
 
 
 

 
 

 
 
 
 
 
 
 
 
 

 
 
 

Computational and biophysical approaches  
for the discovery of Tribbles  
pseudokinases modulators 

 
Juan Salamanca Viloria 

 
 
 

 
 
 

 
 
 
 
 
 

 
ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents condicions d'ús: La difusió 
d’aquesta tesi per mitjà del servei TDX (www.tdx.cat) i a través del Dipòsit Digital de la UB (diposit.ub.edu) ha estat 
autoritzada pels titulars dels drets de propietat intelꞏlectual únicament per a usos privats emmarcats en activitats 
d’investigació i docència. No s’autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició 
des d’un lloc aliè al servei TDX ni al Dipòsit Digital de la UB. No s’autoritza la presentació del seu contingut en una finestra 
o marc aliè a TDX o al Dipòsit Digital de la UB (framing). Aquesta reserva de drets afecta tant al resum de presentació de 
la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora. 
 
 
ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La 
difusión de esta tesis por medio del servicio TDR (www.tdx.cat) y a través del Repositorio Digital de la UB (diposit.ub.edu) 
ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en 
actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a 
disposición desde un sitio ajeno al servicio TDR o al Repositorio Digital de la UB. No se autoriza la presentación de su 
contenido en una ventana o marco ajeno a TDR o al Repositorio Digital de la UB (framing). Esta reserva de derechos afecta 
tanto al resumen de presentación de la tesis como a sus contenidos. En la utilización o cita de partes de la tesis es obligado 
indicar el nombre de la persona autora. 
 
 
WARNING. On having consulted this thesis you’re accepting the following use conditions:  Spreading this thesis by the TDX 
(www.tdx.cat) service and by the UB Digital Repository (diposit.ub.edu) has been authorized by the titular of the intellectual 
property rights only for private uses placed in investigation and teaching activities. Reproduction with lucrative aims is not 
authorized nor its spreading and availability from a site foreign to the TDX service or to the UB Digital Repository. Introducing 
its content in a window or frame foreign to the TDX service or to the UB Digital Repository is not authorized (framing). Those 
rights affect to the presentation summary of the thesis as well as to its contents. In the using or citation of parts of the thesis 
it’s obliged to indicate the name of the author. 



UNIVERSITAT DE BARCELONA

FACULTAT DE FARMÀCIA I CIÈNCIES DE L’ALIMENTACIÓ
Director de Tesi: Dr. Xavier Barril Alonso

Computational and biophysical approaches for
the discovery of Tribbles pseudokinases

modulators

Juan Salamanca Viloria
2022





UNIVERSITAT DE BARCELONA

FACULTAT DE FARMÀCIA I CIÈNCES DE L’ALIMENTACIÓ

PROGRAMA DE DOCTORAT EN BIOMEDICINA

COMPUTATIONAL AND BIOPHYSICAL APPROACHES FOR THE
DISCOVERY OF TRIBBLES PSEUDOKINASES MODULATORS

Memòria presentada per Juan Salamanca Viloria per optar al títol de doctor
per la Universitat de Barcelona

Xavier Barril Alonso Juan Salamanca Viloria
Director de tesi i tutor Doctorand

Juan Salamanca Viloria
2022





A mis padres y hermanos,



No bird soars too high,
if he soars with his own wings.
-William Blake
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Abstract
Tribbles (TRIB) homologues proteins are a family of three pseudokinases with
an important role in controlling immunity, metabolism, and cancer through
protein-protein interactions (PPIs). TRIB pseudokinases have the same overall
tertiary structure as the eukaryotic protein kinase domain but lack some of the
main motifs needed for its catalytic function, such as the DFG motif and a
modified glycine-rich loop. This is why this family of proteins lacks catalytic
function and has been shown to function as scaffolds. TRIB can interact with
kinases (e.g., AKT), E3 ligases (e.g., COP1, SIAH1), and even transcription
factors (e.g., C/EBPα). Nevertheless, little is known about how TRIB can
interact and modulate other protein functions. For example, TRIB have been
seen to act as tumor-suppressors or oncogenes in colorectal cancer in a context-
dependent manner. This highlights the need of studying TRIB function in a
way that provides temporal and spatial control, such as a chemical probe. A
small molecule targeting TRIB will potentially modulate TRIB activity and
therefore could help to better understand their role. Moreover, the compound
could serve as a potential starting point for drug discovery.

Therefore, this PhD thesis aims to find small molecules that could regulate
TRIB function and help to better understand this specific family of pseudoki-
nases. To date, only TRIB2 has been targeted with a covalent compound prob-
ing an effect of destabilization and subsequent degradation. In contrast, TRIB1
is unable to interact with ATP but could potentially bind small molecules. In
this thesis we have applied a combination of computational and biophysical
techniques to study TRIB1 ability to bind small molecules. Thanks to these
findings, we demonstrate that TRIB1 can bind small molecules in a similar
way to canonical kinases.

At the same time, we wanted to look in more detail some of the PPIs
reported for TRIB. As described before, TRIB can interact with kinases, such
as AKT/PKB which is a critical regulator of cell survival and proliferation.
TRIB3 was described to regulate AKT phosphorylation in the liver, although
the mechanism is still poorly understood. Another case under study has been
TRIB3 and SIAH1, an E3 ligase linked to ubiquitylation and degradation of
TRIB3. The interaction of SIAH1 with TRIB3 has been already described,
however, the specific mechanism of how these two proteins interact remains
unknown. In this thesis, we have been interested on elucidate these PPIs since
they are very relevant for understanding how TRIB functions.
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1 CHAPTER 1. INTRODUCTION

1 Introduction

Research and curiosity are essential parts of human evolution. We cannot
consider one without the other. Throughout history, questions have arisen from
our ignorance and curiosity allowing us to build up new fields of knowledge.
For example, Biology or Chemistry have grown over centuries thanks to making
the right questions and finding the correct answers. From an etymological
point of view, biology comes from the Greek word “bios” which means life,
and “logos” meaning study, and altogether is defined as “the science of life
and living things”. On the other hand, chemistry has different versions of its
origin. It seems that chemistry evolved from alchemy, the Arabic “al-kimia”,
which is a modification of the ancient Greek “chemeia” that denotes the art of
transmutation [1]. Chemistry can be defined as the study of the composition
of materials and the changes they undergo.

The combination of both fields gave rise to a new branch of knowledge,
biochemistry, the chemistry of life. Trying to understand and depict in a
meaningful way all the processes carried out in a living organism is not an
easy task. Like any other problem, we need to break down its components to
successfully address it.

1.1 Proteins: essential elements of life
One of these essential elements is the protein, it is not a coincidence that protein
is the Greek word prōteios, which means “the first quality” [2].

Proteins are composed of amino acids connected by a covalent peptide bond.
An amino acid, as the name implies, is an amino group and a carboxylic group
with a side chain that confers specificity between the 20 possible combinations
encoded in the human genome. The peptide bond is formed between the car-
bonyl group of one amino acid and the amide group of another. Several amino
acids connected give rise to the peptides, where they differ from proteins on
their smaller size, usually between 2 and 50 residues. Although there is no
restricted definition of the actual size of peptides [3].
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The composition of amino acids determines how the protein will fold and
therefore its 3D structure. This is due to the type of interactions that can
occur between the amino acids which leads to the overall folding of the pro-
tein. The types of interactions within a protein can be classified as covalent or
non-covalent. Apart from the peptide bond, there is another covalent interac-
tion that can occur between cysteine residues, disulfide bridges. The reduced
sulfhydryl or thiol group (SH) of two cysteine residues react with one another
to make a disulfide bond. Of course, this type of interaction is limited to the
orientation and proximity of the cysteine side chains. Moreover, intracellular
proteins are usually in a reducing environment which prevents the formation of
disulfide bridges, sulfhydryl groups are favored over disulfide bridges. In con-
trast, extracellular compartments are less exposed to the reducing environment
and therefore more prone to this interaction.

Non-covalent interactions are the remaining forces to stabilize protein fold-
ing. These types of interactions depend on the electrostatic attraction between
opposite charges. The most known are the van der Waals interaction, hydrogen
bond, and salt bridge, sorted from lower to higher free energy (van der Waals
0.5-1 Kcal/mol, hydrogen bond 1-10 Kcal/mol, and salt bridge 4 Kcal/mol)
[4]. Hydrogen bonds cover a broad range from very strong, having a covalent
character, to very weak, having energies slightly above van der Waals inter-
actions [5, 6]. These forces are weaker in comparison to covalent interaction
where the free energy is much higher (e.g., covalent bond 80 kcal/mol). Even
though they contributed far less to the enthalpy contributed by a single cova-
lent bond, they appear in a large proportion, so their contribution is still very
important [6]. Moreover, thanks to not being so restrictive, it enables proteins
to have structural flexibility and therefore conformational changes important
for their function.

1.1.1 Protein Structure
From a structural point of view, proteins can be divided into several hierarchy
levels (Figure 1.1). The first level of protein structure hierarchy is the ordered
sequence of amino acids linked by peptide bonds, referred to as the primary
structure. The primary sequence tends to form three-dimensional structural
motifs such as α helix, β sheets, or loops. These motifs constitute the sec-
ondary structure of the protein. The tertiary structure is the placement of the
secondary structures with each other to form the whole 3D structure. The qua-
ternary structures correspond to the arrangement of two or more polypeptide
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chains to form a complex. Usually, the tertiary structure is the biological unit,
which corresponds with the functional form of the protein. Even though there
are cases where the protein needs to form a complex to carry out its function.
Proteins can be still functional without a defined structure, known as intrin-
sically disordered proteins (IDPs). In this case, proteins are unable to fold
into a well-defined 3D structure. Instead, they are dynamically disordered and
change within a range of conformations. This lack of structure allows proteins
to interact and function within a wide range of processes [7]. There are some
cases where the full protein will be disordered whereas in others just a domain
or region, referred to as intrinsically disordered regions (IDRs) [8]. An impor-
tant state about proteins is that structure is more conserved than sequence.
This was exposed in the late 80s by Chotia and Lesk, where they showed the
relationship between the root mean square deviation (RMSD) of the atoms and
sequence identity. Later it was proven how the structure is three to ten times
more conserved than sequence [9, 10]. How proteins fold is still a paradigm,
known as the protein folding problem or Levinthal’s paradox. Levinthal stated
that a protein cannot find its correct native state by a random search since
this will take a huge amount of time. Surprisingly, proteins do not sample all
possible configurations since they fold in few seconds, that is why the paradox
[11].

Nevertheless, over the last decades, several methods have been used to
solve the 3D structures of proteins. Thanks to experimental techniques such as
X-ray crystallography, nuclear magnetic resonance (NMR), and cryo-electron
microscopy (CryoEM) we can see the 3D structure of proteins. Since 1971, all
the structures solved worldwide have been deposit in the Protein Data Bank
(PDB).

X-ray crystallization is one of the most used methods for protein structure
determination. The technique consists of several steps from purifying the pro-
tein, obtaining a crystal and scattering X-ray by the electrons thrown into the
crystal. It is important to know that one of the limitations of this technique
is the amount of time needed without a high success rate. Protein purifica-
tion can be highly challenging due to the complexity, size, and stability of the
protein under study. Moreover, protein crystallization is a phase separation
phenomenon where several factors affect crystallization. For example, the pu-
rity and concentration of the protein, pH, and temperature. Making this a
very iterative and heuristic step. Finally, once the crystal is obtained, we will
face the next problem, the accuracy of the model. To assess the accuracy and
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Figure 1.1. Hierarchy classification of protein structure. The roman
numbers correspond to each level from first (peptide sequence) through
fourth (quaternary system).

quality of the crystal structure two parameters need to be measured, resolu-
tion, R value and R-free. The resolution refers to the quality of the data that
has been collected. It measures how well the density map calculated fits with
the expected atomic positions. High resolution structures have a resolution of
1 Å. Usually, a resolution lower than 2.5 Åis considered good since most of the
atoms are seen in the density map and are not inferred. R values measure the
quality of the atomic model obtained from the crystallographic data. It is a
measure of the diffraction pattern and the predicted intensities from the model.
R values lower than 0.2 are considered reliable. Of course, there is a bias by
using the same data to optimize the model. To avoid this, it was introduced
the R free where a subset of the experimental observations (10%) is removed,
and the refinement is performed using the remaining data (90%). The R free
is calculated based on how the model predicts the 10% subset not used in the
refinement. Apart from the technical limitations, we should also consider the
limits of the technique. A protein is a dynamic entity where crystallization will
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force and pack the protein in a static conformation. Therefore, assay conditions
as solvents, pH, and temperature will conditionate the results and we need to
be careful to misinterpret of electron density maps [12, 13].

Nuclear Magnetic Resonance (NMR) spectroscopy can determine the struc-
ture of a protein in solution. It is necessary to purify the protein to place in
a strong magnetic field and then probed with radio waves. Resonances are
analyzed to determine how close are the atomic nuclei from the protein atoms.
This information is used to build the model of the protein. One of the limita-
tions of this technique is the size of the protein, so it is used for small-medium
proteins (less than 30 kDa) [14]. On the other hand, the advantage of this tech-
nique is that allows us to study the flexibility of proteins. That is because the
protein is in solution, unlike crystallization. Therefore, NMR structures are an
ensemble of protein structures where the flexible regions have fewer restraints
in contrast with the more rigid ones.

Another technique used to determine the 3D structure of large macro-
molecules is electron microscopy, specifically cryo-electron microscopy. This
technique is based on transmission electron microscopy where an electron beam
transmits through the protein to form an image. The protein is purified and
cryo-cooling in a thin layer of vitrified water. Then, 2D projection images are
obtained to decipher the 3D structure. A major advantage of this technique is
that the proteins do not need to be fixed in contrast with X-ray crystallization.
Cryo-EM is used to solve the structure of macromolecular complexes such as
ribosome or membrane proteins [15]. The major disadvantage is the very low
signal to noise ratio which compromises obtaining high resolution structures.
Despite this and thanks to technological advances, cryo-EM is emerging as a
technique to obtain the structure of large proteins complexes [16].

In addition to experimental methods, computational techniques are used to
predict the protein structure. There are two general approaches to predict the
structure of a protein: template-based modeling or template-free modeling. As
the name implies, the methods depend on whether an already solved structure
is used as a template [17].

The regular steps in standard template-based modeling include:

• Identification of a suitable structural template. It consists of the selection
of one or several templates from protein structures deposited in the PDB.
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Several tools have been developed to find suitable templates (e.g BLAST,
HMMER). Ideally those programs will find the template with the highest
similarity with the target. Template structures are mainly chosen on the
target-template sequence identity, but other criteria can be considered.
For example, the experimental accuracy or conservation of active site or
ligand of interest. The choice of the template is a matter of sequence
homology, biological function, and structure resolution.

• Alignment of the target sequence to the template structure. The higher
the sequence similarity between the target and the template the better
the results will be. As a rule of thumb, lower than 30% of similarity,
known as the twilight zone, will not give a very reliable model [18]. Mul-
tiple sequence alignment is usually preferred to overcome problems with
high variable regions. Moreover, since we are using as a template an
already solved structure the alignment can be always improved by in-
cluding structural information from the template. The first two steps are
critical since they could lead to a completely wrong model.

• Modelling of variable regions (mutations, insertions, deletions) present
in the alignment. Usually, the alignment between model and template
can contain gaps. To improve the quality of the variable regions several
refinements can be applied. Loops and side chains can be refined through
database search in PDB or rotamer library, and conformational search
approaches [19]. This allows us to refine the model to eliminate clashes or
forced torsion angles. One of the most common strategies is the energy
minimization, where the predicted structures are optimized based on a
score function or a force field. Conformational sampling can be done
by using different strategies such as molecular dynamics or Monte Carlo
simulations.

• Model evaluation. Once the model is obtained will be necessary to evalu-
ate and select the best solution. The quality of the model can be inferred
from the sequence similarity between the target and the template. Over-
all protein folding is usually correct when the similarity is higher than
30%. Other parameters like stereochemical issues (e.g., bonds, dihedral
angles, clashes) need to be checked to evaluate if the model satisfies spa-
tial restraints [19].

Template-free modeling is much more challenging and relies on large con-
formational sampling and the application of an energy function or force field.
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This method, also known as ab-initio, has been applied to smaller proteins due
to the inner complexity as the number of residues increase. There are also semi
ab-initio methods that are based on structural fragments or use statistical in-
formation to build the model. Ab-initio methods depend on three factors: an
accurate energy function to predict the native state which is the most thermo-
dynamically stable; conformational sampling to identify low-energy states and
a model evaluation strategy to select the best models [20].

Several programs have been developed to predict protein structure, from
webservers to automatize the process (e.g. I-TASSER, SWISS-MODEL) up
to computer programs (e.g. MODELLER, Rosetta). Depending on the user
experience there will be a preference for one or another. To assess the ac-
curacy of the different methods a competition was launched in 1994. CASP
or Critical Assessment of protein Structure Prediction provides independent
analysis on the state of the art in protein structure modeling. This competi-
tion is conducted every two years where different groups submit their results
without knowing the experimental structures, just the sequence. One of the
biggest advanced in protein structure prediction was driven by the application
of deep learning techniques to predict inter residue distance [21]. Very recently
the long-standing problem of protein folding could have been partially solved
thanks to this technique. A company based in London, named DeepMind, ob-
tained high resolution models without a template in the CASP competition
by using their method, AlphaFold [22]. Later, it has been published a similar
approach, but with less accuracy, using neural networks by the research group
of David Baker at the University of Washington [23].

The central idea of AlphaFold is a convolutional neural network that is
trained on PDB structures to predict the distance between atoms [22, 24]. Of
course, without all the effort previously made to obtain experimentally all the
structures of the proteins, this could not be achieved. As they even stated, we
do not know if it will work with all the proteins or with even more complex prob-
lems as the protein-protein or the protein-ligand interactions. In either case,
together with experimentally solved structures, computational methods pro-
vide relevant information to understand better the protein structure-function
relationship. This is a great example of how the progress in scientific research
is made, which leads us to be closer to the main goal of understanding the
diseases and therefore being able to cure them.
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1.2 Molecular recognition
Molecular recognition in biological systems as proteins is essential for the pro-
cess and function in the cell. This process is highly dependent of many factors
as the surface complementarity, thermodynamics, and physicochemical prop-
erties such as hydrophobicity and electrostatic forces. The first time this was
reported, it was by Emil Fischer in 1894 by the lock and key model. Fischer
proposed that a substrate is like a key which fits specifically into a lock or bind-
ing site of the enzyme [25]. This basic concept was further developed by Daniel
Koshland to propose the theory of induced fit. The ligand and macromolecule
are described as dynamic components, conformational changes of the protein
are necessary to optimize their fit [26]. The components differ in their unbound
(apo) or bound (holo) state. This theory is applicable to most molecular bind-
ing processes since rarely have a fixed structure. An alternative model to the
two previous theories is the conformational selection, where a conformational
change occurs before the binding of a ligand. In this case the ligand will select
and stabilize a conformation for binding. On the contrary, in the induce fit, the
conformational change occurs after the ligand binding. An extended version of
this model includes the induce fit, where conformational selection is followed
by conformational adjustment [27].

The association between the ligand (L) and a protein (P) can be formulated
as, for a noncovalent reversible association [28]:

P + L
kon←−−→
koff

PL (1.1)

Where PL represents the protein-ligand complex, kon and koff are the ki-
netic rate constant of the association (on) or dissociation (off). The equilibrium
binding constant is defined as:

Kb =
[PL]

[P ][L]
=

kon
koff

=
1

Kd
(1.2)

Where the Kd is the dissociation constant. A tight molecular recognition is
expected to have a fast association and slow dissociation, leading to a high
binding affinity. The stability of a biological complex is determined by the
binding free energy (∆G), which only takes places when it is associated with
a negative binding free energy (-∆G). The binding free energy is expressed as:

∆G = ∆H − T∆S (1.3)
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Which is composed of an enthalpic (∆H) and an entropic (-T∆S) term.
The standard binding free energy is related to the dissociation constant as

G = −RTlnK (1.4)

Where R is the gas constant, T is the temperature and K the equilibrium
constant.

Thermodynamic properties as the binding free energy (∆G), enthalpy (H),
and entropy (S) are directly involved in the ligand-protein complex. The bind-
ing free energy (∆G) determines the stability of the system. The physical
meaning of binding enthalpy (∆H) represents the loss of noncovalent interac-
tions. The ∆H is the results of the formation and breaking of many different
bonds, such as hydrogen bonds with water molecules, the subsequent forma-
tion of interactions between the ligand and protein, and solvent reorganization
near protein surface. Proteins are dynamics entities and therefore flexibility
plays an important role. Conformational changes in both ligand and protein
contribute to the total energy of the system. The binding entropy (∆S) is
the sum of several contributing effects. The main factor is the displacement
of solvent (hydration effect) as well as the reduction of rotational degrees of
freedom of ligand and protein. A positive entropy change usually indicates
that water molecules haven been released from the complex. Higher binding
affinities caused by increased intermolecular interactions will have large nega-
tive enthalpic contribution, will be at the expense of increased order leading
to a more negative ∆S. Unfavorable contributions include desolvation, strain,
and restricted rotation [29, 30].

The balance between these two properties, known as enthalpy-entropy com-
pensation, have been described before although the contrary has been also ob-
served [31]. In any case the nature of these compensatory mechanism is very
system dependent and do not obey a single rule [31, 32].

In medicinal chemistry, it has been tried to rationalize the enthalpy-entropy
compensation to help increase the binding affinity. The ideal optimization
will be the implementation of enthalpic or entropic contributions that lead to
minimal penalties.

1.2.1 Intermolecular interactions
Experimental data helps to elucidate the important role that complementarity
plays in the binding of a ligand to the protein. Noncovalent intermolecular
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interactions are responsible for molecular recognition and subsequent complex
formation. A systematic analysis of the atomic protein-ligand interactions in
the PDB has been already performed [33]. The authors were able to calcu-
late the frequency of the most common non-covalent interactions observed in
protein-ligands. Among the most frequently observed were, ranked from most
to least frequent: hydrophobic, hydrogen bonding, pi-stacking, weak hydrogen
bonding, salt bridge, amide stacking and cation-pi.

Hydrophobic interactions

According to the IUPAC (international Union of Pure and Applied Chem-
istry), it is defined as the tendency of hydrocarbons to form intermolecular
aggregates in an aqueous medium, and analogous intramolecular interactions
[34]. The hydrophobic effect causes a disruption in the structure of bulk wa-
ter and decreases entropy because of stronger bonding and ordering of water
molecules group [32]. Removal of the hydrophobic surface area from water
to bind into a hydrophobic pocket, it is estimated to be approximately 0.7
kcal/mol or a 3.5 fold increase in binding constant for a methyl group [32, 35].

Hydrogen bonding

They are considered one of the most important specific interactions in
molecular recognition. Hydrogen bonds are electrostatic interactions between
two dipoles, hydrogen donor group where the hydrogen is covalently bonded
and forms an attractive interaction with another electronegative group, the hy-
drogen acceptor group. This type of interaction is highly dependent of the ge-
ometry and distance of the atoms involved. The angle donor-hydrogen-acceptor
is generally above 150º [32]. The distance between the hydrogen bond of the
donor and the acceptor atom ranges from 2.6 to 3.1 Å [36]. Hydrogen bonds are
one of the main contributors of binding selectivity thanks to their inner flex-
ibility due to the distance and angle constrains. It has been determined that
a hydrogen bond can contribute between 0.5 and 4.7 kcal/mol to the binding
energy depending on the charges and environment [35]. On the other hand,
not satisfying a hydrogen bond donor, a hydroxyl group, has a penalty of ap-
proximately 5 kcal/mol because of desolvation [32]. There is also evidence of
weak hydrogen bond, where one or both dipoles are of medium-low electroneg-
ativity, e.g., carbon atom is acting as hydrogen bond donor. Weak hydrogen
bonds have more variable geometry than strong hydrogen bond [37]. Stronger
interactions contribute more enthalpically while the weaker interactions could
compensate for the desolvation cost.
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π-stacking

Type of interaction between aromatic rings thanks to π bonds, it is caused
by intermolecular overlapping of p orbitals in π conjugated systems. They can
interact through several conformations as: face to face, edge to face (T shape),
and offset [38].

Salt bridge

Ionic bonds caused by the attraction of two oppositely charged atoms. Their
strength varies between 5-10 kcal/mol and it is very dependent on the environ-
ment [29, 39]. Moreover, their contribution is masked by the energetic penalty
of desolvating charged groups.

Amide π stacking

Interactions between an amide group and aromatic ring, π-surface of the
amide bond stacks against the π-surface of the aromatic ring [40].

Cation π stacking

This type of interaction occurs between a positively charged molecule and
a π system (e.g. aromatic ring, alkenes, alkynes) [29].

Halogen Bonds

An attractive interaction that can form between an electrophilic region of
a halogen atom with a nucleophilic group [41]. This type of interactions has
been widely used to explore steric and electronic effects for lead compounds.
Moreover, it is used not only to increase the affinity but also the membrane
permeability and metabolic stability of the compound [33].

1.3 Disease: Drug Discovery & Kinases
Proteins are considered essential for life since they are present in almost all cell
functions. The biology dogma states that proteins are translated from genes but
not all the genes can transcribe proteins. Once the human genome was solved in
the early 2000s, one of the milestones in science was achieved. Since then, our
knowledge on how genes are regulated and connected between them in a healthy
organism, but more importantly in disease context has grown exponentially.
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We are beginning to understand the complexity of what is indeed happening
thanks to the advance in basic science like molecular biology and other related
disciplines. The malfunction of proteins is directly linked to a disease due
to their central role in biological function. For example, neurodegenerative
diseases such as Alzheimer’s or Parkinson’s are caused by protein misfolding
and aggregation [42]. Other diseases, such as cancer are usually caused by
mutations affecting protein’s activity or stability by causing an allosteric change
[43]. From the 30,000 genes found in the human genome, approximately 20,000
encode for proteins but only about 4% of them have been targeted by drugs.
The current number of FDA-approved drugs that are directly related to a
human protein according to its mechanism of action is 754 [44]. In 2006 the
number of approved targeted drugs acted through 324 protein targets, which
increased to 667 by 2017 [45]. This small percentage shows us how far we are
still from targeting most of the diseases and more precisely how difficult it is to
develop drugs for new targets. Only 20% of the approximately 20,000 protein-
coding genes are considered druggable [44]. To target a specific protein, some
features need to be taken into consideration. The term druggable is used to
define how likely a protein or a protein complex can be targeted by a drug. This
definition is very broad and implies several things about the target. Usually,
the activity of the protein is well characterized and their function or the absence
of it will trigger the disease. Also, the 3D structure of the protein is known,
which helps in the design of the small molecule to interact with the protein.
To have a crystal structure of a small molecule bound to the target protein
will help to rational design and optimize the compound properties and affinity.
Although being able to find a small molecule to interact with the protein is not
enough to obtain a drug [46, 47].

Indeed, it is just the beginning of a long process to achieve a therapeutic
effect. Once a small compound is found to interact with the target (i.e. hits),
they need to be optimized to find lead compounds that could be developed
into drugs. The next generation of compounds is developed through studying
their drug metabolism and pharmacokinetics. This process is usually known
as ADMET studies, which is the abbreviation of Absorption, Distribution,
Metabolism, Excretion, and Toxicity. If the compound passes this threshold,
it will enter clinical trials. This is divided into 4 phases to answer specific
research questions. In phase I the purpose is to determine the safety and
dosage of the new drug. At this stage, the number of participants is low,
around 100 healthy volunteers and it usually takes several months. If the
targeted disease is cancer, the drug will be provided to people with the disease.
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In phase II the objective is to see the efficacy and side effects involving a few
hundred patients. The length of study is very broad from several months up
to 2 years. Phase III has the objective to test the efficacy and to demonstrate
whether the drug offers a treatment benefit. The number of participants is
around a few thousand and the length is from 1 to 4 years. In this stage, most
of the safety data is provided due to extended time and a higher number of
patients. If the drug is approved by the corresponding agency, it will reach
the last stage, phase IV, or post-market safety monitoring. The purpose of
this phase is to monitor the possible long-term side effects and to probe the
safety and efficacy. The FDA (Food and Drug Administration) in the USA and
the EMA (European Medicines Agency) in Europe are examples of agencies
in charge of the safety and regulation of medicines, although in Europe the
EU has the last word on drug approval [48]. The idea to target a protein
is based on being able to control and regulate cell homeostasis. Drugs have
been developed against a myriad of diseases with varying levels of success.
Looking into ChEMBL, an open-access bioactivity database, we can see which
protein targets are more overrepresented and studied than others (Figure 1.2).
ChEMBL contains information manually extracted from scientific literature
(e.g Medicinal Chemist Journals) and integrated with data on approved drugs
and clinical development [49].

