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ABSTRACT 

 

 

Stainless steel is one of the most promising construction materials due to its long service life, low 

maintenance requirements, excellent mechanical properties and high residual value. Nevertheless, for a 

safe and efficient design with stainless steel, it is fundamental to account for the nonlinear effects of the 

material at all structural levels and for all load types. Research over the last couple of decades has 

significantly improved the scope of application of current stainless steel design codes, although they 

are still far from being as comprehensive as the ones for carbon steel, on which they are generally based. 

While the latest advances have focused on the material, cross-section and member behaviour, there has 

been little progress in the design of stainless steel structural systems subjected to static forces, and even 

less in the seismic design of stainless steel structures, for which no standard exists in Europe or the US. 

This thesis constitutes a significant step towards the understanding of the performance of stainless steel 

systems under different loading types, addressing aspects of the global behaviour of stainless steel 

structures under static and seismic forces with the aim of proposing design expressions that guarantee 

more optimised and safer structures. 

Thus, this thesis presents the first known comprehensive experimental programme on stainless steel 

systems, in which four austenitic portal frames were tested under vertical and horizontal loading, and a 

detailed explanation of the different problems encountered in the planning and testing process is given 

in the document. The obtained results made it possible to validate, with experimental evidence, the 

design prescriptions included the Eurocode for the consideration of second order effects accounting for 

the influence of the nonlinear response of the material through the amplification of the horizontal forces. 

In addition, an alternative design method for the in-plane design of stainless steel structures under static 

loading is presented. The method is based on performing a second order structural analysis, and the 

material nonlinearities and different structural imperfections are considered by reducing the stiffness of 

the members through a set of proposed factors, requiring only cross-section checks to be performed. In 
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contrast to the commonly adopted European approach, where a first order nonlinear material analysis 

is performed, this alternative design approach is typical of the US regulatory framework. 

Regarding the cyclic behaviour of stainless steel structures, this thesis investigates experimentally and 

numerically the performance of stainless steel cold-formed rectangular hollow section members under 

cyclic loading, focusing on the rotation capacities. The correct estimation of the rotation capacity is of 

paramount importance from an assessment point of view, because it allows establishing the actual 

capacity of the structure. Based on the results, a simple formulation to estimate the rotation capacity is 

proposed in terms of the local slenderness, and calibrated for the three main stainless steel families, 

which in turn allows the description of the full moment-rotation curves.  

Furthermore, this thesis studies the seismic performance of stainless steel moment resisting frames 

designed according to the new European design rules for carbon steel systems. Design adaptations and 

a new design formula to effectively account for material nonlinearities in the seismic design of these 

structures are proposed. The actual behaviour factors of stainless steel frames are also assessed from a 

number of case studies, and new values of the behaviour factors for stainless steel moment resisting 

frames in the European and US design frameworks are recommended. 

Finally, this thesis investigates the post-necking behaviour of stainless steels under monotonic loading 

and proposes preliminary values for the key parameters of two common ductile fracture models to 

provide a material model that defines the response of stainless steels up to failure. One possible 

application of such model would be in the simulation of joint failure, which can be implemented in new 

design approaches that study structures as a whole, such as the Direct Design Method. 
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1. CHAPTER 

CHAPTER 1 

 

 

 

 

Introduction 

 

 

 

1.1. Background 

Stainless steels are iron alloys characterised by a minimum chromium content of 10.5%. This chemical 

element is the responsible for the corrosion resistance capacity that characterises stainless steels, since 

when the chromium is in contact with the oxygen, a transparent layer that protects the steels from further 

corrosion is formed on its surface. The other chemical elements that may be added to the alloy, such as 

nickel, molybdenum, titanium and copper, determine the mechanical resistance and other physical 

properties of the material, leading to countless types of stainless steel alloys that can meet almost any 

need. The correct selection of the stainless steel grade depends on the corrosivity of the environment, 

the mechanical properties and aesthetic appearance required in the project, the availability of fabrication 

and the foreseen level of maintenance of the structure. 

Stainless steels can be classified into five groups according to their chemical composition: austenitic, 

duplex, ferritic, martensitic and precipitation hardening stainless steels, being the first two the most 

widely used for structural purposes because of their higher corrosion resistance, excellent ductility and 
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strain hardening (more pronounced in the austenitic alloys) properties, and remarkably high strength 

capabilities (in the duplex alloys). Ferritic stainless steels have good mechanical properties but they are 

the least corrosion resistant; however, they are also the ones with the lowest and more stable price, 

which makes them an attractive alternative to austenitic and duplex grades. Compared to structural 

carbon steels, stainless steels have better toughness and fatigue properties, and their high ductility is 

associated with a higher energy dissipation capacity, which can be useful in seismic design. 

All types of stainless steel exhibit nonlinear stress-strain responses, which is why the design 

requirements for carbon steel should not be applied directly and should be adapted to account for the 

material nonlinearities, and the interaction of the effects of these nonlinearities with the effects of 

geometric nonlinearity. 

1.2. Structural applications of stainless steel alloys 

The use of stainless steel as structural material has increased since its development – dated in the early 

1910s –, due to the mechanical properties, corrosion and heat resistance, aesthetic appearance and 

residual value of this material. From the early stages, it should be highlighted the use of stainless steel 

in the supporting structure of the dome of St. Paul’s Cathedral in London (1925), in the cladding of the 

Chrysler Building in New York (1929), and in the Gateway Arch in St. Louis, Missouri (1960s).  

More recent structural applications demonstrate the great versatility of stainless steel as a construction 

material. These include the Thames Gateway Treatment Works structure in London (2010), the 

structural enclosure of the Taronga Zoo Chimpanzee Sanctuary in Sydney (2012), the use of stainless 

steel in reinforcement bars and load-bearing structures in the Sagrada Familia in Barcelona since 2014, 

the Garrison Crossing pedestrian bridge in Toronto (2019), the Knight Architects' road bridge at Pooley 

Bridge, Cumbria (2020), the 3D printed MX3D Bridge in Amsterdam (2021), or the use of stainless 

steel to clad the façade and roof of the Santiago Bernabeu Stadium in Madrid (2023). 

Although more and more structures are being built in stainless steel, some aspects of its structural 

behaviour are still unknown, especially at the global response level, and therefore the current stainless 

steel standards have many shortcomings. Further research is needed to provide more effective design 

standards. 

1.3. Research objectives 

In this context, the main objectives of this thesis are to understand the overall behaviour of stainless 

steels portal frames under static and seismic forces, and to provide expressions according to the 

European design framework for the efficient and safe design of stainless steel structures. The general 

and specific objectives are detailed as follows. 
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1.3.1. General objectives 

The safe design of structures is one of the main requirements in design practice, together with the 

optimised use of material for an efficient use of natural resources. For this to be achieved, it is 

fundamental to understand the behaviour of the materials and how it influences its structural response. 

Stainless steel structures are more susceptible to instability phenomena than carbon steel structures due 

to the combination of material and geometric nonlinearities, so ignoring these effects can lead to unsafe 

designs. In addition, the capacity of stainless steels after yielding tends to be significantly higher than 

that of carbon steel alloys, and not accounting for this strength means higher tonnage of material usage 

and costs. With the aim of promoting more efficient, economical and sustainable stainless steel 

structures, this thesis investigated the overall behaviour of stainless steel portal frames first, focusing 

on the influence that the interaction of geometrical and material nonlinearities has on the capacity of 

structures and on design. Within the framework of this thesis, the first tests on stainless steel frames 

subjected to vertical and horizontal static forces were carried out. Based on these experimental results, 

an approach for the design of in-plane structures that accounts for material nonlinearities was proposed. 

Furthermore, a safe design includes a reasonable behaviour of structures under unexpected conditions 

and accidental situations, such as earthquakes. Studies on the seismic behaviour of stainless steel 

structures, which are practically inexistent at date, would allow the derivation of seismic prescriptions 

that take into account the nonlinear behaviour and dissipation capacity of stainless steels. The second 

part of this thesis thus focuses on providing such guidance, carrying out relevant studies to understand 

the response of stainless steel structures under cyclic loads, and propose, for the first time, criteria for 

the seismic design of stainless steel moment resisting frames. 

1.3.2. Specific objectives 

In the framework of the previous general goals, this thesis addressed the following specific objectives, 

which can be grouped into three main topics or parts: 

Part I – Performance of stainless steel structures under static loads 

- To strengthen the available experimental data on austenitic stainless steel material, cross-sections, 

members and structures by conducting an experimental programme to better understand their overall 

behaviour considering all sources of nonlinearity effects. 

- To provide experimental evidence of the applicability of the recently developed approach for the in-

plane design of stainless steel structures under sway forces based on the experimental results. 
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- To develop a new and alternative approach for the design of in-plane stainless steel structures 

according to the Eurocode provisions that takes into account the effects of geometric nonlinearity by 

reducing the stiffness of members. 

Part II – Performance of stainless steel structures under cyclic loads 

- To develop a new expression to estimate the rotation capacity of stainless steel members subjected to 

cyclic forces and a novel model to describe the full moment-rotation curves, which are the fundamental 

characteristics defining the seismic behaviour of structures. 

- To strengthen the available experimental data on austenitic members subjected to cyclic loading by 

carrying out an experimental programme, to better understand their seismic behaviour. 

- To assess the applicability of current seismic design prescriptions for carbon steel included in the 

upcoming version of the Eurocode to stainless steel structures. 

- To adapt the force-based method approach, which is considered to be the main seismic design method, 

for carbon steel structures included in the upcoming version of Eurocode to stainless steel moment 

resisting frames, by calibrating new values of the behaviour factors. 

Part III – Towards the consideration of material degradation 

- To calibrate a ductile fracture model for the accurate description of the material degradation of 

stainless steels for the development of a full-range constitutive material model that includes the fracture 

response to contribute to the implementation of advanced direct design approaches in the future. 

1.4. Methodology 

A summary of the methodology used in this thesis to achieve the objectives listed in the previous section 

is presented below. 

1. Literature review. Review of the state of the art in stainless steel research. Due to the originality of the 

topics, the revision has been extended to other steel materials. The main topics reviewed have been: 

experimental programmes on systems, tests of members under cyclic loading, the numerical simulation 

of the nonlinear behaviour of stainless steels considering cyclic loading and strength degradation, and 

design methods under static and seismic forces prescribed in different normative frameworks. 

Part I – Performance of stainless steel structures under static loads 

2. Experimental programme on stainless steel portal frames. 
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2.1. Previous experimental works to characterise the behaviour of the specimens at different levels: 

tensile tests on flat and corner coupons, compression tests on stub column specimens, four-

point bending tests, and flexural buckling tests on columns. 

2.2. Conceptualization and definition of the test configuration for the frames. 

2.3. Instrumentation of the frame specimens. 

2.4. Execution of the tests, data curation and processing. 

3. Analysis of the tests results and assessment of design approaches for stainless steel structures. 

3.1. Analysis of the experimental results. 

3.2. Development of advanced numerical models of the portal frames Validation of the models 

against experimental results.  

3.3. Assessment of the design approaches provided in the current codes and the literature.  

4. Development of a new design approach for the in-plane design of stainless steel structures. 

4.1. Development and validation of the numerical models of the structural members and portal 

frames. Definition and execution of the parametric study. 

4.2. Development of a new design approach for the design of stainless steel members and systems 

through geometric nonlinear analyses that consider material nonlinearities and imperfections 

through reduced stiffness properties.  

4.3. Assessment of the proposal by comparison with results obtained from codified design approaches.  

Part II – Performance of stainless steel structures under cyclic loads 

5. Development of an expression for predicting the rotation capacity of stainless steel member under 

cyclic loading. 

5.1. Development and validation of the numerical models of members under cyclic loading. 

Definition and execution of the parametric study. 

5.2. Analysis of the results. 

5.3. Development of a new expression for predicting rotation capacity of stainless steel members 

under cyclic bending in terms of the local slenderness and proposal of a novel model to 

describe the full moment-rotation curves.  

5.4. Assessment of the proposals by comparison with results obtained from numerical analyses. 

6. Experimental programme on stainless steel tubular members under cyclic loading. 

6.1. Conceptualization and definition of the test configuration. 

6.2. Instrumentation of the specimens. 

6.3. Execution of the tests, data curation and processing. 

6.4. Analysis of the experimental results. 

7. Assessment of the suitability of seismic provisions for carbon steel structures for the seismic design of 

stainless steel frames. Proposal of new design rules and values for the behaviour factor if necessary. 
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7.1. Assessment of the current seismic design rules for carbon steel moment resisting frames. 

7.2. Definition of the parametric study. Performance of the analyses. Analysis of the results. 

7.3. Adaptation of the rules to account for the interaction between material nonlinearities and 

second order effects in seismic design. 

7.4. Definition of the criteria to describe the behaviour factors. 

7.5. Proposal of behaviour factors for the seismic design of stainless steel moment resisting frames. 

Comparison with the factors prescribed in other codes, and possible extensions. 

Part III – Towards the consideration of material degradation  

8. Calibration of a ductile fracture model for the accurate modelling of the post buckling behaviour of 

stainless steels through finite element software. 

8.1. Experimental data collection (raw of stress-strain curves). 

8.2. Development of advanced finite element models. 

8.3. Calibration of the ductile fracture material parameters through comparison with coupon tests.  

8.4. Proposal of fracture parameters for stainless steels. 

1.5. Financial support 

The research carried out in this thesis was developed in the frame of the Project BIA2016-75678-R, 

AEI/FEDER, UE “Comportamiento estructural de pórticos de acero inoxidable. Seguridad frente a 

acciones accidentales de sismo y fuego”, funded by MINECO (Spain). The author of this thesis was 

financially supported by the FPI-MINECO PhD fellowship, with Ref. BES-2017-082958, from 

December 2018 to April 2023. 

1.6. Thesis outline 

This chapter outlines the framework of this thesis, briefly introducing structural stainless steels, their 

applications and fundamental properties. The general and specific objectives addressed in this thesis are 

also provided, as well as the methodology adopted to achieve them, and the financial support received. 

Chapter 2 introduces an overview of the different design approaches prescribed in the main codes for 

steel and stainless steel structures, in addition to those found in the literature that are relevant for the 

studies covered in this thesis. 

Part I – Performance of stainless steel structures under static loads 

Chapter 3 provides a detailed description of the experimental programme carried out on stainless steel 

frames, including results from preliminary tests on material coupons and members, definition of the 
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loading protocol, the description of the set-up and the instrumentation adopted in the tests, and 

measurement of initial imperfections of the specimens. 

Chapter 4 presents the result from the frame tests, and as well as an assessment of the design approaches 

prescribed in the European code for the in-plane design of stainless steel structures through 

experimental and numerical results.  

Chapter 5 describes the development of a new approach for the in-plane design of stainless steel 

structures through geometric nonlinear analysis and consideration of material nonlinearities and 

imperfections through stiffness reductions. 

Part II – Performance of stainless steel structures under cyclic loads 

Chapter 6 features the development of the formula proposed for the prediction of the rotation capacity 

of stainless steel members under cyclic loading and the proposal of the model that describes the full 

moment-rotation curves through advanced finite element simulation. The development and validation 

of the numerical models is described in detail, and the predicted rotation capacities are assessed by 

comparison with numerical results. 

Chapter 7 describes the experimental programme on stainless steel tubular members under cyclic loading, 

including the loading protocol, adopted instrumentation and the assessment of experimental results. 

Chapter 8 presents the study on the seismic behaviour of stainless steel moment resisting frames 

designed according to the European design rules for carbon steel systems. Design adaptations and a 

new design formula are shown to effectively account for material nonlinearities in the seismic design 

of these structures. Finally, the actual behaviour factors of stainless steel frames are assessed, and new 

values are suggested for the behaviour factors of stainless steel moment resisting frames. 

Part III – Towards the consideration of material degradation 

Chapter 9 presents the study on the ductile fracture of stainless steels under monotonic loading. Through 

the comparison of experimental and numerical results, values of the main fracture parameters are 

recommended for stainless steel alloys. 

Finally, Chapter 10 provides a general overview of the concluding remarks given through this thesis 

and presents possible future research paths to achieve a consistent and efficient design framework for 

stainless steel structures.  
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2.1. Introduction 

This chapter presents a literature review on the topics on which this thesis is based. In particular, this 

chapter provides an overview of the main international steel and stainless steel design standards 

considered in this thesis, the most common material model used to simulate the behaviour of stainless 

steels, alternative design methods for the optimised design of stainless steel structural members, and 

the approaches available for designing stainless steel structures under static actions accounting for the 

effect of geometric and material nonlinearities. A summary of the studies carried out to date on the 

behaviour of stainless steel members under cyclic loading and the current status of standards for the 

seismic design of steel structures are also provided. 

2.2. Structural design standards for stainless steel 

The earliest normative for the structural design on stainless steel was the “Specification for the Design 

of Light Gauge Cold-Formed Stainless Steel Structural Members” published by the American Iron and 
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Steel Institute (AISI) in 1968, and updated 1974. Following revisions of this standard were published 

as “Specification for the Design of Cold-Formed Stainless Steel Structural Members”, ASCE 8, by the 

American Society of Civil Engineers (ASCE) in 1990 and 2002, and the latest version of this 

specification has been just published in 2022. Likewise, the American Institute of Steel Construction 

has recently published the first edition of the “Specification for Structural Stainless Steel Buildings”, 

AISC 370 (2021). 

In the European framework, the first stainless steel standard, namely “Design Manual for Structural 

Stainless Steel”, was published by Euro Inox in 1994. In 2006 the first European standard was launched, 

EN 1993-1-4, being updated in 2015 and 2021. The updated EN 1993-1-4 (2015) specification is the 

current code for designing in stainless steel. As most of the standards for stainless steel, EN 1993-1-4 

(2015) is based on the carbon steel standard EN 1993-1-1 (2005) and provides supplementary rules that 

consider the singularities of stainless steel alloys (austenitic, ferritic and duplex) on the design of cross-

sections and structural members. 

Despite having undergone some minor updates and amendments since the early 2000s, most of 

European standards are now under a major revision process. Thus, prEN 1993-1-4 (2021) includes, for 

the first time, simple rules for the global design of structures under static forces considering the 

nonlinear behaviour of stainless steels. Likewise, prEN 1993-1-14 (2021) gives rules for assisting the 

design of steel and stainless steel structures using finite element models, tools that are essential to 

accurately consider the interaction between geometric and material nonlinearities on the overall 

behaviour of structures. 

It should be noted that none of the US or European standards address the seismic design of stainless 

steel structural members and systems specifically. Only the “The Building Standard Law of Japan” 

(BCJ 2016) features regulations for the earthquake-resistant design of stainless steel systems. 

2.3. Material response and modelling of stainless steel alloys 

In contrast to the bilinear stress-strain behaviour of carbon steel, stainless steel alloys show a rounded 

stress-strain response even for low strain values. Since the nonlinear behaviour interacts with geometric 

nonlinearities and second order effects, an accurate prediction of this response is crucial for the correct 

design of stainless steel members and structural systems (Arrayago et al. 2020c; Arrayago et al. 2020d; 

Walport et al. 2021a). Among the constitutive models developed to describe the nonlinear stress-strain 

behaviour of metallic materials, the two-stage Ramberg-Osgood model (Arrayago et al. 2015a) is the 

most widely used for stainless steels and the one adopted by the European codes prEN 1993-1-4 (2021) 

and prEN 1993-1-14 (2021), and the US code AISC 370 (2021). This model uses one equation to define 

the stress-strain behaviour up to the yield stress, considered as the stress corresponding to a 0.2% plastic 
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strain (Eq. 2.1), and another equation to define the behaviour between the yield stress and the ultimate 

strength (Eq. 2.2). In Eq. 2.1 and Eq. 2.2, 𝜀 is the strain, 𝜎 is the stress, 𝐸 is the Young’s modulus, 𝑓𝑦 

and 𝑓𝑢 are the yield stress and ultimate tensile strength, respectively, 𝜀𝑢 is the ultimate strain, 𝑛 and 𝑚 

are the strain hardening exponents and 𝐸𝑦 is the tangent modulus at the yield stress, given in Eq. 2.3.  

Figure 2.1 shows the typical stress-strain responses exhibited by austenitic, ferritic and duplex stainless 

steels, and by S355 carbon steel. As shown, the strain-stress response of austenitic stainless steel is 

characterised by a high ductility, while the highest strengths are exhibited by the duplex stainless steel. 

It can be also observed that ferritic stainless steels have a similar response to carbon steel, exhibiting 

the lowest ductility and strain hardening capacities. These remarkable high resistance, ductility and 

strain hardening properties make stainless steel a suitable construction material for structures subjected 

to accidental loads such as seismic events (Baddoo 2008; Cashell and Baddoo 2014). 

  
Figure 2.1. Typical stress-strain responses of the stainless steel alloys used in this study, and comparison with 

carbon steel S355 (SCI 2017). 

It should be noted, though, that the two-stage Ramberg-Osgood model only describes the behaviour of 

stainless steel alloys up to the ultimate tensile strength, without considering the fracture that happens 

afterwards. As in other steels, the failure of stainless steel alloys is ductile and is originated by void 

growth and coalescence (Zhang et al. 2022). Since 1960, several ductile fracture models have been 
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developed for steels under monotonic loading, however, no specific prescriptions or adaptations have been 

provided yet to define the ductile fracture of stainless steels under monotonic loading. 

One of the most common stainless steel product types are cold-formed sections, which combine the 

excellent corrosion resistant properties of these alloys with the remarkably high strength-to-weight 

features of these products. In the particular case of cold-formed specimens, the material properties at 

the corner parts of the cross-sections exhibit higher levels of strength than those shown by the flat parts, 

due to the cold-working process. To account for this effect in these cross-sections, it is advisable to 

assign different material properties along the cross-section. According to Gardner and Nethercot 

(2004b), the enhanced (corner part) material properties should be assigned to the shaded corner regions 

shown in Figure 2.2, which comprise the round regions (𝑅𝑒𝑥𝑡) plus an extension on the adjoining flat 

parts equal to two times the thickness (2𝑡) of the cross-section. The enhanced properties can be directly 

obtained from monotonic tensile tests on coupons extracted from the corner parts of the specimen or 

through expressions based on the flat material properties and the cross-section geometry (Rasmussen 

2003; Ashraf et al. 2005; Rossi et al. 2013). Another option to consider the effect of cold-working is to 

assign the weighted average material properties to the entire cross-section (Hradil and Talja 2013; 

Arrayago et al. 2017a).  

 

 

 

 

 

 

Figure 2.2. Extents of flat and corner parts in a typical RHS according to Gardner and Nethercot (2004b). 

Finally, it should be noted that the material properties obtained through tensile tests on cold-formed 

sections already account for, implicitly, the effect of residual stresses. Residual stresses in cold-formed 

specimens are mainly caused during the fabrication processes by non-uniform plastic deformations, and 

they can significantly affect the response and resistance of stainless steel members. Residual stresses 

can be generally classified in membrane and bending residual stresses. While membrane residual 

stresses are low in magnitude and have been shown to have a negligible influence on structural response, 

bending residual stresses are more important in cold-formed stainless steel hollow sections (Jandera et 

al. 2008; Gardner and Cruise 2009). When cut from the cold-formed tubes, considerable curvatures can 

be observed in the coupons as a result of the relieved bending residual stresses, which are approximately 
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re-introduced in the coupons once they return to their original shape when gripped and loaded in the 

tensile testing machine. Thus, it can be considered that the obtained stress-strain curves inherently 

include the influence of bending residual stresses (Rasmussen and Hancock 1993a; Jandera et al. 2008). 

2.4. Cross-section and member design rules 

In the recent decades, research efforts have focused on the characterisation of the nonlinear stress-strain 

response of stainless steel alloys (Huang and Young 2014; Arrayago et al. 2015a; Afshan et al. 2019), 

and on the development of more accurate design expressions for stainless steel cross-sections (Gardner 

and Theofanous 2008; Afshan and Gardner 2013a; Arrayago and Real 2015, 2016) and structural 

members (Zhou and Young 2005; Arrayago et al. 2016; Buchanan et al. 2018; Sarquis et al. 2020). As 

a result, design standards for structural stainless steel – such as prEN 1993-1-4 (2021) in Europe –, 

based on those prescribed for carbon steel – prEN 1993-1-1 (2021) –, are progressively more specific 

and comprehensive, and are aimed at designing more efficient structures. In addition, more accurate 

deformation-based design approaches including strain hardening effects have been developed for 

stainless steel elements to fully exploit the cross-sectional capacity have been developed, such as the 

Continuous Strength Method (CSM). 

2.4.1. Traditional European approach 

As given in the carbon steel standard EN 1993-1-1 (2005), the traditional design approach prescribed 

by prEN 1993-4 (2021) is based on the cross-section classification, associating different criteria to 

estimate the resistance of a cross-section depending on their susceptibility to local buckling. Eurocode 

establishes four different cross-section classes, and the criteria are given in prEN 1993-4 (2021). As for 

carbon steel, it is assumed that class 1 stainless steel cross-sections reach their full plastic bending 

moment capacity 𝑀𝑝𝑙, and that their rotation capacity is sufficient to be used in global plastic design. 

Class 2 and class 3 cross-sections are limited to their plastic 𝑀𝑝𝑙 and elastic 𝑀𝑒𝑙 bending moment 

capacities, respectively. Finally, class 4 cross-sections are limited to the effective moment capacity 

𝑀𝑒𝑓𝑓 through the use of the effective width method. 

The traditional design approach prescribed in prEN 1993-1-4 (2021) includes formulae for predicting 

the cross-section resistance subjected to pure (and combined) axial loads, shear forces and bending 

moments. Similarly, there are also rules for estimating the resistance of stainless steel structural 

members under pure compression, shear and bending moments, as well as under the interaction of these 

forces. Note that the traditional formulae provided in prEN 1993-1-4 (2021) is based on the carbon steel 

provisions, and thus adopt elastic properties, ignoring the strain hardening exhibited by stainless steels 

after the yield stress 𝑓𝑦. Thus, the plastic and elastic bending moment capacity are computed as the 

products of  𝑊𝑝𝑙 · 𝑓𝑦 and  𝑊𝑒𝑙 · 𝑓𝑦, respectively, being 𝑊𝑝𝑙 the plastic and 𝑊𝑒𝑙 the elastic section moduli. 



Literature review 

30 

For the case of stainless steel members, reduction functions similar to those given for carbon steel are 

adopted, although buckling curves and interaction factors specific to stainless steel products have been 

developed and prescribed, which in general neglect the interaction between geometric and material 

nonlinearities. 

2.4.2. Continuous Strength Method 

The Continuous Strength method (CSM) is an alternativity approach for the design of stainless steel 

cross-sections and members. The CSM is based on the cross-section deformation capacity and provides 

more accurate predictions of the ultimate cross-section and member resistance than the traditional 

approach because strain hardening effects are considered in the equations. 

The CSM formulation relies on a base curve which relates the maximum strain 𝜀𝑐𝑠𝑚  that a cross-section 

can experience prior to buckling to its local slenderness 𝜆̅𝑝,𝑖, normalised by the yield strain 𝜀𝑦, which 

is calculated from 𝜀𝑦 = 𝑓𝑦/𝐸. Eq. 2.4 shows the CSM base curve for fully-effective stainless steel cross-

sections, as given in prEN 1993-1-4 (2021), where 𝐶1 is a material coefficient that adopts a value of 𝐶1 

= 0.10 for austenitic and duplex alloys and 𝐶1 = 0.40 for ferritic stainless steel grades, and Ω is a project 

specific parameter that defines the maximum permissible level of plastic strain in the structure. 

According to prEN 1993-1-4 (2021), the recommended value for Ω is 15. Local slenderness 𝜆̅𝑝,𝑖 values 

can be calculated from 𝜆̅𝑝,𝑖 = √𝑓𝑦 𝜎𝑐𝑟,𝑙⁄ , where 𝜎𝑐𝑟,𝑙 is the elastic local buckling stress of the full cross-

section under the appropriate stress distribution, obtained using software such as CUFSM (Li and 

Schafer 2010). 

The CSM was first developed for stocky cross-sections (Afshan and Gardner 2013b; Bock et al. 2015), 

and later extended to slender cross-sections (Zhao et al. 2017) and members (Arrayago et al. 2020d, 

2021). As in the traditional approach, CSM formulae are available to predict cross-section and member 

strengths when subjected to almost any type of monotonic actions (both in isolation and in 

combination). These formulae can be found in the main stainless steel design standards and guides, such 

as prEN 1993-1-4 (2021), AISC 370 (2021), and the Structural Design Manual (SCI 2017). Thus, the 

CSM cross-section compression resistance for fully-effective stainless steel Rectangular Hollow 

Section (RHS) is given in Eq. 2.5, where 𝑓𝑐𝑠𝑚 is the design stress corresponding to 𝜀𝑐𝑠𝑚, and the CSM 

bending moment resistance for fully-effective stainless steel Rectangular Hollow Section (RHS) is 

given in Eq. 2.6. In both equations, 𝐸𝑠ℎ is the strain hardening modulus given by Eq. 2.7 and in which 

𝐶2 is a material coefficient that adopts a value of 𝐶2 = 0.16 for austenitic and duplex alloys and 𝐶2 = 

0.45 for ferritic stainless steels. 

𝜀𝑐𝑠𝑚

𝜀𝑦
=

0.25

𝜆̅𝑝,𝑖
3,6  ≤ min (Ω,

𝐶1𝜀𝑢

𝜀y
) for   𝜆̅𝑝,𝑖 ≤ 0.68 Eq. 2.4 
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CSM has recently been extended to advanced structural system design, through what is known as the 

CSM strain limit approach. The CSM strain limit method was first developed for carbon steel structures 

(Fieber et al. 2019; Gardner et al. 2019) and then adapted to stainless steel frames by Walport et al. 

(2019b). The CSM strain limit approach allows to estimate the local failure of the structural members 

defined by beam-type Finite Elements (FE), which are unable to reproduce local buckling per se, by 

ensuring that the average deformation exhibited by the most critical cross-section in a length equal to 

the local buckling length does not exceed certain value. The limiting deformation 𝜀𝑐𝑠𝑚 is obtained using 

the CSM base curve, which provides the maximum strains defined by Eq. 2.8 in the case of fully-

effective stainless steel cross-sections. This method has shown to provide results equivalent to models 

featuring shell-type FE, and avoid conducting cross-section or member resistance checks (Walport et 

al. 2019b, 2023). 

The CSM strain limit approach has been included in the prEN 1993-1-14 (2021) and AISC 370 (2021) 

specifications for the design of stainless steel structures by beam-type FE analysis. 

2.5. In-plane design of stainless steel structures 

The global behaviour of a structural system is affected by geometric and material nonlinearities. The 

consideration of these nonlinearities in design, when combined with the input of initial imperfections, 

results in five different methods for analysing steel structures: linear analysis or first order elastic 

analysis (LA), geometrically nonlinear analysis or second order elastic analysis (GNA), materially 

nonlinear analysis or first order plastic analysis (MNA), geometrically and materially nonlinear analysis 

or second order plastic analysis (GNA), and geometrically and materially nonlinear analysis with bow 

imperfections (GMNIA). Figure 2.3 shows the different load-displacement paths obtained from a 

typical stainless steel sway frame when considering these five analysis methods, showing significant 

differences. It is worth noting that the comparison of the responses obtained from GNA and LA analyses 

𝑁𝑐𝑠𝑚 = 𝐴𝑓𝑐𝑠𝑚 = 𝐴 [𝑓𝑦 + 𝐸𝑠ℎ𝜀𝑦 (
𝜀𝑐𝑠𝑚

𝜀𝑦
− 1)] for   𝜆̅𝑝 ≤ 0.68 Eq. 2.5 

𝑀𝑐𝑠𝑚 = 𝑊𝑝𝑙𝑓𝑦 [1 +
𝐸𝑠ℎ

𝐸

𝑊𝑒𝑙

𝑊𝑝𝑙
(

𝜀𝑐𝑠𝑚

𝜀𝑦
− 1) − (1 −

𝑊𝑒𝑙

𝑊𝑝𝑙
) (

𝜀𝑐𝑠𝑚

𝜀𝑦
)

−2

] for   𝜆̅𝑝 ≤ 0.68 Eq. 2.6 

𝐸𝑠ℎ =
𝑓𝑢 − 𝑓𝑦

𝐶2𝜀𝑢 − 𝜀𝑦
  Eq. 2.7 

𝜀𝑐𝑠𝑚

𝜀𝑦
=

0.25

𝜆̅𝑝,𝑖
3,6 + 

0.002

𝜀𝑦
≤ min (Ω,

𝐶1𝜀𝑢

𝜀y
) for   𝜆̅𝑝,𝑖 ≤ 0.68 Eq. 2.8 
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allows estimating the influence of geometric nonlinearities on the global structural behaviour, while the 

comparison between MNA and LA responses shows the influence of material nonlinearities. 

 
Figure 2.3. Typical load-displacement responses obtained from different methods of structural analysis. 

Current stainless steel standards, such as ASCE 8 (2022) and the European EN 1993-1-4 (2015) code, 

do not provide specific provisions for the global analysis or design of stainless steel structures, although 

recent studies have highlighted the need of accounting for material nonlinearities in order to design 

safer structures (Walport et al. 2021a). Therefore, research is now being focused on understanding the 

global behaviour of stainless steel structures (Arrayago et al. 2020c) and on proposing global design 

expressions that consider the effects of material nonlinearity (Shen and Chacón 2020) and combined 

material and geometric nonlinearities (Walport et al. 2021a). In addition, the forthcoming publication 

of the European standard prEN 1993-1-14 (2021), which regulates the design of steel structures through 

numerical methods, will allow all types of stainless steel structures to be designed by directly 

considering geometrical and material nonlinearities and initial imperfections in the analysis (i.e., 

through GMNIA analysis). Nevertheless, GMNIA analyses require advanced software that is not always 

available to designers, so European researchers have tended to prescribe alternative global design 

approaches that account indirectly for the geometric nonlinearities, while research in the US has focused 

on providing alternative design approaches that account indirectly for material nonlinearities. 

2.5.1. Geometric nonlinearity and Eurocode design approaches for in-plane structures 

The susceptibility to second order effects is evaluated in EN 1993-1-1 (2005) by means of the factor 

𝛼𝑐𝑟,𝑠𝑤, which represent the ratio between the applied design loads 𝐹𝐸𝑑 and the elastic critical in-plane 

flexural buckling loads for a global (sway) buckling mode 𝐹𝑐𝑟, as per Eq. 2.9. According to prEN 1993-

1-1 (2021) for the global analysis of carbon steel structures, second order effects can be neglected for 

frames showing 𝛼𝑐𝑟,𝑠𝑤 ≥ 10 for elastic analysis. For multi-storey steel frames governed by the in-plane 

sway mode and showing 10 > 𝛼𝑐𝑟,𝑠𝑤 ≥ 3, second order sway effects can be accounted for in an elastic 
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analysis by amplifying the horizontal forces by the factor 𝑘𝑠𝑤 given by Eq. 2.10 (prEN 1993-1-1 2021). 

In case of 𝛼𝑐𝑟,𝑠𝑤 < 3, it is mandatory to carry out a second order analysis. 

𝛼𝑐𝑟,𝑠𝑤 =
𝐹𝐸𝑑

𝐹𝑐𝑟
  

Eq. 2.9 

𝑘𝑠𝑤 =
1

1 −
1

𝛼𝑐𝑟,𝑠𝑤

 
for 10 > 𝛼𝑐𝑟,𝑠𝑤 ≥ 3 

Eq. 2.10 

According to prEN 1993-1-4 (2021), the susceptibility of stainless steel structures to second order 

effects should be evaluated using 𝛼𝑐𝑟,𝑠𝑤,𝑠𝑠, as per Eq. 2.11, where 𝑌 is a factor that approximates the 

further loss of stiffness, whose values are provided in Table 2.1, and the ratio 𝐾𝑠 /𝐾 is the comparison 

between the stiffness of the structure obtained from a first order elastic analysis (LA) and that obtained 

from a first order plastic analysis (MNA) at the design load level. This new definition of the 𝛼𝑐𝑟,𝑠𝑤,𝑠𝑠 

factor allows the consideration of material nonlinearities when evaluating the lateral stability of 

stainless steel structures, and was proposed by Walport et al. (2019b). As for carbon steel structures, in-

plane stainless steel MRFs with 10 > 𝛼𝑐𝑟,𝑠𝑤,𝑠𝑠 ≥ 3 can be designed considering second order effects 

by performing a first order MNA analysis if the horizontal forces are magnified by the 𝑘𝑠𝑤,𝑠𝑠 factor 

given in Eq. 2.12. Similarly, second order effects can be neglected if 𝛼𝑐𝑟,𝑠𝑤,𝑠𝑠 ≥ 10, and shall be 

explicitly considered when 𝛼𝑐𝑟,𝑠𝑤,𝑠𝑠 < 3. 

Table 2.1. 𝑌 factor given in prEN 1993-1-4 (2021). 

Stainless steel Single storey frames Multi-storey frames 

Austenitic 0.80 0.55 

Ferritic  0.90 0.65 

Duplex 0.85 0.60 

2.5.2. Material nonlinearity and AISC design approach for in-plane structures 

Alternatively, the design approach adopted in the US framework for the in-plane design of steel frames 

is referred to as the Stiffness Reduction Method (SRM), and are design methods that account indirectly 

for material nonlinearities through the concept of reduced stiffness, but require second order analyses 

to be carried out.  

The strategy of reducing the stiffness of the members to account for material nonlinearities in the design 

of structures is widely accepted due to its simplicity and accuracy. Traditionally, the SRM has been 

developed to be used in conjunction with plastic hinge-based analysis (Liew and Chen 1993a, 1993b; 

𝛼𝑐𝑟,𝑠𝑤,𝑠𝑠 = 𝑌 
𝐾𝑠

𝐾
 𝛼𝑐𝑟,𝑠𝑤  Eq. 2.11 

𝑘𝑠𝑤,𝑠𝑠 =  
1

1 −  
1

𝛼𝑐𝑟,𝑠𝑤,𝑠𝑠

 
for 10 > 𝛼𝑐𝑟,𝑠𝑤,𝑠𝑠 ≥ 3 Eq. 2.12 
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Kim and Chen 1996a, 1996b; Ziemian and McGuire 2002; Zubydan 2010, 2011), and generally 

involves the modelling of geometric imperfections (Liew and Chen 1993a, 1993b; Zubydan 2010, 

2011). Surovek-Maleck and White (2004a, 2004b) proposed a SRM in which the prediction of the 

capacity of steel structures is achieved through a second order elastic analysis where only global 

imperfections are introduced. To account for the spread of plasticity, including the effect of residual 

stresses, the stiffnesses of the members were reduced through analytical stiffness reduction factors.  

With slight modifications, this approach was first adopted in 2005 as an annex of the AISC 360 and 

referred to as the Direct Analysis Method (DM). In the following editions of AISC 360 (2016, 2022), 

the DM has become the preferred design method and has been incorporated in the main body of the 

specification because it provides accurate estimates of the load effects in all types of steel structural 

systems and eliminates the need of calculating effective buckling lengths (Ziemian 2010). In the DM, 

the estimations of strengths are obtained from a second order elastic analysis, where the spread of 

plasticity is taken into account by reducing the stiffness of the members by two reduction factors: a 

general stiffness factor applied to the whole structure, and an additional factor only affecting the flexural 

stiffness of the members contributing to the stability of the structure. Initial global imperfections (out-

of-plumbness of columns) should always be included in the analysis by means of notional loads or by 

modelling them directly, while different alternatives exist regarding initial member (out-of-straightness) 

imperfections: (1) they do not need to be explicitly included in the structural analysis, but they are 

accounted for by carrying out member checks, or (2) they can be explicitly included in the structural 

analysis, and therefore only cross-section checks are necessary.  

The first edition of the American Specification for Structural Stainless Steel Buildings AISC 370 (2021) 

has recently adapted the DM approach previously developed for carbon steel to stainless steel structures 

by calibrating new values of the two reduction factors (Walport at el. 2021b). In line with the carbon 

steel approach, one of these factors corresponds to a general reduction in stiffness of all members due 

to the development and propagation of plasticity and assumes a constant value of 0.7 for all stainless 

steel members. The other factor applies only to the elements contributing to the stability of the structure 

and has been derived from the Ramberg-Osgood expression. The other requirements of the DM have 

remained unchanged, i.e., the consideration of initial global imperfections and the verification of 

member or cross-section strength depending on the approach adopted for the inclusion of member 

imperfections in the structural analysis. Note that cross-section strength verifications in AISC 370 are 

carried out using linear CSM cross-section interaction equations with a reduced maximum allowable 

level of plastic strain. 

Having a Stiffness Reduction Method, similar to the DM but in line with the European code would be 

useful from a practical point of view, since most design software allow nonlinear geometric analyses to 

be carried out, but nonlinear material analyses are not always possible. Moreover, although the 
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prescription of a general reduction factor and the linear strength interaction equations proposed in AISC 

370 facilitate the application of the DM, it would be interesting to study the possibility of having 

stiffness reduction factors more adjusted to each family of stainless steels and to use the interaction 

equations proposed in the Eurocode, which are more precise, to verify the cross-section resistances. 

2.6. Seismic design of stainless steel structures 

2.6.1. Seismic performance of stainless steel structures 

Stainless steel has an excellent potential in seismic design due to its ductility, strain hardening, energy 

dissipation capacity and fire resistance properties (CSI 2017). Although research on the seismic 

behaviour of the most popular stainless steel alloys (austenitic, ferritic and duplex) is still at an early 

stage, some experimental studies on their hysteretic stress-strain behaviour are noteworthy (Ye et al. 

2006; Nip et al. 2010a; Wang et al. 2014; Zhou and Li 2016; Chacón et al. 2018; Lázaro and Chacón 

2022). 

At member level, experimental studies on the hysteretic behaviour of austenitic and duplex (Nip et al. 

2010b; Zhou et al. 2018; Fang et al. 2018; Kim et al. 2021; Chen et al. 2022) members under cyclic 

loading (subjected to either axial, bending loads, or to a combination of both) are worth mentioning, as 

well as numerical studies proposing expressions to estimate the ultimate rotation and axial displacement 

of such elements as a function of the width-to-thickness ratio (Fang et al. 2018; Zhou et al. 2018). Note 

that these expressions were only valid for the loading combinations considered in the corresponding 

studies. 

Regarding the global behaviour of stainless steel structures under seismic forces, the literature presents 

a very limited research. The studies carried out by Di Sarno et al. (2003, 2006, 2008) can be highlighted, 

which revealed a considerable increase in the ultimate strength of carbon steel systems (moment 

resisting, braced and eccentrically braced frames) when introducing stainless steel dissipative elements.  

2.6.2. Seismic design of steel and stainless steel frames according to Eurocode 

The next revision of Eurocode 8 will include remarkable changes on both the general rules – prEN 

1998-1-1 (2021) – and the rules for new buildings – prEN 1998-1-2 (2021). One of the major novelties 

the publication of a specific chapter – Chapter 15 (prEN 1998-1-2 2021) – devoted to the seismic design 

of certain aluminium structures, which also exhibit remarkably nonlinear stress-strain relationships.  

However, as a consequence of the lack of research, the future edition of the European standard for the 

design of structures for earthquake resistance prEN 1998-1-2 (2021) does not include specific design 

provisions for stainless steel structures, despite the significantly different hysteretic response of these 
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alloys (Nip et al. 2010a, 2010b), and therefore the guidance provided for steel structures should be 

adopted. It should be noted that recommendations for stainless steel already exist in the Japanese code 

(BCJ 2016). 

The most extended approach in Eurocode 8 for the seismic design of steel Moment Resisting Frames 

(MRFs) is the force-based approach. The force-based approach is based on the performance of an elastic 

analysis of the structure, where the nonlinear deformations and energy dissipation are considered by 

reducing the design seismic forces using tabulated behaviour factors, and the adequate performance of 

the frame under seismic actions is guaranteed by the fulfilment of several requirements related to the 

lateral stability, drift limitations and the application of certain capacity design rules (prEN 1998-1-1 

2021). The values of the behaviour factors depend on the level of dissipation required of the structure, 

the system typology, and the construction material considered, and can be found in prEN 1998-1-2 

(2021). Different values are prescribed for concrete, masonry, steel and aluminium structures, but no 

values of the behaviour factors have been proposed for stainless steel frames yet. 

2.7. Concluding remarks 

Stainless steel is increasingly used in structural engineering because of its remarkable mechanical 

properties and excellent corrosion resistance. The stress-strain behaviour of stainless steel is nonlinear 

and can be accurately predicted using the two-stage Ramberg-Osgood material model, but to achieve 

safe and more optimised stainless steel structures, the nonlinear response of the material must be taken 

into account at all levels of design. In recent decades, research has focused on material, cross-section 

and member performance under predominantly static loads, and alternative approaches, such as the 

Continuous Strength Method, have been developed to account for the strain hardening and ductility of 

stainless steels. In addition, studies on the overall behaviour of stainless steels have increased in the last 

years, but have been based on solely numerical studies, without providing any experimental evidence 

on the system performance of such structures. Likewise, research on the seismic behaviour of stainless 

steels is very scarce, preventing designers to take full advantage of the suitable seismic features of these 

alloys.  

As a consequence, stainless steel structural design standards are increasingly effective for static actions, 

but further research is needed on the performance of systems under static loads (especially experimental 

studies), to assess the suitability of the expressions recently included in the new European and US codes 

for stainless steel structures, and also to provide recommendations for the safe and efficient seismic 

design of stainless steel structures. 
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3.1. Introduction 

Advances in the research of more complex stainless steel structural systems are still scarce and generally 

limited to numerical studies (Arrayago et al. 2017c; Walport et al. 2019b; González-de-León et al. 

2021), while only preliminary results are available for experimental results (Arrayago et al. 2019). 

Alternative, several experimental studies have been already carried out on carbon steel frames 

(Wilkinson and Hancock 1999; Avery and Mahendran 2000; Zhang et al. 2016b; Blum and Rasmussen 

2018). Recent studies demonstrated that the degradation of stiffness due to the nonlinear material 

response of stainless steel alloys causes greater deformations and increases second order effects 

(Walport et al. 2019b) and the lack of guidance on plastic design represents an obstacle to the optimal 

design of stainless steel structures since their high ductility and strain hardening are not taken into 

account in design (Arrayago et al. 2017c). Although these studies lead to importance modifications of 

the future European standard (prEN 1993-1-4 2021; prEN 1993-1-14 2021), they were limited to 

numerical results. With the aim of investigating experimentally the behaviour of austenitic stainless 
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steel frames when subjected to static loading, a comprehensive experimental programme on sway and 

non-sway stainless steel frames with slender and stocky rectangular hollow sections (RHS) was carried 

out at the Laboratory of Technology of Structures and Materials at the Universitat Politècnica de 

Catalunya. This chapter presents the experimental results obtained from previous tests in which the 

performance of stainless steel at different levels – material characterisation, cross-sections and members 

– was studied, a detailed description of test specimens and the adopted experimental set-up for the frame 

tests. Experimental results of the frame tests are provided in Chapter 4. 

3.2. Preliminary tests on material and members 

The preliminary experimental programme encompassed a study at material, cross-section and member 

levels on EN 1.4301 austenitic stainless steel RHS: (i) a set of tensile tests on flat and corner coupons 

for each cross-section to characterise the stress-strain behaviour of the material, (ii) stub column tests 

(SC) from which cross-sectional compression resistances were obtained, (iii) four-point bending 

moment tests (B) to determine the bending moment capacities and (iv) flexural buckling tests from 

which the column resistances in major and minor axes were determined under pin-ended conditions (C1 

and C2). 

Four different cross-section geometries, ranging from stocky to slender, were investigated. Cross-

sections follow the notation CS1-120×80×6, CS2-100×80×4, CS3-120×40×4 and CS4-200×100 3, 

while the labelling of the different specimens includes the reference numbering for the cross-section 

followed by the identification of the test type (SC for stub columns, B for beams, and C1 and C2 for 

columns investigated in major and minor axes, respectively). Table 3.1 summarises the geometric 

properties of the specimens measured before tested, in which 𝐻 is the total height, 𝐵 is the total width 

and 𝑡 is the wall thickness of the cross-sections. In addition, 𝑅𝑒𝑥𝑡 represents the external corner radius, 

𝐿 is the total specimen length and 𝑤 corresponds to the relevant local (𝑤0) or member (𝑤𝑔) measured 

imperfection amplitude. Local imperfections are important for members in compression governed by 

cross-section behaviour, while member imperfections become more relevant when the response is 

controlled by flexural buckling. For beams, which are loaded transversally to the specimens, local and 

member imperfections have negligible effect for the magnitudes reported in Table 3.1. Detailed 

descriptions of the preliminary tests, including measurement of imperfections and assessment of the 

results, can be found in (Arrayago et al. 2020b). 
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Table 3.1. Measured geometric properties of the tested specimens. 

Specimen 
𝐻 

[mm] 

𝐵 

[mm] 

𝑡 

[mm] 

𝑅𝑒𝑥𝑡  

[mm] 

𝐿 

[mm] 

𝑤0 

[mm] 

𝑤𝑔 

[mm] 

CS1-SC 119.8 80.0 6.0 19.5 360.0 0.046 -- 

CS2-SC 100.2 80.6 3.9 12.7 299.8 0.048 -- 

CS3-SC 120.0 41.5 3.9 12.6 360.3 0.041 -- 

CS4-SC 199.1 103.3 2.8 8.1 600.0 0.241 -- 

CS1-B 120.0 80.0 6.0 21.1 1700.5 -- -- 

CS2-B 99.8 79.8 3.9 12.9 1700.0 -- -- 

CS3-B 120.0 41.1 3.9 12.2 1700.5 -- -- 

CS4-B 199.0 103.0 2.8 10.5 1702.0 -- -- 

CS1-C1 120.2 80.1 6.0 20.3 1500.0 -- 1.08 

CS1-C2 119.9 80.0 6.0 19.5 1502.0 -- 0.55 

CS2-C1 99.5 80.0 3.9 11.4 1500.0 -- 1.04 

CS2-C2 99.5 80.3 3.8 13.3 1500.0 -- 0.69 

CS3-C1 120.2 41.0 3.9 11.8 1500.0 -- 1.13 

CS3-C2 120.0 40.9 3.8 11.7 1500.0 -- 0.77 

CS4-C1 199.0 102.0 2.8 10.7 1500.5 -- 1.82 

CS4-C2 199.0 103.0 2.8 12.2 1500.0 -- 1.33 

The key results from each campaign tests are reported below. Detailed descriptions of the preliminary tests, 

including measurement of imperfections and assessment of the results, can be found in (Arrayago et al. 2020b). 

3.2.1. Tensile coupon tests 

The stress-strain behaviour of the tested specimens was determined by means of a set of tensile coupon 

tests. Two coupons were cut from each of the four cross-sections investigated. In order to correctly 

characterise the effect of the cold-forming process, coupons were extracted from both flat (F) and corner 

(Co) regions of the different cross-sections. Table 3.2 reports a summary of the most relevant material 

parameters for the different coupons, while Figure 3.1 presents the stress-strain curves measured from 

the conducted tensile tests. 

Table 3.2. Key material characterisation parameters from tensile coupon tests. 

Specimen 
𝐸 

[MPa] 

𝜎0.05 

[MPa] 

𝑓𝑦  

 [MPa] 

𝑓𝑢  

 [MPa] 

𝜀𝑢  

 [mm/mm] 
𝑛 𝑚 

CS1-F 185778 396 479 679 0.39 7.05 2.55 

CS2-F 183098 332 398 622 0.36 7.11 2.33 

CS3-F 197066 526 563 721 0.26 7.02 3.82 

CS4-F 188239 331 399 631 0.41 7.09 2.49 

CS1-Co 185360 374 635 840 0.34 5.40 7.89 

CS2-Co 181345 384 539 746 0.45 5.55 7.02 

CS3-Co 172619 454 652 856 0.32 5.52 7.74 

CS4-Co 189123 414 561 757 0.28 5.57 6.88 
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Figure 3.1. Measured stress-strain curves for flat and corner coupons. 

3.2.2. Stub column tests 

The cross-sectional compression resistance of the analysed cross-sections was determined by 

conducting four stub column (SC) tests under pure compression. Key experimental results are 

summarised in Table 3.3, where 𝑁𝑐,𝑢 is the ultimate axial compression load and 𝛿𝑐,𝑢 is the 

corresponding end shortening. Table 3.3 also reports the cross-sectional classification in compression 

according to EN 1993-1-4 (2015) and the calculated 𝑁𝑐,𝑢/𝑁𝑝𝑙 ratios, where 𝑁𝑝𝑙 is the cross-sectional 

squash load calculated based on the weighted average yield stress values calculated from the flat and 

corner regions of the cross-sections, as indicated in the Design Manual (SCI 2017). Local slenderness 

calculated as reported in Section 2.4.2 are also reported. 

Table 3.3. Key experimental results for stub column tests. 

Specimen 
Cross-section class in 

compression 

Local slenderness 𝜆̅
𝑝 

in compression 

𝑁𝑐,𝑢  

[kN] 

𝛿𝑐,𝑢 

[mm] 
𝑁𝑐,𝑢/𝑁𝑝𝑙 

CS1-SC 1 0.50 1197.6 1.6 1.01 

CS2-SC 3 0.60 673.8 2.1 1.16 

CS3-SC 4 0.77 552.3 2.0 0.81 

CS4-SC 4 1.64 440.6 2.1 0.63 

3.2.3. Four-point bending tests 

The bending moment capacity of the studied cross-sections was investigated by conducting four-point 

bending tests (B). The key experimental results are reported in Table 3.4, where 𝐹𝑢 is the ultimate total 

load, and 𝑑𝑢 and 𝑀𝑢 are the corresponding midspan deflection and bending moment. According to the 

results shown in Table 3.4, the EN 1993-1-4 (2015) classification of the different cross-sections 

coincides with experimental results, as the 𝑀𝑢/𝑀𝑒𝑙 and 𝑀𝑢/𝑀𝑝𝑙 ratios attest, where 𝑀𝑒𝑙 and 𝑀𝑝𝑙 are 
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the elastic and plastic bending moment capacities, respectively, based on the weighted average material 

properties. 

Table 3.4. Key experimental results for four-point bending tests. 

