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Abstract

The explosion of digital music has dramatically changed our music con-
sumption behavior. Massive digital music libraries are now available through
streaming platforms. Since the amount of information available to an indi-
vidual listener has increased greatly, it is nearly impossible for them to go
through the entire catalog exhaustively. As a result, we need robust knowl-
edge management systems more than ever. Recent advances in deep learn-
ing have enabled data-driven music representation learning for classifica-
tion and retrieval. However, there is still a gap between machine-learned
representations and the human understanding of music. This dissertation
aims at reducing this semantic gap in order to assist listener’s behav-
ior around music information with advanced algorithmic support. To this
end, we tackle three main challenges in representation learning: model
architecture design, scalability, and multi-modality. Firstly, we carefully
review previous deep representation models and propose new architec-
tures that improve the representation in qualitative and quantitative ways.
The newly proposed models are more flexible, interpretable, and powerful
than previous ones. Secondly, training schemes beyond supervised learn-
ing are explored as a way to achieve scalable research. Transfer learning,
semi-supervised learning, and self-supervised learning approaches are ad-
dressed in detail; transfer learning and semi-supervised methods are ap-
plied to enhance music representation learning. Finally, metric learning
is proposed as a way to bridge music audio representation and natural
language semantics, forming a multimodal embedding space. This facil-
itates music retrieval using arbitrary tags beyond a fixed vocabulary, and
makes it possible to match music to text stories based on mood. Although
our work focuses on bridging music and natural language semantics, we
believe the proposed approaches generalize to other modalities. All im-
plementation details of this thesis are available and open-source for re-
producibility. The knowledge gained throughout this thesis has been put
into practice and grounded in research internships and collaborations with
multiple industries.
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Resum

L’esclat de la miusica digital ha revolucionat la manera en que consumim
musica. Les plataformes de musica per Internet posen tal quantitat d’in-
formacio i continguts a I’abast dels seus usuaris que €s practicament im-
possible explorar els seus catalegs de manera exhaustiva. Per tant, ara
més que mai, cal seguir desenvolupant sistemes robustos de gestio del
coneixement. Els avencos en aprenentatge profund dels darrers anys han
permes el desenvolupament de metodes per a I’aprenentatge automatic
de representacions musicals, i la seva aplicacié en tasques de classifi-
caci6 i cerca. Tanmateix, hi ha encara un buit entre aquestes represen-
tacions apreses automaticament i la comprensié humana de la musica.
L’objectiu d’aquesta tesi €s reduir aquest “buit semantic”, per tal d’ofe-
rir ajuda algorismica als oients a I’hora de relacionar-se amb informacié
musical. A aquest efecte, abordem tres problemes de I’aprenentatge de
representacions: el disseny de 1’arquitectura dels models, 1’escalabilitat i
la multimodalitat. En primer lloc, analitzem en detall models anteriors de
representacio profunda, 1 proposem arquitectures noves que milloren les
representacions qualitativa i quantitativament, donant lloc a models més
potents, flexibles i interpretables. Seguidament, per tal d’assolir millor es-
calabilitat, investiguem processos d’entrenament més enlla de I’aprenen-
tatge supervisat. Presentem en detall els aprenentatges per transferéncia,
semi-supervisat 1 auto-supervisat; i apliquem els aprenentatges per trans-
ferencia i semi-supervisat com a manera de potenciar I’aprenentatge au-
tomatic de representacions musicals. Finalment, proposem 1’ aprenentat-
ge de metriques com a manera de reconciliar les representacions d’audio
musical i la semantica en llenguatge natural, donant lloc a un espai d’en-
castament multimodal. Aixo facilita la recuperacié de musica mitjan¢ant
descriptors arbitraris en lloc de vocabularis concrets, 1 permet assignar
musica a una historia automaticament en base al seu context animic. Tot
i que la nostra recerca se centra en reconciliar la musica i la semantica en
llenguatge natural, opinem que el metode proposat es pot generalitzar a
altres modalitats. Tots els detalls de la implementacié d’aquesta tesi es-
tan disponibles com a codi obert per tal de permetre la seva reproduccid.
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El coneixement adquirit al llarg d’aquesta tesi ha estat posat en practica
mitjancant col - laboracions amb la industria i estades en practiques de
recerca.
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Chapter 1

INTRODUCTION

1.1 Motivation

The explosion of digital music has dramatically changed our music con-
sumption behavior. Before digital music, listeners used to enjoy music
through physical mediums such as vinyl records, cassette tapes, and com-
pact discs. Each individual had a limited amount of libraries, so orga-
nizing the collections was manageable without special technical support.
Listeners could memorize where each item was, arrange the collections in
alphabetic order, make sections for different categories, or go through the
collections exhaustively. Also, there are versatile human resources (sell-
ers) at record stores who fulfill listeners’ various information needs when
they want to explore and discover new music. The human resources pro-
vide a well-organized music curation, help search for music, and recom-
mend albums or artists based on listeners’ tastes. Also, music catalogs
provide such information to assist better music browsing.

However, nowadays, massive music libraries are available through
streaming platforms, and the entire catalog is accessible by paying for
monthly or annual subscriptions. The amount of information for each
individual has been significantly increased. It is almost impossible to
manage the entire collections item-by-item, and we interact through our
mobile devices without human assistance. As a result, we need robust



‘ Then Now

Medium Physical Online streaming

Payment Item-based Subscription-based

Library | Personal collections Entire catalog
Interaction | Human resource App interface

Table 1.1: Changes after digital music.

knowledge management systems more than ever. To this end, streaming
services provide multiple functionalities that assist listeners’ information
behavior. They offer elaborate music curation in various ways, recom-
mend music periodically, and afford convenient user interfaces to explore
music. From academia, researchers investigate various music information
retrieval techniques to support large-scale knowledge management in al-
gorithmic ways. Table 1.1 summarizes the changes after digital music.

1.1.1 Music information behavior

How good are the current knowledge management algorithms? And how
can we improve them? To answer these questions, this subsection reviews
diverse music information behaviors and their relevant research topics.
Especially, it mainly discusses the information behaviors that used to be
at record stores through human information resources. One of the most
frequent music information behaviors is search. We search for music us-
ing metadata such as album names, song titles, artists, and record labels.
Thanks to the advance of various searching algorithms [1, 2, 3], we can
search for desired songs quickly by typing the relevant metadata in the
search box. Sometimes, we also use semantic tags such as genres, moods,
themes, and activities to retrieve the music that we are looking for. To
provide abundant high quality semantic tags, researchers have worked on
metadata creation [4, 5, 6]. After the metadata creation, users can search
for the labeled songs by typing semantic tags. Significantly detailed tags
(e.g., Music Genome Project [4]) also enable music recommendation and
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automatic playlist generation. However, manually generating semantic
tags at scale is expensive as it is laborsome and requiring musical exper-
tise. Thus, many different music classification tasks have been proposed
and tackled by music information retrieval researchers to automate the la-
beling process. Well-known music classification tasks include genre clas-
sification [7], mood classification [8], instrument identification [9], and
music tagging [10].

Another way of retrieving music is querying with audio. When we do
not know any textual information (metadata), we can search music with
an audio excerpt of the song or by humming the melody. Audio finger-
printing algorithms [11, 12] enable robust audio search using short audio
excerpts by capturing salient audio features for music identification (i.e.,
audio fingerprints). Query-by-humming algorithm [13] supports users to
find music with their voices by singing or humming the melody. Also,
cover song identification algorithms [14, 15] help retrieving the same
songs with different versions. Since machines can store more data than
the number of songs humans can memorize, these algorithms sometimes
surpass human abilities of query-by-audio retrieval, although cover song
identification has a long way to go yet due to the task complexity.

Finally, one more important music information behavior through hu-
man resources is music recommendation. If we recall the interaction at
record stores, sellers recommend music based on the customer’s previ-
ous purchase history, which implies the customer’s taste. Or sometimes,
the recommendation is based on the acoustic similarity of given example
songs or the artists. Also, they recommend music based on their knowl-
edge. For example, when different artists are from the same label, when
different albums belong to the same category, or when different songs use
similar instrumentation, this prior knowledge can be helpful in music rec-
ommendation. The introduced multiple facets of music recommendation
can be found in recommender systems (RecSys) research. Collaborative
filtering [16, 17] is a domain-agnostic recommender system that filters
items based on user-item history. By factorizing a huge user-item matrix,
lower-dimensional vectors can represent user preferences and item char-
acteristics. As music streaming platforms emerge, large-scale user-item

3



Information behavior Query Relevant research topics
. Searching algorithms, metadata creation,
Search / retrieval Text . & 'g .
music classification
.. . . . Audio fingerprinting, query-by-humming,
Music identification Audio & .rp . & .q y-by &
cover song identification
Text, Collaborative filtering,
Recommendation audio, content-based recommendation,
purchase history | music similarity, knowledge graphs,

Table 1.2: Music information behaviors and their relevant research topics.

data have been accumulated. As a result, the collaborative filtering sys-
tems became extremely powerful. However, the system has two inherent
issues: cold-start problem and popularity bias [17]. It cannot handle new
items or new users when they do not have enough interactions (cold-start).
Popular items are likely to be recommended more, which results in a filter
bubble (popularity bias). To alleviate the drawbacks, content-based rec-
ommendation [18] has been explored. Instead of relying on user-item in-
teractions, content-based approaches recommend music based on acous-
tic similarity [19, 20] learned by the representation models. Although
content-based approaches do not suffer from the aforementioned issues of
collaborative filtering, it only considers music audio among various fac-
tors that affect our music consumption and recommendation (e.g., artist
relationship, background). Knowledge graphs help exploit a collection of
structured data by transforming the music information into useful knowl-
edge [21, 22, 23]. Table 1.2 summarizes all introduced music information
behaviors and their relevant research topics.

The primary motivation of this dissertation is to assist music listeners
when they browse and explore music through mobile interfaces without
the support of human information resources. Then the question is, “are
these algorithm-based applications good enough to replace human agents
to fulfill our information needs?” We are already experiencing huge suc-
cesses in metadata search and audio-based search. Their speed and accu-
racy surpass what human agents can perform, and the scalability is in-
comparable. Also, massive user-item interaction enabled extremely pow-
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erful music recommender systems using collaborative filtering. But in the
case of semantic search and content-based recommendation, still there is
a gap between algorithms and humans. Machine-perceived music is yet
far from human-perceived music. Only with a tiny modification in mu-
sic audio (e.g., additive white noise), the machine’s predictions can be
dramatically changed, although the modification is very trivial for human
perception [24, 25]. Then the next question is, “how can we reduce this
semantic gap?”’

At the core of semantic applications, there is music representation
learning. Learned representation enables music classification for semantic
search, similarity-based music retrieval, and content-based music recom-
mendation. Learned representations are in a format of high-dimensional
vectors. We want the vector representations to be robust and flexible like
human understanding of music. Human understanding of music can be of-
ten described in our language. We can represent a song with a few words
(music tags). Or, we can also depict a song in detail with natural lan-
guage. To this end, this dissertation aims at reducing the semantic gap be-
tween machine-perceived music and human-perceived music by (i) using
advanced music representation learning algorithms in scalable and data-
driven fashions, and (if) bridging the learned music audio representations
with our natural language semantics to form a multimodal representation
space.

1.1.2 Representation learning

Robust music representation or feature is the key to success in previously
introduced music information retrieval (MIR) systems. Through decades,
MIR researchers worked on the manual design of music representation.
They carefully designed representations (features) based on their domain
knowledge, and the extracted features are used to perform various infor-
mation retrieval tasks. For example, mel-frequency cepstral coefficient
(MFCC) [26] is widely used in timbre-related tasks (e.g., instrument iden-
tification) by taking advantage of domain knowledge that harmonic peri-
odicity is crucial in timbre recognition. As another example, harmonic

5



pitch class profile (HPCP) [27] uses our musical domain knowledge in its
feature design to enhance chord recognition models.

Although the manual design strategies are effective in machine learn-
ing, the design process is cumbersome and sometimes the representation
fail to extract discriminative information for the task. Instead of relying
on human ingenuity, the representation design process can be performed
in a fully-data-driven fashion by learning with general priors: i.e., repre-
sentation learning [28]. As representation is learned from the data, it is
easier to extract useful (relevant) information. Especially, deep learning
based approaches are rapidly growing and consistently reporting remark-
able performances in many domains including computer vision [29] and
natural language processing [30].

MIR researchers also have actively adopted the deep representation
learning to tackle different MIR problems. Learned deep representation
enabled both generative [31, 32] and discriminative models [33]. And the
input sources are not only limited to audio but also include MIDI [34] and
scores [35]. Among these various tasks and input sources, this disserta-
tion focuses on deep representation learning of music audio to perform
discriminative tasks since the main motivation is to support information
behaviors of music listeners: music classification and retrieval. The fol-
lowing section discusses current limitations of deep music audio repre-
sentation learning in discriminative tasks.

1.2 The problem

This section diagnoses the limitations of recent advances in music audio
representation learning in three aspects: representation model, scalability,
and multimodality.
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Figure 1.1: Instance-level music representation learning.

1.2.1 Representation model
Evaluation

As deep learning emerges, music representation learning research has en-
tered a new phase, and many data-driven approaches have been proposed.
However, researchers sometimes use jargon in various ways, some im-
plementation details and evaluation methods are ambiguously described
in the papers, and they use slightly different experimental setups (e.g.,
dataset splits, library versions, computing environments, and optimization
methods). Thus, it is not easy to compare different music representation
models directly with each other and there can be unintended miscommu-
nication between researchers. It guides to an overly optimistic or overly
pessimistic baseline that results in comparing experimental results that
should not be compared. It creates tremendous obstacles that impedes
scientific improvements in music representation learning.

Instance-level music representation

As shown in Figure 1.1, most current music representation models use
short audio excerpts as their inputs (instance-level training). One song is
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cropped into multiple instances, then the model needs to predict the mu-
sical attributes (tags) based on the acoustic characteristics of the instance.
It is mainly because the instance-level training shows better performance
and because it is not easy to increase the size of the receptive fields ef-
fectively. Instance-level representations are aggregated later to represent
a song-level information using global summarization such as global max
pooling, global average pooling, and majority voting. That means current
music representation models behave like a bag-of-feature model [36] in-
stead of representing music as a sequence.

There are two issues of the instance-level training. Firstly, it is dif-
ferent from human music perception. If we mix the order of the audio
excerpts, for example, the latent representation of the model won’t be
changed because the model only cares about the existence of features not
their sequence, while humans perceive it differently. As we would like to
build a semantic space that resembles human understanding of music, this
difference is not desirable.

Another issue is the multiple instance problem [37]. When a random
excerpt is cropped from a song with a tag piano, there is a possibility that
the excerpt does not include any piano sound in it, because the tag piano
does not imply the piano appears at every time step. However, the model
is trained to predict the excerpt to have a tag piano. In this way, there is
a possibility that the model learns some other acoustic biases that exist in
piano music. For instance, the model can predict any jazz music to have a
tag piano because some audio excerpts of jazz piano music were used as
positive examples of piano during the training, even if the excerpts do not
have any piano sound in them. Details of instance-level training is further
discussed in Section 2.2.

Interpretability

Deep learning models are often described as a black box. Different from
manually designed features or rule-based models, it is difficult to under-
stand the underlying mechanism of deep learning models because they are
formed by the composition of multiple non-linear transformations. This
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Figure 1.2: Irony of large-scale manual labeling to train a better model.

makes it difficult to diagnose, understand, and fix the model. Hence, it
can be a major bottleneck for model development. To this end, there have
been previous works for visualizing and understanding latent features of
deep learning models. For images, it is very intuitive to understand the
learned patterns by visualizing (highlighting) the relevant part. Also, for
natural language processing, highlighting relevant words can already pro-
vide a lot of information to be used. However, when we apply the same
approach to the audio, it is still hard to understand the learned features.
Some parts of mel spectrograms will be highlighted but the visual infor-
mation of audio is not intuitive for humans.

Less interpretability is also caused by the architectures that we use.
Convolutional neural network (CNN) is originally designed to tackle com-
puter vision problems not audio. We are using it because of its power-
fulness in pattern recognition but the mechanism is far from the known
concept of human audio recognition. CNN models an audio input as a
snapshot of an image while humans perceive the audio as sequence. For
better understanding of the model behaviors, audio-specific interpretabil-
ity research is needed.

1.2.2 Scalability

Deep learning models are data-hungry. In general, model performance
gets better with more data. As a result, ironically, we end up demanding a
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large amount of human efforts again during the dataset creation process,
although the original purpose of developing the models was to unburden
human efforts (Figure 1.2). The inclusion of human elaboration hinders
scalable representation learning due to the labeling cost. So there is a
demand for different training strategies instead of labeling more data to
scale up.

In a real-world scenario, we may have a large-scale music library, al-
though only a few of them might have manual labels. With supervised
learning scheme, abundant unlabeled data are discarded during the train-
ing process and only few labeled data are used. Under the limited cir-
cumstance, we need other training schemes beyond supervised learning
to incorporate other labeled data and large-scale unlabeled data. In the
field of computer vision and natural language processing, various training
methods, such as transfer learning, semi-supervised learning, and self-
supervised learning, have been explored. These approaches are general-
izable in many domains including music representation learning, because
their concepts are not task specific.

1.2.3 Multimodality

Various music classification models enable tag-based music retrieval. Users
can search for music with genres, moods, and instruments using predicted
tags by the classification models. However, still there is a gap between the
music tags and human understanding of music. Pretrained music classi-
fication models are limited to fixed vocabulary hence the model cannot
handle unseen tags even if they are synonyms (happy and happiness) or
acronyms (EDM and electronic dance music) of the tag in the training
set taxonomy. This gap can be interpreted as a semantic gap between tag-
level representation and music audio representation.

As another example of the semantic gap, current music semantic space
is limited to a single modality: audio. However, human forms multimodal
semantic spaces. We can match appropriate music for a video clip (video-
to-audio), or evoked emotions from a book can be applied to our music
selection (text-to-audio). By bridging the gap between music audio se-
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mantics and other modalities, music retrieval can be more flexible beyond
tag-based search. Also, there is a possibility that the semantic distribution
of one modality can complement to form a more robust music seman-
tic space. Nevertheless, multimodal approaches for music representation
learning is less explored yet. This dissertation explores multimodal repre-
sentation learning, particularly aims at bridging the gap between natural
language and music audio semantics.

1.3 The solution

The main idea of advanced music representation learning in this research
is three-fold: (i) propose better music representation models by tackling
the problems of current representation models discussed in the previous
section, (if) adopt transfer learning and semi-supervised approaches to
step further beyond supervised learning, (iii) explore multimodal embed-
ding spaces to reduce the gap between natural language and music audio
semantics.

Representation model

Firstly, we implement and reproduce a variety of previous music repre-
sentation models and compare their performances under the same com-
putational environment, datasets, preprocessing, evaluation metrics, and
libraries. We can assess the baselines reliably, and each model’s pros and
cons will be revealed through the process.

Through the holistic evaluation and analysis of music representation
models, we will learn useful insights for building better architectures.
Based on the acquired knowledge, we build more powerful music repre-
sentation models, and they are assessed using the same evaluation pipeline.
More data-driven ideas are included here, and a new sequence modeling
technique (i.e., Transformer [38, 30]) is actively used to achieve long se-
quence modeling and interpretable systems.
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Scalability

The issue of limited amount of labeled data can be tackled in various
ways. We can use a large-scale labeled data from other relevant tasks
(source tasks) to train a model. Then transfer the learned representation
to solve our target task by fine-tuning the model. This transfer learning
scheme takes advantage of the knowledge from already existing labeled
data. Although we do not have genre labels for large-scale data, for exam-
ple, we have artist labels for most tracks. As every artist has his/her/their
own musical styles, we can train a discriminative model that predicts artist
labels as a source task, then transfer the learned representation to solve
downstream target tasks [39]. We explore transfer learning of artist clas-
sification to perform more robust music representation learning.

Instead of only relying on labeled data, we can also exploit unlabeled
data. Semi-supervised learning is a machine learning approach that uti-
lizes both (small-scale) labeled data and (large-scale) unlabeled data. It
takes advantage of the best of two worlds: strong supervision and scal-
ability. We introduce successful semi-supervised schemes to music rep-
resentation learning to achieve the best performing music classification
models.

Multimodality

Finally, we reduce the gap between natural language and music semantics
by jointly learning multimodal embedding spaces. Previously explored
music representation models are used to represent music semantics. And
pretrained word / sentence / paragraph embeddings are used to represent
text semantics. Finally, two different modalities are bridged together via
multimodal metric learning to form a joint embedding space. Multiple
representation strategies are discussed within each modality, and we ex-
plore various training schemes to enable multimodal representation learn-
ing.
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Figure 1.3: Thesis overview.

1.4 Summary of contributions

The contributions of this thesis are summarized as follow. Extensive com-
parison of existing representation models was performed. Based on the
insights from the experiment, new state-of-the-art models are proposed
for automatic music tagging. More data-driven front end is proposed to
preserve harmonic characteristics, and Transformer is introduced to en-
able long sequence modeling with better interpretability. The representa-
tion models are further improved with various training schemes including
transfer learning and semi-supervised learning.

Multimodal approaches are also explored to reduce the gap between
natural language and music semantics. Domain-specific musical word
embeddings are released, and an advanced open-vocabulary music re-
trieval system is introduced. The multimodal embedding research is ex-
tended to allow paragraph-level inputs which facilitates matching appro-
priate music to text based on their mood and emotion.

This dissertation aims at open science and reproducible research. All
experiments are performed using public datasets and I contributed to build
a new open-source dataset (MTG-Jamendo dataset [40]). All implementa-
tion details are open-sourced, and pretrained models are available online
(see Appendix A).
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1.5 Thesis outline

This thesis is structured as follows: Chapter 2 introduces relevant concepts
and previous works of representation learning that include music classifi-
cation, various training schemes, and natural language processing. Then
Chapter 3 revisits previous representation models and proposes advanced
architectures for music representation learning. Chapter 4 steps further
beyond supervised learning using transfer learning and semi-supervised
learning. It enables more scalable music representation learning with ex-
tra data. Chapter 5 presents multimodal approaches to reduce the gap
between natural language and music semantics. Multimodal models fa-
cilitate flexible semantic search beyond fixed vocabulary, and also allow
sentence-/paragraph-level inputs. Chapter 6 draws conclusions, summa-
rizes contributions, and discusses future directions. Figure 1.3 summa-
rizes the outline of the thesis.
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Chapter 2
BACKGROUND

2.1 Introduction

This chapter introduces relevant concepts, topics and previous related
works to achieve the goal: multimodal music representation learning for
classification and retrieval. Firstly, music classification is explained in the
next subsection (Section 2.2). It describes the definition, different clas-
sification tasks, input representations, evaluation metrics, instance-level
training, various types of music information, and supervised learning.
Music classification enables semantic search using predicted music tags
(e.g., genres, moods). But also, deep-learning-based music classification
is an important area of music representation learning. Learned latent rep-
resentation from the class supervision can be transferred to solve other
downstream tasks, and also can be utilized to form a music similarity
space to recommend music. After reviewing music classification, Sec-
tion 2.3 introduces training methods beyond supervised learning. Train-
ing schemes such as transfer learning, semi-supervised learning, and self-
supervised learning are discussed. As scalability is a key to success in
deep representation learning, these training strategies are highly impor-
tant. Section 2.4 introduces recent advances in natural language process-
ing to incorporate one more modality in music representation learning.
Starting from techniques to represent word-level semantics [41, 42], it
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discusses recent dramatic improvements in natural language processing
which enables versatile text representation in a self-supervised manner [38,
30].

To summarize, this chapter introduces ingredients including music
representation learning (Section 2.2), scalable representation learning (Sec-
tion 2.3), and text representation learning (Section 2.4), which are relevant
for tackling multimodal music representation learning.

2.2 Music classification

2.2.1 Overview

Music classification is a music information retrieval (MIR) task whose
objective is the computational understanding of music semantics. For a
given song, the classifier predicts relevant musical attributes. Based on the
task definition, there are a nearly infinite number of classification tasks —
from genres, moods, and instruments to broader concepts including mu-
sic similarity and musical preferences. The retrieved information can be
further utilized in many applications including music recommendation,
curation, playlist generation, and semantic search.

In the deep learning era, the role of music classification is not only
limited to semantic search but also includes music representation learn-
ing. Through the training process using class supervision, useful music
representation is learned, and the representation can be transferred to
solve other relevant problems, or the learned embeddings can be used
to measure content-based music similarity. Since scalability matters in
deep representation learning, and music classification datasets (e.g., mil-
lion song dataset [43]) are the most scalable labeled datasets in MIR,
improving music classification models is crucial to music representation
learning. In this subsection, we review relevant concepts of music classi-
fication research.
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Figure 2.1: Two record stores with different knowledge management
strategies.

Single-label classification

Let’s say there are two record stores in the town (Figure 2.1). TABC
Records ; curates all the records in alphabetic order, while ' MIR Records ;
categorizes their stocks based on musical genres. When a customer al-
ready knows what he/she wants to buy, T ABC Records ; is a good place
to go as he/she can search for the item by the alphabetic index. How-
ever, when a customer wants to browse and discover new music, " MIR
Records ; will be preferable as he/she can visit the section with favorite
musical genre. Like this, well-designed categorization (i.e., music classi-
fication) helps customers browse music more efficiently. This record store
scenario can be interpreted as a single-label classification task. One item
can be in a single section; hence categories (genres in this example) are
exclusive!.

Multi-label classification

Different from the record store example, one item may belong to multiple
categories. For example, one song can be disco and K-pop simultaneously,
and these categories are not exclusive to each other. Also, listeners would
like to browse music by instruments, languages, moods, or context, not
only musical genres. We can handle these multiple musical attributes with
multi-label classification. The multi-label classification is often referred
to as “music tagging” since it puts various music tags for a given song.

