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ABSTRACT

In the first part of this dissertation a series of assumptions
regarding the categorical mapping of amino acids in the
context of protein classification using machine learning

techniques are tested. The four assumptions tested: (1) trans-
lation, (2) permutation, (3) constant, and (4) eigenvalues were
validated with experimental data. The first three assumptions
relate to equivalent mappings, and the fourth involves a com-
parable mapping using a proposed eigenvalue-based matrix
representation of the amino acid chain. These assumptions
were tested across a range of 23 different machine learning
algorithms. It is shown that the numerical simulations are con-
sistent with the presented assumptions, such as translation
and permutations, and that the eigenvalue approach gener-
ates classifications that are statistically not different from the
base case or that have higher mean values while at the same
time providing some advantages such as having a fixed pre-
determined dimensions regardless of the size of the analyzed
protein.

Then, it was shown that it is possible to accurately distin-
guish, using non-linear techniques, between healthy patients
and anal and carcinoma patients using DNA methylation data
as input. The model selected 13 CpGs from a total of 450,000
CpGs available per patient with 171 patients in total. The
model was also tested for robustness and compared to other
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more complex models that generated less precise classifications.
The model obtained (testing dataset) an accuracy, sensitivity
and specificity of 97.69%, 95.02% and 98.26%, respectively. The
reduction of the dimensionality of the data, from 450,000 to 13
CpGs per patient, likely also reduced the likelihood of overfit-
ting, which is a very substantial risk in this type of modelling.

Interstitial lung disease systemic sclerosis (ILD-SSc) was
also studied. We present an algorithm (using machine learning
techniques) that it is able to identify, with a 92.2% accuracy,
patients suffering from ILD-SSc using gene expression data
obtained from peripheral blood. The algorithm also identified
172 genes that might be involved in the illness. These 172
genes appeared in all the 20 most accurate classification mod-
els among a total of half a million models estimated. Their
frequency might suggest that they are related to the illness
to some degree. The proposed algorithm, besides differentiat-
ing between control and patients, was also able to distinguish
among different variants of the illness (diffuse variants). This
can have a significance from a treatment point of view. The
different type of variants have a different associated prognosis.

In the last part of the dissertation Inflammatory bowel dis-
ease (IBD) was also analyzed. The illness is rather hetero-
geneous with different evolution among patients. A machine
learning approach was followed to identify potential genes that
are related to IBD. This is done by following a Monte Carlo
simulation approach. In total, 23 different machine learning
techniques were tested (in addition to a base level obtained
using artificial neural networks). The best model identified 74
genes selected by the algorithm as being potentially involved in
IBD. IBD seems to be a polygenic illness, in which environmen-
tal factors might play an important role. Following a machine
learning approach, it was possible to obtain a classification
accuracy of 84.2% differentiating between patients with IBD
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and control cases in a large cohort of 2490 total cases. The
sensitivity and specificity of the model were 82.6% and 84.4%,
respectively. It was also possible to distinguish between the two
main types of IBD: (1) Crohn’s disease and (2) ulcerative colitis.
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1
INTRODUCTION

I
n recent years there has been a rapid increase in the

amount of chemical [1–3] and biological data [4–6]. This

new data has enable researches to advance their fields

but it has also come with challenges [7–9], such as the need to

develop techniques to handle this large volume of information.

This would be rather challenging using traditional techniques.

In this regard, artificial intelligence techniques present an

interesting alternative [10]. Many artificial intelligence tech-

niques require large amount of information in order to be able

to produce accurate forecasts and hence seems a natural ap-
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CHAPTER 1. INTRODUCTION

proach [11, 12]. There are many lines of investigation in which

this approach can be followed, such as protein classification.

1.1 Protein classification using machine

learning techniques

M
achine learning techniques are having an increas-

ingly important role in the computational chem-

istry [13–19] and other scientific related fields [20–

24]. This is partially due to the capability of these techniques to

model complex underlying processes [25–27] without the need

to have a detailed understating of the underlying mechanics

of the process as well as in situations were the underlying

dynamics is well understood but the computational cost [28–

30] of using a detailed models are too high. There is a rapidly

increasing number of publications using machine learning tech-

niques in the context of protein modeling and classification.

For instance, there are some interesting articles, such as Xu

et al. [31], describing sequence and activity relationships, par-

ticularly focusing on mutations. Another topic analyzed in the

existing literature is the classification of cell decisions for pro-

2



1.1. PROTEIN CLASSIFICATION USING MACHINE LEARNING
TECHNIQUES

tein Kinase B, Salau et al. [32], using neural networks such

as radial basis functions (RBFs) and multi-layer perceptron

(MLP). Neural networks are among some of the frequently

used techniques in classification tasks. It should be noted that

there is a large number of machine learning techniques [33, 34]

that can be used for classification purposes, such as the above

mentioned artificial neural networks (ANN), as well as other

techniques such as support vector machines (SVM) [35, 36] and

K-nearest neighbors (KNN) [37]. These tools will be explained

in more detail later in this chapter.

The complexity of the protein classification task has been

mentioned by authors such as McDowall and Hunter [38] and

Nanni et al. [39]. Furthermore, some authors such as Diplaris

et al. [40] mentioned that there is an actual need for machine

learning techniques in this type of modeling exercises. This

type of modeling is typically referees as “big data” [41, 42].

Experimental results have created very large databases con-

taining increasingly large amount of information on proteins.

In figure 1.1 it can be seen an example of a cyclic protein. This

increasing amount of information is clearly a positive but it

3



CHAPTER 1. INTRODUCTION

Figure 1.1: Example of a cyclic protein (4GIF). [43]

requires appropriate modeling techniques to model this vast

amount of data.

In this dissertation the information regarding protein pri-

mary structure and classification was obtained from the Protein

Data Bank (PDB) [43], which is a well-known data repository.

An screenshot of the PBD website can be seen in figure 1.2.

Artificial intelligence techniques are not without its issues.

One of the most frequently mentioned issue is that they tend

to create models that are rather complex to interpret [44–47].
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TECHNIQUES

Figure 1.2: Protein Data Bank (PDB). [43]

The structure of an ANN can be composed by several layers

of artificial neurons, with each neuron having an associated

weight (which is the result of the training process). It might

be difficult to interpret the chemical or biological meaning of

each of these components of the mathematical model. Therefore,

when using these models there tends to be a tradeoff between

the accuracy of the model and the interpretability of the model.

One of the focus areas of this dissertation is the classifica-

tion task of small proteins [48–52] in the context of numerical

simulations regarding some assumptions in the mapping of

categorical values [53, 54], which is an issue directly related
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CHAPTER 1. INTRODUCTION

to protein modeling [55], see figure 1.3. The input in this type

of simulations is frequently the chain of amino acids. This is

frequently expressed in the form of a letter, identifying each

amino acid, in other words it is a categorical variable. The

length of this variable will depend on the number of amino

acids. The mapping of this categorical variables should respect

some biological basic considerations, such as translation and

permutation, which will be formally defined in later sections.

An eigenvalue representation of this categorical variables was

also tested numerically, obtaining accurate classification values.

This approach has some computational advantages, which will

be further explained. To the best of our knowledge this eigen-

value approach for categorical variables in protein modeling

has never been done before.

1.1.1 Computational challenges

There are a large number of computational challenges [56]

associated with protein classification [57, 58] using machine

learning techniques. For instance, the length of the amino acid

chain can wary substantially among different proteins. This

6
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TECHNIQUES

Figure 1.3: Approach flowchart.

represent a challenge from a computational point of view given

that many models assume that the number of features per

case (protein) is the same. As will be illustrated letter in this

dissertation we have tried to go around this problem in several

ways, such as an eigenvalue approach.

Other issue relates to computational power and time [59–61].

Many of the proposed models, such as artificial neural networks,

require significant computational time for training purposes

[62–64], particularly when handling large data bases [19] of

proteins. This type of problem can be reduce, to some degree,

by using parallel programming [65] when possible. It should

be taken into consideration that some artificial intelligence

7



CHAPTER 1. INTRODUCTION

techniques do not allow for straight forward parallelization. As

previously mentioned, the issue of categorical variable [66] use

(to describe the amino acids) in the context of protein classifica-

tion will be thoroughly analyzed later in this dissertation.
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1.2. NON-LINEAR IDENTIFICATION OF CARCINOMA

1.2 Non-linear identification of carcinoma

C
ancer is among the major causes of mortality [67–

69] with carcinomas accounting for a substantial

proportion of cancer related deaths. Eng et al. [70]

calculated that the mortality rate is 3.1%. According to some

estimates, Deshmukh et al. [71], the incidence of some types

of carcinomas, such as anal carcinoma, is actually increasing

at substantial annual rate (2.7% yearly). In recent years there

has been a rapid increase in the amount of genetic information,

such as DNA methylation levels [72, 73], available related to

different types of cancers (including carcinomas).

Despite this increase in data available it is frequently men-

tioned in the existing literature, Monsrud et al. [74], that carci-

nomas, such as anal and cervical carcinomas, are not yet well

understood. There are some articles in the existing literature,

such as Zhang et al. [75], analyzing changes in DNA methyla-

tion levels in anal carcinoma patients. The authors concluded

that resulted in abnormal DNA methylation profiles. Other

articles, such as Siegel et al. [76] expanded this approach to

cover both cervical and anal carcinomas.
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CHAPTER 1. INTRODUCTION

DNA methylation [77–79] is an epigenetic process [80–82]

in which a methyl group is added in a DNA chain. This is

typically analyzed at a CpG level. i.e., a zone in the DNA chain

in which a cytosine is followed by a guanine. DNA methylation

levels are typically expressed as a percentage ranging from

0% (no methylation) to 100% (fully methylated), for each CpG.

It should be mentioned that changes in DNA methylation are

part of the natural process of aging [83, 84] and hence there

is some variation of methylation levels across different age

groups. This type of changes in DNA methylation levels have

been used to estimate the biological each of individuals and

also to differentiate between different healthy patients and

patients with some illnesses such as different types of cancers.

Some examples in the existing literature include glioblastoma,

by Siegel et al. [85], and lung carcinomas, by Marchevsky [86].

10
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1.3 Identification of systemic sclerosis

S
ystemic sclerosis (SSc) is an autoimmune chronic ill-

ness Sapadin and Fleischmajer [87]. Currently there

is no curative treatment for SSc and it has an associ-

ated high morbidity and mortality [88, 89]. In line with other

autoimmune illnesses it is more frequent in females [90]. Some

studies, such as Zhong et al. [91], have estimated that the ill-

ness has a prevalence in the United Sates of approximately 50

cases per 100,000 individuals. Some ethnic groups, such a Na-

tive Americans, have a higher prevalence, Mayes et al. [92]. The

typical onset age is between 30 to 60 years old, Hoffmann-Vold

et al. [93]. SSc is characterized by excessive collagen content in

tissue, as well as fibrosis and vascular damage [94–96].

The causes of SSc are not well understood, with mentions in

the existing literature to both genetic factors, Ingegnoli et al.

[97], and environmental triggers, Marie [98]. There is evidence

of some professions, such as Silica miners [99], increasing the

likelihood of having SSc. Patients with SSc frequently have

complications. One of the most frequent severe complications is

interstitial lung disease (ILD). Interstitial lung disease (ILD)
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substantially worsens the prognosis of SSc. While, as previously

mentioned, there is no curative treatment for the illness there

are some treatment options for some of the common complica-

tions for renal crisis (using for instance ACE inhibitors).

The evolution of patients with SSc can be substantially dif-

ferent [90]. It is not well understood the reason behind this

heterogeneous evolution landscape of the illness across dif-

ferent patients and might be related to a combination of ge-

netic and environmental factors. There are two main types of

SSC: 1) Limited Cutaneous Systemic Sclerosis (also referred as

CREST [100, 101]) and 2) Diffuse Systemic Sclerosis [102, 103].

It should be mentioned that there is some disagreement in the

existing literature regarding the variants of the illness.

In this dissertation it is presented a machine learning algo-

rithm that it is able to identify, with a 92.2% accuracy, patients

ILD-SSc patients using gene expression data obtained from

peripheral blood. This type of approach might we used in the

future, when more data is available, to developed personalized

treatments.

12
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1.4 Gene Identification in inflammatory

bowel disease

I
nflammatory bowel disease (IBD) is a chronic inflam-

matory disease [104–106]. IBD remains as a not well

understood illness [107–109] with patients showing a

different array of symptoms and having different evolution.

Some of the most common symptoms are pain, fatigue, cramps,

diarrhea and blood in stools [110–112]. The illness appears to

have a higher prevalence in urban areas [113]. The illness is

becoming an increasing important health issue as its preva-

lence is increasing in newly industrialized countries [114]. The

reasons behind this increase in prevalence in newly industri-

alized countries remains unclear but it might be related to

changes in lifestyles as well as other environmental factors. It

is also possible that the illness is detected more accurate in

these countries as their economic development allows for better

national healthcare systems.

One of the main hypothesis about the illness is that it is an

abnormal immune response, triggered by some type of environ-

13



CHAPTER 1. INTRODUCTION

Figure 1.4: Schematic representation of the interaction between genetic
predisposition and environmental factors in ulcerative colitis (UC) and
Crohn’s disease (CD).

mental factor, such as a bacteria or virus [115–118], in genet-

ically predisposed individuals (see figure 1.4). Other lifestyle

and environmental factors, such as smoking and diet, seem to

also play a role in the illness [119]. IBD typically harms the

mucosa [120–122]. There are two main types of IBD: Ulcerative

Colitis (UC) [123–125] and Chron’s Disease (CD) [126–128].

A genetic component is frequently mentioned in the exist-

ing literature. For example, Khor et al. [129], mentioned that

genes help regulate the complex interaction between microbial

and environmental factors. Other suggestion that there is a ge-

14



1.4. GENE IDENTIFICATION IN INFLAMMATORY BOWEL DISEASE

netic component comes for some ethnic groups having a higher

prevalence. An example are the Ashkenazim, which have a

higher incidence and prevalence [130]. One of the objectives

of the dissertation is to identify genes that play a role in IBD.

This is done by using a machine learning approach and gene

expression data.
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1.5 Artificial intelligence

In this dissertation we do extensive use of artificial intelligence

techniques. Artificial intelligence techniques can be broadly

divided into the two categories of supervised [131–134] and

unsupervised learning [135–138] typically targeting problems

of:

1. Forecasting [139–141]

2. Classification [142, 142, 143]

3. Clustering [144–146]

• Forecasting

In forecasting problems the objective of the artificial in-

telligence technique is to estimate the value of a signal.

This could be for example, the heart rate of a patient

[147, 148] or the average daily rainfall amount in a spe-

cific area [149, 150]. Forecasting task include time series

analysis. Typically this is done, in the context of artificial

intelligence techniques, by providing certain inputs to an

algorithm that then generates a forecast [151–153]. For

16
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Figure 1.5: Graphical representation of forecasting model.

example, in the case of the heart rate of a patient we could

use as inputs the heart rate of the patient in previous

moments (t−1, t−2, t−3, . . . ) to forecast the heart rate of

the patient in the current moment (t). A graphical repre-

sentation of a forecasting model can be seen in figure1.5

Forecasting is typically done using supervised learning.

• Classification

In classification problems the objective is to identify mem-

17



CHAPTER 1. INTRODUCTION

bers of different classes. For example, we might we in-

terested in distinguishing between healthy patients and

individuals suffering from a given illness using as an input

certain medical parameters [154, 155]. Classification prob-

lems are also typically done using supervised learning. As

will be explained later in the section, supervised learning

assumes that we have a set of data in which we know the

accurate (real) classification of the individuals.

• Clustering

Clustering is a task in which cases are group into different

categories [156, 157]. This is a different task from clas-

sification. Clustering problems are done typically using

unsupervised learning [158, 159]. In other words, it is not

know (before using the algorithm) which cases belong to

which category. The objective of the algorithm is to group

these data looking for some similarities of the attributes.

As previously mentioned, one of the main differences be-

tween supervised and unsupervised learning is that in super-

vised learning we have the correct classification or value for

18
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some of the cases analyzed and in unsupervised learning we

do not have such information [160]. Hence, conceptually these

are rather different approaches. In supervised learning the

algorithm is trained by iterative altering of some parameters

in order to generate forecasts as close as possible to the actual

values. Then, after the algorithm is trained, new data is feed to

the algorithm and it creates forecasts [161, 162]. In unsuper-

vised learning the algorithm looks for the attributes of different

cases and tries to group them (without knowing actual category

information). For example, it can find clusters of people with

similarities analyzing as inputs their weight, height and age.

This type of clustering could be useful when there is no previous

information.

All these techniques are quantitative techniques i.e., auto-

mated processes. This has advantages and disadvantages. One

of the advantages is that the process is objective [163]. When

the researcher has selected the technique to be used and the

parameters for that technique the results are generated in an

automated fashion. This could limit biases in the analysis. At

the same time, this is also a disadvantage as it might be difficult

19
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Figure 1.6: Supervised learning model.

to introduce expert classification views by the researcher.

In this dissertation we have used supervised learning tech-

niques (mostly for classification purposes), see figure 1.6. This

was possible because there is a large amount of publicly avail-

able information classifying different types of proteins and dis-

tinguishing between healthy patients and patients with some

illness using genetic information. Given this large amount of

information a supervised learning approach seemed reasonable.

There are many different types of supervised learning tools.

Some of the supervised techniques that we have used in this

dissertation include:

1. Artificial neural networks [164–166]

2. Support vector machines [167–170]

20



1.5. ARTIFICIAL INTELLIGENCE

3. K-nearest neighbors [171–173]

• Artificial neural networks

Artificial neural networks [174–178] are a set of well-

known artificial intelligence techniques, inspired on the

functioning of a brain. The basic idea is to conceptually

replicate the functioning of a neuron. In this way the con-

cept of an artificial neuron was created. An artificial neu-

ron is a mathematical function with an associated weight.

This function receives some numerical input and generates

a numerical result. This numerical result can be altered

down or up by modifying the associated weight. Typically

an artificial neural network is composed by multiple artifi-

cial neuron arranged in layers.

