

has the same determinant, i.e,
detΩ(γ) = detΩ(κ).

In fact Ω(γ) = Ω(κ).
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Proof.

(i) Let (θ, z) ∈ T� × U . Then,
(S ◦ ψ)(θ, z) = S(ψ(θ, z)) = S(θ + ω, f(θ, z)) = (θ + 1

2 + ω,−f(θ, z)).

(ψ◦S)(θ, z) = ψ(S(θ, z)) = ψ(θ+ 1
2 ,−z) = (θ+ 1

2+ω, f(θ+ 1
2 ,−z)) = (θ+ 1

2+ω, (f ◦S)(θ, z)).
Since f(θ, z) = arctan(az) + b sin(2πθ), then (f ◦ S)(θ, z) = f(θ + 1

2 ,−z) = arctan(−az) +
b sin(2π(θ + 1

2)) = − arctan(az) + b sin(2πθ + π) = − arctan(az)− b sin(2πθ) = −f(θ, z).

Thus, f ◦ S = −f and therefore S ◦ ψ = ψ ◦ S.

Remark 6.6

Notice that, in general
S ◦ ψ = ψ ◦ S ⇐⇒ f ◦ S = −f.

Furthermore, differentiating f ◦ S = −f we obtain ∂f
∂z ◦ S = ∂f

∂z . Moreover, inductively we
may also write,

∂kf

∂zk
◦ S = (−1)k+1∂

kf

∂zk
, ∀k = 0, 1, 2, . . . . (6.13)

(ii) Assume that κ is invariant. Then:

γ(θ + ω) = −κ(θ + ω + 1
2) = −f(θ + 1

2 , κ(θ +
1
2)) = −f(θ + 1

2 ,−γ(θ)) = −(f ◦ S)(θ, γ(θ)) =
f(θ, γ(θ)). Therefore, γ is invariant.

(iii) Let mκ(θ) = ∂f
∂z (θ, κ(θ)), θ ∈ T� and mγ(θ) = ∂f

∂z (θ, γ(θ)), θ ∈ T�. Then, applying de
definition of γ and taking into account (6.13), we have:

mγ(θ) = ∂f
∂z (θ, γ(θ)) =

(
∂f
∂z ◦ S

)
(θ, γ(θ)) = ∂f

∂z (θ + 1
2 ,−γ(θ)) = ∂f

∂z (θ + 1
2 , κ(θ + 1

2)) =

mκ(θ +
1
2), ∀θ ∈ T�. It follows that Λ(κ) =

∫
T logmγ(θ)dθ =

∫
T logmκ(θ +

1
2)dθ.

Taking into account the 1–periodicity of the integrand and applying the change of variable
ζ = θ + 1

2 , we get Λ(γ) =
∫
T logmκ(ζ)dζ = Λ(κ).

(iv) Since eπki = (−1)k, ∀k ∈ Z and applying the change of variable ζ = θ + 1
2 , the Fourier

coefficients of γ can be written as

γ̂k =

∫
T
γ(θ)e−2πkθidθ =

∫
T
−κ(θ +

1

2
)e−2πkθidθ = −eπki

∫
T
κ(θ +

1

2
)e−2πk(θ+ 1

2
)idθ

= (−1)k+1

∫
T
κ(ζ)e−2πkζidζ = (−1)k+1κ̂k, ∀k ∈ Z .

If κ is self–symmetric, γ = κ and then κ̂k = (−1)k+1κ̂k. Therefore, if κ is even, κ̂k = 0. In
particular, κ̂0 =< κ >= 0.

(v) This property can be proved following the same scheme as in the above properties.



Appendix I. Fiber bundles, bundle
maps and invariant curves in
skew–products
This appendix lays the foundations in a more general context of the background in which the
entire thesis is focused. It is devoted to introduce the notion of skew–product and some general
definitions related with this smattering. In particular, the concept of invariant section. For a more
complete account on the topic, we refer the reader to [55], [32], [47], [1]. Let us start with some
definitions and basic properties.

I.1 Fiber bundles

Definition I.1 Fiber bundle

Formally, a fiber bundle is a structure (E,B, p, F ) where

(i) E is a topological space called bundle space or total space;

(ii) B is a topological space, usually connected, called base space;

(iii) p : E −→ B is a continuous surjective map of E onto B called the bundle projection; and

(iv) F is a topological space called the fiber,

satisfying the following local triviality condition:

∀θ ∈ B, ∃Uθ ∈ τ(B), namely an open set, and exists a fiber preserving homeomorphism

ϕUθ
: p−1(Uθ) −→ Uθ × F

such that the diagram

p−1(Uθ) ⊆ E

p

��

ϕUθ �� Uθ × F ⊆ B × F

π

��
Uθ ⊆ B

commutes, that is,
p = π ◦ ϕUθ

, over p−1(Uθ)

where π is the canonical projection of the product space Uθ×F , endowed with the product topology,
onto the so–called trivializing neighborhood Uθ.
We denote Fθ = p−1(θ), ∀θ ∈ B which is called the fiber over the point θ of B and it is required
that each Fθ be homeomorphic to F .
We say that a fiber bundle (E,B, p, F ) is differentiable, respectively holomorphic, if E, B, and F
are differentiable manifolds, respectively complex manifolds, and the trivializing maps are diffeo-
morphisms, respectively biholomorphisms.

�
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Remark I.2

The product B×F defines a trivial fiber bundle, (B×F,B, π, F ), where π is the canonical projection
over the base.

Remark I.3

In the above definition we say that the homeomorphism ϕUθ
is fiber preserving because it transforms

fibers over (E,B, p, F ) into the corresponding fibers over (B×F,B, π, F ), that is ϕUθ
(Fθ) = π−1(θ),

where Fθ = p−1(θ) is the fiber of the point θ ∈ B with respect to (E,B, p, F ) and π−1(θ) = {θ}×F
is the fiber of the same point with respect to the trivial fiber bundle (B × F,B, π, F ).

Proof.

(⊆) Let (θ̄, ȳ) ∈ ϕUθ
(Fθ) ⊆ Uθ × F . Then ∃ξ ∈ Fθ such that ϕUθ

(ξ) = (θ̄, ȳ). Since ξ ∈ Fθ

then p(ξ) = θ and we have θ̄ = π(θ̄, ȳ) = π(ϕUθ
(ξ)) = (π ◦ ϕUθ

)(ξ) = p(ξ) = θ. Thus,
(θ̄, ȳ) ∈ π−1(θ).

