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Cancgdo do Exilio

Minha terra tem palmeiras,
Onde canta o Sabid;

As aves, que aqui gorjeiam,
Ndo gorjeiam como ld.

Nosso céu tem mais estrelas,
Nossas vdrzeas tém mais flores,
Nossos bosques tém mais vida,
Nossa vida mais amores.

Em cismar, sozinho, d noite,
Mais prazer encontro eu ld;
Minha terra tem palmeiras,

Onde canta o Sabid.

Minha terra tem primotes,
Que tais ndo encontro eu cd;
Em cismar - sozinho, d noite -
Mais prazer encontro eu ld;
Minha terra tem palmeiras,
Onde canta o Sabid.

Néo permita Deus que eu morra,
Sem que eu volte para ld;

Sem que desfrute os primores
Que ndo encontro por cd;

Sem qu'inda aviste as palmeiras,
Onde canta o Sabid.

De Primeiros cantos
(Coimbra, julho de 1843)
Antbnio Gongalves Dias

%* Caxias-MA 1823
+Naufragio do “Ville de Boulogne” 1864
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Abstract

CHAVES, E.W.V. (2003). A three dimensional setting for strong discontinuities modelling in failure
mechanics. Barcelona. Ph.D. — Technical University of Catalonia (UPC) — Spain.

This work deals with the simulation of strain localization phenomena through the
Strong Discontinuity Approach (SDA) for three dimensional (3D) problems. The main
assumptions of this work are the isothermal quasi-static regime, small deformations and
rotations, and a material described as homogeneous and isotropic.

The theory is developed in the ambit of Continuum Mechanics using an Isotropic
Continuum Damage model and its variations, which serves to simulate materials like
concrete, ceramics, rocks and ice, for example. The basic ingredients of a 3D finite element
formulation with an embedded discontinuity are presented. Also the ingredients for the
transition from a weak discontinuity to a strong discontinuity (a bandwidth variable model)
are presented.

An extensive analysis of material bifurcation is performed. It gives us the information
necessary for the propagation of a discontinuity surface. Two proposals to track this
discontinuity surface are presented.

In order to illustrate the effectiveness of the method, several numerical simulations are
presented. The agreement with experimental data is also shown. In this work new
possibilities are open by giving the necessary tools for the extension of the method to the
study of more complex examples which require more complex constitutive models.

Keywords: Strong Discontinuity Approach, localization, bifurcation, finite element.
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Lesumen

CHAVES, E.W.V. (2003). A three dimensional setting for strong discontinuities modelling in failure
mechanics. Barcelona. Ph.D. — Technical University of Catalonia (UPC) — Spain.

El presente trabajo trata sobre la simulaciéon de la localizacion de deformaciones en
solidos mediante el método de las discontinuidades fuertes (Strong Discontinuity
Approach). Las principales hipdtesis de trabajo son la de régimen cuasiestatico isotérmico,
la de pequenas deformaciones y rotaciones, y la de homogeneidad e isotropia del material.

Esta teorfa se desarrolla en el ambito de la Mecanica de Medios Continuos. En lo
referente a la modelizaciéon constitutiva, se adopta un modelo de dafio isétropo y sus
variantes, los cuales pueden utilizarse en la simulacion de materiales cuasifragiles como el
hormigon, los ceramicos, las rocas y el hielo.

Se presentan los ingredientes basicos de la formulacién de elementos finitos con
discontinuidades internas en tres dimensiones, ademas de los ingredientes para la transicion
del régimen de discontinuidades débiles al de discontinuidades fuertes (modelo de ancho de
banda variable).

Por otra parte, se realiza un detallado analisis de bifurcacion material, el cual nos
proporciona la informacion necesaria para la propagacion de discontinuidades.

Finalmente, se proponen dos posibles algoritmos de trazado de la discontinuidad.

Varios ejemplos numéricos demuestran la eficiencia del método. Ademas, su
concordancia con resultados experimentales se pone de relieve. Este trabajo proporciona
las herramientas necesarias para la extension del método al estudio de ejemplos mas
complejos que requieren, a su vez, modelos constitutivos mas complejos.

Palabras clave: Discontinuidad fuerte, localizacion, bifurcacion, elemento finito.
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Lesumo

CHAVES, EW.V. (2003). A three dimensional setting for strong discontinuities modelling in failure
mechanics. Barcelona. Ph.D. — Technical University of Catalonia (UPC) — Spain.

O presente trabalho trata a simulagao da localizagaio de deformagoes em solidos
através do método das descontinuidades fortes (Strong Discontinuity Approach). As
principais  hipoteses do trabajo sdo: regime quase-estatico isotérmico, pequenas
deformacgdes e pequenas rotacdes, homogeneidade e isotropia do material.

Esta teoria se desenvolve no ambito da Mecanica dos Meios Continuos. No que se
refere a modelagem constitutiva, adota-se um modelo de dano isotrépico e suas variagoes,
que podem ser utilizados na simulacado de materiais quase-frageis como concreto,
ceramicas, rochas e gelo.

Sdo apresentados os ingredientes basicos da formulagio de elementos finitos com
descontinuidades internas em trés dimensoes, além dos ingredientes para a transi¢do do
regime de descontinuidades fracas para o de descontinuidades fortes (modelo de largura de
banda variavel).

Por outro lado, realiza-se uma analise detalhada de bifurcagdo material, que
proporciona a informagao necessaria para a propagac¢ao de descontinuidades.

Finalmente, dois possiveis algoritmos de tracado da descontinuidade sao propostos.

Varios exemplos numéricos demonstram a eficiéncia do método. Além disso, ¢é
verificada sua concordancia com resultados experimentais. Este trabalho proporciona as
ferramentas necessarias para a extensio do método para o estudo de exemplos mais
complexos que requerem, por sua vez, modelos constitutivos mais complexos.

Palavras chave: Descontinuidade forte, localizagao, bifurcagao, elemento finito.






Introduction

“.., nothing that has been discovered ever loses its
value or has to be discarded;...”

Love, A.E.H. (1944)

1.1 Why failure mechanics?

Nowadays modeling fracture and failure processes in structures remains as a challenging
problem in Mechanics. It plays an important role in the development of new materials for
industry as well as in the understanding of their durability and resistance. Some examples
that have stimulated this challenge are presented in the remaining of this section.

Ship failure

In the beginning of the 1900’s, interest increased in the behavior of steel (the most used
material of that time) after fatigue and fracture mechanisms were detected in various types
of structures including in ships; as examples one can mention: the Titanic(1912), the
Olympic(1911) and several ships during World War One (1914-1918) and World War II

(sce Figare 1],

Figure 1.1: Ship failure — Callister (1997).
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Dam collapse

Most concrete dams develop cracks, giving a heterogeneous character to the material
which can affect its integrity. Depending on the stress states, microcracks can develop into
a macrocrack formation, which can result in inefficient operation or even in a complete
collapse.

In 1928 the St. Francis Dam near Los Angeles, California, collapsed killing hundreds of
people. shows the dam before and after collapse. In 1959, the Malpasset Dam
(France) failed and the resulting flood killed about 450 people. In October 1963 about 2500
people died as a consequence of the Vajont dam collapsing (Longarone - Italy).

Figure 1.2: The St. Francis Dam, before and after collapse.

While monitoring displacements in the FE/ Afazar dam in Spain, (a double curvature
concrete arch buttress dam) it was noticed that the left side was moving more than the
right side and in 1977 a crack appeared in the left of center part of the dam (see .
Water began to leak out through the crack into drains in the dam at a rate of 1.5 m’/min.
Fortunately, the dam did not collapse.

rift

Figure 1.3: Atazar Dam-rift position.

Many other dams not mentioned herein have had some types of problems or collapsed,
killing people and devastating large areas.
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Oil/gas pipeline rupture

Thousands of kilometers of gas and oil transmission pipelines are currently in operation
around the world. A rupture of a pipeline can release diesel fuel, gas, etcetera, which can
kill or injure people or, sometimes, lead to an ecological disaster. Since 1986 in the United
States alone there have been 3140 incidents, 1407 injuries, and 322 deaths from ruptures of
natural gas pipelines.

Figure 1.4: Pipeline rupture.

Fracture in the biomedical engineering field

In the field of biomedical engineering we can quote as a typical problem the disease
called osteoporosis, a condition involving decreased bone mass which strongly increases
the risk of bone fracture (as age progresses). Not only can these fractures strongly influence
the quality of everyday live, they may also result in death. To prevent such fractures it is
necessary to evaluate with a high degree of accuracy the strength of the bone and the
propensity to fracture must be reliably estimated.

Figure 1.5: Biomedical engineering.

For the above reasons and many others that are not mentioned in this chapter, material
behavior, especially material fracture problems have been of great interest to researchers. In
the last decades there has been an increasing amount of interest in the study of the
experimental and theoretical behavior of the response of materials under extreme load
conditions.
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1.2 How to face the problem

According to Willam(2000) Material Science has been studied on different scales. From
the point of view of characterization and design, engineering materials are divided into

several sub-ranges (see Figure 1.6) as follows:

o Meter level

The most common problem in civil, mechanical and aerospace engineering
structures.

¢ Millimeter level
The laboratory specimen, which serves to yield material properties.
¢ Micrometer level

Micro-structural features, such as micro-defects and the hydration products in
cement-based materials, are observed in this scale.

e Nanometer level

In this level, molecular and atomic processes take place.

1x10%m Structural Mechanics

Macro Mechanics
1x107m

Meso Mechanics
1x10°m

Micro Mechanics
1x10°m -

Nano Mechanics

Figure 1.6: Multiscale material mechanics, Willam(2000).

Several theories have been formulated at different levels to simulate the problem of
crack initiation/propagation. This thesis will concentrate on the material behavior at a
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macroscopic point of view (material failure mechanics), such macro-mechanical model is
well established in simulating the fracture process.

1.3 Material behavior (meter-millimeter level)

In 1911 von Karman showed that rocks, when compressed under high hydrostatic
pressure, undergo a transition of plastic deformation characterized by the appearance of
crossed net shear bands at approximately 45°. Later, the same effect was observed in other
materials like soil, sand, ceramics, composites, ice, and so on. The morphology of bands in
rocks is very similar to the one observed in metals (known as Liders bands) (see Figure 1.7).

Figure 1.7: Luders bands.

In soils, when a set of forces provokes instability, a zone with a concentration of

deformations is observed. It is called the slip line (see . The zone where there is

a concentration of strain is called the zone of localization.

v

N7

AN Y VNN Y NN

Slip line

Figure 1.8: Soil collapse.

Although localization is a phenomenon that has its origins at a microscopic level, caused
by the presence of voids, microcracks, and other phenomena, cracks in concrete or rocks,
slip lines in soils and shear bands in metals are observed at the macroscopic level.

The zone of localization is characterized by the concentration of inelastic strains in a

narrow band while the surrounding material undergoes unloading. Figure 1.9]shows strain
localization as a precursor to faulting and macroscopic fracture of the material.
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g

O - stress

€ - strain

Outside the fracture zone

Figure 1.9: Localization behavior.

From the numerical point of view, the initiation of localization (when the material is
within the softening regime) produce problems of instability. Rudnicki&Rice(1975)
analyzed localization as instability in macroscopic constitutive descriptions of inelastic
deformation of the material. These aspects will also be discussed in Chapter 3.

Brittle vs. ductile materials

Material classifications traditionally fall into two categories: brittle and ductile. The terms
brittle and ductile relate to the relative values of the elastic limit and failure threshold. If the
failure threshold neatly coincides with the elastic limit, then the material will experience
only negligible plastic deformation before fracture. The term brittle refers to such a
material. In contrast, for a ductile material the failure threshold is significantly larger than
the elastic limit so that as the material deforms it experiences an elastic regime, followed by
a plastic regime, and then finally it fractures. Materials fail in different ways depending on
the temperature and pressure (see Figure 1.10). The following are the most relevant
features of these two types of materials:

® Brittle Materials: small deformations, no warning before failure (abrupt). Example:
concrete, ceramic, glass, ice, rocks, etc.

®* Ductile Materials: large deformations, warning before failure (Not abrupt).
Example: steel, aluminum, etc.

Remark 1.1: Some kinds of steel have brittle behavior, depending on the process of
manufacture — eg: casting; hot-working; cold-working; heat treatment — and
depending on the amount of carbon —more carbon implies more strength and more
brittleness— . [
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Brittle material Ductile material

f

ix Typical ductile failure

i

Typical brittle failure
t

StrainV

Stress

Figure 1.10: Brittle 5. Ductile materials.

1.4 Some approaches to the modeling of failure

To simulate the material failure mechanisms at a macroscopic level, the most accepted
frameworks are: Fracture Mechanics and Continuum Mechanics. Basically, the main
difference between these two general approaches is that in Fracture Mechanics after failure

initiation a traction-separation relationship (t" —w) is invoked, whereas continuum
mechanics assumes a stress-strain relationship (o —¢) after strain localization, which is a
precursor to failure and macroscopic fracture of the material (as the stress vanishes) based
on this very general classification, here we present a more specific account of the most
important to failure modeling.

1.4.1 Linear Elastic Fracture Mechanics - LEFM

Fracture mechanics was stimulated by Inglis (1913). Using elasticity fundamentals he
studied the stress concentration in a large plate of elastic material with an elliptical hole.
Later, Griffith (1921) used Inglis’ stress analysis of an elliptical flaw in a linear elastic
material to predict the critical stress under which a crack irreversibly grows, causing the
material to fracture. He proposed an energy criterion of failure after considering that the
stress value cannot be used as a failure criterion since the stress at the tip of a sharp crack
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in an elastic continuum is infinite. These concepts served as the basis of classical linear
elastic fracture mechanics (LEFM).

To study the propagation of fissures Irwin (1957), introduced the so-called Fracture
Modes (see whose combinations give tise to the mixed-mode cracks.

Another very important concept in Fracture Mechanics is the strain energy release rate
(G), which is defined as the amount of energy required to open a unit of crack area. Irwin
expressed this energy in terms of the stress intensity factor. Other possible modes of

deformation at a crack tip are sliding mode II and tearing mode I11 (see Figure 1.11).

Mode I Mode IT Mode III
Pure opening mode In-plane shear mode Antiplane shear mode

g 4

Figure 1.11: Fracture Modes.

The concept of specific fracture energy, G, =G, or simply fracture energy (correspondent

to the case of Mode-I crack opening) was formulated having as point of departure the inter
atomic energy. Nowadays, this concept is very widespread in the field of continuum

mechanics and is used to simulate the process of failure. When the work, W, necessary to

develop a fracture surface, A,, is known in a cylindrical piece, the fracture energy is

obtained as

W=6G,4, (1.1)

Figure 1.12: Fracture area normal to load P.

With respect to the Fracture Energy correspondent to Mode 11, is G, a representative
fracture energy? Nowadays this discussion is still open in the ambit of Continuum Media.
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In 1993, Carpinteri and co authors, in a paper entitled: “Is mode II fracture energy a real material
property?” concluded that Mode 1II fracture energy does not seem to be a material property.

In fracture mechanics the procedure used to determine the crack propagation is indicated
as follows:

® Step 1: Determine the stress intensity factor;

" Step 2: Verify the crack stability based on a criterion which is a function of the
stress intensity factor, and determine the crack increase and its orientation;

»  Step 3: The crack tip is established in a new point. The whole process is repeated
until the crack stability is ensured.

1.4.2 Discrete crack approach

Hillerborg et al. (1976) introduced the fictitions crack model, based in a Cohesive Crack
Model where the fictitious crack can transfer stress from one side to another (
This material can be characterized by two couples of constitutive laws: a stress-strain
relationship (6 —¢) in a non damaged zone and a stress-crack opening displacement
relationship (o —w). In the latter, it is possible to distinguish another two zones: a real
crack where there is no more stress transfer and a damaged zone, extended in the fracture
process zone, in which stresses are still transferred. The G, coefficient is also equal to the

area defined by the softening law (descending branch of the (¢ —w) ).

c A f * _tensile strength

W - crack opening

\J

| Cohesive-crack o Visible crack

Figure 1.13: Hillerborg’s cohesive crack model; the Fictitious Crack Model.
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At the first glance, the discrete crack approach —introduced by Ngo & Scordelis(1967)—
is well matched with the nature of the physical crack (Ingraffea(1977), Blaauwendraad &
Grootenboer(1981), Hillerborg(1985), Ingraffea &
Saouma(1985)). However, in these methods there is an [
interelement discontinuity, for this reason an interface element or
special boundary conditions between adjacent solid elements are
required to simulate the crack propagation. This avoids the
spurious stress across the discontinuities. The crack region must —
be pre-defined or remeshed, Ingrafea&Saouma(1985). Accurate . VAN
results for a fixed mesh can only be obtained if the crack pattern ' hil"_-' f
is known in advance and if elements have been oriented in the FOWN
crack direction.

Figure 1.14: Discrete crack model.

1.4.3 Smeared crack model

In 1958, Kachanov introduced the concept of “effective stress” to describe the behavior
of a degraded material (isotropic damage) in the context of a continuum medium. This
paper, Kachanov(1958), starts a new tendency to face up to the problem of fracture in
materials, following this idea and concepts several researches began to conceive several
approaches to attack the localization problem.

In the approach (Sweared crack approach) proposed by Rashid (1968), infinitely many
parallel cracks of infinitely small opening are imagined to be continuously distributed
(smeared) over the finite element (see . This
finite element exhibits a complete loss of stiffness at the
onset of failure. This methodology was very well
welcomed because the Finite Element Method was getting
powerful with the advance of computer development, and
principally because this new approach treated the two
behaviors, continuum and fracture, in the same framework
of the continuum. This new methodology had been N NS

followed by several researchers like: Cervenka(1970),
Bazant&Cedolin(1979), Rots et al. (1985).

Figure 1.15: Smeared crack model.

To simulate material behavior up to full fracture implies strain-softening (after the load
reaches the peak, the postpeak is characterized by stress declining with an increasing of
strain). With this, some problems appear like mesh dependency and localization instability.
Such problems were unknown by the researchers, causing certain theoretical difficulties.
This instability will be tackled in more details in Chapter 3 — Material Bifurcation.

Currently there are two types of models for the post-cracking of concrete that are based
on the smeared crack model: the fixed-crack model and the rotating-crack model. In
the fixed crack model a crack forms perpendicular to the principal tensile stress direction
when the principal stress exceeds the concrete tensile strength and the crack orientation
does not change anymore. The rotating-crack model —proposed by Cope et al. (1980)—
allows the crack to rotate with the principal strain directions during loading, unlike the
fixed crack model.
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At later stages, the standard rotating crack model leads to stress locking. Some
researchers have used the combination of the rotating crack model with a scalar damage
model to reduce spurious stress transfer, Jirasek&Zimmermann(1998).

The smeared crack shows the presence of the so-called localization instability when the
material is in soffening, and is non-objective. In order to overcome such difficulties the Band
Smeared Crack Model was developed by Bazant&Oh(1983), Rots ez a/.(1985). Such ideas
appeared according to experiments, since the dimensions of the failure regions are
independent of the structural size and they are assumed as fictitious planes. In the case of
tensile cracks, this approach is known as “Crack Band Model” Bazant & Oh(1983), which
they adapted from concept of the Fictitious Crack Model (Discrete Model). In this model
the fracture energy was smeared out over the width of the area of the crack domain .

E i s o
= B e - T
? b L - >
2 sy
G [ Nernead: - >
Y by
< S - ¢ N
@) - -

S - >

-] -
Y - >
g - -
3 - L >
2 h
Rz
> v
w
\/
Fictitious crack model Crack band model

Figure 1.16: Fictitious #s. crack band model

The concept of constant fracture energy in tension is widely used to regularize mesh-
sensitive smeared cracks, Bazant&Oh(1983). The fracture energy G, is defined as the

amount of energy required to produce one unit of area of a continuous crack and is
considered a material property. This definition results in the following expression for the
fracture energy G,

9f=jcmdw (1.2)

where w is the sum of the opening displacements of all microcracks within the fracture
zone.

cr

In the Band Smeared Crack Model w is represented by a crack opening strain €, , which is
equal to the strain normal to the crack direction in the cracked state and which acts over a

certain width within the finite element, /" Thus:
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w=js;; ds¢ (1.3)

Assuming that the microcracks are uniformly distributed across the crack bandwidth 4",
equationreduces to:

weh" €7, =G, =h*Icnn de” (1.4)

the area g ,, energy per unit volume, under the curve in Figure 1.17|can be expressed as:

. g,
gf :jcniz dg:lln = g/ = hi (15)

Bazant & Oh (1983) introduced the crack band theory for the analysis of plain concrete
panels.

26,
,=—% (1.6)
f h
Discrete crack Smeared crack
e
Ay
c Bazant &Oh model
7 linear
Uncracked Process zone Cracked
w
. o A
fo Hillerborg model
bi-linear i
gr
c w >
o €
exponential
w

Figure 1.17: Discrete crack 5. Smeared model.
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The smeared crack approach can however overestimate the shear stiffness of the
structure, known as stress locking. This method cannot capture the displacement jump.
The lack of displacement jump in the kinematics can lead to a spurious stress transfer
across a wide open crack. As a consequence the structure will support more in reality than

it can, and the force displacement curve has an appearance as shown in

Force

Results with stress locking

Real structure behavior

»
|

displacement

Figure 1.18: Locking consequence.

Usually when the smeared crack model is applied, very fine meshes are needed to
capture the zones of high displacement gradient. When a code includes some automatic
mechanism for altering the element size () in response to the characteristics of a specific
problem, it is said to be h-adaptive. The act of increasing the number of elements
(reducing the characteristic size) is called refinement (see . This technique can
be computationally expensive and difficult to implement.

Strain field

[ A

/VA;EE( \
VY25

Figure 1.19: Mesh adaptivity techniques.
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1.4.4 Intraelement crack

In this approach, the crack propagates throughout the element (see Fioure 1.20). It is
like the Band Crack Model, which is concentrated in a band within the finite element. In
this case a lot of hypothesis have been adopted and among them one can quote: Enhanced
Strain (e.g. Weak discontinuity approach) and Enhanced Displacement (eg the Stong
Discontinuity Approach — Simo et al.(1993)). All these ramifications have one thing in
common, which is that after localization a softening relation between traction and relative
displacement can be reproduced by the stress-strain constitutive relation. Belytschko e /.
(1988) have developed a method by which the localized zone can be embedded using a
four-node quadrilateral element. The jumps in strain in localized zone are obtained by
imposing traction continuity.

/I

7/

Figure 1.20: Intraclement crack model.

1.4.5 Enhanced continuum approaches

As it is mentioned above, when models equipped with strain softening are used in a
framework of classical continuum, the corresponding Boundary Value Problem (BVP)
becomes ill-posed. The governing equations can be regularized to remain elliptic by
resorting to higher order continuum theories. To make this possible some enhanced
continua have been proposed.

This kind of enrichment imposes a minimal width of the zone of localized strain, and
hence they are called lcalization limiters.

Cosserat continua

The Cosserat continuum was originally developed by the Cosserat brothers in 1909. The
Cosserat theory of elasticity incorporates a local rotation of material points as an
independent parameter in addition to the translation assumed in the classical continuum.
As consequence a nonsymmetrical stress tensor is derived. The elastic Cosserat continuum
theory has been extended to elastic-plasticity and applied in the analysis of strain
localization describing the microstructure of the material (micropolar method) with a
parameter (internal length), Mihlhaus & Vadoulakis(1987); de Borst (1991); Steinmann &
Willam(1991), Iordache(19906).
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Non-local models

In non-local models, the stress at a point depends on the state at this point and on the
deformation in its neighborhood. The model has become non-local once the constitutive
model no longer satisfies the principle of local action. This method is proposed to achieve
a shear band independent of the computational grid size, Bazant ez 2/ (1984), Pijaudier-
Cabot&Bazant(1987), Tvergaard&Needleman(1995).

Gradient-enhanced models

This model may be derived as an approximation of the nonlocal damage models. A
characteristic of one class of gradient-enhanced model is the explicit dependence of the
yield function on the Laplacian of the effective plastic strain where a material parameter
(material length) is introduced, Aifantis(1984), Pamin(1994), Peetling (1999). de Borst &
Miihlhaus(1992).

In gradient elastoplasticity models the displacement field and effective plastic strains are

discretized using C ' _continuous shape functions.

1.5 Weak/strong discontinuity approach

Strain localization can also be treated as a discontinuity in the strain field by maintaining
continuity in the displacement field (weak discontinuity) or as a discontinuity in the
displacements field (strong discontinuity). This is the essential difference between the two
approaches.

Ortiz et al. (1987) considered a continuous displacement field (weak discontinuity),
where the strain localization in narrow bands appears as a possible tool to model the
discontinuities in the displacement field [ Belytschko e @/, (1988) |.

