

Graph	convolutional	neural	networks	for	
3D	data	analysis	

	
Albert Mosella-Montoro

ADVERTIMENT La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents
condicions d'ús: La difusió d’aquesta tesi per mitjà del repositori institucional UPCommons
(http://upcommons.upc.edu/tesis) i el repositori cooperatiu TDX (h t t p : / / w w w . t d x . c a t /) ha
estat autoritzada pels titulars dels drets de propietat intelꞏlectual únicament per a usos privats
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei UPCommons o TDX. No
s’autoritza la presentació del seu contingut en una finestra o marc aliè a UPCommons (framing).
Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En
la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora.

ADVERTENCIA La consulta de esta tesis queda condicionada a la aceptación de las siguientes
condiciones de uso: La difusión de esta tesis por medio del repositorio institucional UPCommons
(http://upcommons.upc.edu/tesis) y el repositorio cooperativo TDR (http://www.tdx.cat/?locale-
attribute=es) ha sido autorizada por los titulares de los derechos de propiedad intelectual
únicamente para usos privados enmarcados en actividades de investigación y docencia. No se
autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un
sitio ajeno al servicio UPCommons No se autoriza la presentación de su contenido en una ventana
o marco ajeno a UPCommons (framing). Esta reserva de derechos afecta tanto al resumen de
presentación de la tesis como a sus contenidos. En la utilización o cita de partes de la tesis es
obligado indicar el nombre de la persona autora.

WARNING On having consulted this thesis you’re accepting the following use conditions: Spreading
this thesis by the institutional repository UPCommons (http://upcommons.upc.edu/tesis) and the
cooperative repository TDX (http://www.tdx.cat/?locale- attribute=en) has been authorized by the
titular of the intellectual property rights only for private uses placed in investigation and teaching
activities. Reproduction with lucrative aims is not authorized neither its spreading nor availability
from a site foreign to the UPCommons service. Introducing its content in a window or frame foreign
to the UPCommons service is not authorized (framing). These rights affect to the presentation
summary of the thesis as well as to its contents. In the using or citation of parts of the thesis it’s
obliged to indicate the name of the author.

Graph Convolutional Neural Networks

for 3D Data Analysis

by

Albert Mosella-Montoro

Supervised by

Javier Ruiz-Hidalgo

At the

Image Processing Group

Signal Theory and Communications Department

Universitat Politècnica de Catalunya

This dissertation is submitted on 24 November 2022 for the degree of Doctor of Philosophy (PhD)

Abstract

Deep Learning allows the extraction of complex features directly from raw input data, eliminating the need

for hand-crafted features from the classical Machine Learning pipeline. This new paradigm brought a boost in

the performance across several domains, including computer vision, natural language processing and audio

processing. However, there are still challenges when dealing with unorganized structures. This thesis addresses

this challenge using Graph Convolutional Neural Networks, a new set of techniques capable of managing

graph structures that can be used for processing 3D data.

The first part of the thesis focuses on the Graph Analysis task, in which we study the capabilities of Graph

Convolutional Neural Networks to capture the intrinsic geometric information of 3D data. We propose the

Attention Graph Convolution layer that learns to infer the kernel used during the convolution, taking into

account the particularities of each neighbourhood of the graph. We explore two variants of the Attention

Graph Convolution layer, one that explores a residual approach and another one that allows the convolution

to combine different neighbourhood domains. Furthermore, we propose a set of 3D pooling layers that mimics

the behaviour of the pooling layers found in common 2D Convolutional Neural Networks architectures. Finally,

we present a 2D-3D Fusion block capable of merging the 3D geometric information that we get from a Graph

Convolutional Neural Network with the texture information obtained by a 2D Convolutional Neural Network.

We evaluate the presented contributions on the RGB-D Scene Classification task.

The second part of this thesis focuses on the Node Analysis task, which consists of extracting features on

a node level, taking into account the neighbourhood structure. We present the Multi-Aggregator Graph

Convolution layer that uses a multiple aggregator approach to better generalize for unseen topologies and

learn better local representations. In addition, it reduces the memory footprint with respect to the Attention

Graph Convolution layer. Finally, we analyze the capabilities of our proposed Graph Convolution layers to

deal with heterogeneous graphs where the nodes of the graph may belong to different modalities. We evaluate

the presented contributions with the Computer Graphics process of skinning a character mesh. Specifically, we

propose a Two-Stream Graph Neural Network capable of predicting the skinning weights of a 3D character.

Acknowledgements

I would like to thank my supervisor, Javier Ruiz-Hidalgo, for his valuable guidance and support. I would also

like to express my most sincere gratitude to Iain Matthews and Denis Tomé. They did welcome me to work

with them for several months in what became a fruitful research stay where I had the opportunity to extend

and create an application of my research. Finally, I would like to thank my family for the support provided

throughout my entire life.

Contents

1 Introduction 15

1.1 Objectives and Contributions . 16

1.2 Outline . 17

2 Deep Neural Networks and 3D Data Structures 19

2.1 Essentials . 19

2.1.1 Perceptron . 19

2.1.2 Multilayer perceptron . 22

2.1.3 Training Neural Networks . 23

2.2 Convolutional Neural Networks . 29

2.2.1 Convolutional layers . 29

2.2.2 Pooling layers . 30

2.2.3 Residual networks . 30

2.3 Graph Neural Networks . 31

2.3.1 Message-passing architecture . 32

2.3.2 Graph Convolutional Layers . 33

2.4 3D Data Structures . 35

I Graph Analysis 38

3 Residual Attention Graph Convolutional Network 39

3.1 Related Work . 40

3.1.1 Attention methodologies . 40

3.1.2 Geometric Scene Classification . 40

3.2 Residual Attention Graph Convolutional Network . 40

3.2.1 Attention Graph Convolution . 41

3.2.2 Residual Attention Graph Convolution . 42

3.2.3 Voxel Pooling Layer . 42

3.3 Experimental Setup . 43

3.3.1 Datasets and Metrics . 43

3.3.2 Implementation details . 43

3.4 Results . 46

3.4.1 Ablation Studies . 46

3.4.2 Comparison with state-of-the-art . 48

3.5 Conclusions . 49

4 2D-3D Fusion Network using Multi-Neighbourhood Graph Convolutional Network 50

4.1 Related Work . 51

4.1.1 2D-3D fusion networks . 51

4.1.2 Multi-modal scene classification . 51

4.2 2D-3D Geometric Fusion Network with Multi-Neighbourhood Graph Convolution 52

4.2.1 Revisiting AGC . 53

4.2.2 Multi-Neighbourhood Graph Convolution . 54

4.2.3 Nearest Voxel Pooling . 55

4.2.4 2D-3D Fusion block . 57

4.3 Experimental Setup . 59

4.3.1 Datasets and Metrics . 59

4.3.2 Implementation details . 59

4.4 Results . 62

4.4.1 Ablation Studies . 62

4.4.2 Comparison with state-of-the-art . 65

4.4.3 Qualitative results . 66

4.5 Conclusions . 68

II Node Analysis 69

5 Heterogeneous Graph Convolutional Neural Network using a Multi-Aggregator approach 70

5.1 Preliminaries . 71

5.1.1 Character creation pipeline . 71

5.1.2 Skinning methods . 71

5.2 Related Work . 73

5.3 SkinningNet . 74

5.3.1 Graph Construction . 75

5.3.2 Multi-Aggregator Graph Convolution . 76

5.3.3 Graph Convolutional Blocks . 77

5.4 Experimental Setup . 78

5.4.1 Datasets and Metrics . 78

5.4.2 Implementation details . 79

5.5 Results . 81

5.5.1 Ablation Studies . 81

5.5.2 Comparison with state-of-the-art . 85

5.5.3 Knowledge Transfer . 88

5.6 Conclusions . 91

6 Conclusions 92

6.1 Summary of contributions . 92

6.2 Future work . 93

Bibliography 94

List of Figures

2.1 The Perceptron model with input vector x⃗, weights w⃗, bias b and activation function σ. . . . 19

2.2 Sigmoid activation function. 20

2.3 Hyperbolic tangent (tanh) activation function. 20

2.4 Rectified Linear Unit (ReLU) activation function. 21

2.5 Leaky Rectified Linear Unit (Leaky ReLU) activation function. 22

2.6 Schema of a multilayer perceptron with a single hidden layer. 23

2.7 L1 loss function. 24

2.8 L2 loss function. 25

2.9 Cross-entropy loss function. 26

2.10 An example of applying a 2× 2 Max-Pool layer to an input of 4× 4. 30

2.11 Message-passing architecture applied on node x⃗ t
0 , where ϕ is the message function and γ is the

update function. 32

2.12 Example of a 3D Point Cloud from the NYU-Depth-V2 dataset [78] with RGB values. 35

2.13 Example of a 3D mesh of a cat with triangular faces. 36

2.14 Comparison between the kNN policy and the radius proximity policy with radius r. 36

2.15 Example of a one-ring neighbourhood. 37

3.1 Residual Attention Graph Convolutional Network architecture, where n is the number of

classes, and FC is a fully-connected layer. The Global Average Pooling layer computes a global

descriptor computing the average of all node features. 41

3.2 Attention Graph Convolution workflow. x⃗ t
i is the input feature vector of the node i, e⃗ t

i,j is the

edge’s attribute vector of the edge i← j, and Θi,j is the predicted weight matrix that is used

to generate the message for node j. 41

3.3 Residual Attention Graph Convolution block composed of two AGCs. 42

4.1 2D-3D Geometric Fusion Network architecture. 52

4.2 2D Texture branch architecture, where /2 means that the stride has a value of 2. Residual

Blocks are composed of two convolution layers with a kernel size of 3× 3. 52

4.3 3D Geometric branch architecture. 53

4.4 Classification network architecture. 53

4.5 Multi-Neighbourhood Graph Convolution, where x⃗i is the node feature vector i, e⃗ t
i,j is the

edge’s attribute vector of the edge i← j. Nodes with similar features are coloured with the

same colour. Both neighbourhoods are created using a kNN policy where k = 4. 55

4.6 Comparison of (a) Voxel Pooling and (b) Nearest Voxel Pooling. Crosses represent the new

centroids, and the dots the original points. Each colour indicates the points used to calculate

each centroid. 56

4.7 2D–3D fusion block architecture where Pg is the projection function of the 3D Geometric

features, and Pt is the projection function of the 2D Texture features. 57

4.8 Example of the group’s creation for the 2D–3D fusion stage. Each dot colour represents a

different feature (blue for 2D Texture and green for 3D Geometric), each circle represents a

different group, and the crosses represent the super-point of each group. 57

4.9 Qualitative results on SUN RGB-D dataset [100] showing the top 3 classes. Column (a) shows

an example of when all the stages of the proposed framework classify the scene properly.

Column (b) shows an example of when the 2D branch fails to classify the scene. Column (c)

shows an example of when both the 2D and 3D branches fail to classify the scene, but when

features of both branches are combined on the Fusion stage, the network is capable of properly

classifying the scene. Column (d) shows a failure case when all the components of the system

fail to distinguish the scene. 67

5.1 Pipeline of a common Automatic Skinning Weight Prediction Method. Asset from Paragon

Collection [23]. 72

5.2 SkinningNet architecture is composed of four main stages. Stage 1 is in charge of building

the needed graphs from the input mesh and its associated skeleton. Stage 2 is responsible for

extracting features independently for the mesh and skeleton. Stage 3 combines the previous

mesh and skeleton features to extract a descriptor that relates both structures. Stage 4 predicts

the skinning weights. Asset from Paragon Collection [23]. 75

5.3 Multi-Aggregator Graph Convolution workflow. 76

5.4 Euclidean vs. Geodesic qualitative results. It can be observed that the euclidean distance

introduces big deformation errors in the tail. Asset from RigNetv1 dataset [120]. 83

5.5 Skinning weight prediction results of each of the state-of-the-art methods. Each joint is assigned

a random colour, and colours are blended using the skinning weights associated with each

vertex. Assets from RigNetv1 dataset [120]. 86

5.6 Deformation error of three different characters with a randomly generated pose. Assets from

RigNetv1 dataset [120]. 86

5.7 Generalization study with Aurora and Rampage assets from the Paragon collection [23]. . . . 87

5.8 Analysis of the statistics in terms of the number of vertices and joints of the Fortnite™ dataset [24]. 88

5.9 Qualitative results using SkinningNet over a skeleton asset of the Fortnite™ dataset [24]. . . . 89

5.10 Comparison of predicted and ground truth skinning weights of the joint spine05 of the skeleton

asset from the Fortnite™ dataset [24]. 89

5.11 Qualitative results using SkinningNet over a robot asset of the Fortnite™ dataset [24]. 90

5.12 Comparison of predicted and ground truth skinning weights of the joint pelvis of the robot

asset from the Fortnite™ dataset [24]. 90

List of Tables

1.1 Thesis structure. 18

3.1 RAGC architecture details. n is the number of classes, and FC is a fully-connected layer. After

each AGC, we have batch normalization and ReLU activation layers. The Global Average

Pooling layer computes a global descriptor computing the average of all node features. 45

3.2 Analysis of kNN and radius proximity as neighbourhood generation policies used on RAGC on

SUN RGB-D dataset [100]. 46

3.3 Analysis of the effectiveness of different positional offset representations as edge attributes on

SUN RGB-D dataset [100]. 46

3.4 Comparison of different MLP architectures used on AGC to generate the weights on SUN

RGB-D dataset [100]. 47

3.5 Comparison between AGC and the state-of-the-art graph convolutions on SUN RGB-D

dataset [100]. 47

3.6 Performance comparison of state-of-the-art graph convolutions with residual connections on

SUN RGB-D dataset [100]. 47

3.7 Performance comparison with state-of-the-art methods on SUN RGB-D dataset [100]. 48

3.8 Performance comparison with state-of-the-art methods on NYU-Depth-V1 dataset [97]. . . . 48

4.1 2D-3D Geometric Fusion Network architecture details. P. filters define the number of filters

used on the Projection functions used to project the geometric and texture features. n is the

number of classes, and FC is a fully-connected layer. After each convolution and MUNEGC

layer, we have batch normalization and ReLU activation layers. The Global Average Pooling

layer computes a global descriptor computing the average of all node features. 60

4.2 Analysis of kNN and radius proximity as neighbourhood generation policies for the euclidean

neighbourhood of MUNEGC on SUN RGB-D dataset [100]. 62

4.3 Analysis of the effectiveness of different edge attributes on each kind of neighbourhood. L2 offset

is the L2 distance between the feature vector of two neighbours on SUN RGB-D dataset [100]. 62

4.4 Comparison of AGC and its residual and multi-neighbourhood extensions on SUN RGB-D

dataset [100]. 63

4.5 Comparison between maximum and average aggregators to fuse the euclidean and feature

neighbourhoods of MUNEGC on SUN RGB-D dataset [100]. 63

4.6 Performance comparison of state-of-the-art graph convolutions with the multi-neighbourhood

approach on SUN RGB-D dataset [100]. 63

4.7 Comparison between Nearest Voxel Pooling and Voxel Pooling layers on SUN RGB-D dataset [100]. 64

4.8 Comparison of different strategies for the 2D-3D Fusion block on SUN RGB-D dataset [100]. 64

4.9 Comparison of the RGB version of the 3D Graph Convolution vs. ResNet-18 on SUN RGB-D

dataset [100]. 65

4.10 Performance comparison with state-of-the-art methods on SUN RGB-D dataset [100]. 65

4.11 Performance comparison of the 3D Geometric branch with state-of-the-art methods on SUN

RGB-D dataset [100]. 65

4.12 Performance comparison with state-of-the-art methods on NYU-Depth-V2 dataset [100]. . . . 66

4.13 Performance comparison of the 3D Geometric branch with state-of-the-art methods on NYU-

Depth-V2 dataset [78]. 66

5.1 SkinningNet architecture details. k is the number of joints that can influence each vertex. . . 80

5.2 Study of the influence of each of the proposed stages on RigNetv1 dataset [120]. 81

5.3 Joint vs. Bone representation study, where the influence of each representation is analyzed on

RigNetv1 dataset [120]. 82

5.4 Geodesic vs. Euclidean performance comparison on RigNetv1 dataset [120]. 82

5.5 Graph Convolution study where MAGC has been compared with three different state-of-the-art

operators on RigNetv1 dataset [120]. 84

5.6 Comparison of different aggregation strategies on the Multi-Neighbourhood Graph extension

on RigNetv1 dataset [120]. 84

5.7 Comparison with the current state-of-the-art techniques on RigNetv1 dataset [120]. 85

5.8 Deformation error comparison with the current state-of-the-art techniques on RigNetv1 dataset

[120]. 85

5.9 Generalization Study of the state-of-the-art methods. The deformation error is computed using

a normalized version of the Paragon Assets [23]. 87

Acronyms

1D One Dimensional

2D Two Dimensional

3D Three Dimensional

AGC Attention Graph Convolution

CNN Convolutional Neural Network

DNN Deep Neural Network

EdgeConv Edge Convolution

FC Fully-Connected layer

FeaStConv Feature-Steered Graph Convolution

GAT Graph Attention Network

GCN Graph Convolutional Neural Network

GNN Graph Neural Network

GT Ground truth

ICA Independent Component Analysis

kNN k Nearest Neighbours

LBS Linear Blend Skinning

MAE Mean absolute error

MAGC Multi-Aggregator Graph Convolution

MLP Multilayer Perceptron

MSE Mean square error

MUNEGC Multi-Neighbourhood Graph Convolution

NVP Nearest Voxel Pooling

RAGC Residual Attention Graph Convolution

RGB Red, Green, Blue

RGB-D Red, Green, Blue, Depth

RNN Recurrent Neural Network

SVM Support Vector Machine

VP Voxel Pooling

Mathematical Notation

s Scalar

v⃗ Vector

ṽ Vector of homogenous coordinates

M Matrix

MT Transposed matrix M

R The set of real numbers

(a, b) The open interval from a to b

[a, b] The closed interval from a to b

f(x) f applied to input(s) x

log x The natural logarithm of x

∥ v⃗ ∥ The L2 norm of v⃗

vi Element i of vector v⃗

m⃗i The i-th row vector of matrix M

Mij Element (i, j) of matrix M

a⃗∥⃗b Concatenation of a⃗ and b⃗

∇θy|θ=θ′ Gradient of y with respect to θ, evaluated at θ = θ′

x ∼ P(x) Random variable x sampled from P

Var(f(x)) The variance of f(x)

U(a, b) The uniform real distribution on the range [a, b]

N (µ, σ) The normal distribution with mean µ and standard deviation σ

deg(i) The degree of the node i of a graph

CHAPTER 1

Introduction

Computer Vision is an interdisciplinary scientific field that explores techniques to mimic the human visual

perception system [74]. This system is in charge of capturing and processing the visual information of our

world. Humans are capable of identifying objects and learning relationships between them. To mimic this

behaviour, Computer Vision borrows techniques from Artificial Intelligence and Image Processing to try to

identify relevant information from vision signals.

Early algorithms in Computer Science addressed complex problems by breaking them down into simpler

ones, such that the steps to solve those problems were defined as a sequence of encoded instructions that

a computer could execute. Artificial Intelligence generalized this idea and tried to represent the knowledge

about the world as a base of axioms, along with simple rules for deriving new knowledge [79].

However, the community realised that the symbolic approach to Artificial Intelligence becomes intractable

since, in many problems of interest, it was extremely difficult to manually specify the axioms and rules that a

computer should use to reach a decision. This phenomenon is known as the symbolic grounding problem [38],

which states that relying on handcrafted features or mathematical elements can hardly be reconciled with the

richness of a real-world signal.

Machine Learning is a discipline within Artificial Intelligence that, motivated by how human beings learn

from past experiences, proposes a set of techniques that can learn from data. However, Machine Learning

still relies on handcrafted features to learn. In the 21st century, Deep Learning, a sub-field of the Machine

Learning discipline, has attracted much research interest. This set of techniques addresses the problem from a

representation learning perspective [6]. Deep Learning studies general-purpose systems, usually known as

Deep Neural Networks (DNNs), that can automatically learn hierarchical representations from data.

DNNs are composed of a stack of layers, with the first layer processing raw data and each following layer

receiving the output of the previous one. DNNs learn a more complex representation of the input data on

15

each layer, creating a hierarchical representation of the input signal and eliminating the need for handcrafted

features. Given a large training set of input and target examples, the network iteratively optimizes its

parameters using a first-order method [91] such as gradient descent. The network gradually learns better data

representations, where the shallower layers specialise in detecting simple features and the deeper layers more

complex ones.

In 2012 Krizhevsky et al. [55] proposed, for the first time in Computer Vision, the use of DNNs to solve

the ImageNet [18] classification benchmark. The proposed DNN named AlexNet reduced the top-5 error

from 25% to 15.3%. AlexNet guided the change in paradigm in Computer Vision to move away from

handcrafted representations towards learned ones. The use of DNNs yielded remarkable improvements in

different Computer Vision applications such as image classification [41, 98], object detection [29, 30, 89],

image segmentation [39, 70, 126], image captioning [113, 118] or text-conditioned image generation [7, 123],

among others. While there are a lot of DNN architectures for dealing with two-dimensional images, it is

still not clear how to deal with three-dimensional (3D) captures. Main DNN architectures assume organized

structures, and most of the sensors that capture 3D information are unorganized. This thesis addresses the

aforementioned challenge using Graph Convolutional Neural Networks (GCNs), a new set of techniques that

allows DNNs to work with graph structures that can be used for processing 3D data structures.

1.1 Objectives and Contributions

The main goal of this thesis is to study and improve current Graph Convolutional Neural Networks to analyze

3D data on different kinds of tasks. We focus our research on studying the capabilities of Graph Convolutional

Neural Networks to capture the geometric characteristics of 3D data, as well as the best way to use other

multi-modal information. We divide the research into two major parts: Graph and Node Analysis. Graph

Analysis consists of finding characteristics that define the whole graph structure, whereas node analysis

consists of predicting characteristics on a node level, taking into account the whole graph structure. Now, we

are going to present the contributions of this thesis for each of the two parts.

Graph Analysis Contributions:

The Graph Analysis part is divided into two blocks: In the first block, we first analyze the capabilities of GCN

to capture the geometric characteristics of 3D data. To this end, we propose the Attention Graph Convolution

layer, which learns to infer the kernel used during the convolution, taking into account the neighbourhood

configuration, allowing it to better capture the neighbourhood characteristics. Inspired by the well-known

residual blocks of 2D Convolutional Neural Networks (CNNs), we extend the Attention Graph Convolution

layer into a residual approach.