(⊇) Let (θ̄, ȳ) ∈ π−1(θ) ⊆ Uθ × F . Then π(θ̄, ȳ) = θ ⇒ θ̄ = θ. Since ϕUθ
is a homeomorphism

there is a unique ξ ∈ p−1(Uθ) such that ϕUθ
(ξ) = (θ̄, ȳ). Let θ̃ = p(ξ) ∈ Uθ. Since p = π◦ϕUθ

we have: θ̃ = p(ξ) = (π ◦ ϕUθ
)(ξ) = π(ϕUθ

(ξ)) = π(θ̄, ȳ) = θ̄ = θ. Thence ϕUθ
(ξ) = (θ̄, ȳ)

with p(ξ) = θ, i.e. ξ ∈ p−1(θ) = Fθ. And this means that (θ̄, ȳ) ∈ ϕUθ
(Fθ).

I.2 Bundle maps

Definition I.4 Bundle maps and isomorphisms of fiber bundles

A bundle map is a morphism in the category of fiber bundles.

More precisely, if (E,B, p, F ) and (E′, B′, p′, F ′) are fiber bundles, then a bundle map between
them is a couple of continuous functions (ϕ, ψ) with ϕ : B −→ B′ and ψ : E −→ E′ such that the
following diagram commutes,

E

p

��

ψ �� E′

p′

��
B ϕ

�� B′

i.e. ϕ ◦ p = p′ ◦ ψ.
We define the composition of bundle maps as follows: if (ϕ, ψ) is a bundle map between the
fiber bundles (E,B, p, F ) and (E′, B′, p′, F ′) and (ϕ̃, ψ̃) is a bundle map between the fiber bundles
(E′, B′, p′, F ′) and (E′′, B′′, p′′, F ′′) then the composition is the bundle map

(ϕ̃, ψ̃) ◦ (ϕ, ψ) = (ϕ̃ ◦ ϕ, ψ̃ ◦ ψ) ,

which is a bundle map between the the fiber bundles (E,B, p, F ) and (E′′, B′′, p′′, F ′′) as it is shown
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in the following diagram.

E

p

��

ψ �� E′

p′

��

ψ̃ �� E′′

p′′

��
B ϕ

�� B′
ϕ̃

�� B′′

Since ϕ ◦ p = p′ ◦ψ and ϕ̃ ◦ p′ = p′′ ◦ ψ̃ then (ϕ̃ ◦ϕ) ◦ p = ϕ̃ ◦ (ϕ ◦ p) = ϕ̃ ◦ (p′ ◦ψ) = (ϕ̃ ◦ p′) ◦ψ =
(p′′ ◦ ψ̃) ◦ ψ = p′′ ◦ (ψ̃ ◦ ψ). And this proves the assertion.
On the other hand, a bundle map (ϕ, ψ) between the fiber bundles (E,B, p, F ) and (E′, B′, p′, F ′)
is an isomorphism of fiber bundles if there is another bundle map (ϕ̃, ψ̃) between (E′, B′, p′, F ′)
and (E,B, p, F ) such that

(ϕ̃, ψ̃) ◦ (ϕ, ψ) = (IB, IE) ,

i.e. ϕ̃ ◦ ϕ = IB and ψ̃ ◦ ψ = IE. �

I.3 Cross sections over fiber bundles

Definition I.5 Cross section

A cross section of a fiber bundle (E,B, p, F ) is a continuous map σ : B −→ E such that p◦σ = IB.�

Proposition I.6 (Cross sections)

Every cross section of a trivial fiber bundle (B × F,B, π, F ) has the form:

σ : B −→ E = B × F
θ �−→ σ(θ) = (θ, κ(θ)) ,

where κ : B −→ F is a continuous map uniquely determined by σ.

Proof. Every continuous map σ : B −→ E = B × F has the form σ(θ) = (ι(θ), κ(θ)), θ ∈ B,
where ι : B −→ B and κ : B −→ F are continuous maps uniquely determined by σ. Hence, σ is
a cross section of (E = B × F,B, π, F ) if, and only if, π ◦ σ = IB, that is, ∀θ ∈ B, (π ◦ σ)(θ) =
π(ι(θ), κ(θ)) = ι(θ) = θ. Thus, σ(θ) = (θ, κ(θ)), ∀θ ∈ B.
Conversely, if κ : B −→ F is a continuous map and

σ : B −→ E = B × F
θ �−→ σ(θ) = (θ, κ(θ)) ,

then σ is continuous. Furthermore, ∀θ ∈ B, (π ◦ σ)(θ) = π(θ, κ(θ)) = θ = IB(θ). Therefore,
π ◦ σ = IB and σ is a cross section of the trivial fiber bundle (B × F,B, π, F ).

Remark I.7

It is usual for short to denote the fiber bundle by means of the bundle space, E, when there is no
ambiguity. Then, the set of cross sections is denoted by

Γ(E) = {σ : B −→ E | σ cross section over (E,B, p, F )} .

The latter proposition tells that when it comes to a trivial fiber bundle there is a bijection between
the set of cross sections Γ(B × F ) and the set of continuous functions C0(B,F ).
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I.4 Vector bundles, vector bundle maps and cross sections over
vector bundles

Definition I.8 Vector bundle

Let (E,B, p, F ) be a fiber bundle. We say that it is a vector bundle if:

(i) F is a topological vector space over a field K (usually K = R or K = C);

(ii) For each θ ∈ B, the fiber Fθ = p−1(θ) ⊆ E is a K−vector space isomorphic to F ;

(iii) The trivializing homeomorphisms restricted to the corresponding fibers are vector spaces iso-
morphisms, that is

ϕUθ
|Fθ

: Fθ −→ {θ} × F

is K−linear and bijective for every fixed θ ∈ B.

The dimension of F is called the rank of the vector bundle.
�

A vector bundle may be viewed as a parameterized family of vector spaces.

Remark I.9

The prototypical example of vector bundle is the tangent bundle of a smooth manifold. More
precisely, if M is a smooth n−dimensional manifold, then (TM,M, π,Rn) is a vector bundle of
rank n, where π : TM −→ M is the canonical projection of the tangent bundle onto the manifold.
In this case, the cross sections are the vector fields over the manifold.

