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Abstract

The domain decomposition (DD) method we present in this work aims at solving incompressible
flows around objects in relative motion. The DD algorithm is based on a Dirichlet/Neumann(Robin)
coupling applied to overlapping subdomains. Hence, it is an extension of the classical Dirich-
let/Neumann(Robin) method which uses disjoint subdomains. Actually, the field of application
of this work is wider as it proposes to set up a possible theoretical framework for studying
the overlapping extensions of classical mixed methods: the Dirichlet/Robin, Dirichlet/Neumann,
Robin/Neumann and Robin/Robin DD methods.

We observe that mixed DD methods inherit some properties of the Schwarz method while they
keep the behavior of the classical mixed DD methods when the overlap tends to zero. As a main
result, we show that the overlap makes the proposed methods more robust than disjoint mixed DD
methods.

The DD method we propose is geometric and algorithmic. It is geometric because the partition
of the computational domain is performed before the meshing, and in accordance to the DD
coupling. It is also algorithmic because the solution on each subdomain is obtained on separate
processes and the exchange of information between the subdomains is carried out by a Master
code. This strategy is very flexible as it requires almost no modification to the original numerical
code. Therefore, only the Master code has to be adapted to the numerical codes and strategies
used on each subdomain.

We present a detailed description of the implementation of the DD methods in the numerical
framework of finite elements. We present interpolation techniques for Dirichlet and Neumann data
as well as conservation algorithms. Once the domain decomposition coupling and interpolation
techniques are defined, we set up a Chimera method for the solution of the flow over objets
in relative movements. Tensorial transformations are introduced to be able to express variables
measures in one subdomain.

Finally, the DD algorithm is applied to an implicit finite element code for the solution of the
Navier-Stokes equations and also of the Reynolds Averaged Navier-Stokes equations together with
a one-equation turbulence model.
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Resumen

El método de descomposición de dominios (DD) que se propone en esta tesis pretende resolver
flujos incompresibles alrededor de objetos en movimiento relativo. El algoritmo de DD está basado
en un acoplamiento del tipo Dirichlet/Neumann(Robin) aplicado a subdominios con solapamiento,
y es, por tanto, una extensión del método Dirichlet/Neumann(Robin) clásico con subdominios
disjuntos. En realidad, el campo de aplicación de este estudio es mucho más amplio puesto que
en el se propone un posible marco teórico para abordar la extensión a subdominios solapados de
los métodos mixtos clásicos: métodos Dirichlet/Robin, Dirichlet/Neumann, Robin/Neumann y
Robin/Robin.

Se observa que los métodos mixtos propuestos heredan propiedades del método de Schwarz y
al mismo tiempo conservan el comportamiento de sus equivalentes sin solapamiento cuando este
tiende a cero. Se muestra como resultado principal que el solapamiento hace estos métodos más
robustos que los métodos sin solapamiento.

El método de DD que se estudia es geométrico y algoŕıtmico. Es geométrico en el sentido de que
la partición del dominio computacional se lleva a cabo antes del proceso de mallado y de acuerdo
con el acoplamiento de DD que se prevé usar. Es también algoŕıtmico porque la solución en cada
subdominio se obtiene en procesos diferentes y el intercambio de información entre subdominios se
realiza mediante un código maestro. Tal estrategia es muy flexible puesto que requiere muy pocas
modificaciones del código numérico original. Por consiguiente, sólo el código maestro necesita ser
adaptado a los códigos y estrategias numéricos utilizados en cada subdominio.

Se presenta una descripción detallada de la implementación del método de DD propuesto en el
contexto numérico de los elementos finitos. Presentamos técnicas de interpolación para los datos de
tipo Dirichlet y Neumann y desarrollamos algoritmos de conservación. Una vez el acoplamiento de
DD y las interpolaciones definidos, presentamos un método del tipo Chimera para la resolución de
flujos alrededor de objetos en movimiento. En particular, definimos transformaciones tensoriales
para transformar variables de un subdominio a otro.

Finalmente, el algoritmo de DD se aplica a un código impĺıcito para la resolución de las ecua-
ciones de Navier-Stokes incompresibles y también a las ecuaciones de Navier-Stokes promediadas
con un modelo de turbulencia de una ecuación.
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Je remercie l’Institut français de Barcelone, surtout Monsieur Dupuy et Monsterrat pour leur
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de Lionel et qu’elle devrait enfin l’assumer, Lionel, los habitantes de Torrejoncillo, Alicia, Arnau,
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Introduction

The domain decomposition (DD) method we present in this work aims at solving incompressible
flows around objects in relative motion. The DD algorithm is based on a Dirichlet/Neumann(Robin)
coupling applied to overlapping subdomains. Hence, it is an extension of the classical Dirich-
let/Neumann(Robin) method which uses disjoint subdomains. Actually, the field of application
of this work is wider as it proposes to set up a possible theoretical framework for studying
the overlapping extensions of classical mixed methods: the Dirichlet/Robin, Dirichlet/Neumann,
Robin/Neumann and Robin/Robin DD methods. As the proposed method are applied to over-
lapping subdomains, we expect them to inherit some properties of the Schwarz method and to
conserve the behavior of the classical mixed DD methods when the overlap tends to zero. As noted
by Lions [1]:

[ . . . ] the Schwarz algorithm [ . . . ] presents some properties (like “robustness”, or
indifference to the type of equations considered...) which do not seem to be enjoyed by
other methods.

As a main result, we show in fact that the overlap makes the proposed methods more robust than
disjoint mixed DD methods.

The DD method we propose is geometric and algorithmic. It is geometric because the partition
of the computational domain is performed before the meshing, and in accordance to the DD
coupling. It is also algorithmic because the solution on each subdomain is obtained on separate
processes and the exchange of information between the subdomains is carried out by a Master code.
This strategy is very flexible as it requires almost no modification to the original numerical code.
Therefore, only the Master code has to be adapted to the numerical codes and strategies used on
each subdomain. Although the algorithm can be easily parallelized, this is not the objective of this
work and we will only mention the possibility of using a multicoloring technique to parallelize the
computation.

We present a detailed description of the implementation of the DD methods in the numerical
framework of finite elements. We present interpolation techniques for Dirichlet and Neumann data
as well as conservation algorithms. Once the domain decomposition coupling and interpolation
techniques are defined, we set up a Chimera method for the solution of the flow over objets
in relative movements. Tensorial transformations are introduced to be able to express variables
measured in one subdomain in any other one.

Finally, the DD algorithm is going to be applied to an implicit finite element code for the so-
lution of the Navier-Stokes equations and also of the Reynolds Averaged Navier-Stokes equations
together with a one-equation turbulence model.

The thesis is organized as follows. Chapter 1 presents a finite element method to model
advection-diffusion-reaction problems, as well as laminar and turbulent flows. The classical advection-
diffusion-reaction (ADR) equation is considered as a model problem to introduce the finite element
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12 INTRODUCTION

formulation. This includes a brief description of the physical meaning of the ADR equation, an
introduction to the theoretical context of the variational formulation, a review of the stabilization
methods developed in the literature, and the presentation of a variational subgrid scale method as
a stabilization technique. Next, all the concepts introduced in the study of the ADR equation are
generalized to the Navier-Stokes equations. Then we introduce a one-equation turbulence model,
namely the Spalart-Allmaras model, in an original form, and apply the numerical strategy devel-
oped for the general ADR equation. Finally, we study and validate the whole numerical model
through the solution of three numerical examples.

Chapter 2 is a brief introduction to domain decomposition methods. We start by studying a
one-dimensional example in a more intuitive than rigorous manner. Although very simple, this ex-
ample is sufficient to present all the families of domain decomposition methods we will deal with. In
particular, we contemplate the possibility of using mixed DD methods on non-overlapping as well
as on overlapping subdomains. Then, we consider the more general advection-diffusion-reaction
equation, and describe all the possible improvements that can be achieved to the classical DD
methods. In particular, we will mention the adaptive methods. At this point, we will have intro-
duced the necessary terminology to proceed with the variational approach. The weak formulation
of the domain decomposed problem will enable to justify the choice of transmission conditions,
involving the essential and natural conditions. Then we discuss some ways of applications to the
finite element method and finally present the proposal of this thesis.

Chapter 3 proposes to apply some ideas developed in the preceding chapter to the solution of a
one-dimensional problem. In particular, we consider the overlapping extensions of two families of
disjoint DD methods, namely the Dirichlet/Neumann and Dirichlet/Robin methods. The results
obtained with these methods are systematically compared to those of their non-overlapping coun-
terparts and those of the Schwarz method. We study in detail the convergence of the unrelaxed
sequential algorithm and its dependence upon the overlapping length. Apart from the general
ADR equation, we study three limiting behaviors of the equation, i.e. the Poisson equation, the
advection-diffusion equation, and the hyperbolic limit. We also study the relaxed sequential ver-
sions, as well as the unrelaxed and relaxed parallel methods. This one-dimensional example enables
us to foresee the improvements in convergence and stability of the solution obtained by using mixed
DD methods with overlapping subdomains.

In Chapter 4, we go on to the multi-dimensional ADR equation and study overlapping mixed
methods within a variational framework. This chapter constitutes therefore a theoretical basis for
the study of overlapping mixed methods. The model domain decomposition method is based on an
overlapping Dirichlet/Robin coupling. The starting point is a two-domain variational formulation
of the problem, originating from a geometrical decomposition of the original domain of study. We
show how the formulation can be reformulated into an overlapping domain decomposition method
based on a Dirichlet/Robin coupling. Next, the domain decomposition method for the subdomains
is re-written in terms of a problem for the interface unknowns. An iterative and relaxed sequential
scheme is then introduced in order to solve the DD problem. The convergence is studied through
the interface equations. We present the generalization of the overlapping DD method introduced
to other types of overlapping mixed couplings, in particular to an overlapping Dirichlet/Neumann
method. Afterwards, we consider the discrete counterpart of the formulation. We then build an
iterative strategy to solve the two-domain problem. This strategy is studied algebraically, using
a finite element method and solving for the Schur complement system, and is illustrated by four
numerical examples. Finally, we introduce the extension of the overlapping Dirichlet/Neumann
method to the Stokes and Navier-Stokes equations.

In Chapter 5 we derive a possible finite element implementation of two overlapping domain
decomposition methods, the classical Schwarz method and an overlapping Dirichlet/Neumann
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method, with particular attention on the latter. We first identify the transmission conditions
from the alternative formulations of the DD derived in the preceding chapter. Then we set an
iteration-by-subdomain method applied to the solution of the ADR and Navier-Stokes based on a
Master/Slave strategy. We briefly describe an element search algorithm, which consists in looking
for the host elements (in the underlying mesh) of the nodes involved in the iterative process. At
this stage we are ready to interpolate the transmission conditions. We present the interpolation
of the Dirichlet data and two interpolation schemes for the Neumann (or Robin) data. We then
explain the need for using a conservative interpolation and present two algorithms: an interface
constraining and a conservative interpolator. In order to be able to treat complex geometries, we
introduce a Chimera method, using all the ingredients presented previously. Finally, the domain
decomposition method is applied to moving subdomains by the way of tensorial transformations
and appropriate time integration.

The last chapter presents five examples of application of the Dirichlet/Neumann method. They
aim at showing the robustness of the algorithm for solving stationary and transient flows in laminar
or turbulent state.



Chapter 1

A Finite Element Method for
Incompressible Flows

This chapter presents the finite element method used in this work to model advection-diffusion-
reaction problems, as well as laminar and turbulent flows. In the first section, the classical
advection-diffusion-reaction (ADR) equation is considered as a model problem to introduce the
finite element formulation. This includes a brief description of the physical meaning of the ADR
equation, an introduction to the theoretical context of the variational formulation, a review of the
stabilization methods developed in the literature, and the presentation of a variational subgrid
scale method as a stabilization technique. Next, all the concepts introduced in the study of the
ADR equation are generalized to the Navier-Stokes equations. Then we introduce a one-equation
turbulence model, namely the Spalart-Allmars (SA) model, in an original form, and apply the
numerical strategy developed for the general ADR equation. Finally, we study and validate the
whole numerical model through the solution of three numerical examples.

1.1 The Advection-Diffusion-Reaction Equation

This section studies a transport model equation known as the ADR equation. After a brief pre-
sentation of the physical meaning of the equation, we introduce the variational formulation of the
stationary problem. Then we derive three weak formulations and study the properties of the asso-
ciated bilinear forms. Particular attention is paid on the natural conditions, as they are of special
interest when studying mixed domain decomposition methods. We introduce a stabilized finite
element method based on a subgrid scale approach. Finally, we solve the transient ADR equation
using the trapezoidal rule for the time discretization.

1.1.1 Description of the ADR equation

The advection-diffusion-reaction equation is a transport equation for a physical variable that mod-
els advection, diffusion and reaction effects. The physical quantity of interest can be the concentra-
tion of a passive chemical species, the temperature, a turbulence quantity, etc. In the following, it
is assumed that this scalar quantity does not interact with its surroundings: it is a passive scalar.
We propose to study the following ADR problem:

Lu := −ε∆u + ∇ · (au) + su = f in Ω, (1.1)

14
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where Ω is a nd-dimensional domain (nd=1,2,3) with boundary ∂Ω; ε is the diffusion constant of
the medium; f is the force term; a is the advection field (not necessarily solenoidal) and s is a
source term.

Apart from the transport phenomena, the partial differential equation (1.1) is able to model
many other physical problems; for example, the Helmholtz equation

∆u + k2u = 0,

which governs the motion of time-harmonic waves where k is the frequency parameter (this corre-
sponds to the case s ≤ 0); the Poisson equation

−∆u = f,

which for example models the electric field in a region of charge density f . We understand the
importance of our model equation in the modelling of physical problems, and the need for a robust
and reliable numerical strategy to solve it.

The differential equation must be furnished with appropriate boundary conditions on ∂Ω. These
boundary conditions are a compromise between physical and mathematical considerations. From
the definition of the physical problem, which for example tries to reproduce an experiment, we
may know the values of the unknown on part of the boundary, the flux on another, and have no
information on those remaining. By determining if the differential equation is elliptic, parabolic
or hyperbolic in character, we may have to give up imposing some of the data inherited from
the experiment; for example, it is well known that when the equation is hyperbolic, the unknown
cannot be prescribed on outflows. Finally, we will see that the weak formulation of the problem
will, in its turn, propose essential and natural boundary conditions, and the requirements for
the existence and uniqueness of a weak solution may restrict the possible choices even more. To
simplify, we will only consider here only three types of boundary conditions, namely of Dirichlet,
Neumann or Robin types, prescribing the following quantities:

Dirichlet: u,

Neumann: ε
∂u

∂n
:= ε∇u · n,

Robin: ε
∂u

∂n
+ αru, (1.2)

where ∂(·)/∂n = n · ∇(·), n being the outward unit vector normal to the boundary considered,
and αr is called the Robin factor, coming from physical information or from the natural boundary
condition derived from the weak formulation. All along this work on domain decomposition meth-
ods, we will have to juggle with these three boundary conditions and we will have to face many
compromises, as some useful physical boundary conditions are not necessarily mathematically well
suited! Sometimes we will be lucky, sometimes less... Now let us go back to our differential equa-
tion itself.

In order to obtain a first insight into a new problem, it can be useful to derive the transport
equation in a dimensionless form. This non-dimensionalization will enable us to measure the
relative effects of the advection, diffusion and reaction processes and, in some limit cases, determine
which of them will drive the transport of the scalar. We define D a characteristic measure of Ω, A a
characteristic value of the advection field and |s|∞ a characteristic value of the reaction term. Then
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we label the dimensionless variables and operators of the problem with a superscript asterisk. By
introducing two dimensionless parameters, namely the Péclet number Pe and the reaction number
R of the equation, defined as

Pe :=
AD

ε
,

R :=
|s|∞D2

ε
,

we can rewrite Equation (1.1) as follows:

− 1
Pe

∆∗u∗ + ∇∗ · (a∗u∗) + R s∗u∗ = f∗ in Ω.

For example, when dealing with the temperature equation in heat transfer problems, the Péclet
number is the ratio of the bulk heat transfer to the conductive heat transfer, i.e.

Pe =
ρcpDA

k
,

where k is the thermal conductivity, cp the specific heat, ρ the density of the fluid, and D and A
are defined as before. Keeping in mind the dimensionless form of the ADR equation, we will go
on with the original (dimensional) equation.

1.1.2 Properties of the work spaces

The first steps for deriving a weak formulation of the problem are classical. We multiply the
differential equation (1.1) by a test function v belonging to a suitable space (to be defined), integrate
the result over Ω, and integrate by parts some of the terms. We will present here three weak
formulations, each one being derived from different integrations by parts of the convective term.
Before considering the weak formulations, we need to introduce some notations. We split ∂Ω into
two components denoted ΓD and ΓN , and such that ∂Ω = ΓD ∪ ΓN . As usual, L2(Ω) refers to the
space of square integrable functions in Ω. We set the following definitions:

(w, v) :=
∫

Ω

wv dΩ,

H1(Ω) := {v ∈ L2(Ω) | ∂v

∂xj
∈ L2(Ω), j = 1, . . . , nd},

H1
0 (Ω) := {v ∈ H1(Ω) | v|∂Ω = 0},

H1
ΓD

(Ω) := {v ∈ H1(Ω) | v|ΓD
= 0},

V 0 := H1
0 (Ω),

V := H1
ΓD

(Ω),

Likewise, we use the notation

〈·, ·〉ω := 〈·, ·〉
H−1/2(ω)×H

1/2
00 (ω)

for ω (nd − 1)-dimensional,

〈·, ·〉ω := 〈·, ·〉(H1(ω))′×H1(ω) for ω nd-dimensional,
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for the duality pairings to be used. For these spaces, the duality paring is simply the integral

〈·, ·〉ω =
∫

ω

(·)(·) dω.

We endow H1(Ω) with the following scalar product

(w, v)1 = (w, v) + (∇w,∇v),

and the associated norm

‖w‖1 = [(w,w) + (∇w,∇w)]1/2
.

This norm is not “physically appropriate” as the units of its terms are not compatible. A more
adequate choice would be to choose the graph norm, which contains the physical coefficient of
the problem. However, we are not going to develop estimates displaying their dependences on the
physical coefficients of L, and we prefer to work along with the usual H1(Ω)-norm.

Finally, we introduce the trace operator. From the trace theorem (see e.g. [2, 3]), we know that
there exists a unique linear continuous map γ0, called the trace operator, defined as

γ0v = v|∂Ω ∈ H1/2(∂Ω) ∀ v ∈ V. (1.3)

This result applies equivalently to any Lipschitz continuous subset of ∂Ω. The continuity of γ0

means that there exists a positive constant C∗ such that

‖v|∂Ω‖1/2,∂Ω ≤ C∗‖v‖1 ∀ v ∈ H1(Ω).

1.1.3 Weak formulations

Let us consider our differential problem (1.1). We restrict ourselves to solutions in H1(Ω), which
obliges us to choose the force term such that

f ∈ (H1(Ω))′.

In order to be able to show the existence and uniqueness of the solution, we must assume that all
the remaining terms present in last equation are bounded, i.e.

s ∈ L∞(Ω),∇ · a ∈ L∞(Ω),a ∈ L∞(Ω)nd . (1.4)

As we have just mentioned at the beginning of the section, we consider here three different
weak formulations. We will denote them weak formulations 0, 1/2 and 1. Before starting with the
first weak form, let us assume for the sake of clarity that we prescribe a homogeneous Dirichlet
condition on ΓD; the generalization to any Dirichlet data in H1/2(ΓD) is straightforward.
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0-weak formulation. The first weak formulation we study is derived by integrating by parts
only the diffusion term. The weak formulation reads: find u ∈ V such that

a0(u, v) = 〈g0, v〉ΓN
+ 〈f, v〉Ω ∀ v ∈ V,

where

a0(w, v) := ε(∇w,∇v) + (a · ∇w, v) + ([s + ∇ · a]w, v), (1.5)

and

g0 := ε
∂u

∂n

is known on ΓN .
The prescription of g0 is the natural boundary condition and stems only from the integration

by parts of the diffusion term. At the differential level, this condition corresponds to a Neumann
prescription, i.e. the prescription of the flux.

1/2-weak formulation. The derivation of the second weak form is more subtle. We first note
that according to the Gauss theorem (also known as divergence theorem), we have that for any
w, v ∈ V , ∫

Ω

∇ · (awv) dΩ =
∫

ΓN

(a · n)wv dΓ

=
∫

Ω

(∇ · a)wv dΩ +
∫

Ω

(a · ∇v)w dΩ +
∫

Ω

(a · ∇w)v dΩ. (1.6)

Therefore, the convective term can be rewritten as∫
Ω

(a · ∇w)v dΩ =
1
2

∫
Ω

(a · ∇w)v dΩ +
1
2

∫
Ω

(a · ∇w)v dΩ

=
1
2

∫
Ω

(a · ∇w)v dΩ +
1
2

∫
ΓN

(a · n)wv dΓ

−1
2

∫
Ω

(a · ∇v)w dΩ − 1
2

∫
Ω

(∇ · a)wv dΩ,

and integrating by parts the diffusion term and only half of the convective term as shown by the
latter identity, the 1/2-weak formulation reads: find u ∈ V such that

a1/2(u, v) = 〈g1/2, v〉ΓN
+ 〈f, v〉Ω ∀ v ∈ V,

where

a1/2(w, v) := ε(∇w,∇v) +
1
2
(a · ∇w, v) − 1

2
(w,a · ∇v) + ([s +

1
2
∇ · a]w, v), (1.7)

and

g1/2 := ε
∂u

∂n
− 1

2
(a · n)u
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is known on ΓN . At the differential level, the prescription of g1/2 is a Robin condition with Robin
coefficient αr = − 1

2 (a · n).

1-weak formulation. The last weak form is derived by integrating by parts both the diffusion
term and the convective term, using Equation (1.6). We can easily show that the weak formulation
of the problem thus reads: find u ∈ V such that

a1(u, v) = 〈g1, v〉ΓN
+ 〈f, v〉Ω ∀ v ∈ V,

where

a1(w, v) := ε(∇w,∇v) − (w,a · ∇v) + (sw, v), (1.8)

and

g1 := ε
∂u

∂n
− (a · n)u

is known on ΓN . In this case, the natural condition corresponds to a Robin condition at the dif-
ferential level, with Robin factor αr = −(a · n), as defined in Equation (1.2).

We notice that we can write all the weak formulations derived earlier in the same way, intro-
ducing a constant � which can take the following values:

0-Weak formulation: � = 0,

1/2-Weak formulation: � = 1/2,

1-Weak formulation: � = 1.

Owing to this definition, all the weak formulations read: find u ∈ V such that

a�(u, v) = 〈g�, v〉ΓN
+ 〈f, v〉Ω ∀ v ∈ V, (1.9)

where

a�(w, v) := ε(∇w,∇v) + (1 − �)(a · ∇w, v) − �(w,a · ∇v) + ([s + (1 − �)∇ · a]w, v), (1.10)

and

g� := ε
∂u

∂n
− �(a · n)u (1.11)

is known on ΓN . Although strictly algebraically equivalent, these formulations have two major
differences: their respective natural conditions and their variational properties. The former has
already appeared explicitly, as the natural boundary conditions are given by Equation (1.11). The
latter becomes evident when we study the existence and uniqueness of the solutions. That is
precisely what we are going to do next.

From Lax-Milgram lemma, problem (1.9) has a unique solution if a(w, v) is both continuous
and coercive for any w, v ∈ V . Applying Cauchy -Schwartz inequality, we have for � = 0, 1/2, 1

|a�(w, v)| ≤ M‖w‖1‖v‖1 ∀ w, v ∈ V,
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with

M = ε + ‖a‖∞,Ω + ‖s + (1 − �)∇ · a‖∞,Ω.

According to hypothesis (1.4), M is bounded which implies that a� is continuous for � = 0, 1/2, 1.
We now study the coercivity of a�. Owing to the definition of a� given by Equation (1.10),

a�(v, v) = ε‖∇v‖2
0,Ω + (1 − 2�)

∫
Ω

(a · ∇v)v dΩ +
∫

Ω

(s + (1 − �)∇ · a)v2 dΩ ∀ v ∈ V.(1.12)

Using Equation (1.6), we have∫
Ω

(a · ∇v)v dΩ =
1
2

∫
ΓN

(a · n)v2 dΓ − 1
2

∫
Ω

(∇ · a)v2 dΩ.

Substituting this result into Equation (1.12), we obtain

a�(v, v) = ε‖∇v‖2
0,Ω +

1 − 2�

2

∫
ΓN

(a · n)v2 dΓ +
∫

Ω

(s +
1
2
∇ · a)v2 dΩ ∀ v ∈ V.

Assuming that

s +
1
2
∇ · a ≥ 0 almost everywhere, (1.13)

we find

a�(v, v) ≥ ε‖∇v‖2
0,Ω +

1 − 2�

2

∫
ΓN

(a · n)v2 dΓ ∀ v ∈ V.

Using the Poincaré -Friedrichs inequality, we have

‖v‖2
0,Ω ≤ CΩ‖∇v‖2

0,Ω ∀ v ∈ V,

and we find

a�(v, v) ≥ ε

1 + CΩ
‖v‖2

1 +
1 − 2�

2

∫
ΓN

(a · n)v2 dΓ ∀ v ∈ V. (1.14)

We are now left with an annoying term involving the advection. Note that for pure Dirichlet
problems, this term disappears and the coercivity follows. If we consider the 1/2-weak formulation,
this term cancels and the coercivity is shown. However for the 0 and 1-weak formulations, we must
assume further hypothesis on the data, i.e. on the relative size of the advection vector a with
respect to the diffusion coefficient and/or on its direction. Let us study the 0-weak formulation;
letting � = 0, we have that

a0(v, v) ≥ ε

1 + CΩ
‖v‖2

1 +
1
2

∫
ΓN

(a · n)v2 dΓ ∀ v ∈ V.

For the second term to be positive, we must assume that a · n ≥ 0 on ΓN , i.e. that ΓN is an
outflow. Conversely, for the 1-weak formulation, we would require ΓN to be an inflow. This is a
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condition on the direction of the flow on ΓN . On the other hand, if the direction of the flow is
not as required to show the coercivity, or if it changes along ΓN , we can still derive a very simple
estimate by noting that the last equation gives

a�(v, v) ≥ ε

1 + CΩ
‖v‖2

1 −
∣∣∣∣1 − 2�

2

∣∣∣∣ ‖a · n‖∞,ΓN
‖v|ΓN

‖2
0,ΓN

∀ v ∈ V. (1.15)

In addition, knowing that H1/2(ΓN ) ↪→ L2(ΓN ), we have that

‖v|ΓN
‖2
0,ΓN

≤ C ‖v|ΓN
‖2
1/2,ΓN

where C is a constant. Using the trace inequality (1.3), last equation gives

‖v|ΓN
‖2
0,ΓN

≤ C C∗‖v‖2
1.

Substituting this last result into Equation (1.15), we finally find

a�(v, v) ≥ N‖v‖2
1 ∀ v ∈ V,

with

N =
ε

1 + CΩ
− C C∗ |1 − 2�|

2
‖a · n‖∞,ΓN

.

The condition for coercivity is N > 0; by introducing the constant C ′ to absorb all the constants
of the latter equation, we then require that

ε > C ′|1 − 2�| ‖a · n‖∞,ΓN
(1.16)

which implies that ‖a · n‖∞,ΓN
should not be too high with respect to the diffusion ε. If the

condition N > 0 is satisfied, Problem (1.9) has a unique solution.
Let us sum up the assumptions we have stated up to now in order to prove the uniqueness of

the solution.

1. The data of the problem are such that s ∈ L∞(Ω),a ∈ L∞(Ω)nd ;

2. the source term and advection satisfy s +
1
2
∇ · a ≥ 0 almost everywhere;

3. Finally, we require that

• 0-weak formulation: ΓN is an outflow or the advection is not too high in the sense of
Equation (1.16);

• 1/2-weak formulation: no additional condition;

• 1-weak formulation: ΓN is an inflow or the advection is not too high in the sense of
Equation (1.16).

We can easily see the great advantage that the weak 1/2-formulation has over the other two:
apart from condition (1.13), no condition on the magnitude and direction of a is required on ΓN .
In Chapter 4, we will see how this property can be used for designing efficient mixed domain
decomposition methods.
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Remark 1.1. Although up to now we have considered only the natural conditions of the weak
form as possible boundary conditions, we can always transform the bilinear form in order to
accommodate the formulation to our need. For example, considering the 1/2-weak formulation,
part of the contour integral on the right-hand-side can be recast to the left-hand side. Let us divide
ΓN into two parts ΓN1 and ΓN2 such that ΓN = ΓN1 ∪ ΓN2 , and find u ∈ V such that

a1/2(u, v) + 〈1
2
(a · n)u, v〉ΓN2

= 〈g1/2
1 , v〉ΓN1

+ 〈g1/2
2 , v〉ΓN2

+ 〈f, v〉Ω ∀ v ∈ V,

where a1/2 is defined as in Equation (1.7) and

g
1/2
1 := ε

∂u

∂n
− 1

2
(a · n)u,

g
1/2
2 := ε

∂u

∂n
,

are known on ΓN1 and ΓN2 , respectively. Therefore, we have to prescribe a Robin condition on
ΓN1 and a classical Neumann condition on ΓN2 . If in addition ΓN1 is an outflow a · n ≥ 0 on ΓN1

and the bilinear form is coercive. In the same way, we could create a Robin condition from the
0-weak formulation by adding both to the left and right hand side a Robin like term αru where αr

could be a constant; for example, we propose to find u ∈ V such that

a0(u, v) + 〈αru, v〉ΓN
= 〈g0, v〉ΓN

+ 〈f, v〉Ω ∀ v ∈ V,

where

g0 := ε
∂u

∂n
+ αru,

is the Robin condition, known on ΓN .

1.1.4 Finite Element formulation

Galerkin formulation

For the sake of clarity, we will consider here the following pure Dirichlet problem:{
Lu := −ε∆u + a · ∇u + su = f in Ω,

u = 0 on ∂Ω,
(1.17)

where we have taken ∇ · a = 0, and s > 0. We now study the existence and uniqueness of a
weak solution to the latter problem, using the Galerkin method, and present a very simple error
estimate. This estimate will justify the need for a stabilization technique under well-known cir-
cumstances and this is the subject of the following section. Then we introduce a discontinuity
capturing technique. Finally, the problem is generalized to transient situations. For the study of
the same problem with more general boundary conditions, see for example [3].

Let {Ωe} be a regular finite element partition of the domain Ω, with index e ranging from 1 to
the number of elements ne. The diameter of {Ωe} will be denoted by h as usual. Let us construct
the functional linear subspace V 0

h ⊂ V 0 from the previous partition: the resulting finite element
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approximation is said to be conforming. The discrete Galerkin formulation of the problem consists
in finding uh ∈ V 0

h such that

a(uh, vh) = 〈f, vh〉Ω ∀ vh ∈ V 0
h , (1.18)

where

a(w, v) := ε(∇w,∇v) + (a · ∇w, v) + (sw, v). (1.19)

Note that in this particular case for which we only impose Dirichlet conditions (ΓN = ∅), the 0,
1/2 and 1-weak formulations are identical is the sense that they all have the same continuity and
coercivity constants. We have:

a) |a(wh, vh)| ≤ M‖wh‖1‖vh‖1 ∀ wh, vh ∈ Vh,

b) a(vh, vh) ≥ N‖vh‖2
1 ∀ vh ∈ Vh,

with

M = ε + ‖a‖∞,Ω + ‖s‖∞,Ω,

N =
ε

1 + CΩ
.

According to Lax-Milgram lemma, Equation (1.18) has a unique solution uh ∈ V 0
h . In addition,

we can derive the following error estimate

‖u − uh‖1 ≤ M

N
inf

vh∈Vh,0
‖u − vh‖1

where u is the solution of the problem

a(u, v) = 〈f, v〉Ω ∀ v ∈ V0.

The latter error estimate simply states that the finite element solution is the best approximation
over all possible vh ∈ Vh. Now let us introduce m, the degree of the polynomials used in the finite
element discretization. Under regularity assumption on the domain Ω, its boundary, and assuming
the solution u is smooth enough (see for example [3] for the details), we can show in addition that

‖u − uh‖1 ≤ c
M

N
hm‖u‖m+1, (1.20)

where h is the maximum diameter of the polyhedron of the triangulation, and c is a constant
depending on the geometry and triangulation of Ω, but not on h. Error estimate (1.20) is optimal
in the H1 norm, so we conclude that the Galerkin method can lack stability when M  N , that
is, when the diffusion ε is small compared to ‖a‖∞,Ω and ‖s‖∞,Ω and if h is not sufficiently small.
In fact, taking u = v = uh in Equation (1.19), we have

a(uh, uh) = ε‖∇uh‖2
0 + ‖s1/2uh‖2

0,

as the convective term disappears when it is integrated by parts. We observe that we have no
control on the advective term of the equation. In addition, when s1/2 is high, we gain control
on the L2 norm of the unknown at the expense of loosing control on its gradient. This is why a
stabilization method is necessary.
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Stabilization strategy

We now present briefly the historical context of the stabilization technique used in this work, the
variational subgrid scale model. For a detailed review of these methods, see for example [4] and the
complete volume [5]. Before starting, let us mention that we will not mention techniques such as
the virtual bubbles [6], as they do not explicitly belong to the stabilization family considered here
(although they are closely related). We will neither mention the Characteristic-Galerkin formu-
lation [7] and the Taylor-Galerkin [8] method, as they are devised starting from a transient equation.

The first stabilization methods that were developed were called artificial viscosity methods [9].
They consist in adding a viscosity-like term to the equation, a numerical viscosity, as follows:

a(uh, vh) − 〈f, vh〉Ω +
∫

Ω

τ(∇uh · ∇vh) dΩ = 0,

where τ is the stability parameter. It must be proportional to h and the norm of the advection
field for two reasons: the stability term must vanish when h goes to zero, and it must be higher
and higher as the advection increases. These methods are not consistent, i.e. the exact solution
to the original problem does not satisfy the equation of the perturbed one. The diffusion is
added isotropically so the results can be over-diffusive, particularly in the crosswind direction.
They deteriorate the rate of convergence, as they were originally first order methods, although
more precise artificial viscosity methods have been developed since then to increase the order of
convergence (see for example [10]).

To correct the indiscrimination of the artificial viscosity, a streamline upwind was introduced,
first in the finite difference context and next introduced in the finite element context in [11]. They
lead to the following formulation:

a(uh, vh) − 〈f, vh〉Ω +
∫

Ω

τ(a · ∇uh)(a · ∇vh) dΩ = 0,

where τ is a stability parameter to be determined. Although less diffusive, this method shared
the non-consistency of artificial viscosity methods. The consistent version which was called SUPG
(standing for streamline-upwind Petrov-Galerkin) was presented in [12]; this time the stabilization
term was added at the element level. Let us define∫

Ω′
:=

ne∑
e=1

∫
Ωe

,

where Ωe is the interior of element e of the partition. The weak form of the consistent SUPG
method is

a(uh, vh) − 〈f, vh〉Ω +
∫

Ω′
τe(a · ∇vh)(Luh − f) dΩ = 0,

where τe is an element-wise stability parameter. Although it was clear where and how the SUPG
method acted as a stability method, no intuitive and perceptible interpretation had been found.
It was even thought that the upwind was necessary in order to be consistent with the hyperbolic
character of the equation when the advection was dominant, as information can only move down-
stream. Actually, the concrete interpretation of stabilization methods would only come 15 years
after... as we will soon see.



1.1. THE ADVECTION-DIFFUSION-REACTION EQUATION 25

Simultaneously with their work on the advection-diffusion systems of equations, the Stanford
team [13] devised a Petrov-Galerkin formulation for solving the Stokes problem which avoided the
need to satisfy the Babus̆ka-Brezzi (BB) stability condition, by adding a new perturbation to the
continuity equation proportional to the pressure gradient test function. Following the same ideas,
the Galerkin/Least-square (GLS) method was presented in [14] as a “conceptual simplification”
and generalization of the SUPG method for advection-diffusion equations. The GLS formulation
reads:

a(uh, vh) − 〈f, vh〉Ω +
∫

Ω′
τeLvh(Luh − f) dΩ = 0,

where τe is still the stability parameter. By the same time, Douglas and Wang [15] developed
a stabilization technique (known as Douglas-Wang method) for the Stokes problem, similar to
that developed in [13] with the only difference being the sign of the Laplacian of the perturbation
function. The method was soon applied to the advection-diffusion reaction in [16] and showed
better stability than the GLS method; the authors found that the perturbation function should no
longer be the differential operator L but minus its adjoint L∗. The new formulation reads:

a(uh, vh) − 〈f, vh〉Ω +
∫

Ω′
τe(−L∗vh)(Luh − f) dΩ = 0,

where τe is the stability parameter. In the case of the ADR equation under study the adjoint
operator is given by

L∗u = −ε∆u − a · ∇u + su.

All the methods presented up to now, i.e. SUPG, GLS and the Douglas-Wang method, involve a
stabilization parameter τe, and none of these methods introduces its value naturally. Actually, τe is
calculated using convergence analysis, and/or adjusting its value to obtain exact nodal solution for
some simple problems. τe having the units of time, it is generally called the intrinsic time. Referring
to the stabilization parameters τi of a system of advection-diffusion, Hughes and Mallet[17] wrote:

The τi are intrinsic time scales of the various components of the solution. In the
advection-dominated limit, the τi represent the transit times for information to be ad-
vected over a distance equal to one-half the element length. These times are reduced
by the presence of diffusion. The τi approach zero as diffusion begins to dominate in
keeping with the instantaneous propagation time of diffusive phenomena (. . . )

Recently, Hughes [18] finally clarified the matter by introducing the idea of multiscales. The
numerical instabilities of the Galerkin method are due to the unresolved space scales, i.e. the scales
that are“smaller” than the element size. Therefore in some way the effects of the unresolved scales
must be modelled at the resolved level. This method explains not only the instabilities; it also
identifies clearly the intrinsic time. The unknown u is decomposed into a resolved scale u and an
unresolved scale u′ such that u = u + u′. The first approximation of the unresolved scales [18]
consists in solving a Green’s function problem for these subgrid scales; in addition, his study leads
to an analytical expression for τe. The resulting method is called algebraic subgrid scale model
(ASGS). In order to avoid confusion with large eddy simulation (LES) turbulence model, this
approach is often referred to as variational subgrid scale model. In [19], Codina pointed out that
the subgrid scales should be logically sought in the space orthogonal to that of the resolved scales;
his formulation leads to a more complicated formulation, but less diffusive, and “more precise”
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in some sense. This method is referred to as orthogonal subgrid scale method (OSS). In [20], he
also developed a first physically based expression for τe, basing its derivation on a Fourier space
analysis. This is the expression for τe used in this work. The final formulation reads: find u ∈ Vh

such that

a(uh, vh) − 〈f, vh〉Ω +
∫

Ω′
τe(−L∗vh)(Luh − f) dΩ = 0 ∀ vh ∈ Vh,

where τe is given by

τe =
(

c1
ε

h2
e

+ c2
|a|∞
he

+ s

)−1

, (1.21)

where he is the characteristic length of the element e, |a|∞ is the maximum of the Euclidean norm
of a in element e, and the constants are c1 = 4 and c2 = 2. For quadratic elements, h is taken as
half of the element size. Codina [19] obtained the following error estimate for the method

‖|u − uh‖| ≤ C(ε1/2hm + s1/2hm+1 + |a|1/2
∞ hm+1/2),

where C is a constant independent of h and ‖| · ‖| is defined as

‖|v‖| := ε1/2‖∇v‖0 + ‖s̃1/2v‖ + ‖τ1/2
e a · ∇v‖ ∀ vh ∈ Vh,

where s̃ is a modified reaction term defined as

s̃ = s − τes
2,

which, form the expression of τe given by Equation (1.21), cannot be negative. We notice also that
the asymptotic behavior of s̃ as s tends to infinity enables not to loose control over the gradient.
In addition, the third term of the equation is the stabilization term that enables us to gain control
over the gradient. However, we see that this control is only obtained in the streamline direction,
this is a reason why a discontinuity capturing could be needed.

Discontinuity capturing

The use of the subgrid scale model does not avoid the local oscillations present near sharp layers.
In the finite element context, Hughes et al. [21] developed a first discontinuity capturing technique
(also called shock capturing technique). Noting that the oscillations appeared in the direction
normal to the gradient of the transported quantity, precisely where the ASGS stabilization does
not act, they introduced an additional dissipation in this crosswind direction. Codina [22] designed
a crosswind diffusion based on the study of the discrete maximum principle. The method is an
anisotropic discontinuity capturing technique, referred to as ADC. For simple cases, the method
leads to a monotonicity preserving scheme; the resulting algorithm is non-linear and reads: find
uh ∈ Vh such that

a(uh, vh) − 〈f, vh〉Ω +
∫

Ω′
τe(−L∗vh)(Luh − f) dΩ

+
∫

Ω′

[
ke∇vh · ∇uh + (H(ke − k′

e) − ke)∇vh ·
(

a ⊗ a

|a|2
)
· ∇uh

]
dΩ = 0 ∀ vh ∈ Vh,
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where H(x) is the Heaviside function defined as

H(x) =
{

x if x > 0,
0 elsewhere, ;

k′
e is the additional diffusion of the SUPG-like term of the SGS method, given by

k′
e = τe|a|2

ke is the diffusion of the shock capturing method defined as

ke =


1
2
αehe

|Luh − f |
|∇uh|

if |∇uh| �= 0,

0 elsewhere.
.

In the latter expression, he is the element characteristic length, and αe is given by

αe = max
(

0, C − 2ε

|a‖|he

)
(1.22)

where C depends on the type of element used (C = 0.7 for linear elements and C = 0.35 for
quadratic elements). Finally, a‖ is obtained by:

a‖ =
Luh − f

|∇uh|2
∇uh.

Let us take a close look at the expression of the discontinuity capturing. First of all, the term
proportional to a⊗a avoids adding twice the numerical diffusion in the streamline direction, as it is
already provided by the SUPG term of the ASGS model. This justifies the name anisotropic shock-
capturing. The diffusion introduced by the ADC method is logically proportional to the residual
and this makes the method consistent. Finally, the expression for αe given by Equation (1.22) was
obtained in order to satisfy the maximum discrete principle for some particular examples.

1.1.5 Transient problem

We now want to solve the following transient problem in Ω, from time 0 to time T : ∂tu + L(t)u = f(t) in Ω × (0, T ),
u = 0 on ∂Ω × (0, T ),
u = u0 in Ω × {0},

(1.23)

where operator L is defined by Equation (1.17)1, and could depend explicitly on time, as well as
the force term f .

The generalized trapezoidal rule

The time discretization is carried out using the generalized trapezoidal rule, i.e. a finite difference
scheme. Using such a rule, the weak formulation of the transient problem can be equivalently
obtained by first deriving the weak formulation of Problem (1.23) and then discretizing it in time,
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or first by performing the time discretization directly on Problem (1.23) before deriving the weak
formulation. For the sake of clarity, we choose the last option. Let us introduce a uniform partition
of the time interval [0, T ] and define

un+θ := θun+1 + (1 − θ)un,

δt := tn − tn−1,

δtu
n+θ :=

un+θ − un

θδt
.

where δt is the time step size and superscript n denotes the approximated solution at time nδt.
According to this integration rule, we have to solve the following equation for the unknown un+θ:

δtu
n+θ + Ln+θun+θ = fn+θ, (1.24)

from which we compute the solution at time step n + 1 as

un+1 = un +
un+θ − un

θ
. (1.25)

In Equation (1.24), L and f have to be calculated at time (n+θ)δt, as indicated by the superscript
notation. The stabilization techniques, ASGS as well as ADC, can be applied directly to the latter
system by replacing the residual (Luh − f) by (δtu

n+θ
h + Ln+θun+θ

h − fn+θ) in their respective
expressions. We now describe two practical integrations, namely the backward Euler and Crank-
Nicolson scheme. The details of their implementations can be found in [23].

The backward Euler approximation

The backward Euler approximation is obtained by choosing θ = 1. This approximation is of first
order in time and is unconditionally stable [24]. The discrete Galerkin formulation form of the
problem consists in finding, for each n ≥ 0, un+1

h ∈ Vh such that

(δtu
n+1
h , vh) + an+1(un+1

h , vh) − 〈fn+1, vh〉Ω = 0, ∀ vh ∈ Vh,

(u0
h, vh) = (u0, vh) ∀ vh ∈ Vh,

where the bilinear form an+1 is given by Equation (1.19) where all its terms are evaluated at time
n + 1.

The Crank-Nicolson approximation

When precise time integration is needed, it may be useful to use a second order scheme. Crank-
Nicolson approximation is of second order and corresponds to the choice θ = 1/2. The discrete
Galerkin formulation form of the problem consists in finding, for each n ≥ 0, u

n+1/2
h ∈ Vh such

that

(δtu
n+1/2
h , vh) + an+1/2(un+1/2

h , vh) − 〈fn+1/2, vh〉Ω = 0, ∀ vh ∈ Vh × (0, T ),

(u0
h, vh) = (u0, vh) ∀ vh ∈ Vh.
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Contrary to the Euler scheme, the solution at time n + 1 must be explicitly calculated using
Equation (1.25). The Crank-Nicolson scheme presents a singularity at t → 0. It is therefore
recommended to use the more dissipative backward Euler scheme during the first time iterations.

1.2 Incompressible flow Equations

This section studies the equations of motion of an incompressible fluid, namely the Navier-Stokes
equations. We first present the set of equations and introduce each one of the variables and physical
properties in play, which are the viscosity, the density, the pressure and the velocity of the fluid.
We briefly comment on some results on the existence and uniqueness of a solution to the equations.
Then we derive the form of the Navier-Stokes equations in a non-inertial frame of reference which
may be required when considering flows including moving objects. At this point, we are ready to
present a finite element formulation to solve general incompressible fluid problems.

1.2.1 Navier-Stokes Equations

Newton’s second law of motion is the starting point of the derivation of the governing equation for
a fluid as a continuum, the Navier-Stokes equations. A detailed derivation of these equations can
be found in [25]. They are:

ρ ∂tu + ρ(u · ∇)u − 2µ∇ · ε(u) + ∇p = ρf ,

∇ · u = 0,

together with appropriate boundary and initial conditions. u is the velocity of the fluid and p its
pressure; µ is the dynamic viscosity and ρ the density; ε(u) is the rate of deformation tensor given
by

ε(u) =
1
2
(∇u + ∇ut);

f is the vector of body forces (for example, gravity). These equations describe the motion of
an incompressible fluid, i.e. a fluid for which the density does not change significantly with the
pressure gradients in play. We expect the effects of compression to become important when the
velocity of the fluid approach the sound velocity, i.e. the velocity of propagation of the pressure
waves. In addition, we assume that the density is constant over the computational domain and is
insensitive to pressure variations.

The viscosity µ is a measure of the internal friction of the fluid and consequently depends on
the temperature of the fluid. Its mechanical role is to eliminate any local deformation. The value
of the viscosity for a specific fluid (gas or liquid) is usually measured experimentally as there do not
exist suitable theoretical arguments to derive an expression for general fluids. The expression for
the viscous term was first considered by Newton who recognized that in a parallel two dimensional
flow, the shear stress should be proportional to the rate of deformation. The interpretation of
the velocity u in an Eulerian context is simply the velocity of the fluid point measured at a given
position and at a given time. The variable p is the mechanical pressure. If we denote σ as the
stress tensor, then we have by definition

p := −1
3
σii.
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Figure 1.1: Partition of the contour of Ω.

It can be shown that ”minus the average of the normal component of the stress on a surface element
at a point over all directions of the normal n to the element” is precisely the pressure p, that is

− 1
4π

∫
σijninjdΩ(n) = −1

3
σii = p,

where dΩ(n) is an element of solid angle about n. This equation constitutes an intuitive definition
of the pressure. It should be pointed out that p is not a thermodynamic variable, although it can
be related to the thermodynamic pressure in some way (see the discussion in [25]).

The Navier-Stokes equations are solved in a domain Ω of dimension nd, together with appro-
priate boundary conditions on the contour Γ := ∂Ω. For example,

u = ug on ΓD × (0, T ),

σ · n = tn on ΓN × (0, T ),

u · n = 0, g1 · σ · n = t1,

g2 · σ · n = t2 on ΓM × (0, T ), (1.26)

u = u0 on Ω × {0},

where Γ = ΓN ∪ΓD ∪ΓM , n is the outward unit normal (see Figure (1.1)), g1 and g2 are the unit
vectors spanning the space tangent to ΓM , t1 = tt · g1 and t2 = tt · g2 are the components of the
tangential traction tt and σ is the stress tensor

σ = −pI + 2νε(u).

The prescription of tt can be known, for example, from a wall function law if the turbulence equa-
tions are to be solved. We assume that all the boundary conditions belong to the appropriate trace
spaces.

We now briefly introduce the problem of existence and uniqueness of a solution (u, p) to the
Navier-Stokes equations [26]. The first studies were carried out by Jean Leray, a French math-
ematician, in the 1930’s... but the proof of uniqueness of the solution in three dimensions still
remains an open problem...

Let us look for a solution in a domain Ω, during a time interval (0, T ). We assume that
appropriate boundary conditions are imposed, for example u = 0 on ∂Ω; initial conditions are
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prescribed with some required regularity and assumed to be solenoidal (divergence free); the domain
boundary is considered to be sufficiently smooth.

The general framework of study of the existence of a solution is the variational form of the
Navier-Stokes equations. The solution we seek is therefore weak, and this enables us to naturally
define its spatial and time regularity. In our framework, the solutions u and p we seek are in H1(Ω)
and L2(Ω) respectively, for all time t, and their energy are bounded in the time interval of study
in the sense that ∫ T

0

‖p‖2
0,Ω +

∫ T

0

‖u‖2
1,Ω < ∞.

For the transient problem, we have the following results:

• for 2D and 3D flows, there exists a solution;

• for 2D flows, this solution is unique;

• for 3D flows, uniqueness is an open problem!

In addition, it can be shown that for 3D flows, if a more-regular-than-necessary solution exists,
then it is unique. For the steady problem, we have to invoke the Reynolds number Re:

• for small Re, there exists a unique solution;

• for high Re, there exists at least one solution.

A good example of the existence of multiple stationary laminar solutions is the Couette-Taylor
flow [27]. The Couette-Taylor problem studies the flow between two cylinders in relative rotation.
It admits a laminar Couette solution at any Reynolds number, and when the Reynolds number is
sufficiently large, the flow becomes unstable and admits other stationary solutions. The way that
the flow bounces from one flow state to the other depends on the history of the flow. This is a
characteristic of non-linear problems.

1.2.2 Non-inertial frame of reference

Before proceeding, we lighten the Navier-Stokes equations by dividing the momentum equation by
ρ. We have:

∂tu + (u · ∇)u − 2ν∇ · ε(u) + ∇p = f ,

∇ · u = 0,

where ν is called the kinematic viscosity and p is now the kinematic pressure, i.e. the dynamic
pressure divided by the density.

The classical Navier-Stokes equations model flows in inertial (Galilean) frames of reference.
When the boundaries of the fluid are accelerated, it may be convenient to solve the Navier-Stokes
equations in the frame of reference in which these boundaries remain at rest. We know that the
Navier-Stokes equations express Newton’s second law, i.e. that the rate of change of momentum of
an element of fluid is equal to the sum of the forces acting on it. If the element of fluid is considered
in a non-inertial frame of reference, we must therefore add to the original list of forces the ones due
to the acceleration of the frame. We are now going to measure the effective acceleration a particle
of fluid P is undergoing when its referential is accelerated. Let e be an orthonormal basis of the
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Figure 1.2: Inertial frame to non-inertial frame transformation.

non-inertial frame, and let x the position vector of P , equivalently X in the inertial frame, such
that

x = xiei,

where the xi’s are the coordinates of P . We consider the following transformation:

X = T + x

= T + xiei,

where T is the position of the origin of e, as illustrated by Figure (1.2).
As mentioned earlier, we want to calculate the effective acceleration of P . Differentiating twice

the latter equation, we obtain

d2X

dt2
=

d2T

dt2
+

d2xi

dt2
ei + 2

dxi

dt

dei

dt
+ xi

d

dt

(
dei

dt

)
. (1.27)

The first term of the right-hand side is obviously the acceleration due to the movement of the
origin of the non-inertial basis e. The second term is the acceleration of P measured in e. Let
us now investigate the last two terms, involving movements of the non-inertial basis. Given an
infinitesimal rotation vector δθ, we can express an infinitesimal variation δei of ei, as

δei = δθ × ei,

for each i, as shown in Figure (1.3). Dividing last equation by δt, an infinitesimal increment of
time, and taking the limit to zero, we have that

dei

dt
=

dθ

dt
× ei.