In the second block, we first analyze the best way to introduce other modal information. To this end, we

propose a 2D-3D Fusion Network capable of fusing multi-modal features from sensors with different resolutions.

Furthermore, we extend the previous Attention Graph Convolution into a multi-neighbourhood approach

which allows learning richer representations by exploiting the information from multiple neighbourhoods.

Finally, to be able to mimic the traditional CNNs architectures, we present the Nearest Voxel Pooling layer.

16

The results of this first part have been published in the following articles:

• Albert Mosella-Montoro and Javier Ruiz-Hidalgo. Residual Attention Graph Convolutional Network

for Geometric 3D Scene Classification. In Proceedings of the IEEE/CVF International Conference on

Computer Vision Workshop, 2019

• Albert Mosella-Montoro and Javier Ruiz-Hidalgo. 2D–3D Geometric Fusion network using Multi-

Neighbourhood Graph Convolution for RGB-D Indoor Scene Classification. Information Fusion, 76:46–54,

2021

Node Analysis Contributions:

In the Node Analysis part, we present the Multi-Aggregator Graph Convolution that uses a multiple aggregator

approach to better generalize for unseen topologies and learn better local representations. Furthermore, we

study the performance of previously proposed methods to infer characteristics at a node level of a heterogenous

graph. To this end, we propose a variant of the Multi-Aggregator Graph Convolution that better handles

heterogeneous graphs.

The results of this second part have been published in the following article:

• Albert Mosella-Montoro and Javier Ruiz-Hidalgo. SkinningNet: Two-Stream Graph Convolutional

Neural Network for Skinning Prediction of Synthetic Characters. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2022

1.2 Outline

This dissertation is organized into six chapters:

• Chapter 1: Introduction. Introduces the motivation, the main objectives and an overview of the

contributions of this dissertation.

• Chapter 2: Deep Neural Networks and 3D Data Structures. Presents the basic knowledge of

the techniques used in this dissertation.

• Chapter 3: Residual Attention Graph Convolutional Network. Chapter devoted to the study of

the capabilities of a GCN to capture the geometric characteristics of 3D data and presents the Attention

Graph Convolution and its residual extension. Furthermore, it proposes the Voxel Pooling layer to

mimic the traditional CNNs architectures.

• Chapter 4: 2D-3D Fusion Network using Multi-Neighbourhood Graph Convolutional

Network. Presents a two-branch approach to fuse multi-modal data. Furthermore, it introduces the

extension of Graph Convolutional Neural Networks to work in a multi-neighbourhood fashion. Finally,

17

it proposes the Nearest Voxel Pooling layer, an improved version of the Voxel Pooling layer that better

handles outliers.

• Chapter 5: Heterogeneous Graph Convolutional Neural Network using A Multi-Aggregator

approach. This chapter studies the performance of previously proposed methods to infer characteristics

at a node level of a heterogenous graph. Moreover, it presents the Multi-Aggregator Graph Convolution.

• Chapter 6: Conclusions. Summarizes and discusses the contributions of this dissertation. It also

gives a high-level description of future research lines.

Chapters 3, 4, 5 are divided into two research parts, aforementioned and depicted in Table 1.1.

Part I Part II

Graph Analysis Node Analysis

Chapter 3 Chapter 5

Chapter 4 -

Table 1.1: Thesis structure.

18

CHAPTER 2

Deep Neural Networks and 3D Data

Structures

The contributions of this dissertation are centred around Deep Neural Network architectures applied to 3D

data structures. In order to provide the contextual information for interpreting their significance, we will

survey the most important background methods and introduce the 3D data structures relevant to this thesis.

For the sake of clarity throughout the document, as well as establishing a common notational framework, we

have defined a consistent notation inspired by the one used in [32].

2.1 Essentials

2.1.1 Perceptron

Input Weights

Sum

bias

Activation
Function Output

Figure 2.1: The Perceptron model with input vector x⃗, weights w⃗, bias b and activation function σ.

The perceptron or neuron [90] (illustrated by Figure 2.1) is the basic unit of a neural network. This unit

receives several inputs, x⃗ ∈ Rn, and computes a linear combination of them, producing a single output. The

linear combination is guided by a set of weights, w⃗ ∈ Rn, and a bias value, b. A non-linear activation function,

σ, is potentially applied to the result to obtain the final output value, y ∈ R, as described in Equation 2.1.

19

y = σ

(
b+

n∑
i=1

wixi

)
= σ

(
b+ w⃗T x⃗

)
(2.1)

The most common activation functions and the ones of interest for this thesis are the following:

• The logistic Sigmoid function defined in Equation 2.2:

σ(xi) =
1

1 + e−xi
(2.2)

which maps real numbers to the (0, 1) range as depicted in Figure 2.2. This function is commonly used

for binary classification problems due to its capability of modelling Bernoulli random variables.

−10 −5 0 5 10

x

0.0

0.5

1.0

σ
(x

)

Sigmoid

Figure 2.2: Sigmoid activation function.

• The Hyperbolic Tangent (tanh) function defined in Equation 2.3:

σ(xi) =
exi − e−xi

exi + e−xi
(2.3)

which maps real numbers to the (−1, 1) range and has a sigmoidal shape, depicted in Figure 2.3.

−10 −5 0 5 10

x

−1.0

−0.5

0.0

0.5

1.0

σ
(x

)

Tanh

Figure 2.3: Hyperbolic tangent (tanh) activation function.

20

• The Softmax function defined in Equation 2.4:

σ(xi) =
exi∑n
j=1 e

xj
(2.4)

which is a generalization of the logistic Sigmoid function to a multiple-dimension scenario that maps a

vector of real numbers to a probability distribution. This function is commonly used for multi-class

classification problems.

• The Rectified Linear Unit (ReLU) function:

σ(xi) = max(xi, 0) (2.5)

which is one of the most used activation functions due to its biological plausibility, lack of vanishing

gradients and computational efficiency. The ReLU function suppresses the negative values of a function

as depicted in Figure 2.4.

−10 −5 0 5 10

x

0.0

2.5

5.0

7.5

10.0

σ
(x

)

ReLU

Figure 2.4: Rectified Linear Unit (ReLU) activation function.

• The Leaky Rectified Linear Unit (Leaky ReLU) function:

σ(xi) =

 xi xi ≥ 0

αxi xi < 0
(2.6)

which attenuates the negative values (depicted in Figure 2.5) using the slope, α, instead of completely

suppressing the values as ReLU does.

21

−10 −5 0 5 10

x

0

5

10

σ
(x

)

LeakyReLU

Figure 2.5: Leaky Rectified Linear Unit (Leaky ReLU) activation function.

2.1.2 Multilayer perceptron

Feedforward neural networks organize their neurons in a stack of layers, with each layer receiving as input

the output of the previous layer only. The simplest feedforward example is the multilayer perceptron (MLP).

Each layer is composed of several perceptrons, which are fully connected with the next layer’s perceptrons, as

depicted in Figure 2.6. Layers that fulfill this property are also called fully-connected layers (FC). Equation 2.7

defines the computation of the j-th perceptron of this layer, defining the input to an MLP layer as x⃗, the

weights and biases of the perceptron j as w⃗j and bj respectively. We can also represent the computation of an

MLP layer in matrix form as defined in Equation 2.8, where W and b⃗ are the weight matrix and bias vector

of an MLP layer. This representation is advantageous when leveraging Deep Neural Networks. Increasing the

number of layers in a neural network is also referred to as increasing its depth, which is the reason we refer to

these models as Deep Neural Networks.

yj = σ(bj + w⃗T
j x⃗) (2.7)

y⃗ = σ(⃗b+Wx⃗) (2.8)

The matrix form of Equation 2.8 makes it easy to represent MLP networks by stacking multiple layers with

their own parameters. Equation 2.9 shows an example of a two-layer MLP.

y⃗ = σ2(W2σ1(W1x⃗+ b⃗1) + b⃗2) (2.9)

22

Input
Layer

Hidden
Layer

Output
Layer

Figure 2.6: Schema of a multilayer perceptron with a single hidden layer.

2.1.3 Training Neural Networks

The learning procedure of neural networks is in charge of finding the best set of weights, W , and biases, b⃗,

that approximate the target problem. In this thesis, the tasks we target belong to the Supervised Learning

paradigm, which needs a training set, s⃗ = (x⃗i, y⃗i)
n
i=1, of n input-output pairs. Feeding the input, x⃗i, into the

neural network, we obtain the prediction of the network for this input, ⃗̂yi, as the output of its final layer.

The training procedure can be divided into three main steps. First, we have to choose the proper loss function

to evaluate the network’s performance. In Section 2.1.3.1, we review in detail the main characteristics of this

loss function. Once we have defined the function that evaluates the network’s performance, we have to choose

the proper initial parameters. The straightforward solution would be using a random initialization of them.

However, using clever strategies discussed in Section 2.1.3.2 allows the optimization algorithm to find the

best set of weights, W , and biases, b⃗, faster. Finally, we apply the chosen optimization algorithm to train the

network, which is explained in Section 2.1.3.3.

Deep Neural Networks are models composed of a vast number of parameters. They are normally optimized on

training sets of smaller sizes than the number of parameters the network has, causing the model to overfit

the training set and fail to generalize outside of it. In Section 2.1.3.4, we discuss the techniques to fight the

overfitting used in this thesis.

23

2.1.3.1 Loss functions

In a supervised machine learning context, the loss function, also known as the error function, measures the

quality of a particular set of weights, W , and biases, b⃗, based on how well the predictions match with the

ground truth (GT) of the training data. The loss function guides the training process during the optimization

to find the best set of parameters for the defined task. These functions must satisfy the following properties:

• They must be differentiable.

• They should be as convex as possible. When the prediction is equal to the ground truth, the error must

be the minimum one, and it must increase when the prediction and the ground truth differ.

In the Supervised Learning paradigm, we can identify two major groups of loss functions: Regression and

Classification losses.

The Regression losses are used on tasks where the goal is to predict continuous numeric values (regression

tasks). For instance, the length of an object in an image, the temperature for a specific day, and a stock price

evolution are common tasks where regression losses are used. The most standard regression losses are the L1

and L2 errors.

The L1 loss function, also known as the mean absolute error (MAE), is defined in Equation 2.10, where n is

the number of samples.

Lmae =
1

n

n∑
i=1

|y⃗i − ⃗̂yi| (2.10)

L1 loss function penalizes more small errors than higher ones, as depicted in Figure 2.7. One of the advantages

of the L1 loss function is its robustness to the outliers.

−10 −5 0 5 10

y − ŷ

0.0

2.5

5.0

7.5

10.0

E
rr

or

L1 error

Figure 2.7: L1 loss function.

24

The L2 loss, also known as the mean square error (MSE), is defined in Equation 2.11, where n is the number

of samples.

Lmse =
1

n

n∑
i=1

(y⃗i − ⃗̂yi)
2 (2.11)

L2 loss function penalizes more big errors than smaller ones, as depicted in Figure 2.8. One of the advantages

of the L2 loss is that the gradients are smaller near 0, making it easier for the optimizer to find the best

solution.

−10 −5 0 5 10

y − ŷ

0

25

50

75

100
E

rr
or

L2 error

Figure 2.8: L2 loss function.

Usually, for regression problems, L2 loss is preferred. However, if the dataset has outliers, the L1 loss might

perform better.

The classification losses are used on tasks where the goal is to predict discrete values (classification tasks),

where the number of possible outputs is known. For instance, an application capable of classifying images

into different categories is an example of a classification task. The ground truth, y⃗i, is a one-hot probability

distribution over k classes. In order to convert the network predictions to probability distributions, ⃗̂yi, a

Softmax activation function is used. To compare both probability distributions, the cross-entropy loss function

is normally used, which is depicted in Figure 2.9 and defined in Equation 2.12, where n is the number of

samples and k is the number of classes.

Lce =
1

n

n∑
i=1

k∑
j=1

−yi,j log(ŷi,j) (2.12)

25

0.00 0.25 0.50 0.75 1.00

y − ŷ

0

2

4

E
rr

or

Cross Entropy error

Figure 2.9: Cross-entropy loss function.

2.1.3.2 Initialization

Initializing the weights and biases is an important step that can make the difference between good performance

and not converging at all. Nowadays, this initialization is done by drawing each weight, independently and

identically distributed, from a probability distribution. Frequently, these are either the normal or uniform

distributions with zero mean, for each weight, wi ∼ N (0, σ2) or wi ∼ U(−a, a), where a is the maximum

value that we can get from the uniform distribution. Meaning that if we use the normal distribution, only the

variance, σ2, of the weights needs to be specified.

For the sake of simplicity, let us assume a linear neuron with zero-mean and uncorrelated inputs, x⃗, which

means that the inputs have been standarized (µ(x⃗) = 0 and σ(x⃗) = 1), and weights w⃗. Consider the variance

of the output of the neuron defined in Equation 2.13, where nin is the fan-in, the number of inputs to the

neuron.

Var

(
nin∑
i=1

wixi

)
=

nin∑
i=1

Var(wixi) =

nin∑
i=1

Var(W)Var(X) = ninσ
2Var(X) (2.13)

To guarantee consistent gradient updates during the optimization step, explained in Section 2.1.3.3, we need to

preserve the variance of the input. To do so, we need to set σ2 = 1
nin

as is done on the LeCun initialization [58].

For the same reason, it would be interesting to preserve the variance of the computed weight updates. To

achieve this, we need to apply the condition σ2 = 1
nout

, where nout is the fan-out, the number of neurons

that directly receive this neuron output. Typically, it is unfeasible to satisfy both conditions at once. To

solve that, the Xavier initialization [31] proposes to compute the average of both conditions as formalized in

Equation 2.14. Nowadays, the Xavier initialization is the standard for linear and sigmoidal neurons.

σ2 =
2

nin + nout
(2.14)

A similar argument for the ReLU family functions leads to the He initialization [40] described in Equation 2.15.

26

σ2 =
2

nin
(2.15)

2.1.3.3 Optimization

Once we have selected the proper loss function to evaluate the network and its parameters have been properly

initialized, a learning algorithm is applied iteratively to fine-tune the set of parameters, W and b⃗. The loss

function dictates the suitability of the network’s parameters for the defined task and is the primary objective

of the optimization algorithm.

The optimization algorithm commonly used in the training of neural networks is the mini-batch stochastic

gradient descent (SGD) [51]. A mini-batch, B, of n training examples is selected at each iteration. After that,

the backpropagation algorithm [92] is applied to compute the gradient of the loss function, with respect to

the network’s parameters, θ⃗, at time t, which is defined as g⃗t = ∇θ⃗LB|θ⃗=θ⃗t
. The backpropagation algorithm

applies the chain rule for partial derivatives, proceeding backwards from the output layer towards the network’s

input layer. Once we have the gradients, the parameters are updated by doing a step of the gradient descent,

described in Equation 2.16 where λ is the learning rate.

θ⃗t+1 = θ⃗t − λg⃗t (2.16)

The choice of the learning rate is important to guarantee stability and a good convergence rate during training.

Recent advances in adaptive optimizers that dynamically adjust the learning rate based on previous gradient

updates have reduced the impact of a wrong choice in the learning rate. Nowadays, Adam optimizer [52] is

widely adopted by the community. ADAM maintains exponential moving averages of both g⃗t and g⃗ 2
t , which

are defined in Equation 2.17.

m⃗t+1 = β1m⃗t + (1− β1)g⃗t v⃗t+1 = β2v⃗t + (1− β2)g⃗
2
t (2.17)

The vectors m⃗t and v⃗t are initialized with zeros at time t = 0. The mixing constants β1 and β2 are hyper-

parameters that the user can control. Normally, these parameters have as default values β1 = 0.9 and

β2 = 0.999. This heavily biases the averages towards zero at the beginning. For this reason, the bias correction

described in Equation 2.18 is applied.

⃗̂mt =
m⃗t

1− βt
1

⃗̂vt =
v⃗t

1− βt
2

(2.18)

Finally, these averages are used to update the network parameters. The update rule applied is defined in

Equation 2.19 where λ is the learning rate, and ϵ is a small constant used to protect against division by zero.

27

θ⃗t+1 = θ⃗t − λ
⃗̂mt√
⃗̂vt + ϵ

(2.19)

In practice, the applied optimization algorithm consists of the following steps. First, we shuffle the training

set, then sequentially take batches from the shuffled training set and apply the optimizer algorithm for each.

Once the entire training set is covered, an epoch of the training is completed, and the training set is reshuffled.

This is done to avoid the network memorizing instead of learning.

2.1.3.4 Fighting overfitting

Deep Neural Networks are models composed of a vast number of parameters that are normally optimized on

training sets of smaller sizes than the number of parameters that the network has. For this reason, these

models tend to overfit the training set, which means that the model fails to generalize outside the training

set (the network memorizes the training set). Regularization techniques are usually used to fight against the

overfitting problem. Essentially, these techniques introduce additional constraints that somehow restrict the

set of parameters available during training, trying to discourage the network from memorizing. In this thesis,

the main regularization techniques used are described in the following paragraphs.

L2 regularization: This technique imposes a constraint that makes the parameters not deviate too far

from zero. This regularization is implemented as a weight penalty term added to the loss function. The

penalty term is based on the L2 norm as formulated in Equation 2.20, where λ is a constant that controls the

importance of penalizing the weights compared to optimizing the loss function.

L̃ = L+
λ

2
∥Θ⃗∥ (2.20)

Dropout [104]: This technique tries to overcome the problem of having highly specialized neurons that

appears during an overfitting scenario. This method proposes randomly killing each neuron in a layer with

probability p during training; in each iteration, a different set of neurons is killed. To preserve the expected

activation value, the output of the neurons that have not been killed is scaled by 1
1−p .

Batch Normalization [45]: The initialization techniques explained in Section 2.1.3.2 try to preserve the

statistics of the input signal as it propagates through the network. However, during optimization, it is expected

that weights are pushed in a direction that will change the intermediate layers’ statistics. This effect is known

as the internal covariate shift. To solve this, batch normalization re-normalizes the network’s activations

across each training minibatch. Let B = x⃗1, ..., x⃗m be the outputs of a layer across a minibatch. We apply

the renormalization described in Equation 2.21 to obtain the new outputs, y⃗i. The γ and β are learnable

parameters, allowing the network to learn its own normalization scheme. At test time, the values of µ⃗B and

σ⃗ 2 are taken from the entire training set. This is usually computed as an exponential moving average during

training.

28

µ⃗B =
1

m

m∑
i=1

x⃗i σ⃗ 2 =
1

m

m∑
i=1

(x⃗i − µ⃗B)
2 ⃗̂xi =

x⃗i − µ⃗B√
σ⃗ 2 + ϵ

y⃗i = γ⃗̂xi + β (2.21)

2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a particular kind of neural network suitable to process data that

can be represented in a grid-like structure, such as images which are represented as tensors of shape h×w× d,

being h the height, w the width and d the channels of an image. Processing grid-like structures with MLPs

becomes unfeasible for large structures since the MLP treat each input element independently. In the case of

an image, O(h× w × d) parameters are introduced per neuron in the first hidden layer. Consequently, the

memory requirements increase exponentially, and the neural network is prone to overfit. In order to make a

parameter-efficient network, we need to exploit the spatial structure present in such inputs, a candidate for

such a layer is the convolutional operator.

2.2.1 Convolutional layers

Let us assume a 2D input, X ∈ Rh×w, and a small kernel matrix, K ∈ Rkh×kw . The convolution operation

used on CNNs overlays in all possible ways the kernel matrix over the input, recording sums of elementwise

products that yield a new 2D structure, Y ∈ Rh×w, as defined in Equation 2.22. To ensure the same input

size on the output structure, the input is normally padded as much as needed with zeroes. It should be noted

that this approach is actually a cross-correlation, which is the same as convolution but without flipping the

kernel. However, in Deep Learning, both are called convolution. In this thesis, we follow this convention of

calling both operations convolution.

Yi,j = b+

kh∑
n

kw∑
m

Xi+n,j+m ·Kn,m (2.22)

We need a few extensions of the previously defined convolution to define the convolutional layer in order to

support multiple input and output channels:

• The number of input channels should match the number of channels of the kernel, meaning that if we

have an input X ∈ Rh×w×d we need a kernel matrix K ∈ Rkh×kw×d. This kernel tensor specifies a single

output channel.

• Each output channel requires a separate kernel tensor.

• A channel-specific bias and activation function may be applied.

29

To process a 2D input X ∈ Rh×w×d using a convolutional layer that computes d′ output channels, we require

a kernel tensor K ∈ Rkh×kw×d×d′
and a bias vector b⃗ ∈ Rd′

as defined in Equation 2.23.

Yi,j,c = σ

(
b⃗c +

kh∑
n

kw∑
m

d∑
k

Xi+n,j+m,k ·Kn,m,k,c

)
(2.23)

This kind of layer is widely used to process 2D images since it exploits the structure of the image with

neighbouring pixels influencing each other more strongly than the ones further. In addition, this operator is

translation invariant, as the same kernel is applied across the image.

2.2.2 Pooling layers

Convolutional Neural Networks consist of a series of interleaved convolution and pooling layers until the input

is reduced sufficiently to be processed by an MLP. Applying pooling layers helps the network reduce the

amount of memory needed and enables the network to learn richer high-level features.

When a particular pattern is detected in the input, the convolution filter gets activated (returns high values).

It makes sense to preserve its maximally activated components when summarizing using pooling layers. This

is the reason behind most of the current CNNs for image processing [55, 98] using max-pooling layers, which

takes n×m image patches across each channel and summarizes them by taking only the maximal value, as

depicted in Figure 2.10. In most of the current architectures n = m = 2.

1 5 12 6

7 8 15 0

3 2 11 0

9 4 13 10

8 15

9 13

Figure 2.10: An example of applying a 2× 2 Max-Pool layer to an input of 4× 4.

2.2.3 Residual networks

Training a very Deep Convolutional Network is extremely difficult. As proved in [41], extremely Deep

Convolutional Networks do not overfit. Instead, their training and testing performance degrades. This

behaviour is counterintuitive since deep convolutional networks have more parameters which, in theory, leads

to more overfitting. However, the issue comes with the extra layers added. If the new layers cannot learn

good representation, they could add noise to the feature space, making them useless.

