
Doctoral School
Doctoral Programme in Computer Science

Game Development Based on
Multi-agent Systems

Doctoral Thesis
Carlos Marín Lora

Supervisors: Dr. Miguel Chover Sellés (Universitat Jaume I)
Dr. José Martínez Sotoca (Universitat Jaume I)

Castellón (Spain)
September 2022

The works composing this thesis were financed by:

• Project PID2019-106426RB-C32 funded byMCIN /AEI / 10.13039 / 501100011033
and ERDF "A way to make Europe".

• Project PDC2021-120997-C31 funded byMCIN / AEI / 10.13039 / 501100011033
and European Union "NextGenerationEU" / PRTR.

• Project RTI2018-098651-B-C54 funded byMCIN /AEI / 10.13039 / 501100011033.

• Projects UJI-B2018-56, UJI-2018-44 and UJI-FISABIO2020-04 funded by the
Universitat Jaume I de Castellón.

i

A Jose, prometo no despistarme

ii

iii

Thesis by Compendium of
Publications:

• Indexed Journals:

1. Marín-Lora, Carlos., Chover, Miguel., Sotoca, Jose M., & García, Luis. A.
(2020). A Game Engine to Make Games as Multi-agent Systems. Ad-
vances in Engineering Software, 140, 102732. (Q1).
https://doi.org/10.1016/j.advengsoft.2019.102732.

2. Marín-Lora, Carlos., Sotoca, Jose. M., & Chover, Miguel. (2022, Apr).
Improved Perception of Ceramic Molds Through Augmented Reality. Mul-
timedia Tools and Applications. (Q2).
https://doi.org/10.1007/s11042-022-13168-5.

3. Chover, Miguel., Marín-Lora, Carlos., Rebollo, Cristina., & Remolar, Inmacu-
lada. (2020). A Game Engine Designed to Simplify 2D Video Game Devel-
opment. Multimedia Tools and Applications, volume 79, 12307–12328.
(Q2).
https://doi.org/10.1007/s11042-019-08433-z.

4. Chover, Miguel., Sotoca, Jose M., & Marín-Lora, Carlos. (2022, May). Vir-
tual Reality versus Desktop Experience in a Dangerous Goods Simulator.
International Journal of Serious Games. (Q1).
https://doi.org/10.17083/ijsg.v9i2.493.

• International Conferences:

1. Marín-Lora, Carlos., Chover, Miguel., & Sotoca, Jose. M. (2020, April).
A Game Logic Specification Proposal for 2D Video Games. In World
Conference on Information Systems and Technologies (pp. 494-504).

https://doi.org/10.1016/j.advengsoft.2019.102732
https://doi.org/10.1007/s11042-022-13168-5
https://doi.org/10.1007/s11042-019-08433-z
https://doi.org/10.17083/ijsg.v9i2.493

iv

Springer, Cham. (Core C).
https://doi.org/10.1007/978-3-030-45688-7_50.

2. Marín-Lora, Carlos., Cercós, Alejandro., Chover, Miguel., & Sotoca, Jose.
M. (2020, April). A First Step to Specify Arcade Games as Multi-agent
Systems. InWorld Conference on Information Systems and Technologies
(pp. 369-379). Springer, Cham. (Core C).
https://doi.org/10.1007/978-3-030-45688-7_38.

3. Marín-Lora, Carlos., Chover, Miguel., & Sotoca, Jose M. (2021, October).
A Multi-agent Specification for the Tetris Game. In International Sym-
posium on Distributed Computing and Artificial Intelligence (pp. 169-178).
Springer, Cham. (Core C).
https://doi.org/10.1007/978-3-030-86261-9_17.

This thesis has been accepted by the co-authors of the publications listed above
that have waved the right to present them as a part of another PhD thesis

https://doi.org/10.1007/978-3-030-45688-7_50
https://doi.org/10.1007/978-3-030-45688-7_38
https://doi.org/10.1007/978-3-030-86261-9_17

v

Acknowledgments

Carmen, Luismi and Cris, for teaching me to set the bar high and aim for the
very best.

Rosa and Miguel, without you, I would not have been able to finish this thesis.

Lucía, for every moment that I have not been with you to write this thesis.
For always being by my side and making me understand what is actually
worthwhile.

Cooper, I couldn’t have had a better partner while working on this.

Inés, for turning everything upside down and putting it all in the right perspect-
ive.

Cristina and Inma, for all your support, advice, and everything I have needed
these years.

Jose, it seems impossible, but you taught me more over a coffee than in a
classroom. Thank you for each "no, te equivocas" whatever the topic and its
subsequent explanation.

Miguel, for beingwrong about something you have been claiming and repeating
for years: you could lift more than fifty kilos.

vi

vii

Resumen

En los últimos años, la popularidad de los videojuegos casuales ha atraído a perfiles
creativos hacia el desarrollo de videojuegos. Un proceso multidisciplinar para el que
se requieren conocimientos tanto técnicos como artísticos. A pesar de que existen
herramientas como los motores de juegos que se conciben para facilitar la creación
de videojuegos, estas siguen siendo aplicaciones complejas que precisan de experi-
encia técnica. Fundamentalmente, esto se debe a su origen como desarrollos de
software o de programación tradicional, lo que supone una barrera de acceso para
perfiles no técnicos. El objetivo de esta investigación pasa por proponer alternativas
que faciliten el acceso a cualquier persona interesada, sin requerir conocimientos
avanzados de programación, a la creación de videojuegos para dispositivos móviles,
consolas, realidad virtual o realidad aumentada. Para ello, esta tesis trata de con-
tribuir en el campo del desarrollo de videojuegos con tres contribuciones principales.
En primer lugar con el diseño y desarrollo de un editor de videojuegos como her-
ramienta de autor y de creación de contenidos, a partir de una especificación de
juego simplificada que permite reducir la complejidad de la arquitectura del motor
de juegos, y que introduce un entorno para la creación y edición de juegos fácil de
usar. A continuación, se contribuye con la formalización teórica del motor de juegos
utilizando la metodología de los sistemas multiagente y un método para definir la
lógica de los juegos basado en una semántica de predicados, donde se cumple con
los requisitos básicos de los sistemas multiagente, ajustando las características
del motor de juegos sin afectar su potencial. Y por último, con el desarrollo de una
metodología para la creación de juegos serios basada en sistemas multiagentes y
con el estudio de la experiencia de juego en dos desarrollos de juegos serios como
aplicaciones de realidad virtual y realidad aumentada.

Palabras clave: Desarrollo de videojuegos, Editor de videojuegos, Motor de juegos,
Lógica de juego, Sistemas multiagente, Juegos serios.

viii

ix

Abstract

In the last few years, the popularity of casual video games has pushed creative
profiles toward video game development, a multidisciplinary process that requires
technical and artistic skills. Although there are tools such as game engines de-
signed to facilitate access to the creation of video games, these are still complex
applications that require technical expertise as a result of their origin as software
developments and traditional programming, which is a barrier to access for non-
technical profiles. This research aims to propose alternatives that ease access to
any interested person, without requiring advanced programming knowledge, to the
video games development for mobile devices, consoles, virtual reality, or augmented
reality. For this purpose, this thesis tries to contribute to video game development
with three main contributions. The first one deals with the design and development
of a video game editor as an authoring and content creation tool based on a simpli-
fied game specification that reduces the complexity of the game engine architecture
and introduces a user-friendly environment for game creation and editing. The
second one is the theoretical formalization of the game engine using the multi-agent
systems methodology, with a method to define the logic of the games based on
predicate semantics while meeting the basic requirements of multi-agent systems
and adjusting the features of the game engine without affecting its potential. And
finally, the third one is the development of a methodology to create and specify
serious games based on multi-agent systems, and with a game experience study
brought from two serious games developments as virtual reality and augmented
reality applications.

Keywords: Video game development, Video game editor, Game engine, Game logic,
Multi-agent system, Serious games.

x

xi

Index

Acknowledgments v

Resumen vii

Abstract ix

I Foreword 1

1 Introduction 3
1.1 Context . 3
1.2 Motivation . 6
1.3 Goals . 7
1.4 Previous Work . 8
1.5 Contributions . 9

1.5.1 Design and Development of a Game Engine 10
1.5.2 Game Engine Formalization Using Multi-agent Systems . . . 11
1.5.3 Serious Games Development 14

1.6 Outline . 15

II Design and Development of a Game Engine 17

2 A Game Engine Designed to Simplify 2D Video Game Development 19
2.1 Introduction . 20
2.2 State of the Art . 22

xii Index

2.3 The Simplified Game Engine . 25
2.3.1 The Game Engine Architecture 25
2.3.2 The Game Specification . 27
2.3.3 The Game Editor . 31

2.4 Game Example: Candy Crush . 34
2.4.1 Scratch Solution . 35
2.4.2 SGE Solution . 36

2.5 User Experience . 39
2.5.1 Objectives and Hypothesis . 39
2.5.2 Protocol . 40

2.6 Results . 42
2.7 Discussion . 44
2.8 Conclusions and Future Work . 45

III Game Engine Formalization Using Multi-agent Systems 47

3 A Game Engine to Make Games as Multi-agent Systems 49
3.1 Introduction . 50
3.2 Game Engines and Multi-agent System 51
3.3 Multi-agent System Features . 52
3.4 The Game Engine . 54

3.4.1 The Game . 54
3.4.2 The Actor . 55
3.4.3 Behaviour Specification . 56

3.5 Discussion . 59
3.6 Use Cases . 60

3.6.1 Wolf-Sheep Predation . 60
3.6.2 Frogger . 64
3.6.3 Pac-Man . 66
3.6.4 Other Games Developed . 70

3.7 Conclusions and Future Work . 71

Index xiii

4 A Game Logic Specification Proposal for 2D Video Games 73
4.1 Introduction . 74
4.2 Game Engine Overview . 75
4.3 Game Logic Specification . 77
4.4 Functions . 79
4.5 Use Case . 80
4.6 Experiment . 83

4.6.1 Results . 84
4.7 Conclusions and Future Work . 84

5 A First Step to Specify Arcade Games as Multi-agent Systems 87
5.1 Introduction . 88
5.2 State of the Art . 89
5.3 Video Games as Multi-agent Systems 90
5.4 Use Case: Frogger . 92
5.5 Results . 95

5.5.1 NetLogo . 95
5.5.2 Gamesonomy . 96
5.5.3 Unity . 97

5.6 Conclusions and Future Work . 98

6 A Multi-agent Specification for the Tetris Game 99
6.1 Introduction . 100
6.2 Background . 101
6.3 Video Games and Specification as MAS 103
6.4 Case Study: Tetris . 106
6.5 Results and Discussion . 108
6.6 Conclusions . 109

IV Serious Games Development 111

7 Improved Perception of Ceramic Molds Through Augmented Reality 113

xiv Index

7.1 Introduction . 114

7.2 State of the Art . 116

7.3 Hypotheses . 117

7.3.1 Aspects Related to the Perceived Value of Experience 117

7.3.2 Aspects Related to the Product Decision-Making 119

7.3.3 Result of CombiningPerceivedValue of Experience andProduct
Decision-Making . 120

7.4 Description of the Exposed Product 120

7.5 Implementation of the AR Application 122

7.5.1 Scripted sequence and synthetic elements 123

7.5.2 Vision Module and System Calibration 124

7.5.3 Integration and Execution in Unity 125

7.6 Experimentation and Analysis of Results 126

7.6.1 Experiments Protocol . 126

7.6.2 Hypothesis Testing . 128

7.7 Discussion . 132

7.8 Conclusions and Future Work . 133

8 Virtual Reality versus Desktop Experience in a Dangerous Goods Simulator
135

8.1 Introduction . 136

8.2 Literature on the State of the Art . 138

8.3 Serious Game Description . 140

8.4 Experiments Description and Scope 144

8.5 Results . 146

8.6 Discussion . 149

8.6.1 Positive Emotions . 149

8.6.2 Immersion and Flow . 149

8.6.3 Psychological Needs . 150

8.6.4 Other Considerations . 150

8.7 Conclusions and Future Work . 150

Index xv

V Afterword 153

9 Conclusions and Future Work 155
9.1 Conclusions . 155

9.1.1 Design and Development of a Game Engine 155
9.1.2 Game Engine Formalization Using Multi-agent Systems . . . 156
9.1.3 Serious Games Development 157

9.2 Future Works . 158

Bibliography 161

xvi Index

xvii

List of Figures

2.1 Classic game engine architecture . 26

2.2 Game data structure . 27

2.3 Diagram of a decision tree . 30

2.4 The Game Editor . 32

2.5 Appearance of the Rule editor when Edit is being configured to per-
form the Jump role. This example establishes the property velocity_y
at 300 pixels/s . 33

2.6 Example of Candy Crush initialization 35

2.7 Example of arcade games performed during the tests (sorted by rows
according to their difficulty level) . 41

2.8 Graphical distribution of the data obtained for PU (left) and PEOU (right) 43

3.1 The actors and their interaction cycle with the game. 56

3.2 A capture of the Wolf-Sheep Predation game. 63

3.3 A capture of the Frogger game. 64

3.4 A capture of the Pac-Man game. 69

3.5 Captures of the games developed in the game engine. 71

4.1 Capture of the 2D platformer game. 81

6.1 Diagram of game piece shapes. 106

6.2 Diagram of game mechanics. 107

7.1 Application and ceramic mold at the advertising company’s stand. . . 115

7.2 Dihedral representation of the application environment. 121

xviii List of Figures

7.3 Flowchart describing the composition and integration of the three
phases that compose the design and real-time execution of the AR
application. 122

7.4 Examples of some of the 3D models representing the mold compon-
ents. 124

7.5 Example of integration of elements in the AR application and with the
environment and visitors to the stand. 125

7.6 Model to explain the degree of satisfaction with the product through
the video experience. 129

7.7 Model to explain the degree of satisfaction with the product in AR
experience. 129

8.1 Virtual Simulator for Learning Dangerous Goods Operations 140
8.2 Sequence of actions map . 141
8.3 Interaction examples in the simulator 142
8.4 Players testing both versions of the serious game 144

xix

List of Tables

2.1 Classification for state-of-the-art 2D game engines 23
2.2 Objectives and hypotheses for the experiment 40
2.3 Items and results for the PU and PEOU surveys 42
2.4 Comparative test on user acceptance between SGE and Scratch . . . 42

4.1 SUS test results and Friedman significance evaluation 85

7.1 Questionnaire and overview of constructs. It is shown the average
score and the standard deviation for users for video and AR experiences.127

7.2 Relation between independent latent variables KSI and dependent
latent variables ETA for the video experience. 128

7.3 Relation between independent latent variables KSI and dependent
latent variables ETA for the AR experience. 128

7.4 Average Variance Extracted (AVE); Composite Reliability (CR) for the
case of video and AR experiences. 130

7.5 Indicators of structural fit model in the case of users for the video
and AR experiences. 131

8.1 List of the items in the In-game GEQ. 147
8.2 Average score, standard deviation and statistical significance for

questionnaires. 148

xx List of Tables

xxi

List of Algorithms

2.1 Example of the associated pseudocode for the rule in Figure 2.5 . . . 34
2.2 Candy’s colour initialization in pseudocode for Scratch 35
2.3 Candy’s checker and eraser in pseudocode for Scratch 36
2.4 Colour initialization of Candy . 37
2.5 Actor Tracker behaviour rule. 37
2.6 Eraser Actor behaviour rule. 38
2.7 Candy Actor behaviour Rule for the colour check. 38
2.8 Candy Actor behaviour Rule for the elimination of the Candy. 39

3.1 Sheep Initialization . 61
3.2 Sheep Collisions . 61
3.3 Sheep Life Cycle . 61
3.4 Sheep Stamina . 62
3.5 Wolf Initialization . 62
3.6 Wolf Rules . 62
3.7 Grass death . 63
3.8 Frog movement . 65
3.9 Frog collision with Car . 65
3.10 Frog collision with Water . 65
3.11 Frog collision with Trunk . 65
3.12 Car life cycle . 66
3.13 Trunk life cycle . 66
3.14 Player movement . 67
3.15 Wall limits . 67
3.16 Items interaction . 68
3.17 Enemy interaction . 68
3.18 Enemy interaction . 68

xxii List of Algorithms

3.19 Enemy scared . 69
3.20 Enemy destroy . 69

4.1 Player movement to the left . 82
4.2 Player movement to the right . 82
4.3 Player jump . 82
4.4 Enemy movement initialization . 83
4.5 Enemy boundaries . 83

1

Part I

Foreword

3

Chapter 1

Introduction

1.1 Context

Even though there is no generic definition for the concept of game, and the
literature has a wide variety of proposals, it seems evident that it should express the
idea of "recreational activity controlled by rules" [Juu10, Kos13]. Other authors also
define the concept of video game as "a game that we play through an audiovisual
device, and that can rely on a story" [Nic05]; as "a puzzle-game, a toy-game or any
type of game that runs on an audiovisual device" [Geo75]; or as "one or several
series of challenges causally connected in a simulated environment" [RA03]. The
generic definition of the video game concept seems to lean towards digital game
or electronic game. The meaning of game and video game emanates that a video
game is a simulated virtual environment structured under rules.

In slang, the rule structures of a video game are known as game logic or game
mechanics. At a conceptual level, the mechanics represent the actions that the
player can perform in the game. The literature defines them as "methods invoked by
game elements, designed for interaction with the game state" [Sic08], as "any part of
a game’s rule system that covers a single possible type of interaction in the game"
[LB03], as "descriptors of particular game components for data representation and
algorithms" or as "actions, behaviors, and control mechanisms offered to the player
within a game context" [HLZ04]. However, a recent systematic review indicates a
lack of consensus in the community on the formal definition [LTC21].

From the definitions found, three concepts seem to be fundamental: rules, inter-
action, and actions [Kos13]. Considering rules as the space of possibilities in which

4 1.1. Context

actions are available, interaction as the methods by which the player communicates
with the game, and actions as the changes produced in the state of the game. In
a traditional game such as Rock, Paper, Scissors, the basic game mechanic is to
reveal one’s hand (interaction) in a particular disposition chosen from among three
possibilities (rules), each of which is a winner over one of the others (actions). In
a video game like Ori and the Blind Forest, the character unlocks different jump
levels according to its progress in the game (rules) that the player can trigger with
key combinations (interaction) and that allow access to new levels of the game
map (actions). Or in a real-time strategy video game like Age of Empires the player
can attack buildings or move units (actions) to a visible area of the map (rules)
by selecting the units and clicking the target position with the computer pointer
(interaction).

A critical aspect in the development of video games is the definition and imple-
mentation of game logic or game mechanics. The logic in a video game includes
the methods and procedures that define the behaviors of the elements that are
part of a game [Juu11]. Thankfully, and unlike artistic content, logic or mechanics
are relatively exportable between games as it is usual to copy or adapt behaviors
between games [Kos13].

During game development, logic-related tasks try to extract the specifications,
requirements, and constraints established in the design and make them work in the
video game context in real-time. That means transforming the design into code as
any other software development, where the entities that perform the actions are
known as game objects. These objects are the basis of video game development
since they are the elements that make up the games and can represent characters,
scenarios, sound sources, or managers, depending on the tasks or mechanics
assigned to them. Conceptually, game objects are one of the fundamental data
structures of video game development environments known as game engines.

A game engine is a framework or a set of tools that try to improve the development
process of a video game. They aim to assist and integrate as many tools as possible
to unify video game development tasks and to create reusable software that eases
development and reduces production time/costs. In this way, developers spend less
time on aspects that are not relevant to the overall idea of the game but are of vital
importance to the resulting game experience.

Regardless of the degree of specialization of the game engine, the most common
tasks they perform range from rendering for 2D and 3D graphics, through collision

Chapter 1. Introduction 5

detection and physics integration, sound reproduction, animations, user interaction,
and logic evaluation via scripting, to memory management.

From an organizational standpoint, game design patterns and game engine archi-
tectures exploit features that are relevant to the project to be developed [Nys14]. For
instance, there are standalone game engines with runtime architectures and hybrid
editing and execution tools [Gre18]. This second option shares all data structures
between all game engine components, avoiding having one version of the data
structures for execution and another for edition. It speeds up the development
process as it allows debugging the game directly in the editor.

These data structures, as previously mentioned, usually have the game object as
their principal entity and represent any element in the game world that needs to be
evaluated, updated, or rendered. Conceptually, they are descendants of the traditional
objects of object-oriented programming [Gre18]. Each game engine establishes a
relationship between them to organize their interactions, evaluation, and rendering
using hierarchical structures such as scene graphs or sequential structures such as
lists. The organizational structure of games is also essential for saving and loading
games.

The way the engine runs the game is the game loop. A game loop is an iterative
process that controls the overall game flow. The game is kept in continuous cyclic
execution until it stops, either because the game ends or because the player exits.
An example iteration of this loop in a generic engine would run through the set of
game objects and for each of them to evaluate their physics and logic and then
execute their audio and rendering components. At the end of one loop iteration, it
would refresh the general properties of the active scene and the game, along with
the variables associated with user interaction. In a traditional evaluation flow of
information, a game engine evaluates the state of the game in a particular order. First,
internal processes such as memory and resource management, user interaction
management, physics or logic evaluation, and processes that generate game output
such as rendering or audio are evaluated [Uni22].

Within this loop, the developer can include actions to define methods to com-
plete specific tasks in the game or during engine execution, such as for debugging.
Currently, the definition of these methods happens through scripting, either with a
traditional programming language or through a visual programming system [Gre18].
This way of proceeding uses code as components that can be assigned to one or
more game elements indistinctly, easing access to content creators and speeding

6 1.2. Motivation

up game development. Among the processes and languages for which scripting is
used, two categories stand out: data definition and real-time execution [Gre18]. The
former generates simple data structures to support the definition and management
of game logic. And the execution ones are usually based on simple languages, inter-
preted by a virtual machine, and encapsulated that encourage access to designers
or users without programming knowledge.

As a summary, within a game engine, the developer must compose and organize
the set of game objects according to the game design and define the mechanics
or tasks they must perform to fulfill their design purposes. Usually, these tasks are
implemented under a scripting system based on a programming language. The
choice of a game engine, scripting system, and programming language depends
on the context of the game design and the platform on which it will run. In today’s
industry, most games are developed on commercial game engines such as Unity
and Unreal Engine or open-source engines such as Godot, and with programming
languages such as C++, C#, JavaScript, or Java in generalist code editors such as
Visual Studio, Sublime Text, and/or JetBrains Rider. An alternative to this process is
visual programming languages such as Unity Bolt or Unreal Blueprints.

1.2 Motivation

The development of any video game is a multidisciplinary process that requires
artistic, technical, conceptual design and project management skills, and where it is
necessary to perform a series of more or less common general tasks regardless of
the scope and purpose of the project. The differences between the task structure
from one game to another vary in the conceptual shades of each project. The first
task to be performed is the definition of the game structure. This structure should
describe the types of game objects in the game, the environment controller and
the game cycle, and the hierarchies of game objects that define the relationships
between them. The second task would pass through assets needed to compose
the game and their import into the game engine context. The last task would be to
develop the set of game logic or mechanics that define the gameplay. These three
tasks, with their variations, require previous background, which is an access barrier
for users with creative profiles that do not exist in other visual arts like the cinema.

As the industry moved forward, and aiming to make content creation accessible
to more people, game engines have been adding functionalities such as visual pro-

Chapter 1. Introduction 7

gramming systems for the mechanics’ definition. In this way, developers can visually
compose scenes, establish interaction, determine the behaviors of game characters,
and even debug errors without relying on traditional programming. However, these
alternatives usually encapsulate code functions in components that the user can
arrange and associate interactively. This process bypasses code dependency but
does not reduce the inherent complexity generated by the variety of functions that
the development libraries have. Because the set of options they have continues to be
very large and complex to handle for a user with no programming experience [AS10].
This problem becomes worse with the tendency to add more and more functions
and more options to the engines. By making their use even more complicated and
stretching the learning curves of these applications. The opposite road goes through
knowing the essential requirements that a game needs to be executed.

Furthermore, some authors can also be found in the literature pointing out a lack of
formalism in the video game development processes and other systematic problems
such as the absence of a generic language explicitly oriented to game development
[AEMC08]. One of the possible solutions is the multi-agent systems, which are
often used as a design and organization pattern for software and applications with
autonomous behaviors [Nys14]. The study of the organization, architecture, and
characteristics of game engines suggests a close relationship between the con-
cepts of game and multi-agent system. This arises from the comparison between
game elements and the definition of agents, their relationships, and their commu-
nication protocols and cooperation mechanisms. Currently, a developer can use
general methods to describe and specify video games, such as the Game Design
Document (GDD) or the Game Description Language (GDL) [GLP05], to define the
elements, functionalities, and interactions of game elements. However, they are
usually oriented to be implemented in specific contexts and environments, which
determines the game definition from the beginning to its implementation in the
selected platform.

1.3 Goals

From the above, the work carried out during the development of this thesis pro-
poses methods to improve the techniques of design, development, and specification
of video games. For this purpose, three aspects are proposed: the design and devel-
opment of a game engine, its theoretical formalization based on the methodology

8 1.4. Previous Work

of multi-agent systems, and a method for the specification of games as multi-agent
systems.

In brief, the specific objectives of this research are as follows:

• Design and develop a game engine that reduces their use complexity without
affecting its potential.

• Formalize the game engine to produce games as multi-agent systems.

• Define a method for specifying games as platform-independent multi-agent
systems.

• Evaluate the gaming experience of games produced following the proposed
specification model.

1.4 Previous Work

The work carried out before this thesis includes preliminary work on the relation-
ship between multi-agent systems and game engines and the features of program-
ming learning systems based on the creation of video games. Specifically, three
papers published in national and international conferences can be highlighted.

The first one is titled "Prototyping a Game Engine Architecture as a Multi-agent
System" and proposes the implementation of a game engine architecture as a multi-
agent system, where the modules that compose the engine are agents that perform
the necessary tasks to run an arcade game properly. The second one was published
as "Gamesonomy vs Scratch: Two Different Ways to Introduce Programming", where
the effectiveness of the educational method of teaching programming is analyzed
by comparing two visual programming languages, one of them embedded within a
game engine. Finally, the third one was titled as "A Behaviour Specification System
for Video Games Development" and it presents a preliminary study on a game logic
specification based on first-order logic, through which a developer can solve the
mechanics of an arcade game. References to these three papers are listed below.

• Marín-Lora, Carlos., Chover, Miguel., & Sotoca, Jose M. (2019). Prototyping a Game Engine
Architecture as a Multi-agent System. In 27th International Conference in Central Europe on
Computer Graphics, Visualization and Computer Vision (WSCG 2019). (Core B).

• Marín-Lora, Carlos., Chover, Miguel., & Sotoca, JoseM. (2019). A Behaviour Specification System
for Video Games Development. In Spanish Computer Graphics Conference (CEIG 2019).

Chapter 1. Introduction 9

• Rebollo, Cristina., Marín-Lora, Carlos., Remolar, Inmaculada., Chover, Miguel. (2018). Gamesonomy
vs Scratch: Two Different Ways to Introduce Programming. In 15th International Conference On
Cognition And Exploratory Learning In The Digital Age (CELDA 2018). Ed. IADIS Press. (Core C).

1.5 Contributions

This thesis describes the development of technology to support the creation of
video games. The work begins with the study, design, and implementation of a
game engine, continues with the definition of a methodology for the specification of
games as multi-agent systems and ends by applying the specification methodology
for the development of serious games. More specifically, and narrowly speaking
about the papers that structure this thesis by a compendium of articles, the thesis
is composed of seven papers categorized into three main contributions.

The first contribution consists of a paper published in an international journal
titled "A Game Engine Designed to Simplify 2D Video Game Development" where
is proposed the design and development of a video game editor as an authoring
and content creation tool based on a simplified game specification that reduces
the complexity of the game engine architecture and introduces an environment for
easy-to-use game creation and editing.

The second contribution begins with the formalization of the game engine using
the methodology of multi-agent systems and with a proposal to define the logic of
the games based on predicate semantics, where the basic requirements of multi-
agent systems are met, adjusting the characteristics of the game engine without
affecting its potential. This contribution relies on four publications, one international
journal, and three international conferences. The first one is titled "A Game Engine to
Make Games as Multi-agent Systems", while the remaining three are composed of
adjacent papers where themulti-agent methodology was applied to the specification
of games and the specification of behaviors in different genres and platforms. These
papers were published with the titles "A Game Logic Specification Proposal for 2D
Video Games", "A First Step to Specify Arcade Games as Multi-agent Systems" and "A
Multi-agent Specification for the Tetris Game".

Finally, the third contribution develops a methodology for the specification and
implementation of games as multi-agent systems on any platform by including the
development of two serious games as virtual and augmented reality applications
as multi-agent systems and the study of the resulting game experience. These

10 1.5. Contributions

two applications form the two publications in international journals that make up
this latest contribution. The first was titled "Improved Perception of Ceramic Molds
Through Augmented Reality" and the secondwas titled "Virtual Reality versus Desktop
Experience in a Dangerous Goods Simulator".

Below there is a brief summary of each of these papers with a short review of the
contributions made in the order they appear in this section.

1.5.1 Design and Development of a Game Engine

A Game Engine Designed to Simplify 2D Video Game Development

• Chover, Miguel., Marín-Lora, Carlos., Rebollo, Cristina., & Remolar, Inmaculada. (2020). A Game
Engine Designed to Simplify 2D Video Game Development. Multimedia Tools and Applications,
volume 79, 12307–12328. (Q2).
https://doi.org/10.1007/s11042-019-08433-z.

The growing popularity of casual games in recent years has promoted the develop-
ment of new tools to ease the creation of video games. This process advances their
democratization so that anyone interested can develop them without programming
knowledge. However, most game development environments are based on the tra-
ditional way of programming and require advanced technical knowledge. This paper
presents a new 2D game engine in which, based on a simplified game specification,
the complexity of the game engine architecture is reduced and easy-to-use game
creation and editing environments are introduced. The goal is to reduce the complex-
ity of video game development processes and facilitate access to development for
people with non-technical profiles. For this purpose, a new approach to developing
these interactive applications is proposed compared to the traditional programming
method. Instead of using the data structures of a programming language, a reduced
data model is proposed, with a list of predefined components and parameters and
a restricted set of actions and conditions to define game behaviors, without the
need to use complex data structures. The validation of its operation passes through
arcade game development experiments with inexperienced users. The results show
that inexperienced users can successfully develop arcade games by using this game
engine. The contribution focuses on the implementation of the game engine based
on a data model concept that had already been thought out by the co-authors of
the paper. In addition to the design, management, and analysis of the experiments
performed.

https://doi.org/10.1007/s11042-019-08433-z

Chapter 1. Introduction 11

1.5.2 Game Engine Formalization Using Multi-agent Systems

A Game Engine to Make Games as Multi-agent Systems

• Marín-Lora, Carlos., Chover, Miguel., Sotoca, Jose M., & García, Luis. A. (2020). A Game Engine
to Make Games as Multi-agent Systems. Advances in Engineering Software, 140, 102732. (Q1).
https://doi.org/10.1016/j.advengsoft.2019.102732.

Video games are applications that feature design patterns that resemble multi-
agent systems. Where the elements that compose the games are like autonomous
agents that interact with each other to describe complex systems within a shared
environment or social space. This paper presents the definition of a game engine that
can produce games that meet the requirements of a multi-agent system following
the formal definition of multi-agent systems to perform a description of the game
and its essential elements. The purpose is to develop a game engine that can
generate games as multi-agent systems. In other words, games that meet the
basic requirements of multi-agent systems by adjusting the system features without
affecting their performance and potential. Where the actors or agents of the game
engine have a set of properties and behavioral rules with which to interact with the
game environment. For this interaction, the actors have a behavior definition system
established through formal semantics based on predicate logic. The paper also
includes the specification of a set of games as use cases for their development as
multi-agent systems to validate their operation and possibilities. These use cases
show that the system fulfills its task, and it is observed that it can generate complex
behaviors from reduced logical semantics as behavior definition descriptors. The
contribution made in this work deals with the study of multi-agent systems, the
definition of the formal analogy between video games and multi-agent systems, and
the implementation of the engine and the use cases.

A Game Logic Specification Proposal for 2D Video Games

• Marín-Lora, Carlos., Chover, Miguel., & Sotoca, Jose. M. (2020, April). A Game Logic Specification
Proposal for 2D Video Games. In World Conference on Information Systems and Technologies
(pp. 494-504). Springer, Cham. (Core C).
https://doi.org/10.1007/978-3-030-45688-7_50.

Game engines are essential applications in game development, given that they
are designed to assist in the creation of game content. However, the definition

https://doi.org/10.1016/j.advengsoft.2019.102732
https://doi.org/10.1007/978-3-030-45688-7_50

12 1.5. Contributions

and specification of game logic remain complex. The mechanisms involved in
the behavior definition are not easy to standardize, given their dependence on the
subjective design of the game logic and the features of the selected programming
language. In this sense, this paper proposes a game logic specification for 2D
video games based on a reduced set of behavioral elements. This proposal relies
on the study and analysis of the literature on behavior and game logic definition.
The analysis performed on the requirements and the characteristics of existing
game engines indicates that there is room for improvement in determining the
basic requirements of games and the correct procedures for their design. With the
information gathered, semantics based on first-order logic have been defined to
generate rules from a game data model and a reduced set of actions and conditions.
All this without hierarchies, loops, or complex data structures such as matrices or
vectors. The proposed model has been tested with several games and against two
other commercial game engines to determine its validity and potential. The first
one is with behavior definition tools based on traditional scripts and the second
one relies on message passing. The methodology followed for this comparison
consisted of the game description with the proposed semantics as a reference and
their subsequent implementation in the other game logic systems by several users.
The results show that the users perceived the system as more usable than the other
commercial systems analyzed. The contribution made in this research involves the
study of behavior specification systems for autonomous systems and knowledge
representation systems, the definition of a logic specification system for 2D games,
and its subsequent integration into the multi-agent game engine.

A First Step to Specify Arcade Games as Multi-agent Systems

• Marín-Lora, Carlos., Cercós, Alejandro., Chover, Miguel., & Sotoca, Jose. M. (2020, April). A First
Step to Specify Arcade Games as Multi-agent Systems. In World Conference on Information
Systems and Technologies (pp. 369-379). Springer, Cham. (Core C).
https://doi.org/10.1007/978-3-030-45688-7_38.

The lack of formalism in video game development is an obstacle to incorporating
new professionals in this field. Even though there are general proposals to describe
and specify video games with techniques such as the Game Design Document
(GDD) or the Game Development Language (GDL), they are focused on specific im-
plementations. This paper proposes a method for the definition, specification, and
implementation of a video game based on multi-agent systems, where its elements,

https://doi.org/10.1007/978-3-030-45688-7_38

Chapter 1. Introduction 13

functionalities, and interactions are established independently of the platform used
for its development. The goal is to demonstrate that video games and multi-agent
systems share several features and that it is possible to improve video game devel-
opment processes in this way. As a demonstrator, the classic arcade game Frogger
has been used to test its validity and capabilities. This game has been defined in
its general form and implemented on three different platforms following the same
specification. Each of these implementations has been done using different engines,
languages, and programming techniques, but in any case, meeting the requirements
of the game and the multi-agent systems. The study suggests that the features of
multi-agent systems fit as a starting point for the definition of video games and asks
to keep working on methods that foster a symbiosis between these concepts. In ad-
dition, the incorporation of agent specification systems in the development of video
games can ease their comprehension before implementation, which could facilitate
access to the sector of professionals who do not have technical experience in the
creation of video games. The contribution in this work focuses on the specification
of the game for its implementation in the three platforms, the supervision of the
implementation of the games, and the analysis of the differences between their
implementations.

A Multi-agent Specification for the Tetris Game

• Marín-Lora, Carlos., Chover, Miguel., & Sotoca, Jose M. (2021, October). A Multi-agent Specifica-
tion for the Tetris Game. In International Symposium on Distributed Computing and Artificial
Intelligence (pp. 169-178). Springer, Cham. (Core C).
https://doi.org/10.1007/978-3-030-86261-9_17.

In the video game development industry, tasks related to design and specification
require support to translate game features into implementations. These support
systems must clearly define the elements, functionalities, and interactions of the
game elements, and they must also be established independently of the target
platform for development. From a study for the specification of games as multi-
agent systems, this paper attempts to test if the results of that study are transferable
platform-independent. This study leans on a game engine created to generate games
as multi-agent systems. The objective is to validate the hypothesis that a game can
be defined and specified as a system of interacting agents and that it is possible
to implement it on different platforms. As a case study, the classic game Tetris
has been used, a game whose nature suggests that its implementation should be

https://doi.org/10.1007/978-3-030-86261-9_17

14 1.5. Contributions

composed of vector and matrix data structures. The game has been defined and
specified according to a reference model with three different types of agents. This
specification has been implemented on three different platforms with satisfactory
results, consequently validating the starting hypothesis. The contribution made in
this work includes the analysis of the game requirements, the specification of the
game as a multi-agent system, and its implementation.

1.5.3 Serious Games Development

Improved Perception of Ceramic Molds Through Augmented Reality

• Marín-Lora, Carlos., Sotoca, Jose. M., & Chover, Miguel. (2022, Apr). Improved Perception of
Ceramic Molds Through Augmented Reality. Multimedia Tools and Applications. (Q2).
https://doi.org/10.1007/s11042-022-13168-5.

