
Chapter 4

Optimal Second-Order Small-Error

Estimation

In the last chapter, second-order estimators were designed by achieving a trade-off between bias

and variance. The MMSE and minimum variance estimators were obtained averaging all the

possible values of the parameter of interest. This approach has a few drawbacks that are summa-

rized next. First of all, second-order estimators are usually biased even if the observation time

is increased indefinitely. This fact precludes the existence of consistent quadratic estimators in

a majority of nonlinear estimation problems. Moreover, the randomness of the nuisance param-

eters generally causes a serious variance floor at high SNR for finite data records and, therefore,

self-noise free estimates are only possible asymptotically in case of infinite data samples.

In this chapter and the next one, the above problems are faced following two different but

complementary approaches. In both cases, a closed-loop or feed-back scheme is adopted in which

the estimator output is fed back in order to re-design the estimator coefficients and estimate once

more the parameters of interest. The closed-loop implementation allows approaching succesively

to the true parameter until the estimator attains —after convergence— the so-called small-error

regime in which the estimator operates in the neighborhood of the true solution θo. Contrar-

ily, the estimators studied in the previous chapter were based on an open-loop or feedforward

architecture in which the parameter was extracted in a “single iterate” from the observed vector.

Based on this closed-loop architecture, two different approaches are considered in this chapter

following the arguments in Section 2.5. On the one hand, the design of iterative methods is

considered in which the observed vector y is repeatedly processed until attaining the small-error

regime. With this aim, the gradient-based algorithms presented in Section 2.5 are implemented.

The contribution of this chapter is the deduction of the optimal second-order gradient, and the

corresponding Hessian, in case of arbitrarily distributed nuisance parameters. Throughout this

chapter, we will assume that the length of the observed vector y is sufficient for exceeding the
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SNR threshold and, thus, working in the small-error regime. Otherwise, the algorithm might

converge to a spurious solution, usually referred to as outlier (Section 2.3.2).

On the other hand, the design of closed-loop estimators (Section 2.5.1) and trackers (Section

2.5.2) is also addressed in this chapter. As explained in Chapter 2, closed-loop estimators process

the observation vector sequentially. The sequential implementation allows a significant reduction

in terms of complexity and is unavoidable in case of dealing with a continuous transmission

system in which the observation is infinite. It is shown in Section 2.5.1 that the closed-loop

architecture yields efficient estimates if the observation is appropriately fragmented and all the

parameters have been acquired correctly. Another important feature of closed-loop schemes is

their capability of tracking the parameter evolution in time-variant scenarios as explained in

Section 2.5.2.

As it was explained in Section 2.5.1, closed-loop estimators are composed of a discriminator

and a loop filter. The discriminator is actually a small-error estimator dedicated to detect

parameter deviations from the current estimate of θ. On the other hand, the loop filter is

responsible for filtering the noisy estimates from the discriminator and predicting the parameter

evolution in time-varying scenarios. The contribution of this chapter is the deduction of the

optimal second-order discriminator assuming that the closed loop has attained the steady-state

and, thus, it is working in the small-error regime. The actual distribution of the nuisance

parameters is considered in order to cope with the self-noise in an optimal way.

The optimal second-order discriminator is obtained focusing uniquely on the steady-state

performance and ignoring absolutely the acquisition and tracking behaviour. To complement

this approach, the optimal second-order tracker is sought in Chapter 5 based on the Kalman

filter theory. In that case, the discriminator and the loop filter are jointly, adaptively designed

to optimize both the acquisition and steady-state performance.