We now define the angular velocity ω and linear acceleration aref vectors such that

ω =
dθ

dt
,

aref =
d2T

dt2
.
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Figure 1.3: Infinitesimal rotation of the non-inertial basis.

Owing to the latter three equalities, Equation (1.27) gives

d2X

dt2
= aref +

d2xi

dt2
ei + 2

dxi

dt

dei

dt
+ xi

d

dt
(ω × ei)

= aref +
d2xi

dt2
ei + 2ω × dxi

dt
ei +

dω

dt
× eixi + ω × (ω × eixi).

Introducing the velocity u measured in the non-inertial frame

u =
dxi

dt
ei,

and remembering that x = xiei, we finally find

d2X

dt2
= aref +

du

dt
+ 2ω × u +

dω

dt
× x + ω × (ω × x).

The effective acceleration of the particle now has the required form. As already stated, the first
term is the linear acceleration of the non-inertial basis. The second term is the acceleration mea-
sured in the non-inertial frame. The last three terms are due to the rotation of the non-inertial
axes: the first one of these rotation terms is the Coriolis force, the second one is the term due to
the acceleration of the angular velocity and the last one is the centrifugal force.

We are now ready to write down the Navier-Stokes equations in a non-inertial frame of reference.
We must add the relative acceleration to the acceleration of the particle measured in the non-inertial
frame of reference. The transient Navier-Stokes equations are

∂tu + (u · ∇)u + 2ω × u − 2ν∇ · ε(u) + ∇p = f , (1.28)

∇ · u = 0, (1.29)

where f is the vector of body forces, including the gravitational force, and the non-inertial terms:

f = g − aref − ω × (ω × x) − dω

dt
× x.
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1.2.3 Dimensionless form

As was done for the ADR equation, the Navier-Stokes equations can be non-dimensionalized. We
assume ω is constant and introduce the Reynolds number Re and the Ekman number Ek as

Re :=
UD

ν
,

Ek :=
ν

2|ω|D2
,

where D is a characteristic length and U a characteristic velocity. Then, the dimensionless Navier-
Stokes equations are:

∂tu + (u · ∇)u +
1

Re Ek
ω × u − 2

Re
∇ · ε(u) + ∇p = f ,

∇ · u = 0,

where u, p and f are now dimensionless velocity, pressure and force, respectively. The Reynolds
number is a measure of the relative importance of the convective effects and viscous effects, while
the Ekman number measures the relative importance of the viscous term and non-inertial term
due to rotation. The product (Re Ek) is known as the Rossby number.

1.2.4 Linearization and time discretization

Linearization

Equation (1.30) is non-linear because of the convective term. The linearization of this term can
be performed at the continuous level or at the variational level, they are both equivalent. We
introduce an iterative scheme, and denote by m the iteration number. We propose the following
linearization strategy:

[(u · ∇)u]m+1 ≈ (um · ∇)um+1 + β(um+1 · ∇)um − β(um · ∇)um

Taking β = 0, we obtain the so-called Picard method; taking β = 1 we obtain the Newton-Raphson
method. If convection is not too high, it can be shown that the Picard method converges linearly. If,
in addition, the initial solution is not too far from the exact solution, the Newton-Raphson method
converges quadratically. See for example [28] for the proofs. An efficient numerical strategy to
obtain a converged solution for a Navier-Stokes problem would consist in the following:

1. Solve the Stokes problem: this provides a unique initial solution.

2. Solve a few Picard iterations and take advantage of its robustness.

3. Switch to the Newton-Raphson method to accelerate the rate of convergence.
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Time discretization

Let us introduce a uniform partition of the time interval [0, T ] and define

un+θ := θun+1 + (1 − θ)un,

δt := tn − tn−1,

δtu
n+θ :=

un+θ − un

θδt
.

where we use the same notation as in the case of the ADR equation. According to this integration
rule, the time-discretized Navier-Stokes equations are solved as follows. Given an initial condition
u0, find un+1 and pn+1 for each n ≥ 0 such that

δtu
n+θ + (un+θ · ∇)un+θ + 2ωn+θ × un+θ − 2ν∇ · ε(un+θ) + ∇pn+θ = fn+θ in Ω,

∇ · un+θ = 0 in Ω,

with the following boundary conditions

un+θ = ug on ΓD,

σn+θ · n = tn on ΓN ,

un+θ · n = 0, g1 · σn+θ · n = t1,

g2 · σn+θ · n = t2 on ΓM ,

where tha data could depend on time and where each time dependent variable x satisfies

xn+1 = xn +
xn+θ − xn

θ
.

1.2.5 Finite element formulation

Let us introduce the following functional spaces:

V = {v ∈ H1(Ω)nd |v|ΓD
= 0, (v · n)|ΓM

= 0},

Q = L2(Ω),

U = {v ∈ H1(Ω)nd |v|ΓD
= ug, (v · n)|ΓM

= 0, t ∈ (0, T )},

P = {p ∈ L2(Ω) |
∫

Ω

p dΩ = 0 if ΓN = ∅, t ∈ (0, T )}.

The last space is the functional space for the pressure unknown. If the normal component of the
traction is not prescribed anywhere on the contour, then the pressure is only defined up to any
additive constant. This is why we require explicitly its average over Ω to be zero. Let us construct
the discrete linear subspaces Uh ⊂ U , Ph ⊂ P , Vh ⊂ V and Qh ⊂ Q from a partition of Ω in ne

elements. Let Uh = [uh, ph]t be the vector of nodal unknowns and V h = [vh, qh]t the associated
weight functions vector. We define

δtU
n+θ
h = [δtu

n+θ
h , 0]t.



36 CHAPTER 1. A FINITE ELEMENT METHOD FOR INCOMPRESSIBLE FLOWS

We now present the linearized and time-discretized Galerkin formulation. Thus we introduce
the two iteration indices presented earlier, the linearization index m and the time index n, and
denote xn+1,m+1 any variable considered at linearization step m + 1 and time step n + 1. The
linearization and time iterations are nested, the linearization obviously being the inner iterative
process; for the sake of clarity, we assume we use the Picard linearization. The discrete Galerkin
formulation of the problem reads as follows. Given un+θ,0

h = un ∈ Uh, for each time step n ≥ 0,
find for m = 0, 1, . . . until convergence, Un+1,m+1

h ∈ Uh × Ph such that

(δtU
n+θ,m+1
h ,V h) + an+θ,m(Un+θ,m+1

h ,V h) = ln+θ(V h), ∀ V h ∈ Vh × Qh, (1.30)

where the bilinear form and the force term are evaluated at time n + θ as

an+θ,m(U ,V ) = 2
∫

Ω

νn+θ,mε(u) : ε(v) dΩ +
∫

Ω

[(un+θ,m · ∇)u] · v dΩ

+
∫

Ω

q ∇ · u dΩ −
∫

Ω

p ∇ · v dΩ + 2
∫

Ω

(ωn+θ × u) · vdΩ,

ln+θ(V ) =
∫

Ω

fn+θ · v dΩ +
∫

ΓN

tn · v dΓ +
∫

ΓM

(t1g1 + t2g2) · v dΓ.

The viscosity remains in the integral as it can be directly substituted by the molecular viscosity
plus the eddy-viscosity when using a turbulence model.

It is well-known that the latter formulation can lack stability for three major reasons. The first
reason is related to the compatibility of the finite element spaces for the velocity and the pressure
which have to satisfy the so-called Ladyzhenskaya-Brezzi-Babus̆ka condition [29]. This condition
is necessary to obtain a stability estimate for the pressure; without requiring this condition, the
pressure would be out of control. The second reason is attributed to the relative importance of
the viscous and convective effects. It can be directly related to the instabilities caused by high
advection in the case of the ADR equation, as studied in Section 1.1.4. Finally, the third one
appears when the Coriolis force becomes important with respect to viscous effects. We will now
present a stabilized formulation, based on the ASGS model described in [18]. The method is
extensively described in [30] and [31].

The original Navier-Stokes system (1.28),(1.29) can be re-written in a compact form as

δtU
n+θ + Ln+θUn+θ = F n+θ in Ω,

where Ln+θU is defined as

Ln+θU :=
[

(a · ∇)u + 2ωn+θ × u − 2ν∇· ε(u) + ∇p
∇ · u

]
,

where a = u before linearization, and the force term is defined as

F n+θ =
[

fn+θ

0

]
.

The stabilized weak form reads: given un+1,0
h ∈ Uh, for each time step n ≥ 0, find for m = 0, 1, . . .



1.2. INCOMPRESSIBLE FLOW EQUATIONS 37

until convergence, Un+1,m+1
h ∈ Uh × Ph such that

(δtU
n+θ,m+1
h ,V h) + an+θ,m(Un+θ,m+1

h ,V h)

+
ne∑
e=1

∫
Ωe

(−L∗n+θV h)tτ e[δtU
n+θ,m+1
h + Ln+θUn+θ,m+1

h − F n+θ] = ln+θ(V h), (1.31)

∀ V h ∈ Vh × Qh, where the convection is taken from the previous linearization step, i.e.

a = un+θ,m,

and where L∗n+θ is the adjoint of Ln+θ given by

L∗n+θV :=
[

−(a · ∇)v − 2ωn+θ × v − 2ν∇· ε(v) −∇q
−∇ · v

]
.

τ is the matrix of stabilization parameters and is defined in each element as

τ e = diag(τ1I, τ2), where

τ1 =
(

c1ν

h2
e

+
c2|a|
he

+ c3|ωn+θ|
)−1

, (1.32)

τ2 = c4
h2

e

τ1
. (1.33)

I is the nd-dimensional identity. τ2 contributes to enforcing the incompressibility of the flow, which
is excessively relaxed by the term multiplied by τ1. The values of the constants we use are c1 = 4,
c2 = 2, c3 = 1, c4 = 1 and he is the characteristic element length. For quadratic elements, he is
taken as half of the element size.

1.2.6 Some finite elements

During this work we will consider two types of element using both equal order interpolation for
the velocity and the pressure. The Q1/Q1 element is continuous and bilinear (trilinear in three
dimensions) in both velocity and pressure. We will also work with the P1/P1 element, continuous
and linear in velocity and pressure. These elements do not satisfy the BB condition and therefore
require the use of stabilization.

1.2.7 Examples

Example 1: cavity flow

Through this example, we want to show the importance of the stabilization term involving the
incompressibility constraint, i.e. the term multiplied by τ2. We solve a square cavity flow at a
relatively high Reynolds number

Re =
UH

ν
= 5000,



38 CHAPTER 1. A FINITE ELEMENT METHOD FOR INCOMPRESSIBLE FLOWS

Figure 1.4: Cavity flow. (Left) Geometry and boundary conditions. (Right) Mesh.

Figure 1.5: Cavity flow. (Left) c4 = 0 in Equation (1.33). (Right) c4 = 1 in Equation (1.33).

where U is the velocity at the top of the cavity and H is the height of the cavity. The geometry
and boundary conditions are shown in Figure 1.4 (Left). This problem is solved using 900 Q1/Q1
elements, and the mesh is refined in the upper part of the cavity (see Figure 1.4 (Right)). As
sketched in Figure 1.4 (Left), we expect four main vortices at the center of the cavity and at
the top left, bottom left and bottom right corners. On way of verifying the fulfillment of the
incompressibility is to look at the streamlines. Figure 1.5 (Left) shows some streamlines in the
bottom right corner of the cavity taking τ2 = 0; we observe that some streamlines enter the bottom
wall. Figure 1.5 (Right) shows the same streamlines and confirms the improvement achieved on
the incompressibility constraint.

Example 2: stirred tank

We now study the importance of the stabilization of the rotation, i.e. the term involving the
magnitude of the angular velocity in Equation 1.32. We solve the Stokes problem on the sixth
part of a section of a stirred tank, shown in Figure 1.6 (Left), rotating at an angular velocity
ω = [0, 0, 1]t. The radius of the tank and the shaft are 1 and 0.4, respectively. The widths of the
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Figure 1.6: Stirred tank. (Left) Geometry and boundary conditions. (Right) Mesh.

blades are 0.1 and their radii are 0.8. The problem is solved in the rotating frame of reference so
the velocity is prescribed to u = −ω × x on the outer wall and to zero on the blades and shaft.
Periodic boundary conditions are imposed on the inflow and outflow of the domain (see [32] for
the details on the implementation of periodic boundary conditions). The reactor is meshed with
488 Q1/Q1 elements, as shown in Figure 1.6 (Right). For a rotating two-dimensional flow, the
centrifugal force can be absorbed by the pressure term. In fact, we have that

ω × ω × x = −1
2
∇(|ω × x|2).

In addition, we notice that

∇× (ω × u) = |ω|∇ · u = 0,

which means that the Coriolis term is the gradient of a function. Therefore, both the centrifugal
force and the Coriolis term can be included in the pressure term. This is possible because the flow
is confined; if it were not the case, then we could not impose a physical traction on the Neumann
contour. Hence, we expect the solution in velocity to be the same whatever the rotation is. This
enables us to use the velocity field for ω = 0 as a reference solution.

In order to test the stabilization in a critical situation, we choose ν = 10−9 which gives an
Eckman number based on the outer wall radius

Ek = 0.5 × 10−9.

We only present here the results of the velocity module along the symmetry line of the domain.
Figure 1.7 shows the improvement in the solution using the stabilization of the rotation. Note that
the formulation with c3 = 0 already includes some stabilization of the rotation. However, when
using the Galerkin method, the inestability when the Eckman number is very small appears much
clearer [33].
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Figure 1.7: Stirred tank. Velocity module on symmetry line for different values of c3 in Equation (1.32).

1.3 Turbulence Modelling

This section studies a simple approach to turbulence modelling. First, the need for modelling
turbulence is justified by physical considerations. The classical statistical method is introduced to
simplify the Navier-Stokes equations and prepare them to the introduction of turbulence models
known as Reynolds-stress turbulence models. Then we introduce the Boussinesq approximation to
model the Reynolds shear stress and present a one-equation turbulence model, namely, the Spalart-
Allmaras model, which provides a closure equation to compute for the eddy viscosity. Special
attention is paid to the boundary conditions to be imposed on the walls of the computational
domain. In particular, we derive a wall function approach to avoid solving the whole boundary
layer.

1.3.1 Why model turbulence?

The motion of a fluid is obtained from the principles of mass and energy conservation and the
fundamental principle of mechanics, namely Newton’s second law. As the Navier-Stokes equations
are the mathematical description of such a motion, it is expected that they can describe deter-
ministically the evolution of any fluid, provided its initial characteristics are prescribed. Hence
they are able to predict turbulence. This is a simple reason for hoping that the three-dimensional
transient solutions of the Navier-Stokes equations are unique.

Direct numerical simulations (DNS) solve the three dimensional and transient Navier-Stokes
equations. Obviously, the mesh must be fine enough to capture all the participating scales of the
flow, that is from the macroscopic scale (determined by the dimension of the domain) down to the
characteristic length scale of viscous dissipation. By performing simple dimensional analysis [34],
it can be estimated that the total number of degrees of freedom should be proportional to Re3/4

in each direction, i.e. Re9/4. Knowing that the time step size should in its turn be proportional
to the mesh size, we obtain that the total computational work to integrate the transient Navier-
Stokes equations grows like Re3/4 × Re9/4, i.e. Re3. Hence, the number of degrees of freedom
increases so drastically with the Reynolds number that DNS are far beyond our current computer
possibilities... One way of achieving a numerical solution of turbulent flows is to take advantage of
the random character of turbulence by using a statistical method. An instantaneous flow variable
f is decomposed into a mean part f and a fluctuating part f ′ as follows

f = f + f ′,
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Figure 1.8: A typical turbulent flow. (Left) Mean flow is stationary. (Right) Mean flow is transient.

where f is computed performing some averaging (the same definition holds for vectors). We define
here the time averaging operation as

f time(x) = lim
T→∞

1
T

∫ T

0

f(x, t)dt,

and the ensemble averaging, defined as

f ensemble(x, t) = lim
N→∞

1
N

N∑
n=1

fn(x, t),

where n denotes the n-th experiment of N identical experiments, all performed with the same
set-up and running conditions.

Although the concept of time averaging is more intuitive, the ensemble averaging has the great
advantage that any differential operation commutes with the summation sign. For a stationary
flow, the two averaging processes are assumed to be equivalent; this is called the ergodic hypothesis.
The mathematical properties of ensemble averaging are assumed valid while the physical analysis
is developed in the framework of time averaging (e.g. for comparisons or calibration of models
with experimental or DNS results). The generalization of time averaging to transient flow can be
done as long as two time scales can be distinguished: one for the fluctuation and one for the mean
flow. This is schematized in Figure 1.8. On the one hand, Figure 1.8 (Left) shows the signal of
typical stationary turbulent flow at a given point. On the other hand, Figure 1.8 (Right) shows
a transient turbulent flow, where the time scale of the large scale variation is much greater than
that of the turbulent fluctuations.

Decomposing the velocity and pressure fields as explained before,

u = u + u′,

p = p + p′,

an averaged solution of the Navier-Stokes equations can be obtained; the resulting equations are
referred to as the Reynolds averaged Navier-Stokes equations (RANS) and were first derived by
Reynolds in 1895. They are:

∂tu + (u · ∇)u −∇ · (2νε(u) − τ ) + ∇p = f , (1.34)

∇ · u = 0, (1.35)
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where τ is called the Reynolds stress tensor. Its components are associated with the correlations
between the fluctuation velocities and originate from the non-linear term of the Navier-Stokes
equations, the convective term. Its components are:

τ ij = −u′iu′j .

The Reynolds stress has six independent components, for which coupled differential equations
can be derived. However, the non-linearity of the Navier-Stokes equations generates higher order
correlations terms, including pressure-velocity correlations: this is the so-called closure problem.
Approximations are therefore needed to solve this closure problems. The models emerging from
this stochastic approach and modelling τ are called Reynolds stress closure models (see [35] for a
complete review). An excellent introduction to the modelling of turbulence can be found in [36].

1.3.2 The Boussinesq approximation

For practical engineering applications, approximations are needed to avoid solving the six addition
equations for the Reynolds stress tensor. Before making any assumption regarding the modelling of
the Reynolds stress, it is worth recalling some important physical and mathematical requirements:

• It is known from experience that turbulent effects are more likely in zones of strong velocity
gradients; the Reynolds stress would be related to the mean strain velocity tensor ε(u).
Assuming that its deviatoric part is proportional to ε(u) is the Boussinesq approximation
[37].

• The Reynolds stress tensor must be symmetrical, i.e. τ = τ t.

• It must yield positive energy components, i.e. u′iu′i ≥ 0 ∀ i = 1, 2, 3. This is known as
realizability.

• It must be Galilean invariant.

• It should leave the RANS equations invariant under translation and rotation.

• It must yield similitude under the Reynolds number.

• The fluctuating momentum equations are invariant under an arbitrary translational accel-
eration. Within the limit of two dimensional turbulence, the Reynolds stress should be
completely frame indifferent (see [38] and [39]).

Following the Boussinesq eddy-viscosity approximation, as stated by the first item, the Reynolds
stress is modelled as:

τ = 2νtε(u) − 2
3
kI, (1.36)

where νt is the isotropic eddy-viscosity and I is the nd-dimensional identity. This model is called
isotropic because the eddy-viscosity is a scalar. While the validity of the symmetry is evident
(from the symmetry of the strain rate tensor), the normal stress components resulting from the
Boussinesq eddy-viscosity approximation could violate realizability if νt is not chosen properly.

The term k is defined as a positive quantity such that, by contraction of the later equation,

k =
1
2
u′ · u′;
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with obvious meaning, k is called the specific turbulence kinetic energy. The proof of translational
and rotational invariance can be found in [40]. The Galilean invariance as well as the similitude
under the Reynolds number are easy to check. The two-dimensional invariance is treated in [38]
and [39].

For the sake of clarity, we drop the overline sign used to identify averaged variables. Then,
the Reynolds-averaged equations together with Boussinesq eddy-viscosity approximation given by
Equation (1.36) are

∂tu + (u · ∇)u + 2ω × u − 2∇ · [(ν + νt)ε(u)] + ∇p∗ = f ,

∇ · u = 0,

where νt is the kinematic eddy-viscosity and

p∗ = p +
2
3
k,

k being the turbulence kinetic energy. Note that when using p∗ as the independent pressure
variable, it is not possible to prescribe boundary conditions involving the physical pressure p, such
as in the case in which the traction is prescribed (e.g. prescription of the atmospheric pressure). At
most, the prescription of the traction will be an approximation to the real one. When computing
forces however, p∗ is the pressure variable to consider as the term 2/3k acts as an additional
normal stress. These equations are the RANS equations, in their divergence form (the viscous
term is computed using the strain rate tensor).

1.3.3 Spalart-Allmaras model

The turbulence model chosen to compute the eddy-viscosity is a one-equation turbulence model,
namely the Spalart-Allmaras turbulence model [41], referred to as SA from now on. This model
was devised “using empiricism and arguments of dimensional analysis, Galilean invariance, and
selective dependence on molecular viscosity”. It involves an eddy-viscosity variable ν̃, related to
the eddy-viscosity νt by:

νt = fv1 ν̃, with (1.37)

fv1 =
χ3

χ3 + c3
v1

, χ :=
ν̃

ν
.

The transport equation for ν̃ is:

∂ν̃

∂t
+ u · ∇ν̃ = cb1 S̃ν̃ +

1
σ
∇ · [(ν + ν̃)∇ν̃] +

cb2

σ
(∇ν̃)2 − cw1fw

ν̃2

d2
, (1.38)

where d is the shortest distance to the wall and κ is the Von-Karman constant. The constants
of the model are given later on. Equation (1.38) is not the original SA model. For the sake of
clarity, some terms have been voluntarily omitted. The laminar region and transition cannot be
simulated using the version presented previously; see the original publication of the authors for
more information [41].
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The function fw is given by

fw = g

[
1 + c6

w3

g6 + c6
w3

] 1
6

, with

g = r + cw2(r
6 − r), r :=

ν̃

S̃κ2d2
.

g can take relatively high values, so it is preferable to compute fw as

fw =
[

1 + c6
w3

1 + c6
w3

/g6

] 1
6

.

The production term, the first term of the right-hand side of (1.38) involves the quantity S̃
which is a function of the magnitude of the vorticity S and is given by

S̃ := S +
ν̃

κ2d2
fv2 , fv2 = 1 − χ

1 + χfv1

,

with

S =
√

2Ω(u) : Ω(u), and

Ω(u) =
1
2
(∇u −∇ut).

When the frame of reference is rotating at an angular velocity ω, the velocity gradients ∇u should
be replaced by ∇u + Ω′, where Ω′ is the anti-symmetric tensor associated with ω:

Ω′
ij = ekjiωk,

where ekji is the permutation “tensor”. Therefore, Ω(u) transforms into:

Ω(u) =
1
2
(∇u −∇ut) + Ω′.

The values of the constants of the model are

cb1 = 0.1355, cb2 = 0.622, σ = 0.667, cv1 = 7.1, κ = 0.41,

cw1 = cb1/κ2 + (1 + cb2)/σ, cw2 = 0.3, cw3 = 2.0.

As mentioned earlier, the original model contains laminar and transition corrections. The first
correction enables us to predict laminar flows with the solution ν̃, while the second one enables us
to simulate the boundary-layer transition [41]. These corrections are not of interest in our case as
they are only effective if the governing equations have to be solved up to the wall.

1.3.4 Boundary conditions

The inflow condition ν̃∞ is computed using Equation (1.37) from an inflow value of ν̃t given as a
fraction of the kinematic laminar viscosity. At the outflows, we impose

∇ν̃ · n = 0.
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Figure 1.9: Local system on the boundary ΓM .

Classical approach

The classical approach consists in imposing the eddy viscosity to zero on the walls. However, for
practical flows with high Reynolds numbers, the resolution of SA equations would require too many
grid points in the normal direction to the wall. In order to avoid solving the whole boundary layer,
we introduce a wall function approach.

Wall function approach

The RANS and turbulence equations can be solved using the wall function approach on the bound-
ary of the computational domain. The wall function approach implemented in this work consists
in assuming that the computational wall is located sufficiently far from the real wall where the
no-slip condition for the velocity holds, in order to avoid solving for the large gradients present in
the boundary layer. Then we use a model equation for the traction together with a non-penetrating
condition for the velocity (zero normal component) as well as a model equation for the eddy vis-
cosity. Various methods have been proposed to implement the wall functions; see e.g. [42] for their
application to two-equation turbulence models, [43] for their application to the present turbulence
model and [44] for a general discussion. A possible alternative is now presented.

The wall functions are imposed on the boundary ΓM , as given by Equation (1.26). In the
following, variables on ΓM are identified with a hat. The distance at which the boundary ΓM is
located from the real wall is assumed to be known and is a user-defined value ŷ; here y refers to
the distance normal to the wall. This approximation is equivalent to considering that the wall is
virtually inside the computational domain, at a distance ŷ from ΓM , as schematized by Figure
(1.9).

Following [42], another possibility would be to impose the dimensionless ŷ+ rather than its
dimensional counterpart. Remember that

ŷ+ :=
ŷU∗
ν

, (1.39)

where U∗ is the friction velocity, defined as

U∗ =
√

τwall

ρ
, (1.40)

where τwall is the wall shear stress. However, this method would place the real wall at a varying
physical distance along ΓM , with possible infinite corresponding ŷ when U∗ reaches zero, which oc-
curs near stagnation points. On the other hand, the method proposed in this work gives no control



46 CHAPTER 1. A FINITE ELEMENT METHOD FOR INCOMPRESSIBLE FLOWS

on ŷ+. Although the wall functions presented here can be used up to the wall, the coarse meshes
generally accompanying the method would not permit them to capture the near-wall gradients.

Let (g1,n) (or (g1, g2,n) in three dimensions) be the local basis of the current wall point on
ΓM (see Figure (1.9)), û its velocity, and define Û+ as:

Û+ =
|û|
U∗

. (1.41)

Remember that û is automatically tangential to ΓM as zero-normal velocity is imposed on ΓM

(see Equation (1.26)). The law of the wall for smooth walls is mainly divided into three zones,
namely the viscous sublayer, the buffer zone and the turbulent zone. The so-called Reichardt’s law
relates Û+ and ŷ+ within these three zones as:

Û+ =
1
κ

ln (1 + 0.4ŷ+) + 7.8
[
1 − exp

(
− ŷ+

11

)
− ŷ+

11
exp (−0.33ŷ+)

]
. (1.42)

Using (1.41) and performing a Newton-Raphson scheme for the latter equation enables one to
estimate U∗, the value of û is known from a previous iteration. Knowing U∗, we model the
tangential traction as

tt = −U2
∗

|û| û, (1.43)

and impose it as a natural boundary condition of the Navier-Stokes equations (Equation (1.26))
with

t1 = tt · g1, and

t2 = tt · g2 for 3D flows.

tt is the shear stress exerted on the fluid by the computational wall which slows down the flow, and
this justifies why tt points in the opposite direction of the local velocity. In addition, recall that
the law of the wall was devised for two-dimensional flows. It is known that the velocity component
parallel to the wall shear-stress follows the two-dimensional law of the wall. By imposing equation
(1.43), the velocity is aligned with the total shear stress; note that only the magnitude of the wall
shear-stress can be estimated. This choice raises another controversy. The law of the wall for the
velocity is deduced by assuming the following relation

U+ = f(y+), (1.44)

Equation (1.44) states that the velocity scales with the wall shear-stress twall = ρU2
∗ . However,

we have just imposed Equation (1.43) which states that the local shear-stress tt is aligned with
the velocity; in fact we had no other choice as we have only information on the magnitude on the
characteristic velocity of the wall zone but no physical information on its direction.

Remark 1.2. The wall boundary condition is non-linear as it depends on |û|; this non-linearity
is coupled with the non-linearity due to the convective term of the Navier-Stokes equations.

Remark 1.3. The value of ŷ is unknown and can only be estimated a priori. It could be calculated,
for example, as a fraction of the distance to the first node off the wall. In this work, it is taken to
be constant and adjusted in order to be around ŷ+ = 30 as an average along the walls. Remember
that the high-Reynolds number version of SA model is only valid outside the buffer zone.
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Remark 1.4. The distance to the wall must be corrected to d + ŷ; this is the value used in Equa-
tion (1.38).

The wall condition for ν̃ is computed by first imposing a value for ν̂t. The classical mixing
length hypothesis is used together with Van-Driest damping function, i.e.

ν̂t = l2mix|n · ∇̂ug|,

lmix = κŷ+

[
1 − exp

(
− ŷ+

26

)]
, (1.45)

where

ug = |u · g1| for 2D flows,

ug =
√

(u · g1)2 + (u · g2)2 for 3D flows,

is the tangential velocity. Equation (1.45) corresponds to the inner-layer equation of Baldwin-
Lomax model, approximating the magnitude of the vorticity by |n · ∇̂ug|. The term n · ∇̂ug is the
normal derivative of the tangential velocity. The latter equation can be re-expressed in terms of
the dimensionless quantities as:

ν̂+
t = κ2(ŷ+)2

[
1 − exp

(
− ŷ+

26

)]2
dÛ+

dŷ+
, ν̂+

t =
ν̂t

ν
, (1.46)

where dÛ+/dŷ+ is obtained by deriving Reichardt’s law (1.42). Finally, the value ̂̃ν of ν̃ on ΓM is
calculated by solving Equation (1.37) using a Newton-Raphson method.

Performing an asymptotic expansion [45] to the first order of the inner-layer of the Navier-Stokes
equations, and using the Boussinesq approximation, we find that

(1 + ν+
t )

∂u+

∂y+
= 1. (1.47)

This equation states that in the inner region, the total friction is constant and is equal to its value
on the wall, even in the presence of pressure gradients. It can be solved by substituting the value
ν+

t given by the law of the wall (1.46). From there, two different results can be obtained from the
integration of (1.47). The first one, referred to as “our wall-law asymptotic-expansion integration”
uses ∂U+/∂y+ = dU+/dy+ obtained by deriving Equation (1.42) with respect to y+. The second
one uses ∂U+/∂y+ without any approximation. Note that in this case, the corresponding PDE
for (1.47) involves the square of the velocity derivatives. This result will be referred to as “exact
asymptotic-expansion integration”. Knowing that U+ = 0 at y+ = 0, Equation (1.47) can be
integrated numerically for both methods and compared to Reichardt’s law. This is shown by
Figure (1.10). According to the figure, it can be concluded that the laws of the wall used for the
velocity and the eddy-viscosity (Equations (1.43) and (1.46)) are compatible with the first-order
asymptotic expansion of the inner region.
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Figure 1.10: Comparison of U+-profiles in the inner layer.

An estimate for ŷ

As will be shown in the numerical examples, the estimation of the distance ŷ from the real wall to
the computational wall is of primary importance when using the wall function approach. This is
so that the computational wall lies in the desired fully turbulent zone, which is where we expect
the law of the wall to be valid (say in the range y+ ∈ (30, 80)). We propose two estimates for ŷ,
one for internal flows and another for open flows.

For a fully-developed channel flow at high Reynolds number (104 to 107), the friction coefficient
follows the so-called Halleen and Johnston’s correlation [46]:

cf = 0.0706Re−1/4.

where the Reynolds number is based on the channel height H and the averaged velocity U . By
definition,

cf = 2
U2
∗

U2
.

Hence, from the definition of y+ (Equation (1.39)), we have that

ŷ

H
= 5.323ŷ+ Re−7/8. (1.48)

Figure (1.11) (Left) shows the variation of the dimensionless distance where the computational
wall should be located, with respect to the Reynolds number, and for various ŷ+. This provides a
good estimate for the ŷ to be chosen.

For an open flow, we could estimate ŷ by choosing the skin friction coefficient obtained for a
turbulent flow over a flat plate,

cf = 0.074Re−1/5,

where Re is the Reynolds number based on the length � of the flat plate. Last formula is valid for
Re from 105 up to 107. We obtain in this case

ŷ

�
= 5.199 ŷ+ Re−9/10. (1.49)
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Figure 1.11: A first guess for ŷ. (Left) Bounded flows. (Right) Open flows.

Figure (1.11) (Right) gives the guess for ŷ, for different ŷ+, as a function of the Reynolds number.
The two estimates we have derived can be viewed as upper bounds as, in general, pressure

gradients will tend to decelerate the flow in the wall region. Still, although the value of ŷ is
problem dependent, Equations (1.48) and (1.49) can provide a good indication for the numerical
experimentalist, as the numerical examples will show. Let us just mention that a simple scheme
could help to adjust the value ŷ iteratively within the program, in order to obtain an average value
of ŷ+ in the desired range.

1.3.5 Linearization

Before deriving the Galerkin formulation of the problem we have to linearize the SA equation. This
stationary transport equation for the eddy-viscosity variable ν̃ is an advection-diffusion-reaction
equation of the form

u · ∇ν̃ −∇ · (ε∇ν̃) + sν̃ = f.

We have shown in Section 1.1.3 that, in the simple case ν̃ = 0 on Γ, this equation is ’well behaved’
when ε and s are both positive. In this case, the bilinear form associated to the problem is coercive
and the finite element approximation to the problem is in principle possible for any positive value of
ε and s (see in particular Equation (1.14)). Following this indication, the SA equation is linearized
as follows:

∂ν̃m+1

∂t
+ u · ∇ν̃m+1 + cw1fw

ν̃m

d2
ν̃m+1 − 1

σ
∇ · [(ν + ν̃m)∇ν̃m+1]

=
cb2

σ
(∇ν̃m)2 + cb1 S̃ν̃m,

(1.50)

where the superscript m stands for the iteration number. In practice, in order to enable convergence
classical under-relaxation is introduced and several relaxation iterations are performed. We now
present the stabilized finite element formulation.

1.3.6 Time discretization

The time derivative is approximated by a backward-Euler or Crank-Nicolson scheme, as presented
in Section 1.1.5.



50 CHAPTER 1. A FINITE ELEMENT METHOD FOR INCOMPRESSIBLE FLOWS

1.3.7 Finite element formulation

We split the Dirichlet boundary ΓD which was defined when dealing with the Navier-Stokes equa-
tions into an inflow and a wall component, ΓD,∞ and ΓD,wall, respectively, such that ΓD =
ΓD,∞ ∪ ΓD,wall. Let us introduce the following functional spaces:

Ψ = {φ ∈ H1(Ω) |φ|ΓD
= 0},

Φ = {φ ∈ H1(Ω) |φ|ΓD,∞ = ν̃∞, φ|ΓD,wall = 0},

for the classical approach (integration up to the wall), and

Ψ = {φ ∈ H1(Ω) |φ|ΓD∪ΓM
= 0},

Φ = {φ ∈ H1(Ω) |φ|ΓD
= ν̃∞, φ|ΓM

= ̂̃ν},
for the wall function approach. Let us construct the functional linear subspaces Φh ⊂ Φ and
Ψh ⊂ Ψ from the partition of Ω. The finite element formulation for solving equation (1.50) is
the variational subgrid scale model described in 1.1.4. The finite element algorithm reads as
follows: Given ν̃n+1,0

h ∈ Φh, for each time step n ≥ 0, find for m = 0, 1, . . . until convergence,
ν̃n+1,m+1

h ∈ Φh such that

∫
Ω

ν̃n+θ,m+1
h

θδt
φh dΩ +

∫
Ω

(uh · ∇ν̃n+θ,m+1
h )φh dΩ +

∫
Ω

s ν̃n+θ,m+1
h φh dΩ

+
∫

Ω

ε∇ν̃n+θ,m+1
h · ∇φh dΩ +

∫
Ω′

τ3(uh · ∇ν̃n+θ,m+1
h )(uh · ∇φh) dΩ =

∫
Ω

fφh dΩ

+
∫

Ω

ν̃n
h

θδt
φh dΩ −

∫
Ω′

τ3(∇ε · ∇φh − sφh + ε∆φh −∇ε · ∇φh)Rν̃n+θ,m
h dΩ

−
∫

Ω′
τ3(uh · ∇φh)(Rν̃n+θ,m

h − uh · ∇ν̃n+θ,m
h ) dΩ ∀ φh ∈ Ψh.

We have introduced the following variables computed using the values of the eddy-viscosity variable
at the previous linearization step

ε =
1
σ

(ν + ν̃n+θ,m
h ),

s = cw1fw
ν̃n+θ,m

h

d2
,

f =
cb2

σ
(∇ν̃n+θ,m

h )2 + cb1 S̃ν̃n+θ,m
h ,

and where Rν̃n+θ,m
h is the residual of the discrete counterpart of the SA equation defined as

Rν̃n+θ,m
h :=

ν̃n+θ,m
h − ν̃n

h

θδt
+ uh · ∇ν̃n+θ,m

h −∇ · (ε∇ν̃n+θ,m
h ) + sν̃n+θ,m

h − f.
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Note that the ASGS term involving the convection of ν̃ is integrated into the left-hand side. The
value for τ3 is given by

τ3 =
(

c1

h2
e

ε +
c2

he
|uh| + s

)−1

,

where c1 = 4 and c2 = 2.

Remark 1.5. In order to avoid local oscillations, the discontinuity-capturing crosswind dissipation
presented in Section 1.1.4 can be used.

1.3.8 Numerical strategy

The complete numerical strategy used to solve the coupled RANS and SA equations using the
integration up to the wall is shown in Algorithm 1.1.

Algorithm 1.1 Solution of the RANS/SA equations: classical approach
for all time steps do

while stopping criterion not reached do
Solve the RANS equations
Solve several times the SA equation using under-relaxation
Update the eddy viscosity

end while
end for

The numerical strategy used to solve the coupled RANS and SA equations using the wall
function approach is summarized in Algorithm 1.2.

Algorithm 1.2 Solution of the RANS/SA equations: wall function approach
As an initial guess, let tt = 0 on ΓM

for all time steps do
while stopping criterion not reached do

Solve the RANS equations
Knowing û on ΓM , find U∗ using Reichardt’s law (1.42)
Compute ν̂+

t on ΓM using Equation (1.46) and deriving Equation (1.42)
Compute the corresponding value of ν̃ on the wall from Equation (1.37)
Solve several times the SA equation using under-relaxation
Compute tt from Equation (1.43)
Update eddy-viscosity

end while
end for

1.4 Examples

We now present three numerical examples. The first one solves the channel flow at a relatively small
Reynolds number, for which DNS data are available. The next example is the backward facing
step in which we test the behavior of the wall function approach in the presence of separation.
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Finally we solve the transient flow past a square cylinder. In all these examples, x and y are the
streamwise and crosswise directions respectively, and u and v are their respective averaged velocity
components. At the inflows, we prescribe a uniform flow given by

u = U,

v = 0,

νt = νt,∞,

where U and νt,∞ depend on the problem. At the outflows, we impose

σ · n = 0,

∇ν̃ · n = 0.

In addition, the symmetry lines are always parallel to the x-axis. They belong to ΓM for the RANS
equations and to ΓN of the SA equation. On these lines we impose

g1 · σ · n = t1 = 0,

u · n = v = 0,

∇ν̃ · n = 0,

where g1 is a tangent vector to the symmetry line (it is parallel to the x-axis).

1.4.1 Fully developed channel flow

We solve a fully developed turbulent channel flow. Let 2H be the height of the channel and U be
the uniform inflow velocity (bulk velocity). The geometry is shown in Figure 1.12 together with
the boundary conditions. The channel flow is solved at the following Reynolds number

Figure 1.12: Channel flow. Geometry.

Re =
2HU

ν
= 13 750,

and the results of the SA model are going to be compared with the theoretical results as well as
the DNS results of Mansour et al. [47].
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The RANS and SA equations are solved using the Q1/Q1 element on three different meshes,
adapted near the wall. We denote h as the average element length in the vertical direction. Mesh
1 has 10 elements in the vertical direction, Mesh 2 has 30 elements and Mesh 3, 60 elements.
The channel is taken to be sufficiently long to let the flow develop (100H). Before presenting the
results, let us mention that the shock capturing strategy is not necessary for the iterative scheme
to converge.

We now derive the fully-developed channel flow equations. Our starting point are the RANS
equations (1.34) and (1.35). We define u, v, w as the averaged components of the velocity field
and u′, v′, w′ as the fluctuating components; p is the averaged pressure. Assuming a 2-D steady
and fully-developed flow, we set:

∂u

∂x
=

∂v

∂x
=

∂w

∂x
= 0,

∂(·)
∂z

= 0,

w = 0.

Hence, the momentum equation gives

u = u(y).

while the continuity equation becomes

∂u

∂x

/
+

∂v

∂y
+

∂w

∂z

/
= 0,

which after applying the no-slip condition at the wall gives

v = 0.

Simplifying the RANS equations according to the previous results, we have:

x-momentum: 0 = −∂p

∂x
+

∂

∂y

(
µ

∂u

∂y
− u′v′

)
, (1.51)

y-momentum: 0 =
∂

∂y
((v′)2 + p),

z-momentum: 0 =
∂

∂y
(u′w′).

We drop the third equation as it is unnecessary to compute the two-dimensional field we are
interested in. Let us present some results concerning the friction coefficient. The y-momentum
equation states that

p(x, y) + (v′)2(y) = f(x), (1.52)
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where f(x) is a function of x only. Hence, by denoting pwall as the value of the pressure at the
wall, and knowing that the fluctuation velocity is zero on the wall due to the no-slip condition,
Equation (1.52) can be rewritten as

p(x, y) + (v′)2(y) = pwall(x)

and therefore

∂p(x, y)
∂x

=
dpwall(x)

dx
.

Integrating the x-momentum Equation (1.51) with respect to y and substituting the last equa-
tion we obtain

ν
du

dy
− u′v′ =

dpwall(x)
dx

y + c(x), (1.53)

where c(x) is a function of x only. At the symmetry line (y = H), the Reynolds stress tensor
component u′v′ and du/dy must vanish and hence, we have that

c(x) = −dpwall(x)
dx

H.

Since u′v′ is also zero at y = 0 (no-slip condition), Equation (1.53) gives for the wall shear stress

τwall = µ

∣∣∣∣du

dy

∣∣∣∣
wall

= ρH

∣∣∣∣dpwall

dx

∣∣∣∣
which upon substituting into Equation (1.40)

U∗ =

√
H

ρ

∣∣∣∣dpwall

dx

∣∣∣∣ (1.54)

or, equivalently

U∗ =

√
ν

∣∣∣∣du

dy

∣∣∣∣
wall

(1.55)

The friction coefficient (or skin friction) is by definition

cf = τwall/(
1
2
ρU2)

and can therefore be directly calculated from the evaluation of the friction velocity:

cf = 2
U2
∗

U2

We therefore have two ways of evaluating cf , using the pressure drop (Equation (1.54)), or using
the wall shear stress (Equation (1.55)). Figure 1.13 (Top) (Left) shows the results obtained for
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Figure 1.13: Channel flow. Results of the three meshes. (Top) (Left) Friction coefficient. (Top) (Right)
Law of the wall. (Bot.) (Left) Reynolds shear stress. (Bot.) (Right) Mean velocity.

cf , calculated in both ways, as a function of the mesh size h, and compare them to the friction
coefficient calculated using Halleen Johnston’s correlation,

cf = 0.0706 Re−1/4 ≈ 6.52 × 10−3.

We observe that for a fine mesh, the integration to the wall gives reasonable results while it fails
for the very coarse mesh.

Table 1.1 gives information on the grid point spacing in the near wall region. Note that the
first grid point of the very coarse mesh falls very high in the law of the wall.

Mesh y/H first node y+ first node Nodes with y+ ≤ 10
1 0.06274 16.2 0
2 0.00608 2.5 4
3 0.00032 0.1 23

Table 1.1: Grid spacing in the near wall region.

Figure 1.13 gives some profiles obtained. In Figure 1.13 (Bot.) (Right), we can appreciate that
for the very coarse mesh, the mean velocity profile is not well captured. When using finer meshes,
the results are in good agreements with DNS data. For these meshes, i.e. Mesh 2 and Mesh 3, the
Reynolds shear stress as well as the law of the wall are well captured, as confirmed by Figures 1.13
(Top) (Right) and (Bot.) (Left). The first grid point of Mesh 1 is located around y+ = 10, while
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Figure 1.14: Backward facing step. (Left) Geometry. (Right) Detail of Mesh 2.

that of Mesh 2 and 3 are located much closer to the wall, at y+ = 1 and y+ = 2, respectively. Let
us mention that as we do not assume any law of the wall, the friction velocity is calculated using
a simple difference scheme in the first layer of elements; this explains the quite big departure from
the law of the wall, shown in Figure 1.13 (Top) (Right).

1.4.2 Backward facing step

The backward facing step is a great challenge for turbulence models, as well as for the associated
numerical strategies. In this work, it will be used to study the influence of the inflow condition
νt,∞ and the wall-function parameter ŷ used in the wall function approach. The step height is H,
the channel height 2H, the channel entrance is 6H-long and the total length of the computational
domain is 50H. The inlet velocity profile is uniform such that u = (U, 0). Figure 1.14 (Left) shows
the geometry of the problem.

Note that the entrance length is too short to let the flow develop before the step entrance: it
should be pointed out that we expect that this enhances the effects of the inflow conditions. The
Reynolds number is

Re =
UH

ν
= 70 000.

As in the previous test case, the backward facing step is solved using three different meshes
of Q1/Q1 elements. Mesh 1 has 550 elements, Mesh 2 has 2000 elements, and Mesh 3 has 8000
elements. A detail of Mesh 2 in the step corner is shown in Figure 1.14 (Right). The shock
capturing technique is necessary for this test case as well as under-relaxation of the eddy-viscosity.
Figure 1.15 shows a typical convergence history obtained using the Picard method as linearization
technique for the convective term.

Before starting the computation, we want to estimate ŷ. Taking formula (1.48) for y+ = 50,
we find that ŷ/H ≈ 1.5%. Taking into account that in the region of interest, i.e. the step corner,
the friction velocity is expected to be smaller, we will take this estimate as a minimum value. Nu-
merical experiments show that the greater ŷ/H, the better the convergence. Also, the integration
to the wall seems to be much more robust that the wall function approach.

The first results were obtained on Mesh 2. Table 1.2 shows the variation of the recirculation
length l versus the inflow condition for the eddy-viscosity νt,∞. The table also shows the effect of
the boundary condition imposed on the corner of the step entrance, located at (6H,H). In fact,
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Figure 1.15: Backward facing step. Convergence history.

ŷ/H (%) νt,∞/ν l/H
WF vert. WF zero WF horiz.

4.0 1 7.2 6.6 5.6
4.0 10 7.2 6.6 5.6
4.0 100 6.9 6.6 5.6
4.0 1000 6.9 6.3 5.6
2.0 100 7.8 6.9 6.1
4.0 100 7.2 6.6 5.6
8.0 100 6.4 6.0 5.0
[49] standard k-ε with WF 6.6
[49] standard k-ω with WF 4.8
[48] experiments 7.0

Table 1.2: Recirculation length for Mesh 2.

the normal at this point is not well defined. When using the wall function approach, we therefore
have three choices. Let the flow go vertical (denoted vert. in the table), impose a zero velocity
(zero in the table), or let it go horizontal (horiz. in the table).

We now study the influence of the eddy-viscosity inflow condition. The more diffusive the flow,
the more quickly the momentum of the incoming flow will dissipate down to the wall, and the
shorter the recirculation length. This is precisely what is measured, although the dependence on
the inflow eddy-viscosity is very light. That is good news!

We notice that the boundary condition at the step entrance is really important. If the stream-
wise velocity is slowed down approaching the corner point, i.e. if du/dx < 0, then from the
continuity equation, the vertical component must increase. This means that when the horizontal
component of the velocity is zero at the corner, the flow will rise up when approaching it, and
therefore the recirculation length is expected to be greater. The table confirms this remark.

The results exhibits a high sensitivity of the recirculation length to the wall distance ŷ. We
obtain variations of up to 20% for ŷ/H = 2.0 to ŷ/H = 8.0. As an indication, the experimental
recirculation length is 7.0 ± 1h and is taken from [48]; we also give the results by Soto [49].

Table (1.3) shows the mesh dependence of the results. When the mesh is refined, the effects
of the boundary condition at the step entrance diminish. It also compares the results obtained
when integrating the SA and RANS equations up to the wall, to get an insight of how the model
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Wall treatment Mesh 1 Mesh 2 Mesh 3
WF vert. 9.3 7.2 6.3
WF zero 8.2 6.6 6.0
WF horiz. 5.9 5.6 5.7
Up to the wall 5.9 5.5 5.4

Table 1.3: Recirculation length l/H for νt,∞/ν = 100 and ŷ/H = 4%.

behaves in the worst situation. With respect to the wall function approach, the model exhibits
a much weaker dependence on the mesh size. The recirculation is under-predicted, but remains
reasonable. The results of this table should be compared to those given in Table 1.2.

Figure 1.16 shows the results obtained with the SA model for two different values of ŷ. The
top graphs give the variation of y+ along the bottom wall of the channel beyond the step. The
simulation using ŷ/H =8% yields values of y+ much larger than the recommended value of 30. The
second simulation, performed with ŷ/H =2%, yields acceptable values of y+ all along the wall.

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60
Distance

y+

25

50

75

100

125

150

175

200

225

250

275

300

0 10 20 30 40 50 60
Distance

y+

Figure 1.16: Backward facing step. νt,∞/ν = 100. (Top) (Left) y+ along bottom wall for ŷ/H = 2%.
(Bot) (Left) Streamlines for ŷ/H = 2%. (Top) (Right) y+ along bottom wall for ŷ/H = 8%. (Bot.)
(Right) Streamlines for ŷ/H = 8%.

1.4.3 Flow past a square cylinder

We solve a transient turbulent flow past a square cylinder, shown in Figure 1.17 (Top). When the
Reynolds number of the flow is sufficiently high, the turbulent flows undergo transient separation
and exhibit periodic vortex shedding beyond the cylinder. The capture of the features of the
vortex, i.e. its size and its frequency is of primary importance in engineering as it is responsible for
the dynamic loading and torque exerted on the body, for example at the trailing edge of a turbine
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Figure 1.17: Square cylinder. (Top) Geometry. (Bot.) (Left) Mesh 1. (Bot.) (Right) Mesh 2.

blade or an airfoil, behind a building, etc. We base our numerical simulations on the experiment
of Lyn et al. [50] and on the numerical simulations with k-ε models of Bosh et al. [51]. See also
the experiments of Durao et al. [52].

Through this example, we test the ability of the turbulence model to capture the transient
turbulent flow. First of all, we want to check if the numerical scheme is able to distinguish the
various scales of motion in play. In the case of a stationary flow, the signal is decomposed into a
mean and a fluctuating part with the fluctuating component participating to the extra diffusion
through the eddy-viscosity. However, it can occur that another time scale participates. If this is the
case, we hope that the turbulence model will be able to manage time-varying mean variables. The
large time scale represents a coherent structure, the vortex, while the small time scale represents
the random turbulence fluctuations. We will see that both time scales can be accurately captured
by the SA turbulence model with wall functions. The situation in schematized in Figure 1.8 and
the Reynolds number is

Re =
UD

ν
= 22 000,

where U is the inflow velocity.
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In view of treating large three-dimensional examples, we want to be able to solve this problem
on a rather coarse mesh, using the law of the wall. Mesh 2 is composed of 3200 Q1/Q1 elements.
The results on Mesh 2 will be compared to the solution obtained on a very coarse mesh, Mesh 1,
composed of 800 elements. Both meshes are shown in Figure 1.17 (Bot.) (Left) and (Bot.) (Right).

