
 
 
 

Physical database design 
in document stores 

 
Moditha Lakshan Dharmasiri Hewasinghage 

 
 
ADVERTIMENT La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents 
condicions d'ús: La difusió d’aquesta tesi per mitjà del repositori institucional UPCommons       
(http://upcommons.upc.edu/tesis)  i el repositori  cooperatiu TDX   ( h t t p : / / w w w . t d x . c a t / ) ha 
estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats  
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats 
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei UPCommons o TDX. No 
s’autoritza la presentació del seu contingut en una finestra o marc aliè a UPCommons (framing). 
Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En 
la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora. 
  
 
ADVERTENCIA La consulta de esta tesis queda condicionada a la aceptación de las siguientes 
condiciones de uso: La difusión de esta tesis por medio del repositorio institucional UPCommons 
(http://upcommons.upc.edu/tesis) y el repositorio cooperativo TDR (http://www.tdx.cat/?locale- 
attribute=es) ha sido autorizada por los titulares de los derechos de propiedad intelectual 
únicamente para usos privados enmarcados en actividades de investigación y docencia. No  se 
autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde  un 
sitio ajeno al servicio UPCommons No se autoriza la presentación de su contenido en una ventana 
o marco ajeno a UPCommons (framing). Esta reserva de derechos afecta tanto al resumen de 
presentación de la tesis como a sus  contenidos. En la utilización o cita de partes     de la tesis  es 
obligado  indicar  el nombre de la persona autora.  
 
 
WARNING On having consulted this thesis you’re accepting the following use conditions: Spreading 
this thesis by the institutional repository UPCommons (http://upcommons.upc.edu/tesis) and the 
cooperative repository TDX (http://www.tdx.cat/?locale- attribute=en) has been authorized by the 
titular of the intellectual property rights only for private uses placed in investigation and teaching 
activities. Reproduction with lucrative aims is not authorized neither its spreading nor availability 
from a site foreign to the UPCommons service. Introducing its content in a window or frame foreign 
to the UPCommons service is not authorized (framing). These rights affect to the presentation 
summary of the thesis as well as to its contents. In the using or citation of parts of the thesis it’s 
obliged to indicate the name of the author. 
 

http://upcommons.upc.edu/tesis
http://www.tdx.cat/
http://upcommons.upc.edu/tesis)
http://www.tdx.cat/?locale-attribute=es
http://www.tdx.cat/?locale-attribute=es
http://upcommons.upc.edu/tesis
http://www.tdx.cat/?locale-attribute=en
http://www.tdx.cat/?locale-attribute=en


T BII

D C

Physical Database Design in
Document Stores

Ph.D. Dissertation
Moditha Lakshan Dharmasiri Hewasinghage

Dissertation submitted on March, 2022

A thesis submitted to Barcelona School of Informatics at Universitat Politèc-
nica de Catalunya, BarcelonaTech (UPC) and the Faculty of Engineering at
Université libre De Bruxelles (ULB), in partial fulfillment of the requirements
within the scope of the IT4BI-DC programme for the joint Ph.D. degree in
computer science. The thesis is not submitted to any other organization at the
same time.





Thesis submitted: March, 2022

Ph.D. Supervisors: Prof. Alberto Abelló Gamazo
Universitat Politècnica de Catalunya, BarcelonaTech,
Spain
Dr. Jovan Varga
Microsoft, Costa Rica
Prof. Esteban Zimányi
Université libre de Bruxelles, Brussels, Belgium

PhD Committee: Prof. Robert Wrembel, Poznan University of Technol-
ogy, Poznan, Poland
Prof. Dimitrios Zissis, Department of Product and Sys-
tems Design Engineering, University of the Aegean,
Syros, Greece
Prof. Antonio Badia, Computer Engineering & Com-
puter Science, University of Louisville, Louisville, USA

PhD Series: Barcelona School of Informatics, Universitat Politècnica
de Catalunya, BarcelonaTech

© Copyright by Moditha Hewasinghage. Author has obtained the right to
include the published and accepted articles in the thesis, with a condition that
they are cited, DOI pointers and/or copyright/credits are placed prominently
in the references.

Printed in Spain, 2022



Abstract

NoSQL is an umbrella term used to classify alternate storage systems to
the traditional Relational Database Management Systems (RDBMSs). At the
moment of writing, there are more than 200 NoSQL systems available that can
be classified into four main categories on the data storage model: key-value
stores, document stores, column family stores, and graph stores. Document
stores have gained popularity mainly due to the semi-structured data storage
model and the rich query capabilities compared to the other NoSQL systems
making them an ideal candidate for rapid prototyping. Document stores
encourage users to use a data-first approach as opposed to a design-first one.
Database design on document stores is mainly carried out in a trial-and-error
or ad-hoc rule-based manner instead of a formal process such as normalization
in an RDBMS. However, these approaches could easily lead to a non-optimal
database design leading to additional costs in query processing, data storage,
and redesigning.

This PhD thesis aims to provide a novel multi-criteria-based approach
to database design in document stores. Most of the existing approaches of
database design are based on optimizing query performance. However, other
factors include storage requirement and complexity of the stored documents
specific to each use case. Moreover, there is a large solution space of alternative
designs due to the different combinations of referencing and nesting of data.
Hence, we believe multi-criteria optimization is ideal with a proven track
record of solving such problems in various domains. However, to achieve this,
we need to address several issues that will enable us to apply multi-criteria
optimization for the data design problem.

First, we evaluate the impact of alternate storage representations of semi-
structured data. There are multiple and equivalent ways to physically repre-
sent semi-structured data, but there is a lack of evidence about the potential
impact on space and query performance. Thus, we embark on the task of
quantifying that precisely for document stores. We empirically compare mul-
tiple ways of representing semi-structured data, which allows us to derive a
set of guidelines for efficient physical database design considering both JSON
and relational options in the same palette.

iii



Then, we need a formal canonical model that is capable of representing
alternative designs. To this extent, we propose a hypergraph-based approach
for representing heterogeneous datastore designs. Taking an existing common
programming interface to NoSQL systems, we extend and formalize it as
hypergraphs. Then, we define design constraints and query transformation
rules for three representative data store types. Next, we propose a simple
query rewriting algorithm from a generic one into underlying data stores
specific one and provide a prototype implementation. Furthermore, we
introduce a storage statistics estimator on the underlying data stores. Finally,
we show the feasibility of our approach on a use case of an existing polyglot
system and its usefulness in metadata and physical query path calculations.

Next, we require a formal query cost model to estimate and evaluate query
performance on alternative document store designs. Document stores use
primitive approaches to query processing, such as evaluating all possible
query plans to find the winning one and using it in the subsequent similar
queries or relying on the end-user to specify the usage of indexes instead of
a formal cost model. However, we require a reliable approach to compare
two alternative designs on how they perform on a specific query. For this,
we define a generic storage and query cost model based on disk access and
memory allocation that allows estimating the impact of design decisions. Since
all document stores carry out data operations in memory, we first estimate
the memory usage by considering the characteristics of the stored documents,
their access patterns, and memory management algorithms. Then, using this
estimation and metadata storage size, we introduce a cost model for random
access queries. This is the first attempt at such an approach to the best of
our knowledge. Finally, we validate our work on two well-known document
store implementations: MongoDB and Couchbase. The results show that the
memory usage estimates have an average precision of 91%, and predicted
costs are highly correlated to the actual execution times. During this work, we
have managed to suggest several improvements to document storage systems.
Thus, this cost model also contributes to identifying discordance between
document store implementations and their theoretical expectations.

Finally, we implement the automated database design solution using multi-
criteria optimization. First, we introduce an algebra of transformations that
can systematically modify a design of our canonical representation. Then,
using these transformations, we implement a local search algorithm driven by
a loss function that can propose near-optimal designs with high probability.
Finally, we compare our prototype against an existing document store data
design solution purely driven by query cost. Our proposed designs have
better performance and are more compact with less redundancy.



Resum

NoSQL és un terme paraigua utilitzat per classificar sistemes d’emmagatzematge
alternatius als sistemes tradicionals de gestió de bases de dades relacionals
(RDBMS). En el moment d’escriure aquesta tesi, hi ha més de 200 sistemes
NoSQL disponibles que es poden classificar en quatre categories principals
segons el model d’emmagatzematge de dades: magatzems de clau-valor, mag-
atzems de documents, magatzems de famílies de columnes i magatzems de
grafs. Els magatzems de documents han guanyat popularitat principalment
a causa del model d’emmagatzematge de dades semiestructurat i les riques
capacitats de consulta en comparació amb els altres sistemes NoSQL, que els
converteixen en un candidat ideal per al prototipat ràpid. Els magatzems de
documents animen els usuaris a utilitzar un enfocament de "dades primer"
en lloc d’un enfocament de "disseny primer". El disseny de bases de dades
en magatzems de documents es porta a terme principalment d’una manera
d’assaig i error o basat en regles ad-hoc en lloc d’un procés formal com ara la
normalització en un RDBMS. Tanmateix, aquests enfocaments podrien conduir
fàcilment a un disseny de base de dades no òptim que comportarà costos
addicionals en el processament de consultes, l’emmagatzematge de dades i el
redisseny.

Aquesta tesi doctoral pretén proporcionar un nou enfocament basat en
diversos criteris per al disseny de bases de dades en magatzems de documents.
La majoria dels enfocaments existents de disseny de bases de dades es basen
en l’optimització del rendiment de les consultes. Tanmateix, altres factors
inclouen l’espai requerit i la complexitat dels documents emmagatzemats
específics per a cada cas d’ús. A més, hi ha un gran espai de solucions de
disseny alternatives a causa de les diferents combinacions d’apuntadors i
nidificació de dades. Per tant, creiem que l’optimització multicriteri és ideal
amb un historial provat de resolució d’aquest tipus de problemes en diversos
dominis. Tanmateix, per aconseguir-ho, hem d’abordar diversos problemes
parcials que ens permetran aplicar l’optimització multicriteri per al problema
del disseny de dades.

En primer lloc, cal estudiar l’impacte de les representacions d’emmagatzematge
alternatives per a dades semiestructurades. Hi ha maneres múltiples i equiva-

v



lents de representar físicament dades semiestructurades, però hi ha una manca
d’evidència sobre l’impacte potencial en l’espai requerit i el rendiment de les
consultes. Així, ens embarquem en la tasca de quantificar-ho precisament per
als magatzems de documents. Comparem empíricament múltiples maneres
de representar dades semiestructurades, la qual cosa ens permet derivar un
conjunt de directrius per a un disseny eficient de bases de dades físiques
tenint en compte tant les opcions JSON com les relacionals alhora.

Després, necessitem un model canònic formal que sigui capaç de repre-
sentar dissenys alternatius. Per aquesta tasca, proposem un enfocament basat
en hipergrafs per representar dissenys heterogenis d’emmagatzemament de
dades. Prenent una interfície de programació comuna existent als sistemes
NoSQL, l’ampliem i la formalitzem com a hipergrafs. A continuació, definim
restriccions de disseny i regles de transformació de consultes per a tres tipus
de magatzem de dades representatius. A continuació, proposem un algorisme
generic de reescriptura de consultes senzilles per a un magatzems de dades
específic i proporcionem un prototipus. A més, introduïm un estimador
d’estadístiques d’emmagatzematge sobre els magatzems de dades subjacents.
Finalment, mostrem la viabilitat del nostre enfocament en un cas d’ús d’un
sistema políglot existent i la seva utilitat en els càlculs de metadades i camins
de consulta física.

A continuació, necessitem un model de costos de consulta formal per esti-
mar i avaluar el rendiment de la mateixa consulta en dissenys alternatius de
magatzem de documents. Els magatzems de documents utilitzen enfocaments
primitius per al processament de consultes, com ara avaluar tots els plans de
consulta possibles per trobar el guanyador i utilitzar-lo en consultes similars
posteriors o confiar en l’usuari final per especificar l’ús d’índexs en lloc d’un
model de costos formal. Tanmateix, necessitem un enfocament fiable per
comparar com funciona una consulta específica en dos dissenys alternatius.
Per a això, definim un model genèric de costos d’emmagatzematge i consulta
basat en l’accés al disc i l’assignació de memòria que permet estimar l’impacte
de les decisions de disseny. Com que tots els magatzems de documents duen
a terme operacions de dades a memòria, primer estimem l’ús de la memòria
tenint en compte les característiques dels documents emmagatzemats, els
seus patrons d’accés i els algorismes de gestió de la memòria. A continuació,
utilitzant aquesta estimació i la mida d’emmagatzematge de metadades, in-
troduïm un model de costos per a consultes d’accés aleatori. Fins on sabem,
aquest és el primer intent d’aquest enfocament. Finalment, validem el nos-
tre treball en dues implementacions de magatzem de documents conegudes:
MongoDB i Couchbase. Els resultats mostren que les estimacions d’ús de
memòria tenen una precisió promig del 91% i els costos previstos estan al-
tament correlacionats amb els temps d’execució reals. Durant aquest treball,
hem aconseguit suggerir diverses millores als sistemes d’emmagatzematge
de documents utilitzats als experiments. Així, aquest model de costos també



contribueix a identificar discordances entre les implementacions del magatzem
de documents i les seves expectatives teòriques.

Finalment, implementem la solució de disseny automatitzat de bases de
dades mitjançant optimització multicriteri. En primer lloc, introduïm una
àlgebra de transformacions que pot modificar sistemàticament un disseny en
la nostra representació canònica. A continuació, utilitzant aquestes transfor-
macions, implementem un algorisme de cerca local impulsat per una funció
de pèrdua que pot proposar dissenys gairebé òptims amb alta probabilitat.
Finalment, comparem el nostre prototipus amb una solució existent de disseny
de dades de magatzem de documents només impulsada pel cost de la consulta.
Els nostres dissenys proposats tenen un millor rendiment i són més compactes,
amb menys redundància.



Résumé

NoSQL est un terme générique utilisé pour classer les systèmes de stock-
age alternatifs aux systèmes de gestion de bases de données relationnelles
(SGBDR) traditionnels. Au moment de la rédaction de cet article, il existe
plus de 200 systèmes NoSQL disponibles qui peuvent être classés en quatre
catégories principales sur le modèle de stockage de données : magasins de
valeurs-clés, magasins de documents, magasins de familles de colonnes et
magasins de graphiques. Les magasins de documents ont gagné en popularité
principalement en raison du modèle de stockage de données semi-structuré
et des capacités de requêtes riches par rapport aux autres systèmes NoSQL,
ce qui en fait un candidat idéal pour le prototypage rapide. Les magasins de
documents encouragent les utilisateurs à utiliser une approche axée sur les
données plutôt que sur la conception. La conception de bases de données sur
les magasins de documents est principalement effectuée par essais et erreurs
ou selon des règles ad hoc plutôt que par un processus formel tel que la nor-
malisation dans un SGBDR. Cependant, ces approches pourraient facilement
conduire à une conception de base de données non optimale entraînant des
coûts supplémentaires de traitement des requêtes, de stockage des données et
de refonte.

Cette thèse de doctorat vise à fournir une nouvelle approche multicritères
de la conception de bases de données dans les magasins de documents.
La plupart des approches existantes de conception de bases de données
sont basées sur l’optimisation des performances des requêtes. Cependant,
d’autres facteurs incluent les exigences de stockage et la complexité des
documents stockés spécifique à chaque cas d’utilisation. De plus, il existe un
grand espace de solution de conceptions alternatives en raison des différentes
combinaisons de référencement et d’imbrication des données. Par conséquent,
nous pensons que l’optimisation multicritères est idéale par l’intermédiaire
d’une expérience éprouvée dans la résolution de tels problèmes dans divers
domaines. Cependant, pour y parvenir, nous devons résoudre plusieurs
problèmes qui nous permettront d’appliquer une optimisation multicritère
pour le problème de conception de données.

Premièrement, nous évaluons l’impact des représentations alternatives de

viii



stockage des données semi-structurées. Il existe plusieurs manières équiv-
alentes de représenter physiquement des données semi-structurées, mais il
y a un manque de preuves concernant l’impact potentiel sur l’espace et sur
les performances des requêtes. Ainsi, nous nous lançons dans la tâche de
quantifier cela précisément pour les magasins de documents. Nous comparons
empiriquement plusieurs façons de représenter des données semi-structurées,
ce qui nous permet de dériver un ensemble de directives pour une conception
de base de données physique efficace en tenant compte à la fois des options
JSON et relationnelles dans la même palette.

Ensuite, nous avons besoin d’un modèle canonique formel capable de
représenter des conceptions alternatives. Dans cette mesure, nous proposons
une approche basée sur des hypergraphes pour représenter des conceptions de
magasins de données hétérogènes. Prenant une interface de programmation
commune existante aux systèmes NoSQL, nous l’étendons et la formalisons
sous forme d’hypergraphes. Ensuite, nous définissons les contraintes de
conception et les règles de transformation des requêtes pour trois types de
magasins de données représentatifs. Ensuite, nous proposons un algorithme
de réécriture de requête simple à partir d’un algorithme générique dans un
magasin de données sous-jacent spécifique et fournissons une implémenta-
tion prototype. De plus, nous introduisons un estimateur de statistiques de
stockage sur les magasins de données sous-jacents. Enfin, nous montrons la
faisabilité de notre approche sur un cas d’utilisation d’un système polyglotte
existant ainsi que son utilité dans les calculs de métadonnées et de chemins
de requêtes physiques.

Ensuite, nous avons besoin d’un modèle de coûts de requêtes formel
pour estimer et évaluer les performances des requêtes sur des conceptions
alternatives de magasin de documents. Les magasins de documents utilisent
des approches primitives du traitement des requêtes, telles que l’évaluation
de tous les plans de requête possibles pour trouver le plan gagnant et son
utilisation dans les requêtes similaires ultérieures, ou l’appui sur l’usager final
pour spécifier l’utilisation des index au lieu d’un modèle de coûts formel.
Cependant, nous avons besoin d’une approche fiable pour comparer deux
conceptions alternatives sur la façon dont elles fonctionnent sur une requête
spécifique. Pour cela, nous définissons un modèle de coûts de stockage et
de requête générique basé sur l’accès au disque et l’allocation de mémoire
qui permet d’estimer l’impact des décisions de conception. Étant donné que
tous les magasins de documents effectuent des opérations sur les données en
mémoire, nous estimons d’abord l’utilisation de la mémoire en considérant
les caractéristiques des documents stockés, leurs modèles d’accès et les algo-
rithmes de gestion de la mémoire. Ensuite, en utilisant cette estimation et la
taille de stockage des métadonnées, nous introduisons un modèle de coûts
pour les requêtes à accès aléatoire. Il s’agit de la première tentative d’une telle
approche au meilleur de notre connaissance. Enfin, nous validons notre travail



sur deux implémentations de magasin de documents bien connues : MongoDB
et Couchbase. Les résultats démontrent que les estimations d’utilisation de
la mémoire ont une précision moyenne de 91% et que les coûts prévus sont
fortement corrélés aux temps d’exécution réels. Au cours de ce travail, nous
avons réussi à proposer plusieurs améliorations aux systèmes de stockage de
documents. Ainsi, ce modèle de coûts contribue également à identifier les
discordances entre les implémentations de stockage de documents et leurs
attentes théoriques.

Enfin, nous implémentons la solution de conception automatisée de bases
de données en utilisant l’optimisation multicritères. Tout d’abord, nous intro-
duisons une algèbre de transformations qui peut systématiquement modifier
une conception de notre représentation canonique. Ensuite, en utilisant ces
transformations, nous implémentons un algorithme de recherche locale piloté
par une fonction de perte qui peut proposer des conceptions quasi opti-
males avec une probabilité élevée. Enfin, nous comparons notre prototype à
une solution de conception de données de magasin de documents existante
uniquement basée sur le coût des requêtes. Nos conceptions proposées ont de
meilleures performances et sont plus compactes avec moins de redondance.



Acknowledgements

I would like to take this opportunity to thank the many people who, directly
or indirectly, have contributed to the realization of this thesis.

First and foremost, I am grateful to my home advisors Alberto Abelló
and Jovan Varga for their endless patience, enthusiasm and guidance. This
dissertation would have not been possible without them. Their door has been
always open for long, technical and stimulating discussions. Second, I am
indebted to my host advisor Esteban Zimányi. Besides making my visits at
ULB very enjoyable, he has taught me that striving for formal elegance pays
off. I look up to the three of them, both professionally and personally, and
consider myself very lucky to have been their student.

I thank the members of the DTIM research group at UPC for creating
an engaging working environment. Special thanks goes to Sergi Nadal for
the fruitful collaborations on Chapters 2, 5, and the corresponding demo in
Appendix B. I am grateful for your friendly advises, support, and technical
discussions. I also would like to thank the members of the CoDE-WIT research
group at ULB who made my time in Brussels memorable.

I am grateful to my family and many good friends for their unconditional
and continuing support. I would like to express my gratitude to my lovely
friends Larissa, Gledis, Phil, Ward, Olga, Anas, Katya, Jorge, Rediana, Maxim-
iliano, Luciana, Eugenia, Jasmine, Juan, Viktor, Mariana, Ziyad, and Thao for
their kindness, love and support through thick and thin.

There are three people who deserve a special mention, my father Sarath
who has been a pillar of support throughout my journey for his unconditional
love and understanding. Suela, for being there since we first met in Brussels
during our masters for being the best partner to work with, for your kindness,
advises and giving me strength to achieve my goals. Vipula, my best friend
since grade 8, for always being there for me as a brother and making my visits
to Sri Lanka always unforgettable.

Barcelona, March 2022

xi



Contents

Abstract iii

Resum v

Résumé viii

Acknowledgements xi
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

Thesis Details xix

1 Introduction 1
1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . 1
2 The NoSQL Systems and Document Stores . . . . . . . . . . . . 3
3 Data Design for Document Stores . . . . . . . . . . . . . . . . . 5

3.1 State of the Art and Challenges . . . . . . . . . . . . . . . 8
4 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 12
5 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.1 On the Performance Impact of Using JSON, Beyond
Impedance Mismatch . . . . . . . . . . . . . . . . . . . . 13

5.2 Managing Polyglot System Metadata with Hypergraphs 14
5.3 A Cost Model for Random Access Queries in Document

Stores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.4 Automated Database Design for Document Stores . . . . 17

6 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 On the Performance Impact of Using JSON, Beyond Impedance Mis-
match 21
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3 Representational Differences . . . . . . . . . . . . . . . . . . . . 24

xii



Contents

3.1 Schema variability . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Schema declaration . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Structure complexity . . . . . . . . . . . . . . . . . . . . . 26

4 Experimental evaluation . . . . . . . . . . . . . . . . . . . . . . . 28
4.1 Schema variability . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Schema declaration . . . . . . . . . . . . . . . . . . . . . . 31
4.3 Structure complexity . . . . . . . . . . . . . . . . . . . . . 32

5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Managing Polyglot Systems Metadata with Hypergraphs 36
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.1 Resource Description Framework (RDF) . . . . . . . . . 38
2.2 SOS Model . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Formalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4 Metadata Management . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 Query Representation . . . . . . . . . . . . . . . . . . . . 46
4.2 Constraints and Transformation Rules on Data Stores . 47

5 Calculating Statistical and Storage Metadata . . . . . . . . . . . 50
5.1 Storage size estimation . . . . . . . . . . . . . . . . . . . 51
5.2 Physical access patterns for workloads . . . . . . . . . . 53

6 Use Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 A cost model for random access queries in document stores 60
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2 Background and Related Work . . . . . . . . . . . . . . . . . . . 63
3 Formalization of the Cost Model . . . . . . . . . . . . . . . . . . 66

3.1 Generic Component . . . . . . . . . . . . . . . . . . . . . 67
3.2 Specific Component . . . . . . . . . . . . . . . . . . . . . 71

4 Applying the cost model . . . . . . . . . . . . . . . . . . . . . . . 76
4.1 Couchbase Server (THP) . . . . . . . . . . . . . . . . . . . 76
4.2 MongoDB (TDSL) . . . . . . . . . . . . . . . . . . . . . . 78

5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.1 Couchbase Server . . . . . . . . . . . . . . . . . . . . . . . 81
5.2 MongoDB . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3 Accuracy of Prediction . . . . . . . . . . . . . . . . . . . . 87
5.4 Comparison to Other Approaches . . . . . . . . . . . . . 88

5 Automated Database Design for Document Stores with Multi-criteria
Optimization 89
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

xiii



Contents

3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.1 User Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.2 Design Processes . . . . . . . . . . . . . . . . . . . . . . . 96
3.3 Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.4 Search Algorithm . . . . . . . . . . . . . . . . . . . . . . . 97

4 Canonical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.1 Immutable Graph . . . . . . . . . . . . . . . . . . . . . . . 100
4.2 Storage-Agnostic Constructs . . . . . . . . . . . . . . . . 102
4.3 Document Store-Specific Constructs . . . . . . . . . . . . 104

5 Design Processes Over the Canonical Model . . . . . . . . . . . 105
5.1 Random Design Generation . . . . . . . . . . . . . . . . . 105
5.2 Design transformations . . . . . . . . . . . . . . . . . . . 108

6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.1 Quality of the Design . . . . . . . . . . . . . . . . . . . . 112
6.2 Scalability of the Approach . . . . . . . . . . . . . . . . . 114
6.3 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . 116

6 Conclusions and Future Directions 118
1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Appendices 122

A DocDesign: Cost-Based Database Design for Document Stores 123
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
2 DocDesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

2.1 Design Alternatives . . . . . . . . . . . . . . . . . . . . . 127
2.2 Canonical Representation . . . . . . . . . . . . . . . . . . 127
2.3 Query Workload . . . . . . . . . . . . . . . . . . . . . . . 128
2.4 Estimating the Runtime . . . . . . . . . . . . . . . . . . . 128

3 Demonstration Overview . . . . . . . . . . . . . . . . . . . . . . 129
4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

B DocDesign 2.0: Automated Database Design for Document Stores
with Multi-criteria Optimization 132
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
2 DocDesign 2.0 in a nutshell . . . . . . . . . . . . . . . . . . . . . 136

2.1 User Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . 136
2.2 Design Operations . . . . . . . . . . . . . . . . . . . . . . 138
2.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 139

3 Demonstration Overview . . . . . . . . . . . . . . . . . . . . . . 140

C Calculating Internal B-tree Blocks 142

xiv



Contents

D Cost Calculation Examples for MongoDB 143
1 Single Collection with Primary Index . . . . . . . . . . . . . . . 143
2 Multiple Collections . . . . . . . . . . . . . . . . . . . . . . . . . 145

E Algorithm to build hyperedges from connected components 148

F Formalized transformations 150

G Validation of operations against MongoDB Design Patterns 152

Bibliography 155
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

xv



List of Figures

List of Figures

1.1 NoSQL data store types . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Storing a many-to-many relationship in an RDBMS . . . . . . . 6
1.3 Alternatives to storing a relationship . . . . . . . . . . . . . . . . 6
1.4 Workflow of the approach . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Data representation difference between JSON and relational tables 14
1.6 Class diagram of the canonical model to represent heteroge-

neous data stores . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.7 Overview of automated schema design approach . . . . . . . . 17
1.8 Transforming document store designs . . . . . . . . . . . . . . . 18

2.1 Alternative representations of Metadata . . . . . . . . . . . . . . 25
2.2 Alternative representations for optional attributes . . . . . . . . 25
2.3 Alternative representations of structure and data type validation 26
2.4 Alternative representations of Integrity Constraints (IC) validation 27
2.5 Representation of nesting structures . . . . . . . . . . . . . . . . 27
2.6 Representation of multi-valued attributes . . . . . . . . . . . . . 28
2.7 Effect of metadata embedding with changing number of attributes 30
2.8 Effect of metadata embedding with changing data-metadata ratio 30
2.9 Effect of optional values with different percentages . . . . . . . 31
2.10 Effect of schema declaration affecting different number of at-

tributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.11 Effect of nesting structure with varying number of levels . . . . 33
2.12 Effect of multi-valued attributes with varying number of values 34
2.13 Multidimensional view of experimental results . . . . . . . . . . 34

3.1 SOS representation of the example . . . . . . . . . . . . . . . . . 40
3.2 Class diagram for the overall catalog . . . . . . . . . . . . . . . . 41
3.3 Translated graph built from the RDF . . . . . . . . . . . . . . . . 42
3.4 Class diagram for Hyperedge hierarchy . . . . . . . . . . . . . . 44
3.5 An example data design for an RDBMS . . . . . . . . . . . . . . 47
3.6 An example data design for wide column store . . . . . . . . . 48
3.7 An example data design for Document Store . . . . . . . . . . . 49
3.8 Graph representation of ESTOCADA . . . . . . . . . . . . . . . 55

4.1 Overview of the cost model for document stores . . . . . . . . . 66
4.2 Couchbase Server bucket usage . . . . . . . . . . . . . . . . . . . 77
4.3 Memory utilization in Couchbase Server . . . . . . . . . . . . . 77
4.4 MongoDB B-tree usage for primary key . . . . . . . . . . . . . . 78
4.5 MongoDB cache policy prioritizing the name . . . . . . . . . . . 79
4.6 Effect of different parameters on cache distribution in MongoDB 79

xvi



List of Figures

4.7 Estimating the memory and time estimation in Couchbase Server 82
4.8 Predicting saturation for a single collection with different pa-

rameters in MongoDB . . . . . . . . . . . . . . . . . . . . . . . . 82
4.9 Predicting saturation for two collections with different parame-

ters for MongoDB . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.10 Predicting cache distribution for a single collection with differ-

ent parameters in MongoDB . . . . . . . . . . . . . . . . . . . . . 84
4.11 Predicting cache distribution for two collections with different

parameters in MongoDB . . . . . . . . . . . . . . . . . . . . . . . 84
4.12 Time estimation comparison for different parameters in MongoDB 85

5.1 Relationship storage choices for database design . . . . . . . . . 91
5.2 High-level overview of our approach . . . . . . . . . . . . . . . 94
5.3 ER diagram for RUBiS framework . . . . . . . . . . . . . . . . . 95
5.4 Class diagram of the canonical model . . . . . . . . . . . . . . . 101
5.5 Sketch of schema transformations in document stores using

transformation rules . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.6 Scalability of DocDesign 2.0 with number of entities . . . . . . 115
5.7 Improvement over the number of shots . . . . . . . . . . . . . . 116

A.1 Conceptual Schema of the Example use case . . . . . . . . . . . 125
A.2 Overview of DocDesign . . . . . . . . . . . . . . . . . . . . . . . 126

B.1 ER diagram of RUBiS Benchmark . . . . . . . . . . . . . . . . . 133
B.2 Relationship design choices, and two examples . . . . . . . . . 134
B.3 Overview of the DocDesign 2.0 Architecture . . . . . . . . . . . 134
B.4 Immutable graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
B.5 DocDesign 2.0 user interface . . . . . . . . . . . . . . . . . . . . 140

G.1 Transformations of the Attribute pattern . . . . . . . . . . . . . 153
G.2 Transformations of the Bucket pattern . . . . . . . . . . . . . . . 153
G.3 Transformations of the Polymorphic pattern . . . . . . . . . . . 154
G.4 Transformations of the Extended reference pattern . . . . . . . 154
G.5 Transformations of the Subset pattern . . . . . . . . . . . . . . . 155

xvii



List of Tables

List of Tables

1.1 Enumeration of design choices for a relationship in a document
store . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Symbols for Algorithm 2 in RDBMS . . . . . . . . . . . . . . . . 48
3.2 Symbols for Algorithm 2 in Wide-Column Stores . . . . . . . . 48
3.3 Symbols for Algorithm 2 in Document Stores . . . . . . . . . . . 50
3.4 Access frequencies of the document store storage structures . . 57

4.1 Variables of the Cost Model . . . . . . . . . . . . . . . . . . . . . 68

5.1 Variables used in the paper . . . . . . . . . . . . . . . . . . . . . 100
5.2 Hypergraph methods . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.4 Struct and set methods . . . . . . . . . . . . . . . . . . . . . . . . 103
5.6 c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.8 Final designs generated by DocDesign 2.0 and DBSR . . . . . . 113
5.9 Performance comparison of the original dataset . . . . . . . . . 113
5.10 Performance comparison of the realistic dataset . . . . . . . . . 114

A.1 Design Alternatives of the use case . . . . . . . . . . . . . . . . . 124
A.2 Storage Metadata of the Designs . . . . . . . . . . . . . . . . . . 129
A.3 Query Runtimes of the Designs . . . . . . . . . . . . . . . . . . . 130

D.1 Calculating the access probability of the B-trees . . . . . . . . . 146

F.1 Document store-specific transformation methods . . . . . . . . 150

xviii



Thesis Details

Thesis Title: Physical Database Design in Document Stores
Ph.D. Student: Moditha Lakshan Dharmasiri Hewasinghage
Supervisors: Prof. Alberto Abelló Gamazo, Universitat Politècnica de

Catalunya, BarcelonaTech, Spain (UPC supervisor)
Dr. Jovan Varga, Microsoft, Costa Rica (UPC co-supervisor)

Prof. Esteban Zimányi, Université Libre de Bruxelles, Brus-
sels, Belgium (ULB supervisor)

The main body of this thesis consists of the following papers:

[1] On the Performance Impact of Using JSON, Beyond Impedance Mis-
match. Moditha Hewasinghage, Sergi Nadal, Alberto Abelló. European
Conference on Advances in Databases and Information Systems (ADBIS).
2020.

[2] Managing Polyglot Systems Metadata with Hypergraphs. Moditha
Hewasinghage, Alberto Abelló, Jovan Varga, Esteban Zimányi. Data &
Knowledge Engineering, 134, 101896. 2021.

[3] A Cost Model for Random Access Queries in Document Stores. Moditha
Hewasinghage, Alberto Abelló, Jovan Varga, Esteban Zimányi. The
VLDB Journal 30, 559–578. 2021.

[4] Automated Database Design for Document Stores with Multi-criteria
Optimization. Moditha Hewasinghage, Sergi Nadal, Alberto Abelló, ,
Esteban Zimányi. Knowledge and Information Systems (KAIS) (submit-
ted).

In addition to the main papers, the following peer-reviewed publications have
also been made.

Conference articles.

xix



Thesis Details

[5] Managing Polyglot Systems Metadata with Hypergraphs. Moditha
Hewasinghage, Jovan Varga, Alberto Abelló, Esteban Zimányi. Inter-
national Conference on Conceptual Modeling (ER). 2018. (extended in
[2])

Tool demonstrations.

[6] DocDesign: Cost-based Database Design for Document Stores. Moditha
Hewasinghage, Alberto Abelló, Jovan Varga, Esteban Zimányi. Inter-
national Conference on Scientific and Statistical Database Management
(SSDBM). 2020

[7] DocDesign 2.0: Automated Database Design for Document Stores with
Multi-criteria Optimization. Moditha Hewasinghage, Sergi Nadal, Al-
berto Abelló. International Conference on Extending Database Technol-
ogy (EDBT). 2021

This thesis has been submitted for assessment in partial fulfillment of the PhD
degree. The thesis is based on the submitted or published scientific papers
which are listed above. Parts of the papers are used directly or indirectly in
the extended summary of the thesis.

xx



Chapter 1

Introduction

1 Background and Motivation

Traditional Relational Database Management Systems (RDBMSs) have been
the go-to solution for data storage for the last couple of decades. RDBMSs
have been around for about 50 years maturing and gaining popularity in
storing tabular data. However, with the big data era, NoSQL systems were
introduced as alternate storage solutions, giving rise to novel data storage
paradigms [24, 74]. The difference between tabular data model of RDBMS to
the object-oriented programming model is known as the impedance mismatch.
This can affect the performance of programs especially in the case of large
databases. Thus, NoSQL systems tend to minimize this performance impact
by having object-oriented or similar data models. More than 200 NoSQL
systems are currently available, catering to specific niches of modern data
storage.1 These NoSQL systems fall under four main categories: key-value
stores, document stores, wide-column stores, and graph stores. Among these
systems, document stores provide extended features such as complex query
capabilities due to the flexible, semi-structured data model. JSON storage
is now widely used in data analytics due to the fast serialization and ease
of interchange between applications. This semi-structured data model of
document stores allows them to handle the problem of data variety efficiently
but introduces new challenges in database design.

Based on the relational algebra, normalization theory guides RDBMS
database design [77, 94]. The database design obtained by reaching 3NF
or BCNF can effectively and efficiently answer most typical queries while
removing data redundancy. On the contrary, similar to most NoSQL systems,
document stores encourage de-normalization and embedding of related data

1http://nosql-database.org

1



1. Background and Motivation

to avoid joins. Consequently, data redundancy is accepted or at times even
encouraged in document store data designs. Although the flexibility allows
faster deployment, poor design decisions can lead to incorrect results or
negative performance impact. It has been shown that data design requires
significant modeling decisions that impact important quality requirements,
including scalability and performance [10, 12, 22]. Therefore, optimal data
design is an essential part of any non-trivial data-driven application.

Document stores allow having fully redundant collections, each of which
can answer specific queries efficiently. However, apart from query cost, other
factors are affected by the database design, such as storage size and complexity
of the stored documents. Thus, a redundant database design requiring consid-
erably higher storage space is not ideal for most use cases. Hence, document
store data design generally resorts to trial-and-error or ad-hoc rule-based
approaches. For instance, the leading document store, MongoDB, presents
common patterns for database design identified through typical use cases.2

Although such an approach is capable of coming up with relatively optimal
designs, the optimality of the design is highly dependant on the experience
of the data designer. Thus, it is a common problem with document store
designs that performance issues arise as the storage grows with the life time
of a system. Addressing such issues in a production system by restructuring
the storage can become costly, especially with massive data sets in the big
data era. Therefore, a common practice is to scale out the document store
by adding more nodes or adding more powerful hardware (memory, CPU,
SSD storage), which can incur additional costs only to provide a temporary
solution.

Little research has been conducted on modeling and systematical designing
the data in document stores and NoSQL systems, in general. due to the
novelty and the complexity of the problem. As mentioned before, NoSQL
database design is limited to guidelines and best practices provided by the
tools themselves, and most of the research is purely based on optimizing the
query performance ignoring other factors that are affected by the design [58,
88, 95] such as storage space and complexity of the design. Thus, the objective
of this thesis is to automate the database design for document stores given a
use case consist of an entity-relationship design, a query workload, and user
preference on multiple factors (e.g., query performance, storage space, the
complexity of the stored documents) that are impacted by the data design.
Moving away from ad-hoc rule-based approaches into a methodical one
requires us to answer the following questions.

• What are the key data design concepts that could determine the optimal
storage design for a given dataset in document stores?

2https://www.mongodb.com/blog/post/building-with-patterns-a-summary

2



2. The NoSQL Systems and Document Stores

• How do design decisions affect end-user requirements such as perfor-
mance, storage space, and complexity of the stored documents, given a
workload?

The answers to these questions are not trivial and involve choosing the
optimal design out of a multitude of possible designs, each having its strengths
and weaknesses. Therefore, a solution for the design decision problem can be
modeled as a multi-criteria optimization problem. The available data designs
become the search space, and the affected parameters become the objective
functions that need to be optimized.

Multiple parameters are affected by the data design, including storage
space, query execution time, depth of the stored documents, and the degree of
heterogeneity within a collection. These parameters create contradicting cost
functions that drive the optimization problem. For example, data duplication
increases the storage size and the writing cost but reduces the query execution
time. Therefore, it is also essential to analyze how each of these cost functions
behaves and model them in the overall solution.

This work could greatly benefit different stages of a data-driven application
from the development phase to maintenance. Moreover, a clear understanding
of the data design will improve data quality aspects. Improving the query
performance through the design itself would significantly reduce the data
movement and maintenance concerning the changes in the data design. A
formalized systematic approach to data design will give end-users, such
as application developers and database administrators, the much-needed
transparency and control over the data design rather than trial-and-error
ad-hoc approaches.

2 The NoSQL Systems and Document Stores

Traditional RDBMSs have been a universal solution for data storage until
the dawn of the BigData era, where specialized data storage solutions arose.
Indeed, a single kind of storage system could not handle all the volume,
velocity and variety of BigData [33]. Thus, NoSQL systems were born, an
umbrella term used for alternative data stores from the traditional RDBMSs.
These alternate storage systems can be divided into four main categories, as
shown in Fig. 1.1.

1. Key-value stores are the simplest form of data storage among the
NoSQL systems. The storage is similar to that of a hash table, where
each data item is stored as a blob (schemaless) under a unique key. This
allows fast lookups for data and can be easily scaled out. However,
updating part of data and complex queries (apart from a simple get
by the key) become inefficient. They require replacing the entire data

3



2. The NoSQL Systems and Document Stores

Fig. 1.1: NoSQL data store types

and retrieving the stored data and processing them apriori by the client
application respectively.

2. Document stores augment the key-value stores by allowing the stored
data to be queried and updated utilizing nested values associated with
each key. Their stored data are called documents and use semi-structured
formats such as XML and JSON (widely used now). This enables effi-
cient query capabilities to document stores through secondary indexes.
Moreover, the document formats themselves provide efficient storage
and compression mechanisms.

3. Wide-column stores use tables. These can be identified as two-dimensional
key-value stores (for the row and the column). A column family consists
of multiple arranged columns, and a piece of data can be identified by a
key and a set of fixed column families. This allows to store and process
substantial amounts of distributed data.

4. Graph stores use a flexible graph model from the traditional rigid
structure of rows and columns, as the name suggests. This specialized
storage structure enables storing inherently graph-like data such as social
networks. In addition, they focus on data inter-connectivity allowing
efficient graph processing algorithms compared to the traditional storage
methods.

These NoSQL systems are created to cater specific storage needs of the
end-user. Thus, it is essential to understand which data store is best suited for
a particular task, and several works have been conducted on using NoSQL
systems in different use-cases such as decision support systems [80, 81].

4



3. Data Design for Document Stores

Nevertheless, document stores have gained popularity among the others due
to several reasons:

• Semi-structured data storage allow users to maintain some structuring
of data.

• Object-oriented JSON storage structure reduces the need of additional
transformations reducing impedence mismatch.

• Complex query capabilities allows processing data within the data store
instead of the client application.

• Maintaining a schema gives the end users a clear understanding of the
stored data. This has encouraged mainstream RDBMS such as Oracle [79]
and PostgreSQL3 to incorporate document store-like capabilities with
JSON storage.

• Data-first approach instead of design-first approach in RDBMS reduces
the time to get started with a document store, making it a great tool for
rapid prototyping [36].

3 Data Design for Document Stores

The semi-structured nature of document stores allows them to have database
designs beyond traditional normalization theories. This makes the database
design decisions more complicated with a myriad of possibilities, especially
with tolerated data redundancy and encouraged nesting. Thus, the database
design process for them has resorted to trial-and-error or ad-hoc rule-based
approaches.4 However, such approaches consider local optimizations and miss
out on the bigger picture of global optimizations. Having a good database
design is essential for any data storage system’s performance, and bad design
decisions cannot always be compensated by adding more powerful hardware.
Let us take a simple example of two entities (authors and books) with a many-
to-many relationship. If a typical RDBMS is used to store this information,
we end up with three tables in 3NF, one per entity and another junction
table as shown in Fig. 1.2. However, in a document store, there are multiple
possibilities to store the same information depending on the choice of direction
of the relationship, embedding or referring the relationship, and flattening or
nesting the internal document or reference.

Entities are always stored in one or more collections. Thus, we can identify
alternate design decisions as to how a relationship is stored in a document

3https://www.postgresql.org/docs/9.2/release-9-2.html
4https://www.mongodb.com/blog/post/building-with-patterns-a-summary

5

https://www.postgresql.org/docs/9.2/release-9-2.html
https://www.mongodb.com/blog/post/building-with-patterns-a-summary


3. Data Design for Document Stores

Fig. 1.2: Storing a many-to-many relationship in an RDBMS

store to ensure that all the entities are available. This storage is based on three
choices as shown in Fig. 1.3.