Remark I.10

A trivial fiber bundle (B × F,B, π, F ) where F is a K−vector space is a trivial vector bundle. In
this case, all the fibers are isomorphic to F .
Furthermore, if F is a normed space and the base B is compact, then there is an induced normed
structure over the set of cross sections of the trivial vector bundle E = B × F by means of the
norm:

‖ ‖Γ(E) : Γ(E) −→ R
σ = (IB, κ) �−→ ‖σ‖Γ(E) = sup

θ∈B
‖κ(θ)‖F . (I.1)

Proposition I.11 Module structure

Let (E,B, p, F ) be an n−dimensional K−vector bundle. Then the set of cross sections Γ(E) is a
module over the ring C0(B,K) of continuous K−valued functions on B.

Proof. In general, the existence of cross sections in fiber bundles can not be guaranteed. But in
the particular case of a vector bundle, there are always cross sections. Indeed, the so–called zero
section is defined as follows: Given θ ∈ B, the fiber Fθ = p−1(θ) is a K−vector space. Therefore
the map

e : B −→ E
θ �−→ e(θ) = 0Fθ

is well defined. Furthermore, (p ◦ e)(θ) = p(e(θ)) = p(0Fθ
) = θ. Thus, p ◦ e = IB. Additionally,

the zero map is continuous as we will see later. Consequently e ∈ Γ(E) is a cross section.



Skew–product dynamical systems and invariant sections 219

Now we define the module operations.

Notice first that for every σ ∈ Γ(E) and every θ ∈ B, σ(θ) ∈ Fθ = p−1(θ) which is a K−vector
space and then we can define the sum of cross sections and the product of continuous functions
times cross sections in the following natural way.

+ : Γ(E)× Γ(E) −→ Γ(E)
(σ, σ̃) �−→ σ + σ̃

with (σ + σ̃)(θ) = σ(θ) + σ̃(θ), ∀θ ∈ B;

· : C0(B,K)× Γ(E) −→ Γ(E)
(λ, σ) �−→ λσ

with (λσ)(θ) = λ(θ)σ(θ), ∀θ ∈ B.

Definition I.12 Vector bundle map

A vector bundle map between two vector bundles (E,B, p, F ) and (E′, B′, p′, F ′) (over the same
field K) is a bundle map (ϕ, ψ) with the additional requirement that, when restricted to each fiber,
ψ is K−linear, that is, for every θ ∈ B:

ψ|Fθ→F ′
ϕ(θ)

: Fθ = p−1(θ) ⊆ E −→ F ′
ϕ(θ) = (p′)−1(ϕ(θ)) ⊆ E′

is well defined and it is a homomorphism of K−vector spaces.

�

I.5 Skew–product dynamical systems and invariant sections

Definition I.13 Skew–product dynamical system

Let (B×F,B, π, F ) be a trivial fiber bundle with E = B×F the bundle space and let ϕ : B −→ B
be a homeomorphism. A skew–product dynamical system in F over ϕ is a bundle map (ϕ, ψ) of
the fiber bundle (E,B, π, F ) onto itself,

E = B × F

π

��

ψ �� E = B × F

π

��
B ϕ

�� B

that is, ϕ ◦ π = π ◦ ψ.
�

Remark I.14

From this definition we can identify the skew–product with a discrete dynamical system given by
the map ψ which is of the form:

ψ : E = B × F −→ E = B × F
(θ, x) �−→ ψ(θ, x) = (ϕ(θ), f(θ, x)) ,
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where
f : E = B × F −→ F

(θ, x) �−→ f(θ, x) = π̃(ψ(θ, x))

is continuous1 and π̃ : B × F −→ F the natural projection onto the second component.
Indeed, π(ψ(θ, x)) = (π ◦ ψ)(θ, x)) = (ϕ ◦ π)(θ, x) = ϕ(π(θ, x)) = ϕ(θ), ∀(θ, x) ∈ B × F .
Due to this fact, a skew–product (ϕ, ψ) can be referred simply by the map ψ which is written as
ψ = ϕ× f , with ϕ a homeomorphism of the base B and f : E = B × F −→ F continuous.

Definition I.15 Invariant section

Let (ϕ, ψ) be a skew–product dynamical system over (E = B × F,B, π, F ) and σ ∈ Γ(E) a cross
section. We say that σ is an invariant section if σ ◦ ϕ = ψ ◦ σ.

�

Proposition I.16 Invariant sections

Let (B×F,B, π, F ) be a trivial fiber bundle with E = B×F the bundle space, (ϕ, ψ) a skew–product,
and σ ∈ Γ(E) a cross section. Then,

σ ◦ ϕ = ψ ◦ σ ⇐⇒ f(θ, κ(θ)) = κ(ϕ(θ)), ∀θ ∈ B , (I.2)

where f : E −→ F and κ : B −→ F are continuous maps such that σ = IB ×κ and ψ = ϕ× f .

Proof. Lets consider the following commutative diagram:

E = B × F

π

��

ψ �� E = B × F

π

��
B

σ

��

ϕ
�� B

σ

��
E = B × F

ψ �� E = B × F

By Proposition I.6, every cross section σ ∈ Γ(E) of a trivial fiber bundle (B × F,B, π, F ) has
the form:

σ : B −→ E = B × F
θ �−→ σ(θ) = (θ, κ(θ)) ,

where κ : B −→ F is a continuous map uniquely determined by σ. Hence, for every θ ∈ B we
have on one side,

(σ ◦ ϕ)(θ) = σ(ϕ(θ)) = (ϕ(θ), κ(ϕ(θ)))

and, on the other side, taking in account that (ϕ, ψ) is a skew–product, that is

ψ : E = B × F −→ E = B × F
(θ, x) �−→ ψ(θ, x) = (ϕ(θ), f(θ, x)) ,

1We will assume, from the moment being, that f is C1 with respect to the second variable.
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with f : E −→ F continuous, we have:

(ψ ◦ σ)(θ) = ψ(σ(θ)) = ψ(θ, κ(θ)) = (ϕ(θ), f(θ, κ(θ))).

It follows that:
σ ◦ ϕ = ψ ◦ σ ⇐⇒ f(θ, κ(θ))) = κ(ϕ(θ)), ∀θ ∈ B.