Residual skip connections [41] is the intuitive fix for the problem described. These connections shortcut

a particular block of operations in a neural network. For a particular block of operations inside a Deep

Convolutional Network, F(x⃗), a residual skip connection allows x⃗ to go directly to the output, which is added

30

to the output of this specific block, F ′(x⃗) = F(x⃗) + x⃗. Equation 2.24 generalizes the residual skip connections

for the case where a block’s input and output dimensionality are not the same. Using a linear projection, P,
the input x⃗ is projected to the same output dimensionality before being added to the block’s output (if input

and output dimensionality are the same, P is equal to the identity function).

F ′(x⃗) = F(x⃗) + P(x⃗) (2.24)

2.3 Graph Neural Networks

Convolutional Neural Networks (GNNs) have been successfully applied to address problems such as image

classification [41] or machine translation [27], where the underlying data representation has a grid-like structure.

However, many tasks involve data that can not be represented in a grid-like structure, such as 3D meshes, social

networks, and biological networks, whereas such data can be represented using graphs. A graph G = (N,E) is

composed of a set of nodes or vertices, N , and a set of edges, E. Graph structures are a natural generalization

of different inputs such as images, point clouds, text and speech. Designing appropriate methodologies for

graphs on neural networks is one of the major ongoing challenges in machine learning [5, 8, 37, 53]. This

thesis explores how we can use graph structures to deal with 3D data. For now, let us assume that we already

have our graph G. For each graph, we have a matrix of node features, F ∈ Rn×d, with a number of nodes n

and a number of features d, as well as an adjacency matrix, A ∈ Rn×n. In this thesis, we do both graph and

node analysis. The graph analysis consists of summarizing the graph to get a prediction Y ∈ Rd′
, with d′

output features related to the entire graph. In contrast, the node analysis is a prediction Y ∈ Rn×d′
, with d′

output features in each of the n nodes. In both cases, the prediction can be continuous, as it is in the case of

regression, or it can be discrete and bounded, as it is in the case of classification.

In the case of node analysis, there are two kinds of learning tasks:

• Transductive Learning: The algorithm has access to the whole graph and its features during training,

including the test nodes. The goal is to propagate the labels from labelled nodes to non-labelled nodes.

• Inductive Learning: The algorithm does not have access to all nodes upfront. This is the typical scenario

when we are dealing with an evolving graph wherein new nodes are incrementally added or when disjoint

and unseen graphs exist during the test phase. Inductive learning is more challenging since it needs to

generalize across arbitrary graph structures.

The intuitive way to deal with 3D data and graphs would be to process each node indepdendently using

an MLP per node. This setup is used by PointNet [84], where each node is processed independently with

a combination of max pooling and average pooling layers, used to get global feature descriptors to try to

describe the 3D data. However, this approach drops the inherent structure of the data.

The first methodologies to consider the graph structure and get features that describe this structure were the

methods based on the Random-walk algorithm. Such methods decouple the graph structure from the node

31

features. For each node i, structural features, s⃗i, are computed only using the adjacency matrix information.

Afterwards, the structural features and the input features are concatenated, x⃗i||s⃗i, which can be used as

input of an MLP. The first method to successfully exploit the Random-walk algorithms is DeepWalk [82],

which draws inspiration from skip-gram methods in natural language processing [75]. DeepWalk generalizes

skip-gram methods for graphs by considering random walks as sentences and nodes as words. Most of the

random-walk-based methods that came after it, such as node2vec [34], LINE [106] and Planetoid [121], focus

on improving the way in which the random walks are constructed.

In this thesis, we focus on techniques that leverage the graph structure directly while extracting intermediate

feature representations, x⃗i, for each node, i, in the graph. In the literature, these techniques may be referred

to as Graph Neural Networks [33, 64, 94] or Graph Convolutional Networks [10, 16, 53]. In this thesis, we use

the term Graph Convolutional Networks, as it relates them to a generalization of the convolutional layer from

CNNs to graph-based networks. In general, all graph convolutional layers can be reformulated as a particular

instance of the message-passing architecture [28].

2.3.1 Message-passing architecture

In this section, we introduce the message-passing architecture depicted in Figure 2.11, composed of 4 main

steps, explained below:

• Selection: For each of the nodes i, of the graph, we select the neighbouring nodes, j ∈ N(i). This

selection is made by taking into account the direction of the edges.

• Message: The message is a function ϕ(x⃗ t
i , x⃗

t
j , e⃗

t
i,j), that depends on the features x⃗ t, of the nodes i, j

and the edge attribute e⃗ t
i,j .

• Aggregation: All the messages that the central node of the neighbourhood receives are aggregated,

Aggr
j∈N(i)

(ϕ(x⃗ t
i , x⃗

t
j , e⃗

t
i,j)).

• Update: Each node updates its feature x⃗ t+1
i , as a function of the current node feature x⃗ t

i , and the

resulting aggregation previously done, γ(x⃗ t
i , Aggr

j∈N(i)

(ϕ(x⃗ t
i , x⃗

t
j , e⃗

t
i,j))).

Input Select Message Update OutputAggregation

Figure 2.11: Message-passing architecture applied on node x⃗ t
0 , where ϕ is the message function and γ is the update

function.

The original message-passing architecture can be simplified by adding self-loops, i ∈ N(i), to the input graph

and omitting the explicit update step. This simplification is formalized in Equation 2.25, where σ is the

32

activation function and b the bias term. In this thesis, we use this simplification of the message-passing

architecture and assume that all graphs contain self-loops.

x⃗ t+1
i = σ

(
Aggr
j∈N(i)

(ϕ(x⃗ t
i , x⃗

t
j , e⃗

t
i,j)) + b

)
(2.25)

2.3.2 Graph Convolutional Layers

To extend neural networks to deal with graphs, early works proposed to use Recursive Neural Networks (RNNs)

to process directed acyclic graphs [26, 103]. Afterwards, a generalization of RNNs that can directly deal

with different kinds of graphs, such as cyclic, directed and undirected graphs, was introduced in [33, 103].

These first approaches of Graph Neural Networks consist of an iterative process, which propagates node states

until equilibrium. Then a neural network produces an output for each node based on its state. This idea was

improved by [64], which proposes to use gated recurrent units [14] in the propagation step. The main issue

with these first approaches is the restriction from specifying a true analogue of a convolutional layer with an

arbitrary number of filters since the dimensionality of the feature computed at each stage needs to be fixed.

The generalization of convolutions to the graph domain can be categorized into two groups: spectral and

spatial approaches.

Spectral approaches use graph spectral analysis theory where the convolution corresponds to the multiplication

of the signal on vertices transformed into the spectral domain, using the Graph Fourier transform. In [10], the

Fourier transform is done by computing the eigendecomposition of the Graph Laplacian, provoking intense

computations and non-spatial localized filters. These issues were addressed by [43], which proposed the

parameterization of the spectral filters with smooth coefficients to make them spatially localized. [16] proposed

a parameterization of filters using Chebyshev polynomials that is computationally more efficient. The main

drawback of spectral approaches is that a model trained on a specific graph structure can not be directly

applied to a graph with a different structure.

Spatial approaches defines the convolution directly on the graph, operating on groups of neighbourhoods.

Nowadays, there are different ways to generalize the convolution operator following a spatial approach [1, 21,

36, 76, 80]. This thesis focuses on these methods since they can be generalized for unseen graph structures.

We are going to review the most popular graph convolutional layers used nowadays to process 3D data. The

Graph Convolution layer [53] defined in Equation 2.26 is one of the first spatial approaches. It proposes to

learn the weight matrix, W ∈ Rd×d′
, shared between all the nodes, where d are the input channels, and d′ are

the output channels. The result is aggregated using an average aggregator that considers the neighbourhood

degree, deg(i).

x⃗ t+1
i = σ

b+
∑

j∈N(i)

Wx⃗ t
j

deg(i)

 (2.26)

33

Graph Attention Network (GAT) [111] proposes the graph attention layer which is defined in Equation 2.27. In

this layer, an attention coefficient is learnt using the edge attributes, which are the result of the concatenation

of x⃗ t
i and x⃗ t

j as defined in Equation 2.28. For each head of attention, h, we have a linear transformation, Fh,

implemented using an MLP. The output of each linear transformation is passed through a softmax layer to

guarantee that the sum of the attention coefficients is equal to one. In this formulation, we have two kinds of

aggregators, one for the messages and another one for the heads of attention. In the case of the message, the

addition aggregator is used. Whereas to aggregate the heads of attention, two aggregators are proposed: the

concatenation and the average.

x⃗ t+1
i = σ

b+
H

Aggr
h=1

 ∑
j∈N(i)

αh
i,jW

hx⃗ t
j

 (2.27)

αh
i,j = softmaxj(Fh(x⃗ t

i ||x⃗ t
j)) (2.28)

The Feature-Steered Graph Convolution (FeaStConv) proposed in FeaStNet [112], which is defined in Equa-

tion 2.29, is quite similar to the formulation proposed in GAT. The main difference resides in how the edge

attributes are computed. As described in Equation 2.30, the edge attributes are defined as the difference

between x⃗ t
j and x⃗ t

i . The aggregator used to combine the messages is the average aggregator that considers

the neighbourhood’s degree. The heads of attention are aggregated using the addition aggregator.

x⃗ t+1
i = σ(b+

∑
j∈N(i)

H∑
h=1

qh(x⃗ t
i , x⃗

t
j)W

hx⃗ t
j

deg(i)
) (2.29)

qh(x⃗ t
i , x⃗

t
j) = softmaxj(Fh(x⃗ t

j − x⃗ t
i)) (2.30)

The Edge Convolution (EdgeConv) [115] described in Equation 2.31 proposes to define the edge attributes

using an asymmetric function. The edge attributes of each neighbourhood are fed into an MLP and aggregated

using a maximum aggregator.

x⃗ t+1
i = σ

(
b+MAX

j∈N(i)

(
F(x⃗ t

i ||(x⃗ t
j − x⃗ t

i))
))

(2.31)

One of the problems detected by Xu [119] is that most of the current Graph Convolutional Neural Networks fail

to get rich descriptors to distinct neighbourhoods with different degrees but equal features. This thesis proposes

new graph convolution layers that consider this limitation and tries to learn better local representations. In

Chapters 3 and 4, we propose the Attention Graph Convolution (AGC), a new layer that infers the W tensor

in run-time, helping to find specific weights for each neighbourhood. An improved version of AGC is proposed

34

in Chapter 5. Motivated by the work of Dehmamy et al . [17], which proposes to use multiple aggregators, we

present the Multi-Aggregator Graph Convolution (MAGC), an extension of the message-passing architecture

using complementary aggregators and learning how to combine them instead of just concatenating or adding

the results of each of them.

2.4 3D Data Structures

In this thesis, we will work with two different data structures: 3D point clouds and 3D meshes.

A point cloud is a collection of points in a 3D space. Each point has its set of cartesian coordinates (x, y, z)

and features, such as colour, as shown in Figure 2.12. Point clouds are normally produced by 3D scanners,

some of them directly output a point cloud, such as lidar, and others return a depth map that has to be

back-projected into a 3D space. This back-projection is normally done by applying the pin-hole camera model

after correcting all the distortions introduced by the lens of the sensor. The back-projection used in this thesis

is described in Equation 2.32 being [x, y, x] the 3D coordinates in the camera coordinate system and [u, v]

the coordinates in the image. The camera’s focal length is represented by [fx, fy] and the principal point is

represented as [cx, cy].

Figure 2.12: Example of a 3D Point Cloud from the NYU-Depth-V2 dataset [78] with RGB values.

z = depth

x =
(u− cx) · z

fx

y =
(v − cy) · z

fy

(2.32)

A mesh is a collection of vertices, edges and faces that defines the shape of a polyhedral object:

• The vertices and the points of the point cloud are equivalent. Each vertex has its set of cartesian

coordinates (x, y, z) and a feature such as colour.

• The edge defines the connection between two vertices.

35

• The face is a set of closed edges, in which a triangular face has three edges, and a quadrilateral face has

four edges.

Figure 2.13: Example of a 3D mesh of a cat with triangular faces.

To generate a graph from a mesh or a 3D point cloud, all the vertices and 3D points are considered a node of

the graph. The adjacency matrix of the graph can be generated with two different policies: the k nearest

neighbours (kNN) and radius proximity policy, both of them depicted in Figure 2.14. Both policies generate a

directed graph and use the euclidean distance to find the neighbouring nodes.

The kNN policy consists of selecting the k closest neighbours in the geometric space of each node of the graph

and connecting them. k is constant for all the nodes of the graph. This means that each node of the graph has

the same number of neighbours. The receptive field of this policy depends on the density of the point cloud.

The radius proximity policy consists of selecting all nodes in the graph that are inside of a defined radius, rg,

as neighbours for each node. The radius is constant for each node. Therefore, each node may have a different

number of neighbours. However, to limit the memory needed on dense point clouds, the number of possible

connections is limited to kmax, which means that for all the candidates, kmax random nodes are selected as

neighbours.

(a) kNN policy. (b) Radius proximity policy.

Figure 2.14: Comparison between the kNN policy and the radius proximity policy with radius r.

36

In the case of the mesh, we can generate the adjacency matrix, converting the faces of the mesh into undirected

edges. This is called the one-ring neighbourhood and is depicted in Figure 2.15.

Figure 2.15: Example of a one-ring neighbourhood.

Afterwards, the features of the nodes X ∈ Rn×d and the attributes of the edges E ∈ Rn×n×a must be defined,

being n the number of nodes of the graph, d the input feature dimension of the node and a the attributes

dimension of an edge.

37

Part I

Graph Analysis

38

CHAPTER 3

Residual Attention Graph Convolutional

Network

Inherently, we have to deal with unstructured data for most of 3D image analysis. Appropriately exploiting

the intrinsic information of this data remains a key challenge, especially when the information comes from

noisy sensors. Extending current neural network architectures to properly deal with unstructured data is an

essential research direction for 3D image analysis; however, it has received low levels of attention until very

recently.

In this chapter, we will introduce Residual Attention Graph Convolutional Network (RAGC) [107], a Graph

Convolutional Neural Network architecture that extends the residual connections used in Convolutional Neural

Networks [41] to unstructured data. In addition, we propose a new graph convolution operation that generates

its own kernel conditioned by the edge attributes of the local neighbourhood, learning to pay attention to the

important nodes of the current neighbourhood.

To prove the validity of our method, we use 3D point clouds. Specifically, we use captures of different indoor

scenes provided by public datasets. To better assess the capabilities of the proposed method to capture the

geometric information, in this chapter, we restrict ourselves to the problem of geometric classification using

just the geometric information without using any additional features such as colour.

The main contributions of this chapter are:

• The Attention Graph Convolution layer, which learns to predict a set of weights that depends on the

neighbourhood configuration.

• The extension of residual connections to the Attention Graph Convolution layer.

39

• The Voxel Pooling layer, which allows mimicking the traditional CNN architectures and learning richer,

higher-level features.

3.1 Related Work

3.1.1 Attention methodologies

Visual attention enables humans to analyze complex scenes and devote their limited perceptual and cognitive

resources to the most important of sensory data. Attention models aim to identify the most attractive

regions in data like human visual systems do. Xu et al. [118] introduced an attention-based model that

learns to describe the content of images. Their model can automatically learn to fix its gaze on salient

objects. Ren et al. [88] proposed an end-to-end Recurrent Neural Network architecture with an attention

mechanism that produces detailed instance segmentation. Inspired by these recent works, Graph Attention

Convolution (GAT) [111] proposed an extension of these mechanisms into graph structures explained in detail

in Section 2.3.2. The main difference between Attention Graph Convolution (AGC) and Graph Attention

Convolution (GAT) [111] is that the AGC predicts the weights used on the convolutional kernel depending on

the neighbourhood composition. In contrast, GAT learns a set of weights that will be shared with all the

neighbourhoods of a graph.

3.1.2 Geometric Scene Classification

Earliest works used traditional handcrafted features such as SIFT [9] and HOG [110] to classify geometrical

captures. With the emergence of Deep Learning techniques, better features can be obtained. Socher et al. [99]

used a combination of Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) to

learn the geometric information used during the classification. Cai et al. [11] proposed a new Convolutional

Neural Network that extracts regions of interest to capture local and global structures from the depth channel

to classify a scene. Furthermore, they proposed to use RICA, a method proposed by Le et al. [57], to

classify geometric information. This method is an improved version of the Independent Component Analysis

(ICA) which uses a soft reconstruction cost for ICA that allows the method to learn highly overcomplete

sparse features even on unwhitened data. Finally, well-known network architectures, such as ResNet [55]

and VGG [98], have been used for geometric classification being pre-trained on a huge RGB dataset as

Places [127].

3.2 Residual Attention Graph Convolutional Network

This section presents our Graph Convolutional Network to tackle the geometric scene classification problem.

The input of the network is a 3D point cloud that can be obtained from a lidar sensor or using the depth

information and the intrinsic parameters of a depth sensor. Each node of the 3D point cloud encodes the

depth information using the HHA [35] encoding, as done by previous works [11, 35]. HHA encodes the depth

into a [0, 255] range with three channels. Each channel represents horizontal disparity, height above the

ground, and the angle with the inferred gravity direction. In Sections 3.2.1, 3.2.2 and 3.2.3, we introduce the

key components of our proposed network depicted in Figure 3.1.

40

A
G

C
, 1

6

R
A

G
C

, 3
2

R
A

G
C

, 6
4

V
P-

M
ax

V
P-

M
ax

R
A

G
C

, 1
28

V
P-

M
ax

G
lo

ba
l

Av
er

ag
e

Po
ol

in
g

FC
, n

R
A

G
C

, 1
6

V
P-

M
ax

Figure 3.1: Residual Attention Graph Convolutional Network architecture, where n is the number of classes, and FC
is a fully-connected layer. The Global Average Pooling layer computes a global descriptor computing the average of all
node features.

3.2.1 Attention Graph Convolution

Attention Graph Convolution (AGC) is a graph convolution that performs the convolution over local graph

neighbourhoods exploiting the edges and their attributes, E. AGC is formalized in Equation 3.1, where x⃗i

is the feature vector of the node i, N(i) the set of neighbours of node i and Θi,j is the predicted weight

matrix that is used to generate the message for node j. In AGC, the average aggregator that considers the

neighbourhood degree, deg(i), is used to fuse the messages. An MLP network is used to generate the weights,

Θ ∈ Rn×n×d×d′
, where n is the number of nodes, d is the number of input features of each node, and d′ is

the number of expected output features per node. This network uses E as input and outputs for each of the

edges, i← j, a matrix of weights, Θi,j ∈ Rd×d′
, formalized in Equation 3.2.

x⃗ t+1
i =

1

deg(i)

∑
j∈N(i)

Θ t
i,j x⃗

t
j (3.1)

Θ t
i,j = MLP (e⃗ t

i,j) (3.2)

In AGC, the attributes of the edges are defined as the positional offset e⃗ t
i,j = p⃗j − p⃗i, where p⃗ is the 3D

position of the nodes i and j. These offsets can be represented in cartesian or spherical coordinates. The

workflow of the AGC operation is depicted in Figure 3.2. The attention stage of AGC is located in the weight

generation stage. Due to the design of this layer, the network learns to infer a weight value that pays attention

to the attributes of the edge, specifically in the geometric information encoded as an edge attribute.

MLP

avg

Figure 3.2: Attention Graph Convolution workflow. x⃗ t
i is the input feature vector of the node i, e⃗ t

i,j is the edge’s
attribute vector of the edge i← j, and Θi,j is the predicted weight matrix that is used to generate the message for
node j.

41

3.2.2 Residual Attention Graph Convolution

The previous AGC is extended to a Residual Attention Graph Convolution (RAGC) following the inspiration

of the ResNet [41] architecture. Residual connections tackle the counterintuitive problem that emerges when

training Deep Neural Networks, which degrades their training and testing performance instead of overfitting.

The intuitive fix for this situation is to use residual skip connections, which shortcut a particular block of

layers in a neural network. Figure 3.3 depicts a RAGC block composed of two AGCs.

AGC

AGC

Act. Func

Act. Func

Figure 3.3: Residual Attention Graph Convolution block composed of two AGCs.

The RAGC block requires as input the node features and the edge attributes, (Xt, E), which are passed

through both of the AGC layers, F(Xt, E). In parallel, the node features Xt are passed through a projection

function, P(Xt), that projects the input space to the output space. However, in the case that the input and

output spaces have the same dimensionality, P(Xt) becomes the identity function. Finally, we add the output

of both branches yielding the new output feature, Xt+1, as described in Equation 3.3. The P(Xt) function is

implemented as a 1D convolution. F(Xt, E) is a stack of s AGC layers, {AGCs}.

Xt+1 = F(Xt, Et) + P(Xt) (3.3)

3.2.3 Voxel Pooling Layer

In 2D CNN, pooling layers are a key component in learning richer high-level features and reducing the amount

of memory needed. In this section, we explain our approach to adopt the 2D pooling layer for 3D sparse data.

The first step is to convert the graph into a 3D point cloud, which is a straightforward operation that removes

the edges and keeps the nodes as 3D points. Each 3D point contains the 3D coordinates, p⃗i, and the feature

vector, x⃗i. Afterwards, we apply the Voxel Pooling (VP) layer, described in Algorithm 1, which consists in

creating voxels of size s⃗ over the point cloud and replacing all points inside the voxel with their centroid. The

position of the centroid is computed as the average of the position of all the points inside the same voxel. The

centroid’s feature is the aggregation of the features of the points inside the same voxel. Following the same

logic as in 2D pooling layers, the aggregation operation is, generally, the maximum to preserve the maximally

activated components of the filters, as discussed in Section 2.2.2.

42

Finally, the downsampled version of the point cloud, composed of all the voxel’s centroids, is converted into a

graph where the edges and their attributes are re-generated.

Algorithm 1: Voxel Pooling

Input: v⃗s← voxel’s size, P ← point cloud
Output: C ← centroid’s position, F ← centroid’s feature

Create voxels, V , of size v⃗s, over the point cloud P
foreach Vi in V do

Compute c⃗i ← average of points’ positions inside Vi

Compute f⃗i ← aggregation of points’ features inside Vi

end foreach

3.3 Experimental Setup

3.3.1 Datasets and Metrics

The SUN RGB-D dataset [100] was captured from different RGB-D sensors, including Asus Xtion,

RealSense, Kinect v1 and Kinect v2. Following the settings proposed by the authors, classes with less than 80

samples are discarded, resulting in 9504 captures with 19 different classes. These captures are divided into

4845 for training and 4659 for testing using the split provided by the authors. This dataset is the one used for

the ablation studies.