Using Equation (1.49) to guess the value of ŷ for ŷ+ = 50 and L = D, we find that ŷ/D =
3.2 × 10−2. We will take a larger value as the presence of boundary layer separation will tend to
diminish the characteristic friction velocities on the wall.

We first solve the stationary problem on Mesh 2 and check that at the wall of the cylinder, ŷ+

lies within a reasonable range. Taking ŷ/D = 8% and as inflow condition for νt = 100ν, we obtain
the results shown in Figure 1.18 (Top) (Left).

As expected, the stationary simulations give a symmetrical vortex. Figure 1.18 (Top) (Right)
shows the profile of the streamwise velocity on the centerline. The size of the vortex is over-
predicted in all cases. However, we observe that logically, a higher inflow turbulent eddy-viscosity
gives a smaller vortex length. The influence of the value of ŷ has no significant influence on the
vortex length. For the sake of comparison, the figure also includes the results of the integration up
to the wall, which is expected to fail for this very coarse mesh... however, the results are similar
to that of the wall function approach.

Table 1.4 gives the value of the drag coefficient computed on the square. The results are very
close to those obtained by the references, although the latter are results of transient simulations.
Note that the references use a 4410 element mesh.

Wall treatment ŷ/D (%) νt,∞/ν cd S
WF 8 100 1.674 -
WF 8 1 1.738 -
WF 12 100 1.646 -
Up to the wall - 100 1.706 -
[51] Bosh and Rodi, k-ε with WF 1.618 0.126
[53] Kato and Launder, k-ε with WF 1.660 0.127
[50] Experiment - 0.135
[54] Experiment for Re = 5 × 104 2.19 0.123

Table 1.4: Stationary results, Mesh 2. Drag coefficient and Strouhal number.

Transient flow can be triggered by introducing a perturbation into the stationary solution, for
example, by introducing a small vortex near the wall of the cylinder. We have considered two time
steps, a large one δt = 0.8U/D and a small one δt = 0.2U/D. The large time step was chosen
in order to resolve the vortex shedding with approximately ten time integration steps. Using the
experimental value of Lyn, we find δt = (1/S)/10 ≈ 0.74U/D, where S is the Strouhal number,
defined as

S = fs
D

U
,

fs being the vortex shedding frequency. Euler time integration is only first order in time, and when
using the coarse time step, the vortex is numerically dissipated in few time iterations. The second
order scheme is more adequate to study fine transient simulations. Figure 1.18 (Mid.) (Left)
presents the vertical velocity profile of a point P located downstream the cylinder as a function of
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time. It can be appreciated how that the second order Crank-Nicolson scheme performs well when
the Euler scheme fails, i.e. for δt = 0.8U/D.

Figure 1.18 (Mid.) (Right) presents the results of a fast Fourier transform performed on the
vertical velocity at P , when the periodic motion is well established (the spectrum were normalized
by their maximum values). The spectra shows a clear periodic motion, of higher frequency for the
small time step. From this plot, we compute the Strouhal number. Values of S are shown in Table
1.5 for the different time integration schemes and time steps used. The table also gives the mean
drag coefficient.

Mesh, time integration cd S
Mesh 1, 1st order, δt = 0.8U/D 1.516 -
Mesh 1, 2nd order, δt = 0.8U/D 1.531 0.092
Mesh 1, 2nd order, δt = 0.2U/D 1.565 0.107
Mesh 2, 1st order, δt = 0.8U/D 1.670 -
Mesh 2, 2nd order, δt = 0.8U/D 1.854 0.099
Mesh 2, 2nd order, δt = 0.2U/D 1.860 0.126
[51] Bosh and Rodi, k-ε with WF 1.618 0.126
[53] Kato and Launder, k-ε with WF 1.660 0.127
Experiments (see [51]) 2.05-2.19 0.135-0.139

Table 1.5: Transient results, Mesh 2. Drag coefficient and Strouhal number.

Finally, the streamwise velocity profile at the centerline is time averaged and compared to
experimental and numerical results in Figure 1.18 (Bot.) (Left) for Mesh 1 and 1.18 (Bot.) (Right)
for Mesh 2.
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Figure 1.18: Square cylinder. (Top) (Left) Stationary results, Mesh 2. ŷ+ on the wall of the cylinder
for ŷ/D = 8%; by symmetry, only the upper part is shown. (Top) (Right) Stationary results. u/U at
centerline on Mesh 2. (Mid.) (Left) Mesh 2. Vertical velocity at point P . (Mid.) (Right) Power spectrum
of the signal at point P using Crank-Nicolson scheme. (Bot.) (Left) Transient results. u/U at centerline
on Mesh 1. (Bot.) (Right) Transient results. u/U at centerline on Mesh 2.
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1.5 Conclusion

In this chapter we have studied a numerical strategy to solve turbulent flows. The numerical
examples have shown the possibilities as well as the limitations of the model. The use of the shock
capturing technique and under-relaxation for the eddy-viscosity are in general necessary to make
the whole numerical strategy reliable and robust. On the physical level, the model has proven to
be capable of differentiating the various time scales of unsteady flows; this possibility is auspicious
in view of simulating complex unsteady flows, like for example rotodynamic flows which exhibit
strong unsteady patterns. For high Reynolds number flows, inasmuch we generally prefer to use the
wall function approach as a near-wall treatment but we must be aware of its numerical drawbacks
and physical limitations. In particular, we have shown the dependence of the results upon the
prescribed distance of the computational boundary to the real wall. However, the wall function
approach we have derived can be used for any value of this distance and if unsatisfactory results
are obtained, smaller values can be chosen. In addition, small values of the distance are physically
preferable as the incidence of the wall functions on the resolution of the boundary layer will be
lower.



Chapter 2

Domain Decomposition Methods:
A Guide Overview and Proposal

In this chapter, we first introduce domain decomposition methods at the differential level. We start
by studying a one-dimensional example in a more intuitive than rigorous manner. Although very
simple, this example is sufficient to present all the families of domain decomposition methods we
will deal with. In particular, we contemplate the possibility of using mixed DD methods on non-
overlapping as well as on overlapping subdomains. Then, we consider the more general advection-
diffusion-reaction equation, and describe all the possible improvements that can be achieved to the
classical DD methods. In particular, we will mention the adaptive methods. At this point, we will
have introduced the necessary terminology to proceed with the variational approach. The weak
formulation of the domain decomposed problem will enable us to justify the choice of transmission
conditions, involving the essential and natural conditions. Then we discuss some ways of applying
these methods to the finite element method and finally we present the proposal of this work.

2.1 Study of a simple problem

We want to solve the following one-dimensional Poisson problem −d2u

dx2
= f ∀ x ∈ Ω := (−1, 1),

u = 0 at x = −1, 1.
(2.1)

We partition Ω into two subdomains Ω1 and Ω2, disjoint or overlapping, such that Ω1 = (−1, δ)
and Ω2 = (−δ, 1) with 0 ≤ δ < 1. The solution on each subdomain is uniquely defined by
prescribing the unknown u or its first derivative, or, more generally, a linear combination of both.
We propose to solve in subdomain Ω1 a problem of the form

−d2u1

dx2
= f ∀ x ∈ Ω1,

u1 = 0 at x = −1,

α1u1 + β1
du1

dx
= g1 at x = δ,

(2.2)

64
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where α1 and β1 are two constants such that α1 �= 0 or β1 �= 0, and in subdomain Ω2 a problem
of the form 

−d2u2

dx2
= f ∀ x ∈ Ω2,

u2 = 0 at x = 1,

α2u2 + β2
du2

dx
= g2 at x = −δ,

(2.3)

where α2 and β2 are two constants such that α2 �= 0 or β2 �= 0. Boundary conditions (2.2)3 and
(2.3)3 are referred to as Robin conditions, i.e. a linear combination of Dirichlet and Neumann
conditions. The coefficients α1 and α2 will be referred to as the Robin coefficients.

The goal of domain decomposition methods is to construct the solution of the original problem
from the solutions u1 and u2 on each subdomain. To do so, we need to find expressions for g1 and
g2 such that

u1 = u|Ω1
,

u2 = u|Ω2
.

For reasons that are going to appear clear along the discussion, we have to treat the disjoint case
(δ = 0) and overlapping case (δ > 0) separately. We first consider disjoint subdomains.

Disjoint subdomains

To treat disjoint subdomains, we set δ = 0. Intuitively, in order to have a well defined problem in
Ω, the solution must have a certain degree of regularity in Ω. For this second order problem, it is
expected that

d2u

dx2
∈ L∞ ⇒ du

dx
∈ C0 ⇒ u ∈ C1,

which means that both the unknown and its first derivative must be continuous anywhere, and
in particular on the interface. For this one dimensional problem, the first order derivative at the
interface is the flux. To illustrate the need for this double continuity on the interface, let us assume
we solve each subproblem (2.2)1−3 and (2.3)1−3 imposing g1 and g2. We first assume that only
the continuity of the unknown at x = 0 is imposed by setting α1 = α2 = 1, β1 = β2 = 0, and
g1 = g2 = g where g is arbitrary. Figure 2.1 (Left) shows that the continuity of only the unknown
at x = 0 is not sufficient to recover the original solution of the original problem, i.e. we have
u1 �= u|Ω1

and u2 �= u|Ω2
for an arbitrary g. Now we set α1 = α2 = 0, β1 = β2 = 1, and g1 = g2 = g

where g is arbitrary. Figure 2.1 (Right) illustrates that the continuity of the first derivative of the
unknown is not sufficient to recover the original solution which is expected to be continuous.

According to this, we set:

g1 = α1u2 + β1
du2

dx
, (2.4)

g2 = α2u1 + β2
du1

dx
. (2.5)
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Figure 2.1: Example of solution to the Poisson equation for disjoint subdomains. (a) Continuity of the
unknown at the interface. (b) Continuity of the derivative of the unknown at the interface.

The imposition of the continuities of the unknown and its first derivative implies that the coefficients
α1, α2, β1 and β2 must be chosen such that

|α1β2 − α2β1| �= 0; (2.6)

Then we have at x = 0 the following two equalities:

u1 = u2,

du1

dx
=

du2

dx
.

If this is the case, the variable u defined as

u =
{

u1 in Ω1,
u2 in Ω2,

is solution of Problem (2.1). In particular, we see that the Dirichlet/Dirichlet coupling (β1 =
β2 = 0) as well as the Neumann/Neumann (α1 = α2 = 0) coupling are not possible. Many
choices of Robin conditions are possible, for in principle, the coefficients α1 and β1 (and/or α2

and β2) can take any values different from zero as long as Equation (2.6) holds. However, the
Robin condition has no interest in solving such a simple problem; indeed, we remark that only
the Neumann condition is a natural condition of the weak formulation. The Robin condition will
be presented later on when studying the ADR equation. DD methods employing different type of
boundary conditions are called mixed domain decomposition methods.

Overlapping subdomains

We now consider the overlapping case. As in the disjoint case, we assume that g1 and g2 are given
by Equations (2.4) and (2.5). We are first going to show that the solution in the overlapping zone
Ω1 ∩ Ω2 is the same. Let us define w = u1 − u2. Subtracting Equation (2.2)1 from (2.3)1, and
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Equation (2.2)2 from (2.3)2 using Equations (2.4) and (2.5), we obtain

d2w

dx2
= 0 ∀ x ∈ (−δ, δ),

α1w + β1
dw

dx
= 0 at x = δ,

α2w + β2
dw

dx
= 0 at x = −δ.

(2.7)

If α1 or α2 are not zero at the same time, this problem has a unique solution w, and therefore,
u1 = u2 in (−δ, δ). Also, we have necessarily continuity of the derivatives of u1 at x = −δ and u2

at x = δ, as u1 and u2 are both solutions of the local differential problems. Hence, the variable u
defined as

u =
{

u1 in Ω1,
u2 in Ω\Ω2,

or equivalently defined as

u =
{

u1 in Ω\Ω1,
u2 in Ω2,

is solution of Problem (2.1).
The case α1 = α2 = 0 corresponds to the overlapping Neumann/Neumann coupling, for which

the solution of Problem (2.7) is defined up to a constant.

Relation between disjoint and overlapping methods

Let us consider the additive Schwarz method with a small overlap. The transmission conditions of
the Schwarz method are

u1 = u2 at x = δ,

u2 = u1 at x = −δ.

Performing a forward and backward Taylor expansions at x = 0, the latter two conditions can be
substituted by imposing at x = 0 the following two conditions

u1 + δ
du1

dx
= u2 + δ

du2

dx
,

u2 − δ
du2

dx
= u1 − δ

du1

dx
.

This is precisely a Robin/Robin coupling for disjoint subdomains with the choice α1 = α2 = 0 and
β1 = −β2 = δ. This explains why the R/R method is often referred to as the fictitious overlapping
method [55].
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Iterative solution

We have shown how the solution of the original problem can be constructed from the local solutions
on two disjoint or overlapping subdomains, using transmission conditions of Dirichlet, Neumann
or more generally of Robin type. These transmission conditions involve the unknown and/or its
first derivative and are sufficient to uniquely define the local solutions. In addition, we have shown
that they must be different in the case of disjoint subdomains but can be equal in the case of
overlapping subdomains, except when both conditions are of Neumann type.

In practice, Problems (2.2)1−3 and (2.3)1−3 are solved iteratively. Given u0
1 and u0

2, for each
k ≥ 0, solve successively the following two problems:

−d2uk+1
1

dx2
= f ∀ x ∈ Ω1,

uk+1
1 = 0 at x = −1,

α1u
k+1
1 + β1

duk+1
1

dx
= α1u

k
2 + β1

duk
2

dx
at x = δ,

(2.8)

and 

−d2uk+1
2

dx2
= f ∀ x ∈ Ω2,

uk+1
2 = 0 at x = 1,

α2u
k+1
2 + β2

duk+1
2

dx
= α2u

k′
1 + β2

duk′
1

dx
at x = −δ.

(2.9)

where k′ is an iteration index which can be

k′ =
{

k for the parallel version,
k + 1 for the sequential version.

The choice k′ = k corresponds to the parallel version also referred to as additive, in reference to the
additive Schwarz method; the choice k′ = k + 1 corresponds to the sequential version, in reference
to the multiplicative Schwarz method. In addition, one or both transmission conditions can be
relaxed in order to gain control on the convergence of the algorithm.

2.2 DD for the advection-diffusion-reaction equation

2.2.1 Disjoint methods

We consider the more general advection-diffusion-reaction (ADR) equation (1.1) in nd dimensions.
For the sake of clarity, we assume that we update the transmission condition of subdomain Ωi

at iteration k + 1 knowing the solution on subdomain Ωj at iteration k. Generally, the interface
transmission conditions of Neumann and Robin types try to mimic as much as possible the natural
conditions of the associated weak forms. We set therefore:

ρiu
k+1
i + ε

∂uk+1
i

∂ni
= ρiu

k
j + ε

∂uk
j

∂ni
, (2.10)
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ni being the outward unit vector normal to the interface of Ωi and where the coefficients ρi have to
be determined for all the interfaces. Let us take for example the 1/2-weak formulation presented
in Section (1.1.3). If we choose the transmission condition to be the natural condition, then we
have to choose

ρi = −1
2
a · ni.

However, this is not a restriction and the transmission condition can be penalized iteratively.
Following with our example, we could also impose a transmission condition of the form

−1
2
(a · ni)uk+1

i + uk+1
i + ε

∂uk+1
i

∂ni
= −1

2
(a · ni)uk

j + uk
j + ε

∂uk
j

∂ni
.

We now present the most common DD methods. The family of DD using disjoint subdomains
is referred to according to the type of transmission conditions used. All the possible couplings lead
to the following methods:

• Dirichlet/Neumann (D/N) method,

• Robin/Robin (R/R) method,

• Robin/Neumann (R/N) and Dirichlet/Robin (D/R) methods,

• Dirichlet/Dirichlet (D/D) method, i.e. the Schwarz method.

The D/N method was first considered in [56] while its first application to the FEM is due
to Marini and Quarteroni [57]. They study the D/N method in a variational context for a two-
subdomain partition and show the convergence of the iterative method for the discretized interface
problem. The method is extensively reviewed in [58]. In [59], the relaxed D/N algorithm is
applied to second-order elliptic problems. The authors derive a method to compute iteratively the
relaxation parameters to achieve exact convergence in a finite number of iterations.

In [60], Lions introduces the R/R method as a generalization of the Schwarz method to non-
overlapping subdomains. He studies a multidomain formulation for the solution of the continuous
Poisson problem and the generalization to the ADR equation. In particular, he shows the strong
convergence of the algorithm but leaves open the question on the choice of the Robin factors.
In [61], the authors reinterpret this method applied to elliptic problems within an augmented
Lagrangian framework for two subdomains.

The inclusion of first order derivatives in the ADR equation with respect to the simple Poisson
equation adds some difficulties, related to the fact that Dirichlet and Neumann conditions must be
imposed in accordance with the direction of the flow when advection is dominant. This requirement
is at its turn closely related to the well-posedness of the local variational problems for which
essential and natural conditions are needed, as was shown in Section 1.1.3. This was the argument
for developing the so-called adaptive methods. Adaptive domain decomposition methods have been
derived for disjoint subdomains to take into account the direction of the flow on the interfaces. In
[62], a DD method for the solution of a transport equation on two subdomains of the advection-
reaction type is presented. A Dirichlet condition is imposed on inflows, and outflows are left free.
The authors study the method through an iterative Steklov-Poincaré formulation, and show the
convergence of the Richardson procedure.

Carlenzoli and Quarteroni [63] introduce the adaptive D/N for which a Dirichlet transmission
condition at inflow and Neumann transmission condition at outflow and also an adaptive R/N
method, further considered in [64]. These methods are reviewed in [65].
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In [66], Trotta presents some adaptive methods, namely the adaptive D/N, the adaptive R/N
and their damped versions. In damped versions, the flux are not calculated when the diffusion is
sufficiently small. All these methods are considered and applied in [67].

In its actual form the R/R method can be viewed as an adaptive method as the Robin factors
depend on the direction on the flow. Auge, Kapurkin, Lube and Otto [68] consider a R/R method
applied to the solution of singularly perturbed elliptic problems. In Equation (2.10), they define
ρi as

ρi = −1
2

(a · ni − γi) ,

where the presence of the term γi �= 0 is necessary in order to satisfy Equation (2.6). They show
the convergence of the algorithm and suggest that γi should be of the form

γi =
√

(a · ni)2 + λε, (2.11)

λ being a well-chosen positive constant. Once again, we note that the second term of the last
equation is required to satisfy Equation (2.6) when the advection is parallel to the interface. By
using an approximate factorization of the advection-diffusion operator as transmission conditions,
Nataf and Rogier [69] give a similar expression for γi:

γi =
√

(a · ni)2 + 4sε.

We note that a coupling using this transmission condition does not make sense when s = 0 and
when the advection is parallel to the interface. Finally, we note that the simple choice λ = 0 gives

γi = |a · ni|,

which is the adaptive R/N method [63]. In fact, we can check that in this case, the transmission
condition given by Equation (2.10) involves the following quantities

ε
∂ui

∂ni
at outflows,

ε
∂ui

∂ni
− (a · ni)ui at inflows.

This method also fails when the advection is parallel to the interface. The design of the coefficient
γi can be based, for example, on the study of the singularly perturbed case. On the one hand,
when the diffusion ε tends to zero, we want the Neumann part of the Robin condition to dominate
in order to avoid artificial exponential layers near the interface so that

lim
ε→0

γi = |a · ni|.

On the other hand, in parabolic layers, the Dirichlet and Neumann parts of the Robin condition
must balance. This justifies the term proportional to the diffusion in Equation (2.11). See for
example [70].

Lube, Müller and Otto [71, 72] review the R/R method presented in [68] and apply it to a
transient ADR equation.
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Alonso, Trotta and Valli [73] introduce a coercive γ-D/R and a γ-R/R which generalizes the
latter R/R method. They consider the case of a two-subdomain partition and for the γ-R/R they
set γ1 = γ and γ2 = γ. They propose a variational framework for the study of these methods and
show how γ must be chosen in order to achieve convergence for both methods. In the case of the
γ-D/R, they obtain linear convergence while no information on the convergence rate is obtained
for the other method.

We should also mention the Neumann/Neumann method [74], although it cannot be expressed
as an iteration-by-subdomain method as given by Equations (2.8) and (2.9).

2.2.2 Overlapping methods

For overlapping subdomains, we have seen that only the N/N coupling is not possible. The method
using a D/D coupling was first studied by Schwarz [75] and recently, Lions [76] reconsidered the
method in a new light. See for example [77] for the convergence of the Schwarz method applied to
a singularly perturbed advection-diffusion equation. The other choices of couplings on overlapping
subdomains can be viewed as a generalization of the methods devised for disjoint subdomains. The
overlapping versions of mixed methods have not received particular attention and are precisely the
basis of this work (see for example [78, 79, 80]). As noted by Lions [1]:

[ . . . ] the Schwarz algorithm [ . . . ] presents some properties (like “robustness”, or
indifference to the type of equations considered...) which do not seem to be enjoyed by
other methods.

So what happens when mixed methods are used on overlapping subdomains? Can we expect
some of the robustness of the overlapping Schwarz method to be inherited by overlapping mixed
methods? In the next chapter, we apply some overlapping mixed coupling to a one-dimensional
ADR equation and try to answer this question. In Chapter 4, we introduce a possible mathematical
framework of study of such methods, taking the example of an overlapping D/R method.

2.3 Implementation of DD methods

In this section, we are going to present a general framework for designing mixed domain decompo-
sition methods for finite element applications. The discussion that follows is not absolutely formal;
the formal mathematical framework will be presented in Chapter 4.

We want to solve a partial differential equation of the form

Lu = f in Ω,

u = 0 on ∂Ω,

where L is a differential operator given by Equation (1.1) and f a given function. We assume we
look for solutions in V = H1

0 (Ω). The last equation can be reformulated in a variational way as
follows: find u ∈ V such that

a(u, v) = 〈f, v〉Ω ∀ v ∈ V, (2.12)

where the bilinear form can be anyone of the three bilinear forms considered in the last Chapter
and given by Equations (1.5), (1.7), or (1.8).

We divide Ω into two non-overlapping subdomains Ω1 and Ω2 with interface Γ. Let us introduce
the spaces V1 = H1

0 (Ω1) and V2 = H1
0 (Ω2). We also define Λ = H1/2(Γ). The iterative domain
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decomposition problem reads as follows: given initial guesses, for each k ≥ 0, find uk+1
1 ∈ V1 and

uk+1
2 ∈ V2 such that

a1(uk+1
1 , v1) = 〈f, v1〉Ω1 ∀ v1 ∈ V 0

1 ,

uk+1
1 = uk

2 on Γ,

a2(uk+1
2 , v2) = 〈f, v2〉Ω2 ∀ v2 ∈ V 0

2 ,

a2(uk+1
2 , E2µ) = −a1(uk+1

1 , E1µ) + 〈f,E1µ〉Ω1 + 〈f,E2µ〉Ω2 ∀ µ ∈ Λ,

(2.13)

where E1 and E2 can be any extension operators from Λ to V1 and V2, respectively. It can be
shown that if Algorithm (2.13)1−4 converges, then its solution is that of Problem (2.12) (see e.g.
[58]). Equation (2.13)2 represents the Dirichlet transmission condition, i.e. the continuity of the
primary variable. Let gi be the quantity involved in the natural boundary conditions of the weak
formulation of subdomain i for i = 1, 2, i.e. gi is the boundary term coming from the integration
by parts of the bilinear form. Therefore, it can be easily shown that Equation (2.13)4 implies the
continuity of gi across the interface, i.e. we have that

gk+1
1 = gk+1

2 on Γ.

Obviously, the nature of gi depends on how the terms of the original differential equation are
integrated by parts, and it is given by Equations (1.5), (1.7), or (1.8) according to the bilinear
form used. If we consider the 0-weak formulation, i.e. if only the diffusive term is integrated by
parts, the transmission condition is nothing but the diffusive flux across the interface. By using
the 1/2-weak formulation or 1-weak formulation, the transmission condition would involve a Robin
condition. This states that Problem (2.13)1−4 can be derived from the continuous differential
equation using a Dirichlet transmission condition when solving subdomain 1 and a Neumann (or
Robin) transmission condition when solving subdomain 2. Therefore, at the differential level, we
formulate the DD method as follows: given initial guesses, for each k ≥ 0, find uk+1

1 and uk+1
2 such

that 

Luk+1
1 = f in Ω1,

uk+1
1 = 0 on ∂Ω1\Γ,

uk+1
1 = uk

2 on Γ,

Luk+1
2 = f in Ω2,

uk+1
2 = 0 on ∂Ω2\Γ,

gk+1
2 = gk+1

1 on Γ.

We recover the mixed domain decomposition method introduced at the beginning of this Chapter.

Now let us go the discrete level and assume that the nodes in the overlapping region and on
the interfaces coincide. As in the continuous case, we have that if Algorithm (2.13)1−4 converges,
then its solution is that of Problem (2.12). However, when dealing with discrete subspaces, Equa-
tion (2.13)4 no longer implies the continuity of the discrete counter parts of the gi’s. This means
that the finite element DD problem cannot be derived directly from the continuous differential
problems without special care. This point will be treated in Chapter 5 and is related to the fact
that generally Luh �= f where uh is the finite element solution in Ω1 or Ω2. Let us give up the
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differential formulation for a moment.

According to the space discretization used, we denote u the vector of unknowns in Ω. Problem
(2.12) leads to an algebraic system of the form:

Au = f . (2.14)

We denote u1 and u2 as the vectors of unknowns of Ω1 and Ω2 respectively, excluding the interface
vector of unknowns that we denote ua. By performing a simple node reordering, System (2.14)
can be written as:  A11 0 A1a

0 A22 A2a

Aa1 Aa2 Aaa

 u1

u2

ua

 =

 f1
f2
fa

 .

The solution of this system yields for the interface unknown the so-called Schur complement system

Qaua = χa,

where Sa and sa are given by

Qa = Q(1)
a + Q(2)

a ,

Q(i)
a = A(i)

aa − AaiA−1
ii Aia for i = 1, 2,

χa = fa − Aa1A−1
11 f1 − Aa2A−1

22 f2,

and the matrices A(i) for i = 1, 2 are the contributions to the matrix Aaa from each subdomain
to the interface unknowns such that

Aaa = A(1)
aa + A(2)

aa .

We now consider the algebraic equivalent of Problem (2.13)1−4. This problem leads to two de-
coupled algebraic systems to be solved sequentially. By performing some algebraic calculations,
these two systems can be reduced to a low dimensional algebraic equation for the unknown on the
interface ua. The resulting algorithm is a preconditioned Richardson procedure for the interface
unknown of the form

uk+1
a = P−1(χa − Qauk

a) + uk
a,

where the preconditioner P is given by

P−1 = Q(2)
a

−1
,

and depends directly on the integration by parts which is performed to obtain the weak formu-
lation. For example using the 0-weak formulation we obtain the so-called Dirichlet/Neumann
preconditioner, while the other two weak formulations lead to Dirichlet/Robin-like precondition-
ers. There are others possibilities, like the Neumann/Neumann method [74] mentioned previously
which consists in taking

P−1 = σ1Q(1)
a

−1
+ σ2Q(2)

a

−1
,
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with σ1 and σ2 being two positive constants. This method has also a differential interpretation
[58]. In [81], the authors set up a Robin/Robin preconditioner. Berselli and Saleri [82] modify
the classical Dirichlet/Neumann and Neumann/Neumann preconditioners to obtain symmetric and
positive definite preconditioners in order to solve nonsymmetric elliptic problems.

We have established the link between Dirichlet/Neumann(Robin) iteration-by-subdomain meth-
ods and Richardson procedures for solving the Schur complement system. From a more general
algebraic point of view, domain decomposition methods [83] aim at devising well preconditioned
iterative procedures for solving efficiently the Schur complement system. As a first improvement
the Richardson procedure can be accelerated by using Conjugate gradient or Krylov subspace meth-
ods. In addition, such algorithms are in general not scalable, i.e. the convergence deteriorates as
the number of subdomains increases. Therefore, a coarse grid preconditioner may be necessary
to provide a global communication between the subdomains [56, 84, 81]: this is the multilevel
approach. For a general discussion, see the survey papers [85, 55] or the books [83, 58].

In the previous section, we presented the Schwarz method in a differential context. Within the
algebraic framework, the Schwarz method is used as a preconditioner, generally in its additive form,
although the multiplicative form can be used together with a multicoloring technique [86, 83]. The
Schwarz method can also be related to an iterative procedure for solving the Schur complement
system, as shown in [87].

The domain decomposition methods we have been talking about are called geometric, in con-
trast with algebraic DD methods [88] which decouple the computation working directly on the
global matrix A without any knowledge of the geometry. The former have the advantage that they
can take into account the local characteristic of the flow to design efficient methods; the latter have
the practical advantage that they can be used as a ”black box” integrated in the algebraic solver,
at the risk of being less efficient.

We have briefly explained how geometric DD methods for disjoint subdomains lead to a reduced
problem for the interface unknowns, as well as the particular case of the overlapping Schwarz
method. In Chapter 4, the variational formulation of the DD problem (2.13)1−4 will be extended
to the case of overlapping subdomains. We will show that all the previous discussion on non-
overlapping subdomains can be extended to the case of mixed DD methods using overlapping
subdomains. In particular, we will establish the link and sometimes the equivalence between the
differential, variational and algebraic formulations.

2.4 DD for the (Navier-)Stokes equations

In principle, the application of the DD techniques mentioned previously to the solution of the
Stokes and Navier-Stokes equations can be done. We refer the reader to Quarteroni and Valli’s
book [58] (see also [89]) for the Dirichlet/Neumann method applied to the Stokes and [90] for DD
methods applied to the Navier-Stokes equations. See also [70] for the R/R applied to the Stokes
and Oseen equations and [91] for the R/R method applied to the non-stationary Navier-Stokes
equations. For convergence results of the Schwarz method applied to the Stokes equations see [76],
and see [92] for the application to the Navier-Stokes equations. When dealing with non-conforming
grids, we have several possibilities that will be described in Section 5.6. Here, we just mention the
mortar element method [93], the fictitious domain method [94] and the Chimera method [95].
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2.5 Proposal

Algebraic as well as geometric methods (in the sense explained above) work on conforming dis-
cretizations. Our goal in this work is to design DD methods to be used on non-conforming non-
overlapping or overlapping grids, involving moving subdomains. Therefore we have no algebraic
equivalent and we must act on the purely geometrical level. More clearly, we would like to use as
transmission conditions the essential and natural conditions to build an iteration-by-subdomain
method. Such a strategy would enable us to use different finite element approximations on different
grids and to solve different physics on each subdomains (heterogeneous DD methods). In addition,
the possibility of using overlapping subdomains would provide a very powerful tool to treat complex
geometries by simplifying the meshing process, for example by designing Chimera methods with
mixed couplings. Finally, if we are able to build a Master/Slave strategy to exchange transmission
conditions between the subdomains, then the modifications to the original finite element solver
would be minimum. The purpose of this work is to devise such an algorithm.



Chapter 3

One Dimensional Analysis

In this chapter, we analyze three families of overlapping and non-overlapping domain decomposition
methods for solving the one-dimensional advection-diffusion-reaction. The first one is the Dirich-
let/Dirichlet method, or Schwarz method, which is a purely overlapping method; the second one
uses a Dirichlet/Neumann coupling for overlapping or disjoint subdomains, the latter version being
the classical Dirichlet/Neumann method; the third one uses a Dirichlet/Robin method for overlap-
ping or disjoint subdomains, the latter version being the classical Dirichlet/Robin method. In the
first section, we present the domain decomposition algorithms. Next, we study the convergence of
the unrelaxed sequential algorithm, and, in particular, its dependence upon the overlapping length.
Apart from the general ADR equation, we study three limiting behaviors of the equation, i.e. the
Poisson equation, the advection-diffusion equation, and the hyperbolic limit. Then we study the
relaxed sequential versions. In the following two sections, we consider the unrelaxed and relaxed
parallel methods. Finally, we sum up the results obtained and draw some conclusions.

3.1 Problem statement

We consider the following advection-diffusion-reaction equation in one dimension

 Lu := −ε
d2u

dx2
+ a

du

dx
+ su = f ∀ x ∈ Ω = (−�1, �2),

u = 0 at x = −�1, �2,
(3.1)

where �1 and �2 are positive. We assume ε, and s are constants such that

ε > 0, s ≥ 0,

and impose a constant advection a such that

a ≥ 0.

76
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The Péclet number Pe and the reaction number R of the equation are non-dimensional parameters
defined as

Pe :=
a�

ε
,

R :=
s�

a
,

where � = �1 + �2 is the total length of the domain.

3.2 Domain Decomposition Algorithm

Let Ω1 = (−�1, δ) and Ω2 = (−δ, �2) with 0 ≤ δ < min(�1, �2). We define the following non-
dimensional variables �∗1 = �1/�, �∗2 = �2/� and δ∗ = δ/�. Obviously, we have that

δ∗ ≤ min (�∗1, �
∗
2). (3.2)

The general iteration-by-subdomain domain decomposition algorithm of overlap 2δ to solve
system (3.1)1−2 reads: given initial guesses u0

1 and u0
2, find uk+1

1 and uk+1
2 for k ≥ 0 such that


Luk+1

1 = f ∀ x ∈ Ω1,

uk+1
1 = 0 at x = −�1,

Φ1(uk+1
1 ) = θ1 Φ1(uk

2) + (1 − θ1) Φ1(uk
1) at x = δ,

(3.3)


Luk+1

2 = f ∀ x ∈ Ω2,

uk+1
2 = 0 at x = �2,

Φ2(uk+1
2 ) = θ2 Φ2(uk′

1 ) + (1 − θ2) Φ2(uk
2) at x = −δ,

(3.4)

where Φ1 and Φ2 are the linear functionals representing the transmission conditions at δ and −δ
respectively, θ1 and θ2 are positive constants, called the relaxation (or acceleration) parameters,
and k′ is an iteration index which can be

k′ =
{

k + 1 for the sequential version,
k for the parallel version.

If we assume the solution of problem (3.1)1−2 satisfies the transmission conditions, then the
error ek+1

i = uk+1
i − u verifies the following homogeneous system of equations for k ≥ 0


Lek+1

1 = 0 ∀ x ∈ Ω1,

ek+1
1 = 0 at x = −�1,

Φ1(ek+1
1 ) = θ1 Φ1(ek

2) + (1 − θ1) Φ1(ek
1) at x = δ,

(3.5)


Lek+1

2 = 0 ∀ x ∈ Ω2,

ek+1
2 = 0 at x = �2,

Φ2(ek+1
2 ) = θ2 Φ2(ek′

1 ) + (1 − θ2) Φ2(ek
2) at x = −δ.

(3.6)
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We define three possible transmission conditions of Dirichlet, Neumann and Robin types:

Dirichlet : ΦD(u) = u, (3.7)

Neumann : ΦN(u) = εu′nx,

Robin : ΦR(u) = εu′nx − 1
2
(anx)u, (3.8)

where D holds for Dirichlet, N holds for Neumann, R for Robin, and nx is the exterior normal
which can take the values nx = −1 and nx = 1. The Neumann and Robin conditions considered
here correspond to the natural conditions of the 0 and 1/2-weak formulations of the ADR equation,
respectively (see Section 1.1.3).

The combinations of the first condition with any of the three at x = −δ and x = δ will
lead to three families of overlapping domain decomposition methods, Dirichlet/Dirichlet (Schwarz
method), Dirichlet/Neumann and Dirichlet/Robin. According to where each of the possible trans-
mission conditions can be prescribed, i.e. at x = −δ and x = δ, we define the following five
couplings:

D/D : Φ1 = Φ2 = ΦD,

N/D : Φ1 = ΦN,Φ2 = ΦD,

D/N : Φ1 = ΦD,Φ2 = ΦN,

R/D : Φ1 = ΦR,Φ2 = ΦD,

D/R : Φ1 = ΦD,Φ2 = ΦR.

For the names of the mixed methods, we have explicitly indicated where the Dirichlet condition is
imposed in order to study the effects of the advection, which renders the local equations in each
subdomain dependent on the direction of the flow. Note that another coupling involving two Robin
conditions is also possible, although it will not considered here.

Let us solve Equations (3.5)1 and (3.6)1. The general solutions are of the form

ek+1
i = Ak+1

i exp [(ω + τ)x] + Bk+1
i exp [(ω − τ)x],

where Ak+1
i ’s and Bk+1

i ’s are constant depending on the boundary conditions, and ω and τ are
given by

ω =
a

2ε
, τ =

1
2ε

√
a2 + 4εs,

or, in terms of the non-dimensional quantities Pe and R defined previously,

ω =
Pe
2�

, τ =
1
�

√
(Pe/2)2 + Pe R.

Applying the boundary conditions given by Equations (3.5)2 and (3.6)2, the errors are given by

ek+1
1 (x) = Ck+1

1 exp (ωx) sinh(τ(�1 + x)),

ek+1
2 (x) = Ck+1

2 exp (ωx) sinh(τ(�2 − x)).
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where Ck+1
1 and Ck+1

2 are constants depending on the transmission conditions (3.5)3 and (3.6)3.
The following simple estimates hold for the error:

‖ek+1
1 (x)‖∞,Ω1 ≤ |Ck+1

1 | sup
x∈Ω1

| exp (ωx) sinh(τ(�1 + x))|,

‖ek+1
2 (x)‖∞,Ω2 ≤ |Ck+1

2 | sup
x∈Ω2

| exp (ωx) sinh(τ(�2 − x))|.

We now develop the expressions for the error coefficients Ck
i (i = 1, 2), and also set up a general

analysis framework to be able to compare all the DD methods of interest in a systematic way. As
a first step, let us introduce the following matrix notation,

ck+1 =
[

Ck+1
1

Ck+1
2

]
.

As will be seen in the following sections, all the DD algorithms lead to an algebraic system of the
form

ck+1 = Cck,

where C is called the iteration matrix. The errors ek+1
1 (x) and ek+1

2 (x) will converge to zero as the
iteration proceeds if and only if limk→∞ ck+1 = 0. It can be shown that a necessary and sufficient
condition is that the spectral radius �(C) of C, also called convergence rate, satisfies

�(C) < 1. (3.9)

This convergence criterion is an asymptotic statement which does not ensure monotonicity of the
convergence. Only in some particular conditions we will be able to obtain a norm estimate, as is for
example the L2 matrix norm. This is precisely the case when the iteration matrix C is symmetric.
For such matrices, we know that ‖C‖2 = �(C) where ‖ · ‖2 is the matrix norm corresponding to
the Euclidean vector norm ‖ · ‖2 (also called root-mean-square vector norm), and defined as

‖C‖2 = sup
‖x‖�=0

‖Cx‖2

‖x‖2
.

Therefore, if matrix C is symmetric, we have

‖ck+1‖2 = ‖Cck‖2,

≤ ‖C‖2 ‖ck‖2,

= �(C) ‖ck‖2,

and if condition (3.9) is satisfied, the scheme is said to be monotonically convergent with respect to
the L2-norm. We will see that this is the case of the unrelaxed and relaxed sequential DD algorithms
presented here, whereas the parallel versions are in general not monotonically convergent.



80 CHAPTER 3. ONE DIMENSIONAL ANALYSIS

3.3 Unrelaxed sequential version

3.3.1 General case

Five couplings will be studied in detail, namely the D/D, N/D, D/N, R/D and D/R. The differ-
entiation between the N/D and D/N methods, as well as between of the R/D and D/R methods,
referred to as mixed methods, is necessary because of the asymmetry of domain decomposition
methods in general. We will see how the convergence depends on the relative sizes of the subdo-
mains, as well as on the direction and magnitude of the advection field (remember that we have
assumed a ≥ 0). This is obviously the case in the hyperbolic limit, for which the direction of the
advection field is an essential characteristic of the problem. As a first approach, the relaxation
factors are set to θ1 = θ2 = 1. The effects of under-relaxation will be studied in a separate section
in order not to complicate the analysis of the methods.

It can be noted first that the equations for the error coefficients derived from Equations (3.5)3
and (3.6)3 with k′ = k + 1, can be generally written in the following form when θ1 = θ2 = 1, for
any k ≥ 0:

Ck+1
1 = �1C

k
2 , (3.10)

Ck+1
2 = �2C

k+1
1 , (3.11)

where �1 and �2 do not depend on the iteration number k. Rearranging Equations (3.10) and
(3.11) we obtain simply, this time for k ≥ 1:

Ck+1
1 = �1�2C

k
2 ,

Ck+1
2 = �1�2C

k
1 ,

which gives the following iteration matrix

C =
[

�1�2 0
0 �1�2

]
.

Obviously, matrix C has a single eigenvalue λ of multiplicity two:

λ = �1�2.

Let us define

� := �(C),

and we have therefore

� = |�1�2|,

C being a diagonal matrix, the convergence of the unrelaxed sequential version of the DD algo-
rithm is monotone with respect to the L2-norm if � < 1.

We now determine the expressions of � for each of the five DD methods, before establishing
the conditions for convergence.
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D/D method. Dirichlet conditions are imposed at both x = δ and x = −δ. The transmission
conditions give:

Φ1(ek+1
1 ) = Ck+1

1 exp (ωδ) sinh(τ(�1 + δ)),

Φ1(ek+1
2 ) = Ck+1

2 exp (ωδ) sinh(τ(�2 − δ)),

Φ2(ek+1
1 ) = Ck+1

1 exp (−ωδ) sinh(τ(�1 − δ)),

Φ2(ek+1
2 ) = Ck+1

2 exp (−ωδ) sinh(τ(�2 + δ)).

Substituting these equations into the equations for the error transmission conditions (3.5)3 and
(3.6)3, we find that �1 and �2 are given by:

�1 =
sinh(τ(�2 − δ))
sinh(τ(�1 + δ))

, (3.12)

�2 =
sinh(τ(�1 − δ))
sinh(τ(�2 + δ))

, (3.13)

and therefore,

� =
sinh(τ(�2 − δ))
sinh(τ(�2 + δ))

sinh(τ(�1 − δ))
sinh(τ(�1 + δ))

. (3.14)

N/D method. A Neumann condition is imposed at x = δ and a Dirichlet condition at x = −δ.
Knowing that nx = 1 at x = δ, the transmission conditions give:

Φ1(ek+1
1 ) = Ck+1

1 exp (ωδ)[εω sinh(τ(�1 + δ)) + ετ cosh(τ(�1 + δ))],

Φ1(ek+1
2 ) = Ck+1

2 exp (ωδ)[εω sinh(τ(�2 − δ)) − ετ cosh(τ(�2 − δ))],

Φ2(ek+1
1 ) = Ck+1

1 exp (−ωδ) sinh(τ(�1 − δ)),

Φ2(ek+1
2 ) = Ck+1

2 exp (−ωδ) sinh(τ(�2 + δ)).

Substituting these equations into the equations for the errors transmission conditions (3.5)3 and
(3.6)3, we obtain:

�1 =
ω sinh(τ(�2 − δ)) − τ cosh(τ(�2 − δ))
ω sinh(τ(�1 + δ)) + τ cosh(τ(�1 + δ))

, (3.15)

�2 =
sinh(τ(�1 − δ))
sinh(τ(�2 + δ))

. (3.16)

Noting that τ ≥ ω, we can show that �1 is always negative. Therefore, � is given by

� = − sinh(τ(�1 − δ))
sinh(τ(�2 + δ))

ω sinh(τ(�2 − δ)) − τ cosh(τ(�2 − δ))
ω sinh(τ(�1 + δ)) + τ cosh(τ(�1 + δ))

. (3.17)
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D/N method. We impose a Dirichlet condition at x = δ and a Neumann condition at x = −δ.
Knowing that nx = −1 at x = −δ, the transmission conditions give:

Φ1(ek+1
1 ) = Ck+1

1 exp (ωδ) sinh(τ(�1 + δ)),

Φ1(ek+1
2 ) = Ck+1

2 exp (ωδ) sinh(τ(�2 − δ)),

Φ2(ek+1
1 ) = Ck+1

1 exp (−ωδ)[−kω sinh(τ(�1 − δ)) − kτ cosh(τ(�1 − δ))],

Φ2(ek+1
2 ) = Ck+1

2 exp (−ωδ)[−kω sinh(τ(�2 + δ)) + kτ cosh(τ(�2 + δ))],

and �1 and �2 are given by:

�1 =
sinh(τ(�2 − δ))
sinh(τ(�1 + δ))

, (3.18)

�2 =
ω sinh(τ(�1 − δ)) + τ cosh(τ(�1 − δ))
ω sinh(τ(�2 + δ)) − τ cosh(τ(�2 + δ))

. (3.19)

It can be shown that �2 is always negative. Therefore, the spectral radius is

� = − sinh(τ(�2 − δ))
sinh(τ(�1 + δ))

ω sinh(τ(�1 − δ)) + τ cosh(τ(�1 − δ))
ω sinh(τ(�2 + δ)) − τ cosh(τ(�2 + δ))

. (3.20)

R/D method. A Robin condition is imposed at x = δ and a Dirichlet condition at x = −δ.
Noting that nx = 1 at x = δ, the transmission conditions give:

Φ1(ek+1
1 ) = Ck+1

1 exp (ωδ)[kτ cosh(τ(�1 + δ))],

Φ1(ek+1
2 ) = Ck+1

2 exp (ωδ)[−kτ cosh(τ(�2 − δ))],

Φ2(ek+1
1 ) = Ck+1

1 exp (−ωδ) sinh(τ(�1 − δ)),

Φ2(ek+1
2 ) = Ck+1

2 exp (−ωδ) sinh(τ(�2 + δ)).

Substituting these equations into the equations for the errors transmission conditions (3.5)3 and
(3.6)3, we have:

�1 = −cosh(τ(�2 − δ))
cosh(τ(�1 + δ))

, (3.21)

�2 =
sinh(τ(�1 − δ))
sinh(τ(�2 + δ))

, (3.22)

and the spectral radius is

� =
sinh(τ(�1 − δ))
sinh(τ(�2 + δ))

cosh(τ(�2 − δ))
cosh(τ(�1 + δ))

.



3.3. UNRELAXED SEQUENTIAL VERSION 83

D/R method. We impose a Dirichlet condition at x = δ and a Robin condition at x = −δ.
Noting that nx = 1 at x = a, the transmission conditions give:

Φ1(ek+1
1 ) = Ck+1

1 exp (ωδ) sinh(τ(�1 + δ)),

Φ1(ek+1
2 ) = Ck+1

2 exp (ωδ) sinh(τ(�2 − δ)),

Φ2(ek+1
1 ) = Ck+1

1 exp (−ωδ)[−kτ cosh(τ(�1 − δ))],

Φ2(ek+1
2 ) = Ck+1

2 exp (−ωδ)[kτ cosh(τ(�2 + δ))],

which gives

�1 =
sinh(τ(�2 − δ))
sinh(τ(�1 + δ))

, (3.23)

�2 = −cosh(τ(�1 − δ))
cosh(τ(�2 + δ))

, (3.24)

and leads to the following spectral radius

� =
sinh(τ(�2 − δ))
sinh(τ(�1 + δ))

cosh(τ(�1 − δ))
cosh(τ(�2 + δ))

.

Despite the complicated aspects of the expressions developed for the �’s, we can draw some
general conclusions about the DD methods studied here. First, we note that the D/D method is
always convergent for any δ∗; knowing that sinh(x) is an increasing function, we conclude from
Equation (3.14) that � < 1 whenever δ∗ > 0. We note also that D/D method always behaves
indifferently with respect to relative lengths of the subdomains. In fact, interchanging �1 and �2 in
Equation (3.14), we recover exactly the same rate of convergence. The R/D and D/R methods do
not share exactly this property, but nevertheless exhibit an interesting symmetry. In fact, let us
call �D the length of the Dirichlet subdomain and �R that of the Robin subdomain. We can easily
check that both the R/D and D/R methods give for the spectral radius

� =
sinh(τ(�R − δ))
sinh(τ(�D + δ))

cosh(τ(�D − δ))
cosh(τ(�R + δ))

.

This property ensures us that the Dirichlet and Robin conditions can be located independently of
the direction of the flow. This is not the case of the Dirichlet/Neumann-like coupling.

The convergences of the five DD couplings is now presented for three limiting behaviors of the
original equations. The first case is the purely elliptic equation for which we set a = 0, and s = 0.
The second case studied is the original advection-diffusion equation without reaction, i.e. s = 0.
Finally, the advection-diffusion-reaction equation will be studied in the hyperbolic limit, i.e. when
Pe → ∞. For each of these cases, we give the simplified value of the spectral radius as well as the
stability criteria (� < 1) in terms the overlap δ∗ and finally compare the five methods.

3.3.2 Poisson Equation

To obtain the Poisson Equation, we set ε > 0, a = 0, and s = 0. The equations for the Ck+1
i ’s can

be found taking the limit τ → 0 and ω → 0 in Equations (3.14), (3.17) and (3.20). Obviously, the
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Robin type condition is exactly the same than the Neumann condition for there is no advection.
We find:

D/D : � =
�∗1 − δ∗

�∗1 + δ∗
�∗2 − δ∗

�∗2 + δ∗
,

N(R)/D : � =
�∗1 − δ∗

�∗2 + δ∗
,

D/N(R) : � =
�∗2 − δ∗

�∗1 + δ∗
.

The stability criteria of the three methods are

D/D : δ∗ > 0,

N(R)/D : δ∗ >
�∗1 − �∗2

2
,

D/N(R) : δ∗ >
�∗2 − �∗1

2
.

We first note that the D/D method is stable for any δ∗ > 0 (obviously, this method without overlap
does not make sense!) and the rate of convergence increases with the overlap. In order to visualize
what happens for the mixed methods, let us introduce some notations.

We define ∆�∗ as the difference between the length of the Dirichlet subdomain, noted �D, with
that of the Neumann subdomain, �N:

∆�∗ = �D − �N,

and we have

N(R)/D : ∆�∗ = �∗2 − �∗1, (3.25)

D/N(R) : ∆�∗ = �∗1 − �∗2. (3.26)

For this particular case, the convergence criteria for δ∗ of the N/D and D/N methods is exactly
the same, i.e.

δ∗ > −∆�∗

2
.

Remembering also that the value of δ∗ is limited from above by inequality (3.2), which can be
rewritten as

δ∗ <
1 − |∆�∗|

2
, (3.27)

the permissible range for δ∗ is therefore

−∆�∗

2
< δ∗ <

1 − |∆�∗|
2

,
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Figure 3.1: Poisson equation. Minimum and maximum overlap δ∗ as a function of ∆�∗ for the N/D and
D/N methods to converge.

as sketched in Figure 3.1. We observe that the mixed methods give a stability criterion which
depends on the relative sizes of the subdomains. In particular, if the subdomains are disjoint
(δ = 0), the N/D and D/N methods converge only if ∆�∗ > 0, i.e. if the Dirichlet subdomain is
larger than the Neumann subdomain (right part of the axis on Figure 3.1); this is a well known
result, see for example [59]. In addition, we note also that we have no way of converging when the
Neumann subdomain is such that ∆�∗ ≤ −0.5.

3.3.3 Advection-diffusion equation

We consider the original equation (3.1) without reaction, i.e. ε > 0, a > 0 and s = 0. This case is
interesting because the stability criteria depend only on the difference of lengths of the subdomains
�∗2 − �∗1 and on the Péclet number. Setting s = 0 implies that ω = τ , and the equations for the �’s
reduce to:

D/D : � =
sinh[(�∗1 − δ∗)Pe/2]
sinh[(�∗2 + δ∗)Pe/2]

sinh[(�∗2 − δ∗)Pe/2]
sinh[(�∗1 + δ∗)Pe/2]

,

N/D : � = exp (−Pe/2)
sinh[(�∗1 − δ∗)Pe/2]
sinh[(�∗2 + δ∗)Pe/2]

,

D/N : � = exp (Pe/2)
sinh[(�∗2 − δ∗)Pe/2]
sinh[(�∗1 + δ∗)Pe/2]

,

R/D : � =
sinh[(�∗1 − δ∗)Pe/2]
sinh[(�∗2 + δ∗)Pe/2]

cosh[(�∗2 − δ∗)Pe/2]
cosh[(�∗1 + δ∗)Pe/2]

,

D/R : � =
sinh[(�∗2 − δ∗)Pe/2]
sinh[(�∗1 + δ∗)Pe/2]

cosh[(�∗1 − δ∗)Pe/2]
cosh[(�∗2 + δ∗)Pe/2]

.

