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Abstract

Metric-aware optimization of high-order meshes for curved adaptivity

Guillermo Aparicio-Estrems

To enhance the simulation accuracy when the solution presents sharp curved features,

the community of high-order methods has started to curve not only the boundary

but also the interior of unstructured high-order meshes. Many of these approaches

contribute to curved high-order adaptivity based on error estimators. The error es-

timators determine a discrete metric that is used to modify the curved high-order

mesh. Unfortunately, although all these approaches must modify the mesh coordi-

nates, no approach considers metric-aware optimization of curved high-order meshes

for a high-polynomial degree. Furthermore, the existing approaches neither explicitly

enforce unitary Riemannian measures for all mesh entities nor specifically devise a

specific-purpose solver for curved sharp features.

To address these issues, this thesis aims to demonstrate metric-aware optimization

of high-order meshes on curved geometry with the coordinates as design variables.

To this end, it proposes the following contributions. First, to verify and optimize

the stretching and alignment deviation between the mesh and an analytic metric,

we define a differentiable shape distortion measure for curved high-order meshes.

Second, to enforce unitary Riemannian measures of the mesh entities, we define a

differentiable size-shape distortion measure for curved high-order meshes. Third, to

efficiently minimize with tight tolerances a point-wise metric-aware distortion measure

for curved high-order meshes, we devise a specific-purpose solver. Fourth, to apply

Newton’s method for the distortion minimization of meshes equipped with a discrete

target metric, we derive up to second-order the derivatives for a high-order metric

interpolation. Finally, to also match curved boundaries, we derive up to second-order

the derivatives for an implicit CAD representation.

In conclusion, this thesis demonstrates metric-aware optimization of high-order

meshes on curved geometry. To this end, it proposes a novel metric- and geometry-

aware mesh optimization framework and a specific-purpose optimization solver. These

novelties will contribute to error-driven curved high-order adaptivity. Hence, they

will help to enhance the simulation accuracy for solutions presenting sharp curved

features.
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vii



quotidians, la que m’ha permès ser qui soc i qui esdevindrà.
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les inquietuds sobre la meva formació, per donar-me la llibertat d’escollir, per haver

lluitat per obtenir els mitjans per fer-ho realitat. Finalment, agraeixo a l’Aĺıcia, qui
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Chapter 1

Introduction

1.1 Motivation and background

To enhance the simulation accuracy in problems where the solution presents sharp

curved features, the community of unstructured high-order methods has started to

curve not only the boundary but also the interior (Knupp et al., 2021; Barrera et al.,

2023; Dobrev et al., 2019, 2021; Sanjaya and Fidkowski, 2016; Rochery and Loseille,

2021; Zhang, 2022; Coupez, 2017; Marcon, 2019; Zahr et al., 2020; Ekelschot et al.,

2019; Feuillet et al., 2019; Feuillet, 2019) of unstructured high-order meshes. These

methods aim to match the sharp curved features of the solution by exploiting the non-

constant Jacobian of curved high-order elements (Fidkowski and Darmofal, 2011). To

this end, they modify the high-order mesh topology and coordinates (Dobrev et al.,

2021; Rochery and Loseille, 2021; Zhang, 2022; Ekelschot et al., 2019; Feuillet et al.,

2019; Feuillet, 2019) or only the coordinates (Knupp et al., 2021; Barrera et al., 2023;

Dobrev et al., 2019; Sanjaya and Fidkowski, 2016; Coupez, 2017; Marcon et al., 2017;

Zahr et al., 2020). In both families, the modification of the mesh coordinates is a

crucial ingredient.

Many of these approaches are contributing to enable error-driven curved high-

order adaptivity. Specifically, to exploit existent high-order goal-oriented (Yano and

Darmofal, 2012; Fidkowski and Darmofal, 2011) and interpolation-oriented (Loseille

and Alauzet, 2011; Coulaud and Loseille, 2016a) error estimators, some curved high-

order mesh modification approaches consider an objective function that accounts for

the discrete metric obtained from an error estimator (Rochery and Loseille, 2021;
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Feuillet et al., 2019; Feuillet, 2019; Zhang et al., 2018; Ekelschot et al., 2019; San-

jaya and Fidkowski, 2016). These metric-aware modifications are performed in two

different manners. First, optimizing element-by-element for high-polynomial degree

(Sanjaya and Fidkowski, 2016; Sanjaya, 2019). Second, through local cavity modifi-

cation of curved quadratic meshes (Rochery and Loseille, 2021; Feuillet et al., 2019;

Feuillet, 2019; Zhang et al., 2018; Zhang, 2022; Coupez, 2017). Alternatively, instead

of a metric, it is possible to match a point-wise target deformation matrix (Dobrev

et al., 2019, 2018, 2020; Camier et al., 2023). Unfortunately, no approaches consider

metric-aware optimization of curved high-order meshes for high-polynomial degree.

Developing a metric-aware optimization of curved high-order meshes for high-

polynomial degree is the main challenge of this thesis. This development is relevant

because it will enable error-driven curved r-adaptivity and metric-aware smoothing

for local cavity operators.

1.1.1 Unitary Riemannian measures

In the metric-aware approaches (Rochery and Loseille, 2021; Feuillet et al., 2019;

Feuillet, 2019; Zhang et al., 2018; Ekelschot et al., 2019; Sanjaya and Fidkowski,

2016), the target metric encodes the curved geometric features of the solution, features

such as the point-wise stretching, alignment, and sizing. Using this encoding, these

methods enforce either curved edges with unitary Riemannian lengths (Rochery and

Loseille, 2021; Zhang, 2022) or average independent curved elements featuring the

stretching, alignment, and sizing of the target metric element-by-element (Sanjaya

and Fidkowski, 2016; Ekelschot et al., 2019). However, no approaches explicitly

enforce unitary Riemannian measures for the mesh edges as well as for the face areas

and the cell volumes.

Enforcing unitary Riemannian measures for all mesh entities is the first research

problem of this thesis. It might be critical when the metric varies point-wise. Without

this feature, the resulting mesh might not reduce the error as expected. We should

expect this issue because the differential measure at each point of the curved high-

order mesh is not explicitly enforced to match the stretching, alignment, and sizing

of the prescribed point-wise metric.
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1.1.2 Optimization

Regarding the optimization of the objective function, we can iteratively modify the

coordinates of either all the free nodes (all nodes) or one free node (one node) per non-

linear iteration by using either gradient-based (first-order) or Hessian-based (second-

order) optimization methods. For linear elements, there are several studies on the

performance of local (Diachin et al., 2006, 2004; Sastry and Shontz, 2009; Diachin

et al., 2004) first and second-order optimization methods. One common conclusion is

that when highly optimized and accurate meshes are required, especially in isotropic

meshes featuring high gradations of the element size, a specific-purpose all-nodes

globalized Newton method (Steihaug, 1983) outperforms local optimization methods

(Diachin et al., 2006, 2004; Sastry and Shontz, 2012). Unfortunately, no approach

has devised or studied a specific-purpose all-nodes globalized Newton method for

metric-aware optimization of curved high-order meshes.

Devising a globalized and preconditioned Newton solver for metrics with curved

sharp features is the second research problem of this thesis. For curved high-order

mesh optimization, we know that standard globalized and preconditioned Newton-

Krylov solvers have robustness and efficiency issues (Ruiz-Gironés and Roca, 2022).

These issues are especially triggered by non-uniform sizing, stretching ratios, and

curved alignment. When more remarkable these characteristics are, more difficult

the convergence with a general-purpose optimization solver (Ruiz-Gironés and Roca,

2022). First, in each non-linear step, highly non-uniform mesh gradation stiffens the

validity of the mesh deformations and the corresponding linear systems. Second, for

high stretching ratios, the deformations in some directions are locally stiffer than in

other directions. Third, curved alignment requires curved high-order elements. For

these elements, when higher is the order, stiffer is the corresponding linear system.

We should expect similar issues for metric-aware curved high-order optimization.

1.2 Research opportunity and questions

The previous overview identifies a research opportunity to enable curved r-adaptivity

driven by an error estimator. Although there are methods for curved r-adaption of

high-order meshes, there is no known method that simultaneously matches a target

metric and geometry using second-order optimization. The overview also identifies

the following key research questions:

3



1. Introduction

(Q1) How to formulate a metric-aware optimization problem that enforces unitary

Riemannian measures of the mesh edges, faces, and cells?

(Q2) How to solve a metric-aware optimization problem for target metrics featuring

non-uniform sizing, high stretching ratios, and curved alignments?

The combination of the answers to questions (Q1) and (Q2) enables curved r-adaptivity

driven by the metric obtained from an error estimator. The answer to question (Q1)

provides the optimization formulation. This formulation can be solved with the an-

swer of question (Q2).

1.3 Aim and objectives

To enable curved r-adaption driven by an error estimator metric, this thesis aims

to demonstrate metric-aware optimization of high-order meshes on curved geometry

with the mesh coordinates as design variables. To this end, this thesis develops the

following objectives :

(O1) To evaluate in an optimizable manner the shape and orientation matching be-

tween a curved high-order mesh and a target metric, Aparicio-Estrems et al.

(2018).

(O2) To evaluate in an optimizable manner the shape, orientation, and size matching

between a curved high-order mesh and a target metric, Chapter 2.

(O3) To optimize a curved high-order mesh to tightly match a non-uniform anisotropic

target metric, Chapter 3.

(O4) To account and optimize for a discrete metric, Aparicio-Estrems et al. (2022).

(O5) To account and optimize for a discrete metric and a curved geometry, Chapter

4.

The aim of this thesis addresses the research opportunity. Moreover, the combi-

nation of the objectives addresses the research questions. For the research question

(Q1), objective (O1) accounts for the metric shape and orientation, objective (O2)

accounts not only for the metric shape and orientation but also the size, objective

4
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(O4) accounts for a discrete metric, and objective (O5) accounts not only for a dis-

crete metric but also a curved boundary. For the research question (Q2), objective

(O3) addresses the solution of the optimization problem, objective (O4) optimize for

a discrete metric, and (O5) optimize for a discrete metric and the curved geometry.

1.4 Methodology

To gradually meet the aim of this thesis, the research methodology approaches the dif-

ferent requirements. In (O1) it proposes a distortion formulation to match stretching

and alignment of analytic metrics. In (O2), exploiting the previous formulation, it

proposes a distortion formulation to match the stretching, alignment, and sizing of

target metrics. In (O3), for a distortion formulation, it proposes a specific-purpose

minimization solver tested for analytic metrics. In (O4), to enable practical met-

rics, it proposes a high-order interpolation approach compatible with second-order

optimization. Also in (O5), to enable curved boundaries, it combines the previous

approaches with an implicitization of the boundary representation of the geometry.

The methodology approaches are based on mathematical formulations and deriva-

tions, design of computational methods, heuristics, computer implementations, run-

time checks, and verification approaches. First, the mathematical formulation and

derivations allow stating the base problem formulation. Second, the proposed com-

putational methods are the base of the computer implementations. Third, heuristics

are used to devise globalization, stopping and switching tolerances, and the pre-

conditioner. Fourth, the computer implementations of the proposed methods allow

showing empirical evidence of the advantages for curved r-adaption. Fifth, the com-

puter implementation checks at runtime that the determinants of the Jacobians are

positive during the whole process. Finally, to verify the results we compare with

the metric unit to measure the lengths, areas, and volumes of the resulting curved

elements.

1.5 Contributions and novelty

The main contribution is to demonstrate the optimization of curved high-order meshes

that match a target metric and a curved boundary. The optimization enforces unitary

Riemannian measures of the mesh edges, lengths, and cells (Q1). Moreover, it deals
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with target metrics featuring non-uniform sizing, high stretching ratios, and curved

alignments (Q2). To this end, addressing the previously stated objectives, this thesis

contributes with novel methods :

(C1) Defining a differentiable shape distortion measure for curved high-order meshes

accounting for the alignment and stretching of the target metric. This contri-

bution addresses the research question (Q1) only for stretching and alignment.

The main novelty is to account for a target metric because alternative shape

distortion measures use a target deformation matrix. This contribution corre-

sponds to the peer-reviewed conference paper Aparicio-Estrems et al. (2018).

(C2) Defining a differentiable size-shape distortion measure for curved high-order

meshes accounting not only for the alignment and stretching but also the siz-

ing of the target metric, Chapter 2. This contribution addresses the research

question (Q1). Regarding size-shape distortions, there are two main novelties.

First, the definition uses a new differentiable surrogate of the standard non-

differentiable sizing measure. Second, the definition does not use a deformation

matrix but a metric matrix. This contribution corresponds to the journal paper

in preparation Aparicio-Estrems et al. (2023b).

(C3) Proposing a solver to efficiently minimize with tight tolerances a point-wise

metric-aware distortion measure for curved high-order meshes with the coor-

dinates as design variables, Chapter 3. This contribution addresses the effi-

ciency aspect of the research question (Q2). The main novelty is to propose a

second-order mesh optimization solver specific for high degrees and non-uniform

anisotropic metrics. Alternative solvers use either a surrogate for the second-

order derivatives of a matrix deformation or first-order optimization only for the

mesh edges. This contribution corresponds to the journal paper in preparation

Aparicio-Estrems et al. (2023c).

(C4) Computing up to second-order the derivatives of an objective function account-

ing for a high-order metric interpolation. This contribution addresses aspects

of the research questions (Q1) and (Q2). For question (Q1), it provides the for-

mulation that accounts for discrete metrics. For question (Q2), it addresses the

computation up to second derivatives of the formulation. For an existent log-

Euclidean metric interpolation, the main novelty is to compute the derivatives

on a pseudo-inverse decomposition. Alternative approaches only compute first
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derivatives for curved quadratic mesh edges. It corresponds to the peer-reviewed

conference paper Aparicio-Estrems et al. (2022).

(C5) Computing up to second-order the derivatives of an objective function account-

ing not only for a high-order metric interpolation but also for a curved boundary

representation, Chapter 4. This contribution addresses aspects of the research

questions (Q1) and (Q2). For question (Q1), it provides not only the formu-

lation that accounts for discrete metrics but also CAD curved geometries. For

question (Q2), it addresses the computation up to second derivatives of the

formulation. The main novelty is to account not only for a high-order metric

interpolation but also for the implicitation of a CAD curved boundary represen-

tation. Alternative approaches neither compute up to second-order derivatives

nor use a CAD implicitation. This contribution corresponds to the journal paper

Aparicio-Estrems et al. (2023a).

There are two key central findings in this thesis. First, to enforce unitary Riemannian

lengths for all the mesh entities on point-wise varying metrics, it is key to define a

point-wise metric-aware distortion measure accounting for the shape, orientation, and

size, Chapter 2. Using an entity-wise metric-aware measure we could only enforce

unitary Riemannian measures for that type of entity. Second, to solve problems with

non-uniform anisotropic point-wise metrics featuring curved sharp features, it is key

to define a specific-purpose non-linear solver, Chapter 3. Without this solver we could

only demonstrate metric-aware optimization of curved high-order meshes for simpler

metrics.

1.6 Layout

In Chapter 2, we define a regularized size-shape distortion (quality) measure for

curved high-order elements on a Riemannian space. To this end, we measure the de-

viation of a given element, straight-sided or curved, from the stretching, alignment,

and sizing determined by a target metric. The defined distortion (quality) is suit-

able to check the validity and the quality of straight-sided and curved elements on

Riemannian spaces determined by constant and point-wise varying metrics. The ex-

amples illustrate that the distortion can be minimized to curve (deform) the elements

of a given high-order (linear) mesh and try to match with curved (linear) elements
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the point-wise stretching, alignment, and sizing of a discrete target metric tensor. In

addition, the resulting meshes simultaneously match the curved features of the tar-

get metric and boundary. Finally, to verify if the minimization of the metric-aware

size-shape distortion leads to meshes approximating the target metric, we compute

the Riemannian measures for the element edges, faces, and cells. The results show

that, when compared to anisotropic straight-sided meshes, the measures of the curved

high-order mesh entities are closer to unit Riemannian measures.

In Chapter 3, we present a specific-purpose globalized and preconditioned Newton-

CG solver to minimize a metric-aware curved high-order mesh distortion. The solver

is specially devised to optimize curved high-order meshes for high polynomial de-

grees with a target metric featuring non-uniform sizing, high stretching ratios, and

curved alignment. To this end, we consider two ingredients: a specific-purpose glob-

alization and a specific-purpose Jacobi-ILDL preconditioning with dynamic forcing

terms. First, to enhance the global convergence of the non-linear solver, the glob-

alization strategy modifies Newton’s direction to a feasible step. In particular, our

specific-purpose strategy enables a step-length continuation evolution during the opti-

mization process while ensuring sufficient decrease and progress. Second, to compute

Newton’s direction in second-order optimization problems, we consider a conjugate-

gradient iterative solver with specific-purpose preconditioning and dynamic forcing

terms. To account for the metric stretching and alignment, the preconditioner uses

specific orderings for the mesh nodes and the degrees of freedom. We also present

a preconditioner switch between Jacobi and ILDL preconditioners to control the nu-

merical ill-conditioning of the preconditioner. In addition, the dynamic forcing terms

determine the required accuracy for the Newton direction approximation. Specifi-

cally, they control the residual tolerance and enforce sufficient positive curvature for

the conjugate-gradients method. Finally, to analyze the performance of our method,

the results compare the specific-purpose solver with standard optimization methods.

For this, we measure the matrix-vector products indicating the solver computational

cost and the line-search iterations indicating the total amount of objective function

evaluations. When we combine the globalization and the linear solver ingredients,

we conclude that the specific-purpose Newton-CG solver reduces the total number

of matrix-vector products by one order of magnitude. Moreover, it also reduces the

number of non-linear and line-search iterations.

In Chapter 4, we detail how to use Newton’s method for distortion-based curved
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r-adaption to a discrete high-order metric field while matching a target geometry.

Specifically, we combine two terms: a distortion measuring the deviation from the

target metric; and a penalty term measuring the deviation from the target boundary.

For this combination, we consider four ingredients. First, to represent the metric field,

we detail a log-Euclidean high-order metric interpolation on a curved (straight-edged)

mesh. Second, for this metric interpolation, we detail the first and second derivatives

in physical coordinates. Third, to represent the domain boundaries, we propose an

implicit representation for 2D and 3D NURBS models. Fourth, for this implicit rep-

resentation, we obtain the first and second derivatives. The derivatives of the metric

interpolation and the implicit representation allow minimizing the objective function

with Newton’s method. For this second-order minimization, the resulting meshes

simultaneously match the curved features of the target metric and boundary. Match-

ing the metric and the geometry using second-order optimization is an unprecedented

capability in curved (straight-edged) r-adaption. This capability will be critical in

global and cavity-based curved (straight-edged) high-order mesh adaption.
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Chapter 2

Defining a metric-aware size-shape

distortion measure

2.1 Introduction

Recently, there has been an increased interest to modify the coordinates and topology

of a high-order mesh to match curved anisotropic solution features with high-order

meshes. This interest has been awakened because these modified curved high-order

meshes promise to reduce the error of the approximation to solution for the same

number of degrees of freedom, especially when the solution has curved anisotropic

features. To this end, existing interior mesh curving approaches exploit the non-

constant Jacobian of high-order meshes to match the target curved anisotropic fea-

tures of the solution using coordinate modifications (Dobrev et al., 2019; Sanjaya

and Fidkowski, 2016; Coupez, 2017; Marcon et al., 2017; Zahr et al., 2020) and local

cavity modifications (Dobrev et al., 2021; Rochery and Loseille, 2021; Zhang, 2022;

Ekelschot et al., 2019; Feuillet, 2019).

To exploit existent high-order goal-oriented (Yano and Darmofal, 2012; Fidkowski

and Darmofal, 2011) and interpolation-oriented (Loseille and Alauzet, 2011; Coulaud

and Loseille, 2016a) error estimators, curved high-order mesh optimization approaches

(Rochery and Loseille, 2021; Zhang et al., 2018; Ekelschot et al., 2019; Sanjaya and

Fidkowski, 2016; Aparicio-Estrems et al., 2018, 2022, 2023a) consider an objective

function that accounts for the discrete metric obtained from the error estimator.

These approaches enforce either curved edges with unitary lengths (Rochery and Lo-
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2. Defining a metric-aware size-shape distortion measure

seille, 2021; Zhang, 2022) or curved elements featuring the stretching and alignment

of the target metric at a reference (Sanjaya and Fidkowski, 2016; Ekelschot et al.,

2019) or a physical (Aparicio-Estrems et al., 2018, 2022, 2023a) mesh. Alternatively,

instead of a metric, it is possible to match a point-wise target deformation matrix

(Dobrev et al., 2019). Unfortunately, no approaches enforce unitary Riemannian

measures for the mesh edges as well as for the face areas and the cell volumes.

Enforcing unitary Riemannian metrics for all mesh entities is critical when the

metric varies point-wise. Without this feature, the resulting mesh might not reduce

the error as expected. This issue is so because the differential measure at each point

of the curved high-order mesh might not match the stretching, alignment, and sizing

of the prescribed point-wise metric.

2.1.1 Aim and contribution

Accordingly, we aim to enforce unitary Riemannian measures for all the mesh entities.

To this end, the main contribution of this chapter is to define a differentiable point-

wise size-shape distortion measure that accounts for the stretching, alignment, and

sizing of the target metric. Moreover, to check if the Riemannian measures are

unitary, we detail how to compute metric-aware measures of the mesh entities, i.e.,

Riemannian lengths, areas, and volumes. Finally, we verify whether minimizing the

metric-aware size-shape distortion leads to meshes with Riemannian measures closer

to unity for the element edges, faces, and cells.

To define the differentiable metric-aware size-shape distortion, the main novelty

is to propose a differentiable multiplicative combination of an existent metric-aware

shape distortion (Aparicio-Estrems et al., 2018) and a new differentiable metric-aware

size distortion. Regarding size-shape distortion measures, there are related works for

linear and curved-high-order meshes yet targeting a deformation matrix. For linear

meshes, to obtain a distortion measure that accounts for shape and size, it is standard

to multiply a shape and a non-differentiable size distortion (Knupp, 2001). The

size distortion considers dilation volumes. For curved high-order meshes targeting a

deformation matrix, existing differentiable distortion measures account for stretching,

alignment, and sizing (Dobrev et al., 2019). It is also possible to use a weighted sum

of a shape and a reciprocal of a size quality surrogate that depends on a parameter.

The quality surrogate considers a normalized difference of volume dilation and its

reciprocal. The main difference between these approaches and our approach is that
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2.2. Preliminaries: shape measures for high-order Euclidean elements

we use a target metric to exploit existent error estimators. Another difference is

that our differentiable size distortion considers squares of the d roots of a normalized

summation of the volume dilation and its reciprocal.

The rest of the chapter is organized as follows. First, in Section 2.2, we intro-

duce the shape measures for high-order Euclidean elements. Next, in Section 2.3,

we present the new size-shape measures for linear elements equipped with constant

metrics. Then, in Section 2.4, we extend the size-shape measures to curved high-

order elements equipped with point-wise varying metrics. Following, in Section 2.5,

we present several examples to illustrate the capabilities of the proposed measure. To

finalize, in Section 2.6, we present the main conclusions.

2.2 Preliminaries: shape measures for high-order

Euclidean elements

In this section, we present the Jacobian-based shape quality measures for linear and

high-order elements defined in the Euclidean space (Knupp, 2001; Roca et al., 2012;

Gargallo-Peiró et al., 2015a). In addition, we introduce the required notation for

Riemannian elements that is, elements equipped with a metric.

To define and compute a Jacobian-based measure for linear Euclidean elements

in Rd, three elements are required (Knupp, 2001): the master, the ideal, and the

physical, see Figure 2.1 for 2D simplices. The master (EM) is the element from

which the iso-parametric mapping is defined. The ideal element
(
EI
)

represents the

target configuration which, in the Euclidean case, is an equilateral element (E4).

The physical (EP ) is the element to be measured.

First, we obtain the mappings between the ideal and the physical elements through

the master element. By means of these mappings, we determine a mapping between

the ideal and physical elements by the composition

φE : E4
φ−1
4−−→ EM φP−−→ EP .

The Jacobian of the affine mapping φE, denoted by DφE, encodes the deviation of

the physical element with respect to the equilateral one.

We define the shape distortion measure ηshape of the physical element as (Knupp,

2001)

ηshape(DφE) :=
1

d

S2

σ2/d
, (2.1)
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2. Defining a metric-aware size-shape distortion measure

Figure 2.1: Mappings between the master, the ideal, and the physical elements in the
linear case.

where S and σ are the Frobenius norm and the determinant of DφE, respectively.

This distortion measure quantifies the shape deviation between the physical and ideal

elements.

The matrix DφE is computed for linear triangles as

DφE = DφP Dφ−1
4 =

(
x1 − x0

2x2−x1−x0√
3

y1 − y0
2y2−y1−y0√

3

)
,

where

DφP =

(
x1 − x0 x2 − x0

y1 − y0 y2 − y0

)
, and Dφ4 =

(
1 1

2

0
√

3
2

)
, (2.2)

being xi = (xi, yi) the coordinates of the physical element EP . These matrices are

written for the master element EM with node coordinates {ξ0 = (0, 0) , ξ1 = (1, 0) ,

ξ2 = (0, 1)}, and the ideal element EI determined by the nodes {y0 = (0, 0) ,

y1 = (1, 0) , y2 =
(
1/2,
√

3/2
)}

.

The shape distortion measure, Equation (2.1), quantifies the shape deviation be-

tween the physical and ideal shapes. The measure gets value 1 when the physical

element is a scaled equilateral element. It is important to note that it is invariant

under translations, rotations, and symmetries. Moreover, it can be regularized to

detect inverted elements. From the distortion measure, we define the shape quality

measure of an element as

qshape :=
1

ηshape

, (2.3)

which takes values in the interval [0, 1], being 0 for degenerated elements and 1 for

the ideal element and its symmetric analogs.
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For high-order (Gargallo-Peiró et al., 2015c,a,b) and multi-linear (Gargallo-Peiró

et al., 2015) elements EP with non-constant Jacobian, we reinterpret a distortion

measure η as a point-wise measure NφE. In particular, we define

NφE(y) := η(DφE(y)), ∀y ∈ E4.

Furthermore, we define the elemental distortion (Roca et al., 2012; Gargallo-Peiró

et al., 2015a) as

ηEP :=

∫
E4
NφE(y) dy∫
E4

1 dy
, (2.4)

and its quality qEP follows from Equation (2.3).

2.3 Size and size-shape measures for linear

elements and constant metric

Herein, we present the measures for linear elements equipped with constant metrics.

First, in Section 2.3.1, we define a quality measure that quantifies the size deviation of

Euclidean elements. Second, in Section 2.3.2, we extend the quality measure to linear

simplices equipped with a constant metric. Finally, in Section 2.3.3, we illustrate the

behavior of the proposed measure.

2.3.1 Differentiable size and size-shape distortion for linear

Euclidean elements

The shape distortion measure of Section 2.2 quantifies the shape deviation between

the physical and ideal elements. However, it does not take into account the size

deviation between the physical and ideal elements. For this reason, we define an

additional distortion measure that takes into account sizing. In particular, we define

the size distortion measure ηsize of the physical element as

ηsize(DφE) =

(
1

2

(
σ +

1

σ

))2/d

, (2.5)

where σ := det (DφE). This distortion measure quantifies the size deviation between

the physical and ideal elements. We expect the size distortion measure to behave as

µ(σ) = max(σ, σ−1)2/d.
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(a)

(b)

Figure 2.2: Plots of the original and modified: (a) size distortion measure and (b)
size quality measure.

Note that, the base max(σ, σ−1) is the standard size measure of Knupp (2001).

However, we cannot use the function µ in a continuous optimization procedure

since it is not differentiable. To overcome this drawback, we propose to replace µ(σ)

by the size distortion measure, see Equation (2.5), a continuous and differentiable

function that holds the same minimum and the same asymptotic behavior.

Figure 2.2 shows the size distortion and the size quality measures using the orig-

inal, µ(σ), and the modified function, ηsize, in terms of σ. It is worth to notice that

using the modification presented in Equation (2.5), the size distortion measure ηsize

is still a distortion measure that is, orientation-invariant, positive, and transpose-

invariant (Knupp, 2001).
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Finally, we define the distortion measure η of the physical element by

η(DφE) = ηshape(DφE) ηsize(DφE). (2.6)

The distortion measure combines ηshape and ηsize, see Knupp (2001) for more details.

Thus, it quantifies both the size and the shape of the element.

2.3.2 Size-shape distortion for linear elements and constant

metric

To define a measure that quantifies the quality of a given element, we need to define

an ideal element that represents the desired configuration, as detailed in Section 2.2.

In the unitary-Euclidean case, where the metric M is represented by the identity

matrix Id, the ideal element EI corresponds to the equilateral element E4, the one

with unit length edges. For non-unitary metrics, we describe how to obtain the ideal

configuration. Then, we measure the distortion of the physical element by comparing

it with the ideal element.

We define the ideal element as the element with edges of unit length under the

desired metric. To compute this configuration, we first decompose M as follows

M = FT F. (2.7)

Matrix F can be interpreted as a linear mapping between the space with metric M

and the space with unitary metric Id. Thus, we define the anisotropic ideal EI

as the preimage by F of the equilateral element, see Figure 2.3. In particular, let

ui, i = 0, 1, 2 be the nodes of the equilateral element E4. Then, we define the nodes

yi, i = 0, 1, 2 of the ideal element EI as

yi = F−1 ui, i = 0, 1, 2.

A direct consequence of the above definition is that the ideal triangle has unit edge

lengths in the metric sense. Once the ideal triangle is defined, we measure the de-

viation between the ideal and physical elements. Similarly to the approaches for a

unitary metric, see Section 2.2, in this section we define the distortion between the

ideal EI and physical EP elements in terms of the mapping between those elements,

φE.

A priori, we do not know how to compare elements considering the target metric.

Nevertheless, we know how to compare elements in the unitary sense, see Section 2.2,
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Figure 2.3: Mappings between the equilateral, the ideal, the physical, and the unitary
physical triangles.

and thus, we map both elements EI and EP to the same Euclidean space using F, see

Figure 2.3. Then, we compare the image elements E4 and EP4 using the distortion

measure presented in Equation (2.6).

Let EP4 be the image of the physical triangle EP by F. By construction, the

image by F of the ideal triangle is the equilateral triangle. We measure the distortion

between the ideal EI and physical EP elements in terms of the distortion of the

mapping between the E4 and EP4 .

Finally, we define the distortion between the physical triangle EP and the ideal

triangle EI with respect to the desired metric as the distortion of the matrix DφU :

ηM(DφE) := η(DφU). (2.8)

The distortion presented in Equation (2.8) is well defined. This is because the

measure does not depend on the symmetries of EP4 . We show first the case for

rotations. The rotation of angle θ of EP4 is the triangle ẼP4 composed by the nodes

ỹi = R(θ) yi, i = 0, 1, 2. Then

Dφ̃U = R(θ) DφU ,

where φ̃U is the mapping between the equilateral triangle E4 and ẼP4 . Consequently,

we have

Dφ̃
T

U Dφ̃U = DφT
U R(θ)T R(θ) DφU = DφT

U DφU . (2.9)
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Figure 2.4: Mappings between the master, the equilateral, the ideal, the physical,
and the unitary physical triangles.

