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“It is through science that we prove, 

but through intuition that we discover” 

- Henri Poincaré -  

UNIVERSITAT ROVIRA I VIRGILI 
QUANTIFYING VARIABILITY IN GRAPE AND WINE QUALITY: A MULTIVARIATE ANALYSIS PERSPECTIVE 
Daniel Schorn García



  

UNIVERSITAT ROVIRA I VIRGILI 
QUANTIFYING VARIABILITY IN GRAPE AND WINE QUALITY: A MULTIVARIATE ANALYSIS PERSPECTIVE 
Daniel Schorn García



 

 

 

 

 

A mi madre, 

a mi abuela

UNIVERSITAT ROVIRA I VIRGILI 
QUANTIFYING VARIABILITY IN GRAPE AND WINE QUALITY: A MULTIVARIATE ANALYSIS PERSPECTIVE 
Daniel Schorn García



  

UNIVERSITAT ROVIRA I VIRGILI 
QUANTIFYING VARIABILITY IN GRAPE AND WINE QUALITY: A MULTIVARIATE ANALYSIS PERSPECTIVE 
Daniel Schorn García



Agradecimientos 

Ha llegado el final de una etapa muy importante en mi vida. La realización de esta tesis doctoral 

ha sido un camino lleno de experimentos, horas en el laboratorio, experiencias y muchas 

personas. Las primeras personas que me vienen a la mente, y a las que tengo que agradecer que 

esta tesis sea tal y como es, son mis tres supervisores (mis tres “jefes”) Montse, Bárbara y 

Ricard. En primer lugar, quiero agradecer a Montse, por darme la oportunidad de empezar en 

este grupo desde el máster, por tu positividad y tus palabras de ánimo, tu confianza en mí, tu 

increíble capacidad científica y por saber ponernos límites cuando diseñábamos el experimento. 

Gràcies, Montse. A Barbara, por tantísimas horas enseñándome quimiometría, por hacer que 

la distancia a Italia fuera cortísima, por sus increíbles ideas y por todos los ratos compartidos, 

sobre todo los acompañados de un buen vino. Grazie, Bárbara. A Ricard, por tener siempre la 

corrección justa, por ayudarme en todo lo que le pedía, por tener esa serenidad que tanto hacía 

falta en algunos momentos y por los chistes malos que sentaban tan bien. Gràcies, Ricard. Ha 

sido un placer tenerles a mi lado en esta experiencia. 

He de decir que el apoyo de los “seniors” no solo acaba en Montse, Barbara y Ricard. A Laura, 

tengo que agradecer haberme dejado ver a una gran docente en acción en las prácticas de 

Análisis Instrumental, sus “vamos, que ya lo tienes” y tener siempre siempre un momento para 

una duda, explicación o cualquier otra cosa. Gracias, Laura. No puedo olvidarme por supuesto, 

de la “jefa suprema”. A Olga quiero agradecer su capacidad de transmitir la importancia de la 

divulgación, su apoyo constante, sus palabras de ánimo y el explicarme como funciona una 

universidad y una facultad. Gracias, Olga. No me puedo olvidar de Santi y Jaume, con los 

temas que parecía que había que preparar para hablar en el café, por ayudarme a programar, 

a arreglar figuras, a cualquier cosa que se pudiera decir “pregúntale a Santi o Jaume que seguro 

que sabe”. Gracias, Santi. Gracias, Jaume. He de decir que, de la Facultad, y aunque en 

Constantí, no puedo olvidarme de agradecer la inmensa ayuda de Pedro y todo el personal de la 

finca, gracias por ayudarme en las vendimias, explicarme cualquier concepto, dejarme catar e 

incluso colaborar en la divulgación que organizaba. Gracias, Pedro. 

Si en Facultad tengo que agradecer, en el laboratorio, no sé que tengo que decir. A mis dos 

apoyos más incondicionales, mis amigos y mis compañeros de tantas horas, recordando 

cualquier referencia televisiva española. A Ángel tengo que agradecer su apoyo, su bondad, su 

preocupación, su disposición, sus preguntas indiscretas, sus tarareos mientras integraba y ser 

una persona increíble. Gracias, Ángel. Solo puedo decir ojalá hubieras llegado antes Jokin, 

gracias por ser increíblemente bueno conmigo y con mis líneas de código. Mila esker, Jokin. 

No me puedo olvidar de los que han pasado y han dejado su huella. Gracias, Julieta, Aziz y 

Carolina. Finalmente, quiero agradecer los granitos de arena de esta tesis de Jordi, Helena y 

UNIVERSITAT ROVIRA I VIRGILI 
QUANTIFYING VARIABILITY IN GRAPE AND WINE QUALITY: A MULTIVARIATE ANALYSIS PERSPECTIVE 
Daniel Schorn García



Nùria. Muchas gracias por vuestro trabajo. Gràcies, Jordi i Helena. A Nùria especialmente 

en esta etapa de redacción de tesis por sus abrazos, contarme cotilleos y traerme chocolate. 

Gràcies, Nùria. 

Me gustaría agradecer a José Luis, la oportunidad de disfrutar una experiencia vital y científica 

como han sido esos tres meses en Sudáfrica. Estoy muy agradecido de aprender tanto sobre el 

análisis de compuestos fenólicos, involucrarme en el día a día del laboratorio y tener la confianza 

para poder volver a Sudáfrica. Gracias Jose Luis. To my shared braincell labmate, Kiera, I want 

to thank you so much to welcome me so well, so friendly and so warm. I do not know how could 

I survive so many hours in the lab without singing and talking about everything with you. 

Thank you, enkosi, Dankie, Kiera. I want to extend my gratitude to the rest of the SAWRI 

and especially the master student from Enolab. Me gustaría aprovechar para agradecer a Alba 

ser mi red de seguridad en Sudáfrica, encontrarte en la otra punta del mundo ha sido muy 

especial. Gracias, Alba. 

Mi periodo en Tarragona empezó haciendo el máster, y eso fue una gran oportunidad de conocer 

gente maravillosa, con la cual estoy muy contento de seguir contando después de haber acabado. 

A mi wey, muchas gracias por tu felicidad contagiosa. Gracias, Luis. A mi compañero 

incansable de piso, en aquel piso tan loco y que se convirtió en una experiencia maravillosa. 

Gracias, DaniZ. No se puede hacer un máster sin tener un poco de safreig, a Julia por ser tan 

feliz en la vida. Gràcies, Julia. 

Cuando llegué al laboratorio parecía que la tercera planta estaba muy lejos de Bioquímica, pero 

conseguimos que eso dejara de ser así. Mucha gente ha pasado, pero las personas con las que 

compartes croquetas hechas en una cadena de montaje, ves con tanta pasión Eurovisión y 

quemas el Apple de tanto ir, tienen siempre un trozo de tu corazón. Gracias, Miguel y Chema. 

Hago extensible todo lo anterior, a otros dos croquetos, a Mari agradezco su duliciosa forma de 

enseñarme a divulgar la ciencia. Gracias, Mari. A Aitor, porque gracias a ti he crecido como 

persona y por tu cariño. Gracias, Aitor. No me puedo olvidar de otras personas que me han 

hecho sentir super bienvenido abajo. Gracias Mercé, Helena y Paloma. A la persona más 

flamenca que te puedes echar a la cara, al lunar de un traje de la feria hecha persona, tu 

felicidad es contagiosa. Gracias, Marta. Al resto de personitas que de una forma y otra me han 

acompañado comiendo, tomando café y más. Gracias. 

Tarragona también me ha traído un núcleo de amigos, que son maravillosos, totalmente 

diferentes entre ellos y eso es lo genial. Nadie puede tener una mejor compañera de películas 

de Marvel, me encanta tu felicidad y tus 9,5. Gracias, Carla. A una persona maravillosa, mi 

compañera de viaje al otro lado del charco, gracias por escuchar tan bien y por los cotilleos que 

me cuentas. Gracias, Sandra. A la mejor enfermera de mi CAP de referencia, una persona 

UNIVERSITAT ROVIRA I VIRGILI 
QUANTIFYING VARIABILITY IN GRAPE AND WINE QUALITY: A MULTIVARIATE ANALYSIS PERSPECTIVE 
Daniel Schorn García



fiestera y loca y además increíblemente buena. Gracias, Eva. Tener conversaciones profundas 

sobre feminismo, racismo y demás y que después un abrazo lo arregle todo es maravilloso. 

Gracias, Violeta. No puedo dejar de agradecer a la persona que me enseñó Tarragona, me 

enseño la catalanidad y a la vez también la esencia del sur, por todos los momentos que vivimos. 

Gracias, Raúl. 

Hablar del hogar es difícil, pero yo tengo uno genial. Mi hogar no es tanto esas cuatro paredes 

que contienen el caos en el que hemos vivido, mi hogar es esa persona tan buena, tan 

maravillosa y porque no decirlo, tan nubli. A Candela tengo que agradecerle primero el 

aguantarme, lo sé no ha sido fácil. Me ha encantado contar con un apoyo tan incondicional, tan 

de hermana como el tuyo. No puedo expresar todo lo bueno que has hecho por mí. Muchas 

gracias, Candela. Agradecimiento que hago extensivo a Raquel, por ser como una madre 

cuando venías de visita. Al resto de los nublis, Dani y Ginger, también tengo que decir que les 

agradezco que me aguanten, que no ha sido fácil. He sentido mucha felicidad de poder tenerlos 

en esta etapa de mi vida. Gracias, Dani y Ginger. 

Los de toda la vida han estado ahí, quizás no llegaban a saber qué hacía tantas horas en el 

laboratorio, o se perdían sobre los artículos que escribía, pero que sentían una alegría enorme 

con cada buena noticia y que eran un apoyo totalmente incondicional. Gracias, Rubén, 

Rebeca, Iris, Laura y Cristina. A mi par de amigas o a mi par de enlaces no enlazantes, 

gracias por estar siempre ahí. Gracias, Pau y Clau. A Bea, por ser esa persona loca, y a la vez 

tan buena. Gracias, Bea. A la recién llegada a Tarragona, me encanta tu forma de ser y todo 

el cariño que me has dado, quiero agradecerte todas las veces que de repente te acordabas de 

mí. Gracias, Ana. La etapa de pasar por la Universidad de La Laguna me trajo aún más gente 

maravillosa. A Idaira y Adrián tengo que agradecer el enseñarme cómo era hacer un doctorado 

a la vez que ser tan buenos conmigo. A mi director de TFG por sus preguntas y su manera tan 

didáctica de enseñarme. Gracias, Adrián. Aunque tarde en escuchar los audios, y aunque nos 

separen tantos kilómetros, siempre ha estado ahí. Gracias, Idaira. Finalmente, a mi gallega 

favorita, porque por nada del mundo se rinde, por nada del mundo deja de ser feliz, es una 

inspiración. Gracias, Uxia. 

Aún habiendo agradecido a todas las personas que han estado antes y durante el camino, hay 

dos personas sin las cuales no habría llegado aquí. A mi madre, por intentar entender todo lo 

posible de qué iba mi tesis, has sido un gran apoyo y todo un referente para mí. Muchísimas 

gracias, Marisol. A mi abuela agradecer la didáctica que he conseguido gracias a tener que 

explicarle tantas veces que hacía y porque no iba a clase, aunque realmente por su apoyo y 

cariño en cualquier momento. Gracias, Nieves. Al resto de mi familia, agradezco su apoyo, su 

interés y sus preguntas enológicas en cualquier momento. 

UNIVERSITAT ROVIRA I VIRGILI 
QUANTIFYING VARIABILITY IN GRAPE AND WINE QUALITY: A MULTIVARIATE ANALYSIS PERSPECTIVE 
Daniel Schorn García



 

UNIVERSITAT ROVIRA I VIRGILI 
QUANTIFYING VARIABILITY IN GRAPE AND WINE QUALITY: A MULTIVARIATE ANALYSIS PERSPECTIVE 
Daniel Schorn García



Index 

Chapter 1. Introduction  .......................................................................................... 1 

 

Grape and wine ....................................................................................................... 3 

Viticulture .............................................................................................................. 3 

Grape maturity ....................................................................................................... 4 

Sugars ............................................................................................................... 5 

Acids ................................................................................................................. 5 

Polyphenolic compounds ...................................................................................... 6 

Aroma ............................................................................................................... 7 

Grape analysis ........................................................................................................ 8 

Winemaking process ............................................................................................... 9 

Microorganism ...................................................................................................... 12 

Yeast ............................................................................................................... 12 

Lactic Acid Bacteria .......................................................................................... 13 

Acetic Acid Bacteria .......................................................................................... 13 

Factors affecting alcoholic fermentation ............................................................... 13 

Deviations............................................................................................................. 15 

Wine analysis ....................................................................................................... 16 

Spectroscopic techniques .................................................................................. 18 

Infrared region ..................................................................................................... 19 

Mid-infrared ..................................................................................................... 21 

Near-infrared ................................................................................................... 22 

Measurement methods ......................................................................................... 22 

Diffuse Reflectance ............................................................................................ 23 

ATR ................................................................................................................ 24 

Raman .................................................................................................................. 25 

Spectrometers ....................................................................................................... 26 

UNIVERSITAT ROVIRA I VIRGILI 
QUANTIFYING VARIABILITY IN GRAPE AND WINE QUALITY: A MULTIVARIATE ANALYSIS PERSPECTIVE 
Daniel Schorn García



Chemometrics ........................................................................................................ 27 

Data pre-processing .............................................................................................. 28 

Normalization ................................................................................................... 28 

Filtering ........................................................................................................... 28 

Variable selection .................................................................................................. 29 

Modelling. Unsupervised methods ........................................................................ 30 

PCA ................................................................................................................. 30 

Supervised methods .............................................................................................. 32 

PLS ................................................................................................................. 32 

ASCA............................................................................................................... 34 

Multivariate statistical parameters ...................................................................... 35 

Multivariate statistical process control ................................................................. 38 

Wine fermentation monitoring ........................................................................ 40 

Paper 1: ATR–MIR spectroscopy as a process analytical technology 

in wine alcoholic fermentation – A tutorial................................................... 43 

References ................................................................................................................. 71 

 

Chapter 2. Hypothesis and objective  ................................................................ 83 

 

Main objective ....................................................................................................... 85 

Specific objectives ................................................................................................ 86 

 

Chapter 3. Results  .................................................................................................. 87 

 

Section 1 .................................................................................................................. 89 

Viticulture variability ........................................................................................... 91 

Improvement strategies for the viticulture sector ................................................. 93 

Diverting grapes towards alternative products ...................................................... 93 

Precision viticulture........................................................................................... 94 

UNIVERSITAT ROVIRA I VIRGILI 
QUANTIFYING VARIABILITY IN GRAPE AND WINE QUALITY: A MULTIVARIATE ANALYSIS PERSPECTIVE 
Daniel Schorn García



Study of variability sources .................................................................................. 95 

Paper 2: Assessment of Variability Sources in Grape Ripening 

Parameters by using FTIR and Multivariate Modelling .......................... 97 

References ............................................................................................................... 122 

Section 2 ................................................................................................................ 125 

Red grape cultivars ............................................................................................. 127 

Red winemaking variability................................................................................ 127 

Study of variability sources ................................................................................ 128 

Paper 3: Assessment of the impact of grape maturity and 

oenological practices on colour extraction and final wine characteristics 

using infrared spectroscopy ............................................................................. 131 

References ............................................................................................................... 151 

Section 3 ................................................................................................................ 153 

Process Analytical Technologies (PAT) ............................................................... 155 

Raman spectroscopy ........................................................................................... 157 

On-line Spatially Offset Raman Spectroscopy in alcoholic fermentation ............ 159 

Paper 4: Spatially offset Raman spectroscopic (SORS) analysis of wine 

alcoholic fermentation. A preliminary study .............................................. 161 

References ............................................................................................................... 181 

Section 4 ................................................................................................................ 183 

Wine spoilage ..................................................................................................... 185 

Data matrix treatment ....................................................................................... 186 

Spectral pre–processing and variable selection .................................................. 188 

Acetic acid bacteria spoilage ............................................................................... 189 

Paper 5: Methodologies based on ASCA to elucidate the influence 

of a subprocess: vinification as a case of study .......................................... 191 

References ............................................................................................................... 215 

UNIVERSITAT ROVIRA I VIRGILI 
QUANTIFYING VARIABILITY IN GRAPE AND WINE QUALITY: A MULTIVARIATE ANALYSIS PERSPECTIVE 
Daniel Schorn García



Section 5 ................................................................................................................ 217 

Deviation of alcoholic fermentation process ........................................................ 219 

Multivariate control charts ................................................................................. 220 

Dissimilarity Index ............................................................................................. 222 

Paper 6: A new Index to detect process deviations using IR 

spectroscopy and chemometrics process tools ............................................ 223 

References ............................................................................................................... 243 

 

Chapter 4. General Discussion  ......................................................................... 245 

 

Grape variability ................................................................................................ 247 

Viticultural and oenological variability ............................................................. 249 

Raman spectroscopy .............................................................................................. 251 

Acetic acid bacteria contamination .................................................................... 253 

Multivariate Statistical Process Control ............................................................ 255 

References ............................................................................................................... 257 

 

Chapter 5. Conclusions  ....................................................................................... 261 

 

Appendix .................................................................................................................. 267 

 

Publications derived from this thesis.......................................................... 269 

Contributions to national and international meetings attended ................... 270 

Scientific dissemination activities ...................................................................... 272 

UNIVERSITAT ROVIRA I VIRGILI 
QUANTIFYING VARIABILITY IN GRAPE AND WINE QUALITY: A MULTIVARIATE ANALYSIS PERSPECTIVE 
Daniel Schorn García



 

 

 

 

 

 

 

 

  Introduction 

UNIVERSITAT ROVIRA I VIRGILI 
QUANTIFYING VARIABILITY IN GRAPE AND WINE QUALITY: A MULTIVARIATE ANALYSIS PERSPECTIVE 
Daniel Schorn García



UNIVERSITAT ROVIRA I VIRGILI 
QUANTIFYING VARIABILITY IN GRAPE AND WINE QUALITY: A MULTIVARIATE ANALYSIS PERSPECTIVE 
Daniel Schorn García



  Chapter 1  

 

 - 3 - 

1. Grape and Wine 

Wine has been an integral part of human civilization since its beginnings, and its 

importance is reflected in the fact that significant historical agreements and events have 

been witnessed by it. Wine production can be traced back to the Neolithic period, being its 

birthplace the region encompassing Georgia, Armenia, and Iran. From there, its 

consumption spread to Egypt and eventually throughout Eurasia. Greece and Rome 

played a vital role in the development of wine production and technology, which helped to 

expand the wine industry further. However, the widespread of viticulture occurred with 

the spread of Christianity, with monasteries leading the way in wine production1. 

Grapevine cultivation and wine consumption in Spain date back to the third millennium 

BC, with vine cuttings imported into the Iberian Peninsula by the Phoenicians, who 

brought knowledge of viticulture and winemaking to Southern Spain2. Wine and spirits 

continue to be essential elements of Spanish culture and tradition. Wine production has a 

major impact in Spanish economy as it represents 1.5% of the gross value added3. Spain 

stands out in wine production not only in economic terms, but also in terms of vineyard 

area, being the country with more surface area and more organic vineyards4,5. In addition, 

together with Italy and France, Spain is positioned on the podium in wine production, in 

terms of volume, with these three countries accounting for half of the world's total wine 

production6. 

1.1.  Viticulture 

The vineyard is where the process of producing wine starts and it all begins with the 

cultivation of grape berries. The scientific name for grapevine is Vitis vinifera L., and it 

belongs to the Vitaceae family of plants7. Grapevine is a widely cultivated fruit crop that 

provides berries used as fresh fruit, raisins but also to be fermented and distilled to 

produce alcoholic beverages. The genus Vitis is considered the most important genus in 

agronomic sciences, with Vitis vinifera being the most widely cultivated and the only 

species used in the global wine industry. 

Vitis vinifera L. includes two subspecies: V. vinifera L. spp vinifera and V. vinifera L. ssp 

sylvestris. The latter is the wild form, considered the ancestor of the V. vinifera spp vinifera 

subspecies, which is the cultivated form. While their morphological differences may have 

UNIVERSITAT ROVIRA I VIRGILI 
QUANTIFYING VARIABILITY IN GRAPE AND WINE QUALITY: A MULTIVARIATE ANALYSIS PERSPECTIVE 
Daniel Schorn García



Introduction  

 - 4 - 

resulted from human domestication rather than geographical isolation, cultivated 

grapevines with uniform and stable characteristics are known as “varieties” or “cultivars”. 

Domestication of grapes involved several changes in their biology and morphology to 

ensure better fermentation and more regular wine production7,8. Today, there are 

thousands of Vitis vinifera cultivars generated by vegetative propagation and crosses, but 

wild-type cultivars are rare. However, the global market for grape production is dominated 

by only a few cultivars that are classified according to their final production: wine grapes, 

table grapes and raisins7. 

1.2.  Grape maturity 

Grape maturity encompasses various aspects that contribute to both grape and wine 

quality. It can be understood as the culmination of three distinct maturities, each 

influencing different aspects of the grape and subsequently, the resulting wine. 

The first is the technological maturity, which relates to the progressive development and 

accumulation of fundamental chemical compounds like carbohydrates and acids. These 

components play a crucial role in determining the taste and overall composition of grapes 

and wine9. 

The second is the phenolic maturity, which holds particular significance in red grape 

cultivars. Phenolic compounds, responsible for colour, mouthfeel and stability of the wine, 

evolve and accumulate during this stage. However, when dealing with phenolic maturity, 

polyphenolic concentration is considered as well as the possibility to extract them during 

winemaking. Achieving optimal phenolic maturity is essential in producing red wines with 

desirable organoleptic characteristics and ensuring their longevity9. 

Lastly, we have aromatic maturity, responsible for the primary aromas found in wine. 

These aromas originate directly from the grapes themselves or from aromatic precursors 

that are released during the fermentation process. Aromatic maturity is a crucial factor in 

the overall sensory experience of the wine, as it contributes to its distinctive bouquet and 

aromatic profile9. 

Understanding and managing these three interconnected maturities is vital for 

winemakers, as it allows them to make data-based decisions regarding the ideal harvest 
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time and ensures the production of high-quality wines. Winemakers can unlock the full 

potential of their grapes and create wines that truly showcase their unique terroir and 

varietal characteristics by carefully considering technological, phenolic, and aromatic 

maturities9. 

1.2.1. Sugars 

The most remarkable and significant process in the development of berries is the 

accumulation of sugars inside the fruit. These sugars primarily come from the 

photosynthesis process. While the leaves are the most productive and efficient 

photosynthetic organs, it is important to note that all green organs, including the fruit 

before veraison, can produce sugars9. Carbohydrates produced through photosynthesis 

include glucose, fructose, sucrose, and starch. Starch remains as a stable reserve form and 

undergoes little change during the growth period. Glucose and fructose are initially used 

by the leaves themselves, and the remaining sugars are transported to other parts of the 

plant in the form of sucrose through the phloem with the priority of the carbohydrates 

receptor in the vine varying depending on the plant's vegetative cycle10. During the early 

growth phase of the berry, sucrose is supplied from mature leaves and converted into 

glucose and fructose within the plant cells. However, the increase in sugar concentration 

in the berries is mild during this phase because the sugars imported are partially used for 

fruit development, especially seed growth and ripening process11. 

During the initial ripening phase, a substantial accumulation of glucose and fructose in 

the vacuoles of the pulp cells is achieved. However, the rate of accumulation decreases as 

the ripening period progresses, with a peak at full maturity, which can contain in that 

phase between 150 to 250 g· L−1 of glucose and fructose, with a ratio between hexoses of 

about 1.012. 

1.2.2. Acids 

The total acidity of grapes is mainly determined by the concentrations of tartaric acid and 

malic acid, which make up approximately 90% of the acids found in grapes. Other acids 

derived from grape metabolism are also found in grapes in a smaller concentration, such 

as succinic or citric acids13. 
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Tartaric acid, specifically the L-tartaric enantiomer, is accumulated in grape berries as a 

secondary product of sugar metabolism. During the growth phase, tartaric acid rapidly 

accumulates in the berries, reaching levels of up to 20 g· L−1. After veraison, the 

concentration of tartaric acid slightly decreases and remains relatively constant during 

the ripening period, between 10.0 and 3.5 g· L−1. The amount of tartaric acid in grapes is 

directly related to environmental humidity and inversely related to temperature11. 

Malic acid, primarily consisting of the L-malic enantiomer, accumulates in the vacuoles of 

the berry during the growth phase. This accumulation occurs as a by-product of sugar 

breakdown, although there is also a route involving the beta-carboxylation of pyruvic 

acid14. Starting from veraison, the concentration of malic acid begins to decrease. It is used 

as a substrate for cellular respiration and can also be used in the biosynthesis of glucose 

through gluconeogenesis. However, the amount of malic acid converted to glucose is small, 

accounting for less than 5% of the total accumulated malic acid. The concentration of malic 

acid ranges between approximately 1 to 5 g· L−1 at the time of harvest9. 

Both tartaric and malic acids, which determine the total acidity and pH of the grapes, also 

act as ionic regulators during berry development. The acids accumulate in cell vacuoles, 

but their acidity decreases from veraison onwards due to malic acid combustion during 

respiration, neutralization by imported cations, and dilution caused by water 

accumulation11. 

Despite that sugars and acids play a significant role in the technological maturity of grapes 

and in wine primary characteristics, without an optimal phenolic and aromatic maturities 

grapes do not release their full potential. 

1.2.3. Polyphenolic compounds 

Phenolic compounds play a vital role in influencing the organoleptic properties of grapes, 

giving them their characteristic colour and mouthfeel sensations15. These compounds 

exhibit an increase in concentration as grapes mature, although the relationship is not 

strictly linear. Among the various polyphenolic compounds, a division is made between 

non-flavonoids, present in the flesh of the grape, being the hydroxycinnamic acids the 

predominant ones, and flavonoids, such as anthocyanins and tannins, present in the skin 

and seeds of the grape. They are of utmost importance due to their influence on colour and 
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mouthfeel, respectively. However, their evolution and distribution vary within different 

grape parts16. 

Anthocyanins primarily reside in the grape skin17, and their concentration intensifies as 

maturity progresses, reaching a peak around the technological maturity stage before 

eventually declining. On the other hand, tannins exhibit different behaviour depending on 

the grape part. Tannins from stems and seeds maintain a consistent concentration, even 

a slightly decrease due to polymerization, from veraison onwards18. Conversely, tannins 

derived from the grape skin experience an increase in concentration, with the highest 

levels achieved at the technological maturity stage19. 

It is worth noting that the convergence of technological and phenolic maturity in grapes is 

being impacted by climate change. Grapes are now achieving their technological maturity 

earlier than twenty years ago, as in the beginning of this century the first were the first 

reports of changes in viticulture due to climate change. This maturity pattern change is 

leading to a shift in the correlation between these two maturation stages20. This changing 

pattern underscores the dynamic nature of grape development under actual climate 

change conditions21,22. 

1.2.4. Aroma 

Secondary metabolites, such as aroma and aroma precursor (aroma in a glycosylated 

form23) compounds are accumulated in grapes at the later stages of maturity. They are 

present in flesh and skins of grapes. Many odorant compounds present in grapes play a 

significant role in varietal aroma and will remain after the winemaking process9. The key 

families of aroma include terpenoids (monoterpenoids, sesquiterpenoids, and C13 

norisoprenoids), as well as various precursors of aromatic aldehydes, esters, and thiols. 

Grape berries lack cellular structures for storing lipophilic volatile organic compounds, 

which are instead stored as water-soluble glycosides or conjugates with amino acids such 

as cysteine9. Enzymes called glycosidases and peptidases play a crucial role in releasing 

volatile aroma compounds from these water-soluble forms during alcoholic fermentation24.  

Although the accumulation of these compounds does not seem to be directly correlated 

with technological maturity, it is essential to pay close attention to their development, due 

to actual and future discrepancies related to climate change22. It has been demonstrated 
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that in the actual context, the concentration of typical aromas of specific cultivars, would 

change inversely to temperature20. 

1.3.  Grape analysis 

As mentioned in the previous section, determining major grape compounds to evaluate the 

overall maturity is of utmost importance. Traditionally, viticulturists employ a 

representative sampling method, collecting between one and two hundred grapes to take 

into account the field's variability accurately9,25. Thus, to ensure the results reliability, the 

random sampling performed should take into account several sample characteristics, such 

as position in the field (avoiding external vines), side of the row, position of the bunch and 

position of the grape within the bunch26. Several parameters are then determined in the 

sampled grapes, including: 

- Average berry weight: By weighing a specific number of grape berries, usually a 

hundred, and calculating the average weight per berry26. 

- Sugars: The grape must obtained from the collected grapes is analysed by 

refractometry or by densimetry, and the concentration of sugars is expressed as 

g· L−1 through conversions using reference tables27. 

- pH: Determined by potentiometry using a pH-meter28. 

- Total acidity: Determined by volumetric titration of the grape must using a 

standardized base, usually NaOH27. 

These parameters provide valuable insights into the technological maturity of grapes as 

they offer information regarding sugar and acid content and, if the grapes will be 

fermented, determination of Yeast Assimilable Nitrogen (YAN) is also performed usually 

by Sorensen method in wineries, or in external laboratories by enzymatic analysis9,29. 

On the other hand, to assess polyphenolic and aromatic maturities there is not a 

widespread and easy-to-use methodology that can be applied during harvest, although 

there are some methods to evaluate their concentration and extractability30–32. However, 

each method is specific due to differences in the extraction methodology and may be used 

just for comparative purposes. 
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Currently, viticulturists mainly rely on organoleptic inspection, primarily focusing on 

aromatic characteristics as well as colour, hardness and mouthfeel of the grape skins and 

seeds13,25. This methodology depends on the experience of the viticulturist; however, 

several processes occurred throughout the maturation process may be taken into account 

to perform the organoleptic evaluation25: 

- Stunted pedicel and grape grains increase their sensitivity to seeding. 

- Skin becomes more vibrant, with yellow (white varieties) or bluish black (red 

varieties) tones. Ripe grapes easily separate from skin and stain fingers. 

Immature skin is acidic with low astringency, while ripe grape skin is fruity with 

balanced tannins. 

- Pulp starts acidic and herbaceous, turning sweet and fruity9. 

- Seeds become brown and brittle, lose herbaceous flavours and may have toasted 

aromas when bitten. 

1.4.  Winemaking process 

Winemaking involves a series of processes to transform grape must into wine and both 

technology and timing of its application influence these processes33. The winemaking steps 

are the ones explained below, although it should be noted that sometimes some of these 

steps can be omitted or the order can be changed.  

• Destemming: Separating the woody parts of the grape bunch, such as stems, leaves, 

and other debris, enhances the must quality by avoiding astringent and vegetal 

characters while reducing oxidation and improving finesse and roundness. 

• Crushing: Breaking the grape skin to release the must while being careful not to 

break the seeds, which could lead to bitterness and astringency in the must. 

• Must clarification: Usually grape must is maintained approximately one day at low 

temperature to precipitate some solids and have a clearer liquid to ferment. It is 

performed in white wine fermentation. 

• Maceration: When the must comes into contact with grape skins, usually at low 

temperatures, it acquires colour, mouthfeel and aroma, which contribute to the 

structure and sensory qualities of the wine. Maceration duration varies depending 
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on the type of wine, with longer durations for red wines, shorter durations or none 

for white wines (to prevent fermentation), and moderate durations for rosé wines. 

• Alcoholic fermentation: This is the main process in wine production and implies the 

biochemical transformation of sugars into ethanol and carbon dioxide (CO2) by 

yeast, mainly Saccharomyces cerevisiae. In fact, as it is defined by the International 

Organisation of Vine and Wine (OIV), wine is the product obtained exclusively by 

a total or partial alcoholic fermentation of fresh grapes, crushed or not, or of grape 

must. In addition to the transformation of glucose and fructose to ethanol, yeast 

also incorporate sugars into other metabolic pathways, which will result in the 

release of many metabolites34. 

• Malolactic fermentation: In red wine production, and sometimes in white and rosé 

wines, malolactic fermentation occurs after alcoholic fermentation so it is usually 

called the second fermentation. This fermentation is essential for aging red wines, 

while in white wines it is used selectively to soften acidity because it is the 

biochemical transformation where sour L-malic acid converts to softer L-lactic acid 

by lactic acid bacteria (LAB)35. This process reduces wine acidity, enhances aroma 

and complexity, and results in a smoother and fuller-bodied wine. However, it can 

reduce fruitiness and lead to undesirable odours like excessive buttery or lactic 

notes36. 

• Devatting: It involves separating the wine from the grape skins, seeds and stems. 

This is achieved by transferring the wine to another tank through racking. 

• Pressing: This step plays a crucial role in the final wine quality as it extracts the 

remaining wine in pomace through pressure. Depending on the applied pressure, 

different types of wine with different chemical compositions are obtained. Higher 

pressure results in greater mechanical extraction from seeds and skins, but it can 

negatively affect the chemical and sensory qualities of wine. 

• Aging: The wine obtained from the previous steps is transferred to oak barrels for 

this purpose, typically oak barrels but several studies have tested other woods37. 

Oak wood is carefully selected based on its hardness, permeability, porosity and 

also its origin, typically French or American. Moreover, the barrels are chosen 

according to the toasting level of the wood and the number of times they have been 

used over time as both parameters will influence the wine's character. This process 

involves various physical and chemical changes of wine facilitated by micro-
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oxygenation through the barrel. The controlled exposure to oxygen promotes the 

polymerization and interaction between anthocyanins and tannins, resulting in 

both colour stabilization and astringency decrease. In addition, it should be noted 

that oak provides a series of volatile compounds (all of them belonging to the group 

of tertiary aromas) both naturally present in the wood and formed during the wine's 

evolution in the barrel34. Other materials have been explored due to its properties, 

such as clay and concrete38. 

• Finning: After fermentation and/or aging, it is essential to clarify, stabilize, and 

filter the wine to eliminate possible microbiological or clarity problems, ensuring 

the production of a high-quality wine. 

Figures 1 and 2 display schematic representations for white and red winemaking process, 

respectively, which shows the slight differences that exist between both processes. 

 

Figure 1. Main steps of white vinification process. 
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Figure 2. Main steps of red vinification process 

1.5.  Microorganisms 

Microorganisms play a crucial role throughout the winemaking process. Some of them 

come from the field and are therefore naturally found in grapes but others are consciously 

added at specific times to perform specific functions. 

1.5.1. Yeast 

Among the different microorganisms found in grape skins, yeasts are the predominant 

with populations ranging from 104 to 106 colony-forming units (CFU) per gram of grape. It 

contains a diverse array of yeast species with non-Saccharomyces yeasts being prevalent, 

which would also be predominant in the early stages of alcoholic fermentation. As the 

fermentation progresses, the yeast population changes due to the different ability of 

genera to withstand high-stress conditions. As Saccharomyces cerevisiae presents high 

capacity for fermentation and resistance to ethanol it becomes the dominant yeast from 

the middle stages of fermentation onward, although some wineries opt to introduce this 

yeast earlier through inoculation39.  
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1.5.2. Lactic Acid Bacteria (LAB) 

LAB are responsible for the biochemical transformation of L-malic acid into L-lactic acid, 

known as malolactic fermentation. In grapes and fresh grape must, LAB are found in 

relatively low concentrations (around 102 to 103 CFU· mL−1). The main species include 

Lactiplantibacillus plantarum and Oenococcus oeni40, with the latter being more 

prominent during alcoholic fermentation due to its adaptation to high ethanol content. 

During malolactic fermentation, the decarboxylation of a dicarboxylic acid releases CO2, 

resulting in a decrease in acidity and an increase in pH. Similar to yeast, LAB also produce 

other metabolites that affect the organoleptic properties of wine41. 

1.5.3. Acetic Acid Bacteria (AAB) 

Acetic acid bacteria (AAB) are responsible for the biochemical conversion of ethanol into 

acetic acid, a process known as acetification. Although present in grapes at a relatively 

low population (102 and 103 CFU· g−1), their presence can impact the quality and 

organoleptic properties of the final wine. The anaerobic environment created during 

alcoholic fermentation helps keep the AAB population under control. Moreover, the 

challenging conditions of the later stages of alcoholic fermentation make it difficult for 

AAB to thrive but it is not an impossible process, so its proliferation must be controlled. 

In fact, in the vinegar production process, these bacteria are intentionally utilized to 

convert wine into vinegar, because their high adaptation to high ethanol media. 

1.6.  Factors affecting alcoholic fermentation 

The primary role of yeast is to metabolize sugars, specifically glucose and fructose, as the 

carbon source for the Krebs cycle. This metabolic pathway leads to the production of 

ethanol, as yeast undergoes partial Krebs cycle, due to the high sugar concentration which 

triggers the Crabtree effect42. However, many compounds are also necessary to ensure a 

proper function of the Krebs cycle and other metabolic processes in yeast.  

Nitrogen compounds are of outmost importance as they are required for protein and 

enzyme synthesis. Nitrogen compounds can be classified as inorganic (ammonia salts) or 

organic (such as amino acids or peptides)13. However, the most interesting from an 

oenological point of view is the so-called YAN, which encompasses all nitrogen sources 
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except proline, which requires oxygen for assimilation43, and proteins. To ensure a 

successful fermentation process, it is crucial to maintain an optimal YAN concentration 

ranging between 140 to 400 mg N· L−1. A YAN concentration below this range would 

hinder proper fermentation, while exceeding it could lead to the synthesis of undesirable 

aromas44,45. 

In addition to YAN, other micronutrients such as minerals, vitamins, and anaerobiosis 

factors (compounds that cannot be synthesized during fermentation due to lack of oxygen) 

are essential for the successful progression of alcoholic fermentation13,45. While these 

compounds play a crucial role, it is worth noting that grape must often contains an 

adequate concentration of these nutrients. Nonetheless, when YAN additions are carried 

out, they can also serve as a manner of introducing other necessary compounds. This is 

because commercially available supplements typically include a combination of these 

essential nutrients alongside YAN46. 

Several other factors play a significant role in ensuring proper yeast performance. 

Temperature and sulphur dioxide are two of them. Yeast operates within a specific 

temperature range that directly affects the integrity and permeability of its cellular 

membrane. The optimal temperature range for yeast activity is usually between 16 and 

30 ºC13. However, during fermentation, the presence of ethanol requires a lower 

temperature to prevent its entry into the intracellular environment47. Proper temperature 

control is crucial for achieving high-quality wines and ensuring a successful alcoholic 

fermentation process. By carefully managing the appropriate temperature throughout 

fermentation, winemakers can optimize yeast performance, maintain cellular integrity 

and facilitate the desired metabolic pathways to produce flavourful wines48. 

The use of sulphur dioxide (SO2) also influences yeast function during winemaking. SO2 is 

commonly employed as a preservative and antimicrobial agent due to its antioxidant 

characteristics and ability to inhibit undesirable microbial growth. However, excessive or 

improper use of SO2 can have negative effects on yeast activity. Therefore, it is essential 

to carefully consider and regulate the addition of sulphur dioxide to achieve a balance 

between its beneficial effects and potential impact on yeast performance13. In recent years, 

there is a tendency to make wines without SO2, however its properties are not meet by any 

other additive.  
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1.7. Deviations 

As explained, there are several factors that contribute to the successful progression of the 

alcoholic fermentation process. However, problems can arise during this process especially 

in the form of sluggish and/or stuck fermentations. These issues cause significant concerns 

to oenologists, persisting as common problems in wineries. Stuck and sluggish 

fermentations may be caused by many sources such as an improper initial YAN, sudden 

temperature changes, high initial sugar concentration, incorrect sulphur dioxide (SO2) 

dose or too acidic initial must49. 

A sluggish fermentation usually is an initial indication of potential fermentation trouble. 

It may happen in different moments of the process: a slow starting, a normal fermentation 

becoming sluggish or a whole sluggish fermentation, which usually leads to a stuck 

fermentation48. A stuck fermentation is particularly problematic, as restarting the 

fermentation process in a winery becomes challenging. This involves the addition of 

necessary nutrients and/or the recovery of the suitable temperature, and the reinoculation 

of yeast to reactivate the fermentation. Moreover, as part of yeast stress metabolism, many 

unwanted and unpleasant metabolites may be released to the wine, which will affect wine 

quality50,51. Additionally, in sluggish or stuck fermentations, with the inoculated yeast 

having problems carrying out the process, other unwanted microorganism could take 

advantage and increase their population. 

In terms of deviation caused by spoilage microorganisms, possibilities are plenty and 

frequent in wineries52. Various sources contribute to the presence of different yeast genera, 

including the grape surface microbiota, resident yeast in the winery environment, and the 

use of active dried yeast (ADY) inoculation. However, imposition of a specific yeast to carry 

out the alcoholic fermentation may be challenging and needs to be properly controlled. 

Furthermore, some microorganisms such as LAB may be wanted or unwanted depending 

on the desired outcome of the wine. Low-acidity wines, for example, are not meant to 

undergo malolactic fermentation as it would further increase the pH and increase the 

volatile acidity due to their metabolism leading to an undesired process known as "lactic 

spoilage”36. Nevertheless, the main responsible of contamination in terms of 

microorganisms are AAB, as their metabolism transforms (oxidises) ethanol into acetic 

acid, resulting in elevated volatile acidity levels and characterized by a pungent odour at 

high concentrations50,53. Despite being in low concentration in the surface of grapes, when 
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the skin is damaged their concentration could reach 106 CFU· mL−1 but the alcoholic 

fermentation conditions keeps their population under control as AAB are anaerobic 

bacteria; however, a bad management of wine such as too much aeration during 

winemaking may promote their growth. Another problematic microorganism is 

Brettanomyces, known for producing unpleasant aromas described as “barnyard, sweat or 

horsey”. Even though it may be present in every step of winemaking, its predominant 

source and impact in wine is during aging in wood barrels54. 