!Genres are not always exclusive to each other. One song can belong to multiple
genres.
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Figure 2.2: Multi-label music classification.

As shown in Figure 2.2, multi-label classification is handled as a bi-
nary classification for each musical attribute. For each label, the system
determines whether a given song is positive to the label or not. In contrast
with single-label classification, labels are not exclusive, and multiple tags
can exist together.

2.2.2 Music classification tasks

There can be an almost infinite number of music classification tasks based
on product requirements. Among them, the most explored music classi-
fication tasks in MIR research are: genre classification [7], mood classi-
fication [8], instrument identification [9], and music tagging [10]. Music
tagging subsumes all other classification tasks as any class (label) can be
musical tags.

Genre classification

Music genre is one of the most prevalent categories to describe music.
When talking about musical preferences, many people assume they are
supposed to talk about their favorite genres. The simplest problem formu-
lation of genre classification is to define a genre taxonomy that is flat and
mutually exclusive (single-label classification). This is how the pioneer-
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ing Gtzan genre classification dataset was constructed [7]. It comprises
ten high-level genres: blues, classical, country, disco, hip hop, jazz, metal,
pop, reggae, and rock. With the idea of mutual exclusiveness of music
genres, more datasets have been proposed including Ballroom dataset [44],
FMA-small and FMA-medium [45], and ISMIR 2004 genre [46].

The different problem formulation appears in more modern datasets.
The mutual exclusiveness assumption was loosened in the million song
dataset [43] (with tagtraum genre annotations [47]). This allows a track to
have more than one genre label (i.e., multi-label classification). Finally,
a hierarchical genre taxonomy is considered in datasets such as FMA-
Full [45] and AcousticBrainz-Genre [48].

Mood classification

Although the genre boundaries are already unclear, mood is more subjec-
tive by its definition. Also, there is the difference between perceived mood
(the mood of music) and induced mood (the mood one would feel when
listening to the music). Mood classification also includes both single-label
(e.g., MoodsMIREX) and multi-label datasets [43, 40]. But due to its un-
clear boundaries, researchers tried to formalize the task as a regression
problem by allowing continuity in mood annotations. They labeled mood
annotation in a two-dimensional plane where the axes represents arousal
and valence [49, 50]. Sometimes one more dimension is added (domi-
nance) to form a three-dimensional space, or time-varying mood annota-
tions are provided [51].

Instrument classification

Instrument identification is more objective compared to genre and mood
classes. In early stage, instrument identification dataset was also built as-
suming mutual exclusiveness. The IRMAS dataset [52] has a single pre-
dominant instrument tag for each item. More recently, instrument identifi-
cation is treated as multi-label classification in dataset such as OpenMIC-
2018 [53].
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Tackling instrument identification incorporates multiple instance learn-
ing. Acoustic characteristics of certain genres or moods may span over the
entire sequence. But in case of instruments, a song will be labeled with an
instrument tag even if it appears temporarily. Multiple instance learning
is depicted in Section 2.2.5.

Music tagging

The progress of the computer and internet has given the privilege of la-
beling music to every single music listener — the democratization of anno-
tation. Social music services gathered these tags, and predicting the col-
lected tags from the audio content became a task named automatic music
tagging.

There is no constraint on which tag to be labeled, hence music tags are
diverse and noisy. In the million song dataset (MSD) [43], for example,
there are 505,216 tracks with at least one music tag. And the number of
unique tags is 552,366. There are more unique tags than the number of
tracks. If we take a closer look at their distribution, some music tags are
extremely subjective. The 7th popular tag is favorite, the 18th is Awesome,
and the 33rd is seen live. The 37th is Favorite and the 41st is Favourite.

However, still there are many tags that are relevant to the music con-
tent. After removing the ambiguous tags, the top-15 tags include rock,
pop, alternative, indie, electronic, female vocalists, dance, 00s, alterna-
tive rock, jazz, beautiful, metal, chillout, male vocalists, and classic rock.
There are genre, mood, and instruments, each of which has been treated
as a target category for music classification. Like this, music tagging sub-
sumes all other music classification tasks.

Although music tags are noisy, it is easier to collect them than col-
lecting (expert-annotated) genre, mood, or instrument labels. As a result,
scalable datasets are available in music tagging, which enables deep learn-
ing approaches in music classification. This is one reason why most previ-
ous music representation models are explored with music tagging datasets
such as MagnaTagATune (MTAT) [54] and MSD [43].
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2.2.3 Input representations

In traditional music tagging approaches [55], carefully designed features,
such as mel-frequency cepstral coefficients (MFCC), zero-crossing rate
(ZCR), and chromagrams, have been used as inputs of music tagging
models. However, modern deep learning approaches only do minimal
feature engineering or directly utilize the raw data as inputs so that the
model can learn useful representations from data. This subsection intro-
duces common input representations for data-driven music classification.

Raw audio

One core idea of deep representation learning is to learn useful represen-
tation from data instead of manual feature design. Relevant features are
learned from the training data distribution. Some previous works [56, 57,
58] tackled music classification in an end-to-end fashion by using raw
audio waveform as their inputs. Although it shows comparable results
in music classification, their performances are yet lower than other ap-
proaches using small feature engineering (e.g., short-time Fourier trans-
form). Since the model is assumption-free, it is more flexible but the
search space to learn is enormous compared to preprocessed inputs. There
is a possibility that the raw audio model to outperform feature-based ap-
proaches when a larger-scale dataset is available. But at current scale,
small feature engineering is still required to achieve the best results.

Mel spectrogram

Mel spectrogram is one of the most common input representation of music
classification models. It resembles the known physiology of human audi-
tory system: tonotopy. In human cochlea, there is the basilar membrane.
The thickness and width changes at each region of the basilar membrane,
hence each region vibrates at certain frequency. The tonotopic frequencies
are logarithmically distributed (Figure 2.3).

The first step of processing mel spectrogram is short-time Fourier
transform (STFT). The output of the STFT is called spectrogram. Spec-
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Figure 2.4: Different input representations for music classification.
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trogram is a two-dimensional representation where x-axis is time, and y-
axis is frequency (Figure 2.4 - middle). Each frequency bin includes the
phase and magnitude of certain frequency (tonotopy) at each time step.
Then a logarithmically distributed triangular filters (i.e., mel filterbank)
are applied to the frequency axis of the spectrogram. As a result, we get
the mel spectrogram (Figure 2.4 - right). In most cases, phase information
is discarded and only magnitude is used. Finally, log scale is used for the
magnitude to form a log-magnitude mel spectrogram. The whole steps are
formalized as follow:

S =10-log(|mel(STFT(x))|) (2.1

where x is raw audio waveform, ST F'T" is short-time Fourier transform,
mel is a mel filterbank, and S is log-magnitude mel spectrogram.

As shown in Figure 2.4, spectrogram is easier to understand than raw
audio as it provides time-varying energy at each frequency band. Mel
spectrogram looks similar to spectrogram but it is more compact, and the
low frequency region has allocated more bins than it does in spectrogram.

2.2.4 Evaluation

Evaluation of models is one of the most crucial parts of music classi-
fication. No matter how many state-of-the-art models are available, the
practical performance of the application can be different depending on
which model we choose. Hence, proper evaluation metrics fit for purpose
are essential in the model selection. This subsection explores widely used
evaluation metrics of music classification with a simple example case.

Figure 2.5 shows an example of a binary classification task. We want
to assess a classification model that detects vocals in music. The dataset
has ten songs with vocal (blue dots) and ten songs without vocal (orange
cross marks). The green circle is a decision boundary of the model. The
model predicts that the items in the green circle are vocal music, and the
items at the outside of the circle are instrumental music.

As shown in Figure 2.6, the predictions can be separated into four
categories.
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Figure 2.5: An example of single-label binary classification.

Actual
Positive Negative
o ® ° :
o
2 X
2 e °
o
O °
2 : -
K] TP| |FP
O
CILJ o FN| [TN X
o
] ¢ X
=
g x
2 X
X
X

Figure 2.6: Four categories of predictions: true positives (upper left), false
positives (upper right), false negatives (lower left), and true negatives
(lower right)
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* True positives (TP): Correctly predicted vocal music.

* False positives (FP): Predicted as vocal music but they are non-
vocal music.

* False negatives (FN): Predicted as non-vocal music but they are
vocal music.

* True negatives (TN): Correctly predicted non-vocal music.

Accuracy

Accuracy is an intuitive and most widely used evaluation metric to assess
classification models. It measures how many items are correctly classi-
fied. The formula of accuracy is:

TP+ TN
A = 2.2
Y = T p TN+ FP + FN (2:2)

In the given example, accuracy is 0.75. More intuitively, 15 items among
20 are correctly classified no matter they are vocal or non-vocal music.

Precision

Precision measures how many retrieved items are truly relevant. In re-
trieval systems, precision is important as it indicates how accurate the
retrieval results are. The model retrieved 11 items in the green circle to be
relevant (i.e., vocal music). Among them, 8 songs are truly vocal music,
and 3 songs are not. The formula of precision is:

TP
Precision = ————— 2.
rectsion TP 1 FD (2.3)

hence precision is 0.7273 in our example.
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Recall

Recall measures how many relevant items are correctly retrieved. Among
10 positive songs with vocal, 8 of them are correctly predicted as vocal
music while 2 of them are rejected (two blue dots at the outside of the
green circle). The formula of recall is:

TP
R(ECCL” = TP—i——FN (24)

hence recall is 0.8 in this example. Recall is also known as sensitivity
or true positive rate. And the opposite term is specificity or true negative
rate: how many of negative items are correctly rejected, i.e., TN / (FP +
TN).

F-measure

High precision is important in building a reliable retrieval system be-
cause users can trust the system when retrieved items are truly relevant.
However, a high precision / low recall system only retrieves a few pos-
itive items, which end up with low diversity. In other words, we can
achieve high precision by applying a very strict threshold (narrower deci-
sion boundary), but a lot of relevant items will be discarded (false nega-
tives) due to the high threshold.

F-measure or F-score considers both precision and recall. The tradi-
tional F-measure (F1-score) is defined as the harmonic mean of precision
and recall. The maximum value is 1.0, and the lowest is O (either precision
or recall is zero).

_ precision - recall

F (2.5)

 precision + recall
Depending on system requirements, either precision or recall may be
more critical. In that case, the balance of precision and recall can be pa-
rameterized in Fbeta-measure. Fbeta-measure has one more coefficient 5
that controls the weights between precision and recall.
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Figure 2.7: Threshold-varying precision-recall curve.

High precision vs high recall

The classification model outputs the likelihood of the input to have vo-
cal between 0 and 1. Hence, to make a final decision, we need to set a
threshold. With a high threshold, the model becomes more strict, which
means the green circle becomes narrower in Figure 2.5. As a result, the
retrieved results by the model for a given query “vocal music” will be
reliable. However, the model only retrieves a few songs among the entire
vocal tracks (i.e., high precision and low recall). This can be observed
from the precision-recall curve in Figure 2.7. As the threshold gets closer
to 1.0, precision goes higher while recall goes lower. On the other hand, if
the threshold gets lower, it results in high recall and low precision, which
means the system returns any item to be positive. Like this, appropriate
decision making of threshold is crucial in classification tasks.

Area under receiver operating characteristic curve (ROC-AUC)

The receiver operating characteristic curve (ROC curve) reflects the model’s
threshold-varying characteristics. The ROC curve is created by plotting
true positive rate (TPR) against false positive rate (FPR), where TPR is
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Figure 2.8: Receiver operating characteristic surve.

also known as sensitivity or recall, and FPR is calculated as (1 - speci-
ficity). Specificity is also known as true negative rate (TNR).

In Figure 2.8, a dotted black line indicates the ROC curve of a random
classifier, a blue line indicates a better classifier, and an orange line shows
a perfect classifier. As a classifier gets better, the area under the curve
(AUC) gets wider. The area under the ROC curve is referred to as the
ROC-AUC score. The maximum value is 1.0, and the lowest is 0.5 (a
random classifier).

Area under precision-recall curve (PR-AUC)

It is known that ROC-AUC may report overly optimistic results with im-
balanced data [59]. Therefore, the area under the precision-recall curve
(PR-AUC) is often provided together with ROC-AUC. The precision-
recall curve is created by plotting precision against recall at different
thresholds. Unlike the ROC-AUC score, which has 0.5 as its lowest value,
the lowest bound of PR-AUC differs by data. When a model predicts ev-
ery item to be positive regardless of threshold, the recall will always be
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Figure 2.9: Precision-recall curve.

1.0, and precision will be a ratio of positive items w.r.t. all items. Hence,
the lowest value of PR-AUC is the ratio of positive items. It penalizes
when the retrieval performance is low for the less represented tags. There
are multiple ways of calculating PR-AUC, and the average precision  is
one method for calculating PR-AUC. There are other methods such as
trapezoid estimates and the interpolated estimates. This dissertation uses

the average precision.

2.2.5 Multiple instance learning

Music signals are in the form of sequential data. In this sequence, regard-
ing typical tags, some acoustic characteristics may appear locally (e.g.,
instruments) while some others may span over the sequence (e.g., mood,
genre). For example, when a song has a tag female vocal, it does not
imply that the female vocal appears in every time segment of the song.
However, a cheerful mood can be perceived from the long sequence. This
means a successful music classification model needs to be able to extract
both local and global features.

Zhttps://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html
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Figure 2.10: Instance-level (left) vs sequence-level inference (right).

In essence, the former case (i.e., detecting local characteristics from
a sequence) is a multiple instance problem [37]. A given music signal
(a bag of multiple instances) will be labeled with a tag if a part (an in-
stance) of the signal has a certain relevant acoustic characteristic. In most
cases, we do not have time precise instance-level annotations because the
precise labeling can be laborsome, therefore a music tag associated with a
song is simply applied to all music excerpts (instances) of the song during
training [60].

Furthermore, in many music classification models, they do not input
the entire sequence of the song. Short audio excerpts (3 to 5 second-
long) are cropped from the entire sequence, then input to the model. This
instance-level training is justified by our intuition — humans can predict
music tags within just a few seconds. For example, people would not
spend 3 minutes to determine whether a track is rock. However, there
is a possibility that the instance receives a wrong supervision since the
relevant acoustic characteristic does not appear in the instance. After the
instance-level training, during the evaluation phase, the instance-level pre-
dictions are aggregated with a method such as majority voting, global
max pooling, global average pooling, or adaptive pooling [60]. Most mu-
sic tagging models use this approach due to the following reasons. Firstly,
as multiple chunks (instances) can be collected from the entire song, there
can be more training examples. Secondly, the task gets more difficult since
the model needs to learn from short audio excerpts. Thirdly, large-batch
training is available with short audio because they can fit into limited
memory. Finally, it shows better performance than using longer inputs.

30



Although most music classification models use instance-level train-
ing and inference, the MIL problem can be also tackled in an end-to-
end fashion (Figure 2.10). The end-to-end networks model the entire se-
quence, and capture both local and global acoustic characteristics in it.
However, this approach results in less training samples compared to the
aforementioned instance-level training hence less generalizable when the
same amount of songs are used for training.

2.2.6 Three types of music information

In a previous work for knowledge management of musical metadata [61],
the authors proposed to categorize musical metadata into three categories
(i.e., editorial, cultural, and acoustic) based on the nature of the label-
ing process. In the original work, the term “music metadata” and “music
information” are used interchangeably, but in this dissertation, I use the
term “music information” instead of “metadata” to incorporate broader
concepts beyond music tags.

Editorial information is literally collected from editors. Album names,
artist names, song titles, record labels, and decades are included. As most
tracks already have editorial information, we don’t need any further step
to collect labels. Some semantic tags such as genres and moods can be
also editorial information if they are provided by the editors. But in this
research, I do not include semantic tags as editorial information because
the original source of the semantic tags come from cultural or acoustic
aspects of music. Note that, in this dissertation, editorial information only
includes “objective” written information of the album and the artist.

Cultural information is produced by environments and culture. For
some genres, such as K-pop and detroit house, although they have certain
acoustic characteristics, the cultural background of the song is critical to
determine the genre. Even if a song sounds similar to K-pop music, if
the song is performed by non-Korean artists, mainly consumed by non-
Korean listeners, and written in non-Korean lyrics, it is not a K-pop song
(although we can say the song sounds like K-pop). Like this, cultural and
environmental factors are important music information. A widely used
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way of collecting cultural information is collaborative filtering [62]. From
the user-item interaction history, user information and item information
can be decomposed by matrix factorization. In modern streaming plat-
forms, the collaborative filtering using large-scale user-item matrix pro-
vides abundant cultural information.

Finally, acoustic information is collected from the audio contents.
From low-level features, such as MFCC, beat, and tempo, to high-level se-
mantics, such as genres and moods, various musical aspects are included
in acoustic information. Most music classification tasks assume that mu-
sical categories or tags can be predicted using acoustic information.

Although there are three categories, their boundaries are sometimes
unclear. Also, they have a strong correlation. An artist (editorial) may
have a strong fan base in certain country (cultural). And the artist may
have a signiture sound or style of music (acoustic). Some training schemes
introduced in the next section takes advantage of these correlations to
overcome limited amount of labeled data.

2.2.7 Supervised learning for music classification

This subsection introduces a step-by-step process of supervised learning
for music classification — see Table 2.1. Firstly, given raw audio x is pre-
processed (line 3). In this step, if we want to train a model with instance-
level training (Section 2.2.5), a short audio excerpt is randomly cropped
from the sequence. Then the input is processed into other representation
(e.g., mel spectrogram) as we reviewed in Section 2.2.3, or raw audio can
be directly passed so that the model can learn useful representation from
data. The processed feature is input to the representation model M (line
4). The model can use any deep representation learning architectures in-
cluding convolutional neural networks (CNN), recurrent neural networks
(RNN), or Transformer. The deep representation r passes through a pro-
jection layer N to make a final prediction (line 5). Multi-layer perceptrons
(MLP), also known as a fully-connected layer, is used for projection. Fi-
nally, a training loss between prediction p and ground truth label y is
calculated (line 6), then the model (M and N) is updated using gradient
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Supervised Learning

Input audio X, labels Y
Modules preprocessing P, representation model M, projection layer N/
Functions loss function £, back propagation B

Train

1 forzeX,yecY

2 do

3 s «— P(x) // preprocessing

4 r<— M(s) /I get representation
5 p+— N(r) // prediction

6 l<— L(p,y) /1 get loss

7 M, N +— B(M, N, 1) // model update

6 end do

7 end for

Table 2.1: Pseudocode of supervised learning.

descent (line 7).

When the output classes are exclusive to each other (i.e., single-label
classification), softmax activation function is used in the projection layer
N so that the sum of the scores to be 1.0.

fsoftma:p(x)i =

T

e
Zk erk

On the other hand, in multi-label classification tasks, sigmoid activation
function is used. The output scores are in a range between 0 and 1.

1
14e i
Note that, if there are only two classes in single-label classification, soft-
max (Equation 2.6) and sigmoid (Equation 2.7) are identical. After pass-

ing through the activation function, the model is trained to minimize a
cross entropy loss,

(2.6)

.fsigmoid (xz) = (27)

CE=-) ylogi (2.8)
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where y; is ground truth and ¢; is prediction score. Since mean squared
error (MSE) loss does not penalize misclassified items enough, cross en-
tropy loss with softmax / sigmoid makes model converge faster in classi-
fication tasks, hence more frequently used. MSE loss is more widely used
in regression problems.

In evaluation phase, instead of cropping one random excerpt in pre-
processing, it returns multiple short audio excerpts from the sequence.
Then the predictions of each excerpt in line 5 are aggregated to make
a final prediction. Global max pooling, global average pooling, or ma-
jority voting are typically used for the aggregation. Finally, the model
performance is assessed using various evaluation metrics introduced in
Section 2.2.4.

2.3 Beyond supervised learning

Although supervised deep learning approaches report outstanding perfor-
mance in many music classification tasks, collecting scalable data remains
a challenge. Data acquisition in music is especially challenging due to
following reasons. Firstly, it takes time to listen to the music. In case
of images, human agents can label images in few seconds. We can an-
swer whether an image is a dog or a cat, immediately. Also, in case of
speech recognition or sound event detection (e.g., dog barking, vacuum
cleaner), the acoustic events occur in a very short time period. It only
takes few seconds to label the utterance or the sound event. However, in
case of music, we need to listen to the music for three to five minutes to
fully understand the content correctly. For example, we can determine the
genre or mood without listening to the entire sequence, but we need to
check every time step to determine the existence of the instruments. Sec-
ondly, strong domain knowledge is required to label musical attributes.
Distinguishing musical genres, subgenres, and styles are difficult without
musical knowledge. And instrument labeling is not easy without previous
experience and training. Finally, a lot of music semantics are not objec-
tive. Genres do not have clear boundaries, the boundaries may differ by
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Figure 2.11: Transfer learning.

cultural background, and moods are extremely subjective. That means we
need multiple human agents to label on the same item so that the labels to
have certain agreements as ground truth.

Due to the aforementioned challenges in data labeling, there is a de-
mand for other solutions for scaling up music representation learning
without labeling more data. In a real-world scenario, there are large-scale
music libraries, but only a few of them might have manual labels. Also,
sometimes, there is a discrepancy between the taxonomies of the exist-
ing training data and the target task. In the circumstances, one can take
advantage of existing labeled data to solve other relevant problems, use a
pretrained model to give a supervision to a student model, inject consis-
tency constrains so that the model to return noise-agnostic results, regu-
larize the entropy of the model, or ensemble aforementioned various ap-
proaches. This section introduces representation learning methods beyond
supervised learning that utilizes external labeled data (transfer learning)
or unlabeled data (semi- and self-supervised learning).

2.3.1 Transfer learning

The core idea of transfer learning is to (i) learn knowledge from solv-
ing a problem (source task) and (ii) apply the knowledge to solve other
relevant problems (target task) [63] — see Figure 2.11. For example, if
the model is able to perform instrument identification (source task), the
learned knowledge would be useful to solve music genre classification
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Transfer Learning

Input source data X, source labels Y, target data X’, target labels Y’
Modules preprocessing P, representation model M,

source projection layer NV, target projection layer N/’
Functions loss function £, back propagation B
Train with source task

1 forreX,yeY

2 do

3 s «— P(x) /I preprocessing

4 r<— M(s) // get representation
5 p+— N(r) // prediction

6 l+— L(p,y) /1 get loss

7 M,N «— B(M,N,l) // model update

6 end do

7 end for

Train with target task
8 forzx' e X',y eV’

9 do

10 s «— P(a) // preprocessing

11 r<— M(s) /1 get representation
12 p+— N'(r) // prediction

13 l+— L(p,y) /I get loss

14 M, N «— B(M,N’,1) I/ model update

15 end do

16 end for

Table 2.2: Pseudocode of transfer learning.

(target task) since as the underlying concepts in music genres are related
to instrumentation. The assumption is that although the source and target
tasks are not identical, if the dataset for the source task is much larger
than the target task data, transferring the learned knowledge could lead to
a better performance.
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Table 2.2 depicts the transfer learning flow. The first half (line 1-7) is
identical to supervised learning (Table 2.1). A model is pretrained using
source task data X and the labels Y. Afterwards, the model is optimized to
solve the target task using X’ and Y. But in this step, a pretrained model
M from the source task is used instead of training a model from scratch.
Both representation model and the projection layer can be updated during
the training, or they can be partially updated. Sometimes, only a part of
the model is used so that latent features in the middle of the network to be
transferred for prediction. In a previous work [64], the authors pretrained
a music tagging model with the million song dataset (MSD). Then the
model was transferred to solve downstream tasks such as genre classifi-
cation, emotion recognition, audio event classification, etc. In the experi-
ments, a pretrained model outperformed the baseline MFCC features and
random-weights CNN features in six different tasks.

The introduced transfer learning experiment takes advantage of mu-
sic tags in the MSD which are mostly acoustic information (e.g., genre,
instrument). However, collecting those music tags still requires human
effort of labeling, and some tags are subjective. Different from acoustic
information, editorial information is objective and easier to collect. For
example, artist labels are already provided with most songs. Artist labels
are more objective, songs from the same artist tend to share prominent
musical characteristics, and it is easy to scale up without manual label-
ing. Park et el. [39] transferred learned representation from artist labels to
solve music genre classification, and reported performance gain in three
different datasets. From the similar motivation, we submitted a challenge
winning submission [65] to the Recognize Music Genre from Audio chal-
lenge [66] in The Web Conference 2018. We transferred learned represen-
tation from artist classification to tackle genre classification. In this pro-
cess, instead of targeting thousands of artists directly, we clustered artists
into fewer classes: artist group factors (AGFs). This avoids possible bot-
tlenecks caused by large number of classes, and prevents data sparsity.
Details of the AGFs are introduced in Section 4.2.

Another way of scaling up music representation learning in a trans-
fer learning scheme is to use cultural information. When users use mu-

37



sic streaming services, their listening history is cached in database. As
a result, abundant user-item interaction data is available without man-
ual labeling efforts. Large-scale data is accumulated as time passes. This
huge user-item matrix are factorized into lower dimensional vectors [67]
to represent user embeddings and item embeddings using collaborative
filtering [16, 17]. Since user’s musical taste is affected by acoustic char-
acteristics, one can take advantage of the latent factors to supervise deep
representation models. A previous work [18] trained deep convolutional
neural networks to predict latent factors from music audio (i.e., item em-
beddings). The pretrained model facilitated music similarity space for
content-based music recommendation, and the data distribution showed
that similar genres to be grouped together in the learned representation
space.