According to Simo&Rifai(1990), the classical method of incompatible modes —originally
introduced by Bazely ez a/. (1965) in the context of a plate bending problem and Wilson e#
al.(1973) in the context of plate elasticity—, consists of low order elements with enhanced
performance in a coarse mesh. Simo&Rifai(1990), using the three-field variational
formulation of elasticity, proposed a class of mixed assumed strain method whose central
idea was that the strain field is compounded of two parts:

E=VY'u+€ (1.7
where VU is the symmetric gradient of the displacement field and & is the enhanced

part of the strain field. They showed that € is not subjected to any interelement continuity
requirement.

From the class of assumed enbanced strain methods (AES), mentioned before, emerges the
strong discontinuity approach (SDA) in Simo e al. (1993), Simo&Oliver(1994). The SDA refers
to the capture of jumps in the displacement field across a surface with zero bandwidth
measure by using standard solid mechanics models with continuum constitutive equations.
It has been shown that the discrete theoretical model can be interpreted as the limit case of
the continuum when the localization band goes to zero (discontinuity surface). In this case
the strain has the sense of a Dirac delta distributions. The interesting point is that the
whole analysis is done in the Continuum Mechanics framework. The SDA leads to mesh-
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independent finite element discretization without introducing a material length scale (non-
physical property).

This new proposal has lately been followed by several researchers because it presents
certain attractive characteristics like:

® The implementation in a finite element code is very easy;

= It is mesh-independent with respect to size and orientation; and, as consequence,
no remeshing is needed to capture the high strain gradients;

® There is no need to introduce any material length scale.

In Oliver(1995a,b) a discontinuous shape
function (to capture the displacement field)
into a triangular element has been used
allowing a precise representation of the

crack opening (see Figure 1.21). @

Figure 1.21: Discontinuous shape function.

A transition between Weak Discontinuity and Strong discontinuity —a variable
bandwidth model- was introduced in Oliver ef 2/.(1997) and Manzoli (1998). The material
behavior will be in a strong discontinuity regime when the so called strong discontinuity
conditions, Oliver (2000), are fulfilled. In the next Chapter we will tackle this transition in
more detail.

This methodology has been used with many constitutive models (damage, Drucker-
Prager, Rankine), Oliver (1995b), (1996a),(1996b), (1998); Armero&Garikipati(1996);
Larsson ez al. (19906); Oliver et al. (1997-1999); Armero(1997). Garikipati(1996) has extended
the problem to finite deformations in the framework of the Assumed Enhanced Strain
Finite Element Method. Steinmann (1998), has used SDA, by using a finite element
discretization where interface element is endowed with these kinematics and, based on
these developments, a model adaptive strategy was proposed. Extensions to localization
analyses of saturated soils has been addressed by Armero&Callari(1999) and
Steinmann(1999). Oliver e /. (2000) using strong discontinuity approach showed the links
with cohesive models.

1.6 Failure simulation in three dimensions

In some cases, only a three-dimensional analysis can provide certain information of
interest to the designer that 2D analysis cannot provide, thus three-dimensional models
become necessary to obtain quantitative insight of these mechanical behaviors. In a 3D
framework, however, the complexity increases significantly even for growth limited to
Mode I conditions.
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With the increasing progress of computing process velocity and with a good pre
processor mesh generator it has provided an important tool in the extrapolating to three
dimensions for all the methods described above.

1.7 Adopted approach and aim of the thesis

This thesis deals with the extension of the two-dimensional Strong Discontinuity
Approach to the general 3D non-linear problem that presents crack formation in a macro
level, mainly in Brittle Materials (like concrete, rocks, ice, glass, etc.).

Numerically these problems will be modeled using the Finite Element method. We will
extend into 3D the special finite element developed by Oliver (1995a,b), which considers
that the jump in displacement which is the base of the Stung Discontinuity Approach
concepts. The type of finite elements used will be the tetrahedral and hexahedral finite
elements to simulate numerical examples.

The main assumptions made in this work are the dsothermal quasi-static regime and small
deformation and rotations, assuming a material described as homogeneous and isotropic.

In this thesis the material’s behavior associated to the development of a crack in a

loading process is described as (see Figure 1.22):

» Diffuse failure zone: The strain and displacement fields are continuous, but there
is a concentration of the strains in the zone where material begins to soften.

*  Weak discontinuity zone: The strain field becomes discontinuous, but the

displacement field remains continuous, across the limits of a narrow band (strain
localization band).

* Strong discontinuity zone: The strain localization band collapses into a surface
(the discontinuity interface). The displacement field becomes discontinuous across
that surface and the strain field becomes unbounded.

ua c A

Diffuse Failure

Weak
Discontinuity

#U

[u]

Strong

Discontinuity

\J

>
X

Figure 1.22: Fracture evolution.
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1.7.1

Contents of the thesis

The remaining of this thesis consists of the following chapters:

Chapter 2: The Boundary Value Problem of quasi-static equilibrium for an
isothermal solid with a discontinuity is presented. Isotropic damage is presented
as well as the regularization of the model and the strong discontinuity
conditions.

Chapter 3: Once the Elliptic Boundary Value Problem has been posed, in this
chapter we will tackle the loss of ellipticity, that is, material instability.

Chapter 4: After all variables are presented, we will describe the numerical
approach used to solve the BVP laid out in chapter 3.

Chapter 5: This chapter is devoted to presenting the results of classic examples
and the discussion of them.

Chapter 6: The summary, future lines of research and conclusions will be
presented.



Strong Discontinuities
in Solid Mechanics

“Philosophy is written in this grand book - the universe - which stands continuonsly open to our
gaze. But the book cannot be understood unless one first learns to comprebend the langnage and
interpret the characters in which it is written. It is written in the language of mathematics, and its
characters are triangles, circles, and other geometrical figures, without which it is humanly impossible
to understand a single word of it; withont these one is wandering about in a dark labyrinth.”

Galileo Galilei (1623)

2.1 Introduction

This chapter is devoted to studying the theoretical concepts related with the presence
of discontinuities in a continuum, more specifically, the appearance of discontinuities in the
displacement field. As a point of departure, we state the Boundary Value Problem (BVP)
for a continuous medium. Then a representative continuum damage model is described in
detail. Next, we present the two basic types of discontinuity kinematics: weak and strong
discontinuity kinematics. The so-called Strong Discontinuity Approach (SDA) already used
by several researchers (eg, Simo et al (1993), Oliver&Simo(1994), Simo&Oliver(1994),
Oliver(1995), Manzoli(1998), Regueiro&Borja(1999), Armero&Garikipati(1996), Larsson ez
al. (1995)) is adopted as the theoretical framework for this thesis.
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Basically, this chapter lays out all the ingredients that constitute the theoretical basis of
the numerical analysis of strain localization in structures composed by materials that can be
described by continuum damage models (e.g., quasi-brittle materials like concrete, ceramics,
ice, rocks).

2.2 Governing equations

We start by stating the standard Boundary Value Problem (BVP) of solid mechanics. Let

us consider a three dimensional body, that takes up an open bounded domain B e R’ with

density p (see . Let 0B be the boundary of B and v the unit outward normal
to 0B. The body is assumed to be in static equilibrium under the action of body forces
density, b(X), and surface tractions, t"(X). The boundary 0B consists of a portion 0,8
with prescribed displacements, u”(X), and a part 9488, with prescribed traction, t"(xX),
such that 6,Bn0,B =0 and W =0B. In addition let @(X) denote the Cauchy
stress tensor and €(X) the infinitesimal strain tensor. The governing equations of the

Boundary Value Problem (BVP) for this quasi-static problem are summarized in -

BOUNDARY VALUE PROBLEM - BVP

Partial differential equations
V-0(X)+b(x)=0 vxeB 2.1
(equilibrium equation)
Essential boundary conditions i
u=u (x) vxeo,B (2.2)|
(Dirichlet’s boundary conditions)
Natural boundary conditions .
t=t (X)=v-0 VxedoB (2.3)|
(Neumann’s boundary conditions)
0B
B
o, B
| % t"(X)
|
l
b v %

Zale

Figure 2.1: Three dimensional body.
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Now consider the body B eR® experiencing a displacement discontinuity across a
‘

discontinuity surface S with normal N (see

Let us consider the virtual work principle which states:

o:V"'ndV=|b-ndV It*- d4
.[ n I v+ n (2.4)
B B 0,8

\—ﬁ/__J

W W,

under the assumption of infinitesimal deformation y=V*"R, for all admissible virtual

displacement ReV, where V is the space of the kinematically admissible variations

defined by:

Vi=inec® nl.,=0f 2.5)

/A

int

integrating by parts the first integral of equation we obtain:

and W

ext

represent the internal and the external virtual work, respectively. After

jo:de=—jV-o-ndV+ Iu-o-ndA— N-(c*—o‘)-ndA (2.0)
S

B B\S o,B

where 0" and O stand for the stress fields in B* and B~, respectively. Substituting the
above equation into equation e tinally obtain:

- j(V-o+b)-ndV+ j(u-o—t*)-l‘ldA—jN'(0+ —0_)'ﬂdA=0 2.7)

B\S 2.8

so the strong form of equation is schematically shown below:

‘ BOUNDARY VALUE PROBLEM - BVP - With discontinuity

Equilibrium equation V-ox)+b(x)=0 vxeB\S (2.8)

Constitutive equation O =X(€(X)) vxeB (2.9)|
Kinematics equation E=V¥u= %(V ®u+u®V) | vxeB (2.10)|
Outer traction continuity T =T "< N-0 =N-¢ VxeS (2.11)|
Essential boundary conditions | u=u"(x) vxeo,B (2.12)|
Natural boundary conditions t=t (X)=0-0 Vxedo B (2. 13)|




22 A THREE DIMENSIONAL SETTING FOR STRONG DISCONTINUITIES MODELLING IN FAILURE MECHANICS

Additionally, we postulate the so-called inner traction continuity condition, characteristic of
problems involving strong discontinuitiesl

Inner traction continuity T =Ts< N-o"=N-0g4 VxeS (2.14)‘|

In equation 2(€) stands for the nonlinear constitutive equation returning the stresses
in terms of the strains.

Figure 2.2: Three dimensional body and discontinuous interface.

I Although here we postulate this condition, it can be derived from the principle of virtual work if the so-
called kinematics of strong discontinuities are assumed. This result was obtained in Simo&Oliver(1994).
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2.3 Representative continuum damage model

The term Damage Mechanics has been used to refer to models that are characterized
by a loss of stiffness, that is to say, a reduction of the secant constitutive modulus. In
Kachanov(1958)'s pioneering work, the concept of effective stress was defined. In that
work, Kachanov treated the damage variable as a scalar (isotropic damage), whose value
ranged from 0 to 1. Later, several researchers extended this theory by treating the damage
variable as a tensor (anisotropic damage). Another important work is the one by
Rabotnov(1969) intended to include the loss of rigidity of the material as a consequence of
the appearance of fissures, further called Continuum Damage Mechanics. This became a very
powerful and consistent theory based on the thermodynamics of irreversible processes.
This thermodynamical formalism was developed by Lemaitre & Chaboche(1985). The
damage models were used not only to simulate fragile materials, but also to simulate creep,
plasticity, viscoplaticity and fatigue phenomena.

Other important works can also be mentioned. For instance, Mazars(1986) considered

distinct damage variables for compression (d ) and tension (d ). Later, Faria and Oliver
developed this idea in Faria&Oliver(1993). Mazars&Pijaudier-Cabot(1996) have found a
correlation between Fracture Mechanics and Damage models. On the other hand,
Chaboche(1979) has used a damage variable with tensorial character. Carol ez a/ (1998)
have proposed a general unifying framework for degradation and damage using a
terminology and notation analogous to the well-known theory of elasto-plasticity.
Additionally, key developments in continuum damage fundamentals and numerical
applications can be found in Simo&Ju(1987a,b), Oliver ez al. (1990), among others.

2.3.1 Isotropic damage model

The so-called Continuum Damage Models have been used thoroughly to simulate the
behavior of materials that present degradation of the mechanical properties due to small
fissures that appear during the loading process. To characterize this, the concept of

effective stress, G, is introduced (see .

I
|
AN o — - | —»
\ |y, =¥ ; —
. S C = I > Effective stress &
-, . amad et L _

Aa‘:‘:/r’yi“ > ot \\\" = o=(1-d)o
P> g | ‘N\ -t S

Figure 2.3: Effective stress concept.
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In one dimension (see we can write:
c=(-d)o (2.15)

where o is the effective stress and d is the damage parameter which ranges from 0 to 1,
ze, 0<d<I1.

The effective stress G and the strain are related by the Hooke’s law:
c=E¢e (2.106)

where E is the elastic modulus of the material or Young’s modulus. Thus, substituting
(2.16) Jinto (2.15)|yields

o=(1—-d)Ee 0<d<l @.17)

Loading

c., [T </\Elastic Limit

G, - peak stress
Unloadin
E (-d)E e

Loading

\J

Figure 2.4: Stress-strain curve.

2.3.1.1 Constitutive equation

Here, the generalization of the damage model sketched in the previous section to 3D
cases is made. Only the case of isotropic damage is considered. The Helmholtz density of
free energy ¢ function can be written as follows:

Y=(-dt =(-d) &:C" e .18

In the case of a completely isotropic elastic response, the standard fourth-order isotropic

elastic modulus tensor C¢ as a function of LLamé’s parameters A, [, is defined as:

C° =2ul + M(1®1) (2.19)
where 1 is the second order unit tensor and I is the fourth order unit tensor, defined in

1 .
components as I, = E(SikSﬂ +8,0 ) The Lamé’s parameters, the Young’s modulus, E,
and the Poisson’s ratio, v are related by:

- vE = E

[+ v)i-2v) ) (2.20)

2(1+v
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From equation [2.18)|we obtain the following stress-strain relationship (the constitutive
equation):

Y (€,d) -
o=—""—""=(1-d)o 2.21
e (I-4d) (2.21)
where @ is the effective stress tensor defined as:

o=C°:¢ (2.22)

The reduced dissipation 22 becomes:

D=—y)+0:£=dy/°>0 (2.23)
which characterizes an irreversible process (for further details in thermodynamics aspects
see Lemaitre(1996) ). Since #°>0 by definition, d >0 must hold to satisfy the
thermodynamic requirement

The following norms in the stress space and in the strain space are defined,
respectively, as:

C(,fl:x/O':Cg_lzo ; TaZHE

U
7,=1-4d)7,

With these concepts in hand, we can define the elastic region (see )) in the

strain space as:

7,=|0 oo = S:Cezsz\/2;/e

(2.24)

B, ={e |97 .r)<0} (2.25)
and in the stress space (see a)) as:
E,={0|79(7,,9)<0} (2.26)

where r is the internal variable whose value defines the elastic limit. Thus we can define
the damage criterion which defines the elastic limits and reads

I(Teyq)=75—q(r)<0 or U7.,r)=7,-r<0

(2.27)
stress space strain space
From equation [2.24)[and Figure 2.4] for the uniaxial case, we can obtain:
Sy
7.,=VE:C:€ = r=—- (2.28)

JE

where 7, is an initial threshold value and o, is the elastic strength. On the other hand, ¢ is

the stress-like hardening/softening variable defined as:

q(r)=(1-d)r (2.29)
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where ¢(r) defines the hardening/softening rule in terms of r. The relationship between

g and r (linear and exponential softening law) is given in Figure 2.6 [and Figure 2.7| Using

equation 2.29) land equation e can obtain the following expression:

o-1"g (2.30)

r

From the damage function #(7,,q) and equation e obtain:

F(Touq)=0 7. —qg=(1-d)7, —~(1-d)yr=0YU7,,r)=0c 7, —r=0 (2.31)

7,=0 7. =0
g "
——————————————— e
) @V ¢ A (A - 4 (e (\ WD W L) 00
/ | : €,
O3
&
a) Stress space b) Strain space

Figure 2.5: Norm surface - Elastic limit.

2.3.2 Hardening rule

The hardening rule is characterized by:

G=H' i H)=¢'(")<0; gelos,]; Go=rp =2 (2.32)

e

where H? is the continuum hardening/softening parametet.

2.3.2.1 Linear hardening law

Ty r<r,

q(r)= (2.33)
1o+ H (r—r) %0 r>r,

thus based on the previous step the damage variable becomes:
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0 r<v,
d=1-1= (2.34)
r
1—%0—7{‘](1—%0))91 r>r,
A
q(r)
H! >0
To
H! <0
7y Fa=m r

Figure 2.6: Linear hardening/softening law.

2.3.2.2 Exponential hardening law

As described in

q(r)h
9%

b 9w > 7"0
Ty

\&\ /P < rO

\j

~

I "y

Figure 2.7: Exponential hardening/softening law.

The evolution laws for the damage threshold and the damage variable are:
F=y
0F(7 4,q(r)) (2.35)
Y
or

where v is a damage consistency parameter used to define loading/unloading conditions
(Kuhn-Tucker conditions):

d=
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YZO 7 g(roaq)go : ’y?(Tc:q):O (236)

and the persistency condition

Y I (7 5rq)=0 2.37)
We can summarize the load/unloading process schematically as:

G<op = =0 = j—o = (Unloading)

/=0 v=0 — J=o0 = Neutralloading) (2.38)

>0 =  Jd>0 = (Loading)

2.3.3 Time integration of the evolution laws, Tangent moduli

The incremental constitutive equation in terms of the stress and strain rates reads:

g=-C?:¢ (2.39)

Consider the constitutive equation:

0=(1-d)C*:g g, G=(1-d)C°:£€-dC*:€ (2.40)

with respect to time

When the material point considered is not in loading, then d =0, and thus:

6=(1-d)C°:& = C’=(1-d)C* (2.41)

The value of the internal variable d is given by the corresponding damage condition
and evolution laws. After some particularizations, the damage variable evolution can be
integrated in closed form at time ¢ (see giving:

F=y

r>0=9(0,9) =0 YE q)=0r=7,= r = rr(uax){ro,rs(s)} (2.42)
se(—oo,t

r ‘z:O ="
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7c A
"o
t
7 A
"o
t
Figure 2.8: Variation of 7, and r in the time ¢.
Differentiating 7, with respect to time yields:
7. =leiCtie —» 7=i= G:&
e T S s (2.43)
and considering equation we can obtain:
—_— ! . —_— d
d = [‘1(”) 1 (r)’”j A [‘1(”) 2% FJ ; (2.44)
r r
thus we can obtain C? substituting [2.44)|into {2.40)]
C":(1—d)ce—(q(”)_3‘](r)”][c :s@s:ce] (2.45)
d c c

A general expression of the tangential material stiffness C is the following:

d _ Cc* elastic (a)
EC* - K:( ‘:maen: (Ce) loading/ unloading (2.40)
F=05K=0 (b)
where n is the flow plastic normal to the Yield Function (7), defined as: n= pos and m

is the flow of the plastic potential which is normal to the Plastic Potential (G'), defined as :

oG

o0

_qqd
In the case of equation [2.45) [we have N=€, m=¢€ and Klzw and éz(l—d)

r

Table 2.1: Isotropic damage model summary.
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ISOTROPIC DAMAGE MODEL

Helmholtz free energy | ¢/(g,r)=[1-d(r)]¥¢ with ¢°= (E :CY: ) (2.47)
Damage variable diry=1- 4 gelrn,.0l; delo]] (2.48)
r
_— : oy e
Constitutive equation || @ = e " (1-d)C*:€ (2.49)
€
re [I"O , 0
Evolution law F=y (2.50)
q<|0,r,
Damage criterion F(o,q G:C [0.1] (2.51)
q ‘t:O ="
Hardening rule Gg=H' (i (’Hd =q'(r)< 0) (2.52)
Loading-unloading ¢ . . g _
condition 7<0 5 20 5 y7T=0 (2.53)
Consistency condition Y F=0 if 7=0 (2.54)

2.3.4 Tension-only damage model

This model is based on the isotropic damage model presented in the preceding section.
The evolution of r (7>0) is only activated upon tension in the principal stresses. This is
achieved by defining the positive stress counterpart of the stress tensor:

i=3

o’ ZZ <0i>pi ®p, (2.55)

i=l1

def " +

[ ]
where <0> =, is the Macaulay bracket and p, stands for the elements of the principal

directions base.

The tangential stiffness is given by:

C¢ elastic (a)

C = 2.56)

e —+ o =\ loading | unloading
C°-Klo"®0 —
§ ( ) / P (b)
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whete 0=(1-d)0 is the relation between stress and effective stress, and the damage

criterion is given by:

7*(0%,q)=Ne":C " 10 - ¢ (2.57)

\J

Figure 2.9: Tension-only model: (a) elastic domain in the principal stress space; (b) Stress
strain relationship in 1D.

Box 1 shows the very simple algorithm that has been used to evaluate stresses with the
proposed model (Oliver ef al.(1990)).

Box 1:

INITIAL DATA FOR TIME ¢ +1
Material properties: 6, E, v, G, =,

1+1 t
Current values: €7, d', r'

1) If t=0 then initialize r =7,
2) Evaluate effective stresses
6t+1 =C° :£t+1
3) Evaluate 7, "'
4) Update internal variables
rt+1 — max{rl" 7_8 t+1 }
d t+1 (r t+1 )
5) Update stresses
o.t+1 — (1 _ dt+1 )6t+1
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2.4 Discontinuity kinematics

For a better understanding of the kinematics we will resort to 2D visualization (see

where we consider an orthogonal system of curvilinear coordinates & and n
such that £ corresponds to the coordinate line £=0 (L', = {x(&,,n)eB; EJ:O}). Let us
denote by {é‘g ;én} the physical (orthonormal) base associated to this system of
coordinates and let r:(§n) and r, (§mn) be the corresponding scale factors such that

ds, =r.d§ and ds, =r,dn, where ds. and ds, are, respectively, differential arc lengths

along the coordinate lines & and n. We shall also consider the lines L7 and £~ which

coincide with the coordinate lines £=&" and §=¢&", respectively, enclosing a discontinuity

band,

B, = {x(a, n); Ee [&1&*]} (2.58)

whose representative width A(n), from now on named the bandwidth, is taken as
h(m)=r.(0,M)(E&" —&7). Let us finally define B=B~ uB" UB,.

Figure 2.10: Domain with discontinuity-2D.

According to the value of the bandwidth 4, one can distinguish the following types of
discontinuity kinematics:

e Weak discontinuities (4 #0);

e Strong discontinuities (7 =0).
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2.4.1 Weak discontinuity kinematics

The weak discontinuity is characterized by the presence of a discontinuous strain field
while the displacement field remains continuous. The displacement field rate can be
expressed as:

u(x,)=u(x,r) + Hy (0[allx,?) (2.59)
where u is the regular part of the displacement field. And the strain field defined as:

EX,) =V "u=V""ux,n+Hgz V" [[alkx,r) + V" H, x)[uallx,?) (2.60)

sym

where ()" is the symmetric part of (e) and H 5,> the unit ramp function, is also a

continuous function in B defined by:

0 xeB (k<)
H,={1 x<B E=¢) 2.61)
;‘i_ xeB, (g <g<e”)

Clearly H exhibits a unit jump, the difference from its values at L' and L™ for the

same coordinate line & ( [[H 5, ]]: H, (?;J’ , n)— Hy (?;‘ ,n)zl v ) From the definition
of H 5, in equation the corresponding gradient can be computed as:

oH oH, . «
VH, - 75 é, L8 €&, =z ie&
" 06 r, on " hy
b - (2.62)
he @) =r(EME —&)
h(0, ) =r,(O,)(E" —E€")=h(n)
where % is a collocation function defined as
]I xe B, 263
5 x¢eB, (2:63)
Thus
sym . 1 . Sym
v Hy (0lalkx. = ([a]@N)” (2:64)

h
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I[[U]]
—
T £ -
h(n)
°t
lullony
-
g
o L o
u A
-
— I[[u]]
E-. -
£ A
. 3
seluleny
EJ -

®) c

Figure 2.11: Kinematics (a) kinematic state of weak discontinuity; (b) kinematic state of
strong discontinuity.

In the case where the jump is constant along £ (or along S in 3D casel), equation

(2.60) [can be rewritten as:

E(X,1) = Vsy""ﬁ +3%00([al] @ N)™™

(2.65)
&€

where

1 VXeS

2.
0 vxeB\S (2:66)

8’&(X)=;xs(x) : Xs(x)z{

and yg(X) stands again for the collocation function. Function 8% can be interpreted as

the impulse function (see defined as:

2 All the equation atre expressed in a general 3D case.
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L gcrer
g&)=4h
0 E >Eor £E>& .67
Je@az-1
g(€) A
Area=1 ‘ h |
\ \
k |
Fia h
& £ 3

Figure 2.12: Impulse function.