The presence of unwanted microorganisms not only affects the final quality of the wine 

due to the release of undesirable metabolites but also creates competition for nutrients 

needed by the inoculated yeast, leading to sluggish or even stuck fermentations55. 

1.8.  Wine analysis 

Numerous factors influence the composition of wine, making it a complex beverage. Figure 

3 provides a schematic representation of wine composition, illustrating the components 

and their approximate ratio. 

 

Figure 3. Representative composition of an average dry red table wine 

(Adapted from Waterhouse et al.34). 

From an analytical perspective, wine is a very complex mixture of many different chemical 

compounds present in a wide range of concentrations. However, for many winery 

applications, just specific compounds are analysed based on their importance in specific 
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metabolic pathways. These compounds or parameters, such as density, pH and 

temperature, are closely monitored to maintain quality throughout the winemaking 

process. Many methods have been proposed by the OIV, such as total acidity, volatile 

acidity, density and ethanol content determination, which are detailed in the 

“Compendium of International Methods of Analysis of Wines and Must”56, to facilitate 

standardized analysis. The OIV compendium serves as a valuable tool, providing validated 

methods and, many times, alternative approaches in cases where the reference methods 

may pose difficulties. 

Despite the availability of these helpful analytical methodologies, wineries often rely on 

their small and limited laboratories to perform basic analyses. In some cases, 

semiquantitative methods are employed solely for comparative purposes. The main 

parameters routinely analysed in wineries include57: 

- Sugar concentration: Measured daily, usually through densitometry, to evaluate 

the progress of alcoholic fermentation. Wineries can assess the process performance 

by the decrease in density over time. 

- pH: Measured using a calibrated pH-meter, it provides a good process performance 

parameter, as the pH evolves during fermentation due to yeast metabolism. 

Additionally, pH measurements allow the monitoring of other winemaking 

processes such as malolactic fermentation and finning, as in these processes, acids 

are consumed or precipitate. 

- SO2: This antimicrobial, antioxidant, antioxidase compound is widely used in 

winemaking. Its concentration, either free, combined or total, is carefully controlled 

both at the beginning of the process (to avoid spoilage by microorganisms) and at 

the end of the process (to ensure compliance with regulations). Due to its 

importance in wine legislation, there are many available methods for its 

determination: Paül method, Ripper method, Toning method, etc. 

- Total acidity: At the beginning, to know the starting point of the process and in the 

end of the winemaking process, it is necessary to control this parameter due to 

possible low acidity grapes or changes in minor acids. Tartaric acid remains the 

same through the process as yeasts are not able to use it in their metabolism. The 

total acid content (excluding dissolved CO2) is normally assessed with a volumetric 
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titration to evaluate every compound impacting acidity and expressed as tartaric 

acid equivalents per litter. 

- Volatile acidity: Determining this parameter is crucial both for regulatory 

compliance and for assessing organoleptic quality. It can indicate potential issues 

with alcoholic fermentation or microbiological contamination. Specific distillation 

systems such as the one used by the García Tena method, followed by volumetric 

titration are commonly employed for this analysis. 

- Malic and lactic acids: The evolution of both malic and lactic acids is monitored, 

particularly in red winemaking, to assess the progress of malolactic fermentation. 

Thin-layer chromatography is commonly used for the analysis of these acids. 

- Organoleptic properties (gustatory, olfactory or visual properties): Traditionally 

assessed by winemakers, the analysis of organoleptic properties can provide 

valuable information about various aspects of the wine. When performed by a 

trained professional, this analysis can offer insights into process performance, 

contamination issues, and the production of unwanted compounds. Additionally, 

evaluating organoleptic properties at the end of the winemaking process can help 

assess the final wine characteristics. To mitigate subjectivity, trained panellists are 

often employed to ensure more objective evaluations. By considering the wine 

sensory attributes, winemakers can make decisions to enhance overall quality. 

The analytical methodologies used should prioritize speed in obtaining results to minimize 

the delay between sampling and getting suitable information. This allows timely 

corrective actions to be taken when necessary. However, there may be complex deviations 

of the process or specific unwanted organoleptic properties, for which wineries require 

additional information beyond their in-house capabilities. This limitation implies having 

to send samples to external laboratories, but this option can be both expensive and time-

consuming, which potentially could lead to wrong decision-making that affects overall 

efficiency of the winemaking process. 

2. Spectroscopic techniques 

In recent years, there has been a growing interest in the development and application of 

fast and cost-effective analytical techniques within the food and beverage industries. This 

growth can be attributed to the emergence of new devices that enable the acquisition of 
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detailed process information, surpassing the limitations of conventional methodologies58. 

Among the various possibilities, spectroscopy has emerged as a remarkable technique due 

to its versatile application across multiple fields and its ability to provide a significant 

amount of information from a sample, often considered as a "fingerprint" technique59. 

Spectroscopy is a set of analytical techniques that involves the measurement, and 

interpretation of spectra. A spectrum is the result of the interaction between 

electromagnetic radiation and matter. Electromagnetic radiation arises from the 

combination of orthogonal oscillations in the electric and magnetic fields. Different types 

of information about the sample can be obtained depending on the specific ranges of 

wavelengths of electromagnetic radiation used for the analysis. These ranges divides the 

radiation in different zones an some of them are very interesting from an analytical point 

of view such as ultraviolet (UV), visible (Vis), near–infrared (NIR), or mid–infrared (MIR). 

The interaction between radiation and matter can be of different types including 

absorption, emission, strokes shift (Raman spectroscopy) or fluorescence. Additionally, the 

target species for analysis can be molecules to atoms, further expanding the applications 

of spectroscopy in food and beverage analysis60. 

2.1. Infrared region 

The infrared (IR) region of the electromagnetic spectrum covers radiation with longer 

wavelengths and lower energy compared to the more known visible region. The energy 

carried by infrared photons induces transitions between vibrational energy states of 

molecules, leading to vibrational excitations of bonds or specific functional groups within 

molecules61. Analysing the absorption bands in an IR spectrum allows for both 

quantitative and qualitative molecular analysis by identifying specific chemical groups. 

While infrared radiation can also cause rotational movements of molecules, these motions 

are typically superimposed on the vibrational bands and require high-resolution 

spectrometers for observation62. 

To obtain the infrared spectrum of a sample, a beam of infrared radiation interacts with 

the sample and the fraction of incident radiation that is absorbed, transmitted, or reflected 

by the sample at a given energy is determined63. This energy is typically represented by 

wavenumbers or wavelengths, which are proportional or inversely proportional, 

respectively, to the energy. Only bonds with an asymmetric structure and a dipole moment 

that changes over time can effectively absorb infrared radiation64. The resulting signal 
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represents the molecular absorption, transmission, or reflection of the sample in the 

infrared region. Samples with different compositions yield distinct IR spectra, essentially 

serving as unique fingerprints for each specific sample within the IR region61. 

The infrared spectroscopic region can be subdivided into three regions (Figure 4) depending 

on its energy power, ordered from less to more energetic: far–infrared (FIR, < 400 cm−1), mid–

infrared (MIR, 4000 to 400 cm−1) and near–infrared (NIR, 14000 to 4000 cm−1).  

 

Figure 4. Division of electromagnetic radiation in the infrared region. Adapted from Sun, 200961. 

Regarding food and beverages, FIR spectroscopy has limited applicability as it only detects 

vibrations of molecules containing heavy molecules, such as inorganic and organometallic 

substances65. However, NIR and MIR spectroscopies have become highly popular 

techniques for the analysis of food and beverages66. These techniques are related to 

vibrations of molecular bonds, showed in Figure 5. In MIR spectroscopy the spectra are 

characterized by showcasing fundamental vibrations with greater absorption capacity and 

well-defined peaks66. On the other hand, the NIR spectrum is the result of combinations 

and overtones of fundamental vibrations present in molecules that mainly contain 

hydrogen atoms in covalent bonds with elements such as carbon (C), oxygen (O), or 

nitrogen (N)67,68. These spectroscopic methods provide valuable insights into the chemical 

composition and molecular structure of food and beverage samples, enabling rapid and 

non-destructive analysis with potential applications in quality control, authenticity 

assessment, and process monitoring69. 

UNIVERSITAT ROVIRA I VIRGILI 
QUANTIFYING VARIABILITY IN GRAPE AND WINE QUALITY: A MULTIVARIATE ANALYSIS PERSPECTIVE 
Daniel Schorn García



  Chapter 1  

 

 - 21 - 

 

Figure 5. Vibrational modes of the water molecule. Adapted from Rodriguez–Saona et al.70. 

2.1.1. Mid Infrared Spectroscopy 

The aforementioned properties of MIR spectroscopy, make it an exceptionally suitable 

technique for food and beverages analysis. It exhibits high peak resolution, enabling the 

detection and characterization of molecules even at lower concentrations than NIR 

spectroscopy. However, the most significant feature of MIR spectroscopy lies in its 

fingerprint region, spanning from 1500 to 1000 cm−1, which is unique and specific to each 

sample. The information contained within this region allows for the identification of 

molecular structures71. 

In MIR spectra, each band can be assigned to a specific functional group, and the intensity 

of the peak provides insights about the polarity and nature of the peak. Highly polarized 

covalent bonds exhibit strong absorption in the MIR region compared to less polar or non-

polar bonds. Moreover, stronger bonds, determined by their bond strength constant, 

vibrate at higher frequencies than weaker bonds, as it is necessary more energy to achieve 

a higher vibrational energy state63. 

MIR spectroscopy faces two significant challenges when applied to samples from the food 

and beverage industry. Firstly, the high absorption of water can lead to the overlap or 

hiding of other important peaks. Secondly, the high abundance of molecules presents in 
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food and beverage samples often share similar bonds, making it difficult to distinguish 

specific signals for the molecules of interest61. 

2.1.2. Near Infrared Spectroscopy 

NIR spectroscopy, although capable of extracting information from the molecular bonds in 

food and beverage samples, presents challenges in terms of interpretability compared to 

MIR spectroscopy, due to the complexity of the samples. This is primarily because NIR 

spectra are a result of combination or overtone bands of molecular vibrations. In a typical 

NIR spectrum, broad bands are observed instead of distinct peaks, leading to the spectra 

of different samples look similar. Moreover, water molecules contribute significantly in 

the NIR region, manifesting as OH overtones and combination tones at various 

wavelengths (760, 970, 1450 and 1940 nm)72. 

NIR bands, being derived from overtones and combinations of fundamental vibrations, 

exhibit weaker signals compared to those obtained in the MIR range. Specific molecular 

scenarios, such as the CO stretch and NH bonds (which are prominently present in 

proteins), can contribute to a NIR spectrum with significant band overlap73. These 

limitations had historically restricted the use of NIR spectroscopy. However, technological 

advancements and computer processing has compensated for its limitations and has 

facilitated the use of this analytical technique, which offers high cost-effectiveness74. 

2.2. Measurement methods 

Sampling techniques have experienced many innovations in terms of optical probes and 

electronic/computational devices. Nowadays, many challenging problems when measuring 

any liquid, gas or solid sample have been surpassed, such as water overlapping72. IR 

transmission methods are the most traditional but other measurement configurations 

have gained popularity, such as attenuated total reflectance (ATR), diffuse reflectance and 

specular reflectance75. 

Transmission sampling methodology for infrared spectroscopy was the first configuration 

implemented. Depending on the physical state of the sample different analysis 

configurations are available. Liquids would need a transmission cell of fixed or variable 

pathlength and high water absorption requires the use of other solvents for analysis. Gas 

samples would require filling a glass or brass gas cell; due to small sample compartment 
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a multireflection gas cell is necessary. Analysis of solid samples have more possibilities 

depending on the previous sample preparation: alkali halide disc, mulls or films. Due to 

sample preparation, transmission methodologies are not suitable for in-situ analysis of 

processes63. 

Reflectance methodologies provide a more convenient approach for sample analysis. 

Depending on how radiation interacts with the sample, there are three different 

methodologies: specular reflectance, diffuse reflectance, and attenuated total reflectance 

(ATR)75. 

Specular reflectance is based on the external reflection, where the incident beam and the 

reflected beam have the same angle of incidence. It is particularly useful for solid samples 

with flat surfaces and reflective properties, although it can be adapted for use with liquids. 

Several factors can influence the resulting spectra, such as the angle of the incident beam, 

surface roughness, refractive index, and absorption properties of the material76. 

2.2.1. Diffuse Reflectance 

Diffuse reflectance, also known as Diffuse Reflectance Infrared Fourier Transform 

(DRIFT) spectroscopy, is also based on the reflectance properties of the sample. However, 

the incident beam penetrates deeper into the sample than in specular reflectance, and the 

resulting reflection scatters in virtually every direction, producing diffuse scattered 

light70. This method is well-suited for rough surfaces and powdered samples (often with 

KBr as a dilutant). The detector collects the beams coming from a wide angle, and the 

obtained reflectance spectrum correlates the sample concentration with the intensity of 

the scattered radiation, following the principles of the Kubelka–Munk theory. Figure 6 

provides an example of specular reflectance, diffuse reflectance, and a combination of both. 
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Figure 6. Representation of specular, diffuse and diffuse and specular reflectance in a powdered 

sample. Adapted from Coates77. 

2.2.2. Attenuated Total Reflectance 

ATR is a widely used sampling technique for infrared spectroscopy due to several 

advantages. One of the main benefits is that it requires minimal or no sample preparation. 

Additionally, it only requires a small amount of sample, it eliminates the need for cells 

and avoids variability caused by different path lengths. ATR ensures consistent spectrum 

collection across measurements for the same sample66. 

The principle behind ATR is based on the attenuation of infrared light when directed at 

the interface between an internal reflective element (a crystal) with a higher refractive 

index than the sample. Crystals such as zinc selenide (ZnSe), thallium iodide-thallium 

bromide (KRS–5), germanium (Ge), silicon (Si), and diamond are commonly used for this 

purpose. An evanescent wave is generated at the crystal-sample interface, which 

penetrates the sample. The sample selectively absorbs specific wavelengths, leading to a 

decrease in the intensity of the reflected radiation. The attenuated radiation leaving the 

crystal is then measured63. An example of ATR for a liquid sample is shown in Figure 7. 

Unlike transmission methods, ATR does not require the sample to be thin enough for light 

transmission. This is because the radiation does not pass through the sample but instead 

interacts with its surface. The penetration depth of the radiation is limited to a few 

micrometres (μm), ensuring that the same spectrum is obtained regardless of the amount 

of sample on the crystal's surface. In the case of liquid samples, intimate contact with the 
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crystal is easily achieved. For solid samples, pressure is applied to ensure proper contact 

with the crystal. To address this, pressure clamping mechanisms have been added in 

spectrometers with ATR, allowing constant pressure on the sample during 

measurement70. 

 

Figure 7. Schematic diagram of the attenuated total reflectance sampling technique. 

2.3. Raman 

Raman spectroscopy is a complementary technique to IR spectroscopy. In other 

spectroscopic methods, when the sample absorbs the energy from the incident beam, its 

molecules reach a temporarily higher energy state before returning to their original energy 

state. This process is known as Rayleigh scattering. However, a small fraction of the 

scattered photons (approximately 1 of each 107 scattered photons) either goes back to a 

higher (Strokes shift) or lower (anti-Strokes shift) energy state than the original, being 

the Strokes shift more usual and the one measured by Raman spectrometers78. Such 

Raman processes occur only for specific vibrations, some of which are exclusive to Raman 

spectroscopy, while others are observed in both Raman and IR spectroscopy. To obtain a 

Raman spectrum, a laser with a specific wavelength is used to excite the sample and the 

resulting Raman scattering is recorded79. 

A typical Raman spectrum is represented by the number of photons per second (y-axis) 

versus the increasing wavelength (nm) or Raman shift (cm−1). Raman spectroscopy 

provides a complementary fingerprint to IR spectra. Furthermore, it offers several key 

advantages. Sample preparation requirements are minimal, or in some cases, 

unnecessary. Water and ethanol, which are the main molecules in grape must and wine, 

exhibit weak Raman scattering, making Raman spectroscopy highly suitable for such 

applications. Additionally, with specific instrument configurations, measurements can be 

conducted through sample containers. The main limitation of Raman spectroscopy lies in 

the presence of strong fluorescence in certain samples, which can mask the Raman 
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scattering signal. To overcome this problem, a longer wavelength excitation laser is 

employed, as fluorescence is less likely to occur under these conditions70. 

2.4. Spectrometers 

IR spectrometers can be classified into two types: dispersive systems and Fourier 

Transform (FT) instruments. However, FT instruments have largely replaced dispersive 

ones due to their simpler operation. Dispersive instruments require a radiation source, a 

monochromator, a sample holder, and a detector (usually connected to an amplifier) to 

obtain a spectrum. The detector measures the energy at each frequency that passes 

through the sample, and the resulting signal, representing intensity versus frequency, is 

plotted70. 

The introduction of FT significantly improved IR spectroscopy by simplifying the 

spectrometer setup. In FT, the only moving part required is the interferometer80, so a 

Michelson interferometer is used, consisting of an infrared light source, a beam splitter 

(which splits the beam into two), and two mirrors: one fixed and one moving63. The split 

beams are reflected by one of the mirrors and then recombined at the beam splitter. The 

resulting signal is a result of the interference of the two beams. If the split beams have 

travelled the same distance, the reflected beams are in phase and all frequencies interfere 

constructively, producing the highest intensity. However, as the moving mirror changes 

the distance travelled by the beam, different interference patterns are obtained71. 

After the beam passes through the sample, the obtained signal is called interferogram. 

The interferogram contains information about the source (located at the centre of the 

interferogram, known as the Centerburst) and the sample (located in the wings). Initially, 

the interferogram is not interpretable and needs to undergo mathematical calculations 

using the Fourier Transform to obtain the desired spectrum. This calculation is performed 

directly in the equipment and involves breaking down the interferogram into sine waves 

for each wavelength or wavenumber. FT for IR spectra acquisition has improved the 

quality of the spectra, reduced the time required to obtain them (as all frequencies are 

measured simultaneously), and incorporates an internal calibration using lasers as 

internal wavelength calibration standards. Additionally, its simplicity reduces the 

possibility of mechanical problems. It should be noted that the acquisition of a background 

is necessary, which can be air or water depending on the analysis objective and sample 

UNIVERSITAT ROVIRA I VIRGILI 
QUANTIFYING VARIABILITY IN GRAPE AND WINE QUALITY: A MULTIVARIATE ANALYSIS PERSPECTIVE 
Daniel Schorn García



  Chapter 1  

 

 - 27 - 

type. The background enables the determination of the reference point for absorption 

intensity71. 

Furthermore, over the past two decades, technological advancements have made it 

possible to move measurements from the laboratory to the sample, shifting the paradigm 

of spectrometry. As a result, the design of spectrometers has evolved, with emphasis 

placed on achieving a satisfactory fast response for specific applications while considering 

constraints such as budget and size81. In contrast, users, who may have limited knowledge 

of spectroscopy, primarily seek a user-friendly interface and consistent performance. 

These factors are not traditionally defined solely by parameters like signal-to-noise ratio 

or stability over time, but more to robustness to movement, stability over time 

fluctuations, sealing for particles or liquids, power consumption, heat dissipation and 

battery life82. 

The portability has been able to be achieved through the apparition and application of 

some technological advances, such as the diode array instead of the moving mirrors, the 

use of LEDs as light sources, which also benefits the heat management and the 

microelectromechanical systems, to achieve smaller instruments. Both improvements 

have been more notorious and applicable in NIR spectrometers than in MIR ones. 

Additionally, portable spectrometer prices have diverged regarding to the comparison of 

NIR and MIR spectroscopy, as the size of the optics and the need of use the moving mirror 

for MIR, have made that these equipments are still much more expensive and bulkier 82. 

3. Chemometrics 

The techniques mentioned in the previous section generate a high amount of data per 

analysed sample, as every wavelength represents a value, accounting for hundreds of 

values. Additionally, due to their fast response, they allow for obtaining information from 

a large number of samples in a short time. As a result, high-dimensional data matrices 

are generated, containing the information about the samples and measurements. For 

example, when measuring IR spectra for multiple samples, an IxJ matrix is obtained, 

where I represents the samples and J represents the wavelengths or wavenumbers. 

Furthermore, if the spectra are taken from a process, such as alcoholic fermentation, a 

third dimension, K (time), is considered, resulting in an IxJxK matrix. Multivariate data 

analysis (MVDA) techniques are required to process the data and extract the desired 

information from the samples, if they have any source of variation or if there are any 
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aggregation or relationships. MVDA techniques, when applied to analyse the chemical 

information of samples, are known as "chemometrics"83. 

The first step when dealing with a three-dimensional matrix is data arrangement or 

unfolding. In the given example, two possible data arrangements can be used. The first 

one is IKxJ, where each spectrum of the samples (I) throughout the entire process (in every 

time, K) is concatenated (I· K) along one matrix axis, while the wavelengths (J) are along 

the other. The second approach is IxJK, where spectra from the same sample at different 

times (K) are concatenated (K· J) along the wavenumbers (J), while the samples (I) are 

along the other axis84,85. 

3.1. Data pre processing 

After obtaining a two-dimensional matrix, the next step involves processing the data to 

enhance their quality by reducing random noise caused by instrument variations, such as 

fluctuations in light sources and light scattering. This processing aims to minimize sources 

of spectral systematic variability and improve selectivity, ultimately leading to better 

accuracy and robustness for subsequent data analysis86,87. While each analytical signal 

has its specific pre-processing techniques, this section will discuss the common pre-

processing techniques used in this thesis for IR spectroscopy, categorized as normalization 

and filtering87,88. 

3.1.1. Normalization 

Normalization is a type of data pre-processing that aims to minimize spectral variability 

caused by variations in light sources or scattering effects89. The two most commonly used 

methods are standard normal variate (SNV)90 and multiplicative scatter correction 

(MSC)91. SNV involves subtracting the mean spectrum from each individual spectrum and 

dividing the result by the standard deviation (calculated row-wise). On the other hand, 

MSC utilizes regression on the mean signal to correct wavelength-dependent effects. 

3.1.2. Filtering 

Filters are employed to mitigate spectral offsets, positive or negative slopes in spectra, 

broad baseline distortions, and other baseline effects. Baseline correction encompasses 

several methods to minimize distortions caused by scattering, which range from 

subtracting a straight horizontal line to subtracting a polynomial function88. Smoothing 
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methods aim to remove random noise by fitting a polynomial to a range of data points 

(moving window averaging), and among the smoothing techniques, Savitzky-Golay is the 

most commonly used92. Derivative methods may serve various purposes, such as 

enhancing small peaks, accentuating shape differences between nearly identical peaks, 

and correcting baseline shifts and drifts (depending on the derivative order). Savitzky-

Golay derivative methods are popular as they apply smoothing and derivatives in a single 

step88. 

Subsequently, mean centering is commonly applied to conclude this step, as it allows for 

the correction of systematic differences between variables. Mean centering involves 

subtracting the mean value of each variable from each raw value, resulting in data with a 

zero mean. This method preserves spectral shape variations while eliminating differences 

between large and small peaks along the spectrum93. 

Depending on the objective, other spectroscopic pre-processing techniques have also 

proved to be useful. However, it is important to assess the pre-processing outcomes by 

visualizing the changes in spectra (although this evaluation requires prior knowledge of 

the signal and data) or evaluating model parameters to understand and quantify the 

effects of the applied pre-processing steps. In some cases, trying pre-processing 

combinations that have worked in other models can be useful, but this may involve a trial-

and-error approach94. 

3.2. Variable selection 

When modelling the information, it is important to consider that some variations may be 

attributed to instrumental noise rather than chemical information from the sample. In 

order to improve the model, it may be necessary to remove non-transcendental variables, 

and there are several strategies to accomplish this95. 

Filter methods are applied after model building and involve selecting important variables 

by ranking the variable and applying a threshold. The Variable Importance in Projection 

(VIP) and the Selectivity Ratio (SR) are the main methods in this category95–97. 

Wrapper methods involve adding or removing variables and rebuilding the model until no 

significant difference between the models obtained is achieved. Examples of methods in 

this category include uninformative variable elimination in Partial Least Squares (UVE–
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PLS), interval PLS (iPLS), genetic algorithms, and predictive property-ranked variables 

(PPRV)95–97. 

Alternatively, variable selection can be directly integrated into the model building process 

to reduce computation time compared to wrapper methods. Typical methods involve 

introducing sparsity into weight vectors, regression coefficients, loadings, or canonical 

vectors95–97. 

In addition to these techniques, spectroscopists may also selectively choose specific regions 

based on their prior knowledge of the sample and spectra88,98. 

A well-chosen combination of pre-processing and variable selection techniques can greatly 

improve model performance and interpretability. In model calibration, effective variable 

selection can lead to a reduction in analysis time, as future samples only need to be 

analysed in the selected regions. 

3.3. Modelling. Unsupervised methods 

When performing data analysis, it is usual even mandatory to initially employ 

unsupervised methods as exploratory tools. Unsupervised methods solely require 

measured data, the spectra, as input and do not rely on any additional information. These 

methods are used for various purposes, including data visualization, outlier detection, 

identification of trends, and grouping based on data variability99. 

3.3.1. Principal Components Analysis 

The most commonly used method for data exploration is Principal Component Analysis 

(PCA). This method focuses on reducing the dimensionality of the variables, resulting in 

new uncorrelated variables known as Principal Components (PCs). PCs are a linear 

combination of the original variables (Figures 8 and 9), and they are arranged in order of 

the highest variability. This means that the first PC explains the direction of highest 

variability, the second PC explains the second highest direction of variability, and so on. 

In practice, the interpretation of PCA involves primarily focusing on the first few PCs, as 

they capture the main directions of variability in the data100,101. 

UNIVERSITAT ROVIRA I VIRGILI 
QUANTIFYING VARIABILITY IN GRAPE AND WINE QUALITY: A MULTIVARIATE ANALYSIS PERSPECTIVE 
Daniel Schorn García



  Chapter 1  

 

 - 31 - 

 

Figure 8. PCA model for two original variables showing the first PC of the model (red line) and the 

projection of the samples in the PC (circumference). Adapted from Kucheryavskiy102. 

Each PC is defined by the product of two vectors: the score matrix T, which represents the 

projection of the samples onto the new coordinate system, and the loadings matrix P, 

which represents the weight coefficients of the original variables. The information not 

explained by the new variable is left in the residuals matrix, E. Data decomposition in 

fewer variables can be described by the following equation103: 

X = T·PT + E    Equation 1 

A schematic representation of the PCA matrix decomposition of the data depicted in 

Figure 8 is shown in Figure 9. 

 

Figure 9. PCA decomposition for the example given in Figure 8 in matrix form. The original matrix 

(X) is decomposed in the product of scores (T) and loadings (PT) plus the residual matrix (E). Adapted 

from Kucheryavskiy102. 
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3.4. Supervised methods 

Supervised methods utilize both measured data and prior knowledge provided by the 

analyst regarding the sample. This prior knowledge can take the form of empirical values, 

such as the reference value of a physicochemical parameter, or qualitative information 

obtained from the analysis, such as the sample group classification or the design of 

experiment (DoE) employed to generate the samples99. 

3.4.1. Partial Least Squares (PLS) regression 

When predicting physicochemical parameters using fingerprint techniques like IR 

spectroscopy, algorithms need to establish a correlation between the signal (a two 

dimensional data matrix, normally represented as X) and the parameter of interest (a one 

dimension matrix, normally expressed as Y, with the same sample dimension than X). The 

most commonly used algorithm for this purpose is Partial Least Squares (PLS) regression. 

In PLS, a similar approach to PCA is applied to decompose the original matrix into new 

variables called Latent Variables (LVs). However, in PLS these LVs maximize the 

covariance between the signal and the predicted parameter. In the example shown in 

Figure 8, the direction of variability of the physicochemical parameter (represented by a 

range of purples based on reference values in Figure 9) may not align with the main 

direction of variability. Therefore, a compromise needs to be found between the variability 

of the spectra and the variability of the parameter104. 

 

Figure 10. PLS model for two original variables showing the first LV of the model (orange line) and the 

projection of the samples in the LV (circumference). Different purple shades depict a range in a 

physicochemical variable for the samples. Adapted from Kucheryavskiy102. 
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In the case of the PLS algorithm, X and Y matrices are decomposed following the equations 

2 and 3. 

X = T·PT + E                         Equation 2 

Y = U·QT + F                         Equation 3 

Where T and U are the scores of X and Y, respectively, P and Q are the loadings related 

to the variables in X and Y; and E and F are the residuals of X and Y not explained by the 

selected LVs. Then, the regression vector that relates the information of X and Y is 

calculated as: 

U = T·BP L S  + H                         Equation 4 

BPLS is a matrix containing the PLS coefficients to relate X and Y through their scores. 

More details on how the regression coefficients are obtained can be found in Wold et al.105. 

H is the matrix of the information not explained by the model, the residuals matrix. 

3.4.2. ANOVA – Simultaneous Component Analysis 

A DoE is a data matrix containing the experimental conditions factors specifying the 

individual categories for each factor. In the case of ANOVA – Simultaneous Component 

Analysis (ASCA) supervised method, the additional information given with the measured 

data to the algorithm is a matrix that contains in which category for each factor is 

considered a specific sample. It can be considered that ASCA is a generalization of ANOVA 

but for multivariate data. Considering two factors, ASCA decomposes the original 

(centred) data matrix according to: 

Xc = X  1mT = XFactor 1 + XFactor 2 + XInteraction+ E          Equation 5 

where X is the original data matrix containing the spectra, 1 is a vector of ones, mT is the 

mean of all the observations, Xfactor 1 and Xfactor 2 are the matrices representing the effects 

of each one of the experimental factors, XInteraction contains the interaction between the 

factors and E is the residual matrix. Each matrix is centred and contains the mean profiles 

of the samples corresponding to each factor or interaction level. Since all effect matrices 

are centred, the magnitude of the effects can be evaluated as the sum of the squared matrix 

elements. Given a factor i:  
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SSQfactor i = ||                                                                    X factor i||·2                 Equation 6 

where SSQ is the sum of squares of the elements in the matrix and ||·||is the Euclidean 

norm. The interaction matrix is calculated after the subtraction of the main effect 

matrices. Then, a bilinear decomposition of each effect matrix is performed using 

Simultaneous Component Analysis (SCA). In the context of ASCA (under the constraints 

of ANOVA), this reduces to PCA, as the goal is to model the variability linked to each of 

the factors. Hence, each matrix from Equation 5 can be decomposed as: 

𝐗factor 𝑖 = 𝐓factor 𝑖 ⋅ 𝐏factor 𝑖
T + 𝐄factor 𝑖  Equation 7 

where Tfactor i is the score matrix, PT
factor i is the loading matrix and Efactor i is the residual 

matrix of the ith partitioned matrix in equation 5. By reducing the dimensionality of the 

data, a clearer visualization and interpretation can be achieved, allowing for the 

examination of each experimental factor or interaction individually. The loadings for 

factor i define a subspace spanned by Xfactor i, which emphasizes the spectral directions 

associated with the factor being investigated. The scores for factor i are the new 

coordinates of the observations on the Simultaneous Components (SCs) of the model106.  

Other common supervised algorithms are soft independent modelling of class analogies 

(SIMCA) for classification107 and multivariate curve resolution to address mixture 

analysis problems108. 

3.5. Multivariate statistical parameters 

To assess the performance of the model, it is essential to calculate various statistical 

parameters that provide insights into the sample's classification, predictive ability, and 

the statistical significance of the results.  

Hotelling T2 and Q residual are particularly useful parameters in determining the 

sample's similarity to the rest of the samples and its belongingness to the model space93. 

Hotelling T2, can be seen as an extension of the univariate t-test and is applied to the 

scores obtained from the model. Assuming a normal distribution of scores, it establishes 

statistical boundaries and quantifies the distance between a sample and the centre of the 

model93. It is calculated as: 
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T𝑖
2 =

𝐭𝑖
T·(𝐓T·𝐓)

−1
𝐭𝑖

𝐼−1
     Equation 8 

where T is the score matrix of the calibration samples, ti is a vector containing the scores 

of the projected ith sample in the model space (PCA or PLS model, for instance) and I is 

the dimensionality of the score matrix93. The T2 limit to statistically determine whether a 

sample has a high Hotelling T2, meaning an unusual score value compared to the rest of 

samples, is calculated as: 

T𝑖
2

(𝐼,𝐴)
=

𝐴·(𝐼−1)

𝐼−𝐴
· F𝐴,𝐼−𝐴,α        Equation 9 

where A is the number of principal components, I is the dimensionality of the score matrix, 

and α the significance level. By analysing the Hotelling T2 value, we can determine how 

well a sample fits within the model space and identify potential outliers or samples 

deviating significantly from the model's central tendency93. 

Another important parameter that describes how well a model includes a sample into its 

space is the Q-statistic, the sum of the squared residuals, that is, the squared sum of the 

distance between the sample and its projection onto the model space109. It is calculated as: 

Qi = ei · ei
T = xi · (I − PA · PA

T) · xi
T

               Equation 10 

where ei is the ith row of the residual matrix (E), PA is the matrix of the A loading vectors 

considered in the model, and I is the identity matrix of the appropriate size. A confidence 

limit for the Q-statistic can also be calculated as follows: 

Qlim = θ1 · [
zα·√2θ2·h0

2

θ1
+ 1 +

θ2·h0·(h0−1)

θ1
2 ]

1
h0

⁄

     Equation 11 

By assessing and evaluating the magnitude of the Q residual, we can identify samples that 

are poorly explained by the model and potentially require further investigation. Both Q 

versus T2 statistics plotted together, is called an influence plot, which is very useful for 

outlier detection (which could be of different kind as shown in Figure 11) or to detect 

samples with high influence in the model, especially when there are a lot of samples and 

normal distribution is correctly assumed93,100,109.
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1 – High residual = the sample is far from 

the model, but its projection of the 

model is Near the statistical centre. 

2 – High Hotelling T2 = the sample is far 

from the centre of the model, but in 

the same space. 

3 – A combination of both, the sample is 

far from the model space and its 

projection is far from the model 

centre. 

4 – Sample outside the statistical limit 

but not considered as outliers.
Figure 11. Influence plot example, showing three case scenarios of different possible outliers 

(circled with a dashed circumference). 

Other important model parameters can be calculated depending on the validation 

procedure chosen to assess the prediction performance. One such parameter is the root 

mean squared error of cross-validation or prediction (RMSECV or RMSEP)104, calculated 

as: 

RMSECV = √
∑ (yi−ŷi,CV)2nCV

i

nCV
 or RMSEP = √

∑ (yi−ŷi)2n
i

n
    Equation 12 

where yi is the measured value, ŷi or ŷi,CV is the predicted value for the internal (RMSECV) 

or external (RMSEP) validation respectively and ncv or n is the number of total samples 

used in the total number of cross-validation samples or the external validations. Internal 

or external validation are two ways of validating the prediction model, assessing the 

performance of the model with samples not used in the calibration. The difference between 

both strategies is that in cross-validation or internal validation a subset of the samples is 

taken out, then the model is build, the excluded samples are projected, and the 

performance of the model is assessed; then, the samples are included back and another 

subset is selected to repeat the process104,110. For external validation, a subset of samples 

is excluded from calibration, and used just to project into the model and assess its 

performance. Samples are not considered in this case back into calibration. 

Other parameters are often needed to contextualize the prediction errors, such as the Ratio 

of Performance to Deviation (RPD), which considers the ratio between the standard 

deviation of the predictand and the Standard Error of Prediction (SEP). This parameter 
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helps account for the increase in RMSEP due to an expanded measurement range, thereby 

removing range effects111. It is calculated as: 

RPD =
SDy

SEP
              Equation 13 

Several authors have proposed different categories to define model performance, with an 

RPD above 2 often considered a threshold for good model performance. Throughout this 

thesis, this value has also been used to assess model performance. However, caution 

should be taken when using this parameter, as biased or non-normally distributed models 

may still exhibit good RPD values112. 

Another parameter used for range standardization of RMSEP values is the Range Error 

Ratio (RER), which takes into account the maximum (ymax) and minimum (ymin) values111, 

and is calculated as follows: 

RER =
ymax−ymin

SEP
              Equation 14 

Throughout the thesis, a RER higher than 10 has been considered indicative of good model 

performance. It is important to note that this parameter should also consider the 

assumption of normal distribution and the statistical significance of extreme samples 

within the overall sample set112. 

Finally, when working with DoE in ASCA, a permutation test is performed to assess 

whether the observed impact of a designated factor is a result of the factor itself and not a 

random result. This test involves comparing the distribution of results after permuting 

the DoE under the null hypothesis. The permutation test allows the calculation of the 

significance of a factor without the constraint of normality of samples values113. It is 

calculated as: 

𝑝 − value(𝐗𝑖) =
nbr(𝐒𝐒𝐐(𝐗𝑖,perm≥𝐒𝐒𝐐(𝐗factor 𝑖)))+1

𝑘+1
            Equation 15 

where “nbr” is the number of occurrences, k is the number of permutations and Xi,perm is 

the matrix obtained after a random row permutation. The p-value obtained from the 

permutation test indicates the number of cases where the variance of a specific factor is 

lower than the variances resulting from permutation106,114. In the thesis, 10,000 
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permutations have been used for each ASCA model, which sets the limit for statistical 

significance. A p-value less than 0.05 indicates that only 500 permutations have resulted 

in better results than the actual factor distribution. 

3.6. Multivariate Statistical Process Control 

Process control is an essential requirement in every industry to ensure proper process 

behaviour and to understand the reasons behind process faults. When statistical methods 

are used for monitoring, it is known as statistical process control (SPC). By closely 

monitoring the process, the quality of the final product can be ensured, and production can 

be improved. Identifying the cause of process deviations enables early corrective measures 

to be taken, thus minimizing the impact of these deviations on the final product's 

properties and quality115. 

Industries implement SPC using control charts, which graphically represent process 

performance over time. These charts, aided by statistical limits, help in understanding 

and predicting process behaviour, identifying possible deviations, and characterizing 

different types of variation.  

As spectroscopy arose, fingerprint techniques have been used that gather more 

information about the process than univariate techniques. As more information is 

obtained new approaches or the adaptation of existing approaches are required. This 

techniques that deal with multivariate information of a process to monitor and control it 

are known as multivariate SPC (MSPC). In MSPC the first step is data reduction since 

creating control charts for hundreds of variables is tedious, impractical and ineffective116. 

With MSPC, the new variables obtained through linear combinations of the original ones 

provide a more comprehensive information, including interactions and combined effects, 

in a single control chart117. 

Several approaches can be employed to construct MSPC control charts. The most common 

and straightforward method involves using PCA to reduce dimensionality and analyse the 

scores, Hotelling T2 or Q residual values or their evolution over time. Processes that have 

not suffered any problem or deviation, known to work under normal operating conditions 

(NOC) are used to construct these charts. Control charts based on various statistical 

values and limits can be used individually or together, as they complement each other. 

Statistical limits can be calculated using stablished formulas, such as for Hotelling T2 and 
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Q residuals, or calculating the confidence interval or the value of the confidence level times 

the standard deviation. 

For future processes to be monitored, if the behaviour remains under control, their 

projections on the control charts should fall within the limits. However, if a process 

deviation occurs, the chart will show an evolution crossing the statistical limits, indicating 

a deviation from normal behaviour. Additionally, early signs of process deviations, even 

before crossing the limits, can be detected, triggering early intervention measures. 

Studying the contribution of the measured signal (using a fingerprint technique) allows 

determining the cause of the deviation and acting consequently to dismiss the fault118. 

MSPC control charts can also be created by predicting a specific parameter, particularly 

when industries must comply with regulations regarding maximum allowable 

concentrations in a process. In such cases, prediction models using methods like PLS are 

employed. A comprehensive analysis of the errors across the parameter range is conducted 

to establish reliable statistical limits that ensure compliance with the regulations, 

considering the multivariate nature of the errors. These prediction-based control charts 

provide valuable insights into the process performance and enable proactive measures to 

maintain compliance with the legal requirements119. 

4. Wine fermentation monitoring 

The application of spectroscopy in monitoring wine alcoholic fermentation is established 

on the theoretical basis discussed in previous sections. Figure 12 shows three examples of 

using different spectroscopic techniques, namely MIR, NIR, and Raman spectroscopy, to 

observe the spectral differences in grape must and wine. These observed differences in the 

spectra, which would occur from the beginning to the end of the alcoholic fermentation 

process, offer potential opportunities when employing spectroscopy as a tool for process 

monitoring. Moreover, it opens up the possibility of developing MSPC tools specifically 

tailored for monitoring and controlling the fermentation process, further enhancing its 

efficiency and final product quality. 

The initial stage in implementing MSPC involves gaining a thorough understanding of the 

process at hand. To achieve this, numerous researchers have investigated into various 

aspects of the winemaking process, particularly focusing on predicting different 

parameters at different stages. Given that vinifications are typically conducted on a large 
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scale and are seasonal processes, it becomes crucial to maximize the number of replicates, 

explore various conditions, and even simulate process deviations. Consequently, initial 

investigations of the process are often carried out on a laboratory scale under controlled 

conditions. Setting up such studies can present challenges in adequately capturing the 

complexities of the process. Since literature focuses more on the explanation of the results 

obtained than on the preliminary trials before doing an actual experiment, the following 

tutorial was developed to provide researchers with a starting point for the study of 

alcoholic fermentation, specifically employing portable MIR spectroscopy. 