Augmented reality is a technology that adds graphical information to the real
world that the user is visualizing through a device. The development of applications
based on this technology requires knowledge about how some parameters, such as
the user’s physical presence, affect the perception and evaluation of the experience.
This paper presents an augmented reality application for the presentation and
marketing of ceramic molds. The application combines a physical ceramic mold
with virtual components of the mold’s interior in real-time, where the sequence of
actions goes through an avatar that explains the details of its operation, and where
users visualize the graphic information of the mold, placed between them and a
large format television screen as if it was a mirror. The study derived from this
application puts forward a theoretical framework that seeks to understand how
users perceive and evaluate the benefits and quality of the experience through their
physical presence, compared to viewing the same experience through a video. The
experiment results showed that the integration of the product into the environment
and the users spatial presence had a positive effect on the perceived value in terms
of usefulness and enjoyment, improved comfort in the purchase decision, and
reinforced the overall opinion of the product. Confirming that content created for
a clear and persuasive use should be remarkable for companies when promoting
their products. The contribution made in this work consists of the definition of
the experience requirements, its specification and implementation in a commercial
game engine as a serious 3D game, the implementation of the application in context,
and the analysis of the results of the participants’ experience.

https://doi.org/10.1007/s11042-022-13168-5

Chapter 1. Introduction 15

Virtual Reality versus Desktop Experience in a Dangerous Goods Simulator

• Chover, Miguel., Sotoca, Jose M., & Marín-Lora, Carlos. (2022, May). Virtual Reality versus
Desktop Experience in a Dangerous Goods Simulator. International Journal of Serious Games,
9(2), 63–77. (Q1).
https://doi.org/10.17083/ijsg.v9i2.493.

Virtual reality applications have become a trend in training simulators as an
alternative to desktop applications as they enhance the reality experience felt by
the user, including tactile, visual, and acoustic sensations. This is a breakthrough in
terms of interaction and total immersion of the player in the game. However, studies
about how virtual reality affects gameplay are still limited, and it is not clear how
interaction through virtual reality controllers can help or harm the player’s experience.
In this regard, this paper analyzes the differences between playing a serious first-
person game on a desktop computer versus playing in virtual reality. The game
was implemented in two versions of a dangerous goods unloading simulator. The
first was developed as a classic desktop game with keyboard and mouse-based
interaction, while the second was for virtual reality devices. The evaluation of the
user experience relied on the in-game version of the Game Experience Questionnaire.
With this, aspects related to immersion, flow, positive emotions, and psychological
needs were compared for these two platforms. The study shows that the virtual
reality experience produces a better overall gaming experience for most of the items
analyzed. However, the results show a significant dependency between the type of
application and the gaming experience induced in the player. The contribution made
in this work involves the specification of the serious game and the analysis of the
data obtained from the game experience questionnaire.

1.6 Outline

This document has been organized into five blocks to structure and group the
contents and contributions of this thesis. The first introduces a foreword about
the thesis’s context, motivation, and contributions with Chapter 1. The second one
deals with the design and development of a game engine and consists of Chapter 2
of the thesis introducing the paper "A Game Engine Designed to Simplify 2D Video
Game Development". The third block presents the formalization of the game engine
using the multi-agent systems methodology in the main paper and includes three
additional works carried out in parallel to define and specify games and their logic.

https://doi.org/10.17083/ijsg.v9i2.493

16 1.6. Outline

These works are divided into four chapters, starting with Chapter 3 titled as "A Game
Engine to Make Games as Multi-agent Systems" and continuing with Chapters 4,
5 and 6 presenting the papers "A Game Logic Specification Proposal for 2D Video
Games“, “A First Step to Specify Arcade Games as Multi-agent Systems” and “A Multi-
agent Specification for the Tetris Game”, respectively. The fourth block introduces
the development of two virtual and augmented reality applications following the
model proposed in the second block. This section consists of two chapters: Chapter
7 with the paper "Improved Perception of Ceramic Molds Through Augmented Reality"
and Chapter 8 including the paper "Virtual Reality versus Desktop Experience in a
Dangerous Goods Simulator". Finally, the fifth block provides an afterword with the
conclusions as well as the proposed lines for future work with the Chapter 9.

17

Part II

Design and Development of a Game
Engine

19

Chapter 2

A Game Engine Designed to Simplify
2D Video Game Development

Publication

Chover, Miguel., Marín-Lora, Carlos., Rebollo, Cristina., & Remolar, Inmaculada.
(2020). A Game Engine Designed to Simplify 2D Video Game Development. Multi-
media Tools and Applications, volume 79, 12307–12328. (Q2).
https://doi.org/10.1007/s11042-019-08433-z.

Abstract

In recent years, the increasing popularity of casual games for mobile and web has
promoted the development of new editors tomake video games easier to create. The
development of these interactive applications is on its way to becoming democrat-
ized, so that anyone interested, without any advanced knowledge of programming,
can create them for devices such as mobile phones or consoles. Nevertheless,
most game development environments rely on the traditional way of programming
and need advanced technical skills, even despite today’s improvements. This pa-
per presents a new 2D game engine that reduces the complexity of video game
development processes. The game specification has been simplified, decreasing
the complexity of the engine architecture and introducing a very easy-to-use editing
environment for game creation. The engine presented here allows the behavior of
the game objects to be defined using a small set of conditions and actions without

https://doi.org/10.1007/s11042-019-08433-z

20 2.1. Introduction

the need to use complex data structures. Some experiments have been designed to
validate its ease of use and its capacity for the creation of a wide variety of games.
To test it, users with little experience in programming have developed arcade games
using the presented environment as proof of its ease concerning other comparable
software. Results obtained endorse the concept and the hypothesis of its easiness
of use and demonstrate the engine’s potential.

Keywords

Game development, Game engine, Game editor

2.1 Introduction

Video game creation is a very complex process where the participation of a
multidisciplinary team is required, as well as the use of tools to assist the production
of content. Game developers not only have to create games interesting enough to
captivate players, but they also have to face the complex technical features required
for today’s computer games: graphical resources, interaction mechanisms and
behavior definition [Gre18]. To simplify the problem, game development has evolved
quickly since the mid-1990s, mainly because of the emergence of game engines.
These tools aim to create reusable software to provide an easier way to generate
games and reduce their production times. Although in their early stages the primary
concern of these engines was the rendering system, other fields such as artificial
intelligence, animation, physics, sound, or networking were added over time.

Over the years, and to make content creation accessible to more people, some
game engines have been incorporating visual programming systems [BM19, KHA97]
for the definition of game behavior. In this way, the developers are now able to
visually compose the scenes, set the interaction, determine the behaviors of the
game characters, and even debug errors. However, even though since its conception
game engines have simplified the creation of video games, these tools are still too
complicated to use. The set of functions and elements they have is still very large
and is still difficult to handle for a non-programmer user.

As a starting point, the democratization of game development seems to be easier
to achieve in 2D. As an example, one of the most popular environments for creating
interactive 2D content through visual programming is called Scratch [MRR+10]. In

Chapter 2. A Game Engine Designed to Simplify 2D Video Game Development 21

this case, traditional programming is omitted by encapsulating code functions in
block-shaped nodes that the user has to organize to create their algorithms. However,
in this way, it does not eliminate the inherent complexity of traditional programming
methodologies and although the environment is more attractive, complexity is
similar to traditional programming. For these reasons, the development of tools that
facilitate and make accessible the creation of video games for everyone remains an
open problem and has a great interest.

This paper presents a Simplified Game Engine (SGE) designed to ease the game
development process by providing tools oriented toward non-programmers. This
2D game engine has been designed by simplifying each user-dependent process
as much as possible to provide a most satisfying level of abstraction in terms of
technology. The contributions of the work are aimed at the simplification of the video
game specification, emphasizing the simplification of the game logic definition, and
can be summarized in the following ones:

• Simplification of the data model used to define games and a consequent
specification of a simplified game engine architecture and editor.

• Elimination of hierarchical structures of game objects, common in most game
engines to exploit the agent-based programming paradigm [WJ95].

• Creation of a visual programming system using binary decision trees, used in
several fields beyond computer science [KAT+16, YPY+19].

• The engine does not include complex data structures such as vectors or
matrices [DeL00], common in other visual systems such as Scratch. Elimina-
tion of repetition statements, since the iteration is provided by the game loop
itself.

Finally, to validate the capabilities and ease of use of the engine, two experiments
have been carried out with children without great programming knowledge. The
main objective is to compare SGE with Scratch, one of the most widespread visual
programming environments. Scratch is used to program scripts in some game
engines such as Stencyl [LLW+14, Ste19].

The rest of the paper is organized as follows. In Section 2.2, the leading work in
the area with state-of-the-art game engines and visual tools to learn to program is
introduced. Next, in Section 2.3, the technical conception of this work is developed,

22 2.2. State of the Art

focusing on the game engine architecture and game specification along with the
game editor and its behavior specification system. Thereafter, a complete use case
example is presented comparing the programming using SGE and Scratch in Section
2.4. Next, in Section 2.5, an experiment carried out with children is explained and its
results are presented and discussed in Sections 2.6 and 2.7, respectively. Finally,
Section 2.8 concludes the main contributions of the proposal and its limitations
with an outline of the ongoing work.

2.2 State of the Art

The video games industry, like any other, tries to minimize production costs to
maximize profits [Fol07, Wil02]. During the mid-90s, some companies, such as
IdSoftware, added modularization to their main engines intending to reuse the soft-
ware. They developed the First Person Shooter (FPS) game Doom, from where any
further addition or change was easy to implement by modifying levels, characters,
weapons or even creating new games. This led to the game engine concept and
provided tools to develop new games more easily. In the late 90s, some games,
such as Id Software’s Quake III and Epic Games’ Unreal, were built on a modular
and reusable conception. In this way, game engines improved the customization
possibilities by adding coding features, for instance, scripting functionalities such as
Quake C. From this point on, game development companies became aware of the
commercial interest in game engine licenses and started looking for an additional
source of income.

As time passes, the improvements in graphics hardware, visualization technology,
and data structure are closing the gap between game engines for varying purposes.
Today, it is possible to create 2D or 3D games with the same game engine. Even
though specialization is still capital [Gre18], creating a Massive Multiplayer Online
Game (MMOG) is quite different from an FPS. The required features can be very
different for each game genre. For instance, 2D animated sprites are pretty simpler to
set up than realistic 3D visualization algorithms [Kir04] or, in the same way, collision
computations and physics simulations are far more complex in 3D [Mil10]. An
example of these game engines is Unity [MW12, MSK15, Uni22], a mighty platform
to develop 2D or 3D games where deep knowledge about game engine concepts,
features, and advanced experience in the programming language C# is required to
develop anything. Despite this, it is easy to perceive a trend toward simplification:

Chapter 2. A Game Engine Designed to Simplify 2D Video Game Development 23

a 3D engine of the highest level such as Unreal Engine [Epi22] includes a visual
programming system called Blueprints Visual Scripting [Val15] based on message
passing, where programming is done by connecting game objects’ components and
functions. However, this engine has a high-level commercial purpose, so its use is
still quite complex for non-technical people.

In response to the needs of these potential users, some companies have de-
veloped 2D game engines intended for creators without advanced programming
knowledge. Its systems have visual editors to configure scenes, characters, and
even gameplay mechanics without writing a line of code. Most of them include
visual programming methods, an approach that can bring simplicity to this process
through one of its visual scripting methodologies: block-like, flowcharts-inspired,
dataflow or message-passing programming, finite-states machines, event-based
rules, or behavior trees [BM19, KHA97].

Table 2.1 presents a summary of the analysis of some of the current game engines
that allow the creation of 2D games. The table details the platform where they are
executed, the scripting system they use, their visual programming methodology, and
the number of functions or behavior descriptors each one has to configure those
gameplay mechanics. The elements of the table are arranged in ascending hierarchy
based on the number of functions or behavior descriptors and their ease of use.

The table begins with Flowlab [Flo19], which has fifty-three different elements to
configure behaviors, and ends with Unity, where the action is conducted by hand-
made C# scripts based on the complete language and some specific programming

Table 2.1: Classification for state-of-the-art 2D game engines
Game Engine Platform Scripting Method Behaviour Specification Elements *

Flowlab Web Visual Scripting Message Passing 53
Game Salad Desktop Visual Scripting Components 63
GDevelop Desktop Visual Scripting Event System 106

Game Maker Desktop Game Maker Language Message Passing 133
Construct 2 Desktop JavaScript Blocks 204

Stencyl Desktop Scratch Blocks C.L.
RPG Maker Desktop Ruby, C++, Java, JavaScript Scripting C.L.

Unreal Desktop C++, Visual Scripting Message Passing C.L.
Unity Desktop C# Scripting C.L.

* Number of predefined set of functions or behaviour descriptors | C.L. Complete Language

24 2.2. State of the Art

libraries and APIs. Many of them, like Game Maker [YoY19] or RPG Maker [RPG19],
have systems based on lighter scripting tools, which keeps a dependency on code.
Additionally, others such as Construct 2 [SL17] or Stencyl [LLW+14, Ste19] rely on
block-like interfaces, this latter case working with Scratch [MRR+10], a visual pro-
gramming concept developed by the Massachusetts Institute of Technology (MIT).
Usually, these block-like systems are based on events GDevelop [Cor15] attaches
its behavior definition system directly to events into a cross-platform engine with a
visual programming interface. Finally, GameSalad [DX12, RRD12] presents a graphic
interface that allows one to visually configure functioning by arranging and connect-
ing components.

Even though these efforts are very significant steps forward toward game de-
velopment complexity reduction, the use of this kind of software still requires high
technical profiles and specific training, thereby excluding most of the potential users
of these technologies [VMB+13, TZ05]. One of the main reasons is related to the
transition process between traditional programming and visual programming: it
has generally been done by transforming programming functions into components,
which avoids dependence on the code but maintains the huge variety of functions
of traditional APIs. This way of proceeding inherits a systematic problem from the
development of game engines: there is no generic game engine language, there
is deep darkness about the essential requirements that a game needs to be ex-
ecuted and the limits between games, genres, and engines of games are blurred
[AS10, AEMC08]. With this in mind, it is necessary to find a simpler way to create
games, where inexperienced users could develop their games by making use of
graphical environments that do not require programming skills [GFZI12].

In the current literature, some works point out how complex can be for a begin-
ner the approach to a problem through computational techniques [Cha05, MR02,
RRR03] and the assistance that visual programming can provide [Bla96, Cha16].
At the educational level, different methodologies have been studied to introduce
programming concepts, both with traditional coding [KLM14] and with visual pro-
gramming [PGC+06]. It seems evident that visual programming can be an essential
tool on the way toward the democratization of game development. Some authors
have carried out experiences with students associating visual programming and
computer games. For instance, some authors [OKD+15] present a study conducted
on programming students to test the learning of basic programming concepts by
creating games with Scratch [MRR+10], and others [CC07] display a study to eval-

Chapter 2. A Game Engine Designed to Simplify 2D Video Game Development 25

uate an object-oriented programming learning methodology through videogames
programming.

At a more specific level, some works have proposed models that combine visual
programming methodologies with the elements that a game engine requires to
define the behaviors of a game. In this line, Furtado et al. [FSRdA11] propose a
description of game engines based on a more abstract and expressive set of layers.
Furthermore, Zarraonandia et al. [ZDA17, ZDAR15] presented a conceptual model
to organize the game features in a modular way, where the description and the
definition required to create a combination of sub-games are based on a set of
configurable elements and a basic vocabulary for each feature. Additionally, some
software engineering methods have appeared as a possible plan to address this
issue, proposing a systematization of the game development process [AS10, FS06,
RC08]. All this analysis demonstrates that the creation of video games can be
simplified and the development of new visual tools can make the creation of such
content accessible to a large number of users.

2.3 The Simplified Game Engine

The main hypothesis of this work is to demonstrate that the complexity of a game
engine can be reduced concerning the software architecture, the specification of the
games, and the editor itself while maximizing its potential in terms of creating differ-
ent types of arcade games. In this section, the architecture of the proposed system
is introduced below. This architecture has been designed to be able to create a wide
variety of games, including physical games. Subsequently, the specification of the
games is described. Each game can be composed of different scenes, with actors
that can have different behavior rules or scripts. All actors have the same properties
which simplify both the specification of the games and the implementation of the
engine. Finally, the game editor designed using the aesthetics of Google Material
Design [Goo19] is briefly described.

2.3.1 The Game Engine Architecture

Essentially, most of the existing game engines have quite similar architectures and
subsystems. This is because these modules are necessary for designing practically
any game. A generalist system needs some modules that manage rendering, sound,

26 2.3. The Simplified Game Engine

Figure 2.1: Classic game engine architecture

logic evaluation, input system, and physics. It is for this reason that this proposal has
included a set of five modules: physical computing controllers, event management,
logical evaluations, sound reproduction, and scene representation. A representation
of this architecture can be seen in Figure 2.1.

The most important module that has been developed is the game logic module.
For the rest of the modules, a high-level layer has been created that allows different
libraries to be incorporated. For example, about the physics engine, both Box2D
[Cat11] and Matter [Bru14] have been tested. Concerning the render engine, a 2D
render has been developed from scratch and Pixi [VdS15, Goo13] has also been
tested. With the game logic module, a system has been implemented that allows
building the behavior rules using decision trees and a small set of conditions and
actions (see section 2.3.2).

The Game Loop processes every action or condition in these five submodules on
each iteration. It starts from the physics, goes through the event handling, continues
with the game logic evaluation, and, finally, it represents the state of the Game by
the sound and rendering modules. The implementation of a Game Loop in a classic
game engine may become a very challenging and very complex task. According
to Deloura [DeL00], this implementation usually absorbs the users in customized
scripts for each game object to be executed in different stages of the Game, or even
a different number of times per frame, making it necessary for the user to have a
vast knowledge of the game engine structure and operation. This process has been
considerably simplified in SGE, the logic of the game is always computed after the
physics and input evaluation in each game cycle. This simplification can be done
since most 2D games do not have great performance needs.

Chapter 2. A Game Engine Designed to Simplify 2D Video Game Development 27

Figure 2.2: Game data structure

2.3.2 The Game Specification

An SGE Game can be represented as a set of Scenes with a list of Actors, where
the Actors are the elements of the game and the Scene is the stage used by the
Actors. The concept behind this setup is tomake Actors work as independent agents
[Bis08, WJ95] carrying out their roles and interacting both with each other and with
the Scene configuration. Accordingly, a game specification has been developed,
based on the Actor, and through its Properties and Rules, any of these elements can
be configured or modified. A diagram of this configuration is presented in Figure 2.2.
The system has no hierarchy of actors like most 3D game engines, which simplifies
the game engine architecture. This absence of hierarchy has not been a problem to
implement any mechanics in the arcade games that have been created so far.

The Game is the central object of the system’s data structure. Its properties are
mainly related to the resolution and the orientation of the screen along with the
sound linked to the entire game. The user also can store new custom variables to
meet some game requirements, for example, to store the total score that players
reach. In turn, the Game is composed of Scenes. These are responsible for storing
camera properties, such as position, angle, zoom, or gravity. The Actors, considered

28 2.3. The Simplified Game Engine

the main component of the game, are assigned in the Scenes. This is the most
complex component since it is the cornerstone on which all interaction rests. They
also have their properties, related to their position, render, text, sound, and physical
properties. In the same way as the other components of the game, it can store
custom variables to help the development of the game. In addition, they have a list
of rules assigned to them that perform the gameplay by combining actions included
in some programmable nodes. As they are considered the main structure of the
SGE, they are explained in detail in the following.

Actor Properties

The Actors are the only element in the Scene and they are organized by an ordered
list to determine their order of viewing. All the elements arranged in a Scene, such as
characters, backgrounds, decorations, sound emitters, markers, or HUDs, are Actors.
They play a key role in the definition of the game. In a conventional game engine,
the Actor concept would be expressed as game objects with different types of roles:
lights, camera, sound, geometry, etc. However, this specification only requires the
use of Actors, removing the reliance on game hierarchies, a central topic in traditional
games implementation but, in fact, not essential to create most the classic arcade
games.

The Actors have a predetermined set of Properties by default, some of them
related to the visual appearance: color, line width, etc. Depending on their function in
the game, they can be visible in the Scene, for example, when an Actor is assigned an
image, it will be visible just as the gameplay is designed using the Actor’s Properties
and its Rules require. Besides images, they can represent other features in the game,
such as sounds, text, numbers, or booleans.

Finally, the established set of Actor’s properties can be classified and arranged in
categories, to provide a better understanding for the final user. These properties are
as follows:

• General. These properties deal with the Actor’s position, scale, and rotation.
They also include information about the collision shape profiling and if the
object is enabled or disabled.

• Graphic. Related to visual and graphical properties: the Actor image and other
transform options such as flip, repeat, and displacement.

Chapter 2. A Game Engine Designed to Simplify 2D Video Game Development 29

• Text. The Actors can show text in a certain position with a particular font and
style.

• Sound. A sound can be associated with the Actor. It presents some properties
to allow the modulation of its volume, and some options to determine the
moment it starts and if it is in a loop.

• Physics. These properties are related to the type of physics body: dynamic,
kinematic, or static. Other characteristics such as the velocity and the proper-
ties that depend on the material, such as density or friction, are also included
in this category.

• Custom. Additionally, it is possible to store information on variables to cus-
tomize the games even further.

These properties can be modified from the behaviour rules of the actor itself or
other actors of the same scene.

Actor Rules

Actors are in charge of managing every event that takes place in the Game. For
this purpose, a rule system has been devised in order to define the logic and the
interactive behaviours of the Game. A behaviour rule is determined by a decision
tree system [Mil19] driven by a reduced set of Actions and Conditions, ready to be
executed if the flow passes through them according to whether the Conditions are
met or are not. An example of a rule is shown in Figure 2.3.

The Rule structure is defined by two elements: Actions and Conditions arranged
in a decision tree. Both Actions and Conditions are prepared to work with arithmet-
ical expressions and with mathematical functions: sin, cos, tan, asin, acos, atan,
sqrt, random, etc.; and the data types supported by this system are numbers and
booleans.

Actions are the defining elements of the specific behaviours of the Actors. A list
of predefined actions is available to the game designer. In this sense, a thorough
review has been carried out to generate a stable simplification in order to arrange a
minimum set of predetermined Actions and thus to simplify the game logic. The
study has resulted in fifteen Actions, some of which are described below:

30 2.3. The Simplified Game Engine

Figure 2.3: Diagram of a decision tree

• Edit. To change every Property by a specific value or by the result of an
arithmetical expression. It works equally for the Game, the Scene or the Actor.

• Animate. To execute animations by arranging sprites on a specific frames-
per-second rate.

• Move / Move To. To move the Actor a certain number of units on screen. It has
a related Action called Move To, which causes it to travel towards a specific
position or Actor.

• Destroy. This Action deletes the Actor from the Scene when is triggered.

• Push / Push To / Torque. To apply forces to the Actor. It also has a related
Action called Push To and another pack called Torque that works with the
same concept to apply angular forces.

• Rotate / Rotate To. To rotate the Actor a certain number of degrees. There is
also Rotate to Action which allows rotating until reaching an angle.

Chapter 2. A Game Engine Designed to Simplify 2D Video Game Development 31

• Add Scene / Remove Scene / Go To Scene. To handle the management of
Scenes with Add Scene, Remove Scene and Go to Scene.

• Spawn. An automatic Actor copy generator.

• Sound. To start a sound by Play sound.

The conditions allow defining the execution flow for the actions. The scripting
system includes the following types of conditions:

• Compare. This compares data values or expressions from any Game, Scene
or Actor Properties with another value or expression.

• Check. To check if a boolean Property is met or it is not.

• Collision. This checks whether two Actors are colliding. It relies on the Actor’s
collision shape.

• Keyboard. To capture which key has been pressed on the keyboard.

• Touch. To manage the user interaction with mouse or touch events through
tactile devices.

• Timer. To perform sets of Actions after a certain number of seconds.

These elements can provide basic coding knowledge without giving up complex
game development, by only considering that the Game Loop implements the evalu-
ation of the behaviour of every Actor on each iteration. Furthermore, in an attempt to
enhance the simplification of the game development, the usage of logic expressions
and complex data structures such as matrices, arrays or other complex structures
like trees or graphs to create the Actor’s Rules have been discarded.

2.3.3 The Game Editor

In order to democratize game development, it is necessary to aim at the easiest
and most accessible way to present the development tools for game developers.
For this reason, a game editor has been created, taking as its starting point some of
the main features of the user interface literature and their subsequent integration
within the whole SGE environment.

32 2.3. The Simplified Game Engine

Figure 2.4: The Game Editor

The Scene Editor

The game editor has been developed by adopting the user interface design and
interaction concepts behind a slide-show software [Tuf03]. This kind of application
is conceived to be easy to use and has a very similar structure to games: several
slides that can be compared to the game levels or Scenes, object placement and
properties such as Actors and their Properties, and interactive event animations as
the behaviour Rules.

Another design feature is related to its visual appearance. In this sense, Google
Material Design [Goo19] has been the core of this interface specification, where
the design definition is aimed at multi-device applications with fluid navigation.
An example of this interface is shown in Figure 2.4 with a Platform Game. The
Scene list for this game is available on the navigation menu. The canvas draws
the environment designed for the first Scene called Level 1. The Actor, represented
by the blue character, is selected and its gizmo and its associated graphical menu
are visible. Through this menu, the user can access the Actor’s properties and its
Rules list. These features are also shown in Figure 2.4, where, after selecting the
Actor’s properties icon, a modular panel comes out from the right-hand side of the
screen showing all the properties arranged on tabs in accordance with the grouping
presented in Section 2.3.2.

Chapter 2. A Game Engine Designed to Simplify 2D Video Game Development 33

Figure 2.5: Appearance of the Rule editor when Edit is being configured to perform
the Jump role. This example establishes the property velocity_y at 300 pixels/s

The Rule Editor

The roles performed by the Actors are defined in an edition tool environment,
called Rule editor. This has been based on a simple decision tree, where the Actions
and Conditions are arranged visually and configured until the desired behaviour is
fulfilled.

Similarly to the Actor’s Properties, this Rule editor can be accessed via the Actor’s
context menu. Figure 2.5 shows a decision tree editor, through which the behaviours
can be composed by arranging the Actions and Conditions. These elements are
accessible from two yellow and blue buttons, which serve as shortcuts to the set of
Actions and Conditions, respectively. After selecting one of the elements, that panel
comes out showing the Properties and the options determined for it. As an example
of these features, Figure 2.5 shows a decision tree performing a Jump behaviour
for a specific Actor. The Actor must be on the floor to be able to jump. Initially, a
check is performed to determine whether the Actor is colliding with the floor and
then, if the Up key is pressed, the jump action is produced by setting the Actor’s
y-axis velocity at 300 pixels per second. If any of these Conditions are not met, the
flow will travel through its left branch and no Action will be performed. Each action
or condition is configured by setting their Properties in a panel which appears on the
right when it is selected. In order to facilitate understanding of the Rule for Jump, a
pseudocode version is annexed in Algorithm 2.1.

34 2.4. Game Example: Candy Crush

Algorithm 2.1 Example of the associated pseudocode for the rule in Figure 2.5
If (collision(Ground))

If (KeyCode.Up)
velocity_y = 300;

End
End

2.4 Game Example: Candy Crush

Programming using SGE has some differences compared to the use of con-
ventional programming paradigms. The creation of video games without the use
of complex hierarchies and data structures such as vectors or matrices can be
a challenge for expert programmers accustomed to using them in conventional
programming languages. The impossibility of using loops when programming the
rules within the actors, forces to assume the Game Loop as a way to perform the
iterations. In this sense, programming video games with the proposed engine is
more related to agent-oriented programming, where individual agents with similar
properties interact with each other and with the environment to solve different types
of problems. This way of programming allows to develop computational thinking
in a more similar way to the interaction between people and can be easier for non-
expert users. In order to illustrate the differences in the way a typical matrix problem
can be solved, the creation of a Candy Crush-like game is proposed. It has been
developed with SGE and Scratch, due to its orientation to the conventional learning
of programming and its usage in some 2D game engines. This game is one of the 2D
games with more complex mechanics that can be performed and its development
with SGE demonstrates its great potential.

The Candy Crush game [CL16] is a match-three puzzle video game, in which the
players have to swap candies on a game board to produce combinations of three
or more with the same colour. This fact makes the candies disappear and allows
the player to win points and to reach goals. Experimented computer developers
usually use a matrix structure to store the game board, but a non-experienced user
does not think in such complex data structures. Instead of using a matrix to handle
the candies, each Candy becomes an Actor with its Properties and behaviour Rules
that interacts with the rest of the Actors in the Scene. In this case, the Candies are
organized in a matrix-like grid in the space, but there is no matrix as a data structure.

The size of the board for this implementation of the Candy Crush game is five

Chapter 2. A Game Engine Designed to Simplify 2D Video Game Development 35

Figure 2.6: Example of Candy Crush initialization

elements in width and in height, and the Candies can display four different possible
colours. Once the game board has been established with a random configura-
tion, similar to the one shown in Figure 2.6, the Candy Crush game initialization is
performed. The board is then filled with randomly coloured Candies.

Next, the implementation of the basic mechanics of the game using Scratch and
later using SGE is considered.

2.4.1 Scratch Solution

The initialization procedure establishes the game board assigning a random
texture with a specific colour to each Candy. The required code would have an
instruction sequence similar to the one shown in Algorithm 2.2.

Algorithm 2.2 Candy’s colour initialization in pseudocode for Scratch
i = 0;
j = 0;
Repeat Until (i < rows)

Repeat Until (j < columns)
color = random(1,4);
Candy[i][j] = color;
j = j + 1;

End
i = i + 1;

End

36 2.4. Game Example: Candy Crush

Continuing with the example, Algorithm 2.3 shows the function to remove three
or more Candies in a row when they have the same colour. There, the algorithm
checks each matrix row to see if there is a sequential combination of three or more
Candies with the same colour. If that is the case, these Candies are removed.

Algorithm 2.3 Candy’s checker and eraser in pseudocode for Scratch
i = 0;
j = 0;
Repeat Until (i < rows)

count = 1;
remove = 0;
Repeat Until (j < columns)

If (Candy[i][j] == Candy[i][j + 1])
count = count + 1;
If (j == columns && count ≥ 3)

remove = count;
position = j + 1;

End
Else

If (count ≥ 3)
remove = count;
position = j;

End
count = 1
Repeat (remove > 0)

remove = remove - 1;
delete(Candy[i][pos - remove]);

End
End
j = j + 1

End
i = i + 1

End

2.4.2 SGE Solution

The same algorithm idea but performed with the SGE makes a significant change.
Every Candy is represented by an Actor. Firstly, the developer has to set up the
initial behaviour of Candy to create a random colour, essentially by making it choose
between four images with four different colour textures. Then, it is only necessary

Chapter 2. A Game Engine Designed to Simplify 2D Video Game Development 37

to copy and paste the Candy Actor as many times as needed until the grid shape
shown in Figure 2.6 appears. This sets an arrangement of Actors who, during their
initialization, choose a random image at the beginning of the Game. As can be
appreciated, a matrix data structure is no longer necessary to initialize each Actor in
the Game’s creation process. Instead, each Candy initializes itself as it is presented
in Algorithm 2.4.

Algorithm 2.4 Colour initialization of Candy
If (initialization)

image = image[random(0, 3)];
initialization = false; // Initially the actor has this custom property at true

End

The algorithm to remove three or more consecutive Candies with the same colour
is set up with three different Actors, which are not visible in the execution because
they require no image.

• Tracker. This Actor is responsible for travelling from left to right crossing over
every Candy in each row, checking its colour properties and counting the ones
arranged consecutively. Initially, its colour value is empty and it obtains the
one from the first Candy to collide with it. Its logic is presented in Algorithm
2.5.

Algorithm 2.5 Actor Tracker behaviour rule.
move (x + 1)
If (colour == Candy.colour)

counter++;
Else

counter = 0;
colour = Candy.colour;

End
If (x > columns)

destroy (Tracker);
End

• Eraser. This Actor is spawned by Candy actors. If a Candy has a different
colour than the one being tested and also the Tracker counter is 3 or greater,
an Eraser is created. It receives information about how many Candies have to
be destroyed. Its logic is presented in Algorithm 2.6.

38 2.4. Game Example: Candy Crush

Algorithm 2.6 Eraser Actor behaviour rule.
move (x - 1)
If (collision(Candy))

destroy = destroy - 1;
If (destroy == 0)

destroy(Eraser);
End

End

• Candy. In addition to that of the initialization, this Actor has two extra Rules.
The first one is the colour checker: if the Tracker collides with the Candy, it
checks whether it has the same colour as the one being counted, as presented
in Algorithm 2.7. If this is the case, the Tracker counter is increased by one. If
not, a check is performed to see if the Tracker counter is equal to or greater
than 3, and if it is true an Eraser is created. The second Rule is in charge of
destroying the Candy if an Eraser collides with it, as also shown in Algorithm
2.8.

Algorithm 2.7 Candy Actor behaviour Rule for the colour check.
If (collision(Tracker))

If (color == Tracker.color)
Tracker.counter += 1;

Else
If (Tracker.counter ≥ 3)

Eraser.destroy = Tracker.counter;
spawn(Eraser);

End
Tracker.counter = 0;
Tracker.colour = colour;

End
End

As can be observed, in this way, complex data structures and their usage are
avoided, breaking each role or Action in the Actor’s behaviours down and making
them interact with each other. As can be seen, both ways of reaching a solution are
two comparable approaches to solving an algorithm problem, but conceptually it is
a closer model to the target user’s way of thinking [Win06, Win08].

Chapter 2. A Game Engine Designed to Simplify 2D Video Game Development 39

Algorithm 2.8 Candy Actor behaviour Rule for the elimination of the Candy.
If (collision(Eraser))

destroy(Candy);
End

If the algorithms are analyzed in each case, using Scratch and SGE, it can be
seen that the behaviours that appear in each of the actors in SGE exist the Scratch
(see Algorithm 2.3), however, in SGE, they appear separately and therefore so much
easier to understand.

2.5 User Experience

To validate the game engine, an evaluation was carried out with children. The
reason for using children as evaluators is that they are the perfect target user for
these tools, that is, people familiar with technology but with the lack of the necessary
knowledge to develop their own ideas in a videogame [HORB08]. The procedure
consisted in having them develop their own videogame and asking them some
broader questions to generate a deeper and more specific understanding of the
problems encountered during the creation of a videogame [Gil92]. The children were
organized by age into independent groups, each with a different arcade game and
the evaluation was based on individual acceptance tests [Dav89, DV04]. In addition,
a comparative test between SGE and Scratch was also performed. It was validated
by the Wilcoxon Signed-Rank (WSR) test [LFH17].

2.5.1 Objectives and Hypothesis

The main assumption of this work is based on the perception that the game
development process has the potential to be made easier, on the estimation that an
arcade game can bemade with a reduced set of Actions and Conditions, and also on
the notion that the system’s usage has to match the profiles of non-technical users.
Implicitly, it is assumed that if these statements are met, then the SGE system has
to be perceived as easy to use. It is necessary to verify that a tool such as the one
presented here facilitates game creation for the users and it is found to be useful,
along with the hypothesis that the rule editor is easy to understand. A summary of
the objectives and hypothesis is presented in Table 2.2.

40 2.5. User Experience

Table 2.2: Objectives and hypotheses for the experiment
Objectives Hypotheses

O1 - The tool has to make game development
easier

H1 - This tool makes the creation of games
easier for non-programmers
H2 - The tool is found to be useful

O2 - The tool has to be able to create arcade
games using a reduced set of Actions and
Conditions

H3 - The system of rules is easy to use
H4 - The tool is easy to understand
H5 - The tool is easier to use than other similar
tools

2.5.2 Protocol

A total of one hundred and twenty children attending a summer camp related to
technology served as the subjects for this experiment. Their ages ranged between
seven and fourteen years. As regards gender, seventy-four of them were boys and
forty-six were girls. Previously, their parents were informed about the aim and the
method of the experiment, and they gave their informed consent for their sons and
daughters to take part in this study. Regarding the level of previous experience of
programming, all the children stated that they had never created a computer game.

The children had exactly twenty hours to work on their games. They were asked to
design one of nine different arcade games according to their age. Figure 2.7 shows
nine captures taken on the final versions of the games, the images are organized in
the same order as described below, starting from the upper-left corner:

• Asteroids. A classic space and third-person shooter where the asteroids are
subdivided after being hit.

• Arkanoid. A classic puzzle game where the ball has to bounce until there are
no bricks left.

• Cowboys vs Aliens. Tower defence game where the Cowboys defend their
land from the Aliens.

• Car Racing. A vertical scroll game where the goal is to advance as far as
possible avoiding collisions with other cars and the road boundaries.

• Tappy Plane. A horizontal scroll game, the goal of which is to travel for as long
as possible avoiding collisions with the environment.

Chapter 2. A Game Engine Designed to Simplify 2D Video Game Development 41

Figure 2.7: Example of arcade games performed during the tests (sorted by rows
according to their difficulty level)

• Ducks. A first-person shooter game based on the classic ones found in fair-
grounds.

• Abstract Adventure. A classic platform game where the goal is to elude
enemies and traps at the same time as every coin in the scene is gathered.

• Blocks. A physics game where the goal is to keep the player on the platform.

• Combat. A fighting game between two players.

The video games were developed individually. The children were arranged in
groups of between ten and fifteen members each group working on one of the nine
games that had previously been assigned to them. At the end of the experiment,
they were asked to answer some simple questions about comfort with the tool and
the understanding of the method. The response to each question was evaluated on
a 5-point Likert scale [LFH17]. The questions were adapted to their age and were
focused on the complexity of the game concept, in order to obtain a measurement
of the Perceived Usefulness (PU) and Perceived Ease-of-Use (PEOU) ratio. Questions
asked if they believed that using a particular system would require less effort and
would enhance their job performance. The questions are presented in Table 2.3.