To summarize this introduction, the small-error regime can be achieved by means of iterative

or closed-loop algorithms. Once the small-error regime is achieved, second-order estimators are

known to be unbiased since the estimator mean response E {α̂} is approximately linear on

the parameter α, irrespectively of the actual parameterization. Besides, in this small-error

situation, second-order estimators become efficient for Gaussian nuisance parameters or in low-

SNR scenarios. In the following sections, optimal second-order estimators are designed for the

small-error regime and, afterwards, the resulting estimators are applied to the same estimation

problem dealt with in Section 3.4; blind frequency offset estimation from digitally-modulated

signals. More results can be found in Chapter 6 for the problems of NDA timing synchronization

(Section 6.1), NDA carrier phase synchronization (Section 6.2), time-of-arrival estimation in

multipath channels (Section 6.3), blind channel identification (Section 6.4) and, angle-of-arrival

estimation (Section 6.5).
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4.1 Small-Error Assumption

In the last chapter, the variability of θ was considered by means of the prior fθ (θ). This

chapter deals with the asymptotic case in which this variability is very small (θ � θo). In this

small-error regime, the prior fθ (θ) is concentrated around the true parameter θo. Then, the

formulation presented in the last chapter can be particularized for a very informative prior fθ (θ)

holding that fθ (θ) < ε for any θ �= θo with ε arbitrarily small. Accordingly, the prior can be

appropriately modelled as a Dirac’s delta centered at θ = θo, that is, fθ (θ) = δ (θ − θo).

Assuming that the estimator works in the small-error regime, the expected value of those

complex matrices appearing in Section 3.2 and Section 3.3 can be approximated by means of

their Taylor expansion at θ � θo. Thus, if F(θ) is a generic complex matrix depending on the

vector of parameters θ, its mean value in the neighborhood of θ = θo can be approximated as

follows:

Eθ {F(θ)} � F (θo) +
1

2

P∑
p,q=1

∂2F (θ)

∂θp∂θq

∣∣∣∣
θ=θo

[Cθ ]p,q (4.1)

where the linear term is omitted taking into account that Eθ {θ} � θo by definition, and Cθ is

the a priori covariance matrix of the parameter:

Cθ � Eθ

{
(θ − θo) (θ − θo)

H
}
. (4.2)

In Appendix 4.A, the vectors and matrices r, g, Q̃, S and Q (Section 3.1) are approximated

in the small-error using (4.1), obtaining that

r � r (θo) � ro (4.3)

g � g (θo) (4.4)

Q̃ � DrCθD
H
r (4.5)

S � DrCθD
H
g (4.6)

Q � Q (θo) � Qo (4.7)

where

Dr �
∂r (θ)

∂θT

∣∣∣∣
θ=θo

(4.8)

Dg �
∂g (θ)

∂θT

∣∣∣∣
θ=θo

(4.9)

Finally, under the small-error assumption, the prior is concentrated in θ = θo so that Cθ

(4.2) collapses at this point becoming proportional to a given matrix C0
θ
defined as

C0
θ � lim

∆→0

1

∆
Cθ (4.10)

with ∆ � ‖θ − θo‖ the radius of the infinitesimal ball in which the prior is defined.
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4.2 Second-Order Minimum Variance Estimator

In the small-error regime, the MMSE solution deduced in Section 3.2 makes no sense because

it becomes dominated by the prior in such a way that α̂ = g(θo) with Mmse = 0. Thus, the

MMSE solution must be constrained in some way to avoid the trivial solution. Once more, the

minimum bias constraint is imposed to guarantee minimum bias around the true solution θo and,

then, the second-order minimum variance estimator in Section 3.3 is formulated again for the

small-error regime. The important point is that the bias contribution can be totally eliminated

in the small-error case (i.e., ∆ → 0). Actually, a perfect matching between the estimator mean

response

α (θ) = g(θo) +MH (r (θ)− ro)

and the target response g (θ) is possible. The necessary and sufficient condition to have unbiased

estimates (BIAS2 = 0) is the equality of the derivatives of α (θ) and g (θ) evaluated at θ = θo

(Appendix 4.B):

DH
r M = DH

g (4.11)

