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Abstract

Air quality is one of the top concerns for science, government, and society stake-
holders. Elevated concentrations of certain pollutants above defined thresholds
can cause many diseases, including heart disease, stroke, chronic obstructive
pulmonary disease and lung cancer. Information and knowledge about air quality
can assist in effectively monitoring and controlling pollutant concentrations, re-
ducing or preventing the harmful impacts and consequences associated with it.
Various methodologies and procedures have been incorporated and deployed in
the air quality domain to acquire and understand this information. However, the
complexity of air quality dependence on various components beyond the temporal
dimension as well as the spatial dimension creates additional challenges.

The current dissertation proposes machine learning and deep learning techno-
logies that are capable of capturing and processing multidimensional information
and complex dependencies, in particular, spatiotemporal dependencies controlling
the formation of air quality. The first key contribution of the current dissertation is
a meta-review of air quality prediction using machine learning and deep learning
technologies, and the current state-of-the-art of the domain, which served as
an introduction and guide to the further directions of our research. The second
contribution is the incorporation of air quality, meteorological and traffic data of
the study area (the city of Madrid) in spatiotemporal dimensions over the defined
area. The third contribution is the exploratory analysis of these datasets to detect
existing interconnections and reveal features that have a significant impact on
the air quality forecast. The fourth contribution is the implementation of various
feature engineering techniques, including feature selection and outlier detection
approaches, which, along with exploratory analysis, are acknowledged as potential
strategies to aid in improving model performance. Finally, a fifth contribution is the
implementation of spatiotemporal air quality forecasting methods that have been



evaluated in the city of Madrid under various defined scenarios.

Overall, the following components come together to generate and formulate
the novelty of the current work: spatiotemporal forecast of the defined prediction
target (nitrogen dioxide); incorporation and integration of air quality, meteorological
and traffic data with their features/variables in spatiotemporal dimensions within
a certain spatial extent and temporal interval; the consideration of coronavirus
disease 2019 as an external key factor impacting air quality level; and provision of
the code and data implemented to incentivise and guarantee reproducibility.

Keywords: air quality prediction, air pollution, machine learning, deep learning,
spatiotemporal prediction, ConvLSTM, BiConvLSTM, A3T-GCN, feature selection,
outlier detection.
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Resumen

La calidad del aire es una de las principales preocupaciones de la ciencia, de
los gobernantes y la sociedad en general. Las concentraciones elevadas de
ciertos contaminantes por encima de los umbrales definidos pueden causar difer-
entes daños en la salud humana, incluidas las enfermedades cardı́acas, daños
cerebrovasculares, enfermedad pulmonar obstructiva crónica o cáncer de pulmón.
Una mayor información y conocimiento sobre la calidad del aire pueden ser de
ayuda para monitorear y controlar de manera efectiva las concentraciones de con-
taminantes, reduciendo o previniendo los impactos nocivos y las consecuencias
asociadas con ellos. Hasta el momento se han incorporado y desplegado varias
metodologı́as y procedimientos en el dominio de la calidad del aire para adquirir
y comprender esta información. Sin embargo, la complejidad y la dependencia
de la calidad del aire sobre las dimensiones espacial y temporal, hace que su
predicción no sea una tarea trivial y genere nuevos desafı́os.

La tesis actual propone tecnologı́as de aprendizaje automático y aprendizaje
profundo capaces de capturar y procesar información multidimensional y depend-
encias complejas, en particular, dependencias espaciotemporales que mejoran la
predicción de la calidad del aire. La primera contribución clave de este trabajo es
una meta-revisión del estado del arte de la predicción de la calidad del aire utiliz-
ando tecnologı́as de aprendizaje automático y profundo, que sirvió como punto de
partida y guı́a a lo largo de la investigación realizada. La segunda aportación es la
incorporación y preparación de los datos de calidad del aire, meteorológicos y de
tráfico del área de estudio (la ciudad de Madrid) con las dimensiones espaciotem-
porales y el área delimitada. La tercera contribución es el análisis exploratorio de
estos conjuntos de datos para detectar interconexiones existentes y revelar carac-
terı́sticas que tienen un impacto significativo en el pronóstico de la calidad del aire.
La cuarta contribución es la implementación de varias técnicas de ingenierı́a de



caracterı́sticas, incluidos los enfoques de selección de caracterı́sticas y detección
de valores atı́picos, que, junto con el análisis exploratorio, se reconocen como
estrategias potenciales para ayudar a mejorar el rendimiento de los modelos de
aprendizaje automático. Finalmente, una quinta contribución es la implementación
de modelos de predicción espaciotemporal de la calidad del aire siendo estos
evaluados sobre la ciudad de Madrid y diferentes escenarios definidos.

En general, las novedades del trabajo actual son: estudio de las componentes
espaciotemporal para la predicción de la calidad del aire (dioxido de nitrogeno);
integración de datos de calidad del aire, meteorológicos y de tráfico con sus cara-
cterı́sticas/variables en una determinada extensión espacial e intervalo temporal;
adaptación al efecto externo generado por la pandemia del Covid19 sobre el
nivel de calidad del aire; y provisión de los datos y código implementados para
incentivar y garantizar la reproducibilidad.

Keywords: predicción de la calidad del aire, la contaminación del aire, apren-
dizaje automático, aprendizaje profundo, predicción espaciotemporal, ConvL-
STM, BiConvLSTM, A3T-GCN, selección de caracterı́sticas, detección de valores
atı́picos.
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Chapter 1

Introduction1,2

Air pollution is defined as any substance in the air that can contaminate the
environment (e.g., people, animals)3. Air pollution’s consequences seriously
impact the world’s population’s health and the ecosystem by affecting the single
element and components of them. Regarding human health impact, the following
effects should be mentioned: asthma, pneumonia, bronchitis, chronic obstructive
pulmonary disease (COPD), cardiovascular diseases, and cancer. Air pollution is
the fourth biggest global risk factor for human health [1]. It is responsible for about
16% of all deaths worldwide [2], in particular, 1.6 million death in China [3]. The
World Health Organization (WHO) air quality guidelines report that about 90% of
the world’s citizens live in areas where air pollution exceeds established thresholds
[4]. Regarding environmental impact, acid rain, haze, eutrophication, also global
climate change can be included in this list [5].

Moreover, considering the importance of reducing air pollution, this is also repor-
ted by the United Nations (UN) Sustainable Development Goals (SDGs), which
consists of 17 goals and 169 subsidiary targets, i.e., air pollution is mentioned in

1The part of this chapter previously appeared as a book chapter in the Book of Academic
Press. The original citation is as follows: Iskandaryan, Ditsuhi, Francisco Ramos, and Sergio Trilles.
”Application of deep learning and machine learning in air quality modeling.” In Current Trends and
Advances in Computer-Aided Intelligent Environmental Data Engineering, pp. 11-23. Academic
Press, 2022.

2The publications supporting this dissertation with all highlighted contributions and improve-
ments can be found in Appendix A.

3Terms of Environment: Glossary, Abbreviations and Acronyms: https://bit.ly/3SD4dc1.
[Online; accessed 15-February-2023]

https://bit.ly/3SD4dc1


two targets: SDG 3 and SDG 11 which focus on good health, sustainable cities and
communities, respectively4. Furthermore, a study and brief analysis conducted
by Longhurst et al. [6], demonstrates that, although there is no individual goal
dedicated to air pollution and its management, air pollution has a direct impact on
each of the goals. Another study confirming this belief was carried out by Zhao
et al. [7], which analysed the impact of air quality, in particular the impact of the
actual reduction of industrial sulfur dioxide (SO2) emissions on the SDGs in China.
They determined that in China from 2005 to 2015 the actual reduction in industrial
SO2 emissions contributes 3.5% -12.3% of the actual change in the certain SDGs,
including SDG 3, 4, 9, 12, 15, 16, and 17.

The above examples demonstrate the necessity of air quality monitoring, fore-
casting, and control. Among these three stages, forecasting air quality is the
main target of the current work, which will allow decision-makers to control air
quality within a range of acceptable thresholds, and as a result, prevent negative
consequences caused by poor air quality. To achieve these goals, first of all, it
is important to understand what are the main factors and sources causing air
pollution. Manisalidis et al. [5] categorised the source of air pollution into the
following categories (Figure 1.1): 1) major sources (e.g., power stations, refiner-
ies, and petrochemicals, the chemical and fertiliser industries); 2) indoor area
sources (e.g., domestic cleaning activities, dry cleaners, and printing shops); 3)
mobile sources (e.g., automobiles, cars, and railways); and 4) natural sources
(e.g., forest fire, volcanic erosion, and dust storms). As an example of natural
sources, in particular, dust storms, the world’s largest source of dust, the Saharan
dust can be mentioned, which has repeatedly led to numerous human casualties
and environmental damage (the last significant exposure was recorded in March
20225,6). Wang et al. [8] measured the impact of Saharan dust on air quality and
health impacts in Europe over the period 2016–2017, and the results showed that
41,884 deaths per year were attributable to dust exposure in the countries studied,
in particular, in Spain, Italy, and Portugal, dust accounts for 44%, 27% and 22%
of total particulate matters less than 10 micrometers in diameter (PM10)-related

4Transforming Our World: The 2030 Agenda for Sustainable Development: https://bit.
ly/3SPIIF3. [Online; accessed 15-February-2023]

5Widespread dust intrusion across Europe: https://bit.ly/3y1CsBT. [Online; accessed
15-February-2023]

6Severe Weather Europe: https://bit.ly/3UNW9qh. [Online; accessed 15-February-
2023]

https://bit.ly/3SPIIF3
https://bit.ly/3SPIIF3
https://bit.ly/3y1CsBT
https://bit.ly/3UNW9qh


deaths, respectively.

Air Pollution Sources

Indoor Area Sources

Domestic cleaning activities 
Dry cleaners 
Printing shops 
Petrol stations

Major Sources

Power stations 
Refineries & petrochemicals 
The chemical and fertiliser industries 
Metallurgical plants 
Municipal incineration

Mobile Sources

Automobiles 
Cars 
Railways
Airways 
Other types of vehicles

Natural Source

Forest fire 
Volcanic erosion 
Dust storms 
Agricultural burning

Figure 1.1: The categories of air pollution sources.

Based on sources of emission or generation, pollutants are categorised as
primary and secondary pollutants. A primary pollutant is an air pollutant emitted
directly from particular sources (sources: sandstorms, volcanic eruptions, industrial
and vehicle emissions), such as SO2, carbon monoxide (CO), nitrogen oxides
(NOx), ammonia (NH3), and hydrogen chloride (HCl). A secondary pollutant is
an air pollutant resulting from the chemical or physical interaction of primary
pollutants with other atmospheric substances, such as ground-level ozone (O3),
hydrogen peroxide (H2O2) and sulfuric acid (H2SO4). It is important to mention
about nitrogen dioxide (NO2), which is the prediction target of this dissertation.
According to Vallero [9], NO2 is a secondary pollutant, however, as a small amount
is emitted directly from vehicles, it is also considered as a primary pollutant7. The
effect of NO2 is tremendous, both on the environment and on health, causing
various respiratory infections, acid rain, etc. (the detailed explanation is stated in
Section 3.1).

A smart city can help to address the complexity of urban challenges, including
the problems caused by air pollution. The principal goal of a smart city, along with
Information and Communication Technologies (ICT), is to make the problem visible,
measure it, provide intelligent solutions to mitigate it and raise awareness of air
quality among environmental managers and citizens with the advent of innovative
tools.

Currently installed sensors and the Internet of Things (IoT) devices [10] make
it possible to obtain data on the concentration of various pollutants which, after

7Nitrogen dioxide: https://bit.ly/3F40U8d. [Online; accessed 15-February-2023]

https://bit.ly/3F40U8d


further processing and interpretation, enable accurate monitoring [11]. Based
on the results obtained and following the standards established by the WHO or
European Union (EU) Air Quality Directive for concentration thresholds8, appro-
priate decisions can be made and further actions can be implemented. Here
there are several examples to support the latter argument: the city of Hamburg
has taken over the Seaharbor shore connection from Siemens, which allows the
ships’ generators to be turned off while they are in port and receive electricity
from the mainland9; the city of Beijing uses the Smog Free Tower, which purifies
30,000 cubic meters of air every hour using 1,170 watts of energy10; or another ex-
ample is the Network Emissions/Vehicle Flow Management Adjustment (NEVFMA)
project, which through the use of an air quality monitoring product provides real-
time pollution data that has been integrated with the Aimsun traffic management
system11.

Regarding the air quality prediction target, it should be pointed out that it includes
both air quality indices and pollutants forecasts. Some of air quality indices focus
on a single pollutant, while others take a multi-pollutant approach by utilising
various aggregation approaches. The most widely used indices are: United States
Environmental Protection Agency (US EPA) Air Quality Index (AQI), Canada Air
Quality Health Index (AQHI), Common Air Quality Index (CAQI), Daily Air Quality
Index (DAQI), France Air Quality Index (ATMO Index) [12].

Several approaches have been implemented to model and forecast the above
air quality indices and pollutants. The most common forecasting models are
dispersion, photochemical, statistical and Machine Learning (ML) models [9].

Dispersion Models: predict concentrations at certain downwind receptor loca-
tions, i.e., characterise the atmospheric processes that cause the dispersion and
movement of emitted pollutants from the source (e.g., industrial plants, vehicular
traffic). The box model, Gaussian plume model, and Gaussian puff model are
types of dispersion models. To perform the dispersion model many factors have
been considered, such as meteorological features, source item (stack height, gas

8Outdoor air quality in urban areas: https://bit.ly/2GQWfLd. [Online; accessed 15-
February-2023]

9Shore connection for berthed ships: SIHARBOR: https://sie.ag/2XOMoOP. [Online;
accessed 15-February-2023]

10SMOG FREE TOWER: https://bit.ly/2wwdcmL. [Online; accessed 15-February-2023]
11Network Emissions/Vehicle Flow Management Adjustment (NEVFMA): https://bit.ly/

3BX7FXQ. [Online; accessed 15-February-2023]

https://bit.ly/2GQWfLd
https://sie.ag/2XOMoOP
https://bit.ly/2wwdcmL
https://bit.ly/3BX7FXQ
https://bit.ly/3BX7FXQ


exit, and velocity), and the topology of source and receptor items.

Photochemical Models: are applicable at many spatial scales. Using mathemat-
ical equations describing the chemical and physical processes in the atmosphere,
it models changes in pollutant concentrations. The atmosphere is modelled with a
three-dimensional grid composed of many grid cells (each cell is typically 4 kilo-
meters by 4 kilometers). It calculates the concentrations in each cell by simulating
the movement of air into and out of the cells by advection and dispersion, and
by simulating the vertical mixing of contaminants between layers. The following
are the types of photochemical models: the Lagrangian trajectory model and the
Eulerian grid model.

Statistical Models: used statistical data analysis to determine concentrations.
Compared to the other two models, statistical models do not simulate the physical
relationship between emissions and environmental concentrations. These meth-
ods investigate relationships and correlations between features. Autoregressive
Integrated Moving Average (ARIMA), Linear Regression (LR), Multiple Linear
Regression (MLR) are examples of statistical methods.

Machine Learning Models: the above models have limitations in capturing
non-linear dependencies. They mainly simplify the existing relationship between
concentration and affected factors. To overcome the drawbacks, ML models
with their subset, named Deep Learning (DL) (stated in Section 3.5), have been
implemented to forecast air quality. Studies have indicated and confirmed the
significant advantages of ML models over traditional approaches as they can effi-
ciently capture, compute and process complex dependencies across scales from
the high-dimensional datasets, including interactions and non-linear relationships
and intrinsic features that control and form pollution. For example, Peng et al.
[13] demonstrated the superiority of Neural Network (NN) methods by comparing
several models, including MLR, Multi-Layer Perceptron Neural Networks (MLPNN)
and Extreme Learning Machine (ELM) to forecast O3, particulate matters less
than 2.5 micrometers in diameter (PM2.5) and NO2 in Canada. Another study also
confirming the above belief was carried out by Neto et al. [14] where the main ob-
jective was to predict PM2.5 and PM10 in Finland and Brazil. It is worth mentioning,
that apart from advantages, ML models also face difficulties and challenges, such
as computational costs, overfitting/underfitting the training data, nonrepresentative
training data and the lack of interpretability [15].



1.1 Motivation

Given the impact of air pollution on the health and environment, it is crucial
to monitor, predict, and control pollutant concentrations. However, due to the
complexity of air quality dependence on various factors and phenomena, there
are additional difficulties in achieving the above goals. A thorough study of these
factors and phenomena should be carried out at the initial stages in order to identify
all existing dependencies related to air quality, to find out which factors are more re-
lated, what to exclude and what to include in further analysis. These dependencies
are connected both in the temporal and spatial dimensions12 [16, 17]. Dependen-
cies in a temporal dimension refer to temporal relationships of a variable’s value
at time t and t − 1. Spatial dependence refers to the spatial relationship of the
values of a variable for pairs of locations at a specified distance apart, such that
they are more (or less) similar than randomly related pairs of observations. The
difference between temporal and spatial dependences is related to directionality,
i.e., temporal dependence is unidirectional, while spatial dependence is multidirec-
tional (temporal dependence - past observations can only affect present or future
observations but not inversely; spatial dependence - observation in a spatial unit
can influence and be influenced by observations in multiple spatial units). Air
pollution is one example of a spatiotemporal phenomenon, i.e. the concentration
depends on many factors, including local climatic conditions and air pollutants,
which fluctuate over time. Thus, it is vital to conduct a spatiotemporal analysis in
order to capture and process all the above dependencies.

Before performing a spatiotemporal analysis, in the first stage, it is necessary to
obtain data on the factors that formed and controlled air quality. Data collection
can be difficult for several reasons, such as the quality of recorded sources, the
availability and density of monitoring stations, and the characteristics of the study
area. The next crucial step is to combine together the data obtained from different
sources in spatial and temporal dimensions. Another key consideration is to select
techniques that will best serve to tackle the problems identified. With all of these
considerations in mind, the strategies for performing more accurate analyses are
proposed in the scope of this dissertation.

12Spatio-Temporal Analysis: https://bit.ly/3WciEGd. [Online; accessed 15-February-
2023]

https://bit.ly/3WciEGd


1.2 Research Questions and Objectives

This research work has been designed and developed to achieve the defined
principal goals and objectives, guided by research questions. The following are
the principal research questions addressed by this work:

• RQ1: Which ML approaches have been used in the domain of air quality
prediction and how effective are these approaches in reducing air pollution
by predicting air quality?

• RQ2: What main components, such as dataset types, prediction targets,
and evaluation metrics, have been included in the process of air quality
forecasting?

• RQ3: How strong is the correlation between features? Which feature/vari-
ables have the highest impact on the performance of ML models?

• RQ4: How well do feature engineering methods improve the accuracy of
predictive models?

• RQ5: Does the inclusion of geospatial factors (i.e., the location of air quality
and meteorological monitoring stations and traffic measurement points) and
spatiotemporal dependencies in predictive models lead to better results?

The research objectives are listed below:

• RO1: Explore and review the most related studies on air quality prediction
using ML techniques: Related chapter 2.

• RO2: Detect and observe the ML approaches, the main features employed
to predict air quality in the smart city domain: Related chapter 2.

• RO3: Implement detailed exploratory analysis to discover the correlation
between dependent and target variables: Related chapter 3.

• RO4: Examine which features/variables significantly affect the performance
of predictive models, and select the best combination of the relevant features:
Related chapters 3 and 5.



• RO5: Incorporate various data sources, including air quality, meteorological
and traffic datasets, as well as the location of air quality and meteorological
monitoring stations and traffic measurement points, and process them by
implementing different feature engineering techniques: Related chapter 3.

• RO6: Develop and evaluate different ML methods, focusing on the process
and computation of spatial and temporal dependencies: Related chapters 3,
4, 5 and 6.

1.3 Research Contributions

The contributions received as a result of the implementation of the proposed
approaches can be summarised and defined as follows:

• Meta-review of air quality prediction using ML technologies, current state-
of-the-art of the domain, which served as an introduction and guide to the
further directions of our research.

• Inclusion and combination of air quality, meteorological, and traffic data in
spatiotemporal dimensions with the purpose to perform air quality prediction.

• Exploratory data analysis of datasets to identify relationships between fea-
tures/variables and highlight those that have a strong impact on air quality
prediction. Exploratory data analysis was performed both from a physical
point of view and using ML technology.

• Feature engineering approaches such as feature selection and outlier de-
tection techniques, that have significantly improved the performance of the
models.

• The implementation of spatiotemporal air quality forecasting methods, in-
cluding Convolutional Long Short-Term Memory (ConvLSTM), Bidirectional
Convolutional Long Short-Term Memory (BiConvLSTM) and Attention Tem-
poral Graph Convolutional Network (A3T-GCN) (which belong to the DL
subset and are detailed in Section 3.5.3), that have been evaluated in a real
city with real data under various defined scenarios. It should be mentioned
that the BiConvLSTM and A3T-GCN implementation for air quality predic-
tion, and the ConvLSTM implementation for NO2 prediction, are the first



time proposed by the current research, making this research a somewhat
groundbreaking contribution to the domain of air quality prediction. The city
of Madrid is used as a scenario to perform predictive analysis defined in the
framework of this dissertation.

1.4 Thesis Structure

The dissertation begins by presenting the background and importance of the
topic, the motivations, the research questions and the objectives, based on which
the work was constructed and developed. Afterwards, the main contributions were
highlighted. The rest of the work is structured as follows:

• [Chapter 2] It discusses the most recent developments and current state of
the art in the field of air quality prediction using ML techniques. The key
features of selected papers are extracted, and comparisons and analyses
are provided.

• [Chapter 3] The employed datasets, their transformation and generation
into the format required for the analysis are defined in detail. Additionally,
the exploratory analysis of the datasets is provided to reveal all existing
relationships and linkages between distinct data types. Furthermore, the
feature engineering techniques with their workflow are presented, which
serve as a data preprocessing step before implementing the predictive
analysis. The chapter is finalised with a detailed description of the proposed
methods along with the key components of their architectures.

• [Chapter 4] One of the most advanced methods, ConvLSTM is introduced.
Particularly, a comparison of NO2 prediction for pandemic and non-pandemic
periods with different temporal granularities in the city of Madrid is provided
using the ConvLSTM on historical NO2 and meteorological data.

• [Chapter 5] An extended version of the ConvLSTM, called BiConvLSTM, is
proposed and developed and further compared with the reference models.
The reported analysis comprised traffic data in addition to NO2 and meteoro-
logical data. Additionally, feature selection approaches are discussed with
an emphasis on and comparison of their peculiarities. A further contribution



is the implementation of approaches to the transformation of cyclic data and
the selection of a superior approach.

• [Chapter 6] The new advanced technique based on Graph Neural Networks
(GNNs), called A3T-GCN, is introduced. A comparison of the proposed
method with reference methods (Long Short-Term Memory (LSTM) and
Gated Recurrent Unit (GRU)) is given to predict NO2. Furthermore, the
importance of outlier detection techniques is highlighted.

• [Chapter 7] The dissertation wraps up with the key concluding notes and
proposes further research directions.
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Chapter 2

State of the Art1

Predicting air quality is one of the most pressing global challenges. To understand
how to contribute to the domain, it is essential to thoroughly examine the existing
studies devoted to air quality prediction using ML and DL algorithms. Particularly,
the following contributions can be highlighted in this chapter:

• We selected the relevant studies on air pollution prediction in smart cities
using ML methods;

• We compared and analysed the approaches and features implemented in
the domain to provide a comprehensive overview;

• We introduced the studies related to the employment of one subclass of DL
techniques, namely a GNN for air quality prediction, and analysed the main
components in terms of implemented GNN architecture.

1The part of this chapter previously appeared as articles in the Journals Applied Sciences,
Atmosphere and IEEE Access, and an article in the Conference of EnviroInfo. The original citations
are as follows: Iskandaryan, Ditsuhi, Francisco Ramos, and Sergio Trilles. ”Air quality prediction
in smart cities using machine learning technologies based on sensor data: a review.” Applied
Sciences 10, no. 7 (2020): 2401; Iskandaryan, Ditsuhi, Francisco Ramos, and Sergio Trilles.
”Features exploration from datasets vision in air quality prediction domain.” Atmosphere 12, no. 3
(2021): 312; Iskandaryan, Ditsuhi, Francisco Ramos, and Sergio Trilles. ”Graph Neural Network
for Air Quality Prediction: A Case Study in Madrid.” IEEE Access 11 (2023): 2729-2742; and
Iskandaryan, Ditsuhi, Francisco Ramos, and Sergio Trilles. ”Spatiotemporal Prediction of Nitrogen
Dioxide Based on Graph Neural Networks.” Environmental Informatics, pp. 111-128. Springer,
Cham, 2023.



This chapter is composed of two sections. The first section presents the pro-
cedure for selecting studies related to air quality prediction using ML methods and
analysing the extracted features and components. The second section introduces
the studies on the prediction of air pollution concentrations carried out using GNN.
A detailed description of each section is given below.

2.1 Machine Learning Models for Air Quality Predic-
tion

This section focuses on providing a broad overview, screening and analysing
relevant works on air quality prediction using ML methods, comparing applicable
approaches to find existing trends and research advancements, as well as analys-
ing the relevant studies from the perspective of the datasets used. Furthermore,
those datasets and external factors (e.g. precipitation, wind direction, traffic intens-
ity or population density) that affect air quality should be estimated and integrated
as input to models to improve air quality forecasting. To solve the aforementioned
tasks the following questions were defined:

1. Which ML approaches are used to predict air quality in the smart city domain?

2. Which features are the most used to define ML models?

3. How do the suggested methods handle diverse types of data?

4. What types of datasets are used to improve air quality predictions?

5. What dataset characteristics are important for efficient and effective air quality
forecasting?

The aforementioned questions were addressed by defining a search strategy
and implementing inclusion/exclusion criteria. First, to select relevant studies, the
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
statement [18] was used as a guideline. Figure 2.1 shows PRISMA flow diagram
with four phases, including Identification, Screening, Eligibility and Included. The
papers were queried in Association for Computing Machinery (ACM), Institute
of Electrical and Electronics Engineers (IEEE) Xplore, Web of Science (WoS)
databases using the following query: (“machine learning”) AND (“prediction” OR



“forecast”) AND (“air quality” OR “air pollution”), which was being applied to title,
abstract and keywords. In the first step, all papers published until September 28,
2020 (search date) were chosen, yielding a total of 1,214 papers. Afterwards,
duplicated and non-empirical manuscripts were eliminated. Following that, title,
abstract, keyword screening, and full-text assessment were carried out based on
the inclusion/exclusion criteria stated in Table 2.1.

Table 2.1: Inclusion and exclusion criteria.

Inclusion Criteria Exclusion Criteria

Papers written in English Non-English written papers
Publications in scientific journals Non-reviewed papers, editorials,

presentations
Publications focused on outdoor air
pollution

Publications focused on indoor air pol-
lution

Additional dataset together with air
quality data

Using only air quality data

Analysis with implementation of ML
techniques

Analysis without implementation of ML
techniques

Models applied for forecasting pur-
pose

Works without forecasting models

Following the analysis of the manuscripts, the exploration and observation of the
obtained results are introduced by extracting the following components from the
selected studies: Year, Study Area, Prediction Target, Dataset Type, Data Rate,
Period (Days), Open Data, Algorithm, Time Granularity and Evaluation Metric.

Each component of Table B.1 in Appendix B was observed in terms of dataset
types to find out which dataset features were used in each research work, and the
findings are displayed below.

Dataset Type: includes types of data which were used to perform analysis.
After reviewing the selected studies the followings dataset types were extracted
(Figure 2.2): ‘MET ’: meteorological data, ‘Spatial ’: topographical characteristics,
the locations of the stations, ‘Temporal ’: includes the day of the month, day of the
week, the hour of the day, ‘AOD’: aerosol optical depth, ‘Social Media’: microblog
data, ‘Traffic’, ‘PBL Height ’: planetary boundary layer height, ‘Land Use’, ‘BEV ’:
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Figure 2.1: Preferred Reporting Items for Systematic Reviews and Meta-Analyses
flow diagram for the review (n is the number of papers).

built environment variables, ‘UV Index ’: ultraviolet index, ‘SP ’: sound pressure,
‘PD’: population density, ‘Human Movements’: floating population and estimated
traffic volume, ‘Altitude’, ‘OMI-SO2’: satellite-retrieved SO2 from Ozone Monitoring
Instrument-SO2, ‘PPS’: pollution point source, ‘TS’: transportation source, ‘WFD’:
weather forecast data, ‘POI Distribution’: point of interest distribution, ‘FAPE ’:
factory air pollution emission, ‘RND’: road network distribution, ‘Elevation’, ‘AEI’:
anthropogenic emission inventory, ‘NDVI’: normalised difference vegetation index,
‘Chemical ’: chemical component forecast data (organic carbon, black carbon, sea
salt, etc.), and ‘Emission’.

Out of the twenty-six dataset types, meteorological data is the most widely used,
appearing in eighty-eight publications (Figure 2.2). ‘Temporal ’, ‘Spatial ’, ‘Traffic’,



‘AOD’ and ‘Land Use’ datasets are the next relatively more common dataset types.
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Figure 2.2: The number of publications per each dataset type.