The families of proteins that have been mainly targeted are GPCRs (G
protein-coupled receptors), ion channels, protein kinases, and nuclear hormone
receptors. Indeed, these families of proteins are responsible for the therapeutic
effect of most small molecule drugs. The term small molecule is used in drug
discovery to refer to the chemical compound able to interact with proteins. The
name implies the difference in size since they are small compared with proteins
[45, 50]. Apart from small molecules, there are other ways to target proteins,
called biologics or biological products. In contrast to chemically synthesized
small molecules, biological products are derived from living cells or through
biological processes and are more complex in structure. Biologics have high
molecular weight and due to their complexity are not entirely characterizable,
unlike small molecules which are completely characterizable. As examples of
biologics, we can find hormones, vaccines, monoclonal antibodies, recombinant
proteins, or even gene and cellular therapies [51].

1.3.1 Protein Kinase Superfamily
Proteins can be classified in several ways according to sequence, structural
similarity, and function. Already well characterized proteins are used as a ref-
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Figure 1.2. Families of proteins present in ChEMBL. The classification is
arranged in concentric circles with major families in the center and smaller
subfamilies around the edge.

erence to classify in the same family. A protein family is a group of proteins
that share a common evolutionary origin and therefore they usually have the
same function and similarities in structure and sequence. They can be subdi-
vided into smaller groups or subfamilies which collect smaller groups closely
related. Then, all the subfamilies whose structures and functional features sug-
gest a common origin are encompassed in a bigger group called superfamily [52].
From a structural point of view, proteins can be classified into domains that
usually determine their overall function. It is important to notice that similar
domains can be found in proteins with different functions. Moreover, inside
the domains, we can find sequence features (motifs) that can be also used to
classify proteins. As an example of a superfamily, kinases are one of the largest
superfamilies in humans with 555 members. They have been grouped in the
main class of eukaryotic protein kinases (497) and atypical kinases (58) [53].
Inside this superfamily, it has been also described as a subfamily name pseu-
dokinase. This subfamily will be further explained in the following sections.
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Figure 1.3. Protein kinase and schematic representation of ATP and
key residues.Protein kinase structure shown as ribbon diagrams with the
surface displayed. β sheets and α helix colored blue and red respectively.
Schematic representation of ATP and key residues (motifs) in the canonical
kinase pocket. The β3 lysine (K in the VAIK motif), the aspartic acid pre
activation loop (D in the DFG motif), and the aspartic acid in the catalytic
loop (D in the HxD motif).

Kinases catalyze the phosphorylation reaction by attaching phosphate onto
hydroxyl groups of substrates such as proteins, lipids, or sugars. The oppo-
site are phosphatases which remove a phosphate group from the substrate to
maintain homeostasis. Kinase structure and function are well conserved. To
carry out their enzymatic mechanism, kinases need to recognize the substrate
to phosphorylate and the ATP (adenosine triphosphate) to transfer the gamma
phosphate (Figure 1.3).

Protein kinases are formed by a bilobal fold. The N-terminal lobe (N-lobe)
has five β strands, named 1 through 5, and the αC helix. The C-terminal lobe
(C-lobe) is mostly helical. The ATP molecule binds in the pocket between
the lobes (canonical ATP pocket). The PKA was the first protein kinase to
be crystallized [54]. The N-lobe experiences structural rearrangements when
the kinase is active or inactive. It is possible to find two important sequence
motifs within the first three β strands. The first motif is the Glycine rich
loop between β1 and β2 (GxGxxG). It is the most flexible part of the N-
lobe because of the several glycines. This loop folds over the nucleotide and
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anchors the phosphates of ATP. In some kinases, it can be found the P-loop,
also known as Walker-A motif (GxxxxGKT/S) instead of the glycine rich loop.
The main difference between the two is that the P-loop does not have any
contact with the adenosine of ATP whereas the Glycine rich loop connects two
β strands which accommodate the adenosine. The other motif is the VAIK
(more generally AxK) located in the β3 strand. The conserved lysine residue
helps to couple the phosphatases of ATP to the αC helix. In most of the
kinases, the conformation of αC helix is a key region that determines the active
or inactive state of the enzyme. In the active conformation, it is rotated toward
the ATP pocket, allowing the lysine located in the β3 strand to form a salt
bridge with the conserved glutamate in the αC helix (αC in). Disruption of
the salt bridge is a strong indicator of inactivity where the αC helix is usually
outward the ATP pocket (αC out) [55–57]. In contrast, the C-lobe is more rigid
and has less flexibility with the exception of the activation loop. This loop
starts right after the DFG motif (aspartic acid, phenylalanine, glycine) and
includes a phosphorylation site for most of the kinases. When the activation
loop is phosphorylated it adopts an extended conformation that stabilizes the
active state of the protein. In the active conformation the aspartic acid of
the DFG motif points into the cavity to coordinate Mg2+ and ATP, known
as the DFG-in state. In the DFG-out conformation, the aspartate points out
from the ATP pocket and the phenylalanine prevents the binding of the ATP
molecule. In this inactive state (DFG-out) the phenylalanine switching opens
a hydrophobic pocket between the active site and the αC helix. Changes in
the activation loop are linked to conformational changes of the αC helix [58].
Moreover, the C-lobe serves as a binding region for substrates

Kinases also conserve two clusters of hydrophobic residues which are very
important for kinase regulation [56]. These clusters are also known as spines.
The regulatory or R-spine is formed by four hydrophobic residues located in the
β4 strand (leucine), the αC helix (leucine), the activation loop (phenylalanine),
and the catalytic loop (tyrosine). The catalytic or C-spine comprises residues
from both lobes as well but in this case, the adenine ring of ATP is also included.
The residues are in the β2 (valine), β3 (alanine, from the AxK motif), β7 (two
leucines), D-helix (methionine), and F-helix (leucine and methionine). These
spines are disrupted in inactive conformations, making them very dynamic
modulators [56]. The gatekeeper residue is found at the end of the β5 strand,
between the R and C-spine. It is the first residue of the hinge connecting the C
and N-lobe. It is usually a very hydrophobic amino acid as leucine, methionine,
or phenylalanine although in some kinases can be smaller as threonine or valine.
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Figure 1.4. Conserved spines and key residues in kinases. The R-spine
and C-spine are linked to the F-helix. Figure extracted from [56] with
permission from Elsevier.

The gatekeeper residue regulates the accessibility to the back ATP pocket,
which contributes to the selectivity of kinases for small molecules [59].

1.3.2 Kinases: one of the main targets in the 21st century
The Kinase family is one of the most frequent protein families implicated with
cancer in many different functions such as proliferation or metastasis [60]. This
is due to the great important role of phosphorylation in cell signaling. The dys-
regulation in the phospho-dephosphorylation state in many signaling pathways,
e.g. Mitogen-activated protein kinase (MAPK) or Cyclin-dependent kinase,
triggers a cascade of activation-inhibition of the cell cycle [61]. MAP kinase
signaling has an important role in cancer growth and progression, where cy-
clins are the key regulators of the cell cycle [61]. That is why kinases are one
of the most targeted proteins, and kinase modulators have been on the top list
of therapeutic usage for cancer in the last decades. But before they became so
popular, there was a time when Kinases were considered undruggable. The idea
behind this was that since all kinases were known to recognize ATP in the same
way, how would it be possible to design a drug targeting specific kinases? On
top of that, ATP is a natural small molecule with a millimolar concentration
in the cell, how is a drug going to compete against that? [62]. These questions
and more have been solved over the years thanks to research and serendipity.
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For example, some kinase inhibitors have proved to be more efficient thanks to
the lack of specificity. Apart from inhibiting the main kinase target, additional
kinases are targeted giving an improved activity. The simultaneous inhibition
of several kinases can prevent drug resistance or even can be used to treat other
cancers. Imatinib was the first kinase inhibitor approved by the FDA in 2001.
It inhibits the Abelson (ABL) kinase for chronic myeloid leukemia (CML) be-
ing more efficient during the chronic phase of CML. The success of imatinib
is that it transformed CML from a fatal disease to a manageable condition.
Moreover, it is also effective in treating other cancers such as GIST (gastroin-
testinal stromal tumor) or HES (hyper-eosinophilic syndrome) [63, 64]. Before
imatinib, other kinase inhibitors were approved although without knowing their
mechanism of action. The first kinase inhibitor approved was fasudil in Japan
in 1995 for cerebral vasospasm. Then, sirolimus (rapamycin) an inhibitor of
the kinase TORC1 was approved in 1999 to prevent organ rejection in renal
transplants [63, 64]. The success of imatinib leads the path to focus on ki-
nase inhibitors in academia and the pharmaceutical industry. At the time of
writing this thesis, there are 76 Kinase inhibitors approved by the FDA for
the treatment of a wide variety of diseases [64]. As part of kinase inhibitor
history, it is worth mentioning Sugen company which led to the discovery of
many kinases that even today are still named according to the company (e.g
Sgk269 or Sugen kinase 269). The first kinase classification was published by
Munnings and colleagues from Sugen in 2002, known as Kinome (Figure 1.5)
[65]. There are eight main groups of eukaryotic protein kinases: AGC (protein
kinase A, G, and C); CaMK (calcium/ calmodulin-dependent kinases); CMGC
(cyclin-dependent kinases, MAP kinases, glycogen synthase kinases, CDC- like
kinases); TK (tyrosine kinases); STE (homologs of sterile 7); CK1 (casein ki-
nases); TKL (tyrosine kinase-like); and the RGC (receptor guanylate cyclase)
groups [66].

Type of Kinase inhibitor
Depending on where and how the small molecules bind, they can be classified
into several groups (Figure 1.6). The main pocket is the canonical ATP binding
pocket between the N and C lobes, which can be divided into several parts.
The front pocket or front clef, gate area, and a back cleft. The front cleft
covers the glycine rich loop, the adenine binding pocket, the hinge residues,
and the catalytic loop. There is also a hydrophobic pocket or back pocket
which includes the gate area and back cleft. Apart from the canonical ATP
pocket, we can find other pockets in the kinase domain, such as allosteric (e.g.
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Figure 1.5. The human kinome. Illustration reproduced courtesy of Cell
Signaling Technology, Inc. (www.cellsignal.com).
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PDK1 Interacting Fragment or PIF pocket) or in other domains nearby (e.g.
Pleckstrin homology (PH) domains). Small molecule kinase inhibitors can be
classified into two main classes, reversible and irreversible inhibitors [67].

Kinase Reversible inhibitors
Given the plasticity and complexity of kinases, this type of inhibitor can be
subdivided into six groups. Where type I, I ½ and II are ATP competitive and
III, IV, and V do not necessarily bind in the canonical ATP binding pocket.

Type I. Inhibitors bind the canonical ATP pocket within the front cleft
in an active state. The small molecule competes with the ATP binding in the
active conformation with the DFG in and αC helix in. There is no occupancy
in the back cleft and the activation segment is open (out). The small molecule
mimics the interaction made by the ATP. The ATP forms two hydrogen bonds
with the backbone residues of the hinge region, the first carbonyl backbone
residue, and the NH group of the third hinge residue. To gain some selectivity,
the gatekeeper residue and poorly conserved residues have been used to bias
the design of the type I inhibitor. Despite the highly conserved ATP pocket,
this type of inhibitor is one of the major classes of kinase inhibitors clinically
approved [63]. Examples for this type of approved kinase inhibitor are gefitinib,
erlotinib, dasatinib, and sunitinib where the suffix -tinib indicates tyrosine
kinase inhibition.

Type I ½ . Binds in the canonical ATP pocket in an inactive state. It
is a subtype of type I where the kinase adopts a DFG-in conformation, but
with the C-helix variable (in or out). It has been also subclassified into two
subtypes, subtypes A where the small molecule extends into the back cleft,
and B where the compounds do not extend. Vemurafenib was discovered as a
highly specific BRAFV600 kinase inhibitor with selectivity against melanoma
cells [68]. On the other hand, dasatinib can also inhibit Lyn tyrosine kinase
as type I ½ which is approved for chronic myelogenous leukemia (CML) acute
lymphoblastic leukemia [69].

Type II. Binds in the canonical ATP pocket in an inactive state (DFG-
out). It can be also subclassified as type I ½ into subtypes A and B, depending
on the occupancy of the back cleft. When the kinase inhibitor extends into the
back cleft (type A) the residence time is longer whereas binding to the front cleft
and gate area only is associated with shorter residence times [69]. The inactive
form of the kinases was considered more selective because of their structural
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differences compared with the generic active state (ATP bound). However,
this was proved to be false and there is no inherent selectivity advantage of
type II inhibitors [70]. Due to the inactive state of the enzyme, type II needs
specific assays to distinguish between active and inactive states, for example,
fluorescent-based assays can help to identify the kinase conformation. The
binding of imatinib to Abl with the DFG-D out con-figuration while extending
into the back cleft was the first example of type II inhibition [71]. Sorafenib is
an example of a non-selective type II inhibitor that can inhibit several kinases
including B-Raf, CDK8, and the VEGFR1/2/3. This drug is approved for the
treatment of hepatocellular, renal cell, and differentiated thyroid carcinomas
[69].

Type III. Allosteric inhibitors bind next to the canonical ATP pocket.
This type of inhibitor is not ATP competitive since ATP cannot prevent the
interaction of the small molecule with the protein. Type III class binds in the
allosteric back pocket stabilizing the inactive form of the kinase. The structural
conformation of the DFG motif is variable but with the αC helix out, due to
the occupancy of the back cleft. Type III has no physical contact with the
hinge and shows the highest degree of selectivity by exploiting unique binding
sites [72]. As an example of this type of inhibitor, we can find Trametinib and
cobimetinib, both MEK inhibitors that have been approved for the treatment
of melanoma bearing mutant BRAF V600E [69].

Type IV. Allosteric inhibitor binding away from the canonical ATP pocket.
This type of inhibitor offers the opportunity to alter the kinase activity by
disrupting upstream activators or downstream substrates by not competing
with ATP. Some of the allosteric pockets found in the kinase domain are at the
C-lobe (c-Abl myristoyl pocket, Docking site for ERK) [73, 74], at the interface
between the kinase domain and other close domains (AKT/PKB and the PH
domain) [75], and the N-lobe (PIF pocket of AGC protein kinases, ANS pocket
in CDK2) [76, 77]. GNF-2, an antagonist of BCR-Abl, is an example of a
type IV inhibitor that binds to the myristoyl pocket and stabilizes the inactive
enzyme form [73].

Type V. Binds two distinct binding sites (bivalent). Bifunctional inhibitor
that combines type I inhibitors via a chemical linker with a compound that tar-
gets a remote secondary binding site. Thanks to targeting two different regions,
they offer a greater potential for increasing selectivity and potency. There are
two main classes: bisubstrates and bivalent inhibitors. Bisubstrates inhibitors
consist of two components, one targeting the ATP pocket and the other the
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protein substrate binding domain [78, 79]. In 1991, the first serine/threonine-
protein kinase C (PKC) directed bisubstrate inhibitor was developed. It con-
sists of a pseudosubstrate peptide-specific PKC linked to an ATP competitive
inhibitor [80]. Bivalent inhibitors are more general and can target any region
outside of the active site. As an example, a bivalent inhibitor of the MAPK c-
Jun N-terminal kinase 1 (JNK1) was generated by linking an ATP-competitive
inhibitor of the JNK family, to a peptide that targets JNK1’s docking groove.
The bivalent inhibitor displayed a 20000-fold increase in JNK1 inhibition com-
pared to the ATP competitive inhibitor alone [79, 81]. One of the major draw-
backs of this type of inhibitor is how to transport them inside the cellular
environment [82].

Kinase irreversible inhibitors
Type VI. This class can bind covalently to the kinase domain and can inter-
act with the ATP or other regions in the kinase. These compounds contain
an electrophilic group or warhead that react primarily with nucleophilic amino
acid (e.g. cysteine, lysine, aspartic acid, and tyrosine) to form the covalent
bond. One of the most common nucleophilic addition is the Michael reaction
which represents the addition of a nucleophile to an alpha,beta-unsaturated
carbonyl compound [83, 84]. The non-covalent interactions are also important
to orient the small molecule in a productive position that allows the covalent
bond formation. There are two types of covalent bond formation: irreversible
and reversible. The irreversible is the normal formation of the covalent bond,
whereas electron-deficient olefins (alkane) can be tuned to react with a nu-
cleophile in a rapidly reversible manner [85]. α-Cyanoacrylamides have been
used to create potent and selective kinase inhibitors that act by a covalent,
reversible mechanism [86].

The advantages of covalent small molecules compared to non-covalent in-
hibitors are selectivity, potency, and longer duration of action. However, safety
concerns and side effects of promiscuous reactive electrophiles make them less
attractive [87]. Afatinib and ibrutinib are examples of approved covalent in-
hibitors, both containing an acrylamide group as the electrophile for covalent
bond formation.

As stated before, kinases are very dynamic entities and therefore it is not
surprising to see some inhibitors acting as type I or II depending on the kinase.
For example, sunitinib can bind as type I ½ with CDK2 and type II with
VEGFR or bosutinib which can bind as type I with Src or type II with Abl.
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Figure 1.6. Binding mode of kinase inhibitors. A) Type I (PDB code
2ITY, gefitinib). B) Type 1 ½ (PDB code 3OG7, vemurafenib). C)Type II
(PDB code 1IEP, imatinib). D) Type III (PDB code 7JUR, trametinib).
E) Type IV (PDB code 3O96, AKT inhibitor VIII). F) Type VI (PDB code
4G5J, afatinib).
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1.4 Drug Discovery Approaches to study protein-ligand
interaction

Several strategies have been developed over the years to find hits for a new
target or disease. Phenotypic screening or target-based assays are chosen as
starting points depending on the target, disease, and the number of resources.
On the other hand, computational techniques help to reduce the time and
expense involved in the discovery and optimization of a new drug, known as
Computer-Aided Drug Design (CADD). Depending on the amount of infor-
mation gathered around the target it will be possible to follow alternative
strategies. For example, when structural information of the target is known,
Structure-Based Drug Discovery (SBDD) is applied. In other cases where there
is a lot of collected data, other methods such as statistics or machine learning
can be applied to discover and design new drugs.

Interfering with the function of proteins is the main strategy in the design
and development of new drugs. The pharmaceutical industry has been apply-
ing high-throughput screening (HTS) of large libraries of compounds (usually
higher than 10,000 compounds per day) to increase the success rate of finding
hits for new targets. A variety of strategies have been used for HTS assay,
from the measurement of catalytic activity of an isolated enzyme or a com-
plex (e.g. kinases, GPCRs), cellular extract (e.g., to study ubiquitination and
degradation), or phenotypic assay (e.g. selective killing cancer cells) [88].

Ideally, HTS is used as a primary screen and in parallel with other orthog-
onal techniques to discriminate false positives derived by the design of a single
assay. For example, in a fluorescent-based assay, a fluorescent compound will
give a signal and can be interpreted as a false positive. Therefore, applying
different methods to the same target or disease increases the success and ro-
bustness of identifying new hits or starting points to develop new chemical
probes or drugs through medicinal chemistry. Characterizing the interactions
of the small molecule with the protein target is crucial at the initial stages of
designing new drugs. It can help to elucidate the structure-activity relation-
ship of the small molecule with its target and therefore improve not only the
affinity but also the activity of the compound. As a first step, it is necessary
to find compounds able to interact with the target protein. For that purpose,
several techniques from experimental to computational have been developed.
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Experimental techniques
There are several ways of experimentally characterizing the interaction between
small molecules and proteins. It can be split into biophysical or cell-based de-
pending on the type of assay. Biophysical methods allow us to directly measure
the binding and even to calculate the Kd or its thermodynamics properties
(e.g., H or S). They can be applied to almost any protein class if the protein
is possible to purify, so they do not require to know the protein’s function or
design an enzymatic assay. However, the detection of protein-small molecule
interaction using purified proteins does not entail any binding of the compound
to the protein inside the cell. It is crucial to measure the binding of the small
molecule to its target in the cell and to calculate if the compound reaches its
target in the cell, i.e target engagement. Cell-based methods are highly im-
portant since without them it is difficult to attribute pharmacological effects
to perturbation of protein of interest against other mechanisms as side effects
[89, 90]. Between the biophysical methods most used, we can find differen-
tial scanning fluorimetry (DSF), surface plasmon resonance (SPR), isothermal
titration calorimetry (ITC), nuclear magnetic resonance spectroscopy (NMR),
and protein X-ray crystallography.

Differential Scanning Fluorimetry

The interaction between a ligand, such as a small molecule, and a protein
will induce conformational changes translated into a stabilization or destabi-
lization of the protein. As stated in the section section 1.2 the stability of a
protein is related to its Gibbs free energy and is temperature-dependent. Pro-
teins are in thermodynamic equilibrium between folded and unfolded states,
the temperature at which the concentrations of folded and unfolded proteins
are equal is defined as the melting temperature (Tm) [91]. Differential scanning
fluorimetry (DSF), also known as ThermoFluor or Thermal Shift Assay, allows
us to measure the Tm of a protein through monitoring thermal unfolding in
the presence of a fluorescent dye [92]. By increasing the temperature, the pro-
tein starts to unfold and expose the hydrophobic core. The fluorescent dye is
highly fluorescent in a nonpolar environment and starts to emit a signal upon
binding to the hydrophobic surfaces. Therefore, it is possible to determine the
Tm by monitoring the fluorescent signal (Figure 1.7). A change in the Tm may
indicate a change in the equilibrium where a small molecule could stabilize or
destabilize the protein. If the ligand binds the native protein will stabilize and
increase the Tm, where binding more tightly to the unfolded will decrease the
Tm [93].
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Figure 1.7. Example of a typical melt curve from a DSF assay and the
thermal shift when adding a small molecule (ligand).

One of the limitations of the technique is its temperature dependence, mak-
ing it difficult to calculate the thermodynamics of the protein-ligand interac-
tion. A Tm is not unique to a specific binding affinity, different entropic and
enthalpic contributions can produce the same change in Tm [91]. That is why
DSF is mainly used as a qualitative assay rather than a quantitative assay [94].
Compounds with fluorescent properties are another restriction of the technique
since they could interfere with the dye, giving false positives. Another limi-
tation for ligand screening is the compounds with fluorescent properties since
they could interfere with the dye, giving false positives.

Despite their limitations, DSF has been extensively used because of being
easy to implement, even for HTS, cheap, and enables to obtain hits on early
stages of drug discovery. This method has been also applied in protein buffer
optimization, finding optimal conditions for storage, assay screening, and crys-
tallization to help to increase the success rate [95, 96].

Surface Plasmon Resonance

SPR is an optical technique that records the angular shift of polarized light
reflected from a metal film due to ligand binding to an immobilized target on
a sensor. It is a label-free technique able to detect biomolecular interactions
in real-time. SPR is a phenomenon that occurs in thin conducting films, usu-
ally gold, at an interface between media of different refractive index, high (e.g
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sensor surface) and low refractive index (e.g buffer solution). A beam of polar-
ized monochromatic light is shone through a prism, which makes the light be
reflected at the conducting surface under total internal reflection conditions.
The light incident on the reflecting interface penetrates some distance into the
medium of the lower refractive index, called evanescent wave formation. Under
a specific angle of incidence, the light excites electron charge density waves,
also known as surface plasmon, in the conducting film. The absorption of en-
ergy via the evanescent wave field reduced the intensity of the reflected light.
Changes at the surface of the sensor cause changes in the refractive index which
can be measured as a shift in the resonance angle. The evanescent wave can
extend within 100-200 nm of the sensor surface and decays from it. Therefore,
if something binds near the surface it is possible to detect a change of the re-
fractive index, which is measured as a change in resonance angle in real-time
and can be plotted as a response unit (RU) against time, known as sensorgram
(Figure 1.8) [95]. There are a wide variety of sensor surfaces depending on
the use and purpose. Usually, a dextran matrix is covalently attached to the
conducting surface, to allow immobilization of proteins. But there are also dex-
tran matrices with streptavidin, a purified protein that recognizes biotinylated
proteins or sensors with a hydrophobic surface for capturing lipids. Then, the
small molecule or ligand can flow through the sensor surface and if binding
occurs it can be monitored in the sensorgram (Figure 1.8). SPR allows us to
calculate the kinetics (kon and koff ) and affinity (Kd) of the binding event.
As it is a label-free detection method and easy to automatize, together with
low consumption of material makes SPR ideal for HTS. SPR can be applied
to most types of proteins although the protein needs to be immobilized, which
can be problematic depending on the protein [97].

Isothermal Titration Calorimetry.

ITC compares the temperature differences between a reference and recep-
tor solution to quantify the energy associated with a chemical reaction, in this
case, protein-ligand interaction. It is the only technique that allows us to
measure the thermodynamics of the reaction, the entropy change (∆S) and
enthalpy change (∆H). Thermodynamics factors (H, S) can be used as a guide
for molecular design since they are related to structural parameters and can
improve structure affinity [98]. Thanks to that, ITC has been considered one
of the most important techniques to study protein-ligand interaction. The ex-
periment consists of injecting one component of the reaction, usually the small
molecule, into a temperature-controlled stirred cell with the other component,
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Figure 1.8. Schematic illustration of SPR detection principle and a sen-
sorgram, figure modified from Biacore, Sensor Surface Handbook [97].

the protein. The small molecule is titrated into the cell until full saturation
is achieved, allowing measurement of the heat released or used in the binding
event and estimation of the affinity and stoichiometry (Figure 1.9) [95]. The
main advantages of this technique are the amount and quality of the infor-
mation provided together without the need of labeling the protein. On the
contrary, the big amount of material needed makes this technique a very low
throughput method and more suited for optimization of the compound.

Cell-based

Unfortunately, if a compound binds to the target in a biophysical assay it
is not possible to guarantee the same behavior inside the cell. That is why
alternative methods need to be performed to confirm that the compound in-
teracts with its target in a living system, known as target engagement. Several
methods have been developed to study cellular target engagement, which can
be classified depending on if they require modification of the small molecule,
the target protein, both or even none (label-free approach) [90]. Direct assess-
ment of protein-ligand interaction can be performed by using fluorescence or
bioluminescence resonance energy transfer measurements (FRET and BRET).



1.4. DRUG DISCOVERY APPROACHES TO STUDY PROTEIN-LIGAND
INTERACTION 29

Figure 1.9. Raw ITC data showing an exothermic binding reaction. Fig-
ure from [99] with permission of Springer.

It is possible to modify the protein by adding a fluorescent or luminescence
tag and the small molecule with a fluorophore. Other approaches can modify
only the small molecule, such as affinity-based chemical proteomics for cova-
lent ligands. In this case, the reactive compound is modified so it can get
attached to a functional tag (e.g., biotin) that enables the affinity purification
of the covalently bound protein for later identification with mass spectrometry
analysis. However, modifications of the target protein and the small molecule
might alter the results by affecting the protein-ligand interaction. As an alter-
native, cellular thermal shift assay (CETSA) was developed to perform target
engagement without modification of the protein or small molecule. CETSA is
based on the same biophysical principle as DSF, binding of a small molecule
to a protein can lead to thermal stabilization or destabilization resulting in a
shift of its melting temperature. In a CETSA, cells are heat treated followed by
precipitation of the protein and quantification by immunoblotting [100]. One
disadvantage of this method is the need for suitable antibodies, but it can be
overcome using quantitative mass spectroscopy [101].

Computational methods
Over the last decades, CADD has been playing an important role in the drug
discovery field by reducing costs and time. It has been applied to different
purposes, from virtual screening, hit to lead optimization to even the design
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of novel compounds. Virtual screening consists of performing HTS in silico
by filtering large compound libraries to obtain a subgroup of predicted active
compounds that will later be tested experimentally. The aim is to increase
the success rate of finding a hit by reducing the number of compounds tested
experimentally. Hit-to-lead optimization can be made by increasing the affin-
ity or optimizing other properties such as ADMET. Design novel compounds
can be made through combining fragments or by modifying functional groups
to obtain new compounds [102, 103]. CADD can be classified as structure-
based (SB) and ligand-based (LB) depending on the type of data available for
the target. LB methods use the information about active-inactive compounds
while SB is based on the protein structure of interest. To study protein-ligand
interaction computationally, we can find several SBDD methods depending
on the flexibility and computational effort, where two of the most known are
molecular docking and molecular dynamics [102].