Specimen 
Cross-section 

class in bending 

Local slenderness 

𝜆̅
𝑝 in bending 

𝐹𝑢 

[kN] 

𝑑𝑢 

[mm] 

𝑀𝑢  

[kNm] 
𝑀𝑢/𝑀𝑒𝑙  𝑀𝑢/𝑀𝑝𝑙 

CS1-B 1 0.27 232.6 44.8 59.3 2.02 1.32 

CS2-B 1 0.42 92.4 56.4 23.6 1.60 1.22 

CS3-B 1 0.32 105.6 46.8 26.9 1.68 1.15 

CS4-B 4 0.78 114.3 14.1 29.1 0.81 0.65 

3.2.4. Column tests 

The preliminary experimental programme was finished by testing eight austenitic stainless steel 

columns under pure compression around major and minor axis and pin-ended boundary conditions (C1, 

C2). Table 3.5 reports the key experimental results for the conducted flexural buckling tests on 

austenitic stainless steel columns, where 𝑁𝑏,𝑢 is the ultimate flexural buckling axial compression load 

and 𝑑𝑏,𝑢, 𝛿𝑏,𝑢, and 𝜃𝑏,𝑢 are the mid-height lateral deflection, end shortening and end rotation 

corresponding to 𝑁𝑏,𝑢, respectively. The actual load eccentricities 𝑒𝑚, calculated as explained in 

(Arrayago et al. 2020b) are also reported. 

Table 3.5. Key experimental results for column tests. 

Specimen 
Flexural 

buckling axis 

𝑁𝑏,𝑢 

[kN] 

𝑑𝑏,𝑢 

[mm] 

𝛿𝑏,𝑢 

[mm] 

𝜃𝑏,𝑢 

[deg] 

𝑒𝑚 

[mm] 

CS1-C1 Major -- -- -- -- 2.65 

CS1-C2 Minor -- -- -- -- 2.97 

CS2-C1 Major 491.9 14.4 7.22 3.11 2.97 

CS2-C2 Minor 454.4 11.2 10.82 2.42 1.13 

CS3-C1 Minor 194.8 13.5 4.83 3.06 1.18 

CS3-C2 Minor 202.5 12.5 5.40 2.83 1.17 

CS4-C1 Major 407.6 0.9 14.17 0.50 4.21 

CS4-C2 Minor 440.1 6.4 8.06 0.54 3.75 

3.3. Stainless steel frame specimens 

3.3.1. General description 

The experimental programme on frames was comprised of four single-storey and single-bay austenitic 

stainless steel portal frames. All frames showed the same nominal height (ℎ) of 2.0 m and a nominal 

span between columns (𝐿) equal to 4.0 m, and were fabricated upon the four RHS cross-sections 

reported in Section 3.2. Frame 1 to Frame 4 were fabricated from cold-formed RHS specimens with 

cross-sections CS1 to CS4, respectively, with a constant cross-section for both columns and beams for 

each frame. The connections between the beams and the columns were performed by welding auxiliary 

16 mm-thick steel plates with an inclination of 45º, based on the stiffened knee joint provided in the 
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CIDECT design guide (Parker et al. 1992) for RHS portal frames. These stiffened welded connections 

were proved to be capable of achieving plastic bending moment capacities in cold-formed RHS frames 

by Wilkinson and Hancock (2000). Likewise, for the connections at supports additional 16 mm-thick 

steel plates were welded at the bottom edges of the columns, which were provided with different 

perforations. These allowed having boundary conditions representing both fixed- and pin-ended 

supports with the same general configuration by simply changing the number and location of bolts. 

Table 3.6 summarises the general definition of frame specimens, in which the overall geometries, cross-

section dimensions and boundary conditions (BC’s) are reported. In this table, the 𝛼𝑐𝑟,𝑠𝑤 and 

𝛼𝑐𝑟,𝑠𝑤,𝑠𝑠 parameters, which indicates the susceptibility of the frames to second order effects and were 

calculated as given in Eq. 2.9 and Eq. 2.11, respectively, are also reported. Noted that for the specific 

case of austenitic stainless steel single-storey frames, 𝑌 factor is equal to 0.8. As shown, according to 

EN 1993-1-1 (2005), Frame 1 and Frame 2 can be considered as non-sway frames (being 𝛼𝑐𝑟,𝑠𝑤 > 10, 

with second order effects being expected to be negligible), while Frames 3 and 4 are classified as sway 

frames (with 𝛼𝑐𝑟,𝑠𝑤 < 10, in which second order effects are expected to be relevant). As it can be 

observed by comparing 𝛼𝑐𝑟,𝑠𝑤 and 𝛼𝑐𝑟,𝑠𝑤,𝑠𝑠, the nonlinear material response has a noticeable influence 

on the expected susceptibility of the studied frames to second order effects. 

Table 3.6. General definition of frame specimens (based on nominal properties). 

Specimen 
Cross-

section 

ℎ 

[m] 

𝐿 

[m] 

BC’s 

(supports) 
𝛼𝑐𝑟,𝑠𝑤 𝛼𝑐𝑟,𝑠𝑤,𝑠𝑠 

Column 

slenderness 

𝜆̅
𝑐 

Local 

slenderness 

𝜆̅
𝑝 

Frame 1 CS1 2.0 4.0 Fixed-end 11.7 8.8 0.60 0.50 

Frame 2 CS2 2.0 4.0 Fixed-end 11.8 9.7 0.60 0.60 

Frame 3 CS3 2.0 4.0 Pin-end 3.4 2.6 2.53 0.77 

Frame 4 CS4 2.0 4.0 Pin-end 7.6 6.5 1.15 1.64 

Table 3.6 also reports the calculated column slenderness values 𝜆̅𝑐, based on the effective length 

calculations for sway and non-sway frames, as well as the local slenderness values of the cross-sections 

in compression 𝜆̅𝑝. Note that according to EN 1993-1-4 (2015) local buckling effects appear beyond a 

local slenderness value of 𝜆̅𝑝= 0.65, hence the cross-sections used in the fabrication of Frames 1 and 2 

correspond to stocky cross-sections in pure compression, while Frames 3 and 4 correspond to slender 

cross-sections, in line with the results reported in Table 3.3. Alternatively, these cross-sections are 

classified as class 1 in bending for Frames 1 to 3, and as class 4 for Frame 4, as indicated in Table 3.4. 

3.3.2. Initial imperfections 

Characterising the actual initial imperfections of the frames by measuring the initial geometry was one 

of the key aspects in frame tests, as they might have considerable influence on the response and ultimate 

capacity of such structures. In addition, the collected data contributed to the available database on frame 
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imperfection measurements, which is considerably scarce. The initial geometry of each frame was 

carefully measured prior to testing once it was put in place by means of a precision theodolite, as shown 

in Figure 3.2. The actual geometry of the columns was characterised by monitoring five different points 

along their height, while the position of five additional points along the beam length was also measured. 

This allowed introducing accurate initial imperfections into subsequent numerical studies, as well as 

evaluating the influence of member and global initial imperfections on the overall response of the 

frames. In addition, several points of the frames were monitored during the tests and their movements 

were recorded using a Lidar system (see Figure 3.2). Preliminary results corresponding to this analysis 

are available in (Chacón et al. 2021). 

  
Figure 3.2. General view of the theodolite and Lidar system. 

Figure 3.3 and Figure 3.4 show the measured initial geometry for the four stainless steel frames, together 

with the perfect geometry of the analysed frames. While Figure 3.3 presents the measured in-plane (X-

Z) deviations, Figure 3.4 shows the out-of-plane (Y-Z) deviations measured from the columns. Since 

the measured imperfections were considerably low, they have been amplified by a factor 40 in Figure 

3.3, and by a factor 5 in Figure 3.4, in order to make the imperfection patterns visible, and maximum 

deviation values are reported for each frame. Results in Figure 3.3 indicate that Frames 1 and 2 showed 

sway-shaped initial imperfections, while for Frames 3 and 4 the imperfection shapes were assimilable 

to non-sway modes. According to EN 1993-1-1 (2005), the equivalent sway imperfection to include in 

the frame analysis can be estimated through the expression given in clause §5.3.2(3). For the analysed 

frames, this expression provides a maximum drift of 8.6 mm at the top of the columns, which is similar 

to the imperfection measured for Frame 2, but much higher than the values recorded for Frames 1, 3 

and 4. In a similar way, the maximum deviation due to the inclination of columns in portal frames 

according to the erection tolerances given in EN 1090-2 (2018) is equal to 4 mm and therefore, all 

measured imperfections except for Frame 2 were built in accordance with this standard. Alternatively, 

all four frames showed considerable out-of-plane deviations, as illustrated in Figure 3.4, which were 

above the tolerances given in EN 1090-2 (2018). However, and since the frames were laterally 

restrained in several points throughout the duration of the tests, these imperfections were not expected 

to influence the behaviour of the tested stainless steel frames. 
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(a) Frame 1 (b) Frame 2 

  

(c) Frame 3 (d) Frame 4 

Figure 3.3. Measured in-plane initial imperfections in stainless steel frames. 

 

    
(a) Frame 1 (b) Frame 2 (c) Frame 3 (d) Frame 4 

Figure 3.4. Measured out-of-plane initial imperfections in stainless steel frames. 

 

3.4. Frame test set-up and instrumentation 

The experimental set-up adopted in stainless steel frame tests, including the definition of the loading 

scheme and protocols, the description of auxiliary arrangements – at loading sections, supports and 

lateral restraint points – and the design and validation of load cells are described herein. The layout of 

the general test set-up can be seen in Figure 3.5, in which the most relevant parts are highlighted and 

described extensively in the following sub-sections. 
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Figure 3.5. General set-up of stainless steel frame tests. 

3.4.1. Loading scheme and protocol 

The aim of this experimental programme was to investigate the performance of stainless steel frames 

subjected to static vertical and horizontal loading. Typical gravity and wind loads, transferred to frames 

via purlins and girts, are similar to distributed loads. Since it is difficult to reproduce this in a laboratory, 

point loads are usually applied. Another key aspect in frame tests are the large in-plane sway 

displacements, which difficult downwards loads to remain vertical, and applying these loads as gravity 

loads is usually not feasible due to load magnitude requirements. These issues have already been 

reported in the literature by several authors testing steel frames (Wilkinson and Hancock 1999; Avery 

and Mahendran 2000; Zhang et al. 2016c; Blum et al. 2018). One of the solutions adopted by some of 

these authors was the adoption of gravity load simulators (Wilkinson and Hancock 1999), the movement 

of the vertical actuator to eliminate the relative horizontal displacement between the strong floor and 

the loading sections (Zhang et al. 2016c; Blum et al. 2018) or the adoption of slightly different but 

equivalent loading schemes in which the horizontal displacement of column supports was imposed 

(Avery and Mahendran 2000). Based on the equipment available at the laboratory and the estimated 

values of the applied loads, this last option was considered the most suitable for this experimental 

programme on stainless steel frames. 

Preliminary numerical simulations were developed for the two loading schemes shown in Figure 3.6 to 

assess the accuracy of the selected solution. For this, the loading scheme at which column supports were 

move away from the fixed point (i.e., loading scheme 2) was studied and compared to the frame 

subjected to a horizontal load acting at the right knee connection column (i.e., loading scheme 1). 
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Loading scheme 1 Loading scheme 2 

Figure 3.6. Loading schemes. 

 

Figure 3.7 presents the horizontal load-lateral drift paths predicted from finite element models for Frame 

1 for these two loading schemes, showing an equivalent behaviour. Although the most straightforward 

loading scheme case for a frame subjected to vertical and horizontal loading would be loading scheme 

1, the limitations regarding vertical load simulators and reaction walls at the laboratory made loading 

scheme 2 the most suitable option to be adopted for the frame tests. 

 
Figure 3.7. Comparison of the responses for the loading cases considered for Frame 1. 

The adopted loading scheme consisted of two steps: first, the two vertical point loads were introduced 

by means of two jacks up to a reference load value 𝐹𝑣,𝑟𝑒𝑓 corresponding to a certain percentage of the 

maximum vertical resistance of the frames 𝐹𝑣,𝑚𝑎𝑥 (see Table 3.7). These maximum vertical resistances 

𝐹𝑣,𝑚𝑎𝑥 were obtained from preliminary geometric and material nonlinear analysis with initial 

imperfections (GMNIA) conducted by means of the advanced finite element software ABAQUS 

(2016), based on the nominal geometric dimensions and the weighted average material properties 

calculated from the values reported in Section 3.2.1. Then, these vertical loads were kept constant and 

the horizontal load was introduced in a second step by imposing a horizontal displacement to the column 

supports through a third jack until the frames collapsed. The vertical loads were introduced by means 

of two different jacks, at a distance of 785 mm from each column, as shown in Figure 3.5, although 

both jacks were connected to guarantee that the applied loads were equal at both loading points. For the 

definition of the position of these point loads, different aspects were considered: (i) second order effects 
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are higher when vertical loads are applied near the columns; (ii) the development of plastic hinges in 

the beams is favoured when the vertical loads are applied away from the columns; (iii) if the position 

of the supports overtakes the position of the applied load when supports are pushed, a change in the 

frame behaviour can occur and the deformation of the frame starts to revert. 

Considering all this, and the facts that the aim of the experimental programme was to study second 

order effects for the sway frames and the plastic behaviour for the non-sway frames, and that the 

maximum expected displacement at the supports was 500 mm, vertical loads were defined to act at a 

distance of 785 mm away from the columns. The decision of having two different jacks instead of a 

single jack with a spreading beam was based on the deformed shape of the frames once the horizontal 

loading was applied: when vertical loads are kept constant and the horizontal effect is introduced, 

deflections at both loading points are not equal and thus it is necessary to have two different jacks 

applying vertical loads for this second step, as the spreading beam might not be able to follow these 

deformations, and vertical loads could be unequally applied. Different vertical and horizontal loading 

rates were defined for each of the frames to ensure safety and reasonable duration of the tests, which 

were set to an approximate duration of 90 minutes. The vertical load introduction during the first loading 

step was performed under displacement control until the reference loads were reached. During the 

second loading step, horizontal loads were also introduced with displacement control, although the hold 

of the reference vertical loads was load-controlled. Table 3.7 reports the rates adopted for the four frame 

tests. 

Table 3.7. Adopted test rates for vertical and horizontal loading steps in frame tests. 

Specimen 

Step 1: Vertical loading 

(Duration: 30 min approx.) 

 Step 2: Horizontal loading 

(Duration: 60 min approx.) 

Test rate 𝐹𝑣,𝑟𝑒𝑓  
Proportion of 𝐹𝑣,𝑚𝑎𝑥  

 Test rate 

[mm/min] [kN]  [mm/min] 

Frame 1 2.00 157.3 65%  3.30 

Frame 2 2.80 85.0 80%  3.30 

Frame 3 1.27 44.6 35%  2.50 

Frame 4 0.67 126.7 40%  0.83 

3.4.2. Auxiliary elements 

3.4.2.1. Vertical loading 

With the aim of avoiding local web failure (i.e., web crippling), the auxiliary elements shown in Figure 

3.8 were designed for the vertical loading sections, inspired in the arrangements described in Li and 

Young (2018). These elements also contributed to the lateral stability of the frames and were composed 

of three steel plates, welded in a U-shape. The horizontal parts had a small hole in the middle to connect 

them to the vertical loading jacks. Likewise, the side plates had two holes to allow inserting 

supplementary T-shaped elements (composed by a steel bar welded to a small steel plate) with Teflon 
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plates, which could be adjusted to fit the different sizes of each cross-section. The correct distribution 

of the loads was favoured through 10 mm-thick neoprene pads. 

  
Figure 3.8. General view and details of the vertical loading section auxiliary elements and their connection to 

the jacks. 

3.4.2.2. Horizontal loading 

Horizontal loading was introduced by imposing a displacement at the column supports through a horizontal 

jack once the vertical loading had been applied. In order to guarantee the same imposed horizontal 

displacement at both supports, a rigid support beam was prepared (see Figure 3.5 and Figure 3.9). This beam 

was fabricated from two European HEM 120 beams, placed side by side, and connected at certain locations 

by welding steel plates. An especially fabricated load cell was placed in the beam to measure the horizontal 

reactions at the left support, as shown in Figure 3.12(b), which is further described in Section 3.4.3. The 

beam was thus discontinuous at the location at which the horizontal load cell was placed, and the load cell 

was bolted to two end plates welded to the end parts of the rigid beam. The location of the horizontal load 

cell was carefully chosen after studying the deflections at the rigid beam when subjected to the maximum 

expected loads and bending moments, making sure that neither the rigid beam nor the load cell showed 

excessive vertical deflections. In addition, the webs of the HEM 120 sections were reinforced by adding 

stiffeners at the column connection areas as shown in Figure 3.9. 

   
Figure 3.9. Details of the designed sliding supports and connection elements. 
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The rigid beam was supported on two sliding supports, which allowed a smooth and frictionless 

movement of the frames (see Figure 3.9). These supports were especially fabricated by MeKano4 S.A, 

a company specialized in bridge construction solutions. These elements consisted of steel plates with 

one of their surfaces covered with a Teflon plate sliding on a polished stainless steel surface, bolted to 

the rigid beam by means of four bolts, and connected to the strong floor through tensioned high strength 

bars. The length of these elements was equal to 500 mm, which was the maximum expected horizontal 

displacement according to the conducted preliminary finite element analyses. 

3.4.2.3. Column supports 

The experimental programme consisted of two stainless steel frames with fixed-ended support 

conditions, representing non-sway frames, and two additional sway frames with pin-ended supports. In 

order to guarantee these boundary conditions and to simplify the process of switching frames once they 

were tested, steel plates were welded at the end faces of each column. The connection of the specimens 

to the rigid beam was performed by means of two additional load cells similar to that shown in Figure 

3.12(a), which were also especially fabricated and which are described in Section 3.4.3. These load 

cells were bolted to the plates welded to the column ends, as well as to the rigid beam. Fixed-ended 

boundary conditions were achieved by using twelve bolts between the steel plate and the load cell (see 

Figure 3.10(a), while for pin-ended conditions only four bolts were used (see Figure 3.10(b)). As these 

figures show, support sections, as well as beam-column connections, were further strengthened against 

localized effects by welding additional stiffeners, as shown in Figure 3.10. 

   
(a) (b) (c) 

Figure 3.10. (a) Fixed-ended support (Frame 2); (b) Pin-ended support (Frame 4); (c) beam-column connection. 

3.4.2.4. Horizontal displacement restraint point 

As described in the previous section, the loading scheme considered in this experimental programme 

was based on the fact that the beams of the tested stainless steel frames had restrained horizontal 

displacements. For this, steel plates used in the beam-column connections were prepared with two 

additional holes and the top parts of the right columns were tied to a reaction wall by means of high 
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strength bars, as shown in Figure 3.11. In addition to restraining in-plane horizontal displacements, this 

configuration contributed to the lateral out-of-plane stability of the frames. 

 

 

 
Figure 3.11. General view and details of the horizontal displacement restraint point on the top of right columns 

and connection to reaction wall. 

3.4.3. Load cells 

The accurate measurement of support reactions was another key aspect of frame tests, as they provided 

essential information for the calculation of the bending moments at any particular cross-section. Recording 

total vertical and horizontal applied loads during tests was simple as they could be directly obtained from 

the actuators. However, this was not enough since the distribution of these loads in both supports was 

required. This meant that during the tests vertical and horizontal reactions at both supports needed to be 

measured, as well as moment reactions for the fixed-ended frames. With the aim of capturing these reactions, 

three “bespoke” load cells, similar to those used by Young and Rasmussen (2003), were fabricated. Two 

different types of load cells were considered: two load cells for vertical supports – measuring vertical 

reactions and moment reactions – and one load cell for the rigid beam –measuring horizontal reactions at the 

left support. Each load cell consisted of two thick steel plates connected by means of four welded solid steel 

studs, as shown in Figure 3.12. Four strain gauges were attached to each of the steel studs, which provided 

the necessary information for the calculation of the reaction forces and moments acting on each load cell. 

   
(a) (b) 

Figure 3.12. General view of the designed (a) vertical and (b) horizontal load cells. 
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Once load cells were fabricated, they were calibrated on an 8805 INSTRON hydraulic machine (see 

Figure 3.13). The aim of this calibration was to assess the capability of the fabricated load cells to 

measure applied loads and moments accurately by comparing them with the reference values introduced 

by the actuator. For this, different tests were performed on each of the three load cells, including 

concentric and eccentric load cases, with loading protocols at which the load was applied in 20 kN 

increments up to a total load of 80 kN, taking 180 second to reach 20 kN and with 5 second holds after 

each increment, reaching the maximum load after 740 seconds. From the recorded strains, measured 

loads 𝑁𝑚𝑒𝑎𝑠 and moments 𝑀𝑚𝑒𝑎𝑠 were calculated and compared with the external axial loads 𝑁𝑎𝑝𝑝𝑙𝑖𝑒𝑑 

and moments 𝑀 = 𝑁𝑚𝑒𝑎𝑠 · 𝑒, where 𝑒 is the load eccentricity, as shown in Figure 3.13. 

 
 

Figure 3.13. Calibration process of the load cells. 

3.4.4. Instrumentation 

In addition to the measurement of support reactions, further magnitudes needed to be recorded during 

the tests for an accurate characterisation of the performance of stainless steel frames. Figure 3.5 shows 

all measurement devices and magnitudes considered during the tests. Deflections were measured at the 

loading sections and midspan sections of the beams by means of string potentiometers, and the 

horizontal displacement of the rigid beam was recorded at the left support in addition to the 

measurement provided by the horizontal jack to check the uniformity of the movement. The vertical 

settlement displacements at supports were also recorded by means of LVDT transducers, measuring the 

relative displacements between the steel plates welded to the column ends and an external fixed 

reference point (i.e., the strong floor of the laboratory). One laser device was placed on the top of the 

right column, in the section at which the horizontal displacement of the frame was restrained, as a safety 

measurement of possible horizontal movements or elongations at the ties. A second laser device 

recorded the out-of-plane displacement of the top left column to monitor the deviation of the frames 

from the purely in-plane response. In addition, two inclinometers were placed close to the support 

sections to measure column rotations in the in-plane and out-of-plane directions. 
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Moreover, strains at the four faces of the rectangular hollow sections were recorded by means of strain 

gauges to estimate stress distributions and bending moments at certain locations. For this, column 

sections located at supports and at heights around 1900 mm from the supports were chosen. In the 

beams, vertical loading sections were instrumented, as well as the midspan section and additional 

sections adjacent to the beam-to-column connections. From the loading scheme defined for the frame 

tests, the critical cross-section – that subjected to the most unfavourable combination of bending 

moment and axial load – was the upper point of the right column at which the horizontal displacement 

was restrained. Finally, in order to accurately capture the response of these areas, a Digital Image 

Correlation (DIC) system was implemented, contributing to the better understanding of the response of 

these sections. 

3.5. Concluding remarks 

This chapter presents an extensive experimental programme conducted on austenitic stainless steel 

frames at the Universitat Politècnica de Catalunya. The experimental programme comprised previous 

tests at different levels – material characterisation, cross-sections and members – on EN 1.4301 

austenitic stainless steel specimens with rectangular hollow section to allow a comprehensive analysis 

of the frame test results, which results are summarised in this chapter. In addition, an extensively 

description of the experimental set-up for the stainless steel frame tests is provided, including the 

measurement of initial global imperfections and the adopted loading schemes, auxiliary elements and 

instrumentation, through a detailed explanation of the different issues encountered in the process of 

their definition. These include strategies to guarantee the verticality of the loads representing 

gravitational loads during sway deflections, to define the optimal location of the point vertical loads 

and to measure all necessary support reactions. It should be noted that the experience gained in the 

preparation and execution of these complex frame tests has already helped researchers to plan efficiently 

future experimental programmes on structural systems (Juza and Jandera 2022; Yun et al. 2022). 

Corresponding publication: Arrayago I., González-de-León I., Real E. and Mirambell E. (2020). Tests 

on stainless steel frames. Part I: Preliminary tests and experimental set-up. Thin-Walled Structures, 157, 

107005. https://doi.org/10.1016/j.tws.2020.107005 
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Analysis and assessment of experimental tests. Second order effects 

according prEN 1993-1-4 

 

 

4.1. Introduction 

Based on recent numerical studies, European standards prEN 1993-1-4 (2021) and prEN 1993-1-14 

(2021) will include rules for the global designing of stainless steel structures considering the interaction 

of material and geometric nonlinearities and will give guidance on plastic design, respectively. 

However, experimental results are fundamental to assess the accuracy of the new design expressions 

accounting for the material nonlinearity on the sensitivity of stainless steel frames to second order 

effects and to investigate the applicability of global plastic design methods to stainless steel structures. 

With this purpose, a comprehensive experimental programme on sway and non-sway stainless steel 

frames with slender and stocky rectangular hollow sections (RHS) was carried out at the Laboratory of 

Technology of Structures and Materials at the Universitat Politècnica de Catalunya. This chapter 

presents the results from the experimental campaign and studies the interaction of material and 

geometric nonlinearities and the influence of the second order effects in the amplification of internal 

forces. Details of the experimental set-up and the results from tensile coupon tests and structural 

member tests that are relevant to the understanding of this chapter are given in Chapter 3. 
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4.2. Experimental response of stainless steel frames 

This section presents the experimental results measured during the tests on austenitic stainless steel 

frames, showing results corresponding to the vertical and horizontal response of the frames separately. 

Table 4.1 reports the absolute maximum vertical loads 𝐹𝑣,𝑚𝑎𝑥 introduced during the first steps of the 

loading process and the corresponding vertical displacements at the beam midspan section 𝑑𝑣 for each 

frame. As described in Section 3.4.1, these vertical loads were maintained constant during the second 

loading steps, at which the absolute maximum horizontal loads 𝐹ℎ,𝑚𝑎𝑥 and the corresponding horizontal 

displacements at the column supports 𝑑ℎ shown in Table 4.1 were recorded. Tests were stopped before 

the collapse of the frames was reached due to safety reasons, and thus results presented in this chapter 

correspond to the maximum loads recorded during the tests. An overall view of Frame 2 deformed under 

the combination of vertical and horizontal loads can be seen in Figure 4.1, while Figure 4.2 shows a 

detail of the local buckling failure of the upper right column section for Frame 4 and the deformed left 

column for Frame 1. 

Table 4.1. Measured maximum loads and displacements. 

Specimen 

Vertical loading step  Horizontal loading step 

𝐹𝑣,𝑚𝑎𝑥  

[kN] 

𝑑𝑣 

[mm] 

 𝐹ℎ,𝑚𝑎𝑥  

[kN] 

𝑑ℎ 

[mm] 

Frame 1 157.3 68.5  42.1 82.7 

Frame 2 85.0 93.5  20.8 106.2 

Frame 3 44.6 39.6  18.7 82.2 

Frame 4 126.7 25.6  24.4 26.2 

 

 
Figure 4.1. View of the deformed shape of Frame 2 during the test. 
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(a) (b) 

Figure 4.2. Details of: (a) the local buckling failure in Frame 4 and (b) the deformed left column in Frame 1. 

The out-of-plane response of the frames was controlled during the tests through the measurement of the 

out-of-plane displacement of the left column-to-beam connection, which is presented in Figure 4.3. 

Note that positive displacements in Figure 4.3 represent backwards displacements if Figure 4.1 is taken 

as reference. All four frames showed a similar response: during the vertical loading step, the out-of-

plane displacement of the frames gradually increased until the moment at which horizontal loads were 

introduced (marked with vertical lines for each frame in Figure 4.3). As the horizontal loading 

increased, tension forces at the beams became more relevant and contributed to the lateral stability of 

the frames, and the out-of-plane displacements were gradually reverted, as shown in Figure 4.3. 

However, the magnitudes of the measured out-of-plane displacements were small for all specimens and 

it can be assumed that the lateral restraint was adequate, ensuring the in-plane behaviour of the frames. 

 

Figure 4.3. Measured out-of-plane displacements for stainless steel frame tests. 

The vertical and horizontal responses of the tested stainless steel frames are presented in the following 

sub-sections, followed by a detailed analysis of the structural behaviour of the column supports and the 

local buckling failure analysis of the critical cross-section for Frame 4. The sign criteria adopted in the 
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analysis and throughout the chapter are summarised as follows: vertical and horizontal reactions are 

considered positive when directed upwards and to the left, respectively (taking Figure 4.1 as reference), 

while counter-clockwise moments are defined positive. 

4.2.1. Vertical response of stainless steel frames 

Measured vertical load-vertical deflection curves for stainless steel frame tests are presented in Figure 

4.4. These figures show the relationship between the total vertical loads applied, measured directly from 

the jacks, and the corresponding vertical deflections at the midspan sections of the beams for the full 

tests, including the vertical and horizontal loading steps. In addition, vertical reactions measured from 

the left and right column load cells and the sum of reactions are also plotted. 

  
(a) Frame 1 (b) Frame 2 

  
(c) Frame 3 (d) Frame 4 

Figure 4.4. Measured vertical load-vertical deflection curves for stainless steel frame tests. 

Results in Figure 4.4 indicate that while the total applied load could be considered equivalent to the 

sum of support reactions during the vertical loading steps, part of this vertical load was no longer 

resisted by the supports when the horizontal loads were introduced (marked with vertical lines as in 

Figure 4.3). The differences between the total vertical loads measured from the jacks and the sum of 

support reactions were attributed to the partial restriction to vertical displacements existing at the 

restraining ties, which was later confirmed by numerical simulations. The highest discrepancies 

between the total vertical load measured from the jacks and the sum of reaction were observed for 
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Frame 2, the first frame being tested, and so it is likely that partial settlements occurred in the load cells 

during this test. In general, it can be observed that the highest the total vertical load applied, the more 

similar the load measurements from the jacks and from the load cells are (i.e., Frames 1 and 4). Note 

that the maximum axial force values measured in the columns for the different frames only represent 5-

15% of the cross-section compression capacities 𝑁𝑐,𝑢 reported in Table 3.3, which suggests that the 

behaviour of the frames was governed by bending. 

4.2.2. Horizontal response of stainless steel frames 

This sub-section presents the horizontal experimental response of stainless steel frames. Figure 4.5 

illustrates the horizontal response of the frames during the second loading step at which horizontal loads 

were introduced while maintaining the vertical loads constant, showing the measured total horizontal load-

horizontal displacement at supports curves for each frame. It should be noted that due to the loading set-

up chosen, minor horizontal loads were introduced in the frames during the initial vertical loading steps 

in the form of reaction forces at the ties, which can be observed in Figure 4.5 for a horizontal displacement 

equal to zero. 

  
(a) Frame 1 (b) Frame 2 

   

(c) Frame 3 (d) Frame 4 

Figure 4.5. Measured horizontal load-horizontal displacement curves for stainless steel frame tests. 

The evolution of the measured horizontal reactions is shown in Figure 4.6 for the four stainless steel 

frames. The vertical deflection at the beam midspan is used as reference magnitude in this figure and 

0

10

20

30

40

50

0 20 40 60 80 100

H
o

ri
zo

n
ta

l 
lo

a
d

 [
k

N
]

Horizontal displacement at supports [mm]

0

5

10

15

20

25

0 20 40 60 80 100 120

H
o

ri
zo

n
ta

l 
lo

a
d

 [
k

N
]

Horizontal displacement at supports [mm]

0

5

10

15

20

0 20 40 60 80 100

H
o

ri
zo

n
ta

l 
lo

a
d

 [
k

N
]

Horizontal displacement at supports [mm]

0

5

10

15

20

25

0 10 20 30 40

H
o

ri
zo

n
ta

l 
lo

a
d

 [
k

N
]

Horizontal displacement at supports [mm]



Analysis and assessment of experimental tests 

61 

throughout the chapter because this was the only measured magnitude showing continuously increasing 

values during the full tests and thus allowed representing the evolution of different measurements over 

the vertical and horizontal loading steps, as shown in Figure 4.3 and Figure 4.6. While the left support 

reactions 𝐻𝐿 were obtained from the strains recorded from the load cell located at the rigid loading 

beam, right support reactions 𝐻𝑅 were calculated as the difference between the total applied horizontal 

load 𝐻𝑡𝑜𝑡 as per the horizontal jack and the measured left support reactions 𝐻𝐿, 𝐻𝑅=𝐻𝑡𝑜𝑡 − 𝐻𝐿. As 

shown in Figure 4.6, during the vertical loading steps, horizontal reactions were equal in value at both 

supports but showed opposite directions. However, due to the introduction of the horizontal loads in the 

second loading steps, reactions at the right supports increased while changing the direction of the reaction 

at the left supports. 

  
(a) Frame 1 (b) Frame 2 

  
(c) Frame 3 (d) Frame 4 

Figure 4.6. Measured horizontal reactions throughout stainless steel frame tests. 

4.2.3. Response of frame supports 

4.2.3.1. General 

Support conditions at stainless steel frame columns were designed to represent both pin-ended and 

fixed-ended boundary conditions, as described in Section 3.4.2.3. Frames were connected to the load 

cells by means of welded steel plates and bolts, and required boundary conditions were achieved by 

assigning a different number of bolts to each frame. While fixed-ended frames were connected through 
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a total of twelve perimeter bolts at each column support, pin-ended frames had only four bolts per 

support, located close to the cross-section centroid (see Figure 4.7). Although the support connections 

shown in Figure 4.7 ideally represented pin-ended and fixed-ended boundary conditions, connections 

showed a semi-rigid response that slightly differed from their theoretical response: “pin-ended” 

connections partially transmitted moments to the supports, while “fixed-ended” connections showed 

non-negligible in-plane rotations, and measured moment reactions were lower than those expected for 

pure fixed-ended conditions. This is further investigated in the following sub-section. Figure 4.8 

presents the evolution of the moment reactions at the left and right supports in terms of the vertical 

deflection at the beam midspans for the four frame tests and correspond to both the vertical and 

horizontal loading steps. These moments were calculated from the strain measurements at the load cells 

by using Eq. 4.1, in which the equivalent loads at each steel stud 𝐹𝑠𝑡𝑢𝑑,𝑖 are multiplied by half of the 

distance between studs 𝑠/2. The equivalent loads 𝐹𝑠𝑡𝑢𝑑,𝑖 can be obtained from Eq. 4.2, in which 𝜀𝑎𝑣,𝑖 

is the averaged strain for the four strain gauges attached to each of the steel studs conforming the load 

cells, and 𝐴 and 𝐸 are the cross-section area and the Young’s modulus of the studs. The ultimate bending 

moment resistances 𝑀𝑐,𝑢 obtained from the four-point bending tests reported in Table 3.4 are also 

included in Figure 4.8 for comparison purposes. 

𝑀𝑙𝑜𝑎𝑑,𝑐𝑒𝑙𝑙 =
𝑠

2
൫𝐹𝑠𝑡𝑢𝑑,1 + 𝐹𝑠𝑡𝑢𝑑,2 − 𝐹𝑠𝑡𝑢𝑑,3 − 𝐹𝑠𝑡𝑢𝑑,4൯ Eq. 4.1 

𝐹𝑠𝑡𝑢𝑑,𝑖 = 𝐴𝐸𝜀𝑎𝑣,𝑖 Eq. 4.2 

 

  
(a)  (b)  

Figure 4.7. (a) Pin-ended and (b) fixed-ended support connections adopted in stainless steel frame tests. 

In these figures, the instant at which the horizontal load was introduced can be clearly identified for the 

different frames, as it corresponds to a change in the evolution of moment reactions, and which has also 

been indicated by vertical reference lines. After that, moment reactions at the right supports increased 

more pronouncedly and a moment reversal was observed for the left supports, since the horizontal load 
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introduced moments with opposite sign. According to the results shown in Figure 4.8, the recorded 

moment reaction at the right support was significantly close to the flexural capacity of the cross-section 

for Frame 2, while for the rest lower proportions of the corresponding bending resistances were reached. 

It should be noted that Frame 2 was tested with the largest proportion of the ultimate vertical load 

introduced during the vertical loading step (see Table 3.7). From the comparison of the bending 

moments measured for the right and left supports for each of the frames in Figure 4.8, it is appreciable 

that bending moments corresponding to the left supports are lower, especially for Frame 4. This can be 

explained by the different rotational stiffness of the left and right supports, which is further discussed 

in Section 4.2.3.2. 

  
(a) Frame 1 (b) Frame 2 

  

(c) Frame 3 (d) Frame 4 

Figure 4.8. Measured moment reactions at supports throughout stainless steel frame tests. 

Figure 4.9 presents the measured in-plane and out-of-plane rotations at the sections adjacent to the supports 

for the four stainless steel frames, in which clockwise in-plane rotations were defined as positive and counter-

clockwise rotations as negative. Rotations were measured in both columns at a distance equal to 140 mm 

from the supports for Frame 1 and 115 mm for the rest, for space requirements. Note that the inclinometer 

corresponding to the right column stopped measuring rotations when the horizontal loading was introduced 

in Frame 2, and thus only results corresponding to the vertical loading step are provided for this specimen. 

According to the rotation measurements presented in Figure 4.9, in-plane rotations for Frames 1 and 2 are 

very similar yet not negligible, since the adopted boundary conditions showed a semi-rigid behaviour not 
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directly assimilable to the ideal fixed-ended conditions. Similarly, measured rotations for Frames 3 and 4 

were lower than those expected for pure pin-ended boundary conditions. The characterisation of the actual 

response of these semi-rigid support conditions is necessary in order to provide the required input 

information for the validation of Finite Element (FE) models by assigning the appropriate stiffness to each 

support. This is addressed in the following sub-section. 

  
(a) Frame 1 (b) Frame 2 

  
(c) Frame 3 (d) Frame 4 

Figure 4.9. Measured rotations near supports throughout stainless steel frame tests. 

4.2.3.2. Rotational stiffness of the supports 

The measurements of moment reactions and rotations at the supports reported in the previous section 

indicated that actual boundary conditions were different from the ideal “pin-ended” or “fixed-ended” 

conditions, since significant rotations were recorded for Frames 1 and 2 (with theoretical “fixed-ended” 

conditions) while substantial moment reactions were observed for Frames 3 and 4 (with theoretical “pin-

ended” conditions). This indicated that a deeper analysis of the rotational stiffness of the supports was 

required. The experimental in-plane bending moment stiffness of each support was estimated for the 

different frames from the moment-rotation relationships measured from load-cells and inclinometers, 

respectively. Figure 4.10 shows the experimental moment-rotation relationships for the vertical loading 

steps, before the moment reversal occurred for left supports when the horizontal loading was introduced. 

Note that while the signs of the moment reactions correspond to the sign criteria adopted in the study, these 

moments are plotted against the absolute values of the rotations to make comparisons simpler with Figure 4.8. 
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(a) Frame 1 (b) Frame 2 

  
(c) Frame 3 (d) Frame 4 

Figure 4.10. Estimation of rotational stiffness at supports from experimental moment-rotation curves. 

The estimated stiffness values are reported in Table 4.2, which were also validated by means of the 

developed FE models (see Section 4.3.1). Results shown in Figure 4.10 and Table 4.2 suggest that the 

rotational stiffness of the supports was affected by different factors, including the number of bolts, the 

dimensions of the cross-sections comprising the columns, the existence of the ties at the right knee 

connection and the “pre-tensioning load” used when fastening the ties. 

Table 4.2. Estimated support rotational stiffness for stainless steel frame tests. 

Specimen 
Left support 

[kNm/rad] 

Right support 

[kNm/rad] 

EN 1993-1-8 limit for rigid connection 

[kNm/rad] 

Frame 1 1.0×103 1.2×103 8.88×103 

Frame 2 6.4×102 1.2×103 4.46×103 

Frame 3 4.1×102 4.4×102 4.41×103 

Frame 4 4.4×102 1.2×103 22.23×103 

It is worth mentioning that the initial rotational stiffness boundaries provided in clause §5.2.2 of EN 

1998-1-8 (2005) “Classification by stiffness” depend on the member stiffness factors 𝐸𝐼, where 𝐼 is the 

second moment of area of the member. In general, the left supports showed lower stiffness than the 

equivalent right supports, probably caused by the presence of the ties at the right knee connections. 

According to clause §5.2.2.5(2) in EN 1993-1-8 (2005), column bases may be classified as rigid 

provided the condition 𝑆𝑗,𝑖𝑛𝑖 ≥ 30𝐸𝐼𝑐/𝐿𝑐 is satisfied for frames without bracing system that reduces the 

horizontal displacement, where 𝑆𝑗,𝑖𝑛𝑖 is the initial rotational stiffness, 𝐼𝑐 is the second moment of area 

of the column and 𝐿𝑐 is the storey height of the column. Calculated limiting values for the initial 
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rotational stiffness for each frame are provided in Table 4.2. From these values, and considering that 

moment reactions were recorded for the four frames, it can be concluded that all frames presented semi-

rigid column base connections. 

4.2.4. Local buckling in Frame 4 

Frame 4 was made from stainless steel RHS members with considerably high local slenderness values 

(𝜆̅𝑝 =1.64, as per Table 3.6) and thus the frame failed showing a combination of local and overall 

instability modes. Local buckling failure at the critical upper right column section was evident at the 

final deformed stage of the frame (see Figure 4.2), but the moment at which local buckling started can 

be analytically estimated and identified from the measurements of the strain gauges attached at this 

critical section. From the width and thickness of the most compressed panel comprising the cross-

section, the elastic critical local buckling stress 𝜎𝑐𝑟,𝑙 can be calculated. From this value, the stress 

corresponding to the initiation of the local buckling can be calculated for the limiting slenderness 

between class 3 and class 4 cross-sections given in EN 1993-1-4 (2015), 𝜆̅𝑝= 0.65. Assuming linear 

elastic behaviour, the load corresponding to the initiation of local buckling at the critical cross-section 

located at the internal upper side of the right column is calculated, which correspond to a total vertical 

load value equal to 85.3 kN Frame 4 included several strain gauges at the right knee connection, at both 

the section corresponding to the beam (labelled as section S2) and corresponding to the column (labelled 

as section S6), as shown in Figure 4.2, which also permitted identifying the approximate load at which 

local buckling initiated. Measured strain values are shown in Figure 4.11 against the applied total 

vertical load for the strain gauges attached at the most compressed parts of these sections. From the 

curves shown in Figure 4.11 it can be appreciated that strain gauges located at the centres of the RHS 

faces (strain gauges S2.4 and S6.3 for the beam and column, respectively) recorded different strain 

values for a total vertical load level of approximately 80-90 kN, in line with the analytical estimation 

of the local buckling load. 

  
(a) (b) 

Figure 4.11. Local buckling initiation at the critical cross-section for Frame 4 at (a) section S2 and (b) section S6. 
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4.3. Analysis and assessment of second order effects  

A deeper analysis of the experimental results on stainless steel frames required the development of 

advanced Finite Element (FE) models due to the loading sequence adopted and the actual boundary 

conditions, for which no direct analytical solution was available. This section describes the FE model 

developed and its validation against the experimental results reported. These FE models were used to 

model the behaviour of the frames under different conditions to evaluate the influence of the material 

nonlinearity on the amplification of internal forces due to second order effects, as well as to investigate 

the interaction between geometric and material nonlinearities. 

4.3.1. Finite element model 

In order to numerically simulate the behaviour of the four stainless steel frames tested in the laboratory, 

FE models were developed using the general-purpose software ABAQUS (2016) and validated against 

the experimental results presented in this chapter. The S4R element type was chosen from the ABAQUS 

library (2016) to model the mid-surfaces of the cross-sections, which has been widely used in the 

simulation of cold-formed stainless steel members (Huang and Young 2013; Arrayago et al. 2015), with 

a mesh size of approximately 10 mm×10 mm. Different material properties were defined for the flat 

and corner regions (see Figure 2.2) of the members comprising the frames, as per the corresponding 

stress-strain curves measured from the tensile coupon tests reported in Table 3.2. Figure 4.12 presents 

a schematic summary of the details adopted in the developed FE models, including boundary conditions 

at supports and at the right knee connection, lateral restrains at loading sections, the application of 

vertical and horizontal loads and the definition of rotational and translational springs. The geometrically 

and materially nonlinear FE analyses were solved using the General Static method for the steps 

corresponding to the vertical loads, up to the maximum load values recorded during the test (see values 

reported in Table 4.1), and the Static Riks method for the horizontal loading steps. Surfaces at the lowest 

faces of the beams corresponding to the vertical loading points were connected to two reference points 

through kinematic couplings and two vertical point loads were introduced in these reference points (see 

Figure 4.12) to simulate the web crippling prevention system used in the tests. Horizontal loading was 

introduced by imposing a prescribed displacement at the column supports. Initial imperfections with 

the shape of global buckle modes were introduced in the models, which were obtained from prior linear 

buckling analyses and amplified according to the measured imperfection values reported in Figure 3.3. 

Following the experimental set-up, the response of the simulated frames was limited to the in-plane 

behaviour through lateral restrains assigned at the loading sections, as shown in Figure 4.12, and the 

beam-to-column connections were modelled through 16 mm-thick steel plates equivalent to those used 

in the tests. 
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Figure 4.12. Details of the developed FE models. 

From the results shown in Figure 4.8 and Figure 4.9, it was necessary to replicate the actual boundary 

conditions occurring during the test, which were considerably different from the theoretical conditions 

shown in Table 3.6. Nodes at the bottom ends of the columns were kinematically coupled and connected 

to two reference points, to which relevant boundary conditions were applied (see Figure 4.12). All 

degrees of freedom except rotations corresponding to major axis bending were restrained at support 

sections during the vertical loading steps, after which the horizontal in-plane displacements were 

released for the horizontal loading steps. The degrees of freedom corresponding to major axis bending 

rotations were modelled by means of elastic rotational springs, using the *Spring1 elements available 

in the ABAQUS library (2016) and assigning the stiffness values reported in Table 4.2. Finally, the 

effect of the tie connecting the frames to the reaction wall and restraining their horizontal displacement 

was also modelled by means of kinematical couplings between the steel plates connecting the beams 

and the right columns and reference points located at the centre of the steel plates. These points had the 

horizontal in-plane displacements restrained, and *Spring1 type elastic springs were assigned for the 

vertical displacement, with a stiffness equal to 5.0×103 kN/m for all the frames. This value was 

iteratively obtained from numerical simulations comparing the predicted vertical reactions to the 

measured experimental values, since no direct measurement of the load-displacement relationship of 

these points was available from the tests. 

  

Vertical load 

Boundary conditions: 

ux = 0 
uy = 0 
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ury = 0  
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(as imposed displacement uz)  
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Table 4.3 presents the results of the comparison between the developed finite element models with the 

corresponding measurements from the frame tests presented in this chapter. Numerical-to-experimental 

ratios of the maximum vertical and horizontal loads 𝐹𝑣 and 𝐹ℎ, and the corresponding vertical 

deflections and horizontal displacements 𝑑𝑣 and 𝑑ℎ are reported. The predicted numerical load-

displacement paths are also compared to the experimental curves in Figure 4.13 for the vertical and 

horizontal loading steps. 

Table 4.3. Comparison between experimental and FE results for the austenitic stainless steel frames. 

Specimen 𝐹𝑣,𝐹𝐸/𝐹𝑣,𝑒𝑥𝑝  𝑑𝑣,𝐹𝐸/𝑑𝑣,𝑒𝑥𝑝 𝐹ℎ,𝐹𝐸/𝐹ℎ,𝑒𝑥𝑝 𝑑ℎ,𝐹𝐸/𝑑ℎ,𝑒𝑥𝑝 

Frame 1 1.00 1.04 1.00 0.99 

Frame 2 1.00 1.00 1.00 0.96 

Frame 3 1.00 0.97 1.00 0.98 

Frame 4 1.00 1.01 1.00 1.05 

Average 1.00 1.01 1.00 1.00 

COV 0.000 0.023 0.000 0.034 

 

  

(a) (b) 

Figure 4.13. Comparison of experimental and FE load-displacement curves for austenitic stainless steel frames 

for: (a) vertical loading step and (b) horizontal loading step. 

 

Finally, Figure 4.14 shows the comparison of the failure modes predicted by the developed FE models 

with those observed from the tests, including the overall failure mode for Frame 1 and a detail of the local 

buckling failure at the critical section for Frame 4, showing equivalent failure modes. These results 

showed a good agreement between the developed numerical models and the tests, and thus the FE 

models were used in the further analysis of the experimental results. 
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(a) (b) 

Figure 4.14. Comparison of experimental failure modes with those predicted by FE models: (a) overall failure 

for Frame 1 and (b) detail of the local buckling failure at the critical section for Frame 4. 

 

 

4.3.2. Interaction of geometric and material nonlinearities 

The analysis of the interaction between geometric nonlinearities (i.e., second order effects) and material 

nonlinearities characterising the stress-strain response of stainless steel alloys is presented in this section 

for the four stainless steel frames tested. The influence of the interaction of material nonlinearities on 

second order effects can be evaluated by comparing the experimental load-displacement paths with the 

corresponding theoretical paths considering elastic or plastic material properties and first or second 

order analyses. Figure 4.15 and Figure 4.16 show the load-vertical deflection and load-horizontal 

displacement paths for different types of analyses including first order elastic analysis (LA), second 

order elastic analysis (GNA), first order plastic analysis (MNA) and second order plastic analysis with 

imperfections (GMNIA), and present the comparison with the corresponding experimental curves for 

the vertical and horizontal loading steps, respectively. These numerical paths were determined from the 

FE models described in Section 4.3.1. 
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(a) Frame 1 (b) Frame 2 

  
(c) Frame 3 (d) Frame 4 

Figure 4.15. Influence of second order effects on stainless steel frame tests throughout the vertical loading step. 

 

The comparison of experimental and different theoretical vertical load-deflection paths in Figure 4.15 

indicate that the response of Frame 3 was elastic during the vertical loading step, but remarkable 

nonlinearities occurred for Frames 1 and 2. The comparison of the experimental (or GMNIA) and MNA 

load-deflection curves indicate that while in Frame 1 this nonlinearity could be attributed almost entirely 

to the nonlinear material response of the stainless steel alloy, the interaction between geometric and 

material nonlinearities occurred in Frame 2. Alternatively, the nonlinearity observed for Frame 4 at the 

vertical loading step can be attributed to initial imperfections, since the calculated paths for MNA, GNA 

and LA are practically the same. Note that Frame 4 showed the highest cross-section slenderness among 

the four frames, and thus the highest sensitivity to initial imperfections. The analysis of the horizontal 

load-displacement paths presented in Figure 4.16 shows that an interaction between material and 

geometrically nonlinearities occurred for Frames 1 and 2 during the horizontal loading step, with a 

higher proportion of the material nonlinearity. Finally, results for Frames 3 and 4 suggest that the 

response of these frames was more significantly affected by existing imperfections, although material 

and geometric nonlinearities were more pronounced during the horizontal loading step than for the 

vertical loading step. 
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(a) Frame 1 (b) Frame 2 

  

(c) Frame 3 (d) Frame 4 

Figure 4.16. Influence of second order effects on stainless steel frame tests throughout the horizontal loading 

step. 

4.3.3. Influence of material nonlinearity on second order effects 

This last Section presents a preliminary assessment of the influence of the material nonlinearity on 

second order effects through the analysis of stainless steel frame tests. As mentioned in Section 2.5, 

recent research on stainless steel frames concluded that the degradation of stiffness due to the nonlinear 

material response of stainless steel alloys significantly affects the distribution of internal forces 

(Walport et al. 2019b). According to EN 1993-1-1 (2005), second order sway effects can be estimated 

from a first order analysis through the amplification of horizontal loads by the factor 𝑘𝑠𝑤 given by Eq. 

2.10 for single storey frames designed on the basis of elastic global analysis (LA). Walport et al. (2019b) 

adapt this method for stainless steel structures, by replacing the 𝑘𝑠𝑤 for 𝑘𝑠𝑤,𝑠𝑠 given in Eq. 2.12, and 

the elastic analysis by a first order plastic analysis (MNA). According to Walport et al. (2019a), the use 

of this MNA+𝑘𝑠𝑤,𝑠𝑠 approach is only adequate for those cases where sway effects are dominant. 

Alternatively, Walport et al. (2019a) demonstrated that the amplification concept proposed by Lim et 

al. (2005) to relate loads for first order and second order analyses for a given level of deflection (given 

by Eq. 4.3) is more adequate for structures designed plastically, since this method is capable of capturing 

both sway and non-sway effects, provided that the modified elastic buckling load factor 𝛼𝑐𝑟,𝑠𝑤,𝑠𝑠 is 
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considered to account for the stiffness degradation due to plastification, as per Eq. 4.4. In these 

equations 𝛼𝑝1 represents the first order plastic analysis load, while 𝛼𝑝2 represents the second order 

plastic analysis load, which was taken as the experimental load in this analysis (i.e., 𝛼𝑝2 =  𝛼𝑝,𝑒𝑥𝑝). 

𝛼𝑝2

𝛼𝑝1
=

𝛼𝑐𝑟 − 1

𝛼𝑐𝑟
 Eq. 4.3 

𝛼𝑝2

𝛼𝑝1
=

𝛼𝑐𝑟,𝑠𝑤,𝑠𝑠 − 1

𝛼𝑐𝑟,𝑠𝑤,𝑠𝑠
 Eq. 4.4 

Frames considered in this study were tested following a two-step loading scheme and the proportion of 

the horizontal-to-vertical loading was not constant. Thus, the elastic buckling load factor changed 

during the tests. Under idealistic conditions in which the frames were free to deform following the 

required sway modes, the lowest (i.e., most critical) elastic buckling load factors would occur during 

the first vertical loading steps, when the frames would be more susceptible to second order effects. As 

the horizontal loading was introduced, elastic buckling load factors would increase, showing different 

values since the ratio of vertical-to-horizontal loads would vary for every horizontal loading increment. 

Therefore, different test stages need to be considered for the analysis of the experimental results. 

However, the adopted test configuration restrained the in-plane movement of the column supports 

during the vertical loading steps and thus frames were prevented from adopting the sway-mode 

deformed shape. In fact, during these vertical loading steps the behaviour of the frames could be 

considered equivalent to isolated beam or column behaviour, without sway effects being able to 

develop. Thus, the analysis presented in this sub-section is limited to the horizontal loading steps, which 

included constant vertical loads and increasing horizontal loads. 

