

Distributed collaborative knowledge

management for optical networks

Fatemehsadat Tabatabaeimehr

ADVERTIMENT La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents
condicions d'ús: La difusió d’aquesta tesi per mitjà del repositori institucional UPCommons
(http://upcommons.upc.edu/tesis) i el repositori cooperatiu TDX (h t t p : / / w w w . t d x . c a t /) ha
estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei UPCommons o TDX.
No s’autoritza la presentació del seu contingut en una finestra o marc aliè a UPCommons
(framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus
continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora.

ADVERTENCIA La consulta de esta tesis queda condicionada a la aceptación de las siguientes
condiciones de uso: La difusión de esta tesis por medio del repositorio institucional UPCommons
(http://upcommons.upc.edu/tesis) y el repositorio cooperativo TDR (http://www.tdx.cat/?locale-
attribute=es) ha sido autorizada por los titulares de los derechos de propiedad intelectual
únicamente para usos privados enmarcados en actividades de investigación y docencia. No
se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde
un sitio ajeno al servicio UPCommons No se autoriza la presentación de su contenido en una
ventana o marco ajeno a UPCommons (framing). Esta reserva de derechos afecta tanto al
resumen de presentación de la tesis como a sus contenidos. En la utilización o cita de partes
de la tesis es obligado indicar el nombre de la persona autora.

WARNING On having consulted this thesis you’re accepting the following use conditions:
Spreading this thesis by the institutional repository UPCommons (http://upcommons.upc.edu/tesis)
and the cooperative repository TDX (http://www.tdx.cat/?locale- attribute=en) has been authorized
by the titular of the intellectual property rights only for private uses placed in investigation and
teaching activities. Reproduction with lucrative aims is not authorized neither its spreading nor
availability from a site foreign to the UPCommons service. Introducing its content in a window or
frame foreign to the UPCommons service is not authorized (framing). These rights affect to the
presentation summary of the thesis as well as to its contents. In the using or citation of parts of the
thesis it’s obliged to indicate the name of the author.

http://upcommons.upc.edu/tesis
http://www.tdx.cat/
http://upcommons.upc.edu/tesis)
http://www.tdx.cat/?locale-attribute=es
http://www.tdx.cat/?locale-attribute=es
http://upcommons.upc.edu/tesis
http://www.tdx.cat/?locale-attribute=en
http://www.tdx.cat/?locale-attribute=en

3

Universitat Politècnica de Catalunya

Optical Communications Group

Distributed Collaborative

Knowledge Management for

Optical Networks

Fatemehsadat Tabatabaeimehr

Advisor:

Dr. Luis Velasco

Co-advisor:

Dr. Jaume Comellas

A thesis presented in partial fulfilment of the requirements for

the degree of

Philosophy Doctor

April 19, 2022

3

© 2022 by Fatemehsadat Tabatabaeimehr

All rights reserved. No part of this book may be reproduced, in any form or by any

means, without permission in writing from the author.

Optical Communications Group (GCO)

Universitat Politècnica de Catalunya (UPC)

C/ Jordi Girona, 1-3

Campus Nord, D4-213

08034 Barcelona, Spain

Acta de calificación de tesis doctoral

Curso académico:

Nombre y apellidos

Programa de doctorado

Unidad estructural responsable del programa

Resolución del Tribunal

Reunido el Tribunal designado a tal efecto, el doctorando / la doctoranda expone el tema de la su tesis

doctoral titulada ___

__.

Acabada la lectura y después de dar respuesta a las cuestiones formuladas por los miembros titulares del

tribunal, éste otorga la calificación:

 NO APTO APROBADO NOTABLE SOBRESALIENTE

(Nombre, apellidos y firma)

Presidente/a

(Nombre, apellidos y firma)

Secretario/a

(Nombre, apellidos y firma)

Vocal

(Nombre, apellidos y firma)

Vocal

(Nombre, apellidos y firma)

Vocal

______________________, _______ de __________________ de _______________

El resultado del escrutinio de los votos emitidos por los miembros titulares del tribunal, efectuado por la

Escuela de Doctorado, a instancia de la Comisión de Doctorado de la UPC, otorga la MENCIÓN CUM

LAUDE:

 SÍ NO

(Nombre, apellidos y firma)

Presidente de la Comisión Permanente de la Escuela de
Doctorado

(Nombre, apellidos y firma)

Secretaria de la Comisión Permanente de la Escuela de
Doctorado

Barcelona a _______ de ____________________ de __________

Acknowledgements

This dissertation is the milestone of my work over last years both academically and

professionally. It was an invaluable experience for me and it would not have been

possible to do without the guidance that I received from many people.

Foremost, I would like to express my gratitude to my advisors, Prof. Luis Velasco

and Prof. Jaume Comellas that gave me the opportunity to join GCO group and

develop my research and knowledge among professional team members. I appreciate

your wise advice and patience. To Luis, for pushing me to be the best and teaching

me the importance of doing high-quality research. I would like also to express my

gratitude to Dr. Marc Ruiz, for his unwavering help and guidance during the

countless hours devoted to the teaching and research behind this thesis.

Moreover, I am very grateful to Dr. Ramon Aparicio and Dr. Alberto Castro who have

reviewed this PhD thesis. I wish to thank all the former and current colleagues and

friends especially Dr. Behnam Shariati, Dr. Alba Pérez, and Sima Barzegar which I

was lucky to share many moments during my program.

Finally, I would like to acknowledge the Agència de Gestió d'Ajuts Universitaris i de

Recerca (AGAUR) for the financial supports.

This thesis is dedicated to my dearests. To my parents who I am eternally gratitude

for their unconditional love and tremendous support. To my sisters and brother,

Faezeh, Atyeh and Mohammad Javad for the encouragement and motivation always

give me.

Abstract

Network automation has been long time envisioned. In fact, the Telecommunications

Management Network (TMN), defined by the International Telecommunication

Union (ITU), is a hierarchy of management layers (network element, network,

service, and business management), where high-level operational goals propagate

from upper to lower layers.

The network management architecture has evolved with the development of the

Software Defined Networking (SDN) concept that brings programmability to

simplify configuration (it breaks down high-level service abstraction into lower-level

device abstractions), orchestrates operation, and automatically reacts to changes or

events. Besides, the development and deployment of solutions based on Artificial

Intelligence (AI) and Machine Learning (ML) for making decisions (control loop)

based on the collected monitoring data enables network automation, which targets

at reducing operational costs.

AI/ML approaches usually require large datasets for training purposes, which are

difficult to obtain. The lack of data can be compensated with a collective self-learning

approach. In this thesis, we go beyond the aforementioned traditional control loop to

achieve an efficient knowledge management (KM) process that enhances network

intelligence while bringing down complexity.

In this PhD thesis, we propose a general architecture to support KM process based

on four main pillars, which enable creating, sharing, assimilating and using

knowledge. Next, two alternative strategies based on model inaccuracies and

combining model are proposed. To highlight the capacity of KM to adapt to different

applications, two use cases are considered to implement KM in a purely centralized

and distributed optical network architecture. Along with them, various policies are

considered for evaluating KM in data- and model- based strategies. The results

target to minimize the amount of data that need to be shared and reduce the

convergence error.

We apply KM to multilayer networks and propose the PILOT methodology for

modeling connectivity services in a sandbox domain. PILOT uses active probes

II Distributed Collaborative Knowledge Management for Optical Network

deployed in Central Offices (COs) to obtain real measurements that are used to tune

a simulation scenario reproducing the real deployment with high accuracy. A

simulator is eventually used to generate large amounts of realistic synthetic data for

ML training and validation.

We apply KM process also to a more complex network system that consists of several

domains, where intra-domain controllers assist a broker plane in estimating

accurate inter-domain delay. In addition, the broker identifies and corrects intra-

domain model inaccuracies, as well as it computes an accurate compound model.

Such models can be used for quality of service (QoS) and accurate end-to-end delay

estimations.

Finally, we investigate the application on KM in the context of Intent-based

Networking (IBN). Knowledge in terms of traffic model and/or traffic perturbation is

transferred among agents in a hierarchical architecture. This architecture can

support autonomous network operation, like capacity management.

It shall be mentioned that part of the work reported in this thesis has been done

within the framework of European and National projects. Specifically, the H2020

METRO-HAUL and B5G-OPEN funded by the European Commission, and the

MINECO TWINS and AEI IBON, both funded by the Spanish Ministry of Economy,

Industry and Competitiveness.

Resumen

La automatización de la red se ha concebido desde hace mucho tiempo. De hecho, la

red de gestión de telecomunicaciones (TMN), definida por la Unión Internacional de

Telecomunicaciones (ITU), es una jerarquía de capas de gestión (elemento de red,

red, servicio y gestión de negocio), donde los objetivos operativos de alto nivel se

propagan desde las capas superiores a las inferiores.

La arquitectura de gestión de red ha evolucionado con el desarrollo del concepto de

redes definidas por software (SDN) que brinda capacidad de programación para

simplificar la configuración (descompone la abstracción de servicios de alto nivel en

abstracciones de dispositivos de nivel inferior), organiza la operación y reacciona

automáticamente a los cambios o eventos. Además, el desarrollo y despliegue de

soluciones basadas en inteligencia artificial (IA) y aprendizaje automático (ML) para

la toma de decisiones (bucle de control) en base a los datos de monitorización

recopilados permite la automatización de la red, que tiene como objetivo reducir

costes operativos.

AI/ML generalmente requieren un gran conjunto de datos para entrenamiento, los

cuales son difíciles de obtener. La falta de datos se puede compensar con un enfoque

de autoaprendizaje colectivo. En esta tesis, vamos más allá del bucle de control

tradicional antes mencionado para lograr un proceso eficiente de gestión del

conocimiento (KM) que mejora la inteligencia de la red al tiempo que reduce la

complejidad.

En esta tesis doctoral, proponemos una arquitectura general para apoyar el proceso

de KM basada en cuatro pilares principales que permiten crear, compartir, asimilar

y utilizar el conocimiento. A continuación, se proponen dos estrategias alternativas

basadas en inexactitudes del modelo y modelo de combinación. Para resaltar la

capacidad de KM para adaptarse a diferentes aplicaciones, se consideran dos casos

de uso para implementar KM en una arquitectura de red óptica puramente

centralizada y distribuida. Junto a ellos, se consideran diversas políticas para

evaluar KM en estrategias basadas en datos y modelos. Los resultados apuntan a

IV Distributed Collaborative Knowledge Management for Optical Network

minimizar la cantidad de datos que deben compartirse y reducir el error de

convergencia.

Aplicamos KM a redes multicapa y proponemos la metodología PILOT para modelar

servicios de conectividad en un entorno aislado. PILOT utiliza sondas activas

desplegadas en centrales de telecomunicación (CO) para obtener medidas reales que

se utilizan para ajustar un escenario de simulación que reproducen un despliegue

real con alta precisión. Un simulador se utiliza finalmente para generar grandes

cantidades de datos sintéticos realistas para el entrenamiento y la validación de ML.

Aplicamos el proceso de KM también a un sistema de red más complejo que consta

de varios dominios, donde los controladores intra-dominio ayudan a un plano de

bróker a estimar el retardo entre dominios de forma precisa. Además, el bróker

identifica y corrige las inexactitudes de los modelos intra-dominio, así como también

calcula un modelo compuesto preciso. Estos modelos se pueden utilizar para estimar

la calidad de servicio (QoS) y el retardo extremo a extremo de forma precisa.

Finalmente, investigamos la aplicación en KM en el contexto de red basada en

intención (IBN). El conocimiento en términos de modelo de tráfico y/o perturbación

del tráfico se transfiere entre agentes en una arquitectura jerárquica. Esta

arquitectura puede soportar el funcionamiento autónomo de la red, como la gestión

de la capacidad.

Cabe mencionar que parte del trabajo reportado en esta tesis se ha realizado en el

marco de proyectos europeos y nacionales. En concreto, H2020 METRO-HAUL y

B5G-OPEN financiados por la Comisión Europea, y MINECO TWINS y AEI IBON,

ambos financiados por el Ministerio de Economía, Industria y Competitividad de

España.

Table of Contents

Page

 Introduction .. 1

1.1 Motivation ... 1

1.2 Goals of the thesis ... 2

1.3 Methodology .. 3

1.4 Thesis outline .. 5

1.5 Contributions and Reference from the Literature 5

 Background ... 6

2.1 Infrastructure and Control Plane ... 6

 Metro Infrastructure .. 6

 Control, Orchestration, and Management ... 7

 Multi-domain Networks ... 8

2.2 Machine learning algorithms .. 9

 Support Vector Machine ... 10

 Artificial Neural Networks .. 11

 Long Short-Term Memory .. 12

 Optimization for training ML model ... 13

2.3 Generation of reliable and accurate synthetic data 14

2.4 Conclusions .. 15

 State-of-the-Art ... 17

VI Distributed Collaborative Knowledge Management for Optical Network

3.1 KM in single domain networks ... 17

3.2 KM for multi-layer networks .. 19

3.3 KM for broker-based multi-domain networks .. 20

3.4 Traffic prediction and KM in Intent-based networking 22

3.5 Conclusions .. 22

 KM Architecture, Methods and Use Cases 24

4.1 KM in optical networks ... 25

 KM Process Overview .. 25

 Proposed Architecture .. 27

4.2 Knowledge Assimilation .. 29

 Model ensemble .. 30

 Model merge ... 32

 Training data re-synthesis ... 34

4.3 Use Cases .. 35

4.4 Results ... 37

 Simulation Environment and Use Cases ... 38

 Data-based Knowledge Management .. 39

 Model-based Knowledge Management .. 41

4.5 Concluding Remarks ... 44

 Modeling and Assessing Connectivity Services

Performance .. 47

5.1 Modeling and Assessing Connection KPIs ... 48

5.2 Combining Measurements and Synthetic Data ... 51

 Traffic mix specification ... 51

 Traffic Sampling and Measurements Configurations 52

 CURSA-SQ tuning and ML model training 54

5.3 Active Measurements .. 55

5.4 Experimental Assessment .. 56

 Experimental Platform .. 56

 Methodology validation .. 59

Table of Contents VII

 Real vs Synthetic data for ML training ... 62

5.5 Concluding Remarks ... 63

 Delay Modeling in Multi-Domain Networks ... 65

6.1 Motivation and objectives ... 65

6.2 End-to-end and per-domain delay estimation .. 66

6.3 Compound e2e delay modeling ... 70

 Inter-domain link delay modeling.. 72

 Intra-domain model correction .. 74

 Inaccuracy localization ... 75

6.4 Illustrative Results ... 76

 Simulation Scenario ... 76

 Inter-domain link delay modeling.. 77

 Benchmarking .. 79

 Intra-domain model correction .. 82

 Inaccuracy localization ... 84

 Using compound modeling to detect and localize inaccuracies in-

operation ... 84

6.5 Concluding Remarks ... 87

 KM in Intent-Based Networking scenarios 89

7.1 Cooperation among intents ... 89

 Proactive Self-configuration ... 89

 Cooperative Intent Operation and Transfer Knowledge 91

7.2 Design of the Cooperative Intent Solution ... 92

7.3 Performance Evaluation ... 95

7.4 Concluding Remarks ... 97

 Closing Discussion ... 99

8.1 Main Contributions ... 99

8.2 List of Publications.. 100

 Publications in Journals .. 100

VIII Distributed Collaborative Knowledge Management for Optical Network

 Publications in Conferences ... 100

8.3 List of Research Projects ... 101

 European Funded Projects ... 101

 National Funded Projects .. 101

 Pre-doctoral Scholarship .. 101

8.4 Collaborations ... 102

8.5 Topics for Further Research ... 102

List of Acronyms ... 103

References .. 105

List of Figures

Page

Fig. 1-1. a) General architecture and b) distributed MDA (from [Ve19.2]) 4

Fig. 1-2. Methodology .. 4

Fig. 2-1. METRO-HAUL Control, Orchestration, and Management system and

network, compute, and storage infrastructure ... 7

Fig. 2-2 Multi-operator network architecture [Ca16] ... 9

Fig. 2-3. ML Families (reproduced from [Ra18]). ... 10

Fig. 2-4. Classification problem with a) linear model and b) non-linear model. 11

Fig. 2-5 A scheme of a FFNN with input features and output responses 11

Fig. 2-6. LSTM cell structure .. 12

Fig. 2-7. Example of digital twins for the packet (a-b). .. 15

Fig. 4-1. KM Process. New knowledge is discovered (a) and assimilated for operation

(b). .. 25

Fig. 4-2. Known and unknown regions in the features space. 26

Fig. 4-3. Detailed architecture for KM .. 28

Fig. 4-4. Knowledge assimilation options: model ensemble (a), model merge (b), and

training data re-synthesis (c). ... 30

Fig. 4-5. Merging linear SVMs .. 33

Fig. 4-6. Re-synthesis for classification (a) and regression (b). 34

Fig. 4-7. KM applied to the purely distributed (a) and centralized (b) use cases. ... 36

Fig. 4-8. Data-based KM performance for the distributed (a) and centralized (b) use

cases. .. 40

X Distributed Collaborative Knowledge Management for Optical Network

Fig. 4-9. Extended data policy analysis .. 41

Fig. 4-10. Model-based KM performance for the distributed (a) and centralized (b)

use cases. ... 42

Fig. 4-11. Data sharing comparison .. 43

Fig. 4-12. Model-based and Mixed knowledge sharing .. 44

Fig. 5-1. Reference architecture for Active Monitoring. ... 48

Fig. 5-2 Proposed Sandbox domain. .. 50

Fig. 5-3. Example of p2mp connection (a) and CURSA-SQ-based simulation (b). ... 50

Fig. 5-4. Overview of the PILOT Methodology. .. 51

Fig. 5-5. Active probe configuration procedure. .. 53

Fig. 5-6. Proposed workflow for a p2mp connection. .. 56

Fig. 5-7. Testbed scenarios and active probes. ... 57

Fig. 5-8. JSON messages for measurement configuration and results. 57

Fig. 5-9. Packets generated for a configured measurement (a) and aggregated

generated and received packets (b). .. 58

Fig. 5-10. Experimental and simulation results for KPI estimation. 60

Fig. 5-11. Maximum latency for KPI estimation. ... 60

Fig. 5-12. CURSA-SQ tuning as a function of the injected packet trains. 61

Fig. 5-13. Relative error of CURSA-SQ-based simulation. 61

Fig. 5-14. Prediction error of ML models vs # of real measurements. 62

Fig. 6-1. Example of e2e delay and control architecture. ... 67

Fig. 6-2. Provisioning of multidomain requests: reference approach (a) vs compound

approach (b). Example of inaccuracy (c). .. 68

Fig. 6-3. Example of per-domain e2e delay and extended control architecture. 69

Fig. 6-4. Main building blocks for training and correcting delay models at the broker

plane. ... 71

Fig. 6-5. Inter-domain link delay error estimation vs. number of multidomain paths

(a) and proportion ρ (b). ... 78

Fig. 6-6. Domain 1 to domain 2 link modeling performance. 79

Fig. 6-7. Increment in prediction error vs. monitoring interval. 79

Fig. 6-8. End-to-end delay prediction example before (a) and after (b) training

(Ttr=1440). ... 80

List of Figures XI

Fig. 6-9. End-to-end models’ prediction error (a) and anticipation of compound model

w.r.t benchmarking approaches (b). ... 81

Fig. 6-10. Domain models’ prediction error (a) and inter-domain link models’

prediction error (b). ... 82

Fig. 6-11. Score values vs number of paths (a) and proportion ρ (b) in the absence of

domain model inaccuracies. .. 83

Fig. 6-12. Inaccuracy detection: score vs inaccuracy magnitude (a) and detection

precision vs inaccuracy magnitude (b). ... 83

Fig. 6-13. Inaccuracy localization: example of 10 ms inaccuracy in domain 1 (a) and

average results (b). .. 84

Fig. 6-14. Inaccuracy detection and localization for sudden inaccuracies. 85

Fig. 6-15. Inaccuracy detection. .. 86

Fig. 6-16. Localization for gradual inaccuracies (a-b). ... 86

Fig. 7-1. Capacity operation of PkCs and vLinks. .. 90

Fig. 7-2. Intent agents for PkCs and vLinks. ... 91

Fig. 7-3. Intent cooperation and transfer knowledge. .. 92

Fig. 7-4. Extended architecture with hierarchical intent cooperation. 93

Fig. 7-5. Extended architecture with hierarchical intent cooperation and knowledge

transfer. ... 93

Fig. 7-6. Compound traffic model for PkCs. .. 94

Fig. 7-7. PKC-vLink intent cooperation performance. ... 95

Fig. 7-8. Comparative results. ... 96

List of Tables

Page

Table 1-1. Thesis goals .. 3

Table 3-1: State-of-the-art summary .. 23

Table 4-1. Pros and cons of knowledge assimilation methods 35

Table 4-2: Convergence Time Gain w.r.t No Sharing (%) .. 40

Table 4-3: Total amount of shared data (in MB) .. 43

Table 6-1: Notation .. 70

Table 6-2: Relation Between Blocks and Problems/Eqs ... 72

Table 6-3: Characteristics of Generated Traffic ... 77

Table 7-1. Cooperative IBN summary .. 96

Chapter 1

Introduction

1.1 Motivation

The optical network is being extended toward the edges of operators’ networks

[Ve13], fostered not only by the increased amount of traffic coming from current and

future access segment, but also by the stringent Key Performance Indicators (KPI)

that they need to support, like low latency and high reliability. In fact, more and

more connectivity services are requiring not only stringent, but also more predictable

Quality of Service (QoS) performance, such as throughput and latency.

Accelerated by such requirements, new solutions for the control and orchestration of

the optical transport network are being proposed (see, e.g., [Fi19]). Such services are

supported by a packet layer on top of an optical network, where the latter covers core

and metro segments and provides high capacity with low latency and high reliability.

The added complexity, in addition to highly dynamic traffic, requires the network

operation to be automated. In this regard, autonomous control loops based on

Machine Learning (ML) techniques [Ve18.1] have been proposed aiming at reducing

human intervention as a way to minimize network operational costs. In general, an

autonomous control loop uses knowledge discovered during a ML training phase to

predict (near) future network conditions, so as to proactively prepare resources to

deal with them (decision-making).

Considering that knowledge usage and decision making are needed not only at the

controller level, but also at the local node/subsystem level, the control plane should

be designed to support such variety of use cases and scenarios of autonomous

networking.

2 Distributed Collaborative Knowledge Management for Optical Network

However, enough real data to produce accurate ML models is rarely available owing

to a plethora of reasons, like the existing legal and regulatory context that limits the

availability of real network performance measurement, as well as the difficulty to

obtain training datasets belonging to specific pre-commercial and commercial

technologies and use them in current and forecasted scenarios.

In view of that, the authors in [Ve19.1] proposed a learning life-cycle to facilitate ML

deployment in real operator networks. In particular, they added a ML training phase

to be carried out after detecting model inaccuracies (e.g., in the form of prediction

errors), being this the basis of self-learning to progressively improve the ML models

deployed in the network. Such improvement can be made faster in the case of the

model is being used by several agents, which can share model’s inaccuracies among

them; they called this as collective self-learning. It was demonstrated that collective

self-learning outperforms individual strategies. However, because the size of the

training dataset might be large to reach high-accuracy and robustness, (data-based)

collective self-learning increases data to be stored and to be exchanged among

agents.

1.2 Goals of the thesis

In light of the above, this Ph.D. thesis goes further and targets at completing the

knowledge management (KM) process for truly autonomous network operation. The

KM process entails creating and sharing knowledge and it has been applied to

achieve organizational objectives, like continuous improvement of an organization.

Those learning organizations are able to adapt quickly and effectively to be superior

to the competitors in their field or market [Se90].

This Ph.D. thesis focuses on studying the application of KM to operator multi-layer

networks in single domain or multi-domain multi-operator scenarios. Four specific

goals are defined to achieve this main goal:

G.1 - Knowledge management (KM) in single domain networks

This goal targets at providing structure to collective self-learning aiming at

improving models error convergence time, as well as at minimizing the amount of

data being shared and stored.

In order to fully achieve this goal, we need to tackle two specific sub-goals:

G1.1 - KM process definition and architecture: In this sub-goal, we design

KM defining the main processes to allow autonomous learning. In addition, a KM

architecture will be proposed to support a wide variety of use cases.

G1.2 - Knowledge sharing and assimilation: specific methods to distribute

and manage ML models, as well as to combining models containing new

knowledge are designed, implemented, and tested.

Chapter 1 – Introduction 3

G.2 - KM for multi-layer networks

Although each layer can apply KM independently, correlation between layers cannot

be ignored. This goal thus, aims at adding interaction between KM agents at

different network layers.

G.3 - KM for broker-based multi-domain networks

This goal first concentrates on the packet layer and proposes the coordination of ML

capabilities between domain network controllers and the broker; abstracted data

need to be exchanged in order to achieve robust and accurate models for end-to-end

QoS (delay) estimation.

G.4 - KM in Intent-based networking scenarios

Intent-Based Networking (IBN) allows network operators to define what are their

desired outcomes without specifying how they would be achieved, so it looks a

natural environment for the application of ML, in particular KM. In this goal, we

target at providing solutions for the cooperation among intents.

A summary of the goals of the thesis is presented Table 1-1.

Table 1-1. Thesis goals

Goals

G1 -

KM in single domain

networks

G1.1 -

KM process definition and architecture

G.1.2 -

Knowledge sharing and assimilation

G2 -

KM for multi-layer networks

G3 -

KM for broker-based multi-domain networks

G4 -

KM in Intent-based networking

1.3 Methodology

This Ph.D. thesis assumes the architecture in Fig. 1-1a, where the data plane

consists of: i) an optical layer consisting of a number of ROADMs interconnected

through optical fiber links. Optical connections (lightpaths) can be created between

two nodes in the network, ii) an overlaying packet network, where packet nodes (i.e.,

4 Distributed Collaborative Knowledge Management for Optical Network

routers) are interconnected by means of logical (virtual) connections, each supported

by lightpaths. Each location, named central office (CO), consists of an optical

collocated with a packet node, as well as other infrastructure such as computing

resources.

Monitoring and Data
Analytics (MDA)

Network Controller

Multi-layer
Network

Recommendations

ROADM

Configuration

Packet
node

Central office

Data

Models

Measurements

a) b)

Fig. 1-1. a) General architecture and b) distributed MDA (from [Ve19.2])

The control plane includes: i) a Network Controller to program the network devices,

and ii) a MDA system that collates measurements from the data plane, analyses the

data and issues recommendations to the network controller. Hereafter, we assume

the distributed configuration in Fig. 1-1b, where COs run local agents [Ve19.2] in

order to deploy MDA processes close to where data are collected (thus allowing the

implementation of local node control loops), as well as an MDA controller that

collates inputs from MDA agents and allows network-wide control loops.

To carry out the studies needed to meet the goals of this thesis, the methodology

illustrated in Fig. 1-2 has been followed.

Performance
evaluation

KM process
design

Process
implementation

Data Generation Synthetic
Mon. Data

Real
Mon. Data

Use case
definition Dissemination

Fig. 1-2. Methodology

As a starting point, use cases are conceived. Based on the use case, the KM process

is designed, and a specific data generator is developed based on real monitoring data.

The algorithmic part of KM process has been implemented in R and the data

synthetically generated is used for evaluation purposes and compared to a target

Chapter 1 – Introduction 5

accuracy; improvements in both the KM process and algorithmic parts can be carried

out in this phase. Finally, the results have been disseminated in international

conferences and journals.

1.4 Thesis outline

The remainder of this research plan is organized as follows.

Chapter 2 provides the needed background on metro networks and ML and deep

learning concepts.

Chapter 3 briefly reviews the state-of-the-art related to the objectives of this Ph.D.

thesis, focusing and highlighting the niches to be covered.

Chapter 4 focuses on goal G.1 and introduces the KM architecture and its main

features discovery, assimilation, sharing and usage. This chapter is based on the

journal publication [JOCN20].

Chapter 5 relates to goal G.2 and investigates the application of KM in a multilayer

network scenario. This chapter is based on one journal publication [JLT20].

Chapter 6 aims the achievement of goal G.3, where we apply KM in multi-domain

network scenarios based on a broker plane. This chapter is based on the journal

paper [TNSM21].

Chapter 7 concentrates on goal G.4 and is devoted to the application of KM in Intent-

based networking scenarios. This chapter is based on the journal publication

[JOCN22].