The following stability criteria hold:

D/D : δ∗ > 0,
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N/D : δ∗ > − 1
Pe

ln
[
exp [(�∗2 − �∗1 + 1)Pe/2] + exp [(�∗2 − �∗1 − 1)Pe/2]

2

]
,

D/N : δ∗ >
1
Pe

ln
[
exp [(�∗2 − �∗1 + 1)Pe/2] + exp [(�∗2 − �∗1 − 1)Pe/2]

2

]
,

R/D : δ∗ >
1
Pe

ln
[
− sinh[(�∗2 − �∗1)Pe/2]

cosh(Pe/2)
+

√
sinh2[(�∗2 − �∗1)Pe/2]

cosh2(Pe/2)
+ 1

]
,

D/R : δ∗ >
1
Pe

ln
[
sinh[(�∗2 − �∗1)Pe/2]

cosh(Pe/2)
+

√
sinh2[(�∗2 − �∗1)Pe/2]

cosh2(Pe/2)
+ 1

]
.

We first remark that except the D/D method, all convergence criteria on δ∗ depend on the Péclet
number; in fact, the D/D method converges whenever δ∗ > 0. However, an important distinction
between the Neumann-type and Robin-type couplings must be pointed out. On the one hand, the
D/N and N/D do not behave in the same way with respect to the asymmetry of the subdomains,
characterized by the magnitude of �∗2 − �∗1. On the other hand, the D/R and R/D do, as already
pointed out at the end of Section 3.3.1. In the case of the N/D method, for which the Neumann
condition is imposed in accordance with the direction of the flow, the convergence criterion requires
that the length of the Neumann subdomain (�∗1) is sufficiently small, this criterion being looser
and looser as the Péclet number increases. This characteristic is shared by both the D/R and R/D
methods. But for the D/N method, the convergence condition on δ∗ is more and more restrictive as
the Péclet number increase; in order to achieve convergence, the length of the Neumann subdomain
must be taken smaller and smaller, or the overlap δ∗ greater and greater as Pe increases (when
studying the hyperbolic limit of the full ADR equation, we will see that the presence of the reaction
term R helps the D/N to converge for high Péclet numbers). Let us illustrate these remarks. As
we have done for the Poisson equation, we define ∆�∗ the difference between the length of the
Dirichlet subdomain with that of the other subdomain, which now can be of Neumann or Robin
type. We have

N/D and R/D : ∆�∗ = �∗2 − �∗1,

D/N and D/R : ∆�∗ = �∗1 − �∗2.

Figure 3.2 shows the permissible range for δ∗ to achieve convergence, as a function of the Péclet
number, and for four different ∆�∗. Of course, the value of δ∗ is limited by inequality (3.2), which
is represented by the horizontal solid line. Note that the range for δ∗ has been extended to negative
values only for a graphical reason.

We observe once more that for all the methods the convergence criteria is easier to achieve
when the Dirichlet subdomain is larger that the Neumann subdomain, i.e. when ∆�∗ ≥ 0. For
the N/D, R/D and D/R methods, we notice that the minimum δ∗ decreases as the Péclet number
increases whatever ∆�∗ is; the minimum δ∗ is always smaller that that of the Poisson equation.
On the contrary, the D/N method behavior worsens when Pe increases. The hyperbolic limit will
be studied in next section.
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Figure 3.2: Advection-Diffusion equation. Minimum and maximum overlap δ∗ as a function of Pe. (Top)
(Left) ∆�∗ = −0.75. (Top) (Right) ∆�∗ = −0.25. (Bot.) (Left) ∆�∗ = 0. (Bot.) (Right) ∆�∗ = 0.25.

Remark. If �∗1 = �∗2 = 1/2, the latter stability criteria become

D/D : δ∗ > 0,

N/D : δ∗ ≥ 0,

D/N : δ∗ >
1
Pe

ln[cosh(Pe/2)], (3.28)

R/D : δ∗ > 0,

D/R : δ∗ > 0,

The N/D is therefore unconditionally stable for a > 0, while the D/N is conditionally stable
under condition (3.28). As noted earlier, the higher the Péclet number, the more restrictive is this
condition. The D/D, R/D and D/R methods converge if and only if the subdomains overlap.

3.3.4 Hyperbolic limit

We consider the hyperbolic limit of the advection-diffusion-reaction equation, i.e. Pe  1. Ob-
viously, when Pe  1, τ  1. Noting that sinh(x) ≈ exp (x)/2 and cosh(x) ≈ exp (x)/2 when
x  1, and assuming s �= 0 (τ > ω), Equations (3.14), (3.17) and (3.20) give the following rates of
convergence

D/D : � ≈ exp (−2Peδ∗),
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N/D : � ≈ exp (−2Peδ∗)
R/Pe + exp [−Pe(l∗2 − δ∗)]

R/Pe + 1
,

D/N : � ≈ exp (−2Peδ∗)
R/Pe + 1

R/Pe + exp [−Pe(l∗2 + δ∗)]
, (3.29)

R/D : � ≈ exp (−2Peδ∗),

D/R : � ≈ exp (−2Peδ∗).

With reaction, R > 0. If R has a finite value, the following stability conditions can be estab-
lished:

D/D : δ∗ > 0,

N/D : δ∗ ≥ 0,

D/N : δ∗ >
1

2Pe
ln(Pe/R), (3.30)

R/D : δ∗ > 0,

D/R : δ∗ > 0.

We first notice that unlike the preceding two equations studied, i.e. the Poisson and advection-
diffusion equations, the condition on the minimum value for δ∗ does not depend on the lengths of
the subdomain.

On the one hand, the N/D method, for which transmission conditions are consistent with the
subdomains boundary conditions in the hyperbolic limit, i.e. Neumann condition at outflow and
Dirichlet condition at inflow, is unconditionally stable. On the other hand, the D/N coupling is
conditionally stable. Imposing a Dirichlet transmission condition at the outflow of Ω1 creates an
artificial boundary layer at x = δ. The derivative of the unknown in the vicinity of the boundary
layer tends to infinity when the Péclet number tends to infinity, and if the Neumann transmission
condition is to be imposed inside this artificial boundary layer, the domain decomposition might
not converge. Let us estimate the width d of the artificial boundary layer. When the diffusion
term is balanced with the advection term, we have εu/d2 ∼ au/d so that the boundary layer width
scales like

d

�
∼ Pe−1.

Inequality (3.30) states therefore that the overlapping must be larger than the artificial boundary
layer created at the interface at x = δ. This results holds only when a reaction term is present.
On the contrary, we have seen that the convergence criteria is δ > 1/2 when Pe → ∞.

As expected, the R/D and the D/R behave exactly as the D/D method, for the Robin transmis-
sion condition (3.8) tends to the Dirichlet transmission condition (3.7) when Pe  1. Of course,
this remark only applies to this one-dimensional example; this result can only be extrapolated to
two and three-dimension problems when the normal is ”sufficiently” aligned with the advection
vector.
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Without reaction, R = 0. The N/D method is unconditionally stable, while the D/D, R/D
and D/R methods converge whenever δ∗ > 0. The rate of convergence of the N/D method is in
this case exp [Pe(l∗2 − δ∗)] smaller than that of the D/D, R/D and D/R methods. The stability
condition for the D/N method requires that:

D/N : δ∗ → �∗2,

Remembering that δ∗ < min(�∗1, �
∗
2), the latter equation can not be satisfied if the Neumann

subdomain is larger than the Dirichlet subdomain (�2 > �1). The algorithm is neither viable if the
Dirichlet subdomain is larger, as the latter condition states that the overlap must be of the size of
the Neumann subdomain, which is not of practical interest!

3.3.5 Summary

All the stability conditions computed in the previous sections hold for θ1 = θ2 = 1. The conclusions
are the following:

The D/D method is always stable whenever δ∗ > 0, and its convergence rate depends on the
relative lengths of the subdomains in general, and exponentially on the overlap in the hyperbolic
limit. When the Péclet number is zero or small, all the four mixed methods studied require that
the Neumann subdomain be ”sufficiently” smaller than the Dirichlet subdomains. If this is not the
case, convergence can be achieved using ”sufficient” overlap. The behaviors of the mixed methods
differ drastically when the Péclet number is high, although their convergence criteria no longer
depend on the relative lengths of the subdomains. In the hyperbolic limit, the R/D and D/R
methods tend to the D/D method and converge whenever δ∗ > 0, at the same rates. In this
limit, the N/D method is the most adequate method for this simple one-dimensional example, as
it exhibits the best convergence rate. As for the Dirichlet/Neumann method, we have seen that in
the hyperbolic limit, when no reaction term is present in the equation, we have no way of making
the method converge. However, the presence of the reaction enables convergence if the overlap is
larger than the artificial boundary layer created at the Dirichlet interface.

3.4 Relaxed sequential version

We now study the effects of under-relaxation. In order to compare the results of the relaxed
versions with that of the unrelaxed version, we define �seq the rate of convergence of the unrelaxed
versions, i.e.

�seq = |�1�2|.

It will be shown that under-relaxation can, in some cases, help the DD algorithms converge.
In particular, in the presence of a geometrical asymmetry between the subdomains, as already
observed, under relaxation is necessary for the N/D and D/N to converge. We have also observed
that the D/N method for solving the advection-diffusion equation without reaction only converges
under sever restrictions if ε → 0. This section will present the effects of under-relaxation on the
five DD algorithms studied. In particular, a convergence condition for the under-relaxation factor
will be determined, as well as the optimum θopt for which the rate of convergence �opt is minimum.
Finally, the two cases mentioned previously will be studied as illustrations of the under-relaxation.



90 CHAPTER 3. ONE DIMENSIONAL ANALYSIS

For all the methods studied, the under-relaxed version of the sequential DD methods can be
obtained from Equations (3.5)3 and (3.6)3 for k ≥ 0:

Ck+1
1 = θ1�1C

k
2 + (1 − θ1)Ck

1 , (3.31)

Ck+1
2 = θ2�2C

k+1
1 + (1 − θ2)Ck

2 , (3.32)

where �1 and �2 are the convergence rates of the error coefficients already calculated for the
unrelaxed version. They are given by Equations (3.12)-(3.13), (3.15)-(3.16), (3.18)-(3.19), (3.21)-
(3.22) and (3.23)-(3.24) for the D/D, N/D, D/N, R/D and D/R methods, respectively. The
iteration matrix C is for k ≥ 0:

C =
[

1 − θ1 θ1�1

θ2(1 − θ1)�2 θ1θ2�1�2 + (1 − θ2)

]
.

Ideally, one wants to manipulate the least external parameters as possible to control the conver-
gence of the algorithm. We enable the following possible choices, (θ1, θ2) = (1, θ) or (θ1, θ2) = (θ, 1).
By rearranging the error coefficients given by Equations (3.31) and (3.32), we notice that the iter-
ation matrix C for both relaxed versions can be re-written for k ≥ 1 as:

C =
[

1 + θ(�1�2 − 1) 0
0 1 + θ(�1�2 − 1)

]
.

The diagonal form of the iteration matrix is very convenient as we know that the ‖ · ‖2 norm of a
diagonal matrix is precisely its spectral radius, i.e.

‖ck+1‖2 ≤ � ‖ck‖2. (3.33)

Therefore, the convergence condition � < 1 implies also monotonicity of the convergence with
respect to the ‖ · ‖2 norm. The condition for monotonicity cannot in general be established if both
θ1 and θ2 are different from unity.

As obtained for the case with no relaxation, we have an eigenvalue λ of multiplicity two given
by:

λ = 1 + θ(�1�2 − 1),

which gives the following rate of convergence

� = |1 + θ(�1�2 − 1)|.

The convergence condition � < 1 gives

|1 + θ(�1�2 − 1)| < 1,

which is equivalent to

−2 < θ(�1�2 − 1) < 0.

The convergence condition is therefore subject to the value of the product �1�2. Let us now obtain
the value of �1�2 for the five DD methods considered. It can be easily shown from Equations (3.12)
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and (3.13) that the D/D method always gives 0 < �1�2 < 1 provided δ∗ > 0. When δ∗ = 0, we are
in the case �1�2 = 1. For the N/D and D/N methods, we have already pointed in Section 3.3.1 that
the product �1�2 is negative; as for the R/D and D/R methods, from Equations (3.21)-(3.22) and
(3.23)-(3.24), we easily check that �1�2 < 0. Therefore, the following two situations are possible:

• If �1�2 < 1. The condition for convergence becomes

0 < θ <
2

1 − �1�2
, (3.34)

and, in addition, � = �opt = 0 if

θopt =
1

1 − �1�2
.

• If �1�2 = 1. � = 1 for all θ, and the D/D method does not converge.

Let us sum up the results we have obtained. We have shown that all the DD methods studied
admit a maximum relaxation parameter θmax such that they converge for any θ < θmax, as given
by Equation (3.34). We have also shown that the quantity �1�2 is such that

D/D : 0 ≤ �1�2 ≤ 1, (3.35)

Mixed methods : �1�2 ≤ 0, (3.36)

which implies the following rates of convergence

D/D : � = |1 + θ(�seq − 1)|

Mixed methods : � = |1 − θ(�seq + 1)|,

and the following equations for θmax,

D/D : θmax =
2

1 − �seq
,

Mixed methods : θmax =
2

1 + �seq
.

In addition, all the DD methods admit an optimum relaxation parameter θopt for which � = 0.
Let us define an iteration as a complete cycle for which we solve each subdomain; remembering
that Equation (3.33) is valid only for k ≥ 1 (and not k ≥ 0), therefore the DD methods converge
in at most two iterations when θ = θopt with

D/D : θopt =
1

1 − �seq
≥ 1,

Mixed methods : θopt =
1

1 + �seq
≤ 1.

Figure 3.3 shows how the relaxation parameters acts on the rates of convergence of the relaxed
sequential algorithms, as a function of the sequential rate of convergence �seq. It enables also
to appreciate how an optimum relaxation parameter can be chosen so that the mixed methods
converge, whatever the corresponding sequential rate of convergence �seq is.
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Figure 3.3: Relaxed sequential version. Rate of convergence as a function of θ and �seq. (Left) D/D
method. (Right) Mixed methods.

Remark 1. In the hyperbolic limit, we have shown that the D/D, R/D and D/R methods
coincide. Their rates of convergence ρ tend to zero, and therefore, their optimum relaxation
parameter is θopt = 1.

Example 1. As a first illustration of the under-relaxation, we consider the D/N method for
solving the advection-diffusion (without reaction) equation in the hyperbolic limit. This case is
precisely the most difficult as we have shown that it requires an overlap of the size of the Neumann
subdomain to achieve convergence! From Equation (3.29) with R = 0, we find that

�1�2 ≈ − exp [Pe(�∗2 − δ∗)].

The maximum permissible θ is therefore

θmax =
2

1 + exp [Pe(�∗2 − δ∗)]
, (3.37)

which in the hyperbolic limit gives

lim
Pe→∞

θmax = 0+.

This asymptotic value is represented by the convergence of the contour line of value 1 in Figure 3.3
(Right). Theoretically, condition (3.37) can be fulfilled. However, small values of the relaxation
parameters can be prohibitive when performing numerical experimentations, for which the effects
of round off errors become important.

Example 2. The second example studies the convergence criterion for θ, using the N/D and
D/N methods for solving the Poisson equation. The maximum permissible θ is

N/D : θmax =
2

1 + (�∗1 − δ∗)/(�∗2 + δ∗)
,

D/N : θmax =
2

1 + (�∗2 − δ∗)/(�∗1 + δ∗)
.
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Figure 3.4: Poisson equation. Stability curve of the N/D and D/N methods for various δ∗’s.

Using the definition of ∆�∗ introduced in the study of the unrelaxed DD algorithm for the Poisson
equation (see Equations (3.25) and (3.26)), the stability criterion of the N/D and D/N methods
in terms of θ is exactly the same and can be written as

θmax = 1 + ∆�∗ + 2δ∗.

Figure (3.4) shows the stability curve obtained for different overlaps δ∗. Remember that, owing
to Equation (3.27), ∆�∗ is bounded from below and above with respect to δ∗ according to

|∆�∗| < 1 − 2δ∗.

Choosing θ in the range below the curve leads to a stable scheme, whereas the zone above the
curve leads to an unstable scheme. We see that in any case, the instability due to the asymmetry
of the problem can be circumvented by choosing a sufficiently small relaxation parameter. We note
also that the larger the Dirichlet subdomain, the larger the maximum permissible θ. Finally, we
remark that the maximum possible value of θ over all ∆�∗ and δ∗ is θ = 2.

3.5 Unrelaxed parallel version

The parallel version of the domain decomposition algorithm to solve system (3.1)1−2 is given by
Equations (3.3)1−3 and (3.4)1−3 choosing k′ = k in Equation (3.4)3.

The parallel version of the DD algorithms is first presented without under-relaxation, and
compared to its sequential counterpart. When no under-relaxation is used, all the parallel versions
of the DD algorithms lead to the following systems of equations for k ≥ 0:

Ck+1
1 = �1C

k
2 ,

Ck+1
2 = �2C

k
1 ,

which gives the following iteration matrix:

C =
[

0 �1

�2 0

]
.
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The equation for the eigenvalues is

λ2 = �1�2,

which gives the following rate of convergence

� =
√
|�1�2|

=
√

�seq. (3.38)

Therefore, the convergence condition � < 1 for the parallel version is the same as that of the
sequential version, although its rate of convergence is the square of that of the sequential method.
In addition, we have no guarantee of monotonicity. Nevertheless, the simple form of the iteration
matrix allows us to derive easily the expression for the ‖ · ‖2 norm of C:

‖C‖2 = max (|�1|, |�2|)

and therefore we can establish the following norm estimate

‖ck‖2 ≤ max (|�1|, |�2|)‖ck−1‖2.

3.6 Relaxed parallel version

3.6.1 General relaxation

The iteration matrix of the relaxed parallel version is

C =
[

1 − θ1 θ1�1

θ2�2 1 − θ2

]
,

which gives the following characteristic equation

λ2 + (θ1 + θ2 − 2)λ + 1 − θ1 − θ2 + θ1θ2(1 − �1�2) = 0, (3.39)

which corresponding determinant ∆ is given by

∆ = (θ1 − θ2)2 + 4θ1θ2�1�2.

We first note that the action of both relaxation parameters is symmetric, i.e. we can interchange
their values without modifying the resulting algorithm. In Section 3.4, we have shown that, for
the D/D method, the product �1�2 is always positive, while the mixed methods give a negative
product, as stated by Equations (3.35) and (3.36). We must therefore treat the D/D apart from
the mixed methods.
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D/D method. Owing to Equation (3.35), the product �1�2 = �seq is positive and therefore the
eigenvalues solution of Equation (3.39) are real; they are

λ1 =
1
2

(
(2 − θ1 − θ2) −

√
(θ1 − θ2)2 + 4θ1θ2�seq

)
,

λ2 =
1
2

(
(2 − θ1 − θ2) +

√
(θ1 − θ2)2 + 4θ1θ2�seq

)
,

which give the following rate of convergence:

� =
1
2

(
|2 − θ1 − θ2| +

√
(θ1 − θ2)2 + 4θ1θ2�seq

)
.

Owing to the expression of �, we conclude that there does not exist a pair of relaxation parameter for
which � = 0. In addition, we see that the optimum rate of convergence is achieved for θ1 = θ2 = 1;
therefore, we have no way to improve the rate of convergence achieved by the unrelaxed parallel
version, given by Equation (3.38). We are now going to see that the situation is different for the
mixed methods.

Mixed methods. Owing to Equation (3.36), product �1�2 = −�seq. Thus, the determinant of
the characteristic equation is

∆ = (θ1 − θ2)2 − 4θ1θ2�seq, (3.40)

and the equation for the eigenvalues (3.39) admits real or complex solutions, according to the sign
of ∆. We can easily see that the rate of convergence can be written as

� =
1
2

{ √
(2 − θ1 − θ2)2 − ∆ if ∆ < 0

|2 − θ1 − θ2| +
√

∆ if ∆ ≥ 0.
(3.41)

Let us try to simplify this expression. Noting that

1
2
(|∆| + ∆) =

{
0 if ∆ < 0
∆ if ∆ ≥ 0, and√

(2 − θ1 − θ2)2 +
|∆| − ∆

2
=
{ √

(2 − θ1 − θ2)2 − ∆ if ∆ < 0
|2 − θ1 − θ2| if ∆ ≥ 0,

we can rewrite Equation (3.41) for � in the following form

� =
1
2

(√
|∆| + ∆

2
+

√
(2 − θ1 − θ2)2 +

|∆| − ∆
2

)
.

At a first glance, we see that we can achieve � = 0 by setting both ∆ and the term 2 − θ1 − θ2 to
zero. The latter term vanishes if we introduce a unique relaxation parameter θ such that 0 < θ < 2,
and let

θ1 = θ, (3.42)

θ2 = 2 − θ. (3.43)
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Figure 3.5: Optimum relaxed parallel version. Rate of convergence as a function of θ and �seq. (Left)
D/D method. (Right) Mixed methods.

The following section studies the convergence of this “optimum relaxation”.

3.6.2 Optimum relaxation

This optimum relaxation uses a unique relaxation parameter to define θ1 and θ2, as given by
Equations (3.42) and (3.43).

D/D method. We have mentioned that the optimum rate of convergence of the relaxed parallel
D/D method is obtain setting θ1 = θ2 = 1, i.e. no relaxing at all. Anyway, it is interesting to
study the behavior of the D/D method using the optimum relaxation of the mixed method. For
the rate of convergence, we find:

� =
√

1 + θ(θ − 2)(1 − �seq).

Imposing � < 1, we can derive the following inequality for the maximum possible relaxation
parameter

θmax = 2,

which is independent of �seq. Figure (3.5) (Left) shows the variation of the rate of convergence as
a function of θ and �seq.

Mixed methods. The rate of convergence is

� =
1

2
√

2

(√
|∆| + ∆ +

√
|∆| − ∆

)
, (3.44)

with ∆ given by

∆ = 4(θ − 1)2 − 4θ(2 − θ)�seq.

Equation (3.44) is represented by Figure (3.5) (Right). In order to achieve � = 0, we just have
to set the determinant to zero. Solving Equation (3.40) for ∆ = 0, we find two optimum relaxation
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factors θ+
opt and θ−opt

θ±opt = 1 ±
√

�seq

�seq + 1
, and (3.45)

�opt = 0.

The range of admissible relaxation factor can be determined by solving the problem � < 1. We
find that the mixed methods are convergent when

0 < θ < θmax or (2 − θmax) < θ < 2 if �seq ≥ 1,

0 < θ < 2 if �seq < 1,

with θmax given by

θmax = 1 −
√

�seq − 1
�seq + 1

.

We note that when �seq tends to infinity, θmax tends to zero.

3.6.3 Other relaxations

In this section we compare some relaxation strategies. In addition to the optimum relaxation
we have already presented, we introduce two other strategies. We call the first one ”Unique
relaxation”. As explicitly indicated by its name, this strategy uses only one relaxation, the other
being set to unity. We also introduce an ”Equal relaxation”, for which both relaxation parameters
take the same value. We do not derive the equations for the rates of convergence and we limit
ourselves to presenting some plots to have an idea of how the different relaxation algorithms act.
Let us sum up the choice of relaxation parameters for the three versions studied:

Optimum relaxation : θ1 = θ, θ2 = 2 − θ,

Equal relaxation : θ1 = θ2 = θ.

Unique relaxation : θ1 = θ, θ2 = 1.

Figures (3.6) shows the dependence of the rate of convergence on the relaxation parameter
θ, for various sequential rates of convergence �seq. We can appreciate the fact that for the D/D
method, the optimum relaxation factors are θ1 = θ2 = 1 for the three relaxation strategies studied.
Nevertheless, it should be pointed out that for given θ and �seq, the rate of convergence � of the
optimum relaxation is always smaller than that of the other ones and that, taking 0 < θ < 2, we
are always ensured that � < 1. In addition, the derivative of � near the optimum point at θ = 1 is
continuous and the function smooth. This relaxation should be preferred to the other ones.

As for the mixed method, the conclusions are much more evident. We have shown that the
optimum relaxation admits an optimum θ for which the rate of convergence is zero. This property
is not shared by the other two strategies. Nevertheless, let us mention that the derivative of the rate
of convergence near the optimum point is higher for this strategy, which makes it more sensitive
to changes in θ near the optimum point with respect to the other ones, around their respective
optimum point.
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Figure 3.6: Comparison of different relaxed parallel algorithms. (Top) (Left) D/D with �seq = 0.2. (Top)
(Right) D/D with �seq = 0.8. (Bot.) (Left) Mixed methods with �seq = 0.2. (Bot.) (Right) Mixed methods
with �seq = 4.

Let us conclude this section about the relaxed parallel version. We have shown that there
always exist a θ for which parallel version of the DD methods converge. In addition, the parallel
version is obviously computationally more attractive than its sequential counterpart. However,
monotonicity of the convergence is not guaranteed and there does not exist an optimal θ for which
� = 0. Numerical parallelism can therefore be only achieved at the expense of lower stability and
slower convergence speed.

3.7 Conclusions

During the analysis of the one-dimensional problem, we have been studying the behaviors of five
domain decomposition methods. We have first considered the unrelaxed sequential versions and
established the conditions on the overlapping length so that the DD methods converge. The
following remarks have been made:

1. The D/D converges whenever the overlapping length is not zero. The higher the Péclet
number, the smaller the rate of convergence.

2. The N/D is the most appropriated method for advection dominated flows, as the Neumann
and Dirichlet conditions are imposed according to the hyperbolic character of the equation.

3. The D/N, which contradicts the latter remark, cannot converge for high Péclet numbers, when
the differential equation has no reaction term. However, when the reaction term is present,
we have shown that a minimum overlapping length enables to achieve convergence in any
case. Note that in the transient case, the reaction term comes from the time discretization
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with s ∼ 1/δt, δt being the time step. We expect therefore transient problems to be even
more favorable to the overlapping D/N method.

4. The R/D and D/R methods acts symmetrically with respect to the transmission conditions.
Therefore, the Dirichlet and Robin conditions can be imposed without regards to the direction
of the flow. In addition, the overlapping length can be chosen so that the methods convergence
for all Péclet numbers. When Pe  1, the rates of convergence of the R/D and D/R methods
tend to that of the D/D method.

5. In all cases, convergence is monotone.

In order to enable convergence when no control was possible on the overlapping length, we have
introduced relaxation of the transmission conditions. We have found that setting one of the re-
laxation parameters to unity, we could achieve convergence for all the DD methods, and for any
Péclet number; as in the case of the unrelaxed sequential version, this convergence is monotone.
In addition, we have shown that there always exists an optimum relaxation parameter for which
the DD methods converge in at most two iterations.

Then we have presented the parallel versions of the D/D method. The conditions for con-
vergence are exactly the same as those of the sequential method. All methods exhibit a rate of
convergence which is the square root of that of the sequential versions.

Finally, we have relaxed the transmission conditions of the parallel version. On the one hand,
we have shown that we have no way of finding relaxation parameters so that the D/D method
converges in at most two iterations. On the other hand, this optimal convergence can be achieved
for the mixed method choosing the so-called optimum relaxation, using θ1 = θ and θ2 = 2 − θ for
θ given by Equation (3.45). Finally, let us comment that we have not tried to calculate a norm
estimate; in general, the methods are not monotone.

Table 3.1 shows the rates of convergence obtained for the relaxed sequential and parallel meth-
ods, as well as for the respective relaxed versions. Table 3.2 sums up the values of the optimum

Method Seq. Par. Rel. Seq. Rel. Par.
θ1 = θ, θ2 = 1 θ1 = θ, θ2 = 2 − θ

D/D �seq
√

�seq |1 + θ(�seq − 1)|
√

1 + θ(θ − 2)(1 − �seq)

Mixed �seq
√

�seq |1 − θ(�seq + 1)| 1
2
√

2

(√
|∆| + ∆ +

√
|∆| − ∆

)(∗)

Table 3.1: Rates of convergence, with �seq = |�1�2|. (∗) ∆ = 4(θ − 1)2 − 4θ(2 − θ)�seq.

relaxation factors and their corresponding optimum rates of convergence.
This one-dimensional study has enabled to point out the importance of three main factors in

the convergence of overlapping methods, namely the relative geometries of the subdomains, the
relaxation factor, and the overlapping length. Next chapter treats the multidimensional problem
at the variational level. In particular, we will recognize easily the importance of the relaxation
factor. However, the effects of the sizes of the subdomains and that of the overlapping zone will
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Method Parameter Sequential Parallel
θ1 = θ, θ2 = 1 θ1 = θ, θ2 = 2 − θ

D/D θopt
1

1 − �seq
1

�opt 0 √
�seq

Mixed θopt
1

1 + �seq
±
√

�seq

�seq + 1
�opt 0 0

Table 3.2: Optimum relaxation parameter and optimum rate of convergence.

not be so clear, as they will be embedded inside the norm estimates of the operators in play. In
any case, the one-dimensional frame is a preview of what happens in multidimensional problems
and is a precious hint before performing a numerical experimentation.



Chapter 4

An Overlapping Domain
Decomposition Method

In Chapter 2 we contemplated the possibility of using overlapping mixed methods for solving
iteration-by-subdomain problems. We justified their mathematical foundation through a simple
example and intuited their advantage over their disjoint counterparts. In the next chapter, the
study of a one-dimensional ADR equation confirmed what we had advanced concerning the effects of
the overlapping length, and in particular, the possibility of achieving convergence in the hyperbolic
limit even when the Neumann and Dirichlet interfaces were not placed in accordance to the direction
of the flow. In this chapter, we propose to make one step beyond and to study the convergence
of overlapping mixed methods within a variational framework applied to the solution of a scalar
advection-diffusion-reaction equation. This chapter constitutes therefore a theoretical basis for the
study of overlapping mixed methods [96, 97].

As a beginning, we introduce the continuous problem, derive the corresponding variational for-
mulation, and look for a weak solution. Then we present a new overlapping domain decomposition
method. The starting point is a two-domain variational formulation of the problem, originating
from a geometrical decomposition of the original domain of study; we follow the strategy presented
in [98] for the classical Dirichlet/Neumann method and extensively studied in [58]. We show how
the formulation can be reformulated into an overlapping domain decomposition method based on
a Dirichlet/Robin coupling and how this formulation can be simply derived from a differential
problem. Next, the domain decomposition method for the subdomains is re-written in terms of a
problem for the interface unknowns. An iterative and relaxed sequential scheme is then introduced
in order to solve the DD problem. The convergence is studied through the interface equations. We
present the generalization of the overlapping DD method introduced to other types of overlapping
mixed couplings, in particular to an overlapping Dirichlet/Neumann method. Afterwards, we con-
sider the discrete counterpart of the formulation. We then build an iterative strategy to solve the
two-domain problem. This strategy is studied algebraically, using a finite element method for the
spatial discretization and solving for the Schur complement system, and the overlapping D/N and
D/R methods are illustrated by four numerical examples. We mention briefly the possibility of
parallelizing the algorithm using two or many subdomains. Finally, we introduce the extension of
the overlapping Dirichlet/Neumann method to the Stokes and Navier-Stokes equations.

101
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4.1 Problem statement

We propose to study the following ADR problem:{
Lu := −ε∆u + ∇ · (au) + su = f in Ω,

u = 0 on ∂Ω,

already introduced in the first chapter. We choose to study the 1/2-weak formulation presented
in Section 1.1.3, and keep using the same notation. The weak formulation of the original problem
reads: find u ∈ V such that

a(u, v) = 〈f, v〉Ω ∀ v ∈ V, (4.1)

where the bilinear form is

a(w, v) := ε(∇w,∇v) +
1
2
(a · ∇w, v) − 1

2
(w,a · ∇v) + (s0w, v),

with

s0 = s +
1
2
∇ · a.

From the Lax-Milgram lemma, if s0 ≥ 0 almost everywhere, Problem (4.1) has a unique solution.
From now on, we assume that s0 ≥ 0 almost everywhere.

4.2 Overlapping Dirichlet/Robin method

4.2.1 Domain partitioning and definitions

We perform a geometrical decomposition of the original domain Ω into three disjoint and connected
subdomains Ω3, Ω4 and Ω5 such that

Ω = int
(
Ω3 ∪ Ω4 ∪ Ω5

)
.

From this partition, we define Ω1 and Ω2 as two overlapping subdomains:

Ω1 := int
(
Ω3 ∪ Ω4

)
, Ω2 := int

(
Ω5 ∪ Ω4

)
.

Finally, we define Γa as the part of ∂Ω2 lying in Ω1, and Γb as the part of ∂Ω1 lying in Ω2, formally
given by

Γa := ∂Ω2 ∩ Ω1, Γb := ∂Ω1 ∩ Ω2.

The geometrical nomenclature is shown in Figure 4.1. Γb and Γa are the interfaces of the domain
decomposition method we now present. Ω4 is the overlap zone. In the following, index i or j refer
to a subdomain or an interface.
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Figure 4.1: Examples of decomposition of domain Ω into two overlapping subdomains Ω1 and Ω2.

We set the following definitions to be used for the variational formulation of the two-domain
problem:

(w, v)Ωi
:=

∫
Ωi

wv dΩ, for w and v in L2(Ωi),

ai(w, v) := ε(∇w,∇v)Ωi
+ (s0w, v)Ωi

+
1
2
(a · ∇w, v)Ωi

− 1
2
(w,a · ∇v)Ωi

, (4.2)

Vi := {v ∈ H1(Ωi) | v|∂Ω∩∂Ωi
= 0},

V 0
i := H1

0 (Ωi),

where i can be any of the five subdomains introduced previously, i.e. i = 3, 4, 5, 1 or 2.

We now introduce the trace operator. From the trace theorem (see e.g. [2, 3]), we know that
there exists a unique linear continuous map γ0,i, called the trace operator, defined as

γ0,i : Vi −→ H1/2(∂Ωi), such that γ0,ivi = vi|∂Ωi
∀ vi ∈ Vi, i = 3, 4, 5, 1, 2,

and that this result applies equivalently to any Lipschitz continuous subset of ∂Ωi. Let us denote
Ta and Tb as the trace operators restricted to Γa and Γb, respectively. They are defined by:

Ta : V −→ H
1/2
00 (Γa), Tav = v|Γa

∀ v ∈ V,

Tb : V −→ H
1/2
00 (Γb), Tbv = v|Γb

∀ v ∈ V.

In addition, we explicitly define the trace spaces on Γa and Γb as

Λa := {µa ∈ H
1/2
00 (Γa)}, Λb := {µb ∈ H

1/2
00 (Γb)};

obviously, for any v ∈ V , we have v|Γa
∈ Λa, and v|Γb

∈ Λb.

We also introduce some basic properties of the spaces we are working with; as many constants
are going to be introduced, we adopt a general nomenclature. We enunciate three inequalities
(Poincaré-Friedrichs, trace inequalities and an a-priori estimate) that characterize the functions
belonging to our work spaces, i.e. H1(Ω) and H1

0 (Ω). The domains of study are the original
domain Ω and its five partitions Ωi with i = 3, 4, 5, 1, 2. The Poincaré-Friedrichs inequality reads

‖v‖2
0,Ωi

≤ CΩi
‖∇v‖2

0,Ωi
∀ v ∈ H1

0 (Ωi). (4.3)
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where CΩi
is a positive constant depending on the size of the domain Ωi. The space of applica-

tion H1
0 (Ωi) can be actually extended to any subspace of H1(Ωi) for which the trace is specified

“somewhere” on ∂Ωi.
The trace inequality is a direct consequence of the trace theorem; it states that there exists a

positive constant C∗
i such that

‖v|∂Ωi
‖1/2,∂Ωi

≤ C∗
i ‖v‖1,Ωi

∀ v ∈ H1(Ωi). (4.4)

Finally, the following a-priori estimate for the solution v of homogeneous elliptic problems with
Dirichlet data holds (see e.g. [2, 3]):

‖v‖1,Ωi
≤ Ci‖v|∂Ωi

‖1/2,∂Ωi
. (4.5)

This establishes the continuous dependence of the solution on the boundary data and closes the
list of properties.

4.2.2 Variational formulation

We propose to solve the following problem: find u1 ∈ V1 and u2 ∈ V2 such that

a1(u1, v1) = 〈f, v1〉Ω1 ∀ v1 ∈ V 0
1 ,

u1 = u2 on Γb,

a2(u2, v2) = 〈f, v2〉Ω2 ∀ v2 ∈ V 0
2 ,

a3(u1, E3µa) + a2(u2, E2µa) = 〈f,E3µa〉Ω3 + 〈f,E2µa〉Ω2 ∀ µa ∈ Λa,

(4.6)

where Ei denotes any possible extension operator, such that

Ei : Λa −→ H1(Ωi),

TaEiµa = µa ∀ µa ∈ Λa.

Equations (4.6)1 and (4.6)3 are the equations for the unknown in subdomains Ω1 and Ω2 respec-
tively; in fact, observe that both test functions v1 and v2 vanish on the whole boundaries of Ω1

and Ω2 respectively, including on their interfaces. Equation (4.6)2 is the condition which ensures
continuity of the primary variable across Γb, and levels the solution in both subdomains. Finally,
equation (4.6)4 is the equation for the primary variable on the interface Γa.

Theorem 4.1. Problems (4.6) and (4.1) are equivalent.

Proof. We first show that the solution is the same in both subdomains inside the overlap zone
Ω4, i.e. that the two transmission conditions on the interfaces are sufficient to uniquely define the
solution. For any v4 ∈ V 0

4 , construct

v1 =
{

0 in Ω3,
v4 in Ω4,

v2 =
{

v4 in Ω4,
0 in Ω5.
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Clearly, v1 ∈ V 0
1 and v2 ∈ V 0

2 and therefore subtracting (4.6)1 and (4.6)3, we obtain

a4(u1 − u2, v4) = 0 ∀ v4 ∈ v0
4

together with the condition u1 − u2 = 0 on Γb, derived from (4.6)2. Now, we need to derive a
boundary condition on Γa in order to close the problem for the unknown u1 −u2. For any µa ∈ Λa

define

v1 =
{

E3µa in Ω3,
E4µa in Ω4.

Since v1 ∈ V 0
1 , (4.6)1 gives

a3(u1, E3µa) + a4(u1, E4µa) = 〈f,E3µa〉Ω3 + 〈f,E4µa〉Ω4 ∀ µa ∈ Λa.

Substituting last expression into equation (4.6)4, we find

a2(u2, E2µa) − a4(u1, E4µa) = 〈f,E2µa〉Ω2 − 〈f,E4µa〉Ω4 ∀ µa ∈ Λa. (4.7)

Now we define for all µa ∈ Λa

v′
2 =

{
E4µa in Ω4,
0 in Ω5.

Equation (4.7) can be rewritten as

a2(u2, E2µa − v′
2) + a2(u2, v

′
2) − a4(u1, E4µa)

= 〈f,E2µ − v′
2〉Ω2 + 〈f, v′2〉Ω2 − 〈f,E4µa〉Ω4 ∀ µa ∈ Λa. (4.8)

According to the definition of v′
2, (E2µa − v′

2) ∈ V 0
2 and consequently, applying (4.6)3, we obtain

a2(u2, E2µa − v′
2) = 〈f,E2µ − v′

2〉Ω2 .

Equation (4.8) gives therefore

a4(u2, E4µa) − a4(u1, E4µa) = 〈f,E4µa〉Ω4 − 〈f,E4µa〉Ω4 ∀ µa ∈ Λa,

which is equivalent to

a4(u1 − u2, E4µa) = 0 ∀ µa ∈ Λa.

As a result, the complete system of equations for w = u1 − u2 is a4(w, v4) = 0 ∀ v4 ∈ V 0
4 ,

w = 0 on Γb,
a4(w,E4µa) = 0 ∀ µa ∈ Λa.

From Lax-Milgram lemma, this problem has a unique solution w = 0; this implies that u1 = u2 in
Ω4.
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We now show that the solution of the original problem is also solution of the domain decom-
position problem. Let u be solution of equation (4.1), and define ui = u|Ωi

for i = 1, 2. Clearly,
ui ∈ Vi and therefore equations (4.6)1, (4.6)2 and (4.6)3 are trivially satisfied. Now for all µa ∈ Λa

define γ as

γ =
{

E3µa in Ω3,
E2µa in Ω2.

We have γ ∈ V , which implies that

a(u, γ) = 〈f, γ〉Ω,

and substituting the definition of γ into this equation we recover equation (4.6)4. We now prove
the reciprocal. Let

u =
{

u1|Ω3 in Ω3,
u2 in Ω2.

We proved that u1 = u2 in Ω4 and in particular that u1 = u2 on Γa. This implies that u ∈ V ; as
a result, we have

a(u, v) = a3(u1, v) + a2(u2, v) ∀ v ∈ V . (4.9)

For each v ∈ V , set µa = Tav ∈ Λa. Let us define

γ3 = v|Ω3 − E3µa,

γ2 = v|Ω2 − E2µa.

and rewrite equation (4.9) as

a(u, v) = a3(u1, γ3) + a3(u1, E3µa) + a2(u2, γ2) + a2(u2, E2µa) ∀ µa ∈ Λa. (4.10)

From its definition, γ3 ∈ V 0
3 . Let us now define γ1 as

γ1 =
{

γ3 in Ω3,
0 in Ω4.

γ1 ∈ V 0
1 and therefore, applying (4.6)1,

a1(u1, γ1) = 〈f, γ1〉Ω1 ,

which gives

a3(u1, γ3) = 〈f, γ3〉Ω3 .

Knowing also that γ2 ∈ V 0
2 , we have

a2(u2, γ2) = 〈f, γ2〉Ω2 ,
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and from the latter two equations, equation (4.10) becomes

a(u, v) = 〈f, γ3〉Ω3 + a3(u1, E3µa) + 〈f, γ2〉Ω2 + a2(u2, E2µa) ∀ µa ∈ Λa.

From equation (4.6)4, the last equation reads

a(u, v) = 〈f, γ3〉Ω3 + 〈f,E3µa〉Ω3 + 〈f, γ2〉Ω2 + 〈f,E2µa〉Ω2 ∀ µa ∈ Λa,

which gives from the definitions of γ3 and γ2,

a(u, v) = 〈f, v|Ω3〉Ω3 + 〈f, v|Ω2〉Ω2 ,

= 〈f, v〉Ω ∀ v ∈ V,

and hence the theorem follows.

Remark 4.1. The variational formulation given by Equations (4.6)1−4 provides a general setting
for an overlapping domain decomposition method. On the one hand, we have a Dirichlet condition
on Γb; on the other hand, the transmission condition (4.6)4 on Γa depends on the bilinear form
chosen to represent the original differential operator in the weak formulation. For the particular
case of the ADR problem, this condition can be written in the more familiar form presented next.

4.2.3 Alternative formulation

We develop an alternative formulation for the domain decomposition method given by Equations
(4.6)1−4.

Lemma 4.1. The solution of the domain decomposition problem satisfies

ε
∂u1

∂n2
− 1

2
(a · n2)u1 = ε

∂u2

∂n2
− 1

2
(a · n2)u2 on Γa, in the sense of Λa,

where ∂(·)/∂n2 = n2 · ∇(·), n2 being the outward unit vector normal to Ω2 on Γa.

Proof. Note first that according to Green’s formula, we have for all µa ∈ Λa

a3(u1, E3µa) = − 〈ε∂u1

∂n2
− 1

2
(a · n2)u1, µa〉Γa

+ 〈Lu1, E3µa〉Ω3 , (4.11)

a2(u2, E2µa) = 〈ε∂u2

∂n2
− 1

2
(a · n2)u2, µa〉Γa

+ 〈Lu2, E2µa〉Ω2 . (4.12)

In addition, from Equations (4.6)1 and (4.6)3, we have

Lu1 = f in Ω1, and (4.13)

Lu2 = f in Ω2, (4.14)
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in the sense of distributions. As a result, Equations (4.11) and (4.12) become

a3(u1, E3µa) = − 〈ε∂u1

∂n2
− 1

2
(a · n2)u1, µa〉Γa

+ 〈f,E3µa〉Ω3 , (4.15)

a2(u2, E2µa) = 〈ε∂u2

∂n2
− 1

2
(a · n2)u2, µa〉Γa

+ 〈f,E2µa〉Ω2 .

Adding up these two equations, and substituting the result into Equation (4.6)4, we find

〈−ε
∂u1

∂n2
+

1
2
(a · n2)u1 + ε

∂u2

∂n2
− 1

2
(a · n2)u2, µa〉Γa

= 0. ∀ µa ∈ Λa,

and thus the lemma holds.

Theorem 4.2. System of equations (4.6)1−4 can be reformulated as follows: find u1 ∈ V1 and
u2 ∈ V2 such that



a1(u1, v1) = 〈f, v1〉Ω1 ∀ v1 ∈ V 0
1 ,

u1 = u2 on Γb,

a2(u2, v
′
2) = 〈f, v′2〉Ω2 + 〈ε∂u1

∂n2
− 1

2
(a · n2)u1, v

′
2〉Γa

∀ v′
2 ∈ V2.

(4.16)

Proof. We first substitute Equation (4.15) into Equation (4.6)4, and add the result to Equation
(4.6)3:

a2(u2, v2 + E2µa) = 〈ε∂u1

∂n2
− 1

2
(a · n2)u1, µa〉Γa

+ 〈f, v2 + E2µa〉Ω2 ∀ v2 ∈ V 0
2 , µa ∈ Λa.

Let us define v′
2 = v2 + E2µa. Clearly, v′

2 ∈ V2 and µa = Tav′
2; consequently, the last equation is

equivalent to

a2(u2, v
′
2) = 〈ε∂u1

∂n2
− 1

2
(a · n2)u1, v

′
2〉Γa

+ 〈f, v′2〉Ω2 ∀ v′
2 ∈ V2.

The proof is completed by substituting Equation (4.6)3 and (4.6)4 of the system of equations
(4.6)1−4 by the last equation.

The interpretation of the domain decomposition method now appears clearly. On the one hand,
a Dirichlet problem is solved in Ω1 using as Dirichlet data on the interface Γb the solution in Ω2.
On the other hand, a mixed Dirichlet/Robin problem is solved in Ω2 using as Robin data on Γa

the solution in Ω1. This formulation justifies the choice of the name overlapping Dirichlet/Robin
(O-D/R) method to designate the DD method.
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Remark 4.2. The system of equations (4.16)1−3 could have been derived directly from the fol-
lowing DD algorithm applied at the differential level:



Lu1 = f in Ω1,

u1 = 0 on ∂Ω1 ∩ ∂Ω,

u1 = u2 on Γb,

Lu2 = f in Ω2,

u2 = 0 on ∂Ω2 ∩ ∂Ω,

ε
∂u2

∂n2
− 1

2
(a · n2)u2 = ε

∂u1

∂n2
− 1

2
(a · n2)u1 on Γa.

(4.17)

The interface conditions on Γa and Γb are usually referred to as matching conditions or transmission
conditions. The first one is of Dirichlet type while the second one is of Robin type. At the
variational level, we have just shown they correspond to essential and natural boundary conditions
when choosing the bilinear form a = a1/2.

Remark 4.3. Although formulation (4.16)1−3 was derived from formulation (4.6)1−4, it should
be pointed out that the original formulation does not explicitly involve the normal derivatives on
the interfaces Γa, whose definition can be ambiguous, e.g. at corners. In addition, we will see that
the variational formulation can be useful to derive a corresponding algebraic approach.

4.2.4 Interface equations

A convenient way to study domain decomposition methods is to derive equations for the interface
unknown(s). To do so, the domain decomposition problem is first rewritten into two purely Dirich-
let problems for which the Dirichlet data are the unknowns on the interfaces. The development of
the interface equations is first achieved at the differential level, starting form Equations (4.17)1−6.
Then, the variational equivalent is derived directly from Equations (4.6)1−4. Finally, we enunciate
the properties of the operators involved in the interface equations and state the existence and
unicity of the solutions.

Differential interface equations

We propose to solve the following two problems: Lw1 = f in Ω1,
w1 = 0 on ∂Ω1 ∩ ∂Ω,
w1 = λb on Γb,

(4.18)

 Lw2 = f in Ω2,
w2 = 0 on ∂Ω2 ∩ ∂Ω,
w2 = λa on Γa.

(4.19)



110 CHAPTER 4. AN OVERLAPPING DOMAIN DECOMPOSITION METHOD

Figure 4.2: Extension operators.

Now let us decompose w1 and w2 into L-homogeneous and Dirichlet-homogeneous parts:

w1 = u0
1 + u∗

1, (4.20)

w2 = u0
2 + u∗

2, (4.21)

where the L-homogeneous parts u0
1 and u0

2 are the solutions of the following systems Lu0
1 = 0 in Ω1,

u0
1 = 0 on ∂Ω1 ∩ ∂Ω,

u0
1 = λb on Γb,

(4.22)

 Lu0
2 = 0 in Ω2,

u0
2 = 0 on ∂Ω2 ∩ ∂Ω,

u0
2 = λa on Γa,

(4.23)

and the Dirichlet-homogeneous parts u∗
1 and u∗

2 are the solutions of the following systems{
Lu∗

1 = f in Ω1,
u∗

1 = 0 on ∂Ω1,
(4.24)

{
Lu∗

2 = f in Ω2,
u∗

2 = 0 on ∂Ω2.
(4.25)

u0
1 is referred to as the L-homogeneous extension of λb into Ω1, and is denoted L1λb. Similarly,

u0
2 is called the L-homogeneous extension of λa into Ω2, and is denoted L2λa; see Figure (4.2).

In the case when L = −∆, L is called the harmonic extension and is usually denoted H. The
Dirichlet-homogeneous parts u∗

1 and u∗
2 are rewritten as G1f and G2f , respectively. Comparing

systems of equations (4.18) and (4.19) with system (4.17), we have wi = ui for i = 1, 2 if and only
if the following two conditions are satisfied:

ε
∂w2

∂n2
− 1

2
(a · n2)w2 = ε

∂w1

∂n2
− 1

2
(a · n2)w1 on Γa,

w1 = w2 on Γb.

(4.26)

Using the previous definitions of the L-homogeneous extension operators and those of the L-
homogeneous components of the wi’s, and noting that TbG1f = 0, the system of equations (4.26)
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can be rewritten as
ε
∂L2λa

∂n2
− 1

2
(a · n2)L2λa = ε

∂L1λb

∂n2
− 1

2
(a · n2)L1λb

+ε
∂G1f

∂n2
− 1

2
(a · n2)G1f − ε

∂G2f

∂n2
+

1
2
(a · n2)G2f on Γa,

λb = TbL2λa + TbG2f on Γb.

Let us clean up the last system by introducing some definitions. In the first equation, we
recognize the Steklov-Poincaré operator S2 associated to subdomain Ω2, and defined as

S2 : Λa −→ H−1/2(Γa),

S2λa := ε
∂L2λa

∂n2
− 1

2
(a · n2)L2λa.

We define S̃b, a Steklov-Poincaré-like operator acting on Γb as

S̃b : Λb −→ H−1/2(Γa),

S̃bλb := −ε
∂L1λb

∂n2
+

1
2
(a · n2)L1λb.

We also define T̃b, the trace on Γb of the L-extension of λa into Ω2 by

T̃b : Λa −→ Λb,

T̃bλa := TbL2λa.

χ and χ′ are defined as follows

χ = ε
∂G1f

∂n2
− 1

2
(a · n2)G1f − ε

∂G2f

∂n2
+

1
2
(a · n2)G2f,

χ′ = TbG2f,

where we have χ ∈ H−1/2(Γa) and χ′ ∈ Λb. Owing to the previous definitions, the system of two
equations for the interface unknowns reads{

S2λa = −S̃bλb + χ in H−1/2(Γa),
λb = T̃bλa + χ′ in Λb.