 

Figure 12. Spectra of grape must (blue) and wine (red) in NIR, MIR and Raman spectroscopy.
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Abstract 

The goal of this article is to guide the reader through the critical points to be faced when 

monitoring a fermentation following a Process Analytical Technology (PAT) approach. To 

achieve this purpose Attenuated Total Reflectance – Mid–Infrared (ATR–MIR) 

spectroscopy coupled to chemometric techniques are proposed. 

Each of the crucial steps (set up of microvinifications, sampling, spectroscopic analysis and 

chemometric data treatment) is deeply investigated, revealing how the sampling is 

decisive for the subsequent modelling phase, suggesting how to set parameters to obtain 

good quality signals, and explaining how to prepare the data for the chemometric 

modelling and to perform the calculations. The modelling strategies here presented, based 

mainly on basic chemometric tools such as principal component analysis and partial least 

square regression, proved to be effective to the purposes and affordable even for non-expert 

chemometric users. 

The article shows, using real examples, how to obtain or predict several parameters from 

a fermentation data set - control of the fermentation evolution, prediction of oenological 

parameters during the alcoholic fermentation and detection of deviations from the normal 

operation condition. 

 

Keywords 

infrared spectroscopy; PAT; microfermentation; wine; multivariate process control  
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Introduction 

Wine production is based on the biochemical process called alcoholic fermentation, which 

implies the transformation of sugars (glucose and fructose) into ethanol and carbon dioxide 

carried out by yeast, usually of the genus Saccharomyces. It is a complex process due the 

release of many yeasts’ metabolites at very different concentrations and that are related 

to physicochemical and organoleptic properties of the final product1. Thus, the control of 

these by-products has a substantial impact on the final quality of the wine. However, apart 

from the daily visual observation of the tanks, the parameters that are routinely and 

traditionally measured in the cellar to follow the alcoholic fermentation are simply the 

temperature, the density and the pH. Although there are already some simple devices on 

the market that can measure and predict these oenological parameters, they are not 

widely used. This is because, as in determining these parameters using other analytical 

methods, there is a time lag between obtaining the results and applying the corrective 

actions. Thus, when problems such as deviations, stuck or sluggish fermentations are 

detected, the delay in carrying out the corrective measures negatively affects the quality, 

which in the end means economic losses2. This is why there is a growing interest in an 

effective monitoring strategy based on a real-time approach3.  

The United States Food and Drug Administration defined Process Analytical Technologies 

(PAT) as “a mechanism to design, analyse, and control manufacturing pharmaceutical 

processes through the measurement of Critical Process Parameters which affect Critical 

Quality Attributes” 4. This philosophy is well suited to any other industry where quality 

control is essential, such as the food industry. It should be noted that food samples are 

often complex chemical mixtures and, many times, easy to be altered. Therefore, the 

quality of a food product cannot be guaranteed by analysing only the final product, but a 

control of the product is required throughout the production process by in-line or on-line 

measurements. Due to its feasibility and practicality, the PAT approach has already been 

applied to different sectors of the food industry with satisfactory results (see e.g. Jerome 

et al.5, van den Berg et al.6 and Pu et al.7 and references therein). As can be seen, in all 

cases, in the Food PAT approach it is imperative to fully understand the process and 

understand all the sources of variability to obtain reliable results. Concerning wine 

alcoholic fermentation, sources of variability come from both raw materials (grape variety, 

sanitary state of the grape, ripening and vintage) and the fermentation process (species 
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and strain of microorganism, sudden temperature changes, excess or absence of 

oxygenation, amount of assimilable nitrogen or spoilages, among others). 

As the sources of variation in biochemical processes can be many and very different, 

several parameters should be determined to detect the potential problems and, usually, 

these parameters should be determined in the different batches at several production 

points. Fortunately, the use of modern multi-analysers greatly simplifies these 

determinations, although the large amount of data generated is usually difficult to 

manage. So, to extract valuable information these data should be processed through 

proper statistical/chemometric tools8. This is why the PAT approach often relies on the use 

of multivariate analysis in order to deal with the maximum amount of data to better 

control the process. Multivariate analysis allows both qualitative (classification or pattern 

recognition) and quantitative results (parameter prediction) through the analysis of the 

generated data3. 

Among the different instrumental techniques used for food process monitoring, the 

spectroscopy-based analysers are taking on a special relevance. The rapidness of the data 

acquisition, the absence or minimal sample pre-treatment and the portability of the 

instruments make spectroscopy an ideal tool in PAT approaches. This last characteristic 

is especially interesting because it allows moving the equipment to the sample instead of 

having to take the sample to the laboratory. In other words, with this type of equipment 

we can get the laboratory to the measurement point, thus saving time, improving the 

efficiency of the testing process, and allowing a decision to be made on the spot. 

Although NIR spectrometers have been widely used in food process control9,10, ATR–MIR 

(Attenuated Total Reflectance – Mid Infrared) spectroscopy has gained popularity in food 

analysis as it is fast, non-destructive and environmentally friendly11 and allows to surpass 

the water absorption limitations that other types of IR measurements present. 

The aim of this tutorial is to help the reader understand the alcoholic fermentation of wine 

from the PAT point of view, and to provide a guidance on how this process can be controlled 

using ATR–MIR spectroscopy and what information can be obtained from such control. 

Following the PAT guidelines and in order to acquire knowledge about the process, this 

tutorial describes the fermentation process from the beginning and through 

microvinifications4. Thus, the sampling strategy, the analytical procedure, and the 

multivariate data pre-treatment and modelling will be considered, explained and 
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discussed and pros and drawbacks will be highlighted for each step. Real examples will be 

provided to illustrate the main ideas. 

Experimental setting and sampling 

On-line or in-line8 measurements are the final goal in process monitoring, but often the 

difficult direct implementation of instrumentation in the cellar when dealing with high 

volumes, the need for control experiments and, sometimes, the lack of knowledge about 

key points in the process discourage the attempt. In this context, micro-scale analysis 

could be a suitable option for this purpose4. In addition, it should be borne in mind that 

the wine production in a cellar involves a limited number of fermentations, with a 

subsequent reduced number of batches that will be used to optimize the chemometric 

strategy. Instead, micro-scale fermentations generate a greater number of available 

samples to study the process variability, to choose the best strategy to analyse and control 

the process evolution and to finally facilitate the scale-up of the monitoring process in the 

cellar. This is even more important when studying complex bio-transformations such as 

alcoholic fermentation, as biological replicates in different containers have slightly 

different behaviours. 

Grape must characteristics 

The importance of the must quality is obvious and, therefore, the legislation allows 

wineries to adjust some basic parameters of this raw material such as acidity, sugar 

content or assimilable nitrogen content12. When this process is transferred to micro-scale 

fermentations, they can be produced with natural grape juice or concentrated grape must 

(CGM). The latter, with a sugar concentration of about 800 g·  L−1, allows better 

preservation of the samples before dilution, as it reduces the activity of microorganisms 

due to osmotic pressure13. Moreover, whereas natural grape juice is a seasonal product, 

CGM can be purchased at any time of the year. The CGM must be properly diluted to reach 

a sugar concentration that provides the desired alcoholic strength (in a winery the usual 

concentration is between 170 and 200 g· L−1)1. Apart from sugar, the pH value should also 

be adjusted with some acid allowed by legislation, such as tartaric acid, as the pH range 

of the wine is set between 2.8 and 4.213,14. Finally, it is also necessary to control the Yeast 

Assimilable Nitrogen (YAN), as it is a limiting factor for yeast growth. Its concentration 

may range from 140 to 500 mg· L−1, with an optimal interval from 200 to 350 mg· L−1. A 

deficit in YAN concentration leads to unfinished fermentations or slower fermentation 
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kinetics; and a higher concentration would lead to the generation of unpleasant aromas15. 

The addition can be made using ammonium salts or commercial YAN supplements, as it 

is done in wineries, which apart from inorganic and organic nitrogen content, contain other 

compounds such as vitamins that enhance yeast fermentation15. 

Inoculation 

Once the diluted CGM or natural must have the right composition, the next step is to 

inoculate the yeast. This can be performed by adding liquid culture media or dry active 

yeasts to each fermenting container, the latter option being more complicated because it 

involves an additional step for rehydration. In any case, the temperature difference 

between the must and the liquid inoculum must be carefully controlled because the 

suppliers recommend a difference of about 5 ºC and never exceed 10 ºC difference. As for 

the inoculum concentration, this value depends on the desired fermentation process. Thus, 

to reproduce the natural population in the grapes to give rise to a spontaneous 

fermentation it should range between 103 and 105 CFU· mL−1 and to reproduce the 

inoculum population used in wineries to ensure the imposition of the yeast of interest it 

should be between 106 and 107 CFU· mL−1. It should be noted that, although the main 

yeast species used to inoculate in wineries is Saccharomyces due to its high fermentation 

capacity, it is known that non-Saccharomyces yeasts can also influence the course of 

fermentation and the character of the resulting wine. Recent studies have evaluated the 

use of controlled mixtures of both species1,16. 

Fermentation temperature 

Among the physical parameters, temperature is possibly the most important because the 

alcoholic fermentation is an exothermic process and yeasts only have proper metabolic 

activity within optimal temperature ranges. Thus, this parameter deeply influences the 

kinetics of fermentation, so that when the temperature rises 10 ºC, the speed of the 

kinetics doubles13. Therefore, the fermentations must take place at a controlled 

temperature, being the recommended values between 10 ºC and 32 ºC. These values differ 

when it comes to white or red must: in white wine, the temperature should be kept below 

18 ºC for aroma retention, but for red must the temperature should be above 25 ºC to 

improve the colour extraction from pomace13. A slight increase in kinetics can also be 

obtained by agitation; however, to reproduce real conditions in a winery, it is not 

necessary. 
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Sampling times  

Sampling time is crucial in a process control approach and there are several points to 

consider: 

 alcoholic fermentation follows a sigmoid function, due to the yeast adaptation time at 

the beginning and the stressful conditions at the end13,17. Therefore, to properly define 

the fermentation curve, a representative sampling at all different phases of the 

fermentation process is necessary; 

 sampling times must be frequent enough to allow corrective actions to be taken in case 

of deviation from the normality of the process and, from a practical oenological point of 

view, this usually means less than 12 hours between samplings; 

 sampling must reproduce actual conditions, so it should be noted that when using at-line 

analysis, sampling requires the physical removal of a fraction of the sample to analyse 

it. This issue is not really crucial for spectroscopic techniques, as the analysis is very fast 

and requires a small fraction of the sample; 

 when applying chemometrics, the sampling design will condition future samplings, as the 

same number of samplings or even the same sampling frequency will be required to take 

decisions using the statistical model. If possible, samples should be taken at a fixed 

frequency throughout the fermentation, but this is not obvious. An effective way to 

overcome this problem, especially when historical data are used, will be shown in section 

5.4. 

Sample pre –treatments 

One of the main advantages of using vibrational spectroscopy is that little or no sample 

pre-treatment is required. However, as sampling is carried out from the fermenting must 

with many microorganisms, to avoid biochemical changes in the samples, it is necessary 

to remove the microorganisms. This removal can be achieved using physical or chemical 

pre-treatments. In the case of physical pre-treatments, it is possible to distinguish between 

partial removal by centrifuging the sample and separating the supernatant, or total 

removal by filtering the sample through a 0,45 µm (yeast sterilization) or 0,22 µm (yeast 

and bacteria sterilization) diameter filter. The chemical pre-treatment usually applied is 

the addition of sodium fluoride (NaF) as an oxidative metabolism suppressor for yeast17. 
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For right-after infrared and standard physicochemical analysis, partial removal is a good 

option (see e.g. Buratti et al.18 and references therein). 

Measurements and data collection 

The infrared spectral region is characterized by the vibration of the molecular bonds. In 

the case of the mid-infrared region, approximately between 4000 and 400 cm−1, the 

spectrum obtained results from fundamental vibrations, which facilitates its 

interpretation compared to the NIR spectrum. However, it has to be pointed out that MIR 

spectroscopy shows its full usefulness when the ATR sampling technique is applied. This 

is because ATR allows to overcome the limitations that imply the large absorptions of 

water bands19. In this tutorial we suggest the use of an ATR–FT–MIR portable 

spectrometer to monitor the wine fermentation process. This equipment offers the 

possibility of measuring in real-time and on-site, which also means a reduction in the costs 

of materials, transport, and storage of samples. In addition, portable spectroscopic 

instruments are cheaper, have lower operating costs and require less power consumption 

than their benchtop-equivalents20. However, there are also some drawbacks to consider 

when using a portable ATR–FT–MIR spectrometer. In fact, they tend to record noisier 

spectra than the benchtop ones and are sometimes considered less accurate and less 

reliable. Nevertheless, depending on the samples and on the problem to be addressed, this 

higher noise does not necessarily imply poorer performances when data are properly 

treated with chemometric tools [see e.g. Crocombe21].  

From all these considerations, it follows that there are different parameters that condition 

the spectra obtained. This is why in this tutorial we propose the use of an ATR–FT–MIR 

portable spectrometer (4100 ExoScan FTIR, Agilent, California, USA) focusing the 

attention on the parameters to be controlled and optimized to register good quality spectra.  

Regarding the usual values of spectral resolution and number of acquisitions, these range 

between 2 and 32 cm−1 and from 32 to 512 scans, respectively. In general terms, the lower 

the first parameter and the higher the second, the better the signal quality in terms of 

signal-to-noise ratio. Nevertheless, the time of analysis must also be taken into account, 

as it increases when increasing the number of scans to get the best signal, so a compromise 

is needed between the two22. In addition, when a 2 cm−1 resolution is used, the spectra 

obtained often show a larger baseline noise that requires a strong smoothing treatment 

before data analysis with the subsequent loss of information. 
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The MIR region between 1800 and 900 cm−1 has been reported to be the fingerprint of the 

alcoholic fermentation signals, as the main biochemical bonds absorb in this area23, so 

many studies have focused on this region to build the models18,24,25. However, there are 

other important bands in the spectrum related to water and ethanol that can also be used 

to build the models, as shown by Cavaglia et al. when, to predict the pH, the whole spectral 

range was needed to obtain good results18. 

Other important points to be considered are the cleaning of the ATR crystal and the 

background collection. In addition to good equipment maintenance, cleaning must be done 

after each measurement to avoid carry-over effects between samples6. It is crucial 

especially at the beginning of the alcoholic fermentation, when the sugar concentration 

values are at their maximum, making the sample more viscous. However, the great 

solubility of sugars, acids and alcohols in water makes cleaning with deionized water quite 

successful. It is important to evaluate cleanliness based on the results obtained with the 

background spectra recorded after each cleaning step. 

Concerning background collection, two strategies have been described in the literature. In 

the first one, the background is collected with the crystal empty, providing what is known 

as an air background26. In the second option the background is collected by using deionized 

water so that the signal obtained allows to subtract the water contribution from the 

sample spectrum27. To our experience an air background has proven to be effective22. 

Finally, it is important to remark that, as IR lamps heats up over time, an equilibrium 

time is necessary. To be more precise, when switching on the equipment, the spectral 

intensity changes slowly in such a way that, in order to obtain a stable signal, in the case 

of our portable ExoScan FTIR instrument we have to wait approx. 100 minutes, as can be 

seen in Figure S112. Stabilization time is highly dependent on the FTIR equipment and 

can be lower for equipment with temperature control. 

Data Analysis 

Spectra pre–processing 

The raw signal must be pre-processed to make it more suitable for multivariate analysis 

and to obtain good quality chemometrics models. It has been shown that the application 

of optimal pre-processing is critical for PAT, as the resulting models can increase their 
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performance by up to 25%28. In the case of FTIR spectroscopic data, the main objective of 

pre 
-processing is to ensure that the signal follows the Beer’s law as much as possible11. 

This means removing or minimizing all sources of variation not related to the process 

studied and this includes removing noise, offsets and baseline drifts and light scattering 

effects. Typical pre-processing methods used for MIR spectra are divided into two groups: 

1) scatter correction methods, which include Standard Normal Variate (SNV), 

Multiplicative Scatter Correction (MSC) and baseline correction; and 2) derivation 

methods, which include Savitzky-Golay smoothing/derivative as the most used26,28. SNV 

is often used in ATR–MIR spectra to remove the variability due to physical aspects or 

equipment characteristics, which may generate scatter. Savitzky-Golay smoothing coupled 

with derivative is useful to reduce baseline noise and simultaneously emphasize small 

peaks when needed26. In our case it is advantageous because the spectra show high 

absorbance peaks due to water, sugar and ethanol depending on the fermentation time, 

while peaks related to compounds indicating an abnormal fermentation (e.g. lactic, acetic 

or malic acids) are smaller and quite overlapped. The smoothing window must be carefully 

evaluated because a too severe smoothing can remove useful information contained in the 

spectra. 

Model building 

Once the data are pre 
-processed, multivariate data analysis is applied to extract the 

information from the data, in this case from the spectra. Data analysis aims at finding 

relationships between samples and variables, detecting trends in the data, and also 

detecting anomalous samples29. The different multivariate analysis methods available can 

be classified, depending on their purpose, into exploratory, classification or prediction 

methods, among others. 

Exploratory analysis is usually performed as a first step prior to more complex data 

analysis to provide some preliminary information, such as the presence of sample 

groupings or the existence of outliers, or to evaluate the precision (repeatability) of the 

measurements. The gold-standard exploratory technique is principal component analysis 

(PCA). PCA builds a set of reduced principal components (PCs), which are linear 

combinations of the original spectra (X matrix) and keep the maximum information 

contained in them. This way, simple two -dimensional plots (scores and loadings) can be 

plotted to visualize the data. 

UNIVERSITAT ROVIRA I VIRGILI 
QUANTIFYING VARIABILITY IN GRAPE AND WINE QUALITY: A MULTIVARIATE ANALYSIS PERSPECTIVE 
Daniel Schorn García



  Chapter 1 (Paper 1)  

 

 - 51 - 

Classification techniques aim at finding a criterion to assign a sample to a predefined class 

(or category), each class representing a group of samples sharing specific characteristics30. 

Some of the most used classification techniques are Linear Discrimination Analysis (LDA), 

Partial Least Squares – discriminant analysis (PLS –DA) and k nearest neighbours (kNN). 

Finally, quantitative predictive modelling aims at correlating a set of spectra (X matrix) 

to one or some properties (Y matrix). A training set of samples is used to build and optimise 

the model (where X and Y are known) and the final objective is to predict the Y properties 

of a new and unknown set of samples6. The multivariate predictive technique most 

commonly used is Partial Least Squares Regression (PLSR). Real examples using the 

three model categories are shown from Section 5.2 to 5.4. 

Model validation 

In all methods, a critical step is the selection of the optimal number of latent variables 

(LVs). In the case of PCA, the simplest way is to choose those that explain a given 

percentage of the variance in the spectra (i.e. 95%), although in some cases some LVs 

accounting for the remaining variance may be also informative. Cross-validation 

strategies can also be applied (see below). In the case of classification models, and in 

particular of PLS–DA models, the choice of the optimal number of LVs is performed based 

on the maximum number of correctly classified samples. i.e. accuracy, in the validation 

set. However, depending on the problem at hand, sometimes a balance between sensitivity 

(proportion of out-of-control samples correctly classified) and specificity (proportion of 

under control samples correctly classified) is sought31. Finally, for prediction models, the 

optimal number of latent variables is selected based on the minimum value of prediction 

error, estimated for the validation set. 

The selection of the optimal number of latent variables is performed during method 

validation. There are basically two approaches for method validation, depending on the 

number of samples available: cross-validation and test set validation. Cross-validation is 

usually applied when the number of samples is low. In cross-validation the original dataset 

is split in different blocks. Then each block is left-out once at a time, the model is built 

with the rest of the samples and the left-out block is predicted. This process is repeated 

for each block and for different LVs. Test-set validation consists on leaving out a subset 

(usually 30–40%) of the original data, build the model with training set and decide the 

optimal number of LVs based on the prediction of the test set. The test samples must fall 

UNIVERSITAT ROVIRA I VIRGILI 
QUANTIFYING VARIABILITY IN GRAPE AND WINE QUALITY: A MULTIVARIATE ANALYSIS PERSPECTIVE 
Daniel Schorn García



Introduction – Microchemical Journal 166 (2021) 

 - 52 - 

within the calibration range and have similar physicochemical characteristics. Finally, the 

number of misclassified samples (for PLS–DA) or the residuals, that is the difference 

between predicted and measured values (for PLSR) are calculated and a global estimator 

of the validation error is obtained. For classification models, these estimators are accuracy, 

sensitivity and specificity, and for prediction models we have the Root Mean Square Error 

of Cross-Validation (RMSECV) or the Root Mean Square Error of Prediction (RMSEP), the 

latter for test set validation. 

Cross-validation is an important part of model building to avoid over-optimistic models32. 

There are different types of cross-validation, which are distinguished from each other 

depending on the pattern used when selecting the samples to validate the model. As 

examples, leave-one-out cross-validation is mainly used for small data matrices, as just 

one sample per time is used to test. For time-organized data, venetian blinds are useful to 

assess non-temporarily errors while contiguous block asses temporal stability. Finally, 

typical errors in CV setup include making only one split of the data, remove small groups 

of samples or splitting unnatural replicates into calibration and test groups.  

Variable selection 

Nowadays analysers provide hundreds of data for every sample in a very short time, but 

sometimes there may be spectral regions not suitable for modelling, that is, not related to 

the problem at hand. Variable selection (VS) is then an important part in method 

validation, as it allows detecting the specific spectral regions of interest and produce better 

models. VS can be performed using algorithms or using chemical knowledge. In the latter 

case, the operator knows that a certain region of the spectra could be attributed to a given 

family of molecules. In many cases, a combination of both strategies is applied to obtain 

better results. There are many algorithms available for VS, such as genetic algorithms, 

interval PLS, recursive PLS, selectivity ratio or variable importance in projection (VIP), 

to name just a few (see Westad et al.33 and references therein). All algorithms seek to 

obtain the best combination of variables, and at this point validation is fundamental (as 

explained in the Model Validation section) to avoid overfitting (the model just explains the 

actual samples and no future samples).  
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Alcoholic fermentation monitoring. Real examples 

Data arrangement 

The data collected from a fermentation process consist of a series of spectra measured at 

certain time points and can be structured in a two-dimensional matrix, X (KxJ), where K 

are the sampling times and J the wavenumbers, which are usually expressed as hours 

from the inoculation time (time 0). 

If data are available for several samples, then data are structured in a three-dimensional 

matrix, X (IxJxK), where I samples. This three-way matrix includes the process variability 

and from it, a NOC (Normal Operation Conditions) space can be defined. It is worthwhile 

to note that the three-way matrix can be generated only if the sampling times are the 

same, that is, when spectra are collected at the same time after the start of fermentation, 

or at the same time intervals. 

Depending on the goal of the investigation, the three-way matrix X (IxJxK) is usually re-

arranged (unfolded) either time-wise (IKxJ) or batch-wise (IxJK)9. In the following sections 

we will discuss what can be obtained when monitoring a fermentation process by ATR–

FT–MIR spectroscopy and the different unfolding and some of the most used modelling 

strategies necessary to achieve the goals. 

5.2.  Alcoholic fermentation monitoring 

The evolution of the fermentation can be visualized in an easy-to-see way using unfolded 

PCA (Principal Component Analysis) modelling. PCA compresses the information 

contained in the original variables (i.e. spectra) into principal components (PCs) to better 

visualize, usually through bidimensional plots, trends in the samples during the process, 

or detect abnormal data (outliers). 

In this case, the data matrix is organized with samples in the rows and wavelengths in 

the columns, and in case of several batch samples the time-wise unfolding (IKxJ) is 

employed. Prior to unfolded PCA, the data matrix is column mean centred, so the average 

considers every sample and time. 

The main changes during alcoholic fermentation are usually reflected in the score values 

of the first PC, as it contains the maximum variability of the samples. It has been shown 
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by Buratti et al.17 that the first PC plotted versus time fits the fermentation kinetic 

evolution (Equation 1), as the general form of the Gompertz equation. 

𝐶 = 𝐶∞ · 𝑒𝑥𝑝 {−𝑒𝑥𝑝 [
𝜇𝑚𝑎𝑥·𝑒

𝐶∞
(𝜆 − 𝑡) + 1]}   Equation 1 

where µmax is the representation of maximum specific growth rate, λ the length of lag 

phase, C∞ the curve asymptote, depending on the compounds considered, ethanol or sugars 

and C is the concentration at time t or the concentration of sugars consumed. 

A similar trend is observed by visual inspection of the sigmoid functions of the first PC 

versus time and density versus time [see e.g. Burati et al.18, Mehmood et al.34 and Figure 

1]. This behavior is confirmed by a good mathematical correlation between the scores of 

the first PC and the density values. 

 
Figure 1. PC1 score values plotted versus time (a), density plotted versus time (b) during alcoholic 

fermentation and mean PC1 score values plotted versus mean density (c). 
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To obtain the evolution of the scores over time shown in figure 1a, we followed 5 alcoholic 

fermentations inoculated with 3·  106 CFU· mL−1 of Saccharomyces cerevisiae. The 

dimension of the data matrix was (5x845x48), which was time-wise unfolded into a matrix 

of (240x845). The unfolded matrix was pre-processed using a 15–points smoothing, then 

SNV and finally column mean centering. After this, the PCA model was built and the trend 

observed in the PC1 score values clearly recalls the evolution of density during the 

fermentation process, as can be seen on the graph of density measurements (Figure 1b) 

throughout the process. Figure 1c shows that a good linear correlation (> 0.99%) is 

obtained between the mean values of the scores on first PC and the mean density for the 

times in which both measurements were carried out. After PCA modelling new samples 

can be qualitative evaluated with this methodology. For that purpose, the same data 

unfolding is performed, data are centred using the mean of the calibration data and new 

samples are finally projected onto the PCA model. 

While PCA returns qualitative information, Multivariate Statistical Process Control 

(MSPC) evaluates, with statistical limits, whether the process is running under control. 

The scores and the residuals of the PCA model are used to build Hotelling T2 and Q charts, 

respectively35. 

To reproduce the process conditions in a small-scale laboratory experiment, different 

fermentation batches must be monitored, and samples measured over time following the 

rules mentioned above. It is also possible to consider additional sources of variability, such 

as the initial sugar concentration or the ripening state of the grapes. A PCA model is then 

built, in which scores (from one or more PCs) and residuals are used as parameters to 

define the statistical limits (samples are considered to belong to a normal distribution) of 

the control charts (T2 and Q) and to monitor them for future batches. 

Once the model has been built, and the statistical limits have been calculated, new 

samples from an ongoing process are projected onto the model to determine whether the 

process is running under normal operation conditions (NOC). For that, the projected 

samples must have the same spectral range and must have been pre-treated in the same 

way as the modelling samples. New data are centred with the mean obtained from 

calibration data. Literature shows a wide range of applications and types of control 

charts18,36,37 and references therein; for example, Cavaglia et al. have shown that building 

control charts with various statistical parameters (PC1 and PC2 scores values18, Q 

residuals and Hoteling T2
 

34, or evolution over time) allows detecting unwanted 
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subprocesses, such as malolactic fermentation. Malolactic fermentation is related to the 

presence of unwanted microorganisms, lactic acid bacteria, which exist in the ecology of 

the vineyard and also in the winery38. These microorganisms, like other contaminants 

(yeasts and acetic acid bacteria), produce their metabolites in low amounts, making it 

difficult to detect them using the whole spectral range. This is the reason why, when it 

comes to suspected contamination (mainly when the tracked parameters are in the 

minority), it is necessary to focus on the specific region of the substrate, the product or 

both18,39. An example of this application is shown in Figure 2. 

 
Figure 2. PCA based control chart (left) and the mean contribution plot (right) for normal process 

samples (squares) and deviated process samples (triangles and dashed line). 

Figure 2 shows the evolution over time of Q residuals (from a PCA model built with 2 PCs) 

obtained from 10 normal alcoholic fermentations and 4 fermentations intentionally 

contaminated with lactic acid bacteria at a concentration of 2.5· 106 CFU· mL−1. The best 

PCA model was obtained when using specifically the region of organic acids from 1250 to 

1089 cm−1. It may be explained as the metabolism of lactic acid bacteria consists of 

converting malic acid into lactic acid which absorb in that specific region. The data matrix 

obtained was of dimension (14x62x34) and it was time-wise unfolded into an array of 

(506x62). After unfolding, the data matrix was preprocessed by 15–points smoothing, SNV 

and all fermentations were mean centered. 

To detect process deviations, PCA-based control charts can be applied. However, to meet 

the process control requirements and assigning the cause of the deviation the contribution 

plots are required35. Contribution plots show the main regions of the spectra that are used 

UNIVERSITAT ROVIRA I VIRGILI 
QUANTIFYING VARIABILITY IN GRAPE AND WINE QUALITY: A MULTIVARIATE ANALYSIS PERSPECTIVE 
Daniel Schorn García



  Chapter 1 (Paper 1)  

 

 - 57 - 

to differentiate normal and abnormal process samples, as shown in Figure 2b. 

Contribution plots are obtained as the multiplication of the loadings by the spectra, which 

increases the information of the spectra related to specific variables. Therefore, for a 

certain spectral region, deviations related to specific compounds can be detected. As it can 

be seen in the contribution plot (right), each type of fermentation showed a different trend. 

5.3.  Prediction of physicochemical parameters 

As the IR spectrum contains information about the main species present in the sample, it 

is possible to correlate the changes in the IR spectrum with the evolution of the process, 

i.e. changes in the reacting species. For this purpose, Partial Least Square (PLS) 

regression is usually applied. The PLS regression method works like PCA, compressing 

the spectral information into a few latent variables, but also correlating this spectral 

information to a Y matrix that contains the values of a physicochemical parameter to be 

predicted. Typical oenological parameters in wineries are density, pH, volatile acidity, 

total acidity, and initial YAN concentration, but it has been shown that is also possible to 

predict other properties, such as organoleptic attributes, polyphenols and other minor 

compounds25. 

To build a PLS model, it is necessary to use a reference or standard analytical method to 

estimate the y values, in the same way that the use of standards is required in many other 

analytical methods. Therefore, to monitor and control the conventional parameters, it is 

necessary to analyze at the early stages every sample with both methods, the standard 

and the infrared. 

To build the PLS model a time-wise unfolding (IKxJ) is necessary to statistically correlate 

the spectrum at a given time with the measured property. This also means that the 

samples must have been analyzed by the reference methods of analysis, which often are 

time consuming. This limiting factor implies a decrease in the number of points that can 

be taken to obtain correlation between a property and the spectrum, as it is illustrated in 

Figure 1. 

When a new sample is analyzed, its similarity to the calibration data is evaluated through 

the model, which predicts the parameter value. Projected data are spectrally preprocessed 

as the calibration samples and centered using the mean of the calibration data. The 

prediction ability of the calibration models is assessed by the Root Mean Square Error of 
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Prediction (RMSEP) or standard error of prediction (SEP). In addition, when the number 

of samples is not enough to split the samples into calibration and validation sets, it is 

possible to evaluate the prediction of the model through Root Mean Square Error of Cross-

Validation (RMSECV). It is important to note that an averaged error (along the whole 

range) is provided by this methodology25. 

The prediction of wine parameters has been extensively studied by varying vintage and 

grape varieties in order to cover typical oenological parameter ranges40. This methodology 

should be considered in the context of process control, to obtain robust models, since the 

samples must cover the full range of variation in a given process and also between 

processes with different initial characteristics41. The prediction of sugars (glucose and 

fructose) allows building a control chart to plot this parameter versus time. This has been 

shown by several authors, obtaining good prediction errors: 5 g· L−1 and 2 g· L−1 at the end 

of the fermentation41, or even 10.9 g· L−1 with a portable ATR–MIR22. Other parameters 

typically predicted when monitoring the alcoholic fermentation are density and pH. They 

have been predicted using a portable ATR–MIR with an error of prediction of 0.0014 g· 

mL−1 and 0.07, respectively18. Other important parameters, such as phenolic compounds, 

anthocyanins and flavonoids, which are important in red wine alcoholic process control, 

have also been predicted using unfolded PLS regression42. 

It is also possible to build a control chart through the prediction of a property using the 

unfolded PLS algorithm, and to establish a critical limit, from a legal or quality 

perspective, to decide what samples are under or out-of-control (Figure 3). 

 

Figure 3. PLS model to predict density (g· mL−1) along alcoholic fermentation. 
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The above mentioned unfolded PLS regression model (shown in Figure 3) is an example of 

the density prediction ability of ATR–MIR. The example uses a X calibration data matrix 

of (580x845) that was correlated to a Y matrix of (580x1). As it can be seen both matrixes 

have the same rows as each sample used for prediction must be analyzed by standard 

physicochemical analysis, in this case by a portable densimeter. Also, in Figure 3, X test 

data matrix of (528x845) that also has an Y matrix of (528x1) were used to stablish 

prediction error. The prediction ability of the models is deeply dependent on the number 

of samples used, as more samples means a better estimation of the sample variability. 

Moreover, having more samples allow to improve the validation of the models. 

It is also possible to detect process deviations if some compounds, such as acetic acid, are 

predicted. Acetic acid is a compound generated by yeast in order to obtain energy in sub-

optimal process conditions, such as YAN shortfall or when there is an increase in process 

temperature. Urtubia et al. predicted sugars, ethanol, glycerol, succinic and acetic acids 

and showed that the small errors obtained made possible to detect the miss-behaviour 

from a temperature-gradient fermentation and a YAN shortfall fermentation43. 

Prediction of fermentation evolution 

The spectral information can also be used to predict the time points of the fermentation as 

alcoholic fermentation is a bioprocess evolving over time. Cozzolino et al. have showed that 

it is possible to predict the time course of a wild fermentation, with an error of 1.21 days44. 

This methodology would be applicable to detect stuck and sluggish fermentations, as the 

predicted value of time course of fermentation would be smaller than the actual one. From 

a practical oenological point of view, an error of more than one day is not a suitable 

solution. Therefore, another methodology, such as the biological time, is needed to 

decrease the error.  

Biological time, firstly introduced by Jorgensen et at.45, allows detecting slight differences 

in the fermentation process due to the metabolism of yeasts. First, the data is relativized 

in a scale from 0 to 1, afterwards PLS regression is applied, and the calibration equation 

is used to predict the time of the spectra used. This circular approach allows determining 

the biological time, due to small differences in sugar consumption along fermentations. 

Then, PLS is re-applied with the predicted biological time. The scores convey into an 

alcoholic fermentation control chart and a 95% confidence limits are calculated. The 
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calibration model will be reused in future fermentations and the scores will be plotted in 

the control chart to determine how normal the time involved is. 

Cavaglia et al. have shown that the biological time approach described above provides good 

results to detect fermentations with small yeast assimilable nitrogen (YAN) concentration. 

The control chart showed that a YAN fermentation was in the 0.6 of the biological time at 

the time it should be 122. 

As shown in Figure S2, through biological time it is possible to obtain the confidence 

intervals of PLS factor 1. The dimension of the spectral data matrix was (20x845x9) and 

it was time-wise unfolded into a matrix of (180x845). The unfolded spectral matrix was 

preprocessed using an 11–points smoothing, then SNV and finally column mean centered. 

The Y1 matrix (180x1) that contained the times of the alcoholic fermentation process was 

relativized from 0 to 1. The predicted parameters were obtained in the Y2 matrix (180x1). 

The prediction was re-built with the Y2 matrix, obtaining the biological time in the Y3 

matrix. Besides, the confidence intervals were calculated with the values of PLS factor 1 

using Y322,45. A new spectral data matrix (27x845) of 3 nitrogen deficient alcoholic 

fermentations was projected onto the model to predict their biological time, and its 

representation (Figure S2) showed slower fermentation kinetics. 

Detection of deviations from NOC 

To determine whether the samples are under or out-of-control, it is possible to apply PLS–

DA. In PLS–DA models, a regression is performed between the spectra (X matrix) and a 

y-vector containing a dichotomous variable (typically 0 and 1) that expresses the type of 

process, under and out-of-control, respectively. This methodology can improve the 

detection of deviations, as low concentrated compounds, which are under the 

quantification threshold, could not be predicted but the overall spectral changes are 

sufficient to detect deviation. With this methodology, local and batch-wise unfolding 

approaches may be used. 

Local unfolding is used to determine if the behaviour of a sample in a specific time or time 

gap is under-control. If the sampling pattern is reproducible over the different measured 

processes, that is, if sampling is always performed at the same time during the 

fermentation with a given time interval (e.g. each k hours), a local k time unfolding is used 

summoning the same time for all the samples. In wineries, the sampling pattern may not 
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be standard over years, so in order to use historical data it is necessary to use a gap time 

for the models. We have shown that an 8–hour approach improves process control and 

allows corrective actions to be taken34. 

To increase the classification performance, it is even possible to apply a moving window 

approach, firstly introduce by Camacho et al.46. In this approach, a k number of times are 

gathered, and PLS–DA is applied (from time n to time n+k). The models are built by 

moving the times used, from time n+1 to time n+k+1. This approach is partially batch-

wise (IxJK’) unfolded, where K’ is a subset of K. Besides, using the batch-wise unfolding 

the result will express if the whole process is under NOC conditions. 

The performance evaluation of the PLS–DA models is done using a discrimination 

threshold (between 0 and 1), which is calculated from the probability of classification error 

of the samples in the classes. The discrimination threshold is calculated taking into 

account a Gaussian distribution of the predicted classes, and the y value at which the two 

curves converge is the discrimination threshold47 (see blue and red dashed lines in Figure 

4). The optimization of the discrimination threshold is based on the Receiver Operating 

Characteristic (ROC) curve, which is a graphical representation of the specificity and 

sensitivity variation as a function of the threshold. Specificity is the ratio of true positives 

to the total of true positives plus false negatives; and selectivity is the ratio of true 

negatives to the total of true negatives plus false positives Cavaglia et al. have shown that 

local approaches to distinguish YAN shortfall22 and lactic acid bacteria contamination18 

provided 100% correct classification of the classes. However, when applying the moving 

window approach in a YAN shortfall process, the lack of sampling points did not show 

better results22. 

 
Figure 4. a) PLS‐DA model for under control (zero) and out-of-control (one) samples. b) Receiver 

Operating Characteristic curve for the under-control class. 
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The PLS–DA model shown in Figure 4a was built using 5 normal alcoholic fermentations 

and 5 fermentations that were intentionally contaminated by co-inoculating a population 

of 1· 106 CFU· mL−1 lactic acid bacteria, to reproduce typical contamination at the start of 

the alcoholic fermentation. Data used in this k model is from 213 hours, as in this point 

the 50% of malic acid was consumed. Data matrix was (10x62), as the model focused only 

in the organic acids’ region from 1250 to 1089 cm−1. 

Figure 4b shows the ROC curve for the under control class. The threshold for under control 

samples is 1-threshold for out-of-control samples. This is why the threshold is calculated 

to maximize both sensitivity and selectivity for the two categories. In the example, under 

control class threshold is 0.5849 and for out-of-control class is 0.4151 (which is the one 

showed in Figure 4a). In the example, specificity for both classes in the optimized 

thresholds is 1; and selectivity is 0.925 for out-of-control class (data not shown) and 0.875 

for control class. 

Conclusions 

This tutorial provides practical methodologies that can be used to study wine alcoholic 

fermentation at a laboratory microscale with ATR−FT−MIR spectroscopy and following 

PAT recommendations. The speed and portability of current FT−MIR equipment are 

characteristics that wineries demand, so this technique can have a wide application in this 

field. In that sense, many of the given recommendations can be extended to other 

vibrational techniques.  

It should be noted that the combination of spectroscopy with chemometrics allows to obtain 

many features, almost at the same time, from the same dataset such as the monitoring of 

the fermentation, the prediction of relevant parameters and even the detection of 

deviations.  

Finally, this tutorial can help the oenological researcher, who is not usually familiar with 

chemometrics, not to get lost among all the chemometric approaches available in the 

literature. Thus, this report explains the chemometric techniques, without deepening into 

chemometric algorithms but keeping the scientific rigor, which can be applied in each case 

followed by a discussion of the results that can be obtained. 
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Supplementary Material 

 

Figure S1. Evolution over time of the region of the water band (3000 – 3750 cm-1) of the same must 

sample from the switching-on of the spectrometer until the equilibration time. 

 

Figure S2. Control charts based on biological time. 95% confidence intervals (dashed lines) have been 

built from the scores of the NOC samples (average ± 2s for PLS factor 1). Adapted from Cavaglia et 

al.23, with author’s permission policy of Wiley. 
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Spectroscopic techniques may play a crucial role in the winemaking process by providing 

valuable insights and enhancing the overall quality of the final product. These techniques, 

when properly implemented, offer a comprehensive understanding of various stages of 

winemaking, including grape maturation, alcoholic fermentation, and other critical steps 

involved in the process. 

One of the key advantages of spectroscopic techniques is their ability to provide 

information about most of the molecules involved and their evolution over time, which 

enables a rapid response describing the winemaking process. By utilizing spectroscopic 

analysis decision-makers, such as viticulturists, oenologists, or winemakers, will have 

access to comprehensive information that would enhance the final product quality, dismiss 

problems and their possible impacts, and provide the tools to achieve the desired outcomes. 

However, one significant challenge that needs to be addressed when using instrumental 

analytical techniques applied to winemaking, as to every other biological process, is the 

presence of variability sources that can affect the data obtained. This variability can have 

many and very different origins such as differences in grape varieties, grape variability in 

the same field, soil composition, climate conditions, and winemaking practices. If not 

carefully studied and accounted for, these sources of variability can introduce 

inconsistencies and diminish the robustness and reliability of results. Therefore, it is 

crucial to consider and address these sources of variability to ensure the effectiveness of 

analysis for the control of winemaking process. To consider the process in depth all the 

experiments in this doctoral thesis were performed at laboratory scale. 