2.3.2 Semi-supervised learning

In many realistic scenarios, we have limited labeled data and abundant un-
labeled data. For example, in the million song dataset (MSD) [43], only
24% of them are labeled with at least one of the top-50 music tags. As
a consequence, most the existing MSD tagging research discarded the
76% of the audio included in MSD. One can label the 76% to improve
the performance, but there is another way of incorporating the large-
scale data. Semi-supervised learning is a machine learning approach that
utilizes both (small-scale) labeled data and (large-scale) unlabeled data.
In general, semi-supervised models are optimized to minimize two loss
functions: a supervised loss, and an unsupervised loss:

Loss = LOSSsupervised + A LOSSunsupervised (29)

where the ratio between two loss functions is controlled by a hyper pa-
rameter \. Semi-supervised learning is a broad concept of a hybrid ap-
proach of supervised learning and unsupervised learning. There are many
variants of designing the unsupervised loss.
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Self-training

Input labeled data X, labels Y, unlabeled data Z
Models teacher model 7, student model S
Functions loss function £, data augmentation A4,

back propagation B
Train
1 forreX,yeY
2 do
3 p<— T (z) // predict
4 l<— L(p,y) // get loss
5 T «— B(T,1) /1 update teacher model
6 end do
7 end for
8 forrecX,yeY,zeZ
9 do

10 p— S(x /I predict

11 ly «— L(p1,y) /I get supervised loss

12 Y +— T (2) // generate pseudo-label

13 o — S(2) // predict

14 ly <— L(p2,v) I/ get semi-supervised loss
15 S «— B(S,l; + l) // update student model
16 end do

17 end for

Table 2.3: Pseudocode of self-training.

Self-training

Most self-training [68] approaches follow the teacher-student pipeline.
Table 2.3 depicts a step-by-step process of the self-training. Firstly, a
teacher model is trained with labeled data in a supervised fashion (line
1-7). Then a student model is optimized to predict the labels of labeled
data (line 10-11), and the pseudo-labels of unlabeled data (line 13-14).
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Figure 2.12: Consistency training.

Pseudo-labels are generated by predicting the labels of unlabeled data us-
ing a pretrained teacher model (line 12). If the task is a multi-label clas-
sification, the output of the teacher model will be a score between 0 to 1
since sigmoid activation function is used in the output layer. These scores
can be used as pseudo-labels as they are (soft-label), or binarized with
certain thresholds so that the outputs to be hard-labels.

Consistency training

Consistency training [69] constrains models to generate noise invariant
predictions. When there is an apple on the table, for example, it is always
an apple even if we take a look at it from a different angle or a different
distance, under different lights, or through glass. The view changes but
the original property “apple” does not change. As another example, when
we listen to jazz music, no matter which speaker we use, whether peo-
ple are speaking, or the audio is time-stretched, it is still jazz music. Like
this, consistency training injects various noise that do not harm the orig-
inal property, and optimizes the model to return consistent predictions.
Unsupervised loss of consistency training is formalized as follow:

LOSSunsupervised = D(P(y|f4($)> 9)7P(?/|A($)7 9)) (210)

where x is an unlabeled input, A is stochastic data augmentation, and
D is a distance metric such as mean squared errors. Note that the data
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augmentation A is stochastic; hence the two outputs in Figure 2.12 are
different.

Entropy regularization

Entropy regularization minimizes the entropy of the model’s predictions
(Figure 2.13). A straightforward implementation is to directly minimize
the entropy of the predictions for unlabeled data [70]. Along with the
supervised loss, the model makes predictions of unlabeled data. Although
we do not know the ground truth labels, the model needs to minimize
the entropy of the predictions. This entropy regularization can be also
achieved in an implicit manner by training with one-hot encoded pseudo-
labels [71]. In this case, the model first makes a prediction using unlabeled
data. The prediction is then modified to be an one-hot encoded vector and
used as a pseudo-label to supervise the model. In both approaches, the
training scheme incorporates unlabeled data by adding minimum entropy
regularization in explicit [70] or implicit [71] ways which prevent the
model from making ambiguous decisions.

More approaches

There are more semi-supervised learning methods such as graph-based
approaches [72] and generative modeling [73]. Or introduced multiple
semi-supervised approaches can be combined together. MixMatch [74]
incorporates entropy minimization, consistency regularization, and MixUp
[75]. Noisy student training [76] is another successful semi-supervised
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learning scheme that takes advantage of self-training and consistency reg-
ularization. Noisy student training will be discussed in detail in Chapter 4.

2.3.3 Self-supervised learning

Self-supervised learning or unsupervised learning learns useful represen-
tation from data without labels. It is easy to scale up with self-supervised
learning because it does not require any labeling process. Pretrained rep-
resentation is further optimized with downstream datasets in a transfer
learning scheme. Self-supervised learning is gaining more attention than
ever as scalability emerges as one of the most important factors in deep
representation learning.

Contrastive learning

We previously reviewed consistency regularization in semi-supervised
learning. This consistency regularization can be applied to self-supervised
learning. Contrastive learning is a method that learns representations by
modeling similarity from natural variations of data. In Figure 2.12, a sin-
gle item is encoded into two different “views”. When there exist /V train-
ing examples, there are 2/V views. If we choose one view, there is only
one positive pair among 2N — 1 views. Contrastive learning optimizes the
model to minimize the distance between positive pairs and maximize the
distance between negative pairs.

In momentum contrast (MoCo) [77], a dictionary of examples in the
data is maintained as a queue. Each example in the mini-batch is encoded,
and put in front of the queue, while the last item in the dictionary is sub-
sequently dequeued. The pretext task used in MoCO is to define a con-
trastive loss on the query and the keys of the dictionary: a query matches
the key when the query is an embedding of a different view of the same
data point. For example, if the query is an embedding of the bassoon solo
in Stravinsky’s Rite of Spring, it should match with the key that corre-
sponds to the Rite of Spring. The encoded query should be similar to its
corresponding key and dissimilar to other keys in the dictionary.
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Training a MoCo encoder is done with positive and negative pairs of
examples in a mini-batch. The positive example pairs are made of queries
that correspond to keys of the current mini-batch. The negative pairs are
queries of the current mini-batch and keys from past mini-batches. The
keys are encoded by a “slowly progressing” encoder because the dictio-
nary’s keys are drawn over multiple mini-batches. This encoder is im-
plemented as a momentum-based moving average. Therefore there are
two encoders: an encoder for the queries and a momentum-encoder for
the keys. The main difference between these two encoders is how they
are updated. The query encoder is updated by backpropagation, while the
momentum encoder is updated by linear interpolation of the query and
the momentum encoder.

SimCLR [78] is a simple contrastive learning approach to learn robust
visual representation. It leverages strong image data augmentations, large
batch sizes, a single large encoder, and a simple contrastive loss to pretrain
an encoder. For each image example in the mini-batch, two augmented
views are taken. This is done by a series of data augmentations that are
applied randomly to each example. Each of these augmented views are
embedded using a standard ResNet [79] encoder. When learned repre-
sentation is used in downstream tasks, the embeddings are projected to a
different latent space by a small linear layer on which the contrastive loss
is computed. This idea has been experimented in music representation
learning [80] and showed comparable results in music classification.

Autoregressive models

Auto-regressive models are optimized to predict next time steps in the
sequence based on previously observed information. When we listen to
music, listen to a speech, read a sentence, or look at an image, there are
expected next steps that preserve the pattern’s continuity.

Contrastive predictive coding (CPC) [81] is a universal framework of
representation learning. The data can be an image in which neighboring
patches usually share spatial information locally. In the case of speech
signals, it could be the phonemes that should be similar to the neighbors.
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In music, the chorus of a song is expected to repeat in another part of our
audio signal. These related observations are mapped similarly as a repre-
sentation in a latent space in CPC. The main hypothesis is that predictions
of related observations are often conditionally dependent on similar, high-
level pieces of latent information. Firstly, complex natural data, such as
images and audio, are compressed into a latent embedding space. Then
an autoregressive model uses the latent representation to make predic-
tions for future observations. These observations are mapped to the corre-
sponding representation. In this process, a contrastive loss is used instead
of directly predicting future values. The idea is further improved to learn
more powerful speech representation [82, 83].

Jukebox [32] is an autoregressive model that learns music audio rep-
resentation. Jukebox comprises two parts: compressing music to discrete
codes and learning autoregressive distribution. The first part uses a vector-
quantized variational autoencoder (VQ-VAE) [84] to compress audio to
a discrete space. Then the encoded music codes are used to optimize an
autoregressive transformer [38]. The transformer is a powerful sequence
model that uses a self-attention mechanism. The transformer is trained to
predict future music codes, and the model can perform as a music gener-
ator. But the learned representation is not limited to generative tasks, and
it also showed versatility in many music classification tasks [85].

Other approaches

Problem-agnostic speech encoder (PASE) [86] learns speech representa-
tion with multi-task learning. Each task aims at predicting the features
that we already know. The model needs to reconstruct the original wave-
form (autoencoder), predict log power spectrum, mel-frequency cepstral
coefficients (MFCC), etc. Also, sequence predictive coding is included.
By solving multiple tasks, the model can learn problem-agnostic speech
representation.

More recently, transformer variants showed huge successes in self-
supervised representation learning. Bidirectional encoder representations
from transformer (BERT) [30] initially proved its versatility in natural

44



language processing. BERT is optimized in two different ways. Firstly,
a part of the sentence is masked, and the model is trained to predict the
missing tokens. Secondly, two different sentences are concatenated, and
the model needs to predict whether they are originally continuing sen-
tences or two irrelevant sentences. This idea has been expanded towards
image processing [87], video processing [88], and more recently, speech
recognition [89]. Section 2.4.3 describes the transformer in detail.

2.4 Natural language processing

24.1 Why NLP?

This section introduces recent advances in natural language processing
(NLP). Before that, why do we need to adopt NLP in music represen-
tation learning? As introduced in Section 2.2, deep learning approaches
report huge successes in music classification. The predicted musical at-
tributes are further used in music retrieval and recommendation. How-
ever, still, there is a semantic gap between machine-learned representation
and human understanding of music. Machines are not flexible enough to
handle synonyms (e.g., happy and happiness) and acronyms (R&B and
Rhythm Blues). Machines often fail to generalize when they encounter
unseen types of data. Different from machines, human music perception
is multimodal. We take advantage of other modalities when we listen to
music. Not only audio but also visual cues and written information con-
tribute to our music understanding. In this dissertation, I’'m aiming at (i)
learning multimodal music representation that can handle flexible music
tags beyond fixed vocabulary and (ii) reducing the semantic gap by tak-
ing advantage of information from text modality. The following subsec-
tions review pretrained word embeddings and transformer architectures
to achieve the goals.

45



2.4.2 Word embedding

In most classification tasks, each label is represented as a one-hot encoded
vector. These vectors do not connote any word semantics since they are
simply indices in a vocabulary. On the contrary, Word2Vec [41] represents
words as vectors that have multiple degrees of similarity in the embedding
space. In the pretrained embedding space, simple algebraic operations are
available using the word vectors. For example, vector(“King”) — vec-
tor(“Man”) + vector(““Woman”) results in a vector(“Queen”).

There are two ways of training the Word2Vec embeddings: contin-
uous bag-of-words (CBOW) and continuous skip-gram. To represent a
word, CBOW gets neighboring words as its inputs. Inputs are embedded
as vectors, and the vectors are averaged. Finally, the averaged vector is
projected to represent the center word. For example, from the sentence
“I drink water every morning”, we average the embedding vectors of “I”,
“drink”, “every”, and “morning”, then project their average to represent
the word “water”. In training data, other words, such as coffee and milk,
may appear in an analogous context; hence they are semantically simi-
lar in the trained embedding space. Continuous skip-gram is similar to
CBOW, but the direction is opposite. It uses the current word as an input
to predict the neighboring words.

Different from CBOW and continuous skip-gram, global vectors for
word representation (GloVe) [42] is designed to leverage both the local
context window and the global statistical information of co-occurrence.
The main idea of GloVe is to optimize the dot product between a center
word and a neighboring word to be their co-occurrence probability in the
corpus.

One can utilize the pretrained word embeddings in the music retrieval
scenario as they form a semantically meaningful similarity space. It can
alleviate the fixed vocabulary issue by retrieving the nearest music tag in
the word embedding space. Also, the pretrained embeddings can be pro-
jected to form a multimodal embedding space with music audio [90, 91].
Details of the multimodal embedding space for tag-based music retrieval
are described in Section 5.2.
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Figure 2.14: Self-attention mechanism.

2.4.3 Transformers
Self-attention

Sequence modeling is an important topic in natural language process-
ing, speech recognition, and music representation learning, as their input
formats are sequential. Recurrent neural network (RNN) [92] has been
broadly used in speech recognition [93, 94], machine translation [95], and
music tagging [96]. However, RNN has an inherent issue: a vanishing gra-
dient problem. In RNN, the current hidden state results from the previous
hidden states. As the sequence gets longer, it gets more difficult to learn
the long-range dependency. Unlike RNN, a self-attention module [38]
computes the response at a location in a sequence by attending to all loca-
tions within the same sequence. As a result, the self-attention mechanism
has become a substitute for RNN to capture a long-range structure within
sequential data.

There are three core concepts in self-attention mechanism: query, key,
and value. From the given query (()), the machine learns the relation be-
tween the query and keys (/) to compute the attention scores, and multi-
ply the attention scores to the values (V7). Finally, the sum of the attended
values composes the semantics of the given query. For example, there is
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a sentence “I play bass”. With bass alone, we don’t know if it is a fish or
an instrument. We know it is an instrument based on the context because
it has play in the sentence. When we want to know the semantic of bass
(Q), we calculate the attention score by comparing the distance between
bass and other words (K) in the sequence: I, play, and bass. This process
is formalized as follow:

= ¢(X) = XW, 2.11)

where 6(-), (), g(-) are learnable transformations, and W are their weights.
As shown in Figure 2.14, word embeddings are transformed into differ-
ent vectors. Then query vectors () and key vectors (K') are multiplied
using dot product to calculate the attention score. In the figure, dot prod-
uct between bass (orange circle in () and all words (blue, green, and
orange circles in K) are calculated to form attention scores. Blue circle
in attention score indicates the attention score that / contributes to bass,
green circle indicates play to bass, and orange circle indicates the atten-
tion score of bass to bass. In this context, for a given query bass, play will
have higher attention score than / since play is a more important compo-
nent to make bass as an instrument. Finally, we multiply the values (V')
with the attention scores to calculate the output embeddings. In the out-
put embedding vectors, each word embedding includes the context. The
calculation of self-attention is formalized as follow:

Attention(Q, K, V') = softmax (QKT) 1% (2.12)
s vy '

where dj, is a dimension of keys and (), K, V' are matrices whose shapes
are Sequence X Embedding.

Transformer

Transformer[38] is a representation model relying entirely on an atten-
tion mechanism to learn global dependencies between input and output.
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Figure 2.15: BERT architecture. Lower is input and upper is output.

By stacking multi-head self-attention layers, the transformer could dis-
pense convolutional layers and recurrent layers, and established a new
single-model state of the art in machine translation tasks. While the orig-
inal transformer [38] has encoder and decoder parts to tackle the machine
translation task, the bidirectional encoder representations from transform-
ers (BERT) [30] only uses encoders of the transformer.

Training process of BERT is self-supervised learning. There are two
different pretext tasks to solve. The first is masked language modeling
(MLM). Some percentage of the input word tokens are randomly masked,
and the model is optimized to predict the masked tokens. During the train-
ing, 15% of the token positions are randomly selected. 80% of them are
masked with [M AS K| token, 10% are replaced with random tokens, and
10% are unchanged. Another task is next sentence prediction (NSP). This
task is designed to understand the relationship between two sentences.
The machine has to predict whether two sentences are actual continuous
pair or not. For each sentence, the actual next sentence is chosen for 50%
of the time, and a random sentence is selected for the rest 50%.

As shown in Figure 2.15, BERT is a stack of self-attention layers. In
the first time step, there is a special [C'LS] token that summarizes the
entire sequence to perform sequence classification. Also, it can perform
token-level classification by returning predictions at each time step. Pre-
trained BERT is fine-tuned with labeled data. This versatile architecture
obtained new state-of-the-art results on eleven NLP tasks [30].
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2.5 Summary

Through this chapter, we reviewed relevant concepts and previous works
that are crucial in this dissertation research. Section 2.2 discussed key
concepts of music classification, including the task descriptions, input
representations, evaluation metrics, and instance-level training. These will
guide Chapter 3 to design and evaluate new music representation models
properly. Section 2.3 reviewed various training schemes beyond super-
vised learning, such as transfer learning, semi-supervised learning, and
self-supervised learning. They enable the inclusion of large-scale exter-
nal or unlabeled data during the training process. These training schemes
are introduced for music representation learning in Chapter 4 to enhance
models’ generalizability. Finally, recent updates of natural language pro-
cessing are reviewed in Section 2.4. Pretrained word embeddings can en-
able flexible vocabulary for music retrieval in Section 5.2. And sentence-
/paragraph-level text representations can be bridged together with music
audio representations to form multimodal music representation spaces in
Section 5.3.
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Chapter 3

MUSIC REPRESENTATION
LEARNING

3.1 Introduction

Representation learning [28] is a set of machine learning techniques that
automatically learns representations of the data. The learned represen-
tations are further utilized for classification or prediction. In traditional
machine learning approaches, this step has been done by humans. Re-
searchers manually designed ingenious features based on their domain
knowledge. On the other hand, modern deep learning approaches alternate
the process by letting the machine automatically learn relevant features
from the data. For example, we want to build a classifier that determines
whether a song delivers happy mood or not. In traditional approaches, we
need to design features that are relevant to keys and tempo since we think
those features are important for predicting the mood happy (e.g., a ma-
jor key with a fast tempo). However, in representation learning, we don’t
need the manual feature design process. From the data labeled with happy
and not happy, the machine will automatically learn relevant features for
the classification in an end-to-end way. Furthermore, with self-supervised
representation learning approaches [78, 97], we do not need labels but
only data.
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By leveraging large-scale data, deep representation learning has firmly
established the state-of-the-art in many domains including computer vi-
sion (CV) [79, 98], natural language processing (NLP) [30, 99], and music
information retrieval (MIR). MIR researchers have adopted the successful
deep representation models to solve a variety of problems including beat
tracking [100], pitch estimation [101], instrument identification [102],
mood classification [103], and automatic music tagging [104]. Especially,
automatic music tagging is one of the most actively explored areas in
MIR using deep representation learning due to the availability of scalable
datasets [54, 43, 40] which are rare in MIR research. Since music tags
cover multiple facets of music characteristics and their scalable datasets
suit data-driven research, in this chapter, we explore automatic music tag-
ging as a proxy of music representation learning.

This chapter is organized as follows. Section 3.2 introduces datasets
and evaluation of the automatic music tagging task. Section 3.3 tackles the
problem of heterogeneous experimental setups and revisit existing mu-
sic tagging models under a homogeneous evaluation pipeline. Section 3.4
presents data-driven front-end filters for music representation learning.
Section 3.5 introduces the transformer [38, 30] to music tagging and
shows its versatility and interpretability. Finally, section 3.6 summarizes
the work and provides some links with the next chapter.

This chapter includes the following works:

* Minz Won, Andres Ferraro, Dmitry Bogdanov, and Xavier Serra, Evalua-
tion of CNN-based Automatic Music Tagging Models, Sound and Music
Computing (SMC) 2020.

* Minz Won, Sanghyuk Chun, Oriol Nieto, and Xavier Serra, Data-driven
Harmonic Filters for Audio Representation Learning, The International
Conference on Acoustics, Speech, Signal Processing (ICASSP) 2020.

* Minz Won, Sanghyuk Chun, and Xavier Serra, Toward Interpretable Mu-
sic Tagging with Self-attention, ArXiv 2019.

* Minz Won, Keunwoo Choi, and Xavier Serra, Semi-supervised Music
Tagging Transformer, The International Society for Music Information
Retrieval (ISMIR) 2021.

52



3.2 Automatic music tagging

3.2.1 Datasets

MagnaTagATune (MTAT) [54] is one of the most commonly used datasets
for benchmarking automatic music tagging systems. It contains multi-
label annotations by genre, mood, and instrumentation for 25,877 audio
segments, each 30s long. The data was collected using the TagATune
game, where participants have to answer whether each tag is relevant to
each audio segment. Note that some segments are from the same song,
which means the number of unique songs is smaller than the number of
segments. The audio is in the MP3 format (32 Kbps bitrate and 16 kHz
sample rate). Originally the dataset is split into 16 folders, and commonly
the first 12 folders are used for training, the 13th for validation, and the
last three are used for testing. Only 50 most frequent tags are typically
used for the task.

Million Song Dataset (MSD) [43] is a dataset of audio features for one
million songs, partially expanded by the MIR community with crowd-
sourced tags from Last.fim as well as a mapping to 30s audio preview seg-
ments originally obtained from 7digital.' In total, this subset of the dataset
contains 241,904 annotated song segments and it is commonly used for
benchmarking music tagging models on a larger scale. The tags cover
genre, instrumentation, moods and decades. The audio segments vary in
quality, being encoded as MP3s with a bitrate from 64 to 128 Kbps and
sample rate of 22 kHz or 44 kHz. Similar to MTAT dataset, most previous
works use only 50 most frequent tags. Note that the tag annotations avail-
able for this dataset are inherently noisy as they come from a free-form
social tagging application for music enthusiasts and are used without any
preprocessing intended to improve the quality of tags [105].
MTG-Jamendo Dataset [40] contains audio for 55,701 full songs and
is built using music publicly available on the Jamendo* music platform
under Creative Commons licenses. The minimum duration of each song

"https://www.7digital.com
Zhttps://jamendo.com
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is 30s, and they are provided in the MP3 (320 Kbps bitrate). Thus, this
dataset contains significantly larger audio segments with higher encoding
quality than MTAT and MSD. The tracks in the dataset are annotated by
692 different tags covering genres, instrumentation, moods and themes.
All tags were originally provided by the artists submitting music to Ja-
mendo, but they were preprocessed with the goal of tag cleaning by the
creators of the dataset. Different from MTAT and MSD, official splits of
the data are provided for training, validation and test. There are splits for
top50-tagging, genre classification, mood / theme classification, and in-
strument classification.

3.2.2 Evaluation

Most automatic music tagging research uses the area under receiver op-
erating characteristic curve (ROC-AUC) as their main evaluation metric.
However, the ROC-AUC score can be overly optimistic when it is applied
to imbalanced (highly skewed) data [59]. Music tagging researchers re-
port the area under precision-recall curve (PR-AUC) together with ROC-
AUC scores on this account. Details of ROC-AUC and PR-AUC are de-
scribed in Section 2.2.4. The ground truth tag labels exist in a song-level
but some music tagging models make instance-level predictions due to
the limited size of receptive fields (Section 2.2.5). We need to aggregate
the instance-level predictions to generate song-level predictions so that
we can assess the model’s performance (measure ROC-AUC and PR-
AUC). Following most previous works, in this dissertation, we average
the instance-level predictions to generate song-level predictions when the
model is trained with instance-level training.

Music tagging is a multi-label binary classification task. If we tackle
the task with 50 tags, there are 50 AUC scores. But it is preferable to
have a single representative value when we compare multiple models. The
option “micro” calculates the metrics globally, “macro” averages the tag-
level metrics, and also it is possible to give different weights in average
process to take data imbalance into account. In this thesis, all evaluation
metrics are averaged using “macro” following most previous works.
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3.3 Comparison of CNN-based models

3.3.1 Motivation

To tackle the problem of music tagging, recent studies in MIR adopted
deep neural networks, mostly based on convolutional neural networks
(CNNs) [29]. The introduction of CNN helped to break the previous glass
ceiling in the performance of music tagging systems and researchers started
actively proposing their own architecture design. As a result, the hand-
crafted feature-based approaches were replaced by data-driven feature
learning approaches in most recent automatic music tagging research.
However, unfortunately, it is difficult to compare the proposed architec-
tures directly with each other due to their different experimental setups
when reporting results (e.g., dataset splits, library versions, computing
environments, and optimization methods). Furthermore, the related infor-
mation is sometimes unclear on the paper that results in unintentional
re-using and comparison of previous reports which are incompatible per-
formance values. In this section, we address this issue and report ex-
perimental results for various state-of-the-art music tagging models us-
ing three different datasets (MagnaTagATune, Million Song Dataset, and
MTG-Jamendo dataset) with a consistent experimental setup. In addition,
we conduct experiments to assess the robustness of these architectures
against four different types of deformations [106] and determine their
generalization abilities.

3.3.2 Inconsistent experimental setups
Data split

Different library versions, computing environments, and optimization meth-
ods may lead to inconsistent experimental results. One of the most crit-
ical issues of current music tagging research is inconsistent data splits.
This information is not clearly explained in each paper which results in
unintended wrong baselines. We could reproduce previous works after
collecting the details by contacting each author.
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In MTAT dataset, most previous works use top 50 tags as described
in previous section. That means some audio clips may not have any of
those 50 tags and this can affect training and evaluation of music tagging.
A group of researchers [33, 107] used the dataset as it is (=26k clips).
Another group of researchers [57, 58, 108] discarded the clips without
any tags (results in ~21k clips). This results in totally different scores
even if they use the same data split.

Inconsistent split also exists in the MSD tagging. Originally, the MSD
does not include audio. However, audio preview segments can be col-
lected from the web by mapping their metadata. Since the audio seg-
ments are collected, not designed to be a dataset, they have different
lengths. Different from most tagging models that utilize instance-level
training [107, 57], FCN [33] performs song-level training, hence all au-
dio inputs need to be the same length. To this end, the authors of FCN
discarded audio segments shorter than 29.1s.

