
Chapter 2

Elements on Estimation Theory

The estimation theory deals with the basic problem of infering some relevant features of a random

experiment based on the observation of the experiment outcomes. In some cases, the experiment

mechanism is totally unknown to the observer and the use of nonparametric estimation methods

is necessary. The term “nonparametric” means that the observed experiment cannot be modelled

mathematically. Let us consider, for instance, the classical problem of spectral analysis that

consists in computing the power spectral density of the observed signal from a finite sample.

The performance of nonparametric methods is usually unsatisfactory when the observed time

is limited. This situation is actually very usual because the experiment output is only temporally

available; the experiment is not stationary; or the observer is due to supply the estimate in a

short time. To design more efficient estimation techniques, it is recommended to find previously

a convenient mathematical model for the studied experiment. The result of the experiment is

thus a function of a finite number of unknow parameters, say θ, and other random terms forming

the vector w. The vector w collects all the nuisance terms in the model that vary randomly

during the observation time as, for example, the measurement noise.

The objective is therefore finding the minimal parameterization in order to concentrate the

most the uncertainty about the experiment. In those fields dealing with natural phenomena, the

parametrization of the problem is definitely the most difficult point and, actually, the ultimate

goal of scientists working in physics, sociology, economics, among others. Fortunately, the pa-

rameterization of human-made systems is normally accesible. In particular, in communication

engineering, the received signal is known except for a finite set of parameters that must be

estimated before recovering the transmitted information. Likewise, in radar applications, the

received signal is know except for the time of arrival and, possibly, some other nuisance param-

eters. In the following, we will focus exclusively on parametric estimation methods assuming

that we are provided with a convenient parameterization or signal model.

13



14 CHAPTER 2. ELEMENTS ON ESTIMATION THEORY

In some of the examples above, it is possible to act on the experiment by introducing an

excitation signal. In that case, the random experiment can be seen as an unknown system that

is identified by observing how the system reacts to the applied excitation. This alternative

perspective is normally adopted in system engineering and, specifically, in the field of automatic

control. Unfortunately, in some scenarios, the observer is unaware of the existing input signal and

blind system identification is required. For example, in digital communications, the transmitted

symbols are usually unknown at the receiver side. This thesis is mainly concerned with blind

estimation problems in which the problem parameterization includes the unknown input.

Thus far, the formulation is rather general; the observation y ∈ CM is a given function of

the input x ∈ CK , the vector of parameters θ ∈ RP and the random vector w ∈ CM of arbitrary

known distribution. Formally, the general problem representation is considered in the following

equation:

y = a(x,θ,w) (2.1)

where the function a (·) should be univoque with respect to θ and x, that is, it should be possible

to recover θ and x from y if the value of w were known. In that case, the estimation problem

is not ambiguous. The basic problem is that multiple values of θ, x and w yield the same

observation y. Otherwise, it would not be an estimation problem but an inversion problem

consisting in finding the inverse of a (·).

Then, the objective is to estimate the value of θ based on the observation of y without know-

ing the input x and the random vector w. Thus, the entries of x appear as nuisance parameters

increasing the uncertainty on the vector of parameters θ. In general, the vector of nuisance

parameters would include all the existing parameters which are not of the designer’s interest,

including the unknown inputs. For example, the signal amplitude is a nuisance parameter when

estimating the time-of-arrival in radar applications. This thesis is mainly concerned with the

treatment of these nuisance parameters in the context of digital communications.

An estimator of θ is a given function z (·) of the random observation y,

θ̂ = z(y),

yielding a random error e = θ̂ − θo with θo the true value of θ. Evidently, the aim is to

minimize the magnitude of e. Several criteria are listed in the literature minimizing a different

cost function C(e) as, for example, the mean square error ‖e‖2, or the maximum error max {e}.
On the other hand, a vast number of estimators have been formulated by proposing ad hoc

functions z (·) whose performance is evaluated next. Some of them are briefly presented in

the following sections. For more details, the reader is referred to the excellent textbooks on

parametric estimation in the bibliography [Tre68][Sch91a][Kay93b].
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2.1 Classical vs. Bayesian Approach

There are two important questions that must be addressed before designing a convenient estima-

tor. The first one is why some terms of the signal model are classified as random variables (w)

whereas others are deterministic parameters (θ). The second question is whether the nuisance

parameters in x should be modelled as random or deterministic variables.

In the classical estimation theory, the wanted parameters θ are deterministic unknowns that

are constant along the observation interval. On the other hand, those unwanted terms varying

“chaotically” along the observation interval are usually modelled as random variables (e.g., the

measurement noise, the signal amplitude in fast fading scenarios, the received symbols in a

digital receiver, etc.).

Regarding the vector x, the nuisance parameters can be classified as deterministic constant

unknowns, say xc, or random variable unknowns, say xu. In the random case, we will assume

hereafter that the probability density function of xu is known. However, if this information

were not available, the entries of xu could be considered deterministic unknowns and estimated

together with θ.1

In the classical estimation theory, the likelihood function fy (y;xc,θ) supplies all the statis-

tical information for the joint estimation of xc and θ. If some nuisance parameters are random,

say xu, the conditional likelihood function fy/xu
(y/xu;xc,θ) must be averaged with respect to

the prior distribution of xu, as indicated next

fy (y;xc,θ) = Exu

{
fy/xu

(y/xu;xc,θ)
}
=

∫
fy/xu

(y/xu;xc,θ) fxu (xu)dxu. (2.2)

On the other hand, modeling the constant nuisance parameters as random variables is rather

controversial. For example, the received carrier phase is almost constant when estimating the

signal timing in static communication systems. Even if these parameters come from a random

experiment and their p.d.f. is perfectly known, we are only observing a particular realization of

xc, which is most probably different from their mean value. Therefore, modeling these nuisance

parameters as random variables might yield biased estimates of θ. Evidently, this bias will be

cancelled out if several realizations of y were averaged, but only one realization is available!

This controversy is inherent to the Bayesian philosophy [Kay93b, Ch. 10]. In the Bayesian

or stochastic approach, all the parameters —including the vector of wanted parameters θ— are

modelled as random variables of known a priori distribution or prior. Then, the resulting

estimators are designed to be optimal “on the average”, that is, averaging θ̂ with respect to the

prior distributions of θ and x. Actually, all the classical concepts such as bias, variance, MSE,

consistency and efficiency must be reinterpreted in the Bayesian sense.

1Notice that this is not the only solution. For example, we can assume a non-informative prior for xu or, alterna-

tively, we can apply Monte Carlo methods to evaluate numerically the unknow distribution of xu [Mer00][Mer01].
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Bayesian estimators are able to outperform classical estimators when they are evaluated “on

the average”, mainly when the observation y is severely degraded in noisy scenarios. This is

possible because Bayesian estimators are able to exploit the a priori information on the unknown

parameters. Anyway, as S. M. Kay states in his book, ‘It is clear that comparing classical and

Bayesian estimators is like comparing apples and oranges’ [Kay93b, p. 312].

Bearing in mind the above explaination, let us consider that y, x, and θ are jointly distributed

random vectors. In that case, the whole statistical information about the parameters is given

by the joint p.d.f.

fy,x,θ (y,x,θ) = fy/x,θ (y/x,θ) fx (x) fθ (θ) , (2.3)

assuming that x and θ are statistically independent. The first conditional p.d.f. in (2.3) is

numerically identical to the conditional likelihood function fy/xu
(y/xu;xc,θ) in (2.2) but it

highlights the randomness of xc and θ in the adopted Bayesian model. The other terms fx (x) =

fxc (xc) fxu (xu) and fθ (θ) are the a priori distributions of x and θ, respectively.

Notice that the classical and Bayesian theories coincide in case of non-informative priors,

i.e., when fy (y;xc,θ) is significantly narrower than fxc (xc) and fθ (θ) [Kay93b, Sec. 10.8].

In the sequel and for the sake of simplicity, all the nuisance parameters will be modelled as

random variables or, in other words, x = xu and xc = ∅. Thus,

fy (y;θ) = Ex

{
fy/x,θ (y/x,θ)

}
will be referred to as the unconditional or stochastic likelihood function in opposition to the

joint or conditional likelihood function

fy (y;x,θ) = fy/x,θ (y/x;θ) ,

which is also referred to as the deterministic likelihood function in the literature.

2.2 MMSE and MVU Estimation

The ultimate goal in the classical estimation theory is the minimization of the estimator mean

square error (MSE), that is given by

MSE(θ) � Ey

∥∥∥θ̂ − θ
∥∥∥2 = Ey ‖z(y)− θ‖2

where Ey {·} involves, implicitly, the expectation over the random vectors w and x. The MSE

can be decomposed as

MSE(θ) = BIAS2(θ) + V AR(θ)
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where the estimator bias and variance are given by

BIAS2(θ) =
∥∥∥Ey

{
θ̂
}
− θ
∥∥∥2

V AR(θ) = Ey

∥∥∥θ̂ −Ey

{
θ̂
}∥∥∥2

The minimum MSE (MMSE) estimator finds a trade-off between the bias and the variance

for every value of θ. Unfortunately, the bias term is usually a function of θ and, consequently,

the MMSE estimator is generally not realizable because it depends on θo [Kay93b, Sec. 2.4.]. In

general, any estimator depending on the bias term will be unrealizable in the classical framework.

This limitation suggests to focus uniquely on unbiased estimators holding that BIAS2(θ) = 0

for all θ. Thus, the estimator MSE coincides with its variance and the resulting estimator is

usually referred to as the minimum variance unbiased (MVU) estimator [Kay93b, Ch. 2]. The

MVU estimator minimizes the variance subject to the unbiased constraint for every θ.

The Rao-Blackwell-Lehmann-Scheffe theorem facilitates a procedure for finding the MVU

estimator [Kay93b, Ch.5]. Unfortunately, this method is usually tedious and sometimes fails to

produce the MVU estimator. Notice that the existence of the MVU estimator is not guaranteed

either. Despite these difficulties, the MVU formulation is widely adopted because the maximum

likelihood principle is known to provide approximatelly the MVU estimator under mild regularity

conditions [Kay93b, Ch. 7].

If the classical framework is abandonned in favour of the Bayesian approach, the dependence

of MSE(θ) on the true parameter θ can be solved by averaging with respect to the prior fθ (θ).

Therefore, the Bayesian MMSE estimator can be formulated as the minimizer of

Eθ {MSE(θ)} = Eθ

{
Ey

∥∥∥θ̂ − θ
∥∥∥2} =

∫
Ey

∥∥∥θ̂ − θ
∥∥∥2 fθ (θ) dθ, (2.4)

that is known to be the mean of the posterior p.d.f. fθ/y (θ/y) [Kay93b, Eq. 10.5], i.e.,

θ̂MMSE = Eθ/y {θ/y} = f−1
y (y)

∫
θfy (y;θ) fθ (θ) dθ (2.5)

where the Bayes’ rule is applied to write fθ/y (θ/y) in terms of the likelihood function and the

prior:

fθ/y (θ/y) =
fy (y;θ) fθ (θ)

fy (y)
=

fy (y;θ) fθ (θ)∫
fy (y;θ) fθ (θ) dθ

.

The Bayesian MMSE estimator is known to minimize the MSE “on the average” (2.4). This

means that the actual MSE will be high if the actual parameter θo is unlikely, and small if fθ (θ)

is distributed around the true parameter θo.
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2.3 Maximum Likelihood Estimation

Although there are other relevant criteria, the maximum likelihood (ML) principle has become

the most popular parametric method for deducing statistically optimal estimators of θ. In the

studied signal model (2.1), the observation is clearly a random variable due to the presence of

the random vectors w and x. Actually, we have a single observation yo of this random variable

from which the value of θ must be inferred. The ML estimator is the one chosing the value of

θ —and implicitly the value of w and x— that makes yo the most likely observation. Formally,

if fy (y;θ) is the probability density function of the random vector y parameterized by θ, the

ML estimator is given by

θ̂UML=argmax
θ

{fy (yo;θ)} , (2.6)

where yo is the vector of observed data2 and

fy (y;θ) = Ex

{
fy/x,θ (y/x,θ)

}
=

∫
fy (y;x,θ) fx (x)dx (2.7)

is known as the unconditional likelihood function. Likewise, the estimator in (2.6) is known

as the unconditional or stochastic maximum likelihood (UML) estimator because the nuisance

parameters are modelled as random unknowns (Section 2.1). If the nuisance parameters are

really random variables, the UML estimator is actually the true ML estimator of θ.

Alternatively, the nuisance parameters can be modelled as deterministic unknowns —as done

for θ. In the context of the ML theory, the deterministic or conditional model is unavoidable

when x is a constant unknown or there is no prior information about x (Section 2.1). Moreover,

even if the nuisance parameters are actually random, the CML approach is often adopted if the

expectation in (2.7) cannot be solved analytically. In that case, however, the CML solution is

generally suboptimal because it ignores the prior information about x. Thus, the deterministic

or conditional maximum likelihood (CML) estimator is formulated as follows

θ̂CML = argmax
θ

{
max
x

fy (y;x,θ)
}
= argmax

θ

{fy (y; x̂ML,θ)} (2.8)

where fy (y;x,θ) is the joint or conditional likelihood function and

x̂ML=argmax
x

{
max
θ

fy (y;x,θ)

}
(2.9)

is the ML estimator of x.

Comparing the UML and CML solutions in (2.6) and (2.8), we observe that in the uncon-

ditional model the nuisance parameters are averaged out using the prior fx (x) whereas in the

2In the sequel, the random variable y and the observation yo will be indistinctly named y for the sake of

simplicity.
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conditional model fy (y;x,θ) is compressed by means of the ML estimate of x, namely x̂ML.

Also, it is worth noting that, if the nuisance parameters belong to a discrete alphabet, we are

dealing with a detection problem and x̂ML is actually the ML detector. It is found that the

estimation of θ is significantly improved by exploiting the discrete3 nature of x. This aspect is

crucial when designing estimation techniques for digital communications in which x is the vector

of transmitted symbols.