Corollary

Let (B×F,B, π, F ) be a trivial fiber bundle with E = B×F the bundle space, (ϕ, ψ) a skew–product,
with ψ = ϕ× f , and σ = IB ×κ ∈ Γ(E) a cross section. Then,
σ is an invariant section under (ϕ, ψ) ⇐⇒ κ is a fixed point of the graph functional

G : C0(B,F ) −→ C0(B,F )
κ �−→ G(κ) = κ̃

where
κ̃ : B −→ F

θ̃ �−→ κ̃(θ̃) := f(ϕ−1(θ̃), κ(ϕ−1(θ̃))) ,

that is, G(κ) = κ.

Proof.
Since ϕ : B −→ B is a homeomorphism, for every θ̃ ∈ B, ∃!θ ∈ B such that θ̃ = ϕ−1(θ). Hence,
by Proposition I.16:

G(κ) = κ ⇐⇒ ∀θ̃ ∈ B, f(ϕ−1(θ̃), κ(ϕ−1(θ̃))) = κ(θ̃)

⇐⇒ ∀θ ∈ B, f(ϕ−1(ϕ(θ)), κ(ϕ−1(ϕ(θ)))) = κ(ϕ(θ))

⇐⇒ ∀θ ∈ B, f(θ, κ(θ)) = κ(ϕ(θ))

⇐⇒ σ = IB ×κ is an invariant section over (ϕ, ψ) .

I.6 Invertibility of bundle maps and skew–products

In this section, we describe the meaning of the invertibility of a bundle map and how it can
be characterized for the particular case of a skew–product. Later we will come up with the
application of these concepts to quasi–periodic skew–products and linear quasi–periodic skew–
products, in order to enable the management of notions like topological conjugacy, linear conjugacy,
and reducibility.

Definition I.18 Invertibility of a bundle map

Let (E,B, p, F ) and (E′, B′, p′, F ′) be two fiber bundles, and (h,H) be a bundle map between them.
Thus, the diagram

E

p

��

H �� E′

p′

��
B

h
�� B′
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commutes, i.e. h ◦ p = p′ ◦H.
We say that (h,H) is invertible if there exist another bundle map (h̃, H̃) from (E′, B′, p′, F ′) onto
(E,B, p, F ), of the form:

E′

p′

��

H̃ �� E

p

��
B′

h̃

�� B

with h̃ ◦ p′ = p ◦ H̃, and such that

(h̃, H̃) ◦ (h,H) = (IB, IE)

(h,H) ◦ (h̃, H̃) = (IB′ , IE′) ,

or, equivalently:

h̃ ◦ h = IB , H̃ ◦H = IE
h ◦ h̃ = IB′ , H ◦ H̃ = IE′ .

E

IE

��

p

��

H �� E′

p′

��

H̃ �� E

p

��
B

IB

��h
�� B′

h̃

�� B

E′

IE′

��

p′

��

H̃ �� E

p

��

H �� E′

p′

��
B′

IB′

��
h̃

�� B
h

�� B′

�

Proposition I.19 Invertibility of skew–products

Let (h,H) be a skew–product2 defined over the trivial fiber bundle (E = B × F,B, π, F ). Assume
that

H(θ, x) = (h(θ), g(θ, x)), ∀(θ, x) ∈ E ,

where h : B −→ B and g : E = B × F −→ F are continuous.
Then, (h,H) is invertible if and only if the following two conditions hold:

(i) h is invertible3.

2See Definition I.13.

3Notice that in our definition of skew–product we have assumed that the first component map h is, in any case,
a homeomorphism, so it is always invertible and moreover, h−1 is also a homeomorphism. With these assumptions,
the inverse of a skew–product remains being a skew–product.
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(ii) For every θ ∈ B, the map

gθ : F −→ F
x �−→ gθ(x) := g(θ, x)

is invertible.

Moreover, in such a case, (h,H)−1 = (h−1, H−1), with

H−1(θ, x) = (h−1(θ), g−1
h−1(θ)

(x), ∀(θ, x) ∈ E .

Proof.

(⇒) Suppose that (h,H) is invertible. Then, there exist a skew–product (h̃, H̃), with

H̃(θ, x) = (h̃(θ), g̃(θ, x)), ∀(θ, x) ∈ E ,

such that

h̃ ◦ h = IB (I.3)

h ◦ h̃ = IB (I.4)

H̃ ◦H = IE (I.5)

H ◦ H̃ = IE (I.6)

From (I.3) and (I.4) we have that h is invertible and h−1 = h̃.

From (I.5) and (I.6) we have that H is invertible and H−1 = H̃, namely ∀(η, y) ∈ E, there
exist a unique (θ, x) ∈ E such that H(θ, x) = (η, y).

Thus, given θ ∈ B and y ∈ F , we take η = h(θ) ∈ B and hence ∃!x ∈ F, such that
g(θ, x) = gθ(x) = y. Therefore, ∀θ ∈ B, ∃!x ∈ F such that gθ(x) = y and gθ is invertible for
every θ ∈ B.

(⇐) Let us assume now that (i) and (ii) hold.

Define h̃ = h−1 and

H̃ : E = B × F −→ F

(θ, x) �−→ H̃(θ, x) := (h−1(θ), g−1
h−1(θ)

(x))
,

i.e. h̃(θ) = h−1(θ) and g̃(θ, x) = g−1
h−1(θ)

(x)).

Now we show that H̃ ◦ H = H ◦ H̃ = IE . Hence (h,H) is invertible as we stated, and
(h,H)−1 = (h̃, H̃).

Indeed,

(H̃ ◦H)(θ, x) = H̃(H(θ, x)) = H̃(h(θ), g(θ, x))

= (h−1(h(θ)), g−1
h−1(h(θ))

(g(θ, x))) = (θ, g−1
θ (gθ(x)) = (θ, x), ∀(θ, x) ∈ E.

In the same manner,

(H ◦ H̃)(θ, x) = H(H̃(θ, x)) = H(h−1(h(θ)), g−1
h−1(θ)

(x))

= (h(h−1(θ)), g(h−1(θ), g−1
h−1(θ)

(x))) = (θ, gh−1(θ)(g
−1
h−1(θ)

(x))) = (θ, x), ∀(θ, x) ∈ E.
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I.7 Topological conjugacy and linear conjugacy of skew–products

Definition I.20 Topologically conjugate skew–products

Let (ϕ, ψ) and (ϕ̃, ψ̃) be skew–product dynamical systems over the trivial fiber bundle
(E = B × F,B, π, F ), with

ψ(θ, t) = (ϕ(θ), f(θ, t))

ψ̃(θ, x) = (ϕ̃(θ), f̃(θ, x)) .