Table 4.4 reports the calculated elastic buckling load factors corresponding to two different loading 

stages, including the maximum vertical load 𝐹𝑣,𝑚𝑎𝑥 combined with two different levels of horizontal 

load, 𝐹ℎ/𝐹ℎ,𝑚𝑎𝑥 ratios of 0.5 and 1.0 (i.e., 𝐹𝑣,𝑚𝑎𝑥+0.5𝐹ℎ,𝑚𝑎𝑥 and 𝐹𝑣,𝑚𝑎𝑥+𝐹ℎ,𝑚𝑎𝑥). Elastic buckling load 

factors 𝛼𝑐𝑟 were obtained as the lowest sway buckling modes from buckle analyses carried out from 

the FE models described in Section 4.3.1, assigning the appropriate vertical-to-horizontal load 

proportions, 𝐹𝑣,𝑚𝑎𝑥+0.5𝐹ℎ,𝑚𝑎𝑥 and 𝐹𝑣,𝑚𝑎𝑥+𝐹ℎ,𝑚𝑎𝑥. For Frame 1, Frame 2 and Frame 3 FE models with 

shell elements were used, while for Frame 4, made from a considerably slender cross-section, beam-

element based FE models were adopted to obtain the sway buckle modes. Alternatively, modified elastic 

buckling load factors 𝛼𝑐𝑟,𝑠𝑤,𝑠𝑠 were calculated from Eq. 2.11, in which the 𝐾𝑠/𝐾 ratios were estimated 

from the first order plastic (MNA) and first order elastic (LA) load-lateral deflection curves at 

𝐹ℎ/𝐹ℎ,𝑚𝑎𝑥 = 0.5 and 𝐹ℎ/𝐹ℎ,𝑚𝑎𝑥 = 1.0 load levels, and are reported in Table 4.4. The analysis of these 

results showed that 𝛼𝑐𝑟,𝑠𝑤 values increased as the proportion of the horizontal load increased for the 
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four frames, as they became more stable, although differences were small for the considered load levels. 

On the contrary, 𝛼𝑐𝑟,𝑠𝑤,𝑠𝑠 values decrease when the proportion of the horizontal load is increased. This 

can be attributed to the fact that while for the calculation of the 𝛼𝑐𝑟,𝑠𝑤 values a proportional horizontal-

vertical loading was considered in the buckle analyses, the calculation of the 𝛼𝑐𝑟,𝑠𝑤,𝑠𝑠 factors for the 

specific case of the tested frames considers both proportional and two-step loading in their calculation 

through the 𝛼𝑐𝑟,𝑠𝑤 and 𝐾𝑠/𝐾 factors, respectively. In an ideal case of simultaneous vertical and 

horizontal loading, i.e., loading scheme usually considered in design, 𝛼𝑐𝑟,𝑠𝑤 and 𝛼𝑐𝑟,𝑠𝑤,𝑠𝑠 values would 

show the same trend for increasing horizontal load proportions. It should also be noted that the 𝛼𝑐𝑟,𝑠𝑤 

and 𝛼𝑐𝑟,𝑠𝑤,𝑠𝑠 values reported in Table 3.6 and Table 4.4 are considerably different because the 

preliminary values included in Table 3.6 corresponded to the ideal boundary conditions (perfect fixed-

ended and pin-ended conditions), while the values in Table 4.4 were obtained for the actual rotation 

restraints occurring during the tests, thus making Frames 1 and 2 more flexible and Frames 3 and 4 

stiffer than in the preliminary models. 

Table 4.4. Key parameters for the analysis of the influence of material nonlinearity on second order effects at 

different horizontal load levels. 

Specimen 

Horizontal load level 

𝐹ℎ/𝐹ℎ,𝑚𝑎𝑥  = 0.5 

 Horizontal load level 

𝐹ℎ/𝐹ℎ,𝑚𝑎𝑥  = 1.0 

𝛼𝑐𝑟,𝑠𝑤 𝐾𝑠/𝐾 𝛼𝑐𝑟,𝑠𝑤,𝑠𝑠 𝑘𝑠𝑤,𝑟𝑒𝑞 𝛼𝑝2/𝛼𝑝1  𝛼𝑐𝑟,𝑠𝑤 𝐾𝑠/𝐾 𝛼𝑐𝑟,𝑠𝑤,𝑠𝑠 𝑘𝑠𝑤,𝑟𝑒𝑞 𝛼𝑝2/𝛼𝑝1 

Frame 1 8.74 0.86 6.04 1.23 0.93  8.76 0.81 5.70 1.24 0.89 

Frame 2 8.42 0.74 4.98 1.16 0.89  8.48 0.64 4.32 1.21 0.84 

Frame 3 13.13 0.98 10.33 1.21 0.91  13.46 0.94 10.07 1.10 0.91 

Frame 4 19.57 0.93 14.61 1.00 1.00  19.69 0.91 14.26 1.54 0.82 

The accuracy of the expression for the amplification factors due to second order effects given in Eq. 

2.10 and Eq. 2.12 is assessed in Figure 4.17 for the stainless steel frame test results. Required 

amplification factors 𝑘𝑠𝑤,𝑟𝑒𝑞, shown in Table 4.4, have been calculated from first order plastic analyses 

to align the sway deflections from the experimental load-lateral displacement curves for the two loading 

stages considered in Table 4.4, following the MNA+𝑘𝑠𝑤,𝑠𝑠 approach given in (Walport et al. 2019b). 

Calculated amplification factors 𝑘𝑠𝑤,𝑟𝑒𝑞 , are plotted against the two elastic buckling load factors 

considered in Figure 4.17, 𝛼𝑐𝑟,𝑠𝑤 and 𝛼𝑐𝑟,𝑠𝑤,𝑠𝑠, along with the predicting expressions given in Eq. 2.10 

and Eq. 2.12. According to the results presented in Figure 4.17, the 𝛼𝑐𝑟,𝑠𝑤,𝑠𝑠 factor proposed by Walport 

et al. (2019b) to account for the influence of material nonlinearity on the global analysis of austenitic 

stainless steel frames can be considered to be in good agreement with the amplification factors 

calculated for the tests. Note that this expression only captures amplifications due to sway effects, and 

thus further reductions would be necessary for Frame 4, which failed due to a combination of local 

buckling and sway effects. 
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(a) (b) 

Figure 4.17. Bending moment amplification due to second order effects in stainless steel frames (a) for 

𝐹ℎ/𝐹ℎ,𝑚𝑎𝑥  = 0.5 and (b) 𝐹ℎ/𝐹ℎ,𝑚𝑎𝑥 = 1.0. 

Finally, Figure 4.18 plots the reduction factors for loads for first order analyses relative to the 

experimental loads 𝛼𝑝2 𝛼𝑝1⁄  for the tested stainless steel frames against the corresponding 𝛼𝑐𝑟,𝑠𝑤 and 

𝛼𝑐𝑟,𝑠𝑤,𝑠𝑠 factors. Results indicate that the 𝛼𝑐𝑟,𝑠𝑤,𝑠𝑠 factor is capable of capturing the stiffness reduction 

of the frames due to material nonlinearity and the agreement of the experimental results with the load 

factor reduction expression given in Eq. 4.4 is good. As for Figure 4.17, the anomalous results for Frame 

4 can be explained by the local buckling interaction in the frame collapse. 

  

(a) (b) 

Figure 4.18. Reduction factors from first order analysis to experimental loads in stainless steel frames (a) for 

𝐹ℎ/𝐹ℎ,𝑚𝑎𝑥  = 0.5 and (b) 𝐹ℎ/𝐹ℎ,𝑚𝑎𝑥  = 1.0. 

 

 

4.4. Concluding remarks 

This chapter presents the results of an experimental programme carried out on austenitic stainless steel 

frames at the Universitat Politècnica de Catalunya. The results include the evolution of total vertical 

and horizontal loads and reactions, moment reactions in support sections and local buckling failure in 

class 4 cross-sections. Advanced finite element models of the frame tests were used in conjunction with 

experimental results to assess the applicability of the approaches to estimate the amplification factors 
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due to second order effects and the reduction of loads from first order to second order analysis to 

stainless steel frames, characterised by a significantly nonlinear stress-strain response. Finite element 

models allowed to investigate the influence of geometric and material nonlinearities, and the analysis 

of experimental results allowed the validation of the modified 𝛼𝑐𝑟,𝑠𝑤,𝑠𝑠 factor proposed by Walport et 

al. (2019b), which was developed on the basis of numerical results. These experimental results can be 

used in future studies as benchmark for the validation of numerical models for subsequent analysis of 

the response of structural systems. 

Corresponding publication: Arrayago I., González-de-León I., Real E. and Mirambell E. (2020). Tests 

on stainless steel frames. Part II: Results and analysis. Thin-Walled Structures, 157, 107006. 
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5. CHAPTER 

CHAPTER 5 

 

 

 

 

A stiffness reduction method for the in-plane design of stainless 

steel frames according to prEN 1993-1-4 

 

 

 

5.1. Introduction 

The simplicity and accuracy of Stiffness Reduction Methods (SRM), among which the Direct Analysis 

Method (DM) proposed in AISC 360 (2022) and AISC 370 (2021) is included – see Section 2.5.2 – 

have driven their adaptation into the European framework (Landesmann and Batista 2005; Barszcz and 

Gizejowski 2007). Thus, it should be highlighted the SRM proposed by Kucukler et al. (2014, 2016) 

for the in-plane design of carbon steel structures and members, where the global imperfections must be 

included and cross-section capacities must be checked, as in the DM, but no member checks are required 

since the proposed stiffness reduction factors are derived from the European buckling curves given in 

EN 1993-1-1 (2005) and are thus implicitly present in the calibrated reduction factors.  

This chapter presents an adaptation of the SRM proposed by Kucukler et al. (2014, 2016) to stainless 

steel members and planar structures with stocky sections considering the provisions given in the 

upcoming version of European standard prEN 1993-1-4 (2021). The proposed approach was developed 
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considering stocky Rectangular Hollow Section (RHS) members made of austenitic, ferritic and duplex 

stainless steel alloys, and predicts the ultimate capacity and internal forces in stainless steel structures 

by performing a second order elastic analysis in which the stiffnesses of the members are reduced by a 

set of factors to account for the effect of the spread of plasticity, residual stresses and member 

imperfections.  

5.2. Finite element modelling 

5.2.1. General 

In this section, the Finite Element (FE) models used for the assessment and validation of the proposed 

Stiffness Reduction Method (SRM) are described. The assessment and validation required different 

types of analysis:  

- second order plastic analysis with imperfections (GMNIA) to recreate the actual behaviour of the 

structural members and to obtain the target strength values (to be compared with the SRM), 

- first order elastic analysis (LA) and second order elastic analysis with stiffness reduction (GNA-SR) 

(to implement the SRM).  

The assessment was made on stainless steel columns, beams, beam-columns, and frames, and two types 

of numerical models were developed with the general-purpose software ABAQUS (2016). GMNIA 

analyses of structural members were performed on shell-type FE models capable of realistically 

reproducing local buckling effects, while GNA-SR and LA analyses were conducted on beam-type FE 

models. For computational efficiency reasons, beam-type FE models were chosen for GMNIA, LA and 

GNA-SR analyses of portal frames. The modified Riks method available in ABAQUS (2016) was used 

to solve all the FE analyses. 

5.2.1.1. Benchmark models for stainless steel members 

Shell FE models of stainless steel columns, beams and beam-columns were developed using four-noded 

shell elements, denoted as S4R (ABAQUS 2016), and used in conjunction with GMNIA analyses to 

estimate the actual capacity of the investigated members. The use of S4R elements together with a 

GMNIA analysis is widely accepted to reproduce accurately the behaviour of cold-formed steel (Li and 

Young 2018) and stainless steel (Theofanous and Gardner 2009; Arrayago et al. 2015b) members. After 

a mesh convergence study, flat regions were discretised following a uniform mesh size of 10 mm, while 

the curved corner regions were divided into a four-element mesh. Local imperfections were included in 

the form of the local buckling mode obtained from prior linear elastic eigenvalue buckling analyses 

with the amplitudes proposed by Gardner and Nethercot (2004b). 
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In the case of columns and beam-columns, initial member imperfections were also incorporated 

following a half sinusoidal shape using the corresponding buckling mode with an amplitude equal to 

𝐿𝑐/1000, where 𝐿𝑐 is the length of the member. Pin-ended boundary conditions were defined by means 

of kinematic coupling constraints between the end sections of the members and reference points 

contained in the plane of the cross-sections, to which boundary conditions and loading arrangements 

were assigned. All degrees of freedom, except the rotation around the minor axis, were constrained at 

the lower reference point. Similar boundary conditions were assigned to the upper reference point, but 

the longitudinal displacement was also allowed, and the load was applied as an imposed vertical 

displacement. While the reference points were located at the centroid of the cross-sections in the models 

for columns, in the beam-column models both reference points were shifted horizontally to simulate 

eccentric loads. 

Beams were modelled following the four-point bending test configuration (4PB). The loading and 

support sections were defined as regions forced to move as rigid bodies, placed at the bottom flange of 

the beams and connected to reference points located at the centre of each region. A more detailed 

description of these regions is provided in (Arrayago et al. 2017a, 2017b). The support reference points 

were placed 1500 mm apart, according to the loading scheme described in (Arrayago et al. 2020b), 

while the loading reference points were placed at a distance of 510 mm from the ends of the members. 

The loads were applied as imposed vertical displacements at the loading reference points. The 

longitudinal and out-of-plane displacements were restrained at the midspan cross-sections, while only 

the vertical displacement was constrained at the support reference points. 

5.2.1.2. Benchmark models for stainless steel frames 

Numerical models of the frames used as benchmarks in Section 5.6 were analysed by performing a GMNIA 

analysis and were developed by using Timoshenko linear B21 elements (ABAQUS 2016), since S4R 

elements are too computationally expensive for a parametric study (Walport et al. 2019b, 2021c; González-

de-León et al. 2021). Each member of the frame was divided into 100 finite elements and cross-sections 

were defined using the default box-section option in ABAQUS (2016). It is worth mentioning that, in 

practice, a much smaller number of finite elements than the 100 elements adopted in this study can be used 

to model individual structural elements. As suggested by Kucukler et al. (2016), four elements may be 

sufficient for sway structures, while sixteen elements may be required for non-sway structures. Initial global 

imperfections were included through notional horizontal loads assuming an out-of-plumb angle of 1/200 

according to EN 1993-1-1 (2005), while the member imperfections of the columns were introduced by 

directly modifying the position of the nodes following a half-sine wave shape with an amplitude of 𝐿𝑐/1000 

in the most detrimental direction. Finally, both fixed- and pin-ended boundary conditions were adopted at 

the supports of the columns, while vertical and horizontal concentrated loads were applied simultaneously 

at the top of the columns (see Figure 5.9). 
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5.2.1.3. Models for stainless steel members and frames using the Stiffness Reduction Method 

For all the FE models carried out using the Stiffness Reduction Method (including columns, beams, 

beam-columns, and frames), LA and GNA-SR analyses were performed on models using Timoshenko 

linear in-plane beam elements B21 (ABAQUS 2016). In the case of GNA-SR analyses, the cross-section 

geometry was defined using the generalized-section available in ABAQUS (2016). Generalized-

sections allow reducing the moment of inertia (𝐼) without modifying the nominal cross-section area (𝐴) 

and the material properties, i.e., the Young’s modulus (𝐸), so that the flexural stiffness (𝐸𝐼) is modified 

while the axial stiffness of the members (𝐸𝐴) remains constant (Kucukler et al. 2016). Members were 

divided into 100 elements. Although the proposed stiffness reduction factor for columns already 

incorporates the effect of member imperfections, to ensure that the geometrical nonlinearities were 

triggered in the column models, an imperfection amplitude of 0.001% 𝐿𝑐 was incorporated following a 

half sinusoidal shape (Shen and Chacón 2020). In the case of frames, notional horizontal loads were 

applied assuming a drift angle of 1/200, as recommended in EN 1993-1-1 (2005), in both LA and GNA-

SR analyses. The loads were applied as imposed displacements and the boundary conditions were 

defined following the configurations described above. 

5.2.2.  Material model 

In both shell and beam FE models, nonlinear material properties were defined by assigning user-defined 

true stress-plastic strain curves according to the two-stage Ramberg-Osgood material model shown in 

Eq. 2.1 and Eq. 2.2. 

The study covered austenitic, ferritic and duplex stainless steel RHS members. Table 5.1 summarises 

the key weighted average material properties considered, which were calculated as given in Section 2.3 

from the material properties reported in Table 3.2 for the flat and corner regions of stainless steel RHS 

sections. Weighted average material properties were assigned to all the FE models to facilitate the 

comparison between GMNIA and GNA-SR analyses. 

Table 5.1. Key material characterisation parameters for parametric studies. 

Stainless steel 
𝐸 

[GPa] 

𝑓𝑦 

 [MPa] 

𝑓𝑢 

[MPa] 

𝜀𝑢 

[mm/mm] 
𝑛 𝑚 

Austenitic 198 428 650 0.39 5.5 3.7 

Ferritic 185 498 520 0.06 11.4 3.1 

Duplex 201 707 874 0.36 5.6 4.9 

5.2.3. Validation of FE models 

Numerical models for structural members (columns, beams and beam-columns) were validated using 

shell-type FE models, while the numerical models for portal frames were validated using both shell-

type and beam-type FE models, as described in this section. 
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The FE models of stainless steel members used in the present study were validated against the experimental 

results on cold-formed EN 1.4301 austenitic beams and columns with RHS cross-sections reported in 

(Arrayago et al. 2020b) and summarised in Table 3.4 and Table 3.5, respectively. The accuracy of the FE 

model for columns was assessed by comparing the results of the GMNIA analysis with those of columns 

subjected to pure compression under pin-ended boundary conditions. The cross-sections were modelled 

using S4R elements and divided into corner regions and flat regions (see Figure 2.2); the measured material 

properties given in Table 3.2, using the model given in Eq. 2.1 and Eq. 2.2, were assigned to each region. 

For this particular validation, the reference points connected to the end cross-sections were placed at a 

distance of 50 mm, following the experimental set-up (Arrayago et al. 2020b). Local and global 

imperfections were included by using the corresponding buckling modes and the measured amplitudes 

reported in Table 3.1. To validate the numerical models of the beams, experimental results from four-point 

bending tests, with the stainless steel RHS sections bent around their major axis, were used. The same type 

of S4R elements and material models used for columns were also employed for beams. The test set-up 

coincided with that described above for the numerical models of beams, whereby the distance between the 

support reference points was 1500 mm and between the load reference points, 510 mm. Local imperfections 

were included using the pattern given by the relevant buckling modes and with the amplitudes measured 

from the test specimens, as given in Table 3.1. Figure 5.1 presents the experimental load-lateral deflection 

curves of columns under pure compression around major (S2) and minor (S3) axis and the experimental 

load-midspan deflection curves for beams subjected to major axis bending, compared to the corresponding 

FE curves. The results demonstrate that the numerical analysis approach used in the present study can 

accurately simulate the actual behaviour of stainless steel members. It was observed that the failure modes 

also concurred. Therefore, the use of the numerical analysis approach presented herein is appropriate to obtain 

reference data to be compared with the results predicted from the proposed Stiffness Reduction Method. 

 

Figure 5.1. Comparison of FE load-deflection curves for S2 (RHS 120×100×4) and S3 (RHS 120×40×4) austenitic 

stainless steel columns and four-point bending beams with the experimental results reported in (Arrayago et al. 2020b). 
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The accuracy of the shell-type - (Section 5.2.1.2) and beam-type (Section 5.2.1.3) FE models of stainless 

steel frames was assessed by comparing the results obtained from a geometrically and materially 

nonlinear analysis with imperfections (GMNIA) to the experimental ultimate loads, deflections and 

displacements shown by the Frame 1 and reported in Chapter 4. For this purpose, the position of the 

vertical loads shown by the frames of this study (see Figure 5.9) was slightly modified to be equivalent 

to the experimental one (see Figure 3.6(a). Likewise, only for the validation purposes, the loading 

scheme was divided into two steps (as explained in Section 3.4.1). The characteristics of these steps are 

given in Section 4.3.1. In order to reproduce the stiffness of the actual experimental boundary 

conditions, boundary conditions for both shell- and beam-type models where defined by means of 

springs elements. The values of stiffness assigned to the spring elements are reported in Section 4.2.3.2. 

In the case of shell-type FE model, the flat and corner material properties defined in Table 3.2 for CS1 

were assigned to the corresponding areas, while in the case of beam-type FE model, the weighted 

average material computed as given in Figure 2.2 was assigned to the whole cross-section. In-plane 

initial geometric imperfections were defined by means of the first sway buckling mode obtained from 

prior buckle analyses, which was dominant, with an amplitude according to EN1993-1-1 (2005) and equal 

to 8.6 mm, since the measured initial imperfection resulted to be too small. Note that the shell-type FE 

model corresponds to the numerical model given in Section 4.3.1. 

Figure 5.2(a) shows the total vertical load-midspan deflection responses for the beam-type FE model, 

the shell-type FE model and the tested frame. Note that the total vertical load-midspan deflection curve 

for the shell FE model is closer to the experimental curve than the response of the beam FE model. This 

is attributed to the more accurate geometric definition of the cross-sections allowed in the shell element 

models, since box-section beam type sections available in the ABAQUS (2016) do not account for the 

rounded corner areas. The horizontal load-horizontal displacement at column support curves are 

represented in Figure 5.2(b). From Figure 5.2, it can be concluded that both FE models are capable of 

accurately reproducing the experimental behaviour for frame S1. 

  

(a) (b) 

Figure 5.2. Comparison of experimental and numerical (a) vertical load-midspan deflection and (b) horizontal 

load-horizontal displacement curves. 
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5.3. Stiffness reduction under axial loading 

In this section, the development of the stiffness reduction factor 𝜏𝑁 accounting for the loss of stiffness 

due to geometrical imperfections, residual stresses and the spread of plasticity in stainless steel columns 

under axial loading is presented, as well as its validation by the comparison of GNA-SR and GMNIA 

results. 

5.3.1. Derivation of stiffness reduction factor 𝜏𝑁 

The stiffness reduction factor 𝜏𝑁 of a column subjected to axial loading was derived from the European 

buckling curves specified in the next version of the prEN 1993-1-4 (2021) standard and following the 

methodology proposed by Kucukler et al. (2014) for carbon steel columns. The stiffness reduction factor 

𝜏𝑁 is the ratio between the inelastic and the elastic critical buckling loads of the member, 𝑁𝑐𝑟,𝑖 and 𝑁𝑐𝑟 

respectively, and can be expressed in terms of the flexural buckling reduction factor 𝜒 and the member 

slenderness 𝜆̅, as shown in Eq. 5.1. 

The buckling curves to calculate the flexural buckling reduction factor χ prescribed in the latest edition 

of the Structural Design Manual (SCI 2017) and in the upcoming version of prEN 1993-1-4 (2021) are 

based on the Ayrton-Perry approach (Maquoi and Rondal 1978). The buckling reduction factor is given 

by Eq. 5.2, where the effects of the residual stresses and member imperfections are included in the 

auxiliary parameter 𝜙 defined in Eq. 5.3. The values of the imperfection factor a and the limiting 

slenderness 𝜆̅0 depend on the type of cross-section, stainless steel family and the buckling axis 

considered. For the specific case of cold-formed stainless steel RHS columns, the imperfection factor 

adopts a value of 𝛼=0.49 (prEN 1993-1-4 2021; SCI 2017), while the limiting slenderness is 𝜆̅0=0.3 for 

austenitic and duplex stainless steels, and 𝜆̅0=0.2 for ferritic alloys. 

The reduction function 𝜏𝑁 proposed herein and given in Eq. 5.4 and Eq. 5.5 is adopted from Kucukler 

et al. (2014), which in turn comes from the European buckling curves for carbon steel, but assumes the 

imperfection factor and limiting slenderness values calibrated for stainless steel alloys (prEN 1993-1-4 

2021). It is noteworthy that the strength prediction resulting from applying the proposed reduction factor 

N and performing a GNA-SR analysis up to failure is identical to that estimated from the European 

buckling curve 𝑁𝑏,𝑅𝑘. Hence, the maximum column resistance estimated by the proposed SRM is the 

𝜏𝑁 =
𝑁𝑐𝑟,𝑖

𝑁𝑐𝑟
= 𝜒𝜆̅2 Eq. 5.1 

𝜒 =
1

𝜙 + √𝜙2 − 𝜆̅2
 but  𝜒 ≤ 1.0 Eq. 5.2 

where 𝜙 = 0.5[1 + 𝛼൫𝜆̅ − 𝜆̅0൯ + 𝜆̅2] Eq. 5.3 
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squash load of the gross cross-section 𝑁𝑝𝑙, and the applied axial load 𝑁𝐸𝑑 in Eq. 5.4 and Eq. 5.5 should 

not be greater than the characteristic column strength 𝑁𝑏,𝑅𝑘. 

From the relationship presented in Eq. 5.1, it is possible to derive stiffness reduction functions that 

consider imperfections and residual stresses based on any buckling curve. For assessment purposes, the 

stiffness reduction factors derived from the buckling curves proposed in AISC 370 (2021) for RHS 

stainless steel columns were also calculated. Figure 5.3 shows the comparison of the stiffness reduction 

functions specifically obtained herein for austenitic and duplex RHS columns from the buckling curves 

in prEN 1993-1-4 (2021) and AISC 370 (2021). As shown in Figure 5.3, both stiffness reduction 

functions are very similar, as the flexural buckling curves prescribed in AISC 370 (2021) have been 

recently revised to provide strength predictions comparable to those predicted with the European curves 

(Meza and Baddoo 2021). These new buckling curves provide similar or slightly higher strength 

predictions than the equivalent European curves and show a larger yield plateau due to the less strict 

reliability requirements stipulated for the AISC 370 specification. The new expression for the AISC 

370 buckling curves is defined in three stages depending on the slenderness or stress ratios. For high 

slenderness ratios, i.e., low 𝑁𝐸𝑑 𝑁𝑝𝑙⁄  ratios, the AISC 370 design buckling stress is a constant proportion 

of the elastic buckling stress, resulting in the plateau shown in Figure 5.3 and which adopts a value of 

0.82 for austenitic and duplex RHS members. 

 
Figure 5.3. Comparison between the proposed stiffness reduction factor N and the stiffness reduction factor 

derived from AISC 370 (2021) buckling curves for an austenitic stainless steel column. 
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]

2 

but   𝜏𝑁 ≤ 1.0 Eq. 5.4 

where 𝜓 = 1 + 𝜆̅0𝛼
𝑁𝐸𝑑

𝑁𝑝𝑙
−

𝑁𝐸𝑑

𝑁𝑝𝑙
 

Eq. 5.5 
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5.3.2. Application of the proposed stiffness reduction factor 𝜏𝑁 

The ability of the proposed stiffness reduction factor N based on the European buckling curves for 

stainless steel RHS columns to consider the effects of material nonlinearities, initial imperfections and 

residual stresses was evaluated by numerical FE analyses. For this, a range of simply supported columns 

made of the austenitic, ferritic and duplex materials reported in Table 5.1 were studied. The geometry 

of the cross-section considered in the assessment corresponds to the section RHS1 shown in Table 5.2, 

where 𝐻 is the total height of the cross-section, 𝐵 is the total width, 𝑡 is the wall thickness and 𝑅𝑒𝑥𝑡 is 

the external corner radius. Local slenderness values under pure compression 𝜆̅𝑝,𝑐 are also reported. Table 

5.2 also includes the geometric characteristics of the other cross-sections used in this study (RHS2 and 

RHS3), and the local slenderness values under major axis bending 𝜆̅𝑏,𝑦 and minor axis bending 𝜆̅𝑏,𝑧 for 

the three cross-sections. All local slenderness 𝜆̅𝑝,𝑖 values reported in Table 5.2 were calculated as reported 

in Section 2.4.2. Finally, the assessment presented in this section considered different stainless steel 

columns with varying member lengths, which corresponded to member slenderness 𝜆̅ values that ranged 

from 0.25 to 2.00. In total, 8 columns were analysed for each stainless steel family. 

Table 5.2. Cross-section geometric properties and local slenderness values under different load cases. 

Cross-section 
𝐻 

[mm] 

𝐵 

[mm] 

𝑡 

[mm] 

𝑅𝑒𝑥𝑡  

[mm] 
Stainless steel 𝜆̅

𝑝,𝑐 𝜆̅
𝑝,𝑏𝑦 𝜆̅

𝑝,𝑏𝑧 

RHS1 90.0 76.0 6.0 9.5 Austenitic 0.32 0.25 0.29 

     Ferritic 0.36 0.28 0.33 

     Duplex 0.41 0.32 0.37 

RHS2 125.0 76.0 6.0 9.5 Austenitic 0.43 0.25 0.41 

     Ferritic 0.48 0.28 0.46 

     Duplex 0.55 0.32 0.52 

RHS3 146.0 76.0 6.0 9.5 Austenitic 0.50 0.26 0.48 

     Ferritic 0.56 0.29 0.54 

     Duplex 0.64 0.33 0.61 

The proposed reduction factor 𝜏𝑁 was used to estimate the ultimate strength of the investigated columns 

by conducting a GNA-SR analysis and its accuracy was assessed by comparing these estimations with 

the ultimate capacities of the same columns predicted from a GMNIA analysis. The ultimate strength 

of the columns was estimated as the applied load when the most loaded cross-section reached its cross-

section capacity in the GNA-SR analyses proposed in the present study. The ultimate cross-section 

capacity was determined using the Continuous Strength Method (CSM) interaction equation for RHS 

cross-sections under combined axial load plus uniaxial bending provided in prEN 1993-1-4 (2021), but 

slightly modified to limit the axial forces up to the squash load of the gross cross-section 𝑁𝑝𝑙, since the 

buckling curves from which the factor 𝜏𝑁 was derived are limited to 𝑁𝑝𝑙. Since RHS1 is a stocky cross-

section, the ultimate cross-section resistance of the columns analysed through the GNA-SR proposed 

herein is that shown in Eq. 5.6 (prEN 1993-1-4 2021). The parameter 𝑎 in Eq. 5.6 depends on the axis 



A stiffness reduction method for the in-plane design of stainless steel frames 

87 

of bending and it corresponds to 𝑎 = 𝑎𝑤 = (𝐴 − 2𝑏𝑡)/𝐴 when calculating the major axis strength and 

𝑎 = 𝑎𝑓 = (𝐴 − 2ℎ𝑡)/𝐴 for minor axis bending, where 𝑏 and ℎ are the internal width and height of the 

cross-section, respectively, and 𝐴 is the cross-sectional area. In the case of RHS sections with local 

slenderness values 𝜆̅𝑝>0.60, the linear interaction equation given in Eq. 5.7 might be used. Note that, 

for comparison purposes, partial safety factors for cross-section 𝛾𝑀0 and member 𝛾𝑀1 resistances are 

equal to unity in this study. 

The results obtained using the proposed stiffness reduction factor 𝜏𝑁 for stainless steel columns are 

plotted in Figure 5.4 along with those corresponding to the stiffness reduction factors derived from the 

buckling curves proposed in AISC 370 (2021), as discussed in Section 5.3.1. The discrepancies 

observed between the GNA-SR and GMNIA results are associated with the accuracy or adjustment of 

the buckling curves considered to the specific stainless steel materials considered in the present study. 

Both AISC 370 (2021) and prEN 1993-1-4 (2021) buckling curves were calibrated using a large number 

of data and provide accurate predictions of the ultimate buckling strengths. Since the proposed 𝜏𝑁 factor 

was directly obtained from the European buckling curves, the GNA-SR𝜏𝑁prEN 1993-1-4 curves shown in 

Figure 5.4 overlap the prEN 1993-1-4 (2021) buckling curves. Hence, the accuracy of the proposed 𝜏𝑁 

factor will depend on the fit of the flexural buckling curves to the ultimate member resistance of 

stainless steel columns. Based on the results shown in Figure 5.4, it can be concluded that the austenitic 

buckling curve prescribed in prEN 1993-1-4 (2021) was in good correlation with the studied austenitic 

cases, while less accurate fits were found for the ferritic and duplex materials studied. 

For the cases considered in this section, i.e., members under pure compression, it is possible to 

approximate the inelastic buckling strength of the column by reducing the elastic critical buckling load 

𝑁𝑐𝑟 by 𝜏𝑁. Furthermore, equivalent results may be obtained when a Linear Buckling Analysis with 

Reduced Stiffness (LBA-SR) is carried out. The latter approach is especially recommended for columns 

subjected to non-uniform axial forces, with non-uniform cross-section or various boundary conditions 

(Kucukler et al. 2014). 

𝑀𝐸𝑑 ≤ 𝑀𝑁,𝑐𝑠𝑚 = 𝑀𝑐𝑠𝑚

1 − ൫𝑁𝐸𝑑 𝑁𝑝𝑙⁄ ൯

1 − 0.5𝑎
≤ 𝑀𝑐𝑠𝑚 for 𝜆̅𝑝 ≤ 0.60 Eq. 5.6 

𝑁𝐸𝑑

𝑁𝑝𝑙
+

𝑀𝐸𝑑

𝑀𝑐𝑠𝑚
≤ 1 for 𝜆̅𝑝 > 0.60 Eq. 5.7 
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(a) (b) 

 
(c) 

Figure 5.4. Comparison of the results obtained from different GNA-SR analyses with GMNIA predictions on (a) 

austenitic, (b) ferritic and (c) duplex stainless steel simply supported columns. 

5.4. Stiffness reduction under bending 

In this section, the derivation of the stiffness reduction function 𝜏𝑀 for estimating the yield distribution 

effects on the structural behaviour of beams under pure bending through a GNA-SR analysis is 

presented. Application of the derived 𝜏𝑀 factor and the assessment of the results are also provided. 

5.4.1.  Derivation of stiffness reduction factor 𝜏𝑀 

In out-of-plane restrained beams subjected to constant bending moment, the stiffness reduction function 

𝜏𝑀 estimates the spread of plasticity in the cross-section and, therefore, it depends on the cross-sectional 

geometry, material response and residual stresses, but not on the initial geometrical imperfections 

(Kucukler et al. 2014). The reduction factor 𝜏𝑀 corresponding to a certain bending moment 𝑀𝐸𝑑 can be 

expressed as the ratio between the tangent flexural stiffness at a particular bending moment value 𝐸𝐼𝑡, 

and the initial flexural stiffness 𝐸𝐼. As shown in Eq. 5.8, the tangent flexural stiffness of a member at 

any given bending moment value 𝐸𝐼𝑡 corresponds to the derivation of 𝑑𝑀𝐸𝑑/𝑑𝜅, where 𝜅 is the 

curvature; in other words, to the slope of the moment-curvature curve at 𝑀𝐸𝑑. 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0 0.5 1.0 1.5 2.0

N
E

d
/ 

N
p
l

ത𝝀

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0 0.5 1.0 1.5 2.0

N
E

d
/ 

N
p
l

ത𝝀

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0 0.5 1.0 1.5 2.0

N
E

d
/ 

N
p
l

GMNIA

GNA-SR tN-EC3

GNA-SR tN-AISC 370

EULER = LBA

GMNIA

GNA-SR N prEN 1993-1-4

GNA-SR N AISC 370

EULER=LBA

ത𝝀



A stiffness reduction method for the in-plane design of stainless steel frames 

89 

Real and Mirambell (2005) proposed an analytical expression to describe the bending moment-

curvature relationship of stainless steel beams subjected to bending moment up to a moment 𝑀02, which 

corresponds to the moment at which the maximum normal tensile stress is equal to the yield stress 𝑓𝑦. 

Note that for materials showing nonlinear stress-strain responses such as stainless steels, 𝑀02 is 

different from the elastic bending moment of the section and can be estimated by integrating the 

nonlinear stress distribution of the cross-section (Real and Mirambell 2005). The expression 

approximates the cross-sectional curvature as a combination of elastic and plastic components. While 

the elastic component corresponds to the ratio of the applied moment 𝑀𝐸𝑑 and the initial flexural 

stiffness 𝐸𝐼, the plastic component is governed by the definition of the plastic curvature 𝜅𝑝,02 for 𝑀02. 

Recently, Shen and Chacón (2020) proposed a stiffness reduction function for stainless steel RHS 

beams based on Real and Mirambell’s approximation. However, the proposed function was only valid 

up to a moment equal to the elastic moment 𝑀𝑒𝑙, so a second stage was added to the 𝜏𝑀 formula to 

consider nonlinear stress distributions up to the plastic moment 𝑀𝑝𝑙 (Shen and Chacón 2020). 

In an effort to simplify this approach, the alternative expression for the calculation of the curvature up 

to 𝑀𝑝𝑙 given in Eq. 5.9 is proposed in this study. Eq. 5.9 is based on Real and Mirambell’s expression 

but, while the elastic component is the same, the plastic component uses the plastic moment 𝑀𝑝𝑙 instead 

of 𝑀02, and the plastic curvature 𝜅𝑝 corresponding to 𝑀𝑝𝑙 is adopted (instead of the 𝜅𝑝,02 curvature). 

The plastic curvature 𝜅𝑝, defined in Eq. 5.10, can be determined as the difference between the 

curvatures corresponding to the plastic 𝑀𝑝𝑙 and elastic 𝑀𝑒𝑙 bending moments. These curvatures are 

calculated based on the strains and the cross-section half-heights, i.e., 𝜅 = 𝜀 (𝐻 2⁄ )⁄ . While the strain 

for 𝑀𝑒𝑙 is straightforward, that for 𝑀𝑝𝑙 can be accurately estimated as 3𝜀𝑦 for RHS, following the 

recommendations in (Arrayago et al. 2017a; Arrayago and Rasmussen 2021a). 

By deriving Eq. 5.9 with respect to 𝜅, substituting the resulting expression into Eq. 5.8 and assuming 

2𝜀𝑦𝐸𝐼/𝐻 = 𝑀𝑒𝑙, the stiffness reduction factor 𝜏𝑀 shown in Eq. 5.11 is obtained. 

𝜏𝑀 =
𝐸𝐼𝑡

𝐸𝐼
=  

𝑑𝑀𝐸𝑑
𝑑𝜅
𝐸𝐼

 
Eq. 5.8 

𝜅 =
𝑀𝐸𝑑

𝐸𝐼
+ 𝜅𝑝 (

𝑀𝐸𝑑

𝑀𝑝𝑙
)

𝑛−1

 Eq. 5.9 

𝜅𝑝 =
2

𝐻
൫3𝜀𝑦 − 𝜀𝑦൯ Eq. 5.10 
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The 𝜏𝑀 factor estimated by Eq. 5.11 has been assessed against the 𝜏𝑀 value derived from the numerical 

moment-curvature relationship obtained through a GMNIA analysis. Simply supported beams subjected 

to four-point loading conditions and bending around minor axis, as described in Section 5.2, were 

considered, and corresponded to the three stainless steel alloys shown in Table 6.1 and the cross-sections 

RHS1, RHS2 and RHS3 presented in Table 5.2. Bending moment-curvature relationships were 

determined at the midspan sections from the FE models, where the bending moment distribution is 

constant, and curvatures were calculated from Eq. 5.12, where 𝑢𝑎𝑣 is the average value of the 

deflections at the loading sections, 𝑢2 is the deflection at the midspan section and 𝐿𝑝 is the distance 

between applied loads (Rasmussen and Hancock 1993b). 

Figure 5.5 shows the comparison between the stiffness reduction factor 𝜏𝑀 given in Eq. 5.11 for a RHS2 

austenitic beam against the flexural stiffness reduction factor derived from GMNIA results. Suggested 

by Shen and Chacón (2020), and as demonstrated in Figure 5.5, substituting the term (𝑛 − 1) in Eq. 

5.11 by (𝑛 − 1)/2 provides a better fit of the analytical expression of 𝜏𝑀. Consequently, the proposed 

stiffness reduction function 𝜏𝑀 is given in Eq. 5.13. As shown in Figure 5.5, the fit obtained with Eq. 

5.13 is excellent up to 𝑀𝑒𝑙, and becomes poorer beyond this value due to the strain hardening of the 

material. 

 

 
Figure 5.5. Assessment of the proposed stiffness reduction factor 𝜏𝑀 for austenitic stainless steel beams under 

constant bending moment (RHS2 cross-section). 
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]

−1

 Eq. 5.11 

𝜅 =
8(𝑢2 − 𝑢𝑎𝑣)

4(𝑢2 − 𝑢𝑎𝑣)2 + 𝐿𝑝
2 Eq. 5.12 

𝜏𝑀 = [ 1 + (𝑛 − 1)
𝑀𝑒𝑙

𝑀𝑝𝑙
(

𝑀𝐸𝑑
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−1

 Eq. 5.13 
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5.4.2. Application of the proposed stiffness reduction factor 𝜏𝑀 

The accuracy of the proposed stiffness reduction function given in Eq. 5.13 was verified by means of 

FE analyses. A parametric analysis of simply supported beams following the four-point bending test 

configuration (4PB) was carried out. Beams bent about their minor axes, were 1500 mm long and 

vertical loads were applied at a distance of 510 mm away from the supports. Different materials 

corresponding to the three stainless steel families defined in Table 6.1 were analysed, considering three 

cross-sections (RHS1, RHS2 and RHS3 sections presented in Table 5.2) with varying local slenderness 

values for each material. Moment-curvature relationships were determined at the midspan sections as 

explained above. Figure 5.6 shows the comparison of the proposed stiffness reduction factor 𝜏𝑀 given 

in Eq. 5.13 against the corresponding GMNIA results for austenitic, ferritic and duplex simply 

supported beams with RHS1 cross-section. The largest differences observed between the GMNIA and 

GNA-SR curves are in the cases of austenitic and duplex alloys. These discrepancies can be explained 

by the existing resistance reserve after 𝑀𝑒𝑙 due to the strain hardening of the material, which the 

proposed stiffness reduction function 𝜏𝑀 does not take into account. 

 

  

(a) (b) 

                       
(c) 

Figure 5.6. Evaluation of the proposed reduction function 𝜏𝑀 for (a) austenitic, (b) ferritic and (c) duplex 

stainless steel simply supported beams under minor axis bending (RHS1 cross-section). 
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5.5. Stiffness reduction under combined axial load and bending 

In this section, a stiffness reduction function 𝜏𝑁𝑀 that considers the detrimental effects of material 

nonlinearities, residual stresses and initial imperfections in stainless steel members under combined 

loading is presented. Results for a variety of beam-columns analysed according to the Stiffness Reduction 

Method (SRM) using the proposed 𝜏𝑁𝑀 factor are also shown and assessed against the capacity of stainless 

steel benchmark members subjected to a combination of axial load and uniform bending. Finally, the 

consideration of different lineal moment distributions along the member length is addressed. 

5.5.1. Proposal of stiffness reduction factor 𝜏𝑁𝑀 

Kucukler et al. (2014) proposed a stiffness reduction factor 𝜏𝑁𝑀 to take into account the effect of 

yielding in I-section (IPE and HE) carbon steel beams-columns subjected to a combination of axial load 

and uniform bending. The 𝜏𝑁𝑀 expression proposed by Kucukler et al. (2014) depends on two factors, 

which in turn depend on the cross-sectional aspect ratio 𝐻/𝐵 (𝐻/𝐵 ≤1.2 or >1.2) and the axis of 

buckling and bending. The cross-sections studied in this research are stainless steel rectangular hollow 

cross-sections (RHS) with 𝐻/𝐵>1.2. Since RHS cross-sections subjected to combined axial and 

uniaxial bending moment for both major and minor axes behave similarly to I-sections under axial load 

plus strong axis bending, the 𝜏𝑁𝑀 factor proposed by Kucukler et al. (2014) for carbon steel I-section 

beam-columns with 𝐻/𝐵>1.2 for combined axial load and major axis bending is adopted herein. Thus, 

the interaction stiffness reduction function 𝜏𝑁𝑀 used in this study is given in Eq. 5.14, in which 𝜏𝑁 and 

𝜏𝑀 correspond to the reduction factors determined from Eq. 5.4 and Eq. 5.13, respectively. 

5.5.2.  Application of the proposed stiffness reduction factor 𝜏𝑁𝑀 

A comprehensive parametric analysis on simply supported austenitic, ferritic and duplex stainless steel 

beam-columns subjected to axial load and uniform minor axis bending moment was conducted to assess 

the accuracy of the proposed 𝜏𝑁𝑀 factor. Material properties considered in the FE models are shown in 

Table 5.1, and the details of the models have been discussed in Section 5.2. The member slenderness 𝜆̅ 

values considered were 0.5, 1.0 and 1.5, and the cross-sections analysed corresponded to the sections 

RHS1 and RHS2 defined in Table 5.2. Investigated bending moment-axial load ratios varied from pure 

compression to pure bending moment. Generally, constant bending moments were introduced by means 

of eccentric axial loads, with load eccentricity values equal to 𝑒0=0.1𝐵, 0.3𝐵, 0.75𝐵, 1.5𝐵, 3.0𝐵 and 

9.0𝐵, where 𝐵 is the total cross-section width. Only in the cases with null axial loading (i.e., pure 

bending moment loading), members were subjected to equal bending moments applied at the endpoints. 

𝜏𝑁𝑀 = 𝜏𝑁𝜏𝑀 {1 − (
𝑁𝐸𝑑

𝑁𝑝𝑙
)

0.8

(
𝑀𝐸𝑑

𝑀𝑝𝑙
)} Eq. 5.14 
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The ultimate load and bending moment resistances of the beam-columns were obtained from a GNA-

SR analysis using the 𝜏𝑁𝑀 function proposed in Eq. 5.14 and following the procedure explained in 

Section 5.3.2. Since the local slenderness values of RHS1 and RHS2 are lower than 0.60, the ultimate 

applied loads 𝑁𝐸𝑑 and corresponding bending moments 𝑀𝐸𝑑 were determined from the GNA-SR 

analyses by applying the interaction equation given in Eq. 5.6 at the critical cross-sections. These values 

are compared with the ultimate strengths predicted from the GMNIA analyses in Figure 5.7, which 

shows the nondimensional ultimate loads 𝑁𝐸𝑑/𝑁𝑝𝑙 and bending moments 𝑀𝐸𝑑/𝑀𝑝𝑙 predicted from the 

GNA-SR analyses using the proposed reduction factor 𝜏𝑁𝑀 for simply supported beams-columns under 

uniform uniaxial bending for the cross-section RHS2, the three stainless steel families and the three 

member slenderness 𝜆̅ values considered. Ultimate capacities of restrained beam-columns predicted 

from the GMNIA analyses are also provided as benchmark. As mentioned in Section 5.3.1, the 

compression resistances in members are limited to the flexural buckling resistance values 𝑁𝑏,𝑅𝑘, which 

are represented by dashed horizontal lines in Figure 5.7, while the ultimate bending capacities are 

limited by the CSM bending resistance as Eq. 5.6 assumes 𝑀𝑐𝑠𝑚 as endpoint. 

 
 

(a) (b) 

                                 
(c) 

Figure 5.7. Evaluation of GNA-SR results for (a) austenitic, (b) ferritic and (c) duplex stainless steel beam-

columns under combined axial loading and uniform minor axis bending (RHS2 cross-section). 

 

Accurate and generally safe predictions are obtained for all materials and member slendernesses, since 

the GNA-SR predicted member strengths tend to lay below the GMNIA-predicted capacities. The most 
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conservative estimations are obtained for stocky (i.e., short) specimens, since their structural behaviour 

is similar to that exhibited by the cross-section, without showing instability. In addition, when loading 

is governed by compressive loads, results seem to be more precise for austenitic alloys since, as 

discussed in Section 5.3.2, the austenitic buckling curve specified in the upcoming prEN 1993-1-4 

(2021) standard is in good agreement with the austenitic material used in the present study, while the 

buckling curves are worse fitted for the studied ferritic and duplex materials, as it was shown in Figure 5.4. 

It is worth emphasizing that the GNA-SR curves shown in Figure 5.7 are very close to the GMNIA 

curves in those loading cases governed by bending moment, even if the proposed M function gradually 

loses accuracy when 𝑀𝐸𝑑>𝑀𝑒𝑙, as discussed in Section 5.4.1. Based on these results, it can be concluded 

that the 𝜏𝑀 factor defined by Eq. 5.13 accurately captures the stiffness loss of stainless steel beams 

subjected to constant bending up to a value of 𝑀𝑐𝑠𝑚, and consequently a second stage of the formulation 

for 𝜏𝑀 is not necessary. This fact is especially valuable considering the simplicity of the proposed 𝜏𝑀 

formula compared to those available in the literature (Kucukler et al. 2014; Shen and Chacón 2020). 

In addition, the accuracy of the stiffness reduction function was assessed through the ratio 𝜁 defined in Eq. 

5.15, following the approach adopted in (Kucukler et al. 2016), which is the ratio between the radial distances 

measured from the origin to the normalised interaction GNA-SR (𝜁𝑖) and GMNIA (𝜁𝐺𝑀𝑁𝐼𝐴) curves. 

Table 5.3 summarises the comparison of the ultimate capacities of GNA-SR with those of GMNIA, where 

𝜁𝑎𝑣 and 𝜁𝑐𝑜𝑣 are the average value and the coefficient of variation (COV) of the calculated 𝜁 ratios for the 

different beam-columns investigated and the member slenderness considered, and 𝜁𝑚𝑎𝑥 and 𝜁𝑚𝑖𝑛 are the 

maximum and minimum 𝜁 values. 𝜁 values lower than 1.0 correspond to conservative predictions. As 

reported in Table 5.3, the GNA-SR method provides accurate ultimate strength predictions, with 𝜁𝑎𝑣 values 

close to 1.0 and considerably small coefficients of variation (COV), especially in the cases of austenitic and 

ferritic beam-columns. However, the COV values tend to increase for increasing member slenderness 𝜆̅ 

values. It should be noted that the errors in the unconservative side (i.e., 𝜁 values higher than 1.0) are usually 

not greater than 10% (𝜁≤1.10), and that only in the case of slender austenitic members subjected to similar 

proportions of bending moment and axial compression forces (see Figure 5.7), the SRM exceeds 

considerably the ultimate GMNIA strength (showing 𝜁𝑚𝑎𝑥 values of 1.16 and 1.10). In contrast, the most 

conservative predictions are obtained for duplex members, with 𝜁𝑚𝑎𝑥 values reported in Table 5.3 being 

always ≤1.0, and 𝜁𝑚𝑖𝑛 values ≤0.85. For ferritic and duplex stainless steel members, the minimum 𝜁 values 

are usually obtained under pure compression (i.e., for columns) because, as discussed in Section 5.3.2, the 

𝜁 =
𝜁𝑖

𝜁𝐺𝑀𝑁𝐼𝐴
=

√൫𝑁𝐸𝑑,𝑖 𝑁𝑝𝑙⁄ ൯
2

+ ൫𝑀𝐸𝑑,𝑖 𝑀𝑝𝑙⁄ ൯
2

√൫𝑁𝐸𝑑,𝐺𝑀𝑁𝐼𝐴 𝑁𝑝𝑙⁄ ൯
2

+ ൫𝑀𝐸𝑑,𝐺𝑀𝑁𝐼𝐴 𝑀𝑝𝑙⁄ ൯
2
 Eq. 5.15 
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European buckling curves (and consequently 𝜏𝑁) provide reasonable, but not perfect, ultimate member 

resistances for these materials. 

Table 5.3. Comparison of the ultimate capacities obtained through GNAR-SR and GMNIA analyses for simply 

supported beam-columns subjected to axial compression and uniform bending moment. 
Stainless steel Cross-section 𝜆̅ 𝜁𝑎𝑣 𝜁𝑐𝑜𝑣  𝜁𝑚𝑎𝑥  𝜁𝑚𝑖𝑛 

Austenitic RHS1 0.5 0.99 0.022 1.02 0.95 

  1.0 1.03 0.038 1.08 0.97 

  1.5 1.05 0.073 1.16 0.90 

 RHS2 0.5 0.94 0.043 0.99 0.88 

  1.0 0.98 0.048 1.05 0.92 

  1.5 1.00 0.068 1.11 0.92 

Ferritic RHS1 0.5 0.99 0.022 1.02 0.95 

  1.0 0.97 0.080 1.07 0.83 

  1.5 0.98 0.098 1.08 0.80 

 RHS2 0.5 0.98 0.023 1.01 0.94 

  1.0 0.96 0.070 1.05 0.84 

  1.5 0.97 0.089 1.06 0.80 

Duplex RHS1 0.5 0.94 0.033 0.98 0.89 

  1.0 0.95 0.039 1.00 0.89 

  1.5 0.95 0.054 1.03 0.86 

 RHS2 0.5 0.91 0.037 0.95 0.85 

  1.0 0.91 0.037 0.95 0.84 

  1.5 0.93 0.049 1.00 0.87 

5.5.3. Moment gradient effect 

Consideration of the effects derived from bending moment gradients along the member length is 

assessed herein. To account for linear moment gradient variations, the proposed 𝜏𝑁𝑀 function was 

modified applying an equivalent uniform moment factor 𝐶𝑚 to the maximum bending moment along 

the member length 𝑀𝐸𝑑. Since the present work focuses on members with linear moment gradients, the 

expression for 𝐶𝑚 developed by Austin (1961) and shown in Eq. 5.16 is used, where 𝜇 is the ratio 

between the smaller and larger applied end moments. The effectiveness of this expression has been 

widely validated and it is the equivalent uniform moment factor adopted in EN 1993-1-1 (2005). 

Therefore, Eq. 5.17 and Eq. 5.18 should be used in the calculation of 𝜏𝑀 and 𝜏𝑁𝑀 instead of Eq. 5.13 

and Eq. 5.14 to include the variation of bending moment in beam-columns. 