Finally, the following alternative estimator is proposed now:

θ̂CML2 = argmax
θ

{
max
x

fy (y;x,θ) fx (x)
}
= argmax

θ

{fy (y; x̂MAP ,θ)} (2.10)

where

x̂MAP=argmax
x

{
max
θ

fy (y;x,θ) fx (x)

}
(2.11)

is the Maximum a Posteriori (MAP) detector exploiting the prior distribution of x. Notice that

θ̂CML = θ̂CML2 in case of equally likely nuisance parameters.

2.3.1 Decision Directed ML Estimation

Focusing on those estimation problems dealing with discrete nuisance parameters, the condi-

tional ML estimators in equations (2.8) and (2.10) exploit the hard decisions provided by the ML

or MAP detectors of x, respectively. In the context of digital communications, these estimation

techniques are referred to as decision directed (DD). Decision-directed estimators are usually

implemented iterating equations (2.8) and (2.9) for the ML detector, or (2.10) and (2.11) for

the MAP detector. The main drawback of iterative algorithms is the uncertain convergence to

the global maximum of fy (y;x,θ).

In some kind of problems, decision directed methods are efficient at high SNR. For exam-

ple, in digital communications, DD synchronizers are known to attain the Cramér-Rao bound

at high SNR [And94][Moe98]. However, when the noise variance is high, hard decisions are

unreliable and it is better to compute soft decisions on the nuisance parameters. In digital com-

munications, the estimation techniques based on soft decisions about the transmitted symbols

are usually known as non-data-aided (NDA) [Men97]. Indeed, this interpretation is adopted in

[Vaz00][Rib01b] to describe some ML-based NDA synchronizers.

In [Noe03], the Expectation-Maximization (EM) algorithm [Dem77][Fed88] is invoked to

prove that UML estimation requires soft decisions from the MAP detector. More specifically,

the nuisance parameters soft information is introduced by means of the a posteriori probabilities

3In order to unify the study of continuous and discrete nuisance parameters, the prior fx (x) will be used

indistinctly in both cases. To do so, if x ∈{a1, . . . , aI} with I the alphabet size, fx (x) will be a finite number of

Dirac’s deltas, i.e, fx (x) =
∑I

i=1 p(ai)δ (x− ai) with p(ai) the probability of ai.
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fx (a1/y,θ) , ..., fx (aI/y,θ) where {ai}i=1,... ,I are all the possible values of x. The EM algorithm

is then applied to obtain an iterative implementation of the UML estimator following the so-

called Turbo principle [Mie00][Ber93]. In these schemes, the estimator (2.6) is assisted with the

decoder soft decisions and vice versa. The EM foundation ensures the convergence to the UML

solution under fairly general conditions. The required soft decisions are provided by the optimal

MAP decoder proposed in [Bah74], that supplies at each iteration the a posteriori probability

fx (x/y,θ) for every possible value of x.

It is worth noting that the UML estimator is able to exploit the statistical dependence

introduced by the encoder whereas the conditional approach in (2.8)-(2.10) does not. In the

conditional model, the estimator is only informed that the codeword x is a redundant vector

and, thus, it belongs to a reduced subset or codebook. In addition, the UML estimator is able to

exploit the statistical dependence of the nuisance parameters in order to reduce their uncertainty

at low SNR.

Another suitable implementation of the conditional estimators (2.8)-(2.10) is to assign a

different estimator θ̂ to each survivor path in the Viterbi decoder, corresponding to a tentative

sequence of symbols x. The estimator output is then used to recompute the metric of the

associated path. These kind of methods are usually referred to in the literature as Per Survivor

Processing (PSP) [Pol95]. It can be shown that this approach attains the performance of the

CML estimator in (2.8).

2.3.2 Asymptotic properties

The importance of the ML theory is that it supplies the minimum variance unbiased (MVU)

estimator if the observed vector is sufficiently large under mild conditions. This result is a

consequence of the asymptotic efficiency of the ML criterion, which is known to attain the

Cramér-Rao lower bound as the number of observations increases (Section 2.6.1). Therefore,

the ML theory facilitates a systemmatic procedure to formulate the MVU estimator in most

estimation problems of interest.

In this section, the most relevant properties of the ML estimator are enunciated [Kay93b,

Sec. 7B]. If the observation size goes to infinity (M → ∞), it can be shown that

Property 1. The ML estimator is asymptotically Gaussian distributed with mean θo and

covariance BCRB (θo) where θo is the true parameter and BCRB (θo) is the Crámer-Rao lower

bound evaluated at θo (Section 2.6.1). This means that the ML estimator is asymptotically

unbiased and efficient or, in other words, the ML estimator leads asymptotically (M → ∞) to
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Figure 2.1: This picture illustrates the significance of the term outlier in the context of ML

estimation.

the minimum variance unbiased (MVU) estimator with

Ey

{
θ̂ML

}
−→ θo

Ey

{(
θ̂ML − θo

)(
θ̂ML − θo

)H} −→ BCRB (θo) .

Property 2. The ML estimator is asymptotically consistent meaning that θ̂ML → θo as

the observation size goes to infinity. This property implies that the CRB tends to zero as M is

increased, i.e., BCRB (θo) → 0.

These properties are verified if the regularity condition

Ey

{
∂

∂θ
ln fy (y;θ)

∣∣∣∣
θ=θo

}
= 0 (2.12)

is guaranteed for every θo. Fortunately, most problems of interest verify the above regularity

condition. The implicit requirement is that the function support on y of fy (y;θ) does not

depend on the parameter θ so that the integral limits of Ey {·} are independent of θ. This

condition is needed to have unbiased estimates since (2.12) guarantees that Ey {ln fy (y;θ)} has

a maximum at the true parameter θo whatever the value of θo.

As proved in [Kay93b, Theorem 7.5], the first property on the optimality of the ML estimator

is satisfied even for finite observations provided that the signal model is linear in θ and x.

However, a large number of estimation problems are nonlinear in the parameter vector θ. In

that case, it is very important to determine how many samples (M) are required to guarantee

the ML asymptotic efficiency (property 1). Fortunately, in most problems of interest this value

is not excessive. It is found that the minimum M depends on the signal model at hand as well

as the variance of the noise term w, say σ2
w. If the value of σ2

w is low and/or M is large, the
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Figure 2.2: This picture illustrates the existence of a SNR threshold in nonlinear estimation

problems. This threshold divides the SNR axis into the small-error regime, in which the CRB

is attained, and the large-error regime, in which efficient estimators does not exist. Notice that

the threshold position can be moved to the left by increasing the vector of observations.

log-likelihood function ln fy (y;θ) exhibits a parabolic shape —quadratic form— with a unique

maximum near the true parameter θo. Only in this small-error regime, the ML estimator is

statistically efficient holding property 1.

On the other hand, if the value of σ2
w is high and/or M is not sufficiently large, the likelihood

function fy (y;θ) becomes multimodal and large errors are committed when the level of a distant

maximum or outlier exceeds the true parameter maximum (Fig. 2.1). In this large-error regime,

the variance of the ML estimator departs abruptly from the CRB. It is found that the estimator

enters in the large-error regime if the noise variance σ2
w exceeds a given threshold. This threshold

can be augmented (i.e., σ2
w greater) if the observation size is increased and, therefore, the large-

error region disappears as long as the observation size goes to infinity. This is actually the sense

of the ML asymptotic efficiency (property 1).

The existence of a low-SNR threshold in nonlinear estimation problems suggests to distin-

guish between the small-error and large-error scenario (Fig. 2.2). In the first case, ML estimators

are efficient and, hence, they attain the CRB (Section 2.6.1). Thus, the ML principle becomes

the systematic way of deducing the MVU estimator in the small-error regime. Moreover, in the

small-error case, the ML estimator is also optimal in terms of mean square error (Section 2.2).

This conclusion is important because MMSE estimators are generally not realizable since they

depend on the unknown parameter θo.

On the other hand, efficient estimators do not exist in the large-error case and, other lower
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bounds are needed to take into account the existence of large errors —or outliers— and predict the

threshold effect (Section 2.6). In this large-error regime, unbiased estimators are generally not

optimal from the MSE point of view and the MMSE solution establishes a trade-off between the

variance and bias contribution (Section 2.2). In this context, the Bayesian theory allows deducing

realizable estimators minimizing the so-called Bayesian MSE, which is the MSE averaged over

all the possible values of the parameter θ [Kay93b, Sec. 10].

In this thesis, Chapter 3 is devoted to design optimal second-order large-error estimators

whereas these results are particularized in Chapter 4 to formulate the optimal second-order

small-error estimator.

To conclude this brief introduction to the maximum likelihood theory, two additional prop-

erties are presented next. These properties are satisfied even if the observation interval is finite.

Property 3. Whenever an efficient estimator exists, it corresponds to the ML estimator.

In other words, if the MVU estimator attains the CRB, the ML estimator is also the MVU

estimator. Otherwise, if the MVU variance is higher than the CRB, nothing can be stated

about the optimality of the ML estimator for finite observations.

Property 4. The ML estimator is invariant in the sense that, if θ̂ML stands for the ML

estimator of θ, the ML estimator of α = g (θ) is simply α̂ML = g
(
θ̂ML

)
for any one-to-one

function g(·). Otherwise, if g(·) is not univoque, α̂ML maximizes fy (y;α) , that is obtained as

max
θ

fy (y;θ) subject to g (θ) = α [Kay93b, Th. 7.2].

2.4 Linear Signal Model

The formulation of parameter estimation techniques from the general model introduced in (2.1)

is mostly fruitless. Accordingly, in the following, the focus will be on those linear systems

corrupted by an additive Gaussian noise, holding that

y = A(θ)x+w (2.13)

where x ∈ CK is the system input forming the vector of nuisance parameters, w ∈ CM is the

Gaussian noise vector and, A(θ) ∈ CM×K is the system response parameterized by the vector

θ ∈ RP . Despite its simplicity, the adopted linear model is really important because it appears

in a vast number of engineering applications. In the context of digital communications, this

model applies for any linear modulation as well as for continuous phase modulations (CPM)

thanks to the Laurent’s expansion [Lau86][Men97, Sec. 4.2] (Section 6.1.2).

We will assume that the noise vector in (2.13) is zero-mean and its covariance matrix is a
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priori known, that is,

E {w} = 0

E
{
wwH

}
= Rw,

with Rw a given full-rank matrix. Furthermore, we will assume that w is a proper or circular

random vector holding that E
{
wwT

}
= 0 [Sch03][Pic96]. The statistical distribution of the

noise samples is normal (Gaussian), although the results in the following chapters could be easily

extended to admit any other noise distribution. Finally, the noise variance is defined as

σ2
w �

Tr (Rw)

M
,

which is the variance of the noise samples [w]m, if they are identically distributed. Additionally,

we introduce the matrix N, which is defined as

N � σ−2
w Rw.

In the unconditional model, the nuisance parameters are modelled as random variables of

known probability density function fx (x) with zero-mean and uncorrelated entries4, meaning

that

E {x} =

∫
xfx (x)dx = 0

E
{
xxH

}
=

∫
xxHfx (x) dx = IK

where fx (x) would be composed of a finite number of Dirac’s deltas in case of discrete nuisance

parameters. On the other hand, the nuisance parameters are possibly improper random variables

with E
{
xxT

} �= 0 [Sch03][Pic96]. This consideration is specially important in digital commu-

nications because some relevant modulations (e.g., BPSK and CPM) are actually improper or

noncircular, i.e., E
{
xxT

} �= 0.

In the linear signal model, the conditional or joint likelihood function is given by

fy (y;θ,x) =
1

πM det (Rw)
exp
(
−‖y−A (θ)x‖2

R−1
w

)
= C1 exp

(
2Re

(
xHAH (θ)R−1

w y
)− xHAH (θ)R−1

w A (θ)x
)

(2.14)

with

C1 �
exp(−yHR−1

w y)

πM det (Rw)

an irrelevant factor independent of θ.

4Notice that there is no loss of generality because the correlation of x can always be included into the matrix

A(θ) in (2.13).
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On the other hand, the unconditional likelihood function in (2.7) does not admit a general

analytical solution, even for the linear model presented in this section. By replacing (2.14) into

(2.7), it is found that the unconditional likelihood function is given by5

fy (y;θ) = C1Ex

{
exp
(
2Re

(
xHAHR−1

w y
)− xHAHR−1

w Ax
)}

. (2.15)

Moreover, in case of i.i.d. nuisance parameters, the expectation with respect to x results in

the following expressions:

Ex

{
exp
(
2Re

(
xHAHR−1

w y
))}

=
K∏
k=1

Ex

{
exp
(
2Re

(
x∗ka

H
k R−1

w y
))}

Ex

{
exp
(
xHAHR−1

w Ax
)}

=
K∏
k=1

K∏
l=1

Ex

{
exp
(
x∗kxla

H
k R−1

w al
)}

=
K∏
k=1

(
K∏
l>k

Ex

{
exp
(
2Re

(
x∗kxla

H
k R−1

w al
))}

+

Ex

{
exp
(
|xk|2 aHk R−1

w ak

)})
where xk � [x]k and ak � [A]k are the k-th element and column of x and A, respectively.

The above expectations over the nuisance parameters have only been solved analytically in case

of Gaussian nuisance parameters (Section 2.4.3) and polyphase discrete alphabets as shown in

Appendix 2.A. However, a general closed-form solution is not available. In the next subsections,

some alternative criteria are proposed to circumvent the computation of the exact unconditional

likelihood function (2.15).