We say that (ϕ, ψ) and (ϕ̃, ψ̃) are topologically conjugate skew–products if there is another skew–
product (h,H), with H(θ, x) = (h(θ), g(θ, x)), which is invertible4 and such that

(ϕ̃, ψ̃) = (h,H)−1 ◦ (ϕ, ψ) ◦ (h,H) .

�

Remark I.21

According to the definition of bundle maps and their composition5, the following diagram com-
mutes:

E

IE

��

π

��

ψ̃ �� E

π

��

H �� E

π

��
IE

��

B
ϕ̃ ��

IB

��

B
h �� B

IB

��

E

π

��

H ��

π

		

E

π

��

ψ ��

π

		

E

π

��

π

		

B
h �� B

ϕ �� B

and, equivalently, we have,

ϕ̃ = h−1 ◦ ϕ ◦ h
ψ̃ = H−1 ◦ ψ ◦H .

whenever (ϕ, ψ) and (ϕ̃, ψ̃) are topologically conjugate skew–products.

Proposition I.22 Topologically conjugate skew–products

Let (ϕ, ψ) and (ϕ̃, ψ̃) be skew–product dynamical systems over the trivial fiber bundle

4See Proposition I.19 for the characterization of the invertibility of a skew–product.

5See Definition I.4.
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(E = B × F,B, π, F ), with

ψ(θ, x) = (ϕ(θ), f(θ, x))

ψ̃(θ, x) = (ϕ̃(θ), f̃(θ, x)) .

Then, (ϕ, ψ) and (ϕ̃, ψ̃) are topologically conjugate if and only if the following two conditions hold:

(i) There exist a homeomorphism h : B −→ B such that ϕ̃ = h−1 ◦ ϕ ◦ h, i.e. ϕ and ϕ̃ are
topologically conjugate in B.

(ii) There exist a map, g : E = B × F −→ F , such that ∀θ ∈ B, the map

gθ : F −→ F
x �−→ gθ(x) = g(θ, x)

,

is a homeomorphism and

g(ϕ(h(θ)), f̃(θ, x)) = f(h(θ), g(θ, x)), ∀(θ, x) ∈ E.

In such a case, if we call H(θ, x) = (h(θ), g(θ, x)), (θ, x) ∈ E, then:

(ϕ̃, ψ̃) = (h,H)−1 ◦ (ϕ, ψ) ◦ (h,H) ,

Proof.

Definition I.23 Linear skew–products

Let (E = B × F,B, π, F ) be a trivial vector bundle6 and let (ϕ, ψ) be a skew–product where

ψ(θ, x) = (ϕ(θ), f(θ, x)), (θ, x) ∈ E .

We say that (ϕ, ψ) is a linear skew–product if f is linear w.r.t. the second component, that is, for
every θ ∈ B, the map,

fθ : F −→ F
x �−→ fθ(x) = f(θ, x)

,

is a homomorphism (of the K−vector space F onto itself).
�

Remark I.24

Whenever F is finite dimensional, with n = dimK(F ), and f is linear w.r.t the second component,
it can be expressed as f(θ, x) = m(θ)x, ∀(θ, x) ∈ E, where

m : B −→ Mn(K)

is continuous, i.e. m(θ) is an n−dimensional square matrix, which is called transfer matrix, of
continuous functions. Thus, a linear skew–product may be identified with a map of the form:

ψ : E = B × F −→ E = B × F
(θ, x) �−→ ψ(θ, x) = (ϕ(θ),m(θ)x)

where ϕ is a homeomorphism over the base B and m : B −→ Mn(K) is continuous.

6Recall that in this case, by Definition I.8, we assume that F is a K−vector space, where usually K = R or
K = C.
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Definition I.25 Linearly conjugate skew–products

Let (ϕ, ψ) and (ϕ̃, ψ̃) be linear skew–products over the vector bundle (E = B × F,B, π, F ), with

ψ(θ, x) = (ϕ(θ),m(θ)x)

ψ̃(θ, x) = (ϕ̃(θ), m̃(θ)x) .

We say that (ϕ, ψ) and (ϕ̃, ψ̃) are linear conjugate skew–products if there is another linear skew–
product (h,H), with H(θ, x) = (h(θ), c(θ)x), which is invertible and such that

(ϕ̃, ψ̃) = (h,H)−1 ◦ (ϕ, ψ) ◦ (h,H) .

�

Remark I.26

Observe that, according to Proposition I.19, a linear skew–product H(θ, x) = (h(θ), c(θ)x) is
invertible if and only if det(c(θ)) �= 0, ∀θ ∈ B.

Proposition I.27 Linearly conjugate skew–products

Let (ϕ, ψ) and (ϕ̃, ψ̃) be linear skew–products over the vector bundle (E = B × F,B, π, F ), with

ψ(θ, x) = (ϕ(θ),m(θ)x)

ψ̃(θ, x) = (ϕ̃(θ), m̃(θ)x) .

Then, (ϕ, ψ) and (ϕ̃, ψ̃) are linearly conjugate if and only if there exist another linear skew–product,
(h,H), with

H(θ, x) = (h(θ), c(θ)x) ∀(θ, x) ∈ E ,

such that the following properties hold:

(i) det(c(θ)) �= 0, ∀θ ∈ B;

(ii) ϕ̃ = h−1 ◦ ϕ ◦ h, i.e. ϕ and ϕ̃ are topologically conjugate in B;

(iii) m(h(θ))c(θ) = c(ϕ̃(θ))m̃(θ), ∀θ ∈ B.

Proof.

(⇒) Let (h,H), with H(θ, x) = (h(θ), c(θ)x), (θ, x) ∈ E, be an invertible linear skew–product
such that

(ϕ̃, ψ̃) = (h,H)−1 ◦ (ϕ, ψ) ◦ (h,H) .

