
Chapter 5

Quadratic Extended Kalman

Filtering

As it was explained in Section 2.5.2, a tracker is a closed-loop estimator that is able to follow

the variations of the parameters of interest. To do so, the tracker is composed of a discriminator

and a loop filter (see Fig. 2.4). In that scheme, the discriminator is designed to deliver unbi-

ased estimates that are further integrated at the loop filter according to the known parameter

dynamics.

In Chapter 4, the optimal second-order discriminator was formulated by minimizing the

steady-state variance subject to the unbiasedness constraint. In this optimization, it was assumed

that the small-error condition is satisfied in the steady-state. Implicitly, this assumption means

that all the parameters have been initially acquired and the tracker is following accurately

their temporal evolution. However, the tracker optimization was carried out without taking

into account the acquisition and tracking performance. For this reason, the loop filter was not

involved in the design.

Alternatively, the Kalman filter is designed considering globally both the acquisition and

steady-state performance. In the Kalman filter theory, the parameter is modelled as a random

variable of known statistics [And79][Kay93b, Ch. 13]. The Kalman filter, which is linear in

the observed data, is known to be the optimal tracker if the parameters and observations are

Gaussian random variables of known a priori mean and variance. In that case, the optimality

of the Kalman filter means that it provides minimum variance unbiased estimates in the steady-

state as well as minimum MSE estimates during the acquisition.

From the results in Chapter 4, the prior distribution about the parameters is useless once the

small-error regime is attained. However, this information is very relevant during the acquisition,

that is, in the large-error regime. The Kalman filter is considered in this thesis because it

107



108 CHAPTER 5. QUADRATIC EXTENDED KALMAN FILTERING

performs a gradual transition from the large-error regime in Chapter 3 to the small-error regime

in Chapter 4 as the observation length increases. As stated before, this transition is optimal if

and only if all the random variables are Gaussian distributed.

Unfortunately, the Gaussian condition is quite restrictive because it implies linear models for

the observation as well as for the parameter dynamics. Otherwise, the observation and dynamics

equations have to be linearized in order to derive the so-called Extended Kalman filter (EKF)

[And79][Kay93b, Sec. 13.7]. It can be shown that the EKF is solely the best linear tracker in

the steady-state independently of the parameter and observation distribution. This statement is

verified because, whatever the parameterization and dynamical model at hand, the observation

and dynamics equations are always linear in the vector of parameters if these equations are

approximated around the true value of the parameters (small-error assumption). On the other

hand, nothing can be stated about the EKF optimality during the acquisition stage (large-error

regime), which is actually uncertain.

In the context of blind parameter estimation, second-order methods are mandatory because

the observation is zero mean. Thus, the EKF is extended in this chapter to deal with quadratic

observation models. The result is the so-called Quadratic Extended Kalman Filter (QEKF)

that constitutes an alternative deduction for the optimal second-order tracker studied in Chap-

ter 4. The main advantage is that the QEKF adjusts automatically its response during the

acquisition phase in order to speed up the tracker convergence without altering the (optimal)

steady-state solution. On the other hand, in Chapter 4, the tracker response was specifically de-

signed for the steady-state (small-error regime) and it was not changed during all the operation

time. Therefore, the QEKF can be seen as a time-variant quadratic tracker that automatically

adjusts the loop bandwidth depending on the current uncertainty on the parameters (Section

2.5.2). Thus, the QEKF bandwidth is progressively decreased during the acquisition time and

is finally “frozen” in the steady-state. Another important feature is that, assuming a successful

acquisition, the QEKF provides a recursive low-cost implementation of the minimum variance

unbiased estimator when the observation time increases indefinitely and the parameters remain

stationary.

The main criticism about the EKF/QEKF tracker is that the acquisition cannot be guaran-

teed. Effectively, even in the noiseless case, the linearized model assumed in the EKF/QEKF

formulation is not correct when the tracker operates out of the small-error regime, e.g., during

the acquisition. To overcome this inconvenient, the Unscented Kalman Filter (UKF) is proposed

in [Jul97][Wan00]. The UKF applies the actual nonlinear observation model to propagate cor-

rectly the mean as well as the covariance of the Gaussian parameter. The important point is

that the convergence of the UKF is guaranteed under some mild conditions [Mer00, Sec. 5].