Molecular Docking

The objective of protein-ligand docking is to predict the binding mode and
affinity of a ligand within the protein. The docking process involves the predic-
tion of the ligand conformation and orientation, known as pose, regarding the
protein [104]. That is why, the structural information of the target is crucial,
and its quality will also determine the success of the prediction. The identifi-
cation of molecular features to improve the affinity and therefore the potency
of the ligand is not an easy task. To identify the correct binding, molecular
docking requires two steps, first the exploration of the conformational space
and second the accurate evaluation of the pose by a scoring function [105].
In the exploration of the conformational space or sampling process, structural
parameters of the ligands (e.g. torsional, translational, and rotational degrees
of freedom) are modified by a search algorithm. The main objective is to ex-
plore a wide range of conformational states in a reasonable amount of time.
We can find two classes of algorithms, systematic or stochastic. Systematic
search algorithms gradually perform variations in the structural parameters
until a local or global minimum is reached. The main disadvantages are that
it can get stuck in a local minimum and for bigger ligands, it is necessary
to limit the search space to avoid combinatorial explosion. This problem has
been solved by fragmentation, where the ligand is gradually built in the bind-
ing site [103, 105]. The stochastic search introduces random modifications to
the values of the degrees of freedom of the system, the structural parameters.
This method increases the probability of finding a global minimum by gener-
ating ensembles of molecular conformations which can populate a broad range
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of the energy landscape. Some of the most known stochastic algorithms are
Monte Carlo methods and genetic algorithms [103, 105]. The accurate evalua-
tion of the binding mode is key to successfully selecting the correct poses and
rank ligands. Depending on how they are evaluated, we can differentiate sev-
eral scoring functions: force-field, empirical and knowledge-based. Force-field
based scoring functions calculate the binding energy by the sum of intramolec-
ular (internal ligand energy) and intermolecular (receptor-ligand interaction)
components. The force-field parameters are usually parametrized by quantum
chemical calculations or experimental data. Empirical scoring functions fit
parameters to experimental data as a sum of several parametrized functions
coefficients are obtained from regression analysis from experimental data. The
main disadvantage of this method is its dependence on the data used to per-
form the fitting. Knowledge-based scoring functions are designed to reproduce
experimental structures rather than binding energies. Another strategy con-
sists of the combination of multiple scoring functions leading to the so-called
consensus scoring citesalmaso2018bridging. Docking is mainly used to perform
virtual screening on large libraries of compounds by ranking them and helping
to classify the compounds into possible active or inactive. It also proposes a
structural hypothesis of how the ligands bind. The main advantage is to re-
duce cost, speed up the discovery of new ligands, and help in the design of
new drugs. However, the main disadvantage is the lack of flexibility, usually, a
static structure of the protein is used, which could neglect important features
of the binding event. To avoid this problem, it is recommended to use sev-
eral structures (ensembles) for very flexible proteins. Other methods, such as
molecular dynamics can help to obtain an ensemble of structures or to study
the protein-ligand interaction with more flexibility.

Molecular Dynamics

Molecular Dynamics (MD) consists in applying Newton’s second law to
calculate the position and speed of each atom in the system under study [106].

F = m · a

Where f is the net force acting on the particle i, m is the mass, and a
the acceleration. It is possible to determine the acceleration of the system by
knowing the force on each atom. The force can be expressed as the gradient of
the potential energy.
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F = −dV

dx

Where V is the potential energy of the system and x is the position of the
particle i. Combining these two equations, we can now calculate the accelera-
tion of the system.

a = −dV

dx
·m

The potential energy is approximated by a simple function, known as a
force field. The force field, as described before, it is the sum of bonded and
nonbonded energy terms:
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where the first three terms represent bonded interactions (chemical bonds,
atomic angles, and torsions or dihedral angles) and the last two nonbonded in-
teractions (van der Waals and electrostatic). Bonds and angles can be described
using harmonic potential, and dihedral angles (torsions) are modeled using a
sinusoidal function (cosine). The van der Waals interactions are modeled using
the Lennard-Jones potential and the electrostatics using Coulomb potential
[107, 108]. Although force fields have helped to speed the simulation of large
biomolecular systems, due to a large number of atoms, these equations are not
an easy task to solve analytically. That is why they must be solved numeri-
cally. Numerical methods split the integration of the equation of motion into
discrete time intervals, known as time-steps (dt). A small time-step is chosen,
usually, 1 or 2 fs, since forces depend upon the atomic position that changes
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over time [106]. Several force fields are commonly used in MD simulations for
biomolecular simulations (protein alone or protein-ligand), including AMBER
[109], CHARMM [110], and GROMOS [111]. However, small molecules usu-
ally require their own parametrization due to their large structural variability.
Although general force-fields have been developed to help simplify it, as GAFF
[112].

MD simulations allow us to obtain a trajectory of the system which con-
tains the conformational properties, and it changes with(over) time. Several
properties can be calculated from the MD trajectories, including free energy
and kinetics measures. That is why, MD is widely used in several fields, from
material science, chemical physics to drug discovery. Thanks to MD, protein-
ligand interactions can be analyzed in a more flexible environment and even
with explicit solvent. Being able to simulate the binding and unbinding events
is key for designing and improving small molecule’s affinity and efficacy for
drug discovery purposes.

However, MD has some limitations in the force fields and the length of
the simulation [108]. First, force fields require optimization and refinement to
properly describe the occurring events. As an example, MD simulations cannot
be used to study chemical reactivity, since chemical bonds cannot be broken
or formed during MD. Second, time-scale limitation due to the computational
work needed to calculate real-time events. Standard MD simulations allow
the calculation of microseconds in a cost-efficient way depending on the sys-
tem. Whereas biological processes such as protein-ligand interaction, enzyme
catalysis, or conformational changes occur on time scales from milliseconds to
minutes [106]. Moreover, biological systems are known to have many local min-
ima frequently separated by high energy barriers that are difficult to sample
for conventional MD simulations [113]. To overcome the time and sample lim-
itation by classical MD simulations, alternative methods have been developed.
Some examples are the coarse-grained MD simulations [114], umbrella sam-
pling [115], replica-exchange [116], metadynamics [117], accelerated MD [118],
steered MD [119] and much more.

1.5 Pseudokinases: new targets for drug discovery
As the name implies, pseudokinase refers to a subfamily of the kinase family
where these proteins lack the ability to phosphorylate other substrates. Even
though kinases are one of the most studied families of proteins, pseudokinases
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have remained much more elusive. Initially, inactive kinases were classified
as pseudokinases by sequence analysis based on their lack of at least one of
the catalytic residues [65, 120]. However, not all kinases that lack a catalytic
residue are inactive. For example, the kinase WNK (with-no-lysine kinase), as
its name suggests, lacks the catalytic lysine residue in the VAIK motif and is
catalytically active [121]. The lysine in strand β3 at the N lobe is replaced by
cysteine. However, a lysine from strand β2 is placed in the active site allowing
the interaction with ATP and therefore the kinase activity [122]. Conversely,
the BUBR1 pseudokinase, which has the essential catalytic residues but lacks
the Glycine-rich loop, is unable to phosphorylate and bind ATP [123]. These
examples show the diversity of kinases, and more particularly pseudokinases,
and how proteins with very similar structures have very different functions. Al-
though most of the pseudokinases cannot phosphorylate other substrates, this
does not automatically imply the inability to bind or catalyze ATP and deriva-
tives. In 2014, James M. Murphy and colleagues published an article showing
a methodology to subclassify pseudokinases based on their nucleotide-binding
properties [124]. They proposed the thermal shift assay DSF to benchmark the
binding and catalytic potential of pseudokinases. Thanks to that, they sub-
classify pseudokinases in four classes: class 1 - devoid of nucleotide or cation
binding, class 2 - nucleotide binding, class 3 - cation binding, and class 4 -
nucleotide and cation binding (Table A1).

Approximately 10% of a typical vertebrate kinome are pseudokinases, which
are very well conserved between species, suggesting conserved signaling roles.
Pseudokinases are present among all kingdoms of life, it is possible to find or-
thologous in other eukaryotic proteomes (e.g., flies, plants) which supports the
theory that pseudokinases are part of ancient genetic lineages [125]. Pseudoki-
nases perform several essential functions despite their lack of catalytic activity.
Some of the known functions are based on one-to-one cases which cannot al-
ways extrapolate between them. Since pseudokinases cannot phosphorylate
as a canonical kinase, they act as scaffolds or interact with other proteins as
modulators, competitors, and/or spatial anchors [126].

One of the best-known functions is the allosteric regulation of conventional
kinases. Some kinases can regulate themselves through allosteric interaction
with another kinase or pseudokinase. This dimerization event can regulate
the switch between active or inactive kinase by modulating the position of
key regulatory elements, such as the αC helix [127]. Pseudokinases have been
characterized interacting with kinases in several distinct modes of dimerization:
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head-to-tail (HER3 pseudokinase: EGFR kinase; PDB code 4RIW), parallel
side to side (MLKL pseudokinase: RIPK3 kinase; PDB code 4M69), trans-
verse side to side (Tyk2-b kinase: Tyk2 JH2 pseudokinase; PDB code 4OLI),
and even heterotrimeric complex (Stradα pseudokinase: LKB1 kinase: MO25α
calcium-binding protein; PDB code 2WTK). This highlights the plasticity of
pseudokinases to interact with the kinase domain. Even some pseudokinases
have been reported to regulate the activities of other enzymes, as the pseu-
dokinase of guanylyl cyclase–A and guanylyl cyclase–B regulate the activity of
the tandem guanylyl cyclase domains or the VRK3 pseudokinase binding and
activating the VHR phosphatase [128, 129].

Other functions of pseudokinases include acting as a signal or molecular
switch, as in the phosphorylation of MLKL pseudokinase by RIPK3 kinase
which alters the conformation of the MLKL to cause necroptosis [130]. MLKL
pseudokinase can function also as a protein interaction domain, where the
pseudokinase domain is regulated by binding to the RIPK3 and HSP90:Cdc37
co-chaperones [131]. Pseudokinases can act as signaling scaffolds by binding
components of a signaling cascade. As an example, Tribbles (TRIB) pseudok-
inases nucleate assembly of a complex between C/EBPα and an E3 ubiquitin
ligase COP1 [132, 133]. Through this mechanism, they can control subcellular
localization and connect components to continue a specific signal. Another
example is BUBR1 pseudokinase, which is an essential component of the mi-
totic checkpoint required for normal mitosis progression [123]. A balance of
phospho-signaling is critical for the correct exit from mitosis. The pseudoki-
nase domain of BUBR1 promotes the recruitment of PP2A-B56 phosphatase
crucial for this event.

1.5.1 Pseudokinases and disease
Bearing all of this in mind, pseudokinases should not be considered remnants
of evolution. Pseudokinases can be fundamental in several signaling processes
across species. Although the functions of most of the pseudokinases still re-
main unclear, dysregulation of pseudokinases is linked to diseases such as
cancer, metabolic, neurological, and autoimmune [134]. We can find exam-
ples of pseudokinases playing important roles in very different signaling and
metabolic pathways. Here, I will describe some of the best known cases for
which even some modulators (e.g, small molecule, antibody) have been devel-
oped [134, 135].

JAKs
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The Janus Kinase (JAK) family of non-receptor tyrosine kinases (JAK 1-3
and tyrosine kinase 2, TYK2) have an N-terminal FERM domain, an SH2-
like domain, a pseudokinase domain Janus Homology 2 (JH2), and C-terminal
tyrosine kinase domain (JH1). JH1 is activated via type I/II cytokine receptors
which regulate inflammation, immunity, and even infections [136]. JH2 lacks
the catalytic aspartic in the HRD motif and has degraded the Gly-rich loop
(Table A1). Interestingly, all the JH2 domains can bind ATP but the JH2 of
JAK3 binds ATP in a cation-independent manner [137]. JH1 is regulated by
JH2 upon binding and stabilizing an inactive conformation [138]. Mutations
in the JH2 domains of JAK1, JAK2, or JAK3 result in the activation of JH1
and are associated with diseases, including various types of leukemia [139]. As
an example, the V617F point mutation in the JH2 domain of JAK2 is detected
in more than 95% of patients with polycythemia vera (PV), and in 50% with
essential thrombocythemia (ET). Both diseases are a type of myeloproliferative
neoplasms, a type of blood cancer [140]. V617F is found in the JH2 domain
near the JH1-JH2 interface which facilitates the activation of JH1 [141]. To
date, only three JAK inhibitors have been approved by the FDA, fedratinib,
ruxolitinib, and tofacitinib, all of them targeting the JH1 kinase domain. As an
alternative approach, there is a compound targeting the pseudokinase domain
JH2 of TYK2, deucravacitinib (BMS-986165), which is currently in phase III
clinical trials for psoriasis [142, 143].

HER

Human epidermal growth factor receptor 3 (HER3) is a member of the
EGFR family of receptor tyrosine kinases (RTKs). The EGFR family is formed
by four transmembrane receptors (EGFR, HER2, HER3, and HER4), where
HER3 lacks intrinsic kinase activity [144]. The HER3 pseudokinase domain
lacks the canonical aspartic in the HRD motif but still can bind nucleotides
and cations (Table A1). HER3/HER2 heterodimer stimulates allosteric trans-
activation and activates the PI3K/AKT signaling cascade through direct HER3
binding to the p85 subunit of PI3K [145]. The PI3K/AKT signaling pathway
is one of the most frequent networks activated in human cancer [146]. HER3
overexpression and mutations are associated with several cancers like ovarian,
prostate, colon, breast, or melanoma [147]. That is why HER3 is considered
a potential drug target due to its role in the pro-survival pathway in cellu-
lar proliferation and drug resistance to some therapies [148]. Targeting HER3
with antibodies and the antibody-drug conjugate are the only strategies cur-
rently being examined in clinical studies for cancer patients [149]. Alternative
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strategies have been developed to selectively target HER3 through bifunctional
molecules, where one end binds to the protein of interest while the other end
hijacks the cellular mechanism to induce the degradation of the target protein
[150]. An ATP competitive ligand of HER3 that forms a covalent bond to
cys721 was modified with a hydrophobic tag which induces the degradation by
the proteasome [151].

MLKL

The pseudokinase domain of mixed lineage kinase domain-like protein
(MLKL) contains a degraded glycine-rich loop and lacks the catalytic residues
in the DFG and HRD motif. Despite this, MLKL can bind ATP without cation
(Table A1). Like JAK, the MLKL pseudokinase domain regulates the activ-
ity of the N-terminal domain, the four-helix bundle (4HB). The pseudokinase
domain of MLKL interacts with the 4HB domain via an interface centered
around the αC helix in an inhibited conformation [152]. MLKL is a key fac-
tor for necroptotic cell death by triggering the tumor necrosis factor (TNF)-α
through the phosphorylation of two activation loop residues of MLKL by the
kinase RIP3 [130]. The phosphorylation of the pseudokinase domain releases
the 4HB domain which causes MLKL oligomerization and localization to the
cell membrane and induces permeabilization [153]. The loss of membrane in-
tegrity triggers necroptotic cell death, which may have evolved as a line of
defense against intracellular infection, recent studies implicate it in a variety
of disease states (e.g., myocardial infarction, stroke, atherosclerosis, inflamma-
tory bowel disease) [154]. Targeting necroptosis has emerged as an attractive
concept and the development of MLKL inhibitors has been found to affect its
function [153]. However, another research found that MLKL selective com-
pounds targeting the ATP binding site have no activity in rescuing cells from
necroptosis [155]. However, targeting the cys86 of MLKL with covalent com-
pounds demonstrates to inhibit the oligomerization and translocation of MLKL
to the cell membrane [156].

STRADα

STRADα lacks all the catalytic residues that are usually found on kinases,
the B3Lysine and the aspartic at the DFG and HRD motif. Moreover, the
glycine-rich loop is also degraded (Table A1). Even though STRADα can-
not phosphorylate, it binds to ATP without cations [157]. STRADα is an
allosteric regulator of the tumor suppressor LKB1 that controls the activity
of the AMP-activated protein kinase (AMPK) family. STRADα forms a het-
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erotrimeric complex with LKB1 and the auxiliary scaffolding protein MO25α
(Calcium-binding protein 39 α). STRADα and MO25α promote the active
conformation of LKB1 which depends on ATP binding to STRADα [158].
This heterotrimeric complex translocates LKB1 from the nucleus to the cy-
toplasm, which may be important for downstream signaling partners [159].
LKB1 malfunction is related to several human cancers and the rare genetic
disorder Peutz-Jeghers Syndrome caused by mutations in LKB1 [158]. LKB1
function consists of phosphorylating AMPK which can be activated by met-
formin, medication for the treatment of type 2 diabetes. All of this makes
STRADα an interesting target for diseases such as cancer and diabetes by reg-
ulating LKB1 [135]. Recently, STRADα was found to bind kinase inhibitor
type II, which has the potential to modulate this pseudokinase in a similar
way to conventional kinases [160].

RTK family pseudokinases

Pseudokinases from the RTKs (Receptor Tyrosine Kinases), ROR1, ROR2,
protein tyrosine kinase 7 (PTK7), and RYK are all involved in Wnt signaling
[161]. Wnt signaling regulates key cellular functions including development
and stemness and is also involved in cancer [162]. All of them lack the abil-
ity to bind ATP and therefore phosphorylate (Table A1). Despite that, these
pseudokinases have been implicated in several cancers and developmental dis-
orders. Higher expression levels of these pseudokinases have arisen their onco-
genic role in cell survival and therapy resistance [163]. Knockdown of ROR1
was found to reduce cell proliferation in multiple cancer cell lines and even
inhibited lung adenocarcinoma in xenograft models [164, 165]. Knockdown of
ROR2 inhibits tumor growth of osteosarcoma cells in vitro and renal cell car-
cinoma both in vitro and in vivo [166, 167]. ROR2 expression is associated
with more aggressive disease states [168]. Inhibition of PTK7 signaling will
be beneficial in lung adenocarcinoma and its knockdown reduces cell viabil-
ity and increases apoptosis in lung cancer cells [169, 170]. RYL is associated
with gastric cancer tumorigenesis and liver metastasis. RYL knockdown in-
hibited migration and suppressed tumorigenesis [171]. Several strategies have
been developed to target these pseudokinases. For example, ROR1 approaches
include monoclonal antibodies, antibody-drug conjugate, chimeric antigen re-
ceptor T-cells (CAR T cells), and even a small molecule [172–175]. Recently
it was published a paper where they probe binding of ROR1 to ponatinib,
a multi-targeted kinase inhibitor approved by the FDA for chronic myeloid
leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia
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[176]. PTK7 has been targeted with an antibody-drug conjugate which has
entered clinical trials [177, 178].

Kinase suppressor of Ras 1 and 2 (KSR1/2)

Kinase suppressor of RAS 1 (KSR1) and KSR2 are pseudokinases in the
RAF kinase family. Although both pseudokinases have degraded the glycine-
rich loop and lack the lysine in the VAIK motif, they can bind ATP and even
phosphorylate MEK [179, 180]. KSR1 and KSR2 function as scaffolds coor-
dinating the assembly of Raf-MEK-ERK complexes and promoting activation
of the MAPK pathway [180]. KSR can activate RAF through heterodimer-
ization and regulates MEK phosphorylation. KSR functions as a scaffold by
regulating RAF to induce a conformational change of MEK [180–182]. KSR
are key regulators of the MAPK pathway which play a vital role in cell pro-
liferation and its alteration is implicated in cancer [183]. KSR1 is implicated
in Ras-driven cancers whose alterations contribute to almost 30% of all hu-
man cancers [184, 185]. Mutations in KSR2 that disrupt the Raf-MEK-ERK
pathway have been associated with obesity, and insulin resistance [186]. KSR2
has been targeted with a small molecule that stabilizes the inactive state and
antagonizes oncogenic Ras signaling [187]. Moreover, an FDA-approved MEK
inhibitor, trametinib, was proved to directly engage KSR at the MEK inter-
face. This highlights KSR as a key player in the mechanism of action for MEK
inhibitors. A derivative of trametinib was developed, named trametiglue which
targets both KSR-MEK and RAF-MEK and suggests it as an effective strategy
to overcome limitations of MEK inhibitors [188].

CASK

The calcium/calmodulin-dependent serine protein kinase (CASK) is a mem-
ber of the membrane-associated guanylate kinase (MAGUK) family. This pseu-
dokinase has degraded the glycine-rich loop and lacks the aspartic in the DFG
motif (Table A1). Despite this, CASK binds ATP and is even able to phos-
phorylate itself and its substrate in the absence of ions [189]. CASK con-
tributes to neural development and regulation of gene expression neurological
diseases [190]. The CASK overexpression has been associated with colorec-
tal and pancreatic cancer patient survival and disease progression with poor
prognosis [191, 192]. CASK has been shown to be able to bind several kinase in-
hibitors, such as staurosporine (broad-spectrum protein kinase inhibitor [193])
and AT7519 (a potent inhibitor of CDKs) [194]. Moreover, a chemical probe
has been specifically designed to target CASK to help in the development of
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new specific inhibitors and to better understand the biological roles of CASK
[195].

ULK4

The ULK (UNC51-like) family of kinases have 5 members in mammals,
ULK1, ULK2, ULK3, ULK4, and STK36. They share a conserved N-terminal
kinase domain that is homologous to the C.elegans UNC-51 and the yeast
Atg1. ULK4 is linked to neurological development and has been linked with
schizophrenia, autism, and depression [196]. ULK4 is a neuron-specific protein,
142 KDa consisting of an N-terminal pseudokinase domain, and five predicted
C-terminal HEAT repeats involved in scaffolding and interacting with other
proteins. ULK4 binds ATP without Mg2+ and just conserves the HRD mo-
tif and the glycine-rich loop (Table A1). ULK4 has been crystallized with
ATP revealing an unusual binding mode where the canonical VAIK motif is
compensated by another lysine at αC helix [197]. Lazarus et al found small
molecules able to interact with ULK4 with micromolar affinity and identified
several scaffolds. Moreover, they could even be co-crystallized in the presence
of an ATP-competitive inhibitor.

IRAK3

Interleukin-1 receptor associated kinases (IRAKs) are a family of kinases
with an important function in innate immune signaling. IRAK3 pseudokinase
is thought to be a negative regulator of innate immune signaling and mutations
in IRAK3 are associated with asthma and cancer [198]. IRAK3 does not bind
nucleotides or cations but retains the DFG motif and was structurally solved
with a dimeric closed “active-state” conformation [198]. In addition, it was
shown how IRAK3 has a low affinity for ATP but a high affinity for ATP
competitive inhibitors like staurosporine.

1.6 Tribbles family of pseudokinases
This thesis is focused on a specific family of pseudokinases, Tribbles (TRIB).
There are three TRIB pseudokinases (TRIB1, TRIB2, and TRIB3) in humans,
which are members of the CaMK superfamily of kinases. This family of pseu-
dokinases has an important role in controlling immunity, metabolism, and
cancer through protein-protein interactions (PPIs) [199]. TRIB derives from
the Drosophila melanogaster (fruit fly) gene of the same name. TRIB gene
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was identified in Drosophila mutational screens for genes that control cell pro-
liferation and migration. Interestingly, three different groups independently
identified the TRIB gene in Drosophila in the year 2000 [200–202]. Thomas C.
Seher and Maria Leptin identified a mutation in the TRIB gene that causes
embryonic gastrulation defects. Because of the tradition in science, especially
in genetics using Drosophila, researchers who find something new get the priv-
ilege of naming it. Historically in Drosophila, gene names are related to the
phenotype caused by the mutation of the gene. That is why the mutated gene
causing premature division in mesodermal cells resembled the fictional small
round organism that proliferates uncontrollably in contact with water from
Star Trek, known as tribbles [200]. Jorg Grosshans and Eric Wieschaus identi-
fied two genes, frühstart and TRIB, as novel mitotic inhibitors that act during
Drosophila gastrulation [201]. Juan Mata et al. showed that TRIB induces
degradation of the phosphatase that regulates the entry into mitosis [202].

Although the mammalian orthologs of Drosophila TRIB were identified
before, the TRIB name remains as the reference. By using dog thyroid cells in
1997, Wilkin et al. found an uncharacterized protein, C5FW (clone 5 Françoise
Wilkin) which levels are induced in the mitogenic pathway. This protein shares
95% with its human ortholog, TRIB2. They also cloned human TRIB1, calling
it C8FW [203]. In the year 1999, TRIB3 was identified because its expression
was enhanced during the programmed death of neuronal rodent cells deprived
of NGF (Nerve Growth Factor) [204]. They named this new gene as NIPK
(Neuronal cell death Inducible Putative Kinase). About the same time, two
different groups identified the human ortholog of the rat NIPIK. Wu et al.
cloned NIPK, which they designated SINK (p65-interacting inhibitor of NF-
kB) because it interacts with p65 and inhibits NF-kB dependent transcription
[205].

Bowers et al identified the human ortholog of NIPK as SKIP3, which is
overexpressed in multiple human tumors and is regulated by hypoxia [206].
Taxonomic analysis of TRIB-related sequences shows that they are almost ex-
clusive to the animal kingdom (metazoans). Moreover, they are absent in non-
metazoan eukaryote kinomes (e.g. fungi, plants) [199]. TRIB2 is proposed as
the most ancestral among the TRIB family. TRIB2 sequence can be detected
in the oldest metazoans, such as sponges and cnidarians (e.g. jellyfish). On
the other hand, TRIB1 and TRIB3 appear in more recently evolved metazoans
where TRIB2 is also present. An explanation of this could be that TRIB1 and
TRIB3 appear after TRIB2 gene duplication during the diversification of verte-
brates from invertebrates. Interestingly, orthologues of TRIB3 appear mostly
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in mammals which could be driven by the need for new regulatory elements in
more evolved organisms [199].

1.6.1 TRIB structure and function
The mammalian TRIB family consists of three genes, TRIB1 (C8FW), TRIB2
(C5FW), and TRIB3 (NIPK, SINK, SKIP3). TRIB family of proteins lack
catalytic function, TRIB1 is unable to bind ATP although TRIB2 and TRIB3
have shown a very low ATP affinity and phosphotransferase activity in vitro
[207]. TRIB pseudokinases are involved in a wide variety of processes and func-
tions because of the ability to interact and modulate kinases (e.g. AKT/PKB),
phosphatases (e.g. CDC25), E3 ligases (e.g. COP1, SIAH1), and transcription
factors (e.g. C/EBPα). TRIB pseudokinases have the same overall tertiary
structure as the eukaryotic protein kinase domain but lack some of the main
motifs needed for its catalytic function, such as the DFG motif and a modi-
fied glycine-rich loop. TRIB family have a disordered N-terminal PEST region
that is rich in P (proline), E (glutamate), S (serine), and T (threonine), which
is associated with target proteins for proteolytic degradation [208]. Follow-
ing the N-terminal is the pseudokinase domain and a C-terminal tail which
contains two conserved motifs. The MEK motif is involved in the binding of
MEK components of the MAPK (Mitogen Activated Protein Kinase) cascade
and the COP1 binding domain, which is essential for the interaction with the
E3 ubiquitin ligase COP1. When comparing TRIB sequence with a canonical
kinase, instead of a DFG motif, TRIB is defined by an SLE motif except for
TRIB3 with NLE. TRIB pseudokinases conserve the β3 lysine and TRIB1 has
a glycine instead of an arginine in the catalytic motif (Table A1 and figure
1.10).

Only two crystal structures of the TRIB1 pseudokinase domain have been
solved showing an atypical kinase fold. Both structures reveal the confor-
mational changes that TRIB1 undergoes with and without substrate (Figure
1.11). The first structure solved was the apo form (no substrate-bound) where
there is an intramolecular interaction between the COP1 binding motif at the
C-terminal tail and the αC helix of the pseudokinase domain. Interestingly,
the crystal structure shows a deprecated N-terminal lobe and ATP binding site
with the TYR134 pointing towards the ATP pocket, which is consistent with
the inability of TRIB1 to bind ATP. TRIB1 contains a bent αC helix very
different from conventional kinases. The αC helix is a very dynamic regula-
tory element in kinases with a strategically important position between the N
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Figure 1.10. Multiple sequence alignment of TRIB1, TRIB2 and TRIB3
with key motifs and regions highlighted in colors. Figure adapted from
[209]

and C-lobe [56]. In contrast, the C-lobe is much more conserved compared to
conventional kinases.

