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That was the beginning, and the idea seemed so obvious to me and so elegant
that I fell deeply in love with it. And, like falling in love with a woman, it is only
possible if you do not know much about her, so you cannot see her faults. The faults
will become apparent later, but after the love is strong enough to hold you to her. So,
I was held to this theory, in spite of all difficulties, by my youthful enthusiasm.

Richard P. Feynman, Nobel lecture 1965
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à l’aide d’une agrafeuse! Tes nombreuses qualités ontét́e une ŕeference pour moi.
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l’Uri. Gr àcies per tota la teva ajuda en els moments que ho he necessitat i, sobretot,
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General introduction

The propulsion mechanisms that drive the movements of living cells constitute per-
haps the most impressive engineering works of nature. Still, it is simply the interac-
tion between molecules which is responsible for these complex and robust motility
mechanisms. A question that arises naturally is thus how the underlying molecules
self-organize to perform such highly coordinated tasks. Although a global under-
standing of cell behavior is still out of reach, the study of particular aspects of bio-
logical systems may help building up a more clear picture.

Biologists have made lots of efforts to characterize the proteins involved in cel-
lular movements, to identify their interactions and to understand their regulation.
This information is very important and has explained several aspects of the motil-
ity of living cells. The discovery of proteins able to generate forces at molecular
scales, known as motor proteins, provided essential information to understand the
observed cellular movements. However, the force developed at the molecular level
by a single protein is too weak to drive cellular movement on its own. Probably
the clearest example is the functioning of muscles. The forces developed are about
12 orders of magnitude larger than the forces generated at molecular scales. This is
possible because the contraction of muscles involves the collective action of many
motor proteins (Alberts et al., 2004; Bray, 1992). Although each one of these pro-
teins generates a small force (in the picoNewton range), the sum of their individual
contributions leads to large forces. At the cellular scales something similar occurs.
The necessary forces for the motion of a cell and even for intracellular movements,
are larger than molecular forces. The collective action of molecular force generators
is thus essential to understand most cellular movements.

Here we study theoretically some examples of cellular movements and com-
pare quantitatively, when possible, our results to the experimental observations. The
work is divided in three parts: we first study the motion of oil drops propelled by an
actin comet tail, which closely mimics the motility mechanism of several bacterial
pathogens, as the bacteriaListeria. The second part is devoted to particular aspects of
intracellular transport. We study the physical mechanism of membrane tube extrac-
tion by motor proteins, the traffic of motor proteins at large scales and the collective
force generation of molecular motors pulling on fluid membranes. In the last part we
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address both the motion of chromosomes in eukaryotic cell division and the stability
of spindle-like structures, as the mitotic spindle.

Our aim is to understand how these movements arise from the cooperative action
of molecular force generators. The forces developed by ensembles of force genera-
tors are not static, but depend on the dynamic state of the system. This is so because
the kinetics of the individual force generators is strongly affected by the forces cre-
ated by themselves. As we discuss below, this force-dependent kinetics imposes a
highly non-linear dynamics for the system and, as a consequence, several dynamic
instabilities occur. Our work shows that the collective behavior of molecular force
generators is essential to understand some features of cellular movements.

1.1 Examples of cellular movements

Living cells display an amazing variety of movements, both at intracellular level and
at level of the cell as a whole (Alberts et al., 2004; Bray, 1992). Although already
very complex, the propulsion mechanisms of bacteria are typically simpler than those
of eukaryotic cells. Some eukaryotic cells use cilia (e.g.Paramecium; Fig. 1.1b) or
flagella (e.g. animal sperm cells; Fig. 1.1a) to induce the motion of the surrounding
fluid. The induced fluid flow brings nutrients near the cell and allows it to move.
Some multicellular organisms, likeVolvox, also use eukaryotic flagella for the same
goals (Solari et al., 2006). The bacteriaEscherichia Coliare also propelled by flag-
ella, but of a different class, with different structure and beating mechanism. Besides
ciliary and flagellar beating, there exist bacteria (e.g.Listeria; Fig. 1.1d) that use
actin polymerization to move through the cytoplasm of infected cells (see chapters 2
and 3). The force generation by polymerization of actin filaments is not exclusive of
bacteria. The crawling motion of eukaryotic cells also involves the constant growth
of entangled actin filaments (Fig. 1.1c; see chapter 2). All these motility mechanisms
drive the motion of the cell as a whole. Nevertheless, at intracellular level there are
also many processes that involve force and motion generation. The process of intra-
cellular transport (see chapters 4 and 5), cell division (Fig. 1.1f; see chapters 7, 8 and
9), phagocytosis (Fig. 1.1e), cell adhesion and the reorganization of the cytoskeleton,
are examples of processes that require force generation at cellular scales.

Eukaryotic cells have a toolbox of molecular force-generating elements that can
be combined in many different ways, leading to distinct motility mechanisms (Bray,
1992; Murase, 1992). For instance, eukaryotic flagella and cilia are extremely or-
dered structures where ensembles of dynein motors collectively generate the sliding
of microtubules, inducing the observed beating patterns. On the other hand, the ex-
tension of the leading edge of a crawling cell is due to the simultaneous polymeriza-
tion of many actin filaments that are crosslinked in a network structure. In all cases,
however, it is the combined action of many molecular force generators which pro-
duces the necessary forces for both intracellular movements and the motion of the
cell as a whole. This cooperativity between the elementary force generators is es-
sential to understand the dynamics of several cellular processes, and even the force
production at larger scales, like in muscle contraction.
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Fig. 1.1.Examples of cellular movements. (a) Flagellar beating of a sperm cell. Time sequence
of the beating pattern: time increases from top to bottom. A wave propagates along the flagel-
lum from the head to the tail, inducing the motion of the surrounding fluid and propelling the
sperm cell. (Image by C. Brokaw). (b) Field of cilia (orange) on the surface of aParamecium.
The coordinated motion of the cilia generates the fluid flow that propels the cell. (Image by
A. Fleury). (c) Fluorescence image showing the actin distribution in a crawling keratocyte. (d)
Image of the bacteriaListeria moving in an infected cell. The actin comet tail that extends at
the back of the bacterium generates the necessary force to propel it in the cytoplasm of the host
cell and deform its membrane. (Adapted from Ref. (Mahadevan and Matsudaira, 2000)). (e)
Image showing a macrophage engulfing two objects by phagocytosis. (Figure taken from the
P. Chavrier Lab website (Institut Curie)). (f) Fluorescence image of the mitotic spindle during
the division of an eukaryotic cell. The microtubules (green) are organized in a bipolar struc-
ture and the chromosomes (blue) are positioned at the mitotic midplane before segregation.
(Adapted from Ref. (Gruss et al., 2002)).
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1.2 Molecular basis of force and motion generation

The forces driving cellular movements have their origin at molecular scales (Alberts
et al., 2004; Bray, 1992; Howard, 2001). There exist several processes able to gener-
ate forces at the molecular level, and most of them require nucleotide hydrolysis as
energy supply. The hydrolysis of a Nucleotide-TriPhosphate (NTP) into Nucleotide-
DiPhosphate (NDP) and an inorganic phosphate provides an energy of about 10KBT,
whereKBT is the thermal energy. While Adenosine TriPhosphate (ATP) is the most
common molecule involved in processes of force generation, Guanosine TriPhos-
phate (GTP) provides, for instance, the necessary energy for microtubule polymer-
ization/depolymerization. As we discuss below, this energy drives motions of a few
nanometers. Hence, the order of magnitude of the forces generated by elementary
molecular force generators are of order 10KBT/nm and, thus, in the picoNewton
range.

The chemical energy from the nucleotide hydrolysis is converted into mechanical
work by specialized proteins. Most cellular and intracellular movements involve the
assembly of protein filaments (actin filaments and microtubules1) and/or the action
of motor proteins. There exist, however, other molecular force-generating mecha-
nisms that we do not address here, like rotatory motors that drive the rotational mo-
tion of bacterial flagella. We briefly describe below the mechanisms by which protein
filaments (actin filaments and microtubules) and motor proteins generate forces and
motion at molecular scales.

1.2.1 Actin filaments and microtubules

Actin filaments and microtubules are biopolymers with distinct biochemical and
physical properties that allow them to perform different functions in living cells.
These two types of filaments are directly or indirectly responsible for most, if not all,
large scale movements in eukaryotic cells. In some situations, the growth of actin
filaments generates the necessary forces for motion, like in the extension of the
lamellipodium of a crawling cell or the motion of several bacterial pathogens (see
chapter 2), whereas in other cases, molecular motors (myosin) associated to actin
filaments drive the movement, as in muscle contraction. The growth and shrinkage
of individual microtubules generates forces that are important for the process of in-
tracellular transport, organelle positioning and cell division. However, most cases
of microtubule-based movements involve motor proteins (kinesins and dyneins) that
move along microtubules and generate the necessary forces for motion, as in intra-
cellular transport (see chapters 4 and 5) and cell division (see chapters 8 and 9).
Moreover, microtubules and motor proteins form also specialized structures (cilia,
flagella,. . . ) which are responsible for the motion of some cells and organisms
(Volvox (Solari et al., 2006)).

1 Besides microtubules and actin filaments, the cytoskeleton of eukaryotic cells contains also
intermediate filaments, which confer further mechanical consistency to the cell.
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The necessary forces to generate large scale movements can be thus developed
directly by the growth of ensembles of filaments (actin filaments or microtubules) or
through motor proteins associated to these filaments.

Biochemical structure and growth properties

Both actin filaments and microtubules are repetitive assemblies of small protein sub-
units, actin for actin filaments and tubulin for microtubules. The protein subunits
forming these polymers have a structural polarity, which guides the assembly process
in such a way that only linear structures are formed. The filaments are composed of
a given number of linear arrays of subunits, called protofilaments. We now describe
the protein subunits forming these filaments and discuss their structure and growth
properties.

Actin filaments

Actin is a very conserved protein throughout evolution and it typically constitutes
approximately the 10% of the protein content of an eukaryotic cell. Both the poly-
merized form of actin (filamentous actin or F-actin; Fig. 1.2) and its monomeric form
(globular actin or G-actin; Fig. 1.2) are found in different proportions in cells. The
continuous conversion of F-actin to G-actin and vice-versa allows the cell to rapidly
reorganize its cytoskeleton and adapt to different conditions.

Actin filaments are composed of two linear arrays of actin monomers (protofil-
aments), arranged as a right-handed double helix that twists around itself every 37
nm (Fig. 1.2). This helical structure confers more stability to the filament as each
actin monomer not only contacts the monomers along a single protofilament but also
contacts laterally monomers from the other protofilament.

Actin monomers have an structural polarity. As a result, two actin monomers can
only assemble in a particular spatial arrangement, which leads to a “head-to-tail”
assembly of the monomers in a protofilament. Moreover, the two protofilaments are
arranged with parallel polarities. This organization leads to an overall structural po-
larity of the actin filaments, with the two ends being structurally different. The dy-
namics of the two filament ends can be thus regulated differently by the association
of distinct regulatory proteins. There exist many actin associated proteins that regu-
late the dynamics of the filament ends and organize actin filaments. Indeed, actin fila-
ments appear typically organized in networks, bundles or other structures, depending
on the accessory proteins connecting the actin filaments (Fig. 1.2). In chapter 2 we
briefly describe the roles of the most important proteins that regulate actin assembly
and large scale organization of actin filaments.

The polymerization process leading to the growth of an actin filament is ATP
dependent. Actin monomers exist in two different conformational states, depending
on whether they are bound to ATP or ADP molecules. Monomers in a given con-
formation tend to assemble with those having the same conformation. ATP-bound
monomers assemble faster than ADP-bound monomers and the resulting structure is
more stable (Fig. 1.3a). As a consequence of this different stability, actin filaments
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Fig. 1.2. Actin monomers, filaments and large scale actin structures. (a) Structure of an
actin monomer (G-actin). The actin monomer in ribbon representation together with an ATP
molecule in its binding site (above), and the solvent-accessible surface of actin (below). (Im-
age taken from the website http://www.mih.unibas.ch/Booklet/Chapter1/Chapter1.html). (b)
Sketch of the structure of an actin filament (F-actin), showing the two protofilaments arranged
in a double helix structure. (Adapted from Ref. (Fujiwara et al., 2002)). (c) Typical large scale
organizations of actin filaments (pink) mediated by accessory proteins (light blue). Depending
on the type of proteins that crosslink the filaments, the resulting structure can be a F-actin
bundle or a network. (Modified from Ref. (Lodish et al., 2000)).

with ADP-bound monomers depolymerize faster. The existence of these two states
for monomer assembly characterizes the growth dynamics of actin filaments.

The polymerization of an actin filament starts with a slow nucleation phase,
where some ATP-bound monomers assemble and create a seed for further poly-
merization. Once these nucleation centers are assembled, the growth of the filament
is faster. The ATP molecules associated with the actin monomers are hydrolyzed
some time after the addition of the monomer to the filament (Fig. 1.3a). As a con-
sequence, the actin filament is typically composed of two regions, one with ATP-
bound monomers and another with ADP-bound monomers. The two ends of the
filament have thus different growth properties, because the assembly and dissoci-
ation rates are different for ATP and ADP-bound monomers. In particular, the ATP-
containing end grows faster than the ADP-containing end, and are referred to as plus
end (or barbed end) and minus end (or pointed end), respectively. The distinct growth
properties and stability of the two ends give rise to different dynamical regimes of
growth (Fig. 1.3b), namely treadmilling and growth catastrophes (dynamic instabil-
ity). Treadmilling is an steady state in which, on average, the barbed end grows and
the pointed end shrinks, leading to a constant length of the filament in spite of the ex-
istence of a net flux of actin monomers through the filament. Catastrophes take place
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Fig. 1.3.Dynamics of actin filaments. (a) Electron microscopy (EM) image of an actin fila-
ment with a portion of its length decorated with myosin heads, showing the helical structure of
the filament (left). Sketch of actin filament elongation, ATP hydrolysis and phosphate disso-
ciation. The association and dissociation rates are in units ofµM−1 s−1 and s−1 respectively.
The ratio of the dissociation and association constants,K, is in units ofµM. (Adapted from
Ref. (Pollard and Borisy, 2003)). (b) Dynamical regimes of an actin filament: Treadmilling,
dynamic instability and annealing/fragmentation. (Adapted from Ref. (Littlefield and Fowler,
2002)).

when the ATP-containing region stochastically disappears, leading to a rapid disas-
sembly of actin monomers at the barbed end. While treadmilling has been directly
observed, only indirect proves exist for growth catastrophes of actin filaments (Lit-
tlefield and Fowler, 2002).

Microtubules

Like actin, tubulin is also one of the most conserved proteins throughout evolution.
The microtubules, which result from the self-assembly of tubulin dimers, are neces-
sary for many essential processes in eukaryotic cells, and play a crucial role in their
internal organization and transport (see chapter 4).

Tubulin is a dimeric molecule composed of two slightly different subunits,
namelyα andβ -tubulin (Fig. 1.4a). The tubulin dimers are thus characterized by
a structural polarity, and assemble into linear arrays (protofilaments) with alternated
α andβ -tubulin subunits (Fig. 1.4a). The microtubule has a cylindrical hollow struc-
ture, formed typically by 13 protofilaments with parallel polarities, which confer an
overall polarity to the microtubule, withα-tubulin exposed at one end andβ -tubulin
at the other (Fig. 1.4b-c). The distinct microtubule ends are recognized by micro-
tubule associated proteins which can regulate the dynamics of each end differently.

Each subunit forming the tubulin dimer has a binding site for GTP, but only that
exposed to water in theβ -tubulin subunit can be hydrolyzed into GDP. In a similar
way as for actin, there is an initial nucleation phase of microtubules, in which GTP-
bound tubulin dimers assemble and create a seed. The growth of the filament once
the seed is created is much faster. The GTP molecules are hydrolyzed quickly after
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Fig. 1.4.Microtubule structure and dynamics. (a) Structure of anα −β tubulin dimer com-
posing the microtubule. (b) Sketch of a microtubule showing its hollow tubular structure
composed of 13 protofilaments: cross-section (above) and side-view (below). (c) Electron
microscopy image of a microtubule: cross-section (above) and side-view (below). (Adapted
from Ref. (Alberts et al., 2004)). (d) Growth dynamics of a microtubule. GTP-bound tubulin
dimers are added at the plus end, whereas at the minus end the GDP-bound dimers dissoci-
ate from the microtubule. A GTP cap forms at the plus end and maintains the stability of the
microtubule. (Adapted from Ref. (Lodish et al., 2000)). (e) Dynamics and structure of grow-
ing and shrinking microtubule ends. Growing ends (left) fluctuate between gently curved and
straight protofilament sheets; shrinking ends (right) are dominated by highly curved, peeling
protofilaments. The transition between a slowly growing and a rapidly shrinking microtubule
end is known as dynamic instability. (Adapted from Ref. (Mahadevan and Mitchison, 2005)).
(f) Fluorescence image showing the microtubules (yellow) and actin filaments (violet) during
the interphase of eukaryotic cells (mouse fibroblast). (Figure by T. Wittmann).
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the initial assembly. As a consequence, the microtubule is characterized by a GTP-
cap at theβ -tubulin end, and the rest of the microtubule, and in particular theα-
tubulin end, contains GDP (Fig. 1.4d). Tubulin dimers are added more rapidly to the
β -tubulin end (plus end) than to theα-tubulin end (minus end) of the microtubule.
The GTP hydrolysis has important consequences for the dynamics of the filament.
If the GTP-cap at the plus end disappears, the microtubules quickly disassemble
until a new GTP-cap is formed, allowing the microtubule to grow again (Fig. 1.4e).
This slow growth and rapid shrink of microtubules is called dynamic instability. A
microtubules can also undergo treadmilling, in which case it grows at the plus end
and shrinks at the minus end, with a net flux of tubulin going through the filament.
These two dynamical regimes are of crucial importance during cell division (see
chapter 7).

The organization of microtubules in an eukaryotic cell depends on the stage of the
cell cycle. During cell division, microtubules form a highly ordered structure called
mitotic spindle (see chapters 7 and 9). In the rest of the cell cycle (interphase) micro-
tubules display an approximately radial distribution from the cell center (Fig. 1.4f).

Elastic properties

At scales much larger than the individual monomers constituting the polymer (mi-
crotubules or actin filaments), the elastic properties of these biopolymers can be un-
derstood in the same framework (de Gennes, 1979; Doi and Edwards, 1986). The
bending rigidityB quantifies the energy cost of bending deformations of the poly-
mer2; the stiffer the polymer, the larger the value of its bending rigidity. The compar-
ison between the energy cost of bending the polymer and the thermal energy,KBT,
defines the persistence length,`p = B/KBT, which sets the length scale at which
thermal fluctuations are able to significantly contort the filament.

If the polymer lengthL is such thatL � `p the polymer appears straight
(Fig. 1.5b), whereas forL � `p the polymer appears as a random tangled mess
(Fig. 1.5a). Microtubules have a persistence length`p ' 1− 5 mm, much larger
that the typical size of a cell (∼ 10 µm) and behave thus as rigid rods inside the
cell. This is not to say that microtubules are straight in a living cell. Indeed, the
buckling force3 of a microtubule of 5µm in length is about 1 pN, meaning that
the typical forces developed by motor proteins and the polymerization process itself,
which are of several picoNewtons (see below), can deform microtubules significantly
(Fig. 1.4f). Actin filaments are more flexible at cellular scales as their persistence
length is about 15µm. Therefore, under no applied load, actin filaments of several
microns long are already contorted as a consequence of thermal fluctuations. As we
explain below, the elastic properties of the filaments are crucial to understand how
do filaments organize to generate forces.

2 There is also an energy cost associated to twist that we do not address here.
3 The buckling force,FB∼B/L2, is the necessary force to bend a straight rod of lengthL and

bending rigidityB (Landau and Lifshitz, 1986).
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Fig. 1.5.Sketch of a filament with a lengthL much larger (a) and smaller (b) than the persis-
tence length̀ p. For filament lengths smaller than the persistence length the filament appears
straight (b; above). The filament bends under the action of a compressive force,F , larger than
its buckling force (b; below).

Force generation by polymerization

The polymerization process of actin filaments and microtubules is able to generate
force. In vitro experiments using individual microtubules have shown that a micro-
tubule polymerizing against an obstacle generates large enough forces to induce its
own bending (Dogterom et al., 2005; Janson and Dogterom, 2004; Dogterom and
Yurke, 1997) (Fig. 1.6b). The forces developed by the polymerization process can
be measured from the shape of the bent microtubule and are of the order of several
picoNewtons. Moreover, these experiments allow to measure the growth velocity of
the microtubule as a function of the applied load (Fig. 1.6a). The polymerization ve-
locity decreases exponentially with the magnitude of the opposing force. Although
the necessary force to stall the growth of a microtubule (stall force) has not yet been
measured, forces up to 4 pN are developed by the growth of individual microtubules.
The applied force not only affects the polymerization kinetics, but also the dynamical
state of the growing microtubule. In particular, the rate at which catastrophes occur
increases exponentially with the opposing load (Janson et al., 2003).

Although the precise mechanism of force generation by polymerization remains
unclear, a simple model that includes the force-dependent polymerization kinet-
ics accounts for the observed behavior (Dogterom and Yurke, 1997). The filament
growth requires the addition of new subunits at its growing end (plus end). When
the filament is growing against an obstacle, it is not possible to add new subunits
to the growing end unless a large enough gap between the filament plus-end and
the obstacle transiently forms, allowing new subunits to be incorporated to the fila-
ment (Fig. 1.6c). The model proposes that the energy barrier separating the polymer-
ized and non-polymerized tubulin forms is increased by a load opposing the filament
growth. According to Kramers rate theory (van Kampen, 2004; Kramers, 1940) the
polymerization and depolymerization rates are exponentially affected by the force.
The experimental observations show that rate at which tubulin dimers are added to
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Fig. 1.6.Force generation by polymerization and depolymerization. (a) Average growth veloc-
ity of a microtubule as a function of the compressive force,fp. The solid line corresponds to
an exponential fit of the experimental data. (Adapted from Ref. (Dogterom and Yurke, 1997)).
(b) Experiments in which microtubules grow from nucleation sites attached to the surface.
Upon growth, a microtubule may reach a wall (left arrow). The microtubule appears buckled
as a consequence of its growth against the wall. The force that the microtubule is applying
can be deduced from its buckled shape (continuous line). (Adapted from Ref. (Janson and
Dogterom, 2004)). (c) Sketch of the force-generating process of a growing filament. When a
filament hold at a given point (green wall) polymerizes against an obstacle (blue), the addition
of new monomers to the filament induces the motion of the obstacle even in the presence of
compressive loads. The filament may be straight (left) or buckled (right) when sustaining the
applied load. (d) Sketch of the process of force generation by depolymerization of a micro-
tubule. A depolymerizing microtubule can induce the motion of an object attached to it thanks
to the curled configuration of the protofilaments at the depolymerizing end. The arrows in-
dicate the direction of the force applied by the depolymerizing microtubule. (Adapted from
Ref. (Mogilner and Oster, 2003b)).

the microtubule decreases exponentially with the opposing force,f , whereas the de-
polymerization rate is nearly not affected by the load. The growth velocity of the
filament can thus be written as (Dogterom and Yurke, 1997)

vp( f ) = δ

[
α exp

(
− f δ

KBT

)
−β

]
, (1.1)

whereδ is the increase in filament length per added dimer,α is the polymerization
rate at vanishing load (which depends on the bulk concentration of non-polymerized
dimers) andβ is the depolymerization rate. In most conditions, the polymerization
rate is much larger than the depolymerization rate at the plus-end andβ can be ne-
glected. The “Brownian ratchet” model (Mogilner and Oster, 2003b; Mogilner and
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Oster, 1996), which describes the mechanism by which new subunits are added to
a filament under applied load, leads to similar results. This model states that bend-
ing fluctuations of the filament and/or thermally induced fluctuations of the cargo,
can transiently open up a large enough gap between the filament and the obstacle,
allowing the addition of new subunits to the filament.

In contrast to microtubules, the relation between the growth velocity and the op-
posing force for an actin filament has not yet been measured. However, it is known
that actin filaments can develop forces of several picoNewtons upon polymeriza-
tion (Miyata et al., 1999; Marcy et al., 2004; Mogilner and Oster, 2003a). The max-
imal force (stall force) developed by the polymerization of a single actin filament
has been estimated to be of a few picoNewtons (Peskin et al., 1993). As the bending
rigidity of actin filaments is much smaller than that of microtubules, actin filaments
longer than several tenths of nanometers are easily bent by the forces developed upon
their own growth. In order to efficiently generate directed forces, only portions of
actin filaments shorter than about 200 nm should be involved in force generation by
polymerization. Indeed, actin filaments assemble into dense crosslinked networks,
so that only short portions of individual filaments push against opposing loads (see
chapter 2). Besides the active pushing force developed by the growth of actin fila-
ments, these actin networks also resist stresses and confer consistency to the cell.
Although microtubules are much stiffer than actin filaments, in some situations the
compressive forces they must resist are larger than their buckling force. In these
cases, microtubules appear in bundles, which are characterized by a larger bending
rigidity and can sustain larger compressive forces without buckling significantly (see
chapter 9).

In addition to the force generation by polymerization, microtubule depolymeriza-
tion can also generate forces (Fig. 1.6d). This type of force generation has attracted
much attention because it is thought to provide a major contribution to the force
responsible for chromosome motion during cell division (see chapters 7 and 8).

1.2.2 Motor proteins

Motor proteins are specialized enzymes able to convert the energy from ATP hydrol-
ysis into mechanical work (Alberts et al., 2004; Howard, 2001; Bray, 1992). These
molecular machines move along cytoskeletal filaments, and are involved in many
different tasks that involve force generation and motion, like intracellular transport
(see chapters 4 and 5), cell division (see chapters 7, 8 and 9), cell locomotion, muscle
contraction, flagellar and ciliary beating,... There exist very many different kinds of
motor proteins (Howard, 2001; Hirokawa, 1998), which differ in the type of filament
they bind to, the direction in which they move along the filament and the cargo they
carry. While myosin motors move along actin filaments, kinesin and dynein motors
move along microtubules. Although these are the most studied type of molecular
motors, there exist other molecular machines, like the DNA polymerase (that moves
along DNA) or rotatory motors (responsible for the rotation of bacterial flagella).

Here we focus on conventional kinesin (Kinesin-I), as it is the most studied
molecular motor and there is a lot of biochemical and biophysical data available. Al-
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though other motor proteins may differ in the precise internal structure and the details
of their motion and force generation, the general picture concerning the motion of the
motor and the way forces are developed is similar. Conventional kinesin is mainly
involved in intracellular transport, where it carries small vesicles and pulls mem-
brane tubes that allow the communication between different organelles in eukaryotic
cells. Other kinesin motors are involved in cell division (e.g., chromokinesins or the
bipolar kinesin Eg5). Some others have microtubule depolymerizing activity (e.g.,
MCAK or KinI) and are able to control the dynamics of the microtubule ends.

Biochemical structure

The structure of kinesin-I is sketched in Fig. 1.7a. It is composed of two heavy chains
and two light chains. Each one of the two heavy chains contains a motor domain or
head, which binds to microtubules and has a binding site for ATP. Each head is
connected to a “neck linker”, a mechanical element that undergoes a conformational
change that depends on the state of the ATP hydrolysis cycle and enables motor
motion. The neck linker is, in turn, connected to a long coiled-coil stalk that allows
the dimerization of the heavy chains. Finally, there is a globular tail domain that
participates in cargo binding and the regulation of the motor activity. When the motor
is not attached to any cargo, it folds on itself and the motor tail interacts with the
motor domains, preventing motor motion. The light chains are situated at the level
of the tail and mediate specific attachment to different cargos, allowing selective
transport.

The kinesin motor domain is the only domain conserved among the different
kinesin sub-families. It is essential as it is the place where the conformational change
of the protein takes place upon ATP hydrolysis, leading eventually to the motion of
the protein. The small conformational change in the motor domain is amplified by
the neck linker, that enables the nanometer scale conformational change observed
during motor stepping. In addition, it has been shown that the neck linker determines
the directionality of the motor protein.

Motor motion in the absence of applied load

Although the mechano-chemical coupling at molecular scales responsible for the
movement of the motor is still under debate, there are several characteristics of the
motor motion that are established.

Kinesin-I moves toward the plus-end of microtubules by a sequence of 8 nm
steps (Howard, 2001; Svoboda et al., 1993; Carter and Cross, 2005; Nishiyama et al.,
2002), which coincide with the size of the tubulin dimers that constitute the mi-
crotubule (Fig. 1.7b,c). The motor moves along a single protofilament (Ray et al.,
1993), and the step size does not depend on the load applied to the motor (Carter
and Cross, 2005)4. The motor stepping is done in an asymmetric “hand-over-hand”

4 Unlike conventional kinesin, dynein motors change the step size depending on load they
sustain (Mallik et al., 2004).
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Fig. 1.7.Conventional kinesin structure and motion. (a) Structure of a single conventional ki-
nesin motor. (Modified from Ref. (Vale, 2003)). (b) Mechano-chemical cycle. Four steps of
the cycle are shown, ordered in time from top to bottom. Frame 1: Each motor domain (blue) is
bound to a tubulin dimer (green,β subunit; white,α subunit) of a protofilament. Frame 2: ATP
binding on the leading head induces its docking on the microtubule and promotes a conforma-
tional change that results in the motion of the trailing head by approximately 16 nm toward
the next tubulin binding site. Frame 3: After a random diffusional search, the new leading
head docks tightly onto the binding site. In this process, the kinesin center of mass and, thus,
the cargo attached to its tail (not shown) moves forward by approximately 8 nm. The binding
process also accelerates ADP release and, during this time, the trailing head hydrolyzes ATP
to ADP·Pi . Frame 4: After ADP release in the leading head, ATP binds to the empty catalytic
site of the leading motor domain. The trailing head, which has released its inorganic phosphate
(Pi) and detached from the microtubule, is moved forward by a conformational change to the
next tubulin binding site. (Adapted from Ref. (Vale and Milligan, 2000)). (c) Step-like motion
of conventional kinesin motors. A single kinesin motor is attached to a bead, which is hold
by an optical trap. The motion of the bead is tracked over time and results from the motion
of the kinesin motor, which is composed of alternated pauses and rapid transitions to the next
tubulin binding site. The time between steps (dwell time) is an stochastic variable and the mo-
tor advances 8 nm in each step. The inset shows an sketch of the experimental set-up. (Image
taken from the website http://www.azonano.com/details.asp?ArticleID=1248). (d) Motion of
a conventional kinesin motor over time and length scales larger than those of individual motor
stepping. A single kinesin motor is attached to a bead, which is hold by a force clamp. The
motion of the bead, resulting from the motor stepping, is followed over time. The continu-
ous read line over the bead trajectory indicates the convective motion of the motor. The inset
shows an sketch of the experimental set-up. (Modified from Ref. (Visscher et al., 1999)).
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fashion (Yildiz et al., 2004; Hua et al., 2002); in each step the rear head moves for-
ward by 16.6 nm and the front head does not move, leading to an overall motion of
the kinesin center of mass of 8.3 nm. The asymmetric character was established by
the observation that the kinesin stalk does not rotate upon motor stepping (Hua et al.,
2002).

The energy required for motor stepping comes from the hydrolysis of ATP. One
ATP molecule is consumed (hydrolyzed) per step (Schnitzer and Block, 1997). The
process of motor stepping couples the hydrolysis of ATP at the motor domains with a
conformational change of the protein and its motion along the microtubule (Howard,
2001; Vale and Milligan, 2000; Carter and Cross, 2005). There are several internal
states of the motor, associated to the stage of the ATP hydrolysis cycle and the con-
formational state of the motor. The details of the hydrolysis cycle and the associated
conformational changes of the motor are described in Fig. 1.7b.

Independently of the internal functioning of the motor, the observed stepping is
as follows. The motor performs alternated steps and pauses (Carter and Cross, 2005;
Nishiyama et al., 2002) (Fig. 1.7c). The time between two motor steps is called
the dwell time, which is of order of several milliseconds in the absence of applied
load. The mechanical stepping is done much faster. New experiments with high time
resolution report that the motor takes less than 30µs to perform the step (Busoni
et al., 2006). This difference of time scales in the mechanical steps and the pauses
explains the stair-like trajectory of a moving motor (Fig. 1.7c). Moreover, no sub-
step related to the internal functioning of the motor has been detected with a time
resolution of 30µs and nanometer spatial resolution (Busoni et al., 2006). However,
the existence of sub-steps is still under debate.

At length scales much larger than the step size of the motor and time scales much
larger than the dwell time, the motor motion can be thought as the combination of
a convective motion, which accounts for the motor bias, and a diffusive term arising
from the fluctuations in the motor stepping kinetics (Fig. 1.7d; see chapter 6). In this
description the motor moves with an average velocityV and the fluctuations of the
trajectory are characterized by a diffusion constantD (Fig. 1.7d). The average veloc-
ity V of single conventional kinesin motors depends on the ATP concentration and
can be well described by the Michaelis-Mentel kinetics (Hackney, 1994; Visscher
et al., 1999; Block et al., 2003). At saturating ATP concentrations, i.e. when the time
for an ATP molecule to bind the motor domain does not limit the stepping kinetics,
the average velocity of conventional kinesin is about 0.6 µm/s.

Motor proteins do not remain attached indefinitely to the filament they walk
along. The capacity of motor proteins to perform several steps along the filament
without detaching from it is called processivity (Howard, 2001). Processive motors,
like conventional kinesin, perform many steps before detaching from the filament,
whereas non-processive motors perform only a single step before detaching. In the
absence of force, conventional kinesin performs, on average, 125 steps before de-
taching from the microtubule, leading to a processivity length, i.e. the length traveled
by the motor along the filament before detaching, of about 1µm. On the contrary,
myosin-II motors, responsible for muscle contraction, are non-processive (Veigel
et al., 2003).
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Many theoretical descriptions have been proposed to explain the mechano-
chemical coupling that leads to the motor motion (Julicher et al., 1997; Astu-
mian, 1997; Leibler and Huse, 1993; Fisher and Kolomeisky, 1999; Duke and
Leibler, 1996; Lipowsky, 2000). Although the characteristics of motor stepping de-
pend on many details, the basic physical requirements to generate the directed mo-
tion of a motor with several internal states on an asymmetric substrate are estab-
lished (Julicher et al., 1997). Specifically, it is necessary to break the spatial sym-
metry (parity) and the temporal symmetry (detailed balance). The first symmetry
is directly broken due to the local structural polarity of tubulin dimers and de-
tailed balance is broken by ATP hydrolysis, which drives the system out of equi-
librium. The simplest model that explains the motor motion is the two-state ratchet
model (Julicher et al., 1997), which sets the basic physical requirements for motor
motion.

Force generation and force-dependent motor kinetics

The force generation at molecular level has been studied in detail for myosin-
II (Veigel et al., 2003) and myosin-V (Veigel et al., 2005) motors, for which it has
been possible to characterize the load dependence of internal motor transitions. Al-
though for conventional kinesin the load dependence of its internal transitions is not
that well characterized, the force dependence of the motor transitions that result in
movement or detachment from the microtubule have been studied. Here we describe
how the motor kinetics depends on the load applied to the motor.

The first single molecule experiments proving the load dependence of kinesin
motion showed that the average velocity of kinesins decreases with the applied load,
f , and vanishes at a force about 6−7 pN (Fig. 1.8a) (Visscher et al., 1999; Schnitzer
et al., 2000; Block et al., 2003; Nishiyama et al., 2002; Carter and Cross, 2005). The
force, fs, needed to stop the directed motion of the motor is called stall force. Al-
though the force-velocity relation of single conventional kinesin motors is nonlinear
(Fig. 1.8a), for forces opposing the motion of the motor it can be approximated by a
linear dependence, so that

V( f ) = V0

(
1− f

fs

)
, (1.2)

whereV0 is the average kinesin velocity in the absence of load. BothV0 and fs de-
pend on the ATP concentration and reach maximal values at saturating ATP con-
centrations (Visscher et al., 1999; Block et al., 2003). In chapter 6 we discuss the
force-velocity relation in more details. The stall force indicates that conventional ki-
nesin can carry loads that do not exceed a few picoNewtons. However, even if the
force necessary to carry a cargo is below the stall force, the detachment of the motor
from the microtubule establishes important limitations to large scale transport.

A further insight in the load dependence of motor stepping was achieved by the
detailed measurement of the force dependence of the dwell time for forward and
backward kinesin stepping (Carter and Cross, 2005; Nishiyama et al., 2002). The
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Fig. 1.8. Force-dependent motor kinetics. (a) Force-velocity relation of single conventional
kinesin motors at 1 mM (blue) and 10µM (red) ATP concentrations. The velocity decreases
for increasing loads opposing the motor motion. The energy difference between the energy
barriers for backward and forward motor stepping (sketched in (c)) is shown on the top axis.
(b) Processivity length of conventional kinesin motors as a function of the load opposing motor
motion for two fixed ATP concentrations: 2 mM (circles) and 5µM (triangles). The solid
lines correspond to exponential fits to the data. (c) Sketch of the possible energy landscape
characterizing the forward and backward motor stepping in absence (light green) and presence
(dark green) of a force opposing the motor motion. A force applied in the direction opposite
to motion increases the energy barrier for forward stepping (Ef ) and lowers that of backward
motor stepping (Eb). The rates of forward and backward stepping,kf and kb respectively,
change exponentially with the applied force (Nishiyama et al., 2002). (d) Motor unbinding
from the microtubule. Sketch of the possible energy landscape characterizing the bound and
unbound states of a kinesin motor and a microtubule, in absence (solid line) and presence
(dashed line) of a force applied to the motor. The effect of the force is to lower the energy
barrier between bound and unbound states, increasing exponentially the motor detachment
rateku. The distance from the bound state equilibrium position (along the reaction coordinate)
to the maximum of the energy barrier isa. ((a) and (c) adapted from Ref. (Nishiyama et al.,
2002); (b) and (d) adapted from Ref. (Schnitzer et al., 2000)).
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rates for forward and backward steeping were shown to depend exponentially with
a force opposing kinesin motion. These observations can be explained by modeling
the motor forward and backward transitions as activated processes that necessitate
the passage of an energy barrier (Fig. 1.8c). This analysis is done in the discussion
of chapter 6.

The processivity of kinesin motors is also affected by the load. It has been re-
ported that the processivity length of conventional kinesin decreases exponentially
with a force opposing kinesin motion (Vale et al., 1996) (Fig. 1.8b). Indeed, the
average time,τb, that kinesin spends bound to the microtubule decreases exponen-
tially with the applied force,f (Thorn et al., 2000). This exponential dependence
can be explained by an energy barrier separating the bound and unbound states of
the motor. When a force is applied to the motor, the energy barrier is lowered and,
according to Kramers rate theory (van Kampen, 2004; Kramers, 1940), the average
time necessary to stochastically overcome the energy barrier decreases exponentially
(Fig. 1.8d). Therefore, the detachment rate,ku ≡ 1/τb, at which the motor detaches
from the filament reads

ku( f ) = k0
u exp

(
f a

KBT

)
, (1.3)

wherea is the length characterizing the position of the energy barrier between bound
and unbound states, andk0

u is the detachment rate at vanishing load. For conventional
kinesin motorsk0

u' 0.5 s−1 (Vale et al., 1996) anda= 1.3−1.4 nm (Schnitzer et al.,
2000). This exponential sensitivity of the detachment rate to the applied load has also
been reported for myosin motors (Veigel et al., 2003).

In summary, the transitions that a molecular motor can undergo, i.e. forward
stepping, backward stepping and detachment from the filament, are characterized by
rates that depend exponentially on the forces applied to the motor. Note that when
a motor is attached to a cargo and pulls on it, the motor feels the force applied by
the cargo, which influences in turn its own kinetics. In particular, when the motor
applies a force on a cargo, it detaches exponentially faster from the filament. This
force-feedback in the motor kinetics is essential to understand the collective behavior
of molecular motors, as we discuss in several chapters below.
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Actin-based motility
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Introduction

Living cells have evolved different propulsion mechanisms that allow them to
move (Alberts et al., 2004; Bray, 1992). In chapter 1 we have discussed some exam-
ples of intracellular movements and cell motility. While some cells use cilia or flag-
ella to induce the motion of the surrounding fluid and generate the necessary forces to
move, many others use the combination of actin polymerization and myosin motors,
or even actin polymerization alone, to develop such forces. One of the most studied
examples of motility is the crawling of eukaryotic cells on surfaces (Bray, 1992; Pol-
lard and Borisy, 2003; Pantaloni et al., 2001; Cameron et al., 2000; Mitchison and
Cramer, 1996; Stossel, 1993) (Fig. 2.1a). This motility process constitutes probably
the most complex case of force and motion generation and involves the combined
action of polymerization of actin filaments at the plasma membrane, myosin motors
and the adhesion of the cell to a substrate. A crawling cell advances by the extension
of its leading edge due to the polymerization of a network of actin filaments at the
plasma membrane, which subsequently depolymerizes away from the leading edge.
Besides this forward growth, the cell must detach its backmost region from the sur-
face in order to move. Myosin motors, localized at the rear of the cell, are thought
to induce this detachment by contracting the actin cytoskeleton in this region. Im-
portantly, it has been shown that cell fragments lacking the nucleus and most of
the organelles still move by the same motility mechanism (Verkhovsky et al., 1999)
(Fig. 2.1b).

Most of the motility mechanisms discussed above involve the action of motor
proteins. There exists, however, a particularly simple mechanism that does not in-
volve molecular motors at all. Several bacterial pathogens (Listeria monocytogenes,
Shigella flexneri, Rickettsia conorii) are propelled solely by the growth of an actin
network at their surface (Bray, 1992; Goldberg, 2001; Cameron et al., 2000). The
network is formed of crosslinked actin filaments and extends away from the back
of the bacterium in a characteristic comet-like shape (Fig. 2.1c). The growth of the
actin comet tail by the constant addition of actin filaments at the bacterium surface
generates the forces that propel the bacterium inside the infected cell. This motility
mechanism has attracted much attention because it constitutes the simplest example
of actin-based motility, and its understanding may shed some light on the complex
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crawling of eukaryotic cells. Moreover, the movement of some endocytic vesicles is
also driven by the same mechanism (Taunton et al., 2000) (Fig. 2.1d).

Fig. 2.1.Examples of actin-based motility. (a) Motion of a crawling cell (keratocyte) and a
cell fragment lacking the nucleus (keratocyte cytoplast). Overlays of two series of phase con-
trast micrographs taken at intervals of 15 seconds. The false colors indicate different times:
time increases from turquoise to violet. (Adapted from Ref. (Pollard and Borisy, 2003)). (b)
Fluorescence image of the cytoskeletal organization of a moving (top) and stationary (bottom)
keratocyte fragment. Myosin-II is labeled in red and actin in cyan. Bar, 2µm. (Modified from
Ref. (Verkhovsky et al., 1999)). (c) Fluorescence image showing the bacteriaListeriamoving
inside an infected eukaryotic cell. Actin is labeled in green and the bacteria in red. The actin-
comet tails are visible at the back of the bacteria. (Figure taken from the Theriot Lab website:
http://cmgm.stanford.edu/theriot). (d) Electron microscopy images of endosomes and lyso-
somes associated with actin comets tails in livingXenopus eggs. Bars, 500 nm. (Modified
from Ref. (Taunton et al., 2000)).
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Force generation by polymerization of actin filaments plays thus an important
role in biology. At molecular scales, it is thought that the bending of single filaments
driven by thermal fluctuations allows for polymerization against applied forces (see
chapter 1). Indeed, it has been reported that the growth of an actin network generates
forces on the surface from which it grows (Miyata et al., 1999). Each single actin
filament is thought to individually generate forces of several picoNewtons (Mogilner
and Oster, 2003a). However, the typical forces in actin-based motility (∼nN (Marcy
et al., 2004)) are much larger and require the cooperative action of ensembles of actin
filaments. This cooperativity is achieved by the growth of a network of crosslinked
actin filaments.

Eukaryotic cells contain a large number of actin associated proteins that regulate
actin assembly and control the interaction between actin filaments (Alberts et al.,
2004; Pollard and Borisy, 2003; Small et al., 2002; Pantaloni et al., 2001; Pollard
et al., 2000; Borisy and Svitkina, 2000). The assembly of a filamentous actin network
requires a particular set of proteins that trigger the polymerization of actin filaments
and organize them in a particular way. In Fig. 2.2a we sketch the main proteins
involved in the nucleation and organization of a growing actin network at the leading
edge of a crawling cell. We briefly describe the roles of the most important proteins
in the process:

• Arp2/3 complex. Actin nucleation is a slow process (Pollard and Borisy, 2003). It
is therefore necessary to somehow trigger the nucleation of actin filaments. The
Arp2/3 complex is a cellular factor that stimulates actin nucleation. It increases
the nucleation rate of actin and promotes the growth of actin filaments at their
barbed ends (Mullins et al., 1998; Welch et al., 1998). In addition to this nucle-
ating activity, the Arp2/3 complex can also attach to pre-existing actin filaments
and initiate the nucleation of another actin filament at that position, with a pref-
ered angle of 70◦ (Mullins et al., 1998). This branching activity leads to dense
networks of actin filaments with an arborescent structure (Svitkina and Borisy,
1999) (Fig. 2.2). Arp2/3 has been shown to localize to regions of highly dynamic
actin assembly, like the leading edge of crawling cells, which display the charac-
teristic branched network structure (Welch et al., 1997).

• WASP/Scar. Although the Arp2/3 complex is essential for the generation of
branched actin networks, it must be activated by other factors. The Wiscott-
Aldrich syndrome protein (WASP (Yarar et al., 1999)) and related proteins (N-
WASP, Scar) activate the Arp2/3 complex in eukaryotic cells (Weaver et al.,
2003). When WASP is activated by a specific stimuli, it stimulates in turn the
Arp2/3 complex and results in a rapid actin assembly. We shall describe below
other proteins that mimic WASP function and activate the Arp2/3 complex in
bacterial motility.

• Capping proteins. Actin filaments grow from the nucleation sites provided by the
activated Arp2/3 complex. In order to suppress the elongation of old filaments,
there exist proteins with barbed-end capping activity (Pantaloni et al., 2001).
Such capping proteins stop the growth of actin filaments at their barbed ends,
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Fig. 2.2.(a) Sketch of the nucleation and growth of an actin network at the leading edge of a
crawling cell. The proteins WASP/Scar activate the Arp2/3 complex at the leading edge. The
Arp2/3 complex nucleates and branches actin filaments, which push the membrane forward
and they elongate. The barbed ends of old actin filaments are capped by capping proteins
and the ADP-containing regions of the filaments are severed by ADF/Cofilin. The recycled
ATP-actin monomers associated with profilin polymerize new actin filaments at the leading
edge. (Modified from Ref. (Kiehart and Franke, 2002)). The inset shows the typical arbores-
cent structure of the actin network, with the Arp2/3 complex at the branching between fila-
ments. False color is used to highlight branched filaments and the circles identify the Arp2/3
complex. (Figure taken from the Borisy Lab website: http://www.borisylab.northwestern.edu).
(b-c) Multiple branching of actin filaments in the lamellipodia of crawling cells. Electron mi-
croscopy images of the actin network in the lamellipodia ofXenopuskeratocytes. Overview
of the leading edge (b) and close-ups showing different examples of branched actin filaments
(c). (Modified from Ref. (Svitkina and Borisy, 1999)).
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allowing the formation of new actin filaments at the surface from which the actin
network is growing (e.g. the leading edge of a crawling cell).

• ADF/Cofilin. In order to allow the continuous growth of the actin network from
the surface where the nucleation takes place, it is essential to recycle the pre-
viously polymerized actin filaments. The protein ADF (Actin Depolymerization
Factor) or Cofilin, which associates to the sides of the ADP-containing region
of actin filaments, increases their twist and destabilizes the filaments (McGough
et al., 1997), leading to a enhancement of the filament breakage rate (Bamburg
et al., 1999). This process, which takes place far from the surface at which actin
filaments are nucleated, generates new uncapped barbed ends of actin filaments
that can be used again to extend the actin network.

• Profilin. Although not essential for the growth of the actin network, the protein
profilin is thought to bind to ADP-actin monomers and promote the nucleotide
exchange to ATP-actin monomers, enhancing in this way the actin turnover in
the growth process of the network (Schluter et al., 1997).

• Crosslinking proteins. The actin meshwork is constituted of interdigitated ar-
borescent F-actin structures. In order to confer consistency to the actin network,
there exist other proteins that crosslink the actin filaments. Whileα-actinin
crosslinks actin filaments in parallel bundles, the protein filamin crosslinks the
filaments at approximately right angles. These proteins change considerably the
network structure and are used for different functions in the cell (Alberts et al.,
2004).

There exist very many situations where the growth of an actin network is essential
to generate forces and motion. Phagocytosis (Aderem and Underhill, 1999; Cham-
pion and Mitragotri, 2006) and the movement of several bacteria involve the growth
of an actin network, similarly to the process of lamellipodia extension in crawling
cells. In all this situations, the mechanism of force generation by actin network as-
sembly is very similar, and it is referred to as “actin-based motility”.

2.1 Listeria motility

Listeria are gram-positive bacteria that infect mammalian eukaryotic cells and may
cause, among other diseases, meningitis. This bacterium constitutes the simplest ex-
ample of actin-based propulsion (Cameron et al., 2000). Actin filaments are con-
stantly polymerized and branched at the surface of the bacterium. Upon growth, the
actin network polarizes into a comet-like tail that extends from the back of the bac-
terium (Fig. 2.3). The extension of the actin tail provides the necessary force to propel
the bacterium inside the host cell and to spread to adjacent cells. Other bacteria (e.g.
Shigella flexneriandRickettsia conorii) and the vaccinia virus use the same propul-
sion mechanism. Moreover, the pathogenic cycle of these organisms is the same
(Fig. 2.3a). They are first internalized in the host cell and, once in the cytoplasm,
they use the protein machinery and energy from the host cell to move. The forces
developed are large enough to deform the membrane of the host cell and create pro-
trusions that allow them to spread to other cells (Tilney and Portnoy, 1989; Goldberg,
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2001). Although the mechanisms triggering actin assembly on the bacterium surface
are distinct for different pathogens (Listeria, ShigellaandRickettsia), the motility
mechanism they use is the same, suggesting that actin-based motility is a robust and
efficient way to propel. This idea is also supported by the fact that some endocytic
vesicles use the same motility mechanism and several other processes (cell crawling,
filipodia extension, phagocytosis,...) also involve polymerization of actin networks
at surfaces (Pantaloni et al., 2001).

Fig. 2.3.(a) Pathogenic cycle ofListeria. The bacterium is first internalized by phagocytosis
in the host cell. After degrading the membrane of the phagocytic vacuole, it recruits actin on
its surface, assembles an actin tail and moves. The forces developed by the actin tail allow
the bacterium to deform the plasma membrane and spread to adjacent cells. (Adapted from
Ref. (Tilney and Portnoy, 1989)). (b) PtK2 cells infected by the bacteriaListeria, which appear
as small black spots with a fuzzy tail extending at their back. (Figure obtained from a film by
J. Theriot and D. Portnoy: http://cmgm.stanford.edu/theriot).

It has been shown that only the presence of the protein ActA at theListeria
surface is necessary to induce the polymerization of actin filaments (Kocks et al.,
1992; Smith et al., 1995). ActA is a transmembrane protein that activates the Arp2/3
complex by mimicking the function of WASP.Listeriauses ActA to activate the actin
assembly machinery of the host cell; this is to say that the bacterium uses both the
necessary proteins and the energy (ATP) from the host cell to move and eventually
kill it. ActA is distributed all over the surface of the bacterium, except at its front
part (Kocks et al., 1993). This asymmetric distribution establishes the direction of
motion of the bacterium, because the actin network only assembles around and at the
back of the bacterium. Actin assembly and branching at the surface creates a network
of actin filaments that polarizes into a comet-like structure (Fig. 2.4a,b). The proteins
involved in the assembly of the actin comet tail are detailed in Fig. 2.4c,d.

At mesoscopic scales, much larger than the scales at which actin nucleation and
branching take place, the actin comet tail has been shown to behave as a soft elas-
tic gel (Gerbal et al., 2000b). Moreover, the actin tail is strongly attached to the
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Fig. 2.4. (a) Phase contrast image of the bacteriumListeria moving in platelet extract. The
cylindrical-shaped bacterium appears black and the fuzzy actin network conforming the comet
tail extends away from the bacterium. For slow enough depolymerization of actin filaments,
the actin comet tail can be even∼ 100µm. (b) Electron microscopy photograph ofListeria
monocytogenesin an infected cell, showing a dense network of actin filaments being polymer-
ized from the surface of the bacterium, except at its front part. Bar, 1µm. (a-b, modified from
Ref. (Gerbal et al., 2000a)). (c-d) Sketch of the molecular components necessary forListeria
motility. (c) Interactions between the host cell proteins and the actin polymerization promoter
ActA at the surface of the bacterium. The amino-terminal domain of the protein ActA triggers
actin filament nucleation via activation of the Arp2/3 complex. The proline-rich domain of
ActA interacts with VASP (Vasodilator-stimulated phosphoprotein), which interacts, in turn,
with profilin, enhancing filament growth. (d) In addition to the ActA mediated interaction at
the bacterium surface, other actin associated proteins modify the structure of the actin network.
Capping proteins attach to the barbed ends of growing filaments, preventing the elongation of
old filaments.α-actinin crosslinks actin filaments and ADF/cofilin disassembles old filaments.
(c-d, modified from Ref. (Cameron et al., 2000)).

bacterium. Indeed, the application of forces in the picoNewton range with optical
tweezers, did not succeed in detaching the bacterium from its tail (Gerbal et al.,
2000b). These observations are at the basis of the mesoscopic theory for actin-based
propulsion (Gerbal et al., 2000a; Gerbal et al., 1999; Prost, 2001). The addition of
actin filaments on the bacterium surface generates elastic stresses in the gel, which
relax at the rear of the bacterium as this moves, providing the propulsive force (see
below).

Recent experiments have shown that the forces involved in actin-based motility
are in the order of several nanoNewtons (Marcy et al., 2004). Both the propulsive
force and the necessary forces to detach the comet tail from the object being pro-
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pelled are of this magnitude. These forces are much larger than the hydrodynamic
drag of the bacterium moving in the cytoplasm of the host cell. Therefore,Listeria
moves in the cell cytoplasm as in free space. In absence of a substantial external force
(∼nN), the forces must be balanced internally in the system, i.e. the propulsive force
must be balanced by the friction forces arising from the attachment of the comet tail
and the bacterium.

Fig. 2.5. Observed dynamical regimes ofListeria motion. (a) Continuous motion ofListe-
ria in Xenopusextract observed by optical (left) and fluorescence (right) microscopy. Actin
is labeled fluorescently and appears bright when observed by fluorescence microscopy (left).
(Figure obtained from film by D. Fung: http://cmgm.stanford.edu/theriot). (b) Saltatory mo-
tion of theListeriamutant ActA

∆21−97. (Top) Snapshots of the mutant movement observed by
both phase-contrast and fluorescence microscopy. Actin is labeled fluorescently and appears
bright. The time of each snapshot is indicated in seconds. (Bottom) Photograph of the mutant
motion, showing the dashed appearance of the actin comet tail that results from the saltatory
motion on the bacterium. Regions of high actin density are associated with the low velocity
phases of the bacterium. (Adapted from Ref. (Gerbal et al., 2000a)).

The motion ofListeria is typically continuous, with a velocity about 0.1 µm/s
(Fig. 2.5a). However, someListeria mutants show a characteristic saltatory motion,
with periods in which the bacterium hardly moves separated by velocity bursts, in
which the bacterium is expelled from the actin sheath surrounding it (Fig. 2.5b).
This nonlinear oscillatory behavior has been reproduced and explained by the elastic
theory that we explain below.

2.2 Biomimetic systems

Actin-based motility appears thus to be a robust force production mechanism used
by different organisms. In principle, it should then be possible to induce the mo-
tion of a synthetic object solely from the growth of an actin gel on its surface. This
situation has been indeed successfully carried out and has shown that a large vari-
ety of objects with different shapes and characteristics can be propelled by actin tail
formation (Upadhyaya and van Oudenaarden, 2003).
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2.2.1 Hard beads

The growth of an actin gel on spherical particles covered with ActA provided evi-
dence that elastic stresses are generated in the actin gel upon polymerization (Noireaux
et al., 2000). Moreover, the experimental data showed that the elastic stress affects,
in turn, the kinetics of actin polymerization. These experimental observations are
in quantitative agreement with a theoretical description that accounts for both the
gel elasticity and the dependence of the actin polymerization velocity on the elastic
stresses (Noireaux et al., 2000).

A further step in understanding the propulsion mechanism is provided by the
study of biomimetic experimental systems whereListeria are replaced by solid
spherical beads on which actin polymerization promoters are attached (Cameron
et al., 1999; Bernheim-Groswasser et al., 2002; Noireaux et al., 2000; Yarar et al.,
1999). These beads mimic closely the natural propulsion mechanism ofListeriawith
comet tail formation (Fig. 2.6a,b). The actin gel initially grows isotropically around
the spherical bead and, after a spontaneous symmetry breaking (van Oudenaarden
and Theriot, 1999; Bernheim-Groswasser et al., 2002), the actin network reorga-
nizes into a comet-like structure that propels the bead. Both the continuous and
saltatory motion ofListeriahave been also observed for synthetic beads (Bernheim-
Groswasser et al., 2002) (Fig. 2.6a,b). Other synthetic objects with different shapes
have also been shown to move by the action of an actin comet tail (Schwartz et al.,
2004).

Similar biomimetic experiments have focused on the symmetry breaking process,
by which a solid bead, surrounded initially by an isotropic gel, develops an actin
comet tail and moves (Sekimoto et al., 2004; van Oudenaarden and Theriot, 1999;
van der Gucht et al., 2005). It has been recently shown that the symmetry breaking
results from the rupture of the gel as a consequence of the elastic stresses generated
by actin polymerization at the bead surface (van der Gucht et al., 2005).

2.2.2 Soft objects

The comparison between the elastic theory and the experimental data for a growing
actin gel on a spherical bead showed the existence of elastic stresses in the actin
gel (Noireaux et al., 2000). However, the stress distribution applied by the actin gel
on the surface of an object propelled by an actin comet tail is difficult to measure.
The clear deformation of endosomes and lysosomes propelled by an actin tailin
vivo (Taunton et al., 2000) is a signature of the stresses applied by the growing actin
gel.

In order to qualitatively obtain the stress distribution, lipid vesicles partially cov-
ered with actin polymerization promoters were used as a cargo for actin-based motil-
ity (Upadhyaya et al., 2003; Giardini et al., 2003). When placed in cell extracts,
an actin gel grows isotropically around the initially spherical vesicle and, after a
spontaneous symmetry breaking, the vesicle develops an actin comet tail and moves.
Due to the elastic stresses exerted by the actin tail, the vesicle appears deformed
(Fig. 2.6c,d). The distribution of elastic stresses can be deduced from the vesicle
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Fig. 2.6.(a-b) Motion of spherical beads covered with actin polymerization promoters (VCA),
propelled by an actin comet tail. While small beads show a continuous motion with an homo-
geneous actin tail (a), large beads move by a sequence of jumps (b). Bars: (a) 5µm and (b)
10 µm. (Modified from Ref. (Bernheim-Groswasser et al., 2002)). (c-d) Actin-driven motil-
ity of lipid vesicles covered with ActA. Fluorescence images of lipid vesicles associated with
actin comet tails: actin is labeled in red and some of the lipids in green. The lipid vesicles
display different deformations: Pear-like shape (c; bar, 2µm; modified from Ref. (Giardini
et al., 2003)) and nearly round shape (d; bar, 4µm; modified from Ref. (Upadhyaya et al.,
2003)).

shape. It was observed that the actin gel squeezes the vesicle on the sides and pulls it
at the back, in the direction opposite to motion. Unfortunately, the use of lipid vesi-
cles as cargo have several drawbacks. The vesicle tension and volume are difficult
to measure and may considerably change in the time of an experiment. Although
the qualitative stress distribution applied by the actin gel could be accessed in these
experiments, it is not possible to quantitatively measure the stresses. In chapter 3
we study theoretically the deformation of an oil drop propelled by and actin comet
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tail and compare the results to the experimental observations by Hakim Boukellal
(Institut Curie). We measure the stress distribution quantitatively and show that the
propulsive force cannot be obtained solely from the drop deformation, as assumed in
Ref. (Giardini et al., 2003).

2.3 Theoretical approaches

Several theoretical approaches have been proposed to explain the physical mecha-
nism of force production drivingListeria motion. They mainly differ by the scale at
which they describe the system.

Molecular models (Mogilner and Oster, 2003a; Mogilner and Oster, 1996) con-
sider the Brownian flexibility of actin filaments growing against the surface of the
bacterium. These models focus on the dynamics of individual actin filaments in the
vicinity of the surface where polymerization takes place, and take into account the
effects of many proteins controlling actin dynamics. An important drawback of this
approach is the large number of parameters needed to describe the system. This de-
tailed analysis provides a reasonable description of the system at molecular scales,
but does not properly account for the global balance of forces. The predictions of
these models are in contrast with several experimental observations concerning the
large scale motion ofListeria. The estimated total propulsive force (∼ 100pN) is in
disagreement with the typical forces in actin-based motility (1−10nN) (Marcy et al.,
2004), and the force-velocity relation does not agree neither with the experimental
data (Marcy et al., 2004).

The growth of branched actin networks on flat surfaces has been studied both
experimentally (Schwartz et al., 2004) and numerically (Carlsson, 2001; Carlsson,
2003). The numerical works, which also take into account many molecular details,
constitute a coarse-grained description at intermediate length scales, in between the
molecular and mesoscopic scales. They provide theoretical predictions for the local
growth velocity of an actin network as a function of the local forces acting on the
network at the surface. Note that the growth velocity of a single actin filament is, in
general, different from the average local velocity of a coarse-grained portion of the
actin network. Although these works do not directly address the bacterial motion,
they study the force generation by growth of actin networks and are thus important
for a general understanding of actin-based motility.

Listeria motility has been studied at mesoscopic scales (∼ 1− 10µm), much
larger than the typical scales (∼ 10nm) at which polymerization and branching of
the actin network take place. At these scales the actin network behaves as an elastic
gel (Gerbal et al., 2000b). This approach analyses the elastic stresses exerted by the
deformed comet tail on the bacterium, which result in the propulsive force (Gerbal
et al., 2000a; Gerbal et al., 1999; Prost, 2001). Mesoscopic theories are robust as they
describe the dynamics from general conservation laws, and very few phenomenolog-
ical parameters are needed to characterize the system. The theoretical predictions
from this approach concerning the total propulsive force are in agreement with the
experimentally measured values for actin-based motility (Marcy et al., 2004). We
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describe in more details the mechanism ofListeria motility proposed by this meso-
scopic approach below.

Both molecular models and those at intermediate length scales provide theoreti-
cal relations for the velocity of the growing actin network as a function of the local
forces. Such relations constitute an important input for mesoscopic theories. It is thus
the combination of the descriptions at different scales that leads to a global under-
standing of the motility process.

Elastic theory for actin-based propulsion

As described above,Listeriacontains a transmembrane protein called ActA that cov-
ers the lateral and back surface of the bacterium. This protein stimulates Arp2/3 ac-
tivity and promotes the growth of an actin meshwork from the bacterium surface.
At a mesoscopic scale, this filamentous actin network behaves as a soft elastic gel,
with an elastic modulus about 103−104Pa (Gerbal et al., 2000b). Based on this ob-
servation, the motion ofListeria has been described using a continuum approach,
which accounts for the gel elasticity and the dependence of actin polymerization on
the elastic stresses in the gel. Such a description provides a general framework to un-
derstand actin-based motility, as it relies on general conservation laws (Gerbal et al.,
2000a; Gerbal et al., 1999; Prost, 2001).

In this mesoscopic approach, the growth of a new gel layer at the bacterial surface
upon actin polymerization stretches the previously polymerized gel layer, generating
elastic stresses in the gel (Fig. 2.7b). The energy from actin polymerization is tran-
siently stored as elastic energy in the gel. When the bacterium moves forward, the
gel relaxes progressively at its back, releasing the elastic energy and propelling the
bacterium. In the absence of external forces, the propulsive force is balanced by the
friction force due to the attachment of the actin filaments to the surface of the bac-
terium. In Fig. 2.7a we sketch and explain in more details how actin polymerization
at a surface leads to a stress build-up in the gel.

Several important predictions derive from the elastic theory. In particular, it is ex-
pected that the actin gel at the back of the bacterium may, in some regimes, pull the
bacterium in the direction opposite to motion (Gerbal et al., 2000a). This prediction
is confirmed by our results in chapter 3. Moreover, both the continuous and saltatory
motion of the bacterium are reproduced and explained. While the continuous motion
is characterized by a steady growth of the actin tail, in the saltatory regime, the bac-
terium moves by a sequence of jumps. At slow velocities, the attachment/detachment
events of actin filaments to the bacterial surface lead to an effective fluid-like friction,
whereas at large velocities the filaments are ripped off the surface and the bacterium
is expelled from the actin sheath surrounding it (Fig. 2.5). Interestingly, this saltatory
motion corresponds to a stick-slip behavior that arises from the non-linear nature of
friction forces (Urbakh et al., 2004).
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Fig. 2.7.Elastic model for actin-based propulsion (Gerbal et al., 2000a; Gerbal et al., 1999;
Prost, 2001). (A-B) Sketch of the increase of elastic stresses upon growth of an actin gel on
curved surfaces. (A) A bead (blue) coated with actin polymerization promoters initiates the
growth of an actin gel layer (red). As polymerization progresses, a new gel layer is polymer-
ized between the bead surface and the previously polymerized gel layer, stretching the initial
gel (L2 > L1). This stretching of the gel generates elastic stresses in the gel and, in particular,
normal elastic stressesσ at the bead surface (arrows). As the polymerization velocity of the
actin gel at the bead surface decreases with the normal stress, when the stresses become large
enough, the polymerization rate at the bead surface equals the depolymerization rate at the
outer gel surface. The system reaches a steady state with a gel of constant thickness undergo-
ing permanent treadmilling (Noireaux et al., 2000). (B) In the case of the cylindrical geometry
of Listeria, actin polymerization around the bacterium generates elastic stresses, in the same
way than for a bead (A). The elastic energy in the gel is relaxed at the back as the bacterium
moves, leading to a propulsive force (Fsqueeze). This force is balanced by the friction forces
(Ff riction) between the actin comet and the bacterium (A-B, adapted from Ref. (Upadhyaya
and van Oudenaarden, 2003)). (C) Elastic model for theListeria propulsion. Polymerization
of actin at the bacterium surface (light gray layer) expands the older gel layers (gray), induc-
ing a stress in the actin gel and a normal stress at the bacterium surface (white arrows). The
forward motion of the bacterium leads to the strain relaxation in the tail and generates the
propulsive force. This description predicts that the gel may pull on the bacterium at the back.
(Modified from Ref. (Gerbal et al., 2000a)).
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Actin-based propulsion of liquid droplets

As discussed in the previous chapter, the bacteriaListeria are propelled by an actin
comet tail, composed of a cross-linked network of actin filaments, which grows at
the bacterium surface (Tilney and Portnoy, 1989; Cameron et al., 2000; Goldberg,
2001). The same motility mechanism has been reproducedin-vitro using rigid beads
coated with actin polymerization promoters (Cameron et al., 1999; Yarar et al., 1999;
Bernheim-Groswasser et al., 2002; Wiesner et al., 2003). At mesoscopic scales, the
filamentous actin network that forms the actin comet tail behaves as a soft elastic
gel (Gerbal et al., 2000b; Gerbal et al., 1999). The growth of an actin gel on a curved
surface generates elastic stresses in the gel that affect, in turn, the actin polymer-
ization kinetics at the surface (see chapters 1 and 2). As actin-based motility relies
on the polymerization of actin filaments, it is essential to understand the forces af-
fecting the polymerization process. The knowledge of the elastic stresses developed
by an actin comet tail on the object being propelled could thus provide an impor-
tant insight in the force production mechanism driving actin-based motility. A direct
measurement of such stresses forListeria or hard beads is however challenging. For
soft enough objects, the elastic stresses in the gel deform the object being propelled.
The deformation allows a direct measurement of the local stresses applied by the gel
on the surface of the moving object. Moreover, the study of the actin-based motility
of deformable objects has an intrinsic biological relevance. Some endocytic vesicles,
which mediate the transport from the plasma membrane to internal regions of the
cell, have been shown to move by the action of an actin comet tail and appear clearly
deformed (Taunton et al., 2000) (see chapter 2).