By Equations (2.9), (2.8), and (2.6) we conclude that the corresponding distortions

are equal. The case for reflections follows analogously since any symmetry Σ satisfies

that ΣT Σ = Id.

Next, we show how to compute the distortion presented in Equation (2.8) without

decomposing it using matrix F. First, in Figure 2.4, we include the master element

in the diagram of mappings of Figure 2.3. Let φ4 be the mapping between the

master and the equilateral triangle. This mapping is equivalent to the composition

of the mappings φI and F, but it can be directly computed from the coordinates

of the master and equilateral triangles, as previously done for the isotropic case in

Section 2.2. Taking into account the computation of Dφ4 in terms of the node

coordinates in Equation (2.2), the distortion measure ηM(DφE) can be rewritten

without decomposing M. We note that, a priori, the right-hand side in Equation

(2.8) depends on F since

DφU = DφP4 Dφ−1
4 = F DφP Dφ−1

4 . (2.10)

Manipulating Equation (2.8), one realizes that there is no explicit dependence on F:

DφT
U DφU =

(
Dφ4

)−T
DφT

P FT F DφP

(
Dφ4

)−1

=
(
Dφ4

)−T
DφT

P M DφP

(
Dφ4

)−1
.

Thus, we obtain an expression for the distortion that does not require to decompose

the metric M. In particular, we define the a Riemannian analog for the Frobenius
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norm SM and determinant σM as follows

SM :=

√
tr
((

DφP Dφ−1
4
)T

M DφP Dφ−1
4

)
, and

σM :=

√
det
((

DφP Dφ−1
4
)T

M DφP Dφ−1
4

)
.

Finally, analogously to the Euclidean size-shape distortion measure of Equation (2.6),

we define the Riemannian size-shape distortion as

ηM(DφE) = ηM,shape(DφE) ηM,size(DφE), (2.11)

where the corresponding shape, ηM,shape, and size, ηM,size, distortion measures are

given by

ηM,shape(DφE) =
1

d

S2
M

σ
2/d
M

, and ηM,size(DφE) =

(
1

2

(
σM +

1

σM

))2/d

.

2.3.3 Behavior of the quality measures: shape, size, and

size-shape

In this section, we illustrate the behavior of the shape quality measure corresponding

to the distortion measure, presented in Equation (2.8), for linear anisotropic triangles

equipped with a constant metric. We first show the level curves of the quality measure

of a triangle when we fix two nodes and we let the third node to move in R2, in

Section 2.3.3.1. Second, in Section 2.3.3.2, we analyze the behavior of the measure

with respect to the alignment of the element with the metric.

2.3.3.1 Level sets for one moving vertex

To show the behavior of the level curves of the shape, size, and size-shape quality

measures we consider two cases, the Euclidean or isotropic case when M = Id and

the anisotropic case when M has two different eigenvalues.

For each quality measure and each metric we apply a test to a triangle. We

illustrate the behavior by plotting the level sets in terms of a free node of the triangle.

We consider the anisotropic metric given by

M =

(
1 0

0 1
h2

)
, h = 1/3. (2.12)
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(a) (b) (c)

(d) (e) (f)

Figure 2.5: Level sets for the quality measures with different metrics: (a,d) shape,
(b,e) size, and (c,f) size-shape; (a,b,c) isotropic and (d,e,f) anisotropic metrics.

This metric is aligned with the canonical axes and features a stretching ratio of 1

against 3. Specifically, it is devised to ensure that vectors (1, 0) and (0, h) have unit

length. The ideal element EI is expected to be an element of height h and base 1.

In each test, we consider a free node, keeping the rest of nodes fixed at their original

location, and we compute the quality of the element in terms of the location of this

node. The free node considered is the vertex node x2.

In Figure 2.5, we show the contour plots of the quality for each test when the

free node is allowed to move in a region of R2. The locus of the points where the

element has positive Jacobian, the feasible region, is independent of the metric and

corresponds to the half-plane y > 0.

As expected, for each metric the optimal node location is different. Furthermore,

we can observe that the level sets and the height of the ideal triangle corresponding to

the metric of Equation (2.12) are more stretched than in the isotropic case. Similarly,

the level sets of the quality measure become more stretched as the anisotropy of the

metric increases.
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Similarly, for each quality measure, the optimal node location is also different.

First, for the shape quality, the level curves are circular in the Euclidean case and

elliptic in the metric case. Second, for the size quality, we observe that the level

sets are straight horizontal lines. This is because the size quality depends only on

the height of the triangle since the base is fixed. In the metric case, the spacing

between the straight lines are more stretched than in the Euclidean case. Third, for

the size-shape quality, the level curves are more stretched in the metric case than

in the Euclidean case. Moreover, we observe that the level curves of the size-shape

quality are more stretched than the ones of the shape quality. This indicates that the

size-shape quality is more restrictive, in terms of variation, than the shape one.

2.3.3.2 Influence of element alignment

In the second test, we illustrate how the quality measure depends on the alignment

between the anisotropy axes and the element. We compute the quality measure of a

sequence of physical elements generated rotating the ideal element. We consider the

metric presented in Equation (2.12).

Let R(θ) be the rotation at the origin of angle θ ∈ [0, 2π) which is given by

R(θ) =

(
cos θ − sin θ

sin θ cos θ

)
.

We define the physical element as the ideal element rotated θ radians, with nodes

xi = R(θ) yi, i = 0, 1, 2. For each θ we compute the quality of the corresponding

physical element.

In Figure 2.6, we plot the quality of each physical element with respect to the

angle of the rotation applied to the ideal element to generate it. We represent the

angle of rotation θ in the x-axis and the quality measure in the y-axis. We mark the

cases θ = 0, π/2, π, 3π/2, and 2π with a black dot and we show the corresponding

rotations of the ideal element in Figures 2.6(a), (b), (c), (d), and (e), respectively.

We map a rotation of the unit circle in the Euclidean space to the same ellipse in

the metric space, see Figures (a)-(e). We highlight that independently of the applied

rotation, the ellipse remains constant. An element with quality one must have the

nodes on the ideal ellipse.

In the isotropic case, rotations of the equilateral triangle have quality 1. In the

anisotropic case, when two axes correspond to different eigenvalues of the metric, we
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(a) (b) (c) (d) (e)

Figure 2.6: Influence of alignment in the shape quality measure. First row, physical
elements which are rotations of the ideal element in radians: (a) 0; (b) π/2; (c) π;
(d) 3π/2; and (e) 2π. Second row, shape quality measure in terms of the rotation
angle and corresponding mark for rotated elements (a,b,c,d,e).

observe that the quality oscillates having two maxima and two minima in [0, 2π).

The maxima are obtained in θ = 0 and θ = π and the minima at θ = π
2

and θ = 3π
2

.

When θ = 0 the rotation R(θ) is the identity and EP = EI . When θ = π
2

then the

axes are interchanged (up to sign) and the quality at θ = π
2

attains a minimum. The

minima are attained when both axes are interchanged (up to sign) and the maxima

are attained when the axes coincide with the eigenvectors of the metric (up to sign).

2.4 Measures for curved high-order meshes with

varying metric

Herein, we define the point-wise measures for curved high-order meshes equipped with

point-wise varying metrics. First, in Section 2.4.1, we present the point-wise size-

shape distortion measure for high-order elements equipped with point-wise varying

metrics. Then, in Section 2.4.2, we present the Riemmanian measure of mesh entities.
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2. Defining a metric-aware size-shape distortion measure

2.4.1 Size-shape distortion for curved high-order elements

on varying metric

In Section 2.3, we presented the distortion measure for linear elements equipped with

a constant metric. For high-order elements, the Jacobian of the mapping is not

constant. In this section, we describe the analogous formulation for linear and curved

high-order elements equipped with a non-constant metric field.

The point-wise distortion measure for an element EP equipped with a metric M,

at a point u ∈ E4 is defined as

NφU(u) := η(DφU(u)).

Following Equation (2.4), the distortion measure for an element EP equipped with a

metric M is defined as

η(EP ,M) =

∫
E4
NφU(u) du∫
E4

1 du
. (2.13)

Equation (2.13) can be written in terms of ξ on the master element. That is, the

Jacobian of the map φU can be written in terms of ξ as:

DφU(φ4(ξ)) = F(φP (ξ)) DφP (ξ)
(
Dφ4(ξ)

)−1
,

where

M(φP (ξ)) = F(φP (ξ))T F(φP (ξ)).

Then, Equation (2.13) reads

η(EP ,M) =

∫
EM
NφU(φ4(ξ)) | det Dφ4(ξ)| dξ∫

EM
| det Dφ4(ξ)| dξ

.

Similarly to Equation (2.11), the decomposition of the metric is not required:

DφU(φ4(ξ))T DφU(φ4(ξ)) = A(ξ)T M(φP (ξ)) A(ξ),

where

A(ξ) := DφP (ξ)
(
Dφ4(ξ)

)−1
.

Using the above equation we obtain the final expression on each point ξ of the master

element:

NφU(φ4(ξ)) = ηM (A(ξ)) , (2.14)

24



2.4. Measures for curved high-order meshes with varying metric

where

SM (A(ξ)) :=
√

tr (DφE(ξ)T M(φP (ξ)) DφE(ξ)), and

σM (A(ξ)) := det DφP (ξ) det Dφ4(ξ)−1
√

det M(φP (ξ)).

In order to detect inverted elements (Branets and Garanzha, 2002; López et al., 2008;

Escobar et al., 2003; Gargallo-Peiró et al., 2015c) we regularize the determinant σM

to

σ0,M :=
1

2
(σM + |σM|).

Then, we define the point-wise regularized distortion measure of a physical element

EP as

N0φU(u) := η0(DφU(u)) :=
1

d

S2
M

σ
2/d
0,M

(
1

2

(
σ0,M +

1

σ0,M

))2/d

,

and its corresponding quality

Q0φU(u) :=
1

N0φU(u)
. (2.15)

Finally, we regularize the elemental distortion of Equation (2.13) as

η0,(EP ,M) :=

∫
E4
N0φU(u) du∫
E4

1 du
,

and its corresponding quality as

q0,(EP ,M) :=
1

η0,(EP ,M)

. (2.16)

We can improve the mesh configuration by means of relocating the nodes of the

mesh according to a given distortion measure (Chapter 3). For example, in Aparicio-

Estrems et al. (2018) it is proposed the optimization of the distortion (quality) of a

mesh M equipped with a target metric M that describes the desired alignment and

stretching of the mesh elements. To optimize the given meshM, we define the mesh

distortion by

F (M) :=
∑

EP∈M

∫
E4

(N0φE(y))2 dy, (2.17)

which allows to pose the following global minimization problem

M∗ := argminMF (M) , (2.18)

to improve the mesh configuration according to F . In particular, herein, the degrees

of freedom of the minimization problem in Equation (2.18) correspond to the spatial

coordinates of the mesh nodes.
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2. Defining a metric-aware size-shape distortion measure

2.4.2 Riemmanian measure of mesh entities

Next, we propose a method to compare how a mesh matches a target metric. To this

end, we present the point-wise and element-wise size measure of the mesh entities

according to a Riemannian metric.

We consider the Riemannian measure of the mesh entities relative to the target

metric M. On the one hand, we define the point-wise relative measure ρM of a

physical element EP with respect to a reference element EM . Specifically, for a k-

dimensional physical element EP embedded in the Riemannian space (Rn,M), the

point-wise metric-aware density of EP respect to a k-dimensional master element EM

is given by
√

det [DφP (ξ)T M (φP (ξ)) DφP (ξ)]. We also consider the metric-aware

normalized density as the quotient of the physical density by the ideal density

ρM(ξ) :=

√
det [DφP (ξ)T M (φP (ξ)) DφP (ξ)]

det [DφI(ξ)T M (φP (ξ)) DφI(ξ)]
, for ξ ∈ EM . (2.19)

Accordingly, we say that an element EP is unitary if ρM ≡ 1 is satisfied for the element

measure and for the measure of all its sub-entities. Considering the commutative

diagram in Figure 2.4, we compute the metric-aware density as

ρM(ξ) =

√
det [DφP (ξ)T M (φP (ξ)) DφP (ξ)]

det
[
Dφ4(ξ)T Dφ4(ξ)

] , for ξ ∈ EM , (2.20)

where the unit element E4 is a k-dimensional regular element with all the edges

of unit length. Note that, any sub-entity of a unitary element E4 is also unitary,

because all edges have unit length. On the other hand, we define the metric-aware

normalized measure of EP according to the metric M as

VM
(
EP
)

:=
1

V (EM)

∫
EM

ρM(ξ) dξ, (2.21)

where V
(
EM
)

=
∫
EM

1 dξ.

While it is common to consider only the element-wise length of the element edges,

this does not illustrate if the element is unitary or not, specially for non-constant

metric or curved elements. In contrast, an element is unitary if the point-wise measure

of all its sub-entities is constant equal to one. For this reason, we measure how a mesh

is unitary according to the metric by measure all the mesh entities in the point-wise

sense. In particular, we do this in terms of the measures of the mesh entities. That is,

lengths of edges, areas of faces, and volumes of cells. For example, only when the mesh
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matches the metric, the lengths, areas, and volumes are unit and vice-versa. That is,

they match the length, area, and volume of the equilateral element, respectively. In

contrast, a higher stretching or non-unit volume of the intrinsic metric indicates that

the mesh does not match the stretching or the volume of the metric, respectively. As

a consequence, the lengths, areas, and volumes are non-unit and vice-versa.

2.5 Results

In this section, we apply the size-shape distortion minimization for curved r-adaption.

Specifically, we first compare the behavior of the size-shape distortion minimization

with the shape distortion minimization presented in Aparicio-Estrems et al. (2018).

Then, we illustrate how the size-shape distortion minimization can be used for the

improvement of the interpolation error of an input function.

First, in Section 2.5.1, we compare the shape and size-shape distortion measures

for an analytic target metric. Second, in Sections 2.5.2, 2.5.3, and 2.5.4, we apply

the size-shape distortion minimization for high-order interpolation. Specifically, in

Section 2.5.2, we consider a 2D case with varying degrees and a quadratic 3D example.

Then, in Section 2.5.3, we minimize the size-shape distortion for initial isotropic and

initial adapted straight-edged quartic meshes. The results show that the size-shape

distortion minimization improves the interpolation and approximation errors of the

input function. Finally, in Section 2.5.4, we minimize the size-shape distortion for

an initial adapted straight-edged cubic mesh according to a curved boundary. The

results show that the size-shape distortion minimization improves the interpolation

and approximation errors of the input function while targeting a curved boundary.

Because our goal is to optimize the mesh distortion, instead of including mathe-

matical proofs of mesh validity, we detail how we numerically enforce the positiveness

of the element Jacobians. Specifically, we use a numerical valid-to-valid approach that

uses four ingredients. First, because we want numerically valid results, we enforce

mesh validity on the integration points. Second, to initialize the optimization, we

start from a numerically valid mesh. Third, to penalize inverted elements, we mod-

ify the point-wise distortion to be infinity for non-positive Jacobians. Specifically,

we regularize the element Jacobians to be zero for non-positive Jacobians, so their

reciprocals are infinite, see Section 2.4. Note that these reciprocals appear in the

distortion expression, and thus, they determine the infinite distortion value. Fourth,
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2. Defining a metric-aware size-shape distortion measure

to enforce numerically valid mesh displacements, we equip Newton’s method with

a backtracking line-search. Specifically, if the mesh optimization update is invalid

in any integration point, the objective function is infinite. In that case, the step is

divided by two until it leads to a valid mesh update.

The Julia prototyping code is sequential, it corresponds to the implementation

of the method presented in this chapter and the one presented in Chapter 3. In all

the examples, the optimization corresponds to finding a minimum of a nonlinear un-

constrained multi-variable function f , see Equations (2.17) and (2.18). In particular,

the mesh optimizer uses an unconstrained line-search globalization with an iterative

preconditioned conjugate gradients linear solver. The stopping condition is set to

reach an absolute root mean square residual, defined as
‖∇f(x)‖`2√

n
for x ∈ Rn, smaller

than 10−4 or a length-step smaller than 10−4. Each optimization process has been

performed in a node featuring two Intel Xeon Platinum 8160 CPU with 24 cores, each

at 2.10 GHz, and 96 GB of RAM memory.

Although we generate meshes adapted to a target metric with MMG (Dobrzynski,

2012), our goal is not to compare the distortion minimization with the MMG package.

Actually, we acknowledge MMG because it generates an initial straight-edged mesh

that matches the stretching and alignment of the target metric.

2.5.1 Shape versus size-shape distortion minimization:

curved high-order mesh and analytic metric

In what follows, we compare the shape and size-shape distortion measures presented

in Section 2.4. Specifically, we do this for a curved high-order mesh and an analytic

metric. For this, we first define the target metric. Then, we illustrate the initial and

optimized meshes. Finally, we compare the distortion measures from the distribution

and statistics of the Riemannian measures (length and area), see Section 2.4.2 for the

details.

We consider the quadrilateral domain Ω = [−0.5, 0.5]2 equipped with a metric

matching a boundary layer. In particular, our target metric M is characterized by

a boundary layer metric with a diagonal matrix D, a deformation map ϕ, and the

characteristic length hm := 0.25 by the following expression

M =
1

h2
m

∇ϕT D ∇ϕ. (2.22)
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(a) (b) (c)

Figure 2.7: Point-wise size-shape quality measure for (a) initial and quadratic meshes
optimized according to the (b) shape and (c) size-shape distortion measure, respec-
tively.

In what follows, we first detail the boundary layer metric D and then the deformation

map ϕ, see Chapter 4 for more details.

On the one hand, the boundary layer aligns with the x-axis. It determines a

constant unit element size along the x-direction, and a non-constant element size

along the y-direction. This vertical element size grows linearly with the distance to

the x-axis, with a factor α = 2, and starts with the minimal value hmin = 0.01. Thus,

the stretching ratio blends from 1 : 100 to 1 : 1 between y = −0.5 and y = 0.5.

Specifically, we define the metric as:

D :=

(
1 0

0 1/h(y)2

)
, (2.23)

where the function h is defined by

h(x) := hmin + α|x|.

On the other hand, the deformation map ϕ in Equation (2.22) aligns the stretching

of D according to a given curve. In this case, we define the map ϕ by

ϕ(x, y) :=

(
x,

10y − cos(2πx)√
100 + 4π2

)
.

Finally, the metric M of Equation (2.22) attains the highest level of anisotropy close

to the curve described by the points (x, y) ∈ Ω such that ϕ(x, y) = (x, 0).

In Figure 2.7, we illustrate the initial and optimized quadratic meshes equipped

with the input metric of Equation (2.22). The meshes are colored according to the
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Table 2.1: Size-shape quality and geometry statistics for the initial and optimized
meshes according to the shape and size-shape distortion measures.

Measure Mesh Minimum Maximum Mean Standard deviation

Initial 0.0156 0.9694 0.4276 0.2687
Quality Shape 0.0950 0.9104 0.4927 0.2207

Size-shape 0.3136 0.9882 0.6337 0.1976

Initial 0.2241 3.8578 1.1369 0.5451
Length Shape 0.1964 3.1337 0.7926 0.5445

Size-shape 0.3471 2.3952 0.9131 0.3383

Initial 0.0724 1.8048 0.5593 0.2931
Area Shape 0.0417 2.6045 0.5594 0.5843

Size-shape 0.2148 1.1885 0.5593 0.2310

point-wise size-shape quality measure of Equation (2.15). With MMG, we generate an

initial anisotropic straight-edged meshM according to the target metric of Equation

(2.22). The obtained mesh is composed by 254 triangles and 553 nodes. From this

initial mesh, we observe that the straight-edged elements are stretched, aligned, and

scaled approximating the target metric. Then, we optimize the initial mesh M ac-

cording to the shape and size-shape distortion measures to obtain the corresponding

optimized meshes M∗
shape and M∗. Finally, we observe that the elements are curved

according to the point-wise metric stretching and alignment for the mesh M∗
shape,

and according to the point-wise metric stretching, alignment, and sizing for the mesh

M∗.

From this example, we qualitatively compare the shape and size-shape distortion

measures. For this, in Figure 2.8, we illustrate the logarithmic point-wise distribu-

tions of Riemannian length and area for the associated metric, see Section 2.4.2. In

particular, the shape minimization distorts the distribution of length and area. In

contrast, when compared to the initial mesh and the shape minimization, the size-

shape optimization concentrates more the distribution of length and area around

unit values. From this, we conclude that the size-shape minimization matches more

faithfully the target metric than the shape optimization.

We quantitatively compare the shape and size-shape distortion measures. For

this, in Table 2.1, we show the statistics of the elemental size-shape quality (Equa-

tion (2.16)) and Riemannian length and area (Equation (2.21)). They allow us to

compare the geometric quantities between the initial and optimized meshes, and be-

tween the shape and the size-shape quality measures. On the one hand, we observe

that the shape minimization does not improve the length and area statistics from the
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(a)

(b)

Figure 2.8: Logarithmic point-wise (first row) length and (second row) area for (blue)
initial and optimized quadratic meshes according to the (orange) shape and (green)
size-shape distortion measure.

initial mesh. This is because, the shape distortion does not take into account the

local element size. In contrast, when compared from the initial mesh and the shape

minimization, the size-shape optimization substantially improves the length and area

statistics. This can be explained from the coupling between the size and shape distor-

tion measures, which takes into account the local element size and shape deviation,

see Section 2.4. From this, we conclude that the size-shape distortion minimization

homogeneously matches more the geometric features of the input metric than the

shape optimization.
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Figure 2.9: Values of the function u for γ = 10.

2.5.2 Size-shape distortion minimization for high-order

interpolation: 2D varying degrees and 3D quadratic

Herein, we apply the size-shape distortion minimization for high-order interpolation.

In particular, we consider a 2D case with varying degrees and a 3D quadratic example.

For this, in Section 2.5.2.1, we set a discrete target metric from the higher-order

derivatives of the input function. From this discrete metric, we minimize the size-

shape distortion, in Section 2.5.2.2. To verify that the stretching, alignment, and

sizing match the discrete metric, we measure the Riemannian lengths, areas, and

volumes, in Section 2.5.2.3. Then, to illustrate the potential of curved r-adaption,

we measure how the mesh represents the input function. In particular, we measure

the interpolation and approximation L2-errors, in Section 2.5.2.4.

2.5.2.1 Discrete high-order metric: high-order interpolation

Herein, we compute a discrete metric from the input function as in Coulaud and

Loseille (2016a). Specifically, for each polynomial interpolation degree, we obtain a

discrete metric approximating the high-order derivatives of the function.

In the 2D case, we consider a square domain Ω = [−0.5, 0.5]2 and a function

u : Ω→ R given by

u(x, y) := arctan (γ ϕ(x, y)) , ϕ(x, y) := 10y + cos(2πx). (2.24)
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In Figure 2.9, we show the values of u for γ = 10. We observe that, near the curve

ϕ(x, y) = 0 there is a sharp transition. Far away from such curve, the function is

almost constant.

In the 3D case, we consider a square domain Ω = [−0.5, 0.5]3 and a function

u : Ω→ R given by

u(x, y, z) := arctan (γ ϕ(x, y, z)) , ϕ(x, y, z) := 10z + cos(2πx) cos(2πy). (2.25)

Analogously to the 2D case, near the surface ϕ(x, y, z) = 0 there is a sharp transition.

Far away from such surface, the function is almost constant.

To approximate the function u we consider an error indicator represented by a

discrete target metric M̂. We obtain the metric M̂ from the high-order derivatives of

the function u (Coulaud and Loseille, 2016a). In particular, for a mesh polynomial

degree q, we consider the (q + 1)th derivatives of u, ∇q+1u. Then, we obtain the

discrete metric M̂ in terms of ∇q+1u. To do this, we generate a background isotropic

mesh M̂ of polynomial degree q and we evaluate the high-order derivatives, ∇q+1u,

at the background mesh nodes. Finally, we obtain the values of an approximative

discrete metric M̂ at the background mesh nodes and, we regularize this metric

according to an Lp-norm and a fixed size h (Loseille and Alauzet, 2011).

2.5.2.2 Size-shape distortion minimization: straight-edged anisotropic

mesh adapted to the discrete metric

Herein, we minimize the size-shape distortion according to the discrete metric M̂ of

Section 2.5.2.1. To do this, we apply the methodology presented in Chapter 4. The

method considers two meshes: a background mesh M̂ and a physical meshM. First,

we generate a background mesh M̂ to interpolate the metric values M in terms of the

discrete metric M̂. Then, we generate and optimize a physical meshM according to

the interpolated metric M. This results in a triangular (tetrahedral) mesh M∗ with

Riemannian lengths and areas (and volumes) closer to the metric unit, see Section

2.5.2.3. As a consequence, the interpolation and approximation error are improved,

see Section 2.5.2.4.

For this, we consider a background mesh M̂ and a physical meshM of the same

polynomial degree q, and the same characteristic size h. We first generate an isotropic

background mesh M̂ and we equip it with the discrete target metric M̂. From this

mesh, we generate an initial anisotropic physical meshM with the MMG mesh gen-
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(a) (b) (c)

(d) (e) (f)

Figure 2.10: Point-wise size-shape quality measure for (rows) initial and optimized
triangular meshes of (columns) polynomial degree 1, 2, and 4.

erator (Dobrzynski, 2012). In this situation, using a high-order background mesh

is not possible. Instead, we consider the linear metric interpolation in a uniformly

subdivided linear background mesh M̂′ from the generated one M̂. We expect that

both, the high-order M̂ and the subdivided background M̂′ meshes, represent faith-

fully the metric, even if their elemental node locations differ. Finally, we relocate

the nodes of the initial physical mesh M by minimizing the size-shape distortion

measure, see Section 2.4. In this case, to obtain the point-wise varying metric M,

we consider the high-order Log-Euclidean metric interpolation of the discrete target

metric M̂ at the high-order background mesh M̂, see Rochery and Loseille (2021);

Arsigny et al. (2006) for the details.

In Figures 2.10 and 2.11, we illustrate the triangular and tetrahedral physical

meshes, respectively. That is, the initial, M, and optimized, M∗, meshes equipped

with the metric M. On the one hand, we consider the function u of Equation (2.24)

with γ = 100, in 2D, and γ = 10, in 3D. Then, we obtain the metric M by interpolat-

ing the discrete metric M̂ at the background mesh M̂. Note that, the metric scaling

is imposed by regularizing the discrete metric M̂ according to the L2(Ω)-norm, see

Section 2.5.2.1. On the other hand, the 2D physical meshes are of polynomial degree

q = 1, 2, and 4, and of size h = 0.05. Each mesh is composed of 327, 491, and 523
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(a) (b)

(c) (d)

Figure 2.11: Point-wise size-shape quality measure for (columns) initial and optimized
of (rows) full and clipped quadratic tetrahedral meshes.

nodes and of 611, 230, and 61 triangles, respectively. In the 3D case, the physical

meshes are of polynomial degree q = 2 and of size h = 0.1. They are composed of

3754 nodes and 2425 tetrahedra, respectively. From the initial mesh M, we observe

that, at the sharp transition region, the elements are stretched, aligned, and scaled

according to the metric. However, the straight-edged elements cannot align with the

curved transition region. In contrast, for the optimized meshes M∗, we observe that

the elements are curved according to the point-wise stretching, alignment, and sizing

of the metric.

2.5.2.3 Verifying results: distributions for Riemannian measures of

distortion and mesh entities

Next, we illustrate how the size-shape distortion minimization enables a mesh that

approximates more faithfully the target metric. For this, we measure the Riemannian

length, area, and volume distributions of the mesh entities, see Equation (2.21). The

results show that the size-shape distortion minimization enables an optimized mesh
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Table 2.2: Size-shape quality, geometry, and error statistics of the initial meshes and
the corresponding optimized meshes.

Measure Mesh Minimum Maximum Mean Standard deviation
degree Initial Optimized Initial Optimized Initial Optimized Initial Optimized

1 0.1019 0.2574 0.9779 0.9737 0.6710 0.7330 0.1898 0.1391
Quality 2 0.0986 0.5229 0.9161 0.9812 0.6021 0.8538 0.1604 0.0883

4 0.0249 0.6881 0.7565 0.9275 0.3756 0.8307 0.1761 0.0523

1 0.3641 0.4293 5.1197 3.2040 1.2916 1.2520 0.5376 0.3503
Length 2 0.4711 0.5726 4.6246 2.3879 1.1160 1.0269 0.5172 0.2619

4 0.3109 0.3295 4.0158 1.7523 1.1334 0.9856 0.7727 0.2653

1 0.1998 0.3300 5.2956 3.5361 1.3135 1.3137 0.7967 0.6158
Area 2 0.2838 0.4376 5.1946 2.3034 0.8695 0.8696 0.6145 0.3219

4 0.0911 0.4923 2.9104 1.5600 0.8195 0.8196 0.6847 0.2312

Table 2.3: Size-shape quality, geometry, and error statistics of the initial and opti-
mized quadratic tetrahedral meshes.

Measure Minimum Maximum Mean Standard deviation
Initial Optimized Initial Optimized Initial Optimized Initial Optimized

Quality 0.0021 0.2117 0.8351 0.8545 0.3414 0.5315 0.1580 0.1082
Length 0.1760 0.2388 3.4170 3.4307 0.9340 0.8728 0.3686 0.2560
Area 0.0687 0.1673 3.6299 2.0579 0.5906 0.5557 0.3148 0.1797

Volume 0.0229 0.1168 2.3427 0.9282 0.3097 0.3097 0.2179 0.0941

featuring an improved approximation of the target metric.

In Tables 2.2 and 2.3, we show the corresponding triangular and tetrahedral mesh

statistics for the logarithmic distributions of elemental qualities (Equation (2.16))

and Riemannian measures. That is, lengths and areas in 2D and lengths, areas, and

volumes in 3D. They allow us to compare the geometric quantities between the initial

and optimized physical meshes in terms of the target metric. We observe that the

minimum and standard deviation become closer to unit values in all cases.

In Figures 2.12, 2.13, and 2.14, we respectively show the point-wise distortion,

length, and area of the initial and optimized triangular meshes. Similarly, in Figures

2.15(a), 2.15(b), and 2.15(c), we respectively show the point-wise length, area, and

volume of the initial and optimized quadratic tetrahedral meshes. Note that, the

geometric quantities are typically compared in terms of ratios that is, in a multiplica-

tive form. Accordingly, we use a logarithmic scale to illustrate the different scales

of the corresponding ratios. The logarithmic representation illustrates the behavior

near the minimum, maximum, and geometric mean of the distribution.

From the reasoning presented in Section 2.4.2, we observe that almost all measure

statistics are improved for the optimized meshes. On the one hand, for the geometric
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(a)

(b)

(c)

Figure 2.12: Logarithmic point-wise size-shape distortion histograms for (blue) initial
and (orange) optimized meshes of polynomial degree 1, 2, and 4, respectively.
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(a)

(b)

(c)

Figure 2.13: Logarithmic point-wise Riemannian length histograms for (blue) initial
and (orange) optimized meshes of polynomial degree 1, 2, and 4, respectively.
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(a)

(b)

(c)

Figure 2.14: Logarithmic point-wise Riemannian area histograms for (blue) initial
and (orange) optimized meshes of polynomial degree 1, 2, and 4, respectively.
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(a)

(b)

(c)

Figure 2.15: Logarithmic point-wise Riemannian length, area, and volume histograms
for (blue) initial and (orange) optimized quadratic tetrahedral meshes.
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Table 2.4: Interpolation and approximation L2-error of the initial meshes and the
corresponding optimized meshes.