TRIB1 also contains a degraded glycine-rich loop (linking β1 and β2) lo-
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cated above the canonical ATP binding pocket. TRIB glycine-rich loop is three
residues shorter than conventional kinases and incorporates a proline near the
end of β1. The degraded glycine-rich loop together with the bend αC helix
contributes to a wide opening of the ATP-binding pocket. Another feature
unique to TRIB is the SLE motif (NLE in TRIB3) instead of the DFG motif in
charge of coordinating Mg2+ and completing the hydrophobic regulatory spine
in canonical kinases. In this case, the SLE motif is stabilized by the conserved
β3 lysine forming a hydrogen bond with the backbone of the leucine (SLE;
Leu226). Generally, the β3 lysine forms a salt bridge with glutamate from the
αC helix. Moreover, an analysis of all human protein kinases reveals that TRIB
is unique having an acidic residue preceding the DFG position. All together
suggest the inability of TRIB1 to bind ATP by a stable inactive conformation
[210].

Figure 1.11. TRIB1 conformational change upon C/EBPα binding.
TRIB1 is able to bind C/EBPα which triggers conformational changes that
release the autoinhibition of TRIB1, favoring the TRIB1-COP1 complex.
Then, C/EBPα substrate is ubiquitinated and degraded by the proteasome-
dependent pathway.

TRIB pseudokinases regulate C/EBP (CCAAT-enhancer binding proteins)
transcription factors by recruiting them to the E3 ubiquitin ligase COP1 for
ubiquitination. Thanks to the solved crystal structure of TRIB1 with C/EBPα
(holo form) we can understand how C/EBPα binding triggers an allosteric
modulation that allows the release of the C-terminal tail. Upon binding to
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C/EBPα, the TRIB1 activation loop adopts a more ordered conformation be-
tween the N and C-terminal lobes in contrast with the autoinhibitory form
(apo state). The leucine from the SLE motif moves toward the αC helix, like
the DFG-in conformation in conventional kinases. There is a rotation of the
αC helix allowing a rearrangement of the leucine from the SLE motif and the
TYR134 (Figure 1.12). The conformational changes in the SLE motif resemble
the DFG-in (SLE-in) and DFG-out (SLE-out) in normal kinases. In the SLE-
out state (apo or autoinhibited), the activation loop blocks the opening of the
canonical ATP binding pocket. Whereas in the SLE-in state (holo or active
state), the activation loop is reordered along with the residues nearby the SLE
motif thus opening the ATP binding pocket. Such conformational changes al-
low TRIB to interact with C/EBP on one side and release the COP1 binding
motif from the αC helix [211]. As stated before, the TRIB C-terminal tail con-
tains two binding motifs, the HPW[F/L] (MEK1 motif) near the N-terminal of
the C-tail and the DQXVP[D/E] (COP1 motif) at the C-terminal of the C-tail.
The interaction between the C-tail of TRIB1 and the WD40 domain of COP1
has been characterized through X-ray crystallization [212]. The structure re-
veals how COP1 recognizes TRIB1 using the top face of its WD40 β propeller
domain with nanomolar affinity. The valine and proline residues of the COP1
binding motif (DQIVPE) are the most important residues for the interaction
(Figure 1.12). The HPW[F/L] motif is involved in binding MAPK-kinases
(MAPKK) and modulation of the MPAK/ERK signal transduction pathway
[213]. Kiss-Toth et al. showed that phosphorylation of ERK is enhanced by
TRIB1 overexpression. TRIB1 mutants lacking the HPW[F/L] motif or having
the tryptophan mutant lost the binding activity [214].

Although there is no public structural information for the other domains or
any domains of TRIB2 and TRIB3, there is a high degree of similarity between
the pseudokinase domain of this family (TRIB1-TRIB2: 71%; TRIB1-TRIB3:
54%; TRIB2-TRIB3: 54%). Another pseudokinase identified as a distant coun-
terpart of the TRIB family is STK40 (TRIB1-STK40:39%). The structure of
STK40 along with ATP-binding assay showed the inability of this pseudokinase
to bind ATP [215]. Similar to TRIB, STK40 regulates C/EBP proteins and
activates the MAPK pathway [215, 215]. TRIB proteins are mainly located in
the nucleus, TRIB1 and TRIB3 are expressed in the nucleus while TRIB2 is
mostly expressed in the cytoplasm [216].
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1.6.2 TRIB biology and disease
TRIB pseudokinases can regulate protein substrates by modulating the
ubiquitin-proteasome system as has been demonstrated for TRIB1 mediated
degradation of C/EBPα by COP1 or TRIB3 mediated inhibition of PML-
RARα ubiquitination [217].

Another important function of the TRIB family is the modulation of AK-
T/PKB signaling. Although the molecular mechanisms need to be fully un-
derstood since different TRIB family members have different roles. TRIB2 has
been shown to activate AKT/PKB in cancer cells and promote drug resistance
[218], conversely, TRIB3 has been shown to inhibit AKT/PKB phosphoryla-
tion in the liver and neuronal cells [218–220]. Active AKT/PKB is a principal
target of insulin signaling since it regulates the translocation of glucose trans-
port to the cell membrane and increases glucose uptake. The role of TRIB3
as a negative regulator of AKT/PKB could lead to insulin resistance. The
interaction with COP1 E3 ligase can stimulate lipolysis by the degradation
of acetyl-coenzyme A carboxylase (ACC) which regulates fatty acid synthesis
[221].

TRIB proteins also regulate hematopoiesis, the formation of blood cellular
components with different functions. TRIB1 is highly expressed in myeloid
lineage, TRIB2 in the lymphoid lineage, and TRIB3 uniformly across all
hematopoietic cells [222, 223]. TRIB1 is critical for the differentiation of M2-
like macrophages and eosinophils, which are associated with responses to anti-
inflammatory reactions and tumor progression [224]. Studies in mouse models
have demonstrated that TRIB1 regulates macrophages and TRIB1 deficiency
increases plasma cholesterol and triglyceride levels. Myeloid specific knockout
of TRIB1 leads to decreased atherosclerosis, one of the primary causes of stroke,
myocardial infarction, and cardiac death [225]. C/EBP transcription factors
regulate cellular proliferation and differentiation, metabolism, inflammation,
and numerous other responses [226].
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Figure 1.12. TRIB1 structures. A) Comparison of structures of autoin-
hibited TRIB1 SLE-out(PDB code 5CEM) and TRIB1-C/EBPα SLE-in
(PDB code 6DC0) with a simplify view of the N-lobe reorganization (αC-
helix, Tyr134 and Leu226). SLE motif in yellow, COP1 binding motif in
grey, activation loop in red. B) COP1 binding motif (DQIVEPY) repre-
sented as sticks in grey with the COP1 WD40 domain in blue.



48 CHAPTER 1. INTRODUCTION

Since TRIB can regulate C/EBPs, it supports the relevance of TRIB in
cell development and differentiation. TRIB1 and TRIB2 mediate the degra-
dation of C/EBPα, which blocks neutrophil differentiation and increases the
differentiation of eosinophils, monocytes, and macrophages [222]. There are
two isoforms of C/EBPα, the fully translated protein C/EBPα p42 (42 KDa)
and an N-terminal truncated protein C/EBPα p30 (30 KDa). This is because
the mRNA encoding C/EBPα contains alternative translation initiation sites
[227]. Only the isoform p42 is degraded through TRIB1 and TRIB2.

Depending on the member of the TRIB family and the cellular context,
TRIB can function as oncogenic or tumor suppressors. For example, the degra-
dation of the C/EBPα p42 isoform causes an increase in the p30 isoform, a
mechanism seen in acute myeloid leukemia (AML) [227]. TRIB1 overexpres-
sion is associated with increased cell self-renewal through MEK1/ERK activity,
required for AML development [213]. R107L mutation TRIB1 increases ERK
phosphorylation and C/EBPα degradation in human Down syndrome-related
acute megakaryocytic leukemia [228]. A rare and aggressive subtype of AML,
acute promyelocytic leukemia is regulated by TRIB3 which stabilizes the on-
coprotein PML-RARα [217]. There is evidence of the tumor suppressor role
of TRIB2 in AML via activation of p38 stress signaling from the MAPKK
[229]. The identification of TRIB association with AML makes TRIB family a
promising therapeutic target in AML.

TRIB are also known to modulate MAPKK which dysregulation has been
identified with cancer, obesity, diabetes, and inflammatory diseases [214, 230].
TRIB1 negatively regulates the tumor suppressor activity of p53 by enhanc-
ing Histone deacetylase 1 (HDAC1) mediated p53 deacetylation and decreases
DNA binding of p53 [231]. TRIB1 is associated with the development and
progression of several cancers such as breast, prostate, colorectal, liver, gastric,
and glioma [232]. The oncogenic activity of TRIB2 is linked to its overexpres-
sion in melanoma and colorectal cancer where TRIB2 is inversely correlated
with patient survival [218]. TRIB2 is highly expressed in human T cell acute
lymphoblastic leukemia (T-ALL) and contributes to cell survival by regulat-
ing the XIAP anti-apoptotic gene in T-ALL cells [233]. In contrast, it was
found that TRIB2 knockdown in murine T-ALL did not affect cell growth or
survival and acts as a tumor suppressor [234]. TRIB3 promotes lymphoma by
suppressing ubiquitination and therefore degradation of MYC [235]. Breast
cancer stem cells (BCSCs) are the principal cause of breast cancer metastasis
and recurrence after chemotherapy and radiotherapy. Elevated TRIB3 ex-
pression supports BCSCs by interacting with AKT/PKB to interfere with the
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FOXO1-AKT/PKB interaction and suppress FOXO1 phosphorylation [236].
TRIB3 has been shown to regulate neurological disorders like Parkinson’s, char-
acterized by the progressive loss of several neuronal populations. In this dis-
ease, TRIB3 expression is elevated and contributes to neuron degeneration and
death, in part by diminishing the expression of Parkin protein [237]. The most
common cause of dementia is Alzheimer’s disease, a progressive neurodegener-
ative disorder that involves a gradual deterioration. The two indicatives of the
disease include plaques of β-amyloid and neurofibrillary tangles of hyperphos-
phorylated Tau. Experimental observation indicates that TRIB3 promotes
neuronal death by both apoptosis and autophagy in response to β-amyloid
[238]. Another study identified a link between TRIB3 and the pattern of gray
matter loss in Alzheimer’s disease [239]. It is not surprising that, given the
high number of processes where TRIB proteins are involved, the dysregula-
tion of TRIB can lead to several diseases such as cancer, metabolic syndromes,
neurodegenerative and inflammatory disorders [240].

1.6.3 Approaches to study protein-protein interactions
Proteins rarely act alone and least of all proteins without catalytic function,
like the pseudokinases. A critical step towards understanding the complex
networks in the cell is to correctly elucidate protein-protein interactions. It is
important to define properly what protein-protein interaction means since not
all interactions have a biological context or are directly related. According to
De Las Rivas et al. protein-protein interactions are defined as “specific physical
contacts between protein pairs that occur by selective molecular docking in a
particular biological context” [241]. To date, experimental and computational
methods help to clarify how proteins can interact with each other.

Experimental methods

There are several methods based on laboratory experiments to determine
protein-protein interaction. Of course, the interaction can be binary, between
protein pairs, or co-complex where the technique measures physical interac-
tions among groups of proteins. There is no standard or gold method, each
method has its limitations and advantages. Therefore, it is recommended to use
more than one approach to identify protein-protein interactions. Experimental
methods can be classified based on the technique and how the interaction is
measured.
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• Biochemical

– Affinity Chromatography

Co-immunoprecipitation (Co-IP). In this approach, an antibody, specific
for the protein of interest (POI) or a tag expressed with the protein, is used
to separate the POI from a molecular mixture or a cell lysate to capture the
complex. The partners that bind to the POI can then be eluted and identified
[242]. This technique detects complexes but not binary interactions. Only thigh
interactions are recognized and transient or weak may be missed. Moreover,
the mixture during the cell lysis is a potential source of false positives. On
the other hand, Co-IP is fast and relatively easy in comparison with other
techniques.

Pulldown. A specific affinity chromatography method where the POI is
bound to a column, often via an affinity tag expressed as a protein fusion (e.g.,
GST, HIS tag) or chemically linked to the POI. Pulldown differs from Co-IP
in that it is not based on an antigen-antibody interaction. The presence of a
tag may influence the results.

• Biophysical

Mass spectrometry. An analytical technique based on the quantification of
the mass-to-charge ratio of charged particles. Ion mobility mass spectrometry
(IM-MS) analysis is performed by first ionizing the protein complex of interest.
After ions are injected into a region containing neutral gas at controlled pres-
sure and under the influence of a relatively weak electric field, ions undergo
IM separation. Following that, ions are sampled by a mass spectrometer and
analyzed according to their mass-to-charge (m/z) ratio [243]. Affinity purifica-
tion combined with MS (AP-MS) is one of the most used techniques to detect
protein-protein interactions. In AP-MS, the POI is immobilized in a matrix
as bait. Then a protein mixture is passed through the matrix so finally, mass
spectrometry is used to identify the captured proteins. This approach has sim-
ilar advantages and disadvantages to affinity chromatography but depending
on the sensitivity of the MS, this method can detect very small concentrations.

Fluorescent technology. A technique based upon the measurement of
the emission of one or more photons by a molecule activated by the absorption
of a quantum of electro-magnetic radiation. Examples include fluorescent po-
larization (FP), where a fluorescent-labeled molecule is excited with polarized
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light and is based on the measurement of molecule rotation. We can detect once
a fluorescent-labeled molecule (e.g. protein or small molecule) binds to a target
protein [244]. Another example is FRET (Förster Resonance Energy Transfer)
a technique able to inform about interactions between proteins. FRET relies
on the transfer of energy from a fluorophore-donor excited at a specific wave-
length to a fluorophore acceptor. It can take place when the two fluorophores
are situated at a distance lower than 10 nm [245].

Biosensor. Surface Plasmon Resonance (SPR), this method measures the
formation of the complex by monitoring changes in the resonance angle of light
impinging on a gold surface as a result of changes in the refractive index of
the surface. A ligand of interest (small molecule, peptide, protein, sugar, lipid,
nucleic acid) is immobilized on a gold surface, and the interacting partner is
injected in buffer flow over it. (see more information in section 2.3.1) [246].
X-ray. Technique based on the analyses of a diffraction pattern generated by
a crystal. (see more information in section 2.3.1).

• Protein Complementation Assay (PCA)

– Transcriptional complementation.

Two-hybrid. The classical yeast two-hybrid (Y2H) system is a method that
uses transcriptional activity as a measure of protein-protein interaction. The
technique is based on a transcription factor, which is split into two parts, the
DNA-binding domain (BD) and the DNA-activation domain (AD). The BD and
AD domains are fused to two POIs. If the two POIs fused with the domains
bind to each other when expressed in yeast cells, the transcription machinery
becomes activated, and a reported gene is turned on. Three hybrid systems can
also be used, where a third participant is shown to be necessary for the binding
of the BD and AD [247]. This technique offers several advantages, Y2H is
inexpensive, fast, and provides binary interaction. Although, some interactions
would occur between POIs not normally present in the same cellular location,
and a yeast protein may act as a bridge for the interaction. An important
aspect is a necessity for a clone library.

– Split luciferase complementation.

This PCA approach is based on the formation of a complex when two non-
active fragments of a luciferase (reporter protein) are brought together when
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fused to two POIs. An example of this technique is NanoBit, a two-subunit
system based on a luciferase, a large Bit (17 KDa), and a Small Bit (11 amino
acids) [248]. The POIs are expressed along with the subunits, the interaction
brings the subunit into proximity to form a functional enzyme that generates
a luminescent signal. Such a small tag would minimize steric conflicts on
fusion partners. NanoBit is optimized for high conformational stability and
low intrinsic affinity (Kd = 190�M) since the binding affinity of the luciferase
fragments could bias the behavior of their fusion proteins. The interaction
of the fragments is reversible so the system can be used to detect transient
interactions. Advantages over other protein fragment systems include greater
sensitivity, fusion to a small peptide, real-time measurements in their proper
subcellular localization [249]. PCAs can be used to study pharmacological
modulation of protein interactions. This technique allows testing compounds
by measuring the spatial and temporal changes in protein complexes in response
to modulators (e.g., small molecules, peptides). Moreover, PCAs allow high-
throughput experiments and the ability to work with cell lines.

Computational

Determination of protein complexes using computational methods can be
divided based on the types of data used as a reference. Some computational
methods are based on the sequence (coevolution, motifs) where multiple align-
ments of orthologous sequences in the same species and phylogenetic trees are
built [250]. Other methods are based on the 3D structure of proteins, generally
known as protein-protein docking. If we know the structure of the potentially
interacting proteins is possible to predict the potential interaction interface.
However, these methods are usually very challenging since proteins undergo
conformational changes, posttranslational modifications that could not be in-
cluded in a model, and other factors. That is why Template-Based modeling
(TBM) offers a promising alternative to protein-protein docking if 3D struc-
tures of complexes formed by similar proteins are available. Under this frame-
work, several strategies have been used to model protein complexes like global
superimposition, dimeric threading, direct homology modeling of the complex,
and interface structure alignments [251]. Alternatively, machine learning meth-
ods have been developed based on databases of experimentally proven inter-
actions and other additional biological properties. Even using only sequence
information to generate accurate protein-protein complexes [23, 252].
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2 Objectives

TRIB pseudokinases have been described as scaffolds for diverse proteins in
many different signaling pathways. However, there is still much to learn about
how TRIB function. Consequently, the aim of this thesis is to elucidate TRIB
mechanisms by applying computational and experimental techniques.

More specifically, the objectives are as follows:

• To discover small molecules that could interact with TRIB1 and poten-
tially modulate its function. The discovery of a chemical probe for this
unique family of pseudoenzymes will help to understand better their ac-
tivity.

• To identify the domain and key residues of TRIB3 that modulate AK-
T/PKB phosphorylation.

• To identify the region of TRIB3 interacting with SIAH1 to unravel how
TRIB3 could be ubiquitinated.
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3 Materials and Methods

3.1 Computational techniques

3.1.1 Computational modeling of TRIB1 with small molecule
A model of TRIB1 was constructed with the crystal structure of Human STK10
bound to GW683134A (PDB id 6EIM) and the apo structure of TRIB1 (PDB
id 5CEM) using the automodel function in MODELLER 9.18 [253, 254]. The
activation loop of TRIB1 (residues 224-259) was modeled by first removing the
residues E224-D228, and A238-T259. Water molecules surrounding the ligand
from STK10 were kept during model building. We removed the residues in the
activation loop (residues 224-259). A total of 10 models were generated and
the model with the best Discrete Optimized Protein Energy (DOPE) score was
selected for further analysis.

1 microsecond MD simulation was performed with GROMACS2018 [255].
The Amber ff14SB and the General Amber Force Field (GAFF) set of parame-
ters were employed for modeling receptors and ligands, respectively [256, 112].
The MD simulation was carried out in explicit solvent using the Single Point
Charge (SPC) water model, and ions were added to an approximate final con-
centration of 0.15 M NaCl with the imposition of periodic boundary condi-
tions via a dodecahedral box. Electrostatic interactions were calculated by the
particle-mesh Ewald (PME) method using constant pressure and temperature
conditions. The temperature was kept constant at 300 K using a Berendsen
thermostat with a 0.1 picosecond (ps) coupling constant, and the pressure at
1.0 bar using the Berendsen barostat with a 0.5 ps time coupling constant.
Van der Waals and short-range Coulomb interactions were truncated at 9Å.
The complex was solvated with a minimum distance of 1.2 nm from the surface
of the complex to the edge of the box. The time step employed was 2 fem-
toseconds (fs) with all bond length constrained with LINCS algorithm [257].
The productive simulations were carried out at an isothermal-isobaric ensemble
(NPT) for at least 1 µs.
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3.1.2 Virtual Ligand Screening
A subset library of 71651 compounds from MOLPORT “in stock” containing
diaryl urea as a substructure (SMILE: O=C([NH]c1ccccc1)[NH]c2ccccc2) were
prepared for docking with LigPrep (Schrödinger) [258]. The substructure was
selected based on the compound GW683134A. The library was prepared from
2D to 3D so at most eight stereosimores, six tautomers and eight ring con-
formers would be generated and with a probable ionization sates within the
pH range of six to eight. Then, the prepared ligands were docked into the
pseudo-canonical pocket of TRIB1. The cavity was defined using the reference
ligand method from rDock which define a docking volume around the reference
GW683134A ligand. The structure of TRIB1 was selected by clustering the
ligand from the MD trajectory using GROMACS with the linkage method and
a cutoff of 0.1 nm. Only one cluster was found, and the centroid was selected
for the virtual screening. Several pharmacophores were applied as restraints
for virtual screening. Among the main interactions to be conserved between
GW683134A and TRIB1, we selected the hydrogen bonds involving the side
chain of the SER225, and the main chain amine group of the ASP163 and car-
bonyl group of LEU223. The rDock software [259] was used with the standard
protocol along with the pharmacophoric restraints to filter the molecules. The
scoring function of rDock is a weighted sum of intermolecular (Sinter), lig-
and intramolecular (Sintra), site intramolecular (Ssite), and external restraint
terms, if provided (Srestraint). When comparing different ligands, we used
Sinter because the intramolecular scores lack an absolute scale since they have
not been referenced to the lowest-energy conformation of each ligand. Next,
top score molecules from the pharmacophore models were grouped and sorted
by their Sinter to finally by visual inspection select 41 molecules for further
proceedings.

3.1.3 Mutatex
MutateX is an automated pipeline engine that handles input preparation,
performs parallel runs with FoldX (http://foldxsuite.crg.eu) and outputs
publication-ready figures [260]. Mutatex allowed us, by using the FoldX
method, to predict changes in free energy (ΔΔG) of folding upon mutation as
the difference between the estimated free energy of folding of the mutant and
the reference wild type variant. FoldX uses an empirical free energy function,
which includes terms for Van der Waals interactions, solvation free energies,
water bridges, hydrogen bonding, electrostatics and entropy changes upon fold-
ing for main-chain and side-chains. We used as input structure the same as for
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the virtual screening, the centroid from the biggest cluster in the MD trajec-
tory. Mutatex calculated the stability of mutating a residue to any of the 20
amino acids for TRIB1.

3.1.4 Computational modeling of TRIB3 C-tail in complex
with AKT

The interaction between TRIB3 C-tail and AKT Kinase Domain (KD) was
built with Rosetta (release 2020.03) using the FlexPepDock ab-initio protocol
[261]. Protein-peptide docking was carried out between the AKT KD (residues
144-450) and selected regions of the C-terminal tail of TRIB3 in ranges of 15
residues. AKT KD template PDB id 4GV1 was selected based on its high
resolution. The C-terminal tail of AKT (residues 457-477) was removed to
allow docking on the groove over the αC helix. The FlexPepDock ab-initio
protocol was first evaluated over a linear C-terminal tail of AKT (res 463-477)
to check the accuracy of predicting its binding mode. A preliminary step of
the FlexPepDock ab-initio protocol is the generation of fragment libraries for
the peptide sequence. The fragment libraries of three and nine residues were
generated with the Robetta server [262] using the peptide sequence of AKT and
TRIB3 C-tail as reference for each case. We selected the last 28 residues from
the C-tail of TRIB3 and split them in three fragments (residues 331-345, 338-
352 and 344-358). The peptides were initially positioned approximately 10 Å
away from the proposed binding pocket, the αC helix of AKT. Then, the input
structures were prepacked to remove internal clashes in the protein and the
linear peptide. We generated 100,000 models from each starting structure. The
docking simulations were evaluated with the beta_nov16 score function. The
top scoring 500 models were clustered using the Rosetta cluster application with
a cluster radius cutoff of 3 Å peptide backbone atom RMSD. The models were
ranked according to the reweighted score, in which interface residues are given
double weight, and peptide residues are given triple weight. We considered the
best model as the lowest structure with the biggest cluster in the top 10 lowest
models.

3.1.5 Computational modeling of TRIB3328−340 in complex
with SIAH1

The interaction proposed between SIAH1 and TRIB3 was constructed using a
direct homology modeling method, template-based modeling (TBM). Several
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models of the SIAH1- TRIB3328-340 were constructed using different tem-
plates. In all the cases the program used to create the homology models was
MODELLER 9.18 [253, 254]. Three complexes were built using several tem-
plates: Complex 1 (PDB ids 4I7D with Zn, 4X3G and 2A25 with H20) where
only one template (4I7D) was used for TRIB3; complex 2 (PDB ids 4I7D with
Zn, 4X3G and 2A25 with H20) using several templates for SIAH and TRIB3;
complex 3 (PDB id 5WZZ with Zn and H20) with only one template for both.
In each of the cases, the best model was selected based on the DOPE score
given by MODELLER.

3.2 Experimental techniques

3.2.1 Protein Constructs
The proteins used in this thesis were cloned into a modified pET-28 plasmid in-
cluding an N-terminal hexa-Histidine tag, a ligation independent cloning (LIC)
site and a Human Rhinovirus 3C (3C) protease cleavage site between the Histi-
dine tag and the protein of interest. The plasmid contains antibiotic resistance
cassette to kanamycin for the selection of successfully transformed bacteria.
Protein constructs with the pET-28 plasmid:

• TRIB1 pseudokinase domain with tail (84-372)

• TRIB1 (84-372)-D163I

• TRIB1 (84-372)-S225F

• TRIB1 PKD (84-343)

• SIAH1 SBD (residues 91-282)

The proteins expressed and purified on this thesis were provided by Peter
Mace’s laboratory (Otago University) and TRIB1 mutants (D163I and S225F)
were provided by Miguel Hernandez Quiles (UMC Utrecht).

3.2.2 Generation of competent E.coli cells
Single colonies of BL21 E. coli strain were inoculated onto 15 mL of Lysogeny
broth (LB) media in a 50 mL sterile falcon. They were placed in a shaker
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incubator at 37 ºC for 4-6 hours until the OD600 (Optical Density measured
at a wavelength of 600nm) reached 0.6. The cells were then placed on ice for 10
minutes and subsequently centrifuged at 6000 rpm for 3 minutes at 4 ºC. The
supernatant was decanted, and the bacteria was resuspended in 10 mL cold 0.1
M CaCl and incubated for 20 minutes on ice. The bacteria were centrifuged
again at 6000 rpm for 3 minutes at 4ºC. The supernatant was discarded, and
the bacteria was resuspended in 5 mL cold 0.1 M CaCl and 15% (v/v) glycerol.
Then, the competent bacteria were aliquoted at a volume of 200-300 uL into
autoclaved 1.5 mL Eppendorf’s tubes and stored at -80ºC.

3.2.3 Protein Expression
All recombinant proteins were expressed in Escherichia coli BL21 (DE3) cells.
The bacterial constructs were transformed by adding 0.5 µL of plasmid into
20µL of competent BL21. The cells were incubated for 10 minutes on ice and
then heat shocked at 42 ºC for 45 seconds. After that, 350 µL of LB was added
and incubated in a shaker at 37 ºC for 45 minutes, subsequently plating the
cells on the plate bearing appropriate antibiotic for the plasmid in a 37 ºC
incubator overnight. The next day, 3 mL of sterile LB was added to each plate
in order to resuspend colonies in the LB. The appropriate antibiotic was added
to the final volume of culture, 100 µL to 100 mL and 1 mL to 1L. Depending
on the final volume of culture, 100 �L or 800-1000 �L of resuspended cells were
added to 100 mL or 1 L, respectively. The cells were incubated with shaking
at 37 ºC monitoring the OD600 (Optical Density measured at a wavelength of
600nm) till they reached approximately 0.5-0.8. Then, the cultures were placed
at 18 ºC shaker in a cold room where, after 40 minutes for temperature to come
down, it was added 20 µL or 200 µL IPTG (1M) for 100 mL or 1 L culture
respectively. Further on the cells were left shaking at 18 ºC overnight. The next
morning cells were harvested by centrifuging at 4000 rpm for 20 minutes at 4
ºC (Beckman Coulter J6-MC with a JA-8.1 rotor). The pellet was resuspended
in 1.2 mL or 10 mL of freeze buffer (50 mM Tris (pH 8.0), 300 mM NaCL) per
100 mL or 1L previous freezing at -20 ºC until use.