The NYU-Depth-V1 dataset (NYUV1) [97] is split following the division provided by the authors, using

1097 captures for training and 1140 for testing, with 6 classes.

The proposed method is evaluated on both datasets using the mean accuracy metric, also known as balanced

accuracy score, used to deal with an imbalanced dataset. It is defined as the average of the recall obtained

in each class which is formalized in Equation 3.4, where k is the number of classes, tp is a true positive

classification where the model correctly predicts the positive class, and fn is a false negative classification

where the model incorrectly predicts the negative class. In this multi-class scenario, the positive class is the

class we are currently evaluating, and the negative class is the rest of the classes.

MeanAcc =
1

k

k∑
i=1

tpi
tpi + fni

(3.4)

3.3.2 Implementation details

3.3.2.1 Pre-processing input data

The input data used in our model comes from depth captures. First, the depth capture is encoded using the

HHA encoding [35], downsampled by a factor of 8 and back-projected to a 3D point cloud. The point cloud

positions are scaled between [−1, 1] and, during training, the following online data augmentation techniques

are applied:

43

1. Rotation over the vertical axis randomly between (0, 2π).

2. Mirroring over horizontal axis randomly with a probability of 0.5.

3. Random removal of points with a probability of 0.2.

4. 3D random crop. A factor, f , is defined to specify the desired number of points inside the crop, which

must be in the range of 0 < f < 1. In this thesis, the values of f are randomly chosen from the range

[0.875, 1]. The desired number of points (dnp) is defined as dnp = np× f , where np is the number of

points of the original point cloud. Then we find a random centroid of a voxel inside the point cloud,

where a voxel that satisfies the following condition will be placed: npi < dnp, where npi indicates the

number of points inside the proposed voxel. The crop is made up of the points inside the voxel.

After applying the data augmentation techniques (only during training), the point cloud is converted into a

graph. The proposed network follows the kNN policy, where the value of k is 9, and defines the attributes of

the edges as the positional offset with the spherical coordinate system, following the procedure explained in

Section 3.2.1.

3.3.2.2 Architecture details

The model is implemented with Pytorch [81] and Pytorch Geometric [25]. In terms of the network architecture,

the following hyper-parameters are chosen:

• AGC layer defines the MLP network used to generate the weights to create the messages as the stack

of two MLP layers with output features (128, dl × dl−1), where dl is the number of output features of

the layer l.

• RAGC layer is a stack of two AGCs with a residual connection.

• VP layer uses the maximum aggregator with cubic voxels.

The detailed architecture with the number of filters used in each layer and the sizes of the Voxel Pooling

layers is shown in Table 3.1.

44

RAGC Architecture

Layer N. Filters Cubic voxel size (meters)

AGC 16 -

VP-Max - 0.05

RAGC 16 -

VP-Max - 0.08

RAGC 32 -

VP-Max - 0.12

RAGC 64 -

VP-Max - 0.24

RAGC 128 -

Global Average Pooling - -

FC n -

Table 3.1: RAGC architecture details. n is the number of classes, and FC is a fully-connected layer. After each
AGC, we have batch normalization and ReLU activation layers. The Global Average Pooling layer computes a global
descriptor computing the average of all node features.

3.3.2.3 Training details

The datasets used to train the proposed network are characterized by having an unbalanced number of captures

for each category. To handle the imbalance problem, the proposed network is trained using a variation of the

cross-entropy named weighted cross-entropy. This loss introduces a weighting factor, w⃗, that weights each

class’s contribution to the loss’s final value, as formalized in Equation 3.5, where n is the number of 3D point

clouds in a batch and k the number of classes. The w⃗ is computed as the inverse class frequency, w⃗j =
1

f(j) ,

where f(j) is the frequency of the class j. Furthermore, to make the total loss be on the same scale when the

weight is applied, w⃗ is normalized so that
∑k

j=1 w⃗j = k.

Lce =
1

n

n∑
i=1

k∑
j=1

−wjyi,j log(ŷi,j) (3.5)

The network is initialized using the Xavier initialization [31], except for the biases of the last FC, which are

initialized as b = −log((1 − ϕ)/ϕ), where ϕ = 1/k and k is the number of classes. This initialization aims

to avoid the possible training instability that biases b = 0 could cause at the beginning of the training, as

demonstrated in [15]. The network is trained using the early-stopping criteria with a patience of 20 epochs and

a maximum of 200 epochs with a batch size of 32. The optimizer used is the Rectified Adam (RADAM) [67],

an improved version of ADAM [52] that rectifies the variance of the adaptive learning rate. The learning rate

used is 1× 10−3, betas (0.9, 0.999) and a weight decay of 1× 10−4. A dropout layer is added before the MLP

layer of the classification network with a probability p = 0.2 to be zeroed.

45

Moreover, by carrying extensive hyperparameter tuning, we ensure that differences in performance can be

attributed to modelling choices rather than incomplete hyperparameter optimization. We use the Hyper-

band [62] algorithm over the validation split, which is created taking 20% of the samples of the training split.

Specifically, we run the hyperparameter optimization over the SUN RGB-D dataset. Once we have selected

the hyperparameters, we re-train the network using the complete training split and evaluate the model on the

test split.

3.4 Results

3.4.1 Ablation Studies

3.4.1.1 Study of the graph creation

To generate the graph from the point cloud needed to apply a Graph Convolutional Network, two different

policies can be used: radius proximity and kNN policies. To apply the radius proximity policy, we need to

define a set of radius for each graph convolutional layer. We found that the best set of the radius to be used

are [0.05, 0.08, 0.12, 0.24, 0.48], in meters, after applying the hyperparameter search, whereas for the kNN

policy, we found k = 9 works best. As can be observed in Table 3.2, the kNN policy surpasses the mean

accuracy obtained with the best configuration of the radius proximity policy.

Policy Mean Acc. (%)

kNN 42.4

Radius proximity 40.3

Table 3.2: Analysis of kNN and radius proximity as neighbourhood generation policies used on RAGC on SUN
RGB-D dataset [100].

Once the graph needed is defined, we need to specify the attribute for each edge. We use the positional offset

of the two neighbouring nodes as an attribute of the edge. In this section, we compare the cartesian and the

spherical representation of this positional offset. Table 3.3 shows that the spherical offset outperforms the

cartesian representation.

Edge Attribute Mean Acc. (%)

Spherical Offset 42.4

Cartesian Offset 40.5

Cartesian ∥ Spherical Offset 41.1

Table 3.3: Analysis of the effectiveness of different positional offset representations as edge attributes on SUN RGB-D
dataset [100].

3.4.1.2 Study of the MLP used to generate the weights on AGC

To study the influence of the MLP architecture used on AGC to generate the weights, we run several tests

using a different number of layers in the MLP, as shown in Table 3.4. We observe that using just one layer

yields a loss of 3.3% of the mean accuracy. Adding a second layer that uses half of the optimal found output

features yields a loss of 1.4% of the mean accuracy. Finally, adding an extra layer does not help to improve

the results; instead, it decreases the mean accuracy.

46

Configuration Mean Acc. (%)

(dl × dl−1) 39.1

(64, dl × dl−1) 40.7

(128, dl × dl−1) 42.4

(64, 128, dl × dl−1) 41.8

Table 3.4: Comparison of different MLP architectures used on AGC to generate the weights on SUN RGB-D
dataset [100].

3.4.1.3 Comparison with different Graph Convolutional Layers

In order to make a fair comparison, we remove all the residual connections from the original architecture

and replace the AGC for each of the state-of-the-art graph convolutional layers we previously explained

in Section 2.3.2. We observe that the layers that give similar results to AGC are the EdgeConv and the

FeaStConv, which AGC outperforms by 1.6% of increment in the mean accuracy, as shown in Table 3.5.

Method Mean Acc. (%)

AGC 40.2

EdgeConv [115] 38.6

FeaStConv [112] 38.3

GAT [111] 37.5

GCN [53] 36.2

Table 3.5: Comparison between AGC and the state-of-the-art graph convolutions on SUN RGB-D dataset [100].

3.4.1.4 Study of the influence of the residual connections on state-of-the-art graph convolutions

This section proves that our extension of residual connections to graph convolution can be used on different

state-of-the-art layers. As shown in Table 3.6, using residual connections helps improve each layer’s performance,

where RAGC outperforms by 1.9% of the mean accuracy, the closest state-of-the-art alternative.

Method Mean Acc. (%)

RAGC 42.4

REdgeConv 40.5

RFeaStConv 39.9

RGAT 39.1

RGCN 37.8

Table 3.6: Performance comparison of state-of-the-art graph convolutions with residual connections on SUN RGB-D
dataset [100].

47

3.4.2 Comparison with state-of-the-art

3.4.2.1 Results on SUN RGB-D dataset

In this section, the proposed method is compared against the previous state-of-the-art using the SUN RGB-D

dataset. As proposed by LM-CNN [11], we use a combination of different methods as a baseline. We train from

scratch an AlexNet [55] and a VGG [98] using the Places [127] dataset. Then both networks are fine-tuned

using the SUN RGB-D dataset using just the HHA codification of the depth channel as input. Table 3.7

shows that our method outperforms previous state-of-the-art methods with an increment of 7.8% of the mean

accuracy.

Method Mean Acc.(%)

CNN-RNN [99] 26.1

Places-Alexnet [55, 127] 32.1

Places-VGG [98, 127] 34.7

LM-CNN [11] 34.6

RAGC 42.4

Table 3.7: Performance comparison with state-of-the-art methods on SUN RGB-D dataset [100].

3.4.2.2 Results on NYU-Depth-V1 dataset

In this section, the proposed method is compared against the previous state-of-the-art, using the NYU-Depth-

V1 dataset. As proposed by LM-CNN [11], we use a combination of different methods as a baseline. We

train from scratch an AlexNet [55] and a VGG [98] using the Places [127] dataset. Then both networks are

fine-tuned using the SUN RGB-D dataset using just the HHA codification of the depth channel as input. In

addition, the Hybrid-CNN uses a similar approach, but first is pre-trained using ImageNet [18], then it is

fine-tuned with Places [127] and finally fine-tuned with the NYU-Depth-V1 dataset. Table 3.8 shows that our

method outperforms previous state-of-the-art methods with an increment of 7.5% of the mean accuracy.

Method Mean Acc.(%)

CNN-RNN [99] 65.2

RICA [57] 64.7

Places-VGG [98, 127] 66.9

Hybrid-VGG [18, 98, 127] 68.2

LM-CNN [11] 67.8

RAGC 75.3

Table 3.8: Performance comparison with state-of-the-art methods on NYU-Depth-V1 dataset [97].

48

3.5 Conclusions

In this chapter, we presented three components that leverage the state-of-the-art in graph analysis, which

effectiveness has been proved in Section 3.4.1, where we tackled the 3D geometric scene classification to prove

the validity of our method. The first component is the Attention Graph Convolution layer, which outperforms

previous graph convolutional layers, learning to infer a set of weights used to generate the messages of each

node of the neighbourhood. The second component is the extension of residual connections to the Attention

Graph Convolution layer, which effectively improves the performance of the layer in deep networks. The third

component is the Voxel Pooling layer which allows mimicking the traditional CNNs architectures and learning

richer, higher-level features. Our proposed method outperforms the previous state-of-the-art, proving that

using graph structures to analyze 3D point clouds is effective, as shown in Section 3.4.2. The current method

does not exploit the features of the RGB data which could be considered a limitation. In the next chapter, we

will explore how we can introduce the RGB data in our architecture. Furthermore, we will study how we can

enhance the Attention Graph Convolution using the attributes of the edges to better capture the difference

between similar neighbourhoods using the features of the nodes. In addition, we will explore different spaces

to generate the graph instead of just using the euclidean one. Finally, we will propose an extension of the

current Voxel Pooling layer to reduce the effects of the outliers.

49

CHAPTER 4

2D-3D Fusion Network using

Multi-Neighbourhood Graph Convolutional

Network

A great number of important real-world data come together with captures from a multitude of sensors capable

of capturing information on different domains: colour, heat, depth, etc. Furthermore, the different input

modalities come with different structural biases. Appropriately exploiting these multi-modal data remains

unresolved, especially when the corresponding training set sizes are small.

This chapter introduces a two-branch neural network [108] capable of fusing data from 2D and 3D sensors.

The architecture is composed of a 3D branch that uses a Graph Convolutional Neural Network that processes

the 3D input and a 2D branch that uses a Convolutional Neural Network that processes the 2D input. The

proposed architecture revisits the design of the Attention Graph Convolution and extends this operation to

work in a multi-neighbourhood fashion. Furthermore, the Nearest Voxel Pooling layer is proposed, a more

robust pooling layer for noisy 3D data. Finally, this architecture presents a novel 2D-3D Fusion block capable

of fusing multi-modal features with different sensor resolutions.

To prove the validity of our method, we will use 3D point clouds and 2D colour images of different indoor

scenes provided by public datasets.

The main contributions of this chapter are:

• The Multi-Neighbourhood Graph Convolution, which allows learning richer representations exploiting

information from multiple neighbourhoods.

• The improved version of the AGC, which incorporates the node feature offset as a new edge’s attribute,

50

allowing to learn richer local representations and better capture the neighbourhood structure.

• The Nearest Voxel Pooling layer, which is an improved version of the Voxel Pooling layer that mitigates

the effects of outliers.

• The 2D-3D Fusion block, which allows the fusion of multi-modal features from 2D and 3D worlds.

4.1 Related Work

4.1.1 2D-3D fusion networks

The fusion of the features obtained by 2D-3D networks is widely used in multi-view scenarios, where it is

possible to obtain different 2D RGB images from a dense point cloud. FusionNet [42] proposed to do a late

fusion using the classification scores obtained by the final fully-connected layer of the 2D and 3D networks.

SPLATNet [105] presented a different approach where the 2D and 3D features representations are mapped

onto the same lattice. This mapping is achieved using an improved version of the Bilateral Convolution

Layer [47]. More recently, an extension of PointNet++ [85] for multi-view scenarios with an early fusion

strategy was proposed in MVPNet [48]. This strategy consists of concatenating the features learned on a 2D

CNN to the geometric point used as input of the PointNet++. The main drawback of this approach is that

each point of the point cloud used as input on PointNet++ must have a 2D feature associated with it.

These previous methods of 2D-3D fusion made use of multi-view approaches to obtain different 2D RGB

images from a single dense point cloud. In the method proposed in this dissertation, the fusion is done using

only one 2D RGB image from each point cloud, and it will not assume that each point of the point cloud will

have an RGB feature associated, which makes it possible to work with different sensor resolutions.

4.1.2 Multi-modal scene classification

To address the Multi-modal scene classification, Zhu et al. [128] proposed to train a two-branch network to

learn features from RGB and depth and then fuse these features using a Support Vector Machine (SVM). Song

et al. [101] proposed to learn a more effective depth representation using a two-step training approach that

directly learns effective depth-specific features using weak supervision via patches. Li et al. [65] proposed a

novel discriminative fusion network that can learn each modality’s correlative and distinctive features. Cai et

al. [11] proposed a multi-modal CNN that captures local structures from the RGB-D scene images and learns

a fusion strategy. Similarly, MAPNet [66] presented two attentive pooling blocks to aggregate semantic cues

within and between feature modalities. Song et al. [102] proposed to use object-to-object relations obtained

with detection techniques. More recently, TRecgNet [20] tackled the RGB-D scene recognition problem as

a combination of a translation and a classification problem. Their work proposes to train simultaneously a

classifier network that classifies the scene and a translation network that predicts the depth from RGB and

the RGB from the depth. Training the network in a multitask manner helps the network learn more generic

features that yield an increment in performance. However, these methods use a 2D CNN on depth maps

to obtain geometric information that introduces possible errors due to missing local geometric context that

the projection to a 2D world can produce. In this dissertation, we address this limitation using a Graph

51

Convolutional Neural Network capable of exploiting the intrinsic geometric context inside a 3D space using

as input 3D point clouds obtained from RGB-D captures. Furthermore, the geometric feature extraction

performance is increased using the proposed Multi-neighbourhood Graph Convolution. This convolution fuses

two different neighbourhoods, one in the euclidean space and the other in the feature space, which helps

improve the quality of the extracted features.

4.2 2D-3D Geometric Fusion Network with Multi-Neighbourhood

Graph Convolution

This section presents our 2D-3D Geometric Fusion Network architecture and the Multi-Neighbourhood Graph

Convolution. The architecture is illustrated in Figure 4.1, which is composed of two branches: the 3D

Geometric branch and the 2D Texture branch. The input of the 3D Geometric branch is a 3D point cloud

that can be obtained directly from a lidar sensor or using the depth information and the intrinsic camera

parameters of an RGB-D sensor. Each node of the 3D input point cloud encodes the depth information using

the HHA encoding [35]. The input of the 2D Texture branch is a 2D RGB image corresponding to the same

capture as the one used on the 3D Geometric branch. After the corresponding branches, the extracted 3D

Geometric and 2D Texture features are fused using the 2D–3D Fusion stage and the result of this stage is

used by the classification network to predict the corresponding scene class.

C
la

ss
ifi

ca
tio

n
N

et
w

or
k

3D Geometric
Features

2D Texture
Features

Fused
Features

2D
-3

D
 F

us
io

n

3D Geometric
Branch

2D Texture
 Branch

3D Point Cloud

2D Image

Figure 4.1: 2D-3D Geometric Fusion Network architecture.

The 2D Texture branch uses, as a backbone, the well-known architecture ResNet-18 [41], which is depicted in

Figure 4.2. ResNet-18 is composed of a combination of residual blocks, convolutional layers, and poolings.

The output of the last residual block corresponds to the 2D Texture features used for the 2D-3D Fusion

block. This branch aims to exploit the power of already proven CNNs to obtain texture information that is

aggregated to the geometric information obtained by the 3D Geometric branch.

7x
7

co
nv

, 6
4,

 /2

M
ax

Po
ol

, /
2

R
es

B
lo

ck
, 6

4

R
es

B
lo

ck
, 1

28
, /

2

R
es

B
lo

ck
, 6

4

R
es

B
lo

ck
, 1

28

R
es

B
lo

ck
 ,

25
6,

 /2

R
es

B
lo

ck
, 2

56

R
es

B
lo

ck
, 5

12
, /

2

R
es

B
lo

ck
, 5

12

2D Texture Branch

2D Image

2D Texture Features

Figure 4.2: 2D Texture branch architecture, where /2 means that the stride has a value of 2. Residual Blocks are
composed of two convolution layers with a kernel size of 3× 3.

52

The 3D Geometric branch, depicted in Figure 4.3, is composed of two layers: the Multi-Neighbourhood

Graph Convolution (MUNEGC) and Nearest Voxel Pooling (NVP), both layers are explained in detail in

Sections 4.2.2 and 4.2.3, respectively. The 3D Geometric branch aims to have the same number of pooling

stages as ResNet-18.

3D Geometric Branch

M
U

N
E

G
C

, 1
6

N
V

P-
M

ax

M
U

N
E

G
C

, 1
6

M
U

N
E

G
C

, 3
2

N
V

P-
M

ax

N
V

P-
M

ax

M
U

N
E

G
C

, 6
4

N
V

P-
M

ax

M
U

N
E

G
C

, 1
28

3D Point Cloud

3D Geometric Features

Figure 4.3: 3D Geometric branch architecture.

The 2D–3D Fusion block takes the features generated by the previously 2D and 3D branches and fuses

them. Notice that the output resolution and sampling of both branches are different. The reason is that

pooling layers of both branches work on different spaces (2D and 3D). As a result, even if 3D point clouds are

extracted from RGB-D sensors, the final number of points and their positions are different. The proposed

2D–3D Fusion stage can handle that behaviour and generate a new set of combined features. This stage is

explained in detail in Section 4.2.4. The new features are fed to the classification network. As depicted in

Figure 4.4, the classification architecture is composed of a global average pooling and an FC(n) layer, where

FC is a fully-connected layer, and n is the number of classes.

Classification
Network

G
lo

ba
l

Av
er

ag
e

Po
ol

in
g

FC
, n

Figure 4.4: Classification network architecture.

4.2.1 Revisiting AGC

The Attention Graph Convolution (AGC) layer has been explained in detail in Section 3.2.1. As a reminder,

AGC is a graph convolution that performs the convolution over local graph neighbourhoods exploiting the

edges and their attributes, E. The attributes of the edges are used to estimate the weights, Θi,j , which are

used to generate the message of each node, j, of the neighbourhood, N(i), as it was formalized in Equations 3.1

and 3.2.

The attributes of the edge proposed in the AGC were the positional offset, s⃗ t
i,j = p⃗j − p⃗i, where p⃗ is the 3D

position of the nodes i and j. The attributes were defined during the graph creation step and updated just

after a pooling layer was applied (positional offset can be represented in cartesian or spherical coordinates). In

this section, we extend the attributes of the edges previously defined, adding a new set of attributes, the node

feature offsets. For each edge, i← j, we compute the offset between the node feature vectors, k⃗ t
i,j = x⃗ t

j − x⃗ t
i .

53

The edge’s attribute vector is defined as the concatenation of the positional offset and the node feature offset,

e⃗ t
i,j = s t

i,j ||kti,j . The new attributes must be recomputed after each AGC layer since k⃗ t
i,j depends on the

previous layer’s output. Adding the node features offset into the edge’s attribute helps to predict richer

features and better capture the difference between similar neighbourhoods.

Furthermore, to prevent the prediction of large weights, we propose to use a tanh activation layer in the

output of the MLP that generates the weights Θi,j , as it is formalized in Equation 4.1.

Θi,j = tanh(MLP (e⃗ t
i,j)) (4.1)

4.2.2 Multi-Neighbourhood Graph Convolution

Multi-Neighbourhood Graph Convolution (MUNEGC) is a graph operation that estimates the new feature

of each node using the combination of the features obtained in two different neighbourhoods, the euclidean

neighbourhood and the feature neighbourhood.

The euclidean neighbourhood uses the position, P , of the nodes on the euclidean space to define which nodes

are connected. Whereas the feature neighbourhood uses each node’s feature vector, X, to connect the nodes.