Since (h,H) is invertible then, by Proposition I.19, h is invertible and for every θ ∈ B the
map

gθ : F −→ F
x �−→ gθ(x) := c(θ)x

,

is invertible. Since gθ is a homomorphism, then c(θ) ∈ Mn(K) is invertible and hence
det(c(θ)) �= 0. Furthermore, H−1(θ, x) = (h−1(θ), c(h−1(θ))−1x), ∀(θ, x) ∈ E. Moreover,
ψ̃(θ, x) = (H−1 ◦ ψ ◦H)(θ, x), ∀(θ, x) ∈ E. Therefore,

(ϕ̃(θ), m̃(θ)x) = H−1(ψ(H(θ, x))) = H−1(ϕ(h(θ), c(θ)x))

= H−1(ϕ(h(θ)),m(h(θ))c(θ)x)

= (h−1(ϕ(h(θ))), c(h−1(ϕ(h(θ))))−1m(h(θ))c(θ)x), ∀(θ, x) ∈ E .
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Identifying components, we have, on one side,

ϕ̃(θ) = h−1(ϕ(h(θ))) = (h−1 ◦ ϕ ◦ h)(θ), ∀θ ∈ B, that is, ϕ̃ = h−1 ◦ ϕ ◦ h.
On the other side,

m̃(θ)x = c(h−1(ϕ(h(θ))))−1m(h(θ))c(θ)x = c(ϕ̃(θ))−1m(h(θ))c(θ)x, ∀(θ, x) ∈ E.

Consequently:

m̃(θ) = c(ϕ̃(θ))−1m(h(θ))c(θ), ∀θ ∈ B, which is equivalent to:

m(h(θ))c(θ) = c(ϕ̃(θ))m̃(θ), ∀θ ∈ B.

Thus, (i), (ii), and (iii) are satisfied.

(⇐) Assume that there exists a skew–product (h,H), with

H(θ, x) = (h(θ), c(θ)x), (θ, x) ∈ E

holding (i), (ii), and (iii).

Notice that h is invertible, since it is a homeomorphism. On the other hand, H is invertible
since det(c(θ)) �= 0. Moreover, H−1(θ, x) = (h−1(θ), c(h−1(θ)))−1t, ∀(θ, x) ∈ E.

Then, (h,H)−1 ◦ (ϕ, ψ) ◦ (h,H) = (h−1 ◦ ϕ ◦ h,H−1 ◦ ψ ◦H) = (ϕ̃,H−1 ◦ ψ ◦H).

It only remains to show that H−1 ◦ ψ ◦H = ψ̃.

Indeed, by means of (ii), and (iii) we have:

(H−1 ◦ ψ ◦H)(θ, x) = H−1(ψ(H(θ, x))) = H−1(ψ(h(θ), c(θ)x))

= H−1(ϕ(h(θ)),m(h(θ))c(θ)x)

= (h−1(ϕ(h(θ))), c(h−1(ϕ(h(θ))))−1m(h(θ))c(θ)x)

= (ϕ̃(θ), c(ϕ̃(θ))−1m(h(θ))c(θ)x))

= (ϕ̃(θ), m̃(θ)x))

= ψ(θ, x), ∀(θ, x) ∈ E.

Thus, H−1 ◦ ψ ◦H = ψ̃, as we wanted to prove.

I.8 The framework under study: quasi–periodic skew–products.

Let (E = B × F,B, π, F ) be a trivial fiber bundle. Let (ϕ, ψ) be a skew–product in F with

f : E = B × F −→ F continuous, and σ = IB ×κ ∈ Γ(E) a cross section where κ : B −→ F is
assumed to be continuous.

Henceforth, we shall mainly deal with a particular case. From now on we will consider under study
only the frame in which the base space is the torus, B = Td, the fiber is the real line, F = R, i.e.
E = Td × R, f : Td × R −→ R, and the homeomorphism ϕ is an ergodic rigid rotation , ϕ = Rω,
that is:

Rω : Td −→ Td

θ �−→ Rω(θ) = θ + ω
(I.7)

where the frequency ω ∈ Td is rationally independent, namely a · ω /∈ Z, ∀a ∈ Z \ {0}. In such a
case we say that the frequency ω is ergodic or non–resonant.

In this setting, the system is being undergone to an external quasi–periodic force and we will refer
to it as a quasi–periodic skew–product.

Thus ψ = Rω × f is of the form:
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ψ : Td × R −→ Td × R
(θ, x) �−→ ψ(θ, x) = (θ + ω, f(θ, x))

More particularly, we will concentrate our efforts on the case d = 1, and postpone the study of
higher dimensions for later works. Furthermore, from now on we assume that the frequency ω is
Diophantine (see Definition 1.15).
Summarizing, henceforth our target is the study of one-dimensional quasi–periodic skew–products
of the form:

ψ : T× R −→ T× R
(θ, x) �−→ ψ(θ, x) = (θ + ω, f(θ, x)) ,

(I.8)

where ω ∈ T is a fixed Diophantine frequency and f ∈ Cr(T× R), with r ≥ 1.
Our next goal is to analyze the existence of invariant curves for the skew–product (I.8), that is,
according to Proposition I.16, continuous maps κ : T −→ R such that:

f(θ, κ(θ)) = κ(θ + ω), ∀θ ∈ T . (I.9)
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Figure II.1: Orbits of the skew–product with a = 6.8, b = 1.62,
N = 107, N0 = 27

Forward orbit of the point θ0 = 0 , x0 = 1(top);
Backward orbit of the point θ0 = 0 , x0 = 0(middle);
Forward orbit of the point θ0 = 0 , x0 = −1(bottom).

Figure II.2: Orbits of the skew–product with a = 6.8, b = 1.82,
N = 107, N0 = 210
Forward orbit of the point θ0 = 0 , x0 = 1(top);
Backward orbit of the point θ0 = 0 , x0 = 0(middle);
Forward orbit of the point θ0 = 0 , x0 = −1(bottom).
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Figure II.3: Orbits of the skew–product with a = 6.8, b = 1.8204,
N = 107, N0 = 210
Forward orbit of the point θ0 = 0 , x0 = 1(top);
Backward orbit of the point θ0 = 0 , x0 = 0(middle);
Forward orbit of the point θ0 = 0 , x0 = −1(bottom).

Figure II.4: Forward orbit of the skew–product with
a = 5.348847, b = 1.905990, N = 107, N0 = 213,
θ0 = 0 , x0 = 0.
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Figure II.5: Error of the orbit with θ0 = 0 , x0 = 0 with N = 107.
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Figure II.6: Forward orbit of the point θ0 = 0, x0 = 1
x = κ(θ)(magenta) (left);
Translated curve x = κ(θ + ω) (light green) (center);
x = f(θ, κ(θ)) (dark green) and the error function E(θ) (right).

Figure II.7: Forward orbit of the point θ0 = 0, x0 = −1
x = κ(θ)(magenta) (left);
Translated curve x = κ(θ + ω) (light green) (center);
x = f(θ, κ(θ)) (dark green) and the error function E(θ) (right).