Finally, Chapter 8 concludes this Ph.D. thesis.

1.5 Contributions and Reference from the

Literature

For the sake of clarity and readability, references contributing to this Ph.D. thesis

are labelled using the following criteria: [<conference/journal>

<Year(yy)[.autonum]>], e.g., [OFC21] or [JOCN20]; in case of more than one

contribution with the same label, a sequence number is added.

The rest of the references to papers or books, both auto references not included in

this Ph.D. thesis and other references from literature are labelled with the initials

of the first author’s surname together with its publication year, e.g., [Ve13].

Chapter 2

Background

The optical network is being extended toward the edges of operators’ networks

[Ve13], fostered not only by the increased amount of traffic coming from current and

future access segment, but also by the stringent requirements that they need to

support, like low latency and high reliability. The added complexity, in addition to

highly dynamic traffic, requires the network operation to be automated. In this

regard, autonomous control loops based on ML techniques [Ra18] have been

proposed aiming at reducing human intervention as a way to minimize network

operational costs. In general, an autonomous control loop uses knowledge discovered

during a ML training phase to predict (near) future network conditions, so as to

proactively prepare resources to deal with them (decision-making).

2.1 Infrastructure and Control Plane

This Ph.D. thesis assumes the metro infrastructure and control plane from the

H2020 METRO-HAUL project (see Chapter 8.3.1). We describe next such

infrastructure and the control, orchestration, and management (COM) architecture

that is assumed for the single domain studies carried out in this work. The

infrastructure supports several key features, including e2e latency-awareness, as

well as monitoring and data analytics capabilities, to operate a partially

disaggregated edge computing enabled metro optical network.

 Metro Infrastructure

The METRO-HAUL infrastructure spans nodes residing in Central Offices (CO) in

different geographic locations, where every node combines networking, processing,

and storage resources. Such modular nodes are composed of different components

Chapter 2 – Background 7

operating at different layers and technologies, and of different vendors realizing

hardware and software disaggregation. METRO-HAUL nodes implement layer 0-1

(optical domain) and layer 2 transmission and switching (frame domain) and include

Edge Computing capabilities provided by a local pool of computers to instantiate

Virtualized Network Functions (VNF) with configurable amounts of processing,

memory, and storage. Two specializations of the generic METRO-HAUL nodes are:

a) Access Metro Edge nodes (AMEN) to interface with heterogeneous access

technologies (5G and optical); and b) Metro Core Edge nodes (MCEN) nodes as

gateways towards the core transport network and comprise core-oriented

capabilities (Fig. 2-1). The nodes are controlled by a Node Agent based on

NETCONF/YANG handling the integration of such disaggregated components.

Monitoring
and Data
Analytics

(MDA)

SDN Controller
(L2/L3)

SDN Controller
(Optical Domain)

SDN Controller
(L2/L3)

NFV Orchestrator (NFVO)

Virtual Infrastructure
Manager (VIM)

Virtual Infrastructure
Manager (VIM)

Network
Planner

WAN Infrastructure Manager

Network Orchestration
(Parent Controller)

Management Plane

AMEN MCEN

Open Line System
(OLS)

TAPI

TAPI

OpenConfig

NETCONF

L2SM

L2SM L2SM

Fig. 2-1. METRO-HAUL Control, Orchestration, and Management system and

network, compute, and storage infrastructure

 Control, Orchestration, and Management

The previously described metro infrastructure requires a complex COM system,

which includes several subsystems and interfaces among them. The COM system

augments the concept of network control plane with standard interfaces operating

across domains to ensure vendor inter-operability. The architecture of the METRO-

HAUL COM system has evolved from its initial design and successive refinements

have been made driven by feedback gathered after implementation and integration

activities. The main components include the following (see Fig. 2-1).

1) The NFV Orchestrator (NFVO) that performs Service Orchestration (involving the

functional split of the service into/amongst different VNFs and their logical

8 Distributed Collaborative Knowledge Management for Optical Network

interconnection) and Resource Orchestration dealing with the allocation of resources

to support the VNFs and the logical links. In the context of METRO-HAUL, a

network slice consists of a Network Service (NS) deployed using the NFVO spanning

multiple nodes and network domains; the VNF placement functionalities are

provided by the Network Planner. The Virtual Infrastructure Manager (VIM) is the

responsible for the management of the NFV Infrastructure (NFVI) and the

instantiation of the Virtual Machines (VM) of the VNFs in a single Datacenter (DC)

domain (AMEN/MCEN).

2) The WAN Infrastructure Manager (WIM) is used by the NFVO to orchestrate

network resources and it is responsible for the provisioning of connectivity paths

between VNFs. The WIM architecture is hierarchical and aligned with IETF ACTN

[ACTN], with an SDN control per technology domain. Running on top of the SDN

hierarchy, the parent SDN controller abstracts the underlying complexity and

presents virtualized networks to their customers.

3) The Monitoring and Data Analytics (MDA) [Ve18.2], responsible for implementing

autonomic networking. The monitoring system has the capability to do

measurements on the data plane and to generate data records that are collected and

analyzed by the MDA subsystem to discover patterns (knowledge) from the data. In

METRO-HAUL, the MDA is distributed [APV17] and consists of MDA agents that

run in the network nodes and are responsible for monitoring data collection,

aggregation, and knowledge usage. Aggregated monitoring data is conveyed to the

MDA controller. From collection, data can feed ML algorithms (see Section 2.2),

which can be used to issue re-configuration/re-optimization recommendations

towards COM modules, such as an SDN controller or orchestrator.

4) The Placement, Planning, and Reconfiguration Subsystem (Network Planner),

responsible for optimizing the resource allocation to effectively provision services

featured by heterogeneous requirements and for applying different policies and

strategies. This task comprises the provisioning of VNFs in specific METRO-HAUL

nodes, and the allocation of network resources.

 Multi-domain Networks

Single operators’ transport networks are usually created as multi-domain networks

a result of deploying nodes from different vendors and/or different technologies. In

such scenarios, the topology of the different domains is fully visible from outside each

domain and therefore it is possible to compute end-to-end paths using one single or

a set of coordinated SDN controllers.

In contrast, as a result of privacy policies, in multi-operator multi-domain networks

only an abstraction of the topologies is visible from outside the domain, which

prevents from computing paths traversing more than one domain.

Chapter 2 – Background 9

Recent works (e.g., [Ca16]) proposed using market-driven brokers on top of SDN

controllers in charge of each domain. That scheme provides autonomy to the domains

while improving scalability. Under this approach, a multi-operator network, is the

result of connecting single-operator networks, each with an SDN controller, and a

broker layer coordinating end-to-end multi-operator provisioning on top of the

domains (see Fig. 2-2).

Domain 1

Domain 2

Domain 3

SDN Controller SDN Controller

Broker

intra-domain link
inter-domain link

SDN Controller

Fig. 2-2 Multi-operator network architecture [Ca16]

When a multi-operator path computation is requested, the broker collects intra-AS

abstracted connectivity, bandwidth availability and other performance metrics from

the inter-domain SDN controllers. Observe that, each SDN controller advertises an

abstracted intra-domain link information to the broker that depends on both,

internal domain policies and the specific agreement with the broker. Details of the

intra-domain topology remains concealed from the rest domains and the broker.

2.2 Machine learning algorithms

ML is typically thought of as a universal toolbox, ready to be used for classification,

i.e., identifying to which of a set of categories a new observation belongs to, and

regression i.e. estimating the relationships among variables; this is sometimes

generically referred to as knowledge discovery in databases. When, in fact, it is a

diverse field comprising of various constituents and necessitates a software

ecosystem including data collection and transformation, model selection and

optimization, performance evaluation, visualization, model integration, to name a

few. Explicitly, ML refers to computational representation of a phenomenon, aiming

at execution of a task, given a certain performance, based on a given environment.

10 Distributed Collaborative Knowledge Management for Optical Network

ML approaches may be categorized based on objectives of the learning task, where

these objectives may target pattern identification for classification and prediction,

learning for action, or inductive learning methods. The algorithms may be further

classified into three distinct learning families [Ma11], supervised learning,

unsupervised learning and reinforcement learning (RL) (see Fig. 2-3). Semi-

supervised learning -or hybrid learning- is sometimes considered as a fourth family,

borrowing features from supervised and unsupervised ones [Cha10].

Semi-Supervised

Machine Learning

Supervised Unsupervised
Input data is called training
data and has a known label.
Applications:
• Regression
• Classification

Input data is not labeled.
Extracts general structures.
Applications:
• Clustering
• Association

Input data is a mixture of
labeled and unlabeled data.
Applications:
• Clustering
• Classification

Reinforcement

Reward feedback is required
to learn its behavior.
Applications:
• Classification
• Control

• Artificial neural networks
• K-nearest neighbors
• SVM

• K-means clustering
• PCA
• Kohonen maps

• Maximum likelihood
learning

• Generative models

• Q-learning
• Multi-armed bandits
• MDP

• QoT estimation/prediction
• Predictive maintenance

• Traffic clustering
• Signal dimension reduction

• Resource allocation
• Network behavior analysis

• Network reconfiguration
• Planning

Fig. 2-3. ML Families (reproduced from [Ra18]).

We introduce next the ML algorithms relevant for this Ph.D. thesis, which belong to

the supervised learning (SL) family. SL makes use of known output feature(s),

named labels, to derive a computational relationship between input and output data.

An algorithm iteratively constructs a ML model by updating its weights, based on

the mapping of a set of inputs to their corresponding output features. SL may be

further categorized into classification and regression tasks, depending on whether

discrete or continuous output features are used [Ra18].

 Support Vector Machine

Support Vector Machine (SVM) is a classification technique targeted at maximizing

margins for samples of different classes and could be categorized into linear and non-

linear SVM by a decision boundary called hyperplane. In linear SVMs, the input

data are linearly categorized (Fig. 2-4a), whereas in the non-linear case, the inputs

are transformed into another space by a kernel mapping (Fig. 2-4b).

A common kernel mapping is Gaussian radial basis function:

𝑘(𝑥𝑖 , 𝑥𝑗) = exp⁡(−𝛾. |𝑥𝑖 − 𝑥𝑗|
2
), (2-1)

where 𝛾 > 0, 𝑥𝑖 and 𝑥𝑗 are two samples.

Chapter 2 – Background 11

The algorithm is also classified by soft and hard margins. In a binary classification

case, the margins are considered hard when they are presented by 1 and -1. When

the following loss function is maximized, the margins are considered as soft.

max⁡(0,1 − 𝑦𝑖(𝜔 × 𝑥𝑖 − 𝑏)) (2-2)

Hyperplane

Margin

(a) (b)

Hyperplane

Fig. 2-4. Classification problem with a) linear model and b) non-linear model.

Where w represents the weights and b is the biases of connection.

 Artificial Neural Networks

A Feedforward Artificial Neural Networks (FFNN) is a ML approach comprising of

one input and one output layer, and one or more hidden layers in-between; where

each layer depends on use cases could be composed of several neurons. Features (X)

are fed into the network though the input layer, where the neurons in the input layer

are connected with the neurons in the next layer, i.e. the first hidden layer, and so

on. The neurons on the output layer are directly connected with the outputs Y (see

Fig. 2-5).

……

… …

…

Fig. 2-5 A scheme of a FFNN with input features and output responses

12 Distributed Collaborative Knowledge Management for Optical Network

In a typical fully connected FFNN, the nonlinear mapping between layers could be

given by:

𝑟𝑒𝑙𝑢(𝑋 +𝑊 + 𝑏) (2-3)

where W represents the weights, b the biases of the connections, and relu is the

activation function as:

max⁡(0, 𝑥) (2-4)

Further FFNN parameter optimizations are carried out using algorithms like

gradient descent, etc.

The use of FFNN allows considering complex nonlinear relations among input

features and the predicted future event. Moreover, they facilitate working with a mix

of numerical and categorical inputs, as well as making predictions for several steps

ahead, i.e., multi-step prediction.

Although FFNN can be both designed and trained to predict time series events, they

fit better for applications that do not depend on time. On the contrary, Recurrent

Neural Networks (RNN) [Ma02] have been proposed specifically to deal with time

series events, since they can explicitly manage the ordering among inputs. RNNs

implement knowledge persistence, so it can be used for predictions. However, in

general, this memory is short and knowledge vanishes with time.

 Long Short-Term Memory

To improve RNNs, Long Short-Term Memory (LSTM) networks were proposed to

expand temporal dependence learning. LSTM units consist of a set of different

complex gates, namely input, output, and forget gates and the coefficients of the

network are dynamically managed to keep long term memory. LSTMs provide

accurate prediction of time series with complex temporal correlation, e.g., periodical

sharp changes.

 P
re

c
e

d
in

g
 u

n
it

F
o

ll
o

w
in

g
 u

n
it

Fig. 2-6. LSTM cell structure

Chapter 2 – Background 13

A general structure of an LSTM unit is depicted in Fig. 2-6 to forward internal

coefficient, memory (𝐶𝑡 1) and hidden (ℎ𝑡 1), from earlier to next unit.

To better understand the unit mechanism, let us start with the primary forgot gate

insert the input and last hidden state into a sigmoid function that is formulated as:

𝑔𝑓𝑜𝑟𝑔𝑒𝑡 = 𝜎(𝑊𝑓𝑜𝑟𝑔𝑒𝑡(𝑥𝑡 + ℎ𝑡 1) + 𝑏) (2-5)

Where W denotes the weight of each inputs of forget gate and 𝑥𝑡 is current

information; the output value is between 0 and 1 to discard or keep 𝐶𝑡 1 information.

In order to update 𝐶𝑡 1, input gate employs a sigmoid and a tangent hyperbolic that

response between -1 and 1, as following:

𝑔𝑖𝑛𝑝𝑢𝑡 = 𝜎(𝑊𝑖𝑛𝑝𝑢𝑡(𝑥𝑡 + ℎ𝑡 1) + 𝑏) ∗ ⁡𝑡𝑎𝑛ℎ⁡(𝑊𝑖𝑛𝑝𝑢𝑡(𝑥𝑡 + ℎ𝑡 1)) (2-6)

Therefore, the memory 𝐶𝑡 calculated by means of response from forgot and input

gates:

𝐶𝑡 = 𝑔𝑓𝑜𝑟𝑔𝑜𝑡 + 𝑔𝑖𝑛𝑝𝑢𝑡 (2-7)

Finally, the regulated output gate and hidden state from this cell can be written as:

𝑔𝑜𝑢𝑡𝑝𝑢𝑡 = 𝜎(𝑊𝑜𝑢𝑡𝑝𝑢𝑡(𝑥𝑡 + ℎ𝑡 1) + 𝑏) (2-8)

ℎ𝑡 = 𝑔𝑜𝑢𝑡𝑝𝑢𝑡 + 𝑡𝑎𝑛ℎ⁡(𝐶𝑡) (2-9)

 Optimization for training ML model

Mathematical programming or optimization is a mathematical method to find an

optimal point x* that results into the minimum (or maximum) value of a function

f(x) while satisfying a set of constraints [Ch83]; such point x* is said to be optimum.

More formally, an optimization problem can be defined as follows.

min ⁡⁡⁡𝑧 = 𝑓(𝑥) (2-10)

subject to:

𝑔𝑖(𝑥) ≥ 𝑏𝑖⁡⁡⁡⁡ ∀𝑖 ∈ 𝑅 (2-11)

where x represents a vector of variables, f(x) is the objective function, and R

represents the set of constraints. A constraint is an inequality defined by a function

gi(x) and a constant bi.

Let us define X as the set of all possible x vectors. Then, we can define the set S of

feasible solutions of the problem, as follows:

⁡𝑆 = {𝑥′ ∈ 𝑋|𝑔𝑖(𝑥′) ≥ 𝑏𝑖} ∀𝑖 ∈ 𝑅 (2-12)

14 Distributed Collaborative Knowledge Management for Optical Network

i.e., S contains all elements in X satisfying the whole set of constraints. Note that a

problem could have alternative optimal solutions, i.e., several x* with the same z*

value. Therefore, we can define the set of optimal solutions X* as:

𝑋∗ = {𝑥′ ∈ 𝑆|𝑓(𝑥′) ≤ 𝑓(𝑥′′), ∀𝑥′′ ∈ 𝑆⁡} (2-13)

The problem, however, could have no feasible solution, i.e., S = Ø; in such case the

problem is unfeasible. Finally, when f(x*) = -∞ the problem is unbounded.

A Linear Programming (LP) problem is a special case of mathematical programming,

where f(x) and gi(x) are linear functions of real variables. When variables are

restricted to be integer, the problem is called Integer Linear Programming (ILP),

whereas if the problem combines integer and real variables, the problem is defined

as Mixed Integer Linear Programming (MILP). Finally, Non-Linear Programming

(NLP) entails, at least, one non-linear function [Ch83].

Optimization is exploited in ML for training purposes so as to find the values of the

hyperparameters of the model that minimize the error [Su20]. In this regard,

Gradient Descent is a well-known iterative optimization algorithm that can be used

for finding local minima of a given function.

2.3 Generation of reliable and accurate synthetic

data

How to gather data for training ML algorithms is one of the main challenges that

need to be solved. The objectives to be achieved include not only the quality of such

dataset, which is directly related to the final accuracy of the prediction for network

operation, but also the time needed for that collection. Note that in many cases,

performance-related data heavily depends on the actual characteristics of the

network entity of interest and are only available when such entity is set-up. For

instance, QoS measurements depend on the actual routing of a connection; in

consequence, real measurements can only be available after such connection is

established, and might change due to the provisioning of neighboring connections.

However, ML algorithms need to be ready to be deployed at connection set-up time

and thus, special techniques are needed to train accurate ML algorithms before data

for that specific network entity is available. Further, the inherent prediction ability

of ML algorithms can be used during the lifetime of the network entity to elastically

allocate resources to the optimality.

Synthetic data generation is one of the solutions that can be implemented for the

identified challenges and run in a sandbox domain. However, for the generated data

to be reliable and accurate, they must be generated using techniques that rigorously

reproduce the real scenario, thus creating a digital twin. Such a digital twin can be

based on a combination of analytics and simulation models, which need to be tuned

Chapter 2 – Background 15

using the characteristics of the real entity, as well as with real measurements

collected before or during operation.

M

M

Q1-R3

e2e performance

estimation

S

Simulation

CURSA-SQ

M

M
M

M

M

M

Evaluation and

Tuning

Q1-R1

Q1-R2

Network

MonitoringDynamic

Configuration

Queue State

and Traffic

G

G

M
R1 R3

R4

R2

DC1

DC2

DC4DC3

G Q1-R4

(a)

(b)

Input and

Output Traffic

M

M

Fig. 2-7. Example of digital twins for the packet (a-b).

To illustrate accurate data generation, Fig. 2-7 presents an example of a digital twins

for the packet layer. Fig. 2-7a presents an example of a network with four nodes

interconnecting four DCs, where DC1-3 exchange data with DC4 (flows are also

represented). Let us assume that traffic is monitored at the input interfaces, so a

number of observation points have been activated. A digital twin is represented in

Fig. 2-7b based on the CURSA-SQ methodology [Ru18]. CURSA-SQ includes a

continuous G/G/1/k queue model with a first-in-first-out discipline based on the

logistic function, which enables solving the model in near-real time. To accurately

reproduce the real scenario, however, parameter tuning for the queues is required.

To that end, the dynamic configuration module is in charge of defining the traffic to

be generated and consumed by every DC, as well as the entities configuration, which

evaluates the accuracy of the estimation by comparing it against the real traffic

conditions measured from the observation points in the network.

2.4 Conclusions

The purpose of this chapter has been giving the needed background to ease the

comprehension of some concepts used in this Ph.D. thesis. Starting from a quick

16 Distributed Collaborative Knowledge Management for Optical Network

survey of the infrastructure and control plane architecture assumed in this Ph.D.

thesis, main ML algorithms used on the next chapters are summarized. Finally,

ideas related to data generation, which is a key issue for developing and testing ML

algorithms, have been introduced.

Chapter 3

State-of-the-Art

Autonomous network operation reduces human intervention related to the

configuration of the network. Such operation requires collecting performance

measurements from the network and developing intelligent algorithms that make

decisions proactively to reach some performance defined for each network entity. A

related concept is that of independent operation vs coordinated operation.

Independent operation occurs when the decisions that are made on a network entity

are based on measurements collected for the same entity. However, since in a

network infrastructure many entities are sharing the set of common resources, pure

independent operation is rare, as it can lead to overall suboptimal resource

utilization and even to result in poor performance because of the natural competence

for resources. Therefore, some kind of coordination among entities should be devised.

In this chapter, we present a review of the state-of-the-art related to coordination in

framework of network management, among ML-based entities. The state-of-the art

related to each goal defined for this Ph.D. thesis is review with the twofold objective

of ensuring that these goals have not yet been covered in the literature and for

serving as a starting point for this research work.

3.1 KM in single domain networks

Several works in the literature have focused on implementing autonomous control

loops entailing knowledge usage and decision making.

The authors in [Ru19] present a predictive Autonomic Transmission Agent (ATA)

based on ANN that predicts the right Forward Error Correction (FEC) algorithm

configuration for short-term operation as a function of real-time monitoring of state

of polarization (SOP) traces and the corresponding pre-FEC Bit Error Rate (BER).

18 Distributed Collaborative Knowledge Management for Optical Network

Note that the control loop is performed at the device level, and so the knowledge

usage and the decision-making process.

The authors in [Sh19] explore several ML approaches based on SVMs for fault

management, specifically for soft-failure detection, identification and localization.

Note this is a distributed system where knowledge usage is placed at the device level

and decision-making is placed close to the centralized SDN controller. The authors

in [Ve18.1] demonstrate the concept of autonomic networking in disaggregated

scenarios through use cases for provisioning and self-tuning based on the monitoring

of optical spectrum. Note that here the control loop entails collecting monitoring data

from one device and tuning the configuration of another one, so knowledge usage and

decision-making need to be placed in some centralized element. Finally, the authors

in [Mo17.2] model origin-destination (OD) traffic at the packet layer and use the

traffic prediction to proactively reconfigure the virtual network topology (VNT) to

adapt it to current and predicted traffic volume and direction. Note this is a purely

centralized autonomous networking control loop case where knowledge usage and

decision-making are placed in close to the centralized SDN controller.

The authors in [Ve19.2] present the benefits of adding a MDA system and present

operators use cases looking at automating optical network operation. Several MDA

architectures are overviewed, from the centralized to alternative hierarchical ones

that allow to implement control loops at different levels. In addition, the works in

[Gi18] and [Ve18.2] provide more details regarding MDA architectures and its

integration with other elements in the control and data planes.

Instead of data, ML models can also be shared among agents. An example of such

model sharing can be found in [Mo17.1], where the authors proposed to model OD

traffic in the core as an aggregation model of the conveyed metro flows models. In

this case, metro flow models are trained by the metro SDN controllers and shared

with the core SDN controller, which composes the model for the core OD.

To the best of our knowledge, no works in the literature have focused on providing

structure to collective self-learning in the context of networking. The KM process

entails creating and sharing knowledge. In particular, in this Ph.D. thesis, we target

at completing the KM process for truly autonomous optical network operation; we

apply KM in the context of optical transmission and networking and define it as the

process to autonomously (i.e., without human intervention) i) discover; ii) share; iii)

assimilate; and iv) use knowledge to improve the performance of a network. Note

that networks consist of a set of networking devices, which would probably not

achieve a global improvement in case of knowledge being individually managed.

Chapter 3 – State-of-the-Art 19

3.2 KM for multi-layer networks

Solutions currently under research to guarantee the requested performance are

Network Function Virtualization (NFV) and network slicing, where NFV Network

Services (NS) consist of interconnected Virtual Network Functions (VNFs) placed in

different COs. Note that, as specific network resources are reserved to every NFV

NS, the performance is guaranteed at the cost of high overprovisioning unless

dimensioning is carefully carried out. Even though the performance is bounded, it

cannot be precisely estimated as a function of the input traffic, which might be of

interest for both network operators to reduce overprovisioning, and for customers to

implement autonomic NFV services (see, e.g., [Ve18.1], [Ve19.3], [Ru16.1]).

The performance of a layer 2 (L2) / layer 3 (L3) packet connection can be assessed

during the commissioning phase through active monitoring, as we demonstrated in

[Lo19], using a 100 Gb/s active probe. We measure a packet connection by using an

active probe at the source to inject a train of numbered and timestamped packets;

when the train arrives to the other end of the connection, another active probe

measures throughput, by using the reception times of every packet, and latency, by

comparing the transmission timestamp with the reception time of each packet. Note

that this latency measurement requires a common reference clock for the active

probes, which is provided by a Global Positioning System (GPS) receiver to achieve

the needed accuracy [MR16.1]. In the case that the connectivity is implemented by

a point-to-multipoint (p2mp) multicast connection [Ru15], instead of a point-to-point

(p2p) one, every probe in a destination will measure the performance. Following this

procedure, packet connection performance, i.e., one-way packet delay, delay

variation (jitter), packet loss, and throughput, can be measured (see [MR16.2],

[Le18] for details). However, as the length of each measurement train and the packet

separation are constant, the obtained measurements can be considered as a bound,

since they are not related to the specific traffic that the connection will support.

ML models can be trained and used to estimate the performance of packet

connections. However, to obtain accurate models, training and validation procedures

need to be carried out, which entails the availability of a large amount of data.

Obtaining specific data to model a given connection takes a long time and as NFV

NSs might be highly dynamic, a different approach is required to reduce the time to

create the training and testing datasets.

To the best of our knowledge, no works in the literature have focused neither on KM

for multilayer networks nor a methodology to recreate the real conditions on which

the connections will be working. In this Ph.D. thesis, we help to improve the

predictability, as well as to assess the performance of connectivity services; ML

models (e.g., feedforward ANN) can be trained and used to estimate the performance

of end-to-end packet connections. Note that by considering ML models for such

estimation, the details of the network are abstracted and thus, they can be shared

with the final customers. However, to obtain accurate models, training and

20 Distributed Collaborative Knowledge Management for Optical Network

validation procedures need to be carried out, which entails the availability of a large

amount of data.

3.3 KM for broker-based multi-domain networks

The provisioning of client end-to-end connectivity services across heterogeneous

multi-operator (Multi-AS) networks is a challenging task. Further, in the current

context of new applications and services, the provisioning of end-to-end connectivity

cannot be only focused on ensuring throughput; the delay needs to be bounded to

ensure its right operation. Therefore, the broker must be in charge of determining

the route of the end-to-end connections across the individual domains so as to ensure

that the required QoS is met at the set-up time, as well as during the connection life-

time. QoS should be thus monitored periodically by collecting counters from routers

(passive monitoring) or by using active probes (active monitoring). In the latter, two

probes can measure the round-trip time by injecting trains of numbered and

timestamped packets that are looped back by the remote probe [Lo19].

Aiming at collecting fine grain measurements, active monitoring can be used, which

consist on injecting packet trains and measuring data were used afterwards to

produce a specific delay model for the packet connection that could be used during

connection operation time. However, using active probes requires dealing with the

introduced overhead, and they are mostly used during commissioning testing.

Aiming at collecting fine grain measurements, In-band Network telemetry (INT) can

be adopted to collect network status hop-by-hop, which fits well in single operator

SDN environments. However, precisely the hop-by-hop characteristics of INT

difficulties its application on multiple operator scenarios, as it might reveal internal

details of the domains. Another option is network tomography [He21], which consists

in inferring domain and inter-domain link delay components from e2e

measurements together with the available topology and routing information.

Nonetheless, precisely topology and routing information, is not generally available

in multi-operator scenarios.

Regarding the application of ML on the collected monitoring data, some previous

works have proposed models for short-term and long-term traffic prediction at

different time scales (see, e.g., [Ni20] and [Mo17.2] for second and day time scale,

respectively). ML can be also used to predict the delay, which should be bounded by

the maximum delay defined at the provisioning time. For instance, ANNs are

proposed in [Kr20] to model e2e delay, where the authors used traffic matrices

(generated with the NS-3 simulator assuming Gaussian distributed traffic intensity

for each flow) as input of the predictive models and evaluated their robustness and

accuracy under different network scenarios. Other works have proposed alternative

networking models together with control and orchestration plane architectures to

provide the committed delay to customer connections. The authors in [Rk20]

Chapter 3 – State-of-the-Art 21

leveraged a single domain SDN paradigm and proposed a model able to relate the

complex network relationships to produce accurate estimates of the per-packet delay

distribution and loss. The authors in [Za21] proposed a network slicing orchestration

solution able to handle e2e latency in multidomain single-operator networks. They

leveraged a multi-armed-bandit method to allocate resources to slices to meet end-

to-end latency requirements. Current networks are non-stationary in general and

therefore, pre-trained networking models require fine-tuning to correct the model-

mismatch problem, as highlighted in [Do20].