3.2.4 Protein Purification
Cells pellets were defrosted at room temperature and resuspended in purifi-
cation buffer (50 mM Tris (pH 8.0), 300 mM NaCl, 10% (v/v) glycerol and
10% (w/v) sucrose). To lyse the cells, 20 �l lysozyme (25 mg/ml) and 5 �l
of DNAse was added before using the homogenizer Avestin Emulsiflex-C5 at
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15.000 psi (pounds per square inch). In some cases, cells were lysed using an-
other method, sonication. In those cases, the cells were sonicated for 100 second
intervals on ice (10 seconds on, 30 seconds off) at an amplitude of 35%. Proteins
were purified by using the complementary resin of the tag linked. The con-
structs with a histidine tag were purified by a Ni2+ affinity chromatography
(HIS-Select resin, Sigma-Aldrich) pre-equilibrated with a purification buffer.
A purification buffer containing 300 mM imidazole was used to elute the pro-
teins. Then proteins were pulled together and digested overnight with 3C
protease (remove N-terminal histidine tag) and 2 mM dithiothreitol. Columns
were pre equilibrated with buffer (20 mM Tris-HCl (pH 8.0), 200 mM NaCl,
1 mM EDTA). Proteins were concentrated using concentrators of appropri-
ate molecular weight cut off (Amicon Ultra Millipore). Eluted proteins were
further purified by size-exclusion chromatography using Superdex 75 16/60 or
Superdex 200 26/60 (GE Life Sciences) columns on an ÄKTA systems with cor-
respondent buffer 10 mM Hepes (pH 7.6), 300 mM NaCl, and 0.5 mM tris(2-
carboxyethyl)phosphine hydrochloride (TCEP). SDS-PAGE gel was used to
check samples results. The core peak fractions were pooled and snap-frozen for
storage at -80°C

Quantification of protein concentration

Protein concentration was calculated by measuring the absorbance at 280
nm with the Nanodrop ND-1000 spectrophotometer. The absorbance was ad-
justed with the extinction coefficient of the protein that is calculated from the
amino acid sequence of the protein by the ProtParam tool from Expert Protein
Analysis System (ExPASy) [263].

In the case of SIAH1 SBD a Bradford assay was also used to quantify the
protein concentration. Bovine serum albumin (Thermo Scientific) was em-
ployed to produce protein standards and diluted to concentrations ranging
between 0 and 500 �g/mL and used to generate a standard curve in a quan-
tification assay. 200 �L of Coomassie Plus Protein Assay Reagent (Thermo
Scientific), was mixed with 5 �L of sample. The absorbance at 595 nm was
detected in a spectrophotometer in a 96-well plate. The absorbance of BSA
standards were measured relative to a blank (BSA and buffer) and a standard
curve was plotted to allow estimation of protein concentration of unknown
samples.
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Figure 3.1. Bradford Assay Standard Curve for determination of protein
concentration. Increasing concentrations of BSA were incubated with the
Coomassie based reagent before reading the optical absorbance at 595 nm
in a spectrophotometer. A standard curve was plotted with R.

3.2.5 SDS-PAGE
SDS-PAGE (sodium dodecyl sulphate–polyacrylamide gel electrophoresis) was
performed in order to visualize the purity and molecular weight of purified
proteins. Proteins were denatured in 5x SDS sample buffer (0.25 M Tris-HCl
pH 6.8, 0.25% bromophenol blue, 500 mM DTT, 5% SDS and 50% glycerol)
to a final concentration of 1% SDS and heated to 90°C for 2 minutes before
being subjected to electrophoresis. To detect proteins predicted to be between
32 and 80 kDa 10% polyacrylamide gels were used. Polyacrylamide gels resolve
proteins for 60-80 minutes with an electric field strength of 20 Vcm-1 in the
running buffer (25mM Tris-HCl, 190mM glycine and 0.1% SDS). Subsequently,
the resolving gel, containing the proteins, was immersed, and incubated in
Coomassie stain (0.2% Brilliant blue R-250, 7.5% acetic acid, 50% methanol)
for approximately 1 hour with agitation. The stained gel was then washed
for 16-24 hours using destain buffer (H20, methanol and acetic acid 50/40/10
v/v/v) until a desired level of background was reached.

3.2.6 Differential Scanning Fluorimetry
The 41 molecules selected through the virtual screening were prepared at 10
mM stock concentration in dimethyl sulfoxide (DMSO). All the compounds
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were initially tested at a final concentration of 40 �M. TRIB1 (84 to 372) was
diluted for use at 5 �M with or without C/EBP� peptide (40 �M) with DSF
buffer [10 mM Hepes (pH 7.6), 300 mM NaCl, and 0.5 mM TCEP]. The pro-
tein was incubated in a 96-well plate at room temperature for 30 min. SYPRO
Orange was then diluted with a DSF buffer for use at 5X as final concentration
and was pipetted into each well. For every assay at least 3 reaction mixtures
were made for each condition. The 96-well plate was then covered with poly-
merase chain reaction film and centrifuged for 5 min before being measured
on a Roche LightCycler 480 using the default SYPRO Orange protein pro-
gramme. The data were initially condensed using R version 3.4.3. Data were
then analyzed in Microsoft Excel using the CS example DSF Analysis v3.0
template provided by the SGC [264, 91] and Boltzmann fitting in GraphPad
Prism 8. Each assay was performed in triplicate unless stated otherwise. For
dose-dependent thermal-shift assays a compound range was prepared by serial
dilution in DMSO and added directly into the assay to the appropriate final
concentration. The thermal profiles were normalized so that the lowest value
was assigned as 0 and the largest fluorescence reading as 1.

3.2.7 Surface Plasmon Resonance
Surface Plasmon Resonance (SPR) assay was performed using Biacore T200
SPR biosensor instrument (GE Healthcare, Uppsala, Sweden) at 30 ºC. Prior
to the start of a new experiment, the instrument was cleaned using Bia-
core maintenance kit and a new CM5 chip was inserted and prepared ac-
cording to the instructions displayed by the software. TRIB1 (84-372),
TRIB1 (84-372)-D163I and TRIB1 (84-372)-S225F were immobilized on one
CM5 sensor chip one on each channel, using standard amine coupling pro-
cedure. The carboxymethyl dextran matrix of the sensor chip was acti-
vated with 0.1 M N-hydroxysuccinimide and 0.4 M 1-ethyl-3-(3 (dimethy-
lamino)propyl)carbodiimide hydrochloride at a flow rate of 15 �L/min for ap-
proximately 7 min. The immobilization was performed with 10 �g/mL of TRIB1
constructs in 10 mM sodium acetate (pH 5.0) at a flow rate of 5 �L/min. Un-
reacted activated groups of the dextran matrix were deactivated by injection
of 1M ethanolamine hydrochloride for 7 min. The assay was performed using
phosphate buffered saline (PBS; 10mM phosphate, pH 7.4, 150mM NaCl) as
running buffer. Interaction assays were performed in a running buffer consist-
ing of 1xPBS, 0.05% (v/v) tween 20, and 5% (v/v) DMSO. To collect kinetic
binding data, the compounds were prepared at 10mM stock solution in DMSO
and diluted with 1.05 PBS 0.05% (v/v) tween20. The compounds were in-
jected at different concentrations with a flow rate of 60 �L/min, the association
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was monitored for 60s while the dissociation for 160s. We used the following
formula to calculate the amount of protein to immobilize in the surface of the
chip:

RL =
MWL

MWA
× RMAX

S
(3.1)

Formula 3.1. Formula applied to calculate the amount of protein to immo-
bilize on the surface of the chip considering the molecular weight of the ligand
(protein) and the analytes (small molecules. RL: response level (RU) of im-
mobilized ligand; MWL: molecular weight of ligand; MWA:molecular weight
of analyte; Rmax: maximum binding capacity; S:number of binding sites per
ligand.

In general, a total analyte response of maximal 100 RU is used as reference
(Rmax). Therefore, using the formula X and an average library weight of
450 Da with one binding site per ligand, we decided to immobilize at least
7400 RU to get a maximum theoretical response of 100 RU. To optimize the
experiment, TRIB1 (84-372) was immobilized at high (7400 RU) and low (1800
RU) density values. The high-density option gave the best results, and it was
chosen as the default condition to test the other TRIB1 constructs. The CM5
chip has several channels where the channel 1 was used as a reference surface
where no protein is immobilized. The Biacore T200 evaluation software 2.0
was used for data analysis. Corrections for minor differences between protein
surfaces and reference surface interactions with DMSO were introduced by
using a series of solvents standards (solvent correction buffer containing 3%,
3.7%, 4.4%, 5.1%, 5.8%, 6.6%, 7.3%, and 8% DMSO). Finally, signals were
corrected for background by subtracting signals from an average of two blank
injections from those of compound injections (blank subtraction).

3.2.8 Isothermal Titration Calorimetry
ITC experiments were performed at several temperatures (25-30°C) using an
Affinity ITC from TA instruments (Lindon, UT, USA). SIAH1 SBD (91-282),
TRIB3 328-340 (Mimotopes) and SIAH1 SBD were prepared using a matched
buffer consisting of 20 mM Tris at pH 8.0, 100 mM NaCl. Before performing
the ITC experiment, we predicted that the binding affinity of TRIB3 328-340
will would be similar to the AXIN1 375-394 [265]. That is why we decided to
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use similar protein and peptide concentrations as the ones used for AXIN1 375-
394 and SIAH1 SBD. TRIB3 328-340 (800-1200 �M) was injected 20 times with
a volume of 2.5 �l into 350 �l of SIAH1 SBD (30- 50 �M). The concentration of
SIAH1 SBD was verified by absorbance and the Bradford assay. It is extremely
important that the analyte concentration is known precisely since errors in
these values will affect the determination of the binding affinity and enthalpy.
All the samples were degassed, and the temperature was adjusted prior to filling
the cell and injection syringe in a vacuum degassing accessory.

3.2.9 Crystallization screens
We attempted to co-crystallize SIAH1-TRIB3 328-340, and the B1 compound
with TRIB1 (84-372) fused to the C/EBP� (kindly gifted by the lab of Peter
Mace at the University of Otago) or TRIB1 PKD (84-343). High throughput
screens were performed in a 96-well plate HRC 2-well plate (Hampton Re-
search) using the commercially available 96 reagent crystallization conditions
screens SaltRx HT™, Index HT™ and PEG/ION from Hampton Research.
The crystallization screens were performed using the sitting-drop vapor diffu-
sion method with the commercial screens described. The setup was performed
with a Mosquito® crystallisation robot (TTP LabTech Ltd.), which plated the
purified protein and crystallisation reagent in ratios of either 1:1, 1:2 or 2:1
across the entire screen. Each commercial screen was set up in an identical
manner and then the plates were incubated at 18 °C in the Rock Imager® 1000
(Formulatrix).

3.2.10 Protein Complementation Assay
The NanoLuc Binary Technology (NanoBiT™) system from Promega was used
to quantify PPIs among TRIBs in live cells. This method consists of 2 small
subunits (large LgBiT and small SmBiT) that are fused to TRIB3 and the pro-
tein of interest. Once the target proteins interact within the cell, the subunits
come together and form an active enzyme that generates a bright lumines-
cent signal. This technology allows real-time kinetic analysis in live cells and
detection at low expression levels of the interacting proteins [248]. AKT-C
terminal SmBiT and TRIB3-N terminal LgBiT plasmids were constructed at
the University of Sheffield. This selection of constructs was obtained after sev-
eral trials with all the combinations possible (up to 8 possible combinations
depending on which part of the N or C-terminal part of the protein the BiT
is linked). Constructions and controls were transfected to HEK293T cells in
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96-well plates with X-tremeGEN ™ 9 DNA Transfection Reagent from Roche.
After 24h the old medium was removed and replaced with OPTI-MEM™ with
the Nano-Glo Live Cell Assay System, a nonlytic detection reagent that con-
tains the cell-permeable substrate furimazine. The luminescence was measured
using Thermo Scientific™ Varioskan™ LUX. The signal from a known PPI pair
is expected to be at least tenfold higher than the corresponding control, if the
signal is less this could be produced by a nonspecific interaction between fusion
partners.
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4 Results
TRIB1 & small molecules

4.1 Background
Tribbles (TRIB) family of pseudokinases have started to gather a lot of atten-
tion as we have been able to understand their importance. TRIB are a family of
three pseudokinases with an important role controlling immunity, metabolism,
and cancer through protein-protein interactions (PPIs) [199]. Unlike kinases
where it is possible to regulate their function, pseudokinases are much more
difficult to target because of their non catalytic activity. Among the three
members of TRIB family (TRIB1, TRIB2, and TRIB3), only TRIB2 and pre-
sumably TRIB3 can bind ATP very weakly in the absence of metal ions and
even autophosphorylate in an in vitro kinase assay [207]. In contrast, TRIB1 is
unable to bind ATP but could potentially bind small molecules [211]. Jamieson
and colleagues showed that when TRIB1 binds its natural substrate C/EBPα,
there is a conformational change on the canonical ATP binding pocket (Figure
4.1). TRIB1 has been crystallized in two conformations, autoinhibited (apo)
or in complex with C/EBPα (holo). The holo structure shows how C/EBPα
triggers allosteric changes on the pseudokinase domain allowing the opening of
the canonical ATP pocket. There are crucial rearrangements of the activation
loop and the αC helix. TRIB1 has a SLE motif instead of the DFG motif in
charge of coordinating Mg2+ and completing the hydrophobic regulatory spine
typical of canonical kinases. In the apo form the SLE motif is stabilized by the
conserved �3 lysine forming a hydrogen bond with the backbone of the leucine
(SLE; Leu226). This apo conformation shows the canonical ATP pocket com-
pletely locked, which is in accordance with TRIB1 inability to bind ATP.

Two different groups of researchers used the Published Kinase Inhibitor Set
(PKIS) which is composed of approximately 370 ATP competitive inhibitors as
a first screen library against TRIB [266]. Using a thermal shift assay, they could
find compounds able to interact with TRIB1 and TRIB2. Moreover, TRIB2
was found to bind covalently to afatinib, a type VI kinase inhibitor of the ErbB
family of tyrosine kinases approved by the FDA in 2013 [267]. Unlike kinases
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Figure 4.1. Representation of the available binding cavity (grey) of TRIB1
(orange) in the apo (SLE-out; PDBid 5CEM) and the holo (SLE-in; PDBid
6DC0) conformation when bound to C/EBPα (blue). Figured modified
from [211].

where it is possible to regulate their function, pseudokinases remain unclear
whether it is possible or not to regulate their non catalytic function with small
molecules. Kinases are well known to have two main states, active (DFG-in) or
inactive (DFG-out), depending on whether they are interacting with ATP or
not, respectively. Conformational dynamics of kinases are well known thanks
to all the structural information obtained through X-ray or NMR experiments
over the last decades. It is clear the importance of the canonical ATP pocket to
modulate the conformational changes on the kinase structure [56, 268]. Conse-
quently, we should not be surprised that similar mechanisms could be seen on
the pseudokinases. Although there is less structural evidence of the pseudoki-
nase flexibility, still there are some examples where we can see this behavior.
For example, it was described the structural and dynamic similarities of the
pseudokinase domains from the Wnt-binding receptor tyrosine kinases (PTK7,
ROR1, ROR2, and RYK) with respect to canonical kinases [176]. Lemmon and
colleagues solved several structures of pseudokinases and found how the activa-
tion loop in the inactive conformation mirrors the autoinhibited state of insulin
receptor kinase. They found important domain plasticity and different interac-
tions that substitute for the absent canonical kinase motifs. We hypothesized
that TRIB1 could bind small molecules in a similar way to canonical kinases.
By using rational design, we applied molecular modeling techniques such as
molecular dynamics, pharmacophore modeling, and molecular docking to find
molecules able to bind and potentially modulate TRIB1. Kinase inhibitors
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from the PKIS screening with DSF were used as preliminary hits to discover
new chemical probes for TRIB. Several experimental assays were performed to
validate the computationally predicted small molecules. DSF was used as the
primary screen to detect new small molecules and SPR to verify and validate
the interaction. The objectives of the work described in this chapter were to
discover new small molecules derived from kinase inhibitors able to interact
with TRIB1. Moreover, it was important to elucidate whether the compounds
could trigger some conformational changes and modulate TRIB1 activity.

4.2 Discovery of novel TRIB1 small molecules
A specific in silico workflow was applied to develop a computer-based prediction
model for TRIB1. First, a homology model was created to dock the prelimi-
nary hit GW683134A into the canonical ATP pocket of TRIB1. GW683134A
is a benzimidazole-urea based inhibitor, which had been developed to target
VEGFR-2 (KDR) and TIE-2 kinase receptors [269]. The next step was to
perform a MD simulation of the ligand-protein structure to address the struc-
tural flexibility and stability of the interaction. Analysis of the MD trajectory
allowed us to select a conformation for the molecular docking to perform the
virtual screening. Selected compounds were experimentally validated to in-
teract with TRIB1 using biophysical assays. To further validate the proposed
binding mode, we generated single point mutations on the canonical ATP bind-
ing pocket of TRIB1. Moreover, to investigate whether our best compound has
effects in kinases beyond TRIB1, it was screened against a panel of kinases.

4.2.1 Homology Modeling and Molecular Dynamics
A homology model of TRIB1 with GW683134A, a potential hit from the PKIS
screening, was generated based on the unique crystal structure of GW683134A
which is bound to the kinase STK10. The kinase domain of STK10 shares a
sequence similarity of 24% with the pseudokinase domain of TRIB1. STK10
conserves all the canonical kinase motifs, the DFG, the lysine at the B3 strand
and the aspartic acid in the catalytic loop (D in the HxD motif). GW683134A
binds in the canonical ATP pocket of STK10 with a DFG-out conformation
and the αC helix in, which correspond to an inactive state of the protein. The
computationally predicted model was generated as described in the Methods
section 3.1 (Figure 4.2). Given the low similarity on sequence and conserved
motifs, the proposed binding mode cannot be analyzed without further opti-
mization.
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Figure 4.2. Schematic representation of the model of GW683134A bound
to TRIB1. The apo structure of TRIB1 (orange; PDBid 5cem) and the
GW683134A (blue) bound to STK10 (cyan; PDBid 6eim) were used as
templates to create the homology model.

To evaluate the quality of the proposed binding mode a molecular dynamic
(MD) simulation was run using the homology model with the best DOPE score.
A MD simulation of 1200 ns was performed to effectively assess the dynamic
stability of the compound. The root mean square deviation (RMSD) of the
atomic positions of TRIB1 and GW683134A shows two different trends (Figure
4.3). Smaller RMSD variations, around 1 A, shows the stability of the ligand
binding whereas the protein needs some rearrangements and conformational
changes given the higher RMSD values around 6 A. The root mean square
fluctuation (RMSF) of TRIB1 was calculated to elucidate which regions are
more flexible over the simulation. As seen in figure 4.3, the residues from
the activation loop (residues 225-260) showed higher RMSF compared with
the rest of the domain, as well as the residues at the G-loop and the C-tail.
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Figure 4.3. Computational modeling of TRIB1 (orange) with
GW683134A (blue). A) Root Mean Square Deviation (RMSD) of the
GW683134A over the whole simulation (1200 ns). B) Root Mean Square
Fluctuation (RMSF) of each residue in TRIB1 over the course of the simu-
lation (1200 ns). The secondary structure of TRIB1 is shown schematically
on the x axis. C) Selected frame from the MD of the homology modeling
of TRIB1 with GW683134A.

Residues in secondary structures as β-sheets and α helix have lower RMSF
values compared with flexible loops. The residues around 5 Åof GW683134A
have low fluctuations except for the GLU101, ARG102, and GLU103 in the
G-loop with values higher than 3 Å(Figure A.1).
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4.2.2 Molecular docking: pharmacophore identification,
virtual screening and in silico mutations

After the MD simulation, MD frames were clustered together if their RMSD
values were below 1 Å using the linkage method from GROMACS. Given the
stability of the ligand over the MD simulation, all of the structures clustered in
one group. The cluster centroid was selected as input structure to perform the
virtual screening. Based on the analysis of the interactions involved between
the ligand and the protein, three specific pharmacophores were created to help
the identification of new small molecules. These pharmacophores were consid-
ered essential for the ligand-target interaction. Among the main interactions to
be conserved between GW683134A and TRIB1, we selected the hydrogen bonds
involving the side chain of the SER225, and the main chain amine group of the
ASP163 and carbonyl group of LEU223 (Figure 4.4). A subset of 71651 com-
pounds from MOLPORT with a similar scaffold to GW683134A were prepared
for docking with LigPrep (Schrodinger) to generate tautomeric and ionization
states at pH 7. The prepared ligands were docked into the canonical ATP
pocket of TRIB1. The rDock software was used with the standard protocol
along with different combinations of the pharmacophore restraints to filter the
molecules for which the cutoff was set to 1. The results were filtered using the
rDock SCORE.INTER which evaluates the intermolecular interactions between
the ligand and the protein with a value lower than -20. After applying those
filters, we obtained 16759 compounds. Finally, the compounds were sorted by
SCORE.INTER and the best 250 compounds were visually inspected for the
final selection. The 41 selected compounds were further validated using DSF
as the primary screen.

To guide which residues should be selected for single point mutation, we
used a python wrapper called Mutatex which uses the FoldX empirical force
field to predict changes in stability and interactions energies [260]. Mutatex
allows us to predict ΔΔG values in silico mutagenesis for all possible aminoacids
in our structure and, more specifically, residues inside the canonical ATP pocket
and near the small molecule (Figures A.1 and A.5). We expected that the side
chains of D163 and S225, which are located inside the canonical ATP binding
pocket, will be directly interacting with the compounds. Therefore, we decided
to mutate D163 to isoleucine and S225 to phenylalanine based on the Mutatex’s
results and the interactions we want to disrupt (Figure 4.5).

The ∆∆G values for the proposed mutations are close to 0 kcal/mol in the
mutational scan. Values close to 0 kcal/mol indicate that the proposed muta-
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Figure 4.4. Depict of the pharmacophore restraints and the virtual screen-
ing workflow. A) GW683134A in the canonical ATP binding pocket of
TRIB1 and a 2D interaction diagram by PoseView [270]. B) The small
molecule compound database was docked to the canonical ATP binding
site on TRIB1. The rDock software was used with three different pharma-
cophores, two hydrogen bond donors (blue spheres) and one hydrogen bond
acceptor (red sphere). The compounds successfully docked were scored by
the SCORE.INTER and the compounds with higher scores were selected
for visual inspection and 41 small molecule hits were selected.

tion will not change the stability of the whole protein and therefore will only
engage the canonical ATP pocket conformation. On the other hand, positive
values indicate that the mutant is less stable than the native conformation and
negative values the opposite, the mutant is more stable than the wild type.

4.2.3 Protein Expression and Purification
The gene coding for TRIB1 was kindly provided by Peter Mace at the Uni-
versity of Otago (New Zealand) and TRIB1 mutants (D163I and S225F) were
provided by Miguel Hernandez Quiles at the UMC Utrecht. All constructs,
TRIB1 (84-372), TRIB1∆Ct (84-343), TRIB1 (84-372)-D163I and TRIB1 (84-
372)-S225F were expressed in Escherichia coli BL21 (DE3) cells and purified
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Figure 4.5. TRIB1 structure showing the mutated residues D163I and
S225F in green at the canonical ATP binding pocket of TRIB1 along with
the ∆∆G values predicted with Mutatex.

using nickel affinity. After elution with 300 mM imidazole, most of the pro-
tein eluted in the first fractions. Fractions from nickel affinity chromatography
were polled together and digested overnight with 3C protease. Then, the pro-
tein was analyzed by size exclusion chromatography (SEC) as described in the
method section. TRIB1 (84-372) eluted from the SEC as a single peak and is
very symmetric compared to the other constructs (Figure A.4). The molecular
weight of TRIB1 (84-372) is 33,115 which is consistent with the weight of the
sample by SDS-PAGE (Figure 4.6) and mass spectrometry (figure A.9).

All the proteins used for biophysical assays and structural studies were
purified without the His tag. TRIB1 (84-372) was used for DSF and SPR
whereas the TRIB1∆Ct (84-343) was only used for crystallization trials which
ended without positive results. TRIB1 mutants were only tested for SPR.
TRIB1 (84-372) and TRIB1∆Ct (84-343) final yields were approximately 10
mg/L of cell culture. In contrast, the mutant’s yield was very low (0.3-0.5
mg/L). SPR needs a very low amount of protein, while DSF and crystallization
trials require a considerable amount of protein. Purified proteins were aliquoted
and snap frozen in liquid nitrogen for storage at -80 ºC.
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Figure 4.6. Size exclusion chromatography and SDS-PAGE analysis of
TRIB1 (84-372). TRIB1 (84-372) from cleared bacterial lysate was bound
to a nickel column and eluted with 300 mM imidazole. The peak corre-
sponds to TRIB1 with an absorbance at 280 nm (mAU). Fractions were
collected and 5 µl of sample was boiled with 2 X SDS sample buffer and
subjected to electrophoresis on a 10% SDS-PAGE polyacrylamide gel. Sam-
ples from the bacterial lysate (Soluble), the cell pellet (Insoluble), the lysate
collected after the nickel column (flow through), the elution steps (E1, E2,
E3, E4), enzyme cleavage (3C) and fractions A8-A10 were analyzed along-
side.

4.2.4 Differential Scanning Fluorimetry
TRIB1 has been screened by DSF using the 41 small molecules filtered through
the in silico workflow. The small molecule library screening was performed
as described in section 3.2.6, following the same procedure as Jamieson and
colleagues when they tested the PKIS on TRIB1 [211].

The 41 compounds were purchased through MOLPORT and the C/EBPα
peptide was kindly gifted by Peter Mace laboratory. To discover new potential
ligands for TRIB1, we screened the 41 compounds against TRIB1 (84-372) in
a protein:compound ratio of 1:8. We also tested the effect of C/EBPα degron
in combination with the small molecules on the melting temperature of TRIB1
(84-372). In order to reach a preliminary list of stabilizing compounds, a cut-
off of ΔTm higher than 1.5 ºC was used to discriminate compounds for further
screens (Figure 4.7). None of the compounds gave higher negative values to be
considered a destabilizing compound.

Then, a subset of 14 compounds was tested several times with the final
cut-off of ∆Tm higher than 2ºC to define a compound as a hit. The top stabi-
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Figure 4.7. Single thermal shift results from the DSF assay on all the
41 small molecules. Tm was calculated as the difference between the com-
pound and the control (only DMSO and protein). The compounds are
sorted by ∆Tm without the C/EBPα peptide.

lizing compound was B1 with a ∆Tm higher than 4 ºC in the two conditions
tested. There was no significant preference for either TRIB1 (84-372) alone or
in presence of C/EBPα conformations.

To determine that the TRIB1 thermal stabilization was dependent on com-
pound concentration, a dose-response experiment was conducted on the most
promising small molecules. The experiments were performed with 2-fold serial
dilution and all the melting curves were normalized to be compared. The most
promising compounds were tested with and without the C/EBPα. The results
are shown in descending order from the most stabilizing compounds to the
lowest from the subset of 14 compounds. B1 appears to have the best effect
on TRIB1 stabilization at several concentrations with all the melting curves
with the same denaturation pattern. At 10 µM B1 shown TRIB1 stabilization
(ΔTm 2.21 ºC) whereas D1 (ΔTm 1.65 ºC) or A12 the effect (ΔTm 1.17ºC)
at the same concentration is much smaller (Figure 4.10). At higher concentra-
tion, the melting curves of D1 and A12 do not conserve the same pattern, being
more pronounced at 40 µM with A12. None of the compounds at lower con-
centrations showed a significant preference for the protein alone or in presence
of the peptide

The rest of compounds from the subset of 14 were least effective and have
a lower concentration dependent effect. Only compounds B5, B7, B6 and B2
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Figure 4.8. Thermal shift results from the DSF assay on the 14 com-
pounds that potentially bind TRIB1 at 40 µM. Tm was calculated as the
difference between the compound and the control (only DMSO and pro-
tein). Values shown are the mean ± S.D (n = 3) where the ∗ are those
compounds with n ≤ 2.

have a small dose-dependent effect but without the same denaturation pattern.
The compound B3 was included given the similarity with B6. At 4 µM the
compounds B3 and B4 displayed a high shift on the melting curve of the protein,
whereas there was a very low or absence of dose-dependent effect with the rest
of compounds (A1, B9, B10, A8, C3, and D2).