For the time being, the target response g (θ) is supposed to verify the above equality for

at least one matrix M. Therefore, solving again the minimization problem in (3.29) under the

constraints on b and M obtained in (3.16) and (4.11), the optimal small-error estimator is given

by

α̂ = g (θo)+Dg

(
DH

r Q−1
o Dr

)#
DH

r Q−1
o (r̂− ro) (4.12)

where ro and Qo were defined in (4.3) and (4.7) and, the Moore-Penrose pseudoinverse is main-

tained to cover those cases in which Dr is singular. Thus, the estimation error covariance matrix

is given by1

BBQUE (θo) � E
{
(α̂−g (θo)) (α̂−g (θo))

H
}
= Dg

(
DH

r Q−1
o Dr

)#
DH

g (4.13)

and the overall variance defined in (3.34) is calculated as the trace of BBQUE (θo), i.e.,

V ARmin = V AR (θo) = Tr {BBQUE (θo)} .

Regarding the obtained solution, it is remarkable that the estimator covariance matrix in

(4.13) has the same structure than the CRB in Section 2.6.1 where now

J2 � DH
r Q−1

o Dr (4.14)

1The following estimator was named in [Vil01a] the “Best Quadratic Unbiased Estimator” (BQUE) since it

can be understood as a logical extension of the well-known “Best Linear Unbiased Estimator” (BLUE) [Kay93b,

Ch.6] in case of dealing with a quadratic observation, i.e., r̂ = vec
(
R̂
)
(3.3).
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plays the same role than the Fisher information matrix (FIM) for the family of second-order

estimators considered in this dissertation. Therefore, (4.13) can be seen as the particularization

of the Crámer-Rao bound to second-order estimation techniques. In section 2.6.1, the matrix J2

is shown to coincide with the FIM of the problem when the SNR is asymptotically low (Section

2.4.1) and/or the nuisance parameters are Gaussian (Section 2.4.3).

In general, it can be affirmed that

E
{
(α̂−g (θo)) (α̂−g (θo))

H
}
≥ BBQUE (θo) ≥ BCRB (θo) ∀θo (4.15)

for any unbiased estimator α̂ based on the sample covariance matrix R̂ = yyH where BCRB (θ)

is the CRB of α = g (θ) (Section 2.6.1). As stated before, the second inequality in (4.15)

becomes an identity if the SNR tends to zero and/or the nuisance parameters are Gaussian

random variables.

4.3 Second-Order Identifiability

This section is devoted to the analysis of the minimum-bias constraints introduced in (4.11).

Using basic results on linear algebra, the solution of the system of equations in (4.11) offer three

different possibilities [Mag98, Sec. 2.9], which are enumerated next:

1. Dr ∈ CM2×P is full column rank. In that case, (4.11) is always consistent independently

of the content of Dg ∈ RQ×P . Assuming that Dr is a tall matrix (i.e., M2 > P ), the

solution of (4.11) is not unique since (4.11) becomes underdetermined. Actually, the

bias minimization is only consuming QP degrees of freedom from M ∈ CM2×Q, whereas

the remaining degrees of freedom,
(
M2 − P

)
Q are dedicated to minimize the estimator

variance.

In Appendix 4.B, it is shown that α � g (θo)+Dg (θ − θo) in the small-error regime with

Dg = MHDr (4.11). This means that the rank of MHDr determines the dimension of

the subspace that contains the values of α ∈ RQ that can be estimated in the small-error

regime from the sample covariance matrix without any ambiguity. As the rank of Dr is

P , the rank of MHDr is equal to min(P,Q) and, thus, α ∈ RQ is locally identifiable from

the sample covariance matrix assuming that Q ≤ P.

2. Dr ∈ CM2×P is singular and DH
g ∈ span

(
DH

r

)
. In that case, (4.11) is consistent if and

only if DH
g ∈ RP×Q lies in the subspace generated by the rows of Dr. Then, if R < P is

the column rank of Dr, only QR constraints, out of the total QP constraints in (4.11),

can be imposed.
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In that case, the rank of MHDr is the minimum of R and Q. Therefore, the parameter

α ∈ RQ is locally identifiable from the sample covariance matrix if and only if α belongs

to the subspace generated by g (θo) + Dg (θ − θo) , where the rank of Dg = MHDr is

equal to min(R,Q).