Multi-operator networks bring additional challenges, in particular regarding e2e

delay. One possible architecture to provide e2e services is that of peer-to-peer, where

operators exchange information among them directly. As an example, the authors in

[So20] studied the convenience of exchanging information related to the guaranteed

latency and resource availability in each of the domains to reduce service

provisioning blocking probability.

Instead of peer-to-peer multidomain architectures, an e2e service provider can

deploy a broker system (e.g., based on the one proposed in [Ca16]) that coordinates

e2e path provisioning and relies on domain SDN controllers for intra-domain

provisioning. Here, domains would share information with the broker in targeting

at providing better services while receiving performance feedback from the broker.

Nonetheless, for that sharing to be realistic, exchanged information needs to be

conveniently abstracted, so to ensure that internal details of the domain are not

revealed. In that regard, the authors in [Ch18] proposed a knowledge-based

multidomain service provisioning framework, where intra-domain topologies are

abstracted and shared with the broker for multidomain network automation tasks.

A similar approach was proposed by the authors in [Pa16], where abstracted topology

was used for inter-domain connection provisioning and QoS assurance.

Taking advantage of abstracted information is not always an easy task and it might

lead to poor adaptability and resource efficiency. In this context, some previous

works have proposed to leverage ML to develop cognitive multidomain provisioning

schemes. The authors in [Ch19.1], formulated the operations of multidomain

networks as a multi-agent learning system and presented a multi-agent Deep RL

approach to enable domain controllers and brokers to learn cooperative provisioning

policies from performed operation experiences. The authors in [Zh19] proposed an

ML model to produce inter-domain routing solutions autonomously by taking

advantage of historical provisioning traces. Finally, the authors in [Ch19.2]

demonstrated collaborative learning schemes for accurate quality of transmission

estimation in multidomain optical networks, where the distributed ML blocks

deployed in the broker and domain controllers learn inter-domain QoT estimators by

exchanging just necessary learning data.

To the best of our knowledge, no works in the literature have focused on the

coordination of ML capabilities between domain network controllers and the broker.

22 Distributed Collaborative Knowledge Management for Optical Network

In this Ph.D. thesis, we address these issues and proposed a collaborative

environment based on sharing delay models.

3.4 Traffic prediction and KM in Intent-based

networking

The traffic generated by some services might be complex and hard to model due to

the presence of multiple periodicities ranging from few hours to several days.

Although 24h is still the dominant periodicity for most services, other periodicities

with shorter or larger period can introduce sharp traffic changes that significantly

distort the typical daily profile. This fact makes impractical applying traditional

predictive approaches in many multilayer optical network automation scenarios,

e.g., dynamically allocating capacity to a traffic flow according to traffic prediction

[Mo17.1]. Aiming at modelling complex time series, such as network traffic, LSTM

can be an option due to its ability to learn data with long-term sequential

dependencies and indefinite duration.

In this regard, authors in [Bi21] proposed an integrated model based on an LSTM

predictor that filters noise from data and predicts timeseries with long-term view

and significantly reduces prediction error. Another approach can be found in [Tr18],

where authors proposed a multi-step LSTM-based predictor for traffic data in a

physical channel with temporal characteristics. Results compared with ARIMA and

FFNN show lower prediction error.

Together with LSTMs, specific loss functions have been recently proposed to

minimize prediction error in the presence of sharp changes that provides accurate

prediction of time series with complex temporal correlation, e.g., periodical sharp

changes [Gu19]. Nevertheless, although the overall accuracy of LSTMs can be higher

than that of alternative traffic prediction methods, they still incur in occasional

errors that can reduce robustness for autonomous network operation, especially

when the scale of changes is high, where traffic under-prediction can lead to

connection capacity under-provisioning, which translates into traffic loss.

To the best of our knowledge, no works in the literature have combined LSTM and

RL for capacity allocation based on traffic prediction. In this PhD thesis, we combine

LSTM-based traffic prediction model and RL-based capacity allocation.

3.5 Conclusions

In this chapter, we have reviewed the state-of-the-art of relevant works related to

the goals of this thesis. Table 3-1 summarizes the study.

Chapter 3 – State-of-the-Art 23

Table 3-1: State-of-the-art summary

Goals References

KM in single domain networks [Ru19], [Sh19], [Ve18.1], [Mo17.2], [Ve19.2],

[Gi18], [Ve18.2]

KM for multi-layer networks and

Intent-based Networking
[Ve18.1], [Ve19.3], [Ru16.1], [Lo19],

[MR16.1], [Ru15], [MR16.2], [Le18]

KM for broker-based multi-domain

networks

[Lo19], [He21], [Ni20], [Mo17.2], [Kr20],

[Rk20], [Za21], [Do20], [So20], [Ca16],

[Ch18], [Pa16], [Zh19], [Ch19.2]

KM in Intent-based networking [Mo17.1], [Bi21], [Tr18], [Gu19]

In view of this study, we can conclude that, although some previous works have

proposed algorithms and different methods for autonomic network management,

they have not considered in-deep scenarios with multiple entities that need to

exchange data and models.

In this and the previous chapters we have reviewed the state-of-the-art and the

background concepts needed to fully understand this work. The following chapters

present the essence and contributions of this Ph.D. thesis.

Chapter 4

KM Architecture, Methods and

Use Cases

Autonomous network operation realized by means of control loops, where prediction

from ML models is used as input to proactively reconfigure individual optical devices

or the whole optical network, has been recently proposed to minimize human

intervention. A general issue in this approach is the limited accuracy of ML models

due to the lack of real data for training the models. Although the training dataset

can be complemented with data from lab experiments and simulation, it is probable

that once in operation, events not considered during the training phase appear thus

leading into model inaccuracies. A feasible solution is to implement self-learning

approaches, where model inaccuracies are used to re-train the models in the field

and to spread such data for training models being used for devices of the same type

in other nodes in the network.

In this chapter, we develop the concept of collective self-learning aiming at improving

models error convergence time, as well as at minimizing the amount of data being

shared and stored. To this end, we propose a KM process and an architecture to

support it. Besides knowledge usage, the KM process entails knowledge discovery,

knowledge sharing, and knowledge assimilation. Specifically, knowledge sharing

and assimilation are based on distributing and combining ML models, so specific

methods are proposed for combining models. Two use cases are used to evaluate the

proposed KM architecture and methods. Exhaustive simulation results show that

model-based KM provides the best error convergence time with reduced data being

shared.

Chapter 4 – Knowledge Management Overview 25

4.1 KM in optical networks

 KM Process Overview

Fig. 4-1 presents the architecture proposed to enable KM, where two software agents

in charge of networking devices are represented. Agents collect monitoring/telemetry

data from the underlying device(s) e.g., an optical transponder (step 1 in Fig. 4-1a)

that are consumed by a ML-based application, to produce some output (e.g.,

prediction) based on some ML models regarding some device/entity, e.g., the QoT of

an optical connection. The results can be used by a decision maker module (2) to tune

configuration parameters in the device(s) (3). Note that we just described the typical

control loop (1-2-3), which focuses exclusively on knowledge usage.

Data
repo

Configuration

Agent discovering new knowledge (a)

Monitoring
/telemetry

ML-based
Application

Knowledge
Sharing

Model
repo

Device(s)

Data

Decision
Maker

Knowledge
Usage

• Find what the
new knowledge is
(meta-data).

• Assimilate the
new knowledge.
Model pool with
disjoint/shared
regions.

• Join models/data
within a region.

• Join models/ data
of nearby
regions.

Data / Models
and Meta-data

Device(s)

Configuration
Monitoring
/telemetry

Self-learning
Management

Knowledge
Discovery

Agent receiving new knowledge (b)

Self-learning Management

Knowledge Usage

Models and
Meta-data

1

2

3

4

5

6

7

Knowledge
extension

Knowledge
consolidation

Knowledge
Assimilation

Models and
Meta-data

8

Fig. 4-1. KM Process. New knowledge is discovered (a) and assimilated for

operation (b).

Now let us assume that the output produced by the ML-based application based on

the measured data is stored (4) and that such output could be compared to real data

measured from the device(s) after some time. If this would be possible, we could

conceive an algorithm that would monitor the accuracy of the current ML models

and detect events for which the models return inaccurate output (5). For illustrative

purposes, Fig. 4-2a shows an example where a model for regression has been trained

with data points. Note that those data points do not need to be uniformly distributed

in the regions and can form data clusters in some regions of the features space,

whereas no data points can be found in other regions. A prediction for data in an

unknown region would produce a response value that might be far from the actual

response measured from the network. Thus, detecting such inaccuracies would open

the opportunity to increase our training dataset with new labeled data (i.e., <X, y>,

where X is the input data and y the predicted response) and apply ML training to

produce more accurate ML models that can be immediately used by the ML-based

26 Distributed Collaborative Knowledge Management for Optical Network

application (6). This loop (4-5-6) entails knowledge discovery and it is the base for

self-learning [Ve19.1].

Features Space
(Ω)

Known
regions

Unknown region

Ω

Data
Clusters

b)a) R1 R2 R3

d)c)

U
nk

no
w

n
re

gi
o

n

U
nk

no
w

n
re

gi
o

n

Region
with data

Fig. 4-2. Known and unknown regions in the features space.

As an alternative to the single ML model covering the complete features space, one

could analyze the structure of the training dataset and realize of the presence of data

clusters. In such case, specific and more accurate ML models could be produced

within each of the selected regions as it is suggested in the example in Fig. 4-2b

(regions R1..3). In this case, some information (meta-data) is needed to specify the

region of applicability of the model, as well as other important data, like the number

of samples used to produce the model, etc. In addition, note that the lack of a model

in the region of a collected measurement reveals a new unknown region; those

collected data need to be stored until the corresponding label is obtained and can be

used to extend the knowledge to that region.

Imagine now that the knowledge discovery process is performed individually per

every different device/entity, as the measured data could be specific for such

device/entity and so the corresponding ML models. In such case, knowledge

discovered from one device/entity cannot be shared among different devices/entities.

However, let us assume that either the measured data can be used unchanged by

other devices/entities or there exists a function that normalizes the measured data

(i.e., removes local dependences) so that the resulting normalized data can be used

to train ML models for other devices/entities. Then, new knowledge in the form of

labeled data can be shared with other agents as soon as it is discovered (7), thus

enabling collective learning [Ve19.1]. Note that the normalized data received from

other agents can be used to complement the local training dataset; this increases the

learning speed since the probability of rare events to be observed increases as there

are more observers.

Chapter 4 – Knowledge Management Overview 27

However, sharing knowledge in the form of labeled data might entail the exchange

of large volumes until the accuracy of the ML models does not reach high values.

Note that one single labeled data point consists of a tuple of values and that a

complete training dataset can contain a large amount of data points. Another

alternative to reduce the amount of data being exchanged is to produce specific

models for the knowledge just discovered. These models can be very accurate in a

particular region of the features space where the new knowledge has been

discovered.

The components related to KM in the agent receiving the new knowledge are

sketched in Fig. 4-1b. Note that the separation between the agent receiving the new

knowledge and the one discovering it is done for illustrative purposes, as there is no

limitation about being actually the same agent.

When a model and meta-data are used to share new knowledge, the receiving agent

needs to assimilate such knowledge, starting by understanding what the new

knowledge is. Assuming that the feature space is modeled in a per-region way, the

received knowledge can be located (totally or partially) in one or more of the known

regions or in the unknown region; in the former, the model is added to the found

region(s) and a merge of regions could be performed, whereas in the latter, a new

region is created. We name knowledge extension to the process of identifying the new

knowledge and updating the regions. Note that a region can be modelled using one

or more models, so region updating would entail generating a new model joining the

previous model with the received one, or just adding the new model to the pool of

models. Another process that we call knowledge consolidation is in charge of joining

models within a region and joining nearby regions. Fig. 4-2c-d illustrate the features

space of a given problem, where the training dataset contains labeled data grouped

into three different regions. However, data points are not usually uniformly

distributed along a region, as regions are dynamically re-defined as a result of a

region merging process, triggered whenever new knowledge arrives. Finally, changes

in the regions and models and meta-data generate new operational models that are

ready for knowledge usage (step 8 in Fig. 4-1b).

 Proposed Architecture

Fig. 4-3 presents an extended architecture for KM, where more details of the agent

are depicted; specifically, knowledge discovery and knowledge assimilation in the

form of extension and consolidation (collectively named self-learning), knowledge

sharing, and knowledge usage components are detailed. In addition, the Knowledge

Manager component coordinates KM operations.

The data collected from the underlying physical device(s) is processed by an

application manager that uses knowledge for the autonomous control of the

device(s). For the sake of generalization, we consider that the configuration of the

devices is based on a set of algorithms for different problems, which generate outputs

28 Distributed Collaborative Knowledge Management for Optical Network

to a decision maker module in charge of finding the best configuration for the

forecasted conditions. Any problem might require a specific procedure combining

several techniques (ML, statistics or mathematics) to generate its outputs. The role

of the application manager in the device control loop is to feed the different problems

with the required inputs and to adjust the decision maker according to the observed

local performance.

problem n

Data
repo

Algori
thm

Decision
Maker

Algori
thm

Output
(e.g., prediction)

Config

Agent

Monitoring/telemetry

Application
Manager

Knowledge
Sharing

Models
and Meta-Data

Model
repo

Device(s)

Data
(pre-processed

and labeled
data)

Configuration and Feedback

problem 1

Data and
models

Self-learning Manager

Knowledge Extension / Consolidation

Knowledge Usage

Knowledge Manager

Training
Data

ML
Training

Accuracy
Eval

Model
Ensemble

Model
Merge

Training Data
Re-synthesis

Notifications

Data / Models
and Meta-data

Knowledge
Discovery

Fig. 4-3. Detailed architecture for KM

In addition to these operational tasks, the application manager exports pre-

processed and labeled data (including model predictions and real measurements) to

be stored in the data repository. Such data is analyzed by the knowledge discovery

module, which holds two essential roles: i) to identify inaccuracies in the current ML

models and, ii) to populate its internal training dataset and perform ML training to

produce new models that are stored in the model repository.

The knowledge discovery loop is the main source of knowledge acquisition coming

from real data from the operation of the underlying device(s). Such new knowledge

can be afterwards shared with other agents through the knowledge sharing module

Chapter 4 – Knowledge Management Overview 29

thus, implementing collective self-learning. Consequently, knowledge discovered by

other agents is also received and stored in the model repository.

The activity of knowledge discovery could lead to many ML models being stored in

the repository, which would hinder knowledge usage. For example, in the case of

keeping several ML models restricted to narrow region in the feature space or

alternatives models for the same region. Owing to that fact, knowledge assimilation

applies methods for knowledge extension and consolidation focused on reducing the

number of models used for operation while keeping its overall accuracy. As

illustrated in Fig. 4-3, we consider three different methods for such task, named

model ensemble, model merge, and training data re-synthesis. The next section is

devoted to providing the details for these assimilation methods. Finally, following a

given scheduling policy, e.g., every time a new ML model is made available or with

some periodicity, the knowledge manager updates the ML models of every problem

in the knowledge usage module, so the algorithms can use them for operational

purposes.

Last but not least, the knowledge usage module plays a pro-active role to speed-up

knowledge discovery, as the algorithm can discover that some given measured data

locates into an unknown region of the features space of their problems. In such case,

the application manager notifies the knowledge manager, which requests the

knowledge sharing module to ask other agents about labeled data around the

measured one, so as to produce a specific ML model for that unknown region.

4.2 Knowledge Assimilation

In this section, we describe in detail three elementary methods for assimilating

knowledge in the previously described context. These options, presented in Fig. 4-4,

are used for knowledge extension and consolidation. For the sake of simplicity, let

us assume that the agents focus on one single problem and that they are prepared

to perform all type of modelling procedures including self-supervised learning.

Regarding the typology of problems, let us consider both classification and regression

ML-based applications; due to their properties, we selected SVM for classification

and ANN for regression.

Without loss of generality, let f be a model that receives a set X of input data and

provide predictions of the target response y. Input data can be monitoring data or

pre-processed data after transforming monitoring data into features, whereas the

response can be either a numerical value for regression, or a class for classification.

A model is defined by a set f that contains, among others, the type of algorithm and/or

technique that characterizes the model and the needed parameters, e.g., ANN and

all the parameters and coefficients of the trained model. In addition, the meta-data

is coupled with the predictor and provides the context required to use properly the

model. An example of meta-data is the characterization of the input features space

30 Distributed Collaborative Knowledge Management for Optical Network

region, i.e., the range of each feature in the training data set. Then, before doing a

prediction, those ranges should be checked to know if the input data is within the

ranges observed during the training phase or, on the contrary, the model will

potentially extrapolate the response.

Knowledge Usage

fi

fj

E
n
s
e
m
b
l
e

f1

fi

fn

…
y

a) Model Ensemble

X

f i f j

Knowledge Usage

y

b) Model Merge

X

c) Training data re-synthesis

X

f

Data
Re-synthesis

ML
Training

Merge Data

Knowledge Usage

Knowledge
Extension/
Consolidation Knowledge

Sharing

Knowledge
Discovery

Knowledge
Extension/
Consolidation

y

f j

Knowledge
Extension/
Consolidation

f

f

f

f i

Knowledge
Sharing

Knowledge
Discovery

Knowledge
Sharing

Knowledge
Discovery

Fig. 4-4. Knowledge assimilation options: model ensemble (a), model merge (b), and

training data re-synthesis (c).

 Model ensemble

This method considers no just one single ML model, but a set (ensemble) of models

for a problem that e.g., correspond to different feasible scenarios that can be

observed. Thus, under a specific scenario, some models will produce accurate

predictions, whereas some other will produce inaccurate ones.

Under the model ensemble method, when a new model is trained, e.g., for a new

scenario, it is added into the set of models used by the problem (Fig. 4-4a). The new

model will be used according to the output algorithm to generate one single output

from the predictions made by a (sub)set of individual models in the ensemble. Under

this option, the algorithm is the responsible of discerning how to combine and/or

select individual predictions.

The combination of individual predictions can be done according to strategies as

simple as using a weighted average of the individual responses according to some

meta-data parameters that serve as weights. However, the availability of monitoring

data enabling the dynamic evaluation of the individual predictions allow the

implementation of adaptive voting procedures that can approach predictions to

actual measurements [Di00]. Model ensemble is an option for knowledge extension

that requires low computational effort and that can be applied to any ML technique

and even combine different types of ML models. A mathematical description for both

classification and regression applications is provided next.

Let E=<f1, f2,…,fn> be the ensemble containing all available models for a given

problem. Given an input data sample X=<x1, x2,…, xm>, we define the subset of

Chapter 4 – Knowledge Management Overview 31

models E*(X) ⊆ E containing all the models within the region of the features space

that contains X that are eligible for predicting the response of the sample. This

eligibility can be computed in terms of the probability that the sample belongs to the

statistical distribution of that training data used to fit the model. Then, assuming

that πi contains the characterization of the probability distribution of the input data

variables of model fi, such model can be included in E* if and only if P(X | πi)>ε,

where ε∊[0,1] needs to be selected beforehand. A typical conservative configuration

skipping those models whose training data statistical characteristics largely differ

from sample X could be ε=0.05 [Re97].

Once the ensemble subset selection has been carried out, the individual predictions

y’ are obtained for each model in E*(X), which are afterwards combined to produce a

single combined prediction y*. This combination is the result of applying a function

that considers a weight wi∊ℝ+ for the prediction of every individual model fi ∊ E*(X).

In the case of classification where the response is one of the classes c∊C, y* is the

class of the most common response considering the weights of the models.

Specifically, y* can be computed as:

𝑦∗(𝑋) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑐∈𝐶
{ ∑ 𝑤𝑖. (𝑦𝑖 == 𝑐)

𝑓𝑖∈𝐸
∗(𝑋)

}
(4-1)

In the case of regression, weighted average of the individual responses can be used,

where W is the sum of the individual weights:

𝑦∗(𝑋) =
1

𝑊
. ∑ 𝑤𝑖. 𝑦𝑖
𝑓𝑖∈𝐸

∗(𝑋)

 (4-2)

Let us now focus on how the accuracy of the models can be evaluated. Let us assume

that both individual and combined predictions are stored in the data repository (see

Fig. 4-3) until the measured y is available. Then, by comparing the measured y with

the individual predictions, the accuracy of each model in E*(X) can be evaluated. In

particular, we define the subsets E*acc(X) and E*ina(X) as the accurate and inaccurate

model subsets, respectively. Subset E*acc(X) contains the models that produced good

predictions, i.e., either those models that predicted the right class in a classification

use case or those models that predicted a response within a confidence interval, e.g.,

95%, in a regression use case. Note that E*ina(X) = E*(X) \ E*acc(X).

By classifying the models into accurate and inaccurate, we can dynamically update

the individual weights wi used for combination purposes; minimum (wmin) and

maximum (wmax) values are used to keep weights within a given range. Thus, the

weight of inaccurate models can be reduced according to parameter ρ∈[0,1], as:

𝑤𝑖 = max(𝜌.𝑤𝑖, 𝑤min) , ∀𝑓𝑖 ∈ 𝐸𝑖𝑛𝑎
∗ (X) (4-3)

whereas accurate models can be promoted by increasing its weight according to

parameter τ ≥ 1, as:

𝑤𝑖 = min(𝜏. 𝑤𝑖 , 𝑤max) , ∀𝑓𝑖 ∈ 𝐸𝑎𝑐𝑐
∗ (𝑋) (4-4)

32 Distributed Collaborative Knowledge Management for Optical Network

Note that magnitudes and the cross-relation of ρ and τ allow configuring different

strategies, ranging from a long-term persistence of past accurate models to a short-

term memory configuration leading to fast changes towards current good models.

 Model merge

This method consists in merging individual ML models obtaining one single model

for using the knowledge, which simplifies its operation (Fig. 4-4b). Note that the

combination of model parameters in this method is key to assimilate the individual

knowledge. Parameters of the joint model can be modified by the merging procedure

as soon as new models are available. This methodology can provide potential benefits

for those cases where model parameters can be partially updated without affecting

the robustness and accuracy of the non-updated part.

For simplicity, in this section we focus on merging a pair of individual models based

on linear SVMs in the context of a binary classification problem, where two classes

are linearly separable; merging n models can be defined as a concatenation of n-1

merge operations of model pairs.

Assuming that trained models fi and fj are linear SVMs, the coefficients of the

decision hyperplanes of each model that perfectly divides the feature space region

into two separated response classes can be easily obtained from the set of support

vectors Vi and Vj [Sc01]. Then, let Βi = [β0i, β1i,…, βmi] and Βj=[β0j, β1j,…, βmj] be the

vector of linear coefficients (i.e., the coefficient of every feature plus the intercept) of

fi and fj, respectively. Furthermore, in addition to meta-data πi and πj containing the

statistical distributions of input features, the training data set size of every model

(denoted as si and sj) is available.

The combined model, defined by the coefficients vector Β*, can be computed using

equation (4-5), where the coefficients of the combined model are the weighted

average of the coefficients of the individual models. Here, weights are computed by

means of function g(s) that depends on the number of training data samples of each

model. Without loss of generality, we can assume that g(s) is a simple transfer

function such as the identity or the logarithm.

𝐵∗ = [
𝛽
𝑖
𝑘. 𝑔(𝑠𝑖) + 𝛽𝑗

𝑘. 𝑔(𝑠𝑗)

𝑔(𝑠𝑖) + 𝑔(𝑠𝑗)
, ∀𝑘 = 0. . 𝑚] (4-5)

Equation (4-5) produces a combined model regardless of the characteristics of the

individual models. However, it is worth noting that models with dissimilar

characteristics can produce inaccurate combined models. A simple but efficient

procedure to avoid worsening the overall accuracy is to guarantee that the combined

model stays within the margin hyperplanes of both individual models. Fig. 4-5

illustrates the proposed procedure for a simple example with just two input features.

Fig. 4-5a-b show two initial models to be combined, where the decision and margin

hyperplanes are depicted with solid and dashed lines, respectively. Hyperplanes are

Chapter 4 – Knowledge Management Overview 33

depicted only in the range of the features observed for each variable; shadowed area

in feature x1 axis summarizes such range. In addition, the support vectors are

depicted with markers on the corresponding margins, using a different marker shape

for each class.

x1

x2

x1

x2

x2

x1

x2

x1

a) b)

fi
fj

f*

c) d)

Fig. 4-5. Merging linear SVMs

By solving equation (4-5) and assuming g(si)=g(sj), the combined decision hyperplane

is depicted in Fig. 4-5c, where the original margins and support vectors are depicted;

we observe in Fig. 4-5c that the combined decision hyperplane remains within the

margin hyperplanes of the individual models along the corresponding feature spaces

and as such, the combined model does not lead to worse decisions. In consequence,

to validate the combined model, one just need to verify that combined decision

hyperplane and original margins do not intersect in the regions; otherwise, model

merge cannot be performed with enough goodness-of-fit assurance.

Assuming that the merged model is validated, it is important to update the new

margin hyperplanes and support vectors. To keep the main properties of SVM,

margins can be generated by finding those parallel hyperplanes with respect to the

decision hyperplane, such that intersect with the closest support vector/s. Fig. 4-5d

shows the combined margins and the support vectors associated to the combined

model.

Finally, recall that meta-data is required also for the combined model. Particularly,

the region in the features space where such model can be applied is found by

computing the union of the regions of the individual models.

34 Distributed Collaborative Knowledge Management for Optical Network

 Training data re-synthesis

Finally, this method consists in generating the response from the individual ML

models in the given regions to obtain a synthetic training dataset from which a new

ML model is trained (Fig. 4-4c). The training data re-synthesis from ML models

enables reducing the amount of data being exchanged among agents, as well as the

data being locally stored.

The synthetic data generation procedure needs to consider the specifics of both the

problem and the techniques for modelling, to guarantee the persistence of the

characteristics of the observed data. Note that some of the shared models and/or part

of the synthetic data could need to be kept for future retraining cycles.

This option can be applied to both classification and regression problems. In the case

of classification using SVMs, we need to guarantee that synthetic samples are not

generated inside the space defined by margin hyperplanes. Indeed, data re-synthesis

should be restricted to generating samples on the margins, i.e., synthetic support

vectors. Fig. 4-6a illustrates an example where two linear SVMs cannot be merged

due to the intersection of the combined decision hyperplane with one of the margins.

When the re-synthesis method is applied, a number of synthetic samples on the

margins of every model are firstly generated (transparent markers) to afterwards

train a new SVM. Note that the SVM training algorithm finds the best SVM

configuration, including the most proper kernel. This can be easily automatized by

simply training with different kernels and returning the most accurate model. In

Fig. 4-6a, a polynomial kernel has been chosen for the combined model in order to

keep separable classes, where some of the synthetic samples generated become the

support vectors of the combined model (solid markers).

fi

fj f*

x1

x2

x1

x2

y

x

y

x

a)

b)

fi

fj f*

Fig. 4-6. Re-synthesis for classification (a) and regression (b).

Chapter 4 – Knowledge Management Overview 35

In the case of regression, the synthesis of data points is performed by generating

random samples that fit the statistical properties of the input region of the features

space of every original model, e.g., following a Montecarlo approach [Kr11]. Then,

the corresponding models are used to generate the response to label the sample. Once

a significant amount of data samples has been generated for every model, the

combined model is trained. Note that although in this chapter we use ANN for

regression, the above procedure can be applied to other techniques.

Fig. 4-6b shows a simplified regression problem where one single feature is used to

predict the response y; two non-overlapping models are to be combined. Dashed lines

illustrate how inaccurate each model can be when it is used for prediction using as

input a data point that it is outside its region of the feature space (extrapolation). On

the contrary, the combined model once trained from synthetically generated data

samples (depicted as triangles) preserves the goodness-of-fit of both individual

models.

As a conclusion, every method described in this section for knowledge assimilation

has its pros and cons, which makes that the method fits better in some use cases

than in others. Table 4-1 summarizes the main pros and cons of extension and

consolidation methods.