𝐶𝑚 = 0.6 + 0.4𝜇 but 𝐶𝑚 ≥ 0.4 Eq. 5.16 

𝜏𝑀 = [ 1 + (𝑛 − 1)
𝑀𝑒𝑙

𝑀𝑝𝑙
(

𝐶𝑚𝑀𝐸𝑑

𝑀𝑝𝑙
)

𝑛−2

]

−1

 Eq. 5.17 

𝜏𝑁𝑀 = 𝜏𝑁𝜏𝑀 {1 − (
𝑁𝐸𝑑

𝑁𝑝𝑙
)

0.8

(
𝐶𝑚𝑀𝐸𝑑

𝑀𝑝𝑙
)} Eq. 5.18 
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Figure 5.8 shows the comparison between the GNA-SR and GMNIA results for two typical austenitic 

and duplex cases of simply supported beam-columns under axial load and varying minor axis bending 

along the length for cross-section RHS1. Linear bending moment distributions were obtained by 

applying an eccentricity only at one of the supports for the bending moment distribution corresponding 

to 𝜇=, and by applying load eccentricities with different signs at the two ends of the beam-columns for 

𝜇=-0.5 GNA-SR predictions were limited by the cross-section interaction equation given in Eq. 5.6, as 

in the previous sections. 

 

 

(a) (b) 

Figure 5.8. Comparison of GNA-SR results for the proposed reduction factor for (a) austenitic and (b) duplex 

stainless steel beam-columns under combined axial loading and varying minor axis bending (RHS1 cross-section). 

Similarly to the results reported in Table 5.3 for beam-columns under uniform bending moment, Table 

5.4 summarises the 𝜁𝑎𝑣, 𝜁𝑐𝑜𝑣, 𝜁𝑚𝑎𝑥 and 𝜁𝑚𝑖𝑛 values obtained from the comparison of the ultimate 

capacities predicted by the proposed GNA-SR approach with those of GMNIA for austenitic, ferritic 

and duplex beam-columns subjected to axial compression and bending moment gradients. It is worth 

noting that a number of the results shown in Figure 5.8 and Table 5.4 for austenitic slender members, 

particularly under high bending and for the 𝜇=-0.5 distribution, are on the unsafe side, although 

deviations lie within the 10-18% range. This is because (1) the equivalent moment factor 𝐶𝑚 neglects 

the influence of the member length and the level of axial load, as previously highlighted in (Zhao et al. 

2016b), which may lead to an overestimation of the beneficial effect of moment gradients on the beam-

column stability, and (2) the proposed 𝜏𝑀 factor does not accurately capture the loss of stiffness due to 

material nonlinearity after 𝑀𝑝𝑙, as discussed in Section 5.4, which is of particular relevance for 

austenitic beam-columns under the 𝜇=-0.5 distribution. Nevertheless, the analysis presented in Section 

5.6 for austenitic portal frames indicates that good predictions of the ultimate frame strengths are 

obtained when the 𝐶𝑚 factor is used in the analysis of structural systems, which is the relevant situation 

in design. The frames investigated covered the same ranges of member slenderness 𝜆̅ and 𝜇 factors 

considered in this section. Besides, results in Table 5.4 indicate that, on average, GNA-SR results are 

in good agreement with those predicted by GMNIA for the bending moment distributions considered 

(i.e., 𝜁𝑎𝑣 values are close to 1.0). 
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Table 5.4. Comparison of the ultimate capacities obtained through GNAR-SR and GMNIA analyses for simply 

supported beam-columns subjected to axial compression and gradient bending moment. 

Specimen 
Bending moment 

distribution 𝜇 
𝜆̅ 𝜁𝑎𝑣 𝜁𝑐𝑜𝑣  𝜁𝑚𝑎𝑥  𝜁𝑚𝑖𝑛 

Austenitic RHS1 0 0.5 0.97 0.030 1.01 0.92 

  1.0 1.03 0.042 1.08 0.96 

  1.5 1.03 0.074 1.14 0.91 

 -0.5 0.5 0.94 0.042 1.00 0.89 

  1.0 1.02 0.054 1.10 0.94 

  1.5 1.02 0.097 1.18 0.91 

Ferritic RHS1 0 0.5 0.97 0.021 0.99 0.94 

  1.0 0.96 0.089 1.07 0.83 

  1.5 0.96 0.103 1.09 0.80 

 -0.5 0.5 0.95 0.018 0.98 0.92 

  1.0 0.94 0.082 1.03 0.83 

  1.5 0.94 0.104 1.06 0.80 

Duplex RHS1 0 0.5 0.92 0.015 0.94 0.90 

  1.0 0.95 0.030 1.00 0.91 

  1.5 0.95 0.054 1.01 0.86 

 -0.5 0.5 0.91 0.027 0.94 0.87 

  1.0 0.94 0.039 1.00 0.89 

  1.5 0.95 0.070 1.05 0.86 

5.6. Stiffness reduction factors applied to portal frame design 

In this section, the proposed stiffness reduction factor 𝜏𝑁𝑀 is applied to the in-plane design of stainless 

steel portal frames. The assessment of the Stiffness Reduction Method was carried out through the 

comparison of the ultimate loads obtained for the 𝜏𝑁𝑀 factor proposed herein with those determined 

using the Direct Analysis Method prescribed in the AISC 370 (2021) specification and the ultimate 

strengths predicted from GMNIA analyses. 

5.6.1.  Application of the proposed method for in-plane global design 

The accuracy of the proposed Stiffness Reduction Method (SRM) to predict the global behaviour of 

stainless steel structures was assessed through a parametric study comprising austenitic RHS portal 

frames. A total of 20 single-span in-plane frames were studied: the height (𝐿𝑐) of all columns was 2 m, 

while the span lengths (𝐿𝑏) varied from 2 m to 4 m. All members featured the austenitic stainless steel 

material properties reported in Table 3.2 and the RHS1 cross-section given in Table 5.2, oriented in 

such a way that all members bent about their major axes. The loading scheme, shown in Figure 5.9, 

ensured that the most loaded cross-sections were located at the columns in all frames. Both fixed- and 

pin-ended support conditions were analysed and vertical (𝑉𝐸𝑑) and horizontal (𝐻𝐸𝑑) loads were applied 

simultaneously in different proportions at the top of the columns.  
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Figure 5.9. Loading scheme for austenitic stainless steel portal frames. 

Table 5.5 summarises the horizontal load 𝐻𝐸𝑑 values studied as a function of the applied vertical load 

𝑉𝐸𝑑. Note that 𝐻𝐸𝑑=0 and 𝑉𝐸𝑑=0 imply that the portal frame was loaded only vertically or horizontally, 

respectively. Member slenderness 𝜆̅ values ranged from 1.01 to 2.29, while bending moment 

distribution factors were 𝜇=-1 for beams, and 𝜇=[-0.59,-0.74] and 𝜇= for fixed- and pin-ended 

columns, respectively, which are in line with the beam-column cases analysed in Section 5.5.3. 

Table 5.5. Frame cases analysed. 

Frame case 

No. 

Boundary 

conditions 
𝐿𝑐 x 𝐿𝑏 Horizontal loading 𝐻𝐸𝑑  

1-12 Fixed-ended 
2 x 4 m 

2 x 2 m 
𝐻𝐸𝑑=0, 0.03𝑉𝐸𝑑, 0.01𝑉𝐸𝑑, 0.25𝑉𝐸𝑑, 1.0𝑉𝐸𝑑, 𝑉𝐸𝑑=0 

13-20 Pin-ended 
2 x 4 m 

2 x 2 m 
𝐻𝐸𝑑=0, 0.01𝑉𝐸𝑑, 1.0𝑉𝐸𝑑, 𝑉𝐸𝑑=0 

The frames described above were analysed using the SRM proposed herein, i.e., by performing GNA-

SR analyses on the numerical models described in Section 5.2.1.3, and the predicted ultimate capacities 

and internal forces were compared to those estimated from GMNIA. The application of the SRM to 

obtain the ultimate load of a structure is an iterative process, as stiffness reduction factors should be 

calculated for the load levels at which cross-section capacities are checked, and re-run until the capacity 

of the cross-sections is fully utilised (Kucukler et al. 2016; Walport et al. 2021b). In the GNA-SR 

analysis, the flexural stiffness of each member was reduced by the corresponding 𝜏𝑁𝑀 factor determined 

from Eq. 5.18, where the factors 𝜏𝑁 and 𝜏𝑀 were obtained from Eq. 5.4 and Eq. 5.17. The GNA-SR 

analysis was conducted until the most loaded section of the frame reached its resistance capacity, 

evaluated from the cross-section interaction equation Eq. 5.6, since RHS1 exhibits a local slenderness 

lower than 0.60. For the studied pin-ended frames, the critical sections were located at the beam-to-

column joints, while for the fixed-ended frames the critical sections were those at the supports of the 

columns. Note that since the GMNIA analyses were carried out on beam-type FE models (as explained 

in Section 5.2.1.2), the frame strengths and target internal forces were also obtained by checking the 

resistances of the critical cross-sections through the same Eq. 5.6 used for SRM analyses. 

𝑉𝐸𝑑   𝑉𝐸𝑑   

𝐻𝐸𝑑  

𝐿𝑏 

𝐿𝑐 
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For assessment purposes, the 20 single-span in-plane frames were also analysed following the Direct 

Analysis Method (DM) prescribed in AISC 370 (2021) for the design of stainless steel structures, in 

which the flexural stiffness of the members is adjusted by two different factors, 𝜏𝑔 and 𝜏𝑏. The first 

factor 𝜏𝑔 corresponds to a general stiffness reduction, which is applied to all members and accounts for 

the reduction in member stiffness due to the development and spread of plasticity. A constant value of 

𝜏𝑔=0.7 is adopted for all stainless steel members, as proposed by Walport et al. (2021b). The second 

factor 𝜏𝑏 is an additional factor that is applied to the stiffness of those members that contribute to the 

stability of the structure. 𝜏𝑏 is given by Eq. 5.19 when considering the Load and Resistance Factor 

Design (LRFD) approach and was derived from the Ramberg-Osgood expression, so it considers the 

further loss in stiffness due to material nonlinearities, and it also takes into account the detrimental 

effect of residual stresses by means of the effective strain hardening exponent 𝑛𝑒𝑓𝑓. The value of 𝑛𝑒𝑓𝑓 

depends on the strain hardening coefficient 𝑛, the cross-section type and the buckling axis, and was 

proposed by Walport et al. (2021b) and is tabulated in AISC 370 (2021). For the case of rectangular 

hollow sections studied herein, 𝑛𝑒𝑓𝑓 assumes a value equal to the strain hardening coefficient 𝑛, as the 

effects of residual stresses is negligible (Walport et al. 2021b).  

There are three potential design options in AISC 370 (2021) when the DM is adopted: (1) not including 

member imperfections explicitly in the structural analysis and verifying the structure by checking 

member capacities, (2) including member imperfections in the analysis and verifying the capacity of 

the structure through cross-section strength equations that use the plastic section capacities 𝑁𝑝𝑙 and 𝑀𝑝𝑙, 

and (3) including member imperfections in the analysis and verifying the capacity of the structure 

through cross-section checks that are anchored to the more accurate CSM end-points. Both member and 

cross-section checks should follow the corresponding design provisions prescribed in AISC 370 (2021). 

In the comparisons carried out in this study, the latter approach is adopted because it is the option that 

is most similar to the GNA-SR proposal presented. Notional loads were used to include initial global 

imperfections with a value equal to 0.002𝑁𝐸𝑑, which is based on a nominal initial storey out-of-

plumbness ratio of 1/500 according to AISC 370 (2021), while member imperfections were included in 

the beam-type FE models by directly modifying the position of the nodes following a half-sine wave 

shape with an amplitude of 𝐿𝑐/1000 in the most detrimental direction, as for the GMNIA models 

described in Section 5.2.1.2. Note that although the nominal out-of-plumbness ratio adopted for the DM 

is slightly lower than the corresponding value used in the GNA-SR analyses, the member imperfection 

amplitudes are equivalent, since the imperfection amplitude used in the calibration of the European 

buckling curves was 𝐿𝑐/1000. Since member instability is directly accounted for in the analysis, the 

𝜏𝑏 =
1.0

1.0 + 0.002𝑛𝑒𝑓𝑓
𝐸
𝑓𝑦

(
𝑁𝐸𝑑
𝑁𝑝𝑙

)
𝑛𝑒𝑓𝑓−1 

Eq. 5.19 
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capacity of the structure is verified by means of cross-section checks. Eq. 5.20 and Eq. 5.21 show the 

CSM cross-section interaction equations provided in AISC 370 (2021), where 𝑁𝐸𝑑 and 𝑀𝐸𝑑 are the 

second order internal axial force and bending moment obtained from the DM at the critical sections, 

and 𝑃𝑛,𝑐𝑠𝑚 and 𝑀𝑛,𝑐𝑠𝑚 are the CSM cross-section resistances in compression and bending, respectively. 

Note that the AISC 370 𝑃𝑛,𝑐𝑠𝑚 and 𝑀𝑛,𝑐𝑠𝑚 capacities are based on the same CSM base curve given in 

Eq. 2.4, but adopt a lower value of 5 for the Ω parameter (Walport et al. 2021b; AISC 370 2021). 

Formulae to calculate 𝑃𝑛,𝑐𝑠𝑚 and 𝑀𝑛,𝑐𝑠𝑚 are provided in (Walport et al. 2021b; AISC 370 2021). In the 

present study partial safety and resistance factors proposed in prEN 1993-1-4 (2021) and AISC 370 

(2021) assume values equal to unity. 

5.6.2.  Assessment of the results 

The ultimate load predictions obtained with the proposed SRM for stainless steel frames subjected to 

combined vertical and horizontal loads are summarised in Figure 5.10, where the results plotted in 

Figure 5.10(a) correspond to large span frames and in Figure 5.10(b) to short span frames. Both figures 

show the SRM predictions for fixed- and pin-ended boundary conditions, as well as the AISC 370-DM 

(2021) predictions and the GMNIA results for reference. 

  
(a) (b) 

Figure 5.10. Assessment of the results for the proposed stiffness reduction factors against GMNIA results and 

the AISC 370-DM (2021) for austenitic stainless steel in-plane portal frames with (a) 𝐿𝑏=4 m and (b) 𝐿𝑏=2 m 

under vertical and horizontal loading (RHS1 cross-section). 

In addition, Table 5.6 reports the values of the stiffness reduction factors for each member of the studied 

frames, according to the proposed SRM (𝜏𝑁𝑀,𝑖) and the AISC 370-DM (𝜏𝑔𝜏𝑏,𝑖) approaches, where the 

subscripts 𝑙, 𝑟 and 𝑏 refer to the left column, the right column and the beam, respectively. Note that for 

all the cases analysed in this research, the AISC 370-DM stiffness reduction factor for the beams is 
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equal to 𝜏𝑔𝜏𝑏,𝑏 = 𝜏𝑔  =. Similar stiffness reduction factors and ultimate capacities were estimated 

for large span frames and short span frames, and the differences were associated with the type of 

boundary condition and load combinations. Following the approach given in (Kucukler et al. 2016), 

Table 5.6 also provides the parameter 𝜁, which refers to the accuracy of the considered method for the 

prediction of the ultimate frame strengths. The factor 𝜁 is determined using Eq. 5.15, where 𝑀𝐸𝑑 refers 

to the bending moment in the column and the subscript 𝑖 refers to the assessed method (i.e., the proposed 

SRM or the AISC 370-DM approach). Recall that 𝜁 values lower than 1.0 correspond to conservative 

predictions. 

Table 5.6. Assessment of the accuracy of the proposed stiffness reduction method SRM and the AISC 370-DM 

for the prediction of ultimate strengths in austenitic stainless steel portal frames. 

Frame case 
Horizontal 

loading 𝐻𝐸𝑑  

SRM  AISC 370-DM 

𝜏𝑁𝑀,𝑙 𝜏𝑁𝑀,𝑟 𝜏𝑁𝑀,𝑏  𝜁  𝜏𝑔𝜏𝑏,𝑙 𝜏𝑔𝜏𝑏,𝑟  𝜏𝑔𝜏𝑏,𝑏 𝜁 

2 x 4 m 

Fixed-ended 

𝐻𝐸𝑑=0 0.61 0.61 1.00 0.91  0.59 0.59 0.70 0.77 

0.03𝑉𝐸𝑑 0.66 0.66 0.96 1.00  0.68 0.68 0.70 0.87 

0.01𝑉𝐸𝑑 0.70 0.69 0.92 1.05  0.70 0.70 0.70 0.87 

0.25𝑉𝐸𝑑 0.72 0.70 0.91 1.05  0.70 0.70 0.70 0.84 

1.0𝑉𝐸𝑑 0.70 0.68 0.87 0.94  0.70 0.70 0.70 0.78 

𝑉𝐸𝑑=0 0.71 0.71 0.84 0.92  0.70 0.70 0.70 0.78 

2 x 2 m 

Fixed-ended 

𝐻𝐸𝑑=0 0.56 0.55 1.00 0.83  0.54 0.54 0.70 0.78 

0.03𝑉𝐸𝑑 0.64 0.63 0.96 0.99  0.67 0.67 0.70 0.92 

0.01𝑉𝐸𝑑 0.69 0.67 0.93 1.02  0.70 0.69 0.70 0.89 

0.25𝑉𝐸𝑑 0.71 0.68 0.89 1.03  0.70 0.70 0.70 0.86 

1.0𝑉𝐸𝑑 0.73 0.67 0.83 0.94  0.70 0.70 0.70 0.81 

𝑉𝐸𝑑=0 0.71 0.70 0.79 0.95  0.70 0.70 0.70 0.80 

2 x 4 m 

Pin-ended 

𝐻𝐸𝑑=0 0.81 0.81 1.00 0.88  0.70 0.70 0.70 0.68 

0.01𝑉𝐸𝑑 0.81 0.80 0.96 1.10  0.70 0.70 0.70 0.89 

1.0𝑉𝐸𝑑 0.66 0.62 0.86 1.08  0.70 0.70 0.70 0.94 

𝑉𝐸𝑑=0 0.39 0.39 0.70 0.97  0.70 0.70 0.70 0.85 

2 x 2 m 

Pin-ended 

𝐻𝐸𝑑=0 0.79 0.79 1.00 0.89  0.70 0.70 0.70 0.74 

0.01𝑉𝐸𝑑 0.79 0.77 0.96 1.09  0.70 0.70 0.70 0.93 

1.0𝑉𝐸𝑑 0.65 0.55 0.84 1.00  0.70 0.70 0.70 0.93 

𝑉𝐸𝑑=0 0.38 0.38 0.71 0.98  0.70 0.70 0.70 0.85 

According to the results shown in Figure 5.10 and Table 5.6, the proposed SRM accurately predicts the 

ultimate capacities of the frames. Only in the case of high vertical loads, in which the structural 

behaviour of the frames is determined by the buckling of their columns in compression, the SRM 

slightly underestimates the GMNIA strength predictions. While in the GMNIA analyses the vertical 

reaction observed in the supports were higher than the flexural buckling resistances 𝑁𝑏,𝑅𝑘, in the SRM 

the column capacities were limited to 𝑁𝑏,𝑅𝑘, as discussed in Section 5.3.1. In any case, the predictions 

obtained by the proposed SRM are adequate and provide a reasonable safety margin. Accurate and safe 

results are also obtained when using the AISC 370-DM (2021) approach studied herein, although the 

ultimate capacity of fixed-ended frames is slightly underestimated, as shown in Figure 5.10. The 

discrepancies between the two approaches are partly due to the use of different strength interaction 
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equations to limit the GNA-SR analyses, but mainly to the fact that the CSM base curve adopts a 

different limiting value for Ω in the two approaches (i.e., Ω = 15 in prEN 1993-1-4 (2021) but Ω = 5 in 

AISC 370-DM (2021)). Regarding the interaction equations, even if the AISC 370-DM equations are 

anchored to the CSM cross-section resistances, they are more restrictive than the cross-section 

interaction check used in the proposed SRM (Eq. 5.6) because they adopt a linear interaction function. 

On the other hand, as the RHS1 cross-section used in this study for the assessment of the design 

approaches is very stocky, the CSM strain in Eq. 2.4 is limited by the parameter Ω in the two approaches, 

which adopts different values (i.e., Ω = 5 for the DM as opposed to Ω = 15 for the SRM), and thus the 

CSM bending moment resistances 𝑀𝑐𝑠𝑚 are significantly different. This can be clearly observed for the 

cases of fixed-ended portal frames with 𝑉𝐸𝑑= 0, where the frames are almost entirely bending dominated 

and the differences in interaction equation have almost no consequence, and the results are governed in 

both cases by the CSM bending moment resistance 𝑀𝑐𝑠𝑚. Since the SRM approach proposed herein 

uses a less restrictive ductility limit of Ω = 15, the value of 𝑀𝑐𝑠𝑚, and thus the predicted capacity of the 

frames, is higher. Nevertheless, for less stocky cross-sections, where the CSM strain would not be 

determined by the Ω limit, more similar values of 𝑀𝑐𝑠𝑚 would be obtained for the two approaches and 

the results obtained from the proposed SRM and the AISC 370-DM would be less different. 

The accuracy of the SRM and DM approaches for the prediction of internal forces was also assessed 

according to the indications given by Kucukler et al. (2016), i.e., through the comparison of the 

nondimensional internal forces 𝑁𝐸𝑑,𝑖/𝑁𝑝𝑙  - 𝑀𝐸𝑑,𝑖/𝑀𝑝𝑙 obtained from the considered method (i.e., the 

proposed SRM or the AISC 370-DM approach) and those obtained from the GMNIA analysis at the 

critical sections of the columns using Eq. 5.15. Results of the accuracy for the different design methods 

are summarised in Table 5.7, where 𝜁𝑎𝑣 and 𝜁𝑐𝑜𝑣 are the average and coefficient of variation (COV) of 

𝜁, and 𝜁𝑚𝑎𝑥 and 𝜁𝑚𝑖𝑛 are the maximum and minimum 𝜁 values for the internal forces registered in the 

columns. As shown in Table 5.7, the internal forces predicted by the proposed SRM approach are in 

good agreement with those considered as target values (𝜁𝑎𝑣=1.00 and 𝜁𝑐𝑜𝑣=0.010), while the results 

obtained for the DM approach are slightly more conservative and more scattered (𝜁𝑎𝑣=0.85 and 

𝜁𝑐𝑜𝑣=0.026). Based on the reported results, it can be concluded that the proposed SRM and the AISC 

370-DM (2021) approach analysed herein provide safe predictions of the ultimate in-plane response of 

stainless steel frames with stocky RHS sections under combined vertical and horizontal loads, but 

slightly better results are obtained for the proposed SRM approach, especially for fixed-ended frames. 

In addition, the proposal has the advantage of not requiring the explicit introduction of member 

imperfections in the numerical models. Finally, it is important to note that the ultimate capacity of the 

structure obtained by either method will be generally lower than the ultimate load predicted from a 

GMNIA analysis since both methods are limited to the development of the first plastic hinge without 

considering any redistribution of internal forces. 
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Table 5.7. Comparison of the accuracy of the SRM and DM approaches for the prediction of internal forces in 

the critical column of the frame cases analysed. 

Method 𝜁𝑎𝑣 𝜁𝑐𝑜𝑣  𝜁𝑚𝑎𝑥 𝜁𝑚𝑖𝑛 

SRM 1.00 0.010 1.02 0.98 

AISC 370-DM 0.85 0.026 0.88 0.80 

5.7. Summary of the proposed Stiffness Reduction Method 

The procedure to apply the proposed Stiffness Reduction Method for the in-plane stability design of 

stainless steel structures with stocky RHS sections is summarised as follows: 

(i). Perform a Linear Elastic Analysis (LA) to estimate the maximum internal forces (axial force 𝑁𝐸𝑑 

and bending moment 𝑀𝐸𝑑) in each member under the design loads. 

(ii). Calculate the Stiffness Reduction factors for each member from the proposed formulae: 

with 𝑁𝑝𝑙 and 𝑀𝑝𝑙 being the plastic resistance of the gross cross-section and the plastic moment 

resistance of the cross-section, respectively; 𝜆̅0 and 𝛼 being the slenderness plateau and imperfection 

factor given in next version of prEN 1993-1-4 (2021), respectively; and 𝜇 being the ratio between the 

smaller and larger applied end moments. 

(iii). Perform a Geometrically Nonlinear Analysis with Stiffness Reduction (GNA-SR) considering 

initial global imperfections (out-of-plumbness) only. Note that stiffness reduction factors should affect 

the flexural stiffnesses, but not the axial stiffnesses, of the members. 

(iv). Check the cross-section capacity using the internal forces determined from the GNA-SR analysis 

under the design loads through the following strength interaction expression for stocky sections: 

𝜏𝑁 =
4𝜓2

𝛼2 𝑁𝐸𝑑
𝑁𝑝𝑙

[1 + √1 − 4𝜓
൫𝑁𝐸𝑑 𝑁𝑝𝑙 − 1⁄ ൯

𝛼2 𝑁𝐸𝑑 𝑁𝑝𝑙⁄
]

2 

but   𝜏𝑁 ≤ 1 Eq. 5.4 

where   𝜓 = 1 + 𝜆̅0𝛼
𝑁𝐸𝑑

𝑁𝑝𝑙
−

𝑁𝐸𝑑

𝑁𝑝𝑙
 Eq. 5.5 
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  Eq. 5.17 

𝜏𝑁𝑀 = 𝜏𝑁𝜏𝑀 {1 − (
𝑁𝐸𝑑

𝑁𝑝𝑙
)

0.8

(
𝐶𝑚𝑀𝐸𝑑

𝑀𝑝𝑙
)}  Eq. 5.18 

where 𝐶𝑚 = 0.6 + 0.4𝜇 but 𝐶𝑚 ≥ 0.4 Eq. 5.16 
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being 𝑀𝑁,𝑐𝑠𝑚 the plastic moment resistance reduced due to the axial force 𝑁𝐸𝑑, 𝑀𝑐𝑠𝑚 the CSM moment 

resistance, and 𝜆̅𝑝 the local slenderness. 

5.8. Concluding remarks 

This chapter has presented a Stiffness Reduction Method (SRM) for the in-plane stability design of 

stainless steel structures with stocky Rectangular Hollow Section (RHS) members based on the 

provisions included in the upcoming version of the prEN 1993-1-4 (2021) standard. The proposed 

approach allows predicting the ultimate capacity and internal forces in stainless steel structures by 

performing a second order elastic analysis in which the stiffness of members is reduced by a set of 

factors to account for the effect of the spread of plasticity, residual stresses and member imperfections. 

The method only requires that initial out-of-plumbness imperfections be included, and the verification 

is limited to checking cross-section capacities. The accuracy of the proposed method is assessed for 

individual stainless steel structural members (columns, beams, and beam-columns) with different cross-

sections and material properties, and for austenitic stainless steel portal frames, against numerical 

results obtained from GMNIA analyses conducted on finite element models. A comparison between the 

proposed approach and the Direct Analysis Method prescribed in the AISC 370 (2021) specification is 

also provided, showing that the results are comparable in the two approaches. 

Corresponding publication: González-de-León I., Arrayago I., Real E. and Mirambell E. (2022). A 

stiffness reduction method for the in-plane design of stainless steel members and frames according with 

EN 1993-1-4. Engineering Structures, 253, 113740. https://doi.org/10.1016/j.engstruct.2021.113740 

 

𝑀𝐸𝑑 ≤ 𝑀𝑁,𝑐𝑠𝑚 = 𝑀𝑐𝑠𝑚

1 − ൫𝑁𝐸𝑑 𝑁𝑝𝑙⁄ ൯

1 − 0.5𝑎
≤ 𝑀𝑐𝑠𝑚 for 𝜆̅𝑝 ≤ 0.60 Eq. 5.6 

https://doi.org/10.1016/j.engstruct.2021.113740


 

105 

 

 



 

106 

 

 

 

 

 

PART II 

 

 

 

 

Performance of stainless steel structures under cyclic loads 
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6. CHAPTER 

CHAPTER 6 

 

 

 

 

Rotation capacity of cold-formed stainless steel RHS beams under 

cyclic loading 

 

 

 

6.1. Introduction 

This chapter presents a study on the rotation capacity and maximum bending moment resistance shown 

by stainless steel beams subjected to cyclic loading. The correct estimation of the rotation capacity is 

of paramount importance from an assessment point of view, because it allows establishing the actual 

capacity of the structure. Likewise, an accurate computation of the maximum bending moment that the 

dissipative member can withstand allows a precise prediction of the overstrength parameters to be 

considered in the application of the capacity design principles.  

The investigation is based on numerical results on 120 Rectangular and Square Hollow Section beams 

(RHS and SHS) made of the main structural stainless steel families, i.e., austenitic, ferritic and duplex 

alloys. Based on the results, analytical expressions to determine plastic rotation capacities are proposed 

and assessed. Finally, a tri-linear model representing the full moment-rotation curves of stainless steel 
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beams is developed based on the proposed expressions, which is intended to be adopted in design 

software as a constitutive law for concentrated plasticity hinges. 

6.2. Finite element modelling 

In this section, the Finite Element (FE) model used for generating the data required to investigate the 

behaviour of stainless steel structural members under cyclic bending is described. The validation of the 

FE model against experimental results reported in the literature is also presented. 

6.2.1. General modelling assumptions 

Bending moment and rotation capacities of stainless steel beams under cyclic loading were investigated 

from finite element models developed using the general-purpose software ABAQUS (2016). The mid-

surface of the cross-sections was modelled using four-noded shell (S4R) elements, capable of 

reproducing the actual behaviour of stainless steel structural members when used in conjunction with 

second order plastic analyses with imperfections (i.e., GMNIA analysis) (Theofanous and Gardner 

2009; Arrayago et al. 2015b). After a convergence study to ensure computational efficiency, beams 

were discretised following a uniform mesh size of 10 mm, except at the curved corner regions, where a 

four-element mesh was used. This study, focused on stainless steel beams, neglected local imperfections 

since recent research on the ultimate behaviour of steel structural members subjected to cyclic bending 

indicated that specimens were not sensitive to these imperfections under these loading conditions when 

amplitudes showed values lower than 10% of the cross-section thickness (Fang et al. 2018; Zhou et al. 

2018), which is the case for typical stainless steel RHS members (Arrayago et al. 2020a). The GMNIA 

analyses were solved using the modified Riks method available in ABAQUS (2016). 

All the analysed beams bent around their major axes and followed the four-point bending test 

configuration schematized in Figure 6.1, which is based on the experimental campaign reported in 

(Arrayago et al. 2020b). The span length was 1500 mm, and loads were applied at 510 mm from both 

supports.  

 

Figure 6.1. Four-point bending test configuration used in this study (based on that reported in (Arrayago et al. 

2020b). 

𝐿𝑟 = 510 mm 𝐿𝑟 = 510 mm 480 mm 

Stainless steel beam 

Imposed displacement, ∆ 

Symmetry conditions 

Longitudinal displacement restrained 

Simply supported  

𝐿 = 1500 mm 
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Due to the symmetric conditions of the studied specimens, only half-beams were modelled to reduce 

computational costs. Mid-section nodes were defined as a set of nodes prevented from moving 

longitudinally and rotating around the minor and major axes. The load and support regions were defined 

as surfaces at the bottom flange of the beam to avoid web crippling failure (Arrayago et al. 2017b, 

2020b; González-de-León et al. 2022). The surfaces were defined as rectangles with the transverse sides 

equal to the total width minus twice the external radius, i.e., equal to the flat part of the bottom flange, 

and the longitudinal sides equal to 100 mm (see Figure 6.2). The surfaces were coupled to centroidal 

reference points and were forced to move as rigid bodies. All degrees of freedom were constrained at 

the support reference points, except the rotation around the major axis and the displacement in the 

longitudinal direction. The FE model used in the parametric study is shown in Figure 6.2, where the 

location of the reference points, coupled surfaces and boundary conditions are clearly indicated. 

 
Figure 6.2. Finite element model developed for the parametric study, including loading and boundary 

conditions. 

6.2.2. Cyclic loading 

Two point loads were applied as controlled vertical displacements at the loading reference points 

following the multiple-step loading protocol prescribed in the SAC report (Clark et al. 1997), which 

was later adopted by the AISC 341 (2016) specification to qualify cyclic tests of beam-to-column 

moment connections in special and intermediate moment resisting frames. In this loading protocol, the 

controlling parameter is the drift angle 𝜃, which can be expressed as 𝜃 = ∆/𝐿𝑟, where ∆ is the amplitude 

of the vertical displacement and 𝐿𝑟  is the lever arm, i.e., the distance between the point at which the 

vertical displacement is imposed and the support (𝐿𝑟 = 510 mm for the four-point test configuration 

adopted in this study, as shown in Figure 6.1). In this study, the controlling parameter was the amplitude 

of the imposed displacement ∆, which was incremented as follows: 0.00375𝐿𝑟 (6 cycles), 0.005𝐿𝑟 (6 

cycles), 0.0075𝐿𝑟 (6 cycles), 0.01𝐿𝑟 (4 cycles), 0.015𝐿𝑟 (2 cycles), 0.02𝐿𝑟 (2 cycles), with increments 

of 0.01𝐿𝑟 every 2 cycles thereafter. Figure 6.3 shows the cyclic loading protocol used in this study, 
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adapted from that prescribed in AISC 341 (2016). The cyclic load was applied until, once the ultimate 

moment (𝑀𝑢) was reached, the bending moment decreased to a value equal or lower than 𝑀𝑝𝑙 in the 

descending branch. 

 
Figure 6.3. Loading protocol adapted from that prescribed in AISC 341 (2016). 

6.2.3. Material model 

In this study, a nonlinear combined hardening model was assigned to the FE models to simulate the 

inelastic behaviour of stainless steel under cyclic loading. According to the ABAQUS manual (2016), 

there are three ways to provide the data for defining the kinematic component: (1) by specifying the 

material parameters directly, (2) by specifying the test data from a stabilized cycle, or (3) by specifying 

half-cycle test data. The two first approaches need to be calibrated from cyclic test results (Fang et al. 

2018), while in the latter one, which is suitable when specimens are subjected to a limited number of 

cycles (ABAQUS 2016), the kinematic parameters can be based on the Ramberg-Osgood stress-strain 

curve derived from a monotonic tensile test. Hence, in the present study, the cyclic behaviour was 

considered through the kinematic hardening law with half-cycle data option available in ABAQUS 

(2016) and a backstress = 1. Note that a backstress is the stress coordinate of a point midway between 

the yield stress in tension and the yield stress in compression (Chancón et al. 2018). 

For simplicity, the present parametric study uses the latter approach. It should be noted that the weighted 

average material properties used herein were obtained from monotonic test results on flat and corner 

coupons extracted from cold-formed specimens, so residual stresses were implicitly included in the FE 

models (see Section 2.3). The true stress-strain curves were calculated from the two-stage Ramberg-

Osgood material model given in Eq. 2.1 and Eq. 2.2. 

6.2.4. FE model validation 

The element type, loading protocol and material model used in this study were validated by simulating 

the tests conducted by Fang et al. (2018). Fang et al. (2018) performed 10 experimental tests on 

austenitic stainless steel hollow section specimens under constant compression and cyclic bending, 

following the loading protocol prescribed in AISC 341 (2016), and covered several cross-sections, 
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compression loads and bending orientations. For validation purposes, the tests referred to as R1 in (Fang 

et al. 2018), i.e., R1-n0.2-W, R1-n0.4-W, R1-n0.2-S and R1-n0.4-S, were reproduced numerically 

following the assumptions described in the previous sections. R1 cross-sections tested in (Fang et al. 

2018) exhibited an overall width of 61 mm, an overall height of 120.29 mm, 2.72 mm thickness, and 

6.80 mm external radii. The n0.2 and n0.4 factors in the specimen IDs correspond to the axial load ratio 

adopted, n = 𝑃/𝑓𝑦𝐴, being 𝑃 the applied compression load and 𝐴 the cross-sectional area, while the last 

letter refers to the axis of bending: W for minor (weak) axis bending and S for major (strong) axis 

bending. The nominal total length of the specimens was 660 mm, and the ends of the members were 

strengthened by means of 80 mm-high stiffeners. The loading scheme adopted in the tests followed two 

steps. First, an axial compressive load was applied at the top of the column and kept constant. Then, a 

cyclic bending moment was introduced as an imposed horizontal displacement 785 mm away from the 

top of the base stiffeners. The amplitude and frequency of each horizontal displacement followed the 

AISC 341 (2016) recommendations described above, assuming a lever arm length of 𝐿𝑟 = 785 mm. The 

full details of the test arrangements and results can be found in (Fang et al. 2018). 

The FE models for the different R1 specimens, including the stiffeners, were developed using S4R 

elements (ABAQUS 2016) and discretised following the mesh described in Section 6.2.1. Residual 

stresses were implicitly present in the material properties introduced in the model. As indicated in (Fang 

et al. 2018), only local imperfections were included in the form of the local buckling mode obtained 

from a previous linear elastic buckling analysis and with the modified Dawson and Walker amplitude 

proposed in (Gardner and Nethercot 2004b) to ensure that the geometrical nonlinearities were triggered 

in the models. It should be recalled that local imperfections were only included in the validation of the 

numerical model due to the different loading scheme adopted in the models described in (Fang et al. 

2018) (i.e., beam-column configuration), but not in the parametric study, as mentioned in Section 6.2.1. 

Reference points coupled to the end surfaces of the specimens were used to assign boundary conditions: 

the bottom reference point was located at the centroid of the cross-section, in which all degrees of 

freedom were constrained, while the upper reference point was located at a distance of 785 mm from 

the top of the base stiffeners, following the experimental set-up, in which minor and major axis rotations 

and vertical and horizontal displacements were allowed. The FE model for R1-S specimens is shown in 

Figure 6.4, where the location of the reference points and boundary conditions are clearly indicated. 

Loads were applied following two steps: the vertical loading was firstly applied and kept constant, and 

then the cyclic bending moment was introduced as an imposed horizontal displacement. The amplitude 

of the horizontal displacement followed the multiple-step loading protocol described in (Fang et al. 

2018), which coincides with that prescribed in (AISC 341 2016). True stress-strain curves assigned to 

the flat and corner parts of the cross-section were obtained using the two-stage Ramberg-Osgood 

material. Table 6.1 summarises the parameters used to develop the Ramberg-Osgood material curves, 



Rotation capacity of stainless steel RHS beams under cyclic loading 

112 

as reported in (Fang et al. 2018). A combined hardening law with half-cycle data and backstress = 1 

was assumed. 

Table 6.1. Basic material properties for R1 specimens reported in (Fang et al. 2018). 

 
𝐸 

[GPa] 

𝑓𝑦 

 [MPa] 

𝑓𝑢 

 [MPa] 

𝜀𝑢 

 [mm/mm] 
𝑛 𝑚 

Flat part 189.9 426.2 875.1 0.556 6.1 2.7 

Corner part 189.9 741.0 803.8 0.078 6.1 4.2 

 

 
 

 

 

Figure 6.4. Finite element model for the R1-S specimens tested by Fang et al. (2018). 

Figure 6.5 shows the experimental moment-drift curves for the (a) R1-n.02-W and (b) R1-n.02-S 

specimens as provided in (Fang et al. 2018), in which the numerically predicted responses obtained in 

this study are also plotted. It can be appreciated that the hysteretic loops from the tests and the numerical 

simulations exhibit a good agreement, with small but reasonable deviations. The numerical simulations 

responses are influenced by the consideration of the corner regions with enhanced material properties, 

among other factors. Note that for this study enhanced material properties were assigned to the corner 

regions plus two adjacent regions, as described above, while the model developed in (Fang et al. 2018) 

limited the enhanced properties to the corner regions only. 
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Figure 6.5. Comparison of experimental and FE moment-drift responses for (a) R1-n0.2-W and (b) R1-n0.2-S 

specimens reported in (Fang et al. 2018). 

The numerical-to-experimental ultimate bending moment 𝑀𝑢 and corresponding drift 𝜃𝑀𝑢 ratios are 

summarised in Table 6.2, including the mean values and the coefficients of variation (COV), with 

deviations similar to those reported in (Fang et al. 2018). Therefore, it can be concluded that the 

characteristics of the FE model developed in this study (type of finite elements, boundary conditions, 

loading protocol, and the material model adopted) are suitable to model the cyclic response of stainless 

steel members. 

Table 6.2. Comparison of FE and test results reported in (Fang et al. 2018) for R1 specimens. 

Specimen 
𝑀𝑢,𝐹𝐸 𝜃𝑀𝑢,𝐹𝐸   𝑀𝑢,𝑒𝑥𝑝 𝜃𝑀𝑢,𝑒𝑥𝑝  

𝑀𝑢,𝐹𝐸/𝑀𝑢,𝑒𝑥𝑝 𝜃𝑀𝑢,𝐹𝐸/𝜃𝑀𝑢,𝑒𝑥𝑝 
[kNm] [rad]  [kNm] [rad]  

R1-n0.2-W 10.42 0.049  9.33 0.042  1.12 1.17 

R1-n0.4-W 8.35 0.028  7.83 0.028  1.07 0.99 

R1-n0.2-S 21.07 0.028  18.38 0.029  1.15 0.97 

R1-n0.4-S 16.51 0.020  14.77 0.020  1.12 0.99 

Mean       1.11 1.04 

COV       0.026 0.090 

6.3. Parametric study and results 

In this section, the characteristics of the specimens covered in the parametric study are presented. The 

resulting moment-rotation responses, ultimate moment values and rotation capacities are also provided 

and discussed. 

6.3.1. Description of the parametric study 

The parametric study developed in this study investigated the behaviour of 120 stainless steel hollow 

section beams under cyclic major axis bending. Although the parametric study focused on compact 

RHS and SHS cross-sections (referred to as class 1 cross-sections in prEN 1993-1-4 (2021), some more 

slender cross-sections were also included to fully investigate the cyclic hardening and rotation capacity 

of stainless steel tubular members. The considered cross-sectional total heights ranged from 62 mm to 
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186 mm, total widths from 62 mm to 156 mm and wall thicknesses between 2 mm and 6 mm. The 

external corner radius was also modelled and measured 𝑅𝑒𝑥𝑡  = 2𝑡 as recommended in (Arrayago et al. 

2020a), being 𝑡 the wall thickness. The parametric study covered austenitic, ferritic and duplex alloys. 

Table 6.3 summarises the key material parameters for flat and corner regions used to calculate the 

weighted average material properties assigned to the entire cross-sections. These parameters, which 

have also been used in previous parametric studies (Arrayago et al. 2017b, 2020d, 2021), were obtained 

from the monotonic tensile coupon tests reported in (Arrayago and Real 2016) for ferritic stainless steel 

and published in (Zhao et al. 2016a) for austenitic and duplex stainless steels. Local slenderness 𝜆̅𝑝 

values ranged from 0.21 to 0.64, and thus corresponded to fully-effective cross-sections since the 

slenderness limit between slender and fully-effective cross-sections is 𝜆̅𝑝 = 0.68 according to the CSM 

(Afshan and Gardner 2013b; Bock et al. 2015). Local slenderness values were determined as mentioned 

in Section 2.4.2. 

Table 6.3. Key material characterisation parameters for parametric studies. 

Stainless steel Cross-section region 
𝐸 

[GPa] 

𝑓𝑦 

[MPa] 

𝑓𝑢 

[MPa] 

𝜀𝑢 

[mm/mm] 
𝑛 𝑚 

Austenitic 
Flat 196 355 608 0.45 5.9 3.5 

Corner 201 559 725 0.28 4.8 4.1 

Ferritic 
Flat 187 485 505 0.07 12.2 2.6 

Corner 178 555 587 0.01 7.9 5.2 

Duplex 
Flat 198 635 756 0.44 6.0 4.2 

Corner 207 833 1079 0.23 5.0 6.1 

 

6.3.2. Skeleton curves 

The results of the parametric study are analysed herein using the skeleton curves of the moment-rotation 

response of the specimens under cyclic loading obtained by connecting the peak rotation points of the 

moment-rotation hysteretic loops (Fang et al. 2018). For consistency with the loading protocol, in this 

study, rotations are defined according to the principles of rigid body mechanism. Hence, rotations (i.e., 

drift angles) were calculated as the ratios between the deflection measured at the critical section, which 

for simplicity was assumed to be the loading section, and the distance between the support and the loading 

sections (i.e., the lever arm 𝐿𝑟= 510 mm). Bending moments were calculated as the product of the vertical 

reactions obtained at the support and the distance between the support and the loading section (𝐿𝑟  = 510 

mm). 

The skeleton curve allows the characterisation of the parameters that refer to the ductility of a specimen, 

such as the ultimate bending moment and the plastic rotation. The ultimate bending moment 𝑀𝑢 is the 

peak moment of the skeleton curve, while the definition of the plastic rotation adopted in this research 

is based on the prescriptions given in prEN 1998-1-2 (2021), which states that the plastic rotation 𝜃𝑝𝑙 
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is the difference between the ultimate 𝜃𝑢 and the elastic 𝜃𝑦 rotations of the skeleton curve at a reference 

bending moment equal to the plastic moment 𝑀𝑝𝑙, being 𝑀𝑝𝑙 the product of the plastic section moduli 

𝑊𝑝𝑙 and the yield stress 𝑓𝑦. As shown in Figure 6.6, the elastic rotation 𝜃𝑦 considered in this study 

corresponds to the intersection point between the initial tangent stiffness and the plastic bending 

moment 𝑀𝑝𝑙, while the ultimate rotation 𝜃𝑢 corresponds to the rotation when the moment degrades to 

𝑀𝑝𝑙 after reaching 𝑀𝑢. The rotation at the ultimate bending moment is referred to as 𝜃𝑀𝑢 in Figure 6.6. 

 

Figure 6.6. Definition of the plastic rotation based on prEN 1998-1-2 (2021). 

Figure 6.7 shows the skeleton curves for the (a) austenitic, (b) ferritic and (c) duplex stainless steel 

beams studied. Note that in Figure 6.7 bending moment values are normalised by the plastic bending 

moment capacities 𝑀𝑝𝑙. A preliminary analysis of the skeleton curve patterns indicated that these 

depend on the cross-section and material characteristics. To facilitate the analysis of the results, beams 

have been categorised into four groups according to their local slenderness (beams with local 

slenderness values 𝜆̅𝑝 > 0.55 are plotted in green, while black curves correspond to beams with 0.43 ≤ 

𝜆̅𝑝 < 0.55, blue curves to beams with 0.32 ≤ 𝜆̅𝑝 < 0.43, and red curves to beams with 𝜆̅𝑝 < 0.32). As 

shown in Figure 6.7, specimens exhibited an elastic deformation until a rotation of 1%-2%, which is 

consistent with the findings reported in (Fang et al. 2018). Then, the hysteretic loops became higher 

due to strain hardening and cyclic hardening, i.e., specimens started to exhibit inelastic deformations. 

Plastic rotation values were found to be related to the local slenderness of the cross-sections, with plastic 

rotation values increasing as the local slenderness values decreased. Thus, the curves of the stockiest 

cross-sections (cross-sections with 𝜆̅𝑝 < 0.32) reached the highest values of plastic rotations and 

exhibited a more stable hysteretic behaviour with larger dissipated energy. On the other hand, slender 

sections showed lower values of plastic rotation and only reached moment values higher than 𝑀𝑝𝑙 for 

a few cycles. Figure 6.7 also suggests a correlation between the local slenderness and the post-buckling 

behaviour of the beams. Thus, the difference between the ultimate rotation 𝜃𝑢 and the rotation 

associated with the ultimate bending moment 𝜃𝑀𝑢 decreases as the value of the local slenderness 

increases. 
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(a) (b) 

 
(c) 

Figure 6.7. Skeleton curves for the studied (a) austenitic, (b) ferritic and (c) duplex stainless steel beams under 

cyclic loading for different cross-section slenderness ranges. 

Regarding the differences observed between the three stainless steel families investigated, the results 

showed that the austenitic beams started to develop inelastic deformations at the early stages of the 

loading protocol (i.e., low number of cycles), which is consistent with the typically more rounded stress-

strain diagram of austenitic stainless steels (Arrayago and Rasmussen 2021a). As reported in Zhou and 

Li (2016), austenitic beams exhibited higher values of normalised ultimate bending moment than duplex 

beams, while the maximum ultimate rotation occurred for a duplex stainless steel beam. On the contrary, 

ferritic alloys, which typically show less rounded stress-strain curves and lower ductility and strain 

hardening properties than duplex and austenitic stainless steels, exhibited the lowest plastic rotation and 

normalised ultimate bending moment values. 

6.3.3. Ultimate moment capacities 

Numerically predicted ultimate moment values ranged from 4.92 to 99.95 kNm in the case of austenitic 

beams, from 7.52 to 97.61 kNm for ferritic beams and from 11.37 to 95.93 kNm for duplex beams. 

Figure 6.8 shows the comparison between the numerical ultimate bending moment resistance 𝑀𝑢 and 

the plastic bending moment capacity 𝑀𝑝𝑙 as a function of the local slenderness of the cross-section 𝜆̅𝑝. 
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As mentioned in the previous section, the highest 𝑀𝑢/𝑀𝑝𝑙 ratios corresponded to austenitic specimens 

followed by duplex beams, while the 𝑀𝑢/𝑀𝑝𝑙 ratios for ferritic beams were close to unity. Even though 

some of the flanges of the slenderest sections were very close to class 4 according to the prEN 1993-1-

4 (2021) cross-section classification limits, all the ultimate bending moment values were higher than 

𝑀𝑝𝑙. The prEN 1993-1-4 classification is based on the slenderness of the individual plates constituting 

the cross-sections, and does not account for the contribution of the webs to the local stability of the 

flanges, tending to be conservative. In fact, if the interaction of the different elements is considered in 

the calculation of the local slenderness through the elastic local buckling stress of the full cross-section 

𝜎𝑐𝑟,𝑙, as described in Section 2.4.2, all beams investigated are fully-effective (𝜆̅𝑝 ≤ 0.68). Furthermore, 

under cyclic loading, higher strengths are to be expected due to hardening effects (Kaufmann et al. 

2001; Chacón et al. 2018; Fang et al. 2018). This explains why the numerical 𝑀𝑢 values were not only 

higher than 𝑀𝑝𝑙, but also close to the bending moment resistances predicted by the Continuous Strength 

Method (CSM) 𝑀𝑐𝑠𝑚 (see Eq. 2.6), which considers strain hardening effects. 

 

 
Figure 6.8. Comparison of the ultimate bending moment values 𝑀𝑢 with the plastic bending resistance 𝑀𝑝𝑙 for 

different stainless steel grades. 

 

Table 6.4 reports the mean values and COV values of the numerical-to-plastic 𝑀𝑢/𝑀𝑝𝑙 and numerical-

to-CSM 𝑀𝑢/𝑀𝑐𝑠𝑚 bending moment resistance ratios for the different stainless steel beams investigated. 

As shown in this Table, assuming that the ultimate bending moment resistance of stainless steel beams 

subjected to cyclic loading is equal to the plastic bending moment resistance 𝑀𝑝𝑙 is safe but 

overconservative, especially in the case of austenitic grades. On the other hand, more accurate and safe 

predictions of the ultimate bending strengths are obtained when the CSM approach is considered for 

the different stainless steel families analysed, in line with the conclusions drawn by several previous 

investigations on stainless steel beams subjected to monotonic loading (Afshan and Gardner 2013b; 

Bock et al. 2015; Zhao et al. 2017; Arrayago et al. 2017b). 
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Table 6.4. Assessment of the Eurocode and CSM approaches to predict the ultimate bending resistance of 

stainless steel RHS beams under cyclic loading. 

Stainless steel 
𝑀𝑢/𝑀𝑝𝑙  

 𝑀𝑢/𝑀𝑐𝑠𝑚 

Mean COV  Mean COV 

Austenitic 1.23 0.029  1.12 0.088 

Ferritic 1.02 0.009  0.99 0.028 

Duplex 1.08 0.018  1.04 0.052 

 

6.3.4. Analysis of rotations and rotation capacities 

Ultimate rotation 𝜃𝑢 values ranged from 0.040 to 0.168 rad in the case of austenitic beams, from 0.034 

to 0.146 rad for ferritic beams and from 0.059 to 0.178 rad for duplex beams. Similarly, elastic rotation 

𝜃𝑦 values, graphically obtained as the intersection point between the initial tangent stiffness and the 

plastic bending moment 𝑀𝑝𝑙, as explained previously, varied from 0.014 to 0.032 rad in the case of 

austenitic beams, from 0.016 to 0.040 rad in the case of ferritic beams and from 0.028 to 0.053 rad for 

duplex beams. More detailed mean values of the elastic 𝜃𝑦, ultimate 𝜃𝑢 and peak moment 𝜃𝑀𝑢 rotations 

estimated from the parametric study for different stainless steel families and slenderness ranges are 

reported in Table 6.5, where No. refers to the number of investigated beams for each group. The mean 

values shown in Table 6.5 correspond to the sub-groups of beams included in the local slenderness 

ranges indicated. Mean differences between the ultimate 𝜃𝑢 and elastic 𝜃𝑦 rotations, also known as the 

plastic rotation 𝜃𝑝𝑙, and between the ultimate 𝜃𝑢 and peak moment 𝜃𝑀𝑢 rotations, which are associated 

to the post-buckling behaviour, are also given in Table 6.5. 

Table 6.5. Mean numerical rotation values for stainless steel beams under cyclic loading. 

Stainless steel 𝜆̅
𝑝 No. 

𝜃𝑦  𝜃𝑀𝑢 𝜃𝑢 𝜃𝑢-𝜃𝑦 𝜃𝑢-𝜃𝑀𝑢 

[rad] [rad] [rad] [rad] [rad] 

Austenitic 𝜆̅
𝑝 < 0.32 13 0.027 0.104 0.137 0.111 0.033 

 0.32 ≤ 𝜆̅
𝑝 < 0.43 11 0.023 0.073 0.092 0.069 0.019 

 0.43 ≤ 𝜆̅
𝑝 < 0.55 7 0.021 0.054 0.068 0.048 0.015 

 𝜆̅
𝑝 > 0.55 9 0.021 0.044 0.052 0.031 0.007 

Ferritic 𝜆̅
𝑝 < 0.32 9 0.031 0.093 0.111 0.080 0.018 

 0.32 ≤ 𝜆̅
𝑝 < 0.43 12 0.028 0.074 0.088 0.060 0.014 

 0.43 ≤ 𝜆̅
𝑝 < 0.55 12 0.026 0.055 0.059 0.033 0.004 

 𝜆̅
𝑝 > 0.55 7 0.025 0.045 0.046 0.021 0.001 

Duplex 𝜆̅
𝑝 < 0.32 7 0.047 0.135 0.161 0.114 0.026 

 0.32 ≤ 𝜆̅
𝑝 < 0.43 13 0.041 0.105 0.117 0.075 0.012 

 0.43 ≤ 𝜆̅
𝑝 < 0.55 12 0.039 0.078 0.087 0.048 0.009 

 𝜆̅
𝑝 > 0.55 8 0.036 0.064 0.068 0.032 0.003 
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Additionally, the plastic rotation capacity of the beams has been calculated following the definitions 

given in (Mazzolani and Piluso 1997; Nastri and Piluso 2020), which state that the plastic rotation 

capacity is determined from the normalised moment-rotation curve. Figure 6.9 defines graphically the 

two measures of plastic rotation capacities established in (Mazzolani and Piluso 1997; Nastri and Piluso 

2020). 