(4.27)

Let us introduce the following operator

S̃1 : Λa −→ H−1/2(Γa),

S̃1λa := S̃bT̃bλa,

and define S as

S = S̃1 + S2.
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After substituting λb given by Equation (4.27)2 into Equation (4.27)1, we finally obtain the fol-
lowing system of equations for the interface unknowns

{
Sλa = χ − S̃bχ

′ in H−1/2(Γa),
λb = T̃bλa + χ′ in Λb.

(4.28)

Once λa and λb are obtained, we can solve the two Dirichlet problems (4.22) and (4.23) to obtain
the L-homogeneous parts u0

1 and u0
2. The Dirichlet-homogeneous parts u∗

1 and u∗
2 are obtained by

solving Equations (4.24) and (4.25). Hence, the solutions u1 and u2 are calculated by adding up
their respective L and Dirichlet homogeneous contributions.

Remark 4.4. Let us consider the limit of disjoint subdomains, and define λ the unique interface
unknown, i.e. λa = λb = λ. The operator S̃1 is precisely the Steklov-Poincaré operator given by

S̃1λ = S1λ = ε
∂

∂n1
L1λ − 1

2
(a · n1)λ, (4.29)

where n1 = −n2 is the outward unit vector normal to Ω1. We can easily check that Equations
(4.28)1 simply reduce to the following equation for λ:

(S1 + S2)λ = χ.

As expected, this equation coincides with the Steklov-Poincaré equation for the interface un-
known of disjoint subdomains using the classical Dirichlet/Robin method, or the classical Dirich-
let/Neumann method if the equation is purely diffusive (see [58]).

Although Equation (4.28)1 has been derived at the differential level, it should formally be
understood in a weak sense. Let us find a variational interpretation to the operators in play. From
Equation (4.28)1, we have

〈(S2 + S̃1)λa, µa〉Γa
= 〈χ − S̃bχ

′, µa〉Γa
∀ µa ∈ Λa. (4.30)

Lemma 4.2. The variational counterpart of the Steklov-Poincaré operators are

〈S̃1λa, µa〉Γa
= a3(L1T̃bλa, E3µa) ∀ µa ∈ Λa, (4.31)

〈S2λa, µa〉Γa
= a2(L2λa, E2µa) ∀ µa ∈ Λa, (4.32)

for any extension operators E2 and E3.
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Proof. According to the definition of S̃1, and using Green’s formula, we have

〈S̃1λa, µa〉Γa
=
∫

Γa

(
−ε

∂L1T̃bλa

∂n2
+

1
2
(a · n2)L1T̃bλa

)
µa dΓ

=
∫

Γa

(
−ε∇(L1T̃bλa) +

1
2
(L1T̃bλa)a

)
µa · n2 dΓ

=
∫

Ω3

∇ ·
[(

−ε∇(L1T̃bλa) +
1
2
(L1T̃bλa)a

)
µa

]
dΩ

=
∫

Ω3

ε∇(L1T̃bλa) · ∇(E3µa) dΩ +
∫

Ω3

ε∆(L1T̃bλa)E3µa dΩ

−1
2

∫
Ω3

(E3µa)a · ∇(L1T̃bλa) dΩ − 1
2

∫
Ω3

(L1T̃bλa)a · ∇(E3µa) dΩ

−1
2

∫
Ω3

(L1T̃bλa)(E3µa)∇ · a dΩ ∀ µa ∈ Λa, (4.33)

for any extension operators E3. Knowing also that according to Equation (4.22) we have

ε∆(L1T̃bλa) = a · ∇(L1T̃bλa) + (s + ∇ · a)L1T̃bλa,

in the sense of distributions, Equation (4.33) simplifies to

〈S̃1λa, µa〉Γa
= a3(L1T̃bλa, E3µa) ∀ µa ∈ Λa.

The first argument of the last bilinear form is represented in Figure (4.2).
Let us now consider S2. According to its definition and using Green’s formula, we have

〈S2λa, µa〉Γa
=
∫

Γa

(
ε
∂L2λa

∂n2
− 1

2
(a · n2)L2λa

)
µa dΓ

=
∫

Ω2

ε∇(L2λa) · ∇(E2µa) dΩ +
∫

Ω2

ε∆(L2λa)E2µa dΩ

−1
2

∫
Ω2

(E2µa)a · ∇(L2λa) dΩ − 1
2

∫
Ω2

(L2λa)a · ∇(E2µa) dΩ

−1
2

∫
Ω2

(L2λa)(E2µa)∇ · a dΩ ∀ µa ∈ Λa, (4.34)

for any extension operators E2. Knowing also that according to Equation (4.23) we have

ε∆(L2λa) = a · ∇(L2λa) + (s + ∇ · a)L2λa,

in the sense of distributions, Equation (4.34) simplifies to

〈S2λa, µa〉Γa
= a2(L2λa, E2µa) ∀ µa ∈ Λa,

which completes the proof of the lemma.
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As for the right hand-side of Equation (4.28)1, we can show that

〈χ, µa〉Γa
= 〈f,E2µa〉Ω2 − a2(G2f,E2µa) + 〈f,E3µa〉Ω3 − a3(G1f,E3µa), ∀ µa ∈ Λa

〈S̃bχ
′, µa〉Γa

= a3(L1TbG2f,E3µa) ∀ µa ∈ Λa,

for any extension operators E2 and E3. This completes the definition of the variational form of
Equation (4.28)1:

a2(L2λa, E2µa) + a3(L1T̃bλa, E3µa) = 〈f,E2µa〉Ω2 − a2(G2f,E2µa)

+〈f,E3µa〉Ω3 − a3(G1f,E3µa) − a3(L1TbG2f,E3µa) ∀ µa ∈ Λa.

Variational interface equations

Equation (4.30) can also be obtained by formulating Problems (4.18) and (4.19) in a variational
form as follows: find w1 ∈ V1 and w2 ∈ V2 such that a1(w1, v1) = f ∀ v1 ∈ V 0

1

w1 = 0 on ∂Ω1 ∩ ∂Ω,
w1 = λb on Γb,

(4.35)

 a2(w2, v2) = f ∀ v2 ∈ V 0
2

w2 = 0 on ∂Ω2 ∩ ∂Ω,
w2 = λa on Γa,

(4.36)

As given by Equations (4.20) and (4.21), we decompose w1 and w2 into L-homogeneous and
Dirichlet-homogeneous parts. The L-homogeneous parts are solutions of the following equations a1(u0

1, v1) = 0 ∀ v1 ∈ V 0
1

u0
1 = 0 on ∂Ω1 ∩ ∂Ω,

u0
1 = λb on Γb, a2(u0

2, v2) = 0 ∀ v2 ∈ V 0
2

u0
2 = 0 on ∂Ω2 ∩ ∂Ω,

u0
2 = λa on Γa,

while the Dirichlet-homogeneous parts satisfy the following equations with homogeneous data{
a1(u∗

1, v1) = 0 ∀ v1 ∈ V 0
1

u∗
1 = 0 on ∂Ω1,{

a2(u∗
2, v2) = 0 ∀ v2 ∈ V 0

2

u∗
2 = 0 on ∂Ω2,

We now proceed similarly to what has been done at the differential level. Comparing Equations
(4.35)1−3 and (4.36)1−3 with Equations (4.6)1−4, we have wi = ui for i = 1, 2 if and only if the
following two conditions are satisfied:

a2(L2λa, E2µa) + a3(L1λb, E3µa) =
〈f,E2µa〉Ω2 − a2(G2f,E2µa)
+〈f,E3µa〉Ω3 − a3(G1f,E3µa) ∀ µa Λa,

λb = T̃bλa + χ′ in Λb.

(4.37)
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By substituting Equation (4.37)2 into (4.37)1, we recover the weak form of Equation (4.28)1 de-
rived at the differential level.

Solution of the interface equations

Let us go back to system (4.28). We first state some useful properties of operators S2 and S̃1.

Lemma 4.3. S2 is both continuous and coercive and S̃1 is continuous and non-negative.

Proof. We have shown that Equations (4.32) and (4.31) hold for any extension operators E2 and
E1. This leaves us the choice to find appropriate expressions for S2 and S̃1 to facilitate their
analysis. A straightforward choice consists in taking E2 = L2, and E1 = L1T̃b. Thus, we have

〈S2λa, µa〉Γa
= a2(L2λa,L2µa),

〈S̃1λa, µa〉Γa
= a3(L1T̃bλa,L1T̃bµa) ∀ µa ∈ Λa.

We first show that S2 is both continuous and coercive. Using the definition of a2 given by Equation
(4.2) and applying the Cauchy-Schwartz inequality, we obtain

〈S2ηa, µa〉Γa
≤ κΩ2‖L2ηa‖1,Ω2‖L2µa‖1,Ω2 ∀ ηa, µa ∈ Λa, (4.38)

where

κΩ2 = ε + ‖a‖∞,Ω2 + ‖s0‖∞,Ω2 .

According to the a-priori estimate given by Equation (4.5), we have that

‖L2µa‖1,Ω2 ≤ C2‖µa‖1/2,Γa
∀ µa ∈ Λa.

As a result, Equation (4.38) gives

〈S2ηa, µa〉Γa
≤ MS2‖ηa‖1/2,Γa

‖µa‖1/2,Γa
∀ ηa, µa ∈ Λa, (4.39)

which states that S2 is continuous, with

MS2 = κΩ2C
2
2

the continuity constant.
We now show the coercivity of S2. Owing to the skew-symmetry of the convective term of a2,

for any µa ∈ Λa we have

〈S2µa, µa〉Γa
= a2(L2µa,L2µa)

= ε ‖∇L2µa‖2
0,2 +

∫
Ω2

s0(L2µa)2 dΩ

≥ ε‖∇L2µa‖2
0,Ω2

(s0 ≥ 0 almost everywhere). (4.40)
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From the trace inequality (see Equation (4.4)), we know that there exists a constant C∗
2 > 0 such

that

‖L2µa|∂Ω2‖1/2,∂Ω2 ≤ C∗
2‖L2µa‖1,Ω2 ∀ µa ∈ Λa,

Using the Poincaré-Friedrichs inequality (4.3), Equation (4.40) yields

〈S2µa, µa〉 ≥ NS2‖µa‖2
1/2,Γa

∀ µa ∈ Λa, (4.41)

where

NS2 :=
ε

(CΩ2 + 1)(C∗
2 )2

is the coercivity constant.
Let us finally prove the continuity and non-negativeness of S̃1. Applying the Cauchy-Schwarz

inequality to Equation (4.31), we obtain

〈S̃1ηa, µa〉Γa
≤ κΩ3‖L1TbL2ηa‖1,Ω3‖L1TbL2µa‖1,Ω3

≤ κΩ3‖L1TbL2ηa‖1,Ω1‖L1TbL2µa‖1,Ω1 (Ω3 ⊂ Ω1)

for any ηa, µa ∈ Λa and where κΩ3 = ε + ‖a‖∞,Ω3 + ‖s0‖∞,Ω3 . From the a-priori estimate given
by Equation (4.5), we have that

〈S̃1ηa, µa〉Γa
≤ κΩ3C

2
1‖TbL2ηa‖1/2,∂Ω1‖TbL2µa‖1/2,∂Ω1

= κΩ3C
2
1‖TbL2ηa‖1/2,Γb

‖TbL2µa‖1/2,Γb
(4.42)

= κΩ3C
2
1‖γ0,5L2ηa‖1/2,∂Ω5‖γ0,5L2µa‖1/2,∂Ω5

≤ κΩ3C
2
1C∗

5
2‖L2ηa‖1,Ω5‖L2µa‖1,Ω5 (trace inequality (4.4))

≤ κΩ3C
2
1C∗

5
2‖L2ηa‖1,Ω2‖L2µa‖1,Ω2 (Ω5 ⊂ Ω2)

≤ κΩ3C
2
1C∗

5
2C2

2‖ηa‖1/2,∂Ω2‖µa‖1/2,∂Ω2 (a-priori estimate (4.5))

= MS̃1
‖ηa‖1/2,Γa

‖µa‖1/2,Γa
, (4.43)

which proves the continuity of S̃1. Finally, owing to the skew-symmetry of a1, for any µa ∈ Λa we
have

〈S̃1µa, µa〉Γa
= a1(L1T̃bµa,L1T̃bµa)

= ε ‖∇L1T̃bµa‖2
0,Ω2

+
∫

Ω3

s0(L1T̃bµa)2 dΩ

≥ 0 (s0 ≥ 0 almost everywhere),

and the lemma holds.

The following result is a direct consequence of the previous properties:
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Theorem 4.3. System (4.28) has a unique solution {λa, λb}.

Proof. We first prove that S is invertible, showing that it is both continuous and coercive. We
have

〈Sηa, µa〉Γa
= 〈S̃1ηa, µa〉Γa

+ 〈S2ηa, µa〉Γa
∀ ηa, µa ∈ Λa.

Therefore, the continuity of S follows from that of S2 and S̃1, i.e.

〈Sηa, µa〉 ≤ MS‖ηa‖1/2,Γa
‖µa‖1/2,Γa

∀ ηa, µa ∈ Λa,

with continuity constant MS given by

MS = MS̃1
+ MS2 ,

and where MS2 and MS̃1
. We now show the coercivity of S without trying to obtain sharp

estimates. We have already shown the coercivity of S2 and the non-negativeness of S̃1. Therefore,

〈Sµa, µa〉Γa
= 〈S2µa, µa〉Γa

+ 〈S̃1µa, µa〉Γa

≥ 〈S2µa, µa〉Γa

≥ NS‖µa‖2
1/2,Γa

∀ µa ∈ Λa,

where NS is given by

NS = NS2 =
ε

C∗
2
2(CΩ2 + 1)

. (4.44)

Thus S is a continuous and coercive operator. According to Lax-Milgram Lemma, it is therefore
invertible and Equation (4.28)1 has a unique solution λa. The existence and uniqueness of λb

follows from that of λa, by applying Equation (4.28)2. Remember that we have

λb = T̃bL2λa + χ′.

L2λa is the unique solution of Problem (4.23). Since the trace operator Tb is well defined, from
H1(Ω2) onto Λb, we know that λb exists and is unique. Inverting S in Equation (4.28)1, we find
that {

λa = S−1(χ − S̃bχ
′) in Λa,

λb = T̃bS
−1(χ − S̃bχ

′) + χ′ in Λb,

are the solutions of our interface problem.

4.3 Iterative scheme

4.3.1 Relaxed sequential algorithm

In this section, we derive an iterative procedure to solve the domain decomposition problem (4.6).
The sequential version of the iterative overlapping D/R algorithm is defined as follows. Given an
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initial guess u0
2 on Γb, for each k ≥ 0, find uk+1

1 ∈ V1 and uk+1
2 ∈ V2 such that



a1(uk+1
1 , v1) = 〈f, v1〉Ω1 ∀ v1 ∈ V 0

1 ,

uk+1
1 = uk

2 on Γb,

a2(uk+1
2 , v2) = 〈f, v2〉Ω2 ∀ v2 ∈ V 0

2 ,

a2(uk+1
2 , E2µa) = −a3(uk+1

1 , E3µa)
+〈f,E3µa〉Ω3 + 〈f,E2µa〉Ω2 ∀ µa ∈ Λa.

(4.45)

for any extension operators E3 and E2. If this algorithm converges, the solutions on both subdo-
mains satisfy Equations (4.6)1−4. The corresponding algorithm for the differential problem reads:
given an initial guess u0

2 on Γb, for each k ≥ 0, find uk+1
1 and uk+1

2 such that



Luk+1
1 = f in Ω1,

uk+1
1 = 0 on ∂Ω1 \ Γb,

uk+1
1 = uk

2 on Γb,

Luk+1
2 = f in Ω2,

uk+1
2 = 0 on ∂Ω2 \ Γa,

ε
∂uk+1

2

∂n2
− 1

2
(a · n2)uk+1

2 = ε
∂uk+1

1

∂n2
− 1

2
(a · n2)uk+1

1 on Γa.

(4.46)

If this algorithm converges, the solutions on both subdomains satisfy Equations (4.17)1−6. For
the sake of clarity, we have omitted the relaxation of the transmission conditions; for example, the
Dirichlet condition (4.46)3 could be replaced by

uk+1
1 = θuk

2 + (1 − θ)uk
1 ,

where θ > 0 is the relaxation parameter.
We now investigate the interface iterates produced by this relaxed iterative procedure. The set

of equations for the wi’s is the following:


Lwk+1

1 = f in Ω1,

wk+1
1 = 0 on ∂Ω1 ∩ ∂Ω,

wk+1
1 = λk

b on Γb,


Lwk+1

2 = f in Ω2,

wk+1
2 = 0 on ∂Ω2 ∩ ∂Ω,

wk+1
2 = λk+1

a on Γa.
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Figure 4.3: Relaxed sequential algorithms for the interface unknowns. (Left) Dθ/R. (Right) D/Rθ.

The choice for taking as Dirichlet conditions λb at iteration k for wk+1
1 , and λa at iteration

k + 1 for wk+1
2 is arbitrary. According to this choice, we have

wk+1
1 = L1λ

k
b + G1f,

wk+1
2 = L2λ

k+1
a + G2f.

We have wk
i = uk

i for i = 1, 2 if and only if the wk
i ’s satisfy the transmission conditions (4.46)3

and (4.46)6. By noting that the Dirichlet-homogeneous solutions G1f and G1f do not change along
the iterative process, the Dirichlet-relaxed iterative scheme, denoted Dθ/R, gives for any k ≥ 0 S2λ

k+1
a = −S̃bλ

k
b + χ,

λk+1
b = θ(T̃bλ

k+1
a + χ′) + (1 − θ)λk

b .

(4.47)

The Robin transmission condition can be relaxed as well, by replacing Equation (4.46)6 by

ε
∂uk+1

2

∂n2
− 1

2
(a · n2)uk+1

2 = θ

(
ε
∂uk+1

1

∂n2
− 1

2
(a · n2)uk+1

1

)

+(1 − θ)
(

ε
∂uk

2

∂n2
− 1

2
(a · n2)uk

2

)
.

In terms of the interface unknowns, the Robin-relaxed iterative scheme, denoted D/Rθ, produces
the following iterates for any k ≥ 0 S2λ

k+1
a = θ(−S̃bλ

k
b + χ) + (1 − θ)S2λ

k
a,

λk+1
b = T̃bλ

k+1
a + χ′.

(4.48)

The dependence of λk+1
a and λk+1

b on the values at previous iterations is sketched in Figure
4.3, given two initial values λ0

a and λ0
b ; note that the value of λ0

a is only needed when using the
D/Rθ method.

The continuity and coercivity of S2 has been proven in last section. According to Lax-Milgram
Lemma, S2 is therefore invertible. We can therefore reformulate the system for the interface
unknowns (4.27) as follows: {

Qaλa = χa,
Qbλb = χb,

(4.49)
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where we have defined Qa, Qb, χa and χb as

Qa = Ia + S−1
2 S̃bT̃b (= Ia + S−1

2 S̃1),

Qb = Ib + T̃bS
−1
2 S̃b,

χa = S−1
2 χ − S−1

2 S̃bχ
′,

χb = T̃bS
−1
2 χ + χ′.

and where Ia is the identity on Λa and Ib is the identity on Λb.
By solving the Dirichlet-relaxed and Robin-relaxed systems for λk+1

a and λk+1
b , we can show

that both schemes lead to the same following iterates for any k ≥ 1:
λk+1

a = θ(χa − Qaλk
a) + λk

a,

λk+1
b = θ(χb − Qbλ

k
b ) + λk

b .
(4.50)

We recognize here two stationary Richardson procedures for solving Equations (4.49)1 and (4.49)2.
The Richardson procedure for solving λa is similar to that produced by the classical Dirich-
let/Neumann method; in fact, by multiplying Equation (4.50)1 by S2 we obtain the following
equivalent iterate

λk+1
a = θS−1

2 [(χ − S̃bχ
′) − Sλk

a] + λk
a,

which is a preconditioned Richardson method for solving Equation (4.28)1, using S2 as precondi-
tioner for S.

Remark 4.5. As pointed out above, the Richardson procedures (4.50) are valid only for k ≥ 1.
The Dθ/R and D/Rθ are therefore not completely equivalent, as the first iterative values λ1

a and
λ1

b may differ, although λ0
a and λ0

b are chosen to be equal.

4.3.2 Convergence

This section studies the convergence of the Dθ/R and D/Rθ iterative schemes given by Equa-
tions (4.46)1−6 at the differential level, or (4.45)1−4 at the variational level. Rather than directly
studying the whole system of equations for u1 and u2, we base our analysis on the interface equa-
tion systems, i.e. Equations (4.47)1−2 for the Dθ/R method and Equations (4.48)1−2 for the D/Rθ

method. The result we can prove is

Theorem 4.4. Assume that ε is large enough so that

κ∗ := 2NS2 − 2‖a‖∞,Γa
C2

2

MS̃1
+ MS2

NS2

> 0, (4.51)

where the constants NS2 , MS̃1
and MS2 have been introduced in Equations (4.41), (4.43) and (4.39),

respectively. Then, there exists θmax such that for any given λ0
a ∈ Λa and λ0

b ∈ Λb and for all
θ ∈ (0, θmax), the sequences {λk

a} and {λk
b} given by (4.50) converge in Λa and Λb, respectively.

The upper bound of the relaxation parameter θmax can be estimated by

θmax =
κ∗N2

S2

MS2(MS̃1
+ MS2)2

. (4.52)
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Proof. The proof is split into two steps. We first show the Richardson procedure for the sequence
{λk

a} given by Equation (4.50)1 converges. The proof is based on the abstract Theorem 3.1. of
[73], or Theorem 4.2.2. of [58]. Secondly, we show that if the sequence {λk

a} converges, then {λk
b}

does as well.
Let us start with the first step and define Ra the Richardson iteration operator as

Ra : Λa −→ H−1/2(Γa),

Raµa := (Ia − θQa)µa = (Ia − θS−1
2 S)µa.

If we define ek
a = λk

a−λa as the error with respect to λa at iteration k, λa being solution of problem
(4.49)1, the error equation reads

ek+1
a = Raek

a.

The Richardson procedure (4.50)1 is therefore convergent if the operator Ra is a contraction with
respect to some norm. Let us introduce the following application:

(·, ·)S2 : Λa × Λa −→ R,

(ηa, µa)S2 :=
1
2
(〈S2ηa, µa〉Γa

+ 〈S2µa, ηa〉Γa
).

It is easy to check that this application is a scalar product, and that it induces the following
S2-norm

‖µa‖S2 := 〈S2µa, µa〉1/2
Γa

,

which, owing to both the coercivity and continuity of S2, is equivalent to the natural norm on Λa,
i.e.

N
1/2
S2

‖µa‖1/2,Γa
≤ ‖µa‖S2 ≤ M

1/2
S2

‖µa‖1/2,Γa
∀ µa ∈ Λa. (4.53)

By definition we have

‖Raµa‖2
S2

= ‖µa‖2
S2

+θ2〈Sµa, S−1
2 Sµa〉Γa

−θ
(
〈S2µa, S−1

2 Sµa〉Γa
+ 〈Sµa, µa〉Γa

)
. (4.54)

Using the same strategy as in [58], it can be checked that

〈S2µa, S−1
2 Sµa〉Γa

+ 〈Sµa, µa〉Γa
≥ κ∗‖µa‖2

1/2,Γa
∀ µa ∈ Λa, (4.55)

with κ∗ defined in Equation (4.51); this point will be studied just after this proof. Since the norm
of S−1

2 is 1/NS2 , and owing to the continuity of S2 and S̃1 and to the assumption of the theorem,
Equation (4.54) yields

‖Raµa‖2
S2

≤ Kθ‖µa‖2
S2

,
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with Kθ given by

Kθ = 1 + θ2
(MS2 + MS̃1

)2

N2
S2

− θ
κ∗

MS2

.

The Richardson procedure is a contraction in the S2-norm if Kθ < 1, i.e. if 0 < θ < θmax, with
θmax given by Equation (4.52).

Let us now go on to the second step of the proof, i.e. the convergence of the sequence {λk
a}

implies that of the sequence {λk
b}. Although the Dirichlet and Robin-relaxed methods lead to the

same Richardson procedure for λb (Equation (4.50)2) for k ≥ 1, we have to treat their convergence
separately. We define ek

b = λk
b − λb. Since the converged solution satisfies λb = T̃bλa + χ′,

Equation (4.48)2 for the Robin-relaxed scheme gives for any k ≥ 1,

ek
b = T̃be

k
a.

Therefore, we have

‖ek
b‖1/2,Γb

= ‖TbL2e
k
a‖1/2,Γb

≤ C∗
2 ‖L2e

k
a‖1,Ω2 (trace inequality (4.4))

≤ C∗
2 C2 ‖ek

a‖1/2,Γa
(a-priori estimate (4.5))

≤ C∗
2 C2

N
1/2
S2

‖ek
a‖S2 (norm equivalence (4.53))

≤ Kk
θ

C∗
2 C2

N
1/2
S2

‖e0
a‖1/2,Γa

,

which shows that the sequence {λk
b} converges whenever Kθ < 1.

Now we study the convergence of the Dirichlet-relaxed algorithm (for θ �= 1). From Equa-
tion (4.47)2, we have that, for any k ≥ 1,

ek
b = θT̃be

k
a + (1 − θ)ek−1

b .

According to this equation, we can generate the following sequence

ek
b = θ T̃be

k
a + (1 − θ) ek−1

b ,

(1 − θ) ek−1
b = θ(1 − θ) T̃be

k−1
a + (1 − θ)2 ek−2

b ,

(1 − θ)2 ek−2
b = θ(1 − θ)2 T̃be

k−2
a + (1 − θ)3 ek−3

b ,

...
...

(1 − θ)k−2 e2
b = θ(1 − θ)k−2 T̃be

2
a + (1 − θ)k−1 e1

b ,

(1 − θ)k−1 e1
b = θ(1 − θ)k−1 T̃be

1
a + (1 − θ)k e0

b .

Adding up all the terms, we find the following equality

ek
b = (1 − θ)ke0

b + θ(1 − θ)k
k∑

n=1

(1 − θ)−nT̃be
k
a,
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which gives

‖ek
b‖1/2,Γb

≤ |1 − θ|k ‖e0
b‖1/2,Γb

+ θ|1 − θ|k
k∑

n=1

|1 − θ|−n ‖TbL2e
n
a‖1/2,Γb

≤ |1 − θ|k ‖e0
b‖1/2,Γb

+
θ

Kθ
|1 − θ|k−1 C∗

2 C2

N
1/2
S2

‖e1
a‖S2

k∑
n=1

(
Kθ

|1 − θ|

)n

.

The geometric progression is

k∑
n=1

(
Kθ

|1 − θ|

)n

=


1
2
k(k + 1) if Kθ = |1 − θ|,
Kθ

|1 − θ|k
|1 − θ|k − Kk

θ

|1 − θ| − Kθ
otherwise,

and thus we find the following two expressions for the norm of the error

‖ek
b‖1/2,Γb

≤


|1 − θ|k

(
‖e0

b‖1/2,Γb
+

1
2
k(k + 1)θ

C∗
2 C2

N
1/2
S2

‖e0
a‖S2

)
if Kθ = |1 − θ|,

|1 − θ|k‖e0
b‖1/2,Γb

+ θ
|1 − θ|k − Kk

θ

|1 − θ| − Kθ

C∗
2 C2

N
1/2
S2

‖e0
a‖S2 otherwise.

Owing to these inequalities and since θ < 2 (see Equations (4.51)-(4.52)), we conclude that if
Kθ < 1 the sequence {λk

b} converges.

Note that once λa = limk→∞ λk
a and λb = limk→∞ λk

b are found, the solutions in Ω1 and Ω2

are obtained by solving the two Dirichlet problems given by Equations (4.19). As a consequence,
the convergences of sequences {λk

a} and {λk
b} imply the convergence of the whole algorithm.

We show how Equation (4.55) and Equation (4.51) for κ∗ are equivalent. Once again, we follow
the authors of [58]. Let us split operator a2 into a symmetric part and a skew-symmetric part as
follows:

a2(w2, v2) = as
2(w2, v2) + ass

2 (w2, v2), ∀ u2, w2 ∈ V2,

with

as
2(w2, v2) := ε(∇w2,∇v2)Ω2 + (s0w2, v2)Ω2

ass
2 (w2, v2), :=

1
2
(a · ∇w2, v2)Ω2 −

1
2
(w2,a · ∇v2)Ω2 .
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Let ηa = S−1
2 Sµa. We have

〈S2µa, S−1
2 Sµa〉Γa

+ 〈Sµa, µa〉Γa
= 〈S2µa, ηa〉Γa

− 〈Sµa, µa〉Γa
+ 2〈Sµa, µa〉Γa

= 〈S2µa, ηa〉Γa
− 〈S2ηa, µa〉Γa

+ 2〈Sµa, µa〉Γa

= as
2(L2µa,L2ηa) + ass

2 (L2µa,L2ηa)

−as
2(L2ηa,L2µa) − ass

2 (L2ηa,L2µa) + 2〈Sµa, µa〉Γa

= 2ass
2 (L2µa,L2S

−1
2 Sµa) + 2〈Sµa, µa〉Γa

.

We have shown in Section 4.2.4 that S is coercive with coercivity constant NS given by Equation
(4.44). Hence, last equations yields

〈S2µa, S−1
2 Sµa〉Γa

+ 〈Sµa, µa〉Γa
≥ 2NS‖µa‖2

1/2,Γa
− 2|ass

2 (L2µa,L2S
−1
2 Sµa)| (4.56)

Let us try to bound the last term. From Cauchy-Schwartz inequality and the a-priori estimate
(4.5), and using the continuity of S and S−1

2 , we obtain the following (coarse) estimate

|ass
2 (L2µa,L2S

−1
2 Sµa)| ≤ ‖a‖∞,Γa

‖L2S
−1
2 Sµa‖1,Ω2‖L2µa‖1,Ω2

≤ ‖a‖∞,Γa
C2

2 ‖S−1
2 Sµa‖1/2,∂Ω2‖µa‖1/2,∂Ω2

≤ ‖a‖∞,Γa
C2

2 ‖S−1
2 ‖ ‖Sµa‖−1/2,Γa

‖µa‖1/2,Γa

≤ ‖a‖∞,Γa
C2

2

MS

NS2

‖µa‖2
1/2,Γa

.

Therefore, Equation (4.56) becomes:

〈S2µa, S−1
2 Sµa〉Γa

+ 〈Sµa, µa〉Γa
≥ κ∗‖µa‖2

1/2,Γa
.

with

κ∗ = 2NS − 2‖a‖∞,Γa
C2

2

MS

NS2

, (4.57)

or equivalently κ∗ given by Equation (4.51).

Remark 4.6. Let us examine closer the continuity of S̃1. If the subdomains are disjoint, we
have already shown that S̃1 is precisely the Steklov-Poincaré operator acting on Γa associated to
subdomain Ω1, i.e. S̃1 = S1 and T̃b = TbL2 = Ia (see Equation (4.29)). In the proof of the
continuity assumption, Equation (4.42) is thus the bifurcation point between the overlapping and
disjoint Dirichlet/Robin methods. So what does the overlapping method tell us more? TbL2µa is
the value on Γb of the extension of µa in Ω2. If the norm appearing in Equation (4.42) were the
infinite norm, i.e. ‖TbL2µa‖∞,Γb

, we could apply the maximum principle and state that

‖TbL2µa‖∞,Γb
≤ k1‖µa‖∞,Γa

where k1 ∈ (0, 1) (see [1]) (see the graphical representation of operator TbL2 in Figure 4.2). There-
fore, in addition to constant C1 already present in the continuity constant M1 of S̃1 for the classical
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D/R method, the present method would include the factor k1 < 1. According to the well-known es-
timates for k1 (see e.g. [1, 77]), we would expect k1 to decrease with increasing overlapping length.
In particular, the smaller the continuity constant M1, the greater the maximum authorized relax-
ation parameter θmax, as confirmed by Equation (4.52). Unfortunately, the infinite norm cannot
be bounded by the H1/2 norm in which we are measuring the continuity of S̃1. The extrapolation
of the previous comment to our situation is here only intuitive.

Remark 4.7. We have shown that the convergence of the Dθ/R and D/Rθ schemes was conditioned
by the smallness assumption on the skew-symmetric part of S2, given by Equation (4.57). When
the subdomains are disjoint, there is a way to circumvent this unpleasant condition; the resulting
method is called the γ-D/R method devised in [73].

4.4 Generalization to other mixed DD methods

When we showed the equivalence between the one-domain and two-domain variational formula-
tions, i.e. the equivalence between Problems (4.6) and (4.1), we did not restrict ourselves to any
particular bilinear form. We could have chosen identically any of the three bilinear forms derived
in Chapter 1, namely a0, a1/2 and a1. The important point in the choice of a bilinear form only
appears when we write down the interface equation. As an example, let us consider the bilinear
form a = a0, which natural condition is a Neumann condition.

Proposition 4.1. System of Equations (4.6)1−4 can be reformulated as follows: find u1 ∈ V1 and
u2 ∈ V2 such that 

a1(u1, v1) = 〈f, v1〉Ω1 ∀ v1 ∈ V 0
1 ,

u1 = u2 on Γb,

a2(u2, v
′
2) = 〈f, v′2〉Ω2 + 〈ε∂u1

∂n2
, v′

2〉Γa
∀ v′

2 ∈ V2.

Proof. The proposition is easily shown following the steps of the proof of the corresponding
proposition for the Dirichlet/Robin method in Section 4.2.3.

The DD method is therefore an overlapping Dirichlet/Neumann method.

Let us go back to the derivation of the interface equations, as done in Section 4.2.4 for the
Dirichlet/Robin method. We redefine some of the operators in play in the interface equation. We
first define S2 as

S2 : Λa −→ H−1/2(Γa),

S2λa := ε
∂L2λa

∂n2
,

and the operator S̃b as

S̃b : Λb −→ H−1/2(Γa),

S̃bλb := −ε
∂L1λb

∂n2
.
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The right-hand side χ is

χ = ε
∂G1f

∂n2
− ε

∂G2f

∂n2
.

Then, we can show that the system of two equations for the interface unknowns reads{
S2λa = −S̃bλb + χ in H−1/2(Γa),

λb = T̃bλa + χ′ in Λb.
(4.58)

We also introduce the operator S̃1 defined as

S̃1 : Λa −→ H−1/2(Γa),

S̃1λa := S̃bT̃bλa,

and define S as

S = S̃1 + S2.

After substituting λb given by Equation (4.58)2 into Equation (4.58)1, we finally obtain the fol-
lowing system of equations for the interface unknowns{

Sλa = χ − S̃bχ
′ in H−1/2(Γa),

λb = T̃bλa + χ′ in Λb.

We now look for a solution to the last system, i.e. we want to be able to invert S. Let us
consider the properties of the operator S. As for the Dirichlet/Robin method, we can show that
Lemma 4.2 holds. Moreover, we can easily show that both S̃1 and S2 are continuous, and so is S.
We are now left with the coercivity of S. Choosing E2 = L2, and E3 = L1T̃b in Equations (4.31)
and (4.32), we have

〈Sµa, µa〉Γa
= 〈S̃1µa, µa〉Γa

+ 〈S2µa, µa〉Γa

= a3(L1T̃bµa,L1T̃bµa) + a2(L2µa,L2µa).

Applying equation (1.14) for � = 0, the last equation gives

〈Sµa, µa〉Γa
≥ ε

1 + CΩ3

‖L1T̃bµa‖2
1,Ω3

− 1
2

∫
Γa

(a · n2)(L1T̃bµa)2 dΓ

+
ε

1 + CΩ2

‖L2µa‖2
1,Ω2

+
1
2

∫
Γa

(a · n2)(L2µa)2 dΓ. (4.59)

Before going any further, let us recast last equation in the case of non-overlapping subdomains.
The two contour integrals cancel each other as we have L1T̃bµa = L2µa = µa on Γa. In addition,
we can apply the Poincaré-Friedrichs inequality (4.3) to bound from below the first and third terms
in terms of the trace norm. Therefore, S is coercive. In the overlapping case the contour integrals
do not cancel each other, and some estimates are to be found to be able to proceed; for example,
by assuming ε large enough, it is possible to prove the coercivity of S in the same way Equation
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(1.15) was derived. If the coercivity is assumed, then the interface problem has a unique solution.

Now let us study the iterative procedures for solving the interface problem presented in Section
4.3. We consider the Dirichlet and Neumann-relaxed versions given by Equations (4.47)1−2 and
(4.48)1−2, respectively, which both lead to the same stationary Richardson procedure (4.50)1−2.
In order to prove the convergence of the relaxed scheme, we need the continuities of S̃1 and S2,
and the coercivity of the preconditioner S2. Applying equation (1.14) for � = 0 to our case, we
have

〈S2µa, µa〉Γa
≥ ε

1 + CΩ2

‖L2µa‖2
1,Ω2

+
1
2

∫
Γa

(a · n2)(L2µa)2 dΓ.

In addition, we showed in Section 1.1.3 that if Γa is an outflow or if

ε > C ′ ‖a · n2‖∞,Γa

where C ′ is a constant independent of a and ε, then S2 is coercive. If this is the case, then we can
apply Theorem 4.4 to prove the convergence of the Richardson procedure.

In this section, we have shown that the extension of the overlapping DD method derived for
the Dirichlet/Robin algorithm is in principle possible, although additional assumptions on the
data have to be made. In particular, we showed that the solution to the interface equation,
which depends on the coercivity of S, is not as straightforward as in the non-overlapping case (see
Equation (4.59)). The iterative procedure was established and its convergence is submitted to the
same condition as in the non-overlapping case. However, we hope that in general the overlapping
helps convergence, as has been already intuited in Remark 4.6. This will be confirmed by the
numerical experiments at the end of this chapter.

Note finally that if we consider the bilinear form a1, we are faced we the same problems
than those encountered in the study of the overlapping Dirichlet/Neumann method. The 1/2-
weak formulation is therefore the most appropriate for solving the scalar ADR equation using the
overlapping mixed method.

4.5 Finite element approximation

In order to get further insight on the overlapping DD method introduced in this chapter, we will
derive an algebraic system for the interface unknowns and see how the overlapping method solves
the Schur complement system of the interface unknowns. The derivation of the Schur system does
not depend on any particular choice of the original bilinear form, and therefore it can be applied
to the overlapping Dirichlet/Robin as well as to the overlapping Dirichlet/Neumann methods.
Before developing this algebraic system, we need to introduce the finite element partition and set
up the finite element overlapping DD method. The numerical setting is valid for any arbitrary
triangulation as long as the grids match in the overlapping zone and on the interfaces.

4.5.1 Discrete problem

Let us discretize the complete geometrical domain Ω into finite elements, such that the interfaces
Γb and Γa lye on some elements segments of the triangulation Th, and define Vh the associated
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Figure 4.4: Finite element triangulation of the subdomains Ω1 and Ω2.

finite dimensional subspace of V . From the definition of V , we construct the finite dimensional
subspaces V1,h and V2,h, V 0

1,h and V 0
2,h of Vh such that

V1,h = {vh ∈ Vh | vh|Ω5 = 0},

V2,h = {vh ∈ Vh | vh|Ω3 = 0},

V 0
1,h = {vh ∈ Vh | vh|Ω5

= 0},

V 0
2,h = {vh ∈ Vh | vh|Ω3

= 0}.

Let Ta,h be the discrete counterpart of Ta. We define Λa,h the finite element subspace of Ta,hvh,

Λa,h = {Ta,hvh ∈ Vh}.

Clearly, V 0
1,h and V 0

2,h are finite dimensional subspaces of (the extensions to Ω of) V 0
1 and V 0

2 ,
respectively, and Λa,h is a finite dimensional subspace of Γa. Figure 4.4 shows an example of finite
element triangulations of Ω1 and Ω2. The requirement that both V1,h and V2,h are constructed
from Vh is necessary in order to make sure that nodes inside the overlapping zone coincide; this
simplifies further analysis of the model problem.

The finite element formulation of the overlapping D/R method reads: find u1,h ∈ V1,h and
u2,h ∈ V2,h such that

a1,h(u1,h, v1,h) = 〈f, v1,h〉Ω1 ∀ v1,h ∈ V 0
1,h,

u1,h = u2,h on Γb,

a2(u2,h, v2,h) = 〈f, v2,h〉Ω2 ∀ v2,h ∈ V 0
2,h,

a3(u1,h, E3,hµa,h) + a2(u2,h, E2,hµa,h)
= 〈f,E3,hµa,h〉Ω3 + 〈f,E2,hµa,h〉Ω2 ∀ µa,h ∈ Λa,h,

(4.60)

where Ei,h denotes any possible extension operator, from the finite dimensional trace space it
applies to, to Vi,h.

Remark 4.8. Contrary to the continuous case, we cannot derive an alternative formulation for
the finite dimensional case. Remember that in the continuous case, the alternative formulation
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was derived by using Equations (4.13) and (4.14). However, in the discrete case we have in general

Lu1,h �= f in Ω1, and

Lu2,h �= f in Ω2.

This is an important point as in principle we are not allowed to use the alternative formulation
at the discrete level. In the next Chapter we will present a numerical scheme that enables us to
deal with this formulation in order to preserve the order of convergence in h of the finite element
method.

4.5.2 Iterative procedure

We now derive an iterative procedure to solve the domain decomposition problem (4.60). The
original formulation was preferred to the alternative formulation for the corresponding algebraic
scheme is much easier to set up. The sequential version of the iterative overlapping D/R algorithm
is defined as follows. Given an initial guess u0

2,h on Γb, for each k ≥ 0, find uk+1
1,h ∈ V1,h and

uk+1
2,h ∈ V2,h such that



a1(uk+1
1,h , v1,h) = 〈f, v1,h〉Ω1 ∀ v1,h ∈ V 0

1,h,

uk+1
1,h = uk

2,h on Γb,

a2(uk+1
2,h , v2,h) = 〈f, v2,h〉Ω2 ∀ v2,h ∈ V 0

2,h,

a2(uk+1
2,h , E2,hµa,h) = −a3(uk+1

1,h , E3,hµa,h)
+〈f,E3,hµa,h〉Ω3 + 〈f,E2,hµa,h〉Ω2 ∀ µa,h ∈ Λa,h.

(4.61)

Note that all the results concerning the convergence of the algorithm derived in the continuous case
are valid here and if this algorithm converges, the solutions on both subdomains satisfy Equations
(4.60)1−4. For the sake of clarity, we have omitted the relaxation of the transmission conditions.

We now go on with the study of the algebraic systems resulting from the three formulations
of the ADR problem studied up to now, i.e. the one-domain formulation (4.1), the two-domain
formulation (4.60)1−4, and the iterative two-domain formulation (4.61)1−4. In a first step, we con-
struct the algebraic equation of the original one-domain problem. We then reorder the unknowns
according to the geometrical decomposition used in the earlier section, and derive an exact equation
for the unknown on the interfaces of the domain decomposition. We will recognize the ordering
explicitly introduced by the domain decomposition algorithm (4.60). Afterwards, we construct the
algebraic system of equations deriving from the iterative overlapping D/R method, and this system
is solved for the unknowns on the interfaces. We show how the resulting iterative scheme can be
related to the exact equations for the unknowns on the interfaces.

4.5.3 Schur complement equations

At this point, we need to define precisely the finite dimensional space Vh. Let us choose the space
of linear piecewise polynomials. We denote xr the coordinate of the node xr of the triangulation
of domain Ω, and np the total number of nodes. We define N (r) as the shape function associated
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to node r and such that that N (r)(xs) = δrs for each r, s = 1, · · · , np. Then we construct the
vector N of components N (r) for r = 1, . . . , np, i.e

N = [N (1), · · · , N (np)]t.

At any point of coordinates x inside the triangulation, the approximated solution uh is

uh(x) = Ntu,

where the shape functions are evaluated at x and u is the vector of nodal unknowns. According
to these definitions, we define the vector of forces as

f = (f,N)Ω,

and the matrix A such that

A = a(Nt,N),

or equivalently in terms of there respective coefficients

fr = (f,N (r))Ω ∀ r = 1, . . . , np,

Ar,s = a(N (s), N (r)) ∀ r, s = 1, . . . , np.

Hence, the finite dimensional variational form of the ADR equation leads to the following system:

Au = f . (4.62)

We now decompose the matrix geometrically, according to the decomposition introduced in
Section 4.2.1 and sketched in Figure 4.1. Let us define the matrices Aij for i, j = 3, 4, 5, a, b whose
coefficients are

(Aij)r,s = a(N (s), N (r)) ∀ r = 1, . . . , npi, and s = 1, . . . , npj ,

where npi is the number of nodes of the interior of the partition of Ωi when i = 3, 4, 5 and the
number of nodes of the partition of Γi when i = a, b. By performing a simple reordering of the
unknowns, the system of equations (4.62) can be equivalently written as

A33 0 0 A3a 0
0 A44 0 A4a A4b

0 0 A55 0 A5b

Aa3 Aa4 0 Aaa 0
0 Ab4 Ab5 0 Abb




u3

u4

u5

ua

ub

 =


f3
f4
f5
fa
fb

 . (4.63)

System (4.63) can be obtained as well by deriving the algebraic form of system (4.60)1−4 using
special extension operators. Let us set the operators Ei,h (i = 3, 2) for all µa,h ∈ Λa,h as follows:{

Ei,hµa,h(xs) = µa,h(xs) when xs is on Γa,
= 0 otherwise.
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Ei,hµa,h equals to zero on internal nodes and takes the value of its argument on the interface Γa.
Let us define ûi,h: it takes the value of ui,h on internal nodes and is zero on Γa; we define v̂h in
the same way. Consequently, we have the following equalities

ui,h = ûi,h + Ei,hTaui,h,

vi,h = v̂i,h + Ei,hTavi,h,

which enable us to decompose the unknowns and test functions into internal and interface com-
ponents. We are now able to construct the algebraic system given by Equation (4.60). Let ui,j

be the unknown belonging to subdomain i = 3, 4, 5, a, b and computed solving the finite element
problem in Ωj with j = 1, 2. Quantities without superscript refer to the non-iterative algorithm.
The following algebraic equations show the contribution of each one of the equations of system
(4.60)1−4:

Contribution of Equation (4.60)1:

 A33 0 A3a 0
0 A44 A4a A4b

Aa3 Aa4 Aaa 0




u3,1

u4,1

ua,1

ub,2

 =

 f3
f4
fa

 . (4.64)

Contribution of Equation (4.60)3:

 A44 0 A4a A4b

0 A55 0 A5b

Ab4 Ab5 0 Abb




u4,2

u5,2

ua,2

ub,2

 =

 f4
f5
fb

 . (4.65)

Contribution of Equation (4.60)4:

(
Aa3 Aa4 A(3)

aa A(4)
aa

)
u3,1

u4,2

ua,1

ua,2

 =
(

fa
)
. (4.66)

We observe that the global system induced by the three previous systems of equations leads to the
algebraic system (4.63) derived from the original problem, whenever the unknowns in Ω1 and Ω2

are the same in the overlapping zone.

Remark 4.9. Matrix Aaa was explicitly split into two components A(3)
aa and A(4)

aa . The first
component corresponds to the contribution of the first term of the left-hand side of Equation
(4.60)4, while the second contribution corresponds to the second term of the left-hand side of
Equation (4.60)4.

Remark 4.10. In practical implementations for which the solution on each subdomains is per-
formed by separate finite element solvers, the Robin type condition is calculated using the normal
derivatives. This means that Equation (4.66) is not assembled, but instead, Equation (4.65) is
modified.
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We now look for the solution ua and ub on the interfaces by eliminating the interior unknowns
of Equation (4.63). The resulting system is the Schur complement system:(

Ma Pb

Pa Mb

)(
ua

ub

)
=
(

ga

gb

)
(4.67)

where

Ma = Aaa − Aa3A−1
33 A3a − Aa4A−1

44 A4a, (4.68)

Mb = Abb − Ab4A−1
44 A4b − Ab5A−1

55 A5b,

Pa = −Ab4A−1
44 A4a,

Pb = −Aa4A−1
44 A4b,

ga = fa − Aa3A−1
33 f3 − Aa4A−1

44 f4,

gb = fb − Ab4A−1
44 f4 − Ab5A−1

55 f5.

This gives the following exact equations for ua and ub:

Qaua = χa,

Qbub = χb,

where

Qa = Ma − PbM−1
b Pa,

Qb = Mb − PaM−1
a Pb,

χa = ga − PbM−1
b gb,

χb = gb − PaM−1
a ga.

Let us now identify the algebraic system resulting from the iterative algorithm (4.61)1−4. We
define uk

i,j as the unknown belonging to subdomain i = 3, 4, 5, a, b and computed solving the finite
element problem in Ωj with j = 1, 2, at iteration k. For the sake of clarity, we consider the first
cycle, i.e. we set k = 0. By remembering the contributions of each equations, explicitly given by
Equations (4.64), (4.65) and (4.66), we construct the following iterative algebraic algorithm: A33 0 A3a

0 A44 A4a

Aa3 Aa4 Aaa

 u1
3,1

u1
4,1

u1
a,1

 =

 f3
f4 − A4bu0

b,2

fa

 , (4.69)


A44 0 A4a A4b

0 A55 0 A5b

Aa4 0 A(4)
aa 0

Ab4 Ab5 0 Abb




u1
4,2

u1
5,2

u1
a,2

u1
b,2

 =


f4
f5
fa − Aa3u1

3,1 − A(3)
aa u1

a,1

fb

 . (4.70)

The first equation is the Dirichlet step on subdomain Ω1, using u0
b,2 as Dirichlet condition on Γb

(as initial guess). The second equation is the Neumann step, the Neumann condition on Γa being



4.5. FINITE ELEMENT APPROXIMATION 133

given by the right-hand side of the third row of the system. During one complete iteration, we
obtain therefore two estimates of the unknowns on the overlap zone u1

4,1 and u1
4,2, but also on

the Neumann interface, u1
a,1 and u1

a,2. Note that the unknown on Γb never appears as belonging
to subdomain 1, but always like uk

b,2, since this unknown is fixed as a Dirichlet condition when
solving the algebraic problem on subdomain 1.

We now derive the equations for the three interface iterates involved in one iterative cycle,
i.e. u1

a,1, u1
a,2 and u1

b,2. Before going further, we need to introduce some additional definitions.
We split matrix Ma, given by Equation (4.68), into two components, each one coming from the
contribution of the two adjacent subdomains of Γa:

Ma = M(3)
a + M(4)

a , with

M(3)
a = A(3)

aa − Aa3A−1
33 A3a,

M(4)
a = A(4)

aa − Aa4A−1
44 A4a.

By eliminating the interior unknowns, we can show that the algebraic iterative system represented
by Equations (4.69) and (4.70) leads to the following system for the unknowns on the interfaces: Ma 0 0

M(3)
a M(4)

a Pb

0 Pa Mb

 u1
a,1

u1
a,2

u1
b,2

 =

 ga − Pbu0
b

ga

gb

 . (4.71)

Let us take a breath and look closer at the last system. In reference [87], the authors showed
that the multiplicative version of the Schwarz algorithm can be viewed as a preconditioned Richard-
son iteration for the Schur complement of the interface unknowns, as stated by Equation (4.67).
According to the geometrical decomposition and nomenclature used in this section, a Schwarz
iteration produces the following sequence for u1

a,1 and u1
b,2:

Mau1
a,1 = ga − Pbu0

b ,

Mbu1
b,2 = gb − Pau1

a,1.

We recognize here the iterates that would be produced by our algorithm by ignoring the interme-
diate iteration step for u1

a,2 and letting u1
a,2 = u1

a,1 to compute the update of u1
b,2 in Equation

(4.71). As a result, we intuit that the overlapping D/R algorithm gives more information than the
multiplicative Schwarz method during one cycle. Let us now go back to Equation (4.71). We find
that the algorithm produces the following iterates:

(Qa − M(3)
a )u1

a,2 = χa − M(3)
a u1

a,1,

u1
b,2 = M−1

b (gb − Pau1
a,2).