Optimization techniques

Optimization is another critical part of deep learning experiments. Some-
times it is more critical than the model architecture. Various optimiza-
tion techniques have been introduced in machine learning research, such
as stochastic gradient descent (SGD), Adam [109], AdamP [110], and
AdamW [111]. Since previous music tagging works use different op-
timization techniques, it is impossible to compare those representation
models with the reported metrics. There is a possibility that the optimiza-
tion trick is more critical than the model architecture.

Preprocessing

Different preprocessing may affect the performance as well. Each previ-
ous work used different sampling rate (12kHz [33, 96], 16kHz [112, 57,
108], 22kHz [113, 80]), different short-time Fourier transform (STFT)
parameters, and different numbers of mel filterbanks (96 or 128).
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Figure 3.1: Fully convolutional network

Our solution

In this work, we reproduce previous music tagging models under the
same experimental setup. This holistic evaluation of music tagging mod-
els will enable the fair comparison of music representation models so
that researchers can choose the appropriate models for their purposes. We
use three different datasets: MTAT [54], MSD [43], and MTG-Jamendo
dataset [40]. For MTAT tagging, we use the tracks with at least one top-
50 tag. This is the same setting from [57, 58, 108] which includes ~21k
clips.> For MSD tagging, we follow the dataset split commonly used by
music tagging researchers.* This split includes 201,680 songs for training,
11,774 for validation and 28,435 for testing. We used a mixture of SGD
and ADAM for optimization which was introduced in [114]. For audio
preprocessing, 16kHz sampling rate, 512-point FFT with 50% overlap,
and 128 mel bands are used.

3.3.3 Music representation models

This subsection introduces various music representation models that we
used for the holistic evaluation.

Fully convolutional network (FCN)

A fully convolutional network (FCN) [115] is a variant of CNN that con-
sists of only convolutional layers without any fully-connected layers. A

3https://github.com/jongpillee/music_dataset_split/tree/master/MTAT _split
“https://github.com/jongpillee/music_dataset_split/tree/master/MSD_split
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Figure 3.2: VGGe-ish or short-chunk CNN with instance-level training.

FCN for music tagging uses mel spectrogram inputs. In the preprocessing
step, a 29.1s audio segment is converted to a 96 x 1366 mel spectrogram.
It is then used as an input and is passed through 4 convolutional layers.
Each convolutional layer uses homogeneous 3 x 3 2D filters followed by
a max-pooling layer (Figure 3.1). Different sizes of strides are used for
max-pooling layers ((2, 4), (4, 5), (3, 8), (4, 8)) to increase the size of
receptive fields to cover the entire input mel spectrogram (96 x 1366).
In the original paper, FCN was trained with a song-level training method
since the track durations in MTAT dataset correspond to the size of the
receptive field. However, this is not the case for MTG-Jamendo dataset
containing longer tracks, where instance-level (29.1s) training is applied.

Short-chunk CNN

According to the previous work [108], a simple 2D CNN with 3 x 3 fil-
ters can already claim exceptional results when it is trained with short
chunks of audio, i.e., instance-level training. It is a very prevalent type of
CNN (sometimes referred to as vgg-like, see Figure 3.2) but, to the best
of our knowledge, there are no references for this architecture design in
music tagging research. Hence, we implemented a 7-layer CNN with a
fully-connected layer, and its extension with residual connections [79].
Different from FCN, it uses a smaller size of max-pooling (2 x 2) because
the input segment is way shorter than the song-level inputs (29.1s). We
used 128 mel bins so that 7 max-pooling layers can summarize them into
a single dimension (27 = 128). It uses 3.69s audio excerpts, hence we call
this model ““short-chunk CNN” in this work to differentiate it from FCN.
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Figure 3.3: Harmonic CNN
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Figure 3.4: MusiCNN

Harmonic CNN

Harmonic CNN [108] takes advantage of trainable band-pass filters and
harmonically stacked time-frequency representation inputs. Trainable fil-
ters (mainly trainable bandwidths) bring more flexibility to the model.
And harmonically stacked representation preserves spectro-temporal lo-
cality while keeping the harmonic structures through the channel of the
input tensor in the first convolution layer (Figure 3.3) as introduced in
[116]. The number of trainable frequency bands is set to 128 and the num-
ber of harmonics considered for stacking is 6. Instance-level training with
5s audio segments is performed. More details are described in the next
section (Section 3.4).

MusiCNN

The MusiCNN [112] model also uses mel spectrograms as its inputs.
The architecture design choices in MusiCNN rely on some intuition from
the music domain knowledge. The first convolutional layer of MusiCNN
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consists of vertical and horizontal filters. Vertical filters are designed to
capture pitch-invariant timbral features (bottom-left of Figure 3.4): e.g.,
38 x 7 filter captures sub-band information of short period of time. To
enforce the pitch-invariancy, the following max-pooling layer pools the
maximum value across the frequency axis. Horizontal filters, on the other
hand, capture temporal energy envelope of the audio. After the mean-
pooling across the frequency axis of input mel spectrograms, horizontally
long filters (e.g., 1 x 165) capture the temporal energy patterns (top-right
of Figure 3.4). The extracted timbral and temporal features are concate-
nated through the channel, then the following 1D convolutional layers
summarize them to predict relevant tags. Different from FCN, the Mu-
siCNN only uses short audio excerpts (3s) as its inputs during training,
i.e., instance-level training.

Sample-level CNN

Sample-level CNN [57] tackles the automatic music tagging problem in
an end-to-end fashion (Figure 3.5). It takes raw audio waveforms as its
inputs. Sample-level CNN is simpler and deeper than mel-spectrogram-
based approaches. It consists of ten 1D convolutional layers with 1 x 3
filters and 1 x 3 max-poolings. Trained front-end filters perform similar
to the process of deriving mel spectrograms and the back-end convolution
layers summarize the sequence of the extracted features. We also consid-
ered a variation of sample-level CNN [58] with squeeze-and-excitation
(SE) [117] blocks. Sample-level CNN and its variant with SE blocks also
use short audio excerpts (3.69s) for the instance-level training.
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Figure 3.6: Convolutional recurrent neural network (CRNN)

Convolutional recurrent neural network (CRNN)

Convolutional recurrent neural network (CRNN) [96] uses mel spectro-
gram inputs. A CRNN can be described as a combination of CNNs and
RNNs. The CNN front end extracts local features and the RNN back end
summarizes them temporally (Figure 3.6). Since RNNs are more flexible
than CNNs for summarizing sequential information, it can be beneficial
to use RNNs for predicting tags that may be affected by global struc-
tures (e.g., moods/themes). Four convolutional layers with 3 x 3 2D filters
are used in the front end and two-layer RNNs with gated recurrent units
(GRU) are used in the back end. Long music excerpts (29.1s) are used
as inputs of CRNN. In other words, it performs song-level training for
MTAT and MSD, and instance-level training for MTG-Jamendo dataset.
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Figure 3.7: Convolutional neural network with self-attention (CNNSA) or
music tagging transformer.

Convolutional neural network with self-attention (CNNSA)

The self-attention-based music tagging model shares the same intuition as
CRNN to extract local features with CNNs and summarize them with se-
quence models. The only difference is that the self-attention mechanism is
used instead of the RNNs for the temporal summarization back end (Fig-
ure 3.7). Motivated by its huge success in natural language processing
[30], we adapted the Transformer encoder, which is a deep stack of self-
attention layers, for automatic music tagging. 15s-long audio excerpts are
used for training CNNSA. More details of CNNSA and its advanced ver-
sion are described in Section 3.5.
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3.3.4 Performance comparison

We report ROC-AUC and PR-AUC of all implemented models using three
datasets in Table 3.1. In general, models trained with short audio excerpts
(MusiCNN, variants of sample-level CNN, CNNSA, Harmonic CNN,
variants of short-chunk CNN) outperform other models trained with rela-
tively longer audio segments (FCN, CRNN). Training with short chunks
(instances) is noisier: e.g., an audio excerpt can have a tag guitar if a gui-
tar appears in the song even though the selected excerpt doesn’t include
guitar sound in it. However, one can expect a much larger number of ex-
amples during the training (e.g., 25,877 tracks x 16 chunks = 414,032
examples). We suspect this brings the performance gain when the model
is trained with short instance-level examples. Furthermore, most of the
top 50 tags in the three datasets can be identified only with a short au-
dio excerpt (e.g., instruments, genres). Thus, the model does not need a
long sequence of audio to perform its binary classification task. For the
top 50 tags in each dataset we experimented with, it is more beneficial to
use instance-level training with short audio excerpts than the song-level
training.

Short-chunk CNN, short-chunk CNN with residual connections, and
Harmonic CNN showed the best results for every dataset. These three
models are trained on short audio excerpts (3.69s or 5s) and they use
3 % 3 convolutional filters followed by 2 x 2 max-poolings. FCN uses
similar filters, but with larger max-poolings which increase its size of
the receptive field to fit long audio segments (29.1s). We conclude that
smaller max-poolings with shorter audio excerpts work better for CNNs
with 3 x 3 filters.

MusiCNN shows competitive results in MTAT. However, other mod-
els (sample-level + SE, CNNSA) outperform MusiCNN on larger datasets
(MSD and MTG-Jamendo). This confirms an intuition that domain knowl-
edge can be beneficial for relatively small datasets, reported in [112].
However, the design choices of MusiCNN restricts the power of the model
when it is trained with larger datasets.

For the sequential models, CNNSA outperforms the CRNN. Different
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from self-attention mechanisms, RNNs with long sequence inputs suffer
from vanishing gradient problems. Self-attention mechanism alleviates
the problems by providing direct paths between all time steps. Accord-
ing to the reported visualizations [114], self-attention performs well for
pinpointing relevant short-time acoustic features in the audio sequence,
but it was difficult to determine if the model learned long-time character-
istics properly. To determine such abilities, some tags related to a global
structure have to be cherry-picked and evaluated.

Since FCN, MusiCNN, and CRNN use mel spectrogram inputs with
96 mel bands, there can be relative disadvantages when they are com-
pared with other models using 128 mel bands. For the fair comparison,
we experimented with FCN, MusiCNN, and CRNN using 128 mel bands.
A larger number of mel bands did not show any significant impacts on the
performances. Since each architecture design was optimized for a smaller
number of mel bands, simply increasing the size of input mel bands can-
not guarantee the optimized performance of the models.

3.3.5 Robustness studies
Input deformations

To further investigate the performance of different state-of-the-art mod-
els, we conducted robustness studies. If a pretrained model has good gen-
eralization abilities, the prediction of the model should not be sensitive
against small perturbations in the input audio. By applying four different
audio deformations to the test set (pitch shift, time stretch, dynamic range
compression, and addition of white noise), we intended to determine the
generalization abilities of the models. Note that we applied these four de-
formations only to the test set, which means that the models have never
been exposed to the same deformations during training. All employed de-
formations are based on an existing music data augmentation framework
(MUDA)’ [106]:

* Pitch shift by n € {—1, 1} semitones.

Shttps://github.com/bmcfee/muda
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Figure 3.8: Evaluations metrics with perturbed audio inputs. Dynamic
range compression is shortened as “drc” in the plot.

« Time stretch by v € {271/2 21/2}.

* Dynamic range compression following speech and music (stan-
dard) settings of Dolby E standards [118].

* White noise addition z,,;,c¢ = (1 — @) - * + « - T0i5e Where
a€{0.1,0.4}.

Robustness results

Figure 3.8 shows performances of each model under various input de-
formations. Here we tested FCN, MusiCNN, sample-level + SE, self-
attention, Harmonic CNN, and short-chunk CNN. We followed the origi-
nal input preprocessing of each model because a larger of mel bands did
not show significant effects in our experiment. CRNN is not included due
to its relatively low performance.

Dynamic range compression was the least influential and the white
noise addition (0.4) was the most critical among the four different per-
turbations considered. MusiCNN is robust against time stretching but it
is relatively vulnerable against pitch shift. We suspect the max pooling
layer over frequency axis hinders the MusiCNN from learning general-
ized representations. Harmonic CNN and short-chunk CNN were the two
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best models with original data. However, Harmonic CNN showed better
generalization abilities against input deformations except for the white
noise addition (0.4). Sample-level CNN with SE blocks showed good per-
formance with a small amount of noise (0.1), but it could not generalize
when this amount was increased (0.4).

3.3.6 Conclusion

In this section, we revisit state-of-the-art automatic music tagging mod-
els and report their performances with a consistent experimental setup. In
general, short-chunk-based approaches (instance-level training) showed
better results than models trained with larger input segments (FCN, CRNN).
The design choices followed by MusiCNN could show good performance
on a small dataset, but it restricted the model from learning more infor-
mation on larger datasets. Sequential models (CRNN, CNNSA) showed
competitive results but could not outperform other models since most of
tags in the datasets do not require long sequences for their identification.
Interestingly, the best performing model is a simple CNN with 3 x 3 filters
trained on short audio excerpts (short-chunk CNN). Although the original
design choice of the CNN is from computer vision, it outperformed other
methods except for Harmonic CNN.

We further assessed generalization abilities of models by testing per-
turbed inputs. We could observe a different ranking of the models in terms
of their performance on each deformation. In our experiment, Harmonic
CNN and short-chunk CNN consistently report better scores than other
models. Specifically, Harmonic CNN showed the best generalization abil-
ities against every deformation types except for a heavy white noise addi-
tion. Since the models cannot generalize to unseen type of deformations,
the efficacy of data augmentation in music tagging has to be further in-
vestigated.
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3.4 Data-driven harmonic filters

3.4.1 Introduction

With the emergence of deep learning, end-to-end data-driven approaches
have become prevalent in audio representation learning [119]. Domain
knowledge is often de-emphasized in modern deep architectures and is
minimally used in preprocessing steps (e.g., mel spectrograms). Recent
works, with no domain knowledge in their architecture design and pre-
processing, reported remarkable results in automatic music tagging [57],
voice search [120], and environmental sound detection [121], by using
raw audio waveforms directly as their inputs.

Nevertheless, we believe that domain knowledge may facilitate more
efficient representation learning, especially when the amount of data is
limited [112]. Given that harmonic structure plays a key role in human au-
ditory perception [122], we present a model with a front end module that
can learn compelling representations in a data-driven fashion while forc-
ing the network to employ such harmonic structures. This front-end mod-
ule, which we call Harmonic filters, is a trainable filter bank [123, 124,
125, 126, 127] that preserves spectro-temporal locality with harmonic
structures [116]. Thus, these Harmonic filters aim to bridge the modern
assumption-free approaches with the traditional hand-crafted techniques,
with the goal to reach a “best of both worlds” scenario.

Contribution. Our contribution is three-fold: (i) we propose a versatile
front-end module for audio representation learning with a set of data-
driven harmonic filters, (ii) we show that the proposed method achieves
state-of-the-art performance in three different audio tasks, and (iii) we
present analyses on the parameters of our model that depict the impor-
tance of harmonics in audio representation learning.

Organization. This section is organized as follows: We introduce the
Harmonic filters and their architecture design in Section 3.4.2. Section 3.4.3
describes the tasks and datasets used to assess the Harmonic filters. Sec-
tion 3.4.4 reports experimental results and analyses. Finally, we draw con-
clusions and discuss future work in Section3.4.5.
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Figure 3.9: (a) The proposed architecture using Harmonic filters. The pro-
posed front-end outputs the Harmonic tensor and the back-end processes
it depending on the task. The Harmonic filters and the 2-D CNN are data-
driven modules that learn parameters during training. (b) Harmonic filters
at each harmonic. (¢) An unfolded Harmonic tensor. The red arrow indi-
cates the fundamental frequency.

3.4.2 Architecture

Previous Harmonic Representations

The harmonic constant-Q transform (HCQT) [116] is a 3-dimensional
representation whose dimensions are harmonic (H), frequency (F), and
time (T). By stacking standard constant-Q transform (CQT) representa-
tions, one harmonic at a time, the output representation (i.e., HCQT) can
preserve the harmonic structure while having spectro-temporal locality.
A fully convolutional neural network (CNN) with HCQT inputs could
achieve state-of-the-art performance in multi-fO and melody extraction
tasks using several datasets [116].

In our previous work [128], we used two learnable sinc functions (i.e.,
sin(z)/z) to form each band-pass filter of the first convolutional layer
[127], such that the set of harmonics can be learned. By aligning the
convolution band-pass filters in each harmonic, the first layer outputs an
H x F x T tensor. When the first harmonic center frequencies are ini-
tialized with a MIDI scale, this can be interpreted as an extended, more
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flexible version of HCQT.

However, the convolution band-pass filter approach to get harmonic
spectro-temporal representations requires many convolutions (H x F),
including redundant ones (e.g., a 440Hz filter is equivalent to the second
harmonic filter of 220Hz). To overcome these efficiency limitations, in
this work we replace the convolution band-pass filters of our previous
work with an STFT module followed by learnable triangular filters, the
so-called Harmonic filters.

Harmonic Filters

First, we formulate a triangular band-pass filter A as a function of a center
frequency f. and a bandwidth BW as follows:

B 2!f—f0|}
+7

B 3.1

A(f; fe, BW) = {1
where [-]; is a rectified linear function, and f is the frequency bin. Note
that when there are multiple triangular band-pass filters with mel scaled
center frequencies, the filter bank performs similarly to the mel filter
bank.°

Empirically, the bandwidth BW can be approximated as an affine
transform of f.: BW =~ 0.1079f. + 24.7 (equivalent rectangular band-
width (ERB) [129]). For flexibility’s sake, we let the data decide the affine
transform with parameters «, 3, and Q: BW = (af. + 3)/Q.

Now, we define a Harmonic filter A,, as follows:

2|f_nfc’
(n-afe+B)/Q)

The Harmonic filter A,, is a triangular band-pass filter of the n-th har-
monic of center frequency f.. Then, our proposed filter bank is defined as
a set of Harmonic filters as follows:

{(Au(fif) In=1,... H f.e {fM, ..., 1Y}, (3.3)

®It is not equivalent because mel filters have asymmetrical triangle shapes.
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where fc(i) denotes the i-th center frequency in the first harmonic. Fig-
ure 3.9-(b) shows Harmonic filters with H = 4 and F' = 3. Bandwidths
go wider as center frequencies go higher.

Note that, for a given input spectrogram, when H = 1 and f, are ini-
tialized with a mel scale, the filter bank will return an output analogous
to the mel spectrogram. When A > 1, we stack the outputs aligned with
harmonic so that we can have a tensor of dimensionality H x F' x T as
shown in Figure 3.9-(a). We call this 3-dimensional tensor a Harmonic
tensor. Exploiting locality in time, frequency, and harmonic by using this
type of representation is advantageous, as discussed in [116]. Further-
more, this Harmonic tensor is flexible since the center frequencies f. and
the bandwidth parameters «, 3, () are all learnable in a data-driven fash-
ion.

Back-end

Deep networks for audio representation learning can be divided into front
end and back end: a feature extractor and a classifier, respectively [112].
Figure 3.9-(a) shows the overview of the proposed architecture. We use an
STFT module followed by Harmonic filters as our front end. For the back
end, a simple conventional 2-D CNN is used since our main goal is to em-
phasize the advantages of using learnable Harmonic tensors. Harmonics
are treated as channels to be fed into the 2-D CNN, thus capturing the har-
monic structure through each of its channels. This design choice enforces
the convolutional filters to embed harmonic information with locality in
time and frequency.

Figure 3.9-(c) shows an unfolded Harmonic tensor of a 440Hz piano
sound. We indicate the fundamental frequency with a red arrow. From
left to right, we can see the intensity of the first, second, third, and fourth
harmonics at once.

Implementation details

First, harmonic center frequencies f. of the Harmonic tensor are initial-
ized to have a quarter tone interval: f.(k) = foin- 2k/24 where k is the fil-
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ter index and f,,;,, = 32.7Hz (C1) is the lowest frequency. The maximum
frequency of the first harmonic f,,,, is defined as: f,,.. = fs/2H, where
fs is the sampling rate. After the parameter study, we set the number of
harmonics H to 6 for inputs with a 16kHz sampling rate. This results in
128 frequency bins (F' = 128), with a total of 768 Harmonic filters.

The back end CNN consists of seven convolutional layers and one
fully connected layer to predict the outputs. Each layer includes batch
normalization [130] and ReLU nonlinearity. The final activation function
is a sigmoid or a softmax, depending on the task. Models are trained for
200 epochs and we choose the best model based on the evaluation met-
ric in the validation set. Scheduled Adam [109] and stochastic gradient
descent (SGD) were used for stable convergence as proposed in [114].

3.4.3 Tasks and Datasets

To show the versatility and effectiveness of the Harmonic filters, we ex-
periment with three different tasks: automatic music tagging, keyword
spotting, and sound event tagging.

Automatic music tagging. We used the previously introduced MagnaTa-
gATune (MTAT) dataset, and report ROC-AUC and PR-AUC — see Sec-
tion 3.2. Many music tags such as genre, instrumentation, and moods are
highly related to the timbre of audio, and harmonic characteristics are
crucial for the timbre perception. Hence, one can expect improvements in
music tagging by adopting the Harmonic filters in the front end.
Keyword spotting. MFCC have long been used as input to many speech
recognition models because harmonic structure is known to be important
for the speech recognition. We believe the Harmonic filters will bring
faster convergence and performance improvement than conventional 2-
dimensional representations (e.g., CQT, mel spectrogram). The Speech
Commands dataset [133] consists of ~106k audio samples with 35 com-
mand classes (e.g., “yes,” “no,” “left,” “right”) for limited-vocabulary
speech recognition. Trained models are trivially evaluated with the clas-
sification accuracy of choosing one of the 35 classes.

Sound event tagging. The DCASE 2017 challenge [134] used a subset of
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the AudioSet [135] for the task 4: “large-scale weakly supervised sound
event detection for smart cars.” It consists of ~53k audio excerpts with
17 sound event classes, e.g., train horn, car alarm, and ambulance siren.
Acoustic events are non-music and non-verbal audio signals, which are
expected to have more “inharmonic” characteristics. We are particularly
interested in exploring the performance of the proposed model on such
audio signals, and thus this task is an ideal candidate for our research.
This is also a multi-label classification task and we evaluate it using the
average of instance-level F1-scores.

3.4.4 Experimental results
Performance comparison

We compare the Harmonic tensor based 2D CNN with the state-of-the-art
models of each task. All the experimental results are averaged after three
runs. As shown in Table 3.2, our model outperforms previous results in
every task.

In music tagging, we reproduced Musicnn [112] with the same data
cleaning and split strategy from others [57, 58] for a fair comparison. As
a result, the mel spectrogram based approach [112] and the raw audio
based approach [58] yield comparable results on the MTAT dataset. Our
proposed model shows improvements from previous approaches in terms
of ROC-AUC and PR-AUC.

As we expected, the keyword spotting accuracy of the proposed model
is superior to previous works. Moreover, this showed remarkably fast con-
vergence: the best model according to the validation loss was around 10
epochs while other tasks needed over 100 epochs.

The Harmonic filters were also effective when operating on relatively
inharmonic audio signals. We report two different metrics for the DCASE
2017 dataset. F1 (0.1) indicates the F1-score when the threshold of pre-
diction is 0.1, and F1 (opt) is the post threshold optimization score. Note
that our model is superior to the state-of-the-art without data balancing or
ensembles.
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H 1 2 3 4 5 6 7*

ROC-AUC 0.9132 09115 09118 09118 09129 0.9141 0.9146
PR-AUC  0.4599 0.4541 0.4550 0.4555 0.4562 0.4646 0.4617

Table 3.3: The effect of number of Harmonics (H) on MTAT. **’ has a
different size of max pooling due to the smaller F'.

Options 512 FFT 256 FFT Quarter tone Semi tone
Q(MTAT) 2.1386  1.9537 2.1386 1.8447
Q(Speech Commands) 1.9032  1.9983 1.9032 1.8451
Q(DCASE 2017) 1.9040 1.8762 1.9040 1.8460

Table 3.4: Trained bandwidth parameter () in different settings.

Parameter study

Here, we provide further understanding of the Harmonic filters by a pa-
rameter study and a qualitative analysis on the trained models.

We conduct the parameter study using the MTAT dataset to investigate
how the number of harmonics /1 impacts performance. Table 3.3 summa-
rizes the results. When H = 1, the Harmonic tensor is a 2-dimensional
representation like a mel spectrogram or a CQT, but with frequency bins
and bandwidth parameters that are automatically learned and initialized as
described in Section 3.4.2. For 3-dimensional Harmonic tensors (H > 1),
performance improves as the model uses more harmonics. Note that, as
we described in Section 3.4.2, the frequency range in the first harmonic
becomes narrower as the number of harmonics H increases (fax =
fs/2H). We hypothesize that this is the reason why there is a slight per-
formance drop between H = 1 and H = 2. However, much larger H
might yield worse results. If H = 10 for example, the maximum fre-
quency of the first harmonic becomes 800Hz, which means the Harmonic
tensor cannot include the harmonic information of higher pitches, i.e.,
fundamental frequencies higher than 800Hz.

We also tried to determine the role of learnable center frequencies f,.

75



but we could not find significant differences between learnable and fixed
center frequencies. Their performance gaps in three different tasks are
all in the range of performance variance. In our experimental setup using
quarter tone MIDI scale, there is no observable benefit of using learnable
center frequencies f..

Finally, we show the role of the bandwidth parameter . In this exper-
iment, we used fixed values of « and 3 with the empirical values [129] and
only let () to be trained. As we mentioned in Section 3.4.2, the Harmonic
tensor is more flexible than HCQT since this parameter does not need
to be heuristically set. In Table 3.4, the bandwidth parameter () changes
based on task, FFT size, and center frequency interval. This proves that
the optimal parameter () is task- and settings-dependent, thus showing the
importance of automatically learning it in a data-driven manner.