2.4.2 Strong discontinuity kinematics

> 0 «¢&

limg(&)=0 , &#0

+o0

[e@ae-1

—00

The strong discontinuity is considered as the limit case of a weak discontinuity, when
the band B, collapses into the discontinuity line £ (see |[Figure 2.11). In 3D cases, the
band B, collapses into the discontinuity surface S. In this limit case the unit ramp

function becomes the step function (Heaviside function Hg). So, the impulse function

(see that we obtain as a result of this limiting operation reads:

(2.68)
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g(8)

&

Figure 2.13: Limit of the impulse function when the bandwidth tends to zero.

Remark 2.1: We define a unit impulse function & , which imparts an impulse of magnitude
one at §=0, and an impulse of magnitude zero for all values of & other than zero.

This “function” is the well known Dirac delta distribution, defined to have the following
properties:

8(&)=0 , &=0

j 5(5) d5 =1
b (2.69)

j B(EE))P(E)dE=W(E,) 5 V W(E)eCr U

So, the kinematics of a body B exhibiting a discontinuity of value [[(I]](X,t) in the rate
of displacement field (see across a material surface denoted by L, whose

normal N points at B, can be described as:

Displacement field u(x.n= w - W (2.70)
regular discontinuity

€060 =(Va)™ =v""u+ Hs 00V ™" [u]]+ 85 ([u]oN )™
Strain field regular singular (271)
= &(X,1) =€(X,0) + 3 5([[u] ©N )*"

where 85 is the Dirac delta distribution
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2.4.3 Representative Weak-Strong discontinuity kinematics

Now consider the kinematics described by the following expressions in the rate of
displacement field and strain field:

u(x,r)=u(x,)+Hy, 0fulkx,» 2.72)

EX,1)=V"u + 8% (x)( [u]®N J
€

2.73)

€

Equation [2.73)]is a regulatized version of the kinematics in equation [2.71)|which is
obtained by introducing a regularized Dirac delta distribution by means of a bandwidth
parameter /4 and a collocation function ¥ g(X):

1 vxeB,

2.74)
0 vxeB\B,

5@(X)=}llx5(X) with Xs(x):{

This allows for the transition from the weak discontinuity to the strong discontinuity.
M‘ﬂlustrates the transition of 8% from an impulse function to the Dirac delta

distribution .

Area =1

Iy

Figure 2.14: Dirac delta distribution as the limit of the impulse function.
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Figure 2.15: Domain with a discontinuity-2D.

2.4.3.1 Regularized Dirac’s delta

For the subsequent mathematical treatment, lets us approximate the Dirac delta
distribution 84 by a k —regularized sequence (k <<1), 8%, defined as follows: instead of

considering the discontinuity surface &, we shall consider a discontinuity band of
bandwidth k& (where k is very small regularization parameter k <<1) which gives:

S50 =750 with =i xS 73)
== wit = .
s k xs xs 0 xeS
so that, &k, which converges to a delta-distribution when k& tends to zero ze.:
lim 85 =38 2.76)

k—0

For numerical purposes k can be as small as permitted by the machine precision.

2.4.4 Phases of the stress-strain curve

We consider in this thesis the typical stages of a loading process for a given material
point graphically represented in Figure 2.16 and described as follows:

I. Elastic phase: it is limited by the point Y. In this phase the material obeys the
Hooke’s generalized law:

o=C°:¢ .77)
II. Inelastic phase: Point Y (yielding) in Figure 2.16|corresponds to the initiation

of the non-linear behavior. The elastic limit is surpassed and the loading
process is in the range between Y and B, where B stands for the bifurcation
point.
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I11.

IV.

Weak discontinuity phase: The weak discontinuity regime begins as soon as
the bifurcation condition det[Q(N)]=0 (Q(N) -localization tensor) is satisfied

(bifurcation point B). This phase is characterized by a discontinuity in the
strain field while the displacement field remains continuous.

[u]=u* -4~ =0 -
e=[[vu]]=va" -vua =0 '

In this stage the variable bandwidth model starts working, which serves as a
transition between weak and strong discontinuity through a bandwidth law.

Strong discontinuity phase: When the strong discontinuity condition is
satisfied, phase IV begins. It is characterized by the appearance of the second
order singularity in the displacement field, ze.:

[u]]=u* —a- =0 279
e=[[vu]]=va* -vua =0 '

Y - Elastic limit

(¢
B - Bifurcation point
Y B N
o, SD - Strong discontinuity point
) S .
S - Loading
SD
B\S B\S — Unloading
I — Elastic zone
IT — Inelastic zone
> III — Weak discontinuity
I I I v & IV — Strong discontinuity
\ | |
\ \ \

Figure 2.16: Characteristic points during the loading process.

The time at which each point analyzed above (Y ,B and SD) is reached depends on
the material (Ze., on the constitutive model) as well as on the evolution of the stress state.

For some circumstances, phases 11, I11, and IV are coincident, see Figure 2.17(a) and (b).

Y=B=SD

™
=

Figure 2.17: Characteristic points during the loading process.
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In this context, the formation process of a strong discontinuity at a material point P
of the solid can be modeled as a weak discontinuity that collapses into a strong

discontinuity at a certain time in the deformation process (see . At time t,, the
bifurcation time, the stress-strain field bifurcates resulting in a localization band of
bandwidth A, (see a)) which characterizes the onset of a weak discontinuity. At
subsequent times the bandwidth decreases ruled by a certain (material property) bandwidth

evolution law (see [igure 2.18(d)) until reaching a null value (for computational purposes, a

very small parameter k) at time g, the strong discontinuity time, which characterizes the
onset of the strong discontinuity, Oliver ez a/.(2002).

hy >h>k
=l tp <t<tgy
. P P
@ (b)
( ! Weak discontinuity
| B
t>tg, hy ““; “““ Strong discontinuity
|
|
P |
|
i 1 SD
e A
4 Iy Lsp 4
© @)

Figure 2.18: Idealized model from weak discontinuity to strong discontinuity: a) weak
discontinuity at the time of bifurcation; b) — c¢) evolution of the
bandwidth; d) Bandwidth law, Manzoli (1998).
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2.4.5 Bifurcation time

We will now focus on the problem of the bifurcation of the stress-strain fields in the

neighborhood of a given material point P in S (see , constrained by the rate

form of the traction vector continuity condition. In the very moment of bifurcation we will
consider the following scenario: loading in & and neutral loading in B\S, see

2.16

localization band

\,

\\\
Y
B\S =%
—
— \
= E“\“.\\,\\ N
- —) |
B\S SN AT
(A iy, ia
_ M A=—
/ l)l/:: :\
—r
ﬂ%i’:r," T
S =/ /1B\S
— 7 i
— /,':
—’//,,

Figure 2.19: Localization band S .

Consider a material point with its stress state in point B (the bifurcation point) as

shown in the [Figure 2.16] In this point we have the following stress state outside and inside

of the localized band, respectively:

in B\S (2.80)

. _min g
o.B\.S _CB\S 'EB\S

where O g and Oz g stand for the stresses at the interface & and the neighborhood of P,

respectively and C” the inelastic constitutive tensott The strain field reads:

(2.82)
) 1 sym
E. g+ h([[u]]® Nj n
The inner traction vector continuity yields:
TB\S = Ts
(2.83)

Gzs'N=65-N

. . o d . .
the inelastic constitutive tensor and by C? in damage case and C? in the

3 We denote by c"

elastoplasticity case.



42 A THREE DIMENSIONAL SETTING FOR STRONG DISCONTINUITIES MODELLING IN FAILURE MECHANICS

Substituting equations {2.80) [2.81) and [2.82) [into equation (2.83) |after some mathematical
manipulations we can obtain:

(N'C?'N)'[[ill]]=[( hs—~CL):Es| N (2.84)

Q(N)

where Q(N) is the localization tensor.

At the instant of the bifurcation we will consider that C” inside and outside of the
localization band is the same, Ze.:

s =Cs (2.85)

The bifurcation condition is satisfied when the solution of the equation is
different from the trivial solution [[u]] =0, resulting the condition:

det[Q(N)]=0 (2.86)

The material bifurcation analysis is presented in the Chapter 3. From the bifurcation
we get H., and N

crit crit

which are the critical values of ‘H¢ and N, respectively.

2.4.6 Strong discontinuity analysis of the isotropic damage
model

The strong discontinuity analysis has the aim of obtaining the conditions that have to
be imposed in a standard continuum constitutive equation (stress-strain) to be compatible
with the kinematics of strong discontinuities. The analysis developed here is based on the
fact that, adopting the inner traction continuity condition as a point of departure, it can be
shown that the stress as well as its time derivative must be bounded, even when the strain
is not. This result was obtained in Oliver ¢# a/.(2002).

Now, from the constitutive equation one can obtain:

-1

o=(-d)C’:e = €="C* :0 (2.87)
q

and differentiating with respect to time:

. 0 r 1
E=—|-C° :0 2.88
8t(q J ( )

Considering now the expression of strain (in rate) given by equation we can
obtain:

00 |, TEs= E +,1€([[u]]®NJ‘ =a(r<cf1 =o] (2.89)

bounded q
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Now, multiplying the above equation by k, we can obtain, for the strong discontinuity
regime ([u]]#0 and & — 0)l

Kim{kéJ{[[U]]@ Nszm}([[u]]@ Nj ~ lim 5[’” c” :oj (2.90)

k—0 k=0 Ot q

since 0 and ¢ are bounded, for the condition [[u]]i 0 to hold, the following expression
must be satisfied:

lim kr+#0 (2.91)

k—0

Now defining the rate of the discrete internal variable o as:

a=kr a
. def
o = = r= Y'sp + J‘k(lm) dm (292)
—— -
bounded oe [O, OO} 0

Since for the strong discontinuity regime k = ctte, we obtain:

(2.93)
a=k(r—rg)

where ()5, denotes the value of (e) at the inception of the strong discontinuity regime.

Substituting equation [2.93)|into equation [2.90)|yields:
(A
([[u]]®NJ = (ce :oj (2.94)
q

ot

The above equation is known as strong discontinuity equation. Substituting equation [2.92) [into

(2.52)|results in:
q:%%:}{%d & (2.95)

Since ¢ is bounded (g €[0,7,]) as well as @ and a the mathematical consistency of
requires that:

H =k (2.96)
thus, for the case of a linear hardening/softening law,

j=H"a = g=q4, +Ha (2.97)

4'The final bandwidth value is set to & ‘ =k.

t=tgp
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where the parameter H ¢ is termed the discrete (or intrinsic) hardening/ softening parameter and

shall be considered as a material property.

The parameter o from equation [2.92)|can be reinterpreted as follows: Considering
loading regime (7 #0), equation (2.31) |entails that:

e o1 e - .1 .
r=7,=€:C°:&€ = 7r=—€:C°:€=———0:€=—0:¢ 2.08
ry— r(1—d) q (2.98)
1-d

Substituting the kinematics [2.73) land taking the limit when £ — 0:

o =Lim ki =lim k1o:[i-:+llc([[u]]@mjm]:;o:([[u]]@m}sym =

k—0 k—0 q

(2.99)

L. 1.
=—[u]-@-Ny="[a]- 7
q q
where T =0 N is the traction vector in the normal direction to the discontinuity surface

S.

2.4.6.1 Discrete constitutive equation

Equation can manipulated as follows: multiplying the both sides by the tensor

C°, we obtain:

ce {[[u]]mjw _(c .N)-[[u]]zjt(‘;oJ 2.100)

once again multiplying both sides by N results in:

e bl ;e )57

(2.101)
~[ul- 7 [ So 7]

where we have introduced the elastic acoustic tensor (Q° =N-C* -N), Willam&Sobh(1987),
which is a positive definite tensor, see Appendix A.5.2. Finally, equation {2.101) can lead to:

[[U]]=ZQ81-T = T=%Q“[[U]] 2.102)

Observe that the equation [2.102)|is a discrete constitutive equation which relates the
traction over the discontinuity surface with the jump in the displacement field:
T =T (Ju]). Now substituting the equation [2.102) finto [2.99) Jyields:
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i = [l 7= -0 [u] 2103
and defining:
o LIl =l Tl =7, = [all- @ -ul 2104

] [ Ty

and substituting [2.104) finto the equation (2.103) |we can obtain, for loading (& #0):

w0 =Ty ) ) )
= a =7y = 7([ulla)=7y —a=0 (2.105)
s = Tup) =0

Being now possible to define the traction vector norm:

7 =L = e [l =T T =i, 2106

T «

where Equation [2.102) |has been considered. From equation [2.102)|and [2.105)is trivial to
show (in loading regime, o # 0) that:

G([[U]],a)=ZTT ~a=0 ©7(T.q)=7_-q=0 (2.107)

Taking into account equations [2.102)[to [2.107)] we can conclude that the continuum
constitutive model described in Table 2.1 induce a discrete constitutive damage model by
means of the strong discontinuity regime in the presence of an unbounded strain field.

Notice that the initial stiffness of the model is infinite ((1— ) ‘t:t =) and that,
consequently, the resulting discrete model is a 7igid damage model (see Fioure 2.20).

u;[[[u]]@rqu

Ce

(1-d)C* (1-w)Q°

\J

: ol

(a) continuum (b) discrete

Figure 2.20: Damage constitutive equation: continuum zs. discrete.
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We can conclude that the introduction of the strong discontinuity kinematics

sym
é+1[[[u]]®NJ into a continuum constitutive model induces a discrete constitutive model
k

in the interface of discontinuity, with the only requirement of the regularization of the

continuum hardening parameter (?—Ld =kH ).

2.4.6.2 Strong discontinuity conditions

Let us consider a material point P in the discontinuity surface & and a local system
constituted by the three versors (€,,€,,e;) such that N=e,. Consider also the
displacement jump [[ia]], the unit normal vector N as well as the stress tensor @ ¢ and the

strain tensor €g expressed in that base:

[al) I
[ofl =1 ol = N;=q0
Lall 0

U
- _ ] (2.108)
Mofl, 4fof, ol
sym
([[u]],- N,) D, 0 o
Hull, o 0
0-11 012 0-13 811 812 813
0;=[0y 0Opn Oy s & =€y Epn Ep (2.109)
O3 03 O3 g €1 & &y g
Equation an be rewritten as:
(6 Y 5
) a a 11 12“ 13“
D, 0 o =20 %er e e 2110
| 1 70e e et
Hull, o 0

where we have considered the components of the effective strain tensor (E‘,fo ):
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g’ =C* :0=(1-d)¢ @.111)

The components (e),,, ();, and (e),; from equation [2.110) |have been used to obtain the

discrete constitutive equation [2.102)] The other components in that equation give us
conditions which must be satisfied in the inception of the strong discontinuity regime. In
particular components (®),,, (¢),; and (®);; have to fulfill the following conditions:

0

5%82'@_:0 = e =C,  Vixi,

oL o] o

a0 = sef=c, vizg 2.112)
0 -aseff-_o aseﬁ'_c V>t

o la =B 17 = y&n =06 2lgp

The constants of integration C;, C, and Cj are obtained in the particular instant ¢,

where ag, =0, thus C, =C, =C; =0, resulting:

-
EZJZS = C@ OS ’ = 0
Strong B - a -
discontinuity el _=|C° 05| =0 Vo ot>tg, (2.113)
condition L 123
-]
e =|C° :05 33=0

It is easy to prove that invoking the strong discontinuity conditions [2.113)]into the

expression of the HZ, yields HZ, =0. This result can be justified as follows:

7 crit

= cquation [2.84)| holds at any stage of the problem since it comes from
equations [2.80)|- [2.83)|which hold for all the stages of the analysis;

* the strong discontinuity regime is characterized by the limit case £ — 0 which
implies that, for [[u]]+0 in equation and loading cases Cps =C%, then
det(N- C% -N)=det[Q(N)]=0.

Remark 2.2: Since H“

crit
that condition occurs at the bifurcation stage the bifurcation could take place under
#0) bifurcation will take

=0 is a necessary condition to induce a strong discontinuity, if

the form of a strong discontinuity. In the general case (.

crit
place under the form of a weak discontinuity and the strong discontinuity conditions

_ 2.1135 |must be induced in subsequent stage. []
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2.4.7 Variable Bandwidth Model - VBM

2.4.7.1 VBM by pre-established law

Beyond the bifurcation point a variable bandwidth model governs the transition
between the Weak Discontinuity and the Strong Discontinuity regimes, Oliver ez 2/ (1998).
For the damage model the state law for parameter d is:

d=1-90) (2114

r

Consider that the g(r) law is given by Figure 2.21] thus we can establish the following

equation:

q(r)=r, +H{ (r—ry) (2.115)
and
g=H" (2.116)
with
H! -
¥ if 10Sr<ry
H=IHhq) if r,<r<rg (2.117)
Hdk lf Fep ST

Softening

B

\<ﬂz€ Discontinnity
SD

Strong Discontinuity

qs

qdsp

Figure 2.21: Bandwidth law - ¢ »s. 7.
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h“
B
hy
k - SD
G, qsp ' q
W(Gy - ‘]3)
(@) (b)

Figure 2.22: Bandwidth law - % »s. g .

Now consider a bandwidth variation (%) in which the evolution criterion is a function

of ¢(r) as shown in Thus we can say:

h, —k
k+—2—(q- i <g< it
h(q) = P (q—4qsp) iff dsp <4 =>4 transition 2.118)

k iff  q<qg strong discontinuity

Differentiating g :

ﬁzﬁ;’:h(q)ﬁd a—qzﬁkorﬁdR(q—qSD) (2.119)
or or
where
h, —k
R=—F——— (2.120)
98 —49sp

Solving the differential equation [2.119)] we can obtain:

ﬁdR(r—rO)

k k
q:‘]SD_R"'(‘]B"‘R_‘]SDJeXP (2.121)

Using equation [2.121)|when r —ry, <> g — qg,, we can obtain the value of the rg,,
that is:

4 —49sp k
Fop =rp +—=——">"——In| — 2.122
W H ! (hy —k) (hBJ ( )

In the strong discontinuity regime H! > H k, thus:

Gg=H "k (2.123)

thus
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g, =q +H 'k (r-r) (2124)

hows the evolution of H2

- along the analysis. For a given material point in

yielding begins at point Y of Figure 2.23]in which the hardening/softening parameter takes
the value ’Hyd . While ‘HZ, < ’H}‘,i bifurcation is precluded and the behavior is continuous.
As soon as HZ, /H,
which determines the initial value of the bandwidth law shown in [Figure 2.22(a). Beyond
point B the bandwidth decreases from h, to k, according to the bandwidth evolution law

of [Figure 2.22(a) in terms of ¢ —¢qy. At point SD, when ¢ =g, , the bandwidth, &, equals

k . Beyond point SD a kinematic state of strong discontinuity is induced, the bandwidth is
kept constant and equal to the regularization parameter k£ and the corresponding softening

reads H' =H 'k ~0.

= ’Hyd the bifurcation point B is detected. At this point &, = HZ

crit

A
1
Gy' —
7-L)/
h(q) hy B
1 PR
< h(g)H 1
k SD — kH
I’B rSD r
d
%y B
?-Lcrit

Figure 2.23: Bandwidth law, Oliver ez a/. (1999).

Remark 2.3: The drawback of this variable bandwidth model (VBM) is that when a
pre-established law is used, we must establish a priori a variable @ described in

This wvariable indicates the length of the transition between the
Bifurcation point and the strong discontinuity point. g varies from material to

material and for different stress states, and sometimes, when this variable has a too
small value, reloading can be observed. [
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2.4.7.2 Automatic VBM

Here, an alternative model is proposed, where the bandwidth % is obtained
automatically without assuming any law, avoiding the necessity of variable ¢ . Once the

bifurcation point is detected an initial bandwidth /4, is obtained:
244

hy = %—}d (2.125)

Normal N, will be kept fixed from time ¢; onward. On the other hand, we obtain

HZ, as function of N, (frozen at time #=¢,) and the current stress states; thus, we can

define a new bandwidth as:
?_Ntd

h =,H—d’ (2.126)
v

this process is used in the successive load steps until M/, ~0 which is the necessary

crit
condition to induce a strong discontinuity according to Remark 2.2. At this point the

strong discontinuity regime begins, Ze., the point SD of thus 7 —k <<1.

2.4.8 Fracture Energy

It is illustrative to compute the energy release for the formation of the discontinuity
during the time interval Ze(O,lm] , where ¢, stands for the time at which complete

decohesion of the crack is achieved (o ‘z:; =0), for a one-dimensional bar. In virtue of the

theorem of the expended power, and neglecting the kinetic energy (as corresponds to the
quasistatic case), the external power input in the bar equals the stress power:

dW(t)chédejc{é+88[[U]]j dv (2.127)

B B

Now consider the Dirac’s delta property:

l}

4 (1) = BJ\': gdV + J;c uljda =4 ! i(;’;j dx + o [[u]]4 (2.128)

Now, by integration along time, the total mechanical work W (f) can be computed as:

t, t t

W:Id?fl/(t)dt:_" Aj‘jt(gEjdx+c[[U]]A dtzAj.c[[U]]dtzAgf 2129)

o

S
QL

which identifies the area under the discrete o —[[u]] constitutive law of [Figure 2.24 |as the

energy release per unit surface to produce the discontinuity.
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A

Ll

Figure 2.24: Discrete 65 —[[u]] constitutive model.

Now we focus on the continuum constitutive model and the discontinuity interface S.
For the loading conditions occurring there, it can be readily shown that both couples (o, €)
and (q,(1/ E)r) are conjugate variables for the stress power so that we can write:

C€g =0Cg€5 =4, T

¢ 2.130
o 2.130)

Now, substituting the k -regularized strong discontinuity kinematics ( € =§+%[[u]] )

and the regularized hardening softening law from [(2.95) |¢, =H “¢ into equation [(2.130)

yields:
o —G(.e,ﬂ[[u]]j— LIPS 1 d[l j
s ) S T B a2
(2.131)
. . : 1 d(1 ,
= limkoég =o|U]|=——| =
imiots =oflil- %147
therefore the fracture energy in equation [2.129) [can be computed as:
. 2
(1 , 1 12}"%0 1 o
o|lu]fdr= dt=——++| = =———
j -] a5 a5 T
(2.132)
2
SHi= LD
2 EG,

where, for the sake of simplicity, a constant value for H ¢ has been considered (linear
softening). The above equation states the material property character of the discrete

softening parameter H ¢ which can be characterized in terms of the fracture mechanics

properties: 6, £ and G,.



Material Bifurcation

"Efprpacs., chpre.

Archimedes (265? B.C.)

3.1 Introduction

In the field of structural engineering, bifurcation theory has been extensively applied to
geometrical non-linearity problems, e.g, stability problems involving buckling, as well as
constitutive non-linearity, ze., material instability phenomena (material bifurcation).

In this chapter we will tackle the problem of localization as an instability in materials in
the spirit of Rudnicki&Rice(1975):  ...Localization can be understood as an instability in the
macroscopic constitutive description of inelastic deformation of the material...”. The main aim here is to
obtain general explicit expressions for the critical failure direction and the critical hardening
modulus (Willam(2000)) corresponding to the best-known classical continuum constitutive
models (namely, continuum damage and plasticity models). Then, specific expressions for
some constitutive models will be obtained as particular cases of the above mentioned
general expressions. To reach this aim, the ellipticity condition of the constitutive tangent
operator will play a determinant role.
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3.2 Historical aspects on localization

The basic principle of localization was first proposed by Hadamard(1903) using
classical material stability concepts. In 1952 Drucker proposed that a material is stable if
the second-order work density is positive, resulting in a sufficient condition for the
uniqueness of the solution:

dz‘M/=;é:d=;i-::C:i-:>O (3.1)

for any arbitrary value of €#0. This critetion was further developed by Hill(1958) and
Drucker(1959), Maier&Hueckel(1979), Runesson&Mroz(1989), Bigoni&Hueckel(1991),
and others. Hill(1958) showed that €:6=0 is a necessary condition for any type of
bifurcation and loss of uniqueness.

For the associated plasticity case, where C is symmetric, the nullity of equation
only takes place when C is singular, and the result is that for associated models localization
cannot occur in hardening regime.

Following Hadamard(1903), Thomas(1961) applied this theory to elastoplastic solids
using wave propagation analyses to associate localization with stationary waves.
Mandel(1966) was inclined to study the tangent material operator C to establish a
localization criterion. Mandel(1964) determined the critical value of the hardening modulus
for a Mohr material assuming the general three-dimensional nonassociated plasticity theory.

Rudnicki&Rice(1975) used Lagrange multipliers to obtain an explicit expression for
the critical conditions of the hardening modulus for localization in pressure-sensitive
dilatant materials in the setting of infinitesimal theory and showed that the inclusion of a
nonassociated flow rule and a vertex-like yield surface into a Drucker-Prager model
strongly influences its prediction of localization.