Main objective 

The general purpose of this PhD Thesis has been to study the vinification process using 

vibrational spectroscopy coupled with chemometric data treatment. The application of 

spectroscopy to monitor and control a process requires a prior extensive knowledge of the 

variability sources to take them into consideration and achieve successful models. This 

implies the use of spectra generated by mid-infrared, near-infrared and Raman 

spectroscopy and chemometric techniques. This main objective led to define five sub-

objectives. 
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Specific objectives 

 To assess the impact of several positional factors of grapes in the vine within the 

same field in grape maturity evolution and grape characteristics. 

 To evaluate how different stages of grape ripeness and winemaking practices 

affect the chromatic characteristics of final wines using spectroscopic data 

collected from grapes and the alcoholic fermentation and maceration processes. 

 To determine the performance of Spatially Offset Raman Spectroscopy to monitor 

wine alcoholic fermentation through a container and predict main oenological 

parameters. 

 To develop chemometric strategies to assess the impact of microbiological 

contamination on the alcoholic fermentation by acetic acid bacteria (which 

increases volatile acidity). 

 To propose a multivariate statistical tool that enables monitoring wine alcoholic 

fermentation, detecting sluggish fermentation processes caused by various factors 

(nitrogen deficit and unwanted temperature changes), and identifying the 

deviation responsible for the changes in the progression of the process. 
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Assessment of Variability Sources in Grape 

Ripening Parameters by using FTIR and 

Multivariate Modelling 
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Viticulture variability 

Grape variability may be due to agronomic parameters that the viticulturist can evaluate 

and take into account to prevent a negative impact on grape quality and winery 

profitability1,2. Thus, factors such as soil composition, water accumulation or plant 

diseases, among others, are highly variable and contribute to variations in 

physicochemical parameters across different field areas3. To minimize these effects, the 

winegrower carries out the necessary soil and vine treatments but, even with all these 

actions, an exhaustive study of the evolution of grapes in the field is needed to achieve 

maximum quality. 

However, there are other variability sources that cannot be quantified or modified. 

Climate change has recently emerged as an external factor that significantly and 

challengingly impacts viticulture4. The instability of the climate, characterized by 

increasingly frequent extreme temperatures and droughts, has caused significant 

difficulties for viticulturists across the European Union and other wine-producing regions 

worldwide. This changeable and unpredictable climate makes increasingly challenging for 

viticulturists to make informed decisions regarding grape cultivation and winemaking 

practices. The impact of climate change is particularly evident in countries like Spain, 

where the volume of wine production has decreased 12% in the last five years because 

drought conditions have become more frequent and severe in recent years5. 

The effects of climate change on grape quality and wine production are becoming more 

numerous, more evident and more harmful. Thus, rising temperatures accelerate grape 

ripening, leading to shorter growing seasons and potentially altering the balance between 

sugars, acidity and phenolic compounds in the grapes (the potential effects of climate 

change are shown in Figure 1). This can result in unbalanced grapes and wines that lack 

the desired complexity and character6. Furthermore, extreme weather events such as heat 

waves and torrential rains can cause physical damage to the vineyards, reduce vine yields 

and increase the risk of diseases and fungi. Drought and lack of rainfall during the critical 

growth stages can also negatively affect grape development6. 
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Figure 1. Evolution of sugars (blue), acids (red) and anthocyanins (purple) over grape maturity. Black line 

represents the veraison. Dashed lines show the tendency of these parameters caused by climate change. 

Moreover, the unpredictability of climate change complicates the planning and timing of 

grape harvest. Traditional viticultural practices rely on field and vine observation 

throughout several campaigns. It provides the viticulturist with a certain level of 

predictability regarding grape maturation to determine the optimal harvest date. 

However, with the shifting climate patterns, the ripening process of grapes becomes more 

variable, making it difficult to accurately predict the optimum harvest date6. Therefore, 

viticulturists must closely monitor grape physiological indicators and adapt their 

harvesting decisions accordingly. This flexibility is necessary to ensure that the grapes are 

harvested at the ideal moment to achieve the desired flavour and balance in the resulting 

wines4. 

In addition to climate-related challenges, the wine industry also faces problems of 

overproduction, which may further aggravate the economic difficulties faced by 

viticulturists. This is because in last years, favourable climatic conditions and optimal 

grape development may have led to a high yield across vineyards within a Protected 

Designation of Origin (PDO). This surplus production creates a market imbalance, where 

the supply exceeds demand. As a result, wineries offer lower prices to viticulturists for 

their grapes, which often fail to cover the increasing costs associated with growing and 

harvesting, including rising fuel prices, electricity expenses, and the general cost of living7. 

The economic strain experienced by viticulturists due to overproduction can lead to 

difficult decisions, as some viticulturists may opt to leave grapes on the vine rather than 

bearing the costs of harvesting, processing and selling them. This decision can have 

various consequences, such as the obvious loss of income for the viticulturist but also those 
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derived from the reduction in vineyard management, which can affect the health and 

sustainability of the vineyard in the long term7. 

Improvement strategies for the viticulture sector 

To mitigate the effects of climate change and overproduction, viticulturists must find 

strategies to improve their socio-economic circumstances. A good option could be to 

produce value-added products derived directly from grapes and not from wine, which 

would provide them with more opportunities and choices to mitigate economic and food 

losses. Another option could be to take advantage of their extensive knowledge of the field 

to adopt precision viticulture practices, which could allow them to harvest each grape at 

its optimum moment in order to achieve the highest quality of the final product with the 

consequent revaluation of this product. 

 Diverting grapes towards alternative products 

An alternative to redirect wine grapes could be to use them as table grapes for direct 

consumption as fresh fruit. While wine grapes and table grapes are typically distinct 

cultivars with different organoleptic properties, there may be cases where wine grapes 

harvested at a stage not optimal for winemaking can be assimilated as table grapes. This 

could help alleviate the surpluses of grapes and make them available for consumer 

consumption, although it would require marketing efforts to educate consumers about this 

new habit. 

Another option could be the production of raisins, which are obtained by drying grapes 

and produce a flavour rich product. Similar to table grapes, the use of wine grapes in raisin 

production would not only create an alternative market for surplus grape supply but also 

would offer consumers a diverse selection of cultivars, resulting in different organoleptic 

properties for raisin consumption8. 

It should also be taken into account that the different parts of grapes, such as seeds and 

skins, are rich sources of polyphenols, including compounds like resveratrol and phenolic 

acids. These bioactive compounds have gained attention for their potential health 

benefits9. As a result, grape juice production using wine grapes or the combination of 

grapes with other fruits has become an alternative for producing juices with enhanced 

nutritional and organoleptic properties. Given that the composition of the grape changes 
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throughout the ripening process, it is not unreasonable to think that, depending on the 

harvest date, different attributes (both sensory and nutritional) could be obtained, which 

would allow the production of a wide range of juices10. 

Moreover, grape seeds and skins have shown potential as valuable by-products. These 

grape parts contain a high concentration of bioactive compounds, making them suitable 

for various applications11. Thus, for example, grape seeds and skins could be used in the 

production of flours, which can then be used to substitute a portion of wheat or corn flour 

in the manufacturing of snacks and other food products12. This process would not only add 

value to the viniculture by-products but also would provide an opportunity to develop 

unique and nutritious food items9. Such products, often referred to as "fourth-range 

products", combine the health benefits of grape-derived compounds while adding more 

options to the viticulturist to sell the grapes at a fair price. 

 Precision viticulture 

Traditionally, the assessment of grape maturity for winemaking has relied on the 

collection and determination of some parameters of a representative sample obtained with 

approximately a hundred of grapes13. This approach provides valuable information on 

critical parameters such as sugar and acidity levels, polyphenolic compounds, and 

organoleptic properties like seed colour, seed firmness and skin colour. However, the 

selected sampling method can introduce errors if not executed carefully14. 

A potential problem arises when whole bunches are sampled and then destemmed for 

analysis. This process may lead to a thinning effect, particularly in vineyards with a small 

number of bunches. On the other hand, sampling individual berries can also introduce 

errors due to differences in bunch height within the vine, the different areas of solar 

irradiation and the presence of compact bunches in which internal grape berries (being 

difficult to pick) may not be adequately considered. These factors highlight the need for 

meticulous sampling techniques to ensure representative results13. 

To address the challenges arising from grape variability and to enable more precise 

monitoring of grape maturity, the implementation of precision viticulture techniques has 

gained popularity. These techniques encompass remote and proximal sensing techniques, 

such as infrared spectrometers and hyperspectral imaging cameras, used on plants, 

berries, soil or combinations thereof. These advanced approaches provide information 
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about vineyard variability in terms of location and position. By employing these 

techniques, viticulturists can identify subregions within a vineyard that exhibit unique 

grape maturity characteristics15. In other words, each subregion with distinct maturity 

profiles can be harvested at the optimal time to maximize grape (and future) wine quality 

and ensure consistency across the vineyard. Therefore, this approach enables 

viticulturists to move away from a uniform towards a more tailored and adapted harvest 

that takes into account the variability in the vineyard16. 

In addition to improving harvest timing, precision viticulture techniques offer other 

benefits to vineyard management. By identifying spatial variations in grape maturity, 

viticulturists can target specific areas for interventions such as selective pruning, 

irrigation adjustments or canopy management. This targeted approach enhances resource 

allocation, reduces operational costs, and optimizes the overall health and productivity of 

the vineyard4,16,17. 

The integration of precision viticulture techniques with data analytics and predictive 

modelling opens up possibilities for real-time monitoring and decision-making. By 

collecting and analysing data from various sources, such as weather stations, soil sensors, 

satellites, and grape maturity assessments, viticulturists can gain valuable insights into 

the factors influencing grape development and adjust management practices 

accordingly17. 

Study of variability sources 

As already stated, exploring alternative pathways for grape utilization not only helps 

address overproduction, but also provides opportunities for viticulturists to diversify their 

product offerings and meet changing consumer demands. However, as explained in this 

chapter, to understand the evolution of grape parameters and to achieve the desired grape 

properties, it becomes essential to obtain suitable information on the influence of within-

field effects on grape characteristics. This requires the use of analytical tools capable of 

decomposing and quantifying the sources of variability. 

One such tool is ASCA, a multivariate extension of ANOVA. ASCA allows for the 

decomposition of a given dataset, such as the used in the present chapter –parameters or 

spectra related to grapes– into different matrices that contain specific information related 

to each factor under investigation18,19. By employing a design of experiments, ASCA 
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enables an objective evaluation of factors while providing quantitative information on 

their impact. This is why the first study of this Thesis focused on how this chemometric 

tool could help to unravel the complex interactions between the factors affecting grape 

maturity, including grape position in the bunch and in the vine. Using ASCA, it was 

possible to gain a deeper understanding of how these factors contribute to the variability 

observed in grape maturity and other key parameters20. 

The results of our findings on the influence of berry position within the vine and bunch, 

as well as its evolution through five weeks around optimal maturity, are gathered in 

Paper 2. Vine and bunches were divided into three parts showing physicochemical and 

spectroscopic differences that support split harvest to achieve the optimal quality. 

Furthermore, an overall evolution of the grapes was also observed in the spectra around 

optimal maturity for wine elaboration. By using these findings, growers can make 

informed choices to maximize the potential of their grape yield. Additionally, based on this 

information, alternative grape products can be selected to diversify grape production and 

optimize the timing of the harvest for specific product outcomes.
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Abstract 

The variability in grape ripening is associated with the fact that each grape berry 

undergoes its own biochemical processes. Traditional viticulture manages this by 

averaging the physicochemical values of hundreds of grapes to make decisions. However, 

to obtain accurate results it is necessary to evaluate the different sources of variability, so 

exhaustive sampling is essential. In this article, the factors “grape maturity over time” 

and “position of the grape” (both in the grapevine and in the bunch/cluster) were 

considered and studied by analyzing the grapes with a portable ATR-FTIR instrument and 

evaluating the spectra obtained with ANOVA–simultaneous component analysis (ASCA). 

Ripeness over time was the main factor affecting the characteristics of the grapes. Position 

in the vine and in the bunch (in that order) were also significantly important, and their 

effect on the grapes evolves over time. In addition, it was also possible to predict basic 

oenological parameters (TSS and pH with errors of 0.3 °Brix and 0.7, respectively). Finally, 

a quality control chart was built based on the spectra obtained in the optimal state of 

ripening, which could be used to decide which grapes are suitable for harvest. 

 

Keywords 

portable MIR; variability; ASCA; process monitoring; precision viticulture

UNIVERSITAT ROVIRA I VIRGILI 
QUANTIFYING VARIABILITY IN GRAPE AND WINE QUALITY: A MULTIVARIATE ANALYSIS PERSPECTIVE 
Daniel Schorn García



  Section 1 (Paper 2)  

 

 - 97 - 

Introduction 

Wine quality is strongly dependent on the characteristics of the grapes used to elaborate 

it; therefore, to guarantee their optimal state, a quality control is performed regularly 

during their ripening process1. The common oenological parameters used to follow the 

evolution of ripening are sugar content and pH, although more detailed information about 

the ripeness and quality of the grapes can be obtained by determining their phenolic 

composition, total acidity, texture, and flavor2. Setting the optimal ripening point is a key 

factor in achieving maximum quality in any fruit, but even more so when it comes to non-

climacteric fruits such as grapes. This implies that if samples are collected too early, no 

improvement in any of their quality parameters will be achieved3, and conversely, if grapes 

are harvested too late, postharvest disorders are more likely to occur4. 

Another important aspect to consider when working with grapes is the lack of uniformity 

in the evolution of oenological parameters within the vineyard. This fact has already been 

shown by different studies in which it has been confirmed that the accumulation of sugars 

3,5, anthocyanins6 or phenolic compounds7 is not regular in the grapes of the same 

vineyard8. These differences are mainly due to the different viticultural practices — such 

as soil preparation and tilling, trellising, and pruning of vines or treatments to fight 

diseases — and to climate and exposure to sunlight, which produces different physiological 

responses in each plant, in each bunch/cluster and even in each grape9. This individual 

behavior of the grape has led traditional viticulture to so-called precision viticulture, 

which seeks to know the characteristics of each plant within the vineyard and its evolution 

over time10. However, to obtain this detailed knowledge of the vineyard, it is necessary to 

carry out a very rigorous and exhaustive sampling followed by a rapid and reliable analysis 

of the oenological parameters. This entails high costs, both in time and money, so the new 

trends are focused towards the use of portable (to be able to use them in situ in the field) 

and rapid analysis techniques together with appropriate statistical treatments that allow 

choosing those variables that provide significant information to follow the process of inter-

est. 

Among the analytical techniques that can be applied on site, vibrational spectroscopy is 

gaining acceptance because it is fast, robust, and portable11. Moreover, as the spectra 

obtained contain information from almost-all chemical bonds in the sample, when coupled 

with chemometric data analysis, it provides qualitative and quantitative information on 
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the composition of the samples under study, often through classification and prediction 

models12. Regarding grape berries, vibrational spectroscopy proved to be suitable for the 

prediction of several parameters related to technological and phenolic maturities (see 13 

and references therein). Additionally, there are chemometric tools that decompose and 

evaluate the effects of known factors in an experimental design over the multivariate 

instrumental response such as ANOVA–simultaneous component analysis (ASCA)14. 

ASCA has been applied to spectroscopic data to study the sources of variability during 

coffee roasting under different conditions15 or to evaluate chilling injury on the aubergine 

fruit16. Other authors have used ASCA as an exploratory tool to understand which 

analytical factors directly affect the measurement. Thus, Amigo et al. have shown the 

influence of the measurement area on near-infrared spectra of bread17 and Borraz-

Martínez et al. studied the influence of sampling on the discrimination of different 

varieties of Prunus dulcis leaves18. 

The aim of the present work is threefold. First, assessing the variability sources that affect 

grape ripeness in terms of harvest time and relative position (both on the plant and on the 

bunch/cluster) using Fourier transform infrared (FTIR) portable spectroscopy and 

multivariate analysis. ASCA was used to evaluate the contribution of the different factors 

and to study their evolution along the maturity process. Secondly, building prediction 

models of the main parameters related to technological maturity (TSS and pH) from the 

spectra of the grapes recorded during ripening. Thirdly, pro-posing a strategy based on 

multivariate statistical process control to determine which grapes have the optimal quality 

at each moment. 

Materials and Methods 

Vineyard and Maturity Control 

The samples used in this study were obtained from the experimental vineyard of the 

Faculty of Oenology (Universitat Rovira i Virgili, Spain) located in the Mas dels Frares 

center (Constantí, Spain) (41°08’44” N 1°12’02” E; Altitude: 60 m; 15 km from the 

Mediterranean Sea). The climate is characterized by high ambient humidity (60−70%) 

with hot, dry summers and mild, wet winters. Since the experimental cellar has a record 

of the evolution of each variety, which includes the harvest date of each vintage, maturity 

controls usually begin three weeks before the average harvest date. To guarantee the 

optimal condition of the grapes, these controls involve the measurement of both 
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technological and phenolic maturity. Technological maturity is determined by measuring 

the pH and the potential alcoholic strength by the volume (ABV) of the grapes1, while 

phenolic maturity is determined by measuring the polyphenol content with the Slinkard 

and Singleton method19 and the sensory quality by evaluating the hardness of the skin 

and the color of the seeds1. In addition, taking into account the relevance of the choice of 

the optimal harvest day for this study, it was decided that the quality of the polyphenols 

would be evaluated by measuring their antioxidant capacity. Specifically, the oxygen 

radical absorbance capacity (ORAC) following the method described by Jiménez-Pulido et 

al.20 was determined. 

Samples and Sampling 

Ninety grape berries of the variety ‘Muscat of Alexandria’ were harvested during the entire 

ripening process. The vineyards are 9 years old and cover 0.65 ha of the Mas dels Frares 

experimental vineyard, which has a climate that offers the optimal conditions to achieve 

adequate levels of sugar in the berries of this variety, which are larger than average. In 

this way, it was guaranteed that the ripening process would develop correctly and that the 

samples collected would allow obtaining enough juice to carry out the analyses of each 

berry separately.  

A comprehensive sampling was performed to ensure the full monitoring of the ripening 

process (including overripe samples). Sampling was carried out by collecting 18 grape 

berries at five different times from 12 August to 15 September (about once a week), as the 

harvest date was 7 September. This date was considered optimal because the parameters 

of ripeness, both technological and phenolic, remained practically constant when 

compared with the values found the previous week and because, although not significant, 

even a negative trend was sensed in the phenolic parameters (Table 1). 

Table 1. Results of the control of ABV (potential alcoholic strength by volume, expressed in alcoholic 

degrees), pH, TPC (total polyphenolic content, expressed in mg of gallic acid equivalent per 100 mL) 

and ORAC (oxygen radical absorbance capacity, expressed in μmol of Trollox equivalent per 100 mL). 

* Values not measured. Different letters indicate significant differences (p-value < 0.05). 

Sampling Point ABV pH TPC ORAC 

T1 9.6 ± 1.5 a 3.15 ± 0.08 ab * * 

T2 11.0 ± 1.1 b 3.10 ± 0.10 a 10.3 ± 0.6 a 437 ± 89 a 

T3 12.1 ± 0.4 c 3.28 ± 0.08 b  16.8 ± 1.4 c 620 ± 125 b 

T4 12.4 ± 0.4 c 3.33 ± 0.13 b 16.2 ± 1.4 c 614 ± 125 b 
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Grape berries were identified according to the sampling date, the position of the bunch on 

the plant (top, center, and bottom) and according to the position of the berry within the 

bunch (top, center, and bottom). Grapes were collected from different plants and bunches 

to obtain a representative sample of the vineyard. In all cases, a duplicate of the same 

position relative to plant and bunch, but on different plants, was considered as a biological 

replicate to ensure maximum variability. 

The samples were kept cold until the analysis in portable refrigerators, making sure that 

the pedicel remained intact to prevent any degradation or evolution. 

Determination of Total Soluble Solids and pH in Individual Berries 

Once harvested, the samples were immediately taken to the lab, where each individual 

grape berry was gently crushed with a small manual garlic crusher and the juice obtained 

was poured directly into 2 mL plastic containers. Analyses of sugar content, expressed as 

total soluble solids (TSS) were performed at room temperature by using an automatic 

temperature compensation digital handheld refractometer (HI 96801, Hanna 

instruments). Before use, the refractometer was calibrated with deionized water and the 

crystal was thoroughly cleaned with deionized water and wiped dry with cellulose tissues 

before each new reading. The pH was measured directly into the plastic container with a 

portable pH meter with a Micro P portable electrode (7+ series portable pH-meter, XS 

Instruments, Italy). Before analysis, the pH meter was calibrated with two reference 

standards (pH 7.00 and 4.00). 

Mid-Infrared Spectroscopic Analysis 

MIR analyses were carried out using a portable 4100 ExoScan FTIR instrument (Agilent, 

CA, USA), equipped with an interchangeable spherical attenuated total reflectance (ATR) 

sampling interface consisting of a diamond crystal window and with a diffuse reflectance 

sampling interface (DRIFT). All samples were analyzed with both interfaces, since the 

ATR was used to measure the crushed grapes and the DRIFT was used to measure the 

entire grape berry before crushing. 

The spectra were acquired with the Microlab PC software (Agilent, CA, USA) using a 

methodology previously optimized21, that is, measuring from 4000 to 650 cm−1, with 32 

scans and 8 cm−1 resolution. 
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When using the ATR sampling interface, a drop of each sample (without any pre-

treatment) was placed onto the crystal using a plastic Pasteur pipette, ensuring the 

complete coverage of the ATR crystal, and the spectrum was acquired right afterwards. 

Each sample was analyzed in triplicate, using three different drops of the crushed grape 

berry. After each measurement, the crystal was carefully cleaned using deionized water 

and dried with cellulose tissues. To ensure reliable results, an air background was carried 

out before each triplicate, i.e., one background before each sample. 

For berry measurements using the DRIFT interface, the spectrometer was placed 

vertically, and the grapes were supported in the sampling gap. Each sample was analyzed 

in triplicate by placing the grape berry in three different positions (two in the horizontal 

plane and one opposite the pedicel). In this case, the background was acquired with a 100 

Micron Reference (Agilent, CA, USA) after every triplicate. 

Data Analysis 

Spectral Data Pre-Processing 

Spectra were imported with MATLAB (R2021a, 9.10; MathWorks, Natick, MA, USA) to 

create two datasets (ATR-FTIR and DRIFT), each consisting of 270 spectra (triplicates of 

ninety samples) and 845 wavelengths. All multivariate analyses were performed using the 

PLS Toolbox v9.0 (Eigenvector Research Inc., USA). Different pre-processing 

combinations were tested to mitigate the noise and baseline drifts observed in the raw 

spectra. The combination that provided the best results for the different models was 

second order polynomial Savitzky–Golay (SG) smoothing and standard normal variate 

(SNV). SG is useful for reducing spectral noise, but special attention must be paid to the 

window size, as severe smoothing could remove useful information from the spectra. SNV 

was applied to correct spectral light scattering caused by the physical aspects of the sample 

or equipment characteristics22,23. Finally, after spectral pre-processing, data were mean-

centered. 

Principal Component Analysis (PCA) 

PCA was first used to visualize the data and identify outliers by interpreting the score plot 

and the Hotelling T2 vs. Q residuals plot (Figure S1). PCA is an exploratory tool that 

reduces the dimensionality of the data while keeping the maximum information. This 
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algorithm decomposes the data into a new set of latent variables called principal 

components, which are linear combinations of the original variables and retain the most 

information. The projections of the samples onto the new space of principal components 

(PCs) are called scores, and the angles/projections between the original variables and the 

PCs are called loadings. Exploring the score and loading plots provides a better 

understanding of the sources of variability in the spectra and can reveal clusters and 

trends in the data. 

Partial Least Squares (PLS) Regression 

PLS regression was applied to predict TSS and pH in the collected samples. The average 

of the three replicate spectra was used to build the PLS models. An X matrix of spectra 

(90 samples × 845 wavelengths) was correlated to two y vectors (90 × 1) containing the 

values for TSS and pH, respectively. For TSS prediction, two approaches were attempted: 

(1) Using the whole spectrum; and (2) Selecting specific regions based on a previous study 

24, which were 967–1175 cm−1 and 1483 to 1771 cm−1. To assess model robustness, an 

external validation was performed. Samples were thus split into calibration and validation 

sets using the Kennard-Stone25 and onion26 algorithms. Two sample splits were used for 

calibration and validation; half of the data in each set in the first one and 2/3 for calibration 

and 1/3 for validation in the second one. 

The statistical measure root mean square error of prediction (RMSEP) was used (Equation 

(1)) to evaluate how well the model predicts new samples (not used when building the 

model): 

RMSEP = √
∑ (yt,i − ŷt,i)

2nt
i

nt

 

ŷt,i is the pH or °Brix predicted by the model, yt,i is the measured value (actual pH or 

°Brix), and nt is the number of samples in the test set. RMSEP expresses an average error 

to be expected in future predictions when the calibration model is applied to unknown 

samples. 

The statistical parameters ratio of performance to deviation (RPD) and range error ratio 

(RER) were used (Equations (2) and (3)) to evaluate the predictive ability of the models27: 

Equation 1 
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RPD =
SD

RMSEP
 

 

RER =
ymax − ymin

RMSEP
 

where SD is the standard deviation of the reference parameters, and ymax and ymin are the 

maximum and minimum values of the reference parameters. Both RPD and RER are 

commonly used to describe whether the obtained prediction models are good enough, with 

RPD > 2 and RER > 10 indicating good predictive ability. 

ANOVA – Simultaneous Component Analysis (ASCA) 

Analysis of variance (ANOVA) – simultaneous component analysis (ASCA) is a 

multivariate exploratory method based on the univariate ANOVA, which decomposes the 

variability sources affecting the data. ASCA decomposes the overall variation into the 

main effects and their binary combinations, which are included in a matrix according to a 

predefined experimental design28. The variability sources considered in this study were: 

(1) Sampling date, which is directly related to the ripening time or maturity status (5 

levels); (2) Position of the bunch in the plant (3 levels); (3) Position of the grape within the 

bunch (3 levels); (4) Spectroscopic replicates (3 levels) and their interactions. The first step 

of ASCA involves partitioning the centered matrix Xc according to Equation (3): 

𝐗c = 𝐗 − 𝟏𝐦T = 𝐗Ripening + 𝐗pos.plant + 𝐗pos.bunch + 𝐗Ripening x pos.plant

+ 𝐗Ripening x pos.bunch + 𝐗pos.plant x pos.bunch + 𝐗res 

where 1 is a vector of ones, mT is the average spectrum of the samples, XRipening, Xpos.plant, 

Xpos.bunch are the matrices of the main factors, XRipening x pos.plant, XRipening x pos.bunch, Xpos.plant x 

pos.bunch are the effect matrices for the binary interactions, and Xres is the residual matrix 

collecting all the variability not accounted in the experimental design. Each matrix is 

centered and contains the mean profiles of the samples corresponding to each factor or 

interaction level. As an example, if the ripening factor has five levels with 18 observations 

each, the 18 observations will contain the average profile for the first level of the ripening 

factor and the same will happen with next level, and so on. The interaction matrix is 

calculated after the subtraction of the main effect matrices. Afterwards, each matrix is 

Equation 2 

Equation 3 

Equation 4 

UNIVERSITAT ROVIRA I VIRGILI 
QUANTIFYING VARIABILITY IN GRAPE AND WINE QUALITY: A MULTIVARIATE ANALYSIS PERSPECTIVE 
Daniel Schorn García



Results – Foods 12 (2022) 

  

 - 104 - 

decomposed using simultaneous component analysis (SCA), which reduces to standard 

principal component analysis under the constrains of ANOVA14. 

Multivariate Statistical Process Control (MSPC) charts 

A PCA-based multivariate statistical process control (MSPC) was applied using the grape 

spectra of the 4th harvest time, which show the optimal maturity characteristics. Q 

residuals and Hotelling T2 values were calculated and plotted in a control chart with 95% 

confidence limits. The rest of the harvest times were projected onto the PCA (T2 vs. Q plot) 

model. The Q statistic indicates how well each sample fits the model and the Hotelling T2 

statistic represents the distance of a given sample to the center of the model29,30. 

Results 

Optimization of the Analytical Strategy 

Different measurement strategies were tried to obtain suitable instrumental signals. For 

intact grapes, ATR and DRIFT sampling interfaces were tested (illustrated in Figure 

S2a,b). 

Concerning entire grapes, a problem occurred with the analysis of the most mature 

samples using ATR. The pressure applied to the sample (needed for a complete contact 

between the sample and the ATR crystal) caused the skin to break in many experiments. 

Therefore, we decided not to consider this methodology. 

FTIR coupled to the DRIFT interface was tested on entire grape berries even though a low 

penetration of the radiation in the sample was expected. It is worth recalling that ripeness 

implies a softening of the grape skin5, and this information could be captured by DRIFT-

IR spectroscopy. However, spectra were noisy (Figure 1a), especially between 2500 and 

4000 cm−1. 

Individually crushed berries were analyzed with the ATR sampling interface (illustrated 

in Figure S2c), showing great reproducibility for the instrumental replicates and a good 

signal-to-noise ratio (Figure 1b). For this reason, the final models were built from the ATR-

MIR spectra of crushed grapes. 
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Figure 1. Spectra of 90 grapes using different IR analysis configurations (a) DRIFT for intact berries; 

(b) ATR-FTIR for crushed berries. 

pH and Total Soluble Solids Prediction 

The prediction of TSS and pH through multivariate regression required slightly different 

spectral pre-processing. For the TSS prediction, the pre-processing consisted of SG 

smoothing with a second-order polynomial and a window width of seven points, followed 

by SNV. For the pH prediction, the pre-processing consisted of SG smoothing with a 

second-order polynomial and a window width of fifteen points, followed by SNV. Different 

validation strategies were applied to assess the robustness of the models31. Thus, an 

external validation set was generated using the Kennard-Stone and onion algorithms and 

using different ratios between the calibration and validation sets. The PLS model results 

are shown in Table 2. No outliers were detected. 

As shown by the RMSEP and R2 values, when considering the whole spectra range, TSS 

was successfully predicted in every model regardless of the methodology to select the 

samples and the ratio of calibration to validation set sizes. It can be stated that just half 

of the samples analyzed is enough to obtain good prediction results. Regarding the 

RMSEP, an error of 0.3 °Brix is quite satisfactory since the TSS range considered goes 

from 10.1 to 25.7 °Brix, and also because after the potential conversion to potential 

alcoholic strength, it would mean only an error of ~0.2° (conversion from TSS to ABV 

according to Técnicas Análiticas para vinos32. A similar TSS error value has been reported 

(SECV of 0.20 °Brix) in white grape juices33. Additionally, the RPD and RER for TSS 

prediction were 8.1 and 42.7, respectively. Therefore, the prediction ability of TSS is 

suitable for assessing grape maturity and is consistent with previous results using ATR-

MIR in grapes34. 
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Table 2. Prediction results of total soluble solids (TSS) and pH for different validation strategies. 

RMSEP values for TSS are expressed in Brix. (R2
Pred = determination coefficient of the regression line 

between predicted and measured values, RS = region selection, LV = number of latent variables of 

the model), KS = Kennard-Stone algorithm to select the validation set, onion = onion algorithm to 

select the validation set. 

 TSS (°Brix) TSS (°Brix)RS pH 

 RMSEP R2
Pred LV RMSEP R2

Pred LV RMSEP R2
Pred LV 

CV random 0.3 0.982 3 0.3 0.981 2 0.07 0.683 9 

KS 

(½ cal–½ val) 
0.3 0.984 3 0.3 0.962 2 0.06 0.623 9 

KS 

(⅔ cal–⅓ val) 
0.3 0.984 3 0.3 0.979 2 0.06 0.608 9 

Onion 

(½ cal–½ val) 
0.3 0.985 3 0.4 0.980 2 0.07 0.687 9 

Onion 

(⅔ cal–⅓ val) 
0.3 0.986 3 0.4 0.971 2 0.07 0.591 9 

TSS is strongly related to sugar concentration, so the selection of a specific spectroscopic 

range related to this parameter was likely to produce better results24. The results obtained 

did not show statistically better predictions in terms of RMSEP, R2, RPD or RER, and even 

poorer models were obtained when the onion sample selection algorithm was used. 

However, as for the number of factors, the models built with the selected variables needed 

two factors instead of three. This could be expected as less spectral information is used for 

prediction. 

In the case of pH prediction, the whole spectra range were used, as previous re-search 

showed that it provided the best models24. This is because variations in pH produce 

changes in the chemical matrix of the sample, due to changes in bond conformation and 

matrix properties. As can be seen in Table 2, the prediction error obtained was between 

0.06 and 0.07, which is very satisfactory considering the range of the pH values of the 

samples (between 2.90 and 3.60). This result is comparable to the standard error of cross-

validation obtained by Shah et al. to predict pH in grape juice samples33. Finally, the best 

models have an RER of 11.5 and an RPD of 2.34, indicating good prediction ability. 

The plots of the predicted vs. measured values of the onion external validation using a 

third of the samples for validation for TSS and pH are depicted in Figure 2. 
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Figure 2. Predicted vs. measured values for the best prediction models of (a) TSS and (b) pH (blue 

circles for calibration samples, red squares for validation samples). 

ANOVA – Simultaneous Component Analysis (ASCA) 

An ASCA model was calculated to study the variability sources affecting grapes, using a 

matrix of 270 samples (90 berries × 3 replicates) and 845 wavelengths (no outliers were 

detected in the preliminary PCA models). 

In the results of an ASCA model, the contribution of each factor in the matrix variability 

is expressed as a percentage and indicated as % effect. For a given factor, the higher the 

% effect the more important its contribution. In addition, a permutation test of 10000 

iterations was performed to identify significant factors. The significance of the factor is 

defined by a p-value (a p-value under 0.05 means the factor is significant). The ASCA 

results are summarized in Table 3. 

First, it should be noted that neither the instrumental replica nor its combination with 

other factors shows a significant effect, demonstrating that the ATR-FTIR portable device 

has a high reproducibility in these kinds of measurements. All other factors, maturity 

(sampling date), position in the plant, position in the bunch, and the interactions between 

these factors, were statistically significant. Nearly a third of the total variance (28.98%) 

can be attributed to the sampling time effect. This is consistent with the fact that the 

evolution of the grape along the ripening process comprises a period of 33 days, in which 

many physical and chemical changes occur in the samples, including the accumulation of 

free sugars, cations, amino acids, and phenolic compounds1. 

 

UNIVERSITAT ROVIRA I VIRGILI 
QUANTIFYING VARIABILITY IN GRAPE AND WINE QUALITY: A MULTIVARIATE ANALYSIS PERSPECTIVE 
Daniel Schorn García



Results – Foods 12 (2022) 

  

 - 108 - 

Table 3. Main effects and their combinations for the ASCA model. 

Term % Effect p-value 

Maturity (sampling date) 28.98 0.0001 

Position in the plant 5.83 0.0001 

Position in the bunch 2.21 0.0268 

Instrumental replicate 0.11 0.9116 

Maturity × Position in the plant 9.52 0.0001 

Maturity × Position in the bunch 5.84 0.0001 

Maturity × Instrumental replicate 0.10 1.0000 

Position in the plant × Position in the bunch 2.14 0.0224 

Position in the plant × Instrumental replicate 0.15 0.9969 

Position in the bunch × Instrumental replicate 0.11 0.9987 

 

Figure 3a shows the score values of the maturity submodel for each sample, colored 

according to different harvest times. Score values are grouped by their sampling time and 

show an evolution over time. By looking at the first loading of the maturity factor (Figure 

3b), this evolution can be assigned to sugars (glucose and fructose), showing a maximum 

peak at around 1063 cm−1 12,34. Sugar accumulation and distribution in grapes are major 

changes in grape samples during ripening1. 

 

Figure 3. Score (a) and loading (b) plots of the first factor of the maturity factor submodel. Different 

colors mean that samples belong to different times (Black—Time 1; Blue—Time 2; Green—Time 3; 

Orange—Time 4; Red—Time 5). 
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As can be seen in Table 3, the position of the bunch on the plant and the interaction of this 

factor with the sampling time are the next significant effects in grape spectra after the 

effect of the sampling time, with an effect of 5.83 and 9.52%, respectively. This result may 

be due to the different exposure to sunlight depending on the position occupied by the 

bunch, since there are studies that state that sugar accumulation and final sugar 

concentration are statistically different depending on the light received by the grape35. 

Additionally, as the leaves are responsible for photosynthesis, which produces the sugars 

that are accumulated in grapes, the movement of sugars along the plant can affect the 

different accumulation of sugars and other metabolites depending on the height of the 

bunch in the vine36. 

In addition, many authors have stated that grape position in the bunch is a factor of 

variability in terms of sugar concentration and grape size37,38. Pagay and Cheng even 

found different sugar concentrations in three parts of a cluster/bunch. Their results show 

that the lower part of the bunch has a significantly different sugar concentration compared 

to the upper part. ASCA results on Table 3 also show that there is a difference between 

the different parts of the bunch (2.21% effect), and that this difference evolves over time 

(5.84% for the interaction between grape position in the bunch and sampling time). ASCA 

results for the interaction between grape position in the bunch and sampling time are in 

line with those reported in the study by González-Caballero et al., who investigated the 

impact of ripeness, position of grapes within the bunch and the orientation of the bunch 

on near-infrared (NIR) spectra39. The study revealed differences in the NIR spectra as a 

function of ripeness, but also due to the position of the grape within the bunch and the 

orientation of the bunch. 

The first loading of all significant factors shows a large signal from 1187 to 937 cm−1, 

showing that grape ripeness, grape position in the plant, grape position in the bunch, and 

their interactions are strongly related to the sugar pathway. However, there are other 

compounds, such as acids, that can also be related to these factors, as there are 

spectroscopic regions, such as the water band around 3400 cm−1 or the fingerprint region 

between 1800 and 900 cm−1, that also contribute to the models (Figures 3b and S3). 

The variance not explained by the ASCA model (residual term) was of 45.01%. This high 

value could be explained by many abiotic and biotic factors (pluviometry, temperature, 

plant side, soil, microorganisms, insect action, etc.), as grapes came from an outdoor field40. 
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Sub-ASCA (ANOVA – Simultaneous Component Analysis) Models 

As explained above, we found that the influence of the factors changed over time, so five 

individual ASCA models were built to understand how the relative position of the grapes, 

both in the plant and in the bunch, evolved with time (Table 3). Five subsets of the original 

matrix, each consisting of 54 spectra and 845 wavenumbers, were used in each ASCA 

model (results in Table 4). The effect of the instrumental replicates was confirmed not to 

be significant in any of the models, nor was the interaction of the instrumental replicates 

with other factors. 

Table 4. Results of the ASCA models for each individual harvest period. T1 to T5: number of the 

different sampling times. * = Significant effect of the factor (p-value < 0.05). 

 % Effect 

Sampling Times T1 T2 T3 T4 T5 

Position in the plant 7.41 40.75* 3.67 36.57* 11.92* 

Position in the bunch 22.00* 19.90* 5.52 2.32 5.27 

Instrumental replicate 0.23 0.14 0.57 0.28 0.38 

Position in the plant × 

Position in the bunch 
46.95* 11.18* 28.98* 4.61 23.97* 

Position in the plant × 

Instrumental replicate 
0.44 0.47 1.18 0.23 0.51 

Position in the bunch × 

Instrumental replicate 
0.47 0.61 0.95 0.52 0.54 

Residual 22.50 26.95 59.14 55.48 57.42 

As shown in Table 4, the factors related to grape position evolve over time in a complex 

manner. The dynamics affecting grape physiology make it difficult to unravel these 

factors. Grapes, like most fruits, have limited photosynthetic activity, which means that 

the accumulation of sugars in the berries depends mainly on import from other parts of 

the plant via the phloem36. However, this metabolic input is driven by the individual 

biochemistry of the grape, as each berry coordinates all the processes necessary in 

ripening, i.e., sugar accumulation, berry softening, anthocyanin synthesis, metabolism of 

acids, and accumulation of volatile compounds5,41. Therefore, since each berry is 
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responsible for its own ripening process, there is no synchronization between the berries 

of the grape, even if they are within the same bunch, which leads to additional variability 

in the system42. 

The results in Table 4 suggest that there is a distribution between the individual factors 

(position in the plant and position in the bunch) and the interaction between them. 

Specifically, when the individual factors are larger, the interaction is lower and vice versa. 

Furthermore, the effect of the position in the plant is the main effect for three of the 

sampling times considered (2, 4, and 5), and for the other two sampling times (1 and 3) it 

is the interaction between the position in the plant and the position in the bunch. This 

may support the idea that the position in the plant is the most significant effect after 

sampling time, as seen in Table 3. In addition, temperature differences within the grapes, 

caused by direct and indirect sun exposure and differences in the top and bottom half of a 

bunch, significantly affect total soluble solids (TSS) and pH levels43. These daily 

temperature fluctuations, which change throughout ripening, contribute to the overall 

complexity of the evolution of effects over sampling time, as shown in Table 444. 

Finally, the residual values indicate that the relative position is the most important factor 

in the early stages of the ripening process. As time progresses, other factors come into play 

that cause the residual to increase. This finding suggests that factors other than grape 

position, such as abiotic and biotic factors, play a more significant role in determining 

grape physiology as the ripening process progresses. 

ANOVA – Simultaneous Component Analysis (ASCA) Model with Reference Parameters 

An ASCA model was calculated to study the variability sources affecting grapes in terms 

of reference parameters. A data matrix of 90 samples and two reference values, pH and 

TSS, was used for this purpose. Data were autoscaled before applying ASCA. The ASCA 

results are summarized in Table 5. 