Therefore, in the feature neighbourhood, nodes with similar features (rather than closeness in space) are

connected. Both neighbourhoods share the same original nodes and their features. For both neighbourhoods,

edges can be generated following either a kNN policy or radius proximity policy. In the case of the euclidean

neighbourhood, the radius proximity policy has a geometric meaning and is intuitive to choose. Whereas

in the feature neighbourhood, the meaning of this radius is unclear and is not recommended to use due to

the complexity of its selection as the feature space changes at each iteration of the training phase. For that

reason, the kNN policy is chosen in the case of the feature neighbourhood. Figure 4.5 shows an example of

both neighbourhoods used on MUNEGC, where the same input nodes are used to generate the euclidean

neighbourhood and the feature neighbourhood. For simplicity, both neighbourhoods follow a kNN policy. On

the euclidean neighbourhood, nodes 0, 1, 2 and 3 are selected as neighbours of node 0 as they are the closest

nodes on the 3D space. Whereas, in the feature neighbourhood, nodes 0, 3, 4 and 5 are selected as neighbours

of node 0 as the features of the nodes are similar, represented as nodes with the same colour. Once both

neighbourhoods are defined, the attributes of the edges are computed following the method explained in

Section 4.2.1.

54

Euclidean
Neighbourhood

MUNEGC

Feature
Neighbourhood

Figure 4.5: Multi-Neighbourhood Graph Convolution, where x⃗i is the node feature vector i, e⃗ t
i,j is the edge’s attribute

vector of the edge i← j. Nodes with similar features are coloured with the same colour. Both neighbourhoods are
created using a kNN policy where k = 4.

As a result of having two neighbourhoods, each node has two possible feature vectors, one for the euclidean

neighbourhood and another for the feature neighbourhood. By definition, the filter size used in both neigh-

bourhoods is the same. This means that if a MUNEGC of d output features is requested, the filters of

both neighbourhoods output d features for each one. These features are going to be combined using an

aggregator which must output d features, as formalized in Equation 4.2, where the sub-index e indicates that

the neighbourhood belongs to the euclidean neighbourhood, whereas the index f indicates that it belongs to

the feature neighbourhood. The computation of the weights, Θ, has been defined previously in Equation 4.1.

x⃗ t+1
i = Aggr

 1

deg(Ne(i))

∑
j∈Ne(i)

Θe
i,j x⃗

t
j ,

1

deg(Nf (i))

∑
j∈Nf (i)

Θf
i,j x⃗

t
j

 (4.2)

Using two different neighbourhoods helps to learn more robust node features that consider the characteristics

of the regions with similar properties and the regions close in the 3D space.

4.2.3 Nearest Voxel Pooling

The Nearest Voxel Pooling (NVP) layer is based on the previously defined VP layer in Section 3.2.3. The VP

layer creates a grid of voxels of size s⃗ over the input point cloud and replaces all points inside the voxel with

their centroid. However, the VP layer can introduce noise when the points of two different voxels are closer

than their respective voxel’s centroid. As shown in Figure 4.6, NVP solves that issue by grouping the points

in respect of how far they are from all the centroids of the voxel grid.

55

(a) Voxel Pooling. (b) Nearest Voxel Pooling

Figure 4.6: Comparison of (a) Voxel Pooling and (b) Nearest Voxel Pooling. Crosses represent the new centroids,
and the dots the original points. Each colour indicates the points used to calculate each centroid.

As done in the VP layer, the first step is to convert the graph to a 3D point cloud, which is a straightforward

operation that removes the edges and keeps the nodes as 3D points in the point cloud. Each 3D point

contains the 3D coordinates, p⃗i, and the feature vector, x⃗i. Afterwards, we apply the NVP layer described in

Algorithm 2, which consists of assigning each point in the point cloud to the voxel with the closest centroid.

Then, the voxels with no points are removed, whereas the voxels with points assigned re-compute their centroid

as the average of all the points assigned to this voxel. The centroid’s feature is the aggregation of the points

assigned to the correspondent voxel. Finally, the downsampled version of the point cloud, composed of all the

voxel’s centroids, is converted into a graph where the edges and their attributes are re-generated.

Algorithm 2: Nearest Voxel Pooling

Input: v⃗s← voxel’s size, P ← point cloud
Output: C ← centroid’s position, F ← centroid’s feature

Create voxels, V , of size v⃗s, over the point cloud P
foreach Vi in V do

Compute centroid c⃗i ← average of points’ positions inside Vi

end foreach
foreach p⃗i in P do

Assign p⃗i to the closest centroid c⃗i
end foreach
foreach c⃗i in C do

if c⃗i does not have points assigned then
Delete c⃗i

else

Compute centroid’s feature f⃗i ← aggregation of points’ features in c⃗i
Re-compute centroid’s position s⃗i ← average of points’ positions in c⃗i

end if

end foreach

56

4.2.4 2D-3D Fusion block

The 2D-3D Fusion block is in charge of fusing different sets of multi-modal features. In this work, we use this

block to fuse the set of 3D Geometric and 2D Texture features which architecture is shown in Figure 4.7.

2D-3D Fusion

G
ro

up
 P

ro
po

sa
l

3D
 b

ac
k-

pr
oj

ec
tio

n

M
ul

ti-
m

od
al

 G
ro

up
 F

us
io

n

Fused Features

3D Geometric Features

2D Texture Features

Camera Parameters

Figure 4.7: 2D–3D fusion block architecture where Pg is the projection function of the 3D Geometric features, and
Pt is the projection function of the 2D Texture features.

The first step done by the 2D-3D Fusion block is to back-project the 2D Texture features into the 3D space

using the camera parameters and the depth channel. Afterwards, a projection function, P , is applied to

the 3D Geometric and 2D Texture features that projects both sets of features into a common feature space

with the same dimensionality. Each set of features has its own projection function, Pg for the 3D Geometric

features and Pt for the 2D Texture features, which is implemented as a convolution of kernel 1× 1 without

bias. Then, both sets of projected features are grouped on the group proposal step, which is based on the

NVP layer and creates groups of points from the 2D Texture and 3D Geometric features. For each group of

points, a super-point is generated, which position is the average of the positions of the points inside the same

group, as depicted in Figure 4.8.

Figure 4.8: Example of the group’s creation for the 2D–3D fusion stage. Each dot colour represents a different
feature (blue for 2D Texture and green for 3D Geometric), each circle represents a different group, and the crosses
represent the super-point of each group.

The feature of each super-point is computed following these two steps. First, we compute the average of the

same kind of features (2D Texture or 3D Geometric feature) inside the same group. Secondly, we concatenate

57

the resulting average to generate the fused feature for each super-point. Note that if just one kind of feature

appears in the group, we assume that the feature vector for the missing feature group is a vector of 1s.

Algorithm 3 formalizes the algorithm used on this block.

Algorithm 3: 2D-3D Fusion

Input: v⃗s← voxel’s size, CP ← camera parameters and depth,
G← 3D Geometric features, T ← 2D Texture features

Output: S ← super-point’s position, F ← super-point’s feature

Back-project T into a 3D point cloud using CP
Apply Pt to T
Apply Pg to G
Concatenate both point clouds P ← (T ||G)
Create voxels, V , of size v⃗s, over the point cloud P
foreach Vi in V do

Compute centroid c⃗i ← average of points’ positions inside Vi

end foreach
foreach p⃗i in P do

Assign p⃗i to the closest centroid c⃗i
end foreach
foreach c⃗i in C do

if c⃗i does not have points assigned then
Delete c⃗i

else

Compute superpoint’s texture feature c⃗t← average of points’ texture features in c⃗i
Compute superpoint’s geometric feature c⃗g ← average of points’ geometric features in c⃗i

Compute superpoint’s feature f⃗i ← (c⃗t∥c⃗g)
Compute superpoint’s position s⃗i ← average of points’ position in c⃗i

end if

end foreach

58

4.3 Experimental Setup

4.3.1 Datasets and Metrics

The SUN RGB-D dataset [100] was captured from different RGB-D sensors, including Asus Xtion,

RealSense, Kinect v1 and Kinect v2. Following the settings proposed by the authors, classes with less than 80

samples are discarded, resulting in 9504 captures with 19 different classes. These captures are divided into

4845 for training and 4659 for testing using the split provided by the authors. This dataset is the one used for

the ablation studies.

The NYU-Depth-V2 dataset (NYUV2) [78], following the configuration proposed by the authors, the

categories are grouped into 10, including 9 most common categories and the Other category representing the

rest. The dataset is split, following the division provided by the authors, using 795 captures for training and

654 for testing.

The proposed method is evaluated on both datasets using the mean accuracy metric, which is defined in

previous Section 3.3.1 and formalized in Equation 3.4.

4.3.2 Implementation details

4.3.2.1 Pre-processing input data

The input data used in our model comes from RGB-D captures. The RGB images are used as input by the

2D Texture branch, which are cropped using the center-crop technique using a size of 560× 420. In addition, a

random horizontal flip is applied during training as a data augmentation technique. The 3D Geometric branch

uses as input a graph based on the depth capture. The depth capture is encoded using the HHA encoding [35],

downsampled by a factor of 8 and back-projected into a 3D point cloud. The 3D point cloud positions are

scaled between [−1, 1], and during training, the following online data augmentation techniques are applied:

1. Rotation over the vertical axis randomly between (0, 2π).

2. Mirroring over horizontal axis randomly with a probability of 0.5.

3. Random removal of points with a probability of 0.2.

4. 3D random crop explained in detail in Section 3.3.2.1.

4.3.2.2 Architecture details

The proposed method is implemented with Pytorch [81] and Pytorch Geometric [25]. The 2D texture branch

is implemented using as a backbone the well-known ResNet-18. For the proposed 3D Geometric branch, the

hyper-parameters used are:

• MUNEGC layer creates both neighbourhoods using the kNN policy. As attributes of the edge, both

59

neighbourhoods use the positional offset, represented in spherical coordinates and the feature offset.

The MLP used to generate the weights to create the messages is composed of two MLP layers with

output features (128, dl × dl−1), where dl is the number of output features of the layer l. The average

aggregator is used for the combination of both neighbourhoods.

• NVP layer uses the maximum aggregator with cubic voxels.

The detailed architecture is shown in Table 4.1.

2D Texture Branch

Layer N. Filters Kernel Stride

Conv 64 7× 7 1

MaxPool - 3× 3 2

ResBlock 64 3× 3 1

ResBlock 64 3× 3 1

ResBlock 128 3× 3 2

ResBlock 128 3× 3 -

ResBlock 256 3× 3 2

ResBlock 256 3× 3 -

ResBlock 512 3× 3 2

ResBlock 512 3× 3 -

3D Geometric Branch

Layer N. Filters Cubic Voxel Size (meters)

MUNEGC 16 -

VP-Max - 0.05

MUNEGC 16 -

VP-Max - 0.08

MUNEGC 32 -

VP-Max - 0.12

MUNEGC 64 -

VP-Max - 0.24

MUNEGC 128 -

2D-3D Fusion Stage

Layer N. Filters Cubic Voxel Size
(meters)

P. Filters

2D-3D Fusion Block 512 0.24 256

Global Average Pooling - - -

FC n - -

Table 4.1: 2D-3D Geometric Fusion Network architecture details. P. filters define the number of filters used on
the Projection functions used to project the geometric and texture features. n is the number of classes, and FC is a
fully-connected layer. After each convolution and MUNEGC layer, we have batch normalization and ReLU activation
layers. The Global Average Pooling layer computes a global descriptor computing the average of all node features.

60

4.3.2.3 Training details

Due to GPU memory constraints, each branch of the proposed network is trained in an isolated manner adding

an independent classification network for each branch. Following the same setup that we used in Chapter 3,

the classification network is initialized using the Xavier initialization [31], where biases are initialized as

b = −log((1 − ϕ)/ϕ), where ϕ = 1/k and k is the number of classes, and the loss used is the weighted

cross-entropy formalized in Equation 3.5 which has been explained in Section 3.3.2.

2D Texture branch: Similar to previous works [20, 66], when training the branch in the SUN RGB-D

datasets, weights are initialized using a pre-trained version of the network on the Places dataset [127]. For the

smaller NYUV2 dataset, the branch is initialized using the weights obtained on the training done in the SUN

RGB-D dataset. In both datasets, the branch is trained using the early-stopping criteria with a patience of 10

epochs and a maximum of 100 epochs with a batch size of 16. The optimizer used for this training is SGD

with momentum [86]. The learning rate is 1× 10−3 with a momentum of 0.9 and a weight decay of 1× 10−4.

3D Geometric branch: This branch is initialized using the Xavier initialization [31] for the SUN RGB-D

dataset as there is no bigger RGB-D dataset to perform a pre-training of the network. In the case of the

NYUV2 dataset, as done in the 2D Texture branch, weights obtained on SUN RGB-D are used to initialize

the branch. The motivation for this is to demonstrate the ability of the 3D Geometric branch to learn

generalized representations that can be used on other datasets. In both datasets, the network is trained using

the early-stopping criteria with a patience of 20 epochs and a maximum of 200 epochs with a batch size of 32.

The optimizer used for this training is the Rectified Adam (RADAM) [67], an improved version of ADAM [52]

that rectifies the variance of the adaptive learning rate. The learning rate used is 1× 10−3, betas (0.9, 0.999)

and a weight decay of 1× 10−4. A dropout layer is added before the MLP layer of the classification network

with a probability p = 0.2 to be zeroed.

2D–3D Fusion stage: The 2D–3D fusion block and the classification network are considered the last branch

and are trained together. In both datasets, weights are initialized using the Xavier initialization [31]. The

input of this branch is the camera parameters and the output features of both previous branches, without

their corresponding classification networks, as can be seen in Figure 4.1. The network is trained using the

early-stopping criteria with a patience of 5 epochs and a maximum of 20 with a batch size of 32. The Rectified

Adam (RADAM) [67] optimizer is used with a learning rate of 1× 10−3, betas (0.9, 0.999) and a weight decay

of 1× 10−4. A dropout layer is added before the MLP layer of the classification network with a probability

p = 0.5 to be zeroed.

Moreover, by carrying extensive hyperparameter tuning, we ensure that differences in performance can

be attributed to modelling choices rather than incomplete hyperparameter optimization. We used the

Hyperband [62] algorithm over the validation split, which is created taking 20% of the samples of the training

split. Specifically, we run the hyperparameter optimization over the SUN RGB-D dataset. Once we have

selected the hyperparameters, we re-train the network using the complete training split and evaluate the

model on the test split.

61

4.4 Results

4.4.1 Ablation Studies

4.4.1.1 Study of the neighbourhood definition on MUNEGC

To generate the neighbourhoods needed by MUNEGC, two different policies can be used: kNN and radius

proximity policies. However, the radius proximity policy cannot be applied in the feature neighbourhood

as features are still being defined during the training phase, which complicates the choice of a radius. For

this reason, the two policies are studied in the euclidean neighbourhood. In the case of the radius proximity

policy, we need to define a radius for each MUNEGC layer. We found that the best radius for each layer are

[0.05, 0.08, 0.12, 0.24, 0.48], in meters, whereas for the kNN policy, we found a k = 9 works best. As can be

observed in Table 4.2, the kNN policy surpasses the mean accuracy obtained with the best configuration of

the radius proximity policy, which matches the behaviour observed during Chapter 3.

Policy Mean Acc. (%)

kNN 44.1

Radius proximity 42.4

Table 4.2: Analysis of kNN and radius proximity as neighbourhood generation policies for the euclidean neighbourhood
of MUNEGC on SUN RGB-D dataset [100].

Once both graphs needed by MUNEGC are defined, we need to define an attribute for each edge. This section

explores the combination of different edge attributes defined previously in Section 4.2.1. We combine the

positional offset with the node feature offsets. The positional offset is represented in spherical coordinates,

which outperforms euclidean coordinates as shown in Chapter 3. The node feature offset is represented directly

using the offsets and using the L2 norm of the offsets. Table 4.3 shows the results of combining different kinds

of edge attributes, proving that the best results are achieved using, as attributes of the edge, the spherical

offset and the node feature offset in both neighbourhoods.

Euclidean Neighbourhood Feature Neighbourhood Mean Acc. (%)

Spherical offset + Feature offset Spherical offset + Feature offset 44.1

Spherical offset + L2 Feature offset Spherical + L2 Feature offset 40.4

Spherical offset Feature offset 40.2

Table 4.3: Analysis of the effectiveness of different edge attributes on each kind of neighbourhood. L2 offset is the L2

distance between the feature vector of two neighbours on SUN RGB-D dataset [100].

4.4.1.2 Study of the MUNEGC design

This section analyzes the benefits of the two proposed extensions to the AGC and the improvements provided

by MUNEGC. As a reminder, the two extensions presented were: the addition of the node feature offset as an

edge attribute and the use of the tanh activation function on the MLP to predict the weights used on the

convolution, which were explained in detail in Section 4.2.1. In Table 4.4, we show the improvements provided

by the two proposed extensions to the AGC and their impact on the final result. In addition, we compare the

result we get with the AGC versus the residual extension of it and the multi-neighbourhood extension. To

guarantee that, in all cases, we have the same number of layers, we replaced each MUNEGC layer from the

62

architecture proposed in Section 4.2 with two AGC with the same number of output features. We observe

that the residual extension still helps improve the network’s performance. However, the MUNEGC extension

outperforms the AGC and its residual extension.

layer Spherical offset Feature offset tanh Mean Acc.(%)

AGC Yes No No 40.2

AGC Yes Yes No 41.5

AGC Yes Yes Yes 42.3

RAGC Yes Yes Yes 43.2

MUNEGC Yes Yes Yes 44.1

Table 4.4: Comparison of AGC and its residual and multi-neighbourhood extensions on SUN RGB-D dataset [100].

Furthermore, we analyze the aggregation operator used to fuse the feature we get for the euclidean and

the feature neighbourhoods. As observed in Table 4.5, the average aggregator outperforms the maximum

aggregator.

Method Mean Acc.(%)

Average 44.1

Maximum 40.7

Table 4.5: Comparison between maximum and average aggregators to fuse the euclidean and feature neighbourhoods
of MUNEGC on SUN RGB-D dataset [100].

4.4.1.3 Study of the MUNEGC design on different state-of-the-art graph convolutions

This section proves that our multi-neighbourhood approach can be used on different state-of-the-art layers.

As shown in Table 4.6, the multi-neighbourhood approach helps to improve each layer’s performance, where

AGC using the MUNEGC approach outperforms the closest state-of-the-art alternative by 2.8% of the mean

accuracy.

Mean Acc. (%)

Method Vanilla MUNEGC

AGC 42.3 44.1

EdgeConv 38.6 41.3

FeaStConv 38.3 40.7

GAT 37.5 40.1

GCN 36.2 39.3

Table 4.6: Performance comparison of state-of-the-art graph convolutions with the multi-neighbourhood approach on
SUN RGB-D dataset [100].

63

4.4.1.4 Comparison between Nearest Voxel Pooling and Voxel Pooling layers

The NVP layer is an improved version of the VP that solves the drawback of VP when the points inside of

two different voxels are closer than their respective voxel’s centroid. NVP layers are replaced with VP layers

to analyse the performance of the proposed NVP in the 3D Geometric branch. Table 4.7 shows that the NVP

outperforms VP.

Layer Mean Acc.(%)

NVP 44.1

VP 42.5

Table 4.7: Comparison between Nearest Voxel Pooling and Voxel Pooling layers on SUN RGB-D dataset [100].

4.4.1.5 Study of the fusion block strategy

Using a geometric proximity approach, the proposed fusion blocks fuse the features extracted from the 2D

Texture and 3D Geometric branches. The 2D Texture features are projected into the 3D world using the

depth and camera parameters. Then, they are grouped using the algorithm described in Section 4.2.4, which

is based on the Nearest Voxel Pooling layer. To prove the validity of the 2D-3D Fusion block, we compare

the method with a late fusion strategy inspired by FuseNet [42], which concatenates the features obtained

from each branch after a global average pooling. Therefore, only a concatenation is used without considering

any geometric proximity. Furthermore, we compare the group creation strategy using the NVP and VP to

propose groups of points to fuse. In Table 4.8, we observe that the proposed fusion block outperforms the late

fusion and the VP alternatives.

Method Mean Acc.(%)

2D-3D Fusion block with NVP 58.6

2D-3D Fusion block with VP 57.8

Late fusion 57.2

Table 4.8: Comparison of different strategies for the 2D-3D Fusion block on SUN RGB-D dataset [100].

4.4.1.6 Two-branch approach vs. an RGB Graph Convolution Neural Network

Another way to use the RGB values would be to add them directly on the nodes. In this section, we compare

the results that we get using the 2D Texture branch, which uses as backbone a ResNet-18, and the results

that we could get using the RGB information directly on the 3D Graph Convolutional Network. As shown in

Table 4.9, our RGB 3D Graph Convolution outperforms ResNet-18 when it is trained from scratch; however,

when ResNet-18 is pre-trained on the Places dataset and fine-tuned on the SUN-RGB dataset, it outperforms

our proposed RGB 3D Graph Convolution, since the 3D datasets are orders of magnitude smaller than the

2D ones. Using a two-branch approach allows us to exploit the benefits of using pre-trained 2D CNNs on

bigger datasets and fine-tune them for the specific problem.

64

Method Initialization Mean Acc.(%)

ResNet-18 Places 56.4

ResNet-18 random 47.8

RGB 3D Graph Convolution random 50.1

Table 4.9: Comparison of the RGB version of the 3D Graph Convolution vs. ResNet-18 on SUN RGB-D dataset [100].

4.4.2 Comparison with state-of-the-art

4.4.2.1 Results on SUN RGB-D dataset

In this section, the proposed method is compared against the previous state-of-the-art using the SUN RGB-D

dataset. Table 4.10 shows that our method outperforms previous state-of-the-art methods with an increment

of 1.9% of the mean accuracy.

Mean Acc.(%)

Method RGB Geometric Fusion

Multi-modal fusion [128] 40.4 36.5 41.5

Effective RGB-D representations [101] 44.6 42.7 53.8

DF2Net [65] 46.3 39.2 54.6

MAPNet [66] - - 56.2

TRecNet [20] 50.6 47.9 56.7

Ours 56.4 44.1 58.6

Table 4.10: Performance comparison with state-of-the-art methods on SUN RGB-D dataset [100].