Table 4-1. Pros and cons of knowledge assimilation methods

Extension

• Model Ensemble Pros: negligible assimilation complexity

Cons: High storage and complex knowledge usage

Consolidation

• Model Merge Pros: Low storage and simple knowledge usage

Cons: High assimilation complexity (algorithmic) and risk

to degrade model accuracy

• Data re-synthesis Pros: Simple knowledge usage

Cons: High storage and high assimilation complexity

(computational).

4.3 Use Cases

In view of Table 4-1, this section defines two borderline use cases for illustrative

purposes, where the architecture for KM and the methods for knowledge sharing and

assimilation presented in the previous sections are applied. The first use case uses

KM in a purely distributed scenario, where knowledge is shared among the different

network nodes, whereas the second use case uses KM in a purely centralized

scenario, where although knowledge is shared among models, the whole KM process

is entirely carried out in the MDA controller running besides the SDN controller.

The use cases highlight the flexibility of the proposed architecture for KM, which can

36 Distributed Collaborative Knowledge Management for Optical Network

be easily adapted for different applications in multilayer network scenarios. In fact,

the placement of knowledge components has been forced to fit these two borderline

use cases, but it does not preclude other configurations to be feasible and even better

in terms of performance. These use cases will be considered in the next section for

the validation of the proposed architecture.

The architecture of the purely distributed use case is represented in Fig. 4-7a and is

based on the autonomic transmission application in [Ru19], where an autonomic

agent running in the optical transponders collects and processes SOP and pre-FEC

BER monitoring data at a rate of one sample every 278 µs, and it is able to anticipate

QoT degradation caused by fiber stressing events. The prediction anticipates such

degradation tens of ms before it actually happens by applying properly trained ML

models; the output is used to configure the number of iterations to be performed by

the error correction algorithm in the FEC module.

Knowledge Usage

Knowledge
Sharing

SOP, BER

Knowledge
Discovery

Knowledge Extension / Consolidation

Knowledge Manager

b) Centralizeda) DistributedSDN Controller

Node Agent

FEC config

config

OD traffic

VNT
config

Notif
Knowledge

Sharing
Knowledge
Discovery

Knowledge Extension /
Consolidation

Knowledge
Manager

Knowledge
Usage

MDA Controller

SDN Controller

Node

config

Optical
Transponder

Device Agent

Fig. 4-7. KM applied to the purely distributed (a) and centralized (b) use cases.

In this use case, it is clear the need of adopting continuous learning, justified by the

impossibility to accurately train ML models to predict every possible physical

fluctuation for all possible network scenarios before entering into operation.

Moreover, since similar SOP fluctuations are plausible to happen in different links

at different time, the benefits of sharing knowledge are expected to be high, as the

relationship between SOP fluctuations and QoT in the event of gusts of wind in aerial

fiber cables can be learnt in some part of the network and shared among the nodes.

In addition, knowledge usage needs to be embedded into the device agent due to the

extremely high data collection rate and the need of rapid decision making and device

configuration; it is a case of device-level control loop. Regarding knowledge discovery,

recall that it entails analyzing predictions and real measurements to find

inaccuracies (wrong classification) that could lead to training new ML models. The

placement of this component cannot be done neither in the device agents because of

their limited computational resources, not in the centralized SDN controller because

Chapter 4 – Knowledge Management Overview 37

of the large amount of data to be transferred. In this case, the node agent seems the

most proper place to deploy the knowledge discovery component. Consequently,

knowledge sharing is carried out among the node agents that exchange models

and/or data and implement knowledge assimilation to complete the KM process.

The architecture of the purely centralized use case is represented in Fig. 4-7b and is

based on the autonomic VNT reconfiguration in [Mo17.2]. OD traffic monitoring

samples are collected from the packet nodes in the network and used to predict the

OD traffic expected for the next time interval, e.g. 1 hour. Traffic prediction is used

to feed a VNT re-optimization problem that finds the best VNT configuration for the

forecasted OD traffic matrix [Ve17.1].

Here, a variety of reasons, like the continuous traffic increment, the introduction of

new services with strong requirements, etc., make KM process implementation for

continuous learning to be a good choice. In this use case, although different

architectures could be feasible, the network-wide control loop entails that knowledge

components are located in the MDA controller. Hence, monitoring traffic data can be

collected at a coarse interval, e.g. 15 minutes, and analyzed in the MDA controller

for dynamic VNT reconfiguration purposes. Continuous learning is needed to adapt

models to traffic evolution; here an inaccuracy is defined as a prediction with error

above some defined threshold. Notwithstanding the centralized architecture,

knowledge sharing can be carried out among OD traffic models; here knowledge

assimilation based on data exchange can be an option, in the case of enough storage

is available. The selection of the subset of OD to whom share knowledge is also

important in the case of ODs can be classified as a function of the type of traffic they

convey.

Finally, note that in both use cases, the SDN controller should be in charge of setting

the proper configuration parameters and policies for the KM process. In particular,

policies should specify what, when, how, and to whom knowledge needs to be shared,

when knowledge assimilation should be carried out, etc.

4.4 Results

In this section, we first introduce the simulation environment used for performance

evaluation and define the specifics of the two selected use cases. Next, we study and

compare the performance from applying KM and start by considering KM based on

data exchange, where data related to the detected inaccuracies is distributed, as well

as based on model exchange, where the knowledge assimilation techniques

presented in Section 4.2 are applied.

38 Distributed Collaborative Knowledge Management for Optical Network

 Simulation Environment and Use Cases

For performance evaluation of the proposed KM process, a simulation environment

has been developed in R. A network consisting of a number of nodes, each composed

of several devices, and connected by a set of links is reproduced. Specifically, we

configured a scenario reproducing a small-size metro network consisting in 10

locations, where each location consists of both a packet node and an optical node each

equipped with 10 ports.

Initial datasets for each use case were generated based on the topology

characteristics and end-users information from [Metro-Haul18] and initial ML

models for each device were trained. Each device includes a data generator to

synthetize monitoring data for the target use case. Operation was emulated by

generating synthetic monitoring samples that include events that were not observed

during the initial ML training phase, so new knowledge is discovered.

In the case of the purely distributed autonomic transmission use case, devices

emulate optical receivers and generate synthetic monitoring samples at a rate of 278

µs (3600 samples/s). Each sample consists of a 42-byte tuple <t, S, BER>, where t is

the timestamp, S is the set of values of the three Stokes parameters, and BER is the

pre-FEC BER measurement. Realistic fiber stressing events causing correlated SOP

and pre-FEC BER fluctuations were randomly generated based on the experimental

measurements carried out in [Ru19]. For this use case, we considered SVMs to

predict the proper configuration of the FEC module (i.e., number of FEC iterations)

as a function of pre-computed features gathering the current value and trend of each

of the Stoke parameters. Note that those features can be easily pre-computed from

the generated synthetic monitoring data [Ru19]. Finally, an inaccuracy is defined as

a misclassification, i.e., the model predicts a wrong number of FEC iterations.

For the purely centralized autonomic VNT reconfiguration use case, devices emulate

network interfaces in packet nodes. We used the CURSA-SQ methodology (see

Section 2.3) to generate realistic packet traffic flow samples with granularity 15

minutes, emulating the monitoring data collected from those interfaces. Each sample

consists of a 64-byte tuple <t, OD, B>, where t is the timestamp, OD is a string

identifying the OD flow, and B is the bitrate measurement in b/s. OD traffic is

predicted using ANNs whose inputs are the measurements in the last hour and the

number of hidden neurons equals to the number of inputs, in line with the modelling

approach presented in [Mo17.2]. Here, an inaccuracy is defined as a prediction for

which the magnitude of the error for a real measurement is greater than the

percentile 95% of the error observed during the training phase.

The simulation environment follows the KM architecture proposed in Fig. 4-3, where

the different KM components can be placed in node agents and/or the MDA controller

to compose the distributed and centralized scenarios presented in Fig. 4-7, as well

as any other intermediate configuration. Moreover, the configuration of the policies

for knowledge discovery, assimilation, and sharing can be configured from the SDN

Chapter 4 – Knowledge Management Overview 39

controller. Finally, the MDA controller collects relevant network performance

evaluation data, including the evolution of the accuracy of the models and the

amount of shared data.

 Data-based Knowledge Management

Let us first evaluate the performance of KM based on sharing data. We assume that

inaccuracies are shared when they are detected. Specifically, we consider two

different policies for data sharing: i) inaccuracies, where inaccurate data points are

shared and ii) extended data, where inaccurate data points go hand in hand with

other data points. In inaccuracies policy specifically, we consider that a small

window of samples (e.g., 30 samples) is needed to be shared to compute the features

for the inaccuracy in the case of the purely distributed autonomic transmission,

whereas just one sample is needed in the case of the purely centralized VNT

reconfiguration. Note that this policy is adapted from the collective self-learning

approach presented in [Ve19.1]. In extended data, those points that were not been

identified as inaccuracies, could be potentially useful to improve ML models.

Although other options could be considered for selecting such additional data points,

an extended window to allow compute the evolution of the features is shared in the

case of autonomic transmission, whereas individual samples measured immediately

before the inaccuracy are shared in the case of VNT reconfiguration. The amount of

additional data points that provides the best trade-off between accuracy and data

volume depends of the use case and scenario and it will be analyzed. Finally, ML

model re-training is carried out periodically, e.g., every hour, provided that

inaccurate data points are available.

Fig. 4-8 shows the performance of the proposed data-based KM in terms of the

evolution of the prediction error against emulated operation time, for both the purely

distributed autonomic transmission (Fig. 4-8a) and the purely centralized VNT

reconfiguration (Fig. 4-8b) use cases. For benchmarking purposes, we included the

performance of no sharing knowledge. For convenience, prediction error has been

normalized to the error of the initial models, whereas operation time was normalized

to the time when the least accurate approach reaches a low target error (e.g., 0.1%).

Interestingly, the results show similar behavior for both use cases, where large

benefits from knowledge sharing are observed. In particular, extended data sharing

shows a better convergence time, reaching the target error 60-70% faster than

without sharing knowledge. Moreover, is that policy the only one that achieves

negligible errors around 0.01%. The inaccuracies sharing policy shows also excellent

performance and although its convergence time is above than that of the extended

data sharing one, it is over 35% faster than no sharing knowledge. In fact, both data

sharing policies show a similar error evolution until reaching error around 3-4%,

which makes that the policy selection needs to be based on other criterion in case the

target error criterion can be relaxed.

40 Distributed Collaborative Knowledge Management for Optical Network

N
o

rm
al

iz
ed

 E
rr

o
r

Normalized Time Normalized Time

a) b)

63%

37%

73%

48%

0 0.2 0.4 0.6 0.8 1

No sharing
Inaccuracies
Extended data

1E-4

1E-3

1E-2

1E-1

1E+0

0 0.2 0.4 0.6 0.8 1

Fig. 4-8. Data-based KM performance for the distributed (a) and centralized (b) use

cases.

In fact, particular interest should be payed to the amount of total data that is shared.

This criterion is relevant mainly for the purely distributed use case, as such data is

exchanged among agents that are not in the same location. Table 4-2 shows the gain

in terms of convergence time as a function of the data shared per inaccuracy for the

purely distributed and the purely centralized use case. The multiplier refers to the

amount of additional data that is shared, where x1 is equivalent to the inaccuracies

sharing policy. The amount of additional data that needs to be exchanged to achieve

the gains showed in Fig. 4-8 represents an increment of 3 times (x4) the amount of

data exchanged with the inaccuracies sharing policy.

Table 4-2: Convergence Time Gain w.r.t No Sharing (%)

Multiplier of shared data per inaccuracy

x1 x2 x3 x4

Distributed 36.8 45.5 61.25 63.2

Centralized 47.5 66.25 71.3 72.5

Fig. 4-9a and Fig. 4-9b show the number of inaccuracies and the total data volume

shared during the entire simulation as a function of the amount of data exchanged

per inaccuracy for the purely distributed and the purely centralized use case,

respectively. The evolution of the total number of inaccuracies shows how they are

reduced when the amount of extended data is increased (about 1/3 in the case of the

distributed and 60% in the case of the centralized use case). Such reduction is the

base of the achieved convergence gain. Regarding the amount of total data shared,

although acceptable for the purely centralized use case, it is above 1 GB for the

purely distributed one. Recall that every accuracy entails 30*42 bytes in the case of

autonomic transmission, and 64 bytes in the case of VNT reconfiguration to be

Chapter 4 – Knowledge Management Overview 41

shared with (1010) agents. Even with the reduction of the number of inaccuracies,

the volume of exchanged data is high under the extended data policy.

In view of these results, and considering that the probability of discovering

inaccuracies decreases with time, a mixed data-based approach can be followed; the

inaccuracy sharing policy can be first applied to allow an initial fast convergence

with a reasonable amount of data being shared, followed by the extended data

sharing policy after reaching a certain error level to increase even more models’

accuracy.

2

2.5

3

3.5

100 300 500

0

500

1000

1500

Thousands

0

0.4

0.8

1.2

0 10 20 30

0

5

10

15

Th
o

u
sa

n
d

s

Thousands

Total Data
Inaccuracies

T
o

ta
l s

h
a

re
d

 d
a

ta
 (

M
B

)

#
 o

f
in

a
cc

u
ra

ci
e

s
(x

1
0

0
0

)

Shared data per inaccuracy (KB)

a)

b)

Fig. 4-9. Extended data policy analysis

 Model-based Knowledge Management

Let us now explore policies based on sharing models and knowledge assimilation by

means of the methods proposed in Section 4.2. Recall that, in addition to the models,

meta-data is needed to specify their region of applicability; specifically, we limit

meta-data to specify the range (minimum and maximum) of each input feature. For

the ongoing analysis, we assume that the model ensemble method is configured with

a short-term memory tuning. Specifically, the following configuration was chosen:

ρ=0.6, τ=1.5, wmin=1, wmax =10. Regarding model merge and training data re-

synthesis, we used them according to the characteristics of the ML techniques used

for the purely distributed (SVM) and purely centralized (ANN) use cases,

respectively.

Aiming at evaluating the performance of different policies and the impact of the main

blocks involved in knowledge assimilation, i.e., knowledge extension and

consolidation, we compare three basic policies: i) extension, where every new shared

model is added to a device models pool and used together with the model ensemble

method, without any consolidation action; ii) consolidation, where just a single model

is maintained, i.e., incoming shared models update the model by either model merge

42 Distributed Collaborative Knowledge Management for Optical Network

or training data re-synthesis methods, depending on the use case; iii) extension and

consolidation, where both knowledge extension and consolidation is continuously

performed to keep moderated the size of the models’ pool (we limited its size to 10

models). Meta-data is used to join models within a region or, if necessary, in nearby

regions of the features space.

Fig. 4-10 shows the evolution of model error against time for the above model-based

policies and the defined use cases. For the sake of comparison, we included the two

data-based KM policies previously analyzed in Fig. 4-8. The results show that the

policy combining knowledge extension and consolidation achieves a performance

comparable to that of the data-based KM thus, validating in terms of accuracy a KM

process based on sharing models instead of monitoring and pre-processed data. The

other two policies show worse performance and lead to either an increasing number

of models, which makes difficult a practical operation, because of the large number

of models, and reduces the potential of incremental learning, or to a forced

consolidation, which combines models with dissimilar characteristics in different

regions, which increases errors that reduce the gain obtained by the acquired new

knowledge (see Section 4.2.2).

N
o

rm
al

iz
ed

 E
rr

o
r

Normalized Time Normalized Time

a) b)

0 0.2 0.4 0.6 0.8 1

Extension
Consolidation
Assimilation
Extended data
Inaccuracies

1E-4

1E-3

1E-2

1E-1

1E+0

0 0.2 0.4 0.6 0.8 1

Ext. and Cons.

Fig. 4-10. Model-based KM performance for the distributed (a) and centralized (b)

use cases.

Once the excellent performance of the model-based KM with the policy combining

knowledge extension and consolidation has been demonstrated, its practical

applicability depends mainly on the amount of data involved in knowledge sharing,

as compared to data-based KM policies. Fig. 4-11a and Fig. 4-11b show the evolution

of the ratio between the data shared by each data-based policy and the combined

policy of the model-based one as a function of model errors for the distributed and

centralized use cases, respectively. Ratio equal to 1 (highlighted as a dashed line)

represents the case where data-based and model-based policies exchange the same

amount of data, whereas when the ratio is lower than (higher than) one entails data-

based (model-based) policy exchanging less data. As it can be observed, data-based

Chapter 4 – Knowledge Management Overview 43

policies provide benefits in terms of exchanged data only when very low error are

achieved.

M
o

d
e

l-
b

a
se

d
 d

a
ta

 s
a

vi
n

g
ra

ti
o

a)

b)

1E-3

1E+0

1E+3

1E-4 1E-3 1E-2 1E-1 1E+0

1E-3

1E+0

1E+3

1E-4 1E-3 1E-2 1E-1 1E+0

Inaccuracies
Extended

Normalized Error

Fig. 4-11. Data sharing comparison

In the rest of cases, model-based KM reduces the amount of shared data several

orders of magnitude in both the distributed and centralized use cases. Table 4-3

complements Fig. 4-11 and presents the total amount of data exchanged at the end

of simulations by each of the policies for each of the use cases.

Table 4-3: Total amount of shared data (in MB)

Use case
Model-

based

Min data

reduction

Data-based

(inaccuracies)

Data-based

(extended)

Distributed 2.6 99% 333.4 1333.5

Centralized 1.5 90% 15.2 60.9

As a conclusion, the combined knowledge extension and consolidation policy of

model-based KM provides virtually the best performance and it is the most scalable

option by far. Nevertheless, one can combine different policies by selecting the one

that better fits the current scenario. In particular, the selection of data-based and

model-based policies at different times of the KM process as a function of model’s

accuracy could provide the best performance. This is highlighted in Fig. 4-12a and

Fig. 4-12b, where a mixed strategy combining data-based and model-based policies

are compared in terms of the total amount of shared data for the distributed and

centralized use case, respectively. According to the performance results in Fig. 4-10,

the mixed policy providing the optimal performance would consists of the model-

based policy for the initial phase until models reach error around 1%, followed by the

data-based inaccuracies policy, until the error reaches around 0.1% and

44 Distributed Collaborative Knowledge Management for Optical Network

complemented by the extended data-sharing policy to reach a negligible error around

0.01%. As it can be observed, the mixed policy allows reducing even more data

volumes involved during knowledge sharing.

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1

Model-based

Mixed

0

0.5

1

1.5

2

2.5

3

Normalized Time

To
ta

l a
m

o
u

n
t

o
f

sh
ar

ed
 d

at
a

(M
B

)

a)

b)

Fig. 4-12. Model-based and Mixed knowledge sharing

4.5 Concluding Remarks

The KM process has been proposed aiming at a truly autonomous optical network

operation. KM is based on four main pillars: i) knowledge discover; ii) knowledge

share; iii) knowledge assimilate; and iv) knowledge usage. These pillars allow optical

networks to autonomously discover and disseminate knowledge that can be used to

adapt its configuration to variable conditions without human intervention.

A general architecture to support KM has been proposed that extend beyond typical

control loop implementation and allows for knowledge sharing among different

agents disregarding they run distributed in the network nodes or centralized in a

controller, like the Monitoring and Data Analytics (MDA) one. Such knowledge

sharing enables collective self-learning, which has been demonstrated to reduce

models error convergence time.

However, knowledge sharing entails data distribution and storage and hence,

keeping limited the amount of data is a key issue. In that regard, two alternative

strategies consisting on the distribution of data samples related to model

inaccuracies (data-based) and models representing such inaccuracies (model-based)

are studied. For the latter strategy, three methods for knowledge assimilation are

proposed: i) model ensemble, ii) model merge, and iii) training data re-synthesis.

Chapter 4 – Knowledge Management Overview 45

With these methods, knowledge assimilation can be implemented by means of two

main actions to manage ML models: extension and consolidation. Such actions are

carried out in the knowledge assimilation component in the architecture. In

particular model ensemble, allows an efficient and accurate use of ML model pools,

model merge allows combining the coefficients of different models to produce a

combined model and training data re-synthesis allows to consolidate different

models based on regenerating data from them that are used to train new models.

Two illustrative use cases have been used to illustrate the potential application of

the KM architecture and to evaluate different policies for knowledge sharing and

assimilation: i) the purely distributed autonomic transmission use case, where

knowledge is used at the optical transponder system level and knowledge sharing

and assimilation is carried out at the node level; and ii) the purely centralized VNT

reconfiguration use case, where all the components run at the MDA controller level.

Note that even in this case, a different model is kept for every of the origin-

destination traffic flows in the VNT, so knowledge sharing and assimilation takes

also place.

The KM process has been evaluated by simulation on a metro network scenario for

the defined use cases in terms of model error convergence time and amount of data

shared among agents. Two different data-based policies were studied and concluded

that sharing data inaccuracies and retraining ML models leads to a fast error

convergence time until reaching a certain low error, where error can be reduced even

more when additional (extended) data was shared along with the inaccuracies. In

addition, a model-based policy based on applying coordinated extension and

consolidation actions demonstrated similar convergence time than data-based

policies with few orders of magnitude less of data being shared among agents.

Indeed, the combination of the three data-based and model-based policies at different

phases of the network learning process reached minimal shared data volumes

without compromising the convergence towards highly accurate models.

The next chapters elaborate and extend the KM concepts just developed on different

network scenarios.

Chapter 5

Modeling and Assessing

Connectivity Services

Performance

The automation of NS consisting of virtual functions connected through a multilayer

packet-over-optical network requires predictable QoS performance, measured in

terms of throughput and latency, to allow making proactive decisions. QoS is

typically guaranteed by overprovisioning capacity dedicated to the NS, which

increases costs for customers and network operators, especially when the traffic

generated by the users and/or the virtual functions highly varies over the time.

This chapter presents the PILOT methodology for modeling the performance of

connectivity services during commissioning testing in terms of throughput and

latency. Benefits are double: first, an accurate per-connection model allows operators

to better operate their networks and reduce the need for overprovisioning; and

second, customers can tune their applications to the performance characteristics of

the connectivity.

PILOT runs in a sandbox domain and constructs a scenario where an efficient traffic

flow simulation environment, based on the CURSA-SQ model (see Section 2.3), is

used to generate large amounts of data for ML model training and validation. The

simulation scenario is tuned using real measurements of the connection (including

throughput and latency) obtained from a set of active probes in the operator network.

PILOT has been experimentally validated on a distributed testbed connecting UPC

and Telefónica premises.

48 Distributed Collaborative Knowledge Management for Optical Network

5.1 Modeling and Assessing Connection KPIs

In this section, we detail our proposal for modeling and assessing connection

performance, based on one-way active network measurements. Fig. 5-1 presents an

infrastructure based on the one described in Section 2.1, where a multilayer network

interconnects three COs. In the COM plane, an NFVO deals with the deployment of

NFV NSs. The multilayer interconnection network is controlled by a hierarchical

SDN architecture, where a Parent controller is on top of per-layer SDN controllers,

one for the packet and another for the optical layer. Finally, an MDA controller

collects monitoring data from the underlying infrastructure, trains ML models in the

sandbox domain, and applies data analytics techniques on these data.

WAN Infrastructure Manager (WIM)

SDN Controller
(L2/L3)

SDN Controller
(Optical Domain)

CO#1

100 Gb/s
Active Probe

Parent Controller

NFV Orchestrator (NFVO)

Configuration
(RESTAPI)

NFVI PoP NFVI PoP

100 Gb/s
Active Probe

CO#3CO#2

Node A Node B Node C

Monitoring and
Data Analytics

(MDA) Controller

Sandbox
domain

Fig. 5-1. Reference architecture for Active Monitoring.

Given that one of the main aspects of network automation is to guarantee that

provisioned connections actually meet the requested performance, active probes are

equipped at the packet layer to measure the performance of packet connections. The

active probes are installed in every CO and connected through a 100GbE interface

of a L2 switch in the internal CO network. Being the active probes connected to

interfaces configured in trunk mode, the probes can tag the generated Ethernet

frames with the desired VLAN ID, selecting the VLAN to be measured. The active

probes have been developed to be integrated in the above described COM system. To

that end, they expose a REST-API-based northbound interface (NBI) through which

the MDA controller can configure them and initiate a measurement session on a

specific packet connection.

Chapter 5 – Knowledge Management In Multilayer Optical Network 49

In the example in Fig. 5-1, a simple NS that consists of two VNFs in CO#1 and CO#3

interconnected by a unidirectional packet connection is shown. The packet circuit

has resources reserved in Nodes A, B and C, and its performance is measured by the

active probe in CO#1 that acts as a sender and CO#3 that acts as a receiver. Although

the active probes provide really accurate measurements between them, note that

because they are connected to the packet node that provides the external

connectivity to the CO (Node A and C), those measurements do not include parts of

the network, like the internal PoPs’ networks. For these very reasons, as well as to

generate the large training and validation dataset, we propose to use CURSA-SQ to

emulate the complete connectivity set-up and to generate useful models for the

customers. However, real measurements are strictly needed to tune the CURSA-SQ

scenario, which includes additional delays (e.g., transmission and other processing-

related delays, see [Fin19] for a complete delay model) and fine tune of the queues.

Fig. 5-2 illustrates the above concepts, where the active probes measure the

performance of the circuit between Node A and Node C. The proposed PILOT

methodology runs inside a sandbox domain in the MDA controller, and it includes a

module to configure the probes to perform the required measurements based on the

characteristics of the services provided by the customer using two random variables

(inter-arrival burst rate -IBR- and the burst size -BS) (step A in Fig. 5-2); the

resulting measurements are collected and used to tune a network simulator based

on CURSA-SQ (B). Once enough data is generated (C), ML models are trained and

validated (D) and they can be shared to the connection’s customer (E), which will use

them to estimate performance metrics based on the load (F). Note that the produced

ML models provide a way to reproduce the behavior of the connection without

revealing the internal routing or other network details, which facilitates being

shared to end customers. An alternative to ML models would be providing abstracted

end-to-end performance data, at the cost of moving large volumes of data.

To illustrate the network simulation process, Fig. 5-3a shows an example of a slightly

more complex p2mp connection defined between a source VNF and a set of

destinations, i.e., <src, {dest1, dest2, dest3}>. Let us assume that the customer has

specified that such p2mp connection will be used to convey a set of services S (in the

example S={s1, s2, s3}). The details of the p2mp connection received from the Parent

SDN controller include route of the tree, the resources actually reserved, the traffic

specifications, and the QoS constraints. In the sandbox domain, the PILOT

algorithm defines the scenario for CURSA-SQ-based simulation (Fig. 5-3b). The

CURSA-SQ scenario includes a traffic generator (G) in the source VNF for each of

the services specified, a sink node (Sk) for each VNF destination, dimensioned

queues for each output interfaces in the route of the tree, and delay nodes (d)

emulating the delay introduced by the links.

50 Distributed Collaborative Knowledge Management for Optical Network

src dest

CO#1 CO#3

CO#2

Node B Node CNode A

Active Monitoring

Estimated e2e performance

ML Models

Load
(Following Service

Characteristics)

Performance metrics
(throughput, delay)

Capture the behavior of the end-to-end
connections while abstracting from physical

details (e.g., the actual routing)

CURSA-SQ ML TrainingActive Probe Config. dataset

Sandbox domain

Client application

Data plane

A
B

C D

E

F

Fig. 5-2 Proposed Sandbox domain.

Performance
estimation

CURSA-SQ

s1
s2

s3

G

G

G

Sk

Sk

Sk

dest2

dest3

dest1

src

Node C

Node BNode A

(b)

Queue State

and Traffic

src

dest1 dest2

dest3

CO#1 CO#3CO#2

Node A Node B Node C

(a)

M

M
M

d d

Tuning
Active MonitoringB

C

G

d

Sk

M

Generator

Sink

Delay

Monitoring

Combiner

Distributor

Queue

Fig. 5-3. Example of p2mp connection (a) and CURSA-SQ-based simulation (b).

Next, PILOT configures the active probes to measure the performance at every

destination CO in the packet connection that will be used to tune the CURSA-SQ

scenario, e.g., to ensure that any additional delay is included in the real set-up.

Furthermore, in the case of p2mp connections, the probes join a multicast group

created by the Parent SDN controller specifically for the commissioning tests; the

source probe uses the multicast group as destination IP address for the generated

Chapter 5 – Knowledge Management In Multilayer Optical Network 51

packets. Once the probes are configured, PILOT generates measurements

configurations that include the definition of bursts mimicking the specified mix of

services at meaningful values of IBR and BS random variables. Once the results are

received from the destination probes (step B), PILOT uses them to tune the

simulation scenario and runs CURSA-SQ to generate a large amount of labeled data

for ML training and validation (C). The next section describes the PILOT

methodology in depth.