ASCA results for pH and TSS show a similar trend to the ASCA results for the spectra, 

maturity being the most important factor. As shown in Section 3.2, the spectra contain the 

information of sugars and pH, and this explains the similarity of the results obtained. The 

effect “position in the plant” could be explained as the difference between the parts of the 

vine in the metabolites (sugars and acids) imported into the grapes through the phloem36. 

Studies such the one carried out by Doumouya et al. have revealed differences between 
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various parts of the bunch in terms of TSS, pH, TPC, and grape size45. The authors 

emphasize the importance of considering a representative sampling of different parts of 

the bunch in order to accurately estimate grape ripeness and obtain representative values 

of the physicochemical properties of the grapes. The small differences between the ASCA 

models (Tables 3 and 5) could be explained by the fact that the spectra reflect all molecules 

in the sample, which are not included in the pH and TSS values, such as anthocyanins, 

which have been shown to be a variability source in white grapes46. Despite maturity and 

position in the plant being the only significant factors in the ASCA model for pH and TSS, 

every factor shows a % effect similar to that of the ASCA built with the spectra (Table 3, 

see also Table S1 for the results of TSS and pH for each level in each factor). For that 

reason, the ASCA model obtained with reference parameters confirms the results obtained 

with the ASCA model for spectra. 

Table 5. Main effects and their combinations for the ASCA model. 

Term % Effect p-value 

Maturity (sampling date) 40.49 0.0001 

Position in the plant 4.03 0.0300 

Position in the bunch 3.10 0.0657 

Maturity × Position in the plant 9.07 0.0563 

Maturity × Position in the bunch 3.38 0.7729 

Position in the plan × Position in the bunch 2.67 0.3663 

Residuals 37.25 - 

Process Control Charts for Ripening Monitoring 

As stated in Sections 3.3 and 3.4, the results of the ASCA models showed that the spatial 

(position) factors are significant and affect the spectroscopic results. These results have 

been corroborated using an MSPC approach, based on a control chart built with Q and T2 

statistics47. 

First, a PCA model was built using the mean spectra (three replicates) of the crushed 

grape samples belonging to Time 4 (matrix of dimensions 18 × 845). Following the 

assessment of the viticulturist and based on oenological parameters such as ABV, pH, 

polyphenolic content and antioxidant activity, Time 4 was selected as optimal for the 

harvest both in terms of technological and polyphenolic maturity. Two PCs were selected 
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that accounted for around 95% of the variability of the data. The score values of the model 

were used to calculate the Hotelling T2 95% confidence limit. To calculate the Q residuals, 

the residual matrix of the PCA model was used. Individual projections onto the Time-4 

PCA model were calculated for the rest of times. In this way, samples with values below 

the confidence limit are considered similar to those of Time 4, that is, ready to be 

harvested. 

As spatial position factors affect the composition of the grapes, each time had its own 

variability between the parts of the plant and bunch. It is possible that for times nearer to 

Time 4, some of the grapes, i.e., some positions, had the same spectral characteristics of 

Time 4. As expected, all samples from the first two times are above the confidence limit in 

one or both statistics (Figure S4), thus showing very different characteristics from the 

samples belonging to the time of harvest (Time 4). For times nearer to the harvest time, 

some of the samples lie below the confidence limit (Figure 4). Six and five samples lie below 

the limits for Time 3 and 5, respectively. It is worthwhile to mention that the samples that 

lie below the limits are not the same in Times 3 and 5 in terms of position in the plant and 

in the bunch. This would mean a maturity evolution of certain parts of the plant for Time 

3 that are similar to Time 4 grapes and certain parts of the plant for Time 5 that are 

similar to Time 4. However, since there is no uniform behavior in the different positions, 

we cannot directly decide from the control charts which bunches to harvest already at 

Time 3 or which ones will be overripe at Time 5. 

 

Figure 4. Q residual and Hotelling T2 for Time 4 (red circles) and the projection in the model of (a) 

Time 3 (blue squares) and (b) Time 5 (green squares). 
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From all the presented results we can conclude that the proposed methodology could be 

used as a quality control chart to select the grapes that are ready to harvest. Thus, this 

methodology could assess which parts of the plant are ready to be harvested at Time 3 or 

even wait to be harvested at Time 5; however, it will require more samples in the future 

and that the study is performed in a specific vineyard to guarantee accurate results. 

Conclusions 

In this study, a fast and reliable grape ripening control methodology has been developed 

using a portable ATR-MIR instrument. This methodology has made it possible to predict 

basic oenological parameters (TSS and pH), which enables the technological maturity of 

the grapes to be determined. In addition, the different sources of variability in the 

evolution of grape ripening were also studied using ASCA and it has been objectively 

shown that the position of the grape, both in the vine and in the bunch, significantly affect 

ripeness. These results support the idea of splitting the harvest into different days to 

achieve the best possible quality for each grape. For that reason, we also proposed a control 

chart to determine which grapes have the optimal characteristics to be harvested at each 

moment. The results obtained, although preliminary, have shown that this chart could be 

a useful tool for viticulturists to make the most appropriate decisions about which parts 

of the vine should be harvested at any given time. 
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Supplementary Material 

Table S1. Maturity, position in the plant and position in the bunch factors and their levels; the 

number of samples; TSS and pH values (mean ± standard deviation) of each level of each factor. 

Different letters mean significant differences between the levels of the factor. 

Factor Level # Samples TSS pH 

Maturity 

1 18 16.4 ± 2.6 a 3.15 ± 0.08 ab 

2 18 18.8 ± 2.1 b 3.10 ± 0.11 a 

3 18 20.7 ± 1.3 c 3.28 ± 0.11 cd 

4 18 20.6 ± 1.8 bc 3.36 ± 0.13 d 

5 18 21.2 ± 1.9 c 3.25 ± 0.09 bc 

Position in the plant 

Top 30 18.6 ± 2.9 a 3.19 ± 0.15 a 

Middle 30 19.5 ± 2.8 a 3.24 ± 0.14 a 

Bottom 30 20.2 ± 2.0 a 3.23 ± 0.12 a 

Position in the bunch 

Top 30 19.6 ± 2.6 a 3.25 ± 0.16 a 

Middle 30 19.4 ± 2.6 a 3.24 ± 0.13 a 

Bottom 30 19.3 ± 2.7 a 3.17 ± 0.12 a 

 

Figure S1. a) PC2 vs PC1 score plot and b) Q residual versus Hotelling T2 plot of the ATR-FTIR 

spectra for crushed grapes. 
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Figure S2. Illustrative photos taken during the analysis of grapes using the different configurations: 

a) ATR-FTIR for intact grape; b) ATR-FTIR for crushed grape; and c) DRIFT for intact grape. 

 

Figure S3. Plots of the first factor of the position in the plan, position in the bunch, interaction 

maturity x position in the plant, interaction maturity x position in the bunch and interaction position 

in the plant x position in the bunch factors submodels.  
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Figure S4. Q residual and Hotelling T2 for Time 4 (red circles) and the projection in the model of (a) 

Time 1 (purple squares) and (b) Time 2 (yellow squares).
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Red grape cultivars 

Phenolic compounds are secondary metabolites found in grapevines, and their 

biosynthesis is believed to be associated with specific plant needs, such as protection 

against UV radiation. The defining feature of phenolic compounds, as their name suggests, 

is the presence of at least one phenol group. In other words, all phenolic compounds contain 

at least one benzene ring attached to at least one hydroxyl group. From a structural point 

of view, phenolic compounds can be classified into two main categories: flavonoids and 

non-flavonoids. Flavonoids are characterized by a shared skeleton consisting of two 

aromatic rings connected by a pyrene-type heterocycle, and the main compounds are 

flavonols, anthocyanins and flavan-3-ols, which gives rise to tannins. Non-flavonoids are 

phenolic acids, such as benzoic and cinnamic acids1. 

In terms of grape maturity, the concept of "technological maturity" is commonly used, 

which refers to the evolution of sugars and acids over time to achieve the desired 

concentrations. However, this concept does not consider the grape's composition of 

secondary metabolites, including aromas and phenolic compounds, which are crucial 

elements from an oenological perspective. When producing quality red wines, relying 

solely on technological maturity is insufficient because the optimal expression of aromas 

and phenolic compounds may not coincide with the moment of optimal technological 

maturity. For this reason, the term "phenolic maturity" has been coined, which refers to 

the stage in which the accumulation of polyphenols of interest, synthesized as secondary 

metabolites, reaches its optimum level giving rise to the best chromatic characteristics, 

among others, for the wine2.  

Red winemaking variability 

In the preceding chapter, we explored the sources of variability in a white grape cultivar. 

However, when it comes to red cultivars, the sources of variability are even more. The 

more complex phenolic composition of different red grape cultivars, together with the 

maturity stages at harvest time introduce a significant level of variability in the 

winemaking process. 

Additionally, red winemaking differs substantially from white winemaking due to the 

extended contact of grape skins and stems with the fermenting must and wine. This 

prolonged contact allows for the extraction of phenolic compounds, which provide specific 
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characteristics of colour, flavour and texture to the red wines. There are diverse methods 

available for phenolic extraction during the winemaking process, such as varying the 

extent and the kind of contact between the liquid and solid grape parts or the use of 

additives to facilitate extraction. Each of these treatments significantly but differently 

impact the physicochemical and sensory attributes of the resulting wine. This is why these 

factors greatly contribute to the wide range of red wine styles with different organoleptic 

properties2. 

Considering the great variability in red grape cultivars, the specific and different maturity 

of grapes, and the numerous possibilities for phenolic extraction, winemakers face a 

complex task of managing and optimizing these variables to produce wines of high quality. 

In addition, it must be taken into account that these variables are not independent of each 

other, but that there is a clear interaction between grape selection, vineyard practices, 

winemaking techniques, and the management of phenolic extraction.  

Therefore, although it is not an easy task, the final characteristics of the wine related to 

the phenolic composition can be modulated as long as the expert oenologist has the 

appropriate viticultural and winemaking tools. These variations in the winemaking 

process could be addressed to satisfy the different preferences of consumers regarding the 

phenolic profile of wines5.  

Study of variability sources 

Building on the ideas of the previous chapter, where the sources of within-field grape 

variability were explored using a portable MIR, this chapter focuses on the study of 

variability sources affecting the chromatic and organoleptic characteristics of the final 

wine using infrared spectroscopy. 

To acquire a comprehensive understanding of the variability sources, both mid-infrared 

and near-infrared spectroscopy techniques were employed. The spectra obtained from 

these techniques throughout the winemaking process are used to decompose and quantify 

the studied sources of variability through experimental design. 

The findings of this chapter, encompassing both viticultural influences and oenological 

practices, are consolidated in Paper 3. This study objectively demonstrates that the 

characteristics of the raw material, the grape itself, have a significant importance not only 
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on the final characteristics of the resulting wine but also on the evolution of the extraction 

of polyphenolic compounds. Regarding oenological practices to increase the extraction of 

the studied compounds, two of them were tested: temperature increase and addition of 

enzymes. The results showed that oenological practices affect the winemaking process and 

the final product but these do not take over the inherent characteristics of the grapes. This 

emphasizes the crucial role of meticulous viticultural management in wine production 

because, although the oenological tools offer a wide range of possibilities to meet the 

desired chromatic and sensory attributes in the final product, these will only be achieved 

if the grapes have the characteristics that allow it. Therefore, these oenological tools 

enable winemakers to intervene and obtain the desired outcomes only to a certain extent 

guarantee consistency in the sensory profile of the final product. Thus, they can refine 

their decision-making processes, optimize viticultural practices, and enhance the quality, 

distinctiveness and uniqueness of their wines. Finally, we can conclude that this research 

provides valuable insights into the interplay between viticulture and oenology.

UNIVERSITAT ROVIRA I VIRGILI 
QUANTIFYING VARIABILITY IN GRAPE AND WINE QUALITY: A MULTIVARIATE ANALYSIS PERSPECTIVE 
Daniel Schorn García



 

 

UNIVERSITAT ROVIRA I VIRGILI 
QUANTIFYING VARIABILITY IN GRAPE AND WINE QUALITY: A MULTIVARIATE ANALYSIS PERSPECTIVE 
Daniel Schorn García



  Section 2 (Paper 3) 

 

 

Assessment of the impact of grape maturity and 

oenological practices on colour extraction and final wine 

characteristics using infrared spectroscopy 

Daniel Schorn−Garcíaa, Kiera Lambrechtb, Barbara Giussanic, Ricard Boquéa, 

José Luis Aleixandre−Tudób,d, Montserrat Mestresa 

aUniversitat Rovira i Virgili, Chemometrics and Sensorics for analytical solutions (ChemoSens) 

group, Department of Analytical Chemistry and Organic Chemistry, Campus Sescelades, 43007 

Tarragona, Spain 

bDepartment Viticulture and Oenology, South African Grape and Wine Research Institute 

(SAGWRI), University of Stellenbosch, Stellenbosch 7602, South Africa 

cDipartimento di Scienza e Alta Tecnologia, Università Degli Studi Dell’Insubria, 22100 Como, Italy 

dInsituto de Ingenieria de Alimentos para el Desarrollo (IIAD), Universitat Politècnica de València, 

Valencia 46022, Spain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Manuscript in preparation

UNIVERSITAT ROVIRA I VIRGILI 
QUANTIFYING VARIABILITY IN GRAPE AND WINE QUALITY: A MULTIVARIATE ANALYSIS PERSPECTIVE 
Daniel Schorn García



Results – Manuscript in preparation 

 - 132 - 

Abstract 

The production of red wine involves complex stages and is influenced by various factors, 

such as the maturity of the grapes, environmental factors and winemaking techniques. 

Variability in phenolic composition, which plays a crucial role in wine quality due to grape 

cultivars and winemaking practices, challenges consistent wine production and quality 

control. Traditional analytical techniques for phenolic analysis are time-consuming and 

labour-intensive, so alternatives such as mid-infrared (MIR) and near-infrared (NIR) 

spectroscopy are needed. Understanding the sources of variability, both viticultural and 

oenological, that affect the phenolic composition and extraction process, facilitates 

obtaining the desired wine characteristics. Different fermentations were performed using 

Shiraz, Merlot and Cabernet Sauvignon at different ripening stages and using two 

oenological practices to increase the extraction of phenolic compounds: addition of enzymes 

and temperature increase. Decomposition and quantification of variability sources was 

performed using ANOVA-Simultaneous Component Analysis. Grape cultivar and 

maturity state were found to be the factors that most influence the final composition of 

wine, mainly related to differences in the cultivar chemical composition and ethanol 

production. Phenolic extraction techniques have also a moderate impact on wine 

characteristics, but they cannot avoid the effect of poor quality raw material. 

Keywords 

Mid infrared spectroscopy MIR; Near infrared spectroscopy (NIR); variability; ASCA; 

process monitoring; red wine production
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Introduction 

Red winemaking involves several complex stages, such as grape ripening, alcoholic 

fermentation, maceration and aging. They are subject to many factors that can affect their 

course, as well as the characteristics of final wine obtained1. Phenolic compounds, among 

the many components of wine, make a key contribution to its taste, colour and overall 

quality. These compounds include a diverse group of secondary metabolites synthesized 

by grapevines and extracted during winemaking2. They can be broadly classified into two 

main categories: flavonoids and non-flavonoids. Flavonoids, including anthocyanins, 

flavonols and flavan-3-ols. They influence the colour, astringency, and antioxidant 

properties of wine. Non-flavonoid phenolics, such as hydroxycinnamic acids and stilbenes, 

play important roles in wine flavour, stability and health-related attributes3. 

Grape varieties inherently possess distinct phenolic profiles due to the accumulation and 

evolution of specific phenolic compounds in different grape parts during fruit ripening. 

Environmental factors, such as climate4, soil type5, and viticultural practices6, further 

differentiate the phenolic composition of grapes. The interaction between these factors 

leads to unique phenolic profiles with variations across different wine regions and 

vintages, and even in the same field7. In addition to grape variability, winemaking 

techniques and processes also significantly influence phenolic composition of the final 

product. Among other oenological practices8, must maceration with skins9, modification of 

fermentation temperature10, the use of oak barrels11 or even microbiological activity 

during fermentation and aging12 modulate the extraction, transformation, and stability of 

phenolic compounds, resulting in diverse phenolic profiles among wines produced even 

from the same grape cultivar. Therefore, although the expert oenologist faces a complex 

and highly variable raw material, which challenges for consistent wine production, it must 

be taken into account that all the available viticultural and oenological tools allow 

obtaining a great variety of wines with different characteristics that could meet the 

demand from different consumers13. 

From these premises, there is an increasingly need for robust analytical techniques to 

understand and monitor the sources of variability in wine production. In the literature 

there are several methods that use the high-performance liquid chromatography or UV-

visible spectrophotometry for the analysis of the phenolic composition of grapes and wines. 

However, these techniques are time-consuming, labour-intensive, and often require 
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sample preparation, limiting their applicability for real-time monitoring in a production 

environment14. 

Spectroscopic techniques, including mid-infrared (MIR) and near-infrared (NIR) 

spectroscopy, are emerging as alternatives for rapid and non-destructive analysis of 

phenolic compounds in wine15. These techniques provide information that allows the 

simultaneous quantification and identification of multiple phenolic compounds, which 

facilitates comprehensive characterization of wine samples. This data interpretation 

requires suitable chemometric modelling and data analysis that allow the development of 

robust prediction models based on spectroscopic data for accurate monitoring and 

prediction of phenolic composition during winemaking16,17.  

Optimizing multivariate approaches to process monitoring and control requires a deep 

understanding of the variability sources from both a qualitative and quantitative point of 

view. Thus, this research has a twofold aim: Firstly, to quantify the impact that grape 

cultivar, its maturity state and the oenological practice applied have on the chromatic 

characteristics and the phenolic composition of the final wine. Secondly, to monitor the 

processes of maceration of the must with the skins and of the alcoholic fermentation as a 

whole by means of Fourier transformed infrared (FTIR) and near infrared (NIR) 

spectroscopy in order to evaluate and quantify the sources of variability that affect both 

processes.  

Materials and Methods 

Grapes and must 

Grapes from three cultivars (Shiraz, Cabernet Sauvignon and Merlot) were supplied from 

“Kleine Liebe” estate, Stellenbosch, South Africa (33°51'06.5"S 18°51'15.3"E, Altitude: 200 

m; 34 km from the Atlantic Ocean). For each cultivar, grapes were harvested at two 

different maturity stages of 2023 vintage: the first sampling was taken approximately two 

weeks before harvest (pre-ripeness) and the second was collected at the time that the 

oenologist considered optimal for harvest (optimal ripeness). Each sampling consisted of 

randomly collecting 240 kg of grapes that were placed in 12 crates of 20 kg of capacity and 

stored at 4 ºC for two days before processing. To obtain the grape paste to be fermented, 

grapes from the 12 crates were mixed in a plastic bin to ensure homogeneity and then, 

grapes were mechanically destemmed and crushed. The crushed grape paste obtained was 
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divided into 9 parts (triplicates of the 3 types of fermentation explained in the next section) 

of 20 kg each that were placed in 9 plastic-grade buckets of 25 L, respectively, and added 

with a solution of potassium metabisulfite to reach a final SO2 concentration of 30 ppm. 

Fermentation management 

To start the alcoholic fermentation process, each container was inoculated with 3· 106 

CFU· mL−1 of Saccharomyces cerevisiae Lalvin ICV D21® (Lallemand, Montreal, QC, 

Canada), following the instructions of the manufacturer for rehydration of the dry yeast. 

From each cultivar and maturity state, three types of fermentation were conducted: The 

first one was kept at 20 ºC during the whole vinification process, and the cap (solid parts 

of the grape that remain on top of the must) was punched down twice a day; The second 

one was carried out at 28 ºC with two cap punches per day; The third one was performed 

at 28 ºC with four cap punches per day and by adding specific enzymes to enhance colour 

extraction (Lafase® HE Grand CRU Vin Rouge, Laffort, Bordeaux, France) to a final 

concentration of 1 g per 20 kg of crushed grape paste, meaning per fermentation bucket.  

Each fermentation was performed in triplicate, so 54 fermentations (three cultivars, two 

maturity states, three oenological practices and three biological replicates) were daily 

followed by measuring density and temperature. When the alcoholic fermentations 

finished (between the 5th and the 6th day) the subsequent maceration was extended until 

the 14th day. During this period, 200 mL of each fermentation were collected daily and 

frozen until analysis. 

Spectrophotometric analysis 

Each of the different UV-Visible spectrophotometric measurements of the samples were 

carried out using a Multiskan GO Microplate Spectrophotometer (Thermo Fisher 

Scientific, Inc., Waltham, MA, USA). The parameters determined were: colour density, 

total anthocyanin content and total phenolic index, SO2-resistant pigments and tannin 

content. 

Colour density 

Fifty microliters of the sample to be analysed were placed in a well of the 96-well 

microplate the absorbances were measured at 420, 520 and 620 nm. The colour density 
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was calculated as the sum of the values of the different absorbances (CD = Abs420 + Abs520 

+ Abs620). Absorbances were corrected to express the results for a pathlength of 1 cm. 

 Total Anthocyanin Content and Total Phenolic Index 

Total anthocyanin content and total phenolic content were analysed using the method 

described by P. Iland18. 40 microliters of sample were diluted to a final volume of 2 mL 

with HCl 1M and left in the dark for one hour. After that, 200 microliters were pipetted 

into a well of a 96-well microplate and the absorbance was measured at 280 and 520 nm. 

The total phenolic index was directly obtained by applying the dilution factor to the 

absorbance at 280 nm. The total anthocyanin content, expressed as malvidin-3-glucoside 

equivalent, was calculated using the following equation: 

Antocyanin (mg · L−1) =
Abs520nm·MW·DF

ε·b
          Equation 1 

where MW and  are the molecular weight and the extinction coefficient of malvidin-3-

glucoside, respectively, DF is the dilution factor and b is the path of the measurement, 1 

cm. 

 SO2-resistant pigments 

SO2-resistant pigments, which are mainly anthocyanins combined with tannins, were 

analysed using the modification proposed by Mercurio et al19. 200 microliters of sample 

were diluted ten times using a synthetic wine (0.5% tartaric acid (w/v), 12% ethanol (v/v) 

adjusted to a pH of 3.4 using NaOH) containing 0.375% (w/v) of Na2S2O5 and then left in 

the dark for one hour. After that, 200 microliters were pipetted into a well of the 96-well 

microplates and the absorbance at 520 nm was measured. The content of SO2-resistant 

pigments, expressed as malvidin-3-glucoside equivalent, was calculated using equation 1. 

 Tannin Content 

Tannin concentration was determined using the high throughput17 method adapted from 

Mercurio et al19. This method measures the absorbance difference between the sample 

(control) and the same sample after precipitation with methylcellulose at 280 nm. 600 

microliters of methylcellulose were added to 50 microliters of sample and, after 3 minutes, 

400 microliters of (NH4)2SO4 and 950 microliters of water were added and left at room 

temperature for 10 minutes. In the control sample, methylcellulose solution was 
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substituted by water. Then both samples (treatment and control) were centrifuged at 

10000 rpm for 5 minutes and 200 microliters were pipetted into a well of the 96-well 

microplates and the absorbance at 280 nm was recorded. The absorbance difference was 

interpolated into a calibration curve using epicatechin (E1753, Merck, Darmstadt, 

Germany) as standard. The tannin concentration is expressed as mg of epicatechin 

equivalent per litre.  

Mid-Infrared Spectroscopic Analysis 

MIR analyses were carried out using an Alpha-P FTIR instrument (Brucker Optics, 

Ettlingen, Germany), equipped with an attenuated total reflectance (ATR) sampling 

interface consisting of a single bounce diamond crystal window. The sampling device was 

kept at 30 ºC in every analysis to ensure reproducibility between samples. The spectra 

were acquired with the OPUS Wine Wizard (OPUS v7.0 for Microsoft, Bruker Optics, 

Ettlingen, Germany) using a methodology previously optimized17, that is, measuring from 

4000 to 400 cm−1, with 128 scans and 4 cm−1 resolution. Due to the great number of 

samples, several days of eight to ten hours of work were needed for analysis, and to ensure 

reliable results, a water background was carried out every two hours and samples were 

previously centrifuged. 

Near-Infrared Spectroscopic Analysis 

NIR analyses were carried out using a Multi-purpose analyser FT-NIR instrument 

(Brucker Optics, Ettlingen, Germany), in transmission mode using a 1 mm quartz cuvette. 

The spectra were acquired with the OPUS Wine Wizard using a methodology previously 

optimized17, that is, measuring from 12500 to 4000 cm−1, with 64 scans and 1 cm−1 

resolution. As per MIR spectra collection to ensure reliable results, a water background 

was carried out every two hours and samples were previously centrifuged. 

Multivariate Analysis 

Principal Component Analysis (PCA) 

PCA was first used to visualize the data and identify potential outliers, by interpreting 

the score and influence (Hotelling T2 vs. Q residuals) plots. PCA is an exploratory tool that 

reduces the dimensionality of the data while keeping the maximum information. 
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Additionally, exploring the score and loading plots provides a better understanding of the 

sources of variability in the spectra and can reveal clusters and trends in the data. 

ANOVA– Simultaneous Component Analysis (ASCA) 

Analysis of variance (ANOVA)–simultaneous component analysis (ASCA) is a 

multivariate exploratory method based on the univariate ANOVA, which decomposes the 

variability sources affecting the data. ASCA decomposes the overall variation into the 

main effects and their binary combinations, which are included in a matrix according to a 

predefined experimental design20. The variability sources considered in this study were: 

(1) Grape cultivar (3 levels); (2) Maturity status (2 levels); (3) Fermentation day (15 levels); 

(4) Oenological practices (3 levels) and their interactions. The first step of ASCA involves 

partitioning the centred matrix Xc according to Equation (3): 

𝐗c = 𝐗 − 𝟏𝐦T = 𝐗grape cultivar + 𝐗grape maturity + 𝐗fermentation + 𝐗oeno.practices

+ 𝐗cultivar x maturity + 𝐗cultivar x fermentation +  𝐗cultivar x oeno.practices

+ 𝐗maturity x fermentation + 𝐗maturity x oeno.practices

+ 𝐗fermentation x oeno.practices + 𝐗res 

where 1 is a vector of ones, mT is the average spectrum of the samples, Xgrape cultivar, Xgrape 

maturity, Xfermentation, Xoeno.practices are the matrices of the main factors, Xcultivar x maturity, Xcultivar 

x fermentation, Xcultivar x oeno.practices, Xmaturity x fermentation, Xmaturity x fermentation, Xfermentation x oeno.practices 

are the effect matrices for the binary interactions, and Xres is the residual matrix collecting 

all the variability not accounted in the experimental design. Each matrix is centred and 

contains the mean profiles of the samples corresponding to each factor or interaction level. 

As an example, if the grape maturity has two levels with 405 observations each, the 405 

observations will contain the average profile for the first level of the ripening factor and 

the same will happen with next level, and so on. The interaction matrix is calculated after 

the subtraction of the main effect matrices. Afterwards, each matrix is decomposed using 

simultaneous component analysis (SCA), which reduces to standard PCA under the 

constraints of ANOVA21. 

 

 

(Equation 4) 
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Results 

Final wine characterization 

A phenolic characterization of each sampling point as well as the final wine was performed 

in order to understand the evolution of the different parameters related to colour as well 

as to characterize the final wine obtained. Table 1 shows the results of total anthocyanin 

content, SO2 resistant pigments, tannins, colour density and Total Phenolic Index for the 

final wines split according to the factors considered. 

Table 1. Grape cultivar, grape maturity and oenological practices and their levels; anthocyanin 

content (expressed as mg of malvidin-3-glucoside equivalent per litre), SO2−resistant pigments 

(expressed as mg of malvidin-3-glucoside equivalent per litre), tannins (expressed as mg of 

epicatechin equivalent per litre), colour density and Total Phenolic Index (TPI) values (mean ± 

standard deviation) of each level of each factor. Different letters mean significant differences between 

the levels of the specific factor (p-value < 0.05). 

Factor Level 
Anthocyanin 

(mg · L−1) 

SO2 resistant 

pigments 

Tannins 

(mg · L−1) 

Colour 

density 
TPI 

Grape 

cultivar 

Merlot 282 ± 56 a 26.6 ± 9.8 955 ± 190 a 9.3 ± 1.9 a 23.3 ± 5.0 a 

Shiraz 295 ± 56 a 21.6 ± 9.8 874 ± 190 a 8.2 ± 1.9 a 24.5 ± 5.0 a 

C. 

Sauvignon. 
348 ± 58 b 22.1 ± 10.1 1211 ± 195 b 11.4 ± 2.0 b 32.7 ± 5.2 b 

Grape 

maturity 

Pre-

ripeness 
269 ± 56 a 22.1 ± 9.8 940 ± 190 a 7.7 ± 1.9 a 23.9 ± 5.0 a 

Optimal 

ripeness 
348 ± 57 b 24.8 ± 10.0 1087 ± 193 b 11.6 ± 2.0 b 29.8 ± 5.1 b 

Oenological 

practices 

20 ºC 308 ± 58 17.7 ± 10.1 a 829 ± 195 a 8.2 ± 2.0 a 22.6 ± 5.2 a 

28 ºC 316 ± 56 26.3 ± 9.8 b 1097 ± 190 b 10.3 ± 1.9 b 29.5 ± 5.0 b 

28 ºC + 

Enzyme 
302 ± 56 26.3 ± 9.8 b 1114 ± 190 b 10.3 ± 1.9 b 28.5 ± 5.0 b 

 

Significant differences were observed in the phenolic composition and colour density of the 

Cabernet Sauvignon grape cultivar compared to other varieties. Except for SO2−resistant 

pigments, all parameters showed significantly higher values for Cabernet sauvignon, 

while Merlot and Shiraz showed similar values for all parameters. 

Furthermore, as expected, grape maturity state had a notable impact on both phenolic and 

colour parameters. This can be attributed to the continuous evolution of phenolic maturity 
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until harvest, resulting in higher concentrations of various phenolic compounds and 

higher extractability7,22. Another factor contributing to these differences could be the 

ethanol content, as phenolic compounds tend to be extracted more effectively in high 

ethanol environments23. 

Finally, it should be noted that both oenological practices studied also have a significant 

impact on wine characteristics. Interestingly, the highest anthocyanin content and TPI 

value were obtained for wines fermented at 28 ºC without the use of enzymes. This can be 

attributed to different factors. First, in the production of wines using the high extraction 

of polyphenols method (28 ºC and use of enzymes), anthocyanins may undergo 

degradation, precipitation, or absorption by container surfaces or yeast cell 

membranes24,25. Second, high concentrations of anthocyanins may stimulate the 

production of other pigments with different maximum wavelengths. In cases where 

enzymes were used, a slight tendency towards higher tannin values was observed, as the 

enzymes facilitated the extraction of tannins predominantly found in grape seeds. 

There results show that there are multitude of factors, possibilities and interactions that 

allow obtaining very different products. However, for this study, the importance of these 

results lies in the fact that, starting from the same raw material, different products can 

be obtained depending on how the winemaking process has been carried out. Therefore, 

we can follow these processes and assess which factors have the most influence on each of 

them. 

Spectroscopic evaluation 

Figure 1 shows the mean spectra of the two spectroscopic techniques (MIR and NIR, 

respectively) for the different cultivars in the upper row (Fig 1a-b) and the different 

maturity states (Fig 1c-d). 

MIR spectra for the different cultivars showed a similar profile for Merlot and Shiraz, and 

slightly higher signal for C. Sauvignon. This is especially remarkable around 1100 cm−1, 

the spectroscopic band related to C−O26. This could imply a higher technological maturity 

for this cultivar as this signal is usually attributed to sugars contribution26. Regarding 

NIR spectra, due to the more complex interpretability compared to MIR spectra, and 

accentuated by a difference in the baseline, the possibility to assess spectroscopic 

differences between cultivars was difficult. 
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Figura1. Mean spectra of grape must from the different grape cultivars acquired by (a) MIR and (b) 

NIR, and from the different maturity (c) MIR and (d) NIR. 

Regarding maturity states, as expected, optimal ripeness also showed a higher signal in 

the C−O band which could be related to a higher concentration of sugars26. NIR spectra 

had a baseline difference between maturity states, which is even more pronounced than 

when comparing varieties, further complicating the possibility to assess spectroscopic 

differences. 

Study of the effects in the extraction process 

An ASCA model was built to study the influence of the different factors affecting the 

winemaking evolution of phenolic composition and colour characteristics. To build the 

ASCA model a matrix containing 810 observations or samples (no outliers were detected 

in the preliminary PCA models) and 5 variables (anthocyanin content, SO2−resistant 

pigments, tannins, colour density and Total Phenolic Index values) was used. Data was 

autoescalated prior modelling.  
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To interpret the ASCA results (Table 2), two things must be kept in mind: the contribution 

of each factor to the matrix variability, expressed as a percentage (% effect in Table 2) and 

the significance of the factor defined by a p-value. To identify significant factors a 

permutation test of 10000 permutation was performed. A factor was considered significant 

when the p-value was under 0.05. 

Table 2. Main effects and their combinations for the ASCA model. 

Term % Effect p-value 

Variety 6.95 0.0001 

Maturity 6.69 0.0001 

Oenological practice 4.14 0.0001 

Winemaking day 37.22 0.0001 

Variety x Maturity 7.36 0.0001 

Variety x Oenological practice 0.64 0.0001 

Variety x Winemaking day 3.93 0.0001 

Maturity x Oenological practice 0.22 0.0034 

Maturity x Winemaking day 2.25 0.0001 

Oenological practice x Winemaking day 3.05 0.0001 

First, it is important to highlight that all factors and their binary combinations show 

significant effects on the phenolic composition and colour evolution process. Among these 

factors, the most influential (37.22%) is the winemaking day. This is consistent with the 

fact that alcoholic fermentation, which occurs during the early stages of winemaking, 

generates ethanol that facilitates the extraction of phenolic compounds. Furthermore, it 

has been reported that the duration of maceration also has a significant impact on the 

concentrations of anthocyanins, tannins, and polymeric pigments (SO2−resistant 

pigments)24,25. However, due to the relatively short maceration time, no major 

accumulation of this compounds was observed in the time interval considered. The 

reaction of combination between anthocyanins and tannins requires time to occur27. 

Figure 2 shows the score evolution over time for the winemaking day submodel. As can be 

seen, the greatest evolution of the scores occurs in the first days of the process. This can 

be attributed to the increasing concentration of ethanol, particularly in the early stages of 
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alcoholic fermentation. Additionally, a slight decrease in the scores is observed during the 

later stages of the process. As maceration time progresses, there is an inverse effect on 

phenolic compounds, as they begin to polymerize and overextraction causes them to 

undergo processes of precipitation or absorption by yeast and/or the container24,25.  

 

Figure 2. Score plot of the first simultaneous component of the winemaking day submodel over 

process time. 

Optimization of the maceration time is crucial to achieve the best phenolic composition, 

because phenolic compounds have been related to wine quality28. The loadings of the 

submodel showed that all the variables contribute positively to the model, with the greater 

contribution of anthocyanins and TPI values. 

The next factors having a significant impact on the evolution of phenolic compounds are 

grape cultivar, maturity and their combination. As time has the greatest impact on the 

extraction of phenolic compounds, these factors do not represent a high effect. However, 

their effects underscore the importance of grape characteristics in the winemaking 

process. The quality of the grapes, including their maturity, plays a critical role in 

determining the composition of these compounds. 

Oenological practices have a lower impact on the evolution of phenolic compounds than 

grape cultivar and maturity. These findings emphasize the need for careful attention in 

the vineyard, as winemaking alone may not fully guarantee the desired phenolic 

composition. Despite that, oenological practices have a significant impact on the final 

wine, which means that wineries have the ability to carry out the fermentation according 

to the desired characteristics taking into account grape characteristics. 
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Finally, the binary combinations of the winemaking day factor with other factors also show 

a significant contribution. This suggests that each grape cultivar, at different levels of 

maturity and subject to various vinification styles, will exhibit unique evolution during 

the winemaking process. This observation aligns with the diverse range of wine styles 

available in the market, highlighting the complexity and variability inherent to 

winemaking. However, an exhaustive study of the sources of variability makes it possible 

to take them into account, control them and make decisions to achieve the desired results. 

Spectroscopic study of the factors affecting wine phenolic composition 

Two ASCA models were calculated to study the variability sources affecting winemaking, 

using two data matrices, one matrix of MIR spectra and another one of NIR spectra for 

every fermentation in every sampling point. Pre-processing techniques consisted in 

smoothing (Savitsky-Golay 2nd order 15 points) for MIR spectra and detrending (1st order) 

for NIR spectra. The ASCA results are summarized in Table 3. 

Table 3. Main effects and their combinations for the ASCA models with MIR and NIR spectra. *: the 

effect is statistically significant (p-value < 0.05). 

Term 
% Effect 

MIR 
% Effect NIR 

Variety 0.41* 2.03* 

Maturity 1.21* 3.29* 

Oenological practice 0.47* 0.26 

Winemaking day 59.44* 26.50* 

Variety x Maturity 1.13* 3.48* 

Variety x Oenological practice 0.11 0.23 

Variety x Winemaking day 1.76* 4.68* 

Maturity x Oenological practice 0.17 0.20 

Maturity x Winemaking day 6.28* 7.75* 

Oenological practice x Winemaking day 1.63* 2.99* 

A general trend similar to the ASCA results for phenolic compounds is observed for both 

ASCA models. The factor “winemaking day” is the one that most affects the process, in the 

case of ASCA for MIR spectra with the greatest effect. This is due to the evolution of other 

compounds present in the matrix that are present in the spectra. Both spectroscopic 
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techniques show an evolution of the scores for the winemaking day submodel (Figure 3), 

which is similar to the one observed for phenolic compounds. By looking at the first loading 

of the winemaking day factor for both spectroscopic techniques, the evolution of the scores 

can be assigned to both sugars and phenolic compounds, as the fingerprint region in MIR 

spectra shows a certain contribution to the model26. 

 

Figure 3. Scores of the first component of the factor “winemaking day” for the ASCA model using (a) 

MIR spectra and (b) NIR spectra. Loadings plot of the first component of the factor “winemaking day” 

for (c) MIR spectra and (d) NIR spectra. 

For both spectroscopic techniques, similarly to the results for phenolic compounds, the 

factors “grape variety” and “grape maturity” are the next factors in terms of % effect. 

Despite of explaining less variability in the ASCA model for NIR spectra, both effects are 

greater than in MIR. This could be explained because sugars have a greater absorption in 

MIR that may hinder information of other chemical bonds29. The binary interaction of both 

factors has also a significant effect on the evolution. Additionally, transmittance-mode 

NIR spectroscopy has been previously reported to underperform in the prediction of 

phenolic compounds, which could explain the ASCA results obtained16,17.  
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The factor “oenological practices” was found to be significant only in the ASCA model for 

MIR spectra. This factor had the smallest effect within the individual factors in the ASCA 

model for phenolic compounds, which could explain its lower effect on the spectra due to 

the overlap with other chemical bonds. For NIR spectra, neither this factor nor its binary 

combination with the rest of factors provided a significant effect. 

Finally, the binary combinations of the factor “winemaking day” with the factors “grape 

variety” and “maturity”, showed the specific evolution of each fermentation for each 

cultivar. It has previously been reported that grape variability could be detected using 

spectroscopy within the same field30,31. The variance not explained by the ASCA model 

could be due to many factors such as yeast metabolism, differences between replicates, or 

instrumental factors such as light scattering or instrumental noise31,32. 

Based on the results presented, it can be concluded that both methodologies are able of 

helping to understand the sources of variability in red winemaking, except for oenological 

practices using NIR spectroscopy. Additionally, as the three ASCA models show a similar 

evolution for the factor “winemaking day”, it is thus possible to monitor red winemaking 

using spectroscopy, as previously reported16,33, taking into account what is the impact of 

raw materials and winemaking practices. 

Conclusions 

In this study, we performed a quantitative assessment of the influence of grape cultivar 

and grape quality, specifically phenolic maturity, on the characteristics of the final wine. 

The findings revealed that the raw material, i.e., the grapes and their maturity state, had 

a more significant impact on the phenolic composition of the wine compared to other 

factors. Various oenological practices with different extraction abilities were also 

examined, and although they were found to have a significant impact, their influence was 

lower than that of grape composition. 

Interestingly, it was observed that the practices with highest extraction resulted in lower 

phenolic concentrations compared to the practices with medium extraction, regardless of 

grape cultivar and maturity. This suggests that overextraction occurred, leading to 

reactions, mainly precipitation, which affected the phenolic compounds. Furthermore, the 

evolution of phenolic compounds during alcoholic fermentation and post-fermentative 
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maceration was investigated, confirming the role of ethanol and the duration of the 

maceration in the extraction process. 

Although these results are preliminary, they highlight the potential of mid-infrared and 

near-infrared spectroscopy in studying the variability sources in the production of red 

wine. The application of these spectroscopic techniques can be potentially extended to the 

winemaking industry, so they can provide valuable information about the production of 

red wines. Further research and exploration will be surely developed to fully understand 

the capabilities of these analytical tools in enhancing winemaking practices and producing 

wines with increased quality. 
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Spatially offset Raman spectroscopic (SORS) 

analysis of wine alcoholic fermentation. 
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Process Analytical Technologies (PAT) 

Alcoholic fermentation, although primarily known for the conversion of glucose and 

fructose into ethanol, is a highly complex process that includes several biochemical 

transformations and reactions. This is because the consumption of metabolites by yeast 

and other microorganisms to carry out their metabolism, as well as the production of 

“quorum sensing” metabolites as part of the microorganism’s response to the presence of 

other microorganisms, contribute even more to the complexity of this process. Beyond 

ethanol production, the fermentation process plays a crucial role in the development of the 

organoleptic characteristics of wine, including the release of primary aroma compounds 

present in their glycosylated form or the production of secondary aroma compounds as a 

result of yeast metabolism. Moreover, the extraction yield of colour and polyphenolic 

compounds from grape seeds and skins is also related to this process as it is facilitated by 

the increasing amount of ethanol1.  