However, if we look in detail at Table 4.10, we observe that our geometric branch is outperformed by the

geometric analysis done by TRecNet [20]. The reason for that is that the geometric branch of our method is

trained from scratch due to the lack of large RGB-D or 3D datasets. In contrast, since TRecNet uses 2D

networks to process the depth channel, they are capable of pre-training their geometric analysis branch using

a huge RGB dataset, such as Places [127]. In Table 4.11, we analyze the geometric branch of our method and

the geometric branch from TRecNet. We can observe that using pre-trained features provide TRecNet with

an improvement of up to 5.4%. However, if we train both methods from scratch, our method outperforms

them by a 2% of improvement in the mean accuracy.

Method Initialization Mean Acc.(%)

TRecNet [20] Places 47.6

TRecNet [20] Random 42.2

Ours Random 44.1

Table 4.11: Performance comparison of the 3D Geometric branch with state-of-the-art methods on SUN RGB-D
dataset [100].

65

4.4.2.2 Results on NYU-depth-V2 dataset

In this section, the proposed method is compared against the previous state-of-the-art using the NYUV2

dataset. For this dataset, the 3D Geometric branch is pre-trained using the weights from the training done

on SUN RGB-D dataset. Table 4.12 shows that overall our method overcomes state-of-the-art by 6% of the

mean accuracy.

Mean Acc.(%)

Method RGB Geometric Fusion

Effective RGB-D representations [101] 53.4 56.4 67.5

DF2Net [65] 61.1 54.8 65.4

MAPNet [66] - - 67.7

TRecNet [20] 64.8 57.7 69.2

Ours 67.8 59.2 75.1

Table 4.12: Performance comparison with state-of-the-art methods on NYU-Depth-V2 dataset [100].

These results reveal that the proposed 3D Geometric branch has the ability to learn generalized representations

that can be used on other datasets, making it possible to apply transfer learning techniques as conventional

2D-CNNs. In Table 4.13, we compare the geometric branch of our method and the geometric branch from

TRecNet. In this case, our method trained from scratch outperforms TrecNet when it is initialized with Places.

Furthermore, when both methods are initialized using the SUN RGB-D dataset, our method outperforms

TrecNet by 2% of improvement in the mean accuracy.

Method Initialization Mean Acc.(%)

TRecNet [20] Places 55.2

TRecNet [20] SUN RGB-D 57.7

Ours Random 57.2

Ours SUN RGB-D 59.2

Table 4.13: Performance comparison of the 3D Geometric branch with state-of-the-art methods on NYU-Depth-V2
dataset [78].

4.4.3 Qualitative results

In this section, we analyze the qualitative results on the SUN RGB-D dataset shown in Figure 4.9. In the

first column, we observe an example of when all the stages of the proposed framework classify the scene

correctly. In the second column, we have an example where the 2D branch fails to identify the scene, whereas

the 3D branch is capable of it. The network can properly identify the scene when fusing both features with

the proposed 2D-3D Fusion network. In the third column, we show an example of when the 2D and 3D

branch independently fails to identify the scene. However, when combining the features from both branches,

the 2D-3D Fusion network can properly identify the scene. Finally, in the fourth column, we have a failure

example where all the stages of the networks fail to identify the scene. However, the correct scene, Living

Room, is in the top 2 scores on each of the branches. We observe that the system is identifying the scene as a

bedroom which might be induced by the presence of many cushions on the sofa, leading the network to a

wrong decision.

66

(a) (b) (c) (d)

Figure 4.9: Qualitative results on SUN RGB-D dataset [100] showing the top 3 classes. Column (a) shows an
example of when all the stages of the proposed framework classify the scene properly. Column (b) shows an example
of when the 2D branch fails to classify the scene. Column (c) shows an example of when both the 2D and 3D branches
fail to classify the scene, but when features of both branches are combined on the Fusion stage, the network is capable
of properly classifying the scene. Column (d) shows a failure case when all the components of the system fail to
distinguish the scene.

67

4.5 Conclusions

In this chapter, we presented a 2D-3D Fusion Network that combines the intrinsic geometric information of

the 3D space obtained by Graph Convolutional Neural Network and the 2D Texture features obtained by a

2D CNN. Using a standard 2D CNN allows us to exploit the benefits of pre-training the network on bigger

datasets and fine-tuning the network to a particular problem getting richer and more representative features.

In contrast, we can not do the same in the 3D world since the 3D datasets are orders of magnitude smaller than

the ones we have in 2D. To fuse the features that we get from the 2D and 3D branches, we proposed a 2D-3D

Fusion block which exploits the geometric proximity and allows the fusion of multi-modal features without

having a 1-to-1 correspondence between them. The Graph Convolutional Neural Network proposed to get

the Geometric features is composed of three novel components that outperform the previous state-of-the-art

and also improve the performance of the Graph Convolutional Neural Network presented in Chapter 3. The

first one is the improved version of the Attention Graph Convolution layer that allows the addition of new

edge attributes, such as the node feature offset, which learns more specific weights for each neighbourhood

and outperforms previous state-of-the-art graph convolutions. The second one is the Multi-Neighbourhood

Graph Convolution which allows exploiting the use of multiple neighbourhoods generated in different spaces,

such as the euclidean and feature spaces, to learn better representations. Finally, we proposed the Nearest

Voxel Pooling layer, an improved version of the previous Voxel Pooling layer that mitigates the influence of

the outliers. Overall, our proposed method outperforms the previous state-of-the-art. As a drawback, our

Attention Graph Convolution requires a lot of memory since it generates the weights used to compute the

messages with an MLP that also requires its own parameters. In the next chapter, we will explore a different

direction to learn features that properly describe the local neighbourhood reducing the number of parameters

needed.

68

Part II

Node Analysis

69

CHAPTER 5

Heterogeneous Graph Convolutional

Neural Network using a Multi-Aggregator

approach

Human beings can analyze different regions of a vision signal independently and learn when to use visual

context information or add information coming from other systems, such as the hearing system, to improve

the interpretation. The ability to combine heterogeneous information helps to improve the ability of human

beings to better understand their surroundings.

In this chapter, we will focus on the node analysis problem, which consists of finding characteristics on a node

level instead of a graph level, as we did in Chapters 3 and 4. To do so, we proposed the Multi-Aggregator

Graph Convolution (MAGC) [109], a simplification of the Attention Graph Convolution that reduces the

amount of memory needed without losing performance. In addition, we presented a variant of MAGC to work

with a heterogeneous graph, a special kind of graph composed of different node types.

To better assess the validity of our method, we will focus on the heterogeneous node analysis problem.

Specifically, we will address the well-known Computer Graphics process of skinning a character mesh. The

data used in this task are synthetic characters generated by 3D artists, which are composed of a mesh and its

associated skeleton.

The main contributions of this chapter are:

• The Multi-Aggregator Graph Convolution (MAGC), which extends the message-passing architecture

to combine multiple aggregators to better generalize for unseen topologies and learn better local

representations.

70

• The heterogeneous variant of MAGC, which allows working with graphs containing different node

features.

• The Two-Stream Graph Neural Network, which allows extracting features from meshes and skeletons

with different topologies and without relying on handcrafted features.

• The k unique joints of the closest bones skin binding algorithm, which introduces a natural relationship

between the mesh and the skeleton using a joint representation instead of a bone representation which

is commonly used in recent literature.

5.1 Preliminaries

5.1.1 Character creation pipeline

Creating 3D characters for video games or high-quality films is a complex and time-consuming process that

artists spend years learning to do efficiently. The process of creating a character can be divided into four

main stages:

• Character designing: Defines how the character should look like.

• Modelling: Designs the 3D mesh of the designed character.

• Texturing: Assigns the corresponding textures for each part of the 3D mesh.

• Rigging: Creates a rig that gives control to the animators to move the character. The rig is composed

of a hierarchy of points called joints, connected by edges called bones, that mimics the human skeleton.

• Skinning: Attaches and defines how each joint influences each vertex of the mesh.

5.1.2 Skinning methods

Plenty of different skinning methodologies can be found in the literature, which can be split into three main

categories: Geometric [2, 49, 59, 73], Physical-based [61, 68, 83, 87], and Simulation-based [56, 60]. In this

thesis, we use the Geometric methodologies, widely used in video game creation due to their simplicity and

efficiency when running in real-time scenarios.

The Geometric methodologies deform the position of the vertices of the mesh using only the displacement

of the joints of the skeleton. The most popular one, and the one used in this thesis, is the Linear Blend

Skinning (LBS) [2, 59, 73] algorithm, also known as vertex blending or enveloping. This algorithm assumes

the following input data:

• Binding pose mesh composed by vertices denoted as p⃗1, ..., p⃗n ∈ R3, where n is the number of vertices

of the mesh. During the computation of the LBS, the coordinates are assumed to follow the convention

71

of homogeneous coordinates, which means that p̃n ∈ R4 with the last coordinate equal to one.

• Binding pose skeleton composed of joints which are normally represented as a hierarchy of rigid

transformations, and bones that represent the hierarchy of the joints. A bone is composed of two joints

the root joint and the child joint. The root joint is the one in charge of the movement of the bone,

which influences the child’s joint and its bone.

• Joint transformations represented as a list of transformation matrices, T1, ..., Tm ∈ R3×4, where m is

the number of joints. Each transformation matrix encodes the rotation and translation of each of the

skeleton’s joints.

• Skinning weights. For each vertex pi, a set of weights, wi,1, ..., wi,m ∈ R, are defined. Each weight

sets the amount of influence of joint j on vertex i. The weights of a vertex must add up to 1,

wi,1 + ...+ wi,m = 1.

The binding pose of the mesh and the skeleton refers to the pose that the artist uses to create the character.

The binding pose is normally a T-pose or A-pose, which defines the legs and arms position. Figure 5.1 shows

an example of a mesh and skeleton in an A-pose. After applying a movement to the joints of the skeleton, the

new position of the vertices of the mesh is computed as a weighted linear combination of the corresponding

Joint transformation as described in Equation 5.1.

p̃ t
i =

 m∑
j=1

wi,jTj

 p̃ t+1
i (5.1)

In recent years, there has been an effort from the Computer Graphics community to develop automatic

methods that predict the influence of each joint on each vertex of the mesh to speed up the process of creating

3D animated characters. Figure 5.1 shows the common pipeline used in these kinds of methods.

Method

Skinning
Weights

Linear Blend
Skinning

Animations

Input

Figure 5.1: Pipeline of a common Automatic Skinning Weight Prediction Method. Asset from Paragon Collection [23].

72

5.2 Related Work

Automatic skinning weight prediction techniques can be grouped into two different categories: geometric

based [3, 19, 46, 50, 54, 77, 96, 116] and data-driven solutions [13, 63, 69, 71, 93, 120].

Geometric methods rely on geometric characteristics between meshes and skeletons. The earliest methods

to automatically generate skinning weights proposed to exploit Heat Diffusion [4] and Illumination [117]

models. Alternatively, other methods used energy functions for the estimation, such as Elastic Energy [50] or

Laplacian Energy [46]. Later, Dionne et al. [19] proposed Geodesic Voxel Binding to handle non-watertight

meshes. All these methods rely on functions that assign the skinning weights depending on the distance

between joints and vertices. However, this assumption does not work for high-quality game characters with

complex topologies where multiple independent components can intersect.

Data-driven methods typically require multiple poses of a mesh or different meshes as input to learn how

to compute the skinning weights. New methods such as [13, 63, 71, 93] estimate skinning weights from Motion

Capture data. They focus on finding the skinning weights of humanoids and assume a fixed skeleton topology,

making the network unable to work for characters with different skeleton topologies.

NeuroSkinning [69] is one of the earliest proposed data-driven methods to automatically compute the skinning

weights for synthetic characters using neural networks. This method uses graph convolutions to compute

the skinning weights of a new mesh. NeuroSkinning uses a bone representation, meaning that the network

predicts the skinning weights per bone instead of per joint. It also relies on creating a super-skeleton that

consists of the fusion of all the skeletons that can be found in the training set. This super-skeleton is needed

to cope with the fixed output of the network. As a result, this assumption makes the network unsuitable for

working with skeleton topologies that can not fit in the super-skeleton structure.

RigNet [120] proposed to overcome this limitation using a kNN approach. In this work, the skin weights

assignment is divided into two blocks: First, the skin binding, which consists of finding the k bones that will

influence each vertex, using a kNN approach. Then, a network that predicts the skinning weights only for

the k nearest bones of each vertex. This feature allows the network to work with unseen skeleton topologies,

however, a bone representation is still used. By definition, a skeleton-driven mesh’s movement comes from

a joint’s rotation. Both representations are equivalent in an ideal scenario where each of the joints has one

associated bone. However, this assumption does not work for complex meshes, where a joint has more than

one associated bone. The bone representation used in RigNet has problems managing these scenarios, common

in stylized characters. To overcome this problem, our proposal directly uses a skeleton joint representation

that can manage complex skeleton topologies where each joint can have more than one bone. Furthermore,

both Neuroskinning and RigNet rely on handcrafted features to learn the relation between a mesh and its

associated skeleton. Our proposal consists of a Two-Stream Graph Convolutional Neural Network that learns

the relation between mesh and skeleton, automatically selecting the best features without relying on selected

handcrafted features.

73

5.3 SkinningNet

SkinningNet is a Two-Stream Graph Convolutional Neural Network that takes as input a mesh and its

corresponding skeleton and predicts a set of skinning weights, one for each mesh vertex. It is composed of

four different stages, as depicted in Figure 5.2.

Stage 1: Graph construction and skin binding (explained in detail in Section 5.3.1). The graph construction

step converts the mesh and the skeleton inputs into two independent graphs. The skin binding block decides

which joints influence each vertex and creates a graph representing this relationship. Following this approach,

we can define the number of predictions that the network has to make, making it possible to work with

different kinds of skeleton topologies with different amounts of joints. The graph construction output is fed

into stage 2, and the output of skin binding is used in stage 3.

Stage 2: Mesh and Skeleton branches. These branches transform the initial node attributes to feature vectors

through an input transform implemented using an MLP. Each branch is responsible for extracting features

independently for the mesh and skeleton. The mesh branch is composed of three residual Multi-Aggregator

Graph Convolution MAGC layers, whereas the skeleton branch is composed of three MAGC layers, further

details are given in Section 5.3.2 and 5.3.3. This difference is mainly because the skeleton is usually much

simpler than the mesh and does not require a deep network to learn the characteristics of its geometry. The

output of both branches is combined in stage 3.

Stage 3: Mesh-Skeleton block, based on a single Heterogenous MAGC layer. This block relates the mesh and

the skeleton using the output of the skin binding block. The output of this block is a single graph where each

node can represent the vertices of the mesh or the joints of the skeleton. However, only the nodes representing

the mesh’s vertices are used in the following stages. Furthermore, to help with the final skinning weight

prediction in stage 4, a global shape descriptor that encodes the global information of the mesh and skeleton

graphs is extracted and concatenated to the mesh nodes.

Stage 4: Skinning Prediction Network, composed of three Multi-Neighbourhood MAGC layers followed by an

MLP. Here, the MAGC is exploited in a multi-neighbourhood fashion, combining the mesh topology and

the local shape information to extract an enriched descriptor which is used to predict the skinning weights.

Further details are given in Section 5.3.3.

74

MAGC

H
et

er
og

en
ou

s
M

A
G

C

M
ul

ti-
N

ei
gh

bo
ur

ho
od

M
A

G
C

M
L

P

Input
Transform

Input
Transform

Residual
MAGC

Mesh Branch

Skeleton Branch

Skinning Prediction Network

Mesh-Skeleton
Block

Graph
Construction

Graph
Construction

Global Shape
Feature

Global Shape
Feature

 C
on

ca
t

Skin Binding

Stage 1 Stage 2 Stage 3 Stage 4

MAGC MAGC

Residual
MAGC

Residual
MAGC

M
ul

ti-
N

ei
gh

bo
ur

ho
od

M
A

G
C

M
ul

ti-
N

ei
gh

bo
ur

ho
od

M
A

G
C

Figure 5.2: SkinningNet architecture is composed of four main stages. Stage 1 is in charge of building the needed
graphs from the input mesh and its associated skeleton. Stage 2 is responsible for extracting features independently
for the mesh and skeleton. Stage 3 combines the previous mesh and skeleton features to extract a descriptor that
relates both structures. Stage 4 predicts the skinning weights. Asset from Paragon Collection [23].

5.3.1 Graph Construction

SkinningNet uses different strategies to create neighbourhoods for each kind of graph: mesh, skeleton and

mesh-skeleton graphs. In the mesh graph, we use two kinds of neighbourhoods. The first one is the one-ring

neighbourhood, where the faces of the mesh are converted into undirected edges. The second one follows the

radius proximity policy, which is used by the Multi-Neighbourhood MAGC layer. Both of them are explained

in detail in Section 2.4.

The skeleton graph is generated by converting the bones to undirected edges. Finally, the relation created by

the skin binding block is used to define the connections in the mesh-skeleton graph.

The mesh-skeleton graph is created using the skin binding block, which is in charge of assigning which of the

joints influence each vertex. For each vertex of the mesh, the closest bones of the skeleton are found, and the

associated root joint for each bone is selected. Finally, that selection is refined, leaving only the k unique

joints. The entire algorithm is described in Algorithm 4.

Algorithm 4: k unique joints of the closest bones

Input: V ← vertex positions, J ← joints positions, B ← bones
Output: The selected k joints for each vertex

foreach v⃗i in V do

Compute distance d⃗← d(vi, B)

Sort distances d⃗
Replace bones with their associated root joint
Select the k unique nearest joints

end foreach

75

5.3.2 Multi-Aggregator Graph Convolution

The Multi-Aggregator Graph Convolution (MAGC) is an extension of the message-passing architecture [28],

where multiple aggregators are used for allowing the graph convolution to better generalize for unseen

topologies and learn better local representations. The workflow of the MAGC is depicted in Figure 5.3.

Aggregate

Scale 1 Scale 2 Scale 3

Scale
Aggregators MLP

Figure 5.3: Multi-Aggregator Graph Convolution workflow.

The first step is to compute the messages each of the neighbours sends to the neighbourhood’s central node.

These messages are a function, ϕ(x⃗ t
i , x⃗

t
j , e⃗

t
i,j), that depends on the features x⃗ t of the nodes i, j and the edge

attribute e⃗ t
i,j . In this chapter, the messages are implemented using an MLP which takes as input the edge

attributes that are an asymmetric function of the features of the nodes, e⃗ t
i,j = x⃗ t

i ||(x⃗ t
j − x⃗ t

i). The computed

messages are combined using different aggregators, which are formally defined in Equation 5.2, where N(i)

represents the node’s neighbourhood i.

A =

Amax = max
j∈N(i)

(ϕ(x⃗ t
i , x⃗

t
j , e⃗

t
i,j))

Amin = min
j∈N(i)

(ϕ(x⃗ t
i , x⃗

t
j , e⃗

t
i,j))

Amean = mean
j∈N(i)

(ϕ(x⃗ t
i , x⃗

t
j , e⃗

t
i,j))

Astd = std
j∈N(i)

(ϕ(x⃗ t
i , x⃗

t
j , e⃗

t
i,j))

(5.2)

The results of each aggregator are scaled using a set of logarithmic degree scalers. The proposed scalers are:

1. Amplification, the value of the aggregator is amplified.

2. Attenuation, the value of each aggregator is attenuated.

3. Identity, the value of the aggregator is not changed.

Equation 5.3 formalizes the proposed scalers where d is the degree of the neighbourhood and dtrain refers

to the mean degree of the whole training split. The motivation for using different logarithmic scalers is to

improve the generalization of the convolution for unseen topologies, avoiding that the value of each aggregation

76

explodes when the neighbourhood degree increases.

S =

Samp =

log(d)

log(dtrain)

Satt =
log(dtrain)

log(d)

Siden = 1

(5.3)

Finally, the resulting operation of applying each scaler to each aggregator is fed into an MLP that learns how

to fuse the information. Equation 5.4 defines the combination of aggregations and scalers, with A being the

set of aggregation operations and S the set of scaler operations. The combination of two sets of operations is

defined as ⊗, soM is the combination of all the scalers with all the aggregators.

A = {Amax, Amin, Amean, Astd}
S = {Siden, Samp, Satt}

M = S ⊗A

 (5.4)

The MAGC layer is described in Equation 5.5, where all combinations,M, are fused using an MLP network

to produce the output feature of node i.

x⃗ t+1
i = MLP

(
M

j∈N(i)

(
ϕ(x⃗ t

i , x⃗
t
j , e⃗

t
i,j)
))

(5.5)

5.3.3 Graph Convolutional Blocks

The proposed architecture extends the previously definedMAGC, producing three types of Graph Convolutional

Blocks: Residual MAGC, Heterogenous MAGC and Multi-Neighbourhood MAGC.

The Residual MAGC is the residual extension of graph convolution previously explained in Section 3.2.2.

Each Residual MAGC is composed of two MAGCs stacked together with a residual connection. The residual

graph convolution was previously defined in Equation 3.3 where, in this case, F(Xt, E) represents a stack of 2

MAGC layers.

The Heterogenous Graph Convolution employs a variant ofMAGC to deal with graphs where the neighbourhood

is composed of an heterogeneous combination of nodes. This variant concatenates a one-hot vector to the

node feature before applying the MAGC that allows differentiating between a node from the mesh and a node

from the skeleton defined in Equation 5.6.

77

x⃗t
i =

 0∥x⃗ t
i if i ∈ mesh

1∥x⃗ t
i if i ∈ skeleton

(5.6)

The Multi-Neighbourhood MAGC is an extension of MAGC into a multi-neighbourhood graph convolution

previously defined in Section 4.2.2 where two kinds of neighbourhoods are used to get the new node feature.

Equation 5.7 defines the extension of MAGC to a multi-neighbourhood approach. Where K is the set of

neighbourhood types.

x⃗ t+1
i = MLP

(
concat
k∈K

{
MLP

(
M

j∈Nk(i)

(
ϕ(x⃗ t

i , x⃗
t
j , e⃗

t
i,j)
))})

(5.7)

In this chapter, instead of using the maximum or average to aggregate both neighbourhoods as we did in

Section 4.2.2, we propose to learn the aggregation operation using an MLP.

5.4 Experimental Setup

5.4.1 Datasets and Metrics

The RigNetv1 [120] dataset is publicly accessible for non-commercial use. This dataset is composed of 2703

rigged characters of different categories. The original split of the dataset is followed where 2163 assets are

used for training, 270 for validation and 270 for testing. All training assets contain between 1k and 5k vertices

and a mean of 25 skeleton joints.