3. Dr is singular but DH
g /∈ span

(
DH

r

)
. In that case, (4.11) has no solution and, therefore,

there is not exist any unbiased second-order estimator of α = g(θ), even in the small-error

regime. In [Sto01], Stoica and Marzetta proved that a finite variance estimator does not

exist if (4.11) is not satisfied. Alternatively, the same conclusion can be drawn following

the geometrical interpretation derived in [McW93].

In that case, the designer has to proceed as done in (3.29) to obtain the best approximation

of g (θ) holding the minimum bias constraints in (3.27). Thus, substituting (4.5)-(4.6) into

(3.27), the minimum-bias constraints are given by

DrC
0
θD

H
r M = DrC

0
θD

H
g (4.16)

where the a priori covariance matrix C0
θ
(4.10) is used to carry out the matching pro-

posed in (3.27). Otherwise, if Dr is full-rank, C0
θ
is not profitable, showing that Bayesian

estimators cannot improve deterministic ones when the small-error assumption applies.

Focusing on the second case, there are two circumstances reducing the rank of Dr:

• The parameterization is not appropriate. In the following three situations, the estimation

problem is not correctly defined and Dr becomes singular. Example 1 : the number of

parameters Q is greater than the size of the sample covariance matrix M2. Example 2 :

the Q parameters are not linearly independent and, therefore, the model is “overparame-

terized”. Example 3 : the sample covariance matrix, R̂ = yyH , is insensitive to the phase

of y in second-order estimation.2

• The estimator has a finite resolution. The estimator is unable to resolve two parameters

of the same nature if they are very similar. For example, this problem arises in multiuser

estimation problems as, for example, the problem of angle-of-arrival estimation in array

signal processing (Section 6.5). It is worth noting that this situation, contrary to the

ambiguities related before, cannot be predicted beforehand so it is not possible to guarantee

(4.11) all the time. Therefore, the constraints in (4.16) should be used instead of those

in (4.11) and the general estimator in (3.33) must be adopted using now the small-error

matrices in (4.3)-(4.7).

2The signal modulus would be also ambiguous if the noise variance σ2
w were not known, as we have assumed

throughout the dissertation.
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However, from the designer viewpoint, the use of (4.16) may be problematic because the

estimator would reduce automatically the rank of DH
g = DH

r M when entering into a

singular situation (e.g., if two users cross each other as studied in Section 6.5), changing

the value of Dg. In the next section, this problem is overcome by setting free the value of

the cross derivatives of (4.11).

4.4 Generalized Second-Order Constrained Estimators

Thus far, the estimator is designed to have an unbiased mean response when working under the

small-error regime. Let us consider first that α = g (θ) is a vector of Q independent parameters

holding that DH
g is diagonal. In that case, the diagonal entries of DH

r M are related to the

estimator bias in the neighborhood of θ = θo whereas the cross-terms reflect the coupling

between parameters or, in other words, the interparameter interference (IPI). The classical

unbiased solution forces DH
r M = DH

g (4.11) in order to yield unbiased estimates without IPI.

However, strictly speaking, unbiased estimators are only required to constrain the value of the

diagonal entries, that is,

diag
(
DH

r M
)
= diag

(
DH

g

)
, (4.17)

since the IPI contribution is zero-mean in the small-error regime and, therefore, can only in-

crease the estimator variance. Moreover, in noisy scenarios, the IPI-free condition usually causes

noise-enhancement whereas, if the cross-terms in (4.11) are kept free, the estimator makes auto-

matically a trade-off among noise, self-noise and IPI in order to minimize the overall variance.

Therefore, in case of independent parameters for which Dg is diagonal, the proposed second-

order unbiased estimator is given by

α̂ = g (θo) +Dg Dg−1 (J2)D
H
r Q−1

o (r̂− ro) (4.18)

where J2 � DH
r Q−1

o Dr is the second-order FIM introduced in (4.14).