     
Figure 6.9. Definition of the plastic rotation capacities, 𝑅0 and 𝑅. 

As shown in Figure 6.9, the plastic rotation capacity disregards the elastic rotation 𝜃𝑦 and can refer 

either to the stable part of the plastic rotation capacity 𝑅0, which is related to the maximum bending 

moment, or to the total plastic rotation capacity 𝑅, which also includes the post-buckling behaviour. 

Note that the rotations in Figure 6.9 are normalised by the elastic rotation 𝜃𝑦. This normalisation allows 

to implicitly account for the structural configuration (including the length of the beam and boundary 

conditions) and to derive more generic predictive equations that are independent of these parameters. 

Equations for determining the stable part 𝑅0 and the total 𝑅 plastic rotation capacities are given in Eq. 

6.1 and Eq. 6.2, respectively. 

Figure 6.10 shows the (a) stable part 𝑅0 and (b) total 𝑅 plastic rotation capacities obtained from the 

parametric study for the different stainless steel alloys and plotted against the corresponding local 

slenderness values. The plastic rotations have been calculated from Eq. 6.1 and Eq. 6.2 using the elastic 

rotation 𝜃𝑦 obtained from the skeleton curves to normalise the rotations. From Figure 6.10, the plastic 

rotation capacities show a clear descending trend for increasing local slenderness values for the three 

materials, being the results for ferritic and duplex alloys very similar, while the plastic rotation 

capacities of austenitic beams are slightly higher due to their pronounced ductility. Results in Figure 

6.10 suggest that a mathematical function can be proposed, as a function of the local slenderness, to 
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estimate the stable part and total plastic rotation capacities of stainless steel beams under cyclic loading. 

This is addressed in the following Section and it is of critical importance in seismic design since the 

rotation capacity of members affects the capacity of structures, as mentioned in Section 6.1. 

6.4. Expressions for the prediction of rotation capacities 

In this section, the development of the analytical expressions proposed to estimate the stable part 𝑅0 

and the total 𝑅 plastic rotation capacities of stainless steel RHS cross-sections under cycling loading is 

presented, as well as a tri-linear model to describe the full moment-rotation curves to use in analysis 

software for design. The assessment of the accuracy of the proposed expressions and examples of full 

moment-rotation curves developed with the proposed formulation are also provided. 

6.4.1. Analytical expressions for the prediction of plastic rotation capacities 

According to the results shown in Figure 6.10, both plastic rotation capacities increase as the local 

slenderness decreases describing a trend that can be fitted to a power function. Power functions are 

typically used in the development of design expressions for the estimation of section capacities that 

depend on the local slenderness under static forces (including strain hardening and local buckling 

effects), such as the Continuous Strength Method base curve (Afshan and Gardner 2013b) and the 

different Direct Strength Method strength curves (Becque et al. 2008; Arrayago et al. 2017a). 

  
(a) (b) 

Figure 6.10. Proposal for predicting (a) the stable part of the plastic rotation capacity 𝑅0 and (b) the total plastic 

rotation capacity 𝑅 of stainless steel beams under cyclic loading. 

Eq. 6.3 shows the proposed power function for estimating the rotation capacities of stainless steel RHS 

cross-section beams under cyclic loading, where the subscript 𝑖 refers to the stable part 𝑅0 or the total 

𝑅 plastic rotation capacity, and 𝛽 and 𝜌 are coefficients to be calibrated from the numerical data 

generated in this study. 
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As highlighted in the previous section, Figure 6.10 shows that austenitic and ferritic/duplex stainless 

steels behave differently, suggesting that two different functions are necessary for an accurate prediction 

of the stable part 𝑅0 and the total 𝑅 plastic rotation capacities of stainless steel RHS beams under cyclic 

loading with 𝜆̅𝑝 ≤ 0.68. Note that although traditional structural design has considered the behaviour 

of austenitic and duplex stainless steels to be comparable (prEN 1993-1-4 2021; AISC 370 2021; ASCE 

8 2022), recent studies have also demonstrated that duplex stainless steels can be safely grouped with 

ferritic grades (Arrayago and Rasmussen 2021a). The values of the calibrated 𝛽 and 𝜌 coefficients, 

particularised for each stainless steel family (or group of families), are reported in Table 6.6, and the 

resulting expressions are plotted as dashed (austenitic) and dotted lines (ferritic/duplex) in Figure 6.10. 

As mentioned earlier, by normalising the rotation values with the elastic rotation it is possible to 

eliminate the effects of the member length L and the boundary conditions, which are assumed to be 

implicit in 𝜃𝑦. 

Table 6.6. Coefficients for the proposed expressions to predict the stable part and total plastic rotation capacities 

of stainless steel beams under cyclic loading. 

Stainless steel 

Stable part of the rotation 

capacity 𝑅0,𝑝𝑟𝑒𝑑 
 Total rotation capacity 𝑅𝑝𝑟𝑒𝑑 

𝛽 𝜌  𝛽 𝜌 

Austenitic 0.7 1.0  0.8 1.2 

Ferritic/Duplex 0.4 1.3  0.4 1.5 

6.4.2. Assessment of the proposed rotation capacity expressions 

The assessment of the proposed expressions for the prediction of the stable part 𝑅0 and the total 𝑅 

plastic rotation capacities is presented in this section by comparing the predicted rotation capacities, 

calculated with Eq. 6.3 and the 𝛽 and 𝜌 coefficients reported in Table 6.6, to the corresponding 

numerical rotation capacities. As shown in Figure 6.10(a), the proposed expressions for the prediction 

of 𝑅0 are in good agreement with the FE data for all materials. Similar conclusions can be drawn from 

Table 6.7, where the mean and COV values of the predicted-to-numerical plastic rotation capacity ratios 

𝑅0,𝑝𝑟𝑒𝑑/𝑅0,𝐹𝐸 for the different stainless steel alloys are reported. As shown, the mean values of the 

𝑅0,𝑝𝑟𝑒𝑑/𝑅0,𝐹𝐸 ratios are close to unity, with a relatively low scatter in the results for all stainless steel 

grades, especially for duplex grades. Note that since values higher than 1.0 are considered to be on the 

unsafe side, the proposed expressions provide a reasonable margin of safety. On the other hand, as 

shown in Figure 6.10(b), the prediction of the total rotation capacity is also accurate for all stainless 

steel grades, especially for duplex beams. Analogous results to those obtained for the stable part of the 

rotation capacity are observed from the 𝑅𝑝𝑟𝑒𝑑/𝑅𝐹𝐸 ratios reported in Table 6.7, i.e., total rotation 

capacity predictions for all stainless steel grades are close to, but lower than, unity, while the scatter of 

the results is reasonable for all materials. In addition, it is worth noting that the 𝛽 and 𝜌 coefficients 

reported in Table 6.6 are also valid when the local slenderness value is computed following the prEN 
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1993-1-4 (2021) procedure. The resulting local slenderness values were slightly higher than those 

obtained from the CUFSM software (Li and Schafer 2010), because the interaction between plates is 

not taken into account. For the cross-sections considered in this study, the values of the local slenderness 

computed according to the prEN 1993-1-4 (2021) were between 0 and 9% higher than those obtained 

numerically. As a result, the prediction of the rotation capacities using the proposed expressions with 

the plate slenderness was found to be almost identical and safe-sided, obtaining slightly lower rotation 

capacities when using the analytical value of the local slenderness. 

Table 6.7. Assessment of the proposed expressions for the prediction of rotation capacities of stainless steel 

beams under cyclic loading. 

Stainless steel 
𝑅0,𝑝𝑟𝑒𝑑/𝑅0,𝐹𝐸  

 𝑅𝑝𝑟𝑒𝑑/𝑅𝐹𝐸  

Mean COV  Mean COV 

Austenitic 0.95 0.156  0.94 0.165 

Ferritic 0.98 0.162  0.98 0.176 

Duplex 0.99 0.119  0.97 0.102 

All grades 0.97 0.146  0.96 0.147 

6.4.3. Estimation of moment-rotation curves for stainless steel beams under cyclic loading 

The equations proposed in the previous section for the estimation of the stable part and the total rotation 

capacities can be used to characterise the behaviour of stainless steel beams under cyclic loading in a 

simplified way and to propose a model that describes the full moment-rotation curves. The proposed 

moment-rotation curves can be directly implemented in the definition of the concentrated plasticity 

hinge behaviour of stainless steel structures in analysis software, allowing a more accurate and safer 

design under seismic forces. To estimate the actual moment-rotation relationship, a tri-linear model is 

proposed. Figure 6.11 illustrates the proposed tri-linear moment-rotation model, in which the different 

branches are clearly indicated: (1) a first upward elastic branch from the origin to (𝜃𝑦, 𝑀𝑝𝑙); (2) a second 

upward branch from (𝜃𝑦, 𝑀𝑝𝑙) to (𝜃𝑀𝑢, 𝑀𝑐𝑠𝑚); and (3) a downward linear branch from (𝜃𝑀𝑢, 𝑀𝑐𝑠𝑚) to 

(𝜃𝑢, 𝑀𝑝𝑙). The procedure for plotting this tri-linear model is described below. 

      
Figure 6.11. Proposed tri-linear moment-rotation curve for a typical RHS stainless steel beam under cyclic 

loading based on the proposed 𝑅0,𝑝𝑟𝑒𝑑 and 𝑅𝑝𝑟𝑒𝑑 functions. 
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The plastic bending moment capacity is calculated from the well-known expression 𝑀𝑝𝑙 = 𝑓𝑦 · 𝑊𝑝𝑙, 

while the ultimate moment according to the CSM (i.e., 𝑀𝑢 = 𝑀𝑐𝑠𝑚) is given in Eq. 2.6. Regarding the 

rotation values, once the local slenderness and the stainless steel family of the specimen are known, the 

stable part 𝑅0,𝑝𝑟𝑒𝑑 and total 𝑅𝑝𝑟𝑒𝑑 rotation capacities can be estimated from Eq. 6.3 using the suitable 

𝛽 and 𝜌 coefficients. Next, the resulting rotation capacities 𝑅0,𝑝𝑟𝑒𝑑 and 𝑅𝑝𝑟𝑒𝑑 can be substituted into 

Eq. 6.1 and Eq. 6.2, respectively, from which the values of the rotation associated with the ultimate 

bending moment 𝜃𝑀𝑢 and the ultimate rotation 𝜃𝑢 can be determined if an analytical expression for the 

elastic rotation 𝜃𝑦 is established. The value of the elastic rotation 𝜃𝑦 corresponding to the plastic 

bending moment capacity can be directly calculated from the elastic rotation of the beam or estimated 

from the deflection formulae and the lever arm (𝐿𝑟) for simple structural configurations similar to that 

adopted herein. In this study, the latter approach is proposed to be consistent with the method adopted 

in the determination of the numerical rotations, as described in Section 6.3.1, and the analytical elastic 

rotation 𝜃𝑦,𝑎𝑛 is given in Eq. 6.4, where 𝐿 is the total length of the beam and 𝐼 is the moment of inertia. 

Eq. 6.4 is derived from the elastic deflection equation for a beam loaded under four-point bending 

conditions and assumes that the elastic part of the rotation is the ratio between the elastic deflection at 

the loading point for a load equivalent to the plastic moment capacity 𝑀𝑝𝑙 and the distance between the 

loading point and the support (i.e., the lever arm 𝐿𝑟). 

The comparison between the analytical elastic rotations calculated from Eq. 6.4 and the corresponding 

numerical elastic rotations obtained graphically from the skeleton curves is presented in Figure 6.12, 

which shows that the estimated and numerical elastic rotations are in good agreement. For members 

subjected to loading conditions other than four-point configurations, alternative expressions for 𝜃𝑦,𝑎𝑛 

should be derived using the appropriate elastic deflection formulae, but the remaining steps of the 

procedure would be analogous to those described herein. 

 
Figure 6.12. Comparison of the analytical elastic rotations obtained from Eq. 6.4 and numerically. 
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Figure 6.13 compares the moment-rotation responses predicted using the proposed model with the 

corresponding numerical responses for some typical austenitic, ferritic and duplex RHS beams with 

different local slenderness values under cyclic loading. As shown in Figure 6.13, the estimated moment-

rotation curves are in good agreement with the numerical results. Moderate overpredictions of the 

rotation values before reaching the plastic bending moment 𝑀𝑝𝑙 are obtained due to the definition of 

the elastic rotation 𝜃𝑦 given in prEN 1998-1-2 (2021) and adopted in this study (Section 6.3.2) and the 

nonlinear response exhibited by stainless steel beams. Nevertheless, the tri-linear models shown in 

Figure 6.13 demonstrate the accuracy of the proposed expressions for predicting the rotation capacities 

in general, as well as for the proposed analytical procedure to calculate the elastic rotation and the 

convenience of assuming that the ultimate bending moment capacity under cyclic loading is equal to 

the CSM bending resistance. 

 
Figure 6.13. Comparison of the moment-rotation responses obtained numerically and estimated using the 

proposed tri-linear model and rotation capacity functions. 
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proposed, which can be implemented into existing analysis software to define the behaviour of 

concentrated plastic hinges. 

Corresponding publication: González-de-León I., Arrayago I., Real E. and Nastri E. (2022). Rotation 

capacity of cold-formed stainless steel RHS beams under cyclic loading. Journal of Constructional 

Steel Research, 192, 107199. https://doi.org/10.1016/j.jcsr.2022.107199  
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cyclic loading 

 

 

 

7.1. Introduction 

In light of the scarce experimental research devoted to the hysteretic behaviour of stainless steel 

members, the Universitat Politècnica de Catalunya (Spain) has recently promoted a collaboration with 

the Università degli Studi di Salerno (Italy) to conduct a series of cyclic tests on austenitic hollow 

section elements. A total of nine specimens with different local and member slenderness values were 

tested. This chapter describes the experimental programme, including information about the loading 

protocol and the experimental set-up, and the relevant results obtained from the cyclic tests – failure 

modes, load-displacement and moment-rotation histories, evolution of the secant stiffnesses and 

accumulative energy dissipation. The aims of this study are to assist the research community in planning 

similar experimental programmes and to contribute to the experimental data pool available in the 

literature for validating numerical models of stainless steel members and frames under cyclic loading. 
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7.2. Experimental programme 

This section describes the experimental programme on stainless steel rectangular hollow section 

members under cyclic bending promoted by the Universitat Politècnica de Catalunya and conducted at 

the STRuctural ENGineering Test Hall (STRENGTH) laboratory of the Università degli Studi di 

Salerno. The geometric properties of the specimens, material characterisation, test set-up configuration 

and the loading protocol assumed are described herein.  

7.2.1. Description of the specimens 

The experimental programme comprised nine cold-formed rectangular hollow section members made 

from EN 1.4301 austenitic stainless steel. The specimens were acquired and prepared by the Universitat 

Politècnica de Catalunya and were part of an extensive experimental programme carried out at the same 

university comprising tensile tests on coupons, stub columns, beams and columns, and the subsequent 

tests on stainless steel frames under vertical and horizontal loading, all of which have been reported in 

(Arrayago et al. 2020b, 2020c), i.e., Chapters 3 and 4 of this thesis. Thus, the geometric measurements 

of all cross-sections and the results from the tensile tests reported in Table 3.1 and Table 3.2, 

respectively, are applicable to the specimens investigated in this study.  

Three different cross-sections were tested under cyclic conditions, referred to as: S1-120×80×6, S2-

100×80×4 and S3-120×40×4. Table 7.1 summarises the geometric properties of the cross-sections 

measured before testing, where 𝐻 is the total height, 𝐵 is the total width, 𝑡 is the wall thickness of the 

cross-sections and 𝑅𝑒𝑥𝑡 is the external corner radius. Note that the cross-sectional measurements 

reported in Table 7.1 correspond to average values of the CS1, CS2 and CS3 cross-sections published 

in Table 3.1. Table 7.1 also provides the cross-section classification according to prEN 1993-1-4 (2021) 

and the local slenderness 𝜆̅𝑝 values, calculated as given in Section 2.4.2. As shown in Table 7.1, all 

cross-sections are categorised as class 1 in bending. According to prEN 1998-1-2 (2021), in a high 

dissipative structural behaviour (Ductility Class 3 (DC3)), the cross-sections of elements where plastic 

hinges are expected to form must be class 1. Cantilevers with three different total lengths were covered, 

referred to as L1t =1730 mm, L2t = 1440 mm and L3t = 860 mm, although the corresponding effective 

lengths, to which all the results of this study refer, were L1 = 1650 mm, L2 = 1360 mm and L3 = 780 

mm. As described in Section 7.2.3, the effective length was measured from the top of the base stiffeners 

to the loading section. Throughout this study, specimens are identified by their cross-section and 

effective length, e.g., S1-L1 corresponds to the specimen with the cross-section S1-120×80×6 and an 

effective length L1 = 1650 mm. Noted that measured initial local and member imperfection magnitudes 

reported in Table 3.1 are not relevant in this study because they have a negligible effect on the strength 

and stiffness of members when specimens are loaded transversally. 
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Table 7.1. Average cross-section dimensions for the investigated RHS. 

Cross-section 
Cross-section dimensions [mm] Local slenderness 𝜆̅

𝑝  

in bending 

Cross-section class  

in bending 𝐻 𝐵 𝑡 𝑅𝑒𝑥𝑡  

S1 120.0 80.0 6.0 20.1 0.27 Class 1 

S2 99.8 80.2 3.9 12.6 0.42 Class 1 

S3 120.1 41.1 3.9 12.1 0.32 Class 1 

7.2.2. Material characterisation 

The key material parameters relevant for this study correspond to those obtained from flat (F) and corner 

(Co) coupon tests cut from CS1, CS2 and CS3 cross-sections reported in Table 3.2. 

7.2.3. Test set-up 

The tests were carried out at the STRENGTH laboratory of the Department of Civil Engineering of the 

Università degli Studi di Salerno, with experience in testing steel structural members under cyclic 

loading (D’Aniello et al. 2012; Mitsui et al. 2018). Specimens were tested under cyclic bending around 

their major axis in an internal reaction frame. Figure 7.1 shows the general set-up of the L1 tests and 

provides a graphical definition of the effective length (L1, L2, L3), which is the distance between the 

top of the stiffeners and the centre of the loading section, as mentioned before. As described below, for 

the L2 and L3 tests the experimental set-up was identical to the one shown in Figure 7.1, but the 

specimens were raised 300 mm by anchoring a second steel element to the base. In the case of the L3 

tests, the auxiliary structure was removed. 

 
Figure 7.1. General set-up of stainless steel cyclic bending tests. 
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The cyclic bending tests were conducted following a cantilever loading scheme like the test 

configuration reported in (Fang et al. 2018), i.e., the bottom end of the specimens was fixed while the 

top end was free. The loading was applied at the top end of the specimens by imposing a horizontal 

displacement controlled by a MTS 243.60-02 hydraulic actuator. It should be mentioned that, unlike 

the loading scheme given in (Fang et al. 2018), no axial load was applied at the top of the specimens 

because the aim of this work is the investigation of the cyclic response under pure bending, which had 

not been investigated before to the best of the authors’ knowledge – note that the tests conducted by 

Nip et al. (2010b), Zhou et al. (2018) and Kim et al. (2021) were under cyclic axial loading and those 

conducted by Fang et al. (2018) were under axial loads and cyclic bending. The loading section was 

carefully designed to prevent local failure. As shown in Figure 7.2(a), specimens were clamped between 

two 25 mm-thick steel plates held together by four bolts. One of these plates was, in turn, welded to the 

free end of the piston. Both ends of the piston were equipped with hinges (see Figure 7.1), thus ensuring 

that the actuator did not impose a bending moment on the top of the specimens. As shown in Figure 

7.2(b), displacements and rotations were restrained at the support of the members by means of 20 mm-

thick steel plates welded at the bottom edge of the specimens, similar to those used in the frame tests 

reported in Chapter 3. These plates were provided with four perforations, to be connected to the strong 

floor. In addition, the fixed-ended boundary conditions were strengthened by additional 80 mm-high 

steel stiffeners welded to the bottom end of the specimens and to the base steel plates. The configuration 

and thickness of the stiffeners depended on the cross-section dimensions. Figure 7.3 details the 

configuration of the end plates and stiffeners for the three cross-section geometries, where the 

thicknesses of the stiffeners A and B adopted values of a = b = 10 mm for S1 specimens, a = b = 5 mm 

for S2 specimens, and a = 10 mm and b = 5 mm for S3 specimens. Finally, the capacity of all welded 

connections to exceed the plastic bending moment of the cross-sections was verified numerically using 

IDEAStatiCa (2020). 

  
(a) (b) 

Figure 7.2. Detailed view of the (a) loading (upper end) and (b) support (bottom end) sections of the specimens. 
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Figure 7.3. End connection details for the tested specimens. 

In L1 and L2 tests, the out-of-plane response of the specimens was prevented by guiding the longitudinal 

displacements through two angular profiles separated by a distance equal to the cross-section width. 

Details of this auxiliary structure are shown in Figure 7.4. To minimise the friction between the 

restraining members and the specimens, the faces of the angular profiles in contact with the specimen 

were coated with petroleum jelly. The angular profiles were welded to two HEB 120 beams located at 

a height of 1260 mm from the top of the stiffeners for L1 specimens. In turn, these HEB 120 beams 

were bolted to fixed-ended auxiliary frames in which the rafter and column members were formed by 

HEB 100 and UPN 100 profiles, respectively. In L2 and L3 tests, the specimens were raised 300 mm 

above the configuration shown in Figure 7.1 by anchoring a second steel element to the base. Thus, the 

auxiliary HEB 120 beams were located at a height of 960 mm from the top of the stiffeners for L2 

specimens. Note that the auxiliary structure was removed for L3 tests (the shortest specimens) since it 

obstructed the displacement of the piston. 

 

Figure 7.4. General view and detail of the auxiliary structure to avoid out-of-plane displacements. 
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connected to the centre of the external loading plate. In addition, several LVDT transducers were used 

to measure short displacements at the support region. Thus, a first LVDT (LVDT-1 in Figure 7.1) was 

used to measure any in-plane horizontal displacements of the steel plate welded to the specimens at the 

support to capture any possible settlements of the element connecting the specimen to the strong floor. 

Hence, the specimen displacement could be obtained as the difference between the horizontal 

displacement measured by the string potentiometer and the one measured by LVDT-1. In addition, 

LVDT-2 was used just to check that the base connection was rigid, while LVDT-3 was used to check 

that the rotation at the base of the specimens was negligible. The last LVDT (LVDT-4) was used to 

record possible out-of-plane displacements, so it was of paramount importance in L3 tests where the 

auxiliary structure shown in Figure 7.4 was removed. LVDT-4 was located at the wider flat face of the 

cross-sections at a height of 300 mm from the top of the stiffeners. The in-plane rotations of the 

specimens were measured by inclinometers placed at the same face of the specimens at which LVDT-

4 devices were located, and at a height from the top of the stiffeners that depended on the length of the 

member: 1100 mm for L1 tests, 800 mm for L2 tests and 500 mm for L3 tests. The rotations given by 

the inclinometer were used to double-check the drift angles calculated from the horizontal 

displacements recorded by the string potentiometer. Finally, strain gauges were attached to the wider 

flat faces of the specimens at a height of 20 mm above the web stiffeners, i.e., a total of four strain 

gauges were used per test, to control the strain distribution at the critical sections during the appearance 

of local buckling.  

7.2.4. Loading protocol 

The imposed horizontal displacement followed the multi-step loading protocol defined in AISC 341 

2016) to qualify cyclic tests of beam-to-column moment connections for special and intermediate 

moment resisting frames, and already presented in Section 6.2.2. Therefore, the loading protocol shown 

in Figure 6.3 is also applied in this study, but considering that the lever arm (denoted 𝐿𝑟 in the Figure) 

is equal to the effective lengths given in Section 7.2.1 (L1, L2, L3). The cyclic loading was applied until 

the collapse of the specimens, which was assumed to be reached when the profile was not able to carry 

the actuator load and a sharp drop in the load occurred. The loading was applied using displacement 

control at different rates throughout the tests: 0.1 mm/s for cycles with amplitudes of ∆=0.00375𝐿, 0.25 

mm/s for cycles with amplitudes up to ∆=0.04𝐿, and a constant rate of 0.5 mm/s for the following 

amplitudes. 

7.3. Test results and discussion 

In this section, a detailed description of the results obtained from the nine tests is provided, which 

includes the observed failure modes, the resulting force-displacement and moment-rotation skeleton 

curves, the assessment of the degradation of stiffness, and the evaluation of the energy dissipation 
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capability of the specimens. It should be noted that only one experiment was performed for each 

combination of local and global slenderness, so the results presented herein may be slightly affected by 

factors typical of mechanical testing, such as inhomogeneity of the raw material, specimen processing 

and random errors during the experiments, whose influence may only be determined by repetitive 

testing. Therefore, the results reported in this study regarding the values of the ultimate load and number 

of cycles should be considered in relative terms rather than as absolute final values for the variables 

investigated herein, such as the local slenderness and specimen length. 

7.3.1. Description of failure modes 

The specimens were tested under cyclic bending by applying a cyclic load at their top end. Figure 7.5 

shows the load-displacement curves obtained for S1 specimens with lengths of (a) L1 = 1650 mm, (b) 

L2 = 1360 mm and (c) L3 = 780 mm. Likewise, Figure 7.6 and Figure 7.7 display the load-displacement 

responses for S2 and S3 specimens, respectively, for L1, L2 and L3 lengths. It is important to note that 

the specimens exhibited the same behaviour during the individual cycles of the same amplitude up to 

the maximum load, so many hysteretic loops shown in Figure 7.5-Figure 7.7 are overlapped. The 

specimens were assumed to collapse when crack openings were evident and the profiles were not able 

to carry the actuator loads, as described in Section 7.2.4. Two modes of failure were observed: S1 and 

S3 specimens cracked at the corner regions without exhibiting previous signs of deformation, while S2 

specimens clearly exhibited local buckling prior to the appearance of cracks at the corner regions and 

failing. As expected, no global instabilities or out-of-plane displacements were observed during the 

tests. 

 

   

(a) (b) (c) 

Figure 7.5. Load-displacement hysteretic curves for the studied (a) S1-L1, (b) S1-L2 and (c) S1-L3 austenitic 

stainless steel beams under cyclic loading. 
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(a) (b) (c) 

Figure 7.6. Load-displacement hysteretic curves for the studied (a) S2-L1, (b) S2-L2 and (c) S2-L3 austenitic 

stainless steel beams under cyclic loading. 

 

 

   
(a) (b) (c) 

Figure 7.7. Load-displacement hysteretic curves for the studied (a) S3-L1, (b) S3-L2 and (c) S3-L3 austenitic 

stainless steel beams under cyclic loading. 

The failure modes for S1 and S3 specimens, regardless the length, were induced by premature corner failures 

(i.e., cracks) at the height where the strain gauges were located (20 mm above the top of the stiffeners). It is 

important to note that no weld failure was observed. The corner fractures occurred at consecutive cycles or 

even at the same cycle, under tensile loading: the first fractures opened at the corners of the faces furthest from 

the actuator, and during the next half-cycle, second fractures opened at the same height in the opposite corners. 

The opening of the second set of cracks led to the immediate collapse of the specimens. Similar failure modes 

were reported in the literature for cold-formed stainless steel hollow section members under cyclic axial loading 

(Nip et al. 2010b). It is well known that the heat of the welding process can introduce some imperfections in 

the specimens, affecting the ductility of the stainless steel material and making regions close to the stiffeners 

more susceptible to fail (Nip et al. 2010b; Arrayago et al. 2020b). Table 7.2 summarises the number of cycles 

before the occurrence of the first corner fracture and failure (second corner fracture) for S1 and S3 specimens. 

The information reported in Table 7.2 coincides with the sequence of failure described above, i.e., S1 and S3 

tests were stopped during the same (or the next) cycle at which the first corner cracks occurred. Only the S1-

L1 specimen collapsed four cycles after the first crack opening occurred because the second fracture never 

developed. The S3-L1 specimen also exhibited corner cracks on one side, but this was enough to induce its 

failure immediately. It is important to highlight that in this study the failure of the specimens was determined 
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by the loss of resistance, although in practice failure would be associated to the first signals of cracking (Nip et 

al. 2010b). 

Table 7.2. Summary of stainless steel beam test results under cyclic loading. 

Specimen 
Number of cycles for 𝐹𝑢+ 

[kN] 

𝐹𝑢− 

 [kN] 

𝐹𝑒𝑛𝑑  

[kN] Local buckling Corner opening Failure 

S1-L1  - 43 47 36.4 -39.1 -12.3 

S1-L2  - 44 45 46.9 -46.2 -17.5 

S1-L3  - 40 40 77.5 -85.2 33.0 

S2-L1 26 53 53 17.0 -15.7 11.6 

S2-L2 27 48 48 19.4 -19.5 10.5 

S2-L3 28 43 43 34.4 -35.2 23.9 

S3-L1  - 52 52 17.8 -18.3 -9.9 

S3-L2  - 42 43 21.9 -21.9 13.0 

S3-L3  - 38 39 39.3 -40.4 21.6 

Alternatively, S2 specimens failed after exhibiting local buckling failure and the subsequent fractures at the 

corners. The first signals of local buckling developed on the faces furthest from the actuator and were 

propagated to the opposite side and the widest faces of the specimens in the subsequent cycles. As expected, 

the initial local buckling was located at the critical sections comprised between the stiffeners and heights of 

20 mm and 100 mm from the top of the stiffeners. A few cycles after, strength degradation was noticeable 

in all S2 specimens, and the tests were considered completed. It should be noted that, in the cycles prior to 

the end of the S2 tests, hairline cracks appeared in the corners furthest from the actuator under tensile forces, 

and the opposite corners fractured during the next half cycle. However, no sudden drops in strength were 

observed as per samples S1 and S3. Figure 7.8 shows the development of the local buckling failure for the 

S2-L2 specimen, which is representative of the failure modes of all S2 specimens. Table 7.2 reports the 

number of cycles before the occurrence of local buckling, first corner fracture and failure (second corner 

fracture) for S2 specimens. As shown in the table, several cycles elapsed between the onset of the initial 

local buckling and the first corner opening. Conversely, the first corner openings and failure of the specimens 

occurred at the same cycle. Note that the onsets of local buckling and initial corner opening are based on visual 

observations, while the final fracture cycle was identified in the hysteretic curves as a sharp drop in load. 

  
                   (a) (b) 

Figure 7.8. Local buckling failure for the S2-L2 specimen: (a) initial local buckling deformations and (b) corner 

openings after test completion. 
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The influence of the local and global slenderness values on the number of cycles can be inferred from 

the results reported in Table 7.2. Consistent with the findings reported in (Nip et al. 2010b), the number 

of cycles before failure increases in general as the global slenderness of the member increases, and as 

the local slenderness of the sections decreases. Regarding the number of cycles for the onset of local 

buckling (in S2 specimens), it was found to decrease with increasing global slenderness values. This is 

because the structural behaviour of very short specimens tends to benefit from a higher stability induced 

by the proximity of the boundary conditions, assuming a cross-section structural behaviour rather than 

a member structural behaviour. 

Finally, Table 7.2 also reports the ultimate horizontal load values 𝐹𝑢 applied by the actuator, i.e., the 

peak load in the load-displacement curves (see Figure 7.5-Figure 7.7). Since the loading followed a 

tension-compression protocol, two values of the ultimate horizontal load are given for each test. Taking 

Figure 7.1 as reference, the horizontal loading applied by the actuator is considered positive 𝐹𝑢+ when 

directed towards the left (the actuator was in tension) and negative 𝐹𝑢− when directed towards the right 

(the actuator was in compression). As shown in Table 7.2, the ultimate load values, both in tension and 

compression, increased with decreasing global slenderness values. In addition, Table 7.2 reports the 

load when the specimen was assumed to fail, 𝐹𝑒𝑛𝑑. As mentioned before, the tests were stopped when 

the profile was not able to carry the actuator load. In Table 7.2, a positive value of 𝐹𝑒𝑛𝑑 indicates that 

the failure occurred with the actuator in tension, and therefore the strength degradation at failure is 

calculated by comparing the load values reached when the actuator was in tension 𝐹𝑒𝑛𝑑 with 𝐹𝑢+. In 

contrast, a negative value of 𝐹𝑒𝑛𝑑 indicates that the ultimate load was first reached when the actuator 

was in compression. According to the results reported in Table 7.2, the strength abruptly degraded 

below 40% 𝐹𝑢 for S1 specimens, while for S3 specimens the failure load 𝐹𝑒𝑛𝑑 dropped to values close 

to 60% 𝐹𝑢. Finally, S2 specimens showed a gradual loss of resistance and first signals of cracking 

appeared at a stage when the load resistance degraded to 70% 𝐹𝑢. 

7.3.2. Force-displacement and moment-drift skeleton curves 

Figure 7.9 presents the load-displacement skeleton curves for (a) S1, (b) S2 and (c) S3 specimens. The 

skeleton curves plotted in Figure 7.9 were obtained by connecting the peak displacement points of all 

load-displacement hysteretic loops (see Figure 7.5-Figure 7.7) as per (Ye et al. 2006; prEN 1998-1-2 

2021). As mentioned in Section 7.3.1, the profiles usually exhibited a stable behaviour during the 

individual cycles of the same amplitude, which resulted in the superposition of the corresponding 

hysteretic loops. As shown in Figure 7.9, the shortest specimens exhibited the highest stiffness, as 

expected according to the theory of elasticity. Likewise, the shortest specimens, i.e., specimens with 

the shortest shear length, also showed the highest strength capacity values because the compressed 

flange in the buckled zone is subjected to a longitudinal stress gradient which depends on the length of 



Experimental study on stainless steel tubular members under cyclic loading 

137 

the specimen. Figure 7.10 shows the stress distribution at the compressed bottom flange over the 

buckling length 𝐿𝑏 for a (a) long and (b) short cantilever beam. As shown, different normal stresses 

develop on both sides of the buckling length of the compressed part of the RHS section: while the 

normal stresses are equal to 𝜎 at the embedment zone, the stresses exhibit a value equal to 𝜓𝜎 at the 

other end of the buckling length, being 𝜓 lower than unity. Shear stresses 𝜏 also develop as a 

consequence of the differences between the two stress distributions. If the length of the cantilever is 

reduced (𝐿1 >> 𝐿2), the value of 𝜓 is lower (𝜓1 >> 𝜓2), i.e., the stress gradient is higher. Because of 

the longitudinal stress gradient, the average normal stress in the buckled zone is less than the maximum 

value occurring at the end of embedment zone. The difference between this maximum stress and the 

average stress in the buckled zone increases as the shear length decreases. Hence, the occurrence of 

local buckling in the compressed flange is delayed and the maximum flexural resistance of the section 

increases leading to the increase of the maximum force supported by the specimen. This phenomenon 

has been already reported for steel members (Mazzolani and Piluso 1996). 

 

  
      (a)       (b) 

 
        (c) 

Figure 7.9. Load-displacement skeleton curves for the studied (a) S1, (b) S2 and (c) S3 austenitic stainless steel 

beams under cyclic loading.  
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Figure 7.10. Comparison of the stress distributions at the bottom compressed flange over the buckling length Lb 

for a (a) long and (b) short cantilever. 

Additionally, and aligned with the observations reported in Section 7.3.1, S2 specimens show a smooth 

strength degradation in Figure 7.9, which is an indicator of their ductile behaviour and the formation of 

plastic hinges, while S1 and S3 specimens exhibited sudden drops in load, indicating that failures were 

originated by crack openings without previous signs of local buckling. According to the skeleton curves 

reported in Figure 7.9, all specimens showed almost symmetrical branches on the first and third 

quadrants, i.e., all specimens experienced similar fractures on both faces, except S1-L1 and S3-L1 

specimens which failed due to corner openings on just one side. In addition, S1 specimens exhibited 

the longest drops in load, which are consistent with the strength degradations of 40% 𝐹𝑢 discussed in 

Section 7.3.1. 

Similarly, Figure 7.11 presents the moment-rotation skeleton curves for (a) S1, (b) S2 and (c) S3 

specimens. To be consistent with the loading protocol described in Section 7.2.4, the moment values 

were calculated as the product of the horizontal loads applied by the actuator and the effective lengths, 

while the rotations were calculated as the ratios between the horizontal displacements recorded at the 

top of the specimens by the string potentiometer and the effective lengths. As shown in Figure 7.11, 

similar responses were obtained for the three lengths analysed for each cross-section. For comparison 

purposes, the moment-rotation curves obtained from the monotonic tests on the same cross-sections 

published in (Arrayago and Rasmussen 2021b) are also plotted in Figure 7.11 (green dashed curves), 

as well as the plastic bending moments 𝑀𝑝𝑙, computed as the product of the plastic section modulus 

𝑊𝑝𝑙 and the yield stress 𝑓𝑦. As expected, for a given cross-section, the initial stiffness values of the 

monotonic and cyclic loading tests are equivalent, while the ultimate bending capacity for the 

monotonic tests is lower due to the hardening of the material under cyclic loading. 
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         (a)           (b) 

 
            (c) 

Figure 7.11. Moment-rotation skeleton curves for the studied (a) S1, (b) S2 and (c) S3 austenitic stainless steel 

beams under cyclic loading. 

Finally, Table 7.3 reports the experimental elastic 𝜃𝑦 and ultimate 𝜃𝑢 rotation values according to the 

criteria given in prEN 1998-1-2 (2021) and plotted in Figure 6.6 for the definition of the plastic rotation, 

as well as the rotation corresponding to the ultimate bending moment 𝜃𝑀𝑢 and the maximum recorded 

rotation 𝜃𝑟𝑒𝑐. As for the ultimate load values 𝐹𝑢+ and 𝐹𝑢−, two sets of rotation values are given in Table 

7.3, one for positive (considering the actuator in tension) and one for negative (actuator in compression) 

loading. 𝜃𝑢 values are not reported in Table 7.3 for S1 and S3 specimens because the sudden fracture 

of these specimens made it impossible to record rotation values in the descending branch of the moment-

rotation curves. 

Table 7.3. Rotation values obtained from test results according to prEN 1998-1-2 (2021). 

Specimen 
𝑀𝑝𝑙  Actuator in tension [rad]  Actuator in compression [rad] 

[kNm] 𝜃𝑦 𝜃𝑀𝑢 𝜃𝑢 𝜃𝑟𝑒𝑐 𝑅0 𝑅  𝜃𝑦 𝜃𝑀𝑢 𝜃𝑢 𝜃𝑟𝑒𝑐 𝑅0 𝑅 

S1-L1 44.8 0.037 0.125 - 0.125 2.38 -  -0.036 -0.119 - -0.128 2.27 - 

S1-L2 44.8 0.033 0.114 - 0.114 2.49 -  -0.031 -0.109 - -0.119 2.54 - 

S1-L3 44.8 0.029 0.077 - 0.086 1.67 -  -0.024 -0.086 - -0.086 2.62 - 

S2-L1 19.4 0.033 0.097 0.149 0.149 1.97 3.57  -0.038 -0.109 -0.138 -0.146 1.85 2.63 

S2-L2 19.4 0.029 0.084 0.123 0.124 1.96 3.32  -0.030 -0.092 -0.125 -0.132 2.04 3.15 

S2-L3 19.4 0.020 0.055 0.092 0.103 1.78 3.67  -0.020 -0.055 -0.094 -0.103 1.78 3.72 

S3-L1 23.5 0.042 0.113 - 0.113 1.73 -  -0.029 -0.091 - -0.118 2.12 - 

S3-L2 23.5 0.034 0.096 - 0.107 1.86 -  -0.032 -0.099 - -0.109 2.09 - 

S3-L3 23.5 0.023 0.073 - 0.083 2.18 -  -0.023 -0.075 - -0.085 2.19 - 
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Results reported in Table 7.3 highlight that, in most of the cases, similar rotations were obtained when 

the specimens were under compressive and tensile forces, which is an indicator of the correct 

performance of the tests. It was found that the values of the 𝜃𝑦, 𝜃𝑀𝑢, 𝜃𝑢 and 𝜃𝑟𝑒𝑐 rotations generally 

increased with increasing global slenderness values. An upward trend was also observed in the 𝜃𝑦 and 

𝜃𝑀𝑢 values for decreasing local slendernesses. However, no conclusions could be drawn about the 

relationship between 𝜃𝑢 and the local slenderness values due to the lack of data, since 𝜃𝑢 values could 

only be determined for S2 specimens. Values of the 𝜃𝑟𝑒𝑐 rotations were almost equal to those 

corresponding to the ultimate bending moment 𝜃𝑀𝑢 for S1 and S3 specimens, while for S2 specimens 

higher values of the 𝜃𝑟𝑒𝑐 rotations were obtained, showing the ductile behaviour of these specimens. 

By relating the rotation results from Table 7.3 to the ultimate strength values reported in Table 7.2, it 

can be inferred that the shortest specimens exhibited the highest stiffness values, which is consistent 

with the responses plotted in Figure 7.9. The values for the stable part 𝑅0 and total 𝑅 plastic rotation 

capacities, determined from the predictive expressions given in Eq. 6.1 and Eq. 6.2, respectively, are 

also given in Table 7.3. As shown in this table, the values for the stable part of the rotation capacity 𝑅0 

for all specimens are comparable and show a slight tendency to increase as the local slenderness 

decreases. However, once again, no conclusions could be drawn on the relationship between the rotation 

capacities, both 𝑅0 and 𝑅, and the global slenderness. This could be explained by the lack of additional 

data and the fact that the formulae for estimating the rotation capacities minimise the effect of the 

specimen length because they are normalised by the elastic rotations 𝜃𝑦 (see Section 6.3.4). 

7.3.3. Stiffness degradation 

The stiffness of the specimens during the tests has been studied attending to the degradation of the 

secant stiffness 𝐾, which is computed as the ratio of the sum of the maximum positive 𝐹∆+ and negative 

𝐹∆− horizontal loads for each cycle, in absolute values, and the sum of the corresponding total horizontal 

displacements, Δ+ and Δ−, as per (Jiang and Bai 2020). The formulation for the secant stiffness 𝐾 is 

given in Eq. 7.1. Figure 7.12 shows the resulting secant stiffnesses against the number of cycles for (a) 

S1, (b) S2 and (c) S3 specimens. As shown in these curves, the shortest specimens (L3) exhibited the 

highest values of secant stiffness, and since the collapse of the specimen was reached sooner, the 

stiffness degradation was more noticeable. In addition, the specimens with the stockiest cross-section, 

i.e., S1, showed 50% higher secant stiffness values than the corresponding S2 and S3 specimens. S2 

and S3 specimens exhibited similar responses. Finally, as reported in Table 7.2, it can be appreciated 

that all tests with the same length ended after a comparable number of cycles. 

 

𝐾 =
|𝐹∆+| + |𝐹∆−|

|Δ+| + |Δ−|
  

Eq. 7.1 
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            (a)          (b) 

 
         (c) 

Figure 7.12. Secant stiffness 𝐾 degradation against the number of cycles for the studied (a) S1, (b) S2 and (c) S3 

austenitic stainless steel beams under cyclic loading. 

7.3.4. Energy dissipation 

The computation of the energy dissipation capability of steel structural elements is of paramount 

importance in seismic design, since most of the energy introduced into steel structures in a seismic event 

is dissipated through the inelastic deformation of their members (Fang et al. 2018). The accumulated 

energy absorption (dissipation) capacity of a specimen during a cyclic test is assumed to be the area 

enclosed by the load-displacement hysteretic loops (see Figure 7.5-Figure 7.7) (Nip et al. 2010; Fang 

et al. 2018; Kim et al. 2021). Figure 7.13 shows the accumulated energy dissipation, measured in kJ, 

calculated for (a) S1, (b) S2 and (c) S3 specimens against the number of cycles. As shown in Figure 

7.13, the values of the dissipated energy during the first 30 cycles are really low for all specimens as 

the material deformations are still elastic. This is in agreement with the findings reported in (Fang et al. 

2018) for austenitic hollow section specimens under strong-axis cyclic bending. After then, the ductility, 

i.e., inelastic behaviour, of the members becomes more evident and the accumulated energy absorption 

capacity increases significantly until the fracture of the specimens. As it can be seen in Figure 7.13, S1 

specimens were found to exhibit the highest values of energy dissipation, followed by S2 and S3 

specimens. According to (Nip et al. 2010b), the accumulated energy dissipation increases as the local 

slenderness of the cross-section decreases. However, S2 specimens showed a higher energy dissipation 
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capacity than S3 specimens despite being slenderer because they reached higher values of maximum 

recorded rotation 𝜃𝑟𝑒𝑐 (see Table 7.3), and S3 specimens failed prematurely. Finally, for the same local 

slenderness (or cross-section), the longest specimens (L1) exhibited higher values of energy dissipation 

prior to failure due to the higher number of cycles before failure, although the accumulated energy 

dissipation per cycle increased with decreasing global slenderness values, as also reported in (Nip et al. 

2010b). 

  
          (a)         (b) 

 
         (c) 

Figure 7.13. Accumulative energy dissipation against the number of cycles for the studied (a) S1, (b) S2 and (c) 

S3 austenitic stainless steel beams under cyclic loading. 

7.4. Concluding remarks 

This chapter presents an experimental programme on nine austenitic stainless steel hollow section 

elements subjected to cyclic loading, covering three different local and member slenderness values, 

promoted by the Universitat Politècnica de Catalunya and carried out at the Università degli Studi di 

Salerno. Two different failure modes were observed: the sudden crack of corners without exhibiting 

previous signs of deformation at the flat regions of the cross-sections, and the development of local 

buckling deformations prior to failure. Consistent with the findings reported in the literature, it was 

found that the ultimate load values decreased with increasing global slenderness values. In addition, the 

number of cycles before failure and the rotation values rose with increasing values of the global 

slenderness. For those specimens that exhibited a smooth strength degradation, the number of cycles 

before local buckling occurred decreased with increasing global slenderness values. The total energy 
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dissipation prior to failure trended upward as the global slenderness increased due to the higher number 

of cycles achieved. Finally, the shortest specimens exhibited the highest values of ultimate load and 

failed sooner, leading to a more noticeable degradation, while the stockiest cross-sections exhibited the 

highest ultimate load, rotation and secant stiffness values. It is expected that the results provided in this 

study will promote the understanding of stainless steel members under cyclic loading and may help 

researchers to conduct similar experimental programmes. 

Corresponding publication: González-de-León I., Nastri E., Arrayago I., Montuori R., Piluso V. and 

Real E. (2022). Experimental study on stainless steel tubular members under cyclic loading. Thin-

Walled Structures, 181, 109969. https://doi.org/10.1016/j.tws.2022.109969 
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8. CHAPTER 

CHAPTER 8 

 

 

 

 

Design of stainless steel moment resisting frames according to the 

second generation of Eurocode 8 

 

 

8.1. Introduction 

Stainless steel has an excellent potential in seismic design due to its ductility, strain hardening, energy 

dissipation capacity and fire resistance properties (SCI 2017). However, the number of studies devoted 

to the understanding of the seismic behaviour of stainless steel is very limited (see Section 2.6), so it is 

understandable that the future edition of the European standard for the design of structures for 

earthquake resistance prEN 1998-1-2 (2021) does not include specific rules for stainless steel structures, 

although it should be noted that recommendations for stainless steel already exist in the Japanese code 

(BCJ 2016). 

Among the typologies of steel structures, steel Moment Resisting Frames (MRFs) are very popular for 

low and medium-rise buildings for architectural reasons and ease of construction, and most structural 

codes published in Europe, Japan and the US include provisions to design steel MRFs. Steel MRFs are 

known to be very flexible framing solutions, and their design is generally governed by their performance 

against lateral loads. In Eurocode 8, the most extended approach for the seismic design of steel MRFs 



Design of stainless steel MRFs according to Eurocode 8 

146 

is the force-based approach. As mentioned in Section 2.6.2, the force-based approach is based on the 

performance of an elastic analysis of the structure, where the nonlinear deformations and energy 

dissipation are considered by reducing the design seismic forces by tabulated behaviour factors, and the 

resistance of the frame is guaranteed by the fulfilment of several requirements related to the lateral 

stability, drift limitations and the application of certain capacity design rules (prEN 1998-1-1 2021). 

Even if this design procedure for steel MRFs is kept, the new version of Eurocode 8 significantly 

modifies the definition of the ductility classes, behaviour factors, material randomness factors, 

interstorey drift sensitivity index, local hierarchy criteria and design rules for non-dissipative members 

(prEN 1998-1-1 2021), among other changes. The effect of these modifications on the design of steel 

MRFs, making special emphasis on the tabulated values of the behaviour factor, have been already 

assessed by Lemma et al. (2022) and Tartaglia et al. (2022) for common steel frames. Lemma et al. 

(2022) studied numerically the performance of 96 steel MRFs designed according to both the current 

version of Eurocode 8 and the updated prEN 1998-1-2 (2021) specification, covering two carbon steel 

grades, four plan configurations and three different elevations. The parametric study was performed 

using OpenSEES (2006), and the comparison of the prescribed behaviour factors with the actual values 

estimated from nonlinear static analyses revealed that the overall behaviour factors is strongly 

dependent on the value of its overstrength component. Similarly, Tartaglia et al. (2022) performed, 

using SeismoStruct (2016), a parametric study of 48 steel MRFs designed according the current and 

revised versions of Eurocode 8, as well as the US code (ASCE 7 2016). Tartaglia et al. also assessed 

the actual behaviour factors, which were estimated attending a different criterion to that considered by 

Lemma et al. (2022). For all 48 frames, the behaviour factors obtained by Tartaglia et al. (2022) were 

higher than the values given in prEN 1998-1-2 (2021). Both studies concluded that the revised Eurocode 

8 promotes lighter structures than the current standard. 

In light of the potential of stainless steel alloys for seismic design, this work aims to study, for the first 

time, the behaviour of stainless steel structures (austenitic, ferritic and duplex) designed according to 

the provisions for highly dissipative structures (i.e., Ductility Class 3 structures – DC3) given in the 

forthcoming prEN 1998-1-1 (2021) and prEN 1998-1-2 (2021) specifications. The goals of this study 

are (1) to evaluate the suitability of the design rules for carbon steel on the design of stainless steel 

structures, and (2) to estimate the actual behaviour factors for stainless steel MRFs. The study has been 

performed using the finite element software ABAQUS (2016), which allows to accurately reproduce 

the nonlinear stress-strain response of stainless steel alloys (Arrayago et al. 2015a), and following the 

methodology reported in (Lemma et al. 2022). 

8.2. Principal provisions for steel MRFs in the revised version of Eurocode 8 

This section summarises the provisions of prEN 1998-1-1 (2021) and prEN 1998-1-2 (2021) that apply 

to this study. Note that these standards refer to carbon steel structures and that, in some cases, 
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assumptions have been made in this study to adapt them to stainless steel structures. These assumptions, 

where applicable, are indicated at the end of each sub-section. Finally, it should be highlighted that an 

important modification of the formula for controlling the second order effects in stainless steel 

structures subjected to seismic actions is proposed in this study in order to take into account the 

additional loss of stiffness due to material nonlinearities, which can be found in Section 8.2.5. 

8.2.1. Consequence classes, limit states, ductility classes, random material variability and strain 

hardening overstrength factors 

The second generation of Eurocode 8 has introduced important changes to the terminology in an effort 

to harmonise it with that of other Eurocodes. In line with prEN 1990 (2022), prEN 1998-1-1 (2021) 

distinguishes between four consequence classes (CC1, CC2, CC3a and CC3b) depending on the 

importance category of the building. Structures should be regarded as belonging to consequence class 

CC2 if not otherwise specified. The definition of limit states has also been revised to be consistent to 

prEN 1990 (2022) and, according to prEN 1998-1-1 (2021), there are two limit states related to the 

Ultimate Limit State (Near Collapse and Significant Damage, NC and SD, respectively) and two limit 

states related to the Serviceability Limit State (Damage Limitation and Fully Operational, DL and OP, 

respectively). In an attempt to simplify the design procedure, only SD limit state verification is 

mandatory for new structures (prEN 1998-1-1 2021). 

Moreover, prEN 1998-1-1 (2021) distinguishes between three ductility classes depending on the 

dissipative capacity exhibited by the structure: low (DC1), medium (DC2) and high (DC3). In this study, 

frames have been designed according to the provisions given for DC3 structures. Design for DC3 

considers that the structure is expected to show local overstrength, deformation and energy dissipation 

capacities, and to form a global plastic mechanism at the SD limit state. Each ductility class is associated 

with a limit of the seismic action index, which depends on the seismic action and the consequence class 

of the structure, but there is no limit for the seismic action of DC3 structures in prEN 1998-1-1 (2021). 

Finally, the elastic response spectrum, which represents the seismic forces, is redefined on the basis of 

the maximum response spectral acceleration and the response spectral acceleration at the vibration 

period of 1 s instead of the design ground acceleration. 

Regarding the overstrength exhibited by the material, prEN 1998-1-1 (2021) differentiates between (1) 

the material overstrength factor ω𝑟𝑚, which considers the actual (and enhanced) yield stress of the steel 

and whose values can be found in prEN 1998-1-2 (2021) depending on the carbon steel grade, and (2) 

the overstrength factor accounting for the hardening of the dissipative zones ω𝑠ℎ, which depends on the 

plastic mechanism and is a function of the yield stress 𝑓𝑦 and the ultimate 𝑓𝑢 strength. For DC3 moment 

resisting frames, ω𝑠ℎ is computed using Eq. 8.1, where 𝐶 is a cut-off value equal to 1.2 in the case of 

carbon steel alloys (prEN 1998-1-2 2021). In this study, the material overstrength factors ω𝑟𝑚 adopt 
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the values proposed by Arrayago et al. (2020a) for stainless steel plates, while the hardening 

overstrength factor ω𝑠ℎ has been computed using Eq. 8.1, assuming the values of 𝑓𝑦 and 𝑓𝑢 calibrated 

by Afshan et al. (2019) for stainless steel hot-rolled sections and sheet material (see Table 8.4) and a 

value of 𝐶 consistent with the strain hardening of each type of stainless steel. Table 8.1 summarises the 

values of ω𝑟𝑚 and ω𝑠ℎ considered in this study for stainless steel MRFs. 