Dimension Mesh Nodes Interpolation error Approximation error
degree Initial Optimized Initial Optimized

2 1 327 0.0494 0.0382 0.0382 0.0302
2 2 491 0.0404 0.0235 0.0314 0.0199
2 4 523 0.0980 0.0336 0.0688 0.0251
3 2 3754 0.0253 0.0121 0.0179 0.0089

measures, the tails are reduced in measure (horizontal axis) and magnitude (vertical

axis). This reduction is because the quality measure is sensitive to points with volume

far from the unit. Hence, these regions gain priority during the optimization process.

On the other hand, the head range is increased. This increase is so because the global

optimization of the squared quality measure tends to homogenize the points near a

mean. Meanwhile, the measure and magnitude are almost preserved.

2.5.2.4 Interpolation and approximation error: curved high-order mesh

matching the metric

To measure how a meshM supports the approximation of the function u, we consider

two error indicators (Brenner et al., 2008): the interpolation and the approximation

errors. For briefness, we restrict to the L2(Ω)-norm error for a given domain Ω. On

the one hand, the interpolation error eI is defined by

eI = ‖u− ΠMu‖L2(Ω),

where ΠM is the continuous mesh interpolation operator. It projects a function u to

an interpolative basis with the nodal distribution detailed in Warburton (2006). On

the other hand, we consider the approximation error eA in the continuous Galerkin

finite element space VM defined by

eA = min
v∈VM

‖u− v‖L2(Ω).

Note that, since the interpolated function belongs to the finite element space, that

is ΠMu in VM, the approximation error is less or equal than the interpolation error,

i.e., eA ≤ eI .

In Table 2.4, we show the global interpolation and approximation error of the

initial and optimized triangular and tetrahedral meshes of Section 2.5.2.2. We observe
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(a)

(b)

Figure 2.16: Logarithmic distribution for the elemental interpolation and approxima-
tion error histograms for (blue) initial and (orange) optimized quadratic tetrahedral
meshes.

that all quantities are improved. Similarly to the quality and geometry measures, a

greater improvement is achieved for the high-order cases. In particular, we observe

that the quartic triangular mesh is the one featuring the worst interpolation and

approximation error. This is because the initial quartic mesh has low quality elements.

Accordingly, the approximation of the function for the optimized mesh is limited

by the initial mesh quality. In addition, the approximation error is less than the

interpolation one. This is so because the best approximation approximates better

the analytic function than the interpolated one.
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In Figure 2.16, we illustrate the distribution of the elemental interpolation and

approximation error for the initial and optimized quadratic tetrahedral meshes. On

the one hand, the tails are reduced in measure (horizontal axis) and magnitude (ver-

tical axis). This reduction shows that the maximum and minimum elemental error

become closer in the optimized mesh than in the initial one. This also illustrates a

reduced standard deviation for the optimized mesh. On the other hand, the head

range is increased. Moreover, this head range is slightly translated to the left. This

illustrates that the optimized mesh enables a more concentrated and reduced mean

error than the initial mesh. From these observations, we conclude that the optimized

mesh enables improved error statistics when compared to the initial one.

2.5.3 Size-shape distortion minimization for quartic

interpolation: isotropic and anisotropic initial

straight-edged meshes

In the following example, we apply the size-shape distortion minimization for quartic

interpolation to isotropic and anisotropic initial straight-edged meshes. For this, we

consider the function u of Equation (2.24) with γ = 100. We generate a background

mesh M̂ and two initial physical meshes M of polynomial degree q = 4, and size

h = 0.1. Specifically, the isotropic and anisotropic physical meshes are composed

of 1923 and 1917 nodes and of 231 and 257 elements, respectively. We show the

physical meshes in Figure 2.17, where they are colored according to the point-wise

size-shape quality measure of Equation (2.15). On the one hand, we generate an initial

isotropic mesh, see Figure 2.17(a). In this case, the initial physical mesh M and the

background mesh M̂ coincide. We observe that almost all elements are of low quality.

This is because the element stretching, alignment, or sizing does not match with the

metric. As expected, the lowest quality elements lie in the sharp transition region.

On the other hand, we generate an initial anisotropic mesh according to the discrete

metric M̂ of the input function u, see Figure 2.17(b). We observe that almost all

elements are of medium quality. In addition, the straight-edged elements approximate

the curved transition region. Finally, the corresponding optimized meshes M∗ are

shown in Figures 2.17(c) and 2.17(d). We observe that, in both cases, the elements

are accumulated and match the metric stretching, alignment, and sizing at the sharp

transition region.
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(a) (b)

(c) (d)

Figure 2.17: Point-wise size-shape quality for (columns) initial isotropic and
anisotropic straight-edged meshes, and (rows) initial and optimized quartic meshes.

Table 2.5: Size-shape quality and geometry statistics of the initial isotropic and
optimized quartic meshes.

Measure Minimum Maximum Mean Standard deviation
Initial Optimized Initial Optimized Initial Optimized Initial Optimized

Quality 0.0189 0.1765 0.6413 0.9819 0.1613 0.7328 0.1149 0.2504
Length 0.1232 0.1462 9.1069 2.9094 0.9304 1.0989 1.5793 0.4197
Area 0.0219 0.3318 15.7890 1.8669 0.8658 0.8657 2.3650 0.3310

Table 2.6: Size-shape quality and geometry statistics of the initial anisotropic and
optimized quartic meshes.

Measure Minimum Maximum Mean Standard deviation
Initial Optimized Initial Optimized Initial Optimized Initial Optimized

Quality 0.1959 0.8063 0.9270 0.9955 0.6454 0.9288 0.1578 0.0384
Length 0.4171 0.5999 2.5246 1.6854 1.0921 1.0101 0.3823 0.1914
Area 0.2493 0.5571 2.7515 1.4499 0.8620 0.8620 0.4149 0.1775
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Table 2.7: Interpolation and approximation L2 error of the initial isotropic and
anisotropic quartic meshes and the corresponding optimized meshes.

Initial Nodes Interpolation error Approximation error
Mesh Initial Optimized Initial Optimized

Isotropic 1923 0.1573 0.0029 0.1111 0.0022
Anisotropic 1917 0.0138 0.0031 0.0095 0.0024

In Tables 2.5 and 2.6, we show the statistics for elemental qualities (Equation

(2.16)) and Riemannian lengths and areas. They allow us to compare between the

initial and optimized meshes in terms of the target metric. We observe that the

maximum, minimum, mean, and standard deviation become closer to unit values in

almost all cases. That is, in general, all statistics are improved. As expected, we

observe a greater improvement for the initial isotropic mesh.

The presented example shows how our method can be used to improve the error of

a straight-edged mesh. In Table 2.7, we present the global interpolation and approx-

imation error of the initial and optimized meshes. First, we observe that the approx-

imation error is less than the interpolation one. This is because the approximation

error compares the analytic function with its best approximation in the continuous

finite element space, see Section 2.5.2.4. Since the best approximation approximates

better the analytic function than the interpolated one, the approximation error is

less than the interpolation one. Second, we observe that all quantities are improved

for the optimized meshes. In particular, they are improved by almost two orders of

magnitude for the initial isotropic mesh and by almost one order of magnitude for the

initial anisotropic mesh. This is because the initial anisotropic mesh approximates

the metric better than the initial isotropic one. Finally, the errors of the optimized

meshes corresponding to the initial isotropic mesh and the initial anisotropic one are

of the same order of magnitude. This phenomenon illustrates the potential of curved

r -adaption.

In addition, the presented example shows the capability of curved elements to

capture sharp curved transition regions. For the initial anisotropic mesh, we observe

that, even if the straight-edged elements approximate the curved transition region,

this is not sufficient. Only when we curve them, we gain one order of magnitude for

the interpolation and approximation error.

In Figure 2.18, we show the point-wise L2 approximation error. For the initial

isotropic mesh, we observe that the error increases as we approximate to the sharp
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(a) (b)

(c) (d)

Figure 2.18: Point-wise error between the function u and its best L2(Ω) approximation
uM for (columns) initial isotropic and anisotropic straight-edged, and (rows) initial
and optimized quartic meshes.

transition region. This is because the isotropic elements cannot represent the sharp

transition of the function. Then, in the optimized mesh, we observe that the error

is localized at the sharp transition region in a smaller magnitude compared to the

initial mesh. This is because the elements are stretched and aligned to match the

sharp curved transition region. For the initial anisotropic mesh, we observe that the

error is localized at the sharp transition region only. This is because the mesh has

been previously adapted to match, with straight-edged elements, the sharp transition

region. In the optimized mesh, we observe that this error fits the curved sharp

transition region in a slightly smaller magnitude.
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(a) (b) (c)

Figure 2.19: Background, initial adapted straight-edged, and optimized cubic meshes.
Initial and optimized meshes are colored with the point-wise size-shape quality mea-
sure.

2.5.4 Size-shape distortion minimization with curved

boundary for cubic interpolation: anisotropic initial

straight-edged mesh

In the following example, we apply the size-shape distortion minimization with curved

boundary for cubic interpolation to an anisotropic initial straight-edged mesh. For

this, we consider the function u of Equation (2.24) with γ = 100 over the square

domain with a circular hole Ω. Specifically, we denote the domain by Ω = K\C,

where K = [−0.5, 0.5]2 is a square, and where C is the circle with radius equal to

0.18 and centered at the origin. The domain Ω has two boundaries, the one of the

square K and the one of the circle C. Although the inner boundary is smooth, the

outer boundary contains sharp features such as corners.

In Figure 2.19, we show the background
(
M̂
)

and physical (M , M∗ meshes,

where the physical meshes are colored according to the point-wise size-shape quality

measure of Equation (2.15). The background mesh M̂ is of polynomial degree q = 3,

and size h ≈ 0.042, see Figure 2.19(a). In particular, it is composed of 87 vertices, 660

nodes, and 133 triangles. From this background mesh M̂, we generate a physical cubic

mesh M according to the input discrete metric M̂ and preserving the background

mesh boundary ∂M̂. Specifically, in order to obtain an output MMG mesh, we

uniformly subdivide the background mesh and we evaluate the fourth derivatives of u,

∇4u, at the subdivided background mesh vertices. In this case, the input MMG linear

mesh M̂′, which is different from the high-order background mesh M̂, is composed of
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Table 2.8: Size-shape quality and geometry statistics of the initial adapted straight-
edged and optimized cubic meshes.

Measure Minimum Maximum Mean Standard deviation
Initial Optimized Initial Optimized Initial Optimized Initial Optimized

Quality 0.0161 0.3549 0.9292 0.9864 0.4667 0.7804 0.2312 0.1554
Length 0.1022 0.3714 2.7706 2.1434 0.9635 0.9310 0.5344 0.2760
Area 0.0148 0.2235 3.0501 1.2100 0.6696 0.6428 0.5215 0.1758

660 vertices-nodes and 1197 triangles. Then, we obtain the discrete metric M̂ from the

derivatives ∇4u by applying the log-simplex algorithm (Coulaud and Loseille, 2016a).

The output MMG mesh is an adapted straight-edged physical meshM composed of

951 nodes and 191 triangles, see Figure 2.19(b). We observe that almost all elements

are of medium quality. In addition, the straight-edged elements approximate the

curved transition region. Finally, we show the corresponding optimized mesh M∗ in

Figure 2.19(c). We observe that the elements are accumulated and match the metric

stretching, alignment, and sizing at the sharp transition region.

In Table 2.8, we show the statistics for elemental qualities (Equation (2.16)) and

Riemannian lengths and areas. The table allow us to compare between the initial

and optimized meshes in terms of the target metric. We observe that the maximum,

minimum, mean, and standard deviation become closer to unit values in almost all

cases. That is, in general, all statistics are improved.

In Figure 2.20, we show the point-wise Riemannian length and area of the initial

and optimized triangular cubic meshes. As in Section 2.5.2.3, we use a logarithmic

scale to illustrate the different scales of the corresponding ratios. The logarithmic

representation illustrates the behavior near the minimum, maximum, and geometric

mean of the distribution.

From the results, we observe that, when compared with straight-edged elements,

curved elements approximate more faithfully the metric while preserving the curved

features of the boundary. In this case, the stretching direction is almost aligned ac-

cording to the tangent of the geometry. When considering straight-edged elements,

in Figure 2.19(b), accumulating more degrees of freedom in the stretched regions

may worsen the boundary representation at non-stretched regions. Moreover, this

accumulation leads to triangles with small area near the boundary, see the area his-

togram in Figure 2.20(b). In contrast, when considering curved elements, in Figure

2.19(c), we observe that a single curved element represents the boundary more faith-

fully than several straight-edged elements. This flexibility of curved elements allows
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(a)

(b)

Figure 2.20: Logarithmic point-wise length, and area histograms for (blue) initial and
(orange) optimized cubic triangular meshes.

the degrees of freedom to slide and accumulate, from non-stretched regions to the

stretched regions, featuring high-quality elements. In addition, those small elements

initially generated near the boundary are enlarged according to the metric size and

to the domain boundary, see the area histogram in Figure 2.20(b). For that reason,

we observe how the elements are stretched, aligned, sized, and curved according to

the stretching, alignment, and sizing of the metric. Hence, curved elements allow

an improved representation of the metric while preserving the curved features of the

boundary.

From the reasoning presented in Section 2.4.2, we observe that almost all measure
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Table 2.9: Interpolation and approximation L2 error of the initial adapted straight-
edged and optimized cubic meshes.

Mesh Interpolation error Approximation error

Initial 0.0197 0.0144
Optimized 0.0058 0.0046

statistics are improved for the optimized meshes. On the one hand, for the geometric

measures, the tails are reduced in measure (horizontal axis) and magnitude (vertical

axis). This reduction is because the quality measure is sensitive to points with volume

far from the unit. Hence, these regions gain priority during the optimization process.

On the other hand, the head range is increased. This increase is so because the global

optimization of the squared quality measure tends to homogenize the points near a

mean. Meanwhile, the measure and magnitude are almost preserved.

The presented example shows how our method can be used to improve the error of

a straight-edged mesh according to a curved boundary ∂Ω. In Table 2.9, we present

the global interpolation and approximation error of the initial and optimized mesh.

As before, we observe that the approximation error is less than the interpolation one.

This is because the approximation error compares the analytic function with its best

approximation in the continuous finite element space, see Section 2.5.2.4. Since the

best approximation approximates better the analytic function than the interpolated

one, the approximation error is less than the interpolation one. On the other hand,

we observe that the errors are improved three times for the optimized mesh. This is

because the optimized mesh approximates better the metric of the function, reducing

the function numerical error.

In addition, the presented example shows the capability of curved elements to cap-

ture sharp curved transition regions with curved boundaries. We observe that, even

if the straight-edged elements approximate the curved transition region, this is not

sufficient. Only when we curve them, we reduce the interpolation and approximation

error.

2.6 Conclusions

The defined distortion measure is applied to curve straight-edged meshes to improve

the node configuration according to the desired metric. To perform the distortion
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minimization we use the framework for high-order optimization presented in Aparicio-

Estrems et al. (2019). The numerical examples show optimized meshes with an

improved stretching, alignment, and sizing according to the metric. This improvement

leads in all cases to an increase of the minimum element mesh quality and a reduction

of the standard deviation between the different element qualities.

To independently measure whether the optimized mesh matches the input metric,

we propose point-wise Riemannian measures of the mesh entities equipped with the

metric. These are the Riemannian edge length, surface area, and cell volume. The

results show that the optimized meshes improve the length, area, and volume distri-

butions in the metric sense. This illustrates that the distortion minimization enables

meshes that effectively match the input metric.

To illustrate the potential applications of the method, we also measure the numer-

ical error for an input function. These are the interpolation and approximation errors

of the function matched by the mesh. The results show that the optimized meshes

reduce both the interpolation and approximation errors. Moreover, our particular

example illustrates that the distortion minimization reduces the numerical errors by

one order of magnitude for an initial adapted mesh and by two orders of magnitude

for an initial isotropic mesh. In addition, we apply the distortion minimization for

domains with curved boundaries. The results show that the mesh approximates the

stretching, alignment, and sizing of the discrete metric while preserving the curved

features of the boundary model.
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Chapter 3

A globalized and preconditioned

Newton-CG solver

3.1 Introduction

To enhance global convergence of Newton’s direction, globalization strategies modify

Newton’s direction to a feasible step. Standard globalization methods are divided into

those using either trust-region (TR) (Nocedal and Wright, 2006; Conn et al., 2000;

Bulteau and Vial, 1985) or line-search (LS) globalization (Nocedal and Wright, 2006).

On the one hand, trust-region methods consistently deal with negative-curvature steps

and direction candidates on subspaces. To this end, standard TR methods enable

a step-length continuation by only evaluating the objective function, and they do it

by promoting not only a sufficient decrease but also a sufficient progress criterion.

For this, standard TR methods consider a predictor model, comparing the non-linear

behavior of the objective function with a quadratic model in terms of the step size

(Conn et al., 2000). However, it is unclear how to choose the initial trust-region radius

in terms of the current mesh size. On the other hand, we prefer the simplicity of a

backtracking line-search (BLS) strategy for a first implementation trial. Specifically,

a standard BLS globalization considers the Newton direction reduced by a step-length

factor using a sufficient decrease criterion (Nocedal and Wright, 2006).

To compute Newton’s direction in large second-order optimization problems, it is

standard to use an inexact Newton method with a conjugate gradient (CG) method

(Diachin et al., 2006; Sastry and Shontz, 2009, 2012), using constant residual toler-
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ance, and Jacobi preconditioning (Bertaccini and Durastante, 2018).

The preference for the CG method is based on three factors. First, the CG method

is specific for symmetric and positive-definite matrices. This design is relevant near

a minimum, where the symmetric Hessian of the objective function is also positive-

definite. Second, its short-recurrence property allows computing a solution without

requiring additional memory. Third, its negative-curvature termination condition is

helpful in line-search strategies (Nocedal and Wright, 2006).

In iterative linear solvers, it is standard to set a constant tolerance threshold

for the residual norm as a stopping criterion to control the accuracy. Furthermore,

specifically for the CG method, one can consider a curvature tolerance threshold as

a stopping criterion. The choice of these tolerance parameters impacts the accuracy

and number of iterations of the iterative method and hence, on the evolution and

computational cost of the nonlinear solver.

For a given constant tolerance, preconditioning techniques reduce the total num-

ber of matrix-vector products while preserving a comparable number of non-linear

iterations. The total number of sparse matrix-vector products indicates the com-

putational cost of inexact Newton solvers (Bertaccini and Durastante, 2018). In

Newton-CG methods, this number corresponds to the total number of CG iterations.

3.1.1 Challenges

Unfortunately, for metric-aware curved high-order mesh optimization, standard glob-

alized and preconditioned Newton-CG solvers have robustness and efficiency issues.

In curved high-order metric-aware mesh optimization, we observe that these issues are

triggered by non-uniform sizing, stretching ratios, and curved alignment. When more

remarkable these characteristics are, more difficult the convergence with a general-

purpose optimization solver. First, in each non-linear step, highly non-uniform mesh

gradation stiffens the validity of the mesh deformations and the corresponding lin-

ear systems. Second, for high stretching ratios, the deformations in some directions

are locally stiffer than in other directions. Third, curved alignment requires curved

high-order elements. For these elements, when higher is the order, stiffer is the cor-

responding linear system.

The previous mesh characteristics challenge the global convergence of the non-

linear solver and the solution of the corresponding linear systems. Specifically, pro-

gressing towards convergence, standard solvers might present three main issues:
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• They might need additional backtracking line-search iterations because they do

not continuously ensure sufficient decrease and progress. A standard BLS glob-

alization reduces the Newton direction by a step-length factor using a sufficient

decrease criterion (Nocedal and Wright, 2006). However, the step length is

restarted at each non-linear iteration, impeding its continuous evolution during

the optimization. Moreover, BLS does not promote sufficient progress.

• They might accumulate additional iterations of the linear solver because they

use constant linear solver tolerance. Constant tolerances do not correctly pre-

dict the accuracy of a descent direction for a highly non-linear and non-convex

objective function. Thus, they might require excessive precision far from the

optima or feature insufficient accuracy to promote quadratic convergence near

an optimum (Eisenstat and Walker, 1996; Dembo and Steihaug, 1983).

• They might obtain inaccurate steps because the preconditioner is inaccurate

or numerically singular. Jacobi preconditioners favor a low computational cost

instead of an accurate approximation of the Hessian matrix. This loss of accu-

racy in solving Newton’s equation compromises the computational cost of the

solver near an optimum, where quadratic convergence must be prioritized. In-

complete Cholesky factorization favors accurate Hessian approximation instead

of low computational cost. However, it might lead to singular preconditioning

when the Hessian is numerically singular.

It is critical to devise a solver to alleviate these issues because, without such a

solver, it might be impossible to demonstrate the potential advantages of curved high-

order optimization for high polynomial degrees, especially when the target metric fea-

tures non-uniform size, high stretching, and curved alignment. The implementation

of the resulting high-order mesh optimization solver can be later accelerated using

fast GPU implementations (Camier et al., 2023).

3.1.2 Aim and contribution

We aim to alleviate the issues of standard solvers for metric-aware curved high-order

mesh optimization. To this end, we propose a specific-purpose globalized and pre-

conditioned Newton-CG solver. To devise the solver, we propose three main contri-

butions:
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• To continuously ensure sufficient decrease and progress for the LS globalization,

we uniquely combine a step-length predictor featuring not only reduction but

also amplification of the step length. This line search features memory and

continuation of the step length while favoring the quadratic convergence of the

Newton method.

• To reduce the number of iterations of the linear solver, we propose new dynamic

forcing sequences that control the residual tolerance and sufficient positive cur-

vature. Specifically, we propose a new forcing sequence for the residual. This

sequence is suited to limit the number of CG iterations at the beginning of

the optimization process and allow the necessary CG iterations to obtain a

quadratic convergence rate near an optimum. To emulate steps with sufficient

positive curvature, we also propose to define the normalized curvature of a given

direction and a new dynamic forcing sequence for the curvature of the CG step.

We define this sequence to limit CG-iterations when the Hessian is near to

positive semidefinite without breaking the quadratic convergence rate near an

optimum.

• To avoid numerically singular linear pre-conditioning, we propose three in-

gredients for our pre-conditioner. The first ingredient is a novel predictor

that switches between the Jacobi pre-conditioner and the root-free incomplete

Cholesky factorization (iLDLT(0)) with zero levels of fill-in (Bertaccini and

Durastante, 2018). This switch uses a parameter indicating the acceptable nu-

merical ill-conditioning of the factorization. The second is a new inequality

accounting for the curvature of the resulting direction computed from the CG

method. If the direction violates the curvature inequality, we consider that

the computation of the used pre-conditioner is numerically unstable. The third

ingredient reorders the unknowns used to compute the factorization. Several

results presented in the literature indicate that the ordering of a matrix im-

pacts the numerical instability of its factorization (Bertaccini and Durastante,

2018). To control this instability, we propose to use an ordering that tries to

minimize the discarded fill of the incomplete factorization (D’Azevedo et al.,

1992; Persson and Peraire, 2008). We also propose to reorder the mesh nodes

according to the first nonzero eigenvalue of a metric-aware Laplacian spectral

problem with Neumann boundary conditions.
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Finally, to measure the performance of our specific-purpose solver in metric-aware

curved high-order mesh optimization, we compare it with a standard solver. For the

solver ingredients, we also compare the standard and specific-purpose approaches.

To perform these comparisons, we measure the number of iterations for the non-

linear loop and line-search globalization. In addition, we compare the total number

of matrix-vector products. The results allow us to describe the influence of each

ingredient on the proposed specific-purpose non-linear solver.

The remainder of this chapter is organized as follows. In Section 3.2, we in-

troduce the r-adaption problem, the distortion minimization formulation, and an

optimization overview. In Section 3.3, we present the standard and specific-purpose

line-search globalizations for Newton’s method. In Section 3.4, we present the stan-

dard and specific-purpose linear solvers for the inexact Newton method. In Section

3.5, we present a set of examples to compare both the standard and specific-purpose

implementations. Finally, in Section 3.6, we present the main conclusions.

3.2 The problem: r-adaption, formulation, and

optimization overview

We aim to propose a robust specific-purpose solver for the piece-wise polynomial

mesh r-adaption problem. In this adaption problem, the input is a domain, equipped

with a metric, and meshed with a piece-wise polynomial mesh, see Section 3.2.1 for

a model case. We want to relocate the node coordinates of the input mesh, without

modifying the topology, to obtain an output mesh that matches the stretching and

alignment prescribed by the given metric. To this end, we can minimize the mesh

distortion measure proposed in Aparicio-Estrems et al. (2018), see also Chapter 2,

with the corresponding free node coordinates as design variables, see Section 3.2.2.

Unfortunately, we have observed that the existent optimization solvers equipped with

standard globalization strategies, see an overview in Section 3.2.3, might fail to drive

an initial mesh to a local distortion minimum when the initial mesh highly mismatches

the stretching and alignment of the given metric, especially when higher are the

polynomial degrees, stretching ratios, and curvature of the alignment features. We

seek a new robust and globalized minimization solver that overcomes these issues.
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Figure 3.1: Unit square equipped with a metric matching a boundary layer: stretching
ratio in logarithmic scale.

3.2.1 Curved high-order r-adaption: model case

To illustrate the r-adaption problem and to test the globalized minimization solvers

considered through this work, we use a model case. In this model case, we consider the

quadrilateral domain Ω = [−0.5, 0.5]2, equipped with a metric matching a boundary

layer, and meshed with isotropic straight-sided triangular meshes of different polyno-

mial degree but with the same resolution.

The boundary layer aligns with the x-axis, requires a constant unit element size

along the x-direction, and a non-constant element size along the y-direction. This

vertical element size grows linearly with the distance to the x-axis, with a factor

γ = 2, and starts with the minimal value hmin = 10−2. Thus, as illustrated in Figure

3.1, between y = −0.5 and y = 0.5 the stretching ratio blends from 1 : 100 to 1 : 1.

To match the boundary layer, we define the metric as:

D =

(
1 0

0 1/h(y)2

)
,

where h(x) = hmin + γ|x|.
The meshes are of polynomial degree 1, 2, 4, and 8, and since they have the

same resolution, they are composed of the same number of nodes, 481 nodes, but a

different number of elements, 896, 224, 56, and 14 elements, respectively. In Figures

3.2(a), 3.2(b), 3.2(c), and 3.2(d) we show these meshes colored according to the point-

wise stretching and alignment quality measure, proposed in Aparicio-Estrems et al.

(2018) which will be detailed in Section 3.2.2. Points in blue color have low quality

and points with red color have high quality. As we observe, the elements lying in

the region of highest stretching ratio have less quality than the elements lying in
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.2: Triangular meshes of polynomial degree 1, 2, 4, and 8 in columns. Initial
straight-sided isotropic meshes and optimized meshes from initial meshes in rows.
These element vertices are for a visualization purpose, they are not the high-order
degrees of freedom.

the isotropic region. This is because the generated meshes are almost isotropic and,

when we equip them with the metric D, the mesh quality measures a high deviation

between the point-wise stretching and alignment of the mesh and the one of the

metric near the region y = 0.

The node coordinates of the isotropic mesh may be far from the configuration

satisfying the stretching and alignment of the metric. Furthermore, the stretching

and alignment of the metric might be impossible to be fulfilled depending on the

initial generated mesh. In our case, we look for an optimal configuration, which may

not be unique, that approximates the stretching and alignment of the metric.

To obtain an optimal configuration, we minimize the distortion measure proposed

by changing the coordinates of all the mesh nodes and preserving their connectivity.

This can be done by considering all mesh node coordinates targeting a representation

of the boundary, in Chapter 4, or by restricting the boundary mesh nodes to slide

over the geometric boundary (Aparicio-Estrems et al., 2018). Herein, we consider

that the coordinates of the inner nodes, and the one-dimensional coordinates of the

inner nodes of the boundary segments, are the design variables. Thus, the inner nodes

59



3. A globalized and preconditioned Newton-CG solver

are free to move, the vertex nodes are fixed, while the rest of boundary nodes are

enforced to slide along the boundary segments.

The optimized meshes are illustrated in Figures 3.2(e), 3.2(f), 3.2(g), and 3.2(h).

We observe that the elements away from the anisotropic region are enlarged vertically

whereas the elements lying in the anisotropic region are compressed. In the optimized

mesh, the minimum quality is improved and the standard deviation of the element

qualities is reduced when compared with the initial configuration.

3.2.2 The minimization formulation: metric-aware

distortion measure and free nodes

To match the stretching and alignment of a given metric, we relocate the nodes by

minimizing the mesh distortion proposed in Aparicio-Estrems et al. (2018) with the

corresponding free node coordinates as design variables. Following we summarize the

definitions of the metric-aware point-wise, element, and mesh distortion, and we then

state the minimization problem.

To define and compute the distortion of a piece-wise polynomial mesh M that

approximates a domain Ω ⊂ Rd equipped with an input metric M, we need mappings

between three elements: the master, the equilateral, and the physical. The master

EM ⊂ Rd is the element from which the iso-parametric mapping is defined. The

equilateral (regular) element E4 is characterized by the element having unitary edge

lengths. The physical element EP ∈M is the element to be measured. The respective

mappings φ4 : EM → E4, φP : EM → EP between the equilateral and the

physical elements through the master element are obtained. The mapping φ4(ξ)

between the master element and the equilateral element depends only on a parameter

ξ ∈ EM while the mapping φP (ξ; xe) between the master and the physical element

e ∈ M depends both on the parameter ξ and the corresponding physical element

nodes xe.

Then, we define the point-wise distortion measure η of the physical element e ∈M
at a point u as

η(u; xe) :=
tr
(
A(u; xe)

T M(φP (φ−1
4 (u); xe)) A(u; xe)

)
d σ

2/d
0

, (3.1)

where A(u; xe) := DφP (φ−1
4 (u); xe)

(
Dφ4(u)

)−1
, for u ∈ E4, and where

σ0 :=
1

2
(σ + |σ|), σ := det (A(u; xe))

√
det M(φP (φ−1

4 (u); xe)).
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We define the elemental distortion measure ηe of the physical element e ∈ M as

the L1 mean over the equilateral element E4

ηe :=

∥∥η ( · ; xe)
∥∥
L1(E4)

‖1‖L1(E4)

. (3.2)

Then, for the mesh M with nodes xi ∈ Rd, i = 1, ..., k, and equipped with an

input metric M, we define the functional that measures the distortion by

F (x1, ...,xk) :=
∑
e∈M

∥∥η ( · ; xe,1, ...,xe,np
) ∥∥2

L2(E4)
, (3.3)

where we denote the coordinates of the np element nodes by xe =
(
xe,1, ...,xe,np

)
,

and each pair (e, j) in xe,j identifies the local j-th node of element e with their global

mesh number i. That is, for nodal high-order elements is equivalent to determining the

configuration of the nodes of the high-order mesh. Moreover, the element contribution

to the objective function only depends on the nodes of that element.

For the optimization of the function F , each interior node is able to move in

Rd and only the normal components of the mesh nodes of the boundary are fixed.