An artificial neural network requires a training algorithm

[179, 180]. The task of the training algorithm is to modify

(train) the algorithm to generate an output as close as

possible to the actual value. In each iteration the training

algorithm changes the weight to reduce the error between

the forecast and the actual value. Clearly, there are many

different types of training algorithm but conceptually their

21
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task is the same. There are some practical considerations

to take into account. For instance, the time required to

train a network might be substantial and it increases with

the number of neurons. In simple terms the more neurons

included in the model the more time that it would require

for the model to be trained. Furthermore, it is not simple to

estimate the number of iterations required by the model to

achieve a certain precision. Therefore, usually a maximum

number of iterations is defines (to avoid the algorithm

entering into a loop that takes too long).

Another factor to take into considerations in that these

models have some inherit randomness derived from the

initialization of the weights. These models require an ini-

tial value for the weights of the neurons. This is done by

using a random number generator. These initial values

might have a substantial impact on the time required by

the network to reach a certain error. Similarly, this also

implies that the same network configuration will generate

slightly different outputs because of the different initial

values of the weights. A typical artificial neural network

22



1.5. ARTIFICIAL INTELLIGENCE

Figure 1.7: Artificial neural network (fully connected) example. For clarity
purposes only the connections between the artificial neurons are shown (the
weights of each neuron are not shown).

can be seen in figure 1.7.

In the example illustrated in figure 1.7 the artificial neural

network is fully connected. In other words each artificial

neuron in one layer is connected to all the artificial neu-

rons in the following layers. This is a common network

configuration but there are many alternative, such as par-

tial connections. In this type of configurations the neurons

in one layers are only connected to some of the neurons in

the next layer, see figure 1.8, 1.9 and 1.10 as examples of

23
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Figure 1.8: Artificial neural network (partially connected) example.

partially connected networks.

24
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Figure 1.9: Artificial neural network (partially connected) example.

Figure 1.10: Artificial neural network (partially connected) example.

25
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• Support vector machines

Support vector machines [181–183] is another well-known

set of supervised learning techniques. In this case the ap-

proach followed is to divide the data into different hyper-

planes [184, 185]. This is easy to visualize in a 2D example

(see figure 1.11). For simplicity purposes we can visualize

a set of points in a sheet of paper. It would be straight

forward to see if those points are inside or outside a given

circle in the paper of radius r. This would be the case in

which the data only have one feature but usually the data

have multiple features. Hence, hyperplanes are required

to separate the data. There might be situations in which

it is not possible to separate the data using hyperplanes.

Figure 1.11: Dividing data into hyperplanes (2D model).

26
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• K-nearest neighbors

This is another useful technique [186–188]. It is based in

the idea of the distance between the cases. The algorithm

estimates the distance between the cases and the group-

ing the neighbors according to this distance. While this

approach seems straightforward there are multiple con-

siderations to take into account. Firstly, there exist many

different types of distance measures [189]. Perhaps the

most common is the Euclidean distance but this might not

be always the best option. There are other alternatives

such as the Minkowski distance [190–192]. Also, the num-

ber of k neighbors to be taken into account needs to be

considered.

It is a difficult task to know, before doing the analysis, which

one of these techniques will generate better results [193–195].

It is then common in practice to test different techniques. This

is however very time consuming as there are multiple tech-

niques with multiple configurations to be modeled.

27
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1.6 Software

In order to tackle the previously mentioned problems, such as

protein classification and carcinoma detection, via artificial in-

telligence techniques we have extensively used different coding

languages including:

• Matlab [196]

• Phyton [197]

• R (Bioconductor) [198]

As well as many software packages, such as:

• Orca [199]

• Gaussian [200]

• Gauss View [201]

• PyMol [202]

• Avogadro [203]

• NWChem [204]

• Galaxy (FastQC) [205]
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• AmberTools (LeaP) [206]

• BLAST [207]

• MEGA [208]

• Open Babel [209]

• Chemdraw [210]

• CP2K [211]

• UCSC genome browser [212]
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2
OBJECTIVES

These are the main objectives of this PhD dissertation:

1. One of the main objectives is testing a series of four as-

sumptions related to the mapping of categorical variables

describing the amino acid chains in the context of protein

classification problem. These four assumptions are:

• Translation,

• Permutation,

• Constant

• Eigenvalues
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CHAPTER 2. OBJECTIVES

This objective is achieved in chapter 3 – Section 3.1.

2. Another main objective is to distinguish between healthy

control patients and patients with anal or cervical carci-

noma using DNA methylation data and an algorithm com-

bining ridge regression with nonlinear techniques, such

as artificial neural networks. This objective is achieved in

chapter 3 – Section 3.2

3. To be able to distinguish between control and SSc patients

using gene expression data analyzed with machine learn-

ing techniques as well as to differentiate between different

variants of the illness using the same approach. This ob-

jective is achieved in chapter 3 – Section 3.3.

4. Try to identify genes that are relevant in the context of

inflammatory bowel disease using machine learning tech-

niques. The process is based on using different machine

learning techniques (classification purposes) in combina-

tion with Monte Carlo simulations for the selection of

genes. This objective is achieved in chapter 3 – Section 3.4.

5. The final objective is to be able to identity appropriate
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genes differentiating between Crohn’s disease and ulcer-

ative colitis using a similar approach than when distin-

guishing between healthy and IBD patients. This objective

is achieved in chapter 3 – Section 3.4.
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3
PAPERS

In this chapter it can be seen three (Q1) papers already pub-

lished in peer review journals.
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CHAPTER 3. PAPERS

3.1 Paper I

Categorical Variable Mapping Considerations in Classi-

fication Problems: Protein Application

Authors: Gerardo Alfonso Perez, Raquel Castillo

Mathematics. 2022, 11(279).

https://doi.org/10.339
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Article

Categorical Variable Mapping Considerations in Classification
Problems: Protein Application
Gerardo Alfonso Perez * and Raquel Castillo

Biocomp Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castello, Spain
* Correspondence: ga284@cantab.net

Abstract: The mapping of categorical variables into numerical values is common in machine learning
classification problems. This type of mapping is frequently performed in a relatively arbitrary manner.
We present a series of four assumptions (tested numerically) regarding these mappings in the context
of protein classification using amino acid information. This assumption involves the mapping of
categorical variables into protein classification problems without the need to use approaches such as
natural language process (NLP). The first three assumptions relate to equivalent mappings, and the
fourth involves a comparable mapping using a proposed eigenvalue-based matrix representation of
the amino acid chain. These assumptions were tested across a range of 23 different machine learning
algorithms. It is shown that the numerical simulations are consistent with the presented assumptions,
such as translation and permutations, and that the eigenvalue approach generates classifications that
are statistically not different from the base case or that have higher mean values while at the same
time providing some advantages such as having a fixed predetermined dimensions regardless of
the size of the analyzed protein. This approach generated an accuracy of 83.25%. An optimization
algorithm is also presented that selects an appropriate number of neurons in an artificial neural
network applied to the above-mentioned protein classification problem, achieving an accuracy of
85.02%. The model includes a quadratic penalty function to decrease the chances of overfitting.

Keywords: categorical variables; numerical variables; mappings

MSC: 97-04

1. Introduction

Machine learning applications have been successful in different classification tasks in
areas such as physics [1–3], chemistry [4–9], and engineering [10–12], and many different
algorithms currently exist, such as Trees [13–15], K-Nearest Neighbors (KNNs) [16–18],
or Support Vector Machines (SVMs) [19–21]. The internal logic of these machine learning
algorithms can substantially vary among the different types of models. A machine learning
approach might be advantageous in a situation in which more traditional models do not ex-
ist or when these models are too complex to be efficiently implemented. Typically, machine
learning models do not require a detailed understanding of the underlying problem that
they are trying to model (requiring only some input and output data) or when such detailed
modeling is too costly from a computational (or economic) point of view. Therefore, ma-
chine learning techniques might be suitable for modeling some complex processes [22–25]
such as protein classification. In this article, we focused on the classification task of small
proteins and numerical simulations regarding some assumptions regarding the mapping
of categorical values, which is an issue directly related to protein modeling, as the input
is typically a chain of amino acids, with each amino acid designated with a given letter.
A frequently mentioned drawback of this type of approach is that machine learning tech-
niques tend to be black boxes [26–28]. In other words, even if the classification estimations
are accurate, the underlying logic is not easily explainable. In this type of modeling, some
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categorical variables are commonly mapped into numerical values, as it is frequently more
convenient to use numerical data in the simulations [29,30]. In this paper, we present a
series of four mapping assumptions in the context of protein classification [31,32]. There is
a relatively high degree of arbitrariness in the way in which these categorical variables are
mapped into numerical values, and it appears interesting to test a series of assumptions
about these mapping with numerical simulations. This, in fact, is one of the motivations of
this article, as the issue of categorical mapping in the context of protein classification could
have some modeling implications.

An algorithm is also presented for the optimization of artificial neural networks [33–35]
for the classification problem, including a penalty function [36,37]. The objective of the
penalty function is to favor simpler models among classification models that have similar
precision. Simpler models, for example, neural networks with fewer neurons, have the
advantage of being less prone to overfitting [38,39]. Overfitting is a relatively common issue
in which the selected model fits rather accurately to the training data but is not properly
generalized when faced with new data. Optimization approaches are commonly used
in many diverse fields, such as machine learning applications in the context of ambient
music in gyms [40]. There are many different proteins and many different classifications
of proteins, thus making this type of analysis challenging, which is a potential limitation
of the analysis. In order to minimize this risk, a well-known database of proteins (Protein
Data Bank (PDB)) was selected, and we used its standard classification of proteins.

This paper is structured into five sections. An introduction in which some of the
basic concepts and the main theme of the article are presented, a literature review in which
related works are reported, a materials and methods section in which the four mathematical
assumptions about the categorical mapping are stated, as well as the optimization algorithm,
data, and general procedures. The last two sections are the results and the conclusions
and recommendations, in which we analyze the results, propose potential areas of future
research, and suggest some recommendations in this type of analysis.

2. Literature Review

The field of protein modeling using machine learning techniques is rapidly expanding [41].
For instance, Xu et al. used machine learning techniques to describe sequence/activity rela-
tionship [42]. This article also focused on mutations, which is an area out of the scope of our
analysis. Another interesting article in the field is that of Salau and Jain [43]. In this article,
the authors used machine learning techniques for the classification of cell decisions for AKT
proteins. The authors used, among other techniques, neural networks such as radial basis
functions (RBFs) and multi-layer perceptron (MLP). The importance of feature extraction in this
context is frequently mentioned in the literature [44], and it is not exclusive to neural networks,
as other popular machine learning techniques such as KNN and SVMs are also mentioned in
the literature [45]. There are also some articles such as Hancock et al. [46], highlighting the
importance of categorical information in machine learning techniques. More precisely, this
article is a survey of categorical information in neural network applications. Some authors, such
as Ofer et al. [47], followed a different approach by using natural language processing (NLP)
for this type of protein classification task, which avoids the issue of categorical classification
(mapping from a categorical value to a numerical value). This, however, remains an approach
not followed by the majority of researchers. A potential reason for this is that a numerical
approach facilitates the application of some well-known machine learning techniques, and there
is so far no indication that this type of NLP approach can generate more accurate results than
more traditional machine learning approaches.

Many authors, such as McDowall and Hunter [48] and Nanni et al. [49], revealed
the complexity of manually performing protein classification, which is probably one of
the reasons for the increasing number of applications of machine learning techniques in
this field. Diplaris et al. [50] explicitly mentioned the need for automated tools that can
classify new proteins. Data availability has also increased [31]. Using SVMs, Cai et al.
managed to achieve an accuracy ranging from 69.1% to 99.6% [51]. Another related field
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in protein classification that has raised interest from a machine learning approach is the
field of protein–protein interaction. In this type of research, the objective is not to identify
the type of protein but to forecast the protein–protein interaction. To some degree, the
classification of the type of protein could have some impact on the interaction, but it is
likely not the determining factor. Bock et al. [52] achieved an 80% success rate in this type
of protein–protein interaction analysis. More recently, Das and Chakrabarti [53] followed a
similar approach, achieving comparable results. For the special case of G-protein-coupled
receptors, Karchin et al. [54] also followed a machine learning approach, using several
techniques and obtaining an error ranging from 13.7% to 49%.

In this article, we focus on the analysis of small proteins, which is an area of increasing
medical interest [55–57]. We also focus on the analysis of the classification of categorical
variables, i.e., amino acids (in different representations), without the need to use NLP
approaches. As previously mentioned, the importance of the process of categorical mapping
into numerical values has been frequently mentioned in the existing literature. There are
some articles using machine learning applications in the field of small proteins. For
example, Ernest et al. [58] used this approach to study antimicrobial peptides. This research
in antimicrobial peptides is actually one of the subfields that have received more interest
among researchers [59,60], but there is some existing research in other areas as well, for
example, regarding antifungal peptides [61].

3. Materials and Methods

Mapping variables is a common practice in machine learning applications such as
classification problems [62], particularly in situations in which it is necessary to model a
process using categorical variables, for example, a protein classification task using their
amino acid chains. There is a certain degree of arbitrariness in this process. A protein P can
be described by its amino acid chain. This can be seen with an example, as illustrated in
Equation (1).

P = {AC...A} (1)

where each amino acid is defined with its standard letter. Note that the letter B is not
typically associated with an amino acid. It is usually more convenient in machine learn-
ing applications to map into numerical values. A common practice is to map it using
alphabetical order and increasing numbers (Equation (2)).

{A, C, ...} → f1{A, C, ....} = {1, 2, ...} (2)

As previously mentioned, this type of mapping is a bit arbitrary, as other numbers
could have been used. For example, this should be equivalent to a mapping function that
is identical to the previous, but a constant α is added to all the values.

f2{A, C, ...} = {1 + α, 2 + α, ...} (3)

This could be noted as (Equation (4))

f1 ↔ f2 (4)

Assumption 1 (translation). A mapping function (Equation (5))

f1{C1, C2, ....} = {a1, a2, ...} (5)

where {C1, C2, ...} are categorical values, and {a1, a2, ...} are numerical values, should be equivalent
( f1 ↔ f2) to a mapping function f2 such that (Equation (6))

f2{C1, C2, ....} = {a1 + α, a2 + α, ...} (6)

with α ≥ 0 as a constant.
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Assumption 1 could be understood as a translation of mapping with a constant α.
Similarly, there is no reason in principle to assume that the numerical values shown in
Equation (2) are specifically representative of the related amino acid; hence, a permutation
of these values (assigned to each amino acid) should generate another equivalent mapping.
For example, mapping according to Equation (7)

{A, C, ...} → f3{A, C, ....} = {2, 1, ...} (7)

should be equivalent to f1 ( f1 ↔ f3). In this example, the amino acids A and C are mapped
into the values 1 and 2, respectively, in mapping f1, and to the values 2 and 1 in mapping
f3. This change should have no effect on the output of a machine learning classification
analysis.

Assumption 2 (permutation). A mapping function (Equation (8))

f1{C1, C2, ...} = {a1, a2, ...} (8)

with {C1, C2, ...} as categorical values and {a1, a2, ...} as numerical values should be equivalent to
mapping according to f3, as described in Equation (9).

f3{C1, C2, ...} = {a1, a2, ..., aj, aj−1, ....} (9)

where we have a permutation of the numerical values of f1 in f3.

Another common situation in machine learning classification analysis is having data
vectors of different lengths, for example, a group of proteins with different numbers of
amino acids. These types of data are frequently stored in a matrix for easy use. It is more
practical to use a square matrix, and hence a common practice is to add additional zeros (or
other numerical values) to the amino acid chains to make them all of the same dimensions.
We can define an operator L() such that (Equation (10))

L(Pi) = L({a1, a2, ...}) = l (10)

where Pi is a given protein, and l is the length of the vector (number of amino acids) in this
protein. Given a set of k proteins, the maximum size (l̄) can be defined as Equation (11):

l̄ = sup(L(P1), ..., L(Pk)) (11)

Hence, ∀Pi, L(Pi) ≤ l̄. The set of these proteins can be represented as Equation (12):

X = (P1, P2, ....Pl) =




a1
1 a2

1 · · · ak
1

a1
2 a2

2 · · · ak
2

...
...

...
...

β β · · · ak
l̄




(12)

where β is a constant (usually set equal to zero or to a positive value) added in order
to make the dimensions of the data vector containing each protein the same. Through
this process, we ordered the proteins for clarity purposes (Equation (13)), but this is not a
requirement.

L(P1) ≤ L(P1) ≤ · · · ≤ L(Pk) (13)

As previously mentioned, the constant (β ≥ 0) added to the data is arbitrary, and
hence it should not impact the output of a machine learning classification estimation.
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Assumption 3 (constant). A mapping function (Equation (14))

f1{C1, C2, ...} = {a1, a2, ..., β1} (14)

where β1 ≥ 0 is an added constant to fit the required dimensions is equivalent to a mapping function
f4 (Equation (15)).

f4{C1, C2, ...} = {a1, a2, ..., β2} (15)

∀ β2 ≥ β1 ≥ 0.

3.1. Comparable Mappings

In Assumptions 1–3, the mappings are presumed to be equivalents. A less strict
requirement (comparable mapping) can be also assumed on similar (but not strictly equiva-
lent) mapping representations. For example, a protein can be described by the number of
each type of amino acid and some other indicators such as the length of the chain. In this
case, the mapping function would be (Equation (16)):

f5{C1, C2, ...} = {na1, na2, ..., na20, ...} (16)

where nai is the number of amino acids of type ai contained in the chain. It should be noted
that the information contained in this mapping is less than in f1, as it is typically assumed
that the order in which the amino acids appear is an important factor in determining the
shape and function of the protein [63–65]. Therefore, it cannot be claimed that f1 and f5 are
equivalent. We denote this as a comparable (but not equivalent) mapping, as expressed in
Equation (17).

f1 ! f5 (17)

Note that in f5, some additional terms, such as the length of the chain, are not explicitly
shown for simplicity. A potential full depiction of f5 could be (Equation (18)).

f5{C1, C2, ...} = {l∗, na1, na2, ..., na20, M, M, (M−M), l∗(M−M)} (18)

with the terms l∗, M, and M defined in Equations (19)–(21).

l∗ = card{C1, C2, ...} (19)

M = sup{na1, na2, ..., na20} (20)

M = in f {na1, na2, ..., na20} (21)

with this mapping, the information for each protein is represented with a vector of length
25. This information can be also represented by a 5x5 matrix.