Table 8.1. Material and hardening overstrength factors adopted in the study. 

Stainless steel 
Material overstrength factor 𝜔𝑟𝑚 

(Arrayago et al. 2020a) 

Hardening overstrength factor 𝜔𝑠ℎ 

using data given in (Afshan et al. 2019) 

Austenitic 1.22 1.4 

Ferritic 1.22 1.2 

Duplex 1.11 1.2 

 

8.2.2. Behaviour factors 

Due to computational reasons, one of the main approaches considered in prEN 1998-1-1 (2021) to verify 

the adequate combination of strength, deformation capacity and cumulative energy dissipation capacity 

is the force-based approach. The force-based approach may be used for verification to SD limit state, 

and may be implemented through the lateral force method and the modal response spectrum method. 

The approach employs a linear analysis where the design forces are obtained from the superposition of 

gravity loads and seismic forces, and the overstrength and the nonlinear response of the structure 

(associated with the material, the structural system and the design procedure) are implicitly and 

approximately accounted for by a behaviour factor, which in the Eurocode framework is represented by 

𝑞. Similar approaches are found in other standards, such as the US code, where the corresponding 

reduction factor is known as the response modification factor 𝑅 (ASCE 7 2016). Since the values of the 

reduction (or modification) factors (𝑞, 𝑅) determine the seismic design forces, their assessment has 

been a constant research topic (Lemma et al. 2022; Ferraioli et al. 2014).  

The computation of the overall behaviour factor 𝑞 has been revised and split into three components in 

prEN 1998-1-1 (2021), as shown in Eq. 8.2, where 𝑞𝑅 is the behaviour factor component accounting 

for the overstrength due to the redistribution of seismic action effects in redundant structures, 𝑞𝐷 is the 

behaviour factor component accounting for the deformation capacity and energy dissipation capacity 

of the structure, and 𝑞𝑆 is the behaviour factor component accounting for the overstrength due to all 

other sources – such as the strength reserve resulting from the overstrength of individual members 

(Ferraioli et al. 2014). According to prEN 1998-1-1 (2021), the value of 𝑞𝑆 should be adopted equal to 

1.5, while different values of 𝑞𝑅 and 𝑞𝐷 are given in prEN 1998-1-2 (2021) depending on the material, 

ω𝑠ℎ =  
൫𝑓𝑦 + 𝑓𝑢൯

2𝑓𝑦
≤ 𝐶  

 
Eq. 8.1 
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framing system and the ductility class considered. Thus, Table 8.2 summarised the tabulated values of 

𝑞𝑅, 𝑞𝐷 and 𝑞𝑆 for steel moment resisting multi-storey frames designed to DC3. Note that the overall 

behaviour factor 𝑞, also reported in Table 8.2, approximatively values the product of the three 

components. In the absence of specific behaviour factors for stainless steel prescribed by the code, this 

study has assumed the values given in Table 8.2 for the design of the stainless steel MRFs. 

Table 8.2. Behaviour factors reported in prEN 1998-1-2 (2021) for DC3 multi-storey steel MRFs. 

𝑞𝑅 𝑞𝐷 𝑞𝑆 𝑞 

1.3 3.3 1.5 6.5 

8.2.3. Drift limitation and second order effects at the Significant Damage limit state 

As stated in prEN 1998-1-2 (2021), the global plastic mechanisms should be controlled through the 

limitation of the drift and second order effects, as well as through the capacity design rules presented in 

Section 8.2.4. prEN 1998-1-2 (2021) defines the design interstorey drift 𝑑𝑟 as the difference of the 

average lateral displacements 𝑑𝑠 at the top and bottom of the storey under consideration induced by the 

seismic action. The lateral displacements 𝑑𝑠 should be calculated using Eq. 8.3 (prEN 1998-1-1 2021), 

where 𝑑𝑒 is the displacement of the same point of the structural model calculated under the reduced 

spectrum associated to the design seismic action, and 𝑞𝑑𝑖𝑠𝑝 depends on the ratio of the fundamental period 

of the structure 𝑇1 and the corner period of the spectrum 𝑇𝐶, and is calculated as given in Eq. 8.4. 

According to prEN 1998-1-2 (2021), the design interstorey drift at the Significant Damage limit state 

𝑑𝑟,𝑆𝐷 in moment resisting frames should satisfy the requirement given in Eq. 8.5, where 𝑑𝑠,𝑡𝑜𝑝 and 

𝑑𝑠,𝑏𝑜𝑡𝑡𝑜𝑚 are the lateral displacements of the top and bottom points of the considered storey, and ℎ𝑠 is 

the interstorey height. 

prEN 1998-1-2 (2021) evaluates the sensitivity to second order effects at all stories through the 

computation of the interstorey drift sensitivity coefficient 𝜃, the formulation of which has been recently 

revised to properly consider the secant stiffness of structures in the SD limit state (Vigh et al. 2016). In 

the case of DC3 steel structures, the interstorey drift sensitivity coefficient 𝜃 is calculated as given in 

𝑞 =  𝑞𝑅 · 𝑞𝐷 · 𝑞𝑆  Eq. 8.2 

𝑑𝑠 =  𝑑𝑒 · 𝑞𝑑𝑖𝑠𝑝  Eq. 8.3 

𝑞𝑑𝑖𝑠𝑝 = 𝑞 if  𝑇1 ≥ 𝑇𝐶 
Eq. 8.4 

𝑞𝑑𝑖𝑠𝑝 = 1 + (𝑞 − 1) · 𝑇𝐶/𝑇1 ≤ 3𝑞 if  𝑇1 < 𝑇𝐶 

𝑑𝑟,𝑆𝐷 = 𝑑𝑠,𝑡𝑜𝑝 − 𝑑𝑠,𝑏𝑜𝑡𝑡𝑜𝑚 ≤  0.02 · ℎ𝑠  Eq. 8.5 
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Eq. 8.6, where 𝑃𝑡𝑜𝑡 is the total gravity load at and above the storey under consideration due to the masses 

considered in the seismic analysis of the structure, 𝑉𝑡𝑜𝑡 is the total storey shear in the seismic design 

situation, and 𝛺𝑑 is the design overstrength ratio, given in Eq. 8.7. 𝛺𝑑 is computed as the minimum of 

𝛺𝑑,𝑖 = ൫𝑀𝑝𝑙,𝑅𝑑,𝑖 − 𝑀𝐸𝑑,𝐺,𝑖൯ 𝑀𝐸𝑑,𝐸,𝑖⁄  of all beams in which dissipative zones are expected (when full 

connections are used), where 𝑀𝑝𝑙,𝑅𝑑,𝑖 is the plastic moment at the “i” beam, and 𝑀𝐸𝑑,𝐺,𝑖 and 𝑀𝐸𝑑,𝐸,𝑖 are 

the corresponding design moments due to gravity loads and seismic actions, respectively. 𝛺𝑑 assumes 

a value higher than 1.0. Note that prEN 1998-1-2 (2021) has also revised the formulation for 𝛺𝑑 – 

currently 𝑀𝑝𝑙,𝑅𝑑 ൫𝑀𝐸𝑑,𝐺 + 𝑀𝐸𝑑,𝐸൯⁄  is considered –, and has adopted the formula for beam overstrength 

factor proposed by Elghazouli (2010). Eq. 8.7 efficiently accounts for the effects of gravity loads on the 

actual overstrength of the beams, leading to higher values of 𝛺𝑑 than the current formulation, especially 

in structures susceptible to collapse due to a soft storey mechanism, i.e., low-rise structures with 

relatively small column cross-sections and structures with large beam spans subjected to significant 

gravity loads (Elghazouli 2010). 

According to prEN 1998-1-2 (2021), second order effects may be neglected if the sensitivity coefficient 

𝜃 ≤ 0.1. When relevant, second order effects may approximately be taken into account by multiplying 

the relevant seismic action effects by a factor equal to 1/(1 − 𝜃) if 0.1 < 𝜃 ≤ 0.2, and should be taken 

into account directly by using the established methods of second order analysis by considering 

geometric nonlinearities if 0.2 < 𝜃 < 0.3. The value of 𝜃 should not exceed 0.3.  

This study limits the maximum design interstorey drift at the Significant Damage limit state 𝑑𝑟,𝑆𝐷 to 

2%, and proposes a new expression to control the second order effects in stainless steel structures based 

on the expressions shown in Eq. 8.6 (see Section 8.2.5), which allows the adoption of the same limiting 

values of 𝜃 for consideration of geometrical nonlinearities. 

8.2.4. Design actions for non-dissipative members and local hierarchy rule for columns 

prEN 1998-1-2 (2021) prescribes rules to ensure the weak beam-strong column criterion is met. Thus, 

steel columns in DC3 should be verified in compression, bending and shear under the most unfavourable 

combination of design actions 𝑁𝐸𝑑, 𝑀𝐸𝑑 and 𝑉𝐸𝑑 computed as given in Eq. 8.8, where the subscripts 

“𝐺” and “𝐸” refer to the internal actions due to gravity loads and seismic actions, respectively. As 

𝜃 =  
𝑃𝑡𝑜𝑡 · 𝑑𝑟,𝑆𝐷

𝜔𝑟𝑚 · 𝑞𝑆 · 𝑉𝑡𝑜𝑡 · ℎ𝑠
 if 𝑞𝑆 ≥ 𝛺𝑑 · 𝑞𝑅 

Eq. 8.6 

𝜃 =  
𝑃𝑡𝑜𝑡 · 𝑑𝑟,𝑆𝐷

𝜔𝑟𝑚 · 𝛺𝑑 · 𝑞𝑅 · 𝑉𝑡𝑜𝑡 · ℎ𝑠
 if 𝑞𝑆 < 𝛺𝑑 · 𝑞𝑅 

𝛺𝑑 = ൫𝑀𝑝𝑙,𝑅𝑑 − 𝑀𝐸𝑑,𝐺൯ 𝑀𝐸𝑑,𝐸⁄   Eq. 8.7 
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shown, internal forces resulting from the seismic action, which are obtained from a modal response 

spectrum analysis, are magnified by the factor 𝜔𝑟𝑚 · 𝜔𝑠ℎ · 𝛺𝑑, which accounts for the overstrength due 

to the material randomness, the strain hardening and the overdesign of the dissipative members. 

In addition, the sum of resistances of the columns that concur at any particular joint should satisfy Eq. 

8.9, where ∑ 𝑀𝑐,𝑝𝑙,𝑅𝑑(𝑁𝐸𝑑) is the sum of the design moment resistances of the columns at the joint, 

taking into account the axial load in the seismic design situation, ∑ 𝑀𝑏,𝑝𝑙,𝑅𝑑 is the sum of the design 

moment resistances of the connected beams, 𝑉𝐸𝑑,𝑀 is the shear force due to the formation of plastic 

hinges at both beam ends, 𝑉𝐸𝑑,𝐺 is the shear force due to the non-seismic actions in the seismic design 

situation, and 𝑠ℎ is the distance between the centre of the expected plastic hinge and the column axis. 

In this study, the resistance verifications were done considering that the cross-sectional resistance is 

limited to its design plastic resistance value, as recommended by prEN 1998-1-2 (2021). Design plastic 

axial 𝑁𝑝𝑙,𝑅𝑑, shear 𝑉𝑝𝑙,𝑅𝑑 and moment 𝑀𝑝𝑙,𝑅𝑑 resistances were calculated and combined, if applicable, 

according to prEN 1993-1-4 (2021). Partial safety factors for resistance (i.e., 𝛾𝑀0 and 𝛾𝑀1) have been 

assumed equal to 1.0. 

8.2.5. Derivation of a new second order sensitivity index for stainless steel MRFs 

The approach given in prEN 1998-1-2 (2021) for accounting for second order effects in steel MRFs in 

the seismic design situation is equivalent to prescribed for the static situation in prEN 1993-1-1 (2021). 

As mentioned in Section 2.5.1, multi-storey steel MRFs governed by the in-plane sway mode can be 

designed performing a first order elastic analysis (LA) if 𝛼𝑐𝑟,𝑠𝑤 ≥ 10. In case of 10 > 𝛼𝑐𝑟,𝑠𝑤 ≥ 3, 

second order effects can be accounted for in an elastic analysis by amplifying the horizontal forces by 

the factor 𝑘𝑠𝑤 given in Eq. 2.10. In case of 𝛼𝑐𝑟,𝑠𝑤 < 3, it is mandatory to carry out a second order 

analysis. The value of 𝛼𝑐𝑟,𝑠𝑤 can be obtained from a linear buckling analysis (LBA) or estimated from 

Eq. 8.10 (prEN 1993-1-1 2021), where 𝐻𝑓 is a fictitious horizontal load applied at the top of the columns 

of the storey, ∆𝑓 is the interstorey horizontal displacement due to 𝐻𝑓, and ∑ 𝑁𝐸𝑑 is the sum of the axial 

forces in the columns within the storey under consideration.  

𝑁𝐸𝑑 =  𝑁𝐸𝑑,𝐺 + 𝜔𝑟𝑚 · 𝜔𝑠ℎ · 𝛺𝑑 · 𝑁𝐸𝑑,𝐸 

𝑉𝐸𝑑 =  𝑉𝐸𝑑,𝐺 + 𝜔𝑟𝑚 · 𝜔𝑠ℎ · 𝛺𝑑 · 𝑉𝐸𝑑,𝐸 

𝑀𝐸𝑑 =  𝑀𝐸𝑑,𝐺 + 𝜔𝑟𝑚 · 𝜔𝑟𝑚 · 𝛺𝑑 · 𝑀𝐸𝑑,𝐸 

 Eq. 8.8 

∑ 𝑀𝑐,𝑝𝑙,𝑅𝑑(𝑁𝐸𝑑) ≥  ∑[𝜔𝑟𝑚 · 𝜔𝑠ℎ ∙ ൫𝑀𝑏,𝑝𝑙,𝑅𝑑 + 𝑠ℎ · 𝑉𝐸𝑑,𝑀൯ + 𝑠ℎ · 𝑉𝐸𝑑,𝐺]  Eq. 8.9 



Design of stainless steel MRFs according to Eurocode 8 

152 

This approach is also valid for designing stainless steel MRFs subjected to vertical and horizontal 

forces, but prEN 1993-1-4 modifies the computation of the 𝛼𝑐𝑟,𝑠𝑤 factor to take into account the 

additional losses in stiffness that arise due to material nonlinearities, as proposed by Walport et al. 

(2021a). Eq. 2.11 shows 𝛼𝑐𝑟,𝑠𝑤,𝑠𝑠 as prescribed in prEN 1993-1-4 (2021). As for carbon steel structures, 

stainless steel in-plane MRFs with 10 > 𝛼𝑐𝑟,𝑠𝑤,𝑠𝑠 ≥ 3 can be designed considering the second order 

effects by performing a first order MNA analysis if the horizontal forces are magnified by the factor 

given in Eq. 2.12. Similarly, second order effects can be neglected if 𝛼𝑐𝑟,𝑠𝑤,𝑠𝑠 ≥ 10, and may be 

explicitly considered when 𝛼𝑐𝑟,𝑠𝑤,𝑠𝑠 < 3. 

As it can be deduced from comparing Eq. 8.6 and Eq. 8.10, the index 𝜃 for evaluating second order 

effects in the seismic performance of steel MRFs proposed in prEN 1998-1-2 is formulated based on 

the 𝛼𝑐𝑟,𝑠𝑤 (note that 𝑃𝑡𝑜𝑡, 𝑑𝑟,𝑆𝐷, 𝑉𝑡𝑜𝑡 and ℎ𝑠 in Eq. 8.6 correspond to ∑ 𝑁𝐸𝑑, ∆𝑓, 𝐻𝑓 and ℎ𝑠 in Eq. 8.10), 

but considers the beneficial effects of the material overstrength and the overdesign of the structure due 

to the redundancy and oversizing of the members. In the case of stainless steel structures, this formula 

should also include the detrimental effect of material nonlinearities in the lateral stability of the 

structure, as 𝛼𝑐𝑟,𝑠𝑤,𝑠𝑠 does, and therefore a new definition of the sensitivity factor for stainless steel 

structures 𝜃𝑠𝑠 is required. Considering the analogy between Eq. 8.6 and Eq. 8.10, it is proposed that the 

index for evaluating second order effects on the seismic performance of stainless steel MRFs may be 

calculated as given in Eq. 8.11. The values of the 𝑌 factor depend on the number of storeys and stainless 

steel grade and are given in Table 2.1. 

Note that this definition of the 𝜃𝑠𝑠 index allows the adoption of the same limiting values prescribed in 

prEN 1998-1-2 (2021) for consideration of second order effects in seismic design: second order effects 

may be neglected if 𝜃𝑠𝑠 ≤ 0.1, may approximately be taken into account by multiplying the relevant 

seismic action effects by a Merchant-Rankine factor equal to 1/(1 − 𝜃𝑠𝑠) if 0.1 < 𝜃𝑠𝑠 ≤ 0.2, and 

should be taken into account explicitly by performing second order analyses when 0.2 < 𝜃𝑠𝑠 < 0.3. 

The value of 𝜃𝑠𝑠 should be also limited to 0.3.  

𝛼𝑐𝑟,𝑠𝑤 =
𝐻𝑓 · ℎ𝑠

∆𝑓 ∙ ∑ 𝑁𝐸𝑑
  Eq. 8.10 

𝜃𝑠𝑠 =  
𝑃𝑡𝑜𝑡 · 𝑑𝑟,𝑆𝐷

𝜔𝑟𝑚 · 𝑞𝑆 · 𝑉𝑡𝑜𝑡 · ℎ𝑠 · 𝑌 · (𝐾𝑠 𝐾)⁄
 if 𝑞𝑆 ≥ 𝛺𝑑 · 𝑞𝑅 

Eq. 8.11 

𝜃𝑠𝑠 =  
𝑃𝑡𝑜𝑡 · 𝑑𝑟,𝑆𝐷

𝜔𝑟𝑚 · 𝛺𝑑 · 𝑞𝑅 · 𝑉𝑡𝑜𝑡 · ℎ𝑠 · 𝑌 · (𝐾𝑠 𝐾)⁄
 if 𝑞𝑆 < 𝛺𝑑 · 𝑞𝑅 
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8.3. Case studies and design procedure 

This section describes the characteristics of the stainless steel Moment Resisting Frames (MRFs) 

analysed in this study and the steps followed to achieve an efficient design according to the second 

revision of the Eurocodes. It should be noted that the portal frames analysed in this study, including the 

design gravity loads and seismic forces, are based on those studied by Lemma et al. and have been 

designed following a similar procedure. More details of the parametric study performed by Lemma et 

al. can be found in (Lemma et al. 2022). 

8.3.1. Characteristics of the MRFs 

A parametric study was conducted to investigate the influence of three variables (i.e., stainless steel 

grade, number of floors and width of the bays) on the seismic behaviour of stainless steel moment 

resisting multi-storey frames. The frames were designed according to DC3 prescriptions given in the 

second revision of the Eurocodes. Only class 1 (prEN 1993-1-4 2021) European standardised sections 

were used: IPE sections for the beams and HEB or HEM sections for the columns – note that class 1 

cross-sections meet the requirement for designing steel MRFs in DC3 (prEN 1998-1-2 2021). A total 

of 36 structures were analysed. Table 8.3 summarises the variables of the parametric study, which are 

discussed below. 

Table 8.3. Parameters modified in the study cases. 

Stainless steel 
Plan view:  

width of bays [m] 

Elevation view:  

no. of storeys 

Austenitic 

Ferritic 

Duplex 

T1: 6, 6, 6, 6 

T2: 8, 8, 8, 8 

T3: 4, 8, 8, 4 

T4: 8, 6, 6, 8 

3 

6 

9 

In order to have a general overview of the influence of the varying ductility and strain hardening 

characteristics of the most common stainless steel grades, this study included structures on austenitic, 

ferritic and duplex stainless steels. The whole structure was made for the same stainless steel grade for 

each particular case. Even if it can be assumed that the initial stiffness of the three material is equal 

(Afshan et al. 2019), the stress-strain responses of each stainless steel family reveal that austenitic alloys 

tend to behave in a very ductile manner and have an important strain hardening, while duplex grades 

provide the highest resistances, with higher values for the nominal yield stress. On the contrary, the 

resistance and behaviour exhibited by ferritic stainless steel alloys are comparable to those shown by 

carbon steels (SCI 2017). Table 8.4 reports the properties of the austenitic, ferritic and duplex stainless 

steels proposed by Afshan et al. (2019) for hot-rolled open sections and considered herein. Note that 

these parameters are not nominal values; they were proposed based on extensive measurements from 

actual coupon tests. 
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Table 8.4. Two-stage Ramberg-Osgood material model parameters from Afshan et al. (2019) used in this study. 

Stainless steel 
𝐸 

[GPa] 

𝑓𝑦 

[MPa] 

𝑓𝑢 

[MPa] 

𝜀𝑢  

[mm/mm] 
𝑛 𝑚 

Austenitic 200 280  580  0.50  9.1 2.3 

Ferritic 200 320  480  0.16  17.2  2.8 

Duplex  200 530  770  0.30  9.3  3.6 

Figure 8.1 and Figure 8.2 show the plan configurations and generic elevations, respectively, covered in 

this study, which are identical to those proposed in (Lemma et al. 2022). As it can be seen, four plan 

typologies (T1, T2, T3, T4) of four bays per side were studied. In the X-direction, the bays were 6 

meters long, while in the Y-direction, the bay lengths varied between 4, 6 and 8 meters. Similarly, three 

total heights were studied – structures of 3 (3S), 6 (6S) and 9 (9S) storeys – to cover low, medium and 

high multi-storey frames. The storey height assumed a constant value of 3.5 m for all frames. 

 
                         Plan T1 Plan T2 

 
                         Plan T3 Plan T4 

Figure 8.1. Plan typologies covered in this study – equivalent to those reported by Lemma et al. (2022). 
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Figure 8.2. Elevations covered in this study – equivalent to those reported by Lemma et al. (2022). 

Following the design considerations reported in (Lemma et al. 2022), the seismic actions were assumed 

to be resisted by the moment resisting perimeter frames, and 2D frame analyses were performed 

accordingly. Only the perimeter frames in the Y-direction were considered in this study. The tributary 

areas corresponding to the Y moment resisting frames, which are the half of the plan, are highlighted 

in Figure 8.1. A leaning column was used to consider, in a planar analysis, the second order effects of 

the gravity loads applied to the inner resisting part on the perimeter frame. It was also assumed that 

braced frames existed in the X-direction. Two further considerations were taken into account following 

the approach in (Lemma et al. 2022): full strength beam-column joints and the diaphragm effect at each 

floor level. 

8.3.2. Gravity loading and seismic mass considerations 

Perimeter resistant frames were designed to support the gravity loads reported in (Lemma et al. 2022), i.e., 

a permanent load of 𝐺𝑘 = 3 kN/m2 and a live load of 𝑄𝑘 = 3 kN/m2. Following the loading scheme given 

in (Lemma et al. 2022), the moment resisting perimeter frames directly supported the loads transmitted by 

the secondary and main beams in the X-direction corresponding to an area equal to the total length of the 

portal frame in the Y-direction multiplied by half of the span in the X-direction (6/2 = 3 m), while the leaning 

column directly supported the loads corresponding to an area equal to the length of the portal frame in the 

Y-direction multiplied by 1.5 times the span length in the X-direction (6·1.5 = 9 m). Likewise, the seismic 

masses derived from the gravity loads adopted the same distribution as that given in (Lemma et al. 2022), 

i.e., the masses were considered lumped at the nodes of the structural model, so those corresponding to the 

vertical loads of the secondary beams and leaning columns were distributed proportionally to the external 

and internal nodes of the perimeter resistant frames. 

6 storeys 3 storeys 9 storeys 

 

Plan L1 L2 L3 L4 

T1 6 m 6 m 6 m 6 m 

T2 8 m 8 m 8 m 8 m 

T3 4 m 8 m 8 m 4 m 

T4 8 m 6 m 6 m 8 m 
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Vertical loads were applied as concentrated. Table 8.5 reports the characteristic values of the 

concentrated permanent 𝐺𝑘 and live 𝑄𝑘 loads assigned to the perimeter frames at each floor and for 

each plan typology, where 𝐹𝑏,𝑐𝑜𝑛𝑐 refers to the concentrated loads transferred from the secondary beams 

and applied on the main beams, 𝐹𝑐,𝑒𝑥𝑡 and 𝐹𝑐,𝑖𝑛𝑡 to the concentrated loads at the external and internal 

beam-column nodes, and 𝐹𝑙𝑒𝑎𝑛,𝑐𝑜𝑙 to the concentrated loads applied at the leaning column. Table 8.5 

also summarises the total mass assigned at each floor and for each plan typology, and its distribution at 

the external and internal nodes. Note that the seismic masses were computed as 𝐺𝑘 + 𝜓𝑒,𝑖𝑄𝑘 (prEN 

1998-1-1 2021), being 𝜓𝑒,𝑖 = 𝜓2 (prEN 1998-1-2 2021) and 𝜓2 = 0.3 (prEN 1990 2022) in the case of 

structures with occupancy category equal to B (offices). Moreover, it should be noted that the masses 

reported in Table 8.5 were derived from the gravity loads, i.e., the masses derived from the self-weight 

of the structure were not included. 

Table 8.5. Vertical loads and masses assigned to the perimeter frames. 

Plan 

Permanent vertical loads [kN]  Live vertical loads [kN]  Seismic masses [Tonnes] 

𝐹𝑏,𝑐𝑜𝑛𝑐  𝐹𝑐,𝑒𝑥𝑡  𝐹𝑐,𝑖𝑛𝑡 𝐹𝑙𝑒𝑎𝑛,𝑐𝑜𝑙  
 

𝐹𝑏,𝑐𝑜𝑛𝑐  𝐹𝑐,𝑒𝑥𝑡  𝐹𝑐,𝑖𝑛𝑡 𝐹𝑙𝑒𝑎𝑛,𝑐𝑜𝑙  
 Tributed 

to frame 

Ext. 

node 

Int. 

node 

T1 18.0 9.0 18.0 648.0  18.0 9.0 18.0 648.0  101.32 12.66 25.33 

T2 18.0 9.0 18.0 864.0  18.0 9.0 18.0 864.0  135.09 16.89 33.77 

T3 18.0 9.0 18.0 648.0  18.0 9.0 18.0 648.0  101.32 9.50 27.44 

T4 18.0 9.0 18.0 756.0  18.0 9.0 18.0 756.0  118.21 11.61 31.66 

8.3.3. Seismic force considerations 

All case studies were designed to resist the same seismic action. The seismic action was calculated 

according to the second revision of the Eurocode 8 but to be equivalent to that considered in the study 

of Lemma et al. (2022) – and computed as prescribed in the current version of Eurocode 8. According 

to prEN 1998-1-1 (2021), the seismic action should be represented by a pseudo-absolute acceleration 

response spectrum. The elastic response spectrum was computed assuming a CC2 consequence class, a 

site category B, a topography amplification factor 𝐹𝑇 equal to 1.0, a reference seismic hazard 𝑆𝛼,𝑟𝑒𝑓 of 

8.5 m/s2, and a 5% damping ratio. The resulting seismic action index 𝑆𝛿 was 10.11 m/s2. As stated in 

prEN 1998-1-1 (2021), MRFs were designed attending to the Significant Damage (SD) limit state and 

assuming a return period of 475 years. The resulting elastic spectrum, shown in Figure 8.3. Figure 8.3 

also shows the reduced spectra for the application of the force-based approach for SD limit state with 

and without lower bounds (adopting a value of 𝛽 = 0.08 given in prEN 1998-1-2 (2021)). It should be 

noted that MRFs studied by Lemma et al. (2022) were also designed to meet the interstorey drift 

limitation at the Damage Limitation (DL) limit state. This is no longer a requirement in prEN 1998-1-

2 (2021), since the return period for DL has changed from 95 to 60 years, which leads to more severe 

limitations in SD than in DL. In any event, drift controls at SD according to prEN 1998-1-2 (2021) are 

similar to those at DL according to the current version of Eurocode 8 (Tartaglia et al. 2022). 
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Figure 8.3. Elastic and reduced (with and without lower bound 𝛽) response spectra at SD limit state. 

8.3.4. Design procedure and analysis considerations 

Perimeter frames were designed according to prEN 1990 (2022), prEN 1993-1-1 (2021), prEN 1993-1-

4 (2021), prEN 1998-1-1 (2021) and prEN 1998-1-2 (2021), following an iterative process. The design 

process is outlined in Figure 8.4, which is based on the design phases proposed by Lemma et al. (2022). 

DC3-S235 frame designs proposed by Lemma et al. were used as a starting point, being the austenitic 

MRFs the first case studies to be modelled. 

 

Figure 8.4. Design process adopted in this study.  
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The structure (i.e., dimensions, material, cross-sections, boundary conditions) and actions (i.e., sway 

imperfections, masses and loads) were modelled in ABAQUS (2016), as explained in Section 8.4 with 

more detail. The optimisation of the final design was achieved by checking its stability (interstorey drift 

values close to, but below, the 2% limit for 𝑑𝑟,𝑆𝐷 were sought, and the second order sensitivity index 

for stainless steel MRFs 𝜃𝑠𝑠 was limited to 0.3) and member resistance in accordance with the 

requirements of the second revision of the Eurocodes. 

The following analyses were carried out: Linear Buckling Analysis (LBA) with the gravity load 

combinations at Ultimate Limit State (ULS) and at the Significant Damage limit state (SD) in seismic 

condition, Geometrical and Material Nonlinear Analysis with Imperfections (GMNIA) at ULS and 

Serviceability Limit State (SLS), frequency analysis, Material Nonlinear Analysis (MNA) for gravity 

loads at SD, and reduced Response Spectrum Analysis (RSA) at SD with and without lower bound. 

Regarding the static design of the stainless steel frames considered, LBA analyses with the gravity load 

combination at Ultimate Limit State (ULS) were performed to determine the instability susceptibility 

of the design 𝛼𝑐𝑟,𝑠𝑤,𝑠𝑠 (note that structures remained in the elastic range for the considered gravity 

actions, so 𝐾𝑠 /𝐾 = 1.0). GMNIA analyses (with ULS and SLS gravity load combinations) were 

conducted to obtain the values of the internal forces and deflections needed to verify the design 

requirements prescribed in prEN 1993-1-1 (2021) and prEN 1993-1-4 (2021). Initial sway 

imperfections were introduced by means of a system of equivalent horizontal forces (i.e., notional 

loads). 

Regarding the seismic design, LBA analyses were performed for the gravity loads at SD limit state to 

determine the amplification factor 𝑘𝑠𝑤,𝑠𝑠 given in Eq. 2.12 by which the horizontal forces (initial 

imperfections) should be multiplied to consider the second order effects in a MNA for gravity loads at 

SD analysis (prEN 1993-1-4 2021). It is worth mentioning that, technically, it is not necessary to 

calculate the 𝑘𝑠𝑤,𝑠𝑠 factor when second order effects are directly taken into account by performing a 

GMNA, but the amplification of horizontal forces (1) is the most widespread approach of those given 

in prEN 1993-1-1 (2021) to consider second order effects in in-plane structures, and (2) it is in line with 

the approach given in prEN 1998-1-2 (2021) to account for second order effects due to seismic actions. 

Note that for relatively low values of the vertical loads, where second order effects are not triggered, as 

is the case, performing a GMNA analysis tends to be less detrimental. MNA analyses were performed 

for gravity loads at SD combination, with the amplified equivalent sway imperfection loads combined 

with the gravity loads, to determine the design internal forces derived from the gravity loads at the 

seismic condition necessary for the resistance verifications. Frequency analyses allowed obtaining the 

fundamental period of the structures. Finally, Response Spectrum Analyses (RSA) were performed to 

determine (1) the design interstorey drifts at the significant damage limit state 𝑑𝑟,𝑆𝐷 (using the reduced 
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spectra at SD without lower bound), and (2) the design internal forces derived from the seismic action 

necessary to determine the second order effect index and perform resistance verifications (using the 

reduced spectra at SD with lower bound). 

The gravity loads were combined according to prEN 1990 (2022). Eq. 8.12, Eq. 8.13 and Eq. 8.14 show 

the gravity load combinations considered for Ultimate Limit State (ULS), Serviceability Limit State 

(SLS) and Significant Damage (SD) limit state for the seismic condition, respectively. 

The design that fulfilled all the requirements was adopted as the final design for austenitic stainless 

steel. It was then re-analysed by changing the material properties to those of ferritic and duplex alloys, 

and making the required cross-section size modifications to achieve efficient and safe designs for these 

stainless steels as well. 

8.4. Numerical modelling 

The characteristics of the numerical models used in this study are described in this section. Unlike other 

software for seismic design reported in the literature (OpenSEES 2006; SeismoStruct 2016), this study 

was performed using the general purpose software ABAQUS (2016), which is widely used in stainless 

steel investigations because the nonlinear stress-strain behaviour can be directly and accurately 

implemented. 

8.4.1. Finite element models 

The models were performed using the general-purpose software ABAQUS (2016). The 2D moment 

resisting frames were designed using 2-noded linear Timoshenko beam elements B21 to ensure 

computational efficiency. An element size of 50 mm was used to discretise the mesh and realistically 

capture the behaviour of the plastic hinges, which is consistent with meshes reported in the literature 

for similar studies (Walport et al. 2019a, 2019b), although a much smaller number of elements per 

structural element may be sufficient to capture the overall behaviour, as mentioned in Section 5.2.1.3. 

Figure 8.5 provides a schematic representation of the finite element models used in this study. As 

shown, the columns were fixed at their bases. The X- and Y-displacements and the relative rotations at 

all beam-to-columns joints were constrained providing full continuity between members. European 

standard IPE and HEB/HEM cross-sections were assigned to the beams and columns, respectively. 

1.35𝐺𝑘 + 1.5𝑄𝑘  Eq. 8.12 

1.0𝐺𝑘 + 1.0𝑄𝑘  Eq. 8.13 

1.0𝐺𝑘 + 0.3𝑄𝑘  Eq. 8.14 
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Figure 8.5. Schematic representation of the 2D FE model and loading scheme used in this study. 

The gravity loads from the tributary area were applied to the moment resisting frame by means of a leaning 

column and represented in grey in Figure 8.5. The leaning column was pin-ended at its base, and it was 

subdivided into as many elastic beam elements as the number of storeys. These elastic beam elements 

were hinged at each end and connected to the adjacent elements through the spring elements available in 

ABAQUS. These spring elements were assigned high stiffness values for the X- and Y-directions, and 

very small stiffness values for rotations so that the elements did not transfer any significant moments to 

the frames. The effects from the gravity loads applied at the leaning column were transferred to the main 

structure by elastic beam elements with spring elements at both ends. The spring elements assured that 

the connecting beams worked as axially rigid. A box-section element available in ABAQUS was assigned 

to all auxiliary elements, providing moments of inertia and areas much larger at the leaning column and 

the links than at the frame columns. As in the principal frame, the leaning column and the connecting 

beams were discretized into 50 mm-long B21 elements. To simulate the effect of a rigid diaphragm, the 

horizontal displacements of all the nodes at a given floor were constrained to the beam-column joint node 

located at the left using the kinematic coupling constraint available in ABAQUS. 

Initial sway imperfections were added to all load combinations by defining a system of equivalent 

horizontal forces (𝐹𝑠𝑤 in Figure 8.5). The out-of-plumbness considered was computed as given in prEN 

1993-1-1 (2021), and forces were amplified as explained in Section 8.3.4. The effects of bow 

imperfections were disregarded, as well as the effects of residual stresses, since their effect was 

implicitly considered in the member verifications carried out according to prEN 1993-1-4 (2021). 

8.4.2. Material models 

The engineering stress-strain curves assigned to the main structure were estimated using the two-stage 

Ramberg-Osgood material model provided in Section 2.3. Table 8.4 summarised the values of the 

Fc,ext Fc,int Fb,conc Flean,col Fb,conc Fb,conc Fb,conc Fb,conc Fb,conc Fb,conc Fb,conc Fc,int Fc,int Fc,ext 

Fsw 

Fc,ext Fc,int Fb,conc Flean,col Fb,conc Fb,conc Fb,conc Fb,conc Fb,conc Fb,conc Fb,conc Fc,int Fc,int Fc,ext 

Fsw 

Fc,ext Fc,int Fb,conc Flean,col Fb,conc Fb,conc Fb,conc Fb,conc Fb,conc Fb,conc Fb,conc Fc,int Fc,int Fc,ext 

Fsw 
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parameters for hot-rolled stainless steels adopted in this study, which were obtained from (Afshan et al. 

2019). A Poisson’s ratio 𝑣 of 0.3 and a density equal to 7930 kg/cm3 were assigned to all the stainless 

steel grades. Engineering stress-strain curves were converted into true stress-strain relationships, as per 

in prEN 1993-1-14 (2021), and cyclic degradation was not taken into account, as it is not relevant for 

new structures (prEN 1998-1-1 2021). 

As mentioned before, the leaning column and the connecting beams behaved elastically. A perfectly 

elastic material with 𝐸 = 210 GPa, 𝑣 = 0.3 was assigned to these members. 

8.4.3. Input actions and analyses 

Concentrated gravity loads reported in Table 8.5 were combined according to the suitable load 

combinations (see Eq. 8.12-Eq. 8.14) and introduced in the model following the loading scheme 

reported in Figure 8.5. The modified Static General method (ABAQUS 2016) was used to obtain the 

internal forces and drifts of the frames under the gravity loads at the static (ULS, SLS) and seismic (SD) 

situations. 

Likewise, masses reported in Table 8.5 were included in the finite element model as concentrated 

masses. A number of modes equal to the number of storeys of the structure, i.e., 3, 6 and 9 modes, were 

considered in the Response Spectrum Analysis (RSA) to assure a minimum cumulative modal 

participation ratio of 90% (prEN 1998-1-1 2021). The modes were summed applying the square-root-

of-sum-of-squares approach (prEN 1998-1-1 2021), and a single direction of the excitation was studied. 

Reduced response spectra (with and without lower bound) were defined in terms of acceleration (mm/s2) 

and frequency (Hz), and input through the acceleration spectra option available in ABAQUS (2016). A 

damping value equal to 0.05 was considered (prEN 1998-1-1 2021). 

8.5. Design results 

The final designs and verification results are presented and assessed in this section. The final designs for 

each material were labelled as [Typology]-[Storeys]-[Stainless steel grade], e.g., "T1-3S-Aus" refers to a 3-

storey portal frame with a T1 floor typology and all structural elements made of austenitic stainless steel. 

8.5.1. Design sections 

Table 8.6, Table 8.7 and Table 8.8 show the selected hot-rolled European sections for austenitic, ferritic 

and duplex stainless steel MRFs, respectively. The profiles are listed per storey and are ordered starting 

from the lowest storey, i.e., from the first to the last storey. For T1 and T2 configurations, all beams of 

the same storey (in both external and internal spans) were designed with the same cross-section, while 
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in cases T3 and T4 the beams of the outermost spans had different cross-sections than the beams of the 

internal spans and are distinguished as (ext) and (int) in the Tables. 

Table 8.6. Design sections for austenitic frame cases. 

Case Beams Exterior columns Interior columns 

T1-3S IPE 360; IPE 300; IPE 270 HEB 240; HEB 240; HEB 240 HEB 400; HEB 400; HEB 400 

T2-3S IPE 400; IPE 360; IPE 330 HEB 400; HEB 360; HEB 320 HEM 300; HEM 300; HEM 280 

T3-3S IPE 300; IPE 270; IPE 270 (ext);  

IPE 360; IPE 360; IPE 330 (int) 

HEB 240; HEB 240; HEB 240 HEB 450; HEB 400; HEB 400 

T4-3S IPE 450; IPE 360; IPE 360 (ext);  

IPE 330; IPE 300; IPE 300 (int) 

HEB 360; HEB 300; HEB 260 HEB 450; HEB 450; HEB 320 

T1-6S IPE 450; IPE 450; IPE 360; IPE 360; IPE 330; 

IPE 330 

HEB 320; HEB 320; HEB 280;  

HEB 280; HEB 260; HEB 260 

HEM 320; HEM 320; HEM 300;  

HEM 300; HEM 280; HEM 280 

T2-6S IPE 500; IPE 500; IPE 400; IPE 400; IPE 360; 

IPE 360 

HEB 450; HEB 450; HEB 400;  

HEB 400; HEB 360; HEB 360 

HEM 340; HEM 340; HEM 340;  

HEM 340; HEM 300; HEM 300 

T3-6S IPE 360; IPE 360; IPE 330; IPE 330; IPE 300; 

IPE 300 (ext); IPE 500; IPE 500; IPE 400; 

IPE 400; IPE 360; IPE 360 (int) 

HEB 300; HEB 300; HEB 280;  

HEB 280; HEB 240; HEB 240 

HEM 360; HEM 360; HEM 340;  

HEM 340; HEM 300; HEM 300 

T4-6S IPE 500; IPE 500; IPE 450; IPE 450; IPE 360; 

IPE 360 (ext); IPE 400; IPE 400; IPE 360; 

IPE 360; IPE 360; IPE 360 (int) 

HEB 450; HEB 450; HEB 450;  

HEB 450; HEB 360; HEB 360 

HEM 340; HEM 340; HEM 320;  

HEM 320; HEM 300; HEM 300 

T1-9S IPE 450; IPE 450; IPE 450; IPE 400; IPE 400; 

IPE 400; IPE 360; IPE 360; IPE 360 

HEB 320; HEB 320; HEB 320;  

HEB 300; HEB 300; HEB 300;  

HEB 280; HEB 280; HEB 280 

HEM 340; HEM 340; HEM 340;  

HEM 320; HEM 320; HEM 320;  

HEM 300; HEM 300; HEM 300 

T2-9S IPE 550; IPE 550; IPE 550; IPE 450; IPE 450; 

IPE 450; IPE 400; IPE 400; IPE 400 

HEB 450; HEB 450; HEB 450;  

HEB 400; HEB 400; HEB 400;  

HEB 360; HEB 360; HEB 360 

HEM 400; HEM 400; HEM 400;  

HEM 360; HEM 360; HEM 360;  

HEM 300; HEM 300; HEM 300 

T3-9S IPE 400; IPE 400; IPE 400; IPE 360; IPE 360; 

IPE 360; IPE 330; IPE 330; IPE 330 (ext); 

IPE 550; IPE 550; IPE 550; IPE 450; IPE 450; 

IPE 450; IPE 400; IPE 400; IPE 400 (int) 

HEB 280; HEB 280; HEB 280;  

HEB 260; HEB 260; HEB 260;  

HEB 240; HEB 240; HEB 240 

HEM 360; HEM 360; HEM 360;  

HEM 320; HEM 320; HEM 320;  

HEM 300; HEM 300; HEM 300 

T4-9S IPE 500; IPE 500; IPE 500; IPE 450; IPE 450; 

IPE 450; IPE 400; IPE 400; IPE 400 (ext); 

IPE 450; IPE 450; IPE 450; IPE 400; IPE 400; 

IPE 400; IPE 360; IPE 360; IPE 360 (int) 

HEB 450; HEB 450; HEB 450;  

HEB 360; HEB 360; HEB 360;  

HEB 320; HEB 320; HEB 320 

HEM 400; HEM 400; HEM 400;  

HEM 360; HEM 360; HEM 360;  

HEM 300; HEM 300; HEM 300 

Table 8.7. Design sections for ferritic frame cases. 

Case Beams Exterior columns Interior columns 

T1-3S IPE 360; IPE 300; IPE 270 HEB 240; HEB 240; HEB 240 HEB 400; HEB 400; HEB 400 

T2-3S IPE 400; IPE 360; IPE 330 HEB 400; HEB 360; HEB 320 HEM 300; HEM 300; HEM 280 

T3-3S IPE 300; IPE 270; IPE 270 (ext); IPE 360; 

IPE 360; IPE 330 (int) 

HEB 240; HEB 240; HEB 240 HEB 450; HEB 400; HEB 400 

T4-3S IPE 400; IPE 360; IPE 360 (ext); IPE 300; 

IPE 300; IPE 300 (int) 

HEB 300; HEB 300; HEB 260 HEB 450; HEB 450; HEB 320 

T1-6S IPE 400; IPE 400; IPE 360; IPE 360; IPE 360; 

IPE 360 

HEB 300; HEB 300; HEB 280; 

HEB 280; HEB 260; HEB 260 

HEB 450; HEB 450; HEB 400;  

HEB 400; HEB 360; HEB 360 

T2-6S IPE 500; IPE 500; IPE 400; IPE 400; IPE 360; 

IPE 360 

HEB 320; HEB 320; HEB 300; 

HEB 300; HEB 300; HEB 300 

HEM 340; HEM 340; HEM 340;  

HEM 340; HEM 340; HEM 340 

T3-6S IPE 330; IPE 330; IPE 300; IPE 300; IPE 300; 

IPE 300 (ext); IPE 500; IPE 500; IPE 400; 

IPE 400; IPE 360; IPE 360 (int) 

HEB 300; HEB 300; HEB 280; 

HEB 280; HEB 240; HEB 240 

HEM 320; HEM 320; HEM 320;  

HEM 320; HEM 300; HEM 300 

T4-6S IPE 500; IPE 500; IPE 400; IPE 400; IPE 360; 

IPE 360 (ext); IPE 400; IPE 400; IPE 360; 

IPE 360; IPE 360; IPE 360 (int) 

HEB 450; HEB 450; HEB 400; 

HEB 400; HEB 360; HEB 360 

HEB 400; HEB 400; HEB 400;  

HEB 400; HEB 400; HEB 400 
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Table 8.7. Design sections for ferritic frame cases (continued). 

Case Beams Exterior columns Interior columns 

T1-9S IPE 450; IPE 450; IPE 450; IPE 400; IPE 400; 

IPE 400; IPE 360; IPE 360; IPE 360 

HEB 320; HEB 320; HEB 320; 

HEB 300; HEB 300; HEB 300; 

HEB 280; HEB 280; HEB 280 

HEM 320; HEM 320; HEM 320;  

HEM 320; HEM 320; HEM 320;  

HEM 300; HEM 300; HEM 300 

T2-9S IPE 550; IPE 550; IPE 550; IPE 450; IPE 450; 

IPE 450; IPE 400; IPE 400; IPE 400 

HEB 400; HEB 400; HEB 400; 

HEB 360; HEB 360; HEB 360; 

HEB 320; HEB 320; HEB 320 

HEM 400; HEM 400; HEM 400;  

HEM 340; HEM 340; HEM 340;  

HEM 300; HEM 300; HEM 300 

T3-9S IPE 400; IPE 400; IPE 400; IPE 360; IPE 360; 

IPE 360; IPE 330; IPE 330; IPE 330 (ext); 

IPE 550; IPE 550; IPE 550; IPE 450; IPE 450; 

IPE 450; IPE 400; IPE 400; IPE 400 (int) 

HEB 280; HEB 280; HEB 280; 

HEB 260; HEB 260; HEB 260; 

HEB 240; HEB 240; HEB 240 

HEM 360; HEM 360; HEM 360;  

HEM 320; HEM 320; HEM 320;  

HEM 300; HEM 300; HEM 300 

T4-9S IPE 500; IPE 500; IPE 500; IPE 450; IPE 450; 

IPE 450; IPE 400; IPE 400; IPE 400 (ext); 

IPE 450; IPE 450; IPE 450; IPE 400; IPE 400; 

IPE 400; IPE 360; IPE 360; IPE 360 (int) 

HEB 400; HEB 400; HEB 400; 

HEB 340; HEB 340; HEB 340; 

HEB 320; HEB 320; HEB 320 

HEM 360; HEM 360; HEM 360;  

HEM 340; HEM 340; HEM 340;  

HEM 300; HEM 300; HEM 300 

Table 8.8. Design sections for duplex frame cases. 

Case Beams Exterior columns Interior columns 

T1-3S IPE 360; IPE 300; IPE 300 HEB 320; HEB 320; HEB 320 HEB 360; HEB 360; HEB 360 

T2-3S IPE 400; IPE 360; IPE 330 HEB 360; HEB 360; HEB 320 HEM 300; HEM 300; HEM 280 

T3-3S IPE 300; IPE 270; IPE 270 (ext); IPE 360; 

IPE 360; IPE 330 (int) 

HEB 320; HEB 320; HEB 260 HEB 360; HEB 360; HEB 360 

T4-3S IPE 360; IPE 360; IPE 360 (ext); IPE 330; 

IPE 330; IPE 300 (int) 

HEB 320; HEB 320; HEB 320 HEM 300; HEM 300; HEM 260 

T1-6S IPE 360; IPE 360; IPE 360; IPE 360; IPE 300; 

IPE 300 

HEB 360; HEB 360; HEB 320; 

HEB 320; HEB 260; HEB 260 

HEB 360; HEB 360; HEB 360;  

HEB 360; HEB 320; HEB 320 

T2-6S IPE 450; IPE 450; IPE 400; IPE 400; IPE 360; 

IPE 360 

HEB 320; HEB 320; HEB 320; 

HEB 320; HEB 320; HEB 320 

HEM 320; HEM 320; HEM 300;  

HEM 300; HEM 280; HEM 280 

T3-6S IPE 300; IPE 300; IPE 270; IPE 270; IPE 270; 

IPE 270 (ext); IPE 450; IPE 450; IPE 400; 

IPE 400; IPE 360; IPE 360 (int) 

HEB 320; HEB 320; HEB 320; 

HEB 320; HEB 240; HEB 240 

HEM 300; HEM 300; HEM 300;  

HEM 300; HEM 260; HEM 260 

T4-6S IPE 450; IPE 450; IPE 400; IPE 400; IPE 360; 

IPE 360 (ext); IPE 360; IPE 360; IPE 330; 

IPE 330; IPE 300; IPE 300 (int) 

HEB 360; HEB 360; HEB 360; 

HEB 360; HEB 320; HEB 320 

HEM 300; HEM 300; HEM 300;  

HEM 300; HEM 260; HEM 260 

T1-9S IPE 450; IPE 450; IPE 450; IPE 360; IPE 360; 

IPE 360; IPE 330; IPE 330; IPE 330 

HEB 360; HEB 360; HEB 360; 

HEB 340; HEB 340; HEB 340; 

HEB 320; HEB 320; HEB 320 

HEM 300; HEM 300; HEM 300;  

HEM 300; HEM 300; HEM 300;  

HEM 280; HEM 280; HEM 280 

T2-9S IPE 500; IPE 500; IPE 500; IPE 450; IPE 450; 

IPE 450; IPE 360; IPE 360; IPE 360 

HEB 360; HEB 360; HEB 360; 

HEB 360; HEB 360; HEB 360; 

HEB 320; HEB 320; HEB 320 

HEM 320; HEM 320; HEM 320;  

HEM 300; HEM 300; HEM 300;  

HEM 280; HEM 280; HEM 280 

T3-9S IPE 360; IPE 360; IPE 360; IPE 360; IPE 360; 

IPE 360; IPE 300; IPE 300; IPE 300 (ext); 

IPE 500; IPE 500; IPE 500; IPE 400; IPE 400; 

IPE 400; IPE 360; IPE 360; IPE 360 (int) 

HEB 320; HEB 320; HEB 320; 

HEB 260; HEB 260; HEB 260; 

HEB 240; HEB 240; HEB 240 

HEM 320; HEM 320; HEM 320;  

HEM 300; HEM 300; HEM 300;  

HEM 280; HEM 280; HEM 280 

T4-9S IPE 500; IPE 500; IPE 500; IPE 450; IPE 450; 

IPE 450; IPE 400; IPE 400; IPE 400 (ext); 

IPE 400; IPE 400; IPE 400; IPE 360; IPE 360; 

IPE 360; IPE 360; IPE 360; IPE 360 (int) 

HEB 360; HEB 360; HEB 360; 

HEB 360; HEB 360; HEB 360; 

HEB 320; HEB 320; HEB 320 

HEM 320; HEM 320; HEM 320;  

HEM 320; HEM 320; HEM 320;  

HEM 280; HEM 280; HEM 280 

The design of the analysed frames is governed by the stability criteria and, as a general rule, the aim 

has been to reduce the dimensions of the beams considered in the reference cases (i.e., carbon steel 

frames reported by Lemma et al. (2022)) as much as possible, since the yield stress of stainless steels is 

higher than that of carbon steel considered as reference, and to increase the column sizes to compensate 

for the lower stiffness of stainless steels. In spite of this, the beams that resulted from the design tended 
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to be significantly oversized because the total stiffness of the frames was greatly affected by the stiffness 

provided by the floors. The final selected cross-sections for austenitic and ferritic low-rise MRFs are in 

line with those reported in (Lemma et al. 2022) for equivalent carbon steel MRFs, since the analyses 

remained in their elastic range and the elastic parameters of stainless and carbon steels are similar, and 

these designs were unaffected by second order effects. However, the design of medium- and high-rise 

structures was affected by second order effects, being more detrimental in the austenitic cases, which 

explains the differences observed in the profiles for the 6S and 9S cases. Finally, the most notable 

differences with respect to the reference profiles were found in the duplex cases: the significantly higher 

yield stress of this material makes several HEB profiles to be no longer classified as class 1, forcing 

their replacement with HEM profiles. 