2.4.1 Low-SNR Unconditional Maximum Likelihood

The usual way of finding the UML estimator is the evaluation of (2.15) assuming a very low SNR

[Vaz00][Men97]. The low-SNR constitutes a worst-case situation leading to robust estimators of

θ. When the noise variance increases, the exponent of (2.15) is very small and, therefore, the

exponential can be expanded into the following Taylor series:

fy (y;θ) � C2Ex

{
1 + χ (y;θ,x) + χ2 (y;θ,x)

}
(2.16)

where χ (y;θ,x) � 2Re
(
xHAHR−1

w y
)− xHAHR−1

w Ax is the exponent of (2.15) [Vaz00]. As-

suming that the nuisance parameters are circular, zero-mean, unit-power and uncorrelated, the

expectation in (2.16) is evaluated obtaining that

Ex {χ (y;θ,x)} = −Tr
(
AHR−1

w A
)
= −σ−2

w Tr
(
AHN−1A

)
Ex

{
χ2 (y;θ,x)

}
= 2Tr

(
R−1

w AAHR−1
w R̂

)
+ ζ (θ)

= 2σ−4
w Tr

(
N−1AAHN−1R̂

)
+ ζ (θ)

5For the sake of clarity, the dependence on θ is omitted from A (θ) in the following expressions.
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where R̂ � yyH is the sample covariance matrix and, ζ (θ) � σ−4
w Ex

{(
xHAHN−1Ax

)2}
has

not been expanded because it is negligible compared to Ex {χ (y;θ,x)} for σ2
w → ∞.

Finally, having in mind that ln(1 + x) � x for x � 0 and omitting constant terms, the

low-SNR log-likelihood function becomes

ln fy (y;θ) ∝ −Tr
(
AHR−1

w A
)
+Tr

(
R−1

w AAHR−1
w R̂

)
= Tr

(
R−1

w AAHR−1
w

(
R̂−Rw

))
, (2.17)

proving that the sample covariance matrix R̂ � yyH is a sufficient statistic for the estimation

of θ in the studied linear model, if the SNR goes to zero. More precisely, the log-likelihood

function in (2.17) is an affine transformation of the sample covariance matrix with

b (θ) = −Tr
(
AH(θ)R−1

w A (θ)
)

M (θ) = R−1
w A (θ)AH (θ)R−1

w

the independent term and the kernel of ln fy (y;θ), respectively. Notice that this result is

independent of the actual distribution of the nuisance parameters fx(x). Actually, the result is

valid for any circular distribution having zero mean and unitary variance.

Finally, the explicit formula for the UML estimator at low SNR is given by

θ̂lowSNR = argmax
θ

Tr
(
N−1AAHN−1

(
R̂−Rw

))
. (2.18)

This result is relevant because it states that in low SNR scenarios, second-order techniques

are asymptotically efficient for any estimation problem following the linear model in (2.13).

Actually, this conclusion was the starting point of this thesis.

Unfortunately, the low-SNR solution has some important inconveniences. In Appendix 2.B,

it is shown that the low SNR approximation usually yields biased estimates for any positive

SNR. Moreover, the low-SNR UML estimator might yield a significant variance floor when

applied in high SNR scenarios due to the variance induced by the random nuisance parameters

(Appendix 2.B). This variability is usually referred to as self-noise or pattern-noise in digital

synchronization [Men97].

Despite these potential problems, the low SNR approximation is extensively used in the

context of digital communications and ad hoc methods are introduced to mitigate or cancel the

self-noise contribution at high SNR. On the other hand, the ML-based estimators proposed in

the following sections are suitable candidates to cancel out the bias and self-noise terms at high

SNR. However, our main contribution in Chapter 4 is proving that all of them are suboptimal

in terms of self-noise cancelation when applied to polyphase alphabets such as MPSK.
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To conclude this section, we notice that the term depending on R̃ � yyT also appears in

Ex

{
χ2 (y;θ,x)

}
when dealing with noncircular nuisance parameters. Therefore, the low-SNR

log-likelihood function should be modified in the following way:

ln fy (y;θ) � −Tr
(
AHR−1

w A
)
+TrRe

(
R−1

w AAHR−1
w R̂+R−T

w A∗ΓHAHR−1
w R̃

)
,

with

Γ � E
{
xxT

}
the improper covariance matrix of x. Furthermore, if x is real-valued (e.g., in baseband com-

munications or for the BPSK modulation), it follows that Γ = E
{
xxH

}
= IK . Notice that this

second term is the one exploited in Section 6.2 to estimate the carrier phase because the term

on R̂ does not provide information about the signal phase.

2.4.2 Conditional Maximum Likelihood (CML)

In this section, the CML criterion in (2.8) is formulated for the linear signal model in (2.13).

In that case, the conditional likelihood function in (2.14) can be compressed with respect to x

if the nuisance parameters are continuous variables, i.e., x ∈ CK . If the nuisance parameters

are discrete (e.g., in digital communications), this compression strategy yields a suboptimal

version of the CML estimator formulated in (2.8). This suboptimal CML estimator has been

successfully applied to different estimation problems in digital communications such as timing

synchronization [Rib01b]. Some degradation is incurred because the estimator does not exploit

the fact that x belongs to a finite alphabet. As it is shown in Section 2.4.1, this information is

irrelevant at low SNR but it is crucial when the noise term vanishes at high SNR. Nonetheless, in

the following, we will refer to this estimator as the CML estimator regardless of having discrete

or continuous nuisance parameters.

Therefore, if there is absolutely no information about x, the nuisance parameters must be

assumed deterministic, continuous unknowns. Then, the ML estimator of x in (2.9) is obtained

in the linear case by solving a classical weighted least squares (WLS) problem leading to

x̂ML (θ) =
(
AH (θ)R−1

w A (θ)
)−1

A (θ)H R−1
w y,

assuming that A (θ) is a tall matrix, i.e., M > K [Sch91a, Sec. 9.12]. After some algebra, the

corresponding log-likelihood function is given by

ln fy (y;θ,x̂ML (θ)) ∝ −‖y−A (θ) x̂ML (θ)‖2Rw

∝ Tr
(
R−1

w A
(
AHR−1

w A
)−1

AHR−1
w R̂

)
, (2.19)
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becoming a linear transformation of the sample covariance matrix and, thus, a quadratic function

of the observation y. Finally, the CML estimator of θ is computed as follows:

θ̂CML = argmax
θ

ln fy (y;θ,x̂ML (θ))

= argmax
θ

Tr
(
N−1A

(
AHN−1A

)−1
AHN−1R̂

)
= argmax

θ

Tr
(
M (θ) R̂

)
, (2.20)

with

M (θ) = N−1A (θ)
(
AH (θ)N−1A (θ)

)−1
AH (θ)N−1

the associated kernel.

The resulting estimator is actually projecting the whitened observation N−1/2y onto the

orthogonal subspace generated by the columns of N−1/2A (θ). Clearly, the above solution

is related to subspace methods like MUSIC [Sch79][Bie80][Sto89][Sto97]. In fact, the CML

estimator in (2.20) is equivalent to a variant of the MUSIC algorithm proposed in [Sto89].

It can be seen that the CML estimator in (2.20) corresponds to the low-SNR UML estimator

in (2.18) if R
−1/2
w A (θ) is unitary or, in other words,

AH(θ)N−1A (θ) ∝ IK . (2.21)

If the above equation is not fulfilled, the CML estimator might suffer from noise-enhancement

at low SNR when the observation length is limited. In that case, the low-SNR UML estimator

deduced in Section 2.4.1 outperforms the CML estimator in the low SNR regime because the

former exploits the a priori statistical knowledge about x.

The CML solution is shown in Appendix 2.C to hold the following regularity condition:

Ey

{
∂

∂θ
ln fy (y;θ,x̂ML (θ))

∣∣∣∣
θ=θo

}
= 0

and, therefore, the CML estimator is always unbiased and self-noise free even for finite observa-

tions. Another significative feature of the CML solution is that it is not necessary to know the

variance of the noise samples σ2
w.

2.4.3 Gaussian Maximum Likelihood (GML)

The Gaussian assumption on the nuisance parameters is generally adopted when the actual

distribution is unknown or becomes an obstacle to compute the expectation in (2.15). The

Gaussian assumption is known to yield almost optimal second-oder estimators on account of
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the Central Limit Theorem. This subject is addressed throughout this dissertation and the

asymptotic efficiency of the Gaussian assumption is studied in Chapter 7.

If the nuisance parameters are Gaussian, the observed vector y is also Gaussian in the studied

linear signal model. Thus, we have that

fy (y;θ) =
exp
(−yHR−1 (θ)y

)
πM det (R (θ))

, (2.22)

where y is zero-mean and

R (θ) � E
{
R̂
}
= E

{
yyH

}
= A (θ)AH (θ) +Rw (2.23)

is the covariance matrix of y. Once again, the log-likelihood solution is an affine transformation

of the sample covariance matrix that, omitting constant additive terms, is given by

ln fy (y;θ) = lnEx {fy (y/x;θ)} = − ln det (R (θ))−Tr
(
R−1 (θ) R̂

)
(2.24)

Therefore, having in mind that ln det (M) = Tr ln (M), it is found that

b (θ) = − ln det (R (θ)) = −Tr (lnR (θ))

M (θ) = −R−1 (θ) = − (A (θ)AH (θ) +Rw

)−1

are the independent term and the kernel of the GML likelihood function, respectively. Conse-

quently, the GML estimator is computed as follows:

θ̂GML = argmin
θ

Tr
(
lnR (θ) +R−1 (θ) R̂

)
(2.25)

In Appendix 2.D, we prove that the GML estimator converges to the low-SNR UML solution

(2.18) for σ2
w → ∞ and to the CML solution (2.20) for σ2

w → 0. Therefore, the GML estimator

is asymptotically efficient at low SNR and, evidently, for any SNR if the nuisance parameters

are Gaussian. Indeed, any statistical assumption about the nuisance parameters leads to the

UML solution (2.18) at low SNR. Consequently, the GML estimator can only be outperformed

using quadratic techniques in the medium-to-high SNR interval if the nuisance parameters are

non-Gaussian random variables. This subject is addressed thoroughly in subsequent chapters.

2.5 Maximum Likelihood Implementation

Generally, the ML-based estimators presented in the last section does not admit an analytical

solution6 and the maximization of the associated log-likelihood function must be carried out

using numerical techniques. In that case the log-likelihood function should be sampled. If

6An exception is the estimation of the carrier phase in digital communications (see Section 6.2).
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the samples separation is decided according to the sampling theorem, the ML estimate can

be determined by means of ideal interpolation. Otherwise, if the sampling rate violates the

Nyquist criterion, a gradient-based algorithm can be applied to find the maximum of ln fy (y;θ).

Moreover, if the gradient of ln fy (y;θ) has a single root in the parameter space, a gradient-based

algorithm is able to look for the maximum of ln fy (y;θ) without any assistance. Nonetheless,

in a multimodal problem, the same gradient-based method might converge to a local maximum

unless a preliminary search of the global maximum is performed.

The utilization of a gradient-based or iterative algorithm is generally preferred because it has

a lower complexity than the grid search implementation7. The convergence of gradient-based

methods is guaranteed if and only if the Hessian matrix is negative definite —and lower bounded—

in the closed subset Θ =
{
θ | fy (y;θ) ≥ fy

(
y; θ̂0

)}
with θ̂0 the initial guess [Boy04, Sec.

8.3.]. Among the existing gradient-based methods, the Newton-Raphson algorithm is extensively

adopted because its convergence is quadratic —instead of linear— when the recursion approaches

the log-likelihood maximum (θ̂ML) [Boy04, Sec. 8.5.]. Other methods are the steepest descent

method, conjugate gradient, quasi-Newton method, among many others (see [Boy04][Lue84] and

references therein).

The Newton-Raphson iteration is given by

θ̂k+1 = θ̂k −H−1(y;θ̂k)∇(y; θ̂k) (2.26)

where k is the iterate index and

∇(y;θ) �
∂ ln fy (y;θ)

∂θ

H (y;θ) �
∂2 ln fy (y;θ)

∂θ∂θT

are the gradient and the Hessian of the log-likelihood function, respectively. Notice that, in

a low-SNR scenario (2.17) and/or if the nuisance parameters are Gaussian (2.24), ∇(y;θ) is

linear in the sample covariance matrix R̂ � yyH . In that case, the Newton-Raphson recursion

in (2.26) is quadratic in the observation y.

The quadratic convergence of the Newton-Raphson algorithm is accelerated when approach-

ing θ̂ML because ln fy (y;θ) becomes approximatelly parabolic around the current estimate θ̂k,

that is,

ln fy (y;θ) � ln fy
(
y;θ̂k

)
+∇(y; θ̂k)

(
θ−θ̂k

)
+

1

2
Tr

{
H(y; θ̂k)

(
θ−θ̂k

)(
θ−θ̂k

)T}
7Recall that the parameter θ ∈ R

P is a continuous variable and we are assuming that fy (y; θ) is continuously

differentiable in θ.
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and, therefore, (2.26) yields approximatelly the ML solution for
∥∥∥θ̂k − θ̂ML

∥∥∥ sufficiently small.

Notice that ln fy (y;θ) is strictly quadratic in case of linear estimation problems having additive

Gaussian noise [Kay93b, Theorem 3.5]. In that case, the ML estimate is obtained after a single

iteration of the Raphson-Newton algorithm. Otherwise, the convergence rate is slow if the log-

likelihood curvature is large near the maximum θ̂ML. In that case, however, the estimation

accuracy is found to be superior.

The Newton-Raphson method in (2.26) can be generalized to estimate a given transformation

of the parameter [Sto01][Kay93b, Sec. 3.8] as follows

α̂k+1 = α̂k −Dg(θ̂k)H
−1(y; θ̂k)∇(y; θ̂k) (2.27)

where α = g (θ) is the referred transformation, Dg (θ) � ∂g (θ) /∂θT is the Jacobian of g (θ)

and, α̂ML = g(θ̂ML) holds from the invariance property of the ML estimator (Section 2.3.2).

