
 
 
 

 
 

 

 
 
 
 
 

 
 
 

  
 

 

Effective-theory description of heavy-flavored hadrons 
and their properties in a hot medium 

 
Glòria Montaña Faiget 

 
 
 
 
 
 
 
 

 
 
 
 
 

 
 

 
 
 
Aquesta tesi doctoral està subjecta a la llicència Reconeixement 4.0. Espanya de Creative 
Commons. 
 
Esta tesis doctoral está sujeta a la licencia  Reconocimiento 4.0.  España de Creative 
Commons. 
 
This doctoral thesis is licensed under the Creative Commons Attribution 4.0. Spain License.  
 



 

Effective-theory description 

of heavy-flavored hadrons 

and their properties  

in a hot medium 

— Ph.D. thesis — 

Glòria Montaña Faiget 

Supervisors: 

Dr. Àngels Ramos Gómez 

Dr. Laura Tolós Rigueiro 





– Tesi doctoral –

Effective-theory description
of heavy-flavored hadrons

and their properties in a hot medium

Memòria presentada per optar al grau de doctor per la Universitat de Barcelona

Programa de Doctorat en Física

Autora: Glòria Montaña Faiget

Directores de tesi: Dra. Àngels Ramos Gómez
Dra. Laura Tolós Rigueiro

Tutor: Dr. Joan Soto Riera

Departament de Física Quàntica i Astrofísica
Institut de Ciències del Cosmos

Universitat de Barcelona

Maig 2022



Glòria Montaña Faiget

Effective-theory description of heavy-flavored hadrons and their properties in a hot medium

May 2022

Ph.D. supervisors: Dr. Àngels Ramos Gómez and Dr. Laura Tolós Rigueiro

Universitat de Barcelona

Departament de Física Quàntica i Astrofísica

Institut de Ciències del Cosmos

Martí i Franquès, 1

08028 - Barcelona



“Fall in love with some activity, and do it!
Nobody ever figures out what life is all about,
and it doesn’t matter. Explore the world.
Nearly everything is really interesting if you go
into it deeply enough. Work as hard and as much
as you want to on the things you like to do the best.
Don’t think about what you want to be, but what
you want to do. Keep up some kind of a minimum
with other things so that society doesn’t stop you
from doing anything at all.”

RICHARD P. FEYNMAN





Abstract

For many decades after the conception of the quark model in 1964, and the development of
quantum chromodynamics (QCD) a few years later as the theory governing the strong interaction
between quarks and gluons, there was no experimental evidence of the existence of hadronic
states beyond the quark-antiquark mesons and the three-quark baryons. In the last two decades,
however, with the explosion of data in electron–positron and hadron colliders, many states have
been observed that do not fit in this picture, especially in the heavy-flavor sector. Evidence of the
existence of the so-called exotic hadrons has recently prompted a lot of activity in the field of
hadron physics, with experimental programs in ongoing and upcoming facilities dedicated to the
search for new exotic mesons and baryons, and many theoretical efforts trying to disentangle,
for instance, compact multiquark structures from hadronic molecules.

In this dissertation, we focus on recently seen exotic hadrons with heavy-quark content that
may be understood as being generated dynamically from the hadron–hadron interaction. This
interaction is derived from a suitable effective Lagrangian and properly unitarized in a full
coupled-channel basis. In particular, we discuss the possible interpretation of some of the
Ω∗c excited states recently discovered at LHCb as being meson–baryon molecular states. We
also discuss the dynamical generation of excited open-charm mesons from the scattering of
pseudoscalar and vector charmed mesons off light mesons. We show that a double-pole structure
is predicted for the D∗0(2300) state, as well as for the D1(2430), within the molecular picture,
while the D∗s0(2317) and the Ds1(2460) may be interpreted as molecular bound states. Extensions
of these calculations to the bottom sector are also presented.

Moreover, charmed hadrons are a promising probe of the quark-gluon plasma (QGP) phase
that is expected to be created in heavy-ion collision experimental facilities. Charm and anticharm
quarks are produced in the early stages of the collision and experience the whole evolution of the
QGP, before hadronizing predominantly into open-charm mesons. To describe the experimental
data, it is necessary to understand, from the theoretical side, the propagation of the D mesons
in the hadronic phase and their interaction with the surrounding medium of light mesons. The
approach that we employ in this thesis to study the thermal modification of open heavy-flavor
mesons in a hot medium is based on the use of effective theories. By means of an extension to
finite temperature of the unitarized effective interactions with the light mesons, we obtain the
in-medium spectral properties of the D, D∗, Ds, and D∗s ground-state mesons. We also analyze
the temperature dependence of the masses and the decay widths of the dynamically generated
D∗0(2300), D1(2430), D∗s0(2317), and Ds1(2460) states. Additionally, we provide results for the
bottomed mesons by exploiting the heavy-quark flavor symmetry of the Lagrangian.

In order to test the results of the thermal effective theory against lattice QCD calculations,
we further employ the temperature-dependent scattering amplitudes and spectral functions
to compute charm Euclidean correlators. The spectral properties of charmed mesons at finite
temperature can be extracted from lattice QCD data of meson Euclidean correlators, yet relying on
a priori assumptions about the shape of the spectral function. Hence we compare both approaches
at the level of Euclidean correlators and find that they compare reasonably well at temperatures
below the QCD phase transition temperature. We also present calculations of off-shell transport
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coefficients in the hadronic phase, such as the drag force and the diffusion coefficients. Contrary
to previous approaches in the literature, we implement in-medium scattering amplitudes and the
thermal dependence of the heavy-meson spectral properties. The transport coefficients in the
QGP phase have been recently computed with lattice QCD and extracted from Bayesian analyses
of heavy-ion collision data. We observe a smooth matching with our results at the QCD phase
transition temperature.
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Introduction 1
With the work that is presented in this dissertation, we pursue two distinct yet related goals: the
study of heavy flavored hadrons in the vacuum, paying special attention to those that can be
interpreted as molecular states, and the effects that a hot medium may have in their properties.
Given this double purpose, in Section 1.1 of this introductory chapter, we present a brief
description of the quark model and the basic aspects of the theory of quantum chromodynamics.
We then motivate the importance of studying the nature of exotic hadrons that cannot be
explained by the constituent quark model, in particular those containing heavy quarks. Later, in
Section 1.2, we summarize the current knowledge on the phases of strongly interacting matter
when subject to extreme conditions of temperature and/or density, and finally, we describe the
role of heavy-flavor mesons in probing the hot deconfined phase, which constitutes ultimately
our motivation to study the modification of heavy mesons in a hot medium.

1.1 A brief overview of the quark model and the theory of quantum
chromodynamics

1.1.1 The quark model

The modern understanding of hadron physics was conceived with the notion of quarks that was
independently proposed in 1964 by Gell-Mann [Gel64] and Zweig [Zwe64]. The quark model
originated as an attempt to classify and understand the properties (mass, spin, charge, isospin,
strangeness) of the large number of particles that were being discovered since the 1950s in
cosmic rays and particle experiments. It was built on top of the eightfold way organizational
scheme, conceived by Gell-Mann himself [Gel61; Gel62] and Ne’eman [Nee61] a few years
before. The key idea behind it is flavor SU(3) symmetry, since at that time only three quarks were
known: the up quark (or u), with isospin (I, Iz) =

( 1
2 ,+

1
2
)
; the down quark (or d), with isospin

(I, Iz) = ( 1
2 ,−

1
2 ); and the strange quark (or s), which carries strangeness S = −1. Nevertheless,

it was not until the formalization of quantum chromodynamics by Fritzsch, Leutwyler and
Gell-Mann [FGL73] in the early 1970s that the strong force was better understood in terms of
quarks and gluons.

According to the quark model, hadrons (qq̄ mesons and qqq baryons) are classified into
multiplets with definite quantum numbers: orbital angular momentum `, parity P = (−1)`+1,
spin J as the sum of the intrinsic spin S and ` given by the relation |`−S| ≤ J ≤ |`+ S|, charge
conjugation C = (−1)`+S (for flavor neutral mesons), and its generalization to the G-parity,
G = (−1)I+`+S (for mesons with isospin I in multiplets with neutral average charge).

Since quarks have spin 1
2 , the meson and baryon ground-state configurations can carry

spin J = 0, 1, and J = 1
2 ,

3
2 , respectively. Besides, the quark model predicts excited states

corresponding to orbital and radial excitations.
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Based on their JPC numbers, the mesons with ` = 0 are classified into pseudoscalars (0−+)
and vectors (1−−), while the orbital excitations with ` = 1 are divided into scalars (0++), axial
vectors or pseudovectors (1+−, 1++), and tensors (2++).

In group theory language, and neglecting the mass difference between the s and the {u, d}
quarks, the nine qq̄ combinations in SU(3) are grouped into an octet and a singlet:

3⊗ 3̄ = 8⊕ 1 ; (SU(3)) . (1.1)

While the original quark model was built on top of SU(3), the existence of a fourth quark,
designated c and carrying a property called charm, was soon proposed [BG64]. This introduced
a new quantum number C, representing charm (C = +1 for the c quark), and evidence of its
existence came in 1974 with the discovery of the J/ψ meson, which is a cc̄ bound state [Aub+74;
Aug+74]. The addition of a fourth quark flavor such as charm requires the extension from
SU(3) to SU(4), although the SU(4) symmetry is clearly broken by the large mass of the c quark.
Nevertheless, using SU(4) turns out to be very useful to classify the heavy hadrons. The meson
combinations can be grouped in a 15-plet and a singlet:

4⊗ 4̄ = 15⊕ 1 ; (SU(4)) . (1.2)

The weight diagrams for the ground-state pseudoscalar (JP = 0−) and vector (JP = 1−) mesons
are depicted in Figs. 1.1a and 1.1b, respectively, where the vertical direction is the charm C,
the horizontal direction is the z component of the isospin Iz, and the depth corresponds to
the hypercharge Y , defined in terms of the baryon number, the strangeness, and the charm as
Y = B+ S −C/3. The SU(3) nonets are contained in the middle plane, together with the singlet
of SU(4).

The construction of the baryons in SU(3) involves the following multiplets:

3⊗ 3⊗ 3 = 10S ⊕ 8M ⊕ 8M ⊕ 1A ; (SU(3)) , (1.3)

where the states in the decuplet are symmetric under the exchange of two quarks, the singlet is
antisymmetric, and the states in the octets have mixed symmetry. When considering SU(4) we

Iz

C

Y

π0 η

ηc η′

D0 D+

D+
s

D− D̄0

D−s

K0 K+

K− K̄0

π− π+

(a)

ρ0 ω

J/ψ φ

D∗0 D∗+

D∗+s

D∗− D̄∗0

D∗−s

K∗0 K∗+

K∗− K̄∗0

ρ− ρ+

(b)

Figure 1.1: The SU(4) weight diagrams of the 16-plets of the ground-state pseudoscalar (a) and vector
mesons (b), containing the SU(3) nonets.
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Figure 1.2: The SU(4) weight diagrams of the ground-state baryons. (a) The spin-1/2 20-plet containing
the SU(3) octet; (b) the spin-3/2 20-plet containing the SU(3) decuplet.

have a totally symmetric 20-plet, two 20-plets with mixed symmetry, and a totally antisymmetric
quadruplet,

4⊗ 4⊗ 4 = 20S ⊕ 20M ⊕ 20M ⊕ 4A ; (SU(4)) . (1.4)

The symmetric 20S contains the SU(3) decuplet as a subset, forming the “ground floor” of the
weight diagram shown in Fig. 1.2b, and the baryons in this multiplet have JP = 3

2
+. The

mixed-symmetric 20M ’s correspond to the JP = 1
2

+ baryons shown in Fig. 1.2a, with the SU(3)
octets on the lowest level. The SU(3) antisymmetric singlet Λ1 is contained in the antisymmetric
4A, in which the baryons have JP = 1

2
−, but these states are forbidden in the ground-state

multiplets by Fermi statistics.
One can also construct SU(4) multiplets in which charm is replaced by beauty and classify

the corresponding hadrons with b quarks, or even combine the two sets of SU(4) structures into
larger SU(5) multiplets that contain all possible ground-state mesons.

1.1.2 Quantum chromodynamics

Shortly after the concept of quarks was proposed, it became obvious that certain hadrons had
quark compositions that violated the exclusion principle. For instance, the Ω− (sss) baryon
contains three strange quarks with spin 1

2 . In an attempt to solve this problem, it was suggested
that quarks possess an additional property, the so-called color charge, which laid the basis of the
theory of quantum chromodynamics (QCD).

QCD is the fundamental quantum field theory that describes the physics of strongly interacting
particles and it is by now well established. It is a non-Abelian gauge theory with color SU(3)c as
the underlying gauge group, in which color is hypothesized to be the equivalent of the electric
charge in quantum electrodynamics (QED). Its fundamental degrees of freedom are quarks,
which are spin- 1

2 matter fields, and gluons, which are the massless spin-1 fields mediating the
strong force. In the Standard Model (see Fig. 1.3) there are six types, or flavors, of quarks: up
(u), down (d), strange (s), charm (c), bottom (b), and top (t), each of which comes in three
colors (red, green, blue) and transforms as a triplet under the fundamental representation of
SU(3)c. Moreover, there are eight flavorless and necessarily colored gluons carrying color (r,

1.1 A brief overview of the quark model and the theory of quantum
chromodynamics
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Figure 1.4: Interaction vertices of QCD: (a) quark-gluon vertex, (b) three-gluon vertex and (c) four-gluon
vertex. Straight lines represent quarks and coiled lines represent gluons.

g, b) and anticolor (r̄, ḡ, b̄), which transform under the adjoint representation of SU(3)c. The
interaction between quarks and gluons does not depend on the flavor, and gluons not only couple
to quark fields (Fig. 1.4a), but they also interact among themselves via three-gluon (Fig. 1.4b)
and four-gluon vertices (Fig. 1.4c). This is a fundamental difference between QED and QCD that
makes the latter richer but mathematically more complex.

The Lagrangian density of QCD for Nf quark flavors reads1

LQCD =
∑
f

ψ̄f,a(i /Dab −mfδab)ψf,b −
1
4F

A
αβF

αβ
A , (1.5)

where repeated indices are summed over. The spinor ψf,a denotes a quark field with flavor f ,
mass mf and color charge a = 1, ..., Nc (Nc = 3). The spinor indices have been suppressed for
simplicity. The purely gluonic term in Eq. (1.5) is given in terms of the gluonic field-strength
tensor

FAαβ = ∂αAAβ − ∂βAAα + gsf
ABCABαACβ , (1.6)

1The so-called θ-term responsible for the violation of CP symmetry has been omitted here, as it is not relevant for the
discussions in this thesis.
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where AAα are the gluon fields, the indices A, B, C run from 1 to N2
c − 1 (the eight color degrees

of freedom of the gluon field in the case of Nc = 3), and the factors fABC in the non-Abelian
term are the structure constants of QCD. The notation /D = γαDα has been used for the covariant
derivative, Dα, which in QCD is a matrix in color space with matrix elements

(Dα)ab = ∂αδab − i gstCabACα , (1.7)

with tC proportional to the Gell-Mann matrices, tC = 1
2λ

C . The QCD Lagrangian is symmetric
under the local color gauge symmetry, under global Lorenz transformations, and under the
discrete parity, charge conjugation and time-reversal symmetries. Other important symmetries of
QCD are the so-called chiral and heavy-quark symmetries, which are discussed in Section 2.1.1.
The quark masses mf and the strong coupling constant gs, which determines the strength of the
interaction between colored objects, are free parameters of the Lagrangian. To keep a notation
equivalent to that in QED, it is common to use αs (αs = g2

s/(4π)) to denote the strength of the
strong interaction.

The coupling constant αs becomes asymptotically weaker at increasing energies (or equiva-
lently, at short distances) in a phenomenon which is known as asymptotic freedom. This feature
of QCD allows perturbative calculations in terms of αs in the high-energy regime. However, its
behavior changes at smaller energies (of the order of the hadron masses, below a few GeV),
where the coupling constant becomes too large for perturbation theory to be applied. In this
regime, a perturbative description of QCD in terms of quarks and gluons as degrees of freedom
is not valid anymore.

Another important feature of QCD is the so-called color confinement: neither quarks nor gluons
have hitherto been observed isolated in experiments, but rather confined inside colorless hadrons.
These include the mesons, which are made up of a valence qq̄ pair with the quark carrying color
and the antiquark carrying the corresponding anticolor; and the baryons, which are made up
of three valence quarks, qqq, carrying three different colors that add up to color neutral. These
states are explained within QCD as color-singlet clusters.

1.1.3 Exotics: nonconventional hadrons

In conventional quark models, the interpretation of ordinary mesons as composed by a quark–
antiquark pair and ordinary baryons as bound states of three quarks gives rise to a rather
successful description of a wealth of data [CI85]. Still, there is more to the picture than this
because QCD does not exclude hadrons having a valence composition different from the ordinary
hadrons. Allowed combinations include pairs of valence quarks and antiquarks (tetraquarks:
qqq̄q̄), four quarks and an antiquark (pentaquarks: qqqqq̄) or six quarks (hexaquarks: qqqqqq),
as far as they are color singlets. Actually, the general concept of multiquark states arose at
the same time as the birth of the quark model, as Gell-Mann and Zweig themselves speculated
about the possibility of having such more complex assemblies of quarks [Gel64; Zwe64]. In
the literature, these structures are encompassed in the so-called exotic hadron terminology. The
attribute “exotic” is sometimes reserved for hadrons having quantum numbers not encountered
in the conventional quark model, for example, exotic JPC = 0−−, 0+−, 1−+, 2+−,..., exotic flavor,
etc. Then, the name cryptoexotic is used to designate hadrons that do not possess explicit exotic
values of the quantum numbers but are incompatible with standard mesons and baryons because
of their properties, such as their mass and decay width. However, in practice, any hadronic state
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beyond qq̄ or qqq is usually referred to as exotic in the literature, and this is also the terminology
adopted in this thesis.

In addition to multiquark hadrons, which are the object of research in this dissertation, exotic
states comprised exclusively of gluonic fields (glueballs) and exotic combinations of excited
gluons together with quarks and antiquarks (hybrids) are also theoretically possible within QCD.

Multiquark states can take the form of genuine compact four-, five- or six-quark states bound
together by gluons, or, alternatively, they can form hadronic molecules, namely bound or quasi-
bound states of two or more hadrons. In this latter framework, tetraquarks are interpreted as
meson–meson states, pentaquarks are organized in the form of meson–baryon molecules, and
hexaquarks correspond to two baryons bound together (dibaryons). The deuteron, which is
composed of a proton and a neutron barely bound by a few MeV per nucleon, can indeed be
considered as the first bound state of two hadrons discovered in 1932 [UBM32].

All of the exotic candidates mentioned above have been the subject of thorough theoretical
and experimental searches for almost six decades with still no unambiguous evidence of such
exotic configurations. Admittedly, a great number of states that do not fit in the original quark
model have been reported. In the early years, the experimental efforts for searching exotic states
focused on the light hadron sector.

Regarding the nonet of the lowest scalar mesons that includes the f0(500) (also called σ), the
κ(800), the a0(980), and the f0(980), their interpretation as the ` = 1 orbital excitations within
the qq̄ picture fails to explain, for instance, the mass degeneracy of the a0(980) and the f0(980),
as it rather expects the a0 to be close to the f0(500). If they are considered to be tetraquarks
instead, either in the form of diquark–antidiquark [Jaf77; CT02; Mai+04a] or meson–meson
molecules [Jan+95; Pel04; Rui+11], the correct mass ordering is reproduced.

In the baryon sector, a paradigmatic example is that of the Λ(1405) resonance, the mass
of which is systematically overestimated by quark models. Predicted by Dalitz and Tuan in
1959 [DT59] as a meson–baryon molecule before the quark model was proposed, many ex-
perimental and theoretical efforts have been dedicated to revealing its nature. In particular,
studies of the meson–baryon interaction employing chiral effective Lagrangians and imple-
menting unitarization predicted the Λ(1405) as being the superposition of two poles in the
meson–baryon scattering matrix [Zyl+20; OM01; Jid+03; HJ12], a particularity that has been
recently acknowledged by the Particle Data Group (PDG) [Zyl+20] in favor of its molecular
structure.

A substantial activity escalation in the heavy sector took place after 2003 when the X(3872)
(also known as χc1(3872)) was observed by the Belle collaboration [Cho+03], and confirmed
and extensively studied later by other experiments at electron–positron [Aub+05; Abl+14]
and hadron colliders [Aco+04; Aba+04; Aai+12; Cha+13; Aab+17]. Despite its cc̄ content,
the fact that its quantum numbers and mass do not fit those of an ordinary quarkonium state
turned the X(3872) into the first clear exotic candidate. A decade after its discovery, its nature
is still under intense debate. Due to its extreme proximity to the D0D̄∗0 threshold, a natural
interpretation is that of a loosely bound DD̄∗ molecule. The possible existence of a charmed
meson–anticharmed meson molecule was already proposed in Refs. [VO76; Tor94] some decades
before the experimental observation, and since then the DD̄∗ molecular picture for the X(3872)
has received a lot of support [CP04; GO09]. Another popular scenario for the X(3872) is that
of a compact tetraquark state, structured into a diquark–antidiquark [Mai+05a], as well as the
admixture of conventional charmonium with molecular and tetraquark components [HKN11].
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Since then, many other exotic candidates have been found in the heavy quarkonium sector,
the so-called XY Z mesons. In the past, isospin I = 0 states with JPC = 1−− have been
traditionally designated as Y , those with isospin I = 0 and quantum numbers other than
1−− have been called X, and Z has been used to refer to quarkonium-like states with isospin
different than 0. In particular, the charged Z states are manifestly exotic. More recently, the
PDG has developed a new naming scheme for these states [Zyl+20] based on their quantum
numbers, in an attempt to extend the nomenclature used for ordinary quarkonia to the newly
discovered states. Despite being well established for conventional qq̄ states, the new names used
by the PDG may well designate states with a dominant molecular, tetraquark, etc. component.
As a matter of fact, the X(3872) is called “χc1(3872) (aka X(3872))” in the latest version of the
PDG compilation [Zyl+20].

Also, since 2003, new open heavy-flavor mesons have been observed experimentally, some
of them not fully consistent with the excited states predicted by the conventional quark model.
Particularly interesting are the positive-parity charm-strange D∗s0(2317) and Ds1(2460) observed
in 2003 by the BaBar [Aub+03] and CLEO [Bes+03] collaborations, respectively. The masses of
these two states stay lie just below the DK and DK∗ thresholds, respectively, a fact which turns
them into natural candidates for hadronic molecules [BCL03; Szc03; KL04; HL04; Guo+06;
Gam+07; Fae+07; FN07], although other explanations, such as a conventional cs̄ meson
[Dai+03; Nar05; BEH03], a compact tetraquark [CH03; Ter03; CL04; Mai+05a; Bra+05;
WW06], and a mixture of cs̄ with tetraquark [BPP04] and D(∗)K molecular [BR03] components
also exist in the literature. We will come back to the properties of these states in this dissertation
and study them within the molecular picture.

The existence of pentaquark baryons has been made evident from the recent discovery by
the LHCb collaboration [Aai+15b] of the excited nucleon resonances Pc(4380)+ and Pc(4450)+,
seen in the invariant mass distribution of J/ψ p pairs from the decay of the Λb. More recently, the
new Pc(4312)+ has been reported by the LHCb collaboration from the same decay [Aai+19a],
where they also observed that the formerly reported Pc(4450)+ consists of two overlapping
peaks, Pc(4440)+ and Pc(4457)+. The high mass of these excited nucleons inevitably demands
the presence of an additional cc̄ pair. Hidden-charm baryons having a meson–baryon structure
had already been predicted previously [Wu+10; Wu+11; Yan+12; XNO13; KR15], and later
studies confirmed that the narrow pentaquark seen from the Λb → J/Ψ K−p decay at CERN
(Conseil Européen pour la Recherche Nucléaire, Geneva, Switzerland) could receive a molecular
interpretation [Che+15; RNO15; He16; MO15; OEF17]. For recent reviews on multiquark states
and hadronic molecules see Refs. [EPP17; Che+16; Guo+18; OSZ18; Bra+20a].

In Chapter 2 we will show some examples of hadronic states that may be understood within
the molecular picture as dynamically generated from the hadron–hadron interaction, using
effective theories.

1.2 Strongly interacting matter in extreme conditions

1.2.1 Phases of QCD matter

At extremely high temperatures and/or baryon densities, hadrons are expected to lose their
identity and dissolve into a “soup” of their constituents, quarks and gluons, the so-called quark-
gluon plasma (QGP). The existence of this deconfined phase of strongly interacting matter was
proposed in the seventies [CP75b; CP75a], just a couple of years after the formulation of the
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theory of QCD. Indeed, even though color confinement prevents the direct observation of isolated
quarks and gluons in experiments, asymptotic freedom predicts the weakening of inter-quark
forces at high energies, thus expecting a transition from a phase in which quarks and gluons
are confined inside hadrons to the QGP at extreme conditions of temperature and/or baryon
density. Such conditions can be obtained experimentally by colliding heavy ions at relativistic
energies at CERN and at Brookhaven National Laboratory (BNL, New York, NY, USA). While in
the year 2000, at the end of the main part of the heavy-ion collision (HIC) program at the Super
Proton Synchrotron (SPS), CERN announced possible evidence of the formation of the QGP in
Pb+Pb collisions [HJ00], the actual discovery took place in 2005 with Au+Au collisions at the
Relativistic Heavy Ion Collider (RHIC) at BNL [Ars+05; Bac+05; Ada+05; Adc+05].

From the cosmological point of view, a very hot QGP filled the universe during its very
early existence, and a transition to hadron matter took place as the universe cooled down to
T . 150 MeV. The nature of this phase transition affects considerably our understanding of the
evolution of the early universe. Considering that the typical baryon densities ρB of the early-
universe QGP are negligible, in this regime, numerical simulations of QCD on the lattice have been
very helpful. In particular, nonperturbative lattice QCD (LQCD) calculations not only confirmed
the existence of the deconfined phase of quarks and gluons at high temperatures [Sus79] but
also provided strong evidence that the QCD phase transition at ρB = 0 is a crossover [Aok+06;
Bha+14]. Furthermore, LQCD results indicate that the two kinds of phase transition that are
possible in QCD, that is, the deconfining transition and the restoration of chiral symmetry, occur
essentially at the same temperature [Che+08].

The current knowledge of the QCD phase diagram is schematically summarized in Fig. 1.5, in
the plane of temperature, T , and baryon density, ρB. The dashed line represents the crossover
transition at low densities, separated from the first-order transition (solid line) at higher densities
by the QCD critical point (black circle). In this diagram, the matter created shortly after the Big
Bang is located in the upper-left corner, which is the region that is accessible with HICs at the
RHIC at BNL and the Large Hadron Collider (LHC) at CERN.

On the other hand, when the energy per nucleon of the colliding nuclei is of the order of a
few tens of GeV, such as in the future Facility for Antiproton and Ion Research (FAIR) at GSI
(Gesellschaft für Schwerionenforschung, Darmstadt, Germany) and in the Nuclotron-based Ion
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Figure 1.5: Schematic phase diagram of QCD. The solid line between the hadronic phase and the QGP
corresponds to a first-order transition, while the dashed line represents the crossover transition.
The black circle denotes the critical endpoint of the deconfining and chiral transitions. LHC:
Large Hadron Collider; RHIC: Relativistic Heavy Ion Collider; FAIR: Facility for Antiproton and
Ion Research; NICA: Nuclotron-based Ion Collider fAcility; ρN: nuclear saturation density; NS:
neutron star; CSC: color superconducting phase; CFL: color-flavor locked phase.
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Collider fAcility (NICA) at the Joint Institute for Nuclear Research (JINR, Dubna, Russia), not
only high temperature but also high baryon density can be achieved.

A different scenario for the realization of deconfined QCD matter is encountered in the interior
of neutron stars. In the core of these compact astrophysical objects, baryon densities as high
as several times nuclear saturation density (ρN) are reached. It is thus plausible that neutrons
(and other hadrons present in the composition of the neutron star) melt into a deconfined
phase of cold quark matter. During the merger of two neutron stars, temperatures reach several
tens of MeV and central densities can increase further. Therefore, a lot of effort is currently
devoted to unraveling the composition of neutron stars and the equation of state of cold and hot
neutron-star matter, from both the nuclear-physics and the general-relativity communities (see
[ÖF16; Oer+17; BR17; Bay+18] for some recent reviews).

At ultra-high baryon densities, several additional phases of QCD matter are predicted. In
particular, a color-superconducting (CSC) phase and a color-flavor locked (CFL) phase of
deconfined QCD matter are expected [BL84; ARW99; BHO03; BW09; FH11].

Thermal effective field theories provide a nonperturbative tool, complementary to LQCD,
to study strongly interacting matter at finite temperature that permits one to approach the
QCD phase transition from the hadronic chirally-broken phase. Let us imagine that starting
from the vacuum (µB = T = 0, bottom left corner of Fig. 1.5) we heat the system. That is
to say, we move vertically upwards along the temperature axis. A hadron gas is formed, in
which the abundances of each species in thermal equilibrium are dictated by the appropriate
thermal distribution functions (Bose-Einstein distribution for mesons, Fermi-Dirac distribution
for baryons). At temperatures below T ∼ 150 MeV, this medium is dominated by light mesons
(pions, mostly). Eventually, the hadron gas reaches the critical temperature Tc ∼ 150 MeV and
the thermal fluctuations can break up the pions and there is a crossover transition to the QGP.
This is the picture that will be exploited in this dissertation and hadronic effective theories will
be employed to analyze the effects of a thermal medium of light mesons on the properties and
the propagation of heavy hadrons, as will be described in Chapters 3 and 4.

1.2.2 Heavy-flavor mesons as a probe of the quark-gluon plasma

A HIC is a dynamic many-body process and, even if the QGP is expected to be created in the
initial stage of the collision, it cools rapidly as the system expands and emits various forms of
radiation, and eventually reaches the transition temperature and undergoes hadronization. It
may experience further expansion and cooling before the chemical and kinetic freeze-outs take
place. Therefore, what is detected in the experiments are the hadronic and leptonic residues, and
the very early formation of the QGP needs to be retraced by using the observed data. Examples
of such detected particles that are used to probe the formation of the QGP are electromagnetic
probes, that is, photons and dileptons (e+e− or µ+µ− pairs), and also quarkonia and jets.
Quarkonia and jets (as well as open heavy-flavor mesons and very energetic dileptons and
photons) constitute the so-called hard probes, whose production takes place at the initial stages
of the collision, through the hard scattering of the colliding nucleons.

Heavy-flavor mesons, both heavy quarkonia and open heavy-flavor mesons, are particularly
good probes. Due to the fact that the masses of the charm (mc ≈ 1.3 GeV) and the bottom
(mb ≈ 4.2 GeV) quarks are significantly larger than the typical temperatures attained in HICs, the
thermal creation of heavy quark–antiquark pairs during the evolution of the QGP is extremely
suppressed, and their production is essentially restricted to the early stages of the collision.
Moreover, heavy quarks have large relaxation times in contrast to the light partons of the
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medium (∼ mQ/T ), and hence they are not expected to fully thermalize within the timescale of
the QGP lifetime in HICs. Therefore, sensitive information about the interaction history of the
heavy quarks (or the heavy mesons, after hadronization) in the hot medium may be preserved in
the heavy-flavor observables.

The phenomenon of quarkonia suppression is expected to be a particularly important signature
of the QGP. It was first discussed in the context of the J/ψ meson in 1986 when Matsui and
Satz suggested that the binding of a cc̄ pair to form a charmonium system may be precluded
by the effect of the deconfined quarks and gluons in the QGP in a process known as color
screening [MS86], analogous to the Debye screening in an electromagnetic plasma. This effect
can be probed experimentally by comparing the quarkonia yields (not only of the ground states
J/ψ and Υ, but also of excited charmonia and bottomonia) in collisions of heavy nuclei (AA)
with the properly normalized yields in proton–proton (pp) collisions, as the QGP is more likely
to be produced in the former case [KMS88; DPS01]. The suppression is quantified through the
so-called nuclear modification factor RAA. The “melting” (disappearance of the spectral peak) of
quarkonia states at some temperature above Tc has been confirmed by LQCD studies [Dat+04;
Aar+07], which also corroborated the fact that higher excited states may dissociate at lower
temperatures, as they are less tightly bound.

There are however additional processes that may affect the yields of heavy quarkonia and
that make the interpretation of the experimental data rather complicated [BS07]. For instance,
the absorption of the quarkonia states in the nuclear medium [GH88], or their break-up due
to collisions with secondary hadrons produced in the collision and comoving with quarkonium
in the medium (comovers) [GH99; Vog99; CB99; CFK00], are examples of mechanisms that
can lead to quarkonia suppression even in the absence of the QGP formation. Furthermore,
regeneration (also called recombination or coalescence) of quarkonia from uncorrelated heavy
quark–antiquark pairs generated in different hard collisions may lead to an enhancement of the
quarkonia yields in AA collisions compared to those in pp collisions. This process is especially
important if the abundance of heavy quarks and antiquarks in the heavy-ion environment is
large, and it thus increases with the centrality and the energy of the collision [The02; RBC10].

While the melting of quarkonia states has long been considered an important signature of the
QGP formation, the evolution of open heavy-flavor mesons in HICs is also of great interest for the
understanding of the strongly interacting regime close to the QCD phase transition. The existence
of a connection between observables in the heavy-quarkonium and the open heavy-flavor sectors
has become evident in recent years. As a matter of fact, the yield and spectra of the regenerated
quarkonia are sensitive to the abundance and momentum distributions of the open heavy-flavor
mesons in the system. Also, in the comover scattering scenario, quarkonium dissociation (and
recombination) are explained by the inelastic interactions with the comoving hadrons. Processes
such as J/ψ + Φ → D + D̄ and D + D̄ → J/ψ + Φ, where Φ is a comoving light meson, lead
to the production of new open-charm mesons (J/ψ suppression) or charmonia states (J/ψ
regeneration). If the properties (masses and decay widths) of the open-charm mesons are
modified in a hot medium, the thresholds for the processes above would vary accordingly, thus
providing a complementary explanation for the J/ψ yields. This is a key point that motivates the
study of the properties of open heavy-flavor mesons in a hot medium, and a substantial portion
of the work described in this dissertation is devoted to this aim.

Due to their large mass, the propagation of heavy quarks (and early produced quarkonia)
in the QGP, as well as the propagation of the heavy mesons in the hot mesonic medium after
hadronization, can be treated as “Brownian motion”, with momentum transfers being relatively
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small. Then, the motion of the heavy particles can be characterized by transport coefficients, such
as the heavy flavor spatial diffusion coefficient, Ds. The study of charm and bottom transport
coefficients provides valuable access to the nonperturbative regime of QCD, and universal
information about the transport properties of the QGP is carried, in particular, by the normalized
diffusion coefficient, 2πTDs. This coefficient can be determined from LQCD calculations2 or,
conversely, with effective hadronic models below the transition temperature, as we will show
in Chapter 5 of this thesis. Knowledge of this coefficient is necessary to model the diffusion of
heavy quarks and heavy mesons in a hot medium, which will in turn help interpret the data from
HICs. For recent reviews on the extraction of heavy-flavor transport coefficients we refer the
reader to Refs. [Ber+18; DLR19].

2In fact, the momentum diffusion coefficient, κ = 4πT 3/(2πTDs), is the object that is computed in the lattice.
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Exotics in free space within
unitarized effective theories

2
This chapter is devoted to the study of the vacuum properties of exotic hadrons with open heavy
flavor within the hadronic molecular description. The structure of the chapter is the following.
Section 2.1 begins with an overview of the symmetries of QCD before introducing the basic ideas
of the effective theories that will be at the core of the study of baryonic and mesonic molecular
systems. Some remarks on unitarization in coupled channels and the analytic structure of the T
matrix are also given. The next two sections are devoted to the study of some particular hadronic
sectors. In Section 2.2 we investigate the dynamical generation of Ω∗0c (and Ω∗−b ) excited states
from the interaction of the lowest-lying pseudoscalar and vector mesons with the ground-state
baryons in the charm +1 (bottom −1), strangeness −2 and isospin 0 sector. This work was
published in Ref. [MFR18]. In Section 2.3 we analyze the interaction of the open heavy-flavor
ground-state mesons (D(∗) and D(∗)

s , also B̄(∗) and B̄(∗)
s ) with the Goldstone bosons, as well as

the excited states that are dynamically generated in these sectors. This analysis, together with
the extension to finite temperature presented in Chapter 3, was published in Refs [Mon+20b;
Mon+20c].

2.1 Theory remarks

2.1.1 Symmetries of QCD

It is well known that symmetries and the breaking of symmetries play a crucial role in physics and
in particular in modern particle physics. We may distinguish between discrete and continuous
symmetries. According to Noether’s theorem, every continuous symmetry under which the
Lagrangian (or the Hamiltonian) of a physical system is invariant leads to a conservation law,
particularly to a conserved current. The conservation of energy, momentum, and electrical
charge are some well-known examples. Hence symmetries introduce restrictions in the choice
of the interactions that are allowed for the description of a given physical problem and they
often entirely fix the Lagrangian of the theory. In addition, symmetries may be broadly classified
into two categories: global symmetries involve spacetime independent transformations, while
local symmetries allow for an arbitrary dependence of the parameters of the transformation
on the spacetime location. Local symmetries are usually called gauge symmetries because they
characterize gauge theories, such as the local gauge color SU(3)c symmetry in the case of QCD,
while global symmetries allow one to classify particles according to quantum numbers.

The phenomenon of symmetry breaking in physics is as ubiquitous as symmetry itself. De-
pending on the mechanism breaking the symmetry, one may distinguish three kinds of symmetry
breaking: explicit, spontaneous, and anomalous breaking. Explicit symmetry breaking happens
when the symmetry is not respected by any of the terms of the Lagrangian. If the explicit
symmetry breaking is small, one often says that the would-be symmetry is an approximate
one. Spontaneous symmetry breaking appears when the Lagrangian obeys the symmetry but the
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ground state does not. And anomalous symmetry breaking or anomalies arise when the sym-
metry of a classical theory does not remain at the quantum-mechanical level. The spontaneous
breakdown of global symmetries leads to the appearance of massless modes that are known
as Goldstone (or Nambu-Goldstone) bosons [Nam60; Gol61]. The SU(2) isospin symmetry and
its extension to the SU(3) flavor symmetry are examples of global symmetries of QCD that are
spontaneously broken, and the pions and the octet of pseudoscalar mesons, consisting of the
pions and the kaons, are the corresponding Goldstone bosons, respectively.

Besides the evident symmetries like Lorentz invariance, SU(3)c gauge invariance and the
discrete P (parity), C (charge conjugation), and T (time reversal) symmetries, the Lagrangian
LQCD of Eq. (1.5) exhibits symmetries associated to the wide range of the quark masses .

The six quark flavors are usually divided into two groups according to their mass: the light
quarks (u, d, s) and the heavy quarks (c, b, t), in comparison with the scale ΛQCD separating the
perturbative and the nonperturbative regimes of QCD:

mu, md, ms � ΛQCD � mc, mb, mt . (2.1)

The value of ΛQCD has been determined empirically to be of the order of a few hundred
MeV [DBT16] and the values of the current quark masses are shown in Fig. 1.3. Furthermore,
we recall that the current quark masses are fundamental parameters of the QCD Lagrangian
of Eq. (1.5) and thus one may be tempted to formulate the theory for any value of the quark
mass. These considerations motivate the interest in investigating the symmetries of QCD in
two opposite scenarios: the massless quark limit (chiral limit) and the infinite quark mass limit
(heavy-quark limit). These symmetries become approximate in the real world, where quarks
have a finite mass, yet they remain very useful to simplify QCD interactions in situations where
they are well justified. In this section, we briefly discuss some approximate symmetries of QCD
that are relevant for this thesis.

Light-quark symmetries

We may assume massless quarks. When dealing with hadrons composed of Nf = 3 light quarks,
q = {u, d, s}, for which mq � ΛQCD, it is a good approximation to consider the limit of the quark
masses going to zero, mq → 0. Fermionic fields have a right-handed (RH) helicity component,
with the spin parallel to the momentum, and a left-handed (LH) helicity component, for which
the spin is antiparallel to the momentum. In the case of massless quarks, the RH and LH
components, defined as ψR,q = PRψq and ψL,q = PLψq in terms of the projection operators
PR,L = 1

2 (1± γ5), respectively, are completely decoupled from each other. This is referred to as
the chiral limit of QCD. In this limit the kinetic term in the QCD Lagrangian of Eq. (1.5) can be
written in terms of RH and LH quark fields,

L0
QCD =

∑
q

(
ψ̄L,qi /DψL,q + ψ̄R,qi /DψR,q

)
− 1

4FαβF
αβ , (2.2)

where we have dropped the color indices for simplicity.
The Lagrangian of Eq. (2.2) is invariant under separate unitary global transformations of

the RH and LH quarks, known as chiral rotations, which means that it has a U(3)L × U(3)R

global symmetry. This symmetry decomposes into SU(3)L × SU(3)R × U(1)V × U(1)A. The axial
current associated with the U(1)A is anomalous and thus it is not conserved, leaving us with a
SU(3)L×SU(3)R×U(1)V symmetry. The singlet vector current associated with the U(1)V subgroup
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is responsible for baryon number conservation, and the remaining G ≡ SU(3)L × SU(3)R is the
so-called chiral SU(3) symmetry group. The invariance of the Lagrangian of Eq. (2.2) under
independent global G transformations of the LH and RH components in flavor space:

ψL,q
G−→ LψL,q , ψR,q

G−→ RψR,q , L,R ∈ SU(3)L,R (2.3)

allows one to define the following conserved Noether currents:

Jµ,AL = ψ̄Lγ
µλ

A

2 ψL , Jµ,AR = ψ̄Rγ
µλ

A

2 ψR , (A = 1, ..., 8) . (2.4)

It is common to define linear combinations of the left- and right-handed currents,

Jµ,AV = Jµ,AR + Jµ,AL = ψ̄γµ
λA

2 ψ , (2.5)

Jµ,AA = Jµ,AR − Jµ,AL = ψ̄γµγ5
λA

2 ψ , (2.6)

which, under a parity transformation, transform as vector and axial-vector currents,

Jµ,AV (t, ~x) P−→ Jµ,AV (t,−~x) , (2.7)

Jµ,AA (t, ~x) P−→ −Jµ,AA (t,−~x) , (2.8)

respectively.

Note that one can also consider the case of two massless quarks u and d, for which one speaks
of chiral SU(2) symmetry.

Of course, in QCD the light-quark masses are small but not exactly zero. The quark mass term
in Eq. (1.5), ∑

q

mqψ̄qψq =
∑
i,j

ψ̄R,iMijψL,j + h.c. , M = diag (mu, md, ms) , (2.9)

couples LH and RH quarks, leading to the explicit breaking of chiral symmetry. Since mu and
md are much smaller than ms, chiral SU(2) symmetry is less badly broken than chiral SU(3)
symmetry.

Furthermore, we might take the limit in which the Nf quarks have the same mass. For
three equal-mass quarks, that is, for Nf = 3, the QCD Lagrangian respects an exact SU(3)V ⊂
SU(3)L × SU(3)R symmetry, which is nothing else than the SU(3) flavor symmetry that led Gell-
Mann and Ne’eman to the eightfold way [Gel61; Gel62; Nee61]. The SU(3) flavor symmetry
is also approximate since ms > md & mu. For mu = md the recovered symmetry in the two-
flavor sector is SU(2)V ⊂ SU(3)V, which is the known isospin symmetry responsible for hadrons
appearing in isospin multiplets. The small splittings within members of the same multiplet are
due to the breaking of isospin symmetry caused by the small difference between the up and
down quark masses, md −mu, and additional electromagnetic effects that are of the same order.

Another crucial aspect of QCD is the so-called spontaneous chiral symmetry breaking. The
chiral symmetry of the Lagrangian is not a symmetry of the ground state of the system, the
QCD vacuum. This is expected from the fact that hadrons do not appear in degenerate parity
doublets. When the Lagrangian of a theory is invariant under the group of transformations G
but the vacuum is not, then the particle spectrum does not manifest the symmetry of G but
that of a certain subgroup H ⊂ G. In the case of QCD, the spontaneous breakdown of chiral
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symmetry results in theH ≡ SU(3)V subgroup. The nonvanishing quark condensate 〈0|ψ̄fψf |0〉 =
〈0|ψ̄R,qψL,q + ψ̄L,qψR,q|0〉 6= 0 plays the role of an order parameter of the spontaneous symmetry
violation.

The appearance of massless bosons is the consequence of the spontaneous symmetry break-
down of G→ H. According to the Goldstone’s theorem [Gol61; GSW62], the number of massless
bosons is given by the difference between the number of generators of the full symmetry group
G and that of the subgroup H that remains unbroken. Hence, from the spontaneous breaking of
chiral symmetry one expects (N2

f − 1) massless Goldstone bosons. The members of the isotriplet
of pions are good candidates for such bosons for Nf = 2 as they are considerably lighter than
the rest of the hadronic spectra and they have the expected quantum numbers. However, in the
limit of massless quarks the mass of the pions would have to be exactly zero.

The massless Goldstone bosons acquire nonzero masses if the symmetry to which they are
associated is also explicitly broken in the theory. This is precisely the case of chiral symmetry
in QCD, which is explicitly broken by the nonzero quark masses as explained above. Then
the Goldstone bosons are rather called pseudo-Goldstone bosons, although we may simply refer
to them as Goldstone bosons throughout this dissertation for simplicity. The explicit breaking
of chiral symmetry in QCD accounts for the nonzero mass of the pions, as well as for the
corresponding eight Goldstone bosons that appear for Nf = 3 and that are associated with the
pseudoscalar octet of mesons containing the pions, the kaons, the antikaons, and the eta meson
(π0, π±, K0, K̄0, K±, η). While all their masses are still small in comparison to the proton mass,
the mass of the mesons containing strange quarks being larger than that of the pions shows that
chiral SU(3) symmetry is less reliable than chiral SU(2) symmetry.

The chiral SU(3)L × SU(3)R group can be generalized on a theoretical ground to the larger
SU(4)L × SU(4)R group. In other words, one can imagine that, in addition to the u, d and s

quarks, either the charm or the bottom quarks are also massless. Chiral symmetry is explicitly
broken for the SU(4) case due to the large mass of the heavy quarks (c and b). Despite this, it is
common in hadron physics to rely on this SU(4) symmetry to obtain the interactions involving
charmed and bottomed hadrons, yet using the observed heavy-hadron masses to account for the
symmetry breakdown.

Besides, in the same way that SU(2) flavor symmetry can be enhanced to the higher SU(3)
flavor symmetry by considering the s quark being degenerate in mass with the u and d quarks,
one might think of four mass-degenerate quark flavors, for instance {u, d, s, c} or {u, d, s, b}.
Then one has instead an SU(4) flavor symmetry. Indeed SU(4) flavor symmetry can explain the
classification of charmed and bottomed hadrons in SU(4) multiplets, yet the comparatively large
masses of the c- and b-quarks strongly break SU(4) flavor symmetry, giving rise to considerably
large mass splittings within multiplets.

Heavy-quark symmetries

Heavy-quark symmetries appear in the limit of QCD where the masses of the heavy quarks,
Q = {c, b, t}, are taken to infinity, mQ → ∞. In practice, the quarks that can potentially be
treated as heavy are the charm and the bottom, since the top quark decays through the weak
interaction too rapidly to form hadronic bound states.

In a hadron containing a single infinitely heavy quark, for instance in a Qq̄ meson or a Qqq
baryon, the heavy quark can be seen as a static source of a color field. The reason for this is
that the momenta of the light degrees of freedom are of the order of ΛQCD � mQ, and so is the
momentum transfer to the heavy quark, ∆p. Therefore, the interactions of the light partons with
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the heavy quark do not change the kinematics of the heavy quark; that is, the variation in the
four-velocity of the heavy hadron,

∆v = ∆p
mQ
∼ ΛQCD

mQ
, (2.10)

is negligible. In the mQ →∞ limit the actual value of the heavy-quark mass becomes irrelevant.
For Nh heavy flavors, this leads to a U(Nh) heavy-quark flavor symmetry (HQFS): the dynamics
of the hadron are independent of the heavy-quark flavor.

In addition, the chromomagnetic moment associated with the spin of the quarks is suppressed
in the heavy-quark limit, so the interaction of the static heavy quark with gluons does not depend
on its spin. This brings us to an SU(2) heavy-quark spin symmetry (HQSS): the dynamics of the
hadron do not change if the heavy quark is replaced by another one with a different spin.

These two heavy-quark symmetries can be combined in a larger SU(2Nh) heavy-quark spin-
flavor symmetry (HQSFS). For two heavy-quark flavors (c and b) the corresponding symmetry
group is SU(4). In this case, the c and b quarks with spin up, ↑, and spin down, ↓, belong to the
same multiplet, {c ↑, c ↓, b ↑, b ↓}.

HQSFS is only an approximate symmetry to the extent that mc and mb are large but corrections
arise from the fact that the c and b quarks are not infinitely heavy. These corrections are of the
order of ΛQCD/mQ and hence HQSFS is totally justified in the bottom sector (ΛQCD/mb ∼ 0.05)
and good enough in the charm sector (ΛQCD/mc ∼ 0.2). It is also important to note that, whereas
chiral symmetry is a symmetry of the QCD Lagrangian of Eq. (1.5) in the limit mq → 0, the
QCD Lagrangian does not exhibit heavy-quark symmetries in the mQ → ∞, not even in an
approximate way. Instead, HQSFS is a symmetry of an effective theory of QCD that will be
described in the section below. The idea is that hadrons with a heavy quark are characterized
by a large separation of mass scales, as the heavy-quark mass is much larger than the mass
of the light degrees of freedom. After separating the physics associated with these two scales,
the long-distance (low-energy) physics may simplify due to the realization of an approximate
spin-flavor symmetry.

For reviews on heavy-quark symmetries, see Refs. [Neu94; Shi95; MW00]

2.1.2 Effective theories of QCD

We have seen in Section 1.1.2 that, as a result of the asymptotic freedom of QCD, the coupling
constant αs at high momenta, or equivalently, at short distances, is small enough for perturbation
theory to be applied. Conversely, at long distances, that is, of the order of ∼ 1 fm, αs becomes
large and perturbative methods are inapplicable. In order to perform quantitative calculations in
the latter regime we need other methods like, for instance, LQCD or effective field theories (EFTs).

LQCD has proved to be powerful a tool to numerically solve QCD in terms of quarks and
gluons in a discretized Euclidean spacetime lattice. However, calculations of QCD on the lattice
can be extremely computationally demanding and larger-than-physical quark masses are used to
speed up the computations, resulting in pion masses in the lattice (∼ 200− 400 MeV) that are
larger than the physical pion mass (135 MeV). Later extrapolations to the physical pion mass are
required. In addition, the numerical sign problem makes the extension of the computations to
finite density very challenging. In any case, LQCD has provided precise results and predictions
in many sectors and it has a promising future (see Ref. [Aok+20] for a review of recent lattice
results). A more extensive description of LQCD methods is given in Chapter 4.
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EFTs are a valuable theoretical technique to describe physics in a limited range of scales. EFTs
rely on the fact that the relevant degrees of freedom depend on the typical energy scale of the
problem and they are practical phenomenological tools when the characteristic energy scales
are well separated [Wei79; Pol84; Geo93; Man97]. This is the case in QCD, where the matter
fields are separated because the mass of the light quarks (u, d, s) is much smaller than that of
the typical hadron scale set by the mass of the proton (938 MeV) or the ρ meson (776 MeV).

Although far apart in conception and origin, there is a close link between LQCD and EFTs, and
expert communities in each of these methods typically work with one another. On the one hand,
EFTs are useful for lattice calculations to help make extrapolations to extract physical results, as
well as to understand the physics of the simulations and artifacts caused by the discrete lattice.
On the other hand, EFTs require LQCD to compute the values of the parameters directly from the
underlying dynamics. In this thesis, we adopt the point of view of EFTs and we employ those
that are the most suitable to deal with the heavy hadrons that are of our interest, as will be
explained in the next sections.

The key motivation behind EFTs is to mimic the theory governing a physical system that would
be otherwise intractable at low energies; in some cases, the underlying theory is not even known.
For instance, although we know that quantum mechanics is a more fundamental theory, we
use classical mechanics to describe the motion of the Earth around the Sun. Similarly, strong
interactions are formulated in terms of quark and gluon fields through the QCD Lagrangian of
Eq. (1.5), but the corresponding low-energy EFT provides a description in terms of hadronic
asymptotic states. In EFTs, the low-energy physics, with “low” defined in comparison to some
energy scale Λ, is described using only the degrees of freedom that are relevant at the energy
scale of interest, that is, those states with m� Λ, while integrating those with M � Λ. Thus,
the states that are heavier than a certain energy scale do not appear explicitly in the theory. This
is possible because the heavier degrees of freedom decouple at energies lower than their mass
and the effect of their inclusion is suppressed by powers of the inverse of their mass.

The procedure was formulated in 1979 by Weinberg in the form of a conjecture that is
considered to be the guiding theorem in quantum EFTs [Wei79]. It states that, for a given set of
asymptotic states, a perturbative description in terms of the most general effective Lagrangian,
containing all terms compatible with the assumed symmetries, yields the most general possible
S matrix, consistent with all fundamental principles of quantum field theory, that is, analyticity3,
perturbative unitarity4, and cluster decomposition5, as well as the assumed symmetry principles.
Such a “most general” Lagrangian contains an infinite number of terms, each of them multiplied
by a coupling constant. The so-called low-energy constants (LECs) encode information about
the heavy states that have been integrated out. While the symmetries of the underlying theory
impose restrictions on the structure of the operators, they do not determine the values of the
LECs, which are a priori unknown. Ideally, these should be calculable from the underlying
theory, but this is not yet the case in QCD and they have to be fitted to experimental data, when
available, or LQCD calculations.

What makes EFTs a particularly valuable tool is that these terms can be organized according
to their relevance in a systematic and consistent way. Then, the importance of the diagrams
generated by the interaction terms of this effective Lagrangian can be assessed through a power-
counting scheme giving rise to an expansion in powers of energy/Λ. Since m/Λ � 1, the
importance of each consecutive term is less than the previous one and the expansion may be

3The S matrix can be analytically continued to complex values of the momenta.
4The optical theorem is fulfilled at each order in perturbation theory.
5Two scattering experiments distant in spacetime should not interfere with each other.

18 Chapter 2 Exotics in free space within unitarized effective theories



cut at a given order. The first omitted term gives an estimate of the error. Moreover, since
low-energy EFTs are specified by a finite number of LECs at a given order in the energy expansion,
renormalization has to be performed order by order.

Effective theories are useful in many fields of physics, particularly in theoretical particle and
hadron physics. In the previous section, we have highlighted the importance of symmetries in
QCD. These come into play in the context of effective theories because one has to be extremely
careful with the symmetries when building an appropriate effective theory of QCD. The EFTs
treated in this thesis include chiral perturbation theory (χPT), as it is the EFT of QCD consistent
with the chiral symmetry, and heavy-quark effective theory (HQET), which is a useful effective
theory to deal with hadrons that contain one heavy quark. The basics of these two EFTs are
described in some detail below, following essentially Refs. [Pic95; Man97; SS05; Pet+20].

Chiral perturbation theory

χPT is the effective theory of light-quark QCD in the low-energy regime and it gets its name
from the approximate chiral symmetry of QCD, upon which it is built.

The Lagrangian of χPT contains as degrees of freedom the octet of Goldstone bosons of the
subgroup SU(3)V. These eight fields, φA (A = 1, ..., 8), are collected in a unitary 3 × 3 matrix,
U(φ), which under the chiral transformations (L,R) ∈ G = SU(3)L × SU(3)R transforms as
U(φ) G−→ LU(φ)R†. Among the different parametrizations that one can take for U(φ), it is
customary to choose

U(φ) = u(φ)2 = exp
{

i
√

2
f

Φ
}
, (2.11)

where f is the pion decay constant in the chiral limit, f = 92.4 MeV, and6

Φ(x) ≡ λA√
2
φA =


1√
2π

0 + 1√
6η8 π+ K+

π− − 1√
2π

0 + 1√
6η8 K0

K− K̄0 − 2√
6η8

 . (2.12)

Then the effective chiral Lagrangian involving U(φ) is given by the most general Lagrangian
that is consistent with chiral symmetry. This Lagrangian is organized in separated terms with
increasing powers of momentum or, equivalently, with an increasing number of derivatives acting
on the fields,

Lχ(U) =
∞∑
n=0
L(2n)
χ (U) , (2.13)

where the number in superindex brackets refers to the number of derivatives, which has to
be even as required by parity conservation. This Lagrangian consists of an infinite number of
operators, so one has to apply a power counting to establish a hierarchy among them. The soft
scale of the low-energy expansion is given by the small external momenta and the small masses
of the pseudo-Goldstone bosons, while the large scale is associated with a certain hadronic scale
Λχ. Since the χPT Lagrangian is expanded in powers of momenta, at low momenta compared to
Λχ, the contribution of higher-order operators involving higher powers of momenta in Eq. (2.13)
is suppressed. The power counting that follows from this is

U(φ) ∼ O(1) , ∂µ ∼ O

(
p

Λχ

)
, (2.14)

6The physical η and η′ mesons are mixtures of the SU(3) octet η8 and singlet η1 states.
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where the value of Λχ is associated with the mass of lightest QCD resonance that is not included
in χPT, that is, the ρ vector meson,

Λχ ∼ mρ ≈ 1 GeV . (2.15)

Due to the unitary nature of U , UU† = 1, the term with no derivatives gives rise to a trivial
interaction that is independent of the Goldstone fields, so one needs at least two derivatives.
This means that the Goldstone bosons couple through derivatives, and hence their scattering
amplitudes vanish at zero momentum. The lowest-order effective chiral Lagrangian is therefore

L(2)
χ = f2

4 〈∂µU
†∂µU〉 , (2.16)

where 〈· · · 〉 denotes the trace in flavor space. This Lagrangian contains an infinite number of
interactions. Indeed, expanding U in terms of Φ in Eq. (2.16),

U = 1 +
√

2i
f

Φ− 1
f2 Φ2 −

√
2i

3f3 Φ3 +O
(

Φ4

f4

)
, (2.17)

and noting that the Φ matrix is Hermitian, Φ = Φ†, one obtains the kinetic term for the Goldstone
bosons plus an infinite number of interacting terms with increasing number of fields,

L(2)
χ = 1

2 〈∂µΦ∂µΦ〉+ 1
12f2 〈[Φ, ∂µΦ][Φ, ∂µΦ]〉+O

(
Φ6

f4

)
, (2.18)

where [·, ·] is the commutator. All the interactions among the Goldstone bosons are given in
terms of the same coupling f . This follows from the common prefactor f2/4 in Eq. (2.16),
where it is fixed to recover the standard normalized form of the kinetic term, 1

2∂µφA∂
µφA, for

a meson φA that belongs to the octet. The invariance of the Lagrangian in Eq. (2.16) under
G = SU(3)L × SU(3)R is easily verified:

〈∂µU†∂µU〉
G−→ 〈R∂µU†L†L∂µUR†〉 = 〈∂µU†∂µU〉 . (2.19)

In order to ascertain the physical meaning of the chiral coupling f , we need to calculate the
chiral Noether currents associated to the invariance of L(2)

χ under SU(3)L × SU(3)R. The LH and
RH currents are given by:

JµL = i
f2

2 ∂µU
†U , (2.20)

JµR = i
f2

2 ∂µUU
† . (2.21)

Using ∂µUU† = −U∂µU†, which follows from differentiating UU† = 1, the vector and axial-
vector currents follow,

JµV = JµR + JµL = −i
f2

2 [U, ∂µU†] , (2.22)

JµA = JµR − J
µ
L = −i

f2

2 {U, ∂
µU†} , (2.23)
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where {·, ·} is the anti-commutator. After expanding these expressions in terms of the fields, it is
easy to see that the matrix element of the axial-vector current evaluated between a one-Goldstone
boson state and the vacuum is different from zero:

〈0|Jµ,AA |φB(p)〉 = −
√

2f〈0|∂µφA(x)|φB(p)〉 = −
√

2f∂µe−i p·xδAB ≈ i
√

2fpµ . (2.24)

Hence we can conclude that f can be identified with the pion (meson) decay constant in
the chiral limit, which has been measured through the charged pion weak decay process,
π+ → l+ +νl, giving f = fπ = 92.4 MeV [Zyl+20]. This result was anticipated when introducing
a parametrization for the fields in Eq. (2.11).