However, the P parameters in θ may appear coupled in α = g (θ). In that case, the matrix of

derivatives DH
g is not diagonal and the significance of the out-of-diagonal entries of DH

g changes

radically. Assuming that DH
g is a full matrix (all the elements different from 0), any unbiased

estimator of α is required to fulfill (4.11) leading to the original small-error solution in (4.12).

In general, if DH
g is sparse, only the constraints in (4.11) corresponding to non-zero elements of

DH
g have to be imposed to obtain unbiased estimators of α.

In Section 6.5, the alternative solution obtained in (4.18) is evaluated and compared to the

classical unbiased solution in (4.12) for the problem of tracking the angle-of-arrival of multiple

digitally-modulated sources in the context of array signal processing.
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4.5 A Case Study: Frequency Estimation

In this section, the small-error estimator proposed in (4.12) is simulated for the frequency

estimation problem addressed in Section 3.4. Additional results are given in Chapter 6 for

timing estimation and other relevant estimation problems. The results in this section show

that the optimal second-order frequency estimator is unbiased and self-noise free. The Gaussian

assumption is examined when the transmitted signal is digitally modulated showing that it is

generally appropriate in the studied uniparametric problem. In addition, some singular cases are

identified for the CPM modulation in which the Gaussian assumption is not able to cancel out

the self-noise at high SNR. Later, in Section 6.5, the interest of including the digital information

about the symbols is emphasized for the related problem of bearing estimation of multiple

digitally-modulated sources.

Based on the signal model introduced in Section 3.4 for the problem of frequency estimation,

the matrix of derivatives Dr is simply the following column vector:

dr � vec

(
∂R(ν)

∂ν

∣∣∣∣
ν=νo

)
= vec

(
∂E(ν/Nss)

∂ν

∣∣∣∣
ν=νo

�AAH

)

where νo is the actual value of the parameter, and [E(λ)]i,k = exp (j2πλ (i− k)) are the ele-

ments of the Toeplitz matrix introduced in Appendix 3.D. The derivative of E(ν/Nss) is then

calculated, obtaining

∂ [E(ν/Nss)]i,k
∂ν

= j2π
i− k

Nss
[E(ν/Nss)]i,k .

Therefore, the optimal second-order small-error estimator is given by

ν̂ = νo +
dH
r Q−1

o

dH
r Q−1

o dr

(r̂− ro)

where ro and Qo were defined in (4.3) and (4.7), and the denominator is responsible for the

unitary slope of E {ν̂} .

Alternatively, a classical synchronization loop can be implemented in which the received

signal is corrected using the estimated parameter ν̂ (see Fig. 4.1). Thus, the discriminator can

be designed assuming that the input parameter is νo = 0 once the small-error regime is attained.

Consequently, the optimal second-order discriminator is given by

ν̂ =
dH
r Q−1

o

dH
r Q−1

o dr

r̂

where dr and Qo are computed at νo = 0. Notice too that the last expression is simplified using

that dH
r Q−1

o ro = 0. This condition is fulfilled thanks to the symmetry of matrix A (ν) for the

problem at hand.
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Figure 4.1: Block diagram of a (first-order) closed-loop frequency synchronizer. The optimal

second-order discriminator, which was derived in this section under the small-error condition,

is indicated in the figure. The CORDIC block is due to rotate the phase of the received signal

according to the estimated frequency offset.

Whatever the selected scheme and the actual value of νo, the variance at the discriminator

output is given by

V AR = E ‖ν̂ − νo‖2 = 1

dH
r Q−1

o dr

,

which constitutes the lower bound for the variance of any quadratic unbiased frequency error

detector. If the nuisance parameters were normally distributed, then the above expression would

correspond to the (Gaussian) UCRB bound presented in Section 2.6.1.

Notice that the discriminator variance could be reduced by including the usual loop filter (Fig.

4.1). In that case, the steady-state variance of the related closed-loop estimator is computed

using the results in Section 6.1.4 following the reasoning in [Men97, Sec. 3.5.5].