42 2.6. Results

Table 2.3: Items and results for the PU and PEOU surveys
Questions Average S.D.

PU
Q1 Has it been easy to create games? 3.66 0.77
Q2 Have you found it useful? 3.95 0.86
Q3 Have you understood the program’s workflow? 4.00 0.77
Q4 Have you felt comfortable using the program? 4.44 0.56
Q5 Has it been easy to learn how to use the program? 3.98 0.61
PEOU
Q6 Do you feel capable of making new games with the program? 4.31 0.80
Q7 Are you happy with the games you have created? 4.69 0.46
Q8 Would you like to continue making games like these ones? 4.45 0.74

Moreover, twenty-three of these children were asked to develop another video
game using Scratch instead of SGE. At the end of the twenty hours’ work, they filled
in a questionnaire to compare SGE and Scratch. They answered a survey with three
options: 1 represents a preference for SGE, −1 indicates that they prefer Scratch,
and finally 0 indicates that they did not answer the question. The questions are
shown in Table 2.4. These tests were assessed with the average and rank based on
the WSR test.

2.6 Results

First, the evaluation of the SGE is presented in Table 2.3 and it is supported by the
survey average and the standard deviation values. In addition, the distribution of the
data can be observed graphically in Figure 2.8. Concerning the PU analysis, it can

Table 2.4: Comparative test on user acceptance between SGE and Scratch
Questions Average Signed Rank

S1 Which one has been the fastest to learn? 0.46 1.00
S2 Which one do you think you could create a new game with? 0.54 2.00
S3 Which one have you found easier to understand? 0.71 5.00
S4 Which one makes you feel happiest with the results? 0.83 6.00
S5 Which one do you think has been most useful to you? 0.58 4.00
S6 Which one has given you more facilities to perform a loop? -0.54 -2.00
S7 Which would you like to continue working with? 0.88 7.00

Chapter 2. A Game Engine Designed to Simplify 2D Video Game Development 43

Figure 2.8: Graphical distribution of the data obtained for PU (left) and PEOU (right)

be seen that all the values vary in the range between 3 and 5, which represents a
satisfactory evaluation for this game engine. Question Q1, concerning ease of use,
is the one that has the worst average value: 3.66. This is because it is the first time
the user tackles the design of a video game and considers that it is not such an
easy task. However, they generally found the SGE system to be useful to perform
this task (Q2) and quite easy to learn (Q5). The most remarkable data was obtained
regarding question Q4, which indicates that they felt comfortable using this game
engine. They also rated the program workflow of the SGE as easy to understand
(Q3).

The results regarding PEOUwere even better, confirming that the system’s environ-
ment encourages the child’s creativity for new game designs and their satisfaction
with the games produced. The means of the data obtained in questions related to
their attitude towards use or intention of use are in a range between 4 and 5. This
fact confirms the proposed hypothesis because most of the children felt that the
experience was worthwhile, rating each question in this category with a mean value
of 4.48.

Concerning the evaluation of the tests that compare SGE and Scratch, all the data
obtained are shown in Table 2.4. The average of this data is also shown. Regarding
theWSR test, the signed-ranks of the data are calculated and shown in the rightmost
column. These values have been analysed to evaluate the WSR test. Taking into
account that twenty-three children (n = 23) answered these questions and using its
proper significance level (α = 0.05), the result of the test confirms that the data are
statistically significant and so there is a difference between the two programming
tools.

After analysing the results obtained, it can be said that the users feel the SGE

44 2.7. Discussion

be a more useful and comfortable tool, thus highlighting the result of question S4
about the satisfaction with the game that was finally designed. Question S7 also
confirms that they prefer to work with the SGE system than to use Scratch. However,
the results obtained in question S6 show that Scratch has been perceived as an
easier tool for creating loops in the video game. It was said that this concept is not
explicitly included in the proposed game engine although it can be programmed by
configuring the flowcharts. The fact that the users can develop their own loops in
the Scratch code made the code that they built more understandable to them.

2.7 Discussion

The hypotheses set out regarding the proposed system have all been confirmed
with the data obtained from the user tests. After the twenty hours of the experiment,
each child was able to go home with his/her own video game completely finished.
This fact confirms hypothesis H1 because the users were children without any
knowledge of programming and they were capable of developing a complete 2D
arcade video game. The fact that every game was completed on time along with
the test results makes it possible to claim that the tool is easy to learn and to
comprehend, which at the very least enforces hypotheses H3 and H4. Furthermore,
the results also show that they generally agreed that the experience was perceived
as helpful to them, which lends support to the validation of hypothesis H2. On
another note, no significant usability problems were detected, although some syntax
and vocabulary comprehension issues have been recognized as obstacles hindering
the comprehension of the system.

Despite this, the children said that it was easy to use and understand. Most of
them even stated that they were thrilled with their creations, and they were looking
forward to starting their own ideas.

Furthermore, the results from the comparative study performed with Scratch
and SGE proved that the SGE system is widely perceived as easier to use and
to understand than other visual behavioural specification environments such as
Scratch. These results reinforce the validation of H1 and support the validation of
H5.

Chapter 2. A Game Engine Designed to Simplify 2D Video Game Development 45

2.8 Conclusions and Future Work

This work presents a game engine, SGE, which addresses the aim of making
the video game development process easier for people with non-technical profiles.
Essentially, the way these interactive applications are developed has been changed
from the traditional method of programming. Instead of using the data structures
of some programming language, the SGE proposes a reduced set of Actions and
Conditions to develop arcade games. These elements are combined in flow charts
that determine the actions carried out by the actors, the main component of this
game development system.

The game specification has been restricted in order to achieve a reduced game
engine architecture and a straightforward game editor. The game development
has been performed without relying on matrices, loops and other complex data
structures and through a reduced set of Actions and Conditions. Some of the
tests performed have been conducted in order to evaluate the simplicity of SGE
in performing this task. The results demonstrate that, by using this game engine,
users are able to develop games in an easier way. The game engine proposed in this
research has been tested by children without any knowledge of programming, who
develop games using this system and with the popular visual programming tool
Scratch. Results obtained from these experiments show that SGE is perceived as a
useful and easy-to-use tool for game development and for learning to programme,
even when compared with Scratch.

The experience acquired during this work will push us in the future to continue
the development of this project on a 3D game engine. Similarly, it will have to be
easy to use and ready to enable non-programming people to develop games with
visual behaviour descriptors. Currently, it is already easy to create 3D environments
or very simple games with editors such as Minecraft but it is still necessary to have
advanced knowledge to be able to create games with development frameworks
such as Unity. In this sense, bridging the gap between these two types of editors is
going to be one of the main research topics from now on, in order to allow users to
build 3D arcade games without any knowledge of coding.

46 2.8. Conclusions and Future Work

47

Part III

Game Engine Formalization Using
Multi-agent Systems

49

Chapter 3

A Game Engine to Make Games as
Multi-agent Systems

Publication

Marín-Lora, Carlos., Chover, Miguel., Sotoca, Jose M., & García, Luis. A. (2020). A
Game Engine to Make Games as Multi-agent Systems. Advances in Engineering
Software, 140, 102732. (Q1).
https://doi.org/10.1016/j.advengsoft.2019.102732.

Abstract

Video games are applications that present design patterns that resemble multi-
agent systems. Game objects or actors are like autonomous agents that interact
with each other to describe complex systems. The purpose of this work is to develop
a game engine to build games as multi-agent systems. The actors or game engine
agents have a set of properties and behaviour rules with the end to interact with
the environment of the game. The behaviour definition is established through a
formal semantic based on predicate logic. The proposed engine tries to fulfil the
basic requirements of the multi-agent systems, by adjusting the characteristics of
the system, without affecting its potential. Finally, a set of games are introduced to
validate the operation and possibilities of the engine.

https://doi.org/10.1016/j.advengsoft.2019.102732

50 3.1. Introduction

Keywords

Game development, Game engine, Multi-agent Systems

3.1 Introduction

Game engines are tools to facilitate video game development. They were con-
ceived to generalise and reuse properties, methods and procedures common to the
majority of games [Gre18]. Through them, designers can generate different game
mechanics using the same components and scripts. Currently, the vast majority of
commercial game engines are designed with equivalent organisational paradigms
and similar software specification patterns [Nys14], increasing their capabilities and
performance. Nevertheless, different works show the need to establish a standard
specification of the game engine architectures [AEMC08, AS10].

When analysing the games produced by these engines, it is perceived that the
design structures resemble the modelling patterns of multi-agent systems (MAS)
[DKJ18]. The study of these game engines and their characteristics suggest that
there is a close relationship between the concepts of game and MAS. This is ap-
preciated in the game elements of the agents’ definition [SCT03], their relations
[Bis08] and its communication protocols and cooperation mechanisms [GSF13].
In fact, there are several related topics, paradigms or applications where the MAS
are used for the control of automatic processes and dynamic systems [OS06], or
mechanisms of cooperation and consensus [OSFM07].

With all this, a game engine can be formally defined from the knowledge of a MAS.
The initial hypothesis is that a game can be defined and specified as a system of
agents interacting with each other. In this regard, the proposed game engine must
be able to generate functional games that satisfy the properties of MAS. For this
purpose, this work proposes a game engine for the creation of games defined as
MAS. The engine’s formalisation follows the mathematical notation stated by M.
Wooldridge [Woo09] in order to define the structure of the game engine and to fulfil
with the requirements of the proposed system.

The manuscript is organised as follows. Section 4.2 presents the current state
of the art on game engines and their relation with MAS. In Section 4.3, the formal
definition of a MAS is introduced. Later in Section 4.4, the proposed game engine is
defined by following the formal specification shown in the previous section, along

Chapter 3. A Game Engine to Make Games as Multi-agent Systems 51

with the behaviour definition system for the game engine agents. In Section 4.5,
the concepts stated in the previous section and its implications are discussed. In
Section 4.6, a series of use cases are presented to demonstrate the potential of the
tool. Finally, in Section 4.7, several conclusions and the possible improvements of
the proposed game engine are presented.

3.2 Game Engines and Multi-agent System

The term game engine appeared in the mid-1990s in reference to the architecture
of independent software components that defined video games such as Doom from
IdSoftware [Gre18]. This architecture gained value as game developers began to
create generic modules that facilitate the creation of new games, and thus reduce
development times. In a game engine, the modules are the subsystems responsible
for executing specific tasks, such as the drawing, the user interactions or the game
physics. However, some of these modules are not easy to standardise, either be-
cause they involve complex systems that can be considered as complete engines by
themselves, or because of their embedded relationships with the mechanics of each
game [Doh03, LJ02]. The module responsible for managing the game mechanics is
the logic module and the decision-making system. Its function is implicitly related
to the character’s internal processes associated with their autonomous potential
actions [Mil19]. The range of available actions is dependent on gamemechanics and
must be established by the game designer. A game object can have simple rules
to determine what to do next, such as the case in which a Non-Playable Character
(NPC) follows the player character as long as it is within a range of action.

These autonomous behaviours are directly dependent on the communications
between the entities of the game, either sending information about the game prop-
erties or about the game objects properties. It is at this point where the relationship
between games and MAS becomes evident. There are several cases in the literature
where different perspectives address the relationship between game concept and
MAS. Thus, some present the relationship between MASs and the game mechanics
design, emphasising the industry’s tendency to relate natural language and the
game mechanics definition during the creation of games [DWvDH09], while others
propose a framework for the creation of agents for serious games [JFP10]. Further
works present a MAS to model architecture for Massive Multiplayer Online Game
(MMOG) games [ACB08, ATE+12], where the real-time interactivity of multiple game

52 3.3. Multi-agent System Features

agents prevails. Other authors show a system that tries to integrate virtual worlds
with a multi-agent platform through an interface [GSF13]. Also, the MASs have been
used to expose a virtual environment where agents communicate autonomously
with the player as a 3D chat [GQCC06, GQC+07a, GQCC10], and subsequently it was
extended for the implementation of a virtual fair [RGR+15, RCRG06, RRPCC12]. In
addition, they have been employed to raise a distribution where it is possible to
build multi-player systems based on intelligent agents [SIB11], to propose a MAS to
manage multi-user mechanics in a tournament game [AMS+01], and to present a
system based on agents that control the parameters of the game according to the
objectives to be achieved [PB13]. Finally, in terms of the relationship between MAS
and game engines, a MAS based on the Unity game engine has been developed
[Uni22], generating a three-dimensional search behaviour simulation of multiple
agents in the context of a passenger airport [BARHN14], and also a system where
agents learn autonomously to play multiple games without human intervention
[FB08].

Nevertheless, the approaches described above add MAS features to specific
games or specific genres, but no one of them introduces a functional approach of
MAS as the core of the game development. In this sense, the MAS would fulfil one
of the original purposes of the game engines: the flexibility in the procedures and
the modules aggregation.

3.3 Multi-agent System Features

Following the agent definition proposed by M. Wooldridge [Woo09], an agent is a
computer system that is situated in an environment, and it can perform autonomous
actions in this environment in order to meet its design objectives. More specifically,
in the general definition of MAS, it is necessary to take into account specific features
when carrying out its formalisation:

• The environment to which the agents belong can be in any of the discrete
states of a finite set of states E = [e0, e1, e2, · · ·].

• The agents have a set of possible actions available with the ability to transform
their environment Ac = [α0, α1, α2, · · ·].

• The run r of an agent on its environment is the interlayered sequence of actions
and environment states r : e0 →α0 e1 →α1 e2 →α2 · · · eu−1 →αu−1 eu.

Chapter 3. A Game Engine to Make Games as Multi-agent Systems 53

• The set of all possible runs is R, where RAc represents the subset of R that
ends with an action, and RE represents the subset of R that ends with a state
of the environment. The members of R are represented as R = [r0, r1, · · ·].

• The state transformation function τ introduces the effect of the actions of an
agent on an environment τ : RAc → ℘(E) [FHMV04].

Thus, the following definitions can be established:

D1. An Env environment is defined as a triplet Env = ⟨E, e0, τ⟩, where E is a set
of states, e0 ∈ E is an initial state and τ is the state transformation function.

D2. An Ag agent is defined as a function Ag: RE → Ac and establishes a corres-
pondence between runs and actions. It is assumed that these runs end in an
environment state [RS94].

In this way, an agent makes the decision on what action to take based on the
history of the system it has witnessed to date. The set of all agents Ag in a system
is represented as AG and the set of runs of an agent Ag over the environment Env

is represented as R(Ag,Env).

D3. A purely reactive agent is defined as a function Ag: E → Ac [GN12], which
indicates that they make the decision based only on the present state of the
environment.

D4. An agent with perception is considered as such when it is composed of percep-
tion functions and actions, as Ag = ⟨see, action⟩. Where see: E → Per maps
environment states to percepts and action: Per∗ → Ac maps sequences of
percepts to actions.

D5. Agents with an internal state are those that have an internal data structure I

used to store information, where I = [i0, i1, i2, · · ·] is the set of all internal states
of an agent. In this case, the action function is defined as a correspondence
action: I → Ac. Additionally, there is a next function that generates new internal
states from perceptions next: I ×Per → I . The action to be performed by the
agent will, therefore, be action(next(i, see(e))). After completing the action,
the agent re-enters the perception cycle of the environment, it updates its
status through next, and it selects the action to be taken with action.

54 3.4. The Game Engine

Agents are goal-oriented, as they perform actions to satisfy some goal. The way
these goals are represented is by using task predicates Ψ.

D6. Let Ψ(r) indicates that the run r ∈ R satisfies the predicate Ψ as RΨ(Ag,Env)

= {r|r ∈ R(Ag,Env) and Ψ(r)}. Then, an agent Ag succeeds in the task
⟨Env,Ψ⟩ ifRΨ(Ag,Env)=R(Ag,Env). In otherwords,Ag succeeds in ⟨Env,Ψ⟩
if every run of Ag in Env satisfiesΨ. Thereby, an agent just runs its right tasks.

3.4 The Game Engine

To define the structure of the proposed game engine, this work focuses on the
definition of the elements that make up the system and the behaviour specification
model generated for these elements. In this sense, formal correspondences are
established between the games and MAS, to demonstrate that the engine allows
specifying games defined as a MAS. The presented game engine makes possible
the creation of 2D video games.

3.4.1 The Game

The engine allows defining the environment of the game where the action is
performed. The run of the game R(AG,Env), represents the run of all agents AG

on an environment Env. This environment Env is responsible for storing the game
states E through the properties of it. The initial state e0 determines the set of initial
properties. The properties defining the game state are:

• Camera. It includes the camera position, rotation and zoomon the environment
where the action takes place.

• Audio. A set of parameters to define and modulate the game’s sounds such
as pan, volume, start time and loop.

• Physics. They define, for instance, the intensity of the gravity force on the
game, its influence on the actors and their physical properties. The game
engine, therefore, is able to build games with realistic physics.

The agents AG of the system are described below, and they are called actors.
These actors can transform the environment states according to their tasks and
through the transformation operator .

Chapter 3. A Game Engine to Make Games as Multi-agent Systems 55

3.4.2 The Actor

The actors are responsible for running the actions Ac on the environment Env. In
the proposed engine, the actors are purely reactive agents [GN12], since they make
the decision-making process with consideration of the present. Also, the actors are
agents with perception [Woo09, RS94], since in every moment they are watching the
game state to evaluate it and to act accordingly. The actors have internal state I =
[i0, i1, i2, · · ·], which is initially defined with a set of properties. The basic properties
of the actors are classified into the following categories:

• Geometry. It includes properties related to the position, rotation and scale of
the actors.

• Render. In this case, it includes the actor image and its related properties:
opacity, flip, scroll, tile and tinting colour.

• Text. The actors can write text on the screen, according to a font, size, colour
and style parameters. They can also write the value of any property from the
game or from any actor.

• Audio. The specific sound the actor plays and the set up of its properties: start
time, volume, pan and loop.

• Physics. The physical features for the actors such as speed, angular velocity
and material properties: density, friction and restitution.

• New. Also, the actors can incorporate new knowledge as new properties that
expand their internal state.

In the game engine, the perception of the environment is defined by the evaluation
of the actor’s physical behaviour and by the signals derived from the interaction
with the user. Based on the actor’s state and the perception of the environment,
it is produced an evaluation of the actor’s knowledge, generating a change in the
game state or in the actors’ state that allows selecting the actions α associated
with its tasks. Logical predicates Ψ define the specification of the tasks performed
by the actors. The actors run their tasks in the system if ∃r ∈ R(Ag,Env) such that
the predicate Ψ(r) is satisfied. Figure 3.1 shows the interaction cycle between the
actors and the game.

56 3.4. The Game Engine

Figure 3.1: The actors and their interaction cycle with the game.

3.4.3 Behaviour Specification

The behaviour specification system is responsible for telling the actors what tasks
to perform, based on the game state and the internal state of the actors, following
a predefined semantic. This semantic is defined by a syntax of logical and non-
logical symbols. Logical symbols include logical connectives and variables while
non-logical symbols include predicates and functions [BLR92]. The domain for this
interpretation is the set of all the actors and the game.

The predicates Ψ defined in first-order logic specify the actor’s behaviour rules. In
this way, the tasks that an actor might perform are organised into predicate formulas

{Ψ0,Ψ1,Ψ2, · · · }

where each formula can contain the following predicate structures:

• Condition structure: It is modelled by a predicate sequence model based on
the structure of the IF-THEN-ELSE rules [Kar88].

(If → Ψ) ∧ (¬If → θ)

Chapter 3. A Game Engine to Make Games as Multi-agent Systems 57

where, If is a conditional literal predicate and both Ψ and θ are sequences of new
predicates to be evaluated if the condition is met or if it is not met, respectively.

• Action structure: It is composed of an atomic element that includes a single
literal predicate Do.

Conditional Predicate If

The conditional predicate represents the evaluation element of a condition in the
decision-making process. In this game engine, the evaluation of the condition is
based on a function that assesses the relationship between system entities.

If(function(parameters))

The parameters can contain variables as arithmetic expressions, which can in-
clude game or actor properties, mathematical functions and constant numerical
values.

This function can be of the following types:

• Compare: This function compares numerical and boolean values. The rela-
tionships are established by a set of comparison operators whose elements
can be greater, greater or equal, equal, less or equal and less.

compare(x, y, label)

x, y ∈ R
label ∈ [greater, greaterEqual, equal, lessEqual, less]

• Timer: This function handles the system’s timing. It determines if a specific
time x has expired so that the evaluation of the function is true.

timer(x)

x ∈ R

• Pointer: This function controls the pointer-events on screen, where x repres-
ents the coordinates for those events on the game space.

pointer(x)

x ∈ R

58 3.4. The Game Engine

• Keyboard: This function oversees the system’s keyboard events, where x is
the code for a specific key and label represents the event mode.

keyboard(x, label)

x ∈ R
label ∈ [press, release]

• Collide: This function watches the collision detection between game actors,
where Ag is the actor to report a collision.

collide(Ag)

Ag ∈ AG

Action Predicate Do

An action is defined as a specific behaviour to be performed by an actor. In the
game engine, the actions are the non-logical function elements that represent the
actions α ∈ Ac of the system. The actions can contain variables as arithmetic
expressions in the same way as for the conditions.

This set of actions is based on the Create, Read, Update and Delete (CRUD) func-
tions of information persistence on databases [Dai10] applied to the actors. From
these actions, the system can generate more complex actions that increase the
abstraction level of the behaviour specification. With all this, the set of actions Ac

available in the system consists of the following actions α:

• Create: It creates a new actor in the game as a copy of an existing actor Ag in
the environment.

create(Ag)

Ag ∈ AG

• Read: It allows reading the information of a property that may belong to an
actor Ag ∈ AG or to the environment Env of the game.

read(property)

• Update: It modifies the value of a property that can belong to an actor Ag
or the environment Env of the game. The new value is determined from the
evaluation of an arithmetic expression.

Chapter 3. A Game Engine to Make Games as Multi-agent Systems 59

update(property, expression)

• Delete: It removes an actor Ag from the game environment.

delete(Ag)

Ag ∈ AG

3.5 Discussion

The proposed engine allows creating a wide variety of video games but also
has some features that are interesting to analyse. In the first place, it has been
tried to design a system that formally creates video games, based on the MAS
analysis. Thereby, the engine has the essential features to create a large variety of
games without other attributes from the conventional 2D game engines which, in
experimentation have been proved as not necessary.

Next, it is necessary to emphasise that the games are made with a single type of
actor and that there are no hierarchical relations between them. All the elements that
define a game: the markers, the player, the NPC and so on, have the same structure
of properties and behaviour rules. Also, the use of a scene graph is not necessary,
which simplifies the engine internal architecture and the design of the game.

The properties defined for the game environment and the actors allow only data
types such as text strings, numbers and booleans. There are no complex data
structures such as vectors or matrices, which are not necessary for the creation
of most arcade games. For instance, a CandyCrush-like game seems to require a
matrix for its setup, but it can be created from a MAS perspective by using multiple
agents arranged in rows and columns, including their suited properties and behaviour
rules.

Besides that, if the behaviour specification language for the actors is analysed in
detail, it can be verified that it is possible to define game behaviour using a set of
predicate formulas of just five conditions and four actions, as it has been stated in
the previous section. This is one of the main features of the proposed engine since
it allows the creation of games without using complex scripting languages as in
other game engines. Also, an analysis of this predicate language brings forward
that logical operators are not used and it is only necessary to use the IF-THEN-ELSE
structure in a nested way to define behaviour. Not even loops are required, since the

60 3.6. Use Cases

game cycle itself performs a sequential evaluation of each of the actor’s behaviour
rules per cycle and it can, therefore, be avoided.

In the following section, it is presented a detailed description of some video games
developed with the engine.

3.6 Use Cases

In order to test if the proposed game engine is capable of generating fully func-
tional games that comply with the properties of a MAS, the game logic for three
games has been constructed using the formulation presented in the previous sec-
tions. Specifically, the first of these games is the Wolf-Sheep Predation, which is
based on a classic MAS problem; the other two are classic arcade games: Frogger
and Pac-Man. In these games, the origin of the coordinate system is in the centre of
the screen and it has positive and negative values.

Finally, an additional set of different arcade games have been created with the
engine to demonstrate its potential.

3.6.1 Wolf-Sheep Predation

In this first game, the mechanics consist of a set of actors representing Wolves
and Sheeps trying to survive in the game environment. These actors move arbitrarily
through the stage, and every movement implies an expenditure of energy. Also,
there is another actor representing the Grass, spread evenly on the stage. When a
collision occurs between a Sheep actor and a Grass actor, the latter is destroyed,
and the energy of the Sheep actor increases. Similarly, when a Wolf actor collides
with a Sheep actor, it is also destroyed and the Wolf actor’s energy increases. The
reproduction of both actors occurs from time to time, depending on the game
settings, as long as they have a sufficient level of energy.

Additionally, in the implementation of this game, there are three auxiliary actors in
charge of generating the initial distribution of the three main agents. These auxiliary
actors spawn new Sheep, Wolf and Grass actors initialised with an energy value
and an initial arbitrary movement. Due to these three actors are not involved in
the central dynamics of the game, they are not explained in the following game’s
algorithms.

Chapter 3. A Game Engine to Make Games as Multi-agent Systems 61

Sheep

At first, the Sheep actors energy value is set at 300, and also their ρ1 rule gives
them an initial arbitrary movement.

Algorithm 3.1 Sheep Initialization
initialization(ρ1) If(compare(init, true, equal))→

Do(update(velocity, random(−100, 100))) ∧
Do(update(init, false))

Besides that, when they collide with the limits of the screen, they change their
direction, as it is indicated by their ρ2 and ρ3 rules. When colliding with a Wolf actor,
the specific Sheep actor must be destroyed according to its ρ4 rule.

Algorithm 3.2 Sheep Collisions
wallXCollision(ρ2)

wallY Collision(ρ3)

wolfCollision(ρ4)

If(collide(wallX))→
Do(update(velocity.x, 1× velocity.x))

If(collide(wallY))→
Do(update(velocity.x, 1× velocity.y))

If(collide(wolf))→
Do(delete(sheep))

In respect of the Sheep actor reproduction, the ρ5 rule controls the spawn of the
actor and the energy loss. It is dependent on a random expression parametrized to
trigger it on the 2% of the cases. If it happens, the Sheep actor would lose 50 energy
units. In order to recover energy, it has to “eat” Grass actors to gain 50 energy units.

Algorithm 3.3 Sheep Life Cycle
reproduce(ρ5)

grassCollision(ρ6)

If(compare(random(0, 100), 2, less))→
If(compare(energy, 50, greaterEqual))→

Do(create(sheep)) ∧
Do(update(energy, energy − 50))

If(collide(grass))→
Do(update(energy, energy + 50))

This feeding process is essential, since each displacement implies an energy

62 3.6. Use Cases

expenditure, specifically of an energy unit, as it can be seen in its ρ7 rule. By extension,
if the energy reaches zero, the Sheep actor dies according to its ρ8 rule.

Algorithm 3.4 Sheep Stamina
walk(ρ7)

death(ρ8)

Do(update(energy, energy − 1)) ∧
If(compare(energy, 0, lessEqual))→

Do(delete(sheep))

Wolf

Similarly to the Sheep actors, the Wolf actors have an initial energy value equal to
300 and their initial movement is determined by their ρ1 rule.

Algorithm 3.5 Wolf Initialization
initialization(ρ1) If(compare(init, true, equal))→

Do(update(velocity, random(100, 100))) ∧
Do(update(init, false))

The rest of its rules are identical to the Sheep actor ones, but exchanging the
Grass actors as feed for Sheep actors as it is indicated by their ρ4 rule.

Algorithm 3.6 Wolf Rules
wallXCollision(ρ2)

wallY Collision(ρ3)

sheepCollision(ρ4)

reproduce(ρ5)

walk(ρ6)

death(ρ7)

If(collide(wallX))→
Do(update(velocity.x, 1× velocity.x))

If(collide(wallY))→
Do(update(velocity.x, 1× velocity.y))

If(collide(sheep))→
Do(update(energy, energy + 50))

If(compare(random(0, 100), 2, less))→
If(compare(energy, 50, greaterEqual))→

Do(create(wolf)) ∧
Do(update(energy, energy − 50))

Do(update(energy, energy − 1))
If(compare(energy, 0, lessEqual))→

Do(delete(wolf))

Chapter 3. A Game Engine to Make Games as Multi-agent Systems 63

Figure 3.2: A capture of the Wolf-Sheep Predation game.

Grass

In this case, the purpose of this actor is to feed the Sheep actors. Thus, through
its ρ1 rule, the Grass actors detect when a Sheep actor collides with them, and in
that case, they proceed to destroy themselves.

Algorithm 3.7 Grass death
sheepCollision(ρ1) If(collide(sheep))→

Do(delete(grass))

With theWolf-Sheep Predation case, it has become clear that the proposed system
is able to generate autonomous entities capable of generating complex behaviours
from simple rules. It is important to highlight that the dynamics of the three principal
actors of this game present similar behaviours, where the same event is treated
separately by each involved agent, according to the role assigned to it in the predator-
prey relationship. A screenshot of the game’s run can be seen in Figure 3.2.

64 3.6. Use Cases

Figure 3.3: A capture of the Frogger game.

3.6.2 Frogger

The Frogger game consists of a Frog actor trying to cross a road with a series of
Car actors passing by and a river with Trunk actors that must be used to reach the
other side. The Car actors and the Trunk actors are initialised with a constant speed
that makes them move from right to left. Also, there is an actor representing the
Water area and two other auxiliary actors working as Car and Trunk generators. As
it is shown in Figure 3.3, there are five lanes through which Car and Trunks actors
circulate. Each one of these lines has an auxiliary actor that spawns Car or Trunk
actors based on a timer function, which is controlled by a random expression to
make its appearance in the game less predictable.

Frog

The Frog can move in any direction that the user determines with its ρ1, ρ2, ρ3 and
ρ4 rules.

Chapter 3. A Game Engine to Make Games as Multi-agent Systems 65

Algorithm 3.8 Frog movement
leftKey(ρ1)

rightKey(ρ2)

upKey(ρ3)

downKey(ρ4)

If(keyboard(left, press))→
Do(update(position.x, position.x− 10)) ∧
Do(update(angle, 270)))

If(keyboard(right, press))→
Do(update(position.x, position.x+ 10)) ∧
Do(update(angle, 90)))

If(keyboard(up, press))→
Do(update(position.y, position.y + 10)) ∧
Do(update(angle, 180)))

If(keyboard(down, press))→
Do(update(position.y, position.y − 10)) ∧
Do(update(angle, 0)))

If it collides with a Car actor, it is removed from the game as it is set up in its ρ5

rule.

Algorithm 3.9 Frog collision with Car
destroyByCar(ρ5) If(collide(car))→

Do(delete(frog))

In the same way, with its ρ6 rule, if it collides with the Water actor and is not in
contact with a Trunk actor, it is also deleted from the stage.

Algorithm 3.10 Frog collision with Water
destroyByDrowning(ρ6) If(collide(water))→

¬ If(collide(trunk))→
Do(delete(frog))

When it lands on a Trunk actor, as it is indicated by its ρ7 rule, it inherits the
movement from right to left from the Trunk actor.

Algorithm 3.11 Frog collision with Trunk
trunkCollision(ρ7) If(collide(trunk))→

Do(update(velocity.x, 100))

66 3.6. Use Cases

Car

Cars always move from right to left. If they reach the left edge of the screen, they
are eliminated from the game as indicated by their ρ1 rule.

Algorithm 3.12 Car life cycle
destroy(ρ1) If(compare(position.x,−screen.width/2− width,

lessEqual))→
Do(delete(car))

Trunk

As in the previous actor, it moves from right to left until it is entirely out of the
screen as it can be seen at its ρ1 rule.

Algorithm 3.13 Trunk life cycle
destroy(ρ1) If(compare(position.x,−screen.width/2− width,

lessEqual))→
Do(delete(trunk))

With the Frogger game, a classic arcade game has been generated where all
entities have completely autonomous behaviour and whose orchestration generates
an elaborate game. Simple actor dynamics determine the mechanics of this game
based on simple movements and interactions between the Frog actor and the other
actors present in the game. In Figure 3.3, a capture of the Frogger game during its
run on the game engine is shown.

3.6.3 Pac-Man

The Pac-Man actor is in a maze along with four Ghost actors. These actors can
move in any direction as long as they do not collide with the maze walls. If the
Pac-Man actor collides with a Ghost actor, it loses the game. Throughout the alleys
of the maze, a set of Food actors are arranged to provide points to the Pac-Man
actor after a collision with them. Also, there is a set of Coin actors to allow the
Pac-Man actor to chase and eliminate the Ghost actors. When the Pac-Man actor

Chapter 3. A Game Engine to Make Games as Multi-agent Systems 67

collides with a Coin actor, a short time begins in which it can chase the Ghost actors
and destroy them.

Pac-Man

The Pac-Man actor is initialised with zero points and with a constant speed. The
user controls the direction of its movement through its ρ1, ρ2, ρ3 and ρ4 rules.

Algorithm 3.14 Player movement
leftKey(ρ1)

rightKey(ρ2)

upKey(ρ3)

downKey(ρ4)

If(keyboard(left, press))→
Do(update(velocity.x,=100)) ∧
Do(update(velocity.y, 0)) ∧
Do(update(angle, 180)))

If(keyboard(right, press))→
Do(update(velocity.x, 100) ∧
Do(update(velocity.y, 0)) ∧
Do(update(angle, 0)))

If(keyboard(up, press))→
Do(update(velocity.x, 0)) ∧
Do(update(velocity.y, 100)) ∧
Do(update(angle, 90)))

If(keyboard(down, press))→
Do(update(velocity.x, 0)) ∧
Do(update(velocity.y,=100)) ∧
Do(update(angle, 270)))

If it collides with the maze walls, it stops as indicated by its ρ5 rule.

Algorithm 3.15 Wall limits
wallCollision(ρ5) If(collide(wall))→

Do(update(velocity, 0))

Besides that, if it collides with a Food actor, its points property increases as it is
marked by its ρ6 rule. However, if it collides with a Coin actor, as its ρ7 rule indicates,
the chase mode is activated during the time determined by its ρ8 rule.

68 3.6. Use Cases

Algorithm 3.16 Items interaction
food(ρ6)

coins(ρ7)

chase(ρ8)

If(collide(food))→
Do(update(points, points+ 1))

If(collide(coin))→
Do(update(points, points+ 10))

If(compare(chase, true, equal))→
If(timer(5))→

Do(update(chase, false))

During that time frame, the Pac-Man actor can eliminate Ghost actors as it is
determined at ρ9 rule. Conversely, if it collides with a Ghost actor and the chase
mode is not active, the Pac-Man actor is destroyed.

Algorithm 3.17 Enemy interaction
enemyCollision(ρ9) If(collide(ghost))→

If(compare(chase, true, equal))→
Do(update(points, points+ 50)) ∧

¬ If(compare(chase, true, equal))→
Do(delete(pacman))

Ghost

The Ghost actors behaviour is initialised by a constant speed and by their ρ1 rule,
which controls the direction of the actor after colliding with the maze walls. It is
necessary to point out that the random function is actually just run once, but it is
displayed twice to fulfil the positive and negative ways of the predicate If on the
IF-THEN-ELSE rule structure.

Algorithm 3.18 Enemy interaction
wallCollision(ρ1) If(collide(wall))→

If(compare(random(−1, 1), 0, less))→
Do(update(velocity.x, velocity.x×−1)) ∧

¬ If(compare(random(−1, 1), 0, less))→
Do(update(velocity.x, velocity.x× 1))

Also, they have the ρ2 rule that controls if the Pac-Man actor is in chase mode; in
that case, they must change their display image to a "scared" one.

Chapter 3. A Game Engine to Make Games as Multi-agent Systems 69

Figure 3.4: A capture of the Pac-Man game.

Algorithm 3.19 Enemy scared
scared(ρ2) If(compare(chase, true, equal))→

Do(update(image, scaredImage)) ∧
¬ If(compare(chase, true, equal))→

Do(update(image, normalImage))

Similarly, in this case, if they collide with the Pac-Man actor, they are removed as
it is indicated by their ρ3 rule.

Algorithm 3.20 Enemy destroy
destroy(ρ3) If(collide(pacman))→

If(compare(chase, true, equal))→
Do(delete(ghost))

70 3.6. Use Cases

The Pac-Man game has complex features that could be solved with this approach
based onMAS. Both the Pac-Man actor and theGhost actors have similar behaviours,
the difference lies in the decision-making process for the direction change: the Pac-
Man actor relies on the interaction with the game user while the Ghost actors decide
to change direction arbitrarily after colliding with the maze walls. Simultaneously,
the Ghost actors change their behaviour when the Pac-Man actor is in chase mode.
This behaviour is derived from the perception of the Ghosts actors on the state of
the Pac-Man actor. A capture of the game during its run is shown in Figure 3.4.

3.6.4 Other Games Developed

Independently from the use cases analysed in this section, a series of additional
games have also been developed to support the validation of the system’s compet-
ences. These games tried to test multiple video game genres and their respective
game mechanics. The games under consideration are the following:

• Arkanoid. A classic puzzle game where the ball bounces until there are no
bricks left.

• Asteroids. A classic space and third-person shooter where the asteroids are
subdivided after being hit.

• Groñof! Adventures. A pointer-based game in which the player must eliminate
enemies to move to the next level.

• Ducks. A first-person shooter game based on the classic ones found in fair-
grounds.

• Diamond Crush. A match-three puzzle video game, in which the players have
to swap diamonds on a game board to produce combinations of three or more
with the same colour.

• Fallas the Game. A physics-based game, inspired by the well-known Angry
Birds game, where the player has to burn the target to ashes.

• Abstract Adventure. A classic platform game where the goal is to elude
enemies and traps at the same time as every coin in the scene is gathered.