Figure 2.2 shows the number of publications for each dataset type; however, it
is also essential to see the number of publications for dataset combinations. Thirty
combinations were formed from the aforementioned dataset types used in the
publications. The number of publications for each dataset combination is shown in
Table 2.2. The most frequently seen combination is meteorological data combined
with air quality data, which appears in forty-five papers. There are twenty-three
dataset combinations, each of which only appears in one publication; hence they
have been grouped as Others for ease of analysis.

Year : includes years of publications. Figure 2.3 demonstrates the distribution of
the used dataset combinations over time, together with the number of publications
for each published year, and it may be used to track progress over time.

Since 2016, there has been an increase in the use of intense dataset com-
binations, especially in 2019 and 2020, which can be attributed to the rise of



Table 2.2: The number of publications of dataset combinations.

Dataset Combinations Number of Publications

MET 45
MET, Temporal 11
MET, Spatial, Temporal 5
Spatial 2
MET, AOD 2
MET, Traffic 2
MET, Social Media 2
Others 23
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Figure 2.3: The distribution of the dataset combinations throughout the years.

smart cities and open data portals as scientific concepts. However, throughout
the entire period, only meteorological data was dominant. The increase in the
number of manuscripts can be attributed to the open data movement promoted by



the governments [19].

Study Area: are the countries used as a study area in the papers. In the majority
of the papers (forty), China was a study area. Here is a list of the remaining
countries, along with their number of publications: USA-six; Taiwan-six; India-
four; Iran-four; South Korea-four; UK-three; Canada-two; Ecuador-two; Egypt-two;
Europe-two; France-two; Italy-two; Kuwait-two; Saudi Arabia-two; Turkey-two;
Germany-one; Jordan-one; Mongolia-one; Poland-one; Qatar-one; Slovenia-one;
Spain-one; Thailand-one; and Tunisia-one. In addition to this examination, knowing
the dataset combinations for each study area could be useful. The distribution of
dataset combinations in terms of the study area is depicted in Figure 2.4. China
was a study area in the papers with the majority of dataset combinations (China
with ‘MET ’ is the dominating combination (twenty-one papers)).

Prediction Target : is a pollutant or air quality index that a particular study is
intended to predict. In general, seventeen prediction targets were used: PM2.5, O3,
NOx, PM10, AQI, SO2, CO, ultrafine particle (UFP) or particulate matters less than
0.1 micrometers in diameter (PM0.1), AQHI, Individual Air Quality Index (IAQL),
NH3, particle number concentrations (PNCs [particle number concentration is the
total number of particles per unit volume of air2]), particles number less than 10
nanometers (PN10), black carbon (BC), suspended particulate matter (SPM) and
carbon dioxide (CO2).

Figure 2.5 presents the distribution of dataset combinations in terms of predic-
tion target, and it can be observed, that the prediction target can be an individual
pollutant, as well as an air quality index. However, the prevailing targets are
individual pollutants, particularly, PM2.5, O3, NOx, and PM10, which may be ex-
plained by the dangers of those pollutants and the need to detect and control
them. Moreover, according to the US EPA, air quality in a certain area is defined
by the above-mentioned pollutants [9]. The most commonly used prediction tar-
get, PM2.5 (forty-eight papers), was applied in publications with all combinations,
especially with ‘MET ’, which was the most commonly used combination by re-
searchers (twenty-one papers). It is noteworthy, that technological advancements
have made it possible to observe finer particles (PM0.1, PN10 [20, 21]), which are
more hazardous and easier to inhale.

2Particle Numbers and Concentrations Network: https://bit.ly/39HqALZ. [Online; ac-
cessed 15-February-2023]

https://bit.ly/39HqALZ
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Figure 2.4: The number of publications of dataset combinations in terms of the
study area.

It can be also interesting to look at the distribution of the study areas in terms
of prediction targets. To illustrate the aforementioned observation, the prediction
targets were categorised into the following groups considering the number of
publications for each combination (country-prediction target combination), includ-
ing PM2.5, O3, NOx, PM10, AQI, SO2, CO, and Others (UFP, particulate matters
less than 1 micrometers in diameter (PM1), AQHI, IAQL, NH3, PNCs, PN10, BC,
SPM and CO2). The dominant study area is China for all prediction targets (Fig-
ure 2.6), particularly, the dominant combination is China with PM2.5 (twenty-six
publications).

Data Rate: is the timespan during which the sensors deliver data. Figure 2.7
shows the distribution of dataset combinations in terms of data rate. Overall,
biweekly (one paper), daily (twenty papers), hourly (fifty-six papers), minutely
(three papers), secondly (one paper), 15min (one paper), 5min (one paper), and
5s (one paper) data rates were used in the studies, and nine studies did not provide
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Figure 2.5: The number of publications of dataset combinations in terms of predic-
tion target.

information about data rate. It can be shown that the most frequently used hourly
data rate is used in publications with all combinations, especially with ‘MET ’, which
was the most commonly used combination by researchers (thirty-two papers).

Period (Days): is the duration of the data collection (the number of days).
The summary statistics of these days reveals a mean of days of 1300.63 days
(Std.Dev : 1484.68) and a median of 731 days (Min: 3 and Max : 8023). In nine
publications, the most widely used timeframe is 365 days. Combining this feature
with the data rate makes it possible to estimate the volume of data used in the
study (obviously, it cannot ensure data quality, since the data may contain noisy
samples).

Open Data: provides information about data accessibility. Considering the role
of reproducibility nowadays, the availability of the dataset used in the papers
was also examined. However, reproducibility does not apply only to data; it also
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Figure 2.6: The distribution of study areas in terms of prediction target.

refers to code availability [22]. No paper provided code scripts, although the
algorithms were available and were explained in the papers. Figure 2.8 illustrates
the distribution of dataset combinations in terms of data availability. There are
three categories: Yes (fifty-nine papers), No (thirty papers), and Partially (four
papers). The first two indicate whether or not the authors provided the data
used in the studies, while the papers with Partially relate to studies where the
authors only contributed a part of the data. Regarding data accessibility across
time, the authors began using open data in their research in 2012 (Figure 2.9),
which coincides with the emergence of open data portals [23, 24] and smart cities
movement [25]. Figure 2.10 displays the data availability per study area. It can be
observed that publications with study area China include all three categories.

It would also be interesting to observe the relationship between the affiliation of
the authors and the study area of particular research. The results demonstrate
that in the majority of the papers (fifty-five), the affiliations of all the co-authors are
located in the corresponding study areas. The affiliations of the authors in eleven
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Figure 2.7: The number of publications of dataset combinations in terms of
data rate.

papers are in countries other than the study areas. For example, the author’s
affiliations in the following work [26] are in China, and the study area is in the
USA. In twenty-seven papers, the co-authors’ affiliations partially correspond to
the study area. For instance, in this paper [13] the study area is Canada and the
author’s affiliations belong to China and Canada.

Algorithm: is the ML algorithm that the applied methods are based on. Figure 2.11
shows the distribution of dataset combinations in terms of ML algorithms. The ML
algorithms used in the studies are NN (forty-five papers), Ensemble (thirty-three
papers), Regression (twenty-one papers), Hybrid (twelve papers) and Other
Algorithms (four papers). It can be seen, that the NN outnumbers other al-
gorithms. The following are the most common approaches used in each cat-
egory: NN—LSTM, Multilayer Perceptron (MLP), GRU; Regression—Support
Vector Machine (SVM); Ensemble—Random Forest (RF), Extreme Gradient Boost-
ing (XGBoost), Light Gradient Boosted Machine (LightGBM)); Hybrid —the major-
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Figure 2.8: The number of publications of dataset combinations in terms of data
availability.

ity of the methods of this category are based on SVM, for example, Partial Least
Square-SVM, Multi-output SVM and Multi-Task Learning SVM (MM-SVM); Other
Algorithms—includes the works applied Decision Tree Algorithm (C4.8), Rein-
forcement Learning, Bayesian Model, Regularisation and Optimisation. Regarding
dataset combinations, in contrast to other combinations, ‘MET ’ and ‘Others’ include
all categories of the algorithms.

Combining prediction targets and applied methods can help to reveal any correl-
ation between them in order to determine which methods are used to predict a
particular target. According to the results of the study, the following connection
was detected (main prediction targets and corresponding methods): Particulate
Matters - LSTM, SVM, RF; O3 - MLP, Recurrent Neural Network (RNN); NOx

-SVM, RF, RNN; SO2 - SVM; CO - LSTM; AQI - SVM.

It would be interesting to know how the use of the algorithms varied over
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Figure 2.9: Data availability over the years.

time. The publications for each ML algorithm over the years are shown in Figure
2.12. The number of papers has been increasing in recent years, particularly, NN,
Ensemble and Hybrid models. Regarding Regression methods, the latter approach
has been used very consistently since 2008, and in subsequent publications, the
Regression approach has been used primarily in conjunction with other methods
for comparison purposes.

Time Granularity : refers to the time interval, over which the prediction was
applied. Figure 2.13 shows the distribution of dataset combinations in terms of
time resolution. The used time resolutions are 1 h, 2 h, 3 h, 4 h, 6 h, 8 h, 10 h, 12
h, 24 h, 48 h, 72 h, five days, one week, 15 days and one month (these retrieved
intervals are the maximum intervals applied in each article). It is detectable that
24 h is the most used time resolution regarding the number of publications and
different dataset combinations. Furthermore, the most extended prediction time
resolution, one month, is applied in publication with ‘Others’ combination, and
considering that the longer resolution reduces accuracy, only one paper uses the
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Figure 2.10: Data availability per study area.

one-month prediction.

Evaluation Metric: is the measure that is used to assess the effectiveness of
the applied method. In total, sixty-nine metrics were used to evaluate the meth-
ods, from which the most used metrics are Root Mean Square Error (RMSE) in
seventy-seven papers, Mean Absolute Error (MAE) in forty-two papers, Coefficient
of Determination (R2) in thirty-six papers, and Pearson Correlation Coefficient (R)
in twenty-one papers. Figure 2.14 demonstrates the distribution of dataset com-
binations in terms of evaluation metric (each database combination is marked
with a different colour). Compared to other dataset types, ‘MET ’, ‘MET, Temporal ’
and ‘Others’ were combined with more metrics, particularly, RMSE with ‘MET ’
(forty-one papers) and MAE with ‘MET ’ (twenty-four papers) are the most used
combinations. Additionally, taking into consideration the most used prediction
target (PM2.5) and the most used time resolution (24 h), the results show that
PM2.5 was a prediction target in eighteen papers with the combination of RMSE
and ‘MET ’, and in ten papers with the combination of MAE with ‘MET ’, and 24 h
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Figure 2.11: The number of publications of dataset combinations in terms of
Machine Learning algorithms.

was a predicted time resolution in ten papers with RMSE and ‘MET ’ combination
and in six papers with MAE and ‘MET ’ combination. Furthermore, the metrics that
have been used in more than six publications with corresponding equations and de-
scriptions are extracted and displayed in Table 2.3. The metrics are RMSE, MAE,
R2, R, Mean Absolute Percentage Error (MAPE), Index of Agreement (IA), Mean
Square Error (MSE), Normalised Root Mean Square Error (NRMSE) [27–34].

Many aspects influence model performance accuracy, including ML techniques,
spatial characteristics, prediction targets, and temporal resolution. Several authors
have mentioned the structural limitations of algorithms, including the tendency
to overfit, complexity, difficulties with interpretation, and time-consuming [35–37].
Regarding the prediction target, depending on which pollutant is the prediction
target the accuracy may vary since the chemical structure of the pollutants is
different. For example, Li et al. [38] found out that the proposed model predicts
better PM2.5 than NOx, as NOx is highly reactive and has larger temporal variability.
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Figure 2.12: The number of publications per Machine Learning algorithms through-
out the years.

Therefore, many studies mentioned the implementation of the proposed model for
predicting other pollutants as future work [26, 39]. Another constraint is the lack of
data in spatiotemporal resolution [40, 41]. Missing values can also be included in
this scope, and depending on their quantity, the performance can be drastically
reduced [42, 43]. An important factor is the presence of sudden changes. One
solution could be to collect more data, as the training dataset will include more
sudden changes, resulting in higher performance in the event of abrupt changes
[41]. The inclusion of additional datasets closely related to air quality, such as
aerosol optical depth and meteorological data, can help address this issue [44]. It
might also be useful to apply techniques for handling imbalanced datasets [39].
Another limitation that we have already highlighted is a prediction with a long
temporal resolution since due to the accumulated error, the accuracy decreases
as the temporal resolution increases [45, 46].
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Figure 2.13: The number of publications of dataset combinations in terms of
time granularity.

2.2 Graph Neural Network for Air Quality Prediction

By observing the most recent developments in air quality forecasting, a lot of
attention has been found on GNN models. Since the works devoted to GNN were
not included in the initial stage of the review, this section briefly describes the
works that implement GNN to forecast air quality.

Han et al. [47] proposed the Self-Supervised Hierarchical Graph Neural Net-
work (SSH-GNN) based on cities→functional zones→regions network to perform
fine-grained air quality prediction implemented on datasets for the Beijing-Tianjin-
Hebei and the Pearl River Delta urban agglomerations. Ram et al. [48] proposed
Dual Graph Convolutional Network (DGCN) and LSTM network combined with
Wireless Sensor Network (WSN) and IoT to perform AQI predictions; especially,
DGCN was responsible to process the data from the sensors that were later
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Figure 2.14: The number of publications of dataset combinations in terms of
evaluation metrics.

learned by the graph LSTM. Xiao et al. [49] offered a Dual-Path Dynamic Dir-
ected Graph Convolutional Network (DP-DDGCN) based on the combination of
dual-path dynamic directed graph blocks and GRU. Ouyang et al. [50] proposed
a Spatiotemporal Dynamic Graph Convolutional Network (ST-DGCN) based on a
time-varying dynamic adjacency matrix to predict PM2.5. Ge et al. [51] offered a
Multi-scale Spatiotemporal Graph Convolutional Network (MST-GCN) including a
multi-scale block, several spatiotemporal blocks and a fusion block to forecast air
quality. Wang et al. [52] used Attentive Temporal Graph Convolutional Network
to model inter-station relationships (spatial adjacency, functional similarity, and
temporal pattern similarity) to predict air quality. Chen et al. [53] proposed the
group-aware GNN using the Chinese city air quality dataset to forecast nationwide
city air quality. Xu et al. [54] performed air quality forecasting based on a hierarch-
ical GNN; in particular, city-level and station-level graphs were constructed using
the Yangtze River Delta city group’s dataset. The authors developed two strategies,



Table 2.3: The most used metrics (more than six publications) with corresponding
equations and definitions (where N is the number of predicted days, O i and P i are
observed and predicted values, respectively, and Oi is the average of observed
data).

Metrics Equations Description

RMSE
√

1
N

∑N
i=1(Oi − P i)2 It measures the geometric difference

between observed and predicted data.
MAE 1

N

∑N
i=1 |Oi − P i| It measures the average magnitude

of the errors in a set of predictions,
without considering their direction.

R2

(∑N
i=1(P i−P i)(Oi−Oi)

)2

∑N
i=1(P i−P i)

2
∑N

i=1(Oi−Oi)
2

It shows how differences in one vari-
able can be explained by a difference
in a second variable.

R
∑N

i=1(P i−P i)(Oi−Oi)√∑N
i=1(P i−P i)

2
∑N

i=1(Oi−Oi)
2

It measures the strength and the dir-
ection of a linear relationship between
two variables.

MAPE 1
N

∑N
i=1

∣∣∣Oi−P i
Oi

∣∣∣ It measures the size of the error in per-
centage terms.

IA 1−
∑N

i=1(Oi−P i)
2∑N

i=1(|Oi−Oi|+|P i−Oi|)2
It is the ratio of the mean square error
and the potential error.

MSE 1
N

∑N
i=1(Oi − P i)

2 It measures the average squared dif-
ference between the observed and the
predict values

NRMSE
∑N

i=1(Oi−P i)
2∑N

i=1 Oi
2

It is the normalised version of RMSE,
which makes easier to compare differ-
ent models with different scales.

upper delivery and lower updating, to implement the inter-level interactions and
introduce a message-passing mechanism to implement the intra-level interactions.
Another work is devoted to comparing graph-based and non-graph-based models
for PM2.5 prediction under distribution shift [55]. Le [56] used Spatiotemporal
Graph Convolutional Recurrent Neural Network (STGCRNN) to efficiently explore



the spatiotemporal characteristics of air quality values and related factors.

Zhao et al. [57] introduced a novel model based on a combination of air qual-
ity spatiotemporal network and Graph Convolutional Network (GCN) for PM2.5

prediction. Gao and Li [58] proposed graph-based LSTM model to perform spa-
tiotemporal prediction of PM2.5 concentration. Zhang et al. [59] used a temporal
attention network with domain-specific graph regularisation for improving PM2.5

prediction. Wang et al. [60] developed a new model called PM2.5-GNN to capture
fine-grained and long-term influences in the PM2.5 process. Zhao and Zettsu [61]
proposed multi-attention spatiotemporal graph networks to predict the concentra-
tion of PM2.5, O3, and PM10. Qi et al. [62] implemented spectral GCN combined
with LSTM using historical data for the last 24 h to forecast the PM2.5 concentration
for the next 1 h, 2 h, 4 h, 8 h, 12 h, 24 h, 48 h and 72 h. Huang et al. [63]
implemented a Spatio-Attention embedded Recurrent Neural Network (SpAttRNN)
to predict PM2.5, PM10 and NO2 using Beijing’s air quality, meteorological and
point of interest (POI) datasets; to capture spatial patterns, a self-loop-normalised
adjacency matrix was used. Lin et al. [64] proposed the Geo-context based Dif-
fusion Convolutional Recurrent Neural Network (GC-DCRNN) to predict PM2.5.
The geo-context segment was implemented by building a graph that allowed in-
formation to be collected in the spatial dimension, and a Diffusion Convolutional
Recurrent Neural Network (DCRNN) was responsible for collecting information in
the temporal dimension.

The overall picture of the publications related to the implementation of GNN
for air quality prediction can be seen in Table B.2 in Appendix B. The following
features were extracted from each work, including Year, Method, Edge Weight,
Dynamic/Static, Directed/Undirected, Target, Dataset, and Evaluation Metric.

Year : year of publication of the work. As can be seen, interest in the topic began
quite recently, since 2018, in particular, the main peak came in 2021, when ten out
of eighteen extracted works were published in 2021.

Method : implemented methods for performing the prediction. As shown, most
of the works involve GCN combined with RNN such as GRU or LSTM. Recently,
the integration of the attention-based network is also increasing.

Edge Weight, Dynamic/Static, Directed/Undirected : to find out more information
about the structure of the graph, information about the edge weight, dynamics
and direction was extracted. Figure 2.15 shows the distribution of publications for



each feature. It is noticeable that most of the papers used graphs consisting of
weighted edges (seventeen out of eighteen). In terms of dynamic status, most of
them are static (fourteen out of eighteen), and in terms of direction, most studies
used undirected graphs (twelve out of eighteen).
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Figure 2.15: The number of publications in terms of edge weights (Yes-with weights,
No-without weights), dynamic (Yes-dynamic, No-static) and direction (Yes-directed,
No-undirected).

Target : are predictable pollutants. The following pollutants were taken into
account: PM2.5 (fourteen papers), PM10 (four papers), AQI (three papers), NO2

(two papers), O3 (two papers), and CO (one paper). The most used pollutant was
PM2.5.

Figure 2.16 shows the distribution of the prediction target over time. It can be
seen that PM2.5 has been in use since 2018. From 2020, additional targets are
included, and in 2022, studies attempt to predict all the aforementioned prediction
targets.

Dataset : datasets used for predictive analysis. The following datasets are used:
air quality (eighteen papers), spatial (the location of air quality monitoring stations)
(eighteen papers), meteorological (seventeen papers), POI (five papers), traffic
(two papers), road network (two papers) and geographic data (land uses, roads,
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Figure 2.16: The number of publications per prediction target throughout the years.

water areas, buildings) (one paper). Air quality datasets and spatial datasets
were most commonly used, which is logical, since the main task was air quality
forecasting, and since the main focus of the work was on the implementation of
GNN, the location of monitoring stations is the main base for constructing the
graph. The next most commonly used dataset is meteorological data, due to the
strong correlation between air quality and meteorological data.

It is also very interesting to see the distribution of the datasets in chronological
order. Air quality, spatial and meteorological data are included for all years (Figure
2.17). In recent years, in particular 2021 and 2022, the analysis began to include
also POI, traffic and road network data.

Another interesting observation is related to dataset combinations. The following
three combinations were formed: ’AQ, MET, Spatial’ (ten papers), ’AQ, MET,
Spatial, POI’ (three papers), and the rest five combinations, each of which only
appears in one publication, have been grouped as ’Others’. Figure 2.18 shows the
dataset combinations in chronological order.

Evaluation Metric: is a metric to measure model performance. The following
metrics were used, including RMSE (seventeen papers), MAE (sixteen papers),
R2 (three papers), False Alarm Rate (three papers), Accuracy (two papers), MAPE
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Figure 2.17: The number of publications per dataset throughout the years.
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Figure 2.18: The distribution of the dataset combinations throughout the years.

(two papers), IA (two papers), Critical Success Index (two papers), Probability of
Detection (two papers), Symmetric MAPE (two papers), train loss (two papers),



test loss (two papers), validation loss (two papers), Spatiotemporal RMSE (one
paper), MSE (one paper), and Recall Rate (one paper).

2.3 Summary

Predicting air quality with higher accuracy is becoming increasingly important
and necessary. Therefore, it is imperative to explore a variety of aspects of the
research field. The principal goal of this chapter is to extract relevant studies on air
quality prediction applying ML and GNN models and identify and analyse the key
components that the researchers included in their analysis to predict air quality.
Below are the main findings of the studies on the use of ML and GNN for air quality
forecasting.

Air quality prediction applying ML models: a set of the most relevant papers in
this field were selected using ACM, IEEE Xplore, Scopus and WoS databases.
Overall, ninety-three papers were selected, and reviewed and, afterwards, the
essential features were extracted and synthesised (Year, Study Area, Prediction
Target, Dataset Type, Data Rate, Period [Days], Open Data, Algorithm and Time
Granularity). The findings demonstrate that twenty-six datasets are used to
supplement data collected by air quality sensors, such as ‘MET ’, ‘Temporal ’,
‘Spatial ’ and ‘Social Media’. The results show a significant difference in the use of
‘MET ’, which is the main dataset used in 94.6% of the studies, and 48.4% of the
studies combined with only air quality data.

Regarding data availability, it was shown that a new stage has begun since 2012,
which is associated with the use of open data portals [65], which is crucial for
science and contributes to the improvement and development of various research
fields, as well as encouraging the emergence of new exciting results, resulting
in an increase in the number of publications. Furthermore, open data impacts
many areas, including increased transparency, increased efficiency and effective-
ness of government services, citizen empowerment, and citizen involvement and
participation in governance [66, 67].

A very important finding is to explore and understand which methods are most
widely used and dominant in the field to predict a specific target. For example, to
predict particulate matter, the most commonly used methods were discovered to
be LSTM, SVM, and RF.

In general, it may be inferred that extra datasets can have significant importance,



and involving them in the analysis could improve air quality prediction and yield
more accurate results. However, determining which datasets are more relevant is
challenging, and it should also be highlighted that including numerous datasets is
not always ideal, as having a large dataset might be an issue because it requires
more training time and also may contain redundant data.

Air quality prediction applying GNN models: at this stage, eighteen studies were
selected from Google Scholar, a brief description of which was presented in the
previous section. After reviewing the papers, the key features were extracted, Year,
Method, Edge Weight, Dynamic/Static, Directed/Undirected, Target, Dataset, and
Evaluation Metric.

Chronological observation shows that the introduction of GNN in this area is a
recent phenomenon, specifically since 2018.

Regarding methods, considering that the main purpose of the studies is to
determine and compute the spatiotemporal dependencies of air quality, a graph
mainly was combined with GRU, LSTM, and attention-based networks (GNN is
responsible to capture spatial dependencies, and GRU, LSTM, and attention-
based networks are responsible to capture temporal dependencies).

Regarding the graphs’ architecture, they were predominantly static (77.77%)
and undirected (66.66%), constructed with weighted edges (94.44%).

Regarding the prediction target, the dominant target is PM2.5 (77.77%), and in
terms of datasets, in addition to air quality, the following datasets were used (listed
in most frequently used order): spatial, meteorological, POI, traffic, road network
and geographic datasets.

The final component considered in this part is the evaluation metric. The
following metrics were used in the studies (listed in most frequently used order):
RMSE, MAE, R2, False Alarm Rate, Accuracy, MAPE, IA, Critical Success Index,
Probability of Detection, Symmetric MAPE, train loss, test loss, validation loss,
Spatiotemporal RMSE, MSE, and Recall Rate.
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Chapter 3

Methodology and Materials1,2

After examining the relevant works and becoming familiar with the most recent
developments in the field, the next step is based on the findings and gaps to
propose a new innovative methodology that allows to achieve the objectives of this
dissertation and fill the identified gaps.

This chapter provides a detailed explanation of the proposed methodology and
the extensive observation and examination of the used datasets. Below are listed
the main contributions of the current chapter:

• We provided a description of the study area, i.e., the city of Madrid, and the

2The part of this chapter previously appeared as articles in the Journals IJCIA, PloS one,
IEEE Access and Data in Brief, and as articles in the Conferences of AGILE and EnviroInfo.
The original citations are as follows: Iskandaryan, Ditsuhi, Francisco Ramos, and Sergio Trilles.
”Comparison of Nitrogen Dioxide Predictions During a Pandemic and Non-pandemic Scenario in
the City of Madrid using a Convolutional LSTM Network.” International Journal of Computational
Intelligence and Applications 21, no. 02 (2022): 2250014; Iskandaryan, Ditsuhi, Francisco Ramos,
and Sergio Trilles. ”Bidirectional convolutional LSTM for the prediction of nitrogen dioxide in the
city of Madrid.” PloS one 17, no. 6 (2022): e0269295; Iskandaryan, Ditsuhi, Francisco Ramos,
and Sergio Trilles. ”Graph Neural Network for Air Quality Prediction: A Case Study in Madrid.”
IEEE Access 11 (2023): 2729-2742; Iskandaryan, Ditsuhi, Francisco Ramos, and Sergio Trilles.
”Reconstructing Secondary Data based on Air Quality, Meteorological and Traffic Data Considering
Spatiotemporal Components.” Data in Brief, 2023; Iskandaryan, Ditsuhi, Silvana Di Sabatino,
Francisco Ramos, and Sergio Trilles. ”Exploratory Analysis and Feature Selection for the Prediction
of Nitrogen Dioxide.” AGILE: GIScience Series 3 (2022): 1-11; and Iskandaryan, Ditsuhi, Francisco
Ramos, and Sergio Trilles. ”Spatiotemporal Prediction of Nitrogen Dioxide Based on Graph Neural
Networks.” Environmental Informatics, pp. 111-128. Springer, Cham, 2023.

2The tools used in the scope of this dissertation are listed in Appendix D.



prediction target, i.e., NO2;

• We integrated various data sources in spatiotemporal dimensions, including
air quality, meteorological and traffic data from the period of January-June
2019 and January-June 2020, and the location of the monitoring stations
and measurement points of the city of Madrid;

• We applied exploratory data analysis to detect existing patterns and relation-
ships between various features;

• We preprocessed the entire dataset by implementing feature engineering
techniques;

• We introduced a thorough description of the proposed algorithms by providing
the necessary background for a complete understanding of the models’
architecture.

The following sections provide a description of the study area and the predicted
pollutant, and a comprehensive explanation of the workflow of the proposed
methodology, consisting of the following steps: 1) Data Preparation, 2) Exploratory
Data Analysis, 3) Feature Engineering, and 4) ML Model Generation (Figure 3.1).

3.1 Description of Study Area and Prediction Target

This section introduces the study area, the geographical description, and the
chemical properties of the prediction target.

The study area of this work is the city of Madrid (Figure 3.2). It is the EU’s second
largest city in terms of population (3,305,4083), with a total area of approximately
604.31 km2 and 18 neighbourhoods (the Autonomous Community of Madrid
occupies about 8000 km2 and it includes 178 municipalities). Madrid is located
in the centre of the Iberian peninsula in southern Meseta Central. The average
altitude is 650 metres (ranging between 570 and 740 meters)4.