A =




l∗ na1 na2 na3 na4

na5 na6 na7 na8 na9

na10 na11 na12 na13 na14

na15 na16 na17 na18 na19

na20 M M (M−M) l∗(M−M)




(22)

A comparable representation (Equation (23)) would be the eigenvalues of this matrix
|A− λI| = 0.

f6{C1, C2, ...} = {λ1, λ2, λ3, λ4, λ5} (23)

Hence, k proteins could be represented as (Equation (24)):
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


λ1
1 λ2

1 · · · λk
1

λ1
2 λ2

2 · · · λk
2

λ1
3 λ2

3 · · · λk
3

λ1
4 λ2

4 · · · λk
4

λ1
5 λ2

5 · · · λk
5




(24)

Assumption 4 (eigenvalues). For some applications, mappings f1 and f6 are comparable ( f1 ! f6).

When using only five variables per protein, f6 is more compact than f1 compared
with an arbitrary, large amount for f1 (depending on the length of the amino acid chain).
Assumptions 1–4 will be tested in a later section.

The eigenvalue approach could be considered a feature selection approach. Feature
selection is an important component in machine learning approaches [66]. A simplified
flowchart can be seen in Figure 1.

Protein 
(amino acid chain)

Categorical 
representation 

i.e., numerical identification 
of amino acid

Feature 
representation

i.e., eigenvalue approach

Classification 
estimation

Precision of 
classification

Machine learning 
algorithm

Figure 1. Simplified flowchart diagram.

3.2. Optimization

In this section, we present an algorithm for the optimization of the structure of an
artificial neural network. The steps are as follows:

1. Chose the number of simulations (k), the required accuracy Cm, the maximum number
of iterations (jm), and the maximum number of neurons a.

2. Define a penalty function P. For example,

P = ωa2 (25)

where a is the number of neurons, and ω is a constant.
3. Obtain a randomly generated number of neurons (a), with 1 ≤ a ≤ a ∈ I.
4. Store a classification vector Y = {y1, y2, ....} (target vector) with yi = {0, 1} and the

mapping into a matrix X.
5. Divide the data into a training dataset {XT , YT} and a testing dataset {XE, YE} [67–69].
6. Train the network (φ) with the training dataset (φ(XT , YT)).
7. Estimate the classification estimations (YF

T = YF
T (φ(XT , YT))).

8. Estimate bi as follows:

I f





YF
T,i = YT,i ⇒ bi = 0

YF
T,i 6= YT,i ⇒ bi = 1

(26)
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9. Estimate the accuracy Ac (Equation (27)) and calculate the additional metrics of
precision (Pr), recall (Rec), and F1-score (F1) using Equations (28)–(30), respectively.

Ac = ∑ bi
i

(27)

Pr =
TP

TP + FP
(28)

Rec =
TP

TP + FN
(29)

F1 =
2 · Precision · Recall
Precision + Recall

(30)

In this notation, TP, FP, and FN are the true-positive, false-positive, and false-negative
values, respectively.

10. The estimated adjusted accuracy Ac∗ is expressed in Equation (31):

Ac∗ = Ac− P(a) (31)

This term penalizes an overly complex model with too many neurons.
11. Compare the results of iterations and choose the model.

• j = 0 ⇒ MN(j) = Ac∗

• j 6= 0

I f





Ac∗ > MN(j− 1) ⇒ MN(j) = Ac∗

Ac∗ ≤ MN(j− 1) ⇒ MN(j) = MN(j− 1)
(32)

12. Iterate until (j = jm) or MN(j) ≥ Cm.
13. Repeat k times generating MN = {MN1, MN2, ..., MNk}.
14. Select MN = sup{MN1, MN2, .., MNk}.
15. Calculate the classification estimations (Equation (33)) with the testing dataset for the

mode MN.

YF
E = YF

E (φ(xE, YE)) (33)

16. Repeat step 7 with YF
E to obtain the testing dataset accuracy.

3.3. Data

A total of 307 small proteins were analyzed using their amino acid sequence. The data
were obtained from the Protein Data Bank (PDB) [70–72]. This database is a frequently
used database for protein information [73–77]. For the numerical simulations, we used
the protein classification used in PDB. All the analyzed molecules were either classified as
asymmetric or cyclic. A categorical variable was assigned to these two types of proteins.
The dataset was composed of 254 asymmetric and 53 symmetric small proteins. The median
and average number of amino acids were 84 and 81, respectively, and the amino acid chain
ranged from 26 to 225 amino acids.

Y = Y{0, 1} =
(

Asymmetric
Cyclic

)
=

(
0
1

)
(34)

The full list of the analyzed molecules can be seen in the Supplementary Material file.
All the results shown were estimated using only the testing dataset. In machine learning,
it is often not difficult to create a model that accurately describes the training dataset
but fails to generalize when faced with new (unseen) data. The training dataset contains
approximately 66.6% of the proteins, and the testing dataset contains the remainder 33.3%.
Examples of cyclic (Figure 2) and asymmetric (Figure 3) are shown below.
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Figure 2. Cyclic molecule example (PKD2L1, Polycystin-L). Extracted from the Protein Data
Bank (4GIF).

Figure 3. Asymmetric molecule example (S. cerevisiae Rtf1). Extracted from the Protein Data
Bank (5EMX).

3.4. Numerical Simulations

Numerical simulations were carried out to test Assumptions 1 to 4. There could be a
sizeable difference in accuracy in classification results when using different machine learn-
ing algorithms. In order to account for this, a relatively large number (23) of classification
algorithms were used. The list of the algorithms used in this study can be found in Table 1.
Each model was simulated q times in order to obtain a mean value for accuracy.

Table 1. List of classification algorithms (and related Matlab libraries).

N. Algorithm N. Algorithm

1 Complex Tree (fitctree) 13 Fine KNN (fitcknn)
2 Medium Tree (fitctree) 14 Medium KNN (fitcknn)
3 Simple Tree (fitctree) 15 Coarse KNN (fitcknn)
4 Linear Discriminant (fitcdiscr) 16 Cosine KNN (fitcknn)
5 Quadratic Discriminant (fitcdiscr) 17 Cubic KNN (fitcknn)
6 Logistic Regression (fitglm) 18 Weighted KNN (fitcknn)
7 Linear SVM (fitcsvm) 19 Boosted Trees (fitctree)
8 Quadratic SVM (fitcsvm) 20 Bagged Tress (fitctree)
9 Cubic SVM (fitcsvm) 21 Subspace Discriminant (fitcdiscr)

10 Fine Gaussian SVM (fitcsvm) 22 Subspace KNN (fitcknn)
11 Medium Gaussian SVM (fitcsvm) 23 RUSBoosted Trees (fitctree)
12 Coarse Gaussian SVM (fitcsvm)
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The optimization algorithm was applied to neural networks. The training algorithm
selected was the scaled conjugate gradient with the number of neurons selected in an
automated way using the optimization algorithm. The optimization algorithm was run for
one million iterations, with a constant ω in the penalty function equal to 0.0001.

4. Results
4.1. Assumption 1

In addition to the base case, 4 different models, each with 23 algorithms, were used
to test Assumption 1 The difference between these four models resides in the value of the
translation constant α ranging from 1000 to 1,000,000 ({α1, α2, α3, α4, α5} = 0, 1000, 10,000,
100,000, 1,000,000). Model 1 was the base case with α = 0. The results showing the accuracy
can be seen in Figure 4, while the results showing the precision, recall, and F1-score can
be seen in Appendix A in Figures A1–A3. A Kolmogorov–Smirnov test [78] was carried
out comparing the base model (Model 1 with α = 0) with the other models for each of the
23 algorithms (see Table A1 in Appendix A). The test shows that, for the majority of models
and algorithms, it cannot be concluded that there is a statistically significant difference
between these distributions (accuracy value).

Figure 4. Numerical simulation Assumption 1. Accuracy of models after increasing the translation
constant α for all the 23 algorithms. The 23 algorithms are represented in the x-axis, and the accuracy
is shown in the y-axis.

4.2. Assumption 2

Five models with different permutations of the numerical values were created for
all twenty-three algorithms. The number of permutations for each model was selected
randomly. No additional restrictions were introduced in the permutations. The results
showing the accuracy can be seen in Figure 5, while the results showing the precision, recall,
and F1-score can be seen in Appendix A in Figures A4–A6. As in the previous assumption,
the results for the majority of cases suggest no statistically significant difference among the
majority of models and algorithms. This was also the result when using a Kolmogorov–
Smirnov test comparing Model 1 with Models 6 to 9 (see Table A2 in Appendix A).
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Figure 5. Numerical simulation Assumption 2. Accuracy of various models after permutations in the
numerical values of the mapping. The 23 algorithms are represented in the x-axis, and the accuracy is
shown in the y-axis.

4.3. Assumption 3

In this section, a variable β was added to each vector to make their length equal.
The base case continued to be Model 1 with a β = 0. Four models were tested with four
different betas ({β1, β2, β3, β4} = {1000, 10000, 100,000, 1,000,000}). It is worth noting that,
in this case, the constant β was added in order to make the dimensions equal, and hence the
existing data were not altered as in the case of Assumption 1, in which all data increased
by a certain amount α. Figure 6 shows the results (accuracy) of the numerical simulations,
indicating, as in the previous cases, that for most of the models and algorithms, there are no
statistically significant differences. The results showing the precision, recall, and F1-Score
can be seen in Appendix A in Figures A7–A9. Kolmogorov–Smirnov test comparing Model 1
with Models 11 to 14 (see Table A3 in Appendix A) generated similar results.

Figure 6. Numerical simulation Assumption 3 (Constant). Accuracy of various models after permu-
tations in the numerical values of the mapping. The 23 algorithms are represented in the x-axis, and
the accuracy is shown in the y-axis.



Mathematics 2023, 11, 279 11 of 26

4.4. Assumption 4

In Model 15, rather than the full sequence of amino acids, the input for the classification
models was the number of times that a given amino acid appeared in the amino acid chain.
Hence, the information about the order of the amino acids was lost. The length of the amino
acid chain was also included ({l∗, na1, na2, . . . na20}). Model 16 was similar to Model 15
but without the length (l∗) of the protein ({na1, na2, . . . na20}), see the results (accuracy) in
Figures 7 and 8. The results for the precision, recall, and F1-score are shown in Appendix A
in Figures A10–A15. The results of the Kolmogorov–Smirnov tests, comparing the base
model (Model 1) with Models 15 and 16, showed that for the majority of the algorithms,
there is no statistically significant difference, as shown in Table A4 in Appendix A.

Figure 7. Accuracy of Model 15 for the different algorithms. The 23 algorithms are represented in the
x-axis, and the accuracy is shown in the y-axis.

Figure 8. Accuracy of Model 16 for the different algorithms. The 23 algorithms are represented in the
x-axis, and the accuracy is shown in the y-axis.
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The next step entailed using the eigenvalues and some additional terms such as the
l∗, as defined in expression (22). In many numerical simulations, SVM failed to generate
an estimation, and they were thus excluded from the analysis. Interestingly, the rest of
the models were accurate or led to better results than the base case (Model 1). The only
exception to this trend was the case of the linear discriminant, in which the eigenvalue
approach was statistically significantly less accurate. For all the other cases, there was
no statistically significant difference, or the mean accuracy of the eigenvalue approach
was higher than the value obtained in the base case. Most of the models achieved a mean
accuracy above 80%. In Table 2, the mean accuracy values are shown for the eigenvalue
approach and Model 1, as well as the p-values for the Kolmogorov–Smirnov test comparing
these two approaches. In this table, it can be seen that the best model is the Weighted KNN
model, with a mean accuracy of 83.25%, closely followed by the Subspace KNN, Simple
Tree, Medium Tree, Complex Tree, and Logistic Regression, with an accuracy of 82.59%,
82.75%, 82.83%, 82.89%, and 82.95% respectively.

Table 2. Mean values of the accuracy for the eigenvalue approach and Model 1 as well as p-values of
the Kolmogorov–Smirnov test comparing these two approaches. T refers to the average computational
time required to train the algorithm.

Algorithm Eig. Acc. M1 Acc. p-Value (ks) T (s)

Complex Tree 82.89 72.04 0.0001 1.34
Medium Tree 82.83 72.13 0.0001 1.79
Simple Tree 82.75 78.11 0.0002 0.60

Linear Discriminant 17.08 54.44 0.0001 1.70
Quadratic Discriminant 30.37 17.47 0.6751 1.82

Logistic regression 82.95 61.87 0.0001 4.32
Fine KNN 79.88 76.53 0.0002 7.96

Medium KNN 81.59 83.18 0.6751 7.85
Coarse KNN 80.65 82.88 1.0000 7.69
Cosine KNN 81.83 82.95 0.6751 8.52
Cubic KNN 81.75 83.14 0.6751 7.10

Weighted KNN 83.25 81.83 0.0069 6.90
Boosted Trees 80.65 75.64 0.0001 7.64
Bagged Trees 82.83 81.6 0.0069 9.71

Subspace Discriminant 81.91 77.03 0.0001 10.98
Subspace KNN 82.59 78.91 0.0002 11.84

RUSBoosted Trees 81.55 54.74 0.0001 13.32

4.5. Optimization

We also used an algorithm for the optimization of the classification using neural
networks, as described in Section 3.2. The algorithm was the scale conjugate gradient, and
the process involved one million iterations. This model achieved an 85.02% out-of-sample
classification accuracy with 215 neurons, suggesting that model parameter optimization
plays an important role in improving classification accuracy. In the context of protein
classification, it is important to carry out parameter optimization in a consistent way to
improve the chances of the model to generalize (classify new data) with a reasonable level of
accuracy. Randomly selecting the parameter could potentially lead to biases in the model or
poor generalization. Figure 9 shows that the classification accuracy improves as the number
of iterations increase, initially very rapidly and then more slowly as the model approaches
its upper limit. There are several potential ways of performing data validation [79]. In this
article, we performed cross-validation of the data in the training dataset 10 times, and then
the results were tested with the testing dataset (not used during the training phase).

A limitation in this article, and a potential area of future work, is increasing the number
of analyzed proteins. In this article, we analyzed 307 proteins for classification purposes,
but this number could be further increased. This type of analysis could also be parallelized,
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which could enable a larger number of simulations to be performed while potentially not
substantially increasing computational time.

Figure 9. Improvement in accuracy as the number of iterations increases in the optimization algorithm.

5. Conclusions and Recommendations

Mapping categorical variables into numerical variables is a common practice in many
machine learning classification tasks, and it is frequently carried out in an arbitrary matter.
In this paper, we proposed four different assumptions related to this topic in the context
of protein classification: (1) translation, (2) permutation, (3) constant, and (4) eigenvalues.
Assumptions 1–3 are related to the concept of equivalent mappings in which changes
to the mapping should, in principle, not alter the results of a classification analysis (for
instance, adding a constant to all the input parameters). Assumption 4 relates to a less strict
requirement in which the mappings are not in principle strictly equivalent, but they are
comparable. An example is the eigenvalue mapping approach in which the information
about the order of the amino acids (present in the initial mapping f1) is not contained
in this new mapping ( f6). The results for Assumptions 1–3 showed that, in the majority
of the cases, no statistically significant difference exists between the mappings when we
compared their mean accuracy. The case of Assumption 4 is different, and we see that
using the eigenvalue approach generates similar or more accurate classifications than
the base case model. All these numerical simulations were carried out for 23 different
classification algorithms, including KNN, Tress, and SVMs. As previously mentioned,
the eigenvalue approach (related to Assumption 4) generated accurate estimations for
most algorithms. One noticeable exception was SVM, which, in many cases, failed to
generate a classification estimation and was, therefore, excluded from the analysis. For
the majority of the other algorithms, the eigenvalue approach generated results that were
not statistically significantly different from the base case or that had higher mean accuracy
than the base case. The best model obtained a mean classification accuracy of 83.25%.
While direct comparisons are challenging, this result is 14.15% better than the lower-bound
result obtained by Cai et al. [51] but lower than the upper bound. This is consistent with
the idea of focusing the analysis on the stability of results rather than only focusing on
increasing accuracy. This result is also substantially higher than the lower bound achieved
by Karchin et al. [54], in which the authors focused on a specific subset of proteins (G-
protein-coupled receptors).

An optimization analysis algorithm was also presented for the automated selection of
the number of neurons in a classification model using only the frequency of the occurrence
of amino acid in the amino acid chain as input (no order information), as well as the length
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of the chain. The model included a quadratic penalty function to try to decrease the chance
of overfitting. This approach generated an accuracy of 85.02% percent. This result is even
closer to the upper bound (and substantially higher than the lower bound) of Cai et al. [51]
even after accounting for the penalty function introduced to avoid an overly complex
model, which potentially could impact the generalization capabilities of the model, i.e.,
the accuracy of the classification when faced with new data. Furthermore, this approach
does not require the use of techniques such as NLP [47], which could be beneficial from an
implementation point of view, as there is a large number of machine learning applications
that can be easily and accurately applied to numerical values, and there is no indication
that an NLP approach will generate more accurate results.

It should be noted that this accuracy is not directly comparable with the accuracy
obtained in the previous sections, as there was no additional algorithm optimization. The
focus of the previous section was on the comparability of the models, and hence it did not
appear appropriate to add additional optimization techniques that differ in the different
algorithms. For instance, an optimization process based on finding an appropriate number of
neurons, as shown in the optimization section, cannot be performed for other classification
techniques such as KNN, SVM, or Trees, as they do not use artificial neurons.

This type of big data analysis is challenging and can be computationally expensive,
depending on the type of machine learning applied and/or the optimization algorithm
followed. As an area of future research, it would be interesting to use genetic algorithms
or particle algorithms as potential optimization strategies. There is a wide range of
options to optimize this type of analysis. There is, however, the risk of overfitting the
model, and some measures should be taken to minimize that risk, such as using a penalty
function, as we used in this article, to penalize the accuracy of overly complex models.
Arguably, an overly complex model is more likely to result in an overfitting issue than a
simpler model.
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Appendix A

Table A1. p-values of the Kolmogorov–Smirnov test Assumption 1 (translation).