To achieve a specific and quality product, the oenologist must keep all these processes 

under control, since a failure could lead to deviations in both the physicochemical and 

organoleptic properties of the wine produced2. When such deviations happen, they often 

involve complex changes, so off-site laboratory analyses are typically required to evaluate 

the situation, since the necessary analytical techniques are usually not available in cellars. 

However, this leads to a delay in getting results, subsequently affecting the decision-

making process3. Even minor compounds that due to the deviation may be generated in 

low concentrations can significantly influence the organoleptic properties of the wine. 

Therefore, any waiting time that can be minimized in the analysis process can contribute 

to preserving the desired organoleptic properties and overall quality of the wine. The more 

time that passes there is an increased likelihood of generation of undesirable compounds, 

which could have low detection thresholds and have a noticeable impact on the final 

product. 

Recognizing the importance of closely monitoring and controlling the fermentation process 

to ensure the desired final product quality, industries have shifted towards implementing 

Process Analytical Technologies (PAT) and adopting Quality by Design (QbD) principles4. 

PAT, as defined by the American Food and Drug Administration (FDA), refers to a system 

that incorporates timely measurements of critical quality and performance attributes of 

raw and in-process materials and processes during manufacturing5. It has been widely 
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employed in the pharmaceutical industry to enhance product quality and process 

efficiency4,6, but its principles perfectly align with the main goals of the wine industry. By 

employing PAT, winemakers can gain real-time insights into the fermentation process, 

allowing for proactive adjustments and interventions to maintain product quality 

throughout the entire production cycle, rather than relying on limited information 

obtained at the final stages. Considering all these benefits and potential for improvement, 

there is no doubt that the wine industry should adopt these methodologies to achieve 

consistent quality and optimize production processes.  

Different types of measurement can be made when applying PAT approaches, so it is 

possible to distinguish: 

 At-line measurements: in this mode the equipment, which may be a benchtop or 

a portable or handheld device, is near to the process. Minimal or no sample pre-

treatment is needed to successfully apply it in a fast way7.  

 On-line measurements: in this mode the sample is diverted or measured through 

an aperture covered by a non-absorptive material, assembled in the production 

line8. 

 In-line measurements: This mode involves placing the sensor directly in the 

process, typically submerged, to perform real-time analysis under actual process 

conditions9. 

The choice of the measurement approach depends on the specific needs and objectives of 

the PAT implementation. At-line measurements are commonly used in the initial stages 

to serve as a bridge between off-line and in-process methodologies, providing real-time 

information without the need for modifying process conditions or equipment10. 

Regardless of the approach used, the implementation of PAT requires a comprehensive 

understanding of the properties and components of raw materials, their evolution 

throughout the process, the quality parameters of the final product and the potential 

factors that may influence every step. By employing the PAT approach, many data will be 

acquired so statistical treatments will be necessary to stablish suitable and reliable 

relationships between the obtained signals or data and the desired properties at different 
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stages of the process11. This holistic approach ensures a thorough assessment of the entire 

production chain. 

Among the different techniques proposed as part of PAT methodologies, the ones that 

provide fingerprint signals in a simply and fast way are the most useful. Thus, 

spectroscopy techniques, such as NIR, MIR and Raman, have a high demand due to their 

ability to provide comprehensive information about the process and its properties making 

a measurement in seconds and in a respectful way with the environment. By using NIR, 

MIR and Raman spectroscopy, a wide range of compounds can be analysed, enabling the 

monitoring of processes and obtaining valuable insights12. However, Raman spectroscopy 

offers several advantages over other spectroscopic techniques, particularly due to the weak 

Raman scattering exhibited by water and ethanol molecules. This property proves highly 

valuable in the analysis of alcoholic fermentation, where water and ethanol are the main 

components13. 

Raman spectroscopy 

Raman spectroscopy is a light scattering technique that uses a monochromatic high 

intensity light that interacts with molecular bonds within a material, causing them to 

scatter this incident light. The occurrence of Raman scattering is rare, with only about 1 in 

every 108 photons undergoing this process. Raman scattering occurs when the initial energy 

state of a molecule differs from its final energy state as the molecule relaxes. The final 

energy state can be higher (Stokes shift) or lower (anti-Stokes shift) than the initial state14. 

The different energy excitation and relaxation processes are represented in Figure 1. 

 

Figure 1. Energy-level diagram of mid-IR, near-IR, Rayleigh, and Raman scattering. Adapted from 

Rodriguez-Saona et al.13. 
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The significant advances in Raman spectrometers in recent years have expanded the 

applicability of this technique in PAT methodologies. The development of portable Raman 

spectrometers and the introduction of techniques like Spatially Offset Raman 

Spectroscopy (SORS) have further enhanced its capabilities. SORS combines traditional 

Raman spectroscopy with spatially offset optics to enable chemical analysis of samples 

even when located beneath a material or surface. The key difference with conventional 

Raman spectroscopy lies in the collection of scattered signals. In conventional Raman, the 

incident light and detector are parallel and located in the same position, obtaining the 

Raman spectra from the point of incidence. In SORS, the detector is shifted relative to the 

light sources, allowing photons from deeper layers within the sample to be captured. As a 

result, two signals are obtained: one from the surface and another from the inner layers 

or subsurface. Although the latter signal exhibits a lower intensity, it is suitable for 

chemical analysis. In the case of SORS, it becomes essential to "enhance" the collected 

signal, photon by photon, using mechanical and digital signal amplification, to acquire the 

desired spectroscopic information15,16. 

SORS has demonstrated its efficacy in various applications, particularly in obtaining 

chemical information from samples packed or wrapped in different materials such as skin, 

paper, plastic, and glass16–19. This technique is particularly valuable in mitigating 

fluorescence interference by disregarding potential fluorescence emanating from the 

container material. Additionally, the use of a high-wavelength laser further aids in 

reducing the impact of fluorescence on the analysis, enabling accurate and reliable 

spectral measurements15. The combination of Raman spectroscopy and SORS within the 

realm of PAT provides researchers and industries with powerful tools for non-destructive 

analysis, process monitoring and quality control in the food and beverage industry. 

On-line Spatially Offset Raman Spectroscopy in alcoholic fermentation 

This is the first time the application of SORS technology has been investigated for 

monitoring alcoholic fermentation. SORS opens up new possibilities for wineries to 

incorporate QbD and PAT approaches. However, to gain a comprehensive understanding 

of the variations caused by different sources in the application of SORS, it was necessary 

to compare the results obtained when working with at-line and on-line measurement 

setups, as well as to study the effect of the presence of yeast in the fermentation media. In 
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order to assess these differences objectively, various measurement configurations and 

geometries were tested.  

According to the approach previously described in the Tutorial, plotting Principal 

Component 1 (PC1) or PC2 against time allowed for visualizing the temporal evolution of 

the spectra. The same strategy was applied to Raman spectra across different 

measurement configurations20: at-line (taking out a sample and analysing it with and 

without centrifugation), and on-line (measuring through the fermentation container from 

two different angles: horizontal plane and vertical plane). To quantify the effect of each 

factor studied, ASCA was employed. The use of ASCA enabled the assessment of the effects 

associated with different measurement setups and the presence of yeast, providing 

valuable insights into the variations observed in the SORS measurements. 

 

Figure 2. Experimental set-up used for Raman spectra collection. 

It should be noted that there might be external factors that influence the excitation of 

molecules, as there is a limited occurrence of Raman scattering. The impact of light sources 

such as sunlight, light bulbs, or fluorescent tubes becomes crucial as they can potentially 

affect the reproducibility of the spectra. To address this issue in our study, particular 

attention was given to the collection of Raman spectra by considering various light sources. 

Prior to analysis, a preventive measure was implemented by switching off the light sources 

for a duration of 5 minutes. This step was taken because artificial light sources can 

continue to emit photons even after being switched off, which could interfere with the 

accuracy of the spectra. The experimental setup employed for Raman spectroscopy is 

depicted in Figure 2, where a box was used with a suitable sized aperture to accommodate 

the sampling device of the SORS spectrometer. This controlled setup ensured standardized 
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conditions for data acquisition and minimized the influence of external light sources on 

the Raman measurements. 

The results from the feasibility of using SORS to monitor alcoholic fermentation have been 

compiled in Paper 4. The on-line approach allowed for successful monitoring through the 

fermentation container, eliminating the need to take a sample. Additionally, the presence 

of yeast suspended in the media did not affect the results. All these results demonstrate 

the potential of SORS technology to be used in both at-line and on-line setups, even in 

wine-making conditions with suspended yeast. Building upon these findings, a new 

avenue of research can be pursued, focusing on the effective application of SORS not only 

for monitoring but also for controlling the process of alcoholic fermentation. This opens up 

prospects for enhancing the quality and efficiency of the fermentation process in 

winemaking.
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Abstract 

Spatially offset Raman spectroscopy (SORS) is a non-invasive analytical technique that 

allows the analysis of samples through a container. This makes it an effective tool for 

studying food and beverage products, as it can measure the sample without being affected 

by the packaging or the container. In this study, a portable SORS equipment was used for 

the first time to analyse the alcoholic fermentation process of white wine. Different sample 

measurement arrangements were tested in order to determine the most effective method 

for monitoring the fermentation process and predicting key oenological parameters. The 

best results were obtained when the sample was directly measured through the glass 

container in which the fermentation was occurring. This allowed the accurate monitoring 

of the process and the prediction of density and pH with a root mean square error of cross-

validation (RMSECV) of 0.0029 g· L−1 and 0.04, respectively, and R2 values of 0.993 and 

0.961 for density and pH, respectively. Additionally, the sources of variability depending 

on the measurement arrangements were studied using ANOVA-Simultaneous Component 

Analysis (ASCA). This study shows that the SORS technique can be a valuable tool to help 

winemakers monitor fermentation in real time, allowing them to make decisions to 

readjust the process if necessary. Furthermore, the obtained results provide valuable 

information for future applications of the studied technique. 

 

Keywords 

Process Analytical Technologies (PAT); multivariate analysis; infrared spectroscopy; 

analysis through packaging 
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Introduction 

Winemaking is a dynamic biochemical process, in which microorganisms and chemical 

compounds affect the course of the process and the properties and quality of the final 

product. The main reaction of the winemaking process is the transformation of sugars, 

basically glucose and fructose, into ethanol and carbon dioxide. This reaction is the basis 

of the alcoholic fermentation and occurs as part of yeast metabolism1. Moreover, due to 

secondary metabolism pathways other yeast metabolites are released at different 

concentrations, which are related to the organoleptic and physicochemical properties of 

the final product1. This process is highly sensitive to variations in chemical composition 

and external conditions (e.g. pH, sugar concentration or temperature), which could even 

lead to stuck or sluggish fermentations2. For this reason, close monitoring of the process 

is necessary to obtain real-time information that allows the necessary corrective measures 

to be taken in time to avoid a quality loss of the final product3. 

Currently, most wineries do not carry out exhaustive fermentation controls, but only rely 

on daily measurements of density and pH, as well as an organoleptic assessment by the 

oenologist4. However, the information provided by these parameters is not sufficient when 

abnormal fermentation behaviour appears and the decisions to be made depend on the 

results of more complex analyses, usually performed at-line or in external laboratories. 

This implies a delay in obtaining information and, therefore, in the application of 

corrective measures5. This delay can be a big problem if these actions are applied once the 

unwanted chemical substances have already impacted the organoleptic properties of the 

final product6. In this context, Process Analytical Technologies (PAT) are increasingly 

used, as they allow product quality to be assured through real-time measurements 

throughout the process7. Among the technologies, vibrational spectroscopy is frequently 

used in the food and beverage industries as it brings together several positive aspects: it 

allows obtaining information of each molecule in the matrix; it is sustainable, eco-friendly 

and requires minimal or no sample processing5.  

Near-infrared (NIR) and Mid-infrared (MIR) spectroscopies have already been used to 

monitor fermentation8,9 and even to successfully detect deviations of the process10,11. 

However, these technologies have drawbacks in their application, such as the complexity 

of the signal in the case of NIR, as a consequence of weak overtones and combination 

bands; and the high MIR absorption of water bonds that make the use of special sampling 
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devices mandatory to overcome signal saturation12. Raman spectroscopy could overcome 

these drawbacks as water bonds do not produce signal saturation and this spectroscopy 

produces sharp peaks that can be associated to specific bonds12,13. Even these advantages 

it has rarely been used in on-line wine monitoring14 mainly due to the fact that Raman 

spectroscopy is reliant on transparency of containers for the analysis of the sample 

contained within. 

Nowadays, with Spatially Offset Raman Spectroscopy (SORS) it is possible to acquire 

Raman signals through many millimetres of different materials, allowing the analysis of 

the sample through barriers such as plastic, glass, paper, etc. The main characteristic of 

this type of measurement is that, unlike conventional Raman, the irradiation of the laser 

(excitation) and the collection of light do not coincide geometrically, but rather a spatially 

displaced measurement is performed. Therefore, since excitation and detection are 

spatially separate, a balanced subtraction of the two measurements creates a clean 

spectrum of the material contained15,16. This makes SORS a non-invasive, non-destructive 

technique that does not require sample preparation17 and, thanks to the availability of 

commercial portable equipments, it becomes of great interest as a tool for process quality 

control. 

The aim of this research has been to evaluate the use of a portable spatially offset Raman 

spectrophotometer (SORS) as a monitoring tool for wine alcoholic fermentation. Different 

sample measurement configurations were tested to assess the performance of the Raman 

spectrophotometer. Principal Component Analysis (PCA), Partial Least Squares 

Regression (PLSR) and ANOVA-Simultaneous Component Analysis (ASCA) were used to 

monitor the process, predict the main oenological parameters and study the sources of 

variability in Raman spectra. 

Materials and Methods 

Fermentation Samples 

Four alcoholic fermentations were carried out at small-scale (microfermentations) into 2.0 

L glass cylindrical containers. White must from the dilution of a commercial concentrated 

must was used. The concentrated white must (Julián Soler S.A., Cuenca, Spain) was stored 

at −20 ºC to avoid any biochemical or chemical evolution. 24 hours before its use it was 

kept at 4 ºC to defrost it. Then it was diluted with MilliQ water to adjust the sugar 
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concentration to 200 g· L−1. To ensure a sufficient yeast assimilable nitrogen, the diluted 

must was supplemented with 0.30 g· L−1 of Actimabio* (Agrovin S.A., Ciudad Real, Spain) 

and ENOVIT® (Spindall S.A.R.L., Gretz Armainvilliers, France), respectively. 

For each one of the four microvinifications (or biological replicates) 1.5 mL of diluted must 

was inoculated with commercial Saccharomyces cerevisiae yeast (Viniferm Revelación, 

Agrovin S.A.) ensuring an initial yeast population of 3· 106 CFU· mL−1. Before inoculation, 

rehydration of the yeast was done following the suppliers’ instructions. All 

microvinifications were kept at a constant temperature of 20 ºC until the end of alcoholic 

fermentation (that is, until the density was lower than 0.995 g· L−1, which is equivalent to 

a final sugar content under 1 g· L−1). 

The alcoholic fermentation process was routinely controlled by measuring directly into the 

container density and pH, twice a day, with a portable densimeter (Densito2Go, Mettler 

Toledo, United States) and a portable pH meter with a 201 T electrode (7+ series portable 

pH-meter, XS Instruments, Italy). Both apparatus were calibrated once a day before use 

with a reference standard of 0.9982 g· mL−1 and two reference standards of pH 7.00 and 

4.00, respectively. The densimeter cell and pH-meter electrode were thoroughly cleaned 

with deionized water before each new reading. 

Raman Analysis 

The Vaya Raman (Agilent, California, USA) portable SORS equipment was used in this 

research. This device uses a laser with an excitation wavelength of 830 nm to seek the 

suppression of fluorescence. The power of the laser was automatically adjusted by the 

spectrometer (taking into account the signal detected) to 450 mW reaching the maximum 

power available. The spectra were acquired in a range from 350 to 2000 cm−1. The 

equipment performs two consecutive measurements: with zero offset (parallel pathway of 

the laser and the detector) and with spatial offset (shift of 0.7 mm from the point of the 

laser incidence to the detector). After internal processing, the equipment records the SORS 

spectrum, which is the result of a scaled subtraction of the two measurements that 

provides a clean spectrum of the sample without the influence of the container layers. 

The sample was measured from two different angles to study the performance of the SORS 

spectrophotometer in each case: directly next to the fermentation glass container in the 

horizontal plane (three equidistant points) and at the bottom of the container in the 
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vertical plane. Furthermore, to detect the possible effect of turbidity, the samples were 

also measured directly next to the container in the horizontal plane after vigorous stirring. 

In every case, the SORS technology was applied to avoid the effect of the container. A 

scheme of the different analysis arrangements is shown in Figure 1. 

 

Figure 1. Scheme of analysis arrangement. Each red arrow indicates the position where Raman 

spectrometer was placed. 

Aliquots of samples were also collected during the fermentation and analysed before and 

after centrifugation to obtain their spectra (without the influence of the container). Raman 

spectra of aliquots were obtained using a vial-mode configuration (Figure 1). The samples, 

contained in glass vials, were inserted into the spectrometer sample holder and the light 

was focused on the sample to perform the scans. Measurement times ranged from 30 

seconds to 2 minutes per sample, while laser exposure times ranged from 0.5 to 2.0 

seconds.  

Each of the four microfermentations or biological replicates was analysed in triplicate in 

each measurement arrangement (shown in Figure 1) twice a day (with a twelve-hour gap) 

for seven consecutive days, which accounts for 14 sampling points for each biological 

replicate in each of the measurement arrangement. 

Data Analysis 

Spectral Data Pre-Processing 

Spectra were imported to MATLAB (R2021a, 9.10; MathWorks, Natick, MA) to create five 

datasets (one for each analysis configuration) of 168 spectra (triplicates of 56 samples (4 

biological replicates x 14 sampling points)), each consisting of 1651 wavenumbers. 

Multivariate analysis were performed using the PLS Toolbox (v9.0; Eigenvector Research 
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Inc., Earglerock, USA). Different pre-processing combinations were tested to overcome 

noise observed in the raw spectra: wavelet denoising (as implemented in Wavelet Toolbox 

v6.0), Savitzky-Golay (SG) smoothing and Standard Normal Variate (SNV), as 

implemented in the PLS Toolbox. The best spectral pre-processing combination to build 

all the multivariate models was wavelet denoising. Data were mean-centred before 

modelling. 

Multivariate Data Analysis 

Principal Component Analysis (PCA) is a well-known exploratory technique used to 

visualize the data (see e.g. esbensen et al.18 and references therein). It allows to detect 

groups and trends among samples and identify samples outliers, and to study 

relationships between the investigated variables. The algorithm decomposes the data into 

a set of new variables called Principal Components, which are linear combinations of the 

original variables, orthogonal between them and retaining most of the information, and 

an error matrix, that contains non-relevant information and model noise. The projections 

of the samples onto the new space of Principal Components, known as scores, and the 

angles between the original variables and the principal components, known as loadings, 

can be plotted to reveal trends between samples and to help understand the sources of 

variability in the data. Partial Least Squares Regression (PLSR) was used to build models 

to predict density and pH19. For each measurement arrangement, an X data matrix 

(containing the sample spectra) and a Y data matrix (containing two columns, one for 

density and the other for pH), were used. Model evaluation was carried out using Cross-

Validation as the validation method (ten random subsets iterated ten times) and 

calculating the Root Mean Squared Error of Cross-Validation (RMSECV) statistic 

(Equation 1). This parameter describes how well the model predicts new samples using a 

cross validation strategy12. First, a partition of the set is done, and each subset is excluded 

from the model building and then the excluded subset is predicted. This process is repeated 

until every subset is used. 

RMSECV = √
∑ (yt,𝑖 − ŷt,𝑖)

2nt
𝑖

nt

 

ŷt,𝑖 are the densities or pHs predicted by the models, yt,i are the measured values (actual 

pH or density), and nt is the number of samples in the cross-validation set. RMSECV is an 

Equation 1 
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approximation of the average error to be expected in future predictions when the 

calibration model is applied to unknown samples. 

Two statistical dimensionless parameters were used to assess model’s predictive ability: 

Ratio of Performance to Deviation (RPD) and Range Error Ratio (RER) (Equation 2 and 

3)20: 

RPD =
SD

RMSECV
 

 

RER =
ymax − ymin

RMSECV
 

SD is the standard deviation of the reference parameters (pH and density), and ymax and 

ymin are the maximum and minimum vales of the reference parameters. Model predictions 

were considered good enough when RPD and RER are greater than two and ten, 

respectively. 

Finally, Analysis of Variance (ANOVA)-Simultaneous Component Analysis (ASCA) was 

used to decompose the variability sources affecting the data. ASCA is a multivariate 

extension of ANOVA, which decomposes the variation in the data into the main effects 

and their binary combinations, obtained from a predefined experimental design21. In this 

study, three variability factors were considered: suspended yeast (stirring or no stirring 

in direct measurements; or centrifuge or no centrifuge in aliquot measurements), the 

alcoholic fermentation process itself and the biological replicates, and the interactions 

between them. The first step of ASCA requires partitioning the centred X matrix 

according to equation 4: 

𝐗c = 𝐗 − 𝟏𝐦T = 𝐗Ripening + 𝐗pos.plant + 𝐗pos.bunch + 𝐗Ripening x pos.plant

+ 𝐗Ripening x pos.bunch + 𝐗pos.plant x pos.bunch + 𝐗res 

where 1 is a vector of ones, mT is the average spectrum of the samples, Xsuspended yeast, 

Xalcoholic fermentation, Xbiological replicates are the matrices of the main factors, Xsuspended yeast x alcoholic 

fermentation, Xsuspendended yeast x biological replicate, Xalcoholic fermentation x biological replicate are the effect 

matrices for the binary interactions, and Xres is the residual matrix that collects the 

variability not taken into account in the experimental design. Each matrix is centred and 

contains the mean profiles of the samples corresponding to each factor or interaction level. 

Equation 2 

Equation 3 

(Equation 4) 
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Then, the matrices are decomposed using a technique called Simultaneous Component 

Analysis (SCA). It is important to note that SCA can be thought of as a form of principal 

component analysis that is constrained by ANOVA21. 

Results and Discussion 

Evolution of the alcoholic fermentation 

The correct progress of alcoholic fermentation was checked by two daily measurements of 

density and pH. The evolution of the density (Figure 2a) showed the typical sigmoidal 

trend9, reaching the end of the fermentation in around 156 hours. pH also exhibited the 

typical trend during alcoholic fermentation (Figure 2b) with a decrease until the midpoint 

of the tumultuous fermentation (at 76 hours) due to the consumption of nitrogenous 

compounds and the release of organic acids. The second part of the alcoholic fermentation 

showed a slight increase in pH1. As all biological replicates behaved similarly, they were 

all considered as fermentations under control, and thus their Raman spectra were used 

for further analysis. 

 

Figure 2. Evolution of (a) density and (b) pH during alcoholic fermentation. 

Raman monitoring of the alcoholic fermentation 

The first objective of the study was to establish the optimal arrangement for the 

acquisition of the sample signal, taking into consideration the angle between the Raman 

sensor and the sample container and the turbidity influence of the suspended yeast in the 

alcoholic fermentation matrix. For horizontal measurements through the fermentation 

glass container, three replicates were measured at three different side points of the 

container (always at the same three equidistant points) before and after manual stirring. 
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Additionally, before stirring, a vertical measurement was performed at the bottom of the 

container, also in triplicate and always at the same point, to evaluate the effect of the yeast 

deposited at the bottom on the signal obtained. 

To obtain a spectrum of the sample without the possible container interference, direct 

analysis of an aliquot of the fermentation samples was performed both before and after 

centrifugation. 

To evaluate the influence of the container in the SORS spectra of the samples, an aliquot 

of each sampling point was analysed in a glass tube container provided by the 

manufacturer and that meets the provisions required for Raman spectroscopy. For this 

analysis, and to evaluate the effect of the suspended yeast on the signal as it was done for 

the direct analysis, measurements were performed before and after centrifugation. Three 

replicates of the sample of each microvinification at each sampling time were measured. 

Figure 3 shows an example of the SORS spectra obtained at the beginning and at the end 

of the fermentation process. The main peaks in the first stage of alcoholic fermentation 

could be assigned to the vibration of different bonds belonging to the sugar molecules: 

451 cm−1 for δ(C–C–O), 521 cm−1 for cyclic carbons, 1124 cm−1 for angular torsion and CH2 

group at 1455 cm−1. Other important bands described in the alcoholic fermentation are 

C–O–H bending at 1424 cm−1, C–C stretching at 1130 cm−1 and C–O stretching at 1072 

cm−1
 

22. As for the spectrum corresponding to the end of fermentation, the most 

characteristic band of ethanol assigned to the C–C stretching vibration around 880 cm−1 

can be clearly seen12,23. 

 

Figure 3. SORS spectra of one biological replicate of alcoholic fermentation at the beginning (purple) 

and at the end (green) of the process. 
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To detect possible different trends depending on the arrangement used for signal 

acquisition, a PCA model was built for each configuration using the mean spectra of the 

three replicates. The dimensions of the matrices for each analysis configuration were 4 

biological replicates x 14 time points x 1651 wavenumbers, which were unfolded to obtain 

two-dimensional matrices of 56 x 1651. 

 

Figure 4. Score plots of the first Principal Component (PC1) of each PCA model for the different 

measurement configurations. a-c) PC1 versus time obtained from SORS spectra of direct measures in 

the fermentation glass container. d-e) PC1 versus time obtained from Raman spectra of aliquots of 

the fermentation. 

As shown in Figure 4, the evolution of the scores in the first principal component (PC1) 

over time showed a process-related sigmoidal curve for each signal acquisition 

arrangement, except for the vertical measurement at the bottom of the sample container. 

The sigmoidal behaviour observed in relation to density evolution allowed the monitoring 

of the process as established in the laboratory using mid-infrared spectroscopy and 

outlined in a previously published tutorial9. Regarding the process, after 96 hours, a 

stabilization of the score values was observed, meaning that the first PC was not able to 

distinguish final stages of alcoholic fermentation, that end at hours 156 as previously 

mentioned (see paragraph 3.1). However, the second PC for “stirring” and “no stirring” 

PCA models showed an evolution over time in that period (Figure S1). This could be related 

to the final part of the consumption of sugars and the production of ethanol, as the loadings 

of this component were also related to sugars and ethanol. When looking at the reference 

samples (centrifuged and not centrifuged aliquots) they showed small differences in the 
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score values of the first PC of the replicates at the end of the process, which could be 

related to biological variability. However, both configurations showed the same sigmoidal 

shape, and could be used to monitor the fermentation. Finally, in all cases the variance 

explained by the first PC ranged from 38.40 to 90.38% depending on the type of signal 

acquirement, showing a great variability compared to other variability sources in the 

spectra. 

Prediction of oenological parameters  

As both density and score values of the first PC showed a sigmoidal evolution, PLSR was 

used to predict density values during the alcoholic fermentation process. The five data 

matrices above described (56 samples x 1651 variables) were used in the experiment. The 

model performance parameters are shown in Table 1. RPD and RER were used to compare 

the performance of the prediction models. In addition, the number of LVs to be considered 

was optimized based on the curve of the RMSECV. 

Table 1. Density prediction results in each analysis configuration. LV: Latent Variables used in the 

PLSR models, RMSECV: Root Mean Square Error of Cross-Validations (expressed in g· mL−1), R2: 

determination coefficient, RPD: Ratio of Performance to Deviation, RER: Range Error Ratio. 

 LV RMSECV (g· mL−1) R2 RPD RER 

Side analysis without stirring 2 0.0029 0.993 11.8 29.8 

Side analysis after stirring 2 0.0030 0.992 11.5 28.8 

Bottom analysis 1 0.0285 0.204 1.2 3.0 

Aliquot analysis without centrifuge 3 0.0041 0.986 8.4 21.0 

Aliquot analysis after centrifuge 4 0.0042 0.985 8.2 20.5 

 

As can be seen from the results, similar prediction models were obtained for “stirring” and 

“no stirring”, and between aliquot with and without centrifuge. The analysis at the bottom 

of the container, as expected by the inspection of the PCA scores in different PCs, was not 

able to predict density. This was also confirmed by looking at the loadings of the first LV 

of every measurement arrangement, with a large peak at 880 cm−1, being the major peak 

associated to ethanol (Figure S2a). Comparable results have been published in the 

literature for the prediction of sugars, as density is mainly related to the concentration of 

sugars in the fermenting must12,14,22,23. Both RPD and RER indicated that the best models 
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were the ones of the direct analysis in the side of the container both before and after 

stirring. This was consistent with the literature stating that SORS coupled to 

chemometrics overcomes some Raman problems such as fluorescence16. In addition, 

regarding the present study these better results were attributed to the greater 

representativeness of the fermentation process when analysing the whole fermentation 

sample than when taking only an aliquot. 

Due to its importance in alcoholic fermentation monitoring, PLSR was also applied to 

predict pH. Following the same methodology as for density, the five data matrices (56 x 

1651) were used to predict pH in every measurement arrangement. The quality 

parameters of the different models are summarized in Table 2. 

Table 2. pH prediction results in each analysis configuration. LV: Latent Variables used in the PLSR 

models, RMSECV: Root Mean Square Error of Cross-Validations, R2: determination coefficient, RPD: 

Ratio of Performance to Deviation, RER: Range Error Ratio. 

 LV RMSECV R2 RPD RER 

Side analysis without stirring 2 0.04 0.961 5.0 13.5 

Side analysis after stirring 2 0.04 0.953 5.0 13.5 

Bottom analysis 3 0.12 0.483 1.7 4.5 

Aliquot analysis without centrifuge 3 0.07 0.888 2.8 7.7 

Aliquot analysis after centrifuge 3 0.08 0.806 2.5 6.8 

As in the case of density, the performances of the pH prediction models were different for 

each signal acquisition configuration. The best performances were obtained with 

measurements performed at the container side, poorer performances were obtained when 

analysing the aliquots and the poorest prediction ability was obtained when measuring at 

the bottom of the container. For every predictive model, the loadings of the LVs (Figure 

S2b-c) were related to sugars, ethanol, and also a peak at 1760 cm−1 related to C=O 

stretching16. Regarding the quality parameters of the best models, the results were in 

agreement with the literature when using on-line conventional (non SORS) Raman 

spectroscopy12,23, and proved the usefulness of SORS for monitoring the alcoholic 

fermentation. 
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 Figure 5 shows the plots of predicted vs measured values for the best models, using the 

spectra obtained from the measurements made directly on the side of the container 

without previous stirring. 

 
Figure 5. Predicted vs measured values for the best prediction models of (a) density (expressed in 

g· mL−1) and (b) pH. Both models were calculated using spectra obtained from measurements without 

stirring. 

Variability sources  

Two ASCA models were calculated to study the variability in the spectra associated to the 

presence of suspended yeast. Two extended matrices of 112 (56 samples x 2 measurement 

arrangements) x 1651 wavenumbers were used. ASCA results are expressed in terms of % 

Effect, which indicates the contribution of each factor to the matrix variability. A 

permutation test of 10000 iterations was performed in each ASCA model to assess the 

significance of each factor (a p-value under 0.05 means the factor is significant)24. The 

ASCA results for the measurements made directly at the container side before and after 

stirring are summarized in Table 3. 

As can be seen, the most relevant factor was the alcoholic fermentation process, which has 

already been shown to be very important in ATR−FTIR data of wine alcoholic 

fermentation25. This was consistent with the fact that during alcoholic fermentation yeast 

consumes approximately 200 g· L−1 of sugars and produces 13% ethanol, being the main 

source of variability in the data. As far as sample agitation was concerned, the results 

showed that stirring the container to resuspend the yeast in the medium prior to the 

spectrum acquisition had no significant influence, making this step unnecessary. The 

biological replicate did not have a significant effect, but the interaction between biological 

replication and alcoholic fermentation process did. This could be explained by small 

differences in the speed of the process, with an effect of 2.08%. 
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Table 3. ASCA results for the “stirring” and “no stirring” measurement arrangements, showing the 

percentage of variance (Effect (%)) for each factor and the p-value obtained from the permutation test. 

A p-value < 0.05 means the factor is significant. 

Factor Effect (%) p-value 

Stirring 0.05 0.3597 

Alcoholic Fermentation process 95.39 0.0001 

Biological replicate 0.15 0.3255 

Stirring x Alcoholic Fermentation 0.56 0.4431 

Stirring x biological replicate 0.11 0.7845 

Alcoholic fermentation x biological replicate 2.08 0.0020 

The ASCA results for the measurements of the aliquot before and after centrifugation are 

summarized in Table 4. 

Table 4. ASCA results for centrifuge and no centrifuge measurement disposition, showing the 

percentage of variance (Effect (%)) for each factor and then p-value resulting of the permutation test. 

A p-value < 0.05 means the factor is significant. 

Factor Effect (%) p-value 

Centrifugation 0.42 0.1477 

Alcoholic Fermentation 71.08 0.0001 

Biological replicate 0.45 0.6289 

Centrifugation x Alcoholic Fermentation 6.69 0.0001 

Centrifugation x biological replicate 0.30 0.4271 

Alcoholic fermentation x biological replicate 18.18 0.0001 

ASCA results for aliquot measurements confirmed that the alcoholic fermentation factor 

is again the greatest source of variability found in the data. However, in the case of the 

aliquot, the course of the alcoholic fermentation was different for the biological replicates, 

as the interaction between both factors was found large and significant. Alcoholic 

fermentation batches without centrifugation showed more variability in each sampling 

point than batches with centrifugation. The standard deviation of the scores for each 

sampling point in Section 3.2 PCA ranged from 0.44 to 4.74 and 1.45 to 11.55 for aliquots 

with and without centrifugation, respectively. This result also explained why the 

interaction between centrifugation and alcoholic fermentation factors was also found large 
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and significant. This ASCA results for aliquot analysis were in concordance with the 

results in Section 3.2 and 3.3, showing that centrifugation had a significant impact in the 

acquisition of Raman spectra, as in a short pathway with a priori no dispersion effects 

yeast may have caused light scattering. 

Conclusions 

The results presented demonstrate the ability of SORS to obtain the Raman spectra of 

wine alcoholic fermentation in a rapid, non-invasive and non-destructive way. Different 

measurement strategies were tested: through the container where the fermentation was 

occurring with and without previous stirring and taking an aliquot to be analysed in the 

Raman sample holder. The variability associated to the different measurement 

configurations was assessed using ASCA, showing that manual stirring has no impact in 

the performance of the SORS. Contrary, when an aliquot is taken from the container, the 

centrifugation has an impact due to the removal of suspended yeast. However, all 

measurement configurations, except those taken at the bottom of the container, 

successfully monitored the fermentation process and predicted density and pH as the main 

oenological parameters used in winemaking. The results obtained allow establishing that 

SORS equipment could be used in the control of fermentation processes in an on-line 

configuration. Further research should be conducted to study the prediction of other 

oenological parameters of interest and the detection of process deviations, as well as the 

potential use of SORS for the analysis of other types of wine and alcoholic beverages. 
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Supplementary Material 

 
Figure S1. Scores plots of the second Principal Component (PC2) of stirring and no stirring PCA 

model. 

 
Figure S2. Loading plot of density (first LV) and pH (first and second) PLSR model. Different colours 

mean different analytical methodologies (blue – Stirring, red – No stirring, green – Centrifuge, purple 

– No centrifuge).
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Wine spoilage 

The waxy layer on the grape skin, known as the grape bloom, is a natural habitat for a 

diversity of microorganisms, including yeasts and bacteria. Among the bacterial 

populations that can be found, the microorganism groups with oenological relevancy 

relevance are acetic acid bacteria (AAB) and lactic acid bacteria (LAB). The variety and 

abundance of bacteria are influenced by various factors such as climatic conditions and 

the sanitary state of the grapes. In particular, AAB populations tend to thrive in more 

humid climates and in situations where grapes are damaged or broken, providing them 

with metabolic access to grape sugars. During the harvest, these bacteria can be 

transferred to wineries through the grape bunches and other sources1. 

AAB are classified as aerobic bacteria, meaning that they require oxygen-rich 

environments for their growth and survival2. Oxygen acts as an electron acceptor in their 

metabolic processes. However, during alcoholic fermentations, where the primary 

microorganism involved is yeast, the matrix conditions shift to anaerobic environments 

due to the production of carbon dioxide. This lack of oxygen induces the AAB population, 

if initially low, to remain relatively stable or even decrease in number3. 

Many factors can influence the risk of AAB population raising, such as an excessive 

aeration of must or wine or the use of unsanitary grapes with broken skins. A high AAB 

population is considered as a spoilage in winemaking due to its primary metabolic 

reaction, which involves the oxidation of ethanol to acetic acid. This reaction gives wine a 

characteristic pungent vinegar-like smell. Acetic acid contributes significantly to volatile 

acidity and for this reason, in the wine industry, volatile acidity is a regulated parameter 

used to assess quality, with a requirement for it to be maintained below a specified legal 

threshold (less than 1.2 g· L−1 or lower depending on Protected Designation of Origin legal 

specifications). It is worth noting that in certain cases, a minor presence of acetic acid can 

actually enhance the overall aroma profile of the wine, adding complexity and character. 

However, the sensory threshold to notice the pungency of acetic acid is considerably less 

than the legal limit, at 0.5 or 0.8 g· L−1 for white and red wines, respectively. In addition 

to acetic acid production, AAB metabolism also produces other compounds such as 

acetaldehyde, ethyl acetate, and diacetyl, which can further impact the sensory attributes 

of the wine1,2,4. Depending on the desired characteristics of the final wine, this would be 

appropriate or not for the oenologist. 
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Considering the influence of AAB on wine quality, it is crucial to employ effective 

analytical methods capable of accurately determining the concentration of acetic acid 

produced by AAB, particularly at early stages. This proactive approach allows winemakers 

to take necessary measures to prevent excessive acetic acid accumulation, ensuring the 

wine meets quality standards and regulatory requirements. Spectroscopy proves to be 

highly suitable in this context, as it provides a rapid and reliable means of obtaining 

comprehensive information about the chemical composition of wine samples. Moreover, 

the portability of spectroscopic instruments enables their integration into wine production 

processes. 

Data matrix treatment 

The application of spectroscopy to follow the fermentation process produces a vast amount 

of data. Multiple variables are measured, either wavelengths or wavenumbers, every two, 

four, eight, or more depending on the spectral resolution. To better characterize the 

fermentation process, numerous batches are considered, and as they are sampled over 

time, a third dimension of data is obtained. This three-way matrix takes the form of 

Batches x Variables x Time, with dimensions IxJxK. However, in order to effectively apply 

usual chemometric techniques such as PCA or PLS, a two-way matrix is required5. A 

schematic representation of the different approaches to reduce the dimensionality of data 

and used in the chapter are shown in Figure 1. 

 
Figure 1. Schematic representation of a possible unfolding or reorganization of a three-way matrix. 
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The organization or unfolding of this three-dimensional matrix has a significant impact 

on the resulting model, as the data structure can highlight different variances and 

covariances within the dataset. Various unfolding approaches can be employed, including 

Batch-wise unfolding and Observation-wise unfolding. 

Batch-wise unfolding involves unfolding the variable and time dimensions while 

maintaining the batch direction. In this approach, each row contains the data from a 

specific batch across all measurements. This unfolding technique enables the extraction 

of relationships between variables of different batches or even within the same batch in 

different moments of the process. By including all the data from a batch within a row, both 

the within-time and over-time correlated information of the variables is captured. It is 

important to note that the same batch length is required for modelling batches, especially 

for future batches6. 

In turn, Observation-wise unfolding maintains the variable direction while unfolding the 

batch and time dimensions. In this approach, each row corresponds to the measurements 

of a specific batch at a particular time point. This unfolding technique allows for the 

inclusion of batches with missing values and accommodates differences between batches 

in the time length of the process7. 

The choice of the unfolding approach depends on the specific goals and characteristics of 

the process being analysed, for instance if the process has to be evaluated as a whole 

(batch-wise approach) or if each measurement has to be evaluated individually to visualize 

its evolution (observation-wise approach). Both approaches offer unique insights into the 

correlations and patterns of the data, providing valuable information for modelling and 

understanding the fermentation process. 

Spectral pre processing and variable selection 

Data pre-processing is a crucial step to transform raw data into a more suitable form for 

further analysis and interpretation. Pre-processing involves a series of techniques that 

aim to enhance the quality of data and remove unwanted noise and artifacts8. These 

artifacts can arise from various sources, such as fluctuations in instrument settings, 

environmental factors, or inherent limitations of the measurement technique. By 

eliminating them, the pre-processing stage ensures that the subsequent data analysis 
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focuses on the true underlying patterns and relationships within the data, improving the 

reliability of the models9,10. 

Normalization and scaling are among the techniques used in pre-processing to adjust the 

variability of measured variables. Normalization (such as SNV or MSC) brings the data to 

a common scale, which is particularly useful when variables have different units or ranges. 

Scaling (such as standardization), on the other hand, aims to achieve a comparable 

magnitude for variables, preventing any single variable from dominating the analysis due 

to its larger values. Other pre-processing techniques such as smoothing or derivatives 

(such as Savitzky-Golay smoothing and derivative) focus on the reduction of noise in the 

spectra and the enhancement of small peaks that may contain useful information of low 

concentration compounds11. 