According to the asymptotic properties of the ML estimator (Section 2.3.2), it follows that

any iterative method converging to the ML solution is asymptotically (M → ∞) consistent and

efficient, if the ML regularity condition is satisfied (2.12). In the asymptotic case, the small-error

condition is verified and the ML estimator attains the Cramer-Rao bound (Section 2.6.1), which

is given by

BCRB (θo) � Dg (θo)J
−1 (θo)D

H
g (θo) ,

where

J(θ) � −Ey {H (y;θ)} = Ey

{
∇ (y;θ)∇H (y;θ)

}
(2.28)

is the Fisher’s information matrix (FIM) and the expectation is computed with respect to the

random observation y. The last equality is a consequence of the regularity condition (2.12)

[Kay93b, Appendix 3A].

The asymptotic efficiency is also guaranteed if the Newton-Raphson method (2.27) is sub-

stituted by the following scoring method:

α̂k+1 = α̂k +Dg(θ̂k)J
−1(θ̂k)∇(y; θ̂k), (2.29)

in which the Hessian matrix is replaced by the negative of its expected value (2.28). The method

of scoring is preferred because it improves the convergence to the ML solution for short data

records, mainly in multiparametric problems. However, both methods are equivalent if the

observation size goes to infinity.

2.5.1 ML-Based Closed-Loop Estimation

Conventionally, ML estimators are developed in batch mode, that is, the M samples of y are

recorded first and, afterwards, ln fy (y;θ) is iteratively maximized in order to find the ML
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Figure 2.3: Sequential processing of the received vector y in the context of digital communica-

tions. The observed blocks {zn} last M = 4 samples and are taken every Nss = 2 samples where

Nss is the number of samples per symbol.

estimate θ̂ML. Unfortunately, the complexity and latency of this batch-mode implementation is

excessive when long observations are required to comply with the specifications. To ameliorate

this problem, the long observation y is fragmented into smaller blocks {zn}n=1,...,N that are

ergodic realizations of the same distribution fz (z;θ). The minimum block size is one sample, in

which case the estimator would work in a sample-by-sample basis. Identically distributed blocks

are feasible if the observation is (cyclo-)stationary.

In Appendix 2.E, it is shown that the following closed-loop estimator,

α̂n+1 = α̂n + µDg(θ̂n)J
−1
z (θ̂n)∇z(zn; θ̂n), (2.30)

is efficient in the small-error regime if the N partial observations zn are statistically independent,

where

∇z(z;θ)�
∂ ln fz (z;θ)

∂θ

Jz(θ)�−Ez

{
∂2 ln fz (z;θ)

∂θ∂θT

}
= Ez

{
∇z (z;θ)∇

H (z;θ)
}
=

1

N
J(θ)

is the gradient and the FIM for the block-size observations {zn}n=1,...,N , respectively. The step-

size or forgetting factor µ is selected to achieve the same performance than the off-line recursions

in (2.27) and (2.29). If N is sufficiently large, the parameter µ must be set to approximatelly

2/N (Appendix 2.E).

Although closed-loop estimators have the same aspect as their off-line versions in (2.27) and

(2.29), the closed-loop scheme in (2.30) aims at maximizing the stochastic likelihood function

fz (z;θ), which has a time-varying shape. Therefore, the gradient ∇z(z;θ) is also a random
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vector pointing into the direction of the maximum of fz (z;θ). Thus, the ML-based closed-loop

estimator proposed in (2.30) belongs to the family of stochastic gradient algorithms. Indeed,

equation (2.30) is referred to as the natural gradient in the context of neural learning [Ama98].

Despite the closed-loop estimator in (2.29) has been deduced assumingN independent blocks,

the necessary and sufficient condition for efficiency is more general and is formulated next.

Proposition 2.1 The closed loop estimator proposed in (2.30) is efficient in the small-error

regime if and only if there is at least one block zn in which each sample [y]m (m = 1, ...,M) is

jointly processed with all the samples that are statistically dependent on it.

The above proposition implies in most cases the partial overlapping of the observed blocks.

This means that the same sample is processed more than once. For example, in digital commu-

nications the received signal is cyclostationary if we have Nss > 1 samples per symbol. The data

symbols are usually i.i.d. random variables that modulate a known pulse p(t) lasting LNss sam-

ples. In that case, the optimal performance is achieved if the block size is equal to LNss samples

and the block separation is one sample. However, in order to have identically distributed blocks,

the block separation is usually set to Nss, taking into account the signal cyclostationarity (see

Fig. 2.3).

As it has been previously stated, closed-loop estimators yield efficient estimates if the small-

error regime is attained in the steady-state. However, the initial guess θ̂0 is usually far away

from the true parameter θo and the algorithm has to converge towards θo. The initial con-

vergence constitutes the estimator acquisition and has been studied for a long time [Mey90].

Unfortunately, only approximated results are available on the acquisition mean time, lock-in

and lock-out probability, etc. [Mey90]. The step-size µ in equation (2.30) can be adjusted to

trade acquisition speed —large µ— and steady-state performance —small µ.

Closed Loop Architecture

The ML-based closed loop proposed in (2.30) has two components (Fig. 2.4): a nonlinear dis-

criminator (or detector) of the estimation error, and a first-order loop filter. The discriminator

input-output response is given by

ê (zn;θ) = Dg(θ)J
−1
z (θ)∇z(zn;θ)

where θ = θ̂n is the current estimate serving as a reference to infere the estimation error g(θ̂n)−
g (θo) at time n.

The mean value of the discriminator output is given by

Ez {ê (zn;θ)} = Dg(θ)J
−1
z (θ)Ez {∇z(zn;θ)} . (2.31)
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Figure 2.4: Block diagram for the ML closed-loop estimator in equation (2.30). The same scheme

is applicable to any other closed-loop estimator or tracker if the discriminator and/or the loop

filters are conveniently modified.

It can be shown that the discriminator output is unbiased in the neighbourhood of the equilib-

rium point θ = θo because

Ez {ê (zn;θo)} = 0

∂

∂θT
o

Ez {ê (zn;θ)}
∣∣∣∣
θ=θo

= Dg (θo) ,

taking into account that

Ez {∇z(zn;θo)} = 0(
∂

∂θT
o

Ez {∇z(zn;θ)}
)∣∣∣∣

θ=θo

= −
(

∂

∂θT
Ez {∇z(zn;θ)}

)∣∣∣∣
θ=θo

= −Ez

{
∂ ln fz(zn;θ)

∂θ∂θT

∣∣∣∣
θ=θo

}
= Jz(θo)

is always verified in the studied linear signal model (Section 2.4). The first equation is the classi-

cal regularity condition introduced in (2.12) and the second equation is the Fisher’s information

matrix Jz(θ). Precisely, J−1
z (θ) normalizes the discriminator slope in (2.31) to have unbiased

estimates of θ − θo. The Jacobian matrix Dg (θ) is then used to obtain unbiased estimates of

g (θ)−g (θo) taking into account that g (θ) can be linearized around θ � θo using the first-order

Taylor expansion g (θ) � g (θo) +Dg (θo) (θ − θo).

In some problems of digital communications, the discriminator mean value (2.31) only de-

pends on the estimation error θ − θo and is named the discriminator S-curve because it looks

like an “S” rotated by 90o [Men97][Mey90].
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2.5.2 ML-based Tracking

An important feature of the stochastic gradient methods previously presented is the ability of

tracking the evolution of slowly time-varying parameters. Thus, let us consider that θn is a

time-varying parameter and αn = g (θn) a given transformation. The closed loop in (2.30)

must be modified to track the parameter evolution and supply unbiased estimates of θn in the

steady-state.

A first-order loop filter was used in the last section because the parameter was constant, i.e.,

θn = θo (Fig. 2.4). However, if θn has a polynomial evolution in time, i.e.,

θn = θo +
R−1∑
r=1

δrn
r

a Rth-order loop filter is required to track θn without systemmatic or pursuit errors

[Men97][Mey90]. For example, if θo is the carrier phase and we are designing a phase-lock

loop (PLL), δ1 corresponds to the Doppler frequency and δ2 to the Doppler rate.

Another alternative to take into account the parameter dynamics is the one adopted in the

Kalman filter theory [Kay93b, Ch.13]. In this framework, a dynamical model (or state-equation)

is assumed for the parameters of interest

θn+1 = f (θn) ,

where θn stacks all the parameters involved in the dynamical model, i.e., θ =
[
θT
o ,δ

T
1 , ..., δ

T
R−1

]T
for the polynomial model above. Although the parameter dynamics are generally nonlinear, they

can be linearized around the actual estimate θ̂n, leading to the following approximation

f (θn) � f
(
θ̂n

)
+Df

(
θ̂n

)(
θn − θ̂n

)
where Df (θ) � ∂f(θ)/∂θT is the Jacobian of f(θ).

If the parameter dynamics are incorporated into the original closed loop (2.30), we obtain

the following higher-order tracker

α̂n+1 = h(θ̂n) + diag (µ)Dh

(
θ̂n

)
J−1
z (θ̂n)∇n(zn; θ̂n) (2.32)

where h(θ) � g (f(θ)) and

Dh (θ) � ∂h(θ)/∂θT = Dg (θ)Df (θ)

is the Jacobian of the composite function h(θ) [Gra81, Sec. 4.3.]8. The vector of forgetting

factors µ sets the (noise equivalent) loop bandwidth of each parameter in αn. In Appendix 2.E

8If the dynamical model is specified for αn, i.e., α̂n+1 = f (α̂n), the composition must be reversed having that

h (θ) � f (g (θ)) .
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it is shown that Bn � µ/4. The loop bandwidth determines the maximum variability of the

parameters that the closed loop is able to track as well as the closed loop effective observation

time that, approximately, is equal toN � 0.5/Bn samples [Men97, Sec. 3.5.6] (see also Appendix

2.E).

A vast number of tracking techniques have been proposed in the field of automatic con-

trol [Kai00][Söd89], signal processing [Kay93b] and communications [Men97][Mey90], e.g., least

mean squares (LMS) and recursive least squares (RLS) [Hay91][Kai00], Kalman-Bucy filtering

[And79][Hay91], machine learning [Mit97], etc. In fact, filtering, smoothing, prediction, decon-

volution, source separation and other applications can be seen as particular cases of parameter

estimation or tracking in which the aim is to determine the input data at time n, say θn, from

a vector of noisy observations.
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2.6 Lower Bounds in Parameter Estimation

The calculation of an attainable benchmark for the adopted performance criterion is necessary

to identify whether a given estimation technique is efficient or not. For example, the ML

estimator is known to be optimal in the small-error regime because it attains the Cramer-Rao

lower bound. Once the optimal performance is known, suboptimal techniques can be devised

trading-off performance and complexity. Moreover, lower bounds usually give insight into the

contribution of the different parameters onto the estimator performance (e.g., SNR, observation

size and others). In the following sections, some important lower bounds are briefly described.

Focusing on the mean squared error (MSE), lower bounds can be classified as Bayesian or

deterministic depending on whether the prior statistics of the parameters are exploited or not.

On the other hand, lower bounds are also classified into small-error (or local) bounds and large-

error (global) bounds. Furthermore, the lower bounds in the literature are derived from either

the Cauchy-Schwarz or Kotelnikov inequalies.

From the above classification criteria, the most important lower bounds in the literature

are described and interconnected in the following subsections. Finally, all these bounds are

organized and presented in a concluding table at the end of the section (Fig. 2.5).

NOTE: the material in the following section is not essential to understand the central chap-

ters of the dissertation. Only those lower bounds derived from the CRB in the presence of

nuisance parameters will be extensively used throughout the thesis. Thus, we recommend the

reader to skip Section 2.6 in the first reading.

2.6.1 Deterministic Bounds based on the Cauchy-Schwarz Inequality

A large number of deterministic lower bounds on the mean square error (MSE) have been derived

from the Cauchy-Schwarz inequality, e.g., [Gor90, Eq. 10][Abe93, Eq. 5][McW93, Eq. 2][Rif75,

Eq. 13]. The Cauchy-Schwarz inequality states that

E
{
eeH
} ≥ E

{
esH
}(

E
{
ssH
})#

E
{
seH
}

(2.33)

for two arbitrary random vectors e and s.9 The Moore-Penrose pseude-inverse operator was

introduced in [Gor90, Eq. 10][Sto01] to cover those cases in which E
{
ssH
}
is singular. Notice

that the expectation is computed with respect to the random components of e and s. Further-

more, equation (2.33) holds with equality if and only if the vector e and s are connected as

9For the scalar case, we have the conventional Cauchy-Schwarz inequality, E |e|2 ≥ |E {es}|2 /E |s|2 , as it

appears in [Wei88b, Eq. 7]
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follows

e = E
{
esH
}(

E
{
ssH
})#

s. (2.34)

Indeed, the Cauchy-Schwarz inequality is a consequence of the more general relation[
ABH

BC

]
≥ 0 ⇔ A ≥ BHC#B (2.35)

which is valid ifC is non-negative definite [Mag98, Ex. 3, p. 25]. This property is used in [Gor90,

Lemma 1] to prove the vectorial Cauchy-Schwarz inequality (2.33). The proof is straightforward

if (2.35) is applied to the matrix E
{
zzH
}
with z �

[
eT , sT

]T
. Also, this matrix inequality is

adopted in [McW93, Eq. 2] to analyze the geometry of several “quadratic covariance bounds”.

Based on the Cauchy-Schwarz inequality (2.33), lower bounds on the estimation mean square

error can be formulated considering that e = α̂ − g (θ) is the estimation error and s an arbi-

trary score function. In the deterministic case, both e and s are functions of the random

observation y, which is distributed as fy(y;θ). Various deterministic lower bounds on the

MSE have been deduced by selecting different score functions s as, for instance, the following

well-known bounds; Cramér-Rao [Kay93b, Chapter 3], Battacharyya [Bat46], Barankin [Bar49],

Hammersley-Chapman-Robbins [Cha51][Ham50], Abel [Abe93] and Kiefer [Kie52], among oth-

ers.