Hence, the variables are composed of all the components of the interior nodes and

the tangential components of the boundary nodes. We denote the vector containing

all the n variable components by x ∈ Rn, and since the other components are fixed

we can define f(x) := F (x1, ...,xk) with f : Rn → R. Then, the optimization of

the mesh distortion leads to an optimal mesh M∗, where the nodes set (x∗1, ...,x
∗
k)

is determined by including the fixed node components to the optimal solution x∗.

Note that this problem corresponds to an unconstrained minimization problem, and

thus, we can solve it using the standard minimization and globalization techniques

over-viewed in the following section.

3.2.3 Optimization overview

We have casted our adaption problem to an unconstrained minimization problem.

To solve the problem, we first recall essential unconstrained optimization concepts,

conditions, and notation, to finally detail an optimization algorithm.

Let us consider the unconstrained minimization of a non-linear smooth function

f : Rn → R:

x∗ = argminx∈Rnf(x),
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3. A globalized and preconditioned Newton-CG solver

with gradient and Hessian denoted by ∇f and Hf , respectively.

To decide which points are candidates or local minimizers, we can derive first and

second-order conditions from f (Nocedal and Wright, 2006). To derive these condi-

tions, we consider a point x ∈ Rn and a sufficiently small step s ∈ Rn to obtain two

local approximations of f(x + s) from Taylor’s theorem. These two approximations

lead to the first and second-order conditions of the minimization problem, respec-

tively. On the one hand, an approximation of first order in s, linear model, can be

computed as

f(x+ s) ≈ f(x) + sT∇f(x). (3.4)

The linear model leads to the first-order necessary conditions. That is, if x∗ is a local

minimizer of f then

∇f(x∗) = 0.

We refer to x∗ as a stationary point if it fulfills the latter condition. On the other

hand, a second-order approximation in s, quadratic model, can be computed as

f(x+ s) ≈ f(x) + sT∇f(x) +
1

2
sTHf(x)s. (3.5)

The quadratic model leads to the second-order sufficient conditions. That is, if

∇f(x∗) = 0 and Hf(x∗) is positive definite,

then x∗ is a strict local minimizer of f , see a proof in Nocedal and Wright (2006).

Note that second-order sufficient conditions are not necessary. For instance, there are

functions with strict local minimizers where the Hessian matrix vanishes.

Accordingly, to minimize f , given an initial point x0, we seek a sequence of non-

linear iterates {xk} that has to converge to a stationary point x∗,

lim
xk→x∗

‖∇f(xk)‖ = 0,

expecting to find a local minimizer. We terminate the sequence when either no more

progress can be made or when it seems that a solution point has been approximated

with sufficient accuracy, e.g., when the residual ‖∇f(xk)‖ is less to a fixed tolerance.

In practice, the sequence is obtained by iteratively computing, from the current point

xk, a step sk that determines a next point xk+1 = xk+sk with a lower value of f , that

is, f(xk+1) < f(xk). To ensure a sufficient decrease of the objective function and the

convergence to either a stationary point or even to a local minimizer, it is standard

to compute the step sk using a globalization strategy, see Section 3.3.

62
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We consider globalization strategies that start from a given search direction pk.

This search direction can be obtained either from the linear or the quadratic model,

and ideally it should lead to a decrease of the objective function. To this end, the

direction is required to be a descent direction, that is,

pT
k∇f(xk) < 0. (3.6)

The search direction that locally produces the greatest decrease in the linear model,

Equation (3.4), is the steepest descent direction given by

pk = −∇f(xk).

However, for non-linear functions, the steepest-descent direction might not provide a

sufficient decrease of f . For instance, this is the case near those minimum where the

function is locally quadratic.

In this region, we can derive from the quadratic model, Equation (3.5), a direction

with a quadratic rate of local convergence, the Newton direction (Nocedal and Wright,

2006). This direction satisfies the Newton Equation given by the linear system of

equations

Hf(xk)pk = −∇f(xk). (3.7)

The corresponding Newton direction is a descent direction, see Equation (3.6), when-

ever the Hessian is positive definite.

To enforce the search direction fulfills the descent property, we might need to

switch to the opposite of the Newton direction. This is so since when the Hessian is

non-singular but non-positive definite, the Newton direction is defined but it might

violate the descent condition in Equation (3.6). In this case, a practical choice for pk

is the Newton direction times the sign of its scalar product with the steepest-descent

direction. We call this direction the signed Newton direction.

A general second-order optimization solver, incorporating the previous concepts,

obtains a step sk by applying a globalization strategy to a numerical approximation

of the Newton direction pk, see Algorithm 3.1. This algorithm corresponds to the

general scheme for the standard solvers we aim to modify to obtain our specific-

purpose solver. The inputs are the objective function, its gradient, its Hessian, an

initial guess, and the linear solver choice: direct or iterative. Note that, for the

iterative solver, we need to detail the choice of a preconditioner. The output is a

configuration expected to be at least locally optimal up to an input tolerance. First,
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3. A globalized and preconditioned Newton-CG solver

Algorithm 3.1 Second-order optimization

Input: f, ∇f, Hf, x, solver, preconditioner
Output: x∗

1: procedure OptimizeFunction

2: stop ← false
3: k ← 0
4: α← 1
5: s← 0
6: g ← ∇f(x), H ← Hf(x)
7: g0 ← g, H0 ← H
8: η ← 0.5, τ ← 0.01
9: while stop is false do
10: p← NewtonDirection(g,H, x, s, solver, preconditioner, η, τ)
11: s, α← GlobalizationLS(x, p, α, f, g,H)
12: if k = 0 then
13: s0 ← s
14: end if
15: x← x+ s
16: g ← ∇f(x), H ← Hf(x)
17: η, τ ← ForcingSequences (x, s0, g0, H0, s, g,H)
18: stop ← StoppingCondition(∇f, x, s, k)
19: k ← k + 1
20: end while
21: x∗ ← x
22: end procedure

we setup the parameters, Lines 2-8. In particular, we set the stopping criterion, Line

2, the initial non-linear iteration, Line 3, the initial step length, Line 4, and the initial

step, Line 5. In addition, we set the initial values for the dynamic estimators, Line 8,

considered in the specific-purpose optimization solvers. Second, we perform the non-

linear iteration, Line 9. Specifically, we compute the exact/inexact approximation

of the Newton direction, Line 10. Then, we obtain the corresponding step via a

line-search globalization, Line 11. Following, we obtain the new point by applying

the step, Line 15. Next, we evaluate the gradient and the Hessian of the objective

function, Line 16. They are used in the next non-linear iteration and, for the specific-

purpose case, to update the dynamic estimators, Line 17. Then, we check the stopping

criterion, Line 18. Finally, we upgrade the current non-linear iteration, Line 19. Once

the loop stopped we set the output point as the obtained one, Line 21.
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3.3. Line-search globalization: standard and specific-purpose strategies

3.3 Line-search globalization: standard and

specific-purpose strategies

To propose a robust specific-purpose optimization solver for the r-adaption problem,

Section 3.2.1, a specific-purpose globalization strategy is critical. To obtain such a

strategy, we propose to improve the standard line-search globalization. To this end, in

Section 3.3.1, we first review the standard backtracking line-search strategy (Nocedal

and Wright, 2006). Then, in Section 3.3.2, we detail the proposed modification.

Our contribution is to propose a linear predictor model and a new procedure for the

computation of the step length.

3.3.1 Standard backtracking line search: sufficient decrease

The backtracking line-search (BLS) strategy is a systematic approach to promote

global convergence in a non-linear solver. It is a specific line-search globalization

strategy. These strategies minimize a function over a sequence of search paths re-

ducing a multi-variable problem into a one-dimensional problem. A basic line-search

strategy consists in computing a suitable step length αk for a given descent direction

pk, see Equation (3.6), and determining the step sk as:

sk = αkpk.

In order to obtain a sufficient decrease of f , such step length should satisfy the Armijo

condition (Nocedal and Wright, 2006)

f(xk + sk) < f(xk) + csT
k∇f(xk), (3.8)

where c is a constant in (0, 1). In its most basic form, a backtracking line-search

strategy proceeds by reducing the step length until the Armijo condition is satisfied.

To enforce that successive reduction of the step length leads to a sufficient de-

crease, Equation (3.8), it is preferred to use a small constant like c = 10−4, see

Nocedal and Wright (2006). The constant c of the Armijo condition controls the

balance between the decrease of the objective function and the step-length condi-

tion. A large constant admits only those step lengths providing a large decrease of

the objective function. Accordingly, the desired decrease might not be achieved by

reducing the step length monotonically, and hence, one needs an advanced search
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Algorithm 3.2 Standard BLS

Input: xk, pk, αk, f, gk
Output: sk, αk+1

Set: c = 10−4, γ = 2, αmin = 2−20

1: procedure StandardGlobalizationBLS

2: sk ← αkpk
3: while f(xk + sk) > f(xk) + csTk gk and αk > αmin do
4: αk ← αk/γ
5: sk ← αkpk
6: end while
7: αk+1 ← 1
8: end procedure

strategy to set a valid step length. On the contrary, a small constant admits the

step lengths providing a small decrease, and thus, we can use the simple successive

reduction strategy to set the step length.

In Algorithm 3.2, we detail a standard BLS strategy with constants c = 10−4,

γ = 2, and αmin = 2−20 such as presented in Nocedal and Wright (2006). The

algorithm inputs are: the point xk, the descent direction pk, the step length αk, the

objective function f , and the value of the gradient of f at xk, gk := ∇f(xk). The

algorithm outputs are: the new point xk+1, the step sk, and the next initial value

of the step length αk+1. The step length αk is divided by a factor γ > 1 iteratively

until it satisfies the Armijo condition, Equation (3.8), and while the factor α > αmin,

Line 3. Finally, the standard BLS strategy restarts the next initial value of the step

length to one, Line 7.

3.3.2 Specific-purpose line search: prediction and

continuation of the step length

To propose a line-search strategy that promotes sufficient decrease and progress, we

detail two main ingredients. First, we consider a predictor that indicates if a step

length is either large or small. Second, taking into account the predictor, we pro-

pose to promote sufficient decrease and progress by either reducing or amplifying

the step length. Finally, we combine these ingredients to propose a line-search algo-

rithm featuring memory and continuation of the step length while favoring quadratic

convergence of Newton method.
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3.3.2.1 Step-length predictor: indicating large and small step length

As in the standard strategy presented in Algorithm 3.2, we consider a step length

determined by the Armijo condition. However, instead of using the standard inequal-

ity presented in Equation (3.8), we propose to use the linear model of the objective

function

φ(s;x) := f(x) + sT∇f(x).

Note that the step s is a descent direction, see Equation (3.6), if and only if φ(s;x) <

φ(0;x).

Analogously to the standard trust-region formulation presented in Conn et al.

(2000), for each step s and for the model φ, we can define a predictor given by

ρ(s;x) :=
f(x)− f(x+ s)

φ(0;x)− φ(s;x)
,

where the model φ is linear in our line-search strategy, while it is quadratic in trust-

region strategies.

The predictor serves as an indicator of the quality of the step length of a descent

direction. For a given descent direction, φ(s;x) < φ(0;x), the predictor can be either

non-positive or positive. When ρ(s;x) ≤ 0 it indicates that the step does not provide

a decrease of the objective function, that is f(x+ s) ≥ f(x). When ρ(s;x) > 0, there

is a decrease in the objective function, and thus, ρ indicates the quality of the step

length. On the one hand, a low value of the predictor, ρ(s;x) ≈ 0, indicates a step

length far away from those neighborhoods where the function behaves as the linear

model. This negligible decrease indicates a large step length. On the other hand, a

high value of the predictor, ρ(s;x) ≈ 1, means that the objective function behaves as

the linear model. This linear behavior indicates a small step length.

3.3.2.2 Promoting sufficient decrease and progress: reducing and

amplifying step length

We propose to control the step length according to the value of the predictor. We aim

to promote a step length that provides a sufficient decrease of the objective function

and that is sufficiently large so that the objective function is not in the linear regime.

Heuristically, if we reduce the step length we expect to increase the value of the

predictor. On the contrary, if we amplify the step length we expect to decrease the

value of the predictor.
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We can control the sufficient decrease of the objective function in terms of the

predictor. This is so since the Armijo condition of Equation (3.8) is equivalent to the

bound ρ(s;x) > cmin. In particular, for a descent step s, the condition f(x + s) <

f(x) + cmins
T∇f(x) is equivalent to

ρ(s;x) =
f(x)− f(x+ s)

−sT∇f(x)
> cmin. (3.9)

Even if the decrease of the objective function is reasonable, the step might be

too short. The successive reduction of the step length might not ensure reasonable

progress. To address this issue, it is standard to use line-search globalizations ac-

counting for the Wolfe conditions (Nocedal and Wright, 2006). Herein, we propose

an alternative adequate to our problem. In contrast to the existent line-search strate-

gies for the Wolfe conditions, our methodology does not require additional evaluations

of the gradient of the objective function at the line-search iterations.

To promote sufficient progress, we propose to amplify the step length iteratively

that is, αk ← γαk. The amplification of the step length leads to a greater decrease of

the objective function. However, it might also reduce the value of the predictor. To

avoid an excessive reduction of the predictor value, which might violate the Armijo

condition of Equation (3.9), we propose a stopping criterion for the amplifying iter-

ations.

Our criterion stops the amplifying iterations whenever the predictor indicates that

the step-length quality exceeds a threshold. Specifically, we stop when ρ(γsk;xk) <

cmax for a given constant cmax. By choosing cmax ≥ cmin we ensure that the Armijo

condition is satisfied for the step sk at each amplifying iteration. It may happen that

amplifying the step length does not decrease the objective function monotonically, not

fulfilling the goal of the line-search iteration. To address this issue in the amplifying

iteration, we propose to add the condition f(xk + γsk) < f(xk + sk). This condition

enforces to decrease the objective function.

3.3.2.3 Specific-purpose line-search algorithm

The main objective of the specific-purpose LS, Algorithm 3.3, is to perform a continu-

ation of the step length. This continuation is expected to generate a smooth sequence

of non-linear iterations. The inputs and the outputs of Algorithm 3.3 are the same as

the ones of Algorithm 3.2. The constants cmin = 10−4, γ = 2, and αmin = 2−20 corre-

spond to standard values (Nocedal and Wright, 2006). In addition, we propose to set
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Algorithm 3.3 Specific-purpose LS

Input: xk, pk, αk, f, gk
Output: sk, αk+1

Set: cmin = 10−4 , cmax = 0.25, γ = 2, αmin = 2−20

1: procedure Specific-purposeGlobalizationLS

2: sk ← αkpk
3: φ(0;xk)← f(xk)
4: φ(sk;xk)← f(xk) + sT

k gk
5: ρ(sk;xk)← f(xk)−f(xk+sk)

φ(0;xk)−φ(sk;xk)

6: if ρ(sk;xk) < cmin then
7: while ρ(sk;xk) < cmin and αk > αmin do
8: αk ← αk/γ
9: sk ← αkpk

10: end while
11: else
12: while ρ(γsk;xk) > cmax and f(xk + γsk) < f(xk + sk) do
13: αk ← γαk
14: sk ← αkpk
15: end while
16: end if
17: if ρ(sk;xk) < cmax then
18: αk+1 ← αk/γ
19: else
20: αk+1 ← αk
21: end if
22: end procedure

the new constant cmax = 0.25 to favor quadratic convergence of Newton method near

the optimum without additional line-search iterations, see the reasoning in Appendix

A.2. The algorithm starts, Lines 2-5, setting up the main variables and functions:

step, current model, model for the step, and predictor.

The algorithm continues by deciding to either reduce or amplify the step length,

Lines 6-16. If the sufficient-decrease condition is violated, we decide to reduce the

step length, Line 6. Otherwise, we decide to amplify the step length, Line 11. Then,

we proceed to the line-search iteration. The reduction iterations are the ones of the

standard BLS, Lines 6-10. In contrast, we improve the standard BLS, Lines 11-21,

by enlarging and updating the step length αk and the step sk, respectively.

First, we decide to amplify the step length while the sufficient-progress condition

is violated and the additional decrease of the objective function is fulfilled, Line 12.
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We remark that if no amplifying iterations are performed, the input step length for

the current direction is preserved. Finally, we update the step length, Lines 17-21.

These instructions provide a step-length memory to the specific-purpose strategy

instead of restarting with a step length equal to one in the standard strategy, Line

7 of Algorithm 3.2. In particular, we only update the step length by reducing it

whenever it has not sufficient quality, Line 17. We consider this update to prevent

an additional reduction iteration at the next non-linear iteration, as it is proposed

for trust-region methods (Conn et al., 2000).

3.4 Newton-CG solvers: standard and

specific-purpose methods

After proposing the specific-purpose globalization in Section 3.3, we aim to improve

the performance of the non-linear optimization method. For this, in this section,

we present the standard inexact Newton method, with the standard residual and

curvature tolerances and the standard preconditioner. Then, we present the specific-

purpose inexact Newton method, with specific-purpose residual and curvature toler-

ances and a specific-purpose preconditioner.

3.4.1 Standard Newton-CG method

Next, we present the standard features of the inexact Newton method. These are the

residual and curvature forcing sequences and the preconditioner. Then, we combine

them to obtain a numerical approximation of the Newton direction.

3.4.1.1 Existing residual and curvature forcing sequences

In an inexact Newton optimization process, the residual and curvature tolerances

of the CG method are given by the so-called forcing sequences and forcing terms

(Eisenstat and Walker, 1996; Dembo and Steihaug, 1983). In this section, we present

an existing choice of these two estimators. On the one hand, residual forcing terms

are presented in Eisenstat and Walker (1996); Dembo and Steihaug (1983); Nash and

Sofer (1990). They are proposed to avoid oversolving the linear system of Newton

Equation (3.7). On the other hand, a standard constant curvature forcing term is
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Algorithm 3.4 Standard Forcing Sequences
Input: x, s0, g0, H0, s, g, H
Output: η, τ

1: procedure ForcingSequences

2: η = 10−9, τ = 0
3: end procedure

presented for the CG method in Dembo and Steihaug (1983). It is proposed to limit

the total amount of CG iterations.

The first estimator is the forcing sequence for the residual rk of the iterative

method. Specifically, it is denoted by η and it is used as a stopping criterion for the

iterative method through the following expression

‖rk‖ < η‖∇f(xk)‖.

In practice, it is standard to set η = 10−9, in order to achieve a desirable accuracy,

see Algorithm 3.4.

In contrast, dynamic forcing sequences {ηk} for the residual have been proposed

in the literature (Eisenstat and Walker, 1996; Dembo and Steihaug, 1983; Nash and

Sofer, 1990). Specifically, the stopping criterion for the iterative method is now given

by

‖rk‖ < ηk‖∇f(xk)‖. (3.10)

The choice of ηk have been reported to be critical to the efficiency of the inexact

Newton method (Eisenstat and Walker, 1996).

Referring to curvature forcing sequences, a constant estimator for the sufficient

positive curvature of the CG-step dk is presented in the literature (Dembo and Stei-

haug, 1983). Specifically, it is denoted by ε and it is used as a stopping criterion for

the iterative method by the following expression

dT
k Hf(xk)dk < ε dT

k dk. (3.11)

It is standard to set ε = 0 to avoid negative curvature directions in the next CG

iterations, see Algorithm 3.4.

3.4.1.2 Standard Preconditioner

In addition to the forcing sequences, the use of a preconditioner constitutes an impor-

tant ingredient to improve the efficiency and accuracy of the CG method. Specifically,
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Algorithm 3.5 Standard Numerical Approximation of Newton Direction

Input: g, H, σ, x, solver, preconditioner, η, τ
Output: p

1: procedure NewtonDirection

2: switch solver do
3: case direct
4: p← −H\g
5: case iterative
6: preconfun(r)← diag(H)\r
7: ε← τ
8: p← CG(H,−g,0, preconfun, n, η, ε)

9: p← sign(−gTp) p
10: end procedure

when the initial guess is far from a minimizer, the diagonal preconditioner is a cheap

but sufficient approximation of the Hessian to obtain a desirable inexact approxima-

tion of the Newton direction.

3.4.1.3 Standard Numerical Approximation of Newton Direction

The standard inexact Newton method is summarized in terms of the standard forcing

sequences and the standard preconditioner presented in Sections 3.4.1.1 and 3.4.1.2,

respectively. This procedure is used to determine the descent direction, Line 10, for

the optimization method, Algorithm 3.1.

In Algorithm 3.5, we present the numerical approximation of the Newton direc-

tion. The inputs are the gradient g = ∇f(x), the Hessian H = Hf(x), the MDF

ordering of the n unknowns for the initial Hessian σ = MDF (Hf(x0)), the current

point x, the solver type (iterative), and the preconditioner function. It is standard to

set the parameters η = 10−9 and τ = 0, see Algorithm 3.4. The output is a descent

direction. First, we decide which solver is used to compute the Newton approxima-

tion: direct for an exact Newton approximation, Line 3, and iterative for an inexact

Newton approximation, Line 5. The exact Newton approximation is computed using

a sparse LU factorization, Line 4. To compute the inexact Newton approximation,

we consider the diagonal of the Hessian as a preconditioner, Line 6. Then we apply

the preconditioned CG algorithm with null initial guess, Line 8. Finally, we obtain

a descent direction by correcting its sign according to the steepest-descent direction,

Line 9.
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Algorithm 3.6 Specific-purpose Forcing Sequences
Input: x, s0, g0, H0, s, g, H
Output: η, τ
Set: ηmax = 0.5, τmax = 0.01

1: procedure ForcingSequences

2: Z0 ← GramSchmidt(−g0, s0)
3: g̃0 ← ZT

0 g0, H̃0 ← ZT
0 H0Z0

4: q̃0 ← −H̃0\g̃0

5: κ̃0 ← q̃T
0 H̃0q̃0/q̃

T
0 q̃0

6: Z ← GramSchmidt(−g, s)
7: g̃ ← ZTg, H̃ ← ZTHZ
8: q̃ ← −H̃\g̃
9: κ̃← q̃TH̃q̃/q̃Tq̃

10: η ← ‖q̃‖
‖s0‖ , τ ← |̃κ|

|κ̃0|
11: η ← min(η, ηmax)
12: τ ← min(τ, τmax)
13: τ ← min(τ, η)
14: end procedure

3.4.2 Specific-purpose Newton-CG method

In what follows we present the specific-purpose Newton-CG method. For this, we first

detail the specific-purpose residual and curvature forcing sequences and then specific-

purpose preconditioner. Finally, we combine them to obtain a specific-purpose nu-

merical approximation of the Newton direction.

3.4.2.1 Specific-purpose residual and curvature forcing sequences

The main disadvantage of the standard forcing sequences is the failure of accuracy

prediction for inexact Newton approximations. On the one hand, constant forcing se-

quences keep the accuracy fixed. This is unpractical because the additional accuracy

required near an optimum may require, at the same time, an unnecessary computa-

tional cost at the first iterations, far from that optimum. On the other hand, the

dynamic forcing sequences for the residual presented in Section 3.4.1.1 predict the

accuracy in terms of a scaled variation between the objective function and the linear

model (Eisenstat and Walker, 1996). We have observed that, even if they predict a

better accuracy than the fixed sequences, they do not predict a desirable accuracy in

our specific problem.
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Next, we present the specific-purpose dynamic forcing sequences for the CG

method. For this, we use two additional inexact approximations of the Newton

direction: the restricted Newton direction (based in a subspace restriction concept

presented in Bulteau and Vial (1985)) and the incomplete Newton direction. Finally,

the residual and curvature forcing terms are obtained in terms of these approxima-

tions and the corresponding forcing sequences.

Our restricted Newton direction is given by the Newton Equation

Hkqk = −gk, (3.12)

restricted to the subspace Wk := span{−gk, sk−1} generated by the steepest-descent

direction −gk and the last step sk−1 = xk − xk−1, and where gk := ∇f(xk) and

Hk := Hf(xk). In particular, we consider the Gram-Schmidt orthonormalization

procedure to the ordered basis {−gk, sk−1}. This results in an orthonormal basis Zk

of the subspace Wk, where the columns of Zk are the vectors forming the basis. From

this basis, we define the projection of the gradient and the Hessian onto the subspace

Wk as

g̃k := ZT
k gk, H̃k := ZT

k HkZk.

Then, in the restricted form, Equation (3.12) reduces to the two-dimensional linear

system

H̃kq̃k = −g̃k,

and the restricted Newton direction is given by the pre-projected direction Zkq̃k.

Then, we define the forcing sequences by

ηk :=
‖q̃k‖
‖s0‖

, τk :=
|κ̃k|
|κ̃0|

, (3.13)

where κ̃k := κ (Zkq̃k;xk) is the normalized curvature of the restricted Newton direc-

tion, see Appendix A.3. The sequence ηk is used for the stopping criterion presented

in Equation (3.10). In addition, the sequence τk is used for the stopping criterion pre-

sented in Equation (3.11). Specifically, we set the curvature forcing term εk = τk|κk|,
where κk is the curvature of the Newton direction. To compute κk, we observe that,

from Equation (3.12), we have

κk :=
qT
kHkqk
qT
k qk

=
qT
k (−gk)
qT
k qk

. (3.14)
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Instead of computing a solution qk of Equation (3.12), we compute an incomplete

approximation q̂k of qk using the chosen preconditioner, denoted as Mk, and defining

q̂k by

Mkq̂k = −gk.

We call q̂k the incomplete Newton direction. Then, using Equation (3.14) and the

equation presented above, we approximate the κk as follows

κk ≈ µ :=
q̂T
k (−gk)
q̂T
k q̂k

. (3.15)

Finally, we approximate the curvature forcing term as follows εk ≈ τk|µ|.
It is standard to apply safeguards to the forcing sequences (Dembo and Stei-

haug, 1983; Eisenstat and Walker, 1996). Similarly, we observe that by choosing a

safeguard for the forcing sequences presented in Equation (3.13), we can improve

the inexact Newton method. One for the residual forcing sequence ηk given by

ηk ← min(ηk, ηmax), we set ηmax = 0.5. The other for the curvature forcing se-

quence τk given by τk ← min(τk, τmax, ηk) with τmax = 0.01. This value is set to

avoid an excessive influence of the curvature forcing sequence at the initial non-linear

iterations.

For our optimization problem, we propose a new forcing sequence for the residual

which is suited to limit the number CG-iterations at the beginning of the optimization

process and allowing the necessary CG-iterations to obtain a quadratic convergence

rate near an optimum. On the other hand, we propose to define the normalized

curvature of a given direction and a new dynamic forcing sequence for the curvature

of the CG-step to emulate CG-steps with sufficient positive curvature. We define this

sequence to limit CG-iterations when the Hessian is near to positive semi-definite

without breaking the quadratic convergence rate near an optimum.

In our problem, the main advantage of the specific-purpose forcing sequences

is to efficiently predict a desirable accuracy of the inexact Newton approximation

at each stage of the optimization process that is, far and near an optimum. This is

because they are based in a cheap but faithful approximation of the Newton direction.

Specifically, this approximation is obtained by restricting the Newton equation in a

subspace spanned by the steepest-descent direction and the step of the last non-

linear iteration. Consequently, the forcing sequences predict a decrease of accuracy

at the first iterations, obtaining steps approximating the steepest-descent direction.
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In addition, they predict an increase of accuracy near an optimum, obtaining steps

approximating the Newton direction, in order to preserve second-order convergence.

3.4.2.2 Specific-purpose preconditioner

In addition to the forcing sequences presented before, the choice of the preconditioner

impacts on the efficiency of the iterative method. We remark that a more accurate

preconditioner, sensitive to the magnitude of the entries of the Hessian matrix, can

be numerically unstable for an ill-conditioned matrix. For this reason, we propose

three procedures to reduce both the numerical instabilities and its potential impact in

the non-linear optimization process. In this section, we define the preconditioner and

then, we present its numerical instability issues together with the three procedures

to mitigate them. Then, we present the linear solver obtained from the modifications

presented in this section and in Section 3.4.1.

In what follows, we present the specific-purpose preconditioner for the CG method.

In addition, we control the numerical instability issues by applying three different

procedures: a switch criterion between two preconditioners, a curvature inequality

limitation, and an ordering that minimizes the discarded fill of the factorization.

The first procedure consists in switching between the Jacobi preconditioner and

the root-free incomplete Cholesky factorization (iLDLT(0)) with zero levels of fill-

in (Bertaccini and Durastante, 2018). This switch uses a parameter indicating the

numerical instability of the factorization.

The second one is based on an inequality of the curvature of the resulting direction

computed from the CG method. If the direction violates the curvature inequality, we

consider that the computation of the used preconditioner is numerically unstable.

Finally, the third condition consists in the ordering of the unknowns used to

compute the factorization. Several results presented in the literature indicate that

the ordering of a matrix has an impact on the numerical instability of its factorization

(Bertaccini and Durastante, 2018). To control this instability we propose to use an

ordering that tries to minimize the discarded fill of the incomplete factorization.

When the initial guess is far from a minimizer, the minimization meets different

configurations of the objective function. These configurations can be determined in

terms of the Hessian. Roughly speaking, the Hessian starts at a highly indefinite con-

figuration where the positive and negative eigenvalues have large magnitudes. Then,

the magnitude of the negative eigenvalues become smaller and the Hessian tends to
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be nearly singular. After this, the Hessian is positive definite and nearly singular,

with small positive eigenvalues. Finally, in the convergence region, the Hessian is pos-

itive definite with no small positive eigenvalues. Between these configurations some

oscillations may occur, exceptionally switching between an indefinite configuration to

a positive definite one. These Hessian configurations are approximately represented

in the preconditioner.

Accordingly, we propose to use the preconditioner to detect the Hessian configura-

tions. Specifically, we expect that the diagonal matrix D of a Hessian decomposition

indicates when the factorization is indefinite, positive definite, and numerically sin-

gular. To this end, in addition to the Jacobi preconditioner, Section 3.4.1.2, we

consider the root-free incomplete Cholesky factorization (iLDLT(0)) with zero level of

fill-in (Bertaccini and Durastante, 2018).

When applied to the CG method, the iLDLT(0) preconditioner provides an ac-

curate approximation of the Newton direction. This is especially useful for points

near a minimizer, where the Newton direction needs to be solved with a high level of

accuracy to preserve the quadratic convergence. However, when the initial guess is

far from a minimizer, the iLDLT(0) preconditioner may provide low-quality directions

interfering with the evolution of the optimization process. Finally, we have observed

that when the negative values of the matrix D tend to cluster, the factorization tends

to be more numerically stable.

We propose to use the Jacobi preconditioner whenever the iLDLT(0) factoriza-

tion is supposed to provide low quality directions. Specifically, we first obtain the

iLDLT(0) preconditioner from an incomplete LU factorization with zero levels of fill-in

(iLU(0)), as

Mk := L̃DL̃T,

where the L̃ and D factors are given by

L̃ =
1

2

(
L+D\UT

)
, D = diag(U).

To guess the factorization quality, we consider the negative value with smallest mag-

nitude, dmin, and the negative value with largest magnitude, dmax, of the diagonal

matrix D. Then, we use the iLDLT(0) factorization whenever the quantities dmin and

dmax are similar. This condition corresponds to check if their ratio is smaller than

some fixed quantity. In particular, we consider that the quantities dmin and dmax are
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similar when the following condition is satisfied

dmax

dmin

< δ, (3.16)

for δ := 10. We assume that we are near an optimum when the matrix D has no

negative values and, in such case, we use the iLDLT(0) factorization. On the contrary,

when dmax/dmin ≥ δ, we will use the Jacobi preconditioner. The larger the parameter

δ, more iLDLT(0) factorizations are used instead of the Jacobi preconditioner. For

ill-conditioned problems, this may cause some instability issues breaking the conti-

nuity of the optimization process by choosing consecutive steps with nearly opposite

directions.