The choice of an optimal pre-processing technique or a combination of techniques is a 

critical decision that depends on the specific properties of the data and the objectives of 

the analysis. Factors such as the nature of the data (such as Raman or MIR, which behaves 

differently), the presence of outliers or noise, the distribution of the variables, and the 

desired analytical outcomes all influence the selection of appropriate pre-processing 

techniques. Careful consideration and evaluation are necessary to ensure that the chosen 

techniques effectively enhance the data quality without introducing any unintended bias 

or distortion12. 

In addition to pre-processing, variable selection plays a crucial role in optimizing the 

accuracy and performance of spectroscopic methods. While pre-processing techniques aim 

to enhance the overall quality of the data, variable selection focuses on identifying and 

retaining the most relevant variables that contribute significantly to the model. Even with 

correct pre-processing, certain regions of the spectra may not contain critical information 

about the underlying process. These regions have been assigned with less weight in the 

model. However, if unrelated noise is present in these regions, it can have a detrimental 

effect on the model performance. Therefore, removing variables in which noise overrides 

relevant information often leads to better performance of spectroscopic methods13. 

Variable selection can be performed using different approaches, such as forward or 

backward selection. In forward selection, variables are added to the model one by one or 

as a set until a satisfactory model performance is achieved. Conversely, in backward 

selection, variables are progressively subtracted from the dataset until a desirable level of 
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model performance error is achieved. These selection methods help refine the model by 

identifying the most informative variables and discarding those that contribute less to the 

analysis14,15. 

Moreover, the analyst's prior knowledge can be valuable in manually selecting variables 

to remove, based on their chemical properties. Spectroscopy, particularly in the mid-

infrared region, exhibits specific regions associated with particular chemical bonds. 

Taking advantage of this knowledge, analysts can focus on the selection of regions of 

interest that are known to contain relevant information about the process under 

investigation16. 

By combining pre-processing techniques with variable selection techniques, researchers 

can refine the data, reduce noise, and choose the most informative variables for analysis. 

Using all the available tools, a model for the training samples is obtained. This approach 

not only enhances the accuracy and performance of spectroscopic methods but also allows 

for a deeper understanding of the chemical properties and regions of interest in the 

spectra12. 

Acetic acid bacteria spoilage 

As mentioned above, achieving a good model requires multiple steps in data processing 

and analysis. This is especially crucial when studying complex biochemical processes like 

alcoholic fermentation, with underlying subprocesses such as acetification or AAB 

spoilage. These processes take distinct roles in the evolution of the overall process over 

time, with alcoholic fermentation being dominant in magnitude compared to acetification. 

However, even taking place in a less extent, the acetification process significantly 

influences the organoleptic properties of wine. 

In the third study of this thesis different approaches were used to effectively study the 

weight and impact of acetification. Thus, to evaluate the different approaches ASCA was 

used, which decomposes the data matrix into its constituent factors, enabling the 

quantification of both processes. Using ASCA, it became possible to objectively evaluate 

the influence of both alcoholic fermentation and acetification on the spectral data. 

Therefore, pre-processing techniques, variable selection procedures, and unfolding 

strategies were tested to enhance the spectroscopic signal of the unwanted process, the 

AAB metabolism. 
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The findings of our research on the possible strategies for studying alcoholic fermentation 

and acetification processes are presented in Paper 5. As explained in it, the selection of 

specific segments of the process and targeted parts of the spectra generated the most 

promising results. In particular, these selected segments aimed to mitigate the influence 

of alcoholic fermentation on the spectra, mainly the spectral bands associated with sugars 

and ethanol. A division of the process in several stages was also aimed to reduce the 

influence of the phase of the process characterized by the highest sugars to ethanol 

conversion rate. Through the application of these results, it is possible to propose a 

methodology to improve the spectroscopic quality for process control strategies of a 

subprocess partially hidden by a majoritarian process. 
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Abstract 

In food manufacturing and processing, food matrix complexity usually makes it difficult 

to detect unwanted subprocesses, which can impact the quality of the final product. In the 

case of wine alcoholic fermentation, the main process is the conversion of sugars into 

ethanol and carbon dioxide, but the presence of some unwanted microorganisms could lead 

to wine contamination by production of undesired minor compounds. In the study we 

present, an intentional contamination of the vinification process by the addition of acetic 

acid bacteria was studied using a portable Fourier Transform Infrared (FT−IR) 

spectrometer. ANOVA Simultaneous Component Analysis (ASCA) was used to unravel 

these minor variability sources. However, as the subprocess is two orders of magnitude 

lower in concentration than the main process, different methodologies were used to 

enhance the ASCA results, such as to select a specific spectral region related to acetic acid 

bacteria metabolism, to divide the process in time intervals related to the different phases, 

or to unfold the data matrix in different ways. In addition, spectral pre-processing was 

optimized to scale up small peaks related to the subprocess. Our results show that several 

methodologies to build ASCA models can be applied to emphasize and better characterize 

bacteria contamination subprocesses. 

 

Keywords 

portable FTIR, acetic acid bacteria, ANOVA Simultaneous Component Analysis, process 

deviation 
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Introduction 

In recent years, vibrational spectroscopic techniques, including Raman, Near Infrared 

(NIR) and Mid-Infrared (MIR) spectroscopy, have been gaining popularity for the 

monitoring and control of food-related products and processes1. The reason is that these 

techniques are very fast and allow the simultaneous determination of several parameters 

with minimal or no sample pre-treatment. Thus, once developed, implemented and 

properly combined with multivariate data analysis (MVDA), they allow obtaining a lot of 

information from a sample almost immediately2.  

In the wine sector, correct monitoring of alcoholic fermentation is essential to ensure the 

production of high-quality wines, since inefficient management of this process would lead 

to the production of undesired molecules with a negative impact on the quality, both 

organoleptic and chemical, of the final product3. To achieve good control of alcoholic 

fermentation, it is necessary to perform daily measurements of different physicochemical 

parameters, which ensure the correct development of the process4. However, most of these 

measurements are time-consuming and require specific laboratory equipment and trained 

personnel, which forces many wineries to send samples to external laboratories during the 

production process. The implementation of Process Analytical Technologies (PAT), which 

support the idea of controlling the quality of a product during the process4, would be highly 

beneficial for those wineries that cannot have their own analytical laboratory to perform 

at-line analyses. Even for wineries with their own laboratory, PAT strategies are helpful, 

as the frequency of analysis would increase substantially, and pre-treatment of the 

samples would be considerably simplified5. 

A key step in food monitoring is data collection, which is usually time-consuming6. In 

addition, when choosing techniques such as spectroscopy to monitor process parameters, 

reference techniques must be also implemented during the model construction phase, 

making the whole procedure in some cases expensive as well. 

MVDA techniques allows to extract useful information from spectroscopic data and to 

correlate it with the reference values through a proper multivariate model7. The selection 

of the optimal spectral regions (including removal of redundant variables) and the 

application of the optimal spectral pre-processing techniques8 (i.e. 1st or 2nd derivatives, 

Savitzky-Golay smoothing, multiplicative scatter correction) or combinations of them are 

usually key steps in the multivariate modelling. They require a deep knowledge of the 
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sample under monitoring in order to avoid unrealistic results or loss of spectroscopic 

information. 

In the food industry, when using vibrational spectroscopy for process control, it is common 

that the phenomenon we are interested in is hidden by other sources of variation from the 

main process9. In the case of alcoholic fermentation, the transformation of sugars (glucose 

and fructose) into ethanol and CO2 accounts for most of the variability in the MIR 

spectra10. Although this is valuable information, it hinders the detection of other minor 

sources of variability, such as the production of some organic acids that might be 

detrimental for the wine, as it is the case for acetic acid. 

According to literature, in this type of situations ANOVA Simultaneous Component 

Analysis (ASCA) can be a very helpful tool to unravel the minor sources of variability. 

Amigo et al. studied the contribution of the three major design parameters of the bread 

staling process (enzyme treatment, measurement zone and storage time) by applying 

ASCA to NIR spectral data. They found that three effects were significant: the main one, 

accounting for 73% of the variance in the data, was the measurement zone, while the 

spectral variance due to the time of storage (days) and the treatment accounted for 6.8% 

and 5.4%, respectively11. In another study, Grassi et al. studied the effect of yeast strains, 

temperature, and fermentation time points on the variability in fermentation metabolites 

during beer fermentation. They suggested the use of interval-ASCA (i-ASCA), splitting 

variables into intervals of equal size, in which each interval was independently evaluated. 

They found that time had always a significant effect in all intervals. The temperature and 

yeast strain factors showed a significant influence (p-value < 0.01) in some of the i-ASCA 

intervals, unlike classical ASCA results, which did not show significance for these 

factors12. 

The aim of this paper is to evaluate different methodologies to build ASCA models to study 

the variation associated to the wine alcoholic fermentation having a subprocess, which is 

an acetic acid bacteria (AAB) spoilage. We used different strategies to build the ASCA 

models, focusing on specific regions for certain factors or applying specific pre-processings 

to enhance the signals of minor compounds. Finally, different matrix unfolding procedures 

allowed us to study the individual factors of interest. 
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Materials and Methods 

Fermentation 

As in previous studies13, grape must was obtained by dilution of concentrated white grape 

must (Mostos Españoles S.A., Ciudad Real, Spain). Dilution was performed with MilliQ 

quality water until a final sugar concentration of 200 g· L−1. Yeast assimilable nitrogen 

was adjusted using Actimaxbio* (Agrovin, Ciudad Real, Spain) and ENOVIT® (SPINDAL 

S.A.R.L. Gretz Armainvilliers, France) at a dosage of 0.3 g· L−1 for each additive to ensure 

proper fermentation performance.  

Ten microvinifications were conducted in 500 mL conical flask with 350 mL each. Each 

microfermentation was inoculated with 3· 106 CFU· mL−1 Saccharomyces cerevisae “E491” 

(Vitilevure Albaflor, YSEO, Danstar Ferment A.G., Denmark), following the instructions 

of the manufacturer to rehydrate dry yeast. Five microfermentations were intentionally 

deviated to simulate an acetic acid bacteria (AAB) contamination. Spoilage was simulated 

by adding Acetobacter pasteurianus grown in glucose medium (GY: 1% yeast extract; 1% 

glucose, w/v) (Cultimed, Barcelona, Spain). The strain was inoculated to reach a final 

concentration of 1· 106 CFU· mL−1. 

The fermentation process was kept under a constant temperature of 18 ºC until the end of 

alcoholic fermentation and it was monitored once a day by measuring sugars and acetic 

acid, using a Y15 analyzer (Biosystems, Barcelona, Spain). Alcoholic fermentation was 

considered finished when the sugar concentration was under Y15 analyzer limits of 

detection (LOD < 0.05 g· L−1). 

Spectroscopic measurements 

The analyses were carried out by taking 2 mL of each sample, centrifuging them and 

placing a drop on the reader of the portable 4100 ExoScan FTIR (Fourier Transform 

Infrared) spectrometer (Agilent, California, USA), equipped with an interchangeable 

spherical Attenuated Total Reflectance (ATR) sampling interface with a diamond crystal 

window. The spectroscopic range was from 4000 to 850 cm−1, and spectra were recorded 

with a resolution of 8 cm−1 and 32 scans. An air-background was collected before each 

sample to avoid interferences due to the variation in room conditions. All samples were 

measured in triplicate. Spectra were collected using the Microlab PC software (Agilent, 
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California, USA) and data were saved as .spc files. The mean of the triplicates was used 

in subsequent data analysis. 

The microvinifications – five fermentations under Normal Operation Conditions (NOC) 

and five acetic contaminated (AC) fermentations (acetic acid bacteria spoilage) – were 

analysed at eight sampling times. Spectra were arranged in a data matrix with dimensions 

10x845x8 (IxJxK: samples x wavelengths x time points) 

ANOVA-Simultaneous Component Analysis (ASCA) 

ASCA aims at evaluating the significance of one or more experimental factors. It can be 

considered a direct generalization of analysis of variance (ANOVA) to multivariate data14. 

In this study, two known experimental factors are studied: the fermentation process and 

the contamination by AAB. Therefore, ASCA decomposes the original (centered) data 

matrix (Xc) according to: 

Xc = X - 1mT = XFermentation + XContamination + XInteraction+ E   Equation 1 

 
Figure 1. Scheme of the procedure applied to build IKxJ ASCA models. 

where X is the original data matrix, 1 is a vector of ones, mT is the mean of all the 

observations, XFermentation and XContamination are the matrices representing the effects of each 

one of the experimental factors, XInteraction contains the interaction between the factors and 

E is the residual matrix. Each matrix is centered and contains the mean profiles of the 

samples corresponding to each factor or interaction level. Thus, for example, 

“Contamination” factor has two levels of 40 observations each (5 batches per 8 sampling 

times), 40 observations will contain the average profile of NOC fermentations, and 40 will 

contain the average profile of AC fermentations15. The interaction matrix is calculated 

after the subtraction of the main effect matrices. Since all effect matrices are centered, the 
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magnitude of the effects can be evaluated as the sum of the squared matrix elements. 

Given a factor i:  

SSQfactor i = ||                                    X factor i||·2                   Equation 2 

where SSQ is the sum of squares of the elements in the matrix and ||·||is the Euclidean 

norm. To evaluate if the effect of a particular factor or interaction is statistically 

significant, the SSQ value of the corresponding matrix is compared to its distribution 

under the null hypothesis (no experimental effect), as evaluated non-parametrically by a 

permutation test16. Given a factor i, and its associated matrix Xfactor i, the p-value is 

calculated as: 

𝑝 − value(𝐗𝑖) =
nbr(𝐒𝐒𝐐(𝐗𝑖,perm≥𝐒𝐒𝐐(𝐗factor 𝑖)))+1

𝑘+1
         Equation 3 

where “nbr” is the number of occurrences, k is the number of permutations and Xi,perm is 

the matrix obtained after a random row permutation. Thus, the p-value indicates the 

number of cases where the variance of the studied factor is lower than the variance 

resulting from the permutation. In this way, the effect of the studied factor is compared to 

its distribution under the null hypothesis as estimated by the permutations17,18 

Then, a bilinear decomposition of each effect matrix is performed using Simultaneous 

Component Analysis (SCA). In the context of ASCA (under the constraints of ANOVA), 

this reduces to PCA, as the goal is to model the variability linked to each of the factors. 

Hence, each matrix from Equation 1 can be decomposed as: 

𝐗factor 𝑖 = 𝐓factor 𝑖 ⋅ 𝐏factor 𝑖
T + 𝐄factor 𝑖   Equation 4 

where Tfactor i is the score matrix, PT
factor i is the loading matrix and Efactor i is the residual 

matrix of the ith partitioned matrix in equation 1. The reduction of dimensionality enables 

a better visualization and interpretation of the data considering each experimental factor 

or interaction separately. The loadings for factor i define a subspace spanned by Xfactor i, 

that highlight the spectral directions related to the factor under study. The scores for 

factor i are the new coordinates of the observations on the Simultaneous Components 

(SCs) of the model14.  
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ASCA models were built using Matlab R2021b (The MathWorks, Natick, USA) and PLS 

Toolbox v9.0 (Eigenvector Research Inc., Eaglerock, USA). Validation was performed 

using permutation tests and assessing the statistical significance (p-value), as 

implemented in PLS Toolbox19. The number of permutations was 1000020 and results were 

considered to be statistically significant when p-value < 0.05. Throughout the article only 

the significant factors will be discussed. 

Results and Discussion 

Alcoholic fermentation and contamination evolution 

Alcoholic fermentation of grape juice to get wine implies the transformation of about 200 

g· L−1 of glucose and fructose into about 120 mL· L−1 of ethanol. In this study, all the 

fermentations took 190 hours to finish but, to better study the possible contaminations 

after this process, an additional sampling point (258 hours) was considered (Figure 2a). 

As all batches behaved similarly, they were all considered as fermentations under control, 

and thus their MIR spectra were used for further analysis. Acetic acid contamination 

consists of the biochemical oxidation of ethanol produced in the alcoholic fermentation into 

acetic acid21. However, it has to be pointed out that NOC fermentations also produce low 

amounts of acetic acid, since yeasts can synthetize this compound to obtain energy as part 

of their metabolism22. Thus, Figure 2b shows that, from 76 hours onwards, a different 

behaviour is observed in acetic acid production between NOC and AC fermentations, with 

a higher production of acetic acid for the contaminated process. At 258 hours, a final acetic 

acid concentration of 1.74 g· L−1 was reached, six times higher than for NOC. 

 

Figure 2. Evolution of (a) sugars and (b) acetic acid concentration during alcoholic fermentation. 

NOC fermentation (dashed line) and AC fermentation (continuous line). 
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The evolution of the ATR-MIR spectra during alcoholic fermentation and acetification is 

shown in Figure 3. As previously reported9,23, the region showing the greatest variability 

during both processes is found between 950 and 1500 cm−1. The absorption bands found in 

this region are related to CH2, C−C−H, H−C−O bonds and C−C, C−O stretching vibrations. 

This region is considered the wine fingerprint region, since it is where the main 

components of the wine (sugars, acids, alcohols, phenolic compounds, etc.) show important 

absorption bands, although most of the differences found along the fermentation process 

are mainly related to changes in sugars and ethanol concentration23. 

 

Figure 3. Evolution of raw ATR-MIR spectra during alcoholic fermentation and acetification. Upper 

spectra are a closer overlook of the most variable spectroscopic region. NOC fermentation (blue 

dashed line) and AC fermentation (red continuous line). 

ASCA with IKxJ matrix unfolding 

To study the variability of alcoholic fermentation when a subprocess occurs, in this case, 

a spoilage due to acetic acid bacteria, an ASCA model was built. ASCA requires the data 

to be arranged in a bidimensional matrix. For this model, an unfolding of the 3D matrix 

was performed along the row space (IKxJ), to have 80 spectra, which correspond to ten 
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batches (5 NOC and 5 AC) for 8 sampling times in the rows, and 845 wavelengths in the 

columns. Two factors were considered in this model: AAB contamination 

(“Contamination”) and fermentation process (“Fermentation”), and their interaction. 

Different data pre-processing strategies were tested to envision the effect on the factors 

and similar results were obtained. The models built with raw and SNV pre-processed 

spectra (Table 1) will be discussed as examples. 

Table 1. ASCA results for the 80x845 matrix, showing the percentage of variance (% Effect) for each 

factor and the p-value resulting of the permutation test. A p-value < 0.05 means the factor is 

significant. 

Factors % Effect p-value 

Contamination 0.16 0.0001 

Fermentation 98.95 0.0001 

Contamination x Fermentation  0.11 0.1768 

Residual 0.77  

The most relevant factor is the fermentation, accounting for 98.95% of the total variance. 

This is consistent with the fact that alcoholic fermentation comprises the main chemical 

changes regardless of whether NOC or AC are considered. Additionally, fermentation 

comprises other metabolism processes affecting minor compounds. Even though the 

contamination factor shows a low %Effect value (0.16%), it is significant. The 

contamination factor represents a subprocess, which occurs simultaneously with alcoholic 

fermentation and produces 1.74 g· L−1 of acetic acid. Every data pre-processing tested 

showed a similar value for each individual effect (Table S1). 

Figure 4a shows the score values of the “contamination” submodel for each sample, 

coloured according to the type of process (NOC in green and AC in orange). Samples are 

grouped according to the type of process: NOC have negative values in SC1, while AC have 

positive ones. The first loading of the contamination factor (Figure 4b) shows that we can 

attribute this behaviour to the region between 1750 and 1000 cm−1, not only to the regions 

where sugars absorb but also to the fingerprint region. It covers from 1500 to 1150 cm−1 

and it is the result of absorption by proteins, acids, and many others molecules. The 

contribution of this region to the model here described may be directly related to acetic 

acid and other compounds involved in the metabolism of acetic acid bacteria24. 
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Figure 4. ASCA results on the IKxJ unfolded matrix (80 x 845). Scores of the first simultaneous 

component of the (a) contamination factor submodel and (c) fermentation factor submodel, where the 

samples are ordered by the levels of each factor. Loadings of the first simultaneous component of (b) 

contamination factor and (d) fermentation factor. 

Concerning the factor “Fermentation”, the evolution of the first score value (98,26% of 

variance) over time shows a sigmoidal trend (Figure S1). We have previously reported this 

behaviour for the first component in a PCA analysis of mid-infrared spectra6,7. The 

loading of this factor shows that the region between 1150 and 1000 cm−1 is the most related 

to this factor. Literature reports absorptions in this region related to ethanol and sugars 

in wine alcoholic fermentation and explained by the stretching modes of C−C and C−O 

bonds13,23,24. 

Grassi et al.12 introduced the concept of interval ASCA (i-ASCA) to study the factors 

affecting specific regions of the FT−IR spectra. Typical FT−IR spectra can be described as 

large and small peaks, and even though the peaks are normalized with pre-processing 

methodologies, variability of the most intense peaks is still found as the most important. 

i-ASCA overcomes this problem by calculating ASCA models at different regions of the 

spectra. In our case, only the region between was selected, corresponding to the part of the 
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loading with more significance for the “Contamination” factor, after removing the region 

of the “Fermentation” factor, from 1157 to 977 cm−1. 

For this model, a IKxJ unfolding was also performed, as to have the spectra for each batch 

and each sampling time in the rows, and 171 wavelengths in the columns. The ASCA 

results are summarized in Table 2. 

Table 2. ASCA results for the reduced 80x171 matrix, showing the percentage of variance (% Effect) 

for each factor and the p-value resulting of the permutation test. A p-value < 0.05 means the factor is 

significant. 

 Raw SNV 

Factors % Effect p-value % Effect p-value 

Contamination 0.55 0.0001 0.25 0.0001 

Fermentation  98.77 0.0001 98.90 0.0001 

Contamination x Fermentation  0.16 0.0003 0.17 0.0003 

Residual 0.52  0.68  

Despite the fermentation factor is still the main variability source, the contamination 

factor has gained importance compared to results in Table 1. For both factors, the score 

values show a similar trend and grouping (Table S2). ASCA results for a specific region 

agree with our previous research, in the sense that even when focussing on a specific 

region of acids, the alcoholic fermentation remains as the main factor9. This is because 

sugars also have major bands in the same region as acids24. 

Time interval ASCA  

To deepen in the study of the variability when the AC subprocess occurs, the fermentation 

was divided into different parts taking into account the stages through which this process 

takes place. Specifically, four phases were considered: 1) stationary phase (yeast 

adaptation to the media and cellular growth); 2) tumultuous fermentation (maximum 

speed of the process is achieved); 3) tumultuous fermentation end (change in slope as 

deceleration occurs); and 4) process end (final sugar consumption and yeast death). Each 

phase of the process is represented by two sampling points. For this model, a IKxJ 

unfolding was performed, obtaining four data matrices with 20 spectra (five NOC and five 

AC at two sampling times) in rows and 845 wavelengths – or 171 wavelengths when using 
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the selected region – in columns. ASCA models were calculated for the four different parts 

of the process and the results are shown in Figure 5. 

 

Figure 5. ASCA results of the different parts of the process. (a) Four matrices with dimensions 

20x845 and (b) four matrices with dimensions 20x171. Orange: stationary phase, Green: tumultuous 

fermentation, Blue: tumultuous fermentation end, Red: process end. *: Significant factor (p-value < 

0.05). 

Figure 5a shows the % Effect for the factors “Contamination” and “Fermentation”, divided 

into four phases of the process, using the whole spectra. The “Fermentation” factor shows 

most of the variability in every phase of the process, being significant in all cases. The 

highest value of variability (85.29% effect) for this factor is reached in the tumultuous 

fermentation, which is the part of the process with the maximum sugar transformation 

rate22. Moreover, in the first three phases of the process, the loadings for the 

“Fermentation” factor (Figure 6) show the interval between 1150 and 1000 cm−1 

(associated to sugars and ethanol) as the main spectroscopic region correlated to this 

factor. The last phase of the fermentation process shows a noisy loading vector (Figure 6). 

In this phase, poor information of the process is obtained because the two sampling points 

collected coincide with the total depletion of sugars, as seen in Figure 2a. 

UNIVERSITAT ROVIRA I VIRGILI 
QUANTIFYING VARIABILITY IN GRAPE AND WINE QUALITY: A MULTIVARIATE ANALYSIS PERSPECTIVE 
Daniel Schorn García



Results – Journal of Chemometrics e3465 (2023)  

 - 204 - 

 
Figure 6. Loading of SC1 for fermentation factor (upper row) and contamination factor (lower row) 

submodels of the ASCA model. Each column represents a phase of the process. 

Regarding the “Contamination” factor, it is significant from the tumultuous fermentation 

until the end of the process because acetic acid production increases from 76 hour (Figure 

2b). However, the loading plot of this factor shows that the spectroscopic region where 

sugars absorb is the most important in the tumultuous fermentation (Figure 6). This can 

be explained as acetic acid bacteria may metabolize sugars at the beginning of the process, 

since there is a low ethanol concentration in the medium21. For the other phases, it can be 

observed that the fingerprint region increasingly gains importance, which may be 

attributed to the metabolism of acetic acid bacteria, especially acetic acid production. 

Carboxylic acid bonds show important absorbance bands, related to C=O stretching 

vibration at 1740 cm−1, O−H bending and C-O stretching vibrations between 1200 and 900 

cm−1 and C−H bending vibrations around 1400 and 1300 cm−1 24. 

Figure 5b shows the ASCA results obtained when using the selected region between 1795 

and 1161 cm−1. For the stationary and the tumultuous fermentation phases, a similar 

behaviour is found for both “Contamination” and “Fermentation” factors. However, once 

most of the sugars are transformed by yeast, the “Fermentation” factor decreases the % 

Effect value, and the “Contamination” factor gains importance. Thus, the “Contamination” 

factor is half of the variability (50.48% Effect) in the process end phase, since it reaches 

the highest acetic acid concentration, and the fermentation process has no effect because 

it has finished. 
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The results obtained demonstrate that time interval ASCA, with the whole spectra or a 

specific spectral region, allows focusing on a particular factor and its evolution. 

Additionally, for the other spectral pre-processings used, the contamination factor in the 

two last phases of the process (tumultuous fermentation end and process end) increases 

their % Effect reaching up to 70% of the variability when ASCA model is build using 

Savitzky-Golay smoothing or first derivative in combination to SNV pre-processed spectra 

(results reported in Figure S2). 

The variance not explained by the ASCA model (residual term) could be explained by the 

biochemical differences between biological replicates of the same fermentation or 

acetification25. 

ASCA with IxJK matrix unfolding  

To study the variability of the acetic acid bacteria spoilage, an ASCA model was built on 

a IxJK unfolded data matrix, with the spectra for each batch (five NOC and five AC) in 

the rows and 845 wavelengths for each one of the 8 sampling times (6760 variables) in the 

columns. In this model, only the “Contamination” factor was considered. Different pre-

processing strategies were tested to study their effect on the factor. The ASCA model built 

using SNV pre-processed spectra (Figure 7) will be discussed as the model with minimum 

pre-processing. SNV was applied prior to matrix unfolding. 

 

Figure 7. ASCA results on the IxJK unfolded matrix (10 x 6760) without pre-processing. Scores of 

the (a) contamination factor and (b) loading of the first simultaneous component of contamination 

factor. Vertical dotted lines divide each sampling point. Areas with larger peaks are highlighted in 

grey. 

To better focus on the “Contamination” factor, every sampling point of a fermentation 

batch is unfolded in the same row, meaning eight consecutive spectra belonging to the 

same batch. The ASCA results show that the contamination factor accounts for 26.02% or 
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31.82% of the variability, for raw and SNV pre-processed spectra, respectively. Figure 7a 

shows the score values for the contamination factor. Different colouring stands for the type 

of sample: green for NOC and orange for AC. Samples are grouped according to the type 

of process: NOC have negative values in SC1, and AC have positive ones. 

Figure 7b shows the loadings of the submodel for the contamination factor. It can be seen 

that the most important parts of the process are tumultuous fermentation and tumultuous 

fermentation end, as high absorption values are obtained from the third to the sixth 

sampling point and high loading values on SC1 from the 1690 to 5070 variables. 

Additionally, as it was stated along sections 3.2 and 3.3, both sugars and fingerprint 

regions are important parts of the spectra for the contamination factor. 

Other pre-processing methodologies were tested in the IxJK unfolding ASCA model, and 

similar results were obtained. Sightly increases in the % Effect for contamination were 

achieved using smoothing and 1st derivative (Table S3) as this pre-processing amplify 

smaller peaks, such as the expected for acetic acid in the considered concentration. 

Conclusions 

To the best of our knowledge, this study shows for the first time the use of ASCA to study 

the variability of a wine fermentation evolution, such as the wine alcoholic fermentation 

process. Additionally, an intentionally provoked contamination with acetic acid bacteria 

was also studied, as the most unwanted microorganism in wineries. After applying 

different methodologies to arrange the spectral data and to enhance the information 

obtained from ASCA models, the results confirm that a subprocess, in this case bacterial 

contamination, can be detected with ASCA, when full spectra or specific spectral regions 

are used, when the process is divided in parts and when various spectral pre-processing 

approaches are applied if required. 
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Supplementary Material 

 
Figure S1. Scores of the first simultaneous component of the fermentation factor submodel evolution 

over time. 
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Figure S2. ASCA results of the different 

parts of the process using different pre-

processings. Orange: stationary phase, 

Green: tumultuous fermentation, Blue: 

tumultuous fermentation end, Red: process 

end. *: Significant factor. 
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Deviation of alcoholic fermentation process 

Despite the advances in both oenological technology and in knowledge regarding alcoholic 

fermentation, stuck and sluggish fermentations still represent a significant problem faced 

by wineries. An alcoholic fermentation is considered stuck or sluggish when the rate of 

sugar consumption is stopped or is too low for practical purposes in terms of duration and 

resources management1. Figure 1 illustrates various of these scenarios. Winemakers have 

difficulty restarting stopped or slow fermentations because even when the restart 

procedure is successful and fermentation can be completed, wine quality has usually 

already been affected. Therefore, it is crucial to detect and pinpoint the contributing 

factors that can lead to problematic fermentations2. 

 
Figure 1. Types of problematic fermentations regarding sugar evolution over time. Adapted from 

Bisson3. 

Numerous factors have been identified as potential sources of sluggish and stuck 

fermentations. These include nutrient limitations, improper grape sanitary state, 

agricultural residues or improper temperature management, among others4. These factors 

generate stress conditions on yeast cells that directly affect their viability and population 

growth. This is because yeast metabolism suffers malfunctioning due to: the inability to 

synthesize essential compounds such as proteins; to the damage in yeast cellular integrity, 

as the lipid bilayer is sensitive to medium conditions; and to the incorporation of toxic 

nutrients into the cell5−7. 
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In this chapter, the focus is on investigating sudden temperature changes and nitrogen 

deficiency as causes of sluggish fermentations. Temperature has a huge impact on yeast 

growth, especially when combined with the presence of ethanol, as both produce a synergic 

effect. The cell membrane is affected by the fermentation temperature in terms of less 

integrity and more permeability as the temperature increases. These conditions result in 

the incorporation of toxic compounds, such as ethanol, into the intracellular medium, as 

well as compounds that can disrupt the acid/base or redox balance5,7.  

Furthermore, nitrogen compounds that provides yeast assimilable nitrogen (YAN) to 

grape must are a key parameter for the wine fermentation process because this N is a 

substantial nutrient for yeast growth affecting the formation of yeast biomass. However, 

the optimal amount of YAN in must depends on various factors including yeast strain, the 

ratio of different nitrogen compounds and the initial sugar concentration8,9. If the nitrogen 

concentration is not enough, it is supplemented to the media through ammonia salts, 

amino acids and other minor compounds. These additions must be controlled since 

excessively high concentrations of YAN can cause problems such as the appearance of 

unpleasant odours related to the acceleration of fermentation with the subsequent stress 

on the yeasts10. 

In view of the problematic effects that both temperature and YAN may pose on the 

evolution of the fermentation process, it becomes essential to have simple and fast 

analytical methods available in the winery that can provide rapid responses at the early 

stages of deviation. Spectroscopic techniques, particularly MIR spectroscopy, offer a 

valuable tool of acquiring comprehensive chemical information from fermenting samples. 

Multivariate control charts 

The implementation of control charts built from high-dimensional data requires the 

application of dimensionality reduction techniques such as PCA or PLS. These methods 

are used to build models based on historical data and under normal operating conditions 

(NOC). PCA models focus on process variables, while PLS models incorporate both process 

variables and product quality data. Once the model is established, future data can be 

projected onto the model to determine if the process aligns with the expected patterns11. 

In this study, multivariate control charts based on PCA models were evaluated as several 

options can be found in the existing literature. These include control charts for each 
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independent principal component's score, control charts based on the Hotelling T2 statistic, 

and control charts based on the Q-residuals of the PCA model. Each of these charts offers 

valuable insights into different aspects of the process, enabling effective monitoring and 

identification of deviations from the expected behaviour11. Figure 2 shows the results of 

these three examples of control charts for a fermentation that suffered a sudden 

temperature change (more information about the deviation in Paper 6). Scores are the 

projection of the samples in the new variable space. Hotelling T2 is a statistical 

measurement of the distance of the samples from the centre of the model, and Q residuals 

represent the distance of the sample to the PCA space. Information of how to calculate 

them and how to establish statistical limits on Chapter 1. 

 

Figure 2. (a) Scores of the first principal component, (b) Hotelling T2 and (c) Q residuals evolution 

over time. Normal Operating Conditions (NOC) fermentations in blue circles and fermentations that 

suffer a sudden temperature change in green squares. Dotted line show the statistical limit of each 

parameter. 

The visual representation of the control charts allows for a comprehensive overview of the 

process performance, highlighting trends, patterns, and potential areas for improvement. 

However, even more detailed and specific information can be obtained by constructing 

additional control charts that incorporate combinations of these parameters as reported 

Bersimis et al.12. While most control charts in the literature are based on the PCA scores, 

to the best of our knowledge, no control chart based on the PCA loadings has been 

proposed. The loading matrix contains essential information about the significance of 

spectral bands or regions in the model13. This information not only contributes to the 

understanding of the model but also provides valuable chemical insights. By incorporating 

loading-based control charts, winemakers can gain a deeper understanding of the factors 

influencing the process and make more informed decisions. 
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Dissimilarity Index 

The dissimilarity index (DI) proposed by Muncan et al.14 caught our attention due to its 

ability to visualize the different stages of yogurt fermentation and its correlation with 

chemical information captured in the loadings. The DI employs a moving window 

approach, comparing spectra from a specific time frame with those from the immediately 

preceding time frame. The DI approach was applied to the alcoholic fermentation data but 

it did not allow to establish a control chart due to the high variability in the process rate 

at different stages. To solve this problem, an evolving window approach was proposed to 

compare spectra from the beginning of the process until a given moment with those from 

an initial time frame. This enabled us to effectively monitor alcoholic fermentation. 

The monitoring of the alcoholic fermentation and the detection of deviations studied are 

detailed in Paper 6. These fermentation deviations were intentionally induced by 

suddenly increasing the temperature and promoting a nitrogen deficit that resulted in 

sluggish fermentation in both cases. When our new DI approach was applied to the data 

of these fermentations, the results demonstrate the efficacy of the evolving window 

dissimilarity index in monitoring wine alcoholic fermentation, identifying sluggish 

fermentation at early stages, and quantifying the impact of various factors on the process. 

In the best of our knowledge, this is the first control chart based on loading information, 

which can identify process deviation influencing process rate performance and obtain 

chemical information from the spectra.  
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Abstract 

Process Analytical Technologies (PAT) have transformed the beverage production 

management by providing real-time monitoring and control of critical process parameters 

using non-destructive measurements, allowing for process readjustment if needed. New 

requirements call for new methods, and in this article, we propose a new method based on 

the construction of Multivariate Statistical Process Control (MSPC) charts from a new 

dissimilarity index capable of following fermentation processes. It has been applied to wine 

fermentation, the complex biochemical transformation of sugars into ethanol, which can 

be influenced by various factors. It allowed identifying deviations of the fermentation 

process in its early stages caused by nitrogen deficiency or temperature changes, and a 

combination of both. These results show the potential of this new approach to improve the 

monitoring and control of the key process stages, which allows maximizing quality and 

minimizing losses. 

 

Keywords 

mid-infrared spectroscopy; wine; real-time monitoring; evolving window principal 

component analysis; confidence limits 
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Introduction 

The beverage industry is a continuously changing sector in which alcoholic drinks are the 

ones with the greatest economic contribution1. This implies that the alcoholic beverage 

industry today faces new challenges related to the different production processes, among 

which alcoholic fermentation stands out. This process is a complex biochemical 

transformation of sugars into ethanol that can slow down (sluggish fermentation) and even 

stop (stuck fermentation) for a number of reasons, including inadequate nutrients 

concentration or sudden changes in fermentation conditions2,3. The slow rate of sugar 

consumption by the yeasts indicates that their metabolism is not working properly, which 

could lead to the synthesis of undesirable molecules. These can negatively influence 

sensory perception of the final product and, therefore, its quality4.  

The possibility of recovering a problematic fermentation depends on early detection of the 

problem, which allows producers to take corrective measures to minimize the impact on 

product quality5. This concept perfectly fits with the implementation of Process Analytical 

Technologies (PAT). This approach is based on the idea that final product quality is 

achieved through real-time measurements throughout the process which allow 

readjustments while the problem is still solvable, rather than assessing product quality 

when the process has already been completed6,7. The implementation of PAT 

methodologies in the food and beverage industry requires in- or on-line to gather 

information about the molecules involved in the process. Additionally, the use of non-

destructive measurements is recommended as they can provide valuable information 

without affecting the process’ quality or composition7. Regarding wine alcoholic 

fermentation vibrational spectroscopy (near infrared, mid infrared or Raman) has proven 

to be a useful tool for obtaining process information8−12. In these cases, the data being 

acquired are multivariate and, therefore the use of Multivariate Statistical Process 

Control (MSPC) techniques is necessary for fermentation process monitoring and control. 

Among the different types of MSPC charts, those based on Principal Components Analysis 

(PCA) are widely used because they are simple and easy to interpret13.  

The application of the PCA-based control chart approach involves selecting a reference set 

that defines the normal operating conditions (NOC) for a particular process, with its 

intrinsic variability, and comparing future values with this set. Thus, a PCA is built using 

NOC data and future data are projected onto the ‘NOC’ PCA model. Then the values of the 
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statistical parameters Hotelling's T2 and Q residual are used to assess whether the new 

data are compatible with those recorded in the NOC. Hotelling’s T2 and Q residuals control 

charts have been shown to be effective in wine alcoholic fermentation to detect lactic acid 

bacteria spoilage8, along with other monitoring strategies9,14. Since PCA loadings capture 

the chemical information of the process, Muncan et al. propounded a Dissimilarity Index 

(DI) to compare loadings of a yogurt fermentation process using a moving window PCA 

approach15. In this way it was possible to distinguish and visualize three process stages 

related to the physicochemical properties of the yogurt matrix. 

In this work, we present a Multivariate Statistical Process Control (MSPC) chart based on 

the Dissimilarity Index of NOC fermentations which, for the first time, was proposed to 

early detect process deviations. This improvement of the DI consists of using an evolving 

window approach which has been developed as a tool to monitor the progression of a 

biotechnological process such as wine fermentation. A portable Attenuated Total 

Reflectance-Fourier Transform Infrared (ATR−FTIR) spectrometer was used to perform 

at-line and non-destructive measurements, collecting spectra throughout the process. 

Three different scenarios that can lead to deviation in the fermentations were tested: 

sudden changes in temperature, nitrogen deficiency at the start of fermentation, and a 

combination of both. 

Materials and Methods 

Samples and fermentation characteristics 

The samples were obtained from small-scale alcoholic fermentations (microfermentations) 

of grape must carried out under different conditions. Specifically, a commercial and 

concentrated white grape must (Juan Soler S.A., Cuenca, Spain) was diluted with MilliQ 

water to a final sugar concentration of 200 g· L−1 and, for each microfermentation, 1.5 L of 

diluted must was transferred into 2 L glass vessels for fermentation. Then, to start the 

alcoholic fermentation process, each must was inoculated with 3·  106 CFU· mL−1 of 

Saccharomyces cerevisae Viniferm Revelación (Agrovin S.A., Ciudad Real, Spain), 

following the manufacturer instructions for rehydration of the dry yeast. Different 

fermentation conditions regarding the initial yeast assimilable nitrogen (YAN) 

concentration and temperature during the process were applied and these are summarized 

in Table 1 (together with the abbreviations used in the text). 
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Table 1. Experimental conditions for the different types of fermentation carried out. 

Type of fermentation 
Addition of N at 

the beginning 
Temperature 

NOC 

Normal Operation Condition 
Yes Constant at 20 ºC 

NDef 

Nitrogen Deficit 
No Constant at 20 ºC 

TEM1 

Applied temperature gradient 1 
Yes Gradient (Fig. 1a) 

TEM2 

Applied temperature gradient 2 
Yes Gradient (Fig. 1b) 

NDT 

Nitrogen Deficit and applied temperature gradient 2 
No Gradient (Fig. 1b) 

YAN was adjusted for NOC, TEM1 and TEM2 fermentations using Actimaxbio* (Agrovin, 

Ciudad Real, Spain) and ENOVIT® (SPINDAL S.A.R.L. Gretz Armainvilliers, France) at 

a dosage of 0.3 g· L−1 each, to ensure proper fermentation performance. The initial YAN 

concentration was 120 mg· L−1, and after the adjustment, YAN increased to 232 mg· L−1. 

NOC and NDef fermentations were kept at a constant temperature of 20 ºC throughout 

alcoholic fermentation. Two temperature gradients, showed in Figure 1, were applied to 

TEM1 and, TEM2 and NDT fermentations, respectively. 