Implicityly, the UKF is still assuming Gaussian parameters. For other statistical dis-

tributions, sequential Monte Carlo estimators —also named particle filters— can be applied
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[Mer00][Mer01]. The complexity of these methods is usually much greater than that of the

well-known EKF. Anyway, the UKF and other particle filters were not considered in this thesis

because they are actually higher-order techniques in which the observed samples are plugged into

nonlinear posterior distributions to approximate the MMSE estimator, i.e., θ̂ = EθE {θ/y} . A
tutorial article on the UKF and related sequential Monte Carlo methods is provided in [Mer03].

Finally, the QEKF is deduced and evaluated in the context of DOA estimation and tracking.

The Gaussian assumption on the nuisance parameters is tested once more showing the significant

improvement in terms of acquisition time as well as steady-state variance when the received

signals are digitally modulated and this information is correctly exploited.

The results in this section were presented in the 3rd IEEE Sensor Array and Multichannel

Signal Processing Workshop that was held in Barcelona in 2004 [Vil04a]:

• “On the Quadratic Extended Kalman Filter”, J. Villares, G. Vázquez. Proc. of the Third

IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM 2004). July

2004. Sitges, Barcelona (Spain).

5.1 Signal Model

Let us consider a time-variant scenario in which the observed vector at time n is given by

yn = A (θn)xn +wn n = 1, 2, 3, ... (5.1)

where the transfer matrixA (θn) is known except for a vector of P real-valued parameters θn, xn

is the vector of K unknown zero-mean inputs and, wn is the vector of Gaussian noise samples.

The covariance matrix of xn and wn is given by

E
{
wnw

H
n+k

}
=Rwδ (k)

E
{
xnx

H
n+k

}
= IKδ (k) ,

respectively. Therefore, we are assuming that the noise and the nuisance parameters are uncor-

related in the time domain.

In order to track the parameter evolution in time, the estimator is provided with the following

dynamical model or state equation [And79][Kay93b, Ch.13]:

θn = f (θn−1) + un (5.2)

where un is a zero-mean random variable of known covariance matrixRu � E
{
unu

H
n

}
modeling

the uncertainty about the assumed model. The initial state θ0 is also a random variable of known
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mean µ0 � E {θ0} and covariance matrix Σ0/0 � E
{
θ0θ

H
0

}
. These two quantities summarize

all the available prior information about the parameter θn.

It is important to note that consistent estimates cannot be obtained using linear schemes

because the observation yn is zero-mean. Thus, blind estimation imposes the need of second-

order tecnniques that are known to be optimal for low-SNR and/or Gaussian data (Section 2.4.1

and Section 2.4.3). Accordingly, the following quadratic measurement equation is considered:

rn � vec
[
yny

H
n

]
= h (θn) + vn (θn) (5.3)

where

h (θn) � E {rn} = vec
[
A (θn)A

H (θn) +Rw

]
vn (θn) � rn −E {rn}

= vec
[
A (θn)

(
xnx

H
n − IK

)
AH (θn) +A (θn)xnw

H
n +wnx

H
n AH (θn) +wnw

H
n −Rw

]
are the signal and noise components of the measurement equation, respectively. Notice that

the observation noise vn (θn) is zero-mean and it depends on the wanted parameters in the

considered quadratic model.

5.2 Background and Notation

Following the classical notation in [And79], ân/m will denote the linear MMSE estimate of a

given random vector an based on the quadratic observations r1, . . . , rm. This means that ân/m

is an affine transformation of the sample covariance vectors r1, . . . , rm in (5.3) or, equivalently,

a quadratic transformation of the input data y1, . . . ,ym (5.1).

It is well-known that the MMSE estimator E {an/r1, . . . , rm} is linear in r1, . . . , rm if and

only if an and r1, . . . , rm are jointly Gaussian distributed. However, the Gaussian assumption

is not satisfied most times. In that case, it is convenient to introduce the following notation

ân/m = EL {an/r1, . . . , rm}
to refer to the linear MMSE estimator ân/m, bearing in mind that EL {an/r1, . . . , rm} =

E {an/r1, . . . , rm} in the Gaussian case [And79, Sec. 5.2].