As discussed in Section 2.1.1, chiral symmetry is explicitly broken by the nonzero quark masses.
The χPT Lagrangian can be extended so as to incorporate spontaneous chiral symmetry breaking.
The most general extension of the QCD Lagrangian in the chiral limit of Eq. (2.2) is achieved
through the so-called external-field method. Following the procedure of Gasser and Leutwyler
[GL84; GL85], we consider the coupling of the scalar, pseudoscalar, vector, and axial-vector
currents of quarks to the color-neutral external fields given by the Hermitian 3× 3 matrices s(x),
p(x), vµ(x), and aµ(x),

LQCD = L0
QCD + ψ̄γµ(vµ + γ5aµ)ψ − ψ̄(s− i γ5p)ψ . (2.25)

These external fields fulfill the following chiral transformation relations

rµ ≡ vµ + aµ
G−→ R(vµ + aµ)R† + iR∂µR† ,

lµ ≡ vµ − aµ
G−→ L(vµ + aµ)L† + iL∂µL† ,

s+ i p G−→ R(s+ i p)L† ,

s− i p G−→ L(s− i p)R† . (2.26)

In order to incorporate them to the chiral Lagrangian one has to define the following building
blocks:

uµ = i [u†(∂µ − i rµ)u− u(∂µ − i lµ)u†] , (2.27)

χ± = u†χu† ± uχ†u , (2.28)

f±µν = ufL
µνu
† ± u†fR

µνu , (2.29)

where
χ = 2B0(s+ i p) (2.30)

is given in terms of the external scalar and pseudoscalar fields and a constant B0 which, like f ,
is not fixed by the symmetry. The external field strength tensors, f±µν , are defined in terms of the
RH and LH external fields,

fR
µν = ∂µrν − ∂νrµ − i [rµ, rν ] , fL

µν = ∂µlν − ∂ν lµ − i [lµ, lν ] . (2.31)

The covariant derivative of a building block A is given by

DµA = ∂µA+ [Γµ, A] , (2.32)
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with the chiral connection defined as

Γµ = 1
2
[
u†(∂µ − i rµ)u+ u(∂µ − i lµ)u†] . (2.33)

In particular, for U and U† the minimal coupling introduced in the covariant derivative reads

DµU = ∂µU − i rµU + iUlµ , DµU
† = ∂µU

† − iU†rµ + i lµU† . (2.34)

In the presence of external fields, the lowest-order effective chiral Lagrangian in Eq. (2.16)
turns into [GL85]

L(2)
χ = f2

4 〈DµU
†DµU + U†χ+ χ†U〉, (2.35)

which is invariant under chiral symmetry, Lorentz transformations, C and P . We recall that our
goal was to use the external-field method to introduce the explicit chiral symmetry breaking, for
which one needs to give particular values to the external fields. To reach the expression of the
leading chiral Lagrangian for Goldstone with nonvanishing quark masses in the isospin limit with
m = (mu +md)/2, we take s(x) = M = diag (m,m,ms) and switch the other external fields off,
that is, vµ(x) = aµ(x) = p(x) = 0:

L(2)
χ = f2

4 〈∂µU
†∂µU〉+ 1

2B0f
2〈U†M +M†U〉. (2.36)

The mass term in this Lagrangian follows from the χ terms in Eq. (2.35), and the meson decay
constants fπ 6= fK 6= fη contain chiral symmetry breaking effects: fΦ = f{1 +O(m,ms)}. Upon
expanding in powers of Φ,

1
2f

2B0〈M(U + U†)〉 = B0

{
(2m+ms)f2 − 〈MΦ2〉+ 1

6f2 〈MΦ4〉+O
(

Φ6

f4

)}
, (2.37)

and focusing only on the term quadratic in the fields, the Gell-Mann–Oakes–Renner relations
arise [GOR68],

m2
π = 2mB0 ,

m2
K = (m+ms)B0 , (2.38)

m2
η = 2

3(m+ 2ms)B0 .

Using these relations, the mass matrix χ can be written as

χ =

m2
π 0 0

0 m2
π 0

0 0 2m2
K −m2

π

 . (2.39)

One can easily see that LEC B0 is related to the chiral quark condensate through [SS05]

f2B0 = −1
3 〈ψ̄qψq〉 . (2.40)

Furthermore, the Gell-Mann–Okubo [Gel62; Oku62] mass relation,

4m2
K = 3m2

η + 2m2
π . (2.41)
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which is independent of the value of B0, follows directly from Eqs. (2.38). Without a numerical
value of B0, the quark masses m and ms cannot be extracted from the pseudoscalar meson
masses, only their ratios.

It is important to note that the external-field method can also be used to systematically
incorporate the electromagnetic and semileptonic weak interactions to the chiral effective
Lagrangian through appropriate external vector and axial-vector fields, upon the identification
of the LH and RH external fields with the external photon Aµ and W -boson fields,

rµ = eQAµ + · · · , lµ = eQAµ + e√
2θW

(W †µT+ + h.c.) + · · · . (2.42)

In these definitions Q denotes the quark-charge matrix, Q = 1
3diag(2,−1,−1), θW is the

electroweak angle, and

T+ =

0 Vud Vus

0 0 0
0 0 0

 , (2.43)

where Vij are the Cabibbo-Kobayashi-Maskawa (or CKM) matrix elements. For further details,
see for example Refs. [Pic95; SS05].

Chiral perturbation theory with baryons

So far we have considered an EFT for the interaction of Goldstone bosons among themselves
and with external fields. One may be interested in extending this theory to also describe the
dynamics of the ground-state baryons at low energies.

The baryons of the octet (JP = 1
2

+) are described by four-component Dirac spinor fields that
can be arranged in a traceless 3× 3 matrix in flavor space,

B(x) ≡ λA√
2
BA =


1√
2Σ0 + 1√

6Λ Σ+ p

Σ− − 1√
2Σ0 + 1√

6Λ n

Ξ− Ξ0 − 2√
6Λ

 . (2.44)

In contrast to the mesonic case of Eq. (2.12), the matrix of baryon fields B(x) is not Hermitian
(B 6= B†). It transforms under the chiral symmetry group G = SU(3)L × SU(3)R as

B
G−→ KBK† , (2.45)

with the compensator field K(L,R,U) that depends on (L,R) ∈ G and the meson matrix U .
Its definition follows from the transformation of

√
U , u =

√
U →

√
RUL† =: RuK−1 = KuL†,

giving K(L,R,U) =
√
LU†R†R

√
U .

The chiral effective Lagrangian involving baryons can be organized in terms according to the
number of baryon fields:

Lχ(U,B) = Lχ(U) + Lχ,B(U,B) + Lχ,BB(U,B) + Lχ,BBB(U,B) + · · · , (2.46)

where Lχ(U) is the purely mesonic Lagrangian of Eq. (2.13). Each contribution to the Lagrangian
of Eq. (2.46) is organized in separated terms with an increasing number of derivatives, but
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contrary to the mesonic sector, where only even powers of the momentum where allowed, in the
baryonic sector odd powers are possible:

Lχ(U,B) =
∞∑
n=0
L(n)
χ (U,B) . (2.47)

In order to give an expression of the above Lagrangian up to a given order in the chiral expansion,
one has to consider the power counting rules for the building blocks defined in Eqs. (2.27)–(2.29)
[Kra90],

uµ ∼ O(p) , f±µν , χ± ∼ O(p2) , (2.48)

for the baryon fields,

B, B̄, DµB ∼ O(1) , (−i /D −MB)B ∼ O(p) , (2.49)

and for the baryon bilinears B̄ΓB,

B̄B, B̄γµB, B̄γ5γµB, B̄σµνB ∼ O(1) , B̄γ5B ∼ O(p) . (2.50)

The chiral covariant derivative of the baryon field has the same form as that defined for the
building blocks A in Eq. (2.32) and transforms in the same way as B under chiral transformations,
DµB

G−→ K(DµA)K†. The constant MB is the mass of the baryons of the octet in the chiral limit,
and its large value is responsible for the time derivative of the field B not being counted as small
in Eq. (2.49), where only the baryon three-momenta are small. With this, the explicit form of
the leading-order chiral effective Lagrangian with at most two baryons is

Lχ,BB = 〈B̄(i /D −MB)B〉+ D

2 〈B̄γ
µγ5{uµ, B}〉+ F

2 〈B̄γ
µγ5[uµ, B]〉 , (2.51)

with

DµB = ∂µB + [Γµ, B] , (2.52)

Γµ = 1
2(u†∂µu+ u∂µu

†) , (2.53)

uµ = i (u†∂µu− u∂µu†) . (2.54)

The LECs D and F are the axial-vector coupling constants and their sum is related to the
axial-vector coupling constant of nucleons, gA = D + F = 1.27.

In particular, the BBPP vertex for the interaction between pseudoscalar mesons (P) and
baryons (B) arises from the term with the covariant derivative. After expanding the meson fields,
one gets

LBBPP = i
4f2 〈B̄γµ

[
[Φ, ∂µΦ], B

]
〉 . (2.55)

Moreover, the D and F terms provide the Lagrangian for the BBP vertex:

LBBP = − D√
2f
〈B̄γµγ5{∂µΦ, B}〉 − F√

2f
〈B̄γµγ5[∂µΦ, B]〉 . (2.56)
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Vector-meson fields within the hidden-gauge formalism

Different alternative schemes have been proposed to incorporate vector mesons in chiral effective
Lagrangians. These approaches differ in the kind of fields used (vector fields Vµ or antisymmetric
tensor fields Vµν), their transformation properties under chiral symmetry (linear or nonlinear),
and whether they are gauge bosons of a certain symmetry or not (see [Bir96] for a review).
In general, they are based on the phenomenological ideas of vector-meson dominance (VMD)
and universal coupling [Sak69; Alf+75]. The VMD model was developed by Sakurai in the
1960s [Sak60] to describe the interactions between energetic photons and hadrons through the
coupling of the first to neutral vector mesons (ρ0, ω, φ), which have the same quantum numbers
as the photon (JPC = 1−−).

“Massive Yang-Mills” [GG69; KRS84; Mei88] and “hidden gauge” theories [Ban+85; BKY88]
are among the more used approaches. Let us introduce in some more detail the hidden-gauge
formalism, as it will be used later on in this dissertation to describe the interaction between
vector mesons and pseudoscalar mesons, between vector mesons and baryons, and among vector
mesons themselves.

In the hidden-gauge, formalism vector mesons are introduced as the gauge bosons of a hidden
local symmetry, the so-called hidden-gauge symmetry (HGS). This artificial symmetry has no
physics associated with it and it can be removed by fixing the gauge [Geo90b]. Taking the unitary
gauge, this symmetry reduces to a nonlinear realization of chiral symmetry [Wei68], under
which vector mesons transform inhomogeneously. Following the procedure in Ref. [Eck+89],
the Lagrangian involving pseudoscalar mesons, photons, and vector mesons can be written as
[Nag+09]

LHGS = L(2)
χ + LIII , (2.57)

where L(2)
χ is the lowest-order chiral Lagrangian in the presence of external fields of Eq. (2.35)

and

LIII = −1
4 〈VµνV

µν〉+ 1
2m

2
V

〈(
Vµ −

i
g

Γµ
)2
〉
. (2.58)

Here, Vµ is the SU(3) matrix containing the vector meson fields,

Vµ =


1√
2ρ

0 + 1√
2ω ρ+ K∗+

ρ− − 1√
2ρ

0 + 1√
2ω K∗0

K∗− K̄∗0 φ


µ

, (2.59)

which have a polarization vector εµ(p). The tensor Vµν is defined as

Vµν = ∂µVν − ∂νVµ − i g[Vµ, Vν ] . (2.60)

The covariant derivative in L(2)
χ provides the coupling of the pseudoscalars to the photon field

through the definitions in Eqs. (2.34) and (2.42),

DµU = ∂µU − i eQAµU + i eUQAµ , (2.61)

while the chiral connection in LIII reads

Γµ = 1
2[u†(∂µ − i eQAµ)u+ u(∂µ − i eQAµ)u†] , (2.62)
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where U = u2 is the usual matrix containing the Goldstone bosons of Eq. (2.12). The hidden-
gauge coupling constant g is related to the constant f and the vector-meson mass mV through
the relation

g = mV

2f , (2.63)

which fulfills the Kawarabayashi-Suzuki-Fayyazuddin-Riazuddin (or KSFR) rule [KS66; RF66] of
VMD.

After combining the expansions in powers of Φ in Eqs. (2.18) and (2.37), it is straightforward
to see that L(2)

χ gives rise to the lowest-order chiral Lagrangian involving four pseudoscalar
mesons,

LPPPP = 1
12f2 〈[Φ, ∂µΦ][Φ, ∂µΦ] + χΦ4〉 . (2.64)

The Lagrangian L(2)
χ also contains the coupling between two pseudoscalars and a photon (γ),

LγPP = −i eAµ〈Q[Φ, ∂µΦ]〉 . (2.65)

Similarly, one can derive the following Lagrangians involving pseudoscalar and vector mesons
(V), as well as photons, from LIII [Nag+09]:

LVγ = −m2
V

e

g
Aµ〈V µQ〉 , (2.66)

LVγPP = e
m2
V

4gf2Aµ〈V
µ(QΦ2 + Φ2Q− 2ΦQΦ)〉 , (2.67)

LVPP = −i
m2
V

4gf2 〈V
µ[Φ, ∂µΦ]〉 , (2.68)

L̃γPP = i eAµ〈Q[Φ, ∂µΦ]〉 , (2.69)

L̃PPPP = − 1
8f2 〈[Φ, ∂µΦ][Φ, ∂µΦ]〉 , (2.70)

LVVVV = g2

2 〈VµVνV
µV ν − VνVµV µV ν〉 , (2.71)

LVVV = i g〈(∂µVν − ∂νVµ)V µV ν〉 . (2.72)

The Lagrangians in Eqs. (2.65) and (2.69) cancel each other. Hence, pseudoscalars do not couple
to photons directly but through vector-meson exchange, as a consequence of VMD. In addition,
the Lagrangian in Eq. (2.70) has the same structure as the first term of the chiral Lagrangian in
Eq. (2.64). Nevertheless, the contact term between four pseudoscalars in LIII is canceled by
the term resulting from the exchange of a vector meson between two pseudoscalars that is built
using LVPP , in the limit q2/m2

V → 0, where q is the momentum carried by the exchanged vector
meson. This way chiral symmetry is preserved [Wei68]. Besides the Lagrangians listed above,
one could expect also a term for the VVP vertex. However this vertex is anomalous [WZ67;
Mei88; PP93], as it violates parity, and its contribution is usually small.

The hidden-gauge approach can be extended to incorporate baryons. We have seen that
the second and third terms of Lχ,BB in Eq. (2.51) give rise to the Lagrangian coupling the
pseudoscalar mesons with baryons through the BBP vertex. By considering the electromagnetic
part of the building block

uµ = −
√

2
f

(∂µΦ− i e[Q,Φ]Aµ) , (2.73)
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one can see that Eq. (2.51) also provides the Lagrangian coupling the photon with the baryons
and a pseudoscalar meson, i.e. the so-called Kroll-Ruderman term,

LBBγP = i e√
2f

(
D〈B̄γµγ5

{
[Q,Φ], B

}
〉+ F 〈B̄γµγ5

[
[Q,Φ], B

]
〉
)
Aµ . (2.74)

In Refs. [KKW96; KKW97]7 the interaction between vector mesons and baryons was introduced
through the minimal coupling scheme8, in which we substitute eQAµ by the vector field gV µ.
With this, Eq. (2.73) becomes

uµ = −
√

2
f

(
∂µΦ + i g[Vµ,Φ]

)
, (2.75)

and the Kroll-Ruderman term leads to the BBVP Lagrangian,

LBBVP = i
2f

(
D〈B̄γµγ5

{
[Vµ,Φ], B

}
〉+ F 〈B̄γµγ5

[
[Vµ,Φ], B

]
〉
)
. (2.76)

The authors of Ref. [KKW97] also derived the direct coupling of the photon to the baryons:

LBBγ = e
(
〈B̄γµ[Q, B]〉+ 〈B̄γµB〉〈Q〉

)
Aµ . (2.77)

The first term of this Lagrangian follows from the term with the covariant derivative in Eq. (2.51)
and the electromagnetic part of Γµ (see Eq. (2.62)). The second term in the Lagrangian of
Eq. (2.77) involves the SU(3) singlet part of the nonet of vector mesons.

In the limit in which the number of colors Nc in QCD is taken to be large, the U(1)A anomaly
is absent. In this situation, there are nine Goldstone bosons associated with the spontaneous
chiral symmetry breaking of U(3)L × U(3)R to U(3)V. They are collected in a 3× 3 unitary matrix
Ũ(φ) = 〈0|Ũ |0〉 exp{i

√
2Φ̃/f}, with Φ̃ = Φ + η11/

√
3. See Refs. [PR91; Pic95] for details. As a

result, an additional singlet piece has to be added to the lowest-order Lagrangian of Eq. (2.51)
for the interaction of the baryons with the Goldstone bosons,

Lχ,BB + L(1)
χ,BB = Lχ,BB + gS〈ξ̃µ〉〈B̄γµγ5B〉 , (2.78)

where ξµ replaces uµ for large Nc.
The singlet term in Eq. (2.77) vanishes because the trace of the quark-charge matrix is exactly

zero. However, in the case of the Lagrangian coupling the vector meson to the baryons obtained
from the replacement eQAµ → gV µ, the contribution from the singlet of the vector fields survives
and we have

LBBV = g
(
〈B̄γµ[V µ, B]〉+ 〈B̄γµB〉〈V µ〉

)
. (2.79)

Similarly, one can also incorporate the interactions with the baryons of the decuplet to the
effective chiral Lagrangians [JM91].

Chiral perturbation theory with heavy hadrons

The next step that one shall take is to incorporate hadrons that contain a single heavy quark
Q. This step is especially relevant because in the next sections we will be concerned with
the interaction of heavy mesons and heavy baryons with light mesons. Because of the large

7The normalizations that we use for the Φ, Vµ and uµ matrices differ from those in Refs. [KKW96; KKW97].
8Also the prescription taken for the minimal coupling is different from that in [KKW97].
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separation of mass scales between the heavy quark and the light constituents (quarks, antiquarks,
and gluons), one can take advantage of heavy-quark symmetries. In this context, HQET provides
us with a convenient tool to separate the physics associated with the two scales [EH90; Geo90a].
As we noted before, the typical momentum exchange between the heavy quark and the light
degrees of freedom is of the order of ΛQCD. Since mQ � ΛQCD, the heavy quark is close to its
mass shell (p2

Q = m2
Q) and its momentum can be decomposed into an on-shell part mQv and a

small deviation from the mass shell |k| � mQ,

pµQ = mQv
µ + kµ , (2.80)

where vµ is the four-velocity of the heavy quark and satisfies v2 = 1. The heavy-quark propagator
reads

i
/p−mQ + i ε

=
i (/p+mQ)

p2 −m2
Q + i ε

= i [mQ(1 + /v) + /k]
k2 + 2mQv · k + i ε

mQ�k−−−−→ 1 + /v

2
i

v · k + i ε
, (2.81)

and it is independent of the heavy-quark mass. In addition, the heavy-quark field ψQ can be
decomposed into a “large” component hv and a “small” component Hv,

ψQ(x) = e−imQv·x(hv(x) +Hv(x)) , (2.82)

with
hv = eimQv·xPv+ψQ , Hv = eimQv·xPv−ψQ , (2.83)

where the action of the projectors Pv± = (1± /v)/2 on ψQ(x) is given by

Pv+ψQ(x) = ψQ(x) +O
(

1
mQ

)
, Pv−ψQ(x) = 0 +O

(
1
mQ

)
. (2.84)

Introducing these expressions into the QCD Lagrangian for a single heavy quark one gets

LQQCD = ψ̄Q(i /D −mQ)ψQ (2.85)

= h̄vi v ·Dhv − H̄v[i v ·D − 2mQ]Hv + h̄vi /D⊥Hv + H̄vi /D⊥hv ,

where we have introduced the perpendicular component of the covariant derivative Dµ
⊥ =

Dµ − (v ·D)vµ. We can see that this Lagrangian contains a massless field hv and a heavy field
Hv with a mass 2mQ. The latter can be integrated out of the theory in the limit mQ →∞. Using

(i v ·D + 2mQ)Hv = i /D⊥hv → Hv = 1
i v ·D + 2mQ

i /D⊥hv , (2.86)

we find the HQET Lagrangian [EH90; Geo90a],

LHQET = h̄vi v ·Dhv −
1

2mQ
h̄v /D

2
⊥hv +O

(
1
m2
Q

)
. (2.87)

It consists of an expansion in powers of the inverse of the heavy-quark mass.

While the HQET approach deals with quark degrees of freedom, one may be interested in
building an effective Lagrangian in terms of heavy mesons and heavy baryons. Let us concentrate
on heavy-light mesons and briefly introduce the formalism of the heavy-meson effective theory
(HMET) [Wis92; BD92; Cas+97]. Heavy-light mesons contain one heavy quark Q (c or b) and
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one light antiquark q̄a (ū, d̄ or s̄)9. In the heavy-quark limit, the lowest-lying pseudoscalar
(JP = 0−) and vector (JP = 1−) heavy-light mesons form degenerate multiplets:

Ha =

(D0, D+, D+
s ) ,

(B̄−, B̄0, B̄0
s ) ,

H∗µa =

(D∗0, D∗+, D∗+s )µ ,

(B̄∗−, B̄∗0, B̄∗0s )µ .
(2.88)

It is customary to combine these fields into a supermultiplet state in the form of a 4× 4 matrix
Ha, given by

Ha(v) = 1 + /v

2 (H∗µa γµ −Haγ5) , (2.89)

where v is the four-velocity of the meson, and the polarization vector of the vector-meson field
satisfies the condition vµεµ = 0. Under G ≡ SU(3)L × SU(3)R chiral symmetry, Ha transforms as

Ha
G−→ HbU†ba , (2.90)

where U is the 3× 3 matrix introduced in Eq. (2.11) for the Goldstone bosons and the repeated
light-flavor index b is summed over {1, 2, 3} → {u, d, s}. Under the heavy-quark spin rotation, it
transforms as

Ha
SU(2)v−−−−→ SvHa , (2.91)

with Sv ∈ SU(2)v, that is, the HQSS group boosted by the velocity v.

Taking this into account, the interactions of the heavy mesons with the Goldstone bosons are
described by a leading-order (LO) effective Lagrangian, in both chiral and 1/mQ expansion,
satisfying both light-quark chiral symmetry and heavy-quark spin symmetry. This Lagrangian
reads [Wis92; BD92; Yan+92; Goi92; BG95]

LHMET = −i vµ〈H̄a∇µbaHb〉D + g

2 〈H̄aHbγµγ5u
µ
ba〉D , (2.92)

where 〈· · · 〉D denotes the trace over Dirac indices, and flavor indices a, b are summed over. The
covariant derivative of the heavy fields reads

∇µH†a = (∂µ + Γµ)H†a , (2.93)

∇µHa = Ha(
←−
∂ µ + Γµ) = (∂µ + Γµ†)Ha , (2.94)

and Γµ (Γ†µ = −Γµ is the Hermitian conjugate matrix) and uµ are given in Eqs. (2.53) and
(2.54), respectively. The Hermitian conjugate field is defined as H̄b = γ0H†bγ0. In the Lagrangian
of Eq. (2.92), the parameter g is a universal coupling constant for the ΦHH∗ and ΦH∗H∗

interactions [Cas+97; Sco10].

It is important to note that the heavy fields in Eq. (2.92) have dimension 3/2 because a factor
√
mH has been absorbed in their definition.

A more explicit form of the LO Lagrangian coupling the heavy pseudoscalar and vector mesons
to light mesons is obtained by expanding the superfield Ha in Eq. (2.92) in terms of Ha and
H∗µa and taking the Dirac traces. The first term in Eq. (2.92) contains the kinetic terms for the
heavy mesons Ha and H∗µa as well as the interactions between the heavy mesons and an even
number of Goldstone bosons, obtained from the expansion of the chiral connection Γµ. The

9This means that we are dealing with D (or cq̄) and B̄ (or bq̄) states.
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interactions with an odd number of Goldstone bosons originate from the second term. Taking
vµ = (1,~0) +O(~p/mH), one can write [LS08; GHM09; Gen+10]

LLO
ΦHH∗ = 〈∇µH∇µH†〉 −m2

H〈HH†〉 − 〈∇µH∗ν∇µH∗†ν 〉+m2
H〈H∗νH∗†ν 〉

+ i g〈H∗µuµH† −HuµH∗†µ 〉+ g

2mH
〈H∗µuα∇βH∗†ν −∇βH∗µuαH∗†ν 〉εµναβ , (2.95)

where mH is the mass of the heavy mesons in the chiral limit and 〈· · · 〉 denotes the trace in
flavor space.

The LO Lagrangian of the HMET of Eq. (2.92) describes the interactions of heavy and light
mesons in the limit of combined chiral and heavy-quark symmetries. Indeed, these symmetries
are approximate and corrections of order mq/ΛQCD and ΛQCD/mQ can be considered.

The correction terms that take into account chiral symmetry breaking due to nonvanishing
light-quark masses read

δLmqHMET = −h0〈H̄aχ+,bbHa〉D + h1〈H̄aχ̃+,baHb〉D
+ h2〈H̄a(uµuµ)bbHa〉D + h3〈H̄a(uµuµ)baHb〉D
+ h4〈H̄a(−i vµ)(uµuν)bb(i vν)Ha〉D + h5〈H̄a(−i vµ){uµ, uν}ba(i vν)Hb〉D , (2.96)

where

χ± = u†χu† ± uχ†u , (2.97)

χ̃± = χ± −
1
3χ±,aa . (2.98)

The mass matrix χ is given in Eq. (2.39) and χ+,aa is the trace of χ+ in flavor space. The
explicit form of the Lagrangian for the interaction of heavy-light mesons with Goldstone bosons
at next-to-leading order (NLO) in the chiral expansion is given by [GHM09; Gen+10; Abr+11;
Liu+13; TT13]

δLNLO
ΦHH∗ = − h0〈HH†〉〈χ+〉+ h1〈Hχ+H

†〉+ h2〈HH†〉〈uµuµ〉+ h3〈HuµuµH†〉

+ h4〈∇µH∇νH†〉〈uµuν〉+ h5〈∇µH{uµ, uν}∇νH†〉

+ h̃0〈H∗µH∗†µ 〉〈χ+〉 − h̃1〈H∗µχ+H
∗†
µ 〉 − h̃2〈H∗µH∗†µ 〉〈uνuν〉 − h̃3〈H∗µuνuνH∗†µ 〉

− h̃4〈∇µH∗α∇νH∗†α 〉〈uµuν〉 − h̃5〈∇µH∗α{uµ, uν}∇νH∗†α 〉 . (2.99)

The violation of HQSS at order 1/mH is introduced by

δL1/mQ
HMET = λ

mQ
〈H̄aσµνHaσµν〉D −

g1

2mQ
〈H̄aHbγµγ5u

µ
ba〉D −

g2

2mQ
〈H̄aγµγ5u

µ
baHb〉D , (2.100)

where σµν follows the usual definition in terms of the gamma matrices, σµν ≡ (γµγν − γνγµ).
The first term introduces the splitting between the members of the heavy-meson supermultiplet,

mH∗ −mH = −2λ
mQ

, (2.101)
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while the couplings g1 and g2 renormalize the coupling g introduced in Eq. (2.92),

gΦHH∗ = g + 1
mQ

(g1 − g2) , (2.102)

gΦH∗H∗ = g + 1
mQ

(g1 + g2) , (2.103)

for the ΦHH∗ and ΦH∗H∗ couplings, respectively. Since the difference between the heavy-quark
and the heavy-meson masses appears at higher orders in the 1/mQ expansion, writing 1/mQ or
1/mH in Eq. (2.100) is equivalent.

In practice, in the calculations described in Section 2.3, the breaking of HQSS is taken into
account by using the physical masses for the pseudoscalar and vector heavy-light mesons.

2.1.3 Unitarization in coupled channels and the T -matrix formalism

The techniques based on effective Lagrangians such as χPT have become a practical tool to
address the study of the low-energy interactions between hadrons. The Lagrangians presented
in Section 2.1.2 consist of a controlled expansion in powers of the external momenta of the
hadrons over the hadronic scale Λχ. With these Lagrangians one can obtain the hadron–hadron
interaction amplitude at a given order in the expansion and, thus, the results of the effective
theory can be improved by going to higher orders, with the drawback of a large number of free
parameters, that is, the LECs, that appear in higher-order Lagrangians, and the fact that the
amplitudes obtained from these Lagrangians do not satisfy the exact unitarity condition.

Furthermore, up to now, we have not considered the possibility of resonant states, which
are very rich phenomena of strong interactions. Resonances appear as poles of the so-called
S matrix, and chiral Lagrangians by themselves are not able to reproduce them. Hence, the
range of applicability of chiral Lagrangians is limited by the masses of the lowest resonances
in each hadron–hadron scattering sector. For instance, in the case of s-wave meson–meson
scattering, ordinary χPT breaks down at the energies where the pole of the σ meson appears,
that is, around 500 MeV. Thus, the question that arises is whether the range of applicability of
chiral Lagrangians can be extended to higher energies by using some suitable unitarization (or
resummation) technique.

Before introducing unitary extensions of χPT, let us review some basic ideas on unitarity in
scattering theory [PS95].

For a 2→ 2 multi-channel scattering process, A(p1)+B(p2)→ C(p3)+D(p4), where pi are the
momenta of the particles involved, as illustrated in Fig. 2.1, the usual Mandelstam variables are
defined as s = (p1 +p2)2 = (p3 +p4)2, t = (p1−p3)2 = (p2−p4)2 and u = (p1−p4)2 = (p2−p3)2.

A
p1

C
p3

D

p4

B

p2

Figure 2.1: Diagram of the A(p1) +B(p2)→ C(p3) +D(p4) scattering.
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We recall that only two of these variables are independent, since s+t+u =
∑
im

2
i . The scattering

operator or S matrix is the unitary operator that connects the asymptotic in and out states. The
transition scattering amplitude or T matrix is defined as the interacting part of the S matrix

S = 1 + iT , (2.104)

and the unitarity condition for the S matrix, S†S = 1, implies

− i (T − T †) = T †T . (2.105)

If we consider the case of two interacting particles, the scattering amplitude is defined in terms
of the invariant matrixM(in; out) as

out〈p3p4, β|iT |p1p2, α〉in = (2π)4δ(4)(p1 + p2 − p3 − p4)iM(p1, p2; p3, p4)βα , (2.106)

where |p1p2, α〉 and |p3p4, β〉 are asymptotic states of two noninteracting particles with mo-
mentum p1, p2, and p3, p4, and the labels α and β refer to all the additional properties of the
channel. In general,M(in; out) is a matrix in channel space and it is an analytic function of the
Mandelstam variables s, t, and u up to poles and kinematic singularities.

The optical theorem, which gives a nonperturbative relation between the imaginary part of
the scattering amplitudes and the total cross sections, follows from the unitarity of the S-matrix.
Indeed, using the definition in Eq. (2.106), the left-hand side (l.h.s.) of Eq. (2.105) becomes

−i 〈Φβ |(T − T †)|Φα〉 = −i (〈Φβ |T |Φα〉 − 〈Φα|T |Φβ〉∗)

= −i (2π)4δ(4)(pα − pβ)(Mβα −M∗αβ) , (2.107)

where we have defined |Φα〉 ≡ |p1p2, α〉, |Φβ〉 ≡ |p3p4, β〉, pα = p1 + p2, and pβ = p3 + p4 to
simplify the notation. After the insertion of a complete set of states, the right-hand side (r.h.s.)
of Eq. (2.105)can be written as

〈Φβ |T †T |Φα〉 =
∑
γ

∫
dΠγ〈Φβ |T †|Φγ〉〈Φγ |T |Φα〉

=
∑
γ

∫
dΠγ(2π)4δ(4)(pβ − pγ)(2π)4δ(4)(pα − pγ)M∗γβMγα , (2.108)

with Πγ being the invariant phase space for a channel γ, and the generalized optical theorem in
the coupled-channel case is obtained:

− i (Mβα −M∗αβ) =
∑
γ

∫
dΠγ(2π)4δ(4)(pα − pγ)M∗γβMγα . (2.109)

For a diagonal matrix element (α = β), and using DiscM =M−M∗ = 2i ImM, we get the
optical theorem for elastic forward scattering,

2ImMαα =
∑
γ

∫
dΠγ(2π)4δ(4)(pα − pγ)|Mγα|2 , (2.110)

which tells that the imaginary part of the forward scattering amplitude is a sum over squared
matrix elements of the transition α→ γ for all kinematically allowed intermediate channels γ.
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Equation (2.110) can be written in the standard form in terms of the total cross section,

ImMαα = 2Ecmpcmσtot(α→ anything) , (2.111)

where Ecm and pcm are the energy and momentum in the center-of-mass frame.

The fact that resonances cannot be described by an expansion in χPT is closely related to the
particularity that the resulting amplitudes are polynomials in the masses and momenta, and,
thus, the elastic unitarity condition of Eq. (2.110) cannot be fulfilled. In a χPT calculation at a
given order, this condition is only satisfied perturbatively,

2ImM(1)
αα =

∑
γ

∫
dΠγ(2π)4δ(4)(pα − pγ)|M(0)

γα |2 . (2.112)

For an s-wave projected amplitude such as the ones that will be derived in the next chapter for
meson–baryon and meson–meson scattering, this condition would read (for a 1-channel case)
Im V (s) = ρscatt(s)|V (s)|2, where ρscatt(s) is the 2-body phase space. This relation is not satisfied
because the potential, V (s), is real. A unitarization method aims at constructing from V ij(s) a
new amplitude T ij(s) which satisfies (for the 1-channel case) Im T (s) = ρscatt(s)|T (s)|2.

There are different procedures in the literature to implement the ideas of unitarity in chiral
amplitudes. Among the most popular ones, there is the Inverse Amplitude Method (IAM) [DP97;
OOP98; OOP99], the N/D Method [OO99; OM01], and the Bethe-Salpeter (BS) approach
[KWW97; OO97; OR98], all of which reach the same results for the unitarized scattering
amplitudes. Due to its nonperturbative nature, these methods allow one to extend the energy
range of applicability of the chiral Lagrangians because the growth of the amplitude at larger
energies is tamed, and the cross sections saturate. Being a rational function of s, the unitarized
amplitudes also allow for the dynamical generation of resonances from the interaction between
the hadrons that are considered as degrees of freedom.

The use of the so-called unitarized chiral perturbation theory (UχPT) was well established
already two decades ago after it was able to provide good reproduction of the experimental data
on meson–meson scattering below 1.2 GeV. By imposing unitarity constraints on the amplitudes
obtained from the lowest-order meson chiral Lagrangian, UχPT essentially led to the appearance
of the lowest-lying scalar mesons (for example, the σ(500), the ρ, the f0(980), the a0(980), and
the K∗ resonances [OOP98; OO97; OO99]) without introducing them explicitly in the formalism.
The analytical properties of the unitarized scattering amplitudes and the dynamically generated
states are described in the next section.

In summary, the goal of unitarization is to solve a scattering equation respecting the unitarity of
the scattering matrix and using the chiral amplitudes as a kernel. Let us illustrate the fundamental
ideas with the BS approach in coupled channels, as this is the unitarization technique used for
the calculations presented in this dissertation.

The Bethe-Salpeter equation

The so-called Bethe-Salpeter equation, or BS equation, was introduced by Bethe and Salpeter
in 1951 [SB51] to describe the generation of bound states in the two-body scattering of two
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interacting relativistic particles. Within the BS formalism, the T matrix is obtained by solving an
integral equation in momentum space,

Tij(ki, kj ;P ) = Vij(ki, kj ;P ) + i
∑
l

∫
d4q

(2π)4Vil(ki, q;P )Gl(q;P )Tlj(q, kj ;P ) , (2.113)

where ki and kj are the relative momenta of the particles in the initial and final states, with a total
four-momentum P , whereas q is the momentum of the species propagating in the intermediate
loop. The sum over l runs over the different channels involved in the sector of interest. The
kernel Vij describes the interaction between channels i and j, and Gl is the two-body propagator
of the two intermediate particles, also called the loop function:

Gl(q;P ) = Dl(q;P )D̃l(q;P ) . (2.114)

In our case, the functions Dl and D̃l can correspond either to a pseudoscalar meson propagator,

DPl = 1
q2 −m2

l + i ε
, (2.115)

with an additional factor in the case of a vector meson,

DVl = 1
q2 −m2

l + i ε

(
−gµν + qµqν

m2
l

)
, (2.116)

or a baryon propagator,

DBl = 1
/q −Ml + i ε

, (2.117)

where ml and Ml denote the masses of the meson and the baryon, respectively.

The BS equation performs a resummation of an infinite series of ladder-type diagrams with an
increasing number of loops, as depicted diagrammatically in Fig. 2.2.

Due to its generality, this covariant scattering equation has been extensively applied in many
branches of physics. Solving the BS equation entails some difficulties related to its off-shell
nature, as well as to the presence of the poles of the propagators along the integration contour.
It was shown by the authors of Refs. [OO97; OOR00] that in the on-shell approximation the
integral equation reduces to an algebraic one for s-wave scattering. Indeed, it was shown in

ki kj

pi pj

=

ki kj

pi pj

+

ki kj

pi pj

q

+

ki kj

pi pj

q q′

+ · · ·

=

ki kj

pi pj

+

ki kj

pi pj

q

Figure 2.2: Diagrams representing the BS equation of a two-body scattering. The big grey circle corre-
sponds to the Tij matrix element, the black small circles correspond to the potential Vij and
the loops represent the propagator Gl function. The i, j, l indices stand for the channels of the
coupled-channel theory.
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[OO97] that only the on-shell information of V and T is needed to solve Eq. (2.113) and that
the off-shell part goes into the renormalization of the couplings and the masses. When taken on
shell, V and T can be factorized outside the integral, so that the on-shell BS equation can be
written as

Tij = Vij + VilGlTlj , (2.118)

with

Gl = i
∫

d4q

(2π)4Dl(q;P )D̃l(q;P ) , (2.119)

and the integration over dq0 can be done analytically by choosing the contour in the lower half
of the complex plane. Equation (2.118) represents a set of coupled equations which can be
written in matrix form as

T = V + V GT , (2.120)

with a purely algebraic solution,
T = (1− V G)−1V . (2.121)

This is the expression of the BS equation that will be solved to unitarize the scattering amplitudes
in coupled channels throughout this thesis.

The problem of solving the on-shell BS equation reduces to the calculation of the two-body
propagator of Eq. (2.119), which is a divergent integral and therefore has to be regularized with
a proper scheme. Two regularization techniques are extensively used in the literature to achieve
this:

• Cut-off regularization: it consists in replacing the infinite upper limit of the three-
momentum integral with a large enough cut-off momentum, Λ, for the UV divergence

Gcut
l =

∫
|~q |<Λ

d3q

(2π)3Dl(q;P )D̄l(q;P ) . (2.122)

This upper bound is put over the modulus of the momenta only, as the integral over angles
is not divergent. The value of Λ determines the maximum on-shell momentum of the
particle in the loop and, thus, it has to be large enough for all channels (typically, several
hundreds of MeV).

• Dimensional regularization (DR): it consists in lowering the dimensionality of the inte-
gral to D = 4 − 2η, with η > 0 and not necessarily integer, and taking the finite part of
the two-body propagator in the limit η → 0. This method is far more efficient than the use
of a hard cut-off, and it also has the advantage of preserving translational invariance and
gauge invariance. The disadvantage of DR is that it is less intuitive. We are analytically
continuing in D, the dimension of spacetime, the results calculated for an arbitrary D,
and the physical meaning of a real-valued dimension might not be clear. It gives rise
to a subtraction constant a(µ) at a given regularization scale µ. Typical values of these
parameters are µ ≈ 630 MeV and a(µ) ∼ −2 in the case of chiral effective theories in
the light sector [OM01], and µ ≈ 1 GeV and a(µ) ∼ −2.3 in the charm sector [Wu+10;
Wu+11].

Both regularization schemes for the loop function can lead to similar results of a particular
UχPT model upon reasonably varying their parameters. In general, one demands that both
regularization procedures give the same value of the loop function at the two-hadron energy
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threshold, and so an expression for the subtraction constants as a function of the cut-off and the
regularization scale is obtained.

These two methods to regularize the two-body propagator will be particularized for the
meson–baryon and meson–meson cases in the next sections.

2.1.4 Analytic continuation of the T matrix and dynamically generated states

The unitarization process leads to the potential emergence of poles (singularities) in the re-
summed amplitude T (s) at the zeros of the denominator of Eq. (2.121). These poles correspond
to states that are dynamically generated by the attractive coupled-channel hadron–hadron in-
teractions. The characterization of these states requires analytically continuing the T matrix
to the complex-energy plane, by allowing the Mandelstam s to be a complex variable, that is,
s→ z ∈ C. Besides, the search for poles should be performed in the correct Riemann sheet (RS).

Let us consider first the simple case where we only have one channel with two particles
of masses m1 and m2. The scattering amplitude T (z) is an analytical function of z up to a
right-hand cut along the real axis starting at the threshold energy z = sthr = (m1 + m2)2, the
so-called unitary cut, and the poles generated by the dynamics of the underlying theory. As a
consequence, the T matrix can be defined in two RSs that are usually called physical sheet or first
RS (RS-I) and unphysical sheet or second RS (RS-II). Depending on their location on the Riemann
surface, poles can be classified into different categories, as shown schematically in Fig.2.3: poles
that appear in the real axis of the physical sheet below the threshold correspond to bound states
(B) (see Fig. 2.3a), poles in the real axis of the unphysical sheet are called virtual states (V), and
resonances (R/R’) are identified with poles located outside the real axis in the unphysical sheet
(see Fig. 2.3b). It follows from analyticity that, if there is a pole at some complex energy z = zp,
there must be another pole at its complex energy, z = z∗p . That is, poles outside the real axis
(resonant poles) appear in conjugate pairs.

An equivalent way to discuss the analytical structure of the T matrix is to use the relative
three-momentum q instead of the Mandelstam s, which are related through

q =
√

(s− (m1 +m2)2) (s− (m1 −m2)2)
2
√
s

(2.123)

As there is no right-hand cut, in the complex q-plane there is only one sheet (Fig. 2.3c). The
relative momentum q itself is a two-valued function of s, with two solutions q+ (with Im q+ > 0)
and q− = q+e

iπ (with Im q− < 0) for a given value of s. Therefore, the upper (lower) half of

•
Re s

Im s
sRS-I

B

(a)

�

H

N
Re s

Im s
sRS-II

V
R’

R

(b)

•

�H N
Re q

Im q
q

B

V
R’ R

(c)

Figure 2.3: Location of the poles in the complex plane: (a) s-plane (RS-I), (b) s-plane (RS-II), (c) q-plane.
They are labeled as B for bound state, V for virtual state, and R/R’ for conjugate resonances.
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the complex q-plane, corresponding to positive (negative) values of the imaginary part of q,
has a mapping onto the physical (unphysical) RS of the complex s-plane. The denomination
physical/unphysical sheet is more conventional than meaningful. Amplitudes for complex values
of the kinematic parameters have to be connected with the physical amplitudes for the real
values of the kinematic parameters, and the usual convention is to adopt T (q + iβ)→ Tphys(q),
with q ∈ R and β → 0+.

In the q-plane bound states (B) and virtual states (V) are located on the imaginary axis on the
upper and lower half-planes, respectively, while resonances (R/R’) appear symmetrically with
respect to the imaginary axis in the lower half-plane.

The multi-channel case is somewhat more complicated, as there are two sheets for each channel.
To select the correct RS of the T matrix, we observe that the loop function in Eq. (2.119) is a
multivalued function with two RSs above the two-hadron energy threshold. Taking the principal
value of the argument, that is, Arg(Gl) ∈ (0, 2π], defines the first RS. The expression of Gl in the
second RS is obtained by adding a contribution to the imaginary part [ROS05],

GII
l (
√
s+ i ε) = GI

l(
√
s− i ε) = [GI

l(
√
s+ i ε)]∗ = GI

l(
√
s+ i ε)− i 2 ImGI

l(
√
s+ i ε) . (2.124)

The superindices I and II denote the first and second RSs, respectively. In the case of a two-meson
loop function, one gets

GII
l,MM(

√
s+ i ε) = GI

l,MM(
√
s+ i ε) + i

q

4π
√
s
, (2.125)

while for meson–baryon scattering there is an additional factor 2Ml,

GII
l,MB(

√
s+ i ε) = GI

l,MB(
√
s+ i ε) + i 2Ml

q

4π
√
s
. (2.126)

The same results follow from changing the sign of the momentum q in the regularized expressions
of the two-body propagator, explicitly given in the sections below for the cases of meson–baryon
and meson–meson scattering, and taking the phase prescription of the logarithms ln z = ln |z|+i θ
as 0 ≤ θ < 2π.

Thus, the analytic structure of Gl provides the unitarized amplitude Tij(
√
z) in a set of 2n RSs,

where n is the number of coupled channels. The RS-I or physical sheet of the T matrix follows
from solving the coupled-channel BS equation with GI

l for all channels. The RS-II is defined
as the unphysical sheet that is connected to the real-energy axis from below. It is obtained by

taking GI
l for Re

√
z <

√
sthr
l and GII

l for Re
√
z >

√
sthr
l , with

√
sthr
l the threshold energy for

channel l in the center-of-mass frame. The different RSs are connected to each other in the
regions between thresholds in a nontrivial way due to the presence of branch cuts.

With this prescription, the scattering amplitude close to a pole, and if not very close to a
threshold, can be parametrized with a Breit-Wigner distribution,

T (
√
z) = 1√

z −MR + i ΓR/2
. (2.127)

The real and imaginary parts of the pole positions √zp in the complex plane give the mass and
the half width of the dynamically generated states, respectively:

MR = Re
√
zp , ΓR/2 = −Im

√
zp . (2.128)
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In the general case of one physical RS and multiple unphysical sheets, the definitions of the
pole categories are the following:

• Bound states are identified with poles located on the real axis of the physical RS, below the
lowest threshold energy. As a result, bound states cannot decay. That is, they are stable
and have no width.

• Resonances are those poles located on an unphysical RS at necessarily complex energy. Due
to their nonzero width, resonances are associated with unstable states that can decay to
open channel states.
The meaningful physics lies in the reflection of the resonances on the real axis. From all the
unphysical sheets, the resonant poles that are physically more relevant are those located in
the lower half-plane of the RS-II, as they are the ones closest to the physical axis.

• Virtual poles are poles that lie on the real axis of an unphysical sheet, below the lowest
threshold.

Resonance poles that are located on the RS-II are the ones that, together with bound states, are
more likely to generate structures in the scattering amplitude in the real axis. Therefore, it is
common to call resonances only the resonant poles in the second sheet and generalize the term
“virtual state” to resonant poles in any other unphysical sheet, which can still yield to structures
and cusps near the thresholds.

Couplings and compositeness

The scattering amplitude can be expanded in a Laurent series around the pole position

T ij(z) = gigj
z − zp

+
∞∑
n=0

T
(n)
ij (z − zp)n , (2.129)

where gi is the coupling of the resonance or bound state to the channel i and gigj is the residue
around the pole. Therefore, from the residue of the different components of the T matrix around
the pole, one can extract the coupling constants to each of the channels. The residue of a simple
pole (of order 1) can be calculated with different methods, all of them giving similar numerical
values. One can apply the limit formula,

gigj = lim
z→zp

(z − zp)Tij(z) , (2.130)

and numerically extrapolate to the pole position. An equivalent method is to perform a contour
integral along a path of radius r around the pole,

gigj = 1
2πi

∮
dz Tij(z) = r

2πi

∫ 2π

0
dθ Tij(zp + rei θ) . (2.131)

And it can also be calculated from the numerical derivative of the inverse T matrix,

gigj =
[ ∂

∂(z)2

( 1
Tij(z)

)∣∣∣
zp

]−1
. (2.132)

The concept of compositeness of shallow bound states was formulated by Weinberg in
Ref. [Wei63; Wei65], applied to narrow resonances close to the threshold in [Bar+04; HKN11],
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and subsequently extended to the complex pole position of an unstable resonant state by an-
alytical continuation in [Gam+10; HJH12; AO12; Ace+14; SHJ15]. An appropriate unitary
transformation [GO16] permits assigning real values to the compositeness of complex poles lying
in the second Riemann sheet as

χi =
∣∣∣∣g2
i

∂Gi(zp)
∂z

∣∣∣∣ , (2.133)

which effectively measures the amount of ith channel component in the dynamically generated
state. The authors of Ref. [Ace+14] noted that the real part of −g2

i ∂Gi(zp)/∂z can be rigorously
interpreted as a probability only for bound states, but that it can still be regarded as the relevance
of a given channel in the wave function in the case of resonant states.

2.2 Meson-baryon interaction in the open heavy-flavor sector

In Section 2.1 we have given some remarks on effective theories and the chiral Lagrangians
have been reviewed, including the formal extensions of χPT to incorporate baryons and vector
mesons into the theory, as well as hadrons with heavy flavor. Preservation of the symmetries of
QCD has been the guiding principle to achieve this. In addition, a unitarization technique based
on the BS equation has been introduced to preserve the unitary and analytic structure of the
scattering amplitudes, and hadronic molecules have been described as dynamically generated
states in the complex-energy plane. Now we make use of these methods to describe the scattering
between mesons (pseudoscalar and vector mesons) with baryons within the formalism of the
hidden gauge applied to sectors with open heavy flavor. For this, the Lagrangians of the local
hidden-gauge formalism will be extended to SU(4). The aim is to obtain heavy excited baryons,
in particular those with the quantum numbers of the Ωc and Ωb states, that is strangeness S = −2
and either charm C = 1 or beauty B = −1, respectively.

2.2.1 Introduction

In recent years, the LHCb collaboration has made an important contribution to the spectroscopy
of heavy baryons by observing several new excited states [Aai+17; Aai+18; Aai+19c; Aai+19b;
Aai+20a; Aai+20b; Aai+20c; Aai+21a; Aai+21b]. Among these, the Ω0

c has drawn a lot of
attention. Five narrow Ω0

c excited resonances, denoted Ω∗0c from now on in this dissertation, have
been observed in proton-proton (pp) collisions decaying into Ξ+

c K
− states [Aai+17; Yel+18;

Aai+21b]. The reconstructed invariant mass distributions of the experimental analysis of the
LHCb collaboration are shown in Fig. 2.4, and the properties of the states as of Ref. [Aai+17] are
listed in Table 2.1. Their first observation in 2017 triggered a lot of activity in the immediate time
in the field of baryon spectroscopy aiming at understanding their inner structure and possibly
establishing their unknown values of spin-parity [MFR18; KR17; WZ17; Wan17; CL17; PM17;
Che+17; AAS17b; AAS17a; CC17; Wan+17; HPW18; YP18; AC17; KPP17].

The conventional quark model can naturally explain the presumed spin-parity of the 1/2+

and 3/2+ Ω0
c ground states [Zyl+20] within a css quark content picture and it also predicts the

lowest-lying excited states [MI80; Mig+06; RP08; VGV08; EFG11; Vij+13; Sil96; Yos+15]. The
discovery of excited Ω∗0c states provided new information against which revisited quark models
can be tested. Different theoretical approaches including LQCD, QCD sum rules, and potential
models have been used, and several interpretations have been proposed for these states. In
general, they benefit from the symmetries that arise from the fact that the charm quark has a
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Figure 2.4: Reconstructed invariant mass distributions from the analyses in Ref. [Aai+17] (left panel) and
Ref. [Aai+21b] (right panel), showing the peaks corresponding to the observed Ωc(3000)0,
Ωc(3050)0, Ωc(3066)0, Ωc(3090)0 and Ωc(3119)0 excited states (the highest state is not ob-
served in the analysis of Ref. [Aai+21b]).

Resonance Mass (MeV) Width (MeV)
Ωc(3000)0 3000.4± 0.2± 0.1+0.3

−0.5 4.5± 0.6± 0.3
Ωc(3050)0 3050.2± 0.1± 0.1+0.3

−0.5 0.8± 0.2± 0.1
Ωc(3066)0 3065.6± 0.1± 0.3+0.3

−0.5 3.5± 0.4± 0.2
Ωc(3090)0 3090.2± 0.3± 0.5+0.3

−0.5 8.7± 1.0± 0.8
Ωc(3119)0 3119.2± 0.3± 0.9+0.3

−0.5 1.1± 0.8± 0.4

Table 2.1: Properties of the experimental Ω∗0c states from the analysis of the LHCb collaboration reported
in Ref. [Aai+17].

much larger mass than its strange companions. Some works interpret all the observed states as
P -wave orbital excitations of the ss diquark with respect to the c quark [KR17; WZ17; Wan17;
CL17], a result which finds support from an LQCD simulation reporting the energy spectra of Ω∗0c
baryons with spin up to 7/2 for both positive and negative parity [PM17]. In other works, some of
the states would be associated with 1P orbital excitations [Che+17] and others to radial 2S ones
[AAS17b; AAS17a; CC17; Wan+17]. Some earlier quark-model predictions, before the LHCb
observations, give only two negative-parity states in the energy region of interest, all having spin
1/2 [VGV08; Sil96]. A pentaquark structure within a quark picture has also been advocated for
the excited Ω∗0c baryons, either from a model that includes the exchange of Goldstone bosons
in the interaction between the constituent quarks [HPW18; YP18; AC17], by employing the
quark-soliton model [KPP17] or within a harmonic oscillator based model [San+19]. We refer
to the recent review on charmed baryons of Ref. [Che21] for a comprehensive discussion.

A complementary scenario is provided by models that can interpret some resonances as being
composed by five quarks, but structured in the form of a quasi-bound state of an interacting
meson–baryon pair. Different approaches have been explored for the effective interaction
between the two hadrons, including an SU(4) extension of the hidden-gauge formalism [MFR18],
a hidden-gauge approach in SU(3) exploiting the dominance of the exchange of light vectors
[Deb+18], and a scheme based on HQSS [NPT18]. All of these works succeed in interpreting
some of the observed excited Ω∗0c resonances as meson–baryon molecules upon unitarization of
the interaction kernel in coupled channels.

In this section, we describe the formalism that we used in [MFR18] and present the results
obtained in this work for Ω∗0c and Ω∗−b states, prior to the experimental observation of the
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bottomed states. The motivation to investigate these heavy baryons with a molecular model
arises from the fact that, similarly to the Pc pentaquarks, which find more natural having a cc̄
pair in their composition rather than being an extremely high energy excitation of the 3q system,
it is also plausible to expect that some of the excitations in the C = 1 (or B = −1), S = −2
sector can be obtained by adding a uū pair to the natural ssc content of the Ω∗0c (or Ω∗−b ). The
hadronization of the five quarks could then lead to bound states, generated by the meson–baryon
interaction in coupled channels. This possibility is supported by the fact that the K̄Ξc and K̄Ξ′c
thresholds are in the energy range of interest, and that the excited Ω∗0c baryons under study have
been observed from the invariant mass spectrum of K−Ξ+

c pairs.

Predictions of dynamically generated meson–baryon molecules in the open charm sector with
strangeness S = −2 before the first experimental observation of the excited Ω∗0c states were
already made [HL05; Gar+09a; JRV09; Rom+12]. The authors of Ref. [HL05] found a rich
spectrum of molecules in this sector employing a zero-range exchange of vector mesons as the
driving force for the s-wave scattering of pseudoscalar mesons off the baryon ground states.
Similar qualitative findings were obtained in the work of Ref. [JRV09], where finite-range effects
were explored. HQSS is explicitly considered in the model of Refs. [Gar+09a; Rom+12], thus
treating the pseudoscalar and vector mesons, as well as the ground-state 1/2+ and 3/2+ baryons,
on the same footing. Despite their qualitative differences, the three works predicted the existence
of Ω∗0c resonances as poles of the coupled-channel meson–baryon scattering amplitude in the
complex plane. However, most of the predicted quasibound states were below 3 GeV, too low to
explain the observed states. Only the model of Ref. [JRV09] predicts a state at 3117 MeV, but its
width turns out to be one order of magnitude larger than that of the closer observed state. The
new experimental results [Aai+17; Yel+18; Aai+21b] justify a revision of the original model of
Ref. [HL05], which we published in Ref. [MFR18] and describe in the following.

2.2.2 Formalism

Assuming perfect isospin symmetry, the mesonic and baryonic fields are written in terms of isospin
multiplets and the scattering of mesons off baryons decouples into isospin-defined channels of
the so-called isospin basis, as opposed to the physical or charge basis.

We consider the sector with charm C = 1, strangeness S = −2, and isospin I = 0 quantum
numbers, where the Ω∗0c excited states are located. Our building blocks are the pseudoscalar
(π, K, K̄, η, η′, D, Ds, D̄, D̄s) and vector (ρ, K∗, K̄∗, ω, φ, D,∗ D∗s , D̄

∗, D̄∗s) mesons and the
spin-1/2 baryons (N, Λ, Σ, Ξ, Λc, Σc, Ξc, Ξ′c,Ωc, Ξcc, Ωcc). The formalism presented in this
section can be also applied to the bottom sector upon the direct substitution of the c quark in the
content of the heavy hadrons by a b quark. This is possible thanks to HQFS and it leads to the
straightforward prediction of Ω∗−b excited states.

In SU(4), the pseudoscalar and vector meson fields are organized in 16-plets (15 ⊕ 1, see
Section 1.1.1) that can be written in the form of 4× 4 matrices containing the 15-plet and the
singlet pieces, Φ[16] = Φ[15] + η114/

√
3 and V µ[16] = V µ[15] + ω114/

√
3, respectively.

For the pseudoscalars, the 16-plet containing the π is given by

Φ[16] =


1√
2π

0 + 1√
6η + 1√

3η
′ π+ K+ D̄0

π− − 1√
2π

0 + 1√
6η + 1√

3η
′ K0 D−

K− K̄0 −
√

2
3η + 1√

3η
′ D−s

D0 D+ D+
s ηc

 , (2.134)
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where the η and η′ mesons have been identified with the mathematical η8 state and the singlet
η1, respectively. Isoscalar states with the same JPC numbers mix. This is the case of the η, η′,
and ηc mesons, with JPC = 0−+. While the mixing of the light-quark isoscalar mesons with the
heavier charmonium state is negligible, the η and η′ are admixtures of the SU(3) octet η8 and
singlet η1 states,

η = η8 cos θP − η1 sin θP , (2.135)

η′ = η8 sin θP + η1 cos θP , (2.136)

where θP is the pseudoscalar mixing angle. The η − η′ mixing is small, with θP ≈ −19◦ [BGP95],
and hence the octet is the largest component of the η, while the largest component the η′ is the
singlet10.

In the case of the φ and ω vector mesons, the mixture of the SU(3) singlet ω1 and octet ω8

states,

φ = ω8 cos θV − ω1 sin θV , (2.137)

ω = ω8 sin θV + ω1 cos θV , (2.138)

is close to the ideal mixing, for which θV ≈ 35.3◦11. With this, the 16-plet of the vector fields
reads

V µ[16] =


1√
2 (ρ0 + ω) ρ+ K∗+ D̄∗0

ρ− 1√
2 (−ρ0 + ω) K∗0 D∗−

K∗− K̄∗0 φ D∗−s
D∗0 D∗+ D∗+s J/ψ


µ

. (2.139)

As for the baryons, the 20-plet of the proton in SU(4) is given by a tensor Bijk, which is
antisymmetric under the exchange of the first two indices,

B121 = p, B122 = n, B132 = 1√
2Σ0 − 1√

6Λ,

B213 =
√

2
3Λ, B231 = 1√

2Σ0 + 1√
6Λ, B232 = Σ−,

B233 = Ξ−, B311 = Σ+, B313 = Ξ0,
B141 = −Σ++

c , B142 = 1√
2Σ+

c + 1√
6Λc, B143 = 1√

2Ξ′+c − 1√
6Ξ+

c ,

B241 = 1√
2Σ+

c − 1√
6Λc, B242 = Σ0

c , B243 = 1√
2Ξ′0c + 1√

6Ξ0
c ,

B341 = 1√
2Ξ′+c + 1√

6Ξ+
c , B342 = 1√

2Ξ′0c − 1√
6Ξ0

c , B343 = Ωc,

B124 =
√

2
3Λc, B234 =

√
2
3Ξ0

c , B314 =
√

2
3Ξ+

c ,

B144 = Ξ++
cc , B244 = −Ξ+

cc, B344 = Ωcc,

(2.140)

where the indices i, j, k denote the quark content of the baryon fields with the identification
1↔ u, 2↔ d, 3↔ s and 4↔ c.

10It is also common in the literature to introduce the mixing between the singlet and octet SU(3) states for the η and η′

as [BGP95; Roc+15]

η =
1
3
η1 +

2
√

2
3

ω8 , η′ =
2
√

2
3

η1 −
1
3
η8 .

11The ideal mixing between the singlet and octet SU(3) states for the ω and φ gives [KM06]

ω =

√
2
3
ω1 +

1
√

3
η8 , φ =

1
√

3
ω1 −

√
2
3
ω8 .
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The phase convention for the isospin states |I, I3〉, consistent with the structure of the Φ[16],
V µ[16], and Bijk fields, is |π+〉 = −|1, 1〉, |K−〉 = −|1/2,−1/2〉, and |D0〉 = −|1/2,−1/2〉 for the
pseudoscalar mesons and, analogously, |ρ+〉 = −|1, 1〉, |K∗−〉 = −|1/2,−1/2〉, and |D∗0〉 =
−|1/2,−1/2〉 for the vector mesons. For the baryons, we take |Σ+〉 = −|1, 1〉 and |Ξ−〉 =
−|1/2,−1/2〉. It is the one followed in Refs. [Wu+10; Gam+07] and it differs from that in
Ref. [HL05] in the sign of the D+(D∗+) and D−(D∗−) mesons.

The pseudoscalar–baryon (PB) and vector–baryon (VB) channels involved in the (I, S, C) =
(0,−2, 1) sector are listed in Table 2.2 in order of increasing value of their threshold. The
corresponding ones in the (I, S,B) = (0,−2,−1) sector are given in Table 2.3. The doubly heavy
Ωcc and Ωbb states have not been reported experimentally yet and the values of their masses
used for the calculation of the threshold mass of the channels in which they are involved have
been taken from Ref. [AHN10]. Nevertheless, the triply heavy D̄sΩcc and ηcΩc channels will be
neglected, as their energy is much larger than that of the other channels. Also their counterparts
in the VB scattering problem and in the bottom sector. We have checked that their inclusion
barely influences the results presented here.