M1–M2 M1–M3 M1–M4 M1–M5

0.97479 0.97479 0.31285 0.67508
0.97479 0.97479 0.031047 0.67508
1.00000 0.67508 0.67508 0.97479
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Table A1. Cont.

M1–M2 M1–M3 M1–M4 M1–M5

1.00000 0.67508 0.11084 0.11084
1.00000 0.31285 1.89 × 10−5 1.89 × 10−5

0.97479 0.31285 0.97479 0.67508
1.00000 0.67508 0.31285 0.97479
0.97479 0.97479 0.11084 0.31285
0.97479 0.97479 0.67508 0.67508
1.00000 0.97479 0.97479 1.00000
0.97479 0.97479 0.97479 0.97479
1.00000 1.00000 1.00000 1.00000
1.00000 0.31285 0.67508 0.11084
1.00000 0.97479 1.00000 0.67508
1.00000 1.00000 1.00000 1.00000
1.00000 0.97479 0.67508 0.97479
1.00000 0.67508 0.97479 0.97479
0.97479 0.67508 0.67508 0.67508
1.00000 0.67508 0.031047 0.67508
1.00000 0.97479 0.11084 0.31285
1.00000 0.97479 0.11084 0.03105
0.67508 0.67508 0.31285 0.67508
0.97479 0.67508 0.11084 0.67508

Table A2. p-values of the Kolmogorov–Smirnov test Assumption 2 (permutation).

M1–M6 M1–M7 M1–M8 M1–M9 M1–M10

0.67508 0.67508 0.67508 0.67508 0.31285
0.97479 0.67508 0.67508 0.67508 0.31285
1.00000 0.97479 0.67508 0.31285 0.31285
0.31285 0.11084 0.67508 0.31285 0.31285
1.00000 0.67508 1.00000 1.00000 0.67508
0.67508 0.031047 0.97479 0.67508 0.31285
0.67508 0.97479 1.00000 0.97479 0.11084
0.31285 0.67508 0.67508 0.67508 0.67508
0.31285 0.11084 0.31285 0.31285 0.67508
1.00000 0.97479 0.67508 1.00000 0.97479
0.97479 0.97479 0.97479 0.97479 0.97479
1.00000 1.00000 1.00000 1.00000 1.00000
0.97479 0.97479 0.67508 0.31285 0.97479
0.67508 0.67508 0.97479 1.00000 0.67508
1.00000 1.00000 1.00000 1.00000 1.00000
0.31285 1.00000 0.67508 0.97479 0.97479
0.31285 0.97479 0.67508 0.97479 0.97479
0.67508 0.97479 1.00000 0.97479 0.67508
0.11084 0.0068986 0.11084 0.031047 0.31285
1.00000 0.67508 0.31285 0.31285 0.97479
1.00000 1.00000 0.31285 0.67508 0.67508
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Table A3. p-values of the Kolmogorov–Smirnov test Assumption 3 (constant).

M1–M11 M1–M12 M1–M13 M1–M14

1.00000 0.67508 0.11084 0.67508
1.00000 0.67508 0.31285 0.97479
0.67508 0.67508 0.31285 0.67508
1.00000 0.0012162 0.67508 0.0068986
0.97479 0.0068986 0.97479 1.89 × 10−5

0.67508 0.31285 0.97479 0.31285
0.97479 0.67508 0.97479 0.31285
0.67508 0.0068986 0.11084 0.031047
0.97479 0.00017012 0.67508 0.0068986
0.97479 0.31285 0.67508 0.97479
0.97479 0.97479 0.97479 1.00000
1.00000 1.00000 1.00000 1.00000
0.97479 0.67508 0.67508 0.31285
0.97479 1.00000 1.00000 0.97479
1.00000 1.00000 1.00000 1.00000
0.97479 0.67508 0.97479 0.97479
0.97479 0.97479 1.00000 0.97479
0.67508 0.31285 0.67508 1.00000
1.00000 0.67508 0.67508 0.97479
0.31285 0.11084 0.97479 0.67508
0.97479 0.31285 0.97479 0.031047
0.67508 0.67508 0.67508 0.31285
0.31285 0.67508 0.67508 0.67508

Table A4. p-values of the Kolmogorov–Smirnov test Models 15 and 16.

M1–M15 M1–M16

0.31285 0.67508
0.031047 0.67508
0.11084 0.31285

0.0012162 0.00017012
1.89 × 10−5 1.89 × 10−5

1.89 × 10−5 1.89 × 10−5

0.31285 0.31285
0.67508 0.31285
0.97479 0.11084
0.97479 0.97479
0.97479 0.31285
1.00000 1.00000
0.31285 0.0012162
0.67508 0.67508
1.00000 1.00000
0.67508 0.67508
0.67508 0.97479
0.97479 1.00000

0.031047 0.67508
0.97479 0.11084

0.00017012 0.00017012
0.11084 0.67508
0.31285 0.97479
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Figure A1. Numerical simulation Assumption 1. Precision of models after increasing the translation
constant α for all the 23 algorithms. The 23 algorithms are represented in the x-axis, and the accuracy
is shown in the y-axis.

Figure A2. Numerical simulation Assumption 1. Recall of models after increasing the translation
constant α for all the 23 algorithms. The 23 algorithms are represented in the x-axis, and the accuracy
is shown in the y-axis.
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Figure A3. Numerical simulation assumption 1. F1-score of models after increasing the translation
constant α for all the 23 algorithms. The 23 algorithms are represented in the x-axis, and the accuracy
is shown in the y-axis.

Figure A4. Numerical simulation Assumption 2. Precision of various models after permutations
in the numerical values of the mapping. The 23 algorithms are represented in the x-axis, and the
accuracy is shown in the y-axis.
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Figure A5. Numerical simulation Assumption 2. Recall of various models after permutations in the
numerical values of the mapping. The 23 algorithms are represented in the x-axis, and the accuracy is
shown in the y-axis.

Figure A6. Numerical simulation Assumption 2. F1-score of various models after permutations in the
numerical values of the mapping. The 23 algorithms are represented in the x-axis, and the accuracy is
shown in the y-axis.
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Figure A7. Numerical simulation Assumption 3 (constant). Precision of various models after
permutations in the numerical values of the mapping. The 23 algorithms are represented in the x-axis,
and the accuracy is shown in the y-axis.

Figure A8. Numerical simulation assumption 3 (Constant). Recall of various models after permuta-
tions in the numerical values of the mapping. The 23 algorithms are represented in the x-axis, and the
accuracy is shown in the y-axis.
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Figure A9. Numerical simulation Assumption 3 (constant). F1-score of various models after permu-
tations in the numerical values of the mapping. The 23 algorithms are represented in the x-axis, and
the accuracy is shown in the y-axis.

Figure A10. Precision of Model 15 for the different algorithms. The 23 algorithms are represented in
the x-axis, and the accuracy is shown in the y-axis.
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Figure A11. Precision of Model 16 for the different algorithms. The 23 algorithms are represented in
the x-axis, and the accuracy is shown in the y-axis.

Figure A12. Recall of Model 15 for the different algorithms. The 23 algorithms are represented in the
x-axis, and the accuracy is shown in the y-axis.

Figure A13. Recall of Model 16 for the different algorithms. The 23 algorithms are represented in the
x-axis, and the accuracy is shown in the y-axis.
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Figure A14. F1-score of Model 15 for the different algorithms. The 23 algorithms are represented in
the x-axis, and the accuracy is shown in the y-axis.

Figure A15. F1-score of Model 16 for the different algorithms. The 23 algorithms are represented in
the x-axis, and the accuracy is shown in the y-axis.
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Abstract: As more genetic information becomes available, such as DNA methylation levels, it becomes
increasingly important to have techniques to analyze such data in the context of cancers such as anal
and cervical carcinomas. In this paper, we present an algorithm that differentiates between healthy
control patients and individuals with anal and cervical carcinoma, using as an input DNA methylation
data. The algorithm used a combination of ridge regression and neural networks for the classification
task, achieving high accuracy, sensitivity and specificity. The relationship between methylation levels
and carcinoma could in principle be rather complex, particularly given that a large number of CpGs
could be involved. Therefore, nonlinear techniques (machine learning) were used. Machine learning
techniques (nonlinear) can be used to model linear processes, but the opposite (linear techniques
simulating nonlinear models) would not likely generate accurate forecasts. The feature selection
process is carried out using a combination of prefiltering, ridge regression and nonlinear modeling
(artificial neural networks). The model selected 13 CpGs from a total of 450,000 CpGs available per
patient with 171 patients in total. The model was also tested for robustness and compared to other
more complex models that generated less precise classifications. The model obtained (testing dataset)
an accuracy, sensitivity and specificity of 97.69%, 95.02% and 98.26%, respectively. The reduction of
the dimensionality of the data, from 450,000 to 13 CpGs per patient, likely also reduced the likelihood
of overfitting, which is a very substantial risk in this type of modelling. All 13 CpGs individually
generated classification forecasts less accurate than the proposed model.

Keywords: anal cancer; cervical cancer; algorithm

MSC: 65F30

1. Introduction and Literature Review

Some recent articles, such as Deshmukh et al. [1], have estimated that the incidence of
anal carcinoma is increasing at 2.7% per year. They also estimated a similar trend for mortality.
Similar results were found by Eng et al. [2]. They estimated a 3.1% increase in the mortality
rate. Anal and cervical carcinomas are not yet well understood [3–5]. Articles, such as Melbye
and Sprogel [6] and Rabkin et al. [7], have mentioned that anal and cervical cancers have
common risk factors and other similarities. Parallels between these two illnesses have been
mentioned in the existing literature for decades [8–10]. There is increasing research pointing to
a link between anal and cervical carcinomas and the human papillomavirus (HPV) with causal
relationship or a strong link mentioned in several articles, such as Darrangh and Winkler [11],
Franceschi and De Vuyst [12], Škamperle et al. [13] and Ryan et al. [14]. De Sanjose et al. [15]
mentions that HPV has been established as a “central and necessary cause of cervical cancer”.
Immunosuppressed patients, such as HIV patients, have a higher likelihood of developing
this type of cancer [16]. Cancer is in fact a common comorbidity in HIV patients [17–19].

Varnani et al. [20] found a sensitivity and specificity of 93.6% and 80.0%, respectively,
in a histological analysis of biopsies of suspected anal carcinoma patients. Van der Zee
et al. [21] found a similar specificity (79%) when modeling the risk of anal carcinoma in
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HIV-positive patients using as an input DNA methylation data. Other authors have found
similar results [22,23].

Alterations of DNA methylation in anal carcinoma have been mentioned in several
articles, such as Zhang et al. [24]. The authors of this paper concluded that aberrant methy-
lation is frequent in anal carcinomas. Some articles, such as Siegel et al. [25], have studied
changes in methylation levels in both cervical and anal carcinomas, finding also changes in
the methylation patterns. Machine learning techniques [26] are an increasingly important
tool in many non-medical [27,28] and medical research areas [29–31], and cancer research
in no exception [32–34]. Some authors, such as Cuocolo et al. [35], have mentioned that
machine learning “could become an essential part of. . . oncological screening”. Other authors
such as Forsch et al. [36] and Kourou et al. [37] have concluded similarly. There are some
interesting articles applying machine learning techniques in the context of carcinomas. For
instance, Huang et al. [38] used deep neural networks applied to DNA methylation data
aiming to predict outcomes for patients. Nartowt et al. [39] applied an artificial neural network
approach for scoring colorectal cancer using self-reported personal health data, achieving a
sensitivity and specificity of 57% and 89%, respectively. Methylation data have been used
in the analysis of other cancers, such as lung carcinomas (Marchevsky [40], Ligor et al. [41]),
glioblastoma (Calabrese et al. [42]), endometrial cancer (Pergialiotis et al. [43]) and gastric
cancer (Zhang et al. [44]). Lin et al. [45] used a LASSO approach, which is a special case
of ridge regression, in the analysis of the relationship between the expression of m6A RNA
methylation and hepatocellular carcinoma prognosis. Butcher and Beck [46] also used a
LASSO approach in the context of colon cancer (but no machine learning techniques such
as neural networks). Zhong et al. [47] also used the LASSO approach and concluded that
this approach with linear regression models has limited prediction power. Cancer screening
methods for anal carcinoma (e.g., occult blood test) and cervical carcinoma (e.g., pap smear)
are well established. Methylation changes might be able to be detected (but this would need
to be tested by further experimental data) before there is occult blood. It can also potentially
be used for targeted medicine, i.e., DNA methylation profiles can potentially be used to try to
assign more suitable treatment options, according to their methylation profile, to patients.

There are several articles in the existing literature highlighting the applicability of arti-
ficial neural networks in the context of nonlinear processes. For example, Zhang et al. [48]
applied this technique to nonlinear time series. Liu et al. [49] proposed a multilevel
artificial neural network nonlinear equalizer for millimiter-wave mobile fronthaul sys-
tems. There are also several papers related to nonlinear control processes, see for instance
Cong et al. [50].

There are other ways to carry out this type of analysis. For instance, it is possible to
use logistic regression [51] instead of artificial neural networks. There are advantages and
disadvantages of using these techniques. Tu [52] mentioned that one of the main advan-
tages of artificial neural networks is their ability to implicitly detect complex nonlinear
relationships as well as the ability to detect all possible combinations between predictor
variables. One of the disadvantages mentioned by Tu when comparing artificial neural
networks and logistic regression was the black box behavior of artificial neural networks
with some of the models created being potentially very complex and difficult to interpret.

Objectives

The main objective of this paper is to distinguish between healthy control patients and
patients with anal or cervical carcinoma using DNA methylation data and an algorithm
combining ridge regression with nonlinear techniques, such as artificial neural networks.

2. Materials and Methods
2.1. Data

The data were obtained from the GEO database with accession code GSE 186859
(publicly available), containing 171 samples of genomic DNA, of which 152 are anal and
cervical carcinomas as well as pre-tumours (AIN3 with 13 cases and CIN3 with 9 cases),
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and the rest are control healthy patients. The dataset consists of 28 cervical samples and 143
anal samples. The data were obtained using the standard illumina protocol, and the chips
were scanned on a HiScanSQ System. The researchers that collected the data preprocessed
it by performing background correction and normalization using the minfi Bioconductor
software in R. Given the relatively low number of pre-tumor cases, the tumor and pre-
tumor cases were combined into a single category, which assumes that pre-tumors and
tumors have altered DNA methylation levels compared to a healthy individual. There are
approximately 450,000 CpGs per patient.

2.2. Notation

The CpG methylation data (X) are represented (Equation (1)) in a matrix form [53]:

X =




x11 x12 x13 · · · x1n

x21 x22 x23 · · · x2n
...

...
...

...
xm1 xm2 xm3 · · · xmn




(1)

Each column represents the methylation data for a given patient, with each row
representing the same CpG across different patients. The methylation level is a percentage
value expressed as a number ranging from 0 (not methylated) to 1 (fully methylated). As an
example of this nomenclature, X21 represents the methylation data for patient 1 in CpG 2.
It is also convenient to have a vector (Equation (2)) distinguishing between control and
patients (Yi = {0, 1}).

Y = {y1, y2, . . . , yn} (2)

2.3. Preliminary Filtering

As usual in nonlinear models, the data need to be divided into a training and a
testing dataset. The testing dataset contains approximately 20% of the total data. Fur-
thermore, 10% of the data (training dataset) were used as validation data. We carried out
cross-validation 10 times. There are several interesting papers covering validation, see for
instance [54,55]. The testing dataset was not used during the training phase. The reported
measures, such as accuracy, sensitivity and specificity, are those obtained in the testing
dataset (unused duting the trainign phase). A preliminary step consists in filtering each
CpG (Xt = {xt1, xt2, xt3, . . . , xtn}) individually using binomial regression. In this regres-
sion, the independent variable is the methylation level for each CpG across all patients in
the training dataset, and the dependent variable is Y (Equation (2)). In this first step, all the
CpGs with a p-value bigger than 0.05 were excluded from the analysis.

2.4. Variance Filtering

After this preliminary filtering, an additional filtering was carried out. In this step, the
k CpGs with the highest variance were selected. The idea behind this approach is that in
the extreme, a CpG that does not have any variation would not be useful as an input for an
algorithm that tries to distinguish between control cases and patients.

2.5. Combined Ridge Regression and Nonlinear Modeling

It is possible to further reduce the dimensionality of the data using an approach such
as ridge regression [56–58]. This approach automatically reduces the dimensionality of the
data by making some of the coefficients in the regression equal to zero. The number of
coefficients made equal to zero depends on the parameter α in the ridge regression. In prin-
ciple, there is no indication that the relationship between the level of DNA methylation and
the presence or absence of a tumor should follow a linear relationship. Hence, a nonlinear
approach (artificial neural networks) was followed. In this way, the ridge regression selects
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the CpGs that are then used as inputs in the nonlinear model. The neural network accuracy
will depend on factors such as the number of neurons (l) used. Hence, we have the follow-
ing optimization problem (Equations (3)–(5)). The artificial neural network uses a scaled
conjugate gradient backpropagation as a training algorithm, a hidden layer consisting of
a hyperbolic tangent sigmoid and an output layer with a softmax transfer function. The
training algorithm was used only with the training dataset.

max
l∗ , α∗

f (l, α) (3)

s.t. l ≤ lmax, (4)

0 < α ≤ 1. (5)

where l is the number of neurons in the artificial neural network, α is the α− parameter
in the ridge regression, and f is a function measuring the goodness of the binary forecast
(patient vs. control) of the model output compared to the actual values. This function ( f )
can be for example the accuracy of the model or the sensitivity or specificity of the model.
This task can be performed following a grid approach (Algorithm 1):

Algorithm 1 Grid approach optimization (li, αj)

Input: li, αj
Output: fij(li, αj)
1. Create a grid of values for li = {l1, l2, l3, . . . , lmax}
2. Create a grid of values for αj = {α1, α2, α3, . . . , αmax}
3. Estimate forecast (F) of the status of patients F = Fij(li, αj)
4. Estimate goodness of fit to the binary classification f = fij(li, αj)
5. Repeat steps 3 and 4 q times and obtain mean values
6. Select

sup

(
1
q

q

∑
s=1

f s
ij − g(i)

)
= f̄ ∗ij

s.t. l ≤ lmax,
0 < α ≤ 1.

where g(i) is a penalty function of the type g(i) = β · i

With the type of approach presented, it is also necessary to carry out a robustness
analysis in which, after f̄ ∗ij is obtained (and hence i and j fixed), the modeling needs to be
repeated r times. This step is necessary given the random initialization of the weights in
neural networks that result in different outputs, even if the inputs and the structure of the
neural network remain unchanged. The value k (variance filtering) needs to be chosen
in order for the grid approach to be computationally feasible. Another important step is
modelling each CpG individually (xt = {xt1, xt2, xt3, . . . , xtn, }) to study the potential case
in which any of the CpGs individually might generate results comparable to the previously
generated model.