Because (2.33) is valid for any score function, the aim is to find the score function leading

to the highest lower bound on the estimator MSE and, if possible, the estimator attaining the

resulting bound. Conversely, if an estimator satisfies (2.33) with equality for a given score

function, the resulting bound is the tightest, attainable lower bound on the MSE. Furthermore,

this estimator is the one holding (2.34).

In [McW93], it is shown that tight lower bounds are obtained provided that

P1: the score function is zero-mean, i.e.,

E {s (y,θ)} =

∫
s (y,θ) fy (y;θ) dy = 0

for every value of θ. Thus, we are only concerned with unbiased estimators since the

estimation error is proportional to s (y,θ) (2.34);

P2: the score function is a function of the sufficient statistics of the estimation problem at hand.

Recall that t (y) is a sufficient statistic if and only if fy(y;θ) depends on the parameter

vector θ uniquely throught a function of the sufficient statistic t (y) . Consequently, s (y,θ)

can be any biunivoque function of the likelihood function fy(y;θ), as for instance, its

gradient ∇(y;θ). See the Neyman-Fisher factorization theorem in [Kay93b, Th. 5.3];
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P3: the score function must hold (2.34). This mean that s (y,θ) must span the estimation

error subspace.

The first property is really important because it states that we only have to consider unbiased

estimators of the parameter. In fact, it can be shown that the bias term always increases the

overall MSE and it is not possible to trade bias for variance in the deterministic case. To show

this result, we have to decompose the estimation error as

e (y;θ) � b (θ) + v (y;θ)

with b (θ) = E {α̂ (y)}−g(θ) the estimator bias and v (y;θ) = α̂ (y)−E {α̂ (y)} the deviation

with respect to the estimator mean. Consequently, the estimator MSE can be written as

Σee (θ) = b (θ)bH (θ) + Σvv (θ)

where

Σxy � E
{
xyH

}
stands for the cross correlation matrix10. Then, the Cauchy-Schwarz inequality (2.33) can be

applied to the covariance matrix Σvv (θ) in order to obtain the following lower bound on the

MSE:

Σee (θ) ≥ b (θ)bH (θ) + Σvs(θ)Σ
#
ss(θ)Σsv(θ) (2.36)

in which the bias function has been set to b (θ) [Abe93, Eq. 6]. Equation (2.36) is usually

referred to as the “covariance inequality” [Gor90][McW93][Abe93, Eq. 6]. Therefore, if the

covariance inequality in (2.36) is compared with the original bound,

Σee (θ) ≥ Σes (θ)Σ
#
ss (θ)Σse (θ) = Σvs (θ)Σ

#
ss (θ)Σsv (θ) ,

it follows that the bias term b (θ)bH (θ) can never reduce the MSE matrix Σee (θ). In the last

expression, we take into account that Σes = Σvs because the score function is zero-mean.

The Cauchy-Schwarz inequality can be used then to extend the concept of efficiency to

other lower bounds besides the usual Cramér-Rao bound. Thus, α̂ (y) is an efficient estimator

of α = g(θ) if and only if it holds that

E {e (y,θ)} = 0 (2.37)

Σee (θ) = Σvv (θ) = Σvs (θ)Σ
#
ss (θ)Σsv (θ) (2.38)

for (at least) a score function s (y,θ) .

10Notice that the transpose conjugate will be considered in the sequel for both real and complex vectors.
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Additionally, we know from (2.34) that the estimator α̂ (y) is efficient if and only if it verifies

that

α̂ (y) = g(θ) +Σvs (θ)Σ
#
ss (θ) s (y,θ) (2.39)

for any value of θ.

An important question is whether a realizable11, unbiased estimator can attain the covariance

inequality or not for a given score function. If this estimator was found, the resulting covariance

would constitute the highest lower bound. Therefore, any other score function s (y,θ) would

yield a weaker bound on the MSE, which will not be attainable. Next, a sufficient condition on

s (y,θ) leading to realizable estimators is shown.

Proposition 2.2 If the zero-mean score function can be factorized as

s (y,θ) � H (θ)z (y)−u(θ)

with z (y) a function of the sufficient statistics t (y) and

Σvs (θ)Σ
#
ss (θ)H (θ) � MH

Σvs (θ)Σ
#
ss (θ)u(θ) = g (θ) ,

the estimator α̂ (y) = MHz (y) is efficient and its covariance matrix is given by

Σee (θ) = Σvv (θ) = Σvs (θ)Σ
#
ss (θ)Σsv (θ) = MHΣzzM− g(θ)gH(θ)

that becomes therefore the highest lower bound on the estimation error covariance.

Unfortunately, most score functions of interest cannot be factorized as in the last proposi-

tion for all the values of θ. Consequently, efficient estimators are usually unrealizable in the

deterministic framework. In that case, efficient deterministic estimators are only feasible in the

small-error regime once the value of θ has been iteratively learnt using a suitable gradient-based

method. Notice that this was the adopted approach in the case of the ML estimator and the

associated Cramér-Rao bound. Thus, the following scoring method

α̂k+1 = g
(
θ̂k

)
+Σvs

(
θ̂k

)
Σ#
ss

(
θ̂k

)
s
(
y,θ̂k

)
is efficient in the small-error regime (i.e., θ̂k � θ) for any score function.

Consequently, all the deterministic bounds will converge to the Cramér-Rao bound in the

small-error regime. However, the Cramér-Rao bound is not attained when the estimator operates

in the large-error regime. In that case, tighter bounds can be formulated by using a better score

function. Next, the score functions associated to the most important large-error and small-error

deterministic bounds are presented.

11The adjective “realizable” means that α̂ (y) does not depend on the vector of unknown parameters θ.
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Barankin Bound (BB)

The Barankin bound was originally formulated in [Bar49] for scalar, real-valued estimation

problems. The Barankin bound is constructed looking for the estimator minimizing its sth-order

absolute central moment subject to the unbiased constraint over all the parameter space Θ, i.e.,

α̂BB = argmin
α̂

E |α̂− g (θo)|s subject to E {α̂} = g (θ) (2.40)

for every θ ∈ Θ. Focusing on the estimator variance (s = 2), it can be only stated that α̂BB

is the minimum variance unbiased estimator in the neighbourhood of θo. Furthermore, if the

obtained local solution is independent of θo, α̂BB turns out to be the global minimum variance

unbiased estimator.

The Barankin bound has been extended in [Mar97] to multivariate estimation problems

adopting a simpler formulation than the original one. In [Mar97, Eq. 9] the Barankin bound

was shown to be a covariance inequality bound (2.38) with

s (y;θ) =

∫
˜θ∈Θ

fy(y; θ̃)

fy (y;θ)
f(θ̃,θ)dθ̃ (2.41)

the adopted score function, and f(θ̃,θ) ∈ RP an arbitrary function that must be selected to

supply the tightest covariance lower bound. Notice that tighter lower bounds will be obtained

if the mean of the score function is null (property 1), i.e.,

E {s (y;θ)} =

∫
˜θ∈Θ

fy(y; θ̃)f(θ̃,θ)dθ̃ = 0.

Therefore, the functions f(θ̃,θ) leading to the tightest lower bound must be proportional to the

difference of two vectors of probability density functions f1(θ̃,θ) and f2(θ̃,θ), i.e.,

f(θ̃,θ) = κ
[
f1(θ̃,θ)− f2(θ̃,θ)

]
with κ an arbitrary constant (e.g., κ = 1) and

∫
f1(θ̃,θ)dθ̃ =

∫
f2(θ̃,θ)dθ̃ = 1. This relevant

property of f(θ̃,θ) was taken into account in [Tre68, Pr. 2.4.18] to derive the Barankin bound

in a different way. Also, a multidimensional version of the Kiefer bound [Kie52] can be obtained

replacing f2(θ̃,θ) by a multivariate delta measure δ(θ̃−θ).

Using now the covariance inequality, we have that the Barankin bound for the estimation of

α = g(θ) is given by

BBB (θ) = sup
f(˜θ)

Σvs (θ)Σ
#
ss (θ)Σsv (θ) ≤ Σvv (θ) (2.42)

with

Σvs (θ) =

∫
˜θ∈Θ

[
g(θ̃)− g(θ)

]
fH(θ̃,θ)dθ̃

Σss (θ) =

∫
˜θ1,˜θ2∈Θ

E

⎧⎨⎩fy

(
y; θ̃1

)
fy

(
y; θ̃2

)
f2
y (y;θ)

⎫⎬⎭ f(θ̃1,θ)f
H(θ̃2,θ)dθ̃1dθ̃2.
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Notice that the original bound [Bar49] is somewhat more involved because the integral on θ̃

is formulated as a Riemann integration, that is,∫
˜θ∈Θ

ξ
(
θ̃
)
f(θ̃,θ)dθ̃ = lim

Q→∞

Q∑
q=1

ξ
(
θ̃q

)
f(θ̃q,θ)

where the so-called test points θ̃1, ..., θ̃Q are selected to expand the whole parameter domain

Θ and take into account the existence of large errors. In fact, we can understand the original

approach as the bound obtained when the continuous function f(θ̃,θ) is sampled at the test

points θ̃1, ..., θ̃Q. From the sampling theory, the separation of the test points should be adjusted

according to the variability of the selected function f(θ̃,θ). Specifically, a dense sampling —closer

test points— should be applied to those regions where f(θ̃,θ) is more abrupt and vice versa. An

important consequence of the sampling theorem is that infinite test points are needed if the

parameter range is finite whatever the selected function f(θ̃,θ). This comment is related with

the fact that unbiased estimators do not exist for all θ ∈ Θ when Θ is a finite set.12

If the number of test points is finite, the Barankin bound is only constrained to be unbiased

at the test points θ̃1, ..., θ̃Q [For02]. Consequently, the resulting lower bound is not the highest

Barankin bound (Q → ∞) but it is generally realizable even if the parameter range is finite.

The resulting bound can be improved by considering also the bias derivatives at the test points.

This idea has been applied to derive other hybrid lower bounds in [Abe93] or [For02]. Also, the

same reasoning was applied in [Vil01a] to design second-order almost-unbiased estimators.

The Barankin bound theory has been applied to determine the SNR threshold in a lot of

nonlinear estimation problems as, for example, time delay estimation [Zei93][Zei94] or frequency

estimation [Kno99]. A geometric interpretation of the Barankin bound is provided in [Alb73]

and references therein.

12If an estimator were unbiased in the boundary of Θ, this would imply that the estimation error must be zero

for these values of θ. Unfortunately, this situation is unreal and biased estimators are unavoidable along the

boundary of Θ.
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Hammersley-Chapman-Robbins Bound (HCRB)

The simplest Barankin bound was formulated by Chapman and Robbins [Cha51] and Hammer-

sley [Ham50] simultaneously by considering a single test point per parameter, i.e., Q = P . This

simplified version is by far the most usual variant of the Barankin bound. The original scalar

bound was extended to deal with multidimensional problems by Gorman et al. [Gor90]. In that

paper, every test point determines a single component of f(θ̃,θ) ∈ RP in the following manner:

[
f(θ̃,θ)

]
p
=

δ
(
θ̃ − θ̃p

)
− δ
(
θ̃ − θ

)
∥∥∥θ̃p − θ

∥∥∥ ,

where the P vectors δp � θ̃p−θ are linearly independent and span the entire parameter space Θ.

It can be shown that this is the optimal choice of f
(
θ̃
)
in case of having P test points [Wei88b,

Eq. 33]. Therefore, the p-th element of the score function (2.41) becomes

[s (y;θ)]p =
fy (y;θ + δp)− fy (y;θ)

‖δp‖ fy (y;θ) for p = 1, ..., P

and the multiparametric Hammersley-Chapman-Robbins bound is given by

BHCRB (θ) = sup
δ1,...,δP

Σvs (θ)Σ
#
ss (θ)Σsv (θ) ≤ Σvv (θ)

with

[Σvs (θ)]p =
g (θ + δp)− g (θ)

‖δp‖
Σss (θ) = E

{
s (y;θ) sH (y;θ)

}
.

Cramér-Rao Bound (CRB)

The Cramér-Rao bound can be obtained from the Hammersley-Chapman-Robbins bound when

the P test points converge to the true parameter θ [Gor90][For02]. This means that the CRB is

only able to test the small-error region whereas the Barankin-type bounds were able to test the

large-error region, as well. The CRB score function is shown to correspond to the projection of

the log-likelihood gradient ∇y (y;θ) onto the directions determined by δ1, ...,δP , i.e.,

[s (y;θ)]p = lim
‖δp‖→0

fy (y;θ + δp)− fy (y;θ)

‖δp‖ fy (y;θ) = δHp
∂fy (y;θ) /∂θ

fy (y;θ)
= δHp ∇y (y;θ) (2.43)

and, thus,

s (y;θ) = WH∇y (y;θ) (2.44)
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with W � [δ1, ...,δP ] the non-singular square matrix stacking the P linearly-independent direc-

tions. Therefore, the CRB bound is given by

BCRB = lim sup
‖δ1‖,...,‖δP ‖→0

BHCRB = Σvs (θ)Σ
#
ss (θ)Σsv (θ)

= Dg (θ)J
# (θ)DH

g (θ) ≤ Σvv (θ) (2.45)

where Σvs (θ) and Σss (θ) are given by

Dg (θ) �
∂g (θ)

∂θT

J (θ) � E
{∇y (y;θ)∇H

y (y;θ)
}
= −E {Hy (y;θ)} ,

respectively (Appendix 2.F). The matrix W becomes irrelevant provided that W−1 exists and,

thus, we can choose the canonical basis W = IP .

Notice that the CRB bound only makes sense in estimation problems, i.e., when the pa-

rameter is continuous and the first- and second-order derivatives exist for θ ∈ Θ. On the other

hand, the above large-error bounds could be also applied to detection problems in which the

parameters are discrete variables.