• Direction determines which of the two participating entities is maintain-
ing the information about the relationship. This can be either one of the
entities or both.

• Representation ensures how the relationship information is maintained
in the chosen entity either by referencing the identity of the other entity
or by storing the whole entity as an embedded document.

• Structure governs how the relationship is structured either as a nested
list or a flattened one. For example, if we decide to to store books inside
an author it can be stored as a list (books : rtB_ID : 1, ...u, tB_ID : 2, ...u, ...s)
or in a flattened manner (book_1 : ..., book_2 : ..., ...)

Fig. 1.3: Alternatives to storing a relationship

By enumerating all the design choices as shown in Table 1.1, we can identify
that there are 24 possible design alternatives for a single relationship in a
document store. Furthermore, several factors are affected by the design, such

6



3. Data Design for Document Stores

as query performance, storage size, and complexity of the stored documents.
Thus, each design has its own advantages and disadvantages, making them a
potential optimal one depending on different end-user requirements.

Table 1.1: Enumeration of design choices for a relationship in a document store

Direction
Entity 1 Entity 2

Representation Structure Representation Structure

left-to-right

reference list
reference flat

embed list
embed flat

right-to-left

reference list
reference flat

embed list
embed flat

both

reference list reference list
reference list reference flat
reference list embed list
reference list embed flat
reference flat reference list
reference flat reference flat
reference flat embed list
reference flat embed flat

embed list reference list
embed list reference flat
embed list embed list
embed list embed flat
embed flat reference list
embed flat reference flat
embed flat embed list
embed flat embed flat

It is evident that the number of alternative designs grows exponentially
with the number of relationships (24r). Thus, it is impossible to iterate through
all of them to find the optimal one, and the current design approaches resort
to trial-and-error or ad-hoc rule-based processes. Our goal is to leave this
beaten path and introduce a novel systematical approach for database design
for document stores.

The workflow of our approach is depicted in Figure 1.4. Document stores
(MongoDB is used as an example) do not maintain any schema, but extracting
one has been already carried out in previous work [43, 116]. Therefore, we
assume that the schema is available together with the data. Then, this schema

7



3. Data Design for Document Stores

is represented in a canonical model which allows the representation of the
data design and the query operations over it. Next, a set of transformations
specified in the canonical model generates different data designs. Then, by
using the query load, the objective functions, and the cost model, a multi-
criteria optimization approach is applied to identify the optimal design or a
set of Pareto-optimal designs for the given use case. Finally, the chosen design
can be implemented in the document store as collections.

Fig. 1.4: Workflow of the approach

3.1 State of the Art and Challenges

In this subsection, we review the state of the art related to the automated
database design depicted in Figure 1.4. Here, we also highlight related open
research problems that drive the proposed contributions.

3.1.1 Canonical Model

Little research has been conducted on modeling and systematical design-
ing the data in NoSQL data stores. Moreover, the schema management of
document stores is handled differently from the typical RDBMS [42] due to
the flexible schema. As a result, NoSQL design is limited to guidelines and
best practices provided by the tools themselves. The semi-structured storage
makes the schema management of document stores different from the typical
RDBMS [42]. In [12], the authors introduce a high-level description of an
interface for NoSQL systems based on a generic model. The main objective
of this work is to formalize a common programming interface to NoSQL
by hiding the specific implementations of the underlying data stores. They
use a meta-modeling approach where a basic, standard structure is defined
with the methods to access the system. The main component of the general

8



3. Data Design for Document Stores

model are attributes, structs, and sets. An attribute is a simple element (a
simple key-value pair or a single qualifier); a struct is a collection of attributes
(column families, document); finally, a collection of elements is modeled by a
set.

NoAm is a NoSQL abstract model designed to support scalability, per-
formance, and consistency [10, 22]. The main aspect of this model is to
organize the application data in aggregates. It defines the four main activi-
ties in developing a NoSQL conceptual schema which includes identifying
the entities and the relationships between them. Then, the aggregates are
designed upon those elements by grouping the related entities. Next, the
aggregate storage in the target systems is done depending on the data access
patterns and the scalability and consistency needs. NoAM also defines a set
of different mapping strategies from the general data model to the physical
layer of various NoSQL data stores.

A general approach for designing a NoSQL system for analytical work-
loads has been discussed in [58]. It adapts the traditional 3-phase design
methodology of conceptual, logical, and physical design and integrates the
relational and the co-relational models into a single quantitative method.
First, at the conceptual level, the traditional ER diagram is used. Then, it is
transformed into an directed graph where each of the entities is denoted by
nodes and their relationships by the edges, tagged with the relationship type
(specialization, composition, and association). Later, the rest of the compo-
nents of the model are identified as nested entities. These steps group the
entities into independent domain concepts and produce a hypergraph where
the hypernode is a subgraph of the original node and the set of hyperedges
among them. Finally, in cases where an entity can become a part of several
heterogeneous hypernodes, the entity is replicated in each of them, and the
hypernodes are identified as nested, heterogeneous, or homogeneous. A
unified metamodel for NoSQL and relational databases including the notion
of structural variability is introduced in the U-Schema unified metamodel [23].
This metamodel is capable of representing logical schemas for both relational
and NoSQL systems. The authors introduce formal mapping between the
U-schema and the data model for each data store, implement and validate
these mappings through example applications.

The Concept and Object Modeling Notation (COMN) introduced covers the
full spectrum of not only the data store but the software design process [59].
COMN is a graphical notation capable of representing the conceptual, logical,
physical, and real-world design of an object. This helps to model the data
in NoSQL systems where the traditional Entity-Relationship (ER) diagrams
fail to represent specific concepts such as nesting. Moreover, the ability to
represent the logical and the physical design on the same diagram enables a
broader overall view of the underlying system.

Although there are several models that can represent NoSQL systems,

9



3. Data Design for Document Stores

there is no single model that suits us to use in our automated database
design approach. Most of them are oversimplified to support different NoSQL
systems or over specified for a particular data store or usecase. We require a
formal model that is capable of representing alternative NoSQL systems as
well as alternative designs together with storage metadata and query access
plan representation.

Thus, the first problem of interest in this thesis concerns providing a canonical
model that is capable of representing alternate database designs. The model should
be formal one with the ability to maintain metadata on the design as well as the
transformation of one design to another in a systematic manner. Moreover, this
canonical model should be extendable to represent any NoSQL and RDBMS and their
designs.

3.1.2 Cost Model

Cost models or cost-based estimations for RDBMS systems are widely ob-
served and utilized in the implementations of RDBMSs [47, 61, 75, 77]. Most
of these cost models use the disk I/O as the key influential factor to the cost.
[69] explores the possibility of a cost model for XML stores based on the tree
structure of XML and the traversal of the tree from the root element, using
the number of pages that need to be accessed in order to retrieve a particular
element. Although these cost models are based on hard disk drives (HDDs),
most of these systems are easily adapted for Solid State Drives (SSDs). Some
specific work on SSD based optimization is also carried out [90].

In-memory data storage systems need to adopt new strategies to estimate
costs and optimize performance due to the fact that the storage paradigm
is not disk-based. [83] utilizes CPU usage as the key cost component for
in-memory systems. Some other work also explore different concerns and
possibilities of cost models for memory-based storage systems [68, 78].

Most of the NoSQL systems encourage heavy usage of memory to achieve
faster response times and throughput but also utilize the non-volatile memory
or the disk to store the data permanently and swap the data in and out that
does not entirely fit in memory. This makes estimating the cost of querying
and retrieval more complex. For example, MongoDB does not use a query
estimation but rather execute all the possible query plans in parallel and
picks a winner among those to answer a particular query5. This winning
plan is then cached to be used on similar queries that follow. Unfortunately,
there are no generic cost models available on document stores to compare the
effectiveness of a particular design.

Hence, the second problem that we address in this thesis is the introduction of
a cost model that can efficiently predict the query performance in a document store
under a given query workload.

5https://docs.mongodb.com/manual/core/query-plans

10



3. Data Design for Document Stores

3.1.3 Automated Database Design for Document Stores

Various performance comparisons have been carried out comparing document
stores to other NoSQL data models in [6, 54] and RDBMS in [5, 7, 18]. They
conclude that depending on the use case and the data model, different data
stores have their own strengths and weaknesses. The applicability of document
stores on different domains, such as spatial data, is discussed in [37, 117] and
tree-like structures in [118]. The improvements in the physical data storage
on document stores regarding the Solid State Drives compared to Hard Disk
Drives are presented in [90].

When it comes to document stores, one should not forget about XML [19]
which is a textual data format that is both human and machine-readable that
enables simplicity, generality, and usability across the Internet. Xpath [28]
and XQuery [17] are the two main standards for querying XML, and most
of the research has been carried out on improving the query performance
in the various, aforementioned storage methods utilizing query processing
algorithms [26, 49], dynamic XML creation [2] and storage enhancements
[41, 52]. The native XML data stores consider the query mechanism and use
their own indexing and efficient storage methods.

Benchmarking on databases enables to evaluate the performance of dif-
ferent systems under different workloads. XMark [101] is a benchmarking
framework that enables the assessment of different XML databases in per-
forming a broad range of different queries that are typically encountered
in the real world. YCSB [31] is an extension of TPC-H that is specifically
designed for benchmarking NoSQL systems. This enables the end-users to
fine-tune the read, write, and update loads on NoSQL data stores to compare
relative performance. The work carried out in [109] introduces a benchmark
of document stores of JSON as XML implementations.

Several work have been done on database design for NoSQL systems.
NoSE [88] is a generic tool for generating a schema for a given use case on
column family stores. This uses a cost-based approach to present a database
schema from a conceptual schema. However, document store can have com-
plex schema with multiple nesting levels compared to column family stores
and the data design guidelines themselves differ from a column family store
to a document store making NoSE limited to column family stores. Mor-
tadello [34], is a framework devised for the automatic design of NoSQL
databases. However, it only has a preliminary implementation for the docu-
ment stores while column family stores are fully supported. Other approaches
for database design for document stores [35, 95] only optimize the design on
query performance.

The third and last problem that this thesis addresses is that of automatically
proposing the optimal design in a document store for a given workload driven by
user preferences of query performance, storage requirement, and complexity of stored

11



4. Structure of the Thesis

documents.

4 Structure of the Thesis

The results of this PhD thesis are reported in the four main chapters of the
document (i.e., Chapters 2 to 5). Each chapter is self-contained, corresponding
to an individual or a collection of research papers. Thus, they can be read in
isolation as each chapter adheres to the same structure providing related work
for the topic and concluding remarks. However, there might exist overlapping
in concepts and examples given they were formulated in similar settings.
Additionally, Appendices A and B refers to a published tool demonstration of
our approach to automated data design for document stores.

The papers included in this thesis are listed below. Chapter 2 is based on
Paper 1; Chapter 3 is based on Papers 2 and 5; Chapter 4 is based on Paper
3; Chapter 5 is based on current draft of Paper 4, and Appendix A and B are
based on Papers 6 and 7 respectively.

1. On the Performance Impact of Using JSON, Beyond Impedance Mis-
match. Moditha Hewasinghage, Sergi Nadal, Alberto Abelló. European
Conference on Advances in Databases and Information Systems (ADBIS).
2020.

2. Managing Polyglot Systems Metadata with Hypergraphs. Moditha
Hewasinghage, Alberto Abelló, Jovan Varga, Esteban Zimányi. Data &
Knowledge Engineering, 134, 101896. 2021.

3. A Cost Model for Random Access Queries in Document Stores. Moditha
Hewasinghage, Alberto Abelló, Jovan Varga, Esteban Zimányi. The
VLDB Journal 30, 559–578 (2021).

4. Automated Database Design for Document Stores with Multi-criteria
Optimization. Moditha Hewasinghage, Sergi Nadal, Alberto Abelló, ,
Esteban Zimányi. Under review in Knowledge and Information Systems
(KAIS).

5. Managing Polyglot Systems Metadata with Hypergraphs. Moditha
Hewasinghage, Jovan Varga, Alberto Abelló, Esteban Zimányi. Interna-
tional Conference on Conceptual Modeling (ER). 2018.

6. DocDesign: Cost-based Database Design for Document Stores. Moditha
Hewasinghage, Alberto Abelló, Jovan Varga, Esteban Zimányi. Inter-
national Conference on Scientific and Statistical Database Management
(SSDBM). 2020.

12



5. Thesis Overview

7. DocDesign 2.0: Automated Database Design for Document Stores with
Multi-criteria Optimization. Moditha Hewasinghage, Sergi Nadal, Al-
berto Abelló. International Conference on Extending Database Technol-
ogy (EDBT) 2021.

5 Thesis Overview

In this section, we provide a brief overview of the results of this PhD thesis by
discussing the contributions presented in each chapter.

5.1 On the Performance Impact of Using JSON, Beyond
Impedance Mismatch

In Chapter 2, we study the impact on data design decisions in document
stores. In this chapter, we identify the primary motivation behind choosing
document stores compared to their RDBMS counterpart. Document stores
adopt semi-structured data models, such as JSON, to easily accommodate
schema evolution and overcome the overhead generated from transforming
internal structures to tabular data (i.e., impedance mismatch). There exist
multiple and equivalent ways to represent such semi-structured data phys-
ically. However, there is a lack of evidence about the potential impact on
space and query performance of each design. To this end, in this chapter,
we embark on the task of quantifying the performance impact of physical
database design choices on document stores. We empirically compare multiple
ways of representing JSON and relational data, which allows deriving a set of
guidelines for efficient physical database design considering both JSON and
relational options in the same palette.

Document stores are known to use semi-structured data, which implies
that the data have some structure, but they are either irregular or not known
beforehand. XML or JSON documents consists of a nested hierarchy of
elements/key-value pairs with a single root. Child documents are an un-
ordered sequence list of optional elements. This allows XML/JSON documents
to be self-descriptive, eliminating the requirement of a schema. However, hav-
ing a known structure facilitates optimal storage and query capabilities as
in the case of RDBMS, where data are set of attributes, each with a concrete
domain. Considering these differences, in this chapter, we identify six data
representational differences between document stores and RDBMS under
three categories as shown in Fig. 1.5.

Next, we empirically quantify the impact of these design choices in
semi-structured data. Finally, in Chapter 2, we evaluate the effect of these

13



5. Thesis Overview

Fig. 1.5: Data representation difference between JSON and relational tables

different designs in an RDBMS and two alternative document store imple-
mentations. Thus, Chapter 2 is an introduction to data design choices in
document stores and how each impacts the storage requirements and query
performance.

5.2 Managing Polyglot System Metadata with Hypergraphs

In Chapter 3, we address the first problem of automated database design, the
canonical model. This canonical model is necessary to represent the solution
space for database design which consists of the alternate designs. Even though
our focus is mainly on document stores, the canonical model we introduce is
capable of representing other NoSQL data store categories as well as RDBMS.
This results from document stores having characteristics of other database
models and the canonical model being based on a graph. Furthermore, apart
from the alternative designs, the canonical model maintains metadata of the
underlying data such as cardinality of the relationships between entities, data
type and the average size of stored attributes. Through this information, we
are capable of calculating the storage requirements for a particular design.

The class diagram of the canonical model is shown in Fig. 1.6. First,
we introduce the concept of a catalog (C) that represents the overall data
storage design. This catalog can contain multiple data stores in order to
support polyglot systems, which allows extending the work on this thesis
(details in Chapter 3). Second, the canonical model is based on hypergraphs
where an edge (referred to as hyperedge) can join any number of vertices
instead of exactly two. In addition, we use a generalized hypergraph model
where a hyperedge can contain other hyperedges. Thus, the canonical model
constructs are of three levels.

• Immutable level of C contains information on the entities and the re-

14



5. Thesis Overview

lationships that are stored. This is represented as a graph and is a
direct mapping from a typical ER diagram. Each vertex of this graph
is identified as an Atom (A). Atoms are of two types, Class Atom (AC)
represents an entity and Attribute Atom (AA) represents attributes of an
entity. The edges between the Atoms (ER) represent the relationships
between the entities and attributes as well as entities themselves. Atoms
and Relationships also contain additional metadata. In the case of AAs,
this will be the data type and the average size, ACs contain the repre-
sented entity’s count, and ERs between ACs contain the corresponding
cardinalitys.

• Storage agnostic level of C identifies the common constructs to any data
store. These are hyperedges (EH) that contain As and ERs as well as other
EHs. Struct (EStruct) represents the structure of the stored data. This
could be a row of an RDBMS or a document in a document store. Set
(ESet) represents a collection within the stored document for instance a
table of an RDBMS or a collection or an array in a document store.

• Document store-specific constructs introduce specialized EHs for docu-
ment stores. EDoc

Col and EDoc
List are specialized ESets representing document

store collection and nested list/arrays respectively. EDoc
Top and EDoc

Doc are
specialized EStructs that represent top level documents of a collection
and internal documents (nested ones) of a document store collection.

Fig. 1.6: Class diagram of the canonical model to represent heterogeneous data stores

Each of the EH constructs adheres to eight definitions that help us guar-
antee a valid representation of a data store. Moreover, we introduce a set

15



5. Thesis Overview

of grammars specific to each data store type, representing the constraints
within that data store storage system and its design constructs. For instance,
traditional RDBMSs does not allow nested arrays. This can be defined as a
rule by not allowing an ESet within an EStruct in an RDBMS setting. Next,
we introduce simple query generation rules and algorithms capable of au-
tomatically generating data store-specific queries from the ones issued on
the immutable data. Furthermore, we present algorithms to calculate storage
statistics and physical access patterns for queries taking document stores as
an example. Thus, this canonical model enables us to measure the essential
attributes of a particular database design to evaluate it against another.

5.3 A Cost Model for Random Access Queries in Document
Stores

Chapter 4 addresses the second problem of defining a cost model that can
efficiently predict the query performance in a document store under a given
query workload. Document stores have been widely adopted in different
domains due to their ability to store semi-structured data and expressive
query capabilities. However, implementations differ in terms of concrete data
storage and retrieval. Unfortunately, a standard framework for data and query
optimization for document stores is nonexistent, and only implementation-
specific design and query guidelines are used. Hence, this chapter aims to aid
in automating the data design for document stores based on query costs. For
this, we define a generic storage and query cost model based on disk access
and memory allocation that allows estimating the impact of design decisions.

We present a generic cost model for random access in document stores
based on storage metadata and memory usage. Both these parameters are
specific for different document store implementation decisions. We use the
canonical model introduced in Chapter 3 to obtain the data storage metadata,
and the physical storage metadata can be obtained from the disk storage
structures. Since all document stores carry out data operations in memory,
we first estimate the memory usage by considering the characteristics of the
stored documents, their access patterns, and memory management algorithms.
Memory usage depends on memory mapping, associativity, and cache eviction
policies, and each of them consists of several possibilities (e.g., pre-determined
or shared associativity). Therefore, we introduce formulas for different options
and depending on the underlying document store; we pick the corresponding
formulas to estimate the memory usage. Then, using this estimation and
metadata storage size, we introduce a cost model for random access queries.
Finally, we validate our work on two well-known document store implemen-
tations: MongoDB and Couchbase. The results show that the memory usage
estimates have an average precision of 91%, and predicted costs are highly
correlated with actual execution times. During this work, we have managed

16



5. Thesis Overview

to suggest several improvements to document storage systems. Thus, this cost
model also contributes to identifying discordance between document store
implementations and their theoretical expectations.

5.4 Automated Database Design for Document Stores

In Chapter 5, we introduce an automated database design methodology for
document stores. The large number of potential designs together with multi-
ple, often conflicting aspects such as storage space, query performance, and
complexity of the documents makes finding the optimal design a complex one.
To overcome these issues, in this chapter, we apply multicriteria optimization.
Our approach is driven by a query workload and a set of optimization ob-
jectives. An overview of this approach is shown in Fig 1.7. The immutable
level of the canonical model introduced in Chapter 3 is used to represent the
entity-relationships as an immutable graph.

Fig. 1.7: Overview of automated schema design approach

We chose shotgun hill-climbing, also known as the random-restart hill-
climbing algorithm, to obtain a Pareto-optimal design. In simple hill-climbing,
an arbitrary solution is selected, and then a better solution is attempted by
making incremental changes to the current solution. Shotgun hill-climbing it-
eratively does hill-climbing each time, starting with a random initial condition
while maintaining the overall best solution. If a new run of a hill-climbing
produces a better solution, it replaces the comprehensive best solution.

In order to apply shotgun-hill climbing for database design, first, we
introduce a random design generation algorithm that produces a random
initial design. Then, we need means of making incremental changes to a given
design. To achieve this, we extend the canonical model described in Chapter 3
that is capable of representing alternating designs by introducing an algebra
of transformations that can systematically modify a given design. Designs that
produced through such transformations are shown in Fig. 1.8. Then, using
these transformations, we implement a local search algorithm driven by a loss
function that can propose near-optimal designs with high probability.

The loss function allows us to evaluate optimization criteria for a given

17



6. Contributions

Fig. 1.8: Transforming document store designs

design. In our case, we evaluate four properties or cost functions for a
particular design.

• The storage size

• The depth of the stored documents

• The heterogeneity of documents within a collection

• The query performance

The storage size, the depth of the documents, and the heterogeneity of
documents within a collection can be easily obtained through the canonical
model and the algorithms that accompany it, introduced in Chapter 3. Finally,
the query performance is calculated with the cost model of Chapter 4 together
with the storage metadata obtained through the canonical model.

Finally, we compare our prototype against an existing document store
data design solution purely driven by query cost. Our proposed designs have
better performance and are more compact with less redundancy.

6 Contributions

Figure 1.4 depicts an overall view of the contributions of this PhD thesis
within the document store database design process. The contributions of this
PhD thesis are summarized as follows:

• Performance impact on semi-structured data design. We systematically ana-
lyze the implications on the query performance introduced with semi-
structured data storage. First, we identify six data representational
differences between document stores and RDBMS. Next, we empirically

18



6. Contributions

quantify the impact of these design choices. Finally, we evaluate the
impact of these alternative designs in different document stores and
RDBMS in terms of query performance and storage requirements. Thus,
our contribution provides a broader and systematic evaluation of semi-
structured database design, especially on JSON storage, beyond the
obvious impedance mismatch advantage that it brings.

• Canonical model for data stores. We propose a canonical model based on hy-
pergraphs to support representing alternative data stores, both RDBMS
and NoSQL. The model consists of constructs that are immutable, stor-
age agnostic, and document store specific. We can calculate metadata
specific to each data storage system, such as storage size, with the infor-
mation provided in the immutable layer. Moreover, we introduce a set of
grammars specific to each data store and its design constructs. Through
this, we generate data store-specific queries from ones issued on the
immutable layer. Thus, the novelty of this model is its formalization and
flexibility to represent storage systems and designs that can be used to
represent the solution space of alternate database design choices.

• Cost model for document stores. We present a cost model for document
stores that can predict relative query cost for random access queries.
There are no formal cost models for document stores, mainly due to
their semi-structured nature. Most document store implementations
rely on primitive approaches to determine the query execution instead
of formal query processing algorithms. Thus, our cost model is the
first of its kind to the best of our knowledge. We propose a generic
cost model based on storage metadata, disk access, and memory usage
patterns. We estimate the memory usage of document stores based on
memory mapping, associativity, and cache eviction policies and provide
cost model components relevant to each choice. Then, depending on
the underlying implementation of the document store, we combine the
necessary components to obtain the overall cost model for a particular
document store. This cost model allows us to estimate relative query
performance on alternative designs and their behaviour instead of imple-
menting the actual design in the document store and obtaining the query
performance details. While implementing the cost model, we were able
to find and suggest fixes to some issues in the caching algorithms in
MongoDB. This strongly supports our claim on the necessity of having
a formal cost model for query execution for document stores.

• Automated database design for document stores. Finally, we provide the
capability to automatically propose the optimal design(s) for a document
store. We propose a method that, given entity-relationships and query
workload on top of the entities, selects the Pareto-optimal design(s). The

19



6. Contributions

novelty of our approach is on the ability to fine-tune between alternate
requirements of the end-user, such as the size of the final storage and the
complexity of the documents as opposed to only relying on the query
performance in the existing approaches, which might lead to missing
out on certain alternatives.

20



Chapter 2

On the Performance Impact
of Using JSON, Beyond
Impedance Mismatch

This chapter has been published as a paper in European Conference on
Advances in Databases and Information Systems (ADBIS). 2020.
The layout of the papers has been revised.
DOI: https://doi.org/10.1007/978-3-030-54623-6_7

Springer copyright / credit notice:
Copyright © 2020, Springer Nature Switzerland AG. Reprinted with permis-
sion from Moditha Hewasinghage, Sergi Nadal, and Alberto Abelló. On the
Performance Impact of Using JSON, Beyond Impedance Mismatch, European
Conference on Advances in Databases and Information Systems (ADBIS).
2020.

Co-authoring declaration This work has been done together with the post
doctoral researcher Sergi Nadal, with an overall equal contribution from both.

21

 https://doi.org/10.1007/978-3-030-54623-6_7


1. Introduction

1 Introduction

The relational model was defined as an abstraction level to gain independence
of the file system and any internal storage structure [29]. Thus, we could gain
flexibility and interoperability without losing efficiency by following a tabular
representation and some normal forms [9]. Indeed, the first normal form
(1NF) established that attribute domains had to be atomic (i.e., they could be
neither compound-complex structures nor arrays). However, a rigid tabular
structure is not adequate in modern agile software development, where the
schema is under continuous evolution. Moreover, a well-known problem of
RDBMS is the impedance mismatch, defined as the overhead generated by
transformations from internal structures to tables, and then into programming
structures [8].

The development of NoSQL systems, which adopt more flexible data
representations, allowed to overcome the impedance mismatch [98]. Such
data formats (e.g., JSON), are directly mapped from disk to memory.This is
additionally achieved by breaking 1NF, allowing typical programming nested
structures and arrays in the attribute values (e.g., MongoDB encourages
denormalization1). Furthermore, such semi-structured formats, also allow to
skip schema declaration, which is beneficial in highly evolving applications
[97]. Nevertheless, it is not clear whether denormalization and schemaless is a
conscious design choice, or merely a paradigm imposed by the limitations of
NoSQL systems. Yet, the flexibility offered by NoSQL comes at a price, where
each one of the associated design choices may widely change their physical
representation, and thus profoundly impact performance. Practitioners have
ignored this, and today make binary design decisions based on rules, and
programming needs with no overall view of the system needs [89]. Thus,
it is vital to consider the benefits and drawbacks posed by these different
alternatives during the design process [13]. Relational and semi-structured
data models, are not a simple binary choice, but a continuum of options
with different degrees of (de)normalization. This idea is pursued by the
co-relational model, which entails a wide range of complementary database
design possibilities [86].

In this chapter, we quantify the performance impact of physical database
design choices on NoSQL systems, focusing on the JSON data model. To
this end, different design choices (i.e., equivalent representational differences)
related to both metadata (i.e., schema), such as attribute embedding or option-
ality, and data, such as nested objects or arrays, are quantitatively scrutinized.
We acknowledge that many DBMS features can affect performance (i.e., con-
currency control and recoverability mechanism, distribution and parallelism

Partly funded by the European Commission through the programme “EM IT4BI-DC”. We thank
Braulio Blanco for assisting on the first version of the experiments.

1https://www.mongodb.com/blog/post/6-rules-of-thumb-for-mongodb-schema-design-part-2

22

https://www.mongodb.com/blog/post/6-rules-of-thumb-for-mongodb-schema-design-part-2


2. Related Work

management, connection pools and setup, etc.) [107]. Nevertheless, we only
study the impact of design decisions on a semi-structured data model, being
agnostic of the technological choice. Our main contributions are as follows:

1. We identify the main physical design characteristics of semi-structured
data and compare them to their structured counterpart.

2. We empirically quantify the impact of design choices in semi-structured
data.

3. We evaluate the different designs in a relational and NoSQL DBMS.

2 Related Work

The work carried out in [10] abstracts and homogenizes the modeling common-
alities of NOSQL systems. It considers databases as sets of collections, which
in turn are sets of blocks, finally represented by sets of entries.nDatabase
design reduces to the identification of aggregates, driven by data access pat-
terns and scalability needs. Experimental results show that following the
proposed design method yields to worst query performance. Similarly, [58]
proposes a subject-oriented methodology to design NOSQL databases. A
conceptual model of the system is converted into an equivalent hypergraph
representation, such that hyperedges identify specializations or aggregations
among entities. For each hyperedge, an specific data model, either relational
or co-relational. Then, based on the query workload, an affinity matrix deter-
mines which data are accessed together and, thus, must be allocated in the
same vertical fragment. [34] proposes a method to generate NOSQL databases
from a high-level conceptual model automatically. The authors propose the
UML-like Generic Data Metamodel, integrating structural and data access
patterns. Then, a set of transformation rules generate the specific constructs
for the target model (e.g., document or column-family). Experimental re-
sults show improvements w.r.t. the state of the art on insertion and query
performance for the generated databases.

Regarding performance, [57] benchmarks PostgreSQL and MongoDB. An
OLAP-like workload is evaluated in both systems on real-world data from
Github. The benchmark concludes that PostgreSQL yields higher performance
results, but different design alternatives are not explored. The impact of
normalized collections w.r.t. embedded objects in MongoDB is explored in [66],
and it also empirically shows that querying embedded objects is orders of
magnitude faster than their normalized counterpart using joins. Similarly,
[110] benchmarks systems in the NOSQL realm (i.e., MongoDB and CouchDB)
as well as RDBMSs with built-in JSON support (i.e., PostgreSQL and MySQL).
This work differs from our setting, as it focuses on CRUD transactions for a
simple document structure. Finally, [65] presents an adaptation of the TPC-C
benchmark over MongoDB. One of the many adaptations performed to the

23



3. Representational Differences

original schema is denormalizing structures, concluding that this improves
runtime results w.r.t. the normalized version.

3 Representational Differences

The term semi-structured describes data that have some structure but is neither
regular nor known a priori [1]. For example, a JSON document consists of
a nested hierarchy of key-value pairs with a single root. Child documents
are an unordered sequence list of pairs with optional presence. Hence, JSON
documents are self-descriptive, and do not require a schema declaration,
despite a known structure facilitates storage and encourages queries [3].
Conversely, a structured database distinguishes schema and instances [4]. The
former is a set of attributes, each with a concrete domain, while the later is
a tuple of values that belong to the corresponding domain in the previously
declared schema. Hence, here, we present representational differences between
semi-structured and structured data (i.e., equivalent alternatives to represent
some datum exploiting the characteristics offered by each of both models),
and discuss their potential impact on storage size, data insertion, and query
performance. For each representational difference, we present patterns used
in the empirical validation in Section 4.

3.1 Schema variability

A common schema is defined for all instances in structured databases, but
in JSON, there may exist potentially different document schemata inside the
same collection. Here, we focus on comparing alternative ways to represent
the schema.

3.1.1 Metadata representation

Representing different schemata across JSON documents entails embedding
their metadata into each instance (Fig. 2.1). This clearly impacts negatively the
size of the database and consequently query performance. The more attributes
are present, the more metadata (i.e., attribute names) will be embedded into
each document. Additionally, the ratio between the size of data and metadata
is clearly an important factor to consider (i.e., attribute name length w.r.t. its
values). Thus, we need to consider (a) the absolute amount of metadata by
analysing different number of attributes (from 1 to n), and (b) the relative
amount of metadata by analysing different ratios (by increasing the value
length from 1 to m, while at the same time that decreases the attribute name
length in the same number of characters).

24



3. Representational Differences

JSON

{
_id: 123,

A1 : "x", . . .
An : "x"

}

. . .

{
_id: 123,

64-m
h nl j

A . . . A1 : "

m
h nl j

x . . . x", . . .
64-m
h nl j

A . . . An : "

m
h nl j

x . . . x"
}

Tuple

_id A1 . . . An
123 "x" . . . "x"

. . . _id

64-m
h nl j

A . . . A1 . . .

64-m
h nl j

A . . . An

123 "

m
h nl j

x . . . x" . . . "

m
h nl j

x . . . x"

Fig. 2.1: Alternative representations of Metadata

3.1.2 Attribute optionality

Another feature of the semi-structured data model is the possibility to skip
the representation on an attribute in the absence of its value (as the case of
J-Abs, Fig. 2.2). However, it also supports to, either use a special value outside
the domain (as in J-NULL) or use a specific value inside the attribute domain
(as in J-666). Notice that in a relational representation, as the schema is fixed
and common to all instances, only the last two options are possible (as in
T-NULL and T-666, respectively). The impact on space and performance of
these representations will vary depending on the percentage of absent/present
values for the attribute.

J-Abs J-NULL J-666

{ _id: 123 }

{
_id: 123,

A1 : null,
. . .
An : null

}

{
_id: 123,

A1 : 666,
. . .
An : 666

}

T-NULL T-666
_id A1 . . . An
123 null . . . null

_id A1 . . . An
123 666 . . . 666

Fig. 2.2: Alternative representations for optional attributes

3.2 Schema declaration

In order to benefit from Schema declaration and validation in semi-structured
databases, one must adopt additional constructs. JSONSchema is a JSON-based
schema language that allows to constrain the shape, types and values of JSON

25



3. Representational Differences

documents. Here, we will evaluate the impact of both structure plus data type
declaration, and integrity constraint (IC) validation separately.

3.2.1 Structure and data types

To validate structure and data types, JSONSchema uses the properties key.
For each attribute, it is possible to specify its data type, which can be either
a primitive or complex object. Furthermore, the required key represents
an array enumerating the list of expected attributes. Fig. 2.3 depicts the
exemplary document patterns considered. Clearly, this declaration has no
impact on database size, since it does not grow with instances. However, it
has a cost on insertion, corresponding to validating presence and domain, and
on the other hand, it could potentially benefit query time by saving an explicit
casting and type conversion.

J-Typ T-Typ

{
_id: 123,
A1 : k, . . .
A64 : k
}

{
"type": " object ",
" properties ": {

"A1 ": {"type": " number "},
. . .
"An ": {"type": " number "},
required : ["A1 ",...,"An "]

} }

_id A1 . . . A64

123 k . . . k

Fig. 2.3: Alternative representations of structure and data type validation

3.2.2 Integrity constraints

Besides the data type validation mechanisms, JSONSchema also offers means to
represent integrity constraints for attributes. Here, as depicted in Fig. 2.4, we
focus on enforcing ranges of values. In relational databases, this is achieved
via CHECK constraints. As above, this has no impact on the size of the database
but will have some on the insertion since it has to be checked before accepting
the data. Despite this, it might also be used to perform some semantic
optimization at query time; we consider this is technology-specific (i.e., not
directly dependent on the data representation) and will not be evaluated in
Section 4.

3.3 Structure complexity

An RDBMS conforms to 1NF, yet a semi-structured one relaxes such restriction,
which allows storing nested and multi-valued data. Here, we study the impact
of different complexity degrees on data according to that.

26



3. Representational Differences

J-IC

{
_id: 123,
A1 : k, . . .
A64 : k

}

{"type": " object ",
" properties ": {

"A1 ": {
"type": " number ",
" minimum ":´k1," maximum : k1}, . . .

"An ": {
"type": " number ",
" minimum ":´k1," maximum : k1

}}

T-IC

_id A1 . . . A64

123 k . . . k

ALTER TABLE T ADD CONSTRAINT
val_ A1 CHECK
(A1 BETWEEN ´k1 AND k1);
. . .
ALTER TABLE T ADD CONSTRAINT
val_ An CHECK
(An BETWEEN ´k1 AND k1);

Fig. 2.4: Alternative representations of Integrity Constraints (IC) validation

3.3.1 Nested structures

Documents allow to explicit into a data structure conceptually independent
objects, which are accessed using dot notation. Yet, it is unclear what is
the impact regarding size (i.e., with an increasing number of brackets in
the document), and on querying such structures. To explore this, we will
experiment with a range of levels and attributes as shown in Fig. 2.5). Precisely,
we will evaluate (a) increasing document sizes (i.e., Nest-one), and (b) constant
document sizes (i.e., Nest-all); both w.r.t. the number of nesting levels. Nest-1
indicates that there is only one attribute in the lowest level, while Nest-all
contains less attributes the more levels we have. For instance, with 32 nesting
levels, Nest-one has only A33, while Nest-all has attributes A33 to A64. Thus, in
the latter, for every level we add together with the required extra characters
(i.e., :, {, and }), we remove an attribute. Consequently, the overall size remains
constant in terms of document length, but not in physical storage space due
to the encoding of integer values being used.

Nest-one Nest-all

{ _id: 123,
L1 : { . . .

Ln : {
An`1 : k }. . .

}}

{ _id: 123,
L1 : { . . .

Ln : {
An`1 : k, . . .
A64 : k }. . .

}}

Fig. 2.5: Representation of nesting structures

27



4. Experimental evaluation

3.3.2 Multi-valued attributes

Only modern object-relational DBMSs have adopted variable-length multidi-
mensional arrays as data type, an aspect present in JSON by definition. Yet, it
is unclear what is the impact of managing such types. On bounded arrays, one
could argue that it might be better to store each position as an independent
attribute, as depicted in Fig. 2.6, where we distinguish, for both JSON and
tuples, array and multi-attribute alternatives. Multi-valued attributes could
also be stored in a separate normalized table, however such independent
structure would compete for resources, heavily impacting insertion and query
(see Appendix A). We consider such eviction policies are technology-specific,
thus they will not be evaluated.

J-Arr J-Att T-Arr T-Att

{ _id: 123,
A: [1,. . . ,n] }

{ _id: 123,
A1 : k, . . .
An : k }

_id A
123 [1,. . . ,n]

_id A1 . . . An
123 k . . . k

Fig. 2.6: Representation of multi-valued attributes

4 Experimental evaluation

We conducted experiments to evaluate the impact of the modeling choices
discussed in Section 3, using PostgreSQL v12 (an open-source RDBMS sup-
porting native JSON storage) to compare the differences between relational
and JSON alternatives. Moreover, we also used MongoDB v4.2 (nowadays, the
most popular choice for document stores) to validate the consistency of results.
It is important to note that our objective is not to perform a technological
comparison, but to evaluate the impact of document design choices.
Experimental setup. The experiments were conducted on a Debian 4.9 OS
with Intel Xeon E5520 and 24GB of RAM. They were implemented on Java 8
using the PostgreSQL Java driver v42.2 and MongoDB Java driver v3.12. No
specific tuning was performed for any system, using the default parameters.
However, we disabled compression in MongoDB to facilitate its comparison
with PostgreSQL. Also, we cleared the operating system cache and restarted
the DBMS between each execution to ensure caching mechanisms were not
affecting.

Thus, we got three metrics: (a) storage size in MB (given by, respectively,
pg_total_relation_size() and db.collection.status(), for PostgreSQL
and MongoDB); (b) overall runtime of insertions in seconds; and (c) median
runtime to aggregate a numeric attribute in seconds over 20 repetitions. To
store JSON in PostgreSQL, we created a table with two attributes: a CHAR(24)

28



4. Experimental evaluation

to store the ID (equivalent to Object_ID in MongoDB) and a JSONB to store
the document.

Then, we generated 1 million random documents according to each schema
pattern in Section 3, over an exponentially increasing parameter, which were
inserted in 100 batches of 10K documents.2 Finally, to minimise the impact
of impedance mismatch, queries retrieve only a single value by aggregating
some numerical attributes in the data. Unfortunately, by default, MongoDB
stores 32-bits integers 3, while PostgreSQL uses 64-bits4, which in the end
causes differences in storage size and consequently in insertion and query
performance.

4.1 Schema variability

For schema variability, we conducted three experiments overall because we
already had two patterns regarding metadata embedding (Section 3.1.1): (i)
change the number of numeric attributes in a document; and (ii) change the
data-metadata ratio, keeping a fixed number of attributes.

Varying document size. Fig. 2.7a depicts storage space growth as the number
of attributes increases. JSON always requires more space than tuples, due
to metadata being replicated in every document. We can observe the same
trend in Fig. 2.7b, showing that more attributes lead to longer insertion times.
However, although storage space for a tuple is smaller in all cases, insertion
time is shorter only for few (i.e., four) attributes. Beyond that, JSON insertion
is faster (due to no type checking, as shown later in Section 4.2). Again,
at query time, runtime increases with the number of attributes, as seen in
Fig. 2.7c. Nevertheless, oppositely to insertion, tuples perform faster (since
they benefit from the work done at insertion time). In all cases, we can see that
PostgreSQL and MongoDB follow the same trend on storing JSON. They only
differ in the physical format, which requires less space in the latter (64-bit vs.
32-bit integers). Thus, MongoDB generates less I/O (roughly half), improving
insertion and query time.

Constant document size. Aiming to stabilise the overall size of the document,
we keep constant the sum of characters between attribute name and value.
Thus, we have one numerical attribute for the queries and consider other nine
string attributes, changing at once their data to metadata ratio by changing
the length of attribute name and value keeping a constant of 64 characters for
both together. The number is chosen based on PostgreSQL having a limit of
63 characters for attribute names, so the attribute name length ranges from 1
to 63 and the value length from 63 to 1. As shown in Fig. 2.8a, since attribute

2The source code is available in https://github.com/dtim-upc/MongoDBTests.
3https://docs.mongodb.com/manual/reference/bson-types
4https://www.postgresql.org/docs/12/datatype-json.html

29

https://github.com/dtim-upc/MongoDBTests
https://docs.mongodb.com/manual/reference/bson-types
https://www.postgresql.org/docs/12/datatype-json.html


4. Experimental evaluation

 0

 200

 400

 600

 800

 1000

 1200

 1400

Tuple JSON JSON

S
to

ra
g
e
 s

iz
e
 (

M
B

)

No of Attributes
1
2
4
8

16
32
64

MongoDBPostgres

(a) Storage

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

Tuple JSON JSON

R
u
n
ti
m

e
 (

s
e
c
o
n
d
s
)

No of Attributes
1
2
4
8

16
32
64

MongoDBPostgres

(b) Insertion time

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

Tuple JSON JSON

R
u
n
ti
m

e
 (

s
e
c
o
n
d
s
)

No of Attributes
1
2
4
8

16
32
64

MongoDBPostgres

(c) Query time

Fig. 2.7: Effect of metadata embedding with changing number of attributes

name is only stored once, independently of the number of tuples, the storage
space taken by the tuples decreases with the growth of the attribute name
length. Oppositely, attribute names are redundantly stored in all documents
in JSON, so the overall size remains constant except for the last bar, seemingly
due to the presence of a step function in physical storage allocation. This is
confirmed in MongoDB, where the gradual growth in space is more apparent.
Interestingly, PostgreSQL and MongoDB storage size for JSON is much closer
in this experiment as most of the attributes are strings instead of integers.
Insertion and query times, in Fig. 2.8b and 2.8c, respectively, follow the same
trend as the attribute length grows in all cases, which indicates I/O is always
the dominant factor.