The estimator performance is depicted in the following plots and compared with the ML-

based estimators. The Gaussian assumption (GML) is shown to be practically optimal whatever

the working point. Nonetheless, a minor degradation of about 0.9 dB is observed in Fig. 4.2 for

positve Es/N0 in spite of increasing the observation time (Fig. 4.3). On the other hand, the

low-SNR UML solution is rapidly limited by the self-noise as the SNR is augmented, manifesting

a significant variance floor. This result is a consequence of the modulation intersymbol inter-

ference (ISI) and the finite observation time. In case of linear modulations, this high-SNR floor

disappears (e.g., MPSK, QAM, etc.). Finally, the CML solution suffers from noise-enhancement

at low SNR due also to the ISI.

The interest of the optimal small-error solution is more significant when dealing with a

partial-response CPM modulatioon such as the LREC format [Men97, Sec. 4.2]. It can be seen

that all the ML-based methods are dominated by the self-noise at high SNR (Figs. 4.4 and

4.5). The CML and GML solutions are not able to cancel out the self-noise when the number

of nuisance parameters (K) is greater than the number of samples (M). In that case, the CML

estimator cannot remove the self-noise term because there is no noise subspace where to project

the data on. Moreover, as it will be studied in Appendix 7.E, the CML and GML solutions
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Figure 4.2: Frequency estimation variance under the small-error assumption for the optimal and

GML estimators in case of MSK symbols, Nss=2 and,M=4. The UCRB is not plotted for clarity

since it is only slightly lower than the GML performance from Es/No=-5dB to Es/No=25dB.

are not equivalent at high SNR because the columns of A (ν) are linearly dependent. Another

simulation is run in which the received signal is oversampled (Nss = 4) to guarantee thatM > K

(Fig. 4.6). In that case, the GML and CML estimators supply self-noise free estimates at high

SNR, although a significant loss is exhibited for practical SNRs.

On the other hand, the optimal second-error estimator is self-noise free under the small-error

assumption, as shown for the 2REC and 3REC modulations in Fig. 4.4 and 4.5. Self-noise is

removed by exploiting the pseudo-symbols fourth-order moments matrix K. A detailed analysis

on the asymptotic behaviour of second-order estimators at high SNR is given in Section 7.3.

Two classical small-error lower bounds for the variance of unbiased estimators are used to

evaluate the performance of second-order techniques in the presence of nuisance parameters

(Section 2.6.1). The (Gaussian) UCRB corresponds to the performance of the GML estimator

in case of Gaussian nuisance parameters (Section 2.4.3). Although it has been extensively

used in the literature as a valid bound in second-order estimation, simulations show how the

UCRB is outperformed by the optimal second-order estimator when the nuisance parameters

are discrete symbols. On the other hand, the MCRB predicts the ultimate performance of

data-aided estimators that could be approached at high SNR by means of higher-order methods

[Vil01b].
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Figure 4.3: Frequency estimation variance under the small-error assumption as a function of M

for the MSK modulation, Es/No=40dB and Nss = 2.

It is worth noting that the performance predicted in the above curves is only realistic for

high SNRs and/or a narrowband loop filter (Section 2.5.2). Otherwise, the studied closed-loop

estimators are not able to achieve the small-error regime. This abnormal behaviour is not only

associated to closed-loop schemes but it also appears in open-loop estimation in the form of

outliers or large-errors.

Closed-loop schemes are sometimes able to acquire the parameter without external assistance.

The necessary condition is that the estimator bias curve E {ν̂ − νo} —the so-called S-curve—

uniquely intercepts the abcisa with positive slope at the origin. In Fig. 4.7, the acquisition stage

of a first-order tracker with forgetting factor µ = 1/20 is simulated for the 2REC modulation.

The Es/N0 is set to 60dB in order to study the relevance of the self-noise term. Both the GML

and the optimal second-order tracker are shown to acquire the parameter correctly with almost

the same speed. On the other hand, the GML self-noise variance is apparent in the steady-state.