A critical hardening modulus as well as the direction of the shear planes using plane
stress and plane strain for a Mohr-Coulomb material was obtained by Runesson e# a/(1991).
In Ottosen&Runesson(1991a) a spectral analysis of the acceleration wave problem in
general elasto-plastic materials was carried out, and an explicit expression for the
eigenvalues and eigenvectors of the localization tensor was obtained (see also
Bigoni&Hueckel(1991), and Runesson ez 2/ (1991)).

3.3 Continuous and discontinuous bifurcation

In the work by Rice&Rudnick(1980), conditions for strain localization in a planar band
were derived (see Figure 3.1). They started by considering a homogeneous solid sustaining

a uniform stress O p.

Restrictini the analysis to small deformation settings, the development of a localized

band, see Figure 3.1] entails the following kinematical condition:
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Es=E55 +(MON)”™ (3.2)

where €g and €45 are the symmetric strain rates inside and outside the band,

respectively, N is the unit vector normal to the localized band, and M, which is a function
of bandwidth £, stands for the vector defining the direction of the velocity jump.

localized band

Figure 3.1: Planar localization band.

Applying the traction vector continuity:
N'(dzs\s _63)20 (3.3)
we can obtain the following expression:
(N-CsN)-M=N-(Cps ~Cs): €55 (3-4)

where Cg and Cg ¢ are the constitutive tensor inside and outside the localization band,
respectively.

Rice&Rudnicki(1980) distinguished between continuous bifurcation and discontinuous
bifurcation, depending on whether Cg =Cpz s or Cg #Cy g, respectively; namely:

=  Continuous bifurcation (Plastic-Plastic localization) — Cg =Cg 43

* Discontinuous bifurcation (Elastic-Plastic localization) — Cg #Cgg.
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Continuous bifurcation

In the case of continuous bifurcation (Cg =Cg g), e, the material inside and outside
of the localization band remain in loading, equation ecomes:

(N-Cs-N)-M=0 (3.5)

The localization condition is satisfied when the solution of the above equation is different
from the trivial solution M= 0, which entails:

det(N-Cg -N)=0 (3.6)

For the case of elastoplasticity, the tangential constitutive operator for the plastic loading
case is given by:

C°:m®n:C°
Cs=C° - (3.7)
H? +n:C°:m

cont.

where C° is the elastic tensor, H.”

cont.

is the plastic modulus, and N and M are the normal
to the yield surface and to the plastic potential surface, respectively. Rice(1976) obtained
the hardening modulus ‘H?,, corresponding to condition

cont.

P

,Hzc—g":2N-m-n-N—(N-m-N)(N-n-N)—m:n—IL(N-m-N—Tr(m))(N-n-N—Tr(n)) (3.8)
-V

where v denotes the Poisson’s ratio; G is the elastic shear modulus and Tr(e) stands for

the trace of (e).
Discontinuous bifurcation

A common observation in experiments is that the constitutive response at localization
is not continuous; that is, the material outside the localized zone apparently does not
continue loading, but rather unloads elastically. In the case of discontinuous bifurcations
(Cs #Cps), provided that (N-Cg -N) can be inverted, the non trivial solutions will be:

M, Z(N'Cs 'N)_l '[N'(CB\S _Cs):és\s] 3.9)

Rice&Rudnicki(1980) searched the conditions for which the solution of
corresponds to continued plastic loading in the localized band when there is elastic
unloading outside this zone. The condition obtained (ze., the condition for discontinuous
bifurcation) was the following:

H? +n:C°:m
HE —H?

cont.

<0 (3.10)

They concluded that localization with elastic unloading outside the localized zone of non-
. Also, due to the fact that H”

decreases in value as the plastic deformations increase, the above inequality means that
localization with elastic unloading outside the band takes place when the condition for

uniform deformation is only possible when H” <#H/?

cont.



3 Material Bifurcation 57

continuous bifurcation (H” =H[, ) is fulfilled for the first time. Consequently,

0.

continuous bifurcation sets the lower limit to the range of discontinuous bifurcation.

Based on the above analysis, the condition for continuous bifurcation, regarded as a
lower limit of the discontinuous bifurcation scenario, will be adopted for further
developments in this work, Ze., the case when the system of equations:

Q(N)-M=0 (3.11)

has a nontrivial solution M#0, Ottosen&Runesson(1991). Equation [3.11)]is the so called

strain localization condition, where Q(N)=(N-Cg -N), and M is known as polarization

b

direction. Thus, we can say that a necessary condition for the appearance of localization is
det[Q(N)]=0 (3.12)

which is known as the Rice’s criterion, characterizing the discontinuous failure, Rizzi ez al.
(1995).

Strong ellipticity condition

Here we present the definition of strong ellipticity that will be used throughout this work.

If for all vectors N and M with N® M # 0, the inequality
(N®M):C:(N®M)>0 (3.13)

holds, then it is said that the tangential operator C 1is stromgly elliptic. Rearranged, this
inequality can be written as:

M-Q(N)-M>0 (3.14)

where Q=N-C-N is a second-order tensor known in literature as the Tangent Acoustic
Tensor. By analogy with the theory of wave propagation, the eigenvalues of Q(N) are the

wave propagation velocities, N is the propagation direction and M is the polarization
direction.

The pair (N,M) indicates the orientation and nature of the discontinuity, ze., opening
when N is parallel to M, shear when N is orthogonal to M, or the combination of both

(sce Figare 52,

MODEI- N/M MODEII-NLM

Figure 3.2: Nature of the discontinuity.
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An inequality weaker than s:
M-Q(N)-M=(N®M):C:(N®M)>0 (3.15)

known as Hadamard’s conditions (or Legendre-Hadamard), Ogden (1943).

Ellipticity condition

If Q(N) is symmetric, condition [3.14)|will be violated if, for some N, there exists a
M= 0 such that

QN)-M=0 (3.16)
that is:
QN)-M=0 = detfQ(N)]=0 (3.17)

Condition means that tensor Q(N) is positive definite for all N#0 implying
that uniqueness and stability is guaranteed.

When the constitutive tangent operator has major and minor symmetries, the so-called
ellipticity condition is satisfied if

det[Q(N)]=0 (3.18)

Correspondingly, condition {3.16) [is satisfied. One can note that strong ellipticity implies
ellipticity with det[Q(N)]> 0, but the reciprocity is not generally true, nevertheless for
certain constitutive laws ellipticity and strong ellipticity are equivalent. In lable 3.1 [there is

a summary of the concepts presented.

Remark 3.1: Uniform point-wise stability implies strong ellipticity, but not conversely.
In the associated case the strong ellipticity condition reduces to the ellipticity
condition det{Q(N)]>0 ; YN=0. ]

Table 3.1:

Summary of bifurcation criteria

3.19
Loss of strong ellipticity M-Q(N)-M=0 (3-19)

Loss of ellipticity QN)-M=0
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3.4 Material bifurcation condition

Let us consider a material whose behavior is described by a constitutive model
characterized by

* An inelastic tangent constitutive tensor, C” (or tangent material operator),
whose expression reads:

C" =&¢C* - K(C* :m®n:C°) (3.20)

MODELS ‘
DAMAGE PLASTICITY

é=f—(l—d) c=1 (3.21)

where:

g9 -Hr | !

K= -
r H? +n:C°:m

with:

" n: the flow plastic, normal to the Yield Function (%), defined as n= Zf:

(gradient of the Yield Function);
* m: the flow of the plastic potential, which is normal to the Plastic Potential

0
(G), defined as m= 83 (gradient of the Plastic Potential).

As mentioned above, the following analysis will be performed from a general point of
view, and, later, it will be particularized for some specific cases. As point of departure we
will analyze the acoustic tensor, Q(N), in order to obtain the value of N that minimizes

det[Q(N)]. Using equation the acoustic tensor can be written as:
QN)=tN-C* -N-KN-(C*:m®n:C°)-N (3.22)

Applying the definition of the standard fourth-order isotropic elastic modulus tensor in
function of Lamé’s parameters (A, p), ie: C°=2ul+A(1®1) (see Appendix A.5)
equatlonm can be rewritten in the following way:

QN)=¢ Qe—’;:[k NTr(m)+2uN-m|®[ANTr(n)+2uN-n] (3.23)
C b
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where Q° is the elastic acoustic tensor (see Appendix A.5.2) and Tr(e) stands for the trace
of (e). Thus, Tr(m)=m,; =m,, +m,, +mM,; and Tr(N)=n, =n,, +N,, +N;;.

Making use of a change of variables, we can write equation [3.23) fas:

Q=E;{ Qe—lgé@B} Q=<%Qe{ 1—’;@6} (3.24)

A A -1 . . . .
where @a=€-Q° and assuming that Q¢ is positive definite we can say that:

det(Q) = & det(Q°) det{ 1- ’; A® B} (3.25)
Using the property:
detlt+a®b)-1+a-b (3.26)
we obtain:
det{ 1—’55@6}:1—’25-6:1—’2&-Q6"-IS (3.27)

Taking into account the fact that &det(Q°)>0 and equation |(3.27)| the bifurcation
condition det|Q(N)]=0 is reduced to solving the following problem:

1—’§é-Q"_1 ‘b=0 (3.28)

Using the expressions of € and b laid out in equation |(3.23)] the above equation can be
rewritten as:

1—’(:(?)[kNTr(m)+2uN'm] Q" [ANTrm) + 2uN-n]=0
Z(N)

(3.29)

From equation € can say:

& _
KH) Z(N) (3.30)

Expanding the value of Z(N) in equation it yields:
Z(N) = 22Tr(m)Tr(n)(a + b) + 2AuTr(n)(N-m-N)(a + b) +
+22uTr(m)(N-n-N)(a +b) + 4p’a(N-n-N-m)+ (3.31)

+4u”p(N-m-N)(N-n-N)

where:
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(3.32)

N}
Il
= |
—

A+2u0

~—

1

The problem to be solved here is to find the critical normal vector N, , which can be
done by maximizing function Once we have obtained the critical values N_,,,
can obtain H,, by replacing N, in equation The expressions of H for damage

and plasticity models are:

we

= Damage:

d __ _ r?
H=( d){l Z(N)} (3.33)
= Plasticity:
H?=Z(N)-n:C°:m (3.34)

Thus, the problem of finding the critical normal N_,, can be stated as the following

crit

minimization problem:

INJ=1

N, =arg min{det[Q(N)]} (3.35)

3.5 Critical values

In this section, we will explain how to obtain the critical values of the normal vector
and the hardening parameter H,

crit >

N

for the following cases:

crit

" The general case, where the principal directions of R do not coincide with the
principal directions of m, (N and M are not colinear);

* The colinear case, where N and M are coaxials (the principal directions of n
and m are coincident);

* The associated case, a particular coaxial case where n=m.
3.5.1 General case

3.5.1.1 Critical angle

Consider the tensor R expressed in its principal directions componentsfl

! For simplicity we use the same notation for the tensor (N) and for its matrix representation.
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n 0 0
n=0 n, 0 (3.36)
0 0 n,

Tensor M is also expressed in the base formed by the principal directions of n for the
non coaxial case:

m, my, My,
m=m;, My My (3.37)
My My My,

Developing expression and using the restriction |N|=1, we can obtain the
following expression for Z(N):

ZN)=" AN} + BN + CNj + DNJN, + FNIN, + GN3N? + HNIN3 + IN3IN3 +
+ JJN?NLN; + KN2N,N; + ZNINLN, + ONSN, + PNIN, + ONIN, + (3.38)

+ RN3N, + SN7 + N3 + UN3 + VNN, + XN,N; + YN,N, + 7

where
Z=B(n1m11) ; EZanmzz ; 5=Bn3m33 ;
BZB[ZmIan] ; FZB[ZmBnI] ; 5=B[m22n1 +mlln2] ;
H =p[m,n, +myn,|; I=p[maun; +myn, |; J=p[2myn,] ;
E=3[2m13n2] 5 L ZB[2m12n3] ; 0= [3[2m23n2] ;
13=B[2m12n2] 5 QZB[2m13n3] > EZB[Zman] >
— 2\
S = (x+;“) [Tran)m,, + Tr(m)n, |+ 4u[n,m,, ] ;
7= 2 [Tran)m,, + Tr(m)n, |+ 4u[n,m,, ] ;
(0 +21) 2 2 oMy |5
ﬁ:z?‘iu[Tr(n)m +Tr(m)ng, |+ 4u[nmy, ] ;
O+ 21) 33 33 3Mss |5
— 2\
V= (k+§u) [Tr(n)m12]+4u[n1m12 +n2m12] ;
— 21
X = (7»+gu) [Tr(n)m23]+4u[n2m23 +n3m23] ;
— 21
Y= K [Tr(n)m13]+4u[n1m13 +n3m13] ;

(A +2p)
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ATr(m)Tr(n) CApi+p)

W= B=
(A +2p) (A +2u)

The maximum and minimum values of Z(N) can be obtained from using the
Lagrange multiplier method . The procedure consists of constructing the following function:

®=2Z(N)-A(N,N, 1) (3.39)

where % is the Lagrange multiplier. The solution for the critical direction will correspond to
finding the values N;, N, and N; which maximize Z(N), with the restriction ||N|| =1. One

way to achieve this would be solving the following set of equations:

a—z—ziNl -
oN,
%2 9N, =
oN, ’ (3.40)
a—Z—ziN3 =
N;
NP +N2 +N3? =1

A numerical alternative would be to express Z(N) in terms of a and (1) (see
@, discretizing then o and (I) in order to check whenZ(N) reaches a maximum by

sweeping the corresponding range of variations of o and 43 This has to be subsequently

refined using one of the iterative gradient schemes, Ortiz(1987). The methodology has to
be repeated at each step during the integration process at each quadrature point.

N N, =cosacosd
N, =sinacos¢

N, =sin¢

n,
N[ =1

Figure 3.3: Normal N in the principal direction of n.

3.5.1.2 Calculation of 'Hc,,-t

Once the value of the critical direction (N,;,) is obtained, the calculation of the critical

value of H consists of replacing N, into equation that is:
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s
’C(Hc;-it) /™ cm) (3.41)

Resulting in:

Damage
H(N)= &[l—rz__j @
c-Q° b
N=N_
i (3.42)
'Hf’,tzg[p r’ J (b)
o Z(Ncrit)
Plasticity
H'(N)=€-Q° -b-n:C:m
N=N
_ crit
] (3.43)
7-{’c’;‘it ZZ(Ncrit)_n:Ce ‘m (b)
with
n:C°:m=2un:m+ATr(n) Tr(m) (3.44)

3.5.2 Case of colinearity between n, m

3.5.2.1 Non-associated case

For the coaxial non-associated case the principal directions of N coincide with the
principal directions of m, but n=m.
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3.5.2.1.1 Critical angle

In this case we assume the follwing format for the tensors 0 and m:

n 0 0 m 0 0
n={0 n, 0 ; m={ 0 m, 0 (3.45)
0 0 n 0 0 m,

Since entries M;, =M;; =M,; are null, then the expression of Z(N) can be rewritten as:
Z(N)= AN; + BNj + CN3 + GNON? + ANJNS +IN3N; + SNF + TN +UN; + W (3.46)

The relative maximums and minimums of function [3.46) |are presented in [['able 3.2] where

the values of the direction N(6) are expressed in terms of the angle 0, which is defined

with respect to the principal directions, see For instance, row 1—1, in [T'able 3.2

indicates that the solution coincides with the first principal direction, ze., 6, =0, and row
2-3 means that the solution lies in the plane generated by the second and the third
principal directions and the angle with respect to the latter is equal to 05, .

Table 3.2: Relative maximums and minimums of Z(N).

+1.0 0.0 0.0 tan’ 0,=0 Z S+W

2-2 0.0 +1.0 0.0 tan’ 0, =0 B+T +W
3-3 0.0 0.0 +1.0 tan” 0, =0 C+U+W
- 2F +1 2

2-3 0.0 + —1 + 1+L tan® 0, =— Zy=T, I
2F 2F I 4F

_é [ ¢ 24+G 2

1-3 + -G 0.0 + 1+i tan® By =~ — Z13:T3_i
24 24 G 44

: _y 2B+ H 72
-2 |+ 1+ |2 28 00 |tn’e,=-2r") 7 _p "
2B 2B H 4B

where
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4u(n
:_M[(ml _m3)(n2 _n3)+(m2 _m3)(n1 _n3)]
4u(n
FZ—M[(nz _n3)(m2 _m3)]
A 2hp _ —
= (L +2p) [Tremm, —my) + Trm)(n, —ny)]+
4u(A
_M[m3(nl _n3)+n3(m1 —-m, )]+ 4H[n1m1 'n3m3]
A 2hu _ —
= (L +2p) [Tr(mm, —m)) + Trm)n, —n)]+
4u(n
_M[ml(nZ _n1)+n1(m2 _ml)]+4u[n2m2 'nlml]
20 B _
(A +2p) [Trm)(m, —my) + Tr@m)(n, —ny)]+
4u(A
80,
1
= [(ATr(m) + 2um, YATr(n) + 2un, )]
1
T, = N [(ATr(m) +2um, YATr(n) +2pn, )]

Thus we can explicitly express the corresponding angles as:

* Angle on the plane 3-2:

[(4m3 _Zmz)n3 _2m3n2]u+[(m3 _mZ)nl +(m1 -2m, +4m3)n3 —(2m3 +m1)n2]k

2
0. =
B [(4m2 _2m3)n2 - 2m2n3]u+ [(mz _m3)n1 + (ml —-2m, + 4m2)n2 _(ml + Zmz)n3]7L
(3.47)
tan20.. = [(m; —m,)n, +(ny —n,)m, ]v +(2n; —n, )m, —m,n,
* [(mz_m3)n1+(n2_n3)m1]V+(2n2_n3)m2_n2m3
* Angle on the plane 1-3:
tan20.. = — [(4m, —2m, )n, —2myn, Ju+[(m,; —m, )n, +(m, —2m, +4m;)n, - (2m, +m, )n, 1
B (2my —4m))n, +2mn, Ju+ [(my —m, )n, +(=m, +2m; —4m, )n, +(m, +2m, )n, A
(3.48)

[(m3 _ml)nz +(n3 _nl)mz]v+(2n3 _nl)mS —mn,
[(ml _m3)nz +(n1 —n3)m2]v+(2n1 _n3)m1 —nm;,
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* Angle on the plane 1-2:

tan0.. = — [(4m, —2m, )n, —2mpn, Ju+[(m, —m,)n; +(m; —2m, +4m, )n, - (2m, +m;)n, ]2
27 [(2m, —4m,)n, + 2m,n, Ju+[(m, -m, )n, +(-m, +2m, —4m, )n, +(m, +2m, )n, |1
(3.49)
[(m, -m,)n; +(n, -n,)m,]v—(2n, —n,)m, —m,n,
[(m, —=m,)n, +(n, —=n,)m,]v - (2n, —n;)m, —n,m,

tan’0,, =

It is interesting to observe that the critical angle does not depend on the Young’s modulus

(E).

Figure 3.4: Normal N in the principal direction of m.

The function Z(N) in equation is a continuous surface having maximum and
minimum relative values. The objective is to obtain the absolute maximum among them.
The shape of this surface when n#m is schematized in [Figure 3.5|and Figure 3.6] with its
maximum and minimum points. The values of N;, N, and N; are expressed in spherical

coordinates, that is, in terms of o and ¢ (see M
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Z(N)

N, = cosa.cosd

N, =sinacosd

N, =sind
INJ=1
N; =0
N; =1

Moht’s Circle

Moht’s Circle

Figure 3.6: Surface Z(N)- Case n=m (Isotropic Damage Case).
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3.5.2.1.2 Calculation of Hcrit

Damage
For the isotropic damage case M., is given by:
d r’
HE =E|1- 3.50
crit Z‘: Zmax (N) ( )

where Z_. (N) is the maximum value from [Table 3.2] Once Z

max

(N) is obtained, it is

max

possible to obtain N

crit *

Plasticity

The values of H” corresponding to the values of Z(N) laying on the planes 2-3,

1-3,and 1-2 according to the Table 3.2|are, respectively:

I? } I’
?—L{Q:—E+(T3—n:(c :m):—E+'P3 (3:51)
%P——g+(T —n-C"-m)——g#P (3.52)
1377 44 3 . . Y 3 ’
v M nctim)e 3.53
==+ -nicim)-— TP (3:53)
where
2
P, =G r“) {2(x+u)(m2n2 +mn,)+Am,n, +mpn,) } (3.54)
p--_E [v(mn +mn,)+(m,n +mn)]
3 1-v?) 2t 1M 2y i (3.55)
E
P :_(1—\/2)[ v(m,n, +m;n, )+ (m;n, +m,n, ) ] (3.56)
I’ -F [(mz —m,)(vh, +n,)+ (N, —Ny)(vm, +m2)]2
1 . (3.57)
4F  4(1-v~) (m, —m;)(n, —n;)
o —E [(m, =my)(vn, +n)+ (N, —ny)(vm, +m,)J (358)

44 a1-v?) (M, —m;)(n; —Ny)
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> —E  [(m —my)(vn; +n,))+ N, —n,)(vm, +my)J
4B 4(1-v?) (M, —=m,)(n, —n,)

(3.59)

The variables: 4, B, F , é, H , I, T,, T; are the same as defined in the ’m

3.5.2.2 Associated case (n=m)

3.5.2.2.1 Geometrical interpretation — localization ellipse

Using equations [3.31) |and [3.30)|and after some mathematical manipulations we can
obtain the following equation:

2 2
(@y fzmo) SEv (3.60)
A B

which defines the localization ellipse in the (¥, ,2 ) space, where:

A
®, =N-m-N; mO_ETr(m)_(l_ZV)Tr(m) (2)
22 =(N-m-N-m)- @3 (b)
G (r2wE 201-v) G610
- 4u2’C - (1—2V) (C)
B2 _ & (d)

4uiC

m, determines the ellipse center, while A and B determine the half axes of the ellipse in
the normal and tangential directions, respectively, Willam(2000). And & and K are given
by expression m The geometrical properties of the localization ellipse are illustrated in
Eigre 3.7|together with the three Mohr’s circles in the (®,X) space in terms of the
eigenvalues of M, Oliver (2002). Note that the center and the shape of the ellipse are not
influenced by the plastic hardening modulus #(N). The hardening modulus only
influences the size of the ellipse, Willam(2000).

As mentioned above, for a given stress state, H,,,
of H,ie:

corresponds to a maximum value

H

crit

=max[H(N)] (3.62)
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A
Zy

crit

\j

Figure 3.7: Localization ellipse and Moht’s circle.

With this interpretation we can conclude that the solution that furnishes the maximum

ellipse will be the solution laying on the plane 1-3 of the [I'able 3.2f ze.: when N, =0.

Thus the value of Z(N_.,) is:

crit

{k2 (Tr(m))* + [(m2 -m, )’ +2Tr(m)(m, + m3)] A+ 2p2(m§ + m§)}

Z(Ncrit) = (7\, + M) (363)
of, in terms of £ and v:
E
Z(Ncm):(l+v)(l—2v){ va1["m1 +(m, —m;)m, + mzm3]+ (1 —V)(mg + mi)} (3.64)

3.5.2.2.2 Critical angle — Associated case (n=m)

The critical angle (see could be obtained by directly using equation

with n=m:

m, +vm
tan’ @, =———> > (3.65)
m, +vm,
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Figure 3.8: Normal N in principal direction of M - associated case.

3.5.2.2.3 Calculation of the H,,; — Associated case (n=m)

Damage

()7’

?ﬁﬂ=ﬂ—d)b-{ (3.66)

22 (Trm))’ + [(m1 —m,)* +2Tr(m)(m, +m, )]xp +2u? (ml2 +m? )}

Plasticity

For the associated case n=mMm, one can obtain from equations (3.51) |to (3.59)|that:

_r _ BGr+2n)p 2
Hy = E+’P3 = mml =—Em; (3.67)
n
wr g G p o B s (3.68)
crit 13 44 3 (7\4+M) 2 2
Hp:_ﬁer:_Mmz:_Emz (3.69)
12 4B 1 (}H_M) 3 3 '

Notice that the maximum value among [3.67)] [3.68) and [3.69) [is given by
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It can be shown that the solution 2—-3, 1-3 and 1-2 from |[Table 3.2|correspond to

the localization ellipse which intercepts the Moht’s circle 6, —65, 6, —0; and o, — 05,
respectively.

Hou(N=N,,;)

H,, H, Hy

Figure 3.9: Localization ellipse.

