

A p p e n d i x C

C. XML POLICY SYNTAX

In MANBoP policies are expressed in XML (eXtensible Markup Language).
XML has recently emerged as a widely accepted way of representing and
exchanging structured information. Its principal technical strengths are that it
has a text-based representation, which imposes few restrictions on network
technology or protocols and that, through the use of XML Schemas, it has
sufficiently strict syntax to permit automated validation and processing
information in an unambiguous way.

XML allows the definition of new markup tags and constraints on the
relationship between them through the use of templates. XML Schema allows
more control over the way XML documents are specified. Datatypes are
supported and there is the ability to specify relationships and constraints
between different elements of a document.

The structure of XML documents is dictated by the XML Schema against
which that documents are validated. Hence, hereafter we will describe the
main aspects of the XML Schema defined for MANBoP. We will just
describe those functional domain independent elements. Then, the appendix
is concluded with an example of a MANBoP policy in XML fulfilling the
described XML Schema.

In MANBoP all XML policies are structured around seven mandatory
elements and two optional ones. Table C - 1 below shows the section of the
XML Schema defining these elements.

MANBoP policy structure
<xsd:complexType name="PolicyRuleType">
 <xsd:sequence>
 <xsd:element name="PRN" type="PRNType"/>
 <xsd:element name="PR" type="PRType"/>

 <xsd:element name="PRVP" type="PRVPType"/>
 <xsd:element name="PG" type="PGType" minOccurs="0"/>
 <xsd:element name="Evaluation" type="EvalType"/>
 <xsd:element name="ActEnf" type="ActEType"/>
 <xsd:element name="Cond" type="CRType" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="Act" type="ARType" minOccurs="1" maxOccurs="unbounded"/>
 </xsd:sequence>

 </xsd:complexType>

 <xsd:element name="UI" type="UIType"/>

Table C - 1. Main policy structure

The first of the seven mandatory fields is the PRN element. This element
contains information to uniquely identify the policy, as the policy name and a
sequence number and the identifier of the component that sent the policy if
any.

 399

APPENDIX C – XML POLICY SYNTAX

The PR element lists the device roles to which the policy applies. That is, all
network elements developing a role listed in the policy is expected to respond
to it.

The next field of the policy is the UI element. It contains the identifier and
password of the user that is introducing the policy in the framework. This
identifier is used to select the restricted XML Schema against which the user
policy should be validated with.

The policy expiration date is contained within the PRVP element. Usually the
expiration date is just given with the day and hour the policy starts and
finishes being valid. Nevertheless, filters specifying concrete months, days and
hours during which the policy is not valid can be also introduced. In the table
below we can see the structure of the PRVP element, from which the only
mandatory element is the TP element that includes the start and stop times.

Policy Rule Validity Period specification
 <xsd:complexType name="PRVPType">
 <xsd:sequence>
 <xsd:element name="TP" type="xsd:string"/>
 <xsd:element name="MonthOfYearMask" type="MoYMT" minOccurs="0"/>
 <xsd:element name="DayOfMonthMask" type="DoMMT" minOccurs="0"/>
 <xsd:element name="DayOfWeekMask" type="DoWMT" minOccurs="0"/>
 <xsd:element name="TimeOfDay" type="xsd:string" minOccurs="0"/>
 <xsd:element name="LocalOrUtcTime" type="LoUTType" minOccurs="0"/>
 </xsd:sequence>

 </xsd:complexType>
Table C - 2. PRVP element structure

The PG element is used for the correct processing of policy groups. This
element is optional. It is just included if the policy pertains to a group. The
information contained is shown in the table below.

First, the element is defined with the PGNum attribute that contains a unique
identifier of the policy group among those introduced by the same user.
Then, the NOfP element includes the number of policies forming the group.
The where element specifies at what management level the group must be
processed, network or element. The Pos element contains the position of the
policy within the group. Finally, the two last elements are the NoS and ON
elements that are used to correctly process the policy group even if a group
policy has been splitted in many policies during the translation process at
higher layers. These fields contain respectively the number of splits suffered
by the policy at higher layers and the position of the policy among those
potential splits.

 400

APPENDIX C – XML POLICY SYNTAX

Policy Group specification
<xsd:complexType name="PGType">
 <xsd:sequence>
 <xsd:element name="NOfP" type="xsd:integer"/>
 <xsd:element name="GES" type="xsd:integer"/>
 <xsd:element name="where" type="xsd:integer"/>
 <xsd:element name="Pos" type="xsd:integer"/>
 <xsd:element name="NoS" type="xsd:integer"/>
 <xsd:element name="ON" type="OrderType" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="PGNum" type="xsd:integer"/>

 </xsd:complexType>
Table C - 3. PG element structure

The two MANBoP policy elements that follow Evaluation and ActEnf contain
information for the correct evaluation of policy conditions and the correct
enforcement of policy actions respectively.