Hakim Boukellal, in the group of Ćecile Sykes (Institut Curie), has developed
an experimental system consisting of oil drops with actin polymerization promot-
ers adsorbed on their surface. Once placed in cell extracts, the oil drops move by
actin polymerization and deform under the action of the elastic stresses exerted by
the gel. The same squeezing effect is observed on endosomes (Taunton et al., 2000)
driven by actin comets and on synthetic vesicles covered with the bacterial protein
ActA (Upadhyaya et al., 2003; Giardini et al., 2003). However, for liquid drops, the
knowledge of their surface tension and their constant volume allow for a quantita-
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tive analysis of the observed shape and thus the determination of the elastic stress
distribution on the drop surface.

The aim of our work is to understand both the origin of the propulsive force and
the distribution of stresses created by the actin gel on deformable objects such as
droplets. We describe theoretically a liquid drop deformed and propelled by an actin
comet tail. We solve this free boundary problem and calculate the drop shape and
local stresses taking into account the elasticity of the actin gel and the variation of
the polymerization velocity with normal stress. In the steady state, the droplet ac-
quires a pear-like shape which is determined by the balance between elastic stresses
and the restoring force due to surface tension. The stress distribution shows that the
gel pushes forward and squeezes the droplet along the sides, while pulling it back-
ward at the rear. Moreover, the drop deformation is such that the propulsive force
strictly vanishes if surface tension gradients and internal pressure variations are not
taken into account. For soft objects with a liquid surface, the total propulsive force
cannot thus be estimated solely from the drop shape. The quantitative comparison
between the theoretical results and the experimental data allows the determination of
molecular parameters related to actin growth on surfaces.

3.1 Biomimetic experiments

The experimental system mentioned above, consisting of oil drops propelled by an
actin comet tail, allows for a quantitative analysis of the stresses generated by the
polymerization of the actin network on the surface of the object being propelled. The
experiments we discuss in this section have been carried out by Hakim Boukellal,
and their detailed description can be found in his Ph.D. thesis (Boukellal, 2004).

An emulsion of oil drops (Fig. 3.1a), with radii ranging from 1.5 to 5.5 µm is
incubated with the actin polymerization promoter VCA, derived from the Wiskott-
Aldrich syndrome protein (WASP)1. In this incubation period, VCA adsorbs onto
the oil drops, covering partially their surface (Fig. 3.1b). The emulsion containing the
VCA-coated drops is then added to HeLa cell extracts (Fig. 3.1c-d), which provide
the proteins (actin, Arp2/3,. . . ) and molecules (e.g., ATP) necessary for the formation
of the actin gel. Finally, fluorescently-labeled actin is added to the mixture so that the
actin comet can be visualized. In some experiments, VCA is labeled fluorescently in
order to observe its distribution on the drop surface.

The sample is observed by bright field or fluorescence microscopy depending on
needs. As forListeria, actin polymerizes only at the interface between the drop and
the comet and depolymerizes at the back of the comet. When placed in cell extracts,
actin is first polymerized on the drops with a spherical symmetry (Fig. 3.1c). After
roughly one hour, symmetry is broken for approximately 70% of the drops. They
develop an actin comet, deform into a pear-like shape and move (Fig. 3.1d). An
example of a moving drop is shown in Fig. 3.2a.

1 VCA is the domain of the protein WASP that is responsible for Arp2/3 nucleation (Welch
et al., 1998).
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Fig. 3.1.Sketch of the experimental procedure to obtain droplets propelled by an actin comet
tail. (a) Emulsion of oil drops (yellow) in solution (light blue). (b) The drops are incubated
with VCA molecules (red dots), which partially adsorb onto the surface of the drops. (c) The
VCA-coated drops are added to cell extracts (light green) and an isotropic actin network (red
mesh) grows around the spherical drops. (d) After approximately one hour, some droplets
develop an actin comet tail and move. Moving drops are deformed into a pear-like shape due
to the stresses developed by the actin tail.

Initially, the actin polymerization factor VCA is uniformly distributed around the
spherical drop. After deformation of the drop and formation of the comet, fluores-
cence intensity measurements using fluorescently-labeled VCA show that 90% of the
VCA is found on the region of the drop associated with the actin tail (Fig. 3.2b). This
means either that VCA has been displaced from the interface to the bulk of the extract
except where the gel is present, or that all VCA has been collected by the gel during
the symmetry breaking process. In any event this also means that the VCA surface
density is comparable to the density of filament extremities at the surface. The aver-
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Fig. 3.2. (a) Oil drop covered with VCA placed in HeLa cell extracts supplemented with
fluorescently labeled actin and observed by fluorescence microscopy. The actin comet ap-
pears bright. Bar, 4µm. (b) Oil drop covered with fluorescently-labeled VCA and placed in
cell extracts, observed by bright field microscopy (b.1) and by fluorescence microscopy (b.2).
VCA appears bright in (b.2) and reveals the association of VCA with the actin tail. Bar, 3µm.
(Modified from Ref. (Boukellal et al., 2004)).

age distanced between filament extremities is larger than the close-packing distance.
Indeed, the mesh size2 of the actin gel provides a lower bound ofd = 10nm. The
surface tension change due to the presence of VCA at the interface is then of order
KBT/d2 < 410−2mN/m, more than 100 times smaller than the oil-extract surface
tension,γ0, which was measured by the pendant drop method to beγ0 = 4± 0.6
mN/m.

This experimental set-up allows a quantitative study of the drop motion. The drop
is followed using videomicroscopy and its shape is obtained by digitalization of the
drop contour. The stresses developed the actin comet tail on the drop can be obtained
from the drop deformation, and the drop velocity is measured from its trajectory.

3.2 Theoretical description

Unlike bacteria, the liquid surface of the droplet is characterized by a surface tension
γ and can thus be deformed under the action of elastic stresses. In a steady state,
the shape of the droplet is specified by the balance between normal elastic stresses
applied by the actin gel and the restoring force due to surface tension. The front part
of the drop is a spherical cap of radiusRnot covered by actin (Fig. 3.2b). The radius
R is different from the radiusR0 of the undeformed spherical drop, which fixes the
volume 4πR3

0/3. The back part of the drop, surrounded by the comet, has a blunted
cone-like shape (rotationally symmetric around the direction of motion). In Fig. 3.3
we sketch the typical shape of a moving drop and define the coordinate system and
variables used to theoretically describe it.

2 The mesh size is the average length at which the filaments forming the gel cross.
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We parameterize the drop by the liquid thickness,h, and the local angle,θ , be-
tween the local tangent to the shape and the direction of motion (Fig. 3.3b). The
spherical cap and the cone match at the triple line between the drop, the comet and
the surrounding solvent; we call the tangent angle at the contact pointθm, where the
corresponding oil thickness ishm = Rcosθm. The pressure inside the drop,Pin, varies
from point to point since the drop motion induces an internal flow. At the interface
with the extract, in the spherical part, it is given by Laplace’s law and reads

Pin = 2
γ0

R
+P0 , (3.1)

whereP0 is the pressure in the liquid surrounding the drop, andγ0 is the surface
tension in the front part of the drop, where no VCA is present. At any point inside
the drop, the pressure,P, differs fromPin and is given byP = Pin +δP. At a point of
thicknessh, the balance of local stresses along the normal of the drop is given by the
local Laplace’s law, and reads

2γ0

R
+δP(h) = γ

(
κ

φ
+κs

)
−σnn(h) , (3.2)

whereκs andκ
φ

are the local curvatures along the principal directions at each point
of the surface, andσnn is the normal stress exerted by the drop at the surface of
the comet3 (σnn is positive, dilative stress, if the comet pulls on the drop and neg-
ative, compressive stress, if the comet pushes the drop). Although we argued that
the surface tension gradients are small, we consider here that the surface tension
γ = γ0 + δγ(h) varies along the interface; it is constant in the spherical part with a
valueγ0 and it is continuous at the contact line, so thatδγ(hm) = 0.

The curvaturesκs andκ
φ

along the principal directions at each point of the sur-
face can be calculated using basic differential geometry (Morse and Feshbach, 1953;
DoCarmo, 1995). In Fig. 3.3a we sketch the typical shape of the drop and define
the local coordinate system on the drop surface. It is specified by the unit vectorses
ande

φ
, with φ being the azimuthal angle around the axis of symmetry (z axis) ands

being the arclength along the drop contour at a fixed value ofφ ; the origin,s= 0, is
located at the back of the drop. The normal vector,n, is given by the cross product
of the unit vectors on the surface, so thatn = e

φ
×es. The curvatureκs corresponds

to the variation of the normal vector alongs, projected in thees direction, and reads

κs = es ·
dn
ds

=−dθ(s)
ds

=
d(cosθ(h))

dh
, (3.3)

where we have used the relationdh/ds= sinθ in the last equality. The curvature
κ

φ
is given by the variation of the normal vector alongφ (with the corresponding

scaling factor) projected in thee
φ

direction, so that

κ
φ

= e
φ
·
(

1
h

dn
dφ

)
=

cosθ(h)
h

. (3.4)

3 We use here the definition of the stresses in Elasticity Theory. The stresses applied by the
comet on the drop are−σnn.
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Fig. 3.3. (a) Definition of the local coordinate system on the surface of the drop. The coor-
dinates describing the points on the drop surface are the arclengths (with s = 0 located at
the origin of the cartesian coordinate system), and the azimuthal angleφ . Their associated
unit vectors arees ande

φ
respectively, and the normal vector,n, at each point is given by

n = e
φ
×es. The drop shape is rotationally symmetric around the direction of motion (z axis)

and given by the functionh(θ). (b) Sketch of the moving oil drop. Two-dimensional projec-
tion of the three-dimensional drop shape in (a) at constantφ . The drop shape is parameterized
by the local thicknessh and the local angleθ between the local tangent to the shape (es) and
the direction of motion.

Using the expressions for the curvatures along the local principal directions, the local
balance of stresses at each point of the surface reads

2γ0

R
+δP(h) = γ

(
cosθ(h)

h
+

d(cosθ(h))
dh

)
−σnn(h) . (3.5)

Local mechanical equilibrium on the surface of the drop (Eq. 3.5) does not fully
specify the shape of the drop, which we derive below. However, a general expression
for the total propulsive force developed by the actin tail can be obtained without the
need of any particular model for the gel elasticity or the actin growth at the surface
of the drop.

3.2.1 The propulsive force

The total elastic force,Fe, exerted by the comet on the drop is obtained by integrating
the projection of the normal elastic stress on the direction of motion, and reads

Fe =
∫

Σg

dS(−σnn)sinθ

= 2π

∫ hm

0
dhh

(
cosθ

dγ

dh
+δP

)
, (3.6)
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whereΣg is the surface of the drop in contact with the actin comet. In order to ob-
tain the last equality in Eq. 3.6 we have used the relation between the normal stress
and the drop shape in Eq. 3.5. If both the pressure gradient inside the drop and the
surface tension gradient are ignored, the propulsive force vanishes exactly. This re-
sult holds for any axisymmetric drop shape whatever the elastic stress distribution
along the surface, independent of any model for the comet elasticity and the actin
polymerization velocity. A direct consequence of this result is that the total propul-
sive force cannot be estimated solely from the drop shape. This hypothesis, used in
Ref. (Giardini et al., 2003), is unable to produce an estimate of the propulsive force.
An experimental measurement of the force propelling the drop must thus take into
account the surface tension gradient and fluid flow inside the drop.

The reason why the total elastic force vanishes forδP = 0 andδγ = 0 is that a
drop with homogeneous surface tension and internal pressure deforms in such a way
that the global contribution of the local normal stresses cancels out exactly. Only the
local inhomogeneities of surface tension and internal pressure can thus contribute to
the global propulsive force.

We argued above that surface tension variations are small compared to the actual
value of the surface tension. This argument holds for local considerations at each
point of the surface, meaning that surface tension gradients can be neglected for local
equations. However, the cumulative contribution of the surface tension gradient all
over the surface is not only important but essential to understand the propulsive force.
We discuss below the origin of this surface tension gradient.

3.2.2 Droplet shape and stresses

We now proceed with the determination of the drop shape and stress distribution.
Given that the surface tension variation is small along the drop contour and neglect-
ing hydrodynamic effects, we consider, for local equations, that the surface tension
and the internal pressure are constant, so thatγ = γ0 andδP= 0. In these conditions,
the local normal force balance on the surface of the drop reads

σnn(h) = γ0

[
cosθ(h)

h
+

d(cosθ(h))
dh

− 2
R

]
. (3.7)

In regions where the mean curvature(κs+ κ
φ
)/2 is larger than the mean curvature

1/Rof the spherical cap at the front, the normal stress is positive and the gel pulls on
the drop (σnn > 0). On the contrary, in regions with mean curvature(κs+ κ

φ
)/2 <

1/R the gel pushes and squeezes the drop (σnn < 0).
The actin polymerization at the surface of the drop generates stresses in the actin

network. These elastic stresses in the gel influence, in turn, the polymerization ki-
netics. Polymerization is normal to the surface of the drop and it is accelerated by
a dilative stress (σnn > 0) and slowed down by a compressive stress (σnn < 0). The
polymerization velocityvp corresponds, in our mesoscopic description, to the local
polymerization velocity of the actin network on the drop surface. Although the rela-
tion between the polymerization velocity of an actin network and the normal stresses
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may be, in general, different than that of a single filament under applied load, we
assume for simplicity the same relation. Indeed, the functional relations forvp(σnn)
suggested by numerical simulations (Carlsson, 2001) leave our results unchanged.
Classical rate theories (van Kampen, 2004; Kramers, 1940) predict a polymerization
velocity,vp, varying as a Boltzmann law

vp(h) = v0
pexp

[
σnn(h)

σ0

]
, σ0 ≡ KBT/a2

δ , (3.8)

wherea is the distance between actin polymerization promoters on the drop surface,
δ is of the order of the size of an actin monomer andv0

p is the polymerization velocity
in the absence of stress.

The last equation determining the shape of the drop is the conservation of the gel
volume upon polymerization. In a first approximation, we assume both that the gel
density is constant and that the comet is a perfect cylinder. Indeed, the Poisson ratio,
σ , of an actin network is thought to beσ ' 0.4 (Gerbal et al., 2000a), meaning that
the gel in nearly incompressible. In a steady state, the drop advances at a constant
velocityV. The local gel thickness,e, shown on Fig. 3.3b is then such thatde/ds=
− tanθ . With these simplifying approximations, the local polymerization velocity is
related to the advancing velocity by

vp(h) = V sinθ(h) . (3.9)

Combining Eqs. 3.7, 3.8 and 3.9, we obtain the equation

ln

(
V
v0

p
sinθ(h)

)
=

γ0

σ0

[
cosθ(h)

h
+

d(cosθ(h))
dh

− 2
R

]
, (3.10)

which specifies the angle,θ(h), between the tangent to the drop shape and the direc-
tion of motion, at each point of the surface. The shape of the drop,h(z), can be then
calculated by direct integration of

dh
dz

= tanθ(h) . (3.11)

Note that the present description does not specify the drop velocityV. Indeed,
neglecting both the surface tension gradient and internal pressure variations, it is not
possible to determine the drop velocityV since the propulsive force vanishes. We
thus find a family of solutions for the drop shape parameterized by the advancing
velocityV.

Analytical results

The shape of the comet-drop interface departs from a pure cone when the Boltzmann
factor in Eq. 3.8 is significantly larger than 1. This defines the size of the blunted
region at the rear of the drop as`≡ γ0a2δ/KBT, which leads toσ0 = γ0/`. The ratio,
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ε ≡ `/R, of this characteristic length̀and the radiusR of the spherical cap at the
front of the drop is a dimensionless parameter that quantifies the amount of deforma-
tion of the drop. Values ofε ∼ 1 indicate that the back of the drop is characterized by
a radius of curvature similar to that at the front. A valueε � 1 corresponds to highly
deformed droplets, characterized by an accentuated pear-like shape. Although the
value ofε can be estimated using the experimentally measured values forR andγ0
and typical values forδ anda, we consider it an unknown parameter and analyze the
drop shape for different values ofε.

The typical pear-like shape of the droplets observed experimentally suggestsε �
1. We thus consider it a small number in order to obtain analytical solutions of the
drop shape. Mathematically,ε is a singular perturbation parameter and the size`
defines a boundary layer at the back of the drop. We now calculate the shape at length
scales of order∼ Rand∼ ` separately, and match asymptotically the solutions.

For h of orderR, the elastic stressσnn(h) is small (O(ε)) and can be neglected.
Then Eq. 3.9 describes a perfect cone with angleθ = θ0, defined by the ratio, sinθ0≡
v0

p/V, of the polymerization velocity at vanishing stress,v0
p, and the drop velocity,

V (Fig. 3.4a). This result is independent of the polymerization law givingvp as a
function ofσnn(h). The measure ofθ0 andV gives thus access to the polymerization
velocity in the absence of elastic stress. For small but finiteε, the corrections to the
perfect cone shape at length scales∼ Rare given by

dh
dz
' tanθ0 + ε

1
cos2 θ0

[
sinθ0

tanθ0

R
z
−2tanθ0

]
, (3.12)

where the first term, tanθ0, describes the perfect cone shape in the limitε → 0.
In the blunted region at the back of the drop,h is of order` and the stresses

applied by the gel are large (∼ γ0/`) compared to the Laplace pressure term 2γ0/R
(of O(ε) in this region), which can be neglected in Eq. 3.10. In the vicinity of the
rear point, the drop profile is given by

h(z)
`

= 2

√
1

ln
(
1/sinθ0

) z
`

. (3.13)

This solution corresponds to the drop profile in the boundary layer of size` at the
back of the drop.

The normal stress in the region of size` at the rear of the drop is positive and of
orderγ0/`. At the backmost point, the stress is

σnn(h = 0) =
γ0

`
ln

(
1

sinθ0

)
. (3.14)

In the conical region, the stress, at lowest order inε, reads

σnn(h) =
γ0

R

[
cosθ0

R
h
−2

]
(3.15)

It is positive at the back of the drop (pulling the drop backward) and negative in
the front part of the cone (pushing the drop forward) as qualitatively observed in
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Fig. 3.4. (a) Sketch of the shape of the drop in the limitε → 0. The interface between the
drop and the comet tail is perfect cone with angleθ0. (b) Sketch of the local forces (normal
stress) applied by the actin gel on the drop. The gel pulls the droplet backward at the rear,
while pushing it forward and squeezing it at the sides.

Refs. (Upadhyaya et al., 2003; Giardini et al., 2003). It vanishes for a thickness
h = (Rcosθ0)/2 = hm/2. In Fig. 3.4b we sketch the normal local forces applied by
the actin gel on the drop. This result is in accordance with the prediction made in
Ref. (Gerbal et al., 2000a) that the actin gel could pull at the rear ofListeria and
explains the pear-like deformation of the drop.

The asymptotic limit (h� `) of the solutions in the boundary layer should match
the asymptotic solutions (h�R) outside the boundary layer. The asymptotic expres-
sion for the stress in the boundary layer at the rear of the drop, in the limith� ` and
θ → θ0, reads

σnn(h) =
γ0

h
cosθ0 , (3.16)

which exactly matches the asymptotic solution for the stress outside the boundary
layer (Eq. 3.15) in the limith� R.

Numerical results and comparison to the experimental data

A more detailed description of the drop profile is obtained by solving numerically
equation 3.10. Scaling the fluid thicknessh with the radiusR (h̃≡ h/R), the normal
force balance on the drop surface (Eq. 3.10) reads

ln

(
sinθ

sinθ0

)
= ε

[
cosθ(h̃)

h̃
+

d
(
cosθ(h̃)

)
dh̃

−2

]
, (3.17)

and only depends on the two dimensionless parameters,ε = `/Rand sinθ0 = v0
p/V.

The movement of the droplet is a free boundary problem and obtaining the drop
shape is not straightforward. The integration of Eq. 3.17 determines the angleθ as a
function of the fluid thicknessh and onceθ(h) is known, the integration of equation
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dh/dz= tanθ(h) provides the drop shapeh(z). This is so if the boundary conditions
and the position of the boundaries are known. At the origin,z= 0, the boundary con-
dition for Eq. 3.17 isθ(h = 0) = π/2. On the other hand, the position of the bound-
ary where the drop-comet interface contacts the spherical cap is unknowna priori.
Imposing continuity of both the droplet shape and its tangent ath = hm = Rcosθ0,
specifies the position of the triple line and the solutionh(z). Note that three bound-
ary conditions have been imposed in spite of having only two first order differential
equations. The extra boundary condition is necessary to specify the position of the
boundary with the spherical cap. Numerically, we first determine the position of the
boundary with the spherical cap using a shooting method (Press et al., 2002), and
calculate the drop shape once the position of this boundary in known.

Fig. 3.5.Numerically integrated drop shape for various values of the parametersε andθ0. The
largest drop deformations correspond to small values of bothε andθ0, whereas forε ∼ 1 and
large enough values ofθ0, the drop is hardly deformed. For a given drop velocityV (fixed
value ofθ0), larger droplets, corresponding to smaller values ofε, are more deformed.

In Fig. 3.5 we show the numerically obtained drop shape for different values of
the parametersε andθ0. For a given value of the drop velocity (fixed value ofθ0),
larger values ofε correspond to less deformed drops. Experimentally, the length` is
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constant4, and smaller drops, corresponding to larger values ofε, are less deformed,
in agreement with the theoretical predictions. The parameter sinθ0 controls the elon-
gation of the drop. For drop velocitiesV � v0

p, corresponding to small values of the
angleθ0, the drop displays elongated shapes, with a pear-like shape forε � 1 and
a cylindrical shape for values ofε ∼ 1. Therefore, more elongated drop shapes are
expected for drops moving at larger velocities. This prediction has been corroborated
experimentally, as elongated drops move faster than less deformed drops.

We now compare at quantitative level the theoretical results to the experimental
data. In Fig. 3.6a we show a comparison of the calculated and experimental drop
profiles. The experimental profile for the drop in Fig. 3.6c is digitized and adjusted
by a continuous curve. We then perform a two-parameter fit of the experimental drop
profile with the numerically integrated drop shapes. The best fitting parameters are
ε = 0.049 and sinθ0 = 0.58 (θ0 = 35.6◦). The numerically obtained drop shape for
this values of the parameters is shown in Fig. 3.6a, together with the experimental
drop profile; its three dimensional reconstruction is shown in Fig. 3.6d. The measured
values for the radiusR of the spherical cap and the drop velocityV are, for this
particular drop,R' 2.55µm andV ' 0.15µm/min. With the values obtained from
the fit for ε and sinθ0, and the measured values ofR, V and the surface tensionγ0,
we determine

`' 0.125µm , σ0 = 32 nN/µm2 and v0
p = 1.4 nm/s . (3.18)

The error in these estimations for a single drop is small (' 5%). Series of measure-
ments for several drops in a given preparation of cell extract show a dispersion both
in ` andv0

p of order±20%. A much larger spread of several hundred percent is found
between different preparations, with different total protein concentrations.

The normal stress distribution can be directly obtained from the experimental
drop profile. We calculate the curvaturesκs and κ

φ
from the drop shape and de-

termine the normal stress distribution using Eq. 3.7. The experimentally obtained
normal stress distribution is shown in Fig.3.6b, where it is compared to the numeri-
cally obtained normal stress distribution for the drop profile in Fig.3.6a (ε = 0.049
and sinθ0 = 0.58). In accordance to the analytical results above, the gel pulls the
drop backward at the rear (σnn > 0), while pushing and squeezing it in the conical
region (σnn < 0). The magnitude of the dilative stresses at the rear, of orderγ0/`,
is much larger than the compressive stresses on the sides, of orderγ0/R. Their ratio
is of orderε, in agreement with the analytical results above. Note that the normal
stress distribution obtained theoretically is not a fit of the experimental one. Once
the values ofε andθ0 are known from the fit of the drop shape, the stress distribution
is determined with no fitting parameters.

Stress distribution in the vicinity of the triple line

In the description proposed so far, the curvature of the interface between the comet
and the drop has a discontinuity at the triple line. In the spherical region, the mean

4 Although the length̀ may change in different experiments with different preparations, in
a particular experiment it is constant.
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Fig. 3.6.Comparison of the theoretical results and experimental data. (a) Numerical integra-
tion of the drop profile for the best fitting parameters,ε = 0.049 and sinθ0 = 0.58 (continuous
line), compared to the experimental drop profile (dashed line). (b) Numerically obtained nor-
mal stress distribution (continuous line) for the numerical drop profile in (a) compared to
the experimental stress distribution (circles). The inset shows the normal stress distribution
all along the drop contour. The normal stresses vanish in the front part of the drop, where
no VCA is present. (c) Fluorescence image of the drop used for this particular comparison
to theory. Actin is labeled fluorescently and the actin comet appears bright. Bar, 4µm. (d)
Three-dimensional reconstruction of the drop shape. The actin comet is represented by a per-
fect cylinder, which we show only partially to allow the visualization of the drop shape.

curvature of the interface is 1/R, whereas in the conical region, the interface is curved
only in theφ direction (κ

φ
(h = hm) = 1/R andκs(h = hm) = 0) and the mean cur-

vature is 1/2R. The local forces normal to the interface are still balanced and the
elastic normal stress in the comet at the triple line isσnn(hm) = −γ0/R (Fig. 3.6b).
At the triple line, the gel thicknesse vanishes and cannot create a finite stress. This
explains why in Fig. 3.6b, the theoretical and experimental normal stresses are in
disagreement in the close vicinity of the triple line. We now assume that the gel den-
sity remains constant but that the comet shape is not a perfect cylinder in the region
close to the triple line. Volume conservation then imposes a polymerization velocity

vp =−V cosθ
de
ds

. (3.19)

When a gel element is created in a timeδ t, it is stretched by an amountδu, given by
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δu = δ t(−V sinθ +vp) , (3.20)

and the tensile stressesσii in the azimuthal direction (i = φ ) and in the tangential
direction along the interface (i = s) are increased. At the level of scaling laws, we
write this increase as

dσii

ds
=

Eκi

V cosθ
(V sinθ −vp) , (3.21)

whereκi is the curvature of the interface in the directioni andE is an elastic mod-
ulus of the comet. In the vicinity of the triple line, where the gel thickness is small
compared toR, we use the thin shell approximation (Landau and Lifshitz, 1986) and
relate the tensile and normal stresses in the gel, so that

σnn =−e
(

σssκs+σ
φφ

κ
φ

)
. (3.22)

In the region of length̀ close to the triple line (boundary layer), the two tensile
stresses can be considered as constant at lowest order. The matching to the pear-like
shape imposes that the azimuthal tensile stressσ

φφ
vanishes. Defining the dimen-

sionless tensile stress asσ̃s = `σss/γ0, the normal stress in the boundary layer close
to the triple line reads

σnn =− γ

R
eσ̃s

`+eσ̃s
. (3.23)

As the thickness of the gel vanishes (e→ 0), the normal stress vanishes as expected.
The boundary layer, where the comet is deformed, has a thickness`/σ̃t of order`
and is thus small in the limit whereε is small. Whene is large (e� `), further away
from the triple line, the comet reaches a cylindrical shape and the normal stress is
−γ/R. Therefore, for distances larger than` from the triple line one can consider the
comet to be a perfect cylinder, as done above.

3.2.3 Origin of the propulsive force

We have shown above that the drop shape and stress distribution applied by the actin
gel can be determined without taking into account the differences in internal pres-
sure,δP, and the surface tension gradient,δγ. This is so because only local equations
are needed to specify the shape of the drop. However, in section 3.2.1 we calculated
the total elastic force propelling the drop and showed that the contribution of these
terms is essential. We now discuss both terms separately and provide an estimation
of the total propulsive force.

Internal pressure variations

The motion of the drop generates an internal fluid flow that induces a difference
in the pressure at each point of the drop. Although the fluid flow inside the drop
is difficult to calculate for an arbitrary axisymmetric shape, the order of magnitude
of the maximal pressure differences inside the drop can be estimated. To this end,
we use the known results for a spherical drop falling inside another fluid under the
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action of gravity (Batchelor, 2000). Similarly to the oil drop we consider, a falling
drop moves with constant velocity in the steady state. The fluid inside the falling
drop is sheared at its surface and a closed internal fluid circulation sets up inside the
drop. In the steady state, the pressure difference,∆P, between the back and the front
of the drop is of order (Batchelor, 2000)

∆P∼ 10V
R

ηη̄

η + η̄
, (3.24)

whereη and η̄ are the buffer and oil viscosities respectively. Using typical exper-
imental values in our problem for the velocityV ' 0.15 µm/min and the radius
R∼ 2.5 µm of the drops, together with the viscosity of the buffer and the oil viscos-
ity, we estimate the variation in internal pressure to be

∆P∼ 10−2 mN/m2 , (3.25)

This value constitutes an upper bound because the maximal difference of internal
pressure is that existing between the back and the front of the drop. The pressure dif-
ferences induces by the fluid flow must be compared to the magnitude of the surface
tension gradient, which we analyze below.

Surface tension gradient

In the beginning of this chapter we assumed the existence of a surface tension gra-
dient δγ without any further explanation. The surface tension of the drop depends
on the concentration,ρ, of adsorbed molecules on its surface (Safran, 2003). In case
there is an inhomogeneous distribution of the molecules on the surface, a surface ten-
sion gradient, that follows the distribution of adsorbed molecules, sets up. Fig. 3.2b
shows that VCA molecules on the drop surface are colocalized with the actin comet.
A closer look at the VCA concentration on the drop surface shows that their dis-
tribution is inhomogeneous. In particular, the VCA concentration decreases mono-
tonically from the back of the drop and has negligible values at the front (spherical
cap). The relation between the surface tension,γ, and the surface concentration of
adsorbed molecules,ρ, reads (Safran, 2003)

γ = γ0 +
KBT
a2

0

ln
(
1−a2

0ρ
)

, (3.26)

wherea0 is the size of the adsorbed molecule. The surface tension is thus smaller in
regions with larger concentration of adsorbed molecules. Independently of any par-
ticular model for the mechanism that establishes the VCA gradient, we can estimate
the magnitude of the propulsive force from the experimentally measured VCA dis-
tribution. Using the expression for the total elastic force (Eq. 3.6) and Eq. 3.26, we
obtain

Fe∼ 2π
KBT

λ
ρR2 , (3.27)
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whereλ is the typical decay length of the VCA concentration along the drop contour.
The value ofρ can be estimated from the measured values for` andγ0 (Eq. 3.18).
Indeed, the value ofa, which provides an estimate VCA concentration (ρ ' 1/a2), is
a = 7nm. The value ofλ can be estimated from the decay of the VCA concentration
along the drop contour to beλ ∼ 2 µm. Using these values andR' 5 µm, we obtain
an estimation of the propulsive force

Fe∼ 2π
KBT

λ
ρR2 ∼ 103 pN , (3.28)

which is in the range of the typical forces measured experimentally for actin-based
propulsion (Marcy et al., 2004).

Although the underlying mechanism propelling the drop is the same than for
hard beads orListeria, i.e. actin polymerization, the force generation mechanism is
distinct for soft, fluid drops and hard objects. In particular, the analysis presented
here does not depend at all on the elastic modulus of the gel. This is so because the
scale of the stresses is fixed by the typical drop size and its surface tension, whereas
for a hard bead there is no other stress scale than the elastic modulus of the gel. As the
equations determining the drop shape and the propulsive force do not depend on the
elastic modulus of the gel, the shape of the drop and its velocity should not be altered
by changes in the gel structure. Indeed, changing considerably the elastic modulus
via the addition of biotin-streptavidin crosslinks between the actin filaments, does
not modify the drop shape and its velocity (J. Plastino, personal communication).

Distribution of polymerization nucleators on the drop surface

When describing theoretically the drop shape we neglected the surface tension gra-
dient, and the concentration of VCA molecules on the drop surface was considered
to be constant underneath the actin comet accordingly. In particular, the surface con-
centration of VCA molecules was given byρ = 1/a2 in the region where actin is
present. We now describe the dynamics of actin polymerization promoters on the
surface of the drop and show that the inhomogeneous distribution of VCA molecules
results from the coupled dynamics of the droplet and the nucleators on the surface.

The VCA molecules on the drop surface can be either connected to one of the
actin filaments forming the comet (bound state) or freely moving on the surface,
with no connection to the actin gel (unbound state). The connection between a VCA
molecule and an actin filament has a finite lifetime due to thermal fluctuations. At
vanishing stress, actin filaments detach from VCA molecules at an average ratekd.
Actin filaments also bind to (or start polymerizing at) free VCA molecules at a rate
ka. As the drop interface is fluid, the VCA molecules that are not attached to an actin
filament freely diffuse on the drop surface and tend to homogenize the VCA surface
concentration. On the other hand, a VCA molecule attached to an actin filament is
dragged by the actin comet tail toward the back of the drop. Indeed, in the reference
frame of the drop, the actin comet tail moves backward with velocity−V in the z
direction. On the drop surface, the tangential component of the gel velocity generates
a convective flow of the VCA molecules attached to actin filaments toward the back
of the drop.
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The convection of bound VCA molecules toward the back of the drop leads to
a larger VCA concentration at the rear. It is the competition between the dynamic
events defined above that sets the distribution of VCA. We are currently studying
the dynamics of VCA on the curved surface of the drop. However, we develop
here a simplified description in which curvature effects are neglected and we as-
sume no stress dependence of the ratekd at which actin filaments detach from VCA
molecules.

With these simplifying approximations, the dynamics for the density of bound
and unbound VCA molecules,ρb andρu respectively, read

∂ρb

∂ t
+

∂Jb

∂s
=−kdρb +kaρu ,

∂ρu

∂ t
+

∂Ju

∂s
= kdρb−kaρu , (3.29)

wheres is the spatial coordinate (s= 0 at the drop back ands∈ [0,πR]), Jb =−Vρb
is the convective flux of bound VCA molecules toward the back andJu =−D∂sρu the
diffusive flux of unbound VCA molecules (D being the diffusion constant of VCA
molecules on the surface). Assuming the VCA distribution to decay at length scales
smaller thanπR, as observed experimentally, the steady state solutions of Eq. 3.29
with zero total flux (Jb +Ju = 0) read

ρb(s) = ρ
0
b exp

(
− s

λ

)
, ρu(s) = ρ

0
b

vλ

D
exp
(
− s

λ

)
, (3.30)

whereρ0
b is a constant of integration fixed by the total amount of VCA molecules on

the surface, and

λ =
λ 2

2

2λ1

1+

√
1+
(

2λ1

λ2

)2
 , (3.31)

is the characteristic decay length of the VCA distribution, which results from the
combination of two characteristic length scales in the system: the average length
λ1 ≡V/kd that VCA molecules attached to actin filaments travel before detaching,
and the average lengthλ2 ≡

√
D/ka that free (unbound) VCA molecules travel by

diffusion until attaching to the actin gel.
Although qualitative and too simplified, the analysis above is in qualitative agree-

ment with the experimental observations. Experiments performed by Léa Trichet in
the group of Ćecile Sykes (Institut Curie), show that the ratio between the VCA den-
sity at the back and front parts of the drop depends exponentially on the drop radius.
From the analysis above, the ratio of VCA density at the back,ρb(s= 0)+ρu(s= 0),
and at the front,ρb(s= πR)+ρu(s= πR), reads

ρb(s= 0)+ρu(s= 0)
ρb(s= πR)+ρu(s= πR)

= exp

(
πR
λ

)
, (3.32)

in qualitative accordance with the experimental observations. A more quantitative
comparison of the theoretical results and the experimental data concerning the VCA
distribution will be published soon (Trichet et al., 2006).
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3.3 Conclusions

The experimental observations presented in this chapter on the shape of liquid drops
propelled by actin polymerization are well described by the theoretical description
based on a local normal force balance and on a Boltzmann variation of the poly-
merization velocity with normal stress. The results are robust if we use, for the
polymerization velocity, the mathematical forms suggested by simulations on flat
surfaces (Carlsson, 2001). We demonstrate that the elastic propulsive force cannot
be calculated from a stress distribution that ignores both pressure variations inside
the drop and surface tension gradients. Therefore, the total propulsive force cannot
be estimated only from the drop shape. The advancing velocity of the drop results
from a balance between the total propulsive force and the total friction force be-
tween the comet and the drop but a precise study of the velocity selection requires a
more refined analysis. We are currently studying in detail the propulsive and friction
forces.

Our description reproduces and explains several aspects of the drop motion and
agrees at quantitative level with the experimental observations by Hakim Boukellal
(Institut Curie). In particular, our calculations indicate that the growth of the actin
network generates stresses that push and squeeze the drop along the sides and pull
the drop backward at the rear. It has been suggested that a similar stress distribution
propels the bacteriumListeria (Gerbal et al., 2000a). Although in a different system,
our results confirm that the actin comet tail not only pushes on the object being
propelled but also pulls on it. In the experiments above (section 3.1), as well as in
reference (Upadhyaya et al., 2003), the motion stops when the drop (or the liposome)
becomes spherical. The large stress at the back of the drop could lead to “cavitation”
or rupture of the links between the drop and the comet. The elastic stresses exerted on
the drop then relax and provoke the experimentally observed arrest. Our results could
be also helpful to understand the process of phagocytosis, as the pulling stresses
may promote the internalization of the object being engulfed. Finally, the peculiar
stress distribution found sets important constraints to the microscopic modeling of
actin-based motility. The microscopic models proposed to date should be reviewed
in the view of our results. It would also be interesting to connect the mesoscopic and
microscopic approaches with a theoretical description at intermediate length scales.

The drop shapes obtained in our analysis agree with those observed experimen-
tally for oil drops. By comparing the theoretically calculated drop shape with the
experimental observations, we estimate of the polymerization velocity of an actin
gel in the absence of stress and its variation with stress. Moreover, endosomes and
lysosomes which are propelled by an actin comet tail also show deformations which
are in qualitative agreement with our results. However, we believe that our descrip-
tion should be extended to account for other observed behaviors. For instance, there
exist different dynamical regimes for the drop motion. Similarly toListeria or syn-
thetic beads, lipid vesicles and drops propelled by an actin comet also display a
saltatory motion. It is possible that the collective behavior of the actin filaments gen-
erating forces at the surface leads to similar instabilities than those observed in the
collective behavior of motor proteins.
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The fluidity of the drop interface constitutes an important feature of the system
dynamics, as it allows the movement of the actin polymerization promoters. Our
analysis highlights the importance of the attachment/detachment kinetics of the actin
filaments at the surface of the cargo, and the motion of the nucleators on the fluid
interface. Previous studies onListeria motion showed that the dynamic attachment
of the actin comet to the bacterium can be responsible for the observed saltatory
behavior. The plasma membrane at the leading edge of a crawling cell is fluid and
the motion of the actin nucleators on its surface can be important for the motility
process. In this case, the growth of the actin network would not be equally promoted
all along the leading edge. Instead, the coupled dynamics of the actin polymerization
promoters and the growth of the actin network would determine the distribution of
nucleators and the structure of the actin network.

We have shown that the mesoscopic approach adopted here is in quantitative
agreement with several experimental observations. In this approach the coupling be-
tween the growth dynamics of the filaments at the surface is effectively taken into
account in the gel elasticity. Indeed, the stresses developed at a given point deform
the gel and the drop, affecting thus the growth of actin filaments at other points of the
drop surface. Yet, it would be interesting to study how the dynamics of distant actin
filaments polymerizing at a surface are coupled by the network structure and what is
the dynamics of the growing network under applied loads. While it is known that the
growth of individual actin filaments can develop forces, the precise mechanism of
force generation is still unclear and it would be interesting to study it in more details.
Although solving these questions is important to understand actin-based motility, the
mesoscopic properties of actin networks allow coarse-grained descriptions based on
general conservation laws that are very helpful to understand the motion at large
scales.





Part II

Intracellular traffic
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Introduction

Many different processes take place simultaneously in eukaryotic cells. These pro-
cesses are carried out by biochemical reactions and each one of them requires a
specific set of proteins (Alberts et al., 2004). Some of the biochemical reactions, like
protein synthesis and degradation, are necessarily incompatible with each other and
must be physically separated. In order to overcome this problem, eukaryotic cells
have a set of membrane-bounded compartments (organelles), each one containing
specific proteins that perform a particular set of functions. Although all proteins are
synthesized in the cytosol (outside the organelles), they associate to particular or-
ganelles in a process called protein sorting. The different compartments maintain a
certain level of autonomy, but they must also interact with other cellular regions in
order to ensure the global functioning of the cell. There exist different mechanisms
by which membrane-bounded compartments interact with the cytosol and with other
compartments. The membrane that bounds a compartment have many different mem-
brane proteins that control the direct exchange of specific material with the cytosol.
This interaction takes place in the closed neighborhood of the compartment. How-
ever, cells also need to transport material, such as the newly synthesized proteins
or lipids, to different and distant regions in the cell (Fig. 4.1). For instance, the en-
doplasmic reticulum delivers the newly synthesized proteins to the Golgi apparatus,
which distributes them afterwards to other cellular regions. Moreover, the internal-
ized material at the plasma membrane, or the material to be secreted to the extra-
cellular medium, must be transported over large distances, of the order of several
microns. Different mechanisms are involved in this long range transport and require
a sophisticated machinery that we briefly describe below.

4.1 Intracellular transport

Ions and small molecules (like ATP) are needed everywhere in a cell, and are ho-
mogeneously distributed in the cytosol. Each membrane-bounded compartment has
selective transmembrane proteins (e.g. ion channels) that specifically control the per-
meation of these small molecules to their interior, depending on the needs. Diffusion
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Fig. 4.1.(a) Sketch of intracellular transport, showing the compartments (Endoplasmic Retic-
ulum (ER), Golgi apparatus, lysosomes,. . . ) involved in the biosynthetic-secretory, lysoso-
mal/vacuolar, and endocytic pathways. Arrows indicate the transport steps. The location of
COP-I (red), COP-II (blue) and clathrin (orange) is indicated by different colors. (adapted
from Ref. (Bonifacino and Glick, 2004)). (b) Distribution of conventional kinesin (red) and
microtubules (green) in a PtK1 cell. The red dots are kinesin motors associated with trans-
port vesicles from the Endoplasmic reticulum and Golgi, moving along microtubules. (Figure
taken from the Kinesin homepage: http://www.proweb.org/kinesin/index.html).

tends to homogenize the concentrations of ions and small molecules in the cytosol,
and is a relatively fast mechanism to transport them all over the cell. Unlike this non-
specific diffusional transport of small molecules, the long distance specific transport
mentioned above requires energy consumption. The physical mechanism for trans-
port relies on the interaction of transport intermediates (small vesicles and membrane
tubes) with the cell cytoskeleton through motor proteins, which move along the cy-
toskeletal filaments and transport the cargo (Alberts et al., 2004; Bray, 1992; Howard,
2001).

4.1.1 Vesicular transport

The process of vesicular traffic requires first the budding of small vesicles, which
enclose the material to be transported, from a membrane-bounded compartment
(Fig. 4.2a,b). A protein coat assembles on the surface of the membrane and induces
the formation of a membrane bud. Different proteins (Clathrin, COP-I, COP-II) have
been shown to induce budding by coating locally the membrane (Bonifacino and
Glick, 2004; Farsad and Camilli, 2003). Once the bud is formed, it pinches off
the original membrane, in a process that requires the action of other proteins (e.g.
dynamin (McNiven, 1998)). The small vesicles resulting from this fission are then
moved along the cytoskeletal filaments by motor proteins toward the target compart-
ment (Howard, 2001; Hirokawa, 1998; Hirokawa, 1996; Vale, 2003) (Fig. 4.1b and
Fig. 4.2c,d). Once the vesicles reach their destination, they fuse with the membrane
of the target compartment and release the transported material. The process of vesi-
cle docking and fusion is highly specific. This specificity is controlled by markers
on the transport vesicles that recognize complementary receptors on the surface of
the target organelle (Bonifacino and Glick, 2004). The SNARE family of proteins is
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thought to mediate the recognition process (Pfeffer, 1999), although other proteins
could also be involved.

Cells can internalize macromolecules in a process called endocytosis, and trans-
port them to the lysosomes using transport vesicles (Alberts et al., 2004; Bonifa-
cino and Glick, 2004). This inward transport is called endocytic pathway (Fig. 4.1a),
and allows the cell to take material from the exterior of the cell and digest it af-
terwards. There is also an outward transport of vesicles, initially created in the en-
doplasmic reticulum, that move toward the Golgi apparatus and are transfered later
to the plasma membrane. The material in these transport vesicles is released to the
exterior of the cell (exocytosis). This outward transport constitutes the biosynthetic-
secretory pathway and allows the cell to interact with the external world by secreting
specific molecules (Fig. 4.1a).

Fig. 4.2. (a) Sketch of the process of membrane budding by clathrin coating. (b) Electron
microscopy image of the initial (left) and final (right) states of budding induced by clathrin
coating. Bar, 0.25 µm. (c) Electron microscopy image of a transport vesicle attached to the
microtubule by a short cross-bridge (arrow) which could be a motor protein. Bar, 50 nm.
(Adapted from Ref. (Hirokawa, 1998)). (d) Sketch of small vesicles with motors of different
directionalities (kinesins and dyneins) bound to their surface. Kinesin motors carry the trans-
port vesicles toward the plus-end of the microtubule, while dynein motors carry them toward
the minus-end. The regulation of the directionality in transport vesicles with both minus-ended
and plus-ended motors remains unknown. (Modified from Ref. (Vale, 2003)).

The motion of the transport vesicles is due to molecular motors attached to the
surface of the vesicles (Alberts et al., 2004; Howard, 2001; Vale, 2003) (Fig. 4.2b,c).
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Depending on the destination of the vesicle, different motors drive the movement.
While the forward motion from the center of the cell (where the minus-ends of mi-
crotubules are located) toward its periphery is due to plus-ended motors (kinesins),
the inward motion is mediated by minus-ended motors (cytoplasmic dyneins). It is
thought that vesicles have both plus-ended and minus-ended motors attached to them,
and their respective activities are regulated to generate motion in a prefered direction,
depending on the final destination. Indeed, the characteristic saltatory motion of vesi-
cles suggests the competition of motor activities with different directionality (Welte,
2004).

The main inward and outward transport pathways in the cell are driven by
microtubule-based motors (kinesins and dyneins). This is so because the micro-
tubules in the cell are distributed radially from the center, connecting it directly to the
cell periphery, and acting as rigid rails for long distance transport. On the other hand,
the local transport over shorter distances (transversal motion more or less perpendic-
ular to the radial direction in the cell) is thought to involve actin-based processive
motors (like myosin-V) that move in the meshwork of actin filaments (Snider et al.,
2004). In a similar way as in a city, the microtubules act as highways allowing long
distance and fast transport directed radially from the center, whereas actin filaments
provide a network of local roads for transport on smaller scales.

4.1.2 Transport mediated by membrane tubes

Membrane tubes are tubular extensions of membrane-bounded compartments which
can extend from an organelle to distant regions in the cell, connect different parts of
the same organelle and even connect different organelles. The endoplasmic reticulum
constitutes the most spectacular example; it is composed of a tubular network that
extends all over the cell (Vedrenne and Hauri, 2006; Waterman-Storer and Salmon,
1998; Terasaki et al., 1986; Lane and Allan, 1999) (Fig. 4.3A and Fig. 4.4). In Fig. 4.3
we show the distribution of the endoplasmic reticulum in an eukaryotic cell. The
network of membrane tubules is highly ramified and extends over a large portion
of the cytoplasm. Membrane tubes are also involved in the internal transport of the
Golgi apparatus, where they connect different regions of this compartment (Ram-
bourg et al., 1979). The transport between different organelles is not only mediated
by transport vesicles but also by membrane tubes. In particular, the transport from
Golgi to the endoplasmic reticulum has been shown to involve a network of mem-
brane tubesin vivo (Lippincott-Schwartz et al., 1990). Although the precise mecha-
nism for transport mediated by membrane tubes is unknown, it has been argued that
tubes connecting Golgi and the endoplasmic reticulum could generate a fluid flow
inside the tube, resulting from the difference in surface tension of these organelles,
that would drive the transport of material from one organelle to the other (Upadhyaya
and Sheetz, 2004; Dommersnes et al., 2005; Sciaky et al., 1997).

The formation and maintenance of several organelles, like the endoplasmic retic-
ulum and the Golgi apparatus, have been shown to require the presence of micro-
tubules and the action of motor proteins (Alberts et al., 2004). In case microtubules
are depolymerized, the membrane tube network forming the endoplasmic reticulum



4.1 Intracellular transport 61

Fig. 4.3.(A) Structure of the Endoplasmic Reticulum (ER) in COS cells. (Left) Fluorescence
image showing the distribution of microtubules (red) and CLIMP-63, a protein associated to
the ER (green). The schematic representation is shown on the right. The protein CLIMP-63
(black dots) is thought to stabilize the attachment of the ER membrane to microtubules. The
network of membrane tubules constituting the ER is superimposed with the network of mi-
crotubules, which extends radially from the centrosome (rectangles) close to the nucleus (N).
Motors proteins (yellow arrows) extend the ER tubule network all over the cell. (b) Sketch of
the growth process of ER membrane tubes (white). (b.1), (b.2) and (b.3) represent different
stages of the growth, with time increasing from left to right. ER tubules are actively pulled
along microtubules by plus-ended kinesin motors. The anchoring of the tubes to the micro-
tubules is thought to be mediated by CLIMP-63. The interaction between different membrane
tubules is mediated by other proteins (p22,SNAREs,. . . ), which can reorganize the already
extended ER tube network. (Modified from Ref. (Vedrenne and Hauri, 2006)).

collapses onto the center of the cell and the Golgi apparatus fragments into separated
vesicles. The dynamics of the membrane tubes that form the endoplasmic reticu-
lum has been studied in detail (Waterman-Storer and Salmon, 1998; Lane and Allan,
1999) (Fig. 4.4). The tubes can either grow by the growth of a microtubule or can
grow along preexisting microtubules (Fig. 4.4c). If microtubules are stabilized, tubes
only grow toward the plus-end of preexisting microtubules and their typical velocities
are similar to those of kinesin motors (Waterman-Storer and Salmon, 1998). These
observations strongly suggested that membrane tubes are extracted from the endo-
plasmic reticulum by kinesin motors. Moreover, kinesin motors have been shown
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to be necessary for membrane tube formation from Golgi (Lippincott-Schwartz
et al., 1995). Molecular motors attached to the membrane of an organelle interact
with microtubules, walk along them and pull on the membrane until they extract a
tube (Vedrenne and Hauri, 2006; Waterman-Storer and Salmon, 1998) (Fig. 4.3b and
Fig. 4.4c). This tube extends further along the microtubule due to the action of the
motors and can eventually fuse with another compartment or a different region of
the same compartment. Motor proteins are thus not only involved in the maintenance
of the shape and proper positioning of important organelles in the cell but also in
the transport between organelles, either carrying small vesicles or pulling membrane
tubes.

Fig. 4.4.Structure and dynamics of Endoplasmic Reticulum (ER) tubes in the lamellipodium
of a Newt lung cell. (a-b) Fluorescence images showing the colocalization of ER (green)
tubules and microtubules (red). Distribution of the microtubule network (a; right) and simul-
taneous labeling of microtubules and ER (a; left). (b) Structure of the ER network (left) and
simultaneous labeling of microtubules and ER (right). The time in (a) and (b) is different
and indicated in min:sec. Bar, 5µm. (c) Growth of a ER tubule (arrow) along a preexisting
microtubule (microtubule tip indicated by an arrowhead). The different figures are snapshots
at different times, increasing from top to bottom, and indicated in min:sec. (Modified from
Ref. (Waterman-Storer and Salmon, 1998)).
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The work we present in this part focuses mainly in the physical formation of
membrane tubes by the action of molecular motors. In chapter 5 we study theoreti-
cally the process of membrane tube extraction by motor proteins, and quantitatively
compare our results toin vitro experiments that mimic thein vivo tube formation. In
chapter 6 we analyze the mechanism by which molecular motors are able to collec-
tively generate large forces when pulling on fluid membranes.

4.2 Membranes

Membranes are self-assembled structures, composed of many lipids arranged in a
bilayer configuration (Lipowsky and Sackmann, 1995). Individual lipids are am-
phiphilic molecules, with a polar hydrophilic head and a hydrophobic tail (hydrocar-
bon chains) (Fig. 4.5a). In contrast to the hydrophilic head of the lipid, which has a
certain affinity for water molecules, the hydrocarbon chains tend to avoid the contact
with water. When many individual lipids are in water solution, these spontaneously
form closed aggregates, with the hydrophilic heads forming the surface exposed to
water and the hydrocarbon chains contacting each other in order to minimize the
exposure to water molecules (Israelachvili, 1992; Lipowsky and Sackmann, 1995).
This is known as the hydrophobic effect and is responsible for the self-assembly
of lipids in solution (Widom et al., 2003). Depending on the geometric properties
of individual lipids, the structure of the assembly is different (Israelachvili, 1992)
(Fig. 4.5b). Cone-like lipids lead to spherical micelles, whereas cylindrical lipids as-
semble into planar bilayer, composed of two leaflets (Fig. 4.5c). If the geometry of
the lipids is in between these two cases (truncated cone), the resulting structures may
be cylindrical micelles or bilayers with a prefered curvature (called spontaneous cur-
vature). Lipid bilayers may form closed structures, called vesicles. The most studied
vesicles are those with spherical topology. Typically, mostin vitro studies use large
vesicles, called Giant Unilamellar Vesicles (GUV), with radius ranging from 1µm
to 100µm (Girard, 2004).

Lipid bilayers exist in different phases depending on the lipid structure and
several physical quantities, as pressure and temperature (Lipowsky and Sackmann,
1995). In typical physiological conditions, the bilayer is in a liquid disordered phase
and behaves as a two dimensional fluid. An important property of fluid lipid bilayers
is that the individual lipids forming a leaflet constantly interchange their positions,
leading to a diffusional motion of the lipids in each leaflet (Lipowsky and Sackmann,
1995). The diffusion constant of the lipids is about 1µm2s−1 for a membrane in a
liquid disordered phase (Chapman, 1975; Lipowsky and Sackmann, 1995; Bretscher,
1973). This in-plane fluidity of the membrane have interesting consequences on its
behavior at large scales.

The mesoscopic properties of a vesicle depend on the interaction between the
constituting lipids. However, when the length scales of interest are larger than the
individual size of a lipid and the thickness of the bilayer, the elastic properties of the
membrane are well described by coarse-grained theories (Canham, 1970; Helfrich,
1973; Lipowsky and Sackmann, 1995; Safran, 2003; Nelson et al., 2004; Kamien,
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Fig. 4.5.Sketch of a phospholipid (a), some of the possible self-assembled structures of dif-
ferent lipids (b) and a portion of a phospholipid bilayer (c). (Figures taken from the website
http://www.bioteach.ubc.ca/Bio-industry/Inex).

2002). At large scales, the membrane can be thought as a two-dimensional surface.
Unlike a mathematical surface, which can be freely distorted, there is an energy
cost associated to each elementary deformation of the membrane, namely bending,
stretching and shear (Lipowsky and Sackmann, 1995; Safran, 2003; Safran, 1999;
Sackmann, 1990). Any deformation of a membrane can be expressed as a combina-
tion of these three elemental deformations. Specifically, the microscopic origin and
the phenomenological description of the elemental deformations are the following:

• Stretching. The stretching mode accounts for the energy cost of changing the
area of an element of surface. At molecular level, this situation corresponds to
increasing the average distance between lipids from their equilibrium separation.
The energy per unit area,est, associated with a relative change in area∆A/A is

est =
Ka

2

(
∆A
A

)2

, (4.1)

whereKa is the compressibility modulus of the membrane and has been measured
to beKa ' 0.2 N/m for typical lipid vesicles (Girard, 2004; Evans and Rawicz,
1990; Olbrich et al., 2000). The extension that a membrane can support is, how-
ever, small. Above a relative extension in area of about 8%, there appear pores
in the membrane and a fraction of its volume is ejected (Sandre et al., 1999),
reducing significantly the membrane tension1. The typical membrane tension at
which pores are observed is about∼ 10−3 N/m (Sandre et al., 1999).

• Shear. The shear mode accounts for the energy cost of deforming an element
of surface at constant area. This situation corresponds to lipid rearrangements

1 The concept of membrane tension is defined below.
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in the plane of the membrane. Shear deformations are only relevant when the
membrane is in phases where the mobility of the lipids is largely reduced (e.g.
liquid ordered phase or gel phase (Lipowsky and Sackmann, 1995; Bretscher,
1973)). For vesicles in a liquid disordered phase, the lipids can diffuse in the
plane of the membrane with no substantial energy cost compared to stretching or
bending. As a consequence, in most cases, the shear energy cost can be neglected
for these vesicles.

• Bending. The bending mode accounts for the energy cost of deforming the mem-
brane out of the plane. Out-of-plane deformations induce a local rearrangement
of the lipids, with the lipids in the inner leaflet closer to each other and those in
the outer leaflet further way from each other, with respect to their equilibrium
distances. Assuming the membrane to be a two dimensional surface with prin-
cipal curvaturesc1 andc2, the energy per unit area,eb, associated to a bending
deformation is (Canham, 1970; Helfrich, 1973)

eb =
κ

2

(
c1 +c2−c0

)2 +κGc1c2 , (4.2)

whereκ andκG are, respectively, the bending modulus and the Gaussian bending
modulus. The curvaturec0 corresponds to the spontaneous curvature of the mem-
brane. Typical values for the bending rigidity of a vesicle areκ ' 10KBT (Evans
and Rawicz, 1990; Rawicz et al., 2000; Girard, 2004). Note that this value is of
orderKBT and, as a consequence, thermal fluctuations play an important role.

The energy costs described above for the different elementary deformations are
related to local deformations. The total energy of the vesicle is the sum of these
energy contributions all over the surface. The derivative of the energy with respect
to the area defines the membrane tension,σ . With the energy contributions defined
above,σ = Ka∆A/A. It is only associated to stretching deformations because these
are the only deformations that lead to a change in area. The energy cost to stretch the
membrane is much larger than that of bending deformations. As a result, the mem-
brane can be considered as an object of fixed area and no surface tension. Note how-
ever than in this description only enthalpic contributions have been considered. A
vesicle in solution is strongly affected by thermal fluctuations, which induce fluctu-
ations of the membrane itself (Brochard and Lennon, 1975; Kwok and Evans, 1981;
Evans and Rawicz, 1990). Such membrane fluctuations generate an entropic contri-
bution to the membrane tension, which we describe below.

The total energy of a membrane with fixed total area is expressed by its Hamil-
tonian,H , which reads (Helfrich, 1985)

H =
∫

dS
[

κ

2
(2H)2 +κGK +σ

]
, (4.3)

whereH ≡ (c1 +c2)/2 andK ≡ c1c2 are the mean and Gaussian curvatures respec-
tively, and the surface tensionσ is the Lagrange multiplier associated to the con-
straint of fixed total area. The mean and Gaussian curvatures are given by the trace
and determinant of the curvature tensor respectively, and are thus invariant under co-
ordinate transformations (Kamien, 2002; DoCarmo, 1995; Safran, 2003). Typically,



66 4 Introduction

the deformations of a vesicle do not lead to changes in topology. The Gauss-Bonnet
Theorem states that the integral of the Gaussian curvature over a closed surface is
a topological invariant (DoCarmo, 1995; Kamien, 2002). Therefore, as long as the
deformation does not involve a topological change, the term in the Hamiltonian asso-
ciated to the Gaussian curvature can be omitted as it contributes only with a constant
to the total energy.

The presence of thermal fluctuations induces undulations of the membrane, as the
thermal energy is comparable to typical values of the bending modulusκ. All defor-
mation modes are excited by the thermal fluctuations and, in equilibrium, each mode
carries the same average energy by the Equipartition Theorem. As a consequence
of these fluctuations, the membrane becomes rough. The only fluctuations that can
be observed by optical microscopy are those with wavelength larger than∼ mum
(Fig. 4.6a). Although the total areaA of the vesicle is fixed, a fraction of the area is
stored in membrane fluctuations. The average position of the fluctuating membrane
defines its projected area,Ap (Fig. 4.6c). The total area,A, of the membrane and
the projected area are, in general, different. Therefore, there is a fluctuation-induced
change in area,∆A = A−Ap, known as the excess area. Associated to this change
in area, there is tension that builds up in the membrane (Evans and Rawicz, 1990;
Fournier et al., 2001). In general, the tension,σ0, of a vesicle with no external force
applied on it, does not strictly vanish but is small (σ0 ∼ 10−7Nm−1 (Girard, 2004)).
For a vesicle with tensionσ0, the excess area is∆A0 = A−A0

p. When a force is
applied to the vesicle, both the enthalpic and entropic contributions to the relative
change in area can be important. In this case, the difference between the initial rela-
tive excess areaα0≡∆A0/A0

p (at tensionσ0) and the relative excess areaα = ∆A/Ap

of the vesicle at tensionσ is given by (Fournier et al., 2001; Evans and Rawicz, 1990;
Girard, 2004)

α0−α '
KBT
8πκ

ln

 1+
A0

p

(2π)2
σ

κ

1+
A0

p

(2π)2
σ0
κ

+
σ −σ0

Ka
. (4.4)

There exist two limiting regimes as the tension of the vesicle is varied (Evans
and Rawicz, 1990; Rawicz et al., 2000; Fournier et al., 2001; Girard, 2004). When
an increasing force is applied on a vesicle with initial tensionσ0, the progressive
unfolding of membrane fluctuations controls the tension increase. For vesicle ten-
sions belowσ ' 10−5 N/m, this entropic contribution dominates (entropic regime).
Above this value of the tension, almost all the fluctuations have been unfolded and
the stretching of the membrane becomes dominant (elastic regime).

Biological membranes

The description of membranes presented above accounts for membranes assembled
out of mixtures of lipids only. Biological membranes are however more complex (Al-
berts et al., 2004). Many different proteins are embedded in the membrane and play
an important role in membrane transport. Indeed, transmembrane proteins mediate
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Fig. 4.6. (a-b) Giant Unilamellar vesicle (GUV) observed by phase contrast. (a) The vesicle
tension is low (entropic regime) and the membrane undulations caused by thermal fluctuations
are visible at micron scale. (b) Vesicle characterized by a large tension. In this case the mem-
brane undulations are not observable at micron scale and the vesicle appears spherical. (c)
Schematic representation of a fluctuating membrane at different length scales. The membrane
has a real areaA (continuous line), and a projected areaAp (dashed line). (Modified from
Ref. (Girard, 2004)).

the exchange of small molecules between the organelle and the cytosol and maintain
a specific environment inside the organelle. The content of proteins in a biological
membrane can be as large as 75%, highlighting the importance of such interaction.

The lipids forming a biological membrane are of many types and heteroge-
neously distributed (Alberts et al., 2004). Moreover, the two leaflets of the bilayer
have different lipid compositions (Devaux and Morris, 2004). In spite of all these
important details, a biological membrane can be characterized at larger scales us-
ing the effective coarse-grained description above, with probably slightly different
values for the bending rigidity and stretching modulus.

The tension of the organellesin vivo is regulated by an unknown mechanism. Dif-
ferent mechanisms allowing the control of tension in membrane-bounded organelles
have been proposed. The existence of small membrane invaginations, called caveo-
lae, could provide a suitable way of tension control (Sens and Turner, 2006). Upon
tension increase, some of the caveolae would be unfolded, increasing the membrane
surface and lowering the tension. The dynamic equilibrium between folded and un-
folded caveolae would thus fix the organelle tension. Other works focus on the ten-
sion control of the plasma membrane and argue that it is achieved by the unfolding
of membrane fluctuations that appear in between the connection points of the mem-
brane with the underlying cytoskeleton (Fournier et al., 2004).





5

Membrane tube extraction by molecular motors

As discussed in the last chapter, membrane nanotubes play an important role in in-
tracellular traffic, in particular for lipid and protein exchange between various com-
partments in eukaryotic cells. Several works have shown the existence of dynamic
membrane tube networks in living cells (Cole and Lippincott-Schwartz, 1995; White
et al., 1999; Polishchuk et al., 2003).In vitro assays using purified organelles and cel-
lular extracts have led to the formation of similar membrane networks and showed
that microtubules and molecular motors are necessary for tube formation (Dabora
and Sheetz, 1988; Allan and Vale, 1994; Waterman-Storer and Salmon, 1998; Upad-
hyaya and Sheetz, 2004). As membrane and cytosol compositions are complex, it
was not possible to identify the minimal components required to pull tethers until
recently. In Ref. (Roux et al., 2002), it was shown that these membrane networks
could be formed simply by fixing kinesins on giant liposomes in contact with immo-
bilized microtubules. This minimal system provided a clear evidence that molecular
motors were able to pull tubes, in the absence of any other protein. For typical values
of membrane bending rigidity and membrane tension, the force necessary to pull a
tube is more than 15 pN (Derenyi et al., 2002). However, the maximum force that
a kinesin motor can exert (stall force) is about 6 pN (Block et al., 2003), implying
that more than a single motor is required to pull tubes. This suggests that the force is
distributed over a few motors. In Ref. (Roux et al., 2002), motors were permanently
attached to small beads and, typically, between 15 and 30 motors were estimated to
be in contact with microtubules and able to pull on the membrane simultaneously.
More recently, using a similar minimal system, Kosteret al.(Koster et al., 2003) suc-
ceeded to form tethers when motors were individually attached to membrane lipids.
They proposed that clusters of motors could be formed dynamically at the tip of a
growing tube. However, these motor clusters had not been observed yet. The experi-
ments that we describe in section 5.1 (see also Ref. (Leduc et al., 2004)), performed
by Cécile Leduc in the group of Patricia Bassereau (Institut Curie), showed that
motors dynamically accumulate at the tip of growing tubes. From the comparison
between the theory in this chapter and these experiments, we determine the binding
rate of kinesins onto microtubules in a geometry close to thein vivo situation, we
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estimate the number of motors needed to pull a membrane tube and we show the
existence of a threshold in tube extraction.