3.6 Critical values for several constitutive
models

In solid mechanics there are several families of constitutive equations. Some typical
examples are elasticity, plasticity, viscoelasticity, continuum damage, and viscoplasticity. In
this section, critical values for the localization direction and the hardening modulus for
some of these models will be derived. Several classic models of plasticity and damage are
employed with this purpose. A detailed study of their features is out of the scope of this
thesis. For further details on the constitutive models presented here, the reader is referred
to: Chen&Han(1988), Chen(1982), Potts&Zdravkovi¢ (1999), Desai&Siriwardane(1984),
Oller(2001), Willam(2000).
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3.6.1 One-parameter models

3.6.1.1 Rankine criterion

This is a model defined by a maximum-tensile-stress criterion (see and was
formulated by Rankine in 1876. It is characterized by only depending on a parameter. This
can be sketched as:

F=G=0,-0,=0=>n=m= (3.70)

(=
S O O
S O O

where o, >0, >0, (positive stress) are the principal stresses and o,is the tensile yield

stress satisfying ¢, >0.

Using the above yield criterion and substituting it into equation [3.65)|and considering
we readily obtain the critical angle and H/, :

crit *

Critical values for RANKINE Criterion

2 8, =0
critical angle tan“ 0, =0=
By =10 3.71)
critical
hardening ’Hcfiit =0
modulus
IT

Figure 3.10: Rankine yield surface.
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3.6.1.2 von Mises yield criterion

In this criterion the elastic limit is reached when the octabedral shear stress t,,, reaches a

critical value K (yield stress in pure shear), ze.: T, = J%J 5 =\/g Rk . We can write the yield

criterion as:
F(J,)=J, -k =0 (3.72)

We will consider the J, plasticity model, associated von Mises, where:

3s 3
n=m=J=Jn n=yn:n=1 (3.73)
28] V2

and § is the deviatoric stress tenso®] which is given by:

[ 26, -0, -0, 0 0 ]

3
26, -G, —
S = 0 2 3163 0 (3.74)

0 0 26, -0, -0,

L 3 -

Its norm reads: HSH = \/(012 +05 + G%)

B Observer

R=.%0, oint of viey,

yield

(¢ 1‘/ \22

Figure 3.11: von Mises yield surface.

20 =8+ pl, where p=%TI’(O’)
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According to equation [3.65)|the critical angle is determined by:

_S;+VS, S +(1—v)s2 _(—202 + o, +G3)V+(02 + o, —203)

tan’ @, = = 3.7
' S, + VS, S, + VS, (202—61—63)V+(—02+201—03) (3-75)
To obtain ‘H/, , equation @s used, resulting in:
3ES? E (20, +0,+0,)°
H, =- 2= 2 (3.76)
2(512+S§+S§) 4(012+0§+0§—6102—0103—6263)
Using the condition o, > 0o, > o, we can conclude that:
1 2 2
(512_55):*(01_63) (0, -03) ] >0 2 _ g2
3 52 <5 (3.77)

2 2
(63 -52)="o, ~0; P ~(0, -0, F] 50| 2<%

It can be shown that the maximum value of H” between ki,@_] L’L@Jand L’gﬁ)_lis HE.

Thus, we can summarize the following for the von Mises criterion:

CRITICAL VALUES FOR VON MISES CRITERION ‘

S; +VS
critical angle | tan” 0, =————=
S, +Vvs, 578
2
critical hardening | gy _ _ 3ES;

crit
modulus 2(512 n sg n sg)

Localization ellipse

Considering, n=m=o,S, with o, =\E ; , we can obtain the equation of the
localization ellipse:
(on 1;200 ) 4 :2 —1 (3.79)
with
Go=p; 220V g H +J, (3.80)

T (1-2v) 4pa’

where p is the spherical or hydrostatic stress tensor, and 2J, = (512 +S] +s3 )
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3.6.1.3 Tresca yield criterion

This model is also known as the maximum shearing stress criterion, which has the

following yield criterion:

F(O,Tmax ) = max[;

from the condition o,>0, >0,

[1
max| —
2

1
c; —csj}zzcsl -0,

, thus:

=
Il
Il
S ON=

(positive

1

2

stress),

G, — cs.]} ~Tmax =0

equation

(3.81)

results in

(3.82)

The critical angle and the critical hardening modulus are summarized as follows:

CRITICAL VALUES FOR TRESCA CRITERION ‘

critical angle

tan’ 0 . =1=

crit

0, =+45°
0, =—45°

critical
hardening
modulus

HE, =0

crit

octahedrical plane

I, =0 (plane IT)

(3.83)

-0,

pure shear state

Figure 3.12: Tresca yield surface.
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3.6.2 Two-parameter models

3.6.2.1 Mohr-Coulomb criterion

The simplest form of Mohr envelope is the straight line (see Fioure 3.13). The
equation of this line is:

|t|=c-octan¢ (3.84)

where ¢ is the cobesion and ¢ is the angle of internal friction, and both are material constants
determined by experiments.

L)

Figure 3.13: Relationship between principal stresses for the Mohr-Coulomb criterion.

Considering Figure 3.13| and equation [3.84)] and taking into account that

0, 20, 205, we can write the Mohr-Coulomb criterion as:

Moht-Coulomb criterion (01_263) coshp=c— |:; (6, +0;)+ (01_203) sin ¢:| tan ¢

Solid Mechanics (3.85)

= G, — O, —sind{zc—c1 —G3J=0
tan ¢

Next, in order to deduce the critical values we will consider the sign convention adopted
by soil mechanics: compression (positive) and traction (negative) G, =—0;;6;=—0,. In
this case, the Mohr-Coulomb surface equation is described as:

o . 2
Moht-Coulomb Criterion F(6,,6,)=6, — G, —sin 4{01 - t C(IJ (3.86)
an

Soil Mechanics
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Considering that:

N 0O 0 M 0 0
n=0 0 0 ;. m=0 0 0 (3.87)
0 0 —N 0 0 -M,

where N{ and N} are functions of ¢ (angle of internal friction) and M| and M are

function of y (dilatancy angle) with:

1—s1n¢ ) 1+sm¢ l—sm\y 1+s1n\|/

2 1+sm ¢ V2 +sm d) 2 +s1n \y A2 1+s1n \|/

The critical values 6, and M2, are respectively given by:

ZN;Mg + N/M; + M|N}

crit ’ B ' ' P (388)
ONIM| +NM +M!N;

tan’ 0

yr - E (2N{M| + N{M} + M|N; )
Toaa-vh [ (] M) (N + )

—4N! M| (3.89)

Substituting the values of N' and M' we can obtain that:

2sinysin ¢ + sin ¢ + sin
_2sinysing+sing +siny (3.90)
2sinysin ¢ —sin ¢ — sin y

p _ B +p) (siny —sin ¢)’ __E (siny —sin ¢)* (3.91)
o (A +2p) 2\/ (1+Sin2\|/)(1+sin2 d)) 8(1_V2) J (l-l—sin2\|/)(1+5irl2 (I))

Thus we can summarize:

CRITICAL VALUES FOR THE MOHR-COULOMB CRITERION ‘

2sin ysin ¢ + sin ¢ + sin
2sin ysin ¢ —sin ¢ — sin y

2
critical angle | a0 0 ==

(3.92)

.. . 9 . 2
critical hardening | 2/ p _ E (siny —sin ¢)
i T80 [ (isin? y)fi+sin® ¢)
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3.6.2.1.1 Non-associated Mohr criterion — Particular case

In this particular case we have:

1 0 0 1 0 0
n=/0 0 O and m=0 0 O (3.93)
0 0 —-N' 0 0 —-M
where
e o NIZO
wr=1Tsing g dosiny g Y (3.94)
1+sin¢ 1+siny M'=0

Substituting the values of N and M, given by the expressions [3.93)] into equation
(3.48) [for non-associated problems, we can obtain the critical angle:

tan’0 . =

crit

[(m3 _ml)nZ +(n3 _nl)mz]v+(2n3 _nl)m3 —-mn,
[(ml _ms)nz +(n1 _n3)m2]\’+(2n1 _nS)ml —nm;
(3.95)
5 2N'M'+N'+ M’
=tan" 0, =
2+M'+N")

and the critical value of the hardening modulus:

p _BA+w (N-MYY  E  (N'-M) (3.96)
7 Qo2 (L MO+ N) 40— (L MY+ N) '

Thus, we can summarize:

CRITICAL VALUES FOR THE MOHR CRITERION (ASSOCIATED CASE) ‘

2 —sin¢ —siny
2 +sin¢ +siny (3.97)

2
critical angle | fan 0 =

critical hardening P E (N -M ')2
modulus crit 4(1-v?) (1 + M’)(l + N’)

The results (3.97) |are consistent with the results presented by Ottosen & Runesson
(1991b).

The above values, (3.95)|and {3.96)] can be directly obtained from equations (3.88) land
justby setting Ny =1, Ny=N,, M| =1 and M;=M,.
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3.6.2.2 Drucker-Prager criterion — Two-Invariant plasticity formulation

In this special case, we can express R and M, which are coaxials, as:

oF
——=a,S+a;1

n-—
aog (3.98)
m=—_"=0,5+a,1
o0

The parameters o, and o, describe the pressure sensitive, and o, and o, are
frictional material parameters.

Using equation [3.48)|with n and m given by equation we can obtain the critical

angle:
* In terms of the principal deviatoric stress:

- (1 + v)(ocla4 + cxza3)— 2(53 + vsz)ocloc2

tan’ 0, =
o (1+v)(oc10t4 +oc2(x3)+ 2(S1 +vsz)oclot2

crit

(3.99)

* In terms of the principal stress:

(-6 -9 N0, + o0, )+ oclocz[4u(— 26, + 6, +5,)+6A(c, —03)]
(6 + 91Nz, + a0y )+ 0,01, [40(20, — 05 =, )+ 6)(o, — o, )]

tan’ 0 =

crit

(3.100)

The above equation can be rewritten in terms of v and E as:

an’0 . — —3(v+1)(ocloc4 +(12(X3)+ [2\/(61 -20, +G3)+ 20, + 20, —403](11(12

crit

v+ 1a,a, +o,a,)+2v(20, -0, —0,)-20, — 20, + 40, Jaja, 10D

The critical hardening parameter H/,

crit

CRITICAL VALUES FOR THE DRUCKER-PRAGER CRITERION (ASSOCIATED CASE) ‘

—(1+v)(0t10c4 +oc20L3)—2(S3 +V52)Otl(12
(1 Voo +op05)+2(s, + Vs, ) oty (3.102)

is given by the following table:

. 2
critical angle |tan” 0, =

critical hardening HP = E A+ A4, + A
modulus crit (1 _ V2) [ 1 2 2 ]

where

[(l —2v)s3oc2 + (l +v)(x4][(l —2v)S30Ll + (1+v)oc3]

A, =

(1-2v)
4 = [2(\/52 +SI)OLI(12 +(1+v)(ocloc4 +0L20c3)]2 d 3w (1-2v)72, a0, + (1 +Vv)aso,)
4a,00, (1-2v)

with . =;[((51 ~0,) +(0, —0,) + (o, —61)2]

oct
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S|

(a) Two-invatiants

(b) Particular case

Figure 3.14: Drucker-Prager yield surface.

Localization ellipse

Using equations (3.30)Jand [3.31) jwe can obtain the localization ellipse:

(ox —0y) |

T-'_ . =1 (3.103)
with
Gy =p— (1+V) (Otl(l4 +(120(3); GN:N'G‘N (a)

2(1-2v) o0,

o _(A+21)8  2(1-v) 45
4= 4K _(1—2\/)8 (b) (3104
. P 2 B 2
B2 E _ H +J,+ 3(1+v) o0, + (1+v) (ay05 — 0 0y) ©

T 4K dpaa, 20-2v) aya,  81-2v)(1-v)  alol
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1
where & and IC are given by equation|(3.21)[in the plasticity case and p = ?1 , where I, is

the first invariant (/, =6, + 0, +0;) and J, the second invariant for the deviatoric stress

(see appendix A.7).

3.6.2.2.1 Particular case o, =a, =1

In the case of the Drucker-Prager model with two invariants, the normal to the yield
surface N and the normal to the plastic potential M are given by equations with the
following values o, =a, =1. In this case the model only depends on the friction parameter

of the Drucker-Prager parabolic model.

{n=s+oc31

m=s+a,1 (5105

The value for the critical angle can be obtained directly from equation [3.101)] resulting in:

—3(v+1)((x4 +0c3)+[2v(cs1 -20, +63)+ 20, + 20, —403]

tan’ 0, = 3.106
t 3(V+1)(OL4+OL3)+[2V(202—03—61)—262—2G3+461] ( )
The above equation can be written as:
1, Ly + 0y
r—(l—2v) GC—? —(1+v) 5
tan’ @, = ; . (3.107)
r+(1—2v) c, - +(1+v) B4 70
3 2
where: o, = 9179 ;7= 91”9
2 2
Expression (3.107) fis the same as the one obtained by Willam (2000).
The explicit expression for H/?, is given by:
HE = e dy 4] (3.108)
(1-v?)
where
o L=2v)ss + (L4 v J[(-2v)s5 + (14 Vo, |
=

(1-2v)

[2(vs, +5,)+ (1 +Vv)a, + o)
4

A4, =
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(l - ZV)’Eig + (l + v)a3a4
(1-2v)

Ay ==3(1-v)

oct

. 1
with 17 =9[(c51 ~0,) +(0, —0,) +(o; —01)2]

Summarizing:

CRITICAL VALUES FOR THE DRUCKER-PRAGER CRITERION (ASSOCIATED CASE)

PARTICULAR CASE (at1=01=1)

1 1
r—(1- 2v)(cc —;j —(1+ v)(a“z%j
critical angle | tan® 6., = / o (3.109)
r+(1_zv)[cc _31}(1”)[423]
critical hardening HP, = £ [ A+ A4, + A3]
modulus (1-v?)

3.6.3 Three-parameter models

3.6.3.1 Three-invariants plasticity formulation

Consider that in this plasticity formulation we include the effects of the three invariants

in the yield function and in the plastic potential. The three invariants (&, p,é) are
schematically sketched in Figure 3.15) For further details on this model see Willam (2000).

As a result the gradients N and M depend on the three invariants, which can be written
as:

oF
n=%=a13+a31+ass-s

oQ (3.110)
m=—==o,s+o,1+a.s's

0o

Using equation (3.48).|with the values given in|(3.110)] one can obtain the critical angle:

(1+V)(O‘10‘4 +0‘z°‘3)+20‘10‘2(\’52 +53)+[(Sas + Yo, +Y0°3)0‘6]+[(\|’0‘2 +Y(X4)O‘5]

tan’0 . =—
(1+V)(a1a4 +a2a3)+2a1a2(vsz +51)+[(WO‘5 +xoy _Ya3)a6]+[(xaz _Y0‘4)0‘5]

crit —

(3.111)

and the critical hardening modulus:
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E
H =7V2)[A1+A2+A3] (3.112)

where

4 - [(1—2\/)s3oc2 +(1+v)a4 -I—Bl][(l—Zv)s3oc1 +(1+V)(13 -I—Bz]
: (1-2v)

4 = [(yoc3 +wa +Ca, }a6 +(yoc4 +Q0L2)oc5 +20L10c2(s1 +vsz)+(l +v)(a2a3 +O(.10L4)]2
, =
4[“6(53 +Sl)+a2][a5(ss +sl)+al]

B, +2(1-2v)J, 0,0, +3(1+Vv)a,a,

4 =--Y) (1-2v)

B, =[(sf +55 —s§)v+s§] a,; B, =[(sf +5] —s§)v+s§] o

oct

B, =[3J3(1—2v)(ocloc6 +oc20c5)+ 2J2(1+v)(ot30c6 +oc4oc5)+§r4 asaé}

£ =2S] +5,S, +v(sls2 +5,S, +s§)

5 _S{ 4S5 457 5 S} +S) +53
2= H 3= 3

5 : 9=2(s, +5, vs§+s§)

m=2(sl+s3)(vs§+sf); y=5,(5,+25,); x=5,(s;+2s,); y=(+v)s, +s;)

A

D!

\J

T

—
%
/

Figure 3.15: Gradients of generic three-invariants yield surface, Willam(2000).
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3.6.4 Damage models

In this section we will obtain the explicit critical values for the Isotropic Damage Model
described in chapter 2.

3.6.4.1 Isotropic damage model

This associated model has the following flow rule:

e 0 0
n=-m=g=|0 ¢, 0 (3.113)
0 0 &

with €, 2¢, > ¢,

Using equation e can obtain the critical angle:

€, +VE
tan’@Q,, =— > (3.114)
€, tveg,

Equation [3.114) [is the same as obtained by Rizzi ef a/.(1995) and through equation

we obtain the value of H :

crit *

() r?
22 (Tr(e))* + [(z»:l —&, )" +2Tr(g)(g, +¢, )]ku +2p? (sf +g? )}

H, =(1-d)| 1~ { (3.115)

Localization ellipse

We can then obtain the localization ellipse (see in the Mohr circle space,
according to equation [3.60)

2 2
(e +20) L8y (3.116)

1212 }}2

where

A

Ae, +€, + . -V) A
80 — (81 82 83) — A% (81 + 82 + 83); A2 — 2(1 V) Bz, BZ — E.!
2u (1-2v) (1-2v) 4uIC
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H(iiz (N= Ncrit)

o=

Figure 3.16: Localization ellipse.

3.7 Two dimensional case

In the two dimensional (2D) settings, we have the Plane strain case and the Plane stress
case, (see Appendix A.5).

For the Plane Strain case the solution is a particular case of the 3D solutions that were
previously derived.

3.7.1 Plane stress
3.7.1.1 Critical angle
3.7.1.1.1 Non-associated case (n=m)

(2n2 _nl)mZ - man

tan’ 0, =
o e (2n1_n2)m1_n1m2 G117
3.7.1.1.2 Associated case (n=m)
m
tan’0,, =——>
=, (3.118)

The angle can also be expressed as:
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_81

N,=cos(0)= | —— (3.119)
(g, —¢))
Using the property cos(24)=2cos” 41, we obtain:
— (g, +&5)
cos(20)=———= 3.120
(g, — &) ( )

Notice that 20 is the angle where the Mohr’s circle intercept the axis of the shear
deformation (see [Figure 3.17). Figure 3.18| shows how to obtain the critical angles
schematically.

Figure 3.17: Moht’s circle — 2D isotropic damage model (associated case).
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Y
2
X
Figure 3.18: Critical angle — 2D Damage case.
3.7.1.2 Critical hardening modulus - H,;
3.7.1.2.1 Non-associated case (n=m)
Damage
d r?
HI =E|1- 3.121
T ) G420
with
1 p+wm, —my )y +(0y —n,m P | iy }
Z oy (N) = —= —(m, +m,)+2um, |[M(n, +n,)+2un
(k+2u) { (m,-m, )n, -n,) [ (m, +m,) 2][ e 2]
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Plasticity

by _
HP = PL( +w  (ym, -n,m,) (3.122)
(A +2p) (m, —m, )n, -n,)

3.7.1.2.2 Associated case (n=m)

Damage
N 2
Hy =) 1-—— e (3.123)
{x (m, +m, )+ m[3m§ + 2m1m2]+ 2u2m§}
Plasticity

Hy =—Mm§ (3.124)
)

A



Annex 3 A.

Specific Material
Bifurcation Analysis

In this section, we present some examples of the critical angle computation as well as
the critical hardening modulus. Visualizations of functions Z(N) and Q(N) are presented

too.

A.1.1 Simple traction

Consider one finite element, as shown in constituted by a material whose
behavior obeys the isotropic damage model described in chapter 2 and has the following
material properties: A =0.0, u=10000.00. Displacement control is applied until a certain

pseudo-time at which the strain state is the one described in
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g, = 4.64646464x107
€, =0.0
€,=0.0

Moht’s circle in strain

Figure A.1: Simple traction-strain state.

In this particular case, which can be regarded as a 2D case, the critical angle is

0, =0°, which was obtained by using equation (3.118). For the stress state considered, we

crit

have the following values for the variables involved in the damage model: d =0.0, ¢=0.0,

r=7.07106781186x 107 and H =-0.0138889.

Sweeping the range of variations 0<a<180° and 0 S(T)S 180°, as defined in Figure

3.3, we can plot the function Q(N), see One can verify that Q(N) reaches a
Qe

. P ono
minimum for 0, =0° or 6, =180°.

2D representation

[QN)
@

Figure A.2: Simple traction — surface
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A.1.2 Triaxial case

Consider the finite element used in the preceding example with the following material
properties: £ =20000 and v=0.2. In this case, the load is applied in two stages in order to
simulate a triaxial state, see

First stage Second stage

(@) (b)

Figure A.3: Triaxial Case.

The strain state as well as the corresponding Moht’s circle in strain space is shown in
for a given pseudo-time in the second loading stage (see . The values
of the damage variables for this strain state are d =0.0, »=7.07106781186 x 107, ¢=0.0,
and ‘H? =-0.125. Figure A.5illustrates surface Z(N) and Q) / Q¢

g, = 4.746890046x10°
£, =2.4985698615x10~°
g, =—2.21515687743x10~°

Moht’s circle in strain

Figure A.4: Triaxial Case — strain states and Moht’s circle.
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3.0e-005 I

i

S 15edds |

.\\\I f
\\.

Surface Z(N) Surface ‘Q(N)‘/

Qe

Figure A.5: Surfaces Z(N) and |Q(N) / Q¢| - Triaxial Case.

In We can observe that the solutions correspondent to the planes 1-3 and
2-3, see Table 3.2, that intercept the Mohr’s circles defined by € -€&; and €, —€;
respectively. On the other hand the solution correspondent to the plane 1-2 is not
teasible.

YA

H,, - non feasible solution .
2 Moht’s circle

Figure A.6: Moht’s circle and localization ellipse - Triaxial Case.
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A.1.3 Drucker-Prager — Non-associated case
This is a example intended to simulate a Drucker-Prager model as described in section

3.6.2.2.1. The following data are assumed:

Material properties: £=10000, v=0.2;

c,=14x107"
»  Stress state: 4G, =—1.2x107";
o, =-2.4x10""
o, =1
o, =2
= Parameters of the model: o, = 0.00005
o, = 0.00001

shows the shape of surface Z(N) and of det[Q(N)] standardize and
the localization ellipses corresponding to the solutions 1-3, 2—3 and 1-2 which
intercept the Mohr’s circles defined by ¢, — 65, 6, —65 and o, —0,, respectively.

B
\‘»‘Q"f?’ l\\\:“\
\ ":" Qi

L)
N /’0}
e ¢

, .
I\
.

i

180°

Surface Z(N) Surface ‘Q(N)‘/

Qe‘

Figure A.7: Surfaces Z(N) and |Q(N) / Q°

- Drucker-Prager Case.

1.100

0.825

0.550

0.275

aoa
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Moht’s circle

}
-4.5010 . -3410 ¢ 250

,2.10’4 4

Figure A.8: Moht’s circle and localization ellipse — Drucker-Prager Case.



BVP Discretization
and Implementation

Courant, R. (1943) |8

4.1 Introduction

In this chapter we present a 3D Finite Element formulation devised to solve BVP’s of
continua undergoing discontinuities. Such problems involve localization phenomena. To
use the FEM for solving localization problems, some techniques of enriching the standard
finite element formulation are required. When discontinuities are embedded into a standard
finite element, this can be done in the strain or in the displacement field. Jirasek(1998)

presented a table summarizing the use of these techniques (see [lable 4.1).

Table 4.1: Selected approaches dealing with embedded discontinuities (Jirasek,1998).

Ortiz, Leroy and Needleman 1987 finite element for localization failure
Belytschko, Fish and Engelmann 1988 embedded localization zone

Dvorkin, Cuitifio and Gioia 1990 embedded localization line
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Klisinki, Runesson and Sture 1991 inner softening band

Lotfi and Shing 1992 embedded crack

Simo, Oliver and Armero 1993 element with strong discontinuity

Simo and Oliver 1994 element with strong discontinuity
Armero and Garikipati 1995 element with strong discontinuity

Oliver 1996 element with strong discontinuity
Larsson and Runesson 1993 discontinuous displacement approximation
Larsson, Runesson and Akesson 1995 embedded cohesive crack

Larsson and Runesson 1996 embedded localization band

Berends 1996 EAS element for fracture

Berends, Sluys and de Borst 1997 discontinuous modeling of mode-I failure
Sluys 1997 discontinuous modeling of shear banding
Sluys and Berends 1998 embedded discontinuity element

4.2 Governing equations

Consider a nonlinear solid (see that occupies a domain B in R’ with
boundary 0B. In this body B with volume V' the following forces are acting: b- body

* .
forces; t - traction forces.