In addition to the numerical instabilities described before, we have observed that

the iLDLT preconditioner can provide low quality directions pk. That is, directions

with a low value of the predictor ρ(αkpk;xk) and requiring too many reductions

of the length step αk. To avoid such directions, we use the Jacobi preconditioner

whenever the CG method with the iLDLT preconditioner stopped because a CG-

step of negative curvature is encountered and the CG solution pk violates the limited

curvature inequality

κ (pk;xk) 10−2 ≤ τk|κk|, (3.17)

where κk is approximated as in Equation (3.15) and τk is presented in Equation

(3.13). In both cases, these quantities are computed using a diagonal preconditioner,

Mk = diag(Hk).

We have observed that when an iLU type preconditioner is used (including iCHOL

and iLDLT preconditioners) the ordering of the unknowns has a major effect on the

convergence of the conjugate gradients iterative method. In our case, where at a

given non-linear iteration the mesh may contain highly stretched and curved elements,

it is crucial to compute a high-quality preconditioner to ensure convergence of the

conjugate gradients method. Furthermore, we are interested in orderings that can

take into account in an automatic way both the principal directions of the anisotropy

and the ordering of the elements instead of the individual unknowns, especially for

high-order elements.

For anisotropic problems (D’Azevedo et al., 1992) and high-order elements (Pers-

son and Peraire, 2008), the minimum discarded fill (MDF) method provides good

convergence results. We only compute the MDF ordering at the beginning of the op-

timization process that is, for the initial Hessian H0 = Hf(x0). We use the computed
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Algorithm 3.7 Preconditioner

Input: H, σ, preconditioner
Output: preconfun
Set: δ = 10

1: procedure Factorize

2: switch preconditioner do
3: case Jacobi
4: M ← diag(H)

5: case iLDL
6: Hσ ← H(σ, σ)
7: [L,U ]← iLU(Hσ, 0)
8: D ← diag(U)
9: L̃← 0.5 (L+D\U)

10: dmax ← max
1≤i≤n, Dii<0

|Dii|
11: dmin ← min

1≤i≤n, Dii<0
|Dii|

12: if dmax

dmin
≥ δ then

13: M ← diag(H)
14: preconditioner← Jacobi
15: else
16: P = Id(:, σ)
17: M ← P T L̃DL̃TP
18: preconditioner← iLDL
19: end if
20: preconfun(r) = M\r
21: end procedure

permutation when the iLDLT factorization of the Hessian Hk = Hf(xk) is computed

at the non-linear iteration k and when the corresponding linear system of equations

in Equation (3.12) is solved, in Lines 3 and 14 of Algorithm A.1, see Appendix A.1.

We remark that this ordering is not used for the matrix-vector products.

In Algorithm 3.7, we detail the factorization of the Hessian. The inputs are the

evaluated Hessian H, the MDF permutation σ, and the preconditioner choice. First,

in Line 2, we switch between the Jacobi and the iLDLT(0) preconditioner. When the

iLDLT(0) preconditioner is chosen, we first apply the permutation to the Hessian,

Line 6. Then, we compute the iLDLT(0) in terms of the iLU(0) preconditioner, Lines

7-9. Note that, it is standard to describe the iLDLT(0) factorization of the Hessian

H, Line 17, in terms of the matrix representation P of the permutation σ, Line 16,

where Id(:, σ) denotes the identity matrix Id with columns arranged according to σ
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(Bertaccini and Durastante, 2018). Finally, we apply the switching criterion in Lines

10-19. The output is the preconditioner function.

We propose to use as a preconditioner an incomplete, symmetric, and root-free

factorization. Firstly, we have chosen an incomplete factorization as a matter of per-

formance and storage. It is well known that computing a complete factorization of

a sparse matrix produces, in general, almost dense triangular factors (Bertaccini and

Durastante, 2018), leading to a more expensive matrix-vector products (if required

in the factorization) and requiring more memory to store the matrix. Secondly, since

the CG method requires symmetric matrices, the Cholesky factorization is more ap-

propriate than other factorizations, such as LU. Finally, contrary to the standard

Cholesky factorization, its root-free version can be computed at each non-linear it-

eration of the optimization process. This is because the existence of the root-free

factorization does not depend on the matrix Hk being positive definite or indefinite

(Bertaccini and Durastante, 2018; Kershaw, 1978).

3.4.2.3 Specific-purpose Numerical Approximation of Newton Direction

The specific-purpose inexact Newton method is summarized in terms of the specific-

purpose forcing sequences and the specific-purpose preconditioner presented in Sec-

tions 3.4.2.1 and 3.4.2.2, respectively. This procedure is used to determine the descent

direction, Line 10, for the optimization method, Algorithm 3.1.

In Algorithm 3.8, we summarize the updates of the inexact Newton method, pre-

sented in this section and in Section 3.4.1. The inputs are the gradient g = ∇f(x),

the Hessian H = Hf(x), the MDF ordering of the n unknowns for the initial Hessian

σ = MDF (Hf(x0)), the current point x, the solver type (iterative), the precondi-

tioner function, and the value of the residual and curvature forcing sequences at the

current non-linear iteration η and τ respectively, see Equation (3.13). First, in Line

6, we compute the preconditioner of the permuted matrix Hσ
k , which is the iLDLT(0)

factorization or the Jacobi preconditioner depending on the criterion presented in

Equation (3.16). Then, in Lines 7-9, we compute the curvature forcing term from the

forcing sequence and, next, in Line 10, we compute the CG direction. The output of

the algorithm is the descent direction p.

In addition, in Algorithm 3.9, we incorporate the curvature safeguard, see Equa-

tion (3.17). Specifically, in Lines 11-20, we apply the curvature limitation criterion.

We first check, in Line 11, if the CG direction has negative curvature. In such case,
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Algorithm 3.8 Specific-purpose Numerical Approximation of Newton Direction with
standard preconditioner

Input: g, H, σ, x, solver, preconditioner, η, τ
Output: p

1: procedure NewtonDirection

2: switch solver do
3: case direct
4: p← −H\g
5: case iterative
6: preconfun← Factorize(H, σ, preconditioner)
7: q̂ ← preconfun(−g)

8: κ← q̂T(−g)
q̂Tq̂

9: ε← τ |κ|
10: p← CG(H,−g,0, preconfun, n, η, ε)

11: p← sign(−gTp) p
12: end procedure

we update the curvature forcing term in terms of the Jacobi preconditioner. Finally,

in Line 17, if the direction violates the limited curvature inequality, we compute the

CG point using the diagonal preconditioner.

3.5 Results

In this section, we compare both optimization solvers: specific-purpose versus stan-

dard. To do it so, we first present the implementation details, in Section 3.5.1. Then,

in Section 3.5.2, we propose a set of r-adaption tests where the initial guess is far from

a minimizer. Following, in Sections 3.5.3 and 3.5.4, we compare the specific-purpose

versus the standard globalizations and linear solvers for the model case presented in

Section 3.2.1. Finally, in Section 3.5.5, we compare the optimization solvers for all the

r-adaption tests. They are compared in terms of the non-linear iterations, line-search

iterations, and matrix-vector products. In addition, we compare both optimization

solvers for an initial guess near to an optimal configuration, Section 3.5.6. This is the

case of a previously h-adapted mesh according to the test metric.

Because our goal is to optimize the mesh distortion, instead of including mathe-

matical proofs of mesh validity, we detail how we numerically enforce the positiveness

of the element Jacobians. Specifically, we use a numerical valid-to-valid approach that
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Algorithm 3.9 Specific-purpose Numerical Approximation of Newton Direction with
iLDLT(0) preconditioner

Input: g, H, σ, x, solver, preconditioner, η, τ
Output: p

1: procedure NewtonDirection

2: switch solver do
3: case direct
4: p← −H\g
5: case iterative
6: preconfun, preconditioner← Factorize(H, σ, preconditioner)
7: q̂ ← preconfun(−g)

8: κ← q̂T(−g)
q̂Tq̂

9: ε← τ |κ|
10: p← CG(H,−g,0, preconfun, n, η, ε)
11: if pTHp < 0 and preconditioner = iLDL then
12: M ← diag(H)
13: preconfun(r) = M\r
14: q̂ ← preconfun(−g)

15: κ← q̂T(−g)
q̂Tq̂

16: ε← τ |κ|
17: if |pTHp| > 102ε pTp then
18: p← CG(H,−g,0, preconfun, n, η, ε)
19: end if
20: end if
21: p← sign(−gTp) p
22: end procedure

uses four ingredients. First, because we want numerically valid results, we enforce

mesh validity on the integration points. Second, to initialize the optimization, we

start from a numerically valid mesh. Third, to penalize inverted elements, we modify

the point-wise distortion to be infinity for non-positive Jacobians. Specifically, we

regularize the element Jacobians to be zero for non-positive Jacobians, so their re-

ciprocals are infinite. Note that these reciprocals appear in the distortion expression,

and thus, they determine the infinite distortion value. Fourth, to enforce numerically

valid mesh displacements, we equip Newton’s method with a line-search, see Section

3.3. Specifically, if the mesh optimization update is invalid in any integration point,

the objective function, Equation (3.3), is infinite. In that case, the step is divided by

two until it leads to a valid mesh update.
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3.5.1 Implementation

As a proof of concept, a mesh optimizer is developed in Julia 1.4.2 (Bezanson et al.,

2017). For this, we use the following external packages: Arpack v0.5.0, Einsum v0.4.1,

ILUZero v0.1.0, and TensorOperations v3.1.0. In addition, we use specific functions to

solve sparse linear systems. First, we use the Julia internal CHOLMOD package from

SuiteSparse as a direct solver, see Line 4 of Algorithms 3.5, 3.8, and 3.9. Specifically,

we solve the linear system by computing a sparse LDLt factorization. Second, we use

the preconditioned Conjugate Gradients (CG) algorithm (Saad, 2003) as an iterative

method, see Line 8 of Algorithm 3.5, Line 10 of Algorithm 3.8, and Lines 10 and 18

of Algorithm 3.9. Third, we compute the iLU(0) factorization with the ILUZero.jl

package, see Line 7 of Algorithm 3.7.

The Julia prototyping code is sequential, it corresponds to the implementation

of the method presented in this chapter and to the method presented in Aparicio-

Estrems et al. (2018). In all the examples, the optimization is reduced to find a

minimum of a non-linear unconstrained multi-variable function. The ordering of the

mesh nodes and of the degrees of freedom is detailed in Appendix A.4. The stopping

condition is set to reach an absolute root mean square residual, that is ‖∇f(x)‖`2/
√
n

for x ∈ Rn, smaller than 10−4. Each optimization process has been performed in a

node featuring two Intel Xeon Platinum 8160 CPU with 24 cores, each at 2.10 GHz,

and 96 GB of RAM memory.

3.5.2 Examples setup: domains and metrics

We consider the quadrilateral domain Ω = [−0.5, 0.5]2 for the two-dimensional ex-

amples and the hexahedral domain Ω = [−0.5, 0.5]3 for the three-dimensional ones.

Each domain is equipped with a metric matching a boundary layer. In particular, our

target metric M is characterized by a boundary layer metric with a diagonal matrix

D and a deformation map ϕ by the following expression

M = ∇ϕT D ∇ϕ, (3.18)

where D is a boundary layer metric, and ϕ is a deformation map used to align the

stretching with a given manifold. The constructions of both D and ϕ are detailed in

Appendix A.5.

The anisotropy of the metric M can be described by two quantities: the anisotropic

ratio and the anisotropic quotient (Loseille and Löhner, 2010). On the one hand, the
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Table 3.1: Metric examples classified in terms of id, name, parameters, anisotropic
quantities, and figure.

Id Name Parameters Anisotropic Figure
D ϕ γ 1/hmin ratio quotient

1st Line D (x, y) 2 100 100 100 3.3(a)

2nd Curve D

(
x, 1√

100+4π2
g(y, x, 1)

)
2 100 120 120 3.3(c)

3rd Curves Dcross
1√

100+4π2
(g(x, y, 1), g(y, x, 1)) 2 100 120 120 3.3(e)

4th Plane D (x, y, z) 2 50 50 50 3.3(b)

5th Surface D

(
x, y, 1√

100+8π2
g(z, y, x)

)
2 50 60 60 3.3(d)

6th Surfaces Dcross
1√

100+8π2
(g(x, y, z), g(y, z, x), g(z, y, x)) 2 50 60 3600 3.3(f)

anisotropic ratio is defined by the maximum local elongation. Specifically, at a phys-

ical point p ∈ Ω ⊂ Rd it is given by

ratio (p) :=

√√√√√ max
i=1,...,d

λi (p)

min
i=1,...,d

λi (p)
> 1, (3.19)

where λi (p) > 0, i = 1, ..., d are the eigenvalues of M (p) ∈ Rd×d. The maximum

anisotropic ratio attained in Ω is denoted by ratiomax = max
p∈Ω

ratio (p).

On the other hand, the anisotropic quotient represents the overall anisotropic

ratio. Specifically, at a physical point p ∈ Ω ⊂ Rd, the anisotropic quotient is given

by

quo (p) :=

√
det (M (p))(

min
i=1,...,d

λi (p)

)d/2 > 1. (3.20)

The maximum anisotropic quotient attained in Ω is denoted by quomax = max
p∈Ω

quo (p).

In Table 3.1, we present six examples of metrics. In the first column, we show

the numbering. Then, in the second column we show a descriptive name. Specif-

ically, Line and Plane correspond to the boundary layer metrics over a line and a

plane, respectively. In contrast, Curve and Surface correspond to the boundary layer

metrics over a deformed line and a deformed plane, respectively. We use a singular

noun for a layer over one entity and a plural noun for an intersection of two layers

in 2D and three layers in 3D. In the third column, we present the parameters that

characterize the metric, see Appendix A.5: the boundary layer metric D, the de-

formation map ϕ in terms of the function g(x, y, z) := 10x − cos(2πy) cos(2πz), the
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(a) (b) (c)

(d) (e) (f)

Figure 3.3: Anisotropic ratio in logarithmic scale for the different (columns) metric
examples and (rows) domain dimensions.

growth factor γ, and the inverse of the imposed stretching hmin, 1/hmin. Then, in the

fourth column we present the approximate anisotropic ratio and quotient defined in

Equations (3.19) and (3.20), respectively. Finally, in the last column we include the

figure corresponding to the metric.

In Figure 3.3, we show the anisotropic ratio of the test metrics. We can observe

that, it blends between 1 and 1/hmin together with a contribution of the deformation

ϕ. In addition, the maximum anisotropic ratio is attained at the zero-level sets of

the last or each component of the deformation map ϕ depending on which boundary

layer metric is used. That is, according to the ordering presented in Table 3.1 at:
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3. A globalized and preconditioned Newton-CG solver

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 3.4: point-wise quality measure for meshes of (columns) polynomial degree 1,
2, 4, and 8 equipped with the (a-h) second metric and (i-p) third target metric: (a-d,
i-l) initial straight-sided isotropic meshes, and (e-h,m-p) optimized meshes.

line y = 0; curve g(y, x, 1) = 0; the curves g(y, x, 1) = 0, g(x, y, 1) = 0; plane z = 0;

surface g(z, y, x) = 0, and the surfaces g(z, y, x) = 0, g(y, x, z) = 0, g(x, y, z) = 0,

respectively. Finally, note that at the intersection of two entities in 2D and three

entities in 3D, the anisotropic ratio attains its minimum value, equal to one. This is

because the stretching alignments span all the space, producing a sizing effect without

stretching on a particular direction.

As initial guess of the mesh optimizer we generate isotropic meshes with the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

Figure 3.5: point-wise quality measure for meshes of (columns) polynomial degree 1,
2, and 4 equipped with the (a-f) first metric, (g-l) second metric, and (m-r) third
target metric. (a-c, g-i, m-o) initial straight-sided isotropic meshes, and (d-f, j-l, p-r)
optimized meshes.
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MATLAB PDE Toolbox (MATLAB, 2017). The initial isotropic linear unstructured

2D and 3D meshes are presented in Figures 3.2(d) and 3.5(c), respectively. The

structured meshes of lower polynomial degree are generated by subdivision.

In 2D, for each considered metric, we generate four meshes of polynomial degree

1, 2, 4, and 8. The meshes feature the same resolution and hence have the same

number of nodes, 481 nodes, but a different number of elements, 896, 224, 56, and 14

elements, respectively. The meshes from Figures 3.2, 3.4(a)-3.4(h), and 3.4(i)-3.4(p)

correspond to the metrics 1, 2, and 3, see Table 3.1.

In 3D, for each considered metric, we consider three meshes of polynomial degree

1, 2, and 4. The meshes feature the same resolution and hence, the same number of

nodes, 1577 nodes, but a different number of elements, 7296, 912, and 114 elements,

respectively. The meshes from Figures 3.5(a)-3.5(f), 3.5(g)-3.5(l), and 3.5(m)-3.5(r)

correspond to the metrics 4, 5, and 6, see Table 3.1.

The meshes are colored according to the point-wise stretching and alignment

quality measure, proposed in Aparicio-Estrems et al. (2018) and detailed in Equation

(3.1) of Section 3.2.2. As we observe, the elements lying in the region of highest

stretching ratio have less quality than the elements lying in the isotropic region.

To obtain an optimal configuration, we minimize the distortion measure by re-

locating the mesh nodes while preserving their connectivity, see Section 3.2.2. The

coordinates of the inner nodes, and the coordinates tangent to the boundary, are the

design variables. Thus, the inner nodes are free to move, the vertex nodes are fixed,

while the rest of boundary nodes are enforced to slide along the boundary facets of

the domain Ω. The total amount of degrees of freedom for the 2D and 3D meshes is

894 and 3957, respectively. The optimized meshes are illustrated in Figures 3.2 and

3.4 for the 2D cases and in Figure 3.5 for the 3D cases. We observe that the elements

away from the anisotropic region are enlarged vertically whereas the elements lying in

the anisotropic region are compressed. Moreover, the minimum quality is improved,

and the standard deviation of the element qualities is reduced.

3.5.3 Line-search globalization: standard versus

specific-purpose

Following, we compare the line-search globalization strategies, presented in Section

3.3, and their effect in the non-linear optimization method. For this, we apply the
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Table 3.2: Non-linear and line-search iterations for the exact Newton method com-
posed of standard and specific-purpose LS. Both globalizations are coupled with the
direct solver.

Mesh Non-linear iterations Line-search iterations
degree Standard Specific-purpose Standard Specific-purpose

1 54 37 159 31
2 82 91 328 155
4 88 78 304 92
8 203 125 771 171

Newton method presented in Section 3.2.3, with the corresponding globalization strat-

egy and linear solver, to the first test metric presented in Table 3.1.

The standard and the specific-purpose globalization strategies are presented in

Sections 3.3.1 and 3.3.2, respectively. To compare them we use an exact Newton

method. Specifically, we consider the optimization method presented in Algorithm

3.1 with a globalization strategy, Line 11, and a direct solver, Line 10. In particular,

the direct solver computes, Line 3 of Algorithm 3.5, the exact approximation of

the Newton equation presented in Equation (3.7) using the complete sparse LDLt

preconditioner of the CHOLMOD package (Chen et al., 2008).

The results of our numerical experiments allow comparing the standard, Algo-

rithm 3.2, and specific-purpose, Algorithm 3.3, globalization strategies in terms of

the required line-search iterations, see Table 3.2. For meshes of polynomial degree 1,

2, 4, and 8, we report the number of non-linear and line-search iterations required

to optimize the model case. We report these numbers for the exact Newton method

equipped with the standard and specific-purpose globalizations.

We conclude that the specific-purpose strategy improves the standard one. The

results show that the number of line-search iterations is reduced. Meanwhile, the

number of non-linear iterations remain in the same order of magnitude, yet tending

to be smaller. We can explain these improvements by highlighting two factors. First,

the specific-purpose strategy can enlarge the step length with line-search iterations, a

larger advance that promotes to reduce the number of non-linear iterations. Second,

for the specific-purpose strategy, by reusing the last step length we promote to reduce

the total amount of line-search iterations. In contrast, for the standard line-search

strategy each direction has step length at most one, limiting the length of the step.
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Table 3.3: Non-linear iterations and matrix-vector products for the inexact Newton
methods with Jacobi preconditioner and Jacobi/iLDLT preconditioners with specific-
purpose LS globalization. Inexact Newton methods are distinguished by standard
and specific-purpose forcing terms.

Mesh Non-linear iterations Matrix-vector products
degree Standard Specific- Standard Specific- Preconditioner

purpose purpose

1 24 20 1856 677 Jacobi
24 17 333 113 Jacobi/iLDLT

2 29 29 1824 624 Jacobi
30 23 579 155 Jacobi/iLDLT

4 48 40 4858 1521 Jacobi
48 31 1162 223 Jacobi/iLDLT

8 109 73 10031 2864 Jacobi
109 83 3538 1452 Jacobi/iLDLT

3.5.4 Inexact Newton method: standard versus

specific-purpose

Next, we compare the inexact Newton methods presented in Section 3.4. Specifically,

we compare the influence of the forcing sequences and of the preconditioner in the

non-linear optimization method. For this, we equip the meshes with the first metric

presented in Table 3.1. Moreover, we globalize the non-linear solver, Section 3.2.3,

with the specific-purpose LS strategy, Section 3.3. Finally, we optimize the meshes

using the different approaches to compute the inexact Newton direction.

The standard and the specific-purpose inexact Newton methods are presented in

Sections 3.4.1 and 3.4.2, respectively. We compare them in two steps. In both cases,

we compare the standard inexact Newton method, that uses the standard forcing

terms, Section 3.4.1.1, with the specific-purpose inexact Newton method, that uses

the specific-purpose forcing terms, Section 3.4.2.1. In the first case, we use the Jacobi

preconditioner presented in Section 3.4.1.2, see Line 6 of Algorithms 3.5 and 3.8. In

the second case, we use the Jacobi/iLDLT preconditioner switch presented in Section

3.4.2.2, see Line 6 of Algorithms 3.5 and 3.9.

The results of our numerical experiments allow comparing between the standard,

Line 5 of Algorithm 3.5, and the specific-purpose, Line 5 of Algorithm 3.9, inexact

Newton methods in terms of the number of required matrix-vector products, see Table

3.3. The model case is optimized with the specific-purpose LS strategy for meshes of

polynomial degree 1, 2, 4, and 8. For these meshes, we report the number of non-linear
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iterations and matrix-vector products required by the standard and specific-purpose

inexact Newton methods.

We conclude that the specific-purpose preconditioned inexact Newton method

significantly improves the standard one. Specifically, the matrix-vector products are

reduced by one order of magnitude. On the one hand, the specific-purpose forcing

terms feature a total number of matrix-vector products smaller than with the stan-

dard one. The number of products is reduced because the forcing terms stop the

linear iterations when sufficient accuracy and positive curvature is reached. Accord-

ingly, these conditions ensure that the reduction does not hamper the quality of the

inexact Newton direction. Meanwhile, the number of non-linear iterations remain in

the same order of magnitude, yet being smaller or equal. On the other hand, the

specific-purpose pre-conditioner features a total number of matrix-vector products

smaller than with the standard one. This number of products is reduced because the

specific-purpose pre-conditioner automatically switches to a more accurate iLDLT

decomposition. Specifically, it only improves the accuracy when the Hessian is pre-

dicted to be numerically positive. Thus, the solver obtains a highly accurate Newton

direction with fewer matrix-vector products. Meanwhile, the number of non-linear it-

erations stills almost unchanged. Finally, the combination of specific-purpose forcing

terms and pre-conditioner features a number of matrix-vector products one order of

magnitude smaller than for the standard one. This reduction is because we combine

the advantages of the specific-purpose forcing terms and the specific-purpose pre-

conditioner. Moreover, the number of non-linear iterations is reduced. In addition,

we observe that when augmenting the mesh polynomial degree, the total amount of

matrix-vector products and the number of non-linear iterations are increased. This

can be explained by highlighting that when the mesh polynomial degree is increased

the Hessian Hf becomes more ill-conditioned. Hence, the CG method needs more

iterations to converge.

3.5.5 Newton-CG solver: standard versus specific-purpose

In what follows, we compare both optimization solvers: standard and specific-purpose.

To this end, we consider the r-adaption problem for the domains, metrics, and meshes

presented in Section 3.5.2. Finally, we present the results obtained from the optimiza-

tion processes.

Each optimization solver is composed of a globalization and a linear solver, see Al-
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Table 3.4: Non-linear iterations, line-search iterations, and matrix-vector products
for standard and specific-purpose optimization methods.

Example Mesh Non-linear iterations Line-search iterations Matrix-vector products
degree Standard Specific- Standard Specific- Standard Specific- Speedup

purpose purpose purpose

1 24 17 48 29 1646 113 14.57
Line 2 32 23 81 33 2309 155 14.90

4 47 31 197 53 4284 223 19.21
8 74 83 358 196 14710 1452 10.13

1 30 23 85 29 6689 145 46.13
Curve 2 91 37 575 74 29626 339 87.39

4 102 54 582 85 24497 597 41.03
8 374 78 1721 190 30725 2150 14.29

1 43 28 174 38 4196 177 23.71
Curves 2 211 57 1473 157 35378 835 42.37

4 140 81 768 184 20535 1279 16.06
8 858 102 3169 295 43317 4056 10.68

1 45 30 80 27 3943 378 10.43
Plane 2 219 89 1298 91 10118 1194 08.47

4 229 167 1534 267 22437 2985 07.52

1 69 51 87 117 16859 635 26.55
Surface 2 287 131 1968 140 44547 2641 16.87

4 290 118 2040 165 67997 1980 34.34

1 252 58 2322 64 51698 554 93.32
Surfaces 2 361 152 2646 278 72078 2250 32.03

4 288 164 2203 272 73593 2897 25.40

gorithm 3.1. On the one hand, the standard optimization method is composed of the

standard BLS, see Section 3.3.1, and the standard linear solver with the Jacobi pre-

conditioner, see Section 3.4.1. On the other hand, the specific-purpose optimization

method is composed of the specific-purpose LS, see Section 3.3.2, and the specific-

purpose linear solver with the Jacobi/iLDLt(0) preconditioner switch, see Section

3.4.2.

The results of our numerical experiments allow comparing the specific-purpose

optimization method with the standard one, see Table 3.4. The non-linear and line-

search iterations and the matrix-vector products are reported for 2D meshes of poly-

nomial degree 1, 2, 4, and 8 and for 3D meshes of polynomial degree 1, 2, and 4.

We conclude that the specific-purpose optimization method significantly improves

the standard one. In particular, the total amount of matrix-vector products is re-

duced one order of magnitude. Meanwhile, the number of non-linear and line-search

iterations is reduced. As detailed in Sections 3.5.3 and 3.5.4, these reductions in the

number of linear and non-linear iterations arise from combining the specific-purpose
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inexact Newton solver and the specific-purpose line-search globalization. Moreover,

as detailed in Section 3.5.4, we observe again that, when augmenting the polynomial

degree for each tested case, the total number of matrix-vector products, non-linear

iterations, and line-search iterations increases.

3.5.6 Application: metric-aware curved high-order

optimization of an h-adapted mesh

To compare the standard and specific-purpose solvers in an adaptive application, we

optimize the distortion of an anisotropic mesh previously adapted to match a metric.

In practice, adapted meshes are obtained by combining local topological operations

that modify the mesh connectivity and local r-adaption operations that modify the

mesh coordinates (Alauzet and Loseille, 2016). Herein, we optimize the adapted mesh

with the standard and specific-purpose optimization methods.

Although we generate meshes adapted to a target metric with MMG (Dobrzynski,

2012), our goal is not to compare the distortion minimization with the MMG package.

Actually, we acknowledge MMG because it generates an initial straight-sided mesh

that matches the stretching and alignment of the target metric.

We consider the hexahedral domain Ω = [−0.5, 0.5]3 with the Plane metric pre-

sented in Ibanez et al. (2017)

M =
1

h2
m

 1 0 0

0 1 0

0 0 1/h(z)2

 ,

where the function h is presented in Equation (A.2) with stretching hmin = 0.01,

growth factor γ = 2(1 − hmin), and size hm = 0.1. Note that the stretching ratio of

this metric is similar to the one presented in Figure 3.3(d).

First we generate an initial adapted mesh, see Figure 3.6(a). Specifically, we

consider an isotropic linear tetrahedral mesh of size 0.01 with MATLAB (2017). We

equip such mesh with the target metric evaluated at the mesh vertices and we use

the MMG algorithm (Dobrzynski, 2012) to obtain an anisotropic mesh. This mesh

is composed of 11092 nodes and 57448 tetrahedra. We observe that the elements

lying in the anisotropy region are stretched and aligned matching the target metric.

In addition, we observe that far from the anisotropic region the elements are almost

isotropic and with an approximate size of hm = 0.1.
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(a) (b)

Figure 3.6: Linear tetrahedral meshes coupled with the Plane metric. (a) Initial
adapted mesh; and (b) the corresponding optimized mesh.

Table 3.5: Quality and Geometry Statistics of the initial adapted mesh and the
corresponding optimized mesh.

Measure Minimum Maximum Mean Standard deviation
Initial Optimized Initial Optimized Initial Optimized Initial Optimized

Shape 0.3565 0.3804 0.9970 0.9972 0.8380 0.8690 0.3079 0.2790
Length 0.2340 0.4211 1.875 1.6481 0.9544 0.9425 0.1814 0.1641
Area 0.1528 0.1806 1.8377 1.7901 0.7265 0.7165 0.1776 0.1591

Volume 0.0583 0.0819 1.7251 1.3557 0.4865 0.4865 0.1418 0.1317

Table 3.6: Non-linear iterations, line-search iterations, and matrix-vector products
for standard and specific-purpose optimization methods.

Non-linear iterations Line-search iterations Matrix-vector products
Standard Specific-purpose Standard Specific-purpose Standard Specific-purpose

7 7 0 0 1040 126

We obtain an optimal configuration, Figure 3.6(b), by minimizing the distortion

measure presented in Section 3.2.2. The total amount of degrees of freedom is 30072.

To compare both meshes we measure the element quality and geometry statistics,

see Table 3.5. The measures are: the elemental shape quality presented in Equation

(3.2), the lengths of the edges, the areas of the triangular faces, and the volumes of

the tetrahedra. For each measure the minimum is improved, and the maximum and

standard deviation are reduced.

We compare the specific-purpose optimization method with the standard one in

terms of the non-linear and line-search iterations and the matrix-vector products,
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see Table 3.6. From the results, we conclude that the specific-purpose optimization

method significantly improves the standard one. In particular, the total amount of

matrix-vector products is reduced almost one order of magnitude. Meanwhile, the

total amount of non-linear and line-search iterations stays unchanged. This is because

the initial mesh is near to the optimal one and hence, the descent direction of both

optimization methods is a faithful approximation of the Newton direction. That is,

since the direction of both optimization methods are similar, the same number of non-

linear iterations to converge are required. In addition, since the Newton direction has

step length equal to one, no line-search iterations are required, see Section 3.3.2.