We note that the first iterate is equivalent to a Richardson iteration using as preconditioner matrix
(Qa − M(3)

a ), i.e.

u1
a,2 = (Qa − M(3)

a )−1(χa − Qau1
a,1) + u1

a,1.

This equation is similar to the Richardson iteration produced by the classical (disjoint) D/R
preconditioner, as devised in [98]. In fact, in the limit of non-overlapping subdomains, we recover
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exactly the same Richardson iteration. This result is obtained by collapsing the interface unknowns,
i.e. by choosing u1

b,2 = u1
a,2, Mb = I, Pa = 0, Pb = 0 and gb = u1

a,1. As a result,

u1
a,2 = M(4)

a

−1
(ga − Mau1

a,1) + u1
a,1.

Nevertheless, the present algorithm gives additional information, provided by the second iterate.
In fact, we observe that the iteration for u1

b,2 is a block Gauss-Seidel iteration of the Schur comple-
ment system (4.67). This Gauss-Seidel iteration is the same iteration than that produced by the
multiplicative Schwarz algorithm, as shown in [87]. In the view of the iterates produced for the
interface unknowns, we can therefore expect the overlapping D/R method inherits some properties
of the classical D/R method (independence on the mesh size) together with that of the Schwarz
method (convergence can be improved with the overlapping length for a given mesh size). In the
limit of zero overlapping length, the classical D/R method is recovered.

We can also develop a Richardson procedure for solving ub as well. Simple algebraic calculations
give

u1
b,2 = (Mb − PaM(4)

a

−1
Pb)−1(χb − Qbu0

b) + u0
b .

4.6 Numerical examples

We present four numerical examples to test the overlapping D/R method in the diffusion as well
as in the advection limits. In addition, several flow configurations are considered: skew advection,
normal and tangential advections, curved advection and, finally, a rotating advection field.

4.6.1 Skew advection

Through this example, which was used as a first test case of the classical γ-D/R method in [73], we
want to compare the disjoint and overlapping versions of the D/R method, for a skew advection
field. As an additional indication when using overlapping grids, we will systematically give the
results of the Schwarz method (D/D) for overlapping subdomains, and that of the adaptive D/N
method (A-D/N) for both disjoint and overlapping subdomains. The overlapping version of the
A-D/N method uses a Neumann interface at outflow and a Dirichlet interface at inflow, as in the
classical disjoint case. We propose to solve the equation

−ε∆u + a · ∇u = f in Ω = (0, 1) × (0, 1),

with a skew advection field a = [1, 1]t, and look for the exact solution u = u(x, y) = x + 5y, which
belongs to the finite element space of work. According to this choice, we impose f = 6, and exact
Dirichlet conditions on the boundary; see Figure 4.5.

We define three different meshes, with h = 1/10, h = 1/20 and h = 1/40. In addition, we
define three different partitionings. The splitting of the two subdomains is always performed
vertically and symmetrically with respect to the line x = 0.5. The first partition splits Ω into
two disjoint subdomains, the second into two overlapping subdomains with horizontal overlapping
length δ = 0.2, and the third one with δ = 0.4. The numerical strategy is classical. We use the
Q1 element together with the variational subgrid scale model (indispensable for small ε). In order
to introduce as few extrinsic errors to the DD methods themselves as possible, all the matrices
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Figure 4.5: Computational domain and boundary conditions.

involved in the Schur complement system are inverted using a direct solver. When considering
disjoint subdomains, the convergence criterion is the interface L2 residual

100
‖uk+1

a − uk
a‖2

‖uk
a‖2

≤ 10−10,

while for overlapping subdomains it is given by

100
‖uk+1

a − uk
a + uk+1

b − uk
b‖2

‖uk
a + uk

b‖2
≤ 10−10.

Tables 4.1 and 4.2 present the already known results of the disjoint D/R and adaptive D/N meth-
ods. The former confirms the mesh independence of both methods, while the latter gives the
optimum relaxation parameter θopt and the corresponding numbers of iterations needed to achieve
convergence. Possible values of θ have been limited to two decimal figures. As expected, we note
that θopt for the D/R method is always 0.5, while that of the A-D/N method is somewhere between
0.5 and 1, and depends on ε.

D/R A-D/N
ε\ h 1/10 1/20 1/40 1/10 1/20 1/40
101 2 2 2 8 8 8
100 5 4 2 15 15 15
10−1 7 6 5 31 31 31
10−2 8 8 7 39 39 39
10−3 8 8 8 40 40 40
10−4 9 8 8 41 41 41
10−5 9 8 8 41 41 41

Table 4.1: Number of iterations (θ = 0.5, δ = 0)

Tables 4.3, 4.4, 4.5 and 4.6 present the same results as the former ones, but this time for the
overlapping methods. The tables show that the overlapping D/R method behaves like the classical
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D/R A-D/N
ε θopt # θopt #
101 0.50 2 0.50 8
100 0.50 4 0.54 11
10−1 0.50 6 0.65 19
10−2 0.50 8 0.81 17
10−3 0.50 8 0.90 17
10−4 0.50 9 0.93 18
10−5 0.50 9 0.93 18

Table 4.2: θopt and number of iterations (δ = 0)

D/N method for ε high, and like the D/D method for ε small. We observe that when ε � 1,
the convergence of the D/R will improve with decreasing h, and that the number of iterations is
bounded as ε goes to zero. We also note that for all the DD methods tested, the optimum θ is
close to unity in the diffusion-dominated range, while it is exactly one in the advection-dominated
range. This contrasts completely with the disjoint counterparts of the DD methods.

D/R A-D/N D/D
ε\ h 1/10 1/20 1/40 1/10 1/20 1/40 1/10 1/20 1/40
101 23 23 23 23 23 23 21 21 21
100 23 23 23 19 19 19 21 21 21
10−1 10 11 11 7 8 8 10 11 11
10−2 10 6 3 7 4 3 10 6 3
10−3 12 7 5 7 5 4 11 7 5
10−4 12 7 5 7 5 4 12 7 5
10−5 12 7 5 7 5 4 12 7 5

Table 4.3: Number of iterations (θ = 1.0, δ = 0.2)

D/R A-D/N D/D
ε θopt # θopt # θopt #
101 0.87 14 0.87 14 1.14 16
100 0.87 14 0.90 13 1.14 15
10−1 0.98 9 1.00 8 1.02 9
10−2 1.00 6 1.00 4 1.00 6
10−3 1.00 7 1.00 5 1.00 7
10−4 1.00 7 1.00 5 1.00 7
10−5 1.00 7 1.00 5 1.00 7

Table 4.4: θopt and number of iterations (δ = 0.2)

Table 4.7 gives the number of iterations needed to achieve convergence for the different methods,
as a function of the overlapping length, and for the second finest mesh h = 1/20. We observe that
for ε = 101 and ε = 100, the overlapping does not improve the convergence. This is rather a
coincidence than a rule. For example, locating the interface at x = 0.75, the disjoint D/R method
converges in 14 iterations at least in both cases!
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D/R A-D/N D/D
ε\ h 1/10 1/20 1/40 1/10 1/20 1/40 1/10 1/20 1/40
101 12 12 12 12 12 12 11 11 11
100 12 12 12 11 11 11 11 11 11
10−1 6 6 6 5 5 5 6 6 6
10−2 6 4 2 5 3 2 6 4 2
10−3 7 4 2 5 4 3 7 4 3
10−4 7 4 3 5 4 3 7 4 3
10−5 7 4 3 5 4 3 7 4 3

Table 4.5: Number of iterations (θ = 1.0, δ = 0.4)

D/R A-D/N D/D
ε θopt # θopt # θopt #
101 0.96 10 0.96 10 1.03 9
100 0.97 10 0.97 9 1.01 10
10−1 1.00 6 1.00 5 1.00 6
10−2 1.00 4 1.00 3 1.00 4
10−3 1.00 4 1.00 4 1.00 4
10−4 1.00 4 1.00 4 1.00 4
10−5 1.00 4 1.00 4 1.00 4

Table 4.6: Number of iterations and θopt (δ = 0.4)

D/R A-D/N D/D
ε \ δ 0 0.2 0.4 0 0.2 0.4 0 0.2 0.4
101 2 14 10 8 14 10 - 16 10
100 4 14 10 11 13 9 - 15 10
10−1 6 9 6 19 8 5 - 9 6
10−2 8 6 4 17 4 3 - 6 4
10−3 8 7 4 17 5 4 - 7 4
10−4 8 7 4 18 5 4 - 7 4
10−5 8 7 4 18 5 4 - 7 4

Table 4.7: Number of iterations (θ = θopt)

Finally, Figure 4.6 compares the behaviors of the DD methods around their respective optimum
relaxation parameters.

Before closing the analysis of this example, let us examine how the error is reduced by the
disjoint and overlapping D/R methods (δ = 0.2), for high advection (ε = 10−4). We choose θ such
that the rate of convergence of each method is more or less the same, to be able to compare the
error reduction using the same scale; this choice corresponds to θ = 0.44 in the case of the disjoint
D/R method, and θ = 0.9 in the case of the overlapping D/R method. The initial solution is the
exact solution, on which we superimpose an error with respect to the analytical solution somewhere
on the interface. In the case of the disjoint D/R method, we introduce the error at point (0.5, 0.5),
while for the overlapping version, we introduce the error at point (0.4, 0.5). The magnitude of the
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Figure 4.6: Number of iterations. (Left) ε = 101. (Right) ε = 10−2.

error in both cases is 0.5, normalized by the maximum exact value over the domain, i.e. 6. On
the one hand, Figures 4.7 (Top Left) and (Top Right) show how the error is advected along the
streamlines of the flow, at iterations 2 and 4, respectively. On the other hand, Figures 4.7 (Bot.
Left) and (Bot. Right) show how the error is mostly confined between the interfaces, located at
x = 0.4 and x = 0.6.
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Figure 4.7: Error. (Top) (Left) Disjoint D/R, iteration 2. (Top) (Right) Disjoint D/R, iteration 4. (Bot.)
(Left) Overlapping D/R, iteration 2. (Bot.) (Right) Overlapping D/R, iteration 4.
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4.6.2 Normal and tangential advections

This example studies the solution of a thermal boundary layer, also presented in [73],

−ε∆u + a · ∇u = 0 in Ω = (0, 1) × (0, 0.5),

with an horizontal advection field a = [2y, 0]t and the following boundary conditions:

u = 1 at x = 0, and y=0.5,

u = 2y at x = 1,

u = 0 elsewhere.

The geometry as well as the boundary conditions are shown in Figure 4.8 (Left). Let us mention
that the solution to this problem exhibits a parabolic layer near y = 0 and an exponential layer at
x = 1 for small diffusion coefficients, as shown in Figure 4.8 (Right) for ε = 10−2.

Figure 4.8: (Left) Computational domain and boundary conditions. (Right) Solution for ε = 10−2.

This example is solved using the same numerical strategy as that of the previous example.
The mesh convergence shares sensibly the same characteristics as that of the first example so only
the results run with a mesh size of h = 1/20 are reported here. Two different partitionings are
performed. First we consider a symmetric vertical partitioning of the domain, i.e. the interface
is placed normal to the advection field. Tables 4.8 and 4.9 compare the optimum relaxation
parameters and the associated number of iterations of the disjoint and overlapping versions of the
different DD methods. As was already observed in last example, we note that the θopt of the
disjoint D/R method is 0.5, while that of the overlapping D/R is 1. The results of the A-D/N
method are more mitigated. On the one hand, the θopt of the disjoint version tends to unity very
slowly for decreasing ε. On the other hand, the θopt of the overlapping version is, as in the case of
the overlapping D/R, unity for ε ≤ 10−2. As in the previsous example, the number of iterations is
bounded as ε goes to zero.

We now partition Ω horizontally. In this case, the Neumann and Robin conditions coincide as
a · n = 0. Table 4.10 gives the results obtain for the classical D/N method. As in the case of
the Normal advection, we observe that the optimum relaxation parameter of all methods tends to
unity rapidly when ε ≤ 10−2, while that of the disjoint D/N method remains around 0.5.
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D/R A-D/N
ε θopt # θopt #
101 0.50 5 0.50 7
100 0.50 6 0.51 9
10−1 0.50 9 0.61 15
10−2 0.50 10 0.74 21
10−3 0.50 7 0.92 12
10−4 0.50 4 0.99 8
10−5 0.50 3 1.00 6

Table 4.8: Normal advection. θopt and number of iterations (δ = 0)

D/R A-D/N D/D
ε θopt # θopt # θopt #
101 0.96 10 0.96 10 1.04 10
100 0.96 10 0.96 10 1.04 10
10−1 0.97 10 0.98 8 1.03 10
10−2 1.00 5 1.00 5 1.00 6
10−3 1.00 4 1.00 3 1.00 4
10−4 1.00 5 1.00 3 1.00 5
10−5 1.00 5 1.00 3 1.00 5

Table 4.9: Normal advection. θopt and number of iterations (δ = 0.2)

D/N D/N D/N D/D D/D
δ = 0 δ = 0.1 δ = 0.2 δ = 0.1 δ = 0.2

ε θopt # θopt # θopt # θopt # θopt #
101 0.50 5 0.79 18 0.89 14 1.24 20 1.08 12
100 0.50 6 0.79 18 0.89 14 1.24 20 1.07 12
10−1 0.49 10 0.80 18 0.91 13 1.21 19 1.06 11
10−2 0.47 10 0.99 10 1.00 6 1.01 9 1.00 6
10−3 0.48 8 1.00 6 1.00 4 1.00 6 1.00 4
10−4 0.47 8 1.00 7 1.00 4 1.00 6 1.00 4
10−5 0.47 7 1.00 7 1.00 4 1.00 7 1.00 4

Table 4.10: Tangential advection. θopt and number of iterations

4.6.3 Curved advection

We increase a bit the difficulty. We consider a curved advection field and impose a discontinuity
in the Dirichlet condition. This example was proposed by Toselli in [99] and consists in solving

−ε∆u + a · ∇u + su = 0 in Ω = (−1, 1) × (−1, 1),



4.6. NUMERICAL EXAMPLES 141

where the advection field and the source term are given by

a =
1
2
[(1 − x2)(1 + y),−x(4 − (1 + y)2)]t,

s = 10−4,

and the Dirichlet boundary conditions for u are

u = 1 at y = −1, 0 < x < 0.5,

u = 0 elsewhere.

See Figure 4.9 (Left) for a sketch of the problem. We present here the results obtained on three
meshes composed of constant element length h such that h = 1/10 for the coarse mesh, h = 1/20
for the medium mesh and h = 1/40 for the fine mesh. Figure 4.9 (Right) shows the solution
obtained on the medium mesh for ε = 10−2.

Figure 4.9: (Left) Computational domain and boundary conditions. (Right) Solution for ε = 10−2.

In this example, we want to compare the results of the overlapping and disjoint D/R method
without trying to adjust the relaxation parameter. For the disjoint versions, we take θ = 0.5 and
for the overlapping versions we take θ = 1.0. We consider symmetrical horizontal and vertical
partitionings, with an overlap of δ = 0.4 for the overlapping partitions. As different results have
been found (in the disjoint version) depending on where the Dirichlet and Robin interfaces are
imposed, the Dirichlet/Robin method is referred to as D/R method when the Dirichlet condition is
imposed on the top and left subdomain interfaces in the case of horizontal and vertical partitionings,
respectively. On the contrary, the Dirichet/Robin methid is referred to as R/D method.

Tables 4.11, 4.12 and 4.13 gives the numbers of iterations needed to achieve convergence for all
the methods. We notice that in the diffusion range, the disjoint versions converge better than the
overlap versions. The tendency is inverted as soon as the advection compensates and overcomes
the diffusion, i.e. when ε ≤ 10−1. In addition, the overlapping version shows much less sensitivity
to the positioning of the interface when the mesh is coarse. In all cases, the number of iterations
is bounded as the diffusion decreases.
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Disjoint Overlapping
D/R R/D D/R R/D

ε horiz. verti. horiz. verti. horiz. verti. horiz. verti.
101 6 7 6 7 23 23 23 23
100 10 10 10 10 23 22 23 23
10−1 16 18 16 18 13 15 12 15
10−2 23 16 17 16 8 6 8 6
10−3 40 16 21 16 9 9 9 9
10−4 46 18 22 17 9 10 9 10
10−5 47 18 22 18 9 10 9 10

Table 4.11: Number of iterations. Coarse mesh: h = 1/10

Disjoint Overlapping
D/R R/D D/R R/D

ε horiz. verti. horiz. verti. horiz. verti. horiz. verti.
101 6 7 6 7 24 23 24 23
100 10 10 10 10 23 23 23 23
10−1 17 18 17 18 11 14 12 14
10−2 15 17 14 17 5 5 5 5
10−3 23 16 17 16 6 5 6 5
10−4 26 16 18 16 6 7 6 7
10−5 27 17 18 17 6 7 6 7

Table 4.12: Number of iterations. Medium mesh: h = 1/20

Disjoint Overlapping
D/R R/D D/R R/D

ε horiz. verti. horiz. verti. horiz. verti. horiz. verti.
101 6 7 7 7 24 23 24 23
100 10 10 10 10 23 23 23 23
10−1 17 19 17 19 11 14 12 14
10−2 16 18 12 18 4 6 4 6
10−3 16 16 14 16 4 3 4 3
10−4 18 16 15 16 4 5 4 5
10−5 18 17 15 17 4 5 4 5

Table 4.13: Number of iterations. Fine mesh: h = 1/40

4.6.4 Rotating advection

Now let us try to solve a more challenging problem. We consider once more the exact linear
solution u = u(x, y) = x + 5y of the first test case, but this time using a rotating advection field
centered in (0.6, 0.6) such that a = [−y + 0.6, x − 0.6].

This choice leads us to choose the following force term: f = 5x − y. We have chosen this
case because of its complicated local behavior. Around the center of the rotating advection filed,
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Figure 4.10: Computational domain and boundary conditions.

diffusion dominates. In addition, the interfaces considered are both inflow and outflow. The results
presented here have been obtained on a 20 × 20 element mesh, and the interfaces are the same as
those of the first test case.

Table 4.14 shows the number of iterations needed to achieve convergence for the optimum
relaxation parameter.

D/R R/D D/R R/D
δ = 0 δ = 0 δ = 0.2 δ = 0.2

ε θopt # θopt # θopt # θopt #
101 0.50 5 0.50 5 0.87 14 0.87 14
100 0.50 8 0.50 8 0.87 14 0.87 14
10−1 0.50 14 0.50 13 0.88 14 0.88 14
10−2 0.49 40 0.50 34 0.97 11 1.07 13
10−3 0.46 243 0.48 200 1.43 37 1.54 49
10−4 0.47 1864 0.49 1493 1.85 221 1.87 242
10−5 0.47 8460 0.51 6257 1.94 753 1.95 816

Table 4.14: θopt and number of iterations (δ = 0, δ = 0.2)

In this example, we have observed notable differences in the results depending on which in-
terfaces the Robin and Dirichlet conditions are imposed; we denote them D/R when the first
subdomain is assigned a Dirichlet condition and R/D when it is assigned a Robin condition. We
observe that for the disjoint and overlapping versions with δ = 0.2 the number of iterations blows
up when ε decreases. However, the overlapping decreases this figure by approximately one order of
magnitude. In addition, we have considered the case of δ = 0.4. The compared results are shown
in Figure Figures 4.11 (Left) and (Right). They confirm the improvement in convergence when
using overlapping.

As in the first test case, we now introduce a perturbation (an error peak) on the interface, of
magnitude 0.5. The difficulty of solving this case lies in the fact that, for small diffusion coefficients,
the error is advected around and around, flowing along the streamlines. If the error is introduced
near the center of the vortex, it can remain for a long time within the domain before being diffused
and absorbed by the boundary conditions. On the contrary, if the perturbation is put sufficiently
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Figure 4.11: Number of iterations as a function of δ and ε.

far from the center of rotation, the error will be advected rapidly away from the domain and
absorbed by the boundary conditions. We consider here the case ε = 10−4. As an illustration,
we have also solved the unpreconditioned Richardson procedure for the interface unknowns, using
disjoint subdomains; in this case, the error is introduced at point (0.5, 0.5). The error magnitude
is 0.5 (normalized by the maximum value, i.e. 6). Figure 4.12 shows the error obtained after
1000 and 4000 iterations, using θ = 0.50. After 1000 iterations, we still recognize the error peak
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Figure 4.12: Error. Unpreconditioned Richardson procedure. (Left) Iteration 1000. (Right) Iteration
4000.

introduced at point (0.5, 0.5); we also note that the error has been totally advected around. After
4000 iterations, the error has been diffused inside and outside the advection circle. Let us now go
back to the analysis of the disjoint and overlapping (δ = 0.2) D/R methods. In the case of the
disjoint D/R method, we introduce the error at point (0.5, 0.5), while for the overlapping version,
we introduce the error at point (0.6, 0.5). Figure 4.13 compares the convergence histories of both
versions, using θ = 0.5 and θ = 1.0 respectively. We observe that the convergence of the disjoint
D/R method is far from monotone.

Figure 4.14 represents the error with respect to the exact solution and normalized by the
maximum exact solution at iteration 1,6,11,16,21,26,31 and 36. These iterations are labeled in
Figure 4.13. We notice that after few iterations the error of the disjoint D/R exhibits more or
less the same error profile as the unpreconditioned Richardson procedure, although the error is
diffused much more rapidly (in terms of iterations). However, after having decreased one order
of magnitude, the error bounces up, before decreasing once again, and so on, until convergence.
This phenomenon can be clearly identified in the convergence history of the method. The error
profiles of the overlapping versions at iterations 1,6,11,16,21,26,31 and 36 are shown in Figure 4.15
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(Bot.). They confirm the improvements achieved by the overlapping method. We conclude that
the overlapping can be useful when a vortex passes near the interface.
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Figure 4.14: Error. Disjoint D/R.
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4.7 Summary

From a geometrical decomposition of the domain Ω into two overlapping subdomains Ω1 and Ω2,
we split the variational formulation of the ADR equation. The resulting variational formulation
consists in solving three local equations together with a matching condition on interface Γb. These
three equations are two equations for the interior of Ω1 and Ω2, and one equation for the interface
Γa. We showed that this variational formulation was equivalent to the original one. Then, we
observed that the formulation implied the continuity of the fluxes on Γa; this observation justified
the name overlapping Dirichlet/Robin domain decomposition method. We also reexpressed the
domain decomposition method as a method for solving the interface unknowns. Then we presented
a relaxed iterative scheme for solving the decoupled problem. We first noticed that relaxation
of the Dirichlet condition or that of the Robin condition had the same effects on the interface
iterates. We identified these iterates as Richardson methods for solving the interface unknowns.
From the finite element formulation of the DD method, we set up a sequential iterative scheme
to decouple the solution on Ω1 and Ω2 into two subproblems; a Dirichlet problem on Ω1 and a
Robin problem on Ω2. The derivation of the Schur complement system brought to light the link
between the iterative strategy and two common approaches, namely the classical D/R method and
the multiplicative Schwarz method. Finally we presented four numerical examples. They outlined
the ambivalent nature of the overlapping D/R method which behaves sometimes like the classical
Dirichlet/Neumann method and sometimes like the Schwarz method. In any case, the overlapping
can be very usefull to accelerate the convergence, in particular in the presence of a vortex in the
vicinity of the interface.

4.7.1 Parallel version and algorithm for many subdomains

The extension of the sequential overlapping mixed methods to a parallel version, as well as the
case of many subdomains (for example in the view of parallel implementation via a multicoloring
technique) can be treated exactly as for non-overlapping methods. However, this does not fall
within the scope of this work and we refer the reader to the survey papers [85, 55] or the books
[83, 58].

4.8 Extension to the Stokes and Navier-Stokes equations

We want to apply the overlapping mixed domain decomposition method to the following stationary
Stokes problem in nd dimensions

−2ν∇ · ε(u) + ∇p = f in Ω,

∇ · u = 0 in Ω,

u = 0 on ∂Ω.

Let us introduce the following functional spaces

V 0 = H1
0 (Ω)nd ,

Q = L2(Ω),

P = {p ∈ L2(Ω) |
∫

Ω

p dΩ = 0}.
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Keeping in mind the notation used in Section 1.2.5, this would correspond to the case ΓD = ∂Ω
and ΓN = ΓM = ∅. Let U = [u, p]t be the unknowns and V = [v, q]t the associated test functions.
The weak formulation of the stationary Stokes equations consists in finding U ∈ V 0 ×P such that

a(U ,V ) = l(V ) ∀ V ∈ V 0 × Q,

where

a(U ,V ) = 2ν
∫

Ω

ε(u) : ε(v) dΩ +
∫

Ω

q ∇ · u dΩ −
∫

Ω

p ∇ · v dΩ,

l(V ) =
∫

Ω

f · v dΩ.

Let us introduce for each subdomain i = 1, 2 the following bilinear and linear forms

ai(U ,V ) = 2ν
∫

Ωi

ε(u) : ε(v) dΩ +
∫

Ωi

q ∇ · u dΩ −
∫

Ωi

p ∇ · v dΩ,

li(V ) =
∫

Ωi

f · v dΩ.

as well as the following functional spaces

V 0
1 = H1

0 (Ω1)nd ,

Vi = {v ∈ H1(Ωi)nd |v|∂Ω∩∂Ωi
= 0},

Qi = L2(Ωi), for i = 1, 2,

P1 = {p ∈ L2(Ω1) |
∫

Ω1

p dΩ = 0},

P2 = L2(Ω2).

The domain decomposition method presented here is a generalization of the classical Dirich-
let/Neumann method [90, 89, 58] applied to overlapping subdomains. The algorithm reads: given
u0

2 ∈ V2, for each k ≥ 0, find Uk+1
1 ∈ V1 × P1 and Uk+1

2 ∈ V2 × P2 such that
a1(Uk+1

1 ,V 1) = l1(V 1) ∀ V 1 ∈ V 0
1 × P1,

uk+1
1 = uk

2 on Γb,

a2(Uk+1
2 ,V 2) = l2(V 2) + 〈σk+1

1 · n2,v2〉Γa
∀ V 2 ∈ V2 × P2,

(4.72)

where the stress tensor is for i = 1, 2

σk+1
i = −pk+1

i I + 2νε(uk+1
i ).

The reason for choosing u0
2 ∈ V 0

2 is due to the need of satisfying the incompressibility constraint
in subdomain 1, at least at the first iteration. In the case of the approximate problem (for example
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using finite elements) and if during the iterative process it happens that∫
Γb

uk
2 · n dΓ �= 0,

then the incompressibility constraint is violated and a conservative algorithm must be used. This
point will be discussed in Section 5.4.

Latter iterative scheme may need relaxation of one (or both) of the transmission conditions.
By introducing two relaxation parameters θ1 > 0 and θ2 > 0, we substitute Equations (4.72)2 and
(4.72)3 by the following updates

uk+1
1 = θ1u

k
2 + (1 − θ1)uk

1 ,

a2(Uk+1
2 ,V 2) = l2(V 2) + 〈 [ θ2σ

k+1
1 + (1 − θ2)σk

2 ] · n2,v2〉Γa
.

with u0
2 = 0 on Γb so that u1

1 = 0 on Γb. This iteration-by-subdomain method is clearly of Dirich-
let/Neumann type.

Finally we consider the following stationary Navier-Stokes problem

−2ν∇ · ε(u) + (u · ∇)u + ∇p = f in Ω,

∇ · u = 0 in Ω,

u = 0 on ∂Ω.

Applying the Picard linearization scheme to linearize the convective term, we obtain the fol-
lowing weak formulation. Given an initial guess u0 ∈ V 0, find U ∈ V 0 × P for m ≥ 0, such
that

am(Um+1,V ) = l(V ) ∀ V ∈ V 0 × Q

until convergence, where

am(Um+1,V ) = 2ν
∫

Ω

ε(um+1) : ε(v) dΩ +
∫

Ω

[(um · ∇)um+1] · v dΩ

+
∫

Ω

q ∇ · um+1 dΩ −
∫

Ω

pm+1 ∇ · v dΩ,

l(V ) =
∫

Ω

f · v dΩ.

We now apply the iteration-by-subdomain method to this problem. The algorithm reads as
follows: given um+1,0

1 = um
1 ∈ V1 and um+1,0

2 = um
2 ∈ V2, for each m ≥ 0, find until convergence

Um+1,k+1
1 ∈ V1 × P1 and Um+1,k+1

2 ∈ V2 × P2 for k = 0, 1, 2, . . . such that
am
1 (Um+1,k+1

1 ,V 1) = l1(V 1) ∀ V 1 ∈ V 0
1 × P1,

um+1,k+1
1 = um+1,k

2 on Γb,

am
2 (Um+1,k+1

2 ,V 2) = l2(V 2) + 〈σm+1,k+1
1 · n2, v2〉Γa

∀ V 2 ∈ V2 × P2.

(4.73)
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where the bilinear form is for i = 1, 2

am
i (Um+1,k+1,V ) = 2ν

∫
Ωi

ε(um+1,k+1) : ε(v) dΩ +
∫

Ωi

[(um · ∇)um+1,k+1] · v dΩ

+
∫

Ωi

q ∇ · um+1,k+1 dΩ −
∫

Ωi

pm+1,k+1 ∇ · v dΩ,

and the stress tensor is for i = 1, 2

σm+1,k+1
i = −pm+1,k+1

i I + 2νε(um+1,k+1
i ).

This iterative procedure is an overlapping Dirichlet/Neumann DD, which can be relaxed as in the
case of the Stokes problem. Note that integrating by parts the convective term, we would obtain
an overlapping Dirichlet/Robin type coupling. The Dirichlet/Robin coupling will be considered
briefly in Chapter 6, by integrating one-half of the convective term, as was done for the ADR
equations in Section 1.1.3. In this iterative procedure, we have chosen to nest the linearization and
DD iterative loops, the inner loop being the DD one. Letting um = um+1,k in the convective term,
we couple both loops. In the discrete finite element problem, it is computationally preferable to
choose the DD loop as the inner loop; if it were the outer loop, the matrix of the discrete system
would have to be computed at each iteration. All the details concerning the implementation of
this algorithm and the results are presented in the next chapter.



Chapter 5

Implementation aspects

In this chapter, we derive a possible finite element implementation of two overlapping domain de-
composition methods, namely the classical Schwarz method and an overlapping Dirichlet/Neumann
method, with particular attention on the latter. The chapter is organized like a recipe, with each
section constituting a new ingredient. The final dishes are two conservative Chimera methods,
based on Dirichlet/Dirichlet and Dirichlet/Neumann couplings and able to deal with moving sub-
domains.

We first identify the transmission conditions from the alternative formulations of the DD derived
in the last chapter. Then we set an iteration-by-subdomain method applied to the solution of the
ADR and Navier-Stokes based on a Master/Slave strategy. We briefly describe an element search
algorithm, which consists in looking for the host elements (in the underlying mesh) of the nodes
involved in the iterative process. This operation is one of the first operations to be performed by
the Master. At this stage we are ready to interpolate the transmission conditions. We present the
interpolation of the Dirichlet data and two interpolation schemes for the Neumann (or Robin) data
involved in the natural transmission conditions. We then explain the need for using a conservative
interpolation and present two algorithms: an interface constraining and a conservative interpolator.
In order to be able to deal with complex geometry, we introduce a Chimera method, using all the
ingredients presented previously. Finally, the domain decomposition method is applied to moving
subdomains by the way of tensorial transformations.

5.1 Iteration-by-subdomain algorithm

5.1.1 Introduction

The domain decomposition methods presented in the previous chapter have been applied at the
algebraic level. According to a geometrical partitioning of the computational subdomain, we set
up a Richardson procedure to solve the Schur complement system for the interface unknowns.
In this chapter, we want to take advantage of the variational equivalent of the DD method to
define a geometrical DD algorithm based on the iterative updates of the boundary conditions on
the subdomains. More precisely, we want to use the alternative formulation given by Equation
(4.16)1−3 for the scalar ADR equation and its extension to the solution of the Navier-Stokes
equations (4.73)1−3. The solution of a transient problem is straightforward as it consists in applying
the DD algorithm at each time step.

In the previous chapter, we studied three different types of transmission conditions that we can

150



5.1. ITERATION-BY-SUBDOMAIN ALGORITHM 151

deal with, at the continuous and variational level, namely:

• the Dirichlet condition, corresponding to the essential boundary condition of the weak for-
mulations;

• the Neumann and Robin conditions, both corresponding to the natural boundary condition
of the weak formulations.

We now go to the discrete level and assume that we have a precise way to compute all the trans-
mission conditions introduced previously, although we have already commented in Remark 4.8 that
the use of the alternative formulation is not possible at the discrete level. This issue will be treated
in Section 5.3.2.

5.1.2 A Master/Slave-coupling algorithm

In this section, we will treat the domain decomposition algorithm as generally as possible, so that
we allow for any type of coupling between subdomains, namely i and j, with transmission conditions
of Dirichlet, Neumann and Robin types, involving overlapping and non-overlapping meshes. For
the sake of clarity, we assume that the subdomains are steady; the case of moving subdomains will
be treated in Section 5.6.2. The iterative domain decomposition algorithm consists of three steps:
the pre-process, the process and the post-process.

• Pre-process. The pre-process consists in dividing the computational domain into overlapping
and/or non-overlapping subdomains. The interface of a subdomain with another is defined
as the part of the boundary of the former lying inside the latter. Along with the geometri-
cal coupling of the subdmomains, some coupling variables must be carefully chosen in order
to obtain a global solution from the local solutions on each subdomain. This global solu-
tion will be obtained iteratively, by exchanging variables between subdomains, according to
some transmission conditions. The nodes involved in the transmission process are called the
interface nodes or transmission nodes.

• Process. The control of the iterative process is performed by a master code. Communica-
tion between the master code and the slave codes (ADR or Navier-Stokes solver on each
subdomain) can be achieved by any of the communication libraries like PVM or MPI. Each
subproblem runs on different processes of the ADR or Navier-Stokes solver. The master code
controls the iterative process by imposing successive updates of the interface boundary condi-
tions (transmission conditions), using the information of the others. The required operations
of the master code are:

– find the host elements of the interface nodes in the adjacent subdomain;

– interpolate the variables from one subdomain to another;

– update of the boundary condition of each one;

– pass the data (the new boundary condition) back and forth to the slaves (the processes
of the finite element code).

• Post-process. Eventually, the post-process defines the global solution. For example, in the
case of overlapping grids, one has to define the solution in the regions in common.

We now describe the specific tasks to be carried out by the Master and the Slaves. Within a
standard implicit Navier-Stokes solver, the DD algorithm loop fits within a multi-loop algorithm
as shown by Algorithm 5.3. Each loop is controlled by a tolerance and a maximum number of
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Algorithm 5.3 Slave’s point of view
for time steps do

for linearization steps do
for DD steps do

Import transmission condition update from Master
for solver steps do

Solve Algebraic system
end for

end for
Export new solution to Master

end for
end for

steps. For the case of time iterations, the tolerance is needed only when a steady state is required.
With respect to a classical solver, as shown by Algorithm 5.3, the DD algorithm is just an additive
loop that can be coupled with the others. For example, it may be convenient to couple it with the
linearization loop (Newton or Picard linearization); in all the examples presented in this work, this
is the technique employed. When dealing with explicit codes, the DD loop can also be coupled
with the time loop.

As mentioned earlier, the master code is in charge of controlling the iterative process and
performing all the necessary operations to leave the slaves unworried. Let us assume we want to
couple ns subdomains. We denote by Γij the interface of subdomain i with subdomain j. The ns

slave processes are distributed via a multicoloring technique: each subdomain is assigned a color
color(i) so that subdomains of the same color have no common interface. The colors are ordered
from 1 to nc, where nc is the total number of colors used. Subdomains of smaller color are run
first.

The algorithm as seen from the master code is shown in Algorithm 5.4. The first task is to
find the host elements of all the interface nodes to enable further interpolation of the transmission
conditions. When the subdomains are steady, this operation must be performed only once, as a
pre-process work. The search technique used in this work will be described in detail in Section
5.2. The stopping criterion is based on some norm of the interface unknown changes between two
successive iterates, k and k + 1. We define the interface L2 residual of variable f as the following
quantity


ns∑
i=1

∑
j

(
1

|Γij |

∫
Γij

(fk+1
i − fk

i )2dΓ

)
ns∑
i=1

∑
j

(
1

|Γij |

∫
Γij

(fk+1
i )2dΓ

)


1/2

,

where |Γij | is the measure of Γij and fk
i is the approximate solution on Γij obtained in solving

subdomain i at iteration k. The sum in j is extended to all subdomains connected to i.

5.2 Search algorithm

We have seen that once the domain decomposition has been performed, one of the first tasks of
the Master is to find host elements for all the interface nodes. In addition, if the subdomains
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Algorithm 5.4 Master’s point of view
Impose initial conditions
for time steps do

Set iteration number k = 0
Find the host elements of all the Γij interface nodes of subdomain i in subdomain j
while stopping criterion not reached do

for color=1 to nc do
Export transmission conditions to subdomains i such that color(i)=color
Run subdomains i in parallel
Import solutions from subdomains i
for subdomains j connected to subdomain i do

Interpolate and compute transmission conditions for subdomains j
end for

end for
k = k + 1
Check convergence of the DD scheme

end while
end for

are moving, the element search strategy (ESS) must be performed at each time step. The ESS
used in this work is based on a quad-tree strategy (in 2D, and oct-tree in 3D). The strategy
can be decomposed in two steps, the pre-process (which constructs the tree-like structure) and
the process (range searching). In the pre-process, the computational domain is first embedded
in a box, taking the minimum and maximum of the node coordinates to define its corners. The
algorithm recursively partitions the box(es) into smaller boxes, until each box contains less than
a prescribed number of nodes. A box is divided into 4 boxes in two dimensions (quad-tree) and
into 8 boxes in three dimensions (oct-tree). If a box is not divided further because it contains too
few nodes, we start filling it with elements. To get the list of elements located inside a box, the
node/element connectivity is used; all the elements connected to the node of a box belong to this
box. Note that this criterion does not require any calculation of the intersections of the faces of
elements and boxes. Figure 5.1 shows a two-dimensional example of a quad-tree subdivision of a
mesh of a NACA0012.

The process step is known as range searching. Knowing the coordinates x of the test point
ipoin, we proceed down through the tree until we find a box containing elements where the test
point must be. Now we perform a loop over the elements jelem belonging to the box. Let nn be
the number of nodes of each element and x(r) the node coordinates for r = 1, . . . , nn. We define
N

(r)
local as the local shape function of node r and ξ the local coordinate of x. We solve the following

equation for ξ using a Newton-Raphson scheme

x =
nn∑
r=1

N
(r)
local(ξ)x(r)

If ξ is inside the local domain (master element), then the test point belongs to jelem.
The condition for an element to belong to a box (based on the connectivity) can seem restrictive;

in fact, an element can intersect a box without having any node in it. Nevertheless, it has proved to
be sufficient for most cases and the search almost never fails. In case a point has no host element,
a new search is performed using a less restrictive method.
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Figure 5.1: A quad-tree division of a mesh (NACA0012). (Left) Mesh. (Right) Quad-tree structure.

5.3 Interpolation of the transmission conditions

Up to now we have studied how the transmission conditions are passed from one subdomain to
another to set up the iterative algorithm. We now study the interpolation technique performed at
the finite element level. In the following, subscripts i and j refer to values computed in subdomains
i and j, respectively, and we assume we want to update the solution of subdomain i knowing the
solution of subdomain j. Remember that Γij is the interface of subdomain i in the adjacent
subdomain j. The notation we use in the following was introduced at the beginning of Section
4.5.3.

5.3.1 Interpolation of Dirichlet data

The primary variables considered here can be the unknowns of the ADR equations or all the
velocity components in the case of the Navier-Stokes equations. For the sake of clarity, we drop
the h subscript to identify finite element solutions. Although we are still going to deal with
continuous solutions, the distinction will always be obvious.

Let nt be the number of transmission nodes on Γij . We define ui|Γij
as the vector containing

the nt nodal unknowns, of coordinates x1, . . . ,xnt , that have to be updated. The interpolation
of primary variables is carried out using the classical Lagrange interpolation. We define Iij as the
continuous interpolation operator from mesh j to mesh i, and Iij its discrete counterpart, made of
global Lagrange interpolation functions. The operator Iij is given by

Iij =

 Nt(x1)
...
Nt(xnt)

 ,
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Figure 5.2: Interpolation. (Left) Dirichlet data. (Right) Neumann/Robin data.

and we have

ui|Γij
= Iijuj . (5.1)

The last equation is only symbolic as in practice we work at the element level. In fact, from the
element search strategy, we have identified the host elements jelem of each interface node ipoin,
as sketched in Figure 5.2 (Left). Therefore, only the natural coordinates of the node ipoin inside
jelem are needed to perform the interpolation of the primary variables.

Let us finally mention that this interpolation is “diffusive” as some information can be missed
during the interpolation. For example, this may be the case when the mesh of subdomain i is
coarser than the mesh of subdomain j; this point is known as conservation and will be treated in
Section 5.4.

5.3.2 Interpolation of Neumann/Robin data

The Neumann or Robin data are involved in the natural transmission conditions. They are the flux
in the case of the ADR equation and the traction in the case of the Navier-Stokes equations. In the
last chapter, we mentioned in Remark 4.8 that the alternative formulation of the DD method that
we use here cannot be directly extended to the discrete case. So what can we do? Through the
following one-dimensional example we are going to explain where the key is for deriving a “correct”
discrete alternative formulation.

Discrete normal derivatives

We propose to solve the following one-dimensional problem{
−∆u = f ∀ x ∈ Ω = (−1, 1),

u = 0 at x = −1, 1.
(5.2)

with f a given function of x, and ∆u = d2u/dx2. We divide the domain into two three disjoint
subdomains Ω3 = [−1,−a], Ω4 = [−a, a] and Ω5 = [a, 1], with a > 0. These subdomains are
partitioned into linear elements of constant length h. We define Ω1 = Ω3 ∪ Ω4 = (−1, a) and
Ω2 = Ω4 ∪Ω5 = (−a, 1). As shown in Figure 5.3, we only number five nodes on both subdomains,
around the position x = −a: three nodes on Ω1, namely (1, 1), (a, 1) and (2, 1); two nodes on Ω2,
namely (a, 2) and (2, 2). The three elements we are going to refer to are element 1, with nodes
(1, 1) and (a, 1), element 2, with nodes (a, 1) and (2, 1), and element 3, with nodes (a, 2) and (2, 2).

Problem (5.2) is solved using the overlapping Dirichlet/Neumann method, by imposing a Dirich-
let transmission condition on the last node of Ω1 at x = a, and a Neumann transmission condition
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Figure 5.3: Overlapping subdmomains with coinciding nodes.

on Ω2 at node (a, 2), at x = −a.

In the following, a superscript without parenthesis refers to an elemental value while a super-
script with parenthesis refers to a nodal value; subscript i for i = 1, 2 refers to values considered in
subdomain i. In addition, let φ1

a be the shape function of node (a, 1) evaluated in element 1, and
set to zero elsewhere, and φ3

a be the shape function of node (a, 2) evaluated in element 3, and set
to zero elsewhere. According to the notation used for this example, Equation (4.60)4 reads:

a2(u2,h, φ3
a) = 〈f, φ3

a〉Ω2 + 〈f, φ1
a〉Ω3 − a3(u1,h, φ1

a). (5.3)

From this equation, we are going to derive the discrete counterpart of the Neumann condition
(4.16)3 of the 3-equation formulation. By integrating the last term of the last equation by parts,
we obtain:

〈f, φ1
a〉Ω3 − a3(u1,h, φ1

a) =
∫

Ω3

fφ1
adΩ +

∫
Ω3

∆u1
1,hφ1

adΩ − du1,h

dx

∣∣∣
x=−a

, (5.4)

where the derivative has to be calculated in element 3. How do we go on and get rid of the first two
terms of the right-hand side? Remember that at the continuous level, by using Equation (4.13)
to substitute the Laplacian by minus the force term, we would be left only with the derivative
on the right hand side. At the discrete level, however, this substitution is not straightforward, as
the Laplacian must be understood in the sense of distributions. Within the elements we have, in
general

∆u1
1,h �= −f.

Indeed, when using linear interpolation the Laplacian is zero inside each element but it is undefined
at x = a. Let us find the formal expression of the Laplacian; we introduce the Heaviside function
H(x):

H(x) =
{

0 for x < 0
1 for x ≥ 0.

By restricting ourselves to the region consisting of elements 1 and 2, the derivative of u1,h with
respect to x at x = −a can be expressed as a function of H(x + a) as:

du1,h

dx
=

du1
1,h

dx
+

(
du2

1,h

dx
−

du1
1,h

dx

)
H(x + a), (5.5)
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where du1
1,h/dx and du2

1,h/dx are the derivatives calculated in elements 1 and 2, respectively. They
are:

du1
1,h

dx
=

u(a,1) − u(1,1)

h
, (5.6)

du2
1,h

dx
=

u(2,1) − u(a,1)

h
. (5.7)

We introduce the jump in velocity derivatives across node (a, 1):

[[du
(a)
h

dx

]]
=

(
du2

1,h

dx
−

du1
1,h

dx

)
.

By deriving Equation (5.5) with respect to x, we find the following expression for the Laplacian
operator

∆u1,h =
d

dx

(
du1,h

dx

)

= ∆u1
1,h + (∆u2

1,h − ∆u1
1,h)H(x + a) +

[[du
(a)
h

dx

]]
δ(x + a). (5.8)

where, with obvious meaning, we have defined

∆u1
1,h =

d2u1
1,h

dx2
,

∆u2
1,h =

d2u2
1,h

dx2
.

Note that in the case of linear interpolation, the first two terms of Equation (5.8) are identically
zero; we have left them to be able to follow their trace along the following calculations. Now, we
multiply Equation (5.8) by φ1

a and integrate the result in Ω3; we find∫
Ω3

∆u1,hφ1
adΩ =

∫
Ω3

∆u1
1,hφ1

adΩ +
∫

Ω3

(∆u2
1,h − ∆u1

1,h)H(x + a)φ1
adΩ

+
∫

Ω3

[[du
(a)
h

dx

]]
δ(x + a)φ1

adΩ

=
∫

Ω3

∆u1
1,hφ1

adΩ +
1
2
[[du

(a)
h

dx

]]
.

The left-hand side term of the last equation is precisely the Laplacian in the sense of distribu-
tions. We can therefore apply Equation (4.13) to substitute ∆u1,h by −f in the last equation and
we obtain ∫

Ω3

fφ1
adΩ +

∫
Ω3

∆u1
1,hφ1

adΩ = −1
2
[[du

(a)
h

dx

]]
,
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which, together with Equation (5.4) gives:

〈f, φ1
a〉Ω3 − a3(u1,h, φ1

a) = −
du1

1,h

dx

∣∣∣
x=−a

− 1
2
[[du

(a)
h

dx

]]
.

Finally, the Neumann condition we have been looking for is simply obtained by substituting
the last equation into Equation (5.3), and by using the values of the derivatives given by Equations
(5.6) and (5.7):

a2(u2,h, φ3
a) = 〈f, φ3

a〉Ω2 −
u(2,1) − u(1,1)

2h
.

For this simple example, we conclude that the correct way to use the discrete counterpart of
the 3-equation formulation (4.16)1−3 is to compute the normal derivative at x = −a using a second
order centered scheme.

A one-dimensional example

As an illustration, let us consider a special case of the one-dimensional problem introduced previ-
ously. We want to solve the following problem: (5.2)1−2 with f = x2 − 3x + 1. We decompose Ω
into two overlapping subdomains Ω1 = (−1, a) and Ω2 = (−a, 1) with a = 0.2 that we mesh with
a constant mesh size h such that the nodes in the overlapping zone coincide. The subdomains are
coupled using the overlapping Dirichlet/Neumann method. We impose a Dirichlet transmission
condition on Ω1 at x = 0.2 and a Neumann condition on Ω2 at x = −0.2. We use the nomenclature
shown in Figure 5.3.

We take advantage of the simple one-dimensional geometry to compute the Neumann condition
using a finite difference scheme around the point x = −0.2. We approximate the derivative at
x = −0.2 according to the following three finite difference schemes:

du1,h

dx

∣∣∣∣
x=−0.2

≈



Left :
u(a,1) − u(1,1)

h
,

Right :
u(2,1) − u(a,1)

h
,

Centered :
u(2,1) − u(1,1)

2h
,

(5.9)

where the superscript denotes the node at which the solution is considered.
Figure 5.4 shows the results obtained on both subdomains using the three approximations as

well as the solution obtained on one subdomain of the same mesh size h = 0.01. The disjoint
D/N method is the non-overlapping Dirichlet/Neumann method computing the derivative using
the Left scheme, as only information on the left of node (a, 2) is available on subdomain 1. We
observe that both the left and right finite difference schemes exhibit a strong jump in the the
solution at the transmission node, whereas the centered scheme gives results much closer to those
of the one-domain solution. We guess that this could be explained by the fact that the centered
scheme is of second order in space while the other two are only of first order. This fact is actually
confirmed by Figure 5.5 which shows the mesh convergence for three mesh sizes, where the error
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Figure 5.4: Poisson Equation. Solution using different approximation schemes of the derivative.

is defined as

1
uone

max
(
|u(1,2) − uone|, |u(a,2) − uone|

)
,

and uone is the solution of the one-domain solution obtained at x = −0.2.

Although the discrete counterpart of the alternative formulation of the DD methods cannot be
justified, we have in hand a numerical tool for solving the problem and conserving the space order
of convergence of the finite element method. We now present two interpolation schemes of first
and second order to compute general transmission conditions.
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Figure 5.5: Poisson Equation. Mesh convergence of the approximation schemes of the derivative.
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Classical interpolation

For the sake of clarity, we consider the Neumann transmission condition involved in the DD method
for the ADR problem, by considering the simple 0-weak formulation. The discrete counterpart of
the Neumann condition of the alternative formulation of the DD method (Equation (4.16)3) consists
in calculating the following contour integral on the interface Γij :∫

Γij

ε
∂uj

∂n
vi dΓ =

∫
Γij

ε∇uj · n, vi dΓ (5.10)

where uj is known from the previous solution on Ωj . We now present the first order interpolation
scheme for the first order derivatives of uj involved in the contour integral. The extension to
the calculation of the stress tensor involved in the DD method for the Navier-Stokes equations is
straightforward.

We note that the flux is needed at the integration points of the boundaries in order to perform
the numerical integration of the Neumann condition. Let us consider the element boundary iboun
and define igaub as an integration point on this boundary. Once the host element jelem of igaub
in subdomain j is found, we obtain the first order interpolation by direct interpolation of the
derivatives from the node to the boundary integration points. The strategy to compute the force
term (5.10) is shown in Algorithm 5.5.

Algorithm 5.5 First order interpolation
for all boundary elements iboun do

for all integration points igaub do
Find host element jelem of igaub
Interpolate derivatives ∇uj from nodes inode to integration point igaub
Calculate outward unit normal n at igaub
Calculate test function vi at igaub
Calculate product (ε∇uj · n)vi at igaub and multiply the result by the weight of the
numerical integration
Assemble result

end for
end for

Note that if the subdomains are steady, the host elements jelem of the boundary integration
points igaub must be calculated only once.

Least-square interpolation

In the one dimensional example presented at the beginning of this section, we showed that using
a centered finite difference scheme we could obtain a second order convergence in space for the
Dirichlet/Neumann algorithm. From the notation used in Equation (5.9), we observe that the
centered scheme uses the unknowns of the background mesh on both sides of the node (2), in the
sense that

u(2,1) − u(1,1)

2h
=

1
2

(
u(a,1) − u(1,1)

h
+

u(2,1) − u(a,1)

h

)
One way of applying this result to a general finite element problem is to perform a least-squares
smoothing to compute the derivatives of the unknown at the nodes of subdomain j. By doing so,



5.3. INTERPOLATION OF THE TRANSMISSION CONDITIONS 161

the values of the derivatives at a node jnode will depend on the derivatives calculated on all its
neighboring element, i.e. on the values of the function at all the nodes of the elements connected
to jnode. Remember that the first order interpolation only considers the derivative inside the host
element of the boundary integration point. The previous example showed that we could obtain a
second order convergence in one dimension: we expect the method to be presented here for two
and three dimensions will be of second order as well.