Chapter 3. A Game Engine to Make Games as Multi-agent Systems 71

Figure 3.5: Captures of the games developed in the game engine.

• Cowboys vs Aliens. Tower defence game where the Cowboys defend their
land from the Aliens.

• Afterglow. A horizontal scroll game, where the goal is to travel for as long as
possible shooting and avoiding collisions with the enemies and their shoots.

In Figure 3.5, captures of these nine games during their run are presented in the
same order of the previous list. Additionally, a set of these games presented in this
section have been arranged on a web page [ML20].

3.7 Conclusions and Future Work

This work presents the definition of a game engine able to produce games that
meet the requirements of a MAS. It draws from the formal definition of the MAS
to conduct a description of the game and its essential elements. The game rep-
resents the environment and the actors are the agents of the multi-agent games
generated by this game engine. From the environment state, the actors can per-
ceive information and react to specific states based on their predefined tasks. The

72 3.7. Conclusions and Future Work

behaviour associated with the tasks is determined by sets of behaviour rules and a
pre-established logic semantics.

The construction of the game is based on a unique type of actor and without
hierarchical relations between them. Each one of them has the same structure of
properties and behaviour rules. All this without a scene graph, which simplifies the
engine internal architecture. Moreover, the specification of the engine has reached
a level of abstraction for the actor’s behaviour definition that makes unnecessary
complex data structures such as vectors or matrices during the creation of most
arcade games.

Regarding the actor’s behaviour specification, it has been proved that just five
conditions and four actions are enough to define games using predicate formulas.
It avoids the scripting for the creation of games, making that as one of the main
features of the proposed engine. Also, all this is achieved without logical operators,
matrices and loops, since the game cycle performs cyclical evaluations of the
behaviour rules, just by using the IF-THEN-ELSE structure.

The use cases presented in this article show the potential of the game engine
for the generation of games as MAS. Besides that, it has been observed that the
system can generate logic, mechanics and complex behaviours from a very reduced
first-order logic semantics as a behaviour definition descriptors.

As future work, the possibility of applying this methodology to the development
of game engine architecture is proposed, in order to formalise an underdeveloped
research field. Thus, the game engines design could be reformulated and the paral-
lelisation of their behaviour could be explored.

73

Chapter 4

A Game Logic Specification Proposal
for 2D Video Games

Publication

Marín-Lora, Carlos., Chover, Miguel., & Sotoca, Jose. M. (2020, April). A Game Logic
Specification Proposal for 2D Video Games. In World Conference on Information
Systems and Technologies (pp. 494-504). Springer, Cham. (Core C).
https://doi.org/10.1007/978-3-030-45688-7_50.

Abstract

The game engines are one of the essential and daily used applications in game
development. These applications are designed to assist in the creation of games’
contents. However, the games definition and specification is still complex. Themech-
anisms involved in the behaviour definition are not easy to standardise, given their
dependency with the subjective game logic design and the selected programming
language features. In this sense, this work presents the design and development of
a game logic system for 2D video games. It draws from the study and analysis of
the behaviour and game logic definition literature. From this, a game logic system
has been developed from first-order logic semantics and a reduced set of actions
and conditions. The model has been tested with several games to determine its
potential. Finally, one of these games is described with the proposed semantics,
and further on it is also used as a reference for a user test against other game logic

https://doi.org/10.1007/978-3-030-45688-7_50

74 4.1. Introduction

systems.

Keywords

Game logic, Game development, First-order logic

4.1 Introduction

The development of video games is a complex process where multidisciplinary
skills are required to complete it [Gre18, Nys14, Mil19]. The appealing of the games
depends on the designer’s skills to complete the game requirements, either for
character design, animation, sound composition, narrative or game-play design. To
address this problem, game engines provide the required tools to develop a game.
In fact, professional game studios have their own one, although there is a trend
towards the usage of commercial engines such as Unity [Uni22] or Unreal [Epi22].
However this fact has two issues, on the one hand, there is some obscurantism
about the proprietary game engines, while on the other hand, the commercial engines
implement a huge number of features turning them into really complex applications
to use for the non-expert public. Additionally, from a theoretical point of view, there
are claims to expand the game engines research field, since the formal requirements
are unknown and there is little literature [AEMC08, AS10]. Specifically, Anderson et al.
[AEMC08] highlights the lack of literature in this regard and proposes several research
lines that should be explored in the future: a list of common software components,
a unified language, generic content creation tools, a generic architecture and the
identification of the best practices.

Conversely to the general trend towards the democratisation of content creation,
it is still very difficult to work with game engines. Especially on the game logic
definition, since they imply knowledge of scripting and game development APIs.
The game logic definition is arguably the most subjective technical process in
the video game development. In a script-based game engine such as Unity, two
different programmers could solve the same mechanic differently depending on
their initial approach. This is one of the reasons why the game logic standardisation
is complicated, which hinders the game logic optimisation.

Currently, there are alternatives such as visual scripting systems. These systems
transfer traditional programming tomore comfortable visual elements for non-expert

Chapter 4. A Game Logic Specification Proposal for 2D Video Games 75

users. Indeed, commercial game engines, as mighty as Unreal, use a Blueprints
system based on message passing. However, these systems are still not easy to
use and they still rely on huge APIs. It is delicate to determine which is the proper
alternative to save these issues since the simplicity perception or ease of use brings
forward subjective experience variables.

In this sense, this work proposes a 2D game logic specification along with a game
engine requirements to run it. In order to verify its proper operation, a minimal game
engine has been implemented meeting essential requirements. However, the game
logic specification method proposed in this work could be implemented in any game
engine. The proposal aims to generate a theoretical knowledge that serves as a
reference for the generation and optimisation of game engines, providing knowledge
on the essential requirements for the creation of 2D games. As a starting hypothesis,
it is considered that it is possible to define complex behaviours from a reduced
set of logical elements. During its development, a large number of 2D games have
been implemented to check the capabilities of the system and, as far as it has been
tested, the response has been positive since until now all the mechanics have been
completed. As an example for this paper, a 2D arcade platform game is described
down below. In addition, that game has also been used as a reference for a user
test where its development is compared with two game engines and their game
logic systems.

The rest of the article is organised as follows: Section 4.2 lists the game engine
requirements, in Section 4.3 the game logic specification system is stated and in
Section 4.4 the functions that encapsulate it are presented. Next, in Section 4.5, the
2D arcade game is described and then Section 4.6 presents the experiment carried
out to determine if it is perceived as easier to use. Finally, Section 4.7 shows the
conclusions gained from this development and the possible future work lines.

4.2 Game Engine Overview

Before detailing the game logic system, it is necessary to define some functional
requirements for the minimal game engine. For simplicity, the game engine is
conceived for 2D games and it must include the following features:

• The game is composed of a certain number of scenes.

• The game has a set of properties, available for the entire system.

76 4.2. Game Engine Overview

• A scene is composed of a set of game objects with no hierarchies.

• A game object has different components: physics, sound, rendering, etc.

• Each component has a set of properties.

• Each game object has a set of behaviour rules.

Besides that, the game logic system requires a series of characteristics for its spe-
cification. These must allow game objects to support the game logic completeness,
providing them with the following capabilities:

• Create and delete game objects.

• Read and update game properties or game objects properties.

• Execute changes and queries about any property.

• Check execution properties such as collisions, interaction events and timers.

In such a way, the system shall ensure a complete operation of the game state
and its elements. Where the run of the game loop works with its properties. These
properties define the game and its game objects features. In the proposed game
engine, a set of generic properties have been selected for the game and the game
objects, and both can handle new knowledge as new properties.

Game

• General: Name, resolution, active scene, and camera properties.

• Sound: Sound files, start, volume, pan and loop.

• Physics: Gravity and air friction.

• New: Custom shared properties for the game, admitting boolean or numeric.

Game Object

• General: Name, position, angle, dimensions, collision shape and tags.

• Render: Texture, opacity, flip, scroll and tile.

Chapter 4. A Game Logic Specification Proposal for 2D Video Games 77

• Text: Text, font, size, color, style and offset.

• Sound: Sound files, start, volume, pan and loop.

• Physics: Velocity, rotation, density, friction, restitution and damping.

• New: As for the game, custom properties to complete functionalities.

4.3 Game Logic Specification

The game logic assigns to the game objects the tasks to perform based on
the game state, following a predefined semantics. Its development is based on
first-order logic (FOL), widely used in other areas such as robotics and automation
[Gel03, PS85, WJK08]. The semantics are defined by a syntax of logical and non-
logical symbols. Logical symbols include logical connectives and variables while
non-logical symbols include predicates and functions [BLR92]. The domain D for
this interpretation I is the set of the game objects and the game. The predicates Ψ,
defined in FOL, specify the behaviour rules. In such a way, the tasks that a game
object must perform are organised in predicate formulas

Ψ0 ∧ Ψ1 ∧ Ψ2 ∧ · · ·

where its elements can have the following structures based on just two predicates:
the If condition and the Do action.

• Action structure: Composed by an atomic element that includes a single literal
predicate Do.

• Conditional structure: Modelled by a predicate sequence based on the IF-
THEN-ELSE rule structure [Kar88] where If is a conditional literal, and both ϕ

and θ are new predicate sequences to be evaluated if the condition is met or if
it is not, respectively.

(If → ϕ) ∧ (¬If → θ)

For the predicates, expressions are essential since they evaluate the game state
based on parameters, either as a boolean or as an arithmetic expressions.

78 4.3. Game Logic Specification

• Arithmetic expression: Performs mathematical operations either with numer-
ical constants, game or game objects properties, or mathematical functions
such as sin, cos, tan, asin, acos, atan, sqrt, random and abs.

• Boolean expression: Evaluates logical relationships between game elements
and arithmetic expressions using relational operators such as greater, greater-
or-equal, equal, less-or-equal and less.

Action Predicate Do

An action is defined as a behaviour to be performed by a game object. In this
specification, the actions are formalised as the non-logical function elements which
can handle parameters as arithmetic expressions. Where the set of actions is based
on the create, read, update and delete (CRUD) operations for information persistence
on databases [Dai10] applied to game and game objects properties. From these
operations, the system can produce more complex actions raising the system’s level
of abstraction. In this way, the available operations are:

• Create: Creates a new element, as a copy of an existing game object.

• Read: It allows to read the information of a game or a game object property.
The syntax gameObject.property is used to read this information.

• Update: Modifies the value of a game or a game object property. The new
value is determined from the evaluation of an arithmetic expression.

• Delete: Removes a game object from the game.

Conditional Predicate If

The conditional predicate represents the evaluation element for a condition in this
decision-making process. Where the condition evaluation is based on the result of a
boolean expression that assesses the relationship between properties.

If(booleanExpression)

Conceptually, this boolean expression evaluates the relationship between proper-
ties with an arithmetic expression. For this, it has an established structure composed
of a read operation, a relational operator and an arithmetic expression.

Chapter 4. A Game Logic Specification Proposal for 2D Video Games 79

property [≥, >, ==, <, ≤] arithmeticExpression

Following this theoretical framework, the proposed game logic specification is
able to define behaviours for 2D games.

4.4 Functions

From the previous section, the game logic system could compose game mech-
anics. However, this low-level semantics is not the most comfortable to use. This
section presents the function encapsulation of the low-level operations presented
above aiming to increase the level of abstraction without giving up on its potential.
For this purpose, a reduced set of actions and conditions are defined, in order to
create high-level functions to ease the behaviours definition.

Actions

• Spawn: Directly derived from the create operation, it spawns a game object in
a position and in an angle as a copy of an existing one. This action is normally
used to create enemies or projectiles.

• Edit: Execution of an update operation to modify a property from the game or
a game object. The value comes from an arithmetic expression evaluation.

• Destroy: Implements the delete operation over a game object.

• Move: Specialisation of the update operation that applies a displacement on
the game object by an angle and a speed as arithmetic expressions.

• Rotate: Equivalent to the Move action for angular displacements depending
on a pivot and a speed, where both parameters are arithmetic expressions.

• Push: Physics-based alternative to the Move, where a force is applied to the
game object in a given angle. It relies on the object’s physics component.

• Animate: Texture swapping to produce a key-frame animation controlled by
an arithmetic expression for the frames-per-second rate.

• Play Sound: Audio playback of a sound stored in the game data.

• Change Scene: Scene swapping to change the information from a scene to
another. This action could be used to switch between game levels.

80 4.5. Use Case

Conditions

• Check: Evaluation of a boolean property from the game or a game object.

• Compare: Relational condition between a property with an arithmetic expres-
sions in modes greater, greater-equal, equal, less-equal or less.

• Timer: Temporary condition for a specific time where a system timer is com-
pared with a cut-off time. It will always be false as long as the timer is lower
than the cut-off time. When true, the timer needs to be restarted.

• Collision: Collision detection between game objects based on tags.

• Keyboard: Keystrokes condition for predetermined keys in a key mode.

• Pointer: Pointer controller managed by the game engine’s input system.

4.5 Use Case

During the development of this work, several 2D games have been implemented
in order to test its performance and its capabilities. In this section, a 2D platformer
inspired on the London’s Tower Bridge Defense game [Uni19] is presented as an
example. The selection of this game is underpinned by the reliability of its design,
since it is one of the advanced 2D tutorial games of the Unity learning platform and
it is assumed that its mechanics and procedures are optimised and well structured.
Figure 4.1 shows a capture of the outcoming game in its execution.

For copyright reasons, the assets employed are from a public library with no usage
restrictions [Ken19]. Which has just affected the game’s aesthetics aspect. Next, the
game is described by the semantics established throughout this work.

Game Objects

• Player: The game’s character controlled by the user. It has to accumulate
as many points as possible by destroying Enemy game objects while avoids
their contact. It can move to the right, to the left, jump and shoot Bullet game
objects over the enemies. Points and lives are stored in custom properties.

• Enemy: The antagonist character who falls into the scene and randomly
chooses a movement direction. It bounces when collides with the scene

Chapter 4. A Game Logic Specification Proposal for 2D Video Games 81

Figure 4.1: Capture of the 2D platformer game.

horizontal limits until it falls through the drain and is eliminated. It can harm
the Player and can be destroyed with Bullet game objects.

• Ground: Static object setting the Player and the Enemy walkable zones.

• Bullet: Spawned by the Player to destroy Enemys. It moves in the Player’s
direction until it reaches an Enemy or the scene limits, then it is destroyed.

• Aid: Player’s health recovery, randomly spawned by the Aid Spawner. When
they interact, the Player’s lives are increased and it is destroyed.

• Score: Scoring display for the Player’s points property. It is increased if a
Enemy is destroyed by a Bullet.

• Stopwatch: Time controller for the sixty seconds available for the game. When
it reaches zero, the game ends.

• Enemy Spawner: Auxiliary object who randomly drops Enemy objects from
the screen top.

• Aid Spawner: Enemy Spawner akin, but dropping Aid in a lesser frequency.

82 4.5. Use Case

Each game object has a behaviour rules set to perform their tasks. Since present
all the behaviour rules is unrealistic given its extension, the rules associated with
the Player and the Enemy movements are described next. For its correct operation,
some of their properties have been balanced. Generally, in a platform game, the
Player is restricted to shifts from left to right and to jumps. In this case, the jumps
are constrained by a ground-contact condition. Additionally, the user interaction
works with keyboard events, but the same structure would be valid with pointer
events.

Algorithm 4.1 Player movement to the left
If(keyboard(keyLeft, pressed))→

If(compare(maxSpeed, greater, abs(player.velocityX))→
If(collision(groundTag))→

Do(push(player.thrust, 180)) ∧
Do(edit(player.horizontalF lip, true)) ∧
Do(animate(player.walkAnimationTextureList, 24))

Algorithm 4.2 Player movement to the right
If(keyboard(keyRight, pressed))→

If(compare(maxSpeed, greater, abs(player.velocityX)))→
If(collision(groundTag))→

Do(push(player.thrust, 0)) ∧
Do(edit(player.horizontalF lip, false)) ∧
Do(animate(player.walkAnimationTextureList, 24))

Algorithm 4.3 Player jump
If(keyboard(keySpace, pressed))→

If(collision(groundTag))→
Do(push(10× player.thrust, 90)) ∧
Do(animate(player.jumpAnimationTextureList, 24))

Conversely, the Enemy movement is completely different since its movements
are autonomous and are determined by two behaviour rules dependent on collision
events. The first happens with its first contact with the central ground, when it will
randomly select a movement direction (left or right). The second is triggered if it
reaches the scene horizontal limits, when it will shift its direction.

Chapter 4. A Game Logic Specification Proposal for 2D Video Games 83

Algorithm 4.4 Enemy movement initialization
If(collision(centralP latformTag))→

If(check(enemy.first))→
Do(edit(enemy.velocityX, thrust× (12× random(0, 1)))) ∧
Do(edit(enemy.first, false))

Algorithm 4.5 Enemy boundaries
If(collision(boundariesTag))→

Do(edit(enemy.velocityX, enemy.velocityX × 1))

4.6 Experiment

From the previous section, an experiment has been carried out in order to check
if it works in an easier way than other methods. During the activity, the participants
developed the Player movement (left and right shifts, and jumps) in Unity, Unreal
and in a minimal game engine known as GLS arised from this work. For Unity, the
scripting system was C# while for Unreal was its Blueprints system. Besides that,
the GLS method relies on a decision tree visual editor based on the Section 4.4’s
theory. Upon completion, the participants filled a usability test in order to check if the
proposed system is perceived as easier to use than the other commercial methods.
It draws from the hypothesis that the game logic specification can be stated in
a easier way than other traditional methods. The method selected to measure
the degree of usability perceived is the System Usability Scale (SUS) [B+96]. This
method provides a quick metric through a 10-item questionnaire with five response
options, from the most absolute disagreement (1) to the most absolute agreement
(5). The questionnaire items are the following:

Q1. I think that I would like to use this system frequently.

Q2. I found the system unnecessarily complex.

Q3. I thought the system was easy to use.

Q4. I think that I would need the support of a technical person to be able to use
this system.

Q5. I found the various functions in this system were well integrated.

84 4.7. Conclusions and Future Work

Q6. I thought there was too much inconsistency in this system.

Q7. I would imagine that most people would learn to use this system quickly.

Q8. I found the system very cumbersome to use.

Q9. I felt very confident using the system.

Q10. I needed to learn a lot of things before I could get going with this system.

4.6.1 Results

The experiment was carried out with 27 participants. Three of them had never
used any of the evaluated systems, while the rest knew at least one and only two of
them had worked with the three systems. In order to measure the users’ previous
experience, they have rated their previous knowledge in a range from 1 to 5, from
nonexistent to expert respectively, where the average result obtained was 2.85.
Besides that, game comprehension, a practical demonstration was carried out in
all three cases with the Player’s movement specification. The results obtained are
shown in Table 4.1. The three central columns show the results average obtained
by the methods in each item of the questionnaire along with its standard deviation
shown in parentheses. In order to check the questionnaire statistical significance, a
Friedman’s non-parametric test has been applied [Fri37]. This is a non-parametric
technique to measure the significance of the statistical difference between the
applied methods. In this case, the Friedman test considers all ratings with the same
importance and to discern the statistical significance of the results the Chi-square
distribution was used. For all three methods, the Chi-square value is 5.99 with a
confidence level of p = 0.05, which would imply that the resulting values lesser than
this reference value do not have statistical significance. The values of the statistical
significance are shown in the right column of Table 4.1, where the positive statistical
significance is indicated by (+) when the value is greater than 5.99, and by (-) in the
opposite case.

4.7 Conclusions and Future Work

This work proposes a game logic specification to define 2D games mechanics
based on a reduced set of behaviour elements. The analysis carried out on the

Chapter 4. A Game Logic Specification Proposal for 2D Video Games 85

Table 4.1: SUS test results and Friedman significance evaluation
Items Unreal GLS Unity Friedman

Q1 3.04 (±0.98) 3.96 (±1.13) 3.04 (±1.43) 10.9 (+)
Q2 3.52 (±1.25) 1.81 (±1.04) 3.93 (±0.96) 24.5 (+)
Q3 2.67 (±1.21) 4.56 (±1.09) 2.41 (±1.39) 22.2 (+)
Q4 3.81 (±1.14) 1.70 (±0.82) 4.00 (±1.18) 32.1 (+)
Q5 3.11 (±1.15) 4.22 (±1.01) 2.93 (±1.33) 9.9 (+)
Q6 3.04 (±1.06) 1.93 (±0.87) 3.37 (±1.60) 9.2 (+)
Q7 2.67 (±1.18) 4.81 (±0.48) 2.04 (±1.06) 35.6 (+)
Q8 3.85 (±0.99) 1.37 (±0.63) 3.89 (±1.22) 33.9 (+)
Q9 2.25 (±0.94) 4.44 (±0.70) 2.59 (±1.45) 25.7 (+)
Q10 3.93 (±0.96) 1.59 (±0.75) 4.26 (±0.98) 38.7 (+)

requirements and on game engines features have shown that there is a research
need to determine the games’ essential requirements and the correct procedures
for their design. From this information, a data model has been built supporting
the functional requirements raised at the beginning of the paper. Besides that, a
semantics based on first-order logic has been defined with the aim of generating
logic rules from a reduced set of actions and conditions. All this without hierarchies,
loops or complex data structures such as matrices or vectors. Additionally, the
proposed system has been tested against two other commercial systems such
as Unity and Unreal. The first one based on traditional scripting and the second
one based on message passing. The results show that the users perceived GLS as
more usable than the other systems analyzed. The Unity and Unreal methods were
virtually tied for second place, although there is a certain advantage in favour of
Unity, probably due to some users whowere previously experienced on this one. This
fact is stated in Q1, where GLS beats Unity and Unreal in preference of use with a
difference of almost one point. Nevertheless, this has to be carefully considered due
to its relationship with subjective preferences, motivations and previous experience.
The questions Q2 and Q3 show that GLS is perceived as easier to use against the
other two. In addition, it seems that Unity’s scripting language is a bit more complex
for the users than a message-passing language as the Unreal Blueprints. In this
way, it follows that users establish as unnecessary the use of complex methods
to complete these game development tasks. In fact, question Q4 supports this
conclusion and confirms that it is necessary to reduce learning curves in order to
democratise game development. On questions Q5 and Q6 regarding the integration

86 4.7. Conclusions and Future Work

of functions and the inconsistencies detected, the results show a clear advantage
of GLS. Since it uses a reduced set of actions and conditions while Unreal and Unity
methods are penalised for the large number of functions they contain and their huge
amount of parameters. In addition, the users considered GLS as much faster to
learn than the others systems and that they also find it much less cumbersome to
use than Unity and Unreal, with a difference of almost two points in questions Q7
and Q8. Finally, Q9 and Q10 show that GLS seems safer for upstarters, again a two
points difference in their averages. As future work, it is intended to keep exploring
the capabilities of this design in three ways: its extension to a 3D game engine,
its application on a multi-user point of view and its potential implementations in
parallel.

87

Chapter 5

A First Step to Specify Arcade Games
as Multi-agent Systems

Publication

Marín-Lora, Carlos., Cercós, Alejandro., Chover, Miguel., & Sotoca, Jose. M. (2020,
April). A First Step to Specify Arcade Games as Multi-agent Systems. In World
Conference on Information Systems and Technologies (pp. 369-379). Springer,
Cham. (Core C).
https://doi.org/10.1007/978-3-030-45688-7_38.

Abstract

The lack of formalities in the development of video games is one of the main
obstacles for the incorporation of new professionals to the field. Although there are
general proposals to describe and specify video games with techniques such as
Game Design Document or Game Description Language, these are usually aimed at
implementations in predetermined media, which determines the game specification
from the outset to its implementation in the selected platform. This paper proposes
a method for the definition, specification and implementation of a video game
based on multi-agent systems, where its elements, functionalities and interactions
are established independently of the platform used for its development. To prove
its validity and capabilities, the classic arcade game Frogger has been used as a
demonstrator. This game has been defined in its general form and subsequently

https://doi.org/10.1007/978-3-030-45688-7_38

88 5.1. Introduction

implemented on three different platforms following the same specification. Each
of these implementations has been made using different engines, languages and
programming techniques, but in any case, meeting the requirements of the game
and multi-agent systems.

Keywords

Computer games, Game specification, Multi-agent systems

5.1 Introduction

Despite being an industry with more than forty years of existence, the design and
development of video games lack formalities and standards that unify the definition
and specification process of its products. In this sense, the design and development
of video games still has several open fronts demanding to keep researching in order
to achieve optimum performance in the definition and specification, development
and implementation processes. Actually, some authors indicate that it would be
necessary to define a formal language that standardises concepts and processes
present in any development [AEMC08, AS10]. In fact, this absence of formalities
makes the initiation in the design and development of games for non-expert people a
truly complicated task. In order to find new models to specify video games formally,
it has been recognised that multi-agent systems (MAS) have several similarities
with video games. They are systems composed of entities, called agents, living
and interacting with each other in a shared environment, where each agent has
a set of properties and a set of action rules to determine their tasks and goals
[Woo09]. These systems are widely used in fields such as control systems or
artificial intelligence to solve complex problems, by dividing complex tasks into
simpler ones and assigning them to agents. The analogy between the definition of
a MAS and the specification of a video game seems apparent: the agents play the
role of game elements, usually known as game objects; interacting with each other
and sending information about the game logic, the collisions between them or the
user interaction, and where each one has a task to fulfil in the game based on a set
of behaviour rules.

This paper presents a specification model based on MAS to prototype, define and
specify games regardless of the platform on which it is intended to be implemented.

Chapter 5. A First Step to Specify Arcade Games as Multi-agent Systems 89

In order to demonstrate the validity of the model, the definition of a classic arcade
game with frequent features and mechanics is proposed along with its implement-
ation in three different platforms. The reason for choosing a multi-agent model is
because the behaviours and interactions in these systems have correspondences
with the behaviours and interactions between individuals and their environment in
the real world [FW99]. For this reason, it has been considered that the first steps
for non-expert people are more affordable by taking the game as an analogy with
the real world [RMLRC18, MLCSG20]. In this sense, this proposal is based on the
hypothesis that MAS are suitable for the specification and implementation of video
games. In order to test this hypothesis, the study is focused on arcade games
because their mechanics have been replicated and extended consistently since
the first video games. Specifically, the analysis draws from the description of the
Frogger game [KS81] and its implementation in NetLogo [TW04], a programming
environment based on turtle language oriented to the MAS prototyping. Based on
that model, the game has been implemented in Gamesonomy a visual programming
2D game engine [Gam21] and in the Unity [Uni22] game engine. Subsequently, an
analysis of the differences and particularities of each case has been composed.

Finally, the document presented is organised as follows: Section 5.2 presents the
state of the art related to software and video game specification systems using
MAS. Next, Section 5.3 details the model that has been followed to formally define
the analogy between video games and multi-agent systems. After that, in Section
5.4, the use case is presented with which the validity of the model in different game
engines will be analysed, together with the results obtained after that experience in
Section 5.5. Finally, in Section 5.6 several conclusions from the realisation of this
study are presented, and its possible future derivations.

5.2 State of the Art

The biggest obstacles faced by upstarts in the development of video games
appear at such early stages as the design and specification of a project. In other
words, in the process of translating the creative process into requirements lists
and tasks specification, as it would be made in software engineering. Over the
years, this problem has been tried to be addressed with tools such as the "Game
Design Document" (GDD) models, where the creative process must be described
and mapped into a breakdown of requirements, tasks and goals [CNS05]. However,

90 5.3. Video Games as Multi-agent Systems

there is no standard GDD format to describe the game mechanics and no technical
reference language that standardises technical concepts [AEMC08], which usually
causes gaps between the established creative concept and the software developed
[AS10]. In fact, one of the first problems to address when starting a project arises
with the platform selection, taking into account its capabilities and limitations to
correctly define the game. Some studies present models to determine which is the
appropriate platform for a project [AMW+13], while others look for methods to reuse
video game specifications between different platforms extracting common features
from a several game development platforms [BMR07]. From a research standpoint,
the quest for a generic framework has been present in the video game literature
for a while. For instance, and despite doing so indirectly, the formal definition of
games has received contributions from the AI research for games and from com-
petitions in General Game Playing (GGP) [GLP05, PLST+16, Thi10, Thi11] where the
same system must learn to play any game based on a Game Description Language
(GDL) [LHH+08, ELL+13]. In the grey area between traditional methods as GDD
and others as advanced as GDL, some papers have already studied the possible
synergies between the concepts of GDL and MAS [ST09]. The MAS are composed
of sets of agents that interact and make decisions with each other within a shared
environment [Woo09, FW99, GQCC10]. Where behaviours have traditionally been
defined by decision theory and game theory metrics [PW02]. Among the uses of
MAS, on robotics and autonomous systems they have satisfied critical real-time
restrictions [OD98, BCJS99], also the implementation of virtual commerce and trade
fairs [RGR+15, GQC+07b], obstacles avoidance in navigation [VdBLM08] andmailing
delivery using mobile robots [CBJ+08]. In the video games field, they have been
used to simulate large number of people in restricted areas [ATE+12] or to prototype
the development of game engines [MLCS19].

5.3 Video Games as Multi-agent Systems

The goal of this work is to define a methodology for the specification and imple-
mentation of video games. The proposal focuses on the analogy between MAS
and video games. The MAS have formal specification aspects to define a video
game in a generic way, integrating specific aspects of the game such as the game
logic with its entities and its behaviour rules, or the game physics with the detection
and response of collisions between game elements. The method for the definition

Chapter 5. A First Step to Specify Arcade Games as Multi-agent Systems 91

of a game must consider the features of the game, the elements that compose it,
the behaviours definition and the user interaction. From this point, it is necessary
to make a formal analogy between these game concepts and their correspondent
concepts in a MAS.

Inside the shared environment, each agent has sets of properties and behaviour
rules determining their interaction with each other. In order to prove that a game
can be expressed as a MAS, a formal theoretical framework is presented. For this
purpose, the definition of agent proposed by M. Wooldridge [Woo09] has been used,
where an agent is a computer system located in an environment and is capable
of performing tasks autonomously to meet its design objectives. In addition, this
method is also based on the work done by Marín-Lora et al. [MLCSG20], where a
game engine is defined as MAS. As a summary, some of the characteristics of the
theoretical framework used for this proposal are detailed below:

• The environment to which the agents belong can be in any of the discrete
states of a finite set of states E = [e0, e1, e2, · · ·].

• The environment shared by all agents has a set of properties that determine
their status and that can be accessed by any agent in the environment.

• The system agents have a series of generic properties common to all of them:
geometric, visual, physical, etc. In addition, they have the ability to assimilate
new properties to perform specific tasks.

• Agents have behaviour rules to alter the environment state or an agent state
in order to fulfil their plans and objectives.

• The agents have a set of possible actions available with the ability to transform
their environment Ac = [α0, α1, α2, · · ·].

• The run r of an agent on its environment is the interlayered sequence of actions
and environment states r : e0 →α0 e1 →α1 e2 →α2 · · · eu−1 →αu−1 eu.

• The set of all possible runs is R, where RAC represents the subset of R that
ends with an action, and RE represents the subset of R that ends with a state
of the environment. The members of R are represented as R = [r0, r1, · · ·].

• The state transformation function introduces the effect of the actions of an
agent on an environment τ : RAC → ℘(E) [FHMV04].

92 5.4. Use Case: Frogger

In order to transfer these concepts to a video game, it is necessary to implement
the general characteristics of the game and the objects of the game such as those
of an environment and its agents, respectively. Taking into account an essential
requirement for the validity of this work: the same functions and attributes must
exist for each element, regardless of the limitations or characteristics of the game
engine or software environment selected for its implementation. This proposal
follows the methodology presented in Marín-Lora et al. [MLCSG20], where the rule
specification is structured using a first-order logic semantics [BLR92] based on two
predicates: a condition If() and an action Do(). Where each predicate can run calls
to other actions α of the system, or evaluate arithmetic and boolean expressions.
An example of these rules and the technical specification of the game could be
presented in the following fashion:

Environment

Assets: { Sprites, Sounds }

Properties: { General, Physics, Input, Logic, Audio, Render }

Agents

Agent1:

– Properties: { propertyA: true, propertyB: 7.52, propertyC: "Hello" }

– Scripts: { script1: { If(A) → Do(B) }, script2: { Do(C) } }

Agent 2:

– Properties: { propertyA: false, propertyB: -5, propertyC: "Hi again!" }

– Scripts: { script1: { If(A>B) → Do(C) }, script2: { If(D) → Do(E=E+15) } }

5.4 Use Case: Frogger

In order to determine if a game can be implemented in the same way on different
game engines based on this proposal, the Frogger is going to be described following
a MAS specification. First, the concept and objectives of the game are described.
Subsequently, the game specification will be presented following the methodology
outlined in the previous section. This game was selected because it implements

Chapter 5. A First Step to Specify Arcade Games as Multi-agent Systems 93

several arcade games mechanics and there is an open-source implementation in
NetLogo, which puts in context and highlights further issues.

The Frogger game presents a scenewhere the player drives a frog passing through
a road crossed by cars and trucks, and a river with trunks and turtles until reaching
a safe area of water lilies. Initially, the frog is safely located at the bottom of the
screen and can move up, down, right or left. At the beginning of the game, the frog
has 5 lives, which can lose if collides with a car, a truck, or if it contacts with the
water. Game elements representing cars and trucks come up from the right side of
the screen and move with constant speed to the left side. To overcome the road,
the frog must not contact with a car or a truck. For the water, it needs to remain on
a trunk or turtle noticing that turtles can sink during arbitrary intervals. The player
will win the level when it reaches the water lilies at the top screen. The next level
would start-up to a maximum of 5.

Environment

Assets: { frogSprite, truckSprite, carSprite, trunkSprite, turtleSprite, waterlilySprite, jumpSound,
collisionSound, drownSound, winSound }

Properties: { width: 20, height: 20, centerX: 0, centerY: 0, lives: 5, levelComplete: false, current-
Level: 0, stopwatch: 0, timeLimit: 60, diveProbability: 0.1 }

Agents

Game Manager:

– Properties: { }

– Scripts: {

* LevelComplete: { If(Env.levelComplete) → (If(Env.currentLevel < 4) →
Do(Env.currentLevel = Env.currentLevel+1) ∧ Do(resetLevel)) }

* ResetLevel: { If(Env.lives ̸= Frog.lives) → Do(Env.lives = Frog.lives) ∧ Do(resetLevel)}

* Stopwatch: { Do(Env.stopwatch = Env.stopwatch+1) ∧
If(Env.stopwatch ≥ Env.timeLimit) → Do(Frog.lives = Frog.lives-1) ∧
Do(Env.stopwatch = Env.timeLimit) }

* EndGame: { If(Env.lives == 0) → Do(endGame) }

}

94 5.4. Use Case: Frogger

Frog:

– Properties: { x:0, y:Env.centerY-Env.height/2, lives:5, jumpStep:1, jumpCount:0 }

– Scripts: {

* LeftJump: { If(Env.leftKey) → Do(x = x - jumpStep) ∧ Do(rotation = 0) ∧
Do(jumpCount = jumpCount + 1) }

* RightJump: { If(Env.rightKey) → Do(x = x + jumpStep) ∧ Do(rotation = 90) ∧
Do(jumpCount = jumpCount + 1) }

* UpJump: { If(Env.upKey) → Do(y = y - jumpStep) ∧ Do(rotation = 180) ∧
Do(jumpCount = jumpCount + 1) }

* DownJump: { If(Env.downKey) → Do(y = y + jumpStep) ∧ Do(rotation = 270) ∧
Do(jumpCount = jumpCount + 1) }

* VehicleCollision: { If(vehicleCollision) → Do(lives = lives - 1) }

* Boating: { If(boatCollision) → Do(x = x + boat.velocityX * boat.directionX) }

* WaterCollision: { If(waterCollision) → Do(lives = lives - 1) }

* WaterLily: { If(waterlilyCollision) → Do(Env.levelComplete = true) }

}

Car, Truck, Trunk:

– Properties: { originX: Env.centerX + Env.width / 2, x: originX, y: 0, velocityX: 1, velocityY: 0,
directionX: -1, directionY: 0 }

– Scripts: {

* Movement: { Do(x = x + velocityX * directionX) }

* Limits: { If(x < -originX) → Do(x = originX) }

* Movement: { Do(x = x + velocityX * directionX) }

}

Turtle:

– Properties: { originX: Env.centerX + Env.width / 2, x: originX, y: 0, velocityX: 1, velocityY: 0,
directionX: -1, directionY: 0, dive: false }

– Scripts: {

* Movement: { Do(x = x + velocityX * directionX) }

* Limits: { If(x < -originX) → Do(x = originX) }

* Dive: { If (random(0 , 1) < Env.diveProbabilty) → Do(dive = true) }

}

Chapter 5. A First Step to Specify Arcade Games as Multi-agent Systems 95

5.5 Results

From the previous section, a version of the Frogger game has been implemented
in three different systems: the MAS prototyping environment NetLogo and in the
game engines Gamesonomy and Unity. All following the same guidelines: the game
description and the game definition as MAS, but taking into account the differences
and limitations of each system to achieve an identical result.

5.5.1 NetLogo

First of all, it is necessary to point out that NetLogo is not a graphical programming
environment. Graphics and user interaction are not ideal to generate a good user
experience. Examples of these limitations are the grid-based layout and the looping
ticks, from which the drawing and logic must be managed explicitly. However, it
allows to edit the interface, the scene and the frame-rate without using code: creating
buttons that run functions or edit properties using sliders. The scene configuration
is limited to the origin of coordinates and the scene dimensions. Also, the vertical
and/or horizontal limits have to be determined, for an agent to exit at one end and
appear at the other while moving.