4.2.5 Surface Plasmon Resonance
TRIB1 (84-372), TRIB1 (84-372)-D163I and TRIB1 (84-372)-S225F were im-
mobilized on the sensor chip’s surface using the protocol as described in section
3.2.7. The immobilization levels of TRIB1 (84-372) and TRIB1 (84-372)-D163I
were approximately 8300, whereas for TRIB1 (84-372)-S225F was approxi-
mately 12000. According to the amount of protein immobilized in the chip
and the average molecular weight of the library, approximately 100 RU for
TRIB1 (84-372) and TRIB1 (84-372)-D163I and 180 RU for TRIB1 (84-372)-
S225F were determined as maximum response for a ligand of 450 Da.

To calculate the affinity for a given interaction we analyzed the level of
steady state or equilibrium binding by analysis of the amount of complex
against analyte concentration. The affinity can also be derived from kinet-
ics but in our case, it was not possible because of the very fast kon and koff .
The C/EBPα peptide was tested as a positive control but produced an unex-
pected sensorgram of negative values. However, the shape of the sensorgram
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Figure 4.9. Chemical structures of the subset of 14 compounds that
potentially bind TRIB1.
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Figure 4.10. Dose response of the DSF from the three best compounds
(A12, D1 and B1). Several concentrations were used ranging from 1.25 µM
and going up two-fold to 40 µM, except for D1 without C/EBPα. Values
shown are from a single experiment with 3 technical replicates.
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Figure 4.11. Dose response of the DSF from the compounds B5, B7,
B6, B2, A1, B9, B10, A8. Several concentrations were used ranging from
1.25 µM and going up two-fold to 40 µM. Values shown are from a single
experiment with 3 technical replicates.
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Figure 4.12. Dose response of the DSF from the compounds C3, B4, D2
and B3. Several concentrations were used ranging from 1.25 µM and going
up two-fold to 40 µM. Values shown are from a single experiment with 3
technical replicates.

showed a normal behavior with a progressive response during the injection of
the peptide and a slow dissociation after the injection. The figure 4.13. shows
the sensorgrams based on the dose response curve of the C/EBPα peptide in-
jections at 7 different concentrations ranging from 500 nM and going up to 100
µM. The Kd has been previously calculated with a value of 11 µM as measured
by ITC of MBP-fused C/EBPα peptide injected into TRIB1 (84-372) [211].
We obtained a value of approximately 2 µM with small differences between the
TRIB1 mutants and wild-type (Table 4.1).

Given the results with the C/EBPα peptide, the compound B1 was used as
a positive control to validate and develop an SPR assay to detect interactions
between ligands and TRIB1. To find better compounds, we purchased analogs
commercially available from the MOLPORT database with a permissive chemi-
cal similarity threshold of 80% (Tanimoto coefficient) along with two fragments
(F1 and F2) and a new scaffold similar to other hits from PKIS (Figure 4.14
and A.14). In addition, previously tested compounds through dose-response
DSF were also tested with SPR (Figures A.11,A.12,A.13), where most of them
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have a much lower Kd than B1 (Table A3), as for example the compound A12
has a Kd of 105µM. The compound D1 was confirmed to be a promiscuous
binder (higher RU than the expected Rmax) and it was not possible to sat-
urate the protein to determine a steady state Kd. The compounds B4 and
B5 did not show a binding event and they were classified as not binders. The
compound B3 showed a Kd of 322 µM although the steady state was not stable
at higher concentration than 100 µM (Table A3 and figure A.13).

All the compounds from which the Kd was calculated are bound reversibly,
consequently dissociating to baseline. From the analogs derived from B1, three
compounds (B1.1, B1.2 and B1.5) have a very similar affinity compared to B1
but B1.2 have the better affinity with a Kd of approximately 10 µM (Figure
AA.10). The SPR results suggested that removing the methoxy at the ortho-
substituent in the right-side phenyl ring (R2) was more favorable. Keeping
the chlorine in meta (B1.2) improved potency and was more favorable than
trifluoromethyl moiety (B1.5) and the methoxy (B1.3) (Table 4.1). The triflu-
oromethyl moiety was more favorable than the methoxy increasing the affin-
ity by 3-fold (Table 4.1). Introduction of a methoxy at the ortho and meta-
substituent (B1.4) showed a steady state with no equilibrium state (plateau) at
high concentrations and a chi square bigger than only methoxy at ortho (B1.1)
or meta-substituent (B1.3) (Figure 4.19 and Table 4.1).

The region predicted to be solvent exposed (R1) can also modulate the
binding affinity. The morpholine at the front region seems to be less favorable
than the piperidine when there is one methoxy at the ortho-substituent in
R2, as seen when comparing the sensorgram of B1.1 against B1.11 (Figure
4.15 and 4.26). Introduction of a cyclobutadiene with a secondary amine as
linker decreased the affinity by approximately 5-fold (B1.10) compared to B1
(Table 4.1). Bulkier elements at position R2, as the benzo-1,4-dioxane in R2
(B1.9) gave very low response compared to B1 and it was not possible to
calculate a reliable binding affinity (Figure 4.24 and Table 4.1). Interestingly,
when replacing R2 with a hydrogen but keeping the piperidine at R1 (B1.13)
decreased the binding affinity by 10-fold compared to B1 (Figure 4.28 and Table
4.1). In contrast, when keeping the benzene and removing the substituents in
R2 (B1.6 and B1.12) resulted in a significant drop in signal (Figure 4.21 and
4.27). Similar results were obtained by introducing a methoxy at the para-
substituent in R2 (B1.7 and B1.8).

The fragment F1 did not saturate at 500 µM and due to problems with
solubility it was not possible to test higher concentrations. Moreover, there
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Figure 4.13. Negative sensorgrams (left) and corresponding plot of steady
state response against concentration (right) for determination of binding
affinity of C/EBPα against TRIB1 (84-372), TRIB1 (84-372)-D163I and
TRIB1 (84-372)-S225F. Values shown are from experimental duplicates.
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Figure 4.14. Analogs series of compound B1 and fragments. A) Chemical
structure of the core scaffold of B1 and analogs. B) Chemical structure of
the two fragments (F1 and F2) and the new scaffold (E1).
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is no dissociation of the fragment at lower concentration as 12.5 µM (Figure
4.30). The fragment F2 showed a Kd of approximately 100uM with a Rmax
a bit higher than the expected maximum response (100 RU for TRIB1 and
TRIB1-D163I; 180 RU for TRIB1-S225F). Unfortunately, the new scaffold E1
obtained from similarity with GW68462B and GSK-300014 from PKIS did not
show an equilibrium state at any of the tested concentrations (Figure 4.30). All
the compounds had a fast-on, fast-off binding, which did not permit a reliable
kinetics analysis. Moreover, none of the compounds showed a significant dif-
ference for any of the TRIB1 constructs, wild-type, or mutants. As expected,
the TRIB1 (84-372)-S225F showed higher values of RU given the difference
of protein immobilized. The spikes at the start and end of association were
removed due to the change in buffer components for all the compounds.
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Figure 4.15. Sensorgrams (left) and corresponding plot of steady state
response against concentration (right) for determination of binding affin-
ity of compound B1 against TRIB1 (84-372), TRIB1 (84-372)-D163I and
TRIB1 (84-372)-S225F. Values shown are from experimental duplicates and
sensorgrams are plotted after removing spikes due to buffer changes.
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Figure 4.16. Sensorgrams (left) and corresponding plot of steady state
response against concentration (right) for determination of binding affinity
of compound B1.1 against TRIB1 (84-372), TRIB1 (84-372)-D163I and
TRIB1 (84-372)-S225F. Values shown are from experimental duplicates and
sensorgrams are plotted after removing spikes due to buffer changes.
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Figure 4.17. Sensorgrams (left) and corresponding plot of steady state
response against concentration (right) for determination of binding affinity
of compound B1.2 against TRIB1 (84-372), TRIB1 (84-372)-D163I and
TRIB1 (84-372)-S225F. Values shown are from experimental duplicates and
sensorgrams are plotted after removing spikes due to buffer changes.
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Figure 4.18. Sensorgrams (left) and corresponding plot of steady state
response against concentration (right) for determination of binding affinity
of compound B1.3 against TRIB1 (84-372), TRIB1 (84-372)-D163I and
TRIB1 (84-372)-S225F. Values shown are from experimental duplicates and
sensorgrams are plotted after removing spikes due to buffer changes.
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Figure 4.19. Sensorgrams (left) and corresponding plot of steady state
response against concentration (right) for determination of binding affinity
of compound B1.4 against TRIB1 (84-372), TRIB1 (84-372)-D163I and
TRIB1 (84-372)-S225F. Values shown are from experimental duplicates and
sensorgrams are plotted after removing spikes due to buffer changes.
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Figure 4.20. Sensorgrams (left) and corresponding plot of steady state
response against concentration (right) for determination of binding affinity
of compound B1.5 against TRIB1 (84-372), TRIB1 (84-372)-D163I and
TRIB1 (84-372)-S225F. Values shown are from experimental duplicates and
sensorgrams are plotted after removing spikes due to buffer changes.
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Figure 4.21. Sensorgrams (left) and corresponding plot of steady state
response against concentration (right) for determination of binding affinity
of compound B1.6 against TRIB1 (84-372), TRIB1 (84-372)-D163I and
TRIB1 (84-372)-S225F. Values shown are from experimental duplicates and
sensorgrams are plotted after removing spikes due to buffer changes.
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Figure 4.22. Sensorgrams (left) and corresponding plot of steady state
response against concentration (right) for determination of binding affinity
of compound B1.7 against TRIB1 (84-372), TRIB1 (84-372)-D163I and
TRIB1 (84-372)-S225F. Values shown are from experimental duplicates and
sensorgrams are plotted after removing spikes due to buffer changes.
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Figure 4.23. Sensorgrams (left) and corresponding plot of steady state
response against concentration (right) for determination of binding affinity
of compound B1.8 against TRIB1 (84-372), TRIB1 (84-372)-D163I and
TRIB1 (84-372)-S225F. Values shown are from experimental duplicates and
sensorgrams are plotted after removing spikes due to buffer changes.
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Figure 4.24. Sensorgrams (left) and corresponding plot of steady state
response against concentration (right) for determination of binding affinity
of compound B1.9 against TRIB1 (84-372), TRIB1 (84-372)-D163I and
TRIB1 (84-372)-S225F. Values shown are from experimental duplicates and
sensorgrams are plotted after removing spikes due to buffer changes.
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Figure 4.25. Sensorgrams (left) and corresponding plot of steady state
response against concentration (right) for determination of binding affinity
of compound B1.10 against TRIB1 (84-372), TRIB1 (84-372)-D163I and
TRIB1 (84-372)-S225F. Values shown are from experimental duplicates and
sensorgrams are plotted after removing spikes due to buffer changes.
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Figure 4.26. Sensorgrams (left) and corresponding plot of steady state
response against concentration (right) for determination of binding affinity
of compound B1.11 against TRIB1 (84-372), TRIB1 (84-372)-D163I and
TRIB1 (84-372)-S225F. Values shown are from experimental duplicates and
sensorgrams are plotted after removing spikes due to buffer changes.
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Figure 4.27. Sensorgrams (left) and corresponding plot of steady state
response against concentration (right) for determination of binding affinity
of compound B1.12 against TRIB1 (84-372), TRIB1 (84-372)-D163I and
TRIB1 (84-372)-S225F. Values shown are from experimental duplicates and
sensorgrams are plotted after removing spikes due to buffer changes.
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Figure 4.28. Sensorgrams (left) and corresponding plot of steady state
response against concentration (right) for determination of binding affinity
of compound B1.13 against TRIB1 (84-372), TRIB1 (84-372)-D163I and
TRIB1 (84-372)-S225F. Values shown are from experimental duplicates and
sensorgrams are plotted after removing spikes due to buffer changes.
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Figure 4.29. Sensorgrams (left) and corresponding plot of steady state
response against concentration (right) for determination of binding affinity
of fragment F2 against TRIB1 (84-372), TRIB1 (84-372)-D163I and TRIB1
(84-372)-S225F. Values shown are from experimental duplicates and sen-
sorgrams are plotted after removing spikes due to buffer changes.
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Figure 4.30. Sensorgrams (left) and corresponding plot of steady state
response against concentration (right) for determination of binding affinity
of fragment F1 and E1 against TRIB1 (84-372). Values shown are from
experimental duplicates and sensorgrams are plotted after removing spikes
due to buffer changes
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4.2.6 Panel of kinases
To probe whether our best compound has effects in kinases beyond the pseu-
dokinase TRIB1, it was screened against a panel of kinases. We tested the
specificity of the best hit, compound B1.2, against a panel of serine/threonine
tyrosine, and lipid kinase from the University of Dundee (Figure 4.31). The
panel contains 140 kinases plus 15 lipid kinases from the 555 possible [53],
where only 11 kinases were inhibited at least more than 25% when tested with
compound B1.2 at 10 µM (Table 4.2). Among the inhibited kinases, only four
out of the nine families (AGC, CAMK, CK1, CMGC, Other, RGC, STE, TK
and TKL) contain at least one kinase.

Kinase Family % Activity SD % Inhibition
CHK2 CAMK 17 4 83
EPH-B2 TK 42 8 58
EPH-B3 TK 53 15 47

p38d MAPK CMGC 56 5 44
TrkA TK 57 6 43

p38g MAPK CMGC 64 13 36
DYRK1A CMGC 68 7 32
GCK STE 69 10 31
DDR2 TK 69 8 31
NUAK1 CAMK 70 8 30
PIK4Cb Lipid Kinases 75,2 1,0 24,77

Table 4.2. List of kinases inhibited by B1.2 at 10 µM. The percentage
of activity was calculated as the mean of two experiments. SD: Standard
deviation. The percentage of inhibition is calculated by subtracting the
percentage of activity to 100.

The kinase most inhibited is Checkpoint kinase 2 (CHK2) from the CAMK
family, a tumor suppressor which is required for the induction of cell cycle arrest
and apoptosis by DNA damage [269]. Another member of the CAMK family,
NUAK1 is inhibited around 30%. The tyrosine kinase (TK) family is the most
overrepresented family from the set of inhibited kinases. Three receptors TK,
EPH-B2, EPH-B3 and TrkA are inhibited more than 40% and the TK DDR2
around 30%. Three members of the CMGC family were inhibited at least 30%,
two p38 MAPK (p38d-MAPK13 and p38g -MAPK12) and DYRK1A. Among
the 15 lipid kinases tested, only PIK4CB was inhibited at least 25%. Most of
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Figure 4.31. Kinome inhibition profile at 10 µM of compound B1.2.
Inhibition is shown with a red circle proportional to the strength of the
inhibition. Grey circles are kinases where the compound inhibits less than
25%. Coral was used to make the kinome tree [271].

the lipid kinases were not affected by the compound B1.2, where the next lipid
kinase most inhibited is PI3Kα with an inhibition of around 23% (Table A5).
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5 Results
TRIB3-AKT/PKB

5.1 Background
The interaction between AKT/PKB and TRIB3 is already well known although
the specific mechanism on how they interact remains unclear. The AKT/PKB
family belongs to the AGC superfamily of serine-threonine kinases and consists
of three family members: AKT1/PKBα, AKT2/PKBβ, and AKT3/PKBγ.
AKT/PKB is crucial in multiple cell processes like metabolism, proliferation,
and survival [272]. Dysregulation of AKT/PKB signaling is associated with
cancer, diabetes, cardiovascular and neurological diseases. That is why, there
has been an increasing interest to understand and modulate AKT/PKB activity
[273].

From a structural point of view, AKT/PKB contains three domains. The
N-terminal pleckstrin homology (PH) domain, which interacts with the lipid
membrane through PIP3 (phosphatidylinositol (3,4,5)-triphosphate), recruits
AKT/PKB to the plasma membrane. Following the PH domain, a central ki-
nase domain belongs to the AGC superfamily and a C-terminal domain that
contains the hydrophobic motif. Once AKT/PKB is recruited to the plasma
membrane is phosphorylated by mTORC2 kinase at Ser473 and PDK1 kinase
at Thr308. Another constitutive phosphorylation site is Thr450 in the turn
motif which is essential for AKT folding and stability [274]. AKT/PKB may
be phosphorylated on Ser477 and Thr479 by Cdk2-cyclin A. The Thr308 is
in the activation loop and the three other phosphorylation (Ser437, Ser477,
and Thr479) are in the C-terminal tail [275]. The phosphorylated residues are
protected from dephosphorylation if AKT/PKB remains bound to the mem-
brane. Upon termination of PIP3 signal by lipid phosphatases such as PTEN
(phosphatase and tensin homolog), dissociation from the membrane leads to
inhibition of the kinase domain by the PH domain and dephosphorylation of
Ser473 by PHLPP (PH domain leucine-rich repeat containing protein phos-
phatase) [276] and the activation loop by PP2A [277] (Figure 5.1).
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Figure 5.1. Conformational cycle of AKT/PKB. Autoinhibited AK-
T/PKB is characterized by a PH-in conformation in which the PH domain
is sequestered by interacting with the kinase domain. Upon recruitment to
the membrane, the kinase domain exposes two phosphorylation sites, one
in the activation loop (Thr308) and the other in the hydrophobic motif
(Ser473). These phosphorylation lead to conformational changes allowing
the activation of AKT/PKB. Dissociation from the membrane leads to inhi-
bition of the kinase by the PH domain and dephosphorylation. AKT/PKB
activation and activity are restricted to the membrane and the inactive form
is mainly in the cytosol. Figure from [278] with permission from Elsevier.
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The interaction between TRIB3 and AKT/PKB was first detected during
a yeast two-hybrid screen designed to identify AKT-binding proteins [219].
According to these results, TRIB3 binds to the kinase domain of AKT/PKB
in the activation loop and inhibits its phosphorylation at both Thr308 and
Ser473 by growth factors and insulin [219, 279]. In another article was proved
the lack of evidence of TRIB3 as an inhibitor of AKT/PKB [280], but as they
declared in their publication ”an important difference between the two stud-
ies relates to the cell systems used, primary hepatocytes in the present study
and tumoral HEK-293 cells by Du et al”. An essential element of the protein-
protein interaction is the biological context. Not all possible interactions will
occur in any cell at any time. Instead, interactions depend on cell type, cell
cycle phase and state, developmental stage, environmental conditions, pro-
tein modifications (e.g., phosphorylation), presence of cofactors, and presence
of other binding partners [241]. Interestingly, it was also hypothesized that
TRIB3 binds to mTORC2 [281]. mTOR is a conserved serine/threonine kinase
modulated by growth factors and cellular energy status. It forms two distinct
molecular complexes known as mTOR complex 1 (mTORC1) and mTORC2.
mTORC1 regulates growth, autophagy, survival, and metabolism, whereas the
role of mTORC2 in cellular biology is not completely understood. Sarbassov
et al demonstrated that the Rictor component in mTORC2 complex directly
phosphorylates AKT at Ser 473 residue [282]. In addition, Borsting et al ob-
served differential effects of TRB3 on phosphorylation of AKT at Ser 473 and
Thr 308, they hypothesized that TRB3 binds to mTORC2 [281]. They reported
that TRIB3 may bind to both Rictor and mTOR, and not directly to AKT.
It was not until the end of 2019 when it was identified that the αC helix of
AKT1/PKBα (residues 192-204) interacts with TRIB3 [236]. They performed
several co-immunoprecipitations (co-IPs) and even calculated the kinetic in-
teraction of the αC helix of AKT1 and TRIB3 through SPR. Moreover, they
demonstrated that the αC helix peptide disrupts the TRIB3-AKT1/PKBα in-
teraction.

Bearing all of this in mind, we need to be very careful and to evaluate in
detail all the research done to prove a reliable interaction between TRIB3 and
AKT/PKB. One of the best-known functions of pseudokinases is the modula-
tion of kinases. Dimerization has already been proposed as an allosteric mech-
anism for kinases [283, 284]. In several kinases, the conformation of αC helix
is a key hub on which regulatory inputs converge to induce catalytic switch-
ing [127]. Several modes of Kinase-pseudokinase heterodimerization have been
reported with very different αC helix orientation (Figure 5.3). Some of the
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Figure 5.2. Timeline of the most relevant discoveries about AKT/PKB
and TRIB3 interaction.

modes are head to tail (e.g., HER3 pseudokinase-EGFR kinase), transverse
side to side (e.g., Tyk2-b pseudokinas-Tyk2 kinase), heterotrimeric complex
(e.g., STRADα pseuokinase- LKB1 kinase), parallel side to back (e.g., MLKL
pseudokinase- RIPK3 kinase). This shows the high flexibility of pseudokinases
and kinases to interact with each other and the complexity of it. Therefore, it
is not a surprise that the αC helix of AKT1 is a key region for the interaction
with TRIB3. Moreover, when the Serine 473 located in the C-terminal is phos-
phorylated it allows a conformational change by interacting with the αC helix
(Figure 5.1). Here we hypothesized that the C-tail of TRIB3 can regulate the
phosphorylation of the S473 by interacting with the αC helix groove on the
AKT1/PKBα N-lobe. We have tried to identify the mechanism of interaction
between the kinase domain of AKT1/PKBα and the pseudokinase domain of
TRIB3.
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Figure 5.3. Kinase-pseudokinase heterodimers present in the kinome to-
gether with the Fam20 family of atypical kinases. Dendrogram showing
the main families found in the human kinome, TRIBs family and AK-
T/PKB are highlighted with a circle. Some of the modes are head to tail
(e.g., HER3 pseudokinase-EGFR kinase PDB code 4RIW), transverse side
to side (e.g., Tyk2-b pseudokinas-Tyk2 kinase PDB code 4OLI, Fam20A-
FAM20C PDB code 5YH3), heterotrimeric complex (e.g., STRADalpha
pseuokinase- LKB1 kinase PDB code 2WTK), parallel side to back (e.g.,
MLKL pseudokinase- RIPK3 kinase PDB code 4M69). Kinase domains are
shown in blue and pseudokianses in yellow with the N-terminal as purple
and light yellow respectively.
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5.2 Mapping of the TRIB3-AKT/PKB interaction
The interaction between TRIB3 and AKT was measured with cellular assays
using PCA and computational modeling with Rosetta.

5.2.1 Protein Complementation Assay of AKT/PKB with
TRIB3

The PCA was done in collaboration with Miguel Hernandez Quiles from UMC
Utrecht. To determine how TRIB3 can interact with AKT, we tested several
constructs mapping different regions of the TRIB3 sequence. We also included
the Q84R mutation, since it was described as a gain of function amino acid
substitution being a stronger inhibitor of insulin mediated AKT activation
[285].

Based on this assay, there is no significant difference between the Gln84
and the Arg84 although the interaction was higher with the Arg mutant. The
TRIB3 construct without the N-terminal or PEST domain showed similar val-
ues to the 84Q variant. Interestingly, when we removed the C-terminal tail of
TRIB3 (residues 316-358) the interaction of TRIB3-AKT was reduced dramat-
ically. Even only the C-terminal region of TRIB3 can interact with the full
length of AKT (Figure 5.4). These data suggest that although the two proteins
interact through their kinase and pseudokinase domain, the C-terminal region
of TRIB3 is not only able to interact with AKT but also plays an important
role in the interaction. To further interrogate the role of the C-terminal tail
of TRIB3-AKT interaction, we tested how it was influenced by the phospho-
mimic mutation of Ser 472, a substitution of Asp for Ser to mimic Ser 473
phosphorylation. We found that the phosphomimic decreased the interaction
between the TRIB3 C-terminal region and AKT (Figure 5.4.C).

5.2.2 Computational modeling of TRIB3 C-tail in complex
with AKT1/PKBα

To gain structural insights into the interaction of TRIB3 C-tail with
AKT1/PKBα, we used the Rosetta FlexPepDock ab-initio peptide docking
protocol to model AKT1/PKBα bound to a segment of TRIB3 C-tail. In all
cases, we calculated 100,000 conformations starting from an extended peptide
within 10 Å from the proposed binding site, the groove at the αC helix of AK-
T/PKB. First, we tested the accuracy and precision of the Rosetta FlexPep-
Dock ab-initio protocol by applying it to the C-tail of AKT1/PKBα (residues
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Figure 5.4. TRIB3-AKT interaction. A) Diagram of TRIB3 con-
structs used to map the AKT-TRIB3 interaction. B and C) After the
co-transfection of the indicated NanoBit (AKT-C terminal SmBiT and
TRIB3-N terminal LgBiT) the luciferase activity was measured as described
in section 3.2.10.
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463-SERRPHFPQFSYSAS-477) and the AKT1/PKBα kinase domain (KD;
residues 144-450) (Figure 5.5). For analysis of the various protein-peptide
docking screens, scattering plots were constructed from each model with the
Rosetta score against the RMSD with respect to the reference structure. In
the case of AKT the reference model is the native structure and for TRIB3 is
the best model coming from the biggest cluster within the top 10 lowest energy
structures.

Validation of the protocol

We tested the protocol with the C-tail of AKT as a retrospective case using
the known native structure as the reference model of the interaction (PDB
4GV1). The C-tail of AKT is already crystallized interacting with its own
kinase domain. The hydrophobic motif of AKT1/PKBα, residues from 469-
FPQFSY-474, binds tightly to the αC helix when Ser473 is phosphorylated.
The reference crystallographic structure contains a phosphomimic mutation of
Ser472, which was also included in the C-tail of AKT.

We were able to generate models for the binding of the hydrophobic motif
with residues close to near-native, as the predicted peptide conformation devi-
ates by ≤ 2 Å RMSD. Especially for the Tyr474 which deviates by less than
1 Å in the best model (Figure 5.5.B). In contrast, residues located at the ter-
minal showed a much higher RMSD (e.g., Ser477), given the high flexibility of
the peptide. The best docking model corresponds to the representative model
selected according to the best energy score of the biggest cluster in the top 10
ranked by energy. A successful sampling and ranking are considered when a
near native model is ranked among the ten lowest ranking clusters. We expect
to find the best result within the biggest cluster among the ten lowest. Six out
of the ten best ranked models showed an overall RMSD lower than 2 Å (Figure
5.5.A).

Several protein-peptide docking were carried out between the AKT1/PKBα
KD and the selected region of TRIB3 C-tail in segments of 15 residues (Figure
5.6). The length of the peptide was selected based on the maximum length
used to validate the FlexPepDock protocol. In all the three segments the best
model appeared docked in the groove over the αC helix. Although, according
to the docked models, the last 15 residues of the C-tail seem to be more flexible.
The sampling of structures showed a larger RMSD distribution of the 10 top
structures in comparison with the other two segments, which showed a more
convergence solution to a low energy structure (funnel effect).
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Figure 5.5. Protein-peptide docking structure of AKT KD with its own
C-tail (463-477). A) Rosseta score energy landscape plots where each model
is a blue circle according to its RMSD and its energy score. The top 10
lowest energy clusters created from the top 500 scoring models are shown
as black circles. B) The peptide starting orientation (magenta), the best
model (blue), and the native peptide (green) are shown in complex with
AKT KD (grey). A detailed view of the best result showing the peptide
side chains compared with the crystallized region along with the RMSD of
residues 472-477.
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Figure 5.6. Multiple sequence alignment of C-terminal tail of TRIB1-3.

Our results converged into distinct conformations of the peptide among
the top-scoring models. The best model from the first segment (residues 331-
345) docked the COP1-binding motif in the same region as the hydrophobic
motif located in the C-tail of AKT. The COP1 binding motif contains several
hydrophobic residues (Val335-Val336-Pro337) although it has a very flexible
region following the motif with two glycine residues (Gly339-Leu340-Gly341-
Leu-342). The Val335 appears docked in the same place as the Phe472 from the
C-tail of AKT1/PKBα. Among the main interactions, there are two main chain
hydrogen bonds between Ser216-AKT1 and Asp338-TRIB3 and one between
Lys214-AKT1 and Lue340-TRIB3 (Figure 5.7).