The associated S-curves are also depicted in Figs. 4.8-4.10. It can be seen that all of them cross

the origin and have unitary slope there.
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Figure 4.4: Estimators variance as a function of the Es/No for the 2REC modulation and M=8,

Nss=2. The number of pseudo-symbols is equal to K=12.
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Figure 4.5: Estimators variance as a funciton of the Es/No for the 3REC modulation and M=8,

Nss=2. The number of pseudo-symbols is equal to K=28.
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Figure 4.6: Estimators variance as a funciton of the Es/No for the 2REC modulation and M=4,

Nss=4. The number of pseudo-symbols is equal to K=12.
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Figure 4.7: Frequency tracker output as a function of time for the 2REC modulation in a high

SNR scenario (Es/No=60dB). The true frequency offset is equal to νo = 0.4 (GML) and νo = 0.5

(BQUE). Both trackers are initialized at ν = 0 with M=8, Nss=2. A first-order closed-loop is

implemented with µ = 0.02 the selected step-size or forgetting factor.
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Figure 4.8: S-curve of the optimum and ML-based discriminators for the MSK modulation with

M=8, Nss=2, Es/No=10dB. The dashed arrow points out the tendency of the GML and BQUE

S-curves as the Es/No is augmented from Es/No=0 (low-SNR UML S-curve) to Es/No=∞
(CML S-curve).

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

ν

S
−

cu
rv

e

Low−SNR UML 

CML

GML

BQUE

Figure 4.9: S-curve of the optimum and ML-based discriminators for the 2REC modulation with

M=8, Nss=2, Es/No=10dB.
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Figure 4.10: S-curve of the optimum and ML-based discriminators for the 3REC modulation

with M=8, Nss=2, Es/No=10dB.
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4.6 Conclusions

The limitations of second-order feedforward methods in nonlinear estimation problems motivated

the design of closed-loop estimators for the so-called small-error regime. Generally, second-

order estimators are able to yield unbiased and self-noise free estimates once the small-error is

attained after the acquisition. This important result is verified, whatever the considered estima-

tion problem, if all the parameters are (locally) identifiable. Focusing only on those identifiable

parameters, the prior distribution becomes irrelevant under the small-error assumption. There-

fore, it can be stated that Bayesian estimators never outperform deterministic estimators in the

small-error regime.

In this chapter, the Best Quadratic Unbiased Estimator (BQUE) is formulated considering

the true distribution of the nuisance parameters. The BQUE expression is obtained analytically

by expanding the constrained minimum variance solution in Chapter 3 in a Taylor’s series in

the neighbourhood of the true parameter where the small-error condition is satisfied. The

resulting estimator is “the best” in the sense that it does not exist any other unbiased second-

order estimator yielding a lower variance. Consequently, the BQUE performance constitutes the

tigthest lower bound on the cvariance of any second-order unbiased blind estimator. Besides, it

can be interpreted as the particularization of the CRB theory to second-order estimation.

The optimal second-order estimator is proved to depend on the fourth-order cumulants of the

nuisance parameters. In some estimation problems, this fourth-order information becomes im-

portant to cope with the self-noise disturbance at high SNR. On the other hand, this information

is omitted when the Gaussian assumption is adopted. In this chapter, the frequency estimation

problem is studied concluding that the Gaussian assumption is practically optimal when we

deal with a linear constellation. However, other simulations have shown that the non-Gaussian

information about the nuisance parameters is needed to remove the self-noise at high SNR if

the number of nuisance parameters exceeds the number of observations and a partial-response

CPM transmission is considered. Some other illustrative examples will be studied in Chapter 6

in which the Gaussian assumption is questioned.