The theoretical work in this chapter is divided in three parts. First, we perform
a theoretical analysis of the process of tube extraction by molecular motors, where
we describe the dynamics of motors on both vesicle and tube surfaces. We analyti-
cally determine the conditions leading to tube extraction and show the existence of
an initial minimal surface density of motors on the vesicle below which no tubes
can be pulled. Moreover, we determine the motor density profile along the tube and
discuss the existence of a steady state for tube growth. These theoretical results are
then compared at quantitative level to the experimental data. The main results of this
part can be found in Ref. (Leduc et al., 2004). In the second part, we study theoret-
ically the extraction of long tubes, for which the variation of vesicle tension upon
tube growth is important. We show the existence of highly nonlinear oscillations in
the tube length and analytically determine the possible dynamical regimes of the
system. These theoretical findings are then compared at qualitative level with the
experimental observations. Finally, using numerical simulations, we study the motor
cooperation and organization at the tip of growing tubes, and analyze the traffic of
motors along the tube.

5.1 In vitro biomimetic experiments

In order to understand at quantitative level the process of tube extraction by molec-
ular motors, the group of Patricia Bassereau in Institut Curie designed anin vitro
system to mimic the tube extraction observedin vivo. All the experiments we present
in this section have been carried out by Cécile Leduc. Although we describe briefly
how the experiments are done, a detailed version of these experiments can be found
in the Ph.D. work of C. Leduc (Leduc, 2005).

These experiments are called minimal because only require a vesicle, micro-
tubules, kinesin motors and ATP. Removing any of these components prevents tube
formation. It has been previously shown (Koster et al., 2003), and corroborated in
these experiments, that the components just mentioned are indeed necessary and suf-
ficient for membrane tube formation. The aim of these experiments is to visualize the
kinesin motors during tube extraction in controlled conditions. To do so, kinesin mo-
tors must be attached to the lipids in the membrane, their location must be somehow
labeled and the relevant physical parameters must be controlled. Moreover, the pa-
rameters which cannot be externally tuned, like the intrinsic properties of the motors,
must be measured.

The process of attaching and visualizing the motors in the membrane was done as
follows. A special lipid, rhodamin-biotin Di-hexadecanoyl-phosphatidylethanolamine
(DHPE-Biot-Rhod), with both a biotin function and a fluorophore (Rhodamine) on
the head group was synthesized by P. Jolimaitre and L. Bourel-Bonnet (Institut Pas-
teur, Lille; Ref. (Jolimaitre et al., 2005)). Such lipids were mixed with another type of
lipids, mainly Egg phosphatidylcholine (EPC), and vesicles were formed from this
lipid mixture. As a result, the vesicles had a certain fraction of DHPE-Biot-Rhod
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Fig. 5.1. Sketch of the experimental set-up. A giant unilamellar vesicle (yellow), partially
covered with motors (blue dots), is placed over a network of microtubules (green) in presence
of ATP. The motors bound to microtubules apply forces on the membrane and, under certain
conditions, pull membrane tubes (yellow). The box shows the detail of a small portion of the
membrane and sketches the binding of a biotinylated kinesin to a rhodamin-labeled biotiny-
lated lipid (DHPE-Biot-Rhod) through a streptavidin molecule (Modified from Ref. (Leduc
et al., 2004)). When observed through fluorescence microscopy, the location of the motors is
revealed by the fluorophore (rhodamine) attached to the DHPE-Biot-Rhod head.

lipids on the surface that could be observed through fluorescence microscopy. The
molecular motors used in the experiments were conventional kinesin motors with
a biotin molecule attached to their tail (biotinylated kinesins; Fig. 5.1). Streptavidin
was used to attach biotinylated kinesins to DHPE-Biot-Rhod lipids. Biotin molecules
attach specifically to the binding sites of streptavidin. Although there exist four bind-
ing sites for biotin in a single streptavidin molecule, only two of them are functional,
meaning that only two biotin molecules can attach to one streptavidin molecule at
the same time. First, streptavidin molecules were attached to the biotin molecules
in the kinesins tail. Then, these streptavidin-kinesin complexes were put in contact
with vesicles containing a fraction of DHPE-Biot-Rhod lipids, and the streptavindin-
kinesin complexes attached to the biotin molecules in a DHPE-Biot-Rhod lipids (box
in Fig. 5.1). With this protocol, it is possible to obtain vesicles partially covered with
kinesin motors and their location can be observed through fluorescence microscopy.
We now explain how the experiments are done and how the density of motors in the
vesicle can be controlled.

The minimal system consisted of a partly biotinylated Giant Unilamellar Vesicle
(GUV), coated with biotinylated kinesins through streptavidin molecules (Fig. 5.1).
The vesicle played the role of a membrane reservoir. This vesicle sedimented onto
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a taxol-stabilized1 microtubule network in presence of 1 mM ATP (Fig. 5.2). The
ATP concentration was chosen in such a way that the motor velocity was close to
maximum, while motors stayed sufficiently attached to microtubules (Block et al.,
2003). In this assay, the number of kinesins was directly controlled by fixing the
biotinylated lipid (DHPE-Biot-Rhod) concentration in the membrane. The protocol
was set up so that one kinesin molecule binds to one biotinylated lipid. First, kinesin
and streptavidin concentrations were adjusted such as at most one kinesin binds to
one streptavidin, due to the large excess of streptavidin compared to kinesin (step 1 in
Fig. 5.2). Then, by immobilizing streptavidin-kinesin complexes on the microtubules
before vesicle injection (step 2 in Fig. 5.2), it was possible to thoroughly rinse the
chamber and get rid of free streptavidins and non-active motors in solution (step 3
in Fig. 5.2). As the total number of biotinylated lipids in the vesicle was much lower
than the number of available streptavidin-kinesin complexes (by at least one order
of magnitude), every binding site for motors was occupied due to the high affinity
of streptavidin for biotin (step 4 in Fig. 5.2), and the streptavidin-kinesin complexes
not attached to DHPE-Biot-Rhod lipids remained in solution. The site saturation was
achieved faster than the time required to pull the first tube (∼ 1 minute). The number
of motors attached to the membrane is therefore equal to the number of biotinylated
lipids. Moreover, for concentrations above 0.01 mol% DHPE-Biot-Rhod, it was also
checked that the number of streptavidin molecules per biotinylated lipids remains
constant when varying the DHPE-Biot-Rhod concentration (Leduc et al., 2004). Be-
sides, it was also verified that the quantity of streptavidin-kinesin complexes attached
to the lipids through non-specific interactions can be neglected for concentrations of
DHPE-Biot-Rhod above 0.001 mol%.

The measurement of fluorescence intensity of DHPE-Biot-Rhod along the tube
gives the motor distribution as the experimental protocol was adjusted to have one
motor per DHPE-Biot-Rhod. With this protocol, it is then possible to simultaneously
visualize the motor distribution and control the concentration of motors on the vesi-
cle.

Various parameters can be tuned in this assay. The initial concentration of motors
on the vesicle surface, calledρ∞ in the theoretical description below (section 5.3), can
be modified by changing the concentration of biotinylated lipids (DHPE-Biot-Rhod)
in the vesicle. Variations in the vesicle tension,σ , lead to changes in the necessary
force to pull a tube (see section 5.2). It is thus an important parameter which should
also be controlled. Indeed, the vesicle tension can be adjusted by changing the osmo-
larity of the solution inside the vesicle. Optimizing these parameters, it was possible
to obtain either very dense networks of membrane tubes with many bifurcations and
bundles as in Ref. (Koster et al., 2003) (Fig.5.3a), or sparse ones with only one or
two tubes per vesicle (Fig.5.3b). The last case corresponds to high vesicle tensions
and low motor concentrations, and is more suitable for a proper comparison to the
theory.

1 Taxol is a molecule that stabilizes microtubules by preventing its depolymerization (Schiff
and Horwitz, 1980).
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Fig. 5.2.Experimental protocol to prepare the vesicles partially covered by motors that allow
the formation of membrane tubes. (Step 1) Taxol-stabilized microtubules (red) are placed on
the lower surface of the observation chamber, and biotinylated kinesins (kinesin and biotin are
shown in purple and gray respectively) are incubated with a large excess of streptavidin (dark
blue). (Step 2) The streptavidin-kinesin complexes are fluxed into the observation chamber.
Kinesin motors attach to microtubules and stay attached due to the absence of ATP in the
chamber. (Step 3) The chamber is rinsed to get rid of free streptavidin and unattached motors
in solution. (Step 4) The chamber is rinsed with ATP and the vesicles (green) are fluxed into
the chamber. In presence of ATP, the motors detach from the microtubules, diffuse in the
solution and attach to the DHPE-Biot-Rhod lipids (dark green) in the vesicle through the
streptavidin molecule. The box show a detail of the streptavidin-mediated motor-DHPE-Biot-
Rhod attachment. (Figure by C. Leduc).

5.2 Physics of membrane tube extraction

Before addressing the problem of membrane tube extraction by molecular motors,
we briefly describe the physics of tube extraction itself.

5.2.1 Tube extraction from an infinite membrane reservoir

When a force is applied on a vesicle, it responds by changing its shape. Under cer-
tain conditions it is energetically more favorable to pull a membrane tube, rather than
inducing an overall deformation of the membrane. Several works have studied exper-
imentally and theoretically the physics of membrane tubes. Tubes can be extracted
from vesicles by a shear flow (Rossier et al., 2003; Borghi et al., 2003), or apply-
ing localized forces on the membrane, for instance, with optical tweezers (Koster
et al., 2003; Koster et al., 2005; Cuvelier et al., 2005b; Cuvelier et al., 2005a). At the
theoretical level, several groups have studied their properties (Derenyi et al., 2002;
Powers et al., 2002; Rossier et al., 2003). We briefly describe here part of the work
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Fig. 5.3.Confocal images of membrane tubes pulled by kinesin motors from GUV in different
conditions. The images are two-dimensional projections of the three-dimensional confocal
reconstruction. The membrane was uniformly labeled with fluorescent lipids (DHPE-TRITC),
and the biotinylated lipids to which motors are attached were not specifically labeled. The
images are shown in false color to enhance the contrast. (a) Dense tube network pulled from a
vesicle with an initially low membrane tension (σ ∼ 10−6 N/m). Bar, 10µm. (b) Membrane
tubes pulled from an initially tensed vesicle (σ ∼ 210−4 N/m). Bar, 5µm. (Modified from
Ref. (Leduc, 2005)).

in Ref. (Derenyi et al., 2002) which studies the formation of membrane tubes by a
localized forced.

We are interested in the case where both the pressure,p, and tension,σ , of the
vesicle are fixed. In such conditions, the free energy,F , of a membrane with a point-
like forceF applied on it reads

F =
∫

dS
κ

2
(2H)2 +σA− pV−FL , (5.1)

whereκ is the bending rigidity,H the mean curvature,A the total area andV the
vesicle volume. If the membrane is placed in the{x,y} plane and the force is applied
in thez direction, the distance between the plane and the point of application of the
force isL (Fig. 5.4a). For a membrane tube of radiusr and lengthL the free energy
at vanishing pressure reads

Ftube=
(

κ

2r2 +σ

)
2πrL−FL . (5.2)

The bending rigidity opposes the reduction of the tube radius, whereas the surface
tension promotes such a reduction. This competition between the bending and sur-
face tension terms, sets the equilibrium tube radius,r0 and the forceF0 of the tube.
Minimizing the free energy of the tube with respect to its radius and length, one
obtains

r0 =
√

κ/2σ , F0 = 2π
√

2κσ . (5.3)

For the typical values of the membrane rigidity (κ ' 10KBT) and surface tension
(σ ' 510−5 N/m), the radius of the tube is aboutr0 ' 20 nm and the tube force
F0 ' 12.6 pN.
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For forces below the tube force (F < F0), the membrane deforms and adopts a
catenoid shape (Fig. 5.4a), which results from the minimization of the membrane
free energy (Eq. 5.1). In this regime, the forceF increases linearly with the magni-
tude of the deformationL (Fig. 5.4b). As the force is increased further, the system
eventually reaches a critical point at which a membrane tube is extracted (Fig. 5.4a).
The value of the force at which the tube appears is above the forceF0 and, as the
tube is pulled further, the tube force converges toF0. The force-length relation is
thus non-monotonic, with a force overshoot of 0.13F0 at the point where the tube is
extracted (Fig. 5.4b). This relation has been indeed observed experimentally (Koster
et al., 2003). Moreover, the magnitude of the overshoot has been shown to depend
strongly on the size of the patch used to apply the force on the membrane (Koster
et al., 2005). Once the tube is formed, the necessary force to keep pulling it isF0,
no matter how long the tube is pulled. This behavior, in which the force does not
increase with the length of the tube, holds only for infinite membrane reservoirs be-
cause the tension remains constant upon tube extraction. We derive in the next section
the relation between the tube forceF0 and its length for a finite vesicle.

Fig. 5.4. (a) Membrane deformation and formation of a membrane tube induced by the ap-
plication of a point-like force on the membrane. Notation is different than in the main text
(R0 = r0 and f0 = F0). The inset depicts the definition of the tube lengthL. (b) Tube force as
a function of the tube length, showing the existence of a force overshoot associated to tube
formation. Once the tube is extracted, the tube force is constant and given byF0. (Modified
from Ref. (Derenyi et al., 2002)).

5.2.2 Tube extraction from a vesicle

It is clear that a membrane tube cannot be pulled as long as desired from a vesicle
because the amount of membrane is finite. We derive here the relation between the
force needed to pull the tube,F , and the length,L, of the tube at equilibrium. Our
aim is not to describe the formation of the tube, but only to understand the variation
of the tube force with its length once it has been formed.
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When a tube is pulled out of a vesicle, the amount of membrane needed to form
the tube is taken from the excess area of the vesicle. As the tube is extracted, the
initial excess area stored in the vesicle progressively diminishes and the tension in-
creases accordingly. Such an increase in membrane tension leads to an increase of
the tube force for increasing tube length. The relative excess area,∆A/Ai , taken from
a vesicle of initial radiusRi (and initial projected areaAi) to create a tube of lengthL
and radiusr is

∆A
Ai

=
rL

2R2
i

. (5.4)

For low vesicle tensions, the additional area comes from the unfolding of membrane
fluctuations (entropic regime) and the vesicle tension,σ , depends exponentially on
the relative excess area. For tensed vesicles the microscopic stretching of the mem-
brane dominates (elastic regime) and the vesicle tension scales linearly with the ex-
cess area (Fournier et al., 2001; Girard, 2004). As discussed above, at equilibrium,
for a given membrane tensionσ and bending rigidityκ, the force needed to pull
a tube isF = 2π

√
2κσ , and its radiusr =

√
κ/2σ . In the case of a vesicle in the

entropic regime, this argument leads to the following relation between the tube force
F(L) and the lengthL of the tube

L
Lent

c
= 2

F
F0

ln

(
F
F0

)
, (5.5)

whereF0 = 2π
√

2κσ0 is the initial tube force (withσ0 being the initial vesicle ten-
sion). The characteristic length scale at which the increase of force becomes notice-
able,Lent

c , reads

Lent
c =

KBT
4πκ

R2
i

r0
, (5.6)

wherer0 =
√

κ/2σ0 is the tube radius for the initial vesicle tensionσ0. For typical
vesicles (Ri ∼ 10µm andF0 ∼ 10 pN) the force increase is appreciable for tube
lengths greater than about 30µm. In case several tubes are pulled from the same
vesicle (tube network, Fig. 5.3a), the relevant length is the sum of all tube lengths
and the increase of tension may become important very quickly.

If the vesicle is already initially tensed (σ0 ' 10−4 N/m), the stretching of the
membrane dominates the tension increase. In this case, the dependence of the tube
forceF on the tube length is given implicitly by

L
Lel

c
=

F
F0

[(
F
F0

)2

−1

]
, (5.7)

In this case, the characteristic length of force increase,Lel
c , for a vesicle in an elastic

regime is given by

Lel
c = Ri

RiF
3
0

8π3κ2Ka
, (5.8)

whereKa is the compressibility modulus of the membrane, which has been measured
to beKa' 0.2 N/m for a typical membrane (Evans and Rawicz, 1990; Olbrich et al.,
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2000). For a typical vesicle in the elastic regime (Ri ∼ 10µm andσ0 ' 10−4 N/m)
the lengthLel

c at which the force increase becomes noticeable is about 20µm. Both
entropic and elastic behaviors have been observed experimentally by pulling long
tubes from an adhered vesicle using optical tweezers (Cuvelier et al., 2005a).

When a long membrane tube (L > Lent
c or L > Lel

c ) is pulled from a vesicle, the
membrane taken from the vesicle to form the tube leads to an increase of the neces-
sary force to pull the tube. Therefore, for long enough tubes, the tube can be seen as
a nonlinear spring acting on the motors that pull collectively at the tip.

5.3 Theoretical description

In this section, we theoretically describe the mechanism by which molecular motors
cooperatively pull membrane tubes from vesicles. The analysis is done in two parts.
First, we consider short tubes (L < Lc), for which the force increase during tube ex-
traction is negligible, and study both the conditions leading to tube extraction and the
tube growth. The results of this part are quantitatively compared to the experimen-
tal data in the discussion. Separately, we study the growth dynamics of long tubes
(L > Lc), for which the increase in the tube force is important.

5.3.1 Short tubes

We only consider in this section tubes of length belowLc ' 20 µm. The increase
in tube force upon tube growth is thus negligible and the tube force is constant and
given byF0 = 2π

√
2κσ .

In order to describe theoretically the tube extraction by molecular motors, we
divide the system in the three regions sketched in Fig. 5.5b, namely, the vesicle, the
tube and the tip of the tube. This division appears to be the most natural one, as
suggested by the experimental observations (Fig. 5.5a). The motors located at the
tip of the tube are the only motors able to exert significant forces on the membrane,
as it is only at the tip that the motors can exert normal forces to the membrane. A
motor moving on the microtubule in the tube region is subject to the drag force that
arises from the motion of the lipid to which it is attached in the fluid membrane. This
force is of hydrodynamic origin and of order∼ (KBT/D)V0 during tube growth,
whereD is the diffusion coefficient of the motor-lipid complex in the membrane
andV0 the velocity of the motor at vanishing force. Using the values measured in
the experiments (see discussion below), this drag force is below 10−3 pN and thus
negligible as far as motor movement is concerned. Therefore, for short tubes, the
forces transmitted to the tube by the motors moving along the tube do not exceed
a few percent of the force needed to extract a tube. A finite force is thus applied to
each motor in the tip region. As the motor velocity decreases with applied load (see
chapter 1), these motors move more slowly than the motors moving along the tube,
resulting in an accumulation of motors at the tip (Fig. 5.5c). Moreover, those motors
working to pull the tube detach from the microtubule faster than the motors along the
tube. The loss of working motors is compensated, under certain conditions, by the
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Fig. 5.5.(a) Confocal side-view image of a membrane tube representing the typical geometry
of the system and suggesting the natural regions dividing it. The membrane is uniformly la-
beled. Bar, 2µm. (Image by C. Leduc). (b) Schematic representation of the different regions
considered in the theoretical description: vesicle, tube, tip. The membrane is shown in yellow
and the microtubule in dark green. (c) Sketch of the tube-tip boundary and tip region repre-
senting the accumulation process at the tip. The bound motors at the tip (red) move against the
tube forceF with velocity V and detach from the microtubule (dark green) at a rateku. The
tube grows with average velocityV due to the motion of the motors at the tip. The bound mo-
tors along the tube (blue) do not support any substantial force, move with velocityV0 (motor
velocity under vanishing load) and detach from the microtubule at a ratek0

u. The motors not
bound to the microtubule (unbound motors; light green) attach to the microtubule at a ratekb.
These unbound motors diffuse along the tube and are dragged by the tube itself as it grows.

incoming flux of motors from the tube. At the same time, the tube is constantly fed
by motors coming from the vesicle. In what follows, we mathematically describe the
coupled dynamics of the different regions and determine self-consistently the tube
motion.

Tip region

We define the tip as the front part of the tube where motors apply forces. Bound mo-
tors are those attached to the tube and to the microtubule, whereas unbound motors



5.3 Theoretical description 79

are only attached to the tube (Fig. 5.5c). The dynamics of motors at the tip is given
by the conservation equations for the numbers of bound and unbound motors,nb and
nu respectively, and read

dnb

dt
= Ĵb(x = 0, t)−ku(nb)nb ,

dnu

dt
= Ĵu(x = 0, t)+ku(nb)nb , (5.9)

whereĴb and Ĵu are, respectively, the flux of bound and unbound motors reaching
the tip from the tube region (expressed in the tube reference frame), andku(nb) is
the unbinding rate of bound motors. The tube is along thex-axis (oriented along
the direction of the tube motion); the originx = 0 is at the position of the tip. Note
that we have neglected the motor binding events at the tip. This is because the time
required for a motor to leave the tip region by diffusion is much smaller than the
binding time. With the values measured experimentally, the ratio of these two times
is smaller than 10−3. The total force,F0, that the motors exert is the critical force
necessary to pull a tube from a membrane,F0 = 2π

√
2σκ (see section 5.2), where

σ is the membrane tension andκ the membrane bending rigidity. The unbinding
rate of the bound motors from the microtubule,ku, depends on the force applied
to each bound motor,fm, which is assumed, for the sake of simplicity, to be equally
distributed between all motors in the tip, so thatfm = F0/nb. Kramers rate theory (van
Kampen, 2004; Kramers, 1940) leads to

ku(nb) = k0
u exp

(
F0a

KBT
1
nb

)
, (5.10)

wherek0
u is the unbinding rate at vanishing force anda is a length in the nanometer

range characterizing the potential barrier between bound and unbound states. As a
first approximation, we assume that the velocity,V, of a bound motor is a linearly
decreasing function of the applied force and writeV = V0 (1− fm/ fs), where fs is
the stall force of the motor andV0 is the motor velocity at vanishing load. As the
membrane tube is pulled by bound motors, in a mean field description its growth
velocity is the velocityV of the motors pulling the tube at the tip.

Tube region

We describe the dynamics along the tube by two populations of motors, namely
bound and unbound motors, which are characterized by their linear densitiesρb and
ρu. As argued above, the bound motors along the tube do not feel any substantial
force. Consequently, bound motors move in this region at constant velocityV0 and
detach stochastically from the microtubule at a ratek0

u (Fig. 5.5c). The motion of
unbound motors is restricted to the tube surface and has both diffusive and convective
components in the laboratory reference frame. The convective feature stems from
the membrane flow resulting from the tube growth. It corresponds almost to pure
convection at the velocityV, since the buffer viscosity is two orders of magnitude
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smaller than that of the membrane. The diffusive motion is due to the diffusion of
the lipid to which the motor is attached in the membrane, and it is characterized by
a diffusion coefficientD. Moreover, unbound motors also bind stochastically to the
microtubule at a ratekb. The mean-field dynamic equations for bound and unbound
motors can be written as

∂ρb(x, t)
∂ t

+
∂Jb(x, t)

∂x
=−k0

uρb(x, t)+kbρu(x, t) ,

∂ρu(x, t)
∂ t

+
∂Ju(x, t)

∂x
=−kbρu(x, t)+k0

uρb(x, t) . (5.11)

In the laboratory reference frame, the fluxes of bound and unbound motors ,Jb(x, t)
andJu(x, t) respectively, read

Jb(x, t) = V0ρb(x, t) ,

Ju(x, t) = Vρu(x, t)−D∂xρu(x, t) . (5.12)

We ignore here the variations of the motor velocity with the density of motors. At
very high density of bound motors this approximation breaks down and, for instance,
the motion of one motor could be hindered by the preceding motors, leading to the
formation of traffic jams (Parmeggiani et al., 2003; Lipowsky et al., 2001). As we
shall explain below, the experimental data support this low density assumption.

Vesicle region

Before the tube is extracted, the motors on the vesicle are characterized by an initial
surface densityρ∞, which evolves to a space-time dependent valueρm as the tube
is progressively pulled. If a tube of radiusr and lengthL is pulled from a vesicle
with initial radiusRi , the radius,R, of the vesicle is given, from volume conservation
arguments, by

R
Ri

=
(

1− 3
4

r2L
R3

i

)1/3

. (5.13)

Using typical experimental values forr ∼ 20 nm,Ri ∼ 10 µm andL ∼ 10µm, the
variation of the vesicle radius is negligible. We thus consider the radius of the vesicle
to be constant in what follows.

We are interested in the time evolution of the motor density field,ρm, on the
surface of the vesicle, because it controls the flux of motors entering the tube. As
the radius of the vesicle is about 103 times larger than the typical radius of the tube,
we consider the vesicle to be a sphere of constant radiusR with a point-like sink of
motors at the pole specified byθ = 0 (in spherical coordinates; Fig. 5.6). The motors
on the surface of the vesicle diffuse with a diffusion coefficientD. In addition, when a
tube is pulled from a vesicle, there is also a convective flux of lipids being extracted
from the vesicle, which leads to a convective motion of the motors on the vesicle
surface. We now show that this convective flux is negligible compared to diffusion
for all practical purposes.
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Fig. 5.6.Geometry of a vesicle with a membrane tube being extracted atθ = 0 in thez direc-
tion with velocityV. The symmetry of the problem ensures that the membrane velocity field is
in the θ̃ direction and that both the membrane velocity and the surface motor density depend
only on the spatial coordinateθ .

To this end, we calculate the membrane surface velocity field,v = v
θ

θ̂ 2, when
a point-like sink of membrane is situated at the pole specified byθ = 0 (Fig. 5.6).
Assuming the density of lipids in the membrane to be homogeneous, the membrane
velocity fieldv is given by

v
θ
(θ) =−V

2
r
R

1+cosθ

sinθ
, (5.14)

whereV is the velocity at which the tube is extracted. Note that there is a cut-off
angle associated to the finite radius of the tube which prevents the divergence of the
velocity field. The velocity of the lipids is of orderV r/R everywhere on the vesicle
surface, except in a very close neighborhood of the tube, where is of orderV due to
flux continuity conditions.

The dynamics of the surface motor density field is given, at mean-field level, by

∂ρm

∂ t
+v ·∇ρm−D∇2

ρm = 0 . (5.15)

There is a single dimensionless parameter, namelyVr/D, that quantifies the im-
portance of the convective flux compared to the diffusive one. For the typical values
measured experimentally,Vr/D∼ 10−2 (V ∼ 0.1 µm s−1, D' 1 µm2 s−1 andr ' 20
nm; see discussion below). The convective flux can thus be neglected everywhere on
the surface except in the close neighborhood of the tube. The motor density field can
be thus calculated considering only a diffusive flux on the surface, and accounting
for the convective flux with a sink of motors at the position where the tube is located
(θ = 0; Fig. 5.6). In these conditions, the motor density field is given by

2 Due to the symmetry of the problem, the velocity only has a component in the directionθ̂ .
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∂t −D∇2)

ρm =−J(t)δ (x) , (5.16)

whereJ(t) is the flux of motors entering the tube.
The time scale to propagate all over the vesicle the effect of motor depletion

induced by the tube growth isR2/D∼ 102 s. The growth of a tube of about 10µm in
length at a typical velocityV ' 0.1 µm/s, takes about 102 s. Therefore, during the
initial stages of tube extraction (L . 10µm), the depletion of motors has not reached
the other side of the vesicle (θ = π) and Eq. 5.16 can be solved in the flat space
within a good approximation.

With these assumptions, the motor density field can be solved in the two-
dimensional space using polar coordinates, withs being the radial distance from the
center, where the motor depletion takes place. The motor flux,J(t), at the origin is
fixed by the flux of motors taken by the growing tube and the solution for the motor
density field reads

ρm(s, t) = ρ∞−
∫ t

0
dt′ J(t ′)

exp
(
− s2

4D(t−t ′)

)
4πD(t− t ′)

. (5.17)

In case the motor fluxJ is constant, the latter expression reduces to

ρm(s, t) = ρ∞ +
J

4πD
Ei

(
− r2

4Dt

)
, (5.18)

where Ei(z) is the exponential integral function (Gradshteyn and Ryzhik, 2000).
In spite of this detailed description of the depletion of motors on the vesicle

surface, we shall show below that in the conditions of the experiments described in
section 5.1 the motor depletion is negligible.

Quasi-steady state approximation

The equations given above for the dynamics of the motors in the tip region, along
the tube and on the vesicle surface are coupled. In order to fully specify the solutions
of Eq. 5.9 for the dynamics of the motors at the tip, it is necessary to know the flux
of motors reaching the tip region. The flux is given by the solutions of Eq. 5.11
which depend on the surface motor density field on the vesicle, as it specifies the
flux of motors entering the tube. The system of equations must be then solved self-
consistently. This is done by assuming that there exists a quasi-steady state, with a
constant tube velocityV (or very slowly varying on time), and solving the equations
in this limit. Note that, in general, there is no steady-state for the system because
there is always a net flux of motors entering the tube. However, we show below that
a quasi-steady state indeed exists.

As the tube velocity is considered to be constant in the quasi-steady state ap-
proximation, Eq. 5.11 can be expressed in the tube reference frame. The fluxes of
bound and unbound motors in this reference frame areĴb = (V0−V)ρb(x, t) and
Ĵu =−D∂xρu(x, t) respectively, wherex is the position along the tube (oriented along
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the direction of the tube motion) and the originx = 0 is at the position of the tip. We
apply the Laplace transform on time to Eq. 5.11 and write the solutions for the den-
sity fields,ρ̄b(x,s) andρ̄u(x,s), in the Laplace space as

ρ̄b(x,s) =
ρ∞

b

s
+B(s)exp(qx) ,

ρ̄u(x,s) =
ρ∞

u

s
+U(s)exp(qx) , (5.19)

whereρ∞
b andρ∞

u represent solutions of constant density of bound and unbound mo-
tors respectively, ands is the conjugate variable for the time in the Laplace space.
All eigenfunctions must obey Eq. 5.11 independently. The substitution of the ex-
ponential eigenfunctions (exponential terms in Eq. 5.19) into Eq. 5.11 give rise to
an algebraic equation forB(s) andU(s). Imposing non-zero solutions leads to the
characteristic equation, which reads

−λ1λ
2
2 q3−

(
1+

s
k0

u

)
λ

2
2 q2 +

(
1+

s
kb

)
λ1q+

s
kb

s+kb +k0
u

k0
u

= 0 , (5.20)

whereλ1≡ (V0−V)/k0
u is the average length that a bound motor travels along the mi-

crotubule before detaching and,λ2≡
√

D/kb is the average distance that an unbound
motor travels along the tube before re-attaching back to the microtubule. The charac-
teristic equation sets two limiting time regimes. For timest smaller than

(
k0

u +kb

)−1

(s� k0
u +kb) the solution of the characteristic equation isq =

√
s/D 3. On the other

hand, fort �max[(k0
u)
−1,k−1

b ], the solution of the characteristic equation is4

q =
1

2λ1

√1+
(

2
λ1

λ2

)2

−1

 . (5.21)

Note that there exist two different regimes, depending on whetherλ1/λ2 � 1 or
λ1/λ2 � 1. We will discuss the characteristics of these two regimes below, when
describing the density field along the tube.

As the solutions must obey Eq. 5.11, the functionsB(s) andU(s) and the con-
stantsρ∞

b andρ∞
u are not independent from each other. The relations between them

are

k0
uρ

∞
b = kbρ

∞
u ,

B(s)
(
s+q

(
V0−V

))
=
(
Dq2−s

)
U(s) . (5.22)

The relation betweenρ∞
b andρ∞

u corresponds to the equilibrium condition between
the constant values of the density field (detailed balance). Note that the relation be-
tweenB(s) andU(s) depends on time. The limiting expressions for this relation at

3 There are actually two solutions,±
√

s/D, but the physically relevant solution is
√

s/D.
4 Again, the are two solutions, but we only write the solution that corresponds to non-

diverging density profiles away from the tip.
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short time scales (t <
(
k0

u +kb

)−1
) and long time scales (t > max[(k0

u)
−1,k−1

b ]) can
also be found using the limiting solutions forq.

The quasi-stationary solutions of Eq.5.11 for the motor density profiles{ρb,ρu}
along the tube are thus exponentially decaying functions of the distance from the tip
with a characteristic length scaleλ ≡ q−1. The decay lengthλ is much larger than the
typical size of the tip region which is in the nanometer range and cannot be resolved
in the experiments. The value ofλ is independent of the particular definition of the
tip and is fixed by the dynamics of motors along the tube.

Although all the analysis must be done in the Laplace space, in what follows we
express the solutions using the time variable for simplicity.

Conditions for tube extraction

During the initial stages of tube extraction (t <
(
k0

u +kb

)−1∼ 10−1s), the tube length
Vt is always smaller than the characteristic lengthλ , which is given in this regime
by the diffusion lengthλ =

√
Dt, and the density profiles can be considered as lin-

ear. In the quasi-steady state approximation, both the average number of bound and
unbound motors,nb andnu respectively, are approximately constant in time, so that
dnb/dt ' 0 anddnu/dt ' 0. Consequently, the average tube velocityV is constant.
Note that these conditions specify the boundary conditions for the density fields at
the boundary between the tube and the tip regions. Specifically, using Eq. 5.9 and the
conditions just mentioned the following relations are obtained

Ĵb(x = 0)+ Ĵu(x = 0) = 0 ,

Ĵb(x = 0) = ku(nb)nb . (5.23)

The first equation indicates that the flux of bound motors entering the tip must equal
the flux of unbound motors leaving it, so that the total flux in the tube-tip boundary
vanishes (Fig. 5.7). The second equation states that the flux of motors entering the tip
must balance the detachment flux of motors at the tip. In case the detachment motor
flux at the tip were larger than the rate at which motors are fed into the tip region,
there would be an eventual loss of all motors sustaining the tube and the tube would
retract back to the vesicle.

On the other hand, the boundary conditions at the vesicle-tube boundary are the
continuity of both motor density and flux, which are given respectively by

2πr0ρm(r0, t) = ρb(x =−Vt, t)+ρu(x =−Vt, t) ,

2πr0

(
Vρm(r0, t)+D∂sρm(r0, t)

)
=

Vρu(x =−Vt, t)+V0ρb(x =−Vt, t)−D∂xρu(x =−Vt, t) . (5.24)

With these conditions, the bound and unbound motor density fields,ρb andρu re-
spectively, read

ρb = 2πr0ρ∞
kb

k0
u +kb

,

ρu(x, t) = 2πr0ρ∞
kb

k0
u +kb

[
k0

u

kb
+

(V0−V)
D

(x+Vt)
]

. (5.25)
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Fig. 5.7. (a) Sketch of the tube during the initial stages of growth. Unlike later stages of
tube growth (Fig. 5.5a,b), during the initial formation of the tube, this is connected to the
microtubule all along its length through bound motors. (b) Tube-tip boundary showing the
flux of bound motors,Jb, reaching the tip region by convective motion and the flux of unbound
motors,Ju, leaving the tip by diffusion. The color code is the same than in Fig. 5.5.

Note that the fluxes of bound and unbound motors balance each other at each position
x along the tube. In this case, there is no depletion of motors on the vesicle as the
total net flux of motors entering the tube vanishes. Indeed, we are assuming that,
initially, there is no accumulation of motors, so that the motors already bound to the
microtubule, characterized by their equilibrium densityρ∞

b , are able to extract the
tube by themselves.

Although we have found a closed form for the solutions, we have to determine
whether these solutions indeed exist and, in case they exist, we have to determine
their stability. In other words, we have assumed that a solution for a tube existed and
now we have to check that this is indeed the case. In order to extract tubes from the
vesicle, there are two conditions to be fulfilled. The incoming flux of bound motors
must balance the motor loss at the tip (Fig. 5.7), i.e.

Ĵb(x = 0, t) = ku(nb)nb , (5.26)

and the average velocity of the tube must be positive (V > 0). Note that the first
condition on the fluxes is not new, but is one of the boundary conditions imposed,
namelydnb/dt = 0 (Eq. 5.23). However, it is only when all the boundary conditions
mentioned above have been imposed that a closed solution of Eq. 5.26 can be found.
Using the solutions for the density fields (Eq. 5.25), the explicit form of Eq. 5.26
reads

Γ
2 ≡ 4π

2
ρ∞

kb

kb +k0
u

V0

k0
u

κ

fs
= exp

(
F0a

KBT
1
nb

)
n2

b . (5.27)

The parameterΓ sets the scale for the number of bound motorsnb at the tip. Scaling
the number of motors withΓ (ñb ≡ nb/Γ ) and defining the parameter,ν , as

ν ≡
F0a

KBT
1
Γ

, (5.28)

the condition of flux balance at the tip (Eq. 5.27) can be rewritten as
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1 = exp

(
ν

ñb

)
ñ2

b . (5.29)

The right-hand side of Eq. 5.29 (or Eq. 5.27 equivalently), has a minimum at a num-
ber of motors ˜nb = ν/2 and, depending on the value ofν , the minimum is above
or below 1. Therefore, there is not always a solution for the system and, as a con-
sequence, tubes cannot always be pulled from the vesicle. In cases where solutions
exist, they can be stable or unstable. In Fig. 5.8a we plot the variation of the number
of bound motors (dñb/dt) as a function of ˜nb for different values of the parameter
ν , and show that above a critical valueνc no solutions of Eq. 5.29 exist. Moreover,
aboveνc the variation of the number of bound motors is always negative, indicating
that the detachment flux of motors at the tip is larger than the flux of bound motors
reaching the tip, preventing tube formation. Below the critical valueνc, two solutions
exist fordñb/dt = 0 (Eq. 5.29; Fig. 5.8a). The solution with fewer number of bound
motors is unstable as the detachment of one motor induces the loss of the remain-
ing bound motors. On the contrary, the solution with larger number of bound motors
is stable, because the detachment of one motor can be compensated by the flux of
bound motors reaching the tip (Fig. 5.8a).

Fig. 5.8.(a) Variation of the number of motors at the tip as a function ofnb for different values
of the bifurcation parameterν : ν = 0.9 (dotted line),ν = νc = 2e−1' 0.74 (continuous line),
ν = 0.5 (dashed line) andν = 0.2 (dashed-dotted line). Belowνc there exist solutions for
dñb/dt = 0 (Eq. 5.29). The arrows close to the solutions indicate the tendency of the bound
motor number variation upon fluctuations innb. The arrows point toward a stable solution and
away from unstable solutions. (b) Bifurcation diagram showing the stable (continuous line)
and unstable (dashed line) solutions of the system in the flux limited regime. Forν < νc,
motors are able to extract tubes. Forν > νc (gray region), there are no solutions, meaning that
motors are not able to extract tubes. (Adapted from Ref. (Leduc et al., 2004)).

If the flux balance condition (Eq. 5.26) is prevalent (flux limited regime), there
is a single relevant dimensionless parameter,ν , that specifies all possible solutions
of the system. Although there are many parameters (ρ∞,σ ,k0

u,kb, · · · ) that influence
the dynamics, the different dynamical behaviors are all determined by a combination
of them,ν . These dimensionless numbers (ν andΓ ) appear naturally by equating
the flux of incoming bound motors to the rate of motor loss at the tip:Ĵb(x = 0, t) =
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ku(nb)nb. In Fig. 5.8b, we represent the analytical solutions of Eq. 5.29 which fixes
the number of bound motors at the tip as a function ofν . The parameterν is a
bifurcation parameter and the system undergoes a saddle-node bifurcation atνc =
2e−1 ' 0.74. As already mentioned,νc is a critical value below which there are
stable solutions for the system, meaning that motors are able to pull tubes from the
membrane. Forν > νc no solutions exist and, therefore, no tubes can be extracted
from the vesicle. Using the definition of the parameterν (Eq. 5.28), the critical point
νc can be expressed as a function of the original physical magnitudes in the system.
The critical pointνc implies that there is a threshold value,ρmin

∞,1 , for the surface
density of motors on the vesicle above which tubes can be extracted:

ρ
min
∞,1 ≡

e2

2
σ fs

(
a

KBT

)2 kb +k0
u

kb

k0
u

V0
. (5.30)

At threshold, i.e.ρ∞ = ρmin
∞,1 , the number of bound motors at the tip,nt

b,1, and the
velocity,Vt , are given respectively by

nt
b,1 =

F0a

2KBT
, Vt = V0

(
1−

F0

fsnt
b,1

)
= V0

(
1−

2KBT
a fs

)
. (5.31)

In this flux limited regime, the velocity at threshold is thus finite and independent of
membrane tension and curvature.

The description of the threshold above (flux limited regime) holds when the tube
velocity is finite at threshold. If there exist stable solutions of Eq. 5.29 leading to
a negative tube velocity at threshold, the most restrictive condition isV > 0 (stall
regime), and the threshold is specified byV = 0. In this case, the number of bound
motors at threshold is given bynt

b,2 = F0/ fs which, together with flux conservation
(Eq. 5.26), leads to a minimal density:

ρ
min
∞,2 ≡ 2σ

kb +k0
u

kb

k0
u

V0 fs
exp

(
fsa

KBT

)
. (5.32)

If nt
b,1 > nt

b,2, the expression for the threshold density is given by Eq. 5.30, and, con-
versely, ifnt

b,1 < nt
b,2 it is given by Eq. 5.32. Interestingly, the crossover between the

two regimes depends on motor properties only: the flux limited regime is expected
if the stall force fs is larger than 2KBT/a and the stall regime iffs is smaller than
2KBT/a.

Therefore, aboveρmin
∞,1 or ρmin

∞,2 depending on the regime, tubes can be extracted
from the vesicle and the number of bound motors at the tipnb ranges between
max{F0a/2KBT,F0/ fs} ≤ nb ≤ Γ . On the contrary, below the threshold concen-
tration, no tube can be extracted. Similarly, tube extraction can be monitored by
changing the tensionσ at constant motor densityρ∞. It is important to understand
the dynamical nature of both thresholds: a minimum flux of bound motors towards
the tip is required to balance the detachment flux of bound motors which, in turn, de-
pends strongly on the force applied per motor. Note that the bifurcation is not related
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to the existence of an overshoot in the static force/length relation for tube extrac-
tion (Derenyi et al., 2002). A threshold has also been predicted in Ref. (Koster et al.,
2003) using a simplified approach which does not take into account the transport of
motors along the tube. We give here a complete description of the transport which
characterizes quantitatively both the threshold and the motor distribution.

Density of motors along the tube

If the parameters are such that membrane tubes can be extracted from the vesicle,
both the density profile of motors along the tube and the tube growth characteristics
can be studied. In order to understand the experimental density profiles, we study
the long time scale behavior (t > max[(k0

u)
−1,k−1

b ] ∼ 1s). Assuming that the tube
velocity V varies only weakly during tube extraction, the density profiles of bound
and unbound motors are exponentially decaying functions away from the tip, with a
decay lengthλ given by

λ =
2λ1√

1+
(

2
λ1
λ2

)2
−1

, (5.33)

whereλ1 andλ2 are the two characteristic lengths defined above (Eq. 5.21). The ratio
λ1/λ2 distinguishes two limiting dynamical regimes at long time scales. Ifλ1 � λ2,
the decay length of the density profiles is given by

λ ' λ2
λ2

λ1
=

D
kb

k0
u

V0−V
. (5.34)

In this regime, the decay lengthλ depends on the velocity of the tubeV. On the other
hand, ifλ1 � λ2, the decay length is

λ ' λ2 =

√
D
kb

, (5.35)

and does not depend on the velocityV. In this case the decay lengthλ is fixed by the
average length,

√
D/kb, that the unbound motors travel along the tube by diffusion

until they re-attach to the microtubule.
The existence of a portion of the tube in contact with the microtubule (Fig. 5.5),

together with continuity conditions, imply that no stationary state can be reached.
The growth of the tube observed experimentally suggests, however, a quasi-steady
state as the average velocity is nearly constant. Quasi-steady state solutions can be
obtained by solving Eq. 5.9 and 5.11 assuming that both the number of bound and un-
bound motors at the tip,nb andnu respectively, vary slowly on time, so thatdnb/dt'
0 anddnu/dt ' 0. Note that these conditions are necessary in order to obtain an av-
erage tube velocityV that varies only weakly on time, asV = V0

(
1−F0/ fsnb

)
.

In the limiting regimes whereλ1/λ2 � 1 andλ1/λ2 � 1, the analytical quasi-
steady state solutions for the number of bound motors at the tip and the density
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profiles can be found. Forλ1 � λ2 the number of bound motors at the tip,nb(t), is
given by

nb(t) =
1

Γ (5/4)

√
kb

k0
u

[(
F0

fs

)3 V3
0 ρ∞

b

D(kb +k0
u)

t

]1/4

, (5.36)

whereΓ (z) is the Gamma function (Gradshteyn and Ryzhik, 2000). In this regime,
the density profiles of bound (i = b) and unbound (i = u) motorsρi(x, t) read

ρi(x, t)
ρ∞

i

= 1+2
kb

k0
u

√
F0

fs

k0
u

(kb +k0
u)

k0
uV0

Dρ∞
b

√
t
π

exp
( x

λ

)
, (5.37)

whereρ∞
b is the constant equilibrium density of bound motors far from the tip, and

ρ∞
u = ρ∞

b (k0
u/kb). The solutions are not fully determined because the value of the

equilibrium densityρ∞
b is not yet fixed. However, the scaling form of the solutions

already shows a weak dependence on time. This slow increase of the number of
motors pulling the tube with time,nb(t) ∼ t1/4, is consistent with our quasi-steady
state approximation.

Whenλ1 � λ2 the solution for the number of bound motors pulling the tube is

nb(t)'
1

Γ (4/3)

(√
kb

D

ρ∞
b V2

0

k0
u

(
F0

fs

)2

t

)1/3

, (5.38)

and the density profiles away from the tip for bound and unbound motors,ρb(x, t)
andρu(x, t) respectively, are given by

ρb(x, t)
ρ∞

b

= 1+
1

Γ (5/3)

√
kb

D

(
F0V0

fs

√
D
kb

k0
b

ρ∞
b

)1/3

t2/3exp
( x

λ

)
,

ρu(x, t)
ρ∞

u
= 1+

1
Γ (4/3)D

kb

k0
u

(
F0V0

fs

√
D
kb

k0
u

ρ∞
b

)2/3

t1/3exp
( x

λ

)
. (5.39)

Similarly to the previous limiting case (λ1� λ2) the slow time evolution of the num-
ber of bound motors at the tip,nb(t)∼ t1/3, is consistent with the quasi-steady state
approximation, because in the long time limit being considered,dnb/dt∼ t−2/3→ 0.

In Fig. 5.9 we sketch the mechanism by which the tube is pulled, and plot the
solution of the total motor density field using experimentally measured values for all
parameters5. The bound motors moving along the tube dynamically accumulate at
the tip, because of the slower growth velocity of the tube. At the same time, the bound
motors at the tip detach faster than those along the tube, resulting in a larger density
of unbound motors close to the tip. These unbound motors diffuse away from the
tip, following the direction of decreasing unbound motor density, and re-attach to the
microtubule at an average distance

√
D/kb from the tip. All these events constitute

5 The experimental values of the parameters are discussed below.
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a treadmilling mechanism, in which the motors repeat the same sequence of events.
This turnover of motors sets a closed circuit of motor flux in the vicinity of the tip
(Fig. 5.9a). In addition to these motor fluxes there is a net flux of bound motors
moving from the vesicle toward the tip. In case this latter flux of motors coming
from the vesicle is not present, the system would reach a steady state. Indeed, if the
tube is initially fed by a fixed amount of motors and no more motors enter the tube
from the vesicle, the tube can also grow by the mentioned treadmilling mechanism,
constantly replacing the motors working to pull the tube and recycling them back
afterwards (Fig. 5.9a).

Fig. 5.9. (a) Sketch of motor fluxes in the vicinity of the tip (tube reference frame). The
motors circulate in a closed loop, in which they spend a portion of their time pulling the
tube. Moreover, there is a net flux of bound motors constantly feeding the vicinity of the
tip with new motors and responsible for the lack of steady state in the system. (b-c) Total
motor density profile,ρb(x, t) + ρu(x, t), in the vicinity of the tip (obtained from Eq. 5.39),
showing the exponential decrease of the motor density away from the tip (t = 35 s). The
values for the parameters are very similar to those measured experimentally (see discussion
below):D = 1 µm2s−1, kb = 5 s−1, k0

u = 0.5 s−1, F0 = 20 pN, fs = 6 pN,V0 = 0.6 µms−1,
V = 0.1 µms−1 andκ = 10KBT. The value ofρ∞

b is given by Eq. 5.44 withρ∞ = 5000µm−2.
(c) Density plot showing the total motor density along the tube. The tube is in thex−y plane
and the motor density is color-coded: regions with no motors are represented in black and
increasing motor densities by lighter gray. White color corresponds to 3.0 in the density scale
of (b.1).
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The lack of steady-state in the system can be understood from the expression
of the total motor flux far way from the tip. The densities of bound and unbound
motors away from the tip are the equilibrium densitiesρ∞

b andρ∞
u and the total net

flux, expressed in the tube reference frame, isĴb = (V0−V)ρ∞
b . Hence, for non-

vanishing motor densities away from the tip, there is always a net bound motor flux
constantly feeding the tip region. As a result, there is no steady-state and the density
profiles are time-dependent. We shall show below that the central region of the tube,
characterized by constant motor densities, acts as a pump, taking motors from the
vesicle and transferring them to the tip region.

As mentioned above, the solutions for the number of bound motors and the den-
sity profiles are fixed up to a constant,ρ∞

b . The reason why the equilibrium density
of bound motors,ρ∞

b , is not yet fixed is that it depends on the physics close to the
vesicle. In order to obtain the actual value ofρ∞

b , continuity conditions for both mo-
tor density and fluxes must be imposed at the tube-vesicle boundary. In spite of the
details of the contact between the tube and the vesicle, the equilibrium bound motor
density must beρ∞

b ∼ 2πr0ρ∞ at leading order. We now give a detailed analysis of
the dynamics close to the tube-vesicle boundary.

Unlike the initial stages of tube extraction, where the tube is in contact to the mi-
crotubule all along its length, for tubes of several microns there is a region where the
tube loses its contact with the microtubule (Fig. 5.5a,b). The geometry of the tube-
vesicle boundary is thus slightly different than that at short time scales. In Fig. 5.10
we sketch the vesicle and the tube, with a connection region of lengthLd where the
tube is not in contact with the microtubule. We now solve the dynamics of the motors
in the different regions and match the solutions at the boundaries imposing continuity
of motor density and flux.

Fig. 5.10.Sketch of the different regions of the system at long-time scales, showing the con-
nection region in which the tube is not in contact with the microtubule. Thex axis is along the
tube and the originx = 0 is at the position where the tube contacts the microtubule. Note that
the coordinatex follows the tube up to the contact with the vesicle.
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In the connection region, the motors can only be unbound as there is no mi-
crotubule to which they can attach (Fig. 5.10). The dynamics of the motors in this
region, expressed in the laboratory reference frame, is given at mean field-level by

∂ρu(x, t)
∂ t

+V
∂ρu(x, t)

∂x
−D

∂ 2ρu(x, t)
∂x2 = 0 . (5.40)

In this reference frame,x is the position along the tube (oriented along the direction
of the tube motion) and the originx = 0 is at the position where the tube contacts the
microtubule (Fig. 5.10). Therefore, valuesx< 0 andx> 0 describe, respectively, the
connection region and the region where the tube is in contact with the microtubule.
The quasi-steady state solution of Eq. 5.40 is

ρu(x) =
Jd(x = 0)

V

(
1−exp

(
V
D

x

))
+

Jc(x = 0)
V

, (5.41)

whereJc(x = 0) andJd(x = 0) are, respectively, the convective and diffusive motor
fluxes at the origin, i.e. where the tube contacts the microtubule. In order to deter-
mine these fluxes it is necessary to find the solution for the bound and unbound motor
density fields along the region of the tube in contact with the microtubule. The dy-
namics of the motors in this region is given by Eq. 5.11. The boundary condition
for the bound motor density field isJb(x = 0) = 0 (or ρb(x = 0) = 0 equivalently)
as there are no bound motors in the connection region. Moreover, the solutions must
match the equilibrium densities and total flux along the tube, far from the contact
point atx = 0. With this conditions, the quasi-steady state solution for the density
fields of bound and unbound motors,ρb(x) andρu(x) respectively, read

ρb(x) = ρ
∞
b

[
1−exp

(
− x

λc

)]
, (5.42)

ρu(x) = ρ
∞
u

[
1−
(

1−
V0

λck0
u

)
exp

(
− x

λc

)]
,

whereλc is the characteristic length of the density profile (obtained from the charac-
teristic equation), and is given by

λc =
2DV0

Dk0
u−V0V

[
1+

√
1+4DV0

(V0kb +Vk0
u)

(k0
uD−V0V)2

]−1

. (5.43)

Continuity conditions for both the density field and flux of unbound motors atx= 0 6,
lead to a closed expression for the diffusion and convection fluxes,Jd(x = 0) and
Jc(x = 0) respectively, which read

Jc(x = 0) = ρ
∞
u V

V0

λck0
u

,

Jd(x = 0) = JT −Jc(x = 0) ,

6 Note that the density field of bound motors and its flux are already continuous.
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whereJT stands for the total motor flux along the tube and is given byJT = ρ∞
b V0 +

ρ∞
u V. These two fluxes specify the solution of the unbound motor density in the

connection region (Eq. 5.41) up to a constant, namelyρ∞
b . Finally, continuity of the

motor density field and flux at the contact with the vesicle, determines the value of
ρ∞

b , which reads

ρ
∞
b =

2πr0ρ∞
kb
k0
u

V0
λck0

u
exp
(
−V

DLd

)
+
(

1+ V0kb
Vk0

u

)[
1+ r0V

2D Ei
(−r2

0
4Dt

)
−exp

(
−V

DLd

)] , (5.44)

whereρ∞ is the initial surface density of motors on the vesicle. It is important to note
thatρ∞

b depends only weakly on time. In accordance with our quasi-steady state ap-
proximation, the time dependence ofρ∞

b is essentially logarithmic. Moreover, using
the experimentally measured values (V ∼ 0.1 µm s−1, D' 1 µm2 s−1 andr ' 20 nm;
see discussion below), the coefficient in front of the time-dependent term,r0V/2D,
is of order 10−2, and for the typical time of an experiment, the time-dependent term
is almost negligible, meaning that the depletion of the motors on the vesicle can be
neglected. Indeed, the ratio of the number of motors in the tube (∼ (ρ∞

b +ρ∞
u )L) and

the initial number of motors on the vesicle (∼ 4πR2ρ∞) is given approximately by
r0L/2R2. In typical experimental conditions (R∼ 5 µm andL ' 10 µm), this ratio
is r0L/2R2 ∼ 0.01, meaning that during tube extraction less than about the 1% of
the available motors on the vesicle have been depleted. However, when a large mem-
brane tube network is formed, the depletion of motors on the vesicle can become
important.

In case the length of connection regionLd is much longer than the characteristic
length scaleD/V (Ld � D/V ' 10µm), the expression for the equilibrium density
of bound motors along the tube (Eq. 5.44) reduces to

ρ
∞
b = 2πr0ρ∞

V
V0

, (5.45)

where we have totally neglected depletion effects for the reasons discussed above
and we have used the fact thatV0kb/Vk0

u � 1 in typical experimental conditions.
On the other hand, ifLd � D/V ' 10µm and neglecting depletion effects, Eq. 5.44
reduces to

ρ
∞
b = 2πr0ρ∞

λckb

V0
. (5.46)

Note that in the first limiting case (Ld � D/V), the value of the equilibrium bound
motor density depends on the tube velocityV, whereas forLd � D/V it does not (at
leading order). The typical length of the connection region measured experimentally
is of a few microns and, thus, similar toD/V, meaning that the system is in between
the two limiting cases discussed.

The continuity conditions at the contact with the vesicle also fix the depletion
flux, J, of motors on the vesicle (see Eq. 5.18a). This flux is nothing else than the
total flux of motors in the central region of the tube in contact with the microtubule,
so that
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J = JT = ρ
∞
b V0 +ρ

∞
u V . (5.47)

The last expression highlights the mechanism driving the motors from the vesicle to
the vicinity of the tip (Fig. 5.11a). Once a long enough region of the tube is contacting
the microtubule, the flux of motors set by the equilibrium densities(ρ∞

b ,ρ∞
u ), induces

the depletion of motors on the vesicle, and establishes a net flux of motors toward
the tip. The central region of the tube acts thus as a pump to transfer the motors from
the vesicle to the vicinity of the tip.

In Fig. 5.11b,c we plot the density fields of motors on the vesicle (Fig. 5.11b)
and along the portion of the tube in contact with the microtubule (Fig. 5.11c), for
typical experimental values of the parameters. There is a long portion of the tube
characterized by the equilibrium densitiesρ∞

b andρ∞
u of bound and unbound motors.

The density of unbound motors decreases in the vicinity ofx = 0 because the mo-
tors attach to the microtubule, and reaches the equilibrium densityρ∞

u in the central
region of the tube. Accordingly, the density of bound motors increases fromx = 0
and reaches its equilibrium value in the central region. In the vicinity of the tip, we
observe the accumulation of motors previously described.

The dynamical regimes described here provide a good description of the tube
motion as long as the density of motors just behind the tip remains small. This is true
under typical experimental conditions. At very long times, the steric interactions be-
tween motors become important and lead to the formation of a traffic jam of bound
motors behind the tip (Parmeggiani et al., 2003; Lipowsky et al., 2001). Fig. 5.13D
supports the low density approximation as it shows an exponential decay of the mo-
tor density away from the tip. The flux of motors toward the tip is compensated to
some extent by the growth of the tube itself which keeps the densities low enough.
If the tube growth is stopped, self-dilution of the motors disappears and a micron-
sized traffic jam develops at the tip. We address these phenomena using numerical
simulations in section 5.4.

Discussion

Here we describe the conditions in which the experiments were done and compare
quantitatively the theoretical predictions to the experimental data.

Applying an osmotic pressure in the bulk 10% lower than in the vesicle, it was
possible to impose a high tension,σ , on the membrane which can be estimated using
Laplace’s Law to beσ = ∆ΠR/2. Taking an average vesicle radiusR of 10 µm and
an osmotic pressure difference∆Π of 20 mOsm givesσ ' (2.5±1.3) 10−4 N/m.
This tension value was further checked by directly measuring the force needed to pull
a tube,F0 = 2π

√
2σκ, using optical tweezers. The obtained valueF0' 27.5±2.5pN

for a 7µm radius vesicle is compatible with the known value of the bending modulus
κ ' 10KBT (Olbrich et al., 2000) and our estimated tension. It was also checked that
the force and thus the tension remains constant during the tube growth. This requires
that sufficiently few tubes are pulled from the same vesicle and that the tubes are not
longer than∼ 20µm. All the experiments used in the comparison with the theoretical
results were done in these conditions.
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Fig. 5.11.(a) Sketch of the mechanism driving the transfer of motors from the vesicle to the
vicinity of the tip. The bound motors along the tube impose a net motor flux from the vesicle
to the tube tip. (b) Motor density profiles on the vesicle (b.1) and along the portion of the tube
in contact with the microtubule (b.2,b.3), att = 100s. Note that the motor depletion on the
vesicle is nearly insignificant (b.1). The density of bound (b.2) and unbound (b.3) motors are
shown. The parameters are the same than in Fig. 5.9.

Threshold in tube extraction

For DHPE-Biot-Rhod concentrations higher than 0.01 mol%, tubes could be formed
consistently in less than a few minutes. In contrast, for concentrations lower than 0.01
mol%, no tube could be extracted over a period of more than three hours (Fig. 5.12).
This suggests the existence of a threshold for the concentration of biotinylated lipids
in the membrane, corresponding to a threshold for the motor density on the vesicle.
Equivalently, at fixed motor density, there is a maximal tension above which no tubes
can be extracted. These results are in accordance to those in Ref. (Koster et al.,
2003). Using the value of the surface of a lipid in the membrane (0.4 nm2) and the
measured value for the lowest concentration at which tubes are observed (0.01 mol%
of biotinylated lipids), we obtain the experimental value of the threshold density

ρ
min
∞ ' 200±100µm−2 . (5.48)
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Fig. 5.12. Experimental determination of the threshold in tube extraction. (Left) Diagram
showing the existence of a threshold at a finite motor concentration on the surface of the
vesicle (σ ' 210−4N/mandκ ' 10KBT). The dots represent the values of DHPE-Biot-Rhod
concentrations tested experimentally. Below a DHPE-Biot-Rhod concentration of 0.01 mol%,
corresponding to a initial motor concentration on the vesicle of 200 motors per squared micron
(ρmin

∞ = 200µm−2), no tubes are observed. (Right) Examples of vesicles above (top) and below
(bottom) the threshold. Above the threshold tubes are pulled from the vesicle, whereas below
the threshold the vesicle is deformed due to the action of the motors, but no tubes are formed.
The lipids in the membrane are uniformly labeled and the binding sites of motors are not
labeled. (Images by C. Leduc).

As discussed in the theoretical section above, the threshold regime is deter-
mined by motor properties only. The wild type kinesin has been extensively stud-
ied (Howard et al., 1989; Yildiz et al., 2004; Block et al., 2003) in conditions close
to the ones being considered here. In particular, bothfs anda have been measured:
fs' 6pN anda' 1.3nm (Visscher et al., 1999; Schnitzer et al., 2000). These values
lead to 2KBT/a' 6pN which shows that the system is almost at the transition be-
tween the two threshold regimes. In order to calculate the threshold value predicted
theoretically, it is necessary to know the values of several parameters, namelyσ , fs,
a, V0, k0

u andkb. The tensionσ is fixed toσ ' 210−4 N/m, fs' 6 pN anda' 1.3
nm. The value of the detachment rate at vanishing force,k0

u, is also known for con-
ventional kinesin motors,k0

u ' 0.42 s−1 (Vale et al., 1996). The value of the kinesin
velocity at vanishing loadV0 was measured using bead assays to beV0 ' 0.6 µms−1

(see below). The only unknown parameter is the attachment rate of kinesins onto
microtubules,kb. We show below that the comparison between the theoretical results
concerning the motor density profile along the tube to the experimental data, allows
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the determination ofkb, which we estimate to bekb ' 4.7±2.4s−1. With all these
values, we can calculate bothρmin

∞,1 andρmin
∞,2 (Eqs. 5.30 and 5.32 respectively). We

find
ρ

min
∞,1 ' ρ

min
∞,2 ' 400±200µm−2 , (5.49)

which compares favorably well with the experimental value (Eq. 5.48). As all the
parameters are known, we can also estimate the number of motors necessary to pull a
tube at threshold. In both threshold regimes the number of pulling motors at threshold
is

nt
b,1 ' nt

b,2 ' 4 . (5.50)

Recent experiments on conventional kinesin (Nishiyama et al., 2002; Carter and
Cross, 2005) report that the stall force for kinesin is likely to be slightly larger than 6
pN. In particular, a value offs' 7 pN was found. This value suggests that the actual
threshold regime is the flux limited regime, asfs > 2KBT/a' 6 pN. In this case,
the tube velocity at threshold is finite (Eq. 5.31). Usingfs = 7 pN and the measured
value ofV0 ' 0.6 µms−1 leads to

Vt = 0.07 µms−1 . (5.51)

We compare below this value to the velocity of tubes in far from threshold conditions.

Motor density profile

The growth of single tubes was followed by fluorescence videomicroscopy (Fig. 5.13A).
The fluorescence intensity and therefore the distribution of motors along the tube is
inhomogeneous, especially at the tip, where an excess of fluorescence can be seen
(Fig. 5.13B).

The fluorescence distribution along the tube for each frame (Fig. 5.13B) was
determined. An example of the resulting space-time plot is given in Fig. 5.13C; it is
a three-dimensional diagram, showing fluorescence intensity (z-axis, color coded) as
a function of the position along the tube path (y-axis) and time (x-axis). We observed
that on every frame the tip was more fluorescent than the rest of the tube. The rest
of the image, where no tube could be seen, was not fluorescent. The position of the
tip of the tube was determined by detecting the position of the transition between the
maximum intensity and the background. The instantaneous velocity of tube growth
between two consecutive images was calculated by derivation of the position of the
tip as a function of time.

The distribution of motors is found experimentally from the fluorescence inten-
sity along the tube. Fig. 5.13D shows an example of an instantaneous fluorescence
profile. The motor density decreases exponentially from the tip of the tube as ex-
pected theoretically. When the membrane was labeled using a fluorescent lipid with
no biotin function (BODIPY PC) and motors were not specifically labeled (control
experiment), fluorescence was uniform along the extracted tube and no accumulation
at the tip was observed (Fig. 5.13D). The decay lengthλ was measured for various
tubes with different velocitiesV at a concentration of 0.1 mol% biotinylated lipids
in the membrane, corresponding to 10 times the threshold concentration. It ranges
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Fig. 5.13.(A) Fluorescence image showing a vesicle, a tube and the accumulation of motors
at its tip. The vesicle contains 0.1 mol% DHPE-Biot-Rhod lipids. Bar, 2µm. (B) Time se-
quence of a the growing tube in (A) (1 image/5s). The tube grows along a microtubule with an
average velocity of about 0.16µm/s. Bar, 2µm. (C) Fluorescence intensity plot as a function
of position along the tube path and time, for the same tube as in (B). (D) Fluorescence inten-
sities along the tube path normalized by the average intensity far from the tip. Filled circles:
the binding sites of motors are labeled using DHPE-Biot-Rhod; Triangles: the membrane is
uniformly labeled with BODIPY PC, and the binding sites of motors are not specifically la-
beled (control experiment); Solid line: Exponential fit of the intensity profile represented by
the circles. The best fitting value for the characteristic decay length isλ ' 1.0µm. (E) Char-
acteristic lengthλ as a function ofV0−V for 370 measurements from 20 different tubes. Each
point corresponds to the averageλ (and associated standard deviation) for measurements with
the same velocity. The continuous line corresponds to the one parameter weighted non-linear
fit using Eq. 5.33, withk0

u = 0.42s−1 (Vale et al., 1996) andV0 = 0.6µm/s. Each weight is
given by the normalized inverse of the variance associated to that point. The only fit param-
eter iskb/D and its best fitting value is 4.7± 0.5µm−2. Using D = 1.0± 0.5µm2/s leads
to kb = 4.7±2.4s−1. We have further checked that reasonable variations ofk0

u do not affect
significantly this value. (Adapted from Ref. (Leduc et al., 2004)).
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between 0.4µm < λ < 1.8µm (Fig. 5.13E). The comparison of these values with
the theoretical predictions of Eq. 5.33 allows the determination of the binding ratekb
of kinesin on microtubules in a one parameter fit, provided that we knowD, V0.