In [Fen59, Th. 1], it is shown that the necessary and sufficient condition for a statistic z (y)

to attain the CRB is that fy (y;θ) belongs to the exponential family below

fy (y;θ) = exp
(
hT (θ)z (y) + u(θ) + v (y)

)
(2.46)

whatever the content of h(θ), u(θ) or v (y). From the fourth property of the ML estimator

in Section 2.3.2, it follows that z (y) must be the maximum likelihood estimator. This result

can also be obtained by introducing the CRB score function (2.43) into Proposition 2.2. The

existence of efficient estimates for the exponential family is relevant since the normal, Rayleigh

and exponential distributions are members of this family [Kay93b, Pr. 5.14].

Another interpretation of the Cramér-Rao bound is possible [For02] if equation (2.40) is

evaluated locally for every value of the true parameter θo. Thus, the Crámer-Rao bound can be

obtained solving the following optimization problem:

min
α̂

E ‖α̂− g (θo)‖2 subject to b (θo) = 0 and,
∂b (θ)

∂θ

∣∣∣∣
θ=θo

= 0

where b (θ) = E {α̂} − g (θ) stands for the estimator bias.

Finally, the Cramér-Rao bound can also be derived by expanding the log-likelihood function

in a quadratic Taylor series around the true parameter θ = θo (small-error condition), obtaining

that

ln fy (y;θ) � ln fy (y;θo) +∇ (y;θo) (θ − θo) +

1

2
Tr
{
H (y;θo) (θ − θo) (θ − θo)

H
}

(2.47)
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where ∇ (y;θ) and H (y;θ) are the gradient and Hessian of the log-likelihood function. Thus,

the gradient of the log-likelihood is linear in the parameter of interest,

∇ (y;θ) � ∇ (y;θo) +H (y;θo) (θ − θo) ,

and becomes zero for

θ̂ML � θo −H−1 (y;θo)∇ (y;θo) .

Taking now into account the invariance property of the ML estimator, we obtain the following

clairvoyant estimator of α = g (θ),

α̂ML = g(θ̂ML) � g(θo) +Dg (θo)H
−1 (y;θo)∇ (y;θo) ,

whose covariance matrix coincides with the CRB (2.45). Although the above estimator does not

admit a closed form unless fy (y;θ) belong to the exponential family (2.43), efficient estimates

are approximatelly supplied by the Newton-Raphson and scoring algorithms in the small-error

regime, i.e., limk→∞ θ̂k = θ̂ML � θo (Section 2.5).

Bhattacharyya Bound (BHB)

The Bhattacharyya bound constitutes an extension of the CRB when considering the higher-

order derivatives in the Taylor expansion of fy (y;θ) (2.47). Therefore, it is also a small-error

bound with higher-order derivative constraints on the bias. Indeed, it can be seen as the result

of the following optimization problem [For02]:

min
α̂

E ‖α̂− g (θo)‖2 subject to b (θo) = 0 and,
∂nbH (θ)

∂θn

∣∣∣∣
θ=θo

= 0 (i = 1, ...,N)

where b (θ) = E {α̂} − g (θ) stands for the estimator bias and, ∂θn ∈ RPn
stands for the

vectorized n-th power of the differential ∂θ, which can be computed recursively as ∂θn =

vec
(
∂θn−1∂θT

)
with ∂θ1 � ∂θ. Notice that the CRB corresponds to N = 1.

To motivate the interest of the Bhattacharyya bound, let us consider that θ̂ = z (y) is an

efficient, unbiased estimator of θ and, therefore, the likelihood function is given by (2.46). Let

us consider the estimation of the following polynomial in θ of order I,

α = g(θ) =
I∑

i=0

Giθ
i,

with θi ∈ RP i
the vectorized i-th power of θ. It can be shown that the estimator

α̂(y) = g(θ) + Σvs (θ)Σ
#
ss (θ) s (y;θ)
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attains the N-th order Bhattacharyya bound for N ≥ I [Gor91, Prop. 3][Fen59, Th. 2] with

sn (y;θ) =
1

fy (y;θ)

∂nfy (y;θ)

∂θn =
∂n ln fy (y;θ)

∂θn (n = 1, ...,N),

the n-th component of the Bhattacharyya score funtion s (y;θ) = [sT1 (y;θ) , ..., sTN (y;θ)]T .

Accordingly, the Bhattacharyya bound becomes

BBHB (θ) = Σvs (θ)Σ
#
ss (θ)Σsv (θ) ≥ Σvv (θ)

where

Σvs (θ) =

[
∂g (θ)

(∂θ)T
,
∂2gH (θ)(
∂θ2
)T , . . . ,

∂NgH (θ)(
∂θN

)T
]

Σss (θ) = E
{
s (y;θ) sH (y;θ)

}
bearing in mind the results in Appendix 2.F [Abe93].

It can be proved that α̂(y) is unable to attain the N-th Battacharyya bound for any N < I

and hence the Cramér-Rao bound (N = 1). Moreover, the ML estimator is not efficient even in

the asymptotic case [Fen59].

Finally, the Bhattacharyya bound can also be obtained from the Barankin bound when

we have at least Q = N × P test points that converge to the true parameter θ following N

linearly-dependent trajectories per parameter [Gor91, Sec. 4][For02]. In [For02], the N colinear

trajectories corresponding to the p-th parameter are θ+nδp with ‖δp‖ → 0 and n = 1, ...,N .

Therefore, we have that

BBHB = lim
n‖δp‖→0

BHCRB

for p = 1, ..., P and n = 1, ...,N .

Deterministic Cramér-Rao Bounds in the presence of Nuisance Parameters

All the above lower bounds are formulated from the likelihood function fy (y;θ). If we deal with

a blind estimation problem in which there is a vector of unknown stochastic nuisance parameters

x, we have to calculate fy (y;θ) from the conditional p.d.f. fy/x (y/x;θ) as explained in Section

2.3 and indicated next

fy (y;θ) = Ex

{
fy/x (y/x;θ)

}
=

∫
fy/x (y/x;θ) fx (x) dx.

Therefore, the same assumptions about the nuisance parameters leading to the conditional

and Gaussian ML estimators in Section 2.4.2 and 2.4.3 can be applied now to obtain their

asymptotic performance in the small-error regime. In the first case, we obtain the so-called
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conditional CRB (CCRB) and, in the second case, the Gaussian unconditional CRB (UCRB).

The CCRB and UCRB were deduced in [Sto90a][Sto89] [Ott93] in the context of array signal

processing and adapted to the field of digital synchronization in [Vaz00][Rib01b][Vaz01] and

references therein.

To obtain the (Gaussian) UCRB, the observed vector y is supposed to be normally dis-

tributed (2.24). Likewise, the CCRB is obtained assuming that y is distributed according to the

conditional p.d.f. fy (y;θ,x̂ML (θ)) (2.19). Therefore, the CCRB and UCRB are not “universal”

lower bounds and, in general, they are only meaningful in the ambit of the conditional or the

unconditional assumptions.

Thus, the CCRB and UCRB can be derived from the CRB formula (2.45) under the as-

sumption adopted on the nuisance parameters. In the multidimensional case, it is obtained in

Appendix 2.G that

BCCRB (θ) = Dg (θ)J
#
c (θ)DT

g (θ) (2.48)

BUCRB (θ) = Dg (θ)J
#
u (θ)DT

g (θ) (2.49)

where

Jc (θ)� 2Re
(
DH

a (θ)
(
IK ⊗R−1

w P⊥
A

)
Da (θ)

)
(2.50)

Ju (θ)�DH
r (θ) (R∗ (θ)⊗R (θ))−1Dr (θ) (2.51)

are the Fisher’s information matrix for the conditional and unconditional model, respectively,

and Da (θ) , Dr (θ) are defined as

[Da (θ)]p � vec

(
∂A (θ)

∂θp

)
[Dr (θ)]p � vec

(
∂R (θ)

∂θp

)
.

The CCRB predicts the asymptotic performance of the CML and GML quadratic estimators

when the SNR goes to infinity. On the other hand, the UCRB supplies the performance of the

GML estimator for Gaussian nuisance parameters or, in general, for infinitely large samples.

These two bounds are generally applied to bound the (small-error) variance of second-order

estimation methods. However, in this dissertation it is shown that, if the nuisance parameters

belong to a polyphase alphabet of constant modulus, this information can be exploited —using

exclusively quadratic processing— to improve the CML and GML estimates. The covariance of

the resulting estimator is shown in Chapter 4 to be the highest lower bound on the performance

of any second-order technique. The resulting bound is deduced in Section 4.2 and has the

following form

BBQUE (θ) = Dg (θ)J
#
2 (θ)DH

g (θ) ,
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where BQUE is the acronym of “Best Quadratic Unbiased Estimator” [Vil01a][Vil05] and

J2 (θ) � DH
r (θ)Q−1 (θ)Dr (θ) (2.52)

becomes the Fisher’s information matrix in second-order estimation problems (4.14) with Q (θ)

the matrix containing the central fourth-order moments of y (3.10).

Another useful lower bound is the so-called modified CRB (MCRB). This bound was deduced

in the context of digital synchronization by D’Andrea et al. [And94] under the assumption that

all the nuisance parameters are known (see also [Men97][Moe98][Vaz00]). This assumption

corresponds to data-aided estimation problems in which the input signal is known. Thus, the

MCRB allows assessing the performance loss due to the lack of knowledge about the nuisance

parameters in blind estimation problems.

In the multidimensional case, the MCRB is given by

BMCRB (θ) = Dg (θ)J
#
m (θ)DH

g (θ) ≤ Σvv (θ) (2.53)

where

Jm (θ) � −ExEy/x

{
∂2 ln fy/x (y/x;θ)

∂θ∂θT

}
= 2Re

(
DH

a (θ)
(
IK ⊗R−1

w

)
Da (θ)

)
. (2.54)

is deduced in Appendix 2.G.

To conclude this section, let us explain how the lower bounds above are connected in the

studied linear model. It can be shown that

BUCRB (θ) ≥ BBQUE (θ) ≥ BCRB (θ) ≥ BMCRB (θ) .

Additionally, if α̂ (y) is a second-order unbiased estimator of g (θ), the associated error covari-

ance matrix holds that

Σvv (θ) ≥ BBQUE (θ) ≥ BCRB (θ) ≥ BMCRB (θ) ,

and the following statements are verified:

1. BCRB (θ) = BMCRB (θ) if the nuisance parameters are known [And94]. Alternatively, the

MCRB could be attained in high-SNR scenarios if the mean of the nuisance parameters

were not zero (i.e., semiblind estimation problems).

2. BBQUE (θ) = BCRB (θ) if and only if R̂ is a sufficient statistic for the estimation problem

at hand. This occurs in case of Gaussian nuisance parameters (Section 2.4.3), or in low-

SNR scenarios (Section 2.4.1) whatever the distribution of the nuisance parameters x.
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3. BUCRB (θ) = BBQUE (θ) if the nuisance parameters are Gaussian or the SNR is sufficiently

low. Moreover, if the amplitude of x is not constant, it is shown in this thesis that the

Gaussian assumption supplies asymptotically (M → ∞) second-order efficient estimates,

i.e., BUCRB (θ) → BBQUE (θ). This point is intensively studied in Chapter 7.

4. BCCRB (θ) ≤ BUCRB (θ) and BCCRB (θ) = BUCRB (θ) if the SNR tends to infinity (Ap-

pendix 2.D).

2.6.2 Bayesian Bounds based on the Cauchy-Schwarz Inequality

In the Bayesian case, lower bounds on the estimator MSE can also be derived from the Cauchy-

Schwarz inequality

Ey,θ

{
eeH
} ≥ Ey,θ

{
esH
}(

Ey,θ

{
ssH
})#

Ey,θ

{
seH
}

in which the expectation involves also the random parameters and the score function s (y,θ) is

zero-mean for any value of y [Wei88b, Eq. 1], i.e.,

Eθ/y {s (y,θ)} =

∫
s (y,θ) fθ/y (θ/y)dθ = 0 (2.55)

and, therefore, Ey,θ {s (y,θ)} = EyEθ/y {s (y,θ)} = 0. Once again the bound is attained if

and only if the estimation error is proportional to the selected score function, i.e.,

e (y,θ) = Ey,θ

{
esH
}(

Ey,θ

{
ssH
})#

s (y,θ) .

It is known that the conditional mean estimator yields the highest lower bound on the

(Bayesian) MSE [Wei88b, Eq. 9][Kay93b, Sec. 11.4] with

s (y;θ) = e (y;θ) = Eθ/y {g(θ)/y} − g (θ)

the associated score function. However, the conditional mean estimator is often not practical

because it usually requires numerical integration. For this reason, some simpler but weaker lower

bounds have been proposed in [Wei88b] by adopting a different set of score functions. Accord-

ingly, none of these bounds will be attained unless they coincide with the MMSE bound. Among

these bounds, we can find the Bayesian Cramér-Rao [Tre68] [Wei88b], Bayesian Bhattacharyya

[Tre68][Wei88b], Bobrovsky-Zakai [Bob76] and Weiss-Weinstein [Wei85][Wei88b]. These bounds

are the Bayesian counterparts of the CRB, Bhattacharyya, Hammersley-Chapman-Robbins and

Barankin-type deterministic bounds, respectively, in which the likelihood function fy (y;θ) is

substituted by the joint p.d.f. fy,θ (y,θ). Notice that Bayesian bounds are implicitly large-error

bounds because the whole range of θ is considered by means of the parameter prior fθ (θ). The

Weiss-Weinstein bound is briefly described in the following section since it is the most general

one.
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Weiss-Weinstein Bound (WWB)

TheWeiss-Weinstein bound can be understood as the Bayesian version of a Barankin-type bound

in which multiple test points are considered. The score function of the WWB is given by

s (y,θ) =

∫
θ±δ∈Θ

Qs (y,θ, δ) f (δ) dδ

with Qs (y,θ, δ) defined as

Qs (y,θ,δ) �

(
fy,θ (y,θ + δ)

fy,θ (y,θ)

)s(δ)

−
(
fy,θ (y,θ − δ)

fy,θ (y,θ)

)1−s(δ)

and the terms 0 < s (δ) < 1 and f (δ) selected to produce the tightest lower bound. If we choose

s (δ) = 1, we have exactly the Bayesian replica of the Barankin bound. However, the authors

showed that tighter lower bounds can be derived with s (δ) < 1.