The Kalman filter can be seen as a sequential implementation of the linear MMSE estimator

of θn that, using the notation above, is given by

θ̂n/n = EL {θn/r1, . . . , rn} .
From a complexity point of view, the sequential computation of θ̂n/n is unavoidable as the

number of observations augments (n → ∞).

The Kalman filter recursion is based on two facts:
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• The orthogonalization (decorrelation) of the original observations r1, . . . , rn using the

Gram-Schmidt method1. The transformed observations are the so-called innovations

r̃1, . . . , r̃n [And79][Kay93b][Hay91], which are computed as

r̃n = rn − r̂n/n−1 (5.4)

with

r̂n/n−1 = EL {rn/r1, . . . , rn−1}

the linear MMSE prediction of rn based on the past observations r1, . . . , rn−1. Thus, the

innovation r̃n supplies the new information contained in the observation rn or, in other

words, it yields the unpredictable component of rn. It can be shown that the innovation

r̃n is zero-mean and it is uncorrelated with both r̃m and rm for any m �= n. Using this

property, it is easy to show that

θ̂n/n =EL {θn/r1, . . . , rn} = EL {θn/r̃1, . . . , r̃n} =
n∑

k=1

EL {θn/r̃k}

=EL {θn/r1, . . . , rn−1, r̃n} = θ̂n/n−1 +EL {θn/r̃n}
= θ̂n/n−1 +EL

{
θ̃n/r̃n

}
, (5.5)

where

θ̂n/n−1 =EL {θn/r1, . . . , rn−1}
θ̃n � θn − θ̂n/n−1 (5.6)

are the linear MMSE prediction of θn —based on the past observations r1, . . . , rn−1— and

the resulting prediction error, respectively. It can be shown that both θ̂n/n−1 and θ̃n are

zero mean and they are uncorrelated with both r̃n and rn. In fact, this property has been

applied to obtain the final expression in (5.5) considering that EL

{
θ̂n/n−1/r̃n

}
= 0.

• The existence of a linear state equation (5.2) as well as a linear measurement equation

(5.3). When this is possible, θ̂n/n (5.5) can be obtained from θ̂n−1/n−1 (i.e., the previous

estimate) and rn (i.e., the new datum) bearing in mind that

EL {Man/r1, . . . , rn} = MEL {an/r1, . . . , rn} . (5.7)

Unfortunately, the state and measurement equations in (5.2)-(5.3) are generally nonlinear in

the parameters of interest. Consequently, these two equations have to be linearized in order to

apply the Kalman filter formulation. This matter is addressed in the next section.

1Although xn and wn are uncorrelated in Sec. 5.1, the observations r1, . . . , rn are correlated because they

depend on the random parameters θ1, . . . , θn, which are correlated in the assumed dynamical model (5.2).
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5.3 Linearized Signal Model

In order to have linear state and measurement equations, the original nonlinear equations (5.2)-

(5.3) are expanded in a first-order Taylor series at the points θn−1 = θ̂n−1/n−1 and θn = θ̂n/n−1,

respectively. These points are selected because θ̂n−1/n−1 and θ̂n/n−1 are the linear MMSE

estimates of θn−1 and θn before the new datum rn is processed. By definition, θ̂n−1/n−1 and

θ̂n/n−1 are given by

θ̂n−1/n−1 = EL {θn−1/r1, . . . , rn−1}
θ̂n/n−1 = EL {θn/r1, . . . , rn−1} .

Thus, assuming that θ̂n−1/n−1 and θ̂n/n−1 are previously computed at time n−1, the QEKF

will be derived from the linearized state and quadratic measurement equations given next:

θn ≈ f
(
θ̂n−1/n−1

)
+F

(
θ̂n−1/n−1

) [
θn−1 − θ̂n−1/n−1

]
+ un (5.8)

rn ≈ h
(
θ̂n/n−1

)
+Hn

(
θ̂n/n−1

) [
θn − θ̂n/n−1

]
+ vn

(
θ̂n/n−1

)
(5.9)

where F (θn−1) and Hn (θn) are the Jacobian of θn and rn, respectively, that is given by

F (θn−1) �
∂θn

∂θT
n−1

=
∂f (θn−1)

∂θT
n−1

Hn (θn) �
∂rn

∂θT
n

=
∂h (θn)

∂θT
n

+
∂vn (θn)

∂θT
n

.