We can summarize the governing equations of a BVP for the quasi-static problem with
a discontinuity as (see Chapter 2):

BOUNDARY VALUE PROBLEM - BVP - With discontinuity

Equilibrium equation V-a(x)+b(x)=0 vxeB\S 4.1)
Constitutive equation o =2(&(X)) vxeB 4.2)|
Kinematic equation E:VSymu:;(V®u+u®V) vxeBB (4.3)|
Outer traction continuity T =T"< N-0 =N-0° VXeS (4.4)|
Essential boundary conditions | u=u’(X) vxeo,B (4.5)|
Natural boundary conditions t=t' (X)=v-0 VXxeo B (4.6)|
Inner traction continuity T =Ts< N-o"=N-0, VxeS (4.7)|
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Figure 4.1: Domain of the body B .
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4.2.1 Redefinition of the kinematics

In order to devise a convenient format for the fields that are going to be discretized, a
redefinition of the kinematics presented in Chapter 3 will be performed.

* The new expression of the discontinuous displacement field reads:
u(x, 1) = u(x,1) + Mg 0flallx.1) (4.8)
Function Mg satisfies the following conditions (see :
i The jump across S is [Mg] =1;
ii.  The support of Mg is B,,.
The function Mg is defined as:
M (X) = H 5(X) = 9(X) (4.9)

where Hg is the Heaviside function and ¢ is a continuous function which is completely
arbitrary except for the following two conditions:

0 vxeB~
= 4.10
900 {1 vxeB* (#+10)

* The corresponding enhanced strain field reads:

E0X,0)=VY"u=V""u + [ I0IE ( 3% (X)N-Ve(X) ) ]Sym
€ £ 4.11)

£(X,t) =€ + €
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where 8% is defined as:

}11 Xs(X)  — Weak discontinutiy

8s(%)= b h—k (4.12)
1
P xs(X) — Strong discontinutiy

and y g(X) stands for the collocation function defined as:

1 vxeB,
X)= 4.13
%sX) {o vxeB\B, &1

Hs : ¢
| 1
c v \ Jj 2 ms:Hs_(P
N A Y
B~ C BY ;\ """"""""""
o (=) —¢ ¥ 31
() : ? B~ \Eﬁ Bt
— 1 =
. :
< X : ) \L i B,
B L B*
B,

Figure 4.2: Construction of the function Mg.
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4.3 Variational formulation

In light of the governing equations above, we consider the following variational
problem:

Given:
V), = {n=ﬁ+msﬁ ; ﬁe[Hl(V)]"mm nell,S)] na“Bzu*}
(4.14)
V= {ﬁ o™ = 0}
Find:
ueV, u=u+Mgu]] (4.15)
Such that:
jo(a):V“}’mndV—jn-de— In-t* d4=0 vney, (4.16)
B B o.B

By using standard arguments it can be shown that the strong form of Equation
are the equations (4.1)] (4.4)] and (4.6)] Equations (4.2)| and [4.3)|are assumed to be
imposed in strong form.

On the other hand, the inner traction continuity [4.7) |has to be imposed independently
of the variational statement This can be done in weak form through:

J- n-(os-0z5)-N dV=0 vnel,(S) 4.17)
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4.4 Spatial discretization and solution

We begin by discretizing the domain B into elemental subdomains B, (see
such that:

B~ OBe 4.18)
e=1

where B, is the closure of an individual element.

Piscretization
of domain

N
\'«”I /
ﬁ‘%

Figure 4.3: Discretization of the domain B by a finite element mesh.

After discretization, the independent variable W (displacement) is interpolated by
functions of compatible order within each element, in terms of values to be determined at a
set of nodal points. With the objective of developing the equations for these nodal point
unknowns, an individual element may be separated from the assembled system. Inside each
finite element, a scalar or a vector function is approximated by a linear combination of

shape functions associated with its nodes. Within an element B, with n,,, nodes, we

define the reference geometry X¢ and displacement field U® over a typical element as:

Mpode

X =Y NX uefNiai (4.19)
i=1

i
i=1

where N, is the matrix containing the shape functions and a, is the nodal displacement.

In general N, =N, The strain fieldlis given by:

{e}=v¥"u=L,u,=VN,a, =B a, (4.20)

! Here we are using the Voigt notation, see Appendix A.
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where the operator I and the strain interpolation matrix B are given by:

9 0 0 o, 0 0
ox, ox,
ON,
0 9 0 0 0
0ox, x,
ON;
0 0 aa 0 0 3 :
- X3 - X3
L= ERr) . B, = N, oN, . (4.21)
ox, Ox Ox,  Ox
o, 0 N, o,
ax3 axl 8x3 axl
, o 2 ;oA o,
i Ox;  Ox, | | Oxy  0Ox, |

being i the node number.

4.4.1 Approximation of the regular part of the displacement
field

In this section we deal with two types of finite elements: the tetrahedron (4 nodes
element with linear interpolation of the displacement field) and the hexahedron (8 nodes
element).

4.4.1.1 Tetrahedral finite element

The first-order tetrahedral finite element in the global (x;,x,,x;) and local (&,n,0)

coordinate systems are shown in Figure 4.4

(&mn.¢)

(xl,xz,x3)

X

Figure 4.4: First-order tetrahedral finite element in global and local coordinates.
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The displacement field in the finite element can be expressed by its nodal
displacements:

u Nu, +N,u, + Nyu; +N,u,
u=:v,=q3 Nyv, +N,v, +N;v, +N,v, =Na (4.22)
w N,w, +N,w, + N;w; +N,w,

Hence, the shape function of node i of the tetrahedron e is defined as follows:

N, 0 0
N:{Nm N, , Ny, N4}‘ ; N,={0 N, 0 (4.23)
0 0 N,
and
a, .,
a,
a= ;0 a;, =1V, (4.24)
a3
Wi
a,

4.4.1.2 Hexahedral finite element

The generalization of a 3D quadrilateral is a hexahedron, commonly known in finite

element literature as “brick”, Felippa (2002) (see .

C ( (&mn.¢) n 4

(x1’x27x3>

!

~————— ] == “\“o

Figure 4.5: First-order hexahedral nodal finite element in global and local coordinates.
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The displacement field is given by:

8 8

u=ZNiui ; V:ZNivi ; w=iNiwi (4.25)
i=1

i=1 i=1

The nodal shape function in local coordinates (&,m,8) for the hexahedral element in

Fioure 4.5|can be written as:
1
N, = (+€8)(+m,)(+cc) (4.26)

where (&;,m;,,§;) are the local coordinates of node i.

4.4.2 Approximating displacement field in an enhanced
element

To capture the displacement jump [[u]] an additional node to the standard finite

element is necessary (see Fioure 4.6|and Figure 4.7).

I

W @ [wI]

Figure 4.6: Discontinuity in displacement - Jump.
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(b) hexahedron

Figure 4.7: Enhanced element - Nodal displacement with additional node.

Motivated by the kinematics of equation [4.11) |the following discrete displacement field
is proposed:
ux,n)=N(x)a, + Ms(X)a,
(4.27)
=u(x,0=N)a, +[Hs 0 -9,00]a,
where N contains the shape functions corresponding to the regular underlying element
and (Wl sO0=Hs(x) —(pe(x)) is the unit jump function (Heaviside function) shown in
for the two-dimensional (2D) case and a, represents the elemental displacement
jump in global coordinates. In he discontinuity line £, divides the element into

two subdomains: B~ and B™. Observe that the normal N always points towards B*.

In equation ¢, is given by the combination of the shape function of the nodes

which lie down in domain B™:
9.= D N, Vil x, eB’ (4.28)

For example, in a), where we are using a Constant Strain Triangle (CST) finite

element, we have the case where ¢, =N, and in [Figure 4.9(b), where we are using the
tetrahedron, ¢, =N, + N, .
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‘ Regular Part ‘ ‘Enhanced Part‘

ms = s O,

Figure 4.8: The discontinuous shape function (CST element).

(@) (b)

Figure 4.9: Discontinuity surface and tetrahedron intersection.
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4.4.3 Approximation of the enhanced strain field

From the displacement field in equation (4.27) |the corresponding (rate of) strain field
reads:

o ={elxn + {Exn=Bx.ni, + G, ¢ (4.2
Regular Enhanced

where the first term corresponds to the strains provided by the regular underlying element
with nodal degrees of freedom a, and deformation matrix B. The second term

corresponds to a strain enhancement in terms of the elemental displacement jump @, and

the deformation matrix G, that contains the unbounded (regulatized) Dirac delta

distribution 8%, see equation emerging from the spatial derivation of the step
function Hp in equation amely,

G, (%) =385 (XN (X) - Vo, (X) (4.30)
where
N, 0 0]
0 N, ©
0 0 N
N = ’ 31
N, N, 0 (#31)
N, 0 N,
0 N; N,
thus
5 N, - 9% 0 0
ox,
0 51N, — 0% 0
0ox,
0 0 85 Ny — Z“’e
G,(X)= 3 (4.32)
SN, - 2 5i N, -0 0
0ox, Ox,
5 N, — 22 0 5 N, — 2
0x;4 Ox,
00, < ¢
0 Sh Ny ——¢ BSEN, - —*¢
I s N3 o s N2 ox, |

Now, attention must be paid to the inner traction continuity condition stated in
equation The traction vector T~ in Voigt notation is defined as follows:
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T=N-0c— L& 7 =-N"{o}

(SN

N) SPY)
7-1A N, 0 0 Ny Ny 0 o (4.33)

TML=l0o N, 0 N, 0 Njj*

7™ o 0o N, o N, N, J|°F

O3

G

thus

T=N"{o}=N"{o}" =N"{o} =N"{0}5 s (4.34)

where {O}B \s stands for stress at B, \ S, .

Figure 4.10: Traction vector continuity — CST finite element.

On an element by element basis the inner traction continuity equation is
imposed in weak form from equation [4.17)|resulting in the additional set of equations:

«T
B,
with
(ng —A"JN XeB,
Ve
G, = (4.36)
0 otherwise

and A4, being the area of S, (see . Substitution of equation {4.36)|into equation
leads to:

J.NT{O'}h dA—;je J.N'T{o}" ar=0 (4.37)

e

S

e

B\S,
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which can be rewritten as:

1 T d 1 T
AIN'bVMZV'IN'wVMV (4.38)
¢s, ¢ B.A\S '

average on S, average on B,\S,
In 2D cases the area 4, becomes the length ¢, of £, and the volume becomes the area

of the finite element (see Figure 4.11).

Observe that the matrix G, appearing in equation Mfulﬁlls the following condition:

JG:dV=0

B,

e

(4.39)
It is possible to check that the spaces generated by the regular strain € and the enhanced
strains € , denoted by V" and V" respectively, are such that:

ViAvh={0} (4.40)

Conditions and (4.40)|are sufficient to guarantee the consistency and stability

requirements for the proposed assumed strain approximation, Simo&Rifai(1990).

Figure 4.11: Discontinuity CST finite element.

4.4.4 System of algebraic equations

The problem to be discretized has as enhanced weak form, equations (4.16)]and (4.17)]

jVSymn:c(s) dej-n-b dv - In-t* d4
B B o,B
(4.41)

In'(Gs _OB\S)'N dr=0
B,



4 BVP Discretization and Implementation 111

Introducing the finite element interpolation in the weak equation [4.41)|yields:

R(a,a)=F,, - A J' B"{o}dV, |=0 (4.42)

r(a’a(e)):: J‘G:T{a}dVe =0 Ve=l,..n; (4.43)

where A is the standard finite-element assembly operator and n,, the number of elements

and n; the number of elements which contain the discontinuity path and F,, stands for
the external forces. Thus, we can say (in rate form):
n,
A _[ B7cB|ara, +I B'CcG,]ar a, =F,
e=1 B
(4.44)

HG*?C B]dVaeJr”G*fc Ge]dV a, =0

B B

We can express the above equation as:

Ké(aa) Ké(aa) 2ie Fext Re
- =1 (4.45)
Ke(‘m) Ke(‘m) o, 0 r,
with

K¢, = ' B"cBlar

Nm b

K¢, - | B"CcG,Jav

Je

(4.40)

ke = [G*Tc B]dr

j [6.cG,]d

the elemental tangent stiffness matrix K,, which is clearly non-symmetric due to the fact
that G, #G ..:

K¢, K¢
K, = { a“ } (4.47)
K(l K o

We can also express (4.44) in local coordinates (N,S,T), ze.:
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{[BTC 8] B'cG, ]JdV { a,

6. cB]

B

G.CG,

-]

[lu]

(4.48)

where ]l = {[[u]]; . [[w]]} is the jump in the local coordinates (sce[Figmre 413

Figure 4.12: Displacement jump in local coordinates.

where :
_ 20
AN, — ¢
sy o,
0
B 0
G =
e 0
SEN, — OPe
2%)
op
8hN _ e
sN3 or,
0
N, S T
with [N, S, T,
N, S; T,

Appendix A.4.

85N,

55N,

S%N, —

0

29,
ox,

0

29,
Oox,

0

.

X3

0

5N, — 20

X3

0

oo,
8"N, — .
1

8
SEN, — 9P

ox, |

N, S, T,
N, S, T,
N, S; T,

(4.49)

being the transformation matrix from global to local coordinates, see
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Thus we can rewrite equation [4.49) fas:

|
d 0
,,,,,,,,,, o) o\ o) LT oy )
| d 0
sgNz—‘Z‘Pe N, | |8tN, -, SIN, — ZPe T,
,,,,,,,,,, P10/ S R 2. 710 A N G <. 2 A
o ‘ o o
[82N3_a(pe N3 i (82N3_ (pe 83 (82N3_ (pe T3
AR Xy ) [ oxy )~ o U7 T o) "
|
sgNz—a‘Pf N, + | 6’?5N2—8(Pe S, + sgNz—ﬁ‘Pf T, +
ox, | X, ox,
|
|
|
|
|

|
A P, N, + | 5gN3—a‘Pe S, + agN3——a‘Pe T +
Ox4 | Ox, Ox4
oo, | ¢, o,
R R DU L
1 l 1 1

i h o0,
i (BSNI ‘axH (4.50)

0 0
S e LT
X2 X2 X2
with ¢, as defined in the expression and
N, 0 0]
0 N, 0
A 0 02 N Nl Sl Tl
G.=|dk-=¢ SN, S, T, (4.51)
V,)IN, N, 0
N, S; T,
N, 0 N,
| 0 N; N, |
or
N? (N;S,) NT)
N3 N,S,) (N,T,)
G _|sh _Ae N3 (N;S;) (N,T;)
G.=|0ds (4.52)
Ve J2N;N) (N,S, +N;S,) (N, T, +N,T,)

(2N3N1) (N381+N183) (N3T1+N1T3)
(2N3N2) (N382 +st3) (Nst +N2T3)_
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4.4.5 Numerical integration

The numerical integral is carried out by the use of a numerical quadrature procedure.
Expressing a generalized definite integral by

=j j jg(&,n,c)da dndg (4.53)

-1 -1 -1

the numerical quadrature formula is given by,

- [ [elengaean a= 3 S il o, ) (454

-1 -1 -1 r=l g¢=1 p=l

”

where the weighting coefficients WP,Wq,W and the abscissas (§ »oNyG,) depend on the

particular quadrature used. For more details about numerical integration see
Zienkiewics&Taylor (1996a and 1996b).

Consideration of the regularized elemental discontinuity band B/ suggests a specific
numerical integration rule for the described elements. Inspection of the resulting
formulation in sections 4.4.3 and 4.4.4, and in view of regularization parameter k , equation
and regularized softening parameter H , we have that strain is piecewise constant in
both the domain B* and domain B, \ B! (sce m Thus, after examining the set
of equations to solve, we conclude that only one integration point is needed in each of
those domains, whose weights are equal to the corresponding area according to the
following table:

I I TR
B, \B!

measure[B, |- k¢,

2 B ke

e @

where measure [B,] stands for the area of B, . No specific location for the integration

points, at the corresponding domain, needs to be specified.
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O Singular Gauss Point

W Regular Gauss Point

1
Figure 4.13: Discontinuity surface and tetrahedron intersection.
n A
@ Regular Gauss Point
n ‘
@ Singular Gauss Point ® Regular Gauss Point

........ i (F  Auxiliary Gauss Point

)

<3 . .
P e e A @ Singular Gauss Point
VL AR S LR
I Jor T
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K
o
»
(a) Gauss Point in the Tetrahedron (b) Gauss Point in the Hexahedron

Figure 4.14: Additional Gauss Point-3D.
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4.5 Stability of the global solution

In order to circumvent the possibility of a loss of uniqueness due to arrest and
activation of a discontinuity at some elements, the following modification to equation

(4.44) |is proposed (Samaniego 2003)
fen(a,ae,de):IndedA+jG*ZGdV (4.55)
s, B,
where 1 is the damping-like parameter.

Equation can be interpreted as the residual forces vector of plus a
damping-like term intended to regularize the discrete BVP.

Applying a backward-Euler scheme for integration in time, equation (4.55)|can be
approximated by:

alt ! T
ffl*A‘:J.neAtedA+J.G codV (4.56)
B,

S

The corresponding tangent stiffness matrix can be shown to have the following form:

e _yre j
Kaoc_K(x(x_l_J‘ At1dA (457)

Thus, only sub matrix K, has to be modified by the damping term.

Remark 4.1: The additional damping acts exclusively within the elements which
contain the discontinuity surface. [
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4.6 Static condensation

The static condensation is employed to reduce the number of degrees of freedom per
element and perform part of the solution of the total finite element system equilibrium

equations prior to assembling the elemental matrices.

Consider a finite element with 4 nodes (see [Figure 4.15] where f., are the forces in the

nodes 1, 2, 3; f,, are the forces in the internal node 4; 5ep are the displacements in the

nodes 1, 2, 3 and 8, are the displacements in the internal node 4.

cxatic oondensatio,,

Figure 4.15: Static condensation.

At element level we can write:

1=K 1.}
We can split in the form:

feﬂ — K@PP K@P’ 6617
fei Keip Keii 6ei

The system above can be rewritten as:

fep - Kfppaep +K6pi6@i
f., =K, 8, +K,8, =8,=K," (1, -K,3,))

eip-ep eii - ej 7 eip - ep

(4.58)

(4.59)

(4.60)

Substituting the second equation from into the first equation we can obtain the

following system of equations:
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KK (K, KKK B,

* *

fE Kf

(4.61)

e ep

4.6.1 Newton-Raphson scheme for the statically condensed
version

In this section we describe the Newton-Raphson method with static condensation,
Armero(1999b). Within the framework of the finite element method, equations
(4.43) |can be transformed into a (global) force equilibrium equation that has to be fulfilled

at every time step, [t,t + At] (see Figure 4.16), of the discretized time domain. To attain this

objective we have to define a residual forces vector, which has to be cancelled by means of
an iterative procedure at each time step:

t+At F,. I (= _ 0 (4.62)

int

stores the externally applied nodal loads and “*F, “D s the

A
where the vector " F int

ext
vector of nodal point forces that are equivalent to the element stresses in the iteration
(it —1) . Knowing the following database:

Global database: 5ep(it) =95, " +A59p(it)

ep

Element database: 8, "; £, [Ki” 1)”T ; KU

ip
we can obtain .7':;(”) through the following steps:
1. From the displacement in the node of the element, Aﬁep(”) (element level) we can

obtain the displacement in the internal node, Gei(”) :

aei([t) _ 6ei(iz71) _ [th_l)iir (fe(:t_l) n Kii’_l),pAaft)p) (4.63)

2. From the vector of nodal point displacement we can obtain the vector of nodal
internal forces:

(i) (i)
o

ej

where B,G,G" are the matrices defined in the previous section and C is the matrix with
elastic properties.
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3. Once we have obtained the vector of nodal internal forces f in the current

. . . . «(it)
iteration it , we can obtain the vector of condensed forces f,  as:

f:(”) _ fe(it)p _K(eit)pith)ii_lfe(”)i (4.65)
thus,
nel
% (it) «(ir)
= A (60
e=1

. *(it)
Then, we calculate the residue AR Y as:

n

el

#(i) yynr A 1+ o+ A t+A = * (it
AR = Fext - f e = Fext_ ‘Ent (467)

e=1

AR

where A is the standard finite-element assembly operator and n,, is the number of finite

elements and f, are the external forces.

4. Solve for the nodal displacement increment:

«(it)

e NG, D 2 AR (4.68)
P

thus, we can update the nodal displacement :

. (it+1) -3

(i) (it+1)
e ep  TAD,

5. if HAR*”’)

< Tolerance—— Convergence is reached

6. if HAR*“’”

>Tolerance , it <—it+1 go to step 1.
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Load 4 iteration if
target point
t+ At
A}Q\(”)
\b +AtK (it)
AR D=0 A
FHAL g (1)
t
85,0 | as,,?
t 681; t+At 6@p displacernent>

Figure 4.16: Illustration of Newton-Raphson iteration.
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4.7 Algorithm for tracking the discontinuity
path

In Chapter 3, we saw how to determine the direction of the critical direction which can
be regarded as the discontinuity path (failure surface) at a local level (Gauss point).
However, it is necessary to determine the discontinuity path for the whole body based on
the information of the Gauss points. In the following sections we describe two algorithms
to obtain the discontinuity line £ (failure line) for the 2D case and the discontinuity
sutface S (failure surface) for the 3D case.

It is necessary to determine the discontinuity path because we need to know a priori the

domains B* and B~ (see to guarantee an appropriate kinematics, since the

numerical counterpart of the SDA requires a special function to approximate the
displacement field, as we outlined in section 4.4.2.

2D 3D

discontinuity lines discontinuity surface

IR

B=BuB"uB"? B=B UB"*

Figure 4.17: Discontinuity lines £ and £® in 2D case and discontinuity surface
S ina 3D case.

In the following sections we present two techniques used in this thesis to track the
discontinuity evolution:

*  Element-by-Element Tracking;

*  Opverall Tracking.
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4.7.1 Element-by-element tracking

2D Case

In this case the discontinuity line £ (which must be continuous) is composed of
segments £, defined in each finite element by the bifurcation analysis, thus we can define

L as:
L= U L, (4.69)
where N ; is the number of elements which are intersected by the discontinuity line £ at

time ¢. Thus we can define a sub set J as:

J={ecl23,..N, | B,cB,| (4.70)

By “continnons failure line” we mean a discontinuity path which is continuous across
element boundaries (see Figure 4.18(a)) and by “discontinnous failure line” we are referring to
the case illustrated in Figure 4.18(b), the same nomenclature will be used for the
discontinuity surface in the 3D case.

(a) Continuous failure line (b) Discontinuous failure line

Figure 4.18: Continuous/discontinuous failure line.
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Algorithm for determining the discontinuity line £

Before we apply this technique we need to know a priori the following data (see

.10

v' N, for all the finite elements of the domain;

v' An element must be chosen as a seed. This element (E°) can be chosen to be

the first one that bifurcates. Starting from this element the discontinuity line,

s .
crit >

L, , will spread in one of the critical directions N

V' dy- one of critical directions in the seed element E®;

v' P{ - point of departure of the track on a side of the seed element E*;

v" elements which have already bifurcated.

Point of departure

Figure 4.19: Element-by-element tracking — Initial data.

The algorithm is as follows:

1. Compute the point P for element e and identify the adjacent element

on the side where the point P’ is placed. In [Figure 4.19 |we have an

example where P? = P for the seed element E®;

2. Choose, based on some criterion, which direction will be taken for the

next element e, d{ or di®. This criterion, for instance, could be the
smaller angle between d“™ with d( and d!”. For example in

F(e=E*) _ F(2).
[Log] dees = G,
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3. Repeat the same process for the next element (e+1) until no more

adjacent elements are found, zZe. when the boundary of the domain is

reached (Figure 4.21).

Figure 4.20: Element-by-element tracking — propagating.

End of the track

Begin of the track

Figure 4.21: Element-by-element tracking.

At each time step we must calculate a new discontinuity line which can change or not,
depending on the satisfaction of the bifurcation criterion in some elements. Once
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bifurcation is reached for some element then the direction will not change anymore for that
element.

The tracking can start from any element inside of the body. It is not necessary for it to
be on the boundary as shown in the example above.

3D Case

The same strategy described above was implemented for the 3D case where a seed

clement E® serves as point of departure. Thus, we can define a plane &, and find the
intersections in the faces of the finite element. shows the possible intersections
between a plane and a regular hexahedron, these intersections serve as points to propagate
the track for the adjacent elements. Thus, the discontinuity surface S is compounded of
discontinuity segments S, , Ze.:

s={Js. 4.71)

Plane-Hexahedron

Plane-Tetrahedron

Figure 4.22: Possibilities of intersection between planes and regular hexahedron and
tetrahedrons.