Madrid has a Mediterranean climate (Csa type: C-temperate, s-dry summer,
a-hot summer)5. During the hot season (June -September) the average daily high

3Madrid Population: https://bit.ly/3CkvR7Z
4Elevation of Madrid: https://bit.ly/3SyCUQ1. [Online; accessed 15-February-2023]
5Climate Maps of Spain: https://bit.ly/3C3vYU3. [Online; accessed 15-February-2023]

https://bit.ly/3CkvR7Z
https://bit.ly/3SyCUQ1
https://bit.ly/3C3vYU3
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Figure 3.1: The overall workflow of the proposed methodology.

temperature is above 29oC; in July (the hottest month) the average daily high
temperature is 33oC and the average daily low temperature is 17oC. During the
cool season (November-March) an average daily high temperature is below 15oC;
in January (the coldest month) an average daily low temperature is 1oC and an
average daily high temperature is 10oC. The highest recorded temperature was
42.2oC (24 July 1995), and the lowest recorded temperature was -15.3oC (16
January 1945). Both records were registered at Barajas airport. Regarding precip-
itation, it is about 455 millimeters per year. During the rainy period (September -
July) a sliding 31-day rainfall is 13 millimeters. The average rainfall is 8 millimeters
during July (the rainless month). Regarding wind direction, it is most often from
the west (April 4 - April 18 and April 26 -October 31), and from the north (April 18 -
April 26 and October 31 - April 4). During the windier part of the year (January 27-
May 7) the average wind speed is about 3.5 m/s. During the calmer time of year



(May 7-January 27) the average hourly wind speed is 3.2 m/s6.

According to the study by Khomenko et al. [68] connected to premature mortality
due to air pollution in European cities, which examined the pollutants PM2.5 and
NO2, Madrid was found to have the highest NO2 mortality burden. Because of the
significance of NO2 for Madrid, it was selected as an air pollutant for predictive
analysis.

Data source: OpenStreetMap contributors
Madrid city layer, air quality stations layer, meteorological stations layer and
traffic measurement points: Open Data portal of the City Council of Madrid

D. Iskandaryan, S. Di Sabatino, F. Ramos, S. Trilles

Madrid City
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Air Quality Stations Map data © OpenStreetMap contributors, Microsoft, Esri
Community Maps contributors, Map layer by Esri

Map data © OpenStreetMap
contributors, Microsoft, Esri

Community Maps contributors,
Map layer by Esri
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Figure 3.2: Air quality stations, meteorological stations, traffic measurement points
(January 2019) and grid cells segments on the defined area of the city of Madrid.

5-10% of NO2 is produced from direct emissions, and the rest from nitrogen
oxide (NO) + oxidants in the atmosphere [69]. Due to combustion reaction (which

6Climate and Average Weather Year Round in Madrid: https://bit.ly/3fDWT16. [Online;
accessed 15-February-2023]

https://bit.ly/3fDWT16


is exothermic, temperatures up to 1500oC are reached) molecular nitrogen (N2)
and molecular oxygen (O2) in the air can react producing NO which is quickly
converted into NO2 (Eq. 3.1). Particularly as part of the photochemical activity
responsible for ozone formation (Eq. 3.4):

N2 +O2 −−→ 2NO (3.1)

NO+O3 −−→ NO2 +O2 (3.2)

NO2 + hν(λ < 420nm) −−→ NO+O (3.3)

O+O2 +M −−→ O3 +M (3.4)

NO2 absorbs visible and Ultraviolet (UV) wavelength: 90% of NO2 +[300-370nm]
= NO + oxygen (O); small % of NO2 +[370-420nm] = NO + O. Table 3.1 shows the
source of NOx. Fossil fuel combustion and biomass burning account for 72.39 % of
the global source. The sinks are reactions with ozone, reactions NO2 with photons,
reactions with volatile organic compounds (VOC) to form ozone, reactions with
hydroxyl radical (OH) to form a secondary aerosol, reactions of NO with peroxy
radical to fast form NO2. The principal sink of NOx is oxidation to nitric acid (HNO3).

• Daytime
NO2 +OH+M −−→ HNO3 +M (3.5)

• Nighttime
NO2 +O3 −−→ NO3 +O2 (3.6)

NO3 +NO2 +M −−→ N2O5 +M (3.7)

N2O5 +H2O
aerosol−−−−→ 2HNO3 (3.8)

Much research has been conducted on the impact of NO2, particularly on
the rise in mortality from cardiovascular and respiratory diseases. For example,
Faustini et al. [70] discovered that an increase in yearly concentration of NO2 by 10
µg/m3 had a Relative Risk (RR) 1.13 (95% Confidence Interval (CI) 1.09–1.18) on
cardiovascular mortality and RR 1.03 (95% CI 1.02–1.03) on respiratory mortality.



Table 3.1: Global budget of nitrogen oxides.

Estimated present-day sources of tropo-
spheric NOx

Source, Tg N yr-1

(teragrams N per
year)

Fossil fuel combustion 21
Biomass burning 12
Soils (biogenic, denitrification) 6
Lightning 3
NH3 Oxidation (biogenic and atmospheric) 3
Aircraft + ships (fuel burning) 0.5
Transport from stratosphere 0.1

According to Hoek et al. [71], long-term exposure to NO2 increases the risk of
death by 5% for every 10 µg/m3 NO2. Hamra et al. [72] showed that the change
in lung cancer incidence or mortality per 10 µg/m3 increase in exposure is 4%
[95% CI 1%-8%]. The authors of the following study [73] identified a link between
NO2 and COPD. The pooled effect of a 10 g/m3 increase in NO2 concentration
on hospital admissions and on mortality was 1.3% and 2.6%, respectively. Long-
term and short-term NO2 exposure on COPD cases had an RR 2.5 and 1.4%,
respectively. The COPD effect associated with a 10 µg/m3 increase in exposure
to outdoor-sourced NO2 and to an exclusively traffic-sourced NO2 was 1.7 and
17.8%, respectively. According to Brønnum-Hansen et al. [74], decreasing NO2

exposure to rural levels (6 µg/m3) might increase life expectancy by one year in
2040, and a 20% reduction in NO2 would result in 1.3–1.6 years of disease-free
life and 0.3-0.5 years of total life expectancy.

The largest source of NOx emissions in the EU is the road transport sector
(39 % in 2019)7. Different measures were implemented to reduce emissions
(e.g., providing combustion modification technologies, and flue gas abatement
techniques), thanks to which NOx emissions in the EU decreased by 58.8%
between 1990 and 2019. The decline in Spain between 2005 and 2010 is due
to the closure of the main brown coal mine (2007), as well as the upgrades of a

7European Union emission inventory report 1990-2019: https://bit.ly/3fE5G3d. [On-
line; accessed 15-February-2023]

https://bit.ly/3fE5G3d


nearby thermal power plant.

In a study carried out by Cuevas et al. [75], the authors observed the temporal
evolution of NO2 in five Spanish cities, including Madrid, over the period 1996-
2012. Applying the shift trend model to NO2 data, they found that NO2 levels in the
Madrid area had decreased by about 53%. A comparison of average annual values
recorded from air quality monitoring stations shows that Madrid has experienced
a 37% decline. This decline is linked to the implementation of environmental
legislation and technologies and the implications of the global economic crisis.
According to the study, the annual decline was 1.1% prior to the recession, and
7.8% during the economic recession. Therefore, it is observable that economic
and industrial factors have a considerable impact on NO2.

Despite the fact that the deployment of control policies and strategies favourably
influences air pollution reduction, the problem continues to be a source of concern.
New technology can assist in making more informed and efficient decisions.

3.2 Data Preparation

This section introduces the employed datasets and the procedure of data pre-
paration and combination in the spatiotemporal dimensions.

The dataset used in this study consists of air quality, meteorological and traffic
data from the period of January-June 2019 and January-June 2020, and the loca-
tion of air quality and meteorological monitoring stations and traffic measurement
points of the city of Madrid. The reason for selecting data only for the first six
months of 2019 and 2020 is due to computational limitations, therefore we decided
to downsize the data to be able to execute the predictive analysis. The data
was acquired from the Open Data portal of the Madrid City Council8. There are
twenty-four air quality and twenty-six meteorological control stations, and more
than 4,000 traffic measurement points. The following variables are included in the
dataset:

• Air Quality Data - NO2 (µg/m3).

• Meteorological Data - UV irradiance (mW/m2), wind speed (m/s), wind direc-
tion, temperature (oC), relative humidity (%), barometric pressure (mb), solar

8Open Data Portal of the Madrid City Council: https://bit.ly/3FFRiQM. [Online; ac-
cessed 15-February-2023]

https://bit.ly/3FFRiQM


irradiance (W/m2), precipitation (l/m2).

• Traffic Data - Since the attributes of the traffic data can be specific to a certain
area, below are the selected traffic attributes with their definition for the city
of Madrid.

– Intensity - the intensity of the measurement point in a period of 15
minutes (vehicles/hour). A negative value implies the absence of data.

– Occupancy time - measurement point occupancy time in a period
of 15 minutes (%). For example, a 50% occupancy in a 15-minute
period means that vehicles have been positioned over the detector for 7
minutes and 30 seconds. A negative value implies the absence of data.

– Load - vehicle loading in a 15-minute period. This parameter represents
an estimate of the degree of congestion, calculated from an algorithm
that uses intensity and occupancy as variables, with certain correction
factors. It establishes the degree of road use in a range from 0 (empty)
to 100 (collapse). A negative value implies the absence of data.

– Average traffic speed - an average speed of the vehicles in a period of
15 minutes (km/h). Only for M30 intercity measuring points. A negative
value implies the absence of data.

Although the traffic data is captured every 15 minutes, however, since the NO2

and meteorological data are at hourly rates, the traffic data was filtered. Only
hourly records were selected (for example, with entries at 13:00, 13:15, 13:30,
13:45 and 14:00, we selected the entries at 13:00 and 14:00 and the same logic
was applied for the entire period).

After accessing the raw data, the next important step is data preparation and in-
tegration. Since the location of the air quality stations, meteorological stations and
traffic measurement points are different, it is essential to combine them spatially
and temporally. The initial step was to create a grid in a specified area, which was
defined as a section of the city of Madrid with a width and height of 1,000 metres
within the following boundaries: Top – 4,486,449.725263 metres; Bottom –
4,466,449.725263 metres; Left – 434,215.234430 metres; Right –
451,215.234430 metres. Regarding the projected coordinate system, EPSG:
25830, ETRS89/UTM zone 30N was used (EPSG: European Petroleum Survey



Group, ETRS89: European Terrestrial Reference System 1989, UTM: Universal
Transverse Mercator)9. The grid was created with the help of ArcPy package10,
specifically with the CreateF ishnet function11. Within the required extent, the
output generated a grid with 340 cells (20 by 17) covering 340 km2 or 56.27%
of the total area of the city of Madrid. The rationale for selecting this area was
to have a minimum extent to encompass all air quality control stations. The
value of each cell consists of the values of NO2, meteorological and traffic at-
tributes obtained from assigned stations covered by that cell at a certain time.
The value of the cell that does not contain any station was set to zero and in
the case of several stations, an average value was calculated and assigned
to the cell. The above procedure was repeated for each hour of the selec-
ted period. The following functions were used to execute the aforementioned
process, including arcpy.management.AddField12, arcpy.analysis.SpatialJoin13,
arcpy.da.SearchCursor14, arcpy.da.UpdateCursor 15. The output was exported as
.csv files, which were later used as input in further stages of the analysis. Overall,
4,344 and 4,368 .csv files were generated corresponding to every hour during
January-June 2019 and January-June 2020, respectively. The input data: X can
be defined as follows:

X = Xno2 +Xuv +Xws +Xwd +Xtemp +Xhum +Xpress +Xsr +Xprec+

Xintens +Xocup +Xload +Xats

(3.9)

where + is a vector concatenation operator, Xno2 ∈ Rs×m×n
no2

is the NO2 input
data, Rno2 is the NO2 domain; Xuv ∈ Rs×m×n

uv is the UV input data, Ruv is the
UV domain; Xws ∈ Rs×m×n

ws is the wind speed input data, Rws is the wind speed
domain; Xwd ∈ Rs×m×n

wd is the wind direction input data, Rwd is the wind direction
domain; Xtemp ∈ Rs×m×n

temp is the temperature input data, Rtemp is the temperature

9Projected coordinate system: https://epsg.io/25830. [Online; accessed 15-February-
2023]

10ArcPy package: https://bit.ly/3UPYKjy. [Online; accessed 15-February-2023]
11Create Fishnet (Data Management): https://bit.ly/3Rn62Zj. [Online; accessed 15-

February-2023]
12Add Field (Data Management): https://bit.ly/3LPo1GE. [Online; accessed 15-

February-2023]
13Spatial Join (Analysis): https://bit.ly/3M6SC2J. [Online; accessed 15-February-2023]
14SearchCursor: https://bit.ly/3y3tcNz. [Online; accessed 15-February-2023]
15UpdateCursor: https://bit.ly/3y0txjU. [Online; accessed 15-February-2023]

https://epsg.io/25830
https://bit.ly/3UPYKjy
https://bit.ly/3Rn62Zj
https://bit.ly/3LPo1GE
https://bit.ly/3M6SC2J
https://bit.ly/3y3tcNz
https://bit.ly/3y0txjU


domain; Xhum ∈ Rs×m×n
hum is the relative humidity input data, Rhum is the relative

humidity domain; Xpress ∈ Rs×m×n
press is the barometric pressure input data, Rpress

is the barometric pressure domain; Xsr ∈ Rs×m×n
sr is the solar irradiance input

data, Rsr is the solar irradiance domain; Xprec ∈ Rs×m×n
prec is the precipitation input

data, Rprec is the precipitation domain; Xintens ∈ Rs×m×n
intens is the intensity input data,

Rintens is the intensity domain; Xocup ∈ Rs×m×n
ocup is the occupancy time input data,

Rocup is the occupancy time domain; Xload ∈ Rs×m×n
load is the load input data, Rload

is the load domain; Xats ∈ Rs×m×n
ats is the average traffic speed input data, Rats is

the average traffic speed domain, s is the number of samples: 4,344 and 4,368 for
January-June 2019 and January-June 2020, respectively, m is equal 20, and n is
equal 17. The final input X ∈ Rs×340×f , where s is the number of samples: 4,344
and 4,368 for January-June 2019 and January-June 2020, respectively, 340 is
the multiplication of m and n (20*17), and f is the number of features equal to 13
(X ∈ R4,344×340×13 for January-June 2019 and X ∈ R4,368×340×13 for January-June
2020).

A formal description of the data preparation process is given by Algorithm 1.

Algorithm 1 Data preparation
Input: Data - [Hourly NO2, Meteorological and Traffic data]; Period -

[01.01.2019-30.06.2019; 01.01.2020-30.06.2020]

1: for each hour ∈ Period do
2: Create grid with Fishnet tool (ArcPy library)
3: Add field to the Fishnet
4: for each item i ∈ Data do
5: i spatial join with grid: arcpy.management.AddField,

arcpy.analysis.SpatialJoin, arcpy.da.SearchCursor, arcpy.da.UpdateCursor

6: input the mean of the values of each corresponding cell to the field
7: end for
8: end for

Output: .csv files for each hour including NO2, Meteorological and Traffic data

Table 3.2 displays summary statistics for each type of data for the periods
studied for the defined area.



Table 3.2: Summary statistics of the periods January-June 2019 and January-June
2020 for each data type.

Phenomena Descriptors January-June 2019 January-June 2020

NO2 (µg/m3)
Mean (SD) 36.69 (30.85) 26.03 (25.35)
Median [Min,Max] 27.0 [0.0, 328] 17.0 [0.0, 326]

UV (mW/m2)
Mean (SD) 15.83 (30.27) -
Median [Min,Max] 1.0 [0.0, 199] -

Wind speed (m/s)
Mean (SD) 1.41 (1.11) 1.31 (1.05)
Median [Min,Max] 1.14 [0.0, 8.75] 1.05 [0.0, 8.97]

Wind direction
Mean (SD) 167.80 (105.72) 140.82 (98.35)
Median [Min,Max] 182.0 [0.0, 359] 135.0 [0.0, 359]

Temperature (oC)
Mean (SD) 13.38 (8.09) 13.63 (7.6)
Median [Min,Max] 12.5 [-55.0, 47.3] 12.6 [-55.0, 44.6]

Humidity (%)
Mean (SD) 48.73 (21.60) 60.76 (22.77)
Median [Min,Max] 47.0 [-25, 100] 62.0 [-25, 100]

Pressure (mb)
Mean (SD) 943.3 (34.91) 940.62 (63.28)
Median [Min,Max] 945.0 [0.0, 962.0] 945.0 [0.0, 1073.0]

Solar irradiance (W/m2)
Mean (SD) 220.73 (301.06) 191.95 (279.83)
Median [Min,Max] 11.0 [0.0, 1103.0] 9.0 [0.0, 1113.0]

Precipitation (l/m2)
Mean (SD) 0.03 (0.41) 0.03 (0.27)
Median [Min,Max] 0.0 [0.0, 30.4] 0.0 [0.0, 13.5]

Intensity (vehicles/hour)
Count non zero 885863 (59.98%) 892197 (60.09%)
Mean (SD) 245.69 (402.73) 161.45 (313.33)
Median [Min,Max] 63.0 [0.0, 6348.0] 34.19 [0.0, 6588.0]

Occupancy time (%)
Count non zero 845031 (57.21%) 822652 (55.41%)
Mean (SD) 3.96 (6.36) 2.57 (4.9)
Median [Min,Max] 0.95 [0.0, 100.0] 0.42 [0.0, 99.0]

Load
Count non zero 881500 (59.68%) 884950 (59.60%)
Mean (SD) 11.65 (14.91) 7.85 (11.75)
Median [Min,Max] 4.0 [0.0, 100.0] 2.2 [0.0, 100.0]

Average traffic speed (km/h)
Count non zero 233415 (15.8%) 223052 (15.0%)
Mean (SD) 4.39 (13.28) 4.04 (12.96)
Median [Min,Max] 0.0 [0.0, 96.5] 0.0 [-127.0, 127.0]

3.3 Exploratory Data Analysis

Following data acquisition and preparation, the next stage is to perform explor-
atory data analysis, which is the process of conducting a thorough examination
to identify patterns and anomalies and test hypotheses, to determine the relation-
ship between various features, spatial correlation between stations, and temporal
correlation between items.

According to Figure 3.3, the time series of NO2 during January-June 2019 and
January-June 2020 decreases over time, which might be attributed to domestic
heating use throughout the winter. Moreover, the overall concentration during
2020 is lower than that for the same period of 2019, which can be explained by the
constraints enforced to control the spread of coronavirus disease 2019 (COVID-19).
From Figure 3.4 it can be seen that the maximum values during January-June
2019 are detected around 300 µg/m3 and the highest concentration was detected
at the station with id 72 (328 µg/m3 at the following time: 2019-01-14 19:00:00;



Figure 3.5 shows air quality stations with identified values); and during the 2020
period, the greatest value was identified in the station with id 181 (326 µg/m3 at
the following time: 2020-02-10 09:00:00). It should be noted that according to
WHO guideline, the annual mean of NO2 is 40 µg/m3, and 1-h mean is 200 µg/m3.

Figure 3.3: The time series of the concentration of nitrogen dioxide at all the
stations during January-June 2019 (top) and January-June 2020 (bottom) in the
city of Madrid.

Regarding the spatial correlation, Figure 3.6 displays the heatmaps to detect
the correlation between time series in the stations. During the period of 2019, the
stations are correlated, except the station with id 323, which has a lower correlation
than the others. This can be explained by the station’s location, which is relatively
remote from the others. Furthermore, during 2020, in addition to the station with id
323, the station with id 141 was also found to be less correlated. The time series
of NO2 concentration at station 141 has no data for the end of January, as well as
for the entire period of March and April, which may be due to a sensor malfunction
(Figure 3.7).

Respecting temporal correlation, Figure 3.8 illustrates autocorrelation (or the
correlogram, the correlation between values of the same series at different time
steps) and partial autocorrelation plots of NO2 concentration; the daily interval is
chosen as a lag length and the plots show the results of 80 lags. The plots were



Figure 3.4: The time series of the concentration of nitrogen dioxide at stations with
maximum values for each period in the city of Madrid (top: the station with id 72
during January-June 2019; bottom: the station with id 181 during January-June
2020).

generated using plot acf()16 and plot pacf()17 functions from the statsmodels
library18. The difference between autocorrelation and partial autocorrelation is
that the former calculates the correlation between two lags while considering the
influence of previous observations (direct and indirect effects), whereas the latter
is simply a real correlation between two lags without intervening observations (only
direct effects). These functions assist in determining the optimal lags, which can
be selected for effective forecasting. More than 25 lags have a significant positive
correlation in the autocorrelation plot, while in the partial autocorrelation plot, there
is a statistically significant correlation for lag 1 and 2 periods.

Afterwards, the next step was to identify the relationship between the features.
This procedure started by constructing a wind rose for each station to reveal the
interconnection between wind speed and wind direction. The wind roses were

16Autocorrelation function: https://bit.ly/3CnYgci. [Online; accessed 15-February-
2023]

17Partial autocorrelation function: https://bit.ly/3fEuMPp. [Online; accessed 15-
February-2023]

18Statsmodels: https://bit.ly/2Th8jMi. [Online; accessed 15-February-2023]

https://bit.ly/3CnYgci
https://bit.ly/3fEuMPp
https://bit.ly/2Th8jMi
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Figure 3.5: Air quality stations with identified values in the city of Madrid.

generated using the WRPLOT VIEW platform19. It turned out that out of twenty-
six meteorological stations, only ten stations provide data on wind speed and
direction. Then, based on the generated wind roses, a map was created showing
the dominant wind directions at each station, marked with different colours (Figure
3.9). The output showed that in January the following dominant directions were
highlighted (with station id, respectively )- North: 173, 217; North-East: 214, 96;
East: 72; Southwest: 138; South: 42; West: 242, 47, 5; and in June- South: 42,
214; South-West: 72, 138, 173, 217, 242; West: 5, 47, 96. Wind speed was
classified based on the Beaufort scale [76, 77].

Following the generation of a wind rose for each station, it was found that higher

19WRPLOT VIEW: https://bit.ly/3SPucxf. [Online; accessed 15-February-2023]

https://bit.ly/3SPucxf


Figure 3.6: The correlation between the time series of nitrogen dioxide at the
stations during January-June 2019 (left) and January-June 2020 (right) in the city
of Madrid.

Figure 3.7: The time series of the concentration of nitrogen dioxide at the station
with id 141 during January-June 2020.

wind speed does not always correspond to the dominating direction. For example,
Figure 3.10 shows that at a station with id=96 during January (calms wind 3.63%)
the predominant direction is northeast, but a higher wind speed was recorded in
the westerly direction.

To reveal a relationship between concentration and wind speed, these variables’
time series were plotted to see the changes over time. For example, Figure 3.11a
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Figure 3.8: Autocorrelation and partial autocorrelation plots with 80 lags from the
nitrogen dioxide dataset.
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Figure 3.9: Wind direction cluster during January (left) and June (right) 2019 in
the city of Madrid.



Figure 3.10: Wind rose at the station with id=96 during January

displays a time series of NO2 and wind speed for the station with id=5 during
January. Note that these two variables are inversely proportional; particularly,
higher wind speed assumes lower concentration due to increased dilution through
advection and increased mechanical turbulence. The scatter plot, which was gen-
erated using the y-axis for NO2 and the x-axis for wind speed, reflects this finding
(Figure 3.11b; the trendline is based on locally weighted scatterplot smoothing
[78]).
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Figure 3.11: Time series of nitrogen dioxide and wind speed at the station with
id=5 (a) and scatter plot of nitrogen dioxide and wind speed at the station with
id=47 (b) during January 2019 in the city of Madrid.

Another analysis was performed to generate polar plots using openair R pack-



age20 with the aim to detect the relationship between concentration, wind speed,
and wind direction. Figure 3.12 shows polar plots at the station with id=47 during
January and June. In the central part with a lower wind speed, the concentration
is higher, and in the edges with a higher wind speed - with a lower concentration.
In the polar plots obtained using the average NO2, the concentration is lower in
June than in January, which can be explained by domestic heating during winter.

Figure 3.12: Polar plot of wind speed, wind direction and mean concentration of
nitrogen dioxide during January 2019 (left) and June 2019 (right) at the station
with id=47 in the city of Madrid.

Additionally, analysis was executed to determine the relationship between non-
dimensional concentration and non-dimensional wind speed. To calculate the
non-dimensional concentration (Eq. 3.10) and non-dimensional wind speed (Eq.
3.11) are illustrated below [79].

C ADIM = C ∗ U ∗ L ∗H/EMISSIONS (3.10)

U ADIM = U/U arp (3.11)

where, C ADIM is non-dimensional concentration, C is the concentration
(µg/m3), U is wind speed (m/s), L is the road length (km) in a certain cell (it was
calculated using ArcGIS Pro software), H is the planetary boundary layer height
(m) in the Adolfo Suárez Madrid–Barajas Airport (it was generated by the ERA5

20Openair R package: https://bit.ly/3LQUP1Q. [Online; accessed 15-February-2023]

https://bit.ly/3LQUP1Q


model: European Centre for Medium-Range Weather Forecasts21), EMISSIONS

is NOx, U ADIM is non-dimensional wind speed, U arp is the wind speed [10m]
in the Adolfo Suárez Madrid–Barajas Airport (m/s) (it was obtained from the ERA5
model).

Figure 3.13 shows the scatter plots of the non-dimensional concentration and
non-dimensional wind speed. The plot is ambiguous on how these two features
relate to one another.

Figure 3.13: Scatter plot of the non-dimensional nitrogen dioxide concentration
and non-dimensional wind speed during January 2019 (left) and June 2019 (right)
at the station with id=72 in the city of Madrid.

Examining the plots of concentration and wind speed, it was detected that in
January and June, the concentration in the station with id=72 is higher and the
wind speed is lower; in January, the concentration in the station with id=138 is the
lowest; concentration and wind speed are more correlated during winter compared
to summer.

The above-mentioned analyses were carried out between NO2 and other vari-
ables, however, it was challenging to reveal any correlation from the plots.

Several factors must be considered for further predictive analysis, in particular,
UV and precipitation should be excluded. Regarding UV, it was observed that in
January it was only recorded in three stations with NO2 records (station: id=47,
id=38, id=217) and that there were no UV records in June; moreover, there were
no UV records for the period of January-June 2020. Regarding precipitation, it
was found out that around 99% of the data was 0. Another feature that should be
also mentioned in this context is average traffic speed, even though it was included

21ECMWF: https://www.ecmwf.int/en/about. [Online; accessed 15-February-2023]

https://www.ecmwf.int/en/about


in further analyses. This is because the average traffic speed is available only for
the M30 road, which is 15.8% of the study area (Figure 3.14 shows average traffic
speed for a period of one week).

Average Traffic Speed

D. Iskandaryan, S. Di Sabatino, F. Ramos, S. Trilles

Traffic measurement points layer and average traffic
speed: Open Data portal of the City Council of Madrid
Roads layer: MapCruzin
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Figure 3.14: Average traffic speed for the period 1-7 January 2019 in the city of
Madrid.

3.4 Feature Engineering

The next fundamental step of the workflow is feature engineering. Feature
engineering is a preprocessing step of machine learning that is used to extract
and organise essential features from raw data, to transform them into meaningful
features with the aim to improve the accuracy of the predictive model. It consists
of various data engineering techniques, including Handling Outliers, Imputation,
Feature Selection, Transformation, Scaling and Data Splitting (see in Figure 3.1).

Handling Outliers: there are the samples or observations that are far from the



rest of the observations (outliers are categorised into three categories, including
point, contextual and collective outliers [80]). They can affect the model’s accuracy,
therefore, it is critical to process them. Three different approaches were used to
detect outliers: 1) overview of summary statistics, 2) Isolation Forest (iForest) [81],
and 3) Local Outlier Factor (LOF) [82].

Overview of summary statistics: Table 6.2 can serve as a guide for outliers
detection. The minimum values of humidity and temperature data indicate that
they are outliers. Temperatures below -3° for 2019 and -2° for 202022 and humidity
with negative values were considered outliers.

iForest: is an unsupervised decision-tree-based algorithm. It randomly selects
a feature and then randomly selects a split value between the maximum and
minimum values of that feature. Random splitting will create a shorter path for
outliers since they usually require fewer partitions to be isolated. The following
equation calculates the anomaly score given a data point x and a sample size of
n:

s(x, n) = 2−
E(h(x))

c(n) (3.12)

where h(x) is the path length of x, c(n) is the average path length of an unsuc-
cessful search in a Binary Search Tree, n is the number of external nodes and
E(h(x)) is the average of h(x) from a collection of isolation trees.

Based on the anomaly score the following decisions are possible: 1) s close to 1
are anomalies, 2) s smaller than 0.5 can be considered as normal instances, and
3) if for all instances s ≈ 0.5, the entire dataset does not include outliers.

LOF: is an unsupervised method which calculates the local density deviation
of a certain observation from its neighbours. It is calculated with the following
equation:

LOF k(A) =

∑
X j∈Nk(A) LRDk(X j))

||N k(A)||
× 1

LRDk(A)
(3.13)

where N k(A) is K-neighbors, which contains the samples that are placed within
the circle of radius K-distance; LRD is local reachability density, and it computes
with the equation displayed below:

22Past Weather in Madrid, Madrid, Spain: https://bit.ly/3LPZRMf. [Online; accessed
15-February-2023]

https://bit.ly/3LPZRMf


LRDk(A) =
1∑

X j∈Nk(A)

RD(A,X j)

||Nk(A)||

(3.14)

where RD is reachability density and equal:

RD(X i, X j) = max(K − distance(X j), distance(X i, X j)) (3.15)

Therefore, LOF is the ratio of the average LRD of the K neighbors of A to the
LRD of A. If LOF is bigger than 1, it indicates that the sample is an outlier.