5.2 Combining Measurements and Synthetic Data

The general scheme of the PILOT methodology is sketched in Fig. 5-4. PILOT entails

three sequential stages to be carried out to produce accurate ML models for each

packet connection. PILOT relies on the specification of the traffic mix that the

connection will support. Specifically, the mix of traffic is defined in terms of services

characterized by, at least, IBR and BS random variables, and a scaling factor. Such

specification of the traffic mix is used to generate meaningful active probe

configurations in terms of packet trains that are generated by the active probes and

which measurements are used to tune the CURSA-SQ scenario. Once experimentally

assessed, synthetic data that reproduces the real connection is generated, and

accurate ML models can be trained and validated. The following sub-sections

elaborate on key PILOT methodology components.

Period of Time

Scaling

5%

95%

50% IBR

5% 95%

50%

BS

Real
Measurements

Active
Probe
Config.

CURSA-SQ Set-up
and tuning

CURSA-SQ
Simulation

Service Characterization

Synthetic Training and Validation DB

ML Training

ML
Models

Model
Validation

Sandbox domain
BA

C

D

Fig. 5-4. Overview of the PILOT Methodology.

 Traffic mix specification

As introduced in the previous section, we assume that a traffic specification is

received for each connectivity request. Such specification includes the

characterization of the set services S that the connection will support. Service

52 Distributed Collaborative Knowledge Management for Optical Network

characterization must include, at least, the statistical distribution and associated

parameters of the IBR and BS burst-level random variables plus the scaling. The

characterization can be provided by the customer or the network operator, and can

be based on specific measurements or on studies available in the literature (see

[Ru18]). From the received service characterization, we define the traffic

specification χs for service s, as follows:

𝜒𝑠 = {𝐼𝐵𝑅𝑠~𝑓(𝜃𝑠), 𝐵𝑆𝑠~𝑔(𝜗𝑠)}, ∀𝑠 ∈ 𝑆 (5-1)

where f and g denote probability distribution functions with their respective

parameters. In line with [Ru18], we consider that IBR and BS can be treated as

independent variables; indeed, f and g can belong to distinct families of probability

distributions. In addition, the characterization of the services at packet-level can lead

to a more precise configuration of active probe measurements. In that regard, packet

size (PS) is an additional random variable that could be included in χs.

The expected demand needs also to be included for scaling of each service. We denote

this input as us(t), where the scaling (e.g., number of individual users) of each service

s is defined as a function of time. The specific time range is defined by the customers

according to their interests, and it can cover from hours/days/weeks (e.g., a typical

tidal profile that periodically repeats on time) to months (e.g., the expected user

evolution during connection lifetime). Note that this flexible definition of the

expected load opens the possibility to carry out several analysis leading to different

KPI modelling for short, medium, and long-term applications. For the sake of

simplicity, we assume the same time range for all the services in a connection.

The statistical properties of the services and their expected demand in time are key

to understand and define the traffic flow x(t) (bitrate, defined in b/s) injected into the

connection. For modelling and simulation purposes (mainly for generation), we

consider to model services separately, and therefore, the expectation (E) and

variance (V) of each service in the flow can be computed as follows:

𝐸(𝑥𝑠(𝑡)) = 𝑢𝑠(𝑡) · 𝐸(𝐵𝑆𝑆) · 𝐸(𝐼𝐵𝑅𝑆) (5-2)

𝑉(𝑥𝑠(𝑡)) = 𝑢𝑠(𝑡) · 𝑉(𝐵𝑆𝑆 · 𝐼𝐵𝑅𝑆) (5-3)

where the variance of the product of BS and IBR can be estimated from well-known

approximations of the variance of the product of two independent variables [Ca02].

Note that the connection traffic flow x(t) is the aggregation of all xs(t).

 Traffic Sampling and Measurements Configurations

Let us now detail the procedure for sampling the traffic flows xs(t) to obtain real

measurements for those traffic samples using the active probes under realistic traffic

conditions (see Fig. 5-4). We have redefined the synthetic packet generation in the

active probes for this purpose, where a measurement request is defined by a number

Chapter 5 – Knowledge Management In Multilayer Optical Network 53

of packet bursts, each containing packets of a given size. The definition of the bursts

and the delay between two consecutive ones can be defined to reproduce a desired

traffic pattern. The objective is then to define how measurement configurations are

created to follow the main statistical characteristics of the specified traffic mix for

the connection.

Fig. 5-5 summarizes the concept behind the generation of measurement

configurations. Service characteristics are processed by a sample generator module

that generates a set of samples of a given duration of bursty traffic; the duration,

e.g., 5 ms, is defined by the capacity of the connection.

Sample Generator

5 ms0 ms

t + 100 µs
s1 s2 s3 s3 s2 s2 s1 s2

Generated bursts (µs scale)

Biased high

Unbiased

Configured packet Trains

Burst 1 Burst n…

Biased low Generated bursts (ms scale)

t
A

ct
iv

e
p

ro
b

e
co

n
fi

gu
ra

ti
o

n

Se
rv

ic
e

s2

Se
rv

ic
e

s3

χ2 χ3

Se
rv

ic
e

s1IBR BS
u

χ1

A

Fig. 5-5. Active probe configuration procedure.

The sample generator module firstly computes the expectation and variance of IBR

and BS random variables based on their probability distributions. Then, several time

values conveniently spaced in the time range of us(t) are selected, thus covering

relevant traffic mixes for low, medium, and high loads. For each selected time and

mix, samples are generated according the expectation and variance references. In

particular, three classes of samples are considered: i) unbiased samples, where

E(IBR) and E(BS) are used for all the services; ii) biased low, where both E(IBR) and

E(BS) are decreased by their respective variance values V(IBR) and V(BS), and iii)

biased high, where both E(IBR) and E(BS) are increased by their respective variance

values V(IBR) and V(BS). Regardless of the class, a sample is generated as a

sequence of BS and IBR values (mixing services) around their expectation with some

54 Distributed Collaborative Knowledge Management for Optical Network

additional random variation defined within their variance magnitude. Note that

unbiased samples allow measuring KPIs in average cases, which is intended for

computing throughput and average latency. On the contrary, biased samples are

designed either for measuring additional delays in the absence of queued traffic (low)

or stressing the connection capacity to compute maximum latency and packet losses

(high).

It is important to analyze the generated samples at different time resolutions.

Assuming self-similarity, at coarse resolution (ms scale) traffic can be seen as a

sequence of on/off periods of mixed services, whereas, at a finer resolution (µs scale),

the sequence of on/off periods can be seen between bursts of differentiated services.

This degree of detail is required to generate precise active probe configuration.

From the generated samples, a procedure to adjust and configure bursts of trains of

packets in the active probe is required. Thus, a burst in a measurement configuration

corresponds to a total (or partial) burst in a sample. Note that, to regularize the

length of the bursts of packet trains, a minimum and maximum number of packets

can be setup.

 CURSA-SQ tuning and ML model training

The real measurements for the set of meaningful configurations obtained are used

to tune and validate the CURSA-SQ scenario that will be eventually used to generate

synthetic data for model training and validation purposes.

CURSA-SQ requires configuring a set of traffic generators and this can be done

according to equations (5-2) and (5-3), as proposed in [Ru18]. However, to reproduce

by simulation exactly the same sampled scenarios measured by the active probe,

CURSA-SQ traffic generation needs to be altered with the deviation introduced in

unbiased measurements.

The generated traffic flows are then propagated through a system of continuous

queues Q that models the connection, as represented in Fig. 5-3. Let us assume that

every queue q∈Q is characterized by a unique and common buffer with capacity k (in

bytes) and a server rate µ (in b/s). Moreover, q(t) represents the queue state, i.e., the

number of bytes in the queue at time t. From such state, partial KPIs are computed

for each individual queue. Then, computing connection KPIs, i.e., throughput and

latency measurements between the source and all the destinations, is simply the

aggregation of partial KPIs computed in queues, as well as in delay nodes.

Despite of the fidelity of the CURSA-SQ-based simulation setup to represent a real

connection, there are two main unknowns that need to be discovered after analyzing

real measurements. First, the magnitude of the additional delay to be introduced by

delay nodes can be easily computed after analyzing the mean latency obtained for

biased low measurements. Second, as measurements are correlated to some traffic

behavior at the burst-level, but they are actually propagated packet-by-packet

Chapter 5 – Knowledge Management In Multilayer Optical Network 55

during measurements, a mismatch between theoretical and measured traffic

behavior can exist. To solve this issue, a correction factor (multiplier) can be applied

to both expectation and variance configured in the generators in order to fit the

characteristics of the expectation and variance measured. A good reference for this

purpose is to compare the difference between minimum and maximum latency in the

simulation and in the experiments for the case of the biased high monitoring

samples. The multiplication factors can be easily obtained to correct the deviation

between simulation and experimental values. After this tuning operation, unbiased

measurements can be used to validate the accuracy of the simulation environment.

Once CURSA-SQ is tuned and the KPIs obtained by simulation match the

experimental ones for the measured samples, a large set of synthetic KPI

measurements for a wide range of connection loads along the whole time period can

be easily obtained. The data is eventually used for producing ML models that allow

the customer to estimate KPIs for each connection destination point as a function of

the expected traffic mix. In particular, we use ANNs that, given the aforementioned

input, return an output vector with estimation of average throughput, average

latency, maximum latency, and packet loss (if any).

5.3 Active Measurements

In this section, we present the proposed workflow to be carried out when a new

packet connection is requested.

The proposed workflow is shown in Fig. 5-6. It starts when an operator requests the

deployment of a new NS through the NFVO’s Graphical User Interface (GUI), which

defines the interconnected VNFs, as well as the specification of the traffic that can

be expected and the QoS constraints in terms of throughput and latency (message 0

in Fig. 5-6). That request triggers the set-up of a number of packet connections,

which the NFVO requests through the Parent controller’s NBI and includes the

traffic specification and the QoS constraints (1). Once the requested connectivity is

set-up, the Parent controller updates the MDA controller with the connection ID and

its attributes (2). Next, the Parent controller creates an IP multicast group that will

be used exclusively for running the commissioning tests, and requests the MDA

controller to assess whether the configuration of the connection meets the QoS

constraints and to model its performance under the specified traffic (3). Upon the

reception of that request in the MDA controller, the PILOT application is triggered.

PILOT first determines the probes that will be involved in the tests and requests

them to join the IP multicast group (4). In addition, PILOT determines the set of

tests to be executed, and for every test, it requests the active probe in the source of

the connection to run them specifying the composition of the packet trains that the

probe needs to generate. The request includes the VLAN ID that has been configured

so the active probe can use it for tagging the generated Ethernet frames (5).

56 Distributed Collaborative Knowledge Management for Optical Network

(Conn ID, multicast
group, traffic specs,

QoS constraints)

NFVO

Set-up NS
(traffic specification,

QoS constraints)

Parent
Controller

Create p2mp
(traffic specification,

QoS constraints)

MDA
Controller

Active Probe

bw, VLAN ID)

NS deployed
Model set

p2mp Model

0

1

2

3

7

OK
(Conn Id, Model)

Notify new p2mp created
(Conn ID, src, {dest}, Tree,

Model p2mp

Active Probe

doMeasurement
(bursts specs, VLAN ID)

Results

For each test to
be executed

For each p2mp
to be created

Configure
(Multicast group)

5

4

Create
p2mp conn

Create
multicast group

Remove
multicast group

8

6

A

B

E

Fig. 5-6. Proposed workflow for a p2mp connection.

To measure the performance of a connection, the active probe in the source CO injects

trains of Ethernet frames that are received by the active probe in each remote CO.

Once the performance of the connection in every destination CO is measured, the

obtained results are notified to the MDA controller (6). With such measurements,

the PILOT application configures the scenario and runs CURSA-SQ with specific

parameters to generate a training dataset that is subsequently used to generate a

ML model for every destination of the connection, as detailed in Section 5.2. New

tests are afterwards executed to validate the connection model. Once a ML model for

the connection is produced, the MDA controller replies the Parent controller (7),

which in turn replies the NFVO (8) and tears down the IP multicast group. The

proposed PILOT methodology, the active probes and the workflow are

experimentally assessed in the next section.

5.4 Experimental Assessment

 Experimental Platform

Active probes were developed and evaluated locally in a setup in UAM-Naudit

premises in Madrid, Spain, (Fig. 5-7a) where the probes were used to evaluate the

performance of the connectivity between two L2 Ethernet switches connected

through a L3 router with two 1 GbE interfaces.

Chapter 5 – Knowledge Management In Multilayer Optical Network 57

2x QSFP28
100GbE

ADM-PCIE-9V3 HPN accelerator card,
based on a Xilinx’s Virtex Ultrascale FPGA

(a)

Huawei CloudEngine
8860-4C

(Buffer: 16 MB)

100GbE

1GbE1GbE
100GbE

Router SOHO
TP-Link Archer C7

(128 MB RAM)

10GbE

100GbE

100GbE

Alcatel-Lucent
7750-SR7

(Buffer: 268 MB)

10GbE

(c)

(b)

Huawei CloudEngine
8860-4C

(Buffer: 16 MB)

Fig. 5-7. Testbed scenarios and active probes.

{

"dst-ip" : "10.10.0.24",

"measurement-id": 324,

"mean-packet-size": 1500.0,

"mean-num-packets": 22.0,

"throughput-mbps": [41.953, 42.249, 42.545],

"repetitions": [{

"repetition-id": 0,

"packet-loss": 0.000,

"latency-us": [177.414, 147.634, 110.570],

"jitter-us": [10.855, 10.027, 8.652],

"throughput-mbps": [771.57, 740.05, 680.29]

},{

"repetition-id": 1,

"packet-loss": 0.000,

"latency-us": [162.384, 153.536, 142.635],

"jitter-us": [11.999, 10.962, 9.222],

"throughput-mbps": [798.94, 782.18, 775.23]

}]

}

5 6
{

"dst-ip" : "239.10.0.6",

"measurement-id": 324,

"vlan-id": 410,

"allocated-bandwidth-mbps": 1000.0,

"repetitions": 2,

"bursts": [{

"num-packets": 4,

"packet-size": 1500,

"delay-till-next-ns": 2000000

},{

"num-packets": 6,

"packet-size": 1500,

"delay-till-next-ns": 2000000

},{

"num-packets": 5,

"packet-size": 1500,

"delay-till-next-ns": 2000000

},{

:

}]}

Fig. 5-8. JSON messages for measurement configuration and results.

Fig. 5-8 shows the JSON messages used for measurement configuration and results,

which correspond to messages 5 and 6 in the workflow. Message 5 includes the

following fields (see Fig. 5-8): i) dst-ip specifies the IP address of the remote probe

(unicast IP address) or probes (the multicast address group created by the Parent

controller); ii) measurement-id uniquely identifies the measurement for correlation

purposes; iii) vlan-id specifies the VLAN tag to be used; iv) allocated-bandwidth-

mbps defines the bandwidth allocated for the connection and is used to define the

inter-packet time; v) repetitions defines the number of times that the list of bursts

needs to be sequentially repeated; vi) bursts specifies a list of bursts, where each

burst is specified by: a) num-packets defines the number of IP packet to be sent in

the burst; b) packet-size defines the size of each packet in octets; the used BERT

58 Distributed Collaborative Knowledge Management for Optical Network

type is Pseudorandom Binary Sequence (PRBS) by default; c) delay-till-next-ns

defines the delay in nanoseconds until the next burst after the end of last packet in

the current burst.

With these specifications, the source probe generates the packets for the

measurement. Fig. 5-9a shows the generated packets, where one can easily identify

the packets trains belonging to the first bursts and the correspondence with the

specifications in message 5 in Fig. 5-8. In addition, to graphically illustrate the

measurement configured, as well as the effects of the intermediate router, Fig. 5-9b

shows the sequence of bursts measured at the output of the source active probe and

at the input of the destination one, where some delay and jitter can be observed.

:

B
u

rs
t

0
B

u
rs

t
1

B
u

rs
t

2

(a)

P
ac

ke
ts

 /
 m

s

(b) Repetition 1 Repetition 2

Time (ms)

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12

Thousands

Tx Pck

Rx Pck

Fig. 5-9. Packets generated for a configured measurement (a) and aggregated

generated and received packets (b).

Every probe participating in the measurement returns the results to the MDA

controller (6). The message includes (Fig. 5-8): i) dst-ip is the IP of the probe that

reports the results; ii) measurement-id for correlation purposes; iii) mean-packet-

size is the average size of the packets received; iv) mean-num-packets is the average

number of packets received in every repetition; v) throughput-mbps specifies the

maximum, average and minimum throughput measured for the measurement; and

Chapter 5 – Knowledge Management In Multilayer Optical Network 59

vi) repetitions contains a list with the results for each repetition of bursts sent,

where each repetition include: a) repetition-id for correlation purposes; b)

packet-loss reports the packet loss in percentage; c) latency-us, jitter-us and

throughput-mbps report a list with the maximum, average and minimum latency,

jitter, and throughput, respectively, measured during the burst, i.e., excluding inter-

burst time, for each repetition independently.

Once the active probes have been assessed, they were deployed in Telefónica

premises in Madrid, Spain together with other commercial equipment and the

Parent controller. Telefónica premises are connected to UPC ones in Barcelona,

Spain, where the MDA controller is deployed. Such distributed testbed is used to

carry out the complete experimental assessment and validate the proposed

workflow. The setup is shown in Fig. 5-7c, where two active probes were deployed in

Telefónica premises and connected to two Alcatel-Lucent routers through 100 Gb/s

optical interfaces; the routers are connected through a 10 Gb/s optical link thus

creating a virtual link at the packet layer.

 Methodology validation

The collected measurements were used to generate a relevant set of experimental

measurements to tune a CURSA-SQ scenario emulating the real setup. Biased and

unbiased samples were generated in the range of normalized load [0.1, 0.95], defined

as the average traffic volume over the connection capacity (i.e., 10 Gb/s). We used

the statistical service characterization and demand profiles in [Ru18] for generating

a mix of different services including Video-On-Demand, Online Gaming, and

Internet services.

The results in Fig. 5-10 and Fig. 5-11 show the experimental measurements and the

simulation data for two different configurations of the CURSA-SQ scenario, focusing

on throughput and latency (both average and maximum) KPIs analysis. Precisely,

Fig. 5-10a and Fig. 5-10b show the results obtained from unbiased samples for

average analysis, whereas Fig. 5-11 focuses on biased high ones, which are relevant

to illustrate the real behavior of maximum latency. In the first CURSA-SQ

configuration, simulations have been conducted before tuning CURSA-SQ with the

real measurements. The results show a slight reduction of throughput estimation,

whereas latency is clearly underestimated due to: i) the lack of additional delays

consideration, and ii) a different latency slope for high loads (clearly visible at loads

0.85 and 0.9). In the second CURSA-SQ configuration, simulations were conducted

after tuning CURSA-SQ (according to Section 5.2) using biased low monitoring

samples at normalized load 0.1 and biased high ones at normalized load 0.9, for

additional delay computation and generators corrections, respectively. As it can be

observed, the evolution of all three KPIs as a function of the load closely matches

with the experimental measurements.

60 Distributed Collaborative Knowledge Management for Optical Network

0

50

100

150

200

250

300

350

400

450

500

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

1

2

3

4

5

6

7

8

9

10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Th
ro

u
gh

p
u

t (
M

b
/s

)

Normalized Load

D
e

la
y

A
ve

ra
ge

 (µ
s)

(a) (b)

Normalized Load

Fig. 5-10. Experimental and simulation results for KPI estimation.

0

100

200

300

400

500

600

700

800

900

1000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

CURSA-SQ (Before tuning)

CURSA-SQ (After tuning)

Experimental measurement

Normalized Load

D
e

la
y

M
a

x
(µ

s)

Fig. 5-11. Maximum latency for KPI estimation.

Let us to illustrate the need to tune CURSA-SQ with measurements over packet

trains that follow the expected traffic (as detailed in Section 5.2) instead of over

packet trains generically configured, i.e., independent to the expected traffic. In the

latter, the active probes can generate two types of trains: i) with small packets and

large inter-packet time to measure minimum latency; and ii) with large packets and

small inter-packet time to measure maximum throughput [Ru16.2]. Fig. 5-12

compares the performance at the highest loads of tuning CURSA-SQ based on real

measurements over both active probes configurations, for throughput (a), average

delay (b) and maximum delay (c). The results show a sub-estimation of the delay as

large as 70%. In view of the results, we can conclude that the proposed packet trains

configuration results in precise measurements and thus better CURSA-SQ tuning.

Chapter 5 – Knowledge Management In Multilayer Optical Network 61

T
h

ro
u

g
h

p
u

t
8.5

9

9.5

10

0

100

200

300

400

500

0

200

400

600

800

1000

0.8 0.9 1

Specified Traffic

Traffic independent

Normalized Load

1000
0

500
8.5

D
e

la
y

 A
v

g
D

e
la

y
 m

a
x

(a)

(b)

(c)

-71%

-2%

-64%

Fig. 5-12. CURSA-SQ tuning as a function of the injected packet trains.

An additional analysis of the gain introduced by the proposed tuning methodology is

depicted in Fig. 5-13, where the relative errors between simulated and real KPIs are

computed for both CURSA-SQ configurations. It is worth noting that the remarkable

reduction of error achieved by the tuning procedure. In fact, error below 3% for

estimated average and 9% for maximum latency are obtained, which validates the

simulation environment as accurate synthetic monitoring data generator for KPI

model training purposes.

0%

20%

40%

60%

80%

100%

Before tuning After tuning

Throughput

Latency (avg)

Latency (max)

Er
ro

r
w

.r
.t

. e
xp

er
im

en
ta

l

Fig. 5-13. Relative error of CURSA-SQ-based simulation.

62 Distributed Collaborative Knowledge Management for Optical Network

 Real vs Synthetic data for ML training

Once the simulation environment has been validated, let us study the benefits of

using PILOT with CURSA-SQ tuned with real measurements sampling the specified

traffic mix, as compared to using just real measurements to generate labeled data

for ML training and validation. To this end, we conducted a simulation-based study

in a more complex scenario, according to the scheme represented in Fig. 5-3, where

the delay nodes (d) implement a non-linear function that follows the behavior found

in the previous subsection.

N
o

rm
al

iz
ed

m
o

d
el

er
ro

r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000

Training with real data

Training with synthetic data

of real measurements

>100

Fig. 5-14. Prediction error of ML models vs # of real measurements.

Fig. 5-14 shows the prediction error (normalized between the minimum and

maximum) of the trained ML models as a function of the number of real

measurements conducted. Note that the approach based on synthetic samples has

been configured to perform ML training using 10,000 training data samples

regardless of the number of real measurements used for the initial tuning. On the

contrary, in the approach of ML training with real data, the number of training data

samples equals that of real measurements. In both cases, an ANN with a single input

for the normalized NS load and one output for each KPI was trained (Section 5.2.3).

A single hidden layer consisting in 10 hidden neurons with the logistic activation

function was configured. The training procedure converged to accurate ANNs in less

than one minute in a conventional desktop computer, which points out a negligible

computational burden. The results clearly show the benefits of using the proposed

PILOT methodology: the minimum model error is achieved with less than 100 times

of experimental measurements as compared with the training with real data. In fact,

note that the minimum error with the PILOT methodology is achieved when the

approach based on real measurements has not yet enough data to initiate ANN

training. Therefore, we can conclude that using CURSA-SQ tightened with relevant

Chapter 5 – Knowledge Management In Multilayer Optical Network 63

active measurements allows obtaining accurate KPI models for packet connections

during commissioning testing.

5.5 Concluding Remarks

A methodology named PILOT has been proposed and experimentally demonstrated

to provide predictable connectivity services. The PILOT methodology facilitates

reducing the cost of overprovisioning at both, the packet and the optical layer. PILOT

is based on three main pillars that allow the generation of accurate ML models to

estimate the QoS, in terms of throughput and latency, during commissioning testing:

i) an efficient traffic flow simulation environment, named CURSA-SQ, to produce

large amounts of labeled data for ML training and validation purposes; ii) real

measurements to tune the CURSA-SQ scenario by discovering additional delay and

throughput bottlenecks, which are usually not constant but related to the actual

traffic load; and iii) specification of the estimated traffic mix that the connection will

support are used in the process of data generation, which includes real

measurements and traffic generation for the simulation scenario.

PILOT is carried out during the provisioning phase of NSs as part of commissioning

testing. In this regard, a workflow has been proposed that executes PILOT for every

connection related to the NS being provisioned. As a result, a ML model is produced

for every connection and the set of models are returned to the client at the end of the

provisioning phase.

The active probes were first experimentally validated in a local setup and then

integrated in a distributed testbed connecting UPC and Telefónica premises,

respectively, in Barcelona and Madrid, Spain, where the PILOT methodology and

the proposed workflow were experimentally assessed. The results show noticeable

accuracy of the produced ML models after the scenario in CURSA-SQ was tuned with

real measurements. Last but not least, the benefits of using PILOT with CURSA-SQ

were compared to using just real measurements to generate labeled data for ML

training and validation in terms of number of real measurements needed to train

accurate ML models. The results show that PILOT requires around 20 real

measurements, which is 100 times less than performing ML training directly with

real measurements.

Many of the concepts developed in this chapter are used in the next one for multi-

domain scenarios, where each single domain can model intra-domain connection

delay as defined here.

Chapter 6

Delay Modeling in Multi-Domain

Networks

Accurate delay estimation is one of the enablers of future network connectivity

services, as it facilitates the application layer to anticipate network performance. If

such connectivity services require isolation (slicing), such delay estimation should

not be limited to a maximum value defined in the Service Level Agreement, but to a

finer-grained description of the expected delay in the form of, e.g., a continuous

function of the load. Obtaining accurate end-to-end (e2e) delay modeling is even more

challenging in a multi-operator (Multi-AS) scenario, where the provisioning of e2e

connectivity services is provided across heterogeneous multi-operator (Multi-AS or

just domains) networks.

In this chapter, we propose a collaborative environment, where each domain SDN

controller models intra-domain delay components of inter-domain paths and share

those models with a broker system providing the e2e connectivity services. The

broker, in turn, models the delay of inter-domain links based on e2e monitoring and

the received intra-domain models. Exhaustive simulation results show that

composing e2e models as the summation of intra-domain network and inter-domain

link delay models provides many benefits and increasing performance over the

models obtained from e2e measurements.

6.1 Motivation and objectives

In this chapter, we present a novel approach for QoS modeling in multidomain

networks. The approach is built on top of the principle of cooperative learning, where

different entities establish a positive interdependence for the sake of a powerful

66 Distributed Collaborative Knowledge Management for Optical Network

collective intelligence. We propose a collaborative approach between the domains

and the broker, where the domains exchange abstracted data to achieve robust and

accurate ML models for e2e QoS (delay) estimation. Those models can then be used

for multiple purposes, such as connectivity provisioning based on QoS estimation or

connectivity reconfiguration triggered by anticipated detection of QoS degradation.

Assuming that each network domain can model its internal, limited view of delay

based on its own traffic and delay measurements, the broker entity plays the role of

combining the different domain delay models for an e2e view. By providing models

instead of data, domains can share knowledge with the broker and, at the same time,

enforce privacy policies. With this approach, the broker can detect and infer

inaccuracies in the partial models to trigger their retraining. Specifically, the

contributions of this chapter are:

• The collaborative approach between the domains and the broker, where the

latter provides multidomain connectivity with QoS constraints to end

customers. Domains share delay models with the broker, which composes e2e

delay models as combination of domain and inter-domain link models. Such

approach enables the capacity to infer delay performance before establishing

an e2e path, as well as to find the cause of deviations between the model and

the measurements.

• The specific procedures for: i) inter-domain link delay estimation based on

e2e delay measurements and per domain delay models; ii) intra-domain

model inaccuracy detection with measures to correct intra domain models; iii)

detection of the source of the inaccuracy once it is detected.