The least-squares smoothing used here is standard. Let φd be a discontinuous function across
elements, in our case known at the element integration points. Then, the continuous function φc

is computed by minimizing the following functional:

||φd − φc||2 =
∫

Ω

(φd − φc)2dΩ.

The function φd represents any component of ∇uj calculated at the integration points. Let Nj

be the vector of Lagrange interpolation functions of subdomain j and Φ the nodal vector which
components are the nodal values φ

(r)
c of φc at this point such that

Φ = [φ(1)
c , · · · , φ

(npj
)

c ]t,

Re-expressed in a matrix form, our problem consists in minimizing

L(Φ) =
∫

Ω

(φd − Nt
jΦ)2dΩ.

The solution of this minimization problem consists in finding a stationary point of L, which satisfies

dL(Φ)
dΦ

=
∫

Ω

2Nj(φd − Nt
jΦ) dΩ = 0,

The latter equation leads to the following system:

MΦ = r, (5.11)

where the mass matrix M and the right-hand side r are given by

M =
∫

Ωj

Nj Nt
j dΩ,

r =
∫

Ωj

φd Nj dΩ.

Equation (5.11) can be solved efficiently using a closed quadrature rule to compute the coefficients
of the mass matrix. A closed quadrature rule is an integration rule for which the integration points
are located on the nodes. By noting that N (r)(xs) = δrs, the resulting mass matrix is diagonal
and M is trivially inverted.

Once the derivatives are obtained at the nodes of the background mesh, we proceed as in the
case of the first order interpolation, as shown in Algorithm 5.6.
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Algorithm 5.6 Least-square interpolation
Perform least-squares smoothing for the derivatives
for all boundary elements iboun do

for all integration points igaub do
Interpolate derivatives ∇uj from nodes jnode to integration point igaub
Calculate outward unit normal n at igaub
Calculate test function vi at igaub
Calculate product (ε∇uj · n)vi at igaub and multiply the result by the weight of the
numerical integration
Assemble result

end for
end for

Remark 5.1. In the case of non-overlapping subdomains, for which we only have information
on one side of the underlying mesh, the classical and least-square interpolations are equivalent
and are both of first order. The overlapping seems therefore necessary to obtain a second order
convergence.

Remark 5.2. The first order strategy leads to discontinuous derivatives across the elements, since
they are directly obtained from those inside the elements. On the other hand, the least-squares
smoothing used in the second order scheme leads to continuous derivatives.

Navier-Stokes equations: note on the pressure

Up to now, we have derived algorithms for calculating the derivatives of a function at the integration
points of the interface. We are therefore able to compute the velocity strain rates present in the
Neumann transmission condition, as given by the discrete counterpart of Equation (4.72)3. In
order to complete the approximation of the transmission condition, we need the pressure. On the
one hand, when using continuous pressure spaces, the pressure is interpolated at the boundary
integration points in a classical way, i.e. like the velocity using Equation (5.1). On the other
hand, when using discontinuous pressure spaces the pressure is first smoothed using the least-
squares smoothing described previously, before being interpolated from the nodes to the boundary
integration points.

Example

We present a simple example of application of the classical and least-square interpolations to the
solution of the Stokes equations. We solve the following system

−∆u + 2ω × u + ∇p = f , (5.12)

∇ · u = 0,

in a two-dimensional domain Ω made of two concentric circles, as shown in Figure (5.6), and where
the force f is chosen so that the exact solution of the problem is

ue = 2y[r − 1/2],

ve = − 2x[r − 1/2],

pe = r.
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Figure 5.6: Concentric circles. Geometry and boundary conditions.

with ue = [ue, ve]t and r = (x2 + y2)1/2. We construct subdomain 1 of inner diameter 0.5 and
outer radius 1, and subdomain 2 of inner radius 0.5 and outer radius 2. In order to test the
interpolation technique of the secondary variables, we first solve the problem in subdomain 2 using
exact Dirichlet boundary conditions on its boundary, and then update the Neumann condition on
the outer circle of subdmomain 1. The solution is a radial Poiseuille-like flow and does not depend
on the rotation, although we are going to show that the error of the finite element solution does.
The rotation is first chosen to be sufficiently small as we want to avoid any possible instability due
to the Coriolis term, so we take ω = |ω|[0, 0, 1]t with |ω| = 0.1. Figure (5.7) (Top) (Left) shows
the rate of convergence of the error in subdomain 1 computed for the classical and least-square
interpolations, and confirms the results obtained with the one-dimensional example presented at
the beginning of the Section. Now what happens if we increase the rotation? Let us denote u and
p as an approximate solution, for example a finite element solution or the solution at a certain
iteration of a DD method. From the BB condition, and using the notation introduced in Section
1.2.5, we know that

||q||P,Ω ≤ 1
β

sup
v∈V

(q,∇ · v)
||v||V,Ω

∀ q ∈ Q.

Taking q = p − pe, and from Equation (5.12) knowing that

(p − pe,∇ · v) = (∇(u − ue),∇v) − (2ω × (u − ue),v),

we obtain

||p − pe||P,Ω ≤ 1
β

sup
v∈V

(∇(u − ue),∇v) + (2ω × (u − ue),v)
||v||V,Ω

≤ 1
β

(
sup
v∈V

(∇(u − ue),∇v)
||v||V,Ω

+ 2|ω| ||u − ue||−1,Ω

)
.

When ω is high, the second term dominates, i.e.

||p − pe||P,Ω ∼ 2|ω|
β

||u − ue||−1,Ω, (5.13)

so we expect that the pressure becomes out of control when we have an error in the velocity.
Hopefully, when passing Neumann transmission conditions, the error in pressure remains and does
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not affect the velocity. The mesh convergence for |ω| = 104 is shown in Figure 5.7 (Bot.) (Left).
We see that the pressure convergence is entirely dominated by the rotation term. In addition,
Figure 5.7 (Top) (Right) gives the dependence of the errors with respect to |ω|. The velocity is not
negatively affected by the rotation while the error in pressure goes linearly with |ω|, as predicted by
Equation (5.13). Finally, Figure 5.7 (Bot.) (Right) gives the mesh convergence of the least-square
interpolation for the pressure and velocity. We observe that the velocity error for |ω| = 104 is
always below the velocity error for |ω| = 10−1 for the range of mesh sizes studied, while that of
the pressure is four orders of magnitude greater.
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Figure 5.7: Concentric circles. L2 errors. (Top) (Left) |ω| = 10−1. (Top) (Right) h = 1/60. (Bot.)
(Left) |ω| = 104. (Bot.) (Right) Least-square interpolation.

5.4 Conservation

This section addresses an important aspect of the implementation of DD method: conservation.
We first present the shortcomings of the classical interpolation. Then we propose an interface
constraining method to enable us to have control on some well-chosen conservation properties.
The method is illustrated by three examples. Then, we present an interpolation operator. This
operator is tested for the Dirichlet/Neumann method as applied to a simple cavity flow.
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5.4.1 Classical Interpolation

The interpolation strategy of a variable, as given by Equation (5.1), is simple and easy to implement
but it is non-conservative. Figure 5.8 illustrates the importance of using a conservative algorithm
when interpolating a variable from a fine grid to a coarse grid; note that the same occurs when
interpolating between grids whose nodes do not coincide. In this simple illustration, although the

Figure 5.8: Interpolation from a fine grid to a coarse grid.

continuity of the interpolated variable is guaranteed on each node of the coarse grid, the global
information is not necessarily well captured. High frequency modes may be filtered out if the
variable exhibits strong variations along the interpolation domain. Several techniques are available
to overcome the lack of conservation of classical interpolations; e.g., Cebral and Löhner [100] apply
a weighted residual method to conserve the force when solving coupled fluid-structure problems.
Different grid sizes are not the only reason for applying a conservative scheme; it can also be needed
if the interpolated data are not compatible with the numerical formulation, as will be illustrated
with the second and third numerical examples of this section. The interface constraining presented
here enables one to make a compromise between the continuity of the variable (if the nodes coincide)
and the global information it carries.

At the end of this section, we also devise a “conservative” operator to interpolate the variables
from a fine mesh to a coarse mesh.

5.4.2 Constrained transmission conditions

The idea of the interface constraining technique [101, 102] is to impose the continuity of a variable
in a weak sense via a classical interpolation and to relax it by the conservation of a global quantity.
Let us assume we want to update the variable ui of subdomain i knowing the variable uj of the
adjacent subdomain j. Remember that we denoted Iij the continuous interpolation operator from
subdomain j to subdomain i. We propose to find ui from uj by solving the following system:

minimize
∫

Γij

[ui − Iij(uj)]2 dΓ,

under the constraint f(ui) = 0,

where f(ui) is a linear function of the unknown ui that determines the quantity to be conserved.
For example, one can conserve the flux of ui across the interface by choosing

f(ui) =
∫

Γij

∇ui · ni dΓ −
∫

Γij

∇uj · ni dΓ,
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where ni is the outward unit vector normal to subdomain i. Let Ni be the vector of classical
Lagrange interpolation functions for the boundary elements. We can re-express the latter system
in a matrix form as:

minimize
∫

Γij

[Nt
iui|Γij

− Nt
iI

ijuj ]2 dΓ,

under the constraint rtui|Γij
= r,

where r and r are the vector and scalar representing the function f , respectively. This system can
be solved by introducing the Lagrange multiplier λ of the constraint. The Lagrangian is:

L(ui|Γij
, λ) =

∫
Γij

[Nt
iui|Γij

− Nt
iI

ijuj ]2 dΓ − λ(rtui|Γij
− r).

Searching for the optimal point of the Lagrangian, i.e. the point which satisfies

∂L(ui|Γij
, λ)

∂ui|Γij

= 0,
∂L(ui|Γij

, λ)
∂λ

= 0,

and defining µ0 = λ/2, leads to solving the following system:[
M −r
rt 0

] [
ui|Γij

µ0

]
=
[

MIijuj

r

]
, (5.14)

where M is the mass matrix

M =
∫

Γij

Ni Nt
i dΓ.

Solving (5.14) for ui|Γij
, we finally find:

ui|Γij
= Iijuj + (M−1r)(rtM−1r)−1(r − rtIijuj). (5.15)

The first term of the last equation represents the classical interpolation, while the second term
is due to the constraint. Using a closed quadrature rule to compute M, this equation is trivial
since the resulting approximation to M is diagonal. Obviously, if instead of only having one scalar
constraint there are nc of them, exactly the same procedure can be applied. Matrix rtM−1r will
then have nc × nc components.

We now present three examples to illustrate the interface constraining technique. The second
numerical example shows show that this conservation scheme not only enables to treat conservation
problems due to different grids sizes but it can be necessary to conserve the mass when one of the
subdomains is confined.

Example 1: analytical solution

We present a simple two-dimensional domain decomposition problem involving two disjoint sub-
domains. Figure 5.9 shows the nomenclature of both meshes on the interface, a one-dimensional
line. The letters identify the coarse mesh nodes while the figures identify the fine mesh nodes,
and the capital letters refer to the coarse mesh solution while the small letters refer to the fine
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Figure 5.9: Analytical solution. Coarse and fine meshes.

mesh solution. We propose to update the solution U of the coarse mesh, knowing the solution u
of the fine mesh and imposing as a constraint the conservation of the integral of the solution. The
corresponding problem is to

minimize
∫ 2h

0

[U − I(u)]2 dx,

under the constraint
∫ 2h

0

U dx =
∫ 2h

0

u dx.

(5.16)

We introduce U and u as the discrete vectors of unknowns of U and u, respectively. Using
linear interpolation, the solution of the system, is

U = Iu + (M−1r)(rtM−1r)−1(r − rtIu),

with

Iu = [u(1), u(3), u(5)]t,

M = diag(h/2, h, h/2),

r = [h/2, h, h/2]t,

r = h/2[u(1)/2 + u(2) + u(3) + u(4) + u(5)/2].

All the integrals have been computed using a closed quadrature rule. Further calculations give U (A)

U (B)

U (C)

 =

 u(1)

u(3)

u(5)

+
1
4
(−u(1)

2
+ u(2) − u(3) + u(4) − u(5)

2
)

 1
1
1

 .

Now let us compare these results with those obtained with the classical interpolation for the
three triangle solutions shown in Figure 5.10.

The solutions using the classical and constrained interpolations are drawn together with the
fine mesh triangle solutions. Table 5.1 gives the results for the integration of the function along
the interface. Obviously, only the constrained interpolation gives the right integral of the solution,
the quantity conserved by solving system (5.16). Observe that in this case the nodal quadrature
rule is exact, and therefore the integral of the unknown is exactly conserved.

Example 2: mass conservation, cavity

The second example presented involves mass conservation for an incompressible flow problem when
one of the transmission conditions is of Dirichlet type and the Dirichlet subdomain is confined.
Let us first tackle the origin of the need for conserving mass. We want to solve the stationary
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Figure 5.10: Analytical solution. Interpolation of three triangle solutions.

Solution Fine mesh Classical Constrained
u(3) = 1 h/2 h h/2
u(4) = 1 h/2 0 h/2
u(5) = 1 h/4 h/2 h/4

Table 5.1: Analytical solution. Integration of triangle solutions.

Stokes equation in a domain Ω. The weak form of the continuity equation using the stabilized
finite element method is derived taking vh = 0 in Equation (1.31):

ne∑
e=1

∫
Ωe

τ1∇qh · [−µ∆uh + ∇ph] dΩ +
∫

Ω

qh∇ · uh dΩ = 0,

which must hold for all qh ∈ Qh. Taking qh = 1 in Ω, which is an admissible pressure test function,
and integrating by parts, we obtain the following compatibility equation∮

∂Ω

uh · n dΓ = 0, (5.17)

which is the same as for the continuous problem. Consider two overlapping subdomains i and j. We
want to update the interface Γij boundary condition of i using a Dirichlet transmission condition.
We assume equation (5.17) is satisfied for subdomain j across the whole domain; however, zero
mass flow rate across any interior section, and therefore across the interface Γij , is not guaranteed.
Therefore, we have that ∫

Γij

Iij(uj) · ni dΓ �= 0, generally. (5.18)

Furthermore, if subdomain i is confined, the non-zero mass flow rate passing through the interface
Γij remains inside the subdomain and, therefore, the boundary condition of i does not satisfy the
compatibility equation. This is illustrated by Figure 5.11. Note that for discontinuous pressure
spaces, qh can be taken piecewise constant and if Γij coincides with some element boundaries of
subdomain j, the net flux across Γij is zero.
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Figure 5.11: Mass conservation, cavity. A confined subdomain with Dirichlet condition on its interface.

A solution to circumvent the incompatibility of the transmission boundary condition and the
weak formulation is to decrease the mass flux in subdomain i by means of the constraining tech-
nique. We propose to obtain the boundary data ui by solving the problem:

minimize
∫

Γij

|ui − Iij(uj)|2 dΓ,

under the constraint
∮

∂Ωi

ui · ni dΓ = 0.

The system is solved using the strategy defined previously, with the constraint re-expressed as:∫
Γij

ui · ni dΓ = −
∫

∂Ωi\Γij

ui · ni dΓ (= 0 in the case of Figure 5.11).

Note that the integral on the right-hand side of the constraint only involves the solution of i on
∂Ωi\Γij , which is known; the integral can therefore be calculated accurately using the same closed
quadrature than that used to compute the boundary mass matrix M. In the next example, a spe-
cial integration rule will have to be designed as the right-hand side of the constraint will depend
on the solution of the fine mesh.

We solve the Stokes cavity flow using the Q1/Q1 element (piecewise bilinear velocities and
pressures) on two subdomains. The DD method used to couple the subdomains is the Schwarz
method. Figure 5.12 shows the pressure contours obtained. The contours are only shown for the
right-hand side subdomain. Figure 5.12 (Top) (Left) shows the inconsistency in the pressure field
induced by the non-conservation of mass in the two subdomains. The wriggles appear precisely
where the pressure is prescribed, i.e. at the top left corner. Figure 5.12 (Top) (Right) shows
the pressure contours obtained using the zero mass flow rate constraint on the interface. The
last solution corrects the zone of pressure instabilities in the upper left corner, where the value of
the pressure is imposed (remember that the flow is confined and therefore, the pressure must be
prescribed at one point in the subdomain). This is directly related to the fact that the algorithm
enables us to reduce the mass flow rate. This is confirmed by table 5.4.2 which gives the net mass
flow rates in the two parts of the cavity. They are normalized by the velocity at the top wall times
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Figure 5.12: Mass conservation, cavity. Pressure contours of the right-hand side subdomain. (Top)
Pressure contours. (Bot.) Velocity module contours. (Left) Classical interpolation. (Right) Constrained
interpolation.

the length of the interface. The residual mass flow rate obtained for the constrained method is the
mass flow rate passing through the top and bottom first elements, over which we have no control.

Subdomain Classical Constrained
Left-hand side 1.5 -0.1
Right-hand side -3.0 0.1

Table 5.2: Mass conservation, cavity. Mass flow rates (×10−3).

Finally, Figure 5.12 (Bot.) (Left)-(Right) shows details of the velocity module in the center
of the cavity. In the overlapping region, the mass flow rate constraining method gives the best
results. It should also be pointed out that the convergence of the problem is not affected by the
constraint.

The mass conservation was illustrated for a simple flow because it enables us to clearly estimate
the effects of the constraining. However, the problem of incompatibility of the data is very likely
to occur when using a Chimera method because it uses a Dirichlet transmission condition for the
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Figure 5.13: Force conservation. (Left) Components of the force on the interface. (Right) Integration
strategy. •: nodes of i. �: integration points.

interface of patch meshes with the background mesh.

Example 3: force conservation

We will now present a strategy to conserve the components of the force (or traction) acting on
the interface; see Figure 5.13 (Left). This algorithm can be applied only to the least-square
interpolation, once the stress is obtained at the nodes of the interface. We propose to update the
stress σi from the known stress σj by solving the following problem in two dimensions:

minimize
∫

Γij

[σi · ni − Iij(σj · ni)]2 dΓ,

under the constraints
∫

Γij

(σi · ni) · ni dΓ =
∫

Γij

(σj · ni) · ni dΓ,∫
Γij

(σi · ni) · g1
i dΓ =

∫
Γij

(σj · ni) · g1
i dΓ.

By introducing two Lagrange multipliers for the constraints, this problem leads to the solution of
a matrix system of the form M −r −s

rt 0 0
st 0 0

  ti

µr

µs

 =

 MIijtj

r
s

 ,

where t is the nodal vector of the traction components, r and r are the vector and scalar represent-
ing the normal force constraint, and s and s are the vector and scalar representing the tangential
force constraint. The calculations of r and s are straightforward. However, the success of the con-
servation stems from accurately calculating the total force contribution of the adjacent subdomain
j. In the example discussed previously, the constraint depended only on the solution in subdomain
i. In the present problem, the force is known from j and if the mesh of i is too coarse with respect
to the mesh in j, a special integration strategy has to be found to integrate r and s. In order to
take into account the possible loss of conservation, the calculation of r and s will be performed
by injecting a sufficient number of integration points on Γij . The strategy is illustrated in Figure
5.13 (Right). Note that an efficient element search strategy is therefore necessary in order to find
a host element for each of these integration points. For example, the number of integration points
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to be chosen on each element boundary could be related to the ratio of the local density of nodes
of i to that of j.

Conclusion

We have developed a method for constraining the interface boundary conditions in the framework
of domain decomposition methods. As a first application, we have constrained Dirichlet interfaces
with the zero mass flow rate equation and good results have been obtained. The method is general
and can be applied to the conservation of any quantity involving the variable of the transmission
condition.

5.4.3 An interpolation operator

We now present a “conservative” interpolation operator specially designed for interpolating variable
from a fine mesh to a coarse mesh. As a first and simple approach, the transmission variables at
the interpolation and interface nodes are obtained using the Lagrange interpolation functions, as
given by Equation (5.1). The interface constraining technique presented previously enables one to
conserve some properties across the interface. We propose here to work directly on the interpolation
operator. When Lagrange interpolation functions are used, the method will be referred to as
classical interpolation (Class.). Let us denote npi as the number of nodes of subdomain i and npj
the number of nodes of subdomain j from which we want to interpolate the solution. The classical
method gives:

ui = Iijuj ,

where this time we denote Iij as the operator Iij is the interpolation operator to the whole mesh
i from mesh j, and it is a npi × npj matrix. Obviously, only the interpolation nodes are updated
with this formula, and the matrix coefficients corresponding to the other nodes are meaningless.

One way to avoid losing information when interpolating from one mesh to another, and partic-
ularly from a fine to a coarse mesh, is to take into account the values of the interpolated function
not just locally, but using a cloud of nodes. The idea is illustrated in Figure 5.14. On the upper
part, a sharp stencil uses only the value of the interpolated function on one node of the fine grid,
while on the lower part, the dense stencil uses the values of all its neighbors. Dense stencils are the
key for developing conservative interpolation. In some sense, the interface constraining method
can be viewed as a general method for devising conservative dense stencils.

Inspired by transfer operators of multigrid methods (see for instance [103] or [104]), we suggest
an alternative method to the classical Lagrange interpolation to obtain ui. We seek for a kind of
transfer operator which is conservative in the sense that the mean of a scalar field computed from
its integral in both domains is equal. As a guideline, we want our operator to satisfy the following
requirements:

1. as in the classical interpolation, a constant field must be transferred as constant field of the
same value;

2. for identical meshes, identical fields should be obtained;

3. additionally, the information contained in high frequency oscillations in the fine mesh should
be partially present in the coarse one.
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Figure 5.14: Interpolation stencils.

Let us define the interpolation matrix Iji of the interpolation coefficients from mesh i to mesh j.
Then,

uj = Ijiui.

The idea is to use the information contained in Iji, which transfers variables from background to
patch to improve transferring from patch to background taking into account conservation prop-
erties. This is something normally considered in multigrid methods when right hand sides are
passed from finer to coarser meshes. In that case, the transpose of matrix Iji can be plainly used,
even though that the local different characteristic element sizes introduces a scale factor. It can
be shown that although this scale factor is helpful in RHS’ multigrid transferring, it leads to a
violation of conservation when passing variables [104], as in the case of DD methods. For that
reason, we propose the following

ui = (Ĩji)tuj , (5.19)

where Ĩji is the column-wise normalized interpolation matrix defined as

Ĩji = Ijidiag
(
1/
∑npj

i=1 Iji
i,1, 1/

∑npj

i=1 Iji
i,2, . . . , 1/

∑npj

i=1 Iji
i,npi

)
.

This method will be referred to as the normalized transpose interpolation, denoted NTI. To show
the positive effect of the normalization, we will also momentarily consider the plain transpose
interpolation which uses directly (Iji)t, denoted PTI.

Example: analytical solution

As an illustration, the three interpolations defined previously are analyzed for a very simple one-
dimensional example. We use the meshes sketched in Figure 5.9. Let us denote u(r) for r =
1, 2, 3, 4, 5 the solution on the fine (patch) mesh and U (r) for r = A,B,C the solution on the coarse
(background) mesh. The node spacing on the coarse mesh is h while that on the fine mesh mesh
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is twice as small. We obtain the following interpolation matrices:

Class.:

 U (A)

U (B)

U (C)

 =

 1 0 0 0 0
0 0 1 0 0
0 0 0 0 1




u(1)

u(2)

u(3)

u(4)

u(5)

 ,

PTI:

 U (A)

U (B)

U (C)

 =

 1 1/2 0 0 0
0 1/2 1 1/2 0
0 0 0 1/2 1




u(1)

u(2)

u(3)

u(4)

u(5)

 ,

NTI:

 U (A)

U (B)

U (C)

 =

 2/3 1/3 0 0 0
0 1/4 1/2 1/4 0
0 0 0 1/3 2/3




u(1)

u(2)

u(3)

u(4)

u(5)

 .

The problem of the classical interpolation is obvious: the solution on the coarse mesh does not
explicitly depend on u(2) and u(4). In physical terms, this means that the operator filters out the
high frequencies. We will now consider some triangle solutions on the fine mesh and examine how
such solutions are interpolated on the coarse mesh for the three interpolation methods described
previously. Figure 5.15 sketches the solution obtained using the NTI and PTI operators. It is
interesting to check how well those three methods integrate the function in the interval. Consider
three different triangle functions defined on the figure; table 5.3 shows the result of the integration
of the function as calculated for each method. As expected, the Class. method gives the wrong

Solution Fine mesh Class. PTI NTI
u(3) = 1 h/2 h h h/2
u(4) = 1 h/2 0 3h/4 5h/12
u(5) = 1 h/4 h/2 h/2 h/3

Table 5.3: Integration of a triangle solution for different interpolations.

results for the integrals of the three triangles solutions. The integral is either underpredicted or
overpredicted. The PTI always overpredicts these integrals. Finally, only the NTI approximately
captures the area of the three triangles solutions.

Apart from its conservation property, the normalized transposed interpolation has one more
advantage. The interpolation matrix involves only the interpolation coefficients of the patch mesh
nodes of the corresponding host elements of the background mesh. If the background mesh is
structured (Q1 elements), the search for host elements is therefore trivial. This could be an
important property if the patch is moving with time; in this case, the interpolation operator would
have to be calculated at each time step.

The NTI operator has been successfully applied to multigrid techniques by Vázquez et al. in
[105] and to the present DD methods applied to an explicit flow solver [106].
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Figure 5.15: Interpolations of triangle solutions on the fine mesh.

Example 2: a conservative mesh refinement technique, cavity flow

Through this example we propose to test the conservative operator for the D/N method used as a
local refinement technique. We solve the cavity flow on a domain (0, 1)× (0, 1) at a relatively high
Reynolds number Re = 5 000, based on the cavity length and the velocity at the cavity top. The
geometry is shown in Figure 1.4 (Left). The results are going to be compared to the results of the
standard reference for this flow by Ghia et al. [107].

We first solve the flow on an adapted mesh of 900 Q1/Q1 elements shown in Figure 5.16 (Top)
(Mid.) and use its solution for the sake of comparisons. Figure 5.16 (Bot.) (Mid.) gives the
velocity field while Figures 5.17 (Left) or (Right) show the horizontal velocity along a vertical cut
at the middle of the cavity. We also generate a very coarse mesh of 400 uniformly distributed
Q1/Q1 elements, shown in Figure 5.16 (Top) (Left). Figures 5.16 (Bot.) (Left) 5.17 (Left) or
(Right) show that the momentum imposed at the cavity top is not transmitted at all at lower
parts of the cavity, where the velocity is almost zero. Can we obtain a satisfactory solution by way
of local refinement? Let us overset a fine mesh on the top of the very coarse mesh. The fine mesh
occupies the first top quarter of the cavity and has 450 Q1/Q1 elements: this is the Neumann
subdomain. The Dirichlet subdomain is the coarse mesh: the first three element layers of this
coarse mesh are cut so that the resulting Dirichlet subdomain is composed of 340 elements. The
fine mesh is refined near the top of the cavity so that it looks more or less like the adapted mesh of
the one-domain solution; the resulting composite mesh is shown in Figure 5.16 (Top) (Right). We
hope the fine mesh will help the flow enter the cavity and will be sufficient to capture the leading
flow scales on the top of the cavity.

We tested the D/N method using the classical interpolation as well as the normalized transpose
interpolation (NTI), using an overlap of two layers of elements. Figure 5.17 compares the horizontal
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Figure 5.16: Cavity flow. (Top) Meshes. (Bot.) Velocity vectors. (Left) Coarse mesh. (Mid.) One
domain. (Right) D/N+NTI.
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Figure 5.17: Cavity flow. Horizontal velocity at x = 0.5. D/N method.

velocity profile at x = 0.5 obtained by the D/N couplings together with the solution on the refined
mesh, the very coarse mesh, and with Ghia’s results. We observe that the NTI improves the
results obtained with the D/N and the classical interpolation. Figure 5.16 (Bot.) (Right) shows
the velocity vectors in the cavity. We have also tested the D/D method with the same overlap:
the D/D method does not converge to a stationary state.
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5.5 Chimera Method

This section studies a Chimera method intended to solve incompressible flows on complex geome-
tries. We first describe the purpose of the Chimera approach by giving an insight of the possibilities
of the method. Then we introduce some terminology and explain the way that the Chimera method
can be implemented as an iteration-by-subdomain DD technique. In particular, we build a Chimera
method based on overlapping Dirichlet/Dirichlet and Dirichlet/Neumann couplings.

5.5.1 Motivation

We want to set up a simple strategy to solve a fluid problem on a given geometry, including
the possibility of easily adding, removing and modifying some components, without the need for
remeshing the global mesh. The DD algorithm to account for these requirements is based on the
Chimera method. A background mesh is first defined. It can contain some objects whose geometries
and positions should not change with time, and for which the grid can be easily generated. Then,
separate grids are generated for the components to be patched onto the background mesh. This
defines a global geometry on which the relative positions of the objects can be changed easily.
From the geometrical coupling, an iterative strategy is set up to exchange transmission conditions
as in the case of iteration-by-subdomain DD methods, in order to obtain a global solution.

The Chimera method was first envisaged as a tool for simplifying the mesh generation [95,
108, 109]. Independent meshes are generated for each component of the computational domain,
enabling a flexibility on the choice of the type of element as well as on their orientation that could
not be possible when meshing complex three dimensional geometries [110, 111]. See for example
[112] for the application of the Chimera method to the investigation of the aerodynamics of the
Space Shuttle launch vehicle. As a direct application, the Chimera method has also been used as
a mesh refinement technique [113]. In addition, if it is implemented efficiently, it is a very efficient
tool to treat flows with moving components [114]. This issue will be addressed later on in Section
5.6.

5.5.2 Geometrical coupling and terminology

For the sake of clarity, we assume that the flow we solve only involves one object. The generalization
to multi-component flows is straightforward. We first define a background mesh containing all the
computational domain, preferably structured. We also generate an independent mesh around the
object and dispose it onto the background mesh. This is the patch mesh. The set of all the overset
grids is called the composite grid, or composite mesh. The idea of the Chimera method is to
remove some elements of the background located inside the patch in order to define an apparent
interface, this task is called hole cutting. The domain decomposition method therefore will consist
in exchanging suitable transmission conditions between the outer boundary of the patch and the
apparent interface just defined.

Some definitions

We introduce the following definitions to identify the nodes of the background mesh (see Figure
5.18 (Left)):

• guest node: node of the background having a host element in the patch;

• lost node: node of the background having no host element in the patch;
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• object node: lost node of the background located inside an object of the patch;

• interpolation node: guest node participating to the DD coupling;

• overlapping node: guest node explicitly freed to define a desired overlap, i.e. a minimum
distance (geometrical distance or in terms of elements) between the outer boundary of the
patch and the apparent interface of the background;

• free node: node containing free degrees of freedom to be updated by the flow solver;

• fringe node: interpolation node forming part of the apparent interface of the background
subdomain.

A hole is defined as the set of elements which contain only object and interpolation nodes. By
definition, the boundary of the hole, i.e. the apparent interface of the background, is composed of
fringe nodes. When dealing with a steady subdomain, only the fringe nodes of the hole participate
in the DD coupling. Therefore, all the object nodes as well as the non-fringe interpolation nodes can
be eliminated from the solution process. However, in the case of moving subdomains, information
at these nodes must be saved at each time step as a hole node can become an interpolation node,
for which values at the previous time step are required; in the same way, an interpolation node
can become a free node, for which values at the previous time step are also required. Figure 5.18
(Left) shows a simple example which illustrates all the definition introduced above.

The overlap

We now introduce the overlap. In Chapter 3, we showed the explicit dependence of the convergence
of overlapping methods upon the overlapping length of two adjacent subdomains; it is therefore
interesting to be able to control the geometrical length between interfaces. The algorithm used to
ensure a minimum overlap is trivial: if the distance of a guest node to the patch interface is lower
than the overlapping length desired, then state it as an overlapping node.

In addition, a certain number of elements of overlap may be required according to the type
of transmission conditions to be used in the DD coupling. The first reason for this is that for
overlapping methods like the Dirichlet/Dirichlet method, at least one element of overlap is needed
on each subdomain. This is a sufficient condition to ensure not only continuity of the velocity but
also of its derivatives. The second reason is that to achieve a second order Dirichlet/Neumann
method, we need at least one element of the background mesh on each side of the Neumann
interface.

In order to ensure a layer of one-element overlap in the patch mesh, we proceed as follows. We
define the first layer of elements of the patch as the set of elements of the patch mesh connected
to its own outer boundary, i.e. the interface. Then, all the interpolation nodes of the background
mesh having a host element belinging to the first layer are freed. Figure 5.18 (Left) illustrates
a Chimera coupling with a one-element overlap in the patch mesh, as indicated by the elements
painted in grey.

When interpolating the same variable on the patch and on the background mesh (like the D/D
coupling), we must ensure that we have at least one layer of element of overlap in the background
mesh in addition to the overlap achieved with respect to the patch mesh. This is also necessary
when we want to achieve a second order scheme in space for the D/N coupling, or at least to
expect it to be of second order. This is done by letting free some of the interpolation nodes of
the background mesh. We define the shadow of the patch interface the set of elements of the
background mesh having both interpolation and free nodes. All the nodes belonging to the shadow
are freed and stated as overlapping nodes, as illustrated by Figure 5.18 (Right).
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Figure 5.18: (Left) Overlap in the patch mesh. (Right) Overlap in the background mesh.

The three operations to construct the overlap must be carried out in a precise order. In fact,
we must start by freeing the interpolation nodes located in the shadow of the interface. Then, free
the remaining interpolation nodes located in the first layer of element of the patch mesh. Finally,
proceed to the geometric overlap.

Node identification algorithm

The procedure to identify all the nodes of the background subdomain is shown in Algorithm 5.7.
We first define the bounding box of the patch mesh and perform an element search strategy for the
nodes ipoin of the background mesh located inside this bounding box. If ipoin has a host element,
it can be an interpolation or an overlapping node. In the first case, the node will participate to
the DD coupling; in the second case, it must be freed. If ipoin has no host element, it means that
the node can be outside the patch or inside an object of the patch. A simple way to make short
work of the problem is to perform the following test. Let P be the orthogonal projection of ipoin
onto the object boundary of the patch mesh, and let n be the outward unit vector normal to the
patch at P , as illustrated by Figure 5.19.

Figure 5.19: Check if a lost node is inside an object.

If the scalar product
−−−−−−−→
(ipoin, P ) · n ≤ 0, then ipoin is an object node and can be eliminated

from the solution process. Otherwise, ipoin is outside the patch computational domain and must
be freed. This operation consists in identifying the hole and is a simple alternative to the classical
(but quite heavy) hole cutting technique, as presented in [115].
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Algorithm 5.7 Chimera Method. Identify the actors of the background mesh
Define the bounding box of the patch mesh
Set a minimum overlapping length δ
for all nodes ipoin of the background mesh inside the bounding box do

Perform an element search for ipoin
if ipoin has a host element then

If necessary check if ipoin is inside the shadow of the patch interface
if ipoin is inside an interface shadow element then
ipoin is an overlapping node and is freed

else
ipoin is an interpolation node

end if
Find to which layer of elements of the patch ipoin belongs
If necessary check if ipoin is inside the first layer of element of the patch
if ipoin belongs to the first layer of element of the patch then
ipoin is an overlapping node and is freed

else
ipoin is an interpolation node

end if
Compute the distance between ipoin and the patch interface
if the distance is lower than δ then
ipoin is an overlapping node and is freed

else
ipoin is an interpolation node

end if
else if ipoin is lost then

Check if ipoin is an object node or a free node
end if

end for

5.5.3 Transmission conditions

In the preceding chapters, we studied some overlapping versions of current mixed DD methods.
We now generalize the overlapping Dirichlet/Neumann method applied to the Chimera method,
and propose a new Chimera/Neumann coupling (C/N). We also propose to study the classical
Chimera method, referred to here as Chimera/Dirichlet coupling (C/D). The background mesh is
the “Chimera” subdomain for which the primary variable of the problem is interpolated at the
fringe nodes; the patch mesh is either assigned a Dirichlet or a Neumann transmission condition
on its outer boundary. ”Chimera” is not actually an appropriate term to define an interface type
as it generally defines a complete DD method in the scientific literature, but we hope its use in the
present context is clear. The C/D and C/N couplings are illustrated in Figure 5.20.

Some special attention must be paid to the pre-process part of the algorithm, which will de-
termine the convergence of the iterative procedure as well as its accuracy. The construction of
the C/D coupling requires special care, as a minimum overlap is required to avoid nodes from
coinciding. If this becomes the case, the interpolated variable would be frozen at its initial value
on the coinciding nodes. In addition, as mentioned in Section 5.5.2, a minimum overlap of one
layer of element is needed on each mesh participating in the C/D coupling.

This is not the case in the C/N method because the variables interpolated at the interpolation
nodes are different from those interpolated at the interface nodes. However, we saw in Section
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Figure 5.20: Chimera method. Hole and variables transmitted. (Left) Chimera/Dirichlet. (Right)
Chimera/Neumann.

(5.3.2) that the overlapping Dirichlet/Neumann needs at least one element on each side of the
Neumann interface to expect the least-square smoothing of the derivatives to lead to a second
order scheme.

5.5.4 The algorithm

The Chimera/Dirichlet and Chimera/Neumman methods fit perfectly into the framework of the
Master/Slave-coupling described at the beginning of this chapter. When dealing with various
unconnected patch grids, the solution on each of these subdomains can be obtained in parallel,
while keeping the sequential coupling with the background. The Chimera based iteration-by-
subdomain method is illustrated by Algorithm 5.8 for the Master’s point of view, while the Slave
point of view is the same as that presented by Algorithm 5.3.

Algorithm 5.8 Chimera method. Master’s point of view
Find the host elements of all the interface nodes of the patches
Identify the actors of the background as shown in Algorithm 5.7
while stopping criterion not reached do

Run background
Import solution from background
Interpolate and compute transmission conditions for patches
Export transmission conditions to patches
Run patches in parallel
Wait for all patch processes to be done
Import solutions from patches
Interpolate and compute transmission condition at fringe nodes for background
Export transmission conditions to background¡

end while
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5.5.5 Example: flow past two cylinders

We now illustrate the Chimera method through a simple example. We consider a two-dimensional
flow past two cylinders of diameter D = 1. The bounding box of the computational domain is
(0, 16) × (−6, 6) and the center of the cylinders are located at (4,−1.5) and (4, 1.5). The inflow
velocity is U = 1, and the Reynolds number is

Re =
UD

ν
= 1.

We perform three simulations. First we solve the problem without domain decomposition and
using a mesh of 4414 P1/P1 elements, shown in Figure 5.21 (Top). We now decompose the
computational domain into three subdomains. The first domain is the background subdomain and
contains 2400 Q1/Q1 elements. Then we define patch subdomains for each cylinder. The outer
boundary of the top subdomain is a circle of diameter 1 and the associated mesh is composed of
518 P1/P1 elements; Figure 5.21 (Top) shows the composite mesh around it. The outer boundary
of the bottom subdomain is a circle of diameter 2 and its associated mesh as 2400 P1/P1 elements.
Figure 5.21 (Bot.) shows the composite mesh.

From this partition we perform two DD simulation with one element-layer overlapping, using
both the Chimera/Dirichlet method with mass conservation constraining (which will be presented
in the following section) and the Chimera/Neumann method with least-square smoothing. Figure
5.22 (Top) (Left) shows a zoom of the composite mesh of the top cylinder and Figure 5.22 (Top)
(Right) shows the resulting hole cutting. Figures 5.22 (Bot.) presents the outline of the holes.

Figure 5.23 presents the solution obtained for the one-domain solution as well as for the C/D
and C/N methods. As the pressure of the patch subdomain is unique up to an additive constant
(they are confined) when using the C/D, the pressures in the background and patch subdomains
have to be calibrated. This is done by adjusting the level of pressure using the difference of pressure
at one node of the patch and its corresponding value in the background.

The results of the C/D are far from convincing. The pressure exhibits some strong discontinu-
ities at the interface of the top cylinder; note that for the sake of clarity the maximum value of the
pressure contour fill is limited to the maximum value obtained for the one-domain solution. The
results obtained around the bottom cylinder, whose interface is farther to the cylinder wall than
the top cylinder does, are much better. This is attributed to the fact that Dirichlet conditions are
much stiffer than Neumann conditions, i.e. a small error on Dirichlet conditions has much more
influence than a small error on the Neumann conditions. This is confirmed by the results of the
C/N method which are in very good agreement with those of the one-domain solution.

Geometrical DD methods are not exact if the nodes don’t coincide. This example shows however
that the C/N seems to be more accurate than the C/D method.
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Figure 5.21: Flow past two cylinders. (Top) Mesh of the one-domain solution. (Bot.) Composite mesh
resulting from the Chimera partitioning.
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Figure 5.22: Flow past two cylinders. Hole cutting. (Top) (Left) Top cylinder before hole cutting. (Top)
(Right) Top cylinder after hole cutting and apparent interface. (Bot.) Interfaces and hole.
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Figure 5.23: Flow past two cylinders. (Top) One-domain solution. (Mid.) C/D solution. (Bot.) C/N
solution. (Left) Pressure. (Right) Velocity.
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5.5.6 Summary

In this section, we have presented a classical Chimera method (Chimera/Dirichlet), as well as
the extension of the Dirichlet/Neumann method in the Chimera context that we named the
Chimera/Neumann method. The simple example outlined the deficiencies of the classical method
and the possible advantages of the new method.

5.6 Moving subdomains

In this section, we apply the iteration-by-subdomain method and the Chimera method to the study
of flows involving moving components [116, 117, 118]. We first overview the existing methods for
tracking the relative movements of the different components of a mesh. These variables are only
the position, the velocity and the strain rates involved in Dirichlet and Neumann transmission
condition, as a scalar variable transforms into the same scalar. In particular, when the trajectories
of the components are not known a-priori at any time, a second order integration scheme is derived
to track the rotation of the frame of reference.

5.6.1 Overview

When one wants to simulate flows with moving bodies and when there is no possible way of
prescribing simple boundary conditions in any frame of reference, four main alternatives to track
the body motions are possible:

• the arbitrary-Lagragian-Eulerian (ALE) method together with an automatic remeshing tech-
nique of the computational domain adapts the fluid mesh to the spatial configuration in time;

• the fictitious domain method tracks moving solid boundaries inside a background mesh;

• the sliding mesh technique couples different meshes which are allowed to slide along their
common interfaces;

• the Chimera method couples the individual meshes of each moving component.

These techniques are illustrated in Figure 5.24.
When using the ALE description of the flow together with automatic remeshing, the mesh

accommodates the boundary displacements inside the computational domain (see for example
[119, 120, 121]). On the one hand, if the displacements are small, only nodal displacement may
be sufficient, and the nodal connectivity of the mesh remains unchanged; on the other hand, if the
displacements are large, a complete remeshing is necessary. The main drawback of the method
is that the geometric parameters have to be computed at each time iteration. See [122] for an
example of application to the simulation of a mixed-flow pump. The ALE technique has also been
used for following free surfaces [123, 124] and to simulate fluid/structure interactions [125].

In the fictitious domain method [94, 126], a fixed mesh occupies the whole volume including
that occupied by the body. The method consists in including the boundary condition at the body
boundary into the set of flow equations for the whole volume by the way of Lagrange multipliers. In
the particular case of Dirichlet conditions imposed on the body, the Lagrange multiplier represents
the jump in traction obtained at the fluid-solid interface. This method enables one to use simple
(structured) background meshes on which fast solvers can be implemented. In [127], a fictitious
domain method is presented to simulate two and three-dimensional flow problems with moving
boundaries. The authors apply the method to the solution of a Couette problem and a helical
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Figure 5.24: Illustration of the most common methods to simulate flows around moving components.

ribbon mixer; in [128], the fictitious method is applied to the solution of the flow around a moving
disk. In fictitious domain methods, the motion of the object needs not to be known a-priori, and
aerodynamic forces can be taken into account to couple the fluid dynamics and the kinematics of
the rigid body. Pan [129] predicts the path of a ball falling in a viscous fluid (at low Reynolds
numbers); in [130], the authors solve the two-dimensional flow around an airfoil that is free to rotate
around its center of mass, the sedimentation of particles in a box, and a three-dimensional case
involving two spherical particles. Using the same method, Suárez [131] simulates the sedimentation
of an elliptic body in a two-dimensional viscous fluid. This fictitious domain method is also well-
suited for shape optimization problems [132]. Although it has been shown that this method can
efficiently solve the flow over moving objects, it presents a serious drawback: at large Reynolds
numbers, we have no simple way to refine the mesh near the boundary without dropping the nice
characteristic of the method.

The sliding mesh technique regroups DD methods for which two adjacent subdomains are
allowed to slide along their common interface. In this work, we generalize this technique to any
DD method involving possibly moving overlapping subdomains for which the interface topologies
do not change with time. As it can be a hard task to ensure that the nodes of two adjacent sliding
meshes coincide at each time step, the sliding mesh method is generally used as a direct application
of the mortar method [93, 133] to moving subdomains [134]. The mortar element method is a non-
conforming domain decomposition method for coupling non-matching grids. Instead of considering
the continuity of the transmission variables point by point by using a simple interpolation technique,
the mortar element method performs an interface L2-projection of the transmission conditions.
When the mortar method is used together with a sliding mesh technique, the subdomains are
allowed to slide along their common interface. They are therefore necessarily disjoint. See [135]
for the application of the sliding mesh technique to the simulation of stirred reactors. See [136]
for the simulation of a two-dimensional rotor-stator interactions in a centrifugal pump. We also
mention the Shear-Slip Mesh Update Method [137] (SSMUM) where regions in relative straight
line translation or rotation are glued by the way of intermediate layers of elements, and where
the connecting nodes coincide. In order to avoid remeshing of the regions, only the elements of
intermediate layer are allowed to be deformed and its computational domain to be remeshed when
necessary. The advantage of this method is that it is conservative as the composite mesh is always
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conforming. The main drawback is that arbitrary motions are not possible.

The Chimera method appears to be the most flexible method to treat flow problems with
moving bodies [138, 115, 139]. In addition, it fits perfectly within the Chimera based iteration-by-
subdomain method introduced along this chapter. Each moving body of the domain is assigned
a particular mesh. These meshes are allowed to move independently inside a background mesh,
while the coupling can be performed using the Chimera/Dirichlet or Chimera/Neumann method.
The main drawback of the Chimera method is its lack of conservation.

All these methods have their advantages and drawbacks that may be important or not accord-
ing to the type of application we want to carry on. For example, conservation aspects are in general
much more important in compressible fluid dynamics than in incompressible fluid dynamics (al-
though we saw that mass conservation is crucial for the numerical scheme used in this work). If we
only work on domains in relative rotational motion, the sliding mesh technique may be the most
appropriate. However, the reliability (accuracy and robustness) of all these techniques is subjected
to crucial choices. In the fictitious domain method, one has to choose the number of mesh points
to discretize the rigid boundary; in the mortar element method, one has to find accurate quadra-
ture rules to compute the integral matching condition [140]; in the Chimera method, conservative
interpolation techniques may be expensive [141].

In both the sliding mesh technique and the Chimera method applied to moving subdomains,
each subdomain solves the governing equations in its own frame of reference: these methods
fall within the family of multiple frames of reference (MFR) techniques. They require tensorial
transformation when updating the transmission conditions. We now address this point.

5.6.2 Tensorial transformations

If subdomains i and j are in relative motion, tensorial transformations must be performed each
time a variable is obtained in i from j and when a host element is to be found. Denote Ek the
basis vector in the k-th direction of an absolute frame of reference and X the coordinate vector of a
point measured in it. Assume we know or we have a way to calculate the translation vector T i and
the rotation matrix Θi of subdomain i as well as those of subdomain j (T j and Θj respectively),
as shown in Figure 5.25.

Figure 5.25: Two moving frames of reference in the absolute one.
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Expressions for the position, velocity and strain rates

We want to express the position, the velocity and the strain rates in subdomain i in terms of the
variables measured in j. We have

xj = Θj(X − T j),

xi = Θi(X − T i).

Knowing that the rotation matrix is orthogonal, we easily get xi in terms of xj :

xi = Θi(Θt
jxj + T j − T i). (5.20)

Differentiating this equation with respect to time, we find the velocity ui in terms of the velocity
uj measured in j:

ui = ẋi = Θ̇i(Θt
jxj + T j − T i) + Θi(Θ̇

t

jxj + Θt
juj + Ṫ j − Ṫ i), (5.21)

where ˙(·) = d(·)/dt and Ṫ j and Ṫ i are the velocities of subdomains j and i measured in the
absolute frame of reference Ek.

We now derive the transformation of the strain rates. We have

∂ui

∂xi
=

∂ui

∂xj

∂xj

∂xi
.

By substituting Equation (5.21), and knowing that

∂xj

∂xi
= ΘjΘt

i,

we obtain

∂ui

∂xi
= Θ̇iΘt

jΘjΘt
i + Θi(Θ̇

t

jΘj)Θt
i + ΘiΘt

j

∂uj

∂xj
ΘjΘt

i.

Due to the orthogonality of the rotation matrices, Θt
jΘj = I so the last equation gives

∂ui

∂xi
= Θ̇iΘt

i +Θi(Θ̇
t

jΘj)Θt
i +ΘiΘt

j

∂uj

∂xj
ΘjΘt

i, and

(
∂ui

∂xi

)t

= ΘiΘ̇
t

i +Θi(Θt
jΘ̇j)Θt

i +ΘiΘt
j

(
∂uj

∂xj

)t

ΘjΘt
i.

Now we add up the latter two equations and divide the result by two to obtain the equation for
the strain rate:

ε(ui) =
1
2

[(
∂ui

∂xi

)
+
(

∂ui

∂xi

)t
]

=
d

dt
(ΘiΘt

i) + Θi
d

dt
(Θt

jΘj)Θt
i + (ΘiΘt

j)ε(uj)(ΘiΘt
j)

t

=
dI

dt
+ Θi

dI

dt
Θt

i + (ΘiΘt
j)ε(uj)(ΘiΘt

j)
t.
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The first two terms are zero so we finally find that the velocity strain rate tensor transforms like:

ε(ui) = (ΘiΘt
j)ε(uj)(ΘiΘt

j)
t. (5.22)

We observe that the velocity strain rate undergoes a rotation but no scaling, contrary to the
velocity. We can also check that this expression is symmetric.

A second order scheme in time

In order to close the transformation of the position, velocity and strain rates expressed by Equations
(5.20), (5.21) and (5.22), we need to compute the rotation matrices Θj and Θi at each time. If they
are known, then we are done. If for example we only know the angular velocity (which is generally
the case) and if in addition no analytical expression for the rotation matrix can be obtained at
each time, then we may need to proceed. In some few cases we could obtain the rotation matrix,
as illustrated by a simple example at the end of this subsection. Let us denote by Θ the rotation
matrix of a frame of reference of basis vectors ek’s with respect to the absolute frame of reference
such that

Θ =

 et
1

et
2

et
3

 , (5.23)

and assume we know the angular velocity vector ω of the frame, which is a function of time. At
each instant we have

ėk(t) = ω(t) × ek(t) (5.24)

= W (t)ek(t), (5.25)

where Wpq = −εpqrωr is given in the basis Ek; εpqr is the permutation (alternating) tensor with
value zero if two indices are repeated, and with value 1 or -1 if p, q, r are in cyclic order or not,
respectively. Equation (5.24) has been already derived in Section 1.2.2; in the following, we use the
matrix form given by Equation (5.25). Let us consider a partition 0 = t0 < t1 < · · · < tN = T of
the time interval [0, T ] of interest. In order to integrate Equation (5.25), we propose the following
approximation:

˙̃ek(t) = (W n +
1
2
Ẇ nδt)ẽk(t), for tn ≤ t ≤ tn+1, (5.26)

where superscript n denotes variables considered at time tn, the tilde indicates that the solution
is approximated and δt = tn+1 − tn. We are now going to show that the approximation given by
Equation (5.26) is of second order in time. By direct integration of Equation (5.26), we find that

ẽk(tn+1) = exp (W nδt +
1
2
Ẇ nδt2)ẽk(tn), (5.27)

Let us develop the exact solution of equation (5.25) in Taylor series around time tn:

ek(tn+1) = ek(tn) + ėk(tn)δt +
1
2
ëk(tn)δt2 + O(δt3)

= [I + W nδt +
1
2
Ẇ nδt2 +

1
2
(W n)2δt2]ek(tn) + O(δt3). (5.28)
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Performing the same expansion for the approximate solution given by equation (5.27), we get

ẽk(tn+1) = [I + W nδt +
1
2
Ẇ nδt2 +

1
2
(W n)2δt2 + O(δt3)]ẽk(tn) + O(δt3). (5.29)

Let

An = I + W nδt +
1
2
Ẇ nδt2 +

1
2
(W n)2δt2.