The average velocity in far from threshold conditions, i.e. forρ∞ ' 10ρmin
∞ (same

tensionσ ' 210−4 N/m), measured over twenty different experiments where a single
tube was pulled from the vesicle, wasV ' 0.12±0.04 µm/s. The growth velocity
is the velocity of kinesins effectively pulling the tube. It is smaller than the velocity
obtained in a bead assay, which corresponds to the velocity of kinesins at vanishing
load,V0 = 0.6± 0.1µm/s. Bead assays were performed in the same experimental
context as tube assays (molecular motors from the same batch, microtubule network
obtained with the same protocol, same buffers and ATP concentration) and the mea-
sured velocity is in good agreement with data by other groups (Cappello et al., 2003;
Block et al., 2003).

Using FRAP7 experiments, it was possible to measure the diffusion constantD of
the biotinylated lipid-streptavidin-kinesin in the membrane,D = 1.0±0.5µm2s−1.
The velocityV0 is obtained from the velocity measured in bead assays in absence
of external load. As discussed in the beginning of section 5.3.1, the friction force
exerted on the bound motors moving along the tube is given, according to Einstein’s
law, byKBTV0/D. Using the experimentally measured values forD andV0, this force
is KBTV0/D' 2.4·10−3pN, totally negligible compared to the stall force of kinesins.
Using the value of the detachment rate at vanishing force,k0

u = 0.42s−1 (Vale et al.,
1996), andV0 = 0.6µm/s, we can estimate the value ofkb by fitting the experimental
values of the decay lengthλ to Eq. 5.33. We obtain the value of the binding ratekb
in a tubular geometry similar toin vivoconditions:

kb = 4.7±2.4 s−1 . (5.52)

Away from threshold, forρ∞ ' 10ρmin
∞ (same tension), we can also calculate the

number of motors at the tip without any adjustable parameter. Using flux balance
(Eq. 5.27; represented in Fig. 5.8b) we find

nb ' 24 . (5.53)

Both the number of motors pulling the tube at threshold (Eq. 5.50) and far from
the threshold (Eq. 5.53) are rather small. Fluctuations may thus play an interesting
role in the process. The average velocity of the tube is obtained from the expression
V = V0(1−F0/ fsnb). Using the estimated number of motors, we obtain an average
tube velocity in conditions far from threshold of

V ' 0.49 µm/s . (5.54)

7 FRAP stands for “Fluorescence Microscopy After Photobleaching”. This technique allows
the measurement of the diffusion coefficient of a fluorescent component. It consists in mea-
suring the recovery of fluorescence intensity in a previously photobleached zone. The time
needed for the fluorescence component to invade the photobleached region allows the de-
termination of its diffusion constant.
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This value differs from the measured average tube velocity. This is due to the fact that
our mean-field description does not account for any interaction between the motors
and, in particular, it does not account for the excluded volume interactions of the
motors at the tip. In section 5.4 we analyze the growth of tubes using numerical
simulations and show that motor fluctuations and mutual interactions are essential
to understand both the organization of the motors pulling the tube and the growth
properties like the average tube velocity.

In the description above we have considered that the bound motors outside the tip
do not exert any significant force on the tube. This is indeed legitimate: a conservative
estimate of the friction force close to the threshold is 2πr0ρ∞(KBT/D)L . 10−4F0�
F0 (in which we have chosen the tube lengthL to be a few times the tube radiusr0).
Away from threshold, this force is estimated to be. 10−1F0 < F0, which is again
negligible and justifies our previous assumptions.

5.3.2 Long tubes

The analysis developed in the previous section is valid for tubes with a total length
smaller that the characteristic length scale of force increase (see section 5.2.2). We
have shown that forL < Lc it is possible to perform a quantitative study of tube ex-
traction by molecular motors. When the tube length exceeds this characteristic length
Lc, the tube force can no longer be considered as constant and the dynamics of tube
extraction is strongly influenced by the force increase. For long single tubes or large
tube networks, this increase in tube force is crucial and reveals several dynamical
regimes that arise from the collective dynamics of the motors pulling the tube.

In this section we describe theoretically the dynamics of membrane tube extrac-
tion in conditions where the tube force is not constant. Upon tube growth, the tension
of the vesicle increases due to the increasing length of the tube (see section 5.2.2).
As a result, the force that the motors must overcome to pull the tube increases during
tube extraction. We couple the cooperative dynamics of the motors pulling the tube
to the dynamics of the tube growth, and analytically determine the possible dynami-
cal regimes. We show that the interplay between tube extension and motor dynamics
give rise to highly non-linear oscillations in the tube length. There exist two possible
dynamical regimes: membrane tubes may either stall at a certain length or oscillate
between minimal and maximal lengths. The theoretical results are in good qualitative
agreement with the experimental observations.

The work we present in this section is still in progress and some results are pre-
liminary. The simplified description below pretends to understand the experimental
observations at a qualitative level. We are currently developing a more elaborate
quantitative analysis, which will be published soon (Campas et al., 2006d).

Theoretical description

Unlike the case of short tubes where we described in detail the dynamics of the
motors on the vesicle, along the tube and at the tip of the tube, here we reduce the
dynamics of the tube to an effective dynamics for the motors at the tip.
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Once the motors have been able to pull out a membrane tube of lengthL, the
magnitude of the restoring tube forceF(L) is a function of the tube lengthL. The
relation between the tube force and length is given by Eqs. 5.5 and 5.7 for vesicles in
the entropic and elastic regimes respectively. For the time being, we do not specify
any particular functional form forF(L). The motors at the tip of the tube apply a
total forceFM to pull the tube and any variation in the tube length leads to a friction
force FF . For short enough tubes, we have shown above that the friction force can
be safely neglected and the tube force is balanced by the force of the motors at the
tip, so thatFM = F(L). In general, this is not the case and the force balance must
include the friction force explicitely. Assuming for simplicity that the tube force is
not affected by the friction along the tube8, force balance reads

FM−F(L)+FF = 0 . (5.55)

The tube motion is opposed by the hydrodynamic friction of the tube with the sur-
rounding fluid. Knowing the viscosityη of the surrounding fluid, we can estimate the
order of magnitude of such friction force to be∼ 2πηLL̇, with L̇≡ dL/dt being the
tube velocity. This force can only be relevant for the dynamics of the tube if it on the
order of the tube force. Using typical values for the tube force (∼ 20 pN) and know-
ing the measured value of the tube velocity during a tube retraction (∼ 100µms−1;
see below and Ref. (Rossier et al., 2003)), this friction force is only relevant if the
tube length is of hundreds of microns. Indeed, this hydrodynamic friction is typically
small compared to the fluid-like drag force,FF,M, due to the bound motors along the
tube, which reads

FF,M = ξmL
(
V0− L̇

)
, (5.56)

whereξm = ρbKBT/D is the motor friction coefficient per unit length andρb the
bound motor density. During tube growth (0< L̇ < V0) or in case the tube stalls
(L̇ = 0), the drag force of the motors along the tube is in the direction of tube growth,
meaning that the motors along the tube contribute to pull the tube with a force of
order∼ ξmLV0. Using typical values for the motor densityρb and tube force, this
term is only important for tube lengths about 100µm. The relevant length scale in
the system is the characteristic length of force variationLc, which is about 20µm(see
section 5.2.2). Therefore, friction effects can be totally neglected during tube growth
as long as the tube length does not reach values larger than 102 µm. On the other
hand, when the tube retracts back to the vesicle, the tube velocity is much larger
(L̇ ∼ 102 µms−1) and the friction of motors along the tube is not only relevant but
essential. Indeed, tube retraction takes place because of the lack of motors pulling the
tube at the tip, and the forceFM nearly vanishes. When this situation takes place, the
only force left to balance the tube force is the friction force. Therefore, as friction
is only relevant for large tube velocities|L̇| � V0, force balance (Eq. 5.55) can be
expressed as

ξmLL̇ = FM−F(L) . (5.57)

8 A more detailed analysis should account for the variation of the tube force along its length
due to local friction forces along the tube.
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The latter equation states that for motor forces at the tipFM larger than the tube force
F(L), the tube grows (̇L > 0), whereas if the motors at the tip cannot apply large
enough forces to sustain the tube (F<F(L)), the tube retracts.

The total motor force,FM, results from the collective action of a numbernb of
bound motors at the tip. If each single motor at the tip applies an average forcefm
and assuming the motors to be independent from one another, the total motor force
at the tip isFM = nb fm. The motors at the tip move thus with a force-dependent
velocity, V, which can be approximated byV = V0

(
1−FM/nb fs

)
. At mean-field

level, the velocity of the tubėL corresponds to the velocity of the motors pulling the
tube at the tip, so thaṫL = V. Rewriting force balance (Eq. 5.57) with the explicit
dependence of the motor forceFM on the tube velocitẏL, one obtains an equation for
the tube velocity, which reads

L̇
V0

=
nb−

F(L)
fs

nb + ξmV0L
fs

. (5.58)

If the number of motors at the tipnb is large enough, the force applied to each motor
is almost negligible anḋL → V0. On the contrary, when the motors at the tip are
not able to sustain the applied force (nb → 0), the tube retracts with velocitẏL =
−F(L)/ξmL.

In order to fully describe the dynamics of the tube we must account for the dy-
namics of the motors at the tip, which has already been discussed in section 5.3.1.
We remind here that the dynamics of the number of bound motors at the tip can be
written, from conservation arguments (Eq. 5.9), as

dnb

dt
= Ĵb(L)−ku(nb)nb , (5.59)

whereku(nb) is the detachment rate of the motors at the tip (Eq. 5.10). The flux of
bound motors entering the tip region,Ĵb(L), is given byĴb(L) = (V0− L̇)ρb(L), and
depends on the value of the bound motor densityρb(L) at the tube-tip boundary.
Although we have shown above that the motor density depends on the position along
the tube and is larger in the vicinity of the tip, for the sake of simplicity, we assume
here a uniform density of bound motors along the tube. Indeed, at leading order, the
bound motor density along the tube is given by

ρb = 2πrρ∞
kb

kb +k0
u

=
4π2κρ∞

F(L)
kb

kb +k0
u

, (5.60)

where the dependence ofρb on the tube forceF(L) arises from the dependence of
the tube radiusr on the membrane tensionσ .

This simplified description of the bound motor density along the tube decouples
the dynamics of the motors along the tube and those at the tube tip, and the equations
above specify a two dimensional dynamical system for the variablesnb andL. As
there is a one-to-one correspondence between the tube lengthL and the tube force
F , we usenb andF as variables. Scaling the tube length with the processivity length
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of the motorslp ≡ V0/k0
u, so thatL̃ = L/lp, the relation between the normalized

tube forceF̃ ≡ F/F0 and L̃ can be written as̃L = βg(F̃), whereβ ≡ Lc/lp is the
ratio between the characteristic length scaleLc of force variation andlp, andg(F̃)
is the function that defines how the dimensionless tube lengthL̃ increases with the
normalized forceF̃ . For a vesicle in the entropic regime,g(F̃) = 2F̃ ln

(
F̃
)

(Eq. 5.5),
whereas for a vesicle in the elastic regime,g(F̃) = F̃

(
F̃2−1

)
(Eq. 5.7). Defining the

normalized number of bound motors at the tip as ˜nb ≡ nb fs/F0, the dynamics of the
system is given by

dñb

dτ
=

γef

F̃

F̃ + ñ
ξ
(F̃)

ñb + ñ
ξ
(F̃)

−exp

(
f

F̃ + ñ
ξ
(F̃)

ñb + ñ
ξ
(F̃)

)
ñb ,

dF̃
dτ

= A(F̃)
ñb− F̃

ñb + ñ
ξ
(F̃)

, (5.61)

whereτ ≡ k0
ut is the time in units of(k0

u)
−1 and f ≡ fsa/KBT is a dimensionless pa-

rameter that quantifies the influence of the force on motor detachment. The parameter
γ, defined as

γ ≡
4π2κ lp fse− f

F2
0

kb

kb +k0
u

ρ∞ =
ρ∞

ρmin
∞,2

, (5.62)

corresponds to the ratio of the initial surface density of motors on the vesicle,ρ∞,
and the threshold densityρmin

∞,2 (Eq. 5.32) found in section 5.3.1. Finally, the func-
tions ñ

ξ
(F̃) andA(F̃), which characterize the effects of friction and force increase

respectively, are given by

ñ
ξ
(F̃)≡ γef

ξ̃ β
g(F̃)

F̃
, A(F̃)≡

[
β

dg(F̃)
dF̃

]−1

, (5.63)

whereξ̃ ≡ KBTV0/D fs corresponds to the ratio of the motor frictionKBT/D and the
friction fs/V0.

The dynamical system in Eq. 5.61, together with the definitions above fully spec-
ify the dynamics of the tube. Note that there are only four dimensionless parameters
that influence the dynamics, namelyγ, β , ξ̃ and f . While ξ̃ and f are intrinsic motor
parameters, the value ofγ can be tuned by changing the motor densityρ∞, andβ can
be changed by varying the characteristic lengthLc, which depends on the radius of
the vesicleR.

Stability analysis

In order to find out the different dynamical regimes, we perform a stability analysis
of the dynamical system in Eq. 5.61. There is a single fixed point{ñc

b, F̃
c} 9, given

by

9 For an introduction to dynamical systems, see Ref. (Guckenheimer and Holmes, 1990).
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ñc
b =

√
γ , F̃c =

√
γ , (5.64)

that corresponds to the situation in which the tube velocity strictly vanishes (L̇ = 0,
or Ḟ = 0 equivalently) and the flux of bound motors reaching the tip region exactly
balances the motor detachment flux at the tip, so thatdnb/dt = 0. There are not
always solutions of Eq. 5.64. The length of the tube must be larger than zero. The
valueF = F0, corresponding to vanishing tube length (L = 0), sets a minimal value
of γ below which tubes cannot be extracted from the vesicle. This threshold value is
given byF̃c = 1 which corresponds toγ = 1 or, equivalently,

ρ∞ = ρ
min
∞,2 . (5.65)

We thus recover here the existence of a threshold in tube extraction, which we dis-
cussed in section 5.3.1. This threshold corresponds to the “stall regime” (Eq. 5.32),
in which case the condition specifying the threshold isdL/dt = 0, which is fulfilled
by definition at the fixed point. Note however that in order to find out the proper
expression for the threshold density, one must perform the limit of vanishing length
L→ 0 and analyze whether the condition of flux balance (dnb/dt = 0) is more restric-
tive than the condition of zero tube velocity. This limit corresponds to the analysis
performed for short tubes in section 5.3.1. We shall show below, when analyzing the
stability of the fixed point, that it is also possible to recover the “flux limited regime”.

We now study the stability of the system at linear level. The linearized dynamics
for the perturbationsδ ñb ≡ ñb− ñc

b andδ F̃ ≡ F̃− F̃c close to the fixed point read

d
dt

 δ ñb

δ F̃

=


ef ( f−2)F̃c−ñ

ξ
(F̃c)

F̃c+ñ
ξ
(F̃c) −ef f F̃c+ñ

ξ
(F̃c)

F̃c+ñ
ξ
(F̃c)

A(F̃c)
F̃c+ñ

ξ
(F̃c) − A(F̃c)

F̃c+ñ
ξ
(F̃c)


︸ ︷︷ ︸

Λc

 δ ñb

δ F̃

 , (5.66)

where the matrixΛc specifies the linearized dynamics around the fixed point, and
its stability is given by the real part of the eigenvalues ofΛc (Guckenheimer and
Holmes, 1990). The eigenvalues can be expressed in terms of the trace, Tr(Λc), and
determinant, Det(Λc), which are given respectively by

Tr(Λc) =
ef
[
( f −2)F̃c− ñ

ξ

(
F̃c
)]
−A

(
F̃c
)

F̃c + ñ
ξ

(
F̃c
) ,

Det(Λc) =
2ef A

(
F̃c
)

F̃c + ñ
ξ

(
F̃c
) . (5.67)

The stability analysis can thus be done studying Tr(Λc) and Det(Λc). The determi-
nant ofΛc is always positive because the tube force is an increasing function of the
tube length, so thatdg

(
F̃c
)
/dF̃ > 0

(
A
(
F̃c
)

> 0
)
, and the stability of the fixed point

is entirely given by Tr(Λc). When Tr(Λc) < 0 the fixed point is stable, meaning that
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the membrane tube grows until a lengthL = Lcg
(√

γ
)

and stalls there. Any small
perturbation, either in the number of bound motors or the tube length, relaxes back
to the same state. On the other hand, when Tr(Λc) > 0 the fixed point is unstable,
and any perturbation drives the system away from the fixed point. The transition
from stable to unstable regimes is given by Tr(Λc) = 0, which leads to

( f −2)F̃c = e− f A
(
F̃c)+ ñ

ξ

(
F̃c) . (5.68)

In casef < 2, there are no solutions for the latter equation, and the system is always
stable (Tr(Λc) < 0). Indeed, the parameterf was used in section 5.3.1 to distinguish
between the two possible threshold regimes. We argued that in casef < 2, the “stall
regime” is the actual threshold regime, whereas forf > 2 the “flux limited regime”
provides the right threshold. Here we can review that finding. Forf < 2 the system
is always stable, meaning that the flux of motors reaching the tip is able to balance
the detachment flux of motors at the tip. In this case, the condition of vanishing tube
velocity (dL/dt = 0) is more limiting and the threshold is specified by Eq. 5.32.
On the contrary, forf > 2 there may exist unstable regimes. The system is unstable
when the flux of bound motors reaching the tip region is not able to compensate
the motor detachment flux, leading to the detachment of all motors at the tip and the
retraction of the tube. The condition of flux balance determines the threshold value in
the “flux limited regime”. This limit can also be recovered in the present description
by settingdnb/dt = 0 in Eq. 5.61 andF̃ = 1, corresponding to the limit in which
the tube force is constant and equal toF0. The existence of stable solutions for the
equationĴb(L) = ku(nb) specifies the threshold value, which is given by Eq. 5.30.

Oscillations in tube length

In case the system is above the threshold value, tubes can be extracted from the
vesicle. As discussed above, if the fixed point is stable, tubes grow and eventually
stall at a lengthL = Lcg

(√
γ
)
. On the contrary, when the fixed point is unstable any

perturbation drives the system away from the fixed point. The dynamics of the sys-
tem in the unstable regime is governed by full non-linear original dynamical system
(Eq. 5.61).

Numerical integration of the dynamical system (Eq. 5.61) in the linearly unsta-
ble regime leads to sustained oscillations of the tube length (Fig.5.14b). This oscil-
latory behavior is in good qualitative agreement with the experimental observations
(Fig.5.14a). The experiments were performed by C. Leduc using the experimental
set-up described in section 5.1. The oscillations are composed of a growth phase
and a fast retraction phase separated by a rapid switch (Fig.5.14). The motor at-
tachment/detachment kinetics sets the time scale for the switching between growth
and retraction phases, and is much shorter than the characteristic time scale of tube
growth. This difference in time scales explains the sawtooth shape of the oscillations.
The origin of the oscillations is the interplay between the collective force-dependent
detachment of motors at the tip and the variation of the tube force with its length.
Once the tube is pulled out of the vesicle, the tube growth induces progressively an
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increase of vesicle tension. As a result, the motors at the tip must overcome increas-
ing forces upon tube extraction. At some point, the force becomes too large and the
detachment events at the tip cannot be equilibrated by the flux of motors reaching
the tip region. There is then a sudden loss of motors (Fig.5.14c). In the absence of
motors to pull the tube, this retracts suddenly until a point where the force is low
enough to allow again for tube growth. The velocity of the tube in the retraction
phase is very large, because the friction along the tube is small. Although it is not
possible to measure such large velocities in these experiments, we can determine a
lower bound for the absolute value of the retraction velocity of|L̇|= 50 µm/s. This
value is consistent with the measured values of tube retraction velocities at similar
values of the vesicle tension (Rossier et al., 2003).

The numerically obtained oscillations in Fig. 5.14b are in good qualitative agree-
ment with the experimental observations (Fig. 5.14a). Unfortunately, it was not pos-
sible to determine the precise value of all parameters in the experiments where oscil-
lations were observed. Although we use the known values of all known parameters,
the values of the vesicle radius andρ∞ used to perform the numerical integration
do not necessarily correspond to those in the experiments. Moreover, the dynamical
system in Eq. 5.61 is very stiff, and its numerical integration is difficult. In order to
overcome this problem, we have artificially added a constant contribution to friction
ñ0

ξ
(ñ

ξ
→ ñ

ξ
+ ñ0

ξ
) so that the retraction phase is slower. Although this method re-

duces the stiffness of the dynamical system and allows its numerical integration, it
also modifies the dynamics of the retraction phase. In particular, the amplitude and
period of the oscillations are affected by the value of ˜n0

ξ
. In spite of the intrinsic stiff-

ness of the dynamical system, our simplified description does not properly account
for the physics of the retraction phase. We are currently working to understand the
mechanism that stops a retracting tube.

Dynamical regimes

The possible dynamical regimes of the system depend on four dimensionless param-
eters:γ, β , ξ̃ and f . Using the experimental values forD, V0 and fs (see discussion
in section 5.3.1), it is possible to estimate the dimensionless motor frictionξ̃ to be
ξ̃ ' 4.110−4. In a typical experiment, there are several vesicles in the same observa-
tion chamber with different radius,R, ranging approximately from 1µm to 15µm.
Moreover, the initial surface density of motors on the vesicle,ρ∞ can be varied in
the experiments. Therefore, we analyze the dynamical regimes of the system as a
function ofγ andβ , corresponding to variations inρ∞ andR respectively. Although
the parameterf can also be estimated fromfs anda to be f ' 2, we vary it slightly
around this value to see its effect on the dynamical regimes.

In Fig. 5.15a we plot the different dynamical regimes as a function of the pa-
rametersγ and β , for vesicles in the entropic (Fig. 5.15a.1) and elastic regimes
(Fig. 5.15a.2) andf = 2.03. The transition between stable and oscillatory regimes
corresponds to a Hopf bifurcation and is given by the solution of Eq. 5.68. Oscilla-
tions are more likely to appear close to threshold. These oscillations correspond in
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Fig. 5.14.Oscillations of a membrane tube. (a) Example of the tube oscillations observed ex-
perimentally. Length of the tube as a function of time, obtained by determining the position of
the tube tip in each frame. (Experiments performed by C. Leduc). (b-c) Numerically obtained
time evolution of the tube length (b) and number of bound motors at the tip (c), in the unstable
regime. Parameters:γ = 7.3, ξ̃ = 4.110−4, f = 2.3 andβ = 1.73. The time scale is set by
k0

u = 0.42 s−1, the length scale bylp = 1.43µm and the scale for the number of bound motors
by F0/ fs = 3.3. An extra constant contribution to friction ( ˜n

ξ
→ ñ

ξ
+ 0.55) was artificially

added to allow the numerical integration, because the dynamical system is too stiff otherwise.

most cases to the full retraction of the tube back to the vesicle and the subsequent ini-
tiation of tube growth. This feature is in qualitative agreement with the experimental
observations for vesicles in conditions close to threshold. Indeed, if the motor density
ρ∞ is below the threshold value, oscillations in the vesicle shape are also observed.
Although the motors are not able to pull membrane tubes below threshold, the vesicle
is deformed due to the action of the motors. The force acting on the motors increases
as the vesicle is increasingly deformed. When the force acting on the motors is too
large, the motors pulling at one point of the vesicle detach and the vesicle relaxes.
These oscillations in vesicle shape below threshold can be understood by the same
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Fig. 5.15.Dynamical regimes as a function of the parametersγ = ρ∞/ρmin
∞,2 andβ = Lc/lp. In

all cases the dimensionless motor friction parameter isξ̃ = 4.110−4, which corresponds to the
experimentally measured value. The figures on the left correspond to a vesicle in the entropic
regime, so thatg(F̃) = 2F̃ ln(F̃), and those on the right correspond to a vesicle in the elastic
regime, i.e.g(F̃) = F̃(F̃2−1). (a) Dynamical regimes for both entropic (a.1) and elastic (a.2)
regimes of the vesicle andf = 2.03. (b) Dynamical regimes for both entropic (b.1) and elastic
(b.2) regimes of the vesicle and different values off : f = 2.02 (continuous line),f = 2.03
(dashed line) andf = 2.5 (dashed-dotted line). Note the strong dependence of the size of the
oscillatory region onf .

instability mechanism described above for the oscillations in tube length. On the
other hand, for large values of the surface density of motorsρ∞ (ρ∞ � ρmin

∞,2), stable
states are predominant. Indeed, if a large number of motors are available, the flux of
bound motors reaching the tip region is considerable and the system is, in general,
more stable. Above the minimal motor density allowing tube extraction both stable
and oscillatory states typically exist. For small enough and large enough values ofβ ,
tubes are stable. In between, there is a range of values ofβ for which the tubes oscil-
late. For clarity, in Fig. 5.16 we plot the dynamical regimes as a function ofρ∞ and
the radius of the vesicle,R, for a vesicle in the entropic regime andf = 2.03. Close
to threshold, oscillations are expected for almost all the vesicle radius tested exper-
imentally. When the motor density is increased slightly above the threshold value
(ρ∞ & ρmin

∞,2), the range of vesicle radii for which oscillations should be observed is
very small. This result is in qualitative agreement with the experimental observa-
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tions as the oscillatory behavior was never observed for very small (R' 1 µm) or
very large (R' 15 µm) vesicles.

The oscillatory region in the parameter space is strongly dependent of the pa-
rameter f , for vesicles in both the entropic and elastic regimes (Figs. 5.15b.1, b.2
respectively). As discussed above, forf < 2 there is not oscillatory region at all
(Eq. 5.68), and the size of the oscillatory region rapidly increases asf is increased
above f = 2. The existence of oscillations in the experiments suggests thatf > 2,
corresponding tofsa > KBT. Using the experimentally measured values offs ' 6
pN anda' 1.3 nm for conventional kinesin motors (Visscher et al., 1999; Schnitzer
et al., 2000), one obtainsf ' 2. However, recent experiments on conventional kinesin
report larger values of the stall force,fs' 7 pN (Carter and Cross, 2005; Nishiyama
et al., 2002), that lead tof ' 2.2. Unfortunately, a quantitative characterization of
the oscillations has been proved difficult experimentally. Indeed, tube oscillations
are rarely observed, suggesting that the oscillatory region in the parameter space is
small, in accordance with our predictions for values off close tof = 2 (Fig. 5.16).

Fig. 5.16.Dynamical regimes for a vesicle in the entropic regime as a function of the motor
densityρ∞ and the vesicle radiusR ( f = 2.03 andξ̃ = 4.110−4). The conversion ofβ to R
requires the expression of the characteristic length of force increase in the entropic regimeLent

c
(Eq. 5.6), and the parameters:κ = 10KBT, lp = 1.2 µm, F0 = 5 pN.

Our results concerning the dynamical regimes are in good qualitative agreement
with the experimental observations. It is thus likely that the instability mechanism we
propose, where the oscillations arise from the interplay between the collective force-
dependent motor kinetics and the force increase upon tube extraction, is reasonable.
On the other hand, using the experimentally measured values for the parameters, the
oscillations obtained from the theoretical description in this section do not match
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the amplitude of the observed oscillations. We believe that our simplified description
does not capture the mechanism that stops a membrane tube undergoing a retraction.
We are currently extending this work to better understand the behavior of oscillating
tubes.

5.4 Simulations

In the last section, we described, at mean-field level, how molecular motors dynam-
ically associate at the tip of membrane tubes and collectively generate the necessary
force to pull the tube. Although this approach already accounts for several important
experimental observations, like the existence of a threshold in tube extraction or the
oscillatory behavior, it cannot answer other important questions. In particular, the
solutions of the mean-field analysis show that the actual number of motors pulling
the tube can be as low as 4, suggesting a crucial role of the fluctuations. Moreover,
the mechanism by which motors are able to cooperate and apply large forces requires
the analysis of their mutual interactions and organization at the tip. In this section,
we address these questions using continuous-time Monte Carlo simulations of the
process of tube extraction.

5.4.1 Implementation of the simulation

Kinesin motors walk along microtubules by a sequence of discrete steps (see chap-
ter 1). A single motor jumps from a given tubulin dimer to a neighboring one with a
certain rate. Conventional kinesin motors are highly biased, meaning that the rate at
which the motors step forward to the next tubulin dimer is much larger than that at
which the motors step backward (at vanishing load). We adopt this discrete micro-
scopic approach in the simulations and neglect, for simplicity, the backward stepping
of the motors. Note that at large length scales and long time scales, this stochastic
discrete motion can be well described using a coarse-grained continuum theory. This
continuum approximation of motor motion was used in the previous section, as we
were interested in the dynamics of membrane tubes at time and length scales larger
than those of individual motor stepping.

We consider a single protofilament of a microtubule and describe it as a one
dimensional lattice, composed of individual sites (Fig. 5.17a). The size of each site
is ` and reflects the periodicity of the filament (tubulin dimers). The membrane tube
is composed ofN sites, where the site numbered 0 determines the boundary with the
vesicle and siteN locates the very tip of the tube. A motor at a given site can either
be bound to or unbound from the microtubule. When bound to the microtubule, the
motor can step forward to the next site, if empty, with a ratekf or detach from the

filament at a rateku
10. The unbound state represents motors attached to the tube,

but not to the microtubule, and therefore many motors can be placed in this state

10 The particular choice for the rates in the different regions of the tube is discussed below.



5.4 Simulations 111

Fig. 5.17. (a) Sketch of a growing tube (top) and its coded representation in the simulations
(bottom). The boxes along the microtubule (dark green) represent binding sites for motors.
The tube (yellow) is also discretized, using the same one dimensional lattice as for the micro-
tubule. The sites are labeled from 0 toN, with 0 andN corresponding respectively to the left
boundary (e.g. tube-vesicle boundary) and to the position of the leading motor, which defines
the position of the tube tip. In the coded representation, the number in each site represents the
number of motors occupying that site. Along the microtubule, the sites may be either empty
or occupied by one bound motor (light blue and red) at most, which corresponds respectively
to occupation numbers 0 and 1 in the code. Along the tube, each site may be occupied by
several unbound motors (light green), corresponding to an integer occupation number in the
code. (b) Possible transition rates of bound and unbound motors. There are 5 possible motor
transitions at a given location along the tube: forward motion of bound motors (with ratesk0

f
andkf respectively for bound motors along the tube or at the tip), bound motor detachment

(with ratesk0
u andku respectively for bound motors along the tube or at the tip), unbound mo-

tor attachment (with ratekb) and forward and backward unbound motor diffusion (with rate
kd in both cases). The particular choice for the rates is discussed in the main text.

at a given spatial position11. Unbound motors diffuse along the tube with diffusion
constantD and stochastically attach to the microtubule at a ratekb in case there is no
bound motor at that site. In the present discretized system, the diffusion of the motor
along the tube is characterized by a diffusion ratekd = D/`2, no matter whether
the motor diffuses forward or backward as the diffusion process is symmetric. In
Fig. 5.17b we sketch the possible transitions that motors can undergo, each one of
them characterized by a rate. Besides diffusion, unbound motors move also as a
consequence of the tube motion. This unbound motor movement is described below,
when discussing the rules determining the tube dynamics.

Each site contains all the information of a given position, namely the motors at
that spatial location, their states and their associated rates. The rates may depend on
the location along the microtubule and can also change over time. The reason to allow
for spatio-temporal variations of the rates is that, in several biological situations,

11 Although excluded volume effects also exist on the surface of the tube, the number of
unbound motors in this state is typically small askb >> k0

u, and one can safely assume no
restriction for the number of unbound motors.
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spatio-temporal force fields are applied to the motors, leading to spatial and temporal
changes of the forward and detachment rates of motors. The case of tube extraction
is a particularly simple example as the rates of the motors along the tube (those that
do not apply force) are constant in space and time. It is only close to the tip, where
motors generate the force to pull the tube, that the rates depend on both space and
time (see below).

This type of non-equilibrium systems, where self-propelled particles (like mo-
tors) undergo stochastic transitions, are generically called self-driven diffusive sys-
tems. There are several examples that have been extensively studied in the literature
in simplified conditions (Lipowsky et al., 2001; Parmeggiani et al., 2003). Most of
these studies use discrete space and time Monte Carlo simulations as the transition
rates of the particles are constant quantities. The principal drawback of this approach
is that either the rates or their range of variation have to be knowna priori in order to
set the time step of the simulation. There are systems in which the rates may depend
on the configuration of the system at a given time and their values may be difficult
to know a priori. Although the discrete space and time Monte Carlo methods can
be adapted to simulate the particular case of tube extraction by motor proteins, it is
more suitable to use continuous-time Monte Carlo simulations, where the rates can
be varied during the simulation with no constrains.

We have adapted the Gillespie Algorithm for chemical reactions (Gillespie,
1976), which was originally thought for spatially homogeneous systems, to the case
of particle transitions with spatio-temporal dependent rates. The idea behind the sim-
ulations is very intuitive. Every particle (motors) can undergo several transitions,
each one of them characterized by a certain transition rate. The time for each transi-
tion to occur is a stochastic variable distributed exponentially, with a characteristic
time scale equal to the inverse of the transition rate. In order to know which transition
takes place in the system and the time it takes to occur, one calculates the stochas-
tic time at which each one of all possible transitions would occur. The smallest of
these times determines the reaction that takes place. In spite of its simplicity, the
straightforward implementation of this algorithm is not optimal. In Ref. (Gillespie,
1976) it is shown that the probability distribution for the time of a transition to occur
(no matter which one) and the probability distribution for the transition that takes
place can be decoupled. Using this result, there exists a more efficient method to
implement the algorithm (Gillespie, 1976). We adapt here this algorithm (know as
Gillespie Algorithm) to the case of spatially extended systems with time dependent
transition rates.

The system is characterized by a rate matrixki, j , wherei ∈ [0,N] specifies the
site andj ∈ [0, r−1] the motor transition (r being the number of possible motor tran-
sitions;r = 5 in the present case). We order the transitions as follows:ki,0 = kf (i),
ki,1 = ku(i), andki,2 = kb(i), ki,3 = ki,4 = kd(i). Note that the rate matrix does not con-
tain information about the motors occupying the sites. In order to account for the ac-
tual potential transitions, we define a global array in the system,al , with l ∈ [0,N r],
that characterizes the rates of all possible potential transitions, and it is defined as
the number of motors that can undergo a particular transition times the rate of that
transition:ai r = nb(i)ki,0, ai r+1 = nb(i)ki,1, ai r+2 = nu(i)ki,2, ai r+3 = nu(i)ki,3 and
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ai r+4 = nu(i)ki,4, wherenb(i) ∈ [0,1] ⊂ N andnu(i) ∈ N are, respectively, the num-
ber of bound and unbound motors at sitei (occupation numbers). Regardless of the
internal order of the arrayal , it can be now seen as the array of all possible poten-
tial transition rates,l varying from 0 toN r, which is the total number of possible
transitions in the system. Once the potential transitions rates are given, we define the
global transition rate as

kg ≡
N r

∑
l=0

al . (5.69)

Unlike discrete-time Monte Carlo simulations, where the time step of the sim-
ulation is seta priori, here it is necessary to know the time∆ t at which the next
transition takes place. This time is a stochastic variable distributed exponentially
with a characteristic time scale 1/kg. Note that this time does not specify a partic-
ular transition of a certain motor, but only determines how long we have to wait to
see a motor (no matter which) performing a transition. The time∆ t is obtained by
taking an exponentially distributed random number, with 1/kg as the characteristic
time scale of the exponential distribution (Gillespie, 1976). The actual transition that
takes place is a stochastic variable distributed uniformly and is calculated as follows.
Generate a stochastic numbery distributed uniformly in the range[0,kg] and definem
as an integer number in the range[0,N r]. The value ofm that specifies the transition
that occurs is the largest value ofm∈ [0,N r] that fulfills the following inequality:

m

∑
l=0

al < y . (5.70)

The actual sitei at which the transition takes place and the particular transitionj, are
given respectively by the integer part and the module ofm/r.

The simulation evolves as follows. The system is initialized in a configuration
with an initial numberMi of consecutive bound motors, the first one defining the
position of the very tip of the tube, so that the length of the tubeN is N = Mi .
Then, the rate matrix is calculated, and the arrayal is obtained from the system
configuration and the rates. The value of the global transition ratekg is calculated for
the initial configuration. Then, the following steps are repeated until a timetmax:

• (step 1) Determine the stochastic time∆ t at which the next transition occurs, the
site i at which the transition takes place and the actual transitionj.

• (step 2) The transition is performed if allowed by excluded volume interactions
and the timet is updated tot +∆ t.

• (step 3) The transition rateski, j are then updated with the new configuration (it is
not necessary to update all transition rates in the system, except if these depend
explicitely on time).

• (step 4) The arraya j is updated with the new configuration and rates.
• (step 5) The global transition ratekg is updated.
• (step 6) Go back to step 1.

So far, we have described the algorithm without specifying the transition rates
of the motors. Indeed, this part of the algorithm determines the transitions of the
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motors, given the rate matrix and a particular configuration, but does not specify the
dynamics of tube growth. The dynamics of the tube is specified by the rates of the
motors under applied load in the vicinity of the tube tip, and by a set of special rules
for the growth events. We can thus study the mechanism by which motors cooperate
to pull the tube by analyzing the growth dynamics of the tube with different motor
organizations at the tip and different ways of cooperation between the motors.

The boundary conditions and the dependence of the rate matrix on the position
and configuration of the system are thus essential features to determine the growth
process. The left boundary (Fig. 5.17a) characterizes the contact of the tube with
the vesicle and controls the fluxes of the motors getting in and out of the tube. The
transition rates of the motors under applied load (close to the tube tip; right boundary)
affect critically the growth dynamics and are discussed in detail below.

Transition rates along the tube

The motors in this region are not subject to any force and their rates are constant
regardless the position and time (Fig. 5.18a). A bound motor moves forward with
ratekf = V0/` and detaches at a rateku = k0

u (Fig. 5.18b). In the unbound state, the

motors diffuse at a ratekd = D/`2 and attach to the microtubule at a ratekb. Using
the experimentally measured values of the different parameters (see chapter 1 and
discussion in section 5.3.1), the values for the rates of motors along the tube are:
kf = 75 s−1, k0

u = 0.42 s−1, kb = 4.7 s−1 andkd = 15625 s−1 (`' 8 nm).

Fig. 5.18. (a) Sketch of a portion of the tube (top; the boundaries are not shown) and the
coded representation for this particular motor configuration (bottom). (b) Particular choice of
the transition rates for motors along the tube. An unbound motor in a given site can attach
to the corresponding site along the microtubule if empty (with ratekb), and diffuse to the
neighboring sites along the tube (with ratekd). A bound motor at a given site can step forward
to the next site provided it is empty (with ratek0

f ), and detach from the microtubule to the

corresponding site along the tube (with ratek0
u).
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Vesicle-tube contact (left boundary)

The boundary with the vesicle is characterized by special rules that account for the
boundary conditions (Fig. 5.19). This boundary is constituted solely of the site num-
bered 0 (Fig. 5.17) which is not a part of the tube itself and acts only as a control site
for the fluxes getting in and out of the tube. The rates at this site are different from
all the sites that constitute the tube as these must account for the fluxes of motors
entering and leaving the tube. In order to fix the motor fluxes at this position, we
impose an occupation number of 1 in both the bound and unbound states, so that
nb(i = 0) = 1 andnu(i = 0) = 1 (Fig. 5.19b). The rate at which bound motors enter
the tube is given by the flux of bound motors,Jb, at this boundary (site 0). When a
motor is stochastically introduced into the system through the bound state, the occu-
pation number at site 1 is increased by one (nb(i = 1) = 0→ nb(i = 1) = 1) provided
it is empty, and the occupation number at site 0 remainsnb(i = 0) = 1 (Fig. 5.19b).
Therefore, the bound state of site 0 constitutes a source of motors that enter the tube
at rateJb.

Fig. 5.19.(a) Sketch of the tube-vesicle boundary (top) and a detail of the tube in the vicinity of
this boundary showing an arbitrary motor configuration in the coded representation (bottom).
The site numbered 0 constitutes the tube-vesicle boundary, and the occupation numbers for
both bound and unbound states at this site are fixed tonb(i = 0) = nu(i = 0) = 1. The bound
and unbound fluxes of motors entering the tube areJb andJu respectively. (b) Possible motor
transitions at the boundary. Only the boundary site 0 and the two first sites of the tube are
shown. The site constituting the boundary (site 0) is shown in gray. Bound motors cannot
enter the tube if a bound motor is occupying the site 1, and an unbound motor at site 1 leaves
the tube if it transits to site 0 (top). A bound motor can enter the tube at site 1 if empty and
unbound motors can enter the tube at site 1 with no restriction in the previous occupation
number at this site (bottom).
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The control of the flux in the unbound state is more complex as it depends on the
velocity V of the tube, which is set by the own dynamics of the whole system and
not knowna priori. As in the bound state, we impose an unbound motor flux,Ju, at
site 0, which corresponds to the flux of unbound motors entering the tube. This flux
depends on the average velocity of the tubeV and cannot be knowna priori. In order
to overcome this problem, we initially assume the velocity of the tube to beV0 when
considering the unbound motor flux at site 0, and run the simulation. We determine
the actual average velocityV and run the simulation again with the new value ofV.
Repeating this procedure recursively, the value of the unbound motor flux converges
to the actual value set by the the own dynamics of the tube. In our particular problem
only to recursions are needed to obtain the actual value ofJu. There also exists a flux
of unbound motors leaving the tube at site 0. When an unbound motor at site 1 tran-
sits to the left (site 0), we consider this unbound motor to leave the tube (Fig. 5.19b).
Therefore, the unbound state at site 0 acts both as source and sink of unbound mo-
tors. There are several ways by which unbound motors can leave the tube. A motor
at site 1 which diffuses to site 0 is considered to leave the tube. However, when the
tube retracts, many unbound motors can leave the tube simultaneously, as we shall
explain below.

Although the actual values for the bound and unbound motor fluxes depend on
the details of the contact between the tube and the vesicle, we use here a simplified
description where the motor fluxes entering the tube, expressed in the laboratory
reference frame, read

Jb = ρ
∞
b V0 , Ju = ρ

∞
u V . (5.71)

These expressions for the bound and unbound motor fluxes entering the tube,Jb and
Ju respectively, only account for the convective components of the fluxes. We have
shown in section 5.3.1 that once a tube is pulled, there is a central region of the tube
in contact with the microtubule which is characterized by the homogeneous equi-
librium densitiesρ∞

b andρ∞
u given by Eq. 5.44. In this region of the tube there is

no net diffusive unbound motor flux. Therefore, our particular choice for the fluxes
in Eq. 5.71 provides a good description of the tube from the region where the av-
erage motor densities are the equilibrium ones to the tip of the tube and can prop-
erly account for the growth of the tube. During the initial stages of tube extraction,
the bound and unbound motor densities at the contact with the vesicle are given by
the equilibrium densities, which in this case read:ρ∞

b = 2πr0ρ∞
(
kb/(kb +k0

u)
)

and
ρ∞

u = 2πr0ρ∞
(
k0

u/(kb +k0
u)
)

(see section 5.3.1). In this case, the motor flux enter-
ing the tube is given by Eq. 5.71. Note that there is also a diffusive flux of unbound
motors toward the vesicle. In the simulations, we account for this unbound motor
flux by removing from the tube the unbound motors that reach the left boundary by
diffusion.

Using the experimentally measured values for the parameters, the unbound mo-
tor flux is negligible compared to the bound motor flux. Therefore, the simulations
provide a fairly good description of the system when the bound motor flux entering
the system can be expressed in the form of Eq. 5.71, which is the case for both the
initial process of tube extraction and tube growth.
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Tube tip (right boundary)

This region specifies the growth dynamics of the tube and it is thus of crucial im-
portance. In order to study the differences in tube growth that arise from different
motor organizations at the tip and different ways of cooperation between the motors,
we propose three different scenarios. By comparing the results of the simulations
for these different cases with the experimental data, we aim at understanding how
motors do cooperate and organize to pull the tube.

There are general rules that can be established for the tube dynamics, indepen-
dently of the organization and cooperation of the motors at the tip. If the bound
motor at siteN (the very tip of the tube) steps forward, the tube grows by on site
(N → N + 1). On the other hand, if the leading motor at siteN detaches from the
microtubule, there is no bound motor to sustain the tube at the tip and the tube in-
stantaneously moves backward to closest site containing a bound motor (Fig. 5.20).
Indeed, the instantaneous tube retraction is legitimate as the time needed for the tube
to retract is much smaller than the time for forward motor stepping. When the tube
moves either forward or backward, the bound motors along the tube remain at their
respective sites as they are bound to the microtubule and the drag force applied on
each one of them arising from the tube motion is negligible (see section 5.3.1). On
the contrary, the motors in the unbound state follow the motion of the tube because
the viscosity of the membrane is larger than the bulk viscosity. Therefore, when the
tube moves forward or backward all the unbound motors along the tube move accord-
ingly (Fig. 5.20). Note that some of the unbound motors located in the vicinity of the
left boundary (tube-vesicle boundary) leave the tube as a result of a tube retraction.

Fig. 5.20.Tube retraction caused by the detachment of the leading motor. A portion of the tube
in the vicinity of the tube tip is shown in the coded representation used in the simulations. Two
different motor configurations are shown (a,b). Configuration before the detachment of the
leading motor (top) and resulting configuration after detachment (bottom). The tube retracts up
to the position of the closest bound motor. The bound motors along the tube do not change their
positions upon retraction (light green dashed box). Unbound motors are dragged by the tube
and change their positions accordingly upon retraction (light blue dashed box). The number
of consecutive bound motors at the tip isnb.
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Once the general rules for the tube motion are specified, we describe the different
scenarios concerning the cooperation and organization of motors in the vicinity of
the tip (Fig. 5.21).

Cluster tip

This scheme intends to model two important features, namely the coordination of the
motors and their ability to transmit the forces when they are in contact to each other.

In this scenario, the firstnb consecutive bound motors share the force to pull
the tube (Fig. 5.21a). This situation models the case in which the motors are able
to “transmit” the force to each other when they are in contact in a row-like configu-
ration. Moreover, this particular scheme highlights a possible coordination between
the motors: when the first motor in the cluster (the leading motor, placed at siteN)
steps forward, the other motors in the cluster step also forward (Fig. 5.21a). Thenb
consecutive motors at the tip can thus be seen as a compact cluster able to apply
forces larger than the individual motors. Note however that the number of motors
constituting the cluster,nb, is not fixed. It is a stochastic variable that depends on the
kinetics of the motors.

The forward stepping rate,kf (nb), and detachment rate,ku(nb), of the motors in
the cluster are affected by the tube force and given respectively by

kf (nb) =
V0

`
Θ

(
1− F

nb fs

)
, ku = k0

u exp

(
Fa

KBT
1
nb

)
, (5.72)

whereΘ(z) is the Heaviside step function. We impose a vanishing forward rate in
case the force applied on the motor is larger thanfs in order to account for recent
experimental observations on conventional kinesin (Carter and Cross, 2005). The
remaining rates,kb andkd, are the same than for the motors along the tube and were
discussed above.

Variable tip

This scheme emphasizes the capacity of the motors to transmit the forces when they
are in contact, but the motors do not have any coordination mechanism; they are
totally independent from one another.

Similarly to the previous scheme, the firstnb consecutive bound motors share the
force to pull the tube (Fig. 5.21b), highlighting the transmission of forces by motors
in contact. The absence of coordination between the motors is manifest in the motion
of the first motor. When this steps forward, the remaining motors in the cluster do
not follow it and remain at their respective sites (Fig. 5.21b).

The expressions for the transition rates of the motors are the same than in the
previous scheme. In particular, the force-dependent rates,kf andku, are given by
Eq. 5.72. Note however that although the expression is the same, the dynamics of the
stochastic variablenb is totally different and, as a consequence, the dynamics of the
tube differs also significantly from the “cluster tip” scheme. Consider, for instance,
the forward stepping of the leading motor (Fig. 5.21b). Unlike in the “cluster tip”
scheme (Fig. 5.21a), when this situation takes place the leading motor must sustain
the tube alone, increasing considerably its detachment rate.
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Fig. 5.21.Dynamics of tube growth for the three different organizations of motors pulling
the tube at the tip. A portion of the tube in the vicinity of the tube tip is shown in the coded
representation used in the simulations. Configuration before the forward stepping of the lead-
ing motor (top) and resulting configuration after the motor step (bottom). In all cases, when
the tube grows, the unbound motors along the tube follow the motion of the tube accordingly
(light blue dashed box). On the contrary, the bound motors along the tube remain at their po-
sitions (light green dashed box). (a) Cluster tip: The forward stepping of the leading motor
is followed by all the consecutive motors constituting the tip (red line). (b) Variable tip: The
forward stepping of the consecutive motors constituting the tip (red line) is independent. (c)
A numbernb of bound motors in the tip region of sizeLtip (blue line) act collectively to pull
the tube, and their forward stepping is independent.

Fixed tip

In contrast to the previous scenarios, the present scheme models the case where the
motors cannot transmit the forces to each other when they are in contact and no
coordination exists between them. Only the motors which apply normal forces to the
membrane can contribute to pull the tube. The curvature of the tip of the tube defines
then a region of fixed sizeLtip (or Ntip sites of sizè equivalently) where the motors
can apply normal forces to the membrane, no matter whether they are consecutive or
not (Fig. 5.21c). This model introduces a parameter, the number of sitesNtip where
the motors can contribute to pull the tube. Typical values for the curvature of the tube
at the tip (∼ 1/r0) suggestNtip ∈ [1,4] (corresponding to radius of curvature in the
ranger0' 8−32 nm). We analyze below the differences in tube growth for different
values of the size of the tip.

The number of bound motors,nb, in the tip region is a stochastic variable that
can vary in the range[1,Ntip]. The fact that motors cannot transmit the forces to each
other is manifest in different configurations sketched in Fig. 5.21c. For example,
consider the case where the tip region is constituted of four sites (Ntip = 4) and
besides the necessary bound motor at siteN (leading motor), there is only another
motor in the tip region placed in the site numberedN− 3. Both motors contribute
to pull the tube in spite of being two sites with no bound motors between them.
Moreover, in case there is a bound motor at the site numberedN−4 (outside the tip
region), and thus in contact with the last motor in the tip region, this motor does not
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contribute to pull the tube. The dynamics of the motors in the tip region are totally
independent from one another, meaning that no coordination between the motors
exists.

The expressions for the transition rates of the motors are the same than in the
two previous schemes. Again, the difference stems in the dynamics of the number of
bound motorsnb due to the different rules described above.

5.4.2 Organization of motors at the tip

Once the rates of the motors are specified for all the sites along the tube and the rules
for the tube dynamics are established, the simulation can be performed. In order to
gain insight on the organization and cooperation mechanism of the motors that pull
the tube, we analyze different quantities that characterize tube extraction and growth
and compare them to the experimental observations. The simulations in this section
are done for short tubes (L < Lc), in which case the tube forceF0 can be considered
as constant.

There are two main quantities that can be compared at a quantitative level to the
results of the simulation. First, the maximal membrane tension (or tube force), for
a given motor concentration on the vesicle, above which no tubes can be extracted
and, second, the average growth velocity of the tube.

Threshold in tube extraction

As shown in section 5.3.1, there exists a range of parameters for which molecular
motors cannot extract membrane tubes from the vesicle. In particular, for a given
motor density on the surface of the vesicleρ∞, there exists a maximal tensionσmax

(or maximal tube forceFmax = 2π
√

2κσmax equivalently) above which the motors
are not able to pull tubes from the vesicle.

In the simulations, the maximal tube forceFmax for a given value of the density
ρ∞ is determined as follows. We set the surface density of motorsρ∞ to a certain
value and impose a tube forceF0 much larger than the threshold force for the value
of ρ∞ used. As we do not knowa priori the threshold forceFmax resulting from
the simulations, we initially set a forceF0 larger than the theoretical threshold force
obtained in section 5.3. The system is initialized with a certain number of bound
motors,Mi . We set this number to a large enough value (Mi ' 20) to insure the initial
tube growth. If the initial number of bound motors were too small, it could be more
limiting than the value of the surface density of motors, and would lead to artifacts.
Typically, the tube initially grows (as it has enough bound motors at the tip) and, in
case the force is too large, it retracts until its length vanishes. We repeat this process
200 times for the same values ofF0 andρ∞ and if all tubes retract, we lower the force
and repeat the process again for the same value ofρ∞. As the force is progressively
lowered, there exists a value of the force for which at least one tube does not retract
and grows with finite average velocity. This force is the maximal forceFmax above
which no tube can be extracted. Still for the same value ofρ∞ we repeat the whole
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process (20 times) and obtain different values ofFmaxthat allow a statistical treatment
of the data.

We perform the simulations just described for different values ofρ∞. In Fig. 5.22
we plot the average value ofFmax (and its standard deviation) as a function ofρ∞
for the different schemes of motor organization described above. The maximal force
Fmax saturates for large surface density of motors. This result is independent of the
scheme used, but the saturation value depends strongly on the motor organization at
the tip. One could expect this result for the “fixed tip” scenario as there is an upper
bound for the number of bound motors that pull the tube. The reason why the maxi-
mal force saturates for the two other schemes is the intrinsic detachment/attachment
kinetics of motors. The force is developed by thenb consecutive bound motors at the
tip and, as soon as a motor in this compact cluster detaches, the numbernb is reduced.
The equilibrium of motor fluxes sets an average number of consecutive motors at the
tip and, as a result, the cluster cannot develop arbitrarily large forces. Note that the
saturation of the maximal force at large values ofρ∞ is not related to the fact that the
flux of bound motors entering the tube is bound by the motion of the motor at site
1. Indeed, motors cannot enter the tube if site 1 is occupied and, althoughJb may be
larger thanV0/`, the rate of forward motion of the motor at site 1 sets an upper bound
to the flux of bound motors entering the system. However, even if a macroscopic high
density phase (traffic jam) exists along the microtubule, meaning that almost all the
sites are occupied by bound motors, the number of consecutive bound motors at the
tip is small due to their attachment/detachment kinetics, and the maximal force is
consequently small. This phenomenon is studied in more detail below.

The maximal forceFmax is also constant for small values ofρ∞ (Fig. 5.22). For
such values of the tube force, the initial number of motorsMi is sufficient to ex-
tract the tube and keep pulling it. Therefore, no matter how much the densityρ∞ is
lowered, the maximal force that the motors can perform saturates because the initial
number of motors is fixed to the same value in all cases. Reducing the initial number
of motorsMi confirms this explanation as the saturation ofFmax for small values of
ρ∞ takes place at smaller values of both the force andρ∞. Note that at vanishing
ρ∞, the flux of motors entering the tubeJb strictly vanishes. However, the tube can
be extracted by the initial bound motors in case the tube force is similar to the stall
force of single kinesins (fs' 6 pN).

The experimental data establishes that for a tube force ofF0' 27.5±2.5 pN, the
threshold density isρmin

∞ ' 200±100µm−2. It is important to realize that this value
corresponds to the minimal surface density of motors tested experimentally at which
tubes are pulled from the vesicle. At a value ofρ∞ ' 100µm−2 no tubes are pulled
from the vesicle. Therefore, the actual value of the minimal density at which tubes
are extracted lies within the range 100−200µm−2. When comparing the numerical
and experimental results, the experimental value of the threshold is not a specific
point but rather a region of forces and densities due to the experimental uncertainty
(Fig. 5.22a). Note that the minimal densityρmin

∞ at a given forceF0 measured exper-
imentally, is equivalent to a maximal forceFmax= F0 for a motor densityρ∞ = ρmin

∞ .
The value of the maximal forceFmax obtained in the simulations is below the

experimentally measured valueFmax = 27± 2.5 pN at values ofρ∞ in the range
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Fig. 5.22.Maximal forceFmax as a function of the surface motor density on the vesicleρ∞,
for the different motor organizations at the tip: “Variable tip” (circles), “Fixed tip” (Ntip = 2;
triangles down), “Fixed tip” (Ntip = 3; triangles up) and “Cluster tip” (triangles right). The

parameters in the simulations are those measured experimentally:` = 8 nm, kb = 4.7 s−1,
k0

u = 0.42 s−1, a = 1.4 nm, fs = 6 pN,V0 = 0.6 µms−1, D = 1 µm2s−1 andκ = 10KBT. (a)
The experimentally measured value of the threshold is represented by a green rectangle, due to
the experimental uncertainty. If only one protofilament is used by the motors, the results of the
simulations for any motor organization do not agree with the measured value. (b) Comparison
of the experimental and numerical results when several protofilaments are used simultaneously
by the motors. The experimentally measured value of the threshold that must be compared
with the simulations isρ∞/Np andF0/Np, i.e. the corresponding values per protofilament.
The measured threshold for different values of the number of protofilaments are shown. For 3
protofilaments (Np = 3), the simulations agree with the experimental observations within the
error.

100 µm−2 < ρ∞ < 200 µm−2, for any motor organization scheme (Fig. 5.22a).
The reason is that the simulations consider only a single protofilament, while more
protofilaments are likely to be used by the motors. Although the membrane tube
couples the motor dynamics on different protofilaments, as a first approximation, we
assume the different protofilaments to be independent as far as motor dynamics is
concerned. The experimental values that have to be compared to the simulations are
not directly the ones given above. If bound motors use a numberNp of protofilaments
when moving along the microtubule, the flux of motors entering the system is shared
among these protofilaments, so that the flux per protofilament isJb/Np. As the flux is
proportional toρ∞ and variations in the motor flux correspond to changes inρ∞, the
value of the motor density that must be used to compared to the simulation results is
ρ∞/Np. Similarly, the forceF0 is shared among the motors in the different protofila-
ments, so that the force that the motors pulling the tube along a single protofilament
must overcome isF0/Np.

With a single protofilament, the simulations do not agree with the measured value
for the threshold (Fig. 5.22a). If bound motors use 2 protofilaments, the measured
value of the threshold does not agree neither with the simulations (Fig. 5.22b). For
a number of protofilaments larger than 3 (Np > 3), the same result is found and the
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Fig. 5.23.(a) Maximal forceFmaxas a function of the surface motor density on the vesicleρ∞,
for the different motor organizations at the tip: “Variable tip” (circles), “Fixed tip” (Ntip = 2;
triangles down) and “Fixed tip” (Ntip = 3; triangles up). We consider that 3 protofilaments
are simultaneously used by bound motors (Np = 3). The experimentally measured value of
the threshold that must be compared with the simulations isρ∞/Np andF0/Np, and lies then
within the values represented by the green rectangle due to the experimental uncertainty. The
only two schemes that agree with the experimental data are “Variable tip” and “Fixed tip”
(Ntip = 2). The parameters in the simulations are those measured experimentally and are the
same than in Fig. 5.22. (b) Schematic representation of a front view of the tube (orange) and
the microtubule (light green) using approximately the right proportions. The radius of the tube
(r0' 20 nm) is about twice the radius of a microtubule. The motors (red) have a head of about
5 nm and the motor tail is about 15 nm. Indeed, the kinesin motors used in the experiments are
conventional kinesins with a truncated tail, much shorter than the normal tail of conventional
kinesins. The sketch suggests that at most three protofilaments (dark green) are likely to be
simultaneously used by bound motors (red), due to geometric constraints.

experimentally measured value of the threshold does not fit the results of the sim-
ulations neither (Fig. 5.22b). However, in case bound motors use simultaneously 3
protofilaments, the maximal forceFmax obtained in the simulations for the schemes
“variable tip” and “fixed tip” (withNtip = 2) agrees with the measured value of the
threshold within the experimental error (Figs. 5.22b and 5.23a). Indeed, from ge-
ometric considerations knowing the radius of both the tube and the microtubule we
estimate that no more than 3 protofilaments can be used at the same time (Fig. 5.23b).
For any number of protofilaments, the scheme “cluster tip” does not fit the experi-
mental data within the error. As this is the only scenario that contains a coordination
of the motors, our results suggest that the motors pulling the tube behave indepen-
dently. We thus conclude that bound motors use 3 protofilaments simultaneously and
act independently to pull the tube.

The maximal forceFmaxdoes not however distinguish between the two remaining
possible schemes, namely “variable tip” and “fixed tip”. We now use the experimen-
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tal measure of the average growth velocity of the tube to distinguish between these
two scenarios.

Average growth velocity

The very tip of the tube is determined by the position of the leading bound motor at
siteN. When this motor steps forward, the tube increases its length by one site and,
in case the leading motor detaches, the tube retracts until the position of the closest
bound motor. The time evolution of the variableN traces the trajectory of the tube
N(t), or L(t) = `N(t) equivalently. The slope ofL(t) corresponds to the average tube
velocity.

We first analyze the average tube velocity at threshold. As described above, the
force Fmax is the force, for a given value ofρ∞, at which at least one tube can be
extracted. We determine the average growth velocity of this tube and repeat the pro-
cess to obtain enough statistics. In Fig. 5.24a we plot the average tube velocity as a
function ofρ∞ for the two schemes left (“variable tip” and “fixed tip” withNtip = 2).
Note that the tube force is not the same along the curve. Being at threshold, the tube
force isFmax and thus different for each value ofρ∞. Below a surface motor density
of aboutρ∞ ' 1 µm−2, the two schemes show similar tube velocities. Indeed, for low
forces both schemes should behave similarly as there is no need for a large number
of consecutive bound motorsnb to pull the tube. The dispersion of the data for low
densities (low forces) is large as the number of bound motors necessary to pull the
tube is very small (nb ' 1−2) and the fluctuations in the tube trajectory are large.
For densities aboveρ∞ ' 10 µm−2 (Fig. 5.24b), the dispersion is much smaller and
the two schemes show clearly different average tube velocities. For the “variable tip”
scheme, the tube velocities are larger than for the “fixed tip” scheme withNtip = 2.
This is so because the latter scheme has a limited number of sites where the motors
can apply forces, whereas in the “variable tip” scheme larger bound motor clusters
can be stochastically created.

The average tube velocity can be determined experimentally close to threshold.
The initial motor density at the surface of the vesicleρ∞ was set toρ∞ ' 200±
100µm−2, corresponding to the value tested experimentally closest to threshold at
a tube force ofF0 ' 27.5±2.5 pN, and the average velocity of the tubes growing in
this conditions was determined. As the system is close to threshold, very few tubes
are observed; tubes were extracted only from approximately 10% of the vesicles in
the chamber, whereas in far from threshold conditions, tubes are observed for nearly
all vesicles. In spite of the low number of tubes close to threshold, when a tube is
extracted its average velocity is finite and can be measured by determining the slope
of its trajectory. The average value,V̄, of the average tube velocityV measured for 9
different tubes close to threshold, is

V̄ ' 0.11±0.05 µms−1 . (5.73)

As discussed above, the value ofρ∞ that has to be compared to the simulation results
is ρ∞/Np. Note however that the velocity is not affected by the number of protofil-
aments considered, as we assume the different protofilaments to be independent.



5.4 Simulations 125

The measured value of the average tube velocity is consistent with the one obtained
for the “variable tip” scheme (Fig. 5.24b). The smaller velocities for the “fixed tip”
scheme withNtip = 2 that result from its limited number of pulling motors, do not fit
the experimental data within the error (Fig. 5.24b). Moreover, the velocity of tubes at
threshold for the “Cluster tip” scheme is above the experimentally measured value,
confirming that this scheme is not in agreement with the observations.

Fig. 5.24. Average tube velocityV as a function of the surface motor density on the vesicleρ∞
for different motor organizations at the tip: “Variable tip” (circles) and “Fixed tip” (Ntip = 2;
triangles down). We consider that 3 protofilaments are simultaneously used by bound motors
(Np = 3). The experimentally measured value of the threshold that must be compared with
the simulations isρ∞/Np andF0/Np. The experimental value of the average velocityV that
must be compared with the simulations is the direct measure of the velocity, no matter the
number of protofilaments, and is represented by the green rectangle due to the experimental
uncertainty. Only the “Variable tip” scheme agrees with the experimental data within the error.
The parameters in the simulations are those measured experimentally and are the same than
in Fig. 5.22. (b) Same than in (a) for the range of densities where the fluctuations in the tube
velocity are small.

The velocity of tubes in far from threshold conditions was also measured (see
discussion in section 5.3.1). For the same tube force (F0' 27.5±2.5 pN) the surface
motor densityρ∞ was increased 10 times over the threshold density for this force
(ρ∞ ' 2000µm−2). The average value,̄V, of the average tube velocityV measured
for 27 different tubes is

V̄ ' 0.12±0.04 µms−1 . (5.74)

There is thus a very weak dependence of the average tube velocity on the surface
density of motors. This result is also found in the simulations of tube growth for the
“variable tip” scheme. Using the same parameters than in the experiments and con-
sidering that 3 protofilaments are used simultaneously by bound motors, the average
value,V̄, of the average tube velocity obtained in the simulations for 500 tubes is

V̄ ' 0.127±0.005µms−1 , (5.75)
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confirming the scheme “variable tip” as the most plausible type of motor organization
at the tip, because it agrees with all experimentally measured quantities within the
experimental error. Note that the average tube velocity obtained in the simulations,
which is in good agreement with the experimental measure, is much smaller than the
mean-field prediction (section 5.3.1). The organization of the motors at the tip and
their mutual interactions are thus important to understand the growth of membrane
tubes.

The results presented suggest that motors cooperate by transmitting the forces to
each other when in contact in spite of behaving independently from one another. In
Fig. 5.25 we sketch the tip of a growing tube with the motor organization that our
analysis suggests.

Fig. 5.25.Schematic representation of the organization of motors pulling a membrane tube.
Lateral, top and front views are shown. Bound motors (blue and red) can use three different
protofilaments (dark green) to pull the membrane tube (orange). The motors applying the force
to sustain the tube at the tip are shown in red, whereas the other bound motors are shown in
blue.

Number of motors at the tip

Having established the “variable tip” scheme as the most plausible one, we now study
the distribution and average number of motors, ¯nb, pulling the tube. As discussed
above, the motors contributing to the force to pull the tube are the firstnb consecutive
motors at the tip in the “variable tip” scheme. Due to the stochastic motor transitions,
the numbernb is a stochastic variable. During tube growth, the variablenb can be
tracked as a function of time and its statistical properties can be determined.

We simulate the growth of a tube in far from threshold conditions, using the
experimentally measured values for the parameters. The tube force and surface mo-
tor density imposed in the simulations are, respectively, the force per protofilament,
F0/Np ' 9.1 pN, and the motor density per protofilament,ρ∞/Np ' 300 µm−2

(Np = 3). Upon tube growth, we obtain the number of consecutive motors at the
tip as a function of time,nb(t). In order to obtain the average number of motors
pulling the tube, ¯nb, as a function of time, we repeat the simulation of tube growth
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for several independent tubes and perform an ensemble average at each given time.
In Fig. 5.26a we plot the average number of pulling motors during tube extraction.
Interestingly, it is constant in time and small, ¯nb ' 2.8. This number corresponds to
the average number of pulling motors per protofilament. As three protofilaments are
used simultaneously and independently, we estimate the average number of motors
pulling the tube in the conditions specified above to be

n̄b ' 8.4 . (5.76)

This number is smaller than the one obtained for the same conditions in the mean-
field study developed in section 5.3.1, where an average number of 24 motors was
estimated to pull the tube. Such discrepancy between the mean-field prediction and
the results of the simulations shows that the motor organization and mutual interac-
tions at the tip are important to understand the process of tube extraction.