From the linearized state equation (5.8), the prediction θ̂n/n−1 in (5.9) can be computed as

θ̂n/n−1 = f
(
θ̂n−1/n−1

)
, (5.10)

using (5.7) and taking into account that the noise un is zero mean. On the other hand, the

Jacobian Hn (θn) is calculated from (5.3), obtaining

[Hn (θ)]p =vec

[
∂A (θ)

∂θp
xnx

H
n AH (θ) +A (θ)xnx

H
n

∂AH (θ)

∂θp

+
∂A (θ)

∂θp
xnw

H
n +wnx

H
n

∂AH (θ)

∂θp

]
where θp stands for the p-th component of θ. Note that the transfer matrix Hn (θ) appearing

in (5.9) is noisy because it depends on the random terms xn and wn. This particularity is a

consequence of the original quadratic observation model (5.3).

5.4 Quadratic Extended Kalman Filter (QEKF)

In this section, the Kalman filter is derived from the quadratic and linearized model introduced

in the last two sections. The resulting tracker is named the Quadratic Extended Kalman Fil-

ter (QEKF) because it corresponds to the so-called Extended Kalman Filter (EKF) [And79]
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[Kay93b, Sec. 13.7] in case of having quadratic observations (5.3). The QEKF is thus obtained

from (5.5) after solving the second term as indicated now:

EL

{
θ̃n/r̃n

}
= MH

n r̃n (5.11)

where Mn is the so-called Kalman gain matrix,

Mn �Q−1
n Sn (5.12)

Sn �E
{
r̃Hn θ̃n

}
(5.13)

Qn �E
{
r̃nr̃

H
n

}
, (5.14)

and E {·} stands for the expectation with respect to all the random terms inside the brackets,

namely θ0, . . . ,θn and r1, . . . , rn.

The Kalman gain matrix (5.12) has been derived using the following well-known result

[Kay93b, Eq. 12.6]:

EL {x/y} = E {x}+E
{
xyH

}
E−1

{
yyH

}
(y−E {y})

particularized for the zero-mean random vectors θ̃n and r̃n introduced in (5.6) and (5.4), re-

spectively. This abbreviated deduction of the extended Kalman filter [Kay93b, App. 13.B] is

based on the following two important equations:

E {r̃n}=Er1,... ,rn−1E {r̃n/r1, . . . , rn−1} = 0

E
{
θ̃n

}
=Er1,... ,rn−1E

{
θ̃n/r1, . . . , rn−1

}
= 0

since E {r̃n/r1, . . . , rn−1} and E
{
θ̃n/r1, . . . , rn−1

}
are strictly zero in view of their definitions

in (5.4) and (5.6), respectively.

Therefore, plugging (5.10) and (5.11) into (5.5), we obtain the QEKF recursion:

θ̂n/n = f
(
θ̂n−1/n−1

)
+ SH

n Q−1
n

(
rn − r̂n/n−1

)
(5.15)

where

r̂n/n−1 = h
(
θ̂n/n−1

)
= h

(
f
(
θ̂n−1/n−1

))
is obtained from (5.15) and (5.10).

5.4.1 Another QEKF derivation

Thus far, the classical formulation of the QEKF is sketched introducing some simplifications.

In this section, a simpler derivation of the QEKF is proposed based on the general formulation
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in Section 3.2. In fact, the solution in (5.15) is obtained by considering a generic second-order

estimator,

θ̂n/n = bn +MH
n rn,

and solving the following optimization problem:

bn,Mn = argmax
b,M

E
{∥∥b+MHrn − θn

∥∥2 /r1, ..., rn−1

}
where bn and Mn are the independent and quadratic components of the second-order MMSE

estimator of θn, respectively. In (3.16), it was obtained that the optimal independent term is

bn = θ̂n/n−1 −MH
n r̂n/n−1. On the other hand, the optimal quadratic term Mn was derived in

(3.25) obtaining precisely the Kalman gain matrix in (5.12).