 0

 200

 400

 600

 800

 1000

 1200

 1400

Tuple JSON JSON

S
to

ra
g
e
 s

iz
e
 (

M
B

)

Attribute name length
1
2

4
8

16
32

63

MongoDBPostgres

(a) Storage

 0

 50

 100

 150

 200

 250

Tuple JSON JSON

R
u
n
ti
m

e
 (

s
e
c
o
n
d
s
)

Attribute name length
1
2

4
8

16
32

63

MongoDBPostgres

(b) Insertion time

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

Tuple JSON JSON

R
u
n
ti
m

e
 (

s
e
c
o
n
d
s
)

Attribute name length
1
2

4
8

16
32

63

MongoDBPostgres

(c) Query time

Fig. 2.8: Effect of metadata embedding with changing data-metadata ratio

Optional attributes. Regarding attribute optionality, we consider five alterna-
tives to represent the absence of values in the attributes (Section 3.1.2). Thus,
the pattern consists of 64 integer attributes (potentially removed all at once),
and one fixed-length string of size 64 to guarantee a minimal document size
when the former are removed. Thus, we vary in the experiment the percentage
of documents without value for their integer attributes. Regarding storage
space, as shown in Fig. 2.9a, the worst option to represent absence of data is

30



4. Experimental evaluation

using a value inside the domain (i.e., T-666 and J-666), which keeps a constant
size. In both tuples and JSON, we can use a null special value (i.e., T-NULL
and J-NULL), which clearly saves space as attribute values disappear. However,
the complete absence of the attribute in JSON (namely J-Abs), reduces the
storage space the most due to the saving also in the metadata. As before,
storage space in MongoDB follows the same trend as in PostgreSQL, but with
smaller values due to the different encoding of integers. Regarding insertion
time (Fig. 2.9b), also the trend coincides with that of the storage used for JSON
in both systems. However, tuples in PostgreSQL keep a constant insertion
time, because the dominant factor is not I/O, but validation and formatting
of data, which is not even compensated by the saving in metadata storage.
When querying the data, we tested both summing and counting their presence
(Fig. 2.9c and 2.9d, respectively) with similar results. We can see that, in all
cases, the dominant factor of the query time is I/O, and consequently follows
the trends and proportions of storage space.

 0

 200

 400

 600

 800

 1000

 1200

 1400

T−Null T−666 J−Abs J−Null J−666 J−Abs J−Null J−666

S
to

ra
g

e
 s

iz
e

 (
M

B
)

Null %
0

0.125
0.25

0.5
0.75

0.875
0.9375

1

MongoDBPostgres

(a) Storage

 0

 50

 100

 150

 200

 250

T−Null T−666 J−Abs J−Null J−666 J−Abs J−Null J−666

R
u

n
ti
m

e
 (

s
e

c
o

n
d

s
)

Null %
0

0.125
0.25

0.5
0.75

0.875
0.9375

1

MongoDBPostgres

(b) Insertion time

 0

 2

 4

 6

 8

 10

 12

T−Null T−666 J−Abs J−Null J−666 J−Abs J−Null J−666

R
u

n
ti
m

e
 (

s
e

c
o

n
d

s
)

Null %
0

0.125
0.25

0.5
0.75

0.875
0.9375

1

MongoDBPostgres

(c) Query time

 0

 2

 4

 6

 8

 10

 12

 14

T−Null T−666 J−Abs J−Null J−666 J−Abs J−Null J−666

R
u

n
ti
m

e
 (

s
e

c
o

n
d

s
)

Null %
0

0.125
0.25

0.5
0.75

0.875
0.9375

1

MongoDBPostgres

(d) Count nulls

Fig. 2.9: Effect of optional values with different percentages

4.2 Schema declaration

As discussed, schema declaration does neither affect the overall storage size
nor query time. Thus, we only report insertion time and do it together for

31



4. Experimental evaluation

both data types and ICs.

Type and constraint validation. Regarding type and IC checking (Sec-
tions 3.2.1 and 3.2.2), we generated documents with 64 attributes and declared
type and ICs in an incremental manner (from 1 to 64). To enforce JSON
schema declaration in PostgreSQL, we used the postgres-json-schema5 extension.
In MongoDB, this is a built-in feature that can be simply enabled with the
operator $jsonSchema, which is provided at creation time of the collection.
For the sake of completeness, we show the insertion time of tuples (Fig. 2.10),
however, in this case, all data types must always be declared, leading to
constant insertion time. Oppositely, when inserting JSON, time increases
with data types declaration, confirming the consequent overhead. Checking
concrete ICs on top of data types, substantially increments the overhead. Both
systems confirm trends, the only difference being that MongoDB mechanism
is built-in, consequently faster.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

T−Typ T−IC J−Typ J−IC J−Typ T−IC

R
u
n
ti
m

e
 (

s
e
c
o
n
d
s
)

Attributes
0
1
2
4
8

16
32
64

MongoDBPostgres

Fig. 2.10: Effect of schema declaration affecting different number of attributes

4.3 Structure complexity

Finally, we analyse the impact of breaking first normal form by either nesting
documents (Section 3.3.1) or storing multi-valued attributes (Section 3.3.2).
Notice that only the latter is available in relational implementations.

Nested structures. As depicted in Fig. 2.11a, the storage size of nesting one
attribute increases the document size with the increasing number of levels.
Nevertheless, when keeping the document size constant, PostgreSQL has
an overall constant size in all cases except for 64 levels, where the storage
size suddenly drops. Further investigation (using pg_column_size), revealed
that the physical storage size of an individual document slightly decreases

5https://github.com/gavinwahl/postgres-json-schema

32

https://github.com/gavinwahl/postgres-json-schema


4. Experimental evaluation

 0

 200

 400

 600

 800

 1000

 1200

 1400

nest−one nest−all nest−one nest−all

S
to

ra
g
e
 s

iz
e
 (

M
B

)

Levels
1
2
4
8

16
32
64

MongoDBPostgres

(a) Storage

 0

 20

 40

 60

 80

 100

 120

 140

nest−one nest−all nest−one nest−all

R
u
n
ti
m

e
 (

s
e
c
o
n
d
s
)

Levels
1
2
4
8

16
32
64

MongoDBPostgres

(b) Insertion time

 0

 5

 10

 15

 20

 25

 30

nest−one nest−all nest−one nest−all

R
u
n
ti
m

e
 (

s
e
c
o
n
d
s
)

Levels
1
2
4
8

16
32
64

MongoDBPostgres

(c) Query time

Fig. 2.11: Effect of nesting structure with varying number of levels

as the number of levels increases in PostgreSQL encoding. This is, however,
considerably small, and the storage structures round up the total size. We
do not appreciate such decrement in MongoDB, which slightly increases the
physical storage when the number of levels increases, even with constant
document size. The integer encoding difference (64-bits vs. 32-bits) explains
this opposite behavior. Yet, Fig. 2.11b shows that despite insertion times follow
the trend of the individual document storage sizes, we appreciate an extra
overhead in MongoDB beyond that of purely I/O. Also Fig. 2.11c, where
PostgreSQL performs better than MongoDB (despite having higher I/O), and
MongoDB have a clear upward trend with the increasing number nesting
levels as opposed to constant runtime in PostgreSQL confirms the overhead
nesting generates in MongoDB.

Multi-valued attributes. Regarding the storage of multi-valued attributes
(Section 3.3.2), we generated documents with the number of values per at-
tribute ranging from 2 to 64 for the different options. For tuples, we used either
PostgreSQL native array storage (T-Arr) or separate attributes for each value
(T-Att), and similarly for JSON either as an array in the document (J-Arr), or as
separate attributes (J-Att). Regarding storage size, Fig. 2.12a depicts that both
systems take more space for JSON than tuples, because of the saving of tuples
on metadata replication. While in tuples both options use the same space,
in JSON arrays are clearly more efficient, since separate attributes require
more characters (the same behavior is confirmed in MongoDB, but mitigated
by its smaller encoding of integers). However, Fig. 2.12b shows that despite
insertion time in JSON is dominated by I/O, in tuples inserting to an array is
faster than inserting multiple attributes, due to the overhead of parsing and
validating independent attributes in front of one single array. Nevertheless,
the extra processing at insertion time pays off at query time (Fig. 2.12c), where
processing the independent attributes is faster than digging inside the array.
For JSON, we appreciate the same benefit of querying independent attributes
in PostgreSQL, but surprisingly the opposite behavior in MongoDB, where

33



5. Discussion

 0

 200

 400

 600

 800

 1000

 1200

 1400

T−Arr T−Att J−Arr J−Att J−Arr J−Att

S
to

ra
g
e
 s

iz
e
 (

M
B

)

Length
2
4
8

16
32
64

MongoDBPostgres

(a) Storage

 0

 50

 100

 150

 200

 250

T−Arr T−Att J−Arr J−Att J−Arr J−Att

R
u
n
ti
m

e
 (

s
e
c
o
n
d
s
)

Length
2
4
8

16
32
64

MongoDBPostgres

(b) Insertion time

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

T−Arr T−Att J−Arr J−Att J−Arr J−Att

R
u
n
ti
m

e
 (

s
e
c
o
n
d
s
)

Length
2
4
8

16
32
64

MongoDBPostgres

(c) Query time

Fig. 2.12: Effect of multi-valued attributes with varying number of values

processing the array is systematically faster. Both MongoDB and PostgreSQL
have to sum individual attributes in J-Att. However, MongoDB has a built-in
function that sums the content of the array, which is more efficient, and on
the contrary, PostgreSQL needs to unwind the array in order to calculate the
sum, which is more expensive.

5 Discussion

Fig. 2.13 summarizes all results with regard to storage space, load time, and
query time. For this, we calculated the average of all measurements per
representational difference for each of the three options (i.e., Tuples, and
JSON in both systems). Since data follows different patterns in each case,
we separately min-normalize per case (e.g., divide the minimum of the three
averages for nested data by the average for Tuples) and plot them all in the
corresponding radar chart. This means values further away from the center
of the radar are better than the ones closer, and the bigger the area of the
polygon, the better the system performs.

Metadata.representation

Attribute.optionality

Nested.data

Multivalued.attributes

PostgreSQL−JSON

PostgreSQL−Tuple

MongoDB

(a) Storage

Metadata.representation

Attribute.optionality

Data.type.validation

IC.validation

Nested.data

Multivalued.attributes

PostgreSQL−JSON

PostgreSQL−Tuple

MongoDB

(b) Insertion time

Metadata.representation

Attribute.optionality

Nested.data

Multivalued.attributes

PostgreSQL−JSON

PostgreSQL−Tuple

MongoDB

(c) Query time

Fig. 2.13: Multidimensional view of experimental results

According to Fig. 2.13a, storing tuples takes the least amount of space in all

34



5. Discussion

cases except metadata representation. On interpreting this, we acknowledge
the impact of the ratio between metadata and data, which is fixed to be
relatively high in all experiments. Thus, attribute names should always be
encoded in JSON to shorten them as much as possible and improve that ratio.
Obviously, this is more relevant, for example, if values are numeric than if
they are strings (the former requiring less space, in general). Within JSON,
PostgreSQL storage size is much larger than MongoDB in all the cases, due to
the different encoding of integers (64-bits vs. 32-bits).

According to Fig. 2.13b, it is clear looking at PostgreSQL that loading JSON
is faster than tuples, except for data type and integrity constraint validations.
However, it is important to note that the validation of JSON was carried out
through a third-party plugin, which definitely impacts the results. MongoDB
being a native document store, has a clear advantage over PostgreSQL JSON
storage in loading data (at the end of the day, JSON is stored as a column in a
PostgreSQL table), beating even tuple storage in the validation dimensions.
This, however, can come not only from using JSON format but from other
DBMS characteristics (e.g., lack of ACID transactional support).

Finally, Fig. 2.13c depicts that tuples, in general, perform better in queries.
This is so because they use less space, in general, and benefit from validation at
insertion time. Thus, we can see that when the space-saving is lost depending
on the data-metadata ratio, so the benefit is mostly lost at query time, as
well. Nonetheless, JSON representation is at a disadvantage, as each of the
documents needs to be parsed and processed on demand. Consequently,
we should consider the trade-off between the pressure of fast ingestion and
the long term benefit of recurring queries. It is also interesting to see that
even though the storage size of JSON is larger in PostgreSQL, this is still
faster than MongoDB. We believe this fact results from the differences in how
query engines handle the calculations. PostgreSQL benefits here from the
well-optimized aggregation operations in the relational engine, which data
stored in JSON format also have access to.

35



Chapter 3

Managing Polyglot Systems
Metadata with Hypergraphs

This chapter has been published as a paper and an extension in:

• Proceedings of the 37th International Conference on Conceptual Model-
ing (ER). 2018
DOI: https://doi.org/10.1007/978-3-030-00847-5_33

• Data and Knowledge Engineering, 134, 101896. 2021
DOI: https://doi.org/10.1016/j.datak.2021.101896

The layout of the papers has been revised.

Springer copyright / credit notice:
Copyright © 2018, Springer Nature Switzerland AG. Reprinted with permis-
sion from Moditha Hewasinghage, Jovan Varga, Alberto Abelló, and Esteban
Zimányi. Managing Polyglot Systems Metadata with Hypergraphs, Interna-
tional Conference on Conceptual Modeling (ER) 2018. & Data and Knowledge
Engineering 134, 101896. 2021.

Elsevier copyright / credit notice:
Copyright held by the owner/author(s). Distribution of this paper is permitted
under the terms of the Creative Commons license CC BY-NC-ND 4.0.

36

https://doi.org/10.1007/978-3-030-00847-5_33
https://doi.org/10.1016/j.datak.2021.101896


1. Introduction

1 Introduction

With the dawn of the big data era, the heterogeneity among the data storage
models has expanded drastically, mainly due to the introduction of NoSQL.
There are four primary data store models in NoSQL systems: (i) Key-value
stores perform like a typical hashmap, where the data is stored and retrieved
through a key and an associated value; (ii) Wide-column stores that manage
the data in a columnar fashion; (iii) Document stores that represent data in a
document-like structure, which can become increasingly complex with nested
elements; (iv) Graph stores that are instance-based and store the relationships
between those instances. The heterogeneity is not only limited to the data
models but also various implementations of the same data model can be
entirely different from one another due to the lack of a standard.

Heterogeneous systems can be useful in different scenarios because it is
highly unlikely that a single data store can efficiently handle all the require-
ments of the end-user. Therefore, it is common to use different ones to manage
different portions of the data. This allows controlling the storage and retrieval
more efficiently for different requirements. Hence, polyglot systems were
introduced, similar to traditional Federated Database Systems (FDBMS), but
with more complexity considering the need to handle semistructured data
models. Due to the heterogeneity at different levels, most of the work on poly-
glot systems [20, 38] suggests the implementation of wrappers or interfaces
for each participating data store. However, this becomes more complex as the
number of participating data store types grows.

The catalog (see [45]) maintains the meta-information of the data store.
Having one for a polyglot system enables end-users to have a clear view of
the complex system. Its metadata plays a significant role in understanding
the overall picture of the underlying infrastructure. Moreover, it also helps to
improve the design of the polyglot system and determine the statistics and
the access patterns needed for different query requirements. It is essential
to answer questions such as: What is the structure of the data being stored?
Where is a piece of data stored? Is it duplicated in another store? What is the
best way to retrieve this data? What would be the storage requirements for
a particular data store design? What are the access patterns of a particular
query over a particular datastore? Nevertheless, little research addresses the
managing of metadata in polyglot systems. This is mainly due to the lack
of a design construct that can represent heterogeneous, semistructured data.
In this paper, we address the metadata management in polyglot systems by
extending an already existing NoSQL design method [11, 12], and formalizing
the constructs through hypergraphs.

The Save Our Systems (SOS) Model [11] claims to capture the NoSQL
modeling structures in data design for key-value stores, document stores, and

37



2. Preliminaries

wide-column stores utilizing three main constructs: attributes, structs, and
sets. These constructs and their interactions allow representing the physical
storage of above NoSQL systems. The fact that the model is simple makes
it compelling in representability, but the lack of formalization leaves space
for ambiguity and hinders the automation of metadata management in such
settings. Instead, it is simply used as a common programming interface for
data exchange.

In this Chapter, we formalize SOS using a hypergraph-based representation,
defining a common conceptual model for the metadata of any NoSQL system,
which we have formalized through definitions of the concepts based on logics.
RDF is considered to be able to represent any kind of data and is often used
as a data interchange format. Therefore, we make the assumption that we
have exemplars of the data in the polyglot system in RDF. Then, we build a
hypergraph that maps to different data design constructs, representing the SOS
model over the information. We represent the catalog of the polyglot system
using these constructs and introduce a simple query generation algorithm to
show the usefulness of our approach. Next, we explore different data store
models, identify their design constructs, introduce their design constraints,
and define query generation rules for each of them. Afterwards, we introduce
how our catalog can be used to calculate storage statistics and physical access
patterns for queries using document stores as an example. Finally, we show
the feasibility of our approach using a use case of an existing polyglot system
by representing its metadata catalog through our constructs.

The simple, yet powerful hypergraph-based approach presented in this
chapter is a step towards representing heterogeneous, semistructured data
in a formal manner as well as managing the corresponding metadata of a
polyglot system. It proves to be useful concerning (i) expressiveness: the
ability to express different representations, regardless of their complexity and
(ii) semantic relativism: the ability to accommodate different representations
of the same data, as defined in [99].

2 Preliminaries

In this section, we introduce the basic concepts of Resource Description
Framework (RDF) [72] and SOS Model [11, 12] that are used in our approach.

2.1 Resource Description Framework (RDF)

The Resource Description Framework [72] is a World Wide Web Consortium
(W3C) specification for representing information on the Web. It is a graph-
based data model that enables sharing of information and statements about
available resources.

38



2. Preliminaries

RDF represents data as triplets consisting of subject, predicate, and object
(s, p, o). These can be resources that are identified by an Internationalized
Resource Identifier (IRI), which is a unique Unicode string within the RDF
graph. An object can also be a literal, which is a data value. An example of
RDF is shown in Listing 3.1, written in Turtle notation. The example contains
information about music albums, artists, and songs and is used throughout
the paper.
@prefix foaf: <http://xmlns.com/foaf/0.1> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix mo: <http://purl.org/ontology/mo/> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

<http://dbtune.org/jamendo/artist/dylan> rdf:type mo:MusicArtist;
foaf:name "Bob Dylan"^^xsd:string;
foaf:made <http://dbtune.org/jamendo/record/emp>.

<http://dbtune.org/jamendo/record/emp> rdf:type mo:Record;
dc:title "Empire Burlesque"^^xsd:string;
foaf:maker <http://dbtune.org/jamendo/artist/dylan> ;
mo:track <http://dbtune.org/jamendo/track/Seeing>, <http://dbtune.org/jamendo/track/Tight> .

<http://dbtune.org/jamendo/track/Tight> rdf:type mo:Track;
dc:title "Tight Connection to My Heart"^^xsd:string .

<http://dbtune.org/jamendo/track/Seeing> rdf:type mo:Track;
dc:title "Seeing the Real You at Last"^^xsd:string .

Listing 3.1: Example RDF dataset 1

2.2 SOS Model

The high flexibility of NoSQL systems gives freedom to have multiple designs
for the same data. A particular data design built focusing on a specific scenario
can result in adverse performance when applied in a different context. Most
of the data design for NoSQL is carried out based on concrete guidelines
for different datastores and access patterns. Nevertheless, recent approaches
propose generic design constructs for NoSQL systems. For our approach, we
decided to use the SOS model [11, 12] as a starting point.

The SOS model introduces a basic common model (or a meta-layer), which
is a high-level description of the data models of non-relational systems. This
model helps to handle the vast heterogeneity of the NoSQL datastores and
provides interoperability among them, easing the development process. The
primary objective of the meta-layer is to generalize the data model of hetero-
geneous NoSQL systems. Thus, it allows standard development practices on a
predefined set of generic constructs. The meta-layer reconciles the descriptive
elements of key-value stores, document stores, and record stores. These differ-
ent data models exposed by NoSQL datastores are effectively managed in the
SOS data model with three major constructs: Attribute, Struct, and Set [12].

1http://dbtune.org

39

http://dbtune.org


3. Formalization

A name and an associated value characterize each of these constructs.
The structure of the value depends on the type of construct. An Attribute
can contain a simple value such as an Integer or String. Structs and Sets are
complex elements which can contain multiple Attributes, Structs, Sets or a
combination of those. SOS Model mainly addresses data design on document
stores, key-value stores, and wide-column stores [11]. Each of the datastore
instances is represented as a set of collections. There can be any arbitrary
number of Sets depending on the use case. Simple elements such as key-value
pairs or single qualifiers can be modeled as Attributes and groups of Attributes,
or a simple entity such as a document can be represented as a Struct. A
collection of entities is represented in a Set, which can be a nested collection
in a document store or a column family in a wide-column store. A possible
SOS representation of the example is shown in Fig. 3.1.

Fig. 3.1: SOS representation of the example

3 Formalization

In this section, we introduce and formalize our data model, which is based
on representative exemplars in RDF format of each kind of instances in the
underlying data stores. This RDF graph contains the classes and user-defined
types of the polyglot system. Thus, having the schemas of the underlying
data stores and having a global schema is important in our model. However,
this is beyond the scope of the current work. The schema of a structured
data store such as RDBMS can be extracted through the underlying DDL.
Schema inference from semi-structured data has also been carried out [30].
Moreover, previous work has shown that this global schema can be obtained
by extracting the schema of each data store and reconciling them [39, 103].

Building on top of the RDF data model discussed in Section 2.1, we
introduce our design constructs based on the SOS Model. Figure 3.2 shows
the overall class diagram of our constructs, where thicker lines represent the

40



3. Formalization

elements already available in the SOS (namely Sets, Structs, and Attributes),
and the relationship multiplicities defined in SOS are preserved. On top of
that, we introduce additional constructs to aid the formalization process and
manage metadata. From here on, we use letters in blackboard font to represent
sets of elements (e.g., A “ tA1, A2...Anu).

We rely on the concept of hypergraph, which is a graph where an edge
(aka hyperedge) can relate any number of elements (not only two). This can
be further generalized so that hyperedges can also contain other hyperedges
(not only nodes).

Fig. 3.2: Class diagram for the overall catalog

We define the overall polyglot system catalog as composed by the schema
and the essential elements that support a uniquely accessible terminology for
the polyglot system.

Definition 1
A polyglot catalog C “ xA, Ey is a generalized hypergraph where A is a set
of atoms and E is a set of edges.

Definition 2
The set of all atoms A is composed of two disjoint subsets of class atoms AC
and attribute atoms AA.
Formally: A “ AC YAA

Atoms are the smallest constituent unit of the graph and carry a name.
Moreover, every AC contains a URI that represents the class semantics, while
every AA carries the datatype and a URI for the user-defined type semantics.
Additinally, the information on the Atoms can be enhanced by the distinct
values for AAs and the number of instances on ACs identified as Count.

41



3. Formalization

Definition 3
The set of all edges E composed of two disjoints subsets of relationships ER
that denote the connectivity between A, and hyperedges EH that denotes
connectivity between other constructs of C.
Formally: E “ ER YEH

Definition 4
A relationship Ex,y

R is a binary edge between two atoms Ax and Ay and a
URI u that represents the semantics of ER. At least one of the atoms in the
relationship must be an AC.
Formally: Ex,y

R “ xAx, Ay, uy|Ax, Ay P A^ pAx P AC _ Ay P ACq

The ERs that connect two ACs can include the multiplicities between the
two classes. Since the relationships are bidirectional multiplicities are also
diploid.

This graph G “ xA, ERy is a representation of the available data, i.e., an
RDF translation of the original representatives of the data contained in the
polyglot system, that we assume to be given. G us immutable as it contains
the knowledge about the data. Figure 3.3 shows the graph G of the original
RDF example in Listing 3.1. Here, we can assume that each artist can have 5
records and each record has 2.5 artists on average. A record has on average
15 tracks and each track is in 1 record. Finally, there are 20 Artist, 100 Record,
and 1500 Track instances.

Fig. 3.3: Translated graph built from the RDF

We build our data design on top of G, based on the constructs introduced in
SOS model. Thus, we make use of Hyperedges and give rise to our hypergraph-
based catalog C. An incidenceSet of an Atom or a Hyperedge contains the
immediate set of E that Atom or Hyperedge is part of, respectively.

Definition 5
The transitive closure of an edge E is denoted as E`, where E P E`, @e P E` :
e P e1.incidenceSet ùñ e1 P E`

42



3. Formalization

Definition 6
A hyperedge EH is a subset of atoms A and edges E and it cannot be
transitively contained in itself.
Formally : EH Ď AYE^ EH .incidenceSetX E`H “ H

Definition 7
A struct EStruct is a hyperedge that contains a set of atoms A, relationships
ER, and/or hyperedges EH (a). Every struct has a special predefined root
atom that enables to identify the struct noted as OpEStructq. The root itself is
a subset of the EStructs composition. All the As must have a unique path of
relationships to its root which is also part of the struct (b). All the roots of the
nested EStructs inside a parent EStruct must have a unique path of relationships
from the root of the parent, and this path must be inside the parent (c). All the
ESets inside a parent EStruct must contain a set of relationships that connects
some AC of the parent to the root of the child EStruct or the A in the ESet (d).
All of the ERs inside a EStruct, must be involved in a path that connects either
the child As or the root of the child EStructs (e).

a) EStruct Ď AYER YEH

b) @a P psel f XAq : D!tEOpsel f q,x1
R , . . . , Exn ,a

R u Ď sel f

c) @s P psel f X EStructq ´Opsel f q : D!tEOpsel f q,x1
R , . . . ., Exn ,Opsq

R u Ď psel f Y
ACq

d) @s P psel f XESetq,@t P psX pEStruct YAqq : D!tEy,x1
R , . . . ., Exn ,z

R u Ď s^ y P
psel f XAq ^ pt P A?z “ t : z “ Optqq

e) @Ea,b
R P psel f XERq : pDy P psel f XAq : Ea,b

R P tEOpsel f q,x1
R , . . . , Exn ,y

R u Ď

sel f q _ pDy P psel f XEStructq : Ea,b
R P tEOpsel f q,x1

R , . . . , Exn ,Opyq
R u Ď sel f q

Definition 8
A set ESet is a hyperedge that contains a set of arbitrary EStructs, As, and
specific relationships ER (a). All the relationships in the set must originate
from a class atom of the parent of the set and the destination should be the
root of a child struct or A of the set (b).

a) ESet Ď EStruct YAYER

b) @Ea,b
R P psel f X ERq : DAx

C P sel f .parent, Dy P psel f X pEStruct YAqq :
Ea,b

R P tEx,x1
R , . . . , Exn ,z

R u Ď sel f ^ py P A?z “ y : z “ Opyqq

43



4. Metadata Management

4 Metadata Management

One crucial aspect of a metadata management system is the ability to represent
different data store models. In our work, we exemplify it on traditional
RDBMS, document stores, and wide-column stores. Figure 3.4 extends our
original diagram of constructs to support those.

Fig. 3.4: Class diagram for Hyperedge hierarchy

The ESet are specialized into two types: Data Store ED and First Level EF.
ED represents a concrete data store of the polyglot system. EF denotes a set of
instances in the particular data store. All the allowed kinds of data stores are a
subclass of ED. Moreover, ED.incidenceSet “ H. Thus, we define three kinds
of ED (namely RelationalERel

D , Document Store EDoc
D , and Wide´Column ECol

D
in Figure 3.4), which are the participants of our polyglot system. There can
be multiple EF within each ED adhering to the number of collections that
participate in the polyglot system.

All the Atoms and Edges of the polyglot system belong to the transitive
closure of one or more of these ED, A Y E “

Ť

E`D . Therefore, we can
deduce that the entire polyglot system catalog C can be represented by the

44



4. Metadata Management

participating ED. The Second Level pESq, is a Struct that represents a kind
of object residing directly in EF. These ES should align with the type of ED
where it is contained. It is a tuple for ERel

S , a document stored directly in the
collection for EDoc

S , and a row for ECol
S . The specialized ED, EF, and ES identify

specific EHs in the data store constraints.
Each EH carries a name which is interpreted depending on the context. In

ED, it represents the physical location of the underlying data store. In EF, it is
the collection name or table name. Depending on the type of ED that repre-
sents the data store, we can identify specific constraints and transformation
rules for the queries over the representatives.

The Edges of the catalog can carry much more information than just the
name. For example, an ER can indicate the multiplicity between Atoms.
Likewise, an EH can carry information like the size of a collection, percentage
of null values, maximum, minimum, and average of values. This catalog
differs from a relational catalog in the expressiveness that allows to represent
heterogeneous data models. By modeling the catalog of a polyglot system
through a hypergraph, it is possible to retain the structural heterogeneity
thanks to its high expressiveness and flexibility. Leveraging this information,
it is interesting to see how we can retrieve the data from the polyglot system.
Thus, our goal is to transform the formulation of a query over G into a query
over the underlying data stores. Inter-data store data reconciliation or merges
are out of the scope of this Chapter.

Algorithm 1 Query over polyglot system algorithm
Input: A query q
Output: A set of multi language queries Q corresponding to data store queries
1: Q ÐH

2: M Ð newHashmappq ă EH , Set ą
3: Q Ð newQueuepq
4: for each Atom a P q do
5: for EH i P a.incidenceSet do Ź hyperedges containing an Atom
6: Q.enqueuepă i, a ąq
7: while Q ‰ H do
8: temp Ð Q.dequeue
9: current Ð temp.first

10: M.addToSetpcurrent, temp.secondq Ź adds the second parameter to the set
11: for each EH j P current.incidenceSet do
12: Q.enqueuepă j, current ąq
13: for each EF f P M.keys do
14: Q.addpCreateQueryp f , ””qq
15: return Q

45



4. Metadata Management

4.1 Query Representation

We assume that any query over the original RDF dataset or an equivalent
query over the graph G corresponds to a query over the polyglot system.
Hence, this query needs to be transformed into sub-queries that are executed
on the relevant underlying data stores. For this, we introduce Algorithm 1
which builds an adjacency list for all the EH (hash map M) whose closure
contains Atoms of the query, aided by the incidence sets. First, all the EHs
that contains Atoms in the input query q is added into a queue Q as a pair
of ă EH , A ą (lines 4–8). Then, a pair temp is dequeued from Q and M is
updated with the EH in temp. f irst as the key and temp.second (can be an
Atom orEH) added to the corresponding value set with the help of addToSet
in line 12. All the EHs in the temp. f irst’s incidence set is added to the queue
Q (lines 13–15). This process is carried out until the queue Q has no more
elements (lines 9–16). The generated adjacency list can be used to identify
the EDs that corresponds to the relevant underlying data stores for the query.
Once this adjacency list M is generated and corresponding ED identified, a
simple projection query can be composed recursively with Algorithm 2 for
each of the EF according to different rules depending on the kind of data store
(lines 17–19). Algorithm 2 uses a prefix, a suffix and the path relevant for each
of the constructs of the data stores.

Algorithm 2 Create Query algorithm
Input: source EH , path o f EH (adjacency list M from Algorithm 1 is also available)
Output: A data store query q
1: q Ð prefixOfpsource, pathq
2: for each child P M.getpsourceq do
3: q Ð q`CreateQuerypchild, pathOfpsourceqq
4: q Ð q` suffixOfpsourceq
5: Return q

We are only generating projection queries, but selections can be considered
a posteriori by pushing down the predicates over the query path. Also, there
can be cases where the same information is available in multiple data stores.
If this happens, this overlap can be easily identified as the considered Atom
will be contained in more than one E`D . Then a join should be performed in
the corresponding mediator.

Definition 9
A query q over the hypergraph G is a connected graph consisting of a selection
atom sel, a set of projection atoms proj, a set of relationships rel and a
frequency f req.

Formally : q “ xsel, proj, rel, f reqy|sel P A,@a P proj : a P A,@Ax, Ay P

sel Y proj : DtEx,x1
R , Ex1,x2

R , . . . , Exn ,y
R u P rel, 0 ă f req ď 1

46



4. Metadata Management

4.2 Constraints and Transformation Rules on Data Stores

Considering the constructs and the query generation algorithm mentioned
earlier, each of the data store models would have its own rules and con-
straints on the data. Therefore, in this section, we analyze the constraints and
transformation rules for 3 of them: relational stores, document stores, and
wide-column stores.

4.2.1 Relational Database Management Systems

A typical example of the type of data design in RDBMS is shown in Figure 3.5.
The constraints and the mappings on EH can be represented in a grammar as
follows:

ERel
D ùñ ERel

F
˚, ERel

F ùñ ERel
S , ERel

S ùñ AC A ˚

Fig. 3.5: An example data design for an RDBMS

A traditional RDBMS data storage system consists of tables, tuples, and
simple attributes. The data store can have multiple tables, which are repre-
sented by ERel

F . Within a table, the schema of the tuple ERel
S is fixed. Therefore,

there can only be a single ERel
S inside a ERel

F . Finally, the tuple contains at least
one AC, which is the primary key. The EH containing an ER that crosses two
ERel

F corresponds to the relation that has the foreign key together with the
relevant AC.

The RDBMS design of Figure 3.5 represents the following tables:

ArtistrA_id, names,
RecordrR_id, names,
Artist_RecordrA_idpFKq, R_idpFKqs,
TrackrT_id, title, R_idpFKqs.

47



4. Metadata Management

Symbol prefix suffix path
ERel

F “FROM”+ ERel
F .name

ERel
S “SELECT” deleteCommapq
A A.name “, ”

Table 3.1: Symbols for Algorithm 2 in RDBMS

Symbol prefix suffix path
ECol

F “scan1 ”` ECol
F .name` “ 1, tCOLUMNS “ą r”

ECol
S deleteCommapq ` “su”

ECol
Struct path` ECol

Struct .name` “.”
A “1”` path` A.name` “1” “, ”

Table 3.2: Symbols for Algorithm 2 in Wide-Column Stores

The prefix and suffix in Table 3.1 are used in Algorithm 2 to generate
the corresponding queries. Note that deleteCommapq is an operation that
deletes the trailing comma of a string.

4.2.2 Wide-Column Stores

In a wide-column store, the data is stored in vertical partitions. A key and
fixed column families identify each piece of data. Inside a column family,
there can be an arbitrary number of qualifiers which identify values.

Ecol
D ùñ Ecol

F
˚, Ecol

F ùñ Ecol
S ,

Ecol
S ùñ ACEcol

Struct
`, Ecol

Struct ùñ A `

Fig. 3.6: An example data design for wide column store

The outer most Ecol
F represents the tables. Ecol

F contains an Ecol
S , which

represents the rows. The AC inside this Ecol
S becomes the row key. Ecol

S
contains several Ecol

Struct, which represent the column families. The A inside the

48



4. Metadata Management

Ecol
Struct represents the different qualifiers. The relationships between AC can

be represented as reverse lookups. In our example scenario, the hypergraph
in Figure 3.6 contains one column family per table. This can be mapped into

ArtistrA_id, rname, tR_iduss,
RecordrR_id, rnamess,
TrackrT_idrtitle, R_idss.

Wide-column stores generally support only simple get and put queries
and require the row key to retrieve the data. We use HBase query structure to
demonstrate the capability of simple query generation. Table 3.2 depicts the
translation rules for simple queries in wide-column stores used in Algorithm 2.

4.2.3 Document Stores

Document stores have the least constraints when it comes to the data design.
They enable multiple levels of nested documents and collections within.
Figure 3.7 shows a document data store design of our example scenario. The

Fig. 3.7: An example data design for Document Store

constraints and mappings in a document store design are as follows:

EDoc
D ùñ EDoc

F
˚, EDoc

F ùñ EDoc
S

`,
EDoc

S ùñ ACpA|EDoc
Set |E

Doc
Structq

˚, EDoc
Set ùñ pA|EDoc

Structq
`,

EDoc
Struct ùñ pA|EDoc

Set |E
Doc
Structq

`

EDoc
F represents the collections of the document store. EDoc

S inside the
EDoc

F represents the documents within the collection, which must have
an identifier AC. Apart from that, EDoc

S can have Atoms, or EDoc
Set , which

represents nested collections, or EDoc
Struct, or a combination of any of them. EDoc

Set
represents a nested collection which contains documents EDoc

Struct.
The design in Figure 3.7 can be mapped into a document store design as

ArtisttA_id :, name :, Records : rtR_id :, name :, Tracks : rtT_id :, title :ususu

49



5. Calculating Statistical and Storage Metadata

We use MongoDB syntax for the queries as it is one of the most popular
document stores at the moment. Table 3.3 identifies the symbols for the
queries.

Symbol prefix suffix path
EDoc

F “db.”` EDoc
F .name` “. f indptu”,{ “uq”

EDoc
S deleteCommapq

EDoc
Struct{Set path` EDoc

Struct{Set.name` “.”
Appath ‰ ∅q “"”+path` A.name` “": 1” “, ”
Appath “ ∅q A.name` “ : 1” “, ”

Table 3.3: Symbols for Algorithm 2 in Document Stores

4.2.4 Other Data Stores

As discussed above, we have managed to model and infer constraints and
transformation rules for RDBMS, wide-column stores, and document stores
which cover most of the use cases. However, it is also interesting to see the
capability of the approach to represent other data stores. Since our model
is based on graphs, we can simply conclude that it can express graph data
stores. We only need to map the data into G, and define a single set with all
Atoms. The key-value stores do not have sophisticated data structures, and
it can be considered as a single column in a column family. Thus, since we
are disregarding the storage of complex structures in the values that are not
visible to the data store, we can state that our model covers key-value stores
as well.

5 Calculating Statistical and Storage Metadata

We extend our metadata representation by including statistics on the
Hyperedges. For this, we consider the data type and the number of distinct
values on the AAs, count on ACs, and the multiplicity on each end of the ERs.
ESet will also have the cardinality as a calculated value (see Fig. 3.2). Using the
count and the multiplicity, we can calculate the total storage size for each of
the storage structures (relational table, collection, or wide table). In document
stores, if there are nested attributes within a collection (i.e., Records or Tracks
inside an Artist in Fig. 3.7) it is important to calculate the multiplicity between
the OpES{Structq and the OpEStructq of the nested EStruct. This information can
be used to estimate the size of secondary indexes, especially with multiple
nesting levels. Moreover, the same information can be used to determine the
physical access patterns of a particular query over a certain datastore. Even
though these calculations can be carried out on any datastore, it is particularly
interesting in document stores, because they are more flexible on storing data

50



5. Calculating Statistical and Storage Metadata

compared to RDBMS and column stores, mainly due to nesting. Thus, we
focus on document stores to explain the algorithms.

5.1 Storage size estimation

We take our running example in Fig. 3.3 to illustrate how Algorithms 3 and 4
can be used to calculate the storage size and the multipliers between the Root
atom and the rest of the Atoms in an EStruct. The multiplicity between Artist
and Record is 5 and between Record and Track is 15, and there are 20, 100, 1500
instances of Artists, Records, and Tracks, respectively. Let’s assume all ACs are
integers of 4 bytes in size, and all the AA Strings are 10 bytes.

Algorithm 3 works in a recursive manner going through each of the EHs,
calculating the size of each of the nodes inside, and multiplying them by the
number of instances of the EH . In the case of an Atom, this will be the size of
the stored data (i.e., 4 bytes for an integer). In case of a named EStruct or ESet,
it will add the name length to the total size, and its content. ESet represents a
collection of elements that could be a list or an array. In this case, we need to
calculate the size of this list/array. Algorithm 4 finds the number of instances
of such complex objects by referring to the multiplicity of the relationship
between parent and the child EHs.

If we want to calculate the storage size and the multipliers of the atoms
of the schema in Fig. 3.7, the collection hyperedge will be the input to Algo-
rithm 3. In the first iteration, the size will be set to 0 (Line 6). Then, at line
16, the top level document will be found, and the size will be increased by
the length of the name of the collection (6 assuming it is “Artist”). When
the embedded Records are reached, the EDoc

Set will have size 7 (with the name
“Records”). Then the Records will look into the embedded Tracks. The Tracks
will have a size of 7 with the name, and then the T_ID and the T_NAME will
be 4 and 10 bytes respectively, making an individual track 14 bytes overall.
Moreover, the EDoc

Set that contains the relationship between Record and Track
will return the multiplier being 15. Therefore, the record size will be calcu-
lated as the sum of 15 tracks, the length of the text “Tracks”, R_ID and the
R_NAME adding up to 230 (15 ˚ 14` 6` 4` 10) bytes. The EDoc

Set that contains
the relationship between Artist and Record will return the multiplier 5. Hence,
the Records inside the Artists will have a size of 1, 150 (230 ˚ 5) bytes. The
A_ID, A_NAME, and Records inside the Artist document will get a multiplier
of 20. Since there are 20 Artists, the total size of the collection will increase to
23, 426 (6` 20 ˚ p4` 10` 7` 1, 150q) bytes.

Apart from the total size, Algorithm 3 also returns the number of instances
of each of the Atoms within that collection. From the previous example,
we get 20, 100, 1500 as the number of instances for A_ID, R_ID, and T_ID
respectively. By dividing the number of instances by the number of instances
of Root, we can obtain the multiplying factor between the root and the nested

51



5. Calculating Statistical and Storage Metadata

Algorithm 3 CalculateSize algorithm
Input: source P AY E
Output: Size s, Hashmap <A,multiplier> map
1: map Ð newHashmappq ă A, multiplier ą
2: if source P A then
3: s Ð source.size
4: map.putpsource, 1q
5: else if source P EDoc

F ||source P EDoc
S then

6: s Ð 0
7: else if [ thenEmbeded list]source P ESet
8: s Ð source.name.lengthpq
9: else if source P EStruct then

10: if source.name “ ∅ then Ź Struct inside a set
11: s Ð 0
12: else Ź Embedded struct
13: s Ð source.name.lengthpq
14: for each child P source.getChildrenpq do
15: multiplier Ð CalculateMultiplierpsource, childq
16: result Ð CalculateSizepchildq
17: s Ð s` result.s ˚multiplier
18: for each key P result.map.keyspq do
19: map.addpkey, result.map.getpkeyq ˚multiplierq
20: Return ă s, map ą

Atoms. This value together with the distinct values of an AA can be used
to identify the potential secondary index sizes and their effectiveness. For
example, in an alternative document store design where the tracks are the
first level documents that embed the records and the record embed the artists,
with the same calculations we would get 1500 as the number of Authors stored.
However, since we know that there are only 20 different Authors, if we build a
secondary index on A_ID, we can estimate that each A_ID index entry would
point to 1500

20 “ 75 top level documents (Tracks).

Algorithm 4 CalculateMultiplier algorithm

Input: source P Edoc
H , child P M

Output: Multiplier m
1: if [ thentop level collection]source P Edoc

S
2: m Ð source.root.count
3: else if source P Edoc

Set then
4: relationship Ð source. f indRelationshipp˚, child.rootq Ź Set has one parent
5: m Ð relationship.Multiplicity
6: else
7: m Ð 1
8: Return m

52



5. Calculating Statistical and Storage Metadata

5.2 Physical access patterns for workloads

A query workload is usually provided as the frequencies of the respective
queries. However, the access patterns and the runtimes of the queries depend
on the underlying schema design, as shown in works such as [12] and [10].
Therefore, we believe that it is of interest to determine how the underlying
physical storage structures are used for a particular workload on different
data stores and schema designs. We assume that the workload is given as a
set of queries Q as stated in Definition 9, together with their access frequency.
Thus, we use Algorithm 5 to calculate the access frequencies of the collections
and their secondary indexes depending on the design choices.