Imputation: this technique was applied to the detected outliers, as well as to the
missing values. The detected outliers were replaced by the average of the previous
and next non-outliers. Regarding missing values, only meteorological data were
taken into account, given that traffic data has fewer missing values. The Inverse
Distance Weighting (IDW) and Nearest Neighbour Interpolation (NNI) methods
have been implemented to handle missing meteorological data values [83]. The
idea of IDW is to predict the values for unknown points based on the values of the
known points. The closer known points have greater influence compared to the
farthest points. Closer points are given a higher weight, and as the time interval
increases, the weight diminishes. The weighted mean of near observations is
used to calculate the estimated value of z at position x with the formula illustrated
below23.

ẑ(x) =

∑n
i wizi∑n
i wi

(3.16)

where:

wi = |x− xi|−β (3.17)

and β ≥ 0, and it is the inverse distance power (degree to which closer points
are selected over more further points), | . | is the euclidean distance.

NNI attempts to estimate the value z at point x based on observations z1, z2, ..., zn

at locations x1, x2, ..., xn. NNI uses the value zi that is closest to x24.

23Inverse Distance Weighting (IDW): https://bit.ly/3CiNULG. [Online; accessed 15-
February-2023]

24Nearest Neighbor Interpolation: https://bit.ly/3dVOJAH. [Online; accessed 15-
February-2023]

https://bit.ly/3CiNULG
https://bit.ly/3dVOJAH


Feature Selection: numerous issues, such as the curse of dimensionality [84,
85] and runtime execution, are related to the presence of many features. This, in
turn, can make it difficult for a model to generalise data effectively. Hence, feature
selection must be implemented to select the optimum combination of datasets,
allowing the model to generalise the data effectively. Aside from the reasons
stated above, another reason for selecting the most optimal features is to avoid a
data shortage; for example, a feature that is recorded and available for the city of
Madrid, may not be available for another study area. Thus, the ability to execute
analysis with a minimum number of features allows us to generalise the model,
broaden the geographical dimension of the application, and reduce the execution
time. Therefore, selecting the most relevant features is essential.

Many authors implement feature selection techniques in order to obtain better
outcomes. For example, for predicting PM2.5, Just et al. [35] applied recursive
feature selection based on least mean absolute SHapley Additive exPlanations
(SHAP) values, Shah and Mishra [41] used correlation, Xu and Ren [46] employed
maximum relevance-minimum redundancy, Zheng et al. [86] used recursive feature
elimination with cross-validation for air quality health index prediction, Masmoudi
et al. [36] used Ensemble of Regressor Chains-guided Feature Ranking, Liu and
Chen [87] applied three-stage feature selection, including Pearson’s test, Mutual
Information (MI) and binary grey wolf optimisation for predicting AQI. These
works confirmed the advantage and importance of implementing feature selection
methods.

The feature selection techniques implemented in this work are MI (Eq. 3.18)
and Maximum Relevance — Minimum Redundancy (mRMR) [88, 89]. These are
introduced below:

Mutual Information: it calculates the mutuality between additional datasets and
the target dataset (NO2). The formula to calculate MI is:

MI(x; y) =

∫∫
P (xi, y)log

P (xi, y)

P (xi)P (y)
dxi dy

= H(x)−H(x|y)
(3.18)

where P (xi, y) is the joint probability distribution of two variables, P (xi) and P (y)

are marginal distributions, H(x) is the entropy for x, and H(x|y) is the conditional
entropy.

Maximum Relevance — Minimum Redundancy : mRMR selects the most rel-



evant features to the target also considering minimum redundancy concerning
the features that have already been selected. The equation of the mRMR is the
following (Eq. 3.19).

scorei(f) =
F (f, target)∑

s∈features selected until i−1 |corr(f, s)|/(i− 1)
(3.19)

where i is the i-th iteration, f is the feature that is being evaluated, F is F-statistic
and corr is Pearson correlation.

Transformation: this technique was involved to convert the wind direction in the
following ways: 1) converting it to categorical data with the following categories:
north, east, south, west, southwest, northeast, southeast, northwest, and later
passing through One Hot Encoder25, or 2) converting it to u and v components
using the following equations (Eq. (3.20))26.

u = ws ∗ cos(θ)
v = ws ∗ sin(θ)

(3.20)

where ws is the wind speed, θ is the wind direction using mathematical direction
(mathematical direction = 270-meteorological direction of wind direction).

Another transformation was the conversion of the input data into the supervised
learning dataset. Independent and dependent datasets were generated based on
the defined time granularity.

Scaling: is a highly effective technique for handling differences between ranges
of features. Normalisation and standardisation were implemented at different
stages.

Normalisation: to normalise the input data Min-Max (0-1) normalisation was
applied (Eq. 3.21).

Xnorm =
X −Xmin

Xmax −Xmin

(3.21)

Standardisation: it is also called Z-score, and it was implemented with the
following equations (Eq. 3.22).

25One Hot Encoder: https://bit.ly/2I7wbNu. [Online; accessed 15-February-2023]
26Wind: u and v Components: https://bit.ly/2CwAUzY. [Online; accessed 15-February-

2023]

https://bit.ly/2I7wbNu
https://bit.ly/2CwAUzY


X ′ =
X − µ

σ
(3.22)

where µ is the mean and σ is the standard deviation.

Data Splitting: after preprocessing the data with the above methods, the next
step is to split the dataset into the train, validation, and test sets. The division of
data into the above steps will be provided for each model in the following chapters,
which varies depending on the application accompanying model development.

3.5 Machine Learning Methods

This section introduces the proposed methods along with the fundamental
concepts needed to understand their architecture. The main goals of this section
can be generalised as follows:

• To introduce the concept of ML and the main types;

• To introduce NN, how it works. To describe the main NN approaches by
focusing RNN, Convolutional Neural Network (CNN) and GCN;

• To describe with detail the architecture of the proposed methods of the
current work, including ConvLSTM, BiConvLSTM, A3T-GCN.

The following subsections are focused to address the aforementioned goals.

3.5.1 Machine Learning Concept

There is no single definition of ML. Several authors have tried to define the
concept of ML. According to Samuel [90][91], it is the learning process of com-
puters based on their experience without any explicit programming. Tom Mitchell
defined the concept of learning as a composition of three elements: task, per-
formance measures, and learning experience, saying that a computer learns if its
performance on a given task improves with experience27.

Artificial intelligence and DL are frequently used interchangeably with the term
ML. To clarify these terms and avoid confusion, Figure 3.15 depicts the relationship
between them.

27Machine Learning: https://bit.ly/3C1u1Yo. [Online; accessed 15-February-2023]

https://bit.ly/3C1u1Yo
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Figure 3.15: Artificial Intelligence, Machine Learning and Deep Learning.

Artificial Intelligence: refers to a computer program’s capacity to behave similarly
to a human brain, i.e., to make intelligent machines, which is realised through the
study, interpretation and adaptation of data. It encompasses ML and DL.

Deep Learning: is a subset of ML which requires minimal manual human
intervention. DL is a complex, multi-layered neural network, which employs a huge
amount of structured as well as unstructured data.

Returning to the concept of ML, based on human supervision of the learning pro-
cess, ML applications are classified into four categories: supervised, unsupervised,
semisupervised, and reinforcement learning [15] (Figure 3.16).

Supervised Learning: the learners receive training data with labelled samples
aiming to identify unknown labels in the testing data. Depending on the learning
task, two types of tasks are differentiated: regression and classification. Regres-
sion refers to the task when the label is real numbers, and classification refers to
the task when the label is a finite set of classes. The following are the supervised
learning approaches: K-Nearest Neighbor (KNN), SVM, NN.

Unsupervised Learning: includes unlabeled data. Unsupervised learning al-
gorithms are clustering, anomaly detection and novelty detection, visualisation
and dimensionality detection, and association rule learning.

Semisupervised Learning: is the approach that deals with partially known labels,



Machine Learning

Supervised Unsupervised Semisupervised Reinforcement

ClassificationRegression

RNN CNN GNN

Neural Network
Regression

GRU LSTM

Hybrid NN

ConvLSTM BiConvLSTM A3T-GCN

Machine Learning

Supervised

Regression

Neural Network
Regression

RNN

Machine Learning

Supervised

Regression

Neural Network
Regression

RNN GNN Hybrid NN

GRU LSTM ConvLSTM

Figure 3.16: The types of Machine Learning.

i.e., it is a combination of supervised and unsupervised learning.

Reinforcement Learning: the logic behind this learning is based on the actions
of the agent which gets rewards or penalties during the learning process. Based
on these actions the policy or strategy is being defined.

3.5.2 Artificial Neural Network

The development of Artificial Neural Network (ANN) is connected with these key
stages: the demonstration of how biological neurons work, the invention of the
perceptron, and the discovery of backpropagation.

The first record about ANN was mentioned by McCulloch and Pitts [92] in 1943.
Their aim was to present a simplified version of the work of biological neurones,
and how they are connected. This is considered the design of the first ANN.

Afterwards, Rosenblatt [93] created the first perceptron. He was inspired by
Hebb’s rule (when a cell activates another cell, the connection between these two
cells becomes stronger). The perceptron was programmed with two layers, the
input layer and the output layer, each input connection has a weight. The results
are the weighted sum of the inputs passed through the step function. Based on the
error the network was improved by reinforcing the connection weights. However,



the perceptron had weaknesses, i.e., not being able to learn the non-linear pattern,
which was solved later by stacking multiple perceptrons, known as MLP. It is
composed of input, hidden and output layers.

The next important invention was the backpropagation training algorithm [94, 95]
based on which it was possible to train MLP. The backpropagation learning
algorithm calculates the gradient error by passing through forward and backward
networks, i.e., by tweaking the weights and bias, it reduces the network error.

With the rise of DL, the number of ANN applications has grown tremendously.
Below are presented the most common DL networks: CNN, RNN and GNN.

CNN: implementing MLP has limitations. With a parallel network increase, the
parameters grow faster, which causes difficulties with model optimisation. The
invention of CNN solved the above problem by reducing the number of parameters
without losing too much information that affects the quality of the model [96]. CNN
requires grid-based input aiming to learn spatial feature hierarchies, from low-level
to high-level patterns. The neurons are only connected to a small region of the
previous layer. The essential component of CNN is a convolution layer, which
computes the output of neurons computing a dot product between their weights
and a small region (receptive field) they are connected. The result goes through
an activation function and then generally follows the pooling and fully connected
layers. The convolutional layer’s parameters consist of a set of learnable filters
(convolution kernels). During the forward pass, by sliding (convolving) each filter
across the width and height of the input and computing dot products between the
filter’s entries and the input at any position, a 2D activation map (feature map) is
generated that gives the responses of that filter at every spatial position. Stacking
all activation maps along the depth dimension an output is created.

RNN: works with sequential data: to label, classify or generate sequences.
It uses previous outputs as inputs, i.e., the input consists of two elements: the
present and the recent past. It has a short-term memory. Figure 3.17 shows the
architecture of the RNN.

The standard RNN has weaknesses: vanishing and exploding gradient28 [97].
Sometimes the gradients get smaller and smaller, closer to zero, and as a result,
the weights barely update, causing the training data to never converge. An

28Why are deep neural networks hard to train?: https://bit.ly/3HjQ4NY. [Online; ac-
cessed 15-February-2023]

https://bit.ly/3HjQ4NY
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Figure 3.17: The architecture of Recurrent Neural Network.

explosive gradient is a reverse situation where the gradient gets bigger and bigger
and the algorithm diverges, making the network unstable. To overcome these
issues the following RNN methods were constructed: GRU and LSTM.

GRU: is a type of RNN introduced by Cho et al. [98]. It consists of two gates:
reset and update gates, which determine what information is stored. Figure
3.18 presents the architecture of the GRU. It can be defined with the following
equations:

zt = σ(W (z)xt + U (z)ht−1) (3.23)

rt = σ(W (r)xt + U (r)ht−1) (3.24)

h′
t = tanh (Wxt + rt ◦ Uht−1) (3.25)

ht = zt ◦ ht−1 + (1− zt) ◦ h′
t (3.26)

where xt is the input vector at the current time step, zt is the update gate, rt is
the reset gate, h′

t is the current memory content, ht−1 is the hidden state at the
previous time step, ht is the hidden state at the current time step, and ◦ is the
Hadamard product.

LSTM: extends the memory of RNN enabling the network to remember inputs
over a long period of time. It was invented by Hochreiter and Schmidhuber [99].
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LSTM contains information in memory and can control that information. It consists
of three gates: input, forget and output gate. These gates help to decide which
part of the information to keep, what to remove and what to let affect the current
output. Figure 3.19 presents the architecture of the LSTM, and it is defined by the
equations below.

it = σ(WX
i Xt +W h

i ht−1 + bi) (3.27)

ft = σ(WX
f Xt +Wfhht−1 + bf ) (3.28)

ot = σ(WX
o Xt +W h

o ht−1 + bo) (3.29)

Ct = ft ◦ Ct−1 + it ◦ tanh(WX
c Xt +W h

c ht−1 + bC) (3.30)
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Figure 3.19: The architecture of Long Short-Term Memory.

ht = ot ◦ tanh(Ct) (3.31)

where it is the input gate, ft is the forget gate, and ot is the output gate, W is
the weight matrix, Xt is the current input data, ht−1 is previous hidden output, Ct is
the cell state, ◦ is Hadamard product.

GNN: it is a type of NN which works on graph-structured data. In the case of
CNN, convolutions depend on the positions of the instances (positions of the pixels
in the case of images), while there are many fields where the dataset does not
have a grid-based structure with a fixed order. These datasets can be processed
by GNN which can work with unfixed node ordering.

The graph can be designated as G = (V,E,A), where V is the set of nodes, E
is the set of edges and A ∈ RN×N (N is the number of nodes) is the adjacency
matrix which presents the connectivity of the edge of two nodes [100].

Regarding directionality to edges, the graphs are categorised into directed and
undirected. In the case of the directed edges, the edge has a source node and a
destination node, i.e., the information flows from the source to the destination node.
In the case of the undirected edges, there is no concept of source or destination
nodes, and information flows in both directions.



Another classification divides them into weighted and unweighted graphs. An
unweighted graph only shows whether two nodes are connected or not (in the
case of connected, it is assigned 1, otherwise 0). In contrast, the weighted graph
provides additional information about the connected edges; for example, in this
work, the distance between stations is assigned as weights.

Regarding learning tasks, there are three categories: node-level (node classi-
fication, node regression, node clustering), edge-level (edge classification, link
prediction) and graph-level (graph classification, graph regression, graph match-
ing).

3.5.3 Proposed Methods

This section gives a comprehensive description of the implemented ML methods.
The following approaches, including ConvLSTM, BiConvLSTM and A3T-GCN,
were proposed and developed to conduct spatiotemporal prediction.

ConvLSTM: is composed of a CNN and LSTM network (Figure 3.20). It consists
of two components: the encoding network and the forecasting network. The
encoding LSTM compresses the entire input sequence into a hidden state tensor,
which the forecasting LSTM subsequently unfolds to generate the final prediction
[101].

X̃t+1, ...X̃t+K = arg max
Xt+1,...Xt+K

p(Xt+1, ...Xt+K |X̂t−J+1, X̂t−J+2, ...X̂t) ≈

arg max
Xt+1,...Xt+K

p(Xt+1, ...Xt+K |fencoding(X̂t−J+1, X̂t−J+2, ...X̂t) ≈

gforecasting(fencoding(X̂t−J+1, X̂t−J+2, ...X̂t))

(3.32)

Its architecture allows for capturing spatiotemporal information. The convolution
structures are used at both the input-to-state and the state-to-state transitions. A
ConvLSTM with a larger transitional kernel captures faster motions while one with
a smaller kernel captures slower motions. It is worth mentioning that ConvLSTM
differs from CNN+LSTM in that the latter uses CNN first, followed by a separate
LSTM unit, whereas in ConvLSTM, the LSTM’s internal matrix multiplication is
converted to convolution operations. The architecture of ConvLSTM is defined by
the equations below [101, 102].
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it = σ(WX
i ∗Xt +W h

i ∗ ht−1 + bi) (3.33)

ft = σ(WX
f ∗Xt +Wfh ∗ ht−1 + bf ) (3.34)

ot = σ(WX
o ∗Xt +W h

o ∗ ht−1 + bo) (3.35)

Ct = ft ◦ Ct−1 + it ◦ tanh(WX
c ∗Xt +W h

c ∗ ht−1 + bC) (3.36)

ht = ot ◦ tanh(Ct) (3.37)

where it is the input gate, ft is the forget gate, and ot is the output gate (these
gates control the flow of information through the cell), W is the weight matrix
in the forward ConvLSTM cell, Xt is the current input data, ht−1 is the previous
hidden output, Ct is the cell state, ”∗” represents the convolution operation and
”◦” represents the Hadamard product. The input of a ConvLSTM is a 5D tensor
with shape (samples, time steps, channels, rows, columns). The parameters of



ConvLSTM can be found with the following link29, including filters, kernel size,
padding, data format, and recurrent activation.

BiConvLSTM: is an upgraded ConvLSTM with two sets of hidden and cell
states for forward and backward time sequences. As a result, BiConvLSTM can
obtain a deeper understanding by accessing long-range context in both directions.
Figure 3.21 shows the architecture of BiConvLSTM unit. The hf , cf and hb, cb are
the sets for forward and backward passes, respectively. Two sets are stacked
and sent through the convolution layer, with the output being passed as input to
the next BiConvLSTM cell. There are numerous ways to combine the two sets
before delivering them to the convolution layer, including summing, computing
the average, multiplying, or concatenating. The aforementioned are only a few
parameters that must be defined during the tuning phase in order to complete
the model’s architecture. Below is the mathematical expression of BiConvLSTM
network [102].

Yt = tanh(WHf
y ∗Hf

t +WHb
y ∗Hb

t−1) (3.38)

where Hf is hidden state from forward ConvLSTM unit, Hb is hidden state from
backward ConvLSTM unit, and Yt is the final output.

A3T-GCN: the next proposed method is A3T-GCN, which architecture is based
on graph theory. The graph considered in the scope of the current work is an
undirected weighted graph, and the learning task is a node regression since the
main objective of the current work is to predict the concentration of NO2 in each
station in a given time interval.

A3T-GCN model is the combination of GCN, GRU (stated in Section 3.5.2) and
the attention methods (Figure 3.22) [103]. The GRU and attention mechanisms
are responsible for temporal aggregation, and GCN deals with spatial aggregation.

GCN: there are two types of GCN: Spatial GCN and Spectral GCN [104]. To
learn graphs, spatial GCN uses spatial features. It defines convolutions on spatially
close neighbours. It generates vi node’s representation by aggregating its own
features Xi and neighbours’ features Xj. As an aggregation function is used
mean, sum or max functions. Afterwards, a non-linear transformation is applied
to the outputs. While in the case of spectral GCN, it defines graph convolutions

29tf.keras.layers.ConvLSTM1D: https://bit.ly/3SG7uH7. [Online; accessed 15-February-
2023]

https://bit.ly/3SG7uH7
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using filters from the perspective of graph signal processing. Spectral GCN is
a combination of the following steps: 1) converting the graph into the spectral
domain with the help of eigendecomposition, 2) applying eigendecomposition
to the specified kernel, 3) multiplying spectral graph and spectral kernel, and 4)



returning the results in the original spatial domain.

The one used in this work was Spectral GCN, which can be defined as the
multiplication of a filter gθ with signal x in the Fourier domain [105].

gθ ∗ x = UgθU
Tx (3.39)

where θ is a model parameter, U is the eigenvector of the normalised Laplacian
matrix L (Eq. 3.40).

L = IN −D−1/2AD−1/2 = UλUT (3.40)

where IN ∈ RN×N is the identity matrix, D ∈ RN×N is the diagonal degree
matrix and λ is the diagonal matrix of the eigenvalues of the Laplacian matrix,
and UTx is the graph Fourier transform of x. These operations require intense
computations, i.e., multiplication with the eigenvector matrix U can be expensive
for large graphs. To overcome this problem, Chebyshev polynomials Tk(x) with K

order were employed (Eq. 3.45).

gθ′(λ) ≈
K∑
k=0

θ′kTk(λ̂) (3.41)

where λ̂ = 2λ
λmax

− In. θ′ ∈ RK is a vector of Chebyshev coefficients.

gθ′ ∗ x ≈
K∑
k=0

θ′kTk(L̂)x (3.42)

where L̂ = 2L
λmax

− In. Since (UλUT )k = UλkUT , the equation depends only on
nodes that are at maximum K steps away from the central node (Kth-order neigh-
bourhood). Furthermore, focusing only first order, i.e., K = 1, and by approximating
λmax ≈ 2, it can be formulated as follows:

gθ′ ∗ x ≈ θ′0x+ θ′1(L− IN)x = θ′0x+ θ′1D
−1/2AD−1/2x (3.43)

To reduce the number of free parameters and to avoid overfitting, GCN assumes
θ = θ0 = −θ1, and the equation becomes

gθ ∗ x ≈ θ1(IN +D−1/2AD−1/2)x (3.44)



Then it was introduced the renormalisation trick: In+D−1/2AD−1/2 → D−1/2AD−1/2,
with Â = A+ In and D̂ii =

∑
j Âij. Then the final convolved signal can be defined

as follows:

Z = D̂−1/2ÂD̂−1/2XΘ (3.45)

where Θ ∈ RC×F is a matrix of filter parameters and Z ∈ RN×F is the convolved
signal matrix.

Attention: the attention model focuses on a few relevant things in the complex
input while ignoring others in networks. Bahdanau et al. [106] proposed the
attention mechanism in order to overcome the drawbacks of RNN, in particular,
the inability to remember longer sequences. The equation defining the attention
model is shown below.

ci =
Tx∑
j=1

aijhj (3.46)

where ci is the context vector, aij is the weights and hj is the hidden state. The
weights, aij, can be calculated with the following equations, by applying softmax to
normalise alignment scores. Alignment scores show how well the elements of the
input sequence and the current output match each other.

aij =
exp(eij)∑Tx

k=1 exp(eik)
(3.47)

eij = a(si−1, hj) (3.48)

where eij is alignment scores (the output score of a feedforward neural network),
and si−1 is the previous decoder output.

There are several categories of the attention mechanism. Soft attention is the
type used in this study (in the case of soft attention, the context vector is the
weighted sum of the encoder hidden states, while in the case of hard attention,
instead of a weighted average of all hidden states, a single hidden state is chosen
based on attention scores).



3.6 Summary

This chapter is devoted to the introduction and description of the proposed
methodology and employed materials. First of all, the study area and the pre-
diction target were defined and introduced, on the basis of which the datasets
were introduced. The datasets employed in this work are air quality (NO2), met-
eorological data (UV irradiance, wind speed, wind direction, temperature, relative
humidity, barometric pressure, solar irradiance, and precipitation) and traffic data
(intensity, occupancy time, load and average traffic speed) from the period of
January-June 2019 and January-June 2020, and the location of air quality and
meteorological monitoring stations and traffic measurement points of the city of
Madrid. Afterwards, the steps of the proposed methodology were implemented,
including Data Preparation, Exploratory Data Analysis, Feature Engineering, and
ML Model Generation.

Data Preparation: refers to the employed datasets integration in spatiotemporal
dimensions using ArcGIS Pro with the ArcPy package. The result of integration is
the input data X ∈ Rs×340×f , where s is the number of samples: 4,344 and 4,368
for January-June 2019 and January-June 2020, respectively, 340 is the number of
the cells that make up the entire grid covering the defined area of the city of Madrid,
and f is the number of features equal to 13 (X ∈ R4,344×340×13 for January-June
2019 and X ∈ R4,368×340×13 for January-June 2020).

Exploratory Data Analysis: refers to the detection of relationships and correla-
tions that exist between features, to achieve which different analyses have been
used. The result showed, from all the observations and analyses, the most correl-
ated feature with NO2 is wind speed. The features that must be excluded in the
further analysis are UV and precipitation.

Feature Engineering: includes techniques implemented to the datasets in order
to preprocess raw data. The following techniques were applied: Handling Outliers
(overview of summary statistics, iForest, and LOF), Imputation (IDW and NNI),
Feature Selection (MI and mRMR), Transformation (conversion of wind direction
and conversion of the input data into the supervised learning dataset), Scaling
(normalisation and standardisation) and Data Splitting (train, validation and test
sets).

ML Model Generation: refers to the detailed description of the proposed meth-



ods, including ConvLSTM, BiConvLSTM and A3T-GCN.
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Chapter 4

Convolutional Long Short-Term
Memory Network1

To predict NO2 within the specified region is challenging due to the complexity of
NO2 formation. In order to consider the most relevant factors in the spatiotemporal
dimensions and carry out the prediction at a continuous location within the defined
zone, the ConvLSTM algorithm was developed and implemented.

Furthermore, in addition to selecting a model, it is also critical to consider factors
that can directly or indirectly affect air quality. The selection and consideration
of those factors can improve prediction accuracy. One of these factors is the
lockdowns imposed due to the COVID-19 pandemic. To combat the COVID-19
epidemic, all countries adopted rigorous traffic restrictions and self-quarantine
measures [107], resulting in a reduction in air pollution [108]. This was especially
evident in Madrid, where, due to COVID-19 restrictions, the concentration of NO2

dropped to 62% [109].

Based on the aforementioned, the main contributions of this chapter are high-
lighted as follows:

• We conducted spatiotemporal prediction of NO2 using a grid-based approach:
ConvLSTM;

1The part of this chapter previously appeared as an article in the Journal of IJCIA. The original
citation is as follows: Iskandaryan, Ditsuhi, Francisco Ramos, and Sergio Trilles. ”Comparison of
Nitrogen Dioxide Predictions During a Pandemic and Non-pandemic Scenario in the City of Madrid
using a Convolutional LSTM Network.” International Journal of Computational Intelligence and
Applications 21, no. 02 (2022): 2250014.



• We performed the predictive analysis for pandemic (January-June 2020)
and non-pandemic (January-June 2019) periods to observe and identify the
effects of the restrictions implemented to suppress the advance of COVID-19;

• We implemented the feature selection technique: MI to select the most
relevant combination of the features and performed the predictive analysis
for the selected combination;

• We performed the predictive analysis in different time intervals, including
1-hour, 12-hour, 24-hour and 48-hour;

• We compared the proposed method with the reference method (LSTM).

The sections below explain in detail the procedure that leads to the achievement
of allocated contributions. They focus on the experimental analysis workflow
(Experimental Analysis), and the results obtained with subsequent discussions
(Results and Discussion).

4.1 Experimental Analysis

This section presents a detailed description of the experimental analysis. The
workflow of the analysis includes data preprocessing and model development. In
particular, it consists of the following steps: Data Preparation, Feature Engineering,
and Modeling, as shown in Figure 4.1.

Data Preparation: the process of data preparation was previously described
in Section 3.2. We used NO2 and meteorological data to build and evaluate
ConvLSTM.

Feature Engineering: this process with all substeps (Handling Outliers, Imputa-
tion, Feature Selection, Transformation, Scaling and Data Splitting) was also
considered in this analysis (described in Section 3.4). Below is a description of
each technique.

Handling Outliers: the outliers were detected based on the overview of summary
statistics of the datasets (stated Section 3.4).

Imputation: as previously stated, there are twenty-four air pollution control
stations and twenty-six meteorological stations, implying that around 8% of the
340 cells have data. IDW method was used to fill in missing meteorological data



Feature Engineering
Handling Outliers
Imputation (IDW)
Feature Selection (MI)
Transformation (Categorical) 
Scaling (Normalisation)    
Data Splitting

Modeling

Model
Evaluation

Model
Optimisation

C
on

vL
ST

M
2D

Ba
tc

h
N

or
m

al
is

at
io

n

...

C
on

v2
D

C
on

v2
D

D
ro

po
ut

Model Development

NO2

Data Preparation

Meteorological Data 

Figure 4.1: The workflow of the Convolutional Long Short-Term Memory-based
nitrogen dioxide predictive analysis.

based on the fact that meteorological data do not change dramatically within space
[83].

Feature Selection: this analysis comprised only nine features, including NO2

and meteorological data. UV and precipitation were excluded from further analysis
due to the lack of a UV record during the pandemic period and nearly all of the
precipitation data being zero. Additionally, MI was chosen and implemented on
the remaining features as a feature selection approach [88].

Figure 4.2 shows the scores of five additional datasets based on MI. Wind
direction is not taken into account in the MI calculation, considering the fact that it
is circular data and based on their properties must be analysed differently. There
are many studies devoted to the analysis of circular data [110–112]. In our work,
we transformed them before being used in further analysis.

Since the wind speed has a higher score compared to other variables (Figure
4.2), the wind direction was chosen for further analysis alongside the wind speed,
considering their strong connectivity.

Transformation: this phase involves converting wind direction into categorical
data (north, east, south, west, southwest, northeast, southeast, and northwest),
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and implementing One Hot Encoder. Another transformation refers to the gen-
eration of independent and dependent datasets based on the time granularity
(to predict NO2 in t′ hours based on the data for the previous 24 hours, where
t′ ∈ {1, 12, 24, 48}).