The conditional expectation in the last equation suggests that the random parameters are

averaged by means of the prior distribution fθn/r1,...,rn−1
(θn/r1, ..., rn−1), which has all the

existing knowledge on θn before processing rn. In that way, the QEKF provides a means of

updating the prior distribution every time a new datum is incorporated. In case the QEKF

converges to the true parameter, the sequence of priors fθn/r1,...,rn−1
(θn/r1, ..., rn−1) becomes

progressively more informative until the small-error regime is attained (Chapter 4). Moreover,

if the Gaussian assumption applies, the prior updating is optimal, minimizing so the acquisition

time. Definitely, this was the motivation of considering in this thesis the Kalman filter formu-

lation: the QEKF provides the transition from the MMSE large-error solution in Chapter 3 to

the small-error BQUE solution in Chapter 4.

An evident connection is observed between (5.15) and the expression obtained for the optimal

second-order discriminator in (4.12). However, there are some important differences. First of

all, the so-called Kalman gain matrix Mn appearing in (5.15) includes both the discriminator

and the loop filter of a classical closed-loop implementation. Moreover, Mn is time-varying

and, therefore, the QEKF is able to adjust online the overall tracker response in view of the

instantaneous uncertainty about the parameters.

It can be shown that the QEKF and the closed-loop implementation in Chapter 4 become

equivalent in the steady-state if they are arranged to have the same (noise equivalent) loop

bandwidth. Formally, it is verified that

lim
n→∞

Mn = diag (µ)M

where M is the optimal second-order discriminator obtained in (4.12) and, the vector of step-

sizes µ is determined by the state equation noise covariance matrix Ru � E
{
unu

H
n

}
(5.2).

The proof of this important statement would require to solve properly the Ricciati steady-state

equation [And79, Ch.4] and it suggests an in-depth study that is still incomplete.
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5.4.2 Kalman gains recursion

The linearized model in Section 5.3 allows obtaining Mn = Q−1
n Sn recursively. In this section,

the QEKF deduction is completed by making this recursion explicit.

Let us study first the cross-correlation matrix Sn (5.13). It is easy to prove that

Sn = Dr

(
θ̂n/n−1

)
Σn/n−1 = Dr

(
f
(
θ̂n−1/n−1

))
Σn/n−1

where

Σn/n−1 � E
{
θ̃nθ̃

H

n /r1, ..., rn−1

}
= F

(
θ̂n−1/n−1

)
Σn−1/n−1F

H
(
θ̂n−1/n−1

)
+Ru (5.16)

is the covariance matrix of the prediction error θ̃n expressed as a function of the estimation

MSE matrix2 at time n− 1:

Σn−1/n−1 = E

{(
θn−1 − θ̂n−1/n−1

)(
θn−1 − θ̂n−1/n−1

)H
/r1, ..., rn−1

}
.

The linear relationship between Σn/n−1 and Σn−1/n−1 is a consequence of the linearized state

equation (5.8).

On the other hand,Dr (θ) = E {Hn (θ)} was introduced in Chapter 4 as the matrix collecting

the covariance matrix derivatives, i.e.,

[Dr (θ)]p = vec

[
∂A (θ)

∂θp
AH (θ) +A (θ)

∂AH (θ)

∂θp

]
.

Likewise, the innovations covariance matrix Qn/n−1 can be also computed from the last esti-

mate θ̂n−1/n−1 and the associated MSE matrix Σn−1/n−1. In the studied quadratic observation

model, the deduction of Qn/n−1 results a little bit more involved because Hn (θ) is random