6.2 End-to-end and per-domain delay estimation

Fig. 6-1 shows the control architecture considered in this chapter. We assume a

dynamic scenario where a connectivity manager in the broker receives and processes

requests for connectivity with QoS requirements in terms of throughput and

maximum delay among customer endpoints. The connectivity manager uses a

planning tool for provisioning and reconfiguration purposes [Ve17.2], and it is

assisted by ML- based models to enhance connectivity provisioning. The broker

connects to a set D of domains interconnected by a set L of inter-domain links and

altogether provides connectivity to a set P of e2e connections, the performance of

which is continuously monitored.

Chapter 6 – Delay Modelling in Multi-Domain Networks 67

SDN

Controller

Domain A Domain B Domain C

Active

Mon

Active

monitoring

End-to-end

Models (φp)

Customer

Site 1

Customer

Site 2

End-to-end Delay (yp(t))

Passive

monitoringMon DB

(xp(t), yp(t))

Normalized load0 1

D
e
la

y

Delay model

(φp)

Connectivity

manager

Multi-domain

Planning

Tool

Broker plane

Conn DB

AI Manager

Active

Mon

Fig. 6-1. Example of e2e delay and control architecture.

Let us assume first that the performance of each connection p is monitored e2e

between the endpoints in the customer sites and that data is gathered by the broker

for various purposes, like QoS analysis, modeling, etc. In particular, we assume that

throughput, xp(t), and delay, yp(t), are measured periodically, e.g., every 1 min, by

the customer edge routers (passive monitoring) and that active monitoring is carried

out. Then, after a sufficiently large period, enough data can be collected to train ML

models for every connection. Note that protocols like IPFIX, gRPC, etc. can be used

for monitoring data collection.

Among possible ML models, path delay models (denoted as φ*p) can be used to predict

a delay-related performance metric, e.g., average or maximum delay, as a function

of the normalized load (computed as the ratio between the measured throughput and

the capacity of the path) (see Chapter 5). The embedded graph in Fig. 6-1 illustrates

an example of delay model. End-to-end delay ML models can be used, e.g., to

anticipate QoS degradation and trigger reconfiguration.

Note that the φ*p models not only allow analyzing the e2e delay of a single path p

but they can also be used to get some insight on the performance of the domains by

considering groups of paths that cross a given domain. An example is in the case of

detecting model inaccuracies (e.g., significantly higher delay than expected for the

observed traffic load) in a group of paths; correlation of their routes through the

domains can lead to finding a common set of segments, either domains or inter-

domain links, that could potentially hold the source of the inaccuracy. Once some

segment(s) have been identified, re-routing of those affected paths could be

performed to avoid them.

68 Distributed Collaborative Knowledge Management for Optical Network

Nevertheless, this AI-assisted architecture suffers from an inherent drawback: the

multidomain network is analyzed as a black-box, a fact that limits the applicability

of advanced multidomain smart operation. An example is illustrated in Fig. 6-2,

where two paths between domains A and B (p1 from RA.x to RB.y and p2 from RA.y

to RB.x) are established and e2e delay models have been accurately trained after

some data collection phase (Fig. 6-2a). Then, let us now consider that a new request

for a path from RA.x to RB.x arrives. Since no path between RA.x and RB.x was

previously established, the broker does not have available e2e monitoring data and

delay models to predict the delay behavior of such new connectivity request. This

fact limits smart provisioning decision making, e.g., to choose the best route in terms

of QoS.

0

200

400

600

0 0.25 0.5 0.75 1

0

200

400

600

0 0.25 0.5 0.75 1

0

200

400

600

0 0.25 0.5 0.75 1

p1

p2
Domain B

RA.x

RA.y

RA.z

RB.y

RB.z

RB.x

RA.x -> RB.x ??

D
e

la
y
 (

m
s

)
D

e
la

y
 (

m
s

)

RA.x -> RB.x

Domain A

Domain B

RA.x

RA.y

RA.z RB.z

RB.x

Domain A

0

200

400

600

0 0.25 0.5 0.75 10 0.25 0.750.5 1 0 0.25 0.750.5 1

0 0.25 0.750.5 1 0 0.25 0.750.5 1

0

200

400

600

0

200

400

600

(b)

(a)

p2

p1

p2(A)

p1(A)

p1(B)

p2(B)

p1(A-B)

p2(A-B)

p1(A)

p1(A-B)

p2(B)

(c)

Domain B

RA.x

RA.z RB.z

Domain A
p1

0

50

100

150

200

250
p1(A) p1(A-B) p1(B)

P↓↓
P↓↓P ↑ ↑

p1(A)

p1(A-B)

RB.y

p1(B)

RB.y 0

200

400

600

0 0.25 0.5 0.75 1

Model

Measurements

Inaccuracies

0

200

400

600

Normalized load
0 0.25 0.750.5 1 0.75 1 0.75 1 0.75 1

Fig. 6-2. Provisioning of multidomain requests: reference approach (a) vs compound

approach (b). Example of inaccuracy (c).

To overcome the aforementioned issue, we propose breaking the black-box,

monolithic view of the multidomain network. End-to-end delay can be modeled by

combining intra-domain and inter-domain segment models for those segments in the

route of a path. This brings some benefits, as segment models can be used to create

compound models not only for those established paths but also to infer models for

not yet established paths. Following the previous example, the inferred model for the

path request between RA.x to RB.x could be obtained by composing an e2e delay

model from segments models: p1(A), p1(A-B), and p2(B) (Fig. 6-2b). Note that intra-

domain segment models need to be computed by the domains themselves based on,

e.g., active measurements carried out between the access/inter-domain interfaces for

a given path in the domain. Besides, the delay introduced in inter-domain links

needs also be measured, which is more difficult as active measurements should be

carried out across domains. For this very reason, we target at modeling the delay of

Chapter 6 – Delay Modelling in Multi-Domain Networks 69

inter-domain links at the broker level thus relaxing the need of multidomain active

monitoring.

Let us see now how we can identify the segment(s) that are producing delays higher

than expected. Once inaccuracies between model predictions and real measurements

are detected for these segments, they can be excluded for route computation in case

re-routing needs to be performed. Note that the black-box approach presented above

identifies common segments of affected paths by correlating routes. However, such

a procedure would be imprecise and even meaningless if inaccuracies are detected in

only few paths. Fig. 6-2c illustrates an extreme case, where inaccuracies are

observed in only one path for high loads. By analyzing the models of every segment

and computing how likely it is that each segment introduced such inaccuracy the

most reasonable segment can be selected. With this narrower identification, more

precise and proper reconfiguration actions can be taken.

The extended architecture is presented in Fig. 6-3, where only the details of the AI-

related components are represented for the sake of clarity. Compound e2e delay

models are composed as a combination of two distinct types of models: i) intra-

domain models (φpd) and ii) inter-domain link models (φl). The intra-domain models

are obtained by each domain controller from delay and throughput measurements

collected for each of the e2e path segments carried by that domain.

Domain A Domain B Domain C

Probe

Intra-Domain

delay model

(φpA)

Active

monitoring

Mon DB

Broker

plane

Delay model

request

Intra-Domain

Delay Models (φpd)

Inter-Domain Link

models (φl)

+

End-to-end

Models (φp)

RA.x RA.z

Probe

Customer

Site 1

Customer

Site 2

Probe
Probe

Probe
Probe

End-to-end Delay (yp(t))

Intra-domain Delay Intra-domain Delay Intra-domain Delay

throughput

and delay

Passive

monitoring

(ypA(t)) (ypB(t)) (ypC(t))

Delay Modeling

Conn DB

Mon DB

(xp(t), yp(t))

Intra-Domain

delay model

(φpB)

Intra-Domain

delay model

(φpC)

AI Manager

Active

Mon

Active

Mon

Fig. 6-3. Example of per-domain e2e delay and extended control architecture.

As an example, Fig. 6-3 represents an e2e path p that crosses domain A from node

RA.x to RA.z; therefore, the manager in domain A finds the model that predicts the

delay that the e2e path experiences when crossing domain A (φpA). To enforce domain

privacy, domain models make predictions without the required knowledge from the

actual domain state (e.g., the actual routes of the paths). The inter-domain models

70 Distributed Collaborative Knowledge Management for Optical Network

are trained by the broker, with the input of the e2e measurements and the

predictions of the domain models, so that the inter-domain link components (φl) can

be inferred. Note that, under this hierarchical training architecture, every entity

(domains and broker) is free to use their modeling techniques bringing the best

tradeoff between complexity and accuracy in their domains. Therefore, the

combination of models into an e2e delay model needs to be done assuring that

different types of models can co-exist, assuming that all delay components are

functions of traffic load.

6.3 Compound e2e delay modeling

This section details the processes that together provide accurate compound e2e delay

models. Table 6-1 introduces the notation and defines the main parameters and

variables that will be consistently used hereafter. Besides, as introduced in Section

6.2, we define the compound e2e delay model of a given path p as the sum of their

intra-domain and inter-domain link components, which can be formally expressed

as follows:

𝜑𝑝 (𝑥𝑝(𝑡)) = ∑𝜑𝑝𝑑 (𝑥𝑝(𝑡))

𝑑∈𝐷

+∑𝛿𝑝𝑙 ∙ 𝜑𝑙(𝑥𝑙(𝑡))

𝑙∈𝐿

(6-1)

Table 6-1: Notation

Sets and parameters

P Set of multidomain paths, index p.

X={xp} Set of e2e traffic monitoring samples for all paths.

Y={yp} Set of e2e delay monitoring samples for all paths.

D Set of domains, index d.

L Set of inter-domain links, index l.

P(d) Subset of paths that traverse domain d

δpl 1 if path p traverses inter-domain link l and 0 otherwise.

xi(t) Measured traffic throughput through element i at time t,

where i might identify a path p or a link l.

φp Compound e2e delay model for path p

φpd(x) Intra-domain delay model for path p in domain d. The zero

function if p does not cross d.

φ*d Correction model for intra-domain delay for domain d.

φl Inter-domain link delay model for link l

Chapter 6 – Delay Modelling in Multi-Domain Networks 71

Ttr Training phase duration (in monitoring intervals)

ypinter(t) Aggregated inter-domain link delay of path p at time t

E[·] Expectation

Decision Variables

yl(t) Delay at inter-domain link l at time t

β(·)(t) Delay bias of path/domain

up(t), vp(t) Delay slack and surplus variables for path p

Fig. 6-4 presents the main building blocks and their relationships for compound e2e

delay modelling at the broker plane. Blocks have been conveniently numbered to

facilitate the ongoing description and workflows. As depicted in Fig. 6-4, the main

blocks can be organized into three clearly differentiated groups: i) inter-domain link

delay component estimation (blocks 1-3); ii) inter-domain link delay model training

(blocks 6a and 7a);and iii) intra-domain delay model correction (blocks 7b and 8b),

which also includes inaccuracy detection (block 5) and localization procedure (block

6b) that keeps the highest goodness-of-fit through precise model improvement

actions. In turn, some of the blocks perform some computation or solve optimization

problems.

Intra-Domain

Delay Models

Aggregated

Inter-domain link

Delay Computation (p)
𝜑𝑝𝑑

Model

prediction

𝑥1 𝑡

𝑦𝑝
𝑖𝑛𝑡𝑒𝑟 𝑡

𝑦1
𝑖𝑛𝑡𝑒𝑟 𝑡

…

Intra-Domain

Delay Model
Corrections

Disaggregation by

inter-domain links (l)

DNN training

Inter-Domain

Delay Models

e2e

Monitoring DB

𝑦1 𝑡 … 𝑦𝑝 𝑡

𝑥𝑝 𝑡

…

Inter-domain link delay component estimation

Intra-domain delay

model correction

Inter-Domain

Delay DB

𝑦𝑙 𝑡 , ∀𝑙 ∈

Inter-domain link

delay model training

+

Conn DB

0b

2

0a

1

3

4

8b

6a

7a

Inaccuracy

?

Inaccuracy

Detection

5

𝑢𝑝 𝑡 , 𝑝 𝑡 ,⁡

∀ ∈

𝑥𝑝 𝑡 , ∀ ∈

𝜑𝑑
∗

Model

Correction

Inaccuracy

Localization

6b7b

𝑢𝑝 𝑡 , 𝑝 𝑡 ,⁡

∀ ∈

NY

𝜑𝑝𝑑 𝑥

i Block Id

Fig. 6-4. Main building blocks for training and correcting delay models at the

broker plane.

For the sake of clarity, Algorithm 6-1 presents the pseudocode for inter-domain link

delay modeling and intra-domain model correction, and Table 6-2 relates the defined

blocks to optimization problems or equations. The details of the above groups and

blocks are presented in the next subsections.

72 Distributed Collaborative Knowledge Management for Optical Network

Algorithm 6-1: Inter-Domain Link Delay Modeling with Intra-Domain Model

Correction

Input: X, Y, {φpd}

Output: {φl}, {φ*d}

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

Corrections ← {}

while true

{ypinter}← Inter-domain_Delay_Estimation(X, Y, {φpd},

Corrections) (block 2)

{yl},{up},{vp} ← Link_Delay_Disaggregation_Bias ({ypinter},

P, L) (block 3)

inac ← Inaccuracy_Detection({up}, {vp}) (block 5)

if !inac then

{φl}←DNN_training (X, {yl}, P) (block 6a)

break

d*,{up},{vp}←Inaccuracy_Localization({ypinter},P,L) (block 6b)

φ*d ← Model_Correction (d*,{up}, {vp}) (block 7b)

Corrections ←Corrections U {φ*d}

return {φl}, Corrections

Table 6-2: Relation Between Blocks and Problems/Eqs

Block Problem Eq(s).

2 Inter-domain Delay Estimation (6-2)

3 Link Delay Disaggregation (6-4)-(6-5)

3 Link Delay Disaggregation Bias (6-7)-(6-10)

5 Inaccuracy Detection (6-11)-(6-12)

6b Inaccuracy Localization (6-5)-(6-8)-(6-9)-(6-13)

 Inter-domain link delay modeling

For modeling inter-domain link delay components, a training database (DB) with

inter-domain link delays (yl(t)) is constructed based on the inter-domain link delays

estimation, given intra-domain delay models and the measured throughput and e2e

delay for the paths. We assume that the intra-domain delay models have been

received from the domain controllers and are stored in a DB, and a meaningful phase

of monitoring data collection spanning Ttr monitoring time periods has been carried

out and the data are stored in an e2e monitoring DB (this phase concerns blocks

labeled 0a and 0b in Fig. 6-4); the proper value of Ttr needs to be chosen considering

the trade-off between the required sample size to obtain meaningful inter-domain

link models and the time needed to collect all monitoring measurements.

Chapter 6 – Delay Modelling in Multi-Domain Networks 73

Once data are available, the delay component estimation starts, and for each

collected measurement <xp(t), yp(t)>, t=1..Ttr, several steps are executed to infer the

components of such delay introduced for each inter-domain link crossed by a path.

First, the domain delay models are used to produce the delay expected (φpd(∙)) in

every domain (block 1). Next, block 2 focuses on isolating the per-path aggregated

inter-domain delay component 𝑦𝑝
𝑖𝑛𝑡𝑒𝑟(𝑡), defined as the remainder of delay that

cannot be explained by the summation of the expected domain contributions

predicted by domain models; 𝑦𝑝
𝑖𝑛𝑡𝑒𝑟(𝑡)⁡can be formally defined as:

𝑦𝑝
𝑖𝑛𝑡𝑒𝑟(𝑡) = 𝑦𝑝(𝑡) −∑𝜑𝑝𝑑 (𝑥𝑝(𝑡))

𝑑∈𝐷

 (6-2)

Consecutively, block 3 processes jointly all 𝑦𝑝
𝑖𝑛𝑡𝑒𝑟(𝑡) values to disaggregate the delay

per-inter-domain link. The result of this step allows inferring inter-domain link

delays yl(t) from monitoring data. This inference is supported by the assumption that

the expectation (E[∙]) of per-path aggregated inter-domain delay component equals

the sum of the expectations of the delays introduced by each inter-domain links of

the path, i.e.:

𝐸[𝑦𝑝
𝑖𝑛𝑡𝑒𝑟(𝑡)] =∑𝛿𝑝𝑙 · 𝐸[𝑦𝑙(𝑡)],⁡⁡⁡⁡⁡⁡∀ ∈

𝑙∈𝐿

 (6-3)

According to equation (6-3), the estimation of yl(t) values given a set of paths P and

a set of per-path aggregated inter-domain delays 𝑦𝑝
𝑖𝑛𝑡𝑒𝑟(𝑡) can be done by simple

regression techniques. In this work, we propose implementing the disaggregation

block (3) by using the least absolute deviation regression [Ea11], which entails

solving the Link Delay Disaggregation optimization problem in equations (6-4)-(6-5)

independently for each t=1..Ttr:

min⁡∑ |𝑦𝑝
𝑖𝑛𝑡𝑒𝑟(𝑡) −∑𝛿𝑝𝑙 · 𝑦𝑙(𝑡)

𝑙∈𝐿

|

𝑝∈𝑃

 (6-4)

subject to:

𝑦𝑙(𝑡) ∈ ℝ
+,⁡⁡⁡⁡⁡⁡⁡∀𝑙 ∈ L (6-5)

After solving the above optimization problem, we apply spline smoothing to the

obtained yl(t) values to make them more consistent with the continuous temporal

collection and to eliminate those variations resulting from solving each time

independently. The results are then used to populate a training dataset (block 4),

together with the model input features, i.e., the measurements of the e2e traffic xp(t).

The resulting dataset can be used for training a fully connected, feedforward DNN

(block 6a) that predicts 𝜑𝑙 of every inter-domain link as a function of both the traffic

{xp(t)} and the route (only inter-domain links) of the paths ({δpl}). The DNN exploits

the fact that different paths crossing different inter-domain links could have,

however, similar behavior and correlation between traffic and delay. The trained

models are stored in a DB and are ready to be used (block 7a).

74 Distributed Collaborative Knowledge Management for Optical Network

 Intra-domain model correction

Although the procedure in the previous subsection has been designed to achieve

accurate estimation of the actual inter-domain link delays, there are two cases where

that accuracy can be seriously affected: i) the availability of a limited number of

multidomain paths with few distinct routes can lead to the impossibility of properly

isolating and inferring inter-domain link delays. In this regard, our proposed method

exploits as much as possible the available information from existing multidomain

paths to produce the most accurate compound e2e delay models; ii) inaccurate intra-

domain delay models. Note that those models are obtained during the commissioning

testing phase and updated periodically using active probes, which, as discussed in

the introduction, need to be properly configured as otherwise, delay measurements

could largely differ from those experienced by the real traffic, thus resulting in

inaccurate intra-domain delay modeling.

Especially for the second case, the broker can play a key role in detecting, identifying,

and correcting the intra-domain delay model inaccuracies before compound models

are used. Note that the benefits are two-fold: 1) after intra-domain models are

properly corrected, the broker can make use of accurate compound e2e models

without any re-training performed by domains; and 2) the applied corrections can be

notified to the affected domain(s), which in turn can use that useful information to

tune and adapt its/their mechanism for intra-domain modeling of future services,

e.g., using more realistic packet trains used by the active probes.

Before introducing the procedure to detect and identify intra-domain delay model

inaccuracies and compute model corrections, the formulation proposed in Section

6.3.1 needs to be revisited.

The presence of inaccuracies in the intra-domain delay models impacts negatively

on the veracity of the assumption formulated in equation (6-2) and now 𝑦𝑝
𝑖𝑛𝑡𝑒𝑟(𝑡)

values contain not only the aggregated inter-domain link delay component but also

the error (underestimation or overestimation) introduced by inaccurate intra-

domain delay models. Since inter-domain links can support both accurate and

inaccurate paths, finding a common inter-domain link delay value that fits all the

paths traversing the link is, by definition, imprecise. In other words, the expression

in equation (6-3) defines an expectation of inter-domain link delay that could be far

from the true value. Consequently, the condition in equation (6-3) need to be

extended to incorporate a per-path bias βp(t) that collects those potential intra-

domain inaccuracies:

𝐸[𝑦𝑝
𝑖𝑛𝑡𝑒𝑟(𝑡)] = ∑𝛿𝑝𝑙 · 𝐸[𝑦𝑙(𝑡)] + 𝛽𝑝(𝑡),⁡⁡⁡∀ ∈

𝑙∈𝐿

 (6-6)

Hence, the Link Delay Disaggregation optimization problem in equations (6-4)-(6-5)

needs to be extended to quantify that bias for every path; the mentioned optimization

is reformulated as follows:

Chapter 6 – Delay Modelling in Multi-Domain Networks 75

min⁡∑𝛽𝑝(𝑡)

𝑝∈𝑃

 (6-7)

subject to:

𝑦𝑝
𝑖𝑛𝑡𝑒𝑟(𝑡) = ∑ 𝛿𝑝𝑙 · 𝑦𝑙(𝑡)

𝑙∈𝐿(𝑝)

+ 𝑢𝑝(𝑡) − 𝑝(𝑡), ∀ ∈ (6-8)

𝛽𝑝(𝑡) = 𝑢𝑝(𝑡) + 𝑝(𝑡) (6-9)

𝑦𝑙(𝑡) ∈ ℝ
+,⁡⁡⁡⁡⁡⁡⁡∀𝑙 ∈ L (6-10)

The Link Delay Disaggregation Bias optimization problem—that now implements

block 3—finds the least absolute deviation of inter-domain link delay components in

equation (6-8) with the adjustment of both slack and surplus variables for each path

and time t (up(t) and vp(t)). Equation (6-9) relates per-path bias to slack and surplus

variables). Note that as the Link Delay Disaggregation problem, the Link Delay

Disaggregation Bias one needs to be solved for all samples collected during the

training period defined by Ttr. However, this problem produces not only the set of

all inter-domain link delay components but also the set of slack and surplus values

to be stored in the inter-domain delay DB (block 4).

Per-path slack and surplus values are analyzed in the inter-domain delay validation

(block 5) by solving the Inaccuracy Detection problem. This problem aims at

identifying the presence of a large bias as a consequence of some intra-domain delay

model inaccuracies. Specifically, a decision score s is defined based on key statistical

quartiles [Ba15] of the average bias of every path in time. Equation (6-11) formally

describes the computation of the quartiles 25%, 75%, and 100% % of the bias of all

paths. The obtained results are then used to compute s in equation (6-12) where the

interquartile range (𝑞75% − 𝑞25%) is multiplied by the maximum 𝑞100%.

〈𝑞25%, 𝑞75%, 𝑞100%〉 = 𝑄 (
1

𝑇
·∑ β𝑝(t)

𝑡=1..𝑇𝑡𝑟
, ∀ ∈ ;⁡〈25%, 75%, 100%〉) (6-11)

𝑠 = (𝑞75% −⁡𝑞25%) · ⁡𝑞100% (6-12)

Intra-domain model inaccuracies increase the bias of some paths, so we expect that

both maximum 𝑞100% and interquartile range (𝑞75% − 𝑞25%) increase, which makes

that the proposed score sharply increases. In the case that the score is under a

predefined threshold, then the inter-domain components in the dataset (block 4) are

validated and they can be used for training the DNN (block 6a); otherwise, the phase

of inaccuracy localization starts.

 Inaccuracy localization

Upon the detection of inaccuracy, the localization of the source of such inaccuracy

(block 6b) can be done by solving the Inaccuracy Localization optimization problem,

which is a variation of the Link Delay Disaggregation Bias one. This variation

76 Distributed Collaborative Knowledge Management for Optical Network

requires selecting one domain d at a time and the set of paths crossing it. The

formulation of the Inaccuracy Localization problem is as follows:

min⁡𝛽𝑑(𝑡) =
1

| \ (𝑑)|
∙ ∑ 𝛽𝑝(𝑡)

𝑝∈𝑃\𝑃(𝑑)

 (6-13)

subject to: Constraints (6-5), (6-8) and (6-9).

The Inaccuracy Localization problem excludes domain d from the objective function

and therefore, slack and surplus variables of the paths traversing d can take any

value with no additional cost. Then, if the inter-domain link delays can be obtained

without significant bias of the non-affected paths, the selected domain is a source of

inaccuracy. Therefore, we solve the Inaccuracy Localization problem for every

domain and select the one with the lowest bias βd(t) as responsible for the inaccuracy.

Finally, block 7b estimates—e.g., by applying cubic spline regression [Kn00]—the

needed correction φ*pd as a function of the load using the obtained slack and surplus

values. Such corrections are stored in a DB (block 8b), so the prediction of intra-

domain models is computed as the sum of the prediction of the model itself plus the

prediction of the correction model.

6.4 Illustrative Results

This section presents simulation results to validate the blocks, models, and

procedures described in Section 6.3.

 Simulation Scenario

CURSA-SQ (see Section 2.3) was used as a simulation environment. The CURSA-SQ

methodology was tuned with the experimental measurements presented in Chapter

5, and successfully used to reproduce realistic packet scenarios, including converged

fixed-mobile [Be20] and time-sensitive networks [Ve20].

A multidomain topology was reproduced, which consisted of four domains and 12

inter-domain unidirectional links connecting border routers of two different

domains. Seven customer sites (endpoints of multidomain paths) were connected to

domain edge routers in every domain. Five distinct candidate routes ranging

between 500 km and 1000 km were considered for every pair edge-border and border-

border routers, to emulate a wide variety of intra-domain networks. The topology

represents a moderated but realistic size of a multidomain topology [Ch18]. Based

on this reference topology, scenarios consisting of several multidomain paths

traversing 3 out of 4 domains, were generated. Every multidomain path requested

10 Gb/s maximum capacity and was routed randomly, firstly at inter-domain level

(by selecting a sequence of domains and inter-domain links) and secondly at intra-

domain level (by selecting a candidate route per each path segment), being the total

Chapter 6 – Delay Modelling in Multi-Domain Networks 77

length of the e2e routes between 1,000 and 3,000 km. Inter-domain links were

dimensioned to fit the sum of maximum traffic of all traversing paths. Besides,

background single domain 10 Gb/s paths, using the same candidate intra-domain

routes, were added to generate different scenarios, where the proportion of delay

introduced by inter-domain links with respect to the total e2e delay (hereafter,

denoted as proportion ρ) varies. CURSA-SQ was used to generate seven days of

traffic, emulating daily variations under the assumption of stationary traffic

conditions for each configuration: <number of multidomain paths, ρ>. The generated

traffic was injected in the scenario defined above. The characteristics of the traffic

are summarized in Table 6-3.

Table 6-3: Characteristics of Generated Traffic

 min max median mean std. dev.

Traffic (Gb/s) 0.78 10 3.68 3.95 2.56

Delay (ms) 9.42 75.38 13.24 19.32 12.92

The next subsections present the obtained results.

 Inter-domain link delay modeling

Let us first study and validate the accuracy of the proposed methodology for inter-

domain link delay estimation, i.e., blocks 2 and 3 in Fig. 6-4 including the Link Delay

Disaggregation problem defined in Section 6.3.1, assuming the availability of

accurate intra-domain delay models. Since we simulated each delay component to

elaborate e2e measurements, we had access to the real delay introduced by each

inter-domain link. Therefore, we compared the estimated delay against the real one

and computed the inter-domain link delay error estimation.

Fig. 6-5 presents the obtained results as a function of two of the most relevant factors

impacting on such error: i) the number of multidomain paths; and ii) parameter ρ.

In particular, Fig. 6-5a plots the performance for several values of ρ as a function of

the number of paths, whereas Fig. 6-5b highlights the results for 60, 120, and 240

paths as a function of ρ. We observe that the higher the number of multidomain

paths is, the more accurate the delay estimation becomes. However, the proportion

of multidomain traffic is crucial to determine the magnitude of this error. In

scenarios where the intra-domain delay is far greater than the inter-domain one

(ρ=15%), achieving the desired target error below 5% is not possible even when many

multidomain paths are available. However, as soon as the impact of inter-domain

link delay increases, the error sharply drops. Indeed, we observe in Fig. 6-5b that a

small relative error (< 5%) is achieved for ρ=30% with 160 multidomain paths, which

is a reasonable configuration in realistic multidomain scenarios [Ch18]. This

observation highlights the importance of accurate estimations of the inter-domain

link delay components.

78 Distributed Collaborative Knowledge Management for Optical Network

In
te

r-
d

o
m

ai
n

 d
el

ay
 e

st
im

at
io

n
 e

rr
o

r

Number of multidomain paths

5%

50%
(a) (b)

In
te

r-
d

o
m

ai
n

 d
el

ay
 e

st
im

at
io

n
 e

rr
o

r

Proportion of inter-domain delay (ρ)

1%

10%

100%

0 120 240 360 480 600

ρ=15%

ρ=30%

ρ=50%

0%

5%

10%

15%

15% 20% 25% 30% 35% 40% 45% 50%

60 paths

120 paths

240 paths

Fig. 6-5. Inter-domain link delay error estimation vs. number of multidomain paths

(a) and proportion ρ (b).