Figure II.8: Forward orbits (purple) and backward orbit
x = κ(θ)(magenta) (left);
Translated curve x = κ(θ + ω) (light green) (center);
x = f(θ, κ(θ)) (dark green) and the error function E(θ) (right).
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II.2 Complex Fourier series estimates by means of the
discrete Fourier transform (DFT)

The performance of the following algorithm is based on the properties of the DFT developed in
Section 5.5 and the computational error produced attends to Corollary 5.11.
Given W containing the Fourier coefficients of a function (û0, û1, . . . , ûM ), the output is a vec-

tor w containing the values of the function u(θ) = û0 + 2Re

(
M∑
k=1

ûke
2πkθi

)
, evaluated in an

equidistributed partition of the torus of length N = 2M .
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Figure II.9: Bump functions
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Figure II.10: Forward orbits: u(θ) = û0 + 2Re

(
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ûke
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Figure II.11: Backward orbits: u(θ) = û0 + 2Re
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Figure II.12: u(θ) = û0 + 2Re

(
M∑
k=1

ûke
2πkθi

)

Figure II.13: Bump function u(θ) = e
− (2θ−1)2

1−(2θ−1)2 , θ ∈ T
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II.3 Cohomological operator and the Floquet transformation

Figure II.14: Cohomological operator
ṽ(θ) = v(θ)− v̂0 where v(θ) is the orbit for a = 6.8
and b = 1.62 with N = 107 + 1, N0 = 28 (left) ;
Rλṽ(θ) in red and Rλṽ(θ + ω) in gray (center);
LλRλṽ ≈ ṽ (right).
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Figure II.15: Floquet transformation
ṽ(θ) = v(θ) − Λ where v(θ) = log(∂f∂x (θ, κ(θ))) (top left);
R1ṽ(θ) in magenta and R1ṽ(θ + ω) in gray (top right);
R1ṽ(θ + ω)−R1ṽ(θ) ≈ ṽ(θ) in blue (bottom left);
c(θ) = eR1ṽ(θ) in red (bottom right).
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II.4 KAM step

 1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 2 function [Kappa,Tau,DET]=KAM_STEP(theta,kappa,tau,a,b,omega,p)
 3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 4 % [theta,kappa]=Orbit(theta_0,x_0,omega,a,b,N,N0); % 1.
 5 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 6 m=df(kappa,a);                                     % 2.
 7 v=log(m);
 8 v=double(v);
 9 Lambda=mean(v);                                    % 3.a
10 lambda=exp(Lambda);                                % 3.b
11 v_TILDE=v-Lambda;                                  % 4.
12 [u,~]=R(1,omega,theta,v_TILDE);                    % 5.
13 c=exp(u);                                          % 6.
14 Tc=Translation(c,omega);                           % 7.
15 eta=1./Tc;                                         % 8.
16 [E,~]=ERROR_FUNCTION(theta,kappa,omega,a,b,tau);
17 xi=E.*eta;                                         % 9.
18 eta_0=mean(eta);                                   % 10.a
19 xi_0=mean(xi);                                     % 10.b
20 c_0=mean(c);                                       % 11.a
21 c_TILDE=c-c_0;                                     % 11.b
22 eta_TILDE=eta-eta_0;                               % 12.a
23 [Reta,~]=R(lambda,omega,theta,eta_TILDE);          % 12.b
24 xi_TILDE=xi-xi_0;                                  % 13.a
25 [Rxi,~]=R(lambda,omega,theta,xi_TILDE);            % 13.b
26 ETA=c_TILDE.*Reta;                                 % 14.a
27 ETA_0=mean(ETA);                                   % 14.b
28 XI=c_TILDE.*Rxi;                                   % 15.a
29 XI_0=mean(XI);                                     % 15.b
30 e=mean(kappa)-p;                                   % 17.
31 A=[1-lambda,-eta_0 ; c_0,ETA_0 ];                  % 18.
32 B=[xi_0; e-XI_0];                                  % 19.
33 DET=det(A);                                        % 20.
34 S=B'/A';                                           % 21.
35 sigma_0=S(1);                                      % 22.a
36 Delta_tau=S(2);                                    % 22.b
37 sigma_TILDE=R(lambda,omega,theta,xi_TILDE+eta_TILDE*Delta_tau); % 23.
38 sigma=sigma_TILDE+sigma_0;                                      % 24.
39 Kappa=kappa+c.*sigma;                                           % 25.
40 Tau=tau+Delta_tau;                                              % 26.
41 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
42 
43 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
44 function [Rv,W]=R(lambda,omega,t,v)
45 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
46 % This function computes the solution u to the cohomological equation
47 % u(theta+omega)-lambda u(theta)= v~(theta), theta\in T=R/Z,
48 % by approximation of its Fourier series, where v=v^_0+v~, i.e. v~ is the
49 % (zero-average) oscillatory part of the given function v.
50 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
51 N=length(t); % N must be even
52 M=N/2;
53 V=fft(v);
54 W=V(1:M+1)/N; % W=[v^_0,v^_1,...,v^_M] are fue Fourier coefficients of v
55 W(1)=0; % W=[0,v^_1,...,v^_M] Fourier coefficients of v~
56 for k=1:M
57     W(k+1)=W(k+1)/(exp(2*pi*k*omega*1i)-lambda);
58 end % W=[0,u^_1,...,u^_M] Fourier coefficients of the solution u=R_lambda v
59 Rv=IDFT_APPROX(W);
60 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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Unstable invariant curve

n < κn > Λn λn ‖En‖ = supθ∈T |En(θ)| |en(p)| = | < κn > −p|

0 4.76471550321e− 10 1.7811320816 5.93657330125 2.31443690966e− 08 0

1 4.76471591067e− 10 1.78113208167 5.93657330164 6.44256392132e− 15 4.07464057767e− 17
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II.5 Bifurcations
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Figure II.16: Lyapunov exponents on the parameter space, based on the back-
ward orbits of the origin.
In red those points with zero Lyapunov exponent.
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Figure II.17: Lyapunov exponents on the parameter space, based on the forward
orbits of the origin.
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Figure II.18: Lyapunov exponents on the parameter space, based on the forward
orbits of the point (0, 1).
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Figure II.19: Lyapunov exponents on the parameter space, based on the forward
orbits of the point (0,−1).
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Figure II.20: Lyapunov exponents on the parameter space, based on the back-
ward orbits of the origin.
In red those points with zero Lyapunov exponent.
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Figure II.21: Lyapunov exponents on the parameter space, based on the back-
ward orbits of the origin.
In red those points with zero Lyapunov exponent.