3.4.5 Conclusion

In this section, we introduced data-driven Harmonic filters to form a ver-
satile front end for audio representation learning. Experimental results
report state-of-the-art performance in automatic music tagging, keyword
spotting, and sound event tagging tasks. The output of the proposed front-
end keeps locality in time, frequency, and harmonic so that the subse-
quent back-end can explicitly capture harmonic structures. The proposed
front end is flexible since it learns bandwidth parameters in a data-driven
fashion. To further scrutinize the representation ability of the proposed
model, other complex tasks beyond binary classification should be con-
sidered. Analyzing how well this model scales with larger datasets would
also be key to better understand the potential of the proposed architecture.
Finally, interpretability studies and additional investigation on the learn-
able parameters of the model may yield valuable insights in terms of how
to more optimally apply these Harmonic filters.
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3.5 Transformers for music representation

3.5.1 Introduction

Thanks to the recent advances in deep learning, mostly convolutional
neural networks (CNNs) [29], the performances of music tagging mod-
els have been significantly enhanced by leveraging large-scale data with
various deep architectures [115, 112, 57, 108]. However, in this section,
we want to highlight two limitations of previous works (instance-level
training and less interpretability), and propose new music representation
models that alleviate the pointed issues.

Music signals are in the form of sequential data. In this sequence,
regarding typical tags, some acoustic characteristics may appear locally
(e.g., instruments) while some others may span over the sequence (e.g.,
mood, genre). This means a successful music tagging model needs to be
able to extract both local and global features. Fully convolutional net-
work [115], one of the very early deep learning models for music tag-
ging, was designed to capture both local and global features by increas-
ing the size of the overall receptive fields with max-pooling. More re-
cently, however, it is shown that training with a smaller hop size with
shorter audio chunks (i.e. instance-level training) is beneficial for music
tagging [104] — see Section 3.3. This approach has been adopted in many
CNN-based models [112, 57, 108], where the models are trained with
short audio chunks (3 to 5 second long), densely striding max-pooling,
and a global pooling layer. To predict music tags of a 3-minute song,
for example, the audio is split into multiple short audio chunks, and the
model makes predictions on each chunk. Then, the predictions are aggre-
gated through majority vote or global average-/max-pooling. This means
that on a track level, the current music tagging models are performing like
a bag-of-features model [36] instead of modeling music representation as
a sequence.

However, we believe that music is sequential and it composes its high-
level semantics based on the relations between individual components in
long-term sparse positions, not only based on the local information. On

77



analogous motivations, Choi et al. adopted convolutional recurrent neural
networks (CRNN) [96] and Pons et al. tried to depict deep architectures in
two parts: front end and back end [112]. The front end, which is equiva-
lent to the CNN part of CRNN, learns local features. The back end, which
corresponds to the RNN part of CRNN, captures the structure of learned
local features. Although they reported remarkable results, they are not
suitable for modeling the long-term context. To encapsulate long-term
context with CNN back end, deep stacks of convolutional layers followed
by subsampling layers (mostly max-pooling) are required, which will end
up with blurred time resolution. RNN back end with longer sequence in-
puts suffers from the demand of huge computational power and gradient
vanishing/exploding problems [136].

Another limitation of CNN-based models is less interpretability. CNN
for MIR are yet less interpretable despite there has been noteworthy pre-
vious research to explain the predictions [137, 138, 139]. One possible
reason is that spectrogram-based 2D CNN models which have been used
in the research learn spectro-temporal characteristics in each layer, while
music is a temporal sequence of individual audio events. Highlighted
2D patch in images are very intuitive, while visualization and auraliza-
tion [137] of spectro-temporal patches in mel spectrograms are still less
intuitive for humans to understand the mechanisms behind music repre-
sentation models.

Self-attention is an attention mechanism that learns a representation
by relating different positions in the sequence. It facilitates the model to
learn long-term context by relating each pair of positions directly. The
transformer [38], which is a sequence model solely based on self-attention,
and its variants [30, 140] showed compelling results on extensive NLP
tasks. Its versatility is also demonstrated in generative models such as
generative adversarial networks (GAN) [141] and auto-regressive mod-
els [142, 34]. In particular, the Music Transformer [34] has shown that
the transformer could model the long term dependency for musical rep-
resentations using symbolic data, such as MIDI. And Wave2Midi2Wave
[143] expanded the research toward raw audio by adopting the Onsets and
Frames [144] to transcribe the raw audio (wave2midi), the Music Trans-
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former [34] to generate MIDI notes, and the Wavenet [145] to generate
raw audio from the MIDI notes(midi2wave).

Like this, transformer is a powerful representation model which en-
ables long sequence modeling. As we aim at the representation model
that performs beyond instance-level training or bag-of-features model,
transformer meets the purpose. Another benefit of using transformer is in-
terpretability. Since self-attention mechanism directly learns the relation
between different points in the sequence, this can be easily visualized.
Inspired by these, we propose to adopt the successful architecture to the
back end of music tagging models. By this means, one can expect not
only the performance but also the interpretability.

Proposed models in this section consist of CNN front end and trans-
former back end (Figure 3.7). CNN front end is expected to capture local
information: e.g., timbre, pitch, and chord; and the transformer back end
to capture more structural information: e.g., rhythmic patterns, melodic
contours, and chord progressions; based on the combination of the cap-
tured local components. Based on this concept, two different models using
transformer are introduced in this section: convolutional neural network
with self-attention (CNNSA) [114] and music tagging transformer [113].
Their main differences are temporal resolution and the front end design.

In the following subsection (Section 3.5.2), we introduce the first trans-
former model for music audio representation learning. Then the upgraded
variation, which claims the new state-of-the-art in automatic music tag-
ging, is introduced in Section 3.5.3.

3.5.2 Convolutional neural network with self-attention
(CNNSA)

Convolutional neural network with self-attention (CNNSA) [114] is the
first attempt to apply transformers in music audio representation learning.
In this work, we experimented two different front ends (Spec and Raw)

and compared the proposed transformer back end with conventional CNN
back ends.
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Figure 3.10: Spec front-end from MusiCNN. B, C, F, and T stand for
batch, channel, frequency, and time dimension.

Front end

Spec front end uses the front end of MusiCNN [112]. As introduced in
Section 3.3.3, MusiCNN uses mel spectrogram inputs. Vertically long
convolution filters are designed to capture timbre-related features, and
horizontally long filters to capture temporal characteristics. After the ver-
tical convolution, extracted feature maps are max-pooled along the fre-
quency axis (see Figure 3.10). By this mean, the appearance of each in-
strument will be captured while pitch related information to be ignored.
Horizontal filters capture temporal energy flux patterns in up to 2.6s se-
quence. Horizontal filters receive average-pooled (along with frequency
axis) spectrograms as their inputs. Since vertical filters have a max-pooling
layer after the convolutional layer, and horizontal filters have an average-
pooling layer before the convolutional layer, the frequency axis of the
tensors can be flattened (Figure 3.10). Flattened two feature maps are
concatenated along channels. We call this spectrogram based front end
as Spec front end. Spec front end uses 256 frames (~4.1s) of spectrogram
chunk as its input.

The Spec front end is relying on manual design strategies. However,
one can expect the data to decide the entire feature design process. From
the motivation, we also experimented Raw front end. As introduced in
Section 3.3.3, sample-level CNN [57, 58] stacks short grain of one di-
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Spec Raw

Layer Filter shape Layer Filter shape

1 32x38x1 1 128 x 3
1 32 x 86 x 1 2 128 x 3
1 16 x 38 x 3 3 128 x 3
1 16 x 86 x 3 4 256 x 3
1 8 x38x7 5 256 x 3
1 8 x 86 x 7 6 256 x 3
1 64 x 33 7 256 x 3
1 32 x 65 8 256 x 3
1 16 x 129 9 256 x 3
1 8 x 165 10 512 x 3

Table 3.5: Filter shapes of Spec front end and Raw front/back end. Dimen-
sions of filters are Channel x Frequency x Time or Channel x Time.

mensional convolution filters (e.g. 1 x 3) to model the music sequence.
It is an assumption-free model that aims at learning representation from
scratch. We call the front end using sample-level CNN as Raw. Strictly,
there is no clear boundary of front end and back end in the sample-level
CNN since it consists of homogeneous 1D convolutional layers. However,
to examine our transformer back end, we regarded the first five convolu-
tional layers as a front end since one frame in the feature map after the
five layers can include 15.2ms of audio which can be compared with one
frame of spectrograms (16ms). Only when we use transformer back end,
for the fair comparison, Raw front end is followed by one 1 x 7 convo-
lutional layer since vertical filters of Spec front end have capacities of up
to 7 frames (112ms). Raw front end uses 65,610 samples (~4.1s) of raw
audio inputs. Detailed number of parameters are described in Table 3.5.
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Figure 3.12: Transformer back end with two self-attention layers.

Back end

MusiCNN back end uses stacks of 1D CNN with residual connections
[79] — see Figure 3.11. Channel size is 512 for each layer. We denote
this back end as CNNp named after Pons et al. [112]. When the model is
using Spec front end and CNNp back end (i.e., Spec_CNNp), it is identical
to original MusiCNN. On the other hand, as we reviewed before, sample-
level CNN does not have a clear boundary of front end and back end.
For convenience, we call the latter five layers of sample-level CNN as
CNN/, back end named after Lee et al. [57]. In the end, Raw_CNN, model
consists of ten 1D convolutional layers as proposed in the original paper
[57]. Each layer of both back ends uses batch normalization and ReLLU
non-linearity.

Our proposed Transformer back end is a stack of self-attention layers
(Figure 3.12). We applied the self-attention to the feature map that we get

82



from the front end convolution. If we recall the equation of self-attention
in Section 2.4.3, the attention score is

Attention(Q, K, V) = softmax (QKT) 1% (3.4)
) ) \/d_k *

where dj; is a dimension of keys and (), K, V' are matrices whose shapes
are Sequence X Embedding. Suppose a convolution feature map is given
after the front end convolution of Spec or Raw and let X € R7*“F or X ¢
RT*C denote the feature map, where C' is channels, 7" is time, and F' is
frequency axis. For simplification, here we only explain with X € R7*¢
which is a feature map of Raw front end. In this case, an 1 x C' vector of
the feature map at each time bin can be regarded as a word embedding.
Hence, (), K, and V of the feature map X can be denoted as:

Q = 0(X) = XW, € RTXC
K = ¢(X) = XW, € RT*C 3.5)
V =g(X)=XW, € RT*C

where 6(-), ¢(-), g(-) are learnable transformations.

As the Bidirectional Encoder Representations from Transformers (BERT)
[30] achieved remarkable performance in many classificaiton tasks by
only using stacked self-attention layers (i.e., transformer encoders), and
our task is also to classify not to generate, we only adopted the encoder
part of the transformer. As shown in Figure 3.12, our proposed back end
uses stacks of self-attention to classify the tags of given sequence X.
[CLS] is a special token that includes overall context for the classifi-
cation. Self-attention that we used is multi-head attention [38].

Optimization

Careful design of learning rate schedule is critical to both of convergence
speed and generalization [146, 147]. Adam [109], an adaptive optimiza-
tion method, achieves fast convergence but it is generally known to im-
pede the generalization of models [148, 149]. Instead of using conven-
tional stochastic gradient descent (SGD) or Adam, we propose an opti-
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mization technique inspired by the Switches from Adam to SGD (SWATS)
[148].

We first optimize the network using Adam [109] with learning rate
le—4, betal 0.9, and beta2 0.999. After 60 epochs, we reload the model
which achieved the best validation ROC-AUC during the 60 epochs, and
switch the optimizer to SGD with momentum 0.9 and nesterov momen-
tum. We drop the learning rate by 10% at the epoch 80 and 100. In
Section 3.5.2, we show that our proposed mixed optimization scheme
improves the generalization capacity than an SGD with manual learn-
ing rate scheduling. Note that our proposed method loads the best model
weights during the training while SWATS [148] switches optimizer with-
out changing the weights.

Dataset

We used MagnaTagATune dataset (MTAT) [54] and the million song dataset
(MSD) [43] for our experiments. Details of the datasets are described in
Section 3.2.1. Dataset splits are identical to Section 3.3.2 [104].

We investigate two different types of input: raw audio and log mel-
spectrogram. For the comparable research, we decided to use 16kHz sam-
pling rate for both inputs. Essentia library [150] was used to load and
downsample the audio. To get the log mel spectrograms, hanning window
of 512 samples with 50% overlap has been used and the number of mel
bins was set to 96. Librosa library [151] was used for this step. We did
not normalize the dataset. Instead, CNNp has batch normalization in the
first layer.

Results

We report ROC-AUC and PR-AUC to assess different models. Since we
are using user-generated tags (MTAT and MSD), there is popularity bi-
ased skewness in their distributions. Although we are using ROC-AUC
to choose the best model, it’s not always the best in both metrics — see
Table 3.7.
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MTAT MSD
Front end Back end ROC-AUC PR-AUC ROC-AUC PR-AUC

Raw [57] CNN7y, [57] 90.62 44.20 88.42* -
Raw [57] Transformer (Ours)  90.66 4421 88.07 29.90
Spec [112] CNNp [112] 90.89 45.03 88.75% 31.24*

Spec [112] Transformer (Ours)  90.80 44,39 88.14 30.47

Table 3.6: Comparison of state-of-art music tagging models on MTAT
and MSD. The results marked with (*) on top are reported values from
the reference papers.

#heads #layers ROC-AUC PR-AUC

1 2 87.73 36.93
2 2 89.40 41.20
3 2 90.23 43.23
4 2 90.40 43.89
5 2 90.60 43.91
6 2 90.61 44.39
7 2 90.74 44.43
8 2 90.80 44.39
8 1 90.54 44.12
8 2 90.80 44.39
8 3 90.19 43.22

Table 3.7: Impact of the number of attention heads and layers on MTAT.
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Input length  # layers ROC-AUC PR-AUC

256 2 90.80 44.39
1024 2 89.62 41.61
1024 3 89.85 42.25
1024 4 89.86 41.84

Table 3.8: ROC-AUC and PR-AUC results on MTAT using proposed
Spec_Transformer models with longer input sequence.

Table 3.6 shows ROC-AUC and PR-AUC of the baseline models and
our proposed models. Each value in the table is the average of three dif-
ferent runs. As shown in the table, our proposed Transformer back end
reports competitive results for both datasets.

MTAT validation AUROC 45 MTAT validation AUPR
00|t 40
2 ~
e e
£ o —— ADAM &35
= —— SGD < " —— SGD
ours ours
80, 200 400 25 200 400
Epochs Epochs

Figure 3.13: Comparison of optimizers: Adam, SGD, and our proposed
method.

Attention Parameters. Choosing an appropriate number of attention lay-
ers and heads can be crucial for designing better models. As shown in Ta-
ble 3.7, attention layers more than 2 did not show significant improvement
and 8 attention heads reported the best performance. Hence, we fixed the
number of attention layers and attention heads in our experiments as 2
and 8, respectively. Note that this setup is optimized for ~4.1s inputs.
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Optimization. As we depicted before, we used our novel optimization
method. By adopting Adam [109] in the beginning, we expected faster
convergence than SGD. As shown in Figure 3.13, Adam and our optimiza-
tion method show a steeper learning curve than SGD. However, ROC-
AUC and PR-AUC of Adam go down after around 100 epochs, which
means it failed to generalize the model. Since we switch our model to
SGD at 60 epochs, it shows more stable learning curve than Adam only.
Although this switch point is an arbitrary point, our optimization method
can generalize the model well because we load the best model during the
training when we switch the optimizer or learning rate — we used ROC-
AUC to choose the best model.

Longer Sequence. In our main experiment, we only used relatively short
audio chunks (=4.1s) as our input for the fair comparison — sample-level
CNN used short chunks. However, transformer is known to be efficient
to model long-term sequence. We experimented the Spec_Transformer
model for MTAT using 1024 samples (=16.4s) and we could see slightly
lower but comparable results — see Table 3.8. More stacks of self-attention
layers were required to model longer sequence.

Visualization

To interpret the proposed model, we provide two different visualization:
attention heat map and tag-wise contribution heat map. While attention
heat map shows where the trained model pays more attention, tag-wise
contribution heat map highlights which part of the input spectrogram is
more relevant to predict the given tag.

Attention Heat Map. To understand the behavior of the model, it is im-
portant to know which part of the audio the machine pays more attention
to. To this end, we summed up attention scores from each attention head
and visualized. Attention score A of a single attention head can be de-
scribed as:

T
A = softmax <Cf/[§_k ) . (3.6)

Figure 3.14 shows log mel-spectrograms and according attention heat
maps. For simplification, we only visualized the attention heat map of
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Figure 3.14: Attention heat maps.
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(a) Piano + Flute

e e e
AN

(b) Techno + Classic

(¢) Quiet + Loud

Figure 3.15: Tag-wise contribution heat maps on concatenated spectro-
grams. From the top, concatenated spectrograms, contribution heat maps
to the first tags (Piano, Techno, and Quiet, respectively), and contribution
heat maps to the second tags (Flute, Classic, and Loud, respectively).
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the last attention layer. As we can see in Figure 3.14a and Figure 3.14b,
the model pays more attention to relevant parts of spectrograms. How-
ever, we discovered one interesting thing which is: the model always pays
attention to the parts with audio events. For example, in Figure 3.14c,
the model pays attention to the loud part of the audio although the given
spectrogram was classified as “quiet”. We could also observe this behav-
ior from negative tags such as “no vocal”, “no vocals”, and “no voice”.
One possible reason is that the model pays attention to the more informa-
tive part of the spectrogram. Indeed, negative tags report relatively worse
ROC-AUC (= 0.7) than other tags (= 0.9). Although attention heat maps
can pinpoint where the machine pays attention for the decision, they can-
not provide reasons for the classification or tagging.

Tag-wise Contribution Heat Map. Understanding which part of the au-
dio is more relevant to each tag is also important to interpret the model.
We manually changed the attention score of the last attention layer. For
each time step, we manipulated the attention score as 1 and set other parts
as 0 so that we can see the contribution of each time bin to each tag. This
tag-wise contribution heat map is inspired by the manual attention weight
adjustment proposed in [152]. To compare the different contribution of
different audio, we concatenated two spectrograms and fed them through
the network. For instance, Figure 3.15a is a concatenated spectrogram of
piano (left half) and flute (right half). The first row heat map highlights
the contribution of each time bin to the “piano” and the second row is
for “flute”. We repeated this for genre (Figure 3.15b) and mood (Figure
3.15¢). As shown in Figure 3.15¢, the tag-wise contribution heat map can
provide more information about tag specific part of the audio, which was
not able to be observed from the attention heat map (Figure 3.14c).

Conclusion

In CNNSA research, we proposed a novel deep sequence model for mu-
sic tagging using transformer which can facilitate better interpretability.
The proposed model consists of CNN front end and transformer back end.
Experiments on MTAT dataset and MSD reported competitive results and
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we could demonstrate the interpretability of the model by visualizing at-
tention heat maps and tag-wise contribution heat maps. By leveraging the
acquired interpretation, one can obtain better intuition for the model de-
sign.

3.5.3 Music tagging transformer

In this subsection, we introduce an advanced music representation model
using transformer: music tagging transformer [113].

Front end

Two of the main conclusions of Section 3.3 recommend (i) using mel
spectrogram inputs, and (i) using the most granular 2D filters (i.e., 3 X
3 convolution) instead of manual design choices. That means, a simple
2D CNN with mel spectrogram inputs, which is prevalent and sometimes
referred to as vgg-ish model, is still outperforming the other music tagging
models. We follow the suggestions — we use 3 x 3 convolution filters with
residual connections [79] on mel spectrogram inputs. Table 3.9 outlines
our 3-layered CNN front end where B is the batch size, C' is the number
of convolution channels, ' is the number of mel bins, 7' is the number of
frames, and C’ is the number of attention channels of Transformer. This
CNN front end (i) helps the model to capture local representations and (i)
reduces the time resolution of the input so that it is feasible to train the
following back end.

At the end of the CNN, the second and the third dimensions are re-
shaped into a single dimension. This flattening is motivated by Vision
Transformer (ViT) [87] which reshapes a 2D image patch into a one-
dimensional array. As a result, the output of the CNN is a sequence of
short-chunk audio features where a chunk corresponds to approximately
0.1 second. It is input to the back end transformer. This is in contrast to
the CNNSA [114] that used the frequency-axis max-pooling at the end of
its front end. In other words, in Music Tagging Transformer, the attention
layers are given more detailed spectral information.
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layer output shape

Input Bx1xFxT
Conv (3 x 3) BxCxFxT
MaxPool (2 x2) BxCx F/2xT/2
Conv (3 x 3) BxCxF/2xT/2
MaxPool (2 x2) BxCx F/4xT/4
Conv (3 x 3) BxCxF/4xT/4
MaxPool 2 x 1) B xCx F/8xT/4
Reshape Bx (C-F/8)xT/4
Fully-connected BxC'xT/4

Table 3.9: Front end CNN of Music Tagging Transformer.

Back end

Our back end Transformer architecture is nearly identical to the previous
works [30, 114] except for the number of parameters and input lengths.
After a hyperparameter search, we chose 4 layers, 256 attention dimen-
sions, and 8 attention heads. At the input stage, positional embedding [30]
is applied and a special token embedding Ejc.s) is inserted so that the
Transformer can perform sequence classification as a downstream task.

Data Augmentation

Data augmentation is a key to success in generalizable representation
learning. In our experiments, we take advantage of Audio Augmentations
library [153] which is easily integrated to PyTorch data pipeline. The ap-
plied data augmentation methods are as follows:

* Polarity inversion.
* Additive noise by k,,,. € {0.3,0.5}.
* Random gain by A € {—20,—1} dB.
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High-pass filter by [ € {2200, 4000} Hz.

Low-pass filter by f;, € {200, 1200} Hz.

Delay by ¢ € {200,500} ms.

Pitch shift by n € {—7, 7} semitones.

Reverb by room size s € {0,100}.

Each augmentation method is activated independently with a probability
p € {0.3,0.7}.

Dataset

For a consistent comparison, we used the conventional data split of MSD
that was used in previous works [115, 112, 57, 108, 104]. All the au-
dio signals are preprocessed to 22,050 Hz sample rate and converted to
short-time Fourier transform representations with a 1024-point FFT and
50%-overlapping Hann window. Finally, we convert them to log mel spec-
trograms with 128 mel bins.

We also suggest a new split to alleviate some known problems of the
conventional split. There are two problems — First, since the MSD mu-
sic tags are collected from users, some of them are very noisy, and that
may lead to noisy (and incorrect) evaluation [105]. Second, a strict split
of music items requires taking the artist information into consideration
since often, songs and labels from the same artist heavily resemble each
other. However, the conventional split was done without such consider-
ation, having caused unintended information leakage between the train-
ing and evaluation sets. Ultimately, this would cause an overly optimistic
evaluation. As a solution, we use manually cleaned data from a previous
work [91] and take the top 50 tags. We also propose a new split of MSD
that does not share any artist among training/validation/test sets and is
extended to more tracks. We name this ‘CALS split’ (cleaned and artist-
level stratified split). CALS split consists of 233k labeled tracks and 516k
unlabeled tracks.
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Performance with the conventional split

The model is optimized using Adam [109] with a learning rate of 0.0001.
The best model is selected based on the binary cross entropy loss of the
validation set and early stopping is applied when the validation loss does
not improve for 20 epochs.

Table 3.10 summarizes the performance of previous systems and the
proposed model using the conventional split. The ROC-AUC and PR-
AUC of the many previous models have been under 0.89 and 0.33, re-
spectively. Our model, Music Tagging Transformer, outperforms the pre-
vious state-of-the-art models, harmonic CNN and short-chunk ResNet.
The improvement, especially on PR-AUC, is non-trivial and even larger
with data augmentation.

The front end of our Music Tagging Transformer takes a sequence
of chunks, where each of which represents a very short duration of the
signal (=~0.1 second) [104]. Because 0.1 second would be too short to
represent musical characteristics alone, we interpret that the experimental
results would mean our transformer back end plays a role of sequential
feature extractor beyond simple bag-of-feature aggregation. This may be
an important aspect of the proposed model since sequential modeling is
what the self-attention mechanism is the best suit.

The data augmentation we adopted contributes to improvements of
0.0056 ROC-AUC and 0.0119 PR-AUC. These are bigger than many of
the improvements we have seen between different architecture choices.
This emphasizes that data augmentation should be considered when de-
veloping a music tagging model.

Performance with the CALS split

For a deeper and more accurate analysis of the proposed model, we also
use the proposed CALS split. Table 3.11 presents the experimental results
of short-chunk ResNets (previous state-of-the-art architecture) and Music
Tagging Transformers. The Music Tagging Transformer consistently out-
performs ResNet models in both conventional and CALS splits.
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Models ROC-AUC PR-AUC

FCN [115] 0.8742 0.2963
Musicnn [112] 0.8788 0.3036
Sample-level [57] 0.8789 0.2959
Sample-level+SE [58] 0.8838 0.3109
CRNN [96] 0.8460 0.2330
CNNSA [114] 0.8810 0.3103
Harmonic CNN [108] 0.8898 0.3298
Short-chunk CNN [104] 0.8883 0.3251
Short-chunk ResNet [104] 0.8898 0.3280
Transformer (proposed)? 0.8916 0.3358

Transformer (proposed) + DAT 0.8972 0.3479

Table 3.10: Performance comparison using the conventional MSD split
for top-50 music tagging. The § and | marks mean they are based on the
identical model architecture and training strategy; compared to the same,
marked models in Table 3.11, only the dataset split is different.

For both of the models, it also summarizes the results of vanilla mod-
els and with data augmentation (DA). Note that the two bottom rows of
Table 3.10 correspond to the 3rd and 4th rows of Table 3.11 as marked
with § and t. For both short-chunk ResNet [104] and the Music Tagging
Transformer, we observe constant improvements when data augmentation
is applied.