(noisy) and the measurement noise vn

(
θ̂n/n−1

)
depends on the parameterization. Ommiting

the dependence on θ̂n/n−1 = f
(
θ̂n−1/n−1

)
for the sake of clarity, it follows that

Qn/n−1 � E
{
r̃nr̃

H
n /r1, ..., rn−1

}
= E

{
HnΣn/n−1H

H
n

}
+E

{
vnv

H
n

}
Regarding now the second term, E

{
vnvH

n

}
is the measurement noise covariance (Section

5.1). It is easy to realize that E
{
vnvH

n

}
is the fourth-order matrix Q (θ) introduced in (3.9) for

θ = θ̂n/n−1. In that chapter, a closed-form expression was deduced for Q (θ) in equation (3.10),

obtaining

Q (θ) = R∗ (θ)⊗R (θ) +A (θ)KAH (θ) (5.17)

2Due to the original nonlinear signal model, Σn−1/n−1 is not the tracker covariance matrix. However, following

the original nomenclature in the Kalman filter theory, Σn−1/n−1 will be referred to as the MSE matrix.
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where R (θ) = A (θ)AH (θ) + Rw, A (θ) = A∗ (θ) ⊗ A (θ) and K is the so-called kurtosis

matrix, that supplies all the non-Gaussian information about the nuisance parameters xn. Once

more, K plays a prominent role in this chapter in case of non-Gaussian nuisance parameters.

Regarding now the first term of Qn/n−1, it follows that

E
{
HnΣn/n−1H

H
n

}
=

P∑
p,q=1

[
Σn/n−1

]
p,q

Hp,q (θ)

∣∣∣∣∣∣
θ=̂θn/n−1

where, after some tedious manipulations,

Hp,q (θ)�E
{
[Hn (θ)]p [Hn (θ)]

H
q

}
=
(
A∗ (θ)⊗ [Dr (θ)]p + [Dr (θ)]

∗
p ⊗A (θ)

)
K
(
A∗ (θ)⊗ [Dr (θ)]q + [Dr (θ)]

∗
q ⊗A (θ)

)H
+R∗

w ⊗ [Dr (θ)]p [Dr (θ)]
H
q +

(
[Dr (θ)]p [Dr (θ)]

H
q

)∗ ⊗Rw (5.18)

with

K � E
{
vec
[
xnx

H
n

]
vecH

[
xnx

H
n

]}
= IK2 + vec (IK) vecH (IK) +K

being K the nuisance parameters kurtosis matrix.

Therefore, it is found that the Kalman gainsMn can be computed from the previous estimate

θ̂n−1/n−1 and the associated covariance matrix Σn−1/n−1. In order to apply this recursion to

Mn+1 in the next time instant, it is necessary to evaluate the estimation MSE matrix at time

n, which is given by

Σn/n � E

{(
θn − θ̂n/n

)(
θn − θ̂n/n

)H
/r1, ..., rn

}
= Σn/n−1 −MH

n Sn

considering the QEKF solution in (5.15).

5.4.3 QEKF programming

In this section, the more important equations in the QEKF deduction are listed in order to

facilitate its implementation in a hardware or software platform. Thus, assuming that θ̂n−1/n−1

and Σn−1/n−1 were computed in the previous iterate, the following operations must be carried

out when the new sample yn is received:

1. Prediction:

θ̂n/n−1 = f
(
θ̂n−1/n−1

)
r̂n/n−1 =h

(
θ̂n/n−1

)
= h

(
f
(
θ̂n−1/n−1

))
Σn/n−1 =F

(
θ̂n−1/n−1

)
Σn−1/n−1F

H
(
θ̂n−1/n−1

)
+Ru
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2. Kalman gain:

Mn =Q−1
n Sn

Sn = Dr (θ)Σn/n−1

∣∣
θ=̂θn/n−1

Qn =
P∑

p,q=1

[
Σn/n−1

]
p,q

Hp,q (θ) +R∗ (θ)⊗R (θ) +A (θ)KAH (θ)

∣∣∣∣∣∣
θ=̂θn/n−1

where Mn is eventually a function of the signal model A (θ) and its derivatives

∂A (θ) /θ1, . . . , ∂A (θ) /θP —evaluated at θ̂n/n−1— as well as the noise covariance Rw and

the kurtosis matrix K. The exact expressions of Sn and Qn were deduced in Section 5.4.2.

3. Estimation:

θ̂n/n = θ̂n/n−1 +MH
n

(
rn − r̂n/n−1

)
with rn = vec

[
yny

H
n

]
the sample covariance matrix.