An alternative to Algorithm 1, in which the optimization is carried out on the number
of neurons (li) and the α − f actor (αi) of the ridge regression, would be to expand it
to include a variable number of layers (κ) as well as adding different types of penalty
functions. This can be seen in Algorithm 2.

The purpose of the penalty function is to penalize overly complex model structures
that could potentially reduce the generalization capability of the model.
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Algorithm 2 Grid approach optimization (li, αj,κu)

Input: li, αj,κu
Output: fiju(li, αj, κu)
1. Create a grid of values for li = {l1, l2, l3, . . . , lmax}
2. Create a grid of values for αj = {α1, α2, α3, . . . , αmax}
3. Create a grid of values for κu = {κ1, κ2, κ3, . . . , κmax}
4. Estimate forecast (F) of the status of patients F = Fiju(li, αj, κu)
5. Estimate goodness of fit to the binary classification f = fiju(li, αj, κu)
6. Repeat steps 4 and 5 q times and obtain mean values
7. Select

sup

(
1
q

q

∑
s=1

f s
iju − g(i)

)
= f̄ ∗iju

s.t. l ≤ lmax,
0 < α ≤ 1,
κ ≤ κmax.

where in this case, the penalty function can be g(i, κ) = β1 · i + β2 · κ or a quadratic
expression g(i, κ) = β1 · i2 + β2 · κ2

3. Results

After the initial pre-filtering (excluding CpGs with a p value bigger than 0.05), the
200 CpGs (κ = 200) with the highest variance were selected. As previously mentioned,
the assumption is that CpGs with no or very little variance will be of limited use as an
input for a classification algorithm. The value of κ = 200 was selected in order to make the
calculations computationally feasible while at the same time maintaining a relatively high
number of CpGs. Then, Algorithm 1 was applied to the filtered data (containing 200 CpGs
per patient). As described in Section 2, the algorithm tries to find a suitable combination
of number of CpGs, which are a function of the α parameter in the ridge regression, and
the number of neurons. For clarity purposes, in Figure 1, a graph can be seen showing the
results for a given number of neurons and the accuracy at the different α values. A sample
of the goodness of the model for a specific configuration can be seen in the ROC curves in
Figure 2.

Algorithm 1 then expands this approach for a grid of different numbers of neurons, as
can be seen in Figure 3. This approach resulted in a model with only 13 CpGs selecting an
accuracy of 97.69%. The specificity and sensitivity of the model were 98.26% and 95.02%,
respectively. The number of neurons (l) selected was 790. The average methylation level for
these 13 CpGs (for control and patients) can be seen in Figure 4. The list of these 13 CpGs
can be found in the Appendix A (Table A1).

It is important to obtain a robust model in which the results are hopefully repeatable.
In order to test the robustness of the model, the simulation was repeated 1000 times with
the same inputs and network structure. The random initialization of the weights leads to
changes in the classification forecast of the model even with the same inputs and network
structure. In Figure 5, a histogram can be found showing the resulting accuracy of these
simulations. It can seem that it is relatively tightly centered with no frequent outliers. It
is also important to analyze each of these CpGs individually. No single CpG has a mean
accuracy above 88.94%. Accuracy for each CpG (individually) can be seen in Figure 6.
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Figure 1. Graph showing the accuracy obtained when fixing the number of neurons and changing
the α factor.

Figure 2. ROC sample curve for one of the estimations.
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Figure 3. Accuracy obtained using Algorithm 1 (grid approach varying the number of neurons and α

factor in a grid).

Figure 4. Mean methylation values for patients and control cases.

Figure 5. Histogram of the accuracy obtained in 1000 simulations.
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Figure 6. Classification accuracy (%) of each CpG individually.

In Table 1, the results for Algorithms 1 and 2 can be seen. One of the main differences
between Algorithms 1 and 2 is that in Algorithm 2, the number of layers was also modified,
and two penalty functions were used. The results of the second algorithm were slightly less
precise than those in the first algorithm. The best results using Algorithm 1 were with one
hidden layer, 790 neurons (with the penalty function g(i, κ) = β1 · i + β2 · κ), and with two
hidden layers, 840 neurons (with the quadratic penalty function g(i, κ) = β1 · i2 + β2 · κ2).
The base case, using all the CpGs and no optimization, is also shown for comparison
purposes. The excessive number of inputs in this base case (no filtering) might cause
overfitting in the model.

Table 1. Metrics comparing the results of the algorithms.

Metric Algorithm 1 Algorithm 2 * Algorithm 2 ** Base

Accuracy 97.69 96.92 94.62 69.23
Specificity 98.26 97.34 98.26 78.95
Sensitivity 95.02 93.33 78.67 42.86

* Algorithm 2 with linear penalty function. ** Algorithm 2 with quadratic penalty function.

4. Discussion

The proposed approach of using DNA methylation data, as inputs, and an algorithm
combining ridge regression and artificial neural networks, for the task of differentiating
between healthy control individuals and individuals with anal and cervical carcinomas,
generated accurate results with specificity and sensitivity higher than ones obtained in other
papers in the field. The algorithm selected 13 CpGs from a starting point of approximately
450,000 CpGs per patient. Technological developments have made it possible to obtain such
large amounts of methylation data but at the same time have made the analysis of such data
challenging. Given that there is no indication that there is a linear relationship between the
level of methylation (CpGs) and the presence of anal or cervical carcinoma, the modeling
approach was performed with nonlinear techniques such as artificial neural networks. One
of the issues with this type of model is the risk of overfitting, particularly in this type of
situation in which there is a large number of inputs per patient but a smaller number of
patients. In order to reduce this type of risk, it is important to reduce the dimensionality of
the data. Additionally, this reduction in the dimensionality can point to CpGs that might
be important as biomarkers in the context of the disease. The selected model was tested
for robustness, with the classification estimates remaining accurate for the vast majority of
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the simulations. No individual CpGs, of those 13 selected by the model, achieved a mean
accuracy above 88.94%, which is substantially lower than the 97.69% accuracy obtained by
the model. Increasing the complexity of the models, by for instance adding more layers to
the neural network, did not appear to increase the accuracy of the model. This might be
again related to the issue of overfitting. Similarly, adding more complex penalty functions,
such as for instance a quadratic function rather than a linear function, did not improve
the accuracy.

Limitations and Future Work

There are some limitations in this analysis. For instance, there were only 171 patients
analyzed. While the number of patients is not too small, this type of analysis would benefit
from a larger cohort of patients. As more data become available, this type of approach
can be retested with larger cohorts. Given the larger number of cases of anal carcinoma
compared to cervical carcinoma, it is likely that the model will be more precise when
classifying anal carcinomas. While there is a clear protocol for obtaining DNA methylation
data, there are will always be some small differences in the way that different laboratories
collect and present the data. These experimental differences could result in differences in
the DNA methylation data and hence reduce the accuracy (and other metrics). It would
be very interesting to have time evolution data for the patients that have carcinomas as
well as their treatments. It is conceivable that treatment of the patients could potentially
be individualized according to their methylation profile, but there is currently, to the best
of our knowledge, no available data to actually test this hypothesis. This could be a very
interesting area of future research with direct clinical applications.

5. Conclusions

The proposed approach is able to generate an accuracy, sensitivity and specify of
classification forecasts of 97.69%, 95.02% and 98.26%, respectively, illustrating that a com-
bination of DNA methylation with nonlinear methods such as artificial neural networks
might be useful in the task of identifying patients with a carcinoma. This approach could be
complementary to the existing techniques such as occult blood test and pap smear. This is
conceivable, but additional testing would be required to support this hypothesis, that DNA
methylation changes might be present in the patient before there are clinical indications
(occult blood test). This is an important research question that should be addressed in
future research. Additionally, it is possible that finding different DNA methylation sig-
natures could be used for personalized treatments. This is another area in which more
research would be needed. The model achieved a substantial reduction in the number
of CpGs used as input from a starting point of approximately 450,000 to only 13. This is
important, as having an excessively large number of inputs could lead to overfitting issues.
The combination of these 13 CpGs generated more accurate forecasts that any of them
individually. The list of these 13 CpGs can be found in the Appendix A.
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Appendix A

List of 13 CpGs selected by Algorithm 1.

Table A1. CpG obtained using Algorithm 1.

CpG CpG Code (GEO)

1 cg15290312
2 cg14331362
3 cg01270299
4 cg07352438
5 cg19393008
6 cg26110710
7 cg21523564
8 cg14487131
9 cg00259849
10 cg14262681
11 cg02263377
12 cg06073449
13 cg18456523
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Abstract: Systemic sclerosis (SSc) is an autoimmune, chronic disease that remains not well understood.
It is believed that the cause of the illness is a combination of genetic and environmental factors. The
evolution of the illness also greatly varies from patient to patient. A common complication of the
illness, with an associated higher mortality, is interstitial lung disease (ILD). We present in this paper
an algorithm (using machine learning techniques) that it is able to identify, with a 92.2% accuracy,
patients suffering from ILD-SSc using gene expression data obtained from peripheral blood. The
data were obtained from public sources (GEO accession GSE181228) and contains genetic data for
134 patients at an initial stage as well as at a follow up date (12 months later) for 98 of these patients.
Additionally, there are 45 control (healthy) cases. The algorithm also identified 172 genes that might
be involved in the illness. These 172 genes appeared in all the 20 most accurate classification models
among a total of half a million models estimated. Their frequency might suggest that they are related
to the illness to some degree. The proposed algorithm, besides differentiating between control and
patients, was also able to distinguish among different variants of the illness (diffuse variants). This
can have a significance from a treatment point of view. The different type of variants have a different
associated prognosis.

Keywords: systemic sclerosis; gene expression; machine learning

MSC: 62H20; 62H25; 62H99

1. Introduction

Systemic sclerosis (SSc), also called Scleroderma [1], is an autoimmune [2], relatively
uncommon, chronic illness [3] with associated high morbidity and mortality [4,5]; similar
to other autoimmune illnesses it is more common in females [6]. There is no curative
treatment for SSc but there are some treatment options for commonly associated com-
plications [7–9]. SSc can significantly impact the quality of life of the patient [10] and
attack internal organs [11]. The prevalence of the illness appears to vary depending in the
geographic location with, for instance, Zhong et al. [12] estimating a prevalence in the US
of approximately 50 cases per 100,000, while Englert et al. finding a lower prevalence in
Sidney, Australia of approximately 8.6 patients per 100,000 [13]. The illness has a higher
prevalence in some ethnics groups such as African American [14] and Native American.
Banabe et al. [15] concluded that females in the First Nation (Native American) in Canada
have a prevalence twice as high as females in the rest of the population. The usual age of
onset of the illness is between 30 to 60 years old with Hoffman-Vold et al. [16] estimating
a mean onset age of 47 in a study covering the Norwegian population. The illness is
characterized by excessive collagen content in tissue, fibrosis and vascular damage [17–19].
The causes of SSc are not yet well understood and it is theorized that it is likely caused by
a combination of genetic predisposition [20] and environmental factors [21,22]. It is very
likely that there is a genetic component with Varga and Abraham [23] estimating that the
illness is more frequent in families (1.6%) than in the general population (0.026%). There
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are also likely some environmental triggers and while many hypothesis have been formu-
lated, such as exposure to silica dust (miners disease) [24,25], certain chemical compounds
(toluene or benzene) drugs (cocaine or carbidopa) and infections [25–27], there is, to the
best of our knowledge, no irrefutable proof of the link between these factors and SSc, which
suggests some complex interaction between genetic and environmental factors. SSc is also
associated with the increased likelihood of some malignancies [28].

There are different variants such as Limited cutaneous systemic sclerosis (also referred
as CREST) and Diffuse systemic sclerosis [29,30]. Roadnan et al. [31] compared the skin
collagen content of 117 individuals with SSc (107 of the diffuse variant and 40 with the
CREST variant) and compared it with 58 control (healthy) individuals finding a signifi-
cant thickening of the skin, associated with higher collagen deposits. It should be noted
that there is still some disagreement in the existing literature in the classification of SSc
variants [32]. Interstitial lung disease is a relatively common complication of SSc that
significantly worsens the prognosis [33].

While there is no curative treatment for the illness, over the years, multiple treatment
options for the related complications, such as some treatment options for renal crisis (using
ACE inhibitors) [34], have been developed, improving survival rates [35]. The evolution
of the illness varies significantly from patient to patient [6]. As previously mentioned,
some variants of SSc such as the diffuse variants [36] have a worse prognosis [37]. In this
paper, we focus on Interstitial lung disease systemic sclerosis (SSc-ILD) with and without
diffuse cutaneous involvement. According to figures from the US FDA, approximately half
of the patients with Scleroderma have ILD-SSc. Some researchers, such as Boussone and
Mouthon [38] have estimated a higher percentage. According to these authors, approxi-
mately 75% of SSc patients develop some level of ILD. They do, however, mention that only
a small fraction of these patients evolve into critical respiratory insufficiency. Goh et al. [39]
mentioned that in some cases it might be challenging to obtain a firm diagnosis on SSc-ILD
by using the classical approach of pulmonary function tests (PFTs) and high resolution
computed tomography (HRCT) [40]. SSc-ILD typically present fibrosis in the lower section
of the lungs. In recent years, there has been a substantial amount of research targeting a re-
duction in mortality on ILD-SSc [41,42]. In an illness as heterogeneous as ILD-SSc, it seems
important to develop biomarkers for its detection, ideally at early stage, as well as for dis-
tinguishing different variants such the presence of diffuse cutaneous involvement. Most of
the existing literature uses the clinical presentation of the patient [4] and/or imaging rather
than a genetic big data approach for the identification of the illness. We have followed a
gene expression approach. This is supported by indications of a genetic component in the
illness [43–45]. We present a new algorithm for the selection of the genes considered. In an
interesting article, Jamin et al. [46] use neural networks to the same classification task but
using electronic health records (clinical factors). Our proposed approach is complementary
to this type of analysis, as it uses a different set of information. Another complementary
approach is the one used by Akay et al. [47], in which skin images are used as an input for
a machine learning algorithm. These approaches use clinical manifestations and images of
skin lesions. A genetic approach has the potential advantage of not requiring clear clinical
manifestations such as skin lesions.

2. Aims

The main objectives of this paper are to be able to distinguish between control and SSc
patients using gene expression data analyzed with machine learning techniques as well as
to differentiate between different variants of the illness using the same approach.
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3. Materials and Methods

Assuming that there are n genes analyzed per patient and m patients. The information
for each patient can be stored in the form of a column vector xi.

Xi =





X1
i

X2
i

X3
i

.

.
Xn

i





(1)

with x1
i representing the expression of the first gene for patient i, the information for all the

patients can be expressed in a matrix form, as follows.

X =




X1
1 X1

2 . . . X1
m

X2
1 X2

2 . . . Xm2

. . .

. . .

. . .
Xn

1 Xn
2 . . . Xn

m




(2)

There is also an associated variable Yi = {0, 1} describing the status of the patient with {0}
indicating a control (healthy) individual and {1} indicating a patient with the illness. This
can be represented with a row vector (including all patients).

Y = {y1, y2, . . . , ym} (3)

3.1. Algorithm

1. The first step entails dividing the data into the control and patient subsets.

Xc =




X1
1,c X1

2,c . . . X1
l,c

X2
1,c X2

2,c . . . X2
l,c

. . .

. . .

. . .
Xn

1,c Xn
2,c . . . Xn

l,c




(4)

Yc = {y1, y2, . . . , yl} (5)

Xp =




X1
l+1,p X1

l+2,p . . . X1
m,p

X2
l+1,p X2

l+2,p . . . X2
m,p

. . .

. . .

. . .
Xn

l+1,p Xn
l+2,p . . . Xn

m,p




(6)

Yp = {yl+1, yl+2, . . . , ym} (7)
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2. Estimating the mean values for each gene in each subset

Xme
c =





M1
c

M2
c

.

.

.
Mn

c





(8)

Xme
p =





M1
p

M2
p

.

.

.
Mn

p





(9)

3. Compare the expression value for each gene on both sets

Cj =
Mj

p

Mj
c

(10)

4. If cj < cj
th (with cj

th a predefined threshold) then eliminate the gene from both subsets.
Hence:

Xc∗ =




X1
1,c X1

2,c . . . X1
l,c

X2
1,c X2

2,c . . . X2
l,c

. . .

. . .

. . .
Xn∗

1,c Xn∗
2,c . . . Xn∗

l,c




(11)

Yc = {y1, y2, . . . , yl} (12)

Xp =




X1
l+1,p X1

l+2,p . . . X1
m,p

X2
l+1,p X2

l+2,p . . . X2
m,p

. . .

. . .

. . .
Xn∗

l+1,p Xn∗
l+2,p . . . Xn∗

m,p




(13)

Yp = {yl+1, yl+2, . . . , ym} (14)

with n∗ < n. This process results in a reduction in the number of genes taken into
consideration. The data can now be consolidated into a X∗ matrix and a Y∗ vector
containing both control and patients.

X∗ =




X1
1 X1

2 . . . X1
m

X2
1 X2

2 . . . X2
m

. . .

. . .