Scaling: in this analysis, the input data went through to Min-Max (0-1) normal-
isation (Eq. 3.21).

Data splitting: splitting procedure involves dividing the dataset of each period:
pandemic (January-June 2020) and non-pandemic (January-June 2019), into
training (60%), validation (20%) and testing (20%) sets.

Modeling: it consists of three substeps: Model Development, Model Evaluation
and Model Optimisation.

Model Development : the model architecture consists of the following layers, in-
cluding ConvLSTM2D2, Dropout3, and Batch Normalisation4, which is finalised
with a Conv2D layer5.

ConvLSTM2D: or 2D Convolutional LSTM. It combines LSTM with 2D convo-
lutions (stated in Section 3.5.3) [101].

2ConvLSTM2D layer: https://bit.ly/3VXDZTC. [Online; accessed 15-February-2023]
3Dropout layer: https://bit.ly/3f1nk0W. [Online; accessed 15-February-2023]
4BatchNormalisation layer: https://bit.ly/3TtkFvS. [Online; accessed 15-February-

2023]
5Conv2D layer: https://bit.ly/3N1VwG4. [Online; accessed 15-February-2023]

https://bit.ly/3VXDZTC
https://bit.ly/3f1nk0W
https://bit.ly/3TtkFvS
https://bit.ly/3N1VwG4


Dropout: works as a regularisation technique, which randomly and temporarily
modifies the network by excluding or dropping out a defined percentage of the
neurons. Afterwards, the modified network goes through forward and backward
propagation. Repeating this procedure many times helps prevent overfitting and
creates a more robust model [113, 114]. Below is the mathematical description of
the feed-forward operation including dropout:

r
(l)
j ∼ Bernoulli(p) (4.1)

ỹ(l) = r(l) ∗ y(l) (4.2)

z
(l+1)
i = w

(l+1)
i ỹ(l) + b

(l+1)
i (4.3)

y
(l+1)
i = f(z

(l+1)
i ) (4.4)

where, r(l) is a vector of Bernoulli random variables, ỹ(l) is a thinned output, z(l)

is the vector of inputs into layer l, y(l) is the vector of outputs from layer l, w(l) are
the weights, and b(l) are the biases. Essentially, the Eq. 4.1 generates a dropout
mask, and then that mask was used to disconnect some neurons (Eq. 4.2), after
which the multiplication of the weights and adding the bias were implemented (Eq.
4.3) and finally, using the activation function the output was calculated (Eq. 4.4).

Batch Normalisation: normalises the layer inputs leading to stabilisation and
acceleration of the training procedure of Deep Neural Network (DNN). This
technique helps to combat the problem of internal covariate shift, which occurs due
to the change in the distribution of the input of each layer, causing a slow training
process. The following equations present the essence of batch normalisation
[115, 116]:

µB =
1

m

m∑
i=1

xi (4.5)

σ2
B =

1

m

m∑
i=1

(xi − µB)
2 (4.6)

x̂ =
xi − µB√
σ2
B + ϵ

(4.7)



yi = γx̂i + β ≡ BNγ,β(xi) (4.8)

where µB is the mini-batch mean, σ2
B is the mini-batch variance,x̂ is the normal-

ised values, γ and β are learnable parameters that scale and shift the normalised
values, ϵ is the smoothing term to prevent a division by a zero value.

Conv2D: or 2D convolution layer. This creates a convolution kernel that is
convolved with the layer’s input to create an output tensor (stated in Section 3.5.2)
[96, 117].

Model Evaluation: the final model was evaluated using RMSE. The results are
presented in the next section.

Model Optimisation: is one of the essential processes and a core component of
ML. It enables choosing the ideal model architecture for a particular database. By
tweaking and tuning model configurations or hyperparameters, ML optimisation
seeks to increase the accuracy of a model and minimise its loss function. At
this point, it is important to mention the difference between hyperparameters and
parameters.

Parameters: are internal configuration variables that are learned from the data
during the training. Typically, model training starts with parameter initialisation to
some values. These values are then updated using an optimisation algorithm. The
parameters determined through training are used to construct the final model (the
examples of parameters are weights and bias).

Hyperparameters: are explicitly defined by ML engineer to control the learning
process. They are external to the model because the model cannot change their
values during training. The algorithm uses hyperparameters when it is learning,
but they are not included in the final model (examples of hyperparameters are
learning rate and kernel size).

Returning back to optimisation, Figure 4.3 shows the common ML optimisation
techniques, including Grid Search, Random Search, Bayesian, Gradient-based
and Evolutionary Optimisation [118].

The technique we used in this work is Grid Search. It exhaustively considers
all hyperparameter combinations specified manually with the aim of finding the
optimal combination. It was carried out using GridSearchCV 6, which tests all com-
binations of the values passed in the dictionary and evaluates the model for each

6GridSearchCV: https://bit.ly/2QBg3Hy. [Online; accessed 15-February-2023]

https://bit.ly/2QBg3Hy
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combination by applying the Cross-Validation method. Based on the accuracy
obtained for each combination of hyperparameters, it enables selecting the com-
bination with the best performance. To improve and accelerate the Grid Search
process, the following techniques were included: Blocking T ime Series Split and
Early Stopping callback.

Blocking T ime Series Split: was chosen instead of cross-validation because it
considers the time series aspect and avoids leakage from one set to another. It
works by adding margins at two positions. The first is between the training and val-
idation folds, the second is between the folds used in each iteration. This structure
helps prevent the lag value model from being reused (as an estimate/response)
and from memorising patterns from one iteration to the next.

Early Stopping callback7: is a type of callback (callback is a set of functions
applied at specified stages of the training procedure to help control the learning
process), which monitors model performance for each epoch on the validation set
during training and stops training once the validation error stops decreasing to
prevent overfitting.

GridSearchCV was applied to the sampled dataset, which was generated
by sampling the data every six hours, to reduce computing time for parameter
optimisation. The hyperparameters that went through the optimisation process are
the number of filters, kernel size, dropout rate, optimiser and kernel initialiser.
The results are presented in Table 4.1, along with the options that were tested, and
the option that was finally selected is in bold. It is worth mentioning that the testing
options were chosen considering common approaches from different works in the
domain [119], [120], [121]. Below is a brief description of each hyperparameter
included in this work.

Number of filters: filters are introduced in Section 3.5.2. We tuned the hyper-

7Early Stopping callback: https://bit.ly/3TQtyQc. [Online; accessed 15-February-2023]

https://bit.ly/3TQtyQc


Table 4.1: Hyperparameter optimisation with GridSearchCV.

Hyperparameters Options
Number of Filters 8, 16, 32
Kernel Size (3,3), (5,5), (7,7), (9, 9)
Dropout Rate 0.2, 0.3, 0.5
Optimiser RMSprop, Adam
Kernel Initialiser uniform, normal, glorot normal, glorot uniform

parameter by testing the model with 8, 16 and 32 filters. It turned out that the
performance of the model with 16 filters is superior to that of the other filters.

Kernel size: in this work, we tested the model with 3× 3, 5× 5, 7× 7, and 9× 9

kernels. The model performance with 9× 9 kernels was found to be superior to
that of the other kernels.

Dropout rate: varies from 0.0 to 1.0, where 0.0 means no outputs from the layer
and 1.0 means no dropout. The model was evaluated by trying 0.2, 0.3 and 0.5
dropout rates. The results with a 0.2 rate outperformed the other two options.

Optimiser: helps improve accuracy and reduce overall loss by adapting the
attributes of a neural network (e.g., weights, learning rate). Examples of optimisers
are Adagrad, Adadelta, Adam, Momentum, and RMSProp. We implemented the
model using Adam and RMSProp. The result showed that the implementation with
Adam is superior to the one with RMSProp. Below is a detailed explanation of
Adam optimiser.

Adam (Adaptive Moment Estimation) is a stochastic gradient descent method
introduced by Kingma and Ba, which computes adaptive learning rates for each
parameter. It stores the decaying average of the past gradients and of the past
squared gradients. Below are the mathematical definition of Adam optimiser (Eq.
4.9 - 4.13):

mt = β1mt−1 + (1− β1)gt (4.9)

vt = β2vt−1 + (1− β2)g
2
t (4.10)



m̂t =
mt

(1− βt
1)

(4.11)

v̂t =
vt

(1− βt
2)

(4.12)

θt = θt−1 − α
m̂t

(
√
v̂t + ϵ)

(4.13)

where gt is a gradient, which is equal to δθft(θt−1), α is stepsize or learning rate,
β1, β2 ∈ [0, 1) are exponential decay rates, θ0 is initial parameter vector, m0 = 0 is
initialised first moment vector, v0 = 0 is initialised second moment vector, mt is
the estimate of the first moment of the gradients, vt is the estimate of the second
moment of the gradients, t = 0 is initialised timestep, ϵ is the smoothing term to
prevent a division by a zero value.

Kernel initialiser: is a strategy to assign the weights to small random values
as a starting point for model optimisation. Weight initialisation is intended to
prevent layer activation outputs from exploding or vanishing gradients, which, in
turn, prevents the network from converging too slowly. There are different weight
initialisation techniques, such as Zeros, Orthogonal, Uniform and Normal. The
techniques applied in this work are Uniform, Normal, Glorot Normal and Glorot
Uniform. Glorot Uniform is the one which implementation yields better model
performance. Below is a detailed description of Glorot Uniform.

Glorot Uniform (Xavier uniform initialiser) suggested by Glorot and Bengio. In
this case, the biases are initialised as zero and the weights are initialised from the
following distribution:

Wij ∼ U

[
− 1√

n
,

1√
n

]
(4.14)

where U [−a, a] is the uniform distribution with the interval (−a, a) and n is the
size of the previous layer (the number of columns of W ).

4.2 Results and Discussion

Following parameter optimisation, the finalised model was implemented in two
scenarios: a) including all features; and b) including only selected features (NO2,



wind speed, and wind direction). The executed results are shown in Table 4.2 (the
best performances are in bold).

Table 4.2: Root Mean Square Error (µg/m3) of Convolutional Long Short-Term
Memory and Long Short-Term Memory for the periods January-June 2019 (non-
pandemic) and January-June 2020 (pandemic) in terms of features combination
and time granularities.

All Features Selected Features
(First Scenario) (Second Scenario)

Method Hours Non-
pandemic
period
(Jan-Jun
2019)

Pandemic
period
(Jan-Jun
2020)

Non-
pandemic
period
(Jan-Jun
2019)

Pandemic
period
(Jan-Jun
2020)

ConvLSTM

1 13.46 11.55 1.46 1.22
12 21.05 25.11 2.09 1.63
24 26.02 20.17 2.21 1.58
48 25.23 26.15 2.12 1.62

LSTM

1 27.94 32.16 1.51 1.46
12 34.01 32.12 2.89 2.52
24 33.69 32.0 2.57 2.00
48 33.8 32.16 2.52 2.29

First of all, it can be seen that the feature selection significantly improved the
results. In the case of ConvLSTM, RMSE was decreased by 89.15% during the
non-pandemic period (detected best performance with corresponding hours: 13.46
µg/m3-1 hour; 1.46 µg/m3-1 hour), and by 89.44% during the pandemic period
(detected best performance with corresponding hours: 11.55 µg/m3-1 hour; 1.22
µg/m3-1 hour). In the case of LSTM, RMSE was decreased by 94.60% during the
non-pandemic period (detected best performance with corresponding hours: 27.94
µg/m3-1 hour; 1.51 µg/m3-1 hour), and by 95.44% during the pandemic period
(detected best performance with corresponding hours: 32.0 µg/m3- 24 hours; 1.46
µg/m3-1 hour).

Regarding ML algorithms, ConvLSTM outperformed LSTM, particularly, in the



first scenario compared to the second scenario the differences between the two
models are significant. In terms of the first scenario, ConvLSTM outperformed
LSTM by 51.83% during the non-pandemic period (ML models with detected best
performance and corresponding hours: ConvLSTM - 13.46 µg/m3- 1 hour; LSTM -
27.94 µg/m3-1 hour), and by 63.91% during the pandemic period (ML models with
detected best performance and corresponding hours: ConvLSTM - 11.55 µg/m3- 1
hour; LSTM - 32.0 µg/m3-24 hours). In terms of the second scenario, ConvLSTM
outperformed LSTM by 3.31% during the non-pandemic period (ML models with
detected best performance and corresponding hours: ConvLSTM - 1.46 µg/m3- 1
hour; LSTM - 1.51 µg/m3-1 hour), and by 16.44% during the pandemic period (ML
models with detected best performance and corresponding hours: ConvLSTM -
1.22 µg/m3- 1 hour; LSTM - 1.46 µg/m3-1 hour).

Regarding the two different periods, the pandemic period exceeds the non-
pandemic period in the second scenario for all time intervals, in particular, for the
best performance detected in the 1-hour time interval, the pandemic period out-
performed the non-pandemic period in terms of ConvLSTM by 16.44% (pandemic
period-1.22 µg/m3, non-pandemic period - 1.46 µg/m3), and in terms of LSTM by
3.31% (pandemic period-1.46 µg/m3, non-pandemic period - 1.51 µg/m3). How-
ever, the difference in the first scenario is not significant. Although the variance
of the pandemic year is lower than for the non-pandemic year, the algorithms are
trained and tested separately for each period, which means that the models will
most likely learn and generalise all existing patterns for both periods during training.
In terms of time granularity, 1-hour granularity outperformed other granularities
in all sub-scenarios, but this trend does not maintain for other time granularities,
which could be related to the selection of the historical time lags [124]. Based on
the above findings, it can be concluded that analysis involving feature selection
delivers higher accuracy. ConvLSTM being able to convey spatial information in
addition to temporal information has a clear advantage over LSTM, which can also
be noted from the final results.

4.3 Summary

This chapter introduced ConvLSTM to predict NO2 by recording spatiotemporal
interconnections and pollutant concentration-controlling parameters. A detailed ex-
planation of the elements that make up the ConvLSTM architecture was provided,



along with all steps in the development procedure. One of the main objectives
of this chapter has been to address the impact of COVID-19 on the formation
of pollution. The comparison between pandemic and non-pandemic periods by
applying ConvLSTM was provided. The analysis was carried out for different time
resolutions with different feature combinations. The final results showed that the
proposed model outperformed the LSTM, which can be explained by the ability of
the ConvLSTM to generalise and transfer the spatiotemporal information. In terms
of datasets, the analyses performed with selected features surpassed the results
performed with all features due to the drawback of high dimensionality.
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Chapter 5

Bidirectional Convolutional Long
Short-Term Memory Network1

Conducting a spatiotemporal analysis to capture the spatiotemporal dependencies
controlling air quality leads to the next stage, which is the introduction of the next
grid-based approach called BiConvLSTM. The following are the main highlighted
contributions:

• We implemented and developed BiConvLSTM to forecast NO2;

• We compared BiConvLSTM to reference models (fully connected LSTM
(LSTM-FC), ConvLSTM) in terms of accuracy and runtime;

• We compared two feature selection techniques MI and mRMR to find out
which technique has the highest impact on the accuracy of the predictive
analysis;

• We extracted the optimum feature combination that leads to the best model
performance;

1The part of this chapter previously appeared as an article in the Journal of PloS one and
as an article in the Conference of AGILE. The original citations are as follows: Iskandaryan,
Ditsuhi, Francisco Ramos, and Sergio Trilles. ”Bidirectional convolutional LSTM for the prediction
of nitrogen dioxide in the city of Madrid.” PloS one 17, no. 6 (2022): e0269295; and Iskandaryan,
Ditsuhi, Silvana Di Sabatino, Francisco Ramos, and Sergio Trilles. ”Exploratory Analysis and
Feature Selection for the Prediction of Nitrogen Dioxide.” AGILE: GIScience Series 3 (2022): 1-11.
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Figure 5.1: The workflow of the Bidirectional Convolutional Long Short-Term
Memory-based nitrogen dioxide predictive analysis.

• We examined and compared two transformation approaches applied to wind
direction in terms of model performance.

Below are presented the sections devoted to the thorough description of the
experimental analysis (Experimental Analysis), and the results acquired from this
analysis (Results and Discussion).

5.1 Experimental Analysis

A thorough explanation of the experimental analysis is provided in this section.
Figure 5.1 depicts the elements of the workflow, including Data Preparation,
Feature Engineering, and Modeling components.

Data Preparation: as already mentioned, the process of data preparation is
described in Section 3.2. For the analysis of this chapter, we used NO2, meteoro-
logical and traffic data.

Feature Engineering: this process with all substeps (Handling Outliers, Imputa-
tion, Feature Selection, Transformation, Scaling and Data Splitting) was also



described previously (Section 3.4). Below is a description of each technique.

Handling Outliers: the outliers were detected using summary statistics of the
datasets (stated Section 3.4).

Imputation: considering the fact that meteorological data do not change dramat-
ically within space, the NNI was implemented [83].

Feature Selection: in this stage MI and mRMR were implemented with two
scenarios: 1) highlighting the advantage of the feature extraction technique by
implementing MI, and 2) comparing MI and mRMR.

First scenario: before implementing MI, the following variables were eliminated
from the future predictive analysis: average traffic speed, traffic load, UV, pre-
cipitation. Average traffic speed was removed because it is only known for M30
road, which is 15.8% of the study area (Table 3.2). Traffic load was also excluded
considering that it is correlated with other variables: intensity and occupancy
time (according to the definition of traffic load, it is calculated using intensity and
occupancy time). In terms of UV, it was observed that there are no UV records for
June 2019 and the entire period of January-June 2020. Regarding precipitation, it
was found out that nearly all of the data was zero, therefore this component was
also removed.

The feature relevance scores of seven additional datasets based on MI are
shown in Figure 5.2. For further analysis in the second scenario, features with a
score greater than 0.005 were selected, including wind speed, barometric pressure,
intensity and occupancy time. It should be mentioned that the wind direction was
also selected in consideration of the interconnection with wind speed. The reason
for not including wind direction in the MI computation procedure is due to the
fact that wind direction is circular data that must be converted before use (details
below).

Second scenario: based on the transformation mechanism, the experiments
were carried out with the following subscenarios:

First subscenario: wind direction was converted to the following categories:
north, east, south, west, southwest, northeast, southeast, northwest, and later it
was included in the analysis by implementing One Hot Encoder.

Second subscenario: wind direction was converted to u and v components (Eq.
3.20).

Feature selection techniques were implemented for each subscenario. Figure
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Figure 5.2: The feature importance scores based on Mutual Information.

5.3 and Figure 5.4 show the results of both scenarios based on the MI technique.
The features selected were those with a score higher than 0.005. In Figure 5.3 it
can be observed that among seventeen features, the following six were selected:
intensity, occupancy time, wind speed, pressure, load and average traffic speed.
Figure 5.4 shows eleven features, the following eight were selected: intensity,
occupancy time, wind speed, pressure, load, average traffic speed, u component
and v component.
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Figure 5.3: Feature selection using the Mutual Information technique (Wind direc-
tion with One Hot Encoder).

Transformation: this phase involves converting wind direction into categorical
data, and passing through One Hot Encoder or into u and v components. Another
transformation was the conversion of the input data into the supervised learning
dataset. Independent and dependent datasets were generated based on the
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Figure 5.4: Feature selection using the Mutual Information technique (Wind direc-
tion with u and v components).

defined time granularity (to predict NO2 in t′ hours based on the data for the
previous t′ hours, where t′ was equal to 6).

Scaling: in this analysis, the input data went through to Min-Max (0-1) normal-
isation (Eq. 3.21).

Data splitting: the splitting procedure was to divide the whole dataset (January-
June 2019 and January-June 2020) into training (60%), validation (20%) and
testing (20%) sets. The dimension of each set is illustrated in Table 5.1.

Modeling: it consists of three substeps: Model Development, Model Evaluation
and Model Optimisation.

Model Development : the model architecture consists of three layers, including
bidirectional ConvLSTM2D (stated in Section 3.5.3), Dropout (stated in Section
4.1), and Batch Normalisation (stated in Section 4.1), which is finalised with
Conv2D layer (stated in Section 3.5.2).

Model Evaluation: the final model was evaluated using RMSE and MAE. The
results are presented in the next section.

Model Optimisation: this stage presents the procedure required for model con-
struction. The parameter optimisation of the proposed model was performed by
applying one of the common optimisation techniques, named Grid Search using
GridSearchCV 2. Considering the essence of time series data Blocking T ime

Series Split was implemented instead of cross-validation because it considers

2GridSearchCV: https://bit.ly/2QBg3Hy. [Online; accessed 15-February-2023]

https://bit.ly/2QBg3Hy


Table 5.1: The dimension of each set.

Set Dimension (x×y×z1/z2)(*)
Training Set 4, 344× 340× 16/13

Validation Set 2, 184× 340× 16/13

Testing Set 2, 184× 340× 16/13

* x – Number of samples; y – Number of grid cells
(340 = 20 × 17); z1 – Number of all features (NO2,
wind speed, temperature, humidity, barometric pres-
sure, solar irradiance, intensity, occupancy time,
north, east, south, west, southwest, northeast, south-
east, northwest), z2 – Number of selected features
(NO2, wind speed, barometric pressure, intensity,
occupancy time, north, east, south, west, southwest,
northeast, southeast, northwest). Note that features
include wind directions after the implementation of
One Hot Encoder.

the time series aspect and prevents leakage from one set to another. An-
other technique that was used to improve the performance of Grid Search is
Early Stopping callback3. All these techniques are described in detail in Section
4.1.

To reduce the computation time for parameter optimisation, GridSearchCV

was applied to one-month data. Table 5.2 shows optimised hyperparameters:
Number of filters, Kernel size, Optimiser, Merge Mode and Number of Layers

(the description of these hyperparameters is stated in Section 4.1) with the options
that were tried (the testing options were chosen considering common approaches
from different works in the domain, which is also stated in Section 4.1), and the
one that was finally selected is indicated in bold. Below is a brief description of
each hyperparameter included in this work.

Number of filters: we tuned the hyperparameter by testing the model with 8,
16 and 32 filters. It turned out that the performance of the model with 16 filters is
superior to that of the other filters.

Kernel size: we tested the model with 3× 3, 5× 5, 7× 7, and 9× 9 kernels. The

3Early Stopping callback: https://bit.ly/3TQtyQc. [Online; accessed 15-February-2023]

https://bit.ly/3TQtyQc


Table 5.2: Hyperparameter optimisation with GridSearchCV.

Hyperparameters Options
Number of Filters 8, 16, 32
Kernel Size (3,3), (5,5), (7,7), (9, 9)
Optimiser RMSprop, Adam
Merge Mode ’concat’, ’mul’, ’sum’, ’ave’
Number of Layers 2, 3, 4

model performance with 3× 3 kernels was found to be superior to that of the other
kernels.

Optimiser: we tested the model with Adam and RMSProp optimisers. The result
showed that the implementation with Adam is superior to the one with RMSProp.

Merge Mode: we tested the model with concatenation, multiplication, sum and
average merge modes. The performance with concatenation was superior to the
rest of the options.

Number of Layers: we tested the model with 2, 3 and 4 layers. The results
showed that the model performance with 3 layers was superior to that of the other
two options.

Overall, the architecture of the model was built based on the chosen parameters
by stacking three BiConvLSTM layers with a kernel size of 3 × 3, 16 filters and
with an Adam optimiser. Concatenation was selected as the merge mode, which
means that the forward and backward ConvLSTM units were concatenated before
passing information to the next unit.

Regarding the baseline models, LSTM-FC had the following structure: two
LSTM layers with 2048 units followed by the Dropout layer and the model was
finalised by adding a Dense layer; ConvLSTM had 5×5 kernel size with filters equal
to 32, followed by Batch Normalisation and Dropout layers and it was finalised with
1× 1 convolution layer.

Algorithm 2 provides a pseudo code of NO2 prediction procedure.



Algorithm 2 Nitrogen dioxide prediction
Input: Comma Separated Values (CSV) files for each hour including NO2,

Meteorological and Traffic data

function CALCULATE NEAREST NEIGHBOUR INTERPOLATION(Meteorological
data)

2: return zero values of meteorological data impute by NNI
end function

4: function HANDLING OUTLIERS(data)
return outliers converted to the average of the previous and the next

non-outliers
6: end function

function TRANSFORMATION(data)
8: return independent and dependent data generation based on time resolu-

tion
end function

10: function DATA SPLITTING(data)
Split data on training, validation and testing sets with the following order:

January-March 2020 - validation sets; April - June 2020 - testing set
12: end function

Normalise input set
14: Reshape data based on selected model architecture

function CREATE MODEL(model parameters by default)
16: return model architecture

end function
18: function GRIDSEARCHCV(parameters to tune)

return best parameters
20: end function

function EVALUATE MODEL(model with best parameters)
22: return error estimated with evaluation metrics

end function

Output: RMSE, MAE



5.2 Results and Discussion

As earlier stated, the analysis was conducted in two scenarios. The outcomes
for each of them are listed below.

First scenario: the experiments in this scenario were conducted in two steps,
including all features and including only features extracted after MI implementation
in order to address the following questions: 1) Is the proposed model capable of
outperforming the reference models? and 2) Can the implementation of feature
selection improve model performance?

All features component includes nine features (NO2, wind speed, wind direction,
temperature, relative humidity, barometric pressure, solar irradiance, intensity,
and occupancy time). Selected features component includes wind speed, wind
direction, barometric pressure, intensity and occupancy time. The results obtained
and the runtime of the models over the following 6-hour lag are presented in Table
5.3.

All Features: in this case, BiConvLSTM outperforms ConvLSTM and LSTM-FC
in terms of RMSE and MAE, with values of 19.14 and 13.06, respectively. In par-
ticular, in terms of RMSE, BiConvLSTM improves results compared to ConvLSTM
by 41.9%, and to LSTM-FC by 50.8%. In terms of MAE, BiConvLSTM improves
results compared to ConvLSTM by 59.24%, and to LSTM-FC by 59.4%. Regard-
ing runtime, due to the complexity of the BiConvLSTM architecture, the model
takes a comparable amount of time to converge.

Table 5.3: Prediction errors (Root Mean Square Error, Mean Absolute Error) and
runtime of the models for the next 6 hours prediction implemented on all features.

Models RMSE
(µg/m3)

MAE
(µg/m3)

Time

All Features
LSTM-FC 38.89 32.17 4m 15s
ConvLSTM 32.95 32.04 33m 15s
BiConvLSTM 19.14 13.06 36m 57s

Selected Features
LSTM-FC 15.68 13.54 3m 58s
ConvLSTM 15.11 11.9 27m 53s
BiConvLSTM 12.65 9.72 34m 33s



Selected Features: as in the first case, in this case also BiConvLSTM sur-
passed other models. Especially, in terms of RMSE, BiConvLSTM improves
results compared to ConvLSTM by 16.28%, and to LSTM-FC by 19.32% in terms
of MAE, BiConvLSTM improves results compared to ConvLSTM by 18.32%, and
to LSTM-FC by 28.21%. Regarding runtime, BiConvLSTM converges slower than
ConvLSTM and LSTM-FC.

The difference between the two cases is a significant reduction in the values
in terms of runtime and error, which is associated with the peculiarities of the
implementation of the feature selection methodology. It is essential to understand
why only a few features (wind speed, wind direction, barometric pressure, intensity,
and occupancy time) were chosen out of all the possibilities, as well as the
relationship between NO2 and features with a higher MI index, the inclusion of
which improved the model’s performance. In terms of wind speed and direction,
the correlation exists since increasing wind speed implies a lower concentration
due to increased dilution through advection and increased mechanical turbulence.
In terms of traffic data, the transportation industry is one of the main generators
of NOx (nitrogen oxide and NO2). For example, NOx accounted for nearly 46% of
total emissions in the EU in 2013 [125].

Overall, BiConvLSTM outperforms other reference models; nevertheless, re-
garding the execution time, it takes comparatively longer. MAE is defined in the
same unit as the target variable; therefore, in the current work, it corresponds to
the unit of NO2 (µg/m3). Note that MAE is 9.72 µg/m3, which can be considered
sufficient compared with mean values of NO2 (36.69 and 26.03 for 2019 and 2020,
respectively).

Second Scenario: this scenario by implementing MI and mRMR techniques
in two subscenarios (based on wind direction conversion) tends to answer the
following questions: 1) Which feature extraction technique is better: MI or mRMR?
2) What is the optimum feature combination that leads to the best model perform-
ance? and 3) Which wind direction transformation affects getting the best model
performance?

The results can be shown in Table 5.4. The outcomes of the first subscenario
outperformed the results of the second subscenario by including all of the features.
However, the results of MI do not follow the same pattern. Especially, MI deterior-
ated the results of the first subscenario, but it boosted the second subscenario’s
overall performance. An additional finding is that, with all features included, the



conversion of wind direction into categories and the subsequent implementation of
One Hot Encoder outperformed the conversion to u and v components.

Table 5.4: Root Mean Square Error and Mean Absolute Error of Subscenarios I
and II using Bidirectional Convolutional Long Short-Term Memory (units in µg/m3).

