
Chapter 7

Asymptotic Studies

In this chapter, some asymptotic results are provided for the second-order estimators formulated

in Chapters 3 and 4. In the first sections, their asymptotic performance is evaluated when the

SNR is very low or very high. The low-SNR study concludes that the nuisance parameters

distribution is irrelevant in a noisy scenario. In that case, the Gaussian assumption is shown to

yield efficient estimators. On the other hand, the high-SNR asymptotic study is useful to bound

the loses incurred when the Gaussian assumption is applied in spite of having non-Gaussian

nuisance parameters. The most important conclusion is that the Gaussian assumption leads

to optimal second-order schemes unless the nuisance parameters belong to a constant modulus

constellation, such as MPSK or CPM. Therefore, the Gaussian assumption applies for very

important constellations in digital communications such as QAM or APK.

The theoretical study is accompanied with some simulations for the problem of bearing

estimation in case of digitally-modulated signals (Section 7.5.1). Numerical results are also

provided in Section 7.5.2 for the problem of feedforward second-order frequency estimation

initially addressed in Section 4.5. The same asymptotic study was carried out in Section 6.2 for

the carrier phase estimation problem in case of noncircular transmissions.

In the second part of the chapter, the asymptotic performance of the second-order small-

error estimators in Chapter 4 is evaluated when the data record grows to infinity. Asymptotic

expressions are deduced for a vast majority of estimation problems in digital communications,

such as timing and frequency synchronization, channel impulse response estimation and time-

of-arrival estimation, among others. In that case, the large sample asymptotic expressions

become a function of the spectra of the received waveform and its derivatives. In this context,

a simple condition is obtained that identifies whether the Gaussian assumption yields optimal

second-order schemes or not. From this result, the Gaussian assumption is proved to be optimal

for timing and frequency synchronization. Some simulations are supplied in Section 7.5.2 that

validate this last conclusion.
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Asymptotic expressions are also obtained for the DOA estimation problem when the spatio-

temporal observation grows indefinitely. If the number of antennas increases, it is shown that

the covariance of the estimation error is asymptotically independent of the sources statistical

distribution and, therefore, the Gaussian assumption can be applied to obtain efficient DOA

estimators. On the other hand, the Gaussian assumption is found to yield an important loss

if the number of sensors is small and multiple constant-modulus signals (e.g., MPSK or CPM)

impinge into the array from near directions. These conclusions are validated numerically in

Section 7.5.3.

7.1 Introduction

Let us summarize first the main results obtained in Chapters 3 and 4. As it was shown therein,

any second-order estimator of α = g(θ) is an affine transformation of the sample covariance

matrix, having the following form:

α̂ = g+MH (r̂− r)

where g =Eθ {g(θ)} and r =EθE {r̂} are the a priori knowledge about the parameter α and the

quadratic observation r̂ = vec(yyH), respectively.

Based on the linear signal model presented in Section 2.4, matrix M was optimized in

Chapters 3 and 4 by adopting different criteria. For the large-error MMSE and minimum

variance second-order estimators studied in Chapter 3, matrix M was given by

Mmse �

(
Q̃+Q

)−1
S

Mvar �Q−1Q̃
(
Q̃Q−1Q̃

)#
S (7.1)

where Q̃ was introduced in (3.23), and Q is the Bayesian expectation, Eθ {·} , of matrix

Q (θ) = R (θ) +A (θ)KAH (θ) ,

with K the fourth-order cumulant matrix in (3.11) and

A (θ)=A∗ (θ)⊗A (θ)

R (θ)=R∗ (θ)⊗R (θ) (7.2)

R (θ)=A (θ)AH (θ) +Rw.

On the other hand, the optimum second-order small-error estimator was obtained in Chapter

4, having that

Mbque (θ) � Q−1 (θ)Dr (θ)
(
DH

r (θ)Q−1 (θ)Dr (θ)
)−1

DH
g (θ) (7.3)
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where θ stands henceforth for the actual value of the parameter and

[Dr (θ)]p = vec

(
∂R (θ)

∂θp

)
= vec

(
∂A (θ)

∂θp
AH (θ) +A (θ)

∂AH (θ)

∂θp

)
(7.4)

is the derivative of R (θ) with respect to the p-th parameter, i.e., θp � [θ]p.

The MSE matrices for the above estimators are given by1

Σmse �Σg − SH
(
Q+ Q̃

)−1
S

Σvar �Σg + SH
(
Q̃Q−1Q̃

)#
S− SHQ̃#S (7.5)

Bbque (θ)�Dg (θ)
(
DH

r (θ)Q−1 (θ)Dr (θ)
)−1

DH
g (θ) .

where Dg (θ) = ∂g (θ) /∂θT and

Σg � Eθ

{
(g(θ)− g) (g(θ)− g)H

}
stands for the prior covariance matrix.

Finally, when the above estimators are deduced under the Gaussian assumption (i.e., K = 0

and Q = R), their performance is given by the following MSE matrices:

Σ′
mse �Σg − SH

(
Q̃+R

)−1
S+Xmse (K)

Σ′
var �Σg + SH

(
Q̃R−1Q̃

)#
S− SHQ̃#S+Xvar (K) (7.6)

Bgml (θ)�BUCRB (θ) +Xgml (K) .

where

BUCRB (θ) � Dg (θ)
(
DH

r (θ)R−1 (θ)Dr (θ)
)−1

DH
g (θ) (7.7)

is the well-known (Gaussian) unconditional CRB (Section 2.6.1) and, Xmse (K), Xvar (K),

Xgml (K) are the terms depending on the kurtosis matrix K, which are given by

Xmse (K)�SH
(
Q̃+R

)−1
Eθ

{A (θ)KAH (θ)
}(

Q̃+R
)−1

S

Xvar (K)�SH
(
Q̃R−1Q̃

)#
Q̃R−1Eθ

{A (θ)KAH (θ)
}R−1Q̃

(
Q̃R−1Q̃

)#
S (7.8)

Xgml (K)�Dg (θ)
(
DH

r (θ)R−1 (θ)Dr (θ)
)−1 (

DH
r (θ)R−1 (θ)A (θ)KAH (θ)R−1 (θ)Dr (θ)

)(
DH

r (θ)R−1 (θ)Dr (θ)
)−1

DH
g (θ)

It will be shown in next sections that Xgml (K) is always negligible for very low or high

SNR. Nonetheless, the GML estimator might outperform the associated UCRB if the SNR is

1The “MSE matrix” is defined as EθE
{
eeH

}
where e stands for the considered estimation error [Kay93b].
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moderate and Xgml (K) is negative. This behaviour has been observed, for example, in the

DOA estimation problem in Section 6.5. On the other hand, in this chapter, the Gaussian

assumption is proved to yield the optimal second-order estimator when the SNR goes to zero or

if the amplitude of the nuisance parameters is not constant and the SNR goes to infinity. Finally,

regarding the large-error MMSE and minimum variance estimators, Xvar(K) and Xmse (K) are

irrelevant at low SNR but they are determinant at high SNR because they are able to reduce

the variance floor.

Before going into detail, let us decompose the noise covariance matrix Rw as σ2
wN in order

to make explicit the dependence on the noise variance σ2
w. Assuming that the noise is stationary,

the diagonal entries of Rw are precisely the noise variance σ2
w. Formally, the noise variance is

given by

σ2
w � Tr (Rw) /M.

and, therefore, N = Rw/σ
2
w has unitary diagonal entries, by definition. Furthermore, in next

sections, it will be useful to consider the following fourth-order matrix:

N � N∗ ⊗N.

7.2 Low SNR Study

When the noise variance goes to infinity (σ2
w → ∞), the inverse of R (θ), Q (θ) and R(θ) take

the following asymptotic form:

R−1 (θ)= σ−2
w N−1 + o

(
σ−2
w

)
Q−1(θ) ,R−1(θ)= σ−4

w N−1 + o
(
σ−4
w

)
assuming that N is full-rank. The Landau symbol o (x) is introduced to consider all those terms

that converge to zero faster than x. On the other hand, the rest of matrices appearing in (7.5)

and (7.6) are independent of σ2
w. Specifically, the noise variance does not affect the value of

A (θ), A (θ), Q̃, S, Dr (θ), Dg (θ), K and Σg.

Therefore, the MSE matrices in (7.5) and (7.6) have the following asymptotic expressions at

low SNR:

Σmse,Σ
′
mse =Σg − σ−4

w SHN−1S+ o
(
σ−4
w

)
Σvar,Σ

′
var =σ4

wS
H
(
Q̃N−1Q̃

)#
S+ o

(
σ4
w

)
(7.9)

BUCRB (θ) ,Bgml (θ) ,Bbque (θ)=σ4
wDg (θ)

(
DH

r (θ)N−1 (θ)Dr (θ)
)−1

DH
g (θ) + o

(
σ4
w

)
.

taking into account that Xmse (K) in (7.8) is proportional to σ−8
w and, Xvar (K) and Xgml (K)

are constant. Notice that the fourth-order matrix K does not appear in none of the above
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asymptotic expressions. This implies that the actual distribution of the nuisance parameters

becomes irrelevant at low SNR when designing second-order schemes. Moreover, any assumption

about the distribution of the nuisance parameters yields the same MSE expressions in (7.9).

To complete the analysis, the asymptotic expression of the studied second-order estimators

is provided next:

Mmse,M
′
mse =σ−4

w N−1S+ o
(
σ−4
w

)
Mvar,M

′
var =N−1Q̃

(
Q̃N−1Q̃

)#
S+ o (1) (7.10)

Mbque (θ) ,Mgml (θ)=N−1 (θ)Dr (θ)
(
DH

r (θ)N−1 (θ)Dr (θ)
)−1

DH
g (θ) + o (1)

where M′
mse and M′

var correspond to the minimum variance and MMSE estimators obtained

under the Gaussian assumption.

In Appendix 7.A, it is shown that Mbque (θ) and Mgml (θ) in (7.10) coincide with the scoring

method that implements the low-SNR ML estimator deduced in Section 2.4.1. Due to the

asymptotic efficiency of the ML estimator (Section 2.3.2), if the GML and BQUE estimators

converge to the ML solution at low SNR, we can state that the GML and BQUE estimators

become asymptotically efficiency as the SNR goes to zero. As it was discussed in Section 2.3.2,

the “asymptotic” condition is satisfied whenever the estimator operates in the small-error regime

or, equivalently, the actual SNR exceeds the SNR threshold. Accordingly, in the studied low

SNR scenario (σ2
w → ∞), the asymptotic condition requires that the observation length goes to

infinity (M → ∞) in order to attain the small-error regime.

Likewise, because the GML is efficient at low SNR, the associated (Gaussian) UCRB (7.9)

becomes the true CRB at low SNR if and only if the observation size goes to infinity (small-

error). Notice that both the UCRB and the true CRB are proportional to σ−4
w at low SNR, as

it was reported in [Ste01] for the problem of timing synchronization.

7.3 High SNR Study

In low SNR conditions, the Gaussian assumption has been proved to yield optimal second-order

estimators. However, when the SNR increases, the optimal second-order estimators listed in

(7.1) and (7.3) exploit the fourth-order statistical information about the nuisance parameters

contained in matrix K. When the Gaussian assumption is adopted and this information is

omitted (K = 0), the performance of the studied second-order estimators degrades at high

SNR. In this section, this loss is upper bounded by evaluating the asymptotic performance of

the aforementioned estimation methods when the noise variance goes to zero.

In Appendix 7.B, the asymptotic value of R−1 (θ) and R−1(θ) as the noise variance goes to
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zero is calculated, obtaining

R−1 (θ)=σ−2
w P⊥

A (θ) +B (θ)− σ2
wB (θ)NB (θ) +O

(
σ4
w

)
(7.11)

R−1(θ)=σ−4
w

[
P⊥∗

A (θ)⊗P⊥
A (θ)

]
+σ−2

w

[
B∗ (θ)⊗P⊥

A (θ) +P⊥∗
A (θ)⊗B (θ)

]
+B∗ (θ)⊗B (θ)

−σ2
w (B∗ (θ)⊗B (θ)NB (θ) + [B (θ)NB (θ)]∗ ⊗B (θ))

+O
(
σ4
w

)
(7.12)

where the Landau symbol O (x) includes all the terms that converge to zero as x or faster. The

asymptotic value of R−1 (θ) and R−1(θ) is given in terms of the following matrices:

A# (θ)�
(
AH (θ)N−1A (θ)

)−1
AH (θ)N−1 (7.13)

P⊥
A (θ)�N−1

[
IM −A (θ)A# (θ)

]
(7.14)

B (θ)�
[
A# (θ)

]H
A# (θ) (7.15)

where A# (θ) and P⊥
A (θ) are variations of the Moore-Penrose pseudoinverse and the projector

onto the null subspace of A (θ), respectively. The original definitions are altered to include the

whitening matrix N−1 in case of correlated noise samples (i.e., N �= IM ). Although abusing of

notation, the above matrices retain all the properties of the original definition, that is,

A# (θ)A (θ)= IK

A (θ)A# (θ)A (θ)=A (θ)

A# (θ)A (θ)#A (θ)=A# (θ)

P⊥
A (θ)A (θ)= 0

AH (θ)P⊥
A (θ)= 0.

On the other hand, the asymptotic value of Q−1 (θ) depends on the kurtosis matrix K. The

complete study is carried out in Appendix 7.C when K is full-rank and in Appendix 7.D when K

is singular. In these appendices, Q−1 (θ) is proved to have the following asymptotic expression:

Q−1 (θ) = R−1 (θ) + σ−2
w

[
A# (θ)

]H
P⊥

K (θ)A# (θ) +O (1) (7.16)

where the pseudoinverse of A (θ) = A∗ (θ)⊗A (θ) (7.2) is defined as follows

A# (θ) �
(AH (θ)N−1A (θ)

)−1AH (θ)N−1 =
[
A# (θ)

]∗ ⊗A# (θ) .

and P⊥
K (θ) stands for the projector onto the subspace generated by the eigenvectors of

K = VKΣKVH
K associated to the eigenvalue −1.
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The second term in (7.16) is positive semidefinite and it becomes zero if and only if P⊥
K (θ) =

0, i.e., if all the eigenvalues of K are different from −1. The rank of P⊥
K (θ) is thus determinant

to assess the potential benefit of considering the kurtosis matrix K in the design of second-

order estimators. The exact expression of P⊥
K (θ) is given in Appendix 7.C (K full-rank) and in

Appendix 7.D (K singular). In Section 7.3.3, the study of P⊥
K (θ) will be addressed with more

detail.

It is worth realizing that all the above asymptotic results are implicitly assuming that the

transfer matrix A (θ) is full column rank. This will be the baseline for the asymptotic studies in

this section. In addition, some indications are given in Appendix 7.E to carry out the asymptotic

study when the rank of A (θ) is lower than the number of columns K.

7.3.1 (Gaussian) Unconditional Cramér-Rao Bound

The (Gaussian) UCRB is widely used to lower bound the performance of second-order estimators.

Thus far, it is proved that the UCRB is a valid second-order lower bound when the SNR goes

to zero or if the nuisance parameters are actually Gaussian. Nonetheless, this is not generally

true. Indeed, the UCRB is shown to be outperformed at high SNR by the optimal second-order

small-error estimator proposed in Chapter 4. Likewise, the GML estimator usually outperforms

the UCRB for intermediate SNRs.