. . .
Xn∗

1 Xn∗
2 . . . Xn∗

m




(15)
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Y∗ = {y1, y2, . . . , ym} (16)

5. Divide the data into a testing and a training datasets with both containing control
and patients.

XTr =




X1
Tr,1 X1

Tr,2 . . . X1
Tr,s

X2
Tr,1 X2

Tr,2 . . . X2
Tr,s

. . .

. . .

. . .
Xn∗

Tr,1 Xn∗
Tr,2 . . . Xn∗

Tr,s




(17)

YTr = {y1, y2, . . . , ys} (18)

XTs =




X1
Ts,s+1 X1

Ts,s+2 . . . X1
Ts,m

X2
Ts,s+1 X2

Ts,s+2 . . . X2
Ts,m

. . .

. . .

. . .
Xn∗

Ts,s+1 Xn∗
Ts,s+2 . . . Xn∗

Ts,m




(19)

YTs = {ys+1, ys+2, . . . , ym} (20)

6. Choose a classification technique (F), such as an artificial neural network.
7. Train the classification technique (F) with the training data (F(Xtr, YTr)).
8. Estimate the classification forecast (CF) using the trained algorithm.

CF = {CF1, CF2, . . . , CFs} (21)

9. Compare the classification forecasts (CF) with the the actual values YTr.
10. If Ci = Yi then Acci = 1 otherwise Acci = 0. Estimate mean accuracy.

Accm =
∑ Acci

s
(22)

Similarly estimate the sensitivity (Sm).
11. This is the first iteration

Se(1) = Sm (23)

12. Then, define an integer κ ∈ (1, an) with an < n∗.
13. Eliminate κ genes randomly chosen from the previous group of n∗ genes.
14. Repeat steps 7 to 11, estimating the new sensitivity Sm

t . If Sm
t > Se(1) then the

new configuration (group of genes) is accepted, else Se(2) = Se(1) and revert to the
previous configuration.

15. Repeat until the maximum number of iterations (imax) is reached.
16. Repeat entire process jmax times.
17. Select the configuration with the highest sensitivity.

To the best of our knowledge, this is a new algorithm for the identification of relevant
genes in the context of SSc. One of the advantages of this algorithm is that it does not
require previous knowledge regarding which genes are more relevant in the context of
the illness, as they are automatically selected by the algorithm and can potentially select
complex combinations of genes.

3.2. Data

Peripheral blood gene expression data was obtained from the publically available
database GEO (accession code GSE181228) [48]. The data is composed of 45 healthy control
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cases, as well as patients with systemic sclerosis-related interstitial lung disease (SSc-ILD),
see Figure 1. A total of 134 patients were analyzed at an initial stage (baseline), see Table 1.
There was also a follow up test, 12 months later, including 98 patients. The two drugs
used in this trial were mycophenolate mofetil (MMF), administered to 65 patients, and
cyclophosphamide (CYC) administered to 69 patients. The total number of samples was 277.
Our objective is not to replicate this paper [48] but to find biomarkers for the identification
of the illness regardless of the actual medication taken.

Figure 1. Gene expression in SSc-ILD vs. control patients.

Table 1. Patients characteristics at baseline.

Category Value

Age 52.4
Male 36

Female 98
White 93

African American 29
Asian 9

Native American 3

The range in age of the patients (at baseline) was from 28 to 79 and there was a
large percentage of female (73.1%), consistent with a higher prevalence among the female
population of the disease. The majority of the cases 93 (69.4%) were of white race with
smaller number of samples of African American (21.6%), Asian (6.7%) and Native American
(2.2%). Some of the patients, see Table 2, presented diffuse cutaneous involvement, which
has been mentioned as an indicator for the evolution of the illness.

Table 2. Patient with diffuse cutaneous involvement (dc) 1.

dc non-dc

Baseline 79 55
12 months 59 38

1 One of the samples was not identified as either dc or non-dc.

3.3. Classification Algorithm

There are several potential classification algorithms [49] that could be used in the con-
text of this paper. We used artificial neural networks (ANN) [50–52]. This is a well-known
and robust technique applied in many different fields. ANNs have been successfully used
in the context of SSc identification [53] using as inputs hand photographs of the patients.
Similarly, Chassagnon et al. [54] and Chandrasekaran et al. [55] also used neural networks
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for the assessment of interstitial lung disease in systemic sclerosis using CT images. ANNs
are a versatile tool that does not require previous knowledge of the system that it is attempt-
ing to model. The ANN used had one hidden layer [56] with 100 neurons. As standard
practice, the data were divided into a training and a testing dataset [57,58]. The training
dataset contained approximately 66% of the samples. The rest of the samples were included
in the testing data set. Only data in the training dataset were used during the training
phase of the algorithm. The algorithm in this paper was designed to be flexible, hence other
classification techniques, such as support vector machines [59,60], could be potentially used.
The required computational time is a factor to be taken into account. Training all the half a
million models used in this paper required approximately 197 h (roughly 8.2 days). All the
calculations were carried out in Matlab (models’ optimization and accuracy estimations
were carried out in an automated way) using five Core i5-8265U computers.

4. Results

As described in the methodology, the initial steps of the algorithm included an initial
filtering in which the mean values of the gene expression for the control and patient cohorts
were estimated. Only genes with a 25% difference in gene expression (absolute value),
compared to the base case (control), were included in the analysis.This 25% level was
chosen in order to conduct an initial filtering in the data while at the same time had not
been too restrictive as the algorithm will further filter the genes. The algorithm then
further reduced the number of genes included. As mentioned, a Mote Carlo approach
was followed, setting the algorithm to 1000 iterations and repeating the process 500 times,
generating half a million models in the process (see Figure 2). The best model resulted in a
list of 1157 genes with a average sensitivity, specificity, accuracy and ROC of 74.8%, 95.3%,
92.2% and 86.3%, respectively. As an example, an ROC curve is shown in Figure 3 for a
given iteration. There were no improvements when controlling for age, gender or ethnicity.
The precision obtained using the algorithm was higher than the base case precision using all
genes (see Table 3). The way that the models are constructed, the sensitivity is guaranteed
not to decrease from iteration to iteration, but the same cannot be said for the specificity or
the overall accuracy of the model (see Figure 4). The list of these 1157 genes can be found
in the supplementary files. It was also tested whether the model, using the same genes, is
able to differentiate between the diffuse and non-diffuse variants, obtaining a sensitivity of
72.4% (out-of-sample). As in the previous case, the precision obtained using the algorithm
was higher than the precision using the base case (all genes), as shown in Table 3.

Figure 2. Sensitivity results of the models.
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Figure 3. ROC sample for one iteration.

Table 3. Average precision of the model distinguishing SSc and control patients as well as SSc variants
(diffuse vs. non-diffuse).

Metric SSc (Model) SSc (Base) Variant (Model) Variant (Base)

Avg. Sensitivity 0.7478 0.5146 0.7241 0.5152
Avg. Specificity 0.9533 0.8664 0.7000 0.5833
Avg. Accuracy 0.9217 0.8060 0.7101 0.5507

Avg. ROC 0.8632 0.6907 0.6962 0.5549

Figure 4. Sensitivity, specificity and accuracy of a sample model.
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In Figure 5, the average gene expression is shown for the control and SSc patients. The
genes are ordered from the highest to lowest gene expression according to the control data.
It can be observed that the SSc data fluctuates more compared to the control data.

Figure 5. Mean gene expression for controls and patients.

The asymptotic behavior was also tested, increasing the number of iterations to
relatively large amounts, such as 50,000 (see Figure 6). There was no indication that
substantially increasing the number of iterations necessarily translate into better forecasting
precision with the sensitivity reaching a plateau relatively fast. Due to the scale, it is hard
to appreciate but in Figure 6 it is shown how the model quickly reaches this plateau. It is
also interesting to analyze which genes tend to appear more frequently in the best models.
Out of the half a million models calculated, the 20 most accurate were selected and the
genes compared. A total of 172 genes appeared in all of these 20 models. The list of these
172 genes can be found in the supplementary material. It is reasonable to assume that the
genes that appear more frequently in the most accurate models might, at least potentially,
be related to the disease.

Figure 6. Sample of asymptotic analysis (50,000 iterations).
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5. Discussion

Systemic sclerosis is a chronic and potentially life threatening illness which is not
yet fully understood. The illness has different variants, such as the diffuse form, with
different levels of severity in the prognosis. SSc is believed to be caused by a combination
of genetic predisposition and environmental factors. While there is currently no curative
therapy, there have been many advances on the treatments of related complications of
the illness. Some of these complications are potentially life threatening. One common
and severe complication of SSc is interstitial lung disease (ILD). In this paper, we present
an algorithm that uses machine learning techniques, applied to gene expression data,
to be able to distinguish between control (healthy) patients and patients suffering from
interstitial lung disease systemic sclerosis (ILD-SSc). This algorithm selects the genes (and
their expression levels) to be included as inputs into machine learning models for the
detection of the illness. The precision of this approach is higher than the one obtained
using the genes expression for all the available genes. Having biomarkers that are able to
identify the illness might be important from an early detection point of view. The accuracy
of the presented model was relatively high, at 92%, with a sensitivity of approximately
75%. Our approach is complementary of some of the existing research in this field that use
clinical manifestation of the illness. An example of such an approach would be [53] that
uses hand photographs and a neural networks classification algorithm or [54] that also uses
a neural networks approach but in the case applied to CT images. A potential advantage
of using the genetic expression information is that there is no need for the illness to have
clear clinical manifestations, such as skin lesions. Milanese et al. [61] achieved an accuracy
of 84% using CT texture analysis. Another interesting alternative for the identification
and classification of SSc is presented in Filippini et al. [62], in which the authors use hand
thermal images and neural networks for diagnosis, achieving an overall accuracy of 84%.
Another imaging base paper is Nitkunanantharajah et al. [63], in which the authors use
nailfold capillaries imaging, obtaining a high sensitivity of 78.3%.

The approach followed in the algorithm is also allowed for the identification of
172 genes that might potentially have some relevance in the context of ILD-SSc. These
172 genes appeared in all the 20 most accurate models (out of half a million models es-
timated). The assumption is that given the frequency with which these genes appear in
the most accurate models, they might be related to the illness. The proposed algorithm
was also able to distinguish between the variants of the illness (diffuse). While the preci-
sion was lower that in the previous case (distinguishing between control and patients), it
was reasonably high with a sensitivity of approximately 72%. This is reasonable, taking
into consideration that the illness is likely not only caused by genetic factors but from a
combination of genetic factors and environmental exposures.

Supplementary Materials: The following are available at https://www.mdpi.com/article/10.3390/
math10244632/s1.
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Abstract: Inflammatory bowel disease (IBD) is an illness with increasing prevalence, particularly in
emerging countries, which can have a substantial impact on the quality of life of the patient. The
illness is rather heterogeneous with different evolution among patients. A machine learning approach
is followed in this paper to identify potential genes that are related to IBD. This is done by following
a Monte Carlo simulation approach. In total, 23 different machine learning techniques were tested (in
addition to a base level obtained using artificial neural networks). The best model identified 74 genes
selected by the algorithm as being potentially involved in IBD. IBD seems to be a polygenic illness, in
which environmental factors might play an important role. Following a machine learning approach,
it was possible to obtain a classification accuracy of 84.2% differentiating between patients with IBD
and control cases in a large cohort of 2490 total cases. The sensitivity and specificity of the model
were 82.6% and 84.4%, respectively. It was also possible to distinguish between the two main types of
IBD: (1) Crohn’s disease and (2) ulcerative colitis.

Keywords: inflammatory bowel disease; Crohn’s disease; ulcerative colitis

1. Introduction

In this paper, the genetic expression signature of inflammatory bowel disease is
analyzed using machine learning techniques. Inflammatory bowel disease (IBD) is a
chronic [1] inflammatory disease, whose cause remains unclear. Patients can show an array
of different symptoms. According to the Mayo Clinic, some of the most common symptoms
associated with inflammatory bowel disease include pain, diarrhea, fatigue, cramps, blood
present in stools and weight loss. Extraintestinal symptoms appear in approximately 24%
of patients [2]. Patients can also have very different evolution and responses to treatments.

Another interesting characteristic of this illness, so far without a good explanation, is
that it tends to have a higher incidence and prevalence in urban areas [3] compared to rural
areas, perhaps suggesting a link to lifestyles. The incidence of IBD has been increasing [4].
Inflammatory bowel disease is becoming an increasingly important health problem [5].
Developing and newly industrialized countries are seeing a particularly rapid increase in
the incidence of the illness [6]. The reasons behind this increase remain unclear. It might
be related to changes in dietary habits or exposure to pollutants, but there are currently,
to the best of our knowledge, no definitive data to prove it. It is also likely that the illness
is being detected earlier in those countries as their healthcare infrastructure develops.
Nevertheless, environmental factors appear to play a role in the illness. IBD increases the
chances of developing other illnesses, such as colorectal cancer [7] and osteoporosis [8].
More than 7% of patients with IBD develop osteoporosis [8]. Additionally, IBD can have a
very significant impact on the quality of life of the patient and can make normal activities,
such as working, challenging in some severe cases.

One of the main theories of the cause of IBD is that it is an abnormal immune response
in genetically predisposed individuals, triggered by some external factor such as a virus
or bacteria [9,10]. Cytokines appear to play an important role in IBD [11]. Lifestyle
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factors, such as stress, smoking and diet [12], have also been identified in the literature
as having a role in the illness [13]. The illness results in a defective regulation of the
mucosa [14]. Tamboli et al. [15] specifically mentioned intestinal bacteria as a major factor
in the initial stages of the disease. Chang [16] concluded that the two causative agents are
(1) abnormal immune response in the gastrointestinal mucosa and (2) alterations in the
gut microbiome [17]. The two major forms of IBD are ulcerative colitis (UC) and Crohn’s
disease (CD) [18]. A visual representation of UC and CD is shown in Figure 1.

Figure 1. Visual representation of Crohn’s disease (left) and ulcerative colitis (right). It can be seen
some of the usual areas involved in UC and CD. It should be noted that there is substantial variation
among patients.

IBD appears to have a genetic component. Loddo and Romano [19] mentioned that
approximately 15% of the patients with Crohn’s disease have a family member with the
same condition. They also mentioned a 50% concordance in monozygotic twins. Bernard
and Ramnik [20] concluded that genes help regulate the complex interaction between
microbial and environmental factors. Another indications of a genetic component in
the disease is that some ethnic groups, such as Ashkenazim, have higher incidence and
prevalence [21]. Some authors, such as McGovern et al. [22], highlighted the issue that a
large amount of the existing literature focuses on individuals of European ancestry. This is
especially important in an illness such as IBD, in which ethnicity seems to play an important
role not only in terms of prevalence but also in terms of early onset, reaction to the treatment
and severity of the illness. A schematic representation of the interaction between genetic
predisposition and environmental factors is shown in Figure 2. The underlying mechanics
of this interaction between genetic predisposition and environmental factors remain not
well understood.

Figure 2. Schematic representation of the interaction between genetic predisposition and environ-
mental factors in ulcerative colitis (UC) and Crohn’s disease (CD). IBD, in both of its main forms, is
likely caused by a combination of underlying genetic conditions and environmental conditions.
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There have been many developments in the genetics of IBD, but despite the identifi-
cation of some genes, the underlying process remains not well understood. The evidence
points to a process in which multiple genes are involved (polygenic) [23,24]. Cho and Abra-
ham [25] cited the well-known Nod2 (CARD15) polymorphism association with Crohn’s
disease. This gene is located in chromosome 16 and has been mentioned by multiple
authors [26]. Katuka et al. [27] mentioned that in Japan, the NUDT15 polymorphism is
routinely tested before administering thiopurine to inflammatory bowel disease patients.
Mathew and Lewis [28] studied genes in chromosome 5q31n 6p21 and 19p. Achkar and
Duerr [29] identified IL23R and ATG16L1 as being involved in CD. These two genes are
frequently mentioned in the existing literature [30]. Stoll et al. [31] identified DLG5, while
Cleynen et al. [32] identified 163 susceptibility loci for IBD. Ahmad et al. mentioned that
CD and UC are related diseases that share some but not all the susceptibility genes [33].
Inflammatory bowel disease is a chronic disease that typically requires lifelong medica-
tion [34]. Given the heterogeneity in the illness, it is not surprising that there are multiple
treatment options with different levels of expected success.

Machine learning techniques are increasingly popular in medicine with applications in
many different types of illness [35–37]. There has been some interesting research applying
machine learning techniques in the context of inflammatory bowel disease [38–40]. This has
been in part due to the large amount of data generated experimentally [41] and the need to
come up with appropriate techniques to analyze such a large quantity of data. For instance,
Wei et al. [42] used GWAS data to carry out a risk assessment of patients with ulcerative
colitis or Crohn’s disease. Isakov et al. [43] identified 67 genes using machine learning
techniques related to IBD. Coelho et al. [44] also used machine learning techniques, but
their analysis covers pediatric patients, who have some characteristics different from the
usual adult case. The same group of authors published another interesting paper [38] using
three different machine learning techniques and endoscopic data, achieving an accuracy
of 71.0%, 76.9% and 82.7% respectively. The work of Smolander et al. [45] is another
interesting paper analyzing gene expression, using machine learning techniques in the
context of complex disorders. Some authors, such as Stankvic et al. [46], mentioned that
despite an increase in the use of machine learning techniques in IBD, the understanding of
the illness remains incomplete.

One of the main objectives of this article is trying to identify genes that are relevant in
the context of inflammatory bowel disease using machine learning techniques. The genes
are chosen by selecting those genes with a gene expression level that is empirically useful to
distinguish between control individuals and patients with IBD. The details of this process
will be explained in the next section, but it is based on using different machine learning
techniques (classification purposes) in combination with Monte Carlo simulations for the
selection of genes. Another objective of this article is to be able to identity appropriate genes
differentiating between Crohn’s disease and ulcerative colitis using a similar approach than
when distinguishing between healthy and IBD patients.