Fig. 5.26. Average number (a) and probability distribution (b) of pulling motors at the tip for
a single protofilament. The parameters in the simulations are those measured experimentally
in far from threshold conditions (normalized to the number of protofilamentsNp used by
bound motors, when necessary;Np = 3): F0/Np' 9.1 pN,ρ∞/Np' 300µm−2, kb = 4.7 s−1,
k0

u = 0.42 s−1, V0 = 0.6 µms−1, fs = 6 pN,D = 1 µm2s−1, κ = 10KBT, ` = 8 nm anda= 1.4
nm. (a) The average number of motors pulling the tube, ¯nb, is constant in time. The total
number of motors pulling the tube for three independent protofilaments is ¯nb ' 8.4. (b) The
probability distribution (normalized frequency) for the numbernb of consecutive motors at the
tip (pulling motors) shows a rapid decay at small number of motors. The inset in (b) shows
the probability distribution in logarithmic scale, and suggests an exponential decay withnb for
nb & 3.

In order to characterize the statistical properties of the number of motorsnb,
we determine its probability distribution. In Fig. 5.26b we show the normalized fre-
quency histogram (probability distribution) ofnb, calculated using an ensemble av-
erage over 3000 independent runs. The probability distribution does not change in
time, in agreement with our previous result concerning the average number of mo-
tors. Although the tube is pulled by an average number of motors ¯nb' 2.8, there is a
finite probability that much larger motor clusters transiently form. The most frequent
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case corresponds to an isolated motor pulling the tube, and the probability of larger
motor cluster decreases rapidly with the number of motor in the cluster. Clusters of
more than about 7 motors hardly occur. Although the decrease of the probability den-
sity is consistent with an exponential decrease (inset in Fig. 5.26b), we cannot rule
out a long-tail decrease at large values ofnb. We are currently studying analytically
this behavior using a master equation approach.

The probability distributionρnb
(nb) can be used to calculate statistical quanti-

ties, like the average number of pulling motors or the average tube velocity, that we
obtained above in a different way. Using the expression for the velocity of the tube
for a given number of motors at the tip,V(nb) = V0(1−F0/nb fs), the average tube
velocity,V̄ reads

V̄ = V0

∞

∑
nb=1

ρnb
(nb)

(
1−

F0

fsnb

)
. (5.77)

Note that the average velocity cannot be calculated by direct substitution of the av-
erage number of pulling motors ¯nb in the expression forV, i.e.

V̄ 6= V0

(
1−

F0

fsn̄b

)
. (5.78)

The constant average number of pulling motors obtained in the simulations is in
contrast with the mean-field prediction in section 5.3.1, where the number of motors
increased slowly in time. The reason is that in the simulations a traffic jam devel-
ops in the close vicinity of the tip, and the assumption of low motor density used
in the mean-field analysis no longer holds. The average size of this jam is typically
small (10−20 sites) and cannot be observed by the fluorescence microscopy mea-
surements discussed above, but is still larger than the average size ¯nb of the motor
cluster pulling the tube, which is of about 3 motors per protofilament. The size of the
jam increases with time as there is a net flux of motors toward the tip. However, the
number of consecutive motors at the tip is much smaller and constant. Indeed, the
attachment/detachment kinetics sets an average number of consecutive motors and,
even if a macroscopic traffic jam develops upstream from the tip, the actual number
of motors pulling the tube is very small due to detachment events. In spite of the con-
stant average number of motors pulling motors and constant average tube velocity,
there is no steady state for the motor density profile along the tube because of the net
flux of motors toward the tip. We discuss below the formation of macroscopic jams
upstream from the tip region.

5.4.3 Motor density during tube growth

In the mean-field description of the system, we considered the bound motors moving
along the microtubule to be in the dilute limit (low density phase). This assump-
tion, which simplifies considerably the mathematical analysis, was done because the
experimental data suggested in most conditions a low density phase of motors (see
section 5.3.1). However, when the concentration of motors is increased, like in the
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vicinity of the tube tip, this approximation no longer holds. Generically, there are sev-
eral nonlinear phenomena in traffic that arise from the mutual interactions between
the particles (motors in our case). In this section we focus on the motor density dur-
ing tube growth and describe the accumulation of motors upstream from the tube tip.
All the simulations of tube growth in this section are done using the “variable tip”
scheme, as we have shown above that it is the most plausible one.

The simulations account for the dynamics of individual motors, which undergo
elementary transitions. However, when analyzing the motor density field, we are
interested in length scales much larger than the size of a single site` (`' 8 nm for a
microtubule). Indeed, using optical microscopy the minimal observable length scale
is about 150− 200 nm due to the diffraction limit, meaning that no length scales
below this limit can be resolved. The fluorescence intensity along the tube measured
experimentally corresponds to the sum of bound and unbound motor densities. Note
however that the total motor density, given by the sum of bound and unbound motor
densities, can be well approximated by the density of bound motors because the
attachment ratekb is much larger than the detachment rate at zero forcek0

u (kb/k0
u '

10; see section 5.3.1). We thus focus on the time evolution of the bound motor density
field in what follows. In order to obtain the density field from the binary data resulting
from the simulations, different techniques can be used. We briefly describe two of
the commonly used procedures and comment the one we use:

• Smoothing. The smoothing procedure consists in substituting the binary value
of the occupation number at a given site by the average value of the occupation
number over a certain number of sites. If the averaging is done in a window of
2m+1 sites, the value of the average occupation number (bound motor density),
ρb(i), at sitei reads

ρb(i) =
1

2m+1

i+m

∑
k=i−m

nb(k) , (5.79)

wherei ∈ [m,N−m− 1] ⊂ N, k ∈ [0,N− 1] ⊂ N, andnb(k) is the occupation
number of the bound state at sitek, which takes the value 0 if the site is empty
and 1 in case it is occupied. Note that if the original system containsN sites, the
smoothed system hasN−2m sites.

• Averaging. The averaging technique consists in renormalizing the size of the unit
cell and substitute the binary values of the occupation number at the original
sites for the average occupation number in the renormalized unit cell. If the orig-
inal system containsN sites of length̀ and the averaging is done overm sites,
the averaged system hasN/m unit cells (“sites”) of lengthm` 12. The average
occupation number (motor density),ρb(i), at a renormalized celli, reads

ρb(i) =
1
m

m−1

∑
k=0

nb(im+k) , (5.80)

12 The integer numberN andm should be commensurate. In case they are not, it is necessary
to crop a small portion of the system to make them commensurate.
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wherei ∈ [0,N/m−1] ⊂ N andn j is the occupation number at the original site
j, with j ∈ [0,N−1]⊂ N.

Both techniques act as a high-frequency noise filter, preventing large fluctuations
at very short length scales. The main difference between them is the size of the result-
ing unit cell. While the smoothing technique conserves the size of the unit cell, the
averaging procedure changes it from the original size of a site to the size of the aver-
aged region. We present here the data after filtering it with the averaging technique
because the resulting size of the unit cell closely corresponds to the experimental
resolution of fluorescence microscopy (1 pixel = 134 nm).

Growth of short tubes

For short enough tubes (L < Lc ∼ 20 µm) the tube force does not increase much
during tube extraction and can be considered as constant, with a valueF0 = 2π

√
2σκ.

We simulate the growth of short tubes and analyze, at qualitative level, the density
field of bound motors upstream from the tip.

In Fig. 5.27a,b we show the time evolution of the bound motor density field upon
tube growth, for different values ofρ∞. In case both the flux of motors entering the
tube and the tube force are small (ρ∞/Np = 10µm−2 andF0/Np = 4 pN; Fig. 5.27a),
the accumulation of motors upstream from the tube tip is small and evolves slowly
in time. In this case, the average density field decays exponentially away from the
tip with a decay lengthλ which is in agreement with the mean field analysis in
section 5.3.1. However, even in the case of a small net motor influx, at long times (t >
102 s) there is a jamming of motors at the tip that progressively invades the system.
For a large net motor influx (ρ∞/Np = 100µm−2 andF0/Np = 4 pN; Fig. 5.27b),
this jamming of motors occurs very quickly (t ∼ 10 s) and the exponential decay of
the density profile in the vicinity of the tip is not observed.

An example of the time evolution of the motor density field obtained experimen-
tally is shown in Fig. 5.27c. The density field presents an accumulation of motors at
the tip, which does not evolve much during the observation time. The density field
decays exponentially from the tip, in agreement with the mean-field analysis and
the simulation results for low motor influx. However, the time scale to generate a
micron-sized jam of motors at the tip is longer than that obtained in the simulations.
We interpret this disagreement as an overestimation of the flux of motors entering
the tube in the simulations. Indeed, the bound motor flux,Jb, depends on the de-
tails of the tube-vesicle contact and, in particular, on the existence of a connection
region where the tube is not in contact with the microtubule. The simulations are
done assuming a constant flux, as given by Eq. 5.71. In case there is a connection
region, the flux of bound motors entering the tube is smaller (Eq. 5.44) and could be
overestimated in the simulations.

The small density inhomogeneities along the tube obtained in the simulations
(Fig. 5.27a) are not observed in the experiments (Fig. 5.27c). Unlike the simula-
tions, where only one protofilament is considered, the experimental density profile
corresponds to the total motor density, i.e. the average density of motors moving on
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Fig. 5.27. (a-b) Space-time plots corresponding to the time evolution of the bound motor
density field along the tube obtained from the simulations (F0/Np = 4 pN). The parameters are:
` = 8 nm,kb = 4.7 s−1, k0

u = 0.42 s−1, a= 1.4 nm, fs = 6 pN,V0 = 0.6 µms−1, D = 1 µm2s−1

andκ = 10KBT. (a) Low flux of bound motors entering the tube (ρ∞/Np = 10 µm−2). (b)
Large bound motor influx (ρ∞/Np = 100µm−2). (c) Experimentally measured fluorescence
intensity plot as a function of position along the tube path and time. (Experiments by C.
Leduc).

different protofilaments. It is thus likely that the small density inhomogeneities on
individual protofilaments are averaged out to some extent.

Growth of long tubes

In the previous simulations, the tube force was assumed to be constant during tube
extraction. This approximation holds for short tubes, but as tubes grow further the
force increase becomes important and can eventually stall tube growth. While the
underlying reason of tube stall is clearly the force increase, note that, in contrast
to the analysis presented in section 5.3, here there exists a maximal force that the
motors can perform. When the tube grows up to a length where the force reaches the
maximal force that the motors can develop, the tube necessarily stalls.

In order to analyze at a qualitative level the effect of the tube stall on the den-
sity field, we artificially impose the force increase to take place over a length scale
(∼ µm) shorter than that expected theoretically (∼ 20 µm; see section 5.2), because
the simulation of long tubes is computationally demanding. We simulate the tube
growth with a tube force that increases linearly with the tube length at a rate of
1 pN/µm and an initial tube force of 2 pN. The resulting space-time plots for low
(ρ∞/Np = 10 µm−2) and large (ρ∞/Np = 100µm−2) bound motor influx are shown
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Fig. 5.28. (a-b) Space-time plots corresponding to the time evolution of the bound motor
density field along the tube obtained from the simulations. The tube force increases with the
tube length at a force-rate increase of 1 pN/µm and an initial tube forceF0 = 2 pN. The
parameters are:` = 8 nm,kb = 4.7 s−1, k0

u = 0.42 s−1, a= 1.4 nm, fs = 6 pN,V0 = 0.6 µms−1,
D = 1 µm2s−1 andκ = 10KBT. (a) Low flux of bound motors entering the tube (ρ∞/Np =
10µm−2). (b) Large bound motor influx (ρ∞/Np = 100µm−2). (c) Experimentally measured
fluorescence intensity plot as a function of position along the tube path and time. After tube
stall, there is an accumulation of motors that progressively develops upstream from the tip, in
agreement with the results from the simulations (a-b). In contrast to the simulations, where the
net motor influx is constant, experimentally, the size of the high motor density phase saturates
at very long times (∼ 103 s). (Experiments by C. Leduc).

in Fig. 5.28a,b respectively. For the fluxes of bound motors that we represent, the
tube grows until it stalls at a certain length. However, for large tube forces and low
motor influx, the tube can undergo large and repeated retractions, similar to the os-
cillations described in section 5.3.2. Note that the length at which the tube stalls does
not depend strongly on the motor influx (Fig. 5.28a,b). This is so because the mo-
tor attachment/detachment kinetics at the tip sets an average number of consecutive
motors that sustain the tube, independent of how big is the traffic jam of motors up-
stream from the tip. Therefore, as the average number of motors pulling the tube in
both cases is almost the same, the maximal force that this small cluster of bound
motor performs is very similar and the tube stalls nearly at the same length. When
the tube stalls, the motors dynamically accumulate upstream from the tip and a high
density phase progressively invades the system, with a time scale that depends on the
motor influx.

The tube stall has indeed been observed experimentally (Fig. 5.28c). In agree-
ment with the results of the simulations, the tube grows until it reaches a certain
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length, where it stalls and a high density phase of motors progressively develops up-
stream from the tip. For time scales∼ 102 s, the front separating the high and low
density phases moves upstream with nearly constant velocity, similarly to the simu-
lations, indicating that the flux of motors entering the tube is constant. However, for
time scales∼ 103 s the size of the high motor density phase at the tip evolves very
slowly in time and eventually stops growing. In this particular experiment, different
tubes were pulled simultaneously from the same vesicle, implying that motor deple-
tion on the vesicle is likely to be important. We interpret the observed saturation of
the size of the high density phase upstream from the tip as due to the depletion of
motors on the vesicle, which leads to a smaller motor flux entering the tube for long
time scales∼ 103 s.

5.4.4 Traffic of interacting motors: density inhomogeneities

In the previous section we described the evolution of the motor density field upon
tube growth, focusing our analysis on the motor accumulation upstream from the
tip. However, even in the absence of any boundary (like the tube tip) inducing the
motor accumulation, simply the presence of mutual motor interactions can generate
large density inhomogeneities (traffic jams). In this section we study the large scale
traffic of motors far away from the boundaries, focusing our analysis on the inhomo-
geneities of the motor density field. We analyze both the case in which only excluded
volume interactions between the motors exist and the situation where interactions
beyond excluded volume affect the motor dynamics. We show that the experimental
observations are consistent with effective attractive interactions between the motors.

Several experimental observations suggest that interactions between motors are
important to understand their behavior at large scales. Kinesin motors attach to mi-
crotubules in a non-homogeneous way in absence of ATP (Vilfan et al., 2001). An
homogeneous attachment would be expected in the absence of interactions. These
experiments suggest the existence of short-range interactions between motors in ab-
sence of ATP. Other experiments (Muto et al., 2005) suggest long-range interac-
tions between the motors, as the attachment of motors onto microtubules depends
on the configuration and movement of the motors already bound to the microtubule
at a distance of about a micron. Recent experiments using the monomeric kinesin
KiF1a (Nishinari et al., 2005) show the existence of large inhomogeneities in the
motor density along a microtubule in the presence of ATP. These motor accumu-
lations cannot be explained in the absence of interactions. There is thus growing
evidence that the interactions between motors (monomeric or dimeric) are crucial to
understand their large scale traffic properties.

In addition to the already mentioned experimental observations suggesting mu-
tual motor interactions beyond excluded volume, newin vitro experiments performed
by Wouter Roos and Giovanni Cappello (Institut Curie) suggest that the detachment
and attachment rates of individual motors are, respectively, reduced and enhanced in
presence of neighboring motors (Roos et al., 2006).
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Theoretical approaches

Several works have addressed the traffic properties of elementary self-propelled par-
ticles in many different systems. We briefly comment the different approaches.

The motion of biased random walkers has been extensively studied (Spohn, 1991;
Schmittmann and Zia, 1995; Derrida, 1998). In particular, the asymmetric exclusion
process (ASEP) considers the motion of particles that cannot overtake each other
along a one dimensional lattice. The elementary particles may step forward and back-
ward with different rates. Most of the studies focus on the steady-state properties of
the system (Schmittmann and Zia, 1995). In particular, the variation of the motor
fluxes entering and leaving the system at the boundaries leads to phase transitions,
which are known as boundary-induced phase transitions (Derrida, 1998).

One of the most studied examples of traffic of self-propelled particles is the ve-
hicular and pedestrian traffic (Helbing, 2001; Chowdhury et al., 2000; Nagel, 1996;
Lighthill and Whitham, 1955). The community studying vehicular traffic focuses
more on the inhomogeneities of the vehicle density field, which are of clear practical
importance. Even in the steady state, the density field may show important inho-
mogeneities. Many interesting non-equilibrium phenomena appear in these systems,
like the spontaneous appearance of traffic jams (known as “phantom traffic jams”),
the existence of density waves that can move both upstream and downstream, traffic
breakdowns and synchronized traffic flow. Several models are used to explain the
observed behavior. Microscopic models account for the detailed interaction between
vehicles and build the macroscopic behavior from the interaction rules between in-
dividual vehicles. More macroscopic approaches using coarse-grained descriptions
have been introduced to describe the observed spatio-temporal pattern formation that
arises from the mutual vehicle interactions. Finally, computational in-lattice simula-
tions have been shown to be very successful in reproducing the main features of real
vehicular traffic (Nagel, 1996).

More recent works have directly addressed the traffic of molecular motors at
large scales (Lipowsky et al., 2001; Parmeggiani et al., 2003). These studies mainly
focus on the steady-state properties of the average density field, in a similar way
than TASEP studies, but including also the motor attachment/detachment kinetics.
We discuss some of the main results from these works below.

In this section we analyze the effect of mutual motor interactions on motor den-
sity spatio-temporal patterns, like traffic jams and density waves. To this end, we use
a similar approach than in Ref. (Parmeggiani et al., 2003), but include the effect of
mutual motor interactions in the motor kinetics. However, instead of analyzing the
boundary induced phase transitions in the steady state or the steady state properties
of traffic themselves, we focus on the density inhomogeneities arising from the col-
lective behavior of interacting motors, in a similar way as the studies on vehicular
traffic.

Simulations of motor traffic

Far from the tip and the boundary with the vesicle, the average density profile is char-
acterized by constant bound and unbound motor densities,ρ∞

b andρ∞
u respectively
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(see section 5.3.1). As the simulations of tube growth are computationally heavy and
we are interested in the density inhomogeneities far from the boundaries, where the
average motor density is constant, we simulate a portion of the tube with constant
average bound and unbound motor densities. To this end, the simulations are done
using periodic boundary conditions.

Fig. 5.29.Possible motor transition rates for different motor configurations. Rates for bound
motors with empty neighboring sites (left) and rates for motors in contact (right). The mutual
motor interactions are effectively taken into account in the configuration-dependent attach-
ment and detachment rates. The attachment rate to sites neighboring already bound motorskb
is, in general, different than the attachment ratek0

b to sites with empty neighboring sites. The
detachment rate of bound motors with empty neighboring sitesk0

u is also different, in general,
than the detachment rate of bound motors with at least one motor in its neighboring sites,ku.
In addition, motors move forward to the next site, if empty, with ratekf = V0/`.

The unbound state is characterized by a constant motor densityρ∞
u , and we ne-

glect the diffusive flux of unbound motors (kd = 0; Fig. 5.29). Indeed, as the dif-
fusion time scale to neighboring sites along the tube,k−1

d , is much shorter than the
other time scales in the system, the fluctuations of the motor density in the unbound
state are smeared out very quickly. The motors in the bound state can detach from
the microtubule and step forward to the next site, if empty. Only contact interactions
are assumed between the motors, so that a motor is only affected by the presence
of motors in its neighboring sites. The effect of mutual motor interactions is ef-
fectively taken into account in the attachment and detachment rates (Fig. 5.29). A
motor occupying a site with empty neighboring sites detaches from the microtubule
at a ratek0

u, whereas if one of its neighboring sites is occupied by another motor, it
detaches at a rateku≡ δk0

u
13. The dimensionless parameterδ quantifies the strength

of the interaction. While a valueδ = 1 means that the detachment rate is not affected
by the presence of neighboring motors (only excluded volume interactions), values
δ > 1 andδ < 1 correspond to enhanced and reduced detachment rates in presence of
neighboring motors, respectively. Similarly, the attachment rate to a site with empty
neighboring sites isk0

b, whereas in case one of the neighboring sites is occupied,
the attachment rate iskb = γk0

b. Valuesγ > 1 andγ < 1 indicate, respectively, en-
hanced and reduced attachment rates in presence of neighboring motors. We refer
to the casesδ 6= 1 andγ 6= 1 as preferential detachment and preferential attachment

13 We assume for simplicity the cases where only one neighboring site is occupied and both
neighboring sites are occupied to be equivalent.
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respectively. The caseγ > 1 andδ < 1 corresponds to effective attractive interac-
tions between the motors, whereas the case whereγ < 1 andδ > 1 corresponds to
effective repulsive interactions.

Changes in the average unbound motor densityρ∞
u correspond to changes in the

time scale for motor attachment. At very low unbound motor densities the motor at-
tachment flux onto sites along the microtubule is small, whereas for high unbound
motor densities, the motor attachment flux is large. Note that unlike the previous
simulations, wherekb was the rate at which an individual motor attached to the mi-
crotubule, here the attachment rate corresponds to the total flux of motors that can
attach to a given site. As the unbound motor density is constant, it is just a redefini-
tion of the binding rate:kbρ∞

u `→ kb.
In addition to attachment and detachment events, motors step forward and back-

ward in general. We focus on the motion of strongly biased motors, for which the for-
ward motor stepping ratekf = V0/` is much larger than the backward stepping rate
(e.g. conventional kinesin), and neglect the backward motor stepping, as previously
assumed. Although it is likely that mutual motor interactions affect all transition
rates (ku, kb andkf ) we assume for simplicity that the forward rate is not modified
by the interactions; we only address here the traffic of motors in presence of pref-
erential attachment/detachment kinetics. In Fig. 5.29 we sketch the motor transition
rates that specify the dynamics of the system. So as to make clear the differences in
traffic properties arising from mutual motor interactions, we first present the results
in absence of preferential motor kinetics.

Motor traffic with only excluded volume interactions

The steady-state properties of motor traffic with only excluded volume interactions
have been addressed by several works (Chowdhury et al., 2000; Lipowsky et al.,
2001; Parmeggiani et al., 2003). Unlike the case we consider here, most of the
works focus on the effects of the boundary conditions on the steady-state den-
sity field. When motors which can only step forward enter the left boundary at
a rateα and leave the system at the right boundary at a rateβ , and no attach-
ment/detachment kinetics is present, the system is calledTotally Asymmetric Ex-
clusion Process(TASEP) (Derrida, 1998). Varying the parametersα andβ , differ-
ent steady-state phases appear, namely a low density density phase, a high density
phase and a maximal current phase. However, there is no coexistence between differ-
ent phases. When attachment/detachment kinetics is added, the competition between
TASEP and Langmuir kinetics, changes the phase diagram and a coexistence be-
tween high and low density phases appears (Parmeggiani et al., 2003).

Our aim here is not to study the boundary-induced phase transitions of the steady-
state density field, but rather the inhomogeneities of the steady-state density field. To
this end, we perform the simulations in a ring geometry (periodic boundary con-
ditions), and in presence of only excluded volume interactions (δ = 1 andγ = 1).

In Fig. 5.30 we show the spacetime plots of the bound motor density field for
δ = 1, γ = 1 and average bound motor densities below and aboveρ̄b/ρs = 0.5
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Fig. 5.30.Bound motor density inhomogeneities obtained by numerical simulation. Space-
time plots corresponding to the steady state bound motor density field in a portion of the tube,
for average motor densities of̄ρb/ρs = 0.25 (a) andρ̄b/ρs = 0.6 (b). The density scale is color
coded and different in (a) and (b) to increase the contrast. Below (above) an average motor
density of 0.5 the density inhomogeneities move downstream (upstream). The parameters are:
` = 8 nm,k0

u = 1 s−1 V0 = 0.6 µms−1. The average value of the bound motor density field is
given by the ratiokb/k0

u: (a)kb/k0
u = 0.33 and (b)kb/k0

u = 1.5.

(ρs≡ 1/` being the saturation density). There are small density inhomogeneities that
move downstream if the average value of the bound motor density is below 0.5. On
the other hand, for an average motor density above 0.5 the density inhomogeneities
move upstream. Note that the motors do not reverse the direction of motion; they
always move downstream. However, for̄ρb/ρs > 0.5 the density field shows density
waves moving upstream, similarly to the density waves observed in vehicular traffic.
This is a well-known result and can be explained by a simple mean-field description
of the density field which accounts for dependence of the bound motor velocity on
the local density of motors on the microtubule (Lighthill and Whitham, 1955; Hel-
bing, 2001; Nagel, 1996). These small density inhomogeneities, known as kinematic
waves (small traffic jams), are constantly created and destroyed by fluctuations and
never lead to major differences of density values around the average density. The
typical size of the jams is small (∼ 10 sites) and their lifetime is short, on the time
scale of motor detachment,k−1

u .
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Fig. 5.31. Fluorescence intensity inhomogeneities along a membrane tube. The surface den-
sity of motor on the vesicle was set toρ∞ = 10ρmin

∞ . (A) Space-time plot of a growing tube
showing the time evolution of the fluorescence intensity along the tube. As the binding sites of
kinesin motors are labeled, the intensity field corresponds to the motor density along the tube.
There are density inhomogeneities moving downstream (filled arrows) and upstream (empty
arrows). The inhomogeneities moving upstream are created close to the tube tip, where the av-
erage motor density is high. (B) Intensity profile normalized to the homogeneous fluorescence
intensity far away from the tip, at the time specified by the white vertical line in (A). (Figure
by C. Leduc; Ref. (Leduc, 2005)).

In Fig. 5.31a we show an example of the experimentally observed time evolu-
tion of the motor density profile along the tube. These experiments were done by C.
Leduc (Institut Curie) using the experimental set-up described in section 5.1. There
are strong density inhomogeneities that travel either downstream or upstream, as can
be observed in the space-time plot. The density profile at one given time (Fig. 5.31b)
shows that the density inhomogeneities that move downstream are those with small
average motor density, while those moving upstream are characterized by large av-
erage motor densities, in accordance with the results of the simulations above. How-
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ever, in spite of the apparent qualitative agreement between the simulations and the
experimental data, the density inhomogeneities observed experimentally are more
robust than those in the simulations. Both the lifetime and the size of the inhomo-
geneities observed experimentally are larger than those in the simulations (Fig. 5.30).
Moreover, the inhomogeneities are stronger in the experiments, meaning that the mo-
tor density inside a motor jam is substantially larger than the average motor density
along the microtubule (Fig. 5.31). In contrast, the traffic jams obtained in the simula-
tions show only small differences in motor density with respect to the average value
of the motor density field. Fig. 5.32a shows the space-time plot of the steady-state
density field for an average steady-state densityρ̄b/ρs ' 0.25 and only excluded
volume interactions between the motors (δ = 1 andγ = 1). Unlike the simulations
shown in Fig. 5.30, where only 10 s were simulated in order to highlight the inhomo-
geneities, Fig. 5.32a shows the time evolution of the bound motor density field for a
similar time scale than in the experiments. The density inhomogeneities are hardly
observable at these time scales (∼minutes) as the lifetime of the traffic jams is about
k−1

u ' 2 s. We conclude that the density inhomogeneities observed experimentally
cannot be understood with only excluded volume interactions between the motors.

Motor traffic in presence of preferential attachment/detachment kinetics

We now show that mutual motor interactions beyond excluded volume can induce
the appearance of large traffic jams with long lifetimes. To this end, we simulate
the dynamics of the system in a ring geometry in presence of preferential attach-
ment/detachment kinetics.

Whenγ < 1 andδ > 1, the density field is even more homogeneous than in ab-
sence of preferential kinetics (γ = 1 andδ = 1), consistent with the fact that config-
urations of motors in contact are prevented on average. On the contrary, ifδ < 1 and
γ > 1 large density inhomogeneities appear. In Fig. 5.32b we show the time evolu-
tion of the motor density field for a steady state average density aboutρ̄b/ρs' 0.25,
and effective attractive interactions between the motors (γ = 10 andδ = 0.1). Even
for a low average motor density on the microtubule (ρ̄b/ρs ' 0.25), micron-sized
traffic jams develop. For this value of the average motor density, the traffic jams
move downstream and their lifetime is in the order of several tenths of seconds, in
accordance with the experimental observations (Fig. 5.31). In case the attachment
rate is slightly increased, leading to an average motor density on the microtubule
aboutρ̄b/ρs ' 0.35, there are traffic jams moving both downstream and upstream
(Fig. 5.32c). While upstream moving jams are typically associated with regions of
large enough average density, the downstream moving jams develop in regions of
low average motor density. Indeed, the experiments show density waves moving both
downstream and upstream, the latter occurring in the region closer to the tip of the
membrane tube, where the average density is large, in qualitative agreement with our
results.

These findings suggest that mutual motor interactions beyond excluded volume,
affecting the attachment/detachment motor kinetics, could be at the origin of the
observed motor traffic jams along the microtubule. We are currently working to un-
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Fig. 5.32.Time evolution of the motor density field in absence (a) and presence (b-c) of pref-
erential attachment/detachment kinetics. In all cases, the kinetic parameters of isolated mo-
tors are those of conventional kinesin at saturating ATP concentration:V0 = 0.6 µms−1 and
k0

u = 0.5 s−1. The attachment ratek0
b is different in each case, so that the average steady-state

motor density is similar in the cases shown. The time and space scales are similar to those in
the experiments (Fig. 5.31). (a) Motor traffic in presence of only excluded volume interactions
between the motors; no preferential motor kinetics (γ = 1 andδ = 1; ρ̄b/ρs = 0.25). (b-c)
Motor traffic in presence of preferential attachment (γ = 10) and detachment (δ = 0.1). The
valuesγ > 1 andδ < 1 correspond to effective attractive interactions between the motors.
Large density inhomogeneities (traffic jams) are apparent and move downstream for a low
enough average density (b;k0

b = 0.0205 s−1 so thatρ̄b/ρs' 0.25) and both downstream and
upstream above a threshold average density (c;k0

a = 0.021s−1 so thatρ̄b/ρs' 0.35).
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derstand at quantitative level the effect of interactions in the large scale traffic of
motors (Campas et al., 2006c; Roos et al., 2006).

5.5 Conclusions

In this chapter we have described in detail the mechanism by which molecular motors
act collectively to pull membrane tubes. We have shown that the collective behavior
of motors is essential to understand the dynamics of tube extraction. Our analysis
shows that several important physical magnitudes, like the membrane tension or the
motor concentration, are essential to monitor tube extraction. Moreover, by compar-
ing at quantitative level the theoretical results to the experimental data, we have been
able to estimate kinetic parameters of individual kinesin motors.

Our findings highlight the physical constraints that living cells must deal with in
the process of intracellular transport. We briefly describe below our main results and
comment their biological relevance and the possible mechanisms that cells may use
to control the physical magnitudes that monitor tube extraction.

We have shown that the collective force-dependent detachment kinetics of motors
is responsible for both the threshold in tube extraction and the oscillations in tube
length. The existence of a threshold is important in that it shows that cells can switch
transport on or off when needed. This could be done via two different strategies. The
first mechanism involves the control of the local density of motors attached to the
membrane, either by regulating the number of available motors, or by regulating the
number of motor binding sites on the membrane. The concentration of active motors
inside specialized membrane domains would then be an important feature for the
understanding of the secretory pathway regulation. The second strategy involves the
control of membrane tension. Tension can be changed very rapidly and globally on
a membrane providing thus a very fast way to monitor tube growth.

The biological functionality, if any, of membrane tube oscillations remains how-
ever unclear. Although tube retractions followed by a recovery of tube growth are
observedin vivo (Waterman-Storer and Salmon, 1998), no sustained oscillations of
membrane tubes have been reported. In any case, when a tube network, like the en-
doplasmic reticulum, extends inside the cell, the tension increase (if the tension is not
fixed by membrane reservoirs) would couple the tube formation in distant regions of
the cell; if tube growth from a given organelle is promoted in a particular direction,
the tension increase of the organelle would prevent the formation of tubes in other
directions. Regardless of the biological function of the oscillations in tube extraction,
the mechanism responsible for the oscillatory instability is of clear biological rele-
vance. There exist very many situations in living cells in which motor proteins work
in large groups in order to develop the necessary forces to induce motion at cellular
scales. It is thus likely that the same oscillatory instability exists in these situations.
Indeed, in chapter 8 we analyze the movement of chromosomes in mitosis and show
that the collective dynamics of motor proteins is essential to understand both chro-
mosome motion and positioning. In particular, the same oscillatory instability exists
and explains the oscillatory behavior of chromosomes throughout mitosis.
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Our results concerning the organization of motors at the tip of growing tubes
suggest that motor proteins need to simultaneously use several protofilaments to
generate the forces required for tube extraction. We have shown that the attach-
ment/detachment kinetics of motors sets a small average number of working motors
per protofilament at the tube tip. This finding establishes limits on the forces that
motors can develop when pulling a membrane tube. It is possible that living cells
use other proteins to create motor aggregates that would rigidly couple the motors
and allow the generation of larger forces. The organization and mutual motor in-
teractions at the tip of a growing tube or, in general, when motors pull on a fluid
membrane are thus important. In chapter 6 we analyze in more details the collective
force generation of motors pulling on fluid membranes and extend these results.

Finally, the experiments performed by C. Leduc concerning the motor traffic
along the tube showed that large motor inhomogeneities (traffic jams) appear sponta-
neously. Our theoretical results show that these density inhomogeneities cannot arise
solely from excluded volume interactions between the motors. Moreover, we show
that micron-sized traffic jams, similar to those observed experimentally, appear as a
consequence of mutual motor interactions beyond excluded volume. Together with
Giovanni Cappello and Wouter Roos (Institut Curie) we are studying the formation
of motor density inhomogeneities caused by mutual motor interactions. The prelim-
inary results suggest that the attachment/detachment kinetics of individual motors is
affected by the presence of other motors, leading to a clustering effect (Roos et al.,
2006). It is possible that the spontaneous formation of traffic jams have important
consequences for the long range traffic in the crowded conditions of the cell. Indeed,
several neurodegenerative diseases have been associated to anomalies in the traffic
along axons (Aridor and Hannan, 2000; Aridor and Hannan, 2002). It would be in-
teresting to explore whether the nonlinear phenomena in traffic, due to mutual motor
interactions, is at the origin of some of these diseases.
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Cooperative dynamics of interacting molecular motors

The analysis in chapter 5 suggested that molecular motors pulling a membrane tube
can transmit forces to each other when they are in contact in a row-like configura-
tion. In this chapter we analyze the physical mechanism of collective force generation
when motors pull on a fluid membrane, and show that it differs significantly from the
collective behavior of rigidly or elastically connected motors. Although the collective
behavior of rigidly coupled motors is important in many biological situations (Bray,
1992) (muscle contraction, flagellar beating,. . . ), there are other situations in which
the motors cannot transmit the forces to each other through the cargo at which they
are attached. This latter case occurs, for instance, when motors pull on a fluid mem-
brane.

The collective behavior of molecular motors plays a crucial role in many bio-
logical phenomena ranging from intracellular and intra-flagellar transport to axonal
transport (Alberts et al., 2004; Bray, 1992; Howard, 2001). Molecular motors are
often classified according to their processivity (Leibler and Huse, 1993). Proces-
sive motors rarely unbind from the track on which they are moving; they perform
best when working in small groups and are therefore referred to as “porters”. Non-
processive motors unbind from the track frequently, they work best in large groups
and are referred to as “rowers”. Examples of “porters” are kinesin motors which
move along microtubules, while classical myosin motors which move along actin
filaments are examples of “rowers” (Leibler and Huse, 1993).

The classification of motors into “porters” and “rowers” is based on their behav-
ior when connected to a rigid or elastic cargo. The strong coupling between proces-
sive motors leads to an effective friction which results from motors which cannot
move because other motors are bound to the track (Leibler and Huse, 1993; Vale
et al., 1989). A strong coupling between the motors indeed exists for a microtubule
pushed by kinesin motors that are bound to a surface (Howard, 2001). It is also im-
portant for describing myosin motors acting in skeletal muscles. The abundance of
such systems has inspired several theoretical studies of the collective behavior of
strongly coupled motors (Julicher and Prost, 1995; Vilfan et al., 1998).

In many cases, however, this description in terms of rowers and porters is not
adequate since the motors are not rigidly attached to the cargo. An important class
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of systems where this happens is when motors, such as kinesin, move along micro-
tubules carrying a load which is a lipid membrane, an ubiquitous situation in living
cells. This occurs, for example, when kinesins or dyneins carry a vesicle along a
microtubule (Howard, 2001). Moreover, we have shown in chapter 5 that kinesin
motors moving along a microtubule act collectively to pull membrane tubes from a
vesicle (Leduc et al., 2004).

When motors are rigidly attached to the cargo being transported there is a strong
coupling between the motors, as the motion of one motor affects the dynamics of
the other motors. Although this strong coupling does not exist for motors not rigidly
attached to the cargo (e.g. attached to a fluid membrane), in this case the dynamics
of the motors is affected by the presence of other motors. Mutual motor interactions
can thus play an important role in the collective behavior of motors pulling of fluid
membranes. Indeed, there are several experimental observations that suggest the ex-
istence of interactions between the motors (Vilfan et al., 2001; Muto et al., 2005;
Nishinari et al., 2005).

A part of the work that we present in this chapter can be found in Ref. (Campas
et al., 2006b).

6.1 Theoretical description

We study theoretically the collective behavior ofN processive motors pulling a tube
out of a membrane and acting against the force needed to extract it (Derenyi et al.,
2002; Powers et al., 2002) (Fig. 6.1a). For simplicity, the tube forceF is considered
as constant. A fluid membrane can only exert a force on the motors at the leading
edge of the tube where the normal to the surface has a component in the direction of
motor motion. For simplicity we assume here that all the force is transmitted to the
leading motor (Fig. 6.1a). Although we focus on the process of membrane tube ex-
traction due to its simplified geometry, the present treatment is a reasonable approx-
imation for motors carrying a vesicle (Fig. 6.1b). In this case, the forces opposing
motion would arise from the movement of the vesicle in the crowded environment of
the cell.

We consider the collective behavior of the motors as a function of the applied
force, F , the number of motors,N, and the effective interactions (defined as the
combined effect of the microscopic details of the system on the transition rates in
a coarse-grained description) between the motors. We show that the force-velocity
curveVN(F) strongly depends on the interactions between motors and differs signif-
icantly from the mean-field treatment where independent motors equally share the
force, leading toVN(F) =V1(F/N). Moreover, we find that beyond a certain number
of motors, the force-velocity curves are all indistinguishable for practical purposes.
While the interactions do not play any role in the absence of external force, their ef-
fect becomes clearly visible asF increases. The analysis is first carried out assuming
that motors do not detach from the filament. We then use numerics to show that under
experimentally relevant conditions our results are not modified even in the presence



6.1 Theoretical description 145

Fig. 6.1. Sketch of the system. (a)N motors pulling a membrane tube from a vesicle. The
force, F , required to extract the tube, is assumed to act only on the leading motor (labeled
1). The remaining motors move in the absence of any applied force. At long time scales, all
motors move at the same mean velocityV. (b) N motors carrying a small vesicle. In this case,
the forces opposing the movement would arise from the friction of the vesicle in the crowded
environment of the cell, and are not depicted here.

of force-dependent motor detachment. Finally we explore how the effective inter-
actions in the coarse-grained description arise from a more microscopic two-state
model.

In a coarse-grained description of the system we first model the motors as in-
teracting biased random-walkers moving along a one-dimensional lattice. A similar
approach has been used to study the traffic of motor proteins with excluded volume
interactions (Lipowsky et al., 2001; Parmeggiani et al., 2003). We first assume that
the motors are fully processive and never unbind from the filament that acts as a
track. All lengths are expressed in units of the lattice constant,`, which characterizes
the filament period1. Each site can be occupied by one motor at most, which can
move to a neighboring site if empty. We label the motors with an indexµ = 1. . .N,
with 1 labeling the leading motor on which the force is exerted (Fig. 6.1a). The dy-
namics of the motors is specified by the hopping rates defined in Fig. 6.2 where the
boxes represent sites on the lattice and a ball with indexµ indicates that the site is
occupied by motorµ.

The model is a generalization of the disordered exclusion model introduced in
Ref. (Evans, 1996), which includes modifications of the rates due to nearest-neighbor
interactions between the motors. The particular choice for the hopping rates in our
description ispµ = p, vµ = v, qµ = q anduµ = u for µ ≥ 2 (Fig. 6.2b), whereas
the rates of the leading motor (µ = 1) depend on the external force (Fig. 6.2c)2.
According to Kramers rate theory (van Kampen, 2004), we writep1 = pe− f δ , q1 =
qef (1−δ ) andv1 = ve− f δ , where f is the force in units ofKBT/` (KBT being the
thermal energy). The dimensionless parameter 0< δ < 1 characterizes the position

1 The length̀ should in principle be the elemental step size of a motor. We define it as the
filament period because the step size of several types of motor proteins coincides with the
size of the filament periodicity.

2 We assume for simplicity that theN-motor problem can be described with the same rates
as the two motor case; we ignore higher order correlations on the rates.
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Fig. 6.2. Possible motor transitions and associated rates. The boxes and balls represent lattice
sites and motors respectively. (a) General scheme for the transition rates. The rates can be
different for each motor and can also depend on whether the motor is isolated or in contact with
another motor. (b) Particular choice for the motor transition rates in our analysis. Transition
rates for motors sustaining no load (b.1;µ ≥ 2) and rates for the leading motor (b.2;µ = 1).
The effect of the interactions is effectively taken into account in different transition rates for
isolated motors and motors in contact.

of the energy barrier associated to the forward transition. For single conventional
kinesin motors, this exponential dependence of the forward and backward rates on
the force has indeed been observed experimentally (Nishiyama et al., 2002; Carter
and Cross, 2005). Attractive effective interactions correspond to reduced hopping
rates (v < p, u < q) and repulsive effective interactions to increased hopping rates
(v> p, u> q). We refer to the case in which the motors do not change their individual
rates when they are in contact (v = p andu = q) as neutral.

6.1.1 Single motor

Before describing the motor collective behavior, we first study the motion of a single
motor as a biased random walker. In the long-time limit, the average velocity of the
motor,V1, is given by3

V1 = p1−q1 = pexp(− f δ )−qexp( f (1−δ )) , (6.1)

where the velocity is in rate units as all lengths are scaled with`. After expressing the
time in p−1 units, the force-velocity relationV1( f ) depends only on two dimension-
less parameters, namelyδ and p/q. The parameterδ quantifies which of the rates

3 The subscript stands for the number of motors being considered.
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(forward or backward) is more affected by the load. A valueδ = 0.5 means that both
rates are equally affected by the force, whereas a valueδ = 0.9 indicates that the
forward rate is much more affected by the force than the backward rate. On the other
hand, the parameterp/q characterizes the bias of the motor. Large values forp/q
mean that the motor steps forward much more frequently than backward.

The force-velocity relation in Eq. 6.1 has two points of particular interest, namely
the velocity at vanishing force,V0, and the force at which the velocity vanishes,fs
(stall force). Using Eq. 6.1, the expressions forV0 and fs as a function of the motor
transition rates read

V0 = p−q , fs(1) = ln(p/q) . (6.2)

In Fig. 6.3 we plot the force-velocity curves for different values of the param-
eterδ and compare them to the force-velocity curves for 2 motors. Recent single
molecule experiments directly measure the forward and backward transition rates
as a function of the applied load for single conventional kinesin motors (Nishiyama
et al., 2002; Carter and Cross, 2005). We compare the experimental data of these
works to our theoretical results in section 6.3.1.

6.1.2 Two motor problem

Before addressing the general case ofN motors, it is instructive to first consider a
system with only two motors. This case may be solved exactly in the long-time limit.
Defining the variablek as the number of empty sites between the two motors, the
dynamics of the system are given by the one-step stochastic process for the variablek.
The probability,ρk(t), of finding the motorsk (k≥ 2) sites apart at timet is specified
by the master equation

dρk(t)
dt

= (p+q1)ρk+1(t)+(p1 +q)ρk−1(t)− (p1 + p+q1 +q)ρk(t) . (6.3)

When the two motors are in contact,k = 0, or separated by only one site,k = 1, the
dynamics is different and the master equations for this cases read

dρ0(t)
dt

= (p+q1)ρ1(t)− (v1 +u)ρ0(t) , (6.4)

dρ1(t)
dt

= (v1 +u)ρ0(t)+(p+q1)ρ2(t)− (p1 + p+q1 +q)ρ1(t) .

The steady-state solution for the probability,ρk, can be obtained by writing a recur-
sion relation for the probabilities, and reads

ρk =
(p−q)− (p1−q1)

(u+v1)+(p−q)− (p1−q1)
v1 +u

p1 +q

(
p1 +q

p+q1

)k

, (6.5)

where the probabilities satisfy the normalization condition,∑∞
k=0 ρk = 1. For any fi-

nite force the probability of finding the motorsk sites apart decays as
[
(p1 +q)/(p+q1)

]k
.
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The average number of sites between the two motors is therefore finite and decreases
with the force.

Since the motors can not overtake each other, their average velocities are equal
and can be found, for example, by writing the equation of motion for their center
of mass. If the leading motor is at sitei and the second motor at sitej ( j < i), the
number of empty sites between them isk = i− j−1, and the position of the center
of mass,x, is x = (i + j)/2. The probability,ρCM(x, t), that the center of mass is at
positionx at timet is given by

dρCM(x, t)
dt

= ρ0(t)
[
v1ρCM(x− 1

2
, t)+uρCM(x+

1
2
, t)− (v1 +u)ρCM(x, t)

]
+
(
1−ρ0(t)

)[
(p1 + p)ρCM(x− 1

2
, t)+(q1 +q)ρCM(x+

1
2
, t)

− (p1 + p+q1 +q)ρCM(x, t)
]

, (6.6)

whereρ0(t) is the probability that the motors are in contact (k = 0) at timet. As we
are interested in the behavior at large length scales (larger than the size of a site), we
expand the probability for the position of the center of mass up to first order to get

∂ρCM(x, t)
∂ t

+
∂ρCM(x, t)

∂x

[
1
2

ρ0(t)(v1−u)+
1
2

(
1−ρ0(t)

)(
p1−q1 + p−q

)]
+

∂ 2ρCM(x, t)
∂x2 (· · ·)+ · · ·= 0 . (6.7)

The drift term specifies the average velocity of the center of mass in this coarse-
grained description4. In the long-time limit, the average velocity of the motors reads

V2 =
v1(p−q)+u(p1−q1)

(v1 +u)+(p−q)− (p1−q1)
, (6.8)

where we have used the expression previously found forρ0 as a function of the rates.
The stall force of two motors is obtained from Eq. 6.8 by settingV2 = 0, and reads

fs(2) = ln

(
pv
qu

+
p
q
− v

u

)
. (6.9)

The stall force is not necessarily twice the stall force of a single motor. It is a function
of the rates ratiov/u, which depends on the interactions between the motors, and can
be either larger or smaller than 2fs(1) depending on whetherv/u> p/q or v/u< p/q
respectively. Two interacting motors can thus develop forces larger than the sum
of their individual contributions. Although the stall force depends on the effective
interactions as these determine the transition ratesv andu, it does not depend on
the type of interactions; the same stall force can be obtained for both attractive and
repulsive interactions as long as the ratiov/u has the same value.

4 The second order corresponds to the diffusive term and provides the diffusion coefficient
for the two motor system as a function of the elemental transition rates.
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The velocityV2 is plotted for various values ofv andu in Fig. 6.3 where, for
clarity, we setv/u = p/q, so that fs(2) = 2 fs(1). The general shape of the force-
velocity curve is highly sensitive to the interactions. For strong enough attractive
interactions the velocity of two motors is smaller than that of a single motor up to
a certain value of the force, at which the two motors become faster than a single
motor. An experimental signature of this type is a clear demonstration of attractive
interactions between the motors. In the neutral case, i.e. when the motor transition
rates are not modified for motors in contact (v = p andu = q), the velocity of two
motors is always larger than that of a single motor. This is due to the fact that the
second motor rectifies the movement of the leading one, by not allowing some of its
backward transitions. For repulsive effective interactions, the presence of the second
motor just behind the leading one, not only prevents some of its backward transitions,
but also enhances its forward rate (v> p). As a result, the velocity of two motors with
effective repulsive interactions is larger than in the neutral case.

6.1.3 N motor problem

Exact solution for the neutral case

We now turn to the general case withN motors. Using the results of Ref. (Evans,
1996), an exact expression of the velocity can be obtained in the neutral case where
v = p andu = q on a ring geometry. In the limit where the number of vacancies in
front of the first motor (µ = 1) is infinite, the periodic boundary conditions do not
influence the results. On a ring geometry, the steady-state weight,f (n1, . . . ,nN), of a
configuration where particleµ hasnµ sites with no motors in front of it, is a product
measure

f (n1, . . . ,nN) =
N

∏
µ=1

gnµ

µ
, (6.10)

gµ =

[
N−1

∑
i=0

1
p

µ−i

µ

∏
j=µ+1−i

q j

p j

][
1−

N

∏
k=1

qk

pk

]−1

.

It is convenient to work in the a grand-canonical ensemble where the number of
empty sites in the system is allowed to fluctuate. Namely, define the grand-partition
sumG(z) = ∑∞

L=0ZL,NzL whereL is the number of empty sites on the track,z= gN
is the fugacity andZL,N is the sum over the weights of configurations withL empty
sites andN occupied sites. In Ref. (Evans, 1996) it is shown that the velocity of the
motors is equal to the fugacity. Moreover, it has been shown (Evans, 1996) that when
the leading motor (µ = 1) is slower, in the limitL → ∞ andN finite, the distance
between the first (µ = 1) and last (µ = N) particles is finite. In this limit, the value
of the fugacity is given by the pole ofG(z) which is closest to the origin. Inserting
the rates of our description (Fig. 6.2) in Eq. 6.11, one finds

VN = p

[
1−ef (q/p)N

]
[1−q/p]

ef δ [1−q/p]+ef [q/p− (q/p)N]
. (6.11)
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Fig. 6.3. Force-velocity curves of 2 motors in the limits of attractive, repulsive and neutral
interactions. In all casesp = 1.0 andq = 0.1. (a)δ = 0.5, (b)δ = 0.1, (c)δ = 0.9. Analytical
solutions (lines) and Monte Carlo simulations (symbols; only in (a)). The ratesv andu are:
v = 0.1,1.0,10.0 andu = 0.01,0.1,1.0 for attractive (dashed line; triangle up (a)), neutral
(continuous line; square (a)) and repulsive (dashed-dotted line; triangle down (a)) interactions
respectively. The velocity-force curve for a single motor is also plotted for comparison (dotted
line; circle (a)). The ratiov/u = p/q so thatfs(2) = 2 fs(1). All rates are in units ofp.

In the neutral case, for any number of motorsfs(N) = N fs(1) (Fig. 6.6a). The
force-velocity curves for 10 and 20 motors are shown in Fig. 6.4, together with the re-
sults from the simulations for comparison (see section 6.2). The agreement between
the analytical and numerical results is excellent.

In the absence of force, the velocity is independent of the number of motors and
given byV0 = p− q. The slope of the force-velocity curve for vanishing forces is
negative and converges exponentially fast withN to−(1−q/p) [q+(p−q)δ ]. The
larger the number of motors the smaller the absolute value of the slope (Fig. 6.5a).
For largeN and f the motors form a dense cluster which can move only through
the exponentially slow (inN and f ) process of a vacancy entering at one end of the
cluster and exiting at the other. As a consequence, for any number of motors

N� 1+
1

ln(p/q)
, (6.12)
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Fig. 6.4.Force-velocity curves for 10 (circle) and 20 (triangle up) motors, and neutral interac-
tions (v = p andu = q). The ratesp = 1 andq = 0.8 correspond to weakly biased motors. All
rates are in units ofp.

the force-velocity curves are indistinguishable for all practical purposes (Fig. 6.5a,b).
For weakly biased motors (p/q = 2), this saturation effect becomes noticeable at
about 7 motors (Fig. 6.5a). However, for strongly biased motors (p/q = 102), the
saturation effect is already present for 2 motors (Fig. 6.5b). These results imply that
it is not possible to estimate the number of kinesin motors pulling on a vesicle or
a membrane tube from the force-velocity curve measured experimentally. Even in
the neutral case, the force-velocity curve is significantly different from the com-
monly used mean-field prediction where the motors share equally the load, leading
to VN(F) = V1(F/N) (Fig. 6.5c,d). For highly biased motors like conventional ki-
nesin, this discrepancy is noticeable even for a number of motors as small as two and
becomes dramatic for increasing number of motors (Fig. 6.5d).

The saturation effect has important consequences for the stall force. Although for
the neutral case the stall force increases linearly with the number of motors (fs(N) =
N fs(1)), the velocity reaches negligible values at forces much smaller thanN fs(1). In
Fig. 6.5b we compare the force-velocity curves of 2 and 102 motors. They differ only
for velocity values below approximately 10−2V0. The velocity of 100 is negligible
already at the stall force of two motors, but only vanishes strictly atf = 100fs(1).
Thus, for neutral interactions between strongly biased motors, the apparent stall force
is essentially independent of the number of motors forN≥ 2.

General solution close to stall force

In the vicinity of the stall force, when the motion of the motors is exponentially slow
in their number, the velocity can be obtained in the presence of interactions ifp� q,
p� u andv� u. In this limit, the motors form a compact cluster with no vacancies
in the middle. The movement in either direction occurs by propagation of a vacancy
from one end to the other. The velocity is then equal to the difference between the
rate of motion of the tightly bound motors to the right and the rate of motion to the
left. To leading order, the rate at which the motors move to the right is given by the
hopping rate of the first motor,v1, to the right times the product of the probabilities
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Fig. 6.5. (a-b) Force-velocity curves for different number of motors and neutral interactions,
showing the saturation of the force-velocity curves for different motor bias. (a) Weakly biased
motors with rates:p = 1 andq = 0.5. Force-velocity curves for:N = 1 (dotted line),N = 2
(dashed line),N = 5 (dashed-dotted line),N = 10 (dashed-double-dotted line) andN = 100
(continuous line). (b) Highly biased motors with rates:p = 1 andq = 0.01. Force-velocity
curves for:N = 1 (dotted line),N = 2 (dashed line) andN = 100 (continuous line). (c-d) Com-
parison of the force-velocity curves (N = 5) obtained in the neutral case (Eq. 6.11; continuous
line) and those obtained from a simple mean-field analysis in which the motors equally share
the load (V/V0 = 1−F/N fs(1); dashed line). (c) Weakly biased motors:p = 1 andq = 0.5.
(d) Strongly biased motors:p = 1 andq = 0.01. All rates are in units ofp andδ = 0.5.

that the other motors move to the right. The probability that particleµ = 2 moves
to the right is given byv/(v+q1)' v/q1 near the stall force. Similarly, in this limit
for strongly biased motors, the other motors move with probability 1 to the right. A
close argument for the rate at which the cluster moves to the left gives

VN = v
v1

q1
−u

u
p

(u
v

)N−3
. (6.13)

The latter expression is in agreement with the general result for two motors (Eq. 6.8)
and with the result forN motors in the neutral case (Eq. 6.11). The normalized stall
force forN motors in this limit is then

fs(N)
N fs(1)

=
ln(v/u)
ln(p/q)

− 1
N

(
ln(v/u)
ln(p/q)

−1

)
. (6.14)
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As for two motors, the stall force only depends on the ratios of the ratesv/u and
p/q. If v/u > p/q the normalized stall force per motor increases with the number
of motors and saturates at a value larger than 1 for many motors. It has the opposite
behavior whenv/u < p/q.

6.2 Simulations

6.2.1 Monte Carlo simulations of interacting motors

The results presented in the last section forN motors hold only for neutral inter-
actions. In order to test the effect of different type of interactions between motors
on our results, we have performed continuous time Monte Carlo simulations. The
simulations are implemented in similar way than those developed for the process of
membrane tube extraction described in chapter 5. The general implementation pro-
cedure is detailed in section 5.4.1.

We have first performed simulations for the cases described in the previous
sections. In Fig. 6.3a we compare the analytical and numerically computed force-
velocity curves for two motors and different effective interactions. The numerical
and analytical force-velocity curves for 10 and 20 motors in the case of neutral inter-
actions are shown in Fig. 6.4. In all cases, the numerical and analytical results are in
perfect agreement.

We have performed simulations for different types of effective interactions and
number of motors, in order to determine the influence of attractive and repulsive
effective interactions in the previous results. Similarly to the case of two motors, the
stall force is only a function of the rate ratiosp/q andv/u (Fig. 6.6b). Both attractive
and repulsive interactions lead to the same value of the stall force provided that the
rate ratiosp/q andv/u have the same values for both type of interactions. When
v/u = p/q the stall force always satisfiesfs(N) = N fs(1) as expected (Fig. 6.6a). In
casev/u> p/q, the stall force is larger than the sum of the individual contributions of
the motors (fs(N) > N fs(1)), and forv/u< p/q the stall force is smaller thanN fs(1)
(Fig. 6.6b). Thus, depending on how the interactions affect the transition rates for
motors in contact, an ensemble ofN motors can, in principle, develop forces larger
than the sum of their individual contributions.

Similarly to the neutral case, for any given type of interaction the force-velocity
curves are all indistinguishable above a certain number of motors. In the presence
of strong enough attractive interactions the velocity is smaller than that of a single
motor for small forces but becomes larger at larger forces, as in the case of two
motors. The force-velocity curves for different number of motors cross the force-
velocity curve of 1 motor at the same point (Fig. 6.7a). Moreover, for a given force,
the velocity shows a non-monotonous behavior as a function ofN until it saturates.
The force-velocity curves collapse ifN & 7 (p/q = 10; Fig. 6.7a). In the presence of
repulsive interactions, the velocityVN is always larger than the velocity of 1 motor
and the force-velocity curves become nearly identical ifN & 7 (p/q= 10; Fig. 6.7b).
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Fig. 6.6.Stall force ofN motors. (a) Stall force in the case of neutral interactions (v = p and
u = q) as a function of the number of motors. Numerical simulations (circle) are compared to
the theoretical prediction,fs(N) = N fs(1) (continuous line). (b) Stall force as a function ofN
for various types of interactions. Both for attractive (v = 0.7, u = 0.5; circles) and repulsive
(v = 1.54, u = 1.1; triangles up) interactions, the value of the stall force,fs(N), is the same
and larger thanN fs(1) asv/u= 1.4> p/q. Whenv/u= 1.1< p/q, fs(N) < N fs(1) and it has
also the same value for both attractive (v = 0.55, u = 0.5; squares) and repulsive (v = 1.21,
u= 1.1; triangles down) interactions. All rates are in units ofp andδ = 0.5. Note that the stall
force does not depend on the particular value ofδ .

Experimentally one should expect a force-velocity curve independent of the num-
ber of motors if a few motors act collectively. The number of motors at which the
force-velocity curves become indistinguishable depends on the motor bias. The com-
parison between the velocities of many and one motor could serve as an experimental
test to sort out attractive from repulsive interactions.

Fig. 6.7.(a) Force-velocity curves in the case of attractive interactions between strongly biased
motors (p= 1,q= 0.1,v= 0.1,u= 0.01) for 1 (circles), 2 (squares), 5 (triangles up), 10 (trian-
gles down) and 20 (star) motors. (b) Force-velocity curves in the case of repulsive interactions
between strongly biased motors (p = 1,q = 0.1,v = 10,u = 1) for 1 (circles), 2 (squares), 5
(triangles up) and 10 (triangles down) motors; All rates are in units ofp andδ = 0.5.
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As discussed above for the neutral case, the collapse of the force-velocity curves
implies that the apparent stall force can be much smaller than that at which the veloc-
ity strictly vanishes, because the velocity reaches negligible values way below stall
force. In particular, for strong enough attractive interactions the apparent stall force
for a system with an arbitrarily large number of motors, may be similar (or even
smaller) than the stall force of a single motor.

6.2.2 Effect of motor detachment/attachment kinetics

We now study the influence of the motor processivity by including the attach-
ment/detachment kinetics in the simulations. We introduce an unbound state with
a constant motor density, so that motors can attach to any site (behind the leading
motor) at a constant rate,a0. The motors bound to the filament unbind at a con-
stant rated0, except for the leading motor, which detaches with a force-dependent
rated = d0exp( f δd) (whereδd is a length, expressed iǹunits, characterizing the
activated process). In Fig. 6.8 we define the motor transition rates that specify the
dynamics. Although it is likely that the detachment rate of the other motors is also
influenced to some extent by the load applied to the leading motor, here we consider
the extreme case where the load only affects the rates of the leading motor, as this is
the case where detachment may influence most our previous results.

Fig. 6.8.Possible motor transitions and associated rates in the presence of detachment. The
boxes and balls represent lattice sites and motors respectively. The unbound state is repre-
sented by inverted boxes. Transition rates for motors sustaining no load ((a);µ ≥ 2) and rates
for the leading motor ((b);µ = 1). Configurations where the motors are isolated and in contact
are shown.

In presence of attachment/detachment kinetics, the number of motors in the sys-
tem is not fixed. However, there is always a cluster of consecutive motors that forms
dynamically behind the leading motor. The average number of motors in the cluster,
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n, depends on the applied force. In Fig. 6.9 we compare the force-velocity curves in
the presence and absence of attachment/detachment kinetics for the neutral case. For
typical values of the rates for conventional kinesin motors (see discussion below),
detachment events do not modify the force-velocity curve, as long as the number of
motors clustered behind the leading motor remains large enough (Fig. 6.9, inset).
For both neutral and attractive interactions, the effect of detachment on the force-
velocity curves is negligible. Detachment events can however significantly affect the
force-velocity curve only for strongly repulsive interactions at large forces.

Fig. 6.9. Force-velocity curves in the case of neutral interactions (Eq. 6.11) for 1 (dotted
line), 2 (dashed-dotted line), 3 (dashed line) and 100 (continuous line) motors. The force-
velocity curve obtained by numerical simulation in presence of detachment/attachment ki-
netics is also shown (squares). The arrow corresponds to the stall force in presence of at-
tachment/detachment kinetics. The inset shows the evolution ofn with the force; Parameters:
p = v = 1, q = u = 0.1, δ = 0.5, a0 = 0.01,d0 = 5.610−3, δd = 0.16. All rates are in units of
p.

The main effect of motor detachment is to lower slightly the average velocity, as a
consequence of detachment events associated to the leading motor. While this effect
is totally negligible at small forces, where the average velocity is much larger than
its reduction due to detachment, it becomes critical for small average velocities. As a
result, the value of the stall force is substantially influenced by detachment. However,
as discussed above, the relevant measure of the stall force is the apparent stall force,
for which the velocity becomes negligible. In Fig. 6.9 we show that although the stall
force may change considerably due to motor detachment, the apparent stall force
remains nearly unchanged in the case of attractive and neutral interactions. Hence,
detachment events set the value of the stall force to about the value of the apparent
stall force in absence of detachment. For strongly repulsive interactions, detachment
events can modify substantially the force-velocity curve and, as a consequence, the
apparent stall force can also be changed.



6.2 Simulations 157

6.2.3 Motor internal states

In the previous discussion, the nature of the effective interaction between motors
was assumed. Two-states models (Julicher et al., 1997) are generic descriptions that
consider, at a coarse-grained level, some of the internal states of the motor and al-
low for a more detailed analysis of the effective interactions. We now show that for
these models, one expects non-neutral interactions at long times and large length-
scales. For simplicity, we use the example of a two-state model (Julicher et al., 1997)
(Fig. 6.10a). In the strongly bound state (1) the motor feels the sawtooth potential,
W1(x), with a period`, an amplitude 5KBT and a short segment of the sawtooth of
lengtha = 0.2`. In the weakly bound state (2) the potentialW2(x) is constant. The
motors change from state 1 to state 2 and vice-versa with local excitation ratesω1(x)
andω2(x) respectively. The transition rates, in arbitrary units, are given by

ω1(x) =
Ω

α
√

π
exp[−(x mod`)2/α

2] , ω2(x) = 0.2 , (6.15)

whereΩ = 2 andα = 0.05̀ � a� `. We assume only hard core interactions be-
tween the motors. The repulsive potential chosen is the shifted repulsive part of
a Lennard-Jones potential vanishing aty > 21/6σ = 1.68̀ (y being the distance
between the motors), with an amplitudeε = 0.05KBT. The interaction range is
σ = 1.5`. We have carried out simulations with a wide range ofσ , from values
smaller than the lattice constant to those presented here with no change in the quali-
tative nature of the results. We have also verified that our results remain qualitatively
the same upon changing the details of the model.

We numerically simulate the model using Langevin dynamics for the motors.
The equations for motorµ in statesµ read

ξ
dxµ

dt
=−

dWsµ
(xµ)

dx
− d

dxµ
∑

κ 6=µ

U(xµ −xκ)+Fδ
µ,1 +η , (6.16)

whereF is the external opposing force, andξ = 50 is the dimensionless friction coef-

ficient of the motor. The random force is described by the noise termη = rξ

√
6KBT
ξdt ,

wherer is a random number taken from a uniform distribution from−1 to 1. These
equations are coupled to standard Monte Carlo steps for the transitions between the
bound states 1 and 2. Initially, theN motors are placed randomly at distances exceed-
ing 21/6σ , so that the interaction energyU(y) vanishes. Throughout the simulation,
we follow the position of the first motor and determine its velocity at long times.

The force-velocity curve obtained from the simulations for 20 motors is plotted
in Fig. 6.10b. Since the parameters were chosen so that the stall force of one motor
is small, the force-velocity relation is nearly linear for a small number of motors
(Fig. 6.10b, inset). Increasing the number of motors reveals the non-linearities. The
comparison between the general shape of the curve for 20 motors (Fig. 6.10b) with
the ones obtained from the coarse-grained model (Fig. 6.4), suggests that the exis-
tence of two internal states for the motors leads to effective repulsive interactions.
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Fig. 6.10. (a) Sketch of the two-state model. (b-c) Simulation results for motors with two
internal states (two-state model) and only excluded volume interactions. (b) Velocity-force
curve for 20 motors. The inset shows the velocity-force relation for 1 (circles) and 2 (triangles
up) motors. (c) Stall force as a function of the number of motors. The value of the stall force
is larger thanN fs(1).

The stall force is plotted in Fig. 6.10c as a function of the number of motors. For a
given N, it is larger thanN fs(1), indicating that the effective rates for forward and
backward movement in the equivalent coarse-grained model are such thatv/u> p/q.
As the number of motors is increased this effect becomes more important and satu-
rates for largeN. Overall, these results are consistent with those obtained from the
lattice model with effective repulsive interactions between the motors.