Algorithm 5 CalculateFrequency algorithm

Input: Q, EDoc
S

Output: Hashmap<EDoc
S Y AC , f req> m

1: m Ð newHashmappq ă EDoc
S Y AC , f req ą

2: winners Ð newQueuepq
3: for each query P Q do
4: remaining Ð query.proj
5: cands Ð EDoc

S . f indpcontainspquery.selqq
6: if candidates.size = 1 then
7: winner Ð candsr0s
8: else Ź winner is the smallest collection with the selection as root
9: winner Ð cands. f indpcandidate.root “ query.sel^ candidate.size “ f indMinSizepcandsqq

10: if [ thenno selection as the root]winner “ ∅
11: remaining.addpquery.selq
12: winner Ð cands. f indpcandidate.size “ f indMinSizepcands.sizeqq
13: m.Aupdatepă winner,

query. f req ¨winner.getMultiplierpquery.selq ąq
14: m.Aupdatepă winner.getpquery.selq, query. f req ąq
15: winners.enqueuepwinnerq
16: while winners ‰ H^ remaining “ H do
17: main Ð winners.dequeuepq
18: covered Ð main`.AtomsY remaining
19: remaining Ð remaining´main`.Atoms
20: for each Ac P covered do
21: for each A P remaining do
22: rel Ð query.rel. f indRelationshippAc, Aq
23: if rel ‰ ∅ then Ź found a join
24: join Ð G. f indCollectionpcontainspA, Acqq

25: m.Aupdatepă join, m.getpmainq¨
rel.Multiplicity ¨ join.getMultiplierpAcq ąq

26: m.Aupdatepă join.getpAcq,
m.getpmainq ¨ rel.Multiplicity ąq

27: winners.enqueuepjoinq
28: SumToUnitypmq
29: Return m

We use a simple query structure with a single selection predicate and

53



5. Calculating Statistical and Storage Metadata

multiple projections. Nevertheless, notice that multiple tables/collections
within the data store may still be capable of answering the same query. In
such cases, we use a greedy approach for selecting the winner as the smallest
sized collection out of the candidates. Thus, the base case scenario is a single
collection containing the selection predicate (Line 6), followed by the smallest
collection containing the selection as the root if many contain it (Line 8), and
finally, the smallest collection that contains the selection predicate if none of
them have it has the root (Line 11).

For example, let us assume that we want to retrieve R_IDs and T_IDs by
A_ID with a frequency of 1, the records embed the artists, and the Tracks have
a separate collection with R_ID as the reference. We will have the Record as
the winning collection. If there is a secondary index on a particular A, each
query will use that index once, and the top level collection will be accessed
multiplier times. Therefore, the frequency of the collection is higher than
the actual query (Lines 15 and 16). Thus, we multiply the query frequency
by the multiplier of the selection predicate as the current frequency of the
collection (1 ˚ 5 for Record) and the selection predicate A_ID, is accessed with
the frequency of the query (1). The getMultiplierpAq method will return the
number of instances calculated in Algorithm 3 divided by the number of root
instances.

All the As transitively contained in the document that belongs to the query
are already retrieved by accessing it (R_ID). However, if there are other As in
different collections, they need to be joined outside of the data store (T_ID).
Assuming that we use a row-nested loop join, the index of the joined collection
needs to be accessed multiplicity times with regard to the original collection,
as shown in line 28, and the collection is accessed according to the referred
index as in line 27. Hence, the index on R_ID is accessed 5 times, and the
collection is accessed 75 (5 ˚ 15) times. The algorithm continues until all the
As in the query are covered by the data store. Finally, in line 33, we use a
normalizing factor to sum to unity, giving us the relative access frequencies
of different storage structures in the overall data store for this particular
workload. In our example, the four physical structures of Record and Track
collections and the indexes on A_ID in Record and R_ID on Track will be
accessed with overall frequency of 0.059 ( 5

5`1`5`75 ), 0.87 ( 375
5`1`5`75 ), 0.012

( 1
5`1`5`75 ), and 0.059 ( 5

5`1`5`75 ), respectively.
The Algorithms 3, 4, and 5 enable us to identify the storage requirements

of data and physical access patterns of the queries. Thus, we can determine
the storage sizes and the individual access frequencies of the collections and
their indexes (both primary and secondary). Applying these frequencies and
the storage sizes will allow us to estimate the query performance for different
datastore designs. We have implemented the approach in Appendices A
and B, to evaluate alternative schema designs on document stores using the

54



6. Use Case

cost model in Chapter 4 on storage space and query performance.

6 Use Case

Fig. 3.8: Graph representation of ESTOCADA

In this section, we showcase our technique applied on an already available
polyglot system. We base the example on the scenario used for ESTOCADA
[21]. This involves a typical transportation data storage for a digital city
open data warehousing. It uses RDBMS, document stores, and key-value
stores. Figure 3.8 shows the corresponding graph G. The multiplicities are
shown with the corresponding arrows (e.g. each line goes through 20 stations).
We have omitted the multiplicity of each bus, train, tram, and metro being
associated with one line for clarity of the figure.

The ESTOCADA system is used to store train, tram, and metro information
in an RDBMS, the train and metro route information in a document store,
and bus route together with the buses information in a key-value store (see
[21] for more details). This information can be represented in our polyglot
catalog2 as follows (shown as containment sets):

C “ tERel
D , EKv

D , EDoc
D u

ERel
D “ tERel

F_Train, ERel
F_Merto, ERel

F_Tstat, ERel
F_Mstat, ERel

F_Stationu,

ERel
F_Train “ tE

Rel
S_Trainu, ERel

S_Train “ tAC_rid, AA_rnameu,

ERel
F_Metro “ tE

Rel
S_Metrou, ERel

S_Metro “ tAC_mid, AA_mnameu,

ERel
F_Tstat “ tE

Rel
S_Tstatu, ERel

S_Tstat “ tAC_rid, AC_sid, AA_posu,

ERel
F_Mstat “ tE

Rel
S_Mstatu, ERel

S_Mstat “ tAC_mid, AC_sid, AA_posu,

ERel
F_Station “ tE

Rel
S_Stationu, ERel

S_Station “ tAC_sid, AA_snameu,

EDoc
D “ tEF_Metros.Tramsu,

EDoc
F_Metros.Trams “ tE

Doc
S_Metros.Tramsu,

EDoc
S_Metros.Trams “ tAC_lid, AA_lname, EDoc

Set_routeu,

EDoc
Set_route “ tE

Doc
Struct_Stationu, EDoc

Struct_Station “ tAC_sid, AA_snameu,

2The implementation of the catalog is available in https://git.io/vxyHO

55



6. Use Case

EKv
D “ tEKv

F_Station, EKv
F_Busu, EKv

F_Station “ tE
Kv
S_Routeu,

EKv
S_Route “ tAA_lname, EKv

Set_locu,

EKv
Set_loc “ tAA_snameu, EKv

F_Bus “ tE
Kv
S_Busu,

EKv
S_Bus “ tAC_bid, AA_lnameu

Our goal was to store the metadata of the ESTOCADA polyglot system
with a hypergraph. Thus, we used HyperGraphDB3 to save the entire catalog
information including the Atoms, Relationships, and Hyperedges for the struc-
tures. With this catalog, one can quickly detect where each fragment of the
polyglot system lies by merely referring to Hyperedges and the content within.

Let us assume that the following queries are issued on the catalog with
equal probability.

• Q1: Find information about trains on a given station (sid, sname, rid,
rname).

• Q2: Find the metro lines on a given station (sid, sname, lid, lname)

By utilizing Algorithms 1 and 2, we can generate the following data store
specific queries (selections are added a priori).

• SELECT rid, rname FROM Train
SELECT sid, sname FROM Station WHERE sid = <>
SELECT sid, rid FROM Tstat
db.MetrosTrams.find({route.sid:<>},{route.sid:1,
route.sname:1})

• db.MetrosTrams.find({route.sid:<>},{lid:1, lname:1,
route.sid:1, route.sname:1})
SELECT sid, sname FROM Station WHERE sid = <>

For the ease of demonstration, let us assume that all the identifiers are
4 bytes and the names are 20 bytes. Then, using the multiplicities provided
in G (Fig. 3.8) we can calculate the storage sizes and the multipliers using
Algorithms 3 and 4. Thus, we get a storage size of 54,150 bytes for a document
store. Each nested station document is 34 bytes (20+4+4+6). Then, the route
having list of 20 stations becomes 688 bytes (20*34+8). Next, the line contains
the route and the names with 722 bytes (688+20+4+4+6). Finally, the total size
is obtained by multiplying the line size by 75 (number of lines). This algorithm
can be reused to calculate sizes of other data stores giving us 58,200 bytes in
total on a RDBMS (75*(4+20) for Train, 100*(4+20) for Metro, 75*1*20*(4+4+4)
for Tstat, 100*1*20*(4+4+4) for Mstat, and 500*(4+20) for Station) and 19,000

3http://www.hypergraphdb.org

56



7. Related Work

bytes on the Key-value store 30*(20+(20*20)) for Route and 300*(4+20) for Bus).
When it comes to multipliers, only the document store and the RDBMS tables
with foreign keys should be considered. Thus, sid has a multiplier of 15 on
Tstat (3*5) and 30 on Mstat (3*10) and 3 on document store collection due to
each station belonging to 3 lines and each line having 5 trains and 10 metros.
Finally, using Algorithm 5, we can calculate the access frequencies of sid and
MetrosTrams collection (assuming both Q1 and Q2) as 0.25 and 0.75 as shown
in Table 3.4. Similarly, the RDBMS tables Station, Tstat, and Train will be
accessed with frequencies of 0.063, 0.4687, and 0.4687 respectively.

Usage
Query sid MetrosTrams

Q1 (p=0.5) 0.5 0.5*3 = 1.5
Q2 (p=0.5) 0.5 0.5*3 = 1.5

Total 1 3
Frequency 1

21 =0.25 20
21 =0.75

Table 3.4: Access frequencies of the document store storage structures

7 Related Work

There are few polyglot systems already available to support heterogeneous
NoSQL systems. In BigDAWG [38], different data models, including relation,
array, graph, stream, and text, are classified as islands. Each of the islands
has a language to access its data, and the data stores provide a shim to the
respective islands it supports for a given query. Cross-island queries are
also allowed, provided appropriate query planning and workload monitoring.
Contrastingly, ESTOCADA [20, 21] enables the end user to pose queries using
the native format of the dataset. In this case, the storage manager fragments
and stores the data in different underlying data stores by analyzing the access
patterns. These fragments may overlap, but the query executor decides the
optimal storage to be accessed. ODBAPI [102] introduces a unified data model
and a general access API for NoSQL and heterogeneous NoSQL systems. This
approach supports simple CRUD operations over the underlying systems, as
long as they provide an interface adhering to the global schema.

Myria [115] is a federated data analytics system that allows expressing
complex data analytic processes using its own hybrid language MyriaL. The
Relational Algebra Compiler(RACO) is used as the federated query executor,
which uses relational algebra extended with imperative constructs to capture
the semantics of non-relational concepts such as arrays. It generates query
plans for a specific array, graph, and key value engines. Apache Drill [55]
is a distributed query engine for ad-hoc analysis. It supports file-based,
document, relational, and columnar based storage systems. It used an in-
memory columnar data representation based on JSON and Parquet, which

57



7. Related Work

allows flexible schema management. CloudMdsQL [73] is a scalable SQL
query engine with extended capabilities to query non-relational data stores. It
uses a SQL based query language with embedded subqueries native to the
underlying data stores. A comprehensive analysis of BigDawg, Myria, Apache
Drill, and CloudMdsQL is carried out in [108] comparing the different systems
in terms of heterogeneity, transparency, optimally, flexibility, and autonomy.
The work concludes by stating that none of the systems nor approaches are
better than the other. Different systems are performant on different aspects
according to the design trade-offs that they have made.

SQL++ [91] introduces a unifying query interface for NoSQL systems as
an extension of SQL to support complex constructs such as maps, arrays, and
collections. This is used as the query language for the FORWARD middleware
that unifies structured and non-structured data sources. A similar approach
to SQL++ is carried out in [113]. Katpathikotakis et al. [67] introduces a
monoid comprehension calculus-based approach which supports different
data collections and arbitrary nestings of them. Monoid calculus allows
transformations across data models and optimizable algebra. This enables the
translation of queries into nested relational algebra that can be executed in
different data stores through native queries.

Using different adapters or drivers for heterogeneous data stores is a
common approach used in polyglot systems. The systems, as mentioned
earlier, use the same principle. Liao et al. [76] use an adapter-based approach
for RDBMS and HBase. The authors introduce a SQL interface to RDBMS and
NoSQL system, a DB converter that transforms the information with table
synchronization, and a three-mode query approach that provides different
policies on how applications access the data. The Spring framework [64]
is one of the most popular software used to access multiple data stores, as
it supports different types by using specific drivers and a common access
interface. Apache Gremlin [96] and Tinkerpop4 follow a similar approach but
particularly for graph data stores. The main drawback of this approach is that
each and every implementation needs to adhere to a common interface, which
is difficult due to the vast number of available data stores.

Standalone data stores have their own metadata catalogs. For example,
HBase uses HCatalog5 (for hive) to maintain the metadata. They are strictly
limited to the respective data models involved. In our work, we introduce
a catalog to handle heterogeneous data models. MongoDB, on the contrary,
does not maintain any metadata by default but instead handles the docu-
ments themselves but, there is a built in schema and data type validation6.
Some work also has been carried out in managing document store schema
externally [116].

4http://tinkerpop.apache.org
5https://cwiki.apache.org/confluence/display/Hive/HCatalog
6https://docs.mongodb.com/manual/core/schema-validation

58



7. Related Work

Several works have been carried out on data design methodologies for
NoSQL systems. NoSQL abstract model (NoAM) [10, 22] is designed to
support scalability, performance, and consistency using concepts of collections,
blocks, and entries. This model organizes the application data in aggregates.
It defines the four main activities: conceptual modeling, aggregate design,
aggregate partitioning, and implementation. The aggregate storage in the
target systems is done depending on the data access patterns, scalability, and
consistency needs. Our metamodel is capable of representing the same data on
different data stores having different schemas and their overlaps (essential for
the catalog) which NoAM cannot directly represent. Moreover, NoAM does
not discuss multiple levels of nesting which is essential in representing JSON.
Similarly, a general approach for designing a NoSQL system for analytical
workloads has been presented in [58]. It adapts the traditional 3-phase design
methodology of conceptual, logical, and physical design, and integrates the
relational and co-relational models into a single quantitative method. At the
conceptual level, the traditional ER diagram is used and transformed into an
undirected graph. Nodes denote the entities, and the edges represent their
relationships, tagged with the relationship type (specialization, composition,
and association). In cases where an entity can become a part of several different
hyper nodes, it is replicated in each of them. Mortadelo [34] introduces a
model-driven database design process to automatically generate a concrete
NoSQL database system from a high-level conceptual model. The platform-
independent Generic Data Metamodel (GDM) is used to represent not only
structural data but also the data access patterns. Then, applying a set of
transformation rules, the logical NoSQL specification is generated for specific
data store models (column family and document stores). Next, a set of
implementation scripts are generated for the target technology of the data
store. Mortadelo shows improvements over state of the art by comparison on
different use cases in document and column stores.

The Concept and Object Modeling Notation (COMN) introduced in [59]
covers the full spectrum of not only the datastore but also the software design
process. COMN is a graphical notation capable of representing the conceptual,
logical, physical, and real-world design of an object. This helps to model the
data in NoSQL systems where the traditional ER diagrams fail in representing
certain situations, such as nesting.

59



Chapter 4

A cost model for random
access queries in document
stores

This chapter has been published as a paper in VLDB Journal. 30(4), 559–578.
2021.
The layout of the papers has been revised.
DOI: https://doi.org/10.1007/s00778-021-00660-x

Springer copyright / credit notice:
Copyright © 2021, The Author(s), under exclusive licence to Springer-Verlag
GmbH Germany, part of Springer Nature. Reprinted with permission from
Moditha Hewasinghage, Alberto Abelló, Jovan Varga, and Esteban Zimányi.A
cost model for random access queries in document stores, VLDB J. 30(4),
559–578. 2021

60

https://doi.org/10.1007/s00778-021-00660-x


1. Introduction

1 Introduction

In the last couple of decades, NoSQL systems were introduced as an alternative
storage mechanism to traditional Relational Database Management Systems
(RDBMS). As of today, there are more than 100 NoSQL implementations,
categorized into four main types, namely, key-value stores, document stores,
column stores, and graph stores [24]. Among these, document stores have
been one of the most popular, mainly because of the schema flexibility they
provide.

Traditional RDBMS arrange data in tables with a fixed schema, and each
tuple within the table adheres to it. Similarly, document stores arrange data
in collections, and as the name suggests, they use document formats such as
XML or JSON as the unit of storage. However, in contrast to RDBMS tables,
the schema of a collection is not fixed and allows semi-structured data. This
means the documents within a collection need not be homogeneous, and in
extreme cases, one might have a collection containing documents that are
entirely different from one another.

Motivated by various commercial needs, the industry drives most of the
document store development. The semi-structured storage nature of document
stores enables end-users to follow a data-first approach rather than a schema-
first one. This can reduce the time and effort of defining the schema, especially
for cases where there is some uncertainty about the data structure and content.
However, in contrast to RDBMS, there is no formal standard, such as SQL
and normalization theory for document stores. Instead of a formal data and
query design, existing document stores provide guidelines for implementation-
specific optimizations [60]. Furthermore, all document stores use primitive
approaches to determine the optimal query execution plan. For example,
MongoDB tries to execute all viable query plans that use indexes in parallel
to finally choose the winning option. Here, rather than performing all the
query plans, some plans that take more work units (execution time or the
number of documents examined) than the currently leading one are discarded
prematurely as an optimization. The winning plan is cached and used on
similar subsequent queries. 1 Therefore, it is crucial to have a better schema
design to support this query execution model.

There are no existing methodologies to evaluate the viable document
store schema designs (referred to as design from now on), but only through
expensive trial and error one could determine which is the best design. Here,
a formal cost model would allow end-users to estimate how different design
decisions affect performance rather than relying on their intuition. Relational
cost models [61, 77, 94] are per-query and based on the current state of
the DBMS at the time of query execution. The primitive approaches of

1https://docs.mongodb.com/manual/core/query-plans

61



1. Introduction

document store query planners do not even rely on such information. Existing
cost models in RDBMS are based on disk access as the number of disk
accesses will always dominate the execution time of a query. Moreover, as a
result of hardware cost reduction in recent times, most of the data is pushed
into the memory for faster performance, and the cost models have adjusted
accordingly [83]. Thus, most document stores encourage having the working
dataset in memory to achieve higher throughput and lower response time.
Deciding on which fraction of the data should be in memory depends on
access patterns and memory allocation policies. Nevertheless, both of these
systems need to persist data into the disk (there are in-memory systems that
are out of the scope of our paper), and in most of the cases during the actual
operations, most of the data does not fit into the available memory. Therefore,
it is highly probable that the data is accessed from both memory and disk
simultaneously. Hence, in our work, we aim to predict the behaviour of the
document store memory and its effect on query execution depending on data design
decisions.

In this chapter, we present a generic cost model for random access in
document stores based on storage metadata and memory usage. Both these
parameters are specific for different document store implementation deci-
sions. Metadata can be easily obtained from the data stores and depends on
the disk storage structures. However, memory usage depends on memory
mapping, associativity, and eviction policies, and each of them consists of
several possibilities (e.g., pre-determined or shared associativity). Therefore,
we introduce formulas for different possibilities and depending on the un-
derlying document store, we pick the corresponding formulas to estimate
the memory usage. Finally, we use these memory estimates in our generic
cost model. We use Couchbase Server and MongoDB as two exemplars with
different memory usage patterns to validate our cost model. Couchbase Server
has pre-determined memory associativity per collection and maps individual
documents into memory, whereas MongoDB has a single memory shared
among the collections governed by a Least Recently Used (LRU) cache eviction
policy and maps disk blocks to memory.

The objective of our work is not to predict an exact runtime, but rather to
obtain a relative cost for a specific query under a fixed memory, workload, and
varying design decisions (e.g., average document size, number of documents,
and access frequency). Thus, the main contribution of this work is a generic cost
model for document stores for random access queries, which includes a detailed memory
distribution estimation model for different memory management choices. Based on
experiments, we show that we are able to estimate memory distribution within
an average precision of 91% and successfully predict the relative cost of queries
concerning the most relevant parameters. To the best of our knowledge, this
is the first attempt at a cost model, allowing us to predict the design impact
in document stores. Even though it is possible to introduce this cost model

62



2. Background and Related Work

into the native query processing of the document store implementation, it
may introduce significant overhead hindering the performance. The simplicity
of the current primitive query processing approaches is one of the many
reasons behind the performance gains in document store or NoSQL systems
in general compared to traditional RDBMS. Thus, we instead intend to use
this cost model as a tool to enhance the schema design process, which is
mostly rule-based. Using our approach, we can calculate a relative cost for a
particular design under a predefined workload. This value can then be used
as a measure of optimality together with other contradicting requirements
such as storage space of a collection on each of the viable designs to select the
best one. Thus, this is an initial step towards optimizing resource usage using
a systematic data design.

Document stores attract users who engage in rapidly changing require-
ments taking away the burden of fixing a database schema. Following this
trend, the SQL:2016 standard has incorporated JSON into the specification
allowing RDBMS to have unstructured data in a single attribute [87]. There-
fore, data design for RDBMS also goes beyond strict normalization and might
require a cost-based schema design and could benefit from our cost model as
well. We were also able to identify several inconsistencies of existing document
store implementations and propose how to improve them. Therefore, this
work can also be used to identify discordance of document store implementation
behavior against a theoretical expectation.

2 Background and Related Work

Most database system has its own cost model to determine query costs and
make execution plans accordingly. RDBMS have been around for more than
three decades and have well-established cost models and query planning
capabilities [61, 77, 94]. These cost models mainly depend on the disk I/O as it
is the most costly resource compared to other factors such as CPU calculations
and memory access. The main considerations of these cost models are physical
data structures, access paths, and the algorithms used.

Several works have been carried out on optimizations and cost models
for XML databases [50, 69] as well as for object-oriented databases [16, 46].
Moreover, Manegold et al. proposed a generic technique to create cost func-
tions for database operations in hierarchical memory systems in [83]. This
approach claims to be extensible to include disk I/O. As this hierarchical
memory model approach is most comparable to ours, we use it as a baseline
for comparison with details in Sect. 5.4.

Contrary to classical RDBMS systems, in-memory databases do not depend
on accessing data from the disk. Consequently, the cost models depend
exclusively on CPU cycles, memory capacity, line size, and associativity [44].

63



2. Background and Related Work

As mentioned before, document stores utilize both disk and memory for
optimized performance. Between the two, the disk access cost is several
magnitudes higher than of the memory. Thus, the determining factor for
the performance of a query will always be disk I/O when the data does
not fit in memory (most of the cases). Hence, we base our cost model on
the RDBMS approach due to the similarity in storage structures used in the
observed document stores and the maturity of the approach. Furthermore,
our cost model incorporates memory distribution in the calculation as needed
for overall design optimization.

Data in a typical RDBMS is stored with a primary index that utilizes B-tree
as the data structure when storing data in the disk. The internal nodes of the
B-tree contain the indexed values, and the leaf nodes contain either data or
pointers to data depending on the type of index (clustered and non-clustered).
These nodes are stored as fixed-size blocks in the disk. The total size of a
table depends on the record size, the number of records, and the indexing
mechanism used. The data access paths can be identified as a table scan,
random access, searching for one or several tuples, insertion, and deletion of
a tuple.

A given query can have multiple execution plans subject to the access path
to the tuples, index structures, and the order and execution algorithm for join
operations. RDBMS use a cost-based estimation where alternative query plans
are generated, and intermediate result sizes and cardinalities are estimated
from the available statistics. Next, a cost is estimated for each plan based on
blocks read and written to choose the best one. For example, in PostgreSQL,
each of the operations has predefined cost value2 and the alternatives are
evaluated through genetic optimization.3

Caching is an essential concept in modern disk-based computer systems
that refers to keeping already used data in memory so that the information
can be served faster for future requests. The retained data originates from
a prior request or calculation. When the data is fetched from the cache, it
is considered a cache hit or, in the opposite case, a cache miss. In the case
of a cache miss, the data needs to be fetched from the disk, which increases
the latency. Thus, higher cache hit rates lead to better performance [104].
However, the cache is generally smaller than the information that needs to
be retrieved by an application. Therefore, cached data needs to be replaced
over time. There are several eviction policies such as first-in-first-out, last-
in-first-out, least recently used, etc [85]. Different cache policies have their
strengths and weaknesses, and they are used depending on the application
requirements [105]. In any case, it is essential to know the hit rate to analyze
the performance of end-user applications. However, this is not trivial due

2https://www.postgresql.org/docs/12/static/runtime-config-query.html
3https://www.postgresql.org/docs/12/geqo-pg-intro.html

64



2. Background and Related Work

to the complex nature of the cache, the replacement policies, and the access
patterns. Frank King III introduced a Markov-chain-based cache hit rate
approximation using the independent reference model [70]. Based on this
approach, several other works have been conducted on approximating the
cache miss and hit ratios for different cache policies [53, 63, 114]. These
approaches provide an approximation of hit rate and cache usage not only for
a single application but also for shared cache among several applications [40].
In our work, we followed a probability-based approach to have a simple model
with lower runtime complexity.

The structure of the data also plays a vital role when implementing a cost
model. Although document stores and RDBMS maintain structured data, they
differ in several ways. Data in RDBMS is stored in and conforms to a user-
defined structure (table), and a single real-world object may often span several
tables. Document stores keep documents in a collection, but the structure of
the documents within it can differ from one to another. Moreover, document
stores support nested data structures and encourage denormalization, so that
all of the information for a real-world object can be a single document in
the database. Similar to key-value storage, data in document stores are kept
with a primary identifier. However, unlike in key-value storage, the internal
structure of data is not entirely hidden to the document store. Consequently,
document stores provide more extensive query capabilities for the end-user.

RDBMS satisfy ACID properties and use approaches such as write-ahead
logging to guarantee validity even in the event of errors. However, despite
the fact that the data is still stored in the disk, document stores encourage
keeping the working set in memory, so all the updates are done in transient
storage and only periodically synchronized to the disk (most of the NoSQL
systems use a similar approach to improve performance at the expense of
reliability). Document stores have begun to include mechanisms such as
logging protocols and transaction management to ensure reliability. How
data is stored, what additional metadata is used, and the memory usage
differs from one document store to another. Thus, we focus our study on two
representative document store platforms: Couchbase Server and MongoDB.

Several works have been carried out on cost-based schema design for
NoSQL systems. In NoSE, the authors evaluate alternative designs for column
stores (Cassandra) using the cost of accessing different column families to
answer the queries [88]. However, when it comes to document stores, esti-
mating the cost becomes more complex due to the introduction of secondary
indexes. The work by Vajk et al. [112] generates multiple alternative schema
sketches using denormalization, starting with 3NF. These schemas are then
evaluated based on the storage and the number of transactions to choose
optimal cloud-based storage solutions. Mortadelo [34] uses a meta-modeling
approach to generate database implementations from a high-level conceptual
model for document and column stores. A query merging approach is used

65



3. Formalization of the Cost Model

Fig. 4.1: Overview of the cost model for document stores

to optimize the access patterns to determine the optimal designs.
Regarding document stores, some work has been carried out on optimizing

the data storage in Solid State Drives [100], storage-specific data models [118],
and use case comparisons [56], but to the best of our knowledge, not much
work has been done regarding the cost models especially for JSON-based
storage systems. For example, MongoDB has a query planner for optimizing
complex queries that consider multiple execution paths as explained before,
and caches the winning plan for subsequent queries. Nevertheless, a server
restart or adding/deleting an index will clear the cached query plans. There-
fore, the present paper proposes a cost model that predicts not only relative
execution time but also memory usage patterns independent from query plan
caching that can be used to guide document design.

3 Formalization of the Cost Model

In this section, we present our cost model based on the data storage and query
mechanism of document stores. The cost model consists of a generic and a
specific component. The generic component is based on three parameters, as
shown in Fig. 4.1. First, the type of access affects cost. It can be random access
through a primary or secondary index, or a sequential one where the entire
collection is read. Second, the storage metadata characterizes the available
data in terms of storage structure, indexes, and their sizes. Finally, the
memory usage affects query performance, too. Among these parameters, the
storage metadata and memory usage are directly affected by the underlying
document store specifics. Therefore, we introduce the document store specific
component consisting of three segments (storage structure, memory mapping,
and memory associativity) to calculate and provide the two parameters to the
generic component.

In our work, we focus on random access, which refers to accessing a

66



3. Formalization of the Cost Model

document in a collection via physical disk location as these are the majority
of the queries used on document stores (owing to the support of secondary
indexes). The capital letters in italic correspond to the concepts in Fig 4.1.
The storage size of a collection and its indexes mainly depend on the physical
storage structures, which is the first segment of the specific component. These
could be B-trees (T), hash buckets (B), or heap files (F) [77, 94]. In our
validation, we use MongoDB and Couchbase Server in which B-trees are
used. When bringing the data from the disk, it is directly mapped (D) into
the memory following the structure as in the disk (MongoDB). However,
Couchbase Server uses a hash-based mapping (H) where each document
in the disk is brought and identified in the memory through a hash value
indicating an in-memory bucket. Hence, we introduce memory mapping as
the second segment of the implementation-specific component. The memory
associativity in the presence of different collections can be: Pre-determined if
the amount of memory used by each of the collections is also predetermined
(fixed by the user in Couchbase); or shared if the usage of each collection
determines how much memory is devoted to it (MongoDB). The proportion of
documents in memory can be easily calculated in the case of pre-determined
associativity (P). However, with shared associativity (S), this proportion is
affected by the probability of accessing a collection and its storage metadata
as well as the eviction policy being used. The eviction policy can be LRU (L),
FIFO (Q), Random (R), etc.

We introduce an encoding for the external parameter configurations for
the sake of convenience. The encoding contains three to four letters, each
representing a segment in the order of storage structure, memory mapping,
memory associativity, and eviction policy (only under shared memory). In
this work, we introduce cost formulas for a B-tree based disk storage (T) under
direct memory mapping (TD) with pre-defined associativity (TDP) or shared
associativity under an LRU eviction policy (TDSL), and hashed memory
mapping (TH) with pre-defined associativity (THP) or shared associativity
under an LRU eviction policy (THSL). We validate our model using Couchbase
Server (THP) and MongoDB (TDSL), introducing specific details regarding
their implementation. As such, we can include other document stores in our
cost model, depending on their configuration.

3.1 Generic Component

We assume that the data is retrieved from the disk to the cache and served for
processing from the cache. Furthermore, the disk and the cache are accessed
in fixed-size blocks, and the costs of reading a block from the cache or the
disk are different but constant. The main focus of the present work is to
estimate the cost for data access via the primary or secondary index of a
collection (random access). We exemplify our approach on B-tree storage

67



3. Formalization of the Cost Model

Table 4.1: Variables of the Cost Model

M
Total memory available for the
document store

Bi f pCq
Total index size on field f in
blocks

f Indexed field of a collection Req f pCq
Total number of requests to an in-
dexed field

Bsized Block size for data PdpCq
Probability of queried data block
being in the cache

Bsizei Block size for index Pi f pCq
Probability of queried index block
on field f being in the cache

MdpCq
Memory blocks used for the data
of a collection

CostRand Relative cost for a random read

Mi f pCq
Memory blocks used for the index
of a collection

Rep f pCq
Number of repetitions of an in-
dexed field

Tm Time to read a block from cache MallocpCq Memory allocated to a collection

Td Time to read a block from disk PpC, qq
Probability of querying a collec-
tion by a query q

N Number of collections |Q|
Overall number of queries in an
eviction cycle

C A collection SFf pCq
Probability of a document being
requested using field f

SizedpCq
Average document size of a collec-
tion

Preq
d pCq

Probability of data block in cache
being requested

Sizei f pCq
Average index entry size of a col-
lection (on field f )

Preq
i f
pCq

Probability of index block in cache
being requested

|C|
Number of documents of a collec-
tion

Msat
d pCq

Memory blocks used for the docu-
ments of a collection at saturation
point

F Fill factor of the B-tree Msat
i f
pCq

Memory blocks used for the index
of a collection at saturation point

RdpCq
Average number of documents in
a block

K
Total size of non-leaf nodes of all
the B-trees

E f pCq
Number of unique requests to an
indexed field

Pblock
d

The probability that any of the
documents in a leaf block being
requested

RintpCq
The average number of reference
entries in an internal B-tree block

Pblock
d

The probability that any of the
documents in a leaf block being
requested

Ri f pCq
Average number of entries in a
block for an index over field f

Shotsin
d pCq

Number of queried data blocks
that are in memory within a time
window (hits)

BdpCq Total collection size in blocks Shotsout
d pCq

Number of queried data blocks
that are not in memory within a
time window (misses)

BsizeintpCq Internal B-tree block size SizeintpCq Internal B-tree reference entry size

Multi f pCq
Multiplying factor of a secondary
index

MuserpCq
Memory allocated by the user for
a collection C in pre-defined mem-
ory associativity

68



3. Formalization of the Cost Model

used by both Couchbase and MongoDB. For the sake of simplicity, we assume
that the internal nodes of the B-trees are never removed from the cache in
the calculations. Nevertheless, in case that the size of the internal nodes is
relevant compared to the amount of memory available, extending the formulas
to include them is straightforward (detailed explanation in Sect. 4).

Data distribution plays a vital role in document stores. Our estimations
are intended for a single instance of a document store. However, they can
be extended into a distributed environment. Assuming that the data has
a uniform distribution among the nodes, we can estimate the size of the
collections and indexes lying on each node by merely dividing the number of
documents by the number of nodes. Therefore, the formulas can be directly
applied to each of the nodes independently, just considering that distribution
introduces an additional network cost. Existing work has added this cost
together with the I/O cost as a weighted sum [92]. The network cost can
be estimated by the size of data that needs to be moved between the nodes
depending on the query. For example, if a query contains a shard key in
MongoDB it will execute it only on the relevant nodes, but if it does not, the
query needs to be performed on all the nodes, and the results need to be
aggregated.4 Random access queries can hardly benefit from data distribution,
as the end result is accessing a single piece of data in a given machine through
a given path. We compared the runtime of a sharded cluster against a single
instance for the experiments carried out in this work. In all the cases, the
runtime of the distributed system was more than that of the single instance due
to the added network cost, except for those instances that can accommodate
all the data in memory with more machines.

Table 4.1 lists the variables used in the cost model equations. We define
the number of cached data blocks as MdpCq and cached index blocks as MipCq.
These numbers and their behavior vary depending on the type of document
store and the access pattern of a collection, but we assume that the index entry
and the document sizes are smaller than the block size pSizei f pCq, SizedpCq
! Bsized, Bsizeiq and the blocks are filled in the average up to a percentage F.
Thus, the average number of documents in a document block of collection
C, RdpCq, and the average number of index entries in an index block (on a
particular field f ) Ri f pCq can be defined as follows.

RdpCq “ F ¨
Y Bsized

SizedpCq

]

Ri f pCq “ F ¨
Y Bsizei

Sizei f pCq

]

(4.1)

Now, we can define the total data leaf blocks of a collection BdpCq and
the total index leaf blocks of the collection Bi f pCq dividing the number of
documents by the respective number of documents and index entries that fit
in a block as follows. For a secondary index, the leaf level entries depend on

4https://docs.mongodb.com/manual/core/distributed-queries

69



3. Formalization of the Cost Model

how many documents are being pointed by a single index entry, specified by
a multiplying factor Multi f pCq.

BdpCq “
Q

|C|
RdpCq

U

Bi f pCq “
Q |C| ˚Multi f pCq

Ri f pCq

U

(4.2)

If there are MdpCq data blocks and Mi f pCq index blocks in memory for
collection C, by using Eq. 4.3, we define the probabilities of the block contain-
ing the queried document and the block containing the index entry being in
the cache (PdpCq and Pi f pCq) as proportions of the total number of data and
index blocks. In the case of hashed memory mapping, these proportions can
be taken with the document or index sizes as there is no block structure in
memory. (Detailed description in Sect. 3.2.1)

PdpCq “
MdpCq
BdpCq

Pi f pCq “
Mi f pCq

Bi f pCq
(4.3)

Next, we define the cost function for random access through an indexed
field using the above equations. First, the relevant block containing the index
of the document needs to be fetched. This block could reside in the cache with
probability Pi f pCq or should be retrieved from disk with probability 1´ Pi f pCq.
Next, the block containing the document needs to be retrieved, and this could
be from the cache with a probability of PdpCq or the disk with a probability of
1´ PdpCq. Thus, the total cost is the average of retrieving the index and the
document blocks as follows.

CostRand “
Tm ˚ Pi f pCq ` Td ˚ p1´ Pi f pCqq

2

`
Tm ˚ PdpCq ` Td ˚ p1´ PdpCqq

2

(4.4)

If the indexed field is that of a typical primary index of a B-tree, the index
components can be omitted as the index is contained in the internal nodes (this
is not the case in the current MongoDB, refer Sect. 4.2). Now, if we assume
that the cost of reading a block from the cache can be neglected compared
to the cost of reading from the disk (Tm ! Td), we can simplify the cost to
Td˚p2´pPi f

pCq`PdpCqqq

2 . Moreover, considering that block sizes are constant in
the system, by replacing Pi f pCq and PdpCq from Eq. 4.3, we can infer that the
cost of random access is negatively correlated with the size of the memory
allocated to the index and data, and positively on the collection size (i.e., the
size of the B-tree). The collection size is a product of the number of documents
and the average document size divided by the fill factor (F in Table 4.1). We
define the memory allocated to a particular collection as the sum of memory

70



3. Formalization of the Cost Model

used by data and all the indexes (I).

MallocpCq “ MdpCq ˚ Bsized `

I
ÿ

k“0

MikpCq ˚ Bsizei (4.5)

Finally, our generic cost model uses memory usage as an external
parameter specific to the underlying technology.

3.2 Specific Component

The specific component consists of three segments, namely, storage structure,
memory mapping, and memory associativity. Both Couchbase Server and
MongoDB use a B-tree structure to store data and indexes. Since the estimation
of B-tree size is a familiar process [77, 94], we focus on memory mapping and
memory associativity in detail.

When the document store is started, the cache is assumed to be empty (i.e.,
cold start). Thus, all the requests sent involve fetching data from disk and
caching them in memory. This will continue until the cache becomes full, and
the cache eviction starts to release some of the blocks to allow new ones to be
cached. As shown by previous work, the cache becomes stable in terms of the
memory allocated to the different collections and indexes after a certain point,
and its state can consequently be approximated [32, 53, 63, 114]. However,
this approximation depends on the specific approaches used for managing
the memory.

3.2.1 Memory Mapping

There are two forms of memory mapping that we explore in our work: direct
and hashed. First, we define the unique queries issued in the workload Q as a
set of triples. Each triple consists of a collection C, indexed field f , and the
probability of using that indexed field PpC, f q.

Direct (D) In direct memory mapping, both data and index are stored,
retrieved, and managed in memory as blocks. Thus, the formulas used from
this point onwards apply to both the data B-tree and the (secondary) index B-
tree. We define the number of repetitions of the indexed field f of a collection
C as the ratio between the total number of leaf level entries and the number
of distinct values of f as follows. When the value is a primary index or has a
unique constraint, Rep f pCq “ 1 (which is used in Eq. 4.11).

Rep f pCq “
|C| ˚Multi f pCq

distinctp f q
(4.6)

71



3. Formalization of the Cost Model

We assume that just before the eviction starts, there have been |Q| issued
queries and we define this state as the saturation point. These queries are from
all the collections that are being accessed. Thus, each collection has Req f pCq
number of document requests from each field f , which is proportional to its
access frequency.

Req f pCq “ |Q| ¨ PpC, f q (4.7)

However, the same document or the index can be requested more than once.
Therefore, we estimate the number of unique requests E f pCq as the expected
value after issuing Req f pCq requests out of the total number of distinct values
with replacements.

E f pCq “ distinctp f q ˚
ˆ

1´
´distinctp f q ´ 1

distinctp f q

¯Req f pCq
˙

(4.8)

Then, we define the selectivity factor in a collection C, with respect to a field
f as SFf pCq, which is the probability of a document being requested through

the index on f . Using Eq. 4.8, we define this as
E f pCq

distinctp f q . However, there
could be multiple queries that access the same collection through different
indexes. Therefore, we aggregate the selectivity factor of a collection by using
the formula for the probability of union on n events as follows. The number
of all the queries issued on the document store is denoted by |Q|.

SFpCq “
Q
ÿ

i“1

p´1qi`1
´

ÿ

1ďăk1...ăkiď|Q|

pSFfk1
pCq ^ ...^ SFfki

pCqq
¯

(4.9)

If a data block is in the cache, at least one of the documents in the data
block must have been requested. So, the probability of a document not being
requested is 1´ SFpCq, and the probability of none of the documents in a data
block being requested is p1´ SFpCqqRdpCq. Hence, the probability of a data
block being requested by a query Preq

d pCq is the complement of none of its
documents being requested by that query. In turn, the index B-tree has the
same SFpCq as it needs to be accessed in order to access the document. Even
though the selectivity factor of the secondary index and the data B-tree is the
same, there is one crucial difference between the physical storage of the two
structures. The secondary index B-tree is sorted by the indexed value while
the data B-tree is not. On account of this, the probability of a leaf node of the
secondary index not being requested is that of none of the unique index values
within the index block being requested. The index block contains Ri f pCq index

entries and the number of unique values within the block is
Ri f
pCq

Rep f pCq
.

Preq
d pCq “ 1´ p1´ SFpCqqRdpCq (4.10)

Preq
i f
pCq “ 1´ p1´ SFf pCqq

Ri f
pCq

Rep f pCq (4.11)

72



3. Formalization of the Cost Model

Consequently, at the saturation point, just before the eviction starts, the
size of cached data Msat

d pCq and index MipCq can be stated as follows.

Msat
d pCq “ BdpCq ˚ Preq

d pCq (4.12)

Msat
i f
pCq “ BipCq ˚ Preq

i f
pCq (4.13)

Hashed (H) In a hashed memory mapping system, memory is managed per
document. The document is brought into memory with its metadata. Here,
when there is enough memory for all metadata, only documents are evicted
while the metadata remains in memory. Since the relationship between the
blocks and the documents are lost in hashing. Thus, we only estimate the size
of documents in the cache instead with Eqs. 4.14 and 4.15.

Mi f
pCq “ Sizei f pCq ˚ |C| (4.14)

MdpCq “ MallocpCq ´ Sizei f pCq ˚ |C| (4.15)

In the case of not having enough memory to allocate all metadata, a full
eviction mode could be used. In this case, the metadata is evicted when
the document is evicted from memory. Here, the total memory used by a
collection is divided proportionately to the size of the document and metadata,
as in Eqs. 4.16 and 4.17.

MdpCq “ MallocpCq ¨
SizedpCq

Sizei f pCq ` SizedpCq
(4.16)

Mi f
pCq “ MallocpCq ¨

Sizei f pCqq

Sizei f pCq ` SizedpCq
(4.17)

With regard to Eq. 4.3, hashed memory mapping loses the block informa-
tion. Thus, we use values from Eqs. 4.14 to 4.17 as the numerator and the size
of the collection as the denominator (e.g. RdpCq

F ) to get the proportion of what
is in memory out of the overall collection/index.

3.2.2 Memory Associativity

Memory associativity describes how memory is allocated between the col-
lections. Here, we allocate a constant overhead K as extra memory used for
parameters that are not considered in the formula. For example, it could be
the internal nodes of the B-trees. Moreover, not all the memory is used by the
collections and indexes and an upper memory limit is set. The eviction takes
place once this limit is reached. We introduce this upper limit as a percentage
denoted by u. In pre-determined (P) associativity the memory is decided by
the user.

MallocpCq ` K “ MuserpCq (4.18)

73



3. Formalization of the Cost Model

In shared (S) associativity, the overall memory is shared between different
collections which can be formalized as follows.