In this section, the high-SNR limit of BUCRB (θ) when the noise variance goes to zero is

derived. It is shown that BUCRB (θ) becomes proportional to σ2
w at high SNR and, therefore,

self-noise free estimates are feasible when the nuisance parameters are Gaussian. Formally, we

have that

BUCRB (θ)=Dg (θ)
(
DH

r (θ)R−1 (θ)Dr (θ)
)−1

DH
g (θ)

=σ2
wDg (θ)B−1

1 (θ)DH
g (θ) +O

(
σ4
w

)
(7.17)

where B1 (θ) stands for the high-SNR limit of σ2
wD

H
r (θ)R−1 (θ)Dr (θ) . The entries of B1 (θ)

are determined in Appendix 7.F, obtaining

[B1 (θ)]p,q = 2ReTr

(
∂AH (θ)

∂θp
P⊥

A (θ)
∂A (θ)

∂θq

)
. (7.18)

Notice that this result requires that ∂A (θ) /∂θp does not lie totally on the subspace generated

by the columns of A (θ), i.e.,

P⊥
A (θ)

∂A (θ)

∂θp
�= 0

for all the parameter θ1, . . . , θP . This abnormal situation takes place if the noise subspace of

matrix A (θ) is null (Appendix 7.D) but also in the problem of carrier phase synchronization
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addressed in Section 6.2. In both cases, the constant term B∗ (θ) ⊗B (θ) in (7.12) has to be

considered in order to evaluate the variance floor at high SNR, having that

lim
σ2
w→0

BUCRB (θ) = Dg (θ)B−1
2 (θ)DH

g (θ) (7.19)

where B2 (θ) stands for the high-SNR limit of DH
r (θ)R−1 (θ)Dr (θ) . The entries of B2 (θ) are

determined in Appendix 7.G, obtaining

[B2 (θ)]p,q � 2ReTr

(
∂A (θ)

∂θp
A# (θ)

∂A (θ)

∂θq
A# (θ) +

∂A (θ)

∂θp

∂AH (θ)

∂θq
B (θ)

)
. (7.20)

7.3.2 Gaussian Maximum Likelihood

In most estimation problems, the UCRB takes the form in equation (7.17) and self-noise free

estimation is possible with Gaussian nuisance parameters. In that case, the asymptotic perfor-

mance of the GML estimator is exactly the one computed in (7.17) irrespective of the actual

distribution of the nuisance parameters, i.e., even if K �= 0. Formally, we have that

Bgml (θ) ,BUCRB (θ) = σ2
wDg (θ)B−1

1 (θ)DH
g (θ) +O

(
σ4
w

)
(7.21)

with B1 (θ) given in (7.18).

This statement is true because the term Xgml(K) in (7.6) can be neglected since it depends

on σ4
w whereas BUCRB (θ) is proportional to σ2

w. Notice that Xgml(K) is proportional to σ4
w

because

R−1 (θ)A (θ) = [B∗ (θ)⊗B (θ)]A (θ) +O
(
σ2
w

)
is asymptotically constant, as pointed out in Appendix 7.B.

Finally, if ∂A (θ) /∂θp and A (θ) were linearly dependent, the GML performance would

exhibit a variance floor at high SNR that would be a function of the kurtosis matrix K. Using

equation (7.6), it follows that the GML variance floor would be equal to

lim
σ2
w→0

Bgml (θ)=Dg (θ)B−1
2 (θ)DH

g (θ) (7.22)

+Dg (θ)B−1
2 (θ)

(
DH

r (θ)
[
A# (θ)

]H
KA# (θ)Dr (θ)

)
B−1
2 (θ)DH

g (θ)

where BUCRB (θ) = Dg (θ)B−1
2 (θ)DH

g (θ) is the variance floor in case of Gaussian nuisance

parameters (7.19) and the second term corresponds to Xgml (θ) in (7.6).

7.3.3 Best Quadratic Unbiased Estimator

In this section, closed form expressions are obtained for the ultimate performance of second-

order small-error estimators at high SNR. The study in Appendix 7.C and Appendix 7.D comes
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to the conclusion that the Gaussian assumption is optimal at high SNR unless some eigenvalues

of the kurtosis matrix K are equal to −1. It seems that this condition is related to the constant

modulus of the nuisance parameters. This important result suggests to classify the nuisance

parameters distribution according to the eigendecomposition of K. With this purpose, let us

first obtain the asymptotic expression of Bbque (θ) (7.5) as the noise variance goes to zero, i.e.,

σ2
w → 0.

Using the asymptotic value of Q−1 (θ) in (7.16), it follows that

DH
r (θ)Q−1 (θ)Dr (θ)=DH

r (θ)R−1 (θ)Dr (θ)

+σ−2
w DH

r (θ)
[
A# (θ)

]H
P⊥

K (θ)A# (θ)Dr (θ) +O (1) (7.23)

where P⊥
K (θ) ∈ RK2×K2

denotes the projector onto the subspace generated by the eigenvectors

of K associated to the eigenvalue −1.

Using now the asymptotic expression of DH
r (θ)R−1 (θ)Dr (θ) in (7.17), it follows that

Bbque (θ)=σ2
wDg (θ) (7.24)(
B1 (θ) +DH

r (θ)
[
A# (θ)

]H
P⊥

K (θ)A# (θ)Dr (θ)

)−1

DH
g (θ) +O(σ4

w)

where the second term inside the inverse is always positive semidefinite and, therefore, we can

state at high SNR that

Bbque (θ) ≤ Bgml (θ) = BUCRB (θ) .

The second term of (7.24) is zero and, therefore, the Gaussian assumption applies at high

SNR in any of the following situations:

1. Signal parameterization. The Gaussian assumption applies at high SNR if ∂A (θ) /∂θp

lies totally in the noise subspace of A (θ), i.e,

∂A (θ)

∂θp
= P⊥

A (θ)
∂A (θ)

∂θp
(7.25)

or, taking into account the definition of P⊥
A (θ) in (7.14),

AH (θ)N−1∂A (θ)

∂θp
= 0.

In that case, after some simple manipulations, it can be shown that[
A# (θ)Dr (θ)

]
p
=vec

(
A# (θ)

∂R (θ)

∂θp

[
A# (θ)

]H)
=vec

(
∂AH (θ)

∂θp

[
A# (θ)

]H
+A# (θ)

∂A (θ)

∂θp

)
= 0
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and, thus, the second term in (7.24) is strictly zero independently of the nuisance param-

eters distribution. For example, this condition applies in digital synchronization as the

observation length goes to infinity (Section 7.4.4).

By comparing this condition and the one introduced in Section 7.3.1, we can conclude that

the condition (7.25) never applies if the UCRB and GML suffer from self-noise at high

SNR since, in that case, P⊥
A (θ) ∂A (θ) /∂θp = 0.

2. Nuisance parameters distribution. Regardless of the signal parameterization, the

Gaussian assumption applies at high SNR if all the eigenvalues of the kurtosis matrix K

are different from −1. In that case, P⊥
K (θ) is strictly zero, and the second term in (7.24)

becomes zero.

If the nuisance parameters are drawn from an arbitrary circular complex alphabet, the

kurtosis matrix is given by K = (ρ− 2) diag (vec (IK)) (3.12) and, therefore, the Gaussian

assumption always applies except if ρ = 1. It can be shown that this condition (ρ = 1) is

solely verified in case of constant modulus alphabets. Accordingly, in the context of digital

communications, the Gaussian assumption applies for any multilevel linear modulation

such as QAM or APK. On the other hand, it does not apply in case of any complex MPSK

modutation holding that ρ = 1.

If the nuisance parameters are not circular, there is not a closed-form expression for the

eigenvalues ofK. However, it is found that the kurtosis matrix of some important constant-

modulus noncircular modulations has some eigenvalues equal to −1. Among them, an

special attention is given in this thesis to the CPM modulation. Other important constant-

modulus noncircular modulations are the BPSK and those constant-modulus staggered

modulations such as the offset QPSK [Pro95].

Finally, in those scenarios in which the UCRB (7.19) and the GML (7.22) exhibit a variance

floor at high SNR because P⊥
A (θ) ∂A (θ) /∂θp = 0, the Gaussian assumption fails when

the nuisance parameters have constant modulus. In that case, the second term in (7.24)

allows cancelling the self-noise because

DH
r (θ)Q−1 (θ)Dr (θ) = B2 (θ) + σ−2

w DH
r (θ)

[
A# (θ)

]H
P⊥

K (θ)A# (θ)Dr (θ) +O (1)

and, therefore, the constant term B2 (θ) (7.20) can be neglected when compared to the

second term, that is proportional to σ−2
w . Using this result, the asymptotic variance of the

optimal second-order estimator is given by

Bbque (θ) = σ2
wDg (θ)

(
DH

r (θ)
[
A# (θ)

]H
P⊥

K (θ)A# (θ)Dr (θ)

)−1

DH
g (θ) +O

(
σ4
w

)
This situation arises in the carrier phase estimation problem studied in Section 6.2 as well

as in the scenarios simulated in Section 4.5 in which A (θ) is not full-column rank.
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7.3.4 Large Error Estimators

In this section, the asymptotic performance of the Bayesian estimators in (7.1) is analyzed when

the SNR goes to infinity. The result of this asymptotic study depends on the influence of the

Bayesian expectation Eθ {·} on the following matrices:

R � Eθ {R (θ)} = G+ σ2
wN

R � Eθ {R (θ)} = Eθ {R∗ (θ)⊗R (θ)}
= Eθ

{A (θ)AH (θ)
}
+ σ2

wU+ σ4
wN (7.26)

Q � Eθ {Q (θ)} = R+Eθ

{A (θ)KAH (θ)
}

= Eθ

{A (θ) (IK2 +K)AH (θ)
}
+ σ2

wU+ σ4
wN

with the following definitions:

G�Eθ

{
A (θ)AH (θ)

}
(7.27)

U� [G∗ ⊗N+N∗ ⊗G] (7.28)

The Bayesian expectation always increases the rank of these matrices. Even if the prior

distribution is rather informative, these matrices become rapidly full rank. Therefore, let us

consider that G, and hence U, are eventually full rank. In that case, the MSE matrices in (7.5)

and (7.6) converge to the following limits at high SNR (Appendix 7.H):

lim
σ2
w→0

Σmse =Σg − SHBT1
S

lim
σ2
w→0

Σvar =Σg + SH
(
Q̃BT2

Q̃
)#

S− SHQ̃#S

lim
σ2
w→0

Σ′
mse =Σg − SHBT3

S+Xmse (K) (7.29)

lim
σ2
w→0

Σ′
var =Σg + SH

(
Q̃BT4

Q̃
)#

S− SHQ̃#S+Xvar (K)

where

Xmse (K)=SHBT3
Eθ

{A (θ)KAH (θ)
}
BT3

S

Xvar (K)=SH
(
Q̃BT4

Q̃
)#

Q̃BT4
Eθ

{A (θ)KAH (θ)
}
BT4

Q̃
(
Q̃BT4

Q̃
)#

S (7.30)

and BT is computed as

BT � U−1VT

(
VH

T U−1VT

)−1
Σ−1
T

(
VH

T U−1VT

)−1
VH

T U−1 (7.31)

with VTΣTV
H
T the “economy-size” diagonalization of the specific matrix T considered in (7.29):

T1 �Eθ

{A (θ) (IK2 +K)AH (θ)
}
+ Q̃

T2 �Eθ

{A (θ) (IK2 +K)AH (θ)
}

T3 �Eθ

{A (θ)AH (θ)
}
+ Q̃ (7.32)

T4 �Eθ

{A (θ)AH (θ)
}
.
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Taking a glance at (7.29), one observes that the terms

SH
(
Q̃BT2

Q̃
)#

S

SH
(
Q̃BT4

Q̃
)#

S+Xvar (K)

in Σ′
var and Σvar correspond to the self-noise whereas the term Σg−SHQ̃#S is the estimator bias

at high SNR. The self-noise terms were found to vanish when the observation time was infinite

for the problem of blind frequency estimation in Section 3.4. On the other hand, the bias

term could not be cancelled extending the observation time in the problem of blind frequency

estimation (Section 3.4).

7.4 Large Sample Study

In this section, the asymptotic performance of the second-order estimators deduced in Chapter

4 is evaluated when the number of observed samples goes to infinity (M → ∞). Notice that

M can be increased by augmenting either the sampling rate (Nss) or the observation interval

(Ns = M/Nss).

In the first case, the sampling theorem states that it is enough to take Nss = 2 samples

per symbol for those modulations with an excess of band smaller than 100%. However, when

the observation window is too short, the observed spectrum becomes wider due to well-known

smearing and leakage effects [Sto97]. The proposed estimators deal with this problem by applying

the best temporal window according to the known signal model and the adopted optimization

criterion. Nonetheless, if the vector of nuisance parameters is longer than the number of observed

samples, it is not possible to avoid the variance floor at high SNR unless Nss is increased (see

Appendix 7.E). This problem is only relevant when the observation time is really short, as it

has been considered in this dissertation so far. If the observation time Ns is augmented, the

problem of spectral aliasing becomes rapidly negligible and Nss = 2 becomes sufficient.

The importance of the sampling rate was also evidenced in Section 3.4 for the problem of

carrier frequency-offset synchronization. It was shown therein that the estimator bias can only

be cancelled if Nss goes to infinity. Surprisingly, the bias term cannot be removed by only

increasing Ns. However, this sort of arguments are specific to the frequency estimation problem

and should be revised for other estimation problems.

Considering in the sequel that Nss is fixed, asymptotic expressions are given in this section

for the small-error second-order estimators deduced in Chapter 4 as the observation length goes

to infinity (M → ∞) . The study for the large error estimators in Chapter 3 is omitted because

it is less insightful due to the role of the Bayesian expectation (see Section 7.3.4).
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In the large sample case, a unified analysis is not feasible because the results depend on the

actual parameterization and on how A (θ) grows when M → ∞. In this section, the problems

of non-data-aided synchronization in Section 6.1, blind time-of-arrival estimation in Section 6.3,

blind channel identification in Section 6.4 and DOA estimation in Section 6.5 are considered.

Before addressing the asymptotic study for the aforementioned estimation problems, the

covariance matrices BUCRB(θ), Bgml(θ) and Bbque(θ) in Section 7.1 are now restated in terms

of the following matrices

B (θ)�AH (θ)N−1A (θ)

Bp (θ)�
∂AH (θ)

∂θp
N−1A(θ) (7.33)

Bp,q (θ)�
∂AH (θ)

∂θp
N−1∂A (θ)

∂θq
.

for p, q = 1, . . . , P . These matrices collect all the scalar products between two columns of A (θ)

and ∂A (θ) /∂θp —normalized by means of N−1. It is shown in the following subsections that

these K ×K matrices determine enterely the performance of second-order estimators. Thus, it

is only necessary to study the asymptotic value of B (θ) , Bp (θ) and Bp,q (θ) as the number of

observations goes to infinity (M → ∞) or, in other words, as the dimension of the column space

of A (θ) and ∂A (θ) /∂θp increases wihtout limit.

For the sake of clarity, we will consider hereafter that g (θ) = θ and, in most cases, the noise

term will be assumed white, i.e., N = IM .

7.4.1 (Gaussian) Unconditional Cramér-Rao Bound

After some simplifications, the (Gaussian) UCRB in (7.7) can be restated as

[
B−1

UCRB(θ)
]
p,q

=
[
DH

r (θ)R−1 (θ)Dr (θ)
]
p,q

=2ReTr

{(
∂AH (θ)

∂θp
R−1 (θ)A (θ)

)(
∂AH (θ)

∂θq
R−1 (θ)A (θ)

)
+
(
AH (θ)R−1 (θ)A (θ)

)(∂AH (θ)

∂θp
R−1 (θ)

∂A (θ)

∂θq

)}
. (7.34)

using the algebraic properties in (7.54) from Appendix 7.A.