3.6 Concluding remarks

We have presented a specific-purpose non-linear solver for curved high-order metric-

aware mesh optimization. To this end, the solver combines a specific-purpose line

search with a specific-purpose preconditioned Newton-CG solver with dynamic forcing

terms.

The proposed specific-purpose line-search globalization continues the step length

by ensuring sufficient decrease and progress. Compared with a standard backtracking

line search, it reduces the number of line-search iterations because it reuses the step

length. Meanwhile, the number of non-linear iterations remains in the same order of

magnitude, yet it tends to be smaller because the line search can enlarge the step

length.

Regarding the proposed specific-purpose preconditioned Newton-CG solver with

dynamic forcing terms, it reduces the total number of matrix-vector products by one

order of magnitude. It also reduces the number of non-linear iterations. Compared

with standard solvers, the proposed solver significantly improves the performance

indicators because it combines the advantages of the proposed forcing terms and

pre-conditioner.

When we combine both ingredients, we also conclude that the specific-purpose

non-linear solver reduces the total number of matrix-vector products by one order

of magnitude. Moreover, it also reduces the number of non-linear and line-search

iterations. Compared with standard solvers, all these iteration numbers are reduced

because it combines the advantages of the specific-purpose inexact Newton solver and

the specific-purpose line-search globalization.
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For the standard and the specific-purpose solvers, we observe that higher poly-

nomial degrees and stretching ratios lead to higher total numbers of matrix-vector

products, non-linear iterations, and line-search iterations. Still, these iteration num-

bers are smaller for the specific-purpose solver.
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Chapter 4

Combining high-order metric

interpolation and geometry

implicitization

4.1 Introduction

The capability to relocate mesh nodes without changing the mesh topology, referred

to as r-adaptivity, is a key ingredient in many adaptive PDE-based applications

(Yano and Darmofal, 2012; Loseille and Alauzet, 2011; Coupez et al., 2015). In

these applications, to improve the solution accuracy, an error indicator or estimator

determines the target stretching and alignment of the mesh. Then, to match these

target features, an r-adaption procedure modifies the whole mesh (global) (Huang

and Russell, 2011; Knupp, 2001) or a previously re-meshed cavity (local) (Alauzet

and Loseille, 2016; Gruau and Coupez, 2005; Frey and Alauzet, 2005).

In either case, r-adaptivity contributes to increasing the solution accuracy for

a fixed number of degrees of freedom supported on a straight-edged mesh (Coupez

et al., 2015; Huang and Russell, 2011; Alauzet and Loseille, 2016; Hecht, 1998; Coupez,

2011). However, straight-edged meshes might not be an efficient support in many ap-

plications. Especially in applications where additional straight-edged mesh elements

are artificially required to match highly curved solution features (Fidkowski and Dar-

mofal, 2011).
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To efficiently match curved solution features, many practitioners have recently

started to exploit curved high-order meshes. These meshes can be stretched and

aligned in a point-wise varying fashion through anisotropic procedures (Coupez,

2017), geodesic approaches for curved edges (Johnen et al., 2021; Zhang et al., 2018),

shock-tracking methods (Zahr and Persson, 2018; Zahr et al., 2020; Zahr and Pers-

son, 2020), and deformation analogies (Marcon et al., 2017, 2020). Alternatively, the

curved r-adaption can be driven, as for straight-edged elements (Huang and Russell,

2011; Knupp, 2001), by distortion measures. These measures are defined point-wise

and are aware of either a target deformation matrix (Dobrev et al., 2019) or a target

metric (Aparicio-Estrems et al., 2018).

In adaptivity applications, the target deformations and metrics are not known

a priori. These target fields are reconstructed a posteriori from the solution on the

last mesh. Specifically, this mesh supports the resulting discrete representation of

the target field. This discrete representation is key to interpolate the required field

values in the adaptive procedure. However, to also preserve the geometric accuracy,

the mesh adaption procedures have to be devised to simultaneously match the target

curved boundaries. Hence, to enable high-order adaptivity, we need the capability to

interpolate target fields on a high-order mesh while matching a target boundary.

4.1.1 Aim and contribution

Considering the previous issues, we aim to use Newton’s optimization for distortion-

based curved r-adaption to a discrete high-order metric field and a geometry model.

This chapter extends our previous work Aparicio-Estrems et al. (2022). In this ex-

tension, we also detail how to compatibly combine an optimization based r-adaption

with a valid-to-valid mesh curving approach. To this end, our contribution is to pro-

pose an implicit model representation that measures the deviations of the mesh to

the target geometry.

For the optimization based r-adaption, we need three existent ingredients. First,

to minimize the distortion, we use the specific-purpose solver in Chapter 3. Second, we

represent the metric field as a log-Euclidean high-order metric interpolation (Rochery

and Loseille, 2021) on a curved high-order mesh. Third, we locate physical points

in the curved background mesh similar to the approach in Dobrev et al. (2018). We

also need to extend to discrete metric fields a distortion-based curved r-adaption

framework (Aparicio-Estrems et al., 2018).
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To match the curved boundaries, we also need three existing ingredients. First,

a non-interpolative approach to match the target curved geometry (Ruiz-Gironés

et al., 2016, 2017). Second, an implicit CAD geometry representation method for

2D NURBS curves and a 3D NURBS surfaces (Upreti et al., 2014) or for embedded

NURBS entities (Laurent, 2014) such as 3D curves. Third, a series of conjuction

and trimming operations to assemble the implicit representations of the individual

entities (Upreti et al., 2014; Biswas and Shapiro, 2004).

To compatibly combine the optimization based r-adaption with the mesh curv-

ing, the main novelty is twofold. First, for the non-interpolative mesh curving ap-

proach, we propose a model implicitization (Upreti et al., 2014; Laurent, 2014; Biswas

and Shapiro, 2004). Second, we also provide the first and second-order derivatives

of the implicit representation of the model. As in Aparicio-Estrems et al. (2022),

we also provide the first and second derivatives in physical coordinates for the log-

Euclidean high-order metric interpolation. The model implicitation derivatives and

the metric interpolation derivatives are critical to use Newton’s method for distor-

tion minimization while targeting a curved geometry. This minimization leads to

unprecedented second-order optimization results for curved r-adaption for a discrete

high-order metric representation on a curved (straight-edged) mesh while targeting a

curved (straight-edged) geometry.

This chapter focuses on enabling Newton’s method for r-adaption, but it is focused

neither on r-adaption nor h-adaption cycles. Specifically, we detail how to optimize

the high-order mesh coordinates to match a target metric and a curved boundary.

Then, to verify the methodology and the corresponding derivatives, we optimize initial

isotropic and anisotropic straight-edged meshes. These results do not consider any

adaptivity cycles because we want to demonstrate if Newton’s method can be used.

The rest of the chapter is organized as follows. In Section 4.2, we overview the re-

lated work. In Section 4.3, we introduce the preliminaries on metric-aware measures

for high-order elements. In Section 4.4, we detail the high-order metric interpola-

tion and its derivatives. In Section 4.5, we propose an implicit representation for

NURBS models, and we obtain the first and second derivatives of this representation.

Moreover, we detail the objective function that accounts for the metric and geometry

deviations. In Section 4.6, we show Newton’s method results for different geometries,

meshes, and metrics. Finally, we present the concluding remarks.

99



4. Combining high-order metric interpolation and geometry
implicitization

4.2 Related work

Next, we overview the work related to matching a target discrete field and a target

geometry model. Regarding matching discrete fields, we overview works on target

deformations, target metrics, and discrete field representations. For matching geom-

etry models, the related work is about non-interpolative mesh curving, surface fitting

methods, and implicit geometry representations.

To match a deformation matrix, distortion optimization for curved r-adaption to

a discrete target field is detailed in Dobrev et al. (2019). The method is really well-

suited for simulation-driven r-adaption (Dobrev et al., 2018, 2020). It evaluates the

distortion in a physical point by interpolating the target matrix on a discrete field.

Although the derivatives of the target matrices are not zero, the method assumes they

are zero. Moreover, the second derivatives are also assumed to be zero. Since non-

null derivatives are assumed to be zero although the approach implements Newton’s

method, the curved r-adaption minimization corresponds to a quasi-Newton method.

To match a metric, distortion-based curved r-adaption to an analytic field can

be performed with Newton’s minimization (Chapter 3) The formulation for an an-

alytic metric is derived in Aparicio-Estrems et al. (2018), while a specific-purpose

globalization and a pre-conditioned Netwon-CG method are proposed in Chapter 3

to minimize the mesh distortion. Since the method deals with an analytic metric,

it does not specify the derivatives for a metric represented by a discrete high-order

field.

Regarding a discrete field representation, a convenient approach is to use a log-

Euclidean (Arsigny et al., 2006) high-order metric interpolation (Rochery and Loseille,

2021). This metric interpolation drives a cavity-based adaption approach, where the

remeshed cavities are improved by locally smoothing the curved quadratic edges. To

smooth these edges, the method optimizes the mid-node position. The optimization

only uses the first derivatives of the log-Euclidean metric interpolation in terms of

the curved edge coordinates. Accordingly, the method does not provide the first and

second derivatives of the discrete metric field in physical coordinates.

High-order mesh curving methods that approximate the target geometry in a non-

interpolative manner are presented in Ruiz-Gironés et al. (2016, 2017). Specifically, a

new methodology to optimize a curved high-order mesh in terms of both element qual-

ity and a distance-based geometric approximation is developed. For this, a penalty

method is proposed to solve the constrained minimization problem.
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Previous surface fitting methods based in field interpolation are presented in

Knupp et al. (2021). They are specially designed for dynamically changing geometry

according to a solution. For this, a background mesh is required to interpolate the

solution. Moreover, the resolution of the background mesh determines the precision

of the dynamic geometry. Hence, for CAD models, the background mesh resolution

controls the geometry accuracy.

In contrast to previous methods, implicit CAD geometry representation methods

provide a field for geometric approximation without using a background mesh (Upreti

et al., 2014; Laurent, 2014; Biswas and Shapiro, 2004). Specifically, one first computes

the implicit representation of each NURBS entity. This is the case of a 2D NURBS

curve and 3D NURBS surface (Upreti et al., 2014) or a generally embedded NURBS

entity (Laurent, 2014). Then, one applies convex-hull conjunction and normalization,

convex-hull trimming, and NURBS conjunction to assemble the representations of the

individual entities (Upreti et al., 2014; Biswas and Shapiro, 2004). Even if they are

not a full representation of the model they provide a useful tool for representing the

model in a entity-wise fashion.

4.3 Preliminaries: metric-aware measures for

high-order elements

In this section, we review the definition of the Jacobian-based quality measure for

high-order elements equipped with a metric, presented in Aparicio-Estrems et al.

(2018). To define and compute a Jacobian-based measure for simplices (Knupp,

2001), three elements are required: the master, the ideal, and the physical, see Figure

4.1 for the linear triangle case. The master (EM) is the element from which the iso-

parametric mapping is defined. The equilateral element
(
E4
)

represents the target

configuration in the isotropic case. The physical (EP ) is the element to be measured.

To summarize the results in Aparicio-Estrems et al. (2018), we present the expres-

sion of the metric distortion measure in terms of the equilateral element E4. First, we

need to compute a mapping from the master to the equilateral and physical elements,

denoted as φ4 and φP , respectively. By means of these mappings, we determine a

mapping between the equilateral and physical elements by the composition

φE : E4
φ−1
4−−→ EM φP−−→ EP .
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Figure 4.1: Mappings between the master, the ideal, and the physical elements in the
linear case.

As detailed in Aparicio-Estrems et al. (2018), we define the point-wise distortion

measure for a high-order element EP equipped with a point-wise metric M, at a point

y ∈ E4 as

NφE(y) =
tr
(
DφE(y)T M (φE(y)) DφE(y)

)
d
(

det
(
DφE(y)T M (φE(y)) DφE(y)

))1/d
, (4.1)

where the Jacobian of the map φE is given by

DφE(y) := DφP (φ−1
4 (y)) Dφ−1

4 (y).

Herein, DφP and Dφ4 denote the Jacobian of the physical and equilateral transfor-

mation, respectively. Specifically, the physical mapping can be expressed in terms of

the d-simplex shape functions Ni, that is

φP (ξ) =
n∑
i=1

Ni(ξ)xi,

where n =
(
d+p
p

)
is the number of nodes, ξ are the master coordinates, and xi denotes

the physical coordinates of the high-order nodes. In addition, the equilateral mapping

can be expressed in terms of the linear shape functions Ni, that is

φ4 (ξ) =
d+1∑
i=1

Ni(ξ)yi,

where yi are the coordinates of an equilateral d-simplex.

Note that N is a non-linear operator that transforms a mapping between the

equilateral and physical elements to a mapping from an point to a scalar. In this

work, for operators, we use the standard notation without parentheses.
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Note that the distortion measure is independent of the computation of the metric

M (φE(y)), either using an analytical or a discretized representation.

We regularize the determinant in the denominator of Equation (4.1) in order to

detect inverted elements (Branets and Garanzha, 2002; López et al., 2008; Escobar

et al., 2003; Gargallo-Peiró et al., 2015c). In particular, we define

σ0 =
1

2
(σ + |σ|),

where

σ = det (DφE(y))
√

det (M (φE(y))).

Then, we define the point-wise regularized distortion measure of a physical element

EP at a point y ∈ E4 as

N0φE(y) :=
tr(DφE(y)T M (φE(y)) DφE(y))

d σ
2/d
0

, (4.2)

where we introduce the sub-script 0 to distinguish the regularized operator from

the non-regularized one. In addition, we define the corresponding point-wise quality

measure

QφE(y) =
1

N0φE(y)
. (4.3)

Finally, we define the regularized elemental distortion by

η(EP ,M) :=

∫
E4
N0φE(y) dy∫
E4

1 dy
,

and its corresponding quality

q(EP ,M) =
1

η(EP ,M)

. (4.4)

We can improve the mesh configuration by means of relocating the nodes of the

mesh according to a given distortion measure (Chapter 3). In Aparicio-Estrems et al.

(2018) it is proposed an optimization of the distortion (quality) of a meshM equipped

with a target metric M that describes the desired alignment and stretching of the

mesh elements. To optimize a given mesh M, first it is defined the mesh distortion

by

F (M) :=
∑

EP∈M

∫
E4

(N0φE(y))2 dy, (4.5)
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(a) (b) (c)

Figure 4.2: Point localization: (a) physical mesh, (b) background mesh, and (c) a
point p in the corresponding physical and background element (bold edges).

which allows to pose the following global minimization problem

M∗ := argminMF (M) , (4.6)

to improve the mesh configuration according to F . In particular, herein, the degrees

of freedom of the minimization problem in Equation (4.6) correspond to the spatial

coordinates of the mesh nodes.

To evaluate the distortion minimization formulation presented in Equation (4.6),

an input metric is required. The reviewed r-adaption procedure has been applied

for analytic metrics in Aparicio-Estrems et al. (2018). In the following section, we

detail the interpolation process that is required to extend the presented framework

to dicrete metrics.

4.4 Log-Euclidean metric interpolation

In this section, we formulate a metric interpolation process that allows both the

distortion evaluation, Equation (4.2), and its optimization, Equation (4.6). In Sec-

tion 4.4.1 we detail the log-Euclidean metric interpolation for linear and high-order

elements first presented in Arsigny et al. (2006) and Rochery and Loseille (2021);

Ekelschot et al. (2019), respectively. Then, in Section 4.4.2 we present, as a contri-

bution of this work, the gradient and the Hessian of the log-Euclidean interpolation.

Their computation will be used for the distortion minimization problem.

4.4.1 Metric Interpolation

In this section, we introduce the definition of the log-Euclidean metric interpolation

at the background mesh. First, we introduce the required notation of the mappings
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Figure 4.3: Mappings between the master and the physical elements (below) and
their background analogs (above).

and their parameters with the corresponding diagram. Secondly, we detail the inter-

polation procedure.

To evaluate the metric-aware distortion measure in Equation (4.2) featuring dis-

crete metrics, two meshes are required. On the one hand, the physical mesh M,

Figure 4.2(a), is the domain where the elements are deformed in order to solve the

problem presented in Equation (4.6). On the other hand, the background mesh M̂,

Figure 4.2(b), is a mesh that stores discrete metric values as a nodal field.

To evaluate the point-wise metric-aware distortion measure, we need to compute

the interpolation of the point-wise metric values. For this, the localization between

both meshes is required (Dobrev et al., 2018; Mittal et al., 2019; Sitaraman et al.,

2010). In particular, a physical point p ∈ M is located at the background mesh M̂
where the metric is interpolated, see Figure 4.2(c). In what follows, we introduce the

elements and the mappings required for this localization procedure.

We integrate the distortion measure presented in Equation (4.2) over the equilat-

eral element via the master element EM . In particular, for the metric evaluation, we

map via φP , each integration point ξ ∈ EM to a point p of the physical element EP ,

see Figure 4.3. To compute the metric at p we need to locate p in the background

mesh, where the values of the metric are stored, see the intersection between EP and

the background element EP̂ in Figure 4.3. In addition, Figure 4.3 shows the proce-

dure to obtain the coordinate to interpolate the metric from the quadrature points.
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In particular, we map a reference point ξ ∈ EM to a physical point p = φP (ξ) ∈ EP ,

which we identify it with a point p̂ ∈ EP̂ of the background mesh and its preimage

is the background reference point ξ̂ = φP̂
−1 (p̂) ∈ EM̂ .

Given a physical point p, we find it convenient to denote by ψ any mapping from

a background element containing p that provides the coordinates in the background

master element EM̂ . Using this notation, we understand that any projection of a

physical point p onto a point ξ̂ of the background master element EM̂ corresponds

to the evaluation of the non-linear function ξ̂ = ψ(p).

To evaluate this non-linear function, we exploit that the expression of ψ|EP , de-

fined in the intersection of a physical element EP and a fixed background element

EP̂ , is given by

ψ|EP : EP ∩ EP̂ → EM̂

p 7→ φ−1

P̂
(p) .

(4.7)

Specifically, we solve the non-linear inverse expression in the image term, Equation

(4.7), by applying Newton’s minimization to the squared distance. That is, as in

Section 2.3 of Mittal et al. (2019), we solve

ξ̂ = argminζ̂

∣∣∣∣∣∣∣∣φP̂

(
ζ̂
)
− p

∣∣∣∣∣∣∣∣2.
The result is a numerical approximation of the point coordinates in the background

master element. An alternative approach (Dobrev et al., 2018) is to seek the zeros of

the vector equation

φP̂

(
ξ̂
)
− p = 0.

Once the background master coordinates associated to a given physical point have

been computed, it is necessary to interpolate the metric supported by the background

mesh at the corresponding master coordinate. To do so, we use the log-Euclidean

interpolation proposed in Arsigny et al. (2006); Rochery and Loseille (2021):

M
(
N̂
)

:= exp
(
L(N̂)

)
, L(N̂) :=

n̂∑
j=1

N̂j log M̂j, (4.8)

where for the j-th node of the master element EM̂ , M̂j, and N̂j are the corresponding

metric value and shape function, respectively. In addition, N̂ denotes all the shape

functions, n̂ =
(
d+p̂
p̂

)
is the number of nodes, and where p̂ is the interpolation degree
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which corresponds to the polynomial degree of the master element EM̂ . Finally,

M(N̂) is characterized by the eigenvalue-based matrix exponential function

M
(
N̂
)

= U exp D UT, (4.9)

where D, U are given from the eigenvalue decomposition of the matrix L(N̂) =:

U D UT. Finally, for each physical point p the metric interpolation is given by

M
(
N̂ (ψ (p))

)
.

4.4.2 Gradient and Hessian

This section provides the expressions for the gradient and Hessian of the metric

interpolation over a background mesh in terms of the physical coordinates. For this,

we detail first the case for the metric interpolation at a single element and then for

the background mesh. In particular, our approach uses the gradient and Hessian of

the eigenvalue decomposition presented in Andrew et al. (1993).

To compute the derivatives of the metric M we first differentiate the eigenvalue-

based exponential matrix function presented in Equation (4.9) and then we differen-

tiate the L function presented in Equation (4.8). By denoting xj the coordinates of

p and ∂j := ∂
∂xj

, ∂jk := ∂j∂k = ∂
∂xj

∂
∂xk

the partial derivatives in terms of the physical

coordinates of p, we can compute the spatial derivatives of the metric interpolation

of Equation (4.8). In particular, the first-order derivatives are given by

∂jM(N̂) = ∂j exp L(N̂) = ∂j
(
U exp D UT

)
=

(∂jU) exp D UT + U (∂j exp D) UT + U exp D
(
∂jU

T
)
,

and the second-order derivatives are given by

∂jkM(N̂) = ∂jk exp L(N̂) = ∂jk
(
U exp D UT

)
=

(∂jkU) exp D UT + ∂kU (∂j exp D) UT + ∂kU exp D
(
∂jU

T
)

+

(∂jU) ∂k exp D UT + U (∂jk exp D) UT + U ∂k exp D
(
∂jU

T
)

+

(∂jU) exp D ∂kU
T + U (∂j exp D) ∂kU

T + U exp D
(
∂jkU

T
)
.

Note that, since the matrix D is diagonal, we have

∂j exp D = exp (D) ∂jD,

∂jk exp D = exp (D) (∂kD ∂jD + ∂jkD) .
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The presented first and second-order derivatives of the metric require the first

and second-order spatial derivatives of the eigenvalue decomposition (eigenvalues and

eigenvectors), respectively. Their computation is detailed in Appendix B.1.

In addition, the derivatives of the eigenvalues and eigenvectors depend on the

derivatives of the L function presented in Equation (4.8). In particular, they are

given by

∇L =
∑
j

(
log M̂j

)
∇N̂j, ∇2L =

∑
j

(
log M̂j

)
∇2N̂j,

where ∇ is the gradient with respect to physical coordinates. Therefore, to differen-

tiate the metric interpolation M
(
N̂ (ψ (p))

)
at a physical point p, the derivatives of

the map ψ presented in Equation (4.7) and of the shape functions N̂ are required.

The derivatives of ψ|EP are given, at each patch EP ∩ EP̂ , by the ones of the

inverse of the physical map φ−1

P̂
corresponding to the background mesh. To obtain

the derivatives of the shape functions N̂ in terms of the physical coordinates p, we

consider the chain rule for the composition N̂ ◦ ψ|EP and the restriction of the map

ψ|EP at each patch EP ∩ EP̂ . We finally obtain the gradient

∇N̂ = ∇ξ̂N̂ ∇φ
−1

P̂
, (4.10)

where ∇ξ̂ is the gradient with respect to ξ̂ coordinates, and the Hessian

∇2N̂j =
(
∇φ−1

P̂

)T

∇2
ξ̂
N̂j ∇φ−1

P̂
+∇ξ̂N̂j ∇2φ−1

P̂
, (4.11)

where

∇φ−1

P̂
=

(
∇ξ̂φP̂

)−1

,

∇2φ−1

P̂
= ∇

((
∇ξ̂φP̂

)−1
)

= −∇φ−1

P̂
∇2

ξ̂
φP̂ ∇φ−1

P̂
.

4.5 Implicit CAD representation: metric and

geometry aware optimization

Herein, we propose a high-order mesh curving method by an implicitization that

measures the geometric deviation. First, in Section 4.5.1, we present a model im-

plicitization for the mesh curving process. Then, in Section 4.5.2, we detail the first

and second-order derivatives for the implicit representation. Finally, in Section 4.5.3,

we consider the penalty method to solve the corresponding constrained second-order

minimization process for the curving problem.
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4.5.1 Implicit CAD representation

In this section, we present an entity-wise CAD representation for curves in 2D, and

for curves, and surfaces in 3D. For this, we consider the implicit representation of

embedded NURBS (Laurent, 2014), and the Boolean algebraic operations for implicit

representations (Upreti et al., 2014; Biswas and Shapiro, 2004). Then, we assemble

these representations to obtain an implicit representation of a CAD model. Finally,

we detail the algorithm of the considered methodology.

We consider a CAD model Λ composed of a sequence of NURBS entities. These

NURBS entities can be decomposed into a sequence of Bézier patches Γi, i = 1, ..., n.

In particular, we describe a d-dimensional Bézier patch Γ ⊂ RD embedded in a D-

dimensional space in terms of a parameterization

ϕΓ : [0, 1]d → RD, ϕΓ (u) ∈ Γ, u ∈ [0, 1]d.

In addition, the implicit representation of Γ can be obtained as in Laurent (2014)

γΓ : RD → R, γΓ (x) = 0 if and only if x ∈ Γ.

Our objective is to obtain a representation γΛ of the model Λ that is expressed

in terms of the representations γΓi
of the patches Γi. To combine these implicit

representations we use algebraic Boolean operations between real-valued functions

(Biswas and Shapiro, 2004).

In Figure 4.4, we show a 2D and a 3D model. They are mapped via the Bézier

parameterizations ϕΓi
and their level-sets are represented via the implicit function

γΛ. The level-sets are illustrated in linear and logarithmic scaling. As we observe,

the functions are numerically zero at the model. In addition, they smoothly increase

far from the model region.

The implicit representation of a CAD model requires a knot preprocessing of the

NURBS entities. Specifically, two knot insertion procedures are required (Upreti

et al., 2014). The first knot insertion, is used to decompose the NURBS entity into

Bézier patches. The second one, is used to avoid auto-intersections for curves of degree

p ≥ 3. In this case, we perform an auto-intersection detection process. Note that the

auto-intersection points are given by the equation ‖∇γΓ‖ = 0. Then, we detect the

auto-intersections by minimizing the quantity ‖∇γΓ‖2 via a one-dimensional search

bisection over the parametric line.

To trim the implicit representation in its corresponding domain, we consider the

convex-hull of the Bézier patch control points. Specifically, for degenerate cases we
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Figure 4.4: Implicit representation of (first row) a 2D CAD geometry, and (second
row) a 3D CAD geometry. CAD model, and implicit representation in linear, and
logarithmic scale in columns.

extrude the set of control points. To compute the extrusion directions we perform

a null space computation via the singular value decomposition. This defines a valid

convex-hull. We apply this procedure to the degenerate cases given by 2D segments,

3D planes, 3D curves, and 3D cylinders. Furthermore, we also apply this procedure

to approximately degenerate cases such as almost flat curves and surfaces.

For each Bézier patch Γ, we consider its implicit representation γ defined in the

projective space P
(
RD
)
. In particular, the patch control points determine a vector

of matrices that is, M = (Mx,My,Mz,Mw) in 3D, corresponding to the projective

coordinates x, y, z, and w. Then, we define the implicit representation at a point

x ∈ P
(
RD
)

as in Laurent (2014)

γ (x) := det
(
M (x) M (x)T

)
, M (x) := M x. (4.12)

For example, in 3D we set x = (x, y, z, 1) and hence, M x = Mxx + Myy + Mzz +

Mw. Finally, we normalize the functions γ (x) to ensure that they match during

the assembly procedure (Upreti et al., 2014). Specifically, we define the normalized

function γ̂ by

γ̂ :=
γ

‖∇γ‖
. (4.13)

110



4.5. Implicit CAD representation: metric and geometry aware optimization

The implicit function of a Bézier patch described in Equation (4.13) extends over

an infinite parametric space. For this reason, it is standard to trim the patch via a

convex hull operation to ensure that the function does not extend beyond the patch

limits (Upreti et al., 2014; Biswas and Shapiro, 2004). Specifically, we first compute

CH (Γ), the implicit representation of the convex hull of the Bézier patch Γ. Then,

to obtain an implicit representation of Γ trimmed by CH (Γ), we use a trimming

function, denoted by trim, proposed in Biswas and Shapiro (2004)

γ
Γ

:= γ̂CH(Γ) trim γ̂Γ =

√√√√√γ̂Γ
2 +


√
γ̂Γ

4 + γ̂CH(Γ)
2 − γ̂CH(Γ)

2

2

, (4.14)

where γΓ denotes the representation of the Bézier patch Γ, see Equation (4.12). The

trimming operation of Equation (4.14) is twice differentiable at all points where γ̂Γ 6=
0. Here, the function γ

Γ
is an implicit representation of the Bézier patch Γ in its

parametric domain Dom Γ determined by the NURBS convex-hull CH (Γ).

For a given model Λ = {Γ1,Γ2, ...,Γn}, its implicitization γΛ is obtained via the r-

conjunction ∧ of the implicitizations γ
Γi

of the Bézier patches Γi (Upreti et al., 2014).

In particular, for each Bézier patch Γi, we recursively update the model representation

as follows

γΛ ← γΛ ∧ γΓi
:= γΛ + γ

Γ
−
√
γΛ

2 + γ
Γ

2. (4.15)

To obtain the convex-hull representation of a Bézier patch Γ, CH (Γ), we apply

r-conjunction to the hyperplane functions of the convex hull entities. Specifically,

for each hyperplane entity H of the convex hull CH (Γ) we consider its unit normal

component n and its affine term b. Then, the implicit representation of H is given by

γH (x) := n · x + b. (4.16)

In our case, the sign of the representation γH is chosen such that γH < 0 outside the

convex region enclosed by CH (Γ) and γH ≥ 0 otherwise. Following, we apply the

r-conjunction operation for each hyperplane H to obtain the convex-hull representa-

tion γCH(Γ), see Equation (4.15). Finally, we obtain its normalized version γ̂CH(Γ) by

applying Equation (4.13).

In Algorithm 4.1, we describe how to obtain the implicit representation γΛ of a

model Λ. In Line 2, we compute for each Bézier patch Γi of Λ its implicit function γΓi

and we normalize it, see Equations (4.12) and (4.13). Then, in Line 3, we consider the
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Algorithm 4.1 Implicitization

Input: Λ := {Γ1, Γ2, ..., Γn}
Output: γΛ

1: for i = 1, ..., n do
2: γ̂Γi

= normalized implicitization of Γi
3: γ̂CH(Γi)

= normalized implicitization of the convex hull of Γi, CH (Γi)
4: γ

Γi
= trimming of γ̂Γi

with γ̂CH(Γi)

5: if i = 1 then
6: γΛ ← γ

Γ1

7: else
8: γΛ ← γΛ ∧ γΓi

r-conjunction
9: end if
10: end for

convex hull property of the Bézier control points for trimming (Upreti et al., 2014).

We first obtain an implicit representation of the convex hull γCH(Γi)
by applying a

pair-wise r-conjunction to the hyperplane functions, see Equation (4.16). Then, we

compute its normalized representation γ̂CH(Γi)
, see Equation (4.13). In Line 4, we

trim the Bézier patch representation γ̂Γi
in terms of γ̂CH(Γi)

, see Equation (4.14). The

obtained representation is denoted by γ
Γi

. Finally, in Lines 5-9, we obtain the implicit

representation of the model Λ by pair-wise r-conjunction of γ
Γi

, see Equation (4.15).

4.5.2 Gradient and Hessian

Next, we present the gradient and Hessian of the geometry implicitization. In Sec-

tion 4.5.1, we describe the geometry implicitization in terms of the trimming and

r-conjunction operations of the convex-hull and Bézier patch normalized representa-

tions. Accordingly, we describe in this section the derivatives of the trimming and

r-conjunction operations. For completeness, we detail in Appendix B.2 the derivatives

of the convex-hull and Bézier patch normalized representations.