In the best model from the second segment (residues 338-352), the Leu342
appears docked in a hydrophobic groove where the Phe472 from the C-tail of
AKT1/PKBα is also crystallized. Interestingly, the glutamic motif Glu347-
Glu-348-Glu349 from TRIB3 C-tail appeared docked in a region close to a
basic patch (Lys142-His143-Arg144) in AKT1/PKBα (Figure SX). Similar to
the previous model, there are two main chain hydrogen bonds involving the
residues Ser216-AKT1 and Arg346-TRIB3 and another with Lys214-AKT1 and
Glu347 (Figure 5.8).

The best model from the third segment (residues 344-358) also docked the
glutamic motif EEE close to the basic patch of AKT1/PKBα (Figure 5.9).
In this case, there are no hydrophobic interactions with the groove over the
αC helix of AKT1. Also, there are two main chain hydrogen bonds involving
the residues Ser216-AKT1 and Arg346-TRIB3 and another with Lys214-AKT1
and Glu348.
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Figure 5.7. Protein-peptide docking structure of AKT KD with the best
model of TRIB3 331-345. A) Rosseta score energy landscape plots where
each model is a blue circle according to its all atom RMSD and its energy
score. The top 10 lowest energy clusters created from the top 500 scoring
models are shown as black circles. Using as reference the best result from
the biggest cluster among the ten lowest. B) The peptide starting orienta-
tion (magenta) and the best model (blue) are shown in complex with AKT
KD (grey). A detailed view of the best result showing the peptide side
chains interacting with the αC helix of AKT KD.
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Figure 5.8. Protein-peptide docking structure of AKT KD with the best
model of TRIB3 338-352. A) Rosseta score energy landscape plots where
each model is a blue circle according to its all atom RMSD and its energy
score. The top 10 lowest energy clusters created from the top 500 scoring
models are shown as black circles. Using as reference the best result from
the biggest cluster among the ten lowest. B) The peptide starting orienta-
tion (magenta) and the best model (blue) are shown in complex with AKT
KD (grey). A detailed view of the best result showing the peptide side
chains interacting with the αC helix of AKT KD.
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Figure 5.9. Protein-peptide docking structure of AKT KD with the best
model of TRIB3 344-358. A) Rosseta score energy landscape plots where
each model is a blue circle according to its all atom RMSD and its energy
score. The top 10 lowest energy clusters created from the top 500 scoring
models are shown as black circles. Using as reference the best result from
the biggest cluster among the ten lowest. B) The peptide starting orienta-
tion (magenta) and the best model (blue) are shown in complex with AKT
KD (grey). A detailed view of the best result showing the peptide side
chains interacting with the αC helix of AKT KD.
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6 Results
TRIB3-SIAH1

6.1 Background
Despite the diverse roles of TRIB3 in different signaling pathways, there is still
a lack of knowledge on TRIB3 regulation. TRIB3 upregulation is well-known
to be triggered by cellular stress. There is evidence that endoplasmic reticulum
(ER) stress, hypoxia, amino acid deficiency, glucose levels, or free fatty acid ex-
cess are responsible for TRIB3 upregulation [286]. However, post-translational
modifications remain more elusive. For example, high-throughput proteomic
analyses followed by mass-spectrometry confirmed the presence of seven phos-
phorylation sites on TRIB3 protein. Unfortunately, there is no data associ-
ated with a functional significance [287]. Another type of post-translational
modification is ubiquitination, which regulates protein degradation by the 26S
proteasome, a large multi-subunit protease. The ubiquitin-proteasome system
(UPS) is the main proteolytic pathway of eukaryotic cells [288]. Ubiquitination
is a multistep process requiring the activity of three classes of enzymes to trans-
fer the ubiquitin molecule (76 amino acids). Initially, the ubiquitin-activating
enzyme, E1, which activates the ubiquitin molecules and transferred to the
ubiquitin-conjugating enzyme, E2, and is finally transferred to the substrate
that is specifically bound to the ubiquitin-protein ligase, E3. Ubiquitin trans-
fer can be either directly to the E3 bound substrate or through an additional
step E3-ubiquitin. Ubiquitination is a reversible process and ubiquitin can be
removed by deubiquitinating enzymes (DUB) [289]. There are different types
of ubiquitination, monoubiquitination and polyubiquitination, leading to dif-
ferent cellular outcomes. For example, monoubiquitination can regulate DNA
repair and gene expression and polyubiquitination generally targets proteins
for proteasomal degradation [290].

Historically, there have been two major types of E3 according to their struc-
ture and mechanism, the RING (Really Interesting New Gene) and the HECT
(Homologous to the E6AP carboxyl terminus). The RING E3s are charac-
terized by their RING or U-box fold catalytic domain, which promotes direct



120 CHAPTER 6. RESULTS - TRIB3-SIAH1

ubiquitin transfer from an E2 to a substrate. Distinct from the RING, the
HECT forms an intermediate with ubiquitin before the modifier is ligated to
the substrate [291]. The discovery of RING-IBR-RING (RBR) proteins as a
unique family of RING-HECT hybrid E3s defined a third class of ubiquitin
ligases distinct from the RING and HECT types [292].

E3 ligases can recognize their substrate through two different mechanisms,
via short linear sequence or recognition of protein domains [293]. First it was
discovered how ubiquitinated proteins interact with their E3 ligases through
a short linear motif called degron. These binding motifs can suffer post-
translational modifications which can improve the binding, like the Skp1-
Cullin-F-box (SCF) E3 ligase which recognize phosphorylated degrons [293].
The opposite can also be the case, where phosphorylation disrupts the interac-
tion between degron and ubiquitin ligase [294]. Recognition of protein domains
offers a more distinct surface for E3 rather than a linear motif. As in the case of
the ubiquitination of the telomere repeat binding protein TRF1 by the F-box
of SCF [295]. TRIB3 protein turnover is regulated by at least two E3 ligases,
APC/C (anaphase-promoting complex/cyclosome) and SIAH1 (Seven in Ab-
sentia Homolog 1). APC/C is used at the steady-state and SIAH1 response
to genotoxic stress [296, 297]. APC/C is a ubiquitin RING E3 ligase complex
which regulates the progression of the cell cycle. Ohoka et al. found a D-box
motif (XXX), which is a sequence motif recognized by APC/C, being critical
for TRIB3 ubiquitination. APC/C requires one or two WD40-domain proteins,
Cdc20 or Cdh1 as activators. In the case of TRIB3, APC/C-Cdh1 regulates
TRIB3 stability [296]. On the other hand, little is known about how SIAH1
interacts with TRIB3 and forms the E3 ligase complex. SIAH1 was identified
as a novel interactor of TRIB3 through the course of a Yeast two hybrid screen
(Y2H). They also used co-immunoprecipitation to confirm the interaction in
mammalian cells [297]. SIAH (Seven In Absentia Homolog) proteins belong to
the RING E3 ligase family. The seven in absentia (SINA) gene was identified
in Drosophila eye [298]. The human genome contains two SINA homologs,
SIAH1 and SIAH2 and both encode functional proteins. Interestingly, a new
member of the family, SIAH3, was found in a limited subset of cancer cell
lines [299]. The SIAH family of proteins are highly conserved across species
but unlike SIAH1 and SIAH2, SIAH3 lacks a functional RING domain [300].
Human SIAH1 and SIAH2 proteins share 85% amino acids homology, whereas
SIAH3 is 55% homologous. SIAH1 and SIAH2 differ mainly at the N-terminal
where SIAH2 contains 20 residues extra. SIAH1 and SIAH2 proteins are local-
ized in the nucleus and the cytoplasm where they control the degradation of
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Figure 6.1. SIAH1 monomer in complex with Axin1 and sequence align-
ment of SIAH1 crystallized substrates and TRIB3 C-tail segment. A) Rib-
bon diagram showing the SBD and two zinc-finger subdomains. The α
helices and β strands are coloured purple and orange, respectively. The
N- terminal end is labeled, as well as the secondary-structure elements.
Axin1 peptide is shown in blue with the VxP motif residues in red (PDB
id 5WZZ). B) . The residues displayed with an X are modified residues
that do not correspond with standard amino acids. The names refer to
SIAH1 inhibitors (synthetic peptides (PDB codes 4I7B,4I7C,4I7D) and sub-
strates as Calcyclin-binding protein (PDB code 2a25), USP19 (PDB code
4x3g),Axin1 (PDB code 5WZZ) and the proposed sequence of TRIB3.

proteins involved in a myriad of functions like transcriptional regulation, cell
migration and neuronal-associated functions [301]. Because of the high simi-
larity between SIAH1 and SIAH2, they share some ubiquitination substrates
(e.g. ACK1) [302]. Despite this, they also have specific substrates. Indeed, the
expression of SIAH1 and SIAH2 is differentially regulated, SIAH1 is induced
by p53 in response to genomic stress, while SHIA2 is induced by hypoxia and
estrogens [303].

SIAH proteins consist of an N-terminal RING domain, responsible for the
interaction with the E2 conjugating to form the active complex for ubiquitina-
tion, two zinc finger subdomains and a C-terminal substrate binding domain
(SBD) (Figure 6.1). The SBD is primarily responsible for dimer formation
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[304]. The C-terminus can be considered as a substrate- and cofactor interac-
tion domain because it interacts with several proteins [305, 306].

Most of the known SIAH1 binding proteins contains the sequence PxAxVxP
where x is not conserved. The VxP motif was found to make the greatest bind-
ing contributions in some of the SIAH1 substrate, although not in all proteins
[307]. The crystallized degrons peptides adopt an extended conformation, pack-
ing against the β1 and β2 strands of the β sandwich of the SIAH SBD (Figure
X) [308]. SIAH1 can ubiquitinate alone, as in the case of β-catenin or when
it forms an E3 ligase complex [309]. The ubiquitination process is more effi-
cient when SIAH1 forms the complex with SIAH-interacting protein (SIP), the
adaptor protein Skp1 that is common to the SCF complex and the F-box pro-
tein Ebi which binds B-catenin [310]. Therefore, not all SIAH binding proteins
are targeted for degradation. Some proteins act as cofactors helping to recruit
substrates and others can function as negative regulators [311].

Given the importance of regulating TRIB3 protein levels, we decided to
investigate more in detail TRIB3-SIAH1 interaction. In this thesis, TRIB3 is
proposed to bind to the SBD domain. We proposed this binding hypothesis
based on the similarity between a fragment in TRIB3 and a consensus motif
of several crystallized SIAH1 substrates (Figure 6.1.B). The VxP motif is also
found in TRIB3 in a region previously seen to interact with the E3 ligase COP1,
also known as the COP1 binding domain [212]. The COP1 binding motif of
Tribbles is in the C-tail, an expected disordered region.

The main objective of the work described in this chapter was to identify
and characterize the region of TRIB3 interacting with SIAH1. We have inves-
tigated how TRIB3 could interact with SIAH1 by applying a combination of
computational (protein-peptide docking) and biophysical (isothermal titration
calorimetry) techniques.

6.2 TRIB3-SIAH1 interaction study

6.2.1 Computational modeling of TRIB3 328-340 in complex
with SIAH1

To modulate the interaction between TRIB3 and SIAH1, three models of
the SIAH1-TRIB3 328-340 complex were created based on homology mod-
eling using MODELLER. We selected the residues 328 to 340 from TRIB3
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(HLWEAAQVVPDGL) as the region interacting with SIAH1 (Fig X). The
models were selected based on the lowest DOPE score from MODELLER. The
three models are shown in figure X, and as can be seen the variations be-
tween them are minimal except for the N and C-terminal ends. The TRIB3
residues considered as main contributors of the SIAH1 binding domain, valine
335 (V335) and proline 337 (P337), have the same position in all models. The
main interactions stabilizing the SIAH1 SBD and TRIB3 peptide are from the
residues close to the VxP motif. V335 and P337 are both interacting with a
hydrophobic pocket and stabilized by hydrogen bonds between backbone atoms
of nearby residues. In addition, V335 forms hydrogen bonds with the carboxyl
backbone of leucine 166 and the amine backbone of threonine 168 from SIAH1.
Alanine 333, which is also conserved compared with other SIAH1 substrates
(Fig X) forms hydrogen bonds with the carbonyl backbone of valine 164 and
the amine backbone of leucine 166. Several hydrogen bonds are formed be-
tween the main chains of SIAH1 and TRIB3 stabilizing the peptide between
the � sheets of the SBD.

6.2.2 Expression and purification of SIAH1
The gene coding for SIAH1 SBD (residues 91-282) was obtained from a com-
mercial source and inserted into a pET-28 vector for protein expression. The
protein was expressed in E.coli BL21 (DE3) cells and after cell lysis, nickel affin-
ity chromatography was used to purify His-SIAH1 SBD. After elution with 300
mM imidazole, the majority of His-SIAH1 SBD eluted in the first and second
fractions (Figure X). Fractions E1 and E2 from nickel affinity chromatography
were polled together and digested overnight with 3C protease. Eluted SIAH1
SBD was analyzed by size exclusion chromatography (SEC) as described in the
methods section. SIAH1 eluted from the SEC as a symmetric peak (Figure X).
The molecular weight of SIAH1 SBD is 21,571 Da which is consistent with the
weight of the sample by SDS-PAGE (Figure X). The purification yields were
approximately 10 mg per liter of bacterial culture, calculated using a Nan-
oDrop spectrophotometer. The absorbance was adjusted with the extinction
coefficient of the protein that is calculated from the amino acid sequence of
the protein by the ProtParam tool from Expert Protein Analysis System (Ex-
PASy) [263]. Purified protein was aliquoted and snap frozen in liquid nitrogen
for storage at -80 ºC.
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Figure 6.2. Protein-peptide interface of SIAH1 SBD and TRIB3 328-
340 peptide. SIAH1-SBD is shown as a ribbon diagram with the proposed
binding mode of TRIB3 peptides. Superposition of the 3 models obtained
using several templates (complex 1 in yellow, complex 2 in blue and com-
plex 3 in green). Zoom view depicting some of the residues forming the
intermolecular hydrogen bonding (yellow dashed line), where nitrogen and
oxygen atoms are colored blue and red, respectively.
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Figure 6.3. Size exclusion chromatography and SDS-PAGE analysis of
SIAH1 SBD. SIAH1 SBD from cleared bacterial lysate was bound to a
nickel column and eluted with 300 mM imidazole. Fractions were collected
and 5 µl of sample was boiled with 2 X SDS sample buffer and subjected
to electrophoresis on a 10% SDS-PAGE polyacrylamide gel. Samples from
the bacterial lysate (Soluble), the cell pellet (Insoluble), the lysate collected
after the nickel column (flow through), the elution steps (E1, E2, E3, E4),
enzyme cleavage (3C) and fractions A10-A11 were analyzed alongside.

6.2.3 Isothermal Titration Calorimetry of SIAH1 SBD and
TRIB3 328-340

The interaction between SIAH1 SBD and TRIB3 328-340 was measured sev-
eral times at different concentrations. The concentration of SIAH1 SBD was
checked with a Bradfford assay (see section 3.2.4. SIAH1 SBD was dialyzed
in buffer 20 mM Tris at pH 8.0 10 mM NaCl before the ITC experiment, and
the same buffer was used to prepare TRIB3 320-340 sample. The analysis soft-
ware calculates the area of each peak by integrating the power (µcal/s) over
time (s). To analyze the data it is necessary to do a baseline inspection and
subtraction from the raw thermogram. Since we know the protein and pep-
tide concentrations, the integrated heat of each injection is normalized by the
molar concentration of the injected peptide versus the peptide-protein molar
ratio (Figure 6.4). The isothermal titration calorimetry (ITC) analysis did not
produce satisfactory results. According to the ITC titration, there was no heat
change between the two constructs and it was not possible to calculate any
thermodynamic parameter (Figure 6.4).
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Figure 6.4. ITC analysis of TRIB3 328-340 and SIAH SB. A) 1200 µM
TRIB3 328-340 injected into 50 µM SIAH1 SBD. B) 800 µM TRIB3 328-
340 injected into 30 µM SIAH1 SBD. In both cases, the differential heating
power versus time is on the left and the integrated and normalized heat of
reaction versus the molar ratio is on the right. The thermograms are recon-
structed by singular value decomposition (SVD), a computational method
for peak-shape analysis. Yellow circles represent the first injection and heats
excluded from the analysis. Red circles are the transition points defined by
the software (NITPIC) and the green line is the fit to the isotherm.
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7 Discussion

Proteins are essential elements for life, the cell contains thousands of different
proteins carrying out most of the functions and contribution to cellular home-
ostasis. Therefore, understanding their role can facilitate the development of
treatments and disease prevention. The regulation of proteins has been possi-
ble thanks to the progress made on finding drugs (i.e chemical compounds like
small molecules) or biological products (e.g., hormones, vaccines, monoclonal
antibodies, gene therapy) to target them. Unfortunately, not all the proteins
are druggable and only a 4% of the human proteome is estimated to have a
chemical probe [312]. Kinases are among the most targeted proteins in the drug
discovery field. Interestingly, their homologous pseudokinases have remained
much more elusive, probably due to the additional difficulty of targeting a pro-
tein with no catalytic function. However, dysregulation of pseudokinases is
linked to several human pathologies such as cancer, diabetes, cardiovascular or
even neurodegenerative diseases [126]. TRIB pseudokinases (TRIB1, TRIB2,
and TRIB3) have emerged as an interesting target for several diseases and
even resistance to anti-cancer therapy [313, 218]. Here, we sought to target
the pseudokinase TRIB1 with small molecules to modulate its activity. Small
molecules capable of modifying TRIB signaling might have utility as drugs in
cancers or other diseases where TRIBs overexpression contributes to the main-
tenance or development of the disease. Moreover, the discovery of a chemical
probe for this unique family of pseudoenzymes will help to better understand
their activity. TRIB proteins function through two main mechanisms of action.
This family of proteins lacks its catalytic activity and has been shown to serve
as scaffolds. TRIB can interact with substrates using the same mechanism
as kinases, given the similar fold, and control their E3 ligase ubiquitination
thanks to a unique C-terminal tail. The second still needs to be elucidated on
how TRIB regulates other kinases like AKT or MAPK through protein-protein
interactions. In this thesis, we found new TRIB1 binding small molecules using
computational and experimental techniques as described in chapter 4. First,
thanks to the screening of the small molecule library PKIS by Jamieson and
colleagues, we were able to identify diphenylurea as potential scaffold binding
to TRIB1. Thereafter, we built a homology modeling to dock the structure into
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the canonical ATP pocket of TRIB1. Then, we evaluated the binding mode
through MD to obtain a more accurate prediction of the interaction between
the small molecule GW683134A and TRIB1. We can see how the RMSD of
the compound is around 1 Å with a small shift of 2 Å at the beginning of
the simulation which indicates the rearrangement of the small molecule in the
canonical ATP binding pocket of TRIB1 (Figure X). Thanks to that, we could
optimize the pose and be more confident about the proposed binding mode,
albeit taking account of the limits of the technique (e.g simulation time, param-
eterization). The binding of the compound resembles a type-II kinase inhibitor
where the small molecule binds in the canonical ATP pocket in an inactive
state (DFG-out) exploring the hydrophobic back pocket.

TRIB1 is a very particular case for investigating the binding of small
molecules to the ATP binding site. This is because TRIB1 lacks key residues in
the ATP pocket that bind to the nucleotide or cations in canonical kinases. In
TRIB1, the SLE motif replaces the DGF motif and has a unique acidic glutamic
residue (GLU224) preceding the SLE, which stabilizes the autoinhibited state
of TRIB1. This residue is conserved in all TRIB pseudokinases. Moreover, the
catalytic loop lacks the histidine of the HRD motif found in almost all kianses,
which is important for the interaction with the metal ions. In addition, the
hydrophobic back pocket contains several bulky and hydrophobic residues, like
the gatekeeper PHE160, the TYR134, the LEU223 and the ILE131. In most
of the type II inhibitors, there is usually a glutamic acid in the αC helix in-
teracting with the aspartic acid from the DFG motif. Whereas in TRIB1 both
residues are replaced by an isoleucine (ILE131) in the αC helix and the serine
(SER225) from the SLE motif.

To find TRIB1 binding small molecules, we selected a library of com-
pounds with similar scaffolds with respect to diphenyl urea to filter through
virtual screening. We based the interaction on the proposed binding mode
of GW683134A obtained through MD. Three specific pharmacophores were
created to help the identification of new binding small molecules, two hydro-
gen bond donors (side chain of SER225 and the main chain amine group of
ASP163) and one hydrogen bond acceptor (carbonyl group of LEU223). We
selected compounds able to form a hydrogen bond with at least two of the three
pharmacophores. The idea behind this selection is to find molecules able to
interact with the SLE motif and/or the hinge region (ASP163) to have certain
flexibility. As a result, we selected 41 compounds to test in a thermal shift as-
say, DSF (Figure X). Given the lack of TRIBs catalytic activity, DSF allows us
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to measure thermal stabilization of compounds against TRIB1 and determine
ligand binding abilities. Usually, if a compound can increase protein stability
by at least 2 degrees is considered a positive hit. To further discriminate be-
tween the potential hits, the compounds were tested at several concentrations
and in the presence or absence of C/EBPα. When TRIB1 binds C/EBPα,
there is a conformational change on the canonical ATP binding pocket, and we
wanted to inspect if any of the compounds have a TRIB1 conformational pref-
erence. Unfortunately, none of the compounds seems to have a choice of con-
formation but 10 out of 41 compounds were able to increase TRIB by at least
2 C (Figure X). DSF has the limitations of being a temperature dependence
technique, which could interfere with the conformational changes of TRIB1
and therefore the binding of the small molecules. It is therefore highly impor-
tant to determine that the thermal stabilization is dependent on compound
concentration and not to artifacts. Consequently, we performed dose-response
experiments to analyze the melting curves and to discard compounds not able
to stabilize the protein at lower concentrations. The ideal melting curve is flat
before the proteins start to unfold and then it has a regular sigmoidal shape
for the unfolding. The most common issues are high background fluorescence
and multiple transitions due to the temperature dependence technique giving
unusually shaped curves.

That is why we tested the best compounds with SPR as an orthologous
assay to validate their interaction and quantify their binding affinity. One of the
most important advantages of SPR is the possibility to obtain thermodynamic
(Kd) and kinetic (kon and koff ) details of the binding event. To set-up the
experiment, we used as controls the compounds from the DSF and the C/EBPα
peptide. Moreover, trying to predict the binding mode of the compounds, we
tested two TRIB1 variants with one mutation in the canonical ATP binding
pocket, D163I and S225F separately. Both mutations were selected based on
their localization and potential interaction with the proposed small molecules.
In addition, the mutations were computationally predicted to not compromise
the overall folding of TRIB1. When mutating an amino acid is important
to discriminate that the effect produced is not affecting the overall protein
folding. According to Mutatex, none of the selected mutations will affect the
protein stability. Of course, we cannot ignore that those mutations will affect
the conformational state of TRIB1 and therefore we expected to interfere with
the binding of the small molecules but not C/EBPα since they are located
at the ATP pocket. As shown in chapter 4, the C/EBPα peptide produced
an unexpected sensorgram of negative values but the shape of the sensorgram
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showed a normal trend with a progressive response during the injection of the
peptide and a slow dissociation after the injection (Figure X). A dose dependent
negative SPR signal has been proposed before to be predictive of the allosteric
structural changes undergone during protein ligand interaction [314, 315]. All
of this is in accordance with the crystallographic information of TRIB1 bound
to C/EBPα and how there is a marked conformational change upon substrate
binding. As expected, none of the TRIB1 mutants affected the binding of
C/EBPα since they are not located at the binding region. Therefore, we could
discard that the mutations affect the protein stability and the overall folding
of TRIB1.

The SPR screening of the filtered compounds from DSF validated B1 as
the best compound with an affinity of approximately 30 �M. In addition, we
tested some B1 analogs and discovered some selectivity over the substituents
predicted to interact at the TRIB1 hydrophobic back pocket. The introduction
of a methoxy at the ortho or para-substituent showed a decreased or complete
abolition of binding affinity. This is in accordance with the proposed binding
mode and how substituents at those positions cannot bind due to clashes with
residues in the αC helix. We also tested some variants on the proposed solvent
exposed region of the compounds, which could help in the design of more po-
tent and specific hits. Interestingly, no signal was recorded when some analogs
were tested which classified them as inactive analogs and negative controls.
Unfortunately, none of the mutations gave significant difference which could
be explained by the high structural flexibility of TRIB1, and the high plastic-
ity observed in the canonical ATP pocket. Conformational dynamics of kinases
are well known thanks to all the structural information obtained through X-ray
or NMR experiments over the last decades. Although there is less structural
evidence of the pseudokinase flexibility, still there are some examples where
we can see this behavior. For example, it was described the structural and dy-
namic similarities of the pseudokinase domains from the Wnt-binding receptor
tyrosine kinase with respect to canonical kinases [269]. Moreover, they identi-
fied type II inhibitors for ROR1 and even characterized the crystal structure.
ROR1 is a pseudokinase that does not bind nucleotides or cations although
it keeps the DFG motif. Other pseudokinases with unusual DFG motif but
able to bind ATP have been also reported to interact with small molecules,
like CASK as type I inhibitors (GFG-in) and STRADα as type II (GLR-out)
[160, 195].

Although kinases are one of the most targeted proteins in drug discovery,
many of the kinase inhibitors are promiscuous and often inhibit multiple ki-
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nases in key signaling pathways. We can find examples of very promiscuous
compounds targeting a substantial fraction of kinases as dasatinib or sunitinib
[316]. However, in some cases inhibiting a high number of kinases resulted
in improved antitumor activity. Unfortunately, the off targets usually result
in toxicity which limits the dose and prevents the original target. That is
why the characterization of kinase drug selectivity has become an important
prerequisite to develop a kinase inhibitor [317].

Given the high similarity of kinases and pseudokinases it will be interesting
to evaluate specificity between these families. Hence, we tested the specificity of
the best hit, B1.2 against a panel of serine/threonine tyrosine, and lipid kinase
from the University of Dundee (Figure X.) The analog B1.2 showed a greater
binding affinity for TRIB1 with a Kd of 10 µM. Even though the panel contains
140 kinases from the 555 possible, only 11 kinases were inhibited at least more
than 25% when tested with the compound B1.2 at 10 µM. These results offer
a confident starting point to develop specific small molecules targeting TRIB1.
Interestingly, the most inhibited kinase CHK2 has been already crystallized
with a diphenylurea based small molecule. Of course, data from a single small
panel is not enough for a robust measure of selectivity but it can be seen as a
first, encouraging development. The diphenyl urea scaffold is very flexible on
the binding pocket of kinases, being an interesting chemical moiety to explore
for non-catalytic enzymes. Additionally, given the evidence that pseudokinases
can interact with small molecules in a similar way to normal kinases, it will
be intriguing to evaluate the potential side effects of kinases inhibitors over
pseudokinases. Notably, the scaffolding function of kinases and pseudokinases
could massively influence the clinical efficacy and even resistance of kinase
inhibitor drugs.

Overall, these results showed that TRIB1 can bind small molecules and of-
fers the possibility of designing a potent and selective TRIB1 ligand. Starting
with an undruggable target and being able to find small molecules interacting
with it should be encouraged scaling up chemical probes for the human pro-
teome. Moreover, the development of a selective TRIB1 ligand will help to
elucidate the mechanism of how this family of pseudokinases work and poten-
tially lead to new treatments. The discovery of ligands for scaffold proteins
could generate new strategies for modulating proteins. The promising power
of targeting pseudoenzymes by modulating PPIs open an interesting field of
possibilities where this approach can be applied. As in the case of PROTACs
(Proteolysis Targeting Chimera) or molecular glues, which hijack E3 ligase to
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induce ubiquitination and subsequent proteasomal degradation of a target pro-
tein. Small molecules able to induce target degradation is just the tip of the
iceberg of the new chemical modalities that are about to come. For example,
other post-translational modifications like phosphorylation have been shown to
be feasible (e.g. PhosTAC) and will lead the way for new chemical modalities
with huge potential [318].