More hyperparameter search

We further present the experiment results with various model configura-
tions. First, we trained our Music Tagging Transformer and short-chunk
ResNet with varying input lengths to assess our proposed model’s ability
to handle long sequences. As shown in Figure 3.16, on both of the met-
rics, short-chunk ResNet shows a noticeable performance degradation as
the audio input gets longer. This shows that the global max pooling in the
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Models #param ROC-AUC PR-AUC

ResNet [104] 13.5m 0.9098 0.3525
ResNet+DA 13.5m 0.9141 0.3705
Transformer® 4.6m 0.9188 0.3775

Transformer+DAT  4.6m 0.9191 0.3845

Table 3.11: Performance comparison using the CALS MSD split for mu-
sic tagging.

O Transformer ResNet
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Figure 3.16: Performance with different input lengths.

short chunk ResNet is not perfectly suitable for a long signal. Meanwhile,
the Music Tagging Transformer shows consistent performances in gen-
eral. An exception is when the input is 30-second long. We suspect the
performance drop of the Music Tagging Transformer happens because
the model cannot take advantage of random cropping data augmentation
effect since the 30-second is the full length of the MSD previews.
Second, we investigate different Transformer parameters to figure out
the best performing setup. As summarized in Table 3.12, transformer
achieved the best performance with attention channels (width) at 128 and
256, and their depth of 4 and 8 layers. However, these optimal parameters
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width depth ROC-AUC PR-AUC

32 4 0.9118 0.3528
64 4 0.9178 0.3754
128 4 0.9194 0.3776
256 4 0.9191 0.3845
512 4 0.9177 0.3788
768 4 0.9162 0.3707
1024 4 0.9174 0.3736
256 1 0.9180 0.3736
256 2 0.9193 0.3805
256 4 0.9199 0.3814
256 8 0.9181 0.3826
256 12 0.9165 0.3780
256 16 0.9169 0.3785

Table 3.12: The performance of Music Tagging Transformer with varying
width and depth of the attention layers.

are dataset-dependent; as generally observed, a larger network structure
would perform better if a larger amount of training data is provided.

Conclusion

In this subsection, we proposed a new architecture, Music Tagging Trans-
former, and improved its tagging performance with data augmentation.
Experimental results showed that the proposed architecture outperforms
the previous state-of-the-art models in supervised music tagging using the
MSD [43]. We also provided an analysis result that shows Music Tagging
Transformer can handle long audio inputs better than the previous CNN
architectures do.

In future work, our transformer can be further utilized in various MIR
tasks. Since Transformer can perform both sequence-level and token-level
classification, it can be used in not only music tagging but also tasks such
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as beat detection and melody extraction. Finally, by combining the multi-
ple MIR tasks in a multi-task learning scheme, Transformer can be trained
as a general purpose music representation learning model.

3.6 Summary

This chapter investigated various automatic music tagging architectures
as a proxy of music representation learning. Section 3.3 introduced con-
ventional approaches for music tagging and evaluated the models under
the same experimental setup. Before this research, it was difficult to com-
pare different models, but now we know the pros and cons of various
representation models. The main conclusions are (/) manual design in the
front end can be helpful when a dataset is small, (if) but assumption-free
models outperform as the size of the dataset grows, (iii) however, mini-
mum preprocessing (i.e., mel spectrogram) is yet required to achieve the
best performance, (iv) instance-level training is more powerful than song-
level training. Another contribution of this work is a reproducible code 7.
All different models are implemented in PyTorch so that other researchers
can use them efficiently.

Based on the knowledge that assumption-free 3 x 3 filters are pow-
erful in representation learning, we introduced data-driven harmonic fil-
ters [108] in Section 3.4 to take advantage of both domain knowledge
and data-driven approaches. The proposed approach reported advanced
performance not only in music tagging but also in keyword spotting and
acoustic event detection. Also, it showed better generalizability than other
CNN-based models when the input audio is transformed with unseen
types of deformation during the training.

Finally, we introduced transformer [38, 30] to music representation
learning. The proposed model consists of a CNN front end that learns
local acoustic characteristics and a transformer back end that summarizes
the sequence of the local features. The music tagging transformer claimed
the new state-of-the-art in music tagging, and it successfully manages

"https://github.com/minzwon/sota-music-tagging-models.git
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long-sequence modeling. Also, the transformer back end provides better
temporal interpretability of the model’s behavior.

Based on this chapter’s learned knowledge about deep architecture
design, we further improve their performances in the next chapter (Chap-
ter 4) by switching the training scheme. Also, some of the pretrained mod-
els are utilized in Chapter 5 to facilitate multimodal music representation
learning.
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Chapter 4

REPRESENTATION
LEARNING AT SCALE

4.1 Introduction

In previous chapter, we explored various architecture designs to improve
the performance of music classification models. All introduced models
are experimented using labeled data, such as MTAT [54], MSD [43], and
MTG-Jamendo dataset [40], under a supervised learning scheme. How-
ever, as we discussed in Section 2.3, collecting music labels for super-
vised learning is challenging, hence expensive. To overcome the issue of
limited labels, and step further with more scalable research, we need train-
ing schemes beyond supervised learning. This chapter introduces transfer
learning [63] and semi-supervised learning [76] to automatic music tag-
ging, so that we can utilize external labeled data and unlabeled data to
enhance the model’s generalizability.

This chapter is organized as follows. Section 4.2 introduces a trans-
fer learning method for music genre classification. It depicts the winning
submission model at Learning to Recognize Musical Genre from Audio
challenge in The Web Conference 2018. Then Section 4.3 experiments a
successful semi-supervised learning scheme: noisy student training [76].
It discusses how can we utilize abundant unlabeled data effectively in au-
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tomatic music tagging. Finally, Section 4.4 summarizes the introduced
approaches and discusses future directions.
This chapter includes the following works:

e Jaechun Kim, Minz Won, Xavier Serra, and Cynthia CS Liem, Transfer
Learning of Artist Group Factors to Musical Genre Classification, The
Web conference (WWW) 2018 challenge. !

* Minz Won, Keunwoo Choi, and Xavier Serra, Semi-supervised Music
Tagging Transformer, The International Society for Music Information
Retrieval (ISMIR) 2021.

4.2 Transfer learning of artist group factors

4.2.1 Challenge

Learning to Recognize Musical Genre from Audio is a challenge track
of The Web Conference 2018. The challenge is to predict correct musical
genres of given audio using the Free Music Archive (FMA) dataset [45].
Since the test set was not known, our main objective is to build a general-
izable machine for music genre classification.

Before we start training models, we first carefully reviewed the dataset.
FMA dataset [45] is a modern, large-scale dataset that contains full-tracks,
instead of short preview clips. Genre labels are chosen by the artists from
a pre-defined genre hierarchy. The subset we used in this challenge in-
cludes 25,000 tracks from 5,152 unique albums. For 5,028 out of these
5,152 albums, genre tags have been labeled at the album level. All tracks
in an album can share a homogeneous genre but this is not always true.
Indeed we could discover multiple misannotations in the dataset. As a re-
sult, our challenge is to build a generalizable machine for music genre
classification using noisy training data.

'T am the second author of this paper. Section 4.2 introduces the overall concept of
the proposed approach but the main contributor of this work is the first author. My main
contributions in this paper are model implementation and experiments.
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Figure 4.1: Artist group factor extraction pipeline.

4.2.2 Proposed approach

There can be multiple possible solutions for handling the challenge. One
can manually clean the training data, or regularize the prediction en-
tropy [70, 71] to alleviate the impact of noisy labels. In this challenge, we
adopted a transfer learning scheme by defining the source task with more
objective and consistent data, i.e., artist labels. For most tracks, we have
artist metadata, and this information is objective. A previous work [39]
has shown that the learned representation from artist labels can be effec-
tively transferred to solve other music-related downstream tasks. How-
ever, sometimes there are only a few tracks for each artist and this makes
the training data more sparse. In this work, we group acoustically similar
artists to generate Artist Group Factors (AGF) and train our model to pre-
dict the AGF. Finally, we transfer the learned representation to solve our
original task: genre classification.

Artist group factor (AGF)

When we have labels, such as genres and subgenres, we can construct
a Bag-of-Word (BoW) artist-level feature vector by counting the labels
from the songs of the artist. Also, we can build the BoW vector using
acoustic features. For example, we can extract MFCC from the entire data
and cluster the frame-level features through K-means clustering [154].
Then we can count the latent MFCC ‘terms’ belonging to each artist to
create the artist BoW feature vector. Once artist-level BoW feature vec-
tors are prepared, we apply more sophisticated topic modeling algorithm
(Latent Dirichlet Allocation (LDA) [155]) to generate the artist group fac-
tor (AGF). The AGF extraction pipeline is illustrated in Figure 4.1.
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Table 4.1: Details of Learning Targets

id Category  Source task  Clustering Dimension

g Main Genre N/A 16
m MFCC 25
d dMFCC K-means 25
e AGF Essentia [150] 4374
s Subgenre N/A 150

As shown in Tabel 4.1, 16-genre labels and 150-subgenre labels are
used together with MFCC, dMFCC, and Essentia features [150]. Essentia
music feature extractor extracts descriptors ranging from low-level fea-
tures, such as statistics of spectral characteristics, to high-level features,
including danceability [156] or semantic features learned from the data.

Model architecture

We used 7-layer convolutional neural network (CNN) to predict the AGFs
and fine-tuned it for genre classification. It takes mel spectrogram in-
puts with 1 second of audio. Note that we participated in the challenge
in 2018 which was before the holistic model comparison introduced in
Section 3.3. The detailed model architecture of our deep convolutional
neural network is described in Table 4.2. The size of the output layer is
16 when it is trained to optimize genre classification, directly. Otherwise,
it is targeting 40-dimensional AGF.

Transfer learning

After training source task models using the AGFs, we fine-tuned the pre-
trained models to solve the target task: genre classification. An MLP with
one hidden layer is added to the penultimate layer of the pretrained model.
We also experimented ensemble model by concatenating the embeddings
from different AGF models. As shown in Figure 4.2, the embeddings
of the penultimate layers are concatenated when we train an ensemble
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Table 4.2: Proposed CNN structure

Layers Output shape
Input layer 128 x 43 x 1
Conv 5 x 5, ELU 128 x 43 x 1
MaxPooling 2 x 1 64 x 43 x 16
Conv 3 x 3, BN, ELU 64 x 43 x 32
MaxPooling 2 x 2 32 x 21 x 32
Dropout (0.1) 32 x 21 x 32
Conv 3 x 3, ELU 32 x 21 x 64
MaxPooling 2 x 2 16 x 10 x 64
Conv 3 x 3, BN, ELU 16 x 10 x 64
MaxPooling 2 x 2 8§ X 5 x 64
Dropout (0.1) 8 x5 x 64
Conv 3 x 3, ELU 8 x5 x 128
MaxPooling 2 x 2 4 x2x 128
Conv 3 x 3, ELU 4 x 2 x 256
Conv 1 x 1, BN, ELU 4 x 2 x 256
GlobalAveragePooling, BN 256

Dense, BN, ELU 256

Dropout (0.5) 256

Output layer 16 or 40 16 or 40
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Figure 4.2: Illustration for the transfer learning scenario. Dotted lines in-
dicate the setup for the multilayer perceptron for performing final genre
classification.

model. Furthermore, we wanted to see if multi-task learning is beneficial
when a model is optimized to predict multiple AGFs at the same time.

4.2.3 Results

As shown in Table 4.3, there was no significant performance gap between
single-task and multi-task learning. However, we could observe the best
performance when we transfer and ensemble all the AGF models no mat-
ter if the model is transferred from single-task or multi-task learning. We
conclude that various AGF source tasks bring more generalizable rep-
resentation which can improve the target task performance. Especially,
when the given labels are noisy, one can take adventage of more objective
features to generate AGFs and predict them as a pretext task. Through this
approach, our model could win the Learning to Recognize Musical Genre
from Audio challenge at The Web Conference 2018.
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Table 4.3: The performance of various combinations of AGFs and the
top-level main genre target as a feature learning task.

STN MTN
LoglLoss Fl1 LoglLoss Fl1

g 0.8891 0.5963

m 1.1812 0.3581

d 1.0987 0.3967 N/A N/A

e 1.2542 0.3437

s 0.9404 0.5218

gs 0.8606 0.6114 0.8578 0.6190
ge 0.8811 0.5953 0.8792 0.5996
gd 0.8845 0.5898 0.8803 0.5955
gm 0.8874 0.5957 0.8813 0.6037
se 0.9124 0.5537 0.9079 0.5502
sd 0.9191 0.5601 0.9146 0.5412
sm 0.9260 0.5581 0.9283 0.5458
ed 1.0557 0.4433 1.0422 0.4399
em 1.1186 0.4244 1.1060 0.4376
dm 1.0583 0.4373 1.0704 0.4280

gse 0.8361 0.6255 0.8335 0.6277
gsd 0.8579 0.6280 0.8519 0.6150
gsm 0.8486 0.6289 0.8541 0.6153
ged 0.8528 0.6051 0.8601 0.6067
gem 0.8645 0.5988 0.8701 0.6056
gdm 0.8773 0.5985 0.8845 0.5941
sed 0.8965 0.5818 0.8867 0.5640
sem 0.9104 0.5834 0.8889 0.5668
sdm 0.9211 0.5629 0.9109 0.5572
edm 1.0359 0.4879 1.0365 0.4675
gsed  0.8211 0.6343 0.8132 0.6328
gsem  0.8264 0.6352 0.8172 0.6284
gsdm  0.8407 0.6379 0.8288 0.6170
gedm  0.8466 0.6053 0.8450 0.6152
sedm  0.8906 0.5856 0.8875 0.5870
gsedm 0.7894 0.6599 0.7727 0.6571
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4.3 Semi-supervised music tagging

4.3.1 Introduction

One limitation of the current music tagging research is a limited amount
of labeled data. Modern deep learning models are data-hungry. However,
manually labeling music with tags is time-consuming and requires do-
main expertise. In pursuit of large-scale research, the million song dataset
(MSD) [43], which literally includes a million songs in it, became popular
in music tagging research. Among the million songs, however, only about
24% are labeled with at least one of the top-50 music tags. Most of the
previous music tagging research has only utilized the labeled data while
discarding 76% of the songs in the dataset. This type of setup (i.e., a small
labeled dataset along with a large unlabeled dataset) is not limited to the
MSD but can be found often in the real world regardless of the domain.
To leverage the unlabeled data, self-supervised [81, 77, 78, 97, 80] and
semi-supervised [157, 76, 158] learning have been actively explored in
computer vision and natural language processing (Section 2.3).

In this section, we explore a successful semi-superivsed learning ap-
proach from computer vision: noisy student training [76]. Through this
approach, we can include both labeled and unlabeled data in our training
process. To the best of our knowledge, this is the first attempt to utilize
the entire audio of MSD [43].

4.3.2 Semi-supervised Learning

With the advances of scalable hardware and training algorithms, the de-
mand for labeled data has outpaced the progress of the size of datasets
in many fields. As a solution, researchers started to develop methods that
can take advantage of unlabeled data. Self-supervised [81, 77, 78, 97] and
semi-supervised learning [157, 76, 158] aim at leveraging the abundant
unlabeled data and have shown strong performances in various domains.

In many self- and semi-supervised learning approaches, the models
are trained to return noise-invariant predictions [78, 97, 76], i.e. consis-
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tency training (details are introduced in Section 2.3.2). This ‘noise’ is
usually realized in a form of data augmentation. In detail, with a self-
supervised learning scheme, models are trained to optimize the agreement
between different views of the same input [78, 97].

On the contrary, semi-supervised learning takes advantage of both ex-
isting labeled data and unlabeled data. One effective way of handling the
data is to formalize the problem as teacher-student learning [159, 76, 160].
In teacher-student learning, a teacher model is first trained with labeled
data in a supervised scheme and then, a student model is trained to mimic
the teacher’s behavior by predicting pseudo-labels [71] that are gener-
ated by the teacher model. The teacher-student training has been actively
explored with the purpose of domain adaptation [159], knowledge dis-
tillation [161], and knowledge expansion [76]. Especially, noisy student
training [76] successfully takes advantage of the teacher-student training
with the aforementioned noise invariance.

4.3.3 Noisy Student Training

To leverage unlabeled data, we investigate noisy student training [76],
a successful semi-supervised learning approach. Table 4.4 provides an
overview of noisy student training with pseudocode. First, we train a
teacher model 7 with a conventional supervised learning approach (line
1-6). Then, we train a student model S with two types of losses. The
first loss, /1, is coming from the typical supervised approach with labeled
data (line 10-11) as done for the teacher model. The other loss, /5, is
from unlabeled inputs and the corresponding pseudo-labels provided by
the teacher model (line 12—15). In order to make the student model per-
form beyond mimicking the teacher model, data augmentation is applied
(line 13). Both hard (binaries) and soft labels (logits) can be used for
the pseudo-labels [76] and we use soft labels in our work. If the train-
ing is successful, the trained student model would outperform the teacher
model. Furthermore, the whole training process can be done iteratively
by using the student as a new teacher model and training another student
model to obtain an even better performing model. For a stronger teacher
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model, we used data augmentation in our supervised learning pipeline
as well (line 1-6 and 10-11). As a result, the only pipeline without data
augmentation is pseudo-label generation (line 12).

The size of the student model can be identical or larger than the teacher
model. In this case, one can interpret the training process as knowledge
expansion [76], meaning the knowledge in the teacher model is upgraded
in the student model. One can also design the student model to be smaller
than the teacher model, making the process knowledge distillation [162].
Knowledge expansion and knowledge distillation are complementary; de-
pending on the use-case, one could pursue either performance or effi-
ciency. We investigate both directions in this research.

4.3.4 Dataset

We use the MSD with CALS split which was introduced in Section 3.5.3.
It includes 233k labeled tracks with top-50 tags and 516k unlabeled tracks.
When noisy student training is used, it is common to have an unlabeled
set that is significantly bigger than the labeled set. For example, in com-
puter vision, 81 million unlabeled items were used along with 1.2 million
labeled items [76], making the ratio of the semi-supervised set to be 67.5
(81/1.2). However, with 233k labeled items and 516k unlabeled items,
our ratio is only around 2.3. This might be a factor that limits us from
fully exploring the potential advantage of semi-supervised learning as we
will discuss in Section 4.3.6.

4.3.5 Models

Based on our previous research (Chapter 3), we use two different repre-
sentation models for our experiment. One is simple but powerful short-
chunk ResNet [104], and another is the new state-of-the-art Music Tag-
ging Transformer [113]. We apply noisy student training to both models
to see if the training scheme is generalizable and model-agnostic.
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Noisy Student Training

Input labeled data X, labels Y, unlabeled data Z
Models teacher model 7, student model S
Functions loss function £, data augmentation A4,

back propagation B
Train
1 forreX,yeY
2 do
3 p<— T(z) // predict
4 l<— L(p,y) // get loss
5 T «— B(T,1) /1 update teacher model
6 end do
7 end for
8 forrecX,yeY,zeZ
9 do

10 p1— S(x) // predict

11 ly «— L(p1,y) /I get supervised loss

12 Y +— T (2) // generate pseudo-label

13 zZ+— A(z) // data augmentation

14 pa — S(2) // predict

15 lo <— L(p2,v) 1/ get semi-supervised loss
16 S «— B(S,l; + l3) // update student model
17 end do

18 end for

Table 4.4: Pseudocode of noisy student training.

4.3.6 Results

Table 4.5 presents the experimental results of short-chunk ResNets and
Music Tagging Transformers. For both of the models, it summarizes the
results of supervised models (the baseline among training methods), mod-
els with data augmentation (DA), models with DA and knowledge expan-
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Models #param ROC-AUC PR-AUC

ResNet [104] 13.5m 0.9098 0.3525
ResNet+DA 13.5m 09141 0.3705
ResNet+DA+KE 13.5m 0.9165 0.3728
ResNet+DA+KD 3.4m 0.9171 0.3742
Transformer 4.6m 0.9188 0.3775
Transformer+DA 4.6m 0.9191 0.3845

Transformer+DA+KE 4.6m 0.9204 0.3839
Transformer+DA+KD  0.5m 0.9217 0.3889

Table 4.5: Performance comparison using the CALS MSD split for music
tagging.

sion (KE), and models with DA and knowledge distillation (KD).

For both short-chunk ResNet and the Music Tagging Transformer,
we observe constant improvements when data augmentation and noisy
student training (knowledge expansion) are applied accumulatively. This
shows that for both of the architectures, the size of the dataset is a factor
that limits the performance of the models.

In Section 4.3.4, we mentioned that our ratio of the semi-supervised
set is relatively small. There are two observations that may be related to
it. First, unlike a previous work in computer vision [76], we could not
observe any performance gain by iterating the noisy student training (i.e.,
repeating to use a student model as the next teacher model). Second, inter-
estingly, the student model with smaller parameters (models with DA and
KD) showed better performance than larger models (models with DA and
KE). This would be explained more clearly if the models are trained with
a significantly richer dataset, one that is bigger and/or has more diverse
data. Unfortunately, we could not run such an experiment due to the lack
of a suitable dataset.
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4.3.7 Conclusion

In this section, we improved music tagging performance with a semi-
supervised scheme: noisy student training. Experimental results indicate
that the tagging models can be further enhanced using noisy student train-
ing — with either knowledge expansion and knowledge distillation. The
training scheme is model agnostic, hence the idea can generalize to any
music representation models. Although iterative noisy student training did
not show performance gain, this needs to be further tested with larger un-
labeled dataset.

4.4 Summary

This chapter explored training schemes beyond supervised learning to en-
hance model performance. It is already known that transfer learning of
music representation from more extensive training data is beneficial [64].
But we also showed that transfer learning is practical when tackling clas-
sification tasks with noisy labels. Our approach uses more reliable in-
formation (i.e., artist labels) and hand-crafted audio features to generate
artist group factors (AGFs). The pretext task of predicting AGFs made the
model more robust to report better performance when it is fine-tuned with
the target task.

Then we explored noisy student training, a successful semi-supervised
learning approach, to incorporate both labeled and unlabeled data during
the training process. Experimental results showed model-agnostic perfor-
mance gain by utilizing larger-scale data. Especially, knowledge distil-
lation using noisy student training reported advanced performance with a
smaller number of parameters. It shows the importance of training schemes
in music representation learning. Also, it emphasizes the impact of scal-
able research.
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Chapter 5

MULTIMODAL
REPRESENTATION
LEARNING

5.1 Introduction

Through Chapter 3 and Chapter 4, we investigated advanced music audio
representation learning approaches. In this chapter, based on the learned
knowledge, we bridge the music audio representation with another modal-
ity to form a multimodal embedding space. Especially, we aim at learn-
ing multimodal music representation by bridging music audio with lan-
guage semantics. Multimodal representation learning provides different
view points of the same content. Each modality may complement or sup-
plement other modality, as a result, the multimodal embedding can repre-
sent the content more informatively [163]. Inclusion of natural language
processing in music representation learning may enable enlarged vocab-
ulary for music retrieval. By leveraging tag-level similarity, conventional
tag-based music retrieval models can step further beyond fixed vocabu-
lary. Furthermore, we can adopt recent language models [30] to facilitate
sentence- or paragraph-level music retrieval, which gets closer towards
our ultimate goal: music retrieval with natural language interaction.
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This chapter includes the following works:

* Minz Won, Sergio Oramas, Oriol Nieto, Fabien Gouyon, and Xavier Serra,
Multimodal Metric Learning for Tag-based Music Retrieval, The Interna-
tional Conference on Acoustics, Speech, Signal Processing (ICASSP)
2021.

* Minz Won, Justin Salamon, Nicholas J Bryan, Gautham J Mysore, and
Xavier Serra, Emotion Embedding Spaces for Matching Music to Stories,
International Society for Music Information Retrieval (ISMIR) 2021 (Best
student paper).

5.2 Tag-to-music retrieval

5.2.1 Introduction

Text-based search is one of the most common ways of browsing the in-
ternet. This information behavior is also prevalent when exploring music
libraries: from querying editorial metadata (e.g., title, artist, album) to
high-level music semantics (e.g., genre, mood). To scale the music anno-
tation process, audio-based automatic music tagging has been actively ex-
plored by music information retrieval (MIR) researchers [104]. However,
this categorical classification has an intrinsic limitation: it can only use a
fixed vocabulary. When an out-of-category tag is queried, music tagging
models tend to not properly generalize since new tags are not considered
during training. In a real world scenario, users query a virtually unlimited
amount of music tags. Hence, the music retrieval system needs to be more
flexible beyond categorical models.

As opposed to categorical classification models, metric learning aims
to construct distance metrics for establishing similarity of data [164, 165].
It can form a similarity metric between two instances from the same
modality using shared weights (e.g., Siamese networks [166]) and this
can be also easily expanded towards multiple modalities [167, 168]. By
jointly learning a multimodal embedding space, metric learning has al-
ready demonstrated its suitability for cross-modal retrieval such as image-
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Figure 5.1: (a) Overall architecture of the tag-based music retrieval model.
(b) Tag embedding branch. (c) Song embedding branch with cultural in-
formation. (d) Song embedding branch with acoustic information.

to-text [169, 167] and video-to-audio [170]. Metric learning facilitates the
nearest neighbor search in the embedding space directly, while classifica-
tion models require a two-step retrieval (i.e., tagging and ranking). Also,
metric learning enables abundant vocabulary when pretrained word em-
beddings are used to represent tags as side information [169, 90].

Recent work in MIR showed the advantage of using metric learning
with pretrained word embeddings for audio-based music tagging and clas-
sification [90]. Based on the proposed model, we investigate several ideas
to successfully introduce metric learning for tag-based music retrieval.