Then, if the inversion lemma is applied to arrange the inverse of R (θ) as

R−1 (θ) = σ−2
w N−1 − σ−2

w N−1A (θ)
(
AH (θ)N−1A (θ) + IK

)−1
AH (θ)N−1,
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it follows that the entries of B−1
UCRB(θ) become a function of the following three matrices:

X (θ)� σ2
wA

H (θ)R−1 (θ)A (θ) = B (θ)−B (θ)
(
B (θ) + σ2

wIK
)−1

B (θ)

Xp(θ)� σ2
w

∂AH (θ)

∂θp
R−1 (θ)A (θ) = Bp (θ)−Bp (θ)

(
B (θ) + σ2

wIK
)−1

B (θ) (7.35)

Xp,q(θ)� σ2
w

∂AH (θ)

∂θp
R−1 (θ)

∂A (θ)

∂θq
= Bp,q (θ)−Bp (θ)

(
B (θ) + σ2

wIK
)−1

BH
q (θ)

where B (θ) , Bp (θ) and Bp,q (θ) were introduced in (7.33).

Therefore, plugging (7.35) into (7.34), it follows that[
B−1

UCRB(θ)
]
p,q

= 2σ−4
w ReTr

{
Xp(θ)Xq(θ) +X (θ)Xp,q(θ)

}
. (7.36)

7.4.2 Gaussian Maximum Likelihood

In this section, the GML covariance matrix Bgml(θ) is restated in terms of B (θ) , Bp (θ) and

Bp,q (θ). Bearing in mind that Dg (θ) = IP , it follows that (7.6) can be written as

Bgml(θ) = BUCRB(θ) +Xgml(K) = BUCRB(θ) +BUCRB(θ)Ψ (K)BUCRB(θ). (7.37)

where

Ψ (K) � DH
r (θ)R−1 (θ)A (θ)KAH (θ)R−1 (θ)Dr (θ) .

Next, we will prove that Ψ(K) is also a function of B (θ), Bp (θ) and Bp,q (θ) (7.33). Taking

into account the definitions of A (θ) and R (θ) in (7.2), the associative property of the Kronecker

product yields

AH (θ)R−1 (θ) =
[
AH (θ)R−1 (θ)

]∗ ⊗AH (θ)R−1 (θ) .

Then, using again the matrix properties in (7.54), it can be seen that[AH (θ)R−1 (θ)Dr (θ)
]
p
= vec

(
X (θ)Xp (θ) +XH

p (θ)X (θ)
)

where X (θ) and Xp (θ) were introduced in (7.35).

Therefore, Ψ(K) can be written as

[Ψ (K)]p,q =σ−4
w vecH (Yp (θ))Kvec (Yq (θ))

=σ−4
w vecH (Yp (θ))VKΣKVH

K vec (Yq (θ)) (7.38)

where

Yp (θ) � X (θ)Xp (θ) +XH
p (θ)X (θ) (7.39)
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and VKΣKVH
K is the “economy-size” diagonalization of K.

To conclude this analysis, Ψ (K) can be further simplified when the nuisance parameters are

circular. In that case, the kurtosis matrix K is equal to (ρ− 2) diag (vec (IK)) (3.12), and the

eigenvalues and eigenvectors of K are given by

ΣK =(ρ− 2) IK

[VK ]k =vec
(
eke

H
k

)
(7.40)

where ek ∈ RK is defined as

[ek]i �

{
1 i = k

0 i �= k
.

In [Mag98, Ex.4, p.62], it is shown that VK has the following interesting properties:

VH
K vec(A)=diag (A)

[(A⊗B)VK ]k = [A]k ⊗ [B]k

VH
K (A⊗B)VK =A�B (7.41)

for any pair of matrices A and B of appropriate size.

Taking into account the first property in (7.41), (7.42) becomes

[Ψ (K)]p,q = σ−4
w diagH (Yp (θ))ΣK diag (Yq (θ))

= σ−4
w (ρ− 2)Tr (Yp (θ)�Yq (θ)) (7.42)

using (7.40) and the following identity:

diagH (A) diag (B) = Tr (A∗ �B) = Tr
(
AH �B

)
.

Regarding now the definition of Yp (θ) (7.39), it follows that diag (Yq (θ)) is always real-

valued because

diag (Yq (θ)) = 2Re
{
diag

(
XH

p (θ)X (θ)
)}

.

7.4.3 Best Quadratic Unbiased Estimator

In this section, the same analysis is carried out for the optimal second-order estimator. The aim

is also to formulate Bbque(θ) in terms of B (θ), Bp (θ) and Bp,q (θ) (7.33). To begin with, the

inversion lemma is applied to Q−1 (θ) obtaining

B−1
bque(θ) = DH

r (θ)Q−1 (θ)Dr (θ) = DH
r (θ)R−1 (θ)Dr (θ) + Γ (K) (7.43)
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where the first term corresponds to B−1
UCRB(θ) in (7.36), and

Γ (K) � −DH
r (θ)R−1 (θ)A (θ)VK

(
VH

KAH (θ)R−1 (θ)A (θ)VK +Σ−1
K

)−1

VH
KAH (θ)R−1 (θ)Dr (θ) (7.44)

is the term depending on the kurtosis matrix2. The “economy-size” diagonalization of K is

introduced to encompass those problems in which K is singular (e.g., CPM).

Next, Γ(K) is formulated in terms of B (θ), Bp (θ) and Bp,q (θ) (7.33),

[Γ (K)]p,q =−σ−4
w vecH (Yp (θ))

VK

(
VH

K [X∗ (θ)⊗X (θ)]VK + σ4
wΣ

−1
K

)−1
VH

K vec (Yp (θ)) , (7.45)

using the following identities:[AH (θ)R−1 (θ)Dr (θ)
]
p
=σ−4

w vec (Yp (θ))

AH (θ)R−1 (θ)A (θ)=σ−4
w [X∗ (θ)⊗X (θ)] .

Unfortunately, the analysis of (7.45) is really involved except for those circular alphabets

holding K = (ρ− 2) diag (vec (IK)) (3.12). In that case, from (7.40) and (7.41), we have

VH
K vec (Yp (θ))=diag (Yp (θ))

VH
K [X∗ (θ)⊗X (θ)]VK =X∗ (θ)�X (θ) .

Accordingly, if ρ �= 2, the non-Gaussian term Γ(K) is given by

[Γ (K)]p,q = −σ−4
w diagH (Yp (θ))

(
X∗ (θ)�X (θ) + σ4

w (ρ− 2)−1 IK

)−1
diag (Yq (θ)) . (7.46)

Regarding the last expression, the following important conclusion arises. If the nuisance

parameters are circular (3.12), the Gaussian assumption applies independently of the SNR and

the nuisance parameters distribution if

diag (Yp (θ)) = 2Rediag
(
XH

p (θ)X (θ)
)
= 0 (7.47)

for p = 1, . . . , P where X (θ) and Xp (θ) were defined in (7.35). If the last equation holds true,

Ψ (K) and Γ(K) are exactly zero in view of (7.42) and (7.46). This condition will be tested in

the following sections to validate the Gaussian assumption in some relevant estimation problems

in digital communications.

Notice that the last condition is more restrictive than the one presented in (7.25). Actually, it

is straightforward to realize that (7.47) is satisfied if (7.25) is held because, in that case, BH
p (θ) =

AH (θ)N−1∂A (θ) /∂θp = 0 and hence Xp (θ) = 0 (7.35).

2Notice that Γ (K) is actually the second term in (7.23).
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7.4.4 Second-Order Estimation in Digital Communications

In this section, simple asymptotic closed-form expressions are obtained for any estimation prob-

lem in which multiple replicas of the same waveform (pulse) are periodically received. The

received waveform is parameterized by a finite set of parameters θ and will be referred to as

g(t;θ) in this section. Assuming that a continuous stream of symbols is received, the structure

of A (θ) corresponds to the one represented in Fig. 6.1 (right-hand side) in Section 6.1.2.

This framework encompasses most estimation problems in digital communications, among

others the synchronization problems described in Section 6.1, the problem of blind channel

identification in Section 6.4 and, the problem of time-of-arrival estimation studied in Section

6.3. Although the problem of frequency estimation does not fall into this category because the

phase of the received waveform is time-varying, it is proved in Appendix 7.J that quadratic NDA

techniques are only aware of the carrier phase variation within the received pulse duration.

In this section, the aymptotic value of B (θ), Bp (θ) and Bp,q (θ) (7.33) is determined for

Ns going to infinity. In that case, the size of these K × K square matrices also increases

proportionally as Ns → ∞ because

K = Ns + L− 1

with L the pulse duration in symbol periods. However, although the size of B (θ), Bp (θ) and

Bp,q (θ) tends to infinity, the central rows and columns of B (θ), Bp (θ) and Bp,q (θ) contain

delayed versions of the following autocorrelation and cross-correlation functions3

R [k]�

∫ ∞

−∞
g(t)g∗(t+ kT )dt

Rp [k]�

∫ ∞

−∞
g(t)g∗p(t+ kT )dt

Rp,q [k]�

∫ ∞

−∞
gp(t)g

∗
q (t+ kT )dt,

where gp (t;θ) � ∂g (t;θ) /∂θp stands for derivative of g (t;θ) with respect to the p-th parameter

θp. In the sequel, the dependence on θ will be omitted for the sake of brevity.

Henceforth, only the central rows and columns ofB (θ),Bp (θ) andBp,q (θ) will be considered

bearing in mind that the “edge effect” is negligible in the asymptotic case (Ns → ∞) or in case

of TDMA signals (Section 6.1.2). This analysis is inspired in the asymptotic study carried out

in [Rib01b] for the CML timing estimator4. In [Rib01b], it is shown that the multiplication of

these matrices yields another matrix whose central columns and rows are the convolution (∗)
3For simplicity the noise is assumed uncorrelated, i.e., N = IM . Otherwise, the same expressions are valid for

the whitened waveform η(t) ∗ g (t; θ) where η(mTs) is the central column of N−1/2.
4Likewise, the same reasoning was adopted in [Kay93b, Sec. 7.9] to get asymptotic expressions for the Newton-

Raphson and scoring recursions in the context of maximum likelihood estimation.
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of the central columns and rows of the original matrices. This allows computing BUCRB(θ),

Bgml(θ) and Bbque(θ) as follows:

[
B−1

UCRB(θ)
]
p,q

=2σ−4
w ReTr (Xp (θ)Xq (θ) +X (θ)Xp,q (θ))

=2Nsσ
−4
w Re (Xp [k] ∗Xq [k] +X [k] ∗Xp,q [k])|k=0 + o (Ns)

where the central rows and columns of X (θ), Xp (θ) and Xp,q (θ) are given by

X[k]�R[k]−R[k] ∗ (R[k] + σ2
wδ[k]

)−1 ∗R[k]

Xp[k]�Rp[k]−Rp[k] ∗
(
R[k] + σ2

wδ[k]
)−1 ∗R[k] (7.48)

Xp,q[k]�Rp,q[k]−Rp[k] ∗ (R[k] + δ[k])−1 ∗R∗
q [−k].

In the above equations, the inverse operator (·)−1 stands for the deconvolution, i.e., a−1[k] is

the sequence holding a[k] ∗a−1[k] = δ[k]. As it is the usual practice, this deconvolution is solved

in the frequency domain. Using standard Fourier calculus, it is found that

[
B−1

UCRB(θ)
]
p,q

= 2Nsσ
−4
w Re

∫ 0.5

−0.5
SXp(f)SXq (f) + SX(f)SXp,q(f)df + o (Ns)

where the Fourier transforms of X[k], Xp[k] and Xp,q[k] are given next in terms of the Fourier

transforms of R[k], Rp[k] and Rp,q[k]:

SX(f)�F {X[k]} = S(f)− S2(f)

S(f) + σ2
w

=
σ2
wS(f)

S(f) + σ2
w

SXp(f)�F {Xp[k]} = Sp (f)− Sp (f)S(f)

S(f) + σ2
w

=
σ2
wSp (f)

S(f) + σ2
w

(7.49)

SXp,q (f)�F {Xp,q[k]} = Sp,q(f)−
Sp(f)S

∗
q (f)

S(f) + σ2
w

.

Focusing uniquely on circular complex alphabets (e.g., MPSK and QAM), the term Ψ(K)

appearing in the GML covariance matrix (7.37) is asymptotically (Ns → ∞) given by

[Ψ (K)]p,q = σ−4
w (ρ− 2)Tr (Yp (θ)�Yq (θ)) = Nsσ

−4
w (ρ− 2)Y 2

p [0] + o (Ns)

where

Yp[k] � X[k] ∗Xp[k] +X∗
p [−k] ∗X[k] = 2Re

{
X∗

p [−k] ∗X[k]
}
.

On the other hand, the term Γ(K) (7.46) appearing in the BQUE covariance matrix (7.43)
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is asympotically equal to

[Γ (K)]p,q =−σ−4
w diagH (Yp (θ))

(
X∗ (θ)�X (θ) + σ4

w (ρ− 2)−1 IK
)−1

diag (Yq (θ))

=−Nsσ
−4
w Y 2

p [0]
∞∑

k=−∞

(
|X[k]|2 + σ4

w (ρ− 2)−1 δ [k]
)−1

+ o (Ns)

=−σ−4
w Ns

Y 2
p [0]

S (f) ∗ S∗ (−f) + σ4
w/ (ρ− 2)

∣∣∣∣∣
f=0

+ o (Ns)

=−σ−4
w Ns

∫ 0.5
−0.5 S

2
Yp
(f)df∫ 0.5

−0.5 |S (f) |2df + σ4
w/ (ρ− 2)

+ o (Ns)

with SYp(f) = F {Yp[k]} the Fourier transform of Yp[k].

Regarding now the Gaussian condition in (7.47), the matrices Γ(K) and Ψ(K) are asymp-

totically null if

Yp[0] = 2Re
{
X∗

p [−k] ∗X[k]
}∣∣

k=0
= 2Re

{∑
n

X∗
p [n]X[n]

}

=2Re

{∫ 0.5

−0.5
S∗
Xp

(f)S(f)df

}
= 2σ4

w Re

{∫ 0.5

−0.5

S∗
p (f)S(f)

|S(f) + σ2
w|2

df

}
is equal to zero independently of the actual value of ρ and σ2

w. The last expression has been

formulated in the frequency domain using the Parceval’s identity and the Fourier transforms of

X[k] and Xp[k] in (7.49).

Notice that the energy spectrum S(f) = F {R[k]} is always real because R[k] has Hermitian

symmetry, i.e., R[k] = R∗[−k]. Besides, S(f) is even if R[k] is real-valued, which implies that

g (t;θ) is also real-valued. Therefore, there are three possible situations leading to Yp[0] = 0,

and hence validating the Gaussian assumption:

1. Sp (f) is imaginary, i.e., Re {Sp (f)} = 0. From the Fourier theory, Sp (f) = F {Rp[k]} is

imaginary if Rp[k] is imaginary or, Rp[k] is real but it has odd symmetry.

2. S (f) is an even function whereas Sp (f) is an odd function. The former condition is held

for g (t;θ) real-valued. The latter condition is held if and only if the cross-correlation Rp[k]

is also odd.

3. S (f) is an odd function whereas Sp (f) is an even function. The former condition is held

when the received waveform g (t;θ) is imaginary and even. The latter condition is held if

the cross-correlation Rp[k] is also even.

It is found that the last conditions usually apply in frequency and timing5 synchronization.

In frequency synchronization, the cross-correlation Rp[k] is imaginary (condition 1). On the

5The same conclusion applies to the related problem of time-of-arrival estimation in radiolocation applications.
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other hand, in timing synchronization, the cross-correlation Rp[k] is a real-valued odd function

because the transmitted pulse is usually a real symmetric function in digital communications

(condition 2)6. Nonetheless, the Gaussian assumption generally fails in the problem of blind

channel identification (Section 6.4) because the received waveform g (t;θ) is distorted by the

complex channel impulse response and, hence, the complex cross-correlation Rp[k] does not

exhibit any symmetry. For example, if the channel is multiplicative, the received waveform is a

scaled version of the transmitted pulse and it is easy to show that Rp[k] is proportional to R[k].