8.5.2. Results from the seismic analyses 

Table 8.9, Table 8.10 and Table 8.11 show the relevant seismic results obtained from the numerical 

analyses for austenitic, ferritic and duplex MRFs, respectively. In the Tables, 𝑇1 is the fundamental 

period, 𝑉𝑑 is the design base shear force, 𝛼𝑐𝑟,𝑠𝑤,𝑠𝑠 and 𝑘𝑠𝑤,𝑠𝑠 are the instability factor and corresponding 

amplification factor at the SD load combination, ISDRSD is the interstorey drift at the SD limit state, 𝛺𝑑 

is the overdesign factor, 𝜃𝑠𝑠 is the maximum interstorey drift sensitivity index, ISDRSD,2º is the 

interstorey drift at the SD limit state considering second order effects, URc is the maximum utilisation 

ratio for columns, and “Requir.” refers to the design requirement that conditioned the selection of the 

profiles. Note that all cases satisfied the local hierarchy requirement given in Eq. 8.9, because the 

governing design rule was the interstorey drift and the required lateral stiffness of the structures was 

achieved by increasing the inertia of the columns once the weak beam-strong column criterion was 

verified (Tartaglia et al. 2022). 

Table 8.9. Fundamental seismic results for austenitic MRFs. 

Case 
𝑇1  𝑉𝑑 

𝛼𝑐𝑟,𝑠𝑤,𝑠𝑠 𝑘𝑠𝑤,𝑠𝑠 
ISDRSD 

[%] 
𝛺𝑑 𝜃𝑠𝑠 

1

(1 − 𝜃𝑠𝑠)
 

ISDRSD,2º 

[%] 
URc Requir. 

[s] [kN] 

T1-3S 1.09 224 14.89 1.00 2.04 3.03 0.09 1.00 2.04 1.00 SD, UR 

T2-3S 1.08 299 14.97 1.00 2.01 3.38 0.07 1.00 2.01 0.94 SD, UR 

T3-3S 1.04 233 16.54 1.00 1.98 2.92 0.09 1.00 1.98 0.97 SD, UR 

T4-3S 1.02 272 16.95 1.00 1.96 3.21 0.08 1.00 1.96 0.99 SD, UR 

T1-6S 1.74 400 10.67 1.00 1.77 2.20 0.12 1.13 2.00 0.90 SD, UR 

T2-6S 1.79 535 10.07 1.00 1.79 2.26 0.12 1.14 2.04 1.02 SD, UR 

T3-6S 1.72 404 10.98 1.00 1.70 1.99 0.13 1.15 1.96 0.87 SD, UR 

T4-6S 1.72 484 10.91 1.00 1.72 2.35 0.11 1.13 1.94 0.99 SD, UR 

T1-9S 2.43 592 7.74 1.15 1.63 1.65 0.14 1.16 1.90 1.02 SD, UR 

T2-9S 2.47 766 7.65 1.15 1.73 1.75 0.14 1.16 2.02 1.04 SD, UR 

T3-9S 2.37 585 8.32 1.14 1.65 1.68 0.15 1.18 1.95 1.00 SD, UR 

T4-9S 2.45 681 7.65 1.15 1.67 1.56 0.17 1.21 2.02 0.95 SD, UR 
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Table 8.10. Fundamental seismic results for ferritic MRFs. 

Case 
𝑇1  𝑉𝑑 

𝛼𝑐𝑟,𝑠𝑤,𝑠𝑠 𝑘𝑠𝑤,𝑠𝑠 
ISDRSD 

[%] 
𝛺𝑑 𝜃𝑠𝑠 

1

(1 − 𝜃𝑠𝑠)
 

ISDRSD,2º 

[%] 
URc Requir. 

[s] [kN] 

T1-3S 1.09 224 17.59 1.00 2.04 3.55 0.07 1.00 2.04 0.89 SD, UR 

T2-3S 1.08 299 17.69 1.00 2.01 3.99 0.05 1.00 2.01 0.83 SD 

T3-3S 1.04 233 19.54 1.00 1.98 3.38 0.07 1.00 1.98 0.84 SD 

T4-3S 1.08 261 18.15 1.00 2.01 3.68 0.07 1.00 2.01 0.97 SD, UR 

T1-6S 1.81 401 11.22 1.00 1.90 2.40 0.10 1.00 1.90 0.88 SD, UR 

T2-6S 1.90 533 10.69 1.00 1.91 2.40 0.10 1.00 1.91 0.82 SD 

T3-6S 1.81 405 11.60 1.00 1.80 2.08 0.11 1.13 2.03 0.73 SD 

T4-6S 1.82 469 11.38 1.00 1.83 2.38 0.10 1.11 2.03 0.92 SD, UR 

T1-9S 2.44 594 9.01 1.12 1.63 1.91 0.12 1.14 1.86 0.88 SD, UR 

T2-9S 2.47 766 9.04 1.12 1.76 2.01 0.11 1.12 1.98 0.90 SD, UR 

T3-9S 2.37 585 9.84 1.11 1.65 1.94 0.11 1.13 1.86 0.83 SD 

T4-9S 2.50 686 8.65 1.13 1.69 1.78 0.13 1.15 1.95 0.84 SD 

Table 8.11. Fundamental seismic results for duplex MRFs. 

Case 
𝑇1  𝑉𝑑 

𝛼𝑐𝑟,𝑠𝑤,𝑠𝑠 𝑘𝑠𝑤,𝑠𝑠 
ISDRSD 

[%] 
𝛺𝑑 𝜃𝑠𝑠 

1

(1 − 𝜃𝑠𝑠)
 

ISDRSD,2º 

[%] 
URc Requir. 

[s] [kN] 

T1-3S 1.06 229 17.24 1.00 1.99 6.61 0.04 1.00 1.99 0.88 SD, UR 

T2-3S 1.10 297 16.07 1.00 2.02 7.17 0.03 1.00 2.02 0.86 SD, UR 

T3-3S 1.08 226 16.89 1.00 2.03 5.59 0.05 1.00 2.03 0.76 SD 

T4-3S 1.09 262 16.56 1.00 2.05 6.60 0.04 1.00 2.05 0.80 SD 

T1-6S 2.02 400 8.34 1.14 2.03 3.53 0.10 1.00 2.03 0.80 SD 

T2-6S 2.05 535 8.35 1.14 1.99 3.94 0.08 1.00 1.99 0.78 SD 

T3-6S 2.00 399 8.79 1.13 1.98 3.17 0.10 1.00 1.98 0.58 SD 

T4-6S 2.04 465 8.42 1.13 2.01 3.54 0.09 1.00 2.01 0.67 SD 

T1-9S 2.62 575 7.44 1.16 1.86 2.87 0.10 1.00 1.86 0.60 SD 

T2-9S 2.73 771 6.84 1.17 1.74 3.26 0.10 1.11 1.94 0.88 SD, UR 

T3-9S 2.64 577 7.33 1.16 1.78 2.66 0.11 1.12 2.00 0.68 SD 

T4-9S 2.69 687 6.81 1.17 1.80 2.82 0.11 1.13 2.02 0.80 SD 

The obtained values of the fundamental periods and the design base shear forces are reasonable, and in 

the range of those published by Lemma et al. (2022). The fundamental periods ranged from 1.02 to 2.73 

s, with the highest values being aligned with the tallest structures. As expected, the frames designed 

with the same profiles, i.e., the austenitic and ferritic T1-3S, T2-3S and T3-3S structures, showed the 

same 𝑇1 and 𝑉𝑑 values. The lowest values of the fundamental period were obtained for the austenitic 

cases since these structures were the ones with the lowest lateral stiffness. Furthermore, higher values 

for 𝑉𝑑 were associated with high values of fundamental periods and masses, which explains the fact 

that the highest values of 𝑉𝑑 were exhibited by the austenitic and ferritic T2-9S cases, but not by T2-

9S-Dup, as it has a lower amount of mass due to a lower self-weight. 

In the 3S cases, the highest values of 𝛼𝑐𝑟,𝑠𝑤,𝑠𝑠 were exhibited by the ferritic MRFs, followed by the 

duplex and the austenitic MRFs, which is in line with the values that the 𝑌 factor assumed for each 

stainless steel. In the 6S and 9S MRFs, the ferritic cases still exhibited the highest values of 𝛼𝑐𝑟,𝑠𝑤,𝑠𝑠, 
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followed by the austenitic and duplex MRFs, which showed the lowest values. It should be noted that 

the stability and resistance verifications at duplex frames were rarely affected by the Merchant-Rankine 

amplification factor 1/(1 − 𝜃𝑠𝑠) due to the high values of 𝜔𝑟𝑚 and 𝛺𝑑.  

As explained in Section 8.3.4, interstorey drifts between 1.9 and 2.0 % were sought during the design 

process (see ISDRSD,2º values). Note that the ISDRSD values reported in the Tables were obtained from 

the RSA analyses, and do not consider second order effects, while the ISDRSD,2º values correspond to 

the actual interstorey drift indices, i.e., they were obtained by multiplying the ISDRSD values by the 

factor 1/(1 − 𝜃𝑠𝑠), as prescribed in prEN 1998-1-2 (2021). 

The value of the beam-overdesign factor 𝛺𝑑 indicates the oversizing of the structure in terms of 

resistance. As shown in the Tables, the values of 𝛺𝑑 ranged from 1.56 to 3.38 for the austenitic cases, 

from 1.63 to 3.99 for the ferritic frames, and from 1.74 to 7.17 for duplex MRFs. As expected, the 

highest values were usually obtained for the structures with the lowest height (3S) and longest spans 

(T2). The values of 𝛺𝑑 for austenitic frames were in line with those reported in (Lemma et al. 2022) for 

DC3 carbon steel MRFs designed according to prEN 1998-1-2 (2021), where 𝛺𝑑 adopts values between 

1.50 and 3.0, approximately. Alternatively, ASCE 7 (2016) considers a constant value of 𝛺𝑑 = 3.0. 

Since the design of the frames was governed by the interstorey drift calculated in the elastic regime, 

and the lateral stiffness of the structure is actually influenced by the inertia of the beams, slightly higher 

values of 𝛺𝑑 were obtained for the ferritic cases, while 𝛺𝑑 adopted overly conservative values for 

duplex structures. 

Second order effects, which are evaluated by the stability index 𝜃𝑠𝑠, were negligible in all 3S cases, as 

well as in 6S-Dup cases (𝜃𝑠𝑠 < 0.1). The highest values of 𝜃𝑠𝑠 were obtained for 9S-Aus structures. 

For all cases, 𝜃𝑠𝑠 < 0.2, so the second order effects were considered by multiplying the seismic action 

effects by the Merchant-Rankine factor 1/(1 − 𝜃𝑠𝑠). A trend between the 𝑘𝑠𝑤,𝑠𝑠 and the 1/(1 − 𝜃𝑠𝑠) 

factor can be drawn, even if a clear relationship cannot be established because 𝜃𝑠𝑠 depends on the beam-

overdesign factor 𝛺𝑑 and the displacement 𝑑𝑟,𝑆𝐷. The obtained 𝜃𝑠𝑠 values were in line with the values 

published in recent studies for carbon steel MRFs (Tartaglia et al. 2019, 2022; Lemma et al. 2022). It 

should be highlighted that if the 𝑌 factor is not considered (i.e., Eq. 8.6 is used instead of the proposed 

expression Eq. 8.11), the resulting stability indexes 𝜃𝑠𝑠 would be below 0.1 in all cases, which would 

be unsafe and unreasonable since stainless steels are more affected by second order effects than carbon 

steels. 

Finally, regarding the verification of column resistance, it is worth noting that austenitic cases were the 

most optimised ones, with utilisation ratio URc values close to unity – and never higher than 1.05%. 

Obviously, the governing design requirement was the interstorey drift at the SD limit state in all cases, 

but the verification of column resistance URc was also observed to be at the limit (i.e., URc > 0.85) in 
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all austenitic cases and in several ferritic cases, while the high strength capabilities exhibited by duplex 

stainless steels explain why the URc requirements rarely conditioned the final design in these cases. 

8.6. Performance assessment: behaviour factors for stainless steel 

The actual behaviour factors of the case studies have been estimated in this study to assess the suitability 

of carbon steel behaviour factors proposed by prEN 1998-1-2 (2021) for stainless steel structures. This 

section presents the assumptions considered in this study for the calculation of the individual behaviour 

factors (𝑞𝑅, 𝑞𝑆, 𝑞𝐷), as well as the corresponding results.  

8.6.1. Overview of the decomposition of the behaviour factor 

It is well-assumed that the behaviour factor should consider the reserve of strength due to the 

redundancy of the structure and the oversizing in the elements, the energy dissipation capacity of the 

structure (ductility), and the structural damping (Uang et al. 1991; Whittaker et al. 1999; Zeris et al. 

2014; Ferraioli et al. 2014; Castiglioni et al. 2017; Vamvatsikos et al. 2020). Based on this definition, 

the overall behaviour factor can be expressed as shown in Eq. 8.15, where 𝑞𝛺 is the general overstrength 

factor – 𝑞𝛺 can be split into the 𝑞𝑅 factor, which accounts for the overstrength due to the redistribution 

of seismic action effects in redundant structures, and the 𝑞𝑆 factor, which accounts for the overstrength 

due to other sources –, 𝑞𝐷 is the factor pertinent to ductility, and 𝑞𝜁 is the factor that reflects the 

influence of damping effects. It should be noted that the same damping values are generally considered 

for elastic and inelastic analyses (𝑞𝜁=1) (Whittaker et al. 1999; Zeris et al. 2014; Ferraioli et al. 2014; 

Castiglioni et al. 2017), which results in the computation of the behaviour factor proposed by prEN 

1998-1-2 (2021) (see Eq. 8.2). 

Due to the impact of the behaviour factor in seismic design, significant research has been devoted to 

the accurate formulation of each individual factor expressed in Eq. 8.15. According to Newmark and 

Hall (1982), the overdesign factor 𝑞𝑅 can be estimated as per in Eq. 8.16 as the ratio of the shear force 

at which the global inelastic behaviour initiates 𝑉𝑦 and the shear force at which the first local yielding 

occurs at any member 𝑉1,𝑦. In addition, when the fundamental period is higher than 0.5 s (Castiglioni 

et al. 2017), the ductility factor 𝑞𝐷 can be defined in terms of the horizontal displacements as given in 

Eq. 8.17, i.e., as the ratio of the inelastic ∆𝑢 and elastic ∆𝑦 drift values at the ultimate resistance. 

𝑞 =  𝑞𝛺 ∙ 𝑞𝐷 ∙ 𝑞𝜁 = (𝑞𝑅 ∙ 𝑞𝑆) ∙ 𝑞𝐷 ∙ 𝑞𝜁  Eq. 8.15 

𝑞𝑅 =  
𝑉𝑦

𝑉1,𝑦
  Eq. 8.16 

𝑞𝐷 =  
∆𝑢

∆𝑦
  Eq. 8.17 
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Considering that the general overstrength behaviour factor 𝑞𝛺 may account for the reserve in resistance 

from the ultimate state 𝑉𝑢 to the design base shear 𝑉𝑑, and that 𝑞𝛺 = 𝑞𝑅 ∙ 𝑞𝑆, the estimation of the term 

pertinent to the overstrength due to other sources 𝑞𝑆 can be computed as given in Eq. 8.18, i.e., as the 

ratio of the resistance at which the first local yielding occurs at any member and the design base shear 

(Lemma et al. 2022; Tartaglia et al. 2022).  

Consequently, the overall behaviour factor can be computed as given in Eq. 8.19.  

prEN 1998-1-2 (2021) explicitly defines the 𝑞𝑅 factor as the ratio of the resistance value by which the 

horizontal seismic design action needs to be multiplied in order to first reach the resistance of a 

dissipative zone in any member in the structure and the resistance value by which the horizontal seismic 

design action needs to be multiplied, in order to form dissipative zones in a number of sections sufficient 

for the development of overall structural (plastic) instability, which may be obtained from a nonlinear 

static analysis. In other words, Eurocode adopts the definition proposed by Newmark and Hall (1982) 

for 𝑞𝑅. However, the second revision of Eurocodes does not prescribe any formulae for estimating the 

values of 𝑞𝐷 and 𝑞𝑆. 

8.6.2. Nonlinear static response and criteria for the bilinear approximation 

Several approaches are available in the literature to estimate the actual behaviour factor of structures 

(Mazzolani and Piluso 1996). Among the most common are the nonlinear static (pushover) analyses 

and nonlinear time-history analyses, which generally lead to similar results (Lemma et al. 2022; 

Tartaglia et al. 2022). Nonlinear static analyses are carried out under constant vertical loads and 

monotonically increasing lateral loads. prEN 1998-1-1 (2021) states that the lateral loads should be 

distributed according to the pattern of the fundamental mode of vibration and calculated as functions of 

the total mass of each storey. Although the assumptions that the response of structures is governed by 

a single mode and that the mode shape remains constant through the whole-time history response are 

not completely accurate, the resulting resistance-displacement responses can be considered as accurate 

for regular medium-height structures (Krawinkler and Seneviratna 1998). To compute the behaviour 

factor value, the inelastic resistance-displacement response obtained from the pushover analysis may 

be idealised into a bilinear response defined by the three pair of points shown in Eq. 8.19, i.e., the first 

local yielding point 𝑉1,𝑦, the yielding point 𝑉𝑦 and the ultimate state point 𝑉𝑢. However, there is no 

𝑞𝑆 =  
𝑉1,𝑦

𝑉𝑑
  Eq. 8.18 

𝑞 =  𝑞𝑅 ∙ 𝑞𝐷 ∙ 𝑞𝑆 ∙ 𝑞𝜁 =
𝑉𝑦

𝑉1,𝑦
∙

∆𝑢

∆𝑦
∙

𝑉1,𝑦

𝑉𝑑
  Eq. 8.19 
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consensus on the definition of these points from the results of the pushover analysis (Castiglioni et al. 

2017). prEN 1998-1-1 (2021) states that the force-deformation capacity curve may be idealised into a 

bilinear relationship similar to that shown in Figure 8.6. In Figure 8.6, the elastic stiffness 𝑘∗ is the 

secant stiffness to the point of the capacity curve where the first yielding of the primary structure occurs, 

and the yielding displacement ∆𝑦 is computed as given in Eq. 8.20, where 𝑉𝑢 is the force at ultimate 

state, ∆𝑢 is the displacement that corresponds to 𝑉𝑢 and 𝐸∗
 is the area under the transformed curve up 

to 𝑉𝑢. According to prEN 1998-1-1 (2021), the ultimate state (𝑉𝑢, ∆𝑢) may correspond in any primary 

member, to ultimate local deformation in a ductile post-elastic mechanism, or to a brittle failure, or a 

failure governed by the instability of the whole structure, whichever occurs first. Instability can be 

assumed to occur when interstorey drift exceeds 4%. 

 

Figure 8.6. Pushover curve bilinear idealisation prescribed in prEN 1998-1-1 (2021). 

The idealisation prescribed by prEN 1998-1-1 (2021) has been simplified in recent studies, where 

performance factors for SMRF design according to the second generation of Eurocode 8 were evaluated. 

Thus, Figure 8.7 shows a typical pushover curve and the bilinear idealisation responses proposed by Lemma 

et al. (2022) and Tartaglia et al. (2022). At shown, in both studies the first significant yielding point is the 

point where the inelastic behaviour onsets, and the yielding point is the intersection point of the initial tangent 

slope and the shear force at the ultimate limit state (𝑉𝑦 = 𝑉𝑢). The ultimate limit state in the first model 

(Lemma et al. 2022) is reached when one of these phenomena occurs: the columns buckle, the ultimate shear 

capacity is reached (𝑉𝑢,𝑚𝑎𝑥), or the 4% maximum interstorey drift is exceeded (𝑉𝑢,4%). The ultimate limit 

state in (Tartaglia et al. 2022), which is based on work reported in (FEMA P-695 2016), is determined by 

the ultimate base shear capacity 𝑉𝑢,𝑚𝑎𝑥, and 𝑞𝐷 is the ratio of the horizontal displacement corresponding to 

a base shear resistance equal to 0.8𝑉𝑢,𝑚𝑎𝑥 and the elastic displacement at the ultimate resistance. 
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2𝐸∗ − 𝑉𝑢 ∙ ∆𝑢

𝑘∗ ∙ ∆𝑢 − 𝑉𝑢
  Eq. 8.20 
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Figure 8.7. Pushover curve bilinear idealisations followed by Lemma et al. (2022) and Tartaglia et al. (2022). 

8.6.3. Criteria adopted for the estimation of the actual behaviour factors for stainless steel 

MRFs 

In this study, the actual behaviour factors of stainless steel frames were estimated by performing 

pushover analyses in ABAQUS (2016). In these analyses, the loading was applied in two steps: first, 

the structures were subjected to gravity loads (and sway imperfections); second, the lateral forces were 

applied and amplified monotonically until the ultimate base shear capacity was reached. The lateral 

forces were distributed among the floors following the modal pattern, i.e., the first mode of vibration, 

as established in prEN 1998-1-1 (2021). A modified Riks method available in ABAQUS (2016) was 

used to plot the full shear force-top displacement responses of the MRFs. As a sample, Figure 8.8 shows 

the pushover responses obtained for T1-3S cases. The pushover curves were idealised in bilinear 

responses assuming the criteria considered by Lemma et al. (2022). To this purpose, it was necessary 

to identify the load levels at which the design strength was reached, the first yielding of any member 

happened, and the structure collapsed. While the first state was easy to identify, the last two may be 

subject to discussion. 

 

Figure 8.8. Pushover responses for T1-3S cases. 
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According to prEN 1998-1-1 (2021), for structures other than reinforced concrete and steel, given a force-

deformation relationship, the first yielding of the primary structures denotes the point where the first member 

enters in the nonlinear range. However, the nonlinear behaviour of stainless steels complicates the 

determination of yielding in stainless steel cross-sections (see Section 5.4.1). According to the literature, a 

stainless steel section can be considered to yield when it reaches one of the following bending moment 

values: 𝑀𝑒𝑙, 𝑀02 and 𝑀𝑝𝑙. The elastic bending moment resistance 𝑀𝑒𝑙 is computed as 𝑀𝑒𝑙 = 𝑊𝑒𝑙·𝑓𝑦, being 

𝑊𝑒𝑙 is the elastic section modulus, while 𝑀02 is the moment at which the maximum normal tensile stress is 

equal to the yield stress 𝑓𝑦. For carbon steel 𝑀02 is equal to 𝑀𝑒𝑙, but in materials showing nonlinear stress-

strain responses such as stainless steels, it has to be estimated by integrating the nonlinear stress distribution 

of the cross-section (Real and Mirambell 2005). Finally, the plastic bending moment resistance 𝑀𝑝𝑙 is 

computed as 𝑀𝑝𝑙 = 𝑊𝑝𝑙·𝑓𝑦, being 𝑊𝑝𝑙 the plastic section modulus. In an effort to be consistent with the 

carbon steel approach, two first yielding states were identified in this study: the first time the elastic moment 

𝑀𝑒𝑙 is reached at any member, and the first time the plastic bending moment 𝑀𝑝𝑙 is reached at any member. 

However, it should be remembered that the identification of the first yielding state (𝑉1,𝑦, Δ1,𝑦) does not 

influence the value of the global behaviour factor (see Eq. 8.19). 

Similarly, two different ultimate states were identified in the pushover curves: the first ultimate state 

was associated with the limitation of the interstorey drift to 4%, while the second ultimate state was 

associated with achieving the ultimate base shear capacity (Tartaglia et al. 2022). Note that class 1 

cross-sections guarantee the redistribution of internal forces up to high action levels, but cross-sections 

are susceptible to buckle once their capacity is exceeded – and local buckling is one of the reasons to 

consider the ultimate limit state of frames (prEN 1998-1-1 2021). Beam-type finite elements (ABAQUS 

2016) are unable to reproduce local buckling, so in this study the strain limit method (see Section 2.4.2) 

was adopted to estimate the local failure of the structural members. 

8.6.4. Results of the actual behaviour factors for stainless steel MRFs 

Table 8.12, Table 8.13 and Table 8.14 show the relevant values of the force-displacement results obtained 

from the pushover analyses for austenitic, ferritic and duplex MRFs, respectively. In the Tables, 𝑉𝑑 and ∆𝑑 

are the design base shear force and corresponding displacement (𝑉𝑑), 𝑉1,𝑀𝑒𝑙 and ∆1,𝑀𝑒𝑙 are the shear base 

force and corresponding displacement when the first member reaches its 𝑀𝑒𝑙 capacity, 𝑉1,𝑀𝑝𝑙 and ∆1,𝑀𝑝𝑙 

are the shear base force and corresponding displacement when the first member reaches its 𝑀𝑝𝑙 capacity, 

𝑉𝑢,4% and ∆𝑢,4% are the shear base force and corresponding displacement when the interstorey drift reaches 

the 4% limit (ISDR4%), and 𝑉𝑢,𝑚𝑎𝑥, ∆𝑢,𝑚𝑎𝑥 and ISDRmax are the shear base force, corresponding 

displacement and corresponding interstorey drift when the ultimate base shear capacity is reached. As 

shown, the design state 𝑉𝑑 was reached significantly before the state associated with the first yielding 𝑀𝑒𝑙 

for all frames, and hence 𝑀𝑝𝑙, while the state associated with the first yielding 𝑀𝑝𝑙 was remarkably close to 
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the ultimate state associated to the ISDR4%, with 𝑉1,𝑀𝑝𝑙/𝑉𝑢,4% ratios ranging from 0.71 to 0.93. In all the 

cases analysed, ultimate base shear capacity was reached after exceeding the ultimate state recommended in 

the standard (ISDR4%): while the austenitic and ferritic cases exhibited ISDRmax values close to 4%, with 

mean values of 6.2% and 6.3%, duplex MRFs exhibited ISDRmax values close to 10%. For the ultimate limit 

state associated with the ISDR4%, reasonable values were obtained for both compressive and tensile strains, 

much smaller than the strain limit defined by the CSM, 𝜀𝑐𝑠𝑚, with maximum compressive strains of 1.62𝜀𝑦 

observed in T1-3S-Dup and maximum tensile strains of 6.37𝜀𝑦 observed in T1-9S-Dup. Similarly, for the 

ultimate limit state associated with ISDRmax, the compressive strains were lower than 𝜀𝑐𝑠𝑚, with maximum 

a compressive strain of 4.13𝜀𝑦 observed in T1-3S-Dup, and a maximum tensile strain of 9.43𝜀𝑦 observed in 

T1-9S-Dup. Note that the strain limit values commonly adopted for class 1 cross-sections are 6𝜀𝑦 in the case 

of compression and 2% in the case of tension for plastic design. In the accidental case of fire, the Eurocode 

limits the maximum tensile strain to 2% as well. 

Table 8.12. Fundamental resistance-displacement pushover results for austenitic MRFs. 

Case 
𝑉𝑑 ∆𝑑 𝑉1,𝑀𝑒𝑙  ∆1,𝑀𝑒𝑙 𝑉1,𝑀𝑝𝑙 ∆1,𝑀𝑝𝑙 𝑉𝑢,4% ∆𝑢,4% 𝑉𝑢,𝑚𝑎𝑥 ∆𝑢,𝑚𝑎𝑥  

ISDRmax 
[kN] [mm] [kN] [mm] [kN] [mm] [kN] [mm] [kN] [mm] 

T1-3S 224 32 642 102 848 176 981 365 1006 645 6.8% 

T2-3S 299 34 867 108 1099 159 1383 345 1450 705 7.7% 

T3-3S 233 31 662 96 975 221 1061 365 1094 686 7.2% 

T4-3S 272 30 805 95 1098 156 1358 365 1409 759 7.9% 

T1-6S 400 81 784 171 955 240 1245 590 1297 1019 6.5% 

T2-6S 535 88 1039 184 1300 268 1647 644 1682 962 5.7% 

T3-6S 404 79 724 150 912 213 1278 625 1315 989 5.9% 

T4-6S 484 80 957 171 1167 239 1531 653 1557 940 5.5% 

T1-9S 592 155 859 242 1027 339 1229 807 1238 977 4.8% 

T2-9S 766 160 1153 257 1390 354 1740 837 1779 1221 5.8% 

T3-9S 585 147 871 228 1053 305 1365 786 1390 1108 5.5% 

T4-9S 681 159 1020 238 1244 333 1442 834 1457 1059 5.0% 

Table 8.13. Fundamental resistance-displacement pushover results for ferritic MRFs. 

Case 
𝑉𝑑 ∆𝑑 𝑉1,𝑀𝑒𝑙  ∆1,𝑀𝑒𝑙 𝑉1,𝑀𝑝𝑙 ∆1,𝑀𝑝𝑙 𝑉𝑢,4% ∆𝑢,4% 𝑉𝑢,𝑚𝑎𝑥  ∆𝑢,𝑚𝑎𝑥 

ISDRmax 
[kN] [mm] [kN] [mm] [kN] [mm] [kN] [mm] [kN] [mm] 

T1-3S 224 35 660 107 920 190 1053 342 1091 654 7.1% 

T2-3S 299 34 986 117 1283 175 1574 342 1654 728 7.9% 

T3-3S 233 31 725 99 1145 254 1206 361 1246 702 7.4% 

T4-3S 261 32 772 97 1079 150 1379 363 1420 680 7.1% 

T1-6S 401 85 819 179 1012 250 1280 576 1309 866 5.8% 

T2-6S 533 98 1061 202 1349 289 1701 603 1758 968 6.0% 

T3-6S 405 87 730 161 955 230 1332 608 1381 989 6.0% 

T4-6S 469 88 941 181 1183 249 1561 626 1593 923 5.6% 

T1-9S 594 156 979 266 1183 370 1389 799 1405 1032 5.1% 

T2-9S 766 163 1267 276 1589 388 1917 750 2001 1270 6.9% 

T3-9S 585 146 978 248 1229 338 1555 777 1599 1190 5.9% 

T4-9S 686 164 1062 262 1315 365 1591 816 1611 1059 5.1% 
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Table 8.14. Fundamental resistance-displacement pushover results for duplex MRFs. 

Case 
𝑉𝑑 ∆𝑑 𝑉1,𝑀𝑒𝑙  ∆1,𝑀𝑒𝑙 𝑉1,𝑀𝑝𝑙 ∆1,𝑀𝑝𝑙 𝑉𝑢,4% ∆𝑢,4% 𝑉𝑢,𝑚𝑎𝑥  ∆𝑢,𝑚𝑎𝑥  

ISDRmax 
[kN] [mm] [kN] [mm] [kN] [mm] [kN] [mm] [kN] [mm] 

T1-3S 229 33 1259 193 1564 273 1732 348 2009 1016 10.8% 

T2-3S 297 34 1773 222 2132 297 2298 348 2771 1037 11.4% 

T3-3S 226 32 1185 176 1523 259 1732 344 2008 988 10.5% 

T4-3S 262 32 1506 196 1858 266 2115 344 2522 1064 11.3% 

T1-6S 400 109 1217 352 1520 509 1641 620 1827 1270 8.1% 

T2-6S 535 114 1710 387 2024 504 2240 629 2586 1427 9.1% 

T3-6S 399 106 1103 304 1346 399 1674 621 1994 1605 10.2% 

T4-6S 465 111 1390 352 1664 461 1920 628 2254 1519 9.5% 

T1-9S 575 182 1399 469 1627 591 1870 816 2114 2056 10.5% 

T2-9S 771 204 2029 570 2360 722 2632 936 2849 1725 7.9% 

T3-9S 577 183 1316 432 1560 538 1974 886 2159 1861 9.2% 

T4-9S 687 191 1620 473 1903 601 2209 857 2403 1663 8.2% 

 

The values of the design resistance (𝑉𝑑), first yielding resistances at 𝑀𝑒𝑙 and 𝑀𝑝𝑙 (𝑉1,𝑀𝑒𝑙,𝑉1,𝑀𝑝𝑙) and 

ultimate state resistance at ISDR4% (𝑉𝑢,4%) reported in Table 8.12, Table 8.13 and Table 8.14 were used 

to compute the individual overstrength (𝑞𝑅 and 𝑞𝑆) behaviour factors using Eq. 8.16 and Eq. 8.18. 

Figure 8.9 shows the calculated values of 𝑞𝑅 and 𝑞𝑆 for (a) austenitic, (b) ferritic and (c) duplex MRFs. 

Values prescribed by prEN 1998-1-2 (2021), i.e., 𝑞𝑅=1.3 and 𝑞𝑆=1.5 are also plotted. As shown, the 

scatter in 𝑞𝑅 is low compared to the scatter observed in 𝑞𝑆 values. It should be remembered that 𝑞𝑅 

depends on the structure typology, while 𝑞𝑆 is associated with the oversizing of the structural members. 

In fact, those case studies that showed notable higher 𝑞𝑆 values were the one with values of 𝛺𝑑> 3.0 

(i.e., 3S cases). Based on the results shown in Figure 8.9, it can be concluded that the values of 𝑞𝑅 and 

𝑞𝑆 resulting from the consideration of the first yielding state when achieving 𝑀𝑒𝑙 at any beam for the 

first time are more consistent with the values prescribed in the Eurocode for carbon steel frames than 

those considering the first yielding state for 𝑀𝑝𝑙. Thus, the first yield state is hereafter referred to as the 

first time any member reaches its 𝑀𝑒𝑙 capacity. 

Table 8.15 presents the values of the individual and general behaviour factors obtained for all the case 

studies. The values were estimated as indicated in Eq. 8.19, and using the 𝑉𝑑, 𝑉1,𝑀𝑒𝑙, 𝑉𝑢,4%, ∆1,𝑀𝑒𝑙, 

∆𝑢,4% values reported in Table 8.13-Table 8.14. 𝑉𝑦 and ∆𝑦 were estimated as indicated in Figure 8.7, 

i.e., as the intersection point of the initial tangent slope and a horizontal line at the ultimate limit state. 

Table 8.15 also provides the mean values and coefficients of variation (COV) for the different 

components of 𝑞. 
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     (a)              (b) 

 
        (c) 

Figure 8.9. Numerical 𝑞𝑅 and 𝑞𝑆 behaviour factors for (a) austenitic, (b) ferritic and (c) duplex stainless steel 

frames and tabulated values given in prEN 1998-1-2 (2021). 

 

Table 8.15. Behaviour factor values from pushover analyses (up to ISDR4%). 

Case 
 Austenitic  Ferritic  Duplex 

 𝑞𝑅 𝑞𝐷 𝑞𝑆 𝑞  𝑞𝑅 𝑞𝐷 𝑞𝑆 𝑞  𝑞𝑅 𝑞𝐷 𝑞𝑆 𝑞 

T1-3S  1.53 2.57 2.87 11.29  1.60 2.10 2.95 9.90  1.38 1.40 5.49 10.58 

T2-3S  1.60 2.19 2.90 10.14  1.60 1.91 3.30 10.06  1.30 1.30 5.97 10.10 

T3-3S  1.60 2.61 2.84 11.88  1.66 2.27 3.11 11.77  1.46 1.41 5.23 10.75 

T4-3S  1.69 2.41 2.95 12.02  1.79 2.13 2.96 11.28  1.40 1.32 5.75 10.65 

T1-6S  1.59 2.34 1.96 7.29  1.56 2.12 2.04 6.78  1.35 1.39 3.04 5.70 

T2-6S  1.59 2.37 1.94 7.30  1.60 1.92 1.99 6.12  1.31 1.32 3.20 5.53 

T3-6S  1.77 2.50 1.79 7.89  1.82 2.11 1.81 6.95  1.52 1.40 2.76 5.88 

T4-6S  1.60 2.57 1.98 8.14  1.66 2.14 2.01 7.13  1.38 1.37 2.99 5.65 

T1-9S  1.43 2.51 1.45 5.22  1.42 2.19 1.65 5.12  1.34 1.38 2.43 4.49 

T2-9S  1.51 2.31 1.51 5.24  1.51 1.84 1.66 4.60  1.30 1.34 2.63 4.58 

T3-9S  1.57 2.30 1.49 5.36  1.59 2.00 1.67 5.32  1.50 1.41 2.28 4.83 

T4-9S  1.41 2.48 1.50 5.26  1.50 2.14 1.55 4.97  1.36 1.40 2.36 4.49 

Mean  1.57 2.43 2.10 8.09  1.61 2.07 2.22 7.50  1.38 1.37 3.68 6.94 

COV  0.059 0.052 0.281 0.314  0.068 0.060 0.283 0.329  0.052 0.027 0.381 0.372 
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As discussed above, 𝑞𝑅 depends on the typology of the steel MRF. In the case of multi-storey moment 

resisting steel frames, for both DC2 and DC3 designs and even for aluminium MRFs, prEN 1998-1-2 

(2021) proposes a value of 𝑞𝑅 =1.3. In the case studies, the factor 𝑞𝑅 exhibited a low dispersion 

(regardless the height of the structure) and showed similar values for austenitic and ferritic frames, but 

lower values for duplex structures. Nevertheless, all values obtained are higher than 1.3, being the mean 

values 1.57, 1.61 and 1.38 for austenitic, ferritic and duplex frames, respectively. These values of 𝑞𝑅 

are consistent with the stress-strain behaviour of the different grades. The austenitic grades are the most 

ductile stainless steels and have the lowest yield stress. The latter condition favours a more coherent 

relationship between the conventional design (governed by the vertical load resistance) and the seismic 

design (governed by the lateral stiffness). The achievement of 𝑉𝑢,4% occurred sooner for the austenitic 

cases than for the ferritic ones (with higher 𝑓𝑦 values), which explains the slightly lower values of 𝑞𝑅 

for the austenitic frames than for the ferritic MRFs. The design of the duplex MRFs (which have the 

highest 𝑓𝑦 values) was conditioned by the lateral stiffness, so their members were oversized for vertical 

actions, showing the highest values of 𝑉1,𝑀𝑒𝑙. This, together with the definition of the ultimate limit 

state at ISDR4% and not at the maximum capacity of the structure, explains why the 𝑉𝑢,4% values are 

closer to the 𝑉1,𝑀𝑒𝑙 values and, consequently, the 𝑞𝑅 values for duplex are notably lower than for the 

other stainless steel types. 

The trend observed for the ductility factor 𝑞𝐷 is also consistent with the typical behaviour of each 

stainless steel family. As shown in Table 8.15, the highest values of 𝑞𝐷 are displayed by the austenitic 

cases, followed by the ferritic frames and, lastly, the duplex MRFs. Table 8.4 shows that austenitic is 

the most ductile alloy, followed by duplex and finally ferritic grades. The fact that the lowest 𝑞𝐷 values 

are exhibited by the duplex cases, and not by the ferritic ones, is due to the smaller ratios between the 

fictional point ∆𝑦 and the ultimate displacement ∆𝑢,4%. 

The individual behaviour factor 𝑞𝑆 is related to the oversizing of the structure and, as shown in Table 

8.15, there is a clear relationship between the 𝑞𝑆 values and the 𝛺𝑑 values given in Table 8.12, Table 

8.13 and Table 8.14. Focusing on the frame typology, the highest values of 𝑞𝑆 are aligned with the 

lowest buildings and the T2 typology cases. Focusing on the material, the highest values of 𝑞𝑆 are found 

for duplex cases. Despite the variability observed, prEN 1998-1-1 (2021) prescribes a constant value of 

𝑞𝑆 equal to 1.5. In the case of stainless steel structures, with lower initial stiffness and significantly 

affected by second order effects, the beams (and consequently the columns, to meet the weak beam-

strong column criterion) need to be oversized, resulting in higher values of 𝑞𝑆 than those given in the 

standard. 

It should be noted that the values given in Table 8.15 are consistent with those reported in the reference 

study (Lemma et al. 2022) for S335 and S235 steels. As illustrated in (Lemma et al. 2022), the values 
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of 𝑞𝑅 were higher than 1.3 for all cases, ranging between 1.3 and 2.0 for both steels, with slightly higher 

values for S235 steel. The 𝑞𝐷 values showed a lower scatter, being approximately 1.5 for S335 MRFs, 

and between 2.0 and 2.5 for S235 MRFs. The highest variability was observed for the 𝑞𝑆 factor, which 

ranged between 1.5 and 3.5 for S355, and between 1.0 and 2.0 for S235. 

Finally, the individual behaviour factors were also calculated considering the ultimate state associated 

with the maximum capacity of the structure, since the limit strain method showed that for the ultimate 

state associated with the ISDR4% the members were far from failure. Table 8.16 presents the values of 

the behaviour factors estimated using Eq. 8.19 and the 𝑉𝑑, 𝑉1,𝑀𝑒𝑙, 𝑉𝑢,𝑚𝑎𝑥, ∆1,𝑀𝑒𝑙, ∆𝑢,𝑚𝑎𝑥 values reported 

in Table 8.13-Table 8.14. 𝑉𝑦 and ∆𝑦 were estimated as indicated in Figure 8.7, i.e., as the intersection 

point of the initial tangent slope and a horizontal line at the ultimate limit state (𝑉𝑢,𝑚𝑎𝑥, ∆𝑢,𝑚𝑎𝑥). The 

mean and COV values of the behaviour factors are also given in Table 8.16. 

Table 8.16. Behaviour factor values from pushover analyses (up to ultimate base shear capacity). 

Case 
 Austenitic  Ferritic  Duplex 

 𝑞𝑅 𝑞𝐷 𝑞𝑆 𝑞  𝑞𝑅 𝑞𝐷 𝑞𝑆 𝑞  𝑞𝑅 𝑞𝐷 𝑞𝑆 𝑞 

T1-3S  1.57 4.44 2.87 19.96  1.65 3.89 2.95 18.96  1.60 3.53 5.49 30.93 

T2-3S  1.67 4.28 2.90 20.75  1.68 3.87 3.30 21.40  1.56 3.22 5.97 30.10 

T3-3S  1.65 4.76 2.84 22.34  1.72 4.28 3.11 22.87  1.69 3.48 5.23 30.88 

T4-3S  1.75 4.83 2.95 24.99  1.84 3.89 2.96 21.17  1.67 3.42 5.75 32.95 

T1-6S  1.65 3.89 1.96 12.59  1.60 3.12 2.04 10.19  1.50 2.56 3.04 11.68 

T2-6S  1.62 3.47 1.94 10.91  1.66 2.98 1.99 9.83  1.51 2.59 3.20 12.54 

T3-6S  1.82 3.84 1.79 12.50  1.89 3.31 1.81 11.30  1.81 3.04 2.76 15.19 

T4-6S  1.63 3.65 1.98 11.73  1.69 3.10 2.01 10.52  1.62 2.82 2.99 13.67 

T1-9S  1.44 3.02 1.45 6.32  1.44 2.80 1.65 6.62  1.51 3.08 2.43 11.32 

T2-9S  1.54 3.29 1.51 7.64  1.58 2.98 1.66 7.80  1.40 2.28 2.63 8.44 

T3-9S  1.60 3.18 1.49 7.55  1.64 2.98 1.67 8.15  1.64 2.71 2.28 10.14 

T4-9S  1.43 3.12 1.50 6.68  1.52 2.74 1.55 6.44  1.48 2.49 2.36 8.72 

Mean  1.61 3.81 2.10 13.66  1.66 3.33 2.22 12.94  1.58 2.94 3.68 18.05 

COV  0.066 0.160 0.281 0.465  0.072 0.148 0.283 0.464  0.067 0.137 0.381 0.527 

As expected, the values reported in Table 8.16 are remarkably higher than those given in Table 8.15, 

especially for the low-rise buildings. The values of the overall behaviour factor 𝑞 ranged from 6.32 (T2-

9S-Aus) to 30.93 (T1-32-Dup). As shown herein, the values for each individual behaviour factor 

obtained from considering the ultimate state (𝑉𝑢,𝑚𝑎𝑥, ∆𝑢,𝑚𝑎𝑥) follows the trend observed when limiting 

the ultimate state to ISDR4%, except for the 𝑞𝑅 factor, which adopts similar values in all cases, with an 

average value of approximately 1.6. The product 𝑞𝑅·𝑞𝑆 results in similar values when using the factors 

given in Table 8.16 to those reported by Tartaglia et al. (2022) for steel MRFs designed according to 

prEN 1998-1-2 (2021), as Tartaglia et al. considered the state associated with the maximum resistance 

of the portal frame as the ultimate state to calculate 𝑞𝑅 and 𝑞𝑆. Thus, for the 3-storey cases studied by 

Tartaglia et al. (2022), the 𝑞𝑅·𝑞𝑆 values are between 6.5 and 7.2, and for the 6-storey cases, between 

5.4 and 6.6. In (Tartaglia et al. 2022), 𝑞𝐷 values were estimated considering a different criterion (𝑞𝐷 = 
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∆0.8𝑉𝑢,𝑚𝑎𝑥
/∆𝑦), with 𝑞𝐷 values higher than those obtained in this study, and ranging from 3.4 to 5.9, 

approximately. Although the values of 𝑞𝑅, 𝑞𝐷, 𝑞𝑆 and 𝑞 given in Table 8.16 are in line with those 

published by Tartaglia et al. (2022), and the strain limit method showed that the beams did not suffer 

from local buckling even when the structures achieved their maximum resistance capacity, they should 

be treated with caution since the corresponding drift was too high in some of the cases, especially in the 

most oversized frames (i.e., 3S cases). 

8.7. Proposal of behaviour factor for stainless steel MRFs: European and US design 

frameworks and comparison to the Japanese factors 

This section presents the values for the European behaviour factor 𝑞 for stainless steel MRFs proposed 

in this study. The equivalent response modification factors 𝑅, overstrength factors 𝛺0 and the deflection 

amplification factors 𝐶𝑑 corresponding to the US design framework (ASCE 7 2016) are calculated, and 

a comparison to the equivalent factor 1/𝐷𝑠 prescribed in the Japanese code (BCJ 2016) is also provided. 

8.7.1. European design framework 

Based on the results presented in the previous section, this research proposes individual behaviour factor 

values for austenitic, ferritic and duplex MRFs for their seismic design in the Eurocode framework. The 

values are based on the results reported in Table 8.15, which were obtained following the criteria 

recommended by the second revision of Eurocode 8, i.e., considering a maximum interstorey drift of 

4%. The recommended behaviour factor values are summarised in Table 8.17, which depend on the 

stainless steel grade. The values for 𝑞𝑅 are higher than that proposed in prEN 1998-1-2 (2021) for 

carbon steel (1.3) as the stainless steel alloys exhibit signs of yielding earlier, and consequently show 

higher 𝑉𝑢,4%/𝑉𝑦 ratios. Likewise, the values of 𝑞𝑆 for stainless steels are higher than for carbon steel 

(1.5) because stainless steel MRFs tend to be more oversized due to the lower lateral stiffness of the 

systems. As mentioned before, in MRFs the lateral stiffness is defined by the Young’s modulus and 

nonlinear material effects, and thus the design is governed by the interstorey drift rather than by the 

resistance of the members. This condition is particularly pronounced in duplex frames, which exhibit a 

remarkably high yield stress, much higher than the yield stress of carbon steels covered in prEN 1998-

1-2 (2012). Alternatively, the proposed 𝑞𝐷 values for stainless steel are lower than the value given for 

carbon steel MRFs (3.3). As mentioned in Section 8.6.1, Eurocode does not state explicitly the 

conditions to determine 𝑞𝐷, and it is reasonable to assume, in view of the results reported herein and in 

the literature (Lemma et al. 2022; Tartaglia et al. 2022), that the 𝑞𝐷 value of the code was defined as 

∆0.8𝑉𝑢,𝑚𝑎𝑥
/∆𝑦 (Tartaglia et al. 2022). In view of this, the values of 𝑞𝐷 proposed in Table 8.17 for 

stainless steels lie between the average values obtained from the two ultimate states considered in this 

study. Finally, the resulting values of the overall behaviour factor 𝑞 for stainless steel are higher than 



Design of stainless steel MRFs according to Eurocode 8 

178 

those for carbon steel, as one may expect due to the higher ductility and strain hardening characteristics 

of stainless steels. Overall 𝑞 values are lower than the mean values reported in Table 8.15, except for 

duplex frames. For this grade, the values have been slightly increased as it was found that the capacity 

of the structures was notably underestimated when limiting the ultimate state to ISDR4%. 

Table 8.17. Recommended behaviour factors for DC3 multi-storey stainless steel MRFs. 

Stainless steel 
 European framework  US framework 

 𝑞𝑅 𝑞𝐷 𝑞𝑆 𝑞  𝑅 𝛺0 

Austenitic  1.5 2.4 2.1 7.5  12.0 3.0 

Ferritic  1.5 2.1 2.2 7.0  12.0 3.0 

Duplex  1.4 1.4 3.5 7.0  12.0 3.0 

Moreover, it should be noted that the values recommended in Table 8.17 are conservative for the 

stainless steel MRFs made with class 1 sections studied in this research, as the assessment of the strains 

at the ultimate state considered showed that the selected cross-sections were far from local buckling 

failure. Therefore, it is reasonable to assume that the values given in Table 8.17 can be equally valid for 

stainless steel MRFs with non-dissipative members made of class 2 cross-sections (dissipative members 

are required to be class 1 (prEN 1998-1-2 2021). 

8.7.2. US design framework 

In the North American design framework, FEMA P-695 (2016) reports a detailed procedure for 

estimating the denominated “seismic performance factors”, i.e., the response modification factor 𝑅, the 

overstrength factor 𝛺0, and the deflection amplification factor 𝐶𝑑. These factors comply with the US 

seismic provisions in (ASCE 7 2016) and other standards such as (AISC 341 2016). As in the European 

design framework, 𝑅, 𝛺0 and 𝐶𝑑 assume different values depending on the structural archetype, and 

can be estimated from global inelastic responses. Thus, for special steel moment resisting frames, which 

can be considered equivalent to DC3 designs, 𝑅, 𝛺0 and 𝐶𝑑 values are equal to 8, 3 and 5.5, respectively 

(ASCE 7 2016). The 𝑅 factor is the ratio of the force level that would be developed in the system for 

design earthquake ground motions (if the system remained entirely linear and elastic) to the base shear 

prescribed for design, 𝛺0 is the ratio of the maximum strength of the fully-yielded system to the design 

base shear, and 𝐶𝑑 is some fraction of the 𝑅 factor (typically less than 1.0). 𝐶𝑑 is estimated as the ratio 

of the roof drift of the seismic-force resisting system corresponding to design base shear, assuming that 

the system remains essentially elastic for this level of force, and the roof drift of the yielded system 

corresponding to design earthquake ground motions, multiplied by the 𝑅 factor. Based on the Newmark 

rule, the value of 𝐶𝑑 is equal to the value of 𝑅 when assuming a damping factor equal to 5%.  

Since the North American standards ASCE 7 (2016) and AISC 341 (2016) propose seismic design 

equations similar to those prescribed in prEN 1998-1-2 (2021) – see (Tartaglia et al. 2022) for a detailed 

overview of the US design requirements –, and the equations proposed in AISC 370 (2021) for stainless 
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steel are based on the equations given in prEN 1993-1-4 (2021), it can be recommended that for special 

stainless steel moment resisting frames 𝑅 (𝐶𝑑) and 𝛺0 adopt the values of 𝑞 and 𝑞𝑅·𝑞𝑆 given in Table 

8.16. Based on the mean values of 𝑞 and 𝑞𝑅·𝑞𝑆, Table 8.17 also includes approximate and conservative 

recommended values for 𝑅 and 𝛺0. It should be noted that the mean values of 𝛺0 for austenitic, ferritic 

and duplex systems were close to 3.5, 3.5, and 5.5, respectively, but following the indications given in 

(FEMA P-695 2016), 𝛺0 was limited to 3.0. Obviously, values for 𝑅 and 𝛺0 are indicative. To obtain 

more accurate values of the seismic performance factors, archetypes, analyses and idealisations of the 

force-displacement curves must meet all the requirements given in FEMA P-695 (2016). 

8.7.3. Japanese design framework 

Finally, the recommended values and results are compared with the values prescribed in the Japanese 

code (BCJ 2016) for stainless steel structures. Currently, the Japanese code is the only international 

specification that includes specific recommendations for the design of stainless steel portal frames under 

seismic conditions. Similar to the European and US standards, the Japanese code (BCJ 2016) prescribes 

values of performance factors to take advantage of the ductility of the structural member in the ultimate 

limit state. Not only the elastic analysis but also the plastic analysis is compulsory to check structural 

safety in this design framework. Thus, the inverse of the ductility reduction factor 𝐷𝑠 available in the 

Japanese code (BCJ 2016) is considered equivalent to the European ductility behaviour factor 𝑞𝐷 

calculated assuming that the ultimate state is defined by the achievement of the maximum capacity of 

the structure. The value of 1/𝐷𝑠 depends on the cross-section classifications of the columns and beams 

(and on the effective slenderness ratio of the brace in the case of braced portal frames). The Japanese 

code covers only three stainless steel alloys, with yield stress and ultimate strength values between 235 

and 325 MPa, and between 520 and 690 MPa, respectively; and classifies beams and columns into four 

groups (A-D), based on the cross-sectional shape and yield stress. Although the stainless steels used in 

this study are not specifically covered by the Japanese code, it can be assumed that the case studies 

present class A columns and class B beams. For MRFs without bracings and class B cross-sections, the 

value of 1/𝐷𝑠 prescribed in (BCJ 2016) is 3.33. As it is shown in Table 8.16, the value of 1/𝐷𝑠 is in 

good agreement with the 𝑞𝐷 values obtained for the case studies. 

8.8. Concluding remarks 

The second generation of Eurocode 8 will include remarkable changes, but will not introduce any 

supplementary rules for stainless steel structures because the lack of studies on the global performance 

of stainless steel structures under seismic forces. On this context, this chapter presented a numerical 

research on the seismic performance of 36 stainless steel Moment Resisting Frames (MRFs). The case 

studies were designed according the codified prescriptions for highly dissipative structures (DC3) given 
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in prEN 1998-1-1 (2021) and prEN 1998-1-2 (2021). The parametric study was performed in ABAQUS 

and based on the investigation on carbon steel MRFs by Lemma et al. (2022). 

The study cases have been designed according to the force-based approach given in prEN 1998-1-1 

(2021) (based on tabulated values of behaviour factors), and the rules prescribed in prEN 1998-1-2 

(2021). These provisions refer to carbon steel structures and, in some cases, assumptions have been 

made to adapt them to stainless steel structures. The design of the analysed frames was governed by the 

stability criteria and, as a general rule, the final selected cross-sections were similar to those exhibited 

in the reference cases. The major differences were explained by the lower lateral stiffness, higher yield 

stress values, and higher susceptibility to second order effects shown by the stainless steels. It was 

observed that, in order to ensure sufficient lateral stiffness, beams tend to be oversized for gravity 

loadings. The analysis of the investigated frames led to the proposal of a new expression to assess and 

consider second order effects on stainless steel structures, which accounts for the effect of material 

nonlinearities and allows the adoption of the limiting values prescribed in prEN 1998-1-2 (2021) for 

consideration of geometrical nonlinearities.  