More specifically, the Evaluation element consists of two elements. These
elements indicate respectively, whether the policy conditions are specified
using the Conjunctive Normal Form or the Disjunctive Normal Form and at
what management level must be the conditions evaluated. The possible values
for this last field are network-level, element-level or both.

The ActEnf element contains four elements. Its structure is shown in the table
below. The ActM field specifies the objective of the policy action. Its possible
values are creation, activation, modification, deactivation or removal. The
EnfT element indicates how policy actions must be enforced on the target
nodes, either in a best effort way or in a guaranteed way (if the policy is not
correctly enforced in ALL target nodes the enforcement is not considered
successful and hence the policy is uninstalled from all nodes where it was
enforced). Then, the MS element establishes if the target of the policy action
is the management station itself or managed devices. Finally, the TN
element lists all managed device identifiers where the policy must be
enforced.

Action enforcement specification
<xsd:complexType name="ActEType">
 <xsd:sequence>
 <xsd:element name="ActM" type="ActMType"/>
 <xsd:element name="EnfT" type="xsd:integer"/>
 <xsd:element name="MS" type="xsd:boolean"/>
 <xsd:element name="TN" type="TNType"/>
 </xsd:sequence>

 </xsd:complexType>
Table C - 4. ActEnf element structure

The Cond policy element includes all policy conditions. Conditions can be
either compound or simple and refer to an hour of the day, an IP flow, a
concrete notification or a managed device status. The components needed to
monitor these conditions, if any, are also extracted from the Cond element

 401

APPENDIX C – XML POLICY SYNTAX

information. This element is optional; when not included, the framework
interprets that the policy action should be enforced directly. In the Table C - 5
below we can see how MANBoP policy conditions are structured in XML.
There is an abstract policy condition from which both compound and simple
conditions inherit. This element defines one mandatory element, the PCN
element that contains the policy condition name.

Compound conditions are defined in the CFCondType type. The elements
included are the IsMirrored, CRef and MMIds. IsMirrored indicates if the filter
mirroring the one specified with the condition should be considering as
meeting the condition. CRef contains the compound and simple conditions
that form this compound condition. Two attributes are defined in this
element that indicate respectively, the group number of the condition and if
the condition is negated, that is if the policy should be enforced when this
condition is not met. Finally, the MMIds element lists the identifiers of
Monitoring Meter components that must be used to monitor this compound
condition.

Simple conditions elements have been defined in XML in a domain-
independent way, only its values will be domain-dependent. Simple conditions
are specified in the SPCondType type. This type includes three attributes that
indicate respectively, the identifier of the Monitoring Meter component that
must monitor this simple condition, the target nodes that must be monitored
and whether all target nodes must met the condition to trigger the policy
enforcement or just one is enough. The elements included within the simple
condition are DataName, DataType, EMethod and Value. DataName contains the
name of the data that must be monitored while the DataType element contains
the type of this data. The EMethod element establishes how must be the
condition evaluated to decide when the policy must be enforced, either the
monitored data must match the value introduced, or it must be bigger or
lower, etc. Finally, the Value element contains all information needed to
evaluate correctly the policy condition, as the threshold that must be reached
or matched.

 402

APPENDIX C – XML POLICY SYNTAX

Policy conditions specification
<xsd:complexType name="PCondType" abstract="true">
 <xsd:sequence>
 <xsd:element name="PCN" type="xsd:string"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="CFCondType">
 <xsd:complexContent>
 <xsd:extension base="PCondType">
 <xsd:sequence>
 <xsd:element name="IsMirrored" type="xsd:boolean"/>
 <xsd:element name="CRef" minOccurs="0" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="PCond" type="PCondType"/>
 </xsd:sequence>
 <xsd:attribute name="GN" type="xsd:decimal"/>
 <xsd:attribute name="CN" type="xsd:boolean"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="MMIds" type="StringList"/>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="SPCondType">
 <xsd:complexContent>
 <xsd:extension base="PCondType">
 <xsd:sequence>
 <xsd:element name="DataName" type="xsd:string"/>
 <xsd:element name="DataType" type="xsd:string"/>
 <xsd:element name="EMethod" type="xsd:string"/>
 <xsd:element name="Value" type="StringList"/>
 </xsd:sequence>
 <xsd:attribute name="MMId" type="xsd:string"/>
 <xsd:attribute name="TN" type="TNType"/>
 <xsd:attribute name="All" type="xsd:boolean"/>
 </xsd:extension>
 </xsd:complexContent>

 </xsd:complexType>
Table C - 5. Cond element structure

The Act element contains the action type and parameters as well as
information about the component responsible of enforcing this action. At
least one Act element is mandatory in all policies but there can be more that
one. The Act element is the only element of the XML policy that is domain-
dependant. That is, each XML Schema representing a particular functional
domain will contain the policy actions with their corresponding elements
specific for that domain. In the table below we can see an example of how
domain-dependant actions are specified in the XML Schema.