Our contribution in this section is four-fold: (i) we show the impor-
tance of elaborate triplet sampling, (i7) we explore cultural and acoustic
information to represent music, (iii) we examine domain-specific word
embeddings, and (iv) we present a manually cleaned dataset for repro-
ducibility.

5.2.2 Model
Related work

A triplet network [171] is a type of metric learning that uses a triplet loss
to fit a metric embedding, where a positive example z,, belongs to the
same class as an anchor z,, and a negative example x,, is a member of a
different one. The triplet network is optimized to satisfy Sim(z,, z,) >
Sim(x,, x,), where Sim(.) is a learned similarity metric. As it learns
by comparisons, instead of using direct labels, the triplet approach is ex-
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pandable to leverage various data sources that are not explicitly labeled.
Thanks to its flexibility, deep metric learning with the triplet loss has been
actively used to solve a set of diverse MIR problems [168, 90].

Choi et al. [90] proposed a triplet network that learns a multimodal
embedding of audio and word semantics. To handle unseen labels, the
authors used pretrained GloVe embeddings [42] as side information. An
audio embedding branch learns the mapping of the audio input to the mul-
timodal embedding space. And another branch maps pretrained word em-
beddings to the shared multimodal embedding space. This metric learn-
ing model with side information demonstrated its versatility in multi-
label zero-shot annotation and retrieval tasks. Since it can perform cross-
modal retrieval (i.e., text-to-music), we adopt this architecture design as
the backbone of our tag-based music retrieval model.

Architecture overview

Similar to previous work [90], our model is based on two branches. One
branch 7T'(y) learns the mapping of tag semantics y to the embedding
space, and another branch S(x) learns the mapping of song information x
to the shared embedding space — see Figure 5.1-(a). The model is trained
to minimize the following loss function L:

L= [D(Ea? Ep) - D(Ea>En) + 5]4—7 (5.1)

where D is a cosine distance function, ¢ is a margin, and E,, E,, E,, are
mapped embeddings of anchor tag, positive song, and negative song, re-
spectively. [-] is a rectified linear unit. The margin J prevents the network
from mapping all the embeddings to be the same (i.e., L = 0 for any in-
puts). With learnable transformations 7'(y) and S(z), the equation can be
rewritten as:

L = [D(T(ya), S(2p)) = D(T(Ya), S(xn)) + 6]+, (5.2)

where y, is the anchor tag input, and x,, and z,, are positive and negative
song inputs, respectively. The following subsections depict the details of
each branch 7'(y) and S(x).
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Tag embedding

Figure 5.1-(b) shows the tag embedding branch T'(y). A given tag y passes
through the pretrained word embedding model which results in a 300-
dimensional vector. By using the pretrained word embeddings, the sys-
tem can handle richer vocabulary than categorical models. For example,
one can expect the system to handle plural forms (guitar and guitars),
synonyms (happy and cheerful), acronyms (edm and electronic dance
music), and dialectal forms (brazil and brasil). As our baseline, we use
Word2Vec [41] embeddings pretrained with Google News dataset. The
tag embedding is input to a neural network which is fully connected to
a 512-dimensional hidden layer followed by a 256-dimensional output
layer.

Song embedding

Pachet et al. [61] outlined three main types of music information: edi-
torial, cultural, and acoustic — see Section 2.2.6. Most of the previous
works in music tagging [104] and multimodal metric learning [168, 90],
focused mainly on acoustic information to represent music. In our work,
we attempt to operate on not only acoustic information but also cultural
information in music retrieval. Cultural information is produced by the
environment or culture. One of the most common methods to obtain cul-
tural information is collaborative filtering [172].

The song embedding branch with cultural information Se,;,-; () con-
sists of a user-item embedding and a neural network — Figure 5.1-(c).
The user-item embedding is obtained by factorizing a user-song inter-
action matrix. Weighted matrix factorization with the alternating least
squares [173] is used, yielding both user and song embeddings of 200
dimensions each. User embeddings are discarded and song embeddings
are used as our input. The input of the neural network is fully connected
to a 512-dimensional hidden layer followed by a 256-dimensional output
layer.

The song embedding branch with acoustic information S,coustic()
learns audio-based music representation using a convolutional neural net-
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work (CNN) — Figure 5.1-(d). According to previous research [104], a
simple 2D CNN with 3 x 3 filters could achieve competitive results to
state-of-the-art in music tagging when it uses a short chunk of audio in-
puts (==4s). For simplicity, we adopt the short-chunk CNN [104] to train
our acoustic embedding.

The model is optimized using Adam [109] with 10~ learning rate,
and 10~* weight decay. The model is trained for 200 epochs where 1
epoch includes 10,000 triplets. For input preprocessing, audio files are
downsampled to 22.5kHz then converted to mel spectrograms using 1024-
point FFT with 50% overlap and 128 mel bands.

5.2.3 Dataset

The Million Song Dataset (MSD) [43] is a collection of metadata and
precomputed audio features for 1 million songs. Along with this dataset,
the Echo Nest Taste Profile Subset [174] provides play counts of 1 million
users on more than 380,000 songs from the MSD, and the Last.fm Subset
provides tag annotations to more than 500,000 songs from the MSD. We
take advantage of these two subsets of the MSD to build our own dataset.
Tags in the Last.fm Subset are very noisy, including 522,366 distinct tags.
We performed a cleanup process of the dataset (e.g., merge synonyms or
acronyms, fix misspelling) in order to have fewer tags while supported
with a reasonable number of annotations. The cleanup process consists of
the following steps:

¢ Filter out all tracks not included in the MSD Taste Profile.

* Filter out all tag annotations with a Last.fm tag score of 0 (Last.fm
tags in the original dataset come with a score between 0 and 100).

* Filter out all tracks with more than 20 tags (we assume that annota-
tions in tracks with too many tags are less reliable).

* Preprocessing of tags: remove punctuation, normalize expressions
(e.g., and, &, ’'n’), and remove irrelevant suffixes (e.g., music, song,
tag).
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* Group all tags with the same preprocessed lemma and name the
group with the most common of the involved tags.

 Select all tag groups with annotations for at least 100 tracks.

The final dataset contains 500 tag groups (from now on we call these
groups “tags”), which yields 1,352 distinct Last.fm tags. These 500 tags
are then manually classified in a lightweight taxonomy of 7 classes (genre,
mood, location, language, instrument, activity, and decade). 158,323 dis-
tinct tracks are tagged with these 500 tags with an average of 3.1 tags per
track and each track has user play counts. Table 5.1 shows the category-
wise distribution. We release the final dataset as the MSD500.

Class Number of tags
genre 294
mood/character 94
location 36
language/origin 34
instrument 21
activity 14
decade 7

Table 5.1: MSD500 number of tags per class

In this chapter, we use two different subsets of the proposed dataset
which are MSD100 and MSD50. Music tags are highly skewed towards
few popular tags and handling this skewness is another big topic in data-
driven approaches. Models are optimized to predict more popular tags in
the training set while evaluation metrics are averaged over tags. To avoid
the undesired effect of the high skewness, we only use the top 100 tags in
our experiments which results in 115k songs (MSD100).

Although we have user information in our dataset, the interaction
counts are not scalable compared to industry standards [175]. This may
underrepresent the predictive power of cultural information. Hence, we
build another subset which includes 39,402 songs with Last.fm tags and
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Metrics Random Balanced Balanced-weighted

MAP 0.1658 0.1675 0.1852
P@10 0.2990 0.3160 0.3500

Table 5.2: Performance of different samplings (MSD100).

user-item embeddings from more than 100B in-house user explicit feed-
back. In this case we only use the top 50 tags (MSD50) because the size of
the dataset became smaller during the mapping process. As the in-house
user feedback includes sensitive information, we only release the song
IDs and their tags of the MSD50. All data splits have been done at an
artist level to avoid unintentional information leakage.

5.2.4 Experiments

In this section we introduce three experiments which can be critical to
enhance our metric learning approach for tag-based music retrieval. All
models are evaluated with mean average precision (MAP) over the labels
and precision at 10 (P@10). Reproducible code and dataset are available
online. !

Sampling matters

The number of possible triplets grows cubically as the number of ob-
servations grows. Thus, triplet sampling is crucial in deep metric learn-
ing [176], as it matters equally or more than the choice of loss functions.
In this subsection, we explore three different sampling methods: random
sampling, balanced sampling, and balanced-weighted sampling.

Random sampling randomly chooses one song to generate an anchor-
positive pair. Then a negative example is randomly sampled from a set
of songs without the anchor tag. With this method, more popular tags are
more likely to be sampled as the anchor tag. Also, songs with less popular

Thttps://github.com/minzwon/tag-based-music-retrieval
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tags are less likely to be sampled as negative examples due to their small
numbers.

To alleviate this problem, the balanced sampling method uniformly
samples an anchor tag first and then select a positive song. Minor tags
may have equal possibilities to popular tags to be sampled as an anchor
tag. By sampling negative examples from the batch of the positive songs,
we can also expect more balanced tag distribution of negative examples.

For more efficient training, various triplet sampling methods have
been proposed such as hard negative mining [177], semi-hard negative
mining [178], and distance weighted sampling [176]. We combine the
distance weighted sampling [176] with the aforementioned tag balanc-
ing method (i.e., balanced-weighted sampling). As in balanced sampling,
we select an anchor tag and a positive song. From the batch of positive
songs, we sample negative examples. Sampling weights are inversely pro-
portional to their cosine distances from the anchor tags in the embedding
space. Thus, more informative (harder) negative examples are more likely
to be sampled while not loosing semi-hard and soft negative examples.

As shown in Table 5.2, balanced-weighted sampling outperforms other
sampling methods. This proves that sampling matters for training our tag-
based music retrieval model. Note that here we only used acoustic infor-
mation for the song embedding to control the experiment. From now on,
the following experiments use the balanced-weighted sampling method.

Acoustic and cultural music representation

We believe certain groups of tags are more related to acoustic information
while others may be more culturally relevant. A tag piano, for example,
can be predicted using the user-item matrix if there is a specific group of
users who heavily listened to songs with piano. However, originally, the
tag piano is associated with acoustic information. When there is a song
beloved by the aforementioned user group, if we only use cultural infor-
mation, the song can be regarded as piano music even when no piano can
be acoustically perceived in the song. As another example, a tag K-pop
can be predicted based on acoustic information since there are common
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MSD100 MSD50
Cul-E  Acoustic Concat | Cul-E  Cul-I  Acoustic

MAP 0.1155 0.1852  0.1775 | 0.2163 0.4719  0.3062
P@10 | 0.3200 0.3500 0.3120 | 0.4500 0.6380  0.4680

Metrics

Table 5.3: Performance of cultural and acoustic models.

acoustic characteristics of K-pop. However, if the song is not from Korea
and is not being consumed in Korea, it should not be tagged as K-pop. To
investigate the capability of two different information sources, we train
our metric learning model with cultural information only and acoustic in-
formation only: S.yiturar and Sycoustics T€SPectively.

As shown in Table 5.3, the acoustic model outperforms the cultural
model on MSD100. However, if we take a closer look at category-wise
scores, the cultural model shows its strength in language/origin and lo-
cation tags (Figure 5.2). This supports our hypothesis that the modality
selection has to be associated with its original source of information. But
a more important factor than the information source is the size and quality
of available data. In Table 5.3 (MSD50), we have two different cultural
models Cul-E and Cul-I, which use the EchoNest Taste Profile and our
in-house user explicit feedback, respectively. Since our in-house data are
of industry scale and explicit, they are richer than the publicly available
data. As cultural information becomes richer (Cul-I), the cultural model
outperforms the acoustic model. In addition, we observed that the cultural
model with richer information (Cul-I) is superior in every tag category in-
cluding genre and mood. As observed, acoustic and cultural models show
different strengths, but the foremost important factor of the modality se-
lection is the size and quality of available user-item interactions and audio
data. We also experimented with a hybrid model with simple concatena-
tion of cultural and acoustic embeddings but it did not improve results
(Table 5.3-Concat).
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Tag GoogleNews Domain-specific

jungles, dense_jungle,
dense_jungles, rainforest,
Jungle thick_jungles, Amazon_jungle,
Amazonian_jungle, steamy_jungles,
hilly_jungle, swamps

breakbeat, dub, drum_n_bass,
drum’n’bass, grime,
deep_house, ragga, dubstep,
acid, acid_house

houses, bungalow, apartment, deep_house, kitchen,
bedroom, townhouse, residence, club, jungle, rave,
House ) .
mansion, farmhouse, warehouse, parties,
duplex, appartment tech-house, lounge, ibiza
. . . traditional_country,
nation, continent, region, . .
bluegrass, americana, nashville,
thecountry, world, .
Country . folk, western_swing,
coun_try, United_States, . .
countrys, coutnry, counr rockabilly, cajun,
s Y y gospel, hillbilly
. heavy_metal, death_metal, thrash
Metal, metals, aluminum, y i i ’
. thrash_metal, power_metal,
steel, stainless_steel,
Metal extreme_metal, metalcore,

precious,_metal, copper, metallic,

jacketed bullet, titanium speed_metal, progressive_metal,

black_metal

chill_out, relax, chilled,
kick_back, relaxing, chill-out,
chilled_out, downtempo,
down_tempo, unwind

chilly, cold, chilled,
Chill chills, shivers, shiver, warm,
frigid, frosty, balmy

Uruguayan, Brazil, Argentine, cuban, mpb, latin_american,
.. Argentinean, Brazilan, Brazillian, portuguese, colombian,
Brazilian .
Portuguese, Sao_Paulo, bossa_nova, brasilian,
Peruvian, Brazilians latin, argentinian, samba
contemporary_jazz, jazz,
Smooth jazz N/A latin_jazz, acid,jaz'z, ne.WJge,
neo-soul, easy _listening,
soul-jazz, kenny_g, bossa_nova
progressive_house, breakbeat,
tech-house, downtempo, tech_house,
Deep house N/A minimal_techno. electro_house,
drumﬁﬁass, drum_n_bass,
uk_garage

Table 5.4: Nearest words in GoogleNews and domain-specific word em-
beddings. Music-related words are emboldened.
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Figure 5.2: Category-wise MAP on MSD100.

Domain-specific word embeddings

We use pretrained Word2Vec [41] embeddings as a part of our tag branch
T(y). Since they are trained with Google News, the embeddings are not
expected to have musical context.

We pretrain our own word embeddings with musical text data. We use
the corpus of text from the subtask 2B of the SemEval-2018 Hypernym
Discovery Task 2. It contains an already tokenized 100M-word corpus in-
cluding Amazon reviews, music biographies, and Wikipedia pages about
theory and music genres. We train a Word2Vec model on this corpus with
a window of 10 words yielding word embeddings for unigrams, frequent
bigrams and trigrams of 300 dimensions.

We could not discover any quantitative performance gain by using
our domain-specific word embeddings. However, as shown in Table 5.4,
the domain-specific word embeddings may include more musical context.
For example, for the unseen query jungle, a model with domain-specific
embeddings could successfully retrieve relevant items while conventional
embeddings could not. Also, domain-specific music corpora include fre-
quent bigrams and trigrams, such as deep house or smooth jazz, which are
not typically captured in word embeddings trained on general text cor-
pora. More qualitative examples are included in our online repository.

Zhttps://competitions.codalab.org/competitions/17119#learn_the_details-
terms_and_conditions
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5.2.5 Conclusion

In this section, we explored three different ideas to enhance the qual-
ity of metric learning for tag-based music retrieval. Balanced-weighted
sampling could successfully improve the evaluation metrics. Cultural and
acoustic models showed different strengths based on the information source
of the given tag but the foremost important factor is the size and quality
of available data. Finally, domain-specific word embeddings showed their
suitability for music retrieval by including more musical context.

As future work, in-depth comparison of acoustic and cultural models
is necessary to better understand how the size and the quality of data
affect the results. Also, a hybrid method of fusing acoustic and cultural
information should be explored. Finally, to meet real-world expectations,
multi-tag retrieval systems have to be considered.

5.3 Sentence-to-music retrieval

5.3.1 Introduction

Content creators, both amateur and professional alike, often use music to
enhance their storytelling due to its powerful ability to elicit emotion .
For example, when dissonant music is added to a horror movie, it can am-
plify the scary mood of the story line. Similarly, cheerful music can em-
phasize the excited mood in a scene of a birthday party. Matching text and
music to create a narrative, typically requires tediously browsing large-
scale music collections, significant experience, and musical expertise. In
this section, we therefore address the problem of automatically matching
music to text as shown in Figure 5.3.

We formalize this task as a cross-modal retrieval problem [179] and
focus on matching long-form text (multiple sentences, paragraphs) to mu-
sic. For queried sentences like books and scripts, we seek to retrieve
matching music for applications such as podcasts, audio books, movies,
and film. To facilitate cross-modal retrieval, a common approach is to

3We use the terms emotion and mood interchangeably following previous work [8].
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The children stood on tiptoe and
shouted "hurrah," with joy; altogether
it was a very splendid affair.

happy music

Figure 5.3: Cross-modal text-to-music retrieval using an aligned, multi-
modal embedding space.

first perform feature extraction to convert each data modality into an em-
bedding space. Then, the different embedding spaces must be matched
to bridge the modality gap by somehow aligning their different distribu-
tions [179]. Once aligned, (fast) nearest neighbor search can be used for
retrieval.

Various methods have been proposed for cross-modal feature extrac-
tion and alignment. For example, canonical correlation analysis has been
used to bridge the modality gap [180] as well as modern deep learning
techniques that learn common representation spaces [181, 182]. Such
methods can be categorized into four groups: unsupervised, pairwise-
based, rank-based, and supervised methods [183]. Among these, super-
vised methods are the most straightforward and in theory can take advan-
tage of existing labeled datasets (e.g., labels of happy, sad) and themes
(e.g., party, wedding with corresponding text and music). Difficulties,
however, immediately arise because of mismatched dataset taxonomies
(vocabularies) per modality, making it challenging to use standard tech-
niques directly.

Therefore, in this work we focus on the task of emotion-based text-
(e.g. sentences, paragraphs) to-music retrieval, and investigate how we
can best perform cross-modal retrieval with heterogeneous dataset tax-
onomies. To the best of our knowledge, this problem has not been previ-
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ously addressed and could be beneficial to media content creation applica-
tions. We propose six different deep learning strategies to extract relevant
features and bridge the modality gap between text and music including
(i) classification (if) multi-head classification (iii) valence-arousal regres-
sion (iv) Word2Vec regression (v) two-branch metric learning and (vi)
three-branch metric learning. We then evaluate each approach on multiple
text and music datasets, report objective results via precision at five and
mean reciprocal rank, and conclude with qualitative analysis and discus-
sion. Our results show that our valence-arousal-based method is a pow-
erful baseline for emotion-based cross-modal retrieval, but that our three-
branch metric-learning approach is comparable, more general, and does
not require manually engineered valence and arousal mappings.

5.3.2 Related Work
Text Emotion Classification

Text emotion classification methods or the task of predicting emotion
from text can be divided into three categories: lexicon-based models, tra-
ditional machine learning models, and deep learning models. Lexicon-
based models take advantage of pre-defined emotion lexicons, such as
NRC EmoLex [184] and WordNet-Affect [185] to match keywords. Tra-
ditional machine learning approaches recognize emotions using algorithms
such as support vector machine (SVM) [186] and Naive Bayes [187].
Finally, deep learning models use deep sequence models such as gated
recurrent unit (GRU) [188], bidirectional long-short term memory (BiL-
STM) [189], and Transformers [190]. Most recently, Transformer mod-
els [30, 191, 192] have become quite prevalent. Such models take advan-
tage of transfer learning, are commonly pre-trained to learn language rep-
resentation with large datasets, and then applied to various downstream
tasks including question and answer systems as well as emotion recogni-
tion [190].
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Music Emotion Classification

Music emotion classification or the task of predicting emotion from mu-
sic audio is commonly divided into conventional feature extraction and
prediction approaches [193, 194, 195], and end-to-end deep learning ap-
proaches [196, 103]. Deep learning approaches have become most preva-
lent and commonly frame emotion recognition as a multi-class or multi-
label auto-tagging classification problem [115, 57, 112, 108, 197]. Re-
cently, multiple music tagging models were evaluated in a homogeneous
evaluation pipeline [104] and found three design recommendations for
automatic music tagging models: (1) use mel-spectrogram inputs, (2) use
3 x 3 convolutional filters, and (3) use short-chunk audio inputs with small
hop sizes and max-pooling. Based on this, a model using mel-spectrogram
inputs and convolutional neural networks with focal loss [198] won the
MediaEval 2020 Emotion-and-Theme-Recognition-in-Music-Task* [199].

Valence-arousal Regression & Word Embeddings

Beyond classification, previous works [200, 201] suggest that regression
approaches can outperform classification approaches in music emotion
recognition. Here, researchers use the well-known valence-arousal emo-
tion space [202, 203] where valence represents positive-to-negative emo-
tions, and arousal indicates the intensity of the emotions. These annota-
tions can be collected by human annotators directly [200] or by mapping
existing mood labels into the valence-arousal space using pre-defined lex-
icons [103, 204].

As an alternative to using the manually annotated valence-arousal
space, we can obtain tag (mood) embeddings in a more data-driven fash-
ion. Pre-trained word embeddings, such as Word2Vec [41] and GloVe [42],
represent words as vectors by learning word associations from a large
corpus. These embedding spaces use the cosine similarity as a measure
of semantic similarity. Recent works [90, 91] show the suitability of pre-

“https://multimediaeval.github.io/2020-Emotion-and-Theme-Recognition-in-Music-
Task
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trained word embedding in music retrieval and that the embedding can
include more music related context by training it with music related doc-
uments [91, 205].

Cross-modal Retrieval

Instead of targeting a pre-defined embedding space, multimodal metric
learning models aim at learning a shared embedding space in which se-
mantically similar items are close together while dissimilar items are
far apart in the embedding space. Unsupervised approaches leverage co-
occurrence information. For example, when we collect user-created video
from the web, the video and audio streams are synchronized, and this cor-
respondence can be exploited for representation learning [206, 207]. On
the other hand, supervised methods learn discriminative representations
by exploiting annotated labels. Here, data from different modalities are
used to train models such that data points with the same label should be
close while data with different labels should be far apart. Metric learning
is also used for bridging the modality gap between text and audio, such
as keyword spotting [208], text-based audio retrieval [209, 210], and tag-
based music retrieval [90, 91] in both supervised and unsupervised ways.

Two branch metric learning [211] is one of the most prevalent ar-
chitectures for cross-modal retrieval. It consists of two branches where
each branch extracts features from each modality and maps them into
a shared embedding space. When optimized with a conventional triplet
loss (e.g. anchor text, positive song, negative song), however, the model
loses neighborhood structure within modalities. To alleviate this issue,
previous work [167] added structure-preserving constraints by using ad-
ditional triplet losses within modalities (e.g., anchor text, positive text,
negative text).

5.3.3 Models

Cross-modal retrieval comprises two parts: feature extraction and bridg-
ing the modality gap. Our text and music embeddings, E;..; and E,,,s;c
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Figure 5.4: Model architectures. (a) Classification and regression models (b) Multi-head classification
model with shared weights (c) Two-branch metric learning (c) Three-branch metric learning.
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respectively, are defined as follows:

Ete:pt = M(Ptext(x))

Emusic - M(Pmuszc(x)) (53)
where P is a pre-trained model to extract features from each modality
and M is a multilayer perceptron (MLP) to map them to a multimodal
embedding space.

Pre-trained Models for Feature Extraction

In our work, we leverage the DistilBERT [192] transformer model for text
analysis, which is a compact variant of the popular BERT transformer
model [30, 192]. We use a pre-trained model from the Huggingface li-
brary [212].

For the music representation model P,,,,s;., we use a CNN with resid-
ual connections that are trained with mel-spectrograms (ResNet) [104].
Due to its simplicity and high performance, it is a broadly used architec-
ture not only in music but also in general audio representation learning.
Our ResNet consists of 7 convolutional layers with 3 x 3 filters followed
by 2 x 2 max-pooling. The model is pretrained with the MagnaTagATune
dataset [54]. Both pre-trained models are updated during the training pro-
cess so that they can adapt to the data.

Classification

As a starting point, we train two separate mood classification models for
text and music (Figure 5.4-(a)). Then the model returns mood predic-
tions and their likelihood with softmax. From the predicted text mood,
songs are re-ranked based on their likelihoods of the text mood. However,
this classification approach has an inherent limitation- the model cannot
bridge the modalities when they have different mood taxonomies.
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Multi-head Classification with Shared Weights

Multi-head model is similar to the classification model but it shares a 3-
layered MLP for multimodal fusion in it (Figure 5.4-(b)). Since the model
shares the weights across different modalities, it can predict the mood in
different taxonomies by switching the classification head. We included
this model to see if the shared MLP can generalize across modalities.

Regression

Following previous work [103], we reformulate the classification task as
a regression problem. By using NRC VAD Lexicon [204], emotion la-
bels can be mapped to the valence-arousal space. However, this mapping
process is hand-crafted and also they cannot handle bi-grams or tri-grams
since the lexicon was created in a word-level. In addition to leveraging the
valence-arousal space, we also experiment with a Word2Vec [41] embed-
ding which was pre-trained with music related text [91]. This data-driven
space supports a larger vocabulary, including bi-grams and tri-grams, and
is thus more flexible.

Regression models are trained separately for each modality (Figure 5.4-
(a)). Then the nearest items are retrieved based on their distance in the
embedding space. Note that, distance metrics are Euclidean distance for
the valence-arousal space, and cosine distance for the Word2Vec space.
However, regression is a one-way optimization, i.e., optimizing text or
mood into the pre-defined word embedding space. In this case, neighbor-
hood structure within each modality can be ignored. For example, music
with angry and exciting can share similar acoustic characteristics. How-
ever, if two words are far apart in Word2Vec space, this similarity cannot
be considered by regression. This obstacle motivates us to learn a shared
embedding space in a data-driven fashion using metric learning.