As detailed in Section 4.5.1, we perform an r-conjunction operation to obtain

the model representation. We compute the derivatives in a straight-forward manner.

Lets denote by ∇f ∗∇g the matrix with coefficients ∂jf∂kg for j, k = 1, ..., d. Then,

the derivatives of the r-conjunction, presented in Equation (4.15), are given by

∇ f ∧ g = ∇f +∇g −∇
√
f 2 + g2, (4.17)
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and

∇2 f ∧ g = ∇2f +∇2g −∇2
√
f 2 + g2, (4.18)

where

∇
√
f 2 + g2 =

f∇f + g∇g√
f 2 + g2

, (4.19)

and

∇2
√
f 2 + g2 =

∇f ∗ ∇f + f∇2f +∇g ∗ ∇g + g∇2g√
f 2 + g2

−

∇
√
f 2 + g2 ∗ ∇

√
f 2 + g2√

f 2 + g2
.

(4.20)

Following Equation (4.15), we consider that f := γΛ and g := γΓ.

Similarly to the r-conjunction, we compute the derivatives of the trimming op-

eration, presented in Equation (4.14). We simplify the computations by noticing

that

h̃ := f trim h =
√
f 2 + g2 for g :=

√
h4 + f 2 − f

2
,

where, following Equation (4.14), we consider f := γ̂CH(Γ), h := γ̂Γ, and h̃ := γΓ.

Then, to obtain the derivatives of the trimming operation, we differentiate the term√
f 2 + g2, see Equations (4.19) and (4.20). In this case, the derivatives of g can be

computed as follows

∇g =
1

2

(
2h3∇h+ f∇f√

h4 + f 2
−∇f

)
, (4.21)

and

∇2g =
1

2

(
2h2 (h∇2h+ 3∇h ∗ ∇h) + f∇2f +∇f ∗ ∇f√

h4 + f 2
−

∇
√
h4 + f 2 ∗ ∇

√
h4 + f 2√

h4 + f 2
−∇2f

)
,

where the term ∇
√
h4 + f 2 can be computed from Equation (4.19) for the functions

f and h2.

As we observe, the derivatives of both the r-conjunction and the trimming opera-

tion require the derivatives of the convex-hull and Bézier patch normalized represen-

tations. For completeness, we detail these last derivatives in Appendix B.2.
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4.5.3 Minimizing metric and geometry deviations

In this section, we consider a modification of the methodology to generate curved

high-order meshes featuring optimal mesh quality and geometric accuracy presented

in Ruiz-Gironés et al. (2016); Ruiz-Gironés and Roca (2022). This technique combines

a distortion measure and a geometric L2-disparity measure into a single objective

function. While the element distortion term takes into account the mesh quality,

the L2-disparity term takes into account the geometric error introduced by the mesh

approximation to the target geometry. Herein, the target geometry is an implicit

representation.

Our input data is a CAD model, Λ, composed of several geometric entities in such

manner that

Λ =
n⋃
k=1

Λk,

where each geometric entity is composed of sub-entities. These sub-entities are curves

in 2D, and curves and surfaces in 3D. In 3D, we consider that the curves are embedded

directly in the containing space.

In our representation, we consider that the curves are the image of a segment.

Moreover, we consider that the surfaces are the image of a rectangular region. For

the 3D cases, we consider the implicitization of the curves and surfaces. In this

manner, we can allow the inner curve (surface) nodes to target the implicitization of

the corresponding curve (surface).

In what follows, we propose an entity-wise implicit representation of the CAD

model Λ. We use it to measure the geometric deviation between the mesh and the

model. In particular, for each geometric entity Λk we consider the implicit represen-

tation, see Section 4.5. This geometric entity is approximated by a set of boundary

mesh entities, denoted by ∂M (Λk). Instead of measuring the geometric error, herein

we account from the geometric deviation through the average of the square of the

level set value. This term is zero when on top of the target CAD entity, and the

square ensures deriviability at the zero-level set. Specifically, this deviation measure

is integrated over the candidate boundary mesh entities as follows

G (∂M (Λk)) :=

∫
∂M(Λk)

γ2. (4.22)

Note that, the model representation γΛk
is not differentiable at the zero level-set. By

considering the squared function γΛk
2 we avoid the derivative singularity.
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Our objective is to determine an optimal physical mesh, M, in terms of mesh

quality and geometric deviation. First, the mesh quality deviation term, distortion,

is presented in Section 4.3. Second, we consider Equation (4.22) to take into account

the geometric deviation. Finally, we define the functional for the mesh quality and

the geometric deviation

H (M;λ) := F (M) + λG (∂M) , (4.23)

where

G (∂M) :=
n∑
k=1

G (∂M (Λk)) ,

and where λ corresponds to the penalty parameter. This parameter λ can be chosen

heuristically or with an automatic procedure (Ruiz-Gironés and Roca, 2022).

To deal with corners and geometric edges, we distinguish between nodes targeting

points or curves of the geometry. For points, we associate the corresponding node

with the incident curves. Moreover, for this node, the objective function accounts

for the measure of the distance to all the incident curves. Thus, the optimal node is

close to the target point because it is close to all the incident curves. For curves, we

associate the corresponding nodes with the curve and the incident surfaces. Moreover,

for these nodes, the objective function accounts for the measure of the distance to

the curve and the two incident surfaces. Thus, the optimal nodes are close to the

target curve and the two incident surfaces.

In Algorithm 4.2, we outline the structure of the distortion minimization. The

algorithm inputs are: a CAD model Λ, a physical mesh M, a background mesh M̂
equipped with a discrete metric M̂, a residual tolerance ε, and a penalty parameter

λ. The output is an optimized physical mesh M∗ with the same connectivity of M
and matching the metric M̂ and the curved boundary Λ. To outline the algorithm,

we assign variables, and we declare the corresponding functions and their derivatives

in terms of previously defined functions and derivatives. We recall that, the imple-

mentation details of the values and derivatives of the log-Euclidean interpolation M

and the implicitation γ are detailed in Section 4.4 and Section 4.5, respectively. Note

that the derivatives of F and G depend on the corresponding derivatives of M and

γ, respectively.

Algorithm 4.2 proceeds as follows. First, we assign the volume and boundary mesh

coordinates to X and dX, respectively. From these coordinates, we declare the Log-

Euclidean interpolation of the discrete metric M̂ and its derivatives, ∇M̂ and ∇2M̂,
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Algorithm 4.2 Distortion minimization

Input: Λ, M, M̂, M̂, ε, λ
Output: M∗

1: X← coordinates(M)
2: ∂X← coordinates(∂M)

3: M := M
(
M̂, M̂,X

)
. Section 4.4.1

4: ∇M := ∇M
(
M̂, M̂,X

)
; ∇2M := ∇2M

(
M̂, M̂,X

)
. Section 4.4.2

5: γ := γ (Λ, ∂X) . Section 4.5.1
6: ∇γ := ∇γ (Λ, ∂X); ∇2γ := ∇2γ (Λ, ∂X) . Section 4.5.2
7: F := F (X,M); . Section 4.3, Equation (4.5)
8: ∇F := ∇F (X,M,∇M); ∇2F := ∇2F (X,M,∇M,∇2M)
9: G := G (∂X, γ); . Section 4.5, Equation (4.22)
10: ∇G := ∇G (∂X, γ,∇γ); ∇2G := ∇2G (∂X, γ,∇γ,∇2γ)
11: H ← F + λG . Section 4.5, Equation (4.23)
12: X∗ ← Non-linearSolver (H,∇H,∇2H,X, ε) . Section 4.3, Equation (4.6)
13: M∗ ← update coordinates of M with X∗

see Section 4.4. In addition, from the CAD model Λ, we declare the implicitization

γ and its derivatives, ∇γ and ∇2γ, in terms of dX, see Section 4.5. Then, we declare

the distortion functional F and the boundary functional G. For these functionals, we

also declare the dependency of their derivatives in terms of the values and derivatives

of the metric M interpolation and the geometry implicitation γ. These declarations

allow assigning the objective function H according to the functionals, F and G, and

the penalty parameter λ, see Equation (4.23). Finally, we call a second-order non-

linear solver to minimize the objective function up to a residual tolerance ε. This

results in an adapted meshM∗ with coordinates X∗ and with the same connectivity

as M.

4.6 Results

In this section, we present a 2D and a 3D example to illustrate the applicability of

our distortion minimization framework for curved r-adaption to a high-order metric

interpolation while preserving the implicit representation of the boundary. First, we

generate a background mesh M̂ and we evaluate the analytical metric M at the

background mesh nodes. Second, we generate an initial physical mesh M and we

measure its distortion (quality) by interpolating the metric. Then, by relocating the
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nodes, we minimize the mesh distortion problem presented in Equation (4.6) using

the framework presented in this work. Moreover, in the last examples, we consider

a boundary term that takes into account the geometric deviation. We relocate the

nodes to minimize the distortion measure while preserving the curved features of the

boundary.

To summarize the results, we present a statistics table for the element quality

of Equation (4.4), and the figures for the initial and optimized meshes. Specifically,

we show the minimum quality, the maximum quality, the mean quality, and the

standard deviation of the initial and optimized meshes. We highlight that in all cases,

the optimized mesh increases the minimum element quality and it does not include

any inverted element. In addition, the meshes resulting after the optimization are

composed of elements aligned and stretched to match the target metric tensor. In

all figures, the meshes are colored according to the point-wise quality presented in

Equation (4.3).

Because our goal is to optimize the mesh distortion using the detailed deriva-

tives, instead of including mathematical proofs of mesh validity, we detail how we

numerically enforce the positiveness of the element Jacobians. Specifically, we use a

numerical valid-to-valid approach that uses four ingredients. First, because we want

numerically valid results, we enforce mesh validity on the integration points. Second,

to initialize the optimization, we start from a numerically valid mesh. Third, to pe-

nalize inverted elements, we modify the point-wise distortion, Equation (4.3), to be

infinity for non-positive Jacobians. Specifically, we regularize the element Jacobians

to be zero for non-positive Jacobians, so their reciprocals are infinite. Note that these

reciprocals appear in the distortion expression, and thus, they determine the infinite

distortion value. Fourth, to enforce numerically valid mesh displacements, we equip

Newton’s method with a backtracking line-search. Specifically, if the mesh optimiza-

tion update is invalid in any integration point, the objective function, Equation (4.6),

is infinite. In that case, the step is divided by two until it leads to a valid mesh

update.

As a proof of concept, a mesh optimizer has been developed in Julia 1.6.2 (Bezan-

son et al., 2017). For this, we use the following external packages: Arpack v0.5.0,

ILUZero v0.1.0, and TensorOperations v3.1.0. In addition, we use the MATLAB PDE

Toolbox (MATLAB, 2017) to generate the initial isotropic linear unstructured 2D and

3D meshes (the structured meshes are generated by subdivision), and the MMG al-
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gorithm (Dobrzynski, 2012) to generate the initial anisotropic linear unstructured 2D

and 3D meshes. To construct the geometric models, we use the FreeCAD software

(Riegel et al., 2016). Finally, we use the Quickhull (Qhull) algorithm (Barber et al.,

1996) for the convex-hull computations required in the geometric model’s impliciti-

zation, see Section 4.5.

The Julia prototyping code is sequential, it corresponds to the implementation

of the method presented in this chapter and the one presented in Chapter 3. In

all the examples, the optimization corresponds to finding a minimum of a nonlinear

unconstrained multi-variable function. In particular, the mesh optimizer uses an

unconstrained line-search globalization with an iterative preconditioned conjugate

gradients linear solver. The stopping condition is set to reach an absolute root mean

square residual, defined as
‖∇f(x)‖`2√

n
for x ∈ Rn, smaller than 10−4 or a length-step

smaller than 10−4. Each optimization process has been performed in a node featuring

two Intel Xeon Platinum 8160 CPU with 24 cores, each at 2.10 GHz, and 96 GB of

RAM memory.

Following, we first present the target domains to be meshed, and the considered

metrics on the domain, Section 4.6.1. In Section 4.6.2, we present the optimization

results for a quadrilateral and a hexahedral domain. In Section 4.6.3, we compare

the proposed discrete based-interpolation procedure with the analytical one from

Aparicio-Estrems et al. (2018, 2019, 2021). Finally, in Sections 4.6.4 and 4.6.5, we

show the application of the discrete metric approach to optimize an anisotropic mesh

adapted to a given metric generated by the MMG algorithm. In particular, in Section

4.6.5, we illustrate that our mesh adaption method based in the metric interpolation

approach is compatible with curved boundaries.

4.6.1 Domains and metrics

We consider the quadrilateral domain Ω = [−0.5, 0.5]2 for the two-dimensional ex-

amples and the hexahedral domain Ω = [−0.5, 0.5]3 for the three-dimensional ones.

Each domain is equipped with a metric matching a boundary layer. In particular, our

target metric M is characterized by a boundary layer metric with a diagonal matrix

D and a deformation map ϕ by the following expression

M = ∇ϕT D ∇ϕ. (4.24)
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In what follows, we first detail the boundary layer metric D and then the deformation

map ϕ.

The boundary layer aligns with the x-axis (xy-plane) in the 2D case (3D case).

It determines a constant unit element size along the x-direction (xy-directions), and

a non-constant element size along the y-direction (z-direction). This vertical element

size grows linearly with the distance to the x-axis (xy-plane), with a factor α = 2,

and starts with the minimal value hmin = 0.01 (hmin = 0.02). Thus, the stretching

ratio blends from 1 : 100 to 1 : 1 (from 1 : 50 to 1 : 1) between y = −0.5 and y = 0.5

(between z = −0.5 and z = 0.5). We define the metric for the 2D case as:

D :=

(
1 0

0 1/h(y)2

)
(4.25)

where the function h is defined by

h(x) := hmin + α|x|.

Similarly, the metric for the 3D case is

D :=

 1 0 0

0 1 0

0 0 1/h(z)2

 . (4.26)

The deformation map ϕ in Equation (4.24) aligns the stretching of D according

to a given curve in the 2D examples and at a given surface in the 3D examples. In

the 2D case, we define the map ϕ by

ϕ(x, y) =

(
x,

10y − cos(2πx)√
100 + 4π2

)
,

and, in the 3D case by

ϕ(x, y, z) =

(
x, y,

10z − cos(2πx) cos(2πy)√
100 + 8π2

)
.

Figure 4.5 shows the anisotropic quotient (Loseille and Löhner, 2010) of the metric

presented in Equations (4.25) and (4.26). Specifically, the anisotropic quotient of a

metric tensor M ∈ Rd×d is given by

quo = max
i=1,...,d

√
det (M)

λdi
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Figure 4.5: Anisotropic quotient values in logarithmic scale of the target metrics:
(top) 2D case; (bottom left) boundaries of the 3D case; and (bottom right) solid slice
of the 3D case.

where λi, i = 1, ..., d are the eigenvalues of M. The considered metric M attains the

highest level of anisotropy, close to the curve described by the points (x, y) ∈ Ω such

that ϕ(x, y) = (x, 0) in 2D, and close the surface described by the points (x, y, z) ∈ Ω

such that ϕ(x, y, z) = (x, y, 0) in 3D.

4.6.2 Distortion minimization: initial isotropic

straight-edged meshes

In this example, we present the optimization results for initially isotropic meshes on

the domain equipped with the metrics presented in Section 4.6.1. We describe first

the initial meshes M together with the background meshes M̂ where the metric is

interpolated. Next, we present the optimized meshesM∗ and to conclude, we present

the results obtained from the optimization process. Herein, both the background and

physical meshes are meshes of the same polynomial degree.

The initial meshes M are of polynomial degree 1, 2, and 4. The three meshes

feature approximately the same number of nodes and they have approximately the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.6: Point-wise distortion for triangular meshes of polynomial degree 1, 2, and
4 in columns. Initial straight-sided isotropic meshes, optimized meshes with discrete
metric, and optimized meshes with analytic metric in rows.

same resolution over the domain. In particular, in 2D the three initial meshes are

respectively composed of 312, 321, and 337 nodes and 558, 144, and 38 triangles,

see Figures 4.6(a), 4.6(b), and 4.6(c). In 3D, they are respectively composed of

2 356, 2 362, and 2 373 nodes and 11 699, 1 464, and 184 tetrahedra. Figures 4.7(a),

4.7(b), 4.7(c), and 4.8(a), 4.8(b), 4.8(c) show the clipped 3D meshes and the mesh

boundary, respectively. The meshes are colored according to the point-wise stretching

and alignment quality measure, presented in Equation (4.3). Points in blue color have

low quality and points with red color have high quality. As we observe, the elements

lying in the region of highest stretching ratio have less quality than the elements lying

in the isotropic region.
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(a) (b) (c)

(d) (e) (f)

Figure 4.7: Clipped tetrahedral meshes of polynomial degree 1, 2, and 4 in columns.
Initial straight-sided isotropic meshes and optimized meshes from initial meshes in
rows.

We equip each mesh with the metric presented in Equation (4.24). We obtain

the metric values from the log-Euclidean interpolation method presented in Section

4.4. In particular, we interpolate the metrics from a background mesh M̂. The

background meshes are of polynomial degree 1, 2, and 4 according to the polynomial

degree of the initial meshes M. We impose the three background meshes to feature

almost the same number of nodes and to have almost the same resolution over the

domain, hmin/2. In particular, the resolution of the 2D background meshes is hmin/2 =

0.005. They are composed of 65 170, 64 329, and 62 761 nodes and 129 318, 31 910, and

7 782 triangles. The resolution of the 3D background meshes is hmin/2 = 0.01. They

are composed of 1 773 415, 1 798 531, and 1 837 851 nodes and 10 438 221, 1 319 008,

and 168 441 tetrahedra.

To obtain an optimal configuration M∗, we minimize the mesh distortion by
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(a) (b) (c)

(d) (e) (f)

Figure 4.8: Boundary of tetrahedral meshes of polynomial degree 1, 2, and 4 in
columns. Initial straight-sided isotropic meshes and optimized meshes from initial
meshes in rows.

relocating the mesh nodes while preserving their connectivity, as detailed in Section

4.3. The coordinates of the inner nodes, and the coordinates tangent to the boundary,

are the design variables. Thus, the inner nodes are free to move, the vertex nodes

are fixed, while the rest of boundary nodes are enforced to slide along the boundary

facets of the domain Ω. In Figures 4.6(d), 4.6(e), 4.6(f) we illustrate the optimized

2D meshes. In the 3D case, Figure 4.7(d), 4.7(e), 4.7(f), and 4.8(d), 4.8(e), 4.8(f)

show the clipped 3D meshes and the mesh boundary, respectively. We align the

axes according to the ones of Figure 4.5. We observe that the elements lying in the

anisotropic region are compressed to attain the stretching and alignment prescribed

by the metric.

Tables 4.1 and 4.2 show the quality statistics of both the initial and optimized

meshes for the 2D and 3D cases, respectively. In all the optimized meshes the mini-
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Table 4.1: Quality statistics for the initial and optimized meshes with interpolated
2D metric.

Mesh Minimum Maximum Mean Std dev.
deg. Initial Final Initial Final Initial Final Initial Final

1 0.0299 0.1724 0.9957 0.9551 0.6100 0.4462 0.2769 0.1039
2 0.0554 0.2878 0.9921 0.6268 0.5918 0.4545 0.2835 0.0638
4 0.0803 0.3072 0.9835 0.5806 0.5339 0.4439 0.2922 0.0760

Table 4.2: Quality statistics for the initial and optimized meshes with interpolated
3D metric.

Mesh Minimum Maximum Mean Std dev.
deg. Initial Final Initial Final Initial Final Initial Final

1 0.0175 0.1222 0.9905 0.9334 0.5550 0.4236 0.2660 0.1241
2 0.0320 0.2987 0.9695 0.7467 0.5194 0.4576 0.2735 0.0691
4 0.0409 0.3231 0.8931 0.6737 0.4490 0.4702 0.2711 0.0749

mum is improved and the standard deviation of the element qualities is reduced when

compared with the initial configuration. In addition, when comparing the curved

meshes with the straight-edged ones, we observe that the curved meshes are more

flexible. That is, the curved meshes achieve a higher improvement of the minimum

quality and the standard deviation. This is because the curved elements can approx-

imate the curved stretching of the metric in the point-wise sense and hence, more

accurately.

4.6.3 Validation: analytic versus discrete

To validate the proposed method, we compare 2D curved r-adaption results for the

high-order metric interpolation with the results corresponding to an analytic metric

evaluation. Considering the initial meshes presented in the previous section, we op-

timize the distortion measure by evaluating the analytical metric expression, instead

of interpolating it in the background mesh. In Figure 4.6 we show the initial and

optimized meshes. They are colored according to the point-wise quality measure of

Equation (4.3) using the analytical metric expression.

To compare quantitatively both results, we compute the maximum distance of

the node coordinates of the optimized configurations. The maximum distances are

around 2.2 ·10−2, 7.6 ·10−2, and 8.2 ·10−2 for the linear, quadratic, and quartic cases,

obtaining comparable nodal configurations, as it can be observed when comparing
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Table 4.3: Quality statistics for the initial and optimized meshes with analytic 2D
metric.

Mesh Minimum Maximum Mean Std dev.
deg. Initial Final Initial Final Initial Final Initial Final

1 0.0279 0.1684 0.9957 0.9581 0.6100 0.4484 0.2770 0.1088
2 0.0563 0.3358 0.9921 0.6432 0.5919 0.4569 0.2835 0.0623
4 0.0799 0.3096 0.9835 0.6318 0.5339 0.4473 0.2923 0.0634

Figures 4.6(d), 4.6(e), and 4.6(f) with Figures 4.6(g), 4.6(h), and 4.6(i), respectively.

In Table 4.3, we present the quality statistics of the initial and optimized meshes

using the analytical metric evaluation. To compare the quality improvement of both

approaches, we compute the difference between the mean of the analyzed quality

statistics, obtaining a value below 10−2. Thus, the quality improvement driven by the

optimization using the proposed metric interpolation procedure is analogous to the

one given by the analytical metric, obtaining in all cases high-quality configurations

with a minimum quality over 0.1.

4.6.4 Distortion minimization: initial anisotropic

straight-edged meshes

The results presented in Section 4.6.2 show the application of the metric interpolation

procedure to optimize isotropic meshes in a domain equipped with a metric. However,

in practice, anisotropic meshes are generated combining topological mesh operations

that modify the mesh connectivity and mesh r-adaption procedures (Alauzet and

Loseille, 2016). To illustrate a practical example, we consider an initial anisotropic

straight-sided mesh. Then, we apply the anisotropic r-adaption method presented in

this work.

Although we generate meshes adapted to a target metric with MMG (Dobrzynski,

2012), our goal is not to compare the distortion minimization with the MMG package.

Actually, we acknowledge MMG because it generates an initial straight-edged mesh

that matches the stretching and alignment of the target metric.

First, we consider the target metric presented in Equation (4.24) with hmin = 0.01.

Second, we generate a linear isotropic triangular background mesh M̂ of input size

hmin/2 = 0.005 with MATLAB. We normalize the target metric according to the size

of the physical meshes M namely, 0.0625, 0.125, and 0.25 for the linear, quadratic,
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(a) (b) (c)

(d) (e) (f)

Figure 4.9: Point-wise distortion for triangular meshes of polynomial degree 1, 2, and
4 in columns. Initial straight-sided anisotropic meshes and optimized meshes from
initial meshes in rows.

and quartic case, respectively. These sizes are chosen in order to obtain a comparable

mesh resolution according to the mesh polynomial degree. Then, we couple each

background mesh with the target metric evaluated at the background mesh vertices.

We apply the MMG algorithm to obtain an initial straight-sided anisotropic physical

mesh M of polynomial degree 1, 2, and 4, see Figures 4.9(a), 4.9(b), and 4.9(c).

In particular, the physical meshes are composed by 1 161 nodes and 2 137 triangles,

1 333 nodes and 624 triangles and, 1 525 nodes and 180 triangles, respectively.

The physical meshes M are then optimized using the metric interpolation ap-

proach presented in this work. In Figures 4.9(d), 4.9(e), and 4.9(f), we illustrate the

optimized meshes M∗. We observe that the elements lying in the anisotropic region

are compressed to attain the stretching and alignment prescribed by the metric.

In Table 4.4, we show the quality statistics of both the initial and optimized

meshes. In all the optimized meshes the minimum is improved and the standard

deviation of the element qualities is reduced when compared with the initial config-
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Table 4.4: Quality statistics for the initial MMG and optimized meshes with inter-
polated 2D metric.

Mesh Minimum Maximum Mean Std dev.
deg. Initial Final Initial Final Initial Final Initial Final

1 0.0365 0.1794 0.9988 0.9989 0.7806 0.7961 0.2273 0.2040
2 0.0624 0.6300 0.9982 0.9913 0.6966 0.8692 0.2558 0.0788
4 0.0424 0.6063 0.9774 0.9965 0.5677 0.9137 0.2681 0.0886

uration. We conclude that, with the same metric data and hence, the same inputs,

the r-adaption mesh post-processing improves the quality of the meshes generated

with the MMG algorithm. In addition, for the straight-edged case, we have presented

a global method to improve the stretching and alignment prescribed by the metric

after applying an h-adaption approach.

For a fixed metric, usually the better the initial straight-edged mesh is, the better

the optimized mesh is. For instance, for different degrees, the mean quality statistics

for the initial anisotropic meshes, Table 4.4, are better than for the isotropic meshes,

Table 4.1. The anisotropic meshes have this advantage because their topology and

geometry are adapted to match the corresponding scaling of the target metric. This

prior metric matching facilitates that the curved optimization reaches a better final

quality.

As in the examples presented in Section 4.6.2, when comparing the curved meshes

with the straight-edged ones, we observe that the curved meshes are more flexible.

That is, the curved meshes achieve a higher improvement of the minimum quality

and the standard deviation. This is because the curved elements can approximate the

curved stretching of the metric in the point-wise sense and hence, more accurately.

4.6.5 Distortion minimization: curved boundaries

We following illustrate that our approach is compatible with curved boundaries. We

consider a 2D example, in Section 4.6.5.1, and a 3D example, in Section 4.6.5.2.

To this end, we first construct the geometric model with FreeCAD (Riegel et al.,

2016). Next, we consider their implicit representation, see Section 4.5. Then, we

generate the background and initial physical meshes coupled with a discrete metric,

see Section 4.4. Finally, we apply our r-adaption method, presented in Section 4.3,

by taking into account both the discrete metric and the implicit representation of the
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(a) (b)

Figure 4.10: Parametric CAD and global implicit representation for the 2D model of
a square with a circular hole.

geometry. This enables an optimized physical mesh that approximates the stretching

and alignment of the metric while preserving the curvature of the boundary.

To accommodate the curved boundaries we include, to the presented functional,

a boundary term that takes into account the mesh deviation to the boundaries of the

domain, see Section 4.5.3. Specifically, we set the penalty parameter λ := 104 in all

examples, see Equation (4.23). In addition, to approximate the metric stretching, we

optimize the mesh using the metric interpolation approach presented in this work.

Finally, when optimizing the mesh functional all mesh nodes coordinates are free that

is, each mesh node moves in R2, in the 2D case, and in R3, in the 3D case.

4.6.5.1 2D curved model: square with a circular hole

For the 2D model Λ1, we consider a square with a circular hole. Specifically, the

domain is denoted by Ω1 = K1\C1, where K1 = [−0.5, 0.5]2 is a square, and where C1

is the circle with radius equal to 0.18 and centered at the origin, see Figure 4.10(a).

The domain Ω1 has two boundaries, the one of the square K1 and the one of the circle

C1. We illustrate in Figure 4.10(b) a global implicit representation of the boundary

Λ1 := ∂Ω1, using the method presented in Section 4.5.1. Although the inner boundary

is smooth, the outer boundary contains sharp features such as corners.

We equip the domain Ω1 with the target metric presented in Equation (4.24) with

hmin = 0.01. Then, we generate with MATLAB two isotropic triangular background

meshes M̂ of polynomial degree 2 and 4. They have an input resolution hmin/2 =

0.005 over Ω1 that is, of input size 0.01 and 0.02, respectively. We normalize the
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.11: Point-wise distortion for triangular meshes of polynomial degree 2 in first
and second (zoom) rows, and 4 in third and fourth (zoom) rows. Initial straight-sided
anisotropic mesh and optimized mesh in columns.

129



4. Combining high-order metric interpolation and geometry
implicitization

Table 4.5: Quality statistics for the initial MMG and optimized mesh with interpo-
lated 2D metric at the square with a circular hole.

Mesh Minimum Maximum Mean Std dev.
deg. Initial Final Initial Final Initial Final Initial Final

2 0.0823 0.4140 0.9914 0.9943 0.5764 0.8224 0.2508 0.1281
4 0.0590 0.4045 0.9646 0.9850 0.4177 0.7321 0.2292 0.1461

target metric according to size h = 0.25 in the quadratic case, and according to size

h = 0.5 in the quartic case. Then, we couple each background mesh with the target

metric evaluated at the background mesh vertices. From each background mesh

M̂, we obtain an initial straight-sided anisotropic physical mesh M by applying the

MMG algorithm, see Figures 4.11(a), and 4.11(e). The quadratic and quartic physical

meshes are respectively composed by 518 nodes and 220 triangles, and 944 nodes and

106 triangles. Note that, since the MMG algorithm requires a linear background

mesh, we subdivide the background meshes in order to preserve their resolution.

Specifically, our linear background meshes for the MMG algorithm are obtained by

subdividing the quadratic background mesh once, and the quartic background mesh

twice.

In Figures 4.11(b), and 4.11(f), we illustrate the optimized meshes M∗. We

observe that the elements lying in the anisotropic region are compressed to attain the

stretching and alignment prescribed by the metric. Note that the boundary elements

are curved to match both the metric and the curved domain boundaries. In Table

4.5, we show the quality statistics of both the initial and optimized mesh. In the

optimized mesh the minimum, the mean, and the standard deviation of the element

qualities are improved when compared with the initial configuration.

From the results, we observe that, when compared with straight-sided elements,

curved elements approximate more faithfully the metric while preserving the curved

features of the boundary. In this case, the stretching direction is almost aligned ac-

cording to the tangent of the geometry. When considering straight-edged elements, in

Figures 4.11(c) and 4.11(g), accumulating more degrees of freedom in the stretched re-

gions may worsen the boundary representation at non-stretched regions. In contrast,

when considering curved elements, in Figures 4.11(d) and 4.11(h), we observe that a

single curved element represents the boundary more faithfully than several straight-

sided elements. This flexibility of curved elements allows the degrees of freedom to

slide and accumulate, from non-stretched regions to the stretched regions, featuring
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high-quality elements. For that reason, we observe how the elements are stretched,

aligned, and curved according to the stretching and alignment of the metric. Hence,

curved elements allow an improved representation of the metric while preserving the

curved features of the boundary.

We use a non-optimized prototype to demonstrate that the detailed derivatives

enable Newton’s method. Nevertheless, to illustrate the computational cost, we next

report the wall-clock time and the most expensive parts when matching a target met-

ric and curved boundary. The report is an initial reference for future improvements

because the prototype is unoptimized.

For this two-dimensional example, the total wall-clock time is 2 194 seconds for

degree two and 17 911 seconds for degree four. The wall-clock time is higher for

the second case because of two main reasons: the number of mesh points and the

polynomial degree.