2. Materials and Methods

The dataset was retrieved from the Gene Expression Omnibus. The identification
number is GSE 193677 [47]. The data include 2490 total cases. Of these 2490 cases, 461 are
controls cases, while 2029 are individuals with adult inflammatory bowel disease (IBD).
Of those 2029, a slight majority of 1157 have Crohn’s disease while 872 have ulcerative
colitis. The average age of the patient is 44.9 years, with a range from 19 to 82 years old.
A histogram showing the age distribution is shown in Figure 3. There are 1174 female and
1316 male cases. Tissue biopsies were obtained in the right colon, left colon, transverse,
rectum, Ileum, sigmoid and cecum. The number of cases for each of this regions is summa-
rized below in Table 1. The data consist of gene expression profiling by high throughput
sequencing obtained using the Illumina HiSeq 2500 (Illumina, Inc. San Diego, CA, USA).
There are 56,632 expression profiling data per patient.
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Figure 3. Histogram describing the age of the patients. The range is from 19 to 82 years old.

Table 1. Biopsies (tissue areas).

Area Cases

Rectum 904
Left colon 180

Right colon 252
Ileum 672

Transverse 90
Sigmoid 163
Cecum 229

The data were divided into two subgroups, a training dataset and a testing dataset.
ΨTr denotes the training dataset and ΨTs the testing dataset. The training and testing
datasets contain approximately 80% and 20% of all the cases, respectively. Each column
represents a patient. The division into a training and a testing dataset was carried out in a
randomized way to try to avoid introducing biases in the analysis. The first row in each
dataset contains a numerical classifier identifying the subject as a control or patient (UD or
CD) as shown in Equation (1):

∀j ∈ [1, n], Φj = {Control = 0, UC = CD = 1} (1)

with n being the total number of cases. An example, for clarity purposes, can be seen in
Equation (2):

Φ = {Φ1, Φ2, ..., Φn} = {1, 0, ..., 1} (2)

The following two rows contain the age (a), see Equations (3) and (4), and the gender
(S), see Equations (5) and (6), of each individual, respectively:

∀j ∈ [1, n], aj = {xj} x ∈ R (3)

a = {age} = {a1, a2, ..., an} = {47, 52, ..., 61} (4)

∀j ∈ [1, n], Sj = {Female = 0, Male = 1} (5)

S = {gender} = {S1, S2, ..., Sm} = {0, 1, ..., 1} (6)

In a similar way, the following row contains the region for the biopsy. All the other
rows contain gene expression data (see Equations (7) and (8)):

∀j ∈ [1, n], ∀k ∈ [1, m], gkj = {Zkj} Z ∈ R (7)
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Gk = {gkj} = {18, 241, ..., 132} (8)

where k is the index for each row. An example, for visualization purposes, of the data can
be seen in Equation (9):

ΨTr =




0 1 2 0 · · ·
60 45 35 55 · · ·
0 0 1 1 · · ·
0 0 0 1 · · ·

80 30 55 40 · · ·
...

...
...




(9)

As a first step, the correlation C0(c, d) between the categorical data representing the
classification group (control or IBD) and each row is calculated (Equations (10)):

∀ k ∈ [1, m], C0 = C0(Φ, Gk) (10)

Therefore, C0 is a vector with m components. From this mapping, the highest
q% (0 ≤ q ≤ 100) is selected among these m values. Hence, there is a reduction in
the dimension of the vector (Equation (11)):

C0(dim = m)⇒ C∗0 (dim = m < k) (11)

This step is performed in an attempt to include the factors that are potentially able to
generate an accurate model while filtering out potential noise (not all genes are involved in
inflammatory bowel disease). In other words, it is an attempt to filter out noise from genes
than have no biological impact on the disease but that can lead the model to find spurious
relationships given the large amount of data. The above-mentioned step is carried out only
with the training dataset (containing approximately 80% of the cases). After this step, when
the genes have already been selected, then all the other genes will be excluded from both
the training and the testing dataset. In this way, it is possible to carry out a filtering of the
initial gene list. A selection of 23 machine learning techniques was selected; see Table 2.
Ten times cross validation was carried out (training dataset).

Table 2. Selected machine learning algorithms.

Algorithm Algorithm

Complex Tree Fine KNN
Medium Tree Medium KNN
Simple Tree Coarse KNN

Linear Discriminant Cosine KNN
Quadratic Discriminant Cubic KNN

Logistic Regression Weighted KNN
Linear SVM Boosted Trees

Quadratic SVM Bagged Trees
Cubic SVM Subspace Discriminant

Fine Gaussian SVM Subsspace KNN
Medium Gaussian SVM RUSBossted Trees
Coarse Gaussian SVM

The artificial neural network (ANN) is a well-known machine learning algorithm.
Given its versatility and wide use, this technique is used to determine a baseline classifi-
cation accuracy, against which the other techniques are compared. In the ANN approach,
it is necessary to carry out hyperparameter optimization. One of the key parameters to
optimize is the number of layers in the ANN. This is achieved by carrying out simulations
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from 1 to 1000 layers and the related accuracy estimated. Unless explicitly mentioned, the
accuracy (and other measures of the goodness of the fit) is that of the testing dataset (not
used during the training phase). In this way, for each configuration γ (γ = {1, ..., 1000}),
an accuracy Ann measure is estimated (Aγ

nn). Then, the best model (Ānn) is selected as

Ānn(γ) = sup(Aγ
c ) (12)

This is the baseline model. For each machine learning techniques, the model is trained
with the training dataset, and then an accuracy estimate is obtained, and the best model
Ā(λ) is selected (Equation (13)). The training and model selection (gene selection) is entirely
performed with the training dataset. After the model is selected (including the genes),
the accuracy and other metrics are expressed in terms of the testing dataset (not used for
training or model selection):

Ā(λ) = sup(Aλ) (13)

Then this is compared to the base level, selecting the final best model Āmax as follows:

Amax = max{Ānn(γ), Ā(λ)} (14)

This analysis is initially carried out for all the gene expression data available after
selecting the top q = 1%. In this case, the initial number of gene expression data per patient
entails 566 rows of information. Then a Monte Carlo approach is followed, in which the
number of rows is randomly reduced in each iteration by a random number β. This random
number β is changed in each iteration and is strictly less than the total number of rows
in the previous iteration. An example is summarized in Table 3. The rationale behind
using a Mote Carlo simulation approach is that it is not feasible to estimate all the possible
combinations of 566 genes, and hence some type of combinatorial approach needs to be
used. This is a frequent situation in polygenic illness, such as IBD, in which a potentially
large number of genes might be involved in the disease.

Table 3. Example of iterative algorithm testing different configurations of gene expressions.

Iteration Initial N. Genes β

0 566 30
1 536 125
2 411 58
3 353 9
4 344 215
...

...
...

This process is repeated p times (p = 100), and the ten most accurate models are selected.
In the second section, a similar approach is followed but the mapping shown in

Equation (1) has to be changed, as the objective is now to distinguish between ulcerative
colitis and Crohn’s disease cases (the two major types of IBD). The mapping in this case is
as follows (Equation (15)):

∀j ∈ [1, u], Φj = {UC = 0, CD = 1} (15)

An alternative approach to the one presented is using a linear approach, such as,
for instance, lasso regression [48,49]. Lasso regression offers the advantage that it makes
some of the coefficients equal to zero, in practice reducing the number of inputs to the
model. Using lasso regression, it is possible to reduce the number of genes selected for
the classification model. In fact, lasso has become a frequently used feature selection
algorithm [50,51].
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3. Results

As previously described, the first step involves estimating a base level for the accuracy
using artificial neural networks with simulations using 1 to 100 hidden layers. Each layer
consists of 30 neurons. As it can be seen in Figure 4, increasing the number of layers does not
necessarily translate into higher accuracy. The highest accuracy (testing dataset) obtained
is 80.35% with a configuration including 920 hidden layers. The only other simulation
reaching an accuracy above 80.00% is an ANN with 330 layers, reaching 80.10%. All the
other simulations achieve a mean accuracy below 80.00%. No model has an accuracy below
70%. These results are obtained for a configuration of 74 rows (gene expression) which,
as will be shown later, is the configuration that obtains the highest accuracy for the machine
learning algorithm tested. As previously mentioned, the reported accuracy is the accuracy
of the testing dataset, which is not used during the training phase.

Figure 4. Accuracy of the neural network model for a range of number of artificial neurons. No
model has an accuracy below 70% or higher than 80.35%.

Different machine learning algorithms are tested (as described in the Materials and
Methods section). As an example, in Table 4, the accuracy results for one of the simulations
are shown (140 gene expressions). In this specific case, the highest accuracy obtained is
81.5%. This accuracy is obtained by five different algorithms (Linear SVM, Fine Gaussian
SVM, Medium Gaussian SVM, Coarse Gaussian SVM and Coarse KNN).

The results from the 10 most accurate simulations can be seen in Table 5. Of the ten
most accurate results, nine use the bagged trees algorithm. The only other algorithm in the
top ten most accurate models is the Subspace KNN. The highest accuracy is obtained for a
model with 74 gene expression data, obtaining an accuracy, sensitivity and specificity of
84.2%, 82.6% and 84.4%, respectively. The list with these 74 genes can be found in Table 6.
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Table 4. As an example, in this table, sample training with all 23 algorithms is shown. In this case,
the model uses 140 gene expression data and the highest accuracy is 81.5%. This accuracy is actually
reached by several algorithms (Linear SVM, Fine Gaussian SVM, Medium Gaussian SVM, Coarse
Gaussian SVM and Coarse KNN).

Algorithm Accuracy

Complex Tree 0.701
Medium Tree 0.783
Simple Tree 0.804

Linear Discriminant 0.645
Quadratic Discriminant 0.711

Logistic Regression 0.807
Linear SVM 0.815

Quadratic SVM 0.788
Cubic SVM 0.756

Fine Gaussian SVM 0.815
Medium Gaussian SVM 0.815
Coarse Gaussian SVM 0.815

Fine KNN 0.719
Medium KNN 0.770
Coarse KNN 0.815
Cosine KNN 0.768
Cubic KNN 0.764

Weighted KNN 0.773
Boosted Trees 0.805
Bagged Trees 0.804

Subspace Discriminant 0.812
Subsspace KNN 0.748

RUSBossted Trees 0.606

Table 5. Top ten models obtained according to the accuracy metric.

N. Genes Algorithm Accuracy Sensitivity Specificity

74 Bagged Trees 0.842 0.826 0.844
38 Subspace KNN 0.842 0.755 0.859
18 Bagged Trees 0.839 0.787 0.847

139 Bagged Trees 0.836 0.755 0.850
220 Bagged Trees 0.834 0.758 0.847
266 Bagged Trees 0.833 0.740 0.850
26 Bagged Trees 0.833 0.821 0.834
16 Bagged Trees 0.833 0.879 0.828
17 Bagged Trees 0.831 0.738 0.848

104 Bagged Trees 0.830 0.750 0.843

The results, when differentiating UC and CD cases, are not as accurate as when
differentiating between control cases and IBD cases. This is in line with the expectations, as
we are differentiating between two types of the same illness. These results are shown in
Table 7. The most accurate result is obtained when using 562 gene expression data and the
bagged trees algorithm. The accuracy, sensitivity and specificity are 73.4%, 79.0% and 71.2%,
respectively. The list with these 562 genes can be found in the Supplementary Material.
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Table 6. List of 74 genes selected by the algorithm.

B2M RPS3 CHP1 SLC35A3
MALAT1 MAN2B1 ETNK1 PDIA3
EEF1A1 NDRG1 SLC1A2 DDX3X
MUC2 AHCYL2 GHITM WDR1
FABP6 RPS14 MGAT4A KLF5
KRT20 MYO1D CLDN7 TSC22D1
CA1 A2M COPZ2 RPL35A

FLNB ADH1C APOC3 SCP2
PHGR1 DDX17 SAT1 MATR3

IGKV1-5 FOS ACE CD46
CKB RPL7 CD2AP HNRNPH1

FABP1 SLC44A1 PAPSS2 PRKDC
FABP2 FN1 PDCD4 RPL37
CLDN4 RPL18 HPGD LUM
TSPAN3 TDP2 UGT2A3 HSPA9
CDHR2 RPS12 UQCRC1 KIAA1109
CLTC SPINT2 ST6GALNAC6 MIM24

COL1A2 RPL10A ARF1
ENO1 NCOA4 PRKACB

Table 7. Top ten models obtained according to the accuracy metric distinguishing UC and CD patients.

N. Genes Algorithm Accuracy Sensitivity Specificity

562 Bagged Trees 0.734 0.790 0.712
66 Bagged Trees 0.728 0.679 0.767
24 Bagged Trees 0.718 0.665 0.742
37 Bagged Trees 0.718 0.821 0.687

564 Bagged Trees 0.712 0.909 0.671
132 Bagged Trees 0.704 0.929 0.676
49 Bagged Trees 0.704 0.679 0.719
15 Bagged Trees 0.700 0.713 0.697

550 Bagged Trees 0.694 0.871 0.659
277 Bagged Trees 0.673 0.616 0.717

As previously mentioned, an alternative approach to the one proposed is using lasso
regression as a tool for the selection of inputs. The lasso approach selects 470 genes with
the goodness-of-fit metric shown in Table 8. The accuracy and specificity results obtained
in this approach are similar to those obtained in the proposed approach in the previous
section. However, the sensitivity results from the lasso approach seem to be lower.

Table 8. Top ten models obtained using the lasso approach (470 genes) according to the accuracy
metric distinguishing between control and UC and CD patients.

Algorithm Accuracy Sensitivity Specificity

Medium KNN 0.817 0.667 0.817
Bagged Trees 0.817 0.667 0.817

Weighted KNN 0.815 0.500 0.816
Cubic KNN 0.807 0.143 0.815
Simple Tree 0.804 0.231 0.816

Subspace Dis. 0.804 0.405 0.829
Linear Dis. 0.802 0.433 0.842

Cosine KNN 0.802 0.300 0.819
Medium Tree 0.797 0.200 0.817

Subspace KNN 0.786 0.313 0.826

The lasso approach is also used to distinguish between UC and CD patients. In this
case, the lasso approach selects 430 genes. The table with the goodness-of-fit results in this



Medicina 2023, 59, 1218 10 of 15

approach is shown below (Table 9). The results using the lasso approach to distinguish
between UC and DC patients are not as accurate as in the previous section. In both cases,
using lasso or the proposed approach, differentiating between UC and DC patients appears
to be more challenging than differentiating between control health individuals and patients
with UC/CD. The lasso approach does not appear to increase the goodness of fit of the
classification forecasts compared to the approached followed in the previous section.

Table 9. Top ten models obtained using the lasso approach (430 genes) according to the accuracy
metric distinguishing between UC and CD patients.

Algorithm Accuracy Sensitivity Specificity

Subspace Dis. 0.584 0.611 0.523
Logistic Reg. 0.572 0.617 0.503

Medium KNN 0.568 0.580 0.493
Cubic KNN 0.562 0.578 0.474

Weighted KNN 0.560 0.584 0.478
Simple Tree 0.558 0.569 0.412

Bagged Trees 0.558 0.583 0.474
Boosted Trees 0.556 0.580 0.467
Cosine KNN 0.550 0.574 0.448

Fine KNN 0.538 0.595 0.463

4. Discussion

Machine learning techniques are used to identify a set of 74 genes, which can be used,
with an average accuracy of 84.2%, to distinguish between control (healthy individuals)
and patients with inflammatory bowel disease. The specificity and sensitivity of this
model are also relatively high at 82.6% and 84.4%, respectively. The selection of these
74 genes is carried out following a Monte Carlo simulation approach. Given that some of
the symptoms of inflammatory bowel disease are common in other illnesses, it might be
interesting to have another objective diagnostic tool. It is also interesting to observe that
among multiple machine learning techniques used in the cohort of patients analyzed, the
bagged trees approach seems to consistently achieve a high level of accuracy, particularly
when compared to other, arguably more sophisticated machine learning techniques, such
as artificial neural networks. The analysis controls for age, gender and region of the
biopsy. The proportion of female and male cases is balanced, with 1174 female patients
and 1316 male patients. The average age in the cohort is 44.9 years, covering a wide age
range (from 19 to 82 years old). The results of the artificial neural networks include an
optimization of the hyperparameters with simulations ranging from 1 to 1000 hidden layers.
It is also observed that simply increasing the number of layers in an artificial neural network
does not necessarily translate into better accuracy. It is also possible to distinguish between
the two main types of IBD—Crohn’s disease and ulcerative colitis—but in this case with a
lower level of accuracy. The accuracy, using this approach is 73.4%. The accuracy, sensitivity
and specificity reported are those of the testing dataset. As normal practice, the data are
divided into training and testing datasets in an attempt to increase the reproducibility
of the analysis. Approximately 20% of the total cases are included in the testing dataset.
The relatively large number of genes obtained in the bets model is in line with the prevalent
view in the existing literature that the illness is polygenic.

There is a high degree of heterogeneity in inflammatory bowel disease, leading to
varied severity and evolution of the illness. The existing literature, see, for instance,
Yamamot et al. [52] or Ahmad et al. [33], points towards a polygenic illness with a
complex interaction with environmental factors. Our results are consistent with this
polygenic description. In this context, it is important to generate algorithms that are
able to differentiate among control and patients as well as between different types of
inflammatory bowel disease, namely Crohn’s disease and ulcerative colitis. A promising
area of future research is to apply this type of approach in order to target treatments in a
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more personalized way. It seems reasonable that there could be genetic differences among
patients that can have a substantial impact on the outcome of the suggested treatments.
This is particularly important in the context of inflammatory bowel disease, given the
heterogeneity of the responses to treatments by different patients.