4. MSE matrix update:

Σn/n = Σn/n−1 −MH
n Sn = Σn/n−1 − SnQ−1

n Sn.

5.5 Simulations

Let us consider the problem of tracking the direction-of-arrival (DOA) of P mobile terminals

transmitting toward a uniform linear array composed of M > P antennas spaced λ/2 me-

ters, with λ the wavelength of the received signals. The received signal is passed throught

the matched-filter and then sampled at one sample per symbol. We will consider independent

snapshots assuming that the actual modulation is ISI-free and the P signals are perfectly syn-

chronized. Assuming for simplicity that all the users are received with the same power, the

observed signal verifies the linear signal model in equation (5.1) with

A (θn)� exp
[
jπdMθT

n

]
dM = [0, . . . ,M − 1]T

being xn the transmitted symbols for the P users and wn the vector of AWGN samples with

E
{
wnw

H
n

}
= σ2

wIM . Therefore, the SNR (per user) is given by σ−2
w bearing in mind that

E
{
xnx

H
n

}
� IK with K = P in this case.

Several illustrative simulations have been carried out to evaluate the performance of the

QEKF (5.15) when the transmitted signal is digitally modulated. The optimum QEKF is com-

pared with the one based on the Gaussian assumption that is obtained imposing K = 0 into
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Figure 5.1: Estimation MSE as a function of time for the optimum and Gaussian QEKF in

the case of a single static MPSK-modulated user with random DOA in the range ±0.4 and

SNR=40dB.

(5.17) and (5.18). This suboptimal QEKF will be referred to as the Gaussian QEKF in the

sequel. The normalized mean square error (MSE) is adopted as the figure of merit, that at time

n reads

MSE (n) �
1

P
E

{∥∥∥θn − θ̂n/n

∥∥∥2} .

- Simulation 1: in Fig. (5.1), a single user (P = 1) transmitting from a static DOA is

simulated. The transmitted symbols are drawn from a phase shift keying (MPSK) constellation.

The basestation array is composed of M = 4 antennas and the SNR per user is set to 40 dB. This

very high SNR scenario is studied in order to analyze how the trackers cope with the random

nuisance parameters, i.e., the so-called self-noise.

The estimator is initialized at θ̂0/0 = 0 with Σ0/0 = 1000. Then, 1000 realizations are run

with θ uniformly distributed within (−0.4, 0.4). The parameter range is limited in this interval

because the tracker acquisition margin is limited to ±2/M = ±0.5. In general, the QEKF

solution is unique, whatever the initial start-up, if and only if M = P + 1. When M > P + 1

the array directivity is augmented but new sidelobes appear in the array beam pattern yielding

spurious solutions.

Figure 5.1 depicts the estimated MSE(n) for the optimum and Gaussian QEKF. The state

equation noise Ru (5.2) is set up to attain the same steady-state variance in both cases. It
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Figure 5.2: Estimation MSE as a function of time for the optimum and Gaussian QEKF in the

case of two static MPSK-modulated users placed at ±0.2, ±0.1 and SNR=40dB.

becomes apparent that the acquisition time is reduced if the QEKF exploits the digital structure

of the received signal by incorporating the kurtosis matrix K. Alternatively, this improvement

could be used to reduce the QEKF steady-state variance if the optimum and Gaussian QEKF

trackers were adjusted to yield the same acquisition time.

- Simulation 2: in this simulation, we have P = 2 users transmitting from θ = [−0.1, 0.1]T

or θ = [−0.2, 0.2]T . The array size is M = 4 and the SNR per user is again 40 dB. The QEKF

trackers are initialized at θ̂0/0 = [−0.5, 0.5]T with Σ0/0 = 1000IP and Ru = 10−3IP . The

resulting MSE(n) is plotted in Fig. 5.2 for the optimum and Gaussian QEKF. Once more, the

fourth-order information about the discrete symbols is shown to improve the QEKF performance

in both the acquisition and steady-state regimes. As shown in figure 5.2, the closer are the two

sources the higher is this improvement. Further simulations showed that the simulated Gaussian

QEKF is unable to acquire the actual DOAs in some cases, e.g., θ = [0.2, 0.4]T , whereas the

optimum QEKF converges eventually to the true DOAs.