From equations (5.29) and (5.28), we have

ek(tn+1) = Anek(tn) + O(δt3),

ẽk(tn+1) = Anẽk(tn) + O(δt3).

Therefore

ẽk(tn+1) − ek(tn+1) = An(ẽk(tn) − ek(tn)) + O(δt3)

= AnAn−1(ẽk(tn−1) − ek(tn−1)) + O(δt3) + O(δt3)

...

= AnAn−1 · · ·A0(ẽk(t0) − ek(t0)) + O(δt2).

Assuming the basis vectors are given at t = 0, we have ẽk(t0) − ek(t0) = 0. Therefore, we have
that ẽk(tn+1) − ek(tn+1) = O(δt2).

In order to find the ẽk’s at tn+1, we apply equation (5.27) recursively:

ẽk(tn+1) = exp

[
n∑

m=0

(
W mδt +

1
2
Ẇ mδt2

)]
Ek (5.30)

= (Θn)tEk (by definition), (5.31)

where we have assumed that ẽ0
k = Ek. The last expression for the rotation matrix is not convenient,

so we try to derive a nicer equation for the coefficients of Θn at time tn. By definition, we have

Wm
pq = −εpqrω

m
r ,

Ẇm
pq = −εpqrω̇

m
r .

Let B be the argument matrix of the exponential function of Equation (5.30), that is,

B =
n∑

m=0

(
W mδt +

1
2
Ẇ mδt2

)
,

whose coefficients are

Bpq = −εpqr

n∑
m=0

(
ωm

r δt +
1
2
ω̇m

r δt2
)

.
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We define the vector rn and the unit vector r̂n as

rn =
n∑

m=0

(
ωmδt +

1
2
ω̇mδt2

)
,

r̂n =
rn

|rn| ,

so the coefficients of matrix B become

Bpq = −εpqr r̂
n
r |rn|.

Let us introduce a matrix C and a scalar θ such that

Cpq = −εpqr r̂
n
r , (5.32)

θ = |rn|.

According to these definitions, Equation (5.30) can be re-written as

ẽk(tn+1) = exp (θC)Ek,

In addition, it can be shown that for a matrix C given by (5.32) with r̂n being a unit vector, we
have

(exp (θC))pq = r̂n
p r̂n

q + (δpq − r̂n
p r̂n

q ) cos θ + Cpq sin θ

= r̂n
p r̂n

q + (δpq − r̂n
p r̂n

q ) cos |rn| − εpqr r̂
n
r sin |rn|.

By definition of the rotation matrix Θn we have

(Θn) = (exp (θC))t
,

so the coefficients of the previous exponential form are given by:

Θn
pq = r̂n

p r̂n
q + (δpq − r̂n

p r̂n
q ) cos |rn| + εpqr r̂

n
r sin |rn|. (5.33)

We recognize here the well-known expression for the matrix coefficient of a rotation through an
angle |rn| about an axis whose direction is given by the unit vector r̂. It is interesting to note that
the time step contributions to the rotation add up in such a simple way...

The derivative of the rotation function is given by

Θ̇
n

=

 ˙̃et
1(t

n)
˙̃et
2(t

n)
˙̃et
3(t

n)

 .

Using (5.26) evaluated at time tn+1 and (5.31) it is found that

˙̃ek(tn+1) =
(

W n +
1
2
Ẇ nδt

)
(Θn)tEk,
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from where it follows that

Θ̇
n+1

= Θn

(
W n +

1
2
Ẇ nδt

)t

. (5.34)

A simple two-dimensional example

In order to get an insight on the meaning of the tensorial formulation for the position and the
velocity as expressed by Equations (5.20) and (5.21), we consider a simple two-dimensional case.
Let us assume that subdomain i is rotating with a constant angular velocity ω = [0, 0, ω]t while
subdomain j is fixed, and that their axes initially coincide. A simple calculation gives at each time
t the following transformation for the position,

xi = Θixj =
[

cos (ωt) sin (ωt)
− sin (ωt) cos (ωt)

]
xj .

From Equation (5.21) and deriving the last equation with respect to time, we obtain that the
velocity transforms like

ui = Θ̇ixj + Θiuj

= ω

[
− sin (ωt) cos (ωt)
− cos (ωt) − sin (ωt)

]
xj + Θiuj

= −ω × xi + Θiuj .

The first term of the last equation is the scaling due to the relative rotations, while the second
term is the velocity measured in j, and rotated as seen in subdomain i.

The algorithm

Algorithm 5.9 gives the steps to follow when updating the Dirichlet transmission condition of
subdomain i, in relative motion with subdomain j. The dots hold for the usual calculations to
be performed by the Master, and are not repeated here for the sake of clarity. Note that if a
conservation algorithm is to be used, then we only have to replace Iij(uj) by its conservative form,
using Equation (5.15) for the constrained interpolation or Equation (5.19) for the NTI operator.

Algorithm 5.10 gives the steps to follow when updating the Neumann transmission condition
of subdomain i, in relative motion with subdomain j. As in the case of Dirichlet transmission
conditions, the interpolation of the strain rates and the pressure can be constrained.

5.6.3 Examples

We now present two examples of applications. The first example is a classical iteration-by-
subdomain DD method applied to moving grids while the second example illustrates the Chimera
method applied to moving grids. The first example studies a section of a chemical reactor and the
second one studies the flow past a cylinder submitted to rotational and translational velocities.

Before going on to the examples, it should be pointed out that when coupling two subdomains,
one steady and the other in an accelerated frame of reference, we must include all the acceleration
terms of the Navier-Stokes equations; i.e. we cannot couple the subdomains using the Stokes
equations. This is due to the fact that the non-inertial effects accounted for in the accelerated
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Algorithm 5.9 Update of a Dirichlet transmission condition on a moving subdomain
for all time steps do

Compute Θi, Θj , T i, T j and their time derivatives, using Equations (5.33) and (5.34)
· · ·
for all interface nodes ipoin do

Find the host element jelem of ipoin of coordinates xi in Ωi and xj in Ωj :

xj = Θj(Θt
ixi + T j − T i)

Compute the interpolated velocity Iij(uj) at xj

Obtain the velocity at ipoin as:

ui = Θ̇i(Θt
jxj + T j − T i) + Θi(Θ̇

t

jxj + Θt
jI

ij(uj) + Ṫ j − Ṫ i)

end for
· · ·

end for

Algorithm 5.10 Update of Neumann transmission condition on a moving subdomain
for all time steps do

Compute Θi, Θj and their time derivatives, using Equations (5.33) and (5.34)
· · ·
for all boundary elements iboun do

for all integration points igaub do
Find the host element jelem of igaub of coordinates xi in Ωi and xj in Ωj :

xj = Θj(Θt
ixi + T j − T i)

Compute the velocity strain rates Iij(ε(uj)) at igaub using either the classical or least-
square interpolation
Compute the interpolated pressure Iij(pj) at igaub
Obtain the pressure and strain rates at ipoin as:

pi = Iij(pj)

ε(ui) = (ΘjΘt
i)I

ij(ε(uj))(ΘjΘt
i)

t

· · ·
end for

end for
· · ·

end for

frame of reference come from the total derivative appearing in Galilean frame of reference. In each
subdomain, there may be some dominant terms, but once we want to couple them, all the terms
have to be considered to avoid any physical inconsistency.

As an illustration, consider the domain shown in Figure 5.6 rotating with angular velocity
ω = [0, 0, ω]t, and with ν = 105. We first solve the problem in the rotating frame of reference and
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look for the solution of zero velocity [u, v]t across the domain and centrifugal pressure, by imposing
a zero velocity on the contour. In an excess of confidence, we neglect the convective terms; the
solution is exactly the same with and without the convective terms. In fact, both the Stokes and
Navier-Stokes equations in the Cartesian frame of reference give (with evident notation)

∂p

∂x
= ω2x,

∂p

∂y
= ω2y,

so that we have p = 1
2ω2(x2 + y2). We now want to reproduce the same flow in a steady frame of

reference, i.e. we look for a velocity −ω×x = [−ωy,ωx]t, where x = [x, y]t is the position vector.
The steady Stokes equations yield

∂p

∂x
= 0,

∂p

∂y
= 0,

which solution is constant pressure! Where the centrifugal force effects have disappeared? Consider
now the full Navier-Stokes equations; we have

u
∂u

∂x
+ v

∂u

∂x
+

∂p

∂x
= 0,

u
∂u

∂x
+ v

∂u

∂x
+

∂p

∂y
= 0,

which upon substitution of [u, v]t = [−ωy,ωx]t gives the correct answer for the pressure. We now
present two numerical examples.

Example 1: stirred tank

We solve a two-dimensional section of a stirred tank, used in the chemical industry, and is made
of six blades of width H1 and radius R3. The inner subdomain is shown in Figure 5.26 (Left) and
the outer subdomain is shown in Figure 5.26 (Right). It includes four baffles of width H2. The
dimensions of the problem are

R1 = 22.5, R2 = 44.5, R3 = 60.0, H1 = 2.0,

R4 = 54.0, R5 = 88.5, H3 = 4.0.

We solve the transient Navier-Stokes equations with the ASGS model, the time integration being
carried out using the backward Euler scheme with δt = 0.5. The inner subdomain is meshed with
1575 P1/P1 elements, and the outer subdomain with 2105 P1/P1 elements. We choose |ω| = 0.1
and ν = 50 so that the Reynolds and Ekman numbers are

Re =
|ω|R2

2

ν
= 3.96, Ek =

ν

2|ω|R2
2

= 0.13,



196 CHAPTER 5. IMPLEMENTATION ASPECTS

Figure 5.26: Stirred tank. (Left) Inner subdomain. (Right) Outer subdomain.

where we have taken as characteristic velocity the tip velocity i.e. |ω|R2. The inner subdomain
is solved in the non-inertial frame of reference, of angular velocity ω = [0, 0, 0.1]t, while the outer
subdomain is solved in a fixed frame of reference. The subdomains are coupled using both the
Schwarz and the Dirichlet/Neumann methods with one element layer of overlap. In the case of the
Dirichlet/Neumann method, the inner subdomain is assigned the Neumann condition calculated
with the least-square interplation scheme. The interfaces of Dirichlet type are constrained by the
mass conservation equation.

As initial conditions, we perform a steady state calculation using the MFR method, i.e. we
perform the tensorial transformation but keep the subdomains at their original position. Figure
5.27 (Left) shows the vertical velocity of point P located near a baffle; we first observe that the
pseudo steady state solutions of the two DD methods are different.

Figure 5.27 (Right) presents the power spectrum of a fast Fourier transform performed on the
time signal. The spectra are normalized so that their integrals are both unity. Both solutions
exhibit a peak around the blade passing frequency, i.e. 10.47 time units. We observe that the
D/N gives a more sharp peak, and less high frequencies. Finally, Figure 5.28 shows a detail of the
mesh, the pressure distribution in the whole domain, as well as the velocity vector near point P
for different times t = 5, 7.5, 10, 12.5, obtained by the D/N method. Note that the velocity vectors
are shown in the fixed frame of reference.
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Figure 5.27: Stirred tank. (Left) Vertical velocity of point P. (Right) Power spectrum.
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Figure 5.28: Stirred tank. (Left) Detail of the composite mesh. (Mid.) Pressure contours. (Right)
Velocity. From top to bottom, t = 5.0, t = 7.5, t = 10.0, t = 12.5.

Example 2: moving disk

We simulate the example presented in [128]. It is a two-dimensional flow confined in a square
domain Ω = (−0.35, 0.9) × (−0.5, 0.5). A circle of radius 0.125 is moving with a trajectory

x =
1
4
(1 − cos (πt/2)),

y = −0.1 sin (π(1 − cos (πt/2))),
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and is rotating counterclockwise with an angular velocity 2π. The center of the circle is traveling
back and forth from x = 0 to x = 0.5 and oscillates around the position y = 0. Knowing its
trajectory in time, we can calculate its linear and angular velocity as well as its linear acceleration
exactly. The background mesh is meshed with 1600 Q1/Q1 elements while the patch mesh is
meshed with 400 Q1/Q1 elements. Note that in our case the background mesh is much coarser
than the numerical reference as their coarsest mesh has 20480 elements. This flow is solved using
the Chimera/Neumann method with least-square smoothing and the Euler time integration scheme.
As boundary conditions, we impose a no-slip condition on the cylinder and zero velocity on the
boundary of the rectangle. Figure 5.29 shows the solution obtained at t = 5, t = 6, t = 7 and
t = 8. The left hand side column shows the hole and the interface of the patch mesh.

Figure 5.29: Moving disk. From left to right, hole and interfaces, pressure, vorticity, streamlines. From
top to bottom, t = 5, t = 6, t = 7, t = 8.



Chapter 6

Numerical Applications

In this chapter we present numerical applications of mixed methods on overlapping subdomains.
In the first example, we compare the performances of some Chimera methods, namely the C/D,
C/N and C/R methods, by solving the vortex shedding behind a cylinder. In all the following
examples we drop the study of the C/R and C/D methods and only consider the C/N method. In
addition, the Neumann transmission conditions are calculated using the least-square smoothing.
In the second example, we solve a turbulent backward facing step to show the good convergence
of the D/N iteration-by-subdomain algorithm. The interfaces are deliberately located inside the
recirculation zone so that the interfaces have inflow and outflow parts. In the third example we
solve the flow around a moving missile using the C/N method: the results are compared to those
obtained with an ALE approach. In the fourth example we solve a transient and turbulent flow
in a two-dimensional section of a centrifugal fan. The last two examples are three-dimensional
transient applications. In the fifth one, we obtain the solution of the laminar flow in an axial
stirred tank. The last example is an axial fan.

6.1 Vortex shedding behind a cylinder

This example involves the flow past a cylinder, a widely solved benchmark problem. A circular
cylinder is immersed in a viscous fluid. The Reynolds number is based on the cylinder diameter D
and the prescribed uniform inflow velocity U . The geometry and boundary conditions are shown
in Figure 6.1. The exterior domain is a rectangle (0, 16) × (0, 8) and we set U = 1 and D = 1.

For Re approximately less than 40, two symmetrical eddies develop behind the cylinder. These
eddies become unstable at higher Reynolds numbers and periodic vortex shedding occurs, leading
to the so-called Von Karman vortex street. We first consider the stationary state at Re = 30.
As a reference solution, we solve the steady laminar flow on a relatively fine mesh composed of
5400 Q1/Q1 elements, shown in Figure 6.2 (Left). We want to compare here the results obtained
with three Chimera methods, the C/D, C/N and C/R methods. As a background mesh, we use
a structured mesh composed of 1600 Q1/Q1 elements. The patch mesh contains the cylinder. Its
outer boundary, i.e. the interface of the DD method, is a circle of diameter 3. Its mesh is composed
of 400 Q1/Q1 elements. The resulting composite mesh is shown in Figure 6.2 (Right). Figures 6.3
shows a close up of the composite mesh in the cylinder region and the results of the hole cutting
operation. The middle figure shows the hole created to obtain a one element overlap one each
subdomain. This composite mesh is used for the C/D method as well as for the C/N and C/R
methods in order to achieve a second order method. The right figure shows the hole created with
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Figure 6.1: Vortex shedding. Geometry.

Figure 6.2: Vortex shedding. Meshes. (Left) Fine mesh used for one-domain solution. (Right) Composite
mesh of the Chimera method.

a zero overlap, usefull for the C/R and C/N methods together with the classical interpolation.
To solve the stationary problem, we employ the Chimera method with one element overlap on

Figure 6.3: Vortex shedding. Zoom of meshes. (Left) Composite mesh. (Mid.) Hole cutting for one
element overlap. (Right) Hole cutting for zero overlap.

each subdomain. The Chimera method with zero overlap will be used only for the transient case.
Note that when considering the C/D method, the patch subdomain is confined. Therefore in order
to have a well-posed problem on the patch subdomain at each iteration, we apply the interface
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constraining of the mass conservation [102].
The test we now carry out consists in determining the range of relaxation parameters for

which the algorithm converges. To do so, we vary the relaxation parameters of both transmission
conditions from 0.1 to 2, using a increment step of 0.1. The C/D turns out to be the most robust
method, i.e. the method for which we have the greatest amplitude in the choice of relaxation
parameters to achieve convergence. The C/N does not converge at all, at least for the range of
parameters tested. The C/R method converges but for a restricted area in the relaxation space, as
shown in Figure 6.4 (Left), where θD refers to the relaxation parameter of the Dirichlet condition
and θR refers to that of the Robin condition. Figure 6.4 (Right) compares the convergence histories
obtained with the C/D and C/R methods. For the C/D method no relaxation is used while for the
C/R method, we use θD = θR = 0.2. The figure shows that the convergence of the C/D method
looks like monotone while that of the C/R is more unstable. However, the residuals of the Dirichlet
data obtained with both methods are of the same order after 30 iterations.

0.001

0.01

0.1

1

10

100

1000

0 5 10 15 20 25 30

In
te

rf
ac

e 
L2

 r
es

id
ua

l

Number of iterations

C/D: velocity
C/R: velocity

C/R: Robin data

Figure 6.4: Vortex shedding. (Left) Stability curve of the C/R method. (Right) Convergence histories
of C/D without relaxation and C/R with θD = θR = 0.2.

Now, we have previously mentioned in Section 3.7 that a reaction type term in the ADR
equation can help mixed DD method to be stable; so maybe we have a way to make the C/N
method converge. Let us solve the transient problem. In order to control as few parameters as
possible in the iterative process, we couple the time, linearization and DD loops. Figures 6.5 (Left)
and (Right) shows the convergence histories obtained with the C/N method for different relaxation
parameters and time steps. We observe a very good convergence of the algorithm and a quite large
flexibility in the choice of the parameters (relaxation and time step) to control the convergence of
the DD method.

Figures 6.6 compares the streamwise velocity and pressure profiles along a horizontal cut and a
vertical cut, both passing by the center of the cylinder. We observe good agreements of the mixed
methods with the reference solution; on the contrary, the solution of the C/D method differs no-
tably from that of the reference solution.

We now go on to the transient case and set Re = 100. Although the flow is unstable at this
Reynolds number, one can obtain a steady solution. This solution is used as initial condition of the
transient simulation, on which we superimpose a small vortex near the cylinder. This is sufficient
to trigger the unsteady state. The time integration is carried out with the backward Euler scheme
and δt = 0.1.



202 CHAPTER 6. NUMERICAL APPLICATIONS

0.001

0.01

0.1

1

10

100

0 5 10 15 20 25 30

In
te

rf
ac

e 
L2

 r
es

id
ua

l

Number of iterations

1.0,1.0
0.5,1.0
1.0,0.5

0.001

0.01

0.1

1

10

100

0 5 10 15 20 25 30

In
te

rf
ac

e 
L2

 r
es

id
ua

l

Number of iterations

 t=1.0δ          
 t=0.5δ          
 t=0.1δ          

Figure 6.5: Vortex shedding. Velocity convergence history of C/N. (Left) For different relaxation param-
eters. (Right) For different time steps.
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Figure 6.6: Vortex shedding. (Top) Horizontal cut. (Bot.) Vertical cut. (Left) Velocity. (Right) Pressure.

As comparison criterions, we calculate the period and amplitude of the vertical pressure force
acting on the cylinder. Numerical references report values of the period between 5.6 and 6.0.
See for example [142]. We test the C/D method using the one element overlap and the mixed
methods using the one element and zero overlaps. The values of the amplitudes and frequencies
are reported in table 6.1. As a reference, we also indicate the results obtained with the fine mesh.
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The C/R method gives the best results. For this very coarse mesh, the C/N method does not
perform so well, and does not converge at all when using only the first order interpolation with
overlap. This is due to the fact that at high Reynolds number, the weak continuity of the velocity
derivatives looses weight with respect to the weak continuity of the pressure when imposing a
natural (Neumann) condition. The discontinuity in velocity is corrected by the Robin condition
which provides additional weight to the continuity of the velocity components, in the form of a weak
Dirichlet condition. Remember that for Re = 30, we observed that the C/N and C/R methods
gives similar solutions. The C/D is much more diffusive than the mixed methods in amplitude,
while the time frequency is slightly better.

With overlap No overlap
least-square classical classical

One-domain C/D C/N C/R C/N C/R C/N C/R
Amplitude 0.101 0.029 0.060 0.074 - 0.074 0.075 0.074
Period 5.822 6.044 6.444 6.400 - 6.400 6.400 6.356

Table 6.1: Vortex shedding. Amplitude and period of the vertical pressure force.

6.2 Backward facing step

We solve the turbulent backward facing step already presented in Section 1.4.2, but this time using
the overlapping D/N method. For the notation, refer to this section. We decompose vertically the
domain into two overlapping subdomains, which interfaces fall inside the recirculation zone. The
meshes of each subdomain are such that they approximately mimic the mesh used to compute the
one domain solution, namely Mesh 2. The left-hand side subdomain is meshed with 800 Q1/Q1
elements and the right-hand side subdomain with 1600 Q1/Q1 elements. Remember that Mesh 2
has 2000 Q1/Q1 elements. A zoom around the step corner of the composite mesh and Mesh 2 are
shown in Figures 6.8 (Top) (Left) and (Top) (Right), respectively. The problem is solved with the
following data: ŷ/H = 4%, νt,∞/ν = 100 and zero velocity at the step corner. This corresponds
to the third line of Table 1.2.

The interface of the left subdomain is of Neumann type while that of the right subdomain
is of Dirichlet type. Figures 6.7 (Left) and (Right) show the convergence history obtained for
two combinations of relaxation parameters. Parameter θD is the relaxation factor of the Dirichlet
conditions, used to update the velocity and the eddy-viscosity, while θN is that of the Neumann
condition, used to update the traction and flux of eddy-viscosity. Both combinations lead to
convergence of the D/N method. Figure 6.8 compares the contours of velocity module and eddy-
viscosity obtained with the D/N method and on the one domain solution. The profiles are identical
and confirm the convergence of the D/N method.
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Figure 6.7: Backward facing step. Convergence history. (Left) θD = 1.0, θN = 0.3. (Right) θD = 1.0,
θN = 1.0.

Figure 6.8: Backward facing step. (Left) D/N method. (Right) One domain. (Top) Mesh. (Mid.)
Velocity. (Bot.) Eddy-viscosity.
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6.3 Missile launch from a submarine

In this example we propose to solve the transient and laminar flow around a moving missile [119],
using the Chimera D/N method. The missile is moving upward with a constant velocity U . The
Reynolds number based on the length H of the missile is

Re =
UH

ν
= 1000.

We are going to compare our results to that of Folch [121], obtained with an ALE approach and an
explicit flow solver described in [143]. The geometry is shown in Figure 6.9 (Left). As a background
mesh we use a structured mesh of 4500 Q1/Q1 elements, shown in Figure 6.9 (Right), while the
patch mesh is composed of 4841 P1/P1 elements. According to the Chimera D/N method described
in the preceding chapter, the velocity of the background mesh is prescribed at the interpolation
nodes, while the patch mesh is assigned a Neumann transmission condition on its outer boundary.
Note that the missile subdomain does not contain any information on its own velocity as the force
imposed as transmission condition would be the same in any Galilean frame of reference; all the
information on the velocity of the missile is passed through the transmission conditions imposed
on the background subdomain.

Figure 6.9: Missile launch. (Left) Geometry and boundary conditions. (Right) Background Mesh.

The transient simulation is carried out using the backward Euler scheme with a time step
δt = 2.2 × 10−2 H/U . We perform 15 domain decomposition iterations at each time step and use
as relaxation parameters θD = 0.5 and θN = 0.4. Each problem is solved using a direct solver: the
total time used by the Master is 2.5 % of the total CPU time used to solve this problem. The sum
up of the computation time used by the Master to perform its different tasks is shown in Table
6.2. The update of the Neumann transmission conditions, which requires a least-square smoothing
at each iteration, is the most consuming operation, while the communication between the Master
and the Slaves is almost negligible.

The convergence of the problem is shown in Figure 6.10.
Figure 6.11 shows the composite mesh at time t = 0.22H/U , near the missile bottom right

corner and at the submarine exit corner.
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Element search Dirichlet updates Neumann updates Import/export Other
13 % 2 % 84 % 0.2 % 0.8 %

Table 6.2: Missile launch. CPU time dedication of the Master.
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Figure 6.10: Missile launch. Convergence history.

Figure 6.11: Missile launch. Composite mesh at t = 0.22 H/U . (Left) Bottom right corner of missile.
(Right) Submarine corner.

Figure 6.12 presents the velocity vectors obtained at different time steps. They show the
development of the vortices created by the suction of air from both sides of the missile.

Figures 6.13 and 6.14 compare the results of the present simulation to that of Folch [121] at
different time steps. The first figure shows the streamlines while the next figure shows the pressure.
We notice that both methods give very similar profiles.
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Figure 6.12: Missile launch. Velocity vectors. From top to bottom and left to right: t = 0.22 H/U ,
t = 0.33 H/U , t = 0.44 H/U , t = 0.55 H/U , t = 0.66 H/U , t = 0.77 H/U , t = 0.88 H/U , t = 0.99 H/U .



208 CHAPTER 6. NUMERICAL APPLICATIONS

            
            

            

            

            
            

            
            

Figure 6.13: Missile launch. Streamlines. (Left) Present simulation. (Right) Folch’s results [121]. From
top to bottom, t = 0.22 H/U , t = 0.55 H/U , t = 0.88 H/U , t = 1.65 H/U .
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Figure 6.14: Missile launch. Pressure. (Left) Present simulation. (Right) Folch’s results [121]. From top
to bottom, t = 0.22 H/U , t = 0.55 H/U , t = 0.88 H/U , t = 1.65 H/U .
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6.4 Centrifugal fan

We propose to solve a two-dimensional section of a domestic centrifugal fan. The geometry as
well as the data are based on the CK-40 fan of Soler-i-Palau, shown in Figure 6.15 (Left). The

            

            

Figure 6.15: CK-40 fan. (Left) Pictures of the fan. (Right) Two dimensional section.

dimensions of the impeller and the casing of the fan are

R1 = 80mm, , R2 = 40mm, R3 = 31mm,

L1 = 126mm, L2 = 88mm, L3 = 50mm, L4 = 94mm, L5 = 106mm, L6 = 125mm.

The role of a rotodynamic device is to transform the mechanical energy of its driving force into
mechanical energy available for the fluid which traverses the rotor. This energy is distributed into
two components: the static pressure and the kinetic energy. According to the user requirement,
the function of the device will be to provide high static pressure rise or high volume flow rate.
The reasons for increasing the pressure of fluid are various and are proper to pumps. Fans, as
well as some types of pumps, can rather provide a high volume flow rate. The fan under study
was designed for domestic purpose and works as an extractor to eliminate smokes, bad smells and
greases from kitchens. The high flow rate together with the high pressure it delivers enables to
expel contaminated air outside, even if the fan is connected to long and narrow conducts, where
pressure is lost by friction.

In brief, centrifugal fans operate as follows. The fluid is forced outward in the radial direction,
by way of a radial cascade of vanes. It is therefore accelerated by the centrifugal force and attains
its maximum velocity at the impeller vane tips. Note that the potential energy furnished by the
rotation is available for the mechanical energy, i.e. both pressure and kinetic energies. When the
fluid leaves the tips of the vanes, it moves tangentially along the walls of the casing. Due to the
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increasing cross-sectional area of the casing along the flow passage, the fluid undergoes an expan-
sion as it flows towards the outlet. This expansion is accompanied by a reduction of its velocity
and an increase of its static pressure. This fact is confirmed by the present simulation, and in
particular in Figure 6.19 (Left) which show the pressure contours obtained at different time steps.
For information on fans and pumps see e.g. [144, 145, 146].

Now let us study how we can simulate the flow through our centrifugal fan. Fans usually operate
at a fixed rotation speed calculated to furnish optimally a given pressure (at low cost), so that the
air has sufficient energy to flow through the conducts of the set up. According to this pressure rise,
the fan delivers a given flow rate. The curve which expresses the relation between the pressure
rise and mass flow rate is called the characteristic curve of the fan. The characteristic curve of the
CK-40 is shown in Figure 6.16. In open conditions, the fan delivers maximum flow rate whereas            

Figure 6.16: CK-40 fan. Characteristic curve (Soler i Palau).

when pressure is lost due to the presence of conducts for example, the flow rate diminishes. Now
in the context of this simulation, instead of imposing the pressure both at the inlet and outlet, we
impose the mass flow rate at the inflow, through the specification of the velocity, and zero traction
at the outflow, i.e. zero pressure if the flow is fully developed. The inflow velocity U is imposed
normal to the circular inlet of radius R3, as sketched in Figure 6.15 (Right). A similar approach
was used in [136] for the simulation of the rotor-stator interactions in a centrifugal pump. The
Reynolds number based on the inflow velocity |U | = 1.97 × 103 mm/s and the length of the inlet
D = 2πR3 = 201.06mm is

Re =
|U |D

ν
= 2.65 × 104,

ν being the kinematic viscosity of air, ν = 15mm2/s. This Reynolds number corresponds ap-
proximately to a flow rate located at the middle of the characteristic curve of the fan. In this
example, the rotation is 2350 revolution per minute (r.p.m.) which corresponds to an angular
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speed |ω| = 246.09 rad/s, and an Eckman number

Ek =
ν

2|ω|(D)2
= 7.54 × 10−7.

Due to the high Reynolds number, the flow is solved using the Spalart-Allmaras turbulence
model together with the wall function approach. The inflow turbulence viscosity is νt,∞ = 100ν
and the distance from the computational wall to the real wall is set to ŷ/D ≈ 2.1% for the inner
subdomain and to ŷ/D ≈ 0.6% for the outer subdomain. Later on, the results will show that this
is a reasonable choice.

The impeller domain is meshed with 12782 P1/P1 elements and the casing subdomain is meshed
with 7345 P1/P1 elements. Figures 6.18 (Left) show a zoom of the composite mesh near the casing
corner at some time steps.

As for the domain decomposition problem, we assign the impeller a Neumann transmission
condition while the casing interface is of Dirichlet type. Choosing an overlapping of one element
layer and using the least-square smoothing interpolation to compute the Neumann transmission
condition, we expect the method to be of second order in space. An overlapping of one-element
layer enables the method to be of second order in space. The time integration is carried out by the
backward Euler scheme, with δt = 2.32 × 10−4 s so that we impose approximately 10 times steps
between two blade passings. We set both the relaxation parameters of the Dirichlet and Neumann
conditions to 0.3 and perform 20 iterations per time step. As initial conditions, the inner subdomain
is solved with zero traction and zero eddy-viscosity flux. Then the outer subdomain is calculated
by interpolating Dirichlet conditions from the solution on the inner subdomain. Each problem is
solved using a direct solver: the total time used by the Master is 3.7 % of the total CPU time used
to solve this problem. Figure 6.17 (Top) (Left) shows the good convergence of the problem.

Before presenting any result, let us check that the y+ along the walls has reasonable values.
Figures 6.17 (Mid.) (Left) and (Mid.) (Right) show the distribution of y+ along one blade of the
impeller and along the casing wall, obtained at time t = 1.44 × 10−2 s, i.e. once the “periodic”
regime is achieved.

Figure 6.17 (Top) (Right) gives the variation of the pressure coefficient cp along the casing wall,
at time t = 1.44 × 10−2 s where

cp =
2p

ρ|U |2 .

The starting point of the curve is the casing corner, while the upper left part of the curve is
the outflow where the pressure is “weakly” zero. The figure shows the static pressure expansion
undergone by the fluid as it flows along the casing wall to the outlet.

As an indication, we compare the total pressure rise (called fan total pressure) obtained by
the simulation to the pressure rise indicated by the characteristic curve. This comparison is
only qualitative as we are only simulating a two-dimensional section of the fan with approximate
geometry and data. By definition, the pressure rise P of a fan is the difference of total pressures
ptotal between the outflow and inflow

P = ptotal,outflow − ptotal,inflow,

where the total pressure ptotal is defined as

ptotal = pstatic + pdynamic.
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Figure 6.17: CK-40 fan. (Top) (Left) Convergence history. (Top) (Right) Pressure along casing wall.
(Mid.) (Left) y+ along one blade. (Mid.) (Right) y+ along the casing wall. (Bot.) (Left) Velocity at P.
(Bot.) (Right) Power spectrum of the velocity at P.

As when the flow discharges in the atmosphere, the static pressure is the atmospheric pressure and
the dynamic pressure is zero, the pressure rise is given by

P = patmospheric − ptotal,inflow.

The present calculation gives a total pressure rise between the inlet and outlet of approximately
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100 g/m s2. In terms of water columns, this gives

P =
100

ρwaterg
= 7.2mm w.c.,

where g is the gravitational acceleration and ρwater is the density of water. The experimental results
shown in Figure 6.16 give a pressure rise of approximately 19mm w.c.. It should be pointed out
that this result is only qualitative for two main reasons. Firstly, the geometry as well as the data
used in this simulation are only based on the real geometry of the fan. Secondly, we must be aware
of the fact that the very coarse mesh used in the simulation makes the results overdiffusive, and
therefore the pressure gradient is likely to be underestimated. We can only conclude that the order
of magnitude is good!

Figure 6.17 (Bot.) (Left) shows the velocity obtained at a point P located near the casing
corner. The vertical dotted lines stand for each complete rotation of the impeller. We observe that
the periodic regime is obtained after two rotations. Figure 6.17 (Bot.) (Right) shows the power
spectrum obtained from the velocity at P. Two main frequencies are obtained: the blade passing
frequency and the complete rotation frequency.

Figures 6.18 and 6.19 give some results obtained at different times steps: the velocity vectors
near the corner of the casing, the pressure contours and the eddy-viscosity contours. Finally, Figure
6.20 presents the vorticity contours. We observe that when the vorticity contours almost mimic
the eddy-viscosity: in fact, vorticity is the essence of eddy-viscosity production.
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Figure 6.18: CK-40 fan. (Left) Composite mesh. (Right) Velocity vectors near casing corner. From top
to bottom: t = 5.75 × 10−2 s, t = 5.82 × 10−2 s, t = 5.88 × 10−2 s, t = 5.95 × 10−2 s.
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Figure 6.19: CK-40 fan. (Left) Pressure contours. (Right) Eddy-viscosity contours. From top to bottom:
t = 5.75 × 10−2 s, t = 5.82 × 10−2 s, t = 5.88 × 10−2 s, t = 5.95 × 10−2 s.
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Figure 6.20: CK-40 fan. Vorticity. From top to bottom: t = 5.75 × 10−2 s, t = 5.82 × 10−2 s, t =
5.88 × 10−2 s, t = 5.95 × 10−2 s.
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6.5 Stirred tank

In this example, we apply the Dirichlet/Neumann method to the solution of a stirred tank. Stirred
tanks are frequently used in industrial processes for the preparation of plastic, rubber, pharma-
ceutical products, food etc. They can act simply as a blending device of miscible liquids, as for
example for the blending of petroleum products, but can also be required to produce chemical re-
actions; in this case, the main task of the chemical reactor is to provide sufficient blending so that
all the reagents meet and the reaction can occur. It is therefore important to know and study the
thermodynamic and kinetic data of the chemical process as well as the mass and thermodynamic
transfers. Whether the tank is required for blending only or for providing a suitable medium for
chemical reactions, the hydrodynamic characteristic of the flow is of primary importance. This is
what we propose to study in this example.

The stirred tank we consider is made of an axial flow impeller and four wall-welded baffles in
the tank. The impeller has four pitched blades at a 45o angle designed to draw in the liquid from
above and direct it downwards to the bottom of the tank, as shown in Figure 6.21 (Left). Actually,
the flow is discharged both axially and radially depending on the angle and Reynolds number;
for example at low Reynolds numbers the flow is principally radial, as will show the simulations.
They are in general very efficient for blending miscible materials and solids suspension. As an
example of other type of impellers, let us mention the radial flow impellers, which work as follows:
they discharge the flow radially before the fluid leaves the blade tips upwards and downwards in
similar proportions, as shown in Figure 6.21 (Right). Radial flow impellers, such as the Rushton
turbine, are less efficient for mixing but generate more shear at the blade tips and are therefore
suitable for gas-liquid applications. For example, they are used in the generation of bioproducts
via gasification, through bubble break up in the region of high shear.

Figure 6.21: Stirred tank. (Left) Axial flow impeller. (Right) Radial flow impeller.

Only laminar simulations are presented here. Contrary to usual aerodynamic and hydraulic
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applications, the laminar state in stirred tank reactors is not exceptional. In fact, the typical
fluid in play may be highly viscous (like the case of polymerization reactors), and, in addition,
high characteristic shears of turbulent flows may not be desirable when dealing with sensitive
materials. The impeller we study here is suitable for achieving high circulation rates in low to
medium viscosity liquids.

In order to increase the vertical mixing, break up the circular flow around the tank, and possibly
to generate turbulence more rapidly, four baffles are disposed around the tank. The baffles are
welded to the wall although off-set baffles may be preferable to avoid stagnation zones in the
corners.

The geometry is based on the stirred tank described in [135], and is shown in Figure 6.22. The
tank has a diameter T = 0.3m, while the impeller diameter is D = T/3. The blades have a width
W = D/5, and the impeller to bottom clearance is C = T/3. The four baffles are B = T/12 wide.

            

Figure 6.22: Stirred tank. Geometry.

The non-inertial subdomain is attached to the impeller and is assigned a Neumann transmission
condition. The fixed subdomain is the tank and is assigned a Dirichlet transmission condition. The
impeller subdomain is meshed with 93332 P1/P1 elements and the tank subdomain with 23135
P1/P1 elements; they are shown in Figure 6.23.

The impeller rotational speed is N = 225 r.p.m. which corresponds to an angular velocity
|ω| = 23.6 rad/s. The agitator tip speed is U = |ω|D/2 = πDN = 1.18m/s, providing a low
agitation. The Reynolds number is defined as:

Re =
ND2

ν
= 90,

while according to this choice the Eckman number is simply Ek = 1/2Re. Each problem is solved
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using an iterative solver (GMRES with diagonal preconditioning): the total time used by the
Master is 3.3 % of the total CPU time used to solve this problem.

            

                        

Figure 6.23: Stirred tank. Composite mesh. (Left) Overwhole view. (Top) (Right) Top of the tank.
(Bot.) (Right) Impeller and baffle.

Figure 6.24 (Left) shows the convergence of the DD method in the first steps of the simulation.
Due to the high viscosity of the fluid, the flow becomes very rapidly periodic. Figure 6.24 (Right)
presents the power spectrum of the x-viscous force exerted on the impeller. We recognize the
rotation frequency at 3.75 Hz, but we cannot distinguish any other important frequency.

Figure 6.25 shows the pressure contours on the impeller blades. The contours are smooth and
confirms the good stabilization of the numerical scheme. On the left-hand side blade the pressure
is low: this is the suction face which draws the fluid from above. Figure 6.28 (Top) (Left) shows
the pressure contours on a vertical cut outlining the low pressure above the impeller and high
pressure below the impeller. On the right hand side blade, the pressure is higher and pushed the
flow downwards.

Figure 6.26 shows a cut just below the impeller. The small stains just below the blades indicate
downward flow, while the bigger stains indicate upward flow. A wider perspective is given by Figure
6.28 (Bot.) (Right).

Figure 6.27 shows some iso-surfaces of the vertical velocity, around the impeller. The dark
contours represent negative values while the light contours represent upward movement of the
fluid. The fluid vertical swirl is confirmed by Figure 6.28 (Top) (Right) which shows a vertical cut
of the velocity vectors. Figure 6.28 (Bot.) (Left) shows the instantaneous streamlines, winding
around the tank from top to bottom and bottom to top.
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Figure 6.24: Stirred tank. (Left) Convergence history. (Right) Power spectrum of the x-viscous force.

            

Figure 6.25: Stirred tank. Pressure on impeller. Left-hand blade: low pressure. Right-hand blade: high
pressure.
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Figure 6.26: Stirred tank. Horizontal cut: vertical velocity.
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Figure 6.27: Stirred tank. Vertical velocity iso-surfaces.
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Figure 6.28: Stirred tank. (Top) (Left) Pressure. (Top) (Right) Velocity vectors on vertical cut. (Bot.)
(Left) Streamlines. (Bot.) (Right) Vertical velocity.
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6.6 Axial fan

We solve an axial fan of the COMPACT series of Soler i Palau, namely the HCFT/4-630/H axial
fan, abbreviated here as C-630. This fan operates at 1420 r.p.m. and in open conditions works
with a maximum flow rate of 17060m3/h. The geometry as well as the data are based on the real
geometry of this fan and are shown in Figure 6.29 (Left). The fan consists of a rotor composed
of seven blades and a stator composed of height struts. The dimensions of the impeller and the

            

Figure 6.29: C-630 fan. (Left) Picture of the fan. (Right) Geometry.

casing of the fan are

R1 = 92mm, , R2 = 310mm, R3 = 7mm,

L1 = 250mm, L2 = 100mm, D = 27mm, C = 82mm.

In Section 6.4 we revised briefly how centrifugal fans operate: the impellers play the role of
vanes, guiding the flow outwards and taking advantage of the acceleration due to the centrifugal
force; in the case of axial-flow machines, the impellers modify the angular momentum of the fluid
as energy exchange. Axial fans work as follows: the fluid is first set in motion by the displacements
of the blades. The cascade of blades forces the fluid to follow the inclined path formed by two
successive blades, resulting in a net change of angular momentum. Therefore, the fluid on the
upper surface of a blade will have to accelerate with respect to the fluid on the lower surface,
forming the usual suction/pressure pair of surfaces of an airfoil. As in the case of centrifugal fans,
the machine provides a net flow rate as well as an increase of the static pressure.

The rotor is meshed with 41469 P1/P1 elements and the stator is meshed with 71138 P1/P1
elements. The boundary composite mesh is shown in Figure 6.30 at its initial position.

The simulations are laminar, although the flow is clearly turbulent. We do not try to solve the
boundary layer and impose a slip condition on the walls. We expect that the meshes are coarse
enough to damp any perturbating frequencies so that a “stable” solution can be obtained. Due
to the large number of degrees of freedom, the algebraic systems are solved using the GMRES
iterative solver with diagonal preconditioner.
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Figure 6.30: C-630 fan. Composite mesh.

The DD problem is solved using the D/N method with less than one-element layer. The stresses
computed at the Neumann boundary are of first order in space (the same approach was used in
[147] for the simulation of an axial turbine). The time integration is carried out using the backward
Euler scheme with a time step of δt = 6× 10−4 s: this corresponds to approximately 10 time steps
between two blade passings. As an initial condition, the rotor is solved using zero traction at the
exit. The initial solution of the stator is obtained by solving some few steady iterations using
as Dirichlet inflow conditions the velocity obtained from the steady state of the stator plus the
rotational component. The initial velocity solution is shown in Figure 6.31.

Figure 6.32 presents the velocity module and pressure contours on three planes, once the peri-
odic regime is obtained. The variables are perfectly continuous across the interface.

Figure 6.33 shows the pressure contours on both faces of the blades. The left-hand side figure
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Figure 6.31: C-630 fan. Initial solution.

is the pressure face, located downstream, while the suction face is shown in the right-hand side
figure.

Figures 6.34 (Top) and (Bot.) show the velocity module and pressure contours on the bound-
aries of the fan; remember that a slip condition is imposed on the walls, and therefore the velocity
is always tangent to it.

Figures 6.35 and 6.36 show the velocity vectors at some time steps, when a blade passes by a
pair of struts.

Figure 6.37 shows some streamlines. They show how the fluid threads between the struts of
the stator.
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Figure 6.32: C-630 fan. Three cuts across the fan. (Left) Velocity module. (Right) Pressure.

                        

Figure 6.33: C-630 fan. Pressure contours. (Left) Pressure face. (Right) Suction face.
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Figure 6.34: C-630 fan. (Top) Velocity module. (Bot.) Pressure.
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Figure 6.35: C-630 fan. Velocity vectors.
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Figure 6.36: C-630 fan. Velocity vectors.
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Figure 6.37: C-630 fan. Streamlines.



Conclusion

We have proposed and studied overlapping mixed iteration-by-subdomain domain decomposition
methods. These methods are extensions of some existing DD methods to the case of overlapping
subdomains; the transmission conditions on the interfaces are mixed, i.e. they are of different
type on each side of the interfaces; the solutions on the subdomains are coupled iteratively until
convergence is achieved.

The study of a one-dimensional scalar advection-diffusion-reaction equation has enabled us to
foresee the possible benefits of using overlapping subdomains together with a mixed DD method.
We also discussed the importance of the relaxation parameter to gain control on the stability of
the DD algorithm. The most important result is that even in the hyperbolic limit, Dirichlet and
Neumann (or Robin) conditions can be placed indifferently with respect to the direction of the
advection in order to achieve convergence. We concluded that the overlap renders mixed methods
more robust.

Then we studied an overlapping Dirichlet/Robin method within a variational framework for
a two-subdomain partition. All the analysis was based on an equivalent set of equations for the
interface unknowns, involving Steklov-Poincaré like operators. We showed the convergence of the
relaxed sequential algorithm. We also considered the possibility of applying the Dirichlet/Neumann
method to overlapping subdomains. Using the finite element approximation, we showed that the
overlapping methods lead to an algebraic preconditioned Richardson procedure for the interface
unknowns. We outlined the relation between the proposed algorithm and the classical Schwarz and
mixed methods on disjoint subdomains. Both overlapping DD methods were tested through the
solution of three numerical examples. It is well known that reflecting transmission conditions are
undesirable in the advection dominated range as they destabilize the iterative algorithm. However,
when used on overlapping subdomains, we showed that mixed methods diffuse much more rapidly
the error and a considerable gain in convergence can be obtained even with a small geometric
overlap. In particular, a notable improvement was obtained using overlapping subdomains when
a vortex passes by the interfaces.

In the view of a practical implementation for the solution of the Navier-Stokes equations, we
built up a Master/Slave algorithm to couple efficiently the numerical solution obtained on different
subdomains. A master code is in charge of controlling the iterative process and performing all the
necessary operations to leave the slaves unworried. Therefore, very few modifications of the original
finite element solver are required. We then addressed the importance of the way the Neumann
data is calculated: we identified the need for using the solution from the underlying mesh on
both sides of the Neumann type interface. This is not possible when using disjoint subdomains as
the solution is only available on one side. From this remark, we derived a second order scheme
in space based on a least-square smoothing of the derivatives. The resulting scheme requires at
least a one-element overlap between the subdomains. We also discussed some conservation aspects
of the interpolation and proposed two conservative algorithms. The interface constraint of mass

233



234 CONCLUSION

conservation appeared to be indispensable when dealing with confined subdomains. Afterwards,
we introduced a Chimera strategy to treat complex geometries. Through an example, we showed
than the Dirichlet/Neumann method is more accurate than the Dirichlet/Dirichlet method. Then
we applied the iteration-by-subdomain algorithm to the solution of flows around moving objects
by deriving tensorial transformations and an accurate time integration algorithm.

Finally, the last chapter presented some examples of applications of the method and showed
the robustness of the algorithm.

A lot of work remains to be done on overlapping mixed methods. First of all, we only presented
a one-dimensional analytical example as a first test for the new methods. Even though this example
provided a good insight on what can happen in multi-dimensional problems, the study of a two-
dimensional example could reaveal much more on the characteristics of the methods.

When proving the convergence of the iterative Dirichlet/Robin method, we did not try to derive
sharp estimates. In addition, we did not investigate the role of the precise role of the overlap. A
closer look at the proof of convergence is therefore needed.

Also, we have only dealt with Dirichlet/Robin and Dirichlet/Neumann couplings. The present
method can also be applied to the Robin/Robin method which offers much more flexibility in the
choice of the coefficients in play in the transmission conditions.

Although we carried out some algebraic applications of the methods, the final goal of this
work was the development of an iteration-by-subdomain algorithm based on a Chimera method.
It would be intertesting to derive a multidomain formulation for the view of parallelization and
compare its performance to that of other existing methods.

Finally but not of least importance, a theoretical study on the application of the overlapping
Dirichlet/Neumann(Robin) to the solution of the stationary Stokes and Navier-Stokes equations is
to be done, as well as the extension to the case of transient flows.
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[37] J. Boussinesq. Théorie de l’écoulement tourbillant. In Mém. Présentés par Divers Savants
Acad. Sci. Inst. Fr., volume 23, pages 46–50. 1877.

[38] C.G. Speziale. Some interesting properties of two-dimensional turbulence. Phys. Fluids,
24(1):1425–1427, 1981.

[39] C.G. Speziale. Closure models for rotating two-dimensional turbulence. Geophys. Astrophys.
Fluid Dyn., 23:69–84, 1983.

[40] B. Mohammadi and O. Pironneau. Analysis of the k-ε Turbulence Model. Masson, 1994.

[41] P.R. Spalart and S.R. Allmaras. A one-equation turbulence model for aerodynamic flows,
1992. AIAA Paper 92-0439.

[42] H. Grotjans and F.R. Menter. Wall functions for general application CFD codes. In Proceed-
ings of the Fourth ECCOMAS Computational Fluid Dynamics Conference, Athens (Greece),
1998.

[43] N.T. Frink. Tetrahedral unstructured Navier-Stokes method for turbulent flows. AIAA J.,
36(11), 1998.

[44] P.B. Bradshaw and P.G. Huang. The Law of the Wall in turbulent flows. In Proc. Roy. Soc.
Lond. A, volume 451, pages 165–188, 1995.

[45] J. Cousteix. Turbulence et couche limite (aérodynamique). Cepadues, 1989.
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[100] J. R. Cebral and R. Löhner. Conservative load projection and tracking for fluid-structure
problems. Technical Report 96-0797, AIAA, 1996.

[101] G. Houzeaux and R. Codina. Transmission conditions with constraints in domain decompo-
sition methods for incompressible Navier-Stokes equations. In K.D. Papailiou, D. Tsahalis,
J. Périaux, C. Hirsch, and M. Pandolfi, editors, Computational Fluid Dynamics 98’. Proceed-
ings of the Fourth European Fluid Dynamics Conference, pages 194–199, Athens (Greece),
7-11 September 1998.

[102] G. Houzeaux and R. Codina. Transmission conditions with constraints in finite element
domain decomposition method for flow problems. Commun. Numer. Meth. Engng, 17:179–
190, 2001.

[103] P. Wesseling. Introduction to Multi - Grid methods. CR - 195045 ICASE 95 - 11, NASA,
1995.

[104] M. Vázquez and R. Codina. Numerical solution of the Navier - Stokes equations using a split-
ting technique with Multigrid acceleration. In Proc. 4th World Congress on Computational
Mechanics, Buenos Aires, Argentina, volume Part 2, page 663. International Asociation for
Computational Mechanics, 1998.

[105] M. Vázquez, M. Ravachol, and M. Mallet. Multigrid applied to fully implicit fem solver for
turbulent incompressible flows. In ECCOMAS 2001 Computational Fluid Dynamics Confer-
ence, Swansea (UK), 2001.



242 REFERENCES

[106] M. Vázquez, G. Houzeaux, and R. Codina. Chimera type domain decomposition methods
applied to fractional step finite element schemes for incompressible flows. In G. Bugeda
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