PB Threshold (MeV) VB Threshold (MeV)
K̄Ξc 2964.7 D∗Ξ 3326.5
K̄Ξ′c 3072.2 K̄∗Ξc 3362.9
DΞ 3185.0 K̄∗Ξ′c 3470.4
ηΩc 3245.0 ωΩc 3480.1
η′Ωc 3655.3 φΩc 3717.0
ηcΩc 5677.2 J/ψΩc 5794.4
D̄sΩcc 5680.5 D̄∗sΩcc 5824.4

Table 2.2: The PB (JP = 1/2−) and VB (JP = 1/2−, 3/2−) channels for the sector with quantum
numbers (I, S, C) = (0,−2, 1), and the threshold mass in MeV.

PB Threshold (MeV) VB Threshold (MeV)
K̄Ξb 6288.9 B̄∗Ξ 6642.8
K̄Ξ′b 6430.7 K̄∗Ξb 6687.1
ηΩb 6593.6 ωΩb 6828.7
B̄Ξ 6597.6 K̄∗Ξ′b 6828.9
η′Ωb 7003.9 φΩb 7065.6
ηbΩb 15444.8 ΥΩb 15506.4
BsΩbb 15635.9 B∗sΩbb 15684.4

Table 2.3: The PB (JP = 1/2−) and VB (JP = 1/2−, 3/2−) channels for the sector with quantum
numbers (I, S,B) = (0,−2,−1), and the threshold mass in MeV.

Next, we discuss the meson–baryon (MB) scattering process, which we will consider to be in
s-wave, as the lowest term in the partial wave decomposition is the main contribution at low
energies. The diagrams contributing to the interaction between a meson and a baryon at tree
level are depicted in Fig. 2.5. In the case of the s-wave amplitude, the t-channel vector-meson
exchange term of Fig. 2.5a is the most important one due to VMD on top of which the local
hidden-gauge approach is built. The s- and u-channel terms of Figs. 2.5b and 2.5c, respectively,
contribute mainly to p-wave, and they may begin to take relevance as the energy increases. In the
calculation of Ref. [OM01] for the light S = −1, C = 0 sector appropriate for the K̄N interaction

2.2 Meson-baryon interaction in the open heavy-flavor sector 43



Pi Pj

Bi Bj

V∗

(a)

Pi Pj

Bi Bj
B∗

(b)

Pi Pj

Bi Bj
B∗

(c)

Figure 2.5: The leading-order tree-level diagrams contributing to the PB interaction in the (a) t-channel,
(b) s-channel, and (c) u-channel. Baryons, pseudoscalar, and vector mesons are depicted by
solid, dashed, and wiggly lines, respectively.

generating the Λ(1405), it is pointed out that these terms can reach around 20% of the dominant
t-channel contribution around 200 MeV above the threshold. In the heavy S = −2, C = 1 sector
addressed here, one may expect a similar behavior, even reduced by the fact that the mass of
the intermediate baryon in the s- or u-channel diagrams is more than twice that in the S = −1,
C = 0 sector. Therefore, one may safely conclude that the s- or u-channel contributions will be
less than 10% in the energy range 3000− 3200 MeV of interest here.

Let us start with PB. The vertices that appear in the diagram of Fig. 2.5a, coupling the vector
meson to pseudoscalar mesons (VPP) and baryons (VBB), are described by the chiral effective
Lagrangians within the hidden-gauge formalism introduced in Section 2.1.2. The first attempt to
describe the scattering of Goldstone bosons off 1/2+ charmed baryons was carried out by the
authors of Ref. [LK04], but a substantial improvement was achieved with the generalization of the
hidden-gauge approach to the charm sector by assuming an approximate SU(4) symmetry, broken
by the universal vector-meson coupling hypothesis [HL05]. The resulting SU(4) Lagrangians
read

LSU(4)
VPP = i g〈

[
∂µΦ[16],Φ[16]

]
V µ[16]〉 , (2.141)

LSU(4)
VBB = g

2

4∑
i,j,k,l=1

B̄ijkγ
µ
(
V

[16],k
µ,l Bijl + 2V [16],j

µ,l Bilk
)
, (2.142)

where the symbol 〈· · · 〉 denotes the trace of the SU(4) matrices in flavor space. The universal
coupling constant g is related to the pion decay constant fπ = 93 MeV by Eq. (2.63), that we
extend here to SU(4):

g = mV

2fπ
, (2.143)

with mV being a representative mass of the light (uncharmed) vector mesons. The authors of
Ref. [HL05] found that this expression in the limit of a light charm-quark mass is in accordance
with the Kawarabayashi-Suzuki-Fayyazuddin-Riazuddin (or KSFR) relation [KS66; RF66].

Equations (2.141) and (2.142) are the SU(4)-symmetric generalizations of Eqs. (2.68) and
(2.79), respectively, and thus the Φ and Vµ matrices are those of Eqs. (2.134) and (2.139) and
Bijk is the tensor given in Eq. (2.140).

Using the VPP and VBB vertices above one obtains the t-channel Vector-Meson-Exchange
(TVME) potential [HL05] between pseudoscalar mesons and baryons:

Vij = g2
∑
v

Cvij ū (pj) γµu (pi)
1

t−m2
v

[
(ki + kj)µ −

k2
i − k2

j

m2
v

(ki − kj)µ

]
, (2.144)

where pi, pj (ki, kj) are the four-momenta of the baryons (mesons) in the i, j channels,
t = (ki − kj)2 = (pi − pj)2 is the usual Mandelstam variable, and mv is the mass of the vector
meson exchanged. The coefficients Cvij are symmetric with respect to the indices and are related
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Figure 2.6: Contact terms of the (a) PB and (b) VB interactions.

to the strength of the interaction between twoMB channels i and j mediated by the exchange
of a vector meson v. The sign convention is such that a positive value of Cvij implies an attractive
potential, while a negative value implies repulsion. Adopting the same mass mv = mV for the
light vector mesons (ρ, ω, φ, K∗) and accounting for the higher mass of the charmed mesons
(D∗, D∗s) with a common multiplying factor κc,

κc =
(
mV

mc
V

)2
≈ 1

4 , (2.145)

as in [MR06], Eq. (2.144) simplifies to

Vij = −Cij
1

4f2 ū (pj) γµu (pi) (ki + kj)µ . (2.146)

The limit t � mV has been taken to reduce the t-channel diagram to a contact term as that
depicted in Fig. 2.6a. The new coefficients Cij are obtained by summing the various vector-meson
exchange contributions, Cij =

∑
v C

v
ij [HL05], including the factor κc in the case of charmed

mesons that breaks that SU(4) symmetry. We note that the exchange of the J/ψ meson should
be suppressed further than the exchange of charmed vector mesons due to its larger mass, that
is, with κcc̄ = (mV /mJ/ψ)2, but we do not consider here the channels for which such transition
is allowed.

We also note that the expression derived for the contact PB interaction of Eq. (2.144) is the
same as that usually obtained from the lowest-order chiral Lagrangian of SU(3) coupling the
octet of light pseudoscalar mesons and the octet of 1/2+ baryons presented in Section 2.1.2.
This kind of contact interaction, the so-called Weinberg-Tomozawa term, follows from the term
with the covariant derivative in Eq. (2.51).

In Eq. (2.146), u(pi) denotes the Dirac spinor of the incoming baryon with momentum pi, while
ū(pj) = u†(pj)γ0 is the corresponding one for the outgoing baryon with momentum pj . Next,
one has to work out the Dirac algebra up to order O(p2/M2) and compute the s-wave component
of these tree-level scattering amplitudes. The s-wave projected amplitude is computed as

V ij(s) = 1
2

∫ +1

−1
d(cos θ) V ij(s, t(s, cos θ))PL=0(cos θ) , (2.147)

where t(s, cos θ) is given in terms of s, cos θ, and the hadron masses mk through the relation
u =

∑4
k=1m

2
k−s−t. The function PL(cos θ) is the Legendre polynomial of order L normalized to∫ +1

−1 dxPL(x)PL′(x) = 2δLL′/(2L+1). In particular, for the s-wave projection we need PL=0 = 1.
The analysis of higher partial waves is not carried out here as the interaction in p-wave is
expected to be weak compared to the s-wave interaction, especially for energies close to the
thresholds, at which the molecular states can be potentially generated.
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K̄Ξc K̄Ξ′c DΞ ηΩc η′Ωc
K̄Ξc 1 0

√
3
2κc 0 0

K̄Ξ′c 1 1√
2κc −

√
6 0

DΞ 2 − 1√
3κc −

√
2
3κc

ηΩc 0 0
η′Ωc 0

Table 2.4: The Cij coefficients of the PB interaction for the (I, S, C) = (0,−2, 1) sector.

The resulting expression for the scattering amplitude reads:

Vij(
√
s) = −Cij

1
4f2

(
2
√
s−Mi −Mj

)
NiNj (2.148)

where Mi, Mj and Ei, Ej are the masses and the energies of the baryons and the normalization
factors Ni, Nj read N =

√
(E +M)/2M . Note that, while SU(4) symmetry is encoded in the

values of the coefficients Cij , the interaction potential is not SU(4) symmetric due to the use of
physical masses for the mesons and baryons involved, as well as to the factor κc. Actually, the
transitions mediated by the exchange of light vector mesons do not make explicit use of the SU(4)
symmetry of the interaction [SRO17]. This is for instance the case of the dominant diagonal
transitions, which are effectively projected into their SU(3) content. Therefore, a moderate
breaking of the SU(4) symmetry in the transitions mediated by heavy vector mesons will have a
limited effect on the results, as it will be shown in the next section.

The matrix of Cij coefficients for the resulting 5-channel PB interaction in isospin basis is
given in Table 2.4. The values of the coefficients for the exchange of a single vector meson v, Cvij ,
can be found in Appendix A.1. We note that the nondiagonal coefficients in which the c quark is
transferred from the meson to the baryon, or vice versa, that is, those that involve the exchange
of a charmed vector meson, are suppressed by the factor κc.

The interaction of vector mesons with baryons is obtained following the formalism presented
in Ref. [OR10], which is extended to SU(4) here. Similarly as for pseudoscalar mesons, from the
diagrams contributing to the tree-level VB interaction (Fig. 2.7), we only retain the t-channel
vector-exchange term (Fig. 2.7a). Employing the effective Lagrangian

LSU(4)
VVV = i g〈(∂µV [16]

ν − ∂νV [16]
µ )V µ[16]V

ν
[16]〉

= i g〈[V µ[16], ∂νV
[16]
µ ]V ν[16]〉 (2.149)
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Figure 2.7: The leading-order tree-level diagrams contributing to the VB interaction in the (a) t-channel,
(b) s-channel, and (c) u-channel. Baryons and vector mesons are depicted by solid and wiggly
lines, respectively.
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D∗Ξ K̄∗Ξc K̄∗Ξ′c ωΩc φΩc
D∗Ξ 2

√
3
2κc

1√
2κc −κc 0

K̄∗Ξc 1 0 0 0
K̄∗Ξ′c 1 −

√
2 2

ωΩc 0 0
φΩc 0

Table 2.5: The Cij coefficients of the VB interaction for the (I, S, C) = (0,−2, 1) sector.

for the three-vector VVV vertex and that of Eq. (2.142) for the VBB one, and under the
approximation of small momentum transfer q = t in which we neglect the q2/m2

V term in
the propagator of the exchanged vector, the resulting interaction kernel for the contact VB
interaction of Fig. 2.6b is identical to that obtained for the PB one (see Eq. (2.148)), multiplied
by the product of polarization vectors, ~εi ·~εj . Contrary to the PB case, in which there is only one
vector meson in the PPV vertex and this must necessarily correspond to the exchanged vector
meson in the t-channel diagram, in the VB case any of the three vectors of the VVV vertex could
be in principle the vector exchanged in the diagram of Fig. 2.7a. Nevertheless, the assumption of
neglecting the three-momenta of the external mesons in comparison with the vector-meson mass
implies that the polarization vectors of the external vector mesons have only spatial components,
εi → ~εi. Then, by rewriting the Lagrangian of Eq. (2.149) as

LSU(4)
VVV = i g〈(V µ[16]∂νV

[16]
µ − ∂νV [16]

µ V µ[16])V
ν
[16]〉 , (2.150)

one can see that the field V ν[16] cannot correspond to an external vector meson because the ν
index would be spatial and the derivative ∂ν would be replaced by the three-momentum of the
vector meson, which is neglected in this approach.

The allowed VB states are listed in the right columns of Table 2.2, where, again, we neglect
the states with three heavy quarks. The corresponding coefficients Cij are listed in Table 2.5 and
can be straightforwardly obtained from those for the PB interaction in Table 2.4, by considering
the following correspondences:

π → ρ, K → K∗, K̄ → K̄∗, D → D∗, D̄ → D̄∗, (2.151)

1√
3η +

√
2
3η
′ → ω and −

√
2
3η + 1√

3η
′ → φ . (2.152)

The scattering amplitude of Eq.(2.146) is unitarized via the coupled-channel BS equation
given in Eq. (2.118) and reproduced here,

Tij = Vij + VilGlTlj , (2.153)

which implements the resummation of loop diagrams to infinite order as described in Sec-
tion 2.1.3. The sought resonances are generated as poles of the unitarized scattering amplitude.
In the VB case, in the iteration of diagrams implicit in the BS equation, the ~εi · ~εj factor of the
interaction forces the vector meson in the loops to propagate with spatial components. Then, the
sum over the polarizations of the internal vector mesons gives [Sar+10; OR10]∑

pol

εiεj = δij + qiqj
m2
V

. (2.154)
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The factor ~εi · ~εj can be factorized out in all the terms of the BS equation in the on-shell
factorization approach [OR98], leading to [ROS05]

T = (1− V Ĝ)−1V~ε · ~ε ′ , (2.155)

where

Ĝ = G

(
1 + 1

3
~q 2

m2
V

)
, (2.156)

and the correction ∼ q2/(3m2
V ) can be neglected considering the approximations done so far.

The meson–baryon loop function is constructed from the meson and baryon propagators as

Gl = i
∫

d4q

(2π)4
2Ml

(P − q)2 −M2
l + i ε

1
q2 −m2

l + i ε
, (2.157)

where Ml corresponds to the mass of the intermediate baryon, ml is the mass of the intermediate
meson, P = (

√
s,~0) is the total four-momentum of the system in the center-of-mass frame, and q

denotes the four-momentum of the meson propagating in the intermediate loop. We note that
we have taken the nonrelativistic approximation of Eq. (2.117) for the baryon propagator.

This function diverges for |~q | → ∞ and it must be regularized with a proper scheme. As
discussed in Section 2.1.3, one may employ the cut-off regularization method, which consists in
replacing the infinite upper limit of the three-momentum integral with a large enough cut-off
momentum Λ. After the q0 contour integration, the two-meson propagator regularized with a
momentum cut-off reads

Gcut
l =

∫ Λ

0

d3q

(2π)3
1

2ωl(~q )
Ml

El(~q )
1√

s− ωl(~q )− El(~q ) + i ε
, (2.158)

where El =
√
~q 2 +M2

l and ωl =
√
~q 2 +m2

l are the energies of the intermediate baryon and
meson, respectively.

The loop function of Eq. (2.158) admits an analytical expression [OOP99]

Gcut
l (s) = 2Ml

32π2

{
ln
(
m2
lM

2
l

Λ4

)
− M2

l −m2
l

s
ln
(
m2
l

M2
l

)

+2M
2
l −m2

l

s
ln
(

1 +
√

1 +m2
lΛ−2

1 +
√

1 +M2
l Λ−2

)
− 2 ln

[(
1 +

√
1 +

m2
l

Λ2

)(
1 +

√
1 +

M2
l

Λ2

)]

+ 2ql√
s

[
ln
(
s− (M2

l −m2
l ) + 2

√
s ql

√
1 +m2

lΛ−2
)

+ ln
(
s+ (M2

l −m2
l ) + 2

√
s ql

√
1 +M2

l Λ−2
)

− ln
(
−s+ (M2

l −m2
l ) + 2

√
s ql

√
1 +m2

lΛ−2
)

− ln
(
−s− (M2

l −m2
l ) + 2

√
s ql

√
1 +M2

l Λ−2
)]}

, (2.159)

where we have designated as ql ≡ |~q | the relative momentum between the hadrons of channel l
propagating in the loop and which defined in Eq. (2.123).
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In the alternative DR approach, which is the one adopted in this section, theMB loop function
reads:

GDR
l = 2Ml

16π2

{
al(µ) + ln M

2
l

µ2 + m2
l −M2

l + s

2s ln m2
l

M2
l

+ ql√
s

[
ln
(
s− (M2

l −m2
l ) + 2ql

√
s
)

+ ln
(
s+ (M2

l −m2
l ) + 2ql

√
s
)

− ln
(
−s+ (M2

l −m2
l ) + 2ql

√
s
)
− ln

(
−s− (M2

l −m2
l ) + 2ql

√
s
)] }

, (2.160)

where al(µ) is the channel-dependent subtraction constant at the regularization scale µ. The
choice of the regularization scale µ and the corresponding subtraction constants al(µ) can be
obtained by demanding that, at an energy close to the channel threshold, GDR

l is similar to Gcut
l

for a certain cut-off Λ, namely

al(µ) = 16π2

2Ml

(
Gcut
l (sthr

l ,Λ)−GDR
l (sthr

l , µ, al = 0)
)
, (2.161)

for a given µ. Notice that the running of al(µ) cancels the explicit µ dependence in Eq. (2.160),
so the loop function does not depend on the regularization scale.

The coupling g of Eq. (2.143) could have been considered dependent on the energy through
the incorporation of additional form factors at the vertices of the t-channel diagram of Fig. 2.5.
This is not usually done in the works that employ the on-shell factorization approach to solve the
BS equation, as done in this thesis, since this poses additional technical difficulties. However,
practically speaking, the lack of the form factor in our formalism can be compensated by an
appropriate value of the equivalent cut-off employed.

The expression for the loop functionGDR
l in Eq. (2.160) assumes that the baryon and the meson

have fixed masses and no width. When the BS equation involves channels that include particles
with a large width, which is the case of the ρ (Γρ = 149.4 MeV) and K∗ (ΓK∗ = 50.5 MeV)
mesons, this function has to be convoluted with the mass distribution of the particle. Following
the method described in [OR10], the loop function in these cases is replaced by

G̃DR
l (s) = − 1

N

∫ (ml+2Γl)2

(ml−2Γl)2

dm̃2
l

π
Im

1
m̃2
l −m2

l + imlΓ(m̃l)
GDR
l

(
s, m̃2

l ,M
2
l

)
, (2.162)

where the limits of the integral have been taken to extend over a couple of times the width of
the meson, and the normalization factor N reads

N =
∫ (ml+2Γl)2

(ml−2Γl)2
dm̃2

l

(
− 1
π

)
Im

1
m̃2
l −m2

l + imlΓ(m̃l)
. (2.163)

The energy-dependent width Γ(m̃l) is given by

Γ(m̃l) = Γl
m5
l

m̃5
l

λ3/2(m̃2
l ,m

2
1,m

2
2)

λ3/2(m2
l ,m

2
1,m

2
2)
θH(m̃l −m1 −m2), (2.164)

where λ(x, y, z) = (x − (√y +
√
z)2)(x − (√y −

√
z)2) is the Källén function, m1 and m2

are the masses of the lighter mesons to which the vector meson in the loop decays, that is,
m1 = m2 = mπ for the ρ and m1 = mπ, m2 = mK for the K∗, and θH is the usual Heaviside
step function.
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The bound states and resonances generated dynamically from the coupled-channel MB
interaction appear as poles of the scattering amplitude in the RS-I and the RS-II of the complex-
energy plane, respectively. See the discussion in Section 2.1.4, where definitions are also given
for the coupling constants gi of the resonance to the various channels i (Eq. (2.129)), and
for the amount of ith-channel meson–baryon component in a given resonance as given by the
compositeness (Eq. (2.133)).

2.2.3 Results in the open-charm sector: Ω∗0c states

Now we proceed to present the results obtained employing the unitarized model for MB
scattering in coupled channels described above and which we published in Ref. [MFR18]. This
section is divided into two parts: first, we describe the results obtained with the PB interaction
kernel of Eq. (2.148) corresponding to JP = 1

2
− dynamically generated states, and later we

present the corresponding results for the VB scattering case leading to the dynamical generation
of degenerate JP = 1

2
−
, 3

2
− states.

0− ⊕ 1
2

+ states

A specific effective model for the scattering of pseudoscalar mesons with baryons in the sector
with quantum numbers (I, S, C) = (0,−2, 1) is built by fixing a regularization scheme for the
loop function Gl in Eq. (2.153) and determining the values of the parameters, that is, Λ in the
case of using a hard cut-off, or the subtraction constants al(µ) when using the DR scheme. We use
the latter one here and determine the subtraction constants of “Model 1” for a regularization scale
of µ = 1 GeV by imposing the loop function of each PB channel to coincide, at the corresponding
threshold, with the cut-off loop function evaluated for Λ = 800 MeV, using Eq. (2.161). This
value roughly corresponds to the mass of the exchanged vector mesons in the t-channel diagram
that has been eliminated in favor of the contact interaction employed in this model and therefore
it can be regarded to be a natural choice. The values obtained with this prescription are listed in
the upper part of Table 2.6.

The scattering amplitude T resulting from solving the BS equation shows two poles on the
RS-II that have the following properties:

M1 = Re z1 = 3051.6 MeV , Γ1 = −2 Im z1 = 0.45 MeV ,

M2 = Re z2 = 3103.3 MeV , Γ2 = −2 Im z2 = 17 MeV . (2.165)

These resonances have spin-parity JP = 1/2−, as they are obtained from the scattering amplitude
of pseudoscalar mesons with baryons of the ground-state octet in s-wave. The couplings of each
resonance to the various PB channels are displayed in Table 2.7 under the label “Model 1”, where

aK̄Ξc aK̄Ξ′c aDΞ aηΩc aη′Ωc

Model 1 −2.19 −2.26 −1.90 −2.31 −2.26
Λ (MeV) 800 800 800 800 800
Model 2 −1.69 −2.09 −1.93 −2.46 −2.42
Λ (MeV) 320 620 830 980 980

Table 2.6: Values of the subtraction constants at a regularization scale µ = 1 GeV and the equivalent
cut-off Λ for the two models discussed in the text.
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Model 1
M (MeV) 3051.6 3103.3
Γ (MeV) 0.45 17

|gi| −g2
i dG/dE |gi| −g2

i dG/dE

K̄Ξc (2964) 0.11 0.00 + i 0.00 0.58 0.01 + i 0.03
K̄Ξ′c (3072) 1.67 0.54 + i 0.01 0.30 0.01− i 0.01
DΞ (3185) 1.10 0.05− i 0.01 4.08 0.90− i 0.05
ηΩc (3245) 2.08 0.23 + i 0.00 0.44 0.01 + i 0.01
η′Ωc (3655) 0.04 0.00 + i 0.00 0.28 0.00 + i 0.00

Model 2
M (MeV) 3050.3 3090.8
Γ (MeV) 0.44 12

|gi| −g2
i dG/dE |gi| −g2

i dG/dE

K̄Ξc (2964) 0.11 0.00 + i 0.00 0.49 −0.02 + i 0.01
K̄Ξ′c (3072) 1.80 0.61 + i 0.01 0.35 0.02− i 0.02
DΞ (3185) 1.36 0.07− i 0.01 4.28 0.91− i 0.01
ηΩc (3245) 1.63 0.14 + i 0.00 0.39 0.01 + i 0.01
η′Ωc (3655) 0.06 0.00 + i 0.00 0.28 0.00 + i 0.00

Table 2.7: The Ω∗0c (1/2−) states dynamically generated employing zero-range interactions (Model 1,
Model 2) between a pseudoscalar meson (0−) and a ground-state baryon (1/2+), within a
coupled-channel approach, for the two models described in the text.

one can also find the corresponding values of the compositeness. We observe that the lowest-
energy state at 3052 MeV couples appreciably to the channels K̄Ξ′c, DΞ and ηΩc. Although the
coupling to ηΩc states is the strongest, the compositeness is larger in the K̄Ξ′c channel, to which
the resonance also couples strongly, and its threshold lies closer to the pole. The higher-energy
resonance at 3103 MeV, with a strong coupling to DΞ and a compositeness in this channel of
0.90, clearly qualifies as being a DΞ quasi-bound state.

The energies at which these resonances appear are very similar to the second and fourth Ω∗0c
states discovered by LHCb [Aai+17] and which we have listed in Table 2.1. Even if the mass
of our heavier state is larger by 10 MeV and its width is about twice the experimental one, our
results clearly show the ability of theMB dynamical models for generating states in the energy
range of interest.

Let us comment on the differences between our results and those of previous works in the
literature. The approach developed in Ref. [HL05], on which our model is based, imposes
approximate crossing symmetry by demanding the loop functions to vanish at a subtraction scale√
m2

th +M2
th, where mth and Mth are, respectively, the mass of the meson and the baryon for the

lightestMB state of the sector considered. Translating the values of the subtraction constants
resulting from this prescription to equivalent cut-off values, we find that they turn out to be
generally larger than 1000 MeV, even reaching a value of 1650 MeV for the highest-mass channel.
This is the reason why all the Ω∗0c states generated in Ref. [HL05] appear below 3000 MeV. The
comparison with the work of Ref. [JRV09] is less straightforward, as the Lipmann-Schwinger
equation is solved there with a nonlocal kernel and momentum-dependent form factors are
employed, while here we solve the BS equation in its on-shell factorized form with a local
interaction. In any case, the work of Ref. [JRV09] employs a common cut-off value, taken from
the analysis of their model in the I = 0, S = 0, C = 1 sector, finding one Ω∗0c state in the region
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of interest, at 3117 MeV, in addition to another state at lower energy, at 2966 MeV, and hence
located outside the range of states found by the LHCb collaboration.

In an attempt to accommodate better to the experimental data, we relax the condition of
forcing that each loop function calculated with DR matches, at the corresponding threshold,
the cut-off loop function evaluated for Λ = 800 MeV. To this end, we let the values of the five
subtraction constants vary freely within a reasonably constrained range and look for sets that
reproduce the characteristics of the two observed states, Ωc(3050)0 and Ωc(3090)0, within 2σ of
the experimental errors (see Table 2.1). In order to analyze the correlations, we represent in
Fig. 2.8 the values of each subtraction constant against all the others in the sets that comply with
the experimental constraints. We observe an anti-correlation between the subtraction constants
aK̄Ξ′c and aηΩc . This can be simply understood by noting that the resonance at 3050 MeV couples
mostly to these two meson–baryon states, as can be seen from the results in Table 2.7, implying
that, if one subtraction constant becomes more negative, favoring a stronger attraction for the
pole, the other subtraction constant needs to compensate this effect by being less negative. We
also find the subtraction constant aDΞ to acquire a rather stable value between -1.94 and -1.93.
This is a reflection of the resonance at 3090 MeV being essentially a DΞ bound state, which
requires a particular value of the subtraction constant aDΞ to generate the pole at the appropriate
experimental energy.

Among all the possible configurations of subtraction constants producing the experimental
Ω∗0c states at 3050 MeV and 3090 MeV represented in Fig. 2.8, we select a representative set
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Figure 2.8: Correlations between the various subtraction constants. The circles represent different con-
figurations of subtraction constants that reproduce the experimental resonances Ωc(3050)0

and Ωc(3090)0, within 2σ of the experimental errors. The red asterisks denote one particular
representative set.
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(“Model 2”), denoted by red asterisks in the figure, the values of which are listed in the bottom
part of Table 2.6. The properties of the two poles obtained with this model are:

M1 = Re z1 = 3050.3 MeV , Γ1 = −2 Im z1 = 0.44 MeV ,

M2 = Re z2 = 3090.8 MeV , Γ2 = −2 Im z2 = 12 MeV . (2.166)

which are similar for any of the sets of subtracting constants represented in Fig. 2.8. The stronger
changes with respect to the properties of the poles generated with “Model 1” are found in the
higher resonance. Apart from having been lowered to the experimental energy, its width has
been substantially decreased to agree with the experiment at the 2σ level. We see from Table 2.6
that the equivalent values of the cut-off for this new set of subtracting constants now lie in
the range [320− 950] MeV. The strongest change corresponds to the subtraction constant aK̄Ξc ,
needed to decrease the width of the Ωc(3090)0 towards its experimental value. The equivalent
cut-off value of 320 MeV is on the low side of the usually employed values, but it is still naturally
sized.

The five Ω∗0c states were observed from the K−Ξ+
c invariant mass spectrum obtained from a

sample of pp collision data at center-of-mass energies of 7, 8, and 13 TeV, recorded by the LHCb
experiment [Aai+17]. To model such a spectrum from the elementary pp collision reaction is a
tremendously difficult task, but we can give a taste of the spectrum that our models would predict
by representing, as a function of the K̄Ξc center-of-mass energy, the sum of the amplitudes for
the i → K̄Ξc transition, with i being any of the five coupled channels involved in this sector,
multiplied by the momentum of the K̄ in the K̄Ξc center-of-mass frame,

qK̄

∣∣∣∣∣∑
i

Ti→K̄Ξc

∣∣∣∣∣
2

. (2.167)

This is shown in Fig. 2.9 for “Model 1” (black dashed line) and “Model 2” (red solid line). The
momentum qK̄ acts as a phase-space modulator. The calculated spectrum has been convoluted
with the energy-dependent resolution of the experiment, which runs linearly from 0.75 MeV at
3000 MeV to 1.74 MeV at 3119 MeV, employing a Gaussian function. In front of each amplitude
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Figure 2.9: Spectrum obtained from the sum of amplitudes squared times a phase space factor, for the two
models discussed in the text.
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Ti→K̄Ξc in Eq. (2.167), one should include in principle a coefficient gauging the strength with
which the production mechanism excites the particular PB channel i. Nevertheless, given the
limited understanding of the production dynamics, we have assumed all these coefficients to
be equal. Therefore, the spectrum displayed in Fig. 2.9 is merely illustrative as it also lacks the
background contributions. However, one can still see certain similarities with the experimental
spectrum shown in the left panel of Fig. 2.4, extracted from Ref. [Aai+17], in the energy regions
of the 3050 MeV and 3090 MeV states.

Finally, we discuss the dependence of the results in the PB sector on the assumed value of
the cut-off, as well as the influence of a certain amount of SU(4) symmetry violation associated
with the fact that the charm-quark mass is substantially heavier than that of the light quarks.
The solid lines in the upper panel of Fig. 2.10 show the evolution of the resonance poles as the
value of the cut-off is varied between 650 MeV and 1000 MeV. One can see that, when the cut-off
value is increased, the resonances become more bound because the number of intermediate
states included in the unitarized amplitudes also increases. When a resonance moves to lower
energies, one usually expects it to be narrower since there is less phase space to decay to open
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Figure 2.10: Upper panel: evolution of the position of the pole resonances for various cut-off values.
The shaded area indicates the region of results covered when an additional 30% of SU(4)
symmetry breaking is assumed in the transitions mediated by a heavy-meson exchange. Lower
panel: schematic representation of the couplings of each resonance to the PB channels for
various cut-off values.
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channels. We observe, however, an increase in the width, a behavior that can be understood
upon examining, in the lower panel of Fig. 2.10, the evolution of the coupling constants to the
various channels as the value of the cut-off is varied. For larger cut-off values we observe a larger
absolute value of the coupling to K̄Ξc, and this is either the only possible decay channel or the
main decay one for these resonances, thereby explaining their increased width.

The implementation of SU(4) symmetry violation is already partly done by the use of the
physical meson and baryon masses in the interaction kernel, as well as by the introduction of
the factor κc = mV /m

c
V to suppress the matrix elements that connect states via the t-channel

exchange of a vector meson with charm (see Table 2.4). Therefore, we leave the transitions
mediated by light vector mesons untouched, as only SU(3) is effectively acting there, and
implement up to an additional 30% of SU(4) symmetry breaking by allowing the factor κc → κ̂c

to vary in the range (0.7− 1.3)κc. The shaded area in the upper panel of Fig. 2.10 denotes the
region in the complex plane where the resonances can be found by varying the cut-off value in
the range [650− 1000] MeV and also by admitting up to 30% SU(4) symmetry breaking in certain
transitions, as described above. We see that the band of uncertainties includes the 3050 MeV and
the 3090 MeV resonances measured at LHCb, a fact that gives strength to their interpretation as
PB molecules.

1− ⊕ 1
2

+ states

We next construct the unitarized interaction between vector mesons and baryons in the sector
with (I, S, C) = (0,−2, 1), employing the set of subtraction constants of Table 2.8. In the same
way a for “Model 1” in the PB case, the values have been obtained for a regularization scale of
µ = 1 GeV and imposing the loop function of each VB channel to coincide, at the corresponding
threshold, with the cut-off loop function evaluated for Λ = 800 MeV. The mass and other
properties of the resonances found from the VB interaction in this sector are listed in Table 2.9.
Each of these states corresponds to a degenerate JP = 1

2
−
, 3

2
− doublet.

A similar pattern to that found for the PB case is seen for the VB scattering: one resonance
coupling strongly to D∗Ξ and another coupling strongly to K̄∗Ξ′c and to φΩc, which mainly takes

aD∗Ξ aK̄∗Ξc aK̄∗Ξ′c aωΩc aφΩc

−1.97 −2.15 −2.20 −2.27 −2.26

Table 2.8: Values of the subtraction constants at a regularization scale µ = 1 GeV and an equivalent cut-off
of Λ = 800 MeV.

M (MeV) 3231.2 3352.4 3419.3
Γ (MeV) 0.0 1.3 4.8

|gi| −g2
i dG/dE |gi| −g2

i dG/dE |gi| −g2
i dG/dE

D∗Ξ (3327) 4.30 0.90 + i 0.00 0.31 0.01− i 0.01 0.24 0.00 + i 0.00
K̄∗Ξc (3363) 0.64 0.03 + i 0.00 1.74 0.91 + i 0.01 0.13 0.00 + i 0.00
K̄∗Ξ′c (3470) 0.26 0.00 + i 0.00 0.15 0.00 + i 0.00 1.83 0.42 + i 0.02
ωΩc (3480) 0.34 0.01 + i 0.00 0.16 0.00 + i 0.00 1.56 0.28 + i 0.00
φΩc (3717) 0.00 0.00 + i 0.00 0.09 0.00 + i 0.00 2.31 0.22 + i 0.00

Table 2.9: The Ω∗0c (1/2−, 3/2−) states dynamically generated employing a zero-range interaction be-
tween a vector meson (1−) and a ground-state baryon (1/2+), within a coupled-channel
approach.
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the role of the ηΩc state of the pseudoscalar case according to the tranformation of Eq. (2.152).
However, the ordering in energies of these resonances appears interchanged compared to that
found in PB scattering. This is simply related to the fact that the energy thresholds of the
various VB channels have also changed in comparison with their PB counterparts. The lower
energy resonance at 3231 MeV is mainly a D∗Ξ bound state, while the resonance at 3419 MeV, is
mainly a K̄∗Ξ′c composite state with some admixture of ωΩc and φΩc components. An additional
resonance is found between these two, coupling strongly to K̄∗Ξc states. We note that the
proximity of this resonance to the channel threshold to which it couples more strongly makes it
impossible to be found employing the convolutedMB loop of Eq. (2.162) that incorporates the
width of the K∗ meson. This is due to the fuzzy transition between Riemann sheets in the energy
region of the resonance and, in this case, the pole has been found assuming a zero width in the
vector meson propagators. The three resonances are located at energy values well above the
states found by the LHCb collaboration, in a region where no narrow structures have been seen
[Aai+17]. Nevertheless, the states found here from the VB interaction are artificially narrow
as they do not couple to, and hence cannot decay into, the PB states that lie at lower energy.
In order to account for this possibility in our model, one should incorporate the coupling of
VB states to the PB ones, via for example box diagrams [GO12; Lia+15], or employing the
methodology of Refs. [Rom+12; Gar+09b] where, based on HQSS, the pseudoscalar and vector
mesons, as well as the baryons of the octet and those of the decuplet, are treated on the same
footing. It would be interesting to perform such calculations to see if these structures remain
narrow or widen up sufficiently to accommodate the apparently featureless spectrum (within
experimental errors) in this higher energy range, as seen in Fig. 2.4.

It would also be interesting to explore how the PB resonances with JP = 1/2− studied in the
present thesis would be affected by considering their coupling to the VB states, a task that goes
beyond the scope of the exploratory study done here. Note, however, that the energy threshold
of the lighter D∗Ξ VB channel lies above those of the PB channels, except for the η′Ωc one,
which plays a quite irrelevant role in the dynamical generation of the states discussed above. We,
therefore, expect limited changes in their energy positions and widths, which could anyway be
compensated by appropriate changes in the subtraction constants.

The results presented in this thesis correspond to those that we published in [MFR18]. Several
posterior works also addressed the possible interpretation of some of the Ω∗0c states seen at
CERN as being quasi-bound meson–baryon systems [Deb+18; Wan+18; CHL18; NPT18]. In
particular, a very similar approach to the one presented here is followed in [Deb+18], although
the interaction is slightly different. While we employ SU(4) symmetry at the vertices of the
vector-meson exchange diagram, the model of [Deb+18] breaks explicitly this symmetry by
using, at the BBV vertex, baryon wave functions that incorporate flavor-spin symmetry in the
light-quark sector but keep the charm quark factorized. In this way, HQSS is respected in the
diagonal transitions, which are mediated by the exchange of light vector mesons and have the
heavy quark as a spectator. Nevertheless, the work of [Deb+18] finds the diagonal transitions to
be the same as those in this thesis, as the exchanged vector meson is light, and this effectively
projects the SU(4) interaction into its SU(3) content, which is identical in both models. The
subleading nondiagonal components mediated by the exchange of a heavy vector meson break
HQSS somewhat differently in each model. This explains why the results found in [Deb+18]
are qualitatively very similar to those presented in this dissertation, the most notable difference
being the narrower width obtained for the Ωc(3090)0. Moreover, the channel space covering
the states composed of pseudoscalar mesons and J = 3/2+ baryons was also considered in
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[Deb+18], finding an additional JP = 3/2− state which could be identified with the observed
Ωc(3119)0.

Relatedly, the work of [CHL18] addresses a three-channel problem, K̄Ξ∗c/K̄∗Ξc/K̄∗Ξ′c, per-
mitting the coupling of a state with a pseudoscalar meson and a 3/2+ baryon with states with a
vector meson and a 1/2+ baryon via a one-boson-exchange potential. A loosely bound molecular
state of mainly K̄Ξ∗c nature is found around a mass of 3140 MeV, being several MeV wide and
decaying mostly to K̄Ξ′c. The authors of Ref. [NPT18] revisit the renormalization scheme adopted
in their earlier work [Rom+12], where an extension of the Weinberg-Tomozawa πN interaction
that incorporates light-quark spin-flavor symmetry plus explicit HQSS was employed. This model
permits transitions between pseudoscalar–1/2+ baryon and vector–3/2+ baryon channels in
JP = 1/2−, and between pseudoscalar–3/2+ baryon, vector–1/2+ baryon, vector–3/2+ baryon
channels in JP = 3/2−. In [NPT18] it is found that, by modifying moderately the subtraction
point in the renormalization scheme of [Rom+12], two of the Ω∗0c states would move above
3000 MeV. Moreover, adopting an alternative cut-off regularization scheme, with Λ = 1090 MeV,
there appear three states, with a significant contribution of {K̄Ξ′c, K̄Ξc, ηΩc}, {K̄Ξ∗c , K̄∗Ξc, ηΩ∗c},
and {DΞ, K̄∗Ξc, D∗Ξ, K̄Ξc} channels, that can be related to the states found in the present work
and in [Deb+18], as well as be identified with some of the LHCb resonances. They find a
different assignment of experimental masses, that is, J = 1/2 Ωc(3000)0, J = 3/2 Ωc(3050)0,
and J = 1/2 for either Ωc(3119)0 or Ωc(3090)0, due to their proximity in mass, respectively.

Although subject to inevitable uncertainties, the results of this thesis, as well as those of
the models quoted here, indicate that one cannot ignore the possibility that some of the Ω∗0c
resonances observed by the LHCb collaboration could be interpreted as quasi-boundMB states.
Additional experiments, establishing the spin-parity of the Ω∗0c states or observing them in the
invariant masses of different decay channels, will certainly provide valuable information to help
clarify their nature.

2.2.4 Results in the open-beauty sector: Ω∗−b states

To conclude this section on meson–baryon scattering, we complement the results on the charm
sector by presenting predictions for the analog bottom resonances Ω∗−b . These states are
generated fromMB interaction kernels obtained from the Lagrangians of Eqs. (2.141),(2.142)
and (2.149), where the pseudoscalar- and vector-meson matrices are those of Eqs. (2.134)
and (2.139), respectively, but changing the charm mesons by their bottom counterparts, and,
analogously, the charm baryons in Eq. (2.140) are replaced by the bottomed ones. The matrices
of coefficients are then the same as that in Tables 2.4 and 2.5 but involve the PB and VB
channels in the sector with quantum numbers (I, S,B) = (0,−2,−1) displayed in Table 2.3. In
addition, the coefficient κc in the nondiagonal transitions involving the exchange of a charmed
vector meson is replaced by

κb = − m2
V

t−mb 2
V

' − m2
V

(mK −mB)2 −m2
B∗s

∼ 0.1 , (2.168)

to account for the much larger mass of the exchanged bottomed vector mesons compared to the
light ones, as done in the work of Ref. [Lia+18]. TheMB loops are regularized employing the
subtraction constants displayed in Table 2.10, which are obtained assuming a common cut-off
value of Λ = 800 MeV in Eq. (2.161), in the same way that we proceeded in the case of “Model
1” for charm.
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aK̄Ξb aK̄Ξ′
b

aηΩb aB̄Ξ aη′Ωb

−3.57 −3.62 −3.63 −3.24 −3.53
aB̄∗Ξ aK̄∗Ξb aωΩb aK̄∗Ξ′

b
aφΩb

−3.26 −3.46 −3.57 −3.51 −3.52

Table 2.10: Values of the subtraction constants for MB channels in the (I, S,B) = (0,−2,−1) sector,
corresponding to a cut-off Λ = 800 MeV at a regularization scale µ = 1 GeV.

The results obtained are presented in Tables 2.11 and 2.12 for the interaction of baryons with
pseudoscalar and vector mesons, respectively.

These results for the Ω∗−b resonances are completely analog to those found in the charm
sector. The interaction of pseudoscalar mesons with baryons generates two states with spin
JP = 1/2−, one at 6418 MeV, coupling strongly to K̄Ξ′c and ηΩb states, and another at 6519 MeV,
being essentially a B̄Ξ bound state. The interaction of vector mesons with baryons generates
J = 1/2−, 3/2− spin-degenerate Ω∗−b resonances at energies 6560 MeV, coupling strongly to
B̄∗Ξ, 6665 MeV, coupling strongly to K∗Ξb, and 6797 MeV, being a mixture of ωΩb, K̄∗Ξ′b and
φΩb. These results, which were published in Ref. [MFR18] are very much in line with what is
found in Ref. [Lia+18], which is an extension to the bottom sector of their previous work on Ω∗0c
resonances [Deb+18].

The narrow Ω∗−b states listed in Tables 2.11 and 2.12 lie quite above the energy region
6300 − 6350 MeV of the invariant K−Ξ0

b mass spectrum, where four Ω∗−b excited states were
reported recently by the LHCb collaboration [Aai+20a]. The authors of Ref. [LO20], in re-

M (MeV) 6418.2 6518.8
Γ (MeV) 0.00 1.24

|gi| −g2
i dG/dE |gi| −g2

i dG/dE

K̄Ξb (6289) 0.01 0.00 + i 0.00 0.13 0.00 + i 0.00
K̄Ξ′b (6431) 1.32 0.55 + i 0.00 0.01 0.00 + i 0.00
ηΩb (6594) 2.02 0.33 + i 0.00 0.01 0.00 + i 0.00
B̄Ξ (6598) 0.28 0.00 + i 0.00 5.23 0.97 + i 0.00
η′Ωb (7004) 0.00 0.00 + i 0.00 0.12 0.00 + i 0.00

Table 2.11: The Ω∗−b (1/2−) states dynamically generated employing zero-range interactions between
a pseudoscalar meson (0−) and a ground-state baryon (1/2+), within a coupled-channel
approach.

M (MeV) 6559.9 6662.5 6797.1
Γ (MeV) 0.0 19.1 1.39

|gi| −g2
i dG/dE |gi| −g2

i dG/dE |gi| −g2
i dG/dE

B̄∗Ξ (6643) 5.31 0.97 + i 0.00 0.22 0.00 + i 0.00 0.11 0.00 + i 0.00
K̄∗Ξb (6687) 0.23 0.01 + i 0.00 2.32 1.32 + i 0.28 0.02 0.00 + i 0.00
ωΩb (6829) 0.10 0.00 + i 0.00 0.04 0.00 + i 0.00 1.36 0.41 + i 0.01
K̄∗Ξ′b (6829) 0.14 0.00 + i 0.00 0.03 0.00 + i 0.00 1.13 0.29 + i 0.00
φΩb (7066) 0.07 0.00 + i 0.00 0.00 0.00 + i 0.00 1.95 0.27 + i 0.00

Table 2.12: The Ω∗−b (1/2−, 3/2−) states dynamically generated employing a zero-range interaction
between a vector meson (1−) and a ground-state baryon (1/2+), within a coupled-channel
approach.
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lation to their results in [Lia+18], argued that it is quite unlikely that the states reported
in [Aai+20a] correspond to molecular states dynamically generated from theMB interaction.
Some works have suggested that these observed Ω∗−b states could correspond to ordinary 1P ex-
citations [Che+20; LL20]. An exception could be the molecular Ω∗−b state predicted in [NPT20]
at 6360 MeV, coupling strongly to K̄Ξb and belonging to a JP = 1/2− sextet of excited bottomed
baryons, using an HQSS-extended approach similar to that in [NPT18]. The Ω∗−b reported in
this section and in Refs. [MFR18; Lia+18] could be rather identified with some structures seen
in the experimental spectrum at higher energy, although they are statistically not significant.
If the properties of these structures are close to those of the states predicted here, upon the
adjustment of the subtraction constants as in the charm sector, they could be interpreted as
having a molecular origin.

2.3 Interaction of heavy mesons with light mesons

In this section, we describe the scattering of open heavy-flavor mesons with light mesons using
the HMET Lagrangian at NLO in the chiral expansion and keeping the LO in the heavy mass
expansion. We analyze the properties of the dynamically generated states that appear in the
unitarized amplitudes in the charm and bottom sectors.

2.3.1 Introduction

The interest in the spectrum of heavy mesons containing a heavy quark Q and a light antiquark
q̄ = {ū, d̄, s̄} has been recently renewed in view of the vast new experimental data collected, in
particular of exotic states that cannot be accommodated within quark-model predictions. The
pseudoscalar D (with JP = 0−) and vector D∗ (with JP = 1−) isospin doublets and the strange
Ds and D∗s isospin singlets, being the s-wave predictions of the quark model, are well established
by the PDG [Zyl+20], as well as their bottomed counterparts. However, the spectrum of excited
states is less well understood. In particular, the scalar (JP = 0+) D∗s0(2317)± [Aub+03] and
the pseudovector (JP = 1+) D∗s1(2460)± [Bes+03] mesons have attracted a lot of attention, as
they are significantly lighter than the quark-model expectations for the 1P excitations [GI85;
EFG10; GM16]. Moreover, the mass difference between these two excited states is similar to
that between the D and D∗ ground states (∼ 140 MeV) which, together with the fact that
their masses lie very close to the DK and D∗K thresholds, respectively, suggested the possible
interpretation of the D∗s0(2317)± and the Ds1(2460)± mesons as hadronic molecules [BCL03;
Szc03; KL04; HL04; Guo+06; Gam+07; Fae+07; FN07] soon after their discovery. Descriptions
such as a conventional cs̄ meson [Dai+03; Nar05; BEH03], a compact tetraquark structure
[CH03; Ter03; CL04; Mai+05a; Bra+05; WW06], and a mixture of cs̄ with tetraquark [BPP04]
and D(∗)K molecular [BR03] components have also been advocated for these states. The
case of the nonstrange scalar D∗0(2300) and pseudovector D1(2430)0 states [Abe+04; Lin+04;
Aub+09], which have large natural widths (∼ 300 MeV), is equally interesting. The properties
of these states and their bottomed counterparts according to the Review of Particle Physics
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(RPP) compilation of the PDG [Zyl+20], which are pictorially summarized in Fig. 2.11, are the
following:

D∗0(2300) : M = 2343± 10 MeV Γ = 229± 16 MeV I(JP ) = 1
2(0+) ,

D∗s0(2317)± : M = 2317.8± 0.5 MeV Γ < 3.8 MeV I(JP ) = 0(0+) ,

D1(2430)0 : M = 2412± 9 MeV Γ = 314± 29 MeV I(JP ) = 1
2(1+) ,

Ds1(2460)± : M = 2459.6± 0.6 MeV Γ < 3.5 MeV I(JP ) = 0(1+) ,

B1(5721)+ : M = 5725.9+2.5
−2.7 MeV Γ = 31± 6 MeV I(JP ) = 1

2(1+) ,

B1(5721)0 : M = 5726.1± 1.3 MeV Γ = 27.5± 3.4 MeV I(JP ) = 1
2(1+) ,

Bs1(5830)0 : M = 5828.70± 0.20 MeV Γ = 0.5± 0.4 MeV I(JP ) = 0(1+) . (2.169)

The value reported for the mass of the D∗0(2300)0 from γ A reactions, 2407 ± 21 ± 35 MeV
(FOCUS [Lin+04]), differs considerably from that obtained from B-factories, 2308±17±36 MeV
(Belle, [Abe+04]) and 2297 ± 8 ± 20 MeV (BaBar, [Aub+09]), while the values reported by
the LHCb collaboration for the charged partner [Aai+15a; Aai+15a] lie in the middle. The
experimental value of the mass of the D∗0(2300)0 being close, or even larger, to that of the
D∗s0(2317), which is the opposite of what one expects from the constituent quark model, poses a
puzzle in the excited open heavy-flavor spectrum, with two-meson thresholds definitely playing
an important role.

Analysis combining EFT methods with LQCD can be actually used to shed light on this puzzle.
LQCD calculations in the charmed scalar sector started to develop soon after the experimental
observation of these states. The first studies obtained masses for the D∗s0(2317) larger than the
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Figure 2.11: Spectrum of the lowest-lying D mesons (left) and B mesons (right) according to the
RPP [Zyl+20]. The height of the black and blue boxes shows the uncertainty in the values of
the mass of the ground states and the excited states, respectively, while the height of the red
boxes represents the decay width.
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experimental ones as they included only cs̄ interpolators [Bal03; Dou+03]. After incorporating
also meson–meson interpolators, the authors of Refs.[MPW13; Moh+13] were able to obtain
values consistent with the experimental masses of theD∗s0(2317)± and theD∗0(2300). The Hadron
Spectrum collaboration investigated the coupled-channel Dπ, Dη, and DsK̄ scattering at a value
of the pion mass mπ = 391 MeV and found one pole coupling largely to Dπ that was assigned
to the D∗0(2300) state [Moi+16]. Given these results, a unitarized effective model in coupled
channels was revisited by the authors of Ref. [Alb+17], where strong support for the two-pole
structure of the D∗0(2300), previously claimed in [KL04; Guo+06; GHM09], was found. The
evidence came from a remarkably good agreement with LQCD results of the lowest-lying energy
levels.

This is not the first evidence in hadron physics where two poles appear together and are
dynamically related to each other in some scattering process. The most famous example is the
case of the Λ(1405), for which the interplay between two poles dynamically generated from
the meson–baryon interaction in the sector with strangeness S = −1 and isospin I = 0 but
representing the same state was proposed to explain the experimental data in the K̄N , πΣ,
and πΛ coupled-channel system [OM01; Jid+03; MOR05; HW08] in the neighborhood of the
Λ(1405). The origin of the two-pole structure of the Λ(1405) is now well understood from
SU(3) symmetry considerations and group theory, each of the poles being generated by the
two attractive channels of the leading order interaction in the SU(3) basis (singlet and octet)
[Jid+03] and isospin basis (K̄N and πΣ) [HW08]. More details about the double-pole nature of
the Λ(1405) can be found in the last issue of the RPP [Zyl+20], as well as in some recent reviews
[Yao+21; Mai21; HN21].

Similarly, the double-pole structure that is found in the D(∗)π, D(∗)η, and D
(∗)
s K̄ coupled-

channel meson–meson scattering problem can be traced back to the SU(3) attractive interactions
in the 6 and 3̄ irreps [Alb+17]. In the bottom sector, similar resonance patterns follow from
HQFS.

In this section, we revisit the effective field theory describing the dynamics of open heavy-
flavor ground-state mesons (D, Ds, D∗, D∗s , B̄, B̄s, B̄∗, B̄∗s ), that we will generally denote as
D mesons and B̄ mesons in the following for simplicity, and their interaction with the light
Goldstone bosons (π, K, K̄, η). Particular attention is paid to the dynamical generation of heavy
meson-light meson molecular states in the sectors with (S, I) = (1/2, 0) and (S, I) = (0, 1),
where the scalars D∗0(2300) and D∗s0(2317) are found, respectively, as well as the pseudovectors
D1(2430) and Ds1(2460), and their bottomed counterparts. The goal is to set a clear description
of the model in the vacuum, as temperature corrections to the scattering of open-heavy flavor
mesons off light mesons will be introduced in Chapter 3 and the thermal modification of the
properties of both ground states and excited states will be investigated. The results presented
here were published in Refs. [Mon+20b; Mon+20c].

The heavier η′ mesons are ignored, as well as the light vector mesons (ρ, ω, φ), as we only
consider the interaction with Goldstone bosons and neglect the η − η′ mixing.

In the same way as in the description of meson–baryon systems in Section 2.2, isospin
breaking is not considered, and therefore the isospin basis is adopted for the mesonic fields. The
quantum numbers and isospin-averaged masses of the light and heavy mesons grouped in the
corresponding isospin multiplets are summarized in Table 2.13.
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JP = 0− Multiplet I S C B m (MeV)
π (π+, π0, π−) 1 0 0 0 138.04
η (η0) 0 0 0 0 547.86
K (K+,K0) 1/2 +1 0 0 495.64
K̄ (K̄0,K−) 1/2 −1 0 0 495.64
D (D+, D0) 1/2 0 +1 0 1867.24
D̄ (D̄0, D−) 1/2 0 −1 0 1867.24
Ds (D+

s ) 0 +1 +1 0 1968.34
D̄s (D−s ) 0 −1 −1 0 1968.34
B (B+, B0) 1/2 0 0 +1 5279.48
B̄ (B̄0, B−) 1/2 0 0 −1 5279.48
Bs (B0

s ) 0 −1 0 +1 5366.89
B̄s (B̄0

s ) 0 +1 0 −1 5366.89
JP = 1− Multiplet I S C B m (MeV)
D∗ (D∗+, D∗0) 1/2 0 +1 0 2008.56
D̄∗ (D̄∗0, D∗−) 1/2 0 −1 0 2008.56
D∗s (D∗+s ) 0 +1 +1 0 2112.20
D̄∗s (D∗−s ) 0 −1 −1 0 2112.20
B∗ (B∗+, B∗0) 1/2 0 0 +1 5324.65
B̄∗ (B̄∗0, B∗−) 1/2 0 0 −1 5324.65
B∗s (B∗0s ) 0 −1 0 +1 5415.40
B̄∗s (B̄∗0s ) 0 +1 0 −1 5415.40

Table 2.13: Isospin multiplets of the light and heavy pseudoscalar mesons (JP = 0−) and the heavy
vector mesons (JP = 1−), together with the isospin, strangeness, charm and bottom quantum
numbers and the isospin-averaged values of the masses in the RPP [Zyl+20].

2.3.2 Formalism

The interactions between open-heavy flavor mesons and light mesons are described in this
section in terms of an effective Lagrangian for the degrees of freedom contained in Table 2.13. It
is based on chiral symmetry, involving the physics of the Goldstone bosons at low energies, as
well as HQSFS for the singly heavy mesons, both pseudoscalar D/B̄ and vector D∗/B̄∗ mesons.
In the heavy-quark mass counting only the LO terms of the effective Lagrangian are considered,
whereas in the chiral power counting both LO and NLO orders are taken into account. From
now on, the terminology LO and NLO will exclusively refer to the chiral power counting in the
effective Lagrangian,

L = LLO + LNLO . (2.170)

The LO Lagrangian contains the kinetic terms and the interactions of the heavy mesons with
the Goldstone bosons (see Eq. (2.95)), as well as self-interactions of the Goldstone bosons. The
pure light-meson sector is described by the standard χPT [GL84], presented in some detail in
Section 2.1.2.
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In the following, we particularize the description of the scattering formalism off light mesons
for charmed mesons. The formalism for the bottomed mesons can be obtained straightforwardly
upon the replacement D → B̄. The LO Lagrangian of Eq. (2.95) for D mesons reads

LLO = LChPT
LO + 〈∇µD∇µD†〉 −m2

D〈DD†〉 − 〈∇µD∗ν∇µD∗†ν 〉+m2
D〈D∗νD∗†ν 〉

+ ig〈D∗µuµD† −DuµD∗†µ 〉+ g

2mD
〈D∗µuα∇βD∗†ν −∇βD∗µuαD∗†ν 〉εµναβ , (2.171)

where D denotes the antitriplet of 0− D-mesons, D =
(
D0 D+ D+

s

)
, and similarly for the

vector 1− states, D∗µ =
(
D∗0 D∗+ D∗+s

)
µ
. When studying the bottom sector the fields of the

D mesons in Eq. (2.171) will be replaced by the bottomed ones, namely B̄ =
(
B− B̄0 B̄0

s

)
and B̄∗µ =

(
B∗− B̄∗0 B̄∗0s

)
µ
. The light mesons are encoded into uµ = i (u†∂µu− u∂µu†), where

u = exp(i Φ/
√

2fπ) is the unitary matrix containing the Goldstone bosons in the exponential
representation presented in Eq. (2.12) and that we reproduce here for completeness,

Φ =


1√
2π

0 + 1√
6η π+ K+

π− − 1√
2π

0 + 1√
6η K0

K− K̄0 −
√

2
3η

 , (2.172)

where we have identified the mathematical η8 state with the physical η meson by neglecting the
η − η′ mixing, and fπ is the pion decay constant, fπ = 92.4 MeV. A brief discussion on η − η′

mixing is given in Section 2.2.2.

We remind the reader that angle brackets in the Lagrangian denote the trace in flavor space
and the connection of the covariant derivative ∇µD(∗) = ∂µD

(∗)−D(∗)Γµ reads Γµ = 1
2 (u†∂µu+

u∂µu
†).

The NLO part of the Lagrangian is given in Eq. (2.99) and for D mesons can be written as

LNLO = LχPT
NLO − h0〈DD†〉〈χ+〉+ h1〈Dχ+D

†〉+ h2〈DD†〉〈uµuµ〉+ h3〈DuµuµD†〉

+ h4〈∇µD∇νD†〉〈uµuν〉+ h5〈∇µD{uµ, uν}∇νD†〉

+ h̃0〈D∗µD∗†µ 〉〈χ+〉 − h̃1〈D∗µχ+D
∗†
µ 〉 − h̃2〈D∗µD∗†µ 〉〈uνuν〉 − h̃3〈D∗µuνuνD∗†µ 〉

− h̃4〈∇µD∗α∇νD∗†α 〉〈uµuν〉 − h̃5〈∇µD∗α{uµ, uν}∇νD∗†α 〉, (2.173)

where LχPT
NLO represents the NLO χPT Lagrangian involving only Φ, and χ+ = u†χu† + uχu,

with the quark mass matrix χ = diag(m2
π,m

2
π, 2m2

K − m2
π). Further details regarding these

Lagrangians are given in Section 2.1.2 as well as in Refs. [KL04; LS08; GHM09; Gen+10;
Abr+11; Liu+13; TT13; Alb+17; Guo+19].

The tree-level amplitudes are extracted from the LO+NLO Lagrangian and they are kept
at strictly lowest order in the heavy-quark mass expansion, that is, only the amplitudes at
order O(1/m0

D, 1/m0
D∗) are considered. At the lowest order, there are no tree-level diagrams

converting D mesons into D∗ mesons [Abr+11], and the two sectors are independent but related
by HQSS. Furthermore, at LO in the heavy-quark expansion, one has hi = h̃i for the LECs.
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(S, I) Channels (JP = 0+) Threshold (MeV) Channels (JP = 1+) Threshold (MeV)
(−1, 0) DK̄ 2364.88 D∗K̄ 2504.20
(−1, 1) DK̄ 2364.88 D∗K̄ 2504.20
(0, 1

2 ) Dπ 2005.28 D∗π 2146.59
Dη 2415.10 D∗η 2556.42
DsK̄ 2463.98 D∗sK̄ 2607.84

(0, 3
2 ) Dπ 2005.28 D∗π 2146.59

(1, 0) DK 2364.88 D∗K 2504.20
Dsη 2516.20 D∗sη 2660.06

(1, 1) Dsπ 2106.38 D∗sπ 2250.24
DK 2364.88 D∗K 2504.20

(2, 1
2 ) DsK 2463.98 D∗sK 2607.84

(−1, 0) B̄K̄ 5775.12 B̄∗K̄ 5820.29
(−1, 1) B̄K̄ 5775.12 B̄∗K̄ 5820.29
(0, 1

2 ) B̄π 5417.51 B̄∗π 5462.69
B̄η 5827.34 B̄∗η 5872.51
B̄sK̄ 5862.53 B̄∗s K̄ 5911.04

(0, 3
2 ) B̄π 5417.51 B̄∗π 5462.29

(1, 0) B̄K 5775.12 B̄∗K 5820.29
B̄sη 5914.75 B̄∗sη 5963.26

(1, 1) B̄sπ 5504.93 B̄∗sπ 5553.44
B̄K 5775.12 B̄∗K 5820.29

(2, 1
2 ) B̄sK 5862.53 B̄∗sK 5911.04

Table 2.14: Meson-meson channels in the charm sector (upper part) and in the bottom sector (lower part)
together with their threshold energy, their total spin-parity JP , isospin I and strangeness S
quantum numbers, for channels involving the pseudoscalar (JP = 0−) D/B̄ meson (left) and
the vector (JP = 1−) D∗/B̄∗ meson (right).