7.4.5 Second-Order Estimation in Array Signal Processing

In array signal processing, the spatio-temporal observation can be written as

y = vec
(
As (θ) (AtX)T

)
+w (7.50)

where

[As (θ)]p = exp
(
jπθpd̃M

)
is the spatial signature of the p-th user impinging on a λ/2-spaced linear array from the direction

θp ∈ [−1, 1) with

d̃M �dM − M − 1

2

dM = [0, . . .M − 1]T .

In (7.50), the modulation matrix At ∈ RNs×K contains the shaping pulse p(t), [X]k are the

received symbols from to the k-th user and, w the spatio-temporal Gaussian noise vector. Notice

that the array is calibrated to have unitary response when the signal comes from the broadside

(θp = 0). However, the same results would be obtained adopting any other calibration.

The observation vector y can be arranged in the standard form,

y = A (θ)x+w,

using that vec
(
ABCT

)
= (A⊗C) vec (B) . Then, we have

A (θ)=At ⊗As (θ)

x=vec
(
XT
)
.

Based on the general expressions deduced in Section 7.4, the asymptotic value of B (θ),

Bp (θ) and Bp,q (θ) in (7.33) is now obtained for the above spatio-temporal signal model. It is

6This implies that the same pulse shaping is used in the in-phase and quadrature components.
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straightforward to show that

B (θ)=AH
t N−1

t At ⊗AH
s (θ)N−1

s As (θ)

Bp (θ)=AH
t N−1

t At ⊗ ∂AH
s (θ)

∂θp
N−1

s As(θ)

Bp,q (θ)=AH
t N−1

t At ⊗ ∂AH
s (θ)

∂θp
N−1

s

∂As (θ)

∂θq

assuming that the temporal and spatial components of the noise are decoupled as N = Nt⊗Ns

and using that [
∂As (θ)

∂θp

]
i

=

⎧⎨⎩jπd̃M � exp
(
jπθpd̃M

)
i = p

0 i �= p
.

Moreover, assuming for simplicity that the noise is spatially uncorrelated (i.e., Ns = IM ), we

have that the spatial cross-correlation for the P users is determined by the following matrices:

[B (θ)]i,k �
[
AH

s (θ)N−1
s As (θ)

]
i,k

= FM (θi − θk)

[Bp (θ)]i,k �

[
∂AH

s (θ)

∂θp
N−1

s As(θ)

]
i,k

=
dFM (f)

df

∣∣∣∣
f=θi−θk

δ (i, p)

[Bp,q (θ)]i,k �

[
∂AH

s (θ)

∂θp
N−1

s

∂As (θ)

∂θq

]
i,k

(7.51)

=
d2FM (f)

df2

∣∣∣∣
f=θi−θk

δ (i, p) δ (k, q)

where δ (i, j) is the Kronecker delta and FM (f) is the following sinc function,

FM (f) �

{
M f = 0
sin(πMf/2)
sin(πf/2) f �= 0

.

Notice that Bp (θ) and Bp,q (θ) in (7.51) are derived resorting to the differential property of

the Fourier transform, i.e.,

−j2πF {nv[n]} =
dV (f)

df

where V (f) = F {v[n]} =
∑

n v[n]e
−j2πfn is the Fourier transform of a given sequence v[n].

In the studied space-time signal model, the observation y can be increased by augmenting

either the number of antennas (M) or the number of snapshots (Ns), where M and Ns are the

number of rows of As (θ) and At, respectively. The asymptotic performance of the GML and

CML direction-of-arrival estimators have already been studied in [Sto89] [Sto90a][Vib95] when

M → ∞ and in [Sto89] [Sto90a][Ott92][Car94] when Ns → ∞. In the following two sections,

the aforementioned study is extended to the optimal second-order DOA estimator deduced in

Chapter 4.
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Infinite number of antennas

If the number of sensors is increased (M → ∞), the asymptotic MSE matrix for the optimal

and the GML estimators is computed in Appendix 7.K, having that

BUCRB (θ) ,Bgml (θ) ,Bbque (θ)=
6

π2M3

σ2
w

Tr
(
AH

t N−1
t At

)IP + o
(
M−3

)
=

6

π2M3NsEs/N0
IP + o

(
N−1

s M−3
)

(7.52)

with σ2
w = N0 the noise double-sided spectral density and Es the energy of the received symbols.

In the last expression, we have taken into account that

lim
Ns→∞

1

Ns
Tr
(
AH

t N−1
t At

)
= Es.

This result was previously obtained in [Sto89] for the conditional model (Section 2.3). More-

over, it has been proved in [Sto90a, R8-R9] that the conditional and unconditional model yield

efficient estimates when the number of sensors or the SNR goes to infinity. The analysis in

Appendix 7.K focuses on the unconditional model and becomes an extension to the concise so-

lution provided in [Sto89]. In this appendix, the asymptotic value of the off-diagonal entries of

BUCRB (θ) as well as the non-Gaussian terms in Bgml (θ) and Bbque (θ) is calculated, concluding

that they are totally negligible if M → ∞.

Also, notice that (7.52) coincides with the modified CRB (MCRB) for the problem of carrier

frequency-offset estimation [Men97, Eq. 2.4.23][Rif74], which is known to be attained by means

of data-aided (DA) methods. In both cases, the estimator tries to infere the frequency of an

infinitely long sinusoid either in the space domain (DOA) or in the time domain (DA frequency

synchronization). Nonetheless, in array signal processing, the array size is implicityly limited

by the narrowband and far-field assumptions [Vib95].

Infinite number of snapshots

When the number of observed symbols Ns is large, it is shown in [Ott92][Car94] that most

second-order DOA estimators in the literature —based on both the conditional and unconditional

model— are asymptotically robust. This means that the covariance matrix of the estimation error

is independent of the sources statistical distribution provided that Ns → ∞. This statement

implies that the higher-order term Xgml(K) (7.8) is negligible for Ns → ∞ whatever the content

of matrix K. However, it was shown in Section 6.5 that the knowledge of K can be exploited to

improve significantly the estimator accuracy when multiple constant-modulus sources transmit

towards the array from near directions. Actually, this result was already pointed out in [Ott92]

where the authors stated that ‘[...] a Gaussian distribution of the emitter signals represents the
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worst case. Any other distribution would tipically give better estimates, provided the appropiate

ML method is used.’

In Appendix 7.L, the asymptotic expressions of BUCRB (θ), Bgml (θ) and Bbque (θ) are ob-

tained when the number of received symbols Ns tends to infinity whereas the number of antennas

M is kept constant. In that case, it is shown that Γ (K) is exactly zero in the single user case

(Appendix 7.L). On the other hand, if there are multiple users transmitting towards the array

(P > 1), both B−1
UCRB (θ) and Γ (K) are proportional to the number of snapshots and, therefore,

Γ(K) does not disappear as Ns → ∞. In addition, it is found that, at high SNR, the second

term Γ(K) is proportional to σ−2
w if and only if ρ = 1. If so, the contribution of Γ(K) remains

as the SNR is increased. This important result is formalized in the next equations. If Es/N0

and Ns go to infinity, it is proved in Appendix 7.Lthat

[
B−1

UCRB (θ)
]
p,q

,
[
B−1

gml (θ)
]
p,q

=2Ns
Es

N0
ReTr

(Bp,q (θ)−Bp (θ)B−1 (θ)BH
q (θ)

)
+ o (Ns)[

B−1
bque (θ)

]
p,q

=

{[
B−1

UCRB (θ)
]
p,q

+ o (Ns) ρ �= 1[
B−1

UCRB (θ)
]
p,q

+ [Γ(K)]p,q + o (Ns) ρ = 1

with

[Γ (K)]p,q = 2ξNs
Es

N0
Tr
(Bp (θ)B−1 (θ)�Dg−1

[B−1 (θ)
]�Bp (θ)B−1 (θ)

)
δ (p, q) + o (Ns)

being the result a function of the cross-correlation of the P users signatures and their derivatives

(7.51). On the other hand, the constant ξ ≤ 1 is a function of the temporal correlation of the

received signal (7.91) and is unitary in the uncorrelated case (Appendix 7.L).

7.5 Simulations

In this section, the asymptotic studies carried out in this chapter are validated via computer

simulations.

7.5.1 SNR asymptotic results for the BQUE and GML estimators

To evaluate the asymptotic performance of the BQUE and GML small-error estimators when

the SNR goes to zero and infinity, the problem of DOA estimation is adopted (see Section 6.5).

The angle of arrival of two users is estimated with a linear array of four elements (M = 4).

A single snapshot is taken at the matched filter output (Ns = 1). Assuming perfect timing

synchronization and ISI-free received pulses, the estimator MSE becomes inversely proportional

to the number of integrated snapshots. In Fig. 7.1 and Fig. 7.2, the sum of the variance of the
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Figure 7.1: Normalized variance for the GML and BQUE DOA estimators in case of having two

16-QAM sources transmitting from ±0.5 degrees. The low- and high-SNR limits computed in

this chapter are plotted as well.

two users, i.e.,

V ARbque =Tr (Bbque (θ))

V ARgml =Tr (Bgml (θ)) , (7.53)

is evaluated as a function of the Es/N0 per user when the two users are located at ±0.5o from

the broadside. For more details the reader is referred to Section 6.5.

In these figures, it is shown how the asymptotic expressions deduced in this chapter predict

exactly the low and high SNR performance of the studied quadratic small-error estimators. In

Fig. 7.1, the Gaussian assumption is shown to be optimal at low and high SNR whereas minor

losses are observed in the middle of these extremes. It has been checked that the BQUE converges

to the GML performance when the alphabet dimension is augmented (e.g., 64-QAM). On the

other hand, if the constellation has constant modulus (e.g., MPSK or CPM), the Gaussian

assumption is found to yield important losses when the SNR exceeds a given critical value or

threshold determined by the array size (Fig. 7.2). The position of this SNR threshold is actually

independent of the number of processed snapshots.

Additional simulations have been carried out for the CPM modulation obtaining the same

curves than in Fig. 7.2. Therefore, it seems that the only relevant feature of the nuisance

parameters for DOA estimation is their constant amplitude.
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Figure 7.2: Normalized variance for the GML and BQUE DOA estimators in case of having two

MPSK sources transmitting from ±0.5 degrees. The low- and high-SNR limits computed in this

chapter are plotted as well.

Regarding Fig. 7.2, another important remark is that the low- and high-SNR asymptotes can

be combined to lower bound the performance of any second-order technique in case of constant-

modulus alphabets. Finally, notice that the UCRB only predicts the asymptotic performance of

the GML estimator. However, in both figures, the GML estimator outperforms the UCRB for

intermediate SNRs.

7.5.2 SNR asymptotic results for the large-error estimators

In this section, the large-error frequency-offset estimators presented in Section 3.4 are simulated

again. The low- and high-SNR asymptotic expressions deduced in this chapter are validated for

the 16-QAM, MPSK and MSK modulations. In all the simulations, the rank of G = E�AAH

is full (Appendix 3.D). A uniform prior with ∆ = 0.4 is considered. Although this prior is rather

informative and the variance floor was not observed in Fig. 3.7 for the MSK modulation, its

existence is evidenced in Fig. 7.3. In this figure, it is also shown how the Gaussian assumption

leads to a higher variance floor at high SNR. Comparing Figs. 7.3, 7.4 and 7.5, the floor level

depends on the modulation at hand. This statement is true for both the optimal estimator and

the one deduced under the Gaussian assumption, although the latter is not represented in Figs.

7.4 and 7.5 for the sake of clarity.
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Figure 7.3: Mean square error for the MMSE and minimum variance frequency-offset estimators

for the MSK modulation (Nss = 2, M = 8, K = 5). The estimators based on the Gaussian

assumption as well as all the low- and high-SNR limits are indicated.

7.5.3 Large sample asymptotic results for the BQUE and GML estimators

In this section, the large sample study in Section 7.4 is validated numerically. In the first

two figures (Fig. 7.6 and 7.7), the normalized variance is computed for the optimal second-

order timing and frequency estimators deduced in Chapter 4 under the small-error condition.

The normalization consists in multiplying the estimator variance by the number of processed

symbols, i.e., Ns = M/Nss. The estimators variance is simulated for different data lengths and

is compared to the asymptotic variance obtained from the large sample study (Ns → ∞) in

Section 7.4.4. The Gaussian assumption is optimal in all the simulations except in the timing

synchronization problem (Fig. 7.6). In that case, the Gaussian assumption exhibits a higher

variance floor (self-noise) when the noise subspace of matrix A (θ) is null (M ≤ K).

Regarding the DOA estimation problem, the large sample study presented in Section 7.4.5 is

validated via simulation for the same scenario considered in Section 7.5.1. In the first simulations

(Fig. 7.8 and 7.9), the estimator variance (7.53) is evaluated for different values of ρ considering

an array of four antennas an a single snapshot7. The performance associated to a hypothetical

super-Gaussian constellation with ρ = 10 is also depicted in Fig. 7.9, although all the alphabets

7Remember that estimator variance is inversely proportional to the number of processed snapshots whatever

the value of ρ. Therefore, all the results and conclusions are still correct if Ns → ∞.
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Figure 7.4: Mean square error for the MMSE and minimum variance frequency-offset estimators

for the 16-QAM modulation with roll-off 0.75 (Nss = 2, M = 8, K = 8). The low- and high-SNR

limits computed in this chapter are plotted as well.

of interest in digital communications are sub-Gaussian (ρ < 2).

Regarding Fig. 7.8 and Fig. 7.9, one concludes that the asymptotic expression derived in

(7.52) for M → ∞,

BUCRB (θ) ,Bgml (θ) ,Bbque (θ) =
6

π2M3NsEs/N0
IP + o(N−1

s M−3),

is attained for practical SNRs in case of having constant-amplitude nuisance parameters (ρ = 1)

even if the number of antennas is very small (M = 4). Notice that the optimality at high SNR

is verified irrespective of the users angular separation if one compares Fig. 7.8 and Fig. 7.9.

Nonetheless, minor discrepancies are observed in Fig. 7.8 due to sinc-like beam pattern when

M is finite (7.51).

On the other hand, if ρ > 1, the estimator performance at high SNR converge to the

(Gaussian) UCRB, that corresponds to ρ = 2. It can be seen that the larger is ρ and the closer

are the sources, the lower is the Es/N0 from which the convergence to the UCRB is manifested.

Moreover, the closer are the users the more significant is the loss incurred by the Gaussian

assumption in case of constant-modulus nuisance parameters.

These conclusions are manifested again when the estimator variance is evaluated as a function

of M (Figs. 7.10-7.12). In that case, the UCRB attains the asymptotic limit (7.52) if the number

of antennas goes to infinity (M → ∞). On the other hand, when the nuisance parameters have
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Figure 7.5: Mean square error for the MMSE and minimum variance frequency-offset estimators

with MPSK symbols and roll-off 0.75 (Nss = 2, M = 8, K = 8). The low- and high-SNR limits

computed in this chapter are plotted as well.

constant modulus (ρ = 1), the optimal second-order estimator attains (7.52) for any value of

M , except for an intermediate interval in which the estimator converges to the UCRB. It can

be shown that the value of M from which Bbque(θ) departs from (7.52) is inversely proportional

to the angular separation of the users. Specifically, this critical value occurs when Γ(K) (7.46)

attains its maximum value. In case of having two users, the critical value ofM corresponds to the

first maximum of (7.90) in Appendix 7.K that, asymptotically, takes place atM = 0.5/ |θ1 − θ2|.
For example, using equation (7.90), the referred threshold should take place at M � 20 and

M � 100 in Fig. 7.11 and Fig. 7.12, respectively.