N
ÿ

i“1

MallocpCiq ` K “ uM (4.19)

3.2.3 Cache Eviction Policy

A Cache and its eviction policy is applicable when there is shared memory
associativity. We introduce the formulas for a B-tree based, LRU (L) cache
eviction policy as it is considered to be fair in most of the use cases.

When eviction cycles start, the least recently used blocks are removed
from memory. Suppose a document (resp. index entry) is accessed with
a probability Pdoc. In that case, the likelihood of a leaf block in the data
B-tree (resp. index B-tree) being accessed is the probability that some of the
documents in that block are requested, which is 1´ p1´ Pdocq

RdpCq, noted
as Pblock

d . To evict an internal block in the data B-tree (resp. index B-tree),
all the leaf blocks pointed by that internal block need to be evicted. Hence,
the probability of one of the leaf blocks not being referred is 1´ Pblock

d , and
consequently the probability of some of these leaf blocks is referred is 1´ p1´
Pblock

d qRintpCq noted as Pinter
d . Since they depend one on another and RintpCq "

RdpCq, it is clear that Pinter
d " Pblock

d , and we can safely assume that the internal
data blocks are hardly evicted (only in extreme cases). The same reasoning
can be done for an index B-tree (notice that the probability of accessing a
document is the same as the probability of accessing its corresponding index
entry, so we would similarly obtain Pblock

i and Pinter
i ). Therefore, for the sake of

simplicity, we only consider the eviction of leaf nodes and assume that all the
internal nodes of the data and the index B-trees are pinned to the cache and
take constant K memory as explained above. Their eviction will only become
significant when there is a substantial number of blocks in the leaves. If so,
refer to Appendix C for a detailed calculation and extension of Eq. 4.10 to
include the eviction of internal B-tree blocks.

We use the term reference entry to name an entry of an internal block
which points to a leaf block, and define the average number of reference
entries in an internal block RintpCq, in terms of internal block size BsizeintpCq,
reference entry size SizeintpCq and the corresponding fill factor. For index
B-trees, the reference entry size depends on the field f .

RintpCq “ F ¨
Y Bsizeint

SizeintpCq

]

(4.20)

Thus, the value of K can be easily obtained by iteratively moving up on the
B-trees, starting from the leaves and calculating the number of blocks at each
level by dividing the previous by RdpCq (or RipCq or BsizeintpCq depending

74



3. Formalization of the Cost Model

on the kind of B-tree and level). Then, by solving the system of Eqs. 4.7 4.13
under the condition that the sum of memory used equals the total memory
available as shown by Eq. 4.19, we obtain the memory distribution just before
the eviction, Msat

d pCq and Msat
i f
pCq.

When the cache is stable, the probability of bringing in a new data block of
a collection Pin

d pCq should be equal to the probability of evicting a data block
from the same collection Pout

d pCq and the same can be applied for the index
B-tree. Thus, solving the following system of equations, together with Eq. 4.19
we can obtain the stable state of the memory.

@Cj : Pin
d pCjq “ Pout

d pCjq, @ f P Cj : Pin
i f
pCjq “ Pout

i f
pCjq (4.21)

We define ShotsdpCq as the number of queried data blocks at a given
time window for a collection at the stable state. Among these queried
blocks, Shotsin

d pCq number of blocks are already residing in the memory and
Shotsout

d pCq blocks need to be fetched from the disk into the memory. Thus, the
number of queries whose documents are found in the cache is proportional to
the number of blocks already in the cache and the ratio of cached blocks.

Shotsin
d pCq “ Msat

d pCq ¨
MdpCq
BdpCq

(4.22)

Shotsin
i f
pCq “ Msat

i f
pCq ¨

Mi f pCq

Bi f pCq
(4.23)

The evictable data blocks of a collection EdpCq are those blocks that have not
been accessed in the last eviction cycle (i.e., those least recently used).

EdpCq “ MdpCq ´ Shotsin
d pCq (4.24)

Therefore, the evictability of a certain block in memory is EdpCq
MdpCq

. Now, we can
define the probability of evicting a data block from a collection (similarly for
the index) as being a weighted average as in Eq. 4.25.

Pout
d pCq “

WdpCq ¨
EdpCq
MdpCq

řN
j“1

´

WdpCjq ¨
EdpCjq

MdpCjq
`
řN

j“1
`

WipCjq ¨
Ei f
pCjq

Mi f pCjq

˘

¯

(4.25)

We introduce the weight WdpCqmainly due to the implementation specifics
of the underlying document stores. For an ideal LRU cache eviction policy
system where it can determine the exact least recently used blocks to be
evicted, the value should be 1. Since tracking all the blocks in memory is
expensive, different document store implementations enforce approximations
of the least recently used blocks.

75



4. Applying the cost model

We define the probability of a block containing the requested document
being in the cache as PdpCq “

MdpCq
BdpCq

. Thus, we define the probability of
bringing a new block of a collection to the cache with regard to all the
collections that are being used.

Pin
d pCq “

Msat
d pCq ¨ p1´ PdpCqq

řN
j“1

`

Msat
d pCjq ¨ p1´ PdpCjqq ` p

řI
f“1 Msat

i f
pCjq ¨ p1´ Pi f

pCjqqq
˘ (4.26)

4 Applying the cost model

We introduced the generic and the specific cost model components in the
previous section. Depending on the document store, the relevant specific
component formulas can be used to determine the memory distribution.
However, each document store can have its own implementation decisions
that need to be taken into account. In this section, we take two document store
implementations in detail and discuss how to apply the formulas introduced
above.

4.1 Couchbase Server (THP)

Couchbase Server is a distributed multi-modal data store that provides scala-
bility, low latency, and high throughput for key-value and JSON document
storage. Couchbase Server manages data using buckets, which are a logical
grouping of physical resources. It offers two types of buckets, namely Mem-
cached and Couchbase, but we focus our work on the latter because it stores
data both in memory and on disk (Memcached only uses memory).

The documents in the disk are stored in a B-tree structure (T). Buckets
operate on these documents only when loaded into memory. If the requested
document is not currently in memory, it is automatically brought in from
the disk individually together with its metadata as a hash (H). A bucket
has a quota of dedicated memory which is configured at creation time (P).
When a bucket reaches 85% of the allocated memory, an item is evicted. Each
document stored in Couchbase Server has a fixed metadata size (i.e., 56 bytes).
If a document is being used, its metadata and id need to be in memory. By
default, Couchbase recommends all the metadata to be in memory. In this
scenario we can apply Eqs. 4.14 and 4.18 with u “ 0.85.5 However, this
requires more memory when the number of documents grows. Fig. 4.2 shows
the memory is allocated to data and metadata with the two different eviction
approaches. Eviction of metadata is supported only from version 3.2 onwards.

5https://docs.couchbase.com/server/5.1/architecture/db-engine-architecture.html (High wa-
ter mark)

76



4. Applying the cost model

Fig. 4.2: Couchbase Server bucket usage

With default eviction policy, all metadata entries (i.e., |C|) will always be
in memory, and x documents will use the rest. When evicting metadata is
enabled, there will be y documents and the corresponding y metadata entries
in memory (x ď y). The metadata is evicted together with the document.
Thus, we can apply Eqs. 4.16, 4.17 and 4.18 with u “ 0.85.

Fig. 4.3 shows the distribution of the memory quota among metadata
and the documents in five different buckets with the same memory quota
but different document sizes. Each of the buckets’ average document size
increases by a factor, but documents in all the buckets have the same index
entry size. Therefore, the metadata size per document is the same. The chart
shows that the memory ratio between data and metadata is affected by the
document size. When the document size grows, few documents fit in the
memory. Since the metadata in memory is only those of the documents also
in memory, fewer metadata entries are leading to smaller memory usage.

 0

 20

 40

 60

 80

 100

40 80 160 320 640

C
a

c
h

e
 a

llo
c
a

ti
o

n
 (

M
B

)

Average document size (bytes)

Data
Metadata

Fig. 4.3: Memory utilization in Couchbase Server

77



4. Applying the cost model

4.2 MongoDB (TDSL)

MongoDB stores data in BSON (binary JSON) format and supports ad-hoc
queries such as field, range, regular expressions, and aggregation. The doc-
uments are stored in collections, have a primary identifier, and also support
secondary indexes. It has a pluggable architecture where the end-user can
select which storage engine to use. At the moment of writing, there are three
main engines: MMAPv1, WiredTiger, and in-memory storage. From now on,
we focus on WiredTiger as it is the default and more complex one.

Fig. 4.4: MongoDB B-tree usage for primary key

The storage structure of WiredTiger is a B-tree or LSM-tree with a B-tree
memory structure (T). However, as of MongoDB 4.2, only the B-tree storage
structure is being used, and the LSM structure is not configurable. Moreover, in
the current implementation of MongoDB, because of backward compatibility,
the internal nodes of the B-tree do not contain the user-configurable external
identifier (_id). Instead, as shown in Fig. 4.4, the documents are stored in
a B-tree (data B-tree from now on) indexed by an internal system identifier.
Then, there is a second B-tree (index B-tree from now on) where the leaf
nodes contain the system identifiers of the data B-tree indexed by the user-
configurable external identifier. Thus, the _id field behaves similar to a
typical secondary index. The size of leaves is not fixed but capped with a
maximum. All the collections and their indexes share a pre-defined cache
memory zone (S), where all documents are brought in blocks (D). When the
cache is full, the blocks are evicted to leave room for new blocks to be brought
in. WiredTiger uses an LRU-like cache eviction policy (L) to evict under-used
blocks. Since the index and the documents are in two different B-trees, they
behave independently in the WiredTiger cache eviction policy. A running
example of applying the formulas in MongoDB can be found in Appendix D.

We carried out different experiments on a single MongoDB instance, ran-
domly accessing documents from various collections changing different param-
eters. However, tests revealed inconsistencies concerning MongoDB specifica-
tion. In particular, we identified that the cache eviction policy implementation

78



4. Applying the cost model

 0

 5

 10

 15

 20

 25

 30

movies1 movies2 movies3 movies4 movies5

C
a
c
h
e
 a

llo
c
a
ti
o
n
 (

M
B

)

Collection name

Fig. 4.5: MongoDB cache policy prioritizing the name

 0

 10

 20

 30

 40

 50

0.1 0.2 0.3 0.4

C
a
c
h
e
 a

llo
c
a
ti
o
n
 (

M
B

)

Probability of access

Data
Index

(a) Access frequency

 0

 10

 20

 30

 40

 50

40 80 160 320 640

C
a
c
h
e
 a

llo
c
a
ti
o
n
 (

M
B

)

Average document size (bytes)

Data
Index

(b) Document size

 0

 10

 20

 30

 40

 50

2 4 8 16 32 64

C
a
c
h
e
 a

llo
c
a
ti
o
n
 (

M
B

)

Document count (*10
6
)

Data
Index

(c) Document count

Fig. 4.6: Effect of different parameters on cache distribution in MongoDB

was surprisingly prioritizing the eviction based on the collection’s name. This
is shown in Fig. 4.5, which depicts memory allocation for five identical collec-
tions with the same access frequency, being collection name the only difference
(the average cache distribution is measured after 50,000 queries). The authors
informed MongoDB about this issue and proposed a bug fix.6

Once the bug was solved (fixed in WiredTiger Release 3.2.1), we found
three factors that affect the distribution of the cache among the collections
and their indexes, namely access frequency, average document size, and the
number of documents. Fig. 4.6 shows the distribution of the cache among
different collections and their primary indexes after several queries, once
the cache is full and stabilized after several eviction cycles (we capped the
memory of MongoDB to 256 MB, issued 50,000 random access queries on
different collections and took the measures by reading the cache metadata of
every collection at the end).

Figs. 4.6a, 4.6b, and 4.6c show the effects of the access frequency, document
size, and count on the cache distribution, respectively. It is visible that the
frequency of access affects the distribution of the cache the most (as expected),
while the impact of the document size and count is smaller. As shown in
Fig. 4.6b, the memory allocated to the index decreases compared to that

6https://jira.mongodb.org/browse/WT-4732

79



5. Experiments

allocated to data when the documents get larger. On the contrary, when the
document count changes, the memory used by the index increases while the
memory of data drops as depicted by Fig. 4.6c.

We can apply Eqs. 4.7 to 4.13 under Eq. 4.19 with u “ 0.807 for the
saturation of the memory and Eqs. 4.21 to 4.26 together with Eq. 4.27 under
Eq. 4.19 for the eviction in MongoDB. Yet, MongoDB only keeps track of 300
pages as eviction candidates in a queue. Each B-tree in use is walked to fill
out this queue. The number of pages picked to fill this queue from a B-tree
is proportional to the current memory occupation of the tree. Hence, WdpCq
in Eq. 4.25 is proportional to the size of the memory occupation. A running
example of applying these equations is presented in Appendix D.

WdpCq “
picksdpCq
queue size

picksdpCq “ queue size ¨
MdpCq ¨ Bsized

M

6 WdpCq “
MdpCq ¨ Bsized

M
(4.27)

Other document stores can be included in our cost model with an analysis
of their specific design decisions. For example, RethinkDB is a TDSL system
similar to the one of MongoDB.8

5 Experiments

In this section, we validate our cost model through experiments with Couch-
base Server and MongoDB. All experiments were carried out on a single node
with Intel Xeon E5520, 24 GB of RAM running on Debian 4.9. Couchbase
Server Community Edition version 5.1.1 was used with 1 GB dedicated to all
the buckets. We used MongoDB Community Edition version 4.2, already mod-
ified to fix the bug explained above. We also disabled the parallel execution of
the eviction policy to obtain more stable results with fewer repetitions of the
experiments. All experiments were conducted using MongoDB Java driver
3.8.2 and Couchbase Java client version 2.6.2. We conducted the experiments
with hot cache for both Couchbase Server and MongoDB varying the fre-
quency of access for MongoDB, bucket memory quota for Couchbase Server,
average document size, and the number of documents for both. We generated
synthetic data with flat documents for our experiments.9 Despite nesting
being relevant in evaluating different designs (it would generate different

7http://source.wiredtiger.com/3.2.1/tune_cache.html (eviction_target)
8https://rethinkdb.com/
9The data generation and the experimental setup can be found in https://github.com/

modithah/MongoExperiments

80

http://source.wiredtiger.com/3.2.1/tune_cache.html
https://rethinkdb.com/
https://github.com/modithah/MongoExperiments
https://github.com/modithah/MongoExperiments


5. Experiments

document sizes, access patterns and frequencies), it does not change the cost
model itself, but only its parametrization. We used GEKKO Optimization
Suite [15] to solve the systems of equations for cache distribution.

We measured the runtime individually for 50,000 random access queries
(accessing documents through an index) in nanoseconds after the memory
became stable for each of the experiments and took the average. Then, using
the Pearson correlation coefficient, we measured how our estimates are related
to the actual runtime values. However, the query cost estimation formulas
introduced in Sect. 3 produce values without any unit. The actual runtime
requires a multiplication factor which depends on external factors (i.e., hard-
ware, operating system). Thus, to compare and plot the unitless estimated
cost against the actual run time, we first do a min-max normalization on the
two series separately. Then, the normalized series are shown in the same line
chart. This is a common approach used to compare incomparable data by
making them dimensionless [111]. The schema used for all of the experiments
is shown in Listing 4.1. We used two integer fields for the primary (_id) and
secondary index (s_index) fields. The range of the s_index values is used to
change the repetitions with regard to Eq. 4.6, and the load field is used to
adjust the size of the document depending on the experiment.

Listing 4.1: Schema used for experiments

{
"_id": <int > ,
" s_index ": <int{ range }> ,
"load": <String (n)>

}

5.1 Couchbase Server

The retrieval of the documents through the primary index is done using
the java client’s bucket.getptrandomiduq command. As discussed in Sect. 4,
Couchbase Server has fix-sized memory quota per bucket. Therefore, the
access frequency does not affect the memory distribution. According to
Eqs. 4.1, 4.2, 4.16, and 4.17 the memory distribution within a bucket depends
on the average size of the documents. Fig. 4.7a compares our estimate of the
memory distribution within a bucket using Eqs. 4.16 and 4.17 to the actual
one. It is visible that the memory used by the data increases as the size of the
documents grows.

Next, we used the memory distribution values in our cost model in Eqs. 4.3
and 4.4. We changed the size of the bucket and the average size of the stored
documents and measured the average runtime for queries with random access
through the primary index. Fig. 4.7b plots the estimated cost against the actual
run time for different bucket sizes. Our estimation shows that there is a linear
decrement of the run time when the bucket size is increased. This is also
visible through the trend obtained by the actual runtime values. As shown in

81



5. Experiments

 0

 10

 20

 30

 40

 50

 60

 70

 80

40 80 160 320 640

M
e
m

o
ry

 (
M

B
)

Document Size (bytes)

Data
Metadata

Data−pred
Metadata−pred

(a) Couchbase cache usage
prediction

 0

 0.2

 0.4

 0.6

 0.8

 1

100 150 200 250 300

N
o

rm
a

liz
e

d
 v

a
lu

e

Bucket size (MB)

Estimate
Actual Runtime

(b) Time estimate with
different bucket size

 0

 0.2

 0.4

 0.6

 0.8

 1

40 80 160 320 640

N
o
rm

a
liz

e
d
 v

a
lu

e

Document size (bytes)

Estimate
Actual Runtime

(c) Time estimate with
different document size

Fig. 4.7: Estimating the memory and time estimation in Couchbase Server

 0

 1000

 2000

 3000

 4000
 5000

 6000

 7000

 8000

 9000

40 80 160 320 640

N
u
m

b
e
r 

o
f 
Q

u
e
ri
e
s

Size (bytes)

Actual
Estimated

(a) Document size

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

2 4 8 16 32 64

N
u
m

b
e
r 

o
f 
Q

u
e
ri
e
s

Count (millions)

Actual
Estimated

(b) Document count

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

40 80 160 320 640

13000 6500 3250 1625 812.5

N
u
m

b
e
r 

o
f 
Q

u
e
ri
e
s

Count (*1000)

Size (bytes)

Actual
Estimated

(c) Size and count

Fig. 4.8: Predicting saturation for a single collection with different parameters in MongoDB

Fig. 4.7c, the runtime gradually increases with the size of the documents.

5.2 MongoDB

Our formulas for predicting memory distribution in MongoDB involve esti-
mating two key factors:

a) The number of queries required to saturate the cache (by solving the
system of equations Eqs. 4.7 to 4.13 under Eq. 4.19)

b) The distribution of the cache among different collections and indexes (by
solving the system of equations Eqs. 4.21 to 4.26 together with Eq. 4.27
under Eq. 4.19 replacing |Q| from saturation formulas).

For all of the experiments, we executed 50,000 random access queries,
measured the cache distribution after every 100 queries, and obtained the
average of 10 runs (the system was restarted after each run to reset the cache).
We had to measure after every 100 queries because more frequent cache
status requests affected the cache policy and the final memory distribution.
We scrutinize the values of accessing a single collection and two collections.
We varied the number of documents N, average document size SizedpCq,
frequency of accessing a collection PpC, qq, and the repetitions of the indexed
value RepvpCq as parameters of concern.

82



5. Experiments

 3000

 4000

 5000

 6000

 7000

 8000

[40,1024] [80,640] [160,320]

N
u
m

b
e
r 

o
f 
Q

u
e
ri
e
s

Size (bytes)

Actual
Estimated

(a) Document size

 3000

 4000

 5000

 6000

 7000

 8000

[1,64] [2,32] [4,16] [8,8]

N
u
m

b
e
r 

o
f 
Q

u
e
ri
e
s

Count (millions)

Actual
Estimated

(b) Document count

 3000

 4000

 5000

 6000

 7000

 8000

0.005 0.01 0.02 0.04 0.08 0.16 0.32

N
u
m

b
e
r 

o
f 
Q

u
e
ri
e
s

Frequency

Actual
Estimated

(c) Access frequency

Fig. 4.9: Predicting saturation for two collections with different parameters for MongoDB

For a single collection, we included four tests:

Test 1 Fix the number of documents (13 million) and repetitions (1) while
changing the average document size.

Test 2 Fix the average document size (80 B) and repetitions (1) while changing
the number of documents.

Test 3 Fix the overall collection size and repetitions (1) while changing both
document size and count at the same time.

Test 4 Fix both the average document size (80 B) and the number of documents
(13 million) while changing the repetitions (secondary index).

For two collections, we conducted three other tests:

Test 5 Fix the document count (13 million), repetitions (1), and the frequency
(50%) while changing the average size of the documents.

Test 6 Fix the average document size (320 B), repetitions (1), and the frequency
(50%) while changing the number of documents.

Test 7 Fix the average document size (1 kB), repetitions (1), and the number
of documents (1 million) while changing the frequency.

Using the java client we issued collection.find -One(new
BasicDBObject("_id", {random id})) for tests using primary indexes
(Tests 1, 2, 3, 5, 6, and 7) and collection.findOne( new BasicDBObject
("s_index", {randomvalue})) for Test 4 involving the secondary indexes.

Predicting Saturation We used Eqs. 4.7–4.13 under Eq. 4.19 to estimate the
saturation point (|Q|) and compared it with the average number of queries
(different runs) before eviction starts.

Fig. 4.8 illustrates the behavior of the saturation point of a single collection.
Fig. 4.8a demonstrates that the saturation point is almost constant, with a
slight decrease when the size of the documents grow on conducting Test 1.

83



5. Experiments

 0

 50

 100

 150

 200

40 80 160 320 640

M
e
m

o
ry

 (
M

B
)

Size (bytes)

Data
Index

Data−pred
Index−pred

(a) Document size

 0

 50

 100

 150

 200

2 4 8 16 32 64

M
e
m

o
ry

 (
M

B
)

Count (millions)

Data
Index

Data−pred
Index−pred

(b) Document count

 0

 50

 100

 150

 200

40 80 160 320 640

13000 6500 3250 1625 812.5

M
e
m

o
ry

 (
M

B
)

Size (bytes)

Count (*1000)

Data
Index

Data−pred
Index−pred

(c) Size and count

Fig. 4.10: Predicting cache distribution for a single collection with different parameters in
MongoDB

 0

 20

 40

 60

 80

 100

[40,1024] [80,640] [160,320]

M
e
m

o
ry

 (
M

B
)

Size (bytes)

Data1
Index1
Data2

Index2

Data1−pred
Index1−pred
Data2−pred

Index2−pred

(a) Document size

 0

 20

 40

 60

 80

 100

[1,64] [2,32] [4,16] [8,8]

M
e
m

o
ry

 (
M

B
)

Count (millions)

Data1
Index1
Data2

Index2

Data1−pred
Index1−pred
Data2−pred

Index2−pred

(b) Document count

 0

 50

 100

 150

 200

 250

0.01 0.02 0.04 0.08 0.16 0.32

M
e
m

o
ry

 (
M

B
)

Frequency (Collection 1)

Data1
Index1
Data2

Index2

Data1−pred
Index1−pred
Data2−pred

Index2−pred

(c) Access frequency

Fig. 4.11: Predicting cache distribution for two collections with different parameters in MongoDB

This is because the documents are accessed in blocks, and before saturation,
there are many cache misses leading to bringing new blocks into memory.
The number of requests remains almost constant because the probability of a
miss is close to one in all cases, given the huge number of documents being
used. As shown in Fig. 4.8b, with Test 2, it takes fewer queries to saturate
the cache when the number of documents grows. This is due to both index
and data B-trees being bigger with the higher number of documents, leading
to fewer cache hits and resulting in fewer queries needed to saturate the
cache. The impact of the document count is more significant than that of the
document size as depicted in Fig. 4.8c, which shows that more queries are
needed to saturate as the number of documents grows, and the document size
shrinks in Test 3. This is because, the smaller the number of documents in the
collection, the higher the hit rate, consequently higher the number of queries
required.

We can also see how many queries are required to saturate the cache when
accessing two collections (Fig. 4.9). The result of Test 5 is shown in Fig. 4.9a,
where we clearly see that a few more queries are needed to saturate the cache
(there is a slight downward trend) when the document size difference is higher
to saturate the cache due to the higher hit rate of smaller document sizes. The
saturation point is a bit lower than of the single collection, because of the
space taken by the internal nodes pushing the memory to fill earlier (i.e., K is
bigger). We noticed that the effect of the document size is more evident when

84



5. Experiments

there is a smaller number of documents (1 million). The effect of the document
count (Test 6) is also negligible, demonstrated through Fig. 4.9b, whose values
are comparable to the ones of single collections (Fig. 4.8b) beyond 16 million
documents (notice that the sum of both collections is always above that). The
only remarkable difference is that the saturation point is lower than that of a
single collection due to more internal nodes being pinned. Finally, Fig. 4.9c
shows the results of the saturation point of Test 7. We can see that more
queries are needed to saturate the cache when the access frequency is low.
The real reason, however, is that there is an opposite collection which is
accessed with complementary frequency for each of the points (e.g., 0.995 for
0.005). The opposite collection has obviously more documents in the cache
due to the higher access frequency leading to higher hit rates, and as a result,
more queries are required to saturate the cache. Thus, the more balanced the
frequencies of collections, the fewer queries are needed to saturate the cache.

 0

 0.2

 0.4

 0.6

 0.8

 1

40 80 160 320 640

N
o
rm

a
liz

e
d
 v

a
lu

e

Size (bytes)

Actual Runtime
Estimate
Baseline

(a) Document size

 0

 0.2

 0.4

 0.6

 0.8

 1

2 4 8 16 32 64

N
o
rm

a
liz

e
d
 v

a
lu

e

Count (millions)

Actual Runtime
Estimate
Baseline

(b) Document count

 0

 0.2

 0.4

 0.6

 0.8

 1

0.04 0.08 0.16 0.32 0.68 0.84 0.92 0.96

N
o
rm

a
liz

e
d
 v

a
lu

e

Frequency

Actual Runtime
Estimate
Baseline

(c) Access frequency

Fig. 4.12: Time estimation comparison for different parameters in MongoDB

Predicting the Cache Distribution Once we know when the memory sat-
urates and starts being stable, we can analyze how memory is distributed
among collections and indexes.

The outcome of the memory distribution for Test 1 is shown in Fig. 4.10a.
When increasing the document size, the amount of memory devoted to data
blocks grows while the memory for index blocks decreases. This happens
because the data B-tree becomes larger with larger document sizes, and it
occupies more memory, but the index B-tree size remains the same. However,
the effect is minimal. Fig. 4.10b shows the results of Test 2 in measuring the
effect of the number of documents on the memory distribution. The size
of both B-trees grows with the number of documents. However, the index
B-tree grows slower than the data B-tree, resulting in higher hit rates and
more memory. The internal blocks of the B-tree increases as the number of
documents increase. These internal blocks could also be getting evicted in
the experiments whereas we assume them to be pinned in the cache. Thus,
our estimation error gets higher as the number of documents increase. When
we change both the size and the number of documents, keeping constant the

85



5. Experiments

collection size as per Test 3, we observe the trend augmented as shown in
Fig. 4.10c (note that the axis of the number of documents is reversed due to the
inverse relationship between the document count and the document size as
we try to maintain the same overall collection size), because both factors favor
the growth of memory used for the data (i.e., the less and bigger documents
the more memory devoted to data and the less to index). When the repetitions
increase in Test 4, a single index entry points to multiple documents, thus
increasing the memory used by the data and decreasing the index. Our cost
model is able to predict the memory distribution with a maximum error of
4%.

Fig. 4.11 illustrates in the corresponding subfigures the effect of the docu-
ment size, number of documents, and the access frequency when accessing
two collections. The gap between the memory used by the data decreases
when the average document sizes are closer in Test 5, while the memory used
by the index remains constant (Fig. 4.11a). Fewer documents fit in memory
when the documents are larger, resulting in more cache misses and more
data blocks need to be brought into the cache. When looking at Fig. 4.11b
(Test 6), the memory used by the index of the first collection (index-1) increases
while the one for data of the second collection (data-2) decreases when the
difference between the number of documents of the two collections decreases.
The memory used by data-1 slightly increases and index-2 decreases and align
with data-2 and index-1 when the counts become identical. When a collection
has more documents, there are more pinned internal nodes, and there are
more cache misses requiring to bring more data and index blocks into the
memory. When the collections are identical, the memory usage is similar.
With regard to Fig. 4.11c (Test 7), the memory used by both data and index
increases with the access frequency. When a collection is accessed with a
higher rate, the evictability of a block becomes lower, resulting in more blocks
residing in memory.

Query Cost Estimation Finally, once we have the memory distribution,
we can analyze the performance of the system in a stable state using the
generic cost functions. As illustrated by Fig. 4.12a (Test 1), the runtime
increases as the size of the documents increases. Since the memory size is
fixed, the number of documents that fit in the cache gets smaller resulting
in more cache misses, leading to fetching more documents from the disk
and increasing the runtime. As shown in Fig. 4.12b (Test 2), in the case of
fixed-document size increasing the document count, the probability of a cache
hit is higher on smaller document counts, and the runtime rises with the
number of documents. The runtime gets lower as the frequency of access gets
higher, as demonstrated by Fig. 4.12c (Test 7). This is because the collections
with higher access frequency have more memory, which creates higher hit

86



5. Experiments

rates and lower runtimes. We calculated the miss rates of the hieracical cost
model of Manegold et al. [83] and plotted the estimated costs as a baseline
in Figs. 4.12a and 4.12b for different document sizes and counts, respectively.
We also include a horizontal line at 0.5 in the approximation in Fig 4.12c as
all the cost estimations of Manegold et al. coincide in this case. (an in depth
discussion of that approach can be found in Sect. 5.4)

5.3 Accuracy of Prediction

Regarding our memory predictions, on looking at Fig. 4.7a, we see that our
estimated trend is identical to the actual memory distribution of Couchbase
Server with an average error of 3%. For MongoDB, this is a bit more complex,
since we need the number of queries required to saturate the memory (Fig. 4.8
and 4.9), which is in general slightly overestimated, for an average error of 3%
and a correlation of 0.995. By using it in solving the corresponding system
of equations, we can predict memory usage of the data and indexes and
accurately find the trend in all the cases with an under-estimation of the data
while over-estimating the index, for an average error in all the scenarios of
6% for index and 5% for the data. As shown in Figs. 4.10, 4.11, and 4.11c,
the estimates of the memory usage are highly correlated (0.995) with the
actual values. With regard to Figs. 4.11a and 4.11b, prediction for index-1
and data-1 are almost perfect, but we underestimate data-2 and overestimate
index-2. The highest error we encountered is with the prediction of the data-2
when changing the document size. When looking into Fig. 4.11c, we can see
that the error increases for the number of data pages when increasing the
probability of accessing the collection.

Overall, we have successfully predicted the allocation of the memory with
a maximum error in all the experiments of 13% and an average error of 9%
for the different number of documents, average document sizes, probability
of access, and available memory. However, when it comes to the runtime
estimates, the effect of this error becomes negligible. Regarding runtime
predictions, we manage to find the runtime trend in Couchbase Server with a
high correlation (0.93) between all our estimates and the actual values (values
from Fig. 4.7b and 4.7c). The correlation is even higher (0.94) for MongoDB
(values from Fig. 4.12a, 4.12b, and 4.12c). There is a slight difference between
our estimate and the actual value when the access frequency is very low
and very high (Fig. 4.12c), because the measured runtime values are very
close to each other in extreme cases (three milliseconds). Thus, our approach
enables us to identify the overall effect of the design decisions on runtime.
This runtime, together with other parameters such as storage space and
heterogeneity of a collection, can be used to evaluate design alternatives.

87



5. Experiments

5.4 Comparison to Other Approaches

To the best of our knowledge, this work is the first generic cost model for
document stores. However, we can compare our cost estimations against a
generic cost model for hierarchical memory systems (hereinafter referred as
the hierarchical cost model) [83]. This cost model is based on in-memory
database systems and can be extended to the disk I/O layer. However, un-
like the database system discussed in the hierarchical cost model, which
relies only on the operating system cache, document stores have their own
cache management system. Our cost model has the capacity to handle these
implementation-specific cache policies, and we have shown it by applying
them on two different document stores, Couchbase Server and MongoDB.

Random access in the hierarchical cost model is equivalent to the random
access queries discussed in this chapter. Nevertheless, it requires the number
of random accesses performed to model the cost, which is not required in
our approach that only relies on the stability of the cache. Moreover, the
Sterling numbers and the factorials used in the calculations quickly grow
quite large making the calculations almost impossible for large numbers
(the largest Sterling number the authors have used in their experiments is
1024 which corresponds to the number of L1 cache lines [82]) unless you
make mathematical approximations on the formulas, thus increasing the error.
Therefore, the approach used in the hierarchical cost model is not scalable to
the experiments that we have carried out as database caches are larger than
1024 blocks. However, we substituted Eq. 4.8 for the expected value whose
result for small values exactly coincide.

The concurrent execution formulas in the hierarchical cost model assume
that the cache contains a fraction of data regions involved proportional to their
footprint size (i.e., the size of the collection). However, our experimental results
show otherwise, especially with different access frequencies (See Fig. 4.6)
and eviction policies. The pattern is even more complex when it comes to
secondary indexes where a sequential accesses on the index are followed
by multiple random accesses to the documents. The comparison results in
Figs. 4.12a, 4.12b, and 4.12c further confirm that a estimation specific for
document stores, is clearly superior to a generic approach for simply caching.

88



Chapter 5

Automated Database Design
for Document Stores with
Multi-criteria Optimization

This chapter is under submission for Knowledge and Information Systems
(KAIS).

The layout of the paper has been revised.

Co-authoring declaration This work has been done together with the post
doctoral researcher Sergi Nadal. Precisely, the introduction and problem
formation were done jointly with equal contribution. The canonical model,
random design generation, and design transformations were done by Moditha
Hewasinghage, while the search algorithm was done by Sergi Nadal. The
experimental evaluation was jointly developed, with Sergi Nadal focusing on
search algorithm and Moditha Hewasinghage implementing the canonical
model, transformations, and loss functions.

89



1. Introduction

1 Introduction

In the last couple of decades, the data storage paradigm has shifted from
traditional relational database management systems (RDBMSs) towards more
flexible NoSQL engines [24]. Among these, the popularity of document stores
has prevailed due to the adoption of semi-structured data models, which
avoids the impedance mismatch between the data storage and applications.
Document stores allow users to focus on rapid application development with
a data-first approach instead of the traditional schema-first of RDBMSs. This
has caused an increase in their popularity, especially in the startup ecosystem,
where the goal is to rapidly deliver products into the competitive market [36].
As a consequence, database design (i.e., the design of database structures and
their relationships) has been overlooked and not performed in a principled
manner. However, it has been shown that the choice of database design
plays a critical role in performance [10]. Database design for document stores
is, in general, mostly carried out in a trial-and-error or ad-hoc rule-based
manner. For instance, MongoDB, the leading document store, provides a set of
design patterns that define certain guidelines on how to structure documents.1

Nevertheless, even with these guidelines, it is still common to make bad
design decisions, and issues tend to arise in the long run when the amount of
data has grown considerably, and changing them incur additional cost, time,
and money.

Let us consider an exemplary scenario of product reviews composed of
the entities Comments and Products, with a one-to-many relationship from
the latter to the former, as well as an equiprobable hypothetical workload
defined as follows: a) given a Comment ID, find its text; b) given a Product
ID, find its name; c) given a Comment ID, find the Product name; and d)
given a Product ID, find all of its Comments. To illustrate the complexity
of manually determining the optimal design even in such an oversimplistic
scenario, we conducted a questionnaire to database experts on an equivalent
setting.2 63% of the participants managed to identify only three potential
designs for a document store, many of them overlooking the redundant
nesting and referencing options. After comparing the results against an actual
experimental setup performance on MongoDB, we concluded that only 9% of
the participants managed to find the optimal design, while 40% guessed the
fourth-best design as the optimal one (in terms of query performance). This
evidences that the current way of database design does not yield the expected
results, even for very limited scenarios like this. Indeed, real-world scenarios
are far more complex involving multiple entities and relationships.

If we assume that all attributes of an entity are kept together within the

1https://www.mongodb.com/blog/post/building-with-patterns-a-summary
2https://moditha.typeform.com/to/NRTjEm

90

https://www.mongodb.com/blog/post/building-with-patterns-a-summary
https://moditha.typeform.com/to/NRTjEm


1. Introduction

Fig. 5.1: Relationship storage choices for database design

same document, we are still left with the decision on where the relationships
must be stored in the final design. Thus, database designs can be enumerated
based on the alternatives to store the relationships, which depend on three
independent choices: Direction, Representing, and Structuring, as shown in
Fig. 5.1 together with two examples. Direction determines which entity keeps
the information about the relationship. It can be any of the two entities or
both. Representation affects how this relationship is stored by either keeping
a reference or embedding the object. Finally, Structuring determines how we
structure the relationship, either as a nested list or flattened (in the case of
one-to-many relationships). For example, if we decide to keep the references
to the comments in the product, they can be stored as a list of references
(comment:...) or in a flattened manner (comment_1:.., comment_2:..). Hence, we
end up with 24 possible designs for our running example. Depending on
end-user preference, each one of these designs has the potential to become the
optimal design choice. This trade-off between alternatives makes the process
of finding the optimal design a complex one.

As a matter of fact, the number of relationships r determines the number
of candidate designs, which is exponential (24r), as the storage option of
each relationship is independent of others. Note, however, that here we did
not consider allowing heterogeneous collections/lists, which is possible in
the context of schemaless databases, leading to a complexity increase. For
example, collections at the top level could potentially contain different kinds
of documents. In our running example, the product and comment documents
could be stored in a single heterogeneous collection mixing both. Precisely, for
a design with c top-level collections, the total number of combinations will be
řc

i“1
 c

i
(

, where
 n

k
(

is the Stirling number of the second kind, corresponding
to the number of ways to partition n distinct elements into k non-empty sub-
sets [51]. Overall, such exponential growth makes it impossible to enumerate
and evaluate all candidate designs.

To overcome such limitations, there exist several solutions in the literature

91



2. Related Work

mainly relying on the query workload to propose a database design, such as
DBSR [95], NoSE [88] and Mortadelo [34]. However, query performance is
not the only factor affected by design choices. For instance, having redundant
collections to support different queries will increase query performance but
require larger storage capacity. Having complex document structures with
multiple branching and nesting levels hinders the readability of documents.
Similarly, having heterogeneous collections requires additional documentation
to map where each piece of information is stored. We believe that it is
essential to find an optimal design that considers a variety of the user’s
preferences automatically. To that end, we propose a novel automated database
design method for document stores that considers all such factors. This is
achieved by the adoption of well-known multicriteria optimization techniques,
proven to efficiently tackle multiple and conflicting objectives [27]. Thus, we
generate near-optimal database designs that balance the end-user’s preferences
regarding four quantifiable objectives: storage size, query performance, degree
of heterogeneity and the average depth of documents. This work has been
demonstrated as a tool in Appendix B. To show the effectiveness of our
method, we compare it against an existing document store schema generation
tool in terms of the quality of the generated design and its performance.
Our experimental results show that we manage to present a design with less
redundancy and offer better performance with the flexibility of catering to the
end-user preference. We can also scale up when the number of entities and
relationships grows.

Contributions. The main contributions of our work are as follows:

• We propose a novel loss function for multicriteria selection of the optimal
database design for document stores.

• We devise an algebra of transformations that allow to systematically
modify a database design while retaining all the information (i.e., no
attributes or entities are lost).

• We present an implementation of a local search algorithm that, driven by
the loss function, proposes with high probability near-optimal designs.

• We assess our method and prototype to show the scalability as well as
the performance gain of our solution against competitors by using the
RUBiS benchmark [25].

2 Related Work

JSON has gained popularity in recent years as an alternative storage format
to XML. Although JSON is semi-structured, a schema can be defined [93],

92



2. Related Work

and thus some approaches aim to extract such schema representation from
heterogeneous JSON documents [71]. When it comes to data design for
document stores, these mainly rely on finding a solution that balances the
two extremes (i.e., normalized and embedded models) [66]. As shown in
Chapter 2, the design decisions for JSON storage are not trivial and can affect
the performance as storage requirements that also depends on the choice of
the storage system. Moreover, some authors [48] discuss data quality aspects
that could arise in JSON stores and how to measure them, which can help to
evaluate the potential document designs.

It is well-known that design methods for NoSQL data stores must con-
sider both relational and co-relational perspectives at once [58]. Nevertheless,
although data modeling has played a significant role in RDBMS, little work
has been carried out on data design methods for document stores. Different
approaches have been employed to tackle such problems, including some for
analytical workloads [106], as well as cost-based schema design evaluation
(Appendix A) based on a hypergraph data model (Chapter 3). NoAM [10]
uses three constructs (collection, block, and key) to introduce an abstract
data model that can be mapped into heterogeneous NoSQL stores based on
entity aggregates. Alternatively, the SOS platform [11] introduces three design
constructs (attributes, structs, and sets), which are capable of representing rela-
tional, key-value, document, and column-family stores. Indeed, our approach
builds on a hypergraph-based formalization of the SOS constructs, which we
proposed in Chapter 3. This formalization enables the generation of native
queries over the heterogeneous stores to manage the metadata of polyglot
systems, thus representing the basis for defining design transformations.

Additionally, several work have been carried out specifically on automated
schema design for NoSQL stores. We used the search terms NoSQL design,
document store schema, nosql schema as the seach terms to select the initial set of
articles and used a a snowballing approach to track down references related
on automated schema design on document stores and NoSQL systems in
general. However, there are only a few schema generation/suggestion tools
available for NoSQL systems. DBSR [95] is a database schema recommender
for document stores, which uses a search-based approach to navigate the
data design space similar to the one of this paper. However, DBSR only
considers the query workload in generating potential designs. Moreover, DBSR
only considers nesting as opposed to referencing, avoiding joins altogether.
However, in our work we have encountered instances where external joins
perform better than certain embedded approaches (See Appendix A). Thus,
DBSR can omit some optimal designs in its process. DBSR compares itself
to other existing approaches that we found relevant for our work and we
have compared our approach against it since it is the latest research carried
out in automated schema design and specific to document stores. There are
several similarities between DocDesign 2.0 and DBSR they are both based on

93



3. Overview

read-only workloads, allow data duplication, nested structures, secondary
index usage, and query plan estimation on document stores. However, the
cost model (Chapter 4) used by DocDesign 2.0 is more mature and robust
to the underlying document store implementation as opposed to the simple
access pattern based one used by DBSR. Moreover, DocDesign 2.0 uses a multi
criteria-based approach with more fine tune capabilities to the user compared
to only tuning the number of final collections in DBSR resulting a superior
output.

NoSE [88] uses a cost-based schema design approach specific for column
stores. In Mortadelo [34], a model-driven data design based on a generic
data model is used to generate optimized datastore schemas and queries for
document and column stores. Another approach [35] generates a physical
schema from a logical one for document stores based on the workload by
optimizing the query access patterns. Unlike rule-based design generation in
these approaches that could omit certain designs, our work opens the door to
potentially generate all possible combinations.

3 Overview

In this section, we provide a high-level overview of the components of our
approach. In order to yield the most suitable database design for a given set
of contradicting objectives, we adopt multicriteria optimization techniques.
These have shown to be effective in obtaining near-optimal solutions out of
a large search space in the presence of conflicting objectives [84]. In these
scenarios, one can only aim to obtain a Pareto-optimal solution (a solution that,
in the presence of multiple objectives, cannot improve one objective without
worsening another). An overview of our approach is shown in Fig. 5.2, next in
the following subsections, we briefly describe each of its components: Namely
user inputs, the design process, loss function, and the search algorithm.