For the game interface, four buttons have been arranged and linked to keyboard
events and the movement functions, a native function setup callback to reload the
level, a play function with the native go function and three sliders for the frog’s
lives in a range of 1 to 5, the initial level selection and the highest time available to
complete the level from 60 to 10 seconds. Also, four monitors have been arranged
that show the remaining lives, the current level, the time left and a jump counter. At
the beginning of each level, each agent is created in its initial position by executing
the setup function. Agents are generated by creating NetLogo agent objects called
turtle, but for instantiation, this process must be performed with the breed function.
Also, the game global variables must be defined. In the agent’s case, each one
except the frog has two new properties: speed and time. The speed determines
the time interval that elapses between each jump. This action is controlled by a
time variable, which counts the ticks remaining until the next iteration. Besides that,
it is also arbitrarily determined that turtles can dive and which not by initialising
their dive variable. Once in execution, the activation of the start button starts the
game loop as long as lives is greater than zero. First, the game cycle records

96 5.5. Results

user input events to determine the movement the frog must perform. It should be
noted that the configuration of the movement of the frog, unlike the other agents,
prevents it from crossing the horizontal limits of the scene. The implementation of
the behaviour rules of the agents, it is possible to execute the actions of each agent
when a predetermined condition is fulfilled using the native ask function. The agent’s
movement relies on a time property that decreases every tick until it reaches 0.
When this condition is met, agents can move. The movement is normally performed
by the forward function. However, trunk and turtle agents have special functions,
since they must interact with the frog agent and in the case of turtles, they can be
submerged in the river arbitrarily. The last step of the loop is to check if the frog has
reached a waterlily and therefore has exceeded the level, or if it has collided with a
vehicle or with the water and therefore has not exceeded the level. For the first case,
the water lily texture would be changed to the frog one and the current level would
be increased if possible. In the second case, one life would be subtracted and, if
there are lives left, the level would be restarted.

5.5.2 Gamesonomy

Gamesonomy is a web-based 2D game engine to create games without using
code. In this platform, the game objects are known as Actors, and their behaviours
are defined by decision trees composed by a reduced set of conditions and actions.
The game loop evaluates the rules in a continuous cycle. At the beginning of the loop,
it is checked if the conditions are met and if they are, the evaluation flow continues
its way across the proper tree branch until it reaches an action leaf.

The screen size and resolution are adjusted from the game properties, where
global game properties can also be created such as the current level, lives, and
stopwatch. It should be noted that Gamesonomy does not has a default option for
board limits, so it must be determined for each agent if necessary. However, the
game global functions need to be implemented in an actor. In this case, a game
manager actor was created to run game behaviour rules. It is located in themiddle of
the environment, from where the level elements are instantiated. Among them, the
setup rule is only executed at the game start. Also, a rule to remove all objects from
the scene has been included. This function is activated for an iteration so that each
agent in the scene could be self-destructed. In order to arrange the actors, first, it is
necessary to create the instantiable ones (vehicles and boats) to be spawned in their

Chapter 5. A First Step to Specify Arcade Games as Multi-agent Systems 97

proper line. Conversely, the frog actor, which is neither instantiated nor eliminated.
Furthermore, each actor has labels that identify them in their interactions. The frog
has three rules: one checks the user’s inputs to control its movement and the other
two check if it collides with a vehicle or water and, if it does, it asks for the restart of
the game. In the water case, if it is not in contact with a turtle or trunk actor. The
other actors have rules that allow them to move, exit the screen and self-destruct if
the game is restarted. For the movement, the timers have been used to control their
speed so that from time to time it advances in the direction in which it is looking.
Trunks and turtles can move the frog if they are in contact with it, and the latter
can also dive in randomly if its dive property is true. The amount of turtles diving is
controlled by a diving probability property, which can be set up in the game.

5.5.3 Unity

Unity is a general-purpose game engine that allows developing 2D and 3D games.
In this case, the agent element is called game object. It is the basic component
from which the scenes are composed, and it can store components to perform
specific tasks. The behaviours are defined on the game objects with C# scripts. In
this development, there is also a game manager storing the global properties and
handling the state of the game and the game functions. A start function is included
in its initialisation script, known as setup in the previous implementations, which is
executed on the game load to initialise the local properties. The different types of
game objects have been stored as "prefabs" so that the manager can instantiate
them at the beginning of the game by accessing the reference of each prefab. The
agents’ movement function has been generalised so that it is compatible with all of
them, also allowing them to access the customised velocity and direction properties.
As mentioned previously, the movement function advances a unit and, in the case of
turtles and trunks, drags the frog with the same amount of movement. The velocity
value depends on the time differential elapsed since the previous loop, the interval
between two consecutive executions. In this way, the speed can be measured in
exact seconds. In the case of the truck and turtle agents, it has been necessary to
create two scripts for specific behaviours: in the truck, the joint script coordinates
the movements of the front and rear when leaving the screen, when the front leaves,
it appears on the other side but the back no. In the turtle, the diving script is used to
determine when a turtle that can dive is done and when it comes out, the turtles that

98 5.6. Conclusions and Future Work

can dive are determined by creating the level in the manager. In the water lilies case,
their only function is to check if the frog collides and notify the manager as soon as
it does. Finally, the frog agent collects the user’s inputs to move on the board and
checks the collisions with other agents, calling the game manager if necessary.

5.6 Conclusions and Future Work

This paper proposes amethod for the definition, specification and implementation
of video games based on MAS, where its elements, functionalities and interactions
are established regardless of the platform used for its development. To prove
its validity and capabilities, the classic arcade game Frogger has been used as a
demonstrator. This game has been defined in a general form and then implemented
on three platforms following the same specification. Each of these implementations
has been made using different engines, languages and programming techniques,
but meeting the requirements of the game and the MAS.

The purpose of this work was to demonstrate that video games and MAS share
several features and it is possible to improve video game development processes
in this way. From the previous sections, it is extracted that the MAS features fit
as a starting point for the video games definition and therefore it is necessary to
keep working in methods that potentiate a symbiosis between these concepts.
Additionally, the incorporation of agent specification systems into the video game
development can ease the understanding of games before they are even implemen-
ted, which could ease the access into the sector of professionals who do not have
technical experience creating video games.

As future work, it is intended to explore the potential of this method by designing
and implementing a MAS-based game engine and generate games that meet the
characteristics of the MAS. Trying to explore the capabilities of these interactive
systems in games and in virtual and augmented reality experiences, and to provide
game development tools to non-expert profiles such as children.

99

Chapter 6

A Multi-agent Specification for the
Tetris Game

Publication

Marín-Lora, Carlos., Chover, Miguel., & Sotoca, Jose M. (2021, October). A Multi-
agent Specification for the Tetris Game. In International Symposium on Distributed
Computing and Artificial Intelligence (pp. 169-178). Springer, Cham. (Core C).
https://doi.org/10.1007/978-3-030-86261-9_17.

Abstract

In the video game development industry, tasks related to design and specification
require support to translate game features into implementations. These support
systems must clearly define the elements, functionalities, and interactions of the
game elements, and they must also be established independently of the target
platform for its development. Based on a study for the specification of games that
allows the generation of games as multi-agent systems, this work tries to check
if the results can be cross-platform applied. As a case study the classic game
Tetris has been used, a game whose very nature suggests that its implementation
should be composed of vector andmatrix data structures. The purpose is to validate
the usage of a game specification based on multi-agent systems for the game’s
implementation on different platforms.

https://doi.org/10.1007/978-3-030-86261-9_17

100 6.1. Introduction

Keywords

Game development, Arcade games, Tetris, Multi-agent systems

6.1 Introduction

The design and specification of video game projects is a creative process that is
often performed by people with no programming knowledge. These processes aim
to translate design concepts into requirements and task definition. However, there
is a lack of consensus on how to establish this process [AEMC08, AS10]. One of the
first problems that come up are the constraints involved in designing for one plat-
form or another depending on the required characteristics [AMW+13, BMR07]. In the
literature, there has been a search for a framework to define the characteristics and
functionalities of a game in an indirect way. For example, the field of artificial intelli-
gence (AI) research in games has contributed advances with General Game Playing
(GGP) [GLP05, PLST+16, Thi10, Thi11] where it describes in a way and manner that
the same system is able to learn to play any game based just on the descriptions of
its Game Description Language (GDL) [LHH+08, ELL+13]. However, these methods
define specification systems that require high-level technical knowledge.

An alternative approach is to consider the game elements and their behaviors
as autonomous entities that solve tasks assigned to them to ensure the correct
execution of a game, similar to what would be done in the real world. In other words,
by presenting an analogy between the elements of a game and the autonomous
agents that constitute multi-agent systems (MAS) [DKJ18]. In Marín-Lora et al.
[MLCSG20], a game engine able to generate games as MAS is presented. Where the
game elements or agents have a set of properties and behavioral rules that allow
them to interact with each other and with the social space they share, and where the
definition of these behavioral rules is done by means of a formal semantics based
on predicate logic. However, this work focuses on its own implementation and does
not extrapolate its specification for other engines and other systems. Based on
this game engine and its model, this study aims to validate the hypothesis that a
game can be defined and specified as a system of interacting agents and that it
is possible to implement it on different platforms. To this end, this work focuses
on validating whether this model allows to define, specify and prototype a video
game for multiple platforms in a fast and simple way. In addition, it is studied if it

Chapter 6. A Multi-agent Specification for the Tetris Game 101

is able to define and specify the behaviors of the game elements by establishing
their logics. In an intermediate way between more traditional and artistic methods
such as Game Design Documents (GDD) and other more technical and advanced
methods such as GDL [ST09]. For this purpose, the study of this work goes through
the implementation of a game on three different platforms: NetLogo, GDevelop and
Unity [Wil99, GDe22, Uni22]. A MAS prototyping system, a 2D event-driven game
engine and probably the most widely used game engine today, respectively. As
a reference game, it is going to be used a game with a matrix nature and whose
implementation a priori would not be conceived without the presence of the data
structure of a matrix: the Tetris. The purpose of this case study is to validate the
usage of a multi-agent specification for the implementation of games in different
platforms.

The paper is organized as follows: Section 6.2 presents the state of the art studied
for this article. Then, in Section 6.3, the data and game specification model will be
presented. Subsequently, this model will be applied on the game of study in Section
6.4, and implemented on the three platforms in section 6.5. Finally, in Section 6.6,
the conclusions obtained from the realization of this work will be presented.

6.2 Background

As in any other software design process, in video games there are multiple
paradigms or design patterns to define the code structures that manage it and
to establish the logic of the behaviors of its elements [Nys14]. Many of them are
used to organize the assignment of responsibilities between elements or to define
the behaviors and interactions between game objects. Some paradigms encapsu-
late the information needed to execute a method, perform an action or trigger an
event; others are used in systems with one-to-many relationships between objects
where, for example, if an object is modified, its dependent objects are automatically
notified; or others that allow an object to change its behavior when its internal state
is modified in a manner analogous to a state machine. Special mention should be
made of iteration patterns that manage information flows. The commonest in video
games is the game loop, that is, the continuous execution of the game that in each
iteration processes the user interaction, the behaviors of the game elements and
renders the scene in a continuous loop as long as the game state so indicates. A
variant of this structure uses an auxiliary buffer as a storage method for the altered

102 6.2. Background

information after each iteration in order to update it in the data model at the end
of the cycle and thus keep the game information intact between the beginning and
the end of the iteration. And to execute logical actions, the update model is also
often used, based on an update function per game element, where each element
evaluates in each frame its function at local scale. It is at this point where with the
evaluation of the state of the game and the autonomous execution of actions of
its elements according to their internal state, the correspondence between these
patterns and the MAS occurs. MASs are composed of sets of agents that inter-
act and make decisions among themselves within a shared environment [Woo09].
Within the shared environment, each agent has sets of properties and behavioral
rules that determine its interaction with others. These agents have functions based
on metrics associated with decision theory and game theory that allow them to
exhibit autonomous, deliberative, reactive, organizational, social, interactive, coordin-
ating, cooperative and negotiating behaviors [SCT03], that have traditionally been
used in autonomous robotic systems to solve real-time problems. The selection
of MAS as a reference system for the specification of video games is based on
the analogy between the autonomous behaviors of agents and the elements that
compose games. In other words, the behaviors and interactions in these systems
have correspondences with the behaviors and interactions between individuals and
their environment. MAS have aspects of formal specification to define a video game
in a generic way, integrating specific aspects of the game such as the game logic
with its entities and their behavior rules, or the game physics with the detection and
response of collisions between game elements. However, it is obvious that the rela-
tionship between video games andMAS is not new. Multiple examples relating these
two categories can be found in the literature: from the construction of elements
for games, the interactions between their elements or their communication and
cooperation protocols [Woo09, Pos07, MLCS19]. Also for more specific purposes
such as the study of role-playing game (RPG) games [BBA+01], or to define games
in which a large number of people participate in areas with different influences
[ATE+12]. Currently, MAS and machine learning are already incorporated in several
game engines, so they are also accessible to the general public [JBT+18, CMLRR20].
For this work, the focus has been placed on the application of this paradigm on
game development, and specifically on the specification of its mechanics defined
by means of scripts. Scripts are routines written in a programming language that
provide an abstraction layer over the systems that manage the games in the dif-

Chapter 6. A Multi-agent Specification for the Tetris Game 103

ferent devices, that allow modifying the state of the games without the need of
recompilation, and that are usually used for the management of the behaviors and
for the management of the system events [And11]. Specifically, in video games, they
are oriented to facilitate programming without actively thinking about optimizing the
real-time execution of the game. During the last decade, the trend is towards the use
of generic scripting languages, displacing languages specific to game development
systems. Currently, the most widely used are C#, Python and JavaScript, and visual
scripting systems such as Scratch or Unreal Blueprints [RMLRC18].

6.3 Video Games and Specification as MAS

The goal of this work is to test if the specification of a game based on the analogy
between MAS and video games is able to be implemented on different platforms.
For this purpose, it is necessary to establish a formal analogy between the concepts
of a game and their corresponding concepts in a MAS. In addition, the method for
the definition of a game must consider the features of the game, the elements that
compose it, the definition of the behaviors and the user interaction. This work uses
the game specification used by Marín-Lora et al. [MLCSG20] for their game engine.
It is based on the definition of agent proposed by M. Wooldridge [Woo09], where an
agent is a computer system located in an environment and capable of performing
tasks autonomously to meet its design goals. By way of summary, some of the
characteristics of the theoretical framework used for this proposal are detailed
below:

• The environment to which the agents belong can be in any of the discrete
states of a finite set of states E = [e0, e1, e2, · · ·].

• The environment shared by all agents has a set of properties that determine
its state and can be accessed by any agent in the environment.

• The agents have generic properties (geometric, visual, physical, etc.) and they
also admit new properties to perform specific tasks.

• Agents have behavioral rules for modifying the state of the environment or the
state of an agent in order to meet their plans and objectives.

• Agents have a set of possible actions with the ability to transform their envir-
onment Ac = [α0, α1, α2, · · ·].

104 6.3. Video Games and Specification as MAS

• The run r of an agent on its environment is the interleaved sequence of actions
and environment states r : e0 →α0 e1 →α1 e2 →α2 · · · eu−1 →αu−1 eu.

• The set of all possible executions is R, where RAC represents the subset of R
that ends with an action, and RE represents the subset of R that ends with a
state of the environment. The R members are represented as R = [r0, r1, · · ·].

• The state transformation function introduces the effect of an agent’s actions
on an environment τ : RAc → ℘(E) [FHMV04].

In order to transfer these concepts to a video game and to any support, it is
necessary to define the general characteristics of the game and those of its elements
such as those of an environment and its agents, respectively. Considering that there
must be analogous functions and attributes for each element, regardless of the
limitations or features of the game engine or software environment selected for its
implementation.

Following the reference model, the rule specification is structured using first-
order logical semantics [BLR92] based on two predicates: an IF condition and a DO
action. Where each predicate executes calls to actions α of the system or evaluates
arithmetic and Boolean expressions. The predicates specify the logic of the game
so that the tasks to be performed by an agent are organized in predicate formulas
where their elements can have the following predicate structures:

• Action structure: Composed of an atomic element including a single predicate
literal DO.

• Conditional structure: Generated from the structure of the IF-THEN-ELSE
rules [Kar88].

(IF → Ψ) ∧ (¬IF → θ)

where IF is a conditional literal predicate, and whereΨ and θ are sequences of new
predicates that will be evaluated if the condition is met or if it is not met, respectively.
The conditional predicate represents the evaluation element of a condition in the
decision making process. Where the evaluation of the condition is based on the
result of a logical expression that values the relationship between system entities.
This logical expression may contain arithmetic expressions composed from system
properties, game or agent properties, mathematical functions and numerical values.

Chapter 6. A Multi-agent Specification for the Tetris Game 105

IF (expression)

Based on the evaluation of these expressions, the logical elements determine the
need for a game agent to perform an action α in the game. An α-action is defined as
a behavior to be performed by an agent, and are formalized as non-logical function
elements that can handle parameters such as arithmetic expressions. The set
of actions is based on the create, read, update, and delete (CRUD) operations of
information persistence [Dai10] applied to the game properties and its agents.

• Create: Creates a new agent, as a copy of an existing agent.

• Read: Reads the information of a game or a property of a game object. The
syntax agent.property is used to read this information.

• Update: Modifies the value of a property of a set or an agent. The new value is
determined from the evaluation of an arithmetic expression.

• Delete: Removes an agent from the game.

An example of these rules and the game specification could be presented as
follows:

• AG1:

– Properties: { A: true, B: 1.00, C: "Hi!" }

– Scripts: { IF(A) → DO(B = B + 1) ∧ DO(C = "My name is AG1") }

• AG2:

– Properties: { A: false, B: -1.00, C: "What is your name?" }

– Scripts: { IF(B ≤ 0) → DO(C = AG1.C) ∧ ¬ IF(A) → DO(delete AG1) }

From this model, the specification system designed must be able to define the
behaviors of the elements that make up the sets in a general way.

106 6.4. Case Study: Tetris

Figure 6.1: Diagram of game piece shapes.

6.4 Case Study: Tetris

The game to be used as a case study is Tetris. This classic logic arcade game
was originally designed and implemented by Aleksei Pazhitnov in the Soviet Union
and published in 1986 [Wil01]. The game consists of falling pieces composed of
four blocks in different configurations. The goal of the game is to stack the pieces
at screen bottom so that the accumulation of pieces does not reach the screen top.
To avoid this, the player must position and rotate the pieces as they fall so as to
complete as many horizontal rows as possible. Each time a row is completed, it
vanishes and the blocks above it fall. Each time a piece is stacked, a random new
piece appears from the screen top. There are seven variations of pieces in the game,
each with a specific shape and named O, L, J, T, I, S, Z and T. Figure 6.1 shows a
representation of them in the same order in which they have been described from
left to right.

The data model of this game starts from the pieces, composed of four blocks
arranged in a predetermined configuration. In addition, the player can perform
geometric transformations on them to change their position and orientation. Finally,
the game must eliminate blocks when they complete a row. Therefore, the types
of agents needed for this implementation are three: the piece, the block and the
checker. A representation of these three agents can be seen in Figure 6.2.

Piece Agent

Composed of four block agents in a prearranged layout. There is only one piece in
the game at a time: the falling piece. While falling, the player can modify its position
in a unit left, right and down using the corresponding arrow keys. In addition, he/she
can rotate its orientation to the left and right with the L and R keys, respectively. As
soon as it comes to rest with blocks already placed or with the background, it is

Chapter 6. A Multi-agent Specification for the Tetris Game 107

Figure 6.2: Diagram of game mechanics.

removed but the blocks that compose it are kept. These blocks will remain in their
position until their line is completed or until the end of the game.

• Properties: { resting: false }

• Movement script: { ¬ IF(resting) → (DO(y = y + 1) ∧ IF(Game.KeyArrowLeft) → DO (x = x - 1)
∧ IF(Game.KeyArrowRight) → DO (x = x + 1) ∧ IF(Game.KeyArrowDown) → DO (y = y + 1) ∧
IF(Game.KeyR) → DO (angle = angle - 90) ∧ IF(Game.KeyL) → DO(angle = angle + 90) }

• Rest script: { IF(collisionRest) → (DO(resting = true) ∧ DO(delete)) }

Block Agent

They initially compose a piece and move with it. By default, they are considered to
have a dimension of one unit. When the piece goes to rest state, they are unlinked
from it and remain static in their waiting position. It has a property to store the
information of the row for the moment in which it is at rest. If they come across a
check agent in elimination mode, they must communicate to the piece above them
that it has to move down one position, and then it must be eliminated from the
game.

• Properties: { resting: false, row = -1 }

• Set script: { IF(resting) → DO(row = y) }

108 6.5. Results and Discussion

• Destroy script: { IF(collisionCheck) → IF(check.deleteMode) → ((IF(collisionBlockUp) →
IF(blockUp.y > y) → DO(blockUp.y = blockUp.y + 1) ∧ DO(delete)) }

Check Agent

In each of the rows there is a controller agent that checks the number of blocks
occupying its row. When activated, it runs from left to right through its row checking
if each position is occupied by a block. If when it reaches the end of the row its
number is equal to the number of existing columns, it must return in the opposite
direction informing all the blocks in its row that they must be destroyed, and it must
send a message to all the checker agents in the rows above it to move the blocks at
rest one position down.

• Properties: { count: 0, deleteMode: false }

• Forward script: { IF(x≤ Game.width)→ DO(x = x + 1) ∧ ¬ IF(x≤ Game.width)→ DO(x = 0) }

• Backward script: { IF(x > 0) → IF(deleteMode) → DO(x = x - 1) }

• Check script: { IF(collisionBlock) → DO(count = count + 1) }

• Clear script: { IF(count == Game.width) → DO(deleteMode = true) }

6.5 Results and Discussion

From this specification, a version of the game has been successfully implemen-
ted on the three intended systems: NetLogo, GDevelop and Unity. All three have
respected the game description and the game definition as MAS. The most notable
particularities of these implementations reside mainly in the graphical interface
available and in some features in the way of composing the game logic. In the case
of NetLogo, and in contrast to the other two systems, there is no graphical editor to
create the initial spatial layout of the game interactively and it has been necessary to
create this initial configuration through its API and its scripting system based on the
turtle language. Moreover, since this system is not intended to generate games, its
graphic quality has been reduced to regions of colored pixels. This system has the
particularity of having "broadcast" functions for one type of agent, so that commu-
nication could occur in a more direct way. However, the model has been followed
and broadcast through the use of auxiliary variables.

Chapter 6. A Multi-agent Specification for the Tetris Game 109

At the logical level, the major particularity has been the rotation of the pieces. It
has been chosen to follow the methodology used by an example of the game in
its resource library, where the rotation occurs through the exchange of positions
between pieces from the definition of a central block agent defined as block 0. In the
case of GDevelop, the game has been arranged in its web editor and the logic has
been implemented through its logic systembased on eventmanagement. In contrast
to the previous case, the graphical level of the system has allowed to generate more
visual forms. The most outstanding particularity of this system in terms of logic
has been the communication between agents. For example, after collision events
it has been necessary to create auxiliary variables in the general properties of the
game and to subscribe potentially interested agents to these variables. Finally, Unity
is the most powerful of the three environments. It has made it possible to compose
the game and its specification from its editor and its scripting system in the C#
language. The particularities of this implementation are very similar to those found
in GDevelop, where communications have been made through game variables and
each of the agents checked its status after each iteration of its Update function.

6.6 Conclusions

The work presented in this paper aims to validate the hypothesis that a game can
be defined and specified as a system of interacting agents and that it is possible to
implement it on different platforms. For this purpose, amodel for the specification of
games based on a game engine created to generate games as multi-agent systems
has been taken as a starting point. From which it has been studied and tested
whether the specification of a gamewith this model can be implemented on different
platforms. For its validation, the classic game Tetris, a game that by nature should
be based on vector and matrix structures, has been used as a reference. Finally, the
game has been defined and specified according to the reference model obtaining a
total of three different agent types for the game composition. With this specification,
the same systemhas been implemented in three different platformswith satisfactory
results. With this, it can be said that the starting hypothesis has been successfully
validated and the objectives of this work have been met. As a future work, the
extension of the specification system is being considered through the definition of
a formal language that would allow the specification and programming of games
following this same model based on MAS and based on first-order logic.

110 6.6. Conclusions

111

Part IV

Serious Games Development

113

Chapter 7

Improved Perception of Ceramic Molds
Through Augmented Reality

Publication

Marín-Lora, Carlos., Sotoca, Jose. M., & Chover, Miguel. (2022, Apr). Improved
Perception of Ceramic Molds Through Augmented Reality. Multimedia Tools and
Applications. (Q2).
https://doi.org/10.1007/s11042-022-13168-5.

Abstract

Augmented Reality techniques allow the user to visualize part of the real world
through a display device by incorporating graphical information into the existing
physical information. In this sense, it is important to know how the physical presence
of the user in the augmented reality experience can affect the perception and evalu-
ation of the product. To this end, this work presents a theoretical framework that
explains how users perceive and evaluate the benefits and quality of augmentation
with augmented reality through their physical presence, compared to visualizing the
same experience through a video. The application was developed for the exhibition
and sale of ceramic molds. Users viewed graphical information about the mold,
placed between them and the screen while seeing themselves in the television as
if it was a mirror. The experiments showed that the integration of the product into
the environment and the spatial presence of the users had a positive effect on the

https://doi.org/10.1007/s11042-022-13168-5

114 7.1. Introduction

perceived value in terms of usefulness and enjoyment, improved comfort in the
purchase decision, and reinforced the overall opinion of the product.

Keywords

Augmented reality, product demonstration, spatial presence, decision comfort,
ceramic molds

7.1 Introduction

Augmented reality (AR) is a visualization technology that allows enriching real-
world images by inserting synthetic elements that are integrated into them [Azu97].
Since the first research on the field back in the 1960s [Sut65] to its extension to
the general public in the 2010s [BCL15], this technology has been applied in fields
as diverse as education [Lee12], medicine [ZHMZ14] and engineering [dSCMZ20],
among others.

AR has been and is used to improve the representation of content, either through
its static arrangement in the world or dynamically with animations. One of the
fields where its potential has been most exploited is product sales and promotion,
where it has been detected to have a positive effect on decision comfort, purchase
satisfaction, and brand positioning [BT10]. This not only has a short-term effect on
a specific product but by its contribution to consumer satisfaction, purchase loyalty
upgrade, buyer retention and word-of-mouth effect [HdRC+17].

This work presents a study of a user experience with an AR audiovisual application
for the exhibition and promotion of molds in the ceramic industry. In this AR experi-
ence, an avatar shows up explaining the most outstanding elements of the mold
through an animated scene and with sound effects, while performing the procedures
for which they have been designed. The purpose of the application is focused on
visually demonstrating how the mold technology works and attracting the attention
of the visitors. This is done through the virtual arrangement of a scripted sequence
on the projection of the mold.

From an analytical standpoint, the goal of this work is focused on technically
determining what benefits, and to what extent an AR experience helps to improve
product awareness and marketing. In addition, it is analyzed to what extent the
spatial presence of users during the AR experience influences a more positive

Chapter 7. Improved Perception of Ceramic Molds Through Augmented Reality 115

Figure 7.1: Application and ceramic mold at the advertising company’s stand.

evaluation of the product, along with the utility and hedonic benefits, increasing the
quality feeling about the product and the decision capacity.

The paper presents a comparison of feedback from users who participated in the
AR experience versus those who only viewed the experience through a video. All
this is analyzed with a Structural Equation Modeling (SEM) that takes into account
different aspects that influence users’ expectations. This model straightforwardly
explains user behavior, although there are alternative models with more variables
and feature clustering techniques that could be employed [LCSP12, RFBS20, RBF21,
RBNF21, BBS19].

The context for which the application was designed consists of a ceramic mold
placed in the center of a trade fair stand next to a large television monitor and a
high-resolution camera. Figure 7.1 shows an image of the application context inside
the stand of the company, which was located at the International Fair for Ceramics
(CEVISAMA) [Cev20].

As a summary, this paper is organized as follows. Section 7.2 presents a brief state
of the art on ARwithin the field of engineering andmarketing, which is the associated
context to this paper. In Section 7.3, the hypotheses and general objectives of the
study carried out on the experience are presented. Section 7.4 describes the ceramic

116 7.2. State of the Art

mold, the main aspects of the application, and the elements that have contributed
to its design and development. Section 7.5 shows the different parts that were
developed to implement the AR application. The protocol used to evaluate the
effectiveness of the application by performing user tests and studying their results
is described in Section 7.6. A brief discussion of the implementation and its impact
on users is included in Section 7.7. Finally, conclusions and possible future lines are
presented in Section 7.8.

7.2 State of the Art

A widely accepted definition of AR is given by Azuma [Azu97] as a system that
enables the user to see the real world, with virtual objects overlapped or composited.
To this end, the author defines three aspects: the combination of real and synthetic
elements, real-time interaction, and the alignment of all elements in a 3D world.
Accordingly, AR complements reality rather than replacing it so that virtual and real
objects coexist in the same space. In this sense, Carmigniani et al. [CFA+11] emphas-
izes that AR does not create an artificial reality that replaces the real environment,
but rather overlaps additional information on real environments or objects.

Currently, AR technology is under development and there are still challenges
to be solved in different aspects of its implementation and applications [VKP10].
Simultaneously, AR plays an important role in visualizing information about training
and manufacturing processes [DVRL12], education [CLCH17, AA17], cultural heritage
[AC19] and product presentation [LS07].

From an engineering and industrial processes standpoint, technologies such as
AR are applied in multiple fields [LNO17]. Their applications range from learning
how to use industrial tools, the analysis of protocols within factories, to process
training simulators [Pae14, CKW13]. Additionally, there are concrete examples such
as a training tool for the maintenance of high voltage lines [GBF+16], an industrial
assistant within the processes of a shipyard [FLFCBNVM18], a tool for use in the
automotive field [JER18], a solution for the inspection and analysis of architectural
elements [WFM+96], and a marketing element in the sales process of products
[COEGD+19].

Within the field of marketing and product visualization, it is easy to find multiple
uses: as an advanced product visualization tool in a physical store via smartphone
[MP17], as a method of previewing the arrangement of furniture [GYSE20, RFH19],

Chapter 7. Improved Perception of Ceramic Molds Through Augmented Reality 117

or to establish settings in the presentation of products during their online retailing
[Dac17]. However, at present, AR is not yet a widespread element in physical store
shopping processes, and its effectiveness on the shopping process is still under
evaluation [YCS17, CCE+10]. Some studies try to validate whether their inclusion
improves brand reputation and user experience, and thus increases consumer
conversion rates [RFH19]. By adding these functionalities to the user experience,
retailers expose themselves to a paradigm shift in the way their potential customers
interact with their products and with the decisions they have to make before and
after agreeing to purchase the product [SK14, HdRC+17].

7.3 Hypotheses

At a practical level, the incorporation of AR seeks to add value to the product to
be marketed, trying to highlight its characteristics and provide a visual concept in its
promotion and sales process, something new in the ceramic machinery industry.
However, despite their inherent relationship, two aspects can also be distinguished in
the objectives of this work. The first one is focused on a commercial and promotional
perspective of the company, and the second one is focused on a technical analysis
of the performance provided on the potential consumers of a product. This paper
focuses on the analysis and discussion of the second one, following previous works
done about user experiences and customers’ interaction with products, and decision-
making processes.

Thus, inspired by the proposal of Hilken et al. [HdRC+17], this model raises four
factors that determine the attitude of users towards product quality: Hedonic, Useful-
ness, Spatial Presence and Purchase Intentions. In addition, two latent variables are
included in the model that act as intermediaries: the Perceived Value of Experience
and the Product Decision-Making, that act on the final opinion of the product (see
figures 7.6 and 7.7).

7.3.1 Aspects Related to the Perceived Value of Experience

The study is based on feedback from participants of the experience created for
the trade fair where the mold was exhibited. After experiencing the AR application,
data was collected to estimate their degree of satisfaction with the product. This in-
formation was compared with another group of independent users who experienced

118 7.3. Hypotheses

the same sequence about the ceramic mold through a video.
In this sense, the first level of experiential knowledge about service products arises

in terms of Usefulness and Hedonic values [BFH06, BLKG05], where a first impres-
sion about the functionality and performance of the product and the experiential
enjoyment provided by the service experience is collected. Accordingly, in the work
developed by Childers et al. [CCPC01] it is shown that users value utility and enjoy-
ment when purchasing a product. Recent works following this approach suggest
that the use of AR improves the perception of these two terms when purchasing a
product [PM14]. All this is supported by the impression generated in the user about
the functionality and performance of the product and the experiential enjoyment
provided. In this sense, the following hypotheses can be formulated:

H1. Hedonic enjoyment has a positive reaction on the perceived value of the AR
experience.

H2. Usefulness has a positive reaction on the perceived value of the AR experience.

Besides that, AR makes it possible to generate applications with environmental
embedding, in the sense of displaying virtual content in the person’s real environment
and adding a control through physical simulation, so that users can interact with the
synthetic elements of the AR experience. In this work, the user only acts passively
observing the features of the product that is explained through an avatar, so in the
experience, there is only environmental integration of the users who observe the
virtual content that shows up over the ceramic mold.

Another aspect to consider is the correspondence between the synthetic elements
and the real world through Spatial Presence. It implies that people perceive and
experience inputs as if they were real even though some of them are not. If this
sense of Spatial Presence is achieved, users feel located in the real world, even
though the virtual elements displayed are no more than an illusion [HWV+15]. In the
work by Klein et al., [Kle03] it is shown that the feeling of Spatial Presence increases
customers’ beliefs and attitudes about product attributes. Focusing the analysis on
the sense of Spatial Presence perceived in a real environment and the effects that
this experience causes over the visitors, this third hypothesis is proposed:

H3. The Spatial Presence of users in the display of synthetic elements increases
the perceived value of the AR experience.

Chapter 7. Improved Perception of Ceramic Molds Through Augmented Reality 119

In this work, an avatar carries out an understanding of the ceramic mold features
while visually showing, through synthetic elements, the different parts of themold. In
this sense, a comparison could have beenmade aboutwhether the visual information
was more relevant than the verbal one. This could affect users in their way of
processing the information. However, it was decided not to incorporate this aspect
in the work since the language shown was quite technical and some users did not
have this level of expertise.

7.3.2 Aspects Related to the Product Decision-Making

One aspect to validate is the degree of satisfaction reported by the customer
after deciding to purchase the product. Parker et al. [PLX16] define this concept
as "decision comfort" or the degree to which the consumer feels pleased with the
decision made. Decision comfort constitutes a soft-positive affective response that
explains customers’ changes of opinion in their decision making, beyond generic
affect and decision confidence. The latter reflects the level of certainty about making
the best decision, based on a cognitive evaluation of the pros and cons around the
decision. As the same authors state [PLX16], decision comfort is an affect-based
sense of ease related to the process of making the decision.

These possible changes in decision-making are influenced by the way of present-
ation and the initial satisfaction of the user with the product and ultimately influence
the Purchase Intentions. For example, Li et al. [LDB+05] showed that a 3D present-
ation of products significantly and positively impacts online Purchase Intentions.
In other works, the authors apply AR techniques to enrich user experience when
shopping for a product in a physical store [COEGD+19].

Furthermore, AR enhances the feeling of Spatial Presence in an environment and
the virtual objects rendered in the experience [Sch09]. It is felt that in the case of AR
on a ceramic mold, the fact that users can see themselves on the screen influences
the processes of unconscious spatial cognition, making presented virtual objects
look real and it can affect the Product Decision-Making. This allows the following
two new hypotheses to be established:

H4. The Spatial Presence of the user has a positive effect in the Product Decision-
Making.

H5. The Purchase Intentions have a positive effect in the Product Decision-Making.

120 7.4. Description of the Exposed Product

7.3.3 Result of Combining Perceived Value of Experience and
Product Decision-Making

In the proposed model, it is given by the combined action between the perceived
value of the AR experience and the Product Decision-Making process, which de-
termines its final satisfaction. Both concepts are defined by latent variables that try
to collect different factors taken into account by users and whose combination is
compared to the last question of the questionnaire that collects user satisfaction
about ceramicmold. With all this, the context in which the experience was developed
is presented below. Furthermore, an attempt will be made to check the validity of
the hypotheses raised in this section.

7.4 Description of the Exposed Product

A ceramic mold is an industrial engineering component that allows shaping tiles
during the pressing stage. The appearance and quality of the finished product
depend directly on the functioning of the mold. For its design, the features of the
ceramic pieces to be produced (material, dimensions, relief, and decorations) and
the pressing operations to be performed on it must be taken into account. Ceramic
molds can be classified into five types according to their structural and functional
characteristics: penetrating molds, penetrating mirror molds, MSF/SFS double
mirror molds, quick-change molds (CRS), and 380/440V molds. Although there
are multiple types of molds, most of them share components although there are
important differences between them, both in structure and operation [Gal08].

The product on display at the fair and described in this paper is a MSF/SFS double
mirror mold, which features a penetrating-type top arrangement. This double die
system allows the formation of tiles with a spacer andwith the thin side of the spacer
facing up. The upper part is used with presses of 10,000 tons of pressure through
an incorporated isostatic system and supported by a guiding system working along
with a compensation system that allows maintaining a balanced pressure between
the different cavities. Additionally, this mold incorporates state-of-the-art elements
that improve its reliability in the event of accidental maneuvers: quick electrical
connections, internal cleaning system, anti-wear plate, and isostatic punch holder.
The advantage of the MSF/SFS double mirror mold is its application to any type of
special molding and in any technology.

Chapter 7. Improved Perception of Ceramic Molds Through Augmented Reality 121

Figure 7.2: Dihedral representation of the application environment.