The GML performance coincides with the UCRB unless the angular separation is reduced

(Fig. 7.12). When the number of antennas is less than 20, the GML outperforms the UCRB

bound for both the MPSK and 16-QAM modulations. Indeed, the UCRB is severely degraded

when the number of antennas is less than 10 whereas the variance of the BQUE and GML

estimators is practically constant for M < 10 (Fig. 7.13).
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Figure 7.6: Normalized variance for the optimal second-order timing synchronizer in case of

the MPSK modulation. The transmitted pulse is a square-root raised cosine with roll-off 0.75,

truncated at ±5T . The observation timel (M) is augmented with Nss = 2 constant. The dashed

curves correspond to estimator based on the Gaussian assumption.
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Figure 7.7: Normalized variance for the optimal second-order frequency-offset synchronizer in

case of the MPSK modulation. The transmitted pulse is a square-root raised cosine with roll-off

0.75, truncated at ±5T . The observation interval (M) is augmented with Nss = 2 constant.
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Figure 7.8: Normalized variance for the optimal second-order small-error DOA estimator for

different values of ρ. The simulation parameters are Nss = 1, Nyquist pulse shaping, K = 1,

M = 4, two users transmitting from ±5 degrees.
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Figure 7.9: Normalized variance for the optimal second-order small-error DOA estimator for

different values of ρ. The simulation parameters are Nss = 1, Nyquist pulse shaping, K = 1,

M = 4, two users transmitting from ±0.5 degrees.



7.5. SIMULATIONS 207

10
1

10
2

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

M

N
or

m
al

iz
ed

 V
ar

ia
nc

e

UCRB, GML

Asymptote               
 for M→∞ 

BQUE

Figure 7.10: Normalized variance for the optimal second-order small-error DOA estimator as

a function of M . The simulation parameters are Nss = 1, Nyquist pulse shaping, K = 1,

Es/N0=60dB, two MPSK users transmitting from ±5 degrees.
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Figure 7.11: Normalized variance for the optimal second-order small-error DOA estimator as

a function of M . The simulation parameters are Nss = 1, Nyquist pulse shaping, K = 1,

Es/N0=60dB, two MPSK users transmitting from ±0.5 degrees.
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Figure 7.12: Normalized variance for the optimal second-order small-error DOA estimator as

a function of M . The simulation parameters are Nss = 1, Nyquist pulse shaping, K = 1,

Es/N0=60dB, two MPSK (or 16-QAM) users transmitting from ±0.1 degrees.
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Figure 7.13: Zoom of the previous plot between M = 2 and M = 20. The simulation parameters

are Nss = 1, Nyquist pulse shaping, K = 1, Es/N0=60dB, two MPSK (or 16-QAM) users

transmitting from ±0.1 degrees.
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7.6 Conclusions

In the previous chapters, the Gaussian assumption was proved to yield significant losses at

high SNR if the nuisance parameters had a constant modulus and the observation interval

was reduced. In this chapter, the Gaussian assumption has been examined again when the

observation interval is increased to infinity. From the Central Limit Theorem, it seems that

the data statistics will be irrelevant in this asymptotic case. This intuition is validated in

some important estimation problems such as digital synchronization and DOA estimation, if

the number of antennas goes to infinity. However, the Gaussian assumption is shown to be

suboptimal in some other scenarios. In particular, the Gaussian assumption fails when the

estimator suffers from self-noise at high SNR. In that case, the fourth-order information about

the nuisance parameters can be exploited to reduce the variance floor, mainly when the nuisance

parameters have constant amplitude.

By considering the fourth-order information of the nuisance parameters, second-order DOA

estimators are able to attain the asymptotic performance associated to an infinite number of

antennas, even if the array is very short. On the other hand, the Gaussian assumption yields an

important loss that is a function of the sources angular separation. Therefore, in array signal

processing, we have concluded that the Gaussian assumption is only optimal if there is a single

source or the number of antennas goes to infinity.

Finally, in the problem of blind channel identification, some improvement is also expected in

the asymptotic case when the transmitted symbols are drawn from a constant-modulus alphabet

(Section 6.4).
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Appendix 7.A Low-SNR ML scoring implementation

It was obtained in Section 2.4.1 that the log-likelihood function in a low SNR scenario is given

by

ln fy (y;θ) = Tr
{
R−1

w A (θ)AH (θ)R−1
w

(
R̂−Rw

)}
+ o
(
σ−2
w

)
that, resorting again to the vec (·) operator, can be manipulated as follows

ln fy (y;θ)= vecH
(
R−1

w A (θ)AH (θ)R−1
w

)
(r̂− rw) + o

(
σ−2
w

)
=vecH

(
A (θ)AH (θ)

)
(R∗

w ⊗Rw)
−1 (r̂− rw) + o

(
σ−2
w

)
= σ−4

w vecH
(
A (θ)AH (θ)

)
N−1 (r̂− rw) + o

(
σ−2
w

)
where r̂ and rw are the vectorization of the Hermitian matrices R̂ and Rw, respectively, and the

following relations have been applied

vecH(A) vec(B)=Tr(AHB) = Tr(BAH)

vec
(
ABCH

)
=(C∗ ⊗A) vec(B). (7.54)

AH ⊗BH =(A⊗B)H

A−1 ⊗B−1 =(A⊗B)−1

The gradient of the asymptotic log-likelihood function is given by

∂ ln fy (y;θ)

∂θ
= σ−4

w DH
r (θ)N−1 (r̂− rw) + o

(
σ−2
w

)
since ∂R (θ) /∂θ = ∂

[
A (θ)AH(θ)

]
/∂θ. Next, the Fisher’s information matrix is computed as

the expected value of the Hessian matrix, obtaining the following asymptotic expression:

Ey

{
∂2 ln fy (y;θ)

∂θ∂θT

}
=Ey

{(
∂ ln fy (y;θ)

∂θ

)(
∂ ln fy (y;θ)

∂θ

)H
}

=σ−8
w DH

r (θ)N−1Q (θ)N−1Dr(θ) + o
(
σ−4
w

)
=σ−4

w DH
r (θ)N−1Dr(θ) + o

(
σ−4
w

)
using that, at low SNR, the fourth-order matrix Q (θ) is given by

Q (θ) =E
{
(r̂− rw) (r̂− rw)

H
}
= σ4

wN + o
(
σ4
w

)
.

Therefore, the following scoring recursion, which was presented in equation (2.29),

α̂k+1 = α̂k +MH(θ̂k) (r̂− rw)

M(θ)�N−1Dr(θ)
(
DH

r (θ)N−1Dr(θ)
)−1

DH
g (θ)

is known to attain the CRB at low SNR if the small-error condition is verified.
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Appendix 7.B High-SNR limit of R−1 (θ) and ˜R−1(θ)

In this appendix, we consider that A (θ) is full column rank. In that case, the asymptotic value

of R−1 (θ) can be easily obtained by means of the inversion lemma:

R−1 (θ)=
[
A (θ)AH (θ) + σ2

wN
]−1

=σ−2
w N−1

(
IM−A (θ)

(
AH (θ)N−1A (θ) + σ2

wIK
)−1

AH (θ)N−1
)
. (7.55)

At high SNR, the inner inverse can be expanded in a Taylor series around σ2
w = 0, having

that8

(
AH (θ)N−1A (θ) + σ2

wIK
)−1

=
[
AH (θ)N−1A (θ)

]−1 − σ2
w

[
AH (θ)N−1A (θ)

]−2

+σ4
w

[
AH (θ)N−1A (θ)

]−3
+O

(
σ6
w

)
.

Finally, plugging these three terms into (7.55), the high-SNR limit of R−1 (θ) is given by

R−1 (θ) = σ−2
w P⊥

A (θ) +B (θ)− σ2
wB (θ)NB (θ) +O

(
σ4
w

)
(7.56)

where P⊥
A (θ) and B (θ) are defined in (7.13)-(7.15), and the following identity has been consid-

ered:

[
AH (θ)N−1A (θ)

]−1
= A# (θ)N

[
A# (θ)

]H
. (7.57)

The key property of R−1 (θ) is that, asymptotically, it holds that

AH (θ)R−1 (θ)=AH (θ)B (θ) +O
(
σ2
w

)
= A# (θ) +O

(
σ2
w

)
R−1 (θ)A (θ)=B (θ)A (θ) +O

(
σ2
w

)
=
[
A# (θ)

]H
+O

(
σ2
w

)
(7.58)

AH (θ)R−1 (θ)A (θ)=AH (θ)B (θ)A (θ) +O
(
σ2
w

)
= IK +O

(
σ2
w

)
because, by definition,

AH (θ)P⊥
A (θ)=0

P⊥
A (θ)A (θ)=0. (7.59)

8The following relation has been considered to obtain the terms of the Taylor expansion:

∂X−1 (λ)

∂λ
= −X

−1 (λ)
∂X (λ)

∂λ
X

−1 (λ) .
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To conclude this appendix, the asymptotic value of R−1 (θ) is obtained from (7.56) as indi-

cated now:

R−1(θ)=R∗−1 (θ)⊗R−1 (θ)

=σ−4
w

[
P⊥∗

A (θ)⊗P⊥
A (θ)

]
+σ−2

w

[
B∗ (θ)⊗P⊥

A (θ) +P⊥∗
A (θ)⊗B (θ)

]
(7.60)

+B∗ (θ)⊗B (θ)

−σ2
w (B∗ (θ)⊗B (θ)NB (θ) + (B (θ)NB (θ))∗ ⊗B (θ))

+O
(
σ4
w

)
.

The key property of R−1(θ) is that the term proportional to σ−4
w is orthogonal to

vec(A (θ)X), vec(XAH(θ)), X⊗A (θ) and A∗(θ)⊗X for any matrix X on account of (7.59).

In particular, this is true for the matrix of derivatives Dr (θ) in (7.4) and for A (θ) in (7.2). On

the other hand, the first term on σ−2
w is orthogonal to vec(A (θ)X) and X⊗A (θ) whereas the

second one is orthogonal to vec(XAH(θ)) and A∗(θ)⊗X, based again on (7.59).

The same properties in (7.58) can be stated for R−1 (θ), having that

AH (θ)R−1 (θ)=AH (θ) [B∗ (θ)⊗B (θ)] +O
(
σ2
w

)
= A# (θ) +O

(
σ2
w

)
R−1 (θ)A (θ)= [B∗ (θ)⊗B (θ)]A (θ) +O

(
σ2
w

)
=
[
A# (θ)

]H
+O

(
σ2
w

)
(7.61)

AH (θ)R−1 (θ)A (θ)= IK2 +O
(
σ2
w

)
using the following definition of pseudoinverse:

A# (θ) �
(AH (θ)N−1A (θ)

)−1AH (θ)N−1 =
[
A# (θ)

]∗ ⊗A# (θ) .

All these properties will be used to simplify the high-SNR expressions in Section 7.3.
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Appendix 7.C High-SNR limit of Q−1(θ) (K full-rank)

Assuming that K is invertible, the inversion lemma allows expressing Q−1 (θ) as follows

Q−1 (θ)=
(A (θ)KAH (θ) +R (θ)

)−1

=R−1 (θ)
[
IM2 −A (θ)

(
K−1 +AH (θ)R−1 (θ)A (θ)

)−1AH (θ)R−1 (θ)
]
(7.62)

Using (7.61) from Appendix 7.B, it follows that

AH (θ)R−1 (θ)A (θ) = IK2 +O
(
σ2
w

)
and, therefore, the asymptotic value of Q−1 (θ) is straightforward if K−1 + IK2 is invertible. In

that case, (7.62) becomes

Q−1 (θ) = R−1 (θ)−
[
A# (θ)

]H (
K−1 + I

)−1A# (θ) +O
(
σ2
w

)
using that AH (θ)R−1 (θ) = A# (θ) (7.61). Notice that the term depending on K is negligible

unless the dominant terms of R−1 (θ) in (7.60) are null.

However, K−1+IK2 becomes singular in case of CPM modulations and, therefore, the inner

inverse in (7.62) is a little more involved. In that case, the terms in (7.60) depending on σ2
w

must also be considered obtaining that

AH (θ)R−1 (θ)A (θ) = IK2 − σ2
wU (θ) +O

(
σ4
w

)
where U (θ) is the following full-rank matrix,

U (θ)�AH (θ) [B∗(θ)⊗B (θ)NB (θ) + [B (θ)NB (θ)]∗ ⊗B (θ)]A (θ)

= IK ⊗
[
AH(θ)N−1A (θ)

]−1
+
[
AH(θ)N−1A (θ)

]∗−1 ⊗ IK , (7.63)

that is simplified applying the associative property of the Kronecker product,

(A⊗B) (C⊗D) = AC⊗BD,

and using then the results in (7.57) and (7.58).

Thus, the inverse in (7.62) can be solved computing the “economy-size” diagonalization of

K−1 + IK2 as follows

K−1 + IK2= V
(
Σ−1 + IK2

)
VH

where Σ is the diagonal matrix containing the eigenvalues of K that are different from −1 and

the columns of V are the associated eigenvectors. Then, the inversion lemma can be applied

once more to obtain[
K−1 +AH (θ)R−1 (θ)A (θ)

]−1
=
[
V
(
Σ−1 + I

)
VH−σ2

wU (θ)
]−1

+O (1)

=−σ−2
w P⊥

V (θ) +O (1)
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where the orthogonal projector P⊥
V (θ) onto the subspace spanned by V is defined as

P⊥
V (θ) � U−1 (θ)

[
I−V

(
VHU−1 (θ)V

)−1
VHU−1 (θ)

]
. (7.64)

As it was argumented for the projector P⊥
A (θ) in (7.14), the conventional definition of the

orthogonal projector P⊥
V = I−VVH is modified to include the weighting matrix U−1 (θ).

Anyway, P⊥
V (θ) holds that

P⊥
V (θ)V= 0

VHP⊥
V (θ)= 0,

and, thus, P⊥
V (θ) is the projection matrix onto the subspace generated by the eigenvectors of

K associated to the eigenvalue −1.

Finally, putting together all the above partial results, we obtain that

Q−1 (θ) = R−1 (θ) + σ−2
w

[
A# (θ)

]H
P⊥

V (θ)A# (θ) +O (1)

using that AH (θ)R−1 (θ) = A# (θ) (7.61).

In the following, the orthogonal projector P⊥
V (θ) will be referred to as P⊥

K (θ) in order to

emphasize the dependence on the kurtosis matrix K, i.e.,

P⊥
K (θ) � P⊥

V (θ) .
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Appendix 7.D High-SNR limit of Q−1(θ) (K singular)

If K is singular, as it happens when the nuisance parameters are drawn from a circular constel-

lation (3.12), the inversion lemma cannot be applied directly and it is necessary to diagonalize

previously the matrix K as indicated next:

Q−1 (θ)=
(R (θ) +A (θ)VKΣKVH

KAH (θ)
)−1

=R−1 (θ)
[
IM2 −A (θ)VK

(
Σ−1
K +VH

KAH (θ)R−1 (θ)A (θ)VK

)−1
VH

KAH (θ)R−1 (θ)
]

where ΣK is the diagonal matrix containing the non-zero eigenvalues ofK, andVK the associated

eigenvectors. Therefore, the study carried out in Appendix 7.C is still correct if K−1 and A (θ)

are substituted by Σ−1
K and A (θ)VK , respectively. In that case, the inner inverse studied in

detail in Appendix 7.C is given by(
Σ−1
K +VH

KAH (θ)R−1 (θ)A (θ)VK

)−1
(7.65)

with

VH
KAH (θ)R−1 (θ)A (θ)VK = I−σ2

wU (θ) +O
(
σ4
w

)
(7.66)

and

U (θ) � VH
K

(
IK ⊗ (AH (θ)N−1A (θ)

)−1
+
(
AH (θ)N−1A (θ)

)∗−1 ⊗ IK
)
VK . (7.67)

According to this result, the same two scenarios of Appendix 7.C can be distinguished:

1. If Σ−1
K + I is invertible, it follows that

Q−1 (θ) = R−1 (θ)−
[
A# (θ)

]H
VK

(
Σ−1
K + I

)−1
VH

KA# (θ) +O
(
σ2
w

)
and the second term becomes negligible at high SNR.