6.3 Discussion

The theoretical analysis developed in this chapter provides several predictions that
could be tested experimentally. In the description above, we have varied the different
parameters in order to understand the possible qualitatively different behaviors in
the system. However, it is important to use experimentally measured values for the
parameters, in order to provide predictions that could be directly assessed experimen-
tally. In this section, we first discuss the motion of single conventional kinesin motors
in the view of recent experimental data and obtain the values of several kinetic pa-
rameters of conventional kinesin. We then discuss the predictions of our description
for conventional kinesin motors pulling on fluid membranes.



6.3 Discussion 159

6.3.1 The motion of individual kinesin motors

Recent experimental works (Nishiyama et al., 2002; Carter and Cross, 2005) have
studied the motion of single kinesin motors from a point of view similar to ours. We
briefly describe some of the experimental results in Ref. (Carter and Cross, 2005)
and compare them to the theoretical predictions for a single biased random walker
under an external load,F (see section 6.1.1).

In Ref. (Carter and Cross, 2005) the authors tracked the motion of a single kinesin
motor under an externally applied load,F . They measured the dwell time distribution
and the average dwell time as a function of the load, for both forward and backward
motor steps. The dwell time is defined as the time between two consecutive steps.
Therefore, the average dwell time for forward (backward) steps,τ f (τb), corresponds
to the inverse of the rate for forward (backward) motor stepping in our description,
i.e. p1 = 1/τ f (q1 = 1/τb). This correspondence holds for saturating ATP concentra-
tions, in which case the time for an ATP molecule to bind the active site of the motor
is not limiting. We restrict our discussion to this case.

If detachment events are not counted in the statistics, as done in Ref. (Carter and
Cross, 2005), the ratio,R, of forward and backward steps is given by

R=
p1

q1
=

p
q

exp

(
− F`

KBT

)
. (6.17)

In Ref. (Carter and Cross, 2005) the authors measured the ratio of forward and back-
ward steps as a function of the external force. The data shows a very good agreement
with a single exponential fit, withp/q' 8102 and `/KBT ' 0.95 pN−1. Kinesin
motors are thus strongly biased, as indicates the large value ofp/q 5. In the same
experiments, the authors measured the step size,`, to be` ' 8 nm for all values of
the applied force. The value of` obtained from the measured value of the coefficient
in the exponential̀/KBT is puzzling. One would expect to obtain the same value
for `, i.e. ` ' 8 nm reflecting the periodicity of the microtubule. Instead, using the
measured valuè/KBT ' 0.95 pN−1 one obtains 3.9 nm, almost exactly half the size
of the kinesin step. The theory provides an independent check for the value of`, the
stall force, which reads

Fs =
KBT

`
ln

(
p
q

)
. (6.18)

Using the experimentally measured value for the motor bias,p/q ' 8102, and a
value of 3.9 nm for `, one obtainsFs ' 7 pN. This value is in agreement with the
value of the stall force for kinesins measured by several groups (Visscher et al., 1999;
Schnitzer et al., 2000; Block et al., 2003). Everything seems consistent but the value
of `. However, the description of the motor as a bias random walker does not take
into account the existence of the two motor domains of kinesins. Before performing
the step, both heads must be attached to the microtubule because the motor would
detach otherwise. Assuming that the two heads share equally the applied load, the

5 From the data in Ref. (Nishiyama et al., 2002) one obtainsp/q' 220. Although they differ
nearly by a factor of four, they both indicate that kinesin motors are highly biased.
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kinetic events for forward and backward stepping would only be affected by half the
load applied on the motor. In this case, the force per head,Fh, affecting the motor
forward and backward kinetics isFh = F/2. As a consequence, the ratio,R, is given
by

R=
p1

q1
=

p
q

exp

(
− F`

2KBT

)
. (6.19)

Comparing this expression to the experimental data, the value of the motor bias re-
mains unchanged as only concerns the motion of the motor under vanishing load,
but the coefficient in the exponential is`/2KBT ' 0.95 pN−1, leading tò ' 7.8 nm.
Moreover, the stall force isFs = (2KBT/`) ln(p/q)' 7 pN. Therefore, assuming the
two motor heads to share equally the load removes the internal inconsistency.

Once we know the bias of the motor and the fact that the forward/backward kinet-
ics is affected only by half of the applied load, we are interested in the experimental
value ofδ andV0 = `(p−q) ' `p. The value of the forward stepping rate at zero
load is the inverse of the dwell time for forward stepping at vanishing load. From
the data in Ref. (Carter and Cross, 2005) we obtainτ f ' 0.015 s (p' 66.7 s−1).

Then, the velocity at vanishing load isV0 ' `p' 534 nm s−1, which is consistent
with the known values for the velocity of conventional kinesin at vanishing load and
saturating ATP concentrations (Visscher et al., 1999; Block et al., 2003). In order to
obtain the value ofδ is necessary to know the force dependence of the dwell time for
either forward or backward motor stepping. Theoretically, the dwell time for forward
stepping reads

τ f (F) =
1
p1

=
1
p

exp

(
F δ`

2KBT

)
. (6.20)

Experimentally, the results in Ref. (Carter and Cross, 2005) show an exponential
dependence on the force with a value of the coefficient in the exponential,δ`/2KBT,
of 0.57 pN−1, which leads toδ ' 0.6.

The analysis performed here with the experimental data in Ref. (Carter and Cross,
2005) can also be done for the data in Ref. (Nishiyama et al., 2002) and similar results
are obtained. In particular, it is also necessary, for the same reasons, to take into
account the existence of two motor heads and assume that these share the external
load.

In the previous discussion, detachment events were not considered. The kinetic
parameters that characterize motor force-dependent detachment,d0 andδd, are also
known experimentally for conventional kinesin (Schnitzer et al., 2000; Vale et al.,
1996). Theoretically, the detachment rate reads

d(F) = d0exp

(
F δd`

KBT

)
. (6.21)

Note that̀ only appears in the latter expression because it sets the length units, not
for a physical reason, as was the case for forward and backward rates. The force that
appears in the exponential is the external load applied on the motor. As far as de-
tachment is concerned, it is not necessary to discuss whether the force is the external
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load or the load per motor head, because it only redefinesδd but leaves the results
unchanged. However, it is more probable that the motor detaches when performing a
step as there is only one head attached to the microtubule which has to sustain all the
load. In this case, the forceF would correspond to the external load. The exponential
dependence of the detachment rate on the load agrees with the experimental data,
with valuesd0 ' 0.42 s−1 (Vale et al., 1996) andδd ' 0.16 (Schnitzer et al., 2000).

6.3.2 Collective behavior of interacting kinesins

In this section we discuss the results presented in this chapter for the collective be-
havior of interacting motors using the kinetic parameters of conventional kinesin
motors. In Fig. 6.11 we compare the force-velocity curves of two motors and a sin-
gle motor and show that the collapse of the force-velocity curves in the neutral case
takes place already for two motors (N = 2). Due to the strong bias of conventional ki-
nesin motors, the force-velocity curves of one and two motors are very similar down
to almost negligible values of the velocity, if only neutral interactions exist between
the motors. For strongly attractive interactions the velocity of two motors is smaller
than that of one motor and becomes larger at an interaction dependent point. How-
ever, the velocity of two motors is negligible even at forces below the stall force of
a single motor. For repulsive interactions the velocity of two motors is always larger
than that of a single motor. These results suggest that in the case of strongly biased
motors like conventional kinesin, for any type of interactions there exist two force-
velocity curves for practical purposes: the force-velocity curve for a single motor
and a common force-velocity curve for many motors. For neutral interactions, the
similarity between these two force-velocity curves, suggests that only one common
force-velocity curve would be observable for any number of motors.

These results show that the velocity of many kinesins becomes negligible at very
small forces. The physical picture presented here strongly suggests that our qualita-
tive results will remain largely unchanged if the motors use several protofilaments.
It is indeed necessary that motors use several protofilaments to develop large forces
when carrying a cargo. Although using different arguments, in chapter 5 we showed
that the use of three protofilaments was needed in order to pull a membrane tube
from a tensed vesicle.

Motor attachment/detachments events are, in general, very important to under-
stand the collective dynamics of the system. We have shown in chapter 5 that force-
dependent detachment is at the origin of the threshold in tube extraction and the oscil-
latory behavior. The aim of this chapter is not to describe these dynamic instabilities
but rather the consequences of the motor collective behavior in the force-velocity
curves, far from these instabilities. We have shown using numerical simulations that
detachment events do not influence much the force-velocity curves, if several motors
are clustered behind the leading one (section 6.2.2). The reason stems in the differ-
ent time scales for forward motor stepping and detachment. Below the stall force of
a single motor, there is a separation of time scales; the time scale for forward mo-
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Fig. 6.11. Force-velocity curves for the parameters of single kinesin motors (see sec-
tion 6.3.1). All rates are in units ofp (p = 1.0), p/q = 800 andδ = 0.6. (a) Force-velocity
curves of 2 motors (Eq. 6.8) in the limits of attractive, repulsive and neutral interactions. The
velocity-force curve for a single kinesin motor is also plotted (dotted line). The ratesv and
u are:v = 0.1,1.0,10.0 andu = 0.01,0.1,1.0 for attractive (dashed line), neutral (continu-
ous line) and repulsive (dashed-dotted line) interactions respectively. The ratiov/u = p/q so
that fs(2) = 2 fs(1). The inset shows the force-velocity curve for a single kinesin motor for
a larger range of forces. (b) Force-velocity curves for several motors and neutral interactions
(Eq. 6.11). Single motor (dotted line), 2 motors (dashed line) and 100 motors (continuous
line). The force-velocity curves in the case of neutral interactions and any number of mo-
tors are almost indistinguishable, for the parameters of kinesin motors. The inset shows the
force-velocity curves in logarithmic scale. Appreciable differences between the force-velocity
curves for 1 and 2 motors are found at velocities∼ 10−2V0. The differences between 2 motors
and 100 motors are only appreciable at velocities∼ 10−4V0.

tor stepping6 lies within 0.5s (at stall force) and 0.01s (at vanishing force) whereas
the time scale for motor detachment is between 0.3s (at stall force) to 2s (at van-
ishing force). It is only for forces larger than the stall force of one motor that the
time of motor detachment becomes similar to that for forward motor movement. As
a result, the effects of detachment are negligible belowfs(1). The situation above
fs(1) is different. The force influences more the forward motor stepping rate than the
detachment rate, as can be seen in the values forδ andδd. Therefore, the velocity
reaches negligible values before detachment events can considerably influence the
force-velocity curve. Note that this is not the case for strongly repulsive interactions,
and detachment events considerably change the force-velocity curve.

6.4 Conclusions

We have shown in using various models of molecular motors that the collective be-
havior of motors pulling on fluid membranes depends on their dynamic interactions

6 We use for the discussion the values of conventional kinesin (Schnitzer et al., 2000; Vale
et al., 1996; Carter and Cross, 2005).
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and is very different from both the mean field prediction and from the behavior of
rigidly or elastically coupled motors. The present study provides several results that
can be quantitatively compared to experiments where a bead is exerting a force on
a single motor moving in front of several other motors. The comparison between
such experiments and our results would allow the determination of the effective in-
teractions between motors. Moreover, this treatment is a reasonable approximation
for kinesin motors carrying a vesicle subject to the friction forces that arise from
its motion in the crowded environment of the cell. Any estimation of the number of
motors pulling a vesicle from the force-velocity curve is questionable because of the
collapse of the force-velocity curves (Snider et al., 2004).
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Introduction

All cells reproduce by dividing into two daughter cells. The process of cell division
consists in the duplication of the material in a cell (both the genome and the cy-
toplasm) and the subsequent physical division into two genetically identical cells.
Bacteria constitute the simplest example of cell division as they do not have nucleus
and only contain a single chromosome. Eukaryotic cells are more complex; they
contain several chromosomes that have to be duplicated, moved and separated in a
coordinated way. The necessary machinery to perform these tasks is far more so-
phisticated than in bacteria, and it involves both biochemical signals that regulate the
process and different motor proteins responsible for the force generation at molecular
scales1.

Multicellular organisms (composed of many eukaryotic cells), like us, require a
constant generation of new cells to simply survive. The duplication of an eukaryotic
cell is achieved by the nuclear division (mitosis), followed by the cytoplasmic di-
vision (cytokinesis). Mitosis is composed of several phases (mitotic phases) which
correspond to different stages of the division process, separated by important events
(Fig. 7.1 and 7.2). It is possible to identify the stage of the division process from the
microtubule organization and chromosome positioning and structure (Fig. 7.1). The
first sign that a cell initiates the nuclear division is the condensation of DNA into the
chromosomes. We shortly describe the sequence of events that constitute each one
of the mitotic phases:

• Prophase. At this initial stage of the division process, the two attached copies
of each already replicated chromosome (called sister chromatids), start a com-
paction process named DNA condensation (Fig. 7.1A). At the same time, outside
the nucleus, the microtubules organize radially from each one of the two centro-
somes, generating two microtubule asters that interact with each other and start
the assembly of the mitotic spindle (Figs. 7.1B and 7.2a).

1 For a general introduction to cell division, see Refs. (Alberts et al., 2004; Bray, 1992). A
more detailed description can be found in Refs. (Mitchison and Salmon, 2001; Wittmann
et al., 2001; Karsenti and Vernos, 2001; Sharp et al., 2000b; Scholey et al., 2003; Gadde
and Heald, 2004).
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Fig. 7.1. Fluorescence micrographs of a Newt Lung cell undergoing mitosis. Microtubules
are shown in green and chromosomes in blue. (A) Early prophase: the chromosomes start the
condensation process and there is still a single microtubule aster. (B) Prophase: The two micro-
tubule asters separate apart and the chromosomes have already condensed. (C) Prometaphase:
The nuclear envelope has been degraded and the chromosomes interact with the microtubules
in the spindle. (D) Chromosome congression (late prometaphase): the chromosomes move
toward the midplane between the two spindle poles. (E) Metaphase: All chromosomes are
properly positioned and the metaphase plate and the mitotic spindle displays the characteristic
fusiform shape. (F) Anaphase A (chromosome segregation): the sister chromatids separate and
move toward opposite spindle poles. (G) Telophase: A nuclear membrane starts to assemble
around each of the two sets of chromosomes located at the poles and the chromosomes begin
the decondensation process. (H) Cytokinesis: A contractile actin ring (not visible) contracts
at the cell midplane and divides the cytoplasm. (Adapted from Ref. (Rieder and Khodjakov,
2003)).

• Prometaphase. The nuclear envelope breakdown establishes the initiation of
this stage. As the nuclear membrane progressively degrades, the microtubules
emanating from the centrosomes are able to interact with the chromosomes
(Figs. 7.1C and 7.2b). This interaction provides the necessary forces to drive
chromosome motion. Chromosomes progressively move towards the midplane
between the two poles in a process called chromosome congression (Fig. 7.1D).

• Metaphase. This stage is composed of several important events. The micro-
tubules extending from both poles interact through the action of many pro-
teins and form the characteristic fusiform spindle (Fig. 7.1E). This bipolar self-
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organized structure mediates the propagation of forces necessary for chromo-
some motion. At this stage, chromosomes are placed at the mitotic plate and,
although the process is highly dynamic, it reaches a steady state (Figs. 7.1E and
7.2c). After a short delay to make sure that all chromosomes are properly located
at the mitotic plate (spindle checkpoint), the sister chromatids lose their physical
connection, setting the initiation of anaphase.

• Anaphase. The sister chromatids separate apart and move to opposite spindle
poles (Anaphase A; Figs. 7.1F and 7.2d). The mitotic spindle elongates, increas-
ing the separation between the spindle poles (Anaphase B; Fig. 7.2e).

• Telophase. The two identical sets of sister chromatids arrive at the spindle poles,
where they remain and start the decondensation process. A nuclear envelope as-
sembles around each one of the sets of chromosomes located at the poles, com-
pleting the process of nuclear division (Figs. 7.1G and 7.2f).

At this point, in spite of having two nucleus, the cell is not yet divided. It is
necessary to physically split the cytoplasm. This process is calledcytokinesisand is
achieved by the assembly of an actin ring in the midplane of the cell that progres-
sively contracts until the cell pinches off into two new daughter cells, each one with
a nucleus (Figs. 7.1H and 7.2e,f).

Eukaryotic cells a have very complex machinery to perform the tasks described
above. Spindle assembly and the interaction of the chromosomes with the spindle
involve many different proteins (Alberts et al., 2004; Wittmann et al., 2001). In par-
ticular, microtubules and motor proteins play a crucial role in the generation of the
forces needed to drive mitotic movements. Before addressing the process of spindle
assembly, we briefly describe the mechanism by which chromosomes interact with
the mitotic spindle in a typical vertebrate cell. Although plant cells divide by a sim-
ilar sequence of events, the mechanism by which this is done is different than for
mammalian cells (Alberts et al., 2004).

7.1 Chromosome-spindle interaction

The interaction of chromosomes with spindle microtubules takes place both at the
kinetochore and at the chromosome arms (Fig. 7.3). Many different proteins mediate
this interaction and, in particular, several motor proteins in the kinetochore region
have been shown to play an important role in the motion of the chromosome (Rieder
and Salmon, 1998; Gadde and Heald, 2004) (Fig. 7.3b). The kinetochore is a com-
plex protein assembly, located at the centromere region of the chromosome, to which
spindle microtubules attach (kinetochore microtubules), forming a microtubule bun-
dle (kinetochore fiber) that tightly connects the chromosome to a spindle pole. Each
sister chromatid contains a kinetochore, and the two sister kinetochores in a chromo-
some face opposite directions, enhancing the probability that a chromosome attaches
to both spindle poles.

Unfortunately, the molecular organization of the kinetochore is not fully under-
stood, and the molecular force generators in the kinetochore have not yet been pre-
cisely characterized. However, regardless of the internal kinetochore organization, it
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Fig. 7.2. Sketch of the mitotic phases and cytokinesis. (a) Prophase, (b) prometaphase, (c)
metaphase, (d) anaphase A, (e) anaphase B and initiation of cytokinesis, (f) telophase and
cytokinesis. The events that take place at every stage are described in the main text. (Adapted
from Ref. (Scholey et al., 2003)).

has been shown that it applies a force on the chromosome directed toward the spindle
pole to which it is connected (Nicklas, 1983). The molecular origin of this force re-
mains under debate, but both minus-end directed motors (cytoplasmic dynein (Sharp
et al., 2000a)) and microtubule depolymerization (Koshland et al., 1988) are thought
to be provide the dominant contributions. Micromanipulation experiments in mei-
otic spindles have shown that the forces developed by the kinetochore are in the
nanoNewton range and that the poleward chromosome velocity decreases almost lin-
early with the applied force (Nicklas, 1983). However, experimental observations in
mitotic spindles suggest that the kinetochore may switch between phases of poleward
force generation and phases where it generates no force (neutral states) (Khodjakov
et al., 1999).
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The interaction of a chromosome with the astral microtubules in the spindle is
mediated by chromokinesin motors attached to the chromosome arms (Fig. 7.5b).
These plus-ended directed motors have been shown to be responsible for the polar
ejection force, which drives the chromosome away from the poles (Levesque and
Compton, 2001; Kapoor and Compton, 2002; Brouhard and Hunt, 2005). The chro-
mosome motion arises from the tug-of-war between the two opposing forces acting
on the chromosome, namely the kinetochore force and the polar ejection force. A de-
tailed analysis of chromosome movement is done is chapter 8 (see also Ref. (Campas
and Sens, 2006)), where we extend the discussion on the forces acting on the chro-
mosome.

Fig. 7.3. (a) Interaction of a chromosome with the microtubules in the mitotic spindle; only
the microtubules associated with the kinetochores are shown. (Figure taken from the website
http://www.utexas.edu/courses/utgeneticstamu/kinetchr.htm). (b) Sketch of the kinetochore
and some of its components. Dynein motors (green) move toward the minus ends of micro-
tubules, generating a poleward force on the chromosome. Motors with depolymerizing activity
(Kin1; purple) induce microtubule depolymerization at their plus ends. A plus-ended directed
motor, CENP-E is also shown (light blue). (Modified from Ref. (Gadde and Heald, 2004)).

7.2 Mitotic spindle assembly

The mitotic spindle (Fig. 7.4a) is composed of two microtubule asters that interact
with each other mainly through motor proteins. The microtubules in the spindle are
typically classified in three groups, depending on their dynamic properties and the in-
teractions they have with other components of the spindle. Kinetochore microtubules
are those that associate with the chromosome kinetochores and are involved in the
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process of chromosome movement and positioning (label 1 in Fig. 7.4b). This type
of microtubules forms a bundle (kinetochore fiber) that associates to kinetochores
and firmly connects the chromosome to a spindle pole. Interpolar microtubules are
those microtubules in the asters that interact with the microtubules from the opposite
aster (label 2 in Fig. 7.4b). These are mainly involved in the process determining
the spindle morphology and mediate the interactions between the spindle poles. The
rest of microtubules are defined as astral microtubules (label 3 in Fig. 7.4b) and are
involved in many processes, like chromosome movement, the separation of spindle
poles and the three dimensional orientation of the mitotic spindle in the cell.

Fig. 7.4.Spindle structure and dynamics. (a) Fluorescence photograph of the mitotic spindle at
metaphase. Microtubules are shown in green, chromosomes in blue and TPX2 (a spindle pole
component) in red. When microtubules and TPX2 are present, the overlapping appears yel-
low. (b) Sketch of the mitotic spindle at metaphase. Different subpopulations of microtubules:
kinetochore microtubules (1), interpolar microtubules (2) and astral microtubules (3). Several
dynamic processes take place in the spindle: microtubule dynamic instability (a; green arrows
show growing and shrinking microtubules), poleward microtubule flux (b; yellow arrows),
chromosome motion (c), motor-driven antiparallel interpolar microtubule sliding (d), dynein
dependent minus-ended microtubule transport (e) and orientation movements of the spindle
poles (f). (Modified from Ref. (Wittmann et al., 2001)).

The precise mechanism responsible for the spindle organization and remodeling
during mitosis remains unclear, but there is a general consensus that the mitotic spin-
dle arises from the self-organization of microtubules and motor proteins (Mitchison
and Salmon, 2001; Wittmann et al., 2001; Karsenti and Vernos, 2001; Nedelec et al.,
2003; Hyman and Karsenti, 1996). In order to reorganize the microtubules, there ex-
ist motor proteins able to crosslink pairs of microtubules and slide them with respect
to one another (Wittmann et al., 2001; Sharp et al., 2000b; Scholey et al., 2003). In
mixtures of microtubules and bipolar motors, this motor-induced motion of micro-
tubules leads to the overall self-organization of the system (Fig. 7.5a). Several spatio-
temporal patterns appear spontaneously at large scales as a result of this process, as
has been shown experimentally (Nedelec et al., 1997; Surrey et al., 2001). Moreover,
numerical simulations indicate that bipolar structures, similar to the mitotic spin-
dle, can arise from the interactions of bipolar motors and microtubules (Nedelec,
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2002). However, the spindle organizationin vivo is mediated by many different mo-
tor proteins and their specific roles in the assembly process are not fully understood.
Fig. 7.5b shows a sketch of the mitotic spindle together with some of the motors
involved in the assembly process and their specific functions. Plus-ended directed
bipolar motors of the BimC family slide antiparallel interpolar microtubules (labelb
in Fig. 7.5b), generating a force that separates apart the spindle poles. Minus-ended
directed kinesins (Kin C) are thought to generate an inward force in the spindle
(label c in Fig. 7.5b). Cytoplasmic dyneins (associated with dynactin and NuMA)
crosslink microtubules and move toward the minus ends of microtubules, focusing
the spindle poles (labeld in Fig. 7.5b). Cortical dyneins are responsible for spindle
orientation and spindle pole separation during Anaphase B (labela in Fig. 7.5b). Fi-
nally, chromokinesin motors, attached to the chromosome arms, are mainly involved
in chromosome movement (labele in Fig. 7.5b).

Fig. 7.5.(a) Sketch of the self-organization process in motors and microtubule mixtures. Motor
complexes able to crosslink microtubules and move along them can organize randomly dis-
tributed microtubules into aster-like structures. (b) Sketch of the mitotic spindle and some of
the motor proteins involved in the organization process. The specific function of the different
motor proteins is described in the main text. (Adapted from Ref. (Wittmann et al., 2001)).
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Besides the organization of microtubules by motor proteins, the chromosomes
themselves are also thought to be important for the spindle assembly. It has been
reported that a substantial fraction of the microtubules in meiotic and plant mitotic
spindles are nucleated at the chromosomes and subsequently organized by molecu-
lar motors (Karsenti and Vernos, 2001; Hyman and Karsenti, 1996). According to
these observations, the spindle would result from the self-organization of motors,
microtubules and chromosomes.

Spindle dynamics and regulation

The different events just described must be tightly coordinated to avoid any mis-
take. There exist several biochemical signals that exquisitely regulate the division
process and assure its proper progression (Alberts et al., 2004). In spite of the im-
portance of these biochemical networks, it is clear that forces must be developed
in order to induce the observed movements. The aim of the study in chapter 8 (see
also Ref. (Campas and Sens, 2006)) is to understand how the force generation at
molecular level translates in the large scale chromosome motion, and in chapter 9
(see also Ref. (Campas et al., 2006a)) we analyze the stability of the mitotic spindle
at metaphase.

Most of the works devoted to the understanding of the cell division process fo-
cus either on the physical properties or the biochemical signaling. However, it is very
likely that both processes influence each other, meaning that not only the biochemical
reactions influence the elementary force generators, but also that the forces involved
induce or modify biochemical events. Indeed, there are some experimental observa-
tions that suggest an important role of such force-feedback to control biochemical
signaling (Nicklas, 1997; Pinsky and Biggins, 2005). The spindle checkpoint, which
ensures that sister chromatids separate apart only when all chromosomes are prop-
erly positioned at the metaphase plate, is thought to be controlled by the tension
between sister kinetochores (Nicklas et al., 1998; Logarinho et al., 2004). Within
this framework, the overall spindle dynamics would result from the self-organization
of biochemical networks and spatio-temporal force generation.
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Chromosome movement and positioning in mitosis

During mitosis chromosomes show a very complex sequence of coordinated move-
ments (Alberts et al., 2004; Bray, 1992). Just after the nuclear envelope breakdown,
the microtubules extending from both spindle poles interact with the chromosomes.
Generally, a microtubule from one of the spindle poles contacts laterally one of
the two sister kinetochores and the chromosome quickly slides along it toward this
pole (Hayden et al., 1990; Rieder and Alexander, 1990). This initial rapid sliding is
thought to be due to dynein motors located at the outer region of the kinetochore.
As the chromosome moves poleward, a bundle of microtubules (kinetochore fiber)
associates to the kinetochore facing the pole (Rieder, 1990), providing a firm connec-
tion between this spindle pole and the chromosome, which is then said to be mono-
oriented as it is only connected to one spindle pole (Figs. 8.1 and 8.3a). In animal
cells, a mono-oriented chromosome moves towards and away from the pole in a pe-
riodic fashion (Bajer, 1982; Rieder et al., 1986; Skibbens et al., 1993; Levesque and
Compton, 2001) (Fig. 8.2). This oscillatory movement, which persists during chro-
mosome congression, metaphase and early anaphase (Skibbens et al., 1993; Rieder
and Salmon, 1998), is driven by the forces acting on the chromosome. Its quantita-
tive description can thus provide important insights on the generation of large scale
motion from molecular forces in cell division.

There exist two main opposed forces acting on the chromosome during mitosis.
The protein complex kinetochore associated to the chromosome is known to apply a
force on the chromosome directed toward the pole of the microtubule aster (poleward
force). Although the exact molecular origin of this force remains unclear, the main
contributions to this force are thought to be due to cytoplasmic dyneins (Sharp et al.,
2000a) and microtubule depolymerization in the kinetochore (Koshland et al., 1988).
On the other hand, several experimental observations have shown the existence of
forces that eject the chromosomes away from the pole (away-from-the-pole force, or
polar ejection force). The molecular origin of this force has been recently elucidated.
Chromokinesin motors are plus-ended kinesin motors (Yajima et al., 2003) which
associate with the chromosome arms (Tokai et al., 1996) and generate the polar ejec-
tion force (Levesque and Compton, 2001; Yajima et al., 2003; Kapoor and Compton,
2002; Brouhard and Hunt, 2005). While individual chromokinesin motors generate
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Fig. 8.1. Monopolar spindles with mono-oriented chromosomes, which locate at a certain
distance from the pole. (a.1) Phase contrast and (a.2) immunofluorescence (tubulin labeled
fluorescently) micrographs of a Newt lung cell prometaphase monopolar spindle. Chromo-
somes positioned toward the sides of the spindle are located closer to the pole (a.1), due to
the lower microtubule density in these regions (a.2). (Modified from Ref. (Cassimeris et al.,
1994)). (b) Fluorescence image of a single microtubule aster (monaster). Microtubules are
shown in green and the DNA in blue. (Figure taken from the website of the Compton Lab:
http://dms.dartmouth.edu/compton).

forces in the picoNewton range (Yajima et al., 2003; Brouhard and Hunt, 2005),
typical values for the forces driving mitotic movements are of several nanoNew-
tons (Nicklas, 1983). Chromokinesin motors must thus work in large groups so as
to influence chromosome motion. These motors play a crucial role in both chromo-
some motion and positioning, as a drastic reduction of their number suppresses the
oscillations and induces the chromosome to move closer to the pole (Levesque and
Compton, 2001).

Chromosome movement arises from the tug-of-war between the polar ejection
force and the poleward kinetochore force. The polar ejection force has an intrinsic
dynamic origin as is created collectively by the chromokinesins and depends thus
strongly on their intrinsic kinetics. Generically, the collective behavior of motor pro-
teins can give rise to dynamical instabilities (Julicher and Prost, 1997). However, the
existence of a dynamical instability does not necessarily imply periodic oscillations
in space if it is not coupled to a spatial degree of freedom. We argue that such cou-
pling is provided by the interaction of chromokinesins with the astral microtubules
in the spindle which, due to their aster-like distribution, constitute a position depen-
dent substrate for motor binding. Thus, chromokinesin binding events onto spindle
microtubules allow the chromosome to sense its position in the spindle. We show
that the coupling between the dynamical instability of a collection of motors and the
morphology of the mitotic spindle leads to well defined spatial oscillations.

All the available models for the oscillatory movement of the chromosome (of-
ten referred to as “kinetochore directional instability” (Skibbens et al., 1993)) have
as a common feature that the kinetochore somehow controls the switching between
poleward and away from the pole phases (Murray and Mitchison, 1994; Rieder and
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Fig. 8.2.Oscillations of mono-oriented chromosomes. (a) Snapshots showing the motion of
mono-oriented chromosomes during prometaphase in a Newt lung cell. The circle indicates
the position of the pole and the bars show the initial chromosome-to-pole distance for two
chromosomes. For increasing times, chromosomes move away and towards the pole. (Adapted
from a film in Ref. (Rieder and Khodjakov, 2003)). (b.1) DIC image of mono-oriented chro-
mosomes in a Newt lung cell. The black and gray arrows indicate the position of the pole and
the kinetochore respectively. (b.2) Motion of the chromosome in (b.1), showing the charac-
teristic sawtooth-shaped oscillations. The chromosome move toward and away from the pole
with phases of nearly constant velocity separated by abrupt changes in direction (*) (Modified
from Ref. (Inoue and Salmon, 1995)).

Salmon, 1994; Khodjakov et al., 1999; Joglekar and Hunt, 2002). Unfortunately, lit-
tle is known about the kinetochore and there is no explanation for the mechanism at
the origin of this hypothetic switching. Although the chromosome oscillatory behav-
ior has been reproduced by some models (Khodjakov et al., 1999; Joglekar and Hunt,
2002), these works do not provide any explanation for the oscillations as the spatial
dependence of the polar ejection force is postulated. We introduce in this chapter a
unifying framework in which chromosome movement, positioning and congression
can be explained on the same physical basis.

In addition to the oscillatory chromosome motion, there are several biological
situations where similar oscillations are observed, like the periodic motion of the
spindle poles in mitosis (Grill et al., 2005), the contraction of muscle fibers by en-
sembles of myosin motors (Bray, 1992; Huxley and Simmons, 1971; Murase, 1992;
Vilfan and Duke, 2003) and the ciliary and flagellar beating (Bray, 1992; Murase,
1992; Camalet and Julicher, 2000). It is thus important to understand the origin of
the oscillatory instability associated to the motion of individual chromosomes.
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8.1 Theoretical description

In order to precisely assess the role of chromokinesins in chromosome motion
and positioning, we study the balance of forces on a mono-oriented chromosome
(Fig.8.3a). While the present analysis aims at understanding the motion of mono-
oriented chromosomes in prometaphase, it can be readily extended to the case of
bi-oriented chromosomes, which we address in section 8.2.3.

Force Balance

Without loss of generality, all forces are written as being applied to the chromosome.
The motion of the chromosome is written in the reference frame of the pole, withr
being the chromosome-to-pole distance (Fig. 8.3b). Chromosome motion occurs at
lengths (∼ µm) and velocity scales (∼ 0.01−0.1 µm s−1) for which inertial effects
are negligible (low Reynolds number). As discussed above, the chromosome is sub-
ject to two main forces, namely the poleward kinetochore force,FK , and the polar
ejection force,FAP (away-from-the-pole force). Any mismatch between these two
forces induces the motion of the chromosome, which is opposed by a friction force
(Fig. 8.3b). The balance of forces on the chromosome reads

FAP−FK −ξ ṙ = 0 , (8.1)

where ˙r ≡ dr/dt is the chromosome velocity (t being the time). We assume a viscous-
like friction force, with a friction coefficient,ξ , which may, in principle, depend
on the chromosome position and velocity. In the present context there are sev-
eral contributions to friction, which occurs both within the kinetochore and on the
chromosome arms. The hydrodynamic drag associated to the chromosome motion
through the intracellular environment is of order∼ 6πηL|ṙ| ∼ 10−1 pN (L ∼ 5µm
andη ∼ 10−2 Pa s being the typical chromosome size and solution viscosity respec-
tively), and is about one order of magnitude smaller than the typical forces of sin-
gle motor proteins (∼pN; see chapter 1). Therefore, chromosome motion is most
probably hindered by other phenomena. Both chromokinesin attachment/detachment
events from the microtubules and the increasing microtubule density near the pole
may generate a friction force on the chromosome arms. In the kinetochore, the fric-
tion is likely to arise from microtubule polymerization/depolymerization and the ac-
tivity of molecular motors (Inoue and Salmon, 1995). A precise modeling of the
kinetochore force and friction would require the detailed knowledge of its molecular
organization, which is not currently available. As a first step to elucidate the con-
sequences of chromokinesin collective behavior on chromosome motion, both the
kinetochore force and the global friction parameter are taken as constant in what fol-
lows. The implications and limits of this approximation are analyzed in section 8.2.

Although chromokinesins have been shown to generate an away-from-the-pole
force on the chromosome, one could expect other contributions to this force. This
possibility has been ruled out by several experimental observations. It is now clear
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Fig. 8.3. Schematic representation of a mono-oriented chromosome. (a) Sketch of a micro-
tubule aster (dark green) interacting with a single chromosome (light green). The kineto-
chore (red) is connected to the pole through a bundle of microtubules. Chromokinesin motors,
permanently attached to the chromosome arms, may be bound to a microtubule (dark blue
dots) or unbound (light blue dots). (b) Forces driving chromosome motion: the kinetochore
poleward force,FK (red), the polar ejection force created by the chromokinesins bound to
the microtubule aster,FAP (dark blue), and the friction force opposing motion,−ξ ṙ (black).
The chromosome position relative to the pole (orange arrow) isr and its velocity is ˙r. (c)
Binding/unbinding kinetics of chromokinesin motors, with rateskb andku respectively. In the
bound state, chromokinesins move toward the plus end of microtubules with a velocityV.

that microtubule polymerization in the kinetochore does not contribute to the away-
from-the-pole force as the centromere is stretched during both poleward and away-
from-the-pole phases (Waters et al., 1996; Khodjakov and Rieder, 1996). On the
other hand, the polymerization of astral microtubules against the chromosome could,
in principle, generate a substantial away-from-the-pole force (see chapter 1). How-
ever, this is not likely to be the case as it has been shown that the inhibition of
chromokinesins induces the collapse of the chromosome onto the pole (Levesque
and Compton, 2001). These observations strongly suggest that the forces due to mi-
crotubule polymerization on the chromosome are much weaker than those generated
by chromokinesins. Moreover, no other redundant mechanisms able to push the chro-
mosomes away from the pole are known to exist besides chromokinesins (Levesque
and Compton, 2001). Based on all these experimental observations, we consider the
away-from-the-pole force to be solely created by the binding and displacement of
chromokinesin motors on the microtubule aster (Fig.8.3a-c).

Note that this description focuses on the motion of the chromosome as a whole
and does not provide information on its internal stress. In particular, it cannot account
for the amount of centromere stretch, i.e. the distance between sister kinetochores,
during chromosome motion. In order to reproduce the experimental observations in
this respect (Waters et al., 1996; Khodjakov and Rieder, 1996), both internal de-
grees of freedom of the chromosome and the precise distribution of forces within
the chromosome should be considered. However, the internal response (stretch) of
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the chromosome to the forces does not influence the motion of the chromosome as a
whole, and it is not included here.

Chromokinesin kinetics

The away-from-the-pole force is generated by ensembles of chromokinesin motors
located at the chromosome arms. It is important to realize that the polar ejection force
is of inherent dynamic origin as it arises from the kinetics of the force generators,
the chromokinesins. In order to understand the properties of the away-from-the-pole
force, we describe the coupling between the forces and the motor kinetics.

We considerN chromokinesins permanently attached to the chromosome arms.
They stochastically attach to and detach from microtubules with average binding and
unbinding rateskb andku respectively (Fig. 8.3c). At one given time, only an amount
n of all available chromokinesins is bound to the microtubules in the aster and able
to contribute to the away-from-the-pole force. Generically, the time evolution of the
number of bound chromokinesins may be written as

dn
dt

= kb(N−n)−kun . (8.2)

A binding event involves the encounter of a motor and a microtubule. The binding
ratekb takes into account both the probability of the encounter and the attachment
probability per unit time of the motor onto a neighboring microtubule. The higher
the concentration of microtubules, the easier it is for a motor to find an attachment
site, hence the binding ratekb is larger in denser regions of the microtubule aster.
In an isotropic monopolar spindle (Fig. 8.3a) the microtubule concentration,ρMT ,
decreases away from the pole as1

ρMT(r) =
NMT

4πr2 . (8.3)

The probability of finding a microtubule at a distancer from the pole is given by
the microtubule density at that position, and the binding rate of chromokinesins onto
spindle microtubules reads

kb(r) = k0
bSchρMT(r) , (8.4)

wherek0
b is the attachment rate of chromokinesins onto a neighboring microtubule

and Sch is the effective chromosome surface that interacts with spindle micro-
tubules2. For typical spindle morphologies, the microtubule density decreases away
from the pole and, as a result, the binding ratekb(r) is a decreasing function of

1 Strictly speaking, Eq. 8.3 is valid for infinitely long microtubules. For practical purposes, it
can be used as long as the microtubule length does not limit the motion of the chromosome.

2 In this description, the size of the chromosome is assumed to be small compared to the
chromosome-to-pole distance. A more detailed description should account for the spatial
variations of the binding rate along the chromosome arms.
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the chromosome position. Note that neither the poleward nor the away-from-the-
pole forces depend explicitly on the chromosome position. All spatial information is
contained in the binding ratekb(r), and reflects the morphology of the microtubule
spindle.

Once a motor is bound to a microtubule, its velocity and unbinding rate are
strongly influenced by the motor load (see chapter 1). If then bound chromokinesins
are independent from one another, they equally contribute the total ejection force,
FAP, so that each motor applies a fractionFAP/n of the total ejection force on the
chromosome. The load felt by each motor is thusFAP/n by the Newton’s third law.
Motor unbinding can be seen as a stochastic process that necessitates the passage of
an energy barrier, which is reduced in the presence of an applied force (see chap-
ter 1). Kramers Theory (Kramers, 1940; van Kampen, 2004) relates the applied load
to the motor unbinding rateku according to:ku = k0

u exp[FAPa/nKBT], wherek0
u is

the unbinding rate at vanishing load,a is a phenomenological length andKBT is the
thermal energy. This exponential sensitivity to the applied force has been observed
for conventional kinesin (Schnitzer et al., 2000) (k0

u ' 0.5 s−1 (Vale et al., 1996) and
a' 1.3 nm (Schnitzer et al., 2000)) and also for myosin motors (k0

u ' 6.2 s−1 and
a' 1.3 nm (Veigel et al., 2003)). The velocity of a motor decreases with a force
opposing motor movement and vanishes at a particular stall forcefs. For conven-
tional kinesin, the force-velocity relationship is nearly linear (Visscher et al., 1999;
Block et al., 2003). For the sake of simplicity, we adopt such linear relationship
V = V0(1−FAP/n fs), with no substantial influence on our results. The present de-
scription of the force-dependent motor kinetics is the same than in chapter 5, which
was first introduced in chapter 1.

Equations for the chromosome dynamics

Identifying the chromosome velocity ˙r with the chromokinesins velocityV on mi-
crotubules and combining the equations above, we obtain a self-contained set of two
coupled equations for the time evolution of the chromosome positionr and the num-
ber of bound motorsn:

ṅ = kb(r)(N−n)−k0
u exp

(
f
ns+n

ξ

n+n
ξ

)
n ,

ṙ = V0
n−ns

n+n
ξ

, (8.5)

wherens≡ FK/ fs is the number of bound motors at which away-from-the-pole and
poleward forces exactly balance,n

ξ
≡ ξV0/ fs characterizes the global chromosome

friction, and f ≡ fsa/KBT quantifies the sensitivity of motor unbinding to an external
load. We have further checked that allowing for a mismatch between the velocities
of the chromosome and the chromokinesins leaves our conclusions unchanged.
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8.1.1 Chromosome positional stability

Close to the pole the microtubule density is high, many chromokinesins are attached
to the microtubules and the polar ejection force is large enough to move the chro-
mosome away from the pole. Far from the pole microtubules are scarce, the polar
ejection force is weak as very few chromokinesins are bound to the microtubules,
and the chromosome moves poleward due to the kinetochore force. Somewhere in
between, there exists a point where the system remains still (fixed point). It corre-
sponds to a number of bound chromokinesinsns and to a chromosome positionrs,
given implicitly by

kb(rs) =
k0

uef ns

N−ns
, (8.6)

for which chromokinesin attachment and detachment fluxes exactly compensate. If
the kinetochore force is so large that even allN motors applying the forcefs are not
able to equilibrate the kinetochore forceFK (ns > N), the velocity is always negative,
and the chromosome collapses onto the pole. This situation is indeed observedin-
vivo if the total number of chromokinesins is reduced by a large amount (Levesque
and Compton, 2001). Chromosome oscillations in native conditions suggest thatN >
ns, and we restrict our analysis to this case in what follows.

The fixed point may be stable, in which case the chromosome stalls at a dis-
tancers from the pole, or unstable, leading to permanent chromosome oscillations
(see section 8.1.2). Stability is lost when the fluxes of motor attachment and detach-
ment are not able to compensate. While the attachment flux is mostly dependent
on the chromosome position, the detachment flux is highly sensitive to the amount
of bound motors, and the more so for small chromosome friction, in which case
ku ∼ exp(ns/n). The system becomes unstable when the detachment of one or a few
motors sufficiently increases the force per remaining motor to induce the dramatic
unbinding of them all.

In order to understand the influence of the different parameters on the positional
stability of the chromosome, we perform a linear stability analysis of Eq. 8.5. The
linearized dynamics of the perturbationsδn≡ n− ns andδ r ≡ r − rs close to the
fixed point are given by

d
dt

 δn

δ r

=


k0

uef

[
f ns

ns+n
ξ

− N
N−ns

]
∂kb(rs)

∂ r (N−ns)

V0
ns+n

ξ

0


︸ ︷︷ ︸

Λ

 δn

δ r

 . (8.7)

The matrixΛ specifies the linearized dynamics of the system around the fixed point,
and its stability is obtained from the eigenvalues ofΛ or, equivalently, from its trace
and determinant, which read
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Det(Λ) =−V0
∂kb(rs)

∂ r
N−ns

ns+n
ξ

, (8.8)

Tr(Λ) = k0
uef

[
− ns

N−ns
+ f

ns

ns+n
ξ

−1

]
.

The determinant is always positive if enough motors are available(N > ns) and for
a decreasing concentration of microtubules away from the pole(∂rkb(r) < 0). If
Tr(Λ) < 0, the fixed point is stable and any perturbation relaxes back to the fixed
point. If Tr(Λ) > 0, perturbations are enhanced, driving the system away from the
fixed point. The condition Tr(Λ) = 0 sets the boundary between stable and unstable
regimes. For the range of parameters satisfying

n
ξ

N
<

ns

N

(
f −1− f

ns

N

)
, (8.9)

the fixed point is unstable. Eq. 8.9 shows that the dynamical state of the chromosome
is controlled by three parameters:f , ns/N andn

ξ
/N. There exists a force-sensitivity

threshold for the motors (f = 1) below which the system is never unstable. Although
the value off is not known for chromokinesins, it is estimated to bef ' 2 for con-
ventional kinesin (Schnitzer et al., 2000). We plot the range of stability forf = 2 in
Fig. 8.4a.

The linear analysis only specifies the condition leading to an unstable regime,
but does not provide information about the evolution of the system in the unstable
regime. In next section we analyze the non-linearities and show that once the system
is linearly unstable, it always evolves towards a limit cycle of the non-linear system.

8.1.2 Oscillatory behavior

Far from the fixed point, the evolution of the system is governed by the full non-linear
coupled equations (Eq. 8.5). In order to understand how the oscillations appear, it
is thus necessary to study the non-linearities. To this end, we study the possible
qualitatively different scenarios by analyzing the nullclines3.

The dynamical evolution of the system is graphically represented by trajecto-
ries in phase space, which combines information on the chromosome position and
the number of bound chromokinesins (Fig. 8.4b,c). Each point{n, r} of this two-
dimensional space represents a possible configuration of the system, with the chro-
mosome at a distancer from the pole and a numbern of chromokinesins bound to
the microtubule aster. It is instructive to analyze the location of all points satisfying
ṅ = 0 (n−nullcline) and of all points satisfying ˙r = 0 (r−nullcline). Ther−nullcline
(dashed line in Fig. 8.4b,c) represents all points where the chromosome velocity
vanishes, and then−nullcline (solid line) represents points where the chromokinesin
binding and unbinding fluxes exactly balance, so that ˙n = 0. The intersection of the

3 For a general introduction on dynamical systems and bifurcation theory see Ref. (Gucken-
heimer and Holmes, 1990).
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Fig. 8.4.Dynamical regimes of chromosome motion. (a) Parameter space showing the stable
and oscillatory states of the chromosome. The continuous line corresponds to the transition
between stable and oscillatory regimes, as given by Eq. 8.9 (f = 2). A stable chromosome re-
mains still at a fixed distance from the pole, whereas an oscillating chromosome moves toward
and away from the pole in a periodic fashion. Increasingns andn

ξ
corresponds to increasing

kinetochore force and chromosome friction, respectively. Decreasing the total chromokinesin
numberN (arrow) eventually leads to the disappearance of oscillations atN = Nc (filled circle;
Eq. 8.11). (b-c) Stable and oscillatory trajectories in the phase space of the dynamical system
in Eq. 8.5. Each point corresponds to a given number of bound motorsn and chromosome
positionr (k−1

b (r), equivalently). Ther-nullcline (dashed line) andn-nullcline (solid line) in-
tersect at the fixed point (filled circle). The phase trajectories (thick gray line) start from an
(arbitrary) initial condition (gray circle). (b) Stable regime: then-nullcline is monotonous,
and the systems evolves toward the (stable) fixed point. (c) Oscillatory regime: then-nullcline
is non-monotonous, the fixed point is unstable and the system follows a limit cycle corre-
sponding to periodic oscillations of the chromosome between the extreme positionsr< and
r>. Parameters:f = 2, ns/N = 0.115 (b-c);n

ξ
/N = 0.152 (b) andn

ξ
/N = 0.052 (c).

two nullclines defines the fixed point. Right (left) to ther−nullcline, the away-from-
the-pole force is larger (smaller) than the poleward force, the chromosome velocity is
positive (negative) and the chromosome moves away from the pole (poleward). Sim-
ilarly, the points lying below (above) then−nullcline characterize states for which
the chromokinesin binding flux is larger (smaller) than the unbinding flux, corre-
sponding to an increase (decrease) of the number of bound motors.

Motor binding and unbinding is typically much faster than chromosome motion.
As a consequence, the number of bound motors quickly adapts to the number that
equilibrates the attachment and detachment fluxes for a given chromosome position.
After this fast equilibration, the system always tries to remain in a boundary layer
around then−nullcline. The initial evolution from an arbitrary starting point is thus
characterized by a nearly horizontal line in the phase space, corresponding to the fast
equilibration of motor binding and unbinding, with very little chromosome motion.
The chromosome moves significantly only after then−nullcline is reached, and the
trajectory in the phase space (thick gray line in Fig. 8.4b,c) attempts to follow this
line up to the fixed point. This can only be achieved if the trajectory dictated by
the n−nullcline is compatible with the balance of forces (Eq. 8.1). It requires that
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the number of bound motors that equilibrates the attachment/detachment fluxes de-
creases for increasing chromosome-to-pole distances (i.e. then−nullcline must have
negative slope at the fixed point). For the system to be unstable, then−nullcline
must be non-monotonous and the fixed point must be located in the region of pos-
itive slope, a condition specified by Eq. 8.9. Then-nullcline is non-monotonous in
the range of parameters given by

n
ξ

N
<

1
2

(
f
4
−1

)
+

1
2

√(
f
4
−1

)2

+ f
ns

N
. (8.10)

This condition is always fulfilled by the range of parameters leading to a linearly
unstable fixed point (Eq. 8.9). Thus, when the fixed point is linearly unstable, the
n-nullcline is non-monotonous and the trajectories of the system in the phase space
circle around the fixed point in a limit cycle (Fig. 8.4c). Although it is essential to
take into account the non-linear system to understand the oscillatory behavior, the
transition from stable to unstable fixed point (Eq. 8.9) specifies the transition from
a linearly stable regime to a non-linear oscillatory regime (Hopf bifurcation (Guck-
enheimer and Holmes, 1990)). The existence of a limit cycle can also be shown for-
mally using the Poincaré-Bendixon Theorem (Guckenheimer and Holmes, 1990)4.

Fig. 8.4b shows the time evolution of the system (thick gray line) toward a sta-
ble fixed point from an (arbitrary) initial condition (open circle). First, the number
of bound motors quickly increases until it reaches then−nullcline. As the system is
placed to the right of ther−nullcline, the away-from-the-pole force is larger than the
kinetochore force and the chromosome moves away from the pole. The number of
bound motors that balances the motor attachment/detachment fluxes decreases for in-
creasing chromosome-to-pole distances (then−nullcline has always negative slope).
As a consequence, when the chromosome moves away from the pole there is always
the possibility to balance the motor fluxes. The chromosome can thus smoothly reach
the positionrs, where it stalls.

Fig. 8.4c shows the trajectory around an unstable fixed point. The evolution is
similar to the stable case up to the region where the slope of then−nullcline is
positive, at which point the balance of motor fluxes cannot be fulfilled with the
chromosome velocity dictated by force balance. After the fast initial motor equili-
bration to the value dictated by then−nullcline for that chromosome position, the
system lies in the right-hand-side of ther−nullcline and the chromosome moves
away from the pole (label 1 in Fig. 8.4c). When the chromosome reaches a distance
r>, the detachment flux of motors becomes too large and the chromosome should
then move toward the pole, where the attachment flux of motors is larger, in or-

4 It is actually easy to show that the phase space flux crossing a closed curve around the
fixed point changes its sign depending on how close the curve is from the fixed point. In
particular, when the closed curve is in the vicinity of the unstable fixed point, the phase
space flux emanates from the fixed point, in accordance with the linear analysis. On the
contrary, when the closed curve around the linearly unstable fixed point is far from it, the
phase space flux is in the inward direction. In this case, the only solution is the existence of
a limit cycle around the fixed point.
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der to balance the fluxes (positive slope of then−nullcline). As the chromosome is
moving away from the pole, it is unable to move closer to the pole to equilibrate
the motor attachment/detachment fluxes. The system can not fulfill the requirements
on both the velocity and the balance of motor fluxes at the same time. This situ-
ation results in the dramatic unbinding of nearly all bound motors at the position
r> (label 2 in Fig. 8.4c), corresponding approximately to the local maximum of the
n−nullcline. As a consequence, the away-from-the-pole force nearly vanishes and
the chromosome moves poleward to a region of higher microtubule density, where
the chromokinesin attachment flux is sufficient to compensate its detachment flux
(label 3 in Fig. 8.4c). Close to the pole, the scenario is reversed and the chromosome
is ejected away from the pole by a dramatic chromokinesin binding at a positionr<,
which can be well approximated by the local minimum of then−nullcline (label 4
in Fig. 8.4c). This scheme repeats over time and the trajectory in phase space cir-
cles around the fixed point following a limit cycle, which corresponds to periodic
chromosome oscillations between its minimal (r<) and maximal (r>) positions.

In Fig. 8.4a we represent the different dynamical regimes of chromosome motion.
A reduction of the total numberN of available chromokinesins has the effect of
moving the system along a straight line in the parameter space (arrow in Fig. 8.4a),
and to eventually exit the oscillatory regime. We predict that the oscillations should
cease below a minimal number of chromokinesins,Nc, given by

Nc =
f n2

s

( f −1)ns−n
ξ

. (8.11)

Although for clarity reasons we have presented the analysis of the system
(Eq. 8.5) using the chromosome-to-pole distancer and the number of bound chromoki-
nesinsn as variables, it is more convenient to use the binding ratekb as a variable
instead ofr. The results are obviously equivalent no matter the variables used, but
choosingkb andn as variables allows to perform both the linear and non-linear anal-
ysis without specifying any particular functional form for the binding ratekb(r) (or
ρMT(r) equivalently). Therefore, all the results concerning the dynamical state of the
chromosome do not depend on the morphology of the microtubule aster, as long as
it decreases away from the pole.

8.2 Discussion

In this section we compare the theoretical results to different experimental observa-
tions and show that the theoretical framework developed above can explain chromo-
some positioning, movement and congression, on the same physical grounds.

8.2.1 Positioning and oscillations of mono-oriented chromosomes

Chromosome oscillations are a very generic behavior observed during the division of
many animal cells. This ubiquity is consistent with our analysis, which predicts os-
cillations for a wide range of motor and kinetochore parameters (Fig. 8.4a). Numer-
ically computed chromosome motion in the unstable regime (Fig. 8.5a) displays the
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characteristic sawtooth shaped oscillations observedin-vivo (Skibbens et al., 1993)
(Fig. 8.5c), indicating that the system switches suddenly between phases of nearly
constant velocities. Changing the various parameters leads to changes in amplitude,
period, and symmetry of the oscillations, but it has a little effect on their sawtooth
shape. This is a signature of the fact that chromokinesin kinetics is much faster
than the viscous motion of the chromosome. Indeed, the time scale of the oscilla-
tion (∼min) is controlled by the net force and the effective viscous friction on the
chromosome, while the switching between phases occurs over a much shorter time
scale, characteristic of motor binding/unbinding (∼sec).

Fig. 8.5.Chromosome oscillations. Time evolution of the chromosome position (a) and the
number of bound chromokinesins (b) obtained by numerical integration of Eq. 8.5. The the-
oretical analysis reproduces and explains the sawtooth shape of the oscillations observedin
vivo(c; adapted from Ref. (Inoue and Salmon, 1995)). The chromosome periodically oscillates
between phases of poleward and away-from-the-pole motion with nearly constant velocities.
The sudden switches from poleward to away-from-the-pole motion correspond to a dramatic
chromokinesin binding (B) and unbinding (U) events. For the sake of simplicity, the micro-
tubule distribution in the aster is assumed to be isotropic (Eq. 8.3 and 8.4). The parameters are
V0 = 2.38 µm/min (Skibbens et al., 1993),k(0)

u = 1.65 s−1 (obtained from the processivity
lengthlp ≡V0/k0

u of chromokinesins;lp ' 24 nm (Yajima et al., 2003)) andf = 2 (Schnitzer
et al., 2000). The parameterskb(r) = 266/(r(µm))2 s−1, ns/N = 0.115,n

ξ
/N = 0.052, are

chosen to reproduce the amplitude, period and average chromosome-to-pole distance of thein
vivo oscillations in (c). The box shows a sketch of an oscillating chromosome (left) and the
DIC image of the chromosome showing the oscillations in (c) (right; modified from Ref. (In-
oue and Salmon, 1995)).

The oscillations proceed as follows (Fig. 8.5). Close to the pole, the high density
of microtubules results in the binding of a large number of motors (Fig. 8.5b), driving
the chromosome away from the pole at a velocity close to their maximum velocityV0.
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We argue that the velocity of the away-from-the-pole motion is a direct quantitative
estimate of the chromokinesin velocity at vanishing load (V0 ' 2 µm/min in Newt
lung cells (Rieder et al., 1986; Skibbens et al., 1993)). Indeed, chromosome arm frag-
ments cut by laser microsurgery move away from the pole with the same velocity as
the full chromosome in the away-from-the-pole phase (Rieder et al., 1986), in spite
of being only subject to the hydrodynamic drag, a much weaker friction force. As the
chromosome moves away from the pole, the density of microtubules decreases and
eventually reaches a value at which the attachment flux is too low to compensate the
motor detachment flux. The remaining bound motors then detach rapidly (Fig. 8.5b)
and the chromosome switches to poleward movement. The poleward phase occurs
with almost no motors attached to the microtubule aster and the chromosome moves
toward the pole with a constant velocity−FK/ξ . The cycle is completed when the
chromosome reaches a region of high enough microtubule density, where many mo-
tors abruptly attach and eject the chromosome. The ratio of away-from-the-pole and
poleward velocities, approximately given byn

ξ
/ns, characterizes the symmetry of

the oscillations. Symmetric oscillations are obtained forn
ξ
' ns and f > 2. In case

f < 2, all states that fulfilln
ξ
' ns are stable and only asymmetric oscillations can

be obtained.
The friction of the systemξ and the kinetochore forceFK are difficult to modify

experimentally. On the other hand, the total numberN of chromokinesins in the chro-
mosome arms can be alteredin-vivo. As discussed in section 8.1.2, there exist a crit-
ical number of chromokinesinsNc (Eq. 8.11), independent of the aster morphology,
below which no oscillations should be observed. This result is in good agreement
with the experimental observations in Ref. (Levesque and Compton, 2001), which
are discussed below. ForN < Nc, the chromosome is stable and located at a fixed
distance to the pole (Fig. 8.6). The stable chromosome position depends crucially on
the morphology of the microtubule aster, as observed experimentally (Rieder et al.,
1986). It corresponds to a microtubule density where chromokinesin binding onto
microtubules equilibrates their unbinding (Eq. 8.6), and increases continuously with
increasing number of chromokinesins. Our results indicate that oscillations of finite
amplitude start at the critical point (N = Nc) 5, and that increasing the number of
chromokinesins further increases both the mean chromosome position and the am-
plitude of the oscillations (Fig. 8.6).

Important changes in chromosome positioning have been observed upon changes
of the morphological properties of the microtubule aster (Ault et al., 1991; Cas-
simeris et al., 1994). In our framework, the stable position of the chromosome and
the average distance to the pole of an oscillating chromosome depend strongly on
the aster morphology, as can be seen in the expression for the fixed point (Eq. 8.6).
Therefore, a morphological variation of the microtubule aster changes the average
chromosome-to-pole distance and the amplitude of the oscillations, but does not
change the dynamical state of the chromosome. In particular, an increase of the

5 For most values of the parameters, the transition from stable to oscillatory behavior is
specified by a subcritical Hopf bifurcation, leading to oscillations of finite amplitude at the
critical point.
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Fig. 8.6.Dependence of the amplitude of the oscillations with the total numberN of chromoki-
nesins associated to the chromosome arms. The kinetochore properties are fixed (n

ξ
/ns =

0.45) and the total number of motorsN varies, so that the system follows a straight line in the
parameter space (Fig. 8.4a). There is a critical number of motorsNc (dotted line) at which the
system transits from a stable to an oscillatory regime. BelowNc, the stable chromosome posi-
tion moves away from the pole with increasingN. AboveNc, both the position of the unstable
fixed point (dashed line) and the amplitude of the chromosome oscillations increase withN.
The numerically computed maximal and minimal positions of the chromosome during the
oscillations are shown (circles). The maximum and minimum of then−nullcline (Fig. 8.4c)
provide a good analytical approximation for the two extreme positions of the chromosome
during the oscillations (r> andr< respectively; continuous lines forN > Nc). For increasing
average chromosome-to-pole distance, the amplitude of the oscillations becomes larger and
the oscillations become more noticeable. The sketch of the chromosome on the right repre-
sents the geometry of the system.

microtubule density leads to both larger average chromosome-to-pole distance and
larger amplitude of the oscillations. This result is in good agreement with the obser-
vation that the amplitude of the oscillations increases with the average chromosome-
to-pole distance (Cassimeris et al., 1994). However, the precise manner in which
these quantities increase with an increasing microtubule density depends strongly
on the functional formkb(r). Note that a drastic increase in the microtubule den-
sity modifies also the global friction acting on the chromosome. In particular, if the
microtubule aster is extremely dense, the friction coefficient is too high and chro-
mosome oscillations are prevented. On the other hand, the depolymerization of as-
tral microtubules prevents the generation of polar ejection forces and the chromo-
some moves toward the pole. Both results are confirmed by experimental observa-
tions (Ault et al., 1991).
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8.2.2 Implications for chromosome congression

Experimentally, vastly reducing the number of chromokinesins (but presumably not
entirely suppressing them) leads to the disappearance of the oscillations of mono-
oriented chromosomes and their collapse onto the centrosome, while not prevent-
ing bi-oriented chromosomes to congress to the metaphase plate (Levesque and
Compton, 2001) (Fig. 8.7). This observation agrees favorably with our results (sec-
tion 8.2.1). Forces in mitosis are typically of order 1nN (Nicklas, 1983). With
this estimate for the kinetochore force, along with typical values for the average
chromosome-to-pole distance and the amplitude and period of the oscillations in
Newt lung cells (Rieder et al., 1986; Skibbens et al., 1993), we estimate a total num-
ber N ' 1500− 5000 of chromokinesins on the chromosome arms, and a critical
numberNc ' 600−700 above which oscillations are expected. We thus predict that
inhibition of 60% to 90% of the chromokinesins would be sufficient to suppress os-
cillations. Indeed, it has been observed experimentally that the inhibition of at least
90% of chromokinesins suppresses chromosome oscillations (Levesque and Comp-
ton, 2001) (Fig. 8.7A,B). This shows that a significant number of chromokinesins
may remain attached to the arms of non-oscillating chromosomes (∼ 100). The mag-
nitude of the away-from-the-pole force is substantially reduced upon a drastic inhi-
bition of chromokinesins, and the non-oscillating chromosome locates closer to the
pole, as observed experimentally (Levesque and Compton, 2001) (Fig. 8.7C). For
such chromosomes, the probability that a microtubule from the opposite spindle pole
contacts the unattached sister kinetochore and the chromosome becomes bi-oriented
is much lower. This explains why several chromosomes in chromokinesin depleted
cells remain close to one pole and never become bi-oriented during the division pro-
cess. However, if by chance, one of these chromosomes becomes bi-oriented, the
kinetochore forces toward each pole cancel each other to a large extent, and the po-
lar ejection force of the remaining chromokinesins may be sufficient to allow for
chromosome congression, as observed in experimentally (Levesque and Compton,
2001) (Fig. 8.7C). Indeed, it has been shown that chromokinesins are essential for
congression and proper chromosome alignment at the metaphase plate in several or-
ganisms (Antonio et al., 2000; Funabiki and Murray, 2000).

8.2.3 The motion of bi-oriented chromosomes

The description of mono-oriented chromosome motion can be directly extended to
the case of bi-oriented chromosomes. A bi-oriented chromosome is connected to
both spindles poles by kinetochore fibers attached to the sister kinetochores. The
chromosome is thus subject to opposing kinetochore forces and polar ejection forces
from both microtubule asters (Fig. 8.8). For the sake of simplicity, we consider a one
dimensional geometry and the opposing kinetochore forces to be equal and constant,
similarly to the case of mono-oriented chromosomes. With these assumptions, the
kinetochore forces cancel out for each chromosome position. Note that assuming
equal opposing kinetochore forces implies the kinetochore fiber to be fully developed
in both kinetochores. This is unlikely to be the case for congressing chromosomes
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Fig. 8.7. (A-B) Effects of chromokinesin Kid inhibition on mono-oriented chromosomes in
vertebrate-cultured cells. Cells were injected with Eg5-specific antibodies to induce monopo-
lar spindles (see chapter 9). Fluorescence photographs: the centrosome is shown in red, CENP-
E (kinetochore component) in green and DNA in blue. (A) Cells injected only with Eg5-
specific antibodies. The gap between the spindle pole and the chromosomes is clearly visi-
ble. Chromosomes oscillated toward and away from the pole, and were located at an average
distance of 10µm from the pole. (B) Cells injected with Eg5-specific and Kid-specific anti-
bodies. The injection of Kid-specific antibodies reduces by more than 90% the number of Kid
chromokinesins associated to the chromosome arms. The chromosomes moved poleward and
approached very close to the pole (no gap between the pole and the chromosomes is visible).
The chromosomes did not display oscillations after Kid inhibition. Bar, 10µm. (C) Failure
of chromosome congression in some cells injected with Kid-specific antibodies. Fluorescence
images showing the DNA (blue) and microtubules (green). From left to right: DNA, micro-
tubules and merge (DNA and microtubules). Some chromosomes remain very close to the pole
and never become bi-oriented. (Adapted from Ref. (Levesque and Compton, 2001)).

and we thus restrict our analysis to chromosomes with fully formed kinetochore
fibers, like those in metaphase. Unlike the poleward kinetochore forces, the polar
ejection forces implicitly depend on the chromosome position in the spindle via the
dependence of the chromokinesin binding rate on the local microtubule density.

The forces responsible for chromosome motion in mitosis may be probed by mi-
cromanipulation experiments investigating the influence of an external force on the
motion and positioning of chromosomes. In addition to the forces discussed above,
we consider the action of an external force,Fext, acting on the chromosome and dis-
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Fig. 8.8. (a) Sketch of a bi-oriented chromosome. The microtubules (dark green) from both
asters interact with a single chromosome (light green). Each sister kinetochore (red) is con-
nected to a different pole through a bundle of microtubules. Chromokinesin motors, perma-
nently attached to the chromosome arms, may be bound to a microtubule (dark blue dots) or
unbound (light blue dots). The chromosome position relative to the left pole isr (orange ar-
row). (b) Forces acting on the bi-oriented chromosome: the opposing kinetochore poleward
forces,F(`)

K
andF(r)

K
(red), the polar ejection forces created by the chromokinesins bound to

the microtubules of the left and right asters,F(`)
AP

andF(r)
AP

respectively (dark blue), and the
external force,Fext (orange).

cuss the effect of such a force on the position and motion of a bi-oriented chromo-
some6. An additional external force,Fext, applied to a mono-oriented chromosome
in the direction of the pole, merely modifies the effective value of the kinetochore
force toFK +Fext and shifts the chromosome motion accordingly. We analyze below
the effect of the external force on bi-oriented chromosomes.