The physical environment of the presentation is in the context of a commercial
stand of approximately 20 square meters hosted at CEVISAMA [Cev20]. At the
center of the location is the ceramic mold measuring 212 by 110 centimeters, resting
on a stand 105 centimeters high. Visitors can approach and interact with the mold at
will. About 120 centimeters inward from the location, and placed on a wooden panel,
rests a high-resolution television covering a space of 191 by 110 centimeters, with its
top 215 centimeters above the floor. At this upper point is located a high-resolution
camera oriented towards the mold and the outside of the stand, giving a perspective
of the scene that produces a mirror effect on visitors. Figure 7.2 shows a diagram in
dihedral perspective of the layout of the physical environment of the experience.

The description of the features of the ceramic mold is based on a script provided
by the advertising company where the technical characteristics of its ceramic mold
are exposed. The storyline of the presentation is led by an avatar that presents each
element of the mold in its augmented reality representation of the real mold. As a
whole, the application consists of a 10-minute cyclic sequence.

The mold elements that are highlighted are:

• Removable blades: Elements integrated into the edges of the raw material
containers. They are in charge of preserving the integrity of the edges of the
container and the ceramic pieces.

• Anti-wear plate: Device located in the contact areas between the upper and
lower elements of the mold, to protect the components during pressing opera-
tions.

• Internal cleaning system: System based on air pulses to eliminate the rest of

122 7.5. Implementation of the AR Application

the material retained in the mold after each operation.

• Quick electrical connectors: Mold electrical outlet connection rack to provide
safety and failure protection.

• Sliding system: Device in charge of extracting the ceramic piece from the
mold with a system of guides and pistons that lift the part out of the punch
and the mold.

• Isostatic system: System that manages the force compensation applied by
the press on the mold to operate more uniformly on the final part.

7.5 Implementation of the AR Application

Figure 7.3: Flowchart describing the composition and integration of the three phases
that compose the design and real-time execution of the AR application.

The application’s purpose is to transform a script about the commercial demon-
stration of the operation and characteristics of a ceramic mold into an AR system.
For this purpose, three phases are defined within the development of the applica-
tion: the transformation of the script into a 3D sequence, the calibration of the AR

Chapter 7. Improved Perception of Ceramic Molds Through Augmented Reality 123

system, and its integration in a single execution. Figure 7.3 shows a diagram with
the elements that compose these three phases.

At the technical level, the application generated for this experience was developed
on the Unity game engine [Uni21] along with the OpenCV computer vision API in
its plugin version for Unity based on markers (OpenCV for Unity v2.3.7). And at
the hardware level, the kit available for the implementation and execution of the
application consists of a mid-high-end computer (HP Z420 - CPU Intel Xeon E5-1660,
3.70GHz, 32GB, NVIDIA Quadro K5000), a high-resolution USB camera (Logitech
Brio 4K Stream Edition) and a high-resolution television (Sony KD85XG8596 85"
Ultra HD 4K Android TV).

7.5.1 Scripted sequence and synthetic elements

The script developed by the marketing company is composed of a cyclical se-
quence of stages to promote key features of the product, all linked by the presence
of a narrator. Each of the stages of the sequence is composed of 3D elements
generated from different sources.

The narrator is integrated into the action in video format. The production of the
videos took place in a recording studio with an actor placed on a chroma key. The
post-processing of the chroma key to remove the green background is done using a
shader implemented for this application.

The assets used in the application to represent the mold components were
modeled based on themanufacturer’s technical specifications using 3DSMax. Simil-
arly, the animations designed for their integration into the sequence were planned to
take into account the actual arrangement of the elements in themold, their operation,
and range of motion, trying to generate fluid and visually appealing movements. The
materials used for the synthetic elements of the mold were parameterized so that
they resemble as closely as possible the real elements of the mold in the lighting
conditions of the scene at the fair. That is, the materials with metallic properties
and in dark tones try to simulate the visual perception of elements such as steel or
tungsten that are part of the real mold materials. As examples, Figure 7.4, the 3D
models of three parts of the mold are arranged from left to right: the sliding system,
the quick electrical connectors, and the anti-wear plate.

To technically implement the script provided by the advertising company, a se-
quence of actions was generated within a Unity scene. These actions are controlled

124 7.5. Implementation of the AR Application

Figure 7.4: Examples of some of the 3D models representing the mold components.

sub-sequences for the input and output of the elements that are intended to be
highlighted in the script. Each sub-sequence is stored inside a Unity game object,
with its elements and animations, and is managed by a general sequence controller
that activates or deactivates it accordingly.

As can be seen in the first phase of Figure 7.3, the outcome of this phase is a 3D
sequence generated in Unity.

7.5.2 Vision Module and System Calibration

A key element in any AR system is the correspondence between the real and
synthetic worlds. In the literature, multiple libraries provide the necessary tools to
establish this correspondence, such as ARCore [Goo21], Vuforia [Vuf21], and OpenCV
[BK08].For this experiment, one aspect to take into consideration is that the relative
position between the camera and the mold remains constant once the system is
calibrated. Since the camera is anchored to the television set placed on wall support,
the mold is a static element of large tonnage.

Given these conditions, and taking into account the dimensions and geometry
of the mold and the particularities of the experience, it is impossible to have a
continuous mark that determines the reference system for positioning the virtual
objects. However, given the static situation of the system, it is possible to use
a previous calibration to obtain the reference system that allows establishing a
correspondence between the 3D points of the physical mold plane in different
positions and its projection in the image integrating the synthetic world and the real
world. This information, captured by the real-world camera, is captured in a plane
on which the video texture is applied from the USB camera input.

For this process, the ArUcomodule implemented in OpenCV was used to calibrate
the camera by obtaining the intrinsic and extrinsic parameters as well as their
distortion coefficients. For this purpose, a correspondence is established between

Chapter 7. Improved Perception of Ceramic Molds Through Augmented Reality 125

Figure 7.5: Example of integration of elements in the AR application and with the
environment and visitors to the stand.

the points belonging to the environment and their projection on the camera image.
With this module, calibration can be performed from the corners of a marker or the
corners of the ChArUco [GJMSMCMJ14]. This calibration method is more versatile
than traditional methods based on checkerboard patterns and allows for occlusions
or partial views. In this way, it is possible to detect the mark, to know its position and
rotation, and to be able to project on the mark 3D objects accurately. In this way, it
is possible to determine a reference plane on which to position the synthetic world.

7.5.3 Integration and Execution in Unity

Finally, with the sequence of actions generated and the reference system obtained,
it only remains to integrate these elements in a final application that executes a
continuous loop and integrates the elements in the real environment of the fair.

From the reference system, the projection is arranged between the video input
coming from the camera and the synthetic elements that make up the sequence.
As can be seen in the last phase of the diagram of Figure 7.3, the result intends the
video with the sequence.

126 7.6. Experimentation and Analysis of Results

As a technical note, to achieve the effect of occlusion of the synthetic elements
when they "emerge" from the mold, an occlusion shader was implemented from the
synthetic geometries of the elements present in the scene. An example of this case
can be seen in Figure 7.5, with the pistons that lift the ceramic pieces coming out of
the mold.

7.6 Experimentation and Analysis of Results

7.6.1 Experiments Protocol

One of the goals of this work was to test if the use of AR improves the perception
of product features. For this purpose, two experiments were carried out. The first
experiment was planned to collect data to estimate the degree of satisfaction that
the user perceived about the product after visualizing the AR experience. During
the experience, participants had freedom of movement around the ceramic mold,
being able to contemplate the physical model and visualize the synthetic elements
integrated with the camera video image observed through the television screen.
Additionally, a second experiment was arranged to measure the reality-enhancing
effect of an AR experience and analyze how it affects Spatial Presence. This second
experience was conducted with another group of users, different and independent
from AR ones. For this case, participants watched the playback of the sequence
through a video on a screen.

In both groups, users enjoyed the experience for 10 minutes. In the end, they were
asked to fill out a questionnaire. The questionnaire consisted of 10 questions to
express their impressions, rating each on a five-point Likert scale ("very unfavorable"
= 1 to "very favorable" = 5).

The test was carried out on a population of 50 people for the AR experience and
50 people for the video experience. In the first group, 32 were men and 18 were
women with ages ranging from 19 to 55 years old, among the visitors who came to
the stand and voluntarily took the survey. In the second group, 34 were male and 16
were female, and respondents ranged from 20 to 51 years old.

The test questions were intended to test the validity of the experience and the
hypotheses stated above. The questions were designed to express impressions
of the AR experience at four levels: Hedonic, Utility, Spatial Presence and Purchase
Intentions. The definition of the questions was based on the analysis of questions

Chapter 7. Improved Perception of Ceramic Molds Through Augmented Reality 127

on different aspects raised in the literature on users’ perception of an AR experi-
ence [BC18a, CCPC01, HdRC+17, RFH19, VWG+04] (see Table 7.1). Moreover, a final
question was included to measure the user’s overall satisfaction with the product.

In Table 7.1, the description of the questions is shown in Column 1. Columns
2 and 3 show the mean score and standard deviation for users who watched the
video experience (Video), and for users who watched the AR experience (AR). The
grouping of the test questions into latent constructs is also shown.

Overall, the results presented in Table 7.1 reveal that users’ ratings of the different
questions were better for the AR experience than the experience through video.
These differences are clearly seen at the Hedonic and Spatial Presence levels. In the
case of the questions related to Utility and Purchase Intentions, these improvements
are not as significant as users take into account other factors such as product
features. In the case of final Product Satisfaction, there is also a clear improvement
from Avgvideo = 3.1 to AvgAR = 4.4.

Questions Video AR
Hedonic adapted from [HdRC+17]
Q1. I found the viewing experience entertaining. 3.0 ±1.1 4.2 ±0.7

Q2. The sequence has been funny. 2.8 ±1.2 3.8 ±1.1

Usefulness adapted from [CCPC01, HdRC+17, RFH19]
Q3. The sequence provides information on its operation in a short time. 3.9 ±0.8 4.4 ±1.0

Q4. The sequence allows me to more clearly appreciate the characteristics
of the mold.

3.7 ±1.0 4.4 ±0.7

Spatial Presence adapted from [VWG+04, HdRC+17]
Q5. I felt that the experience could fit into the real world. 2.8 ±1.2 4.1 ±0.9

Q6. I have perceived that the elements of the mold were integrated in a
realistic way.

3.1 ±1.0 4.1 ±0.7

Q7. I felt the action seemed real. 2.2 ±0.9 4.1 ±0.8

Purchase Intentions adapted from [BC18a, HdRC+17]
Q8. If I had to buy the mold, the visual experience has helped me make a
decision.

3.2 ±1.1 3.9 ±0.9

Q9. The characteristics of the product are interesting as a purchase option
in the ceramic industry.

3.6 ±0.7 4.1 ±0.8

Product satisfaction
Q10. My general opinion on the ceramic mold has improved. 3.1 ±1.0 4.4 ±0.8

Table 7.1: Questionnaire and overview of constructs. It is shown the average score
and the standard deviation for users for video and AR experiences.

128 7.6. Experimentation and Analysis of Results

1 2 3 4 5 6 7
1. Hedonic 1.00
2. Usefulness 0.72 1.00
3. Spatial Presence 0.43 0.45 1.00
4. Purchase Intentions 0.48 0.50 0.77 1.00
5. Perceived Value of Experience 0.83 0.86 0.52 0.58 1.00
6. Product Decision-Making 0.48 0.50 0.77 1.00 0.58 1.00
7. Q10 0.55 0.57 0.69 0.88 0.66 0.88 1.00

Table 7.2: Relation between independent latent variables KSI and dependent latent
variables ETA for the video experience.

1 2 3 4 5 6 7
1. Hedonic 1.00
2. Usefulness 0.30 1.00
3. Spatial Presence 0.66 0.20 1.00
4. Purchase Intentions 0.73 0.22 0.53 1.00
5. Perceived Value of Experience 1.00 0.30 0.66 0.73 1.00
6. Product Decision-Making 0.89 0.27 0.65 0.81 0.89 1.00
7. Q10 0.91 0.27 0.65 0.80 0.91 0.98 1.00

Table 7.3: Relation between independent latent variables KSI and dependent latent
variables ETA for the AR experience.

7.6.2 Hypothesis Testing

To evaluate the hypotheses proposed in Section 3, a SEMwas runwith the program
LISREL 10.20. A maximum likelihood model was applied to generate the model
using robust estimation, considering that the data do not necessarily follow a normal
distribution [JOW16]. Using this methodology, the different constructs represented
by the independent latent variables KSI (Hedonic, Usefulness, Spatial Presence and
Purchase Intentions) associated with the questions in Table 7.1, could be grouped
into the dependent latent variables ETA (Perceived Value of Experience and Product
Decision-Making). These dependent latent variables act as intermediaries collecting
different constructs that are combined to establish a relationship with the final
satisfaction of the product (question Q10). The grouping mechanism is determined
by a model that obtains a better fit. The proposed model was inspired in [HdRC+17]
and [RFH19] although the AR experience proposed in both articles are not the same
as the present work. From these latent variables, Tables 7.2 and 7.3 show the

Chapter 7. Improved Perception of Ceramic Molds Through Augmented Reality 129

Figure 7.6: Model to explain the degree of satisfaction with the product through the
video experience.

Figure 7.7: Model to explain the degree of satisfaction with the product in AR experi-
ence.

relationships between the different constructs on Q10. In these tables, it can be seen
how for instance the Hedonic component affects the scores on Q10 in a different
way in the AR experience (0.91) than in the video experience (0.55).

Figures 7.6 and 7.7 show the model for the case of the experience with video and
AR, respectively. The same model was applied to the test data obtained from both
groups of users, those who saw the features of the ceramic mold from a video and
those who saw them in AR. The goal was to evaluate the differences that arise in
the model based on the feedback received by both groups of users.

The results on the proposed model in Figures 7.6 and 7.7, show that the Perceived
Value of Experience is influenced by both constructs Hedonic (β = 0.83; p = 0.001)
and Usefulness (β = 0.86; p = 0.001) for the video experience, and Hedonic (β =
1.00; p < 0.001) and Usefulness (β = 0.30; p < 0.001) for the AR experience. In this
sense, hypothesis H1 and H2 were validated. Additionally, by looking at the model in
the AR experience, it can be seen that Hedonic expectations reinforce the Perceived
Value of Experience more than viewing through video. However, the Usefulness has

130 7.6. Experimentation and Analysis of Results

Video AR
AVE CR AVE CR

Hedonic 0.59 0.62 0.35 0.27
Usefulness 0.40 0.34 0.26 0.16
Spatial Presence 0.51 0.61 0.74 0.86
Purchase Intentions 0.35 0.27 0.58 0.61
Perceived Value of Experience 0.48 0.57 0.41 0.46
Product Decision-Making 0.75 0.81 0.38 0.32
Q10 0.61 0.65 0.89 0.94

Table 7.4: Average Variance Extracted (AVE); Composite Reliability (CR) for the case
of video and AR experiences.

given higher values in video than AR for this construct.
Hypothesis H3 states that the Spatial Presence of users in the display of synthetic

elements increases the Perceived Value of Experience. In the case of video, the
model indicates a value of (β = 0.11; p = 0.540) for the Spatial Presence. In this case
the Spatial Presence was not significantly linked to Perceived Value of Experience,
rejecting H3 for video. For the case of AR, the value obtained is (β = 0.37; p < 0.001)
complying with H3.

It should be noted that the Spatial Presence also intervenes in the Product Decision-
Making (hypothesis H4). When observing the models in Figures 7.6 and 7.7, the data
indicate values of (β = 0.70; p < 0.001) and (β = 0.33; p < 0.001) from video and AR
respectively. In this case, both experiences verify hypothesis H4, obtaining a higher
value of the Spatial Presence influence for the video viewing. It is possible that the
lack of spatial presence in video has a negative effect on purchase intentions and
that it would be related to the low values given to the questions for the case of video
viewing in Table 7.1.

In the case of Purchase Intentions, this construct provides direct information in
the Product Decision-Making process. In the case of video, this variable is decisive
(β = 1.00; p < 0.001) while in AR its value decreases (β = 0.81; p < 0.001). In both
experiments, it can be stated that hypothesis H5 is confirmed.

Finally, both in the case of video and in the case of AR, the dependent latent
variables Perceived Value of Experience and Product Decision-Making have a similar
importance in predicting product satisfaction (question Q10). This is a delicate
aspect to assess and the importance of both variables could vary depending on
the context in which the experience was carried out, although it seems that both

Chapter 7. Improved Perception of Ceramic Molds Through Augmented Reality 131

aspects significantly affect product satisfaction.
Table 7.4 shows the latent variables including the question Q10, that were used

for the case of video and AR experiences. Also included in the Average Variance
Extracted (AVE) and the Composite Reliability (CR) for each variable. This allows
measuring the internal consistency between the constructs within the questionnaire
and their relationship by generating dependent latent variables.

Table 7.5 shows the model fit results for the test data generated from users who
saw the experience in video and AR, respectively. The reference values that indicate
whether the model has achieved a good fit are shown in the last column of the table
[MLV14]. In the case of the parameter χ2/df (Chi-squared divided by the degrees of
freedom), its value is relatively low in both experiences. This parameter is sensitive
to sample size and the number of degrees of freedom of the model.

In the case of the descriptors Root Mean Square Error of Approximation (RMSEA)
and Root Mean Square Residual (RMSR), the AR experience got a reasonable fit,
RMSEA = 0.09 and RMSR = 0.08. For the parameters Goodness of Fit Index (GFI)
and Adjusted Goodness of Fit Index (AGFI) parameters, in AR relatively high values
are achieved, especially for the Goodness of Fit Index, GFI = 0.90 in the range of
values for a good fit. This decreases for the case of AGFI that is adjusted by the
degrees of freedom of the model.

For the group of users who viewed the experience via video, the data collected
for the model through the user test fit similarly to the AR case. In this sense, it can
be indicated that the relationships between the latent variables in the model for the
video experience are produced differently, although they do not significantly affect
the fit of the model.

Indicator Video AR Reference Value
χ2/df 46.94 / 31 = 1.51 35.56 / 31 = 1.15 Between 1 and 3, good fit
RMSEA 0.10 0.09 < 0.08 reasonable fit
RMSR 0.10 0.08 <= 0.05 reflects a good fit
GFI 0.87 0.90 >= 0.90 reflects a good fit
AGFI 0.76 0.83 >= 0.90 reflects a good fit

Table 7.5: Indicators of structural fit model in the case of users for the video and AR
experiences.

132 7.7. Discussion

7.7 Discussion

One of the marketing company’s goals in promoting and developing this AR
experience was to present to its customers an image of a technologically advanced
company. In this sense, regardless of the results analyzed, it can be stated that
the objective was fully met and, in general, all customers enjoyed the experience to
some extent, so the impact on users was very positive.

As a differentiating aspect to other works [JER18, Mol06, Pae14, FdSB16] that
focus on displaying interactive 3D information looking for task efficiency, training,
maintenance, or decision making, this AR experience seeks to catch the attention
on the technological features of the product in potential customers or fair visitors
who approached the company’s stand. The simulation through AR techniques of
complex mechanisms of industrial devices explains in a very didactic way how they
operate. This can be done thanks to the animation of the parts that compose them,
their scaling in case they are very small, and their visualization on the device in
case they are hidden. This kind of simulation is essential for the demonstration of
industrial products and has a great impact on the users.

From the data collected in the experiments and the SEM model proposed in this
work, it can be observed that Spatial Presence of users has an important influence
on increasing customer satisfaction with the displayed product. This is seen in the
comparison of responses to the test carried out for users who could only visualize
the experience through a video (see Table 7.1). Moreover, unlike other works in
AR such as [HdRC+17, RFH19] that seek to improve the service experience on the
user individually, the AR setup proposed is a collective experience where users see
themselves on the television screen and exchange opinions, being able to verify that
this interaction between the users stimulated that satisfaction.

As for the hypotheses related to Perceived Value of Experience in terms of utility
and enjoyment, it was found that, although AR technology is still far from being
able to integrate virtual elements into the real world with a high degree of fidelity,
participants considered the attributes of virtual objects as if they were real improving
both their understanding of product functionality and their impression of product
quality.

Finally, it is shown that in AR applications such as this one, there is a positive
relationship between Spatial Presence and Product Decision-Making. Therefore, it

Chapter 7. Improved Perception of Ceramic Molds Through Augmented Reality 133

is considered of great importance the development of this type of experiences to
understand the operation of complex systems in an attractive way in which users
are involved as final consumers of the product.

7.8 Conclusions and Future Work

This paper presents an AR application for the display and sale of ceramic molds.
For this purpose, the physical element of the ceramic mold is visualized combined
with virtual components of the interior of the ceramic mold in real time. All the
action is developed by an avatar that is incorporated during the visualization in AR
explaining the functioning of the mold. Users visualize the graphic information about
the mold, placed between them and a large-format television screen. In this way,
users see themselves on the television as if it was a mirror.

In order to analyze the impact of the AR experience on users, two experiments
were conducted with user tests. The first one on the AR experience and the second
one on the same experience but in video format. For this purpose, this paper
presents a theoretical framework that explains how users perceive and evaluate the
benefits and quality of AR augmentation through their physical presence, compared
to viewing the same experience through a video.

The results confirm that the use of AR played a positive role on users by enhancing
their understanding of the product technology displayed by the company. The
Perceived Value of the Experience in terms of usefulness and enjoyment was found to
enhance comfort in the decision on Purchase Intentions. Furthermore, this stimulus
was reinforced by the Spatial Presence of the users during the AR experience.

In this context, it can be deduced that content creation that has a clear and
persuasive use is an important aspect for companies when promoting their products.
Improvements in AR visualization with more realistic content and user feedback lead
to an exploration of visual technology and digital design, leading to the development
of new applications in other fields such as entertainment, sports and gaming.

In the future, it will be necessary to explore adjacent vias to the one exploited in
this work by adding protocols for interaction with users of this type of experience,
even testing its reliability in other contexts such as virtual reality (VR). Examples of
these lines would be a comparison between different immersion levels such as a
first-person VR experience and a screen display, or the usage of prop elements to
enhance the interaction with AR experiences like the one presented for this work.

134 7.8. Conclusions and Future Work

135

Chapter 8

Virtual Reality versus Desktop
Experience in a Dangerous Goods
Simulator

Publication

Chover, Miguel., Sotoca, Jose M., & Marín-Lora, Carlos. (2022, May). Virtual Reality
versus Desktop Experience in a Dangerous Goods Simulator. International Journal
of Serious Games, 9(2), 63–77. (Q1).
https://doi.org/10.17083/ijsg.v9i2.493.

Abstract

Virtual Reality applications have become a trend in training simulators as an
alternative to desktop applications. However, further study is needed on how these
types of serious games, which often include several modes of interaction, can
improve the user experience. In this sense, this paper analyzes the differences
between playing serious first-person games on a desktop computer versus playing
in Virtual Reality. For this purpose, two versions of a dangerous goods unloading
simulator have been implemented. The first one was developed as a classic desktop
game with keyboard and mouse-based interaction, while the second was for Virtual
Reality devices. The user experience has been measured with the In-game version
of the Game Experience Questionnaire. With this, aspects related to immersion,

https://doi.org/10.17083/ijsg.v9i2.493

136 8.1. Introduction

flow, positive emotions, and psychological needs have been compared for these two
platforms. The study shows that the Virtual Reality experience produces a better
overall game experience for most analyzed items. Nevertheless, the results highlight
a significant dependence between the application type and the game experience
induced on the player.

Keywords

Serious games, Virtual reality, Game experience

8.1 Introduction

Virtual Reality (VR) increases the reality experience felt by the user, including
sensations such as touch, vision, and sound within a virtual environment created by
a computer [Kim16]. Consequently, advances in the development of VR hardware
devices and computer graphics technology have enabled the generation of several
applications, allowing the user to enjoy spatial and temporal experiences virtually.
In addition, there is a growing demand for research into technologies that support
these applications, as well as an increase in total consumer spending in the video
game industry using VR systems [ESA17, BC18b, HŠM+19].

VR supposes progress in terms of interaction and complete immersion of the
player in the game. Moreover, VR games provide interesting advances in the contem-
porary video game scene. In this way, it is possible to afford innovative experiences
for present and future players [Cox14]. However, the studies carried out on how
VR affects gameplay are still limited, and it is not clear how interaction through VR
controllers can help or harm the player’s experience.

In this sense, the player’s experience is more related to personal and individual
enjoyment while playing with the game, which determines a subjective assessment
of the quality of the game. Although we cannot establish a unique definition that
defines this experience from literature, we can indicate that several elements can
influence the feelings and experiences that people have when they play digital games
such as enjoyment, immersion, challenge, etc [GKN11].

In the literature, several questionnaires have been developed that offer different
significant elements in the player’s experience [NDC14, DNC16]. Among them we
can highlight, the Game User Experience Satisfaction Scale (GUESS) [PKC16] that

Chapter 8. Virtual Reality versus Desktop Experience in a Dangerous Goods Simulator 137

performs an exhaustive study of the different aspects that influence the develop-
ment of a video game, the Core Elements of the Gaming Experience questionnaire
(CEGE)[CGCC15] in which aspects such as enjoyment while playing are considered,
the interaction formed by the player’s sense of control and ownership, and the video
game itself formed by the environment and the gameplay, and the Game Engage-
ment Questionnaire [BFC+09] that analyzes what aspects are associated with the
negative effects of violent video games.

This paper evaluates a serious game through VR by comparing it to viewing the
same game in First Person (FP) on a desktop display. Therefore, and as previ-
ous work in the learning process evaluation of this type of games [BKLMG13], it is
proposed to carry out an analysis on the player’s experience that allows evaluat-
ing which technology could be more useful in this framework. In this sense, and
following the work of Pallavicini & Pepe [PP19], we will use the Game Experience
Questionnaire (GEQ) [IdP13] to compare both technologies, andmore specifically the
In-game GEQ version. This questionnairemeasures the following seven components:
Competence, Sensory and Imaginative Immersion, Flow, Tension, Challenge, Negative
Affections, and Positive Affections.

Through competence, an attempt is made to measure the intrinsic motivation
that players feel when it comes to fulfilling the requirements of the tasks they wish
to complete [GKN11]. Emri and Mäyrä [ME11] studied immersion in the game as part
of the player’s experience, proposing a model that includes three different aspects
in the immersion process: sensory, challenge-based, and imaginative immersion.
Referring to sensory immersion as the multisensory properties of a game, in other
words, the characteristics of the game that generate a perceptual impact on the user.
Challenge-based immersion involves analyzing the cognitive aspects necessary to
overcome the game challenges, while imaginative immersion refers to the fantasy
created in the game, and depends on the richness of the narrative structure. In
the case of VR, this technology supposes a more intense degree of immersion
compared to a computer screen, making the user consider the virtual world of the
game that surrounds him/her as the real world.

About the Flow dimension, we can define it as the sensation of influencing the
game activity within the virtual world, and in that sense, we can consider it one of the
important aspects involved in the player’s enjoyment [WWH+08]. Another dimension
to consider is the Positive or Negative Affections related to the emotions that are
generated in the player during the game. Positive psychological aspects such as

138 8.2. Literature on the State of the Art

happiness or surprise can increase the success of the game [Tan08]. Nevertheless,
when the challenge is unbalanced in its complexity, the player may experience
negative emotions, including tension due to poor ability to solve tasks or discomfort
if the game offers little difficulty, losing interest in continuing to play [SW14].

The reason for using the In-gameGEQ versus the other different versions proposed
in [IdP13] is that the GEQ - Core Module, consisting of 33 items that probe players’
feelings and thoughts while playing, has been questioned in the [LBM18] work. In
Law et al. [LBM18], the authors conclude that some items were inconsistent after
measuring psychometric properties in the gaming experience of 633 participants
after they had played in the past 24 hours. For this purpose, the authors performed an
Exploratory Factor Analysis (EFA) on the seven factors to indicate whether the items
correspond to the seven components indicated in the questionnaire. Furthermore, it
also emerges from the study that the Tension and Negative Affections components
are too similar and should be merged into a single component.

It is noteworthy that among the questions in which they find inconsistencies (see
Table 5 in [LBM18]) only question 5 appears in the In-game GEQ, with the difference
that in the GEQ - Core Module it is defined as "I was fully occupied with the game"
while the In-game GEQ is the only one that has been modified in this work and is
defined as "I felt completely absorbed". Moreover, at no point is a solution shown to
the inconsistencies found in some [IdP13] items. Therefore, for the present work we
have chosen the In-game GEQ constructed by 14 items.

As a summary, this document is organized as follows. Section 8.2 presents
the references that have been used for the study of previous work in the fields
related to the design and implementation of this experience. Next, section 8.3
details the context in which the application is carried out and continues with the
necessary elements for the development of the serious game. Later, in section
8.4, the hypotheses and general objectives of the study carried out are presented.
Sections 8.5 and 8.6 show the results and a discussion of them. Finally, section 8.7
outlines the conclusions obtained from this work and the possible lines of future
work.

8.2 Literature on the State of the Art

In recent years, several works have been carried out to address immersive VR,
taking into account different aspects such as interaction, the user interface, the

Chapter 8. Virtual Reality versus Desktop Experience in a Dangerous Goods Simulator 139

haptic system, or the player’s movement in the environment [CB20, BV17]. All this
allows the user to know where he/she is, with whom he/she interacts, and what
actions to perform. In this way, the user perceives the virtual world as a reality where
he/she can interact by adding haptic devices and audio sources that maximize
spatial presence [CNdSR16, SNM16].

Currently, last generation devices include VR headsets such as the Oculus Quest
2.0 or the HTC Vive Pro 2.0. At a more affordable level are the Samsung Gear VR and
Google Cardboard which work by using a smartphone as a display. This has made it
easier for consumers who want to experiment with visual immersion to use these
types of technologies.

To provide more realistic interactions between the virtual and real worlds, sev-
eral technological developments have been made. One of them is based on visual
satisfaction such as gaze-based hand interaction using Oculus Quest 2.0 or leap mo-
tion device, to represent realistic movements and gesture recognition and analysis
[HK17, VAKAM20]. Furthermore, the user’s immersion can be enhanced by adding
touch processing through a haptic device to enable feedback of physical reactions
occurring in a virtual environment or user-to-user interaction [LSGF+19, COB+18,
KHF+19, PCPM13]. About touch accuracy, Leonardis et al. [LSBF17] include a three
revolute-spherical-revolute (3-RSR) haptic wearable device which allows control
of the contact of the fingertips. This is a new three degrees-of-freedom wearable
haptic interface that uses force vectors directly on the fingers.

Another aspect to be considered is the specification of displacement or loco-
motion, which requires providing the user with a way to control their movement in
the world. Locomotion in VR involves traveling in a virtual world of infinite scale while
remaining in the confines of a real-world at the scale of the room in which the user is
located [VKBS13, AS18]. There are several possible techniques to solve the problem
of locomotion [BRKD19], with different usability characteristics [HZQ+19]. Among
the most important strategies, we can mention: the use of game controls or joy-
sticks, teleportation, or controller movement [BC21], head motion sensors [TAZF17]
or the establishment of reference points [JHMWA18]. All this is complemented by
wayfinding in a virtual environment, that is, the ability to determine a route, learn
it, and go back over it or reverse from memory [Gol99]. The virtual environment
is often unfamiliar to new users, and therefore it is essential to provide tools to
orient themselves [BK15]. In this sense, the spatial structure of the environment can
influence the purposeful and directed movement based on the objectives pursued

140 8.3. Serious Game Description

[YDOT+19].
However, it is not clear the advantages and disadvantages that VR brings us

through a head-mounted display in comparison with viewing the same experience
on a desktop screen [JKK+20, PP19]. While some works indicate that a FP Desktop
system visualization implies a higher performance and usability concerning VR
[MSG+15, TLS+15], other investigations show that these differences cannot be con-
sidered significant [PPM19].

In particular, although a greater intensity has been demonstrated in terms of
immersion and presence in VR games compared to desktop games, it does not
mean that its use is ideal for all types of games. In the case of driving simulators,
it was seen that VR technology is not the best solution, preferring a flat-screen
condition, where the participants were seated in front of three flat screens with a
combined resolution of 5760 x 1080 pixels and a field of view (FoV) of approximately
135◦ depending on the size of the participants [WFR+17].

8.3 Serious Game Description

Figure 8.1: Virtual Simulator for Learning Dangerous Goods Operations

The simulator developed allows training the workers of a chemical company in the
unloading operations of dangerous goods. The environment includes the necessary

Chapter 8. Virtual Reality versus Desktop Experience in a Dangerous Goods Simulator 141

elements to perform the usual tasks in these types of operations. First of all, there is
a shed where the safety equipment is kept, the wheel chock to stop the truck and the
box to keep the keys while the unloading operation is being carried out. In addition,
the environment has a representation of the truck and the two unloading tanks.
There are also elements to interact with such as the hose, the unloading valves,
the pump, and the truck driver. Figure 8.1 shows a screenshot of the scene. The
application has been developed to be able to design different unloading conditions.
In this respect, it is possible to choose the type of substance to be unloaded (oleum
or caustic soda), the filling level of the unloading tank (empty or full) as well as the
atmospheric conditions to simulate the unloading with or without rain.

Figure 8.2: Sequence of actions map

The sequence of actions to perform the assigned tasks involves the locomotion
or displacement of the operator as shown in the floor diagram (see Figure 8.2). This
locomotion is performed without teleportation. The sequence is made up of seven
routes. First, the player must go to the driver (route 1), then to the shed (route 2),
after this he/she returns to the truck to place the chock on the wheel (route 3), then
goes to check the tank level (route 4) and to place the hose (route 5), then the player
must go to the valve (route 6) and finally turns on the pump (route 7). After this,

142 8.3. Serious Game Description

the process is performed in reverse to undo all actions and finally return the keys
to the driver to end the experience. During its execution, the system keeps track
of the actions performed by the user and displays error messages if the correct
sequence is not performed, indicating which of the listed actions will be the next to
be performed. Finally, the application generates a report to validate the operator’s
performance.

(a) Take the keys from the driver (b) Carry the wheel chock

(c) Checking if the tank is full (d) Press the button to start the pump

(e) Disconnect the hose from the truck (f) Close the oleum valve

Figure 8.3: Interaction examples in the simulator

The system was developed to allow different types of interaction with environ-
mental elements (see Figure 8.3), beyond moving around the stage. For example,

Chapter 8. Virtual Reality versus Desktop Experience in a Dangerous Goods Simulator 143

some objects can be picked up, carried, and deposited, for instance, the driver’s keys
(Figure 8.3(a)) and the wheel chock (Figure 8.3(b)). Other objects can simply be
picked up, such as clothing, boots, or glasses, and others can be pressed, including
the tank emptying (Figure 8.3(c)) and pump start/stop buttons (Figure 8.3(d)). Finally,
two-handed interaction is possible when connecting and disconnecting the hose
(Figure 8.3(e)) or turning the valves (Figure 8.3(f)).

Starting from the initial configuration generated with the variables defined for the
experience (type of load, filling level of the receiving tank, and weather conditions),
the operator must complete the following actions, performing when necessary the
displacements indicated in the paths shown in Figure 8.2:

1. Wait for truck entry and parking for unloading and then go to the driver (route
1).

2. Take the keys from the driver after he/she gets off the truck.

3. Take the keys to the key box in the shed (route 2).

4. Dress according to the type of load.

5. Put on non-skid boots if it rains.

6. Put on safety glasses.

7. Take the wheel chock to secure the truck.

8. Carry the wheel chock and place it on the rear wheel of the truck (route 3).

9. Go to the tank to check its level and empty the discharge tank if it is full (route
4).

10. Go to the discharge hose to connect it (route 5).

11. Go to the corresponding valve depending on the type of product to open it
(route 6).

12. Go to the corresponding pump and press the start button (route 7).

13. Wait for the end-of-load sound signal.

14. Press the button to stop the corresponding pump.

144 8.4. Experiments Description and Scope

15. Close the valve that has been opened (reverse route 7).

16. Disconnect the hose from the truck (route 6).

17. Remove the wheel chock that brakes the truck (reverse routes 5 and 4, it is
not necessary to check the tank level after unloading).

18. Carry the wheel chock to the shed (reverse route 3).

19. Take the keys from the key box in the shed (reverse route 2).

20. Carry the keys and return them to the driver (reverse route 1).

To test the differences in terms of gaming experience of a simulator developed for
desktop computers versus the one developed for VR, two versions of the simulator
have been developed. Both versions have the same functionalities and simply differ
in the interaction and display devices. The interaction in the Desktop application
is done with keyboard and mouse and the visualization is on a computer monitor,
while in the VR application the interaction is done with the controllers, and the scene
is seen through the helmet. It also changes the position of the player, who is sitting
in the desktop version and standing in the VR version (see Figure 8.4).

Figure 8.4: Players testing both versions of the serious game

8.4 Experiments Description and Scope

Nowadays, VR serious games have proliferated due to their unique immersive and
interactive features. These video games are used in the industry as an instructional
tool. However, there is no scientific evidence to justify their use against games

Chapter 8. Virtual Reality versus Desktop Experience in a Dangerous Goods Simulator 145

developed for conventional desktop display devices [PP19]. For this reason and as
a previous work to the evaluation of learning outcomes [BKLMG13], it is proposed
to conduct a study on player experience to initially assess which technology might
be most useful in this context. In this sense, and following the work of Pallavicini &
Pepe [PP19], the In-game GEQ [IdP13] will be used to compare both technologies.

For this purpose, some key aspects such as the immersion level, fluency, positive
or negative emotions, challenge, competition, and tension/anxiety, will be analyzed
with the same game played on a desktop screen and in VR. The main hypotheses of
this study were:

• H1. The dangerous goods serious game played in VR produces more positive
emotions than the Desktop one.