2. Otherwise, if Σ−1
K + I is singular, the diagonal matrix Σ−1

K + I has to be diagonalized as

VΣVH where Σ is the diagonal matrix containing the eigenvalues of K different from −1

and V are the vectors of the canonical basis {ek} selecting the position of these eigenvalues

in ΣK . Formally, the k-th diagonal entry of ΣK different from −1 is selected by means of

the vector ek defined as

[ek]i �

{
1 i = k

0 i �= k
.

In that case, the term −σ2
wU (θ) in (7.66) must be considered in the computation of (7.65),

yielding (
Σ−1
K + I−σ2

wU (θ)
)−1

=
(VΣVH−σ2

wU (θ)
)−1

=−σ−2
w P⊥

V (θ) +O (1)



216 CHAPTER 7. ASYMPTOTIC STUDIES

where P⊥
V (θ) is the following orthogonal projector:

P⊥
V (θ) � U−1 (θ)

[
I−V (VHU−1 (θ)V)−1 VHU−1 (θ)

]
with U (θ) defined in (7.67).

Finally, we obtain that

Q−1 (θ) = R−1 (θ) + σ−2
w

[
A# (θ)

]H
VKP⊥

V (θ)VH
KA# (θ) +O (1)

using again that AH (θ)R−1 (θ) = A# (θ) (7.61).

The matrix VKP⊥
V (θ)VH

K is also a projector onto the subspace generated by the eigen-

vectors of K associated to the eigenvalue −1. This projection is carried out in two steps.

First, the matrices VK and VH
K are projecting onto the subspace associated to the eigen-

values of K different form 0. Afterwards, P⊥
V (θ) is projecting onto the subspace associated

to those eigenvalues different from −1.

In the following, the orthogonal projector VKP⊥
V (θ)VH

K will be referred to as P⊥
K (θ) in

order to emphasize the dependence on the kurtosis matrix K, i.e.,

P⊥
K (θ) � VKP⊥

V (θ)VH
K .
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Appendix 7.E High-SNR results with A (θ) singular

Depending on the rank of A (θ) ∈ CM×K , two singular situations can be distinguished:

1. If the rank of A (θ) is equal toM with M ≤ K, the high-SNR limit ofR−1 (θ) andR−1 (θ)

is independent of the noise variance and is simply given by

R−1 (θ)=
[
A (θ)AH (θ)

]−1
+ o (1)

R−1(θ)=
[A (θ)AH (θ)

]−1
+ o (1)

whereas the asymptotic value of Q−1(θ) is determined by the rank of the K2×K2 matrix

IK2 + K. If the rank of IK2 +K is greater or equal to M2, the inverse of Q (θ) is the

following constant matrix:

Q−1(θ)=
(R (θ) +A (θ)KAH (θ)

)−1

=
(A (θ)AH (θ) +A (θ)KAH (θ)

)−1
+ o (1)

=
[A (θ) (IK2 +K)AH (θ)

]−1
+ o (1) .

In that case, all the MSE matrices in (7.5) and (7.6) suffer a serious floor at high SNR. This

situation arises when there are less observations than nuisance parameters (i.e., M ≤ K)

and the noise subspace becomes null.

On the other hand, if the rank of IK2 +K is less than M2 (assuming that M ≤ K), the

use of the fourth-order information avoids the variance floor at high SNR because in that

case A (θ) (IK2 +K)AH (θ) is not invertible and the terms of R−1 (θ) (7.12) proportional

to σ2
w has to be considered, as done in Appendix 7.C and Appendix 7.D. This situation is

only possible if the nuisance parameters have constant modulus as, for example, the MPSK

and CPM constellations. In the MPSK case, the rank of IK2+K is exactlyK2−K because

K = (ρ− 2) diag (vec (IK)) .

In the CPM case, the rank reduction is still more significant.

2. If the rank of A (θ) is lower than min(M,K), the covariance matrix R (θ) must be diag-

onalized as follows

R (θ) = VA (θ)ΣA (θ)VH
A (θ) + σ2

wN (7.68)

where ΣA (θ) is the diagonal matrix having the positive eigenvalues of A (θ)AH (θ) and,

VA (θ) are the associated eigenvectors. Therefore, the inverse of R (θ) is obtained after

applying the inversion lemma to (7.68), obtaining that

R−1 (θ) = σ−2
w N−1

[
IM2 −VA (θ)

(
VH

A (θ)N−1VA (θ) + σ2
wΣ

−1
A (θ)

)−1
VH

A (θ)N−1
]
.
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Then, similar results to those in Appendix 7.B are obtained with these substitutions:

P⊥
A (θ)−→N−1

[
IM −VA (θ)V#

A (θ)
]

B (θ)−→
[
V#

A (θ)
]H

Σ−1
A (θ)V#

A (θ)

with V#
A (θ) �

(
VH

A (θ)N−1VA (θ)
)−1

VH
A (θ)N−1. This second situation is observed

when some columns of A (θ), if M ≥ K, or some rows of A (θ), if M ≤ K, are linearly

dependent. This is actually the case of the partial response CPM signals simulated in this

thesis (e.g., 2REC, 3REC and GMSK).
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Appendix 7.F High-SNR UCRB

Using the asymptotic results in (7.12), it follows that

σ2
wD

H
r (θ)R−1 (θ)Dr (θ)=DH

r (θ)
[
B∗ (θ)⊗P⊥

A (θ)
]
Dr (θ)

+DH
r (θ)

[
P⊥∗

A (θ)⊗B (θ)
]
Dr (θ) + o (1) .

Then, the entries of this matrix can be simplified as indicated next:

σ2
w

[
DH

r (θ)R−1 (θ)Dr (θ)
]
p,q

=Tr

(
∂R (θ)

∂θp
P⊥

A (θ)
∂R (θ)

∂θq
B (θ)

+
∂R (θ)

∂θp
B (θ)

∂R (θ)

∂θq
P⊥

A (θ)

)
+ o (1) , (7.69)

bearing in mind that [Dr (θ)]p = vec (∂R (θ) /∂θp) and using the properties in (7.54). The

final expression is simplified because all the matrices in (7.69) are Hermitian. Therefore, if

∂R (θ) /∂θp is decomposed as

∂R (θ)

∂θp
=

∂A (θ)

∂θp
AH (θ) +A (θ)

∂AH (θ)

∂θp
,

and all the terms including P⊥
A (θ)A (θ) and AH (θ)P⊥

A (θ) are removed using (7.59), it follows

that

σ2
w

[
DH

r (θ)R−1 (θ)Dr (θ)
]
p,q

=Tr

(
∂AH (θ)

∂θp
P⊥

A (θ)
∂A (θ)

∂θq

)
+Tr

(
∂AH (θ)

∂θq
P⊥

A (θ)
∂A (θ)

∂θp

)
+ o (1)

using that AH (θ)B (θ)A (θ) = IK (7.58). Finally, the matix B1 (θ) in (7.18) is obtained

observing that the last two terms are complex conjugated.
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Appendix 7.G High-SNR UCRB variance floor

Using the asymptotic results in (7.12), it follows that

DH
r (θ)R−1 (θ)Dr (θ) = DH

r (θ) [B∗ (θ)⊗B (θ)]Dr (θ) + o (1) .

Then, the entries of this matrix can be simplified as indicated next:

[
DH

r (θ)R−1 (θ)Dr (θ)
]
p,q

= Tr

(
∂R (θ)

∂θp
B (θ)

∂R (θ)

∂θq
B (θ)

)
+ o (1) ,

bearing in mind that [Dr (θ)]p = vec (∂R (θ) /∂θp) and using the properties listed in (7.54). The

final expression is simplified because all the matrices in the last equation are Hermitian. Thus,

if ∂R (θ) /∂θp is decomposed as

∂R (θ)

∂θp
=

∂A (θ)

∂θp
AH (θ) +A (θ)

∂AH (θ)

∂θp
,

and the relations in (7.58) are applied, it follows that

[
DH

r (θ)R−1 (θ)Dr (θ)
]
p,q

=Tr

(
∂A (θ)

∂θp
A# (θ)

∂A (θ)

∂θq
A# (θ)

+
∂A (θ)

∂θp

∂AH (θ)

∂θq

[
A# (θ)

]H
A# (θ)

+
∂AH (θ)

∂θp

[
A# (θ)

]H ∂AH (θ)

∂θq

[
A# (θ)

]H
+

∂AH (θ)

∂θp

[
A# (θ)

]H
A# (θ)

∂A (θ)

∂θq

)
+ o (1)

taking into that B (θ) �
[
A#(θ)

]H
A#(θ) . Finally, the matrix B2 (θ) in (7.20) is obtained

observing that the third and fourth terms are the complex conjugated versions of the first and

second terms9.

9Notice that Tr (AB) = Tr (BA) .
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Appendix 7.H High-SNR study in feedforward second-order es-

timation

Looking at the MSE matrices Σmse, Σvar, Σ
′
mse and Σ′

var in (7.5) and (7.6), the high-SNR limit

of R−1, Q−1,
(
R+ Q̃

)−1
and

(
Q+ Q̃

)−1
has to be computed. In all these four cases, the

following inversion problem must be solved:

(
T+ σ2

wU+ σ4
wN
)−1

where the expression of T depends on the inverse that is being solved (7.32) and

U� [G∗ ⊗N+N∗ ⊗G] (7.70)

G�Eθ

{
A (θ)AH (θ)

}
. (7.71)

The Bayesian expectation is found to augment the rank of the involved matrices. This effect

is actually negative since it reduces the dimension of the noise subspace. In the limit, if the

constant term T became full-rank, the estimators would exhibit the typical variance floor at

high SNR. However, in the sequel, we will assume that T is always rank defficient.

It is worth noting that the kurtosis matrix K appearing in Q (7.26), reduces the rank of T

and, therefore, the dimension of the noise subspace is increased. This aspect was also addressed

in the first point of Appendix 7.E

In order to evaluate the above inverse, the “economy-size” diagonalization of T = VTΣTV
H
T

is calculated and the auxiliary matrix X � U+ σ2
wN is introduced. Then, the inversion lemma

is invoked as it was done in Appendix 7.B, obtaining

(
T+ σ2

wU+ σ4
wN
)−1

=
(
VTΣTV

H
T + σ2

wX
)−1

=σ−2
w P⊥

T +BT +O
(
σ2
w

)
(7.72)

where BT is the following matrix:

BT �

[
V#

T

]H
Σ−1
T V#

T (7.73)

with

V#
T �

(
VH

T X−1VT

)−1
VH

T X−1

P⊥
T �X−1

(
IM2−VTV

#
T

)
the generalization of the pseudoinverse and the projection matrix onto the noise subspace of T,

respectively.
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In most problems, the rank of G � Eθ

{
A (θ)AH (θ)

}
grows rapidly due to the Bayesian

expectation and, eventually, matrix G becomes full-rank. In that case, taking into account

(7.70), matrix U is also invertible so that

lim
σ2
w→0

X−1 = U−1,

bearing in mind that X � U+ σ2
wN .

When this happens (i.e., G is full rank), if the first term σ−2
w P⊥

T survives when (7.72) is

multiplied by Q̃ or S = Q̃M in (7.5)-(7.6), it is posssible to have self-noise free estimates. Oth-

erwise, if Q̃ ∈ span (T), the estimator exhibits the typical variance floor because the surviving

term BT in (7.72) is constant at high SNR.

When the Gaussian assumption is adopted, it is shown in Appendix 7.I that

Q̃=Eθ

{A (θ) vec (IK) vecH (IK)AH (θ)
}

−Eθ {A (θ)} vec (IK) vecH (IK)EH
θ {A (θ)} (7.74)

always lies in the subpace generated by

T3 �Eθ

{A (θ)AH (θ)
}
+ Q̃

T4 �Eθ

{A (θ)AH (θ)
}
,

which are the matrices T appearing in the MMSE and minimum variance estimators deduced

under the Gaussian assumption (7.6). This result is independent of the actual parameteriza-

tion and the nuisance parameters distribution. Consequently, if G is full rank, the Gaussian

assumption always suffers from self-noise at high SNR (7.29), and the level of the variance floor

is determined by Xvar(K) and Xmse (K) (7.30).

Regarding the optimal estimators in (7.5), the cumulant matrix K is able to reduce the rank

of

T1 �Eθ

{A (θ) (IK2 +K)AH (θ)
}
+ Q̃

T2 �Eθ

{A (θ) (IK2 +K)AH (θ)
}

if the nuisance parameters have constant modulus. Unfortunately, this reduction is usually

insufficient to move Q̃ out of the span of T1 or T2 (7.32). In that case, the optimal large-error

estimators in (7.5) also exhibit a variance floor at high SNR (7.29). The level of this variance

floor depends again on the kurtosis matrix K.
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Appendix 7.I High-SNR MSE floor under the Gaussian assump-

tion

In this appendix, it is proved that Q̃ does not increases the rank of these two matrices (7.32):

T4 �Eθ

{A (θ)AH (θ)
}

T3 �Eθ

{A (θ)AH (θ)
}
+ Q̃.

This implies that

rank (T4)= rank
(
T4 + Q̃

)
rank (T3)= rank

(
T3 + Q̃

)
.

Regarding the first statement, it is found that

Q̃=Eθ

{A (θ) vec (IK) vecH (IK)AH (θ)
}

−Eθ {A (θ)} vec (IK) vecH (IK)EH
θ {A (θ)}

is the sum of infinitessimal terms like this:

α1A (θ1) vec (IK) vecH (IK)AH (θ1) + α2A (θ2) vec (IK) vecH (IK)AH (θ2)

−α3A (θ1) vec (IK) vecH (IK)AH (θ2)− α3A (θ2) vec (IK) vecH (IK)AH (θ1) , (7.75)

corresponding to two arbitrary values of θ, namely θ1 and θ2, with

α1 = fθ (θ1) > 0

α2 = fθ (θ2) > 0

α3 = fθ (θ1) fθ (θ2) > 0

the associated probability densities.

It can be shown that (7.75) is contained in the span of the following matrix:

α1A (θ1) vec (IK) vecH (IK)AH (θ1) + α2A (θ2) vec (IK) vecH (IK)AH (θ2) .

Then, if T4 � Eθ

{A (θ)AH (θ)
}
is decomposed in the same way, T4 becomes the sum of

infinitessimal terms such as

α1A (θ1) IK2AH (θ1) + α2A (θ2) IK2AH (θ2) .

Therefore, Q̃ must lie in the span of T4 on account of the following relationship:

Avec (B) vecH (B)C ∈ span {A (B⊗B)C}
that is hold for arbitrary matrices A, B and C.

Finally, if Q̃ ∈ span (T4), it belongs necessarily to the span of T3 = T4 + Q̃.
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Appendix 7.J Performance limits in second-order frequency es-

timation

When the received signal exhibits a frequency offset equal to ν/T , the pulse received at time kT

is given by

g (mTs − kT ; ν) = g0 (mTs − kT ; ν) ej2πνk

where T and Ts are the symbol and sample period, respectively, and

g0 (mTs; ν) � p (mTs) e
j2πνm/Nss

stands for the pulse p(t) received at t = 0. The derivative of g (mTs − kT ; ν) is given by

∂g (mTs − kT ; ν)

∂ν
=

[
∂g0 (mTs − kT ; ν)

∂ν
+ g0 (mTs − kT ; ν) (j2πk)

]
ej2πνk.