All Features Selected Features (MI)
RMSE MAE RMSE MAE

Subscenario I 18.99 12.89 26.92 20.00
Subscenario II 24.87 16.49 22.32 16.89

Regarding mRMR, the results are illustrated in Table 5.5 (first subscenario) and
Table 5.6 (second subscenario). It is detectable that the errors are significantly
reduced. In the case of the first subscenario, the best combination of the features
is obtained when K=7 (RMSE–3.44, MAE–2.87). The selected features are load,
northwest direction, pressure, wind speed, average traffic speed, occupancy time
and north direction. In the case of the second subscenario, the best result was
obtained when K=5 (RMSE–4.20, MAE–3.65). The selected features are load,
pressure, wind speed, average traffic speed and occupancy time.

Table 5.5: Root Mean Square Error and Mean Absolute Error of extracted features
based on Maximum Relevance — Minimum Redundancy (K is the number of
features) using Bidirectional Convolutional Long Short-Term Memory (subscenario
I).

RMSE (µg/m3) MAE (µg/m3)
K=3 6.81 5.97
K=4 5.61 5.18
K=5 3.55 3.07
K=6 4.90 4.37
K=7 3.44 2.87
K=8 19.91 15.51

Following the outcome, it can be concluded that mRMR outperformed MI since
the latter selects the most relevant features. In contrast, mRMR selects the



Table 5.6: Root Mean Square Error and Mean Absolute Error of extracted features
based on Maximum Relevance — Minimum Redundancy (K is the number of
features) using Bidirectional Convolutional Long Short-Term Memory (subscenario
II).

RMSE (µg/m3) MAE (µg/m3)
K=3 5.60 4.84
K=4 5.26 4.69
K=5 4.20 3.65
K=6 23.51 14.05
K=7 33.48 21.29
K=8 31.80 21.77

relevant features with minimal redundancy. In addition, it is important to see what
features were chosen and what caused this choice. After implementing mRMR,
the load was selected in both cases. Given the importance of traffic data for NO2

production and the definition of load, the choice of this feature is obvious. The
other features that yield better results are pressure, wind speed, average traffic
speed and occupancy time. The last two features, as already mentioned, are
chosen because of the importance of traffic data for NO2 production. Regarding
wind speed, as mentioned in the exploratory analysis, there is a strong correlation
between wind speed and NO2. Regarding the wind direction transformation, the u

and v components were not included in the selected subsets after applying mRMR,
although the northwest and north directions were included. The best subsets of
the first subscenario outperformed the second subscenario, improving RMSE by
18.1% and MAE by 21.37%. Therefore, also in the case of implementing mRMR,
the wind direction conversion to categories surpassed the u and v conversion.

Regarding the overall results, the proposed model outperforms the reference
models, and the feature selection strategy improves overall accuracy significantly.
Especially mRMR yields better results compared to MI, given the fact that mRMR,
in addition to selecting relevant features, tries to select the next relevant feature
that has a minimum correlation with already selected features. In terms of runtime,
the BiConvLSTM took longer to converge, which can be explained by the model’s
complexity.



5.3 Summary

This chapter introduced BiConvLSTM to predict NO2 using air quality, meteoro-
logical and traffic data from the period of January-June 2019 and January-June
2020 in the city of Madrid. A detailed description of the components and the
development procedure of the proposed model was presented.

The chapter was constructed in two scenarios based on the subsets of features
used in the analyses: 1) highlighting the advantage of the feature extraction
technique by implementing MI, and 2) comparing MI and mRMR.

First Scenario: the comparison between the proposed model and ConvLSTM
and LSTM-FC was produced. The outcome demonstrated that BiConvLSTM
outperformed the reference models. Additionally, feature selection implemen-
ted with the technique MI improved the final results by 33.9% and 25.27% in
terms of RMSE and MAE, respectively. However, the model architecture makes
BiConvLSTM slower at runtime, and data convergence takes longer. It is important
to note that by examining the results of the MAE and comparing them with the
average concentration values, the proposed model can be considered a reliable
and robust model.

Second Scenario: this part concentrated on applying MI and mRMR, obtaining
the most relevant features related to NO2, and comparing the results of both
methods. Another direction was the preprocessing of wind direction data applying
the following conversion methods: converting the wind direction into u and v

components or into categorical data. The results show that the conversion of
the wind direction in One Hot Encoder is superior to the conversion to the u

and v components. Regarding feature selection methods, it was found that the
implementation of mRMR yields better results compared to MI, given the fact
that mRMR selects the next relevant feature that has a minimum correlation with
already selected features.

It is essential to consider the impact of the COVID-19 during 2020 to combat
some measures, such as traffic restrictions and self-isolation. As a result, these
events have affected the air pollution concentration. In the case of Madrid, due
to COVID-19 restrictions, the concentration of NO2 dropped to 62% [109]. These
sudden changes may impact the model’s performance, and it would be ideal for
comparing the results to a different period in the future to uncover these effects.
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Chapter 6

Attention Temporal Graph
Convolutional Network1

The distribution of air quality stations in the city of Madrid (Figure 3.5) does not
have any specific pattern, they are spread without any significant order. Most of
the time, the forecast of the concentration of pollutants in the atmospheric air is
required to be performed at the stations where they were registered. To conduct
predictive analysis in the air quality monitoring stations, taking into account their
spatiotemporal relationships, a GNN can be implemented that is able to process
non-Euclidean structured data. The following are the significant contributions
addressed within the scope of this chapter:

• We conducted spatiotemporal prediction of NO2 using a GNN, namely
A3T-GCN;

• We performed the predictive analysis in different time intervals, including
1-12 h, 12-24 h, 24-36 h and 36-48 h;

• We compared the proposed method with reference methods (LSTM, GRU)
in terms of determined evaluation metrics (RMSE, MAE, R);

1The part of this chapter previously appeared as an article in the Journal of IEEE Access
and as an article in the Conference of EnviroInfo. The original citation is as follows: Iskandaryan,
Ditsuhi, Francisco Ramos, and Sergio Trilles. ”Graph Neural Network for Air Quality Prediction: A
Case Study in Madrid.” IEEE Access 11 (2023): 2729-2742; and Iskandaryan, Ditsuhi, Francisco
Ramos, and Sergio Trilles. ”Spatiotemporal Prediction of Nitrogen Dioxide Based on Graph Neural
Networks.” Environmental Informatics, pp. 111-128. Springer, Cham, 2023.
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Figure 6.1: The workflow of the Attention Temporal Graph Convolutional Network-
based nitrogen dioxide predictive analysis.

• We implemented outliers detection techniques (iForest, LOF) and compared
the results obtained before and after outliers detection.

The following sections describe the stages of the experimental analysis (Experi-
mental Analysis), the output of this analysis and discussions that follow from this
output (Results and Discussion).

6.1 Experimental Analysis

This section presents a detailed explanation of the experimental analysis. The
workflow is shown in Figure 6.1, which consists of the following steps: Data
Preparation, Graph Construction, Feature Engineering, and Modeling.

Data Preparation: the data used in the scope of this chapter are NO2, meteoro-
logical and traffic data, which were integrated with the spatiotemporal dimensions
(described in Section 3.2). After combining all features, twenty-four cells that in-
clude air quality monitoring stations were selected for further analysis, in particular,
to be used as input to the proposed method working with non-Euclidean distances.
As a result, the input data before graph generation has the dimensions mentioned
in Table 6.1.



Table 6.1: The dimension of each set.

Set Dimension (x× y × z)(*)
Training Set 4, 344× 24× 18

Testing Set 4, 367× 24× 18

* x – Number of samples; y – Number of stations; z
– Number of the features (NO2, wind speed, tem-
perature, humidity, barometric pressure, solar irradi-
ance, intensity, occupancy time, load, average traffic
speed, north, east, south, west, southwest, north-
east, southeast, northwest). Note that features in-
clude wind directions after the implementation of
One Hot Encoder.

Table 6.2 shows summary statistics of each data type for the periods used in
the analyses, including data that exists only in the selected twenty-four cells:

Graph Construction: The next block after data preparation is graph construction.
Following the graph structure’s definition, air quality stations will be considered
graph nodes in this work. All stations are interconnected, forming graph edges,
and the distances between them will be considered edge weights. The distance
between nodes was calculated using arcpy.analysis.GenerateNearTable2 function.
It should be mentioned that to create the adjacency matrix, the original distance
between two nodes was converted to 1/distance (Eq.6.1), so if the distance is
large, the division will be smaller, and this will give little weight to a certain edge,
which matches the graph logic since closer nodes have more influence on each
other than remote nodes.

Aij =

 1
dij

, i̸=j

0, otherwise
(6.1)

where dij is the distance between i and j stations.

Regarding node features, all variables associated with each station will be
considered node features; in this study, for each time t, the node features can be

2Generate Near Table (Analysis): https://pro.arcgis.com/en/pro-app/latest/

tool-reference/analysis/generate-near-table.htm. [Online; accessed 15-February-
2023]

https://pro.arcgis.com/en/pro-app/latest/tool-reference/analysis/generate-near-table.htm
https://pro.arcgis.com/en/pro-app/latest/tool-reference/analysis/generate-near-table.htm


Table 6.2: Summary statistics of the periods January-June 2019 and January-June
2020 for each data type that exists in the selected 24 cells.

Phenomena Descriptors January-June 2019 January-June 2020

Nitrogen dioxide (µg/m3)
Mean (SD) 36.63 (30.86) 25.62 (25.36)
Median [Min,Max] 27.0 [0.0, 328.0] 16.0 [0.0, 326.0]

Wind speed (m/s)
Mean (SD) 1.33 (1.04) 1.25 (0.98)
Median [Min,Max] 1.09 [0.0, 8.75] 1.02 [0.0, 8.97]

Wind direction
Mean (SD) 167.80 (105.72) 140.82 (98.35)
Median [Min,Max] 182.0 [0.0, 359] 135.0 [0.0, 359]

Temperature (oC)
Mean (SD) 13.21 (7.81) 13.45 (7.26)
Median [Min,Max] 12.3 [-3.0, 40.6] 12.3 [-2.0, 38.1]

Humidity (%)
Mean (SD) 49.57 (20.86) 62.49 (21.46)
Median [Min,Max] 48.0 [0.0, 100] 63.0 [0.0, 100]

Barometric pressure (mb)
Mean (SD) 943.81 (17.89) 943.67 (20.23)
Median [Min,Max] 944.0 [0.0, 962.0] 945.0 [0.0, 1073.0]

Solar irradiance (W/m2)
Mean (SD) 223.96 (302.56) 193.21 (279.86)
Median [Min,Max] 14.0 [0.0, 1103.0] 10.0 [0.0, 1113.0]

Intensity (vehicles/hour)
Mean (SD) 315.18 (303.05) 200.38 (240.88)
Median [Min,Max] 252.62 [0.0, 3712.87] 109.32 [0.0, 2436.5]

Occupancy time (%)
Mean (SD) 5.04 (5.26) 3.28 (4.23)
Median [Min,Max] 3.68 [0.0, 55.47] 1.75 [0.0, 51.6]

Load
Mean (SD) 17.51 (14.15) 11.53 (12.05)
Median [Min,Max] 16.0 [0.0, 93.36] 7.08 [0.0, 68.57]

Average traffic speed (km/h)
Mean (SD) 0.37 (1.30) 0.42 (1.58)
Median [Min,Max] 0.0 [0.0, 35.29] 0.0[-3.74, 73.33]

assigned as Xt ∈ RN×M , where N is the number of nodes and M is the features.
Figure 6.2 shows the graph constructed based on air quality stations located in
the city of Madrid. It consists of 24 nodes and 276 edges (connecting each pair
of nodes). The numbers on the nodes in Figure 6.2 are the identifier of each cell
of the grid that was initially given, which contains a certain station. Algorithm 3
shows the procedure of creating a graph network on the map.

The prediction of NO2 was performed based on different time granularities, in
particular, using the previous 12 hours to predict the concentration in the next T
hours. The following time intervals have been defined as the value of T : 1-12 h,
12-24 h, 24-36 h and 36-48 h. In the mathematical expression, the aforementioned
procedure can be defined as a function of the air quality stations network G and
the feature matrix X (Eq. 6.2).

3Find the centroid of polygons in ArcGIS Pro: https://bit.ly/3rjMWst. [Online; accessed
15-February-2023]

4XY To Line: https://bit.ly/3y13sBl. [Online; accessed 15-February-2023]

https://bit.ly/3rjMWst
https://bit.ly/3y13sBl
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Figure 6.2: Graph network of the air quality stations placed in the city of Madrid.

[Xa
t+1, , X

a
t+T ] = f(G; (Xt−n, , Xt−1, Xt)) (6.2)

where T is the next hours, n is the previous hours, Xa
t is the concentration of

NO2 at time t and Xt is a combination of NO2, meteorological and traffic data.
Each sample of the input has the following structure:

Data(x=[24, 18, T], edge index=[2, 552], edge attr=[552], y=[24, T], batch=[64])

where 24 is the number of nodes, 18 is the number of node’s features, T is equal
to 12, [2, 552] from edge index refers to the fact that every edge was considered
two times (276*2=552). Algorithm 4 shows the procedure of input data preparation
for GNN.

Feature Engineering: this step includes the following substeps: Handling Out-
liers, Transformation, Scaling and Data Splitting.

Handling Outliers: in this step iForest and LOF were implemented in order to de-
tect outliers. The following parameters were defined with respect to each technique:



Algorithm 3 Creating graph network on the city of Madrid
Input: Grid with 340 Cells (20*17)

1: function EXTRACT CELLS HAVING AIR QUALITY STATIONS(data)
2: return 24 cells including air quality stations
3: end function
4: function CALCULATE CENTROIDS OF THE EXTRACTED CELLS AND CREATE

SEPARATE FEATURE CLASS 3(24 extracted cells)
5: return feature class of centroids
6: end function
7: function DRAW NETWORK BETWEEN EACH PAIR OF POINTS(feature class of

centroids)
8: return Draw a Network between each pair of points with all combinations

using arcpy.management.XYToLine function 4

9: end function

Output: Figure 6.2

iForest– n estimators=100, max samples=all the samples, contamination=float(0.05),
max features=1.0; LOF– n neighbors=all the samples, metric = ”manhattan”,
contamination = 0.05 (contamination is the proportion of outliers in the dataset,
and it was set to 0.05, meaning that 5% of the dataset was considered to be
outliers; max features was set to 1.0, which means that only the given feature
was considered in the detection process).

Transformation: this phase involves converting wind direction into categorical
data (north, east, south, west, southwest, northeast, southeast, and northwest),
and implementing One Hot Encoder. Another transformation is to generate in-
dependent and dependent datasets based on the defined time granularity (to
predict NO2 in t′ hours based on the data for the previous 12 hours, where
t′ ∈ {1− 12, 12− 24, 24− 36, 36− 48}).

Scaling: before converting the data into a graph construction, the input data
were standardised (Eq. 3.22).

Data splitting: this step includes the procedure of splitting the dataset into
training (January-June 2019) and testing (January-June 2020) sets.

Modeling: this block refers to the construction of the architecture of the proposed
model. It consists of three graph convolutional layers (the output of the layers is



Algorithm 4 Data preparation for Graph Neural Network
Input: Data - [Hourly NO2, Meteorological and Traffic data]; Period -[01.01.2019-30.06.2019;

01.01.2020-30.06.2020]

1: function MERGE THE DATA SPATIALLY AND TEMPORALLY(data)
2: for each hour ∈ Period do
3: Create grid with CreateF ishnet function (ArcPy library)
4: Add field to the Fishnet
5: for each item i ∈ Data do
6: i spatial join with grid
7: input the mean of the values of each corresponding cell to the field
8: end for
9: end for

10: return .csv files for each hour including NO2, Meteorological and Traffic data [4,344 and
4,367 .csv files for January-June 2019 and January-June 2022, respectively with the following
dimension: 4, 344× 340× 18: (January-June 2019); 4, 367× 340× 18 (January-June 2020)]

11: end function
12: function EXTRACT CELLS HAVING AIR QUALITY STATIONS(data)
13: return extract cells or rows including NO2, Meteorological and Traffic data, where air quality

monitoring stations exist [4, 344× 24× 18: (January-June 2019); 4, 367× 24× 18 (January-June
2020)]

14: end function
15: function CREATE ADJACENCY MATRIX(location of Air Quality stations (nodes))
16: Calculate distance between each pair of air quality stations using

arcpy.analysis.GenerateNearTable

17: return adjacency matrix filled with inverse distance (1/distance) between each pair of
nodes

18: end function
19: function NORMALISE DATA(data)
20: return normalised data using Z-Score method
21: end function
22: function GENERATING DATASET FOR GNN BASED ON THE DEFINED TEMPORAL INTERVAL:

[1-12, 12-24, 24-36 AND 36-48] (T=12)(data)
23: return Dataset with 8711 samples (Training Set–4,344, Testing Set–4367; each sample–

Data(x=[24, 18, T], edge index=[2, 552], edge attr=[552], y=[24, T], batch=[64]))
24: end function

Output:Dataset with 8711 samples (each sample: Data(x=[24, 18, T], edge index=[2, 552],
edge attr=[552], y=[24, T], batch=[64]))



used in GRU: update gate, reset gate and hidden state) followed by learnable
transformations. Table 6.3 summarises the parameters and settings applied in the
analysis.

Table 6.3: Details of the experimental settings.

Parameter Value
Number of records 8,711
Time interval (h) 1
Training set January-June 2019: 4,344
Testing set January-June 2020: 4,367
Prediction length (T', h) [1-12, 12-24, 24-36, 36-48]
History length (T, h) 12
Number of stations 24
Training epochs 100
Learning rate 0.1
Batch size 64
Hidden units [32, 64,128, 256]
Optimiser Adam
Loss function MSE

Regarding the reference models, they consist of the fully connected layer with
432 units (24*18), followed by three stacked LSTM layers (in the case of GRU
model, it consists of three stacked GRU layers) with 512, 1,024 and 512 units,
and the models were finalised with another fully connected layer with 24 units
(representing NO2 for all stations). It should be mentioned that the analysis
was performed in the Google Colab cloud service using the PyTorch Geometric
Temporal library [126].

6.2 Results and Discussion

This part illustrates the output of the analysis. The analysis was carried out
under two scenarios: a) before outliers detection and b) after outliers detection.
Below are the results for each of them.

5Google Colab: https://bit.ly/3refm74. [Online; accessed 15-February-2023]

https://bit.ly/3refm74


First Scenario: in this scenario, the analysis was performed without implement-
ing outlier detection. The results of the analysis are shown in Table 6.4 (the best
results are indicated in bold). It should be mentioned that the averaged value of
NO2 from all stations was calculated for the testing period. Algorithm 5 provides a
pseudo code of NO2 prediction procedure.

Algorithm 5 Nitrogen dioxide prediction
Input: Dataset with 8711 samples (Training Set–4,344, Testing Set–4,367;

each sample–Data(x=[24, 18, T], edge index=[2, 552], edge attr=[552], y=[24, T],
batch=[64]))

function CREATE MODEL

2: return A3T-GCN architecture based on the settings from Table 6.3
end function

4: function EVALUATE MODEL(model with best parameters)
return error estimated with evaluation metric

6: end function
function EVALUATE REFERENCE MODELS (LSTM AND GRU)(models with
defined parameters)

8: return error estimated with evaluation metric (RMSE, MAE, R)
end function

Output: RMSE, MAE, R for A3T-GCN, LSTM and GRU (Table 6.4)

The experiments were carried out for different numbers of units of the proposed
model (A3T-GCN-32, A3T-GCN-64, A3T-GCN-128, A3T-GCN-256), and for refer-
ence models (LSTM, GRU). In terms of RMSE, the lowest value found for the
1-12 hours time interval implemented by A3T-GCN-128 is 16.34 µg/m3, which
outperforms the best performance of LSTM (18.77 µg/m3) and the best perform-
ance of GRU (19.11 µg/m3) found for the 12-24 hours time interval by 12.95% and
14.50%, respectively. Regarding MAE, the lowest value found for the 12-24 hours
time interval implemented by A3T-GCN-128 is 13.25 µg/m3, which outperforms
the best performance of LSTM (13.77 µg/m3) and the best performance of GRU
(13.44 µg/m3) found in the same interval by 3.78% and 1.41%, respectively. Re-
garding R, the highest value found for the 1-12 hours time interval implemented by
A3T-GCN-256 is 0.72, which outperforms the best performance of LSTM and the
best performance of GRU (in both cases is 0.68, regarding time interval, for LSTM
it was found for 1-12 hours and 12-24 hours; and for GRU for 12-24 hours interval)



Table 6.4: Performance evaluation metrics of Attention Temporal Graph Convolu-
tional Network, Long Short-Term Memory and Gated Recurrent Unit in terms of
time granularities before outliers detection.

Method Hours RMSE
(µg/m3)

MAE
(µg/m3)

R

A3T-GCN-32

1-12 16.96 14.18 0.67
12-24 17.45 14.72 0.67
24-36 18.05 15.23 0.63
36-48 18.25 15.41 0.62

A3T-GCN-64

1-12 17.19 14.48 0.69
12-24 16.85 14.07 0.67
24-36 17.40 14.49 0.64
36-48 17.93 15.13 0.63

A3T-GCN-128

1-12 16.34 13.57 0.63
12-24 17.05 13.25 0.67
24-36 18.29 15.53 0.63
36-48 18.32 15.58 0.64

A3T-GCN-256

1-12 16.60 13.62 0.72
12-24 16.77 13.77 0.67
24-36 17.52 14.64 0.65
36-48 17.77 14.77 0.63

LSTM

1-12 19.67 15.01 0.68
12-24 18.77 13.77 0.68
24-36 20.49 15.25 0.63
36-48 20.50 14.42 0.63

GRU

1-12 19.71 14.47 0.67
12-24 19.11 13.44 0.68
24-36 20.80 15.02 0.61
36-48 20.11 14.25 0.65

by 5.56%.

Regarding the time interval pattern, the results at closer time intervals exceeded
the outcomes at more distant intervals in the case of hidden units with 256. Figure



6.3 shows the scatter plot of actual (y axis) and predicted values (x axis) of NO2

for the next defined hours (1-12 h, 12-24 h, 24-36 h, 36-48 h) when the hidden
unit is 256.
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(a) Actual and predicted values for the next
1-12 h.
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(b) Actual and predicted values for the next
12-24 h.
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(c) Actual and predicted values for the next
24-36 h.
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(d) Actual and predicted values for the next
36-48 h.

Figure 6.3: Scatter plot of actual and predicted values of nitrogen dioxide at the
station with id 181 during January-June 2020 in the city of Madrid.

Second Scenario: this scenario introduces the results after implementing iForest
(Table 6.5) and LOF (Table 6.6).

iForest: in terms of RMSE, the lowest value found for the 12-24 hours time
interval implemented by A3T-GCN-256 is 14.59 µg/m3, which outperforms the best
performance of LSTM (17.55 µg/m3) and the best performance of GRU (17.02
µg/m3) found in the same interval by 16.87% and 14.28%, respectively. Regarding
MAE, the lowest value found for the 1-12 hours time interval implemented by
A3T-GCN-256 is 12.14 µg/m3, which outperforms the best performance of LSTM
(12.68 µg/m3) and the best performance of GRU (12.20 µg/m3) found for the 12-24
hours time interval by 4.26% and 0.49%, respectively. Regarding R, the highest
value is 0.70 found for the 1-12 hours time interval implemented by A3T-GCN-64



and for the 1-12 and 12-24 hours time interval implemented by A3T-GCN-256,
which outperforms the best performance of LSTM (0.65) and the best performance
of GRU (0.66) found for the 12-24 hours time interval by 7.14% and 5.71%,
respectively.

LOF: In terms of RMSE, the lowest value found for the 1-12 hours time interval
implemented by A3T-GCN-128 is 14.98 µg/m3, which outperforms the best per-
formance of LSTM (18.26 µg/m3) found for the 12-24 hours time interval and the
best performance of GRU (18.10 µg/m3) found for the 12-24 hours time interval
by 17.96% and 17.24%, respectively. Regarding MAE, the lowest value found
for the 1-12 hours time interval implemented by A3T-GCN-128 is 12.48 µg/m3,
which outperforms the best performance of LSTM (13.20 µg/m3) and the best
performance of GRU (12.92 µg/m3) found for the 12-24 hours time interval by
5.45% and 3.41%, respectively. Regarding R, the highest value is 0.72 found for
the 1-12 hours time interval implemented by A3T-GCN-128, which outperforms the
best performance of LSTM (0.65) found for the 1-12 hours time interval and the
best performance of GRU (0.66) found for the 1-12 and 12-24 hours time interval
by 9.72% and 8.33%, respectively.

The results clearly show the advantage of implementing outlier detection tech-
niques. Comparing the results of Table 6.4 and Table 6.5, the outlier detection
technique, iForest, improves A3T-GCN in terms of RMSE by 10.71%, in terms of
MAE by 8.38%; LSTM in terms of RMSE by 6.50%, in terms of MAE by 7.92%;
GRU in terms of RMSE by 10.94%, in terms of MAE by 9.23%. Regarding Table
6.4 and Table 6.6, the outlier detection technique, LOF, improves A3T-GCN in
terms of RMSE by 8.32%, in terms of MAE by 5.81%; LSTM in terms of RMSE by
2.72%, in terms of MAE by 4.14%; GRU in terms of RMSE by 5.29%, in terms of
MAE by 3.87%. Regarding R the results were not changed a lot, in particular in
the case of iForest, A3T-GCN was reduced by 2.78%, and in the case of LOF it
was equal (0.72); LSTM was reduced by 4.41%, and GRU was reduced by 2.94%
after implementing both outlier detection techniques.

Overall, it can be seen that the proposed approach, A3T-GCN, outperformed the
reference methods in all scenarios. It is important to point out shortcomings in the
period of the data sets used in this analysis, in particular with respect to the test
set selected from January to June 2020, which was significantly affected by the
restrictions implemented to suppress the advance of COVID-19. The data were
selected for this period due to the availability of data at the time of the experiments.



Table 6.5: Performance evaluation metrics of Attention Temporal Graph Convolu-
tional Network, Long Short-Term Memory and Gated Recurrent Unit in terms of
time granularities after outliers detection with Isolation Forest.

Method Hours RMSE
(µg/m3)

MAE
(µg/m3)

R

A3T-GCN-32

1-12 14.74 12.36 0.69
12-24 15.59 13.21 0.68
24-36 16.10 13.57 0.62
36-48 15.98 13.61 0.64

A3T-GCN-64

1-12 14.68 12.29 0.70
12-24 15.25 12.89 0.67
24-36 16.45 14.14 0.64
36-48 16.09 13.72 0.64

A3T-GCN-128

1-12 14.90 12.51 0.69
12-24 15.21 12.89 0.67
24-36 15.94 13.47 0.64
36-48 16.30 14.01 0.63

A3T-GCN-256

1-12 14.60 12.14 0.70
12-24 14.59 13.48 0.70
24-36 16.05 13.63 0.63
36-48 16.41 14.12 0.63

LSTM

1-12 17.92 13.58 0.64
12-24 17.55 12.68 0.65
24-36 19.32 14.12 0.62
36-48 18.50 13.73 0.63

GRU

1-12 18.57 13.85 0.61
12-24 17.02 12.20 0.66
24-36 18.34 13.79 0.61
36-48 19.13 13.94 0.61

Additionally, in our recent paper on the A3T-GCN implementation for NO2 predic-
tion [127], the analysis was carried out using January-June 2019 and January-June
2022. The proposed approach was compared to Temporal Graph Convolutional



Table 6.6: Performance evaluation metrics of Attention Temporal Graph Convolu-
tional Network, Long Short-Term Memory and Gated Recurrent Unit in terms of
time granularities after outliers detection with Local Outlier Factor.

Method Hours RMSE
(µg/m3)

MAE
(µg/m3)

R

A3T-GCN-32

1-12 15.60 13.16 0.70
12-24 15.57 13.12 0.68
24-36 16.37 13.81 0.65
36-48 16.43 13.88 0.64

A3T-GCN-64

1-12 15.32 12.81 0.70
12-24 15.39 12.91 0.68
24-36 17.04 14.51 0.63
36-48 16.86 14.33 0.63

A3T-GCN-128

1-12 14.98 12.48 0.72
12-24 15.89 13.39 0.67
24-36 16.67 14.14 0.64
36-48 16.89 14.39 0.64

A3T-GCN-256

1-12 15.48 12.93 0.71
12-24 16.04 13.48 0.67
24-36 16.43 13.89 0.65
36-48 16.60 14.13 0.65

LSTM

1-12 18.47 13.84 0.65
12-24 18.26 13.20 0.64
24-36 19.73 14.61 0.62
36-48 18.57 13.46 0.64

GRU

1-12 18.10 13.23 0.66
12-24 18.24 12.92 0.66
24-36 20.20 14.81 0.59
36-48 18.98 13.60 0.62

Network (TGCN), LSTM and GRU. The comparison results also emphasised the
superiority of A3T-GCN over the defined reference methods (Table 6.7).

First of all, it can be seen that for the A3T-GCN, TGCN and LSTM models, the



Table 6.7: Performance evaluation metrics of Attention Temporal Graph Convolu-
tional Network, Temporal Graph Convolutional Network, Long Short-Term Memory
and Gated Recurrent Unit in terms of time granularities.