- Simulation 3: in this simulation, the state equation noise is removed (Ru → 0) in order

to evaluate the estimator consistency when n → ∞. First of all, the DOAs are acquired (n < 0)

with all the QEKFs adjusted to yield the same steady-state variance (0 < n < 20). From

this steady-state situation, Ru is set to zero at n = 20 so that the QEKF (noise equivalent)

bandwidth is progressively reduced. At this moment, the optimum QEKF becomes an order-

recursive implementation of the second-order tracker in Section 4.2 as the observation time goes
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Figure 5.3: Estimation MSE as a function of time for the optimum and Gaussian QEKF (dashed)

in the case of two static MPSK-modulated sources transmitting from ±0.2 (�), ±0.1 (�) and,

±0.01 (♦) when Ru is set to zero at n=20. SNR=40dB.

to infinity. Likewise, the Gaussian QEKF implements the well-known GML estimator explained

in Section 2.4.3. These statements are based on the technical discussion in Section 5.4.1.

In Fig. 5.3, numerical results are provided for two quiet users at θ = ±0.01, ±0.1 or ±0.2

with M = 4 and SNR=40dB. We observe that the Gaussian assumption suffers a constant

penalty as n is augmented. Consequently, the GML estimator is proved to be suboptimal at

high SNR when the modulation has constant envelope (e.g., MPSK or CPM [Pro95]), even if

the observation is arbitrarily large (n → ∞). This result is further validated by means of the

asymptotic study in Section 7.4.5.

Finally, notice that the incurred loss is a function of the users angular separation. Surpris-

ingly, the variance of the optimal QEKF is improved as the user are closer. This abnormal

result is a consequence of the secondary lobes of the array response when the number of an-

tennas is small. The same effect will be observed in Section 7.5 when studying the asymptotic

performance of the optimal small-error DOA tracker.

- Simulation 4: in order to validate that the simulated QEKFs are tracking the actual

DOAs, the users are moved with constant angular speed from −0.8 to 0.8 with fixed angular

separation (0.02). 50 trials are plot in figure 5.4 showing that the Gaussian QEKF fails in

tracking the two users.
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Figure 5.4: DOA Tracking of two close MPSK-modulated signals separated 0.02 using the

optimum and Gaussian QEKF. SNR=40dB.

- Simulation 5: the same simulation in Fig. 5.3 has been carried out for a low signal-to-

noise ratio (SNR=10 dB) and a multilevel modulation such as 16-QAM [Pro95]. Figures 5.5

and 5.6 manifest the optimality of the Gaussian assumption when multilevel constellations or

low SNRs are considered, respectively.

5.6 Conclusions

The EKF formulation has been extended to deal with quadratic signal models that appear natu-

rally in blind estimation problems. The resulting Quadratic EKF (QEKF) is found to exploit the

fourth-order cumulants (kurtosis) of the unknown inputs whereas this information is implicitly

omitted when the classical Gaussian assumption is adopted in the design. The QEKF is further

applied to estimate and track the DOA of multiple digitally-modulated sources concluding that

constant amplitude modulations (e.g., MPSK or CPM) yield a significant improvement in terms

of acquisition and/or steady-state variance for moderate-to-high SNRs. In these scenarios, the

Gaussian assumption is found to provide suboptimal DOA estimators or trackers even if the

tracker bandwidth is indefinitely reduced or, in other words, the (effective) observation time is

increased without limit.
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Figure 5.5: Estimation MSE as a function of time for the optimum and Gaussian QEKF (dashed)

in the case of two 16-QAM modulated signals received from ±0.2 (�), ±0.1 (�) and ±0.01 (♦)

when Ru is set to zero at time n=20. SNR=40dB.
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Figure 5.6: Estimation MSE as a function of time for the optimum and Gaussian QEKF (dashed)

in the case of two MPSK-modulated signals received from ±0.2 (�) and ±0.05 (♦) when Ru is

set to zero at time n=20 and the SNR is equal to 10dB.