Metric Learning

Finally, we explore metric learning, which is a fully data-driven approach
that solves the cross modal text-to-music retrieval in an end-to-end man-
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ner. Metric learning is optimized to minimize a triplet loss 7 :
T(E., E,, E,) =[D(E,, E,) — D(E,, E,) + 0]+ (5.4)

where D is a cosine distance function, 0 is a margin, and E,, E,, E,
are embedding of anchor, positive, and negative examples, respectively.
[-]+ is rectified linear unit. Following conventional metric learning mod-
els for cross-modal retrieval, we implement a two-branch metric learning
model [211] (Figure 5.4-(c)) that optimizes the loss function L,

Ep

music)

E?’L

music) .

L =T(E"

text)

(5.5)

However, with the triplet function, neighborhood structure or data dis-
tribution within modalities can be lost. Structure-preserving constraints [167]
can alleviate the issue but our problem is different from the case, since we
have different taxonomies across the modality which includes many non-
overlapped moods.

To take advantage of different mood distribution of different modali-
ties, we investigate metric learning model with three branches (Figure 5.4-
(d)) that results in three triplet loss functions. Each loss function is de-
signed to optimize tag-to-text, tag-to-music, and text-to-music triplet losses
as following:

Ltez’t = T(Ea Efeact? Etnea:t)’

tag>
LmUSiC = T(Ei?ag? Eﬁlusic’ E%usic)’ (56)

Lcross - T(Ez(tle:cta E? Ey;

music’ music)'
The model learns a shared mood space between Word2Vec embedding
and text embedding with a loss L., and a shared mood space between
Word2Vec embedding and music embedding with a loss L,,,s;.. Finally,
they are bridged together with a cross-modal triplet loss L..,ss. We refer
to this model as three-branch metric learning.

Since text and music have different vocabularies in our scenario, for
both two-branch and three-branch metric learning, we regard the nearest
tags in pre-trained Word2Vec space as positive pairs in cross-modal triplet
sampling (Table 5.5). We used distance-weighted sampling [176] for more
efficient negative mining following our previous work in Section 5.2.

135



5.3.4 Experimental Design
Text Datasets

Alm’s affect dataset [213] includes 1,383 sentences collected from books
written by three different authors: B. Potter, H.C. Andersen, and the Broth-
ers Grimm. 1,207 sentences in the dataset are annotated with one repre-
sentative emotion among five: angry, fearful, happy, sad, and surprised.
To avoid unintended information leakage, we decided to split data in an
author-level. 1,040 sentences by the Brothers Grimm and H.C. Andersen
were used for training and 167 sentences by B. Potter were used for vali-
dation and test.

ISEAR dataset [214] is a corpus with 7,666 sentences that are catego-
rized into one of seven emotion: anger, disgust, fear, joy, sadness, shame,
and guilt. Each sentence describes certain antecedents and those are as-
sociated with according reactions (emotions). We split the dataset in a
stratified manner with ratio of 70% train, 15% validation, and 15% test
set.

Music Dataset

There are multiple datasets for music emotion recognition such as the
Million Song Dataset (MSD) subset [215, 216], the MTG-Jamendo mood
subset [40], and the AudioSet mood subset [135]. Before we choose our
dataset, we run classification experiments for each subset. AudioSet sub-
set returned the highest accuracy, which means the labeled emotions are
predictable with our ResNet model. One possible reason for this result is
that unlike other datasets, emotion labels of AudioSet subset are exclu-
sive, having a single emotion label per song. This is also beneficial since
we can map each song directly to the valence-arousal space or word em-
bedding space using emotion lexicons or Word2Vec model, respectively.
Otherwise, to handle multiple tags, we need to average their embedding
vectors as previous researchers did [103]. For these simplicity and relia-
bility reasons, we use AudioSet mood subset.

AudioSet [135] mood subset consists of 16,995 music clips collected
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Original | VA | W2V | Manual

anger angry | angry angry
fearful sad scary scary
happy happy | happy | exciting, funny, happy
sad sad sad sad
surprised | exciting | happy exciting
anger angry | angry angry
disgust angry angry angry, scary
fear angry | angry scary
guilt sad angry angry, sad
joy exciting | tender | exciting, funny, happy
sadness sad tender sad
shame angry sad angry, sad

Table 5.5: Similar moods from Alm’s dataset (upper) and ISEAR dataset
(lower). Original is from text mood taxonomy and mapped tags are from
music dataset.

from YouTube and each audio clip is 10-second long. The dataset is cate-
gorized into 7 mood categories: happy, funny, sad, tender, exciting, angry,
and scary. The dataset is provided with a training set of 16,104 clips and
an evaluation set of 540 clips.

Evaluation

We use two evaluation metrics: Precision at 5 (P@5) and Mean Reciprocal
Rank (MRR). However, since our text and audio datasets use different
taxonomies, we need a mapping between the different vocabularies in
order to compute the metrics directly. Thus, we map the text emotion
taxonomy to the music emotion taxonomy — see Table 5.5. We introduce
three possible mappings: (1) mapping based on the Euclidean distance
between emotion labels in the valence-arousal space (VA), (2) the cosine
distance between emotion labels in Word2Vec space (W2V), or (3) direct
manual mapping of emotion labels. Given these mappings, we compute
P@5 and MRR. Another challenge is the label distribution in our datasets,
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Alm’s dataset ISEAR dataset
Methods
VA wW2v Manual VA w2V Manual

P@5 MRR P@5 MRR P@5 MRR 7 P@5 MRR P@5 MRR P@5 MRR
Classification 0.2161 0.2436 | 0.1861 0.2157 | 0.2161 0.2436 | 0.0000 0.0000 | 0.0000  0.0000 | 0.0000 0.0000
Multi-head Classification 0.2819 04181 | 0.1271  0.1381 | 0.3446  0.5304 | 0.3440 0.5084 | 0.3325 0.3625 | 0.3551 0.4803
V-A Regression 0.4325 0.6282 | 04125 0.5749 | 0.6100 0.7398 | 0.3018 0.5247 | 0.1866  0.3709 | 0.6218 0.7075
W2V Regression 0.3960 0.5010 | 04613 0.5591 | 0.5413  0.6363 | 0.3008 0.3829 | 0.4164 0.4908 | 0.5527 0.7668
Metric Learning (2 branch) | 0.3399  0.3778 | 0.4897  0.5239 | 0.5374 0.5579 | 0.2695 0.3287 | 0.3951 0.4336 | 0.4438 0.6175
Metric Learning (3 branch) | 0.3574  0.4348 | 0.5095 0.5863 | 0.5156 0.5880 | 0.2591 0.3445 | 0.4317 0.4953 | 0.6019 0.6675

Table 5.6: Retrieval scores
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which is unbalanced. This can lead to over-optimistic results if the model
performs well on the majority class, even if it performs very poorly on less
common labels in the test dataset. To alleviate this problem, we compute
the macro-P@5 and macro-MRR, i.e., we compute the metrics per class
(emotion label) then average the per-class results. Henceforth we will use
P@5 and MRR to denote macro P@5 and MRR, respectively.

Regression models are optimized to reduce mean squared error and
metric learning models are optimized with the triplet losses detailed in
Section 5.3.3. We use the Adam optimizer with learning rate 0.0001 for
all models. Audio inputs are resampled into 16 kHz and then converted to
128-bin mel-spectrograms via a 512-point FFT with 50% frame overlap.
Implementation details are available online °.

5.3.5 Results
Quantitative Results

The retrieval results for the different proposed models, using our three
different proposed vocabulary mappings (VA, W2V, Manual), for our two
text datasets, are presented in Table 5.6. First, we see that the classification
model fails in cross-modal retrieval. Since there are only two emotions in
common between Alm’s dataset and AudioSet (i.e., happy and sad), text
inputs with other emotions will not have any retrieval result. Furthermore,
there’s no common emotion between ISEAR dataset and AudioSet, hence
P@5 and MRR are zero in this case. Classification models can be power-
ful when there are exactly identical or partially overlapped vocabularies,
but since it is less likely in real-world data, classification approach is less
desirable for cross-modal retrieval.

The multi-head classification model also performs worse than other
regression and metric learning models. Some metrics look optimistic but
when we check the confusion matrix of the multi-head classification model,
it constantly predicts one or two specific emotions (e.g., predict angry for
any type of input) no matter what the input is. This means the shared MLP

Shttps://github.com/minzwon/text2music-emotion-embedding.git
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cannot generalize across different modality heads.

The regression model using valence-arousal consistently shows the
best metrics as already proven in previous single-modality emotion recog-
nition works [200, 201]. Since the space is carefully designed and the
tag-to-space mapping process has been done manually [204], the valence-
arousal regression suits our cross-modal retrieval task. However, this method
cannot generalize to other datasets that possibly have some tags that do
not have manual tag-to-space mapping. Word2Vec regression is suitable
in that case. It shows slightly lower but comparable retrieval performance
and it can handle abundant vocabulary, even bi-grams and tri-grams, with-
out a manual mapping process.

Finally, we assess the performance of metric learning. Instead of pre-
dicting manually defined or pre-trained embeddings, metric learning aims
at learning a shared embedding space across different modalities. Both
two-branch and three-branch approaches claim their suitability for cross-
modal retrieval, and the three-branch metric learning model consistently
outperforms the two-branch model by leveraging the relationship of tag-
to-text and tag-to-music within each modality.

Qualitative Results

To further investigate the characteristics of various embedding spaces, we
visualize them with 2D projection—Figure 5.5. Due to limited space, we
only visualize embedding spaces with Alm’s dataset and AudioSet mood
subset. Note that they are all predicted embeddings using the test set. Ex-
cept valence-arousal space (first row), which is already 2D, high dimen-
sional embedding spaces are projected to a 2D space using the uniform
manifold approximation and projection (UMAP) [217]. We use UMAP
since it preserves more of the global structure compared to tSNE [218].
In the projection process, we first fit the UM AP with one modality (in our
figure: music), then projected other embeddings (in our figure: tag and
text) into the fitted 2D space.

First of all, for both the Word2Vec embedding space and the metric
learning space, relevant moods from different taxonomies are neighbor-
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ing together in the embedding space. This is natural for the Word2Vec
space because each modality is fitted to optimize the pre-defined word
embeddings. But this neighboring also can be found in metric learning
space. In Figure 5.5-(g) and (h) for example, anger from text and angry
from music are together, and fearful from text and scary from music are
together. Note that Figure 5.5-(e) and (f) do not have word embeddings
since the two-branch metric learning model does not have a branch to map
the mood tags into the embedding space.

One of our main motivations to use metric learning with three branches
is to preserve neighborhood structure within modalities. Since Word2Vec
regression is a one-way optimization, their embeddings are very discrim-
inative (Figure 5.5-(c)). Also, the two-branch neural network does not
have any means to learn the neighborhood structure of each modality. Es-
pecially, as shown in Table 5.5, when two-branch metric learning uses the
mapping of Alm’s mood into AudioSet mood with Word2Vec similarity,
exciting and tender from music are not being used in training. If we com-
pare Figure 5.5-(f) and (h), exciting music in (h) are more continuously
distributed between angry and happy while they are simply with happy in
(f). Also, when we compare text embeddings (see (e) and (g)), surprised
is continuously distributed between anger and happy in (g) but not in (e).
This continuity between music and text can be found in the manually an-
notated valence-arousal space (see (b) and (a), respectively), which means
the proposed three-branch metric learning model preserves neighborhood
structure within modalities in the learned multi-modal embedding space.
We summarize all the introduced characteristics in Table 5.7.

5.3.6 Conclusion

In this work we tackled the task of matching music to text with the goal of
allowing users to enhance their text-based stories with music that matches
the mood of the text. We formulated the problem as a cross-modal text-
to-music retrieval problem, and identified the lack of a shared vocabu-
lary as a key challenge for bridging the gap between modalities. To ad-
dress this challenge, we proposed and investigated several emotion em-
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Model Retrieval | Distribution Mapping

Classification fail

Multi-head classification fail . .

V-A regression success continuous manual
W2V regression success | discriminative | data-driven
Metric learning (2 branch) | success | discriminative | data-driven
Metric learning (3 branch) | success continuous data-driven

Table 5.7: Characteristics of different models

bedding spaces, both manually defined (valence/arousal) and data-driven
(Word2Vec and metric learning), to bridge between the text and music
modalities. Our experiments showed that by leveraging these embedding
spaces, we were able to facilitate cross modal retrieval successfully. We
showed that the carefully designed valence-arousal space can bridge dif-
ferent modalities, but this can be also achieved via data-driven embed-
ding spaces. Especially, our proposed three-branch metric learning model
preserves the neighborhood structure of emotions within modalities. By
leveraging data-driven embeddings, our approach has the potential of be-
ing generalized to other cross-modal retrieval tasks that require broader
or completely different vocabularies.

5.4 Summary

This chapter covered two cross-modal retrieval approaches to bridge mu-
sic semantics with linguistic semantics. The first approach introduced
metric learning models to enable free-form tag-based music retrieval by
using a pretrained word embedding space. Impacts of sampling strategies,
cultural and acoustic information, and domain-specific word embeddings
are introduced. Users can search relevant music with the metric learning
model without separate ranking algorithms.

The second approach allows sentence- and paragraph-level inputs to
retrieve music. In this approach, we utilized emotion labels to bridge dif-
ferent modalities due to the lack of paired data between text and mu-
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sic. More precisely, it introduces sentence-to-music retrieval models when

there is no paired data and they have different label taxonomies. Regres-

sion of pre-defined emotion embedding space (valence-arousal) claimed

a strong baseline, but a more data-driven metric learning approach also re-

ported comparable results while preserving neighborhood structures within
the modality. Although this work relies on emotion labels to optimize the

model, the proposed metric learning approach showed the potential of

bridging sentence- / paragraph-level text semantics with music seman-

tics. If there are appropriate data, one can expect the model to perform

music captioning or natural language text-to-music retrieval.
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Figure 5.5: Valence-arousal embedding (first row), UMAP of Word2Vec
embedding (second row), UMAP of shared embedding space from two-
branch metric learning (third row), and UMAP of shared embedding
space from three-branch metric learning (fourth row).
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Chapter 6
CONCLUSIONS

6.1 Summary of the research

This dissertation explored music representation learning approaches to
enhance music classification and retrieval. Chapter 3 revisited various
deep model architectures under a unified evaluation pipeline. Assumption-
free 2D CNN with 3 x 3 filters claimed a strong baseline when it is trained
with short audio excerpts (short-chunk ResNet [104]). Inclusion of do-
main knowledge in architecture design brings benefits when the dataset
is small, but assumption-free models outperform as the size of the data
grows. However, a minimal assumption (i.e., mel spectrogram) is yet ben-
eficial at the current scale. We also proposed an advanced front end de-
sign (Harmonic tensors [108]) and a back end architecture (Music Tag-
ging Transformer [113]) to learn more robust representation with better
generalizability. In Chapter 4, we further improve the classification per-
formance using transfer learning and noisy student training. As a result,
the proposed architecture and training scheme could claim a new state-of-
the-art in automatic music tagging. Finally, we bridged the music audio
representation with natural language semantics in Chapter 5 to form mul-
timodal embedding spaces. The multimodal spaces enable tag-to-music
retrieval beyond fixed vocabulary and automatic matching of suitable mu-
sic to stories based on moods.

145



6.2 Limitations

Although the introduced models and training schemes report remarkable
performances in music classification, the representation models are yet
behind humans’ music perception. As we partially or entirely adopt CNNs
in our architecture design, the models possibly have an inherent texture
bias. As reported in previous research [219], CNNs are biased toward
texture. The texture is often interpreted as timbre of music. That means
timbre transformation or other adversary intent [25] can lead the model
to make totally different predictions. Data augmentation can alleviate the
issue when known deformations are applied during the training, but we
cannot assure the model can generalize to unseen types of deformation.
Also, the transformer can alleviate the issue by sequence modeling, but
this needs to be demonstrated through careful studies.

Another bias that we need to care about is data bias. Our deep repre-
sentation models learn from data. If the given dataset is biased, the model
will learn the bias. For example, the Ballroom dataset [44] is originally
designed to classify different rhythmic patterns. However, those classes
in the dataset can be easily distinguished by the tempo. In this case, the
model will learn the tempo bias and cannot generalize to the rhythmic
patterns in different tempo [220]. Also, the datasets that we used in this
research (e.g., MTAT [54], MSD [43], and MTG-Jamendo [40]) are bi-
ased toward western music. We cannot assure the models trained with
those datasets can generalize to music from other cultural backgrounds.
We need to consider de-biasing approaches to build more generalizable
representations.

Finally, the proposed multimodal spaces for matching music-to-stories
in Chapter 5 yet rely on manual mood labels to train the model. This hin-
ders scalable data-driven research in multimodal representation learning.
When a dataset is small, the model is prone to be biased, although we
actively use transferred representations for both text and music. Semi-
supervised learning can be considered, and other external data can be
actively included. We believe the multimodal embedding spaces have a
huge potential when they are trained at scale.
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6.3 Future research

6.3.1 Self-supervised learning

This dissertation mainly focused on supervised learning and explored
some semi-supervised approaches to learn music representation. Although
the proposed approaches report significant improvements, the models can-
not generalize when it is exposed to inputs outside the distribution of
the training set. Semi-supervised approaches enable scalable training by
incorporating unlabeled data in a teacher-student pipeline. But still we
need a large-scale supervision to have a reliable teacher model. The qual-
ity and scalability of labeled data are still the most critical part and this
can be a possible bottleneck of generalizable representation learning re-
search. For that reason, recent trend in representation learning is large-
scale self-supervised learning. As we already discussed in Section 2.3,
self-supervised learning approaches have been actively explored in com-
puter vision and natural language processing. Especially, BERT [30] has
changed the entire paradigm of natural language processing research.

Self-supervised representation learning of music has been mainly ex-
plored for generative models [34, 143, 32]. They are auto-regressive mod-
els that are trained to generate the next time steps. However, a recent
work [85] reported that the transferred representations from Jukebox [32]
are very effective in discriminative MIR tasks such as genre classifica-
tion and key detection. Strictly speaking, Jukebox is not an unsupervised
model because it conditions the model with styles and artists when it gen-
erates music. But the important take away from this is that the large-scale
representation learning is effective in classification tasks. This supports
the idea that we need to explore self-supervised music representation
learning more.

Since transformers are reporting consistent success in many domains,
not only in sequence modeling (e.g., text, speech) but also in non-sequential
data (e.g., image), self-supervised research in music [143, 32] also has
adopted the powerful architecture. Then one critical design choice is “how
to extract a token-like representation of music”. One can extract the short-
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time audio representation using CNN [113], pretrain vector-quantized
representations [32], or transcribe the audio to MIDI [143]. There is no
standard in this short-time audio representation learning. We don’t know
which architecture works the best, even we don’t know which tempo-
ral resolution is ideal for the transformer input. Also, each token (word)
is semantically meaningful in NLP while a short-time music audio ex-
cerpt includes less information. Although the transformer’s representation
power guarantees the performance gain, these design choices need to be
reviewed carefully.

6.3.2 Multimodality

Our music perception is multimodal. We listen to the audio, lyric adds
another modality, and the music harmonizes with cover arts and music
video. Music evokes emotion and it plays an important role in film mak-
ing, storytelling, and various events. In this dissertation, we tried to bridge
music with natural language semantics so that we can assist content cre-
ators to match suitable music to their stories. However, this can be ex-
tended towards all different modalities that are relevant to our music per-
ception. We can bridge music with an actor’s speech (text / audio) and
facial expression (video), we can generate a photo album (image) with
appropriate music, also we can assist video contents creators to discover
background music. This does not limit to commercial music but also pro-
duction music and license-free music. Different from commercial (popu-
lar) music, production music and license-free music do not have enough
user-item interaction to use collaborative filtering, hence content filtering
is critical. In this case, the multimodal embedding spaces can assist users
to explore the catalog more efficiently.

Recently, a general framework for self-supervised learning in speech,
vision and language (data2vec [221]) has been introduced. If we can in-
corporate all relevant data and modalities in multimodal music represen-
tation learning, each modality can supplement and compliment another
to learn more robust representation. In consequence, the learned repre-
sentation can get closer to human music perception and can enable more
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versatile music retrieval applications.

6.3.3 Music in natural language

In Chapter 5, we demonstrated that natural language and music semantics
can be bridged together to form a multimodal embedding space. We used
sentences and paragraphs from books [213] or descriptions of certain an-
tecedents [214] for the experiment. Based on the multimodal research, if
we can collect descriptive text of the music content, it can facilitate natu-
ral language interface for music retrieval. For example, one can ask “play
80s disco tune with soulful vocal and danceable rhythm”. Current sys-
tems need to parse the music tags and filter out based on the existing tag
taxonomy. However, we can tackle the problem in an end-to-end fashion.
To this end, there is a dataset such as MuMu dataset [222], or other de-
scriptive text (album reviews) can be collected from the web. However,
most descriptions exist in an album-level (multiple instance problem) and
sometimes they don’t directly talk about the audio content. Hence we
need to create a dataset that directly describes the music audio content. A
previous work [223] has shown that we can automatically generate music
captions through the multimodal approach although the dataset is private.
By creating a music caption dataset, we can move one step closer to hu-
man information resources at record stores.
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Appendix A
LIST OF CONTRIBUTION

Tutorial / Online book

* Minz Won, Janne Spijkervet, and Keunwoo Choi. Music Classi-
fication: Beyond Supervised Learning, Towards Real-world Appli-
cations [224]

— International Society for Music Information Retrieval (ISMIR)
2021

Conference papers

* Minz Won, Justin Salamon, Nicholas J Bryan, Gautham J Mysore,
and Xavier Serra. Emotion Embedding Spaces for Matching Music

to Stories [225]
— International Society for Music Information Retrieval (ISMIR)
2021, Best Student Paper

* Minz Won, Keunwoo Choi, and Xavier Serra. Semi-supervised Mu-
sic Tagging Transformer [113]
— International Society for Music Information Retrieval (ISMIR)

2021

* Wei-Tsung Lu, Ju-Chiang Wang, Minz Won, Keunwoo Choi, and
Xuchen Song. SpecTNT: A Time-Frequency Transformer for Mu-
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sic Audio [226]
— International Society for Music Information Retrieval (ISMIR)
2021

* Minz Won, Sergio Oramas, Oriol Nieto, Fabien Gouyon, and Xavier
Serra. Multimodal Metric Learning for Tag-based Music Retrieval [227]
— IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP) 2021

* Filip Korzeniowski, Oriol Nieto, Matthew McCallum, Minz Won,
Sergio Oramas, and Erik Schmidt. Mood Classification Using Lis-
tening Data [175]

— International Society for Music Information Retrieval (ISMIR)
2020

* Minz Won, Sanghyuk Chun, Oriol Nieto, and Xavier Serra. Data-
driven Harmonic Filters for Audio Representation Learning [108]
— IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP) 2020

* Minz Won, Andres Ferraro, Dmitry Bogdanov, and Xavier Serra.
Evaluation of CNN-based Automatic Music Tagging Models [104]
— Sound and Music Computing (SMC) 2020

Workshop / Challenges / ArXiv

* Minz Won, Sanghyuk Chun, and Xavier Serra. Visualizing and Un-
derstanding Self-attention based Music Tagging — Machine Learn-
ing for Music Discovery Workshop, International Conference of
Machine Learning ICML) 2019

* Dmitry Bogdanov, Minz Won, Philip Tovstogan, Alastair Porter,
and Xavier Serra. The MTG-Jamendo dataset for automatic music
tagging
— Machine Learning for Music Discovery Workshop, International
Conference of Machine Learning (ICML) 2019
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* Minz Won, Sanghyuk Chun, Oriol Nieto, and Xavier Serra. Auto-
matic Music Tagging with Harmonic CNN
— Late Break Demo, International Society for Music Information
Retrieval ISMIR) 2019

* Dmitry Bogdanov, Alastair Porter, Philip Tovstogan, and Minz Won.
MediaEval 2019: Emotion and theme recognition in music using Ja-
mendo
— MeidaEval 2019, Challenge organizer

* Minz Won, Sanghyuk Chun, and Xavier Serra. Toward interpretable
music tagging with self-attention
— ArXiv 2019

* Jaehun Kim, Minz Won, Xavier Serra, and Cynthia CS Liem. Trans-

fer learning of artist group factors to musical genre classification
— The Web Conference (WWW) 2018, Challenge winner

Reviewer

* International Society of Music Information Retrieval (ISMIR)

* Sound and Music Computing (SMC)

Industrial contribution

* Research Internship at Kakao Corp.
* Research Internship at Naver Corp.
* Research Internship at Pandora Media Inc.
» Research Collaboration with Adobe

* Research Internship at ByteDance
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Open source dataset

* MTG-Jamendo dataset https://github.com/MTG/mtg-jamendo-dataset

Open source code

* Emotion Embedding Spaces for Matching Music to Stories
https://github.com/minzwon/text2music-emotion-embedding

* Semi-supervised Music Tagging Transformer
https://github.com/minzwon/semi-supervised-music-tagging-transformer

* Multimodal Metric Learning for Tag-based Music Retrieval
https://github.com/minzwon/tag-based-music-retrieval

* Data-driven Harmonic Filters for Audio Representation Learning
https://github.com/minzwon/data-driven-harmonic-filters

 Evaluation of CNN-based Automatic Music Tagging Models
https://github.com/minzwon/sota-music-tagging-models

» Toward interpretable music tagging with self-attention
https://github.com/minzwon/self-attention-music-tagging

* Transfer learning of artist group factors to musical genre classi-
fication

https://gitlab.crowdai.org/minzwon/W W WMusicalGenreRecognitionChallenge
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