Let A (ν) and A0 (ν) stand for the matrices whose columns are delayed replicas of g (mTs; ν)

and g0 (mTs; ν) , respectively. It can be shown that these two matrices —and their derivatives—

are related in the following manner:

A (ν)=A0 (ν) diag (exp (j2πdKν))

∂A (ν)

∂ν
=

[
∂A0 (ν)

∂ν
+A0 (ν) diag (j2πdK)

]
diag (exp (j2πdKν))

where

dK = [0, 1, . . . ,K − 1]T

is the K-long vector accounting for the intersymbol phase slope. On the other hand, the sta-

tionary matrix A0 (ν) only accounts for the phase variation during the observation interval.

Thus, in the frequency estimation problem, X1 (θ) and X1,1 (θ) (7.35) have some additional

terms depending on dK that are listed next:

X (ν)=σ2
wA

H (ν)R−1 (ν)A (ν) = X (ν)�E∗ (ν)

X1 (ν)=σ2
w

∂AH (ν)

∂ν
R−1 (ν)A (ν) =

[X1 (ν)− σ2
w diag (j2πdKν)X (ν)

]�E∗ (ν)

X1,1 (ν)=σ2
w

∂AH (ν)

∂ν
R−1 (ν)

∂A (ν)

∂ν
=
[X1,1 (ν)− σ2

w diag (j2πdKν)XH
1 (ν)

+X1 (ν) diag (j2πdKν)− diag (j2πdKν)X (ν) diag (j2πdKν)]�E∗ (ν)

where

X (ν)�σ−2
w AH

0 (ν)R−1 (ν)A0 (ν)

X1 (ν)�σ−2
w

∂AH
0 (ν)

∂ν
R−1 (ν)A0 (ν)

X1,1 (ν)�σ−2
w

∂AH
0 (ν)

∂ν
R−1 (ν)

∂A0 (ν)

∂ν
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are the functions X (θ), X1 (θ) and X1,1 (θ) associated to the stationary matrix A0 (ν) , and

[E (ν)]i,k � exp (j2π (i− k) ν) was introduced in Appendix 3.D.

It can be shown that the new terms on dK as well as the factor E∗ (ν) vanish when X (θ),

X1 (θ) and X1,1 (θ) are plugged into BUCRB(θ) (7.36), Ψ(K) (7.38) and Γ(K) (7.45). The terms

on dK are imaginary and they are eliminated when the real part is extracted inBUCRB(θ), Ψ(K)

and Γ(K). On the other hand, only the diagonal entries of E∗ (ν) —which are all equal to 1—are

involved in (7.36), (7.38) and (7.44).

The conclusion of this appendix is that, despite the received signal is not stationary in the

frequency estimation problem, the asymptotic study can be addressed considering uniquely the

stationary matrix A0 (ν) and its derivatives.
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Appendix 7.K Asymptotic study for M → ∞

In this appendix, the asymptotic limit of BUCRB (θ), Bgml (θ) and Bbque (θ) is derived when the

number of antennas goes to infinity. While the asymptotic study of BUCRB (θ) and Bgml (θ)

was already addressed in the literature, the asymptotic study of the optimal second-order DOA

estimator is carried out in this appendix for the first time. The most important conclusion

is that the term Γ(K) that appears in Bbque (θ) is always negligible in front of B−1
UCRB (θ)

independently of the nuisance parameters distribution. Indeed, B−1
UCRB (θ) is found to grow

as M3 whereas Γ(K) cannot grow faster than M . Moreover, if the nuisance parameters are

circular, Γ(K) goes to zero as M−1 or faster. An interesting conclusion is that the convergence

order can be increased in one order when the parameters are drawn from a constant-modulus

alphabet. However, this increase is not sufficient in the studied problem because the dominant

term, B−1
UCRB (θ) , goes to infinity faster.

When the number of sensors goes to infinity (M → ∞), the spatial cross-correlation matrices

in (7.51) have the following asymptotic expressions:

B (θ)=AH
s (θ)N−1

s As (θ) = MIP +O(1)

Bp (θ)=
∂AH

s (θ)

∂θp
N−1

s As (θ) = B∞
p (θ) +O(1)

Bp,q (θ)=
∂AH

s (θ)

∂θp
N−1

s

∂As (θ)

∂θq
=

{
B∞
p,q (θ) + o(M2) p �= q

B∞
p,q (θ) + o(M3) p = q

with

[B (θ)]i,k �

{
M θi = θk
sin(πM(θi−θk)/2)
sin(π(θi−θk)/2)

otherwise
(7.76)

[B∞
p (θ)

]
i,k

�

⎧⎪⎪⎨⎪⎪⎩
0 i �= p, θp = θk

±π
2

cos(π(θp−θk)/2)

sin2(π(θp−θk)/2)
i = p, θp − θk = 1/M, 3/M, ...

π
2M

cos(πM(θp−θk)/2)
sin(π(θp−θk)/2)

otherwise

(7.77)

[B∞
p,q (θ)

]
i,k

�

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 i �= p or k �= q
π2

12M
3 i = p, k = q, θp = θq

±π2

2 M
cos(π(θp−θq)/2)

sin2(π(θp−θq)/2)
i = p, k = q, θp − θq = 2/M, 4/M, ...

π2

4 M2 sin(πM(θp−θq)/2)
sin(π(θp−θq)/2)

otherwise

. (7.78)

In order to find the asymptotic value of BUCRB (θ), Bgml (θ) and Bbque (θ), it is necessary

to obtain the limit of X (θ) , Xp(θ) and Xp,q(θ) (7.35) as M → ∞. Before doing so, we have to

evaluate the inverse appearing in X (θ) , Xp(θ) and Xp,q(θ) when the number of antennas goes

to infinity. Taking into account that the diagonal entries of

B (θ) = AH
t N−1

t At ⊗B (θ)
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are proportional to M (7.76), it follows that

(
B (θ) + σ2

wIKP

)−1
= M−1

(
M−1B (θ) +

σ2
w

M
IKP

)−1

= B−1 (θ) + o
(
M−1

)
(7.79)

where the last expression is verified for σ2
w/M → 0. If the resulting inverse is now plugged

into (7.35), X (θ) and Xp(θ) become zero when σ2
w/M goes to zero10. Hence, (7.79) should be

expanded in a Taylor series around σ2
w/M = 0 in order to determine its order of convergence,

obtaining

(
B (θ) + σ2

wIKP

)−1
= B−1 (θ)− σ2

wB
−2 (θ) + σ4

wB
−3 (θ) + o

(
M−3

)
.

Plugging now the Taylor series into (7.35), it follows that

X (θ)= σ2
wIKP − σ4

wB
−1 (θ) +O

(
M−2

)
= σ2

wIKP − σ4
w

(
AH

t N−1
t At

)−1 ⊗B−1 (θ) +O
(
M−2

)
(7.80)

Xp(θ)= σ2
wBp (θ)B

−1 (θ) + o (1)

= σ2
wIK ⊗B∞

p (θ)B−1 (θ) + o (1) (7.81)

Xp,q(θ)=

{
Bp,q (θ) + o(M2) =

(
AH

t N−1
t At

)⊗B∞
p,q (θ) + o(M2) p �= q

Bp,q (θ) + o(M3) =
(
AH

t N−1
t At

)⊗B∞
p,q (θ) + o(M3) p = q

(7.82)

where the inverse of B (θ) has the following asymptotic value:

B−1 (θ) = M−1IP +O
(
M−2

)
. (7.83)

(Gaussian) Unconditional Cramér-Rao Bound

Using the above results, it can be shown that the diagonal entries of B−1
UCRB (θ) (7.36) have

the following asymptotic value

[
B−1

UCRB (θ)
]
p,p

=
[
DH

r (θ)R−1 (θ)Dr (θ)
]
p,p

= 2σ−4
w ReTr (X (θ)Xp,p (θ)) + o

(
M3
)

=2σ−2
w ReTr (Xp,p (θ)) + o

(
M3
)

=2σ−2
w ReTr

(
AH

t N−1
t At ⊗B∞

p,p (θ)
)
+ o
(
M3
)

=
π2σ−2

w

6
M3ReTr

(
AH

t N−1
t At

)
+ o
(
M3
)

(7.84)

whereas the off-diagonal entries converge to a constant when the number of antennas is aug-

10Notice that this condition will be also satisfied at high SNR.
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mented. After some tediuos calculations, it can be shown that[
B−1

UCRB (θ)
]
p,q

=
[
DH

r (θ)R−1 (θ)Dr (θ)
]
p,q

=2σ−4
w ReTr (Xp (θ)Xq (θ) +X (θ)Xp,q (θ))

=2Tr
(
IK ⊗ (M−2B∞

p (θ)B∞
q (θ)−B−1 (θ)B∞

p,q (θ)
))

+ o(1)

=2K
(
M−2

[B∞
p (θ)

]
p,q

[B∞
q (θ)

]
q,p

− [B∞
p,q (θ)

]
p,q

[B−1 (θ)
]
q,p

)
+ o(1)

=2KM−2
([B∞

p (θ)
]
p,q

[B∞
q (θ)

]
q,p

+
[B∞

p,q (θ)
]
p,q

[B (θ)]q,p

)
+ o(1)

=−Kπ2

2

cos (πM (θp − θq))

sin2 (π (θp − θq) /2)
+ o(1)

assuming in the last equation that θp − θq is not multiple of 1/2M with probability one.11

Notice that the off-diagonal entries of B−1
UCRB (θ) are constant because the term proportional

to M is zero since the diagonal entries of B∞
p,q (θ) are null for p �= q (7.78). Therefore, in order to

evaluate the trace of B−1 (θ)B∞
p,q (θ), the off-diagonal entries of B−1 (θ) in (7.83) must be taken

into account. Thus, B−1 (θ) needs to be expanded in a Taylor series around M−1 = 0, obtaining

B−1 (θ)=M−1
(
IP +M−1 [B (θ)−MIP ]

)−1 � M−1IP −M−2 [B (θ)−MIP ] + o
(
M−1

)
=2M−1IP −M−2B (θ) + o

(
M−1

)
(7.85)

and, using (7.76), we have

[B−1 (θ)
]
q,p

= −M−2 [B (θ)]q,p + o
(
M−2

)
= M−2 sin (πM (θp − θq) /2)

sin (π (θp − θq) /2)
+ o
(
M−2

)
Finally, the term B∞

p (θ)B∞
q (θ) is computed taking into account that

M−1
[B∞

p (θ)
]
p,q

=
π

2

cos (πM (θp − θk) /2)

sin (π (θp − θk) /2)

using (7.77).

Gaussian Maximum Likelihood

In this section, the asymptotic study of Bgml(θ) = BUCRB(θ) +Xgml(K) when M → ∞
is addressed concluding that the second term Xgml(K) is negligible in front of BUCRB(θ).

Therefore, the GML estimator is proved to be robust to the sources’ distribution when the

number of antennas goes to infinity.

11Notice that, if θp − θq were multiple of 1/M , the final expression could be calculated considering these

particular cases of Bp (θ) and Bp,q (θ) in (7.77)-(7.78). Anyway, the off-diagonal entries are found to become

asymptotically constant unless θp − θq = 0.5/M, 1.5/M, ... In that case, the constant term is equal to zero and,

thus, the convergence order of
[
B−1

UCRB

]
p,q

becomes O(M−1).
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To begin with, let us remind the expression of Xgml(K) in (7.37):

Xgml(K)=BUCRB(θ)Ψ (K)BUCRB(θ)

[Ψ (K)]p,q = σ−4
w vecH (Yp (θ))Kvec (Yq (θ)) .

Then, the asymptotic value of Yp (θ) is obtained from (7.39), concluding that

Yp (θ)=X (θ)Xp (θ) +XH
p (θ)X (θ) = σ4

wBp (θ)B
−1 (θ) + σ4

wB
−1 (θ)BH

p (θ) + o (1)

=σ4
wIK ⊗

[
B∞
p (θ)B−1 (θ) +

(B−1 (θ)B∞
p (θ)

)H]
+ o (1)

=σ4
wIK ⊗

[
M−1B∞

p (θ) +
(
M−1B∞

p (θ)
)H]

+ o (1) (7.86)

and, taking into account that B∞
p (θ) is proportional toM (7.77), the convergence order ofYp (θ)

is O (1), at most. In that case, Xgml(K) decays as O
(
M−6

)
whereas BUCRB(θ) decreases as

O
(
M−3

)
(7.84) when the number of sensors goes to infinity.

Focusing now on those circular alphabets considered in (7.42), it is found that Xgml(K)

decays as O
(
M−8

)
because Ψ(K) becomes proportional to M−2, as indicated next:12

[Ψ (K)]p,q =σ−4
w (ρ− 2) diagH (Yp (θ)) diag (Yq (θ))

=σ−4
w (ρ− 2)Tr (Yp (θ)�Yq (θ))

=4K (ρ− 2)Tr
(B∞

p (θ)B−1 (θ)�B∞
q (θ)B−1 (θ)

)
+ o
(
M−2

)
=4K (ρ− 2)

∑
i 	=p,q

[B∞
p (θ)

]
p,i

[B−1 (θ)
]
i,p

� [B∞
q (θ)

]
q,i

[B−1 (θ)
]
i,q

+ o
(
M−2

)
=

4K (ρ− 2)

M2

∑
i 	=p,q

[B∞
p (θ)

]
p,i

[B (θ)]i,p �
[B∞

q (θ)
]
q,i

[B (θ)]i,q + o
(
M−2

)

=

⎧⎪⎪⎨⎪⎪⎩
Kπ2

4M2 (ρ− 2)

(∑
p 	=q

sin(πM(θp−θq))

sin2(π(θp−θq)/2)

)2

+ o
(
M−2

)
p = q

0 p �= q

(7.87)

where the off-diagonal elements of B−1 (θ) in (7.85) are considered again because the diagonal

of B∞
p (θ) is zero (7.77). Remember that K is the number of columns of matrix At or, in other

words, the number of nuisance parameters per user.

Best Quadratic Unbiased Estimator

Thus far, the performance of the GML estimator is shown to be independent of the nuisance

parameters distribution when the number of sensors goes to infinity. Next, the BQUE estimator

is shown to converge asymptotically to the (Gaussian) UCRB when M → ∞. Specifically, if the

nuisance parameters have constant modulus, the non-Gaussian term Γ(K) could be proportional

12All the matrices are real-valued and the Re{} operator is omitted for simplicity.
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to M as the number of antennas is augmented. However, this is not possible if the nuisance

parameters are circular. In that case, Γ(K) goes to zero as M−1. On the other hand, if the

modulus of the nuisance parameters is not constant, Γ(K) might be constant but it decays as

M−2 if the nuisance parameters are circular.

To support this conclusion, we begin by recovering the general expression of Γ(K) from

(7.45):

[Γ (K)]p,q � −σ−4
w vecH (Yp (θ))VK

(
VH

K [X∗ (θ)⊗X (θ)]VK + σ4
wΣ

−1
K

)−1
VH

K vec (Yp (θ))

where K = VKΣKVH
K is the “economy-size” diagonalization of K. Then, bearing in mind that

Yp (θ) (7.86) is constant in the best case, the asymptotic order of Γ(K) is determined by(
VH

K [X∗ (θ)⊗X (θ)]VK + σ4
wΣ

−1
K

)−1
,

that converges to a constant if all the eigenvalues of the kurtosis matrix K are different from −1.