Assuming a realistic configuration of 240 paths and ρ=25%, let us now focus on

analyzing the goodness of fit of the compound model in equation (6-1). We assume

that block 6a in Fig. 6-4 is executed after one day of e2e traffic and delay

measurements being available, i.e., the number of periods Ttr of monitoring data

collection for model training purposes was set to 1,440 (1 day with 1 min.

granularity).

These data were split 80-20% for training and validation, respectively and used to

find the configuration of the DNN that returns the best performance in terms of

accuracy with a moderated size to avoid overfitting. The backpropagation training

algorithm using batches of 64 samples was considered; training took 30 min, which

is much less that the time needed to collect used monitoring data. After evaluation

of a wide range of number of hidden layers and size, a fully-connected DNN with

three hidden layers and 10 neurons per layer implementing the hyperbolic tangent

activation function was selected. Fig. 6-6 shows both training and validation loss,

computed as the mean absolute deviation between the predicted and the actual

delays as a function of the number of training epochs, for inter-domain links between

domains 1 and 2. We observe that the convergence to an accurate and robust model

is achieved after only a small number of training epochs; a common behavior

observed in the rest of the inter-domain link models. The embedded table in Fig. 6-6

summarizes the prediction accuracy for the selected inter-domain link, where

accuracy above 0.9 allows validating the reliability and high accuracy of the proposed

method to estimate and model inter-domain link delay.

Chapter 6 – Delay Modelling in Multi-Domain Networks 79

Epochs

Lo
ss

0

10

20

30

40

50

0 50 100 150 200

Validation Loss

Training Loss

accuracy

min 0.900

avg 0.916

max 0.933

Fig. 6-6. Domain 1 to domain 2 link modeling performance.

Let us study now how increasing the monitoring period impacts the accuracy of the

model. Fig. 6-7 presents the incremental maximum and the average error when

larger monitoring periods are considered. We observe that the 1 min monitoring

period can be relaxed to 5 or even 15 min without a major impact on the models’

accuracy.

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

0 15 30 45 60 75 90 105 120

avg

max

Pr
ed

ic
ti

o
n

er
ro

r i
n

cr
. w

.r
.t

. 1
 m

in
u

te

Monitoring Interval [min]

Fig. 6-7. Increment in prediction error vs. monitoring interval.

 Benchmarking

Once the accuracy of the compound model has been validated, let us now compare

this approach against two different methods that can also be used to compute and

predict not only the e2e delay, but also the delay introduced by the domains and

inter-domain links that a given path traverses. The methods are based on network

tomography [He21] and INT [Ta21].

80 Distributed Collaborative Knowledge Management for Optical Network

Since no information about the internal topology of the domains is available in the

defined multi-operator scenario, we have applied network tomography to infer the

delay of domains and inter-domain links from e2e measurements, predictions, and

inter-domain routing. Specifically, the delay introduced by every component is

computed so to minimize the mean square error between the approximated delay of

every path, computed as the sum of the inferred delays of crossed segments, and the

real e2e measurement. Regarding INT, the broker would be able to collect per-packet

telemetry data, which includes the real delay introduced at every hop from source to

destination. To hide internal domain topology, we assume that only edge and border

routers add INT measurements to the packets.

For the sake of a fair comparison, we assume that all the models are obtained using

the measurements obtained for path under study. Note that in the case of network

tomography and INT, this assumption entails that there are not measurements

available just after the path is established, whereas in the case of the compound

model, domain models are available as measurements are collected during the

commissioning testing. The same DNN configuration as for the compound model

approach is used for these two approaches. We assumed the aforementioned realistic

configuration (240 paths, ρ=25%) and conducted exhaustive evaluation of all the

approaches for different values of parameter Ttr.

Let us first focus on the difference of the e2e delay prediction accuracy among the

approaches for just one single path. Fig. 6-8 shows the measured and predicted e2e

delays as a function of normalized input traffic x for the considered approaches. Fig.

6-8a plots the prediction before collecting any monitoring sample, i.e., just using the

available information regarding the path distance in the case of tomography and INT

-based approaches, and just with the intra-domain models in the case of the

compound model.

0

10

20

30

40

50

60

70

80

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

30

40

50

60

70

80

0.8 0.85 0.9

0

10

20

30

40

50

60

70

80

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

e2e_delay
Tomography-based
INT-based
Compound

Normalized measured traffic x(t) Normalized measured traffic x(t)

e2
e

d
el

ay
 [

m
s]

e2
e

d
el

ay
 [

m
s]

(a) (b)

Fig. 6-8. End-to-end delay prediction example before (a) and after (b) training

(Ttr=1440).

It is worth noting that the compound model approach offers the possibility to

estimate a lower bound of the e2e delay consisting in the sum of all intra-domain

delay components. In contrast, that bound, under the other approaches, is simply

Chapter 6 – Delay Modelling in Multi-Domain Networks 81

reduced to the less informative transmission delay. Fig. 6-8b plots the prediction

after data collection and model training for Ttr=1440 (i.e., 1 day with 1 min.

granularity). In this case, assuming that a wide range of loads was observed during

that period, all approaches quickly converge to the measured delay. The compound

model and the INT-based approaches closely fit the perfect relation between load

and e2e delay, whereas the tomography-based approach still needs some additional

monitoring data to better learn the behavior of the e2e delay at high loads.

Fig. 6-9a shows the relative e2e prediction error (average and max for all 240 paths)

as a function of Ttr, normalized to the value, where all approaches reached negligible

average error (~1%). We observe that the compound model converges faster than

other approaches, especially for the maximum error. Assuming that Ttr is chosen to

guarantee a maximum error under a given target, Fig. 6-9b shows the relative

anticipation of the compound model to achieve such target error w.r.t. the time

needed under tomography or INT -based approaches (both since they exhibit same

maximum error performance in Fig. 6-9a). Given the results, we can conclude that

the compound approach reaches reasonable maximum error (around 10-15%) with a

monitoring period between 20% and 35% shorter for training purposes.

0%

10%

20%

30%

40%

50%

5% 10% 15% 20% 25%

0%

20%

40%

60%

80%

100%

0 0.2 0.4 0.6 0.8 1

Tomography-based [avg] Tomography-based [max]

INT-based [avg] INT-based [max]

Compound [avg] Compound [max]

Normalized Ttr

P
re

d
ic

ti
o

n
 e

rr
o

r

Target Max Error

C
o

m
p

o
u

n
d

 M
o

d
e

l A
n

ti
ci

p
a

ti
o

n

(a)

(b)

Fig. 6-9. End-to-end models’ prediction error (a) and anticipation of compound

model w.r.t benchmarking approaches (b).

Finally, delay prediction accuracy is evaluated in Fig. 6-10 for all the considered

approaches as a function of Ttr. The tomography-based fails to produce accurate

domain and inter-domain link delay models, as it can be observed in Fig. 6-10a and

Fig. 6-10b, respectively. The rationale is related to the fact that paths with the same

edge/border nodes can follow different inter-domain routes. The compound modeling

approach exhibits the best combined performance; on the one hand, domain delay

prediction error is constant and remarkably low since accurate models are available

from the very beginning of operation, whereas inter-domain link delay prediction

accuracy converges rapidly with time, following noticeable close to that given by the

models trained with data from INT. In that regard, the INT-based approach

produces very accurate models, but needs time to collect the required training

dataset.

82 Distributed Collaborative Knowledge Management for Optical Network

In conclusion, these results allow to validate the compound approach as a fast and

accurate way to obtain e2e delay models and their per-segment components.

0%

20%

40%

60%

80%

100%

0 0.2 0.4 0.6 0.8 1
Tomography-based [avg] Tomography-based [max]

INT-based [avg] INT-based [max]

Compound [avg] Compound [max]

0%

20%

40%

60%

80%

100%

0 0.2 0.4 0.6 0.8 1

Normalized Ttr Normalized Ttr

P
re

d
ic

ti
o

n
 e

rr
o

r

P
re

d
ic

ti
o

n
 e

rr
o

r

(a) (b)

Fig. 6-10. Domain models’ prediction error (a) and inter-domain link models’

prediction error (b).

 Intra-domain model correction

Let us now focus on validating the models and methods proposed in Section 6.3.2 to

detect and localize inaccuracies in intra-domain models during the compound model

training phase. Recall that inaccuracy detection is based on solving Link Delay

Disaggregation Bias optimization problem and computing score s in equation (6-11).

As score s is expected to increase when inaccuracies become larger, to demonstrate

the validity of the detection and localization method we need to demonstrate that it

is possible to set up a threshold value that discriminates inaccuracies with high

precision, thus ensuring that accurate models robustly produce score values clearly

under the threshold. Fig. 6-11 shows the score in the absence of inaccuracies for all

the configurations of the number of paths and ρ already tested in the previous

section. We observe that despite some oscillations in the score, the obtained results

do not exceed s=1, whose value can be set as the threshold that separates accurate

from inaccurate intra-domain models.

Chapter 6 – Delay Modelling in Multi-Domain Networks 83

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50

ρ=15%

ρ=30%

ρ=50%

0.0

0.2

0.4

0.6

0.8

1.0

15% 20% 25% 30% 35% 40% 45% 50%

5 paths

10 paths

20 paths

Average number of paths per inter-domain link Proportion of inter-domain delay component (ρ)

sc
o

re

sc
o

re

(a) (b)

Fig. 6-11. Score values vs number of paths (a) and proportion ρ (b) in the absence of

domain model inaccuracies.

Let us now compute the score s in the case of inaccurate intra-domain models. To

this aim, we consider again the realistic scenario with 240 paths and ρ=25% and we

have synthetically generated inaccuracies by adding some additional delay to the

intra-domain prediction, thus emulating a hidden delay not considered during the

intra-domain model training (See Chapter 5); inaccuracies range from 1 to 50 ms and

were introduced at one single domain at a time. Fig. 6-12a shows the score as a

function of the inaccuracy magnitude; curves for the minimum and maximum scores

obtained for a given path and domain are presented. In the figures, we observe that

the threshold defined as s=1 was clearly exceeded when magnitudes over 6-7 ms were

introduced. Aiming at providing deeper insight into the performance of accuracy

detection, Fig. 6-12b shows the precision computed as the probability of detecting a

true inaccuracy, as a function of the inaccuracy magnitude for the range of

magnitudes between 1 and 10 ms. Here, we can confirm 100% of precision for

inaccuracy magnitude greater than 7 ms.

0.1

1

10

100

1000

1 10

min

max

sc
o

re

Inaccuracy magnitude [ms]
50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10
Inaccuracy magnitude [ms]

In
ac

. D
et

. P
re

ci
si

o
n

(a) (b)

Fig. 6-12. Inaccuracy detection: score vs inaccuracy magnitude (a) and detection

precision vs inaccuracy magnitude (b).

84 Distributed Collaborative Knowledge Management for Optical Network

 Inaccuracy localization

Once an inaccuracy has been detected, we need to localize it. Therefore, let us now

focus on studying the performance of the inaccuracy localization procedure defined

in Section6.3.3. Recall that we proposed the Inaccuracy Localization optimization

problem to that aim, and the domain with the lowest bias βp is selected as the affected

domain.

Fig. 6-13a shows the results obtained for the scenario used for the detection study,

where an inaccuracy of 10 ms was introduced in domain 1; the bias (normalized to

the domain that produces the maximum value) for each of the domains is shown.

Note that domain 1 clearly presents the lowest bias (around 60% lower than the rest

of the domains); the gap between inaccurate and accurate domains is represented by

the double arrow in Fig. 6-13a. Fig. 6-13b shows the lowest bias (inaccurate domain)

and the lowest bias among all accurate domains as a function of inaccuracy

magnitude. We observe that the gap is large for all the inaccuracy magnitudes

analyzed (from 10-50 ms), which supports a 100% localization precision in the

studied range as the bias of accurate domains never drops below the bias of the

inaccurate one.

0

0.2

0.4

0.6

0.8

1

1 2 3 4

Selected Domain

N
o

rm
a

liz
e

d
b

ia
s

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50

non affected domain [min]

affected domain

N
o

rm
a

liz
e

d
b

ia
s

Inaccuracy magnitude [ms]

(a) (b)

Fig. 6-13. Inaccuracy localization: example of 10 ms inaccuracy in domain 1 (a) and

average results (b).

 Using compound modeling to detect and localize inaccuracies in-

operation

The previous studies focused on the training phase; we complement those results

with a study of the use of the compound model once in-operation to detect

inaccuracies and localize its potential root cause phase.

Let us first focus on analyzing how the compound model can be efficiently used if a

sudden event in a domain, e.g., an internal domain reconfiguration, affects the

accuracy of the intra-domain delay models for all the multidomain paths crossing

the domain. We assume the previous network scenario with 240 paths and consider

Chapter 6 – Delay Modelling in Multi-Domain Networks 85

that the proposed training procedure resulted in accurate compound models; the

operation was emulated by generating 60 days of monitoring data samples.

In this case, the inaccuracy is detected by simply comparing the predicted and the

measured e2e delays for every multidomain path and analyzing the resulting

deviation; a threshold can be configured so its violation triggers its analysis. Fig.

6-14 shows the average deviation observed for a path crossing the inaccurate domain

and for a path routed through other different (and accurate) domains, for different

values of inaccuracy magnitude. Thus, setting up a deviation threshold around 15

ms allows us to detect significant inaccuracies above 10 ms. The localization of the

inaccurate domain can be implemented by finding the common ones crossed by all

affected paths (see [Bar21] for an example applied to single domain networks).

0

10

20

30

40

50

60

70

5 15 25 35 45 55

accurate domain [max]

inaccurate domain

Inaccuracy magnitude [ms]

M
ax

 d
e

vi
at

io
n

[m
s]

Fig. 6-14. Inaccuracy detection and localization for sudden inaccuracies.

Let us assume now a more realistic scenario where not all the paths in a domain are

affected by an inaccuracy, its magnitude gradually increases with time, and it affects

each path differently. Two different scenarios have been analyzed for a set of affected

paths Pinac: i) intra-domain increase, where |Pinac| is large; ii) e2e increase, where

|Pinac| is a small set and all paths share the same e2e route. To illustrate the

difference between both scenarios, Fig. 6-15 shows the evolution of the number of

inaccurate paths detected using the deviation analysis presented in Fig. 6-14 as a

function of the time normalized to the instant when all the paths affected by the

inaccuracy are detected. Once a path is detected, every component (domain or inter-

domain link) is evaluated as a potential source of inaccuracy. To this aim, a list of a

priori conditional assumptions for each component, which need to be previously

defined, need to be evaluated. In this work, we simplify this list by considering only

a maximum delay bound that cannot be exceeded in every domain and inter-domain

link. Then, the potential set of inaccuracy sources is updated as soon as a path

violates the delay bound until the inaccurate one is isolated.

86 Distributed Collaborative Knowledge Management for Optical Network

0

10

20

30

40

50

60

70

80

90

100

0 0.2 0.4 0.6 0.8 1

intra-domain congestion

end-to-end congestion

In
ac

cu
ra

te
 p

at
h

s
d

et
ec

te
d

 (
|P

in
a
c|

)

Normalized Time

Fig. 6-15. Inaccuracy detection.

Fig. 6-16 shows the evolution of the localization accuracy in finding the inaccurate

model component for the two scenarios considered. For comparison purposes, we

have also considered the tomography-based as single model approach where, due to

the lack of intermediate accurate model components, localization is done by choosing

the domain or inter-domain link supporting the maximum number of inaccurate

paths. We observe that the compound model allows almost perfect localization of the

inaccurate component regardless of the scenario.

Normalized Time

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Composed Model

Single Model

0 0.2 0.4 0.6 0.8 1

Lo
ca

liz
at

io
n

A
cc

ur
ac

y

(b) Intra-domain
(c) End-to-end

|Pinac|≈22
|Pinac|≈19

1 0

Fig. 6-16. Localization for gradual inaccuracies (a-b).

Note that the accuracy of the tomography-based approach is very dependent on the

scenario, which discourages from utilizing it for e2e model evaluation purposes.

Another result is that the minimum number of paths required to achieve virtually

perfect localization accuracy (>99%) remains almost constant in the compound model

approach, which is an important outcome as it allows identifying a priori condition

(number of inaccurate paths detected) that can be applied to decide whether the

Chapter 6 – Delay Modelling in Multi-Domain Networks 87

inaccurate component localization procedure is trustworthy or not and eventually

validates the proposed approach based on a compound e2e modeling for different

scenarios.

6.5 Concluding Remarks

This chapter proposed a coordination environment for multidomain networks, where

domain networks and an inter-domain orchestrator (broker) consistently work for

accurate analysis and modeling of e2e delay of multidomain paths. The proposed

environment fosters cooperation by distributing tasks between the domains (in

charge of modeling intra-domain delay components) and the broker (responsible for

modeling inter-domain delay components). As a result of this cooperation, compound

e2e delay models consisting of the sum of intra- and inter-domain components are

obtained and used for multiple purposes, like QoS estimation for connectivity

provisioning and reconfiguration upon anticipated QoS degradation.

A numerical evaluation of the proposed compound e2e delay modeling was conducted

and compared against reference approaches, where models were trained by using

e2e delay monitoring data only (tomography-based) or per-segment monitoring data

(INT-based). The results show that: i) the inter-domain link delay can be accurately

estimated by combining e2e monitoring data and intra-domain model predictions; ii)

the broker can detect intra-domain model inaccuracies even when their magnitudes

are small with respect to the total e2e delay; iii) the compound modeling approach

converges to highly accurate e2e delay models faster than reference approaches; iv)

once trained, the compound models can be effectively used to detect sudden in-

operation inaccuracies under different potential scenarios, improving the

performance of reference e2e delay models. These results validate the proposed

cooperative e2e delay modeling architecture and methodology.

Chapter 7

KM in Intent-Based Networking

scenarios

The Intent-Based Networking (IBN) paradigm targets at defining high-level

abstractions, so network operators can define what are their desired outcomes

without specifying how they would be achieved. The latter can be achieved by

leveraging network programmability, monitoring and data analytics, as well as the

key assurance component. In this last Chapter, we focus on applying KM in IBN

scenarios, where cooperative intent operation is presented. Illustrative examples of

intent-based operation and numerical results are presented and the obtained

performance is discussed.

7.1 Cooperation among intents

 Proactive Self-configuration

Autonomous network operation can be reactive (i.e., in response to events) or

proactive (i.e., acting ahead of time). Let us illustrate the difference with an example,

where a packet connection (PkC) is established and conveys a traffic flow with

unknown traffic characteristics. Our target here is to allocate just enough capacity

to ensure the required performance, which would optimize resource utilization.

However, every different PkC supports services with different operational goals in

terms of delay and throughput (e.g., keeping the total delay below a given maximum,

or minimizing the capacity while ensuring zero packet losses, etc.), and so, the

tailored capacity dimensioning is required.

90 Distributed Collaborative Knowledge Management for Optical Network

Imagine that a policy-based management based on a fixed threshold (e.g., defined in

terms of the ratio traffic volume over capacity) is set to operate the capacity of a PkC.

Note that such operation can be highly reliable and it is based on a specific rule that

is easily understood by human operators. However, deciding the value of the

threshold requires knowledge of the traffic: i) a high threshold value (e.g., 90%)

would result into poor performance coming from high delay, and it can be worse when

the variability of the traffic is high; and ii) a low threshold value (e.g., 60%) would

result into poor resource utilization. Therefore, some traffic analysis would be

required. Further, since traffic characteristics can change over time, such analysis

need to be continuously performed to change the operating model, when needed.

PkCs can be routed on top of virtual networks, where virtual links (vLink) are

supported by the optical layer. Let us illustrate this problem with an example. Fig.

7-1 shows two PkCs (DC1-DC4 and DC2-DC3) that are established on top of a virtual

network. Packet nodes are connected through vLinks, each supported by lightpaths

on the optical layer. To minimize overprovisioning, such capacity is dynamically

adjusted, thus enabling the dynamic vLink capacity management, e.g., by

establishing and releasing parallel lightpaths between the end packet nodes.

R1 R2

R3

vLink R1-R2

capacity

traffic
PkC DC2-DC3

DC1

DC2

DC3

DC4

vLink

PkC DC1-DC4

Fig. 7-1. Capacity operation of PkCs and vLinks.

Note that modifying the capacity of a PkC entails programming some rules in packet

nodes and new capacity becomes immediately available. In contrast, adding more

capacity to the vLink entails establishing a new lightpath, which requires some time

(e.g., one minute). Therefore, vLink intents must make decisions with enough time

to guarantee capacity availability. Such time depends, among others, of the packet

traffic variation and thus, the value of the configured threshold could result into high

delay and packet loss.

The inner graph for PkC DC2-DC3 in Fig. 7-1 shows the capacity adjustments

performed assuming that the operational goal of the PkC is to minimize the allocated

capacity to reduce connectivity costs, by following as close as possible the input

traffic, while avoiding traffic loss.

Chapter 7 – KM in Intent-Based Networking scenarios 91

traffic(t), cap(t)

Monitoring

Data

State & Reward

comp
Capacity

Adjustment

Environment

req.

cap(t+1)agent

cap(t+1)

Capacity

Adjustment

Thr-based

capacity

adaption

req. cap(t+1)

(a) Threshold-based

traffic(t), cap(t) cap(t+1)

(b) RL-based

Fig. 7-2. Intent agents for PkCs and vLinks.

Fig. 7-2 presents two alternative approaches to operate the capacity of the

connections (PkCs and vLinks), based on a simple threshold rule or based on an

intelligent ML-based algorithm, in this case, RL. Every connection intent agent

collects the amount of input traffic that is injected to the connection, as well as some

other measurements, like packet loss and delay, and it determines the capacity of

the connection that will be needed to meet the given operational goals for the next

period (e.g., one minute). Such capacity can be used to program some rules in the

packet nodes not only to increment the capacity but also, e.g., to adjust the amount

of buffer at the input of the connection.

 Cooperative Intent Operation and Transfer Knowledge

Although PkCs and related vLinks can work independently, making decisions based

on the observed input traffic, some coordination might facilitate the overall

operation. For instance, as a result of the capacity required by the PkCs, the capacity

of the vLink needs to be reconfigured, as observed in Fig. 7-1. Nonetheless, if the

available capacity of the vLink is exhausted, competition for the available capacity

of the vLink would lead to poor performance for both PkCs.

A possible solution to avoid conflicts and countereffects between intent agents

competing for common resources is to consider cooperation among them to ensure

that they can achieve their operational goals. To illustrate such coordination, let us

consider the multilayer scenario in Fig. 7-1. We assume that PkCs have different

objectives. On the one hand, PkC DC1-DC4 requires that the maximum end-to-end

delay is not violated, whereas PkC DC2-DC3 requires minimize overprovisioning. In

spite of the subtle difference in the plots in Fig. 7-1 between both PkCs, the capacity

of DC1-DC4 is always large enough with respect the input traffic to ensure that the

delay added by the time spent in the queues is under the given maximum. Note that

the capacity of DC2-DC3 is kept closer to the actual traffic. Considering the capacity

requirements from PkCs, vLinks can be easily managed; the capacity of vLink R1-

92 Distributed Collaborative Knowledge Management for Optical Network

R2 varies after adding or releasing one lightpath to adapt its aggregated capacity to

the PkCs requirements, which motivates intent coordination.

To manage the capacity of the entities, the architecture in Fig. 7-3 supports a

hierarchy of intents, where each intent agent is in line with that in Fig. 7-2. In the

case of vLink intent agents, they receive as input the aggregated amount of input

traffic in the vLink, its actual capacity, as well as the total capacity that PkCs will

require for the next period, and are in charge of managing the vLinks capacity by

establishing and tearing down lightpaths.

PkC

Intent

vLink

Intent

vLink

SLA, Policy

PkC

Intent

• Capacity,

• Input traffic,

• Packet Loss,

• Delay

PkC
• Input traffic,

• Capacity

Manage vLink Capacity

(e.g., by creating

parallel lightpaths)
Req. Capacity

Knowledge
SLA, Policy

Req. Capacity

Knowledge

Capacity

Knowledge

Knowledge

Fig. 7-3. Intent cooperation and transfer knowledge.

Besides, there is some knowledge that can be transferred from PkC intents to vLink

intents, which cannot be anticipated by means of monitoring the (aggregated) traffic

in the vLink. Knowledge that can be transferred include: i) traffic models for the

PkC; ii) sudden capacity increase due to customer operational decisions (e.g., a pre-

planned increase of productivity of a factory can lead to data traffic increase); or iii)

PkC rerouting requiring new connectivity to be supported by the underlying

network. This knowledge could be used by vLink intents to increase the capacity or,

on the contrary, reject the request if no resources are available. Note that such

rejection would be informed back to PkC intents, which will use that knowledge to

reformulate their decisions and for finding alternatives to achieve the operational

objectives.

7.2 Design of the Cooperative Intent Solution

In this section, we present the details of the design of intent cooperation for the

problem presented in the previous section. The intents deployed for the individual

PkCs take actions based on the traffic in the connection and cooperate with the vLink

intent, which aggregates the capacity of the individual PkCs to decide the capacity

Chapter 7 – KM in Intent-Based Networking scenarios 93

of the vLink. A stand-alone intent-based vLink capacity adaptation is extended to

that end.

Fig. 7-4 shows the architecture for the hierarchical cooperation between PkC and

vLink intents, where PkC intent agents implement a RL-based method, specifically

input traffic x(t) and current vLink capacity z(t), that is collected periodically (e.g.,

every minute). Based on such analysis, the vLink intent agent determines the target

capacity z’(t+1) that should be allocated for the next period by using the learned

optimal policy. The aggregation of the target capacity requested for every PkC is

used as target capacity for the vLink. In addition, based on the enhanced RL-based

operation scheme proposed in [OFC21], a LSTM-based traffic model can predict the

evolution of the traffic and used to define the state for the RL agent.

vlink

PkC 1

…
PkC n

z1' (t+1)

z1'(t+1)

+

Packet Connection Intent 1

z1 (t)

x1 (t)

RL agent

Environment

s(t), r(t) a(t)

zn'(t+1)

Target Capacity

Analysis z’(t+1)

Manage

SC config

z(t+1)

Tx

vLink intent

Packet Connection Intent n

zn' (t+1)

zn (t)

xn (t)

Fig. 7-4. Extended architecture with hierarchical intent cooperation.

vlink

PkC 1

…
z1' (t+1)

z1'(t+1)

+

Packet Connection Intent 1

RL agent

Environment

s(t), r(t) a(t)

zn'(t+1)

Target Capacity

Analysis z’(t+1)

Manage

SC config

z(t+1)

Tx

vLink

intent

Packet Connection Intent n

f1, g1 fn, gn

Model ensemble

…

x’(t+m)

x1 (t)

z1 (t)

x1 (t+1)

fn, gn

LSTM
f1, g1

Fig. 7-5. Extended architecture with hierarchical intent cooperation and knowledge

transfer.

94 Distributed Collaborative Knowledge Management for Optical Network

Taking advantage of such prediction, we can transfer LSTM-based models from

PkCs to vLink intents in order to enhance target capacity definition at the vLink

(Fig. 7-5). In this approach, the vLink intent collects models from PkC intents and

creates an ensemble that is used for long-term predictions x’(t+m). The objective is

to anticipate traffic variations and enhance the management of the underlying

optical connection configuration, e.g., reducing the amount of SC changes to absorb

both current and future traffic demand.

Specifically, a compound traffic model is proposed (see Fig. 7-6 for an illustrative

example), with two components: i) an average profile component f(t), that is a simple

time-dependent function (e.g., polynomial or piece-wise linear) defined on a given

periodicity, e.g., one day (Fig. 7-6a); and ii) a single step LSTM component that

models the residual traffic ξ(t)=x(t)-f(t) as a function of the last w residual values

(g(t)) (Fig. 7-6b). Note that f models the overall periodic traffic evolution, while g

collects the specific variations observed in different periods, as well as other

perturbation (peaks) that scape from the coarse granularity of f. Hence, the

combination of both components provides high accurate predictions.