In a monopolar spindle, the spatial variation of the chromokinesin binding rate
follows the spatial distribution of microtubules in the aster and is given by the func-
tion, kb(r) (Eq. 8.4). In a bipolar spindle, characterized by a distanceL between the
spindle poles, the chromokinesins attach to microtubules associated to both spindle
poles (Fig. 8.8). The chromokinesin motors attached to microtubules associated to
the left pole, generate a polar ejection force,F(`)

AP
, directed toward the right pole. The

chromokinesins attached to microtubules associated to the right pole, generate a po-
lar ejection force,F(r)

AP
, that opposes the polar ejection force from the left pole. Force

balance on a bi-oriented chromosome reads

F(`)
AP
−F(r)

AP
−Fext−ξ ṙ = 0 , (8.12)

where r is the position of the chromosome with respect to the left pole, ˙r is the
chromosome velocity andFext is an external force directed toward the left pole.

We consider a total number,N, of chromokinesins to be permanently attached
to the chromosome arms. Unlike the situation when only one microtubule aster is

6 An external force can be applied on the chromosome using, for instance, a microneedle.
These experiments have been done for chromosomes in meiotic (Nicklas, 1983) and mi-
totic (Skibbens and Salmon, 1997) spindles.
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present, the chromokinesins can now attach to microtubules from the two micro-
tubule asters forming the mitotic spindle. Due to their attachment/detachment ki-
netics, at one given time, a numbern` of chromokinesins is bound to microtubules
from the left aster, and a numbernr is bound to microtubules associated to the right
aster. Assuming the chromokinesins to behave independently from each other and to
share the total load, the total ejection force produced by the chromokinesins bound
to the microtubules from the left (right) pole isF(`)

AP
= n` f` (F(r)

AP
= nr fr), where

f` ( fr) is the force felt by a chromokinesin bound to a microtubule from the left
(right) aster. We assume a linear force-velocity relation for a single chromokinesin
and writeV̀ =V0(1− f`/ fs), for the chromokinesins associated to microtubules from
the left pole. The motion of the chromosome away from the left pole is driven by the
chromokinesins associated to microtubules from this pole, so thatV̀ = ṙ. Similarly,
the velocity of chromokinesins associated to the microtubules of the right pole is
Vr =V0(1− fr/ fs) and, as they are responsible for the movement of the chromosome
toward the left pole,Vr =−ṙ.

Writing the kinetics of the chromokinesins bound to microtubules of each aster
in the same way than for a mono-oriented chromosome (Eq. 8.2), and using the
equations above, we obtain a dynamical system for the time evolution of the number
of chromokinesins bound to microtubules from the left and right asters,n` andnr

respectively, and the chromosome position,r, which reads

dǹ

dt
= kb(r)(N−n`−nr)−k0

u exp( f (1− ṙ))n` ,

dnr

dt
= kb(L− r)(N−n`−nr)−k0

u exp( f (1+ ṙ))nr ,

dr
dt
≡ ṙ = V0

n`−nr −Fext/ fs
n

ξ
+n` +nr

. (8.13)

The parametersf andn
ξ

are already defined in Eq. 8.5, and the functionkb(r) is
given by Eq. 8.4. Note that we have assumed the same morphology for both micro-
tubule asters. However, as the center of the right aster is placed at distanceL from
the left one, the binding rate to microtubules associated to the right aster iskb(L− r),
with L− r being the distance of the chromosome to the right pole.

Similarly to the case of mono-oriented chromosomes, for bi-oriented chromo-
somes there is a position,rs, for which the chromosome velocity vanishes and the
attachment flux of chromokinesins is equilibrated by their detachment flux on each
aster (fixed point). The fixed point may be stable, in which case the chromosome
remains still at positionrs, or unstable. We first analyze the stable case and discuss
below how the system evolves in the unstable regime. Equilibration of chromoki-
nesin attachment and detachment fluxes on each aster ( ˙n` = 0 and ṅr = 0) at the
positionrs leads to

nr,s = N
kb(L− rs)

kb(L− rs)+kb(rs)+k0
uef , n`,s = N

kb(rs)
kb(L− rs)+kb(rs)+k0

uef ,

(8.14)
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wheren`,s andnr,s are the number of chromokinesins bound to left and right asters
respectively, that equilibrate the attachment and detachment fluxes on each aster for
ṙ = 0. The positionrs depends on the external force applied on the chromosome and
reads

Fext

N fs
=

kb(rs)−kb(L− rs)
kb(L− rs)+kb(rs)+k0

uef . (8.15)

The latter expression implicitly specifies the possible stable chromosome position,
rs, as a function of the external force applied on the chromosome,Fext. In absence
of external load, the chromosome is positioned at a distancers = L/2, due to the
symmetry of the bipolar spindle. As expected, bi-oriented chromosomes in native
conditions are positioned in the metaphase plate.

When an external force is applied on the chromosome, its displacement from the
mitotic plate (located atL/2) is linearly proportional to the external force even for
fairly large displacements, due to the symmetry of the bipolar spindle. Mathemati-
cally, this arises from the existence of an inflexion point for the right-hand-side of
Eq. 8.15, so that the quadratic term in the expansion near the midplane vanishes.
In Fig. 8.9a we represent the number of chromokinesins bound to microtubules of
the left and right asters as a function of the stable positionrs. For forcesFext > 0
(Fext < 0), the chromosome is positioned closer to the left (right) pole, where the
polar ejection force from the left (right) aster is larger and can balance bothF(r)

AP

(F(`)
AP

) andFext. The stable chromosome position, given by Eq. 8.15, is represented
in Fig. 8.9b for various aster-like microtubule distributions. The linear relationship
between the external force and the stable chromosome position is valid almost up
to values of the external force at which the chromosome collapses onto one pole:
Fext ' N fs. According to the estimate for the number of chromokinesins that we
obtained in section 8.2.2 (N ∼ 103), and using typical values for the stall force of
motors (∼pN), this force is in the nanoNewton range.

The relation between the external force and the chromosome position could be di-
rectly measured in micromanipulation experiments. This situation has to some extent
been realized experimentally in Ref. (Hays et al., 1982) by analyzing the metaphase
stable position of multivalent chromosomes, i.e. those chromosomes with more than
two kinetochores. In this case, the excess number of kinetochores generate an extra
force toward one of the poles. The resulting chromosome displacement with respect
to the metaphase plate has indeed been reported to be proportional to the excess
number of kinetochores, in agreement with the results of our analysis.

Bi-oriented chromosomes correctly locate at the mitotic plate if the net force
toward each pole increases with the distance to the pole.Östergren (Ostergren, 1951)
proposed a long time ago that the kinetochore forceFK increases (linearly) with the
length of the kinetochore fiber. We argue that this “traction fiber model”, which was
originally introduced before the discovery of chromokinesin, should be understood
in the more general sense. Rather than the kinetochore force, it is the net poleward
force, i.e. the difference of the kinetochore and polar ejection forces (F(i)

K
− F(i)

AP
,

for i = r, `), that increases with the distance to the pole. Our results show that the
increase of the net poleward force is related to a decreasing polar ejection force away
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from the center of the microtubule aster. The symmetry of a bipolar spindle ensures
that chromosomes correctly locate at the mitotic plate, where polar ejection forces
from each pole balance. This idea is supported by several experimental observations
which show that chromokinesins are essential for proper chromosome alignment at
the metaphase plate in several organisms (Antonio et al., 2000; Funabiki and Murray,
2000).

Fig. 8.9. (a) Number of chromokinesin motors bound to microtubules of the left (pink) and
right (turquoise) asters. The balance of polar ejection forces and the external force (black) is
also represented for two symmetrical chromosome positions. (b) Stable chromosome position
as a function of the external force. The chromosome displacement with respect to the spindle
midplane varies linearly with the external force almost up to the chromosome collapse onto
one of the poles. The different curves are for power-law decreases of microtubule density with
distance from the pole,kb(r)/(k0

ue− f ) = r−β , with β = 1.5 (red)β = 2 (green) andβ = 3
(blue). (Figure: Pierre Sens).

Oscillatory behavior

In many organisms, bi-oriented chromosomes also display the oscillatory behavior
described above for mono-oriented chromosomes. We now show that the tug-of-war
between the opposing polar ejection forces of the two microtubule asters, also leads
to sawtooth shaped oscillations like those observedin vivo for bi-oriented chromo-
somes (Skibbens et al., 1993). The positional stability of a bi-oriented chromosome
does not depend on the kinetochore force because it does not play any role in this
description. Instead, the length of the spindleL and the external force can affect
the dynamical state of the chromosome. Similarly to mono-oriented chromosomes,
the fixed point may either be stable or unstable. In the stable regime, chromosomes
evolve from an arbitrary initial position toward the stable position given by Eq. 8.15
and remain there. In order to find out the behavior of a bi-oriented chromosome in
the unstable regime, we numerically integrate the dynamical system in Eq. 8.13.
Fig. 8.10a shows the time evolution of the chromosome position in the unstable
regime forFext = 0. In the absence of an external force, the chromosome oscillates
around the mitotic midplane located atL/2. The oscillations are highly non-linear
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and display the characteristic sawtooth shape previously found for mono-oriented
chromosomes, with phases of constant velocity interrupted by sudden switches in di-
rection. In this case however, the symmetry of the bipolar spindle ensures symmetric
oscillations in the absence of external force. When the chromosome is moving away
from the left pole, the number of chromokinesins bound to microtubules of the left
aster is larger than that attached to microtubules of the right aster (n` � nr ). The
polar ejection force created by the left aster is thus larger than that of the right aster,
explaining the movement toward the right pole (Fig. 8.10a,b). As the chromosome
progressively approaches the right pole, the numbern` decreases because the density
of microtubules of the left aster diminishes. At the same time, the attachment rate of
chromokinesins to microtubules from the right aster increases. This situation eventu-
ally leads to the simultaneous abrupt detachment of the chromokinesins bound to the
left aster and attachment of chromokinesins to the right aster (Fig. 8.10b). As a result,
the polar ejection force generated by the right aster becomes larger than that from the
left aster, and the chromosome moves away from the right pole. The situation is re-
versed when the chromosome is close enough to the left pole. Chromokinesins detach
suddenly from the right aster, and their abrupt attachment to the left aster ejects the
chromosome away from the left pole. This scheme is repeated over time, leading to
periodic oscillations of the chromosome around the mitotic midplane.

Our results show that both mono- and bi-oriented chromosomes may display
highly non-linear oscillations, in agreement with the experimental observations. In
Fig. 8.10c we show the motion of a chromosome throughout the division process.
Oscillations are present in almost all mitotic phases, from prometaphase to anaphase
A. In particular, bi-oriented chromosomes oscillate around the mitotic plate during
metaphase (Skibbens et al., 1993).

The presence of an external force acting on an unstable chromosome modifies
the characteristics of the oscillations. If a force directed toward the left (right) pole,
Fext > 0 (Fext < 0), is applied on a bi-oriented oscillating chromosome, its average
distance to the left pole is reduced (Fig. 8.11). Moreover, the amplitude, period and
symmetry of the oscillations are affected. While the change in the symmetry of the
oscillations depends on the direction of the force, the amplitude and period depend
on the magnitude of the force but not on its direction. In particular, both period and
amplitude are reduced in presence of an external force. The typical sawtooth shape
of the oscillations remains however largely unchanged.

The present analysis on the motion of bi-oriented chromosomes shows that even
in the extreme case where the kinetochore forces do not play any role in the dynam-
ics, chromosome oscillations arise from the tug-of-war of the opposing polar ejection
forces from the two microtubule asters.

8.2.4 Mechano-sensitivity of the kinetochore

Similarly to chromokinesins, it is most likely that the force-producing entities re-
sponsible for the kinetochore force are themselves force-sensitive (Skibbens et al.,
1995). A more detailed description of the force generation within the kinetochore,
which involves microtubule depolymerization (Koshland et al., 1988; Inoue and
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Fig. 8.10.(a-b) Bi-oriented chromosome oscillations in absence of external force (Fext = 0).
Time evolution of the chromosome position (a) and the number of chromokinesins bound
to the left (continuous line) and right (dashed line) microtubule asters (b), obtained by nu-
merical integration of Eq. 8.13. The chromosome oscillates around the mitotic midplane at
L/2. The oscillations display the characteristic sawtooth shape and are symmetric as a conse-
quence of the symmetry of the bipolar spindle. Parameters:f = 2, L/lp = 800,n

ξ
/N = 0.002

andNMTk0
bSch/4π l2pk0

u = 4103. (c) Chromosome motion in different stages of mitosis. (Top)
Schematic illustration of the different stages of chromosome movements during mitosis in
Newt lung cells: G, gliding; M, mono-oriented; C, congression of a bi-oriented chromosome
toward the mitotic midplane; B, bi-oriented chromosome; A, anaphase A poleward movement.
(Bottom) kinetochore-to-pole distance as a function of time, showing that sawtooth-shaped os-
cillations are present in almost all stages of the division process. (Adapted from Ref. (Skibbens
et al., 1993)).

Salmon, 1995) and cytoplasmic dynein motors (Sharp et al., 2000a), is required to
account for some features of the chromosome behavior. The mechanism proposed
here for the away-from-the-pole force generation by chromokinesins, based on the
motor collective dynamics, can be extended to the poleward force generation by any
force-sensitive element in the kinetochore (e.g. dynein motors).

In this extended description, the kinetochore force,FK , is no longer constant.
It is instead specified by the dynamics of the force generators in the kinetochore.
For the sake of simplicity, we consider the force generators in the kinetochore to be
dynein motors. Note however that microtubule polymerization/depolymerization in
the kinetochore can also be described in the same framework (Joglekar and Hunt,
2002). We assume a total number of dyneins,Nd, in the kinetochore which can be
bound to or unbound from the kinetochore microtubules (K-fiber). At each time
t there is a numbernd of dyneins bound to kinetochore microtubules, generating
a poleward force,FK = nd fd, where fd is the force generated by a single bound
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Fig. 8.11.Bi-oriented chromosome oscillations in presence of an external forceFext. The mo-
tion in absence of external force is shown as reference (continuous line). For an external force
Fext/N fs = 0.02, directed toward the left pole, the chromosome oscillates around an average
position closer to the left pole and the oscillations are no longer symmetric (dashed line). The
reversed situation happens for a forceFext/N fs =−0.02, of equal magnitude but directed to-
ward the right pole (dashed-dotted line). Parameters:f = 2, L/lp = 800,n

ξ
/N = 0.002 and

NMTk0
bSch/4π l2pk0

u = 4103.

dynein motor. We assume a linear force-velocity relation for dynein motors and write
Vd = Vd

0 (1− fd/ f d
s ), whereVd

0 is the velocity of dynein at vanishing load andf d
s its

stall force. As dynein motors move poleward and they induce the poleward motion of
the chromosome, we identify ˙r =−Vd. Force balance on the mono-oriented chromo-
some is given by Eq. 8.1. It is now necessary to write the dynamics of the poleward
kinetochore force, as we did for chromokinesins. The time evolution of the number
of dynein motors bound to kinetochore microtubules is given by

dnd

dt
= kd

b(Nd−nd)−kd
und , (8.16)

wherekd
b andkd

u are, respectively, the attachment rate of dyneins onto kinetochore
microtubules and their detachment rate. Similarly to chromokinesins, the detach-
ment rate for dynein motors depends exponentially of the applied load, so that
kd

u = kd
u,0exp( fdad/KBT), with ad being a length characterizing the effect of the

force on detachment andkd
u,0 the dynein detachment rate at vanishing load.

The equations written so far for the force generation by dynein motors in the
kinetochore are the same than for chromokinesins on the chromosome arms. The
difference in their dynamics is that the attachment rate of dyneins onto kinetochore
microtubules does not depend on the microtubule density in the aster, as dyneins are
located in the kinetochore and move along the kinetochore fiber. Therefore,kd

b is a
constant parameter. The dynamics of dynein motors are not coupled to any spatial
degree of freedom and, as a consequence, there is no difference between a chromo-



8.2 Discussion 199

some positioned close to the pole or far from it, as far as the kinetics of dyneins is
concerned. Indeed, several experimental observations show that chromokinesin inhi-
bition leads to defects in the positioning of bi-oriented chromosomes (Antonio et al.,
2000; Funabiki and Murray, 2000), suggesting that chromokinesins provide the spa-
tial information that allows the chromosome to sense its position in the spindle.

Using Eqs. 8.1, 8.2, 8.16, we get the following dynamical system for the time
evolution of the number of chromokinesins bound to astral microtubules,n, the num-
ber of dyneins bound to kinetochore microtubules,nd, and the position of the chro-
mosomer:

ṅ = kb(r)(N−n)−k0
u exp

(
f

(
1− ṙ

V0

))
n ,

ṅd = kd
b(Nd−nd)−kd

u,0exp

(
fd

(
1+

ṙ
Vd

0

))
nd ,

ṙ = V0

n−nd
f d
s
fs

n+nd
f d
s
fs

V0
Vd

0
+ ξV0

fs

, (8.17)

where fd ≡ f d
s ad/KBT characterizes the force-sensitivity of dynein detachment

events.
The stability analysis done in section 8.1 can also done for the dynamical sys-

tem in Eq. 8.17, and similar results are found. There exist stable states for which
the chromosome stalls at a fixed position from the pole (given by the fixed point of
Eq. 8.17) and also an oscillatory region. The aim of the present analysis is to show
that similar highly non-linear oscillations can also appear when the kinetochore is
force sensitive. In Fig. 8.12a.1 we show the numerically computed time evolution of
the chromosome position in the unstable regime. Similarly to the case where the kine-
tochore is not force-sensitive, the chromosome oscillates toward and away from the
pole, with phases of nearly constant velocity. Based on experimental observations,
it has been argued that the kinetochore switches between a force producing state in
the poleward phase and a neutral state, in which it does not apply any force, during
the away-from-the-pole phase (Khodjakov et al., 1999). The existence of a neutral
state can be naturally explained by the collective detachment of dyneins induced by
their force dependent detachment kinetics. In Fig. 8.12a.2 we show the time evolu-
tion of the number of bound chromokinesins and bound dyneins. During the away-
from-the-pole phase most dyneins are detached and, therefore, the poleward force
is negligible, explaining the existence of neutral states during away-from-the-pole
motion (Khodjakov et al., 1999).

Although this extended description, which takes into account the possible force-
sensitivity of the kinetochore allows to reproduce more experimental observations,
it introduces a large number of unknown parameters without bringing substantial
improvement to our qualitative understanding of the oscillations. There is, however,
one limiting situation that clearly highlights the crucial role of chromokinesins. Even
in the hypothetic case that chromokinesins were not force sensitive (f = 0), the cou-
pling between the instability associated to the kinetochore and the spatial informa-
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Fig. 8.12.Chromosome oscillations for a mechano-sensitive kinetochore. Time evolution of
the chromosome position (a.1, b.1) and the number of bound chromokinesins (continuous line
in a.2 and b.2) and bound dyneins (dashed line in a.2 and b.2) obtained by numerical integra-
tion of Eq. 8.17. Note that the number of dyneins during the away-from-the-pole phase is neg-
ligible, leading to a very small poleward force as the chromosome moves away from the pole
and explaining the existence of neutral states. (a) Chromosome oscillations when both dyneins
and chromokinesins are force sensitive, withfd = 2.0 andf = 2.0. Parameters:N fs/Nd f d

s = 1,
V0/Vd

0 = 1, kd
b/k0

u = 0.5, k0
u/kd

u,0 = 1, ξV0/N fs = 0.05 andNMTk0
bSch/4π l2pk0

u = 5104. (b)
Chromosome oscillations when chromokinesin motors are not force-sensitive (f = 0), and
dyneins in the kinetochore are force-sensitive (fd = 3.0). Although chromokinesins are in-
sensitive to the force, their number oscillates because different positions in the aster lead to
different attachment rates. Parameters:N fs/Nd f d

s = 1, V0/Vd
0 = 1, kd

b/k0
u = 1, k0

u/kd
u,0 = 1,

ξV0/N fs = 0.001 andNMTk0
bSch/4π l2pk0

u = 4.5103.

tion provided by the attachment kinetics of chromokinesins, also leads to similar
chromosome oscillations (Fig. 8.12b). We emphasize that the essential ingredients
for chromosome oscillations are the position-dependent chromokinesin attachment
rate (providing spatial information via the microtubule density in the aster) and the
collective force-dependent detachment kinetics of the motors, regardless whether the
latter are chromokinesin, dynein, or both.

The results in this section show that chromokinesins are essential motors for
chromosome positioning and motion during prometaphase and metaphase, as they
allow the chromosome to sense its position in space through their position-dependent
binding onto spindle microtubules.
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8.3 Conclusions

In summary, we have presented a unifying framework in which chromosome move-
ment, positioning and congression can be explained on the same basis. It is a self-
contained description where chromosome motion and positioning arise from the in-
teraction of chromokinesins on the chromosome arms with the astral microtubules
in the mitotic spindle. This study demonstrates the importance of cooperativity be-
tween force-generating molecular motors in the production of large-scale chromo-
some movements. It shows that the dynamic nature of the forces produced by en-
sembles of motor proteins leads to unexpected chromosome behavior, such as the
oscillations observedin-vivo. It also identifies the chromokinesin attachment kinet-
ics on astral microtubules as the mechanism that provides positional information to
the chromosome, and it illustrates the crucial role of the polar ejection force for
chromosome congression. We propose that congression is due to the weakening of
the polar ejection forces as the chromosome moves away from the pole, which is
in turn due to a decrease of microtubule density away from the center of the micro-
tubule aster. The results are consistent with the currently available experimental data,
and provide a quantitative estimate for thein vivo chromokinesin velocity at vanish-
ing force. We make further predictions that are experimentally testable, such as the
existence of a minimal number of chromokinesins below which the chromosomes
should not oscillate.

Our work highlights the essential role of chromokinesins in chromosome posi-
tioning and motion, but a better understanding of the kinetochore is also of capital
importance to obtain a detailed description of chromosome movements during mito-
sis.

Acknowledgments

The work in this chapter has been done in close collaboration with Pierre Sens. We
thank E.D. Salmon for his interesting remarks and T. Kapoor and K. Kruse for fruitful
discussions.





9

Dynamic stability of spindle-like structures

The collective action of motor proteins is not only important for the chromosome
movement and positioning but also for the assembly of the mitotic spindle. In this
chapter we study the role of motor cooperativity in the stability of spindle structures,
like the mitotic spindle.

Living cells display many structures that arise from the self-organization of po-
lar filaments and motor proteins (Alberts et al., 2004). Severalin vitro studies have
shown that mixtures of kinesin motors and microtubules can spontaneously develop
complex spatio-temporal patterns (Nedelec et al., 1997; Surrey et al., 2001). These
self-organization processes are essential for eukaryotic cell division (Wittmann et al.,
2001; Hyman and Karsenti, 1996) (see chapter 7). During mitosis, motor proteins
organize microtubules in a bipolar structure, the mitotic spindle, which serves as a
scaffold to transmit the necessary forces for chromosome segregation (Mitchison and
Salmon, 2001) (Fig. 7.4). The spindle consists of two microtubule asters that overlap
in the central region. The microtubules, with their minus-ends located at the aster
poles, are crosslinked by different motor proteins (Sharp et al., 2000b; Wittmann
et al., 2001) (Fig. 7.5b). Among all the motor proteins involved, one particular type
of motors, the plus-ended bipolar kinesins (Eg5 or Klp61F of the BimC family), has
been shown to be essential for the spindle stability. A decrease in their concentra-
tion below a certain threshold value causes the spindle collapse (Kapoor et al., 2000;
Miyamoto et al., 2004), and their total inhibition prevents bipolar spindle forma-
tion (Goshima and Vale, 2003). In addition, Eg5 motors have been shown to drive
the microtubule poleward flux (Miyamoto et al., 2004) and homolog motors to in-
duce the formation of (interpolar) microtubule bundles (Sharp et al., 1999). Based
on these experimental observations, we analyze in this chapter the role of bipolar
motors in the stability of pre-assembled spindles.

Bipolar motors are composed of two connected units, each one composed of
two motor domains. Both units can move simultaneously and independently on
microtubules (Kapitein et al., 2005). These motors are able to crosslink micro-
tubules (Sharp et al., 1999) and slide them with respect to each other when they are
in an antiparallel configuration (Kapitein et al., 2005), like in the central region of the
spindle (Figs. 7.5b, 9.1 and 9.2a,c). As a result, the motors produce an outward force
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Fig. 9.1. (a) Sketch of the mitotic spindle showing the distinct activities of some motor
proteins. Plus-end (red) and minus-end (yellow) directed crosslinking motors. Cytoplasmic
dynein (green) on the cortex can pull on astral microtubules and focus the minus-ends of mi-
crotubules into the poles. Chromokinesins (light green) are bound to chromosomes and move
toward the plus-ends of microtubules. (b) Microtubule poleward flux induced by the motion
of plus-end directed crosslinking bipolar motors (Eg5 or Klp61F of the BimC family; red) and
minus-end microtubule depolymerization induced by a pole-localized motor with depolymer-
izing activity (KinI, purple). (Modified from Ref. (Gadde and Heald, 2004)).

along the spindle axis and generate a microtubule flux toward the poles (Miyamoto
et al., 2004). The forces involved in mitosis are in the nanoNewton range (Nicklas,
1983). Since individual Eg5 motors cannot exert forces larger than a few picoNew-
tons (Valentine et al., 2006), their collective action is required to ensure the stability
of the mitotic spindle. At metaphase, this dynamic structure reaches a steady state
with microtubules of constant length undergoing permanent treadmilling (Mitchison
et al., 2004; Miyamoto et al., 2004), i.e. polymerizing at the plus end and depoly-
merizing at the minus end (Fig. 9.1b). We refer to this microtubule treadmilling as
microtubule poleward flux because it is the common terminology in the mitosis re-
search field.

The theoretical study of motors and microtubule mixtures has been recently
addressed using continuum coarse grained descriptions (Kruse et al., 2004; Kruse
and Julicher, 2000; Lee and Kardar, 2001), which have elucidated the basic self-
organizing principles. Other theoretical works describe the system at a less coarse-
grained level and consider the microtubules as rigid rods that can be moved and the
action of the motors (Aranson and Tsimring, 2005; Liverpool and Marchetti, 2003).
These descriptions are mainly focused in understanding the spatio-temporal patterns
that arise from the self-organization in out-of-equilibrium systems. However, the
coupling between the force-dependent motor kinetics and the local forces in self-
organized structures has not been addressed. We have seen in the previous chapters
that the coupling between local forces and motor kinetics is essential to understand
some of the instabilities. In this chapter, we study the dynamic stability of antipar-
allel arrays of microtubules under the action of longitudinal forces, in the presence
of bipolar molecular motors able to collectively hold the structure by stochastically
crosslinking the filaments. We analyze the effects of the motor kinetics on the sta-
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bility of the structure, and show that several phenomena observed in eukaryotic cell
division can be understood on the same physical grounds.

9.1 Theoretical description

In order to understand the basic physical mechanisms controlling the stability of a
spindle, we concentrate on a simplified geometry. We consider a pair of antiparal-
lel microtubules (or an antiparallel microtubule bundle) of constant length, under
the action of an inward forceF (Fig. 9.2a). In the steady state, there is a region
of length` where the antiparallel filament array overlaps (overlapping region). The
motors in this region can crosslink antiparallel microtubules and slide them in op-
posite directions, generating an outward force that balances the applied forceF . We
assume the antiparallel microtubule sliding to be the only mechanism generating
the poleward microtubule flux, as observed experimentally (Miyamoto et al., 2004).
The microtubule sliding generates a net microtubule flux toward the poles, which
requires a permanent treadmilling of the microtubule lattice in order to maintain a
steady state (Fig. 9.1b). Although the microtubule polymerization velocity at the
plus-end and depolymerization at the minus-end are, in general, different than the
sliding velocity generated by the motors, we assume that the polymerization rates
adapt to the sliding velocity. This assumption is based on the observation that the
spindle length and morphology do not significantly vary upon changes of the mi-
crotubule turnover velocity (Miyamoto et al., 2004). Indeed, there are several motor
proteins with depolymerizing activity (e.g. KinI and MCAK) that associate to minus
and plus ends of microtubules and could modify the dynamics of the microtubule
ends (Fig. 9.1b)1. With this assumption concerning the adaptation of the micro-
tubule polymerization/depolymerization dynamics to the sliding velocity induced by
the motors in the overlapping region, the system can reach a steady state with micro-
tubules of constant length and a net microtubule flux toward the poles.

Outside the overlapping region, there are two regions of lengthL (non-overlapping
regions; see Fig. 9.2a) where motors cannot apply forces to sustain the spindle due
to the parallel configuration of the microtubules. Since we concentrate on the spin-
dle stability and do not address the mechanisms that determineL and`, we consider
them as given parameters.

Non-overlapping region

The motors in the non-overlapping region can be either bound to a microtubule or
freely diffusing in the bulk (Fig. 9.2b). We assume a constant bulk motor density,

1 One could also describe the dynamics of plus and minus microtubule ends and derive
an equation for the spindle length. However, such a description would require a detailed
knowledge of both the polymerization/depolymerization dynamics of spindle microtubules
and the activity of the motors associated to the microtubule ends. Unfortunately, this knowl-
edge is not currently available.
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Fig. 9.2. (a) Antiparallel array of microtubules under the action of a longitudinal forceF .
Buckled and non-buckled arrays are shown. The minus and plus ends of microtubules are de-
picted as− and+ respectively. Motors are represented by dots. In the non-overlapping region
of lengthL there are no antiparallel filaments and the motors are not subject to any force.
The motors in the overlapping region of length` sustain the structure by crosslinking and
sliding antiparallel filaments. (b-c) Possible kinetic events of a motor in the non-overlapping
region (b) and in the overlapping region (c). The velocitiesV andV̂ are the crosslinking motor
velocity and the microtubule poleward velocity respectively.

ρ3D, and consider the motors in the bulk to attach onto microtubules at a ratek3D
b .

Once a motor is bound to a microtubule, it moves convectively with an average ve-
locity V0 (motor velocity at vanishing load; see chapter 1) toward the plus-end of the
microtubule and detaches at a ratek0

u (detachment rate at vanishing force). The ap-
proximation of constant bulk motor density is reasonable for typical spindle lengths
(Ls∼ 5 µm) as the motor bulk concentration equilibrates over time scales, of order
∼ L2

s/D ' 1 s (D ∼ 10 µm2 s−1 being the diffusion constant of the motors in the
bulk), shorter than the time scale of convective motor movement along microtubules,
of order∼ Ls/V0' 100 s, for typical values of the motor velocity (V0' 50 nm s−1 for
Eg5 motors (Kapitein et al., 2005; Valentine et al., 2006)). At the mean field level,
the dynamics of the bound motor density,ρ(s, t), can then be expressed as (Lipowsky
et al., 2001; Parmeggiani et al., 2003)

∂tρ(s, t)+∂sJ(s, t) =−k0
uρ(s, t)+k3D

b ρ3D , (9.1)

wheres is the position along the microtubule as measured from the microtubule
minus ends andJ(s, t) is the flux of bound motors. For simplicity, we assume the
bound motors to be in a low density phase2 and writeJ(s, t) = ρ(s, t)(V0−V̂) in the
laboratory reference frame. The velocityV̂ corresponds to the turnover velocity of
microtubules toward the poles, induced by the sliding of antiparallel microtubules in
the overlapping region (Fig. 9.2b,c).

2 This is to say that the density of bound motors is low enough so that the interactions be-
tween them can be neglected.
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Overlapping region

In the central overlapping region, bipolar motors can be either in a crosslinking
state or in a bound state. In the former state both motor units are attached to a
pair of antiparallel microtubules, sliding them in opposite directions and support-
ing a fraction of the total forceF . As a result, the crosslinking motors move with a
force-dependent velocityV (Fig. 9.2c). Based on recent experimental observations
on Eg5 (Valentine et al., 2006), we use a linear-force velocity relation and write
V = V0 (1− fm/ fs), where fm is the load applied on the motor andfs its stall force.
The value of the stall force has not yet been measured for Eg5 but it is estimated to be
about fs' 7pN (Valentine et al., 2006). We describe the collective dynamics of the
motors holding the structure in the same way than in chapters 5 and 8. We consider
a numbernc of independent crosslinking motors to equally share the total applied
force, so thatfm = F/nc. As the poleward microtubule movement is driven by the
sliding of microtubules generated by these motors, we identifyV̂ = V (Fig. 9.2c).
Each unit of a motor in the crosslinking state can detach at a force-dependent rate
ku( fm) = k0

u exp( fmb/KBT) (Kramers theory (van Kampen, 2004); see chapter 1),
whereb is a length in the nanometer scale characterizing the activated process and
KBT the thermal energy. After the detachment of one motor unit, the bipolar motor
is only bound to one microtubule and unable to apply force. Such a motor can either
detach the bound motor unit left at a ratek0

u and diffuse into the bulk, or re-attach the
unbound motor unit at a ratekb and become a crosslinking motor again. The motors
in the bulk can also attach directly to the microtubules in the overlapping region at a
ratek3D

b .
The relevant variable being the number of motors sustaining the spindle, we ne-

glect their spatial distribution in the overlapping region. Accordingly, the equations
for the average number of crosslinking and bound motors,nc andnb respectively,
read

dnc

dt
= kbnb−ku(nc)nc , (9.2)

dnb

dt
= 2J(L, t)+k3D

b ρ3D`+ku(nc)nc−
(
k0

u +kb

)
nb ,

whereJ(L, t) is the convective flux of bound motors reaching the overlapping region
from each non-overlapping region, withL being the arclength of a microtubule from
its pole to the overlapping region (Fig. 9.2a). The value ofJ(L, t) is determined by
the solution of Eq. 9.1. Specifying a zero-flux boundary condition at the poles,J(s=
0, t) = 0, the steady-state solution for the density field of bound motors is

ρ(s) =
k3D

b ρ3D

k0
u

[
1−exp

(
−s

k0
u

V0−V̂

)]
. (9.3)

Note that the velocitŷV is not a parameter; it is fixed by the coupled dynamics of
the motors in the overlapping and non-overlapping regions. When the motor proces-
sivity length,lp ≡ V0/k0

u, is smaller than the characteristic spindle length (lp � L),
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the flux J(L, t) is fixed by the exchange of motors between the microtubule and
the bulk (Langmuir kinetics) and determined by a constant bound motor density,
ρ = k3D

b ρ3D/k0
u, in the steady state. Indeed, typical values forL are about sev-

eral microns long for most cell types, while Eg5 motors are not very processive
(lp ' 67 nm (Valentine et al., 2006; Kapitein et al., 2005))3. In this case the dy-
namics ofnc andnb are decoupled from the density of motors close to the poles.
Therefore, for relevant values of the parameters (lp � L) our results do not depend
on the boundary condition for the bound motor density field ats= 0.

Equations for the motor dynamics

In order to understand which are the relevant parameters controlling the stability
of the spindle, we scale the variables as follows. The quantities ˜nc ≡ nc/F̃ and
ñb ≡ nb/F̃ are the normalized numbers of crosslinking and bound motors respec-
tively. The natural scale for the number of motors is set byF̃ ≡ Fb/KBT, i.e. the
ratio of the forceF and the characteristic detachment forceKBT/b. The relevant di-
mensionless lengths areL̃≡ f L/lp and ˜̀≡ f `/lp, where the parameterf ≡ fsb/KBT
quantifies the sensitivity of motor detachment to force. Asymmetry in motor attach-
ment/detachment events at vanishing load is characterized byγ ≡ kb/k0

u and the time
is scaled withk0

u (t → τ ≡ tk0
u). Finally, the most relevant parameter,δ , which ac-

counts for the strength of the motor flux reaching the overlapping region, is defined
as

δ ≡
ρ3Dk3D

b lp

F̃ f k0
u

kb

k0
u

. (9.4)

With these definitions, we rewrite Eq. 9.2 to get

dñc

dτ
= γñb−exp

(
1
ñc

)
ñc , (9.5)

dñb

dτ
=

δ

γ

[
2
ñc

(
1−exp(−L̃ñc)

)
+ ˜̀
]
+exp

(
1
ñc

)
ñc− (1+ γ)ñb .

Although the original system (Eq. 9.2) depends on all motor kinetic parameters and
the parameters characterizing the spindle morphology (L and`), the scaled system
depends only on four dimensionless parameters. The stability of the system will thus
depend on these four combinations of the original parameters at most.

9.1.1 Stability of spindle-like structures

The existence of antiparallel microtubule arrays under an external loadF is deter-
mined by the balance between motor attachment and detachment fluxes, as given by
the steady state solutions (fixed points),{nf

c ,nf
b
}, of Eq. 9.5, which read

3 New experiments on Eg5 motors indicate that the processivity length of Eg5 motors might
be about a micron (T. Kapoor, personal communication).
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ñf
b

=
exp
(
1/ñf

c

)
ñf

c

γ
, δ =

exp
(
1/ñf

c

)
(ñf

c)2

2
[
1−exp

(
−L̃ñf

c

)]
+ ˜̀ñf

c

, (9.6)

There always exists a critical value,δm, below which there are no solutions of
Eq. 9.6. This situation corresponds to an attachment flux of crosslinking motors that
can not balance their detachment flux, leading to the loss of all crosslinking motors
and inducing the spindle collapse. Associated to the critical pointδm, there is a min-
imum number of crosslinking motors, ˜nm

c , necessary to sustain a spindle, which is
given implicitly by

1+
[
ñm

c

(
2+ L̃ñm

c

)
−1
]
exp
(
−L̃ñm

c

)
= ñm

c

[
2+

˜̀

2
(ñm

c −1)
]

. (9.7)

The actual value ofδm is obtained by substituting ˜nf
c in Eq. 9.6 by the solution of

Eq. 9.7, so that

δm =
exp(1/ñm

c )(ñm
c )2

2
(
1−exp

(
−L̃ñm

c

))
+ ˜̀ñm

c
. (9.8)

In order to determine the stability of the structures, we perform a linear stability
analysis of the solutions of Eq. 9.6. We thus study the stability of the structure with
respect to fluctuations in the number of motors sustaining it.

Stable spindles exist above a critical valueδc. The precise expression for this
critical pointδc depends on the ratio,γ, between motor attachment/detachment rates
at vanishing load. For values ofkb andk0

u such that

γ > γc ≡
exp(1/ñm

c )(1− ñm
c )

ñm
c

−1 , (9.9)

the transition from an unstable array to a stable spindle corresponds to a saddle-node
bifurcation atδc = δm, given by Eq.9.8. On the other hand, ifγ < γc, this transition
corresponds to a global bifurcation (saddle-connection4) at a valueδc slightly larger
thanδm (Fig. 9.3a). In the limiting case whereL� lp and`� lp, the expressions for
δm andγc reduce to

δm =
e2

8
' 0.92, γc = e2−1' 6.39 . (9.10)

As discussed above, in most relevant situationsL� lp, but` may typically be larger
than lp. In this case, for̃̀ & 6.62 the value ofγc is negative, meaning that for any
value of the ratiokb/k0

u, the value ofδc is given by Eq. 9.8. Regardless of the value
of γ, the same qualitative scenario is observed asδ is varied and we restrict the
following discussion to the regimeγ > γc without loss of generality.

The threshold value,δc, depends only on the minimal number of motors ˜nm
c

(Eq. 9.8), which is a function of onlỹL and ˜̀. Thus,δc depends solely oñL and
˜̀. Typically L� lp andδc becomes independent ofL (Fig. 9.3b), whilè modifiesδc

4 See Ref. (Guckenheimer and Holmes, 1990) for an introduction to bifurcation theory.
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Fig. 9.3. (a) Stability of an antiparallel microtubule array as the parametersδ andγ are varied,
for the limiting case whereL� lp and`� lp. The continuous line represents the critical value
δc that specifies the transition between stable and collapsed spindles. Aboveγc, the transition
takes place atδc = δm (dashed line; Eq. 9.8). Belowγc, the numerically computed value of
δc is slightly larger thanδm. In both cases, the same qualitative behavior is obtained asδ is
varied. (b-c) Dependence of the critical valueδc on L̃ and ˜̀ in the limiting cases wherè̃� 1
(b) andL̃� 1 (c).

slightly (Fig. 9.3c). In this limit, the stability does not depend on the characteristic
spindle lengthL and, as a consequence, the spindle morphology and its stability are
decoupled. As the motor properties and the lengthsL and` are difficult to modify
experimentally,δ appears as the natural control parameter for the spindle stability,
since it depends both on the applied force,F , and the bulk motor density,ρ3D.

9.1.2 Spindle morphology

The self-organization process of motors and microtubules can induce the formation
of microtubule bundles (Nedelec et al., 1997). Such microtubule bundles have been
observed during the cell division of several organisms (Sharp et al., 1999; Winey
et al., 1995; Mastronarde et al., 1993), and bipolar motors (Klp61F) have been shown
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to crosslink the microtubules forming the bundles (Sharp et al., 1999). In this sec-
tion we derive the shape of an antiparallel microtubule array (interpolar microtubule
bundle) from purely elastic arguments.

The bipolar spindle can be decomposed into two half arrays, each one being the
mirror image of the other with respect to the mitotic plate. Due to this symmetry, we
analyze only the shape of half array, which is composed of a non-overlapping region
and one half of the overlapping region (Fig. 9.2a). In case the overlapping region is
small compared to the non-overlapping one, the half array can be thought as a rigid
rod with bending rigidityB, having one of its edges clamped due to the crosslinking
motors in the overlapping region. The clamped edge is located at the mitotic plate
and the array is perpendicular to this plane of symmetry. The shape of a rigid rod of
bending rigidityB is unique for a given lengthL and applied forceF (Landau and
Lifshitz, 1986). In the stability analysis developed above we considered different
values ofF andL, so that it is, in principle, possible to identify the stable spindle
shapes for a given set of parameters. However, as discussed above, for relevant values
of the parameters (L� lp) the stability of the spindle does not depend onL and there
is a degeneracy of shapes for each value of the forceF and bulk motor densityρ3D
(see section 9.2.1). Such degeneracy suggests that the mechanism fixing the spindle
length can be different than the mechanism governing its stability.

Below the buckling force,FB = (π/2)2B/L2, the array is simply straight and
perpendicular to the mitotic plate. For forces aboveFB, the shape of the half array
is given by the elastica solutions of a rod of lengthL with a clamped edge under
an applied loadF (Landau and Lifshitz, 1986). The shape of the buckled half array
can be described by the angle,θ(s), of the local tangent to the array at the points
with the spindle axis (s being the arclength, measured from the clamped edge). The
Euler-elastica equation for a bent rod,

B
d2θ(s)

ds2 +F sinθ(s) = 0 , (9.11)

together with the boundary conditions,θ(s= 0) = 0 andθ ′(s= L) = 0 (θ ′≡ dθ/ds),
fully specify the shape of the array, which is given implicitly by

s=

√
B

2F

∫
θ(s)

0
dθ

′ 1√
cosθ ′−cosθL

. (9.12)

θL ≡ θ(s = L) is the angle of the array with the spindle axis at the spindle pole.
For a given set of parameters{F,B,L} satisfyingF ≥ FB, there is a single valueθL

which depends only on the dimensionless combinationL
√

F/B. The value ofθL is
an increasing function ofL

√
F/B, so that for fixedF andB, the longer the array,

the more deformed it is with respect to the straight shape (Fig. 9.4). The observed
shapes for the mitotic spindle at metaphase are in qualitative accordance with our
theoretical results (see discussion below).
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Fig. 9.4. Shape of a microtubule antiparallel array. (Top) Two dimensional representations
of the buckled array for a force,F > FB, and increasing array lengths (from left to right).
(Bottom) Three dimensional representations of the whole spindle for the arrays on the top,
obtained by rotation of the antiparallel array shape around the spindle axis.

9.2 Discussion

In this section we compare the theoretical results above to several experimental ob-
servations in eukaryotic cell division.

9.2.1 Collapse of the mitotic spindle

The existence of a critical valueδc implies that for a microtubule array under the
action of a load,F , there exists a minimal motor bulk concentration,ρmin

3D , below
which no stable spindles are found. Using the definition ofδ (Eq. 9.4) and Eq. 9.8,
this minimal motor density reads

ρ
min
3D =

k0
u

k3D
b lp

f δc

γ
F̃ . (9.13)

Whenρ3D > ρmin
3D the stable spindle may be either straight or buckled depending on

the value of the compressive force,F . For forces below (above) the buckling force
FB of the structure, the stable spindle is straight (buckled). In Fig. 9.5 we plot the
structures that can be found as the bulk density of motors and the force applied on
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the spindle are varied. Fig. 9.6 shows the experimentally observed collapse of a pre-
assembled bipolar spindle after the addition of 50µM of monastrol, an inhibitor
of the bipolar kinesin Eg5. About 5min after the addition of monastrol, the spin-
dle is still bipolar and displays its characteristic fusiform shape (to be compared to
Fig.9.4-center). As monastrol progressively inhibits Eg5 motors, the bipolar spindle
becomes more deformed (13.8min after monastrol injection; to be compared with
Fig.9.4-right), and some interpolar microtubules lose their connection in the central
region (16.3−19.0min after monastrol injection). At this point, the spindle is still
bipolar, but it starts to break up and the microtubules that are no longer hold in the
central region by Eg5 motors relax to their straight shape, converting progressively
the spindle into a single microtubule aster (27.3min after monastrol injection). These
experimental observations suggest the existence of a minimal bulk motor density to
sustain the spindle.

Fig. 9.5.Possible spindle structures as the bulk motor densityρ3D and the forceF are varied.
The bulk densityρ0

3D ≡ δc f (k0
u)

3/k3D
b V0kb sets the density units. Aboveρmin

3D (F), buckled
(straight) stable spindles exists forF > FB (F < FB). Belowρmin

3D (F) no stable spindles exist.
The insets show sketches of straight and buckled stable arrays.

More recently, it has been shown that the progressive inhibition of Eg5 motors
leads to the collapse of the spindle at a finite bulk motor density (Miyamoto et al.,
2004). Moreover, the total inhibition of homolog motors (Klp61F) has been shown to
prevent bipolar spindle formationin vivo (Goshima and Vale, 2003), in accordance
with our predictions.
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Fig. 9.6.Collapse of a pre-assembled bipolar spindle induced by monastrol, an inhibitor of
Eg5 motors. 50µM of monastrol were added to bipolar spindles assembled inXenopusegg
extract. The time (in minutes) after the addition of monastrol is indicated. Microtubules (red)
and DNA (blue) are shown. The spindle is progressively deformed as monastrol inhibits Eg5
motors. After about 16min the spindle starts to break up and, after 27min it has collapsed into
a single microtubule aster. Bar, 5µm. (Adapted from Ref. (Kapoor et al., 2000)).

9.2.2 Interpolar microtubule bundles

Above the threshold densityρmin
3D , there is a finite amount of crosslinking motorsnc

collectively holding the spindle. In Fig. 9.7a we plot the stable solutions of Eq. 9.6 as
a function of the bulk concentration of motors. Increasing values ofρ3D and` leads
to larger motor attachment fluxes, that result in a larger amount of crosslinking mo-
tors. For a living cell in native conditions, the interpolar microtubules in the spindle
are typically buckled (Mitchison and Salmon, 2001) (Figs. 9.6-upper left and 9.8c).
Therefore, the force applied on the microtubules is of orderFB which, for single mi-
crotubules of 5µm in length, is about 1 pN. Using this value for the forceF , the



9.2 Discussion 215

number of crosslinking motors leading to a stable antiparallel array turns out to be
very small (nc ' 2). In this case fluctuations would dominate and, although stable
arrays could be transiently formed, their lifetime would be too short (on the time
scale of motor detachment). Since the buckling force of a microtubule bundle can
be at least one order of magnitude larger5, stable interpolar microtubule bundles re-
quire tenths of crosslinking motors and provide robust spindles with lifetimes over
the time scale of the division process. Indeed, the time to break up the antiparallel ar-
ray is given by the time needed to detach allnc crosslinking motors holding the array
in the overlapping region. For a large enough number of motors, this time increases
essentially exponentially with the number of motorsnb+nc (Klumpp and Lipowsky,
2005).

Fig. 9.7.(a) Steady state analytical solutions for the number of crosslinking motors as a func-
tion of the bulk density of motors. (b) Sketch of the overlapping region showing a collection
of crosslinking motors (red) holding the spindle.

Interpolar microtubule bundles are indeed observed in several organisms dur-
ing cell division (Mastronarde et al., 1993; Winey et al., 1995; Sharp et al., 1999)
(Fig.9.8). Although we do not address here the mechanism by which interpolar mi-
crotubule bundles are formed, our analysis predicts that their existence is essential
for the stability of the spindle. Indeed, microtubules (or any filament) can only resist
compressive forces below or about their buckling force. Interestingly, it has been re-
ported that microtubule bundles are not observed in small mitotic spindles (Winey
et al., 1995), for which the microtubule length is aboutL ' 0.3 µm, corresponding
to buckling forces of several hundreds of picoNewtons.

5 Assuming the bending rigidity of a microtubule bundle to scale linearly with the number
of microtubules in the bundle, the buckling force of an interpolar microtubule bundle com-
posed of∼ 10 microtubules is about tenths of picoNewtons. The approximation of a linear
increase of the bending rigidity with the number of microtubules in the bundle is reason-
able if the detachment/attachment time scales of the motors crosslinking the microtubules
are short compared to the time scale of deformation of the bundle. In this case, there is no
shear stress between the microtubules forming the bundle.
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Fig. 9.8. (A-B) Electron microscopy images of a Drosophila spindle at metaphase. 10-nm gold
particles are attached to Klp61F motors (Eg5 homologs) that appear as dark dots in the im-
age. The regions with higher density of Klp61F reveal the interpolar microtubule bundles. (A)
Klp61F staining pattern on the whole spindle (P, spindle poles; MB, interpolar microtubule
bundle). The inset shows a higher magnification of an interpolar microtubule bundle (MB),
indicated by an arrow. (B) Higher magnification of the spindle mid-zone. (C) Metaphase spin-
dles in early Drosophila embryos. Confocal images of embryos where tubulin (yellow) and
DNA (blue) are stained. Microtubule bundles are more visible in the central region, where the
overlap of microtubules and DNA appears white. Bars: (A) 1.3 µm, (B) 320 nm, (C) 7.6 µm.
(Modified from Ref. (Sharp et al., 1999)).

9.2.3 Poleward microtubule flux

The speed of the microtubule flux toward the poles is given by the microtubule sliding
velocity, V̂, induced by the crosslinking motors in the overlapping region, so that
V̂ = V. Thus, the microtubule velocity toward the poles reads

V̂ = V0

(
1− F

nc fs

)
, (9.14)

wherenc corresponds to the stable solution for the number of crosslinking motors
(Fig. 9.7). In Fig. 9.9a we represent the sliding velocity as a function ofρ3D, for
different values of̃̀ . It decreases from its maximal valueV0 as the bulk motor den-
sity is decreased, and it is typically finite for the minimal densityρmin

3D at which the
spindle collapses, as observed experimentally (Miyamoto et al., 2004). At high motor
concentrationsρ3D � ρmin

3D , the crosslinking motors move nearly at their maximal ve-
locity, V0, and the microtubules move poleward at this velocity consequently. As the
motors in the non-overlapping regions move at velocityV0 with respect to the micro-
tubules in the spindle (Fig. 9.2b), they appear static in the laboratory reference frame.
This apparent motor stillness has indeed been observed experimentally (Kapoor and
Mitchison, 2001). Our analysis predicts that decreasing the bulk motor densityρ3D
would allow the observation of motor movement in the spindle. This observation
would provide further insight on the understanding of the mitotic spindle structure.

In Ref. (Miyamoto et al., 2004) the authors use (S)-quinazolinone, an Eg5 in-
hibitor, to progressively reduce the concentration of Eg5 motors and analyze the
effects of such reduction on the spindle dynamics. In Fig. 9.9b we show the average
microtubule poleward velocity as a function of the drug concentration. The velocity
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Fig. 9.9. (a) Steady state analytical solutions for the velocity of crosslinking motors (or the
microtubule poleward flux velocity equivalently) as a function of the bulk motor density. (b)
Effect of a progressive inhibition of Eg5 motors with (S)-quinazolinone. The velocity of mi-
crotubules toward the poles is plot as a function of the drug concentration. (Modified from
Ref. (Miyamoto et al., 2004)). (c.1) Fluorescence speckle microscopy image of a spindle as-
sembled inXenopusegg extracts, where the tubulin is labeled at low concentrations, giving the
spindle this sparkling appearance. The highlighted region across the spindle is used to prepare
the space-time plot in (c.2). (c.2) Space-time plot of tubulin speckles. The speckle trajectories
characterized by an angle reveal the poleward microtubule movement. Bars, 5µm. (Modified
from Ref. (Kapoor and Mitchison, 2001)).

at vanishing quantities of Eg5-inhibitor saturates to about 2µm/min, which is about
the velocity of Eg5 motors under vanishing load (Miyamoto et al., 2004; Valen-
tine et al., 2006). As the drug concentration is increased, the microtubule poleward
velocity decreases until the point where the poleward microtubule flux stalls. How-
ever, these experiments are done using trapped spindles in order to avoid the spindle
collapse at a finite drug concentration. For spindles in native conditions the micro-
tubule poleward velocity is finite at the motor concentration that leads to the spindle
collapse. Unfortunately, the experimentally measured values for the poleward micro-
tubule flux cannot be directly compared to our theoretical results (Fig. 9.9a) because
the relation between the drug concentration and the actual concentration of Eg5 mo-
tors in the bulk is likely to be non-linear. The only features which are insensitive to
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this non-linear scaling are the saturation value of the velocity at large motor concen-
trations and the value of the velocity at the point where the spindle collapses. Both
features are in good qualitative agreement with our results.

9.3 Conclusions

The present approach highlights the importance of force-dependent motor kinetics
on the self-organization of microtubules and motors. In these structures there exist
internal stresses that arise from the active character of the motors, which crosslink
and slide filaments to one another. The stresses that the motors themselves develop
affect their own kinetic properties and, in particular, their detachment probability
per unit time. The influence of the internal stresses on the motor kinetics may im-
pose restrictive limits to the overall stability of self-organized structures. We have
shown in this chapter that this force-feedback is essential to understand the stability
of spindle-like structures.

Our study is based on the self-organization of motors and microtubules as the un-
derlying mechanism for spindle assembly. There are however two competing ideas
concerning the origin of spindle assembly. One is the self-organization process just
mentioned and the other postulates the existence of a spindle matrix, made of an
hypothetic unknown protein. Some indirect evidences have been proposed in favor
of the spindle matrix hypothesis. In particular, it has been argued that the apparent
motor stillness in the spindle suggests the existence of a static spindle matrix, to
which the bipolar motors are attached (Kapoor and Mitchison, 2001). The micro-
tubules could, according to this hypothesis, be moved by the motors attached to the
matrix. We have given above a different explanation for these observations which is
totally compatible with the self-organization of motors and microtubules. Therefore,
the observation of motor motion upon a decrease of motor density, as predicted here,
would provide strong evidence for the self-organization of motors and microtubules
as the underlying principle of mitotic spindle assembly.

The analysis developed in this chapter constitutes a simple framework through
which several observations in mitosis, namely the spindle collapse, the microtubule
poleward flux, the static appearance of motors in the spindle, and the necessity of
microtubule bundles, can be explained on a common physical basis. However, spin-
dle morphogenesis and dynamics is far more complex that the scheme presented
here. There are many other proteins that influence the organization processes be-
tween motors and microtubules and, in particular, the chromosomes may also play a
very important and interesting role.
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General conclusions and perspectives

In this work we have studied how molecular force generators cooperate to develop
the forces that drive some cellular movements. All the motility processes addressed
have the common feature that ensembles of force generators work cooperatively.
Although the coupling between the elementary force generators is distinct in the
different cases addressed, they show clear similarities in their dynamics.

We have first addressed the motion of oil drops propelled by an actin comet tail,
which closely mimics the propulsion mechanism of the bacteriaListeria. The growth
of a filamentous actin network on the drop surface generates the necessary forces for
motion. The polymerization of an actin filament against an obstacle cannot generate
a substantial force if the filament is not somehow held. The crosslinked filaments in
an actin network are held together, enabling individual filaments to apply forces upon
growth. It is the cooperative action of many growing actin filaments, held together
by their entangled network structure, that generates the necessary forces to induce
the motion. We have adopted a mesoscopic approach in which the coupling of the
growth dynamics of distant filaments is effectively taken into account in the actin
gel elasticity. The results of our theoretical analysis are in quantitative agreement
with the experimental observations of Hakim Boukellal (Institut Curie). In partic-
ular, our study shows that the growth of the actin network generates stresses that
push and squeeze the drop along the sides and pull the drop backward at the rear.
There are many other actin-based motility processes that may be characterized by a
similar stress distribution. The process of phagocytosis is also driven by the growth
of an actin network around the object being engulfed (Aderem and Underhill, 1999;
Champion and Mitragotri, 2006). Our results could be helpful to understand phago-
cytic movements, as the pulling stresses may promote the internalization of particles
in cells.

Our results concerning the motion of the actin polymerization promoters on the
surface of the drop show that the dynamics of the nucleators are essential to under-
stand the propulsion mechanism. It is thus possible that the motion of the polymer-
ization promoters at the leading edge of a crawling cell plays an important role in
this complex motility process. Indeed, in adhesion problems, the motion of stickers
is crucial to understand the dynamics of the process (Brochard-Wyart and de Gennes,
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2002; de Gennes et al., 2003). It would be interesting to perform biomimetic experi-
ments to understand at quantitative level the coupled dynamics of actin polymeriza-
tion promoters on a fluid interface and the growth of an actin network.

There are many aspects of actin-based motility that remain to be understood. The
force generation by individual actin filaments has not yet been well characterized and
it is involved in many motility processes. At larger scales, the cooperative dynam-
ics of the entangled actin filaments forming an actin network which grows against
an opposing force has not been studied in details neither. It would be interesting
to connect our mesoscopic description to more microscopic approaches through a
theoretical description at intermediate length scales.

In the second part of the work we have studied several aspects of intracellular
traffic. We have first analyzed in details the physics of membrane tube extraction by
motors proteins. Although membrane tubes are observed in eukaryotic cells, where
they are thought to be involved in transport processes, the mechanism enabling such
transport remains unknown. It has been proposed that a gradient of surface tension
along a membrane tube, which is set up by connecting compartments with differ-
ent surface tension, induces a fluid flow inside the tube that drives the transport of
material between the compartments (Upadhyaya and Sheetz, 2004). However, there
is no direct evidence in favor of this transport mechanism in living cells. It would
thus be interesting to study the functionality of membrane tubesin vivo, like those
composing the endoplasmic reticulum or connecting different organelles.

We have analytically determined the conditions leading to tube extraction and
showed that, for a given surface tension of the vesicle, there exists a threshold den-
sity of motors on the vesicle below which no tubes can be pulled. Our findings show
that the threshold is a direct consequence of the collective force-dependent kinetics
of motor proteins. Moreover, we obtained the density profile of motors along the
growing tube and estimated the number of motors required to pull it. The motors
accumulate dynamically at the tip of a growing tube and, typically, just a few motors
(∼ 5-10) work together to extract it. We have shown that the attachment/detachment
kinetics of motors sets a small average number of working motors per protofilament
at the tube tip. This finding establishes limits on the forces that motors can develop
when pulling a membrane tube. It is possible that living cells use other proteins to
create motor aggregates that would rigidly couple the motors and allow the genera-
tion of larger forces. Our theoretical results are in good quantitative agreement with
the experimental observations by Cécile Leduc (Institut Curie). From the compari-
son between theory and experiments, we have determined the binding rate of kinesins
onto microtubules in a geometry close to thein-vivosituation.

A more detailed analysis, accounting for the increase of vesicle tension during
tube growth, has shown that there exist two possible dynamical regimes. In a stable
regime, the tube stalls at a certain length and a micron-sized high density phase of
motors progressively develops upstream from the tube tip. There also exists an oscil-
latory regime where the tube oscillates between minimal and maximal lengths. We
have shown that these highly non-linear oscillations have their origin in the collective
force-dependent kinetics of the molecular motors pulling the tube. The different dy-
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namical regimes described have been observed experimentally by C. Leduc, showing
the existence of collective oscillations of processive molecular motors.

We have also studied the collective dynamics of interacting motors pulling on
fluid membranes. Both the transport of small vesicles and the extension of membrane
tubes in living cells constitute examples of this process. The results obtained differ
significantly from simple mean field predictions and from the collective behavior ob-
served for rigidly or elastically coupled motors. Our findings suggest that molecular
motors pulling a membrane tube should simultaneously use several protofilaments in
order to develop the typical forces required to pull it. This result could also be rele-
vant for motors pulling on transport vesicles in living cells. It would be interesting to
test our results usingin vitro biomimetic experiments where motors carry small vesi-
cles under the action of an applied force. The comparison of our theoretical results to
experiments consisting of a bead exerting a force on a single motor moving in front
of several other motors, would allow the determination of the interactions between
motors.

In living cells, however, transport vesicles have typically motors of different di-
rectionalities attached on their surface (Welte, 2004). These vesicles display abrupt
changes in direction which are thought to be a consequence of the competing motor
activities. It would be interesting to study, both theoretically and experimentally, the
dynamics of vesicles being transported collectively by motors with different direc-
tionalities. The collective force-dependent kinetics of motors may play a crucial role
in the observed changes in direction of the vesicle. It is likely that the coordination
of different motor activities results just from their coupled dynamics.

Another important aspect of intracellular transport is the traffic of motor pro-
teins in crowded conditions. We have also analyzed the traffic of motors at large
scales, both analytically and numerically (Monte Carlo simulations). Several non-
linear phenomena arise from the mutual motor interactions. In particular, traffic jams
develop spontaneously due to the noisy character of the motor kinetics. We predict
the appearance of large and long-lived traffic jams, which can move either upstream
or downstream, in presence of attractive interactions between the motors that affect
their attachment/detachment kinetics. It is possible that the spontaneous formation
of traffic jams have important consequences for the long range traffic in the crowded
conditions of the cell. Several neurodegenerative diseases are thought to be caused
by anomalies in the traffic along axons (Aridor and Hannan, 2000; Aridor and Han-
nan, 2002). It would be interesting to explore whether the nonlinear phenomena in
traffic, due to mutual motor interactions, is at the origin of some of these diseases.

The collective force generation by motor proteins is also essential in cell division.
In the last part of our work (part III), we have studied both the movement of chro-
mosomes during mitosis and the stability of spindle-like structures, like the mitotic
spindle during metaphase. We have shown that the oscillatory motion of chromo-
somes results from the interplay between the dynamic instability associated to the
collective force-dependent detachment of chromokinesins and the morphology of
the spindle, which provides a position-dependent substrate for motor binding. Our
analysis also identifies motor binding onto spindle microtubules as the mechanism
that allows the chromosome to sense its position in the cell.
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It would be interesting to perform experiments in which chromokinesins would
be progressively inhibited, in order to test our predictions concerning the transition
from oscillatory to stable states, and gain insight on the nature of the polar ejection
force. Micromanipulation experiments of single chromosomes would allow to test
the effect of external forces on the motion and positioning of the chromosome, and
could also provide important hints to understand the forces involved in the division
process.In vitro biomimetic experiments in which chromosomes were replaced by
solid beads covered by chromatin, combined with micromanipulation techniques,
would provide an important information to understand several characteristics the po-
lar ejection force.

The relation between the forces driving chromosome motion in mitosis and the
biochemical signaling that regulates the division process is also of capital impor-
tance. There is growing evidence that the forces involved in chromosome movement
can regulate or control the onset of Anaphase (Nicklas, 1997; Pinsky and Biggins,
2005). In particular, the spindle checkpoint, which ensures that sister chromatids
separate apart only when all chromosomes are properly positioned at the metaphase
plate, is thought to be controlled by the tension between sister kinetochores (Nicklas
et al., 1998; Logarinho et al., 2004). It would be interesting to identify the molecular
force-sensitive elements able to influence the biochemical signaling and describe the
coupled dynamics of chromosomes and biochemical events.

Besides chromosome movement, we have also analyzed the stability of spindle-
like structures held collectively by motor proteins. Our results show that the spindle
collapse is due to the collective force-dependent detachment kinetics of bipolar mo-
tors. Although these results have not been directly tested experimentally, they agree
at qualitative level with several observations in eukaryotic cell division. In particular,
it has been shown that the mitotic spindle collapses if the concentration of bipolar
motors is reduced below a certain threshold value (Miyamoto et al., 2004). Our study
of the spindle dynamics does not address the mechanisms that fix the spindle length
and morphology. It would be interesting to extend this description and study spindle
morphology in more details.

The study of the self-organization processes at the origin of spindle assembly is
also of crucial to understand cell division. Our approach highlights the importance of
force-dependent motor kinetics on the self-organization of microtubules and motors.
In these structures there exist internal stresses that arise from the active character
of the motors, which crosslink and slide filaments to one another. The stresses that
the motors themselves develop affect their own kinetic properties and, in particu-
lar, their detachment probability per unit time. The influence of the internal stresses
on the motor kinetics may impose restrictive limits to the overall stability of self-
organized structures. It would be interesting to study the self-organization of motors
and polar filaments accounting for the force-dependent kinetics of the elementary
force generators.

We have shown that similar dynamic instabilities exist in all the cases studied and
that these instabilities are a consequence of the collective force-dependent kinetics
of the force generators. The saltatory motion of the bacteriumListeria, the oscilla-
tions in membrane tube extraction, the oscillatory motion of chromosomes during
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mitosis, and even the threshold in tube extraction and the threshold characterizing
the collapse of the mitotic spindle, have all a very similar origin. There exist very
many situations in living cells in which motor proteins work in large groups in order
to develop the necessary forces to induce motion at cellular scales. It is thus likely
that similar instabilities exist in these situations. For instance, the flagellar and ciliary
beating are both driven by ensembles of dynein motors that collectively induce the
sliding of microtubules, which leads to the observed beating patterns. It is probable
that the oscillatory instability is due to the collective force-dependent detachment
kinetics of the motors. Similar behaviors have been observed in other systems in-
volving the collective resistance of molecular bonds to applied forces (Evans, 2001;
Evans and Ritchie, 1997; Brochard-Wyart and de Gennes, 2003; Brochard-Wyart
and de Gennes, 2002), like in cell adhesion. There are also many physical systems
characterized by non-linear friction forces that may display similar instabilities (Ur-
bakh et al., 2004). In biological systems, however, the forces that affect the kinetics
of the force generators are those developed by the force generators themselves and,
therefore, the instabilities are intrinsic of their collective dynamics. Altogether, our
results suggest that several aspects of these motility processes can be understood on
a common framework.