For a scattering from an incoming channel i to an outgoing channel j, each one involving a
charmed meson and a light meson, the amplitudes read

V ij(s, t, u) = 1
f2
π

[CijLO

4 (s− u)− 4Cij0 h0 + 2Cij1 h1

− 2Cij24

(
2h2(p2 · p4) + h4

(
(p1 · p2)(p3 · p4) + (p1 · p4)(p2 · p3)

))
+ 2Cij35

(
h3(p2 · p4) + h5

(
(p1 · p2)(p3 · p4) + (p1 · p4)(p2 · p3)

))]
, (2.174)

where s = (p1 + p2)2, t = (p1 − p3)2, and u = (p1 − p4)2 are the Mandelstam variables. The
different coupled channels i, j in the sectors considered in this dissertation are listed in Table 2.14.
The isospin coefficients Cijk , which give the strength of the k-term (k = {LO, 0, 1, 24, 35}) between
channels i and j in the isospin basis, are given in Table 2.15 for the charm sector, whereas
the corresponding ones in charge basis are given in Appendix A.2, as well as the relations to
transform from the charge basis to the isospin basis. The corresponding coefficients in the bottom
sector are obtained straightforwardly upon the replacement D → B̄.

The values of the LECs hi, with i = 0, ..., 5, appearing in the NLO part of the interaction
kernel of Eq. (2.174) have to be fixed from fits to LQCD data. In the first works describing
the interaction of heavy mesons with light mesons with unitarized models at NLO [Guo+08;
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(S, I) Channel i→ j CijLO Cij0 Cij1 Cij24 Cij35

(−1, 0) DK̄ → DK̄ −1 m2
K m2

K 1 −1
(−1, 1) DK̄ → DK̄ 1 m2

K −m2
K 1 1

(0, 1
2 ) Dπ → Dπ −2 m2

π −m2
π 1 1

Dπ → Dη 0 0 −m2
π 0 1

Dπ → DsK̄ −
√

3
2 0 −

√
3

2
√

2 (m2
K +m2

π) 0
√

3
2

Dη → Dη 0 m2
η − 1

3m
2
π 1 1

3

Dη → DsK̄ −
√

3
2 0 1

2
√

6 (5m2
K − 3m2

π) 0 − 1√
6

DsK̄ → DsK̄ −1 m2
K −m2

K 1 1
(0, 3

2 ) Dπ → Dπ 1 m2
π −m2

π 1 1
(1, 0) DK → DK −2 m2

K −2m2
K 1 2

DK → Dsη −
√

3 0 − 1
2
√

3 (5m2
K − 3m2

π) 0 1√
3

Dsη → Dsη 0 m2
η − 4

3 (2m2
K −m2

π) 1 4
3

(1, 1) Dsπ → Dsπ 0 m2
π 0 1 0

Dsπ → DK 1 0 − 1
2 (m2

K +m2
π) 0 1

DK → DK 0 m2
K 0 1 0

(2, 1
2 ) DsK → DsK 1 m2

K −m2
K 1 1

Table 2.15: Isospin coefficients Cijk for the sectors with isospin I and strangeness S.

GHM09], the terms with the LECs h0,2,4 were dropped to reduce the number of parameters, since
they are suppressed in the large Nc limit. The full NLO Lagrangian could be kept in more recent
studies [Liu+13; Guo+19] thanks to the availability of lattice data at several unphysical quark
masses.

The LEC h0 is determined in the latest two references through the fit of LQCD data for the
masses of the D and Ds at different pion masses, while the value of h1 can be fixed from the
physical mass splitting between the D and Ds,

h1 =
m2
Ds
−m2

D

4(m2
K −m2

π) . (2.175)

Dimensionless linear combinations of the remaining LECs, h24 = h2 + h4M̂
2
D and h35 =

h3 + 2h5M̂
2
D, with M̂2

D = (mD +mDs)/2, are determined in [Liu+13] by fits to the scattering
lengths calculated on the lattice, simultaneously also to lattice finite-volume energy levels
in [Guo+19], for the sector with charmed pseudoscalar mesons. Here we take the values of the
LECs from the Fit-2B in [Guo+19], for which the full amount of lattice data available and the
physical value of fπ are considered, and which is the preferred fit of the authors according to large
Nc arguments. The values are shown in the upper rows of Table 2.16, for both pseudoscalar- and
vector-charmed mesons, where we have used the different physical values of the average masses
M̂D = (mD + mDs)/2 and M̂D∗ = (mD∗ + mD∗s

)/2 in the determination of the dimensionful
LECs h4 and h5. The difference between our unitarized amplitudes and those in [Guo+19] lies
in the regularization procedure, as explained below.

The extension of the interaction potential of Eq. (2.174) to the open-bottom sector requires
the rescaling of the LECs with the heavy-meson masses. Relying on HQFS, the heavy-flavor
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h0 h1 h2 h3 h4 (MeV−2) h5 (MeV−2)
DΦ 0.033 0.45 −0.12 1.67 −0.0054 · 10−6 −0.22 · 10−6

D∗Φ 0.033 0.45 −0.12 1.67 −0.0047 · 10−6 −0.19 · 10−6

B̄Φ 0.089 1.05 −0.32 4.49 −0.0019 · 10−6 −0.077 · 10−6

B̄∗Φ 0.089 1.05 −0.32 4.49 −0.0019 · 10−6 −0.075 · 10−6

Table 2.16: Values of the LECs for the interaction of charmed pseudoscalar (first row) and vector (second
row) mesons with the light mesons. They have been taken from Fit-2B in [Guo+19] for the
DΦ case. The corresponding values for the interaction of bottomed pseudoscalar (third row)
and vector (fourth row) mesons with light mesons are obtained from the scaling of the LECs
in the charm sector, as explained in the text.

scaling relating the constants hBi in the bottomed sector and corresponding hDi in the charmed
sector can be written as

hBi
M̂B

= hDi
M̂D

, for i = {0, 1, 2, 3} , and hBi M̂B = hDi M̂D , for i = {4, 5} , (2.176)

up to corrections of order O(1/M̂D, 1/M̂B) [AGW14]. Alternatively, the value of hB1 can be
calculated from the mass splitting between the B(∗) and B

(∗)
s mesons. Employing this latter

method is justified since the values of the LEC h1 in the different sectors can indeed be used
to estimate the size of the HQSFS breaking. This symmetry demands hD1 /M̂D = h̃D

∗

1 /M̂D∗ =
hB1 /M̂B = h̃B

∗

1 /M̂B∗ . Applying Eq. (2.175) to the different heavy sectors and using SU(3)
averaged values of the masses, we find hD1 /M̂D = 2.24 · 10−4 MeV−1, hD

∗

1 /M̂D∗ = 2.28 ·
10−4 MeV−1, hB1 /M̂B = 1.93 ·10−4 MeV−1 and hB

∗

1 /M̂B∗ = 2.00 ·10−4 MeV−1, giving a breaking
. 4% for HQSS, while the HQFS breaking is ∼ 15%. Considering that the violation of HQSS is
rather small, we take a common value of hB1 for B and B∗ mesons, as well as for the rest of the
dimensionless LECs, as we have done for D and D∗ mesons. With this criterion in mind, we
use spin-averaged masses, M̄D = (M̂D + M̂D∗)/2 and M̄B = (M̂B + M̂B∗)/2, in Eq. (2.176),
which gives the values of the LECs in the bottom sector that are displayed in the lower part of
Table 2.16.

We focus on s-wave scattering and compute the s-wave component of the tree-level scattering
amplitudes by using the expression for partial-wave projection presented in Eq. (2.147) in the
previous section for the MB interaction amplitudes. The analysis of higher partial waves is
out of the scope of the work of the present dissertation, as we focus on dynamically generated
resonances that can correspond to some observed states listed in the PDG compilation [Zyl+20].
In the energy region explored here, no potential candidates are found that can correspond to
states generated dynamically from the meson–meson interaction in partial waves higher than
L = 0. In addition, we note that, for a particular channel, the p-wave interaction kernel is of
reduced strength compared to the s-wave one, especially close to the thresholds, around which
the molecular states appear.

As we have described in Section 2.1.3, the amplitudes found in Eq. (2.174) have to be unita-
rized so as to satisfy the exact unitarity condition and generate resonances, which are signaled
by the presence of poles in the scattering amplitude. To achieve this, we use the unitarization
method based on the BS equation in coupled channels because, within a straightforward ex-
tension of field theory, it can be simply applied to finite temperature, as will be explained in
Chapter 3.
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In the on-shell factorization approach [OO97; OR98], the BS equation for the unitarized
amplitude was given in Eq. (2.118) and reproduced here for completeness:

Tij(s) = Vij(s) + Vil(s)Gl(s)Tlj(s) . (2.177)

The subindices i, j represent the incoming and outgoing channels (see Table 2.14), and we sum
over the possible intermediate channels l. The two-meson propagator function gives the loop
function

Gl(s) = i
∫

d4q

(2π)4
1

q2 −m2
D + iε

1
(p− q)2 −m2

Φ + iε
, (2.178)

with pµ = (E, ~p). We make explicit that at T = 0 the loop function is given as a function of
the Mandelstam variable s = p2. This function should be regularized, for which we use a hard
momentum cut-off Λ, and the corresponding expression of the loop reads the same as that given
in Eq. (2.159) for meson–baryon channels, except for the factor 2Ml that is missing in the case of
meson–meson channels, and with the replacements Ml → mD and ml → mΦ. Alternatively, the
two-meson loop function can be calculated in DR using Eq. (2.160), with the same modifications
as for the cut-off approach.

In Ref. [Guo+19] the loop function is regularized with DR and the subtraction constants are
considered as fit parameters together with the LECs. In this dissertation, we prefer to use the
cut-off regularization scheme to follow the same convention that we will use in the next chapter
for T > 0. The cut-off value is adjusted to a representative scale of the degrees of freedom
that are implicitly integrated out in the construction of the meson–meson (MM) interaction
amplitude from the effective Lagrangian. Indeed, the contact interaction of Eq. (2.174) could
have also been obtained from a t-channel diagram similar to that of Fig. 2.5a for the MB
interaction, involving two three-meson vertices and the propagator of a vector meson of mass
mV ∼ mρ, in the limit m2

V � t, with t being the four-momentum exchanged in the process.
Equation (2.161) above can be used to compute the equivalent cut-off values for which the loop
function coincides at each channel threshold with the corresponding one calculated in DR with
the subtraction constants in Ref. [Guo+19]. We find that the values of Λ are rather small in
some channels and we, therefore, find it more convenient to use a cut-off of the order of the
ρ-meson mass, namely Λ = 800 MeV, for all the channels.

We have checked that the values of the subtraction constants obtained using DR while
demanding the same value of the loop function at the channel threshold as that of the loop
regularized with a cut-off of 800 MeV are compatible with those employed in [Guo+19], with
µ = 1 GeV. Furthermore, the reproduction of scattering observables with our prescription is of
comparable quality. In particular the s-wave scattering lengths obtained from the values of the
unitarized amplitudes at the channel threshold12,

a0,i = − 1
8π(mD +mΦ)Tii(sthr) , sthr = (mD +mΦ)2 , (2.179)

are shown in Table 2.17 together with the results on the lattice [Liu+13] and the predictions of
the fits in Refs. [Liu+13; Guo+19]. We note that the diagonal elements of the T matrix, Tii(s),
are evaluated for real s. In order to search for poles, in the sections below the amplitudes will be
analytically continued to complex energies.

This agreement reinforces the choice of Λ = 800 MeV as an appropriate selection, a value
which, in turn, determines the position of the dynamically generated resonances in the Riemann

12Not to be confused with the subtraction constants al(µ).
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(S, I) i Eq. (2.179) Fit-2B [Guo+19] 4-parameter fit [Liu+13]
(−1, 0) DK̄ 0.63 0.68+0.17

−0.16 0.84(15)∗

(−1, 1) DK̄ −0.19 −0.19+0.02
−0.02 −0.21(1)∗

(0, 1
2 ) Dπ 0.45 0.34+0.00

−0.03 0.37± 0.01
Dη 0.14 + i 0.10 0.16+0.11

−0.06 + i 0.13+0.07
−0.03

DsK̄ −0.18 + i 0.53 −0.26+0.05
−0.10 + i 0.52+0.06

−0.03 −0.06+0.01
−0.05 + i (0.45± 0.05)

(0, 3
2 ) Dπ −0.10 −0.099+0.003

−0.004 −0.100(2)∗

(1, 0) DK −0.67 −1.87+0.85
−1.98 −0.86± 0.04

Dsη −0.27 + i 0.05 −0.33+0.03
−0.05 + i 0.07+0.02

−0.02
(1, 1) Dsπ 0.01 0.003+0.002

−0.002 −0.002(1)∗

DK 0.04 + i 0.16 0.05+0.04
−0.03 + i 0.17+0.03

−0.03 0.04+0.05
−0.01 + i 0.16+0.02

−0.01
(2, 1

2 ) DsK −0.18 −0.19+0.01
−0.01 −0.18(1)∗

Table 2.17: Values of the s-wave scattering lengths for various channels obtained with the cut-off unita-
rization prescription as explained in the text, together with the results on the lattice [Liu+13]
(marked with asterisks) and the predictions of the fits in Refs. [Liu+13; Guo+19].

surface. We note that the largest differences, which are found for the scattering lengths in the
Dπ (0, 1/2) and DK (1, 0) channels, are responsible for the variations in the pole positions that
we show in the next sections when compared to those in [Guo+19].

2.3.3 Results for D mesons

Let us first discuss the findings for both J = 0 and J = 1 charmed sectors. That is, we analyze
the interaction of the scalar D mesons and the vector D∗ mesons with light mesons separately.
Notice that these two sectors are not mixed when keeping the scattering diagrams at LO in
the heavy-mass expansion, as argued above. After the analytical continuation of the energy
to the complex-energy plane, we look for poles in the appropriate RS of the T matrix to find
bound, resonant, and virtual states (see Section 2.1.4 for the definitions). The pole position
√
sR provides the pole mass, MR = Re

√
sR, and the width, ΓR = 2 Im

√
sR. We also report the

couplings |gi| of each pole to each of the channels i to which the pole can couple, as well as the
compositeness χi.

The reflection of the poles in the real-energy axis can be seen from the analysis of the unitarized
amplitudes for real s. The diagonal amplitudes in the different sectors with charm C = 1 and all
possible values of strangeness and isospin (S, I) considered in this thesis are shown in the right
panels of Figs. 2.12 and 2.13 for DΦ and D∗Φ channels, respectively, as functions of the total
energy and for a center-of-mass momentum ~P = 0. From the comparison of both figures, one
can see that the results are very similar in all the sectors involving either the D or D∗ mesons,
as we expect from HQSS, and the small differences are associated with the larger mass of the
charmed vector mesons in comparison to that of the pseudoscalars.

To understand the structures appearing in these amplitudes it is convenient to analyze first the
energy dependence of the loop function G, which is displayed in the left and middle panels of the
same figure. The imaginary part of the loop function (dashed lines) starts to have a significant
strength from the value of mD(∗) +mΦ onwards, which is the energy at which the right-hand
unitarity cut starts. The inverse of the s-wave interaction kernel obtained from Eq. (2.174),
1/Vij (dotted lines), is displayed together with the loop function if it falls within the vertical
scale employed for each channel. In an uncoupled-channel calculation, one should expect an
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enhancement in the corresponding unitarized amplitude when this quantity equals or becomes
very close to the real part of the loop function (solid lines). This is just the reflection on the
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Figure 2.12: The real and imaginary parts of the loop function, Gi, and the inverse of the interaction
kernel, 1/Vij (left and middle panels), and the absolute value of the diagonal components
of the T matrix, Tii (right panels), in the sectors with strangeness and isospin (S, I). The
subindices 1, 2, 3 refer to the channels DΦ in the order in which they are listed in Table 2.14.
All the quantities are dimensionless, as they have units of MeV0.
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real-energy axis of the pole generated by the solution of Eq. (2.177). The consideration of
coupled channels, apart from modifying slightly the energy position of the structures, makes
them present in all the amplitudes, with more or less intensity depending on the coupling
strength of the pole to each particular channel. As can be seen in the panels on the right, in the
(S, I) = (0, 1/2) sectors, besides cusps related to thresholds, we see two clear enhancements that

2000 3000
−0.01

0.00

0.01

(S
,
I
)

=
(−

1
,
0
)

1/V11
ReG1
ImG1

2000 3000

0

100

200

|T11|

2000 3000
−0.01

0.00

0.01

(S
,
I
)

=
(−

1
,
1
)

1/V11
ReG1
ImG1

2000 3000

0

100

200

|T11|

2000 3000
−0.01

0.00

0.01

(S
,
I
)

=
(0
,
1
/
2
)

1/V11
ReG1
ImG1

2000 3000

E [MeV]

−0.01

0.00

0.01

ReG2
ImG2

2000 3000

E [MeV]

−0.01

0.00

0.01 1/V33
ReG3
ImG3

2000 3000

0

100

200

|T11|
|T22|
|T33|

2000 3000
−0.01

0.00

0.01

(S
,
I
)

=
(0
,
3
/
2
)

1/V11
ReG1
ImG1

2000 3000

0

100

200

|T11|

2000 3000
−0.01

0.00

0.01

(S
,
I
)

=
(1
,
0
)

1/V11
ReG1
ImG1

2000 3000
−0.01

0.00

0.01
1/V22
ReG2
ImG2

2000 3000

0

1000

2000

|T11|
|T22|

2000 3000
−0.01

0.00

0.01

(S
,
I
)

=
(1
,
1
)

ReG1
ImG1

2000 3000

E [MeV]

−0.01

0.00

0.01
ReG2
ImG2

2000 3000

0

100

200

|T11|
|T22|

2000 3000

E [MeV]

−0.01

0.00

0.01

(S
,
I
)

=
(2
,
1
/
2
)

1/V11
ReG1
ImG1

2000 3000

E [MeV]

0

100

200

|T11|

Figure 2.13: The same as in Fig. 2.12 for the case of D∗Φ scattering.
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are connected to poles of the amplitude in the complex plane, as we will discuss next. Even more
clear is the narrow structure appearing in the sectors with (S, I) = (1, 0), tied to the position of
the crossing of the inverse of the D(∗)K potential with the real part of the loop function, which
occurs below the mD(∗) +mK threshold and, therefore, leads to a bound state in the real axis, as
we will see below.

J = 0 case: Interactions and D∗(2300) and D∗s0(2317)

We start analyzing the D and Ds interactions with light pseudoscalar mesons for the sectors
with total strangeness and isospin (S, I) = (0, 1/2), corresponding to the Dπ, Dη, and DsK̄

coupled-channels calculation, and (S, I) = (1, 0), built from the DK and Dsη channels. A
magnification of the plots of the loops, the inverse of the interaction kernels, and the unitarized
amplitudes in Fig. 2.12 is displayed in Fig. 2.14. We focus on these two sectors since there appear
several resonant states, among them two that can be identified with the experimental D∗0(2300)
and D∗s0(2317).

For the (S, I) = (0, 1/2) sector shown in the top panels of Fig. 2.14, one can see two clear
structures appearing in the imaginary part of the scattering amplitudes (dashed lines in the panel
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Figure 2.14: The inverse of the interaction kernel, 1/Vii, the real and imaginary parts of the loop function,
Gi, and the real and imaginary parts of the diagonal components of the T matrix, Tii, in units
of MeV0. Top panels correspond to the sector with strangeness and isospin (S, I) = (0, 1/2)
(top panels), where the subindices 1, 2, 3 refer to the channelsDπ, Dη, andDsK̄, respectively,
and the bottom panels to the sector with (S, I) = (1, 0), where 1 and 2 refer to DK and Dsη.
The vertical dotted lines indicate the corresponding threshold energies.
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on the right), at around 2100 MeV and 2450 MeV. These structures are related to poles of the T
matrix in the complex-energy plane.

Our results for the strangeness S = 1 and isospin I = 0 sector are shown in the bottom panels
of the same figure. In this case, we only observe a narrow structure around 2250 MeV, which
is very close to the position of the crossing of the inverse of the potential in the DK channel
(dash-dotted line in the left panel) with the real part of the loop function (orange solid line in
the same panel). Since this crossing takes place below the mD +mK threshold, a bound state
appears in the real axis on the physical RS of the unitarized amplitudes in coupled channels
(solid lines in the right panel).

As discussed in the previous plots, apart from threshold effects, the different structures that
are present in the scattering amplitudes correspond to poles or dynamically generated states that
appear due to the attractive coupled-channel meson–meson interactions. The poles that we find
in the JP = 0+ sectors are summarized in Table 2.18. The first column of this table indicates
the possible experimental assignment of the poles according to the PDG [Zyl+20], whereas
the second column shows the strangeness and isospin content of the state. The third column
indicates the RS where the pole is found, with the convention that the RS of the loop function
for each of the coupled channels is indicated as “+” for the first (RS-I) and “−” for the second
(RS-II). In the fourth and fifth columns, we give the mass MR and the half width ΓR/2 of the
state, while in the sixth column gi denotes the effective coupling to the different channels, and
in the seventh column χi is the compositeness of the state.

In the (S, I) = (0, 1/2) sector we find two poles that correspond to the D∗0(2300) state. This
double pole structure of the D∗0(2300) is well documented [Zyl+20], being our results compatible
with those given in Refs. [Guo+19; Alb+17]. For the position of the lower pole (2082− i 86 MeV),
we find that the real part lies between the Dπ and Dη thresholds, at 2005 MeV and 2415 MeV
respectively, and it has a sizable imaginary part, which is a consequence of the large value of
the coupling of the generated resonance to the Dπ channel, to which it can decay. As for the
higher pole (2529 − i 145 MeV), the mass is above the last threshold, that is, the DsK̄ one at
2464 MeV, and also has a large decay width, as it couples sizably to the channels opened for
its decay. However, this pole appears in the (−,−,+) RS, with this RS being only connected to

(S, I) RS MR ΓR/2 |gi| χi

(MeV) (MeV) (GeV)
D∗0(2300) (0, 1

2 ) (−,+,+) 2081.9 86.0 |gDπ|= 8.9 χDπ = 0.45
|gDη|= 0.4 χDη = 0.00
|gDsK̄ |= 5.4 χDsK̄ = 0.02

(−,−,+) 2529.3 145.4 |gDπ|= 6.7 χDπ = 0.20
|gDη|= 9.9 χDη = 0.55
|gDsK̄ |= 19.4 χDsK̄ = 0.95

D∗s0(2317) (1, 0) (+,+) 2252.5 0.0 |gDK |= 13.3 χDK = 0.44
|gDsη|= 9.2 χDsη = 0.08

Table 2.18: Properties of the dynamically generated poles in the JP = 0+ sectors with (S, I) = (0, 1/2)
and (S, I) = (1, 0). The first column is reserved for the state listed in the RPP [Zyl+20] to
which the pole can be assigned. The following columns display, in this order, the RS with the
convention given in the main text, the real and the imaginary parts of the pole location in the
complex-energy plane, the effective coupling to different channels, and the compositeness of
the state.
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the real axis between the Dη and the DsK̄ thresholds. We recall that the RS of the T matrix
closest to the physical region above the largest threshold corresponds to that for which the loop
functions of the three coupled channels have been rotated to the RS-II, that is, the (−,−,−) RS.
In fact, for different values of the parameters [Guo+19; Alb+17], this pole appears between
the Dη and DsK̄ thresholds or even below the Dη threshold. On the other hand, the reflection
of this pole in the real axis is somewhat complicated due to its proximity to the Dη and the
DsK̄ thresholds. Indeed, by inspecting the upper-right panel of Fig. 2.14 one can see that the
width of the structure at higher energies in the DsK̄ amplitude is substantially smaller than
the imaginary part of the pole and that the shape is highly dominated by the presence of the
thresholds. Moreover, it is worth noticing that the lower pole qualifies mainly as a Dπ state, as
indicated by the large value of the compositeness, whereas the higher one is essentially a DsK̄

system, although we should note that this case does not correspond to a canonical resonance in
the sense that the associated pole does not reside in the RS that is directly accessible from the
physical one. Therefore, as discussed in Ref. [GO16], the physical interpretation of Eq. (2.133)
as a probabilistic compositeness is not valid for this resonance, a fact that is corroborated by
the sum over the different channels being larger than one in this case. However, it can still be
regarded as the strength of the different channels in the wave function of the state [Ace+14].

In the (S, I) = (1, 0) sector we find only one pole at 2252− i 0 MeV. It lies on the real axis below
the DK threshold (at 2365 MeV), that is in the (+,+) RS. It is identified with the D∗s0(2317)
resonance, and has sizable couplings DK, as given by the compositeness. With the present
model, the pole mass turns out to be smaller than that of the experimental resonance, but a
small variation of the parameters can easily accommodate this state to the observed position,
in line with similar models in the literature that have advocated this resonance to be mostly a
DK hadronic molecule (see Ref. [Guo+18] and references therein). Indeed this can be easily
understood by looking at the bottom-left panel of Fig. 2.14. In the case of uncoupled channels,
the pole position is simply given by the crossing of 1/VDK→DK with the real part of the loop
function GDK , as it corresponds to the zero of the denominator of the BS equation of Eq. (2.121).
Then, a smaller value of the cut-off in the regularization of the loop (or a less negative subtraction
constant in DR) will move ReGDK upwards and the crossing with 1/VDK→DK will take place
closer to the DK threshold. That is, the D∗s0(2317) will be less bound. The dynamical generation
of the pole in the coupled-channel case is more complicated, but the conclusion remains the
same.

The Riemann surfaces of the modulus of the T matrix, |T |, for complex energies around
the location of the poles associated with the D∗0(2300) and the D∗s0(2317) states are plotted in
Figs. 2.15 and 2.16, respectively. From these plots, one can see the enormous increase of |T | as
the pole position. In the case of the lower pole of the D∗0(2300) (Fig. 2.15a), the (−,+,+) RS is
the RS-II and thus the slice of the Riemann surface along the real-energy axis corresponds with
the structure of the T matrix shown in the upper-left panel of Fig. 2.14 between the Dπ and Dη
thresholds, after taking the modulus. As for the higher pole of the D∗0(2300) (Fig. 2.15b), what
we see in the same panel between the Dη and DsK̄ thresholds is the slice along the real axis of
the tail on the right of the pole, which is then connected at the thresholds with the corresponding
RSs-II. Therefore, the mass and width that one can extract from the pole position differ from
the location and the width of the real-energy structure. Regarding the pole of the D∗s0(2317)
(Fig.2.16), the divergence that appears in the physical sheet of the T matrix on the real-energy
axis corresponds to the singularity seen in the bottom-left panel of Fig. 2.14.
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Figure 2.15: Riemann surfaces of the T matrix around the complex energies of the two poles of the
D∗0(2300). (a) Diagonal Dπ element in the RS = (−,+,+). (b) Diagonal DsK̄ element in
the RS = (−,−,+).
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Figure 2.16: Riemann surface of the diagonal DK element of the T matrix in the RS = (+,+) around the
complex energy of the D∗s0(2317) pole.

J = 1 case: Interactions and D1(2430) and Ds1(2460)

The coupled-channel interaction of the pseudoscalar meson octet with the heavy vector mesons
gives rise to a very similar phenomenology to that found for the interaction with the heavy
pseudoscalars, only displaced towards higher energies by the increase of the thresholds due to
the mass difference between the vector and pseudoscalar heavy mesons. This is seen in Fig. 2.17,
where the loop functions, the inverse of the diagonal potentials, and the diagonal amplitudes
of the JP = 1+ interaction in the (S, I) = (0, 1/2) and (1, 0) sectors are shown, respectively, as
functions of the total energy for a total momentum ~P = 0.

The poles that we find in the JP = 1+ amplitudes are summarized in Table 2.19. As seen,
a double-pole structure, which can be identified with the D1(2430) resonance listed in the
RPP [Zyl+20], is obtained in the (S, I) = (0, 1/2) sector. The pole at 2222− i 85 MeV qualifies as
a mostly D∗π state. The (−,+,+) RS of the |TD∗π→D∗π| amplitude around the complex-energy
location of this pole is plotted in Fig. 2.18a. The pole at 2655 − i 117 MeV is mostly a D∗sK̄
molecule and it is located above this channel threshold in the (−,−,+) RS, as it is shown in
Fig. 2.18b. A bound state coupling mostly to D∗K states is obtained in the (S, I) = (1, 0) sector
at 2393 − i 0 MeV, although the present model locates it at a somewhat lower energy than
the mass of the Ds1(2460) reported by the PDG [Zyl+20] due to the choice of the cut-off, as
discussed for the 0+ Ds0(2317). Figure 2.19 shows the (+,+) RS of the |TD∗K→D∗K | amplitude
around the location of the pole.
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Figure 2.17: The same as in Fig. 2.14 for the JP = 1+ states. The top panels correspond to the sector with
(S, I) = (0, 1/2), where the subindices 1, 2, 3 refer to the channels D∗π, D∗η, and D∗sK̄,
respectively, and the bottom panels to the sector with (S, I) = (1, 0), where 1 and 2 refer to
D∗K and D∗sη.

(S, I) RS MR ΓR/2 |gi| χi

(MeV) (MeV) (GeV)
D1(2430) (0, 1

2 ) (−,+,+) 2222.3 84.7 |gD∗π|= 9.5 χD∗π = 0.45
|gD∗η|= 0.4 χD∗η = 0.00
|gD∗s K̄ |= 5.7 χD∗s K̄ = 0.02

(−,−,+) 2654.6 117.3 |gD∗π|= 6.5 χD∗π = 0.17
|gD∗η|= 10.0 χD∗η = 0.54
|gD∗s K̄ |= 18.5 χD∗s K̄ = 0.90

Ds1(2460) (1, 0) (+,+) 2393.3 0.0 |gD∗K |= 14.2 χD∗K = 0.45
|gD∗sη|= 9.7 χD∗sη = 0.08

Table 2.19: Dynamically generated poles in the JP = 1+ sectors with (S, I) = (0, 1/2) and (S, I) = (1, 0).
The structure of the table is the same as that of Table 2.18.

We note that the cut-off dependence analyses performed in Section 2.2.3 when studying the
Ω∗0c states dynamically generated from the interaction between mesons and baryons (see also
Refs. [MFR18; Ram+20]) indicate that employing higher (lower) values of the cut-off lowers
(increases) the energies of the dynamically generated states, due to the larger (smaller) amount
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of phase-space included in the unitarized amplitudes. In the case that we are considering here,
when the cut-off value is varied between 600 and 1000 MeV, the mass of the resonances in the
(S, I) = (0, 1/2) sectors, that is, the mass of the D∗0(2300) and D1(2430), changes moderately by
+5
−15 MeV. A larger change, of ±70 MeV, is observed for both bound states in the (S, I) = (1, 0)
sector where the D∗s0(2317) and Ds1(2460) are generated, indicating that these latter states are
rather sensitive to the strength of the interaction. A similar modification of the dynamically
generated states is attained by taking different values for the channel-dependent subtraction
constants in the DR scheme for the regularization of the two-meson propagator (see for example
Refs. [Guo+19; Alb+17]). In relation to this, it is worth commenting on the discrepancy of
∼ 70 MeV between the position of the poles of the dynamically generated states that we have
identified with the D∗s0(2317) and Ds1(2460) and the experimental value for their mass. Indeed,
taking a smaller cut-off of ∼ 600 MeV for the coupled channels in the (S, I) = (1, 0) sector, which
is still physically sized, allows us to dynamically generate these states in agreement with the
values reported by the PDG (see Eq. (2.169)), as well as with previous works [LS08; Liu+13;
Alb+17; Guo+19]. Although the binding energy that we get for these states is somewhat larger,
we consider that it is desirable to fix a simple regularization scheme, with a channel-independent
cut-off of the order of the ρ-meson mass (∼ 800 MeV), as our aim is to analyze in Chapter 3 the
modification of the heavy-flavor mesons (ground states and dynamically generated states) from
their interactions with the light mesons in a hot medium, where the exact location of the D(∗)K

bound-state may play a minor role.
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Figure 2.18: Riemann surfaces of the T matrix around the complex energies of the two poles of the
D1(2430). (a) Diagonal D∗π element in the RS = (−,+,+). (b) Diagonal D∗sK̄ element in
the RS = (−,−,+).
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Figure 2.19: Riemann surface of the diagonal D∗K element of the T matrix in the RS = (+,+) around
the complex energy of the Ds1(2460) pole.
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2.3.4 Results for B̄ mesons

Finally, we discuss the results of the unitarized effective theory for the interaction of J = 0 B̄
and B̄s mesons and J = 1 B̄∗ and B̄∗s mesons with light mesons. Motivated by the success of
the model in describing the narrow D∗s0(2317) and Ds1(2460) states as DK and D∗K bound
states, as well as the double-pole structure of the D∗0(2300) and the D1(2430) in the open-charm
sector, in this section we give quantitative predictions for the open-beauty partners that are
foreseen due to HQFS. While there are no experimental states reported with JP = 0+ in the
bottomed sector, there are two states that have been observed with JP = 1+, the B1(5721) and
Bs1(5830) (see the experimental properties in Eq. (2.169)), and which could presumably be the
bottom-flavor partners of the D1(2430) and Ds1(2460).

J = 0 case: Interactions and predicted states

We are interested in the sectors with S = 0, I = 1/2 and S = 1, I = 0. The loop functions
and the inverse of the diagonal elements of the potential for the 0+ channels in these sectors
are shown in the left panels of Fig. 2.20, and the corresponding unitarized amplitudes of the
coupled-channel scattering are plotted in the right panels of the same figure. We see a similar
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Figure 2.20: The same as in Fig. 2.14 for the bottomed JP = 0+ states. The top panels correspond to the
sector with (S, I) = (0, 1/2), where the subindices 1, 2, 3 refer to the channels B̄π, B̄η, and
B̄sK̄, respectively, and the bottom panels to the sector with (S, I) = (1, 0), where 1 and 2
refer to B̄K and B̄sη.
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(S, I) RS MR ΓR/2 |gi| χi

(MeV) (MeV) (GeV)
(0, 1

2 ) (−,+,+) 5483.1 71.8 |gB̄π|= 22.4 χB̄π = 0.44
|gB̄η|= 0.8 χB̄η = 0.00
|gB̄sK̄ |= 14.4 χB̄sK̄ = 0.02

(−,−,+) 5848.0 65.9 |gB̄π|= 11.0 χB̄π = 0.11
|gB̄η|= 18.0 χB̄η = 0.49
|gB̄sK̄ |= 32.0 χB̄sK̄ = 0.76

(1, 0) (+,+) 5639.3 0.0 |gB̄K |= 35.6 χB̄K = 0.68
|gB̄sη|= 23.8 χB̄sη = 0.17

Table 2.20: Dynamically generated poles in the JP = 0+ bottomed sectors with (S, I) = (0, 1/2) and
(S, I) = (1, 0). The structure of the table is similar to that of Table 2.18. In this case there are
no experimental states reported.

pattern to that found for DΦ states, with a shift of the structures to the higher energy region
where the thresholds of the B̄Φ channels are located.

In Table 2.20 we display the properties of the poles of the unitarized amplitudes in the
complex-energy plane. In the (0, 1/2) sector there is also a two-pole structure, with a lower
resonant pole at 5483− i 72 MeV coupling largely to B̄π and a higher resonance at 5848− i 66 MeV
mostly coupling to the B̄sK̄ channel. Regarding this latter pole, it is interesting to note that it is
located in the (−,−,+) RS as its counterpart in the open-charm sector. However, it lies between
the thresholds of the B̄η and the B̄sK̄ channels, at 5827 MeV and 5863 MeV, respectively, and
therefore it is located in the unphysical RS closest to the physical region, in what we refer to as
the RS-II. The extrapolation of the definition of the compositeness in Eq. (2.133) to complex
energies for resonant states prevents its strict interpretation as a probability. Still, this quantity
provides the weight of each of the coupled channels in the wave function of the states [Ace+14].
Thus the lowest pole contains a sizable amount of B̄π channel, while the highest one has a large
B̄sK̄ molecular component.

For (S, I) = (1, 0), we find a B̄K bound state at 5639 MeV, with a binding energy of about
130 MeV, larger than what is found in other works [Guo+06; Alb+17]. This is mainly due to the
prescription that we have taken for the regularization of the loops, as we have explained in the
case of the D∗s0(2317) above.

Despite the lack of experimentally observed states with the quantum numbers and the proper-
ties of those dynamically generated by the heavy chiral unitary approach in the 0+ open-bottom
sector, the molecular model predicts two broad resonant poles in the nonstrange sector and a
narrow bound B̄K state in the strange sector. These are the bottomed B∗0 and B∗s0 partners of
the D∗0(2300) and the D∗s0(2317) and are expected to exist from HQFS.

J = 1 case: Interactions and B1(5721) and Bs1(5830)

The dynamically generated B states with JP = 1+ follow again the same pattern of a nonstrange
two-pole structure and a strange bound state that has been described above for the 0+ and 1+

charmed states, as well as for the 0+ bottomed states. This is a clear confirmation of the small
breaking of HQSFS of the model.

In Fig. 2.21 we show the loop functions, the inverse of the diagonal interaction kernels, and
the diagonal elements of the unitarized scattering amplitudes in the (S, I) = (0, 1/2) sector
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Figure 2.21: The same as in Fig. 2.14 for the bottomed JP = 1+ states. The top panels correspond to the
sector with (S, I) = (0, 1/2), where the subindices 1, 2, 3 refer to the channels B̄∗π, B̄∗η,
and B̄∗s K̄, respectively, and the bottom panels to the sector with (S, I) = (1, 0), where 1 and
2 refer to B̄∗K and B̄∗sη.

(S, I) RS MR ΓR/2 |gi| χi

(MeV) (MeV) (GeV)
B1(5721) (0, 1

2 ) (−,+,+) 5528.6 72.3 |gB̄∗π|= 22.6 χB̄∗π = 0.44
|gB̄∗η|= 0.8 χB̄∗η = 0.00
|gB̄∗s K̄ |= 14.4 χB̄∗s K̄ = 0.02

(−,−,+) 5893.3 64.9 |gB̄∗π|= 10.7 χB̄∗π = 0.10
|gB̄∗η|= 18.0 χB̄∗η = 0.49
|gB̄∗s K̄ |= 32.1 χB̄∗s K̄ = 0.74

Bs1(5830) (1, 0) (+,+) 5686.0 0.0 |gB̄∗K |= 35.8 χB̄∗K = 0.46
|gB̄∗sη|= 23.9 χB̄∗sη = 0.09

Table 2.21: Dynamically generated poles in the JP = 1+ bottomed sectors with (S, I) = (0, 1/2) and
(S, I) = (1, 0). The structure of the table is the same as that of Table 2.18.

(upper panels) and the (S, I) = (1, 0) sector (lower panels). The properties of the corresponding
poles are listed in Table 2.21. In the (0, 1/2) sector, the T matrix presents a lower-energy pole at
5529− i 72 MeV, coupling largely to B̄∗π, and a higher-energy pole at 5893.3− i 65 MeV, with a
large coupling to B̄sK̄. These two poles lie in the energy region where the experimental B1(5721)
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state is observed, although the identification as the bottomed partner of the D∗0(2300) with two
poles dynamically generated by the molecular model is not clear, as the B1(5721) is substantially
narrower than predicted by the unitarized heavy chiral approach. The experimental value of the
width of this state is ∼ 30 MeV, which is similar to the width of the structure observed in the
B̄∗s K̄ amplitude in the upper-right panel of Fig. 2.21 due to the presence of the B̄∗η and B̄∗s K̄
thresholds which, however, lie at energies about 150 MeV higher than the experimental mass of
the B1(5721) state.

The B̄∗K bound state generated in the (1, 0) sector is located at 5686 MeV, and thus our model
predicts a substantially larger binding than that of the experimental Bs1(5830). However, as
explained above for the charm sector, a modification of the parameters of the regularization
scheme might permit the model to generate the state at energies closer to the experimental one,
although the value of the cut-off may become unphysically small (< 300 MeV). Furthermore, in
this bottomed case, the experimental Bs1(5830) state lies above the B̄∗K threshold, located at
5820 MeV, which poses an additional difficulty. By decreasing the value of the cut-off, the pole of
the bound state generated from the B̄∗K interaction moves to a RS different from the RS-II, as it
crosses the channel threshold. Therefore, the identification of the Bs1(5830) with the bottomed
partner of the Ds1(2460), for which with a unitarized heavy-light molecular model we predict a
mass in the range [5600− 5800] MeV for a cut-off in the range [500− 1000] MeV, is not clear.

Furthermore, it is interesting to notice that the breaking of HQSS is smaller in the open-bottom
sector compared to the open-charm sector, as can be seen by comparing the properties of the 0+

and the 1+ dynamically generated states in Tables 2.18 and 2.19 with those in Tables 2.20 and
2.21, respectively. Indeed, the O(1/mH) corrections are expected to be smaller for B̄ mesons
due to their heavier mass in comparison to the mass of the D mesons. For the bottomed states,
the difference between the 0+ and the 1+ is observed in the masses found for these states, since
their widths and couplings to the various channels are very similar. The mass shift is related to
the mass difference between the pseudoscalar B̄ mesons and the vector B̄∗ mesons.
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Heavy mesons in a hot medium 3
In this chapter, we present a detailed and comprehensive discussion on a few basic thermal
field theory concepts, essential to incorporate finite temperature effects in the unitarized heavy
effective theory that we have employed in the second part of Chapter 3 to describe the scattering
of heavy mesons off Goldstone bosons in the vacuum. This is necessary because it is known that
HIC experiments, for instance in the RHIC at BNL and the LHC at CERN, produce a hot plasma,
the so-called QGP that cools down into a large number of light mesons, mostly pions, and other
particles that behave thermally, while interacting obeying the laws of QCD.

The chapter is structured as follows. After the introduction given in Section 3.1, we describe
in Section 3.2 the theoretical framework used to obtain the unitarized amplitudes and the
spectral properties of the heavy mesons at finite temperature, including the calculation of the
thermal two-meson propagator and the heavy-meson self-energy, while the results for the thermal
modification of open-heavy flavor mesons (D and B̄ mesons) when immersed in a hot medium
of light Goldstone bosons are analyzed in Section 3.3. The work presented in this chapter lead
to the publication of Refs. [Mon+20b; Mon+20c].

3.1 Introduction

The in-medium properties of mesons with charm content have been a matter of high interest over
the years (see [Rap+11; Tol13; Hos+17; Aar+17a] for reviews). This interest was triggered
because of the phenomenon of J/Ψ suppression in heavy-ion collisions [Gon+96], which was
predicted in Ref. [MS86] as a signature of the existence of the QGP due to color screening. The
J/Ψ absorption in hot dense matter could be also modified due to the change of the properties
of open-charm mesons in matter in the comover scattering scenario (see, for example, the initial
works of Refs. [CFK00; CB99; Vog99; GH99]), thus providing a complementary explanation for
J/Ψ suppression.

Several studies have been devoted to examining the properties of charmed mesons in a meson-
rich environment. Most of these works, though, have been concentrated on the determination
of the hidden-charm J/Ψ dissociation cross sections in heavy-ion collisions (see [RBC10] for a
review). There are several studies on the J/Ψ-hadron interaction at finite temperature based
on chiral Lagrangians [HG01; BG09; BGK12], quark-model calculations [ZX12; Mai+04b;
Mai+05b; BG09], schemes using QCD sum rules [Dur+03b; Dur+03a], LQCD (see [Rot20]
and references therein), and SU(4) effective Lagrangians [Mit+16; Abr+18]. With regards to
open-charm mesons, the studies on open-charm thermal relaxation in heavy-ion collisions [Lai11;
HFR11; Gho+11; Abr+11; TT13; Ozv+14; Son+15] have prompted the interest in open charm
at finite temperatures. Investigations of open-charm mesons at finite temperature have been
performed using QCD sum-rule-based approaches [HKL11; Buc+18a; GSL20] and calculations
on the lattice [Baz+14; Baz+15; KRS18]. Also, effective models in a hot hadronic bath have
been developed in Refs. [Mis+04; Fuc+06b; HFR11; BCK12; GMS13; Sas14].
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Recently, a finite-temperature unitarized approach based on an SU(4) effective Lagrangian has
been put forward [CMR17], where the implications of pionic matter at finite temperatures on
the properties of open- and hidden-charm mesons have been studied. Whereas the J/Ψ stays
narrow even at T = 150 MeV, the D and D∗ mesons acquire a substantial width in the pionic
bath, reaching 30− 40 MeV at T = 150 MeV.

In the present chapter, we address the properties of open heavy-flavor mesons in a hot mesonic
bath (mainly formed by pions), within a finite-temperature unitarized approach [Mon+20b;
Mon+20c], following the path of Ref. [CMR17]. The dynamics of the heavy mesons with the
light mesons are based on the effective theory presented in Section 2.3, which is built on chiral
symmetry at NLO and implements HQSFS at LO. We discuss not only the thermal modification
of the heavy ground states but also that of the dynamically generated states, paying special
attention to the fact the latter ones are the positive parity chiral partners of the former.

The idea that chiral partners become degenerate above the chiral restoration temperature
Tχ [HK85; RW00] has motivated a large number of works in which low-lying hadronic states of
opposite parities have been studied in a thermal medium and their masses have been seen to
merge at large temperatures T > Tχ.

The canonical example resides in the light-meson sector, where the pseudoscalar isotriplet (π)
and the scalar isoscalar (σ meson) acquire similar masses above Tχ. This system has been studied
in the linear sigma model [BK96], the (P)NJL model [Kle92; FF94; Han+07], the quark-meson
model [Tri+14], and others. On the other hand, vector and axial-vector interactions, which
have been studied in the (P)NJL model [Sin14] and the gauge linear-sigma model [Pis95], for
example, allow one to study the chiral-symmetry restoration of the ρ and the a1 states [RW00].
Opposite-parity diquarks also present such degeneracy in the (P)NJL model [TSA15], whereas
there exist also indications from LQCD calculations of the chiral restoration of opposite-parity
baryons [Aar+17b; Aar+19].

In many of the theoretical models, the parity partners are fundamental degrees of freedom, for
instance, the π and the σ in the linear sigma model [BK96], and interactions in a thermal/dense
medium dress them producing in-medium mass modifications. In another set of models, for
example, the NJL and PNJL model, the parity partners (either 0+/0− or 1+/1−) are not part of
the degrees of freedom of the Lagrangian but are instead generated from the few-body dynamics,
like those implemented by the BS equation for a quark-antiquark pair. In this case, masses and
decay widths seem to converge in the chirally-restored phase [Han+07].

All these models provide insights into the effects of chiral restoration, both below and above
Tχ. However, one should keep in mind that, although well-motivated by the QCD symmetries
and dynamics, they are not usually the correct EFT of QCD. In the light-meson sector, for
instance, we know that the low-energy effective theory is χPT [GL84], which can lead to model-
independent results, also at finite temperatures. However, this approach is valid at low energies
and temperatures, always below Tχ, and only timid indications of a chiral-symmetry restoration
can be expected from it.

Even if limited to T < Tχ, the chiral approach is quite interesting because a combined picture
of the chiral partners comes into play. The negative parity partner (π) is a degree of freedom
of the Lagrangian [GL84], whose vacuum mass is dressed by interactions with the whole set
of Goldstone bosons. However, the positive parity partner (σ) is not part of the Lagrangian.
In unitarized versions of χPT [DHT90; DP97], it can be associated with the Jπ = 0+ resonant
state, appearing in the scalar isoscalar channel of the meson-meson scattering amplitude. This
state, experimentally identified with the scalar f0(500) of the PDG compilation [Tan+18], can
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be generated at finite temperature as well [Dob+02; RW95]. This scenario, where one of the
chiral companions is a degree of freedom of the theory and the other a dynamically-generated
state, is the one we consider in this dissertation in the open heavy-flavor sector.

3.2 Formalism

The standard theoretical treatment of strongly interacting fields within the theory of QCD uses
the language of quantum field theory and it has been historically very successful in describing the
behavior of hadrons in free space, or at conditions of zero temperature and zero baryon density.
However, this theoretical framework does not naturally incorporate the effects of the medium
that are relevant when one wants to study QCD matter at high temperatures and/or densities.

In the last decades, there has been an increasing interest in understanding particle interactions
in hot and dense systems and an enormous work has been done towards developing a formalism
to treat in-medium phenomena, both in and out of equilibrium. The pioneering work in thermal
quantum field theory dates back to Matsubara [Mat55] who developed the imaginary-time,
or Matsubara, formalism (ITF) to describe systems in equilibrium. This approach has many
similarities with what we know at zero temperature, in particular the form of the propagators
and the diagrammatic structure of the perturbative expansion, but it differs in the way in which
time is treated, as it is considered a purely imaginary quantity. Soon after the foundations of the
Matsubara formalism, Kubo [Kub57] and Martin and Schwinger [MS59] provided an important
relation between thermal propagators in equilibrium, the so-called Kubo-Martin-Schwinger
condition. Further relevant developments of equilibrium thermal theories were carried out by
Keldysh [Kel64], who considered explicitly the evolution in real time.

In the real-time formalism, meson fields are defined along a contour on the complex-time
plane [KB62; BI99; Ram07; Cas09]. The so-called Kadanoff-Baym contour, shown in the left
panel of Fig. 3.1, starts at an initial time ti, runs along the real axis up to a larger final time tf ,
goes back to ti, again along the real axis, and it finally makes a vertical descent down to ti − iβ,
where β = 1/T . This vertical path alone, the Matsubara contour Cβ , is the basis of the ITF (with
ti = 0), which we exploit in this chapter to compute equilibrium properties. By setting ti → −∞
and tf → +∞, one gets the so-called Schwinger-Keldysh contour C, which is composed of a
forward branch C1 and a backward branch C2, as shown in the right panel of Fig. 3.1.

Re t

Im t

ti tfC1

C2

ti − iβ

Cβ

Re t

Im t

−∞ +∞C1

C2

C = C1 ∪ C2

Figure 3.1: Left: the Kadanoff-Baym contour on the complex-time plane, composed of a forward branch
(C1), a backward branch (C2), and the Matsubara contour (Cβ). Right: the Schwinger-
Keldysh contour C = C1 ∪ C2, where the forward and backward branches extend in the range
(−∞,+∞). Note that there is no offset in C1 and C2 from the real axis. The two paths lie on
top of each other, infinitely close to the real axis but plotted at a certain distance for illustration.
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First, as we are concerned with mesonic fields, for a generic bosonic field φ̂(x) = φ̂(t, ~x) we
define the two-point thermal Green’s function ordered in the temporal arguments (along the C
contour) as

iG(x, x′) = 〈TC{φ̂(x)φ̂(x′)}〉 =
{
〈φ̂(x)φ̂(x′)〉 if t � t′

〈φ̂(x′)φ̂(x)〉 if t′ � t
, (3.1)

where the contour ordering operator TC orders field operators along the temporal contour C.
In this context, the notation t � t′ represents that time t comes later (along C) than t′. In
the practice, we work with the so-called “greater” and “lesser” Green’s functions, also called
Wightman functions,

iG>(x, x′) ≡ 〈φ̂(x)φ̂(x′)〉 , (3.2)

iG<(x, x′) ≡ 〈φ̂(x′)φ̂(x)〉 . (3.3)

The physical interpretation of the Wightman functions can be found in the classical Ref. [KB62].

Then, one can define the thermal retarded and advanced propagators as follows,

GR(x, x′) = θC(t− t′)
[
G>(x, x′)−G<(x, x′)

]
, (3.4)

GA(x, x′) = −θC(t′ − t)
[
G>(x, x′)−G<(x, x′)

]
, (3.5)

where the generalized step function θC(t− t′) is defined along the Schwinger-Keldysh contour,
and it is 0 if t ≺ t′, and 1 if t � t′.

These definitions for the Green’s functions are valid in equilibrium as well as out of equilibrium,
and up to this point we have not explicitly stated whether we have real or imaginary time. To
perform actual calculations it is necessary to choose a formalism, keeping in mind that the final
results for the physical quantities cannot depend on the choice of the contour C.

From now on in this chapter we use the ITF, which is based on the simplest choice of the
integration contour, namely the straight vertical line that connects ti with ti − iβ in the left
panel of Fig. 3.1. The time variable may then be parameterized as t = i τ with τ ∈ [0, β]. That is,
we perform a Wick rotation to Euclidean time. The resulting thermal quantities, for example,
the thermal propagator, resemble their counterparts in the zero-temperature theory, with the
following differences, in Fourier space:

• energy variables are replaced by the so-called Matsubara frequencies,

ωn = 2nπ
β

for bosons , (3.6)

ωn = (2n+ 1)π
β

for fermions . (3.7)

• any integration over internal energies is transformed into a summation over Matsubara
frequencies, ∫

d4q

(2π)4 →
1
β

∑
n

∫
d3q

(2π)3 . (3.8)

See Refs. [Wel83; Das97; KG11; Le 00; FW03] for details of the formalism.

The practical application to the scattering of heavy mesons off light mesons requires the
explicit calculation in the ITF of the two-meson propagator and the heavy-meson self-energy.
The self-energy is the other essential quantity that we need to compute at finite temperature.
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It is defined as the energy that a particle acquires as a result of its modification through the
interactions with the medium. Thus, the self-energy gives a contribution to the particle in-
medium mass and decay width. Before computing these two quantities in Sections 3.2.2 and
3.2.4, respectively, using the ITF, let us discuss the general procedure to perform the sum over
Matsubara frequencies.

3.2.1 The Matsubara summation

This subsection contains a brief discussion on the general technique of the Matsubara summation,
before applying it to the specific calculation of the thermal two-meson propagator and the meson
self-energy within the ITF. The aim is to analytically evaluate a summation of the form

1
β

∑
n

F (i ωn) , (3.9)

with the bosonic Matsubara frequencies defined as iωn = i 2nπ/β (in the case of fermions these
would be fermionic frequencies, iωn = i (2n+ 1)π/β). The sum over Matsubara frequencies can
be replaced by a sum over the poles of F using a standard trick, as described by, for instance,
Ref. [KG11]. First of all the purely imaginary Matsubara frequencies are substituted by a general
complex variable z, so the function F (i ωn) transforms into F (z). After this analytic continuation,
the Cauchy residue theorem can be used to replace the sum with a contour integral. This theorem
relates a contour integral in the complex plane with the sum over the poles enclosed within the
contour, ∮

C

g(z) = 2πi
∑
n

Res g(zn) , (3.10)

where zn are the complex poles of the function g(z) and Res refers to the residues of g(z) around
these poles. For simple poles, that is, of order one, one has Resz=zn g(z) = limz→zn{(z−zn)g(z)}.
The essence of the trick is to consider a weighting function f(z) = (eβz − 1)−1 that has simple
poles with residue 1/β at zn = i 2nπ/β, which coincide with the values of the Matsubara
frequencies of the sum in Eq. (3.9). The poles of f(z) are illustrated in Fig 3.2 by green crosses
on the imaginary axis. The residues at zn of the product of the functions f(z)F (z) are given by

Resz=zn{f(z)F (z)} = lim
z→zn

{
(z − zn) F (z)

eβz − 1

}
= 1
β
F (zn) . (3.11)
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Figure 3.2: Representation of the infinite number of poles of the weighting function f(z) = (eβz − 1)−1

on the imaginary axis, depicted by the green crosses. The contours in the left plot may be
deformed to the contour depicted in the right plot.
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Using the result of Eq. (3.11) together with the residue theorem of Eq. (3.10), the Matsubara
sum can be written as a contour integral:

1
β

∑
n

F (i ωn) = 1
β

∑
n

F (zn) analytic continuation

=
∑
n

Resz=zn
F (z)
eβz − 1 Eq. (3.11)

=
∑
n

1
2πi

∮
Cn

F (z)
eβz − 1 residue theorem

= 1
2πi

∮
C′

F (z)
eβz − 1 . (3.12)

In the last line, we have combined the n contour integrals along the small contours Cn around
each of the purely imaginary poles zn of the function f(z) (left plot in Fig. 3.2) in a contour C ′

enclosing the n poles (right plot in Fig. 3.2). Yet the function F (z) may have poles itself.

Let us consider an example in which F (z) has j = 2 poles at z1 and z2 as depicted in Fig. 3.3.
Now, if f(z)F (z) goes fast enough to zero as |z| → ∞, the contour integral along the circular
path C enclosing all the poles (left plot in Fig. 3.3) vanishes as the radius of the contour goes
to infinity. Moreover, the contour C can be deformed into a contour C ′ containing the zn poles
of f(z) (middle plot in Fig. 3.3) and small contours around the zj poles of F (z) (right plot in
Fig. 3.3). This allows us to relate the integral around the poles of f(z) with the sum of the
integrals around the poles of F (z):

1
β

∑
n

F (i ωn) = 1
2πi

∮
C′

F (z)
eβz − 1

= − 1
2πi

∑
j

∮
Cj

F (z)
eβz − 1

= −
∑
j

Resz=zj
F (z)
eβz − 1 residue theorem

= −
∑
j

1
eβzj − 1 lim

z→zj
{(z − zj)F (z)} . (3.13)
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Figure 3.3: Contour integrals used in the evaluation of the Matsubara summation of Eq. (3.9) for a function
F (z) with two poles at z1 and z2. The integral along the contour C enclosing all the poles (left
plot) vanishes as the radius goes to infinity. Upon the deformation of the contour C, it can be
split in the sum of an integral along the contour C′ enclosing the poles on the imaginary axis
(middle plot) and the integrals along the contours Ck around the poles of F (z) (right plot).
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In the third line of Eq. (3.13), we have again taken advantage of the Cauchy residue theorem
to finally obtain, in the last line, an expression for the summation over the infinite number of
Matsubara frequencies involving the sum over just the reduced number of poles zj of F (z).

3.2.2 Thermal two-meson propagator

We consider two mesons that we denote asM≡ D andM′ ≡ Φ. The two-body loop function in
the ITF reads

GDΦ(iωm, ~p ;T ) = − 1
β

∑
n

∫
d3q

(2π)3DD(iωn, ~q )DΦ(iωm − iωn, ~p− ~q )

= − 1
β

∑
n

∫
d3q

(2π)3
1

ω2
n + ~q 2 +m2

D

1
(ωm − ωn)2 + (~p− ~q )2 +m2

Φ
, (3.14)

where p0 → iωm is the total external energy and q0 → iωn is the internal D-meson energy, as
shown in Fig. 3.4.

Before performing the Matsubara summation over ωn we introduce the Lehmann representa-
tion for the propagators in terms of the spectral function,

DM (iωn, ~q ) =
∫
dω
SM (ω, ~q )
iωn − ω

=
∫ ∞

0
dω
SM (ω, ~q )
iωn − ω

−
∫ ∞

0
dω
SM̄ (ω, ~q )
iωn + ω

, (3.15)

where the subindex M denotes the meson species (D or Φ) and in the second equality we
have separated the particle (M) and antiparticle (M̄) parts. Using delta-type spectral functions,
SM (ω, ~q ) = ωM

ω δ(ω2−ω2
M ), with ωM =

√
~q 2 +m2

M , it is straightforward to see that Eq. (3.14) is
recovered. By keeping generic spectral functions SD(ω, ~q ) and SΦ(ω′, ~p− ~q ), that is, by dressing
the mesons in the loop,

GDΦ(iωm, ~p ;T ) = − 1
β

∑
n

∫
d3q

(2π)3

∫ ∞
0

dω

{
SD(ω, ~q )
iωn − ω

− SD̄(ω, ~q )
iωn + ω

}
×
∫ ∞

0
dω′

{
SΦ(ω′, ~p− ~q )

iωm − iωn − ω′
− SΦ̄(ω′, ~p− ~q )

iωm − iωn + ω′

}
, (3.16)

we get four terms of the form F (iωn) ≡ F (z), with simple poles at z1 = ±ω and z2 = iωm ± ω′,
respectively, for which we perform the Matsubara summation as described in Section 3.2.1.

D D

Φ Φ

D
iωn, ~q

Φ
iωm − iωn, ~p− ~q

iωm, ~p

Figure 3.4: Diagram of the general two-meson loop function with dressed internal meson propagators,
denoted with thick magenta lines.
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Using Eq. (3.13) we obtain the following expression for the loop function:

GDΦ(iωm, ~p ;T ) =
∫

d3q

(2π)3

∫ ∞
0

dω

∫ ∞
0

dω′

{
[1 + f(ω, T ) + f(ω′, T )]

×
[
SD(ω, ~q )SΦ(ω′, ~p− ~q )

iωm − ω − ω′
− SD̄(ω, ~q )SΦ̄(ω′, ~p− ~q )

iωm + ω + ω′

]
+ [f(ω, T )− f(ω′, T )]

×
[
SD̄(ω, ~q )SΦ(ω′, ~p− ~q )

iωm + ω − ω′
− SD(ω, ~q )SΦ̄(ω′, ~p− ~q )

iωm − ω + ω′

]}
, (3.17)

where
f(ω, T ) = 1

eω/T − 1
(3.18)

is the equilibrium Bose-Einstein (BE) distribution function at temperature T . We have used that
the BE function evaluated at negative energy can be written as

f(−ω, T ) = 1
e−ω/T − 1

= − [1 + f(ω, T )] , (3.19)

and at the bosonic Matsubara frequency ωm = i 2mπT , as

f(iωm ± ω′, T ) = f(±ω′, T ) . (3.20)

The 1 preceding the BE occupancy numbers in the first line of Eq. (3.17) represents the vacuum
contribution. To evaluate this equation, one has to place an upper cut-off on the momentum
integration, or else analytically continue to 4 − 2η dimensions, so as to regularize it (see the
discussion on regularization of the loop function in Chapter 2).