Two experimental plans were carried out with different number of samples and different 

conditions (diagram in Figure S1 and Table 2): the first consisting in 6 NOC, 4 NDef and 

4 TEM1 fermentations; the second consisting in 6 NOC, 4 TEM2 and 4 NDT fermentations. 

To follow the evolution of the different alcoholic fermentations, each of the samples were 

periodically monitored (exact times were specified in section 2.2) by measuring their 

density and pH, using a portable electronic densimeter (Densito2Go, Mettler Toledo, 

United States) and a portable pH-meter with a 201 T electrode (7+ series portable pH-

meter, XS Instruments, Italy), respectively. Both instruments were calibrated daily using 

reference standards. Alcoholic fermentation was considered finished when density was 

less than 0.995 g· L−1. This value was reached between 7−9 days depending on the type of 

fermentation. 
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Figure 1. Temperature gradient applied to a) TEM1 fermentations and b) TEM2 and NDT 

fermentations. 

Spectroscopic measurements 

Infrared spectroscopic measurements were conducted according to a previously 

established methodology5, using a portable 4100 ExoScan FTIR spectrometer (Agilent, 

California, USA) equipped with a spherical ATR sampling interface with a diamond 

crystal window. The spectroscopic range covered from 4000 to 850 cm-1, and spectra were 

recorded at a resolution of 8 cm−1 and 32 scans, which imply the response measurements 

at 845 wavenumbers. To eliminate the interference due to variations in environmental 

conditions, an air-background spectrum was collected before each sample measurement. 

Each sample was analysed in triplicate by placing three drops of the sample on the crystal 

and recording the spectrum immediately after each drop. The spectra were collected using 

Microlab PC software (Agilent, California, USA) and saved as .spc files. The average of the 

three measurements was used for further data analysis. Spectra were collected at the 

same times of day, covering twelve hours per day of the process and taking samples every 

four hours. However, to better characterize the applied temperature gradient, one sample 

per hour was taken in NOC, TEM1, TEM2 and NDT. The details of the sampling points 

and matrix dimensions are shown in Table 2. 

To maximize information and enhance small peaks, spectra were pre-processed using 

Savitzky-Golay second derivative (15 points and 2 order polynomial) and Standard Normal 

Variate. 
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Table 2. Overview of Replicates, Sampling Points and Data Matrix Dimensions. 

Type of 

fermentation 

Number of 

replicates 

Sampling 

points 

3D matrix dimension 

(replicates x samplings x 

wavenumbers) 

Unfolded 

matrix 

NOC 12 42 12 x 42 x 845 504 x 845 

NDef 4 34 4 x 34 x 845 136 x 845 

TEM1 4 42 4 x 42 x 845 168 x 845 

TEM2 4 42 4 x 42 x 845 168 x 845 

NDT 4 42 4 x 42 x 845 168 x 845 

Dissimilarity Index 

The dissimilarity index (Eq. 1) proposed by Muncan et al. is based on the absolute value 

of the product of the transposed first loading of each model and the first loading of the 

initial model15. 

A𝑖 = 1 − |𝐩(𝑖)T𝐩(0)|    Equation 1 

where Ai is the dissimilarity index for model i, and |p(i)T p(0)| is the inner product (in 

absolute value) of the loading of a principal component for model i and a reference loading 

(initial model or model 0). This dimensionless parameter ranges from zero to one, with 

zero indicating that the loadings are identical and one indicating that they are orthogonal.  

The DI was originally proposed using a moving-window approach to study a process, 

allowing to compare each part of the process with the preceding one in such a way that 

three process stages of the yogurt fermentation were distinguished. 

Evolving Window Dissimilarity Index 

The first step of the proposed approach involved the study of NOC fermentations. NOC 

alcoholic fermentations are monitored using evolving window principal component 

analysis (EWPCA) (Figure 2). This method calculates a PCA in increasing time intervals, 

allowing including the entire evolution of the process up to a specific sampling time and 

giving equal weight to each part of the process, in contrast to the moving window approach 

which only takes into account local process parts. The first loading of each model was 
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extracted and used to calculate the Evolving Window Dissimilarity Index (EWDI) along 

the fermentation process (Eq. 2). 

 
Figure 2. Scheme of the evolving approach used to calculate the evolving window dissimilarity index, 

from time 0 to time k. 

DIt = 1 − |(𝐩 Model0→t)T · (𝐩 Model0→n)| Equation 2 

In the Figure 2, model 0 represents the start of fermentation, while model k represents 

the model encompassing the entire fermentation. The initial window (i.e., the time 

window of model 0) was optimized, using different initial time gaps (considered intervals, 

0 to n, were between 0−24 hours and 0−36 hours). The loading extracted from model 0 

was then used as the reference loading for NOC fermentations (p Model0→n in Equation 

2) and the evolving window dissimilarity index was calculated for all NOC fermentations. 

NOC dissimilarity curves were used to build confidence limits calculated as the ± 2.201 

standard deviations (Student's t for eleven degrees of freedom and 95%). 

After optimization of model 0 for NOC fermentations, the EWDI was calculated for all the 

other fermentations conducted, i.e. fermentations carried out under deviations from 

normal conditions. The loading extracted from model 0 was also used as the reference 

loading (p Model0→n in Equation 2) for all other fermentations that were to be compared 

with NOC fermentations. 

Analysis of Variance (ANOVA)-Simultaneous Component Analysis (ASCA) 

Analysis of Variance (ANOVA)-Simultaneous Component Analysis (ASCA) was used to 

decompose the sources of variability influencing the data. ASCA is a multivariate 
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extension of ANOVA, which decomposes the variation in the data according to a 

predefined experimental design into the main effects and their binary combinations16. In 

this study, three variability factors were considered: (1) to which set of batches the 

fermentation belonged (experiment factor), (2) whether or not fermentation was subjected 

to a temperature gradient and (3) whether or not the fermentation had sufficient YAN at 

the beginning of alcoholic fermentation; and the interactions between them. 

Results and Discussion 

Optimization of the evolving window dissimilarity index 

The optimization of the EWDI was performed by calculating the EWDI values of NOC 

spectra. The EWDI was calculated using the first PC loading, since in the PCA of alcoholic 

wine fermentation the first PC collects the main information of the process (see Fig. S2 

and Schorn-García et al.5).The moving-window approach proposed to monitor yogurt 

fermentation15 did not perform well in the case of wine alcoholic fermentation, as an 

erratic evolution (between 0 and 1) due to small differences in the process did not allow 

capturing all useful information about the process. Furthermore, a different initial 

number of sampling points included in the reference PCA (model 0) was tested (5 to 8 

sampling points, which include spectra from 0 hours to 24 or 36 hours). An overview of the 

different EWDI evolution based on the number of sampling points included in model 0 is 

shown in Figure 3. 

The EWDI evolution over time when considering 24 (Fig 3a) and 28 (Fig 3b) hours in model 

0 was not useful due to a great increase in the EWDI value for the first sampling points, 

followed by a stabilization of the value. This behaviour did not allow studying the 

fermentation process, since after a certain point no differences were found between the 

EWDI values. However, the evolution over time of the EWDI considering 32 (Fig 3c) or 36 

(Fig 3d) hours in the model 0 showed better results, probably due to the inclusion of the 

early stages of tumultuous fermentation (phase of the process with the highest sugar-to-

ethanol transformation ratio). Thus, the 36-hour model 0 showed a better evolution in 

terms of sensitivity for the first sampling points, so this time was chosen to obtain the 

reference loading.  
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Figure 3. a-d) Evolving Window Dissimilarity Index (EWDI) based on loading variation of NOC wine 

alcoholic fermentation considering different time gaps for the reference loading (from 0 to 24 (a), 28 

(b), 32 (c) or 36 (d) hours). X-axis indicates the last sampling point included in the evolving window. 

e-h) Reference loading used to calculate the EWDI, depending on the time gaps considered (from 0 to 

24 (e), 28 (f), 32 (g) or 36 (h) hours). 

Regarding the loading of model 0 (Fig 3e and f), it showed that the important regions were 

between 3000 and 3500 cm−1, which could be attributed to the O−H stretching vibrations 

of water and ethanol, and between 1000 and 1800 cm−1, corresponding to the fingerprint 

region of the alcoholic fermentation11,17. However, when more sampling points were 

considered (Fig 3g and h) in model 0, the calculated loading underweighted the region 

between 3000 and 3500 cm−1 and incorporated a signal from 2300 to 2400 cm−1, which 

could be attributed to O=C=O stretching, as carbon dioxide is released during alcoholic 

fermentation3. 

Evolution of the process and deviations 

The evolving window dissimilarity index of each sampling time was calculated for each 

fermentation type by grouping the spectra from each batch from the beginning to that 

sampling time and comparing the loadings of the first component with the loadings of the 

first component of model 0. For example, there were 12 NOC fermentations, so for hour 48 

(first EWDI value in Figure 4) the loading of the PCA model obtained with a matrix of size 

108x845 (9 sampling times x 12 microfermentations batches x 845 wavenumbers) was 

compared to the loading of model 0 of dimension 96x845 (8 sampling times x 12 

microfermentations batches x 845 wavenumbers). The EWDI evolution over time is shown 

in Figure 4. 
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Figure 4. Evolving Window Dissimilarity Index based on loading variation of wine alcoholic 

fermentation with different characteristics (blue circles – Normal Operation Conditions (NOC); red 

squares – fermentations that suffered a temperature gradient depicted in Figure 1a (TEM1); green 

triangles – fermentations that started with a nitrogen deficit (NDef); purple inverted triangles – 

fermentations that started with a nitrogen deficit and suffered a temperature gradient depicted in 

Figure 1b (NDT); orange rhombi – fermentations that suffered a temperature gradient depicted in 

Figure 1b (TEM2)). X-axis indicates the last sampling point included in the evolving window. 

In all types of fermentation, a noticeable increase of the EWDI was observed between 48 

and 100 hours. This time frame coincided with the tumultuous phase of fermentation, 

during which the rate of glucose consumption was the highest. When sugars were 

converted to ethanol, EWDI levels also rose rapidly. After 100 hours, the increase in EWDI 

slowed down and continued until the end of fermentation, which occurred around 200 

hours (when all types of fermentation finished). In general, the evolution of EWDI during 

fermentation provided valuable insights into the progress of the process, making it a useful 

tool for monitoring fermentation.  

The fermentation types that underwent a temperature change (TEM1, TEM2 and NDT), 

showed a similar upward trend between 48 and 60 hours, when the temperature gradient 

was applied. This trend could be explained as yeasts have their optimal temperature range 

between 16 to 30 ºC 

18. At the beginning of the temperature gradient, the yeasts were in 

their optimal temperature range, which allows them to increase their metabolic activity. 

NDef showed a slower evolution over time; however, NDef and NDT ended the 

fermentation with a higher EWDI compared to NOC fermentation. The slower 

fermentation rate at the beginning would be explained by the lower amount of YAN 

available to carry out yeast metabolism properly19. 
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Evolving Window Dissimilarity Index control chart 

As discussed above, the NOC spectra of the first 36 hours was used to obtain the reference 

loading (first loading of model 0), calculated as the loading of the first PC (shown in Figure 

4h). The NOC EWDI curves were used to calculate 95% confidence limits (average of 12 

EWDI NOC curves ± 2.201 standard deviations) (red dotted lines in Figure 5). 

 

Figure 5. Evolving Window Dissimilarity Index (EWDI) control charts based on loading variation of 

wine alcoholic fermentation. Red dotted lines represent 95% confidence intervals calculated based on 

EWDI curves of the twelve NOC fermentations (average ± 2.201 standard deviation). The different 

charts represent the values of EWDI curves for different types of fermentation: a) fermentations that 

suffered a temperature gradient depicted in Figure 1a (TEM1); b) fermentations that started with a 

nitrogen deficit (NDef); c) fermentations that suffered a temperature gradient depicted in Figure 1b 

(TEM2); d) fermentations that started with a nitrogen deficit and suffered a temperature gradient 

depicted in Figure 1b (NDT). X-axis indicates the last sampling point included in the evolving window. 

The NOC EWDI upper and lower control limits showed a greater difference up to 100 

hours due to the great fermentation activity during this period. In fact, from 48 to 100 

hours, the alcoholic fermentation process had the maximum rate of sugar consumption, 
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and even slight differences between NOC batches resulted in increased confidence limits. 

Then, from 100 hours to the end of the process, the confidence limits were much tighter as 

the fermentation process decreases in intensity.  

However, despite the wider confidence limits at the beginning, the proposed MSPC chart 

was able to detect sluggish fermentations. Figure 5a shows the evolution of EWDI for 

TEM1, where the control chart was able to detect all the batches outside the confidence 

limit from 60 to 76 hours. In this type of sluggish fermentation, the EWDI showed out-of-

control values shortly after the temperature rise reached its maximum at some later 

sampling points. However, from 80 hours onwards, TEM1 had a EWDI considered under 

control, and this behaviour can also be observed in Figure 4, where TEM1 had EWDI 

values similar to NOC at the end of the process. The time interval considered as out-of-

control (60 to 76 hours) for TEM1 was relatively short, with only three sampling points 

being affected. 

In the case of NDef (shown in Figure 5b), the control chart was able to detect all out-of-

limits batches starting at 53 hours. This sluggish fermentation was intentionally induced 

by creating a nitrogen deficit, which can cause a malfunction in the metabolism of yeast 

10. Figure 5c shows the evolution of EWDI for TEM2. In this case, each batch was detected 

as out-of-control starting at 53 hours, with the exception of one particular time period 

where the EWDI values ‘crossed’ the confidence limit. The temperature variation applied 

between 48 to 60 hours was detected five hours after its initiation, indicating the 

effectiveness of the MSPC chart in detecting process deviations at an early stage. NDT 

fermentations (shown in Figure 5d) were a combination of nitrogen deficit and 

temperature gradient, resulting in intermediate behaviour compared to sluggish 

fermentations caused by each factor separately. The evolution of NDT EWDI showed that 

these fermentation batches were identified as out-of-control later than the other deviations 

studied, due to the slow progress caused by the nitrogen deficit, which was compensated 

by an increase in temperature that allowed an increase in yeast metabolism. However, 

after 72 hours, this type of sluggish fermentation remained out-of-control. 

Study of the variability of sluggish fermentation  

To study the influence of the different problems causing sluggish alcoholic fermentations 

and weight their contribution, an ASCA model was built. Since two groups of 

fermentations were performed (described in section 2.1.), this factor was also evaluated. 
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To build the ASCA model, all EWDI curves over time were used, i.e. 32 curves. Three 

factors were considered: the sudden change in temperature (“Temperature gradient” 

factor), the nitrogen deficit at the beginning of the fermentation (Nitrogen deficit” factor), 

the experiment group factor and their interaction. The results of the ASCA model are 

summarized in Table 3. 

Table 3. ASCA results for the EWDI curves, showing the percentage of variance (% Effect) for each 

factor and the p-value resulting of the permutation test. A p-value < 0.05 means the factor is 

significant. 

Factor % Effect p-value 

Experiment 3.54 0.1286 

Temperature gradient 15.76 0.0001 

Nitrogen deficit 46.52 0.0001 

Experiment x Temperature gradient 16.28 1.0000 

Experiment x Nitrogen deficit 3.62 1.0000 

Temperature gradient x Nitrogen deficit 8.45 1.0000 

Residual 5.84  

First, it should be noted that the factor “experiment” and its combination with other 

factors did not show a significant effect, showing that both groups of fermentations could 

be compared. The most relevant factors were whether or not the fermentation was 

subjected to a temperature gradient and whether or not the fermentation started with the 

adequate nitrogen content. It should be noted that almost half of the variance (46.52%) 

was attributed to the “nitrogen deficit” factor. For this reason, it is necessary to guarantee 

the concentration of nitrogen (the minimum limit would depend on the concentration of 

sugar in the must) to ensure the end of fermentation and avoid the production of unwanted 

molecules20,21. These ASCA results highlighted the importance of measuring YAN to 

ensure a correct development of the alcoholic fermentation by yeast from the beginning of 

the process. On the other hand, the “temperature gradient” factor also showed a significant 

impact in the process evolution with a % effect close to 16%. This problem can be associated 

to inadequate temperature control, malfunctioning cooling jackets or high external 

temperatures which could lead to sudden rises in temperature. Furthermore, considering 

that alcoholic fermentation is an exothermic process, even in the absence of external 

factors, the process itself can cause the temperature to rise if not properly controlled. This 

can have a negative effect on the development of the fermentation process and on the 
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quality of the final product, due to the loss of aromas as a consequence of the increased 

volatilization of volatile compounds, as well as due to the stress of the yeasts, which could 

synthesize unwanted molecules22,23. 

 
Figure 6. ASCA results on the EWDI curves. a) Scores of the first and second simultaneous 

component of the temperature gradient factor submodel and b) Score of the first simultaneous 

component of the nitrogen deficit factor submodel, where the samples are ordered by the levels of each 

factor. 

ASCA results for each factor are depicted in Figure 6, which displays the scores of the 

principal simultaneous component. Figure 6a shows the score values of the "temperature 

gradient" submodel for each sample. The scores are coloured according to the temperature 

gradient applied to the process (blue circles for a constant temperature along the process, 

red squares for processes that suffered a temperature gradient as depicted in Figure 1a 

and green triangles for processes that suffered a temperature gradient as depicted in 

Figure 1b). Two main groups can be seen in the first simultaneous component: NOC, 

TEM1 and NDef have positive values in this component, while TEM2 and NDT have 

negative values. This could be explained because TEM1 showed, based on the results of 

sections 3.2 and 3.3, similar behaviour to NOC in terms of EWDI evolution, and that the 

second temperature gradient influenced the course of alcoholic fermentation and therefore 

in the evolution of EWDI over time.  

Figure 6b shows the score value of the “nitrogen deficit” submodel for each sample, 

coloured according to whether or not the process had a nitrogen deficit at the beginning of 

fermentation (an adequate nitrogen content in green and a deficit of nitrogen in orange). 

In the first simultaneous component, two main groups can be observed. NOC, TEM1 and 
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TEM2 fermentations had positive values, while the NDef and NDT fermentations had 

negative values. The % effect of nitrogen deficit revealed by ASCA highlighted the 

importance of an adequate nitrogen content and resulted in a clear separation of score 

values between the groups. 

Conclusions 

The Dissimilarity Index (DI) is a process control parameter that can accurately describe 

the progression of fermentation in real-time. In this study, a modified DI was proposed 

and used to examine sluggish alcoholic fermentations and observe their development. The 

results have shown that the EWDI can be used to create a control chart based on data 

from normal operating conditions. Furthermore, the confidence limits of the control chart 

can be used to detect sluggish fermentations at an early stage. This is particularly 

important because early detection allows timely intervention to resolve any issues that 

may arise and therefore increases the chances of maintaining product quality. 

In conclusion, the EWDI appears to be an effective tool for process control, allowing real-

time monitoring and early detection of potential deviations. Additionally, the effect of 

different unwanted conditions affecting process kinetics have been studied and 

decomposed showing that EWDI evolution over time could indicate which kind of deviation 

is taking place and the importance of nitrogen supplementation at the beginning of the 

process. Further research would be developed to investigate the recovery of deviation 

using EWDI control charts. 
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Supplementary Material 

 
Figure S1. Schematic representation of the two set of alcoholic fermentation batches performed. 

 
Figure S2. (left) Density and (right) PC1 score values evolution during NOC alcoholic fermentation.
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The winemaking process encompasses a series of steps aimed at converting grapes into 

wines. These steps involve various chemical and biochemical transformations, 

contributing to the variability and complexity of the process. In this thesis, particular 

attention was given to grape maturity, alcoholic fermentation and crushed grape paste 

maceration, as they play an essential role in shaping the final product. To comprehensively 

monitor and investigate these processes, different spectroscopic techniques such as mid-

infrared, near-infrared and Raman spectroscopy were used in combination with 

chemometric techniques. 

Grape variability 

Grapes, like any other food product, have been extensively studied by numerous authors 

regarding their inherent variability. This variability is not only influenced by year-to-year 

climate fluctuations, including the ongoing impact of climate change, but also by the 

specific field and vine characteristics. The field itself has been identified as a significant 

factor affecting grape characteristics. Various authors have reported variations in sugar 

concentration, acidity levels, and other constituents, not only between vines in the same 

field, but even between clusters of the same vine1–4. Such fluctuations can be attributed to 

many factors such as the characteristics of soil, the position of the vine within the 

vineyard, the distribution of metabolites within the vine or the unique biochemical 

signalling of each individual grape berry and also to interaction between them. These 

intricate interactions contribute to the diverse and complex nature of grape composition 

and highlight the need for careful control and management strategies to ensure consistent 

quality in viticulture. 

To achieve precise control of grape composition and effectively manage variability, 

precision viticulture advocates for the use of tools that provide viticulturists with 

maximum information, preferably in a fast and non-destructive manner. Spectroscopy, a 

technique that meet both characteristics, has been proposed as a valuable tool for 

viticultural control5. However, applying spectroscopy in a complex process requires a 

thorough understanding of the parameters that influence it as well as the potential 

sources of variability. In this way it will be possible not only to relate spectrum bands or 

signals with specific chemical compounds and the existence of differences between grapes 

and vines but also to quantify the magnitude of their effect. This knowledge is essential 

for the development of viticultural practices aimed at more precisely controlling the 
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ripeness of the grape. This is because this accurate information about the factors that 

influence grape composition will provide a tool with which the viticulturists will be able 

implement targeted interventions and optimize their practices to achieve the desired 

results in terms of grape quality and vineyard management. 

An extensive sampling was conducted in Paper 2, using an experimental design, to 

investigate the influence of positional effects on grape characteristics throughout the 

ripening process. The factors considered were the position of the grape bunch within the 

vine (divided into three positions from top to bottom) and the position of the grape grain 

within the bunch (divided into three positions along the conical geometry of the bunch, 

from top to bottom). When individual analyses were performed by measuring the 

traditional technological maturity assessment parameters, sugars (ºBrix) and acidity (pH), 

they showed minor differences between the different positional factors, but significant 

differences along ripening. 

However, by using ANOVA-Simultaneous Component Analysis (ASCA), it became possible 

to study both chemical parameters simultaneously, considering that technological 

maturity is a ratio between sugars and acids. The most significant factor observed was the 

temporal evolution, as the sampling spanned five weeks. Additionally, the positional effect 

within the vine was also found to have a significant impact, which could be related to the 

different balance of metabolites import through the phloem6. 

In addition to the oenological parameters, grapes were analysed using MIR spectroscopy. 

This type of infrared spectroscopy includes the valuable fingerprint region (1800–900 

cm−1)7, where many chemical bonds absorb infrared radiation, thereby providing a specific 

signal for each sample. Initially, the spectra were used to predict the oenological 

parameters, with satisfactory results in terms of error and other performance parameters, 

confirming the potential of this technique for grape control8,9. 

Furthermore, the spectra obtained were used in conjunction with ASCA to study the 

sources of variability affecting grapes. The results objectively demonstrated the 

significant influence of all the considered positional effects during sampling, as well as 

their binary interactions. In addition, ASCA results showed the percentage of effects of 

the considered positional factors, showing that even individual berries are significantly 

different in the same bunch10
. This outcome emphasises the ability of MIR spectroscopy 

not only to provide chemical information about the main constituents of grapes, such as 
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sugars and acids, but also to identify other minor compounds responsible for minor but 

significant differences. It should be noted that individual ASCA models were also built for 

each sampling time; however, due to the complexity of the evolving factors, although 

statistically significant, their interpretation was not straightforward11. 

Finally, the chemical information obtained from the spectra enabled the creation of a 

multivariate quality control chart based on the spectra from grapes considered optimal for 

winemaking. By projecting grapes from different sampling times onto the chart, we could 

observe that some grapes fell below the established limits. This result indicates that these 

grapes presented statistically similar profiles and were therefore suitable for vinification. 

Viticultural and oenological variability 

As previously stated, grapes introduce significant variability within the same field, even 

when considering the same cultivar harvested at the same time. This inherent variability 

poses a significant challenge for wineries, as they strive to produce wines with consistent 

quality and desired characteristics12. The task becomes even more complex if we take into 

account that wineries use many cultivars, so depending on the desired characteristics of 

the wine, they should harvest at different times13. 

In the case of red varieties, achieving optimal wine quality requires not only monitoring 

technological maturity but also phenolic maturity. Phenolic maturity encompasses aspects 

such as phenolic concentration and extractability, which greatly influence the colour, 

structure and overall sensory profile of red wines14. Variations due to phenolic maturity 

even within the same cultivar and harvest time adds another layer of complexity to the 

winemaking process. 

Furthermore, wineries usually apply different oenological practices aimed at obtaining the 

desired colour extraction during winemaking. These practices include techniques such as 

extended skin contact with crushed grape prior to or after alcoholic fermentation, 

temperature control, the use of enzymes to facilitate phenolic extraction, and the 

manipulation of punch-down or pump-up mechanisms to optimize the extraction process15–

17. Each of these practices introduces additional variability, making it even more 

challenging to monitor and account for all the sources of variability. 
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Shiraz, Merlot, and Cabernet Sauvignon varieties were selected for the study presented 

in Paper 3. The grapes were harvested at two different maturity states: one prior to 

optimal phenolic maturity (about 2 weeks before harvest) and the other at the optimal 

phenolic maturity state (harvest time). In addition, three different oenological practices 

were applied to explore phenolic extraction yield, varying in temperature and the use of 

enzymes and ranging from less to more extractive methods. 

The wines obtained showed notable variations in the content of anthocyanins, total 

phenolic index, tannins, SO2 resistant pigments, and colour density, with each parameter 

being influenced by the factors under consideration (grape variety, maturity and 

oenological practices). Merlot and Shiraz showed similar final characteristics, while 

Cabernet Sauvignon had higher values for all the parameters evaluated except for SO2− 

resistant pigments. Moreover, wines harvested at the optimal maturity state, as expected, 

showed higher values for each parameter than unripe grapes. Regarding oenological 

practices, the intermediate extractive methods resulted in higher values of the 

parameters. It should be noted that excessive extraction can cause precipitation of certain 

compounds and trigger other reactions 18. 

To investigate the impact of these factors (grape cultivar, maturity state and oenological 

practices) and how they interact, an ASCA model was built using the progress of the 

parameters during the winemaking process, which includes alcoholic fermentation and 

maceration time. The evolution of the ripening process explained a substantial portion of 

the observed variability, accounting for a third of the total. Both the grape cultivar and 

maturity state were found to have significant effects, underscoring the crucial role of the 

raw material in shaping the characteristics of the resulting wine19. Although the impact 

of oenological practices on the process and wine characteristics was comparatively lower, 

it was still deemed significant, indicating that winemakers have some degree of control 

over the process to achieve desired outcomes. 

Furthermore, two spectroscopic techniques, NIR and MIR, were used to monitor the 

winemaking process and evaluate their efficacy. The results demonstrated that MIR 

spectroscopy outperformed NIR spectroscopy in terms of the amount of explained effects, 

with MIR accounting for 72.61% of the variability compared to 51.42% for NIR. It is worth 

noting that NIR spectroscopy, particularly in transmittance mode, is known to exhibit 

poorer performance compared to Attenuated Total Reflectance (ATR)−MIR spectroscopy20. 

Although MIR spectroscopy provided better insight into the evolution of the process over 
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time, it was less effective at capturing the variability arising from the factors considered. 

In contrast, NIR spectroscopy was more successful in capturing the grape related factors, 

although both techniques yielded significant results for the same factors and their binary 

combinations. 

Both, Paper 2 and 3 showed the importance of several grape factors and oenological 

practices in the characteristics of the grapes and wines obtained. These results highlight 

the need to fully understand the sources of variability to achieve the desired product. 

Moreover, as spectroscopy obtains information of the main bonds, this is the main 

molecules it would be also important to understand how these factors are affecting both 

products. Further research needs to be carried out, once the effect is quantified and factors 

organized in importance, to study how they affect chemical composition. 

Raman spectroscopy 

Even when external factors are considered, accounted for and controlled, alcoholic 

fermentation needs to be properly monitored. Close monitoring becomes imperative to 

prevent any negative impact on the process and ultimately on the quality of the wine21. 

However, many wineries rely on off-site analyses when a deviation is suspected, because 

specific analytical methods are often difficult to implement in the laboratories of small 

wineries. To avoid delays in obtaining results and enable corrective actions when 

necessary, the implementation of Process Analytical Techniques (PAT) is a good 

alternative22. 

The PAT approach involves closely monitoring the fermentation process to ensure wine 

quality from real-time measurements along the process. For this purpose, fast, robust and 

non-destructive techniques are highly desirable, and spectroscopy is often used for its 

advantages23. The implementation of spectroscopy can take different configurations 

depending on the placement of the spectrometer within the process. “At-line” approaches 

involve placing the spectrometers close to the process, “on-line” measurements divert the 

sample from the process for analysis, and “in-line” approaches use a sample probe directly 

inserted into the process. 

Raman spectroscopy has proven to be very useful in analysing alcoholic fermentation24, 

but its usefulness is further enhanced by the application of Spatially Offset Raman 

spectroscopy (SORS). SORS enables the analysis of fermentation through the container, 
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such as glass containers used in the experiment of Paper 4. In SORS, unlike conventional 

Raman measurements, the irradiation and the detection measurement of light are 

spatially displaced in such a way that a balanced subtraction of both allows obtaining 

spectral information of the container and of the sample inside25. 

To determine whether SORS was reliable and robust, two PAT approaches were tested in 

the experiment: “at-line” and “on-line”. The at-line approach involved sampling the 

fermentation and analysing it at-line using a glass vial, while in the on-line approach the 

fermentation was analysed through the glass container in both the horizontal plane and 

the vertical plane from the bottom. Additionally, as carbon dioxide is produced during 

alcoholic fermentation and the gas bubbles push the yeast cells up, the potential 

interference of yeast in the spectra was also investigated. In the at-line configuration, the 

sample was analysed before and after being centrifuged to account for suspended yeast, 

and in the on-line approach the fermentation was analysed before and after shaken the 

container to promote the presence of suspended yeast. 

A previously optimized methodology using Principal Component Analysis (PCA) to 

monitor alcoholic fermentation was employed to compare the different approaches. The 

results using one or two principal components demonstrated similar performance abilities 

for each configuration, except for the bottom measurement approach. This bottom 

approach was tested to understand whether the yeast deposited at the base of the 

container could provide information about the process through the Raman spectra. 

Additionally, to further test the monitoring capabilities, the prediction of oenological 

parameters such as density and pH was also assessed for each configuration. The best 

configuration for the prediction of both parameters was found to be with the spectra 

obtained through the horizontal plane, regardless of agitation. The prediction models 

obtained had similar performance to the ones in the bibliography26
. 

Finally, to verify and quantify the effect related to the presence or absence of suspended 

yeast, an ASCA model was built for both approaches (the on–line approach before and 

after shaking and at–line approach before and after centrifugation). The results indicated 

that suspended yeast had no significant effect on the spectra regardless of the approach 

used. However, the at-line approach showed greater variability that may be explained due 

to the shorter pathway and some light scattering effects.  
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Considering the monitoring capabilities and the ability to predict oenological parameters, 

it was concluded that the on-line approach was superior for controlling alcoholic 

fermentation. This approach provided better signal quality in terms of fluorescence and 

ensured more representative spectra as the signal was collected directly from the process. 

Furthermore, as the suspended yeast had no impact on the final models, this technology 

could be applied in wineries using an on-line approach. 

In Papers 1 to 4, it has been demonstrated that MIR, NIR and Raman spectroscopies are 

very useful analytical techniques in the grape and wine industry, and that every type of 

spectroscopic technique showed relevant information useful to obtain critical information 

of different parts of the process. 

Acetic acid bacteria contamination 

PAT approaches are valuable tools for monitoring the alcoholic fermentation process, as 

they enable a close and exhaustive examination of key parameters that influence this 

process, ensuring the overall quality of the final product. This is highly recommended, as 

even minor deviations in the fermentation process can have a pronounced impact on the 

organoleptic and physicochemical properties of the wine27. 

One of the most widespread and worrying concern in winemaking is the contamination 

caused by acetic acid bacteria (AAB), whose metabolism can lead to the formation of acetic 

acid. This acid is particularly troublesome due to its negative organoleptic impact in wines 

because, even at relatively low concentrations, this compound can impart unwanted 

vinegar-like flavours, significantly decreasing the quality and acceptance of the wine28. 

To address this challenge, further optimization of the PAT model is essential, with a 

specific emphasis on identifying the metabolic activities of AAB. Thus, whereas alcoholic 

fermentation process involves the conversion of sugars, typically around 200 grams per 

litre, into ethanol at a concentration of approximately 130 grams per litre, acetic acid 

formation must be carefully controlled to prevent it from exceeding the organoleptic 

threshold of 0.5 grams per litre. Although there is a significant difference in the order of 

magnitude of both processes, it is evident that both must be controlled due to the 

important impact that acetic acid formation has on the quality of the wine. 
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After monitoring both alcoholic fermentations and alcoholic fermentations contaminated 

with AAB with a MIR portable spectrometer, various data analysis techniques were used 

in Paper 5 to enhance the information of this contamination in the spectra and increase 

the performance of future models. The use of ASCA made it possible to quantify the impact 

of this spoilage microorganism through different unfolding strategies, pre-processing 

techniques and targeted selection of process stages and spectral regions. 

By using observation-wise unfolding, the significance of both alcoholic fermentation and 

acetification factors were found significant. However, the fermentation factor had an effect 

almost three orders of magnitude higher. The loading of the contamination factor and the 

alcoholic fermentation factor revealed a shared region in the spectra that explained both 

factors. To improve and direct the model towards the contamination factor, the shared 

region was excluded. An ASCA model was developed using only the spectral region ranging 

from 1795 to 1161 cm−1, to focus on the contamination factor. In this spectroscopic region, 

acetic acid and other AAB metabolites show absorption bands5. However, despite removing 

the primary spectral region associated with sugars and ethanol, the fermentation factor 

remained the most significant, although the contamination factor gained more weight. 

Considering the evolution of the scores over time in the fermentation submodel, four 

distinct process stages were identified and individually modelled. This approach 

determined a greater influence of the contamination factor, particularly after the main 

fermentation stage known as "tumultuous fermentation". This effect was further amplified 

when focusing on the selected spectral region. The tumultuous fermentation stage, 

characterized by a rapid sugar-to-ethanol conversion, hinders the contamination-related 

information, as major chemical changes occur in the fermenting matrix. 

Additionally, batch-wise unfolding showed promising results in terms of emphasizing the 

contamination factor, while not considering the variability associated with the 

fermentation factor. Furthermore, different pre-processing techniques were tested in 

every approach, showing that spectral pre-processing can also enhance the impact of 

contamination, especially by accentuating small peaks through derivative 

transformations29. These findings further enriched the understanding of ABB 

contamination process and facilitated the development of more effective models for 

monitoring and control purposes. 
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The results of Paper 5 highlight the importance of performed a proper data analysis 

methodology prior to modelling. This is of utmost importance, especially when subtle but 

important deviation occur in the process. 

Multivariate Statistical Process Control 

There is a growing recognition of the importance of early detection of process deviations, 

which allows the recovery of the fermentations as fast as possible in order to maintain the 

quality of the final product30. Vibrational spectroscopy has emerged as a valuable tool for 

monitoring alcoholic fermentation, as evidenced by the results presented in Papers 1 to 

5. By using this analytical technique, it becomes possible to obtain multivariate data that 

can be used to establish robust process control approaches. 

Regarding multivariate statistical process control, various approaches have been used to 

develop control charts based on data reduction algorithms such as Principal Component 

Analysis (PCA) or Partial Least Squares (PLS) regression. These methods typically rely 

on scores, Hotelling's T2, or Q residuals to determine the statistical limits of these 

parameters calculated based on Normal Operating Conditions (NOC). Afterwards, the 

observed process data is compared against these predetermined limits, enabling the 

detection of deviation and the corrective actions to be taken31,32. 

However, despite the effectiveness of these control chart approaches, there has been a 

notable gap in the literature regarding the incorporation of information from the loadings 

of the model. Loadings contain valuable chemical information of the process and allow not 

only the detection but the interpretation of the cause of a potential deviation. To address 

this gap, in Paper 6 an optimized version of the Dissimilarity Index initially proposed by 

Muncan et al.33 is proposed. This novel approach enhances the ability to detect deviations 

by comparing the loading profiles of different process stages. It compares the loading for a 

PCA model from a time interval of the process to a reference loading obtained from a time 

interval of a previous stage of the process. 

Particular attention was given to selecting the optimal time frame for the reference 

loading. Four distinct time frames, ranging from 24 to 36 hours, were considered to ensure 

that early deviations could be captured and meaningful process information could be 

obtained. After analysis of the loadings, it was observed that the most comprehensive 

chemical information related to the fermentation process was captured when using the 
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reference loading obtained from the model using spectra collected from the beginning until 

36 hours. 

To validate the efficacy of this approach, four different types of deviations were 

intentionally promoted and monitored by a MIR portable spectrometer. These deviations 

included two types of sudden temperature changes during the fermentation process, initial 

must nitrogen compound deficiencies and a combination of both. Using the calculated NOC 

dissimilarity index, the statistical limits were calculated using the t-student distribution 

at 95% of confidence level. Remarkably, the optimized approach successfully detected all 

deviations at early stages, and, importantly, three of the cases remained deviated 

throughout the fermentation process. These findings allowed us to determine that this 

deviation, which mainly affects the kinetics of the process, also had a large impact on other 

chemical information shown in the loadings. Yeast metabolism may produce metabolites 

as stress-response, which would impact the organoleptic properties of wines. 

Additionally, to deepen the knowledge of both types of deviations (sudden temperature 

changes and initial nitrogen deficit), an ASCA model was built to quantify the impact of 

the deviation and assess which one had the greatest impact. The results showed that both 

deviations were statistically significant, but that a nitrogen deficit causes a greater impact 

on the process. This reinforces the need for carefully considering the initial fermentation 

conditions in the must to assure a good process performance. 

Throughout the different Papers, it has been shown that vibrational spectroscopy is a 

valuable tool to control grape maturity, alcoholic fermentation and maceration. However, 

as highlighted in Paper 6, this analytical technique not only allows to monitor the 

fermentation but can also to be used to early detect deviations, which facilitates the 

application of corrective measures to avoid both product and economic losses. 
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In this chapter, the main conclusions derived from the methodologies developed and the 

research results obtained throughout the thesis are summarized. The specific conclusions 

of each individual study have been addressed at the conclusion of their respective research 

papers. 

The main objective of this doctoral thesis was to investigate the winemaking process using 

vibrational spectroscopy combined with chemometric data analysis. To gain a 

comprehensive understanding of grape maturity, alcoholic fermentation and maceration 

processes, multiple sources of variability were examined. Through the definition of 

experimental designs, it was possible to systematically analyze the impact of various 

factors on the process and the final product obtained. This approach facilitated the 

quantification of the individual contributions each factor and provided valuable 

information on their effects on the winemaking process. 

Based on the objectives, specific conclusions associated with the different sections of 

results are derived:  

To assess the impact of several positional factors of grapes in the vine within the same field 

in grape maturity evolution and grape characteristics. 

 The combination of a portable ATR-MIR with appropriate ASCA models can detect 

the influence of grape position on the bunch and vine on individual grape ripening. 

 The evolution of these positional factors throughout the ripening process is highly 

intricate. 

To evaluate how different stages of grape ripeness and winemaking practices affect the 

chromatic characteristics of final wines using spectroscopic data collected from grapes and 

the alcoholic fermentation and maceration processes. 

 The effect of different viticultural and winemaking practices on obtaining wines with 

significantly different chromatic characteristics can be evaluated by using MIR and 

NIR techniques. 

 When using ASCA, the spectra obtained from these techniques allow to decompose 

and quantify the sources of oenological practices variability. 
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 Grape cultivar and maturity state have a significant influence not only on the 

chromatic characteristics of the resulting wine but also on the evolution of the 

extraction of polyphenolic compounds. 

 The winemaking practices affect the final product characteristics, but these do not 

take over the inherent characteristics of the grapes. 

To determine the performance of Spatially Offset Raman Spectroscopy to monitor through 

a container wine alcoholic fermentation and predict main oenological parameters. 

 Spatially offset Raman spectroscopy can monitor alcoholic fermentation and predict 

key oenological parameters associated to the process under real conditions with 

suspended yeast in the medium.  

 The on–line approach (measuring through the container) outperforms the results 

generated using the at-line approach (taking out an aliquot of the fermentation), as 

it yields more representative spectra and have less interference coming from 

fluorescence and scattering. 

To develop chemometric strategies to assess the impact of microbiological contamination on 

the alcoholic fermentation by acetic acid bacteria. 

 The alcoholic fermentation signal in the MIR spectra hides the signal of the AAB 

contamination. 

 To enhance the AAB signal in the MIR spectra is necessary to apply diverse unfolding 

strategies, pre-processing methods, and targeted selection of process stages and 

spectral regions. 

  The application of these techniques makes AAB contamination the main source of 

spectral information, which allows it to be used to monitor this possible 

contamination process. 

To propose a multivariate statistical tool that enables monitoring wine alcoholic 

fermentation, detecting sluggish fermentation processes caused by various factors (nitrogen 

deficit and unwanted temperature changes), and identifying the deviation responsible for 

the changes in the progression of the process. 
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  The Evolving Window Dissimilarity Index (EWDI) can be used as an MSPC tool.  

 This methodology enables to establish statistical control limits based on 

fermentations conducted under Normal Operating Conditions.  

 Three types of fermentation deviations can be effectively detected: sudden 

temperature changes, initial nitrogen deficit, and a combination of both.  

  The evolution of EWDI over time can detect nitrogen deficit as the primary source of 

deviation in the fermentation process.
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