Method Hours RMSE
(µg/m3)

MAE
(µg/m3)

R

A3T-GCN

1-12 19.14 15.33 0.59
12-24 19.85 15.91 0.52
24-36 21.85 17.87 0.47
36-48 21.54 17.69 0.46

TGCN

1-12 21.48 16.24 0.49
12-24 22.73 17.35 0.42
24-36 23.76 18.48 0.40
36-48 23.38 18.28 0.40

LSTM

1-12 22.33 16.70 0.57
12-24 23.16 17.43 0.53
24-36 26.38 19.87 0.46
36-48 24.78 18.79 0.46

GRU

1-12 22.52 17.27 0.56
12-24 22.29 16.97 0.54
24-36 25.38 19.41 0.47
36-48 23.45 17.45 0.31

time interval of 1-12 hours is superior to other time intervals in terms of all three
evaluation metrics, and in the case of GRU, the leading time interval is 12-24 hours
in terms of RMSE and MAE, and 1-12 hours in terms of R.

Regarding individual model performance, the A3T-GCN outperformed all three
reference models. Especially, in terms of RMSE, the proposed method (19,14
µg/m3) outperformed TGCN (21.48 µg/m3) by 10.89%, LSTM (22.33 µg/m3) by
14.29%, and GRU (22.29 µg/m3) by 14.13%. In terms of MAE, the A3T-GCN
(15.33 µg/m3) outperformed TGCN (16.24 µg/m3) by 5.6%, LSTM (16.70 µg/m3)
by 8.2%, and GRU (16.97 µg/m3) by 9.7%. In terms of R, the A3T-GCN (0.59)
outperformed TGCN (0.49) by 16.95%, LSTM (0.57) by 3.39%, and GRU (0.56)
by 5.08%.



Looking at R, it can be noticed that the values are in the range of 0.49 to
0.59. Although the proposed method outperforms the reference methods, further
improvements can be made. Regarding RMSE and MAE, their units match with
the unit of the target variable (NO2: µg/m3). Therefore, based on the results
obtained (RMSE-19.14 µg/m3, MAE-15.33 µg/m3), the proposed method can be
considered sufficient compared with the mean values of NO2 (36.69 and 27.96 for
the period 2019 and 2022, respectively).

It is important to mention that when comparing only reference methods between
them, it can be noticed that TGCN outperforms the other two methods (LSTM
and GRU). Especially in terms of RMSE, TGCN (21.48 µg/m3) outperformed
LSTM(22.33 µg/m3) by 3.81%, and GRU (22.29 µg/m3) by 3.63%. In terms of
MAE, TGCN (16.24 µg/m3) outperformed LSTM (16.70 µg/m3) by 2.75%, and GRU
(16.97 µg/m3) by 4.3%. Since TGCN is also a graph-based method, based on
these findings, the advantage of a graph-based method with the ability to capture
spatial dependencies in addition to temporal dependencies can be highlighted.

6.3 Summary

The main goal of this chapter is to predict NO2 by implementing A3T-GCN on the
data from Madrid air quality monitoring stations combined with meteorological and
traffic data from the period of January-June 2019 (training set) and January-June
2020 (testing set). The proposed method was implemented with four different
hidden units: 32, 64, 128, and 256, and it was compared to the following reference
methods: LSTM and GRU. Another important contribution was the implementation
of outliers detection techniques (iForest, LOF) and comparing the final results
before detecting outliers and after detecting and handling outliers.

The results highlighted the superiority of the proposed method over the reference
methods. In particular, before outlier detection, in terms of RMSE, the best results
were obtained when experiments were carried out with hidden units equal to 128
(16.34 µg/m3 in the 1-12 h time interval), and it outperforms LSTM by 12.95%
and GRU by 14.50%. In terms of MAE, the best results were obtained when
experiments were carried out with hidden units equal to 128 (13.25 µg/m3 in the
12-24 h time interval), and it outperforms LSTM by 3.78% and GRU by 1.41%. In
terms of R, the best results were obtained when experiments were carried out
with hidden units equal to 256 (0.72 in the 1-12 h time interval), and it outperforms



LSTM and GRU by 5.56%.

After implementing iForest, in terms of RMSE, the best results were obtained
when experiments were carried out with hidden units equal to 256 (14.59 µg/m3

in the 12-24 h time interval), and it outperforms LSTM by 16.87% and GRU by
14.28%. In terms of MAE, the best results were obtained when experiments were
carried out with hidden units equal to 256 (12.14 µg/m3 in the 1-12 h time interval),
and it outperforms LSTM by 4.26% and GRU by 0.49%. In terms of R, the best
results were obtained when experiments were carried out with hidden units equal
to 64 (0.70 in the 1-12 h time interval) and 256 (0.70 in the 1-12 h and 12-24 h
time intervals), and it outperforms LSTM by 7.14% and GRU by 5.71%.

After implementing LOF, in terms of RMSE, the best results were obtained when
experiments were carried out with hidden units equal to 128 (14.98 µg/m3 in the
1-12 h time interval), and it outperforms LSTM by 17.96% and GRU by 17.24%.
In terms of MAE, the best results were obtained when experiments were carried
out with hidden units equal to 128 (12.48 µg/m3 in the 1-12 h time interval), and it
outperforms LSTM by 5.45% and GRU by 3.41%. In terms of R, the best results
were obtained when experiments were carried out with hidden units equal to 128
(0.72 in the 1-12 h time interval), and it outperforms LSTM by 9.72% and GRU by
8.33%.

In the case of the implementation of A3T-GCN with the hidden units equal to
256 (hidden units were fixed) to the data of the periods of January-June 2019 and
January-June 2022, in terms of RMSE, the best result of A3T-GCN (19.14 µg/m3

in the 1-12 h time interval) outperforms TGCN by 10.89%, LSTM by 14.29% and
GRU by 14.13%. In terms of MAE, the best result of A3T-GCN (15.33 µg/m3 in
the 1-12 h time interval) outperforms TGCN by 5.6%, LSTM by 8.2% and GRU by
9.7%. In terms of R, the best result of A3T-GCN (0.59 in the 1-12 h time interval)
outperforms TGCN by 16.95%, LSTM by 3.39% and GRU by 5.08%.
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Chapter 7

Conclusions and Future work

Considering the impact of air quality on people’s health and the environment, its
control and improvement have become essential tasks. One way to achieve these
stated goals is to predict air quality more accurately by applying ML techniques.
The important characteristic to consider when selecting and implementing specific
ML technique is the ability to capture and compute the multidimensional inform-
ation and interconnections producing air pollution, which, in particular, exist in
the spatiotemporal dimensions. The study, development, validation, and evalu-
ation of models focused on the prediction of air quality through processing the
spatiotemporal dependencies are the primary target of this dissertation.

Steps towards achieving the main objectives of the work began with the ex-
ploration and study of the state-of-the-art, identifying current trends, as well as
the existing gaps in the subject area which were reported in Chapter 2. The final
selected papers underwent the review process by extracting and comparing the
following features: Year, Study Area, Prediction Target, Dataset Type, Data Rate,
Period (Days), Open Data, Algorithm and Time Granularity. One of the main
observations is that the most important datasets, apart from air quality used for
air quality forecasting, are meteorological, temporal, spatial, and traffic datasets
(Figure 2.2), which can be explained by the strong relationships and impact of
these datasets on air quality formation. Another interesting observation is the
presence of spatial and temporal datasets that highlights the spatiotemporal de-
pendencies and behaviour of air quality. Moreover, it can be seen, that the number
of publications has increased recently, which can be explained by several factors,
in particular, due to the new stage since 2012 associated with the use of open



data portals [128]. Also, with the help of new advancement methods, it becomes
possible to conduct more accurate predictive analysis and, in parallel with the
development of technology, it becomes possible to observe finer particles that are
more hazardous to health.

Afterwards, the information and knowledge obtained were applied to the study
area, which in this work is the city of Madrid. Based on the findings, air quality,
meteorological, and traffic data, and the location of air quality and meteorological
monitoring stations and traffic measurement points from January to June 2019 and
from January to June 2020 were used in this work. Regarding the temporal dataset,
only the chronological behaviour or temporal dependency of the selected datasets
was taken into account. Considering the research questions, the data were
incorporated in spatiotemporal dimensions which were followed by exploratory
data analysis with the aim of disclosing the existing relationships between different
features. It was revealed that the study area’s air quality stations have both
spatial and temporal correlations in terms of NO2 concentrations. Regarding the
relationships between the NO2 and the rest of the features, the most relevant
feature turned out to be wind speed. Feature engineering techniques and the
proposed predictive methods, including ConvLSTM, BiConvLSTM and A3T-GCN,
were introduced in Chapter 3.

The development and implementation procedure of ConvLSTM is placed in
Chapter 4. This method was implemented during different periods: pandemic
and non-pandemic periods, in order to predict NO2. Additionally, different tem-
poral granularities (1-hour, 12-hour, 24-hour and 48-hour) were provided using
the historical NO2 and meteorological data. The results highlighted the superi-
ority of ConvLSTM over the reference method in terms of periods, time granu-
larity and selected features (best results in terms of scenarios: [First Scenario-
non-pandemic: ConvLSTM-13.46 µg/m3-1 hour; LSTM-27.94 µg/m3-1 hour; First
Scenario-pandemic: ConvLSTM-11.55 µg/m3-1 hour; LSTM-32.0 µg/m3-24 hours;
Second Scenario-non-pandemic: ConvLSTM - 1.46 µg/m3-1 hour; LSTM-1.51
µg/m3-1 hour; Second Scenario-pandemic: ConvLSTM-1.22 µg/m3-1 hour; LSTM-
1.46 µg/m3-1 hour]).

Chapter 5 proposed and developed another advanced method named
BiConvLSTM. An additional focus of this chapter is the implementation of feature
selection techniques in order to select the minimal relevant features with the most
optimal combination. The results showed that the proposed method outperformed



the reference models both before selecting features and after selecting relevant
features. Regarding feature selection methods, the implementation of mRMR
yields better results compared to MI, given the fact that mRMR, in addition to
selecting relevant features, selects the next relevant feature that has a minimum
correlation with previously selected features. With respect to runtime, BiConvLSTM
is slower compared to reference methods due to the model architecture, and it
takes longer to converge the data.

The A3T-GCN method was developed and described in the next chapter, Chapter
6. Additionally, given that outliers can negatively impact model performance, this
chapter proposes outlier detection methods, including iForest and LOF, and carries
out experiments with and without outliers. The results highlighted the superiority of
A3T-GCN over the reference methods, and the importance of the implementation
of outlier detection techniques to improve the models’ performance (best results in
terms of evaluation metrics: [RMSE: 16.34 µg/m3 (A3T-GCN with 128 units before
outliers detection), 14.59 µg/m3 (A3T-GCN with 256 units after iForest), 14.98
µg/m3 (A3T-GCN with 128 units after LOF); MAE: 13.25 µg/m3 (A3T-GCN with
128 units before outliers detection), 12.14 µg/m3 (A3T-GCN with 256 units after
iForest), 12.48 µg/m3 (A3T-GCN with 128 units after LOF); R: 0.72 (A3T-GCN with
256 units before outliers detection), 0.70 (A3T-GCN with 64 and 256 units after
iForest), 0.72 (A3T-GCN with 128 units after LOF)].

To highlight the contribution and the improvement of our work to the domain
is not straightforward, as it is challenging to compare our proposed methodo-
logy with other works, as each work’s proposed methodology is implemented
in different datasets with different scenarios. However, several improvements
can be mentioned. First, it refers to the prediction target, which in our case is
NO2. From Table B.1, Table B.2 and Figure 2.5, it can be seen that the dominant
prediction target is PM2.5 (ML-based methods: PM2.5 in forty-eight papers, NOx

in sixteen papers, GNN-based methods: PM2.5 in fourteen papers, NO2 in two
papers). Therefore, there are many studies dedicated to the prediction of PM2.5

rather than NO2. Moreover, out of these studies, only four works are focused on the
spatiotemporal prediction of NO2([48, 63, 129, 130]). To forecast the concentration
of NO2 might be more important and concerning due to finer spatial heterogeneity
compared to PM2.5, in particular, it is more concerning for our study area [68].
Compared to these four works, the improvement of our work is the involvement and
incorporation of meteorological and traffic data in addition to NO2. Particularly, in



the following work [48] the authors applied GNN-based method on data consisting
of air quality, location of the stations and temporal data, another difference is that
the authors constructed an unweighted graph, i.e., the edges were not weighted.
The study by Huang et al. [63] also performed spatiotemporal analysis without
considering traffic data, although it should be noted that they used POI data, which
may be considered in future work. The work done by Chen et al. [130] did not
include meteorological data and as traffic data was mentioned calculated road
lengths within each grid cell. The fourth work [129] focused on the spatiotemporal
prediction of NO2 used air quality, meteorological, traffic, and additional geographic
features. However, traffic data features were different from our traffic datasets,
they included traffic-related NOx, traffic density, and distance to major roadways.
Regarding methodology, the authors proposed a clustering-enhanced ensemble
machine learning approach, however, the implementation had several limitations,
such as the difference in the size of the samples, and the uneven distribution of
sampling locations.

Another important factor is the consideration of COVID-19 for predictive analysis.
Due to traffic restrictions and self-quarantine measures to control and curb the
COVID-19, air pollution decreased dramatically, for instance, the concentration
of NO2 in the city of Madrid dropped to 62% [109]. Existing forecasting models
can be significantly impacted by these abrupt changes in air quality levels. As the
systematic review includes the paper published before 28 September 2020, by
that time there was no paper focusing on NO2 prediction using machine learning
methods and considering COVID-19. The next factor refers to the proposed meth-
ods, the current research is the first to propose the BiConvLSTM and A3T-GCN
implementation for air quality prediction, and the ConvLSTM implementation for
NO2 prediction, making this research a groundbreaking contribution to the domain
of air quality prediction. An additional contribution of this work is the provision
of the code and data implemented in the scope of this dissertation, given the
importance of reproducibility in science, which is presented in Appendix C.

Applying these methods to the control components specified for the current
analysis (air quality, meteorological, and traffic data), the results demonstrate that
ConvLSTM and BiConvLSTM outperformed the reference methods defined for
each experiment. Regarding A3T-GCN, which is able to capture non-Euclidean
dependencies, outperformed defined reference methods (LSTM, GRU). It is diffi-
cult to compare A3T-GCN with ConvLSTM and BiConvLSTM due to differences



in models’ architecture. For example, if we compare the results of the first sub-
scenario with all features included in Table 5.4 (applied BiConvLSTM) with Table
6.4 (applied A3T-GCN), it can be seen that the results are close. In terms of
RMSE, BiConvLSTM is higher (18.99 µg/m3), and in terms of MAE it is lower
(12.89 µg/m3). However, such a comparison is not sufficiently justified, since for
the calculation of BiConvLSTM we used data from the entire grid, while in the case
of A3T-GCN only data from the cells containing air quality stations were included.

The choice of one or another method can be determined by the defined task: if
the main idea is to predict air quality over the entire grid, then grid-based methods
can be used, and if the main goal is to predict only for air quality stations, the
graph-based approach is more efficient. Regarding feature engineering techniques,
this stage is very essential before performing predictive analysis. Moreover, the
results highlighted the benefits of feature engineering techniques, in particular
the importance of selecting the most relevant features and the data cleansing
procedure in terms of outlier detection.

Regarding future work, the proposed methodology could be applied to another
study area to evaluate how performance varies depending on location peculiarities.
The final performance is likely to be affected by the spatial aspects of different
regions, the distance between stations, the number of stations, and the available
features. Another extension could be the integration of other datasets, such as
aerosol optical depth, land use, population density, and street networks, as well as
including these features over a longer period.

Additionally, the proposed procedure can be applied to other pollutants other
than NO2. The accuracy of the predictive analysis may vary depending on the
selected pollutant based on the chemical structure of the pollutants. For example,
Li et al. [38] showed that the proposed model predicts better PM2.5 than NOx, due
to the high reactivity and greater temporal variability of NOx.

Regarding the architecture of the proposed models, further modifications can
be made, for example, in the case of A3T-GCN, several layers can be stacked.
Since the complexity of the architecture causes a relatively long execution time, in
parallel with improving the accuracy, the execution time must also be taken into
account.

Another extension can be related to the approach to graph construction. Consid-
ering that an undirected graph was used in this work, it would be advantageous to



use a directed graph, since the importance of the node V i on V j is different from
that of V j on V i. It would also be preferable to consider the topology, buildings
and infrastructure connecting the two nodes in relation to the weighted edges that
were created by the inverse distance between the two nodes.

Also, it should be noted that 2020 was a year with certain peculiarities, namely
the COVID-19 pandemic and its consequences, including traffic restrictions and
self-isolation. Therefore, it would be ideal to choose a period other than 2020 in
order to avoid the impact of COVID-19 on the analyses. It is important to mention
that the reason for choosing the data for the periods January-June 2019 and
January-June 2020 is conditioned by the fact that the meteorological data at the
start of the experiments were available only for those years1. Furthermore, in
our recent paper, considering the impact of COVID-19, the data to use in the
experiments were acquired for the periods of January-June 2019 and January-
June 2022. The paper is devoted to the implementation of the A3T-GCN to predict
NO2 [127]. The comparison between the proposed approach with the reference
methods (TGCN, LSTM and GRU) also emphasised the superiority of A3T-GCN
over the defined reference methods.

1Meteorological data. Hourly data from 2019: https://bit.ly/3hz4nn6. [Online; ac-
cessed 15-February-2023]

https://bit.ly/3hz4nn6
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Appendix A

Publications

A.1 Related thesis topic

• Journals with impact:

1. Ditsuhi Iskandaryan, Francisco Ramos, Sergio Trilles. Air quality
prediction in smart cities using machine learning technologies based
on sensor data: a review. Applied Sciences 10.7 (2020): 2401. JCR:
Impact factor (Q2). Related chapter 2.

2. Ditsuhi Iskandaryan, Francisco Ramos, Sergio Trilles. Features Ex-
ploration from Datasets Vision in Air Quality Prediction Domain. Atmo-
sphere 12.3 (2021): 312. JCR: Impact factor (Q2). Related chapter
2.

3. Ditsuhi Iskandaryan, Francisco Ramos, Sergio Trilles. Comparison of
Nitrogen Dioxide Predictions During a Pandemic and Non-pandemic
Scenario in the City of Madrid using a Convolutional LSTM Network.
International Journal of Computational Intelligence and Applications
(2022): 2250014. JCR: Impact factor (Q3). Related chapters 3 and 4.

4. Ditsuhi Iskandaryan, Francisco Ramos, Sergio Trilles. Bidirectional
convolutional LSTM for the prediction of nitrogen dioxide in the city of
Madrid. PloS one 17.6 (2022): e0269295. JCR: Impact factor (Q1).
Related chapters 3 and 5.

5. Ditsuhi Iskandaryan, Francisco Ramos, Sergio Trilles. Graph Neural
Network for Air Quality Prediction: A Case Study in Madrid. IEEE



Access 11 (2023): 2729-2742. JCR: Impact factor (Q1). Related
chapters 2, 3 and 6.

6. Ditsuhi Iskandaryan, Francisco Ramos, Sergio Trilles. Reconstructing
Secondary Data based on Air Quality, Meteorological and Traffic Data
Considering Spatiotemporal Components. Data in Brief (2023). SJR:
Impact factor (Q4). Related chapter 3.

• Conferences:

1. Ditsuhi Iskandaryan, Silvana Di Sabatino, Francisco Ramos, Sergio
Trilles. Exploratory Analysis and Feature Selection for the Prediction
of Nitrogen Dioxide. AGILE: GIScience Series 3 (2022): 6. Related
chapters 3 and 5.

2. Ditsuhi Iskandaryan, Francisco Ramos, Sergio Trilles. Spatiotemporal
Prediction of Nitrogen Dioxide Based on Graph Neural Networks. Ad-
vances and New Trends in Environmental Informatics: Environmental In-
formatics and the UN Sustainable Development Goals. Cham: Springer
International Publishing (2022): 111-128. Related chapters 2, 3 and 6.

• Book chapter:

1. Ditsuhi Iskandaryan, Francisco Ramos, Sergio Trilles. Application of
deep learning and machine learning in air quality modeling. Current
Trends and Advances in Computer-Aided Intelligent Environmental Data
Engineering. Academic Press, 2022. 11-23. Related chapter 1.

A.2 Non-related thesis topic

• Journals with impact:

1. Ditsuhi Iskandaryan, Francisco Ramos, Denny Asarias Palinggi, Ser-
gio Trilles. The effect of weather in soccer results: an approach using
machine learning techniques. Applied Sciences 10.19 (2020): 6750.
JCR: Impact factor (Q2).



• Conferences:

1. Francisco Ramos, Ditsuhi Iskandaryan, Iva Koribska. DATA VISU-
ALISATION FOR TEACHERS: HOW TO READ, INTERPRET AND
SHOW DATA CORRECTLY, EDULEARN22 Proceedings. IATED (2022):
8022-8022.

2. Francisco Ramos, Ditsuhi Iskandaryan, Águeda Gómez-Cambronero.
IMPROVING TEACHERS VISUAL PRESENTATIONS WITH SIMPLI-
CITY, CLARITY AND BREVITY, EDULEARN19 Proceedings. IATED
(2019): 6218-6218.
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Appendix B

Features of the selected papers



Table B.1: Features of the papers dedicated to the implementation of Machine
Learning for air quality prediction. N/S: Not Specified. Published in Zenodo [131].

Work Year Study
Area

Prediction
Target

Dataset
Type

Data Rate Period
(Days)

Open
Data

Algorithm Time
Granular-
ity

Evaluation
Metric

[35] 2020 USA PM2.5 Spatial,
Temporal,
AOD, PBL
Height

Daily 5779 No Hybrid 24 h RMSE, SD,
R2

[132] 2020 Canada UFP MET,
Traffic,
Land Use,
BEV

N/S 120 No Ensemble RMSE, R2

[133] 2020 Taiwan PM2.5,
PM10

MET N/S 2192 No Hybrid 8 h RMSE,
MAE

[38] 2020 China PM2.5,
NOx

MET,
Traffic

Hourly 731 No Regression,
Ensemble

1 h RMSE,
ME,
NRMSE,
NME,
POD,
POF, R2

[26] 2020 USA PM2.5 MET, Tem-
poral

Hourly 730 No NN RMSE,
MAE,
MAPE

[41] 2020 India PM2.5 MET Hourly 1230 No NN RMSE, R2

[134] 2020 USA AQI MET Hourly 851 Yes Regression 1 h RMSE,
MAE,
NRMSE,
R

[135] 2020 Turkey PM10 Spatial,
Land Use

N/S 3652 No Regression,
Ensemble,
NN

RMSE,
MAE, R2

[136] 2020 China PM2.5 MET Hourly 31 Yes NN 1 h RMSE, R
[86] 2020 China AQHI,

IAQL
MET, Tem-
poral

Hourly 730/1826 Yes Ensemble 12 h Acc, MSE,
WP, WR,
WF

[137] 2020 China PM10 MET Daily 1096 No NN 24 h RMSE,
ME, R,
EOp

[36] 2020 Tunisia,
Italy

MET, Tem-
poral

Hourly 1461/366 No Ensemble 1 week aRRMSE,
aRMSE,
R2, aCC,
MSE,
aRE, RP

[37] 2020 China PM2.5 MET N/S 46 Yes Ensemble 24 h RMSE,
MAE,
SMAPE

[40] 2020 China PM2.5 MET Hourly 1825 No NN 1 week RMSE
[138] 2020 China PM2.5 MET N/S 1096 Yes NN 24 h RMSE,

MAE,
MAPE

[45] 2020 China O3 MET, UV
Index

Daily 1491 Yes Hybrid 1 week RMSE,
MAE,
MAPE, IA

[139] 2020 South
Korea

PM2.5,
PM10

MET Hourly 1461 Yes Hybrid 15days RMSE,
MAE



Table B.1: (cont)

Work Year Study
Area

Prediction
Target

Dataset
Type

Data Rate Period
(Days)

Open
Data

Algorithm Time
Granular-
ity

Evaluation
Metric

[39] 2020 China PM2.5,
PM10,
NO2, NO,
CO

MET Daily 4656 No NN 24 h MSE

[140] 2020 Taiwan PM2.5 MET, Spa-
tial, Tem-
poral

Hourly 365 Yes Ensemble 24 h RMSE,
NRMSE,
R2

[141] 2020 UK PM2.5 MET,
Spatial,
Temporal,
AOD,
Land Use

Daily 3287 Partially Ensemble 24 h RMSE,
MSE, R2

[142] 2020 Ecuador PM2.5 MET,
Spatial,
Temporal,
Traffic

5 s 4 No Other
Algorithms

Acc

[143] 2020 China PM2.5 MET Hourly 365 No Ensemble 48 h MSE, IA,
NMGE, R2

[144] 2020 China PM2.5 MET Hourly 1461 No Ensemble 24 h RMSE,
MB, ME, R

[145] 2020 China AQI MET Hourly 2192 No NN 48 h RMSE,
Acc

[146] 2020 China AQI MET Hourly 730 Yes NN 24 h RMSE,
MAE, R2,
FB

[147] 2020 South
Korea

PM2.5,
PM10

MET, Tem-
poral, Spa-
tial

Minutely 7 No Hybrid RMSE

[148] 2020 China PM2.5,
PM10, O3,
NO2, SO2,
CO

MET, So-
cial Media

Daily 731 Yes NN 24 h RMSE,
MAE

[149] 2020 Thailand PM10 MET Secondly 59 No NN 1 h RMSE,
MAE,
MAPE, R

[87] 2020 China AQI Spatial Daily 1086 Yes Hybrid 5 days RMSE,
MAE,
MAPE, R

[150] 2020 Germany CO2,
NH3, NO,
NO2, NOx,
O3, PM1,
PM2.5,
PM10, PN10

MET,
Temporal,
Traffic, SP

Hourly 62 No NN 1 h RMSE,
R, NMB,
NMSD,
RS, SD,
SD′

[42] 2020 Mongolia PM2.5 MET,
Temporal,
Land Use,
PD

Hourly 2922 No Regression,
Ensemble

24 h RMSE, R2

[43] 2020 Taiwan PM2.5 MET, Tem-
poral, Spa-
tial

Hourly 2192 No NN 8 h RMSE,
MAE,
MAPE

[151] 2020 Turkey PM10 MET Daily 766 No Regression,
NN

RMSE,
MAE, R2

[152] 2020 Jordan O3 MET, Tem-
poral

Daily 1496 No NN, Re-
gression,
Ensemble

24 h RMSE,
MAE, R2



Table B.1: (cont)

Work Year Study
Area

Prediction
Target

Dataset
Type

Data Rate Period
(Days)

Open
Data

Algorithm Time
Granular-
ity

Evaluation
Metric

[153] 2019 South
Korea

PM10,
PM2.5

MET,
Spatial,
Human
Move-
ments

Hourly 115 No NN, Re-
gression

1 h RMSE, R2

[154] 2019 China/
Taiwan

PM2.5 MET Hourly 3693 No NN, Other
Algorithms

5 days RMSE

[155] 2019 South
Korea

O3 MET Hourly 1096 No Ensemble 24 h IA

[129] 2019 USA NO2, NOx MET, Spa-
tial, Traffic

biweekly 8023 No Ensemble RMSE, R2,
RMSEIQR

[130] 2019 Europe NO2,
PM2.5

AOD,
Traffic,
Land Use,
Altitude

N/S 365 Yes Regression,
Ensemble,
NN

RMSE, R2,
MSE-R2

[156] 2019 China PM2.5 MET, AOD Hourly 1096 Yes Hybrid 24 h RMSE, R2

[157] 2019 China SO2 MET,
Temporal,
Land Use,
OMI-SO2,
PPS, TS

Daily 365 Partially Hybrid 24 h RMSE, R2,
RPE

[158] 2019 China PM2.5 MET Hourly 731 No NN 3 h RMSE
[159] 2019 China PM2.5 MET, WFD,

Spatial
N/S 61 No Ensemble 24 h MAE,

SMAPE,
MSE

[160] 2019 China PM2.5 MET Hourly 1826 Yes NN 2 h RMSE,
MAE,
SMAPE

[161] 2019 China PM2.5 MET N/S 2191 Yes Ensemble 1 week RMSE,
MAE

[162] 2019 Italy CO(GT),
NO2(GT)

MET Hourly 183 Yes NN 1 h RMSE,
MAE,
MAPE

[163] 2019 China PM2.5 Spatial Hourly 365 No NN 1 week RMSE,
MAE,
MAPE

[164] 2019 China AQI MET, WFD,
Traffic, POI
Distribu-
tion, FAPE,
RND

Hourly 366 Yes NN 48 h MAE, MAP

[165] 2019 Taiwan PM2.5 MET Hourly 2557 No Hybrid 4 h RMSE,
Gbench

[166] 2019 Iran PM2.5 MET Hourly 1826 No Ensemble,
NN, Hy-
brid

48 h RMSE,
MAE, R2

[167] 2019 Poland NO2 MET,
Temporal,
Traffic

Hourly 731 No Ensemble MAPE,
MADE,
BIC, R2

[168] 2019 India O3, PM2.5,
NOx, CO

MET,
Traffic

Hourly 730 No NN RMSE,
NSE,
PBIAS, R

[169] 2019 China PM2.5 MET Hourly 1826 No NN 72 h RMSE, IA,
MAE, R

[46] 2019 China PM2.5 MET Hourly 366 No NN 10 h RMSE,
NRMSE,
MAE,
SMAPE, R



Table B.1: (cont)