The above expression for the loop function must be analytically continued from the discrete
imaginary frequencies iωm to real energies to describe a two-meson system with energy E, that
is, iωm → E+ i ε. Additionally, taking into account that the spectral functions satisfy the relation
SM̄ (−ω, ~q ;T ) = −SM (ω, ~q ;T ), we can express the thermal loop in the following compact way:

GDΦ(E, ~p ;T ) =
∫

d3q

(2π)3

∫
dω

∫
dω′

SD(ω, ~q ;T )SΦ(ω′, ~p− ~q ;T )
E − ω − ω′ + i ε

[1 + f(ω, T ) + f(ω′, T )] ,

(3.21)
where the integrals over energy extend from −∞ to +∞.

At finite temperature the meson masses are dressed by the medium. The effects of finite
temperature in the unitarized scattering amplitudes are obtained by solving the BS equation in
Eq. (2.121) with thermal loops containing dressed mesons. In general, the spectral function
necessary to dress the meson in the loop is computed from the imaginary part of the retarded
meson propagator,

SM (ω, ~q ;T ) = − 1
π

ImDM (ω, ~q ;T ) = − 1
π

Im

(
1

ω2 − ~q 2 −m2
M −ΠM (ω, ~q ;T )

)
. (3.22)

We take this prescription for the heavy-meson spectral function in our calculations, and the
self-energy follows from closing the light-meson line in the T matrix, as discussed later on.

In this chapter, we are interested in analyzing the medium modification of the D-meson
propagator due to light mesons. However, light mesons also suffer medium modifications and
their spectral functions are modified by the interactions among themselves. For a pion gas, we
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can use previous results in the literature to tell us that the mass modification is small and that
the use of a free spectral function is justified. In Appendix B we show this fact, where up to
temperatures of T = 150 MeV the pion mass varies at most 10%. At the largest temperature of
T = 150 MeV considered, we have used mπ = 120 MeV mass in our numerical calculation and
found that the final charmed-meson masses (both ground and the dynamically generated states)
are modified by less than 0.1%. Therefore, we use the free pion spectral function.

In view that taking the vacuum propagator is a good approximation for the light mesons,
the expression for the thermal two-meson loop function given in Eq. (3.21) can be simplified
accordingly. Furthermore, we have already noticed that the calculation of the heavy-meson
propagator dressed with its self-energy depends on some particular matrix elements of the
unitarized thermal amplitude. Thus, one realizes that the calculations of the loop function at
finite temperature and the heavy-meson self-energy are connected to each other and they have
to be solved in an iterative process until the convergence of the results. This point will become
clearer below in this chapter.

The first iteration of the thermal loop function is made in the approximation of two free
(undressed) mesons. For free mesons, the spectral functions become delta distributions:

SM (ω, ~q ) = ωM
ω
δ(ω2 − ω2

M ) = 1
2ω [δ(ω − ωM ) + δ(ω + ωM )] , (3.23)

with ωM =
√
~q 2 +m2

M the energy of the M = {D,Φ} meson, and the loop function simplifies to

GDΦ(E, ~p ;T ) =
∫

d3q

(2π)3
1

4ωDωΦ

{
[1 + f(ωD, T ) + f(ωΦ, T )]

×
(

1
E − ωD − ωΦ + i ε

− 1
E + ωD + ωΦ + i ε

)
+ [f(ωD, T )− f(ωΦ, T )]

×
(

1
E + ωD − ωΦ + i ε

− 1
E − ωD + ωΦ + i ε

)}
. (3.24)

In the case when only one of the meson spectral functions can be approximated with a delta-
type spectral function, which is what we consider for the subsequent iterations of the calculations
in this thesis, one gets the following expression for the two-meson loop function:

GDΦ(E, ~p ;T ) = −
∫

d3q

(2π)3

∫ ∞
0

dω
SD(ω, ~q ;T )

2ωΦ

{
[1 + f(ω, T ) + f(ωΦ, T )]

×
(

1
ω − (E − ωΦ)− i ε

+ 1
ω + (E + ωΦ) + i ε

)
+ [f(ωΦ, T )− f(ω, T )]

×
(

1
ω − (E + ωΦ)− i ε

+ 1
ω + (E − ωΦ) + i ε

)}
, (3.25)

with ωΦ =
√

(~p− ~q )2 +m2
Φ.

As in the vacuum case, the two-meson propagator needs to be regularized. The most straight-
forward way to do that at finite temperature is to introduce a hard cut-off in the upper limit in
the integral over the modulus of the momentum. The technical details of the nontrivial numerical
integration of Eqs. (3.24) and (3.25) regularized with a cut-off are given in Appendix C.1.
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3.2.3 Physical interpretation and cuts of the thermal propagator

The expressions for the two-meson thermal loop function derived above in the ITF allow a
physical interpretation in terms of multiple scattering with the constituents of the thermal
mesonic medium. For such an interpretation we follow a similar argument to that of Weldon in
Ref. [Wel83], where he studied and physically interpreted one-loop self-energies.

We consider the approximation of the loop function with two undressed mesons for simplicity.
In this case, after Matsubara summation and analytical continuation to complex energies, the
two-meson loop shown in Fig. 3.4, with a heavy meson D and a light meson Φ, is given in
Eq. (3.24). The separation into explicit partial fractions is mandatory for a straightforward
physical interpretation of each of the four terms appearing in this expression as the contribution
of the processes sketched in Fig. 3.5. The imaginary part of the loop function, which is related to
the discontinuity across the cuts of the loop function that extend along the real axis, reads

ImGDΦ(E, ~p ;T ) = −π
∫

d3q

(2π)3
1

4ωDωΦ

×
{

[1 + fD + fΦ] δ(E − ωD − ωΦ)− [1 + fD + fΦ] δ(E + ωD + ωΦ)

+ [fD − fΦ] δ(E + ωD − ωΦ)− [fD − fΦ] δ(E − ωD + ωΦ)
}

= −π
∫

d3q

(2π)3
1

4ωDωΦ

×
{

[(1 + fD)(1 + fΦ)− fDfΦ] δ(E − ωD − ωΦ)

+ [fD̄fΦ̄ − (1 + fD̄)(1 + fΦ̄)] δ(E + ωD + ωΦ)

+ [fD̄(1 + fΦ)− (1 + fD̄)fΦ] δ(E + ωD − ωΦ)

+ [(1 + fD)fΦ̄ − fD(1 + fΦ̄)] δ(E − ωD + ωΦ)
}
, (3.26)

where we have introduced the short notation fi ≡ f(ωi, T ) for the BE distribution functions. In
the second equality, we have added and subtracted the products fDfΦ so as to give a physical
interpretation in terms of probabilities for the production and absorption of meson pairs from the
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Figure 3.5: Absorption and production processes of DΦ pairs in a thermal bath, obtained from cutting
the two-meson loop diagram in Fig. 3.4. Black lines represent the particles that are ab-
sorbed/produced, gray lines illustrate the particles that belong to the thermal bath. Processes
(a) and (b) require s ≥ (mD + mΦ)2 and give rise to the unitary cut; processes (c) and (d)
require s ≤ (mD −mΦ)2 and give rise to the Landau cut.
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bath. The factor fi weights the probability for absorption of a thermal meson of species i from the
bath, while the factor 1 + fi gives the probability for the thermal production of a meson i. When
energy conservation requires ωi < 0, as controlled by the corresponding δ function, we have
identified the meson i with an antimeson ī. Then, the first term in Eq. (3.26) is proportional to
the probability for the creation of a pair from the bath, bath→ bath+DΦ, with a statistical factor
(1 + fD)(1 + fΦ), minus the probability for the inverse process, bath +DΦ→ bath, with weight
fDfΦ for the absorption. This is depicted by the diagram in Fig. 3.5a. Similarly, the second term
gives the probability for bath+ D̄Φ̄→ bath, with weight fD̄fΦ̄, minus that for bath→ bath+ D̄Φ̄,
with weight (1 + fD̄)(1 + fΦ̄), as shown in Fig. 3.5b. The physical interpretation of the third
and fourth terms as probabilities of emission and absorption processes is analogous, and the
corresponding diagrams are shown in Figs. 3.5c and 3.5d, respectively.

The energy conservation imposed by the δ functions in each of the four terms in Eq. (3.26)
implies that the imaginary part of the loop function is nonvanishing only for certain regions of
the Mandelstam s = E2 − ~p 2, giving rise to branch cuts in the loop function. The first two terms
are nonzero for s ≥ (mD +mΦ)2, giving the usual unitary cut that is also present at T = 0 above
the DΦ threshold, while the third and fourth terms contribute for s ≤ (mD −mΦ)2, providing
the so-called Landau cut. Figure 3.6 shows the location of these cuts in the complex E-plane. For
positive external energies, the unitary cut arises from the scattering of DΦ taking place through
their conversion into intermediate heavy-light pairs with the same quantum numbers (Fig. 3.5a),
while the annihilation and subsequent creation of a D̄Φ̄ pair (Fig. 3.5b) require negative external
energies, E ≤ −(mD +mΦ), which is not possible for real particles. The former processes are
also allowed in the vacuum but, in the medium, the probabilities of their occurrence are modified
by the BE distributions. On the other hand, the Landau cut arises from scattering processes with
the mesons in the medium, in particular those in which the DΦ pair absorbs a heavy (light)
antimeson, the remaining light (heavy) meson propagates in the loop, and finally, the DΦ pair
and the heavy (light) antimeson are produced back, as illustrated in Fig. 3.5c (Fig. 3.5d).

The limits of the branch cuts are determined by the constraints imposed by the δ functions for
the conservation of energy and the requirement for the angular variable that |x| ≡ | cos θ| ≤ 1,
where θ is the angle between the external momentum ~p and the internal momentum in the loop
~q [GSM10; TA17]. When there is a finite momentum integration cut-off Λ in the center-of-mass
frame, the limits of the unitary (U) and Landau (L) cuts in Fig. 3.6 can be written as

EL< =
√

Λ2 +m2
D −

√
Λ2 +m2

Φ , EL> =
√

(mD −mΦ)2 + ~p 2 ,

EU< =
√

(mD +mΦ)2 + ~p 2 , EU> =
√

Λ2 +m2
D +

√
(Λ + |~p|)2 +m2

Φ , (3.27)

where <,> denote the lower and upper limits, respectively, and we have defined mD > mΦ to
avoid the crossing of the Landau cuts.

Re E

Im E

−EU> −EU< −EL> −EL< EL< EL> EU< EU>

Figure 3.6: Branch cuts of the two-meson thermal loop function in the complex-energy plane: the unitary
cut in thick blue lines and the Landau cut in wiggly magenta lines, with the limits EL<, EL>,
EU<, and EU> given in Eq. (3.27).
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3.2.4 Meson self-energy

The self-energy of the heavy meson is obtained by closing the light-meson line in the correspond-
ing T -matrix element and it is represented by the diagram depicted in Fig. 3.7. After applying
the Feynman rules, one obtains the following expression in the ITF:

ΠD(iωn, ~q ;T ) = − 1
β

∫
d3q′

(2π)3

∑
m

DΦ(iωm − iωn, ~q ′)TDΦ(iωm, ~p ) , (3.28)

where iωn and iωm are the Matsubara frequencies of the external D meson and internal DΦ
system, respectively, and ~q ′ = ~p− ~q is the three-momentum of the light meson.

It is convenient to use the Lehman representation for the light-meson propagator introduced
in Eq. (3.15), as well as for the T matrix,

TDΦ(iωm, ~p ) = − 1
π

∫
dE

ImTDΦ(E, ~p )
iωm − E

. (3.29)

Following the same procedure as for the loop function described above, the expression obtained
for the heavy-meson self-energy after the Matsubara summation reads

ΠD(iωn, ~q ;T ) = 1
π

∫
d3q′

(2π)3

∫
dE

∫
dω
SΦ(ω, ~p− ~q ) [f(E, T )− f(ω, T )]

E − iωn − ω
ImTDΦ(E, ~p ;T ) .

(3.30)

Just like for the derivation of the thermal loop function, we consider that the interactions
of a light meson with a dominantly pionic medium are weak. Given this approximation, the
self-energy of the light meson vanishes and its spectral function becomes a delta function like
that of Eq. (3.23). After introducing this in Eq. (3.30), the expression for the self-energy of the
heavy meson is given by

ΠD(iωn, ~q ;T ) = 1
π

∫
d3q′

(2π)3
1

2ωΦ

∫ ∞
0

dE

{
[1 + f(E, T ) + f(ωΦ, T )]

×
(

1
E − iωn + ωΦ

+ 1
E + iωn + ωΦ

)
− [f(E, T )− f(ωΦ, T )]

×
(

1
E − iωn − ωΦ

+ 1
E + iωn − ωΦ

)}
ImTDΦ(E, ~p ;T ) , (3.31)

with ωΦ =
√
q′2 +m2

Φ.

D D

iωn, ~q

Φ
iωm − iωn, ~p− ~q

T (iωm, ~p )

Figure 3.7: Diagram of the meson self-energy obtained from closing the light-meson line of the T matrix.
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Using that ImTDΦ(−E, ~p ;T ) = −ImTDΦ(E, ~p ;T ), and after the analytical continuation
iωn → ω + i ε, the expression can be compactified in the following,

ΠD(ω, ~q ;T ) = 1
π

∫
d3q′

(2π)3

∫
dE

ω − ωΦ

ωΦ

f(E, T )− f(ωΦ, T )
ω2 − (ωΦ − E)2 + sgn(ω) i ε

ImTDΦ(E, ~p ;T ) . (3.32)

The details of the numerical integration of Eq. (3.32) are given in Appendix C.2.
The imaginary part of the self-energy is related to the thermal width acquired by the heavy

meson due to the interaction with the light mesons of the medium, while the real part is
connected to the thermal modification of the mass. This can be seen easily by considering the
expression for the heavy-meson retarded propagator at finite temperature,

DM (ω, ~q ;T ) = 1
ω2 − ~q2 −m2

D − Re ΠD(ω, ~q ;T )− i Im ΠD(ω, ~q ;T ) , (3.33)

wheremD is the vacuumD-meson mass in the vacuum, renormalized by the vacuum contribution
of the retarded D-meson self-energy ΠD. Therefore, after mass renormalization, the real and
imaginary parts of the self-energy can only contain thermal corrections. However, the real part
of the self-energy computed with the expressions given above contain both vacuum and thermal
corrections. To remove the vacuum part to the real part of Π entering the spectral function
in Eq. (3.22), the authors of Ref. [CMR17] pointed out that the real part of the self-energy
calculated at T = 0 has to be subtracted from the corresponding calculation at finite temperature,
at each value of {ω, ~q }. A different approach, which is the one taken here, consists in calculating
only the thermal contribution to the real part of the self-energy by dropping the 1 in the factor
[1 + f(E, T ) + f(ωΦ, T )] in Eq. (3.31) (or in the definition of F1 and F2 in Eq. (C.21) in the
appendix). This is the part that survives in the limit T → 0, in which the BE factors vanish,
f(ω, T → 0) = 0, and hence this contribution has to be dismissed.

Self-energy in isospin basis

The expressions above provide the contribution to the heavy-meson self-energy of a particular
species present in the thermal bath of light mesons, Φ = {π,K, K̄, η}. The total self-energy is
then given by the sum of all the light-meson contributions:

ΠD(ω, ~q ;T ) =
∑

Φ={π,K,K̄,η}

Π(Φ)
D (ω, ~q ;T ) , (3.34)

where each of the contributions is computed from the T matrix in the isospin basis for con-
venience. In the charge basis, to obtain the contribution to the self-energy of a heavy meson
with isospin i1 and third component i1z (for example, a D+ meson with (i1, i1z ) = (1/2,+1/2))
coming from a light meson with isospin i2 (for instance, a π with i2 = 1), one has to sum over
all the values of i2z (that is, π+, π0, π−),

Π(Φ(i2))
D(i1,i1z ) =

∑
i2z

Π(Φ(i2,i2z ))
D(i1,i1z ) . (3.35)

Given that the self-energy has to be the same for all the i1z (that is, ΠD+ = ΠD0), we take the
average over the values of the heavy-meson isospin,

Π(Φ(i2))
D(i1) = 1

(2i1 + 1)
∑
i1z

∑
i2z

Π(Φ(i2,i2z ))
D(i1,i1z ) . (3.36)
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In the isospin basis, it becomes

Π(Φ)
D = 1

(2i1 + 1)
∑
I

(2I + 1)Π(Φ)
D (I) , (3.37)

where I is the total isospin of the DΦ system, and ΠΦ
D(I) is calculated from closing the Φ meson

line in the corresponding T IDΦ matrix element, with isospin I. This provides, for instance, the
pionic and kaonic contributions to the D- and Ds-meson self-energies:

Π(π)
D = Π(π)

D (I = 1/2) + 2Π(π)
D (I = 3/2) ,

Π(K)
D = 1

2Π(K)
D (I = 0) + 3

2Π(K)
D (I = 1) ,

Π(K̄)
D = 1

2Π(K̄)
D (I = 0) + 3

2Π(K̄)
D (I = 1) ,

Π(π)
Ds

= 3Π(π)
Ds

(I = 1) ,

Π(K)
Ds

= 2Π(K)
Ds

(I = 1/2) ,

Π(K̄)
Ds

= 2Π(K̄)
Ds

(I = 1/2) .

(3.38)

For temperatures below the critical temperature for the deconfining transition, Tc, the largest
contribution to the D-meson self-energy comes from pions, as the abundance of heavier light
mesons, such as kaons and eta mesons, is suppressed by the BE factors. We note that the
contribution of a kaonic bath can be relevant for temperatures close to Tc. In order to study this
contribution, in Section 3.3 we analyze the modification of open charm mesons in the presence
of a kaonic bath by taking into account the corresponding BE distributions.

3.2.5 Unitarized interactions and self-consistency at finite temperature

At T < Tc, and assuming no baryon density, the thermal medium is essentially composed of the
lighter mesons of the pseudoscalar meson octet. Their interactions at low energies are governed
by χPT, based on chiral power counting. The heavy mesons, D(∗) and D(∗)

s (also the B̄(∗) and
B̄

(∗)
s ), propagate through this medium behaving as Brownian particles, suffering from collisions

with any of the light mesons. The interaction of the D and B̄ mesons with light particles is
described by the effective Lagrangian given in Eqs. (2.171) and (2.173) when describing the
interaction of open-heavy flavor mesons with light mesons in free space in Chapter 2. The
tree-level scattering amplitude that follows from this Lagrangian is given in Eq. (2.174).

This amplitude is used as the kernel of an on-shell BS equation within a full coupled-channel
basis, T = V + V GT , where T is the unitarized amplitude. At finite temperature, we need
to account for several modifications, both in the methodology and in the final analysis of the
dynamically generated states. The two-body loop function G is now modified as compared to
the vacuum case since it receives medium corrections due to the light meson gas, and the meson
masses are dressed by the medium, as given in Eq. (3.21). As discussed in Section 2.3.2, the
vacuum contribution of the loop function needs regularization, for which we employ a cut-off
scheme, a procedure which simplifies the numerical treatment at finite temperature, detailed in
Appendix C.1. The selected value of the UV cut-off, Λ = 800 MeV, has been discussed for the
scattering formalism at T = 0 and is consistent with the regularization scheme in [Guo+19]. The
thermal effects in the unitarized scattering amplitudes are obtained by solving the BS equation
with thermal loops. In the ITF, as the thermal corrections enter in loop diagrams [Le 00; KG11],
the tree-level scattering amplitudes V remain the same as in vacuum, with the zeroth component
of the four-momentum expressed as a bosonic Matsubara frequency.
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In χPT, the pion mass and decay constant do not appreciably change with temperature up to
two-loops and even in unitary extensions of it [Sch93; Tou97]. In addition, the pion damping
rate is very much suppressed at the temperatures explored in this dissertation, so we use the
pion vacuum spectral function for all temperatures. See the discussion in Appendix B.

The spectral function of the heavy meson is computed from the imaginary part of its retarded
propagator as given in Eq. (3.22). The light-meson contribution to the heavy-meson self-energy
is computed in the ITF using Eq. (3.32). As we have discussed in Section 3.2.4, the largest
contribution corresponds to that of the thermal pions, as at the temperatures considered, that is,
at T ≤ 150 MeV, these are the most abundant mesons. Unless otherwise stated, in the calculations
we only consider the thermal effects due to pions at finite temperature while neglecting other
possible medium modifications.

The BS equation and the equations for the thermal two-meson loop function, the spectral
function, and the self-energy of the heavy meson constitute a set of equations that are coupled
to each other. Therefore, this set of equations has to be solved iteratively until self-consistency
is reached. The procedure is sketched in Figs. 3.8a, 3.8b and 3.8c. The T -matrix amplitude is
represented by a big green circle, whereas the perturbative amplitude V (s) is denoted by a small
blue circle. Figure 3.8a shows the BS equation for the two-body scattering. The intermediate
propagator of the D-meson (thick magenta solid line) is itself dressed by interactions as shown
in Fig. 3.8b, where the T matrix is used in the Dyson equation for the propagator, giving rise to a
self-consistent set of equations. As illustrated in Fig. 3.8c, only the pion contribution, as being
the dominant excitation in the thermal bath, is considered in the D-meson self-energy.

We recall that for the calculation of the first iteration of the loop function one needs to make
use of the approximation with two free (undressed) mesons while, after the calculation of the
heavy-meson self-energy, the approximation with a dressed heavy meson can be used for the
next iterations, until the convergence of the results is reached. The details of the corresponding
approximations in the calculation of the loop function are given in Section 3.2.2.
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Figure 3.8: (a) The BS equation in coupled channels. At finite temperature, the T matrix (green big circle)
is obtained from the unitarization of the interaction kernel (small blue circle) with dressed
internal heavy-meson propagators (thick magenta solid lines). (b) Dyson equation for the
dressed heavy-meson propagator. (c) Heavy-meson self-energy. The heavy meson is dressed by
the unitarized interaction with pions.
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3.3 Results

We conclude this chapter with the presentation and analysis of the results for the thermal effects
on the interaction of the open-charm mesons with the light pseudoscalar mesons, together with
the consequences for the ground-state spectral functions and the dynamically-generated states at
finite temperature. In particular, we describe the thermal dependence of the masses and widths
for open-charm ground and excited states for temperatures below both the chiral restoration
temperature Tχ = 156 MeV [Aok+06] and the critical temperature for the deconfinement
transition Tc ∼ 154 MeV [Bor+10; Baz+12]. The restriction T < Tχ ∼ Tc is evident from the
range of validity of an approach based on an effective theory with hadronic degrees of freedom
and massive Goldstone bosons. Therefore, we present our results for T ≤ 150 MeV, but one
should take the results around the largest value with caution, as the deconfined phase will start
to play a role in the system. Furthermore, although the unitarized version of χPT extends the
validity of this low-energy theory to higher energies, for temperatures above T = 150 MeV,
the thermal energies of the mesons might start lying outside the validity of the theory, as we
discussed in Ref. [Mon+20b].

3.3.1 Results for D mesons

Thermal loops and scattering amplitudes

Let us start with the discussion of the self-consistent results for the two-meson propagators and
the scattering amplitudes in a pionic medium at finite temperature. The in-medium results
shown in this section correspond to a medium of thermal pions in the sense that self-consistency
is achieved accounting only for the pionic contribution to the heavy-meson self-energies. Never-
theless, the full basis of coupled-channels is considered for the unitarization of the scattering
amplitudes.

The diagonal amplitudes in the strangeness S = 0 and isospin I = 1/2 sector are represented
on the right panels of Figs. 3.9 and 3.10 for the interaction of the pseudoscalar meson octet with
pseudoscalar and vector charmed mesons, respectively, as functions of the total energy and for a
center-of-mass momentum ~P = 0 and various temperatures (colored lines).

The corresponding strangeness S = 1 and isospin I = 0 scattering amplitudes are shown on
the right panels of Figs. 3.11 and 3.12.

The energy dependence of the loop function G is displayed in the panels on the left of the same
figures, together with the inverse of the diagonal element of the interaction kernel, 1/Vii (dotted
lines), if it falls within the vertical scale employed in the subplots, as its crossing (or proximity,
in the case of coupled-channels) with the real part of the loop function (solid lines) gives rise
to a pole in the unitarized amplitudes. As mentioned above, in the ITF only the propagators
contain medium corrections, and the interaction potentials remain the same as in the vacuum.
In addition to the right-hand unitary cut that starts at mD +mΦ and is present also at T = 0, a
left-hand cut starting at mD −mΦ opens up in the imaginary part of the loop function (dashed
lines) at finite temperature. This is the Landau cut arising due to the presence of thermal mesons.
Its origin has been discussed in Section 3.2.3. For the energy range displayed in the figures above,
this cut can only be seen in the top panels, corresponding to the Dπ and D∗π channels, and it is
more visible as the temperature increases. This is related to the larger abundance of thermal
pions compared to the heavier light mesons, that is, kaons and eta mesons, thus confirming our
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Figure 3.9: The inverse of the interaction kernel, 1/Vii, the real and imaginary parts of the loop function,
Gi, and the real and imaginary parts of the diagonal components of the T matrix, Tii, in units
of MeV0, in the sector with spin J = 0 and strangeness and isospin (S, I) = (0, 1

2 ), at various
temperatures (colored lines). The subindices 1, 2, 3 refer to the channels Dπ, Dη and DsK̄,
respectively.

assumption for neglecting the contribution of the latter to the charmed meson self-energy in the
self-consistent calculations leading to the results presented in this section.

Furthermore, the structure of the thermal loop function is smoothened in comparison to the
vacuum case, both the real and imaginary parts. This smoothening follows from the dressing of
the charmed meson in the loop with its spectral function, which acquires a substantial width with
increasing temperatures, especially for the nonstrange D and D∗ mesons, but also for the strange
Ds and D∗s mesons, as shown below. Besides, as the meson BE distributions in the intermediate
meson-meson propagators extend over higher momenta for larger temperatures, the sharp
meson-meson thresholds are diluted and the strength of the loop functions is smoothened out.

Since the interaction kernel is not modified at finite temperature, the changes in the unitarized
amplitudes reflect the changes of the meson-meson propagators. Indeed, the inclusion of
temperature on the real and imaginary parts of the different meson-meson loop functions results
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Figure 3.10: The same as in Fig. 3.9 in the sector with J = 1 and (S, I) = (0, 1/2). The subindices 1, 2, 3
refer to the channels D∗π, D∗η and D∗sK̄, respectively.

in a smoothening of the real and imaginary parts of the scattering matrices in all the (S, I) sectors,
for both pseudoscalar and vectors mesons. As a consequence of the broadening of the charmed-
meson spectral functions and the dissolution of the meson-meson thresholds with increasing
temperatures, the corresponding scattering amplitudes are smeared out while spreading over a
wider energy range. Physically, this can be understood as larger temperatures result in larger
available phase space for decay.

We have already discussed in Chapter 2 that the phenomenology at T = 0 of the interaction
of the light mesons with the charmed pseudoscalar and vector mesons is very similar due to
HQSS, and only mild differences are apparent in the structure of the loops and the scattering
amplitudes due to the shift towards higher energies related to the mass difference between the
D and the D∗. Also, the thermal effects on the loop functions and the unitarized amplitudes are
comparable for both J = 0 and J = 1 sectors, as is clear from the comparison of Figs. 3.9 and
3.10, as well as Figs. 3.11 and 3.12.
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Figure 3.11: The same as in Fig. 3.9 in the sector with J = 0 and (S, I) = (1, 0). The subindices 1, 2 refer
to the channels Dsπ and DK, respectively.
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Figure 3.12: The same as in Fig. 3.9 in the sector with J = 1 and (S, I) = (1, 0). The subindices 1, 2 refer
to the channels D∗sπ and D∗K, respectively.
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Self-energies and open-charm spectral functions

In the following, we discuss the results obtained for the self-energies of the pseudoscalar D
and Ds, and the vector D∗ and D∗s mesons, which are displayed in Fig. 3.13, as a function of
the energy, for ~q = ~0, and for different temperatures (colored lines). These results have been
obtained considering only the pionic contribution to the heavy-meson self-energy, which is the
main one at temperatures below Tχ, but taking into account the interaction of D(∗) and D(∗)

s

mesons with pions in all isospin channels, as given by the first and fourth rows of Eq. (3.38),
respectively.
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Figure 3.13: Real and imaginary parts of the pionic contribution to self-energies of theD (first row), theDs
(second row), the D∗ (third row), and the D∗s (fourth row) mesons at various temperatures
(colored lines).
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The spectral functions of the D(∗) and D(∗)
s mesons follow the standard definition in terms

of the retarded propagator, see Eq. (3.22). In terms of the real and imaginary parts of the
heavy-meson self-energy, it reads

SD(ω, ~q ;T ) = − 1
π

Im ΠD(ω, ~q ;T )
[ω2 − ~q 2 −m2

D − Re ΠD(ω, ~q ;T )]2 + [Im ΠD(ω, ~q ;T )]2
, (3.39)

with the subindex D denoting any of the charmed particles, that is, D, Ds, D∗, or D∗s .
If the spectral function is narrow, namely in the so-called quasiparticle approximation, the

temperature-dependent quasiparticle energy, ωqp, and decay width, Γqp, can be defined as

ω2
qp − ~q 2 −m2

D − Re ΠD(ωqp, ~q ;T ) = 0 , (3.40)

and

Γqp = − Im ΠD(ωqp, ~q ;T )
ωqp

. (3.41)

The real part of the self-energy shown in the left panels of Fig. 3.13 contains only the thermal
contribution, and therefore it is related to the thermal correction to the in-medium mass of the
charmed meson. If the pole of the retarded meson propagator is not far from the vacuum one,
one can see from the definition of the quasiparticle energy in Eq. (3.40) that, for ~q = ~0, the mass
shift is approximately given by ∆mD ≈ Re ΠD(mD,~0;T )/(2mD). With this approximation, it
is easy to see that the masses of the charmed mesons will move towards lower energies with
increasing temperatures, due to the negative character of the real part of the self-energy. In
addition, due to the large attractive interaction in the D(∗)π channel, the mass shift of the
nonstrange D(∗) meson (first and third rows) will be larger than for the strange D(∗)

s (second
and fourth rows). The results for JP = 0− and JP = 1− are expected to be of comparable size.
The authors of Ref. [CMR17] neglected the shift of the in-medium mass of the heavy mesons
by setting to zero the real part of the respective self-energies. Although small compared to
the vacuum mass, |∆mD|/mD ∼ 5%, we consider that it is still important and keep the full
self-energy for the calculation of the spectral function.

The right panels of Fig. 3.13 display the imaginary part of the self-energy of the D, Ds, D∗,
and D∗s mesons, in the successive rows. They are qualitatively very similar for the four charmed
mesons. We observe a first increase below mD, followed by a sharp rise at mD + 2mπ. While
the latter corresponds to the energy of the charmed meson at rest from which the decay into
two pions becomes possible, the former is related to processes that are exclusively due to the
presence of a medium at finite temperature, that is, the absorption of two thermal pions, and
thus it becomes more relevant at larger temperature. The imaginary part of the self-energy is
related to the heavy-meson decay width through Eq. (3.41). From this relation, we can anticipate
a widening of the ground-state spectral functions with increasing temperatures of the thermal
medium.

In Fig. 3.14 we show the dependence of the spectral functions, calculated from the cor-
responding self-energy in a pionic bath using Eq. (3.39), on the meson energy and at zero
three-momentum, for different temperatures up to T = 150 MeV. The top panels display the
spectral functions of the pseudoscalar open-charm ground-state mesons, that is, D (left panel)
and Ds (right panel), whereas the bottom panels display the case of the vector open-charm
ground-state spectral functions, D∗ (left panel) and D∗s (right panel). The vertical lines depict
the value of the mass in the vacuum of each of these mesons. We see the increased broadening of
all spectral functions with temperature. Moreover, we observe that the maximum of the spectral
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Figure 3.14: Spectral functions of the J = 0 ground states (D and Ds, top panels) and the J = 1 ground
states (D∗ and D∗s , bottom panels) in a pionic bath at different temperatures (colored lines).

functions is shifted towards lower energies for higher temperatures, indicating the attractive
character of the interaction of open-charm mesons with a pionic bath.

It is also interesting to note the similar shape of the pseudoscalar and vector open-charm
ground-state spectral functions, that is, the parallel behavior with the temperature of the D and
D∗ spectral functions as well as the Ds and D∗s ones. As previously mentioned, at LO in the
heavy-mass expansion pseudoscalar and vector open-charm ground states are related by HQSS.
Therefore, a similar thermal modification of the spectral functions in the pseudoscalar and vector
channels is expected.

The properties of the dynamically generated states are directly obtained from the imaginary
part of the amplitudes Tii, as a proxy for their spectral shape. This is presented in the top panels
of Fig. 3.15 for channels with J = 0, with i denoting the channel to which the state couples
most, that is, Dπ (DsK̄) for the lower (higher) pole of the D∗0(2300) in the (S, I) = (0, 1

2 ) sector,
and DK for the pole of the D∗s0(2317) in the (S, I) = (1, 0) sector. The bottom panels of the
same figure show the corresponding results for the thermal effects on the dynamically generated
states with J = 1, with i indicating D∗π (D∗sK̄) for the lower (higher) pole of the D1(2430) in
the sector with (S, I) = (0, 1

2 ), and D∗K for the D∗s1(2460) pole in the (S, I) = (1, 0) sector.

In the nonstrange case, peculiar structures appear for both J = 0 and J = 1. These are
produced by the interplay of the position of the resonance to some nearby channel thresholds.
Still, the evolution of the peaks and widths of the amplitudes with T is evident. For the strange
sectors, the situation is clearer, but one can observe that, in addition to the typical thermal
widening, more strength is visible on the right-hand tail, producing an asymmetric distribution.
The reason lies in the fact that the unitary DK threshold is lowered due to the decrease of the
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Figure 3.15: Imaginary part of the scattering amplitudes in the diagonal Dπ and DsK̄ channels in the
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temperatures (colored lines).

D mass and its widening with temperature, hence opening the phase space for decay into this
channel at smaller energies.

Thermal evolution of masses and widths

Finally, we discuss the evolution with the temperature of the masses and decay widths of both
the ground-state mesons and the dynamically generated states. We analyze our results when
approaching Tχ, in view that the states that are dynamically generated in our model are the
chiral partners of the ground-state D(∗) and D

(∗)
s mesons, and their masses are expected to

become degenerate when chiral symmetry is restored (T > Tχ). Differently from the T = 0 case
described in Chapter 2, the results of which have been presented in Tables 2.18 and 2.19, we
find the determination of the position of the poles in the complex-energy plane unfeasible. Apart
from complications tied to the analytic continuation of imaginary frequencies to the different RSs,
a numerical search on the complex plane within self-consistency is computationally challenging.

As a matter of fact, the values of the mass and the width can be extracted from the position
and the half-width at half-maximum of the peak of the spectral functions in the real-energy
axis. For the ground states, D(∗) and D(∗)

s , this method is totally acceptable as the quasiparticle
approximation is entirely justified. However, for the dynamically generated states, at least in
the S = 0 channel, this entails more problems because their poles are located far from the real
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axis and the width is not a well-defined concept. Because of these problems, we establish the
following strategy.

In order to obtain a quantitative description of the thermal dependence of the masses and
widths of the open-charm ground states, we analyze the behavior of the corresponding spectral
functions with temperature. The mass change with temperature is extracted from the quasipar-
ticle peak, by solving Eq. (3.40), whereas the variation of the width with temperature can be
obtained from Eq. (3.41), which is practically identical to the value that one can obtain from the
thermal spectral function at half height.

The determination of the behavior of the mass and width with the temperature of the
dynamically-generated states, such as the D∗(2300) and D∗s0(2317) as well as the D1(2430)
and Ds1(2460), is rather delicate. Since the calculation of the poles in the complex plane at
finite temperature is unfeasible, we employ the method described in the following to obtain the
particle properties on the real axis, through fits of the imaginary part of the unitarized scattering
amplitudes at finite temperature shown in Figs. 3.15.

For isolated resonances close to the real energy axis and not close to any threshold, one
can simply use a Breit-Wigner form. However, in the case of resonances that interact with the
background of another resonance due to the coupled-channel case approach, we use a Breit-
Wigner-Fano shape [Fan61]. This can be used for the lower pole in the double pole structures of
the D∗0(2300) and the D1(2430). Indeed, we have checked that the values of the mass and the
width obtained from the fit at T = 0 are in very good agreement with the values of the pole mass
and the width in Tables 2.18 and 2.19.

The Breit-Wigner-Fano-type distribution provides a simple parametrization to describe the
distorted lower resonance at finite temperature:

fBWF(E;A,mR,ΓR, q) = A
ΓR/2 + (E −mR)/q

(ΓR/2)2 + (E −mR)2 , (3.42)

where q is the Fano parameter measuring the ratio of resonant-scattering to background-
scattering amplitude. In the absence of background, the value of q goes to infinite and Eq. (3.42)
becomes the usual Breit-Wigner distribution.

For resonances close to a threshold we fit a Flatté-type distribution [Fla76]. In particular, for
the higher pole in the double pole structure we first subtract the background and, then, we use a
generalized Flatté parametrization with three coupled channels:

ImTij(s;C,mR, g1, g2, g3) = Cgigj

[
ρ1g

2
1(

m2
R − s+ |ρ2|g2

2 + |ρ3|g2
3
)2 +

(
ρ1g2

1
)2 θ(mD +mη −

√
s)

+ ρ1g
2
1 + ρ2g

2
2(

m2
R − s+ |ρ3|g2

3
)2 +

(
ρ1g2

1 + ρ2g2
2
)2 θ(√s−mD −mη) θ(mDs +mK̄ −

√
s)

+ ρ1g
2
1 + ρ2g

2
2 + ρ3g

2
3(

m2
R − s

)2 +
(
ρ1g2

1 + ρ2g2
2 + ρ3g2

3
)2 θ(√s−mDs −mK̄)

]
, (3.43)

where ρi stands for the phase space of the ith channel, constituted of two hadrons with masses
mia and mib:

ρi(
√
s) = 2pi(

√
s)√

s
=
[(

1− (mia +mib)2

s

)(
1− (mia −mib)2

s

)]1/2

. (3.44)
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The resonance width is obtained from

mRΓR = ρ1(mR)g2
1 + ρ2(mR)g2

2 + ρ3(mR)g2
3 , (3.45)

with the phase spaces evaluated at the resonance mass. In our case, the subindices correspond
to 1 ≡ D(∗)π, 2 ≡ D(∗)η, and 3 ≡ D(∗)

s K̄. In order to avoid an ill behavior of the fit due to the
large number of free parameters, the value of g1 is imposed to vary linearly from its lowest value
at T = 0 to the highest one at T = 150 MeV.

The Breit-Wigner-Fano distribution is also used for isolated resonances at high temperatures
if they become wide enough to be affected by threshold effects. In the case of the D∗s0(2317)
and the Ds1(2460), the difference between using a Breit-Wigner-Fano distribution instead of
a Breit-Wigner one is very small, being < 0.05% for the masses and < 1% for the widths at
T = 150 MeV.

The evolution with the temperature of the properties of the JP = 0± open-charm states
obtained with these prescriptions is presented in Fig. 3.16, the masses in the left panels and the
widths in the panels on the right, while the corresponding results for the JP = 1± states are
given in Fig. 3.17. We analyze the effect of including the contribution of the kaons and antikaons
to the heavy-meson self-energy, in addition to the dominant pion-induced self-energy, in the
self-consistent calculations. Therefore, in Figs. 3.16, the results in a pionic bath (solid lines) are
compared with those obtained when the medium is populated by pions, kaons and antikaons
(dashed lines). They are summarized as follows:

0 25 50 75 100 125 150

1820

1840

1860 DM
1
/
2
(0
±

)
[M

eV
]

2060

2080

2100 D∗0(2300)0 ↓

2410

2430

2450

D∗0(2300)0 ↑

0 25 50 75 100 125 150
0

50

100

150

200

Γ
1
/
2
(0
±

)
[M

eV
]

D∗0(2300)0 ↑

D∗0(2300)0 ↓

D

0 25 50 75 100 125 150

T [MeV]

1940

1950

1960

1970

DsM
0
(0
±

)
[M

eV
]

2220

2230

2240

2250
D∗s0(2317)±

0 25 50 75 100 125 150

T [MeV]

0

10

20

30

40

50

Γ
0
(0
±

)
[M

eV
]

D∗s0(2317)±

Ds

π bath

π +K + K̄ bath

Figure 3.16: Temperature evolution of the mass (left panels) and width (right panels) of the J = 0
ground-state mesons and dynamically generated states in the (S, I) = (0, 1/2) sector (upper
panels) and in the (S, I) = (1, 0) sector (lower panels) in a pionic medium (solid lines) and
in a medium with π, K and K̄ (dashed lines).
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Figure 3.17: Temperature evolution of the mass (left panels) and width (right panels) of the J = 1 ground-
state mesons and dynamically generated states in the (S, I) = (0, 1/2) sector (upper panels)
and in the (S, I) = (1, 0) sector (lower panels) in a pionic medium.

• In a pionic medium, the ground-state D mass has a sizable decrease of ∆mD ≈ 45 MeV
at the highest temperature T = 150 MeV. This reduction is consistent, albeit twice larger,
with that observed in [Fuc+06a], where a more phenomenological approach is used to
compute the D-meson propagator. Our reduction, on the other hand, is smaller than
the one reported in Ref. [Sas14], which uses nonunitarized χPT. However, in the SU(4)
effective approach of [CMR17] no significant modification is reported. Regarding the
D∗0(2300), the two poles have a more stable trend compared to the ground state. They
slightly move downwards, moderately distancing from each other. As a consequence, in
this sector, we cannot conclude that masses of opposite parity states become degenerate
close to Tχ, although the temperatures studied might be still low for the chiral symmetry
restoration. In [Buc+18b] a large reduction in the mass of the positive-parity D meson
partner, of around 150 MeV, is found at T = 150 MeV, but using a constant D mass as an
input of the sum-rule analysis. An even larger reduction of close to 200 MeV is seen in the
results of [Sas14].

As for the J = 1 states, the decrease of the D∗ mass, which is ∆mD∗ ≈ 43 MeV at T = 150
MeV, is similar to the D mass shift, while for the two poles that form the D1(2430), their
masses decrease less rapidly with temperature compared to the ground state, distancing
from each other as temperature increases, in an analogous manner as for the two poles of
the D∗0(2300). As a consequence, also in the J = 1 case, we cannot conclude that masses
of opposite parity states become degenerate with temperature, at least for the range of
temperatures studied here.

106 Chapter 3 Heavy mesons in a hot medium



• The width of the nonstrange states increases with temperature, being more relevant the
change in width for the ground state. TheD andD∗ mesons show a similar width of around
∼ 70 MeV at T = 150 MeV, consistent with [CMR17] and the estimates of Ref. [Fuc+06b],
and of Ref. [HFR11] for the D meson. The widths of the two poles of the D∗0(2300) and
the D1(2430) obtained from the fits increase moderately with temperature with respect to
their vacuum values, being of the same order for the JP = 0+ and the JP = 1+ states.

• In the strangeness sector we observe a clearer picture. The parity partners seem to decrease
their mass with temperature, in a similar amount for both states (and for the J = 0 and
the J = 1 sectors), reaching a reduction of ≈ 28 MeV for the negative-parity states and
≈ 25 MeV for the positive-parity partners at T = 150 MeV. Consequently, they are still far
from chiral degeneracy. These behaviors seem to be compatible with the low-temperature
trends seen in the linear-sigma model calculation of [Sas14] for the scalar and pseudoscalar
states.

• The decay widths of both strange partners increase from zero at similar rates. The width
of the D∗s0(2317) is comparable to that acquired by the Ds ground state at T = 150 MeV
(∼ 20 MeV). Analogously, the widths of the D∗s and Ds1(2460) increase similarly with
temperature, becoming slightly larger compared to the ones of the 0± states. We note that,
whereas the widths of the D and D∗ are only due to medium effects, the width of the
D∗s0(2317) and the Ds1(2460) are affected by the reduction of the mass and the widening
of the D and D∗ mesons, respectively, due to the dominant contribution of the DK and
D∗K channels in their respective dynamical generation.

• In a bath that includes K and K̄ in addition to pions (see dashed lines in Fig. 3.16), the
masses of the ground states D and Ds decrease an additional amount of around 5 MeV
at T = 150 MeV. The modification of the widths is, however, different for the nonstrange
and the strange states. In the case of the D meson, the width increases around 20% while
that for the Ds meson is more than twice larger than the width in a pionic medium at
T = 150 MeV. This follows from the stronger interaction of the Ds meson with kaons than
with pions. On the other hand, the effect of the pionic and kaonic bath on the dynamically
generated states is rather moderate, with the masses of the two resonances of the D∗0(2300)
increasing a few MeV and no significant modification of the widths, whereas the mass of the
D∗s0(2317) drops slightly and the width is reduced by half due to the reduction of the phase
space for decay. These results are in agreement with what we found in [Mon+20c]. In the
calculations presented in this thesis, we have increased the cut-offs of the self-consistent
integrals, thus the small differences when compared to our previously published results.

As we have just discussed, there is a parallelism between the behavior in a thermal medium of
the ground-state pseudoscalar and vector mesons, as well as between the dynamically generated
scalar and axial-vector states. Again, this is because the interactions of light mesons with
pseudoscalar open-charm ground states and those with vector open-charm ones are related by
HQSS. Hence, our conclusions are similar in both sectors.

We note that the results presented in this dissertation have been improved with respect to those
that we published in Refs. [Mon+20b; Mon+20c]. As mentioned, the differences essentially
consist of an increase in the values of the cutoffs in the integrals of the ITF. Despite the slight
differences in the quantitative analysis, the discussion at the qualitative level of the thermal
modification of the open-charm meson properties is identical.
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Apart from the above comparisons with previous models, unfortunately, there is no solid
data from first principles to compare to. However, despite the limitations in obtaining reliable
information from finite temperature LQCD simulations, tied to the difficulties in extracting
the spectral function from the lattice Euclidean correlators, we can still aim at a qualitative
comparison. We note that a recent LQCD calculation [KRS18] presents the spectral functions ofD
and Ds channels at different temperatures. The analysis in that paper concludes that no medium
modification concerning the D and Ds ground states is seen up to Tχ, where Tχ ' 185 MeV in
that work. Given the precision of the LQCD data this might be in well agreement with our findings
here, as our D (Ds) mass shift is only 2% (1%) of the mass itself. As a pion mass of mπ ∼ 380
MeV is used in [KRS18], one has to re-address the self-consistent calculations with a heavier
pion mass and analyze the effects on the charm meson properties for temperatures T < Tχ. This
issue is further discussed in Chapter 4, where we compute open-charm Euclidean correlators
from the spectral functions obtained with the thermal unitarized effective approach discussed
in this chapter and in Ref. [Mon+20a], using the values of the meson masses in [KRS18], and
compare the results with those extracted from the lattice calculations [Mon+20a].

3.3.2 Results for B̄ mesons

To analyze the modification of open-bottom mesons in a thermal pionic medium, we follow the
strategy based on the ITF that has been explained in Section 3.2 for open-charm mesons, in
which now the heavy meson is identified with a bottomed meson, M ≡ B̄. In the following,
we discuss the results obtained within self-consistency for the thermal loops and the unitarized
amplitudes of the scattering of the B̄ mesons off the light Φ mesons at finite temperature, as well
as for the self-energies and the spectral functions of the bottomed ground-state mesons. We also
analyze the changes induced by the medium in the dynamically generated states in this sector.

Thermal loops and scattering amplitudes

The thermal heavy-light two-meson loop functions in the sectors with strangeness S = 0 and
isospin I = 1/2 are shown in the left panels of Fig. 3.18 for bottomed pseudoscalar mesons,
and of Fig. 3.19 for bottomed vector mesons, as functions of the total energy and for ~P = 0
and various temperatures (colored lines). We also plot the inverse of the diagonal element of
the interaction kernel, 1/Vii (dotted lines), if it falls within the vertical scale employed in the
subplots, as its proximity to the real part of the loop (solid lines) indicates the appearance of
poles in the unitarized scattering amplitudes. The corresponding unitarized scattering amplitudes
obtained from the solution of the coupled-channel BS equation with these thermal loop functions
are displayed in the right panels of the respective figures.

Figures 3.20 and 3.21 show the thermal loop functions (left panels) and the scattering
amplitudes (right panels) in the strangeness S = 1 and isospin I = 0 sectors, for pseudoscalar B̄
mesons and vector B̄∗ mesons, respectively.

These results for the thermal loops and the scattering amplitudes in the bottom sector are
qualitatively very similar to those shown in Figs. 3.9 to 3.12 in the charm sector.

The unitary cut that opens up in the imaginary part of the loop functions (dashed lines)
at the mB̄ + mΦ threshold is smoothened with increasing temperatures as compared to the
T = 0 case due to the dressing of the thermal loop with the spectral function of the bottomed
meson. Furthermore, the Landau cut, which is only visible for the B̄π loops (upper left panels
of Figs. 3.18 and 3.19) for the scale used in the plots, arises at finite temperature for energies
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below mB̄ −mΦ due to the absorption and production processes of thermal mesons that are only
possible in the presence of a thermal medium.

Regarding the unitarized amplitudes, the structures that are visible in the real axis due to the
presence of poles in the complex-energy plane (see the discussion in Section 2.3 for the vacuum
case) reflect the smoothening of the loop functions, and a subsequent widening and moderate
melting of the dynamically generated states is observed at large temperatures of the medium.
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Figure 3.18: The inverse of the interaction kernel, 1/Vii, the real and imaginary parts of the loop function,
Gi, and the real and imaginary parts of the diagonal components of the T matrix, Tii, in
units of MeV0, in the sector with bottom −1, spin J = 0, and strangeness and isospin
(S, I) = (0, 1

2 ), at various temperatures (colored lines). The subindices 1, 2, 3 refer to the
channels B̄π, B̄η, and B̄sK̄, respectively.
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Figure 3.19: The same as in Fig. 3.18 in the sector with J = 1 and (S, I) = (1, 0). The subindices 1, 2, 3
refer to the channels B̄∗π, B̄∗η, and B̄∗s K̄, respectively.
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Figure 3.20: The same as in Fig. 3.18 in the sector with J = 0 and (S, I) = (1, 0). The subindices 1, 2
refer to the channels B̄sπ and B̄K, respectively.
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Figure 3.21: The same as in Fig. 3.18 in the sector with J = 1 and (S, I) = (1, 0). The subindices 1, 2
refer to the channels B̄∗sπ and B̄∗K, respectively.
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Self-energies and open-beauty spectral functions

In Fig. 3.22 we show, in the respective rows, the real part (left panels) and the imaginary part
(right panels) of the pionic self-energies of the pseudoscalar B̄ and B̄s, and the vector B̄∗ and
B̄∗s mesons as a function of the energy and for ~q = ~0, for different temperatures (colored lines).

As we discussed for the charm sector above, the real part of the self-energy is connected to
the in-medium mass shift, while the imaginary part is related to the thermal width. For the
imaginary part displayed in the right panels of Fig. 3.22, we can see the growth below mB̄ that

4500 5000 5500 6000 6500
−4

−3

−2

−1

0

R
e

Π
B̄

[M
eV

2
]

×105

4500 5000 5500 6000 6500

−4

−2

0

Im
Π
B̄

[M
eV

2
]

×106

4500 5000 5500 6000 6500
−4

−3

−2

−1

0

R
e

Π
B̄
s

[M
eV

2
]

×105

4500 5000 5500 6000 6500

−2

−1

0

Im
Π
B̄
s

[M
eV

2
]

×106

4500 5000 5500 6000 6500
−4

−3

−2

−1

0

R
e

Π
B̄
∗

[M
eV

2
]

×105

4500 5000 5500 6000 6500

−4

−2

0

Im
Π
B̄
∗

[M
eV

2
]

×106

4500 5000 5500 6000 6500

E [MeV]

−4

−3

−2

−1

0

R
e

Π
B̄
∗ s

[M
eV

2
]

×105

4500 5000 5500 6000 6500

E [MeV]

−2

−1

0

Im
Π
B̄
∗ s

[M
eV

2
]

×106

T = 80 MeV T = 120 MeV T = 150 MeVT = 80 MeV T = 120 MeV T = 150 MeV

Figure 3.22: Real and imaginary parts of the pionic contribution to self-energies of the B̄ (first row), the B̄s
(second row), the B̄∗ (third row), and the B̄∗s (fourth row) mesons at various temperatures
(colored lines).
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accounts for absorption processes that are only possible in the medium and, thus, it is larger at
high temperatures, while the rise at mB̄ + 2mπ takes place at similar rates for all temperatures,
since it is linked to the decay of the bottomed meson into two additional pions, and for a large
enough energy of an off-shell B̄ meson this process is also possible in the vacuum.

In comparison with the self-energies of the charmed ground-state mesons shown in Fig. 3.13,
one can see that the values of the real part of the self-energy over the bottomed meson mass,
Re ΠB̄(mB̄ ,~0;T )/(2mB̄), at a given temperature, take less negative values in the bottomed sector.
This will give a smaller shift towards lower energies with respect to the value of the vacuum mass,
as we will show below. On the other hand, the values of the imaginary part of the self-energies
in the bottom sector divided by the mass, Im ΠB̄(mB̄ ,~0;T )/mB̄ , are larger in magnitude than in
the charm sector. Therefore, a larger widening of the B̄ mesons with temperature is expected.

The spectral functions of the bottomed ground-state mesons in a pionic bath obtained from
Eq. (3.39) are displayed in Fig. 3.23, as functions of the meson energy and ~q = 0, for different
temperatures up to T = 150 MeV. The pseudoscalar B̄ and B̄s mesons are shown in the top panels,
whereas the bottom panels display the vector open-bottom ground-state spectral functions for
B̄∗ and B̄∗s . The vertical lines represent the value of the vacuum mass of each of these mesons.
From these plots, we see the larger broadening with temperature of all the spectral functions in
the bottom sector compared to the charm sector (see Fig. 3.14 for the comparison). Note that
the energy range in the subpanels of Fig. 3.23 is twice as large as that employed in Fig. 3.14.
On the other hand, we observe that the shift of the maximum of the spectral functions towards
lower energies with increasing temperatures is smaller in the bottom sector, as anticipated from
the analysis of the self-energies above.
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Figure 3.24: Imaginary part of the scattering amplitudes in the diagonal B̄π and B̄sK̄ channels in the
J = 0 and (S, I) = (0, 1

2 ) sector (top left), the B̄K channel in the J = 0 and (S, I) = (1, 0)
(top right), the B̄∗π and B̄∗s K̄ channels in the J = 1 and (S, I) = (0, 1

2 ) sector (bottom
left), and the B̄∗K channel in the J = 1 and (S, I) = (1, 0) (bottom right), at different
temperatures (colored lines).

Again, there is a parallelism between the thermal effects in the pseudoscalar B̄ and in the
vector B̄∗ spectral functions, as well as between those for the B̄s and the B̄∗s , due to HQSS.

In order to analyze the thermal effects on the properties of the dynamically generated states,
the imaginary part of the amplitudes Tii, which we take as a proxy for their spectral shape, are
presented in the top panels of Fig. 3.24 for channels with J = 0, with i denoting the channel
to which the state couples most, that is, the B̄π (B̄sK̄) channel for the lower (higher) pole in
the (S, I) = (0, 1

2 ) sector (left panel), and the B̄K one for the pole in the (S, I) = (1, 0) sector
(right panel). The bottom panels of the same figure show the corresponding results for the
thermal effects on the dynamically generated states with J = 1, with i indicating the B̄∗π (B̄∗s K̄)
channel for the lower (higher) pole in the sector with (S, I) = (0, 1

2 ) (left panel), and B̄∗K for
the B̄∗s1(2460) pole in the (S, I) = (1, 0) sector (right panel).

The modification with the temperature of the peaks and the widening of the structures that
appear in the nonstrange case are very similar for both J = 0 and J = 1 sectors. For the strange
sectors, we can see a clear widening of the state, which is generated as a bound state with no
width at T = 0, as well as the shift of its peak maximum towards lower energies. The vertical
lines in the right panels show the values of the real energy at which the poles are dynamically
generated at T = 0.
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Thermal evolution of masses and widths

The evolution with the temperature of the properties of the bottomed ground-state mesons is
shown in Fig. 3.25 for both the pseudoscalars and the vectors. The values of the masses at each
temperature (left panel) have been extracted from the peak of the respective in-medium spectral
functions in the real-energy axis, while the thermal widths (right panel) have been calculated
using Eq. (3.41).

In a pionic medium, the masses of the ground-state B̄ and B̄∗ mesons decrease by a similar
amount of ∆mB̄ ≈ ∆mB̄∗ ≈ 32 MeV at the highest temperature T = 150, which is of the same
order but slightly smaller than what we found in the case of the nonstrange charmed D and D∗

mesons. The width of the bottomed states increases with temperature, up to a value of ∼ 90 MeV,
for both the pseudoscalar and the vector states, which is about 20 MeV larger than in the case of
the charmed states.

In the strangeness sector, the reduction of the mass of ∼ 20 MeV at the largest temperature is
also very similar for both the Bs and the B∗s mesons and smaller than in the charm sector, while
their thermal width at this temperature (∼ 30 MeV) is slightly larger than the value that we have
reported in the charm sector.

As we can see from these results, we expect the thermal effects on the masses and widths of the
ground-state mesons in the bottom sector to be of comparable size to those in the charm sector.
As already mentioned, the somewhat larger widths found for the open-bottom states are certainly
related to the greater magnitude of the self-energy (with respect to the heavy-meson mass) in
this sector, which is ultimately connected to the strength of the integrated scattering amplitudes,
weighted by BE factors. One can see, for instance, that the B(∗)π amplitudes (with respect to
the B(∗)-meson mass) in the left panels of Fig. 3.24 are bigger than the D(∗)π amplitudes (with
respect to the D(∗)-meson mass) shown in the left panels of Fig. 3.15.

Furthermore, it is important to note that the comparison of the results in the two sectors at
the quantitive level may be affected by the details of the numerical calculations. For instance,
in the ITF the integrals for the calculation of the thermal loop function and the self-energy
should in principle extend to infinity. However, this is not possible to implement in the numerical
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Figure 3.25: Temperature evolution of the mass (left panel) and width (right panel) of the bottomed
JP = 0− and JP = 1− ground-state mesons.
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calculations and one has to introduce a large enough cut-off in the numerical integration, taking
also into account that the effective theory breaks down at high energies. Due to the heavier mass
of the B̄(∗) mesons compared to the D(∗) mesons, the energy integrals have to be extended up to
larger values in the former case, introducing some uncertainties that are difficult to quantify.

We are not aware of any calculations for open-bottom mesons at finite temperature and
vanishing baryon density with which the results presented here can be compared. There exist,
however, some works that have addressed the properties of open-bottom (and also open-charm)
mesons in nuclear matter. These works include nuclear mean-field calculations in matter [PM15],
quark-meson coupling models [TK03], models based on π-exchange implementing heavy-quark
symmetries [YS13], and QCD sum-rule computations (see [GS19] and references therein). These
works found that the general trends of the bottomed mesons at finite density are similar to those
of the (anti)charmed mesons.

On the other hand, studies investigating the properties of heavy quarkonia in a hot medium
are more abundant than in the case of open heavy flavor (for a comprehensive review see
[Rot20]). Most of them are dedicated to the in-medium properties of charmonia and used
approaches that fall mainly into two categories: models based on chiral Lagrangians [MM98;
LK00; Hag00; HG01; BGH04; Abr+18; CMR17], and quark-model calculations [WSB00; Bar+03;
Mai+04b; Mai+05b; ZX12]; but other approaches such as QCD sum rules [Dur+03a; Dur+03b],
perturbative QCD calculations [SL05], and the comovers interaction model [Cap+08] have also
been explored. In the case of bottomonia, studies of this kind are more scarce [LK01; WSB02;
ANN20; AV21]. Finite-temperature correlators and quarkonium spectral functions have also
been calculated with LQCD [UNM05; AH04; Dat+04; Aar+07; Jak+07; Din+12; Ohn+11;
Lar+19; Lar+20] and potential models [Won05; MP06; CR07; Alb+08; MP08].
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Open-charm Euclidean
correlators

4
In the present chapter, we determine the Euclidean meson correlators for open-charm mesons
and compare them to the LQCD simulations of Ref. [KRS18]. To the best of our knowledge, this
work is the only computation of Euclidean correlators of open-charm mesons at the moment
of publication of this thesis. To this goal, we adapt our EFT-based calculations of open-charm
spectral functions in a pionic bath described in Chapter 3 to the use of the unphysical meson
masses determined in Ref. [KRS18].

The chapter is organized as follows. After the introduction of Section 4.1 and the brief
overview of LQCD methods given in Section 4.2, we introduce in Section 4.3 the concept of
the meson correlator at finite temperature and its relation to the meson spectral function. Our
results are given in Section 4.4, where we summarize our calculation for the open-charm spectral
function within the EFT employing the meson unphysical masses reported in Ref. [KRS18] and
compare our results for the Euclidean correlators with those from LQCD. The work presented in
this chapter was published in Ref. [Mon+20a].

4.1 Introduction

There exist a few theoretical approaches that can be used to determine the features of the
meson spectral function, but none of them is yet conclusive in the full range of energies and
temperatures available in the experiments. Perturbative QCD can be only applied at very large
energies and/or temperatures [KMT01; AM05; MP08]. The AdS/CFT duality has also been used
to describe some features of the spectral function, but a clear correspondence with QCD allowing
quantitative studies is still missing [Erd+08; Cas+14].