How TRIB regulates other kinases like AKT/PKB, or MAPK through PPIs
still need to be elucidated. As described in chapter 5, TRIB3 can regulate AK-
T/PKB phosphorylation in the liver although the specific mechanism is still
unknown. The αC helix of AKT/PKB has been already proposed to interact
with TRIB3 using Co-IP and SPR [ref]. We hypothesize that the C-terminal
tail of TRIB3 can interact with the N-lobe of AKT and therefore modulate its
activity. In collaboration with Prof. Eric Kalkhoven from UMC in Utrecht we
tried to elucidate how these two proteins interact. The Protein Complementa-
tion Assay (PCA) was used to verify experimentally the interaction of TRIB3
and AKT1. Since PPIs are very context dependent, the PCA allows us to mea-
sure the interaction between protein complexes in an endogenous background.
One of the disadvantages of the technique is to be sure that the interaction is
driven by the proteins and not the presence of additional partners. Bearing
that in mind, we selected as a reporter system of the interaction an engineered
luciferase composed of a large bit (LgBit, 17.6 kDa) and a small bit (SmBit, 11
amino acids). The LgBit and SmBit are fused to our protein of interests (POIs)
and when expressed, the interaction of the two POIs form a functional enzyme
that generates a signal. The luciferase subunits interact very weakly (Kd =
190 µM) so the driven force of the interaction only occurs upon the binding
of the POIs. The interaction of the LgBit and SmBit is reversible, therefore
the system can be used to detect more transient or rapid dissociating proteins.
One advantage of this technique is to measure the interaction inside the cell
and even real-time analysis of protein interaction dynamics. In contrast, this
assay needs time to optimize depending on the POIs to obtain a strong and
reliable signal.

Although the interaction between TRIB3 and AKT/PKB is well known
there is a lot of controversy on how these two proteins interact. TRIB3 has
been shown to regulate the phosphorylation of Ser473 in AKT1/PKBα. That is
why, we have been trying to elucidate the specific mechanism on how these two
proteins can interact. First, we measured the interaction between full length
AKT1/PKBα and TRIB3 including the kinase and pseudokinase domain re-
spectively. We assume the main interaction of these two proteins is driven by
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the kinase and pseudokinase domain, where the C-tail of TRIB3 is regulating
the phosphorylation of AKT1/PKBα. To test our hypothesis, we measured
the interaction of only the C-tail of TRIB3 in presence of AKT1 with and
without the phosphomimic at Ser473. The mutation of Ser473 to Asp has been
suggested to be a phospho-mimetic in Akt1 [319]. Our results showed how the
phosphomimic Asp473 abolishes the interaction of the C-tail of TRIB3 with
AKT. When Ser473 is phosphorylated the AKT1 C-terminal region interacts
with the N lobe of the kinase domain, more specifically with the αC helix. Con-
sistent with this idea, the interaction of TRIB3 with the AKT1 αC helix has
been already validated through SPR [236]. These results indicate that the C-
tail of TRIB3 could interact in the same region of the AKT C-tail when Ser473
is not phosphorylated. Then, a molecular docking study was carried out em-
ploying FlexPepDock from Rosetta to evaluate the interaction between TRIB3
and AKT/PKB. The aim is to visualize and analyze the interactions among
the C-tail of TRIB3 and AKT. We decided to use the last part of the C-tail of
TRIB3 (residues 331-358) since it is already known to bind other proteins (e.g
E3 ligases) and is very flexible. Moreover, we already tested some mutations at
the PxxP motif (321Pro-322Leu-323Ala-324Pro) in the C-terminal of TRIB3
without affecting the interaction with AKT1. The FlexPepDock ab-initio pro-
tocol assumes that the peptide is located at the vicinity of the binding site but
does not assume anything about the initial peptide backbone conformation.
We decided to split the last 28 residues of the C-tail of TRIB3 based on the
limitations to successfully calculate larger peptides due to a large number of
peptide conformations and degrees of freedom that need to be sampled. In-
deed, the FlexPepDock protocol was benchmarked with peptides length varies
between 5 and 13 amino acids, with up to 52 rotatable bonds [261].

From the three fragments of the C-tail of TRIB3, we found that the lowest
models from the residues 338-352 converged more than the other two frag-
ments. Among the 10 lowest energy clusters we found very similar structures
which could correlate to a more precise binding mode. Interestingly, the COP1
binding motif (residues 334-338) showed a plausible binding mode but with
less convergence in comparison with the residues 338-352. Moreover, there
is a small motif of three glutamic acids (EEE) between the residues 338-352,
which overlap among the lowest structures. That motif is also present in the
residues 344-358 and the best model, the biggest cluster among the lowest
models, has that motif with a very similar binding mode. An explanation is
that the negatively charged groups form strong electrostatic interactions with
a conserved basic region in the AKT N lobe. There is a basic patch of linker
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residues (Lys142-His143-Arg144) in AKT where the interaction of phosphory-
lated Ser473 appears to help displace the AKT PH domain thereby activating
AKT1 [275]. It is important to notice that due to the complexity of the system
under study, we did not include the PH domain of AKT1/PKBα in the cal-
culations. There is no crystal structure of full-length AKT without allosteric
inhibitors or active AKT including the PH domain.

Our experimental and computational analysis help to explain the complex
mechanism of interaction between these two proteins. Indeed, suggest a new
potential role of TRIB3 C-tail that will lead to a better understanding of this
pseudoenzyme and point to new questions. From a future perspective, it will
be interesting to test mutations on the basic patch of AKT1 and how that could
interfere with the scaffolding role of TRIBs. Moreover, the complementation
reporter assay will allow us to screen small molecules or peptides to modulate
the interaction and later the activity of AKT1.

TRIB3 interacts with the E3 ligase SIAH1, although the specific domains
or regions are still undetermined. In chapter 6, we proposed that TRIB3 binds
the Substrate Binding Domain (SBD) of SIAH1. This hypothesis is based on
the similarity between a fragment in TRIB3 and a consensus motif of several
crystallized SIAH1 inhibitors (synthetic peptides (PDB ids 4I7B, 4I7C, 4I7D)
and protein (Calcyclin-binding protein (PDB id 2A25), USP19 (PDB id 4X3G),
Axin1 (PDB id 5WZZ)) where all of them conserve a VxP binding motif. This
motif is also present in the C-tail of TRIB3.

The homology modeling of SIAH1-TRIB3 328-340 was performed using
several templates to address the flexibility of the SBD of SIAH1. The variations
between the models are on the terminal parts of the peptide (residues HIS-328
and TRP-330 on the N-terminal part or the ASP-338, GLY-339, and LEU-
340 on the C-terminal part of the TRIB3 fragment). The TRIB3 residues
considered as main contributors of the SIAH1 binding domain, VAL-335, and
PRO-337, have the same position in all the models. This is expected as the
valine and proline are part of the binding motif, and the terminal parts of
the peptides are more flexible. Unfortunately, when measuring heat transfer
during ITC experiments of SIAH1 and TRIB3 328-240, we could not obtain
any heat exchange during the experiments. We tried several conditions, taking
as reference the ITC between SIAH1 and AXIN1 [265] but we could not get
satisfactory results. We even tried to co-crystallize the TRIB3 peptide with the
SIAH1 SBD using several conditions, mostly based on the crystals of SIAH1
SBD. One reason for the lack of interaction could be the size of the peptide since
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the AXIN1 peptide used in a crystal structure is longer (20 residues) than the
TRIB3 peptide tested (13 residues). Of course, we do not know how the isolated
peptide will fold, and maybe the pseudokinase domain of TRIB3 is necessary
for the interaction. The C-tail of TRIBs is very flexible to not even be able to
have a determined 3D structure according to the X-ray structures of TRIB1.
This will be in agreement with the dynamic and flexibility to interact with
different proteins and have distinctive functions. Another important aspect is
that the interaction of TRIB3 with SIAH1 was identified with Co-IP, which
could detect complexes of several proteins rather than a binary interaction
[297]. Therefore, it will be interesting to test the full length of TRIB3 along
with other experimental assays (e.g., cell-based assay as PCA) as an alternative
approach. TRIBs are very dynamic and complex to study
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8 Conclusions

Pseudokinases have emerged as a new target in the field of drug discovery
since it was identified that non enzymatic proteins can regulate and control
normal physiology and disease. In this thesis I have described the work that I
have done during my PhD with the challenge of finding small molecules for an
undruggable target and shed light on their scaffolding roles.

We have been able to discover new small molecules interacting with TRIB1.
We have used several techniques, showing the great advantage of computational
methods to increase our possibilities of success. Moreover, we validated our
assumptions using two biophysical assays. First, we applied DSF to find new
compounds so later we confirmed with an orthogonal technique, SPR. We have
calculated the Kd and tested several small molecules variants to verify our
proposed binding mode. When developing small molecules for kinases it is
important to always test off-targets due to their high similarity within the
family. That is why we tested our best compound with a small panel of kinases
to evaluate its specificity. Surprisingly, the compound seems to inhibit very
few kinases. In this way, our findings lead the way towards a better strategy
for the development of TRIBs ligands. This will lead to a better understanding
of TRIBs function and potentially to even develop new treatments.

In addition, we have studied more in detail two interesting PPIs related
to TRIB3. Since the interaction of TRIB3 with AKT1/PKBα was found in
2003, the interest to this family of proteins increased considerably. However,
the specific mechanism of how TRIB3 can regulate the activity of AKT re-
mains unknown. Here, we have proposed a potential binding mode between
the TRIB3 C-tail and AKT1/PKBα which explains how this pseudokinase
regulates AKT phosphorylation. On the other hand, the interaction between
SIAH1 and TRIB3 was not possible to confirm but it will help in the design of
future assays to validate TRIB3 interactions.

The contributions presented in this thesis have been possible thanks to
fruitful collaborations. The challenges that a potential undruggable target
offers are a great framework for interdisciplinary fields such as computational



138 CHAPTER 8. CONCLUSIONS

and experimental to transform those targets from difficult to drug into expected
to be drugged.
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Appendix

Appendix Supplementary Information
Table A1. Classes of Pseudokinases. Table updated and modified from [135]. The * indi-
cates that the crystal structure contains a ligand. PDBid color correspond to one organism:
black-homo sapiens, red-rattus novergicus or mus musculus, yellow-drosophila melanogaster,
orange- Chaetomium thermophilum, green-saccharomyces cerebisiae, purple-sus scrof



166 APPENDIX

Pseudokinase Degrader glycine rich loop DFG motif VAIK motif HRD motif Crystal structures NMR Crystal Ligands
Class 1

BIR2 (A.thaliana) Y Y Y N 4L68 - -
BUBR1 Y Y Y Y 6JKK,6JKM - -
GCN2 Y Y N N - - -
IRAK3 N Y Y N 6RUU, 6ZIW - -

MviN (M.tuberculosis) Y N N N 3OTV, 3OUK,
3OUN, 3UQC - -

NRBP1 Y N N N - - -
Pragmin Y N Y Y 5VE6, 6EWX - -
PTK7 N N Y Y 6VG3 - -

ROP8 (T.gondii) Y N N N 3BYV - -

ROR1 N Y Y Y 6TU9*, 6BA5,
6BAN 5Z55 Y (0LI, Ponatinib)

ROR2 N Y Y Y
3ZZW, 4GT4,
6OSH, 6OSN,

6OSV
- -

RYK N Y Y Y 6TUA - -
SCYL1 Y N N N - - -
STK40 Y N Y Y 5L2Q - -
TITIN N N Y Y 4JNW 1TKI -

TRIB1 Y N Y Y
5CEK, 5CEM,
6DC0, 5IGO,

5IGQ
- -

VRK3 Y N Y N 2JII - -
Class2

CASK N N Y Y
3C0G,3C0H*,
3C0I*, 3MFR*,

6LNM
- Y (3’-AMP, 5’-AMP, ANP**)

EPHB6 N N N N - - -

FAM20A Y Y Y Y 5WRR, 5WRS*,
5YH2*, 5YH3* - Y (ATP)

MLKL Y N Y N

4M67, 4MWI,
5KNJ*, 5KO1*,

6BWK(T357E/S358E),
6LK6(T357AS358A),

6O5Z*

- Y (6UX, 6UY, LN4)

SRATDalpha N N N N 2WTK*, 3GNI* - Y (ANP, ATP)
TRIB2 Y N Y Y - - -
TRIB3 Y N Y Y - - -
ULK4 N N N Y 6TSZ*, 6U5L* - Y (AGS, 3RJ)
Class 3
PEAK1 Y N Y Y 6BHC - -

ROP2 (T.gondii) Y N N Y 2W1Z,3DZO - -
Class4 - -
ADCK3 Y Y Y Y 4PED, 5I35* - Y(ANP)
ANP-A N Y Y N - - -

BSK8 (A.thaliana) Y N Y N 4I92, 4I93, 4I94* - Y(ANP)

HER3 N Y Y N
3KEX*,3LMG*,

4RIW*, 4RIX (Q790R)*,
4RIY(E909G)*, 6OP9*

- Y(ANP, ADP, DB8 (Bosutinib))

HSER (GUCY2C) Y Y Y N - - -

ILK Y Y Y N 3KMU,3KMW*,
3REP*, 6MIB(L207W) - Y (ATP)

IRAK2 Y N Y N 3MOP - -
JAK1 JH2 N Y Y N 4L00, 4L01 (V685F) - -

JAK2 JH2 N Y Y N

4FVP, 4FVQ*,
4FVR*,

5I4N (E596A/V617F)*,
5USZ*, 5UT0*,
5UT1*, 5UT2*,
5UT3*, 5UT4*,
5UT5*, 5UT6*,
5WIJ*, 5WIK*,
5WIL*, 5WIM*,
5WIN*, 6BRW*,
6BS0*, 6BSS*,
6D2I (V617F)*,
6G3C (V617F)*,
6M9H*, 6OAV*,
6OBB*, 6OBF*,
6OBL*, 6OCC*,

6XJK*

-

Y(ATP, SKE(JNJ-7706621),
7DZ (BI-D1870),
3YT(PRT062607),

IK1 (IKK-2 Inhibitor VI),
DQX (NVP-BSK805),
2HB (GLPG0634),

8MY (diaminopyrimidine),
AQG (NU6140),
584 (BI-D1870),
YDJ (AZD7762),
35R (AT9283),

5BS (XMU-MP-1),
E4V, 4SP (NU6102),
EKT, J9D, M3A,

M3Y, M4G, M4P,M57,
V4D

KSR1 N Y N Y
7JUW*, 7JUX*,
7JUY*, 7JUZ*,
7JV0*, 7JV1*

- Y (ANP, QOM (trametinib)***,
VKG (APS-9-95-1) ***

KSR2 N Y N Y
2Y4I*, 5KKR*,
7JUQ*, 7JUR*,
7JUS*, 7JUT*,
7JUU*, 7JUV*

-
Y(ATP , 6U7 ( APS-2-79),
ADP, QOM (trametinib)***,

VKG (APS-9-95-1) ***

PAN3 Y N Y N
4BWK*,

4BWX*(7 mutations**),
4CZY*,4BWP*, 4CYI*,

4CYJ*, 4XR7
- Y (AGS, AN2, ATP

POMK Y Y N Y 5GZ8, 5GZ9*,
5GZA(D.rerio)* - Y(ANP, ADP)

RNase L Y Y Y Y
4OAU*, 4OAV*,
4O1O, 4O1P*,
6M11*,6M12*,

6M13*
- Y (ADP, ACP, ANP, B49(Sunitinib),

J60 (SU11652), BWC(Toceranib)

ROP5B (T.gondii) N Y Y N 3Q5Z, 3Q60*,
4LV5* - Y (ATP, ADP)

STKLD1 N Y Y N - - -

TYK2 JH2 N Y Y N

3ZON*, 4OLI*,
4WOV*, 5C01,
5C03*, 5TKD*,
6NSL*, 6NZE*,
6NZF*, 6NZH*,
6NZP*, 6NZQ*,
6NZR*, 7AX4*,
7K7O*, 7K7Q*

-

Y (IK1, 2TT,
3SM (BMS-066), AGS,
7GL, KZJ, L8Y, L91,

L9A, LB7, LB4,
LAJ, NM7, VZJ,

VZG

Table A1. Classes of pseudokinases.
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Figure A.1. RMSF of residues at 5 Åfrom GW683134A in the canonical
ATP binding pocket of TRIB1.

Figure A.2. Heatmap of the mutational scan corresponding to residues
at 5 Åfrom GW683134A in the canonical ATP binding pocket.
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Figure A.3. Size exclusion chromatography and SDS-PAGE analysis of
TRIB1∆Ct (84-343).

Figure A.4. Size exclusion chromatography and SDS-PAGE analysis of
TRIB1 (84-372)-D163I
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Figure A.5. Size exclusion chromatography and SDS-PAGE analysis of
TRIB1 (84-372)-S225F

Figure A.6. Matrix-assisted Laser Desorption/Ionization (MALDI) of
TRIB1 (84-372) (33 KDa).
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Figure A.7. Matrix-assisted Laser Desorption/Ionization (MALDI) of
TRIB1 (84-372)-D163I (33 KDa).

Figure A.8. Matrix-assisted Laser Desorption/Ionization (MALDI) of
TRIB1 (84-372)-S225F (33 KDa).



APPENDIX SUPPLEMENTARY INFORMATION 171

Figure A.9. Chemical structure of the small molecules filtered through
the in silico workflow and purchased at MOLPORT. Compounds A1 to
B10.
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Figure A.9. (Continued). Chemical structure of the small
molecules filtered through the in silico workflow and purchased at MOL-
PORT.Compounds B11 to D2.



APPENDIX SUPPLEMENTARY INFORMATION 173

Compound SCORE
SCORE.

INTER

SCORE.

INTER.VDW

SCORE.

INTER.norm

SCORE.

INTRA

SCORE.

INTRA.norm

SCORE.

RESTR

SCORE.

RESTR.norm

SCORE.

norm
B4 -59,60 -39,46 -42,49 -1,10 3,38 0,09 0,97 0,03 -1,66
B3 -51,93 -39,22 -39,09 -1,06 3,52 0,10 0,93 0,03 -1,40
B5 -58,88 -39,07 -42,80 -1,06 1,79 0,05 0,99 0,03 -1,59
B6 -57,46 -38,21 -37,44 -1,01 2,51 0,07 0,93 0,02 -1,51
B2 -58,48 -38,10 -42,36 -1,00 1,97 0,05 0,99 0,03 -1,54
C3 -54,15 -37,32 -39,71 -1,20 3,87 0,12 0,99 0,03 -1,75
D2 -48,68 -36,97 -34,30 -1,16 8,16 0,26 0,77 0,02 -1,52
A10 -55,86 -36,70 -40,05 -1,22 3,48 0,12 0,79 0,03 -1,86
A6 -54,72 -36,17 -41,43 -1,13 4,75 0,15 0,82 0,03 -1,71
B10 -57,02 -35,94 -39,45 -1,16 1,59 0,05 0,96 0,03 -1,84
C2 -51,45 -35,91 -41,93 -1,20 6,80 0,23 0,84 0,03 -1,72
B13 -49,74 -35,89 -42,62 -1,20 7,17 0,24 0,76 0,03 -1,66
A13 -56,15 -35,64 -41,22 -1,15 0,10 0,00 0,99 0,03 -1,81
C10 -52,55 -35,61 -37,59 -1,42 6,32 0,25 0,96 0,04 -2,10
C11 -49,97 -35,57 -37,31 -1,32 8,42 0,31 0,83 0,03 -1,85
A5 -52,91 -35,36 -40,12 -1,11 4,97 0,16 0,80 0,03 -1,65
A9 -53,74 -35,33 -42,14 -1,01 5,89 0,17 0,87 0,02 -1,54
A8 -49,62 -35,30 -42,19 -1,04 5,38 0,16 0,97 0,03 -1,46
A7 -53,61 -35,23 -40,86 -1,10 4,72 0,15 0,97 0,03 -1,68
D1 -50,68 -35,22 -37,10 -1,30 5,44 0,20 0,89 0,03 -1,88
A12 -52,57 -35,04 -38,08 -1,06 5,90 0,18 0,88 0,03 -1,59
C9 -50,13 -34,84 -35,10 -1,34 6,45 0,25 0,77 0,03 -1,93
A4 -54,47 -34,72 -37,44 -1,24 3,53 0,13 0,81 0,03 -1,95
C7 -51,05 -34,67 -33,83 -1,28 6,53 0,24 0,96 0,04 -1,89
A1 -54,52 -34,65 -41,94 -1,12 2,18 0,07 0,98 0,03 -1,76
C5 -56,99 -34,58 -42,58 -1,08 0,87 0,03 0,86 0,03 -1,78
A2 -57,22 -34,51 -39,98 -1,15 1,40 0,05 0,95 0,03 -1,91
C4 -51,96 -34,46 -40,25 -1,11 4,18 0,13 0,96 0,03 -1,68
A3 -54,39 -34,29 -38,12 -1,27 3,86 0,14 0,93 0,03 -2,01
C1 -47,45 -34,26 -40,90 -1,11 5,12 0,17 0,87 0,03 -1,53
B11 -53,96 -34,25 -39,37 -1,18 3,14 0,11 0,89 0,03 -1,86
B9 -50,51 -34,18 -37,42 -1,14 5,48 0,18 0,83 0,03 -1,68
C13 -51,93 -34,15 -36,14 -1,26 5,40 0,20 0,99 0,04 -1,92
C6 -46,22 -34,14 -32,29 -1,14 4,78 0,16 0,97 0,03 -1,54
C8 -46,96 -34,09 -36,59 -1,18 10,37 0,36 0,94 0,03 -1,62
B12 -52,87 -34,07 -38,65 -1,17 3,16 0,11 0,84 0,03 -1,82
B7 -47,75 -33,99 -33,42 -1,17 8,83 0,30 0,76 0,03 -1,65
C12 -51,07 -33,93 -34,62 -1,41 7,22 0,30 0,92 0,04 -2,13
B1 -50,17 -33,83 -38,53 -1,03 5,09 0,15 0,72 0,02 -1,52
A11 -55,55 -33,82 -39,02 -1,02 1,10 0,03 0,98 0,03 -1,68
B8 -49,65 -33,79 -33,45 -1,09 6,92 0,22 0,81 0,03 -1,60

Table A2. Docking scores of DSF selected compounds
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Figure A.10. Compound B1.2 (grey) in the canonical ATP binding pocket
of TRIB1(orange) and a 2D interaction diagram by PoseView. [270]

Table A3. Kd (dissociation constant), Rmax (maximum response) and χ2

(Chi square) of D1, A12, B5, B7, B6, B2, B4 and B3.
TRIB1 (84-372)

Compound Kd (�M) Rmax (RU) χ2

D1 - - -
A12 105.6 24.35 2.15
B5 - - -
B7 287.3 26.99 2.86
B6 342.4 35.5 0.522
B2 2216 145 0.466
B4 - - -
B3 322 37 0.991
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Figure A.11. Sensorgrams (left) and corresponding plot of steady state
response against concentration (right) for determination of binding affinity
of compound D1, A12, B5 against TRIB1 (84-372). Values shown are from
experimental duplicates and sensorgrams are plotted after removing spikes
due to buffer changes.
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Figure A.12. Sensorgrams (left) and corresponding plot of steady state
response against concentration (right) for determination of binding affinity
of compound B7, B6, and B2 against TRIB1 (84-372). Values shown are
from experimental duplicates and sensorgrams are plotted after removing
spikes due to buffer changes.
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Figure A.13. Sensorgrams (left) and corresponding plot of steady state
response against concentration (right) for determination of binding affinity
of compound B4 and B3 against TRIB1 (84-372). Values shown are from
experimental duplicates and sensorgrams are plotted after removing spikes
due to buffer changes.
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Figure A.14. Chemical structure of GW68462B and GSK-300014 from
PKIS. Both compounds were used in the DSF from [211] giving a ∆Tm of
approximately 2 ºC.
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Table A4. List of all kinases tested with B1.2 at 10 µM. The percentage of activity
was calculated as the mean of two experiments. SD: Standard deviation.

Kinase Mean % activity SD
ABL 101 12

AMPK (hum) 95 4
ASK1 113 8

Aurora A 108 4
Aurora B 115 13
BRK 104 1

BRSK1 96 11
BRSK2 97 10
BTK 80 26

CAMK1 104 9
CAMKKb 91 10

CDK2-Cyclin A 124 31
CDK9-Cyclin T1 138 50

CHK1 102 0
CHK2 17 4
CK1�2 118 2
CK1� 90 26
CK2 92 1
CLK2 87 4
CSK 122 28

DAPK1 125 5
DDR2 69 8

DYRK1A 68 7
DYRK2 95 2
DYRK3 79 17
EF2K 94 9

EIF2AK3 124 6
EPH-A2 99 22
EPH-A4 113 13
EPH-B1 96 31
EPH-B2 42 8
EPH-B3 53 15
EPH-B4 113 27
ERK1 108 0
ERK2 88 4
ERK5 112 5
ERK8 99 11
FGF-R1 103 16
GCK 69 10
GSK3b 109 21
HER4 83 2
HIPK1 118 31
HIPK2 109 12
HIPK3 84 8
IGF-1R 130 24
IKKb 100 7
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Table A4. (Continued).
Kinase Mean % activity SD
IKKe 94 22
IR 82 21

IRAK1 110 8
IRAK4 98 4
IRR 125 19
JAK3 106 3
JNK1 88 4
JNK2 92 10
JNK3 100 29
Lck 105 11

LKB1 96 2
MAP4K3 81 2
MAP4K5 91 4

MAPKAP-K2 127 9
MAPKAP-K3 94 20

MARK1 87 3
MARK2 85 4
MARK3 85 9
MARK4 108 13
MEKK1 84 6
MELK 105 24
MINK1 120 9
MKK1 109 13
MKK2 82 7
MKK6 99 1
MLK1 81 3
MLK3 108 2
MNK1 108 15
MNK2 113 9
MPSK1 95 2
MSK1 113 17
MST2 93 10
MST3 101 13
MST4 86 0
NEK2a 105 19
NEK6 107 15
NUAK1 70 8
OSR1 96 1

p38a MAPK 81 32
p38b MAPK 105 2
p38d MAPK 56 5
p38g MAPK 64 13

PAK2 89 8
PAK4 115 4
PAK5 80 2
PAK6 112 7

PDGFRA 85 4
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Table A4. (Continued).
Kinase Mean % activity SD
PDK1 104 31
PHK 122 25
PIM1 87 12
PIM2 106 6
PIM3 83 5
PINK 90 0
PKA 109 8
PKBa 100 7
PKBb 114 16
PKCa 116 11
PKCz 110 2
PKC� 107 12
PKD1 100 21
PLK1 81 7
PRAK 99 27
PRK2 102 4
RIPK2 91 2
ROCK 2 103 28
RSK1 95 41
RSK2 117 3
S6K1 120 13
SGK1 87 13
SIK2 106 1
SIK3 108 0

SmMLCK 98 14
Src 79 10

SRPK1 106 15
STK33 110 2
SYK 101 23
TAK1 118 19
TAO1 102 14
TBK1 128 22
TESK1 128 32
TGFBR1 90 37
TIE2 106 11
TLK1 98 9
TrkA 57 6
TSSK1 94 1
TTBK1 83 6
TTBK2 103 1
TTK 96 5
ULK1 104 4
ULK2 121 18

VEG-FR 82 16
WNK1 130 3
YES1 115 18
ZAP70 103 7
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.
Table A5. List of Lipid kinases tested with B1.2 at 10 µM. The percentage
of activity was calculated as the mean of two experiments. SD: Standard
deviation.

Lipid kinase Mean % activity SD
CHKa 103,7 0,2
CHKb 97,7 0,5

DGK beta 98,9 0,6
DGK gamma 99,6 7,2
DGK zeta 93,5 8,8
PI3K alpha 77,2 2,0
PI3K beta 86,3 1,8

PI3K E545K+p85 80,9 1,9
PI3K gamma 102,6 0,2

PI3Ka E524K + p85 105,6 4,3
PI4K2a 89,3 1,7
PIK4Cb 75,2 1,0
PIP5K2a 97,6 6,9
SPHK1 98,5 5,4
SPHK2 99,2 0,4
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Figure A.15. Electrostatic surface potential of AKT KD. The C-terminal
tail of AKT (magenta) is shown close to the basic patch in the N-lobe, inside
the dashed dot circle. The electrostatic potencial was calculated with the
APBS (Adaptive Poisson-Boltzmann Solver) plugin of PyMOL [320]. The
potentials are on a red–white–blue color map for negative-neutral-positive
charged residues.
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