• H2. Immersion and flow are more intense in the VR version than in Desktop
version.

• H3. Differences in psychological needs (i.e., sense of competence, tension/an-
noyance, and challenge) could be relevant between the two technologies for
this experiment.

Concerning the design of the experiments, the comparison conditions for each of
the experiments were as follows:

• Simulation in Desktop: Participants were seated in front of a 27-inch iMac
personal computer with the Desktop simulator version running in full screen.
User interaction with the simulator was performed with keyboard and mouse
as is typically done in these games.

• Simulation in VR: Participants put on the VR headset Oculus Quest 2 with the
VR simulator version running. The interaction was done with the VR controllers
provided by the system.

About both games’ implementations, the Desktop version of the simulator was
developed with Unity 3D 2019.2.2 and the Kineractive 1.11 plugin that allows the cre-
ation of complex reverse kinematic interaction. And the VR version of the simulator
was developed for Oculus Quest 2 with Unity 3D 2019.2.2 and the HurricaneVR 2.3
plugin which consists of a physical interaction toolkit that allows the creation of

146 8.5. Results

immersive VR games. The software used for the statistical analysis was Matlab
R2018b.

For the experiment’s procedure, the experiment was carried out by 60 participants,
31 women and 29 men, with a mean age of 23 years (Standard Deviation = 7.3;
minimum age 18 years, maximum age = 56 years). The only condition to participate
in the study was that the participants did not have any significant visual impairment
(all have normal or corrected to normal visual acuity). The study has received
the approval of the Ethics Committee of the Jaume I University of Castellón. The
participants were scheduled in pairs and in 20 minutes time slots. One of them had
to pick one of the two experiences at will, and the other would go directly to the
other. In both experiences, users had a few minutes to get used to the application
environment and interaction mechanisms. Once ready, users played with the game
for 10 to 15 minutes. For the simulation to be carried out successfully, participants
had to perform the sequence of actions presented in Figure 8.2 and outlined in
Section 8.3. Since the participants had no previous training in dangerous goods
unloading, an assistant guided them and explained the steps to be taken in case of
doubt. At the end of the experience, they filled out a questionnaire about their game
experience.

The questionnaire chosen for both experiences was the GEQ [IdP13] using its
In-game GEQ version. This questionnaire consists of 14 items for users to express
their impressions, rating each item on a five-point Likert scale ("very unfavorable" =
0 to "very favorable" = 4). The In-game GEQ collects the following seven different
components and two items are used for every component. The items for each
are listed below: Competence (items 2 and 9), Sensory and Imaginative Immersion
(items 1 and 4), Flow (items 5 and 10), Tension (items 6 and 8), Challenge (items 12
and 13), Negative Affections (items 3 and 7) and Positive Affections (items 11 and 14).
In addition, item 1 has been slightly modified from "I was interested in the game’s
story" to "I was interested in the operations sequence of the game" as it deals with
actions on a serious game of dangerous goods. Table 8.1 shows the statement of
the In-game GEQ questions associated with their corresponding components.

8.5 Results

After collecting and analyzing the data collected in the questionnaires, the results
obtained from the experiments are presented in the following. To analyze the degree

Chapter 8. Virtual Reality versus Desktop Experience in a Dangerous Goods Simulator 147

of the normativity of the different items, a Lilliefors test was performed for the
Desktop and VR simulators, calculating their statistical value and their p-value. To
compute the critical values for the hypothesis test, interpolated values are calculated
on a table of previously calculated critical values using Monte Carlo simulation for
sample sizes less than 1000 and significance levels between 0.001 and 0.50. The
cutoff value with this statistic for 60 samples is 0.114 for a 5% level test. For all items
the Lilliefors test statistic is greater than the cutoff value, so we reject the normality
hypothesis. Consequently, an ANOVA test does not demonstrate the statistical
significance of the responses to the questionnaire for the two simulators.

In this work, two non-parametric statistical tests have been used to determine the
statistical significance of the results: the Kruskal-Wallis and Friedman test. Kruskal-
Wallis test is a non-parametric version of classical one-way ANOVA, and an extension
of the Wilcoxon rank-sum test to more than two groups. It compares the medians
of the data groups to determine if the samples come from the same population.
The approach uses data ranks, rather than numeric values, ordering the data from
least to greatest in all groups and calculating the sum. Friedman’s test is similar
to classical balanced two-way ANOVA. This approach compares the means using
data ranks. In both statistical tests use the Chi-squared statistic and the p-value.
The criterion to reject the null hypothesis at the 5% significance level will be when
the p-value > 0.05.

Competence
Item 2. I felt successful
Item 9. I felt skilful

Sensory and Imaginat-
ive Immersion

Item 1. I was interested in the operations sequence of the game
Item 4. I found it impressive

Flow
Item 5. I forgot everything around me
Item 10. I felt completely absorbed

Tension
Item 6. I felt frustrated
Item 8. I felt irritable

Challenge
Item 12. I felt challenged
Item 13. I had to put a lot of effort into it

Negative Affections
Item 3. I felt bored
Item 7. I felt it tiresome

Positive Affections
Item 11. I felt content
Item 14. I felt good

Table 8.1: List of the items in the In-game GEQ.

148 8.5. Results

Table 8.2 shows the items associated with their components for both simulators
(Desktop and VR), where column 4 shows their mean and standard deviation and
where bold values indicate the simulator with the highest score. As for the compon-
ents related to Tension and Negative Affections, it should be noted that the score
interpretation for these two components is different, being better when lower values
are obtained in them. Columns 5 and 6 show the statistical significance of the

Components Item Simulator
Average±
Std Deviation

Kruskal-Wallis
Test

Friedman Test

Competence
2 *

Desktop
VR

2.55 ±1.17
3.12 ±0.87

χ2(1) = 7.305
p=0.007

χ2(1) = 7.989
p=0.005

9 *
Desktop
VR

2.00 ±1.19
2.78 ±0.88

χ2(1) = 13.695
p<0.001

χ2(1) = 14.291
p<0.001

Sensory and
Imaginative
Immersion

1 *
Desktop
VR

2.28 ±1.11
3.28 ±0.99

χ2(1) = 26.340
p<0.001

χ2(1) = 30.613
p<0.001

4 *
Desktop
VR

1.91 ±1.14
3.17 ±0.96

χ2(1) = 13.695
p<0.001

χ2(1) = 14.291
p<0.001

Flow
5 *

Desktop
VR

1.67 ±1.35
3.10 ±1.08

χ2(1) = 31.466
p<0.001

χ2(1) = 40.500
p<0.001

10 *
Desktop
VR

1.33 ±1.17
3.00 ±1.21

χ2(1) = 40.473
p<0.001

χ2(1) = 43.667
p<0.001

Tension
6

Desktop
VR

0.50 ±0.87
0.22 ±0.52

χ2(1) = 3.472
p=0.062

χ2(1) = 5.558
p=0.018

8
Desktop
VR

0.10 ±0.30
0.15 ±0.66

χ2(1) = 0.350
p=0.554

χ2(1) = 0.236
p=0.626

Challenge
12 *

Desktop
VR

1.45 ±1.31
2.22 ±1.25

χ2(1) = 9.636
p=0.002

χ2(1) = 11.757
p<0.001

13 *
Desktop
VR

0.83 ±0.89
1.37 ±0.74

χ2(1) = 12.421
p=0.001

χ2(1) = 14.340
p<0.001

Negative
Affections

3 *
Desktop
VR

0.93 ±1.19
0.20 ±0.55

χ2(1) = 18.002
p<0.001

χ2(1) = 24.667
p<0.001

7
Desktop
VR

0.35 ±0.78
0.20 ±0.55

χ2(1) = 1.402
p=0.236

χ2(1) = 1.401
p=0.236

Positive
Affections

11 *
Desktop
VR

2.40 ±1.11
3.30 ±0.91

χ2(1) = 22.407
p<0.001

χ2(1) = 32.236
p<0.001

14 *
Desktop
VR

2.72 ±1.11
3.43 ±0.85

χ2(1) = 15.999
p<0.001

χ2(1) = 22.801
p<0.001

Table 8.2: Average score, standard deviation and statistical significance for ques-
tionnaires.

Chapter 8. Virtual Reality versus Desktop Experience in a Dangerous Goods Simulator 149

Kruskal-Wallis and Friedman tests indicating their Chi-squared and p-value. Based
on this information, if one of the two statistics is not significant, it is considered that
the item does not have sufficient statistical significance and, therefore, only items
with statistically significant results are marked with an asterisk in column 2.

Overall, the results presented in Table 8.2 reveal that participants’ ratings for the
different items are better when playing the VR experience than when playing on
the Desktop mode. These differences are seen in the components of Competence,
Sensory and Imaginative Immersion, Flow, Challenge, and Positive Affections. In
the case of the item related to Tension, there is no significant difference between
the two simulators, producing in both cases a low-stress level. As for the Negative
Affections, there is no significant difference about item 7 "I felt it tiresome", while for
item 3 "I felt bored" the VR simulator scores better, probably due to the "wow effect"
when using this type of technology.

8.6 Discussion

8.6.1 Positive Emotions

Analyzing the results about the starting hypotheses, the following conclusions
can be drawn. Firstly for hypothesis H1, the participants’ impressions of positive
emotions show that the VR experience makes them feel better. There is a clear
difference in the average values obtained for both simulators. In addition, these
results have statistical significance as can be seen in the values obtained for items
11 and 14 in Table 8.2. This perception has been demonstrated by other research
works, with some exception [WFR+17]. Although, the most widespread assumption
is that VR causes the so-called "wow effect" [RPB17] that produces such positive
emotions.

8.6.2 Immersion and Flow

Furthermore, it can be seen from the results that there is a clear difference in the
preference of the participants in the questionnaire in favor of VR simulation over
Desktop in terms of the components related to immersion and flow. This confirms
hypothesis H2 regarding how VR impresses, isolates, and absorbs users from the
outside world. Furthermore, the results shown in Table 8.2 indicate that there is a

150 8.7. Conclusions and Future Work

large difference between the scores obtained on average for these components,
which also show statistical significance for both Kruskal-Wallis and Friedman tests.

8.6.3 Psychological Needs

Finally, regarding the psychological needs, it should be noted that hypothesis H3
establishes that the differences between the two simulators could be significant (in
contrast with other authors [PP19, WFR+17]). In this sense, the results show clear
differences in favor of the VR experience regarding Competence and Challenge, and
all the items involved show statistical significance. However, about Tension, the
differences are less visible, and only item 6 "I felt frustrated" which is slightly lower
in the case of VR is close to statistical significance. Moreover, if Negative Affections
are analyzed only item 3 "I felt bored" is lower in the VR experience, while item 7 "I
felt frustrated" is very similar.

8.6.4 Other Considerations

Because of the results obtained and taking into account that the experiences are
different from others studied in the literature [PP19, PPM19], it can be concluded
that the dangerous goods unloading simulator does present significant differences
in terms of the psychological needs of the participants when they play in Desktop vs
VR. About Competence, users felt more capable and skilled in the VR experience. In
terms of Challenge, the VR experience was more challenging and thought-provoking.
On the other hand, regarding Tension, although the differences are less significant the
VR experience provoked slightly less frustration although similar irritability among
participants.

It should be noted in any case, that in the proposed experience the level of diffi-
culty for the user is higher since there are tasks in the dangerous goods unloading
simulator that require complex actions. In addition, users have to move around a
virtual environment to perform different tasks.

8.7 Conclusions and Future Work

The continuous advances in the development of VR technologies and their applica-
tion in training make it necessary to study the advantages of these applications over
traditional desktop solutions. In the same way, it is also worthwhile to assess the

Chapter 8. Virtual Reality versus Desktop Experience in a Dangerous Goods Simulator 151

new forms of interaction that these new technologies provide and their application
in specific fields.

In this regard, the developed work performs an analysis to evaluate the game
experience in a simulator for learning the tasks of unloading trucks carrying danger-
ous goods. The study compares two versions of the simulator, the first one running
on a Desktop computer and the second one as a VR application. The study shows
that the VR experience produces better overall results for most of the components
in the In-game GEQ. The study results suggest that there are significant differences
in the psychological needs of the participants, mainly in terms of Competence and
Challenge. However, with frustration, irritability, and tiresomeness the feeling is
similar in both simulators.

However, it seems apparent that there is still research work in this field. There
is a dependency between the application type and the game experience raised by
the player from the literature [PP19, CB20]. It is not the same to play a game sitting
or standing, or with a proxy device such as a steering wheel and VR controllers or
hands.

In the future, to verify these guesses and analyze the advantages and disadvant-
ages of using different technologies, it would be necessary to experiment with many
more applications that address the problem from different perspectives. For in-
stance, using alternative interaction systems or different physical objects (proxy
objects). Another aspect is the user’s success and performance analysis. In cases
such as dangerous goods handling, the experience has to fulfill its purpose and
provides knowledge and practice to improve their working conditions and safety.

152 8.7. Conclusions and Future Work

153

Part V

Afterword

155

Chapter 9

Conclusions and Future Work

Today, the tools for developing video games have a strong technical dependence
and require some knowledge for their use. In this sense, the aim is to reduce
their use complexity and facilitate access to the creation of video games. For this
purpose, it starts with the essential elements that define games and designing and
developing a game engine that reduces their complexity of use without affecting
their potential. Next, the game engine is formalized so that the produced games
meet the characteristics of multi-agent systems, and a method is defined for the
game specification as a multi-agent system independently of the development
platform. Finally, based on the implementation of two virtual reality and augmented
reality applications, the game experience in serious games specified according to
the proposed multi-agent methodology is studied. This chapter presents the general
conclusions and the lines of future work derived from the contributions of this thesis.

9.1 Conclusions

In a similar way to the contributions that make up this thesis, the conclusions
are structured in three main blocks. The specific conclusions of each block are
presented below.

9.1.1 Design and Development of a Game Engine

The contributions made in this block cover the study of the specification of video
games, emphasizing themechanisms that define and compose the game logic by in-
cluding non-redundant or accessory elements to themodel. The purpose behind this

156 9.1. Conclusions

restriction is twofold. Firstly, propose an alternative to the traditional development
methods of these interactive applications that usually include advanced functions.
Secondly, obtain a game specification that does not rely on the data structures of
any programming language. This approach results in a game specification model
based on sets of Scenes composed of a list of Actors with generic properties and
methods and a reduced set of actions and conditions to define behaviors.

The result is a game development environment where there are no hierarchies
or scene graphs and where there are no dependencies on arrays, loops, and other
complex data structures. For the validation of this result several tests and exper-
iments have been carried out with users to verify its usefulness and ease of use
compared to other game creation environments. The data obtained from these
experiences show that users can develop games more simply compared to other
commercial engines. It seems significant that all participants completed their game
implementations despite having no previous experience. Furthermore, from the
comparative study against another visual programming environment, it is obtained
that the proposed model is perceived as easier to use and understand its operation.

9.1.2 Game Engine Formalization Using Multi-agent Systems

The general goal of this block is to specify the analogy between video games
and multi-agent systems for the specification and implementation of games. The
result of this work keeps the structure of the game engine, where the entities that
compose the games share a property set and a generic logic system, and where
there are no hierarchical dependencies.

The validation of the method has been carried out through the specification and
the implementation of three games. The criteria used to select these games leans
on the observation that they all present common game mechanics. This leads to
the deduction that the characteristics of the multi-agent systems fit the definition of
video games. The results obtained from the development of these games validate
the theoretical formalization of the video game development environment and show
the potential of the game engine to create games as multi-agent systems.

Additionally, derived studies and experiments have been used to explore com-
plementary pathways. From these works, it can be deduced that the incorporation
of agent specification systems in the development of video games facilitates the
understanding of them before their implementation, which contributes to the access

Chapter 9. Conclusions and Future Work 157

to the sector to further professional profiles.
In addition, these results show that the proposed model allows the specification

and implementation of video games regardless of the platform for their development.
This process has been validated using arcade games as use cases with game
mechanics widely extended. These games have been specified and successfully
implemented in various development environments, demonstrating that the proposal
meets its initial objectives and opens the door to its application in contexts other
than arcade games.

9.1.3 Serious Games Development

Finally, the third block applies the previously described multi-agent specification
model to serious game development experiences in any game engine. The purpose
is to check if the framework allows specifying games with more complex character-
istics than arcade games in a way independent of the game engine where the game
will be developed.

More specifically, the two works developed in this block are virtual reality and
augmented reality serious games implemented on a commercial game engine.
The virtual reality game is for training the tasks of unloading trucks transporting
dangerous goods through virtual reality and the augmented reality game is for the
visualization and sale of ceramic molds.

Both are specified using the proposed formal method, and the result is two fully
functional applications that fulfill their purpose from a definition and a multi-agent
specification as proposed.

The development of these two games had general goals beyond the specification
system as the evaluation of game experiences. In the case of the virtual reality
game, the main interest of the study lies in the interaction mechanisms, where
some objects are picked up, carried, and deposited, others can be picked up or
clicked, and others require two-handed interaction. From this study, it is obtained
that in virtual reality developments it is desirable to define and evaluate new forms
of interaction. In addition, it seems necessary to continue studying the methods of
definition, visualization, and interaction, since a dependence between the type of
application and the game experience is detected. The augmented reality serious
game, meanwhile, consists of the projection of synthetic elements on a ceramic
mold through augmented reality in the context of a trade fair. In this case, the study

158 9.2. Future Works

evaluates the gaming experience on how users perceive the benefits and quality of
the game through its physical presence, compared to viewing the same experience
through a video. The gathered results reinforce the positive role of augmented reality
through parameters such as the perceived value of the experience, and comfort in
the purchase intention decision enhanced by spatial presence.

In summary, it can be deduced that creating realistic and interactive content is key
for companies when promoting their products. This supports one of the premises
of this work by indicating that it would be interesting to extend the development
scope to other profiles that can create applications in fields such as marketing,
entertainment, or sports.

9.2 Future Works

Throughout the development of this work, multiple ideas have arisen to continue
and extend the results obtained in terms of video game development and game
experience.

One of them explores the game engine’s capabilities and the multi-agent specific-
ation system with its extension to 3D. Currently, it is already possible to create 3D
environments or simple games with editors such asMinecraft or Kodu, but as stated
in Chapter 1, it is still necessary to have advanced knowledge to create games in
development environments such as Unity, Unreal or Godot. In this sense, the 3D
version of the game engine requires an analysis of the current 3D engine features
and the differences from the proposed 2D model. This study aims to generate
a 3D version of the game engine that keeps user-friendly and oriented to game
development for non-developer profiles.

Besides, the multi-agent approach to video games needs to take a further step in
its formalization. Currently, scripting in video games handles specific events and
behaviors to modify game logic with no recompiling. Although many engines have
proprietary languages, the trend has shifted towards the use of generic scripting lan-
guages. This means that many commercial games are developed using languages
such as Lua, Python, Ruby, JavaScript, or ActionScript, as well as visual scripting
languages. A proposal in this sense is to define a scripting language oriented to
video games based on the model proposed in this thesis and on the syntax definition
and semantics from the structured programming studies.

Another research line that applies the multi-agent model to video games con-

Chapter 9. Conclusions and Future Work 159

sists of the definition and implementation of algorithms and games more complex
than the arcade games developed in this work. For instance, sorting or pathfind-
ing algorithms whose traditional implementations require iterative loops and data
structures to represent the space and store information about the potential resolu-
tion paths. In addition, it is also proposed the development of other games of the
Real-Time Strategy genre or games like Sudoku, where cooperation and consensus
techniques and even backtracking solutions are applied.

Lastly, another research area derived from this work explores alternative inter-
action methods and also the game experience assessment. In some of the works
that make up this thesis, the first approaches to serious games in fields such as
virtual reality and augmented reality have already been proposed. These invest-
igations have shown the need to extend the proposed model for the creation of
virtual and augmented reality content. It would be necessary to test and analyze
the advantages and disadvantages of using different interaction technologies by
experimenting with applications from various domains that approach the problem
from different perspectives. An example would use alternative interaction systems
or physical objects such as proxy objects or fitness devices such as treadmills or
exercise bikes. In this sense, and given that there is a growing interest in applying
gaming techniques to non-gaming purposes in areas such as health, training, and
rehabilitation, work is currently underway on a video game for treadmill running in a
3D environment. This development integrates research on procedural generation of
terrains and ecosystems with vegetation, automatic simplification and interactive
visualization of trees and plants, specification of behaviors based on multi-agent
systems, and design of new interaction systems for sports machines.

160 9.2. Future Works

161

Bibliography

[AA17] Murat Akçayır and Gökçe Akçayır. Advantages and challenges associated with
augmented reality for education: A systematic review of the literature. Educational
Research Review, 20:1–11, 2017.

[AC19] John Aliprantis and George Caridakis. A survey of augmented reality applications
in cultural heritage. International Journal of Computational Methods in Heritage
Science (IJCMHS), 3(2):118–147, 2019.

[ACB08] Gustavo Aranda, Carlos Carrascosa, and Vicente Botti. Characterizing massively
multiplayer online games as multi-agent systems. In International Workshop on
Hybrid Artificial Intelligence Systems, pages 507–514. Springer, 2008.

[AEMC08] Eike F Anderson, Steffen Engel, Leigh McLoughlin, and Peter Comninos. The case
for research in game engine architecture. ACM, 2008.

[AMS+01] Rogelio Adobbati, Andrew N Marshall, Andrew Scholer, Sheila Tejada, Gal A
Kaminka, Steven Schaffer, and Chris Sollitto. Gamebots: A 3d virtual world test-bed
for multi-agent research. In Proceedings of the second international workshop
on Infrastructure for Agents, MAS, and Scalable MAS, volume 5, page 6. Montreal,
Canada, 2001.

[AMW+13] Eike Falk Anderson, Leigh McLoughlin, Joe Watson, Sam Holmes, Peter Jones,
Hayden Pallett, and Brendan Smith. Choosing the infrastructure for entertainment
and serious computer games-a whiteroom benchmark for game engine selec-
tion. In 2013 5th international conference on games and virtual worlds for serious
applications (VS-GAMES), pages 1–8. IEEE, 2013.

[And11] Eike Falk Anderson. A classification of scripting systems for entertainment and
serious computer games. In 2011 Third International Conference on Games and
Virtual Worlds for Serious Applications, pages 47–54. IEEE, 2011.

[AS10] Apostolos Ampatzoglou and Ioannis Stamelos. Software engineering research for
computer games: A systematic review. Information and Soft Tech, 52(9):888–901,
2010.

162 Bibliography

[AS18] Jeremy Albert and Kelvin Sung. User-centric classification of virtual reality loco-
motion. In Proceedings of the 24th ACM Symposium on Virtual Reality Software
and Technology, VRST ’18, New York, NY, USA, 2018.

[ATE+12] Gustavo Aranda, Tomas Trescak, Marc Esteva, Inmaculada Rodriguez, and Car-
los Carrascosa. Massively multiplayer online games developed with agents. In
Transactions on edutainment vii, pages 129–138. 2012.

[Azu97] Ronald Azuma. A survey of augmented reality. Presence: teleoperators & virtual
environments, 6(4):355–385, 1997.

[B+96] John Brooke et al. SUS - A quick and dirty usability scale. Usability evaluation in
industry, 189(194):4–7, 1996.

[BARHN14] Christian Becker-Asano, Felix Ruzzoli, Christoph Hölscher, and Bernhard Nebel. A
multi-agent system based on unity 4 for virtual perception and wayfinding. Trans-
portation Research Procedia, 2:452–455, 2014.

[BBA+01] Olivier Barreteau, François Bousquet, Jean-Marie Attonaty, et al. Role-playing
games for opening the black box of multi-agent systems: method and lessons of
its application to senegal river valley irrigated systems. Journal of artificial societies
and social simulation, 4(2):5, 2001.

[BBS19] Kamal Berahmand, Asgarali Bouyer, and Negin Samadi. A new local and multidi-
mensional ranking measure to detect spreaders in social networks. Computing,
101(11):1711–1733, 2019.

[BC18a] Marie Beck and Dominique Crié. I virtually try it. . . i want it! virtual fitting room: A
tool to increase on-line and off-line exploratory behavior, patronage and purchase
intentions. Journal of Retailing and Consumer Services, 40:279–286, 2018.

[BC18b] Fabio Buttussi and Luca Chittaro. Effects of different types of virtual reality display
on presence and learning in a safety training scenario. IEEE Transactions on
Visualization and Computer Graphics, 24(2):1063–1076, 2018.

[BC21] Fabio Buttussi and Luca Chittaro. Locomotion in place in virtual reality: A compar-
ative evaluation of joystick, teleport, and leaning. IEEE Transactions on Visualization
and Computer Graphics, 27(1):125–136, 2021.

[BCJS99] Vicente Botti, Carlos Carrascosa, Vicente Julián, and Jose Soler. Modelling agents
in hard real-time environments. In European Workshop on Modelling Autonomous
Agents in a Multi-Agent World, pages 63–76. Springer, 1999.

[BCL15] Mark Billinghurst, Adrian Clark, and Gun Lee. A survey of augmented reality. 2015.

Bibliography 163

[BFC+09] Jeanne H. Brockmyer, Christine M. Fox, Kathleen A. Curtiss, Evan McBroom, Kim-
berly M. Burkhart, and Jacquelyn N. Pidruzny. The development of the game
engagement questionnaire: A measure of engagement in video game-playing.
Journal of Experimental Social Psychology, 45(4):624–634, 2009.

[BFH06] Hans H Bauer, Tomas Falk, and Maik Hammerschmidt. etransqual: A transaction
process-based approach for capturing service quality in online shopping. Journal
of Business Research, 59(7):866–875, 2006.

[Bis08] Pratik K Biswas. Towards an agent-oriented approach to conceptualization. Applied
Soft Computing, 8(1):127–139, 2008.

[BK08] Gary Bradski and Adrian Kaehler. Learning OpenCV: Computer vision with the
OpenCV library. 2008.

[BK15] Ayana Burkins and Regis Kopper. Wayfinding by auditory cues in virtual environ-
ments. In 2015 IEEE Virtual Reality (VR), pages 155–156, 2015.

[BKLMG13] Francesco Bellotti, Bill Kapralos, Kiju Lee, and Pablo Moreno-Ger. User assessment
in serious games and technology-enhanced learning, Mar 2013.

[Bla96] Alan F Blackwell. Metacognitive theories of visual programming: what do we think
we are doing? In Proceedings 1996 IEEE symposium on visual languages, pages
240–246. IEEE, 1996.

[BLKG05] Barry J Babin, Yong-Ki Lee, Eun-Ju Kim, and Mitch Griffin. Modeling consumer
satisfaction and word-of-mouth: restaurant patronage in korea. Journal of Services
Marketing, 2005.

[BLR92] Ronald J Brachman, Hector J Levesque, and Raymond Reiter. Knowledge repres-
entation. 1992.

[BM19] Sándor Bácsi and Gergely Mezei. Towards a classification to facilitate the design
of domain-specific visual languages. Acta Cybernetica, 24(1):5–16, 2019.

[BMR07] Ahmed BinSubaih, Steve Maddock, and Daniela Romano. A survey of ’game’
portability. University of Sheffield, Tech. Rep. CS-07-05, 2007.

[BRKD19] Evren Bozgeyikli, Andrew Raij, Srinivas Katkoori, and Rajiv Dubey. Locomotion
in virtual reality for room scale tracked areas. International Journal of Human-
Computer Studies, 122:38–49, 2019.

[Bru14] Liam Brummitt. Matter.js, a 2D rigid body physics engine for the web written in
JavaScript. https://brm.io/matter-js, 2014. [Online; accessed June 30, 2022].

https://brm.io/matter-js

164 Bibliography

[BT10] Marius Bulearca and Daniel Tamarjan. Augmented reality: A sustainable marketing
tool. Global business and management research: An international journal, 2(2):237–
252, 2010.

[BV17] Leif P. Berg and Judy M. Vance. Industry use of virtual reality in product design and
manufacturing: a survey. Virtual Reality, 21(1):1–17, Mar 2017.

[Cat11] Erin Catto. Box2D: a 2D physics engine for games. https://box2d.org, 2011.
[Online; accessed June 30, 2022].

[CB20] David Checa and Andres Bustillo. A review of immersive virtual reality serious
games to enhance learning and training. Multimedia Tools and Applications,
79(9):5501–5527, Mar 2020.

[CBJ+08] Carlos Carrascosa, Javier Bajo, Vicente Julián, Juan M Corchado, and Vicente
Botti. Hybrid multi-agent architecture as a real-time problem-solving model. Expert
Systems with Applications, 34(1):2–17, 2008.

[CC07] Woei-Kae Chen and Yu Chin Cheng. Teaching object-oriented programming laborat-
ory with computer game programming. IEEE Transactions on Education, 50(3):197–
203, 2007.

[CCE+10] Patrick Connolly, Cody Chambers, Evan Eagleson, Damian Matthews, and Tyler
Rogers. Augmented reality effectiveness in advertising. In 65thMidyear Conference
on Engineering Design Graphics Division of ASEE, pages 3–6, 2010.

[CCPC01] Terry L Childers, Christopher L Carr, Joann Peck, and Stephen Carson. Hedonic
and utilitarian motivations for online retail shopping behavior. Journal of retailing,
77(4):511–535, 2001.

[Cev20] Cevisama. Cevisama - International Fair for Ceramic Tiles and Bathroom Furnish-
ings. https://cevisama.feriavalencia.com, 2020. [Online; accessed July 5,
2021].

[CFA+11] Julie Carmigniani, Borko Furht, Marco Anisetti, Paolo Ceravolo, Ernesto Damiani,
and Misa Ivkovic. Augmented reality technologies, systems and applications.
Multimedia tools and applications, 51(1):341–377, 2011.

[CGCC15] Eduardo H. Calvillo-Gámez, Paul Cairns, and Anna L. Cox. Assessing the core
elements of the gaming experience. In Regina Bernhaupt, editor, Game User
Experience Evaluation, pages 37–62. Cham, 2015.

[Cha05] Sheeson E Chang. Computer anxiety and perception of task complexity in learning
programming-related skills. Computers in Human Behavior, 21(5):713–728, 2005.

https://box2d.org
https://cevisama.feriavalencia.com

Bibliography 165

[Cha16] Po-Yao Chao. Exploring students’ computational practice, design and performance
of problem-solving through a visual programming environment. Computers &
Education, 95:202–215, 2016.

[CKW13] Hung-Lin Chi, Shih-Chung Kang, and Xiangyu Wang. Research trends and op-
portunities of augmented reality applications in architecture, engineering, and
construction. Automation in construction, 33:116–122, 2013.

[CL16] C Chen and L Leung. Are you addicted to candy crush saga. An exploratory study
linking psychological factors to mobile, 2016.

[CLCH17] Peng Chen, Xiaolin Liu, Wei Cheng, and Ronghuai Huang. A review of using aug-
mented reality in education from 2011 to 2016. Innovations in smart learning, pages
13–18, 2017.

[CMLRR20] Miguel Chover, Carlos Marín-Lora, Cristina Rebollo, and Inmaculada Remolar. A
game engine designed to simplify 2d video game development. Multimedia Tools
and Applications, 79(17):12307–12328, 2020.

[CNdSR16] Cristiano Carvalheiro, Rui Nóbrega, Hugo da Silva, and Rui Rodrigues. User redir-
ection and direct haptics in virtual environments. In Proceedings of the 24th ACM
International Conference on Multimedia, MM ’16, pages 1146–1155, New York, NY,
USA, 2016.

[CNS05] David Callele, Eric Neufeld, and Kevin Schneider. Requirements engineering and the
creative process in the video game industry. In 13th IEEE International Conference
on Requirements Engineering (RE’05), pages 240–250. IEEE, 2005.

[COB+18] Inrak Choi, Eyal Ofek, Hrvoje Benko, Mike Sinclair, and Christian Holz. Claw: A
multifunctional handheld haptic controller for grasping, touching, and triggering
in virtual reality. In Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems, CHI ’18, pages 1–13, New York, NY, USA, 2018.

[COEGD+19] Edmanuel Cruz, Sergio Orts-Escolano, Francisco Gomez-Donoso, Carlos Rizo,
Jose Carlos Rangel, Higinio Mora, and Miguel Cazorla. An augmented reality
application for improving shopping experience in large retail stores. Virtual Reality,
23(3):281–291, 2019.

[Cor15] Jose David Cuartas Correa. Digitopolis II: Creación de videojuegos con GDevelop.
2015.

[Cox14] Joe Cox. What makes a blockbuster video game? an empirical analysis of us sales
data. Managerial and Decision Economics, 35(3):189–198, 2014.

[Dac17] Scott GDacko. Enabling smart retail settings viamobile augmented reality shopping
apps. Technological Forecasting and Social Change, 124:243–256, 2017.

166 Bibliography

[Dai10] Abdellah Daissaoui. Applying the MDA approach for the automatic generation of
an MVC2 web application. In 2010 Fourth International Conference on Research
Challenges in Information Science (RCIS), pages 681–688. IEEE, 2010.

[Dav89] Fred D Davis. Perceived usefulness, perceived ease of use, and user acceptance
of information technology. MIS quarterly, pages 319–340, 1989.

[DeL00] Mark DeLoura. Game programming gems. 2000.

[DKJ18] Ali Dorri, Salil S Kanhere, and Raja Jurdak. Multi-agent systems: A survey. Ieee
Access, 6:28573–28593, 2018.

[DNC16] Alena Denisova, A. Imran Nordin, and Paul Cairns. The convergence of player
experience questionnaires. In Proceedings of the 2016 Annual Symposium on
Computer-Human Interaction in Play, CHI PLAY ’16, pages 33–37, New York, NY,
USA, 2016.

[Doh03] Michael Doherty. A software architecture for games. University of the Pacific
Department of Computer Science Research and Project Journal (RAPJ), 1(1), 2003.

[dSCMZ20] Luís Fernando de Souza Cardoso, Flávia Cristina Martins Queiroz Mariano, and
Ezequiel Roberto Zorzal. A survey of industrial augmented reality. Computers &
Industrial Engineering, 139:106159, 2020.

[DV04] Fred D Davis and Viswanath Venkatesh. Toward preprototype user acceptance
testing of new information systems: implications for software projectmanagement.
IEEE Transactions on Engineering management, 51(1):31–46, 2004.

[DVRL12] Denis V Dorozhkin, Judy M Vance, Gordon D Rehn, and Marco Lemessi. Coupling
of interactive manufacturing operations simulation and immersive virtual reality.
Virtual Reality, 16(1):15–23, 2012.

[DWvDH09] Frank Dignum, Joost Westra, Willem A van Doesburg, and Maaike Harbers. Games
and agents: Designing intelligent gameplay. International Journal of Computer
Games Technology, 2009, 2009.

[DX12] Sonal Dekhane and Xin Xu. Engaging students in computing using gamesalad: a
pilot study. Journal of Computing Sciences in Colleges, 28(2):117–123, 2012.

[ELL+13] Marc Ebner, John Levine, Simon M Lucas, Tom Schaul, Tommy Thompson, and
Julian Togelius. Towards a video game description language. Dagstuhl Publishing,
2013.

[Epi22] EpicGames. Unreal Engine 4: The world’s most open and advanced real-time 3D
creation tool. https://www.unrealengine.com, 2022. [Online; accessed June 30,
2022].

https://www.unrealengine.com

Bibliography 167

[ESA17] ESA Entertainment Software Association. Essential Facts About the Com-
puter and Video Game Industry. https://www.theesa.com/resource/
2017-essential-facts-about-the-computer-and-video-game-industry,
2017. [Online; accessed December 17, 2021].

[FB08] Hilmar Finnsson and Yngvi Björnsson. Simulation-based approach to general game
playing. In AAAI, volume 8, pages 259–264, 2008.

[FdSB16] Mauricio A Frigo, EC da Silva, and Gustavo F Barbosa. Augmented reality in
aerospacemanufacturing: A review. Journal of Industrial and Intelligent Information,
4(2), 2016.

[FHMV04] Ronald Fagin, Joseph Y Halpern, YoramMoses, and Moshe Vardi. Reasoning about
knowledge. 2004.

[FLFCBNVM18] Paula Fraga-Lamas, Tiago M Fernandez-Carames, Oscar Blanco-Novoa, and
Miguel A Vilar-Montesinos. A review on industrial augmented reality systems
for the industry 4.0 shipyard. Ieee Access, 6:13358–13375, 2018.

[Flo19] FlowlabIO. Flowlab. https://flowlab.io, 2019. [Online; accessed January 8,
2019].

[Fol07] Eelke Folmer. Component based game development–a solution to escalating
costs and expanding deadlines? In International symposium on component-based
software engineering, pages 66–73. Springer, 2007.

[Fri37] Milton Friedman. The use of ranks to avoid the assumption of normality implicit in
the analysis of variance. Journal of the Amer Stat Assoc, 32(200):675–701, 1937.

[FS06] André WB Furtado and André LM Santos. Using domain-specific modeling towards
computer games development industrialization. In The 6th OOPSLA workshop on
domain-specific modeling (DSM06), 2006.

[FSRdA11] Andre WB Furtado, Andre LM Santos, Geber L Ramalho, and Eduardo Santana
de Almeida. Improving digital game development with software product lines. IEEE
software, 28(5):30–37, 2011.

[FW99] Jacques Ferber and Gerhard Weiss. Multi-agent systems: an introduction to distrib-
uted artificial intelligence, volume 1. 1999.

[Gal08] R Galindo. Presses, molds and compaction in the manufacture of ceramic tiles.
2008.