LQCD is a powerful tool to perform calculations from first principles for any energy and
temperature, a priori. However, despite the recent progress in the determination of heavy-meson
spectral properties in matter from LQCD calculations (see Ref. [Rot20] for a recent review and
references therein), there are still a few drawbacks that prevent lattice results from being decisive
when determining the spectral features of heavy mesons. From LQCD one can determine the
so-called Euclidean meson correlators and the meson spectral functions are then extracted from
them. The reconstruction of the spectral functions from the correlators turns out, however, to
be rather complicated [JG96]. Furthermore, the simulation of light quarks on the lattice is
computationally very demanding, and usually larger (unphysical) masses are used.

Hadronic models based on EFTs in matter offer a complementary strategy to LQCD to determine
the modification of the heavy-meson spectral features in a hot and/or dense medium [Rap+11;
Tol13; Hos+17; Aar+17a]. The matter below the deconfinement transition temperature consists
of hadrons, essentially light mesons, in the low-density high-temperature regime. In this domain,
we have obtained the thermal properties of pseudoscalar and vector charm mesons within a
finite-temperature self-consistent unitarized approach based on a chiral effective field theory
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that implements heavy-quark spin symmetry [Mon+20b; Mon+20c], as has been described in
the previous chapter. Once the spectral features are known, it is then possible to determine the
corresponding Euclidean meson correlators and compare them to LQCD results. In this way, the
ill-posed extraction of the spectral function is avoided while testing directly the results from
finite-temperature effective field theories against LQCD simulations.

Therefore, only the interplay between these techniques may shed light on this issue. With this
aim, we check, in this chapter, the results of the thermal EFT against LQCD calculations. We
perform this comparison at the level of Euclidean correlators, rather than the direct comparison
of spectral properties, thus avoiding the complications arising from the reconstruction of the
spectral functions from the lattice correlators.

4.2 Overview of lattice QCD

In this section, we give a brief overview of the formulation and calculations of QCD on the lattice,
covering the main aspects necessary for the analysis and discussion of the results presented in
Section 4.4 in comparison with the LQCD data in Ref. [KRS18]. For a broader introduction to
the field, as well as more theoretical and computational details, we refer the reader to textbooks
such as Refs. [DD06; GL10] and reviews [LP03; Zyl+20].

Originally proposed by Wilson in the 1970s [Wil74], LQCD is nowadays a well-established
method to compute the properties, decays, and interactions of hadrons in the nonperturbative
regime from the first principles governing the strong interactions between quarks and gluons.

In LQCD the Euclidean spacetime is discretized on a four-dimensional grid or lattice of size
N3
σ × Nτ , with lattice spacing a. By taking the limit of vanishing a, the continuum QCD is

recovered. This formulation of QCD on a discrete rather than continuous spacetime introduces
a UV cut-off scale, which regularizes the theory in a natural way by restricting the highest
momentum to Λ < π

a .

The volume and the temperature of the system are related to the lattice spacing by

V = (aNσ)3 , T = 1
aNτ

. (4.1)

The Lagrangian of QCD in Euclidean time follows from the QCD Lagrangian in Eq. (1.5),
defined in Minkowski spacetime, by performing a Wick rotation (t→ −i τ):

LE
QCD = LE

F + LE
G

=
∑
f

ψf,a( /DE
ab +mfδab)ψf,b −

1
4F

A
µνF

µν
A , (4.2)

with the subindex F denoting the fermionic part of the Lagrangian and G the gluonic one. We
recall that the lowercase (a, b) and the uppercase (A) indices denote the color charge of the
quark and gluon fields, respectively, and the subindex f refers to the quark flavor. The covariant
derivative /D

E and the field-strength tensor are given by

/D
E = γE

µD
E
µ =

(
∂µ + i gstCACµ

)
γE
µ , (4.3)

FAµν = ∂µAAν − ∂νAAµ − gsfABCABµACν , (4.4)

where γE
µ are the Euclidean Dirac matrices.
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ψx

ψ̄x

Ux,µ

Ux,µν

Figure 4.1: Sketch of a three-dimensional lattice showing the quark fields lying on the grid sites (magenta
circles) and gluon fields represented by the links connecting the grid sites (blue lines). The
closed loop in the upper right corner corresponds to a plaquette.

On the lattice, quark fields ψ̄x, ψx live on the sites (labeled with x ≡ (t, ~x)), whereas the
gluons reside on the links connecting neighboring sites, that is, x to x+ aµ̂ in the µ direction in
the lattice, and are represented by the gauge links,

Ux,µ = exp (i agsAµ(x)) . (4.5)

It is easy to see that Ux,µUx+aµ̂,−µ = 1. Furthermore U†U = 1, which gives U†x,µ = Ux+aµ̂,−µ.
The smallest closed loop of gauge links is called plaquette:

Ux,µν = Ux,µUx+aµ̂,νUx+a(µ̂+ν̂),−µUx+aν̂,−ν

= Ux,µUx+aµ̂,νU
†
x+aν̂,µU

†
x,ν . (4.6)

A schematic illustration of quark and gluon fields on the lattice is given in Fig. 4.1, where we
have also represented a plaquette.

The lattice regularized grand-canonical partition function Z is given in the Euclidean path-
integral formalism by

Z =
∫
D[U ]D[ψ̄, ψ]e−SF[U,ψ̄,ψ]−SG[U ] , (4.7)

with the integration measure
∫
D[U ]D[ψ̄, ψ] ≡

∫ ∏
x,µ dUx,µ

∏
x,f dψx,fdψ̄x,f running over all

possible configurations of fields. Each configuration is weighted by the Boltzmann factor e−S ,
where SF[U, ψ̄, ψ] is the fermion part and SG[U ] the gluon part of the QCD action, related to
the discretized version of the Euclidean Lagrangian in Eq. (4.2) by S =

∫
d4xLE

QCD. In finite
temperature studies, due to the relation between the temperature of the system and the temporal
lattice extent of Eq. (4.1), x0 is taken to run along a temperature direction rather than a time
direction, that is, S = −

∫ 1/T
0 dx0

∫
V
d3xLE

QCD.

The expectation value of a physical observable O is then obtained through

〈O〉 = 1
Z

∫
D[U ]D[ψ̄, ψ]Oe−SF[U,ψ̄,ψ]−SG[U ] . (4.8)
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The simplest gauge-invariant gluonic action, usually called the Wilson gauge action, is given
in terms of the plaquette,

SG = β
∑
x,µ≤ν

[
1− 1

3Tr ReUx,µν

]
, (4.9)

with β = 6/g2 being the lattice coupling. While, in the limit a→ 0, this simple parametrization
reproduces the continuum expression, discretization effects are of orderO(a2). The incorporation
of larger loops of six links (as opposed to the four links in the plaquette) defines the improved
(or Symanzik) gauge action [Sym83a; Sym83b] that is commonly used.

As for the fermionic action, one can consider the naïve discretization of the Euclidean action
in the continuum by replacing the covariant derivative with a finite difference,

DE
µψ(x)→ 1

2a
(
Ux,µψx+aµ̂ − U†x,µψx−aµ̂

)
, (4.10)

where the factors Ux,µ ensure that the fermionic action is gauge invariant. However, this
fermionic action suffers from the so-called fermion doubling problem, which refers to the
presence of unwanted unphysical poles in the fermion propagator, and is closely related to
the explicit breaking of chiral symmetry. To deal with the undesired doublers, in the Wilson
fermion formulation [Wil74], for instance, an extra term is added to the fermion action in such
a way that the mass of the doublers increases and they decouple in the continuum limit. A
variant of this formulation comprises Clover fermions, for which the fermion action contains the
Wilson and Clover term in addition to the naïve discretization of the Dirac operator [SW85]. It
is also very extended the use of staggered fermions [KS75], with which the doubler problem
is not eliminated but reduced, but a remnant of chiral symmetry is preserved. Domain Wall
fermions [Kap92; Sha93b; Sha93a; FS95] and overlap fermions [Neu98a; Neu98b], on the other
hand, allow for the preservation of the exact chiral symmetry but are very time consuming.

After a suitable choice of the actions, the Gaussian integral over the quark fields can be
performed, leading to the lattice partition function

Z =
∫
D[U ]e−SG[U ]det [M ], (4.11)

where M = ( /DE + mf − µγ0) is the fermion matrix, in which we have introduced the quark
chemical potential, µ = µB/3. Its inverse represents the fermion propagator. The effects of the
sea quarks are contained in {det [M ]}.

For µ = 0, the expectation value of physical quantities, such as Z, or observables 〈O〉, can
be calculated by Monte Carlo methods. Simulations at finite baryon density, µ 6= 0, have to
deal with the so-called sign problem. There are nevertheless some methods to get around this
problem, including Taylor expansion around µ = 0, imaginary chemical potential simulations,
the complex Langevin approach, and reweighting from µ = 0, that are, however, only applicable
at small µ (see, for example, Refs. [Mur+03; Ber+21] for reviews on finite-density LQCD).

Numerical simulations of QCD on a lattice are computationally very demanding and, thus, the
power of LQCD calculations is limited, in practice, by the availability of computational resources
and the efficiency of the algorithms. The evaluation of the fermion determinant is the most
computationally expensive part and, therefore, simulations with dynamical quarks turn out to
be very resource demanding. For this reason, the “quenched approximation”, which neglects
quark-loop contributions by taking detM = 1, is sometimes used in exploratory LQCD studies.
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In general, LQCD calculations are affected by both statistical and systematic errors. While
the former arise from the use of importance sampling in Monte Carlo methods, the latter are
related, for example, to the use of nonzero values of a and the finite size of the lattice. The
observables have thus to be computed for various lattice spacings and volumes, and extrapolated
to the continuum and infinite-volume limits, for a fixed value of T . In addition, there are lattice
artifacts, that is, cut-off effects, that depend on the particular discretization chosen for the QCD
action.

The basic input parameters for calculations on the lattice are the strong coupling constant
αs = g2

s/(4π) and the quark masses. The lattice spacing a, which depends on the choice of the
coupling constant, is then determined from a dimensionful quantity measured by experiments.
For instance, from the mass of a hadron H through a = (amH)lat/mexp

H , with (amH)lat the value
of the hadron mass obtained on the lattice in lattice units. A common choice is the mass of the
Ω− baryon.

As for the quark masses, current LQCD simulations often employ mu = md =< ms (Nf =
2 + 1), or even include the c quark mass mc (Nf = 2 + 1 + 1), and their values are tuned to
reproduce the physical values of the ratios between the meson masses (mπ, mK and mηc) and
the quantity used to set the scale (e.g. mΩ). Simulations with physical light meson masses
are computationally expensive and require large lattices. In practice, at least until recently,
typical LQCD simulations are done at some unphysically heavy quark mass, and the results are
extrapolated to the physical point, usually using fits inspired in χPT. In the last decade, advances
in both algorithms and computers, have allowed LQCD calculations to approach the physical
quark masses.

In finite temperature studies of heavy quarks on the lattice, sometimes anisotropic lattices
are used, on which the spacing in the temporal direction, aτ , is smaller than that in the spatial
directions, aσ, so as to have a fine enough time discretization, although cut-off effects depend on
the spatial lattice spacing. Then, the anisotropy parameter is defined as ξ = aσ/aτ > 1.

4.3 Meson Euclidean correlators and spectral functions

The primary tools in LQCD calculations are Euclidean correlators of some operators Ô, described
by the expectation value:

〈Ô1(τ, ~x)Ô2(0,~0)〉 = 1
Z

∫
D[U ]D[ψ̄, ψ]

× Ô2[U, ψ̄, ψ]Ô1[U, ψ̄, ψ]e−SF[U,ψ̄,ψ]−SG[U ] , (4.12)

with Z being the partition function defined in Eq. (4.7).

For a meson with quantum numbers H, the meson (quark-antiquark pair) operator to consider
is the following:

JH(τ, ~x) = ψ̄f (τ, ~x)ΓHψf (τ, ~x) , (4.13)

where ΓH = 1, γ5, γµ, γ5γµ correspond to the scalar, pseudoscalar, vector and axial vector
channels, respectively, and f refers to the flavor of the valence quark.
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Figure 4.2: Schematic picture of the meson spectral function at T = 0 (blue solid line) and at finite
temperature (red dashed line).

After carrying out the explicit integration over fermion fields, the propagation of a meson from
time t = 0 to τ is given by the Euclidean time correlator

〈J(τ, ~x )J(0,~0 )〉 = − 1
Z

∫
D[U ]e−SG[U ] det [M ]

× Tr [ΓHM−1(0,~0 ; τ, ~x )ΓHM−1(τ, ~x; 0,~0 )] . (4.14)

In the case of meson correlators at a finite temperature, one has to consider that the tempera-
ture of the system on the lattice is related to the temporal extent through Eq. (4.1).

As we have seen in Chapter 3, the in-medium properties of a meson are incorporated into
its spectral function, defined as the imaginary part of the retarded propagator (see Eq. (3.22)).
This allowed us to obtain the thermal evolution of the ground-state mass and thermal width.
However, the meson spectral function at finite temperature contains information not only on
the ground state but also on the masses and widths of the possible excited bound states, as well
as the continuum of scattering states. A schematic picture is shown in Fig. 4.2. At T = 0 the
spectral function results from the contribution of different delta functions corresponding to the
ground state of mass m and the bound excited states, and a continuum distribution starting at
ω ≥ 2m for 2-particle states. At finite temperature, one expects the masses to be modified, as
well as a broadening of 1-particle states to take place.

The Euclidean temporal correlator in momentum space,

GE(τ, ~p ;T ) ≡
∫
d3~x e−i~p·~x〈J(τ, ~x)J(0,~0 )〉 , (4.15)

is related to the spectral function ρ(ω, ~p ;T ) through the convolution with a known kernel:

GE(τ, ~p ;T ) =
∫ ∞

0
dωK(τ, ω;T ) ρ(ω, ~p ;T ) , (4.16)

with

K(τ, ω;T ) =
cosh

[
ω
(
τ − 1

2T
)]

sinh
(
ω
2T
) =

= eωτf(ω, T ) + e−ωτ [1 + f(ω, T )] , (4.17)

where f(ω, T ) is the BE statistical factor.
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In the following, we omit the dependence on the momentum ~p, as we focus on spectral
functions with ~p = ~0 for simplicity, and make the identifications GE(τ ;T ) ≡ GE(τ, ~p = ~0 ;T ) and
ρ(ω ;T ) ≡ ρ(ω, ~p = ~0 ;T ).

In LQCD simulations, the values of the Euclidean correlator are obtained for a set of points
in Euclidean time, τ = τi, that is, {τi, GE(τi;T )} for i = 1, ..., Nτ and τi ∈ [0, 1/T ]. In addition,
the lattice data GE(τi;T ) have a statistical error due to the fact that only a finite number of
gauge configurations can be generated in a Monte Carlo simulation. The inversion of Eq. (4.16)
to extract a continuous spectral function ρ(ω;T ) from such a limited number of data points13

with noise is an ill-posed problem. Two methods are usually employed to try to circumvent this
problem, both taking specific assumptions on the shape of the spectral function:

1. Bayesian methods like the Maximum Entropy Method (MEM) [NAH99; AHN01] or stochas-
tic reconstruction methods [Din+18] perform the kernel inversion by statistically inferring
the most probable spectral function.

2. Fitting the lattice data with suitable Ansätze for the spectral function, incorporating bound
states, a continuum, or perturbative input [Bur+17].

The fact that a priori assumptions about the spectral functions are needed makes the determina-
tion of their shape and details at finite temperature very challenging, as we do not have much
prior information on them.

Besides the commonly used approaches mentioned above, the problem of the reconstruction of
the spectral function from the Euclidean correlator has also been recently explored with machine
learning techniques [YSH18; Fou+20; Kad+20; Che+21], which have turned out to reach a
reconstruction accuracy comparable to the methods based on Bayesian interference, and even
potentially superior at large noise levels [Kad+20; Che+21].

In addition to the statistical errors, the systematic errors tied to the finite lattice spacing, the
finite lattice volume, and the large quark masses employed in the Monte Carlo calculations make
the results obtained on the lattice differ from the desired physical ones. Although these errors
can be minimized by extrapolating to the continuum, to the infinite volume limit, and to the
physical mass limit, they are usually tedious and not always performed in lattice data analyses.

By inspecting Eq. (4.16), one can see that the temperature dependence of the correlators does
not only come from the spectral function but the integration kernel also carries an inherent
dependence on the temperature. When directly comparing correlation functions at different
temperatures, one may want to discern the differences due to the modification of the spectral
function with temperature alone. To do so, it is useful to define the so-called reconstructed
correlator at a reference temperature Tr,

GrE(τ ;T, Tr) =
∫ ∞

0
dωK(τ, ω;T )ρ(ω;Tr) . (4.18)

The integration kernel is the same as that of GE(τ ;T ) and, therefore, any difference when
comparing GE(τ ;T ) and GrE(τ ;T, Tr) arises from differences in the spectral functions at T and
Tr. The value of Tr is usually chosen to correspond to a temperature at which the shape of the
spectral function is better known, so one can reliably trust the spectral function obtained from
the lattice correlator. Thus, the lowest temperature available is usually chosen. Then, a ratio of

13Equation (4.17) is symmetric in the Eucliean time at τ = 1/2T and thus only half of the data points of the Euclidean
correlator, i.e. Nτ/2, provide independent information to extract the spectral function.
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unity between the Euclidean and the reconstructed correlators, for instance, indicates that there
is no in-medium modification.

4.4 Results
In this chapter, we adopt the lattice setup of Ref. [KRS18], where an anisotropic lattice, with
spacing in the temporal direction a−1

τ = 5.63 GeV and anisotropy parameter ξ = 3.5, is used.
The ensembles employed contain dynamical light and strange quarks, with unphysical masses
for the two mass-degenerate light quarks and roughly physical values for the strange and charm
quarks [Aar+15]. The resulting masses of the light and charm mesons on the lattice are listed
in Table 4.1. While the open-charm mesons have almost the same masses as at the physical
point [Zyl+20], the light mesons are substantially heavier, especially the pion, which has a
mass almost three times larger in the lattice. The pseudocritical temperature determined for
this configuration is Tc = 185 MeV and the correlators have been calculated for temperatures
shown in Table 4.2, which are directly obtained from the number of points in the Euclidean time
direction Nτ through Eq. (4.1). For further details, we refer the reader to Ref. [KRS18] and
references therein.

mπ (MeV) mK (MeV) mη (MeV) mD (MeV) mDs (MeV)
Lattice 384 546 589 1880 1943
Physical 138 496 548 1867 1968

Table 4.1: Values of the masses of the light mesons (π, K/K̄, η) and the open-charm mesons (D, Ds) in
the lattice setup of Ref. [KRS18], and at the physical point [Zyl+20].

Nσ Nτ T (MeV) T/Tc

16 128 44 0.24
24 40 141 0.76
24 36 156 0.84
24 32 176 0.95
24 28 201 1.09
24 24 235 1.27
24 20 281 1.52
24 16 351 1.90

Table 4.2: Lattice volumes N3
σ ×Nτ and temperatures used in the work of Ref. [KRS18], where the lattice

spacing in the Euclidean time direction is a−1
τ = 5.63 GeV and the pseudocritical temperature

is Tc = 185 MeV.

4.4.1 Thermal EFT spectral functions at unphysical meson masses

The calculation of the spectral functions of the D and Ds mesons in a pionic bath at finite
temperature within the ITF has been discussed in Chapter 3. The unitarized amplitudes of the
scattering of heavy mesons off light pseudoscalar mesons (π, K, K̄, and η) have been obtained
from solving the coupled-channel BS equation with thermal loop functions dressed with the heavy-
meson spectral function, within a self-consistent approach. The effective Lagrangian describing
the interactions has been detailed in Section 2.3. See also Refs. [Mon+20b; Mon+20c].
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In the hadronic effective approach presented in the previous chapters, the values of the un-
physical meson masses of the lattice setup in Ref. [KRS18] can be implemented straightforwardly,
since the meson masses in the vacuum are input parameters of the model. This way, we can
directly compare with the LQCD calculations.

The unitarized T -matrix approach can also be extended to finite volumes and implement the
subsequent periodic boundary conditions present in the lattice by replacing the three-momentum
integral in the calculation of the vacuum two-meson propagator by a discrete sum over momenta,∫
d3q/(2π)3 →

∑
n 1/L3 [Mar+12; Dor+11]. Similar modifications can be also implemented, in

principle, in the expressions for the thermal propagator and the meson self-energy given in the
previous chapter. While this might reduce the sources for discrepancies between our calculations
with LQCD, it is out of the scope of the work in this thesis.

Let us reproduce, for completeness, the expression of the spectral function of the charm meson
defined in terms of its propagator in a hot medium:

SD(ω, ~q ;T ) = − 1
π

ImDD(ω, ~q ;T ) = − 1
π

Im
(

1
ω2 − ~q 2 −M2

D −ΠD(ω, ~q ;T )

)
, (4.19)

where the self-energy, ΠD, is obtained from closing the pion line in the TDπ→Dπ matrix element
of the unitarized amplitude. Heavier light meson contributions such as the kaons contribution to
the dressing of the D meson are neglected, as their abundance in the hot medium is suppressed.
Indeed, in the previous chapter, we have quantified the effect of the kaons in the medium
to be around 10% of the mass shift of the D mesons induced by the pion-only hot medium
at T = 150 MeV, at the physical point (see also Ref. [Mon+20c]). On the lattice, the mass
difference between the pions and the heavier light mesons is reduced, as the mass of the pion is
considerably larger on the lattice and the kaon and η-meson masses are more similar to their
physical values (see Table 4.1). Despite this, the kaons are still more than 150 MeV heavier than
the pions in the lattice, and, thus, the pionic contribution to the self-energy is certainly the most
relevant.
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Figure 4.3: Spectral functions of the D meson (left panel) and Ds meson (right panel) obtained from their
effective interaction with unphysically heavy pions at finite temperature.
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The spectral functions of the D and Ds mesons obtained from their interaction with the
unphysically heavy pions in a hot medium are shown in Fig. 4.3. In these figures, we show the
spectral functions for D (left panel) and Ds (right panel) as a function of the meson energy
for the different temperatures used in Ref. [KRS18]. As discussed in the previous chapter
with physical meson masses, we see a broadening of both spectral functions with increasing
temperatures due to the larger available phase space for decay at finite temperatures. Moreover,
the maximum of both spectral functions slightly moves to lower energies with temperature due
to the attractive character of the heavy-light meson-meson interaction.

A study of net charm fluctuations [Baz+14] suggests that open-charm hadrons start to
dissolve already close to the chiral crossover. Although the deconfined degrees of freedom
necessary to investigate the melting of charm hadrons are absent in the model, we still show
the spectral functions coming from our hadronic model for temperatures above the lattice
pseudocritical temperature Tc in order to explore the validity of our results for the correlators at
those temperatures, as data below Tc is scarce.

4.4.2 Euclidean correlators and comparison with lattice QCD

Once the D and Ds spectral functions at finite temperature are known, we can obtain the
corresponding Euclidean correlators from Eqs. (4.16) and (4.18), and compare them to LQCD
calculations. It is important to notice that the spectral function SD(ω;T ) of Eq. (4.19), displayed
in Fig. 4.3, differs from ρ(ω;T ), entering in Eq. (4.16). This is due to the fact that the former
contains the ground-state peak and an additional continuum, corresponding to Dππ scattering
states in the case of the D spectral function and DπK states in the case of the spectral function
of the Ds, while the latter contains all possible quark-antiquark (cl or cs) states.

Furthermore, the dimensions of SD(ω;T ) are MeV−2 while the dimensions of ρ(ω;T ) are MeV2.
The two quantities are related through the fourth power of the charm meson mass [KKW96;
GW16]:

ρgs(ω;T ) = M4
DSD(ω;T ) , (4.20)

with MD the vacuum value in the PDG for the mass of the D (or Ds) meson. In Refs. [KKW96;
GW16] the authors obtained the relation between the electromagnetic current-current correlation
in matter and the vector meson self-energy, and hence the meson spectral function, based on
VMD. In Eq. (4.20) we have similarly connected the Euclidean current-current correlator of
the lattice simulations with the open-charm spectral function resulting from the chiral effective
theory that implements HQSS. Also, in LQCD studies the reconstructed spectral function is
usually identified with the dimensionless quantity ρ(ω;T )/ω2.

With ρgs(ω;T ) and ρgs(ω;Tr), we can readily calculate Euclidean correlators and the ratios
with the reconstructed correlators, GE(τ ;T )/GrE(τ ;T, Tr), for a direct comparison with lattice
data. The input spectral function at T = (141, 156, 176, 201, 235) MeV and Tr = 44 MeV are
shown with solid lines in the left panel of Fig. 4.4 for the D meson and in the left panel of
Fig. 4.5 for the Ds meson, while the Euclidean correlators are displayed in solid lines in the
corresponding right panels. The Euclidean time extends in the range τ ∈ [0, aτNτ/2] that is
smaller at large temperatures. The lattice data of Ref. [KRS18] for the correlators is displayed
with filled circles. In addition, in the left panels of Figs. 4.6 and 4.7, the ratios of the correlators
are shown with solid lines, together with the lattice results of Ref. [KRS18], with filled circles
with error bars).
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Figure 4.4: The spectral functions in the C = 1, S = 0 sector (left panel) and the Euclidean correlators
(right panel) at different temperatures and values of the weight of the continuum spectral
function, that is, the value of parameter a.
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Figure 4.5: The same as in Fig. 4.4 in the strangeness S = 1 sector.

The first clear observation is the deviation of the correlators (solid lines in the right panels of
Figs. 4.4 and 4.5) and the ratio of correlators (left panels of Figs. 4.6 and 4.7) at small Euclidean
times with respect to the lattice data points for all the temperatures and both the D and Ds

mesons. However, it is important to note that, for the lowest temperature T = 141 MeV, the
ratio of correlators lies within the error bars of the lattice data. For increasing temperatures, the
calculated ratios deviate largely from the lattice calculations. Above or close to the pseudocritical
temperature, Tc = 185 MeV, we do not expect a good matching as the deconfined degrees
of freedom are not included in the effective hadronic model, but one would expect a better
comparison at lower temperatures.

The discrepancy observed at small τ for temperatures below Tc might be related to the
fact that the spectral functions do not contain the higher-energy states present in the lattice
correlators in addition to the ground-state, that is, the possible excited states and the continuum
spectrum. As a first approximation, in the following we only add a continuum contribution to the
spectral functions. In this way, we aim at understanding the differences with the fewest possible
parameters, while trying to improve the comparison of the hadronic and lattice approaches.
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Figure 4.6: Ratio of the Euclidean correlator, calculated at temperature T , to the reconstructed correlator,
at Tr = 44 MeV, in the C = 1, S = 0 sector, considering spectral functions with the ground-
state D meson only (left panel) and adding a continuum with a weight a (right panel).
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Figure 4.7: The same as in Fig. 4.6 in the strangeness S = 1 sector, where the ground state is the Ds
meson.

With this goal we define the lattice spectral function as

ρ(ω;T ) = ρgs(ω;T ) + a ρcont(ω;T ) , (4.21)

where we add, to the ground-state spectral function obtained from the effective field theory, the
contribution of a continuum of scattering states weighted with a factor a.14.

The continuum contribution to the spectral function is sometimes mimicked with a step
function. An analytical expression of the free meson spectral function, obtained from the
individual quark spectral functions in the noninteracting limit, is also often used and was first
derived for charmonium states in Refs. [KMT01; Kar+03]. This spectral function describes
quark-antiquark pairs with degenerate masses in the limit of infinitely high temperature. An

14Not to be confused with the lattice spacing in the temporal direction, aτ
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equivalent expression can be derived in the case of nondegenerate quark masses m1 > m2

[Mey16],

ρM (ω;T ) = Nc
32π

√(
m2

1 −m2
2

ω2 + 1
)2

− 4m2
2

ω2 ω2

×

[
(aM − bM ) + 2bM

m2
1 +m2

2
ω2 − 4cM

m1m2

ω2 − (aM + bM )
(
m2

1 −m2
2

ω2

)2]
× [n(−ω0, T )− n(ω − ω0, T )] θ (ω − (m1 +m2)) , (4.22)

where Nc = 3 is the number of colors, ω0 = 1
2ω (ω2 +m2

1−m2
2), and n(ω, T ) = [eω/T + 1]−1 is the

Fermi-Dirac distribution. The coefficients (aM , bM , cM ) are (1,−1, 1) for the scalar, (1,−1,−1)
for the pseudoscalar, (2,−2,−4) for the vector, and (2,−2, 4) for the axial-vector channels.
These coefficients result from the traces of the gamma matrices defining the character (scalar,
pseudoscalar, vector, axial vector) of the meson. Therefore, for pseudoscalar mesons we have

ρcont(ω;T ) = 3
16π

√(
m2

1 −m2
2

ω2 + 1
)2

− 4m2
2

ω2 ω2
(

1− (m1 −m2)2

ω2

)
× [n(−ω0, T )− n(ω − ω0, T )] θ (ω − (m1 +m2)) . (4.23)

In the nonstrange sector, we take m1 = mc = 1.5 GeV and m2 = ml = 0, whereas in the
sector with strangeness S = 1 we use m1 = mc = 1.5 GeV and m2 = ms = 100 MeV. The left
panels of Figs. 4.4 and 4.5 display the spectral functions obtained for three different values of
the continuum to ground-state contribution: a = 0 (solid lines, no continuum), a = 1 (dashed
lines), and a = 10 (dotted lines), for the nonstrange and strange sectors, respectively. The
corresponding Euclidean correlators are plotted in the right panels of the same figures, and the
ratios with the reconstructed correlators are shown in Figs. 4.6 and 4.7.

The inclusion of the continuum in the spectral functions improves the behavior of the correla-
tors and the ratio of correlators at small τ but does not allow for the reproduction of the shape
of the lattice correlators. We note that the lattice correlators shown here are not continuum
extrapolated and therefore suffer from cut-off effects at small τ . 0.1 fm, as well as finite-volume
effects that have not been introduced in the effective theory. Nevertheless, taking into account
the contribution of the continuum permits the ratios to go to one at τ → 0 for all temperatures,
as the region of very small Euclidean times is essentially governed by the spectral function at
very high energies, which has very little dependence on the temperature.

The modification of the ratios at larger τ due to the inclusion of the continuum is rather
moderate and only the results for the lowest temperature of T = 141 MeV are compatible with
the lattice data within the error bars. The region of middle and large values of τ is rather sensitive
to the shape of the spectral functions at low energies (few GeV), where not only variations in the
ground-state properties can produce significant modifications of the correlators but also where
the free spectral function might be not appropriate to describe the continuum and where excited
states are likely to be present.

In particular, the behavior of the correlators can vary due to a widening of the ground state,
which is expected at temperatures close to Tc when considering further contributions to the D
and Ds meson self-energies coming from the thermal kaons and antikaons in the medium. In
the previous chapter we have shown that, for physical meson masses, the inclusion of K and K̄
mesons in the bath in addition to pions starts to have an appreciable effect on the mass shift of
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the D and Ds mesons at temperatures T ∼ 140 − 150 MeV. Yet the impact on the Ds width is
visible already at T = 80 MeV and the Ds width in a kaonic and pionic medium is almost a factor
two larger than that induced in a pion-only medium at T = 150 MeV. In this chapter, we have
used unphysical masses for pions and kaons, with the pions being almost three times heavier
than physical pions and the kaons similarly heavy, thus considerably reducing the mass gap
between the two lightest pseudoscalar mesons. Consequently, the temperature onset for a sizable
thermal modification of the heavy mesons due to pions is larger and closer to that of kaons, in
such a way that the kaon-induced width of the charm mesons, especially of the Ds, might not be
small at temperatures close to Tc. Therefore, considering a pionic and kaonic medium in our
calculations could improve the comparison of the ratios of Euclidean correlators of the Ds meson
at T = 141 MeV = 0.76Tc, and of both D and Ds mesons at larger temperatures below Tc.

In regards to the excited states, their properties and thermal modification are not known
and their inclusion in the spectral function is not feasible. An alternative way to eliminate
this source of discrepancy when comparing the results of the calculated Euclidean correlators
with those simulated on a lattice could be to apply techniques for the reduction of excited-state
contamination from the correlators in the analysis of the LQCD data.

Finally, one might also wonder about the validity of the chiral effective theory employed at
an unphysical pion mass of 384 MeV. However, we consider the Lagrangian to be reliable, as its
parameters have been adjusted to finite volume energy levels and scattering lengths, obtained at
various unphysical masses but having a smooth extrapolation down to the physical pion mass
[Guo+19].
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In-medium kinetic theory of
heavy mesons and transport
coefficients

5

The way we have dealt with temperature in Chapter 3 is by Wick rotating the time dimension
from Minkowski to Euclidean spacetime and compactifying it in the range 0 ≤ i t ≤ 1/T , with T
being the temperature of the system. In this approach, that is, in the ITF, the time dependence
vanishes, as time is “converted” into temperature, and hence we have been able to study
equilibrium quantities. In the present chapter, we want to calculate out-of-equilibrium kinetics,
as well as transport coefficients, and a real-time formalism that describes the evolution in real
time is needed. The generalization of the imaginary-time and real-time formalisms consists in
considering time defined on the complex plane. One can then particularize a specific formalism
by taking a certain contour in the complex plane, for instance, the “Matsubara contour” for the
ITF, the “Kadanoff-Baym contour”, or the “Schwinger-Keldysh contour” (see Fig. 3.1).

In this chapter, we analyze the effect on the transport properties of the heavy mesons (D
and B̄) in a mesonic bath at finite temperature. To this end, we make use of the in-medium
unitarized amplitudes in a mesonic environment at finite temperature obtained in Chapter 3,
which have been tested in Chapter 4 against LQCD calculations of Euclidean correlators below
the temperature of the QCD phase transition, Tc. The final goal is to calculate the D- and
B̄-meson transport coefficients below the transition temperature, paying special attention to the
inclusion of off-shell effects coming from the full spectral features of the heavy mesons in a hot
mesonic bath, and analyze the matching at Tc of our results with those of LQCD and Bayesian
analyses of HIC data, which are available at temperatures close and above Tc.

The chapter is organized as follows. After a brief introduction in Section 5.1, we present in
Section 5.2 the derivation of the kinetic equation, implementing the features of the T -matrix
approximation in the collision terms. In Section 5.3 we particularize it to an equilibrium situation
and review the definition of the spectral properties of the heavy mesons at finite temperature,
whereas in Section 5.4 we show the different kinematic contributions to the heavy-meson
thermal width coming from the off-shell treatment of the heavy meson. Finally, in Section 5.5
we obtain, after rederiving the Fokker-Planck equation, the different transport coefficients within
the off-shell approach, and compare our findings with the latest results of LQCD and Bayesian
analyses. The work detailed in this chapter was published in Ref. [Tor+22].

5.1 Introduction

Heavy hadrons are considered to be an efficient and unique probe for testing the different QCD
phases created in HICs, in both the QGP and hadronic phases (see Refs. [Aar+17a; PR16; DG19;
DLR19; Zha+20] for recent reviews). Due to the large mass of the heavy (charm and bottom)
quarks as compared to the mass of the light-flavor quarks, heavy quarks have large relaxation
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times and, thus, cannot totally relax to equilibrium during the fireball expansion in HICs. For this
reason, heavy mesons constitute ideal probes to characterize the QGP properties. Determining
their in-medium properties in a hadronic medium at extreme conditions is a subject that attracts
a lot of interest nowadays.

The characterization of the different QCD phases can be performed by analyzing experimental
observables in HICs, such as the nuclear modification ratio as well as the elliptic flow [Aar+17a;
PR16; DG19; DLR19; Zha+20]. These physical observables are strongly correlated to the
behavior of the transport properties of heavy hadrons, and these depend crucially on the
interaction of the heavy particles with the surrounding medium.

In particular, the diffusion of open-charm (D mesons) in hadronic matter was initially obtained
within an effective theory that incorporated both chiral and heavy-quark symmetries [Lai11], and
also by using parametrized interactions with light mesons and baryons [HFR11]. Following these
initial works, unitarized effective interactions of heavy mesons (D and B̄) with light mesons and
baryons that exploited chiral and heavy-quark symmetries were used to obtain the heavy-meson
transport coefficients, as functions of the temperature and the baryochemical potential of the
hadronic bath, by means of the Fokker-Planck equation approach (see Refs. [TT13; Tor+14;
Ozv+14]). Moreover, the transport coefficients of the low-lying heavy baryons (Λc and Λb) were
examined by employing a similar unitarized framework to account for the interaction of these
states with light mesons in Refs. [TTD16; Das+16].

Similar approaches using different models or effective descriptions, both below and above
the phase transition, have been developed (see [HR05; MT05; MR05; HGR06; CT06; Hee+08;
Ber+09; HFR11; Gho+11; HFR12; DCA13; Ber+14a; Ozv+14; Das+15; Lan+16; LHR19] for
some references). These works exploited the Fokker-Planck (or Langevin) equation description
for the heavy particles. Some studies pointed out limitations in the QGP phase and considered
the Boltzmann equation instead [Das+14; TTD16]. While the Fokker-Planck or the Boltzmann
kinetic equations seem natural starting points to address the calculation of transport coefficients,
the scattering amplitudes used to describe the collisions were computed from a microscopic
model, completely independent of the kinetic theory. Therefore, from a purely theoretical
perspective, there is a lack of internal consistency in these calculations, as it would be desirable
to construct both the interaction rates and the transport equation from the same microscopic
theory.

On the other hand, in most of the previous analyses, the transition amplitudes of the scattering
of heavy mesons with light hadrons and, hence, the transport coefficients were calculated
without implementing medium corrections for the interactions. Indeed, the off-shell effects
cannot be accounted for in the standard Boltzmann or Fokker-Planck equations. For that, an
extension using the more general Kadanoff-Baym equations is required. Moreover, we have seen
in Chapter 3 that the in-medium interactions induce new kinematic domains, namely, the regime
of the Landau cut, which affect the D-meson properties. These new effects, which would also
affect the D-meson transport coefficients, can be naturally incorporated upon the derivation of
an off-shell kinetic equation. Therefore, to apply our findings in Chapter 3, we are forced to
address the derivation of an off-shell kinetic equation and, with this, consistently describe the
interaction amplitudes and the transport equation from the same effective theory.
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5.2 Nonequilibrium description

5.2.1 The off-shell kinetic equation

In this section we describe the kinetic equation for heavy mesons interacting with light mesons,
exploiting the real-time formalism of scalar quantum fields [KB62; Dan84; CH88; BM90; DP91;
BI99; Ram07; JCG04; Cas09; Bon16]. While the derivation of the kinetic theory based on
out-of-equilibrium quantum field theory is rather general, for the practical computation of the
physical quantities considered in this chapter, namely, thermal widths and transport coefficients,
only equilibrium properties, mostly taken from Chapter 3, will be used.

Out of equilibrium, the fundamental quantities are the two Wightman functions, defined in
Eqs. (3.2) and (3.3). For the heavy meson, they read

iG>D(x, x′) ≡ 〈D(x)D(x′)〉 , (5.1)

iG<D(x, x′) ≡ 〈D(x′)D(x)〉 , (5.2)

where the subscript in G≶(x, x′) refers to the particular hadron species. They correspond to the
time-ordered Green’s functions (ordered along the real-time contour, Fig. 3.1) of the D-meson
propagator, depending on the relative ordering of the time arguments t, t′ (see Section 3.2).
Such definitions for the heavy meson can be extended to the light-meson sector, for instance for
the Φ-meson Wightman functions, iG≶

Φ(x, x′), where Φ = {π,K, K̄, η}.
The retarded and advanced heavy-meson propagators are related to Eqs. (5.1) and (5.2) as

GR
D(x, x′) = θC(t− t′)

[
G>D(x, x′)−G<D(x, x′)

]
, (5.3)

GA
D(x, x′) = −θC(t′ − t)

[
G>D(x, x′)−G<D(x, x′)

]
, (5.4)

with θC(t− t′) defined along the Schwinger-Keldysh contour C = C1 ∪ C2 (see right panel in
Fig. 3.1).

In coordinate space, the heavy-meson self-energy is also defined along the real-time contour
C. The time-ordered D-meson self-energy [BI99] reads

ΠD(x, x′) = Πδ
D(x)δ(3)(~x− ~x ′)δC(t− t′) + θC(t− t′)Π>

D(x, x′) + θC(t′ − t)Π<
D(x, x′) , (5.5)

where Πδ(x) is the local (tadpole) contribution [BI99]. We have introduced a generalized Dirac
delta δC(t− t′) along the contour which can be defined as

δC(t− t′) =


δ(t− t′) if t, t′ ∈ C1 ,

−δ(t− t′) if t, t′ ∈ C2 ,

0 otherwise .
(5.6)

The definitions for Π<
D(x, x′) and Π>

D(x, x′) are analogous to those for the Green’s functions.
Similarly, the retarded and advanced self-energies follow,

ΠR
D(x, x′) = θC(t− t′)

[
Π>
D(x, x′)−Π<

D(x, x′)
]
, (5.7)

ΠA
D(x, x′) = −θC(t′ − t)

[
Π>
D(x, x′)−Π<

D(x, x′)
]
. (5.8)

The equilibrium retarded D-meson self-energy can be computed along the Matsubara contour,
as has been done in Chapter 3 using the ITF. In the present chapter, we extensively use those
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results. To simplify the notation, from now on we suppress the subindex in the self-energies, as
it is understood that all of them refer to the heavy meson.

The Dyson equations for the time-ordered Green’s function read [KB62; Dan84; BM90; DP91;
BI99],

−
[
∂2
x +m2

D

]
GD(x, x′)−

∫
C

d4zΠ(x, z)GD(z, x′) = δC(t− t′)δ(3)(~x− ~x ′) , (5.9)

−
[
∂2
x′ +m2

D

]
GD(x, x′)−

∫
C

d4z GD(x, z)Π(z, x′) = δC(t− t′)δ(3)(~x− ~x ′) , (5.10)

where the time convolution,
∫
C
dz0, is taken along the Schwinger-Keldysh path. The bare

D-meson mass term is denoted as mD. Equations (5.9) and (5.10) are independent Dyson
equations, acting on the two possible arguments of the Green’s function. While in the absence of
interactions the equations of motion are the Klein-Gordon ones, when interactions are considered,
the D-meson self-energy corrections need to be taken into account. The microscopic theory
describing the interactions between heavy and light mesons is the effective theory used in the
previous chapters, which incorporates chiral and heavy-quark symmetries.

One can particularize Eqs. (5.9) and (5.10) for the “lesser” function G<D(x, x′), for example by
fixing t in the forward contour C1 and t′ in the backward one C2. One finds that

−
[
∂2
x +m2

D

]
G<D(x, x′)−

∫
C

d4zΠ(x, z)GD(z, x′) = 0 , (5.11)

−
[
∂2
x′ +m2

D

]
G<D(x, x′)−

∫
C

d4z GD(x, z)Π(z, x′) = 0 , (5.12)

where the convolution operation should respect t ≺ t′. This term can be simplified by applying
the Langreth rules [Ram07] to arrive to

−
[
∂2
x +m2

D + Πδ(x)
]
G<D(x, x′)

=
∫ ∞
−∞

d4z
[
ΠR(x, z)G<D(z, x′) + Π<(x, z)GA

D(z, x′)
]
, (5.13)

−
[
∂2
x′ +m2

D + Πδ(x′)
]
G<D(x, x′)

=
∫ ∞
−∞

d4z
[
G<D(x, z)ΠA(z, x′) +GR

D(x, z)Π<(z, x′)
]
, (5.14)

where we have introduced the decomposition of the self-energy given in Eq. (5.5). Notice that
the time integration in z0 is now restricted from −∞ to +∞ only, that is, along C1 in Fig. 3.1.
Equations for G>D(x, x′) can be obtained by formally replacing “<” with “>” in all cases. To
lighten the notation we write both equations as[

G−1
0,x −Πδ(x)

]
G

≶
D(x, x′) =

(
ΠR ⊗G≶

D

)
(x, x′) +

(
Π≶ ⊗GA

D

)
(x, x′) , (5.15)[

G−1
0,x′ −Πδ(x′)

]
G

≶
D(x, x′) =

(
G

≶
D ⊗ΠA

)
(x, x′) +

(
GR
D ⊗Π≶

)
(x, x′) , (5.16)

where we have defined G−1
0,x ≡ −∂2

x −m2
D and introduced the convolution symbol as

(
ΠR ⊗G≶

D

)
(x, x′) ≡

∫ ∞
−∞

d4zΠR(x, z)G≶
D(z, x′) . (5.17)
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For completeness, the equations of motion for the retarded/advanced (R/A) Green’s functions
are [

G−1
0,x −Πδ(x)

]
GR/A
D (x, x′)−

(
ΠR/A ⊗GR/A

D

)
(x, x′) = δ(4)(x− x′) , (5.18)[

G−1
0,x′ −Πδ(x′)

]
GR/A
D (x, x′)−

(
GR/A
D ⊗ΠR/A) (x, x′) = δ(4)(x− x′) , (5.19)

where the Dirac deltas are the standard ones, δ(4)(x−x′) = δ(t− t′)δ(3)(~x−~x ′). These equations
can be obtained using the definitions in Eqs. (5.7) and (5.8). Equations (5.15),(5.16),(5.18),
and (5.19) are known as the Kadanoff-Baym equations [KB62].

To construct a kinetic equation from the Kadanoff-Baym equations, we start by taking the
difference between Eqs. (5.15) and (5.16) for G<D(x, x′),[

G−1
0,x −Πδ(x)

]
G<D(x, x′)−

[
G−1

0,x′ −Πδ(x′)
]
G<D(x, x′)

=
(
ΠR ⊗G<D + Π< ⊗GA

D −G<D ⊗ΠA −GR
D ⊗Π<

)
(x, x′) . (5.20)

In order to facilitate the subsequent computations, it is convenient to combine the convolution
operator with the commutator and the anticommutator by introducing the following notation:[

A ⊗, B
]
≡ A⊗B −B ⊗A , (5.21){

A ⊗, B
}
≡ A⊗B +B ⊗A , (5.22)

and suppressing the spacetime indices temporarily to lighten the expressions.

With these operators, Eq. (5.20) can be written as[
G−1

0,x −Πδ(x)
]
G<D(x, x′)−

[
G−1

0,x′ −Πδ(x′)
]
G<D(x, x′)

− 1
2
[
ΠR + ΠA ⊗, G<D

]
− 1

2
[
Π< ⊗, GR

D +GA
D

]
= 1

2
{

ΠR ⊗, G<D
}
− 1

2
{

ΠA ⊗, G<D
}

+ 1
2
{

Π< ⊗, GA
D

}
− 1

2
{

Π< ⊗, GR
D

}
. (5.23)

This equation can be simplified with the help of Eqs. (5.3) and (5.4), as well as Eqs. (5.7) and
(5.8), which imply

GR
D(x, x′)−GA

D(x, x′) = G>D(x, x′)−G<D(x, x′) , (5.24)

ΠR(x, x′)−ΠA(x, x′) = Π>(x, x′)−Π<(x, x′) , (5.25)

leading to the kinetic equation for G<D(x, x′) [Dan84; DP91; BI99],[
G−1

0,x −Πδ(x)
]
G<D(x, x′)−

[
G−1

0,x′ −Πδ(x′)
]
G<D(x, x′)

− 1
2
[
ΠR + ΠA ⊗, G<D

]
− 1

2
[
Π< ⊗, GR

D +GA
D

]
= 1

2
{

Π> ⊗, G<D
}
− 1

2
{

Π< ⊗, G>D
}
. (5.26)
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For completeness, the equivalent equation for G>D(x, x′) is[
G−1

0,x −Πδ(x)
]
G>D(x, x′)−

[
G−1

0,x′ −Πδ(x′)
]
G>D(x, x′)

− 1
2
[
ΠR + ΠA ⊗, G>D

]
− 1

2
[
Π> ⊗, GR

D +GA
D

]
= 1

2
{

Π> ⊗, G<D
}
− 1

2
{

Π< ⊗, G>D
}
. (5.27)

These equations are still rather general kinetic equations, and one needs to detail the form of
the heavy-meson self-energy in terms of the Green’s functions.

Before doing that, one can simplify the expressions by implementing a Wigner transformation,
together with a gradient expansion [KB62]. For this, we assume that the Green’s function
depends differently on the center-of-mass coordinate X = (x+ x′)/2 and the relative coordinate
s = x− x′. When the dependence on X is much smoother than the one in s, it makes sense to
Fourier transform the latter and apply a gradient expansion for the former. In that respect, we
expand in powers of ∂µX and perform the so-called Wigner transform to the two-point functions.
For a generic operator A(x, x′), the Wigner transform is defined as,

A(x, x′) WT−−→ A(X, k) =
∫
d4s ei k·sA

(
X + s

2 , X −
s

2

)
. (5.28)

In Appendix D we provide some details on how to compute the Wigner transform of the product
and convolution of operators [Ram07]. All those rules should be applied for the Wigner transform
of Eqs. (5.26) and (5.27).

After Wigner transform, Eq. (5.26) reads

2kµ ∂iG<D
∂Xµ

+ ∂Πδ

∂Xµ

∂iG<D
∂kµ

− ∂Re ΠR

∂kµ

∂iG<D
∂Xµ

+ ∂Re ΠR

∂Xµ

∂iG<D
∂kµ

− i
{

Π<,Re GR
D

}
PB

= i Π<iG>D − i Π>iG<D , (5.29)

where all (unwritten) arguments are now phase-space variables (X, k). To obtain this equation,
apart from using the results in Appendix D, we have applied that

1
2
[
GR
D(X, k) +GA

D(X, k)
]

= Re GR
D(X, k) , (5.30)

1
2
[
ΠR(X, k) + ΠA(X, k)

]
= Re ΠR(X, k) , (5.31)

which follows from

GR
D(X, k) =

[
GA
D(X, k)

]∗
, (5.32)

ΠR(X, k) =
[
ΠA(X, k)

]∗
. (5.33)

The relations in Eqs. (5.24) and (5.25) remain the same after the Wigner transform,

GR
D(X, k)−GA

D(X, k) = G>D(X, k)−G<D(X, k) = 2i Im GR
D(X, k) , (5.34)

ΠR(X, k)−ΠA(X, k) = Π>(X, k)−Π<(X, k) = 2i Im ΠR(X, k) . (5.35)

136 Chapter 5 In-medium kinetic theory of heavy mesons and transport coefficients



Some terms of Eq. (5.29) can be combined to give(
kµ − 1

2
∂Re ΠR(X, k)

∂kµ

)
∂iG<D(X, k)

∂Xµ
+ 1

2
∂Re ΠR(X, k)

∂Xµ

∂iG<D(X, k)
∂kµ

− i
2{Π

<(X, k),Re GR
D(X, k)}PB = 1

2 i Π<(X, k)iG>D(X, k)− 1
2 i Π>(X, k)iG<D(X, k) , (5.36)

where we have incorporated the local tadpole term Πδ(X) into the real part of the retarded
self-energy, Re ΠR(X, k). In Eq. (5.36), we have written the explicit dependence on the four-
position X = (t̃, ~X) and the four-momentum k = (k0,~k ). Note that k0 and ~k are independent
variables, although related through the spectral distribution SD(X, k), to be introduced later.
Such a general case where the heavy meson is not on its mass shell, that is, its energy is not
determined by its momentum, will be generically denoted as off-shell. Already in equilibrium,
we have shown in Chapter 3 that the heavy meson at T 6= 0 is characterized by a continuous
spectral function, which represents the distribution of possible energies for a given value of the
momentum.

In the present chapter, we will eventually consider an equilibrium situation in a homoge-
neous background. Therefore, we neglect the mean-field term in Eq. (5.36), proportional to
∂XµRe ΠR [BI02]. In addition, we will not consider the Poisson bracket (PB) of the same
equation. This term was shown to be unimportant in the quasiparticle limit and can be safely
neglected [Dan84; BI02; Cas09]. However, one should not forget that in the off-shell case it
contributes to the out-of-equilibrium dynamics of G>D(X, k) [BM90; BI02] (see also [Cas09] and
references therein).

With these approximations, we arrive at the final form of the “off-shell” transport equation,(
kµ − 1

2
∂Re ΠR(X, k)

∂kµ

)
∂iG<D(X, k)

∂Xµ

= 1
2 i Π<(X, k)iG>D(X, k)− 1

2 i Π>(X, k)iG<D(X, k) . (5.37)

For completeness, the transport equation for G>D(X, k) is similar to Eq. (5.37), and it shares
the same r.h.s., which represents the collision term of the transport equation,(

kµ − 1
2
∂Re ΠR(X, k)

∂kµ

)
∂iG>D(X, k)

∂Xµ

= 1
2 i Π<(X, k)iG>D(X, k)− 1

2 i Π>(X, k)iG<D(X, k) . (5.38)

Related to the dispersion relation of the heavy meson, one can consider the equations for
the retarded Green’s function GR

D in Eqs. (5.18) and (5.19) and, after performing the Wigner
transform along with the gradient expansion, get to[

k2 −m2
D −ΠR(X, k)

]
GR
D(X, k) = 1 , (5.39)

where the operators of order O(∂2
X) have been neglected, and, again, we have incorporated the

local Πδ(X) into the retarded self-energy. The pole of the retarded Green’s function, that is the
zero of the l.h.s., will generically provide the dispersion relation of the D meson modified by the
interactions. Notice that the equilibrium and homogeneous ΠR(k) has been studied in Chapter 3,
and it will be exploited here as well.
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5.2.2 The T -matrix approximation

To close the transport equation for G<D(X, k), the remaining step is to detail the heavy-meson self-
energies in terms of the Green’s functions. To this goal, one needs to apply the microscopic theory
to the given system. Here, in consistency with the effective approach described in Chapter 3, we
will incorporate exact unitarity constraints to the scattering matrix, implementing an in-medium
T -matrix resummation of the scattering amplitudes. In the nonequilibrium context, this is called
the T -matrix approximation [KB62; Dan84; BM90].

The heavy-meson self-energies can be written in terms of the (retarded) T -matrix element
as [KB62],

i Π<(X, k) =
∑
{a,b,c}

∫
d4k1

(2π)4

∫
d4k2

(2π)4

∫
d4k3

(2π)4 (2π)4δ(4)(k1 + k2 − k3 − k)

×
∣∣∣T (k0

1 + k0
2 + i ε,~k1 + ~k2)

∣∣∣2 iG<Da(X, k1)iG<Φb(X, k2)iG>Φc(X, k3) , (5.40)

i Π>(X, k) =
∑
{a,b,c}

∫
d4k1

(2π)4

∫
d4k2

(2π)4

∫
d4k3

(2π)4 (2π)4δ(4)(k1 + k2 − k3 − k)

×
∣∣∣T (k0

1 + k0
2 + i ε,~k1 + ~k2)

∣∣∣2 iG>Da(X, k1)iG>Φb(X, k2)iG<Φc(X, k3) . (5.41)

Diagrammatically, the self-energies Π≶(X, k) are given by the 2-loop diagram represented in
Fig. 5.1. The solid lines represent heavy mesons, while dashed lines are Φ propagators, and the
vertices stand for the full T matrices.

The sum over a, b, c in Eqs. (5.40) and (5.41) encodes the different species that can interact
and that are fixed by the effective vertices. This sum is restricted to the combinations that respect
the conservation of quantum numbers in a full coupled-channel approach. In particular, Da can
describe either D or Ds mesons, and Φb,Φc can represent π,K, K̄, η. Figure 5.2 shows the 10
allowed diagrams, although not all of them are equally important. We will comment on this
when addressing the effect of inelastic processes in our calculations.

We now discuss the form of the Wightman functions G≶
D,Φ(X, k). We have mentioned that light

degrees of freedom satisfy their own Kadanoff-Baym equations, which are coupled to those of
the heavy mesons. In the context of HICs, the standard approach for the heavy-flavor dynamics
is to exploit the fact that the light degrees of freedom have reached equilibrium much before the
heavy sector, as the latter has a much longer relaxation time, roughly proportional to the mass of
the particle. In our goal of accessing transport coefficients of heavy mesons, we also assume this,
so there is no need to consider the kinetic equation for light mesons.

k k1

k3

k2

Figure 5.1: The 2-loop structure of Π≶(X, k) for the heavy meson. Solid lines represent the heavy-meson
propagators, G≶

D(X, k1); dashed lines depict light-meson propagators, G≶
Φ(X, k2), G≷

Φ(X, k3);
green circles correspond to T -matrix operators.

138 Chapter 5 In-medium kinetic theory of heavy mesons and transport coefficients



D D

π, η

π, η

D D

K̄

K̄
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K

D Ds
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K̄

D Ds

K

π, η

Figure 5.2: Diagrams contributing to Π≶
D(X, k) for the D meson in Eqs. (5.40) and (5.41). A total of 10

channels are needed due to the coupled-channel problem for the D-meson interaction. Green
circles are T -matrix elements in the appropriate channel.

In addition, we apply the thermal local equilibrium solution for G≶
Φ(X, k), which can be

expressed as [KB62]

iG<Φ(X, k) = 2πSΦ(X, k)f (0)
Φ (X, k0) , (5.42)

iG>Φ(X, k) = 2πSΦ(X, k)
[
1 + f

(0)
Φ (X, k0)

]
, (5.43)

where SΦ(X, k) is the equilibrium light-meson spectral function and f (0)(X, k0) is the equilibrium
occupation number, that is, the BE distribution function. Equation (5.43) incorporates the Bose
enhancement factor 1 + f (0)(X, k0).

Concerning the heavy mesons, we will assume that they are not far from equilibrium, which is
enough to address the calculation of the transport coefficients. Then, we use a similar form as in
Eqs. (5.42) and (5.43) for their Green’s function, the so-called Kadanoff-Baym Ansatz,

iG<D(X, k) = 2πSD(X, k)fD(X, k0) , (5.44)

iG>D(X, k) = 2πSD(X, k)
[
1 + fD(X, k0)

]
, (5.45)

where the D-meson spectral function SD(X, k) and the distribution function fD(X, k0) are out
of equilibrium.

Inserting these Ansätze into the kinetic equation (see Eq. (5.37)), together with the D-meson
self-energies defined in Eqs. (5.40) and (5.41), one obtains

(
kµ − 1

2
∂Re ΠR

∂kµ

)
∂

∂Xµ
[SD(X, k)fD(X, k0)] = 1

2

∫ 3∏
i=1

d4ki
(2π)3 (2π)4δ(4)(k1 + k2 − k3 − k)

×
∣∣∣T (k0

1 + k0
2 + i ε,~k1 + ~k2)

∣∣∣2 SD(X, k1)SΦ(X, k2)SΦ(X, k3)SD(X, k)

×
[
fD(X, k0

1)f (0)
Φ (X, k0

2)f̃ (0)
Φ (X, k0

3)f̃D(X, k0)

−f̃D(X, k0
1)f̃ (0)

Φ (X, k0
2)f (0)

Φ (X, k0
3)fD(X, k0)

]
, (5.46)
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where we have defined f̃(X, k0) ≡ 1 + f(X, k0). Notice that we have not written explicitly the
sum over {a, b, c} on the r.h.s., but it should be understood to account for all possible physical
processes.

Focusing on the positive-energy D-meson, one can integrate over dk0 along the positive branch
in both sides,∫ +∞

0
dk0

(
kµ − 1

2
∂Re ΠR

∂kµ

)
SD(X, k)∂fD(X, k0)

∂Xµ

= 1
2

∫ +∞

0
dk0

∫ 3∏
i=1

d4ki
(2π)3 (2π)4δ(4)(k1 + k2 − k3 − k)

∣∣∣T (k0
1 + k0

2 + i ε,~k1 + ~k2)
∣∣∣2

× SD(X, k1)SΦ(X, k2)SΦ(X, k3)SD(X, k)

×
[
fD(X, k0

1)f (0)
Φ (X, k0

2)f̃ (0)
Φ (X, k0

3)f̃D(X, k0)

−f̃D(X, k0
1)f̃ (0)

Φ (X, k0
2)f (0)

Φ (X, k0
3)fD(X, k0)

]
, (5.47)

where the transport equation for the spectral function has been used after Eq. (5.46)15.

This equation is very similar to the standard Boltzmann equation but the effects of the medium
(temperature and density) are now incorporated in the T matrix and the spectral functions of
the interacting particles. The reduction of this equation to the classical Boltzmann equation
makes an extra assumption for the spectral functions, the quasiparticle approximation. In this
approximation, the spectral function is only characterized by the quasiparticle energy Ek and the
thermal decay width γk, and S(k) admits a Lorentzian shape peaked at Ek and with a spectral
width γk � Ek. In the limit γk/Ek → 0, one can consider the narrow limit,

S(k)→ zk
2Ek

[
δ(k0 − Ek)− δ(k0 + Ek)

]
. (5.48)

In this limit, one is effectively treating the quasiparticle as a stable state (no thermal width), but
with a medium-modified energy Ek plus a correction due to the zk factor.

The narrow limit allows to trivially perform the integration over the k0
i variables in the kinetic

equation in Eq. (5.47) to obtain the on-shell (or Boltzmann) transport equation. When assuming
this approximation for all the particles involved, different combinations of the Dirac delta
functions can be taken, which describe different scattering processes [BI99; BI02]. However,
in this limit, the energy-momentum conservation only allows 2↔ 2 processes [BI02; JCG04].
Among those, the one with a DD̄ pair in the initial state can be neglected due to the Boltzmann
suppression factor, and the inverse reaction is suppressed due to the high energy threshold for
the two incoming pions). Therefore one only considers one type of collision, namely DΦ→ DΦ.
We label the momenta of a generic scattering as k + 3→ 1 + 2 (see Fig. 5.3 for illustration.)