The above score function verifies the regularity condition Eθ/y {s (y,θ)} = 0 in (2.55) so

that the WWB can be computed as

BWWB = sup
f(δ),s(δ)

ΣesΣ
#
ssΣse ≤ Σee

where

Σes = Ey,θ

{
e (y,θ) sH (y,θ)

}
= −Ey,θ

{
g (θ) sH (y,θ)

}
= Ey,θ

{∫
θ±δ∈Θ

[g (θ + δ)− g (θ)]

(
fy,θ (y,θ + δ)

fy,θ (y,θ)

)s(δ)

fH (δ) dδ

}
Σss = Ey,θ

{
s (y,θ) sH (y,θ)

}
Thus far, infinite test points have been considered as done in the initial approach to the

Barankin bound in (2.41). If a finite number of Q test points shall be considered, we can always

use a set of delta measures, f (δ) =
∑Q

q=1 f (δq) δ (δ − δq) , to obtain the following score function

s (y,θ) =

Q∑
q=1

Qs

(
y,θ, δq

)
f (δq) ,

that must be optimized for {δq}q=1,...,Q , {f (δq)}q=1,...,Q and {s (δq)}q=1,...,Q. In that case, the

Qth-order WWB can be obtained as indicated next

BWWB = sup
{δq},{f(δq)},{s(δq)}

ΣesΣ
#
ssΣse = sup

{δq},{f(δq)},{s(δq)}
G
(
FF#

)H
Q#
(
FF#

)
GH

= sup
{δq},{s(δq)}

GQ#GH
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where Σes = GFH and Σss = FQFH are given by

[G]q � Ey,θ

{
[g (θ + δq)− g (θ)]

(
fy,θ (y,θ + δq)

fy,θ (y,θ)

)s(δq)
}

F � [f (δ1) , . . . , f (δQ)]

[Q]p,q � Ey,θ

{
Qs

(
y,θ, δp

)
Qs

(
y,θ, δq

)}
.

A simpler expression is obtained if g(θ) = θ. In that case, we get the original WWB bound

[Wei85], that is given by

BWWB = sup
∆

∆Q̃#∆H ≤ Σee (2.56)

with ∆ � [δ1, . . . , δQ] and

[
Q̃
]
p,q

�
Ey,θ

{
Qs

(
y,θ,δp

)
Qs

(
y,θ, δq

)}
Ey,θ

{
Ls

(
y,θ, δp

)}
Ey,θ

{
Ls

(
y,θ, δq

)} ,
using the following definition

Ls (y,θ,δ) �

(
fy,θ (y,θ + δ)

fy,θ (y,θ)

)s(δ)

.

The optimization of BWWB is normally prohibitive and the authors suggest in [Wei88b, Eq.

39] to work with s (δq) = 1/2 because it is usually the optimal choice in the unidimensional case.

In that case, it is possible to write the WWB bound in terms of the distance

µ (s,θ, δ) � lnEy,θ {Ls (y,θ,δ)} = ln

∫
fs
y,θ (y,θ + δ) f1−s

y,θ (y,θ)dydθ

used to derive the Chernoff bound on the probability of detection error [Tre68, p. 119]. Thus,

the matrix Q̃ can be represented in terms of the Bhattacharyya distance µ (1/2, δ) as follows

[
Q̃
]
p,q

� 2
eµ(1/2,δp−δq) − eµ(1/2,δp+δq)

eµ(1/2,δp)+µ(1/2,δq)
.

As it happened in the deterministic case, the Bobrovsky-Zakai, Bayesian Cramér-Rao and

Bhattacharyya bounds can be deduced from the more general Weiss-Weinstein bound in (2.56).

Specifically, the Bobrovsky-Zakai bound is obtained by setting s = 1 and Q = P (i.e., a test

point per parameter). The Bayesian CRB is obtained from the Bobrovsky-Zakai bound if the

Q = P test points converge to the true parameter along linearly-independent lines. In addition,

the Nth-order Bhattacharyya bound is obtained when there are N × P test points converging

to the true parameter through P linealy-independent trajectories.
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2.6.3 Bayesian Bounds based on the Kotelnikov’s Inequality

Other important class of Bayesian lower bounds are obtained from the Kotelnikov’s inequality

proposed for the first time in [Kot59, p. 91], and used afterwards in [Bel74, Eq. 2] and [Cha75]

to bound the MSE in case of a single uniformly distributed parameter. The Kotelnikov’s result

is extended in [Bel97, Eq. 11] to admit any distribution of the parameter of interest, resulting

in the following inequality

Pr (|e| ≥ δ) ≥
∫ ∞

−∞
Pe (θ − δ, θ + δ) [fθ (θ − δ) + fθ (θ + δ)] dθ � D (δ) (2.57)

where e = θ̂ − θo is the estimation error for the scalar case, fθ (θ) is the parameter prior and

Pe (θ − δ, θ + δ) is the minimum error probability associated to the following binary detection

problem:

Definition 1 Let us assume that the parameter θo could take only two possible values, θ− � θ−δ

and θ+ � θ + δ with probabilities

Pr
(
θ−
)
�

fθ
(
θ−
)

fθ
(
θ−
)
+ fθ

(
θ+
) and Pr

(
θ+
)
�

fθ
(
θ+
)

fθ
(
θ−
)
+ fθ

(
θ+
) ,

respectively. In that case, the estimation problem becomes a binary detection problem consisting

in deciding the most likely hypothesis θ− or θ+ in view of the observation yo and the prior

probabilities Pr
(
θ−
)
and Pr

(
θ+
)
.

The solution to this classical problem is supplied by the MAP detector or, equivalently, by

the likelihood ratio test [Kay93a]. Then, the parameter is decided as follows

θ̂ =

{
θ− fy

(
y; θ−

)
Pr
(
θ−
) ≥ fy

(
y; θ+

)
Pr
(
θ+
)

θ+ fy
(
y; θ−

)
Pr
(
θ−
)
< fy

(
y; θ+

)
Pr
(
θ+
)

and, thus,

Pe

(
θ−, θ+

)
= Pr

(
θ−
) ∫ ∞

θ
fy
(
y; θ−

)
dy+Pr

(
θ+
) ∫ θ

−∞
fy
(
y; θ+

)
dy.

If the proposed estimator solves optimally the related detection problem for all the possible

values of θ, equation (2.57) is hold with equality. Moreover, if the hypotesis are very close

(δ → 0), the MAP estimator,

θ̂MAP = argmax
θ

fy (y;θ) fθ (θ) ,

attains the Kotelnikov’s bound in (2.57) and, thus, minimizes Pr (|e| ≥ δ) as explained in

[Kay93b, Sec. 11.3].
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Ziv-Zakai Bounds (ZZB)

The original work relating the estimation and detection problems was presented by Ziv and

Zakai in [Ziv69]. However, they applied the Chebyshev’s inequeality,

Pr (|e| ≥ δ) ≥ EθE |e|2
δ2

,

in lieu of the Kotelnivov’s one (2.57), and the resulting bound was looser. The original idea was

improved in [Cha75] [Bel74][Wei88a][Bel97] where the Kotelnikov’s inequality is used to derive

tight bounds on the (Bayesian) MSE. To do so, it is necessary to use the following relation

between Pr (|e| ≥ δ) and the mean square error [Bel97, Eq. 2]:

EθE |e|2 =
∫ ∞

0
Pr (|e| ≥ δ) δdδ

where the Bayesian expectation is made explicit again. In the scalar case, the Ziv-Zakai bound

is extended in [Bel97, Eq. 14] as follows

EθE |e|2 ≥
∫ ∞

0
ν [D(δ)] δdδ (2.58)

where D(δ) is the bound on Pr (|e| ≥ δ) introduced previously in (2.57) and ν [·] is the “valley-

filling” function introduced by Bellini and Tartara in [Bel74] and defined as

v [f (x)] � max
ξ≥0

f(x+ ξ).

If the prior distribution is uniform on a finite interval, the above bound reduces to the Bellini-

Tartara bound [Bel74].

Finally, the Bellini-Tartara bound is generalized in [Bel97] to multivariate problems and

arbitrary prior functions. In that case, the extended Ziv-Zakai bound is obtained projecting the

estimation error e = θ̂ − θo onto a given direction determined by the vector v [Bel97]. For a

given v, we have the same expression,

EθE
∣∣vHe

∣∣ ≥ ∫ ∞

0
ν [Dmax(δ)] δdδ,

where

Dmax(δ) = max
∆:vH∆=δ

∫ ∞

−∞
Pe (θ −∆,θ +∆) [fθ (θ −∆)+ fθ (θ +∆)]dθ.

In principle, the two hypothesis θ− � θ− ∆ and θ+ � θ +∆ could be placed arbitrarily in

the hyperplane RP provided that the projection of the estimation error vHe is equal to δ in case

of an erroneous detection or, in other words, ∆ must hold that vH∆ = δ. Then, the tightest

lower bound corresponds to the vector ∆, yielding the highest error probability. The reader is

referred to the original work [Bel97] for further results, properties and examples. The utilization

of the Ziv-Zakai bound (ZZB) in the problem of passive time delay estimation is carried out in

detail in [Wei83][Wei84].
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Figure 2.5: Classification of the most important lower bounds in the literature. The lower

bounds assuming a certain model for the nuisance parameters —or imposing the second-order

constraint— are marked in gray.
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Appendix 2.A UML for polyphase alphabets

Let us consider that the nuisance parameters belong to a polyphase alphabet of dimension I so

that xk ∈ {ej2πi/I} with i = 0, ..., I − 1. In that case, it can be shown that the log-likelihood

ln fy (y;θ) is the sum of a finite number of cosh(·) functions, which are computed next

Ex

{
exp
(
2Re

(
x∗ka

H
k R−1

w y
))}

=
1

I

I−1∑
i=0

exp
(
2Re

(
e−j2πi/IaHk R−1

w y
))

=
2

I

I/2−1∑
i=0

cosh
(
2Re

(
ej2πi/IaHk R−1

w y
))

K∏
l>k

Ex

{
exp
(
2Re

(
x∗kxla

H
k R−1

w al
))}

=
K∏
l>k

2

I2

I−1∑
i=0

(I − i) cosh
(
2Re

(
ej2πi/IaHk R−1

w al

))

Ex

{
exp
(
2Re

(
|xk|2 aHk R−1

w ak

))}
=

2

I

I/2−1∑
i=0

cosh
(
aHk R−1

w ak
)
.

Notice that the term Ex

{
exp
(
xHAHR−1

w Ax
)}

can be omitted ifAHR−1
w A does not depend

on the parameter. This situation is usual in digital communications [Men97, Sec. 5.7.3] because

the noise is white (i.e., Rw = σ2
wIM ) and aHk al ∼= Esδ (k, l) with Es the energy of the received

symbols. In that case, we have that

ln fy (y;θ) ∝
K∑
k=1

ln

I/2−1∑
i=0

cosh
(
2Re

(
ej2πi/IaHk (θ)R−1

w y
))

.



56 CHAPTER 2. ELEMENTS ON ESTIMATION THEORY

Appendix 2.B Low-SNR UML results

Unbiasedness Condition

It can be shown that the low-SNR UML estimator is unbiased for any positive SNR if

AH (θ)R−1
w A (θ) is independent of θ. If this condition is verified, then the mean value of the

log-likelihood gradient is null at θ = θo for any value of the parameter. The proof is provided

next. Let

Ey

{
∂

∂θp
ln fy (y;θ)

∣∣∣∣
θ=θo

}
= Tr

(
AH (θo)R

−1
w Dp (θo)R

−1
w A (θo)

)
(2.59)

be the expected value of the log-likelihood gradient under the low SNR approximation with

Dp (θ) �
∂

∂θp

[
A (θ)AH (θ)

]
=

∂A (θ)

∂θp
AH (θ) +A (θ)

∂AH(θ)

∂θp
.

If we plug Dp (θ) into (2.59), the argument of the trace can be written as

AH (θ)R−1
w A (θ)

∂

∂θp

[
AH (θ)R−1

w A (θ)
]

using that Tr (AB) = Tr (BA). Therefore, since AH (θ)R−1
w A (θ) is positive definite, (2.59)

vanishes iff AH (θ)R−1
w A (θ) is independent of θ. This condition implies that R−1

w Dp (θ)R
−1
w

(2.59) must lie completely into the orthogonal subspace of A (θ) for p = 1, ..., P .