[Gam21] Gamesonomy. Gamesonomy - make games in the cloud and play in your phone.
https://gamesonomy.com/, 2021. [Online; accessed July 30, 2021].

https://www.theesa.com/resource/2017-essential-facts-about-the-computer-and-video-game-industry
https://www.theesa.com/resource/2017-essential-facts-about-the-computer-and-video-game-industry
https://flowlab.io
https://gamesonomy.com/

168 Bibliography

[GBF+16] Andrés Ayala García, Israel Galván Bobadilla, Gustavo Arroyo Figueroa, Miguel Pérez
Ramírez, and Javier Muñoz Román. Virtual reality training system for maintenance
and operation of high-voltage overhead power lines. Virtual Reality, 20(1):27–40,
2016.

[GDe22] GDevelop. GDevelop - Free and Easy Game-Making App. https://gdevelop.io/,
2022. [Online; accessed June 30, 2022].

[Gel03] JamesGeller. Knowledge representation: Logical, philosophical, and computational
foundations, brooks/cole, 2000, 512pp. Minds and Machines, 13(3):441–444, 2003.

[Geo75] Robert A. Georges. Western Folklore, 34(2):155–158, 1975.

[GFZI12] Bin Guo, Ryota Fujimura, Daqing Zhang, andMichita Imai. Design-in-play: improving
the variability of indoor pervasive games. Multimedia Tools and Applications,
59(1):259–277, 2012.

[Gil92] Valerie J Gilchrist. Key informant interviews. Sage Publications, Inc, 1992.

[GJMSMCMJ14] Sergio Garrido-Jurado, Rafael Muñoz-Salinas, Francisco José Madrid-Cuevas, and
Manuel JesúsMarín-Jiménez. Automatic generation and detection of highly reliable
fiducial markers under occlusion. Pattern Recognition, 47(6):2280–2292, 2014.

[GKN11] Kathrin M. Gerling, Matthias Klauser, and Joerg Niesenhaus. Measuring the im-
pact of game controllers on player experience in fps games. In Proceedings of
the 15th International Academic MindTrek Conference: Envisioning Future Media
Environments, MindTrek ’11, pages 83 - 86, New York, NY, USA, 2011.

[GLP05] Michael Genesereth, Nathaniel Love, and Barney Pell. General game playing: Over-
view of the AAAI competition. AI magazine, 26(2):62–62, 2005.

[GN12] Michael Genesereth and Nils J Nilsson. Logical foundations of artificial intelligence.
2012.

[Gol99] Reginald G Golledge. Human wayfinding and cognitive maps. volume 5, page 45,
1999.

[Goo13] Mat Groves GoodBoyDigital. PixiJS — The HTML5 Creation Engine. https://
pixijs.com/, 2013. [Online; accessed June 30, 2022].

[Goo19] Google. GoogleMaterial Design. https://design.google, 2019. [Online; accessed
January 8, 2019].

[Goo21] Google. ARCore - Google Developers. https://developers.google.com/ar,
2021. [Online; accessed July 5, 2021].

https://gdevelop.io/
https://pixijs.com/
https://pixijs.com/
https://design.google
https://developers.google.com/ar

Bibliography 169

[GQC+07a] Alejandro Garcés, Ricardo Quirós, Miguel Chover, Joaquin Huerta, and Emilio Ca-
mahort. A development methodology for moderately open multi-agent systems.
In Proceedings of the 25th conference on IASTED International Multi-Conference:
Software Engineering, SE, volume 7, pages 37–42, 2007.

[GQC+07b] Alejandro Garcés, Ricardo Quirós, Miguel Chover, Joaquín Huerta, and Emilio Ca-
mahort. E-commerce transaction modeling using moderately open multi-agent
systems. In ICEIS (4), pages 167–172, 2007.

[GQCC06] Alejandro Garcés, Ricardo Quirós, Miguel Chover, and Emilio Camahort. Imple-
menting moderately open agent-based systems. In IADIS International Conference
WWW/Internet 2006, pages 360–369, 2006.

[GQCC10] Alejandro Garcés, Ricardo Quirós, Miguel Chover, and Emilio Camahort. Implement-
ing virtual agents: a haba-based approach. The International journal of Multimedia
& Its Applications (IJMA) Vol, 2, 2010.

[Gre18] Jason Gregory. Game engine architecture. 2018.

[GSF13] McClure Grant, Virwaney Sandeep, and Lin Fuhua. Integrating multiagent systems
into virtual worlds. In 3rd International Conference on Multimedia Technology
(ICMT-13), pages 574–581. Atlantis Press, 2013.

[GYSE20] Sebastian Gottschalk, Enes Yigitbas, Eugen Schmidt, and Gregor Engels. Model-
based product configuration in augmented reality applications. In International
Conference on Human-Centred Software Engineering, pages 84–104. Springer,
2020.

[HdRC+17] Tim Hilken, Ko de Ruyter, Mathew Chylinski, Dominik Mahr, and Debbie I Keeling.
Augmenting the eye of the beholder: exploring the strategic potential of augmented
reality to enhance online service experiences. Journal of the Academy of Marketing
Science, 45(6):884–905, 2017.

[HK17] Seunghun Han and Jinmo Kim. A study on immersion of hand interaction for
mobile platform virtual reality contents. Symmetry, 9(2), 2017.

[HLZ04] Robin Hunicke, Marc LeBlanc, and Robert Zubek. A formal approach to game
design and game research. GDC. San Jose, 2004.

[HORB08] Kristin Hanks, William Odom, David Roedl, and Eli Blevis. Sustainable millennials:
attitudes towards sustainability and the material effects of interactive technologies.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
pages 333–342, 2008.

[HŠM+19] Nikola Horvat, Stanko Škec, TomislavMartinec, Fanika Lukačević, andMarija Majda
Perišić. Comparing virtual reality and desktop interface for reviewing 3d cadmodels.
volume 1, page 1923–1932, 2019.

170 Bibliography

[HWV+15] Tilo Hartmann, Werner Wirth, Peter Vorderer, Christoph Klimmt, Holger Schramm,
and Saskia Böcking. Spatial presence theory: State of the art and challenges ahead.
Immersed in media, pages 115–135, 2015.

[HZQ+19] Zhijiong Huang, Yu Zhang, Kathryn C. Quigley, Ramya Sankar, Clemence Wormser,
Xinxin Mo, and Allen Y. Yang. Accessibility of virtual reality locomotion modalities
to adults and minors. arXiv, 2019.

[IdP13] W.A. IJsselsteijn, Y.A.W. de Kort, and K. Poels. The game experience questionnaire.
Technische Universiteit Eindhoven, 2013.

[JBT+18] Arthur Juliani, Vincent-Pierre Berges, Ervin Teng, Andrew Cohen, Jonathan Harper,
Chris Elion, Chris Goy, Yuan Gao, Hunter Henry, Marwan Mattar, et al. Unity: A
general platform for intelligent agents. arXiv preprint arXiv:1809.02627, 2018.

[JER18] Jérme Jetter, Jörgen Eimecke, and Alexandra Rese. Augmented reality tools for
industrial applications: What are potential key performance indicators and who
benefits? Computers in Human Behavior, 87:18–33, 2018.

[JFP10] Pauline Jepp, Manuel Fradinho, and João Madeiras Pereira. An agent framework
for a modular serious game. In 2010 Second International Conference on Games
and Virtual Worlds for Serious Applications, pages 19–26. IEEE, 2010.

[JHMWA18] M. P. Jacob Habgood, David Moore, David Wilson, and Sergio Alapont. Rapid,
continuous movement between nodes as an accessible virtual reality locomotion
technique. In 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR),
pages 371–378, 2018.

[JKK+20] Kisung Jeong, Jinmo Kim, Mingyu Kim, Jiwon Lee, and Chanhun Kim. Asymmet-
ric interface: User interface of asymmetric virtual reality for new presence and
experience. Symmetry, 12(1), 2020.

[JOW16] Karl G Jöreskog, Ulf H Olsson, and Fan Y Wallentin. Multivariate analysis with
LISREL. 2016.

[Juu10] Jesper Juul. The game, the player, the world: Looking for a heart of gameness.
Plurais Revista Multidisciplinar, 1(2), 2010.

[Juu11] Jesper Juul. Half-real: Video games between real rules and fictional worlds. 2011.

[Kar88] Kevin Karplus. Using if-then-else DAGs for multi-level logic minimization. 1988.

[KAT+16] Varma Kamadi, Appa Rao Allam, Sita Mahalakshmi Thummala, et al. A computa-
tional intelligence technique for the effective diagnosis of diabetic patients using
principal component analysis (pca) and modified fuzzy sliq decision tree approach.
Applied Soft Computing, 49:137–145, 2016.

Bibliography 171

[Ken19] KenneyArt. Abstract platformer. https://www.kenney.nl/assets/
abstract-platformer, 2019. [Online; accessed July 1, 2019].

[KHA97] James D Kiper, Elizabeth Howard, and Chuck Ames. Criteria for evaluation of visual
programming languages. Journal of Visual Languages & Computing, 8(2):175–192,
1997.

[KHF+19] Julian Kreimeier, Sebastian Hammer, Daniel Friedmann, Pascal Karg, Clemens
Bühner, Lukas Bankel, and Timo Götzelmann. Evaluation of different types of
haptic feedback influencing the task-based presence and performance in virtual
reality. In Proceedings of the 12th ACM International Conference on Pervasive
Technologies Related to Assistive Environments, PETRA ’19, pages 289–298, New
York, NY, USA, 2019.

[Kim16] Jinmo Kim. Modeling and optimization of a tree based on virtual reality for im-
mersive virtual landscape generation. Symmetry, 8(9), 2016.

[Kir04] Andrew Kirmse. Game Programming Gems 4 (Game Programming Gems Series).
2004.

[Kle03] Lisa R Klein. Creating virtual product experiences: The role of telepresence. Journal
of interactive Marketing, 17(1):41–55, 2003.

[KLM14] Theodora Koulouri, Stanislao Lauria, and Robert D Macredie. Teaching introductory
programming: A quantitative evaluation of different approaches. ACM Transactions
on Computing Education (TOCE), 14(4):1–28, 2014.

[Kos13] Raph Koster. Theory of fun for game design. 2013.

[KS81] Konami-SEGA. Frogger. https://en.wikipedia.org/wiki/Frogger, 1981. [On-
line; accessed June 30, 2022].

[LB03] Sus Lundgren and Staffan Bjork. Game mechanics: Describing computer-
augmented games in terms of interaction. In Proceedings of TIDSE, volume 3,
2003.

[LBM18] Effie L.-C. Law, Florian Brühlmann, and Elisa D. Mekler. Systematic review and
validation of the game experience questionnaire (geq) - implications for citation
and reporting practice. In Proceedings of the 2018 Annual Symposium on Computer-
Human Interaction in Play, CHI PLAY ’18, pages 257-270, New York, NY, USA, 2018.

[LCSP12] Pedro Latorre Carmona, JoséMartínez Sotoca, and Filiberto Pla. Filter-type variable
selection based on information measures for regression tasks. Entropy, 14(2):323–
343, 2012.

https://www.kenney.nl/assets/abstract-platformer
https://www.kenney.nl/assets/abstract-platformer
https://en.wikipedia.org/wiki/Frogger

172 Bibliography

[LDB+05] Hairong Li, Terry Daugherty, Frank Biocca, MR Stafford, and RJ Faber. Impact of
3d advertising on product knowledge, brand attitude and purchase intention. In
Advertising, Promotion and New Media, page 149. 2005.

[Lee12] Kangdon Lee. Augmented reality in education and training. TechTrends, 56(2):13–
21, 2012.

[LFH17] Jonathan Lazar, Jinjuan Heidi Feng, and Harry Hochheiser. Research methods in
human-computer interaction. 2017.

[LHH+08] Nathaniel Love, Timothy Hinrichs, David Haley, Eric Schkufza, and Michael
Genesereth. General game playing: Game description language specification.
Stanford Logic Group Computer Science Department Stanford University . . . , 2008.

[LJ02] Michael Lewis and Jeffrey Jacobson. Game engines. Communications of the ACM,
45(1):27, 2002.

[LLW+14] Jiangjiang Liu, Cheng-Hsien Lin, JoshuaWilson, David Hemmenway, Ethan Hasson,
Zebulun Barnett, and Yingbo Xu. Making games a" snap" with stencyl: a summer
computing workshop for k-12 teachers. In Proceedings of the 45th ACM technical
symposium on Computer science education, pages 169–174, 2014.

[LNO17] Wenkai Li, AYC Nee, and SK Ong. A state-of-the-art review of augmented reality
in engineering analysis and simulation. Multimodal Technologies and Interaction,
1(3):17, 2017.

[LS07] Yuzhu Lu and Shana Smith. Augmented reality e-commerce assistant system:
trying while shopping. In International Conference on Human-Computer Interaction,
pages 643–652. Springer, 2007.

[LSBF17] Daniele Leonardis, Massimiliano Solazzi, Ilaria Bortone, and Antonio Frisoli. A 3-rsr
haptic wearable device for rendering fingertip contact forces. IEEE Transactions
on Haptics, 10(3):305–316, 2017.

[LSGF+19] Jaeyeon Lee, Mike Sinclair, Mar Gonzalez-Franco, Eyal Ofek, and Christian Holz.
Torc: A virtual reality controller for in-hand high-dexterity finger interaction. In
Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems,
CHI ’19, pages 1-13, New York, NY, USA, 2019.

[LTC21] Priscilla Lo, David Thue, and Elin Carstensdottir. What is a game mechanic? In
International Conference on Entertainment Computing, pages 336–347. Springer,
2021.

[ME11] Frans Mäyrä and Laura Ermi. Fundamental components of the gameplay experi-
ence. DIGAREC Series, (6):88 – 115, 2011.

Bibliography 173

[Mil10] I Millington. How to build a robust commercial-grade physics engine for your game.
Game Physics Engine Development, 2nd Edition, Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 2010.

[Mil19] Ian Millington. AI for Games. 2019.

[ML20] CarlosMarín-Lora. Games developed as demonstrators in the use cases. https://
sites.google.com/uji.es/multiagent-gameengine, 2020. [Online; accessed
July 30, 2019].

[MLCS19] Carlos Marín-Lora, Miguel Chover, and José M Sotoca. Prototyping a game engine
architecture as a multi-agent system. In 27th International Conference in Central
Europe on Computer Graphics, Visualization and Computer Vision (WSCG 2019),
2019.

[MLCSG20] Carlos Marín-Lora, Miguel Chover, José M Sotoca, and Luis A García. A game
engine to make games as multi-agent systems. Advances in Engineering Software,
140:102732, 2020.

[MLV14] Naresh K Malhotra, Evandro Lopes, and Ricardo Teixeira Veiga. Structural equation
modeling with lisrel: An initial vision. Brazilian Journal of Marketing, 13(2), 2014.

[Mol06] Jules Moloney. Augmented reality visualisation of the built environment to sup-
port design decision making. In Tenth International Conference on Information
Visualisation (IV’06), pages 687–692. IEEE, 2006.

[MP17] Lakmal Meegahapola and Indika Perera. Enhanced in-store shopping experience
through smart phone based mixed reality application. In 2017 Seventeenth Inter-
national Conference on Advances in ICT for Emerging Regions (ICTer), pages 1–8.
IEEE, 2017.

[MR02] Iain Milne and Glenn Rowe. Difficulties in learning and teaching program-
ming—views of students and tutors. Education and Information technologies,
7(1):55–66, 2002.

[MRR+10] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn East-
mond. The scratch programming language and environment. ACM Transactions
on Computing Education (TOCE), 10(4):1–15, 2010.

[MSG+15] Erin Martel, Feng Su, Jesse Gerroir, Ahmed Hassan, Audrey Girouard, and Kasia
Muldner. Diving head-first into virtual reality: Evaluating hmd control schemes for
vr games. In Proceedings of the 10th International Conference on the Foundations
of Digital Games (FDG 2015), Pacific Grove, CA, USA, 2015.

[MSK15] Farouk Messaoudi, Gwendal Simon, and Adlen Ksentini. Dissecting games engines:
The case of unity3d. In 2015 international workshop on network and systems support
for games (NetGames), pages 1–6. IEEE, 2015.

https://sites.google.com/uji.es/multiagent-gameengine
https://sites.google.com/uji.es/multiagent-gameengine

174 Bibliography

[MW12] Michelle Menard and Bryan Wagstaff. Game development with Unity. 2012.

[NDC14] A. Imran. Nordin, Alena Denisova, and Paul Cairns. Too many questionnaires:
Measuring player experience whilst playing digital games. September 2014.

[Nic05] Esposito Nicolas. A short and simple definition of what a videogame is. University
of Technology of Compiègne, 2005.

[Nys14] Robert Nystrom. Game programming patterns. 2014.

[OD98] Michael Occello and Yves Demazeau. Modelling decision making systems using
agents for cooperation in a real time constraints. In 3rd IFAC Symposium on
Intelligent Autonomous Vehicles, volume 1, pages 51–56, 1998.

[OKD+15] Ibrahim Ouahbi, Fatiha Kaddari, Hassane Darhmaoui, Abdelrhani Elachqar, and
Soufiane Lahmine. Learning basic programming concepts by creating games
with scratch programming environment. Procedia-Social and Behavioral Sciences,
191:1479–1482, 2015.

[OS06] Reza Olfati-Saber. Flocking for multi-agent dynamic systems: Algorithms and
theory. IEEE Transactions on automatic control, 51(3):401–420, 2006.

[OSFM07] Reza Olfati-Saber, J Alex Fax, and Richard M Murray. Consensus and cooperation
in networked multi-agent systems. Proceedings of the IEEE, 95(1):215–233, 2007.

[Pae14] Volker Paelke. Augmented reality in the smart factory: Supporting workers in an
industry 4.0. environment. In Proceedings of the 2014 IEEE emerging technology
and factory automation (ETFA), pages 1–4. IEEE, 2014.

[PB13] Luc Pons and Carole Bernon. A multi-agent system for autonomous control of
game parameters. In 2013 IEEE International Conference on Systems, Man, and
Cybernetics, pages 583–588. IEEE, 2013.

[PCPM13] Domenico Prattichizzo, Francesco Chinello, Claudio Pacchierotti, and Monica
Malvezzi. Towards wearability in fingertip haptics: A 3-dof wearable device for
cutaneous force feedback. IEEE Transactions on Haptics, 6(4):506–516, 2013.

[PGC+06] Kris Powers, Paul Gross, Steve Cooper, Myles McNally, Kenneth J Goldman, Viera
Proulx, and Martin Carlisle. Tools for teaching introductory programming: what
works? In Proceedings of the 37th SIGCSE technical symposium on Computer
science education, pages 560–561, 2006.

[PKC16] Mikki H. Phan, Joseph R. Keebler, and Barbara S. Chaparro. The development and
validation of the game user experience satisfaction scale (guess). Human Factors,
58(8):1217–1247, 2016. PMID: 27647156.

Bibliography 175

[PLST+16] Diego Perez-Liebana, Spyridon Samothrakis, Julian Togelius, Tom Schaul, and
Simon M Lucas. General video game ai: Competition, challenges and opportunities.
In Thirtieth AAAI conference on artificial intelligence, 2016.

[PLX16] Jeffrey R Parker, Donald R Lehmann, and Yi Xie. Decision comfort. Journal of
Consumer Research, 43(1):113–133, 2016.

[PM14] Ingrid Poncin and Mohamed Slim Ben Mimoun. The impact of “e-atmospherics” on
physical stores. Journal of Retailing and Consumer Services, 21(5):851–859, 2014.

[Pos07] Stefan Poslad. Specifying protocols for multi-agent systems interaction. ACM
Transactions on Autonomous and Adaptive Systems (TAAS), 2(4):15–es, 2007.

[PP19] Federica Pallavicini and Alessandro Pepe. Comparing player experience in video
games played in virtual reality or on desktop displays: Immersion, flow, and positive
emotions. In Extended Abstracts of the Annual Symposium on Computer-Human
Interaction in Play Companion Extended Abstracts, CHI PLAY ’19 Extended Abstracts,
pages 195-210, New York, NY, USA, 2019.

[PPM19] Federica Pallavicini, Alessandro Pepe, and Maria Eleonora Minissi. Gaming in
virtual reality: What changes in terms of usability, emotional response and sense
of presence compared to non-immersive video games? Simulation & Gaming,
50(2):136–159, 2019.

[PS85] Peter F Patel-Schneider. A decidable first-order logic for knowledge representation.
In IJCAI, volume 9, pages 455–458, 1985.

[PW02] Simon Parsons and Michael Wooldridge. Game theory and decision theory in
multi-agent systems. Autonomous Agents and Multi-Agent Systems, 5(3):243–254,
2002.

[RA03] Andrew Rollings and Ernest Adams. Andrew Rollings and Ernest Adams on game
design. 2003.

[RBF21] Mehrdad Rostami, Kamal Berahmand, and Saman Forouzandeh. A novel com-
munity detection based genetic algorithm for feature selection. Journal of Big Data,
8(1):1–27, 2021.

[RBNF21] Mehrdad Rostami, Kamal Berahmand, Elahe Nasiri, and Saman Forouzandeh.
Review of swarm intelligence-based feature selection methods. Engineering Ap-
plications of Artificial Intelligence, 100:104210, 2021.

[RC08] Emanuel Montero Reyno and José Á Carsí Cubel. Model driven game development:
2d platform game prototyping. In GAMEON, pages 5–7. Citeseer, 2008.

176 Bibliography

[RCRG06] Francisco Ramos, Miguel Chover, Oscar Ripolles, and Carlos Granell. Continu-
ous level of detail on graphics hardware. In International Conference on Discrete
Geometry for Computer Imagery, pages 460–469. Springer, 2006.

[RFBS20] Mehrdad Rostami, Saman Forouzandeh, Kamal Berahmand, and Mina Soltani.
Integration of multi-objective pso based feature selection and node centrality for
medical datasets. Genomics, 112(6):4370–4384, 2020.

[RFH19] Philipp A Rauschnabel, Reto Felix, and Chris Hinsch. Augmented reality marketing:
How mobile ar-apps can improve brands through inspiration. Journal of Retailing
and Consumer Services, 49:43–53, 2019.

[RGR+15] Inmaculada Remolar, Alejandro Garcés, Cristina Rebollo, Miguel Chover, Ricardo
Quirós, and Jesús Gumbau. Developing a virtual trade fair using an agent-oriented
approach. Multimedia Tools and Applications, 74(13):4561–4582, 2015.

[RMLRC18] Cristina Rebollo, Carlos Marín-Lora, Inmaculada Remolar, and Miguel Chover.
Gamesonomy vs scratch: two different ways to introduce programming. In 15th
International Conference On Cognition And Exploratory Learning In The Digital Age
(CELDA 2018). Ed. IADIS Press, 2018.

[RPB17] Tero Reunanen, Marcus Penttinen, and Arndt Borgmeier. “wow-factors” for boosting
business. In Jussi Ilari Kantola, Tibor Barath, Salman Nazir, and Terence Andre,
editors, Advances in Human Factors, BusinessManagement, Training and Education,
pages 589–600. Cham, 2017.

[RPG19] RPGMaker. RPG Maker - Make Your Own Game with RPG Maker. http://www.
rpgmakerweb.com, 2019. [Online; accessed July 12, 2019].

[RRD12] Krishnendu Roy, William C Rousse, and David B DeMeritt. Comparing the mobile
novice programming environments: App inventor for android vs. gamesalad. In
2012 Frontiers in education conference proceedings, pages 1–6. IEEE, 2012.

[RRPCC12] Oscar Ripolles, Francisco Ramos, Anna Puig-Centelles, and Miguel Chover. Real-
time tessellation of terrain on graphics hardware. Computers & geosciences, 41:147–
155, 2012.

[RRR03] Anthony Robins, Janet Rountree, and Nathan Rountree. Learning and teaching
programming: A review and discussion. Computer science education, 13(2):137–
172, 2003.

[RS94] Stuart J Russell and Devika Subramanian. Provably bounded-optimal agents.
Journal of Artificial Intelligence Research, 2:575–609, 1994.

[Sch09] Thomas W Schubert. A new conception of spatial presence: Once again, with
feeling. Communication Theory, 19(2):161–187, 2009.

http://www.rpgmakerweb.com
http://www.rpgmakerweb.com

Bibliography 177

[SCT03] Carla TLL Silva, Jaelson Castro, and Patricia Azevedo Tedesco. Requirements for
multi-agent systems. WER, 2003:198–212, 2003.

[SIB11] George Sacerdotianu, Sorin Ilie, and Costin Badica. Software framework for agent-
based games and simulations. In 2011 13th International Symposium on Symbolic
and Numeric Algorithms for Scientific Computing, pages 381–388. IEEE, 2011.

[Sic08] Miguel Sicart. Defining game mechanics. Game studies, 8(2):1–14, 2008.

[SK14] Philipp Spreer and Katrin Kallweit. Augmented reality in retail: assessing the accept-
ance and potential for multimedia product presentation at the pos. Transactions
on Marketing Research, 1(1):20–35, 2014.

[SL17] Lee Stemkoski and Evan Leider. Game Development with Construct 2: From Design
to Realization. 2017.

[SNM16] Carl Schissler, Aaron Nicholls, and Ravish Mehra. Efficient hrtf-based spatial audio
for area and volumetric sources. IEEE Transactions on Visualization and Computer
Graphics, 22(4):1356–1366, 2016.

[ST09] Stephan Schiffel and Michael Thielscher. A multiagent semantics for the game
description language. In International conference on agents and artificial intelligence,
pages 44–55. Springer, 2009.

[Ste19] Stencyl. Stencyl: Make iPhone, iPad, Android Flash Games without code. https:
//www.stencyl.com, 2019. [Online; accessed June 30, 2019].

[Sut65] Ivan E. Sutherland. The ultimate display. In Proceedings of the Congress of the
Internation Federation of Information Processing (IFIP), volume volume 2, pages
506–508, 1965.

[SW14] David Sharek and Eric Wiebe. Measuring video game engagement through the
cognitive and affective dimensions. Simulation & Gaming, 45(4-5):569–592, 2014.

[Tan08] Eduard Sioe-Hao Tan. Entertainment is emotion: The functional architecture of the
entertainment experience. Media Psychology, 11(1):28–51, 2008.

[TAZF17] Sam Tregillus, Majed Al Zayer, and Eelke Folmer. Handsfree omnidirectional vr
navigation using head tilt. In Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems, CHI ’17, pages 4063 - 4068, New York, NY, USA,
2017.

[Thi10] Michael Thielscher. A general game description language for incomplete informa-
tion games. In Twenty-Fourth AAAI Conference on Artificial Intelligence, 2010.

[Thi11] Michael Thielscher. The general game playing description language is universal. In
Twenty-Second International Joint Conference on Artificial Intelligence, 2011.

https://www.stencyl.com
https://www.stencyl.com

178 Bibliography

[TLS+15] Chek Tien Tan, Tuck Wah Leong, Songjia Shen, Christopher Dubravs, and Chen
Si. Exploring gameplay experiences on the oculus rift. In Proceedings of the 2015
Annual Symposium on Computer-Human Interaction in Play, CHI PLAY ’15, pages
253 − 263, New York, NY, USA, 2015.

[Tuf03] Edward R Tufte. The cognitive style of PowerPoint, volume 2006. 2003.

[TW04] Seth Tisue and Uri Wilensky. Netlogo: A simple environment for modeling com-
plexity. In International conference on complex systems, volume 21, pages 16–21.
Boston, MA, 2004.

[TZ05] Katie Salen Tekinbas and Eric Zimmerman. The game design reader: A rules of
play anthology. 2005.

[Uni19] UnityTechnologies. Unity Tower Bridge Defense tutorial. https:
//unity3d.com/es/learn/tutorials/topics/2d-game-creation/
2d-game-development-walkthrough, 2019. [Online; accessed July 1, 2019].

[Uni21] UnityTechnologies. Unity 3DGame Engine 2021. https://unity3d.com/es/beta/
2021.1b, 2021. [Online; accessed 5-Jul-2021].

[Uni22] UnityTechnologies. Unity: The world’s leading platform for real-time content cre-
ation. https://unity.com, 2022. [Online; accessed June 30, 2022].

[VAKAM20] Jan-Niklas Voigt-Antons, Tanja Kojic, Danish Ali, and Sebastian Möller. Influence of
hand tracking as a way of interaction in virtual reality on user experience. In 2020
Twelfth International Conference on Quality of Multimedia Experience (QoMEX),
pages 1–4, 2020.

[Val15] Nicola Valcasara. Unreal engine game development blueprints. 2015.

[VdBLM08] Jur Van den Berg, Ming Lin, and Dinesh Manocha. Reciprocal velocity obstacles for
real-time multi-agent navigation. In 2008 IEEE international conference on robotics
and automation, pages 1928–1935. Ieee, 2008.

[VdS15] Rex Van der Spuy. Learn Pixi. js. 2015.

[VKBS13] Khrystyna Vasylevska, Hannes Kaufmann, Mark Bolas, and Evan A. Suma. Flexible
spaces: Dynamic layout generation for infinite walking in virtual environments. In
2013 IEEE Symposium on 3D User Interfaces (3DUI), pages 39–42, 2013.

[VKP10] Rick VanKrevelen andRonald Poelman. A survey of augmented reality technologies,
applications and limitations. International journal of virtual reality, 9(2):1–20, 2010.

[VMB+13] Edward Rolando Núñez Valdez, Óscar Sanjuán Martínez, Begoña Cristina
Pelayo García Bustelo, Juan Manuel Cueva Lovelle, and Guillermo Infante Hernan-
dez. Gade4all: developing multi-platform videogames based on domain specific
languages and model driven engineering. IJIMAI, 2(2):33–42, 2013.

https://unity3d.com/es/learn/tutorials/topics/2d-game-creation/2d-game-development-walkthrough
https://unity3d.com/es/learn/tutorials/topics/2d-game-creation/2d-game-development-walkthrough
https://unity3d.com/es/learn/tutorials/topics/2d-game-creation/2d-game-development-walkthrough
https://unity3d.com/es/beta/2021.1b
https://unity3d.com/es/beta/2021.1b
https://unity.com

Bibliography 179

[Vuf21] Vuforia. Vuforia Engine. https://developer.vuforia.com/, 2021. [Online; ac-
cessed 5-Jul-2021].

[VWG+04] Peter Vorderer, Werner Wirth, Feliz R Gouveia, Frank Biocca, Timo Saari, Futz
Jäncke, Saskia Böcking, Holger Schramm, Andre Gysbers, Tilo Hartmann, et al. Mec
spatial presence questionnaire (mec-spq): Short documentation and instructions
for application. Report to the European community, project presence: MEC (IST-
2001-37661), 3:5–3, 2004.

[WFM+96] Anthony Webster, Steven Feiner, Blair MacIntyre, William Massie, and Theodore
Krueger. Augmented reality in architectural construction, inspection and renovation.
In Proc. ASCE Third Congress on Computing in Civil Engineering, volume 1, page
996, 1996.

[WFR+17] Marcel Walch, Julian Frommel, Katja Rogers, Felix Schüssel, Philipp Hock, David
Dobbelstein, and Michael Weber. Evaluating vr driving simulation from a player
experience perspective. In Proceedings of the 2017 CHI Conference Extended
Abstracts on Human Factors in Computing Systems, CHI EA ’17, page 2982 2989,
New York, NY, USA, 2017.

[Wil99] Uri Wilensky. NetLogo. http://ccl.northwestern.edu/netlogo/, 1999. [Online;
accessed January 30, 2022].

[Wil01] Uri Wilensky. NetLogo Tetris model. http://ccl.northwestern.edu/netlogo/
models/Tetris, 2001. [Online; accessed January 30, 2022].

[Wil02] Dmitri Williams. Structure and competition in the us home video game industry.
International Journal on Media Management, 4(1):41–54, 2002.

[Win06] JeannetteMWing. Computational thinking. Communications of the ACM, 49(3):33–
35, 2006.

[Win08] Jeannette M Wing. Computational thinking and thinking about computing. Philo-
sophical Transactions of the Royal Society A:Mathematical, Physical and Engineering
Sciences, 366(1881):3717–3725, 2008.

[WJ95] Michael Wooldridge and Nicholas R Jennings. Intelligent agents: Theory and
practice. The knowledge engineering review, 10(2):115–152, 1995.

[WJK08] Chenggang Wang, Saket Joshi, and Roni Khardon. First order decision diagrams
for relational mdps. Journal of Artificial Intelligence Research, 31:431–472, 2008.

[Woo09] Michael Wooldridge. An introduction to multiagent systems. 2009.

https://developer.vuforia.com/
http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/models/Tetris
http://ccl.northwestern.edu/netlogo/models/Tetris

180 Bibliography

[WWH+08] DavidWeibel, BartholomäusWissmath, StephanHabegger, Yves Steiner, andRudolf
Groner. Playing online games against computer- vs. human-controlled oppon-
ents: Effects on presence, flow, and enjoyment. Computers in Human Behavior,
24(5):2274–2291, 2008. Including the Special Issue: Internet Empowerment.

[YCS17] Mark Yi-Cheon Yim, Shu-Chuan Chu, and Paul L Sauer. Is augmented reality tech-
nology an effective tool for e-commerce? an interactivity and vividness perspective.
Journal of Interactive Marketing, 39:89–103, 2017.

[YDOT+19] Demet Yesiltepe, Ruth Dalton, Ayse Ozbil Torun, Nick Dalton, Sam Noble, Michael
Hornberger, and Hugo Spiers. A wayfinding research in virtual environments:
The effect of spatial structure and different conditions on movement. In 12th
International Space Syntax Symposium, 2019.

[YoY19] YoYoGames. Game maker. https://www.yoyogames.com/gamemaker, 2019. [On-
line; accessed July 12, 2019].

[YPY+19] Jianrong Yao, Yanqin Pan, Shuiqing Yang, Yuangao Chen, and Yixiao Li. Detecting
fraudulent financial statements for the sustainable development of the socio-
economy in china: a multi-analytic approach. Sustainability, 11(6):1579, 2019.

[ZDA17] Telmo Zarraonandia, PalomaDiaz, and Ignacio Aedo. Using combinatorial creativity
to support end-user design of digital games. Multimedia Tools and Applications,
76(6):9073–9098, 2017.

[ZDAR15] Telmo Zarraonandia, Paloma Diaz, Ignacio Aedo, and Mario Rafael Ruiz. Designing
educational games through a conceptual model based on rules and scenarios.
Multimedia Tools and Applications, 74(13):4535–4559, 2015.

[ZHMZ14] Egui Zhu, Arash Hadadgar, Italo Masiello, and Nabil Zary. Augmented reality in
healthcare education: an integrative review. PeerJ, 2:e469, 2014.

https://www.yoyogames.com/gamemaker

	Acknowledgments
	Resumen
	Abstract
	I Foreword
	 Introduction
	Context
	Motivation
	Goals
	Previous Work
	Contributions
	Design and Development of a Game Engine
	Game Engine Formalization Using Multi-agent Systems
	Serious Games Development

	Outline

	II Design and Development of a Game Engine
	 A Game Engine Designed to Simplify 2D Video Game Development
	Introduction
	State of the Art
	The Simplified Game Engine
	The Game Engine Architecture
	The Game Specification
	The Game Editor

	Game Example: Candy Crush
	Scratch Solution
	SGE Solution

	User Experience
	Objectives and Hypothesis
	Protocol

	Results
	Discussion
	Conclusions and Future Work

	III Game Engine Formalization Using Multi-agent Systems
	 A Game Engine to Make Games as Multi-agent Systems
	Introduction
	Game Engines and Multi-agent System
	Multi-agent System Features
	The Game Engine
	The Game
	The Actor
	Behaviour Specification

	Discussion
	Use Cases
	Wolf-Sheep Predation
	Frogger
	Pac-Man
	Other Games Developed

	Conclusions and Future Work

	 A Game Logic Specification Proposal for 2D Video Games
	Introduction
	Game Engine Overview
	Game Logic Specification
	Functions
	Use Case
	Experiment
	Results

	Conclusions and Future Work

	 A First Step to Specify Arcade Games as Multi-agent Systems
	Introduction
	State of the Art
	Video Games as Multi-agent Systems
	Use Case: Frogger
	Results
	NetLogo
	Gamesonomy
	Unity

	Conclusions and Future Work

	 A Multi-agent Specification for the Tetris Game
	Introduction
	Background
	Video Games and Specification as MAS
	Case Study: Tetris
	Results and Discussion
	Conclusions

	IV Serious Games Development
	 Improved Perception of Ceramic Molds Through Augmented Reality
	Introduction
	State of the Art
	Hypotheses
	Aspects Related to the Perceived Value of Experience
	Aspects Related to the Product Decision-Making
	Result of Combining Perceived Value of Experience and Product Decision-Making

	Description of the Exposed Product
	Implementation of the AR Application
	Scripted sequence and synthetic elements
	Vision Module and System Calibration
	Integration and Execution in Unity

	Experimentation and Analysis of Results
	Experiments Protocol
	Hypothesis Testing

	Discussion
	Conclusions and Future Work

	 Virtual Reality versus Desktop Experience in a Dangerous Goods Simulator
	Introduction
	Literature on the State of the Art
	Serious Game Description
	Experiments Description and Scope
	Results
	Discussion
	Positive Emotions
	Immersion and Flow
	Psychological Needs
	Other Considerations

	Conclusions and Future Work

	V Afterword
	 Conclusions and Future Work
	Conclusions
	Design and Development of a Game Engine
	Game Engine Formalization Using Multi-agent Systems
	Serious Games Development

	Future Works

	Bibliography

		2022-09-15T19:10:55+0200
	CHOVER SELLÉS, MIGUEL (FIRMA)

		2022-09-15T19:36:26+0200
	CARLOS|MARIN|LORA