15From Eqs. (5.44) and (5.45) one has SD(X, k) = i
[
G>D(X, k)−G<D(X, k)

]
/(2π). Then, subtracting the transport

equations, Eq. (5.38) minus Eq. (5.37), one obtains the transport equation for the spectral density,(
kµ −

1
2
∂Re ΠR(X, k)

∂kµ

)
∂SD(X, k)
∂Xµ

= 0 .
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k

k3

k1

k2

Figure 5.3: Labeling of the incoming and outgoing momenta in a generic binary scattering. Solid lines
represent heavy mesons, while dashed lines represent light mesons. The vertex corresponds to
a retarded T -matrix element.

Denoting for simplicity fi ≡ fD,Φ(X,Ei), where the species is fixed by the value of i, that is
i = {1, k} for the heavy meson, i = {2, 3} for the light meson, we obtain[

∂

∂t
−

~k

Ek
· ∇X

]
fk = zk

2Ek

∫ ( 3∏
i=1

d3ki
(2π)3

zi
2Ei

)
(2π)4δ(3)(~k + ~k3 − ~k1 − ~k2)

×
{
δ(Ek + E3 − E1 − E2)

∣∣∣T (Ek + E3,~k + ~k3)
∣∣∣2 (f1f2f̃3f̃k − f̃1f̃2f3fk

)
+ δ(Ek − E3 − E1 + E2)

∣∣∣T (Ek − E3,~k + ~k3)
∣∣∣2 (f1f̃

(0)
2 f

(0)
3 f̃k − f̃1f

(0)
2 f̃

(0)
3 fk

)}
, (5.49)

where the two different collision terms on the r.h.s. of the equality depend on the sign of the
energy of the light meson E3. The first one evaluates the scattering amplitude above the mass
threshold of the particles k and 3 and we refer to it as the unitary contribution. The second
one implies the scattering amplitude below the energy threshold and it is nonzero due to the
Landau cut [Wel83; Gho+11] arising in the two-meson propagator. This term is referred to as
the Landau contribution, and it is of key importance in this chapter.

If only elastic collisions are considered, then one can simplify the equation by switching
variables ~k2 and ~k3 to obtain[

∂

∂t
−

~k

Ek
· ∇X

]
fk = zk

2Ek

∫ ( 3∏
i=1

d3ki
(2π)3

zi
2Ei

)
(2π)4δ(4)(k + k3 − k1 − k2)

×
{∣∣∣T (Ek + E3 + i ε,~k + ~k3)

∣∣∣2 +
∣∣∣T (Ek − E2 + i ε,~k − ~k2)

∣∣∣2}
×
(
f1f

(0)
2 f̃

(0)
3 f̃k − f̃1f̃

(0)
2 f

(0)
3 fk

)
. (5.50)

This equation looks almost like the Boltzmann equation16 considered previously in the literature,
where the effect of the Landau contribution was neglected, vacuum scattering amplitudes were
employed, and the factors zi were set to one. A version of the transport equation where these
factors were kept is presented in Ref. [DP91]. In our particular case, the approximation zi ' 1
is an excellent one, given the good quasiparticle description of the D mesons. Notice that the
quasiparticle energies in Eq. (5.50) and the T matrix do contain medium modifications.

5.3 Heavy-meson properties in thermal equilibrium

In the previous section, we have derived the kinetic equation satisfied by heavy mesons and
commented on the different approximations which can be used to simplify it, from the Kadanoff-

16More exactly, the Boltzmann-Uehling-Uhlenbeck equation, as quantum effects are incorporated.
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Baym equation to the classical Boltzmann equation. These steps were necessary to justify
the form of the kinetic equation constructed from the effective theory in Chapters 2 and 3. In
addition, this derivation will also help to perform the off-shell generalization of the Fokker-Planck
equation and the heavy-flavor transport coefficients, which will be pursued in Section 5.5.1.

In this section, we analyze the different elements appearing in Eq. (5.47), namely the T -matrix
elements, the retarded heavy-meson self-energy, and the spectral function, for the particular case
of a system in equilibrium.

The T matrix appearing in Eqs. (5.40) and (5.41) is the retarded four-point amplitude that
follows from solving the BS equation in coupled channels, as extensively described in Chapter 2,
in the vacuum, and Chapter 3, at finite temperature in the equilibrium case.

We have seen that the unitary cut of the T matrix provides a source for the charmed-meson
vacuum decay width through the imaginary part of the corresponding self-energy. As an example,
when a D meson interacts with a pion, it can suffer an elastic scattering or, if the energy of
the collision is large enough, then the pair can also convert into a Dη or DsK̄ pair. At finite
temperature, the bath is populated by Φ mesons, and their relative importance is weighted
by the appropriate BE distribution functions. Consequently, at T > 0 the contribution of the
unitary cut to the decay width is convoluted by statistical weight factors, and additional physical
processes appear in the kinematic region of the Landau cut. These new processes include, for
example, the absorption of in-medium real light mesons by the D meson and are forbidden
in vacuum due to kinematic restrictions. On the other hand, the structure of the T matrix is
smeared at finite temperature and the thresholds of the unitary (

√
s ≥ (mD +mΦ)) and Landau

(
√
s ≤ |mD−mΦ|) cuts are smoothened with increasing temperatures as a result of the widening

of the D-meson spectral function (see Chapter 3 for details).

Regarding the heavy-meson self-energy and spectral function at finite temperature, the equilib-
rium quantities have been obtained in Chapter 3 using the ITF. Let us reproduce the expressions
with the notation used in this chapter, for completeness. The heavy-meson retarded propagator
reads

GR
D(k0,~k ) = 1

(k0)2 − ~k 2 −m2
D − Re ΠR(k0,~k ;T )− i Im ΠR(k0,~k ;T )

, (5.51)

where mD is the (vacuum) physical D-meson mass, renormalized by the vacuum contribution of
the retarded D-meson self-energy ΠR. We remind that, after mass renormalization, the real and
imaginary parts of the self-energy in Eq. (5.51) only contain thermal corrections. This form can
also be obtained from Eq. (5.39) when applied to the equilibrium case.

The spectral function is then obtained from the imaginary part of the retarded propagator
using Eq. (5.34),

SD(k0,~k ) = iG>D(k0,~k )− iG<D(k0,~k )
2π = − 1

π
Im GR

D(k0,~k ) . (5.52)

This definition of the spectral function in terms of the imaginary part of the retarded Green’s
function is compatible with the convention in Chapter 3 for the equilibrium case.

In terms of the D-meson retarded self-energy, the spectral function reads

SD(k0,~k ) = − 1
π

Im ΠR(k0,~k ;T )[
(k0)2 − ~k 2 −m2

D − Re ΠR(k0,~k ;T )
]2

+
[
Im ΠR(k0,~k ;T )

]2 . (5.53)
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In the quasiparticle approximation, the pole of the retarded Green’s function is not far from
the vacuum one and the spectral function can be written as

SD(k0,~k ) ' zk
2πEk

γk
(k0 − Ek)2 + γ2

k

, (5.54)

where Ek is the quasiparticle energy, solution of

E2
k − ~k 2 −m2

D − Re ΠR(Ek,~k ;T ) = 0 , (5.55)

and the damping rate γk is defined as

γk = − zk
2Ek

Im ΠR(Ek,~k ;T ) , (5.56)

with the zk factor,

z−1
k = 1− 1

2Ek

(
∂Re ΠR(k0,~k ;T )

∂k0

)∣∣∣∣∣
k0=Ek

. (5.57)

In particular, this approximation entails that the heavy-meson damping rate should be much
smaller than the quasiparticle energy. We have numerically checked that the zk-factors are very
close to one. Rather independent of the quasiparticle momentum k, we observe up to 2% (1%)
deviations from unity for T = 150 MeV (T = 100 MeV). For T = 40 MeV, the factor zk is fully
compatible with one. Therefore the approximation zk ' 1 is an excellent one and will be used in
what follows.

The D-meson thermal width, Γk, is defined as twice the damping rate, Γk ≡ 2γk. This quantity
is negligible at low temperatures. The effects of the medium make it sizable at T = 150 MeV,
with thermal widths of the order of 100 MeV, as seen in Chapter 3. Nevertheless, these values
are still small compared to the corresponding Ek, which validates the quasiparticle approach.

In the next sections, we explore different approximations to address the D-meson thermal
width and the transport coefficients. From the results of this section, where the quasiparticle
approximation is a very good one, we can anticipate that off-shell effects might not contribute
much to these quantities. Nevertheless, we will stay as general as possible and quantify the
importance of the different approximations.

5.4 Analysis of the heavy-meson thermal width in equilibrium

In this section, we analyze in detail several effects on the heavy-meson thermal width Γk, defined
as twice the damping rate of Eq. (5.56). In particular, we calculate this coefficient for D mesons
with two different methodologies. In section 5.4.1, the thermal width is obtained from the
integration of the imaginary part of the scattering amplitude, whereas in the method described
in section 5.4.2 the integrand is proportional to the square of the amplitude. We also infer the
importance of the Landau cut of the scattering amplitude to the thermal width.

Furthermore, the heavy-meson thermal width is given for an on-shell heavy meson, meaning
that the heavy-meson energy Ek is automatically fixed by k through Eq. (5.55). However, the
internal propagators of the retarded self-energy do not need to be on their mass shell. These
off-shell effects are addressed in section 5.4.3, together with other effects such as the contribution
of the inelastic channels or the relevance of the various light mesons of the bath.

The results for the thermal width of the B̄ mesons are summarized in section 5.4.4.
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5.4.1 Thermal width from the imaginary part of the scattering amplitude

In the definition of the heavy-meson thermal width in terms of the retarded self-energy,

Γk = − zk
Ek

Im ΠR(Ek,~k ;T ) , (5.58)

only the effect of pions was considered in the self-consistent calculation of the D-meson self-
energy in the previous chapters, being the contribution of the other light mesons very suppressed.
Here we also analyze these contributions because we have access to all the elements of the T
matrix.

Let us review the calculation of Γk in more detail and study the contributions from the different
kinematic ranges. The calculation of the self-energy in terms of T -matrix elements in the ITF
leads, after summing over Matsubara frequencies and performing the analytic continuation to
real energies, to the following expression for the imaginary part of the retarded self-energy,

Im ΠR(Ek,~k ) =
∫

d3p

(2π)3

[
f (0)(Ep)

2Ep
Im TDπ(Ek + Ep, ~p+ ~k )

+1 + f (0)(Ep)
2Ep

Im TDπ(Ek − Ep, ~p+ ~k )

− f (0)(Ek + Ep)
2Ep

Im TDπ(Ek + Ep, ~p+ ~k )

+ f (0)(Ek − Ep)
2Ep

Im TDπ(Ek − Ep, ~p+ ~k )
]
, (5.59)

where we have already fixed the external D-meson energy to the quasiparticle energy Ek, that is
a function of k, as given by Eq. (5.55). We have neglected the zk factors, because they are very
close to one, as previously discussed, but they can be easily incorporated if desired.

Using this result, we can write the D-meson thermal width in Eq. (5.58) as the contribution of
four pieces,

Γk = Γ(1)
k + Γ(2)

k + Γ(3)
k + Γ(4)

k , (5.60)

where

Γ(1)
k = − 1

Ek

∫
d3p

(2π)3
f (0)(Ep)

2Ep
Im TDπ(Ek + Ep, ~p+ ~k ) , (5.61)

Γ(2)
k = − 1

Ek

∫
d3p

(2π)3
1 + f (0)(Ep)

2Ep
Im TDπ(Ek − Ep, ~p+ ~k ) , (5.62)

Γ(3)
k = 1

Ek

∫
d3p

(2π)3
f (0)(Ek + Ep)

2Ep
Im TDπ(Ek + Ep, ~p+ ~k ) , (5.63)

Γ(4)
k = − 1

Ek

∫
d3p

(2π)3
f (0)(Ek − Ep)

2Ep
Im TDπ(Ek − Ep, ~p+ ~k ) . (5.64)

It is important to realize that both Γ(1)
k and Γ(3)

k receive a contribution from the scattering
amplitude above the two-particle mass threshold, while Γ(2)

k and Γ(4)
k depend on the values of

the T matrix below the threshold. The latter contribution is related to the Landau cut, and only
appears at finite temperature when the total momentum of the collision is different from zero or
when the masses of the interacting particles are different [Wel83; Das97; TA17].

In particular, when vacuum amplitudes are used, the Landau cut disappears, and only Γ(1)
k

and Γ(3)
k contribute. Incidentally, this is the situation in the pion-pion vacuum scattering of
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Figure 5.4: The D-meson thermal width as computed from Eq. (5.60). Dashed lines show the contribution
of Γ(1)

k + Γ(3)
k (Eqs. (5.61)+(5.63) above the threshold), whereas dotted lines correspond to

the contribution of Γ(2)
k + Γ(4)

k (Eqs. (5.62)+(5.64) below the threshold (Landau cut)).

Ref. [Sch93], where only Γ(1)
k appears. In our case, Γ(3)

k is in fact extremely small, because it is
roughly proportional to the product of the pion and D-meson densities, and the latter is very
scarce 17. However, when considering a medium-dependent interaction, Γ(2)

k and Γ(4)
k also have

a potentially important contribution that we now quantify.
To gauge the weight of the different terms in Eq. (5.60) we plot in Fig. 5.4 the different

contributions at three different temperatures. The input for TDπ is taken from the results of the
scattering amplitudes obtained in Chapter 3.

At small temperatures (T = 40 MeV) the terms Γ(1)
k + Γ(3)

k dominate. Nevertheless, the two
pieces coming from the Landau cut, Γ(2)

k + Γ(4)
k , give a nonzero contribution resulting in a 20% of

the total thermal width. At T = 100 MeV, the contribution of the unitary cut, Γ(1)
k + Γ(3)

k , and the
Landau cut, Γ(2)

k + Γ(4)
k , are similar. For the higher temperature, T = 150 MeV, the contribution

from the Landau cut already surpasses that of the unitary cut. This means that for temperatures
close to Tc there is a dominant contribution to the thermal width coming from the Landau cut,
which would be overlooked if vacuum amplitudes were used. We have also checked that Γ(3)

k is
negligible for all momenta and temperatures.

5.4.2 Thermal width from the scattering amplitude squared

The calculation of the thermal width due to thermal pions using Eqs. (5.60) to (5.64) allowed us
to distinguish the relative weight of the unitary and Landau contributions. However, the effect
of the individual collision terms (Dπ → Dπ,Dπ → Dη,Dπ → DsK̄) cannot be disentangled.
On the other hand, the computation of heavy-flavor transport coefficients is performed from
the kinetic transport equation, where the collision rates, which are proportional to |TDπ|2, are
used. For these reasons, we derive an alternative expression for Γk, in terms of the scattering
amplitude squared, which also serves to cross-check our previous determination of Γk.

We start from the same definition of the thermal width of Eq. (5.58) and use the relation in
Eq. (5.35),

Im ΠR(Ek,~k ) = 1
2i

(
Π>(Ek,~k )−Π<(Ek,~k )

)
. (5.65)

In equilibrium, we can exploit the Kubo-Martin-Schwinger relation for the “lesser” and “greater”
self-energies [KB62; BI99],

Π<(Ek,~k ) = e−βEkΠ>(Ek,~k ) , (5.66)

17This can be shown from the relation f (0)(Ek + Ep) = f (0)(Ek)f (0)(Ep)/(1 + f (0)(Ek) + f (0)(Ep))
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obtaining,

Γk = i
2Ek

[
Π>(Ek,~k )−Π<(Ek,~k )

]
= i

2Ek
1
f̃

(0)
k

Π>(Ek,~k ) , (5.67)

where we have denoted f̃ (0)
k ≡ f̃ (0)(Ek), and already simplified zk ' 1.

We can now insert the expression in Eq. (5.41) for Π>(Ek,~k ), which provides an interpretation
of the thermal width in terms of particle collisions. As in the derivation of the off-shell transport
theory, we replace the light-meson propagators with those for free particles, but keep the full
spectral function of the internal D meson. We can write the thermal width as

Γk = Γ(U)
k + Γ(L)

k , (5.68)

with

Γ(U)
k = 1

2Ek
1
f̃

(0)
k

∑
λ=±

λ

∫
dk0

1

∫ 3∏
i=1

d3ki
(2π)3

1
2E2

1
2E3

∣∣∣T (Ek + E3,~k + ~k3)
∣∣∣2 SD(k0

1,
~k1)

× (2π)4δ(3)(~k + ~k3 − ~k1 − ~k2)δ(Ek + E3 − k0
1 − λE2)f̃ (0)(k0

1)f (0)(E3)f̃ (0)(λE2) , (5.69)

and

Γ(L)
k = 1

2Ek
1
f̃

(0)
k

∑
λ=±

λ

∫
dk0

1

∫ 3∏
i=1

d3ki
(2π)3

1
2E2

1
2E3

∣∣∣T (Ek − E3,~k + ~k3)
∣∣∣2 SD(k0

1,
~k1)

× (2π)4δ(3)(~k + ~k3 − ~k1 − ~k2)δ(Ek − E3 − k0
1 − λE2)f̃ (0)(k0

1)f̃ (0)(E3)f̃ (0)(λE2) , (5.70)

where, like in the expression in Eq. (5.41), there is an implicit summation over particle species,
restricted to the allowed scattering channels. In particular, if one focuses on the pion contribution
to the D-meson thermal width, that is, particle 3 being a π, then the remaining sum over species
1 and 2 contains three possibilities: Dπ → Dπ, Dπ → Dη, and Dπ → DsK̄ scatterings.

The separation made in Eq. (5.68) makes it clear that Γ(U)
k evaluates the scattering amplitude

above the channel threshold, and it is related to the unitary cut of the scattering amplitude,
while Γ(L)

k evaluates it below the threshold and is therefore related to the Landau cut.

Before showing results, let us mention that, as in the on-shell reduction of the transport theory,
if the internal D meson is approximated by a narrow quasiparticle, only the positive branch of
the spectral function SD(k0

1,
~k1) and λ = +1 can hold the energy conservation in Eq. (5.69). The

same is true for Eq. (5.70) but with λ = −1. Therefore, in the on-shell case (o.s.) the expressions
reduce to

Γ(U)
k

∣∣∣
o.s.

= 1
2Ek

1
f̃

(0)
k

∫ 3∏
i=1

d3ki
(2π)32Ei

∣∣∣T (Ek + E3,~k + ~k3)
∣∣∣2

× (2π)4δ(3)(~k + ~k3 − ~k1 − ~k2)δ(Ek + E3 − E1 − E2)f̃ (0)(E1)f (0)(E3)f̃ (0)(E2) , (5.71)

and

Γ(L)
k

∣∣∣
o.s.

= 1
2Ek

1
f̃

(0)
k

∫ 3∏
i=1

d3ki
(2π)32Ei

∣∣∣T (Ek − E3,~k + ~k3)
∣∣∣2

× (2π)4δ(3)(~k + ~k3 − ~k1 − ~k2)δ(Ek − E3 − E1 + E2)f̃ (0)(E1)f̃ (0)(E3)f (0)(E2) . (5.72)

146 Chapter 5 In-medium kinetic theory of heavy mesons and transport coefficients



Given the special kinematics of Γ(L)
k , one cannot express the energy-momentum conservation

in terms of a single δ(4) function. Only in the particular case of elastic (el) scattering, one can
make a change of variables ~k2 ↔ −~k3 in Γ(L)

k to arrive at

Γ(U)
k

∣∣∣el

o.s.
= 1

2Ek
1
f̃

(0)
k

∫ 3∏
i=1

d3ki
(2π)32Ei

(2π)4δ(4)(k + k3 − k1 − k2)
∣∣∣T (Ek + E3,~k + ~k3)

∣∣∣2
× f̃ (0)(E1)f̃ (0)(E2)f (0)(E3) , (5.73)

and

Γ(L)
k

∣∣∣el

o.s.
= 1

2Ek
1
f̃

(0)
k

∫ 3∏
i=1

d3ki
(2π)32Ei

(2π)4δ(4)(k + k3 − k1 − k2)
∣∣∣T (Ek − E2,~k − ~k2)

∣∣∣2
× f̃ (0)(E1)f̃ (0)(E2)f (0)(E3) . (5.74)

Equations (5.73) and (5.74) can be potentially useful when the D meson is treated as a narrow
quasiparticle and inelastic collisions are neglected. Unless otherwise stated, we do not assume
this.

Coming back to the general result of Eqs. (5.69) and (5.70), where the full spectral function of
the internal D meson is kept, it is possible to analytically check that Γ(U)

k in Eq. (5.69) is equal to
the combination Γ(1)

k + Γ(3)
k in Eqs. (5.61) and (5.63), while Γ(L)

k in Eq. (5.70) exactly coincides
with Γ(2)

k + Γ(4)
k in Eqs. (5.62) and (5.64). To do that, one needs to apply the unitarity condition,

or optical theorem in the coupled-channel case,

Im TDπ→Dπ(E, ~p ) =
∑
a

T ∗Dπ→a(E, ~p ) Im GR
a(E, ~p )Ta→Dπ(E, ~p ) , (5.75)

which follows from the T -matrix equation at finite temperature, together with the expression for
the retarded two-meson propagator given in Eq. (3.21), where the spectral function of the light
meson, SΦ(ω′, ~p− ~q ), is taken in the narrow limit.

Notice that the sum over intermediate states a in the optical theorem in Eq. (5.75) is to be
taken as a sum over species Di and Φj , restricted to the physical states that couple to Dπ. If
only elastic collisions Dπ → Dπ were used, then the optical theorem is necessarily violated. The
effect of inelastic processes has been normally ignored in the literature.

Γk
(U)+Γk

(L)

Γk
(U)

Γk
(L)

200 400 600 800 1000
0.00

0.05

0.10

0.15

0.20

0.25

0.30

k (MeV)

Γ
k
(M

e
V
)

T=40 MeV

Γk
(U)+Γk

(L)

Γk
(U)

Γk
(L)

200 400 600 800 1000
0

5

10

15

20

25

30

k (MeV)

Γ
k
(M

e
V
)

T=100 MeV Γk
(U)+Γk

(L)

Γk
(U)

Γk
(L)

200 400 600 800 1000
0

20

40

60

80

100

120

140

k (MeV)

Γ
k
(M

e
V
)

T=150 MeV

Figure 5.5: Thermal width of D mesons generated from their interaction with pions as computed from Γ(U)
k

(Eq. (5.69)) using dashed lines, and Γ(L)
k (Eq. (5.70)) using dotted lines. The full calculation

that includes both Γ(U)
k and Γ(L)

k is shown with solid lines. Inelastic channels (Dπ → Dη and
Dπ → DsK̄) are also included.
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We present the results of Eqs. (5.69) and (5.70) for temperatures T = 40, 100, 150 MeV in
Fig. 5.5. We separate the contributions of the unitary and Landau cuts for each temperature, and
obtain a similar result to that in Fig. 5.4, where the integration over Im TDπ→Dπ was employed.
For consistency with the coupled-channel optical theorem, we have included the three channels
Dπ → Dπ,Dπ → Dη and Dπ → DsK̄.

5.4.3 Quantification of different effects

The differences between the two approaches, as well as the analysis of several other effects, are
summarized in the following.

Effect of truncation

As stated, one can analytically prove that the two alternative methods to extract Γk, first via
Eq. (5.60) and second through Eq. (5.68), are equivalent. In addition, we have stated that
this equivalence can also be checked through the direct application of the optical theorem in
Eq. (5.75).

However, the numerical implementation can introduce small differences when a numerical
integration cut-off is employed. We name this the effect of truncation. This can be easily
understood by looking at Eq. (5.75). The first method to compute Γk uses Im TDπ→Dπ, and a UV
cut-off in |~p | simply truncates the l.h.s. of Eq. (5.75) at that momentum. On the other hand, the
second method employs the r.h.s. of the same equation, where the same cut-off is imposed on
|TDπ→a|2, but the term Im GR

a is calculated analytically to perform the integrations. Therefore,
the way in which a UV cut-off is imposed in the numerical calculations does not ensure that the
truncation effect is the same for the two methods.

The comparison between Figs. 5.4 and 5.5 does not show appreciable differences. In Fig. 5.6
we show the total Γk from the two methods in a single plot for better comparison. Note that the
second method includes the three channels (elastic and inelastic) involving pions. Both methods
compare very well for low momentum at all temperatures. We have checked that the good
comparison persists between unitary and Landau cuts separately. We only obtain deviations at
high momentum; hence, cut-off effects. Nevertheless, the differences in Γk are at most 5%, and
only for high momenta (which are in any case suppressed when folded with the BE distribution
function).
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Figure 5.6: Thermal width of D mesons in a thermal pion gas. Comparison between the two methods
described in the text.
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Off-shell effects

We now describe the differences between the use of the on-shell and off-shell approaches. We
have extensively described how to implement off-shell effects by keeping the full spectral function
of the internal D-meson propagator, as opposed to using the narrow limit. To determine the
differences, we use the second method to compute Γk, including the three channels involving
pions.

The results are presented in Fig. 5.7. The off-shell calculation is performed through the sum of
Eqs. (5.69) and (5.70), and the spectral function SD is taken from the results in Chapter 3. For
the on-shell calculation, we employ the sum of Eqs. (5.71) and (5.72), where the intermediate D
meson is taken on shell (narrow limit). In both cases, we use the same temperature-dependent
scattering amplitudes.

As expected, the effects of the spectral function width become more apparent at higher
temperatures. When T → 0 the thermal width goes to zero, and the narrow quasiparticle
approximation becomes exact in this limit. In any case, the quasiparticle peak is rather narrow
at all temperatures considered, as reported in Chapter 3, and the off-shell effects are generally
small. These effects are of the order of 10% for Γk at the highest temperature, T = 150 MeV, and
rather independent of the external momentum k.
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Figure 5.7: Thermal width ofD mesons in a thermal pion gas. Comparison between the off-shell calculation
(solid lines, Eqs. (5.69)+(5.70)) and the on-shell one (dotted lines, Eqs. (5.71)+(5.72)).

Effect of inelastic channels

We now discuss the effect of inelastic channels in the second method to compute Γk, given by
Eqs. (5.68), (5.69), and (5.70). While their inclusion is strictly required to account for the
coupled-channel optical theorem, in the practice, their effect is small. This can be seen in Fig. 5.8
for the case of the D-meson thermal width, only due to the pions of the medium. In this figure,
we show in solid lines the complete result with the three inelastic channels and in dashed lines
the result with only the elastic channel, Dπ → Dπ. The effect is rather small for all T and k,
and for the highest temperature T = 150 MeV and momentum they are at most 5%. Therefore,
we will neglect the effect of inelastic channels in the calculations of transport coefficients.

Effects of the light mesons in the bath

While one can safely neglect the inelastic channels, one should not forget that there are four differ-
ent elastic channels for the interactions ofD mesons with light pseudoscalars (Dπ,DK,DK̄,Dη).
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Figure 5.8: Thermal width of D mesons in a thermal pion gas computed via the off-shell kinetic expressions
(Eqs. (5.69)+(5.70)). The calculations are done using elastic scattering only (dotted lines)
and adding also the inelastic channels (solid lines), following the optical theorem in coupled
channels.

While the contribution of the most massive mesons is also suppressed, they become increasingly
important as the temperature increases.

To study the effect of the contribution of the different species, we define an averaged thermal
width that is only function of temperature as

Γ(T ) = 1
nD

∫
d3k f (0)(Ek)Γk , (5.76)

where f (0)(Ek) is the equilibrium BE distribution function and nD is the D-meson particle
density.

In the left panel of Fig. 5.9 (notice the logarithmic scale), we show the contributions to the D-
meson width coming from the different meson baths (π,K, K̄, η). As expected, the contribution
of the more massive mesons is negligible at low temperatures due to the thermal suppression
factor, and only the pion term is relevant. At T = 150 MeV the more massive mesons already
contribute with several MeV to the D-meson decay width but are still subdominant with respect
to the pion one.

Γtotal

Γπ

ΓK

ΓK

_

Γη

40 60 80 100 120 140

10
-5

0.001

0.100

10

T (MeV)

Γ
(T
)
(M

e
V
)

This work, full

Cleven et al.

This work, w/o Landau cut

Fuchs et al.

He et al.

40 60 80 100 120 140
0

20

40

60

80

T (MeV)

Γ
k
=

0
(M

e
V
)

Figure 5.9: Left panel: Contribution to the D-meson averaged thermal width from a thermal bath of pions,
kaons, antikaons, and η mesons. Right panel: Comparison of the D-meson thermal width at
k = 0 in a pion thermal bath for different calculations. See main text for the different sources.
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Comparison with previous approaches

Finally, we compare our results (labeled as “full”) [Tor+22], including the unitary and Landau
contributions, together with thermal amplitudes, inelastic channels, and off-shell effects, with the
calculations of Refs. [Fuc+06b; HFR11; CMR17]. These are shown in the right panel of Fig. 5.9.
We focus on the thermal width of D mesons coming from the interaction with a thermal bath of
only pions and fix the D-meson momentum to k = 0. Fuchs et al. [Fuc+06b] use an effective
interaction at LO between D mesons and pions and extract the width from the self-energy
correction due to pions. He et al. [HFR11] use a similar interaction based on Ref. [Fuc+06b] but
compute the thermal width using a formula similar to Eq. (5.73). The two calculations provide
similar results and they are fairly consistent with our results using the unitary cut alone (label
“w/o Landau cut”). Notice that, apart from the different interaction, we also include inelastic
channels while He et al. in Ref. [HFR11] do not. This partially explains why our curve is slightly
larger than the other two. Then, Cleven et al. [CMR17] perform a similar calculation to ours, but
the effective approach is based on SU(4) chiral symmetry. Medium effects are also incorporated,
including the Landau cut contributions, resulting in a D-meson thermal width almost twice
larger than the previously discussed two approaches, but still smaller than the present results for
temperatures higher than 100 MeV, the difference reaching around 30% at T = 150 MeV. This is
probably due to the fact that the small mass shift of the D-meson, which in our model turns out
to be attractive, is ignored in the results of Ref. [CMR17], thereby making them less affected by
the contributions of the sub-threshold Landau cut.

To summarize, in this section we have analyzed several contributions to the D-meson width
and found that the effect of off-shell dynamics, inelastic channels, and truncation errors are
relatively small for the calculation of the D-meson thermal width. However the contribution of
the Landau cut is essential to describe this coefficient at finite temperatures. We have shown
that, thanks to exact unitarity considerations, this contribution appears not only in the imaginary
part of the retarded self-energy, but also in the collision term of the kinetic equation. Guided by
the results in Γk, we expect that this contribution will be important for the calculation of the
D-meson transport coefficients as well.

5.4.4 Thermal width of bottomed mesons

In the previous sections we have quantified, in the case of the charmed mesons, the contribution
of the unitary and Landau cuts of the unitarized scattering amplitudes to the thermal width at
different temperatures of the light-meson bath. In particular, we have seen that the relative
importance of the Landau contribution increases with temperature, and it even becomes the
dominant one at large temperatures. We have obtained similar results employing either the
method based on the imaginary part of the T -matrix elements or the one using the scattering
amplitudes squared, the small differences at high momentum being related to the effect of
truncation.

The off-shell kinetic theory derived in Section 5.2 is valid for any heavy species that can be
treated as Brownian particles propagating in a mesonic medium. Therefore, one can apply the
kinetic equation in Eq. (5.47) to describe, for instance, the propagation of B̄ mesons, by simply
replacing D → B̄, and the approximations that we have made for the charmed mesons are also
valid for the bottomed mesons. The narrow limit, for example, is even a better approximation
for the B̄ mesons, since we have seen in Chapter 3 that their thermal width is of the same order
as that of the D mesons, but their mass is considerably larger.
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The contributions of the unitary and Landau cuts to the B̄-meson thermal width, as given by
(Γ(1)
k + Γ(3)

k ) and (Γ(2)
k + Γ(4)

k ), respectively, as well as the total thermal width, computed with the
set of Eqs. (5.60) to (5.64) that use the imaginary part of the scattering amplitude, are shown in
Fig. 5.10 at the same temperatures as for the D-meson thermal width (see Fig. 5.4). The results
are qualitatively very similar to those obtained for the charm sector: at small temperatures, the
contribution from the Landau cut already accounts for ∼ 20% of the total thermal width, while
at large temperatures its contribution exceeds that of the unitary cut.

The contribution to the B̄-meson width of the heavier light mesons that are present in the
thermal bath is displayed in Fig. 5.11. As observed in the charm sector, the dominant contribution
at low temperatures is that coming from the pions, as the abundances of heavier mesons, that
is, K, K̄, and η mesons, are very small. At temperatures T . 150 MeV, the heavier mesons
contribute with a few MeV to the B̄-meson width, but pions still account for ∼ 90% of the total
thermal width.

In Chapter 3 we have found that the thermal effects on the properties of open heavy-flavor
mesons in thermal equilibrium with a light-meson bath are comparable for the open-charm and
open-bottom sectors. Given the results for the charmed- and bottomed-mesons thermal width
presented in this section, we can confirm the similarities that exist between the charm and the
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Figure 5.10: The B̄-meson thermal width as computed from Eq. (5.60). Dashed lines show the contribution
of Γ(1)

k + Γ(3)
k (Eqs. (5.61)+(5.63), unitary cut), whereas dotted lines correspond to the

contribution of Γ(2)
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Figure 5.11: Contribution to the B̄-meson averaged thermal width from a thermal bath of pions, kaons,
antikaons, and η mesons.
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bottom sectors. We have also been able to weigh the contribution of the unitary and Landau cuts
of the scattering amplitudes to the total thermal width at different temperatures, and found that
the separated contributions are of similar size in the two sectors.

5.5 Off-shell heavy-meson transport coefficients

Let us now turn to the study of the transport coefficients of a heavy meson, when thermal
scattering amplitudes are implemented. In order to obtain a sensible definition of the relevant
transport coefficients, we need to go back to the kinetic equation described in Section 5.2 and
incorporate the separation of scales between the heavy-meson mass and the other scales in
the system. By doing this, we can convert the off-shell kinetic equation in Eq. (5.46) into a
Fokker-Planck equation [LP81; Sve88]. From the latter, we can identify the so-called drag
force A, and the diffusion coefficients B0, B1, and Ds, and compute them with thermal effects
incorporated.

5.5.1 Reduction to an off-shell Fokker-Planck equation

We start with the off-shell kinetic equation (see Eq. (5.46)) where, for simplicity, we keep implicit
the sum over the scattering channels,(

kµ − 1
2
∂Re ΠR

∂kµ

)
∂

∂Xµ
iG<D(X, k)

= 1
2

∫ 3∏
i=1

d4ki
(2π)4 (2π)4δ(4)(k1 + k2 − k3 − k)

∣∣∣T (k0
1 + k0

2 + i ε,~k1 + ~k2)
∣∣∣2

×
[
iG<D(X, k1)iG<Φ(X, k2)iG>Φ(X, k3)iG>D(X, k)

− iG>D(X, k1)iG>Φ(X, k2)iG<Φ(X, k3)iG<D(X, k)
]
. (5.77)

Inspired by previous derivations [LP81; Sve88; Abr+11], we define an off-shell scattering rate

W (k0,~k, k0
1, ~q ) ≡

∫
d4k3

(2π)4
d4k2

(2π)4 (2π)4δ(k0
1 + k0

2 − k0
3 − k0)δ(3)(~k2 − ~k3 − ~q )

×
∣∣∣T (k0

1 + k0
2 + i ε,~k − ~q + ~k2)

∣∣∣2 iG>Φ(X, k2)iG<Φ(X, k3)iG>D(X, k0
1,
~k − ~q ) , (5.78)

where we have replaced the variable ~k1 with the momentum loss ~q ≡ ~k − ~k1. Equation (5.78)
describes the collision rate of a D meson with energy k0 and momentum ~k to a final D meson
with energy k0

1 and momentum ~k − ~q. It depends on the spectral weights and the populations of
the particles 1, 2, and 3 of the binary collision, encoded in the Wightman functions. It can be
interpreted as a collision loss term for a D meson with momentum ~k. In fact, the loss term of
Eq. (5.77) can be directly written as,

− 1
2

∫
dk0

1
2π

d3q

(2π)3W (k0,~k, k0
1, ~q )iG<D(X, k0,~k ) . (5.79)
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The gain term of Eq. (5.77) can be interpreted as a loss term of an incoming D meson with
momentum ~k1, losing the same momentum amount ~q and ending with momentum ~k. The energy
k0 is an independent free variable. This term reads

1
2

∫ 3∏
i=1

d4ki
(2π)4 (2π)4δ(k0 + k0

3 − k0
1 − k0

2)δ(3)(~q + ~k3 − ~k2)
∣∣∣T (k0 + k0

3 + i ε,~k + ~q + ~k3)
∣∣∣2

× iG<D(X, k0,~k + ~q )iG>Φ(X, k2)iG<Φ(X, k3)iG>D(X, k0
1,
~k )

= 1
2

∫
dk0

1
2π

d3q

(2π)3W (k0,~k + ~q, k0
1, ~q )iG<D(X, k0,~k + ~q ) . (5.80)

Then, Eq. (5.77) can be written as

2
(
kµ − 1

2
∂Re ΠR

∂kµ

)
∂

∂Xµ
iG<D(X, k) =

∫
dk0

1
2π

d3q

(2π)3

[
W (k0,~k + ~q, k0

1, ~q )iG<D(X, k0,~k + ~q )

−W (k0,~k, k0
1, ~q )iG<D(X, k0,~k )

]
. (5.81)

This equation is an alternative form of Eq. (5.77), convenient for the formal reduction to the
off-shell Fokker-Planck equation. For this purpose, we exploit the separation of scales between
the meson masses, as the mass of the heavy meson is much larger than the temperature and
any of the light-meson masses. Such a Brownian picture implies that the typical momentum
exchanged in the elastic collision is of the order of T , and much smaller than the total momentum
of the heavy particle, |~q| � |~k| [LP81; Sve88; Abr+11].

We can Taylor expand the combination W (k0,~k + ~q, k0
1, ~q )iG<D(X, k0,~k + ~q ) around ~k up

to second order. In doing so, we consider a homogeneous thermal bath, as the light sector is
assumed to be equilibrated in much shorter time scales so that one can employ a space-averaged
Green’s function [Sve88]. In addition, we also set zk ' 1 as usual.

After a few steps, one obtains a Fokker-Planck equation for iG<D(t, k0,~k )

∂

∂t
iG<D(t, k)

= ∂

∂ki

{
Â(k;T )ki iG<D(t, k) + ∂

∂kj

[
B̂0(k;T )∆ij + B̂1(k;T )k

ikj

~k 2

]
iG<D(t, k)

}
, (5.82)

with ∆ij = δij − kikj/~k 2, and we have defined the transport coefficients as 18

Â(k0,~k ;T ) ≡
〈

1−
~k · ~k1
~k 2

〉
, (5.83)

B̂0(k0,~k ;T ) ≡ 1
4

〈
~k1

2 − (~k · ~k1)2

~k 2

〉
, (5.84)

B̂1(k0,~k ;T ) ≡ 1
2

〈
[~k · (~k − ~k1)]2

~k 2

〉
, (5.85)

18There are two notations commonly used in the literature for the transport coefficients, F , Γ0, and Γ1, or, alternatively,
A, B0, and B1. The latter one is chosen here, so as to avoid confusion with the thermal width Γk.
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where ~k1 has been reintroduced, replacing ~q. The hat is used to denote off-shell transport
coefficients, as they depend separately on k0 and ~k. The average is defined as

〈
F(~k,~k1)

〉
= 1

2k0

∑
λ,λ′=±

λλ′
∫ ∞
−∞

dk0
1

∫ 3∏
i=1

d3ki
(2π)3

1
2E22E3

SD(k0
1,
~k1)

× (2π)4δ(3)(~k + ~k3 − ~k1 − ~k2)δ(k0 + λ′E3 − λE2 − k0
1)
∣∣∣T (k0 + λ′E3,~k + ~k3)

∣∣∣2
× f (0)(λ′E3)f̃ (0)(λE2)f̃ (0)(k0

1) F(~k,~k1) , (5.86)

where the spectral function of the D meson is kept.

The term for the drag force in Eq. (5.82),

Ai = Â(k;T )ki ≡
〈

(~k − ~k1)i
〉
, (5.87)

quantifies the thermal average momentum transfer to the heavy meson due to the collisions with
the particles in the medium. On the other hand, the momentum diffusion term, which has been
decomposed in the longitudinal and transverse components,

Bij = B̂0(k;T )
(
δij − kikj

~k 2

)
+ B̂1(k;T )k

ikj

~k 2
≡ 1

2

〈
(~k − ~k1)i(~k − ~k1)j

〉
, (5.88)

measures the square of the momentum transfer due to the interactions.

We use the relation of Eq. (5.86) to compute the off-shell transport coefficients in Eqs. (5.83)
to (5.85). This approach stands at the same level as Eqs. (5.69) and (5.70), and accounts for
thermal modifications, off-shell effects, as well as the Landau cut contributions (case λ′ < 0). It
is denoted as “OffShell” in the following, and it is the most complete calculation of transport
coefficients used in this dissertation.

It is important to notice that, in general, it is not possible to derive a Fokker-Planck equation
for the heavy-meson distribution, fD(t,~k ), while including off-shell effects in the transport
coefficients,because after k0 integration on both sides one cannot factorize the distribution
function from the transport coefficients. Only in the particular case of a narrow quasiparticle, it
is possible to trivially integrate k0 and obtain the kinetic equation for fD(t,~k ), thus reproducing
the previous approaches in the literature [Ber+14a; LHR19]. For the interested reader, the
detailed derivation of the on-shell Fokker-Planck equation is given in Appendix E.

We remind that, although not explicitly written in Eq. (5.86), there is a sum over all the
allowed channels in these expressions, both the elastic and the inelastic ones. However, we have
learned from the thermal width that the contribution of the inelastic processes is very small, and
therefore they are neglected in what follows. Nevertheless, all the elastic channels (Dπ, DK,
DK̄, and Dη) are considered when computing the coefficients.

The described “OffShell” approximation, based on Eq. (5.86), is rather general. However, we
already know that the quasiparticle approximation is excellent for the D mesons. Therefore one
can replace the D-meson spectral function with the expression in Eq. (5.48), and neglect the zk
factor altogether.
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This brings two consequences. The first one is that the Fokker-Planck equation in Eq. (5.82)
for iG<D(t, k) can be written for fD(t, Ek) ≡ fD(t,~k ) instead,

∂

∂t
fD(t, Ek)

= ∂

∂ki

{
A(~k ;T )kifD(t, Ek) + ∂

∂kj

[
B0(~k ;T )∆ij +B1(~k ;T )k

ikj

k2

]
fD(t, Ek)

}
, (5.89)

where the coefficients only depend on |~k| as the quasiparticle energy is put on shell,

A(~k ;T ) ≡
〈

1−
~k · ~k1
~k 2

〉
Thermal U+L

, (5.90)

B0(~k ;T ) ≡ 1
4

〈
~k1

2 − (~k · ~k1)2

~k 2

〉
Thermal U+L

, (5.91)

B1(~k ;T ) ≡ 1
2

〈
[~k · (~k − ~k1)]2

~k 2

〉
Thermal U+L

. (5.92)

The second consequence is that the scattering rate gets simplified because, as for the Boltzmann
equation, only one type of process is able to conserve energy-momentum when all the four
particles in the collision are on their mass shell. In this approximation, it is possible to write,

〈
F(~k,~k1)

〉
Thermal U+L

= 1
2Ek

∫
d3k1

(2π)4
d3k2

(2π)3
d3k3

(2π)3 (2π)4δ(4)(k1 + k2 − k3 − k)

×
[∣∣∣T (Ek + E3,~k + ~k3)

∣∣∣2 +
∣∣∣T (Ek − E2,~k − ~k2)

∣∣∣2]
× 1

2E12E22E3
f (0)(E3)f̃ (0)(E2) F(~k,~k1) , (5.93)

where we have only considered elastic collisions, as in Eq. (5.50).
This expression looks closer to the previous calculations of the heavy-flavor transport coeffi-

cients found in the literature, but the Landau contribution still remains in addition to the unitary
one. The scattering amplitudes also include medium effects. We denote this approximation to
compute the transport coefficients as “Thermal U+L”.

One can yet consider another simplification by simply setting the Landau contribution to zero.
There is no reason to neglect this term in the medium, but we consider this approximation for
the sake of comparison, and denote it as “Thermal U”. In any case, this approximation should be
realistic at low temperatures, where the Landau cut disappears. The scattering rate to be used in
the “Thermal U” approximation reads

〈
F(~k,~k1)

〉
Thermal U

= 1
2Ek

∫
d3k1

(2π)4
d3k2

(2π)3
d3k3

(2π)3 (2π)4δ(4)(k1 + k2 − k3 − k)

×
∣∣∣T (Ek + E3,~k + ~k3)

∣∣∣2 1
2E22E32E1

f (0)(E3)f̃ (0)(E2) F(~k,~k1) . (5.94)

Finally, to match our results to previous approaches, we simply use Eq. (5.94) without any
thermal effects, neither in the quasiparticle energies nor the scattering amplitudes. We use

vacuum amplitudes and standard relativistic expressions for the energies Ek =
√
~k 2 +m2

D,

E1 =
√
~k1 2 +m2

D, where mD is the D-meson vacuum mass. This approximation is denoted as
“Vacuum”, as it is the one that most resembles previous calculations.
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Approximation
Interaction Rate

Thermal effects
Landau cut Off-shell effects

name on |T |2 and Ek
Vacuum Eq. (5.94) 7 7 7

Thermal U Eq. (5.94) 3 7 7

Thermal U+L Eq. (5.93) 3 3 7

OffShell Eq. (5.86) 3 3 3

Table 5.1: Different approximations for the computation of the heavy-meson transport coefficients used in
this thesis. The details are given in the main text.

We summarize in Table 5.1 the different approximations to compute the heavy-meson trans-
port coefficients. It starts with the simplest one, where vacuum amplitudes without thermal
corrections are used, and gets to the most involved one, where thermal and off-shell effects are
taken into account.

5.5.2 Results for D-meson transport coefficients

We start the description of the numerical results with the D-meson drag coefficient A(~k ;T ) and
the momentum diffusion coefficient B0(~k ;T ) (or Â(k0,~k ;T ) and B̂0(k0,~k ;T ), for the off-shell
approximation). The results are presented in the so-called static limit, ~k → 0 (|~k| = 50 MeV in
the actual computation). In this limit, the equality between the two components of the diffusion
coefficients is satisfied, B0 = B1, which we have checked numerically in all the cases.

In Fig. 5.12 we present the drag coefficient A (left panel) and the diffusion coefficient B0

(right panel) under the different approximations of Table 5.1. In particular, in the “Vacuum”
approximation we employ vacuum scattering amplitudes and masses, which is what was done by
the authors of Ref. [TT13].

All the remaining approximations use thermal scattering amplitudes and temperature-dependent
quasiparticle energies. “Thermal U” only incorporates the unitary cut, and the differences, when
compared to “Vacuum”, are entirely due to thermally dependent interactions. Rather surprisingly,
we find no appreciable differences in comparison to “Vacuum” even at high temperatures. The
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Figure 5.12: Transport coefficients of the D meson in the static limit ~k → 0 (where B1 = B0), using the
different approximations described in Table 5.1 (see also the main text for details). The curve
that incorporates all the thermal and off-shell effects is the one denoted as “OffShell”.
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main difference comes from the addition of the Landau contribution, which is incorporated in
the “Thermal U+L” scenario. At our top temperatures, the contribution of this cut is even more
important than the one of the unitary cut. This was already anticipated in the analysis of the
D-meson thermal width in Section 5.4.

In addition, we present our results incorporating off-shell effects, which employ the full
spectral distribution of the in-medium D meson. This approximation is denoted “OffShell” in
Fig. 5.12. In this case, to fix the external energy dependence we have simply set k0 = Ek with
|~k| = 50 MeV (static limit). Only a small difference can be observed in A at high temperatures,
concluding that the genuine off-shell effects are not as important as including the Landau cut
contributions. This already happened for the thermal width (see Fig. 5.7). This result is not very
surprising as the D-meson spectral function is still very narrow for the temperatures considered
here, so the quasiparticle approximation works extremely well. In the off-shell approximation,
when the heavy meson carries a finite thermal width, processes 1 ↔ 3 are also allowed. In
the work presented in this chapter, we have neglected these processes because the required
production threshold is higher than the elastic one. Although it is out of the scope of this thesis,
it would be very interesting to analyze the Bremsstrahlung processes D → D + π + π and their
role in the D-meson energy loss.

We finally explore the spatial diffusion coefficient Ds(T ) [Abr+11]19. This coefficient, which
is usually normalized by the thermal wavelength, 1/(2πT ), can be obtained from the static limit
of the B0(~k ;T ) coefficient,

2πTDs(T ) = lim
~k→0

2πT 3

B0(~k ;T )
. (5.95)

This coefficient is shown in Fig. 5.13. With regards to the past calculations of transport
coefficients in the literature, the main difference comes from the Landau contribution, which
makes the diffusion coefficient decrease almost by a factor of 3 close to Tc, which is a remarkable
effect. The results for the “Thermal U+L” and “OffShell” are almost identical.
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Figure 5.13: Left panel: Spatial diffusion coefficient divided by the thermal wavelength (2πT )−1, using
the different approximations in Table 5.1 (see also main text for details). The “OffShell” curve
is the one incorporating all the thermal and off-shell effects. Right panel: Same coefficient
in the “OffShell” approximation incorporating sequentially the different light mesons in the
calculation (in logarithmic scale).

19Not to be confused with the charm-strange mesons, Ds, for which the same notation was used in previous chapters.
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Let us comment that an alternative way to fix the k0 dependence of the off-shell transport
coefficients is to define an average coefficient weighted by the D-meson spectral function. For
example, one could define an average B0 as,

B0(~k ;T ) = 2
∫ ∞

0
dk0k0SD(k0,~k )B̂0(k0,~k ;T ) . (5.96)

In the narrow quasiparticle limit, this average coincides with the on-shell evaluation if one
uses zk ' 1 in addition,

B0(~k ;T ) =
∫ ∞

0
dk02k0 zk

2Ek
δ(k0 − Ek)B̂0(k0,~k ;T ) ' B̂0(Ek,~k ;T ) . (5.97)

Because in our case the quasiparticle approximation works very well, the evaluation of the
off-shell coefficient at k0 = Ek gives similar results to the one using Eq. (5.96).

Finally, we detail the different contributions of adding the light mesons one by one. In Fig. 5.6
we have shown that the pions provide the main contribution to the thermal decay width at
temperatures below Tc, being the K, K̄, and η mesons subleading even at T ' 150 MeV. In
the right panel of Fig. 5.13, the spatial diffusion coefficient in the “OffShell” approximation
is presented, in logarithmic scale, with the light mesons being sequentially added. One also
observes that the contribution of the more massive states is very small due to their thermal
suppression. The negligible contribution of baryons at µB = 0 was studied in Ref. [TT13].
However, one should keep in mind that close to Tc one could expect the excitation of many states
and resonances which can collectively contribute to the transport coefficient in substantially
(see Ref. [NNG09] for the shear and bulk viscosities). Therefore, our predictions might not be
trustable in the T & Tc region, so our results are shown up to T = 150 MeV.

Comparison with other approaches

To conclude this section on charmed transport coefficients, we compare our results below Tc

to recent LQCD calculations of the heavy-flavor transport coefficients for temperatures T & Tc.
We also include a recent calculation using Bayesian methods to analyze the HIC data under a
simulation code to obtain a posterior estimation of the spatial diffusion coefficient [KXB18]. In
our case, we show our most complete calculation (“OffShell” approximation) together with the
“Vacuum” calculation for comparison. From the LQCD side, we compile the results presented in
Refs. [Ban+12; Kac14; Fra+15; Bra+20b; Alt+21]. All these are given as functions of T/Tc. To
compare the different results in terms of an absolute temperature, we fix Tc = 156 MeV [Baz+19].

In the left panel of Fig. 5.14, we show the spatial diffusion coefficient as defined in Eq. (5.95).
In the right panel, we present the momentum diffusion coefficient κ, as it is usually defined in
the LQCD community. This coefficient is related to B0 in the static limit as,

κ(T ) = 2B0(~k → 0;T ) . (5.98)

This coefficient is not independent of Ds as κ = 4πT 3/(2πTDs). Nevertheless, we provide the
results of κ/T 3 to stress the plausible matching, where a possible maximum happens at the
crossover temperature.

Details of the different LQCD calculations can be found in their corresponding publications. All
of them are characterized by the use of the quenched approximation (SU(3) pure glue plasma)
and with different ranges of temperature. References [Kac14; Fra+15; Alt+21] only provide
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Figure 5.14: Left panel: Spatial diffusion coefficient normalized by the thermal wavelength around Tc.
Right panel: Momentum diffusion coefficient κ/T 3 = 2B0/T

3 around Tc.

results for a characteristic temperature of 1.5Tc. Except for the calculation in [Ban+12], all the
results take the lattice continuum limit. The majority of the calculations use a multilevel update
to reduce noise [Ban+12; Kac14; Fra+15; Bra+20b], except for the most recent [Alt+21],
which employs gradient flow.

We observe a very good matching around Tc between our results, the LQCD data, and the
result from a Bayesian analysis [KXB18], especially for the case with thermal and off-shell effects
included. This is better seen for the κ/T 3 coefficient.

We now comment on the comparison of the “Vacuum” approximation to the previous calcula-
tion in Ref. [TT13] using vacuum amplitudes. The authors of that work reported a similar diffu-
sion coefficient with slightly smaller values at high temperatures, for instance at T = 150 MeV
found the value 2πTDs ' 8 , while here we obtain 2πTDs ' 12. In turn, the A, B0, and B1

coefficients were systematically larger in [TT13]. The differences come from several improve-
ments with respect to that work. The LECs of the effective Lagrangian are fixed here thanks
to recent LQCD calculations [Guo+19], while in [TT13] the authors followed a less rigorous
procedure of fixing the LECs by matching the mass and width of the D∗0(2300) resonance (called
D0(2400) in [TT13]), whose properties reported by the PDG, in turn, have changed since then.
Furthermore, here we adopt a full consistent coupled-channel approach, while in [TT13] this
was done only partially. For example, the channels involving Ds were not considered.

We should finally mention that for T > Tc we have only shown the results coming from LQCD
and Bayesian calculations, but there exist many theoretical calculations of these coefficients using
different models or effective approaches [MT05; HR05; Hee+08; DAM10; HFR11; Maz+11;
DCA13; Ber+14a; LHR19; Ber+14c; Ber+14b].

5.5.3 Results for B̄-meson transport coefficients

Finally, we report our results of the bottom transport coefficients.
In Fig. 5.15 the temperature dependence of the drag coefficient Â(k0,~k ;T ) (left panel) and the

momentum diffusion coefficient B̂0(k0,~k ;T ) (right panel) for the B̄ meson is compared with that
of the corresponding coefficients for the D meson. We have used our most complete derivation
for the transport coefficients, incorporating all the thermal and off-shell effects, that is that of
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Figure 5.15: Transport coefficients of the B̄ meson in the static limit ~k → 0 (where B1 = B0), compared
to the results for the D meson for the calculation that includes all the thermal and off-shell
effects (denoted as “OffShell” in Fig. 5.12).

Eqs. (5.83) and (5.84), with the average definition in Eq. (5.86). The D meson coefficients (red
solid lines) in Fig. 5.15 are thus the same as those denoted as “OffShell” (black solid lines) in
Fig. 5.12 and are reproduced here to facilitate the comparison between the bottom and charm
sectors. As in Fig. 5.12, we have taken the static limit, and we have numerically checked that the
equality B̂0 = B̂1 is also satisfied in the bottom sector.

Our results show that the increase of the drag force coefficient (left panel of Fig. 5.15) is less
abrupt for the B̄ meson than for the D meson, while the momentum diffusion coefficient evolves
similarly for both heavy hadrons up to temperatures ∼ 100 MeV, and then it increases faster
for the bottomed meson. Similar trends for D- and B̄-meson transport coefficients were found
in [TTD16] using vacuum amplitudes, with the similarity between the momentum diffusion
coefficients extending to larger temperatures. However, we find here larger values for the drag
force and smaller values for the momentum diffusion coefficient, in comparison to those in
Ref. [TTD16], in both heavy sectors.

The normalized off-shell spatial diffusion coefficient 2πTDs for the B̄ meson as a function of
the temperature of the hadronic medium up to 150 MeV, obtained using Eq. (5.95), is displayed
in Fig. 5.16. It is plotted together with the “OffShell” result for the D meson, already shown in
the left panel of Fig. 5.13 above. We see that the B̄-meson spatial diffusion coefficient is about
half the value of the corresponding one for the D meson at T = 150 MeV, in agreement with the
results in [TTD16].

Comparison with other approaches

In Fig. 5.16 we compare our results for the charm and bottom momentum diffusion parameter in
the hadronic phase, with two different approaches for the calculation of this transport coefficient
in the deconfined phase, above T ≈ 150 MeV. In the left panel of this figure, we show the 95%
credibility region obtained from the Bayesian analysis of HICs data of Ref. [KXB18], for both the
charm- (red shaded area) and the bottom-quark (blue shaded area) spatial diffusion coefficient.
While in the charm case there is a smooth connection between the results of our thermal effective
approach and those of [KXB18], with a minimum around Tc, in the bottom case the matching of
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Figure 5.16: Off-shell spatial diffusion coefficient of the B̄ meson (normalized by the thermal wavelength)
around Tc, together with the results for the D meson, and compared to the calculations above
Tc from the Bayesian calculation of [KXB18] (left panel), and from the quasiparticle model of
Ref. [Das+16] (right panel).

these two different ways to obtain 2πTDs is less good. Contrary to what we have found in the
hadronic phase, the results of the Bayesian analysis lead to larger values of the spatial diffusion
coefficient for the b quark than for the c quark just above Tc. However, one can see that the width
of the shaded areas in the left panel of Fig. 5.16 is quite large due to the large uncertainties of
the procedure to extract this transport coefficient from HICs. At larger temperatures, the results
of the Bayesian analysis for charm and bottom basically overlap with each other.

In the right panel of Fig. 5.16 we compare our results for the D- and B̄-meson diffusion
coefficients with the results of the quasiparticle model of Refs. [DCA13; Ber+14a] for the c
and b quarks in the QGP phase [Das+16]. This model predicts smaller values for the bottom
Ds coefficient compared to the charm result above Tc. Although there is not a completely
continuous matching with our effective theory results around Tc, where one expects further
effects coming from a mixed phase of hadronic and deconfined matter, both approaches expect a
similar variation of the spatial diffusion coefficient when moving from the charm to the bottom
sector.
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Conclusions 6
The purpose of this dissertation has been twofold. On the one hand, the production of heavy
hadrons in B-factories and heavy-ion colliders has increased exceptionally in the last decades,
giving rise to an unprecedented amount of new quarkonia states and heavy flavored hadrons.
Many of these states may categorize as exotic composite states, but there is still a lack of
clear comprehension of their internal structure (hadronic molecular states, compact multiquark
systems, or a mixture of both). The study of exotic hadrons, and of heavy exotics in particular, is
currently one of the most active areas of research in hadron physics, both from the experimental
and theoretical sides. This thesis has thus been dedicated to the theoretical study of hadrons
with charm and bottom quarks that may qualify as molecular states.

On the other hand, the physics of strongly interacting matter under extreme conditions, both
at nonzero temperature and baryon density, is also a very challenging field. Understanding
the phase diagram of QCD requires the combined effort of different communities as diverse
as those working on nuclear and particle physics, astrophysics, and general relativity. In the
high-temperature and vanishing baryon density regime, which corresponds to matter filling the
entire universe shortly after the Big Bang, heavy-ion collisions at the RHIC and the LHC provide
the conditions to create a hot phase of deconfined quarks and gluons. Heavy flavor hadrons are
exceptional probes for the properties of the QGP, but there are still open questions in this sector
that prevent experimentalists and theorists from correctly interpreting the experimental data.
The work presented in this thesis has been directed towards understanding the modification
of the properties of open heavy-flavor mesons in a hot medium, using an effective theory to
describe the interaction of the heavy mesons with the surrounding thermal bath.

In Chapter 1 we have reviewed a few aspects of the quark model and the theory of QCD,
to then motivate the study of exotic hadrons containing heavy quarks. We have also given
a brief overview of the present status of strongly interacting matter at extreme conditions of
temperature and baryon density and discussed the relevance of heavy-flavor mesons as hard
probes of the QGP phase formed in HICs.