The mechanics of cellular movements is important on its own, but the biochem-
ical signaling that regulates the activity of elementary force generators cannot be
overlooked. It is clear that biochemical signals can act on the force generators and
modify their dynamics. However, there is increasing evidence that the forces driving
cellular movements influence, in turn, the biochemical signals and can even mod-
ify gene expression (Farge, 2003; Brouzes and Farge, 2004; Nicklas, 1997). This
force-feedback couples gene expression and/or the biochemical networks with the
mechanical events in living cells. It is thus possible that the coupled dynamics (self-
organization) of biochemical networks and the force generating processes are at the
origin of some cellular behaviors.





A

Resum en catal̀a

Els mecanismes de propulsió responsables dels moviments cel·lulars śon potser les
obres d’enginyeria ḿes impressionants de la natura. Tot i aixı́, són simplement in-
teraccions entre molècules les responsables d’aquests moviments tan complexes.
La preguntáes doncs com s’autoorganitzen les molècules per dur a terme aquestes
tasques que requereixen un alt grau de coordinació. Malgrat que la comprensió global
del comportament cel·lular est̀a encara lluny del nostre abast, l’estudi d’aspectes par-
ticulars dels sistemes biològics pot contribuir a la seva comprensió.

Els biòlegs han fet molt esforços per caracteritzar les proteı̈nes involucrades
en els moviments cel·lulars, per identificar les seves interaccions i per entendre la
seva regulació. Aquesta informació és molt important i ha perm̀es explicar diversos
aspectes del moviment cel·lular. El descobriment de proteı̈nes capaces de generar
forces a escales moleculars, anomenades proteı̈nes motores, va aportar una infor-
macío essencial per a la comprensió dels moviments cel·lulars. La força creada a niv-
ell molecular per una proteı̈naés massa petita per tal d’induir el moviment cel·lular
per śı sola. Probablement l’exemple més clarés el funcionament dels ḿusculs. Les
forces que nosaltres som capaços de crear són aproximadament 12 ordres de magni-
tud més grans que les forces generades a l’escala molecular. Això és possible perquè
les forces necessàries per a la contracció muscular estan generades col·lectivament
per grans grups de proteı̈nes motores. Malgrat que cada una d’aquestes proteı̈nes de-
senvolupa una força petita (de l’ordre d’alguns picoNewtons), la suma de totes les
contribucions individuals pot generar forces molt més grans. A nivell de la c̀el·lula té
lloc un feǹomen similar. Les forces necessàries per induir el moviment de la cèl·lula
i/o els moviments intracel·lulars śon majors que les originades a nivell molecular.
Per aquesta raó, l’acció col·lectiva de generadors de força molecularsés essencial
per comprendre els moviments cel·lulars.

En aquest treball estudiem a nivell teòric diversos casos de moviments cel·lulars
i comparem quantitativament, quan això és possible, els nostres resultats a les ob-
servacions experimentals. El treball està dividit en tres parts: primer estudiem el
moviments de gotes d’oli propulsades per un cometa d’actina, les quals mimetitzen
el mecanisme de propulsió de bacteris com araListeria. La segona part està ded-
icada a diversos aspectes del transport intracel·lular. Estudiem el mecanisme fı́sic
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pel qual protëınes motores estiren nanotubs de membrana, el tràfic a gran escala de
protëınes motores i tamb́e la generació col·lectiva de força de motors moleculars que
estiren membranes fluı̈des. En láultima part, estudiem el moviment de cromosomes
i l’estabilitat del fus mit̀otic en la divisío cel·lular eucariota.

El nostre objectiúes entendre com l’acció col·lectiva de generadors de força
moleculars d́ona lloc a aquests moviments cel·lulars. Com demostrem en el nos-
tre estudi, la combinació de la diǹamica col·lectiva i la ciǹetica del generadors de
força elementals, la qual depèn fortament de la força que ells mateixos generen,
dóna lloc a inestabilitats diǹamiques. Aix́ı doncs, la diǹamica col·lectiva dels gener-
adors elementals de forçaés essencial per entendre diversos aspectes dels moviments
cel·lulars.

A.1 Generacío de força a escala molecular

Tots els moviments cel·lulars tenen el seu origen a l’escala molecular. Existeixen
diferents mecanismes que permeten la generació de forces a nivell molecular, la gran
majoria dels quals requereixen l’energia provinent de la hidròlisi de nuclèotids, com
ara ATP (“Adenosine-TriPhosphate”) o GTP (“Guanosine-TriPhosphate”).

La major part dels moviments cel·lulars i intracel·lulars involucren filaments
de protëınes i/o protëınes motores (motors moleculars). Hi ha dos tipus de fila-
ments de protëınes capaços de generar forces per ells mateixos en el seu procés de
creixement. Els filaments d’actina i els microtúbuls śon biopoĺımers amb propietats
bioqúımiques i f́ısiques diferents que els permeten dur a terme tasques diferents en
les c̀el·lules. Aquests filaments estan composats d’unitats bàsiques que s’agreguen
formant l’estructura unidimensional del filament. Els filaments creixen per l’addició
de moǹomers a les seves extremitats.És el mateix proćes de creixement dels fila-
ments el que genera forces. Quan un filament creix contra un obstable, l’addició de
nous moǹomers provoca la generació d’esforços interns al filament que empenyen
l’obstacle. Les forces generades per la polimerització (creixement) del filament són
d’alguns picoNewtons, molt inferiors a les tı́piques forces a escala cel·lular. Per tal
de generar grans forces, els filaments d’actina s’entrellacen mitjançant proteı̈nes ac-
ces̀ories i formen denses xarxes de filaments. Els filaments de la xarxa poden actuar
col·lectivament per generar grans forces i induir moviment.

Malgrat que la polimerització col·lectiva de filaments permet generar forces con-
siderables a l’escala cel·lular, existeix un altre mecanisme que juga un paper impor-
tant́ıssim en la generació de forces. Els motors moleculars són protëınes capaces de
convertir l’energia provinent de la hidròlisi de l’ATP en treball mec̀anic. Aquestes
protëınes es mouen al llarg de filaments (microtúbuls o filaments d’actina) i generen
forces que permeten una bona part dels moviments intracel·lulars i cel·luars. Mentre
que les kinesines i dineı̈nes es mouen al llarg de microtúbuls, les miosines s’associen
als filaments d’actina. Quan un motor molecular s’enganxa a l’objecte que ha de
transportar i es mou al llarg del filament, li aplica forces d’alguns picoNewtons. Ex-
periments amb motors moleculars individuals han demostrat que aquests tı́picament
generen forces d’alguns picoNewtons. Com hem comentat anteriorment, les forces
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a escala cel·lular śon molt ḿes grans. Per tal de generar les forces necessàries per
induir els moviments cel·lulars, els motors moleculars treballen en grup.

A.2 Moviment de gotes per propulsío basada en actina

Diversos bacteris, comListeria, Shigella o Rickettsia, desenvolupen un cometa
d’actina per generar les forces necessàries que permeten el seu moviment dins la
cèl·lula infectada. Els filaments d’actina són polimeritzats a la superfı́cie del bac-
teri i, mitjançant diverses proteı̈nes associades a l’actina, creen una densa xarxa de
filaments. A escales mesoscòpiques, molt ḿes grans que les escales on es dóna la
polimeritzacío i l’entrellaçament dels filaments, aquesta xarxa de filaments d’actina
es comporta com un gel elàstic. Quan els filaments d’actina polimeritzen en la su-
perf́ıcie del bacteri, una nova capa de gel es crea entre el bacteri i el gel prèviament
polimeritzat. El propi creixement del gel genera esforços elàstics en el gel. Aix́ı
doncs, l’energia provinent de la polimerització del gel, s’emmagatzema de manera
transit̀oria com a energia elàstica del gel. El moviment del bacteri fa que el gel com-
primit relaxi en la part posterior del bacteri, alliberant aixı́ l’energia el̀astica emma-
gatzemada i generant la força necessària per a la propulsió del bacteri.

Les forces generades en aquest procés śon molt ḿes grans que les tı́piques forces
en el ḿon intracel·lular. Com a conseq̈uència, el bacteri es mou dins la cèl·lula
infectada com si es tractés de l’espai lliure, sense que hi hagi cap força capaç de
parar el seu moviment letal.És noḿes quan deforma considerablement la membrana
cel·lular, que la oposicío al seu moviment́es important. Tot i aix́ı, el bacteri indueix la
deformacío necess̀aria per tal de ser fagocitat per les cèl·lules adjacents i propagar-se
dins el teixit cel·lular.

El bacteri Listeria és responsable de diverses malalties, com per exemple la
meningitis. Aix́ı doncs, la comprensió del mecanisme fı́sic de propulsío és important
per tal d’intentar entendre millor com combatre la seva infecció. Malgrat aquestáes
una ráo prou important per estudiar aquest bacteri, hi ha raons també importants a
nivell de recerca b̀asica. Les c̀el·lules eucariotes es mouen mitjançant un mecanisme
de propulsío molt complexe, anomenat en anglès “cell crawling”, que involucra la
propulsío per actina, l’accío de protëınes motores i l’adhesió de la c̀el·lula sobre un
substrat. Desafortunadament, l’estudi del mecanisme de motilitat per polimerització
d’actinaés altament complicat en cèl·lules eucariotes ja que hi ha molts mecanismes
de regulacío que poden enterbolir o, fins i tot modificar, la dinàmica del sistema. El
bacteriListeria és un candidat idoni per estudiar el moviment basat en la propulsió
per polimeritzacío de filaments d’actina, ja que presenta moltes similituds amb el
mecanisme de propulsió basat en actina de les cèl·lules eucariotes i, malgrat això, és
un sistema molt ḿes simple. En particular, no hi ha motors moleculars i, per tant, la
propulsío és deguda simplement al creixement de filaments d’actina.

La motilitat basada en la polimerització de filaments d’actina constituteix un dels
mecanismes de generació de forces ḿes utilitzats per les c̀el·lules. Tant el proćes de
fagocitosi com el moviment d’endosomes a nivell intracel·lular es basen també en
la polimeritzacío de xarxes d’actina en la superfı́cie de l’objecte propulsat. L’àmplia
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varietat de moviments cel·lulars que involucren aquest mecanisme de generació de
forces va fer pensar que hauria de ser també possible induir el moviment d’objectes
sint̀etics utilitzant el mateix principi. Experiments on s’indueix la polimerització
d’actina en la superfı́cie de petites esferes sintètiques van demostrar que aquestes
esferes desenvolupen cometes d’actina i es mouen de manera molt similar al bacteri
Listeria. Aquests sistemes experimentals, anomenats biomimètics, han perm̀es una
comprensío molt més profunda i quantitativa del procés de motilitat basat en actina.
Tot i aix́ı, aquests estudis no permeten mesurar les forces creades pel cometa d’actina
sobre l’objecte que propulsa. Com que són finalment aquestes forces les responsables
del moviment,́es essencial conèixer en detall el seu origen i la seva magnitud.

Per tal d’esclarir quines són les forces generades pel cometa d’actina, el grup
de C. Sykes (Institut Curie) va crear un sistemain vitro que permet mesurar direc-
tament els esforços generats pel gel d’actina sobre l’objecte propulsat. En aquests
experiments s’utilitzen gotes d’oli parcialment cobertes per una proteı̈na que indueix
la polimeritzacío d’actina en la superfı́cie externa de la gota. Quan aquestes gotes
s’introdueixen en extractes cel·lulars, un gel d’actina creix inicialment de manera
isotròpica en la superfı́cie de la gota esfèrica i l’envolta. Despŕes d’un trencament
espont̀ani de simetria, les gotes desenvolupen un cometa d’actina i es mouen, de la
mateixa manera que el bacteriListeria. A diferència del bacteri però, la superf́ıcie
fluı̈da de la gota està caracteritzada per una tensió superficial i és, per tant, de-
formable sota l’accío de forces prou importants, com ara els esforços elàstics que
aplica el cometa d’actina sobre la gota. De fet, un cop la gota trenca la simetria
esf̀erica i es propulsada pel cometa d’actina, la deformació de la gotáes clarament
visible. Aquesta deformació permet mesurar de manera directa els esforços que el
cometa d’actina aplica sobre la gota. L’avantatge d’aquest sistema biomimètic és
que permet la mesura i/o control de tots els paràmetres f́ısics importants, com ara la
tensío superficial de la gota, la seva velocitat, mida, etc. . ., de manera que els resultats
experimentals es poden comparar quantitativament a les prediccions teòriques.

L’objectiu d’aquesta primera part del nostre treball (capı́tol 3) ha estat compren-
dre l’origen de la força de propulsió i la distribucío de les forces que aplica el cometa
d’actina sobre objectes deformables com, per exemple, gotes d’oli. En el nostre es-
tudi analitzem tèoricament el moviment d’una gota propulsada mitjançant la polimer-
ització d’actina en la seva superfı́cie. Solucionem el problema de contorn lliure que
implica el moviment de la gota, tenint en compte tant l’elasticitat del gel d’actina
com la depend̀encia del creixement del gel d’actina en els esforços elàstics del gel.
La forma de la gota en l’estat estacionari ve determinada pel balanç entre la força
que aplica el gel sobre la gota i la força de restitució deguda a la tensió superficial.
El nostre estudi demostra que el gel aplica forces sobre la gota tant en la direcció
del moviment com en la contrària. Al darrera de la gota, el gel estira la gota en la
direccío contr̀aria al moviment, mentre que l’empeny pels costats. Sorprenentment,
la distribucío de forceśes tal que la força total de propulsió de la gotáes estrictament
nul·la en cas que tant el gradient de tensió superficial com les variacions de pressió
internes de la gota no es tinguin en compte. Aquest resultat té implicacions impor-
tants, ja que demostra que la força de propulsió de la gota no es pot mesurar només
a partir de la seva forma, com diversos grups havien fet anteriorment. Finalment,
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hem comparat a nivell quantitatiu els resultats teòrics amb les dades experimentals.
Aquesta comparació ha perm̀es mesurar diversos paràmetres moleculars associats a
la polimeritzacío d’actina en superfı́cies flüıdes, similars a la membrana cel·lular.
Apart de determinar la distribució de les forces que aplica el gel sobre la gota, la
comparacío amb les dades experimentals ha permès obtenir la magnitud d’aquestes
forces.

Un estudi ḿes detallat sobre l’origen de la força de propulsió suggereix que el
gradient de tensió superficiaĺes el responsable del moviment de la gota. Experimen-
talment s’observa que la distribució de les protëınes que indueixen la polimerització
d’actina, localitzades en la superfı́cie de la gota, nóes uniforme. Existeix una acu-
mulacío d’aquestes proteı̈nes en la part posterior de la gota, i la seva concentració
disminueix al llarg del contorn. La tensió superficial dep̀en de la concentració de
protëınes adsorbides en superfı́cie. Concretament, com ḿes grańes la concentració
de protëınes, ḿes petitáes la tensío superficial. La distribució asim̀etrica de protëınes
de nucleacío implica que hi ha un gradient de tensió superficial al llarg del contorn
de la gota. Com quées aquest gradient el què propulsa la gota, hem estudiat d’on
prové.

Per tal de comprendre l’origen de la distribució asim̀etrica de protëınes de nu-
cleacío, hem estudiat la seva dinàmica en la superfı́cie de la gota. Aquestes proteı̈nes
poden o b́e estar f́ısicament connectades al gel d’actina, o bé movent-se lliurement
en la superf́ıcie de la gota. El moviment del gel d’actina vers la part posterior de
la gota durant el seu desplaçament, fa que les proteı̈nes connectades al gel d’actina
siguin transportades cap a la part posterior de la gota, creant aixı́ una acumulació de
protëınes al darrere de la gota. Els nostres resultats indiquen doncs que el moviment
de la gota, indüıt pel gradient de tensió superficial,́es el que crea aquest mateix gra-
dient. En altres paraules, el moviment resulta de l’autoorganització de les protëınes
de nucleacío i el gel d’actina.

Malgrat l’estudi que presentem referent a la dinàmica dels nucleadors en la su-
perf́ıcie de la gotáes qualitatiu, estem extenent aquest treball per tal de poder com-
parar les dades experimentals a les prediccions teòriques.

El nostre estudi ha perm̀es doncs explicar la propulsió de gotes per polimerització
d’un gel d’actina. Hem determinat la forma de les gotes i la distribució d’esforços
creats pel cometa d’actina de manera quantitativa. Aquests resultats permeten com-
prendre el mecanisme de propulsió d’endosomes i lisosomes involucrats en el trans-
port intracel·lular, els quals estan propulsats per cometes d’actina i presenten defor-
macions similars a les predites en la nostra anàlisi.

A.3 Transport intracel ·lular

La complexitat de les c̀el·lules eucariotes fa que hagin de dur a terme diferents
tasques simultàniament. Algunes d’aquestes tasques són necess̀ariament incom-
patibles entre elles, com ara la sı́ntesi de protëınes i la seva degradació. Per tal
d’assegurar un cert nivell d’autonomia a les diferents tasques, les cèl·lules eucariotes
estan dividides en diversos compartiments limitats per una membrana. Aixı́ doncs,
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les reaccions bioquı́miques que realitzen una certa tasca tenen lloc a l’interior d’un
orgànul (compartiment limitat per una membrana) i estan pràcticament äıllades de la
resta de la c̀el·lula. Malgrat aquest grau d’autonomia que els orgànuls han de man-
tenir, aquests també han d’interaccionar amb l’entorn cel·lular per tal d’assegurar
el bon funcionament global de la cèl·lula. Existeixen diferents mecanismes que
s’encarreguen d’aquesta interacció. Els org̀anuls contenen proteı̈nes de membrana
que s’encarreguen de l’intervanvi directe de material amb el citosol. Aquest inter-
canvi involucra noḿes l’org̀anul i el seu entorn immediat. Apart d’aquesta interacció
local, les c̀el·lules han de transportar diferents components, com ara les proteı̈nes
o els ĺıpids, a regions distants dins de la cèl·lula. Per tal de transportar material a
llargues dist̀ancies les c̀el·lules utilitzen petites vesı́cules i nanotubs de membrana.

El mecanisme fı́sic de transport es basa en la interacció d’intermediaris de trans-
port (veśıcules i tubs de membrana) amb el citoesquelet de la cèl·lula a trav́es
de protëınes motores, les quals es mouen al llarg dels filaments que composen el
citoesquelet i propulsen els intermediaris de transport que contenen el material que
ha de ser distribüıt.

Malgrat el transport per petites vesı́cules ha estat l’únic mecanisme de transport
cel·lular conegut durant d̀ecades, recentment s’ha trobat que xarxes de nanotubs de
membrana s’extenen per l’interior de la cèl·lula i permeten la interacció de regions
distants de la c̀el·lula. L’exemple ḿes clarés el reticle endoplasm̀atic, el qual est̀a
composant per una xarxa de tubs de membrana. S’ha demostrat que tant els mi-
crotúbuls com l’accío de protëınes motores śon necess̀aris per la formacío d’aquests
tubs. En abs̀encia de microt́ubuls o de protëınes motores, la xarxa de tubs que com-
posa el reticle endoplasmàtic col·lapsa al centre de la cèl·lula. Apart del reticle en-
doplasm̀atic en śı mateix, el transport de material entre l’aparell de Golgi i el reticle
endoplasm̀atic involucra tamb́e nanotubs de membrana. Aixı́ doncs, la comunicació
intracel·lular requereix l’extensió de xarxes de tubs de membrana. Com si d’una ciu-
tat es tract́es, la c̀el·lula necessita el permanent transport de material entre regions
distants per poder dur a terme les diferents tasques en què es basa el seu funciona-
ment. Si el transport intracel·lular es veu afectat d’alguna manera, les conseqüències
poden ser crı́tiques per la c̀el·lula i, fins i tot, per l’organisme. De fet, hi ha diverses
malalties neurodegeneratives associades a disfuncions del transport en els axons de
les neurones. L’estudi del mecanisme fı́sic de transport pot ajudar a comprendre mil-
lor la comunicacío intracel·lular.

El nostre estudi referent al transport intracel·lular es focalitza principalment en
el mecanisme fı́sic d’extraccío de nanotubs de membrana per motors moleculars.
En el caṕıtol 5 estudiem com els motors moleculars són capaços de formar tubs de
membrana i comparem, a nivell quantitatiu, els resultats teòrics amb experiments
in vitro realitzats per C. Leduc en el grup de P. Bassereau (Institut Curie). En una
segona part estudiem el tràfic de motors moleculars en si mateix, i demostrem que les
interaccions ḿutues entre motors poden induir l’aparació de retencions, similars a les
que apareixen en el tràfic de vehicles en carreteres. En vista dels resultats obtinguts,
en el caṕıtol 6 analitzem la generació col·lectiva de forces de motors moleculars quan
aquests estiren membranes fluı̈des, una situació que es d́ona tant en l’extracció de
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tubs de membrana com en el transport intracel·lular que involucra petites vesı́cules.
A continuacío expliquem en ḿes detall els resultats obtinguts.

A.3.1 Extracció de nanotubs de membrana per motor moleculars

Estudisin vivo i in vitro sobre l’extraccío de tubs de membrana van permetre establir
que tant les proteı̈nes motores com els microtúbuls śon essencials per a la formació
de tubs de membrana. Malgrat això, la complexitat de la composició de la mem-
brana cel·lular i del citosol, no van permetre indentificar els components mı́nims
necessaris per la formació de tubs de membrana. Diferents experimentsin vitro han
demostrat recentment que els motors moleculars poden, per si sols, crear aquests tubs
de membrana, sense necessitat de cap altre proteı̈na accessoria present en la cèl·lula.
Al mateix temps es va suggerir que l’acumulació dinàmica dels motors a la punta del
tub és el mecanisme que permet la seva extracció. Per tal de demostrar l’existència
d’aquesta acumulació, C. Leduc, en el grup de P. Bassereau (Institut Curie), va de-
senvolupar un sistemain vitro on els motor moleculars (kinesines) estan directament
enganxats a lı́pids espećıfics d’una veśıcula gegant. Quan aquesta vesı́cula, recoberta
parcialment per kinesines, es posa en contacte amb una xarxa de microtúbuls en
pres̀encia d’ATP, les kinesines caminen al llarg dels microtúbuls, apliquen forces so-
bre la membrana de la vesı́cula i, en certes condicions, estiren tubs de membrana.
Fins aqúı, aquestes observacions només verifiquen els resultats d’altres grups. La
novetat d’aquests experimentsés que els lı́pids als quals estan enganxats els motors
moleculars contenen un fluorofor, de manera que la posició dels motors moleculars
és accessible mitjançant microscopia de fluorescència. En particular, quan un tubés
estirat pels motors, la seva distribució al llarg del tubés mesurable. D’altre banda,
aquest sistema biomim̀etic permet el control de diverses magnituds fı́siques relle-
vants, com ara la tensió de la membrana o la densitat de motors en la superfı́cie de
la veśıcula. Les quantitats que no poden ser controlades, com els parametres cinètics
dels motors moleculars, es poden mesurar. Aixı́ doncs, en aquests experiments es
coneixen els valors de totes les magnituds rellevats i, per tant, les dades experimen-
tals es poden comparar quantitativament als resultats del nostre estudi teòric.

El treball que presentem en el capı́tol 5 analitza tèoricament l’extraccío i creixe-
ment de tubs de membrana estirats per motors moleculars. Resolem tant analı́ticament
com num̀ericament (utilitzant simulacions Monte Carlo) la dinàmica dels motors
moleculars al llarg d’un tub de membrana i en la superfı́cie de la veśıcula. L’estudi
anaĺıtic de la formacío inicial de tubs determina la influència de diverses magnituds
fı́siques en el process d’extracció. En particular, demostrem que, com a conseqüència
de la diǹamica col·lectiva de motors, existeix un llindar de densitat de motors per
sota del qual els motors moleculars no són capaços d’extreure tubs de membrana.
Les dades experimentals mostren l’existència d’aquest llindar. A ḿes, la mesura ex-
perimental dels diferents parametres fı́sics que controlen el procés permet comparar
a nivell quantitatiu les prediccions teòriques amb les dades experimentals. La con-
cord̀ancia entre les prediccions teòriques i els resultats experimentals indica que la
descripcío tèorica realitzadáes adient.
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L’existència d’un llindar per a l’extracció de tubs posa de manifest el caràcter
col·lectiu de la diǹamica dels motors moleculars. El nostre estudi demostra que el
llindar és una conseqüència directe de la dependència de la diǹamica col·lectiva
dels motors moleculars en la força que sostenen. Això és degut al caràcter no-
lineal de l’acoblament entre els motors. Apart de determinar l’origen de la inesta-
bilitat dinàmica responsable de l’existència d’un llindar, tamb́e hem determinat la
influència de les magnituds fı́siques rellevants en el valor d’aquest llindar. Concreta-
ment, per tensions de membrana petites els motors moleculars poden extreure tubs
més f̀acilment. Aix̀o es tradueix en un valor ḿes petit del llindar de densitat de mo-
tors per extreure tubs. El llindar es pot també veure des d’un altre punt de vista.
Per una quantitat fixa de motors en la membrana, existeix una tensió de membrana
màxima per sobre de la qual els motors no poden extreure tubs.

Aquests resultats emfatitzen els lligams fı́sics amb els quals les cèl·lules han de
tractar pel qùe fa al transport intracel·lular. L’existència d’un llindar en l’extracció de
tubs t́e implicacions biol̀ogiques rellevants. En particular, el llindar permetria a les
cèl·lules activar o suprimir el transport quan fos necessari. Diverses estratègies per-
meten diferents tipus de control sobre el transport. El primer mecanisme requereix el
control de la densitat local de motors enganxats a la membrana, ja sigui controlant el
nombre de motors directament, o modificant el nombre de llocs en la membrana on
els motors es poden enganxar. Aquesta estratègia permetria el control local del trans-
port, és a dir, permetria controlar especı́ficament cada una de les vies de transport
que caracteritzen el transport intracel·lular. Concretament, la concentració de motors
actius a l’interior de dominis especialitzats de la membrana podria ser doncs un punt
important per tal entendre els mecanismes de regulació de la via de secreció de la
cèl·lula. La segona estratègia consisteix en el control de la tensió de membrana. De
fet, les c̀el·lules controlen la tensió dels seus org̀anuls per mecanismes que encara
no es coneixen en detall. Aixı́ doncs, canvis globals en la tensió de membrana d’un
orgànul permetrien controlar el transport provinent d’aquest orgànul, podent-lo fins
i tot suprimir en cas de necessitat.

En el cas que els motors estiguin en condicions d’estirar tubs de membrana,és
possible estudiar les propietats de creixement dels tubs i la distribució de motors al
llarg del tub. L’estudi tèoric que hem realitzat explica l’acumulació de motors a la
punta dels tubs. Quan una forçaés aplicada a un motor molecular, la seva cinètica es
veu afectada i, en particular, la seva velocitat disminueix. Com que la membranaés
fluı̈da els motors que es mouen al llarg del tub no poden aplicar forces substancials
per estirar-lo. En canvi, els motors que estan a la punta del tub apliquen forces sub-
stancials en la direcció normal de la membrana. Aixı́ doncs, els motors que estiren
el tub a la punta es mouen més lentament que els motors que es mouen al llarg del
tub. La velocitat del tub́es la mateixa que la dels motors. Com a conseqüència, els
motors que es mouen a llarg del tub s’acumulen a la punta del tub, explicant aixı́
l’acumulacío observada experimentalment. Per altra banda, els motors situats a la
punta del tub es desenganxen del microtúbul amb ḿes freq̈uència degut a la força
que sostenen i difonen enrere al llarg del tub. Aquests motors, que estan enganxats
a la membrana però no al microt́ubul, es poden tornar a enganxar al microtúbul i
seguir el seu trajecte cap a la punta del tub. Es crea doncs una circulació de motors
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en la proximitat de la punta del tub, on els motors estiren el tub una fracció petita de
temps, es desenganxen del microtúbul, difonen cap enrere al llarg del tub, es tornen a
enganxar al microtúbul i tornen a acostar-se a la punta del tub per contribuir un altre
cop a la seva extracció. La diǹamica al llarg del tub definiex la seva distribució. Els
nostres resultats teòrics prediuen un decreixement exponencial de la densitat de mo-
tors des de la punta del tub, amb una longitud caracterı́stica de decreixement donada
pels parametres cinètics dels motors i la mateixa velocitat del tub. Les observacions
experimentals indiquen un decreixement exponencial de la densitat de motors des
de la punta del tub, tal com hem predit teòricament. La comparació quantitativa de
l’escala de longitud de decreixement de la densitat amb les dades experimentals ens
ha perm̀es estimar el temps mitjà necessari per tal que un motor desenganxat del
microtúbul s’hi torni a enganxar. Aix́ı doncs, la comparació dels resultats tèorics
i els experimentals permet la determinació d’un par̀ametre molecular associat a la
kinesina en una geometria similar a la del transport en cèl·lules.

L’anàlisi tèoric de la distribucío de motors al llarg del tub reprodueix i explica les
observacions experimentals. Aquests resultats demostren que els motors moleculars
s’acumulen diǹamicament per estirar tubs de membrana. Aixı́ doncs, nóes en prin-
cipi necess̀aria cap altre proteı̈na que agregui els motors en grups per tal d’estirar els
tubs. Com expliquem ḿes avall, els resultats de les simulacions suggereixen que per
tal de desenvolupar forces importants, aquesta agregació mediada per altres proteı̈nes
és per̀o convenient.

Un cop estudiat el procés d’extraccío i creixement de tubs, ens hem interessat
tamb́e en els r̀egims diǹamics de creixement de tubs, en condicions on la tensió de la
membrana creix durant el procés d’extraccío del tub. Malgrat hem centrat el nostre
estudi en tubs llargs, per als quals la variació de tensío de la veśıcula noés negligible,
els mateixos r̀egims diǹamics caracteritzen el creixement de xarxes de tubs de mem-
brana, com ara el reticle endoplasmàtic. Un cop el tub́es extret pels motors la força
necess̀aria per estirar el tub creix amb la longitud del tub degut a l’increment de la
tensío de la veśıcula. Per tant, els motors estirant el tub senten cada cop més força.
Aquesta situació dóna lloc a dos r̀egims diǹamics. Existeix un r̀egim estable en el
qual el tub creix fins que es para a una certa longitud. Per altra banda, dependent de
la mida de la veśıcula i de la densitat de motors en la membrana, els tubs poden en-
trar en un r̀egim oscil·latori, en el qual el tub mostra fases de creixement alternades
amb r̀apides retraccions. Aquestes oscil·lacions altament no-lineals són degudes a
la dinàmica col·lectiva dels motors moleculars que estiren el tub. De fet, el caràcter
no-lineal de les oscil·lacions prov́e de la combinació de la diǹamica col·lectiva dels
motors amb la seva cinètica, la qual dep̀en de la força de manera molt no-lineal.

Les oscil·lacions predites tèoricament en el nostre estudi han estat observades
en els experiments descrits anteriorment. Concretament, les oscil·lacions observades
presenten les mateixes caracterı́stiques no-lineals que les predites. Malgrat aquesta
concord̀ancia a nivell qualitatiu entre la teoria i els experiments, en aquest cas no va
ser possible dur a terme un estudi quantitatiu. Estem en aquests moments extenent
els nostres resultats teòrics per entendre millor la fı́sica d’aquestes oscil·lacions.

Malgrat es fa dif́ıcil identificar una certa funció biològica a les oscil·lacions
de tubs, el seu origeńes rellevant per diversos moviments cel·lulars. Existeixen
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molt́ıssimes situacions en biologia cel·lular, com ara la contracció muscular, el movi-
ment de flagels i cilis, i el moviment de cromosomes en la divisió cel·lular, on
apareixen oscil·lacions molt similars. De fet, el punt en comú de tots aquests movi-
mentsés que estan generats per grups de motors moleculars que desenvolupen forces
de manera col·lectiva. Per tant, la inestabilitat oscil·latòria descrita tèoricament en el
nostre estudi, basada en el comportament col·lectiu dels motors moleculars, pot ser,
de fet, un feǹomen molt ḿes general que aparegui en diversos processos de generació
de força i moviment a l’escala cel·lular.

Un cop estudiat el procés d’extraccío de tubs, el seu creixement i els seus règims
dinàmics, hem dut a terme simulacions numèriques de l’extracció de tubs estirats per
motors moleculars, per tal d’entendre com s’organitzen els motors moleculars per
estirar col·lectivament un tub de membrana. Hi ha diversos resultats de les simula-
cions que poden ser comparats quantitativament a les dades experimentals. Aquesta
comparacío ens ha perm̀es distingir entre diferents posibles esquemes d’organització
de motors. Concretament, els nostres resultats indiquen que els motors han d’utilitzar
simult̀aniament diversos protofilaments d’un mateix microtúbul per tal de poder
generar les forces que requereix l’extracció d’un tub. L’aǹalisi de les diverses organ-
itzacions possibles dels motors que estiren un tub indica que els motors en contacte
poden repartir-se la força que han de suportar. Les simulacions demostren que la
dinàmica d’enganxament i desenganxament dels motors al microtúbul estableix un
nombre molt petit de motors en contacte a la punta d’un tub de membrana. Degut a
que el nombre de motors en contacte per protofilamentés petit, la força que poden
desenvolupaŕes tamb́e petita i, t́ıpicament, inferior a la força necessària per estirar
un tub. Estimem que en les condicions experimentals mencionades anteriorment els
motors utilitzen tres protofilaments simultàniament.

Aquests resultats estableixen lı́mits importants a les forces que els motors molec-
ulars poden crear de manera col·lectiva quan estiren membranes fluı̈des, ja siguin
tubs de membrana o vesı́cules. Malgrat les forces necessàries per transportar vesı́cules
en l’interior de la c̀el·lula no han estat encara mesurades,és molt probable que aque-
stes siguin molt superiors a les que pot desenvolupar un motor molecularúnic, ja
que aquestes vesı́cules han de moure’s a través del citoesquelet de la cèl·lula. El
creixement de tubs de membrana en l’interior de la cèl·lula es pot veure també afec-
tat per diversos obstacles. Per tal de generar les forces suficients per transportar les
veśıcules o estirar els tubs de membrana,és doncs possible que existeixin proteı̈nes
encarregades d’agregar els motors moleculars. En aquest cas, l’alt grau d’acoblament
entre els motors permetria crear forces més grans.

A.3.2 Tràfic de motors moleculars

L’estudi de la distribucío de motors al llarg del tub que hem descrit anteriorment
no t́e en compte les interaccions entre els motors, ja que les observacions experi-
mentals en les condicions anteriors suggerien una fase diluı̈da de motors al llarg del
microtúbul. En cas que la concentració de motors sigui augmentada, l’aproximació
de baixa densitat nóes v̀alida i les interaccions entre els motors juguen llavors un pa-
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per important. Per tal de comprendre millor l’acumulació de motors en la proximitat
de la punta del tub, hem dut a terme simulacions numèriques del creixement del tub.

En cas que la tensió de la veśıcula no augmenti significativament durant el creixe-
ment del tub, els nostres resultats indiquen que si la densitat de motors en la vesı́cula
és gran, una fase d’alta densitat de motors es desenvolupa progressivament en la
proximitat de la punta del tub. Com que en l’escala de temps dels experiments sem-
pre hi ha motors en la vesı́cula, existeix sempre un flux net de motors que avança
des de la veśıcula cap a la punta del tub. Aquesta situació implica que no existeix un
estat estacionari pel sistema. Concretament, els motors que constantment arriben a
la proximitat de la punta del tub es van acumulant i, malgrat que inicialment la fase
d’alta densitat de motors (“traffic jam”)́es petita, aquesta envaeix progressivament
el tub.

Hem realitzat tamb́e simulacions en el cas que la tensió de la veśıcula no sigui
constant, sińo que augmenti a causa del mateix creixement del tub. En aquest cas
observem que el tub creix fins a una certa longitud i finalment es para. Com hem
discutit anteriorment, els motors al llarg d’un sol protofilament no poden generar
grans forces ja que la cinètica d’engaxament i desenganxament al microtúbul no
permet crear paquets de motors molt grans que estirin conjuntament el tub. Per tant,
la força que poden crear els motors noés molt gran i, malgrat ser suficient per estirar
inicialment el tub, si la força augmenta, arriba un moment en el qual no poden estirar
més. Quan el tub es para, hi ha un flux net de motors al llarg del tub que s’acumula
a la seva punta i l’envaeix progressivament. Aquests resultats estan en concordància
amb les observacions experimentals a nivell qualitatiu.

Per altra banda, s’observa experimentalment que la densitat de motors al llarg del
tub presenta clares inhomogeneı̈tats. Aquestes observacions no es poden entendre en
l’estudi anaĺıtic que hem descrit anteriorment. Per aquesta raó, hem estudiat el tràfic
de motors moleculars a gran escala, en presència d’interaccions entre els motors. De
fet, les inhomogeneı̈tats de densitat en el tràfic de motors constitueixen un problema
més general que el del tràfic de motors al llarg del tub.

El tràfic de motors a gran escala juga un paper important en moltes situacions
biològiques, com el transport intracel·lular i intraflagelar o el transport al llarg dels
axons. Diverses malalties neurodegeneratives han estat relacionades amb anomalies
en el tr̀afic de motors al llarg d’axons.́Es clar que el transport en als axonsés el
que es pot veure ḿes afectat per anomalies de tràfic ja que el material sintetitzat
al cos cel·lular ha de ser transportat llargues distàncies, que poden ser de l’ordre
de cent́ımetres, a trav́es dels axons fins arribar al terminal sinàptic. A ḿes, el medi
intracel·lular cont́e moltes protëınes que poden suposar obstacles per al tràfic de mo-
tors al llarg de filaments. En aquestes condicions, les no-linealitats en el tràfic poden
jugar un paper important. Hi ha també altres raons per estudiar el tràfic de motors.
De fet, el tr̀afic en general, ja sigui de motors moleculars, de persones o de vehi-
cles, constitueix un sistema fı́sic allunyat de l’equilibri. Aquest tipus de sistemes
són, per tant, molt adients per a l’estudi de transicions de fase de no-equilibri. Per
tal d’entendre les inhomogeneı̈tats en el tr̀afic de motors, hem dut a terme simula-
cions num̀eriques on estudiem principalment l’efecte de les interaccions mútues dels
motors en les inhomogeneı̈tats del camp de densitat.
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Els nostres resultats indiquen que en presència de noḿes interaccions de volum
exclòs entre els motors, les inhomogeneı̈tats en el tr̀afic śon petites i no es corre-
sponen amb les observades experimentalment. De fet, aquestes inhomogeneı̈tats,
anomenades ones cinemàtiques, han estat descrites en múltiples treballs referents al
tràfic de vehicles i en altres sistemes on partı́cules auto-propulsades es mouen al llarg
d’una estructura periòdica unidimensional. Concretament, el temps de vida i la mida
de les inhomogeneı̈tats śon molt ḿes petits que els observats experimentalment. Hi
ha diversos experiments que suggereixen una interacció entre motors moleculars més
enllà de la simple interacció de volum excl̀os. Per tal d’esclarir si la causa de les inho-
mogenëıtats śon les possibles interaccions entre els motors, hem simulat el tràfic de
motors en pres̀encia d’interaccions efectives, tant atractives com repulsives, entre els
motors. El nostre estudi demostra que en presència d’interaccions repulsives, el camp
de densitat́es ḿes homogeni que en el cas on només hi ha interaccions de volum
exclòs entre els motors. Pel contrari, en presència d’interaccions atractives entre els
motors, grans inhomogeneı̈tats de la densitat de motors apareixen espontàniament.
La vida mitja i la mida d’aquesta inhomogeneı̈tats es corresponen amb les observades
experimentalment. Les inhomogeneı̈tats no śon est̀atiques, sińo que poden moure’s
en ambdues direccions al llarg del microtúbul. Malgrat els motors moleculars només
es mouen en una direcció, existeixen ones de densitat que es mouen tant en la di-
reccío del moviment dels motors com en la contrària. Aquestes acumulacions locals
de motors es coneixen com retencions (“traffic jams”) en el tràfic de vehicles, on
s’observen tamb́e les ones de densitat esmentades. Les prediccions teòriques pel qùe
fa a les ones de densitat estan en concordància amb els experiments, on s’observen
ones de densitat movent-se tant en la direcció del moviment dels motors com en
l’oposada.

Aix ı́ doncs, els nostres resultats suggereixen que existeixen interaccions atrac-
tives entre els motors moleculars i que aquestes són responsables de l’aparició de
retencions de motors (“traffic jams”) al llarg del microtúbul.

A.3.3 Comportament col·lectiu de motors moleculars estirant membranes
fluı̈des

Els resultats del nostre estudi demostren que els motors moleculars són capaços
d’estirar col·lectivament tubs de membrana. El comportament col·lectiu de motors
ha estat estudiat amb anterioritat, però tots els estudis estan basats en un acoblament
rı́gid o el̀astic entre els motors. Quan els motors treballen conjuntament per estirar
una membrana fluida, aquest acoblament rı́gid és inexistent. En aquest cas, les inter-
accions entre els motors tenen un paper decisiu en el seu comportament col·lectiu.
En vista dels resultats precedents, en el capı́tol 6 estudiem el proćes de generació
de força quan un grup de motors moleculars estiren una membrana fluı̈da com, per
exemple, un tub de membrana. Els motors només poden aplicar forces significatives
per estirar el tub a la seva punta ja queés l’únic lloc on els motors poden aplicar
forces normals a la membrana. Suposant que el primer motor, aquell que està situat a
la punta del tub,́es l’únic que aplica forces a la membrana, hem estudiat com els mo-
tors que s’acumulen al seu darrere contribueixen a la generació de força. Els motors



A.3 Transport intracel·lular 237

moleculars es mouen per una seqüència de salts al llarg del microtúbul. T́ıpicament,
un motor molecular salta ḿes freq̈uentment en una direcció que en l’altra i, per tant,
en mitjana es mou en una direcció concreta. En presència d’una força aplicada sobre
el motor, la freq̈uència de salts en la direcció del moviment́es menor i la freq̈uència
de salts en la direcció contr̀aria al moviment augmenta. La generació col·lectiva de
força és deguda a que els motors acumulats darrere el primer motor modifiquen al-
gunes de les seves transicions estocàstiques i, en particular, eviten algunes de les
seves transicions en la direcció contr̀aria al moviment. Aix́ı doncs, malgrat́es el
primer motor el que suporta tota la força, els altres motors contribueixen a estirar el
tub pricipalment evitant que el primer motor es mogui endarrere.

Hem realitzat un estudi analı́tic i tamb́e hem dut a terme simulacions per tal de de-
terminar la relacío entre la velocitat mitjana del tub i la força aplicada al primer mo-
tor, per sistemes amb diferent nombre de motors. Els nostres resultats demostren que
les interaccions entre motors modifiquen substancialment la corba de força-velocitat.
Concretament, interaccions fortament atractives entre motors redueixen la velocitat
per sota la d’un motoŕunic per forces petites, mentre que a forces grans el sistema
amb major nombre de motors es mou més r̀apid. Interaccions repulsives entre mo-
tors fan que el sistema sempre es mogui més rapid que un motoŕunic. Més important
que la depend̀encia de la corba de força-velocitat en les interacionsés el fet que,
per qualsevol tipus d’interacció entre els motors, la corba de força-velocitatés sig-
nificativament diferent que la que s’obté si s’assumeix que els motors es reparteixen
uniformement la força. El nostre estudi corregeix doncs la corba de força-velocitat
que s’utilitza normalment, on es suposa el repartiment uniforme de la força entre els
motors.

D’altra banda, els nostres resultats demostren que la corba de força-velocitat
satura a una sola corba si el nombre de motors en el sistemaés prou gran. Utilitzant
els par̀ametres de la kinesina convencional, trobem que la corba de força-velocitat
satura quan el sistema conté dos motors. Aix̀o implica que independentment del
nombre de motors que estiren la membrana, la corba de força-velocitatés sempre la
mateixa i igual a la de dos motors. Les diferents interaccions entre motors només fan
variar lleugerament el nombre de motors al qual es dóna la saturació de les corbes.
Els nostres resultats suggereixen que com a conseqüència d’aquesta saturació, la
força m̀axima que poden desenvolupar un nombre elevat de kinesines convencionals
al llarg d’un protofilament estirant una membrana noés major que la força que poden
fer simplement dos motors.

Aquesta aǹalisi suggereix quées necessari que les kinesines utilitzin simultàniament
diversos protofilaments d’un microtúbul per tal d’estirar un tub de membrana o trans-
portar una veśıcula. L’estudi posa també de manifest que per tal de generar forces
molt més grans que la força de parada (“stall force”) d’un sol motor molecular,és
més eficient acoblar rı́gidament o el̀asticament els motors. Aixı́ doncs,és possible
que en algunes situacions referents al transport intracel·lular, les c̀el·lules utilitzin
protëınes access̀ories per agregar els motors i permetre la generació de forces ḿes
grans que possibilitin el transport en condicions adverses. D’altra banda, la com-
paracío dels nostres resultats amb dades experimentals referents a la generació de
força de motors individuals en presència d’altres motors, permetria discernir el tipus
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d’interaccío entre els motors. Finalment, la saturació de les corbes de força-velocitat
fa que no sigui possible estimar el nombre de motors que estiren una membrana amb
el coneixement de la força que sostenen i la seva velocitat, com ha estat fet en estudis
de tr̀afic intracel·lular.

A.4 Moviment de cromosomes en la mitosi

Els organismes multicel·lulars, com ara nosaltres, necessiten una constant generació
de c̀el·lules per simplement sobreviure. La duplicació d’una c̀el·lula eucariotáes el
resultat del proćes de divisío nuclear (mitosi) i la posterior divisió del citoplasma. En
la mitosi, les dues c̀opies del codi geǹetic s’estructuren formant els cromosomes, els
quals han de ser repartits a parts iguals entre les dues cèl·lules filles que resulten del
proćes de divisío. Per tal de repartir de manera equitativa els cromosomes, aquests
s’han de moure i separar de manera coordinada. De fet, el correcte posicionament
i moviment dels cromosomeśes essencial per a la divisió cel·lular. Un mal posi-
cionament dels cromosomes dóna lloc a retards en la separació dels cromosomes
que poden, fins i tot, portar a la mort cel·lular.

En la mitosi, els cromosomes segueixen una seqüència complexa de moviments
coordinats. Just després de la degradació de la membrana nuclear, els cromosomes
interaccionen amb els microtúbuls que formen el fus mitòtic, una estructura origi-
nada per l’autoorganització de microt́ubuls i motors moleculars de diverses classes.
Aquesta estructura permet la transmissió de les forces necessàries per moure els cro-
mosomes. Generalment, un microtúbul provinent d’un dels pols del fus mitòtic con-
tacta lateralment un dels dos cinetocors d’un cromosoma i aquest es mou ràpidament
cap al pol d’on prov́e el microt́ubul. Un cop ḿes a prop del pol, alguns dels mi-
crotúbuls que emanen radialment del pol connecten amb el cinetocor i creen un feix
de microt́ubuls que connecta fortament el cromosoma al pol. Es diu llavors que el
cromosoma està monoorientat ja que noḿes est̀a connectat a un dels dos pols del fus
mitòtic. En c̀el·lules animals, cada un dels cromosomes es mou cap al pol i després
se n’allunya, de manera periòdica. Aquest moviment oscil·latori, el qual persisteix en
les diferents fases de la mitosi (des de la prometafase fins a l’anafase A),és degut a
les forces que actuen sobre el cromosoma. Aixı́ doncs, la seva descripció quantitativa
pot ajudar a comprendre la relació entre els moviments a escala cel·lular i les forces
a nivell molecular durant la divisió cel·lular.

Tots els models que descriuen el moviment oscil·latori dels cromosomes tenen
com a punt en coḿu que el cinetocor controla, d’alguna manera, les fases de movi-
ment del cromosoma.́Es a dir, aquests models proposen que el cinetocorés el re-
sponsable del moviment oscil·latori. Malgrat que aquestáes una hip̀otesi plausible,
es coneixen poques coses del cinetocor i no existeix encara una explicació per a
aquest hipot̀etic mecanisme de control del moviment del cromosoma en el cinetocor.
Alguns d’aquests estudis reprodueixen el moviment oscil·latori del cromosoma, però
malgrat aix̀o, no expliquen aquest moviment ja que aquests models postulen la de-
pend̀encia espaial de les forces que actuen sobre el cromosoma.És important enten-
dre que un model que postula la natura de les forces, sense evidències experimentals
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per a tal suposició, no pot explicar l’origen del moviment encara que sigui capaç de
reproduir-lo. L’objectiu de l’estudi que presentem en el capı́tol 8 és demostrar que el
moviment dels cromosomes i el seu posicionament en la cèl·lula poden ser entesos a
partir dels mateixos conceptes fı́sics.

Hi ha dues forces que actuen sobre un cromosoma durant la divisió cel·lular.
S’ha demostrat que el cinetocor aplica una força al cromosoma dirigida vers el pol
del fus mit̀otic al qual est̀a connectat. Malgrat que l’origen molecular d’aquesta força
no est̀a encara ben establert, es creu que les contribucions principals a aquesta força
provenen de les dineı̈nes citoplasm̀atiques i de la depolimerització de microt́ubuls.
D’altra banda, hi ha diversos experiments que demostren l’existència d’una força
que ejecta el cromosoma lluny del pol. L’origen molecular d’aquesta força ha estat
identificat recentment. Les cromokinesines, un tipus de kinesines que estan associ-
ades als braços dels cromosomes, es mouen al llarg dels microtúbuls i generen la
força d’ejeccío que intenta allunyar el cromosoma del pol. Aquests motor molecu-
lars generen forces de l’ordre dels picoNewtons. Com que s’ha mesurat que les forces
necess̀aries per moure un cromosoma són de l’ordre de nanoNewtons, això implica
que les cromokinesines treballen en grup per tal de moure el cromosoma. Recents
observacions experimentals demostren el paper clau que juguen aquests motors en el
moviment dels cromosomes, ja que una reducció dr̀astica del seu nombre dóna lloc
a un apropament significatiu del cromosoma al pol del fus mitòtic i suprimeix les
oscil·lacions.

El moviment del cromosoma resulta de la competició entre la força que ejecta
el cromosoma lluny del pol i la força que aplica el cinetocor, la qual intenta apropar
el cromosoma al pol. La força d’ejecció té un origen diǹamic ja que està gener-
ada de manera col·lectiva per les cromokinesines i, per tant, depèn fortament de la
cinètica d’aquests motors. De manera genèrica, el comportament col·lectiu de mo-
tors d́ona lloc a inestabilitats diǹamiques, per̀o no t́e perqùe donar lloc a oscil·lacions
si la diǹamica del sistema no està acoblada a algun grau de llibertat espaial. La
nostra descripció proposa que aquest acoblamentés degut a la interacció de les
cromokinesines amb els microtúbuls que configuren el fus mitòtic, ja que la con-
figuracío espaial dels microtúbuls en forma d’estrella constitueix un substrat en el
què l’enganxament de motors depèn de la posicío. Aixı́ doncs, l’enganxament de
cromokinesines als microtúbuls del fus mit̀otic permeten al cromosoma determinar
la seva posicío dins la c̀el·lula. El nostre estudi demostra que l’acoblament entre la
inestabilitat associada a la dinàmica col·lectiva dels motors i la morfologia del fus
mitòtic dóna lloc a les oscil·lacions observades.

En una primera part centrem el nostre estudi en el moviment de cromosomes
mono-orientats. L’aǹalisi de l’estabilitat diǹamica de la posició del cromosoma de-
mostra que aquest està caracteritzat per dos possibles estats dinàmics. O b́e el cro-
mosoma està fix en una certa posició espaial, o b́e oscil·la entre dues posicions.
Concretament, hem determinat la influència de diversos paràmetres, com ara el nom-
bre total de cromokinesines, en l’estabilitat posicional del cromosoma. Trobem que
existeix un nombre ḿınim de cromokinesines per sobre del qual el cromosoma pre-
senta oscil·lacions altament no-lineals. La integració num̀erica de la diǹamica del
cromosoma, demostra que les oscil·lacions obtingudes són molt similars a les obser-
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vadesin vivo. La comparacío de resultats obtinguts i les dades experimentals refer-
ents al moviment de cromosomes ens han permès estimar que aproximadament unes
mil cromokinesines estan associades a un sol cromosoma. Apart de la influència del
nombre total de cromokinesines, hem analitzat també la depend̀encia del moviment
dels cromosomes en la morfologia del fus mitòtic. Els nostres resultats concorden
amb les dades experimentals al respecte, les quals indiquen que un augment de la
densitat de microtúbuls indueix un allunyament del cromosoma respecte al pol del
fus mitòtic.

Un cop realitzat l’estudi de cromosomes monoorientats, hem extès la descripció
per tal d’entendre el moviment de cromosomes biorientats. Aquests cromosomes es-
tan connectats a ambdós pols del fus mit̀otic a trav́es de dos feixos de microtúbuls
que connecten cada un dels dos cinetocors d’un cromosoma a un pol diferent. En
aquest cas, les forces dels cinetocors vers cada un dels pols en cancel·len entre elles,
i les forces dominants responsables del moviment del cromosoma són aquelles que
apliquen les cromokinesines. El fus mitòtic est̀a composat per dos centres de nu-
cleacío de microt́ubuls. Els microt́ubuls es distribueixen de manera radial des de
cada un dels centres de nucleació, els quals es corresponen amb els dos pols del
fus mitòtic. A diferència d’un cromosoma monoorientat, el qual interacciona essen-
cialment amb els microtúbuls d’un dels pols, les cromokinesines d’un cromosoma
biorientat es poden enganxar a microtúbuls provinents dels dos pols. Com a con-
seq̈uència, existeixen dues forces oposades que ejecten el cromosoma biorientat de
cada un dels pols. La competició entre aquestes dues forces dóna lloc al moviment
del cromosoma. L’estudi de l’estabilitat dinàmica del cromosoma biorientat demostra
que, de la mateixa manera que els cromosomes monoorietats, els biorientats poden
o bé quedar-se en una posició espaial fixa, o b́e oscil·lar entre dues posicions. La
posicío estable d’un cromosoma biorientat es troba a la posició mitjana entre els dos
pols, degut a la simetria del fus mitòtic. Experimentalment, els cromosomes biorien-
tats es localitzen al pla mitòtic, situat precisament al punt mig entre els dos pols.

La descripcío del moviment dels cromosomes que hem introduı̈t permet tamb́e
analitzar com els cromosomes biorientats es mouen cap al pla mitòtic, en un proćes
conegut com “chromosome congression”. L’origen d’aquest moviment ha estat ex-
plicat durant molt temps per un mecanisme on es suposa que la força que aplica
cada un dels cinetocors creix linealment amb la distància del cromosoma al pol. El
nostre estudi proposa que noés la força del cinetocor la que varia amb la distància
del cromosoma al pol, sinó queés la força neta dirigida cap a cada un dels pols la
que augmenta, degut a la disminució de la força d’ejecció com a conseq̈uència de la
disminucío de la concentració de microt́ubuls a dist̀ancies ḿes grans del pol.

Aix ı́ doncs, en el capı́tol 8 introdüım una descripció tèorica que permet com-
prendre el posicionament, el moviment i la congressió de cromosomes a partir de
la mateixa base fı́sica. Demostrem que el moviment oscil·latori dels cromosomes
és degut a l’acoblament de la inestabilitat dinàmica associada al comportament
col·lectiu de les cromokinesines amb la cinètica d’enganxament de les cromoki-
nesines als microtúbuls del fus mit̀otic. Concretament,́es aquesta mateixa cinètica
d’enganxament de les cromokinesines al microtúbuls, la qual dep̀en de la concen-
tració local de microt́ubuls en el fus mit̀otic, la que permet al cromosoma sen-
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tir la seva posicío dins la c̀el·lula. Aquest estudi fa diverses prediccions que se-
ria interessant comprovar experimentalment, com per exemple el nombre mı́nim de
cromokinesines per sota del qual el cromosoma no oscil·la, o la variacío de les car-
acteŕıstiques del moviment del cromosoma degudes a variacions controlades de la
morfologia del fus mit̀otic.

Juntament amb l’estudi sobre l’extracció de tubs de membrana presentat anteri-
orment, l’aǹalisi del moviment de cromosomes posa de manifest l’origen dinàmic
de les forces creades col·lectivament per grups de motors moleculars. Com que exis-
teixen molt́ıssimes situacions en les que el moviment cel·lular és originat per grups
de motors moleculars, creiem que les inestabilitats obtingudes en el nostre anàlisi
poden permetre comprendre altres moviments cel·lulars.

A.5 Estabilitat del fus mitòtic

Diverses estructures en cèl·lules eucariotes provenen de l’autoorganització de fila-
ments polars i proteı̈nes motores. Hi ha diversos estudisin vitro que demostren que
barreges de microtúbuls i kinesines desenvolupen espontàniament estructures com-
plexes. Aquests feǹomens d’autoorganització śon essencials en la divisió de c̀el·lules
eucariotes.

En la mitosi, diferents proteı̈nes motores organitzen els microtúbuls en una es-
tructura bipolar, el fus mit̀otic, que permet transmetre les forces necessàries per
moure els cromosomes. L’estabilitat del fus mitòtic és essencial per al procés de di-
visió cel·lular, ja que defectes en l’estructura poden impedir la repartició dels cromo-
somes en les cèl·lules filles. El fus mit̀otic consisteix en dos conjunts de microtúbuls
que es distrubueixen radialment des de cada un dels dos centres de nucleació de mi-
crotúbuls. Aquests dos conjunts de microtúbuls interaccionen mitjançant proteı̈nes
motores. Dels diferents tipus de motors moleculars que es creu que estan involucrats
en la divisío cel·lular, s’ha demostrat que un tipus concret de motors bipolars (Eg5
o Klp61F, de la familia BimC) juga un paper molt important en l’estabilitat del fus
mitòtic. Concretament, si es disminueix la concentració d’aquests motors per sota un
llindar, el fus mit̀otic col·lapsa. A ḿes, s’ha demostrat també que la seva inhibició
total impedeix la formació del fus mit̀otic. D’altra banda, altres estudis demostren la
implicació d’aquests motors en la formació de feixos de microtúbuls i en la generació
del caracteŕıstic flux de microt́ubuls vers els pols del fus mitòtic. En vista de totes
aquestes observacions experimentals, hem analitzat teòricament el paper que juguen
aquests motors en l’estabilitat d’estructures similars al fus mitòtic. En el caṕıtol 9
presentem una descripció de la generació de forces i estabilitat del fus mitòtic basada
en el comportament col·lectiu dels motors bipolars.

Els motors bipolars śon kinesines capaces de crear lligams entre diferents mi-
crotúbuls i moure’s simult̀aniament i independentment sobre cada un d’ells. D’aquesta
manera, fan lliscar aquells microtúbuls disposats en una configuració antiparal·lela
l’un respecte l’altre. Com a resultat d’aquest lliscament relatiu dels microtúbuls, els
motors generen una força en la direcció de simetria del feix, la qual separa els dos
pols. Aquesta situació té lloc en la zona central del fus mitòtic en la metafase de la
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mitosi. La força de compressió imposada externamentés equilibrada per la força que
generen de manera col·lectiva els motors que lliguen els microtúbuls antiparal·lels.
Malgrat que les forces estan equilibrades internament en l’estructura, la dinàmica del
sistema imposa restriccions importants a la seva estabilitat.

Concretament, estudiem l’estabilitat de configuracions antiparal·leles de mi-
crotúbuls sotmesos a forces longitudinals, en presència de motors bipolars que soste-
nen col·lectivament l’estructura creant estocàsticament lligams entre els microtúbuls.
La nostra descripció acobla el tr̀afic de motors en els microtúbuls que constitueixen
l’estructura amb la diǹamica en la zona central, on els motors bipolars fan lliscar els
microtúbuls antiparal·lels i generen la força necessària per sostenir l’estructura.

Per tal de determinar en quines condicions el fus de microtúbulsés estable, fem
una aǹalisi d’estabilitat lineal. Els resultats del nostre estudi demostren que, malgrat
que les forces sempre es poden equilibrar internament en l’estructura, els motors
bipolars no sempre poden suportar-la. Quan els motors no poden suportar les forces,
els lligams que creen entre microtúbuls antiparal·lels es trenquen i els fus de mi-
crotúbuls col·lapsa. L’aǹalisi d’estabilitat prediu que el col·lapse del fus es produeix
a una concentració finita de motors.́Es a dir que existeix un llindar en la concentració
de motors bipolars per sota del qual l’estructura col·lapsa. Aquest col·lapse ha estat
observat experimentalment a nivell qualitatiu per diversos grups i, experiments més
recents, han demostrat que el col·lapse es d́ona a una concentració finita de motors,
en concord̀ancia amb els nostres resultats. L’origen fı́sic del col·lapse de l’estructura
es troba en la diǹamica col·lectiva dels motors bipolars que sostenen el fus. Per con-
centracions prou elevades de motors bipolars, n’hi ha molts en la zona central del
fus que estan lligant microtúbuls antiparal·lels i que, per tant, contribueixen a la gen-
eracío de força. Hem vist anteriorment que els motors moleculars es desenganxen
dels microt́ubuls amb ḿes freq̈uència quan una força s’aplica sobre ells. Degut a que
per concentracions grans de motors, n’hi ha molts que es reparteixen la força total
que han de suportar, la força que sosté cada un d’ellśes petita i la freq̈uència amb
què aquests es desenganxen dels microtúbuls no augmenta significativament. Quan
un motor bipolar que lliga dos microtúbuls antiparal·lels es desenganxa d’un d’ells,
ja noés capaç de generar forces per sostenir l’estructura. Si la concentració de mo-
tors és petita, hi ha pocs motors que sostenen l’estructura i, per tant, la força que
cada un d’ells ha de resistirés gran. Com a conseqüència, els motors es desenganxen
dels microt́ubuls amb ḿes freq̈uència i, per concentracions de motors prou petites, el
flux de motors que s’enganxen als microtúbuls i lliguen microt́ubuls antiparal·lels no
és prou gran per equilibrar el flux de motors que se’n desenganxen. Aquesta situació
porta a un trencament total dels lligams entre microtúbuls antiparal·lels i, en abs̀encia
de motors bipolars suportant la força imposada externament, l’estructura col·lapsa.

Aquesta aǹalisi emfatitza el paper clau que juga el fet que la cinètica dels mo-
tors depengui de la força aplicada sobre ells, en l’autoorganització de motors i mi-
crotúbuls. En les estructures resultants d’aquests fenòmens d’autoorganització, els
motors generen esforços interns en l’estructura que afecten la cinètica dels mateixos
motors que creen els esforços. Els nostres resultats posen de manifest que la in-
fluència dels esforços interns en la cinètica dels motors pot imposar limits molt re-
strictius a l’estabilitat d’estructures autoorganitzades.
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Un cop determinades les condicions que porten al col·lapse de l’estructura, hem
estudiat quinés el nombre de motors bipolars que sosté les estructures estables.
Utilitzant valors experimentals, el nostre estudi demostra que malgrat que dos mi-
crotúbuls en una configuració antiparal·lela poden ser estables, el temps de vida de
l’estructuraés petit respecte a la durada del procés de divisío cel·lular. D’altra banda,
els feixos estables de microtúbuls antiparal·lels estan caracteritzats per un temps de
vida molt major, degut al major nombre de motors bipolars que sostenen l’estructura.
Els nostres resultats suggereixen que el fus mitòtic ha d’estar constituı̈t per feixos de
microtúbuls antiparal·lels enlloc d’estar format per moltes parelles de microtúbuls
antiparal·lels. Experimentalment, s’observa que el fus mitòtic cont́e diversos feixos
consitüıts per un nombre considerable de microtúbuls antiparal·lels. Malgrat que en
aquest estudi no expliquem la formació dels feixos, els nostres resultats expliquen
una de les seves possibles funcions, la de donar major estabilitat al fus mitòtic.

Més enll̀a de l’estudi d’estabilitat, hem analitzat el moviment de microtúbuls vers
els pols generat pel lliscament de microtúbuls antiparal·lels indüıt pels motors bipo-
lars. Els nostres resultats indiquen que la velocitat de lliscament dels microtúbuls
disminueix si la concentració de motors bipolarśes redüıda. Aquesta dismunició ha
estat observada experimentalment i està en acord semi-quantitatiu amb els nostres
resultats. Per concentracions grans de motors bipolars, el lliscament de l’estructura
est̀a caracteritzat per la velocitat màxima dels motors. Aix̀o és degut a que per con-
centracions grans la força que cada un dels motors sosté és petita i la seva velocitat
no es veu afectada significativament. En aquest cas, els motors semblen estàtics en
l’estructura ja que la seva velocitat respecte ellaés la mateixa que la velocitat de llis-
cament de l’estructura. Aquesta aparent immobilitat dels motors ha estat observada
experimentalment. La nostra anàlisi prediu que una disminució de la concentració de
motors permetria l’observació del seu moviment.

L’estudi presentat en el capı́tol 9 constitueix doncs una descripció simple que
explica, a partir d’uńunic marc conceptual, diverses observacions en la mitosi, com
el col·lapse del fus mit̀otic, el moviment de microtúbuls vers els pols, l’aparent im-
mobilitat dels motors en el fus mitòtic i la funcionalitat dels feixos de microtúbuls
antiparal·lels.

A.6 Conclusions

En aquest treball hem estudiat com els generadors de forces moleculars treballen
conjuntament per generar les forces que donen lloc a diversos moviments cel·lulars.
Malgrat que cada un dels casos estudiatsés diferent, tots ells tenen com a punt en
comú l’acció col·lectiva dels generadors elementals de força i, com a conseqüència,
presenten similituds en la seva dinàmica. En particular, hem demostrat que en tots
els casos hi ha inestabilitats dinàmiques similars, degudes al caràcter col·lectiu de la
dinàmica dels generadors de força elementals. El moviment saltatòri del bacteriLis-
teria, les oscil·lacions de tubs de membrana, el moviment oscil·latori de cromosomes
i, fins i tot, el llindar per a l’extracció de tubs de membrana i el llindar associat al
col·lapse del fus mit̀otic, tenen tots el mateix origen. Comportaments similars han es-
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tat observats en altres sistemes caracteritzats per la resistència col·lectiva d’enllaços
moleculars a forces aplicades. L’adhesió cel·lular n’és un exemple. En aquest cas ex-
isteix un llindar de força per sobre del qual l’adhesió es perd totalment i les cèl·lules
perden el contacte. Altres sistemes fı́sics caracteritzats per friccions no-lineals pre-
senten inestabilitats similars. En els sistemes biològics per̀o, les forces que afecten
la cinètica dels generadors de força elementals són les que produeixen ells mateixos
i, per tant, les inestabilitats són intŕınsiques a la seva dinàmica. El nostre estudi sug-
gereix doncs que alguns aspectes dels moviments cel·lulars es poden entendre en un
únic marc conceptual.
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