In the 3D propagation of the discontinuity surface we have a front of planes which are
spreading in the domain. Starting from a parent element (seed element) we will form a
ramification of elements which contains the segments of the discontinuity surface S,. A

scheme of the methodology employed to define the discontinuity surface is shown in
Fioure 4.23
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o

legend

@ — parent element
— sibling element
@ —dead element

Figure 4.23: 3D propagation algorithm of the element-by-element tracking.

To define a plane we need a point and a normal to this plane or two lines in this plane.
But we have as input a line which was previously defined from the adjacent element and
the normal (from bifurcation analysis), thus we have a lot of choices to establish a new

plane. If we adopt the line 7, (see we cannot use the normal obtained by
bifurcation analysis, we are limited to a set of normals as shown in

Figure 4.24: Propagating of the discontinuity surface.

Another criterion could be to choose the normal obtained by bifurcation analysis and a

point in the line ¢, to define a new plane. In this case in Fioure 4.25 it is illustrated how
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difficult is to obtain a continuous failure surface using as an example two finite elements,
where the finite element e=1 has connectivities 1-2-4-5 and the finite element e=2 has
connectivities 2-3-4-5. Once the plane S, and the intersections in the faces of the finite
element e=1 are defined, we can build up a new plane in the adjacent element e=2

having as input the normal N® (from bifurcation analysis) to the plane S, and the point

C (Figure 4.25), then we could arrive to the following situation:

Nodes {1,5}e B* Nodes {5,2,3}e B*

e=1-> e=2—> 4.72
{Nodes 2,4}eB” {Nodes {4}eB” &7

We see that there exists an incompatibility with node number 2 which for element e=1

belongs to B~ and for element e=2 belongs to B”.

e - elements

S, - discontinuity surface of element i

N‘Si - Normal of Sl.

Figure 4.25: Propagating of the discontinuity surface.

Remark 4.2: The clement-by-element tracking strategy is quite simple, robust and
reliable when dealing with 2D problems with a single discontinuity line and it has
been successfully used in the past by Manzoli(1998), Oliver(1995a,b). Unfortunately,
for the three dimensional case, this methodology is not efficient. Using the Element-
by-Element Tracking the continuity of the discontinuity surface S (3D case) is too

difficult to achieve. []
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4.7.2 Overall tracking

A continuous failure surface is needed to establish a well conditioned problem. For this
purpose a new method has been proposed by Oliver ez a/. (2002) to obtain a continuous
failure surface. This idea starts from the principle that from the normal (N) obtained from
the bifurcation analysis a family of curves (Level curves) in the 2D case or a family of
surfaces (Level Surfaces) in 3D enveloping the propagation direction case can be
constructed. The following analogy with the heat conduction problem (heat conduction-like
problemss) to obtain that family of surfaces @ was presented in Oliver e /. (2002). This
methodology consists of the following steps:

" Trace at once all the possible discontinuity paths in the time ¢. Since, by

construction, at every point X of the discontinuity paths &;, such path has the
Therefore, the
construction of the envelops implicitly supplies all the possible discontinuity

surfaces at time ¢. In 2D case we can illustrate as shown in Figure 4.26 |where
three discontinuities lines, £,, £, and £, (je{l,2,3}) can be secen. These

envelops can be described by a function @O(X) whose /el contours

property that there exits a family of critical direction N

crit *

(D(X) =constant) define all the possible discontinuity surfaces as :

J

S ={xeB ; oX=07] 4.73)

for all the meaningful values of (D;ef ~and for all the material points, X, fulfilling
the propagation condition. In the following section a methodology for the
construction of such a family is provided were ®(X) stands for the temperature

field that is the solution of the stationary heat conduction problem and
therefore, S; are segments of the isothermal surfaces. In the context of a finite

element analysis, this algorithm returns the nodal temperature values @' .

* Jdentify the active discontinuity surfaces and their corresponding temperature
level. For every seed element it is considered a reference discontinuity path in a
seed point which belongs to the seed element. Consequently, the corresponding
temperature level is the temperature for this seed point:

®F = N, 4.74)
i=1

where n stands for all the number of nodes of the element (ze.: in 3D case

nodes

n=4 for linear tetrahedrons and n=8 for hexahedrons. Then, temperatures

CI);.ef j=L.n,; identify the corresponding discontinuity surface through

equations {4.73)
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Seed element §,

Discontinuity line

(b)

1 @Y -07)<0

Figure 4.26: Overall tracking of discontinuities.

* Determine the position of the discontinuity surface inside a given element. Once

the nodal temperatures @' and the discontinuity surface temperatures d);ef are

known, the position of §;, inside a given element e can be immediately
determined through the following algorithm (for 2D case see Figure 4.26)
Data:

Nodal temperature of the element : @'
Discontinuity surface temperature : @ ;ef

Acti :
ctions (4.75)

Determine the sides involving a change of sign of
(D' - (D;ef) at their vertices (sides crossed by §,).

For every of these sides compute the position of S;

through linear interpolation.
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Notice that no information from the neighbour element is required in the
preceding algorithm. This fact confers to the algorithm some interesting locality
character that can be exploited for implementation purposes.

4.7.2.1 Heat conduction-like problem

Let N(X,?) be a family of unit vectors, defined at every point in the domain B at a
given time ¢, determining the direction normal to the plane of propagation of the
discontinuity. Then let S(X,7) and T(X,?) be any couple of unit vector orthogonal to N,
so that:

S-N=T:-N=0 4.76)

thus defining the plane (tangent to them) of propagation of the discontinuity. The family of
surfaces, enveloping both vectors, § and T, can be described by a scalar (temperature like)
function ®(X) such that the isothermal surfaces:

Sj2={X€B ; CD(X)=CD’J'.ef} 4.77)

for all meaningful values of CD;ef are tangent at each point X eB to vectors S and T.
Therefore:

s vo-va-s=2_g
oS
in B 4.78)

T-vo-vo-T=% -
aT

Solutions of problem [4.78) lare also solutions of the following heat conduction problem:

vV-q=0 in B

q=-K¢ -VCI>:—SZC£—TZ(_1;:O in B
O(X) such that 4.79)

oD oo
‘0=(0-8)—+(-T)—=0 048
q-v=( )as+( )aT on Jgq

o= on 0,B
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where v is the outward normal to the boundary 0B and 0,8 and 0,B
(anUGCDB =0B), stand, respectively, for the parts of the boundary 6B where the

Neumann and Dirichlet conditions are prescribed. K¢ is an anisotropic conductivity
tensor and given by:

K°(S(X),T(X))=S®S+T®T

SI+T! SS,+T, T, SS;+T,T, (4.80)
K°(S(x),T(%))=|S,S, + T, T, S24+T7 S,S;+T,T,
S,S;+T,T; S,5;+T,T, S24+T7

4.7.2.2 Finite element formulation

The finite element discretization of problem [4.79)lis as follows:

Given a domain B discretized in n, finite elements and n nodes for each finite

nodes

element where the function ®(X) can be approximated by standard shape functions N, as:

CDe(x)=ZN,.(D,. (4.81)
i=1
The stiffness matrix reads
K¢ - [[VN] K [vN]or, 452
Be
thus
nel
K€ = l\ K¢ (4.83)
e=1

and the solution consists in solving the problem:

K D=0
. (4.84)

The temperature has to be prescribed, at least, at two points in order to obtain a
meaningful solution of equations The values of the prescribed temperatures are
irrelevant for the goal of the model, Oliver ez a/.(2002).
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Now the algorithm is applied to the case of a normal field N(X,?) oriented in the radial

direction of a cube (see with the origin at the vertex O. That normal field is
then:

x

x| 4.85)
T

N(X)={N1, N,, N3}

N(x) =

from which a couple of tangent vectors, § and T, can be immediately extracted as:

T

Se0={0. Ny, =N, (4.86)
Tx)={N,, 0, -N,}

In |[_3igure 4.27]21) the finite element mesh considered, consisting of 1489 tetrahedra, is
presented. In Figure 4.27(b) the isothermal surfaces are plotted together with the
prescribed temperatures. Notice that, as expected, the envelopes are spherical surfaces
centered at vertex O .
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0 | ._ /
T=1

)

a) Mesh b) Isothermal surface
Figure 4.27: Level surfaces (3D case).

Once the value of the function ® is obtained in the nodes and the value of the
reference temperature ®"Y known, we are able to determine which nodes are in domain
B~ and which in domain B™. Thus the node i will be in B* if:

Q' - >0 (4.87)

otherwise the node i will bein B~.

VO //N

Figure 4.28: Isothermal surface in a tetrahedral finite element.
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4.7.3 Flowchart of the coupled problem

Figure 4.29 |shows the strategy for the entire analysis of the mechanical problem. The

first phase of the process requires mechanical analysis and the second requires thermal-like
analysis.

‘ Input database

v

Load increment
it = 0 (it-iteration)

TRACKING

With @"% and ®" obtain the continuous
failure surface(3D)/line(2D)

\i

MECHANICAL
PROBLEM

Obtain the critical values: N

crit
for each element

it =i+l

1) node

Y

t = t+At

Yes

AR > tolerance?

crit

THERMAL-LIKE
PROBLEM

Obrtain the value ®"% in cach node

Yes

New load increment?

Figure 4.29: Flowchart of coupled problem.
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4.7.4 Some examples of the failure surface

In this section we show some examples to describe the efficiency of the method used in
this thesis to obtain a continuous failure surface.

4.7.4.1 Anchorage structure

This example was simulated numerically by Rots(1998) and de Borst (1986) using 2D
axi-symmetric finite elements. The geometry used is shown in Figure 4.30]and Figure 4.31|
The structure consists of a steel plate embedded in a massive concrete block. The plate is
pulled on of the concrete by a vertical load F which is applied via a anchor bolt.

The material parameters taken were E =30000 N /mm*, Poisson’s ratio v = 0.2 , tensile

strength ., =2.5N/mm® and fracture energy G, =0.1N/mm. An exponential softening
law was used. The 3D discretized mesh has 12029 tetrahedrons and 2980 nodes.

shows the continuous failure surface which was obtained using the Overall Tracking
strategy.

Anchor bolt F f

Figure 4.30: Detail of the anchorage structure.
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Figure 4.31: Detail of the anchorage structure — dimensions in mm .

Figure 4.32: Continuous failure surface for the anchorage structure.
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4.7.4.2 Double-notched shear beam

This test was performed by Bocca ez a/ (1990). The geometrical features and boundary
conditions are shown in The mechanical properties are: E =27000MPa,

Poisson’s ratio v=0.18, tensile strength f,, =2.0 N/mm®> and fracture energy

G, =100N/m. shows the normal vector field, and so does the [Figure 4.35 [but

only the elements intersected by the discontinuity surfaces are considered. One must notice
. . Q)
that for the elements intersected by the surface S the normal points toward B* and

for the elements intersected by surface 8» the normal points toward B R @
) we show part of the beam without the elements intersected by the discontinuity
surfaces so that it can compared with the crack pattern obtained by Bocca ez a/. (1990) (see

[Figure 4.36[a).
l F

Figure 4.33: Four point shear specimen (dimensions in cm).
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Figure 4.35: Elements intersected by failure surfaces.
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(a) Bocca ez al. (1990)

continuous failure surfaces

5+0

©

Figure 4.36: Four point shear specimen — initial failure surface.



140 A THREE DIMENSIONAL SETTING FOR STRONG DISCONTINUITIES MODELLING IN FAILURE MECHANICS

4.7.4.3 Torsion problem

This example consist of the propagation of the crack in a hollow cylindrical pipe which
is loaded by torsional moments at its ends. The pipe has a length of 63 mm and inner and
outer radii of 8 and 12mm, respectively. In this example the material properties considered

are: E=2.88x10", v=0.18, G,=10 and f, =2.8x 10° and the 3D discretized mesh has
5670 tetrahedrons. Figure 4.38 [shows the continuous failure surface.

torsional moments

Figure 4.37: Crack pattern for a hollow cylindrical pipe loaded by torsional moment.

Figure 4.38: Torsion problem — failure surface.
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4.7.4.4 Brazilian test

Tensile strength of a material is a measure of its ability to resist uniaxial tensile loads
without yielding or fracture. A direct-pull test is difficult to apply to rocks and in many
cases some type of indirect test is employed to determine tensile strength.

A concrete cylinder of length L =300mm with diameter D =150mm , as shown in
subjected to a line spread load. Material properties are specified as: compressive

strength  f, =32MPa, Young’s modulus E =32.4GPa, and Poisson’s ratio v=0.2,
Fracture energy G, =115N /m . The Brazilian Test is often used to predict the direct tensile

strength of concrete as given by f,, =2P,, /7LD .

Figure 4.40(a) shows the family of surfaces normal to the principal direction and
401

40(a) shows the plane formed by one of the elements of this family of surfaces.

\*

a) family of critical direction (plane x-y) b) initial failure surface

Figure 4.40: Brazilian test.






Representative
Numerical Simulations

“You do ill if you praise, but worse if you censure,
what you do not understand.”
Leonardo da Vinci i

(1452-1519)

5.1 Introduction

In this chapter some examples to illustrate the effectiveness of the method described
in the previous chapters are presented. All the examples described here were simulated
using the Strong Discontinuity Approach together with a damage model to represent the
non-linear behavior of the material.

5.1.1 Tools

An ordinary FEM analysis tool consists of three parts (a): pre-process (eg mesh
generator), main-process (z.e. FEM-code), and post-process (eg. visualizer, etc). The pre-

process and post-process were performed in the program GID, which was developed in
CIMNE-UPC.

All the implementations in this thesis were done in COMET (Coupled Mechanical and
Thermal Analysis) [Cervera ez a/.(2001)] developed in CIMNE-UPC. It is a non-linear finite
element program which offers the following tools:

* Initial stiffness, full Newton-Raphson and modified Newton-Raphson methods for
solving the nonlinear problem;

= Line search;
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= Convergence accelerators: Secant-Newton (1 or 2 parameters), and BEGS;
=  Arc-length and displacement control;
* Automatic load incrementation.
Other particular features are:
* The integration may be performed by Gauss, Lobatto or Irons rules;

" The system of linear equations can be solved by a Direct solver (using a Skyline,
Banded or Sparse storage scheme), by Preconditioned conjugated gradient
iterative solver, or by GMRES iterative solver.

5.2 The importance of the exact capture of the
bifurcation pseudo-time

As seen in Chapter 3, for a given stress state, the critical values of the normal N_,, and

crit

of the hardening modulus H

i can be obtained through bifurcation analysis. The
bifurcation analysis, within the context of the finite element method, is performed at the
gauss point level and has a local character, ze., the bifurcation analysis does not give us

information about the propagation of the fissure on a global level.

With regard to propagation, the methodology employed in the numerical model
considered in this thesis is such that, when the bifurcation condition is reached, the critical
angle is frozen at the element level. Thus, the importance of an accurate determination of
the critical angle is clear. A significantly biased critical angle can be computed if the steps

used in the loading process are too big (see .

o Adopted bifurcation point

&

O Load steps

® Exact bifurcation point

\J

Figure 5.1: stress-strain — load steps.
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To illustrate this problem, consider a two-dimensional example (a biaxial test), which

has two loading stages (see . In this example the isotropic damage model
described in Chapter 2 was adopted, where N=m=¢€ .

1st STAGE OF LOAD 2nd STAGE OF LOAD
A \ 3
0.5 3
v 1 9 1 2 :
\ L §2
1.0 1.0
4—% P

Figure 5.2: Biaxial test.

In the second loading stage, when the bifurcation condition is reached, the strain state

is schematically shown in and the state of the variables of the damage model is
d =0.0466785267 and r=0.007417250882366 . Using equation (3.118), one can obtain the
value of the critical angle:

tan’@,, =—2 = 6,,=31.196° G.1)

)

N =

g, =5.45454545%107°
g, =-2.0x10"

Moht’s circle in strain

Figure 5.3: Strain state of the biaxial case.
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We can sketch this specific strain state in the Moht’s circle (see Figure 5.4). In the
same figure we have plotted the localization ellipse for different values of N(6) to show

that, for this specific strain state, H

crit

corresponds to the most external localization ellipse.

Consider now the same example but with a different discretization of the loading
process (pseudo-time discretization), which is more refined than the previous one. For this
case, the first point when the bifurcation condition is reached, is characterized by the

following strain state: &, =4.583090909x107°, &, =-2.0x10"

variables being d =4.44523x107
obtain the critical angle as:

with the damage model

b

r=0.0070713821220752 . At this strain state we can

b

tan’0 . =—-"2 = 0

crit

o = 33.4486° (5.2)
In [Figure 5.5|the standardized acoustic tensor ‘Q‘ / ‘Qe‘ is shown in terms of the normal
direction N(0). In the strain Morh’s circle and its correspondent localization

ellipses are constructed for the two discretizations of the loading process just considered.
One can notice that there exists a difference of more than 2° for the critical angle between
them.

6,0E-05 - g

H(0=0.766rad)

Hd (N = Ncrit)
H

0., =31.196°

crit

Figure 5.4: Moht’s circle and ellipse of localization.
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0,80 4
0,70 4
0,60 4
0,50 4
0,40
0,30
0,20

0,10 4

0,00

Figure 5.5: Localization properties of isotropic damage model.

16.0E-05 -

|
ellipse with exact bifutcation

Moht’s circles

ellipse with delayed bifurcation

0., =33.45°

crit

Figure 5.6: Mohr’s circle and localization ellipse.

Now consider the following example whose geometry and finite element mesh are
shown in Force F is applied as indicated in the same figure. We do not provide
material data because this example is only illustrative. We used the same geometry and
finite element mesh with different strategies for simulating the loading process. In
a) and (b) we are applying displacement control.
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148
|
| {
£
/ £,
/
/
|
{
|
/
F F :
(a) big steps (b) small steps

Figure 5.7: Discontinuity lines with distinct strategies.

As described in Chapter 4, on the basis of the Gauss points information we can
“track” the discontinuity line £ . This “tracking” of the discontinuity line can change from
step to step in the loading process. However, once the bifurcation criterion is satisfied in
some element, this line does not change anymore for that element. Using the different
loading strategies, described before, one can obtain distinct discontinuity lines as shown in
The corresponding force »s. displacement curves are shown in Based
on those figures, we can conclude that the resulting tracked line may be very sensitive to
the discretization of the loading process adopted, due to the fact that an inaccurate
capturing of the bifurcation pseudo-time can lead to non negligible errors in the global

response.

F

0.0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 8

Figure 5.8: Force vs. displacement curve.
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5.3 Tension test

5.3.1 Tension bar

In this example the bar of in a uniaxial tension process, is analyzed to
assess the mesh dependence of the results. A linear softening law was used. The geo
the boundary conditions and the material properties of the tension bar are given in

metry,
Where E stands for the Young’s modulus, v stands for the Poisson’s ratio, f,, stands
for the elastic strength and G, represents the fracture energy. The two meshes of

tetrahedral finite elements, shown in were considered: a mesh of 267 elements
(mesh 1) and a much finer mesh of 1137 elements (mesh 2). A mesh of hexahedral finite

element (brick) with 132 elements (mesh 3) was also used (see [Figure 5.11).
In |Figure 5.12|the load-displacement curves obtained for both meshes are presented.

It can be checked that the results are the same (indistinguishable in the plots), this showing
the mesh size objectivity of the results.

E=20000
v=0.0

f., =10
G,=0.18

Figure 5.9: Tension bar.
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Mesh 1

Figure 5.10: Meshes and localization bands (displacement contours) for the tension bar
problem.
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Mesh 3 S

(a) Localization band (b) Mesh without fractured elements
with discontinuity surface S .

Figure 5.11: Meshes and localization bands for the tension bar problem with hexahedrons.

600.00 -
500.00 -
Mesh 1
g 400.00 — ~Mesh2
1.
K] — - —Mesh 3
§ 300.00
=
[$]
©
& 200.00 -
100.00
0-00 T T T T 1
0.00 0.10 0.20 0.30 0.40 0.50

displacement

Figure 5.12: Load-displacement diagram for tension bar problem.

Figure 5.13: The propagation of vector fields.
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5.4 Three-point bending test

The classical three-point bending test reported by Petersson (1981) is now simulated.
This test was employed in 1985 to determine the fracture energy of concrete. It is now
accepted as RILEM recommendation. It deals with mode I fracture of non-reinforced
concrete. The size of the specimens and the testing method are described in as
well as the characterization of the concrete by the following parameters: fracture energy -
G, , tensile strength - f,,, Young’s modulus - £, Poisson’s ratio -v. The density of the

concrete was assumed to be p,,,. =2300kg/m’.

The experiments data were taken from Rots ef a/. (1985). The numerical solution was
obtained by displacement control. Two different meshes were used to obtain the load-
displacement response, details of the two meshes can be seen in Mesh 1 with
1373 elements can be seen in |lEigure 5.16] where its deformation is shown, and mesh 2,
with 2247 elements, in Figure 5.17| Figure 5.18|shows the load-displacement curves for
both meshes.

For each mesh the linear and the exponential softening law (see were
used, the latter showing a better agreement with the experimental curve in the softening
branch. One can note that the peak load is very sensitive to the softening law used. Thus,
it seems clear that a better agreement would be obtained with an alternative type of
softening law.

Data, Rots(1985):

E =30000N / mm*
v=0.20

f. =333N/mm*
G, =124N /m

S =2000mm
b=50mm

W =200mm

Figure 5.14: Three point notched beam.
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0.8 cm

2cm

a) mesh 1 b) mesh 2

Figure 5.15: Three point notched beam - details.

L

Wil
v
“&.ﬂl{.‘&?{l‘

2N

Figure 5.16: Deflection — mesh 1.

Figure 5.17: Deflection — mesh 2.
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Reaction force (N)

1200.0 -
Mesh1 - Linear softening
1000.0 | —=— Mesh1 - Exponential softening
Mesh2 - Linear softening
—e— Mesh2 - Exponential softening
800.0 -
] Experimental data, Rots et al.(1985)
600.0 4
400.0 -
200.0 -
0.0 ‘ ‘ ‘ ‘

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
displacement (cm) - §

Figure 5.18: Load-displacement diagram for three point notched beam.
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5.4.1 Notched bar in tension

In this test, the mode I fracture simulation of a notched specimen is undertaken by
using a continuum damage model considering a tension-only damage criterion and
exponential softening. shows the geometry and the considered finite element
mesh. The following material parameters are adopted: fracture energy -G, =100.0N /m,

tensile strength - f,, =3.0N/mm*, Young’s modulus - E =3.0x10* N/ mm* | Poisson’s ratio
-v=0.2. The mesh is completely unstructured, non symmetric and slightly refined in the

zone where the discontinuity is expected to appear. For comparison purposes, we also used
a more structured mesh, as shown in On the other hand, Figure 5.21]shows
the force us. displacement curve for both meshes, whereas Figure 5.22 shows the deformed

mesh at the end of the analysis, where the localization of the strain field along the band of
elements capturing the discontinuity can be observed.

9°
) a.
AK

Figure 5.19: Geometry and mesh 1 (dimensions in millimeters- mm ).

Mesh 1
VA
1
‘ 457
[

273

=

=76 =<108=}<

Mesh 2

Y

A .

Figure 5.20: Mesh 2 and localization zone.

457
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Reaction force

8000.0 -

6000.0 - —— Mesh 2

5000.0 -

4000.0 -

3000.0 -

2000.0 -

1000.0 -

0-0 T T T 1
0.000 0.005 0.010 0.015 0.020

displacement

Figure 5.21: Load-displacement diagram for tension bar problem.

Figure 5.22: Deformation (amplified 5000 times).
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5.5 Direct tension

This series of experiments, double-edge notched, were considered in Reinhardt ez al.
(1986), Hordijk ez al. (1987) and Rots (1988). Hordijk(1991), using a different value for L,
has also analyzed it for lightweight concrete.

The geometry and used mesh can be seen in The discretization consists of
8421 tetrahedral finite elements.

The material data adopted for concrete are: Young’s modulus, £ =18000 N/ mm?*;
Poisson’s ratio, v=02; tensile strength, f, =3.4N/mm’, and fracture energy
G, =593J/ m®. These data are in accordance with Reinhardt e a/ (1986), Hordijk et al.
(1987) and Rots (1988).

another material
more rigid

loading pl
oading plate +
5
(=3
roE
S
loading plate
v y
A, | z
= 60 — =50 —

Figure 5.23: Double-notched specimen (dimensions in millimeters- mm ).

This example can lead to two solutions: in one of them the crack propagations is
symmetric and in the other the crack propagates from one side of the specimen to the
other side.

In |[Figure 5.24|we can observe that anti symmetric possible crack paths are tracked

based on the information obtained from the material bifurcation analysis and using an
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overall tracking strategy. As loading progresses, the two crack paths tend to become one
single crack path. This example is very sensitive to the boundary conditions and, thus, in
practice this symmetry can be broken by material imperfections and the loading velocity.
As a consequence, a global bifurcation analysis of the structure might be necessary.