Fig. 5.2: High-level overview of our approach

Let us take the RUBiS benchmark [25] as a running example. As depicted
in Fig. 5.3, RUBiS implements an online auction system (we also take the

94



3. Overview

Fig. 5.3: ER diagram for RUBiS framework

same 11 queries used by the DBSR framework as our workload)3. If one
were to design a traditional RDBMS data storage for this case, it would be
natural to apply normalization and deploy a database schema in either third-
normal form (3NF) or Boyce-Codd normal form (BCNF). It is well known from
relational theory that such a design avoids update anomalies and would still
efficiently execute many queries. However, this penalty is not acceptable for
document stores, and they encourage denormalization and promote nesting
to keep related pieces of information together, avoiding expensive joins even
if increasing redundancy. It is thus unclear what would be the best database
design, whether it could be a fully denormalized collection with Regions
as the top-level document, a normalized approach similar to 3NF, or an in-
between solution. With reference to our estimate in the introduction, there are
246 possible alternative designs to choose from.

3.1 User Inputs

The end-user must provide three inputs to initiate the optimization process:
the Entity-Relationship (ER) diagram (enriched with some physical informa-
tion like attribute sizes and cardinalities), a query workload (i.e., a set of
design-independent queries together with their frequencies), and the weights
of the four cost functions.

Entity-Relationship describes the domain in terms of a graph and determines
the complexity of the optimization problem. The user has to identify the
entities, the attributes of each entity, the average size of the attributes, the
number of instances of the entities, and their relationships, including the
multiplicities. Essentially, this depicts an ER diagram serialized in JSON
format. As previously mentioned, we represent this information using the
hypergraph-based canonical model introduced in Chapter 3. In our running
example, these are the entities, relationships, and multiplicities shown in
Fig. 5.3. By definition, this graph is considered immutable, and we carry
out the database design on top of it by building hyperedges. We discuss the
canonical model and the design process in detail in Sect. 4.

Query workload determines the user’s query requirements on the underlying

3https://github.com/vreniers/DBSR

95

https://github.com/vreniers/DBSR


3. Overview

data. Since the input ER does not contain design information, the queries are
also represented in a design-independent manner. Thus, a query is a set of
interconnected Atoms with a specific one representing a selection criterion (as
defined in the cost model in Chapter 4). Our approach works with a constant
workload, including the frequency of each of the queries. In our running
example, the workload would be the 11 queries in RUBiS together with their
frequencies.

Cost function weights determine how the final design performs in four
criteria, namely: query performance, storage size, degree of heterogeneity
within a collection, and depth of the documents. Each of these has a cost
function associated which will be weighted according to the user’s needs to
compose the loss function to be optimized.

3.2 Design Processes

Once the user has provided the ER diagram, it is stored in an immutable
graph where the entities and attributes are represented as vertices (Atoms)
and relationships as edges. Precisely, we perform all design operations on
top of this immutable graph generating candidate designs. Two processes
generate these candidate designs, namely: initial random design generation
(through those relationship design choices shown in Fig. 5.1) and design
transformation of an existing design (through the methods associated with
the different classes in the canonical model). For instance, the random design
generator could generate a design with five separate collections for each entity
with their respective references (e.g., the user references the region). Then,
through design transformations, we can generate an alternative design from
the existing one by embedding the region inside the user. We introduce the
formal canonical model, algorithms to generate random designs, and design
transformations in Sect. 4.

3.3 Loss Function

We introduce four components of the loss function to be measured and
optimized in DocDesign 2.0: query cost, storage cost, degree of heterogeneity,
and the average depth of the documents (as a measure of their complexity).
We chose these loss functions as a representative of different cost functions
and not intended as an ultimate combination that would provide the optimal
database design. These are defined as follows:
Query cost (CFQ) is the weighted average of the relative query performance
values estimated from the schema information using the cost model. This
cost model is configurable according to the storage and the execution model
of different document stores. Thus, it is possible to adapt DocDesign 2.0 to

96



3. Overview

alternate document store implementations. The cost model firstly takes the
query workload as an input, calculates the distribution of the cache under a
workload, and estimates a relative cost of accessing each of the collections and
indexes. Then, the total relative cost of each of the queries (Qq) that depends
on the access patterns of the storage structures is also calculated. Thus, we can
sum up the total query cost as CFQ “

řNq
k“1 f k ¨Qk

q where Nq is the number of
queries in the workload and f k is the frequency of the Query.

Storage size (CFS). Is the total storage size required by the collections and
indexes, calculated using schema information in the canonical model. We
define the size of a collection and an index as SC and SI , respectively. Thus,
the total storage size CFS “

řNc
k“1 Sk

C `
řNi

k“1 Sk
I where Nc and Ni are the total

number of collections and indexes in the design.

Degree of heterogeneity (CFH) is the number of distinct types of documents
in a collection/list. We use the weighted average over all the collections
and lists of the schema. Each value is given a weight depending on which
level the list/collection lies in the document. The higher the level, the higher
the assigned weight, thus penalizing heterogeneities at higher levels of the
document structure. If there are n heterogeneous collection/list at a given
level lv, the degree of heterogeneity value Hlv “

n
lv`1 . Assuming there are Nh

number of collections/lists in the design, the average degree of heterogeneity

CFH “

řNh
k“1 Hk

lv
Nh

.

Depth of the documents (CFD) is the average depth of the documents of the
design. We can assume that each document at the top level of a collection has
branches reaching from the root to the leaf level with a length ln, and there is
Nb number of branches in all the documents in the top level. Thus, we define

the average depth of the documents of the design CFD “

řNb
k“1 lnk

Nb
.

3.4 Search Algorithm

Local search algorithms consist of the systematic modification of a given state,
utilizing action functions, in order to derive an improved state. The intricacy
of these algorithms consists of their parametrization, which is, at the same
time, their key performance aspect. Due to the genericity of different use cases
our method can tackle, we decided to choose hill-climbing, a non-parametrized
search algorithm that can be seen as a local search, always following the path
that yields lower loss values. Nevertheless, the cost functions we use are
highly variable and non-monotonic, which can cause hill-climbing to provide
different outputs depending on the initial state. To overcome this problem, we
adopt a variant named shotgun hill-climbing, which consists of a hill-climbing
with restarts using random initial states.

97



3. Overview

Algorithm 6 Shotgun Hill-Climbing

Input: [Initial design, number of non-improving iterations] D, N:
Output: [Solution design] solution

1: solution Ð null; i Ð N
2: while i ą 0 do
3: B Ð randomInitialState(D); finished Ð false
4: while !finished do
5: neighbors Ð applyAllPossibleTransformations(B)
6: B1 Ð stateWithSmallestLoss(neighbors)
7: if l(B1) ă l(B) then
8: B Ð B1

9: else
10: finished Ð true

11: if l(B) ă l(solution) then
12: solution Ð B
13: i Ð N
14: ––i

Loss function. Guiding the local search algorithm requires the definition of
a loss function, taking into account the end-user preferences. Here, this is a
function to be minimized. Hence, the end-user can assign weights to each
cost function according to their importance in the use case. Then, for a given
design C, we define the loss as the normalized weighted sum of each cost

function lpCq “
n
ř

k“1
wk

CFkpCq ´ CFmin
k

CFmax
k ´ CFmin

k
. The expression considers the weight

wk of each cost function, which is used on the transformed loss function for
C. This is a normalized value that considers the utopia (i.e., the expected
minimal) and the maximal design costs, yielding values between zero and
one, depending on the accuracy of both CFmin

i and CFmax
i , which rely on

estimations.

Shotgun hill-climbing. Algorithm 6 depicts an overview of shotgun hill-
climbing. The method generates random designs and systematically improves
them by applying at each step all available transformations keeping the one
that yields the minimum loss value. Note, however, that this approach is
highly susceptible to fall in local minimums. To overcome this issue, we repeat
the process a certain number of iterations and keep the one with the minimum
loss, overall. Once such a solution is not improved for a certain number of
iterations denoted by N (i.e., we do not find any new state with a smaller
loss), it is highly probable that we have found the optimal design.

Thus, DocDesign 2.0 will provide a pareto-optimal design depending
on the importance given to the each of the loss functions and the number
of non-improving iterations given by the user. For instance, retaking the

98



4. Canonical Model

running example, if the user had specified to optimize on the storage space,
the solution would be individual collections with references with minimal or
no nested documents (Listing 5.1). Or, if the query performance is the only
important factor, it is likely to generate collections that can answer the queries
without joins increasing the redundancy (Listing 5.2).

Listing 5.1: Optimized for storage

" REGION ": {
"R_ID": int(4),
" R_NAME ": varchar (10)

}
"USER": {

"U_ID": int(4),
" U_F_NAME ": varchar (20),
"R_ID": int(4),

}
" PRODUCT ": {

"P_ID": int(4),
" P_TITLE ": varchar (10),
"C_ID": int(4),
"B_ID": int(4),
"U_ID": int(4)

}
" COMMENT ": {

"C_ID": int(4),
" C_TITLE ": varchar (20),
"U_ID": int(4),
"P_ID": int(4)

}
"BID": {

"B_ID": int(4),
" B_PRICE ": int(6),
"U_ID": int(4)

}

Listing 5.2: Optimized for queries

"USER -BIDS": {
"U_ID": int(4),
" U_F_NAME ": varchar (20),
" REGION ": {

"R_ID": int(4),
" R_NAME ": varchar (10)

},
"BIDS": [{

"B_ID": int(4),
" B_PRICE ": int(6),
"U_ID": int(4)

}]
}
"USER - COMMENTS ": {

"U_ID": int(4),
" U_F_NAME ": varchar (20),
"R_ID": int(4),
" REGION ": {

"R_ID": int(4),
" R_NAME ": varchar (10)

},
" COMMENTS ": [{

"C_ID": int(4),
" C_TITLE ": varchar (20),
"U_ID": int(4)

}]
}
"PRODUCT - COMMENT ": {

"P_ID": int(4),
" P_TITLE ": varchar (10),
" COMMENTS ": [{

"C_ID": int(4),
" C_TITLE ": varchar (20),
"U_ID": int(4)

}],
"B_ID": int(4),
"U_ID": int(4)

}
"BID -USER": {

"B_ID": int(4),
" B_PRICE ": int(6),
"U_ID": int(4),
" U_F_NAME ": varchar (20),

}

4 Canonical Model

In this section, we present the canonical data model we use to represent
database designs for document stores. We extend our previous work intro-

99



4. Canonical Model

duced in Chapter 3, where we presented a hypergraph-based canonical data
model for polyglot systems. Here, we extend it with additional artifacts and
class methods specific to document stores. To that end, we distinguish three
levels of detail from most abstract to most specific ( immutable, storage agnos-
tic, and document store-specific constructs). Each subsection corresponds to
the three abstraction levels. From now on, we will use the conventions listed
in Table 5.1.

Table 5.1: Variables used in the paper

C The catalog (the design) EN Node (either atom or edge)

A Atom A Set of all atoms in C
AC Class atom Ophq Root atom of a struct h

Ex,y
R

Directed relationship be-
tween two atoms x and y

ER Set of all relationships in C

EH Hyperedge E`H Transitive closure of EH

EStruct Struct EStruct Set of all the EStructs in C
ESet Set ESet Set of all the ESets in C

EDoc
Doc

Hyperedge representing a
document of a document
store

EDoc
Top

EDoc
Doc representing top level

document of a collection of
a document store

EDoc
List

Hyperedge representing a
list in a document store

EDoc
Col

EDoc
List representing a top

level list (a.k.a collection)

EAC ,AC
R

Relationship between two
class atoms

E
Generic superclass for
edges

4.1 Immutable Graph

Figure 5.4 depicts the main constructs of our canonical data model with the
three levels of abstraction highlighted. The ER diagram provided by the user
(e.g., Comments and Products) is considered immutable. This immutable
information is a simple graph consisting of Atoms (A) and Relationships (ER).
An Atom is either an attribute AA or a class representative AC (e.g., comment
text and comment ID respectively). This immutable graph can only represent
binary relationships of an ER diagram. However, the representation of ternary
relationships is also possible reification of the relationship and transforming
into binary relationships.

Over the immutable metadata, we define the different design artifacts
depending on the model being used (e.g., documents in our case). Therefore,
we define design operations for those artifacts at two specialization levels,

100



4. Canonical Model

Fig. 5.4: Class diagram of the canonical model

Table 5.2: Hypergraph methods

Method xxpreconditionsyy xxpostconditionsyy
HyperedgepC, nodes :
Set of ENq

• nodes Ď self
• self P C

v Hyperedgepq • self R self.C
• self .children@pre Ď

self.parent
EH .addNodepn : ENq • self R n` • n P self
EH .removeNodepn : ENq • n P self • n R self

101



4. Canonical Model

each containing different class methods on the canonical model, getting more
concrete as the specialization progresses. Operations at an abstraction level
have access and use the operations at more generic levels above.

4.2 Storage-Agnostic Constructs

The main design construct of our model is a Hyperedge (EH). By definition, a
hyperedge is an edge that connects more than one vertex in a graph. We use
the concept of generalized hypergraph where a hyperedge can also contain
other hyperedges. Hyperedges (EH) in our canonical model consists of a set
of Nodes (EN), which can be either Atoms (A), Relationships (ER) or other
Hyperedges (EH).

In Table 5.2, we identify methods involving Hyperedges. These hypergraph
operations are independent of the design constructs and the concrete data
store, and we show them directly through pre- and post- conditions. Firstly,
creating a Hyperedge defines a set of nodes in the catalog. On destroying it, all
nodes inside are absorbed by its parent to ensure the validity of the catalog
as per Definition 12. On adding a new node EN to a Hyperedge EH , it must
happen that the Hyperedge EH does not transitively contain itself to avoid
cyclic references.

Now, we introduce two specialized EHs that are generic to any database
system. EStruct represents the structure of the stored elements in the database
(i.e., a row in an RDBMS or a document in a document store) with a specific
AC identified as the root (primary attribute of the EStruct). ESet represents
the collections of the database (table in an RDBMS, list or collection in a
document store), which can contain different kinds of structures (in the
case of document stores). We use the hypergraph operations to manipulate
specialized hyperedges EStruct and ESet, defined at Defs. 10 and 11.

Definition 10
A Struct is a subclass of Hyperedge with a prominent node inside (called root,
noted Opself q, which is an AC), so that:

a) All the Atoms in a Struct must have a single path of relationships to its
root which is also part of the Struct.
@a P pselfXAq ´Opself q : D!tEOpself q,x1

R , . . . , Exn ,a
R u Ď self

b) All the roots of the nested Structs inside a parent Struct must have a
single path of relationships from the root of the parent, and this path
must be inside the parent.

@s P pselfXEStructq : Opself q “ Opsq _ D!tEOpself q,x1
R , . . . ., Exn ,Opsq

R u Ď self

c) All the Sets inside a parent Struct must contain a set of relationships that
connect any Atom of the parent to the root of the child Struct or a child

102



4. Canonical Model

Atom of the Set.
@s P pselfXESetq,@t P psX pEStruct YAqq : D!tEy,x1

R , . . . ., Exn ,z
R u Ď s^ y P

pselfXAq ^ pt P A ? z “ t : z “ Optqq

d) To make sure that there are no dangling relationships inside the Struct,
all of the relationships inside it must be involved in a path that connects
either the child Atoms or the child Structs to its root.
@Ea,b

R P pself X ERq : pDy P pself XAq : Ea,b
R P tEOpself q,x1

R , . . . , Exn ,y
R u Ď

self q _ pDy P pselfXEStructq : Ea,b
R P tEOpself q,x1

R , . . . , Exn ,Opyq
R u Ď self q

Definition 11
A Set is a subclass of Hyperedge, so that:

a) Sets cannot directly exist within another Set (i.e., they must be contained
in an intermediate Struct).
@h P pselfXEHq : h P EStruct

b) Together with invariant 1c, it guarantees that all the Structs inside a Set
are connected to the parent Struct of the Set by a set of relationships in
the Set itself. Finally, all the relationships inside the Set must be involved
in the path that connects its child structs or Atoms to the parent Struct to
avoid dangling relationships.
@Ea,b

R P pselfXERq : DAx1
C P self.parent, Dy P pselfX pEStruct YAqq : Ea,b

R P

tEx1,x2
R , . . . , Exn ,z

R u Ď self^ py P A ? z “ y : z “ Opyqq

Table 5.4 shows the methods of Set and Struct constructors. Even if for
the sake of simplicity, they are not explicit there, we consider all properties in
Defs. 10 and 11 are invariants for these methods and consequently guaranteed
also in those at document store-specific level. Here, super referrs to the
constructor of the super class.

Table 5.4: Struct and set methods

Method Activity
StructpC, r : AC, At : Set of A, Re : Set of ER, Hy :
Set of EH , p : EHq

superpC, tru Y AtY ReY Hyq
self.setRootprq
p.addNodepself q

SetpC, Re : Set of ER, Hy : Set of EStruct, At :
Set of A, p : EStructq

superpC, ReY HyY Atq
p.addNodepself q

103



4. Canonical Model

4.3 Document Store-Specific Constructs

Document store-specific constructs are specializations of EStructs and ESets
specific to document stores. We specifically identify the document structure
at the top level as EDoc

Top and the collection as EDoc
Col . All other documents and

nested lists are identified as EDoc
Doc and EDoc

List respectively. We now use the
Struct and Set constructors to define the operators considering document
store-specific constraints. The constraints and mappings we consider
correspond to the following grammar:

C ùñ EDoc
Col

`,

EDoc
Col ùñ EDoc

Top
`

EDoc
Top ùñ ACpA | EDoc

List | EDoc
Docq

˚

EDoc
List ùñ ER

`pEDoc
Doc | Aq`

EDoc
Doc ùñ ACpA | EDoc

List | EDoc
Docq

˚

We define the constructors of the data store-specific structures considering
these production rules, as shown in Table 5.6.

Table 5.6: Document store-specific constructor methods

Method Activity
DocumentpC, r : AC, Re : Set of ER, At : Set of A,
Do : Set of EDoc

Doc , Li : Set of EDoc
List , p : pEDoc

List Y EDoc
Structqq

superpC, r, At, Re, Do Y

Li, pq
TopDocpC, r : AC, Re : Set of ER, At : Set of A,
Do : Set of EDoc

Doc , Li : Set of EDoc
List , p : EDoc

Col q

superpC, r, At, Re, Do Y

Li, pq
CollectionpC, Do : Set of EDoc

Top q superpC,∅, Do,∅,∅q
ListpC, Re : Set of ER, Do : Set of EDoc

Doc , At : Set of A, p :
EDoc

Structq

superpC, Re, Do, At, pq

Finally, we define a valid design using these constructs, which guarantees
that we do not lose any information provided in the input ER diagram.

Definition 12
A design D is a set of collection Hyperedges and is valid if it contains all the
Atoms and Relationships in the closure of at least one of its collection Hyperedges.
Formally: @x P pAYERq : DEDoc

Col P D^ x P EDoc`
Col .

Generating arbitrary constructs cannot guarantee a valid design as per
Def. 12. Thus, when using these document store-specific constructors, the
validity must be explicitly enforced.

104



5. Design Processes Over the Canonical Model

5 Design Processes Over the Canonical Model

Now that we formally defined our canonical model to represent document
store data designs, we can use it in our shotgun hill-climbing approach
introduced with Algorithm 6 to find the near-optimal design. To achieve
this, we need to create a initial state with a random design (line 3) and apply
transformations to generate neighboring designs (line 5). Thus, we introduce
two design processes over the canonical model: random design generation
and design transformation each corresponding to a subsection.

5.1 Random Design Generation

The key concept used in the random design generator is generating connected
components (i.e., subgraphs) of the immutable graph until all the Atoms
and Relationships are in one of these components. This ensures that none of
the input ER diagram information is lost, adhering to a valid design. Each
connected component represents then a collection in the document store
schema. Algorithm 7 is responsible for generating a random design together
with the aid of Algorithm 8 to make the design structure decisions. The
main requirement behind these algorithms is to make the relationship storage
choices randomly. For the simplicity of the algorithms, we omit the flattened
representation in the random generation process. Thus, a relationship can
be referred, nested, or skipped (in the case of chained relationships). In our
running example, the region collection can have bids embedded or referred
without storing the user information. However, the relationship between
the users and bids must be stored in another collection (i.e., user collection
referring/embedding bids) to ensure no information is lost from the original
ER diagram adhering to the validity of a design.

Definition 13
Each connected component (Comp) is represented as a tree of Cnodes, each
representing a relationship and its storage choice, except for the root (where
the from and the relationship are empty) and the leaves (where children
are empty). Thus, each Cnode of the tree contains five elements: 1. the
from AC, 2. the to AC, 3. a relationship ER that connects the parent and
the child, 4. the representation (i.e., nest, refer, or skip) of the ER con-
necting them, or an indicator of being the topmost element of the com-
ponent identified as the ROOT, and 5. the set of child Cnodes. For-
mally: Comp “ Cnodexfrom, to, rel, pNEST | REF | SKIP | ROOTq, tCnodeuy s.t :
from, to P AC ^ rel “ Efrom,to

R

Algorithm 7 keeps track of unused ACs and ERs that connect two ACs
(lines 1 and 2) and maintains a list of ERs to be explored and a list of connected

105



5. Design Processes Over the Canonical Model

Algorithm 7 Main Algorithm
Input: graph G containing Atoms and Relationships
1: allACs Ð G.getACspq Ź all ACs in G
2: allERs Ð G.getEAC ,AC

R spq Ź all ERs that connect two ACs in G
3: ERs Ð newListxERypq Ź ERs to be explored
4: comps Ð ListxCompypq Ź list of connected components
5: repeat
6: if ERs ‰ ∅ then Ź connected ER to an explored one
7: next Ð ERs.removepRandIntpERs.sizeqq
8: allERs.removepnextq
9: else Ź pick a new random unexplored ER

10: next Ð allERs.removepRandIntpallERs.sizeqq
11: rroot, comps, allERs, allACss Ð choosepnext, comps, allERs, allACsq
12: ERs.addAllpG.getUnusedEAC ,AC

R pnext.getprootqqq Ź add connected ERs to explore
13: until allERs “ ∅^ ERs “ ∅
14: for each atom P allACs do Ź make remaining ACs into new Comps
15: col Ð newCnodepnull, atom, null, ROOTq
16: comps.putpcolq
17: for each tree P comps do Ź transform Comps into EHs
18: buildHyperedgeptree, G, allACsq

components (lines 3 and 4). The generation process is initialized by randomly
picking one of the available relationships. This can be from the list of rela-
tionships to explore (lines 6–8), if any, or from all unexplored relationships
(lines 9–10). This chosen ER will create a new connected component or extend
an existing one depending on the current components using Algorithm 8,
which also returns the root of this connected component (e.g., assume that it
is the U_ID). Then, in line 13, we take all the unused ERs that connect other
ACs to the picked root (e.g., EU_ID,R_ID

R , EU_ID,C_ID
R ) expanding the connected

edges to be explored in. We continue this procedure until all the ERs have
been used for the connected components. Then, we generate new connected
components for all the remaining ACs that are not used in any of the existing
connected components (lines 15–18). Finally, in lines 19–21, we build the
ECols corresponding to the connected components in G by transforming the
Comps into corresponding EHs. Due to space limitations, we introduce this
transformation in Appendix E as the procedure is purely technical.

Algorithm 8 is responsible for determining the direction and the represent-
ing of a particular ER chosen by Algorithm 7. The inputs consist of a chosen
ER, the list of currently connected components, and the list of all unused ERs
sent by Algorithm 7. We determine the direction of the relationship randomly
in line 2, which determines the from AC of the new Cnode. Next, we go
through the list of currently connected components (line 5), doing a post-order
traversal (line 6) to determine if one of the currently connected components
can be extended with the new Cnode as a child. This is possible only if there
is a Cnode with to as the from of the new Cnode and from is not the to of the

106



5. Design Processes Over the Canonical Model

Algorithm 8 Choose Algorithm
Input: ER rel, ListxCompy comps, List allERs, List allACs
1: pSkip Ð 0.25
2: opChoice Ð flip(LEFT | RIGHT | BOTH)
3: if opChoice “ LEFT thenŹ need the choice otherwise we will always grow components if its

connected
4: canExtend Ð f alse
5: for each tree P comps do
6: for each node P tree.postOrderTraversalpq do
7: if node.to “ relp0q ^ node. f rom ‰ relp1q ^ pE n P node.children s.t n.rel “ relq then Ź find

a node with rel(0) as "to" which is not connected by rel(1) and has no children or none of the
children has used rel

8: node.addChildprelp0q, relp1qq, rel, flip(REF | NEST)q Ź add new child to the tree
9: allACs.removeprelp0qq

10: if randomDoublepq ă pSkip then Ź skip with probability
11: node.type “ SKIP
12: allERs.addpnode.relq Ź add the relationship back to the pool
13: Connection f ound Ð true
14: break Ź only add the node to the tree and stop the iteration within the tree
15: if Connection f ound then Ź stop looking in more trees if the node is already added
16: break
17: if !Connection f ound then Ź new component
18: root Ð newCnodepnull, relp0q, null, ROOTq
19: root.addChildpnewCnodeprelp0q, relp1qq, rel, flip(REF | NEST)qq
20: comps.putprootq
21: else if opChoice “ RIGHT then
22: same as above swap 0 and 1
23: else if opChoice “ BOTH then
24: do opChoice LEFT and RIGHT (nest on both ends or refer on both ends)
25: opChoice “ BOTH ? flip(LEFT | RIGHT) : opChoice
26: return opChoice, comps, allERs, allACs

new Cnode and the existing Cnode does not use the selected ER in any of the
children. Once we find the location, we update that connected component
with the new Cnode with a random choice of reference or nesting (line 8).

In the case of a chain of relationships between two AC within a connected
component, it is possible to skip some of them in the final document rep-
resentation. For example, we can store the list of bids of a particular region
without the user’s details even though the user is related to the bid. The skip
choice enables such design decisions. We introduce a probability to skip a
relationship in line 1 and change the Cnode type to SKIP and add the ER back
to the pool of unused ERs (to ensure that particular relationship information
is not lost) with that probability in lines 10–13. We add the new Cnode to only
one connected component and to a single particular branch (lines 14–21). If
no component can be updated, we make a new connected component with
the new Cnode as the ROOT as shown in lines 22–31. Finally, we return the
parent side of the ER that we used back to Algorithm 7, in the case of both

107



5. Design Processes Over the Canonical Model

sides, we randomly return one of the ACs (lines 31–33).
The above choices are carried out until all the entities and relationships

belong to at least one of the connected components. Finally, each of the
components is represented as a document store collection. These initial
designs do not contain heterogeneous collections or lists, yet, since we initially
ignore the choice of flattening and only use the nested option for structuring
concerning the options in Fig. 5.1. This decision reduces the complexity of
the random generation and the number of starting schemas. However, we
introduce this through design transformations to ensure that we do not lose
certain designs in the process.

Let us consider the running example of products and comments from
RUBiS and also include users to have a complex scenario to generate a random
design. Let’s assume we picked EP_ID,C_ID

R as the first ER in Algorithm 7 line 5.
Next, in Algorithm 8 we got LEFT as the random opChoice in line 2. Since
there are no existing Comps we move to line 21 and create a new Comp to the
comps list with CnodexP_ID, null, null, ROOTy as the root and a single child
CnodexP_ID, C_ID, EP_ID,C_D

R , NESTy if we got NEST option. Now, coming
back to line 7 in Algorithm 7, we have EP_ID,U_D

R in ERs as the only unused
EAC ,AC

R connected to P_ID. Here, at line 13 we pick this ER and go back to
Algorithm 8. Let’s assume that we got RIGHT as the opChoice. We can’t extend
the previous Comp that we made as it doesn’t satisfy the extensible criteria.
Thus, we create a new Comp with CnodexU_ID, null, null, ROOTy as the root
and CnodexU_ID, P_ID, EP_ID,U_D

R , REFy as its child.
Finally, similarly, if we assume the last remaining ER between U_ID

and C_ID got BOTH and REF, both the Comps of the product and
the user will be extended with CnodexC_ID, U_ID, EU_ID,C_D

R , REFy and
CnodexU_ID, C_ID, EU_ID,C_D

R , REFy respectively. Now that we have exhausted
all ERs, we build the EHs that represent the corresponding design (algorithm
in E). In this case, the design is products embedding comments in one collec-
tion with comments having a reference to the users and a second collection of
users with a reference to both comments and products.

5.2 Design transformations

In order to generate neighboring designs to a given valid design, we introduce
now seven public methods specific for document stores at the corresponding
specific design constructs. A detailed formalization of these transformation
rules is available in Appendix F.

1. Union : Merges two sibling EDoc
Set into one.

2. Segregate: Separates a EDoc
Struct from inside a heterogeneous EDoc

Set into a
new independent EDoc

Set .

108



5. Design Processes Over the Canonical Model

3. Embed: Embeds EDoc
Struct into another sibling EDoc

Struct that have a path of
ERs.

4. Split Separates a EDoc
Struct into two under a given partition of its elements.

5. Nest Creates a new EDoc
Struct within an existing EDoc

Struct, given a subset of its
elements.

6. Group Creates a new heterogeneous EDoc
Set containing two EDoc

Structs.
7. Flatten Removes an EDoc

H and let its parent absorb the content.

Fig. 5.5: Sketch of schema transformations in document stores using transformation rules

Let us retake the running example storing products and comments to illus-
trate the transformations. Figure 5.5 shows eight different designs (Design
1.a–1.d, 2–5) that can be conceived and sketches the transitions between
them using the transformations in Table F.1 (some symmetries are not shown
for the sake of simplicity). Since, only ACs are relevant for the transforma-
tions, namely P_ID and C_ID, only these are shown to keep the figure clean.
Nevertheless, we assume that the attributes of any AC are always attached to it
(e.g., P_NAME will always be in the same hyperedge as P_ID). Glowing lines
indicate the hyperedges that participate in the transformations that follow
each design. Additionally, the hyperedge where the relationship belongs to is
assumed to be that of the tail of the arrow (i.e., in Design 3, ERel belongs to
the EDoc

Top containing P_ID; in Design 5, it is the EDoc
Set of C_ID; and in Design 4,

that of the AC). Notice that in Designs 1 and 2, there is a double-head dashed

109



5. Design Processes Over the Canonical Model

arrow, which means that, for segregation and union, its existence is optional
and also can be at either one or other side. The optionality of the ER in Design
1 implies that the reference between the collections can reside on either side,
which gives rise to four alternative schemas, namely references on both collec-
tions (1.a), one collection (1.b and 1.c), or none (1.d). Even though 1.d is an
invalid design in this particular scenario as we break the invariant in Def. 12,
we use it for illustration as it is possible to have disconnected collections in
other cases.

Let’s assume that we start with Design 1.b and follow the transformations
as illustrated in Fig. 5.5. According to Table F.1, in order to unite two EDoc

Set s,
they need to share the same parent. Thus, if we call EDoc

Col_Prod.unionpEDoc
Col_Comq,

firstly, the EDoc
Col_Com is added to the source EDoc

Col_Prodq, followed by the removal
of the absorbed collection from the catalog. Finally, EDoc

Col_Com is disposed,
leaving its children in the new parent EDoc

Col_Prod, as represented in Design 2,
where comments and products are in the same collection (notice that in this
case only products references comments).

To embed a EDoc
Doc into another, they must have the same parent, and their

roots must be the same, or there must be a path between them. We exemplify
this by EDoc

Top_Prod.embedpEDoc
Top_Comq, which moves EDoc

Top_Com inside EDoc
Top_Prod as in

Design 3. The result is that for each product, there will be several comments
in the form of a flattened list, and each document will carry the name of
the relationship suffixed by a counter. Implementation-wise, we rename the
embedded EDoc

Doc with the name of the relationship followed by a counter, as
shown in the JSON.

In order to flatten an EH , its parent must be a EDoc
Doc (or EDoc

Top ) to ensure
a correct design (i.e., sets directly inside sets shouldn’t be allowed without
a struct hyperedge in between). If so, the EH is simply disposed of, letting
its children to be absorbed by its parent. By applying EDoc

Doc_Com.Flattenpq to
Design 3, we obtain Design 4, where the comments are directly embedded
inside each product without an enclosing comments document. However, the
prefix gotCom followed by the counter still needs to be included in the JSON
to distinguish different instances.

The group transformation creates a EDoc
Set around a child EDoc

Doc(s)
within another EDoc

Struct. Both the child EDoc
Doc and the defining path

of ERs to it must already be inside the original EDoc
Struct. By

EDoc
Top_Prod.grouppEA_ID,B_ID

R , EDoc
Struct_gotComq in Design 3, we obtain Design 5

which embeds the comments inside each product document. Afterwards,
the child EDoc

Doc and the ERs that are no longer used in any path to the remain-
ing children, are removed from the original EDoc

Struct. The transformation results
in a new List inside the JSON containing the data in the child EDoc

Doc which is
linked to the container by the path of ERs. To revert this transformation, we
can call f latten on the created EDoc

List moving us back to Design 3.

110



5. Design Processes Over the Canonical Model

The nest transformation creates a new embedded EDoc
Doc inside another EDoc

Doc
(or EDoc

Top ). It is necessary to use the same parameters to create any document,
but they must all be contained within the original EDoc

Doc . After creating the
embedded EDoc

Doc , all its nodes are removed from the original EDoc
Doc , except the

ERs needed to keep it connected. Thus, nest does not allow keep redundant As
or EHs in the original EDoc

Doc ; if redundancy is required, a split transformation
needs to be done beforehand. By calling nest in Design 4 to nest the comment,
we can obtain back Design 3.

The split transformation allows creating a sibling independent EDoc
Doc with

all or part of the content of another one, inside its parent (this can result in
EDoc

Top instead of EDoc
Doc if the parent is actually a collection). Some or all of the

nodes in the new EDoc
Doc can be removed from the original. Thus, the parameters

of the transformation (which must all be inside the original EDoc
Doc) are both the

contents of the new EDoc
Doc and which elements out of these are removed from

the original. As a result, both EDoc
Structs either share the same root, or there will

be a path between the root of the original EDoc
Doc and that of the new one. Notice

that parameters must be so that both resulting EDoc
Doc satisfy the invariants, but

there is still freedom to determine whether this path is at the end contained
in the original, new, or both EDoc

Structs. In our example, by splitting the gotCom
from product in Design 4, we can obtain back Design 2 (the dashed arrow
depending on the path the parameters determine).

Finally, the segregate transformation divides an EDoc
List (or EDoc

Col ) containing
multiple EDoc

Docs or As into two. The only condition is that the segregated nodes
must be already contained in the original EDoc

List . After the transformation,
the ERs that are no longer used by any of the children inside the original
EDoc

List are removed from it together with the segregated EDoc
List . As a result,

the corresponding JSON will contain two independent lists (or collections
if we are talking about EDoc

Col ) with EDoc
Doc or A, whose contents will depend

on the path to EDoc
Doc or A from the parent of the original EDoc

Set . By calling
EDoc

Col_ABs.segregatepEDoc
Top_Comq on Design 2, we can obtain Design 1.a/b/c.

Not having any normal forms or design algorithms to use as a baseline
for comparison (like in RDBMS), we validate our document store design
transformations against existing rule-based patterns. Luckily, MongoDB
ones are publicly available.4 Hence, we showcase our canonical hypergraph
representation with MongoDB patterns and analyze how to implement them
using a sequence of transformations in Appendix G.

4https://www.mongodb.com/blog/post/building-with-patterns-a-summary

111

https://www.mongodb.com/blog/post/building-with-patterns-a-summary


6. Experiments

6 Experiments

We implemented our approach in a system called DocDesign 2.0(demo in
Appendix B), using HypergraphDB5 to store the canonical model, AIMA3e6

for optimization using Java together with query cost estimator using Gekko7

written in Python. In this section, we present its experimental evaluation,
which is twofold. First, we analyze the quality of the designs generated (Sec.
6.1); and second, we evaluate the scalability of DocDesign 2.0 when the
complexity of the entities and their relationships increase (Sec. 6.2).

6.1 Quality of the Design

To evaluate the quality of the generated designs, we use DocDesign 2.0 on
the running example of the RUBiS benchmark [25] (see Fig. 5.3). We priori-
tized query performance (0.7) followed by the storage space (0.2), depth of
documents (0.05) and heterogeneity (0.05) together with the number of non-
improving iterations (N in Algorithm,6) of 10. The generated design was then
compared against the ones presented by the DBSR framework [95]. We used
a higher weight for the query performance for our design to be comparable
with DBSR while trying to improve storage size and this configuration will
be the typical ones that one would use where query performance is the most
important aspect. Moreover, we have evaluated DocDesign 2.0’s capability to
generate alternate designs depending on the weights provided by the user in
our previous work as shown in Appendix B.

We extended the DBSR evaluation benchmark to include the design sug-
gested by DocDesign 2.0. All the queries were executed using MongoDB
Java driver 3.8.2. We used a single instance of MongoDB Community Edition
version 4.2 running on Intel Xeon E5520, 24 GB of RAM with Debian 4.9 as
the experimental setup. First, we generated data consisting of 1 million users,
10 million items, 5 million bids, 10 million comments, 3 million bids, and 4
regions. Then, the same data was stored in the alternative designs suggested
by DBSR and DocDesign 2.0. Next, 1 million random queries were executed,
consisting of 11 different queries with their respective probabilities. Finally,
we measured the throughput of each of the alternate designs.

Table 5.8, shows the schemas of the designs generated by each of the
systems. Designs generated by DBSR are based on joining the collections.
Thus, the results can be controlled through the number of collections in
the final design. In this scenario, we present the solutions of both 3 and 5
collections for comparison. It is clear that the designs generated by DBSR
contain multiple redundancies, especially on the product. On the contrary,

5http://www.hypergraphdb.org
6https://github.com/aimacode/aima-java
7https://gekko.readthedocs.io/en/latest

112

http://www.hypergraphdb.org
https://github.com/aimacode/aima-java
https://gekko.readthedocs.io/en/latest


6. Experiments

Table 5.8: Final designs generated by DocDesign 2.0 and DBSR

DocDesign 2.0 DBSR (3 col) DBSR (5 col)

"USER": {
"U_ID": int(4),
" U_F_NAME ": varchar (20),
" REGION ": {

"R_ID": int(4),
" R_NAME ": varchar (10)

}
}
" PRODUCT ": {

"P_ID": int(4),
" P_TITLE ": varchar (10),
"BIDS": [{

"B_ID": int(4),
" B_PRICE ": int,
"U_ID": int(4)

}],
" COMMENTS ": [{

"C_ID": int(4),
" C_TITLE ": varchar (20),
"U_ID": int(4)

}],
"U_ID": int(4)

}

"BID - PRODUCT ":{
"B_ID": int(4),
" B_PRICE ": int,
"U_ID": int(4),
" PRODUCT ": {

"P_ID": int(4),
" P_TITLE ": varchar (10)

}}
"PRODUCT -SELLER - REGION ": {

"P_ID": int(4),
" P_TITLE ": varchar (10),
"USER": {

"U_ID": int(4),
" U_F_NAME ": varchar (20),
" REGION ": {

"R_ID": int(4),
" R_NAME ": varchar (10)

}}}
"PRODUCT - COMMENTS ": {

"P_ID": int(4),
" P_TITLE ": varchar (10),
" COMMENTS ": [{

"C_ID": int(4),
" C_TITLE ": varchar (20),
"U_ID": int(4)

}]}

"PRODUCT - SELLER ": {
"P_ID": int(4),
" P_TITLE ": varchar (10),
"USER": {

"U_ID": int(4),
" U_F_NAME ": varchar (20)

}
}
"PRODUCT -BIDS": {

"P_ID": int(4),
" P_TITLE ": varchar (10),
"BIDS": [{

"B_ID": int(4),
" B_PRICE ": int,
"U_ID": int(4)

}]
}

+ DBSR (3 col)

DocDesign 2.0 leans more towards having references and only embedding
the region within the user. From an end-user perspective, the design from
DocDesign 2.0 is much cleaner and has less maintenance compared to the
ones of DBSR. Moreover, doing any updates will be pretty expensive in
DBSR designs as it will involve updating multiple documents in different
collections. The documents used in DBSR contain rather small documents
and are unrealistic for a real-world scenario. Because of this, we conduct the
same experiment with increased document sizes by converting the integer
identifiers into MongoDB UUID fields (24 bytes instead of only 4) and increasing
the description attribute size.

Table 5.9: Performance comparison of the original dataset

Runtime (ms)
Min Q1 Mean Media Q3 Max

DocDesign 2.0 70 512 733 604 726 80639
DBSR (3 col) 228 470 760 575 1074 80063
DBSR (5 col) 262 523 787 585 2067 76259

DBSR (5 col agg.) 253 542 1304 607 2471 75583

Table 5.9 depicts the summary of the throughput values obtained for the 1
million random queries. The five-collection design of DBSR was also evaluated
using the MongoDB aggregation framework. However, this has the worst
performance out of all the designs. Since DBSR can answer most of the queries

113



6. Experiments

Table 5.10: Performance comparison of the realistic dataset

Runtime (ms)
Min Q1 Mean Media Q3 Max

DocDesign 2.0 650 1121 1842 1268 2003 88869
DBSR (3 col) 519 1292 2629 1782 4091 115290
DBSR (5 col) 639 1558 2683 1866 7317 97611

DBSR (5 col agg.) 619 1555 4147 1814 9587 108083

with a single collection, the minimum runtime is lower as it is the time taken
to retrieve the smallest cached document. The min runtime per query is
highest on DocDesign 2.0 in both original and the large document experiment
due to the smallest document being larger than the ones of DBSR (38 bytes
user in DocDesign 2.0 vs 26-byte bid-product in DBSR).

However, DBSR loses the advantage when looking at the other statistics.
Especially, the design with five collections falls quite behind; this could be
mainly because the collections are competing on the available memory and
a higher proportion of documents need to be fetched from the disk rather
than the memory. In the original experiment, DocDesign 2.0 has a slight
advantage in the mean and a higher one at Q3. However, once we increase
the document size to be more realistic (Table 5.10), DBSR always falls behind
the performance of DocDesign 2.0. Overall DocDesign 2.0 has better average
performance and less skewed results by looking at the inter-quartile range,
especially with larger document sizes. The maximum value of almost all the
designs is quite similar because these queries involve fetching documents from
the disk in the event of a cache miss. Both DBSR and DocDesign 2.0 did not
generate heterogeneous designs as the optimal ones. In the case of DBSR, this
is never considered, and in DocDesign 2.0, since we are optimizing for query
performance, the designs with heterogeneous collections become non-optimal.
DocDesign 2.0 designs are less complex with a maximum depth of one level
of nesting, while DBSR has two levels of nesting in the case of product-seller-
region collection. When it comes to the total storage space, DBSR required
7GB in the three collections and 12GB in the case of five collections (due to the
high redundancy in the generated designs of DBSR) as opposed to DocDesign
2.0 that required only 6.5GB. Thus, it is clear that DocDesign 2.0 is capable
of generating document store designs with better performance and superior
space optimization.