As with the Cond element, there is an abstract type from which all policy
actions defined in the XML Schema must inherit. This abstract type defines
one mandatory element and one mandatory attribute. The element contains

 403

APPENDIX C – XML POLICY SYNTAX

the name of the policy action while the attribute includes the identifier of the
Policy Consumer component that must be used to enforce the policy.

Domain-specific actions are defined by inheriting from the abstract type.
Table C - 6 below shows an example of domain-specific policy action
defining five elements. As these elements are domain-specific we will not
describe them here. More information about the meaning of these elements
can be found in the implementation chapter.

Policy actions specification
<xsd:complexType name="PActType" abstract="true">
 <xsd:sequence>
 <xsd:element name="PActName" type="xsd:string"/>
 </xsd:sequence>
 <xsd:attribute name="PCId" type="xsd:string"/>
</xsd:complexType>

<xsd:complexType name="QoSAlloc">
 <xsd:complexContent>
 <xsd:extension base="PActType">
 <xsd:sequence>
 <xsd:element name="VNId" type="xsd:string"/>
 <xsd:element name="QoSClass">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="gold"/>
 <xsd:enumeration value="silver"/>
 <xsd:enumeration value="bronze"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>

 <xsd:element name="CompQoSClass" minOccurs="0">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="gold"/>
 <xsd:enumeration value="silver"/>
 <xsd:enumeration value="bronze"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="EE" type="xsd:string"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>

 </xsd:complexType>

 <xsd:element name="TrafficProfile" type="xsd:integer" minOccurs="0"/>

Table C - 6. Act element structure

After having a clear picture of the structure of a MANBoP XML policy we
provide in the table below an example. The XML policy shown has been used
during the proof-of-concepts implementation scenario. More specifically, it is
used to create VEs for a service provider as part of the process of creating his
VAN. More information can be found in the implementation chapter.

 404

APPENDIX C – XML POLICY SYNTAX

XML Policy
<?xml version="1.0" encoding="UTF-8"?>
<a:PolicyRule xmlns:a="http://Schema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://Schema QoSPC_0.xsd">
 <PRN InstanceNumber="1" HLPCId="QoSPC">NLVANCreationPolicy</PRN>
 <PR>AA</PR>
 <UI>wtv wtvPass</UI>
 <PRVP>
 <TP>20020101T080000/20040631T120000</TP>
 </PRVP>
 <PG PGNum="1">
 <NOfP>4</NOfP>
 <GES>3</GES>
 <where>0</where>
 <Pos>1</Pos>
 <NoS>0</NoS>
 </PG>
 <Evaluation>
 <CL>2</CL>
 <where>1</where>
 </Evaluation>
 <ActEnf>
 <ActM>0</ActM>
 <EnfT>0</EnfT>
 <MS>false</MS>
 <TN>147.83.106.104 10.0.4.4</TN>
 </ActEnf>
 <Cond>
 <CRef GN="1" CN="false">
 <PCond xsi:type="a:CFCondType" MMIds="">
 <PCN>VANSitesInfo</PCN>
 <IsMirrored>false</IsMirrored>
 <CRef GN="1" CN="false">
 <PCond xsi:type="a:SPCondType" MMId="null" TN="" All="true">
 <PCN>VANSiteInfo</PCN>
 <DataName>IPAddr</DataName>
 <DataType>IPv4Addr</DataType>
 <EMethod>Match</EMethod>
 <Value>147.83.106.111</Value>
 </PCond>
 </CRef>
 <CRef GN="1" CN="false">
 <PCond xsi:type="a:SPCondType" MMId="null" TN="" All="true">
 <PCN>VANSiteInfo</PCN>
 <DataName>IPAddr</DataName>
 <DataType>IPv4Addr</DataType>
 <EMethod>Match</EMethod>
 <Value>172.31.255.3</Value>
 </PCond>
 </CRef>
 </PCond>
 </CRef>
 </Cond>
 <Act>
 <PAct xsi:type="a:QoSAlloc" PCId="QoSPC">
 <PActName>NLAlloc</PActName>
 <VNId>wtv</VNId>
 <QoSClass>gold</QoSClass>
 <CompQoSClass>silver</CompQoSClass>
 <EE>JVM</EE>
 </PAct>
 </Act>

</a:PolicyRule>
Table C - 7. XML policy example

 405