First, the mesh features more points for degree four (944 points) than for degree

two (518 points). Note that both cases are initialized with a straight-edged mesh

adapted to the corresponding scaling of the metric. This scaling accounts for the

difference of points between an element of degree two and an element of degree four.

Unfortunately, the resulting adapted straight-edged mesh features 220 and 106 ele-

ments for degrees two and four, respectively. Thus, the initial meshes do not feature a

comparable number of points, a difference that computationally benefits the example

of degree two.

Second, the higher the order, the higher the computational cost is. For higher

orders, the Hessians of the objective function densify, and the initial approximations

worsen. Regarding density, note that the elemental contributions to the Hessian have

around six times more non-zero entries for degree four than for degree two. In this

example, computing each elemental contribution to the Hessian needs 0.15 seconds

for degree four and 0.03 seconds for degree two. Regarding initial approximations,

they are worse because the initial straight-edged mesh is of degree one, and thus, the

difference of degrees is higher for degree four. In this example, the non-linear problem

needs 693 iterations for degree four and 229 iterations for degree two.

Finally, for both degrees, the most expensive part is to compute the elemental

contributions to the gradient and the Hessian, a computation that needs the deriva-

tives of the metric interpolation and the geometry implicitation. For the metric

interpolation, the percentage of the total wall-clock time computing the derivatives
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(a) (b)

Figure 4.12: Parametric CAD and sliced global implicit representation for the 3D
model of a cube trimmed by a cylinder.

is 45

4.6.5.2 3D curved model: a cube trimmed by a cylinder

For the 3D model Λ2, we consider a cube trimmed by a cylinder. Specifically, our

domain is denoted by Ω2 = K2\C2 where K2 = [−0.5, 0]2× [−0.25, 0.25] is a box, and

where C2 is the cylinder with radius equal to 0.25, height equal to 1/2, and centered

at the origin, see Figure 4.12(a). The boundary of the domain Ω2 is composed of

seven curves and seven surfaces. Six surfaces correspond to the cube K2 and one

correspond to the cylinder C2. Six curves correspond to the boundary curves of each

surface boundary of the cube, and one curve correspond to the intersection of the

surface boundary of the cylinder C2 with the cube. We illustrate in Figure 4.12(b) a

global implicit representation of the boundary Λ2 := ∂Ω2, using the method presented

in Section 4.5.1. Although the inner boundary is smooth, the outer boundary contains

sharp features such as corners and sharp edges.

We equip the domain Ω2 with the target metric presented in Equation (4.24) with

hmin = 0.02. Then, we generate with MATLAB a quadratic isotropic tetrahedral

background mesh M̂ of input resolution hmin = 0.02 over Ω2 that is, of input size

0.04. We normalize the target metric according to size h = 0.5. Then, we couple

each background mesh with the target metric evaluated at the background mesh

vertices. From this background mesh M̂, we obtain an initial quadratic straight-
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(a) (b)

(c) (d)

(e) (f)

Figure 4.13: Point-wise distortion for quadratic tetrahedral meshes. Initial straight-
sided anisotropic mesh and optimized mesh in columns.
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Table 4.6: Quality statistics for the initial MMG and optimized mesh with interpo-
lated 3D metric at the cube trimmed by a cylinder.

Mesh Minimum Maximum Mean Standard deviation

Initial 0.0506 0.9489 0.3519 0.1874
Optimized 0.3315 0.9198 0.6661 0.1144

sided anisotropic physical mesh M by applying the MMG algorithm, see Figures

4.13(a), 4.13(c), and 4.13(e). The physical mesh is composed by 1 261 nodes and 695

tetrahedra. Note that, since the MMG algorithm requires a linear background mesh,

we subdivide once our quadratic background mesh in order to preserve its resolution.

In Figures 4.13(b), 4.13(d), and 4.13(f), we illustrate the optimized meshes M∗.

We observe that the elements lying in the anisotropic region are compressed to attain

the stretching and alignment prescribed by the metric. Note that the boundary

elements are curved to match both the metric and the curved domain boundaries.

In Table 4.6, we show the quality statistics of both the initial and optimized mesh.

In the optimized mesh the minimum, the mean, and the standard deviation of the

element qualities are improved when compared with the initial configuration.

From the results, we observe that, when compared with straight-sided elements,

curved elements approximate more faithfully the metric while preserving the curved

features of the boundary. In this case, the stretching direction and the curvature of the

geometry are independent. Accordingly, when considering straight-edged elements, in

Figure 4.13(e), more stretched elements may enable a lower resolution of the bound-

ary. That is, the achieved resolution of the boundary limits the achieved stretching,

and vice-versa. In contrast, when considering curved elements, in Figure 4.13(f), we

observe that more degrees of freedom can be accumulated at the stretched directions

while preserving the curved features of the boundary. As before, we conclude that

curved elements allow an improved representation of the metric while preserving the

curved features of the boundary.

4.7 Concluding remarks

In conclusion, we have obtained unprecedented second-order optimization results in

curved r-adaption to a metric and geometry targets. We have represented the discrete

metric in a curved background mesh as a high-order log-Euclidean metric interpola-
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tion. For this metric interpolation, we have detailed the first and second derivatives in

terms of the physical coordinates. Moreover, we have considered the geometry model

as an implicit representation of the NURBS entities. For this implicit representation,

we have detailed the first and second derivatives.

The derivatives of the metric interpolation and the implicit representation have

allowed minimizing the objective function with Newton’s method, an objective func-

tion that accounts for the metric and geometry deviations. The discrete metric results

compare well with the analytic metric results. In all the results, the method exploits

the non-constant Jacobian of curved high-order elements. This mechanism allows the

technique to simultaneously match curved features of the metric and the geometry.

To meet our goal, we have enabled Newton’s method for curved r-adaption. Never-

theless, we have planned new directions and improvements for the near future. First,

to demonstrate the applications of our method and the advantages of adapted curved

meshes, we have planned to r-adapt the curved meshes to the steady state of inviscid

flows. At this point, we cannot obtain the required discrete metrics because we need

to implement existing goal-oriented error estimators for high-order methods (Yano

and Darmofal, 2012; Coulaud and Loseille, 2016b). Second, we have demonstrated a

key ingredient for curved r-adaption. Nevertheless, combining curved r-adaption with

curved h-adaption might be more efficient. To illustrate this combination, we have

used an external straight-edged adaptive mesher. However, to properly match the

requirements of high-order methods in h-adaption, it is mandatory to use local cavity

operators for curved meshes. Regarding these curved operators, we have planned

to combine existing approaches (Zhang et al., 2018; Zahr et al., 2020; Rochery and

Loseille, 2021; Feuillet et al., 2020) with our approaches. Specifically, our distortion

minimization for high-order metric and curved boundaries can also optimize a local

cavity. To this end, we will match the cavity interior to the target high-order metric

while the old cavity boundaries represent the target geometry.
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Chapter 5

Conclusions and future work

In this thesis we have demonstrated metric-aware optimization of high-order meshes

on curved geometry with the mesh coordinates as design variables. To this end, we

have fulfilled the following objectives: evaluating in an optimizable manner, between

a curved high-order mesh and a target metric, not only the shape and orientation

(Aparicio-Estrems et al., 2018), but also the size matching (Chapter 2); optimizing

a curved high-order mesh to tightly match a non-uniform anisotropic target metric

(Chapter 3); accounting and optimizing for a discrete metric (Aparicio-Estrems et al.,

2022) while simultaneously targeting a curved geometry (Chapter 4).

To optimize and curve the high-order meshes according to a target metric and a

target geometry, we have used mathematical formulations and derivations, design of

computational methods, heuristics, computer implementations, run-time checks, and

verification approaches.

There are two key central findings in this thesis. First, to enforce unitary Rieman-

nian lengths for all the mesh entities on point-wise varying metrics, we have needed

to define a point-wise metric-aware distortion measure accounting for the shape, ori-

entation, and size. Using an entity-wise metric-aware measure we could only enforce

unitary Riemannian measures for that type of entity. Second, to solve problems with

non-uniform anisotropic point-wise metrics featuring curved sharp features, we have

needed to propose a specific-purpose non-linear solver. Without this solver we could

only demonstrate metric-aware optimization of curved high-order meshes for simpler

metrics.

The work carried out in this thesis leaves open some research activities that should
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be performed in the near future. First, the presented method could be applied for a

goal-oriented error estimator, e.g., corresponding to the numerical solution of a flow

problem. In this case, a metric-based error estimator would be obtained from the

reconstructed high-order derivatives of the numerical solution of a non-linear PDE.

Then, the distortion minimization could enable an adapted mesh according to the

numerical solution. Second, the method could be applied to adapt a curved high-

order mesh according to a target surface. For this, the input metric corresponds to

the Riemannian surface metric. Third, the geometry implicitization derivatives could

be used to trace rays according to an input geometric model. This could be done by

applying the Newton method to the presented geometry implicitization. Fourth, the

r-adaptive mesh distortion minimization method could be coupled with h-adaptive

techniques, such as local cavity operators or local bisection refinement. Fifth, the effi-

ciency of the mesh distortion minimization could be further improved by considering

a distributed implementation. In this case, the elemental contributions of the Hessian

matrix would be computed in a parallel form, accelerating the computational run-

time. Finally, the presented solver might be helpful in minimization problems where

the non-linear objective is indefinite for initial approximations out of the positive

definite region surrounding the local minima.

Nevertheless, we have contributed to error-driven curved high-order adaptivity.

Specifically, we have proposed methods that feature the advantages of metric-driven

curved adaptivity yet for high-polynomial degree, enforcing unitary Riemannian vol-

umes, and specifically solving for curved sharp features.

In perspective, our methods for metric-aware optimization of curved high-order

meshes of high-polynomial degree will be a key ingredient in error-driven curved high-

order adaptivity, an adaptation that enhances the simulation accuracy in problems

where the solution presents sharp curved features. In this case, the mesh topology

will be modified by curved local cavity operators or curved local bisection refinements.

Then, on these meshes, our methods will modify the coordinates of the whole mesh

or the local mesh cavity to precisely match the sharp curved features.
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Appendix A

Newton-CG solver: details and

tests metrics

A.1 Standard CG

The CG method is an iterative procedure to solve linear systems of equations. As

many other iterative solvers, it starts from an initial guess. Then, it generates a

sequence of approximate solutions, derived from the previous ones, which in the limit

are supposed to converge to an analytical solution. In this section, we present the

algorithmic details of the standard preconditioned CG method (Saad, 2003; Dembo

and Steihaug, 1983).

Consider the CG method, presented in Algorithm A.1, at the k-th non-linear

iterate xk, applied to the preconditioned version of the linear system of Newton

Equation (3.7) with a preconditioner Mk of the Hessian matrix Hf(xk)

MkHf(xk)pk = −Mk∇f(xk).

We denote as pik the direction corresponding to the i-th iteration of the CG method

and similarly for the CG-residual r and the CG-step d. The input arguments are the

Hessian matrix Hk = Hf(xk), the gradient vector gk = ∇f(xk), an initial guess p0
k

which in this work is set to be equal to the zero vector 0, the maximum number of

iterations imax, the residual forcing value ηk, the curvature forcing value τk and the

preconditioner function z = preconfun(r) which solves the linear system Mkz = r. In

Line 2, we setup the main variables: the CG-step d, the CG-step multiplier β, the
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Algorithm A.1 Conjugate Gradients (Dembo and Steihaug, 1983)

Input: H, g, p, preconfun, imax, η, ε
Output: p∗, d∗

1: procedure CG

2: d← 0, β ← 0, r ← −g −Hp, i← 1
3: z ← preconfun(r)
4: while i ≤ imax do
5: z̃ ← z, r̃ ← r
6: d← z + βd
7: if dTHd < εdTd then
8: p∗ ← p, d∗ ← d
9: return
10: else
11: α← rT z

dTHd

12: p← p+ αd, r ← r − αHd
13: end if
14: z ← preconfun(r)
15: if ‖r‖ < η‖g‖ then
16: p∗ ← p
17: return
18: end if
19: β ← rT z

r̃T z̃

20: i← i+ 1
21: end while
22: end procedure

residual r0
k := −∇f(xk)− H(xk)p

0
k and, the current iteration value i. In Lines 3 and

14, the function preconfun is applied to a vector r. Then, in Line 4, we proceed to

the main loop. We compute a step dik at each CG-iteration i ≥ 1, Line 6, providing

a new direction pik = pi−1
k + αikd

i
k, Line 12, and a residual,

rik := r
(
pik;xk

)
:= −∇f(xk)− H(xk)p

i
k.

The main loop iterates while dik is a negative curvature direction that is, dTHd < 0,

Line 7, the imposed tolerance is achieved by the residual rik, Line 15, or the iteration

has exceeded the limit permitted, Line 4. Finally, the outputs of the algorithm are

the CG-point p∗ and the CG-step d∗.

The CG method is designed for positive definite systems Hf(x), which usually

appear at points x near an optimum x∗. However, for points far from an optimum

the Hessian Hf may not be positive definite. Then, as in the standard CG-algorithm,
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we terminate the CG-iteration, in Line 7 with ε = 0, whenever a CG-step dik of

negative curvature is encountered. In this case, we provide the last direction pi−1
k , see

Nocedal and Wright (2006).

It could happen that at the first CG-iteration the algorithm stops because a CG-

step of negative curvature is encountered. In such case, the CG method returns the

scaled steepest-descent direction presented in Bellavia and Berrone (2007) given by

Mkpk = −∇f(xk).

A.2 Setting cmax: quadratic convergence without

line-search iterations

In what follows, we propose the value of the non-constant parameter cmax. It is

required for the sufficient-progress condition of the specific-purpose LS globalization

strategy, see Section 3.3.2. For this reason, we choose a value that preserves the main

features of a second-order Newton method.

We propose to set cmax = 0.25 to obtain quadratic convergence near a minimizer

x∗ without additional line-search iterations. To this end, two conditions are required.

First, it is required that the current point x is sufficiently near a minimizer x∗ so the

second order model presented in Equation (3.5) is a faithful approximation. Second, it

is required that step is an exact approximation to the Newton direction so it satisfies

the Newton Equation presented in Equation (3.7). Notice that, the Newton direction

has step length equal to one in the region of quadratic convergence. Then, by applying

the Newton Equation in the second order term of the quadratic model and, assuming

that the step length of the Newton direction is one as desired, we obtain the equation

f(x+ s) ≈ f(x) + sT∇f(x) +
1

2
sTHf(x)s

s=−Hf(x)−1∇f(x)
= f(x) + sT∇f(x)− 1

2
sT∇f(x) = f(x) +

1

2
sT∇f(x).

Now, in terms of the predictor this equation can be reduced to

ρ(s;x) =
f(x)− f(x+ s)

−sT∇f(x)
≈ 1

2
.

This shows that, as the current point x tends to a minimizer x∗ with the Newton

direction, the predictor tends to the value 1
2
. Since ρ(s;x) > cmin, no reducing itera-

tions are performed to the step length. Moreover, even if ρ(s;x) > cmax, no amplifying
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iterations will be performed because the step length equal to one is optimal for the

Newton direction near a minimizer. To prevent a modification of the step length

we need to avoid, in Line 17, the reducing update which will require an additional

amplifying iteration in the next non-linear iteration. Hence, it is sufficient to choose

a constant cmax satisfying cmin < cmax ≤ 0.5. The constant cmax = 0.25 has been

chosen since it is equally spaced from its limits 0 and 0.5. This permits to obtain

quadratic convergence near a minimizer without line-search iterations.

A.3 Normalized curvature

In this section, we propose a criterion to check the curvature sign. On the one hand, it

is standard to check the positiveness of curvature by means of the scalar product. On

the other hand, a curvature constrain to limit the number of CG iterations, guarantee

stability and sufficient positive curvature it is proposed (Dembo and Steihaug, 1983).

For this reason, we propose to define the normalized curvature of a direction p at a

point x as

κ(p;x) :=
pTHf(x)p

pTp
.

Thus, the constrain κik > 0 stills unchanged, while the constrain κik > ε becomes

κik := κ(dik;xk) =
dik

T
Hf(xk)d

i
k

dik
T
dik

> ε.

This motivates us to propose a dynamic curvature forcing sequence {τk} detailed in

Equation (3.13).

A.4 Ordering of the mesh nodes

Herein we fix an arrangement for the degrees of freedom to obtain results independent

on the node ordering. This arrangement is performed in two steps. First, we perform

a mesh node ordering. It is involved in the mesh distortion evaluation, see Section

3.2.2. Second, we perform an arrangement for the degrees of freedom over the mesh

node ordering. It determines an arrangement for the optimization method, see Section

3.2.3. Note that, both arrangements may perturb the numerical conditioning of the

Hessian and hence, the total number of matrix-vector products performed in the

optimization problem.
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We propose a node ordering that aims to concentrate the contributions of compa-

rable magnitudes according to the stretching and alignment of the target metric. Our

mesh node ordering relies in the class of spectral orderings (Clift et al., 1995; Paulino

et al., 1994a,b). However, it slightly differs from the methods presented in the litera-

ture since it is focused to take into account information about the anisotropy of the

target metric instead of the mesh connectivity only. We remark that the presented

node ordering is used to couple the matrix elements according to their magnitude

independently to the chosen preconditioner.

The node ordering is given by the partial ordering relation of an eigenfunction

with lowest non-zero eigenvalue of the Laplace-Beltrami operator. That is, for a

piece-wise polynomial mesh M of a bounded domain Ω equipped with a metric M

and with Lipschitz boundary ∂Ω, the ordering of the mesh nodes that we propose is

computed from an eigenfunction with the lowest non-zero eigenvalue λ1 > 0 of the

Laplacian eigenproblem with Neumann boundary conditions (see Chavel (1984)){
−∆Gu = λ1u in Ω

∂u
∂n

= 0 on ∂Ω
,

where, in our case, we set G = DφT
P M DφP which is the embedded or extrinsic mesh

metric in the metric space (Rm,M), DφP is the Jacobian of the mapping φP between

the reference element and the physical element of the mesh and n is the outward

normal of the boundary ∂Ω. Then, the partial ordering relation u(xi) < u(xj) (where

xi are the nodes of the mesh for any ordering) determines an ordering of the mesh

nodes. In this work an eigenfunction u is computed using a continuous Galerkin finite

element method over the mesh M. Moreover, this reordering algorithm is used only

one time, before the non-linear optimization.

Once we have defined the mesh node ordering, we prescribe an arrangement for the

degrees of freedom. Note that, each node x ∈ Rm contains m degrees of freedom. In

the 2D case (m = 2), each node contains 2 degrees of freedom, the x-component and

the y-component which we locate contiguous on the corresponding global mesh node

xi ∈ Rm. For example, if the mesh nodes are denoted by xi = (xi, yi) , i = 1, ..., k then

the corresponding variable representing the mesh is given by (x1, y1, x2, y2, ..., xk, yk).

The gradient is given by ∇f =
(
∂f
∂x1
, ∂f
∂y1
, ∂f
∂x2
, ∂f
∂y2
, ..., ∂f

∂xk
, ∂f
∂yk

)
and the components of

the Hessian Hf are then straightforward. Analogously, we apply this procedure for

3D meshes. In our case, the nodes lying at the boundary of the domain are permitted

to slide on the boundary where they belong.
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A.5 Test metrics

In this section, we detail the boundary layer metric D of the target metric M, see

Equation (3.18) and Table 3.1. Specifically, we propose two choices for the metric D,

a boundary layer over a curve (surface) D or a boundary layer over two intersecting

curves (three intersecting surfaces) Dcross.

On the one hand, the boundary layer D aligns with the x-axis (xy-plane) in the

2D case (3D case). It requires a constant unit element size along the x-direction

(xy-directions), and a non-constant element size along the y-direction (z-direction).

This vertical element size grows linearly with the distance to the x-axis (xy-plane),

with a factor γ = 2, and starts with the minimal value hmin = 10−2 (hmin = 2 · 10−2).

Thus, for the 2D example illustrated in Figure 3.3(a), between y = −0.5 and y = 0.5

the stretching ratio blends from 1 : 100 to 1 : 1. For the 3D case, illustrated in Figure

3.3(b), between z = −0.5 and z = 0.5 the stretching ratio blends from 1 : 50 to 1 : 1.

To match the boundary layer, we define the metric as:

D :=

(
1 0

0 1/h(y)2

)
, D :=

 1 0 0

0 1 0

0 0 1/h(z)2

 . (A.1)

where the function h is defined by

h(x) := hmin + γ|x|. (A.2)

The metric of Equation (A.1) is the metric induced by the following deformation

ψ(x, y) = (x,H(y)) , ψ(x, y, z) = (x, y,H(z)) ,

that is D = ∇ψT · ∇ψ and being H the function given by

H(x) :=
1

γ
log

(
h(x)

hmin

)
. (A.3)

On the other hand, we consider a metric Dcross consisting in the intersection of bound-

ary layers with a stretching in each axis direction at the corresponding orthogonal

hyperplane: in the x-direction at the line x = 0 and in the y-direction at the line

y = 0 in 2D and with a stretching in the x-direction at the plane x = 0, in the
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y-direction at the plane y = 0 and in the z-direction at the plane z = 0 in 3D, that is

Dcross :=

(
1/h(x)2 0

0 1/h(y)2

)
, Dcross :=

 1/h(x)2 0 0

0 1/h(y)2 0

0 0 1/h(z)2

 .

(A.4)

The metric of Equation (A.4) is the metric induced by the deformation

ψcross(x, y) = (H(x), H(y)) , ψcross(x, y, z) = (H(x), H(y), H(z)) ,

that is Dcross = ∇ψT
cross · ∇ψcross and being H the function presented in Equation

(A.3). As expected, the 2D intersection boundary layer metric presented in Equation

(A.4) aligns with the x-axis at the line y = 0 and with the y-axis at the line x = 0,

requires a constant unit element size along the diagonals of the square x + y = 0

and x − y = 0. Locally, the element size grows linearly along each axis with the

distance to the orthogonal line, with a factor γ = 2, and starts with the minimal

value hmin = 10−2. Thus, between y = −0.5 and y = 0.5 the stretching ratio blends

from 1 : 100 to 1 : 1.

Analogously, the 3D intersection boundary layer metric presented in Equation

(A.4) aligns with the xy-axis at the plane z = 0, with the zx-axis at the plane y = 0

and with the yz-axis at the plane x = 0, requires a constant unit element size along

the 4 diagonal lines of the cube. Locally, the element size grows linearly along each

axis with the distance to the corresponding orthogonal plane, with a factor γ = 2,

and starts with the minimal value hmin = 2 · 10−2. Thus, between z = −0.5 and

z = 0.5 the stretching ratio blends from 1 : 2500 to 1 : 1. Note that in this case, the

maximum stretching ratio is given by h2
min and it is attained at the intersection of

each plane x = 0, y = 0 and z = 0 with the boundary of the hexahedron Ω.

For D = D the metric M attains the highest level of stretching ratio, close to

the curve described by the points (x, y) ∈ Ω such that ϕ(x, y) = (x, 0) in 2D and

close the surface described by the points (x, y, z) ∈ Ω such that ϕ(x, y, z) = (x, y, 0)

in 3D. Note that the metric M is induced by the map ψ := ψ ◦ ϕ. Analogously,

for D = Dcross the metric M attains the highest level of stretching ratio, close the

intersection of curves described by the points (x, y) ∈ Ω such that ϕ(x, y) = (x, 0) or

ϕ(x, y) = (0, y) in 2D and close the surface described by the points (x, y, z) ∈ Ω such

that ϕ(x, y, z) = (x, y, 0) or ϕ(x, y, z) = (x, 0, z) or ϕ(x, y, z) = (0, y, z) in 3D. Note

that the metric M is induced by the map ψ := ψcross ◦ ϕ.
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Appendix B

Derivatives of the eigenvalue

decomposition and the implicit

representation

B.1 Derivatives of the eigenvalue decomposition

In this Appendix, we detail the first and second-order spatial derivatives of the eigen-

value decomposition (eigenvalues and eigenvectors), first presented in Andrew et al.

(1993) and rewritten herein using our notation.

Let us consider, for ` = 1, ..., d, the eigenvalue equation for the eigenvector u`

with eigenvalue λ`

L`u` := (L− λ`I) u` = 0,

where L is a symmetric matrix and I is the identity matrix. Then, by taking its

first-order and second-order derivatives we respectively obtain

0 = ∂j (L`u`) = (∂jL`) u` + L` ∂ju`, (B.1)

0 = ∂jk (L`u`) = (∂jkL`) u` + L` ∂jku` + (B.2)

(∂jL`) ∂ku` + (∂kL`) ∂ju`.

For each ` one first computes the first-order derivative of the eigenvalue λ` by

left-multiplying by u` to Equation (B.1). Then, by solving the remaining unknown
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term of Equation (B.1) one obtains the first-order derivatives of the eigenvector u`.

In particular, the first-order derivatives of the eigenvalues and the eigenvectors are

given by

∂jλ` = uT
` ∂jL u`, ∂ju` = −L+

` ∂jL` u`,

where the operation L+
` is the Moore-Penrose pseudo-inverse matrix for the matrix

L`. We use the Moore-Penrose pseudo-inverse matrix instead of the inverse matrix

because the matrix L` is singular. In addition, the redundant equations are satisfied

automatically.

The second-order derivatives are obtained by applying a similar procedure. For

each ` one first computes the second-order derivative of the eigenvalue λ` by left-

multiplying by u` to Equation (B.2). Then, by solving the remaining unknown term

of Equation (B.2) one obtains the second-order derivatives of the eigenvector u`. In

particular, the second-order derivatives of the eigenvalues are given by

∂jkλ` = uT
` (∂kL` ∂ju` + ∂jL` ∂ku` + ∂jkL u`) ,

∂jku` = −L+
` (∂kL` ∂ju` + ∂jL` ∂ku` + ∂jkL` u`)− (∂ju` ∂ku`) u`,

where the last term of the second-order derivative of the eigenvector is obtained by

imposing the second-order derivative of the imposed normalization condition uT
` u` =

1

0 = ∂jk
(
uT
` u`

)
= 2∂jku

T
` u` + 2∂ju

T
` ∂ku`.

B.2 Derivatives of the implicit representation

In this Appendix, we detail the first and second-order derivatives of the normalized

representation, the convex-hull representation, and the implicit representation of a

Bézier patch. They are used in the computation of the gradient and Hessian for the

implicit representation, see Section 4.5.2.

Herein, we consider the gradient and Hessian of the normalized representation

γ̂, presented in Equation (4.13). As before, we denote by ∇f ∗ ∇g the matrix with

coefficients ∂jf∂kg for j, k = 1, ..., d. In addition, we consider the symmetric term

∇f⊗∇g := ∇f ∗∇g+∇g∗∇f given by the matrix with coefficients ∂jf∂kg+∂kf∂jg

for j, k = 1, ..., d. Then, the derivatives of the normalized representation are given

by

∇γ̂ =
∇γ − γ̂∇‖∇γ‖

‖∇γ‖
, (B.3)
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and

γ̂∇2γ̂ =
γ̂∇2γ − γ̂2∇2‖∇γ‖ − ∇γ̂ ⊗ γ̂∇‖∇γ‖

‖∇γ‖
, (B.4)

where

γ̂∇‖∇γ‖ =
γ̂∇2γ ∇γ
‖∇γ‖

,

γ̂2∇2‖∇γ‖ =
γ̂2∇3γ ∇γ + γ̂∇2γ γ̂∇2γ − γ̂∇‖∇γ‖ ∗ γ̂∇‖∇γ‖

‖∇γ‖
.

We observe that they require the first, second, and third derivatives of γ. In addition,

we consider these terms when differentiating the trimming operation, see Equations

(4.21) and (4.22) for h = γ̂. In particular, the chain rule involves the terms ∇γ̂ and

γ̂∇2γ̂, and the terms ∇γ, γ∇2γ, and γ2∇3γ. As we can see, this observation is advan-

tageous because a straight-forward computation of the second and third derivatives,

∇2γ, and ∇3γ, involves a singularity at the corresponding zero level-set of γ. For this

reason, instead of computing directly the derivatives we consider them multiplied by

the representation γ.

Next, we compute the derivatives of the convex-hull representation γ̂CH(Γ). In

particular, note that these derivatives are trivial since the representation of each

hyperplane entity is linear. Then, we differentiate the r-conjunction between the

hyperplane representations γCH(Γ), see Equations (4.17) and (4.18). Finally, we dif-

ferentiate the normalization of the convex-hull representation γ̂CH(Γ), see Equations

(B.3) and (B.4).

Now, we compute the derivatives for the determinant γ of Equation (4.12). That

is, ∇γ, γ∇2γ, and γ2∇3γ. First, compute the gradient of the determinant by using

the Jacobi’s formula

∇γ (x) = tr (adj (N (x)) ∇N (x)) , (B.5)

where N (x) := M (x) M (x)T. We consider the adjugate matrix adj (N (x)), instead

of the inverse matrix, to avoid the singularity issues at the patch Γ. In particular, the

adjugate matrix of N (x) is defined by the transposed cofactor matrix, and satisfying

the relation adj (N (x)) = γ (x)N (x)−1 (Upreti et al., 2014). Secondly, we compute

the higher-order derivatives γ∇2γ, and γ2∇3γ by differentiating the terms inside the

trace function ∇γ, see Equation (B.5). In particular, using the same notation as in

Section 4.4.2, we compute the second derivatives for each j and k as

γ (x) ∂jkγ (x) = tr (γ (x) ∂kadj (N (x)) ∂jN (x) + γ (x) adj (N (x)) ∂jkN (x)) .
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In addition, the third derivatives are given by

γ (x)2 ∂jk`γ (x) = tr
(
γ (x)2 ∂k`adj (N (x)) ∂jN (x) +

γ (x)2 ∂kadj (N (x)) ∂j`N (x) + γ (x)2 ∂`adj (N (x)) ∂jkN (x)
)
,

for each j, k, and `. Note that, there is no third order term ∂jk`N (x) because N (x)

is a quadratic function on x, see Equation (4.12).

Finally, we provide the derivatives of the adjugate matrix adj (N (x)). In partic-

ular, we present them in terms of the derivatives of the inverse matrix multiplied by

the determinant. Then, to rewrite the obtained expression in terms of the adjugate

matrix, we multiply both expressions by the determinant γ. Specifically, the gradient

is given by

γ (x)∇adj (N (x)) = γ (x)∇
(
γ (x)N (x)−1) =

adj (N (x))∇γ (x)− N (x) adj (N (x)) N (x) .

We apply the same reasoning for the Hessian by computing

γ (x)2∇2adj (N (x)) = γ (x)2∇
(

1

γ (x)
γ (x)∇adj (N (x))

)
.

In particular, using the same notation as in Section 4.4.2, for each j and k we have

γ2∂jkadj (N) = (γ∂jkγ) adj (N) + (∂jγ) γ∂kadj (N)− (∂kγ) γ∂jadj (N)−

γadj (N) ∂jkN adj (N)− γ∂kadj (N) ∂jN adj (N)− adj (N) ∂jN γ∂kadj (N) ,

where, for the sake of brevity, we omit the dependence on the x variable of the

functions γ and N.
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Aparicio-Estrems, G., A. Gargallo-Peiró, and X. Roca (2019). Anisotropic optimiza-
tion of curved meshes: specific-purpose line-search and trust-region globalizations
for newton’s method. In International Meshing Roundtable.
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