6.2 Scalability of the Approach

We tested the scalability of our approach in DocDesign 2.0 as it is an essential
factor in larger use cases. In order to achieve this, we measured how many

114



6. Experiments

iterations it would take to get the near-optimal solution when the number
of entities and relationships grow. For that purpose, we needed random
ER diagrams with a varying number of entities as well as differentiate the
topologies for each number of entities. This eliminates any opportunity of
the topology affecting the final outcome of the experiment. We generated a
synthetic ER diagram since it is impossible to find real-world ER diagrams
that satisfy this requirement. Thus, we used gMark [14] (a graph instance
and query workload generator) to create random ER topologies. We used a
pre-defined number of entities and Gaussian distribution (µ “ 0.31 and σ “ 1)
of the relationships to generate the gMark graph and transformed it into our
immutable graph.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

3 5 10 15 20 25 30

It
e

ra
ti
o

n
s
 f

o
r 

o
p

ti
m

a
l

No. of entities

Fig. 5.6: Scalability of DocDesign 2.0 with number of entities

Next, we generated as many random queries as the number of entities
with equal probabilities. Finally, we used these values as input to DocDesign
2.0 to find the optimal design. We measured the number of iterations until
there is no improvement for the next 100, assuming that this would give us
the closest to the optimal solution. For each number of entities (experiment),
we generated 10 random topologies, and for each topology ran DocDesign
2.0 10 times to obtain the average. As shown in Fig. 5.6, the number of shots
required increases linearly as the number of entities grows. We appreciate
that it requires around 100 (exactly 99.68) iterations to completely stabilize
the design with 30 entities. However, in reality, one can obtain a near-optimal
solution with much fewer iterations.

Figure 5.7 shows the evolution of the loss function that DocDesign
2.0 makes as the iterations (shots) progress in the experiment with 30 en-
tities. The average and the standard deviation are of the 100 instances (10
topologies 10 runs) mentioned before. The initial shots make significant im-
provements fast, but as the shots progress, the improvement is minimal. Thus,
we can safely assume that it is possible to obtain a near-optimal solution for
this problem in around 15 iterations (i.e. N=15 in Algorithm 6).

115



6. Experiments

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  20  40  60  80  100  120

L
o

s
s
s

Iteration

Stdev
Average

Fig. 5.7: Improvement over the number of shots

In summary:
• The design generated by using weights that represent typical require-

ment of optimizing queries with consideration on storage space outper-
forms the design generated by DBSR.

• DocDesign 2.0’s design was not only performant, but also require less
storage space.

• DocDesign 2.0’s multicriteria-based approach provides flexibility for the
end users to optimize according to their requirements.

• The non-improving iterations (N) determines the optimality of the de-
sign. Through a synthetic workload with 30 entities with varying topol-
ogy, we concluded that N “ 15 would already generate a near-optimal
solution.

6.3 Threats to Validity

The first threat to validity is the possible bias on evaluating the quality of the
design. The authors perceived having large collections with redundant data
as a negative property of a design in comparison to DBSR. Nevertheless, we
assume that this is the perspective of a traditional relational database designer
in most of the cases.

Secondly, another threat to validity is on the testing where we increased the
size of the dataset based on the fact that the design proposed by DocDesign
2.0 was not out performing on all the aspects (Q1 and Max). However, in all
the other aspects DocDesign 2.0 outperformed DBSR.

Another threat to validity is that DocDesign 2.0 only provides a pareto-
optimal solution and we do not know what is the best solution to a given
problem. This is only possible through testing all the possible implementations
through an exhaustive search. This is a typical property of optimization
problems. Thus„ we used DBSR as a baseline to compare our solution instead.

116



6. Experiments

Finally, an external threat to validity is the use of synthetic data to test
the scalability of the approach instead of real world data. We decided to
use synthetic data because we have full control over the scale factors of the
input ER diagrams. Finding real world data with such specific requirements
is non-viable.

117



Chapter 6

Conclusions and Future
Directions

1 Conclusions

In this doctoral dissertation, we have presented our approach for automated
data design on document stores. The main goal of this thesis is to provide
a novel, multicriteria-based approach in the context of database design, par-
ticularly for document stores. To this end, we introduced the problem of
database design as a complex problem that grows exponentially with the
number of relationships in an entity-relationship diagram. Moreover, apart
from the apparent query performance, the designs affect multiple aspects
such as storage size, depth of the stored documents, and heterogeneity among
the documents stored in a collection/nested lists. Consequently, multicriteria
optimisation seems to be the ideal candidate, proven its successful track record
on similar problems in diverse domains. Nevertheless, a fully automated data
design optimisation for document stores poses several challenges. The lack
of precise design methodology, formal representation of NoSQL systems and
their designs, and a proper cost model in query processing (compared to
RDBMS). Focusing on these challenges, we proposed a novel approach to
automated database design for document stores. In what follows, we first
summarise the contributions presented in Chapters 2–5 and finally conclude
the thesis.

Chapter 2 explored the impact of using JSON as a semi-structured storage
alternative to traditional RDBMS. The chapter began with identifying the
motive behind choosing document stores as a storage alternative. Document
stores are motivated by the lack of flexibility in the rigid structure as well as the
impedance mismatch problem of RDBMSs. In addition, the semi-structured

118



1. Conclusions

nature of document stores makes them ideal candidates for rapid prototyping
approaches. Nevertheless, the effect on alternative design suggestions pro-
vided by document stores has not been systematically evaluated. Thus, we
identified six data representational differences under three categories between
document stores and RDBMSs. Next, we empirically quantified the impact of
these design choices. Finally, we experimentally evaluated the effect of these
different designs in terms of storage requirements and query performance.

Chapter 3 introduced a hypergraph-based canonical model, one of the
crucial components for achieving the overall goal of automated database de-
sign. This canonical model can represent not only document store designs but
also RDBMS and other NoSQL storage systems. The model consisted of three
levels: Immutable level contained the information on stored entities and their
relationships represented in a simple graph, Storage agnostic level identified
common design constructs to any data store as hyperedges built on top of
the immutable graph. Finally, Document store-specific constructs introduced
specialised hyperedges representing design constructs unique to document
stores. Apart from this, we introduced grammars specific to different data
stores that formalised their storage constructs through constraints. Using
these, we presented algorithms for the generation of data store-specific queries
automatically from the ones issued on the immutable graph. We also intro-
duced several algorithms to calculate essential attributes of a data store, such
as storage size and complexity of the stored documents.

Chapter 4 introduced a cost model for random access queries for docu-
ment stores under a constant workload. Document stores rely on primitive
approaches in determining query plans, such as parallel execution of all possi-
ble query plans (with heuristics to cut down the exploration) and choosing
the winning one and caching it to be used on similar subsequent queries or
forcing the end-user to indicate the query plan. However, to compare alternate
designs, we needed a formal cost model to estimate the query cost. Thus, we
introduced a disk access-based cost model similar to the ones of RDBMSs,
focusing on memory usage as document stores rely heavily on caching to op-
timise the query performance. First, we introduced a cost model consisting of
a generic component together with a document store implementation-specific
components. Each of these specific components was a series of formulas for
different techniques on memory mapping, memory associativity, and cache
eviction policies. Then, the relevant component could be picked depending
on the document store implementation and applied together with the generic
cost component to obtain the final memory usage estimation. Once we had
the memory estimation for each of the collections and the indexes, we could
estimate the relative query cost for any random access query under the con-
stant workload. This is the first cost model for document stores to the best of
our knowledge.

Finally, in Chapter 5, we introduced our final automated data design solu-

119



1. Conclusions

tion for document stores. We used the canonical model to represent the search
space of alternate designs. Our first prototype DocDesign 1.0 (Appendix A),
allowed the end-users to manually input alternate designs together with a
query workload and compare them in terms of storage space obtained through
the canonical model and the relative query performance calculated through
the cost model in Chapter 4. Then, we introduced a formalised palette of
transformations to transform a design into its neighbouring designs without
loss of information while adhering to the design constraints of a document
store (making sure the new design is a valid one). Next, using these trans-
formations with the shotgun hill-climbing algorithm, we could produce the
Pareto-optimal design for a given use case (ER diagram and workload) and
weights for the optimisation criteria. We added two additional optimisation
parameters, the depth of first level documents and heterogeneity of documents
in a collection/nested list. The final prototype, DocDesign 2.0 (Appendix B),
could generate optimal designs better than the compared document store data
design solutions purely based on query optimisation in terms of performance,
storage space, and complexity of the design.

120



2. Future Directions

2 Future Directions

The proposed automated schema design process in this thesis opens the door
to many interesting future directions to extend our current work.

The canonical model algorithms were mainly applied to document stores
to achieve our overall automated database design. Nevertheless, it would
be beneficial to extend the capabilities to other data stores. Most of the
introduced algorithms can be easily applied to other data stores such as
RDBMS since they are more restrictive on the design compared to document
stores. Extending the design transformation rules will make it possible to
develop the automated schema design for other data stores with ease. We also
see the potential of eliminating the limitations of the canonical model, such as
representing specialization.

We foresee the extension of the proposed cost model for document stores
with additional document store implementations. The current cost model only
supports random access queries under the assumption that all queries are
using an index. Thus, modeling the cache behaviour on full collection scans
will broaden the usability of the cost model as it is likely to have full scans for
certain queries that don not use indexes. Moreover, it would be interesting to
model non-B-tree-based indexes such as geospatial and text indexes, allowing
the end-users to predict the performance of any design on a document store.

We obtained optimal designs by using shotgun hill-climbing as the opti-
mization algorithms. However, it will be interesting to analyze the possibility
of using more exploratory approaches such as genetic algorithms that are
robust to local minima. Regarding the actual implementation of the prototype,
we encountered several performance drawbacks while using HypergraphDB
in representing the canonical model. Thus, by using an alternative approach
to represent the canonical model, we will be able to improve the performance
of the optimization process. Moreover, we see the perspective of introducing
other optimization criteria into the process and investigating fine-tuning the
existing cost functions to suit the end-user needs better.

Finally, by extending both the canonical model and the cost model to
other data stores, we can expand our database design problem to include
the choice of the data storage model. Thus, given entity-relationships and
a query workload, answering the question, what will be the best data store
combination to use and how will the data be stored in that particular polyglot
system.

121



Appendices

122



Appendix A

DocDesign: Cost-Based
Database Design for
Document Stores

This chapter has been published as a demo paper in 32nd International
Conference on Scientific and Statistical Database Management (SSDBM). 2020.
The layout of the papers has been revised.
DOI: https://doi.org/10.5441/002/edbt.2021.81

ACM copyright / credit notice:
Copyright © 2020 by the Association for Computing Machinery, Inc. (ACM).
Reprinted with permissions from Moditha Hewasinghage, Alberto Abelló,
Jovan Varga, Esteban Zimányi. DocDesign: Cost-based Database Design
for Document Stores, International Conference on Scientific and Statistical
Database Management (SSDBM). 2020

123

https://doi.org/10.5441/002/edbt.2021.81


1. Introduction

1 Introduction

Before the last couple of decades, traditional Relational Database Management
Systems (RDBMSs) have been the go-to solution for data storage, given their
maturity and popularity. However, with the big data era, NoSQL systems were
introduced as alternate storage solutions, giving rise to novel data storage
paradigms [24, 74]. More than 200 NoSQL systems are currently available,
catering to specific niches of modern data storage1. Among these systems,
document stores provide extended features (e.g., complex queries) because
of the flexible, semi-structured data storage model. The JSON storage is
now widely used in data analytics due to the fast serialization and ease of
interchange between programs. This semi-structured nature of document
stores allows them to handle the problem of data variety efficiently but
introduces new challenges in database design.

Table A.1: Design Alternatives of the use case

Description Representation Description Representation Description Representation

1. Books
as the
top level
collection
and their
Authors are
embedded

Books :{
"B_ID":int ,
" B_NAME ": varchar ,
" Authors " : [{

"A_ID": int ,
" A_NAME ": varchar ,

}]}

2. Authors
as the
top level
collection
and their
Books are
embedded

Authors :{
"A_ID":int ,
" A_NAME ": varchar ,
" Books " : [{

"B_ID": int ,
" B_NAME ": varchar ,

}]}

3. Both
Authors
and Books
as top level
and re-
dundantly
embed-
ding their
counter-
parts

Authors :{
"A_ID":int ,
" A_NAME ": varchar ,
" Books " : [{

"B_ID": int ,
" B_NAME ": varchar ,

}]} ,
Books :{
"B_ID":int ,
" B_NAME ": varchar ,
" Authors " : [{

"A_ID": int ,
" A_NAME ": varchar ,

}]}

4. Books
have only
references
to their
Authors

Books :{
"B_ID":int ,
" B_NAME ": varchar ,
" Authors " :

["A_ID": int]
},
Authors :{
"A_ID":int ,
" A_NAME ": varchar
}

5. Authors
have only
references
to their
Books

Authors :{
"A_ID":int ,
" A_NAME ": varchar ,
" Books " :

["B_ID": int]
},
Books :{
"B_ID":int ,
" B_NAME ": varchar ,
}

6. Both Au-
thors and
Books have
redundant
references
to their
counter-
parts

Authors :{
"A_ID":int ,
" A_NAME ": varchar ,
" Books " :

["B_ID": int]
},
Books :{
"B_ID":int ,
" B_NAME ": varchar ,
" Authors " :

["A_ID": int]
}

7. Reifi-
cation of
the rela-
tionship in
a bridge
collection

Authors :{
"A_ID":int ,
" A_NAME ": varchar
},
Books :{
"B_ID":int ,
" B_NAME ": varchar
},
Author_Book :{
"A_ID":int ,
"B_ID": int
}

RDBMS concepts are based on relational algebra. Thus, normalization
governs the database design, and reaching 3NF or BCNF guarantees an
optimal design for most use cases. However, there are no such methodologies
available for document stores because they encourage de-normalization and

1http://nosql-database.org

124



1. Introduction

accept data redundancy, making the database design an extremely difficult
task. Thus, the database design process of document stores is driven by the
queries and carried out in an ad-hoc manner with a trial and error approach.
Most of the performance issues of the queries are addressed, in some cases,
simply by introducing more powerful hardware. Sadly, this practice leads to
sub-optimal use of resources (e.g., computing power, money). Moreover, not
everyone can afford to upgrade their hardware, and some issues arising from
design mistakes cannot be compensated by powerful hardware. It has been
shown [22] that better database designs in NoSQL systems have a significant
impact on quality requirements such as performance, cost, and scalability.
Thus, having a better database design for a document store is vital in many
aspects of its operation. Unfortunately, the decision making for optimal
design is time-consuming, given less priority in the development life cycle,
and definitely not trivial.

Considering the above challenges, we propose a decision aiding framework
in the context of database design for document stores: DocDesign. DocDe-
sign can estimate important parameters that are affected by database design
decisions such as storage space, and query performance for a given use case.
Thus, it helps the end-user to make informed decisions rather than using a
trial and error process. DocDesign also generates executable queries of the
workload over the different corresponding designs. This availability of the
designs and the queries can fast-track the initial development process and also
mitigates the query rewriting costs in design migration scenarios. Use cases.

Fig. A.1: Conceptual Schema of the Example use case

We take a simple use case of Authors and Books as running example (Fig. A.1)
and show how DocDesign can be used to aid the task of determining the
optimal database design for a document store. We assume that we want to
store the information of 2.5 million Authors and 4 million Books. We choose
MongoDB to store this data as it is the most used document store at the time
of writing2. We also assume that all primary keys are 12 bytes (default size
of MongoDB identifier), and A_NAME and B_NAME are 105 and 155 bytes,
respectively. For this use case in an RDBMS, there is only one design option
being considered following 3NF with separate tables for Author and Book and

2https://db-engines.com/en/ranking/document+store

125



2. DocDesign

Fig. A.2: Overview of DocDesign

a bridge table Author_Book. However, in document stores, there are multiple
alternative designs that one can obtain through referencing and embedding.
Let us assume that our document store should be able to answer the following
queries.

Q1 Find the author name by A_ID
Q2 Find the book name by B_ID
Q3 Find all the books with a given A_ID
Q4 Find all the author names with a given B_ID

In reality, document stores handle multiple queries simultaneously, and
each query is executed with different probabilities, conforming a workload.
We assume that each of the above queries is executed with the same probability
(0.25). The goal is to find the best design to use in MongoDB, attending to the
performance of the queries.

2 DocDesign

DocDesign is capable of evaluating several alternative designs for a document
store and aid the decision making of the user in choosing the optimal design. It
takes the design alternatives and the query workload as inputs. Then, using a
hypergraph-based canonical representation introduced in Chapter 3 estimates
the storage metadata, such as disk space taken by collections and indexes,
repetition of each of the attributes within a collection, and cardinalities. Finally,
using these metadata and the workload, DocDesign estimates the relative
runtimes for the queries using the cost model in Chapter 4. The user can
determine which design suits his/her needs by evaluating these storage space
and query performance estimates. The development is further simplified
through DocDesign by presenting the actual queries on the specific design for
the entire workload.

126



2. DocDesign

2.1 Design Alternatives

The fundamental difference with RDBMS is that, by breaking 1NF, document
stores can represent relationships between entities either by referencing or
nesting. In referencing, the reference of the related entity is kept on the
primary entity following 1NF. However, document stores do not implement
join algorithms, and these need to be done outside of the datastore engine
at the application level. Thus, nesting is encouraged to overcome such lim-
itations [86]; rather than keeping a reference, the entire related entity can
be embedded in the primary entity. Through de-normalization, they make
redundancy acceptable in certain scenarios. Considering these facts, we can
exhaustively identify the seven database designs for our use case of books and
authors, shown in Table A.1. Designs #1, #2, and #3 use nesting to represent
the many-to-many relationship while Designs #4, #5, #6, and #7 use referenc-
ing. Designs #3 and #6 introduce redundancy, replicating the relationship on
both sides.

When producing the designs in Table A.1, it is essential that all the infor-
mation of the use case in Fig. A.1 is preserved, and no information is lost (e.g.,
at least one side of the many-to-many relationship should be included in the
design). Note that our use case only contains two entities with two attributes
each. Vertical partitioning of the entities could introduce additional designs if
the entities had additional attributes. Also, adding more entities adds more
complexity to the problem with different combinations of referencing and
embedding. In such scenarios, the database design decisions are impossible
to be analyzed manually. Consequently, we plan to include automatic design
generation in future iterations of DocDesign using transformation rules. Nev-
ertheless, for this demo, we manually generate the designs to be considered
by DocDesign.

2.2 Canonical Representation

A meta-representation of the designs is required to compare one against
another. Chapter 3 proposed a hypergraph-based canonical model able to
represent heterogeneous NoSQL systems and design constructs. Thus, a small
extension of this model, as shown in Fig. 1.6, also allows us to generate design
dependant queries automatically. Indeed, in order to compute the required
statistics, we included the data type and the number of distinct values in
each of the attribute atoms (AA), the total number of entities as count in the
class atoms (AC), and the multiplicity of the relationships between the atoms.
Moreover, since a hyperedge represents a set or a struct of the design, the
storage size of each hyperedge and the count of the elements inside a set as
calculated values (highlighted in purple). Atoms and their relationships are
immutable and are considered as the storage agnostic representation of infor-

127



2. DocDesign

mation. We provide this immutable information in JSON together with the
additional attributes mentioned above. In our running example, we will have
two class atoms (for A_ID and B_ID), two attribute atoms (for A_NAME and
B_NAME), and four relationships (A_ID Ñ A_NAME, B_ID Ñ B_NAME,
A_ID Ñ B_ID, and B_ID Ñ A_ID). Once DocDesign has this, the designs
can be represented on top of it using hyperedges.

2.3 Query Workload

DocDesign takes storage agnostic selection queries with their access frequency
as input (e.g., Q1, Q2, Q3, and Q4, with 0.25). From those, the algorithm
introduced in Chapter. 3 generates projection queries over the document
store. Moreover, we extended the very same algorithm and included simple
selection predicates when representing the query over the immutable infor-
mation. For example, Q1 can be represented as projecting A_NAME and
having a selection on A_ID. DocDesign then transforms this query over the
immutable information into an actual query over the design. It will generate
”db.Authors. f indptA_ID : xidyu, tA_NAME : 1uq” for Designs #2, #3, #4, #5, #6
and #7 and ”db.Books. f indpt ”Authors.A_ID” : xidyu, t”Authors.A_NAME” :
1uq” for Design #1. In the current version, due to limitations of the cost model,
DocDesign only supports single attribute selection on predicates and expects
selections done through indexes. We consider nested-loop join algorithm
executed on the client application for joins.

2.4 Estimating the Runtime

We use the cost model for document stores based on disk access, that can
estimate the relative query cost for random access queries (i.e., request docu-
ments through an index). This cost model is inspired by RDBMS cost models
used for query optimization [77]. However, we introduce the memory usage
for the document store cost model since most of them encourage having data
in memory for better performance. This cost model requires the average
document sizes, number of documents, multiplier of attribute values inside,
and access frequency of each collection.

Among these, access frequencies are given per query, and DocDesign cal-
culates the access frequencies per collection, which obviously depends on the
design. We obtain the rest of the parameters through the canonical model.
First, we can calculate the storage size of the collections using a modified
version of the query generation algorithm. Moreover, for each of the attributes
within a collection, both top-level and nested, we calculate the multiplier of
the attributes with regard to the top-level document, to estimate the size of
the index defined on that attribute, as well as the selectivity factor of the
corresponding query. For top-level attributes, this is always 1, but when

128



3. Demonstration Overview

Table A.2: Storage Metadata of the Designs

Design #1 #2 #3 #4 #5 #6 #7

Authors

Avg doc size (Bytes) - 1300 1300 150 244.5 244.5 150
Storage size (MB) - 3200 3200 375 611.3 611.3 375
P.index size (MB) - 50.1 50.1 50.1 50.1 50.1 50.1
S.index size (MB) - 275 275 - 275 275 -

Multiplier
A_ID - 1 1 1 1 1 1
B_ID - 5.5 5.5 0 5.5 5.5 0

Books

Avg doc size (Bytes) 740 - 740 265.6 200 265.6 200
Storage size (MB) 3000 - 3000 1100 800 1100 800
P.index size (MB) 80.2 - 80.2 80.2 80.2 80.2 80.2
S.index size (MB) 275 - 275 275 - 275 -

Multiplier
A_ID 3.43 - 3.43 3.43 0 3.43 0
B_ID 1 - 1 1 1 1 1

Authors
Books

Avg doc size (Bytes) - - - - - - 64
Storage size (MB) - - - - - - 878.3
P.index size (MB) - - - - - - 275
A.index size (MB) - - - - - - 275
B. index size (MB) - - - - - - 275

Multiplier
A_ID - - - - - - 5.5
B_ID - - - - - - 3.43

Total storage (MB) 3355.2 3525.1 6880.3 1880.3 1816.6 2391.6 3008.6

indexing nested attributes, the same top-level document can be referred by
several indexed values (in Designs #2 and #5, there are 5.5 Books per Author
in Table A.2). Finally, DocDesign estimates the relative runtimes for each of
the queries per design using the cost model. The actual runtimes for all the
queries and designs on a single instance of MongoDB 4.2 using MongoDB
Java driver 3.8.2 on Debian 4.9 with Intel Xeon E5520, 24 GB of RAM running.
are shown in Table. A.3. We restricted the cache size of MongoDB to 256MB
to make sure the collections do not fit in memory.

DocDesign presents the storage requirements and the query costs to the
end-user for each design alternative. Depending on other user requirements,
such as the importance of a particular query or restrictions on storage space,
the ideal design can be selected. Our running example results in Table. A.3
show that the best design is #3 (same as the prediction). We calculated the
Discounted Cumulative Gain (DCG) [62] of each of the query predictions and
the overall design rank. We then calculated the min-max normalized gain
against the worst and the best rankings with a minimum result of 0.85 for the
Q2, but 0.95 for the overall prediction.

3 Demonstration Overview

In the on-site demonstration, we intend to showcase DocDesign using the
running example of this chapter. It is essential to understand the complexity

129



4. Conclusion

of the database designing problem for document stores. We give a small
questionnaire3 asking the users to select the best design for different scenar-
ios of our use case. After the feedback of the questionnaire, we introduce
DocDesign. First, the user will be presented with the pre-defined queries
together, will be allowed to provide the frequencies in our use case, and
guess the best out of the seven designs. Then, we will present the values that
we get from DocDesign (notice that response time of all individual queries
changes when modifying the query frequencies, because of different mem-
ory allocation due to LRU-like eviction policy in use). Through this, we
will showcase how time and effort can be saved by using DocDesign in the
database design decision-making process for document stores (demo video in
https://vimeo.com/396513259) We will also use TPC-C to show a complex
use case with DocDesign, using only the read queries of the workload. We
will compare the predictions given by DocDesign against the actual runtimes
we obtain by running TPC-C in MongoDB . Next, we will compare different
designs for TPC-C and see the DocDesign predictions. Finally, we will show
the additional features of system such as allowing the users to input the
queries over the immutable information and compare the generated queries
on the desired design.4

4 Conclusion

Table A.3: Query Runtimes of the Designs

Design
Actual runtime (ms) Prediction

Q1 Q2 Q3 Q4 Total Rank Q1 Q2 Q3 Q4 Total Rank

1 25.63 24.78 69.28 25.19 36.22 5 1.82 1.58 6.10 1.58 11.08 3
2 16.36 28.23 17.38 51.67 28.41 2 1.39 1.65 1.39 3.97 8.41 2
3 14.15 14.55 15.70 14.44 14.71 1 1.34 1.45 1.34 1.45 5.57 1
4 10.09 14.82 48.05 44.56 29.38 3 1.26 1.61 5.94 5.93 14.74 5
5 15.65 11.53 77.92 38.95 36.01 4 1.42 1.45 9.40 3.78 16.06 6
6 20.19 22.59 66.45 40.35 37.40 6 1.62 1.72 5.94 4.01 13.29 4
7 12.67 13.56 93.80 93.64 53.96 7 1.06 1.28 9.68 8.75 20.77 7

Document stores have gained wide popularity, mainly because of address-
ing the data variety problem through semi-structured data storage. However,
database designing for document stores is not trivial and is typically per-
formed using heuristics. A good database design is vital for performance,
as poor design decisions can incur substantial costs, both performance and
cost-wise, especially in big data systems. Hence, we present DocDesign to
aid in the design decision-making process for document stores. DocDesign is

3https://moditha.typeform.com/to/NRTjEm
4DocDesign demo available in http://www.essi.upc.edu/dtim/tools/DocDesign

130

https://vimeo.com/396513259
http://www.essi.upc.edu/dtim/tools/DocDesign


4. Conclusion

capable of successfully predicting the storage requirements and relative query
runtimes for a given design and query workload. Thus, the end-user can make
an informed decision on which design to choose rather than resorting to trial
and error approaches. We plan to enhance DocDesign by adding automatic
design generation and multi-criteria optimization for suggesting the optimal
designs.

131



Appendix B

DocDesign 2.0: Automated
Database Design for
Document Stores with
Multi-criteria Optimization

This chapter has been published as a demo paper in 24th International
Conference on Extending Database Technology (EDBT). 2021.
The layout of the papers has been revised
DOI:https://doi.org/10.5441/002/edbt.2021.81

The layout of the paper has been revised.

Co-authoring declaration This work has been done together with the post
doctoral researcher Sergi Nadal. Precisely, the introduction and problem
formation were done jointly with equal contribution. The canonical model,
random design generation, design transformations, and the user facing web
application were done by Moditha Hewasinghage, while the search algorithm
was done by Sergi Nadal.
Open Proceedings copyright / credit notice:
Copyright held by the owner/author(s). Distribution of this paper is per-
mitted under the terms of the Creative Commons license CC BY-NC-ND 4.0.
Reprinted with permission from Moditha Hewasinghage, Sergi Nadal, Alberto
Abelló. DocDesign 2.0: Automated Database Design for Document Stores with
Multi-criteria Optimization, International Conference on Extending Database
Technology (EDBT). 2021

132

https://doi.org/10.5441/002/edbt.2021.81


1. Introduction

1 Introduction

The plethora of current NoSQL systems introduces alternative data stor-
age methods to the traditional relational database management systems
(RDBMSs) [24]. Among these, document stores have gained popularity due to
the semi-structured data storage model. In contrast to the RDBMS normaliza-
tion, document stores favor embedding, trying to keep the data related to a
single instance together instead of spreading it across different tables. This
increases the complexity of database design for document stores as opposed
to RDBMS, where reaching 3NF or BCNF guarantees an optimal database
design in the majority of the use-cases. Database design for document stores
is, in general, given low precedence, and mostly carried out in a rule-based
ad-hoc manner. For instance, MongoDB, the leading document store, provides
a set of design patterns1 that provide certain guidelines on how to structure
documents. However, it has been shown that the choice of design has a
major impact on performance, specially in the NOSQL realm [10]. Thus, it is
advantageous to have a better design by exploiting any prior knowledge on
the requirements rather than a purely random one.

Let us take an example of implementing an online auction system based
on the RUBiS benchmark [25] in a document store. Fig. B.1 shows the 5

Fig. B.1: ER diagram of RUBiS Benchmark

entities and 6 relationships composing the RUBiS framework. We can have
a normalized solution, similar to that in a RDBMS, an embedded single-
document solution, or the solution suggested by a purely workload-based
schema recommender, such as DBSR [95], which denormalizes certain entities.
To show the complexity of finding the optimal database design in a document
store, let us define a running example use case consisting of two single
entities from RUBiS, namely Product and Comments, and an equiprobable
hypothetical workload defined as follows:
• Given a Comment ID, find its text.
• Given a Product ID, find its name.
• Given a Comment ID, find the Product name.
• Given a Product ID, find all of its Comments.

1https://www.mongodb.com/blog/post/building-with-patterns-a-summary

133

https://www.mongodb.com/blog/post/building-with-patterns-a-summary


1. Introduction

Fig. B.2: Relationship design choices, and two examples

Fig. B.3: Overview of the DocDesign 2.0 Architecture

In this scenario, we have two entities and one relationship. If we assume
that all attributes for an entity are kept together within a document, we are
left with the decision on where the relationship must be stored in the final
design. Thus, database designs can be enumerated based on the alternatives
to store the relationship, which depend on three independent choices: direc-
tion, representing, and structuring as shown in Fig. B.2, together with two
examples. Direction determines which entity keeps the information about
the relationship. It can be one of the two entities, or both. Representation
affects how this relationship is stored either by keeping a reference or em-
bedding the object. Finally, Structuring determines how we structure the

134



1. Introduction

relationship, either as a nested list or flattened. For example, if keep the
references to the comments in the product, they can be stored as a list of
references (comment:...) or in a flattened manner (comment_1:.., comment_2:..).
Hence, we end up with 12 possible designs for our running example. Each of
these could potentially be the optimal solution for an end-user depending on
their preferences. For example, the design where products and comments nest
their counterparts redundantly (i.e., both directions are stored by embedding
the objects) will benefit query performance, as all queries can be answered
with a single random access. However, this is at the expense of storage space
due to redundancy. What if we only have a single reference on the product
for its comments? Does the reduction of storage space justify the impact on
performance? This trade-off between alternatives makes the process of finding
the optimal design a complex one.

The number of relationships of the use-case (r) determines the number
of candidate designs, which is exponential (12r), as the storage option of
each relationship is independent of others. Note, however, that here we did
not consider allowing heterogeneous collections/lists, which is possible in
the context of schemaless databases, leading to a complexity increase. For
example, collections at the top level could potentially contain different kinds
of documents. In our running example, user and region documents could be
stored in a single heterogeneous collection mixing both. Precisely, for a design
with c top-level collections, the total number of combinations will be

řc
i“1

 c
i
(

where
 n

k
(

is the Stirling number of the second kind, used to calculate the
number of ways to partition n distinct elements into k non-empty subsets [51].
Overall, such exponential growth makes impossible to enumerate and evaluate
all candidate designs. Hence, existing solutions, such as DBSR [95], NoSE [88]
and Mortadelo [34], mainly rely on the query workload to propose a database
design.

Contributions. Considering the above observations it is clear that the problem
of storage design for document stores has a large search space. Moreover,
each candidate solution potentially performs differently among the considered
cost functions. It is, hence, obvious that exhaustively exploring the search
space is prohibitively expensive. To overcome this issues, in this paper, we
present DocDesign 2.0, a novel solution that addresses the complex problem
of database design for document stores. DocDesign 2.0’s contributions involve
automatically generating potential designs, as well as evaluating the performance of
a design on four objectives: storage size, query performance, degree of heterogeneity,
and average depth of documents. Finally, DocDesign 2.0 presents the end-user with
the near-optimal database design specific to his/her preference of the objective for
a given use-case and query workload. Precisely, in this paper, we consider
read-only query workloads. DocDesign 2.0 embeds and extends our former
solution DocDesign in Appendix A, which aids on evaluating database designs

135



2. DocDesign 2.0 in a nutshell

based on storage size and query performance, requiring however to provide a
concrete schema as input. Contrarily, DocDesign 2.0 automatically generates
such designs yielding, with a high probability, the near-optimal one with
respect to a set of objectives.

Outline. In the rest of the paper we introduce DocDesign 2.0’s demonstrable
features to resolve the motivational example and other database design for
document stores scenarios. We first provide an overview of DocDesign 2.0and
its core features. Lastly, we outline our on-site demonstration, involving the
motivational scenario as well as other more complex real-world use cases.

2 DocDesign 2.0 in a nutshell

DocDesign 2.0 adopts multi-objective optimization techniques, which have
shown to be effective on obtaining near-optimal solutions out of a large search
space in the presence of contradicting objectives [84]. In these scenarios, one
can only aim to obtain a Pareto solution (a solution that, in the presence of
multiple objectives, cannot improve one objective without worsening another).

Search algorithm. Local search algorithms consist of the systematic modifi-
cation of a given state, by means of action functions, in order to derive an
improved state. The intricacy of these algorithms consists of their parametriza-
tion, which is at the same time their key performance aspect. Due to the
genericity of different use cases DocDesign 2.0 can tackle, we decided to
choose hill-climbing, a non-parametrized search algorithm which can be seen
as a local search, always following the path that yields higher utility values.
Nevertheless, the cost functions we use are highly variable and non-monotonic,
which can cause hill-climbing to provide different outputs depending on the
initial state. To overcome this problem, we adopt a variant named shotgun
hill-climbing, which consists of a hill-climbing with restarts using random
initial states.

An overview of DocDesign 2.0 is shown in Fig. B.3 and we present the modules
and components of DocDesign 2.0 in the following subsections.

2.1 User Inputs

There are three inputs the end-user must provide, namely the equivalent to an
Entity-Relationship diagram of the domain, query workload, and the weights
of the cost functions.

136



2. DocDesign 2.0 in a nutshell

Listing B.1: Input entity relationships

{" atoms ":[{
" PRODUCT ":{

"* P_ID":{" count ":2500000,"size":4},
" P_NAME ": varchar (155)}},

{" COMMENT ":{
"* C_ID":{" count ":5000000,"size":4},
" C_TEXT ": varchar (105)}}],

" relationships ":[
{"P_ID":{"C_ID":"1~2"}}

]}

Fig. B.4: Immutable graph

Listing B.2: Query workload

[
{"freq":0.25,"q":["C_ID"," C_TEXT "]},
{"freq":0.25,"q":["P_ID"," P_NAME "]},
{"freq":0.25,"q":["C_ID","P_ID"," P_NAME "]},
{"freq":0.25,"q":["P_ID","C_ID"," C_TEXT "]}
]

Entity-Relationship. Refers to the use case-specific entities, their attributes,
and the relationships between them. To accurately measure the different cost
functions, DocDesign 2.0 requires the number of instances of each entity, the
size of its attributes, and the relationship multiplicities (Listing B.1). This
information is considered immutable, and the database design is carried
out on top of it. We use a hypergraph-based canonical model internally to
represent them (shown in Fig. B.4). Furthermore, the entities are atomic,
meaning that attributes related to an entity cannot be split.

Query workload. Consists of a set of queries together with their frequen-
cies to be executed in the use case. These queries are independent of the
database design and are represented as subsets of the immutable information
(Listing B.2).

Cost function weights. Allows the end-user to include his/her preference
in the database design. Currently, DocDesign 2.0 supports tuning four cost
functions corresponding to the objectives: query cost, storage size, degree of
heterogeneity within collections and sets, and average depth of the documents.
The end-user can decide how important each of these costs are and resolve
trade-offs between them. For instance, forcing higher importance to query
cost and lowering the one of storage size would lead to a schema with higher
redundancy and better performance.

137



2. DocDesign 2.0 in a nutshell

2.2 Design Operations

Information about entities, their attributes, and the relationships are consid-
ered immutable, and the database design is built from it. Indeed, with regard
to our running example, the final design must have information on all the
warehouses, districts, and the relationships between them. A hypergraph-
based representation enables DocDesign 2.0 to guarantee this property (refer
to Chapter 3 and Appendix A for further details). We introduce two methods
to fit the shotgun hill climbing approach: generation of a random design, and
evolution of a design using valid transformations.

Random design generation. The random schema generator relies on identi-
fying subsets of entities and relationships that will be made into a collection
(referred to as connected components) and the structure of the documents
inside the collection in a document store database design. Based on the 12
possible designs that a relationship can be stored, we make the following
decisions randomly in the schema generation process.
• Root of the connected component is chosen at random from the available

entities. This choice determines the root document of the document store
collection that this component represents. In our running example, this is
either picking the warehouse or the district as the root of the collection. Let
us assume we picked the warehouse in this case.

• Choosing the next path to explore expands the connected component and
determines it’s structure. Potentially multiple relationships connect an
entity to others in a connected component. Thus, for a given entity of a
connected component, a random subset of these relationships is picked to
further expand, determining the depth and the related documents of the
final design. This, together with the root of the document determines the
choice of the direction in Fig. B.2 except for replicating both. In the running
example, we choose the relationship to the district from the warehouse
(already inside the component).

• Embedding or Reference determines possible ways to represent the rela-
tionship between two entities of a component. If embedding is chosen, the
entire document is embedded in the parent and referencing only keeps the
reference of the related document on the parent. In the running example,
if the embedding option is chosen, the final collection will be warehouses
with embedded districts. We also make the decision of replicating both
based on a given probability.
The above choices are carried out until all the entities and relationships

belong to at least one of the connected components. Finally, each of the
components is represented as a document store collection. These initial
designs do not contain heterogeneous collections or lists, yet, since we initially
ignore the choice of flattening and only use the nested option for structuring
with regard to the options in Fig. B.2. This decision reduces the complexity

138



2. DocDesign 2.0 in a nutshell

of the random generation and the number of starting schemas. However, we
introduce this through design transformations to ensure that we do not lose
certain designs in the process.

Design transformations. Even though it is possible to generate most of
the potential designs through the random generator, it is very unlikely to
reach an optimal state randomly. Moreover, we omitted the heterogeneous
collections/lists and flattened ones in the random process. Thus, we introduce
seven design transformation operations and use five of them to generate the
neighbors of a particular design. These transformations are inspired by the
rule-based design patterns proposed by MongoDB.We have validated them by
recreating the MongoDB design patterns as sequences of transformations2.
• Union - merges two collections/lists at the same level and creates a hetero-

geneous one.
• Segregate - separates a homogeneous collection/list out of a heterogeneous

one.
• Embed - embeds a related document inside another.
• Flatten - flattens an embedded document or a list inside it’s parent.
• Group - creates an embedded list of related documents inside another

(opposite of flattening a list).
We also identify two other operations, namely, Nest and Split. Nest

operation creates a nested document inside another and is unnecessary as we
already cover it through the random generation. Split is similar to vertical
partitioning a document. However, adhering to the atomic entity rule, we
decided not to include this operation as it would also expand the search space
uncontrollably.

2.3 Optimization

Candidate designs obtained through random generation or transformation
need to be evaluated in order to assess their optimality.

Cost functions. We introduce four cost functions to be measured and opti-
mized in DocDesign 2.0: query cost, storage cost, degree of heterogeneity, and
average depth of the documents. These are defined as follows:
• Query cost (CFQ), is the sum of the relative query performance values

calculated from the schema using the cost model for document stores.
• Storage size (CFS), is the total storage size required by the collections and

indexes, calculated using the canonical model.
• Degree of heterogeneity (CFH), is the number of different types of docu-

ments in a collection/list. We use the average over all the collections and
lists of the schema. Each heterogeneity is given a weight depending on

2More details at https://www.essi.upc.edu/~moditha/transformations

139

https://www.essi.upc.edu/~moditha/transformations


3. Demonstration Overview

Fig. B.5: DocDesign 2.0 user interface

which level the list/collection lies in the document. The higher the level,
the higher the assigned weight, penalizing heterogeneities at higher levels
of the document structure.

• Depth of the documents (CFD), is the average depth of the documents of
the design.

Utility function. Guiding the local search algorithm requires the definition of
a utility function taking into account the end-user’s preferences. Here, this
is a function to be minimized. Hence, the end-user can assign weights to
each of the cost functions according to their importance in the use-case. Then,
for a given design C, we define the utility as the normalized weighted sum

of each cost function upCq “
n
ř

i“1
wi

CFipCq ´ CFo
i

CFmax
i ´ CFo

i
. The expression considers

the weight w of each cost function, which is used on the transformed utility
function for C. This is a normalized value that considers the utopia (i.e., the
expected minimal) and the maximal design costs, yielding values between
zero and one.

3 Demonstration Overview

DocDesign 2.0 has a web interface as shown in Fig. B.5. In the on-site demon-
stration, we will showcase DocDesign 2.0 using the RUBiS usecase as a real-
world example The manual database design process is expensive as RuBiS
contains five entities and six relationships, leading to a large solution space.
Moreover, we use the 11 queries with their access frequencies as the workload.

140



3. Demonstration Overview

First, for the ease of explanation, we will use the paper’s running example
(i.e., Products and Comments) and the four queries to showcase the ease of
using DocDesign 2.0, initially with equal weights and then higher weight to
query cost. In the first scenario with equal weights, the optimal schema is
products having references to their comments. When optimizing only for the
query performance, DocDesign 2.0 suggests redundantly nesting comments
inside the product and product inside the comment. This approach reduces
the actual runtime almost by half at the expense of double the storage space.
This establishes the functionality and the efficiency of DocDesign 2.0.

Then, we will import the full RUBiS E/R to DocDesign 2.0 together with the
queries and showing the ability of DocDesign 2.0 to solve more complex use-
cases. The results presented by DocDesign 2.0 have a higher throughput once
implemented compared to the best solution suggested by DBSR [95]. Moreover,
the suggestion by DocDesign 2.0 has far less redundancy compared to the
ones by DBSR. The participants are also allowed to interact with the DocDesign
2.0 demonstration with the ability to choose between different queries and
objective function weights as well as generate their own. The resulting updates
made to the design can be discussed by means of changes introduced (e.g.:
giving more importance to query cost will result data redundancy). We also
present the actual runtimes (calculated by a benchmarking suite) and storage
sizes for the usecases and the designs that we demonstrate. This allows the
users to validate the effectiveness of the solutions generated by DocDesign 2.0.

Since the JSON input format is specific to DocDesign 2.0, we also include
a functionality to create them through an intuitive UI. Moreover, the users can
suggest their own design to compare against the one suggested in terms of
the four objective functions. The designs suggested by DocDesign 2.0 rely on
pre-defined queries. If the queries are unknown the end users have to rely
on the other three cost functions to obtain a "good enough" design. Through
this hands-on experience, we are able to show the ability of DocDesign 2.0 to
address the complex problem of document store database design improving
the quality and productivity as opposed to a manual design process.3

3Demo video available at https://vimeo.com/505248323

141

https://vimeo.com/505248323


Appendix C

Calculating Internal B-tree
Blocks

We calculated the probability of a leaf block of data B-tree in memory being
requested Preq

d pCq as 1´ p1´ SFpCqqRdpCq, in Eq. 4.10. . Hence, we continue
the calculation of the internal nodes of the data B-tree as follows.

If a document is in the cache, the data block containing the document and
the internal block containing the reference entry to that data block must be
in the cache. On the contrary, if an internal block is not in the cache, none
of the data blocks pointed by the reference entries in it can be in the cache.
Therefore, for an internal block not to be in the cache, all of the reference
entries of the block should reference blocks, not in the cache. Thus, since the
probability of a single reference entry referring to a leaf block not in the cache
is 1´ Preq

d pCq, and there are RintpCq reference entries in a single internal block,
the probability of an internal block in memory being requested can be defined
as follows.