The Paragon Collection [23] is allowed to be used in non-interactive linear media products under a non-

exclusive and non-transferable license. Two assets from this set have been used as test, Aurora and Rampage,

to study the generalization capability of the proposed method. Both have been simplified and contain about

6k vertices and 50 skeleton joints.

To evaluate the proposed method, four different metrics have been used:

• Precision and Recall of the selection of influencing joints for every vertex, as the wrong selection would

cause unexpected deformations. We set the joint selection, y, as defined in Equation 5.8. Where yi,j = 1

meaning that the j − th joint is influencing the i− th vertex, and α is a threshold set to α = 1× 10−4,

as done by [69, 120]. We use this metric just to compare our method against the state-of-the-art.

yi,j =

1, wi,j ≥ α

0, wi,j < α
(5.8)

78

To compute the Precision and Recall, first, we compute the ŷ for the prediction and the y for the ground

truth. Then we compute the Precision and the Recall between ŷ and y following Equations 5.9 and 5.10.

Precision =
tp

tp+ fp
(5.9)

Recall =
tp

tp+ fn
(5.10)

• L1-norm error between the predicted skinning weights Ŷ ∈ Rv×j and the ground truth Y ∈ Rv×j as

described in Equation 5.11, where v is the number of vertices of a mesh and j the number of joints of

the associated skeleton. We use this metric to compare our method against the state-of-the-art, using

the average of the L1-norm error.

L1-norm error = |Y − Ŷ | (5.11)

• Deformation error that evaluates the deformation quality. We compute the euclidean distance between

the position of the vertices deformed by applying the predicted skinning weights and the ground truth.

The metric is run over 10 different random poses generated by rotating the skeleton joints randomly

within a range of ±10 degrees. The deformation error is formalized in Equation 5.12, where M̂ ∈ Rp×v×j

is the deformed mesh applying the predicted skinning weights, and M ∈ Rp×v×j is the deformed mesh

applying the ground truth skinning weights, where v is the number of vertices of a mesh, j the number

of joints of the associated skeleton and p the number of random poses. In this thesis, we report the

average and maximum deformation errors. The average deformation error is computed as the average

deformation error of all meshes vertices, and the maximum deformation error is computed as the

maximum deformation error of all meshes vertices. We use this metric to compare our method against

the state-of-the-art and to run our ablation studies.

Def. Error = ∥M − M̂∥ (5.12)

5.4.2 Implementation details

5.4.2.1 Pre-processing input data

The mesh and skeleton positions are scaled between [−1, 1] and oriented to face the same direction.

The mesh branch’s input is the mesh’s vertices, which are converted into two different graphs: mesh topology

and radius proximity graph. The radius proximity graph uses a radius r = 0.06 with a maximum of 10 nodes.

In addition, we use the geodesic distance over the mesh as a distance to compute the neighbourhoods. As a

79

feature of each mesh’s node, we use the 3D coordinates of the vertices, the geodesic distance to the k = 5

unique joints from the nearest bones, described in Section 5.3.1, the start and end position of the bones of

those joints and a boolean value indicating if the joint is an end joint or not.

In the case of the skeleton branch, the skeleton is converted into a graph using the bones as undirected edges,

as described in Section 5.3.1. As a feature of the nodes, the 3D position of the joints is used.

Finally, the Mesh-Skeleton block needs a third graph, the mesh-skeleton graph, which is created using the

Algorithm 4, using the volumetric geodesic distance [120] to compute the distances between vertices and

joints. This distance consists of computing the shortest path from a vertex to a joint passing through the

interior mesh volume.

5.4.2.2 Architecture details

The detailed architecture with the number of filters used in each layer is shown in Table 5.1, where k is the

number of joints that influence each vertex. In this thesis, k = 5 since it is the maximum value of joints that

will influence a vertex of the mesh in the training split of the RigNetv1 dataset. A dropout layer is added

before each MLP of the Skinning Prediction Network with a probability of p = 0.5 and the activation function

Softmax is applied to the weights predicted for each vertex.

Mesh Branch

Layer N. Filters

Input Transform MLP(64, 128)

Residual MAGC 128

Residual MAGC 256

Residual MAGC 512

Skeleton Branch

Input Transform MLP(64)

MAGC 128

MAGC 256

MAGC 512

Mesh - Skeleton Block

Mesh Global Shape MLP(256)

Skeleton Global Shape MLP(256)

Mesh-Skel MAGC 512

Concat 512 + 256 + 256

Skinning Prediction Network

Multi-Neighbourhood MAGC 256

Multi-Neighbourhood MAGC 128

Multi-Neighbourhood MAGC 64

MLP (64, 32, k)

Table 5.1: SkinningNet architecture details. k is the number of joints that can influence each vertex.

80

5.4.2.3 Training details

The network is trained in an end-to-end fashion using the early-stopping criteria with a patience of 20 epochs

and a maximum of 200. The Rectified Adam (RAdam) [67] optimizer is used with a learning rate of 1× 10−4,

a weight decay of 1 × 10−4, and a batch size of 4. The Kullback-Leibler divergence loss, formalized in

Equation 5.13, minimizes the distance between the predicted skinning weight distribution and the ground

truth distribution, where yi,j is the ground truth value of the i vertex and the j joint. ŷi,j is the prediction of

the network, n is the total number of vertices, and k is the maximum number of joints influencing each vertex.

Lkl =
1

n× k

n∑
i=1

k∑
j=1

yi,j(log(yi,j)− log(ŷi,j)) (5.13)

Moreover, by carrying extensive hyperparameter tuning, we ensure that differences in performance can

be attributed to modelling choices rather than incomplete hyperparameter optimization. We used the

Hyperband [62] algorithm over the validation split. Once we have selected the hyperparameters, we evaluate

the model on the test split.

5.5 Results

5.5.1 Ablation Studies

5.5.1.1 Study of the architecture design

This study aims to understand how each component of our proposed network architecture influences the final

result. Specifically, we are going to remove the global shape feature for both branches, the residual connections

from the mesh branch, and the Multi-Neighbourhood MAGC will be replaced by two MAGC with the same

number of output features. The results of these experiments are shown in Table 5.2.

Removing the Multi-Neighbourhood MAGC from the network leads to a loss of performance of about 5%.

These results show that Multi-Neighbourhood MAGC is helping to get an enriched local descriptor for each

of the vertices, which enables the network to be aware of the local structure around the vertices. A similar

performance loss is obtained when removing the global shape feature as it helps the network to be aware

of the global shape of the skeleton and the mesh when making the prediction. Finally, adding the residual

connections to the Mesh Network leads to an improvement of 4%, demonstrating that the residual connections

are helping the proposed approach.

Method Avg. Def Max. Def

SkinningNet 0.002288 0.1789

No Global Feature 0.002452 0.1905

No Residual 0.002394 0.1862

No Multi-Neighbourhood MAGC 0.002427 0.2009

Table 5.2: Study of the influence of each of the proposed stages on RigNetv1 dataset [120].

81

5.5.1.2 Comparison of Joint vs. Bone representation

In this section, the difference between a joint vs. a bone representation is analyzed. The skin binding step

is modified to use bones instead of joints when creating the relations between the mesh and the skeleton.

Table 5.3 shows the results of both approaches. As can be seen, the skeleton joint representation gives an

improvement of 5% in both average and maximum deformation. This improvement is because the joint

representation follows a natural approach where each of the joints represents an articulation which is in charge

of defining the movement of each bone.

Method Avg. Def Max. Def

Joint 0.002288 0.1789

Bone 0.002407 0.1893

Table 5.3: Joint vs. Bone representation study, where the influence of each representation is analyzed on RigNetv1
dataset [120].

5.5.1.3 Comparison of Euclidean vs. Geodesic distance

Finding the vertex to joint distance is critical for skinning prediction methods. NeuroSkinning [69] proposed

using the euclidean distance, while RigNet [120] proposed using the geodesic distance. Both distances have

their advantages and disadvantages. The geodesic distance is defined for connected components, with the

distance between two non-connected components being infinite. This means that the geodesic distance is

better suited for watertight meshes, whereas the euclidean distance can be used for both watertight and

non-watertight meshes. In terms of performance, using geodesic distance helps the network to predict better

results than using euclidean distance, as observed in Table 5.4.

Method Avg. Def Max. Def

Euclidean 0.002663 0.4473

Geodesic 0.002288 0.1789

Table 5.4: Geodesic vs. Euclidean performance comparison on RigNetv1 dataset [120].

An example of the effects of a higher maximum error when using the euclidean distance can be observed in

Figure 5.4 where the tail of the squirrel is wrongly deformed. The euclidean distance relates the mesh vertices

with joints in the back of the squirrel, whereas the geodesic distance avoids this problem.

82

(a) Euclidean (b) Geodesic

Figure 5.4: Euclidean vs. Geodesic qualitative results. It can be observed that the euclidean distance introduces big
deformation errors in the tail. Asset from RigNetv1 dataset [120].

5.5.1.4 Comparison with different Graph Convolutional Layers

In this experiment, the MAGC has been replaced with four different state-of-the-art graph convolutions and

the AGC to study this operator’s influence on the prediction output. The MLP needed by the AGC to

generate the weights is composed of two MLP layers with output features (128, dl × dl−1), where dlis the

number of output features of the layer l, and the edge attributes are the concatenation of the positional offset

and the node feature offset as defined in Section 4.2.1. Table 5.5 shows that AGC achieves the closest results

to the proposed MAGC, which is outperformed by the MAGC with an improvement of 2.6% on the average

deformation error.

The MAGC needs fewer parameters than the AGC, which requires an MLP that generates the weights used

to generate the message of each neighbouring node which needs its own parameters too. Whereas the MAGC

uses an MLP of just one layer to directly get the message, which reduces the memory footprint. Specifically,

the AGC needs (edge attributes channels× c) + (c× input channels× output channels) weights, where c is

the number of outputs of the first layer of the MLP that generates the weights. Whereas the MAGC needs

(edge attributes channels×output channels)+(output channels×number aggregators×number scalers×
out channels) weights. The main difference resides in the last term. The number of parameters of the AGC

depends on the product between the number of input and output channels of the layer. In contrast, the

MAGC depends on the product between the number of scalers, the number of aggregators and the number of

output channels. The product between the number of aggregators and scalers will be considerably lower than

the number of inputs which in deeper layers will correspond to high values.

83

Method Avg. Def Max. Def

MAGC 0.002288 0.1789

AGC 0.002351 0.1873

EdgeConv [115] 0.002381 0.1921

FeaStConv [112] 0.002431 0.2054

GAT [111] 0.002551 0.2098

GCN [53] 0.002765 0.2533

Table 5.5: Graph Convolution study where MAGC has been compared with three different state-of-the-art operators
on RigNetv1 dataset [120].

5.5.1.5 Study of the influence of the learned aggregator of the Multi-Neighbourhood Graph

Convolution

This work proposes to learn the aggregation operation used on the Multi-Neighbourhood approach instead

of using the maximum or average aggregators as done in Chapter 4. We can observe that using a learned

approach based on an MLP, we get an improvement of 3.7% as shown in Table 5.6.

Aggregation Avg. Def Max. Def

MLP 0.002288 0.1789

Average 0.002376 0.1874

Maximum 0.002450 0.2023

Table 5.6: Comparison of different aggregation strategies on the Multi-Neighbourhood Graph extension on RigNetv1
dataset [120].

84

5.5.2 Comparison with state-of-the-art

SkinningNet is compared to the two most recent data-driven approaches: NeuroSkinning [69] and RigNet [120].

Both networks are trained from scratch following the procedure described in their respective papers. In

the case of NeuroSkinning, the original euclidean distance is replaced with the geodesic one, as it has been

demonstrated in Section 5.5.1.3, to be a more suitable choice for watertight meshes. Furthermore, the two

architectures use the same input data as the one proposed in our work to guarantee a fair comparison.

SkinningNet outperforms the best method of the state-of-the-art with over 5% of improvement on Precision

with the same Recall and 15% improvement on average L1-norm. Table 5.7 summarizes the comparison with

the state-of-the-art. Figure 5.5 shows the skinning weights predicted for three assets from the test set of the

RigNetv1 dataset using the state-of-the-art methods and the proposed method. To get this representation, a

random colour is assigned to each of the joints of the skeleton. Then, colours are blended using the skinning

weights associated with each vertex. We can see that our method better predicts the skinning weights with

associated colours that are closer to those of the ground truth in the first column.

Method Prec.(%) Rec.(%) Avg. L1

NeuroSkinning [69] 82.3 79.7 0.41

Rignet [120] 82.3 80.8 0.39

SkinningNet 87.0 80.8 0.33

Table 5.7: Comparison with the current state-of-the-art techniques on RigNetv1 dataset [120].

In terms of deformation error, Table 5.8 shows that our method outperforms with a 20% of improvement in

the average error and a 17% improvement in the maximum error. The qualitative results of this metric can be

observed in Figure 5.6, where SkinningNet can generate reasonable results where previous state-of-the-art

methods fail.

Method Avg. Def Max. Def

NeuroSkinning [69] 0.002843 0.2151

Rignet [120] 0.002921 0.2246

SkinningNet 0.002288 0.1789

Table 5.8: Deformation error comparison with the current state-of-the-art techniques on RigNetv1 dataset [120].

85

(a) GT (b) NeuroSkinning (c) RigNet (d) SkinningNet

Figure 5.5: Skinning weight prediction results of each of the state-of-the-art methods. Each joint is assigned a
random colour, and colours are blended using the skinning weights associated with each vertex. Assets from RigNetv1
dataset [120].

(a) NeuroSkinning (b) RigNet (c) SkinningNet

Figure 5.6: Deformation error of three different characters with a randomly generated pose. Assets from RigNetv1
dataset [120].

86

5.5.2.1 Generalization study

In this section, we are going to demonstrate that our proposed method has a better generalization and is

suitable for working with high-quality game characters. The networks are trained using the RigNetv1 [120]

dataset and the result of it is applied to the Aurora and Paragon assets from the Paragon Collection [23].

Results in Table 5.9 show that our method outperforms previous works with over 28% of improvement in

average deformation and 36% in maximum deformation error, proving that the proposed method generalizes

better than previous methods for unseen complex characters. In Figure 5.7, it can be observed that the

proposed method generates good-quality animations without strong errors, whereas the other methods have

high errors in both characters.

Method Avg. Def Max. Def

NeuroSkinning 0.003724 0.1213

Rignet 0.003398 0.1051

SkinningNet 0.002666 0.0664

Table 5.9: Generalization Study of the state-of-the-art methods. The deformation error is computed using a normalized
version of the Paragon Assets [23].

(a) NeuroSkinning (b) RigNet (c) SkinningNet

Figure 5.7: Generalization study with Aurora and Rampage assets from the Paragon collection [23].

87

5.5.3 Knowledge Transfer

Following the original publication of the SkinningNet paper [109], we have been delighted to collaborate with

Epic Games to create an application based on SkinningNet to help artists speed up their workflow.

SkinningNet is retrained using a new dataset based on non-watertight assets from the Fortnite™ game [24],

composed of 767 assets, where 690 of them are used for training and 77 for testing. On average, we have

10k vertices and 101 joints per asset, as shown in Figure 5.8, increasing the complexity that we had in the

previous dataset.

4000 6000 8000 10000 12000 14000 16000

Vertices

0

50

100

150

200

A
ss

et
s

Avg: 10562
Max: 17576
Min: 3783

50 100 150 200

Joints

0

100

200

300

A
ss

et
s

Avg: 101
Max: 248
Min: 57

Figure 5.8: Analysis of the statistics in terms of the number of vertices and joints of the Fortnite™ dataset [24].

Because the meshes are non-watertight and layered (we have the body and clothes as different layers of

vertices), we use the euclidean distance instead of the geodesic distance to build the mesh-skeleton graph. In

addition, the number of joints influencing each vertex is increased to 8 instead of the 5 we had in the previous

dataset. Figure 5.9 shows the qualitative results of applying the skinning weights predicted by SkinningNet to

a skeleton asset from the test split. The first row shows the resulting animations using the predicted skinning

weights, and the second row shows the resulting animations using the ground truth skinning weights. Overall,

the predicted skinning weights generate reasonable animations; however, if we compare both results in detail,

we observe some errors when deforming the hips and other parts of the clothing. Figure 5.10 shows the weight

map of the joint spine 05, where we can observe that the skinning weights predicted are not smooth on this

section, and it might provoke the wrong deformations on the upper part of the skeleton chest, depicted in

Figure 5.9.

Figure 5.11 shows the qualitative results of applying the skinning weights predicted by SkinningNet to a robot

asset from the test split. As before, the predicted skinning weights generate reasonable animations; however,

when we look closely, we observe that there are deformations on the tubes and in some of the details of the

armature. In addition, in frame 2, we observe that in the shoulder, there is an outlier. Figure 5.12 shows the

weight map of the joint pelvis, where we can observe that the skinning weights predicted are not smooth in

this section, and it might provoke the wrong deformations on the pelvis area, depicted in Figure 5.11.

Even though the predictions are not perfect, our tool allows the artist to have, in less than 10s, a decent first

version of the skinning weights that they can quickly refine later, saving many hours of manual work.

88

(a) Prediction Frame 1 (b) Prediction Frame 2 (c) Prediction Frame 3

(d) GT Frame 1 (e) GT Frame 2 (f) GT Frame 3

Figure 5.9: Qualitative results using SkinningNet over a skeleton asset of the Fortnite™ dataset [24].

(a) GT (b) Prediction

Figure 5.10: Comparison of predicted and ground truth skinning weights of the joint spine05 of the skeleton asset
from the Fortnite™ dataset [24].

89

(a) Prediction Frame 1 (b) Prediction Frame 2 (c) Prediction Frame 3

(d) GT Frame 1 (e) GT Frame 2 (f) GT Frame 3

Figure 5.11: Qualitative results using SkinningNet over a robot asset of the Fortnite™ dataset [24].

(a) GT (b) Prediction

Figure 5.12: Comparison of predicted and ground truth skinning weights of the joint pelvis of the robot asset from
the Fortnite™ dataset [24].

90

5.6 Conclusions

In this chapter, we presented the Multi-Aggregator Graph Convolution, which extends the message-passing

architecture to combine multiple aggregators that help to better generalize for unseen topologies and learn

better local representations. The proposed Multi-Aggregator Graph Convolution requires less memory than

the Attention Graph Convolution and also gets better results, as is shown in Section 5.5.1.4. In addition, the

new Multi-Aggregator Graph Convolution outperforms previous state-of-the-art graph convolutional layers

on the task of node analysis of heterogeneous graphs, which effectiveness has been proved on the automatic

skinning prediction task. To solve this task, we proposed SkinningNet, a Two-Stream Graph Convolutional

Neural Network that automatically generates skinning weights for an input mesh and its associated skeleton.

The proposed architecture has two independent branches, composed of different variants of Multi-Aggregator

Graph Convolutions, that process the skeleton and the mesh independently. The output of both branches is

fused using the heterogeneous variant of the Multi-Aggregator Graph Convolution, which as input, takes a

heterogeneous graph that contains nodes from the mesh and from the skeleton and outputs new features for

each of them. The output of the heterogeneous graph convolution is used to predict the skinning weights for

each of the vertices of the mesh. The proposed architecture outperforms current approaches with over a 20%

improvement on mesh deformation error and is also able to better generalize for complex characters of unseen

domains.

Even though the results are promising, there are some limitations in the creation of the graphs. For instance,

in this specific problem of automatically generating the skinning weights, we created the graph that relates the

mesh and the skeleton assigning the joints that will influence each of the vertices based on a kNN approach.

However, if the joint that should influence the vertex is not part of the neighbourhood, the network will not

be able to find it. As future work, in order to improve the graph creation step, we propose to explore link

prediction strategies to let the network learn the binding strategy, which will allow the network to learn the

best neighbourhood configuration for each scenario.

91

CHAPTER 6

Conclusions

Throughout this thesis, we prove how Graph Convolutional Neural Networks are currently the way to go when

dealing with 3D data. We will conclude the write-up briefly, summarizing the key contributions, followed by

an overview of future research lines.

6.1 Summary of contributions

• In Chapter 3, we have designed a Graph Convolutional Neural Network architecture capable of extracting

rich geometric features from 3D data. This neural network is composed of three novel components.

The first component is the Attention Graph Convolution (AGC) layer, which outperforms previous

state-of-the-art graph convolutional layers. The main characteristics of the AGC reside in its ability

to infer the kernel used during the convolution, taking into account the neighbourhood configuration,

allowing it to better capture the neighbourhood characteristics. The second component is the extension

of residual connections to the Attention Graph Convolution, which effectively improves the performance

of different graph convolutional layers in deep networks. The third component is the Voxel Pooling layer

which allows mimicking the traditional CNNs architectures and learning richer, higher-level features.

The results of our experimentation on the Graph Analysis task show that our method is capable of

extracting better 3D geometric characteristics than the previous state-of-the-art.

• In Chapter 4, we presented a 2D-3D Fusion Network that combines the 3D geometric information

obtained by Graph Convolutional Neural Network and the 2D texture features obtained by a 2D CNN.

The proposed network is able to fuse 2D and 3D features at different resolutions/sampling without

having a 1-to-1 correspondence between features. Furthermore, we introduced the Multi-Neighbourhood

Graph Convolution, which allows exploiting the use of multiple neighbourhoods generated in different

spaces, such as the euclidean and feature spaces, to learn richer representations. Finally, we improved

the previous version of the Voxel Pooling layer proposing the Nearest Voxel Pooling layer that mitigates

the influence of the outliers. The results of our experimentation on the Graph Analysis task show that

92

our method is better at managing multi-modal characteristics than the previous state-of-the-art.

• In Chapter 5, we evaluated previously proposed methods to infer characteristics at a node level of a

heterogenous graph. In addition, we introduced the Multi-Aggregator Graph Convolution (MAGC) that

uses a multiple aggregator approach to better generalize for unseen topologies and learn better local

representations. Moreover, this new layer reduces the memory footprint with respect to the Attention

Graph Convolution. Finally, we show a variant of the MAGC that better handles heterogeneous

graphs. The results of our experimentation on the Node Analysis task show that the proposed MAGC

outperforms previous state-of-the-art graph convolution layers.