Chapter 2 has been devoted to investigating the properties in vacuum conditions (free space)
of exotic hadrons with open heavy flavor in the baryon and meson sectors. Our methodology is
based on the use of effective Lagrangians that must be consistent with the symmetries of the
strongly interacting system under study. Moreover, we have unitarized the scattering amplitudes
by means of the coupled-channel Bethe-Salpeter equation, paying special attention to the
regularization of the two-body propagators. With this strategy, we have been able to dynamically
generate states from the interaction between the particles that are the degrees of freedom of
our effective theory (baryons and/or mesons). These states have a molecular structure within
our approach. In the first section of this chapter, we have described the chiral and heavy-quark
symmetries of QCD, as well as reviewed some effective theories widely used in the field that are
also the basis of the studies that have been performed in the rest of the chapter. Some properties
of the scattering amplitudes, in particular unitarity and analyticity in the complex-energy plane,
have also been summarized.
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The rest of the chapter is divided into two parts. In the first one (Section 2.2), we have studied
the interaction of the low-lying pseudoscalar mesons with the ground-state baryons in the charm
+1, strangeness −2 and isospin 0 sector, employing a t-channel vector meson exchange model.
The resulting unitarized amplitudes for the scattering of pseudoscalar mesons with baryons show
the presence of two resonances, having energies and widths very similar to some of the Ω∗0c states
discovered by the LHCb collaboration in 2017. By exploring the parameter space of our model,
we have found several cases that can reproduce the mass and width of the Ωc(3050)0 and the
Ωc(3090)0 resonances. Our findings allow us to conclude that two of the five Ω∗0c states observed
by the LHCb collaboration could have a meson-baryon molecular origin. As our model for the
scattering of pseudoscalar mesons with baryons in s-wave generates resonances with spin-parity
JP = 1/2−, we would anticipate these to be the quantum numbers for these Ω∗0c states. In
contrast, some quark model calculations establish either 3/2− or 5/2− for the spin-parity of some
of these states. An experimental determination of the spin-parity of the Ω∗0c states observed at
LHCb would be extremely valuable for having a better understanding of their nature. Moreover,
further theoretical studies about the molecular interpretation of baryons in this sector, including
additional components to the ones considered here, can bring light to this problem. The chapter
finalizes with an extension of our study to the bottom sector, which gives rise to several Ω∗−b
resonances that have a molecular meson-baryon structure in the energy region 6400− 6800 MeV,
where, despite the low statistics, some structures are visible in the invariant K−Ξ0

b mass spectrum
from the LHCb experiment. Experimental confirmation of the existence of Ω∗−b states in this
energy region at the future LHC facility, upgraded with increased luminosity, would permit a
comparison of their properties with those predicted by quark or hadron molecular models, hence
progressing towards establishing their nature.

In the second part (Section 2.3), we have analyzed the interactions of pseudoscalar and
vector open heavy-flavor mesons (D(∗), D(∗)

s , B̄(∗), B̄(∗)
s ) with light mesons (π, K, K̄, η)

using an effective field theory based on chiral and heavy-quark symmetries in vacuum. In
the JP = 0+ case, we have described the D∗0(2300) state as dynamically generated with a
double-pole structure, while the D∗s0(2317) has been identified with a molecular bound state. In
JP = 1+, we have paid attention to the D1(2430) resonance (also with a double-pole structure)
and the Ds1(2460). The parallelism between the JP = 0+ and JP = 1+ sectors is due to HQSS,
which is implemented at LO in the Lagrangian, and only broken due to the explicit use of the
heavy-meson vacuum masses. We have also extended our calculations to the bottom sector and
found the bottomed counterparts of the JP = 0+, 1+ charmed states. In this case, HQFS is
responsible for the similarities between the charm and bottom sectors.

In Chapter 3, we have extended our analysis of the scattering of open heavy-flavor mesons
off the light mesons to finite temperatures and obtained the properties of the former in a
thermal medium up to T = 150 MeV. The medium modification of the heavy-meson propagator
is calculated in a self-consistent way, in which the heavy-meson self-energy is corrected by
the interactions with the medium contained in the unitarized amplitudes, which in turn, are
computed by solving the Bethe-Salpeter equation with thermal two-meson propagators. With
this methodology, we have obtained the heavy-meson spectral functions. From these, we have
extracted the thermal dependence of the masses and the decay widths of the ground-state D(∗),
D

(∗)
s mesons, as well as of the bottomed B̄(∗), B̄(∗)

s , and also of those of the dynamically generated
states. We have observed a generic downshift of the thermal masses with the temperature, as
large as a few tens of MeV at T = 150 MeV in a pionic bath, while the decay widths increase
with temperature up to values of some tens of MeV at T = 150 MeV. From our results, we have
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not observed a clear tendency to chiral degeneracy of the JP = 0− (1−) and the JP = 0+ (1+)
partners. However, our calculations were limited by the low-temperature application of the
hadron effective theory and such degeneracy might occur at higher temperatures, T > Tχ. One
of our main results is that the chiral partner of the D meson, the D∗0(2300), has a double-pole
structure in the complex-energy plane, and it is unclear at this point how the chiral symmetry
restoration should be realized for this type of states. We have also seen that the addition of kaons
in the meson bath, along with the pions, results in a slight modification of the heavy-meson
masses, and a significant increase of the widths. Nevertheless, the larger contribution to the
thermal effects on the properties of the heavy mesons comes from the thermal pions, as they are
the most abundant mesons in the bath.

In Chapter 4, we have computed, for the first time, Euclidean correlators for the charmed
D and Ds mesons from their corresponding thermal spectral functions obtained within the
finite-temperature effective theory approach developed in this thesis. Our results have been
compared with those obtained in LQCD simulations at unphysical masses. By considering the full
energy-dependent spectral functions, including the continuum of scattering states that is present
in the lattice correlators in addition to the ground state, we have found that our calculations
of the ratio of the Euclidean and the reconstructed correlators lie within the error bars of the
lattice data for temperatures well below the deconfinement transition temperature. At larger
temperatures, the ratios deviate significantly from the LQCD predictions. Several factors may
contribute to these discrepancies. First, we have not considered in our spectral functions the
presence of bound excited states that are, however, inherent in the LQCD simulations. Second,
finite-volume and cut-off effects have not been implemented in our calculations. Moreover, the
thermal modification of the charm ground-state meson properties induced by the kaons in the
medium may be more relevant in the lattice setup, with unphysically large meson masses, due to
the reduction of the mass gap between the kaon and the pion mass.

Finally, in Chapter 5, we have extended the kinetic theory description of heavy mesons at low
energy to include the medium (thermal) effects and the spectral properties of the open-charm
and open-beauty states. The derivation of the off-shell Boltzmann and Fokker-Planck equations
from the heavy-meson effective theory was essential to then calculate the “off-shell” heavy-meson
transport coefficients, implementing, for the first time, a consistent formulation between the in-
medium interactions with light mesons and the kinetic approach. In particular, we have obtained
the thermal width, the drag force coefficient, the diffusion coefficient in momentum space, and
the spatial diffusion coefficient. Due to their large vacuum mass, the thermal corrections to the
mass and spectral broadening of D and B̄ mesons are relatively small, so the quasiparticle picture
has been found to be a good approximation. However, we have found that the use of thermal
scattering amplitudes causes the appearance of a new kinematic range in the meson–meson
interaction, the so-called Landau contribution, whose contribution to the transport coefficients
is rather large at moderate temperatures. In fact, at T = 150 MeV this new contribution is as
large as the standard contribution due to the unitary cut. We have checked that our calculations
of the transport coefficients close to Tc, including these new effects, are consistent with LQCD
determinations of the momentum and spatial diffusion coefficients, as well as with Bayesian
analyses of HICs data.

To summarize, we have provided, on the one hand, a comprehensive description of Ω∗0c /Ω∗−b
states and open heavy-flavor excited mesons (D∗0(2300), D∗s0(2317), D1(2430) and Ds1(2460),
and their bottomed counterparts) within the molecular picture, using the appropriate effective
Lagrangians to describe the hadron–hadron interactions. In this way, we are confident that we
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have conveyed the ability of unitarized effective hadronic theories to dynamically generate states
that may be identified with experimentally observed hadrons and provide an exotic molecular
interpretation for their nature. On the other hand, we have developed a new systematic
approach to the in-medium modification of heavy hadrons in a hot mesonic medium below
the QCD transition temperature, in view of the present and future heavy-ion experiments at
low baryon densities as well as the forthcoming results from the LQCD simulations at finite
temperature. Furthermore, as an application, we have calculated transport coefficients that can
be used as an input to perform hydrodynamic simulations and improve our understanding of the
QGP formation in HICs.
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Appendices





Coefficients A
In this appendix, we present some tables with useful coefficients for the meson–baryon and
meson–meson interactions analyzed in Chapter 2.

A.1 Meson-baryon coefficients
The coefficients Cvij of the TVME interaction kernel of Eq. (2.144) denote the strength of the
interaction between two MB channels i and j mediated by the exchange of a vector meson
v, in the sector with isospin I = 0, strangeness S = −2 and charm C = 1. The coefficients in
the isospin basis that are different from zero are listed in Table A.1 for the PB interaction and
in Table A.2 for the case of VB channels. From these, one gets the value of the summation,
Cij =

∑
v C

v
ij , presented in Tables 2.4 and 2.5. We note that the transitions mediated by

a charmed vector meson (D∗, D∗s) or a J/ψ meson are suppressed by a factor κc and κcc̄,
respectively, as described in Section 2.2.

i j v Cvij

K̄Ξc
K̄Ξc

ρ 3
2

ω 1
2

φ −1
DΞ D∗s

√
3
2κc

D̄sΩcc D∗ −
√

3κc

K̄Ξ′c

K̄Ξ′c
ρ 3

2
ω 1

2
φ −1

DΞ D∗s
1√
2κc

ηΩc K∗ −
√

6
D̄sΩcc D∗ κc

DΞ

DΞ ρ 3
2

ω 1
2

ηΩc D∗ − 1√
3κc

η′Ωc D∗ −
√

2
3κc

ηcΩc D∗
√

2κc
ηΩc D̄sΩcc D∗s −

√
2
3κc

η′Ωc D̄sΩcc D∗s

√
1
3κc

D̄sΩcc
D̄sΩcc

φ −1
J/ψ 2κcc̄

ηcΩc D∗s −κc

Table A.1: Coefficients of the PB interaction in the sector with (I, S, C) = (0,−2, 1) in the isospin basis.

191



i j v Cvij

D∗Ξ

D∗Ξ ρ 3
2

ω 1
2

K̄∗Ξc D∗s

√
3
2κc

K̄∗Ξc D∗s
1√
2κc

ωΩc D∗ −κc
J/ψΩc D∗

√
2κc

K̄∗Ξc
K̄∗Ξc

ρ 3
2

ω 1
2

φ −1
D̄∗sΩcc D∗ −

√
3κc

K̄∗Ξ′c

K̄∗Ξ′c
ρ 3

2
ω 1

2
φ −1

ωΩc K∗ −
√

2
φΩc K∗ 2
D̄∗sΩcc D∗ κc

φΩc D̄∗sΩcc D∗s κc

D̄∗sΩcc
D̄∗sΩcc

φ −1
J/ψ 2κcc̄

J/ψΩc D∗s −κc

Table A.2: Coefficients of the VB interaction in the sector with (I, S, C) = (0,−2, 1) in the isospin basis.

A.2 Coefficients of the DΦ interaction in the charge basis
Here we provide the coefficients of the DΦ interaction kernel of Eq. (2.174) in the charge basis.
They are listed in Tables A.3 and A.4.

(S,Q) Channel CjkLO Cjk0 Cjk1 Cjk24 Cjk35

(−1,−1) D0K− → D0K− 1 m2
K −m2

K 1 1
(−1, 0) D0K̄0 → D0K̄0 0 m2

K 0 1 0
D0K̄0 → D+K− 1 0 −m2

K 0 1
D+K− → D+K− 0 m2

K 0 1 0
(−1,+1) D+K̄0 → D+K̄0 1 m2

K −m2
K 1 1

(0,−1) D0π− → D0π− 1 m2
π −m2

π 1 1
(0, 0) D0π0 → D0π0 0 m2

π −m2
π 1 1

D0π0 → D+π− −
√

2 0 0 0 0
D0π0 → D+

s K
− − 1√

2 0 − 1
2
√

2 (m2
K +m2

π) 0 1√
2

D0π0 → D0η 0 0 − 1√
3m

2
π 0 1√

3
D+π− → D+π− −1 m2

π −m2
π 1 1

D+π− → D+
s K

− −1 0 − 1
2 (m2

K +m2
π) 0 1

D+π− → D0η 0 0 −
√

2
3m

2
π 0

√
2
3

Table A.3: Coefficients Cjki of the LO and NLO terms of the potential for Dφ→ Dφ in the sectors with
charm C = 1, strangeness S and charge Q in the charge basis.
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(S,Q) Channel CjkLO Cjk0 Cjk1 Cjk24 Cjk35

(0, 0) D+
s K

− → D+
s K

− −1 m2
K −m2

K 1 1
D+
s K

− → D0η −
√

3
2 0 1

2
√

6 (5m2
K − 3m2

π) 0 − 1√
6

D0η → D0η 0 m2
η − 1

3m
2
π 1 1

3
(0,+1) D0π+ → D0π+ −1 m2

π −m2
π 1 1

D0π+ → D+π0 √
2 0 0 0 0

D0π+ → D+
s K̄

0 −1 0 − 1
2 (m2

K +m2
π) 0 1

D0π+ → D+η 0 0 −
√

2
3m

2
π 0

√
2
3

D+π0 → D+π0 0 m2
π −m2

π 1 1
D+π0 → D+

s K̄
0 1√

2 0 1
2
√

2 (m2
K +m2

π) 0 − 1√
2

D+π0 → D+η 0 0 1√
3m

2
π 0 − 1√

3
D+
s K̄

0 → D+
s K̄

0 −1 m2
K −m2

K 1 1
D+
s K̄

0 → D+η −
√

3
2 0 1

2
√

6 (5m2
K − 3m2

π) 0 − 1√
6

D+η → D+η 0 m2
η − 1

3m
2
π 1 1

3
(0,+2) D+π+ → D+π+ 1 m2

π −m2
π 1 1

(1, 0) D0K0 → D0K0 0 m2
K 0 1 0

D0K0 → D+
s π
− 1 0 − 1

2 (m2
K +m2

π) 0 1
D+
s π
− → D+

s π
− 0 m2

π 0 1 0
(1,+1) D+

s π
0 → D+

s π
0 0 m2

π 0 1 0
D+
s π

0 → D0K+ 1√
2 0 − 1

2
√

2 (m2
K +m2

π) 0 1√
2

D+
s π

0 → D+K0 − 1√
2 0 1

2
√

2 (m2
K +m2

π) 0 − 1√
2

D+
s π

0 → D+
s η 0 0 0 0 0

D0K+ → D0K+ −1 m2
K −m2

K 1 1
D0K+ → D+K0 −1 0 −m2

K 0 1
(1,+1) D0K+ → D+

s η
√

3
2 0 1

2
√

6 (5m2
K − 3m2

π) 0 − 1√
6

D+K0 → D+K0 −1 m2
K −m2

K 1 1
D+K0 → D+

s η
√

3
2 0 1

2
√

6 (5m2
K − 3m2

π) 0 − 1√
6

D+
s η → D+

s η 0 m2
η − 4

3 (2m2
K −m2

π) 1 4
3

(1,+2) D+
s π

+ → D+
s π

+ 0 m2
π 0 1 0

D+
s π

+ → D+K+ 1 0 − 1
2 (m2

K +m2
π) 0 1

D+K+ → D+K+ 0 m2
K 0 1 0

(2,+1) D+
s K

0 → D+
s K

0 1 m2
K −m2

K 1 1
(2,+2) D+

s K
+ → D+

s K
+ 1 m2

K −m2
K 1 1

Table A.4: Continuation of Table A.3.

We also give the expressions relating the coefficients in the isospin basis, C(S,I)
i→j , with those in

the charge basis, C̃(S,Q)
i→j , obtained from the Clebsch-Gordan coefficients coupling the particle

isospins i1 and i2 to total isospin I,

C
(−1,0)
DK̄→DK̄ = 1

2 C̃
(−1,0)
D+K−→D+K− + 1

2 C̃
(−1,0)
D0K̄0→D0K̄0 − C̃

(−1,0)
D0K̄0→D+K−

C
(−1,1)
DK̄→DK̄ = 1

2 C̃
(−1,0)
D+K−→D+K− + 1

2 C̃
(−1,0)
D0K̄0→D0K̄0 + C̃

(−1,0)
D0K̄0→D+K−

= C̃
(−1,−1)
D0K−→D0K− = C̃

(−1,+1)
D+K̄0→D+K̄0
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C
(0,1/2)
Dπ→Dπ = 2

3 C̃
(0,+1)
D0π+→D0π+ + 1

3C
(0,+1)
D+π0→D+π0 −

2
√

2
3 C̃

(0,+1)
D+π0→D0π+

= 1
3 C̃

(0,0)
D0π0→D0π0 + 2

3 C̃
(0,0)
D+π−→D+π− + 2

√
2

3 C̃
(0,0)
D+π0→D0π+

C
(0,1/2)
Dπ→Dη =

√
2
3 C̃

(0,+1)
D0π+→D+η −

1√
3
C̃

(0,+1)
D+π0→D+η

= 1√
3
C̃

(0,0)
D0π0→D0η +

√
2
3 C̃

(0,0)
D+π−→D0η

C
(0,1/2)
Dπ→DsK̄

=
√

2
3 C̃

(0,+1)
D0π+→D+

s K̄0 −
1√
3
C̃

(0,+1)
D+π0→D+

s K̄0

= 1√
3
C̃

(0,0)
D0π0→D+

s K−
+
√

2
3 C̃

(0,0)
D+π−→D+

s K−

C
(0,1/2)
Dη→Dη = C̃

(0,+1)
D+η→D+η = C̃

(0,0)
D0η→D0η

C
(0,1/2)
Dη→DsK̄

= C̃
(0,+1)
D+η→D+

s K̄0 = C̃
(0,0)
D0η→D+

s K−

C
(0,1/2)
DsK̄→DsK̄

= C̃
(0,+1)
D+
s K̄0→D+

s K̄0 = C̃
(0,0)
D+
s K−→D+

s K−

C
(0,3/2)
Dπ→Dπ = 2

3 C̃
(0,0)
D0π0→D0π0 + 1

3 C̃
(0,0)
D+π−→D+π− −

2
√

2
3 C̃

(0,0)
D0π0→D+π−

= − 1
3 C̃

(0,+1)
D0π+→D0π+ + 2

3 C̃
(0,+1)
D+π0→D+π0 + 2

√
2

3 C̃
(0,+1)
D+π0→D0π+

= C̃
(0,−1)
D0π−→D0π− = C̃

(0,+2)
D+π+→D+π+

C
(1,0)
DK→DK = 1

2 C̃
(1,+1)
D0K+→D0K+ + 1

2 C̃
(1,+1)
D+K0→D+K0 + C̃

(1,+1)
D+K0→D0K+

C
(1,0)
DK→Dsη = − 1√

2
C̃

(1,+1)
D0K+→D+

s η
− 1√

2
C̃

(1,+1)
D+K0→D+

s η

C
(1,0)
Dsη→Dsη = C̃

(1,+1)
D+
s η→D+

s η

C
(1,1)
Dsπ→Dsπ = C̃

(1,+1)
D+
s π0→D+

s π0 = C̃
(1,+2)
D+
s π+→D+

s π+ = C̃
(1,0)
D+
s π−→D+

s π−

C
(1,1)
Dsπ→DK = C̃

(1,0)
D+
s π−→D0K0 = C̃

(1,+2)
D+
s π+→D+K+

= 1√
2
C̃

(1,+1)
D+
s π0→D0K+ −

1√
2
C̃

(1,+1)
D+
s π0→D+K0

C
(1,1)
DK→DK = C̃

(1,0)
D0K0→D0K0 = C̃

(1,+2)
D+K+→D+K+

= 1
2 C̃

(1,+1)
D0K+→D0K+ + 1

2 C̃
(1,+1)
D+K0→D+K0 − C̃(1,+1)

D0K+→D+K0

C
(2,1/2)
DsK→DsK = C̃

(2,+1)
D+
s K0→D+

s K0 = C̃
(2,+2)
D+
s K+→D+

s K+

The phase convention for the isospin states, |I I3〉, is the following:

|π+〉 = −|1 + 1〉 |π0〉 = |1 0〉 |π−〉 = |1 − 1〉

|η〉 = |0 0〉

|K+〉 =
∣∣∣∣12 + 1

2

〉
|K0〉 =

∣∣∣∣12 − 1
2

〉
|K−〉 =

∣∣∣∣12 − 1
2

〉
|K̄0〉 = −

∣∣∣∣12 + 1
2

〉
|D+〉 = −

∣∣∣∣12 + 1
2

〉
|D0〉 =

∣∣∣∣12 − 1
2

〉
|D−〉 =

∣∣∣∣12 − 1
2

〉
|D̄0〉 =

∣∣∣∣12 + 1
2

〉
|D+

s 〉 = |0 0〉 |D−s 〉 = |0 0〉 .
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Finite-temperature
modifications of light mesons

B
In Chapter 3 we have neglected the medium modifications of the light mesons and used vacuum
spectral functions for them, in both the T -matrix calculation as well as in the D-meson self-
energy corrections. This approximation, which should be reasonable at low temperatures, was
implemented in Refs. [Mon+20b; Mon+20c], where we based our assumption on the pion mass
modifications given in Refs. [Sch93; Tou97]. In this appendix, we present a validity check using
a medium-modified pion mass.

To address the correction of the pion self-energy due to the thermal bath, we have applied the
methodology of [Sch93]. As opposed to our calculation for heavy mesons, the method in [Sch93]
is not self-consistent but based on the one-loop correction to the meson self-energy in the dilute
limit. We have computed the real part of the pole of the pion propagator, whose self-energy is
corrected by the thermal medium producing a modified dispersion relation,

ω(p) ' ωp −
1
ωp

∫
d3q

(2π)32ωq
f(ωq, T )Re Tππ(s) , (B.1)

where ωp =
√
p2 +mπ(T = 0) is the vacuum dispersion relation (with mπ(T = 0) = 138 MeV),

f(ωp, T ) is the BE distribution function, Tππ(s) is the isospin averaged amplitude of the ππ → ππ

process, and s = (p+ q)2 the Mandelstam variable.

Here, Tππ(s) is calculated using the unitarized scattering amplitudes coming from the SU(3)
χPT Lagrangian [OOP98; OOP99]. The unitarization approach used in [OOP98; OOP99] is
similar to ours, although not equal. In particular, the scattering amplitudes from [OOP99] have
no corrections due to the temperature, but this is consistent with the one-loop approximation for
the pion self-energy.

In this appendix we neglect the pion width–which is also generated due to temperature
effects—so we can still use Dirac delta spectral functions peaked at ω(p). We define the thermal
pion mass as the value mπ(T ) = ω(p = 0;T ) and plot it in Fig. B.1 up to T = 150 MeV. At this
temperature the pion mass is mπ(T = 150 MeV) = 120 MeV.

We have run our code for the D-meson self-energy at T = 150 MeV using this reduced
pion mass. We find that the mass of the ground-state D(∗) and D

(∗)
s mesons are only slightly

modified with a decrease of ∆mD(∗) = 4 MeV and ∆m
D

(∗)
s

= 2 MeV, with respect to the thermal
masses reported in Chapter 3, while the widths do not change appreciably. With regards to the
dynamically generated states, the lowest-lying state that corresponds to the D∗0(2300), as well as
the one for D1(2430), change their masses by −2 MeV, being the widths 20 MeV larger. As for
the highest-lying resonances, both change by −2 MeV, with a similar change in width. For the
bound states D∗s0(2317) and D∗s1(2460) the change in mass is −2 MeV, while the width increases
by 1 MeV.

In conclusion, for low temperatures, T � 150 MeV, it is acceptable to neglect the medium
effects on the light mesons. For the largest temperature considered, that is T = 150 MeV,
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the effects of a medium-modified pion are noticeable but still small. The incorporation of the
medium-modified spectral functions, with both mass and decay width depending on temperature,
is imperative to decide whether the widening of the pion can produce a significant change in the
properties of heavy-flavor mesons at intermediate temperatures. Also the modification of the
other light mesons. However, this is out of the scope of this dissertation.

25 50 75 100 125 150
100

110

120

130

140

150

T(MeV)

m
π
(M

e
V
)

Figure B.1: Pion mass mπ(T ) = ω(p = 0;T ) as a function of the temperature after incorporating the
SU(3) χPT amplitudes of Ref. [OOP99] into the one-loop pion self-energy correction of
Ref. [Sch93].
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Numerical integration of
thermal quantities

C
In this appendix, we briefly discuss the details of the procedure followed for the non-trivial
numerical integration of the expressions obtained in Chapter 3 with the ITF for quantities such
as the two-meson thermal loop and the self-energy of the heavy meson.

C.1 Two-meson propagator

For free mesons, the thermal two-meson loop function is given by Eq. (3.24). Using cut-off
regularization let us write

GDΦ(E, ~p ;T ) =
∫ Λ

0

dq

16π2
q2

ωD

∫ 1

−1
dx

1
ωΦ(x)

4∑
i=1

Fi(q, x)
Gi(q, x) , (C.1)

with ωD =
√
q2 +m2

D and ωΦ =
√

(~p− ~q )2 +m2
Φ =

√
p2 + q2 − 2pqx+m2

Φ. We have intro-
duced q ≡ |~q| and p ≡ |~p| to simplify the notation, and x = cos θ is the angular variable. The
functions Fi(q, x) and Gi(q, x) are defined as:

F1(q, x) = F2(q, x) = 1 + f(ωD, T ) + f(ωΦ, T ) ,

F3(q, x) = F4(q, x) = f(ωD, T )− f(ωΦ, T ) , (C.2)

and

G1(q, x) = E − (ωD + ωΦ) + i ε ,

G2(q, x) = −E − (ωD + ωΦ)− i ε ,

G3(q, x) = E + (ωD − ωΦ) + i ε ,

G4(q, x) = −E + (ωD − ωΦ)− i ε . (C.3)

The x-dependence of the integrand is contained in ωΦ. When integrating over x, we have to be
careful in the regions around poles, that is, the roots of Gi(q, x), where a finer grid is needed.

The result of the direct numerical integration of an integral of the type
∫ 1
−1 dx

f(x)
g(x) with

g(x0) = 0 is highly unstable and depends on how close we come to x0, as it is ill-defined at this
point unless f(x0) = 0. The standard way to proceed is to perform a principal value integral. As
x approaches x0 we can do a Taylor expansion of g(x),

g(x) = g(x0) + g′(x0)(x− x0) + ... ≈ g′(x0)(x− x0) , (C.4)
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and add and subtract the integral of f(x0)/g′(x0)(x−x0), which has the same kind of singularity
as the function that we want to integrate,∫ 1

−1
dx

f(x)
g(x) =

∫ 1

−1
dx

f(x)
g(x) +

∫ 1

−1
dx

f(x0)
g′(x0)

1
(x− x0) −

∫ 1

−1
dx

f(x0)
g′(x0)

1
(x− x0)

=
∫ 1

−1
dx

[
f(x)
g(x) −

f(x0)
g′(x0)

1
x− x0

]
+ f(x0)
g′(x0)

∫ 1

−1
dx

1
x− x0

. (C.5)

The subtracted term allows us to get a numerically stable integrand, while the added term can
be solved analytically, using the identity∫

dx
1

x± i ε
= p.v.

∫
dx

1
x
∓ iπ , (C.6)

where p.v. denotes the principal value integral, defined as

p.v.
∫ b

a

dx
1
x

=
[∫ −ε

a

+
∫ b

ε

]
dx

1
x
. (C.7)

With this, one can write∫ 1

−1
dx

f(x)
g(x) =

∫ 1

−1
dx

[
f(x)
g(x) −

f(x0)
g′(x0)

1
x− x0

]
+ f(x0)
g′(x0)

[
ln |+ 1− x0|
| − 1− x0|

∓ iπ

]
, (C.8)

where the sign of the imaginary part (+ or −) depends on whether we have x0 + i ε or x0 − i ε.
This way of dealing with the x-integration not only allows us to get a numerical stable result for
the real part but also provides an imaginary part to the loop function in Eq. (C.1). We use∫ Λ

0

dq

16π2
q2

ωD

∫ 1

xmin

dx
1

ωΦ(x)
Fi(q, x)
Gi(q, x) =

∫ Λ

0

dq

16π2
q2

ωD

×

{∫ 1

xmin

dx

[
1

ωΦ(x)
Fi(q, x)
Gi(q, x) −

1
ωΦ(xi)

Fi(q, xi)
G′i(q, xi)

1
x− xi

]

+ 1
ωΦ(xi)

Fi(q, xi)
G′i(q, xi)

[
ln |+ 1− xi|
|xmin − xi|

+ si iπ

]}
(C.9)

when E > ωD for i = {1, 3}, and E < ωD for i = {3, 4}, and for the values of q for which the
i-term of the integrand in the x-integration has a pole at the value xi,

xi = p2 + q2 +m2
Φ − ω2

i

2pq , with


ω1 = E − ωD + i ε
ω3 = E + ωD + i ε
ω4 = −E + ωD − i ε

, (C.10)

which satisfies Gi(q, xi) = 0 and |xi| < 1. It is easy to see that the signs in Eq. (C.9) are
s1 = s3 = − and s4 = +. When there is no pole, the numerical integration of Eq. (C.1) can be
done directly.

We note that the lower limit of the x-integral in Eq. (C.1) has been replaced by xmin ≥ −1, as
not all the angles are accessible for a certain q. Indeed, we are calculating the loop function in
the reference frame of the laboratory and we want to apply a certain cut-off, Λcm = 800 MeV, in
the center-of-mass frame, for consistency with the vacuum approach described in Section 2.3.
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While one possibility would be to boost the meson-meson system to the center-of-mass frame and
then calculate the loop, it is easier to calculate the cut-off in the lab frame. In the nonrelativistic
limit, the cut-off in the lab frame reads

Λlab = Λcm + ξp , with ξ = mD

mD +mΦ
, (C.11)

and p the modulus of the external momentum. Then for ξp < Λcm, we have that

−1 < x < +1 , for 0 < q < (Λcm − ξp) ,
xmin < x < +1 , for (Λcm − ξp) < q < (Λcm + ξp) ,
@x , for q > (ξp+ Λcm) ,

(C.12)

where q is in the modulus of the internal momenta in the lab frame, and xmin is given by

xmin = q2 + ξ2p2 − (Λcm)2

2qξp . (C.13)

Similarly, for ξp > Λcm,

@x , for 0 < q < (ξp− Λcm) ,
xmin < x < +1 , for (ξp− Λcm) < q < (ξp+ Λcm) ,
@x , for q > (ξp+ Λcm) .

(C.14)

The considerations above have to be taken into account for the proper numerical calculation
of the free two-meson propagator for a generic external center-of-mass frame energy E and
momentum ~p. The case of ~p = 0 has to be treated separately because the integrand does not
depend on the angular variable. That is, the x-integration is trivial, and one has to be careful
with the poles in the q-integration. One can use, in principle, the principal value integration
approach. However, the integral

GDΦ(E, ~p = 0;T ) =
∫ Λ

0

dq

8π2
q2

ωD(q)ωΦ(q)

4∑
i=1

Fi(q)
Gi(q)

, with ωD,Φ =
√
q2 +m2

D,Φ (C.15)

needs to be rewritten as an analytically solvable one and, in practice, it is not possible. Neverthe-
less, the numerical integration in q, taking the intervals [0, qi), (qi,Λ] and approaching the pole
position qi symmetrically from both sides, is very stable. The condition qi > 0 is only satisfied for
the first and fourth terms, with q1 = q4 =

√
[E − (mΦ +mD)2][E − (mΦ −mD)2]/(2E). Then,

the imaginary part is given by

ImGDΦ(E, ~p = 0;T ) = −iπ
1

8π2
q2
i

ωD(qi)ωΦ(qi)
Fi(qi)
|G′i(qi)|

, (C.16)

with i = 1 for E > (mD +mΦ) and i = 4 for E < |mD −mΦ|, giving rise to the unitary cut and
the Landau cut, respectively (see discussion in Section 3.2.3).

For the numerical integration of the loop function in the case where only one of the mesons is
dressed with the spectral function, that is, the expression given in Eq. (3.25), we proceed in a
similar way. Using cut-off regularization, we write Eq. (3.25) as

GDΦ(E, ~p ;T ) = −
∫ Λ

0

dq

8π2 q
2
∫ 1

xmin

dx
1

ωΦ(q, x)

∫ ωmax

0
dω SD(ω, q;T )

4∑
i=1

Fi(ω, q, x)
Gi(ω, q, x) , (C.17)
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where we have defined

F1(ω, q, x) = F2(ω, q, x) = 1 + f(ω, T ) + f(ωΦ, T ) ,

F3(ω, q, x) = F4(ω, q, x) = −f(ω, T ) + f(ωΦ, T ) , (C.18)

and

Gi(ω, q, x) = ω − ωi , i = {1, 2, 3, 4} , with


ω1 = E − ωΦ + i ε
ω2 = −E − ωΦ − i ε
ω3 = E + ωΦ + i ε
ω4 = −E + ωΦ − i ε

. (C.19)

In this case, we deal with the poles of the integrand, located at ωi > 0, when performing the
ω-integration. We use the technique of the principal value integral described above. In addition,
one has to make sure to properly capture the strength to the integrand coming from the spectral
function, which can be considerably narrow at low temperatures, as shown in Chapter 3.

In Eq. (C.17), the upper limit of the ω-integration, which should in principle extend to infinity,
has been replaced by ωmax →∞, and in practice we take a large enough value. Furthermore, the
cut-off Λ in the lab frame is computed using Eq. (C.11), and the lower limit of the x-integration
is set by the value of xmin in Eq. (C.13).

C.2 Heavy-meson self-energy

For the numerical integration of the self-energy of Eq. (3.32), where a delta-type spectral function
has been introduced for the light meson, we use similar tricks to those described for the thermal
loop function in the previous section. First, we write Eq. (3.32) as

ΠD(ω, ~q ;T ) = 1
π

∫ Λ

0

dq′

8π2
q′2

ωΦ

∫ 1

−1
dx

∫ Emax

0
dE ImTDΦ(E, ~p ;T )

4∑
i=1

Fi(E, q′, x)
Gi(E, q′, x) , (C.20)

with

F1(E, q, x) = F2(E, q, x) = 1 + f(E, T ) + f(ωΦ, T ) ,

F3(E, q, x) = F4(E, q, x) = −f(E, T ) + f(ωΦ, T ) , (C.21)

and

Gi(E, q, x) = E − Ei , i = {1, 2, 3, 4} , with


E1 = ω − ωΦ + i ε
E2 = −ω − ωΦ − i ε
E3 = ω + ωΦ + i ε
E4 = −ω + ωΦ − i ε

. (C.22)
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Then, we make use of Eqs. (C.4) to (C.8) for the principal value integral, which gives

1
π

∫ Λ

0

dq′

8π2
q′ 2

ωΦ

∫ 1

−1
dx

∫ Emax

0
dE ImTDΦ(E, ~p ;T )Fi(E, q

′, x)
Gi(E, q′, x) = 1

π

∫ Λ

0

dq′

8π2
q′ 2

ωΦ

∫ 1

−1
dx

×

{∫ Emax

0
dE

[
ImTDΦ(E, ~p ;T )Fi(E, q

′, x)
Gi(E, q′, x) − ImTDΦ(Ei, ~p ;T )Fi(Ei, q

′, x)
E − Ei

]

+ ImTDΦ(Ei, ~p ;T )Fi(Ei, q′, x)
[
ln |Emax − Ei|

|Ei|
+ siiπ

]}
, (C.23)

with s1 = s3 = + and s4 = −, resulting from the ±i ε term of the analytical continuation in
Eq. (C.22). Therefore, when there is a pole in the integrand, Ei > 0, the self-energy is obtained
using Eq. (C.23). Otherwise, one can directly perform the numerical integration of Eq. (C.20).

We note that the upper integration limits in Eqs. (C.21) and (C.23) do not have the meaning
of a physical cut-off; rather they correspond to a truncation of the numerical integrals and their
values have to be large enough since, in principle, Λ → ∞ and Emax → ∞, but also having in
mind that the effective theory breaks down at high energies.

It is also important to note that the integrand involved in the calculation of the self-energy
may vary considerably in certain areas of the integration domain. In addition to the regions
around poles that appear due to zeros in the denominators and which are taken into account in
the numerical integration with the trick of the principal value as described above, the integrand
may vary over several orders of magnitude in the vicinity of bound states and resonances of the
T matrix. Because of this, the numerical integration with a fixed number of integration points is
not adequate. On the contrary, it is convenient to use a recursive procedure that allows us to
automate an adaptive domain and increase the number of integration points around the features
of the T matrix. We refer the interested reader to Chapter 5 of the lecture notes in Ref. [Hjo15]
for a detailed discussion on integration methods including adaptive integration methods.
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Wigner transform D
In the derivation of the kinetic equation in Chapter 5, we have implemented a Wigner transform
to simplify the expressions. In this appendix, we give some details on the Wigner transform of
the product and convolution operators following Ref. [Ram07].

For any two-point function such as the Wightman function G<D(x, x′), one can define its Wigner
transform as

G<D(x, x′) WT−−−−→ G<D(X, k) ≡
∫
d4s ei k·s G<D

(
X + s

2 , X −
s

2

)
, (D.1)

where we have introduced the center-of-mass and relative coordinates, X = (x + x′)/2 and
s = x− x′, respectively [Dan84; BI99; Ram07].

We apply the Wigner transform to all the terms of the off-shell kinetic equation (See Eq. (5.26)).
The first term includes the following combination,

G−1
0,xG

<
D(x, x′)−G−1

0,x′G
<
D(x, x′) , (D.2)

where G−1
0 (x) = −∂2

x −m2
D. In terms of X and s it reads

G−1
0,xG

<
D(x, x′)−G−1

0,x′G
<
D(x, x′) = −

[
∂2
x − ∂2

x′
]
G<D(x, x′)

= −2∂s · ∂XG<D
(
X + s

2 , X −
s

2

)
. (D.3)

Then, we multiply this term by ei k·s and integrate over d4s to obtain,

G−1
0,xG

<
D(x, x′)−G−1

0,x′G
<
D(x, x′) WT−−→ 2i kµ

∂G<D(X, k)
∂Xµ

, (D.4)

where the derivative over s transforms into a four-momentum kµ.

This technique is applied to all the other terms in the kinetic equation, implementing at the
same time a gradient expansion in X. The latter allows neglecting higher-order terms in ∂µX ,
like ∂2

XG
>
D(X, k). For example, in the first commutator of Eq. (5.26) one finds the factor Πδ(x),

which is expanded as

Πδ(x) = Πδ
(
X + s

2

)
= Πδ(X) + 1

2s · ∂XΠδ(X) +O(∂2
X) , (D.5)

where we neglect higher-order terms in ∂X . Then, the combination −Πδ(x) + Πδ(x′) becomes
−s · ∂XΠδ(X) +O(∂2

X). Up to this order, the Wigner transform gives

[
−Πδ(x) + Πδ(x′)

]
G<D(x, x′) WT−−→ i

∂Πδ(X)
∂X

·
∂G<D(X, k)

∂k
, (D.6)

where the factor sµ produces the operator ∂µk .
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Let us consider the convolution of two operators,

C(x, x′) ≡ (A⊗B) (x, x′) =
∫
d4z A(x, z)B(z, x′) . (D.7)

It is possible to show that, after the Wigner transform, it becomes [Ram07]

C(x, x′) WT−−→ A(X, k) exp
[
− i

2

(←−
∂X ·

−→
∂k −

←−
∂k ·
−→
∂X

)]
B(X, k) , (D.8)

where the derivative operators act in the direction marked by the arrows. Applying the gradient
expansion and keeping the first order in ∂X , we can simplify it to,

C(x, x′) WT−−→ A(X, k)B(X, k) + i
2 {A,B}PB +O(∂2

X) , (D.9)

where the Poisson bracket is defined as

{A,B}PB ≡
∂A(X, k)
∂kµ

∂B(X, k)
∂Xµ

− ∂A(X, k)
∂Xµ

∂B(X, k)
∂kµ

. (D.10)

Then, using Eq. (D.9) one finds that the anticommutators appearing in the collision terms of
Eqs. (5.26) and (5.27),{

Π≶ ⊗, G
≷
D

}
(x, x′) =

(
Π≶ ⊗G≷

D

)
(x, x′) +

(
G

≷
D ⊗Π≶

)
(x, x′) , (D.11)

transform to {
Π≶ ⊗, G

≷
D

}
(x, x′) WT−−→ 2Π≶(X, k)G≷

D(X, k) , (D.12)

as the Poisson brackets cancel, {A,B}PB = −{B,A}PB.
However, for the commutators like

−
[
ΠR/A ⊗, G

≶
D

]
(x, x′) = −

(
ΠR/A ⊗G≶

D

)
(x, x′) +

(
G

≶
D ⊗ΠR/A

)
(x, x′) , (D.13)

the Poisson bracket is the only remaining piece,

−
[
ΠR/A ⊗, G

≶
D

]
(x, x′) WT−−→ −i

{
ΠR/A, G

≶
D

}
PB

. (D.14)

Similarly,
−
[
Π≶ ⊗, GR/A

D

]
WT−−→ −i

{
Π≶, GR/A

D

}
PB

. (D.15)

Applying these rules to the different terms in Eq. (5.26), then Eq. (5.29) follows.
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On-shell Fokker-Planck
equation

E
In Chapter 5, we have obtained the off-shell Fokker-Planck equation for the heavy-meson
(homogeneous) Wightman function iG<D(t, k0,~k ). We reproduce it here again for convenience,

∂

∂t
iG<D(t, k0,~k ) = ∂

∂ki

{
Â(k0,~k;T )kiiG<D(t, k0,~k )

+ ∂

∂kj

[
B̂0(k0,~k;T )∆ij + B̂1(k0,~k;T )k

ikj

~k 2

]
iG<D(t, k0,~k )

}
, (E.1)

The “off-shell” coefficients were defined in Eqs. (5.83), (5.84) and (5.85),

Â(k0,~k;T ) = 1
2k0

∫
dk0

1
2π

d3q

(2π)3W (k0,~k, k0
1, ~q ) ~q ·

~k

~k 2
, (E.2)

B̂0(k0,~k;T ) = 1
2k0

1
4

∫
dk0

1
2π

d3q

(2π)3W (k0,~k, k0
1, ~q )

[
~q 2 − (~q · ~k )2

~k 2

]
, (E.3)

B̂1(k0,~k;T ) = 1
2k0

1
2

∫
dk0

1
2π

d3q

(2π)3W (k0,~k, k0
1, ~q ) (~q · ~k )2

~k 2
, (E.4)

where we have expressed the average in terms of the integration of the scattering rateW (k0~k, k0
1, ~q )

integrated over the transferred momentum. These equations follow immediately from the Fokker-
Planck reduction of the transport equation.

The scattering rate reads

W (k0,~k, k0
1, ~q ) ≡

∫
d4k2

(2π)4
d4k3

(2π)4 (2π)4δ(k0
1 + k0

2 + k0
3 − k0)δ(3)(~k2 + ~k3 − ~q )

×
∣∣∣T (k0

1 + k0
2 + i ε,~k − ~q + ~k2)

∣∣∣2 iG>Φ(k0
2,
~k2)iG<Φ(k0

3,
~k3)iG>D(k0

1,
~k − ~q ) . (E.5)

We stress that, upon the integration over dk0/(2π) in Eq. (E.1), it is not possible to obtain
the standard Fokker-Planck equation with “on-shell” coefficients depending only on ~k due to
the presence of a D meson with a generic spectral function. To match the previous results and
derive the “on-shell” version of the coefficients, one needs to apply the Kadanoff-Baym Ansatz
of Eqs. (5.44) and (5.45), and particularize for the narrow quasiparticle limit of the spectral
function in Eq. (5.48) with zk ' 1,

iG<D(t, k0,~k ) = 2π
2Ek

[
δ(k0 − Ek)− δ(k0 + Ek)

]
fD(t, k0) , (E.6)

and similarly for particles 1, 2, and 3.
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Then, after integrating along the positive branch of k0, one can obtain the Fokker-Planck
equation for fD(t,~k ) 20:

∂

∂t
fD(t,~k ) = ∂

∂ki

{
kiA(~k;T )fD(t,~k ) + ∂

∂kj

[
B0(~k;T )∆ij +B1(~k;T )k

ikj

k2

]
fD(t,~k )

}
, (E.7)

where the transport coefficients read

A(~k;T ) =
∫

d3q

(2π)3w(~k, ~q ) ~q ·
~k

~k 2
, (E.8)

B0(~k;T ) = 1
4

∫
d3q

(2π)3w(~k, ~q )
[
~q 2 − (~q · ~k )2

~k 2

]
, (E.9)

B1(~k;T ) = 1
2

∫
d3q

(2π)3w(~k, ~q ) (~q · ~k )2

~k 2
. (E.10)

We have introduced the “on-shell” scattering rate

w(~k, ~q ) ≡ 1
2Ek

∫
dk0

1
2π W (Ek,~k, k0

1, ~q ) , (E.11)

which in terms of the scattering amplitude reads

w(~k, ~q ) =
∫

d3k3

(2π)6 f
(0)
Φ (~k3)f̃ (0)

Φ (~k3 + ~q ) 1
2Ek2Ek32Ek+q2Ek3+q

× (2π)4δ(Ek + Ek3 − Ek+q − Ek3+q)

×
[∣∣∣T (Ek + E3,~k + ~k3)

∣∣∣2 +
∣∣∣T (Ek − Ek3+q,~k − ~k3 − ~q )

∣∣∣2] . (E.12)

The expressions of the coefficients in Eqs. (E.8), (E.9) and (E.10) together with the on-shell
scattering rate in Eq. (E.12) coincide with those in Refs. [Abr+11; TT13; TTD16], apart from
the Landau term arising in Eq. (E.12), which is the new contribution found in this thesis.

20We slightly abuse of notation here, as it should strictly read f(t, Ek).
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Resum

La física hadrònica tal com l’entenem en l’actualitat es remunta a la concepció del model de
quarks, proposat independentment per Gell-Mann [Gel64] i Zweig [Zwe64] l’any 1964, en un
intent de classificar i entendre les propietats d’un gran nombre de partícules (hadrons) que
s’havien anat descobrint al llarg de la dècada anterior. No va ser, però, fins a la formalització de
la teoria de la cromodinàmica quàntica (QCD), duta a terme per Fritzsch, Leutwyler i el mateix
Gell-Mann [FGL73] a principis de la dècada del 1970, que la interacció forta es va entendre
millor en termes de quarks i gluons.

En el model de quarks original, els hadrons es van classificar en dos grans subgrups: els
mesons, formats per una parella quark-antiquark; i els barions, que són estats lligats de tres
quarks. Tanmateix, no es va excloure la possibilitat de tenir hadrons amb una composició de
quarks de valència diferent de la dels mesons i barions ordinaris, sempre que fos compatible amb
les regles de la teoria de la QCD. Durant dècades no es va trobar cap evidència experimental de
l’existència d’aquests hadrons exòtics, però la situació ha canviat en els últims vint anys degut
a l’explosió de dades experimentals obtingudes en acceleradors col·lisionadors electró-positró
i d’hadrons. La confirmació de l’existència de diversos estats hadrònics multiquark, com per
exemple tetraquarks i pentaquarks, ha tingut lloc sobretot en el sector dels hadrons pesants, que
són aquells amb almenys un quark charm (encant, en català) o bottom (fons, en català). L’estudi
dels hadrons exòtics, especialment dels hadrons exòtics pesants, és actualment una de les línies
de recerca més actives en física hadrònica. Per una banda, hi ha programes dedicats a la cerca de
nous mesons i barions exòtics tant en instal·lacions experimentals en curs com futures. D’altra
banda, la comunitat teòrica destina un gran esforç a entendre la naturalesa d’aquests estats
exòtics i distingir, per exemple, una estructura multiquark compacta d’un estat molecular, és a
dir, d’un estat lligat o quasi-lligat de dos o més hadrons.

La teoria de la QCD presenta dues característiques extremadament importants. D’una banda,
la constant d’acoblament que descriu la intensitat de la interacció forta entre dues partícules
disminueix a mesura que augmenta la seva energia o, el que és el mateix, a mesura que
disminueix la seva separació. És el que es coneix com llibertat asimptòtica. Tanmateix, a baixes
energies (de l’ordre de la massa dels hadrons, per sota d’uns quants GeV), l’acoblament és tan
intens que no permet resoldre la QCD pertorbativament. En aquest règim cal recórrer a mètodes
no pertorbatius, com són les teories de camps efectives i la lattice QCD (LQCD, o QCD en el
reticle, en català). L’altra característica de la QCD és l’anomenat confinament del color, que fa
que les partícules amb càrrega de color no es puguin aïllar. Així doncs, els quarks i els gluons no
es poden observar lliures experimentalment, sinó confinats dins dels hadrons, que tenen càrrega
de color neutra. No obstant això, la llibertat asimptòtica prediu que a altes energies els hadrons
perden la seva identitat i donen lloc a una “sopa” de quarks i gluons desconfinats. És el que es
coneix com a plasma de quarks i gluons (QGP) i només es pot trobar a temperatures i/o densitats
bariòniques extremadament altes.

Experimentalment, les condicions d’alta temperatura i baixa densitat bariònica necessàries
per crear un QGP calent es poden aconseguir amb col·lisions d’ions pesants a altes energies al
Col·lisionador d’Ions Pesants Relativistes (RHIC) del Laboratori Nacional de Brookhaven (BNL,
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Nova York, Estats Units) i al Gran Col·lisionador d’Hadrons (LHC) del CERN (Organització
Europea per a la Recerca Nuclear, Ginebra, Suïssa). Els hadrons amb charm permeten sondejar
la formació de la fase de QGP en les col·lisions d’ions pesants, ja que els quarks i antiquarks
charm són creats únicament durant les fases inicials de la col·lisió i, per tant, experimenten
tota l’evolució del QGP. Després del procés d’hadronització, aquests quarks i antiquarks pesants
donen lloc, predominantment, a mesons amb charm “obert”, és a dir, a mesons D. Per tal de
descriure la dades experimentals, cal entendre, des d’un punt de vista teòric, la propagació dels
mesons D en la fase hadrònica i la seva interacció amb el medi calent de mesons lleugers que els
envolta.

Aquesta tesi doctoral persegueix un doble objectiu. D’una banda, pretén estudiar hadrons
exòtics amb contingut pesant que han estat observats recentment i que es poden descriure com
estats hadrònics moleculars. D’altra banda, una part important del treball presentat en aquesta
memòria s’orienta a millorar la comprensió de la modificació de les propietats dels mesons amb
sabor pesant obert en un medi calent. En tots dos casos, la descripció de les interaccions entre
hadrons es basa en l’ús de teories efectives hadròniques.

L’estructura d’aquesta memòria de tesi doctoral és la següent. Al Capítol 1 presentem un repàs
d’alguns aspectes del model de quarks i de la teoria de la QCD, per tal de motivar, a continuació,
l’estudi dels hadrons que contenen quarks pesants. En aquest capítol també donem una visió
general de l’estat actual de les fases de matèria QCD que podem trobar en condicions extremes
de temperatura i densitat bariònica i, finalment, discutim la rellevància dels mesons amb sabor
pesant com a sondes dures de la fase de QGP formada en les col·lisions d’ions pesants.

El Capítol 2 s’ha dedicat a investigar les propietats en el buit d’hadrons exòtics amb sabor
pesant obert en els sectors bariònic i mesònic. La metodologia emprada es basa en l’ús de
Lagrangians efectius consistents amb les simetries del sistema fortament interaccionant sota
estudi. Les amplituds de dispersió s’unitaritzen a través de la resolució de l’equació de Bethe-
Salpeter en canals acoblats, prestant especial atenció a la regularitació del propagador de dos
cossos. Aquesta estratègia ens permet generar estats a partir de la interacció entre les partícules
que són els graus de llibertat de la teoria efectiva, és a dir, entre mesons i/o barions. Els estats
generats dinàmicament tenen, per tant, una estructura molecular. En la primera secció d’aquest
capítol descrivim les simetries quiral i de quark pesant de la teoria de la QCD, així com algunes
de les teories efectives que són la base dels estudis que presentem a la resta del capítol. També
comentem breument les propietats d’unitarietat i analiticitat de les amplituds de dispersió.

La resta del capítol es divideix en dues parts. En la primera (Secció 2.2), s’estudia la interacció
dels mesons pseudoscalars de més baixa energia amb els barions en estat fonamental, en el
sector de charm +1, estranyesa −2 i isospí 0, mitjançant un model d’intercanvi de mesons
vectorials en canal t. Les amplituds unitaritzades obtingudes presenten dues ressonàncies amb
propietats molt similars a les d’alguns dels estats Ω∗0c descoberts per la col·laboració LHCb
al 2017. Ajustant els paràmetres del model, podem reproduir els valors experimentals de la
massa i l’amplada de decaïment de les ressonàncies Ωc(3050)0 i Ωc(3090)0. Així doncs, podem
concloure que almenys dos dels estats Ω∗0c observats experimentalment podrien ser molècules
mesó–barió i que, com que són generades dinàmicament a partir de la interacció en ona s entre
mesons pseudoscalars i barions, tindrien nombres quàntics d’espín-paritat JP = 1/2−. En canvi,
alguns models de quarks estableixen valors de 3/2− o 5/2− per l’espín-paritat d’alguns d’aquests
estats. Una futura mesura experimental dels nombres quàntics dels estats Ω∗0c observats a l’LHCb
permetria entendre millor la seva naturalesa. A més, estenem l’estudi d’aquesta secció al sector
del bottom, on trobem diversos estats Ω∗−b amb estructura molecular de tipus mesó–barió en la
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regió d’energia 6400−6800 MeV. Malgrat la falta d’estadística, algunes estructures són visibles en
aquesta regió de l’espectre experimental de l’LHCb per a les Ω∗−b . La confirmació experimental
de l’existència d’estats Ω∗−b en aquesta regió d’energia a les futures instal·lacions de l’LHC,
millorades amb major lluminositat, permetrien comparar les propietats d’aquests estats amb les
prediccións dels models de quarks i dels models moleculars, i progressar en la comprensió de la
seva naturalesa.

En la segona part (Secció 2.3), analitzem les interaccions en el buit dels mesons pseudoscalars
i vectorials amb sabor pesant obert (D(∗), D(∗)

s , B̄(∗), B̄(∗)
s ) amb mesons lleugers (π, K, K̄, η)

utilitzant una teoria efectiva de camps basada en les teories quiral i de quark pesant. En el cas de
JP = 0+, trobem que l’estat D∗0(2300) és generat dinàmicament amb una estructura de doble pol,
mentre que l’estat D∗s0(2317) s’identifica amb un estat lligat de tipus molecular. Amb JP = 1+

tenim la ressonància D1(2430), que també s’identifica amb dos pols al pla d’energia complexa, i
l’estat Ds1(2460). El paral·lelisme que s’observa entre els sector amb JP = 0+ i JP = 1+ és degut
a la simetria d’espín de quark pesant (HQSS), implementada en el Lagrangià a ordre dominant, i
només trencada per l’ús de les masses dels mesons pesants en el buit. També estenem els càlculs
al sector del bottom, on el model genera dinàmicament estats excitats homòlegs als dels sector
del charm. En aquest cas, és la simetria de sabor de quark pesant (HQFS) la responsable de les
similituds entre ambdós sectors.

Al Capítol 3 ampliem l’anàlisi de la dispersió de mesons amb sabor pesant obert dels mesons
lleugers a temperatura finita. Per tal d’obtenir les propietats dels mesons pesants en un medi
tèrmic fins a una temperatura màxima de T = 150 MeV, calculem la modificació en el medi del
propagador del mesó pesant de manera autoconsistent, que inclou correccions en l’autoenergia
degut a les interaccions amb el medi a través de les amplituds unitaritzades. Aquestes, al seu
torn, s’obtenen a partir de les resolució de l’equació de Bethe-Salpeter amb propagadors de dos
mesons modificats, també, pels efectes de la temperatura. Amb aquesta metodologia obtenim
les funcions espectrals dels mesons pesants i, a partir d’aquestes, la dependència tèrmica de les
masses i les amplades de decaïment dels mesons en estat fonamental, tant en el sector del charm
(D(∗), D(∗)

s ) com en el sector del bottom (B̄(∗), B̄(∗)
s ), i també dels estats generats dinàmicament.

Els resultats mostren una reducció generalitzada de les masses tèrmiques amb la temperatura,
que és d’unes desenes de MeV en un bany de pions a T = 150 MeV, mentre que les amplades de
decaïment augmenten amb la temperatura fins a valors d’unes desenes de MeV a T = 150 MeV.
No observem una tendència clara vers la degeneració quiral dels companys quirals amb JP = 0−

(1−) i JP = 0+ (1+). Tanmateix, el rang de temperatures dels nostres càlculs està limitat per la
validesa de la teoria efectiva hadrònica a baixes temperatures, i la degeneració quiral s’espera
que tingui lloc a una temperatura més elevada, T > Tχ. Un dels nostres resultats més rellevants
és que el company quiral del mesó D, és a dir, el mesó D∗0(2300), té una estructura de doble pol
al pla d’energia complexa, i en aquest cas no està clar com hauria de tenir lloc la restauració
de la simetria quiral. En aquest capítol també estudiem l’efecte de considerar els kaons en el
bany de mesons, a més dels pions, sobre les propietats dels mesons pesants. Això resulta en una
lleugera modificació de les masses dels mesons pesants i en un augment de les amplades, però la
major contribució als efectes tèrmics és a causa dels pions, ja que són els mesons més lleugers i,
per tant, més abundants en el bany de mesons a les temperatures considerades.

Al Capítol 4 calculem, per primera vegada, els correladors Euclidians dels mesos encantats D i
Ds a partir de les seves corresponents funcions espectrals, obtingudes amb la formulació de la
teoria efectiva a temperatura finita desenvolupada en aquesta tesi. L’objectiu és comparar els
resultats amb simulacions de LQCD i, per tant, adaptem les valors de les masses dels mesons als
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valors obtinguts amb LQCD, que són majors que els respectius valors físics. Per al càlcul dels
correladors considerem la completa dependència en energia de les funcions espectrals, tenint en
compte que els correladors de LQCD inclouen tant la contribució de l’estat fonamental com del
continu d’estats de dispersió a altes energies. Els resultats dels nostres càlculs del quocient entre
el correlador Euclidià i el correlador reconstruït es troben dins de les barres d’error de les dades
de LQCD, per a temperaures molt per sota de la temperatura de la transició de QCD, Tc. A més
altes temperatures aquest quocient es desvia significativament de les prediccions de LQCD degut
a diversos factors. En primer lloc, els nostres càlculs no inclouen la presència d’estats lligats
excitats en les funcions espectrals i, en canvi, aquests sí que són presents en les simulacions de
LQCD. En segon lloc, no hem implementat els efectes de volum finit i de cut-off del reticle en el
càlculs de la teoria efectiva. A més, la modificació tèrmica de les propietats dels mesons pesants
induïdes pel kaons del medi podrien ser més rellevants en aquest cas que en les determinacions
del capítol anterior, ja que amb les masses no-físiques de LQCD la diferència de massa entre
pions i kaons és més petita.

Finalment, al Capítol 5 estenem la descripció de la teoria cinètica dels mesons pesants a baixa
energia per tal d’incloure els efectes del medi tèrmic i les propietats espectrals dels estats amb
charm i bottom obert. Així doncs, al principi d’aquest capítol derivem les equacions off-shell de
Boltzmann i de Fokker-Planck a partir de la teoria efectiva utilitzada en els capítols anteriors.
Aquest és un pas essencial per tal de poder obtenir, a continuació, els coeficients de transport off-
shell dels mesons pesants, implementant, per primer cop, la consistència entre la descripció de les
interaccions amb els mesons lleugers del medi i la formulació cinètica. Concretament, calculem
l’amplada tèrmica, el coeficient d’arrossegament, el coeficient de difusió en l’espai de moments,
i el coeficient de difusió espaial. A causa de la seva gran massa en el buit, les correccions de
temperatura finita a la massa i l’amplada espectral dels mesons D i B̄ són relativament petites,
de manera que, en bona aproximació, els mesons pesants es poden tractar com a quasipartícules.
No obstant això, l’ús d’amplituds de dispersió a temperatura finita obre un nou rang cinemàtic
per a la interacció mesó–mesó, conegut com a tall de Landau. Aquesta contribució als coeficients
de transport és força gran a temperatures moderades. De fet, a T = 150 MeV aquesta nova
contribució s’equipara a la contribució usual deguda al tall unitari. Al final del capítol comparem
els càlculs dels coeficients de transport per a temperatures per sota de Tc, incloent aquests nous
efectes de temperatura finita, amb determinacions de LQCD del coeficient de difusió espaial i en
l’espai de moments, així com també amb anàlisis Bayesians de dades de col·lisions d’ions pesats,
per sobre de Tc. Trobem un bon acord amb els nostres resultats a la temperatura de transició de
QCD que fa que hi hagi una continuïtat suau dels càlculs a Tc.

Les conclusions es presenten al Capítol 6. També s’inclouen un seguit d’apèndixs amb taules,
derivacions i informació addicional que s’han omès del text principal per tal de facilitar la seva
lectura.

Recapitulant, en aquesta memòria es proporciona, d’una banda, una descripció extensa dels
estats Ω∗0c /Ω∗−b i dels mesons excitats amb sabor pesant obert (D∗0(2300), D∗s0(2317), D1(2430) i
Ds1(2460), i dels seus homòlegs en el sector del bottom) en termes d’estats hadrònics moleculars,
utilitzant els Lagrangians efectius adequats per descriure les interaccions hadró–hadró. Així
doncs, tenim la confiança que amb aquest treball demostrem la capacitat de les teories efectives
hadròniques unitaritzades per generar estats dinàmicament. Quan aquests estats es poden iden-
tificar amb hadrons exòtics observats experimentalment, llavors les teories efectives hadròniques
permeten proporcionar una interpretació de molècula hadrònica per a la seva naturalesa. D’altra
banda, a la vista dels actuals i futurs experiments de col·lisions d’ions pesants, que permeten
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generar la fase de QGP a densitat bariònica baixa, i dels prometedors resultats de les simulacions
de LQCD a temperatura finita, en aquesta tesi doctoral desenvolupem una nova formulació
sistemàtica basada en teories efectives per a l’estudi de la modificació de les propietats dels
hadrons pesants en un medi mesònic per sota de la temperatura de transició de QCD. A més, a
mode d’aplicació dels càlculs d’aquesta metodologia a temperatura finita, calculem coeficients de
transport que poden ser utilitzats en simulacions hidrodinàmiques i millorar, així, la comprensió
de la formació del QGP en col·lisions d’ions pesants.
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