Appendix III. Matrix condition
numbers and estimates
III.1 Matrix condition numbers and estimates

The following lemma is often used to obtain several estimates needed in the KAM procedure.

Lemma III.1 Matrix condition numbers and estimates

Let M ∈ GLn, i.e. a square invertible matrix (det(M) �= 0).

Assume that ‖M‖ < σM , ‖M−1‖ < σM−1 and let M1 = M +ΔM , with ΔM ∈ Mn.

If
σ2
M−1‖ΔM‖

σM−1−‖M−1‖
< 1 , (H)

then the following properties hold:

(a) M1 ∈ GLn;

(b) ‖M−1
1 ‖ < σM−1.

(c) ‖M−1
1 −M−1‖ ≤ σ2

M−1‖ΔM‖.

Proof.

First, observe that the approximating matrix can be written as

M1 = M +ΔM = M(I +M−1ΔM) = M(I −A), where A = −M−1ΔM ,

and consider the so–called Neumann series S =
∞∑
k=0

Ak.

If ‖A‖ < 1, then S is normally convergent

Denoting Sk =

k∑
l=0

Al, the sequence of partial sums of S, then Sk(I −A) = I −Ak+1, k ∈ N.

Taking limits as k → ∞, we get S(I −A) = I.

In such a case, S ∈ GLn, I −A ∈ GLn and M1 = M(I −A) ∈ GLn.

Furthermore, (I −A)−1 = S and M−1
1 = (I −A)−1M−1 = SM−1.

(a) It is enough to see that ‖A‖ < 1.

From the hypothesis (H) we obtain

σ2
M−1 ‖ΔM‖ < σM−1 − ‖M−1‖ ⇒ σM−1‖ΔM‖ <

1

σM−1

(σM−1 − ‖M−1‖) = 1− ‖M−1‖
σM−1

< 1,

since ‖M−1‖ < σM−1 . Therefore, ‖A‖ = ‖M−1ΔM‖ ≤ ‖M−1‖ ‖ΔM‖ ≤ σM−1‖ΔM‖ < 1.
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(b) Again, from the hypothesis (H), we also have ‖M−1‖ σM−1‖ΔM‖
σM−1−‖M−1‖

< 1.

From this, we obtain, ‖M−1‖ < σM−1(1− ‖M−1‖ ‖ΔM‖) and finally

‖M−1
1 ‖ = ‖SM−1‖ ≤ ‖S‖‖M−1‖ ≤ 1

1−‖A‖‖M−1‖ ≤ ‖M−1‖
1−‖M−1‖‖ΔM‖ < σM−1 .

(c) The difference of the inverses can be expressed as

M−1
1 −M−1 = (I −M−1M1)M

−1
1 = (M−1M −M−1M1)M

−1
1

= M−1(M −M1)M
−1
1 = −M−1ΔMM−1

1 .

Then, ‖M−1
1 −M−1‖ ≤ ‖M−1‖‖ΔM‖‖M−1

1 ‖ ≤ σ2
M−1‖ΔM‖ .

Remark III.2

In fact,
σ2
M−1‖ΔM‖

σM−1−‖M−1‖
< 1 ⇒ ‖A‖ ≤ 1

4
,

and consequently,
‖ΔM‖
‖M‖ ≤ 1

4
.

Proof.
σ2
M−1‖ΔM‖

σM−1−‖M−1‖
< 1 ⇔ ‖ΔM‖ <

1

σM−1

(
1− ‖M−1‖

σM−1

)
.

On the one hand,
‖ΔM‖
‖M‖ =

‖MM−1ΔM‖
‖M‖ ≤ ‖M−1ΔM‖ = ‖A‖.

On the other hand,

‖A‖ ≤ ‖M−1‖ ‖ΔM‖ ≤ ‖M−1‖
σM−1

(
1− ‖M−1‖

σM−1

)
= tM (1− tM ) .

where tM = ‖M−1‖
σM−1

∈ (0, 1).

Calling h(t) = t(1− t) with t ∈ (0, 1), we can see that h has an absolute maximum value at t = 1
2 .

Therefore, ‖A‖ ≤ h(tM ) ≤ h(1/2) = 1/4.
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bifurcation diagram, 128
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bundle map, 216
bundle projection, 215
bundle space, 215

cohomological equation, 31
cohomological operator, 37
composition of bundle maps, 216
conjugation operator, 161
convolution, 173

periodic discrete, 166
cross section, 217

DFT, 160
Diophantine condition, 23
Dirichlet Kernel, 172
Discrete Fourier Transform, 160

ergodic rigid rotation, 227
error function, 57

family of invariant translated curves, 58, 127
fiber, 215
fiber bundle, 215
fiber over a point, 215
Floquet transformation, 55
fold bifurcation, 137, 138
frequency rationally independent, 227

IDFT, 160
invariance error, 81
invariance errors, 81
invariant section, 220
Inverse Discrete Fourier Transform, 160
isomorphism of fiber bundles, 217

linear conjugacy of skew–products, 226
linear skew–product, 225

linearization of a skew–product, 51
Liouville number, 20
local triviality condition, 215
Lyapunov exponent, 53
Lyapunov multiplier, 55

operator
conjugation, 161
reversal, 161
rotation, 162
shift, 161

periodic discrete convolution, 166
pitchfork bifurcation, 141, 151

quasi–periodic skew–product, 227

rank, 218
rationally independent, 227
reducibility constant, 55
reducibility for linear skew–products, 52
reversal operator, 161
rotation operator, 162

saddle–node bifurcation, 137, 138
Schwarzian derivative, 157
Schwarzian derivative, 157
shift operator, 161
skew–product, 219

topological conjugacy of skew–products, 224
transcritical bifurcation, 141, 149
transfer matrix, 225
translated curve, 57
translated graph method, 58
translation number, 57
trivializing neighborhood, 215

vector bundle, 218
rank of a , 218

vector bundle map, 219

zero section, 218
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[48] H. Rüßmann. On the existence of invariant curves of twist mappings of an annulus. Geometric
Dynamics, pp. 677–718, Springer Berlin Heidelberg, Berlin, Heidelberg, 1983. 1
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