6.2 Future work

• Converting 3D data to a graph and giving control to a neural network to create/modify the graph is still

an open problem. Some attempts try to predict links between nodes [124, 125]. However, most of them

are done in transductive learning scenarios where the problem is simplified. Exploring methodologies to

apply link prediction strategies in transductive learning scenarios is a challenging task that would help

to learn better relations between nodes.

• It is fair to say that the predominant architecture underlying current Graph Convolutional Neural

Networks is message passing. However, there exist other promising options to deal with graphs that, in

the future, could outperform the message-passing, such as diffusion-based methods [12, 22]. Finding

new efficient ways to deal with graph data could help to deal with large 3D data.

• Extending current Graph Convolutional Neural Networks to work with heterogenous graphs is still

an open challenge. Most of the attempts [44, 114] done previously are made in transductive learning

scenarios where the problem is simplified. Exploring methodologies to handle heterogeneous graphs on

transductive scenarios is indeed a challenge that must be addressed in the future.

• In the area of Graph Convolutional Networks, interpretability is experiencing rapid development.

However, the research focus is on knowledge graphs and molecules [72, 95, 122]. Exploring methodologies

to analyze the knowledge learned by a Graph Convolutional Neural network trained on 3D points clouds

and meshes would help to better understand current architectures and discover unknown issues.

93

Bibliography

[1] James Atwood and Don Towsley. Diffusion-convolutional neural networks. Proceedings the Advances in

neural information processing systems Conference, 29, 2016.

[2] Norman I Badler and Mary Ann Morris. Modelling flexible articulated objects. In Proceedings Computer

Graphics, pages 305–314, 1982.

[3] Seungbae Bang and Sung-Hee Lee. Spline interface for intuitive skinning weight editing. ACM

Transactions on Graphics, 37(5), 2018.

[4] Ilya Baran and Jovan Popović. Automatic rigging and animation of 3d characters. ACM Transactions

on Graphics, 26(3), 2007.

[5] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,

Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al. Relational

inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261, 2018.

[6] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new

perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8):1798–1828, 2013.

[7] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale GAN training for high fidelity natural

image synthesis. In Proceedings of the International Conference on Learning Representations, 2019.

[8] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geometric

deep learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42, 2017.

[9] M. Brown and S. Süsstrunk. Multi-spectral sift for scene category recognition. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 177–184, June 2011.

[10] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally connected

networks on graphs. In Proceedings of the International Conference on Learning Representations, 2014.

[11] Ziyun Cai and Ling Shao. Rgb-d scene classification via multi-modal feature learning. Cognitive

Computation, Aug 2018.

[12] Ben Chamberlain, James Rowbottom, Maria I Gorinova, Michael Bronstein, Stefan Webb, and Emanuele

Rossi. Grand: Graph neural diffusion. In Proceedings of the International conference on machine

94

learning, volume 139 of Proceedings of Machine Learning Research, pages 1407–1418. PMLR, 2021.

[13] Xu Chen, Yufeng Zheng, Michael J Black, Otmar Hilliges, and Andreas Geiger. SNARF: Differentiable

Forward Skinning for Animating Non-Rigid Neural Implicit Shapes. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, 2021.

[14] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Holger

Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder-decoder for statistical

machine translation. In Empirical Methods in Natural Language Processing Conference, 2014.

[15] Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. Class-balanced loss based on

effective number of samples. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 9268–9277, 2019.

[16] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on graphs

with fast localized spectral filtering. Proceedings the Advances in neural information processing systems

Conference, 29, 2016.

[17] Nima Dehmamy, Albert-László Barabási, and Rose Yu. Understanding the representation power of

graph neural networks in learning graph topology. In Proceedings of the Neural Information Processing

Systems Conference, 2019.

[18] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale

hierarchical image database. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 248–255, 2009.

[19] O. Dionne and M. de Lasa. Geodesic binding for degenerate character geometry using sparse voxelization.

IEEE Trans. Vis. & Comp. Graphics, 20(10), 2014.

[20] D Du, L Wang, H Wang, K Zhao, and G Wu. Translate-to-Recognize Networks for RGB-D Scene

Recognition. In Conference on Computer Vision and Pattern Recognition, pages 11828–11837. IEEE,

2019.

[21] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alán

Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular fingerprints.

Proceedings the Advances in neural information processing systems Conference, 28, 2015.

[22] Moshe Eliasof, Eldad Haber, and Eran Treister. Pde-gcn: Novel architectures for graph neural networks

motivated by partial differential equations. Proceedings the Advances in neural information processing

systems Conference, 34:3836–3849, 2021.

[23] Epic Games. Paragon Collection. Epic Games, 2018. https://www.epicgames.com/.

[24] Epic Games. Fortnite™. Epic Games, 2022. https://www.epicgames.com/.

[25] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In

Proceedings of the International Conference on Learning Representations Workshop, 2019.

[26] Paolo Frasconi, Marco Gori, and Alessandro Sperduti. A general framework for adaptive processing of

95

https://www.epicgames.com/
https://www.epicgames.com/

data structures. IEEE transactions on Neural Networks, 9(5):768–786, 1998.

[27] Jonas Gehring, Michael Auli, David Grangier, and Yann N. Dauphin. A convolutional encoder model for

neural machine translation. In Regina Barzilay and Min-Yen Kan, editors, Association for Computational

Linguistics, pages 123–135, 2017.

[28] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural message

passing for quantum chemistry. In Proceedings of the International conference on machine learning,

pages 1263–1272. PMLR, 2017.

[29] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE/CVF International Conference on Computer

Vision, pages 1440–1448, 2015.

[30] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate

object detection and semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, 2014.

[31] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural

networks. In Proceedings of the international conference on artificial intelligence and statistics, pages

249–256. JMLR Workshop and Conference Proceedings, 2010.

[32] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

[33] Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for learning in graph domains. In

IEEE international joint conference on neural networks, 2005.

[34] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings of

the ACM SIGKDD international conference on Knowledge discovery and data mining, pages 855–864,

2016.

[35] Saurabh Gupta, Ross Girshick, Pablo Arbeláez, and Jitendra Malik. Learning Rich Features from

RGB-D Images for Object Detection and Segmentation. In European Conference on Computer Vision,

pages 345–360. Springer International Publishing, 2014.

[36] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.

Proceedings the Advances in neural information processing systems Conference, 30, 2017.

[37] William L. Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs: Methods and

applications. IEEE Data Eng. Bull., 40(3):52–74, 2017.

[38] Stevan Harnad. The symbol grounding problem. Physica D: Nonlinear Phenomena, 42(1):335–346,

1990.

[39] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings of the

IEEE/CVF International Conference on Computer Vision, 2017.

[40] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing

human-level performance on imagenet classification. In Proceedings of the IEEE/CVF International

Conference on Computer Vision, pages 1026–1034, 2015.

96

[41] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

770–778, 2016.

[42] Vishakh Hegde and Reza Zadeh. Fusionnet: 3d object classification using multiple data representations.

arXiv preprint arXiv:1607.05695, 2016.

[43] Mikael Henaff, Joan Bruna, and Yann LeCun. Deep convolutional networks on graph-structured data.

arXiv preprint arXiv:1506.05163, 2015.

[44] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph transformer. In

Proceedings of The Web Conference, pages 2704–2710, 2020.

[45] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing

internal covariate shift. In Proceedings of the International conference on machine learning, pages

448–456. PMLR, 2015.

[46] Alec Jacobson, Ilya Baran, Jovan Popoviundefined, and Olga Sorkine. Bounded biharmonic weights for

real-time deformation. ACM Transactions on Graphics, 30(4), 2011.

[47] Varun Jampani, Martin Kiefel, and Peter V Gehler. Learning sparse high dimensional filters: Image

filtering, dense crfs and bilateral neural networks. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 4452–4461, 2016.

[48] Maximilian Jaritz, Jiayuan Gu, and Hao Su. Multi-view pointnet for 3d scene understanding. In

Proceedings of the IEEE/CVF International Conference on Computer Vision Workshop, pages 0–0,

2019.

[49] Ladislav Kavan, Steven Collins, Jǐŕı Žára, and Carol O’Sullivan. Skinning with dual quaternions. In

Proceedings of the symposium on Interactive 3D graphics and games, pages 39–46, 2007.

[50] Ladislav Kavan and Olga Sorkine. Elasticity-inspired deformers for character articulation. ACM

Transactions on Graphics, 31(6), 2012.

[51] Jack Kiefer and Jacob Wolfowitz. Stochastic estimation of the maximum of a regression function. The

Annals of Mathematical Statistics, pages 462–466, 1952.

[52] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. Proceedings of the

International Conference on Learning Representations, 2015.

[53] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In

Proceedings of the International Conference on Learning Representations, 2017.

[54] Martin Komaritzan and Mario Botsch. Projective skinning. Proceedings of the ACM in Computer

Graphics and Interactive Techniques, 1(1), 2018.

[55] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional

neural networks. Proceedings the Advances in neural information processing systems Conference, 25,

2012.

97

[56] Binh Huy Le and Zhigang Deng. Smooth skinning decomposition with rigid bones. ACM Transactions

on Graphics, 31(6):1–10, 2012.

[57] Quoc V. Le, Alexandre Karpenko, Jiquan Ngiam, and Andrew Y. Ng. Ica with reconstruction cost

for efficient overcomplete feature learning. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira,

and K. Q. Weinberger, editors, Proceedings the Advances in neural information processing systems

Conference, pages 1017–1025. Curran Associates, Inc., 2011.

[58] Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient backprop. In Neural

networks: Tricks of the trade, pages 9–48. Springer, 2012.

[59] John P Lewis, Matt Cordner, and Nickson Fong. Pose space deformation: a unified approach to shape

interpolation and skeleton-driven deformation. In Proceedings of the conference on Computer graphics

and interactive techniques, pages 165–172, 2000.

[60] John P Lewis, Matt Cordner, and Nickson Fong. Pose space deformation: a unified approach to shape

interpolation and skeleton-driven deformation. In Proceedings of the conference on Computer graphics

and interactive techniques, pages 165–172, 2000.

[61] Duo Li, Shinjiro Sueda, Debanga R Neog, and Dinesh K Pai. Thin skin elastodynamics. ACM

Transactions on Graphics, 32(4):1–10, 2013.

[62] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband:

A novel bandit-based approach to hyperparameter optimization. The Journal of Machine Learning

Research, 18(1):6765–6816, 2017.

[63] Peizhuo Li, Kfir Aberman, Rana Hanocka, Libin Liu, Olga Sorkine-Hornung, and Baoquan Chen.

Learning Skeletal Articulations with Neural Blend Shapes. ACM Transactions on Graphics, 40, 2021.

[64] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural networks.

arXiv preprint arXiv:1511.05493, 2015.

[65] Yabei Li, Junge Zhang, Yanhua Cheng, K. Huang, and T. Tan. Df2net: Discriminative feature learning

and fusion network for rgb-d indoor scene classification. In Proceedings of the AAAI Conference on

Artificial Intelligence, 2018.

[66] Yabei Li, Zhang Zhang, Yanhua Cheng, Liang Wang, and Tieniu Tan. MAPNet: Multi-modal attentive

pooling network for RGB-D indoor scene classification. Pattern Recognition, 90:436–449, 2019.

[67] Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei

Han. On the variance of the adaptive learning rate and beyond. In Proceedings of the International

Conference on Learning Representations, 2020.

[68] Libin Liu, KangKang Yin, Bin Wang, and Baining Guo. Simulation and control of skeleton-driven soft

body characters. ACM Transactions on Graphics, 32(6):1–8, 2013.

[69] Lijuan Liu, Youyi Zheng, Di Tang, Yi Yuan, Changjie Fan, and Kun Zhou. Neuroskinning: Automatic

skin binding for production characters with deep graph networks. ACM Transactions on Graphics, 2019.

98

[70] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic

segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

2015.

[71] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J. Black. SMPL:

A skinned multi-person linear model. ACM Transactions on Graphics, 34(6), 2015.

[72] Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen, and Xiang Zhang.

Parameterized explainer for graph neural network. Proceedings the Advances in neural information

processing systems Conference, 33:19620–19631, 2020.

[73] N. Magnenat-Thalmann, R. Laperrière, and D. Thalmann. Joint-dependent local deformations for hand

animation and object grasping. In Proceedings Graphics Interface, 1988.

[74] David Marr. Vision: A Computational Investigation into the Human Representation and Processing of

Visual Information. Henry Holt and Co., Inc., 1982.

[75] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations of

words and phrases and their compositionality. Proceedings the Advances in neural information processing

systems Conference, 26, 2013.

[76] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and Michael M

Bronstein. Geometric deep learning on graphs and manifolds using mixture model cnns. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 5115–5124, 2017.

[77] Tomohiko Mukai and Shigeru Kuriyama. Efficient dynamic skinning with low-rank helper bone controllers.

ACM Transactions on Graphics, 35(4), 2016.

[78] Pushmeet Kohli Nathan Silberman, Derek Hoiem and Rob Fergus. Indoor segmentation and support

inference from rgbd images. In European Conference on Computer Vision, 2012.

[79] Allen Newell. Physical symbol systems*. Cognitive Science, 4(2):135–183, 1980.

[80] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional neural networks

for graphs. In Proceedings of the International conference on machine learning, pages 2014–2023. PMLR,

2016.

[81] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming

Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. In

Proceedings the Advances in neural information processing systems Conference Workshop, 2017.

[82] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representations.

In Proceedings of the ACM SIGKDD international conference on Knowledge discovery and data mining,

pages 701–710, 2014.

[83] Michael Pratscher, Patrick Coleman, Joe Laszlo, and Karan Singh. Outside-in anatomy based character

rigging. In Proceedings of the ACM SIGGRAPH/Eurographics symposium on Computer animation,

pages 329–338, 2005.

99

[84] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets for

3d classification and segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 652–660, 2017.

[85] Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. Pointnet++: Deep hierarchical feature learning on

point sets in a metric space. In Proceedings of the 31st International Conference on Neural Information

Processing Systems, page 5105–5114, 2017.

[86] Ning Qian. On the momentum term in gradient descent learning algorithms. Neural networks, 12(1):145–

151, 1999.

[87] Olivier Rémillard and Paul G Kry. Embedded thin shells for wrinkle simulation. ACM Transactions on

Graphics, 32(4):1–8, 2013.

[88] M. Ren and R. S. Zemel. End-to-end instance segmentation with recurrent attention. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, July 2017.

[89] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object

detection with region proposal networks. Proceedings the Advances in neural information processing

systems Conference, 28, 2015.

[90] Frank Rosenblatt. The perceptron: a probabilistic model for information storage and organization in

the brain. Psychological review, 65(6):386, 1958.

[91] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by

back-propagating errors. Nature, 323(6088):533–536, Oct 1986.

[92] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-

propagating errors. Nature, 323(6088):533–536, 1986.

[93] Shunsuke Saito, Jinlong Yang, Qianli Ma, and Michael J. Black. SCANimate: Weakly supervised

learning of skinned clothed avatar networks. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, June 2021.

[94] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The

graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

[95] Thomas Schnake, Oliver Eberle, Jonas Lederer, Shinichi Nakajima, Kristof T Schütt, Klaus-Robert

Müller, and Grégoire Montavon. Higher-order explanations of graph neural networks via relevant walks.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(11):7581–7596, 2021.

[96] Weiguang Si, Sung-Hee Lee, Eftychios Sifakis, and Demetri Terzopoulos. Realistic biomechanical

simulation and control of human swimming. ACM Transactions on Graphics, 34(1), 2015.

[97] N. Silberman and R. Fergus. Indoor scene segmentation using a structured light sensor. In Proceedings

of the International Conference on Computer Vision - Workshop on 3D Representation and Recognition,

2011.

[98] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image

100

recognition. In Proceedings of the International Conference on Learning Representations, 2015.

[99] Richard Socher, Brody Huval, Bharath Bhat, Christopher D. Manning, and Andrew Y. Ng. Convolutional-

recursive deep learning for 3d object classification. In Proceedings of the 25th International Conference

on Neural Information Processing Systems - Volume 1, NIPS’12, pages 656–664, USA, 2012. Curran

Associates Inc.

[100] S. Song, S. P. Lichtenberg, and J. Xiao. Sun rgb-d: A rgb-d scene understanding benchmark suite. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 567–576,

June 2015.

[101] X. Song, S. Jiang, L. Herranz, and C. Chen. Learning effective rgb-d representations for scene recognition.

IEEE Transactions on Image Processing, 28(2):980–993, 2019.

[102] X. Song, S. Jiang, B. Wang, C. Chen, and G. Chen. Image representations with spatial object-to-object

relations for rgb-d scene recognition. IEEE Transactions on Image Processing, 29:525–537, 2020.

[103] Alessandro Sperduti and Antonina Starita. Supervised neural networks for the classification of structures.

IEEE Transactions on Neural Networks, 8(3):714–735, 1997.

[104] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout:

a simple way to prevent neural networks from overfitting. The journal of machine learning research,

15(1):1929–1958, 2014.

[105] Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji, Evangelos Kalogerakis, Ming-Hsuan Yang,

and Jan Kautz. Splatnet: Sparse lattice networks for point cloud processing. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2530–2539, 2018.

[106] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-scale

information network embedding. In Proceedings of the international conference on world wide web,

pages 1067–1077, 2015.

[107] Albert Mosella-Montoro and Javier Ruiz-Hidalgo. Residual Attention Graph Convolutional Network

for Geometric 3D Scene Classification. In Proceedings of the IEEE/CVF International Conference on

Computer Vision Workshop, 2019.

[108] Albert Mosella-Montoro and Javier Ruiz-Hidalgo. 2D–3D Geometric Fusion network using Multi-

Neighbourhood Graph Convolution for RGB-D Indoor Scene Classification. Information Fusion, 76:46–54,

2021.

[109] Albert Mosella-Montoro and Javier Ruiz-Hidalgo. SkinningNet: Two-Stream Graph Convolutional

Neural Network for Skinning Prediction of Synthetic Characters. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2022.

[110] Machbah Uddin. Scene classification using localized histogram of oriented gradients method. International

Journal of Computer (IJC), 20:13–18, 01 2016.

[111] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio.

Graph Attention Networks. Proceedings of the International Conference on Learning Representations,

101

2018.

[112] Nitika Verma, Edmond Boyer, and Jakob Verbeek. Feastnet: Feature-steered graph convolutions for

3d shape analysis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 2598–2606, 2018.

[113] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell: A neural image

caption generator. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, 2015.

[114] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S Yu. Heterogeneous

graph attention network. In The world wide web conference, pages 2022–2032, 2019.

[115] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon.

Dynamic graph cnn for learning on point clouds. ACM Trans. Graph., 38(5):1–12, 2019.

[116] Rich Wareham and Joan Lasenby. Bone glow: An improved method for the assignment of weights for

mesh deformation. In Proceedings of the International Conference on Articulated Motion and Deformable

Objects, 2008.

[117] Rich Wareham and Joan Lasenby. Bone glow: An improved method for the assignment of weights for

mesh deformation. In Proceedings the International Conference on Articulated Motion and Deformable

Objects, 2008.

[118] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov, Rich Zemel,

and Yoshua Bengio. Show, attend and tell: Neural image caption generation with visual attention. In

Proceedings of the International conference on machine learning, 2015.

[119] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks?

arXiv preprint arXiv:1810.00826, 2018.

[120] Zhan Xu, Yang Zhou, Evangelos Kalogerakis, Chris Landreth, and Karan Singh. RigNet: Neural Rigging

for Articulated Characters. ACM Transactions on Graphics, 39, 2020.

[121] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with graph

embeddings. In Proceedings of the International conference on machine learning, pages 40–48. PMLR,

2016.

[122] Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer:

Generating explanations for graph neural networks. Proceedings the Advances in neural information

processing systems Conference, 32, 2019.

[123] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei Huang, and Dimitris N

Metaxas. Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial networks.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2017.

[124] Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. Proceedings the

Advances in neural information processing systems Conference, 31, 2018.

102

[125] Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. Labeling trick: A theory of using graph

neural networks for multi-node representation learning. Proceedings the Advances in neural information

processing systems Conference, 34:9061–9073, 2021.

[126] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyramid scene parsing

network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pages 2881–2890, 2017.

[127] Bolei Zhou, Agata Lapedriza, Jianxiong Xiao, Antonio Torralba, and Aude Oliva. Learning deep features

for scene recognition using places database. Proceedings the Advances in neural information processing

systems Conference, 27, 2014.

[128] H. Zhu, J. Weibel, and S. Lu. Discriminative multi-modal feature fusion for rgbd indoor scene

recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pages 2969–2976, 2016.

103

	Introduction
	Objectives and Contributions
	Outline

	Deep Neural Networks and 3D Data Structures
	Essentials
	Perceptron
	Multilayer perceptron
	Training Neural Networks

	Convolutional Neural Networks
	Convolutional layers
	Pooling layers
	Residual networks

	Graph Neural Networks
	Message-passing architecture
	Graph Convolutional Layers

	3D Data Structures

	I Graph Analysis
	Residual Attention Graph Convolutional Network
	Related Work
	Attention methodologies
	Geometric Scene Classification

	Residual Attention Graph Convolutional Network
	Attention Graph Convolution
	Residual Attention Graph Convolution
	Voxel Pooling Layer

	Experimental Setup
	Datasets and Metrics
	Implementation details

	Results
	Ablation Studies
	Comparison with state-of-the-art

	Conclusions

	2D-3D Fusion Network using Multi-Neighbourhood Graph Convolutional Network
	Related Work
	2D-3D fusion networks
	Multi-modal scene classification

	2D-3D Geometric Fusion Network with Multi-Neighbourhood Graph Convolution
	Revisiting AGC
	Multi-Neighbourhood Graph Convolution
	Nearest Voxel Pooling
	2D-3D Fusion block

	Experimental Setup
	Datasets and Metrics
	Implementation details

	Results
	Ablation Studies
	Comparison with state-of-the-art
	Qualitative results

	Conclusions

	II Node Analysis
	Heterogeneous Graph Convolutional Neural Network using a Multi-Aggregator approach
	Preliminaries
	Character creation pipeline
	Skinning methods

	Related Work
	SkinningNet
	Graph Construction
	Multi-Aggregator Graph Convolution
	Graph Convolutional Blocks

	Experimental Setup
	Datasets and Metrics
	Implementation details

	Results
	Ablation Studies
	Comparison with state-of-the-art
	Knowledge Transfer

	Conclusions

	Conclusions
	Summary of contributions
	Future work

	Bibliography