Self-Noise Free Condition

If the gradient of the low-SNR UML log-likelihood function is not zero at θ = θo as the noise

variance goes to zero, the estimator variance exhibits a variance floor due to the randomness of

the nuisance parameters. A sufficient condition to have self-noise free estimates at high SNR is

that

lim
σ2
w→0

∂

∂θp
ln fy (y;θ)

∣∣∣∣
θ=θo

= 0

meaning that

xHAH (θ)N−1Dp (θ)N
−1A (θ)x = 0

for any value of θ and x. Notice that this requirement coincides with the unbiasedness condition

if A (θ)x effectively spans all the signal subspace.
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Appendix 2.C CML results

Unbiasedness

Plugging B (θ) � R
−1/2

w A (θ) into ln fy (y;θ,x̂ML (θ)) (2.14), we have that

ln fy (y;θ,x̂ML (θ)) = C4 +Tr
(
R−1/2

w B (θ)
[
BH (θ)B (θ)

]−1
BH (θ)R−1/2

w R̂
)
=

= C4 +Tr
(
R−1/2

w PB (θ)R−1/2
w R̂

)
with PB (θ) � B (θ)

[
BH (θ)B (θ)

]−1
BH (θ) the orthogonal projector onto the subspace gen-

erated by the columns of B (θ). Computing now the log-likelihood gradient, it is found that

∂

∂θp
ln fy (y;θ,x̂ML (θ)) = Tr

(
R−1/2

w

∂PB (θ)

∂θp
R−1/2

w R̂

)
where the derivative of the orthogonal projector is given by [Vib91, Eq. 33]

∂PB (θ)

∂θp
= P⊥

B (θ)
∂B (θ)

∂θp
B# (θ) +

[
P⊥

B (θ)
∂B (θ)

∂θp
B# (θ)

]H
(2.60)

with P⊥
B (θ) � IM −PB (θ). Therefore, the expected value of the gradient is

Ey

{
∂

∂θp
ln fy (y;θ,x̂ML (θ))

∣∣∣∣
θ=θo

}
= Tr

(
R−1/2

w

∂PB (θ)

∂θp

∣∣∣∣
θ=θo

R−1/2
w

[
A (θo)A

H (θo) +Rw

])

= Tr

(
∂PB (θ)

∂θp

∣∣∣∣
θ=θo

+BH (θo)
∂PB (θ)

∂θp

∣∣∣∣
θ=θo

B (θo)

)
,

that is equal to zero because

P⊥
B (θ)B (θ)=0

BH (θ)P⊥
B (θ)=0.

Self-Noise Free

If the gradient of the CML log-likelihood function is not zero at θ = θo as the noise variance goes

to zero, the estimator variance exhibits a variance floor due to the randomness of the nuisance

parameters. A sufficient condition to have self-noise free estimates at high SNR is that

lim
σ2
w→0

∂

∂θp
ln fy (y;θ,x̂ML (θ))

∣∣∣∣
θ=θo

= 0,

meaning that

xHBH (θ)
∂PB (θ)

∂θp

∣∣∣∣
θ=θo

B (θo)x = 0

for any value of θ and x. Notice that the last equation is verified for any value of x due to

(2.60). Actually, the CML is able to cancel out the self-noise as well as the bias because of the

orthogonal projector P⊥
B (θ) appearing in ∂PB (θ) /∂θp (2.60).
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Appendix 2.D GML asymptotic study

Using the inversion lemma [Kay93b, p. 571], we find that R−1 (θ) has the following asymptotic

expressions:

lim
σ2
w→∞

R−1 = R−1
w

(
IM−AAHR−1

w

)
lim

σ2
w→0

R−1 = R−1
w

(
IM−A

(
AHR−1

w A
)−1

AHR−1
w

)
with the operator lim meaning “asymptotically approximated to” in this appendix.

If we substitute these results into (2.24) and omit constant terms, we obtain the following

asymptotic expressions for the GML cost function:

lim
σ2
w→∞

lnEx {fy (y/x;θ)} ∝ Tr ln
(
IM−AAHR−1

w

)
+Tr

(
R−1

w AAHR−1
w R̂

)
� −Tr

(
AHR−1

w A
)
+Tr

(
R−1

w AAHR−1
w R̂

)
(2.61)

lim
σ2
w→0

lnEx {fy (y/x;θ)} ∝ −Tr ln
(
AAH +Rw

)
+Tr

(
R−1

w A
(
AHR−1

w A
)−1

AHR−1
w R̂

)
� Tr

(
R−1

w A
(
AHR−1

w A
)−1

AHR−1
w R̂

)
, (2.62)

that correspond to the low-SNR UML and CML solutions obtained in (2.17) and (2.19), respec-

tively.

The independent term b (θ) in (2.61) has been approximated using the Taylor expansion of

the logarithm and the commutative property of the trace [Kay93b, p. 571], yielding

lim
σ2
w→∞

Tr ln
(
IM−σ−2

w AAHN−1
)
= Tr ln (IM ) + Tr

(−σ−2
w AAHN−1

)
= −Tr

(
AHR−1

w A
)
.

On the other hand, the independent term b (θ) in (2.62) is neglected at high SNR since it

converges to the constant −Tr ln
(
AAH

)
whereas the second term is proportional to σ−2

w .
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Appendix 2.E Closed-loop estimation efficiency

Following the indications in [Kay93b, Appendix 7B], if the observation y is splitted into N

statistically independent blocks, the log-likelihood function ln fy (y;θ) is given by

ln fy (y;θ) =
N∑

n=1

ln fz (zn;θ)

and, thus, the corresponding gradient and Hessian are given by

∇(y;θ) =
N∑

n=1

∂ ln fz (zn;θ)

∂θ
�

N∑
n=1

∇z(zn;θ) (2.63)

H(y;θ) =
N∑

n=1

∂2 ln fz (zn;θ)

∂θ∂θT
(2.64)

respectively. Therefore, the Newton-Raphson and scoring algorithms are updated in the k-th

iteration adding the following term

1

N

N∑
n=1

Dg(θ̂k)J
−1
z (θ̂k)∇z(zn; θ̂k), (2.65)

in which we have taken into account that

N∑
n=1

∂2 ln fz (zn;θ)

∂θ∂θT
� NEz

{
∂2 ln fz (zn;θ)

∂θ∂θT

}
� −NJz(θ),

for N sufficiently large [Kay93b, Appendix 7B]. Notice that the last equation is approximatelly

equal to the Fisher’s information matrix:

J(θ) = −Ey {H(y;θ)} = −
N∑

n=1

Ez

{
∂2 ln fz (zn;θ)

∂θ∂θT

}
= −NJz(θ).

Then, the averaging in (2.65) can be substituted by an exponential filtering such as

εn = (1− µ) εn−1 − µDg(θ̂k)J
−1(θ̂k)∇z(zn; θ̂k), (2.66)

with ε0 = 0. The step-size or forgetting factor µ is adjusted to yield the same noise equivalent

bandwidth, which is defined as

Bn �

∫ 1/2T
−1/2T |H (f)|2 df
2T |H (0)|2

where T is the sampling period and H (f) is the frequency response of the adopted filter [Men97,

Sec. 3.5.5]. Using this formula, it follows that the noise equivalent bandwidth for the integrator

(2.65) and the exponential filter (2.66) is Bn = 0.5/N and Bn = 0.5µ/(2−µ) � µ/4, respectively,
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where the last approximation is verified for µ � 1. Using this approximation, the step-size µ is

approximatelly equal to 2/N (for N � 1) and (2.66) can be written as

εn = εn−1 − µDg(θ̂k)J
−1(θ̂k)∇z(zn; θ̂k). (2.67)

Finally, if (2.67) is integrated into the Newton-Raphson or scoring recursions, and the es-

timated parameter is updated after processing each block, we obtain the closed-loop estimator

presented in (2.30). Notice that the obtained closed-loop estimator can also iterate the N blocks

several times as the original iterative methods in (2.27) and (2.29).
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Appendix 2.F Computation of Σsv(θ) for the small-error bounds

The computation of Σsv (θ) = E
{
s(y;θ)vT (y;θ)

}
for the Bhattacharyya and Cramér-Rao

bounds requires to compute the following term

Ey

{
∂n ln fy (y;θ)

∂θn vH (y;θ)

}
=

∫
∂nfy (y;θ)

∂θn
vH (y;θ)dy (2.68)

The last term can be further manipulated taking into account that the estimator is unbiased,

i.e., E {v (y;θ)} = 0. Then, if the chain rule is applied and the integral and derivative signs are

swapped, we obtain that

∂n

∂θnEy

{
vH (y;θ)

}
=

∂n

∂θn

∫
fy (y;θ)v

H (y;θ) dy

=

∫
∂nfy (y;θ)

∂θn vH (y;θ) dy+

∫
fy (y;θ)

∂nvH (y;θ)

∂θn dy = 0,

Then, using that v (y;θ) � α̂ (y)− g(θ), it follows that∫
fy (y;θ)

∂nvH (y;θ)

∂θn dy = −
∫
fy (y;θ)

∂ngH (θ)

∂θn dy = −∂ngH (θ)

∂θn

must be equal to (2.68) except for the minus sign. Thus, we conclude that

Ey

{
∂n ln fy (y;θ)

∂θn vH (y;θ)

}
=

∂ngH (θ)

∂θn .
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Appendix 2.G MCRB, CCRB and UCRB derivation

In this appendix, the derivation of the lower bounds introduced in Section 2.6.1 is sketched.

UCRB Derivation

The UCRB involves the computation of the following score function:

[su (y;θ)]p �
∂ ln fy (y;θ)

∂θp
= − ∂

∂θp

[
ln det (R (θ)) + Tr

(
R−1 (θ) R̂

)]
=Tr

(
R−1 (θ)

∂R (θ)

∂θp
R−1 (θ)

(
R̂−R (θ)

))
,

where fy (y;θ) is the Gaussian p.d.f. introduced in (2.22) and the following two expressions

from [Ott93, Eq. 4.57-58] have been applied:

∂

∂θp
ln det (R (θ)) = Tr

(
R−1 (θ)

∂R (θ)

∂θp

)
∂

∂θp
Tr
(
R−1 (θ) R̂

)
= −Tr

(
R−1 (θ)

∂R (θ)

∂θp
R−1 (θ) R̂

)
.

Therefore, the score function su (y;θ) can be written as follows

su (y;θ) = DH
r (θ) (R∗ (θ)⊗R (θ))−1 (r̂− r (θ)) ,

with the following definitions

[Dr (θ)]p � vec (∂R (θ) /∂θp)

r̂� vec
(
R̂
)

(2.69)

r (θ)� vec (R (θ)) ,

and using the following relationships:

vec
(
ABCH

)
=(C∗ ⊗A) vec (B)

A−1 ⊗B−1 =(A⊗B)−1 .

Finally, in the unconditional model, the Fisher’s information matrix becomes

Ju (θ) � Ey

{
su (y;θ) s

H
u (y;θ)

}
= DH

r (θ) (R∗ (θ)⊗R (θ))−1Dr (θ)

using that the covariance matrix of r̂ − r (θ) is precisely R∗ (θ) ⊗ R (θ) under the Gaussian

assumption [Li99, Eq. 20]. In Chapter 4, it will be shown that Ju can be obtained from J2

(2.52) when the nuisance parameters are Gaussian distributed.
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CCRB Derivation

The CCRB was originally derived in [Sto89][Sto90a] for DOA estimation. A different derivation

is given next based on the asymptotic performance of the CML estimator and the estimation

bounds theory presented in Section 2.6.1.

In the conditional model, the CML estimator is formulated from the following score function:

[sc (y;θ)]p �
∂

∂θp
ln fy (y;θ,x̂ML (θ)) = 2ReTr

(
R−1

w P⊥
A (θ)

∂A (θ)

∂θp
A# (θ) R̂

)
=2ReTr

(
R−1

w P⊥
A (θ)

∂A (θ)

∂θp
A# (θ)

(
R̂−R (θ)

))

that is obtained using the results in Appendix 2.C. Using again (2.69) and

vec
(
ABCH

)
= (C∗ ⊗A) vec (B) ,

it follows that

sc (y;θ) =
∂

∂θ
ln fy (y;θ,x̂ML (θ)) = 2ReDH

a (θ)
(
A#∗ (θ)⊗R−1

w P⊥
A (θ)

)
(r̂− r (θ))

with [Da (θ)]p � vec (∂A (θ) /∂θp).

After some tedious simplifications that are omitted for the sake of brevity, in the conditional

model, the Fisher’s information matrix is given by

Ey

{
sc (y;θ) s

H
c (y;θ)

}
=2Re

{
DH

a (θ)
(
xxH ⊗R−1

w P⊥
A (θ)

)
Da (θ)

}
+2Re

{
DH

a (θ)
((

AH (θ)R−1
w A (θ)

)−1 ⊗R−1
w P⊥

A (θ)
)
Da (θ)

}
,

that is found to depend on the actual vector of nuisance parameters x. It is shown in [Sto90a,

Eq. 2.13] that the first term converges to its expected value as the observation size increases

and, thus, xxH → IK . On the other hand, the second term can be neglected if the SNR or the

observation length goes to infinity. Actually, this second term causes the CML degradation at

low SNR when the observation is short [Sto90a, Eq. 2.15]. Bearing in mind these arguments, the

asymptotic Fisher’s information matrix apperaring in the CCRB expression (2.50) contains only

the average of the first term. The resulting expression is known to bound the performance of

the CML and GML estimators whatever the SNR or the observation size. However, the adopted

CCRB becomes a loose bound for low SNRs in case of finite observations.
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MCRB Derivation

A straightforward derivation of the multidimensional MCRB is provided next:

ln fy/x (y/x;θ) = const− ‖y−A (θ)x‖2
R−1

w

∂ ln fy/x (y/x;θ)

∂θp
= 2Re

{
(y−A (θ)x)H R−1

w

∂A (θ)

∂θp
x

}
∂2 ln fy/x (y/x;θ)

∂θp∂θq
= 2Re

{
(y−A (θ)x)H R−1

w

∂2A (θ)

∂θp∂θq
x− xH ∂AH (θ)

∂θq
R−1

w

∂A (θ)

∂θp
x

}
Ey/x

{
∂2 ln fy/x (y/x;θ)

∂θp∂θq

}
= −2Re

{
xH ∂AH (θ)

∂θq
R−1

w

∂A (θ)

∂θp
x

}
and, therefore,

[Jm]p,q = −ExEy/x

{
∂2 ln fy/x (y/x;θ)

∂θp∂θq

}

= 2Re

{
Tr

(
∂AH (θ)

∂θq
R−1

w
∂A (θ)

∂θp

)}
.

Finally, the elements of Jm can be arranged as in equation (2.54) using the following prop-

erties:

Tr
(
AHB

)
=vecH (A) vec (B)

vec (ABC)=
(
CT ⊗A

)
vec (B) .