Some of the genes identified by the proposed algorithm are cited in the existing
literature on intestinal-related illnesses. B2M was mentioned by Krzystek-Korpacka et al. [53]
in the context of bowel inflammation. There are other papers, such as that of Bednarz-
Misa et al. [54], discussing B2M in the context of bowel inflammation and cancer. Another
gene identified by the algorithm is MALAT1, which is also mentioned in the existing
literature. Li et al. [55] suggested that MALAT1 maintains intestinal mucosal homeostasis
in Crohn’s disease. The authors concluded that the downregulation of MALAT1 contributes
to the pathogenesis of CD. EEF1A1 was identified in a dog study as being involved
in inflammatory bowel disease and cancer by Sahoo et al. [56]. The role of MUC2 in
protecting the integrity of the mucosa was mentioned by Huang et al. [57]. The authors
mentioned that it is possible to induce colitis in mice by suppressing the MUC2 gene.
Heimel et al. [58] found high levels of expression of FABP2 and FABP6 when analyzing
alterations in intestinal fatty acid metabolism in IBD. CA1 was mentioned by Xie et al. [59]
as playing a role in IBD. PHGR1 was identified by Camilleri et al. [60] as potentially
increasing the risk of diverticular disease of the colon. FABP1 was identified as a biomarker
for Crohn’s disease by Dooley et al. [61]. COL1A2 was mentioned by Prados et al. [62]
in murine models of IBD. ENO1 was mentioned by Shkoda et al. [63] for its role in IBD
pathobiology. Another gene selected by the algorithm and mentioned in the literature as
being related to IBD is NDRG1 [64]. Song et al. [65] showed that ADH1C is downregulated
in UC. FN1 was suggested by Al-Numan [66] to be related to the early onset of IBD. SPINT2
plays a role in epithelial adhesion [17]. CLDN7 is associated with colitis according to
several authors [67,68]. Darsigny et al. [69] found a link between APOC3 and chronic
inflammation in mice resembling IBD. KLF5 was identified by Dong et al. [70] as one of the
genes downregulated in IBD. Gorenjak et al. [71] linked HSPA9 with IBD.

One of the challenges, and possible limitations, of this type of analysis is the fact that
it is impossible to estimate all possible combinations of genes, and hence it is necessary to
use some sort of combinatorial approach, such as the Monte Carlo model used to select the
genes. There is also no indication that gene expression and IBD are related by an underlying
linear model. Given this assumption, using machine learning techniques, which are adept
to modeling nonlinear systems, seems like a reasonable approach. Another factor to take
into account is that, while the cohort of cases is not small, including 2490 cases, it can
always be larger.

5. Conclusions

Following a machine learning approach, it was possible to identify a list of genes that
appear to be related to inflammatory bowel disease. Given the complexity of this illness,
which appears to be caused by a combination of polygenic factors as well as environmental
factors, which could, in principle, interact in a non-linear way, the illness was analyzed
using non-linear models, such as machine learning techniques. This approach was able to
distinguish, using a small number of genes, between patients with IBD and control (healthy)
patients as well as patients with the two major forms of IBD, which are Crohn’s disease
and ulcerative colitis. In other words, the machine learning algorithms are able to classify
different types of gene expression signatures associated with IBD. It might be possible in
the future, when more data become available, to be able to distinguish between different
genetic signatures of the illness that might potentially help develop more personalized
treatments. This is important for an illness as heterogeneous as IBD, for which patients
follow different evolutions and might present different clinical manifestations.



Medicina 2023, 59, 1218 12 of 15

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/medicina59071218/s1, Supplementary Material: The list of
562 genes.

Author Contributions: Methodology, G.A.P. and R.C.; software, G.A.P; validation, G.A.P. and R.C.;
formal analysis, G.A.P. and R.C.; investigation, G.A.P. and R.C.; resources, G.A.P. and R.C.; data
curation, G.A.P. and R.C.; writing—original draft preparation, G.A.P.; writing—review and editing,
G.A.P. and R.C.; visualization, G.A.P. and R.C.; supervision, G.A.P. and R.C.; project administration,
G.A.P. and R.C. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Spanish Ministerio de Ciencia, Innovación y Universidades
(PGC2018-094852-B-C21), and Universitat Jaume I (UJI-B2019-43).

Informed Consent Statement: Not applicable.

Data Availability Statement: The data are accessible at: https://www.ncbi.nlm.nih.gov/geo/
(accessed on 1 June 2023).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

IBD Inflammatory Bowel Disease (IBD)
UC Ulcerative Colitis
CD Crohn’s Disease
GEO Gene Expression Omnibus
KNN k-Nearest Neighbors
SVM Support Vector Machine
ANN Artificial Neural Network

References
1. Frolkis, A.; Dieleman, L.A.; Barkema, H.W.; Panaccione, R.; Ghosh, S.; Fedorak, R.N.; Madsen, K.; Kaplan, G.G. Environment and

the inflammatory bowel diseases. Can. J. Gastroenterol. 2013, 27, 18–24. [CrossRef] [PubMed]
2. Rogler, G.; Singh, A.; Kavanaugh, A.; Rubin, D.T. Extraintestinal manifestations of inflammatory bowel disease: Current concepts,

treatment, and implications for disease management. Gastroenterol. 2021, 161, 1118–1132. [CrossRef] [PubMed]
3. Seyedian, S.S.; Nokhostin, F.; Malamir, M.D. A review of the diagnosis, prevention, and treatment methods of inflammatory

bowel disease. J. Med. Life 2019, 12, 113. [CrossRef] [PubMed]
4. Zhang, Y.; Li, Y. Inflammatory bowel disease: Pathogenesis. World J. Gastroenterol. 2014, 20, 91. [CrossRef] [PubMed]
5. Pithadia, A.B.; Jain, S. Treatment of inflammatory bowel disease (IBD). Pharmacol. Rep. 2011, 63, 629–642. [CrossRef]
6. Kaplan, G.G.; Windsor, J.W. The four epidemiological stages in the global evolution of inflammatory bowel disease. Nat. Rev.

Gastroenterol. Hepatol. 2021, 18, 56–66. [CrossRef]
7. Xie, J.; Itzkowitz, S.H. Cancer in inflammatory bowel disease. World J. Gastroenterol. 2008, 14, 378. [CrossRef]
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4
DISCUSSION

4.1 Protein classification using machine

learning techniques

Mapping categorical variables into numerical variables is a

common practice in many machine learning classification tasks,

and it is frequently carried out in an arbitrary matter. In this

dissertation, we proposed four different assumptions related to

this topic in the context of protein classification: (1) translation,

(2) permutation, (3) constant, and (4) eigenvalues. Assumptions

1–3 are related to the concept of equivalent mappings in which

changes to the mapping should, in principle, not alter the re-
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sults of a classification analysis (for instance, adding a constant

to all the input parameters). Assumption 4 relates to a less

strict requirement in which the mappings are not in principle

strictly equivalent, but they are comparable. An example is the

eigenvalue mapping approach in which the information about

the order of the amino acids (present in the initial mapping) is

not contained in this new mapping. The results for Assumptions

1–3 showed that, in the majority of the cases, no statistically

significant difference exists between the mappings when we

compared their mean accuracy. The case of Assumption 4 is

different, and we see that using the eigenvalue approach gen-

erates similar or more accurate classifications than the base

case model. All these numerical simulations were carried out

for 23 different classification algorithms, including KNN, Tress,

and SVMs. As previously mentioned, the eigenvalue approach

(related to Assumption 4) generated accurate estimations for

most algorithms. One noticeable exception was SVM, which, in

many cases, failed to generate a classification estimation and

was, therefore, excluded from the analysis. For the majority

of the other algorithms, the eigenvalue approach generated
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results that were not statistically significantly different from

the base case or that had higher mean accuracy than the base

case. The best model obtained a mean classification accuracy of

83.25%. While direct comparisons are challenging, this result

is 14.15% better than the lower-bound result obtained by Cai

et al. [213] but lower than the upper bound. This is consistent

with the idea of focusing the analysis on the stability of results

rather than only focusing on increasing accuracy. This result

is also substantially higher than the lower bound achieved by

Karchin et al. [214], in which the authors focused on a specific

subset of proteins

An optimization analysis algorithm was also presented for

the automated selection of the number of neurons in a classi-

fication model using only the frequency of the occurrence of

amino acid in the amino acid chain as input (no order informa-

tion), as well as the length of the chain. The model included

a quadratic penalty function to try to decrease the chance of

overfitting. This approach generated an accuracy of 85.02%

percent. This result is even closer to the upper bound (and

substantially higher than the lower bound) of Cai et al. [213]
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even after accounting for the penalty function introduced to

avoid an overly complex model, which potentially could impact

the generalization capabilities of the model, i.e., the accuracy of

the classification when faced with new data. Furthermore, this

approach does not require the use of techniques such as NLP,

which could be beneficial from an implementation point of view,

as there is a large number of machine learning applications

that can be easily and accurately applied to numerical values,

and there is no indication that an NLP approach will generate

more accurate results. It should be noted that this accuracy is

not directly comparable with the accuracy obtained in the previ-

ous sections, as there was no additional algorithm optimization.

The focus was on the comparability of the models, and hence

it did not appear appropriate to add additional optimization

techniques that differ in the different algorithms. For instance,

an optimization process based on finding an appropriate num-

ber of neurons, as shown in the optimization section, cannot

be performed for other classification techniques such as KNN,

SVM, or Trees, as they do not use artificial neurons. This type

of big data analysis is challenging and can be computationally
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expensive, depending on the type of machine learning applied

and/or the optimization algorithm followed.
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4.2 Non-linear identification of carcinoma

The proposed approach of using DNA methylation data, as

inputs, and an algorithm combining ridge regression and arti-

ficial neural networks, for the task of differentiating between

healthy control individuals and individuals with anal and cervi-

cal carcinomas, generated accurate results with specificity and

sensitivity higher than ones obtained in other papers in the

field. The algorithm selected 13 CpGs from a starting point of

approximately 450,000 CpGs per patient. Technological devel-

opments have made it possible to obtain such large amounts of

methylation data but at the same time have made the analysis

of such data challenging. Given that there is no indication that

there is a linear relationship between the level of methylation

(CpGs) and the presence of anal or cervical carcinoma, the mod-

eling approach was performed with nonlinear techniques such

as artificial neural networks. One of the issues with this type

of model is the risk of overfitting, particularly in this type of

situation in which there is a large number of inputs per patient

but a smaller number of patients. In order to reduce this type

of risk, it is important to reduce the dimensionality of the data.
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Additionally, this reduction in the dimensionality can point to

CpGs that might be important as biomarkers in the context of

the disease. The selected model was tested for robustness, with

the classification estimates remaining accurate for the vast

majority of the simulations. No individual CpGs, of those 13

selected by the model, achieved a mean accuracy above 88.94%,

which is substantially lower than the 97.69% accuracy obtained

by the model. Increasing the complexity of the models, by for

instance adding more layers to the neural network, did not

appear to increase the accuracy of the model. This might be

again related to the issue of overfitting. Similarly, adding more

complex penalty functions, such as for instance a quadratic

function rather than a linear function, did not improve the

accuracy.
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4.3 Identification of systemic sclerosis

Systemic sclerosis is a chronic and potentially life threatening

illness which is not yet fully understood. The illness has dif-

ferent variants, such as the diffuse form, with different levels

of severity in the prognosis. SSc is believed to be caused by a

combination of genetic predisposition and environmental fac-

tors. While there is currently no curative therapy, there have

been many advances on the treatments of related complications

of the illness. Some of these complications are potentially life

threatening. One common and severe complication of SSc is

interstitial lung disease (ILD). In this dissertation, we present

an algorithm that uses machine learning techniques, applied to

gene expression data, to be able to distinguish between control

(healthy) patients and patients suffering from interstitial lung

disease systemic sclerosis (ILD-SSc). This algorithm selects the

genes (and their expression levels) to be included as inputs

into machine learning models for the detection of the illness.

The precision of this approach is higher than the one obtained

using the genes expression for all the available genes. Having

biomarkers that are able to identify the illness might be im-
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portant from an early detection point of view. The accuracy of

the presented model was relatively high, at 92%, with a sensi-

tivity of approximately 75%. Our approach is complementary

of some of the existing research in this field that use clinical

manifestation of the illness. A potential advantage of using

the genetic expression information is that there is no need for

the illness to have clear clinical manifestations, such as skin

lesions. The approach followed in the algorithm also allowed

for the identification of 172 genes that might potentially have

some relevance in the context of ILD-SSc. These 172 genes ap-

peared in all the 20 most accurate models (out of half a million

models estimated). The assumption is that given the frequency

with which these genes appear in the most accurate models,

they might be related to the illness. The proposed algorithm

was also able to distinguish between the variants of the illness

(diffuse). While the precision was lower than in the previous

case (distinguishing between control and patients), it was rea-

sonably high with a sensitivity of approximately 72%. This is

reasonable, taking into consideration that the illness is likely

not only caused by genetic factors but from a combination of
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genetic factors and environmental exposures.
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4.4 Gene Identification on inflammatory

bowel disease

Machine learning techniques are used to identify a set of 74

genes, which can be used, with an average accuracy of 84.2%,

to distinguish between control (healthy individuals) and pa-

tients with inflammatory bowel disease. The specificity and

sensitivity of this model are also relatively high at 82.6% and

84.4%, respectively. The selection of these 74 genes is carried

out following a Monte Carlo simulation approach. Given that

some of the symptoms of inflammatory bowel disease are com-

mon in other illnesses, it might be interesting to have another

objective diagnostic tool. It is also interesting to observe that

among multiple machine learning techniques used in the co-

hort of patients analyzed, the bagged trees approach seems to

consistently achieve a high level of accuracy, particularly when

compared to other, arguably more sophisticated machine learn-

ing techniques, such as artificial neural networks. The analysis

controls for age, gender and region of the biopsy. The proportion

of female and male cases is balanced, with 1174 female patients
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and 1316 male patients. The average age in the cohort is 44.9

years, covering a wide age range (from 19 to 82 years old). The

results of the artificial neural networks include an optimization

of the hyperparameters with simulations ranging from 1 to

1000 hidden layers. It is also observed that simply increasing

the number of layers in an artificial neural network does not

necessarily translate into better accuracy. It is also possible

to distinguish between the two main types of IBD—Crohn’s

disease and ulcerative colitis—but in this case with a lower

level of accuracy. The accuracy, using this approach is 73.4%.

The accuracy, sensitivity and specificity reported are those of

the testing dataset. As normal practice, the data are divided

into training and testing datasets in an attempt to increase

the reproducibility of the analysis. Approximately 20% of the

total cases are included in the testing dataset. The relatively

large number of genes obtained in the bets model is in line with

the prevalent view in the existing literature that the illness is

polygenic. There is a high degree of heterogeneity in inflamma-

tory bowel disease, leading to varied severity and evolution of

the illness. The existing literature, see, for instance, Yamamoto
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et al. [215], points towards a polygenic illness with a complex

interaction with environmental factors. Our results are con-

sistent with this polygenic description. In this context, it is

important to generate algorithms that are able to differentiate

among control and patients as well as between different types

of inflammatory bowel disease, namely Crohn’s disease and

ulcerative colitis.
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CONCLUSIONS

In paper I the four proposed assumptions in the context of cate-

gorical variable mapping in protein classification problems: (1)

translation, (2) permutation, (3) constant, and (4) eigenvalues

were tested against empirical data. The results suggest that

these four assumptions are valid. The first three assumptions

are of a more fundamental nature i.e., there is no chemical

or biological reasons for them not to be satisfied. The fourth

assumption was also tested, with the results suggesting that

an eigenvalue approach can be used in the context of protein

classification generating accurate results
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In paper II the proposed approach is able to generate an

accuracy, sensitivity and specify of classification forecasts of

97.69%, 95.02% and 98.26%, respectively, illustrating that a

combination of DNA methylation with nonlinear methods such

as artificial neural networks might be useful in the task of

identifying patients with a carcinoma. This approach could be

complementary to the existing techniques such as occult blood

test and pap smear. This is conceivable, but additional testing

would be required to support this hypothesis, that DNA methy-

lation changes might be present in the patient before there

are clinical indications (occult blood test). This is an important

research question that should be addressed in future research.

Additionally, it is possible that finding different DNA methyla-

tion signatures could be used for personalized treatments. This

is another area in which more research would be needed. The

model achieved a substantial reduction in the number of CpGs

used as input from a starting point of approximately 450,000 to

only 13. This is important, as having an excessively large num-

ber of inputs could lead to overfitting issues. The combination

of these 13 CpGs generated more accurate forecasts that any of
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In paper III it was shown that gene expression data can

be successfully analyzed with machine learning techniques in

order to differentiate healthy patients and patients with in-

terstitial lung disease systemic sclerosis (ILD-SSc). The same

approach was also successfully used to differentiate between

variants of the illness. This type of approach might be used

in the future to provide more Personalized treatments for pa-

tients. It was also possible to identify a list of genes that were

suggested by the algorithm as related to ILD-SSc.

In paper IV, following a machine learning approach, it was

possible to identify a list of genes that appear to be related

to inflammatory bowel disease. Given the complexity of this

illness, which appears to be caused by a combination of poly-

genic factors as well as environmental factors, which could, in

principle, interact in a non-linear way, the illness was analyzed

using non-linear models, such as machine learning techniques.

This approach was able to distinguish, using a small number of

genes, between patients with IBD and control (healthy) patients

as well as patients with the two major forms of IBD, which are
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Crohn’s disease and ulcerative colitis. In other words, the ma-

chine learning algorithms are able to classify different types of

gene expression signatures associated with IBD. It might be

possible in the future, when more data become available, to be

able to distinguish between different genetic signatures of the

illness that might potentially help develop more personalized

treatments. This is important for an illness as heterogeneous

as IBD, for which patients follow different evolutions and might

present different clinical manifestations.
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FUTURE WORK

There are some interesting areas of future work. For instance,

in the context of protein modeling, it would be interesting to use

genetic algorithms or particle algorithms as potential optimiza-

tion strategies. There is a wide range of options to optimize this

type of analysis. There is, however, the risk of overfitting the

model, and some measures should be taken to minimize that

risk, such as using a penalty function, as we used in this article,

to penalize the accuracy of overly complex models. Arguably, an

overly complex model is more likely to result in an overfitting

issue than a simpler model.
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Another interesting area of future research is combining

different types of genetic information such as gene expression

levels and DNA methylation levels to create more accurate

fingerprints of individuals differentiating between healthy and

patients suffering from some of the illnesses analyzed in this

dissertation. This type of analysis will require both availability

of data (gene expression and methylation) as well as having the

appropriate tools and algorithms to analyze such information.
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