Preq
int pCq “ 1´ p1´ Preq

d pCqqRintpCq (C.1)

Moreover, we estimate the number of internal blocks pointing to the leaves,
InterpCq as follows.

InterpCq “

S

r
|C|

RdpCq
s

RintpCq

W

(C.2)

Finally, we can state the cached internal blocks MintpCq as follows.

MintpCq “ InterpCq ˚ Preq
int pCq (C.3)

142



Appendix D

Cost Calculation Examples
for MongoDB

We present the application of our cost model in MongoDB with two examples.
First, a single collection accessed through primary index with complete set of
equations and calculations. Second, we present a real world usecase with only
the initial calculation of the inputs because the complexity and the number of
equations increase in such scenario.

1 Single Collection with Primary Index

Let us take an scenario with Test 1 (13 million documents) and average docu-
ment size of 40 bytes. First, we calculate the average number of documents
and index entries in a block, together with the total number of data and index
blocks as follows (by applying Eqs.1 and 2).

|C| “ 13 ˚ 106 Bsized “ 32Kb Bsizei “ 32Kb

SizedpCq “ 40b Sizei_idpCq “ 22b F “ 0.7

RdpCq “ 0.7 ¨
Y32768

40

]

“ 573

R_idpCq “ 0.7 ¨
Y32768

22

]

“ 1042

BdpCq “
Q13 ˚ 106

573

U

“ 22676 K “ 10Mb M “ 256Mb

B_idpCq “
Q13 ˚ 106 ˚ 1

1042

U

“ 12473 u “ 0.80

143



1. Single Collection with Primary Index

Since we have only the primary index, Rep_id “ 1, PpC, _idq “ 0.5, and
PpCq “ 0.5. Now, applying Eqs. 4.7–4.13 together with Eqs. 4.4 and 4.19, we
come up with the following set of equations.

Req_idpCq “ |Q| ¨ 0.5

E_idpCq “ 13 ˚ 106 ˚

ˆ

1´
´13 ˚ 106 ´ 1

13 ˚ 106

¯Req_idpCq
˙

SF_idpCq “
E_idpCq
13 ˚ 106 “

ˆ

1´
´13 ˚ 106 ´ 1

13 ˚ 106

¯Req_idpCq
˙

SFpCq “ SF_idpCq “
ˆ

1´
´13 ˚ 106 ´ 1

13 ˚ 106

¯Req_idpCq
˙

Preq
d pCq “ 1´ p1´ SFpCqq573

Preq
_idpCq “ 1´ p1´ SF_idpCqq1042

Msat
d pCq “ 22676 ˚ Preq

d pCq Msat
_idpCq “ 12473 ˚ Preq

_idpCq

Msat
d pCq ˚ 32768`Msat

_idpCq ˚ 32768 “ pp0.8 ˚ 256q ´ 10q ˚ 10242

By solving the above set of equations, we obtain the values for |Q| “ 4242.85,
Msat

d pCq “ 3038.98, and Msat
_idpCq “ 2847.82. Using these values at the memory

saturation point, we can come up with the following set of equations by
applying Eqs. 4.21–4.27 together with Eqs. 4.4 and 4.19.

Pin
d pCq “ Pout

d pCq Pin
_idpCq “ Pout

_id pCq

Shotsin
d pCq “ 3038.98 ¨

MdpCq
22676

Shotsin
_idpCq “ 2847.82 ¨

M_idpCq
24962

EdpCq “ MdpCq ´ Shotsin
d pCq

E_idpCq “ M_idpCq ´ Shotsin
_idpCq

144



2. Multiple Collections

WdpCq “
MdpCq ¨ 32768

pp0.8 ˚ 256q ´ 10q ˚ 10242

W_idpCq “
M_idpCq ¨ 32768

pp0.8 ˚ 256q ´ 10q ˚ 10242

Pout
d pCq “

WdpCq ¨
EdpCq
MdpCq

WdpCq ¨
EdpCq
MdpCq

`W_idpCq ¨
E_idpCq
M_idpCq

Pout
_id pCq “

W_idpCq ¨
E_idpCq
M_idpCq

WdpCq ¨
EdpCq
MdpCq

`W_idpCq ¨
E_idpCq
M_idpCq

Pin
d pCq “

3038.98 ¨ p1´ 0.5q
3038.98 ¨ p1´ 0.5q ` 2847.82 ¨ p1´ 0.5q

“ 0.52

Pin
_idpCq “

2847.82 ¨ p1´ 0.5q
3038.98 ¨ p1´ 0.5q ` 2847.82 ¨ p1´ 0.5q

“ 0.48

MdpCq ˚ 32768`M_idpCq ¨ 32768 “ pp.8 ˚ 256q ´ 10q ˚ 10242

By solving the above equations we obtain MdpCq “ 2847.82 and M_idpCq “
3038.98. By applying these values on Eqs. 3 and 4 we get a relative cost for a
query through _id as follows.

PdpCq “
2847.82
22676

“ 0.12 PdpCq “
3038.98
12473

“ 0.24

CostRand “ 2´ p0.24` 0.12q “ 1.64

2 Multiple Collections

Let us take a use-case of storing the data of authors and their books. Let’s
assume that we chose to have a reference to the authors inside each of the
books (as shown in Listing D.1) out of the possible design choices. Moreover,
let us also assume that each author has 5 books and each book has 3 authors
on average.

Listing D.1: Example schema of a document store

" Books ":{
"_id": <int >,
" B_NAME ": <varchar >,
" Authors " : ["A_ID": <int >]

},
" Authors ":{

"_id":<int >,
" A_NAME ": <varchar >

}
In this scenario, we have two collections and three indexes (two primary

on each of the collections and one secondary index on A_ID in Books). We
calculate the number of documents/indexes in a block and the total number
of blocks for each of these five B-trees as follows.

145



2. Multiple Collections

|Books| “ 4 ˚ 106 |Authors| “ 2.5 ˚ 106 Bsized{i “ 32Kb

SizedpBooksq “ 265b SizedpAuthorsq “ 150b F “ 0.7

SizeipBooks{Authorsq “ 22b RdpAuthorsq “ 152

RdpBooksq “ 89 BdpAuthorsq “ 16448

BdpBooksq “ 44944

R_idpBooksq “ RA_IDpBooksq “ R_idpAuthorsq “ 1042

B_idpBooksq “ 3843 B_idpAuthorsq “ 2402

MultA_IDpBooksq “ 5 BA_IDpBooksq “ 19213

The following queries are executed with equal probability (0.25) on our docu-
ments store.

Q1 Find the author name by _id
Q2 Find the book name by _id
Q3 Find all the book names with a given _id of an author
Q4 Find all the author names with a given _id of a book

Since our cost model depends on the access probability on each of the
B-tree structures, we calculate them as shown in Table D.1. In Q3, we have
single access to the secondary index on A_ID and five access to the data B-tree.
Q4 involves two queries, first, one to retrieve a book through its _id and
then on average, there would be 3 A_IDs which need to be retrieved as three
independent requests through _id of the Authors collection.

Table D.1: Calculating the access probability of the B-trees

Index usage Collection usage
Book Author

Book Author
_id A_ID _id

Q1 - - 0.25 - 0.25
Q2 0.25 - - 0.25 -
Q3 - 0.25 - 5*0.25 -
Q4 0.25 - 3*0.25 0.25 0.75

Total 0.5 0.25 1 1.75 1
Probability 0.111 0.056 0.222 0.389 0.222

Now, we have the final input for our cost model, together with
RepA_IDpBooksq by applying Eq. 4.6, as follows:

146



2. Multiple Collections

PpBookq “ 0.389 PpBook, _idq “ 0.111

PpBook, A_IDq “ 0.056

PpAuthorq “ 0.222 PpAuthor, _idq “ 0.222

RepA_IDpBooksq “
5 ˚ 2.5 ˚ 106

4 ˚ 106 “ 3.125

Now, we can apply Eqs. 4.7–4.13 together with Eqs. 4.4 and 4.19 on the
inputs to obtain the values for memory distribution at the saturation point.
Then, using these results on Eqs. 4.21–4.27 together with Eqs 4.4 and 4.19, we
obtain the following final memory distribution. These calculations are similar
to the example in Appendix D.1, but we omit listing them out due to their
extensiveness.

MdpBooksq “ 2532 M_idpBooksq “ 638

MA_IDpBooksq “ 351

MdpAuthorsq “ 1401 M_idpAuthorsq “ 935

Finally, we calculate the miss rates and the relative cost of each of the
queries as follows.

PdpBooksq “
2532

44944
“ 0.056 P_idpBooksq “

638
3843

“ 0.166

PA_IDpBooksq “
351

19213
“ 0.018 PdpAuthorsq “

1401
16448

“ 0.08

P_idpAuthorsq “
935
2402

“ 0.38

CostpQ1q “ 2´ p0.38` 0.08q “ 1.54

CostpQ2q “ 2´ p0.166` 0.056q “ 1.778

CostpQ3q “ 1´ 0.018` 5 ˚ p1´ p0.056qq “ 5.702

CostpQ4q “ 2´ p0.166` 0.056q ` 3 ˚ p2´ p0.38` 0.08qq

“ 6.398

147



Appendix E

Algorithm to build
hyperedges from connected
components

Algorithm 9 BuildHyperedge Algorithm
Input: Cnode node, HyperG G, List<AC> allAtoms
1: list elements Ð newListpq
2: for each child P node.children do
3: elements.addAllpBuildHyperedgepchild, G, allAtomsqq
4: if node.type “ SKIP then
5: elements.addpnode.relq
6: else if node.type “ REF then
7: elements.addpnode.toq
8: elements.addpnode.relq
9: else if node.type “ NEST then

10: hyp Ð G.newHyperedgepDOCUMENT, node.to, tattributesrelationshipspnode.toq, elementsuq
11: elements.clearpq
12: elements.addpnode.relq
13: elements.addphypq
14: set Ð G.newHyperedgepLIST, elementsq
15: elements.clearpq
16: elements.addpsetq
17: allAtoms.removepnode.toq
18: else if node.type “ ROOT then
19: hyp Ð G.newHyperedgepTOPDOC, node.to, tattributesrelationshipspnode.toq, elementsuq
20: G.newHyperedgepCOLLECTION, hypq
21: elements.clearpq
22: allAtoms.removepnode.toq
23: return elements

148



Algorithm 9 generates corresponding EDoc
H s recursively for a given connected

component tree. It takes a Cnode, the hypergraph, and a list of unused ACs
from Algorithm 7. We use a recursive call to build hyperedges to all the child
Cnodes of a given Cnode (lines 2-4) and keep them in a list of elements. Then,
if the Cnode type is SKIP, we only add the ER of the Cnode to the elements
(lines 5-6). If it is REF, we add both ER and its originating AC (to) to the
elements (lines 7-9). If it is NEST, we make a new EDoc

Doc with the originating
AC (to) as the root, the AAs connected to the root and their corresponding
ERs, and the built up elements (line 11). Once we clear the elements in line 12,
we build a EDoc

List containing the newly created EDoc
Doc and the ER of the Cnode

(lines 11-15). Then, we reset the element list to contain only the new EDoc
List

and take out the originating AC from the unused ACs in lines 16-18. If the
Cnode is ROOT, we build a EDoc

Top with the element list and an EDoc
Col containing

the new EDoc
Top , clear the element list and remove the originating AC from the

unused ACs (lines 19-24). Finally, the collected element list is returned to be
used by the calling function (line 25).

149



Appendix F

Formalized transformations

Formal definitions of the transformations discussed in Chapter 5.2 are de-
scribed in Table F.1. They allow to transform any valid document design
and at the same time guarantee the validity of the resulting design. We use
an auxiliary function findRelPathpx : EH , y : EHq which will find the path of
relations from x to Opyq.

Table F.1: Document store-specific transformation methods

Method xxpreconditionsyy Activity

EDoc
Struct.embedp

: EDoc
Structq

• self.parent “ s.parent
• Opselfq ‰ Opsq ñ
pDtEx1 ,x2

R , . . . , Exn ,Opsq
R u

Ď self^ x1 P selfq _
pDtEy1 ,y2

R , . . . , Eyn ,Opselfq
R u

Ď s^ y1 P sq

keep Ð ∅
for each c P pself.parent.children X
EDoc

Structq ´ s do
keep Ð

keep Y FindRelPathpself.parent, cq
for each r P
FindRelPathpself.parent, sq ´ keep do

self.parent.removeNodeprq
self.parent.removeNodepsq
self.addNodepsq

EDoc
Struct.groupp

Re : Set of ER,
s : EDoc

Doc |Aq

• Re Ă self
• s P self

if s P EDoc
Struct then

new Listpself.C, Re, tsu,∅, selfq
else

new Listpself.C, Re,∅, tsu, selfq
self.removeNodepsq
used Ð ∅
for each c P self.children X pEDoc

Doc Y

Aq do
used Ð

used Y FindRelPathpself, cq
for each r P pRe´ usedq do

self.removeNodeprq

150



EDoc
Struct.splitp

r : AC ,
Re : Set of ER,
At : Set of A,
Do :
Set of EDoc

Struct,
Li : Set of EDoc

Set ,
Rm : Set of ENq

• r P pselfX Atq
• Rm Ď pReY AtYDoY

Liq ´Opselfq Ă self
• Opselfq ‰ r ùñ

pDtEx1 ,x2
R , . . . , Exn ,r

R u Ď

pself ´ Rmq ^ x1 P

pself´ Rmqq _
pDtEy1 ,y2

R , . . . , Eyn ,Opselfq
R u

Ď Re^ y1 P Atq

if self P EDoc
Top then

new TopDocpself.C, r, Re, At, Do,
Li, self.parentq
else

Rels Ð FindRelPathpOpselfq, rq
for each re P Rels do

self.parent.addNodepreq
new Documentpself.C, r, Re, At, Do,

Li, self.parentq
for each n P Rm do

self.removeNodepnq

EDoc
Set .segregatep

s : EDoc
Struct | Aq

• s P self if self P EDoc
Col then

new Collectionpself.C, sq
else
keep Ð ∅
Re Ð

FindRelPathpself.parent, sq
for each c P pself.children´ sq do

keep Ð keep Y
FindRelPathpself.parent, cq

if s P EDoc
Doc then

new Listpself.C, Re, tsu,∅,
self.parentq
else

new Listpself.C, Re,∅, tsu,
self.parentq
for each each r P pRe´ keepq do

self.removeNodeprq
self.removeNodepsq

EDoc
Struct.nestp

r : AC ,
Re : Set of ER,
At : Set of A,
Do : Set of EDoc

Doc ,
Li : Set of EDoc

List q

• r P self new Documentpself.C, r, Re, At, Do,
Li, selfq
keep Ð ∅
for each c P pself.childrenXEDoc

Docq ´

Do do
keep Ð

keep Y FindRelPathpself, cq
for each c P pself.childrenXEDoc

Listq ´

Li do
for each g P pc.childrenXEDoc

Docq do
keep Ð

keep Y FindRelPathpself, gq
for each n P ppReY AtY DoY Liq ´
keepq do
self.removeNodepnq

EDoc
Set .unionps :

EDoc
Set q

• self.parent “ s.parent self.addNodepsq
self.parent.removeNodepsq
s.disposepq

EDoc
H .flattenpq • self.parent P EDoc

Struct self.disposepq

151



Appendix G

Validation of operations
against MongoDB Design
Patterns

In the following, we go through each of the patterns, digest them and use
the same examples for illustration.1 Nevertheless, our design transformations
are defined at the logical level, so, some physical patterns (e.g., involving
indexing) cannot be fully represented.
Attribute pattern (Fig. G.1) tries to identify a subset of fields that share some
common characteristics that are frequently queried together, and add them
into an array (e.g., release dates of the movies in different regions). The
original document without the array has the field name suffixed by the region
name, but since our immutable graph does not contain details about the
instances, we simply use a counter instead as shown on Design 4 in Fig. 5.5.
Our set of transformation can implement this pattern by first using nest to
create a flat embedded document, and then using group to make a list out of
the documents.
Bucket pattern (Fig. G.2) groups specific data together (e.g., time series of
sensor data). This pattern can be easily represented through our transfor-
mations by expliciting intervals a priori in the form of different atoms and
Relationships, since the predicates used for the bucket arrangement (e.g., start
and end dates) cannot be generated as they are not part of the immutable
graph. Moreover, the immutable graph must contain an additional AC to
identify each of the measurements. With that information, we can firstly use a
sequence of split, embed, and flatten operations to change the root of the docu-
ment (e.g., from measurement to sensor), then similar to the attribute pattern,

1See https://www.essi.upc.edu/~moditha/transformations

152

https://www.essi.upc.edu/~moditha/transformations


Fig. G.1: Transformations of the Attribute pattern

through nest and group we can create an embedded list with all measurements
of the same sensor.

Fig. G.2: Transformations of the Bucket pattern

Polymorphic pattern (Fig. G.3) is used to merge collections with documents
that share multiple attributes (e.g., Bowling and Tennis Athletes). We can
easily deal with such transformation by union, embed, and flatten operations.
However, currently, our hypergraph does not support specialization due to
the complexity of guaranteeing the validity of the design (i.e., ensuring none
of the subclasses/partitions are missed as a result of the transformations).
Thus, this pattern can only be partially represented. However, it is possible to
fully represent if the immutable graph contained the subclass information.
Extended reference pattern (Fig. G.4) is a mean of avoiding joins by embed-
ding frequently accessed data of two entities (e.g., customer address in an
order). First, we use split to extract from one document the information that
needs to be embedded in the other (e.g., the address from the customer) and
segregate this into a new collection. Then, we union the new collection and the
one that requires embedding, to finally, join the information by embed, flatten,
and nest.

153



Fig. G.3: Transformations of the Polymorphic pattern

Fig. G.4: Transformations of the Extended reference pattern

154



Bibliography

Subset pattern (Fig. G.5) is used to prevent unnecessary growth of documents.
A typical example would be to only store the first n documents in a list,
keeping the rest of the list in a separate collection. As in the bucket pattern, n
should be encoded somehow in the immutable graph (e.g., representing the
two sets of documents in different classes). First, we remove the list with two
consecutive flatten operations. Next, we split the document and segregate the
part that needs to be moved to a new collection. Finally, we nest and group to
recreate the original list.

The remaining seven MongoDB design patterns (namely Outlier, Approx-
imation, Computed, Document versioning, Preallocated, Schema version-
ing, and Tree and graph) can be represented in our canonical model, provided
the immutable graph contains the required information (e.g., schema/doc-
ument version, the average of an attribute), but besides that, they require
changes in the client application logic or the engine configuration rather than
in the document design. Thus, they are out of the scope of this work.

Fig. G.5: Transformations of the Subset pattern

155



References

References

[1] S. Abiteboul. Querying semi-structured data. In F. N. Afrati and P. G.
Kolaitis, editors, International Conference on Database Theory, volume 1186,
pages 1–18. ICDT, 1997.

[2] S. Abiteboul, A. Bonifati, G. Cobena, I. Manolescu, and T. Milo. Dy-
namic XML documents with distribution and replication. In SIGMOD
International Conference on Management of Data, pages 527–538. ACM,
2003.

[3] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: From Relations
to Semistructured Data and XML. Morgan Kaufmann, 1999.

[4] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-
Wesley, 1995.

[5] S. H. Aboutorabi, M. Rezapour, M. Moradi, and N. Ghadiri. Performance
evaluation of SQL and MongoDB databases for big e-commerce data.
In International Symposium on Computer Science and Software Engineering,
CSSE, pages 1–7, 2015.

[6] V. Abramova and J. Bernardino. Nosql databases: Mongodb vs cas-
sandra. In International C* Conference on Computer Science & Software
Engineering, C3S, pages 14–22. ACM, 2013.

[7] R. Aghi, S. Mehta, R. Chauhan, S. Chaudhary, and N. Bohra. A com-
prehensive comparison of SQL and MongoDB databases. International
Journal of Scientific and Research Publications, 5(2), 2015.

[8] S. Ambler. Agile Database Techniques: Effective Strategies for the Agile
Software Developer. Wiley& Sons, 2003.

[9] W. W. Armstrong. Dependency structures of data base relationships. In
J. L. Rosenfeld, editor, Information ProcessingIFIP Congress, pages 580–583,
1974.

[10] P. Atzeni, F. Bugiotti, L. Cabibbo, and R. Torlone. Data modeling in the
NoSQL world. Computer Standards & Interfaces, 67, 2020.

[11] P. Atzeni, F. Bugiotti, and L. Rossi. Uniform access to non-relational
database systems: The SOS platform. In Int. Conf. on Adv. Inf. Sys. Eng.,
CAiSE, pages 160–174, 2012.

[12] P. Atzeni, F. Bugiotti, and L. Rossi. Uniform access to NoSQL systems.
Information Systems, 43, 2014.

156



References

[13] A. Badia and D. Lemire. A call to arms: revisiting database design.
SIGMOD Rec., 40(3), 2011.

[14] G. Bagan, A. Bonifati, R. Ciucanu, G. H. L. Fletcher, A. Lemay, and
N. Advokaat. gmark: Schema-driven generation of graphs and queries.
IEEE Trans. Knowl. Data Eng., 29(4):856–869, 2017.

[15] L. D. R. Beal, D. C. Hill, R. A. Martin, and J. D. Hedengren. GEKKO
Optimization Suite. Processes, 6(8):106–131, 2018.

[16] E. Bertino and P. Foscoli. On Modeling Cost Functions for Object-
Oriented Databases. IEEE Transactions on Knowledge and Data Engineering,
9(3):500–508, 1997.

[17] S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu, J. Robie, and
J. Siméon. XQuery 1.0: An XML Query Language, 2007.

[18] A. Boicea, F. Radulescu, and L. I. Agapin. MongoDB vs Oracle–database
comparison. In International Conference on Emerging Intelligent Data and
Web Technologies (EIDWT), pages 330–335. IEEE, 2012.

[19] T. Bray, J. Paoli, and C. M. Sperberg-McQueen. Extensible markup
language (XML). World Wide Web Journal, 2(4):27–66, 1997.

[20] F. Bugiotti, D. Bursztyn, A. Deutsch, I. Manolescu, and S. Zampetakis.
Flexible hybrid stores: Constraint-based rewriting to the rescue. In IEEE
32nd Int. Conf. on Data Engineering, ICDE, 2016.

[21] F. Bugiotti, D. Bursztyn, U. C. S. Diego, and I. Ileana. Invisible glue :
Scalable self-tuning multi-stores. CIDR, 2015.

[22] F. Bugiotti, L. Cabibbo, P. Atzeni, and R. Torlone. Database design for
NoSQL systems. In International Conference on Conceptual Modeling. ER,
2014.

[23] C. J. F. Candel, D. S. Ruiz, and J. J. G. Molina. A unified metamodel for
NoSQL and relational databases. CoRR, abs/2105.06494, 2021.

[24] R. Cattell. Scalable SQL and NoSQL data stores. SIGMOD Record,
39(4):12–27, 2010.

[25] E. Cecchet, J. Marguerite, and W. Zwaenepoel. Performance and scalabil-
ity of EJB applications. In ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages and Applications, OOPSLA, pages 246–
261, 2002.

[26] D. Che, K. Aberer, and M. T. Özsu. Query optimization in XML
structured-document databases. The VLDB Journal, 15, 2006.

157



References

[27] J. Cho, Y. Wang, I. Chen, K. S. Chan, and A. Swami. A survey on
modeling and optimizing multi-objective systems. IEEE Commun. Surv.
Tutorials, 19(3):1867–1901, 2017.

[28] J. Clark, S. DeRose, et al. XML path language (XPath) version 1.0, 1999.

[29] E. F. Codd. A Relational Model of Data for Large Shared Data Banks.
Communications of ACM, 13(6):377–387, 1970.

[30] P. Contos and M. Svoboda. JSON schema inference approaches. In
Advances in Conceptual Modeling - ER, volume 12584, pages 173–183,
2020.

[31] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking cloud serving systems with YCSB. In Symposium on
Cloud Computing, SoCC, pages 143–154. ACM, 2010.

[32] A. Dan and D. Towsley. An Approximate Analysis of the LRU and
FIFO Buffer Replacement Schemes. SIGMETRICS Performance Evaluation
Review, 18(1):143–152, 1990.

[33] R. Dautov and S. Distefano. Quantifying volume, velocity, and vari-
ety to support (big) data-intensive application development. In IEEE
International Conference on Big Data, pages 2843–2852, 2017.

[34] A. de la Vega, D. García-Saiz, C. Blanco, M. E. Zorrilla, and P. Sánchez.
Mortadelo: Automatic generation of NoSQL stores from platform-
independent data models. Future Generation Computer Systems, 105,
2020.

[35] C. de Lima and R. dos Santos Mello. A workload-driven logical design
approach for NoSQL document databases. In International Conference
on Information Integration and Web-based Applications & Services (iiWAS),
pages 73:1–73:10, 2015.

[36] B. J. D’mello, M. Satheesh, and J. Krol. Web Development with MongoDB
and Node, 3rd Ed. Packt Publishing, 2007.

[37] M. Duan and G. Chen. Assessment of MongoDB’s spatial retrieval
performance. In S. Hu, editor, International Conference on Geoinformatics.
IEEE, 2015.

[38] J. Duggan, A. J. Elmore, M. Stonebraker, M. Balazinska, B. Howe, J. Kep-
ner, S. Madden, D. Maier, T. Mattson, and S. B. Zdonik. The bigdawg
polystore system. SIGMOD Record, 44(2):11–16, 2015.

[39] J. Euzenat and P. Shvaiko. Ontology Matching, Second Edition. Springer,
2013.

158



References

[40] R. Fagin. Asymptotic Miss Ratios Over Independent References. Journal
of Computer and System Sciences, 14(2):222–250, 1977.

[41] D. Florescu. A performance evaluation of alternative mapping schemes
for storing XML data in a relational database. Language, 1999.

[42] M. Fruth, K. Dauberschmidt, and S. Scherzinger. Josch: Managing
schemas for NoSQL document stores. In International Conference on Data
Engineering, ICDE, pages 2693–2696. IEEE, 2021.

[43] E. Gallinucci, M. Golfarelli, and S. Rizzi. Schema profiling of document-
oriented databases. Information Systems, 75:13–25, 2018.

[44] H. Garcia-Molina and K. Salem. Main Memory Database Systems: An
Overview. IEEE Transactions on Knowledge and Data Engineering, 4(6):509–
516, 1992.

[45] H. Garcia-Molina, J. D. Ullman, and J. Widom. Database systems - the
complete book (2. ed.). Pearson Education, 2009.

[46] G. Gardarin, J. Gruser, and Z. Tang. A Cost Model for Clustered Object-
Oriented Databases. In International Conference on Very Large Data Bases,
pages 323–334, 1995.

[47] G. Gardarin and P. Valduriez. Relational Databases and Knowledge Bases.
Addison-Wesley, 1989.

[48] P. Gómez, C. Roncancio, and R. Casallas. Towards quality analysis
for document oriented bases. In International Conference on Conceptual
Modeling, pages 200–216. ER, 2018.

[49] G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms for processing
XPath queries. ACM Trans. Database Syst., 30(2):444–491, 2005.

[50] G. Gou and R. Chirkova. Efficiently Querying Large XML Data Reposi-
tories: A Survey. IEEE Transactions on Knowledge and Data Engineering,
19(10):1381–1403, 2007.

[51] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics: A
Foundation for Computer Science, 2nd Ed. Addison-Wesley, 1994.

[52] N. Grimsmo. Faster path indexes for search in XML data. In Conferences
in Research and Practice in Information Technology Series, volume 75, 2008.

[53] F. Guo and Y. Solihin. An Analytical Model for Cache Replacement Pol-
icy Performance. SIGMETRICS Performance Evaluation Review, 34(1):228–
239, 2006.

159



References

[54] G. Haughian, R. Osman, and W. J. Knottenbelt. Benchmarking Replica-
tion in Cassandra and MongoDB NoSQL Datastores. In S. Hartmann
and H. Ma, editors, International Conference on Database and Expert Systems
Applications {DEXA}, volume 9828. Springer, 2016.

[55] M. Hausenblas and J. Nadeau. Apache drill: interactive ad-hoc analysis
at scale. Big data, 1(2):100–104, 2013.

[56] R. Hecht and S. Jablonski. NoSQL Evaluation: A Use Case Oriented
Survey. In IEEE International Conference on Cloud and Service Computing,
pages 336–341, 2011.

[57] A. Hernández, F. Santiago, E. Calvo, G. Herzig, S. A. Ostapowicz,
M. Melli, and J. D. Fernández. Performance Benchmark PostgreSQL/-
MongoDB (Tech. R.). 2019.

[58] V. Herrero, A. Abelló, and O. Romero. NoSQL design for analytical
workloads: Variability matters. In International Conference on Conceptual
Modeling, pages 50–64. ER, 2016.

[59] T. Hills. NoSQL and SQL Data Modeling: Bringing Together Data, Semantics,
and Software. Technics Publications, 2016.

[60] A. A. Imam, S. Basri, R. Ahmad, J. Watada, M. T. Gonzalez-Aparicio,
and M. A. Almomani. Data Modeling Guidelines for NoSQL Document-
Store Databases. International Journal of Advanced Computer Science and
Applications, 9(10):544–555, 2018.

[61] Y. E. Ioannidis. Query Optimization. ACM Computing Surveys, 28(1):121–
123, 1996.

[62] K. Järvelin and J. Kekäläinen. IR evaluation methods for retrieving
highly relevant documents. SIGIR Forum, 51(2), 2017.

[63] B. Jiang, P. Nain, and D. Towsley. LRU Cache under Stationary Requests.
SIGMETRICS Performance Evaluation Review, 45(2):24–26, 2017.

[64] R. Johnson, J. Hoeller, K. Donald, M. Pollack, et al. The spring
framework–reference documentation. Interface, 21, 2004.

[65] A. Kamsky. Adapting TPC-C Benchmark to Measure Performance of
Multi-Document Transactions in MongoDB. PVLDB, 12(12):2254–2262,
2019.

[66] A. Kanade, A. Gopal, and S. Kanade. A study of normalization and
embedding in MongoDB. In Advance Computing Conference (IACC), pages
416–421. IEEE, 2014.

160



References

[67] M. Karpathiotakis, I. Alagiannis, and A. Ailamaki. Fast queries over
heterogeneous data through engine customization. Proc. of the VLDB
Endowment, 9(12), 2016.

[68] M. S. Kester, M. Athanassoulis, and S. Idreos. Access path selection in
main-memory optimized data systems: Should I scan or should I probe?
In S. Salihoglu, W. Zhou, R. Chirkova, J. Yang, and D. Suciu, editors,
International Conference on Management of Data, SIGMOD, pages 715–730.
ACM, 2017.

[69] J. Kim, W. Lee, and K. Lee. The Cost Model for XML Documents
in Relational Database Systems. In IEEE International Conference on
Computer Systems and Applications, pages 185–187, 2001.

[70] W. F. King III. Analysis of Demand Paging Algorithms. In IFIP Congress
(1), pages 485–490, 1971.

[71] M. Klettke, U. Störl, and S. Scherzinger. Schema extraction and structural
outlier detection for json-based nosql data stores. In Datenbanksysteme
für Business, Technologie und Web (BTW), pages 425–444, 2015.

[72] G. Klyne and J. J. Carroll. Resource Description Framework
(RDF): Concepts and abstract syntax. http://www.w3.org/TR/2004/
REC-rdf-concepts-20040210/. Accessed: 2018-02-16.

[73] B. Kolev, C. Bondiombouy, P. Valduriez, R. Jiménez-Peris, R. Pau, and
J. Pereira. The cloudmdsql multistore system. In International Conference
on Management of Data, SIGMOD, pages 2113–2116. ACM, 2016.

[74] S. Y. Lee, M.-L. Lee, T. W. Ling, and L. A. Kalinichenko. Designing good
semi-structured databases and conceptual modeling. In International
Conference on Conceptual Modeling, page 131–145. ER, 1999.

[75] J. Lewis. Cost-based Oracle fundamentals. Apress, 2006.

[76] Y. T. Liao, J. Zhou, C. H. Lu, S. C. Chen, C. H. Hsu, W. Chen, M. F.
Jiang, and Y. C. Chung. Data adapter for querying and transformation
between SQL and NoSQL database. Future Generation Computer Systems,
65:111–121, 2016.

[77] S. Lightstone, T. J. Teorey, and T. P. Nadeau. Physical Database Design: the
database professional’s guide to exploiting indexes, views, storage, and more.
Morgan Kaufmann, 2007.

[78] F. Liu and S. Blanas. Forecasting the cost of processing multi-join
queries via hashing for main-memory databases. In S. Ghandeharizadeh,
S. Barahmand, M. Balazinska, and M. J. Freedman, editors, Symposium
on Cloud Computing, SoCC, pages 153–166. ACM, 2015.

161

http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/


References

[79] Z. H. Liu, B. C. Hammerschmidt, D. Mcmahon, H. J. Chang, Y. Lu,
J. Spiegel, A. C. Sosa, S. Suresh, G. Arora, and V. Arora. Native JSON
datatype support: Maturing SQL and NoSQL convergence in Oracle
database. VLDB Endowment, 13(12):3059–3071, 2020.

[80] T. F. Llano-Ríos, M. Khalefa, and A. Badia. Evaluating NoSQL sys-
tems for decision support: An experimental approach. In International
Conference on Big Data, pages 2802–2811. IEEE, 2020.

[81] T. F. Llano-Ríos, M. Khalefa, and A. Badia. Experimental comparison of
relational and NoSQL document systems: The case of decision support.
In TPC Technology Conference, TPCTC, pages 58–74. Springer, 2020.

[82] S. Manegold, P. Boncz, and M. Kersten. Generic database cost models
for hierarchical memory systems. Jan. 2002.

[83] S. Manegold, P. A. Boncz, and M. L. Kersten. Generic Database Cost
Models for Hierarchical Memory Systems. In International Conference on
Very Large Data Bases, pages 191–202, 2002.

[84] R. T. Marler and J. S. Arora. Survey of multi-objective optimization
methods for engineering. Structural and multidisciplinary optimization,
26(6):369–395, 2004.

[85] N. Megiddo and D. S. Modha. Outperforming LRU with an Adaptive
Replacement Cache Algorithm. IEEE Computer, 37(4):58–65, 2004.

[86] E. Meijer and G. M. Bierman. A co-relational model of data for large
shared data banks. Commun. ACM, 54(4), 2011.

[87] J. Michels, K. Hare, K. Kulkarni, C. Zuzarte, Z. H. Liu, B. Hammer-
schmidt, and F. Zemke. The New and Improved SQL: 2016 Standard.
ACM SIGMOD Record, 47(2):51–60, 2018.

[88] M. J. Mior, K. Salem, A. Aboulnaga, and R. Liu. NoSE: Schema design
for NoSQL applications. Transactions on Knowledge and Data Engineering,
29(10):2275–2289, 2017.

[89] C. Mohan. History repeats itself: sensible and NonsenSQL aspects of
the NoSQL hoopla. In EDBT, 2013.

[90] T. Nguyen and S. Lee. I/O characteristics of MongoDB and trim-
based optimization in flash SSDs. In C. K. Leung, J. Kim, Y. Kim,
J. Geller, W. Choi, and Y. Park, editors, International Conference on Emerg-
ing Databases: Technologies, Applications, and Theory, EDB, pages 139–144.
ACM, 2016.

162



References

[91] K. W. Ong, Y. Papakonstantinou, and R. Vernoux. The SQL++ semi-
structured data model and query language: A capabilities survey of
sql-on-hadoop, NoSQL and newsql databases. CoRR, abs/1405.3631,
2014.

[92] M. T. Özsu and P. Valduriez. Principles of Distributed Database Systems
4th ed. Springer Science & Business Media, 2020.

[93] F. Pezoa, J. L. Reutter, F. Suárez, M. Ugarte, and D. Vrgoc. Foundations
of JSON Schema. In International Conference on World Wide Web, WWW,
pages 263–273, 2016.

[94] R. Ramakrishnan and J. Gehrke. Database Management Systems. McGraw-
Hill, Third edition, 2003.

[95] V. Reniers, D. Van Landuyt, A. Rafique, and W. Joosen. A Workload-
Driven Document Database Schema Recommender (DBSR). In Concep-
tual Modeling, pages 471–484, 2020.

[96] M. A. Rodriguez. The gremlin graph traversal machine and language.
CoRR, abs/1508.03843, 2015.

[97] S. Scherzinger and S. Sidortschuck. An Empirical Study on the Design
and Evolution of NoSQL Database Schemas. CoRR, abs/2003.00054,
2020.

[98] P. Sadalage and M. Fowler. NoSQL Distilled: A Brief Guide to the Emerging
World of Polyglot Persistence. Addison-Wesley Professional, 2012.

[99] F. Saltor, M. Castellanos, and M. García-Solaco. Suitability of data
models as canonical models for federated databases. ACM Sigmod
Record, 20(4), 1991.

[100] J. Schindler. I/O Characteristics of NoSQL Databases. Proceedings of the
VLDB Endowment, 5(12):2020–2021, 2012.

[101] A. Schmidt, F. Waas, M. Kersten, M. J. Carey, I. Manolescu, and R. Busse.
XMark: A benchmark for XML data management. In International
Conference on Very Large Data Bases, 2002.

[102] R. Sellami, S. Bhiri, and B. Defude. Supporting multi data stores appli-
cations in cloud environments. IEEE Transactions on Services Computing,
9(1), 2016.

[103] P. Shvaiko and J. Euzenat. Ontology matching: State of the art and
future challenges. IEEE Transactions on knowledge and data engineering,
25(1):158–176, 2013.

163



References

[104] A. J. Smith. Cache Memories. ACM Computing Surveys, 14(3):473–530,
1982.

[105] A. J. Smith. Cache Evaluation and the Impact of Workload Choice.
SIGARCH Computer Architecture News, 13(3):64–73, 1985.

[106] R. A. S. N. Soransso and M. C. Cavalcanti. Data modeling for analytical
queries on document-oriented DBMS. In ACM Symposium on Applied
Comp., pages 541–548, 2018.

[107] M. Stonebraker. SQL databases v. NoSQL databases. Communications of
ACM, 53(4):10–11, 2010.

[108] R. Tan, R. Chirkova, V. Gadepally, and T. G. Mattson. Enabling query
processing across heterogeneous data models: A survey. In IEEE Inter-
national Conference on Big Data, pages 3211–3220, 2017.

[109] C. Truica, E. S. Apostol, J. Darmont, and T. B. Pedersen. The forgot-
ten document-oriented database management systems: An overview
and benchmark of native XML DODBMSes in comparison with JSON
DODBMSes. Big Data Res., 25:100205, 2021.

[110] C. Truica, F. Radulescu, A. Boicea, and I. Bucur. Performance Evalu-
ation for CRUD Operations in Asynchronously Replicated Document
Oriented Database. In International Conference on Control Systems and
Computer Science, CSCS, 2015.

[111] N. Vafaei, R. A. Ribeiro, and L. M. Camarinha-Matos. Data normalisa-
tion techniques in decision making: case study with TOPSIS method.
International Journal of Information and Decision Sciences, 10(1):19–38, 2018.

[112] T. Vajk, L. Deák, K. Fekete, and G. Mezei. Automatic NoSQL schema
development: A case study. In Artificial Intelligence and Applications,
2013.

[113] Á. Vathy-Fogarassy and T. Hugyák. Uniform data access platform for
SQL and NoSQL database systems. Information Systems, 69, 2017.

[114] C. Waldspurger, T. Saemundsson, I. Ahmad, and N. Park. Cache Model-
ing and Optimization using Miniature Simulations. In USENIX Annual
Technical Conference, pages 487–498, 2017.

[115] J. Wang, T. Baker, M. Balazinska, D. Halperin, B. Haynes, B. Howe,
D. Hutchison, S. Jain, R. Maas, P. Mehta, et al. The myria big data man-
agement and analytics system and cloud services. In Biennial Conference
on Innovative Data Systems Research, CIDR, 2017.

164



References

[116] L. Wang, O. Hassanzadeh, S. Zhang, J. Shi, L. Jiao, J. Zou, and C. Wang.
Schema Management for Document Stores. PVLDB, 8(9):922–933, 2015.

[117] Y. Widyani, H. Laksmiwati, and E. D. Bangun. Mapping spatio-temporal
disaster data into MongoDB. In International Conference on Data and
Software Engineering, 2017.

[118] J. Yao. An Efficient Storage Model of Tree-Like Structure in MongoDB.
In IEEE International Conference on Semantics, Knowledge and Grids, pages
166–169, 2016.

165


	Front page
	Abstract
	Resum
	Résumé
	Acknowledgements
	Contents
	List of Figures
	List of Tables

	Thesis Details
	Introduction
	Background and Motivation
	The NoSQL Systems and Document Stores
	Data Design for Document Stores
	State of the Art and Challenges

	Structure of the Thesis
	Thesis Overview
	On the Performance Impact of Using JSON, Beyond Impedance Mismatch
	Managing Polyglot System Metadata with Hypergraphs
	A Cost Model for Random Access Queries in Document Stores
	Automated Database Design for Document Stores

	Contributions

	On the Performance Impact of Using JSON, Beyond Impedance Mismatch
	Introduction
	Related Work
	Representational Differences
	Schema variability
	Schema declaration
	Structure complexity

	Experimental evaluation
	Schema variability
	Schema declaration
	Structure complexity

	Discussion

	Managing Polyglot Systems Metadata with Hypergraphs
	Introduction
	Preliminaries
	Resource Description Framework (RDF)
	SOS Model

	Formalization
	Metadata Management
	Query Representation
	Constraints and Transformation Rules on Data Stores

	Calculating Statistical and Storage Metadata
	Storage size estimation
	Physical access patterns for workloads

	Use Case
	Related Work

	A cost model for random access queries in document stores
	Introduction
	Background and Related Work
	Formalization of the Cost Model
	Generic Component
	Specific Component

	Applying the cost model
	Couchbase Server (THP)
	MongoDB (TDSL)

	Experiments
	Couchbase Server
	MongoDB
	Accuracy of Prediction
	Comparison to Other Approaches


	Automated Database Design for Document Stores with Multi-criteria Optimization
	Introduction
	Related Work
	Overview
	User Inputs
	Design Processes
	Loss Function
	Search Algorithm

	Canonical Model
	Immutable Graph
	Storage-Agnostic Constructs
	Document Store-Specific Constructs

	Design Processes Over the Canonical Model
	Random Design Generation
	Design transformations

	Experiments
	Quality of the Design
	Scalability of the Approach
	Threats to Validity


	Conclusions and Future Directions
	Conclusions
	Future Directions

	Appendices
	DocDesign: Cost-Based Database Design for Document Stores
	Introduction
	DocDesign
	Design Alternatives
	Canonical Representation
	Query Workload
	Estimating the Runtime

	Demonstration Overview
	Conclusion

	DocDesign 2.0: Automated Database Design for Document Stores with Multi-criteria Optimization
	Introduction
	DocDesign 2.0 in a nutshell
	User Inputs
	Design Operations
	Optimization

	Demonstration Overview

	Calculating Internal B-tree Blocks
	Cost Calculation Examples for MongoDB
	Single Collection with Primary Index
	Multiple Collections

	Algorithm to build hyperedges from connected components
	Formalized transformations
	Validation of operations against MongoDB Design Patterns
	Bibliography
	References