Finally, in the context of multiuser communications, the estimator peformance is seriously

affected by the so-called multiple access inteference (MAI). The original BQUE solution is forced

to eliminate the MAI contribution and, for this reason, it suffers from a significant noise en-

hancement in noisy scenarios. Thus, it is preferable to include the MAI term in the estimator

optimization in order to make an optimal trade-off among the three disturbing random terms:

thermal noise, self-noise and MAI. The obtained MAI-resistant BQUE estimator is further eval-

uated in Section 6.5 for the problem direction-of-arrival estimation in cellular communication

systems.
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Appendix 4.A Small-error matrices

Let us define S (θ) and Q̃ (θ) as the arguments inside the brackets of (3.24) and (3.23):

S (θ) � (r (θ)− r) (g (θ)− g)H

Q̃ (θ) � (r (θ)− r) (r (θ)− r)H .

Regarding the matrix S (θ), it is easy to show that

S(θo)=0

∂2S (θ)

∂θp∂θq

∣∣∣∣
θ=θo

=
∂r (θ)

∂θp

∣∣∣∣
θ=θo

(
∂g (θ)

∂θq

∣∣∣∣
θ=θo

)H

+
∂r (θ)

∂θq

∣∣∣∣
θ=θo

(
∂g (θ)

∂θp

∣∣∣∣
θ=θo

)H

= [Dr]p [Dg]
H
q + [Dr]q [Dg]

H
p ,

since the pair of terms depending on r (θ)− ro and g (θ)− g vanish at θ = θo.

Then, equation (4.6) is obtained after plugging into (4.1) the following term:

P∑
p,q=1

∂2S (θ)

∂θp∂θq

∣∣∣∣
θ=θo

[Cθ]p,q =
P∑

p,q=1

[Dr]p [Dg]
H
q [Cθ ]p,q +

P∑
p,q=1

[Dr]q [Dg]
H
p [Cθ ]p,q

=DrCθD
H
g +DrC

T
θD

H
g = 2Dr Re {Cθ}DH

g . (4.19)

Proceeding in the same way with the matrix Q̃ (θ), it is found that

Q̃(θo) = 0

∂2Q̃ (θ)

∂θp∂θq

∣∣∣∣∣
θ=θo

=
∂r (θ)

∂θp

∣∣∣∣
θ=θo

(
∂r (θ)

∂θq

∣∣∣∣
θ=θo

)H

+
∂r (θ)

∂θq

∣∣∣∣
θ=θo

(
∂r (θ)

∂θp

∣∣∣∣
θ=θo

)H

= [Dr]p [Dr]
H
q + [Dr]q [Dr]

H
p .

Then, equation (4.5) is deduced after plugging into (4.1) the following expression:

P∑
p,q=1

∂2Q̃ (θ)

∂θp∂θq

∣∣∣∣∣
θ=θo

[Cθ ]p,q =
P∑

p,q=1

[Dr]p [Dr]
H
q [Cθ ]p,q +

P∑
p,q=1

[Dr]q [Dr]
H
p [Cθ]p,q

= DrCθD
H
r +DrC

T
θD

H
r = 2Dr Re {Cθ}DH

r . (4.20)

Finally, the real operator in (4.19) and (4.20) can be omitted taking into account that the

vector of parameters is actually real-valued throughout this dissertation.
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Appendix 4.B Proof of bias cancellation

If the Taylor expansion of α (θ) and the target response g (θ) are calculated around θ = θo, it

is found that

α (θ)�g (θo)+
∂α(θ)

∂θT

∣∣∣∣
θ=θo

(θ − θo) = g (θo)+MHDr (θ − θo)

g (θ)�g (θo)+
∂g (θ)

∂θT

∣∣∣∣
θ=θo

(θ − θo) = g (θo)+Dg (θ − θo) (4.21)

with Dr and Dg defined in (4.8) and (4.9), respectively. Therefore, if (4.21) is plugged into

(3.14), it follows that

BIAS2 = Eθ ‖α (θ)− g (θ)‖2 = Tr
{(

MHDr −Dg

)
Cθ

(
MHDr −Dg

)H}
where Cθ is the prior covariance matrix introduced in (4.2). Therefore, it follows that MHDr =

Dg is a necessary and sufficient condition to ensure that BIAS2 = 0 in the small-error regime

if Cθ is a full-rank matrix.