0

20

40

60

80

100

120

0 100 200 300 400 500

-30

-10

10

30

50

0 100 200 300 400 500

Tr
af

fi
c

(G
b

/s
)

Time (min)

R
e

si
d

u
al

 T
ra

ff
ic

(G
b

/s
)

x(t)

f(t)

ξ(t)

g(t)

(a)

(b)

0
50

Fig. 7-6. Compound traffic model for PkCs.

The use of the proposed LSTM-based model for state definition is as follows: i) x’(t+1)

is obtained by estimating ξ(t+1) with the LSTM model and adding it to f(t+1). Then,

∆x(t) is computed as max(0, x’(t+1) - x(t)) and used to obtain the load l(t) (now

redefined as (x(t) + ∆x(t)) / z(t)), which is the main component of s(t). This anticipation

of traffic increase allows a better maximum delay assurance since it minimizes the

risk of under-provisioning.

Chapter 7 – KM in Intent-Based Networking scenarios 95

Any time a new prediction x’(t+m) needs to be done, a multi-step procedure generates

independent residual predictions from ξi(t+1) to ξi(t+m) with the gi models, using as

input the residuals of the measured vLink traffic. Then, the average ξ(t+m) is

computed and added to ∑i fi(t+m) to obtain the prediction x’(t+m). The actual target

capacity to be ensured is max(x’(t+m), z’(t+1)).

7.3 Performance Evaluation

The numerical evaluation scenario detailed in Section 7.1 is used, where three PkCs

A, B, C with maximum traffic 120, 60, and 60 Gb/s and different delay budgets have

been considered. Both f and g models have been pre-trained after collecting 60 days

of data. Periodicity of f components was fixed to 1 day and w=120 minutes was

selected for all g components.

The accuracy of the proposed transfer knowledge scheme to predict vLink traffic is

illustrated in Fig. 7-7a. The vLink traffic is compared against the prediction from

model ensemble for m=60 min. Models learned by different PkCs intent agents for

the short 1-min scope can be aggregated and used by the vLink for a much longer

time scope with remarkable accuracy. Fig. 7-7b shows the delay at the source node

for all PkCs, assuming that PkCs leave through 100/200 Gb/s interfaces. We observe

that RL-based operation at the PkC level allows achieving the targeted

differentiated delay performance.

0

100

200

300

400

0 50 100 150 200 250

0

200

400

600

800

1000

0 50 100 150 200 250

f1 [measured]
f2 [measured]
f3 [measured]

x(t)

D
e

la
y

(n
s)

Tr
af

fi
c

(G
b

/s
)

(a)

x’(t+m)

0
1000

Time (min)

(b)PkC-A
PkC-B
PkC-C

Fig. 7-7. PKC-vLink intent cooperation performance.

From Fig. 7-7, we observe that the requested target capacity for every PkC is

accurate and well-fitted so, the sum of all target capacities to be considered by the

96 Distributed Collaborative Knowledge Management for Optical Network

vLink intent agent results into an overall capacity that meets PkCs needs. Then, we

conclude that knowledge transfer is potentially very useful for vLink intents as it

enables prediction capabilities without the need of learning the models.

Finally, Fig. 7-8 and Table 7-1 compare hierarchical cooperation without and with

knowledge transfer, named hierarchical (Fig. 7-4) and transfer (Fig. 7-5),

respectively.

0

100

200

300

400

0 50 100 150 200 250

x(t)
z(t) [vlink]
z(t) [hierarchical]
z(t) [transfer]T

ra
ff

ic
o

r
ca

p
(G

b
/s

)

0

200

400

600

800

1000

0 50 100 150 200 250

vlink
hierarchical
transfer

Time (min)

D
e

la
y

(n
s)

0
1000

(a)

(b)

Fig. 7-8. Comparative results.

Table 7-1. Cooperative IBN summary

Method

Over-

Provisioning

(Tb/day)

Num SC

Changes

Delay (ns)

min avg max

vLink 20.8 70 21 96 512

Hierarchical 29.8 50 15 54 233

Transfer 29.8 16 15 52 187

For comparison purposes, RL-based vLink intent performance is considered. Results

of the vLink allocated capacity and introduced delay are presented in Fig. 7-8a and

Fig. 7-8b, respectively. In view of the graphs, the requirements from the PkCs to

achieve differentiated delay performance result in a higher capacity that cannot be

successfully learnt by the vLink intent. Interestingly, when PkC operation is intent-

based, the number of SC changes at the optical layer reduces noticeably. This fact

points out the benefits of hierarchical intent cooperation to simplify multilayer

operation. This reduction is even larger when knowledge transfer is implemented;

really few SC changes are enough to accommodate the same overall capacity in a

more intelligent way. Moreover, the delay contribution introduced by the vLink is

Chapter 7 – KM in Intent-Based Networking scenarios 97

greatly reduced. We can conclude that hierarchical intent cooperation with

knowledge transfer is the option that provides the best trade-off between the

achievement of the operational goals and resource utilization and management.

7.4 Concluding Remarks

In this last chapter we have focused on applying KM on IBN scenarios. IBN allows

network operators to define what are their desired outcomes without specifying how

such outcomes would be achieved. IBN can be fueled by the use of ML algorithms.

An illustrative example of multilayer networks has been used to showcase

cooperative intent operation and transfer knowledge. We assumed that intent agents

adjust the capacity of a vLink as a function of the input traffic and proposed a

combined LSTM and RL approach for dynamic PkC capacity allocation. The LSTM

models for every PkC can be shared to vLink intents to anticipate long-term traffic

changes. Numerical results were presented and discussed.

Chapter 8

Closing Discussion

8.1 Main Contributions

This Ph. D. thesis focuses on applying KM to multi-layer and multi-domain networks

and showcasing its relevance under the IBN paradigm. The main contributions are

summarized as following:

• First, the KM process in the context of networking was introduced in Chapter

4 and based on four pillars: i) discovery, ii) share, iii) assimilating, and iv)

using knowledge. The approach leads to benefits such as discovering and

disseminating knowledge that can be used to adapt the network configuration

to variable conditions without human intervention. To highlight the KM

robustness to adapt to different application, we implemented alternative

sharing strategies in purely centralized and purely distributed use cases. The

data-based approach reduced convergence error to a negligible amount

compared when no data is shared. In consequence, we evaluated the benefit

of using knowledge extension and consolidation by means of model

assimilation. Results showed similar convergence error, while reducing

shared data volumes.

• Next, KM was implemented in a multilayer network scenario. In this regard,

Chapter 5 was devoted to proposed and experimentally evaluated the PILOT

methodology to discover knowledge. The knowledge is shared and utilized for

predicting the performance of connectivity services as throughput and

latency. Remarkable results showed the efficiency of using real

measurements obtained from active probs to tune a traffic simulation.

Additionally, training and validating ML models with such large realistic

traffic dataset quickly converges and reduces error to a minimal value.

100 Distributed Collaborative Knowledge Management for Optical Network

• Chapter 6 applied KM in a multi-domain network, where a cooperative

environment is proposed to enable cooperation between a broker plane and

network domains. Each domain discover knowledge in terms of intra domain

model and share with the broker to estimate e2e delay. Numerical evaluation

demonstrated the approach strength to detect and localize intra-domain

inaccuracies. Besides, such compound models converge faster to an accurate

e2e delay and target prediction error.

• Finally, in Chapter 7 we studied the application of KM application in an IBN

multilayer scenario. In this regard, a compound LSTM-based model with

discovered knowledge from different PkC intent agents is shared. Results

exhibited noticeable performance for traffic prediction and resulted in lower

delay, as well decreased number of reconfigurations.

8.2 List of Publications

 Publications in Journals

[JOCN22] L. Velasco, S. Barzegar, F. Tabatabaeimehr, and M. Ruiz, “Intent-

Based Networking for Optical Networks [Invited Tutorial],” IEEE/OSA

Journal of Optical Communications and Networking, vol.14, pp. A11-

A22, 2022.

[TNSM21] F. Tabatabaeimehr, M. Ruiz, C.-Y. Liu, X. Chen, R. Proietti, S. J. B.

Yoo, and L. Velasco, “Cooperative Learning for Disaggregated Delay

Modeling in MultiDomain Networks,” IEEE Transactions on Network

and Service Management, vol. 18, pp. 3633-3646, 2021.

[JLT20] M. Ruiz, M. Ruiz, F. Tabatabaeimehr, Ll. Gifre, S. López-Buedo, J.

López de Vergara, O. González, and L. Velasco, “Modeling and Assessing

Connectivity Services Performance in a Sandbox Domain,” IEEE/OSA

Journal of Lightwave Technology (JLT), vol. 38, pp. 3180-3189, 2020.

[JOCN20] M. Ruiz, F. Tabatabaeimehr, and L. Velasco, “Knowledge Management

in Optical Networks: Architecture, Methods and Use Cases [Invited],”

IEEE/OSA Journal of Optical Communications and Networking, vol. 12,

pp. A70-A81, 2020.

 Publications in Conferences

[OFC21] F. Tabatabaeimehr, S. Barzegar, M. Ruiz and L. Velasco, “Combining

Long-Short Term Memory and Reinforcement Learning for Improved

Autonomous Network Operation,” in Proc. IEEE/OSA Optical Fiber

Communication Conference (OFC), 2021.

Chapter 8 – Closing discussion 101

[ECOC20] F. Tabatabaeimehr, M. Ruiz and L. Velasco, “Supporting Beyond 5G

Applications by Coordinating AI-based Intent Operation. An Example for

Multilayer Metro Networks,” in Proc. European Conference on Optical

Communication (ECOC), 2020.

[ICTON20] Luis Velasco, Fatemehsadat Tabatabaeimehr, and Marc Ruiz,

“Knowledge Management in Optical Networks,” in Proc. IEEE

International Conference on Transparent Optical Networks (ICTON),

2020.

[ICTON19] F. Tabatabaeimehr, M. Ruiz, and L. Velasco, “Distributed and

centralized options for self-learning (Invited),” in Proc. IEEE International

Conference on Transparent Optical Networks (ICTON), 2019.

8.3 List of Research Projects

 European Funded Projects

• METRO-HAUL: METRO High bandwidth, 5G Application-aware optical

network, with edge storage, compute and low Latency, H2020-ICT-2016-2.

(G.A. 761727).

• B5G-OPEN: Beyond 5G – Optical Network Continuum, H2020-ICT-

2020-2. (G.A. 101016663).

 National Funded Projects

• IBON: AI-Powered Intent-Based Packet and Optical Transport Networks

and Edge and Cloud Computing for Beyond 5G, AEI PID2020-114135RB-I00,

2021-2024.

• TWINS: cogniTive 5G application-aware optical metro netWorks Integrating

moNitoring, data analyticS and optimization, MINECO TEC2017-90097-R,

2018-2020.

 Pre-doctoral Scholarship

• Pre-doctoral scholarship “FI-DGR 2019” funded by “Agència de Gestió d'Ajuts

Universitaris i de Recerca” (AGAUR), Generalitat de Catalunya,2019-2022.

102 Distributed Collaborative Knowledge Management for Optical Network

8.4 Collaborations

I did a three-month research stay at Inria Sophia Antipolis-Méditerranée, and I

collaborated with the ‘‘Combinatorics, Optimization, and Algorithms for

Telecommunications’’ (COATI) team. Our research carried out is related to the

application of KM in IBN scenarios (G.4).

I had the opportunity to collaborate with University of California, Davis (UCDavis)

to propose the cooperative environment, where the broker system compounds models

to provide 2e connectivity services (G.3).

In addition, I was involved in a fruitfully collaboration with teams from Telefónica,

Nokia Bell Labs France, Universidad Autónoma de Madrid and Naudit HPCN to

assess the PILOT methodology (G.2).

8.5 Topics for Further Research

In Chapter 7 we examined the robustness of LSTM for short-term sharp traffic

changes while keep the long-term view. Although overall accuracy of the LSTM-

based predictor is noticeable, such a model was trained for a specific flow and it will

be not accurate when used to model other flows, i.e., an individual model is required

for each traffic flow. In this regard, we are already working towards a LSTM-based

model enabling multiple traffic flows for dynamic connection capacity allocation. In

this regard, we are exploring methods to update LSTM-based model in online

operation. The new approach will work as a pure continual learning, while avoiding

unnecessary re-training.

List of Acronyms

AI Artificial intelligence

ANN Artificial Neural Networks

ATA Autonomic Transmission Agent

BERT Bit Error Rate Test

BS Burst Size

CO Central Offices

COM Control, Orchestration, and Management

DNN Deep Neural Networks

DT Decision Trees

e2e end-to-end

FEC Forward Error Correction

FIFO First-In-First-Out

GPS Global Positioning System

GUI Graphical User Interface

IBN Intent-Based Networking

IBR Inter-arrival Burst Rate

INT In-band Network Telemetry

IPPM IP Performance Measurement

KM Knowledge Management

KPI key Performance Indicators

LSTM Long Short-Term Memory

MDA Monitoring and Data Analytics

ML Machine learning

104 Distributed Collaborative Knowledge Management for Optical Network

Multi-AS Multi-operator

NBI REST-API-based northbound interface

NFV Network Function Virtualization

NFVI Network Function Virtualization Infrastructure

NFVO Network Function Virtualization Orchestration

NS Network Service

OD Origin-Destination

OSA Optical Spectrum Analyzers

p2mp point-to-multipoint

p2p point-to-point

PRBS Pseudorandom Binary Sequence

PS Packet Size

QoS Quality of Service

SDN Software-Defined Networking

SOP State of Polarization

SVM Support Vector Machines

TMN Telecommunications Management Network

VNT Virtual Network Topology

References

[ACTN] D. Ceccarelli and Y. Lee, editors, “Framework for Abstraction and Control of

TE Networks (ACTN)”, IETF RFC8453, 2018.

[APV17] A. P. Vela, M. Ruiz and L.Velasco, “Distributing Data Analytics for Efficient

Multiple Traffic Anomalies Detection,” Elsevier Computer Comm., vol. 107,

pp. 1-12, 2017.

[Ba15] A. Bartolucci, K. Singh, and S. Bae, Introduction to Statistical Analysis of

Laboratory Data, Wiley, 2015.

[Bar21] S. Barzegar, M. Ruiz, A. Sgambelluri, F. Cugini, A. Napoli, and L. Velasco,

"Soft-Failure Detection, Localization, Identification, and Severity Prediction

by Estimating QoT Model Input Parameters," IEEE Transactions on Network

and Service Management, vol. 18, pp. 2627-2640, 2021.

[Be20] A. Bernal, M. Richart, M. Ruiz, A. Castro, and L. Velasco, “Near Real-Time

Estimation of End-to-End Performance in Converged Fixed-Mobile

Networks,” Elsevier Computer Comm., vol. 150, pp. 393-404, 2020.

[Bi21] J. Bi, X. Zhang, H. Yuan, J. Zhang and M. Zhou, “A Hybrid Prediction Method

for Realistic Network Traffic with Temporal Convolutional Network and

LSTM,” in IEEE Transactions on Automation Science and Engineering, 2021.

[Ca02] G. Casella and R. Berger, “Statistical Inference,” 2nd ed., Duxbury/Thomson

Learning, 2002.

[Ca16] A. Castro, L. Velasco, L. Gifre, C. Chen, J. Yin, Z. Zhu, R. Proietti, and S. B.

J. Yoo, “Brokered Orchestration for End-to-End Service Provisioning across

Heterogeneous Multi-Operator (Multi-AS) Optical Networks,” IEEE/OSA J. of

Lightwave Tech., vol. 34, pp. 5391-5400, 2016.

[Ch18] X. Chen, R. Proietti, H. Lu, A. Castro, and S. J. B. Yoo,“Knowledge-Based

Autonomous Service Provisioning in Multi-Domain Elastic Optical Networks,”

IEEE Comm. Mag., vol. 56, pp. 152-158, 2018.

[Ch19.1] X. Chen, B. Li, R. Proietti, Z. Zhu, and S. J. B. Yoo ,“Multi-Agent Deep

Reinforcement Learning in Cognitive Inter-Domain Networking with Multi-

Broker Orchestration,” in Proc. OFC, 2019.

106 Distributed Collaborative Knowledge Management for Optical Network

[Ch19.2] X. Chen, B. Li, R. Proietti, C.-Y. Liu, Z. Zhu, and S. J. B. Yoo,“Demonstration

of distributed collaborative learning with end-to-end QoT estimation in multi-

domain elastic optical networks,” OSA Optics Express vol. 27, pp. 35700-

35709, 2019.

[Ch83] V. Chvatal, Linear Programming, Ed. Freeman, 1983.

[Cha10] O. Chapelle, B. Schlkopf, and A. Zien, Semi-Supervised Learning, 1st ed. The

MIT Press, 2010.

[Di00] T.G. Dietterich, “Ensemble Methods in Machine Learning,” in Proc. Multiple

Classifier Systems (MSC), Lecture Notes in Computer Science, vol 1857, 2000.

[Do20] R. Dong, Ch. She, W. Hardjawana, Y. Li and B. Vucetic, “Deep Learning for

Radio Resource Allocation with Diverse Quality-of-Service Requirements in

5G,” IEEE Trans. Wireless Comm., 2020.

[Ea11] S. Eakambaram and R. Elangovan, Least Absolute Deviation Regression

Theory and Methods: Monograph on LAD Regression Theory, LAP Lambert,

2011.

[Fi19] S. Fichera, R. Martínez, B. Martini, M. Gharbaoui, R. Casellas, D R. Vilalta,

R. Muñoz, and P. Castoldi, “Latency-Aware Resource Orchestration in SDN-

Based Packet Over Optical Flexi-Grid Transport Networks,” IEEE/OSA J. of

Optical Communications and Networking, vol. 11, pp. B83-B96, 2019.

[Fin19] N. Finn, J-Y. L. Boudec, E. Mohammadpour, J. Zhang, B. Varga, and J. Frank,

“DetNet Bounded Latency,” IETF draft work-in-progress, 2019.

[Gi18] Ll. Gifre, J.-L. Izquierdo-Zaragoza, M. Ruiz, and L. Velasco, “Autonomic

Disaggregated Multilayer Networking,” IEEE/OSA Journal of Optical

Communications and Networking, vol. 10, pp. 482-492, 2018.

[Gu19] V. Le Guen, N. Thome, “Shape and Time Distortion Loss for Training Deep

Time Series Forecasting Models,” NeurIPS, 2019.

[He21] T. He, L. Ma, A. Swami, and D. Towsley, Network Tomography: Identifiability,

Measurement Design, and Network State Inference, Cambridge University

Press, 2021.

[Kn00] G. Knott, Interpolating cubic splines, Birkhäuser, 2000.

[Kr11] D. P. Kroese, T. Taimre, and Z. Botev, Handbook of Monte Carlo Methods,

Wiley, Wiley, 1st ed., 2011.

[Kr20] F. Krasniqi, J. Elias, J. Leguay, and A. E. C. Redondi, “End-to-end Delay

Prediction Based on Traffic Matrix Sampling,” in Proc. IEEE INFOCOM 2020.

[Le18] R. Leira, J. Aracil, J. E. López de Vergara, P. Roquero, and I. González, “High-

speed optical networks latency measurements in the microsecond timescale

with software-based traffic injection,” Optical Switching and Networking, vol.

29, pp. 39-45, 2018.

[Lo19] J. López de Vergara, M. Ruiz, Ll. Gifre, M. Ruiz, L. Vaquero, J. Zazo, S. López-

Buedo, O. González de Dios, and L. Velasco, “Demonstration of 100 Gbit/s

Active Measurements in Dynamically Provisioned Optical Paths,” in Proc.

European Conference on Optical Communication, 2019.

[Ma02] D. Mandic and J. Chambers, Recurrent Neural Networks for Prediction:

Learning Algorithms, Architectures and Stability, Wiley, 2001.

References 107

[Ma11] S. Marsland, Machine Learning: An Algorithmic Perspective. CRC Press, 2011.

[Online]. Available: https://books.google.de/books?id= n66O8a4SWGEC.

[Metro-

Haul18]

METRO-HAUL project, “Deliverable D3.1: Selection of metro node

architectures and optical technologies,” [on-line: https://metro-haul.eu], 2018.

[Mo17.1] F. Morales, Ll. Gifre, F. Paolucci, M. Ruiz, F. Cugini, P. Castoldi, and L.

Velasco, “Dynamic Core VNT Adaptability based on Predictive Metro-Flow

Traffic Models,” IEEE/OSA Journal of Optical Communications and

Networking (JOCN), vol. 9, pp. 1202-1211, 2017.

[Mo17.2] F. Morales, M. Ruiz, Ll. Gifre, L. M. Contreras, V. Lopez, and L. Velasco,

“Virtual Network Topology Adaptability based on Data Analytics for Traffic

Prediction,” IEEE/OSA J. of Optical Comm. and Networking, vol. 9, pp. A35-

A45, 2017.

[MR16.1] M. Ruiz, J. Ramos, G. Sutter, S. L. Buedo, J.E. López de Vergara, and C.

Sisterna, “Harnessing Programmable SoCs to Develop Cost-effective Network

Quality Monitoring Devices,” in Proc. FPL, 2016.

[MR16.2] M. Ruiz, J. Ramos, G. Sutter, J. E. L. Vergara, S. Lopez-Buedo, and J. Aracil,

“Accurate and affordable packet-train testing systems for multi-Gb/s

networks,” IEEE Comm. Magazine, vol. 54, pp. 80-87, 2016.

[Ni20] S. Nihale, S. Sharma, L. Parashar, and U. Singh, “Network Traffic Prediction

Using Long Short-Term Memory,” in Proc. ICESC, 2020.

[Pa16] F. Paolucci, V. Uceda, A. Sgambelluri, F. Cugini, O. Gonzales de Dios, V.

Lopez, L. M. Contreras, P. Monti, P. Iovanna, F. Ubaldi, T. Pepe, and P.

Castoldi, “Interoperable Multi-Domain Delay-aware Provisioning using

Segment Routing Monitoring and BGP-LS Advertisement,” in Proc. European

Conference on Optical Communication (ECOC), 2016.

[Ra18] D. Rafique and L. Velasco, “Machine Learning for Optical Network

Automation: Overview, Architecture and Applications,” IEEE/OSA J. of

Optical Comm. and Networking, vol. 10, pp. D126-D143, 2018.

[Re97] A. C. Rencher, Multivariate Statistical Inference and Applications, Wiley, 1st

ed., 1997.

[Rk20] K. Rusek, J. Suárez-Varela, P. Almasan; P. Barlet-Ros, and A. Cabellos-

Aparicio, “RouteNet: Leveraging Graph Neural Networks for Network

Modeling and Optimization in SDN,” IEEE J. on Sel. Areas in Comm., vol. 38,

pp. 2260-2270, 2020.

[Ru15] M. Ruiz and L. Velasco, “Serving Multicast Requests on Single Layer and

Multilayer Flexgrid Networks,” IEEE/OSA J. of Optical Communications and

Networking, vol. 7, pp. 146-155, 2015.

[Ru16.1] M. Ruiz, M. Germán, L. M. Contreras, and L. Velasco, “Big Data-backed Video

Distribution in the Telecom Cloud,” Computer Communications, vol. 84, pp.

1-11, 2016.

[Ru16.2] M. Ruiz, J. Ramos, G. Sutter, J. E. Lopez de Vergara, S. Lopez-Buedo, and J.

Aracil, “Accurate and affordable packet-train testing systems for multi-Gb/s

networks,” IEEE Comm. Magazine, vol. 54, pp. 80-87, 2016.

[Ru18] M. Ruiz, F. Coltraro, and L. Velasco, “CURSA-SQ: A Methodology for Service-

Centric Traffic Flow Analysis,” IEEE/OSA J. of Optical Comm. and

Networking, vol. 10, pp. 773-784, 2018.

108 Distributed Collaborative Knowledge Management for Optical Network

[Ru19] M. Ruiz, F. Boitier, P. Layec, and L. Velasco, “Self-Learning Approaches for

Real Optical Networks,” in Proc. IEEE/OSA Optical Fiber Communication

Conference (OFC), 2019.

[Sc01] B. Scholkopf and A. L. Smola, Learning with Kernels: Support Vector

Machines, Regularization, Optimization, and Beyond, MIT Press Cambridge,

2001.

[Se90] P. Senge, The Fifth Discipline: The Art and Practice of the Learning

Organization, Doubleday/Currency, 1990.

[Sh19] B. Shariati, M. Ruiz, J. Comellas, and L. Velasco, “Learning from the Optical

Spectrum: Failure Detection and Identification [Invited],” IEEE/OSA Journal

of Lightwave Technology, vol. 37, pp. 433-440, 2019.

[So20] A. Solano and L. Contreras, “Information Exchange to Support Multi-Domain

Slice Service Provision for 5G/NFV,” in Proc. IFIP Networking, pp. 773-778,

2020.

[Ta21] L. Tan, W. Su, W. Zhang, J. Lv, Z. Zhang, J. Miao, X. Liu, and N. Li,“In-band

Network Telemetry: A Survey,” Computer Networks, vol. 186, 2021.

[Tr18] H. D. Trinh, L. Giupponi and P. Dini, “Mobile Traffic Prediction from Raw

Data Using LSTM Networks,” IEEE Annual International Symposium on

Personal, Indoor and Mobile Radio Communications (PIMRC), 2018.

[Ve13] L. Velasco, P. Wright, A. Lord, and G. Junyent, “Saving CAPEX by Extending

Flexgrid-based Core Optical Networks towards the Edges,” IEEE/OSA

Journal of Optical Communications and Networking, vol. 5, pp. A171-A183,

2013.

[Ve17.1] L. Velasco and M. Ruiz, Provisioning, Recovery and In-operation Planning in

Elastic Optical Networks, Wiley, 1st ed., 2017.

[Ve17.2] L. Velasco, A. P. Vela, F. Morales, and M. Ruiz, “Designing, Operating and Re-

Optimizing Elastic Optical Networks,” IEEE/OSA J. of Lightwave Tech., vol.

35, pp. 513-526, 2017.

[Ve18.1] L. Velasco, A. Sgambelluri, R. Casellas, Ll. Gifre, J.-L. Izquierdo-Zaragoza, F.

Fresi, F. Paolucci, R. Martínez, and E. Riccardi, “Building Autonomic Optical

Whitebox-based Networks,” IEEE/OSA J. of Lightwave Technology, vol. 36,

pp. 3097-3104, 2018.

[Ve18.2] L. Velasco, Ll. Gifre, J.-L. Izquierdo-Zaragoza, F. Paolucci, A. P. Vela, A.

Sgambelluri, M. Ruiz, and F. Cugini, “An Architecture to Support Autonomic

Slice Networking [Invited],” IEEE/OSA J. of Lightwave Tech., vol. 36, pp. 135-

141, 2018.

[Ve19.1] L. Velasco, B. Shariati, F. Boitier, P. Layec, and M. Ruiz, “A Learning Life-

Cycle to Speed-up Autonomic Optical Transmission and Networking

Adoption,” IEEE/OSA Journal of Optical Communications and Networking,

vol. 11, pp. 226-237, 2019.

[Ve19.2] L. Velasco, A. Chiadò Piat, O. González, A. Lord, A. Napoli, P. Layec, D.

Rafique, A. D'Errico, D. King, M. Ruiz, F. Cugini, and R. Casellas, “Monitoring

and Data Analytics for Optical Networking: Benefits, Architectures, and Use

Cases,” IEEE Network, vol. 33, pp. 100-108, 2019.

References 109

[Ve19.3] L. Velasco, R. Casellas, S. Llana, Ll. Gifre, R. Martinez, R. Vilalta, R. Muñoz,

and M. Ruiz, “A Control and Management Architecture Supporting Autonomic

NFV Services,” Photonic Network Communications, vol. 37, pp. 24-37, 2019.

[Ve20] L. Velasco and M. Ruiz, “Supporting Time-Sensitive and Best-Effort Traffic

on a Common Metro Infrastructure,” in IEEE Comm. Letters, vol. 24, pp.

1664-1668, 2020.

[Za21] L. Zanzi, V. Sciancalepore, A. Garcia-Saavedra, H. D. Schotten, and X. Costa-

Pérez, “LACO: A Latency-Driven Network Slicing Orchestration in Beyond-

5G Networks,” IEEE Trans. on Wireless Comm., vol. 20, pp. 667-682, 2021.

[Zh19] Z. Zhong, N. Hua, Zh. Yuan, Y. Li, and X. Zheng, “Routing without Routing

Algorithms: An AI-Based Routing Paradigm for Multi-Domain Optical

Networks,” in Proc. OFC, 2019.