For the sake of simplicity, we consider that the critical direction coincides with the
stresses principal direction. shows the family of envelopes of the vector field
corresponding to the normal to the first principal direction, which is used to track the crack
surfaces in the remaining of this section.

Figure 5.24: Continuous failure surfaces.

Figure 5.25: Family of envelopes of the principal direction.

In this example three different cases have been analyzed: A, B and C (see [Figure 5.26).
All cases were run under load control first. Then, an arc-length scheme was used to
compute the response beyond the peak load. The controlled point is the center point, see
Figure 5.26
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In case A we have restricted the displacement in the z direction for three points as shown

in m In this case the damping-like parameter considered was 1 =0.005Ns/cm” .

Case A Case B Case C

controled point

1 =0.005Ns / cm’® N =0.005Ns/cm’ N =0.5Ns/cm’

Figure 5.26: Failure material discontinuity.
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-

v

5.5.1 Results for Case A

For this case the force 5. displacement curve is shown in [Figure 5.27| In [Figure 5.28|
we can see the deformation corresponding to points Al, A2, A3 and A4 signaled in Eig}re |

9000 -
8000 -
7000 - A2
6000 -
5000 -
4000 - A3
3000 -+
2000 -
1000 -
0 ‘ ‘ ‘ ‘ ‘
0.00 0.01 0.02 0.03 0.04 0.05

Force (N)

A4

Displacement average (mm)

Figure 5.27: Force vs. displacement — Case A.

A3 A4

Figure 5.28: Deformation (scalar factor: 900) — Case A.
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5.5.2 Results for Case B

For this case the force 5. displacement curve is shown in Figure 5.29] In [Figure 5.30)
we can see the deformations corresponding to points B1, B2, B3, B4, B5 and B6 signaled

in Figure 5.29]

9000 -
8000 -
7000 - B2
6000 -
5000 -
4000 -
3000 -
2000 - B4

1000 B> B6

0 T T T 1
0.00 0.02 0.04 0.06 0.08

B1

B3

Force (N)

Displacement average (mm)

Figure 5.29: Force 5. displacement — Case B.

Figure 5.30: Deformation (scalar factor: 200) — Case B.
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5.5.3 Results for Case C

For this case the force 5. displacement curve is shown in [Figure 5.31] In [Figure 5.32|
we can see the deformations corresponding to points B1, B2, B3, B4, B5 and B6 indicated

in [Figure 5.31

9000 -

Force (N)

O T T T 1
0.00 0.02 0.04 0.06 0.08

Displacement average (mm)

Figure 5.31: Force vs. displacement — Case C.

Figure 5.32: Deformation (scalar factor: 400) — Case C.
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In [Figure 5.33|we have the force »s. displacement curves for the three cases analyzed

before.

9000 -

Force (N)

0 T T T 1
0.00 0.02 0.04 0.06 0.08

Displacement average (mm)

Figure 5.33: Force vs. displacement — Case C.
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5.6 Four-point bending test

5.6.1 Single-notched shear beam

The specimen used is made of plain concrete. The testing apparatus is shown in
Originally it was proposed by Arrea & Ingraffea(1982). Among the authors that have
analyzed this test we can mention: Bhattacharjee&Léger (1994), Bocca e al. (1991), Rots et
al.(1985), Wells(2001), Carpinteri (1993), who was trying to extend the cohesive crack
model to a mixed mode propagation.

The constraints and the loading conditions are non-symmetric with respect to the

notch. The experimental failure surface is shown in

Figure 5.35: Crack pattern, Bocca e a/. (1990).
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The mesh and geometry is shown in

lp

22.4

30.6

8.2 i

i 14 Il
203 | 39.7 53.7 L 203
‘ 134 ‘

N

Figure 5.36: Single-notched shear beam — geometry (centimeter- cm ) .

5.6.1.1 Case A

In this case the mesh is non-structured as shown in Figure 5.36] We have used
n=0.5Ns/cm’ as damping-like parameter. Ei.gm_ej_ﬁllshows the family of envelopes of
the propagation directions. In Fioure 5.38 [we can see the part of the beam where the

continuous failure surface is shown, as well as the localized finite elements and in
b.39|we have detail of the mesh without fractured elements with discontinuity surface. In
Ficure 5.40 [we can see the deformation of the beam. shows the force v
displacement curve.
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Figure 5.37: Family of envelopes of the critical direction.

a) fractured elements a) continuous failure surface

Figure 5.38: Geometry.
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NWAWAWAN

Figure 5.39: Mesh without fractured elements with discontinuity surface S.

Figure 5.40: Deformation — Case A.

180 -
601 e

: —CaSe A
140 w
120
w0 L N

80

Force (kN)

60

40

20 A

i

|

|

| ]

| |

| |

| |

| |

| |

| |

| |

| |

| |

t T t 1
0.000 0.005 0.010 0.015 0.020

Discplacement (mm)

Figure 5.41: Force ss. displacement — Case A.
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5.6.1.2 Case B

In this case, based on the a priori knowledge of the possible discontinuity surface
obtained by the material bifurcation analysis plus an overall tracking algorithm, we have
adopted a more structured mesh in the localization domain as show in and
Figure 5.43

('4:

Figure 5.42: Mesh for the case B.

Figure 5.43: Tetrahedral finite element mesh.

This time we have used three different values for the damping-like parameter. For case
B1 we have applied n=0.5Ns/cm’, for B2 we have used n=02Ns/cm’, and for B3

N =0.01Ns/cm’ . The deformation can be visualized in m We can see the force

vs. displacement curves of the three cases in
Figure 5.46|plots the first case and one of the sub-cases analyzed above: case A and

case B3. One must notice that some discrepancy exists due to the fact that in case A we
should use 2 much finer discretization to obtain the same situation as in case B
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Figure 5.44: Deformation.
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Figure 5.45: Deformation.
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Figure 5.46: Force vs. displacement case A and Case B3.
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Taking the case B3 as example, Figure 5.47 |shows the evolution of the deformation and the
evolution of the bifurcated elements (the blue color means bifurcated in failure elements).

In|Figure 5.48the corresponding points in the force #s. displacement curve are shown.

Figure 5.47: Evolution of the bifurcated elements - Case B3.
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160 -
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Figure 5.48: Force 5. displacement - Case B3.



Conclusions and
Recommendations for

Further Work

6.1 Summary and conclusions of the research
developed

In this thesis an analytical and a numerical model to simulate the phenomenon of strain
localization have been developed in the ambit of Continuum Mechanics using the Strong
Discontinuity Approach. This has been done in the context of an elastic-degradable
medium (zz. Continuum Damage Model), assuming the isothermal quasi-static regime and
small deformations and rotations. Furthermore, a material described as homogeneous and
isotropic has been considered. We can add the following considerations:

* The behavior of the material is described throughout continuum constitutive
equations in rates. Localization starts when strong ellipticity is lost, signaled by
the singularity of the acoustic tensor (weak discontinuity). In this point, a
variable bandwidth model begins. It is responsible for the transition from weak
discontinuity to strong discontinuity.

* This theory is based on the Assumed Enhanced Strain Method (Simo&Rifai
1990) since an enriched term appears in the strain field.
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* A material bifurcation analysis was required to obtain the critical values, viz. the

critical hardening/softening parameter and the critical angle. This information is
needed for the constitutive model and for the tracking algorithms.

" Two types of tracking algorithms were implemented: Element-element tracking

and the Level curves/sutrface of the critical angle. The latter has shown to be
very efficient. As mentioned above, the necessary parameters to trace the
continuous discontinuity line/surface are obtained from a bifurcation analysis.

* The strong discontinuity approach has proven to be very efficient to simulate

brittle materials with discontinuities. This technique has the advantage of not
needing the use of any remeshing technique (2zz. it is mesh-independent) or of
other artifices like introducing a material length scale to avoid stress locking.

* A static condensation was implemented to reduce the number of degrees of

freedom resulting in a smaller system of equilibrium equations.

6.2 Main contributions

Based on the above mentioned concepts, the main contributions made in the present

work are:

v' Extension of the two-dimensional Strong Discontinuity Approach to the general
three-dimensional nonlinear problem using a Continuum Damage Model.

V' An extensive study of material bifurcation analysis from which an explicit formula
to obtain critical values is derived. By using this formula, critical values for several
constitutive models are obtained too. The graphic representation of the acoustic
tensor as well as of the representative critical values is presented for those models.

v' Extension of the variable bandwidth model (VBM) with pre-established law to a
new model named automatic VBM, for which we do not need to know the length
of the transition from weak discontinuity regime to the strong discontinuity regime
a priori.

4

An extension of the 2D tracking based on a heat-conduction-like BVP developed
in Samaniego (2003) to 3D settings. This technology is essential to obtain
consistent numerical results in the 3D case.
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6.3 Future research lines

Starting from the studies carried out in this work, we propose the following future
developments aiming at the extension and deepening of some aspects that still remain

open:

Extension to finite deformation to attain a material response more realistic in
cases where the infinitesimal theory is not appropriated.

Application of the 3D formulation to reinforced concrete, because, although
simplified analyses that use either beam elements or two-dimensional finite
elements are quite useful, only three-dimensional analyses can fully represent all
the aspects of the response of the concrete structure when a realistic constitutive
model is used.

Extension to other constitutive equations able to describe more complex
material behavior and dependent of the velocity of load.

Extension of the 3D model implemented in this work for managing several
cracks simultaneously.

Experimental and theoretical study of the instabilities appearing in certain
examples.

Introduce the study of structural bifurcation in the investigation of the material
non-linearity.






Notation

A.1 Symbolic notation of tensors

Boldface characters are used to denote vectors and tensors. Thus, a vector expressed in
a Cartesian coordinate system in the three-dimensional Euclidean space (see is
denoted by:

P=Pe, (A1)
Further, the expression of a second order tensor is the following:
U=Uy.él. ®éj (A.2)
where ® is the “open product” symbol and 7, j=1,2,3.

The divergence of vector P is denoted by V P and reads:

V.Pzapi=@+@+% (AS)
Oox;, Ox; Ox, Ox,

1

where i is a dummy index (Einstein convention is used).
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Figure A.1: Vector in Cartesian system.

A.2 Identity tensors

e 2™ order identity tensor
1=5,e, ®e€,; (A4)

)

where §; is the so-called Kronecker delta symbol, defined as:

1 if i=j
5, = (A5
0 if i=j
e 4" order identity tensor T
Ty =08,8,€ 0e 0e 0, (A.6)
Its symmetric part is defined as
I=Xx>" (A7)
The components of tensor I are
1
I e :E(Siksjf +6M8jk) (A.8)

The Kronecker Delta is often called a substitution operator for the following property:
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8,V =V, (A.9)

/A1 J
Finally, noting that the dot product €, €, is 1 if i=; and 0 if i # j, then matching the

components of §,, we can write

ij >

e e =3, (A.10)

A.3 Matrix notation

We will use the same notation for matrices as for tensors. However, for the former we
will not use connective symbols to denote products, for example:

Tensor Notation Matrix Notation

(A.11)

product

Dot

XX xTx

All first order matrices will be denoted by lower case boldface letters such as v,
where:

T

v :{Vl9 Voo Vs} (A.12)

Usually rectangular matrices will be denoted by upper case boldface letters, such as A
or B, wherte :

A:|:A11 A12:| B=|:B11 B12 B13:| (A 13)
AZI A22 BZI B22 B23 '

A.4 Coordinate transformation

The actual numerical values of the components of a tensor do depend on the coordinate
system. If one changes the coordinate system, for example, rotates it, then the components
of a tensor will change. Consider the coordinate system (x,,x,,x;) represented by its

Versors (él,éz,é3), see In this system an arbitrary vector v, can be

represented by its components:

v=v,e +v,e, +v,e, (A.14)
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Figure A.2: Coordinate system.

It is common to express a vector by its components, Ze., with the following format:

V=1V, (A.15)

Consider now a new orthogonal coordinate system (x],x},x}), represented by its

versors (@',e),@%) as shown in [Figure A.2] The vectors and tensors represent physical
1,€2,€; g p phy

properties that do not change with the coordinate system but its components change, thus
the components of the vector v in this new system is given by:

\4 cos(x],x,) cos(x],x,) cos(xl,x;)|[v,
vh t=|cos(xy,x;) cos(xy,x,) cos(x),x;)[{v,
; ) ; ; (A.16)
VY cos(xj,x;) cos(x},x,) cos(x,x;) || v,
v=A-v

where A is the coordinate transformation matrix, which is, in general, non symmetric

A = AT . Tt will be represented by its components as:
P y P
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A=la, ay, ay (A17)

dz 4z dzg

When we deal with an orthogonal system, we can say that: A~ = A" = AA" =1, and as a
consequence:

v=AT -v' (A18)

In a general form the coordinate transformation of the tensor components of first,
second, third and fourth order are given, respectively, by:

'_
Sj—a[ij

Sl =a,a.,S
ij ik ™ jI~ kI
S =a,a.a,sS (A-19)
ik =y fn

jm Imn

4 p—
Sijkl - aimajnakpalq Smnpq

Consider now that we have a third coordinate system (x,x7,x7) and that the
coordinate system transformation from the system (x/,x},x}) to the system (x/,x7,x!) is
given by:

v'=B-v' (A.20)

Schematically the coordinate system transformation between this three systems is shown in
Figure A.3

X!

AT

Figure A.3: Coordinate system transformation.
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A.5 Elasticity

For many materials like metals, ceramics, concrete, etc., the hypotheses of isotropy and
linearity are good enough for many engineering purposes. Then the classical Hooke’s law
of elasticity applies. A material in the elastic regime does not present dissipative
mechanisms.

In the case of completely isotropic elastic responses, the constitutive tensor C° depends
on two parameters characteristic of each material: the Young’s modulus £ and the Poisson’s

ratio v. C° can be defined in terms of the Lamé’s parameters, A, [, as:

C* =2ul+1(1®1)
) . (A.21)
C = (5,8, +8,8,)+28,8,  irjkile{l23)
The inverse reads:
-1 1 A
c =—I1-—— " (1®1
2 2u(37»+2u)( ) (A.22)
or
C = K1®1+2u[11—;1®1} (A.23)

where the Kronecker’s delta and the unity tensor of fourth order are, respectively, given by
equations [A.4) and (A.8)]

Relations between the Lamé’s parameters (A, u), the Young’s modulus £ , the Poisson’s

ratio v are given as:

X:L . HZL (A24)
(1+v)i-2v) ~’ 2(1+v) '

and their physical interpretation is illustrated in

A
Xy
x,A x 4 — o), :

- - - P
BT Gy l Y
Po

X3

" p A £, - volumetric strain
p = pressure

g, =1r(e)=¢,

1
1 N =—0Gy
1 F 3 Ok

- > -
£y € €,

a) b) ©)

Figure A.4: Simple test: a) Tension; b) Shear; c) Hydrostatic compression.
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In the case of linear elasticity, with no initial stresses or strains, these relations are
described as

o=C°:¢ (A.25)

where C° is the elasticity tensor characterizing the material’s properties.

A.5.1 Elastic acoustic tensor

Another important tensor in elasticity is the elastic acoustic tensor Q°(N) defined as:

S (N)=N,C;,,N, =(A NN J,
Qe(N)zN-Ce-N:{Qﬂ( ) =N, CuNy ( +H) N+ 10, (A.26)
Q° N)=p1+(A +u)N®N
And the inverse:
-1 (h+p)
& ==&, - NN
& u{ ") ’}
(A.27)
Q" =1[1— 0.+ 1) N®N}
ul (h+2w)
or in terms of E,v
214 v) 1
= 1- N®N .
Q E [ 2(1-v) } (A.28)
The determinant of the acoustic tensor Q¢ in three dimensions is:
Q| =p?(h+2n) (A.29)
and in two dimensions(2D):
Q| =n(r+2u) (A.30)
To obtain the eigenvalues of Q°, it is necessary to compute the determinant:
[(7‘+H)N1N1 +lvl]_§ (7‘+H)N1N2 (h+ 1NN,
(A +p)N|N, [0+ NN, +p]—¢ (L + p)N,N, =0 (A.31)
(A + 1NN, (A +1)N,N, [(7‘+H)N3N3 "‘H]_G

This gives the characteristic equation — a third grade polynomial in ¢ .

Using the property N7 +Nj +N3 =1, one can obtain the following eigenvalues:
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u
u (A32)
(. +2p)

The presence of negative or null roots represent an instability for small perturbations.
The necessary and sufficient conditions for the strong ellipticity condition to hold is:

>0, A+2u>0 (A.33)

If the condition of strong ellipticity is violated, the material will exhibit an instability
associated with the formation of a non homogeneous deformation band.

The inequality {A.33) fcan be expressed in the following way:

{E>0
E v>-1
pn= >0=> (A.34)
2(1+v) E<0
v<—1
and
1-v) v<0.5
A+2u=2 >0=> A.35
=0 {v>1 (A.39)

We can summarize that, in order to satisfy the strong ellipticity conditions, it is necessary to
satisfy one of the following propositions:

E>0=vc -1;05[0]1;0]
(A.36)
E<0:>VC]—00;—1[

For physical reasons the bulk modulus () (Truesdell&Noll — 1965) has to be positive. The

point to point stability condition will be guaranteed by:

n>0
E (A.37)

k=h+lu=——L 59
73022y

For an isotropic lineal elastic material the condition for the strain energy to be positive
definite is satisfied when:

E>0 ; -1<v<05 (A.38)

Remark A.1:
* C° is pointwise stable if and only if:

3X+2u>0

>0 and
H 3

» C° is strongly elliptic if and only if:
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u>0 , A+2u>0 [

A.5.2 Two-dimensional case

When structural calculations are performed under the approximation of plane stress or
plane strain, it is convenient to write these conditions in the constitutive equation:
=  Plane stress (63 =63 =0,; =0):
=  Plane strain (53 =&,; =€,; =0):
We can redefine some important tensors as:

= The elastic constitutive tensot:

Ce=2ul+2(1®1) (A.39)

=  The Elastic Acoustic Tensor:

Q*N)=p1+(L+p)N®N (A.40)

where

o) —Plane Strain
A= 2Au

. (A.41)
(A +2p)

— Plane Stress

A.6 Voigt-matrix representation

For implementation in a Finite element code, we usually use the Voigt notation. Voigt
notation usually refers to the procedure of writing a symmetric tensor in column matrix
form(vector).

Using the Voigt matrix representation for the stress tensor @ and the strain tensor € the
stress vector {0} and strain vector {€} obtained can be written as:

O Oy
S5) O,
611 G2 Oy - .
_ Voigt { }_ 33| _ Xy
0;=|0C1y Oy Oy |—— NOf= = (A.42)
G P
Gi3 Oy Oz
Gi3 Xz
G3 ¥z




184 A THREE DIMENSIONAL SETTING FOR STRONG DISCONTINUITIES MODELLING IN FAILURE MECHANICS

€ €y

€ €y

€1 & & c
€ =|€, €, € Voigl g} = &3 | _ )5 A.43
i =€ &2 23—)_28 "1y (A.43)

12 X

€3 &3 &3 2 v

13 Xz

2¢,, "

It is easy to verify that an increment in energy is given by:

de: o = {de}’ {o} (A.44)

The stiffness tensor Cj;;, has 81 elements which, because of the symmetries in the

stiffness tensor and thermodynamic considerations, reduce to 21 independent elastic
parameters. The stiffness tensor then is written as a second-order symmetric Voigt matrix:

CZH Voigt matrix C,fm = Ce (A45)

These 21 independent parameters can be further reduced. In the case of isotropy, for
example, there are only two independent elastic parameters.

Thus we can represent the generalized Hook’s law as:

C = (Ce ‘£ Voigt matrix {0.}: Ce {8} (A46)

The traction vector in the Voigt notation is defined as follows:

T=N-0—1%,7 - N7 (o]}

Gy
TV N, 0 0 N, Ny 00 (A47)
T™l-lo N, 0 N 0 N7
T® o 0o N, 0 N, N |77
3 3 1 2
Gi3
G3
where
N, 0 0]
0 N, 0
0 0 N,
N = NN O (A.48)
N, 0 N,
0 N; N,

Unit tensor of second order
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1
1
_ 1
8, —*8, =1d)=1 (A.49)
0
0
Unit tensor of fourth order
1 0 0 0 0 O]
01 000 0
; ot I_001000 A0
ik 10001 o0o (A-50)
0000 L 0
0000 0 1]
Thus we can rewritten equation [(A.21)|as:
co=2uZ+M1®1)
A.51
Ci=2uZ, +M5, ®35,)  ijefl23456) (A
or explicitly in terms of E and v:
_ . . )
1 0 0 0
(1-v) (1-v)
A% A%
1 0 0 0
(l—v) (l—v)
A% A%
o 1 0 0 0
. E(Q-v) [(1-v) (-v)
TVAL=2VIE 0 0 0 0
2(1-v)
0 0 0 0 1=2v 0
2(1-v)
0 0 0 0 0 1-2v
i 2(1-v)]

A.6.1 Transformation of the stress, strain and constitutive
tensors components

A.6.1.1 Stress and strain tensor

The stress and strain tensors components change of base according to the following
transformation:
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o} =Alg) A’
e} =AfelA’

where A is the coordinate transformation matrix, which is, in general, non symmetric
A= A" Tt will be represented by its components as:

(A.53)

A=lay ay ay (A.54)

Thus, the transformation of the components of the stress and strain tensor are,
respectively:

{0}’6“ :M6x6 {o}ﬁxl
o1 =N

' (A.55)
{E} 6x6 {s}éxl
where
an2 alzz 61132 2ay,a, 2aay, 2ay,ay,
a2]2 a222 0232 2a,,ay, 2a,,a,, 2a,,a,;
2 2 2
M=| % a3 33 2a;,as, 2a3, a3 2a;,a3; (A.56)
aydy  dpdp  dpdy (anazz + a12a21) (al3a22 + a12a23) (al3a21 + a11a23)
a31dy  A3dy  d33ds; (‘131”22 + a32a21) (a33a23 + a32a23) (a33a21 + a31a23)
| 331411 A3dp d3dps (a3la12 + a32a11) (a33a12 + a32a13) (a33a11 + a31a13)_
and
B 2 2 2 ]
ap ap ap a4y, appas a5 a3
a212 a222 a232 ardy Ao a3
N = a312 0322 a332 a3 a3 a3d33 3133 (A.57)
2aya,, 2apa;, 2a;a, (auazz +a12a21) (a13a22 +a12a23) (a13a21 +a11a23)
2ay,a,, 2aya,, 2ayay (a31a22 +a32a21) (‘133“23 +a32a23) (a33a21 +a31a23)
| 2ayay,  2aya,, 2aya; (%1“12 +a32a”) (a33a12 +asz“13) (aasan +a31a13)

A.6.1.2 Constitutive tensor
In the case that C is not isotropic, the transformation law of a fourth order tensor is:
!
(Cljkl = aimajnakpalq(cmnpq (ASS)
When O and € are expressed in Voigt notation, C is a second order tensor, thus:

c; =Cij8j

loj=cle}

(A.59)
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Using the equations [A.55) land [A.59)| we can say that:

(A.60)

where: C'= MCN .

It can be demonstrated that M = N ™. Resulting that the coordinate transformation of
the constitutive tensor components is given by:

c6I><6 =M6><écé><6 67;6 (A-61)

A.7 Stress deviator tensor and its invariants

Sometimes, it is convenient in material modeling to decompose the stress tensor into
two parts, one called spherical or hydrostatic stress tensor and other called the stress

deviatoric tensor. The hydrostatic stress tensor is that whose elements are pd, , where p is
the mean stress and is given by
1 1 1
P=3%% 25(611 +t0p +G33)=§11 (A.62)

where I, =o,, is the first invariant of the stress tensor; that is, its value would be the same
regardless of rotation of the coordinate axes. Other important invariants are:

2 2 2
I, = (0'11622 105,033 + 633011)_512 —€3 —¢&j;
(A.63)

Iy =0,,6,,03;

From equation it is apparent that p is the same for all possible orientations of

the axes. The stress deviator tensor S, is derived by subtracting the spherical state of stress

from the actual state of stress. Thus, we have

G;=S;+pd; = S,;,=0,—pd; (A.64)

The components of this tensor are given by:

Sii Siz S (61— P) (S3P) i3
Sij=|Sx Sx» Sy |= G (6 —P) 3 (A.65)
S31 S3;» S G3 G3; (63— P)

The invariants of the stress deviator tensor S, ate:
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Jy=5;=0
1

J2 =755 S (A.66)
1

Js :Esij St Sk =S1152» S33
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