Work Year Study
Area

Prediction
Target

Dataset
Type

Data Rate Period
(Days)

Open
Data

Algorithm Time
Granular-
ity

Evaluation
Metric

[170] 2019 China PM2.5 MET, AOD N/S 730 Yes NN RMSE,
MAE,
MSE, R2

[171] 2019 Iran PM2.5 MET, Tem-
poral, Spa-
tial, AOD,
Altitude

Daily 1460 Yes Ensemble,
NN

RMSE,
MAE, R2

[172] 2019 India O3 MET Hourly 92 No Ensemble IoAd, R2,
PEP

[173] 2019 China O3 MET Hourly 365 No Ensemble,
NN

RMSE,
R, NMB,
NME,
MFB, MFE

[174] 2019 UK SO2 MET Hourly 120 Yes Ensemble RMSE,
MAE, R2,
RAE

[175] 2019 Taiwan AQI MET, Tem-
poral

Hourly 851 No Regression,
NN

6 h RMSE,
MAE, R2

[176] 2019 Iran PM10,
PM2.5

MET, Tem-
poral, Spa-
tial

Daily 3652 Yes Regression,
NN

1 week RMSE, R2

[177] 2018 China PM2.5 MET,
Temporal,
AOD

Hourly 731 Partially NN 72 h RMSE,
MAE,
MSE, IA,
TPR, FPR,
SI

[178] 2018 Slovenia PM10, O3 MET, Tem-
poral

Hourly 1461 No Other
Algorithms

24 h MAE, RPS

[179] 2018 China O3 MET, Land
Use, El-
evation,
AEI, NDVI,
RND, PD

Hourly 365 Yes Ensemble RMSE, R2,
RPE

[180] 2018 China PM2.5 MET, AOD,
Elevation,
PD, RND,
NDVI

Daily 1095 Yes Ensemble 1 month RMSE, R2,
RPE

[181] 2018 China PM2.5 MET, Spa-
tial

Hourly 61 No Regression 24 h total accur-
acy index
(pt), a total
absolute
error index
(et)

[182] 2018 UK AQI MET Hourly 605 Yes NN RMSE,
MAPE,
band Acc

[183] 2018 Kuwait O3 MET Hourly 669 No NN 72 h RMSE,
MAE

[184] 2018 Spain O3 MET Hourly 730 Yes Ensemble 24 h RMSE,
MAE, R2

[185] 2018 Egypt PM10 MET, Tem-
poral

Hourly 276 No Regression 1 h RMSE, R,
t-Value



Table B.1: (cont)

Work Year Study
Area

Prediction
Target

Dataset
Type

Data Rate Period
(Days)

Open
Data

Algorithm Time
Granular-
ity

Evaluation
Metric

[186] 2018 China PM2.5 MET Hourly 1826 No NN 1 h RMSE,
MAE, IA,
R

[187] 2018 USA O3, PM2.5,
SO2

MET Hourly 3652 Yes Other
Algorithms

24 h RMSE

[188] 2017 USA BC MET, Spa-
tial, Tem-
poral

Daily 4383 Yes Regression 24 h R2

[13] 2017 Canada O3, PM2.5,
NO2

MET, Tem-
poral

Hourly 1826 No NN 48 h MAE, R,
ME, SS

[189] 2017 China PM2.5 MET, So-
cial Media

Hourly 365 No NN 24 h RMSE

[190] 2017 Ecuador PM2.5 MET Daily 1827 No Ensemble,
Regres-
sion, NN

MSE,
MAPE

[191] 2017 China PM2.5 MET, Tem-
poral, Spa-
tial, AOD

Daily 365 Yes Ensemble RMSE, R2

[192] 2017 Kuwait PNCs MET 5min 30 No NN RMSE,
NRMSE,
IA, R2

[193] 2017 Egypt PM10 MET, Tem-
poral

Hourly 368 No Regression 1 h RMSE, R,
z’, t-value

[194] 2017 China NO2, NOx,
O3, PM2.5,
SO2

MET, Tem-
poral

Daily 2191 No NN 24 h RMSE,
MAE, IA,
R2

[195] 2017 China AQI MET Daily 851 No Regression RMSE,
MAE,
MAPE,
MSE

[196] 2016 Qatar O3, NO2,
SO2

MET, Tem-
poral

15min 92 No Regression 24 h RMSE,
NRMSE,
PTA

[197] 2016 France O3, NO2,
PM10

MET Hourly 1733 No Hybrid 24 h RMSE,
MAE,
NRMSE,
MBE, IA,
R

[198] 2014 Saudi
Arabia

PM10 MET Hourly 366 No Regression 1 h RMSE,
MAE,
MBE,
FACT2, R,
IA

[199] 2014 France O3, NO2,
PM10

MET Hourly 731 Yes Ensemble 72 h RMSE

[20] 2013 China PM1.0,
UFP

MET,
Traffic,
Temporal

Minutely 3 No Regression,
Ensemble,
NN

AUC, R,
R2, Pre-
cision,
Recall, f
measure,
weighted
f-measure

[200] 2013 Greece O3 MET Hourly 7305 No NN 6 h RMSE, R2,
R

[201] 2013 India AQI MET Daily 1825 Partially Ensemble RMSE,
MAE, R



Table B.1: (cont)

Work Year Study
Area

Prediction
Target

Dataset
Type

Data Rate Period
(Days)

Open
Data

Algorithm Time
Granular-
ity

Evaluation
Metric

[202] 2012 China SPM, SO2,
NO2, O3

MET Daily 1095 Yes Regression 24 h RMSE,
MAE,
CWIA, RE

[203] 2012 Iran CO MET Hourly 1492 No Hybrid 24 h RMSE,
RME,
MARE, R2

[204] 2012 Saudi
Arabia

O3 MET, Tem-
poral

Minutely 183 No NN, En-
semble

1 h MAE,
MAPE, SD,
MD, R

[205] 2009 Europe O3 MET, Land
Data,
Chemical,
Emission

Hourly 120 No Ensemble 24 h RMSE

[206] 2008 China RSP(PM10),
NOx, SO2

MET Hourly 61 No Regression 1 week RMSE,
MAE, WIA



Table B.2: Features of the papers dedicated to the implementation of Graph Neural
Network for air quality prediction (*).

Work Year Method Edge
Weight

Dynamic/
Static

Directed/
Undirec-
ted

Target Dataset Evaluation
Metric

[47] 2022 SSH-GNN Yes Static Undirected AQI AQ, MET,
Spatial,
Traffic,
POI,
RND

MAE,
RMSE

[48] 2022 DGCN with
Graph LSTM

No Static Directed PM2.5,
PM10,
NO2, CO,
O3

AQ, Spa-
tial

MAE,
RMSE,
ACC

[49] 2022 DP-DDGCN Yes Dynamic Directed PM2.5 AQ, MET,
Spatial

MAE,
RMSE

[50] 2021 ST-DGCN Yes Dynamic Undirected PM2.5 AQ, MET,
Spatial

MAE,
RMSE

[51] 2021 MST-GCN Yes Static Undirected PM2.5 AQ, MET,
Spatial,
POI,
RND

ACC,
MAE,
RMSE

[52] 2021 ATGCN Yes Static Undirected Not Spe-
cified

AQ, MET,
Spatial,
POI

MAE,
RMSE

[53] 2021 GAGNN Yes Static Undirected AQI AQ, MET,
Spatial

MAE,
RMSE

* Method: SSH-GNN–Self-Supervised Hierarchical Graph Neural Network, DGCN–Dual Graph Convolution Network, DP-DDGCN–
Dual-path Dynamic Directed Graph Convolutional Network, ST-DGCN–Spatial-Temporal Dynamic Graph Convolution Neural Network,
MST-GCN–Multi-scale Spatiotemporal Graph Convolution Network, ATGCN–Attentive Temporal Graph Convolutional Network,
GAGNN–Group-aware Graph Neural Network; Target: AQI–Air Quality Index, PM2.5–Particulate Matter with a diameter of less than
2.5 micrometres, PM10–Particulate Matter with a diameter of less than 10 micrometres, NO2–Nitrogen Dioxide, CO–Carbon Monoxide,
O3–Ozone; Dataset: MET–Meteorological, POI–Point of Interest, RND–Road Network Data; Evaluation Metric: MAE–Mean
Absolute Error, RMSE–Root Mean Square Error, ACC–Accuracy.



Table B.2: (cont)

Work Year Method Edge
Weight

Dynamic/
Static

Directed/
Undirec-
ted

Target Dataset Evaluation
Metric

[54] 2021 HGNN Yes Dynamic Directed AQI AQI, MET,
Spatial,
POI

MAE,
RMSE

[55] 2021 Naive, LR,
ARIMA,
MLP, GCN,
STGCN,
Temporal,
ASTGCN

Yes Static Undirected PM2.5 AQ, MET,
Spatial

RMSE

[56] 2021 Spatiotemporal
GCRNN

Yes Static Undirected PM2.5,
PM10

AQ, MET,
Spatial,
Traffic

RMSE,
R2,
spRMSE

[57] 2021 AQSTN-
GCN

Yes Static Undirected PM2.5 AQ, MET,
Spatial

MAE,
RMSE,
MAPE,
MSE,
R2

[58] 2021 GLSTM Yes Static Directed PM2.5 AQ, MET,
Spatial

RMSE,
MAE,
MAPE,
IA

[63] 2021 SpAttRNN Yes Static Undirected PM2.5,
PM10,
NO2

AQ, MET,
Spatial,
POI

RMSE,
MAE,
SMAPE

* Method: HGNN–Hierarchical Graph Neural Networks, LR–Linear Regression, ARIMA–Autoregressive Integrated Moving Average,
MLP–Multilayer Perceptron, GCN–Graph Convolutional Neural Network, STGCN–Spatial-Temporal Graph Convolutional Network,
ASTGCN–Attention based Spatial-Temporal Graph Convolution Network, GCRNN–Graph Convolutional Recurrent Neural Network,
AQSTN–Air Quality Spatial-Temporal Network, SpAttRNN– Spatio-Attention embedded Recurrent Neural Network; Evaluation
Metric: R2– Coefficient of Determination, spRMSE–Spatiatemporal RMSE, MAPE–Mean Absolute Percentage Error, MSE–Mean
Square Error, IA–Index of Agreement, SMAPE–Symmetric Mean Absolute Percentage Error.



Table B.2: (cont)

Work Year Method Edge
Weight

Dynamic/
Static

Directed/
Undirec-
ted

Target Dataset Evaluation
Metric

[59] 2020 TA-GCN Yes Static Directed PM2.5 AQ, MET,
Spatial

Train loss,
Test loss,
Valida-
tion loss,
RMSE,
MAE,
CSI,
POD,
FAR

[60] 2020 PM2.5-GNN Yes Dynamic Directed PM2.5 AQ, MET,
Spatial

Train loss,
Test loss,
Valida-
tion loss,
RMSE,
MAE,
CSI,
POD,
FAR

[61] 2020 MASTGN Yes Static Undirected PM2.5,
PM10, O3

AQ, MET,
Spatial

MAE,
SMAPE

[62] 2019 GC-LSTM Yes Static Undirected PM2.5 AQ, MET,
Spatial

MAE,
RMSE,
IA,
Recall
Rate,
FAR, R2

[64] 2018 GC-DCRNN Yes Static Undirected PM2.5 AQ, MET,
Spatial,
Geo-
graphic
(land
uses,
roads,
water
areas,
buildings)

MAE,
RMSE

* Method: TA-GCN–Temporal Attention-GCN, MASTGN–Multi-attention Spatio-Temporal Graph Networks, GC-LSTM–Graph Convo-
lution Network embedded Long Short-term Memory, GC-DCRNN–Geo-context based Diffusion Convolutional Recurrent Neural
Network; Evaluation Metric: , CSI–Critical Success Index, POD–Probability of Detection, FAR–False Alarm Rate.
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Appendix C

Reproducibility

One of the main objectives of this work is to support reproducibility, given the
importance of this phenomenon. Considering the role of reproducibility in research,
this section provides the instructions to reproduce the data and the code displayed
in the directory tree format and file structure format (Figure C.1). The root directory
named Air Quality Prediction is composed of two main sub-directories
Data and Code, which is available at the Zenodo repository [207].

Data sub-directory consists of Raw-Data and Processed-Data. Raw-Data
includes AirQuality-Data, Meteorological-Data, and Traffic-Data;
Processed-Data includes AirMetTraffic 2019 2020 firstSixMonths .zip,
Madrid wind yyyy.csv, Madrid Stations yyyy.csv,
Madrid Exploration.zip, and distanceNodes.txt.

AirQuality-Data: consists of Anio201912.zip, Anio202012.zip and
informacion estaciones red calidad aire.geo. The first two .zip files1

contain hourly air quality data for 2019 and 2020, respectively. The data from
January to June 2019 and from January to June 2020 were used in the current
work. Each .zip file contains data in three format: .txt, .csv, .xml. For our analysis,
we used .csv files. Each record is structured as follows (Table C.1; in the brackets
English version of the columns):

The POINT SAMPLE field includes the complete station code (province, muni-
cipality, station, magnitude and technique of sampling); H01 corresponds to the
data of 1 a.m. of that day; V01 is the validation code; H02 at 2 a.m.; V02 and so
on. Magnitude refers to the pollutants that were recorded by the stations, of which

1Air quality. Hourly data since 2001: https://bit.ly/2IeGcrs

https://bit.ly/2IeGcrs


Table C.1: Air Quality Data.

PROVINCIA MUNICIPIO ESTACION MAGNITUD PUNTO MUESTREO ANO MES DIA H01 V01 H02 V02
(PROVINCE) (MUNICIPALITY) (STATION) (MAGNITUDE) POINT SAMPLE YEAR MONTH DAY H01 V01 H02 V02
28 79 4 1 28079004 1 38 2019 1 1 23 V 17 V

we only focused on nitrogen dioxide, which is mentioned under magnitude 82.

The location of the air quality monitoring stations is available in .csv, .xlsx, and
.geo format3. This work used the .geo format:
informacion estaciones red calidad aire.geo.

Meteorological-Data: consists of mmm meteo20.csv, mmm meteo19.csv

and Estaciones control datos meteorologicos.geo. The mmm of the
names of mmm meteo20.csv and mmm meteo19.csv refers to the name of the
corresponding month4. Each record of these .csv files is structured as follows
(Table C.2; in the brackets English version of the columns):

Table C.2: Meteorological Data.

PROVINCIA MUNICIPIO ESTACION MAGNITUD PUNTO MUESTREO ANO MES DIA H01 V01 H02 V02
(PROVINCE) (MUNICIPALITY) (STATION) (MAGNITUDE) POINT SAMPLE YEAR MONTH DAY H01 V01 H02 V02
28 79 104 82 28079004 82 98 2019 1 1 23 V 17 V

The POINT SAMPLE field includes the complete station code (province, muni-
cipality, station, magnitude and technique of sampling); H01 corresponds to the
data of 1 a.m. of that day; V01 is the validation code; H02 at 2 a.m.; V02 and so
on. Magnitude refers to the codes of the meteorological features (features with
corresponding codes: UV (mW/m2)-80, wind speed (m/s)-81, wind direction-82,
temperature (oC)-83, relative humidity (%)-86, barometric pressure (mb)-87, solar
irradiance (W/m2)-88, precipitation (l/m2)-89)5.

The location of the meteorological monitoring stations is available in .csv, .xlsx,
and .geo format6. This work used the .geo format:
Estaciones control datos meteorologicos.geo.

Traffic-Data: consists of mm-yyyy.zip and pmed ubicacion mm-yyyy

2Interpreter of air quality data files: https://bit.ly/3Utz9g5
3Air quality. Control stations: https://bit.ly/2Kp8TlV
4Meteorological data. Hourly data from 2019: https://bit.ly/3DIkLLk
5Interpreter of meteorological data files: https://bit.ly/3LzX8qb
6Meteorological data. Control stations: https://bit.ly/3S3ZP5x

https://bit.ly/3Utz9g5
https://bit.ly/2Kp8TlV
https://bit.ly/3DIkLLk
https://bit.ly/3LzX8qb
https://bit.ly/3S3ZP5x


.zip. mm-yyyy.zip is available for each month, which contains .csv file7. The
name of each .csv file contains the name of the corresponding month with the
corresponding year. Each record is structured as follows (Table C.3; in the brackets
English version of the columns):

Table C.3: Traffic Data.

id fecha tipo elem intensidad ocupacion carga vmed error periodo integracion
(id) (date) (element type) (intensity) (occupancy time) (load) average traffic speed error (integration period)
1001 01/01/2019 00:00 M30 2340 11 0 63 N 5

The SICTRAM database records and integrates all the vehicle detectors’ data
of the control measurement points over periods of 15 minutes. This current work
used the following data: date (it was used to create hourly .csv files), intensity,
occupancy time, load and average traffic data8.

• Intensity - Intensity of the measurement point in a period of 15 minutes
(vehicles/hour). A negative value implies the absence of data.

• Occupancy time - Measurement point occupancy time in a period of 15
minutes (%). For example, a 50% occupancy in a 15-minute period means
that vehicles have been positioned over the detector for 7 minutes and 30
seconds. A negative value implies the absence of data.

• Load - Vehicle loading in a 15-minute period. This parameter represents
an estimate of the degree of congestion, calculated from an algorithm that
uses intensity and occupancy as variables, with certain correction factors.
It establishes the degree of road use in a range from 0 (empty) to 100
(collapse). A negative value implies the absence of data.

• Average traffic speed - Average speed of the vehicles in a period of 15
minutes (km/h). Only for M30 intercity measuring points. A negative value
implies the absence of data.

The location of the traffic measurement points is available for every month
in .csv, .xlsx, and .zip format9. This work used .zip file: pmed ubicacion

mm-yyyy.zip, each of them contains .dbf , .prj, .shp, and .shx files.
7Traffic. Historical traffic data since 2013: https://bit.ly/3BBUxHs
8Description of traffic dataset: https://bit.ly/3qTUJwZ
9Traffic. Location of traffic measurement points: https://bit.ly/2rOkHCX

https://bit.ly/3BBUxHs
https://bit.ly/3qTUJwZ
https://bit.ly/2rOkHCX


AirMetTraffic 2019 2020 firstSixMonths.zip: contains .csv files gen-
erated for each hour from January to June 2019 and from January to June 2020.
Each .csv file name has the following structure:
fishnetAirMetyyyy m dd h.csv. There are 4344 and 4368 .csv files cor-
responding to every hour during January-June 2019 and January-June 2020,
respectively. Each .csv file consists of 340 rows and 14 columns (#FID, NO2,
UV, windSpeed, windDir, Temp, Humidity, Pressure, SolarRad, Prec, intensidad,
ocupacion, carga, vmed).

Madrid wind yyyy.csv: is the modified data of the content of
AirMetTraffic 2019 2020 firstSixMonths.zip. The modification was
applied to the wind direction. It was transformed in two ways: 1) converting
wind direction into categorical data (north, east, south, west, southwest, north-
east, southeast, and northwest), and passing through One Hot Encoder; 2) con-
verting wind direction into u and v components. The Madrid wind yyyy.csv

contains records for every hour during January-June 2019 and January-June
2020, and for every cell of the defined area of the city of Madrid. The columns
are NO2, windSpeed, Temp, Humidity, Pressure, SolarRad, intensidad, ocupa-
cion, carga, vmed, v comp, u comp, windDir Categ east, windDir Categ north,
windDir Categ northeast, windDir Categ northwest, windDir Categ south, wind-
Dir Categ southeast, windDir Categ southwest, windDir Categ west.

Madrid Stations yyyy.csv: is part of Madrid wind yyyy.csv, which in-
cludes only data from cells containing air quality monitoring stations. The data
are appended in one column with the following order: NO2, intensidad, ocu-
pacion, windSpeed, Pressure, SolarRad, Temp, Humidity, carga, vmed, v comp,
u comp, windDir Categ east, windDir Categ north, windDir Categ northeast, wind-
Dir Categ northwest, windDir Categ south, windDir Categ southeast,
windDir Categ southwest, windDir Categ west.

Madrid Exploration.zip: contains the result of an exploratory analysis
that identifies the relationship between nitrogen dioxide and additional features
(meteorological and traffic data).

distanceNodes.txt: includes the distance between the air quality monitoring
stations placed in the city of Madrid (24 stations, 276 edges each edge is placed 2
times depending on the node order: origin, destination).

Code sub-directory consists of Process Raw Data,



Chapter4-ConvLSTM, Chapter5-BiConvLSTM, and Chapter6-A3T GCN.

Process Raw Data: is composed of Process Air Quality Data.ipynb,
Process Meteorological Data.ipynb, Process Traffic Data.ipynb,
Air Met Data Generation.ipynb, Traffic Data Generation.ipynb,
Combine Generated AirQuality Met Traf.ipynb, and
Extract Stations Data.ipynb. The first three files are dedicated to pro-
cessing the raw data for each dataset, respectively.
Air Met Data Generation.ipynb combines processed air quality and meteor-
ological data in a spatiotemporal dimension. Traffic Data Generation.ipynb

combines processed traffic data in a spatiotemporal dimension.
Combine Generated AirQuality Met Traf.ipynb combines generated air
quality, meteorological and traffic data for each hour in a separate .csv file.
Extract Stations Data.ipynb contains the procedure to extract cells or rows
including NO2, Meteorological and Traffic data, where air quality monitoring stations
exist.

Chapter4-ConvLSTM: includes ConvLSTM.ipynb, which develops and tests
the ConvLSTM method by implementing it in two different periods: pandemic and
non-pandemic, described in the Chapter 4.

Chapter5-BiConvLSTM: includes BiConvLSTM.ipynb,
Data Preprocessing.ipynb, GridSearchCV.ipynb, mRMR.ipynb, and
Mutual Information.ipynb, executing the procedure described in Chapter 5.
BiConvLSTM.ipynb develops and tests the BiConvLSTM method.
Data Preprocessing.ipynb refers to the data pre-processing step, including
implementation of NN, outlier detection based on the statistical summary of the
dataset, and the conversion of the wind direction (converting it to categorical
data (north, east, south, west, southwest, northeast, southeast, northwest) and
passing through One Hot Encoder). GridSearchCV.ipynb refers to parameter
optimisation of the proposed model performed by applying GridSearchCV with
Blocking Time Series Split. mRMR.ipynb and Mutual Information.ipynb

execute two feature selection techniques: MI and mRMR, respectively.

Chapter6-A3T GCN: includes Madrid Graph Network.ipynb,
distanceNodes.ipynb, A3T GCN.ipynb, IsolationForest.ipynb, and
LOF.ipynb, executing the procedure described in Chapter 6.
Madrid Graph Network.ipynb contains the procedure for constructing a graph
network of the air quality stations placed in the city of Madrid. distanceNodes



.ipynb includes the procedure for calculating the distance between the air quality
stations placed in the city of Madrid (24 stations).
A3T GCN.ipynb develops and tests the A3T-GCN method.
IsolationForest.ipynb, and LOF.ipynb execute two outlier detection tech-
niques: iForest and LOF, respectively.



 Air Quality Prediction
 Data

 Raw-Data
 AirQuality-Data

ú Anio202012.zip
ú Anio201912.zip
ú informacion estaciones red calidad aire.geo

 Meteorological-Data
ú mmm meteo20.csv
ú mmm meteo19.csv
ú Estaciones control datos meteorologicos.geo

 Traffic-Data
ú mm-yyyy.zip
ú pmed ubicacion mm-yyyy.zip

 Processed-Data
ú AirMetTraffic 2019 2020 firstSixMonths.zip
ú Madrid wind yyyy.csv
ú Madrid Stations yyyy.csv
ú Madrid Exploration.zip
ú distanceNodes.txt

 Code
 Process Raw Data

ú Process Air Quality Data.ipynb
ú Process Meteorological Data.ipynb
ú Process Traffic Data.ipynb
ú Air Met Data Generation.ipynb
ú Traffic Data Generation.ipynb
ú Combine Generated AirQuality Met Traf.ipynb
ú Extract Stations Data

 Chapter4-ConvLSTM
ú ConvLSTM.ipynb

 Chapter5-BiConvLSTM
ú BiConvLSTM.ipynb
ú Data Preprocessing.ipynb
ú GridSearchCV.ipynb
ú mRMR.ipynb
ú Mutual Information.ipynb

 Chapter6-A3T GCN
ú Madrid Graph Network.ipynb
ú distanceNodes.ipynb
ú A3T GCN.ipynb
ú IsolationForest.ipynb
ú LOF.ipynb

Figure C.1: Directory tree illustrating the data and implemented code.
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Appendix D

The Tools Used

This section introduced the tools, software, and libraries with their versions and
description used in this work.

• Google Colab Pro: cloud service to execute python code1.

• Python2: is a high-level and object-oriented programming language.

• Pandas 1.3.53: open source Python package to analyse and manipulate
data.

• NumPy 1.21.64 (Numerical Python): to perform numerical computations. It
works with multi-dimensional array objects.

• Scikit-learn 1.0.2 (sklearn)5: to build ML models.

• Statsmodels 0.12.2 6: to estimate different statistical models and explore
statistical data.

• TensorFlow 2.8.27: an end-to-end open source platform for ML, developed
by the Google Brain Team. It supports GPUs and CPUs.

1Google Colab: https://bit.ly/3e4YsVE
2Python: https://www.python.org/
3Pandas: https://pandas.pydata.org/
4NumPy: https://numpy.org/
5Scikit-learn: https://scikit-learn.org/stable/
6Statsmodels: https://www.statsmodels.org/stable/index.html
7Tensorflow: https://www.tensorflow.org/

https://bit.ly/3e4YsVE
https://www.python.org/
https://pandas.pydata.org/
https://numpy.org/
https://scikit-learn.org/stable/
https://www.statsmodels.org/stable/index.html
https://www.tensorflow.org/


• Keras 2.8.08: runs on top of TensorFlow to develop DL models.

• PyTorch 1.12.19: created by Meta AI. It provides tensor computation and NN
based on a tape-based autograd system. We used the PyTorch Geometric
Temporal library to process spatiotemporal signals [126].

• Plotly 4.13.0 (Plotly Python Graphing Library)10: to generate graphs.

• Matplotlib 3.2.211: multi-platform data visualization library.

• ArcGIS Pro12 with ArcPy package13: to explore, visualise, and analyse data.
The process of combining air quality data, meteorological data and traffic
data in both spatial and temporal terms, as well as the creation of maps, was
realised in this environment.

• WRPLOT VIEW 8.0.2 (Wind Rose plot for Meteorological Data)14: provides
wind rose plots which illustrate the distribution of wind speed and wind
direction at a particular location.

• Openair R package15: contains a set of tools to analyse and understand air
pollution data. We used it to generate polar plots16.

8Keras: https://keras.io/
9PyTorch: https://pytorch.org/

10Plotly Python Graphing Library: https://plotly.com/python/
11Matplotlib: https://matplotlib.org/
12ArcGIS Pro: https://bit.ly/3SBHfSy
13ArcPy package: https://bit.ly/3USwDAi
14WRPLOT VIEW: https://bit.ly/3SPucxf
15Openair R package: https://bit.ly/3ROdjlf
16Polar plots: https://bit.ly/3Syh13j

https://keras.io/
https://pytorch.org/
https://plotly.com/python/
https://matplotlib.org/
https://bit.ly/3SBHfSy
https://bit.ly/3USwDAi
https://bit.ly/3SPucxf
https://bit.ly/3ROdjlf
https://bit.ly/3Syh13j
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and José Luis Ambite. Exploiting spatiotemporal patterns for accurate air
quality forecasting using deep learning. In Proceedings of the 26th ACM
SIGSPATIAL international conference on advances in geographic information
systems, pages 359–368, 2018.

[65] Fernando Benitez-Paez, Auriol Degbelo, Sergio Trilles, and Joaquin Huerta.
Roadblocks hindering the reuse of open geodata in colombia and spain: A
data user’s perspective. ISPRS International Journal of Geo-Information, 7
(1):6, 2018.

[66] Auriol Degbelo, Carlos Granell, Sergio Trilles, Devanjan Bhattacharya, and
Jonas Wissing. Tell me how my open data is re-used: increasing trans-
parency through the open city toolkit. In Open Cities— Open Data, pages
311–330. Springer, 2020.

[67] Fernando Benitez-Paez, Alexis Comber, Sergio Trilles, and Joaquin Huerta.
Creating a conceptual framework to improve the re-usability of open geo-
graphic data in cities. Transactions in GIS, 22(3):806–822, 2018.

[68] Sasha Khomenko, Marta Cirach, Evelise Pereira-Barboza, Natalie Mueller,
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