In order to assess the suitability of carbon steel behaviour factors for stainless steel structures. The different 

components of the behaviour factors (𝑞, 𝑞𝑅, 𝑞𝐷, 𝑞𝑆) were estimated from the pushover curves and idealised 

into bilinear response following recommendations given in the literature. Based on these results, a set of 

values have been proposed for the behaviour factors to design stainless steel MRFs according to DC3 

prescriptions, which have been particularized for each stainless steel family owing to their different 

behaviour. Thus, values of the structural overstrength factors 𝑞𝑅 and 𝑞𝑆 and for stainless steels, are higher 

than that proposed in prEN 1998-1-2 for carbon steel, as stainless steel alloys exhibit signs of yielding earlier, 

and MRFs tend to be more oversized due to the lower lateral stiffness of the systems, respectively. 

Alternatively, values of the ductility factor 𝑞𝐷 are lower than the value given for carbon steel MRFs, which 

may seem contradictory, but it is probably due to the criteria – not explicitly mentioned – followed by the 

Eurocode for the estimation of this factor. The resulting values of the overall behaviour factor 𝑞 for stainless 

steel are higher than those for carbon steel (i.e., 7.5 for austenitic frames and 7.0 for ferritic and duplex 

structures), as one may expect due to the higher ductility and strain hardening characteristics of stainless 

steels. Finally, the recommended values of 𝑞𝐷 have been compared with the corresponding 1/𝐷𝑠 factor given 

in the Japanese code, the only standard that includes seismic rules for stainless steel structures to date, 

showing a good agreement. Likewise, and due to the similarities between the European and US design 

frameworks, preliminary values for the seismic performance factors (𝑅, 𝛺0 and 𝐶𝑑) prescribed in the US 

framework have been also recommended in this study. 

Corresponding publication: González-de-León I., Arrayago I., Real E. and Sato A. (2023). Design of 

stainless steel moment resisting frames according to the second generation of Eurocode 8. Submitted to 

Engineering Structures. 
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9. CHAPTER 

CHAPTER 9 

 

 

 

 

Ductile fracture simulation of stainless steel coupons under 

monotonic tensile forces 

 

 

9.1. Introduction 

The failure of stainless steel alloys is ductile and is originated by void growth and coalescense (Zhang et 

al. 2022). Since 1960, several ductile fracture models have been developed for steels under monotonic 

loading, however, no specific prescriptions or adaptations have been provided yet to define the ductile 

fracture of stainless steels under monotonic loading. The accurate definition of ductile fracture models in 

stainless steels will be essential in the development of new design approaches such as the Direct Design 

Method (DDM) (Zhang et al. 2016b; Arrayago et al. 2022). Currently, the DDM covers the failure of 

whole systems and elements, but it does not consider the failure of joints explicitly. Hence, connections 

need to be verified afterwards using the general provisions in the traditional design codes instead of using 

advanced numerical simulations. For the implementation of joint checks in the DDM, it is fundamental to 

include fracture models in the advanced finite element simulations to avoid this additional check. 

Furthermore, the development of ductile fracture models for stainless steel alloys will contribute to the 

widespread and strategic use of this material for seismic application, after some adaptations. It is known 

that the inelastic response under cyclic loading is very sensitive to the material characterisation (Hartloper 
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et al. 2021). In fact, the European code for the design of structures for earthquake resistance prEN 1998-

1-1 (2021) states that, in the case of existing buildings, the cyclic degradation due to the nature of seismic 

action must be adequately modelled referring to reliable bases and, where possible, to experimental tests. 

A correct cyclic modelling starts from an accurate monotonic modelling, since the failure mode under the 

two loading types is ductile and exhibits similar fracture mechanisms (Nip et al. 2010a; Kanvinde 2017), 

thus cyclic simulations will also benefit from the correct prediction of the failure mode under monotonic 

loading. 

On this context, the aim of this study is to propose a reliable model to reproduce the ductile damage and 

fracture of stainless steel alloys under monotonic loading in finite element software, using experimental 

results from monotonic tensile coupon tests on austenitic, ferritic and duplex stainless steels carried out 

at the Universitat Politècnica de Catalunya as reference. 

9.2. Ductile fracture models for steels under monotonic loading 

Mechanical fracture models are based on the relationship between the ductile fracture of steels and the 

void growth, and they can be categorised into coupled and uncoupled models (Zhang et al. 2022). 

Coupled models, such as the Continuous Damage Mechanics (CDM) model (Lemaitre 1985), 

implement the ductile fracture by modifying the constitutive material model, so they define a fracture 

criterion and a damage evolution law. Conversely, uncoupled models only define a failure criterion 

related to the stress-strain relationship. Examples of uncoupled models are the Void Growth Model 

(VGM) and the Stress Modified Critical Strain (SMCS) model developed by Kanvinde and Deierlein 

(Kanvinde and Deierlein 2006), and the Lee and Wierzbicki model (Lee and Wierzbicki 2004). 

The Void Growth Model (VGM) and the Stress Modified Critical Strain (SMCS) model relate the 

initiation of ductile fracture under monotonic loading to the equivalent plastic strain and stress triaxiality 

(Kanvinde and Deierlein 2006) and are suitable for predicting the failure modes dominated by tension, 

i.e., subjected to high triaxial stresses 𝑇 > 1/3 (Song et al. 2020). In the VGM model the ductile fracture 

initiates when the void growth index 𝑉𝐺𝐼 exceeds a certain critical value 𝑉𝐺𝐼𝑐𝑟, which is calculated by 

integrating the triaxiality and plastic strain history, and it is an inherent property of the material. Much 

simpler, the SMCS model assumes that the triaxiality remains constant during the loading history 

(Kanvinde and Deierlein 2006) and considers that the fracture initiates when the equivalent plastic strain 

𝜀𝑝̅𝑙 exceeds a critical value 𝜀𝑝̅𝑙,𝑐𝑟, which is calculated as a function of the triaxiality. Eq. 9.1 shows the 

failure criterion for the SMCS model, where 𝜀𝑝̅𝑙,𝑐𝑟 is the critical equivalent plastic strain, 𝛼 is the 

toughness index or fracture parameter and 𝑇 is the triaxiality computed as the ratio of the mean stress 

and the von Mises stress. The parameter 𝛼 is calibrated using experimental data and Finite Element 

(FE) analyses, and it is a material property (Kanvinde and Deierlein 2006). 
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The Lee and Wierzbicki model (Lee and Wierzbicki 2004) is recommended for identifying ductile fracture 

under full-ranged triaxialities, such as those originated by a combination of tensile and shear forces (Song et 

al. 2020). Eq. 9.2 shows the computation of the critical equivalent plastic strain 𝜀𝑝̅𝑙,𝑐𝑟 in the Lee and 

Wierzbicki model, where 𝑇 < 0 triaxiality values correspond to fractures dominated by shear modes, 𝑇 >

𝑇0 to fractures dominated by tensile modes, and triaxiality values between 0 and 𝑇0 correspond to combined 

tension and shear fracture modes. In Eq. 9.2, 𝑇0 is the stress triaxiality under pure tension, assumed as 1/3, 

while 𝐶1 and 𝐶2 are the fracture strains at pure shear (𝑇 = 0) and pure tension (𝑇 = 1/3), respectively. 

These parameters are calibrated through experimental data and FE analyses (Song et al. 2020). 

𝜀𝑝̅𝑙,𝑐𝑟 = {

∞,
𝐶1 (1 + 3𝑇)⁄ ,

𝐶1 + (𝐶2 − 𝐶1) (𝑇 𝑇0)⁄ ,

𝐶2𝑇0 𝑇⁄  

 

𝑇 ≤ −1/3 

−1/3 < 𝑇 ≤ 0 

0 < 𝑇 ≤ 𝑇0 

𝑇 > 𝑇0 

Eq. 9.2 

The versatility and straightforward implementation of these models in FE analyses have motivated the 

calibration of the 𝑉𝐺𝐼𝑐𝑟, 𝛼 and 𝐶1 and 𝐶2 parameters for different types of metallic materials, including 

stainless steel alloys. In addition, they have been adapted for the prediction of ductile fracture under 

cyclic loading (Kanvinde and Deierlein 2007; Jia and Kuwamura 2015). Thus, Jia and Kuwamura 

(2015) have adapted the SMCS for cyclic loading, being subsequently calibrated for austenitic stainless 

steel by Baiguera et al. (2019). As it can be expected from Eq. 9.1 and Eq. 9.2, and visualised in Figure 

9.1, the fracture criterion against the stress triaxiality for the SMCS and Lee and Wierzbicki models are 

similar but follow different mathematical functions. 

 

Figure 9.1. Fracture strain-triaxiality relationships of SMCS and Lee and Wierzbicki models. 

Table 9.1 reports the values of the toughness index 𝛼 calibrated for austenitic and duplex stainless steel 

materials under tensile forces, as published in (Yin et al. 2019) and (Chang et al. 2019; Zhang et al. 

2022), respectively. Values of the 𝐶2 parameter calibrated for austenitic stainless steel bolts reported in 
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(Song et al. 2020) are also provided. Finally, the values of the critical void growth index 𝑉𝐺𝐼𝑐𝑟 reported 

in (Baiguera et al. 2019) for duplex stainless steel are also given. Calibrated values for 𝑉𝐺𝐼𝑐𝑟 and 𝛼 

tend to be very similar, even analogous, but the SMCS model has the advantage of not requiring the 

integration of the triaxiality and plastic strain history (Zhang et al. 2022). Given that the values reported 

in Table 9.1 show some scatter, and with the aim of increasing the available data, the values of the 𝛼 

and 𝐶2 parameters are calibrated in this study for austenitic, ferritic and duplex alloys from experimental 

tensile tests performed at the Universitat Politècnica de Catalunya. The SMCS and Lee and Wierzbicki 

models have been selected for their simplicity and considering that extensions of these models for 

predicting ductile fracture under cyclic loading already exist. 

Table 9.1. Fracture parameters for austenitic and duplex stainless steels reported in the literature. 

Stainless steel Parameters Min. value Max. value Reference 

Austenitic 𝛼 3.0 3.6 Yin et al. (2019) 

Duplex 𝛼 5.1 6.8 Zhang et al. (2022)  

Duplex 𝛼 2.8 3.3 Chang et al. (2019)  

Austenitic 𝐶2 1.1 2.9 Song et al. (2020)  

Duplex 𝑉𝐺𝐼𝑐𝑟  2.7 3.2 Baiguera et al. (2019) 

9.3. Experimental results 

This study presents the calibration of the fracture parameters for the SMCS and Lee and Wierzbicki ductile 

damage models by reproducing the behaviour of stainless steel coupons under tensile loading tested at the 

Universitat Politècnica de Catalunya. A total of eight coupons were simulated: two on the austenitic grade 

1.4301, two on the ferritic grade 1.4003, two on the ferritic grade 1.4016, and two on the duplex grade 

1.4462. Experimental results used herein belong to three different campaigns published in previous 

studies: austenitic coupon tests are reported in (Arrayago et al. 2020b), ferritic 1.4003 coupon tests are 

detailed in (Arrayago and Real 2016) and ferritic 1.4016 and duplex results are given in (Arrayago et al. 

2015a). Different stainless steel product types were covered: austenitic and ferritic 1.4003 coupon tests 

were directly cut from the flat parts of cold-formed (CF) rectangular hollow section (RHS) specimens, 

while ferritic 1.4016 and duplex coupons were cut from sheet material (SM). Table 9.2 summarises the 

geometric characteristics of the coupons prior to be tested, where 𝐿 and 𝑊 are the total length and width, 

respectively, and 𝑙 and 𝑤 are the length and width of the necked area shown in Figure 9.2, and 𝑡 is the 

thickness of the coupon. The cross-section areas 𝐴 given in Table 9.2 correspond to the areas of the 

necked sections, where the highest values of stress-strain were expected. 

Table 9.2. Geometric properties of the coupons prior to be tested. 

Stainless steel 
𝐿 

[mm] 

𝑙 

[mm] 

𝑊 

[mm] 

𝑤 

[mm] 

𝑡 

[mm] 

𝐴 

[mm2] 

Austenitic CF 280 120 35 15 3.80;  3.62 57.0;  54.3 

Ferritic CF 280 120 35 15 2.78;  1.96 41.7;  29.4 

Ferritic SM 230 94 20 12 3.24;  3.22 38.9;  38.6 

Duplex SM 230 94 20 12 3.23;  3.24 38.8;  38.9 
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Figure 9.2. Necked coupons for tensile tests and definition of geometric parameters. 

A 50 mm gauge length extensometer attached to the coupon to measure the strains, as shown in Figure 

9.2. All tensile tests were performed following the requirements prescribed in ISO 6892-1 (2009). In 

the case of the austenitic coupon tests, the initial strain rate was 0.005 mm/s until 3% of the total strain 

was reached, and 0.05 mm/s thereafter (Arrayago et al. 2020b). Ferritic cold-formed coupon tests were 

conducted at an initial strain rate of 0.00025 mm/s and of 0.008 mm/s after the yield stress (Arrayago 

and Real 2016). Alternatively, ferritic and duplex coupon tests on sheet material were performed 

following a strain rate of 0.001 mm/s up to approximately 1% of the total strain, and then increased up 

to 0.037 mm/s (Arrayago et al. 2015a). 

For information purposes, Table 9.3 reports the mean values of the two-stage Ramberg-Osgood material 

model parameters (Arrayago et al. 2015a) from the tests conducted and published in (Arrayago et al. 

2015, 2020b; Arrayago and Real 2016). It is worth mentioning that the values of yield stress 𝑓𝑦 and 

ultimate strength 𝑓𝑢 reported in Table 9.3 are remarkably higher than the nominal values prescribed in 

material and structural specifications (prEN 1993-1-4 2021; EN 10088-4 2009). These differences are, 

however, consistent with the overstrength values reported in the literature for sheet material and cold-

formed material in (Afshan et al. 2015; Arrayago et al. 2020a). 

Table 9.3. Mean values for the two-stage Ramberg-Osgood material model parameters. 

Stainless steel 
𝐸 

[GPa] 

𝜎0.05 

[MPa] 

𝑓𝑦 

[MPa] 

𝑓𝑢 

[MPa] 

𝜀𝑢 

 [%] 
𝑛 𝑚 

Austenitic CF 190.1 429 481 672 31.0 7.1 3.1 

Ferritic CF 178.1 386 424 485 13.0 15.0 2.4 

Ferritic SM 213.8 285 316 502 15.6 13.6 3.0 

Duplex SM 213.6 532 634 830 21.8 8.1 3.0 

Figure 9.3 shows the stress-strain responses for three of the coupon tests studied herein. The stress 

values were determined as the ratio between the tensile loads recorded by the actuator and the cross-

section area, while the strain values were calculated as the relative longitudinal displacement between 

the two gauges divided by the distance of 50 mm. In Figure 9.3, the ultimate stress 𝑓𝑢 and corresponding 

ultimate strain 𝜀𝑢, which is also known as the strain at necking, is marked by a vertical line for each 

curve. As shown, the strain-stress response of austenitic stainless steel is characterised by a high 

ductility and a high ultimate-to-yield stress ratio, while the highest strengths are found in the duplex 

stainless steel. It can be also observed that the ferritic and duplex coupons extracted from sheet material 

exhibited a similar relative value of the post-necking deformation, i.e., (𝜀𝑓 − 𝜀𝑢)/𝜀𝑓 (being 𝜀𝑓 the strain 
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at fracture), while for the austenitic coupon tests these values were slightly lower. This can be explained 

by the fact that the austenitic coupons studied herein were cut from cold-formed tubes, a fabrication 

process that is known to affect the mechanical characteristics by enhancing the strength but reducing 

the ductility (Rossi et al. 2013). 

 

Figure 9.3. Typical stress-strain responses of the stainless steel alloys used in this study. 

9.4. Numerical modelling 

9.4.1. General 

Numerical simulations for the calibration of the fracture parameters have been performed in the general-

purpose finite element software ABAQUS (2016). The coupons were modelled according to the 

geometrical measures described in Table 1 using the incompatible eight-node linear brick elements 

(C3D8I), as recommended in (Song et al. 2020). Although some studies recommend the use of very 

dense meshes based on the characteristic length (Yin et al. 2019), after a convergence study, the models 

were discretised following a 4×4 mm mesh (Xie and Chen 2021), except for the effective length area, 

where a 1×1 mm mesh was employed, and a four-element mesh was used through the thickness, in line 

with the recommendations given in (Song et al. 2020). Figure 9.4 shows the finite element model and 

final adopted mesh for the ferritic coupon test, which is representative of all finite models developed 

for this study. The end surfaces of the coupons were coupled to centroidal reference points, referred as 

loading and support reference points in Figure 9.4, and were forced to move as rigid bodies. The loading 

was imposed as a longitudinal displacement at the loading reference point, while all degrees of freedom 

were constrained at the support reference point, simulating the fixed-ended boundary conditions 

described in Section 9.3. To facilitate the output of results, a set conformed by two mid-thickness nodes 

placed 50 mm apart, i.e., the gauge length of the extensometer used in the tests, was defined. No 

imperfections were assigned since the coupons were tested under tensile loading. The second order 

plastic analyses (GMNA) were solved using the Static General method available in ABAQUS (2016). 
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Figure 9.4. Typical finite element model for coupon tests, including mesh discretisation. 

9.4.2. Material model 

In this study, the material plasticity in ABAQUS (2016) was defined using the stress-strain data obtained 

from the tensile test results, thus avoiding possible inaccuracies due to the implementation of the two-

stage Ramberg-Osgood material model. To consider the material behaviour up to failure, the 

engineering stress-strain curves shown in Figure 9.2 were converted to true stress-strain responses using 

Eq. 9.3 and Eq. 9.4, where 𝜀 and 𝜎 are the engineering strain and stress, respectively, and 𝜀𝑡𝑟𝑢𝑒 and 𝜎𝑡𝑟𝑢𝑒 

are the corresponding true strain and true stress. 

Eq. 9.3 and Eq. 9.4 are valid if there is a uniform stress-strain relationship, but once the necking starts, 

the concentration of triaxial stresses and plastic strains increases considerably (Song et al. 2020). When 

the fracture area is known, the stress-strain behaviour between the necking initiation to failure can be 

easily estimated, as shown in (Yin et al. 2019). However, and since the fracture areas were not available 

in this study, the plasticity of the material up to failure was estimated using the weighted average method 

proposed by Ling (1996), which has been recently used for austenitic stainless steels by Song et al. 

(2020). The weighted average method, which is graphically defined in Figure 9.5, establishes an upper 

and a lower bound between which the actual (weighted) true stress-strain curve is comprised. The true 

stress-strain upper and lower bounds are given in Eq. 9.5 and Eq. 9.6, respectively, where 𝜀𝑛,𝑡𝑟𝑢𝑒 and 

𝜎𝑛,𝑡𝑟𝑢𝑒 are the true strain and true stress at necking. 

𝜀𝑡𝑟𝑢𝑒 = ln(1 + 𝜀)  Eq. 9.3 

𝜎𝑡𝑟𝑢𝑒 = 𝜎(1 + 𝜀)  Eq. 9.4 

𝜎𝑡𝑟𝑢𝑒 = 𝜎𝑛,𝑡𝑟𝑢𝑒 exp(𝜀𝑡𝑟𝑢𝑒 − 𝜀𝑛,𝑡𝑟𝑢𝑒) for (𝜀𝑡𝑟𝑢𝑒 > 𝜀𝑛,𝑡𝑟𝑢𝑒) Eq. 9.5 

𝜎𝑡𝑟𝑢𝑒 = 𝜎𝑛,𝑡𝑟𝑢𝑒(𝜀𝑡𝑟𝑢𝑒/𝜀𝑛,𝑡𝑟𝑢𝑒)𝜀𝑛,𝑡𝑟𝑢𝑒 for (𝜀𝑡𝑟𝑢𝑒 > 𝜀𝑛,𝑡𝑟𝑢𝑒) Eq. 9.6 

Fixed-ended boundary condition 

Gauges nodes 

Imposed displacement 

50 mm 
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The weighted average true stress-strain relationship is given in Eq. 9.7, where 𝑤 is a weighted average 

factor to be calibrated by trial and error. Ling (1996) proposed a constant value of the weighted average 

factor 𝑤 for carbon steel, whereas Song et al. (2020) proposed a variable 𝑤 for stainless steels. Eq. 9.8 

shows the computation of 𝑤 as published in (Song et al. 2020) and adopted in this study, where the 

values of the weighting parameters 𝑎1 and 𝑎2 are calibrated by trial and error. 

 

 

Figure 9.5. Weighted average method for calibrating post-necking stress-strain behaviour. 

Regarding the weighting parameters 𝑎1 and 𝑎2, it is important to note that a low value of the 𝑎1 

parameter results in an increase of the stresses corresponding to strain values slightly higher than the 

necking strain, i.e., it raises the resulting weighted average true stress-strain curve towards the upper 

bound, while a low value of the 𝑎2 parameter decreases the stresses corresponding to large strain values, 

i.e., the end of the calibrated weighted average true stress-strain curve tends to approach the lower 

bound. In fact, the weighted average true stress-strain curve calibrated with the pair 𝑎1 = 100.0 and 

𝑎2 = 0.0 (i.e., 𝑤 ≅ 0.0) results in almost the lower bound, while with the pair 𝑎1 = 100.0 and 𝑎2 =

100.0 (i.e., 𝑤 = 1.0) results in the upper bound. 

9.4.3. Ductile damage model 

In addition to defining the stress-strain material model, a ductile damage criterion needs to be included 

in the finite element analyses, which affects the stress-strain behaviour after necking (Jia and Kuwamura 
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2014). To incorporate the Stress Modified Critical Strain (SMCS) and Lee and Wierzbicki fracture 

models to the FEM analyses, the built-in material option “ductile damage” available in ABAQUS 

(2016) was used. The ductile criterion for the onset of damage due to nucleation, growth, and 

coalescence of voids provided in ABAQUS (2016) is given in Eq. 9.9. In Eq. 9.9, 𝜔𝐷 is the criterion 

for the initiation of fracture and 𝜀𝑝̅𝑙,𝑐𝑟(𝑇) is the equivalent plastic strain at the onset of damage, which 

depends on the instantaneous triaxiality value. In the context of ABAQUS (2016), the stress triaxiality 

is computed as the ratio of the pressure stress 𝑝, and the von Mises equivalent stress 𝑞, i.e., 𝑇 = −𝑝/𝑞. 

During the analysis, 𝜔𝐷 increases monotonically with plastic deformation, and when 𝜔𝐷 reaches unity, 

the fracture initiation occurs. Those elements satisfying the damage criterion were removed by the 

“element deletion” option. It should be noted that the effect of the strain rate is not considered in this 

study, following the approach adopted in (Song et al. 2020). 

9.5. Calibration of fracture parameters for stainless steel alloys  

The fracture parameters of the SMCS and the Lee and Wierzbicki models were calibrated by fitting the 

numerical stress-strain data obtained from the GMNA analyses carried out on the FE models described in 

Section 9.4 to the experimental results described in Section 9.2. To be consistent with the experimental 

procedure, the numerical stresses were calculated as the ratio of the axial reaction to the necked area, while 

the numerical strains were calculated as the relative displacement between the two nodes considered as 

gauges divided by the gauge length of the extensometer. Figure 9.6 shows the numerical failure mode 

obtained for one of the duplex FE models. 

 

Figure 9.6. Typical finite element model for coupon tests, after failure. 

According to Kanvinde and Deierlein (2006), the SMCS fracture parameter 𝛼 is calibrated by 

computing Eq. 9.1 with the values of triaxiality and plastic strain obtained from an FE analysis in the 

critical node at the incremental step where the fracture occurs. Similarly, the Lee and Wierzbicki 

fracture parameter 𝐶2 can be computed by integrating the fields of plastic strain and triaxiality in the 

𝜔𝐷 = ∫
𝑑𝜀𝑝̅𝑙

𝜀𝑝̅𝑙,𝑐𝑟(𝑇)
= 1 

 
Eq. 9.9 
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critical element (Song et al. 2020), also determined from FE analysis. Nevertheless, once the ductile 

fracture model is included in the FE analysis, the stress-strain behaviour after necking is affected (Jia 

and Kuwamura 2014), so the computation of the fracture parameter changes. In light of this and in line 

with the procedure to calibrate the parameter of fracture described in (Jia and Kuwamura 2014), the 

calibration of the fracture parameters 𝛼 and 𝐶2 followed an iterative process. 

The values of the weighting (𝑎1 and 𝑎2) and fracture (𝛼 and 𝐶2) parameters for the stainless steels 

covered in this study are summarised in Table 9.4. Since the calibration of the weighting parameters 𝑎1 

and 𝑎2 is based on trial and error, the first attempt was based on the pair 𝑎1 = 30.0 and 𝑎2 = 2.0 

reported in (Song et al. 2020). As shown in Table 9.4, for the austenitic cases and the ferritic coupon 

test SM-1, the values of 𝑎1 and 𝑎2 resulted in true stress-strain curves almost equal to the lower bound 

(i.e., provided values of 𝑤 ≅ 0.0 for strains compressed between 𝜀𝑛,𝑡𝑟𝑢𝑒 and 𝜀𝑓,𝑡𝑟𝑢𝑒). The fact that the 

lower bound provided a good prediction of the true stress-strain curve without the need to calibrate a 

weighted average material curve is in line with the findings reported in (Jia and Kuwamura 2014), which 

also pointed out that even the lower bound of the weighted average method overestimated the behaviour of 

some steels. 

Table 9.4. Calibrated values of the 𝑎1, 𝑎2, 𝛼 and 𝐶2 parameters for the stainless steel covered in this study. 

Stainless steel 𝑎1 𝑎2 𝛼 𝐶2 

Austenitic CF-1 100.0 0.0 1.6 1.0 

Austenitic CF-2 100.0 0.0 1.4 0.8 

Ferritic CF-1 30.0 1.8 1.3 0.9 

Ferritic CF-2 30.0 1.3 1.3 0.9 

Ferritic SM-1 100.0 1.0 1.8 1.5 

Ferritic SM-2 30.0 1.0 1.6 1.2 

Duplex SM-1 30.0 1.7 1.9 1.5 

Duplex SM-2 30.0 1.0 1.8 1.5 

Regarding the fracture parameters 𝛼 and 𝐶2, the calibrated values reported in Table 9.4 were, as 

expected, similar for the pair of analysed coupons (i.e., for each specific grade of stainless steel and 

manufacturing process). This is in line with the assumption of the fracture parameter being a material 

property (Kanvinde and Deierlein 2006). As it can been seen from the fracture parameters reported in 

Table 9.4, similar values of 𝛼 and 𝐶2 were obtained for ferritic and duplex coupons extracted from sheet 

material, while for the cold-formed austenitic and ferritic stainless steels the 𝛼 and 𝐶2 values were 

slightly lower. It should be noted that in the cold forming process the strength is enhanced but the 

ductility is decreased (Rossi et al. 2013).  

A relationship between the ductility capacity of each stainless steel family and the values of the fracture 

parameters can be also drawn from Table 9.4. Thus, values of the fracture parameters for cold-formed 

austenitic coupon tests are slightly higher than for the cold-formed ferritic material, while for duplex 

sheet material the parameters are slightly higher than for ferritic sheet material. It is well-known that 
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the austenitic stainless steel alloys are those exhibiting the greatest levels of ductility, following by the 

duplex, while ferritic stainless steel alloys exhibit the less ductile behaviour (Arrayago et al. 2015a). 

The data presented herein suggests that higher values of the fracture parameters 𝛼 and 𝐶2 are associated 

to a more ductile fracture behaviour and, therefore, correspond to more ductile materials. 

Figure 9.7 shows the stress-strain curves obtained using the numerical models explained in Section 9.4 with 

the calibrated fracture parameters and the experimental curves. As shown in these figures, identical stress-

strain curves are obtained when adopting the SMCS model and the Lee and Wierzbicki model, and the 

predicted responses are in very good agreement with the experimental curves for all the stainless steel 

coupons analysed. 

  
Figure 9.7. Comparison of the experimental and numerical stress-strain responses for the calibrated fracture 

parameters. 

Considering the fracture parameters calibrated and presented in this study, preliminary 

recommendations for the 𝛼 and 𝐶2 parameters for different stainless steel materials can be made. A 

value for the fracture parameter of the SMCS model of 𝛼=1.5 is proposed for cold-formed austenitic 

material, while a value of 𝛼=1.8 is recommended for duplex sheet material. In the case of ferritic 

stainless steel, it is proposed to adopt a value of 𝛼=1.3 when the material is cold- formed, and 𝛼=1.7 

for sheet or unformed material. Likewise, the 𝐶2 parameter values preliminarily recommended for the 

Lee and Wierzbicki model are 𝐶2=1.0 for cold-formed austenitic material, 𝐶2=0.9 for duplex sheet 

material, and 𝐶2=1.3 and 𝐶2=1.5 for cold-formed and sheet ferritic material, respectively. It should be 

underlined that these values are preliminary because they are based on a limited number of results; a 

more extensive study is necessary for a proper calibration. 

9.6. Concluding remarks 

In this study, the fracture parameter values of two ductile fracture models, widely used for their 

simplicity and accuracy, were calibrated: the 𝛼 parameter for the Stress Modified Critical Strain model 

(SMCS) and the 𝐶2 parameter of the Lee and Wierzbicki model. The calibrations were based on tensile 

coupon tests on austenitic, ferritic and duplex stainless steels carried out at the Universitat Politècnica 
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de Catalunya. Coupons extracted from cold-formed tubes and from sheets were analysed to investigate 

the effect of cold forming in the fracture parameters. The calibrated parameters were obtained iteratively 

using numerical finite element simulations and the experimental results. The calibrated values are 

similar for the two cases of analysed for each type of material, with a slight difference between the 

different grades analysed, confirming that the fracture parameters for the SMCS and Lee and Wierzbicki 

models are an inherent property of the material. Higher 𝛼 and 𝐶2 values were observed for the more 

ductile alloys, suggesting a direct correlation between the two. Based on the calibrated parameters, 

average values of the fracture parameters were preliminarily proposed for direct application in finite 

element simulations. 

Corresponding publication: González-de-León I., Arrayago I., Nastri E. and Real E. (2022). Ductile 

fracture simulation of stainless steel coupons under monotonic tensile forces. Proceedings of the SDSS, 

International Colloquia on Stability and Ductility of Steel Structures, Aveiro, Portugal, 520–526. 

https://doi.org/10.1002/cepa.1785 

 

https://doi.org/10.1002/cepa.1785


 

195 

  



 

196 

 

 

 

10. CHAPTER 

CHAPTER 10 

 

 

 

 

Conclusions and suggestions for future research 

 

 

 

10.1. General conclusions 

Stainless steel is one of the most promising construction materials of the future due to its long service 

life, low maintenance requirements and high residual value. Research in recent decades has focused on 

the characterisation of the material, which exhibits a significant nonlinear stress-strain behaviour, on 

the resistance of cross-sections and on the efficient design of structural members. This research has 

been based on experimental studies and has used advanced finite element simulation tools to increase 

the casuistry and improve the accuracy of the available design formulae by developing new approaches. 

In recent years, research has extended to the analysis of the global behaviour of stainless steel structures, 

taking advantage of the high accuracy of analysis software and avoiding costly experimental 

programmes. As a result of these studies, the scope of stainless steel standards has increased 

considerably recently. However, they are still far from being as comprehensive as carbon steel 

standards. Some of the topics that need further research are those dealing with the overall behaviour of 

structures under static loads, the seismic behaviour of stainless steel structures and the simulation of 

material degradation to take it into account in advanced design, which are the three main issues 



Conclusions and suggestions for future research 

197 

addressed in this thesis. In this chapter, the main conclusions derived from the different studies 

undertaken in the three parts that comprise this thesis are summarised. 

Researches included in Part I focused on studying the influence of material and geometric nonlinearities 

on the global performance of stainless steel portal frames. Bases on numerical studies that demonstrated 

that the degradation of stiffness due to the nonlinear material response of stainless steel alloys causes 

greater deformations and increases second order effects (Walport et al. 2019b), the future edition of the 

Eurocode 3, Part 1-4 prEN 1993-1-4 will prescribe, for first time, global design rules for stainless steel 

structures considering the effect of material nonlinearities. With the aim of providing experimental 

evidence of this behaviour, a comprehensive experimental programme on sway and non-sway stainless 

steel frames with slender and stocky rectangular hollow sections was carried out at the Universitat 

Politècnica de Catalunya, whose details and results are provided in Chapters 3 and 4. The experience 

gained in the planning and execution of these tests has been used when carrying out similar experimental 

programmes by other research groups, including new stainless steel frames. In addition, the reported 

results have been used to validate the numerical models used in several numerical studies, including 

independent research works. Finally, the analysis of the experimental results allowed the validation of 

the design approach to accounts for the influence of material nonlinearities on the global analysis of 

stainless steel frames to be featured in prEN 1993-1-4 (2021). 

With the aim of enhancing the available alternatives for the global design of stainless steel structures in 

the European framework, a new Stiffness Reduction Method (SRM) based on the cross-section and 

member resistance formulae given in prEN 1993-1-4 (2021) was developed, which is described in 

Chapter 5. SRMs are the preferred structural design approaches in the US, but constitute an interesting 

alternative to the methods traditionally adopted in the Eurocode. The SRM proposed in Chapter 5 allows 

predicting the ultimate capacity and internal forces in stainless steel structures by performing a second 

order elastic analysis in which the stiffness of members is reduced by a set of factors to account for the 

effect of the spread of plasticity, residual stresses and member imperfections. The method only requires 

that initial out-of-plumbness imperfections be included, and the verification is limited to checking cross-

section capacities. The design results obtained from applying the proposed method were found to be in 

line with those obtained with the Direct Method of Analysis (DM) prescribed in AISC 370 (2021), and 

very similar to those obtained from a nonlinear material and geometric analysis with imperfections 

(GMNIA). It should be noted that at the time this research was carried out, the AISC 370 specification 

had not yet been officially published, so this study can be considered one of the first to validate the DM 

for stainless steel structures. 

Part II of this thesis is comprised by three studies related to the rotation capacity and seismic behaviour 

of stainless steel structures. The correct estimation of the rotation capacity is of paramount importance 

from an assessment point of view, because it allows establishing the actual capacity of the structure. 
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Likewise, an accurate computation of the maximum bending moment that the dissipative member can 

withstand allows a precise prediction of the overstrength parameters to be considered in the application 

of the capacity design principles. The study, presented in Chapter 6, showed that the maximum bending 

moment was comparable to the CSM bending moment. Based on finite element numerical results, a 

simple expression to estimate the rotation capacities of stainless steel cross-sections subjected to 

bending in terms of the local slenderness was proposed. With the proposed formula and analytical 

expressions to predict the elastic rotation, the research carried out in this thesis proved that it is possible 

to accurately describe the complete moment-rotation response. This can be useful to define the 

behaviour of plastic hinges and their implementation in seismic calculation software. To the author's 

knowledge, there is no equivalent formula for the rotation capacities of carbon steel. 

Currently, the knowledge on the cyclic behaviour of stainless steel at member level is very limited due 

to the small number of experimental studies carried out. To enhance the experimental database available 

in the literature, a series of cyclic tests on stainless steel structural elements, tested for the first time 

under pure lateral loading, were carried out. The experimental programme was promoted and funded 

by Universitat Politècnica de Catalunya and tested at the Università degli Studi di Salerno. The details 

on the specimens, the set-up and the results are given in Chapter 7. The results were found to be in line 

with the data provided by similar studies, proving a significant rotation capacity and a remarkable 

energy dissipation capability in stainless steel members, and can be used as reference for calibrating 

numerical models under cyclic loading in the future. 

Finally, Chapter 8 presents a study on the seismic behaviour of multi-storey stainless steel portal frames, 

proposing new design rules that take into account the nonlinear stress-strain response of stainless steel. 

It is one of the few studies available to date dedicated to the seismic design of stainless steel systems, 

and the first to be carried out taking into account the new design framework prescribed by the latest 

version Eurocode 8 (2021). The study was carried out using advanced finite element software that 

allowed the definition of the nonlinear stress-strain of stainless steel, and covered three types of alloys, 

four types of floors with different span widths, and three different heights. A total of 36 stainless steel 

moment resisting portal frames were designed to meet the high dissipation requirements prescribed in 

prEN 1998-1-2 (2021) for carbon steel structures. The design approach followed was the force-based 

method, which is the preferred approach – with slight variations – in the main international seismic 

design codes. A new formula was proposed to effectively account for the effects of material 

nonlinearities on the overall stiffness degradation of the system under seismic loads, and the actual 

values of the behaviour factors were also estimated. These factors were found to be higher than those 

currently prescribed for carbon steel, as one may expect due to the higher ductility and strain hardening 

characteristics of stainless steels. 
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The last study included in this thesis investigates the ductile fracture of stainless steels under monotonic 

loading (Part III - Chapter 9). Although there is a consensus on the material model to be used to define 

the behaviour of stainless steels up to the maximum stress, this is not the case for the model that defines 

the post-fracture behaviour. The extension of the material model until failure is of significant 

importance at the moment, with one possible application of this material model that defines the 

complete response of stainless steel up to failure being the explicit simulation of joint failure, which 

can be implemented in new design approaches that study the response of structures as whole systems, 

such as the Direct Design Method. Through the comparison of experimental and numerical results, the 

study carried out the calibration of the fracture parameters for two well-known ductile fracture models 

under monotonic loading commonly used in carbon steel, and values are proposed for different types 

of stainless steels. 

10.2. Specific conclusions 

This section presents the key results, formulae and calibrated parameters that have been developed and 

proposed in the framework of this thesis, and that may be directly applicable in other research and 

specifications for the design of stainless steel structures. 

10.2.1. Experimental programme on stainless steel frames 

The extensive description of the experimental set-up for stainless steel frame tests provided in this study 

includes strategies to ensure the verticality of the actions representing gravity loads during sway 

deflections, to avoid out-of-plumb displacement, to define the optimal location of vertical point loads, 

and to measure all necessary support reactions. These issues are of extreme importance when testing 

frames, and have been the subject of long hours of discussion due to the lack of similar tests in the 

literature – it should be recalled that these tests are considered to be the first tests on stainless steel 

frames subjected under vertical and horizontal loading in the world. Some of the solutions adopted have 

been achieved with the help of renowned international researchers as well as experts from the industrial 

sector. The experience gained in the preparation and execution of these complex frame tests has already 

helped researchers to efficiently plan future experimental programmes on structural systems (Juza and 

Jandera 2022; Yun et al. 2022), thus increasing the number of available frame tests. 

Initial geometric imperfections play a fundamental role in the design of frames under static loads, 

although their values are often not measured accurately. Thus, the measurement of initial global and 

local imperfections carried out in the framework of this thesis contribute to the experimental data pool 

available in the literature. 
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10.2.2. Analysis and assessment of experimental tests. Second order effects according to 

prEN 1993-1-4 

It is expected that the reported experimental results, as well as the exhaustive description of the finite 

element model built, serve to validate numerical models of frames by independent researchers in the 

future. That is the case of the following studies carried out in this thesis (González-de-León et al. 2021, 

2022). Accurate advanced finite element models are essential to investigate the influence of geometric 

and material nonlinearities on the behaviour of stainless steel frames, characterised by a significant 

nonlinear stress-strain response. Thus, by comparing the responses obtained from different types of 

analyses (LA, GNA, MNA, GMNA) it is possible to assess the influence of geometric nonlinearities, 

material nonlinearities and the interaction of both, respectively, on the overall structural behaviour. 

The performance of the tested frames has validated the formula for accounting for the influence of 

second order effects on the global stability of stainless steel frames. This formulation was solely based 

on numerical research, and was included in the Eurocode without experimental evidence. Based on the 

test results, the 𝛼𝑐𝑟,𝑠𝑤,𝑠𝑠 factor proposed by Walport et al. (2019b) to account for the influence of 

material nonlinearity on the global analysis of stainless steel frames can be considered to be in good 

agreement with the evidence obtained from the tests. However, this expression only captures the 

amplification of internal forces due to sway effects, and thus further reductions would be necessary for 

the case of systems susceptible to local buckling, such as the Frame 4 tested herein, which failed due to 

a combination of local buckling and sway effects. 

10.2.3. A stiffness reduction method for the in-plane design of stainless steel frames according 

to prEN 1993-1-4 

In the framework of this thesis, a Stiffness Reduction Method (SRM) for the in-plane stability design 

of stainless steel structures with stocky Rectangular Hollow Section (RHS) members has been 

developed, using the provisions included in the upcoming version of prEN 1993-1-4 (2021). This 

approach was based on the design method proposed by Kucukler et al. (2014, 2016) for carbon steel 

frames, and has shown to be equivalent to the Direct Analysis Method proposed in AISC 370 (2021). 

The proposed approach allows predicting the ultimate capacity and internal forces in stainless steel 

structures by performing a second order elastic analysis in which the stiffness of members is reduced 

by a set of factors to account for the effect of the spread of plasticity, residual stresses and member 

imperfections. The method only requires that initial out-of-plumbness imperfections be included, and 

the verification is limited to checking cross-section capacities.  

The procedure to apply the proposed Stiffness Reduction Method for the in-plane stability design of 

stainless steel structures with stocky RHS sections is summarised as follows: 
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(i). Perform a Linear Elastic Analysis (LA) to estimate the maximum internal forces (axial force 𝑁𝐸𝑑 

and bending moment 𝑀𝐸𝑑) in each member under the design loads. 

(ii). Calculate the Stiffness Reduction factors for each member from the proposed formulae: 

with 𝑁𝑝𝑙 and 𝑀𝑝𝑙 being the plastic resistance of the gross cross-section and the plastic moment 

resistance of the cross-section, respectively; 𝜆̅0 and 𝛼 being the slenderness plateau and imperfection 

factor given in next version of prEN 1993-1-4 (2021), respectively; and 𝜇 being the ratio between the 

smaller and larger applied end moments. 

(iii). Perform a Geometrically Nonlinear Analysis with Stiffness Reduction (GNA-SR) considering 

initial global imperfections (out-of-plumbness) only. Note that stiffness reduction factors should affect 

the flexural stiffnesses, but not the axial stiffnesses, of all the members. 

(iv). Check the cross-section capacity using the internal forces determined from the GNA-SR analysis 

under the design loads through the following strength interaction expression for stocky sections:  

being 𝑀𝑁,𝑐𝑠𝑚 the plastic moment resistance reduced due to the axial force 𝑁𝐸𝑑, 𝑀𝑐𝑠𝑚 the CSM moment 

resistance, and 𝜆̅𝑝 the local slenderness. 

10.2.4. Rotation capacity of cold-formed stainless steel RHS beams under cyclic loading 

The numerical study on 120 austenitic, ferritic and duplex stainless steel rectangular hollow section 

beams under cyclic loading demonstrated that the ultimate bending moment capacity under cyclic 
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loading can be accurately predicted by the Continuous Strength Method equation for stainless steel 

beams, and that the exhibited rotation capacity can be directly related to the local slenderness.  

The plastic rotation capacities were determined based on the prescriptions given in Eurocode 8 for 

predicting the plastic rotations 𝜃𝑝𝑙 on steel beams, and distinguish between the stable part of the plastic 

rotation capacity 𝑅0, which is related to the maximum bending moment, and the total plastic rotation 

capacity 𝑅, which also includes the post-buckling behaviour. Equations for determining the stable part 

𝑅0 and the total 𝑅 plastic rotation capacities are given below. 

Based on these expressions, the following equations were proposed for predicting the rotation capacity 

of cold-formed stainless steel RHS beams under cyclic loading. Values of the parameters  

𝛽 and 𝜌 are reported in the table below. It should be noted that these parameters were calibrated based 

on data on fully-effective cross-sections (𝜆̅𝑝 ≤ 0.68). As shown, the plastic rotation capacity formulae 

disregard the elastic rotation 𝜃𝑦, but this can be easily estimated from elastic deflection formulae. 

Table 10.1. Coefficients for the proposed expressions to predict the stable part and total plastic rotation 

capacities of stainless steel beams under cyclic loading. 

Stainless steel 

Stable part of the rotation 

capacity 𝑅0,𝑝𝑟𝑒𝑑 
 Total rotation capacity 𝑅𝑝𝑟𝑒𝑑 

𝛽 𝜌  𝛽 𝜌 

Austenitic 0.7 1.0  0.8 1.2 

Ferritic/Duplex 0.4 1.3  0.4 1.5 

Based on the proposed equations for the estimation of the rotation capacities, and knowing the elastic 

rotation and ultimate bending moment values, a tri-linear model that describes the full moment-rotation 

curves of stainless steel beams under cyclic loads can be proposed, which can be implemented into 

existing analysis software to define the behaviour of concentrated plastic hinges. 

10.2.5. Design of stainless steel moment resisting frames according to the second generation 

of Eurocode 8 

A total of 36 stainless steel Moment Resisting Frames (MRFs) were designed for first time according 

to the prescription given for carbon steel frames in the upcoming version of prEN 1998-1-1 and prEN 
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1998-1-2 (2021). The analysis of the investigated frames led to the proposal of a new expression to 

assess and consider second order effects due to seismic actions on stainless steel structures, which 

accounts for the effect of material nonlinearities, and allows the adoption of the limiting values currently 

prescribed in prEN 1998-1-2 (2021) for conventional steel for consideration of geometrical 

nonlinearities. The proposed formulated in given below, and includes the further degradation of the 

stiffness due to material nonlinearities through the factor 𝑌, whose values are given in prEN 1993-1-4 

(2021). The ratio 𝐾𝑠 /𝐾 is the comparison between the stiffness of the structure obtained from a first 

order elastic analysis (LA) and that obtained from a first order plastic analysis (MNA). It should be 

noted that in seismic design it is common that structures remain in the elastic range for the considered 

gravity actions, so in general 𝐾𝑠 /𝐾 = 1.0. 

Among all the seismic design approaches, the force-based approach is probably the most used. With 

slightly variations, the force-based approach is included in all the main seismic design standards. The 

Among all the seismic design approaches, the force-based approach is probably the most used one, and 

is the one included in most international seismic design standards. The force-based approach 

implemented through the modal response spectrum method employs a linear analysis, where the design 

forces are obtained from the superposition of gravity loads and seismic forces, and the overstrength and 

the nonlinear response of the structure (associated with the material, the structural system and the design 

procedure) are implicitly and approximately accounted for through a behaviour factor, which in the 

Eurocode framework is represented by 𝑞. The computation of the overall behaviour factor 𝑞 has been 

revised and split into three components in the new version of prEN 1998-1-1 (2021), where 𝑞𝑅 is the 

behaviour factor component accounting for the overstrength due to the redistribution of seismic action 

effects in redundant structures, 𝑞𝐷 is the behaviour factor component accounting for the deformation 

capacity and energy dissipation capacity of the structure, and 𝑞𝑆 is the behaviour factor component 

accounting for the overstrength due to all other sources (such as the strength reserve resulting from the 

overstrength of individual members). 

According to the criteria followed by recent studies the different components of the behaviour factors 

(𝑞, 𝑞𝑅, 𝑞𝐷, 𝑞𝑆) were estimated from the 36 case studies analysed. The recommended behaviour factor 

values are summarised in Table 10.2, which depend on the stainless steel type. The values for 𝑞𝑅 are 

higher than that proposed in prEN 1998-1-2 (2021) for carbon steel, as stainless steel alloys exhibit 

signs of yielding earlier. Likewise, the values of 𝑞𝑆 for stainless steels are higher than for carbon steel 
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because stainless steel MRFs tend to be more oversized due to the lower lateral stiffness of the systems. 

Alternatively, the proposed 𝑞𝐷 values for stainless steel are lower than the value given for carbon steel 

MRFs, but this is probably due to the criteria used by the Eurocode to define this value. Finally, the 

resulting values of the overall behaviour factor 𝑞 for stainless steel are higher than those for carbon 

steel, as one may expect, due to the higher ductility and strain hardening characteristics of stainless 

steels. The recommended values of 𝑞𝐷 have been compared with the corresponding 1/𝐷𝑠 factor given 

in the Japanese code, the only standard that includes seismic rules for stainless steel structures to date, 

showing a good agreement. 

Table 10.2. Recommended behaviour factors for DC3 multi-storey stainless steel MRFs. 

Stainless steel 
 European framework  US framework 

 𝑞𝑅 𝑞𝐷 𝑞𝑆 𝑞  𝑅 𝛺0 

Austenitic  1.5 2.4 2.1 7.5  12.0 3.0 

Ferritic  1.5 2.1 2.2 7.0  12.0 3.0 

Duplex  1.4 1.4 3.5 7.0  12.0 3.0 

Finally, and due to the similarities between the European and US design frameworks, preliminary values 

for the seismic performance factors (𝑅, 𝛺0) prescribed in the US framework have been also 

recommended in this study (see Table 10.2). 

10.2.6. Ductile fracture simulation of stainless steel coupons under monotonic tensile forces 

The parameters of two ductile fracture models (𝛼 for the Stress Modified Critical Strain model (SMCS) 

and 𝐶2 for the Lee and Wierzbicki model) were calibrated using the stress-strain curves from a set of 

tensile coupon tests on austenitic, ferritic and duplex stainless steels extracted from cold-formed (CF) 

tubes and from sheets (SM). Table 10.3 shows the values recommended for the 𝛼 and 𝐶2 parameters 

for different types of stainless steel alloys and materials. 

Table 10.3. Values of the 𝛼 and 𝐶2 parameters for different types of stainless steel alloys and materials. 

Stainless steel 𝛼 𝐶2 

Austenitic CF 1.5 1.0 

Ferritic CF 1.3 1.3 

Ferritic SM 1.7 1.5 

Duplex SM 1.8 0.9 

In addition to calibrating the ductile fracture parameters, the weighted average method proposed by 

Song et al. (2020) was applied in this study to estimate the material behaviour up to failure when the 

fracture area is unknown. This method requires an iterative process to calibrate the two additional 

parameters that describe the true stress-strain curve once necking is initiated. Calibrated values of these 

parameters are also presented in this thesis and will serve as a starting point for further investigations 

that use the weighted average method. 
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10.3. Future lines of research 

This section provides a list of future lines of research that will allow to extend the studies carried out in 

this thesis on the different research paths addressed. 

1.a) The frame tests highlighted the need for carrying out further experimental investigations on 

connections, including both fixed- and pinned-ended support conditions, and beam-to-column 

connections. The behaviour of connections is key to the overall performance of the structure and clear 

guidelines on how to design welded and bolted connections are needed, as well as codified formulae 

for estimating the strength and redistribution capacity of connections, especially in stainless steel. 

1.b) The analysis of the portal frame results also showed that the factor for determining the susceptibility 

to second order effects 𝛼𝑐𝑟,𝑠𝑤,𝑠𝑠 is well calibrated in the case of frames with fully-effective cross-

sections, but needs adaptations when considering sections susceptible to local buckling. This problem 

would be extensible to carbon steel frames with slender cross-sections as well. Furthermore, these tests 

only validated the applicability of the 𝛼𝑐𝑟,𝑠𝑤,𝑠𝑠 approach prescribed for single-storey frames, which 

depends on the 𝑌 factor that assumes much smaller values for multi-storey portal frames, and further 

research would be required to experimentally assess the suitability of these factors. 

1.c) To fully implement the proposed Stiffness Reduction Method as an alternative approach to simplify 

the stability design of stainless steel frames according to European provisions, the present study should 

be extended to other cross-section types, including open sections, slender cross-sections prone to local 

buckling, other failure modes and load combinations, such as lateral-torsional buckling and axial load 

plus biaxial bending, respectively, as well as to more complex structures. 

2.a) The functions proposed for estimating the rotation capacities of stainless steel structural members 

subjected to cyclic loading were based on numerical results, so their evaluation against experimental 

results is needed, as well as their application to other types of loading schemes such as beam-columns 

and other types of cross-sections, including class 4 cross-sections. A study on the extension of the 

formulae proposed in this thesis to stainless steel RHS beam-columns is already underway. 

2.b) Further experimental studies on the cyclic performance of stainless steel at all levels – material, 

members, connections, systems – are also necessary. Currently, the number of studies dedicated to this 

subject is very low, which prevents the full adaptation of the seismic design codes for carbon steel to 

stainless steel structures. The results from the cyclic tests presented in this thesis can be used to validate 

numerical models, which in turn can be used in parametric studies that enhance the knowledge on the 

cyclic behaviour of nonlinear steel structures. 
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2.c) The study on the global behaviour of stainless steel structures under seismic actions underlined the 

need to particularise the standards for stainless steel, be it the mathematical expressions to guarantee 

acceptable strength and stiffness or the design recommendations. Thus, the expression proposed to take 

into account second order effects has shown that current stability verifications lead to unsafe stainless 

steel designs. Also, the design of moment resisting frames is generally governed by their performance 

against lateral loads, and since stainless steel has a lower initial stiffness than carbon steel, structural 

design typologies including bracings should be recommended when designing in stainless steel. 

2.d) The recommended behaviour factor values were based on a relatively low number of structural 

systems. For a more reliable calibration and implementation in the code, the number of case studies 

should be increased by modifying the variables presented in this study, but also the intensity of the 

seismic action, the cross-section classes of the non-dissipative elements or the system typology. In 

addition, the behaviour factors can also be estimated by incremental dynamic analyses and compared 

to those proposed herein. Furthermore, this study focused on DC3 structures, but should be extended to 

DC2 and DC1 structures as well. The recommended values for the seismic performance factors 

prescribed in the US framework should be also considered as a starting point for a more detailed future 

investigation. Finally, this study can serve as a call to commercial software developers to include the 

two-stage Ramberg-Osgood material model in their material model offerings. 

3) The fracture parameter values proposed in this thesis can be taken as preliminary, since they were 

based on a low number of experimental curves. To be of application in finite element simulations, these 

values will need to be recalibrated based on extensive experimental data. Furthermore, since the SMCS 

and Lee and Wierzbicki models have already been modified to predict ductile fracture under seismic 

conditions, the fracture parameters proposed for monotonic loading will also need to be adapted for 

cyclic loading histories in future studies. 
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