This condition on the eigenvalues of K is equivalent to the aforementioned constant-modulus

condition. In that case, bearing in mind that X (θ) = σ−2
w IKP + o(1), it is straightforward to

obtain (
VH

K [X∗ (θ)⊗X (θ)]VK + σ4
wΣ

−1
K

)−1
= σ−4

w

(
I+Σ−1

K

)−1
+ o (1)

and, therefore, Γ(K) converges to a constant as M → ∞.

On the other hand, if some eigenvalues of K are equal to −1, the inverse of I+Σ−1
K does

not exist and the second component of X (θ) (7.80) must be considered. Thus, it follows that(
VH

K [X∗ (θ)⊗X (θ)]VK + σ4
wΣ

−1
K

)−1
= σ4

w

(
I+Σ−1

K

)− 2σ6
wU (θ) + o

(
M−1

)
where the second term,

U (θ) � VH
KB−1 (θ)VK = M−1VH

K

[(
AH

t N−1
t At

)−1 ⊗ IP
]
VK + o

(
M−1

)
, (7.88)

is proportional to M−1. At this point, the inversion lemma should be applied to compute the

above inverse, as it was done in Section 7.3. By doing so, the inversion would yield a term

proportional to M and, therefore, the non-Gaussian term Γ(K) will become proportional to M ,

as well.

To illustrate this general conclusion, the previous analysis is particularized in case of having

circular nuisance parameters. In that case, the non-Gaussian term Γ(K) is given in (7.46):

[Γ (K)]p,q � −σ−4
w diagH (Yp (θ))

(
X∗ (θ)�X (θ) + σ4

w (ρ− 2)−1 IKP

)−1
diag (Yq (θ)) .

where

X∗ (θ)�X (θ) + σ4
w (ρ− 2)−1 IKP = σ4

w

ρ− 1

ρ− 2
IKP − 2σ6

wU (θ) + o
(
M−1

)
(7.89)
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and U (θ) is the matrix introduced in (7.88), that can be written as

U (θ)=M−1
[
IKP �

((
AH

t N−1
t At

)−1 ⊗ IP
)]

+O
(
M−2

)
=M−1Dg

[(
AH

t N−1
t At

)−1
]
⊗ IP +O

(
M−2

)
being Dg [A] the diagonal matrix built from the diagonal of A.

Therefore, if the fourth- to second-order ratio ρ is not unitary, Γ (K) is given by

[Γ (K)]p,q =σ−8
w

2− ρ

ρ− 1
diagH (Yp (θ)) diag (Yq (θ))

=
4K

M4

2− ρ

ρ− 1
Tr
(B∞

p (θ)B−1 (θ)�B∞
q (θ)B−1 (θ)

)
+ o
(
M−2

)

=

⎧⎪⎪⎨⎪⎪⎩
Kπ2

4M2

2−ρ
ρ−1

(∑
p	=q

sin(πM(θp−θq))

sin2(π(θp−θq)/2)

)2

+ o
(
M−2

)
p = q

0 p �= q

,

repeating the calculations in (7.87). Notice that this term goes to zero asO
(
M−2

)
and, therefore,

it is absolutely negligible when compared to B−1
UCRB(θ) (7.84).

On the other hand, if we deal with a constant modulus alphabet with ρ = 1, the constant

term in (7.89) is zero and the next term must be considered, yielding

[Γ (K)]p,q =0.5σ−10
w diagH (Yp (θ))U

−1 (θ) diag (Yq (θ))

=
2σ−2

w ξKEs

M3
Tr
(B∞

p (θ)B−1 (θ)�B∞
q (θ)B−1 (θ)

)
+ o
(
M−1

)
=

⎧⎪⎪⎨⎪⎪⎩
σ−2
w

ξKEsπ2

8M

(∑
p 	=q

sin(πM(θp−θq))

sin2(π(θp−θq)/2)

)2

+ o
(
M−1

)
p = q

0 p �= q

(7.90)

where

Es �
1

K
Tr
(
AH

t N−1
t At

)
is the energy of the received symbols (for K sufficiently large) and

ξ �
Tr
(
Dg−1

[(
AH

t N−1
t At

)−1
])

Tr
(
AH

t N−1
t At

) ≤ 1 (7.91)

is a coefficient determined by the snapshots correlation. In particular, ξ is unitary if the snap-

shots are uncorrelated because, in that case, AH
t N−1

t At = EsIK . Therefore, ξK can be under-

stood as the effective observation time. The index ξ is therefore the only information about the

temporal waveform that is retained in the asymptotic performance of the optimal second-order

estimator.



232 CHAPTER 7. ASYMPTOTIC STUDIES

Finally, regarding (7.90), we can state that the term Γ(K) decays as O
(
M−1

)
and, therefore,

it is asymptotically negligible in front of B−1
UCRB(θ) (7.84).

Putting together all these partial results, if follows that the estimator performance is inde-

pendent of the number of interfering users because the off-diagonal terms of BUCRB(θ), Bgml(θ)

and Bbque(θ) are negligible. Furthermore, the non-Gaussian information is negligible when the

number of antennas goes to infinity because Γ (K) � B−1
UCRB(θ) and Xgml(K) � BUCRB(θ).

Regarding the asymptotic value of Γ(K), it can be seen how a positive term proportional to

σ−2
w appears when the nuisance parameters have a constant amplitude. However, this term is

actually proportional to M−1 and, therefore, Γ (K) is absolutely negligible in front of B−1
UCRB(θ)

(7.84) whatever the actual SNR.
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Appendix 7.L Asymptotic study for Ns → ∞

The asymptotic study considering an arbitrary temporal correlation AH
t N−1

t At and a finite

number of sensors is rather involved because of the inverse appearing inX (θ),Xp(θ) andXp,q(θ)

(7.35). To circumvent this obstacle, two directions have been adopted. In the first approach,

the asymptotic study (Ns → ∞) is carried out considering that the SNR goes to infinity without

any assumption about AH
t N−1

t At. The objective is to prove that the non-Gaussian term Γ(K)

(7.46) remains significant even if the observed time is infinite. An important conclusion is

that, asymptotically, the estimator performance is independent of the temporal structure of

the received signals, at least at high SNR. Bearing this result in mind, in the second part of

this appendix, the same asymptotic study is done assuming that the received snapshots are

uncorrelated, i.e., AH
t N−1

t At = EsIK . This scenario is actually the one simulated in Section 6.5

considering that the received symbols are detected without ISI at the matched filter output.

Large sample study for high SNR and arbitrary temporal correlation

To begin with, let us consider that the SNR is very high, i.e, σ2
w → 0. In that case, the

inverse in X (θ), Xp(θ) and Xp,q(θ) (7.35) can be evaluated as we did when the number of

antennas was infinite (7.80)-(7.82), obtaining(
B (θ) + σ2

wIKP

)−1
= B−1 (θ)− σ2

wB
−2 (θ) + σ4

wB
−3 (θ) + o

(
M−3

)
.

Then, plugging this result into (7.35), we get

X (θ)= σ2
wIKP − σ4

wB
−1 (θ) + o

(
σ4
w

)
= σ2

wIKP − σ4
w

(
AH

t N−1
t At

)−1 ⊗B−1 (θ) + o
(
σ4
w

)
Xp(θ)= σ2

wBp (θ)B
−1 (θ) + o

(
σ2
w

)
= σ2

wIK ⊗Bp (θ)B−1 (θ) + o
(
σ2
w

)
Xp,q(θ)=Bp,q (θ) +Bp (θ)B

−1 (θ)BH
q (θ) + o (1)

=AH
t N−1

t At ⊗
(Bp,q (θ)−Bp (θ)B−1 (θ)BH

q (θ)
)
+ o (1)

where B (θ), Bp (θ) and Bp,q (θ) are the spatial correlation matrices for M finite (7.51).

Based on the above high-SNR expressions, the (Gaussian) UCRB,[
B−1

UCRB

]
p,q

= 2σ−4
w ReTr (Xp (θ)Xq (θ) +X (θ)Xp,q (θ)) ,

as well as the non-Gaussian terms Ψ(K) and Γ (K) introduced in (7.38) and (7.45),

[Ψ (K)]p,q =σ−4
w vecH (Yp (θ))VKΣKVH

K vec (Yq (θ))

[Γ (K)]p,q =−σ−4
w vecH (Yp (θ))VK

(
VH

K [X∗ (θ)⊗X (θ)]VK + σ4
wΣ

−1
K

)−1
VH

K vecH (Yp (θ)) ,
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can be evaluated when the number of received symbols goes to infinity (Ns → ∞). In the last

equations, VKΣKVH
K is the “economy-size” diagonalization of the kurtosis matrix K and the

high-SNR limit of Yp (θ) is given by

Yp(θ)=X (θ)XP (θ) +XH
p (θ)X (θ)

=σ4
w

(
IK ⊗Bp (θ)B−1 (θ) + B−1 (θ)BH

p (θ)
)
+ o
(
σ4
w

)
.

At this point, the formulation in Appendix 7.K can be reproduced to produce asymptotic

expressions for Ns → ∞. Thus, in this appendix, similar asymptotic expressions to those in

Appendix 7.K are deduced for B (θ), Bp (θ) and Bp,q (θ) the spatial correlation matrices of the

studied finite sensor array (7.51).

In Appendix 7.K, the asymptotic form of Ψ(K) and Γ(K) is derived as a function of K and,

afterwards, the obtained expressions are simplified in case of having circular nuisance parame-

ters. Next, assuming again circular nuisance parameters, the limit of BUCRB (θ) , Bgml (θ) and

Bbque (θ) is calculated as the number of received symbols Ns goes to infinity13. Thus, starting

from the above high-SNR limits of X (θ) , Xp(θ) , Xp,q(θ) and Yp (θ), we arrive at

[
B−1

UCRB (θ)
]
p,q

= 2Ns
Es

σ2
w

ReTr
(Bp,q (θ)−Bp (θ)B−1 (θ)BH

q (θ)
)
+ o (Ns)

[Ψ (K)]p,q =

{
4Ns (ρ− 2)Tr

(Bp (θ)B−1 (θ)�Bp (θ)B−1 (θ)
)
+ o (Ns) p = q

0 p �= q

[Γ (K)]p,q =

⎧⎪⎪⎨⎪⎪⎩
4Ns

2−ρ
ρ−1 Tr

(Bp (θ)B−1 (θ)�Bp (θ)B−1 (θ)
)
+ o (Ns) ρ �= 1, p = q

2ξNs
Es
σ2
w
Tr
(Bp (θ)B−1 (θ)�Dg−1

[B−1 (θ)
]�Bp (θ)B−1 (θ)

)
+ o (Ns) ρ = 1, p = q

0 p �= q

taking into account that, if the number of received symbols Ns goes to infinity, the central rows

and columns of AH
t N−1

t At are delayed versions of the pulse autocorrelation R[k] (Section 7.4.4)

and, therefore,

lim
Ns→∞

1

Ns
Tr
(
AH

t N−1
t At

)
= R[0] = Es

Besides, the coefficient ξ (7.91) can be manipulated using the spectral analysis in Section 7.4.4,

yielding

lim
Ns→∞

ξ = lim
Ns→∞

Tr
(
Dg−1

[(
AH

t N−1
t At

)−1
])

Tr
(
AH

t N−1
t At

) =
1∫ 1

0 Es/S (f) df

13Notice that, if Ns goes to infinity,the number of observed symbols K = Ns +L− 1 is asymptotically equal to

Ns.
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with S (f) = F {R[k]}.

Following the same reasoning in Appendix 7.K, the asymptotic expression of [Γ (K)]p,q for

ρ = 1 is obtained from (7.46) by expanding the argument of the inverse as follows:

X∗ (θ)�X (θ) + σ4
w (ρ− 2)−1 IKP = σ4

w

ρ− 1

ρ− 2
IKP − 2σ6

wU (θ) + o
(
σ6
w

)
where

U (θ) = Dg
[(
AH

t N−1
t At

)−1
]
⊗Dg

[B−1 (θ)
]

is the surviving term when ρ = 1.

Notice that the asymptotic results in this appendix are equivalent to those obtained in the

high-SNR study of Section 7.3.3 if we deal with circular nuisance parameters. The first conclusion

is that Xgml(θ) = BUCRB (θ)Ψ(K)BUCRB (θ) (7.35) is negligible at high SNR because it is

proportional to σ4
w whereas BUCRB (θ) is only proportional to σ2

w. The second conclusion is

that the second term Γ(K) has the same dependence on Ns and σ−2
w than B−1

UCRB (θ) in case of

a constant-modulus alphabet and, therefore, Γ(K) is not negligible even if Ns → ∞.

However, the last conclusion is only verified in the multiuser case, i.e., P > 1. In the single

user case, B (θ), Bp (θ) and Bp,q (θ) are the following scalars:

B (θ)=M

Bp (θ)=0

Bp,q (θ)=
π2
(
M2 − 1

)
M

12
.

and, therefore, the non-Gaussian terms Ψ(K) and Γ(K) are zero for any SNR because Bp (θ) =

0. Thus, in the single user case, the asymptotic performance of second-order bearing estimators

is given by

BUCRB (θ) ,Bbque (θ) ,Bgml (θ)=
6

π2

σ2
w

NsEs

M + σ2
w

(M2 − 1)M2
+ o
(
N−1

s

)
=

6

π2NsEs/N0

M + 1
Es/N0

(M2 − 1)M2
+ o
(
N−1

s

)
where σ2

w = N0 is the double-sided spectral density of the AWG noise.

The above result is valid for any value of σ2
w or M . Moreover, this expression converges to

the bound in (7.52) when the number of antennas holds that

M � max
{
(Es/N0)

−1 , 1
}
,

which is equivalent to M � 1 in the context of digital communications.
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Large sample study for uncorrelated snapshots and arbitrary SNR.

Next, the performance of the GML and BQUE estimators is evaluated considering an arbi-

trary SNR and uncorrelated snapshots, i.e., AH
t N−1

t At = EsIK . In this scenario, it is straight-

forward to show that the (Gaussian) UCRB (7.36) is inversely proportional to the number of

snapshots K = Ns, even if Ns is finite. Actually, we have[
B−1

UCRB (θ)
]
p,q

=2NsEsσ
−4
w ReTr (Xp (θ)Xq (θ) +X (θ)Xp,q (θ))

= 2NsEsσ
−4
w

(
[X (θ)]q,p [Xp,q (θ)]p,q + [Xp (θ)]p,q [Xq (θ)]q,p

)
where X (θ) , Xp(θ) and Xp,q(θ) are the spatial components of X (θ) , Xp(θ) and Xp,q(θ), that

is,

X (θ)�B (θ)−B (θ)
(B (θ) + σ2

wIP
)−1 B (θ)

Xp(θ)�Bp (θ)−Bp (θ)
(B (θ) + σ2

wIP
)−1 B (θ)

Xp,q(θ)�Bp,q (θ)−Bp (θ)
(B (θ) + σ2

wIP
)−1 BH

q (θ) .

Furthermore, the non-Gaussian terms Ψ(K) (7.42) and Γ (K) (7.46) are also proportional to

Ns and, consequently, they do not vanish as more snapshots are processed. Simple manipulations

yield the following expressions in case of circular nuisance parameters:

[Ψ (K)]p,q =4NsEsσ
−4
w (ρ− 2)Tr (X (θ)Xp (θ)�X (θ)Xp (θ))

[Γ (K)]p,q =−4NsEsσ
−4
w diagH (X (θ)Xp (θ))

(
X ∗ (θ)�X (θ) + σ4

w (ρ− 2)−1 IP
)−1

diag (X (θ)Xq (θ)) .

Finally, notice that Bp (θ) is still null in the single user case and, therefore, Ψ (K) and Γ (K)

are also zero because Xp(θ) = 0.


