
Large Scale Geostatistics with Locally
Varying Anisotropy

by
Oscar Francisco Peredo Andrade

Advisor
José R. Herrero

DISSERTATION

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

in the Department of Computer Architecture

Universitat Politècnica de Catalunya

2022

Barcelona, Spain

Large Scale Geostatistics with Locally Varying Anisotropy

Oscar Francisco Peredo Andrade

Abstract

Classical geostatistical methods are based on the hypothesis of stationarity, which allows

to apply repetitive sampling in different locations of the spatial domain, in order to

obtain enough information to infer cumulative distributions. In case of non stationarity,

anisotropy is observed in the underlying physical phenomena. This feature manifest

itself as preferential directions of continuity in the phenomena, i.e. properties are more

continuous in one orientation than in another. In the case of local anisotropy, each

location of the domain in study presents different preferential directions of continuity.

The locally varying anisotropy (LVA) approach in geostatistics allows to incorporate a

field of local anisotropy parameters defined for each domain point. With this additional

input, more realistic spatial simulations can be generated, including geological features

to the computational model such as folds, veins, faults, among others. Since the seminal

article published by Boisvert and Deutsch (2011), to the best of the author’s knowledge,

no further analysis or public code improvements were developed. This is in part because

acceleration and parallelization techniques must be applied to the inner kernels of the

baseline LVA codes. Large execution time is needed to generate small-scale domain

simulations, making large-scale domain simulations a prohibitive task.

The contributions of this thesis are accelerating and parallelizing classical and LVA-based

geostatistical simulation methods, particularly sequential simulation, which is one of the

most common and computationally intensive methods in the field. This fact was recently

remarked by some of the main authors in the field, Gómez-Hernández and Srivastava

(2021), which shows the relevance of this work today. Two main parallel algorithms

and an optimized version of a kd-tree search implementation are presented, all of them

applied to both classical and LVA-based sequential simulation implementations. The

first parallel algorithm is related to the parallel simulation of different domain points,

after rearranging the order of simulation but preserving the exact results of a single-

thread execution. The second parallel algorithm is related to the parallel search of

neighbour points in the domain, which will be used to build data dependencies for the

parallel simulation of points. The optimized kd-tree search was used in each test case in

order to reduce the computational complexity of neighbour search tasks. Its modified

implementation reduces the number of branching instructions and introduces specialized

code sections to accelerate the execution. The main focus is on multi-core architectures

using OpenMP and optimization techniques applied to Fortran and C++ codes.

3

Additionally, acceleration and parallelization techniques were also applied to auxiliary

applications, such as shortest path and variogram calculation on hybrid CPU/GPU

architectures using Fortran, C++ and CUDA codes. In the last application, an analyt-

ical and heuristic model was developed to estimate the optimal workload distribution

between CPU and GPU in the hybrid context.

The overall results of this work are a set of applications that will allow researchers and

practitioners to accelerate dramatically the execution of their experiments and simu-

lations, being sgsim, sisim, sgs-lva and sisim-lva the accelerated codes presented.

Final speedup results of 11× and 50× are obtained for non-LVA codes using 16 threads,

and 56× and 1822× are obtained for LVA codes using 20 threads. These tools can be

combined with other geostatistical tools, in order to improve the existing landscape of

open source codes that can be used in practical scenarios.

Agradecimientos

Antes de agradecer a todos y todas quienes me han ayudado en el desarrollo de esta

tesis, quisiera explicar el contexto histórico durante el cual nos encontramos como so-

ciedad, al momento de escribir estas ĺıneas.

A fines del año 2019, se comenzó a propagar un virus llamado COVID-19, coloquial-

mente llamado ”Coronavirus”, que llegó a propagarse por la mayoŕıa de los páıses del

mundo en pocos meses. A comienzos de Marzo del año 2020, el virus impactó mi páıs,

Chile, y a partir de esa fecha todo cambió, tanto para mal como para bien. Por un

lado, meses de confinamiento y aislamiento, distancia social, precauciones y cuidados

sanitarios, eran parte del d́ıa a d́ıa y poco a poco nos acostumbramos a esa nueva nor-

malidad. Las empresas y comercios se adaptaron, y las familias también. Por otro lado,

por primera vez, tuve la oportunidad de compartir con mi familia más tiempo del que

hubiera imaginado, siendo parte importante en la cotidianidad de mis hijos y esposa.

Siempre recordaré este peŕıodo por sus luces y sombras, y como una época donde nos

replanteamos nuestras actividades y cuestionamos la manera que teńıamos de hacer las

cosas antes y después de la pandemia.

Es en este contexto, en medio de un fenómeno histórico, que esta tesis se desarrolló.

Quiero agradecer primero a Jose Ramón, mi gúıa en esta aventura, quien semana tras

semana me daba ánimo a continuar y seguir perseverando en los objetivos que ı́bamos

definiendo. Contra viento y marea, siempre lograba dar las palabras y consejos que me

motivaban a continuar. Siempre recordaré estos años y por cierto que seguiremos colab-

orando en proyectos futuros, tanto laborales, académicos, como personales y familiares.

Todo este esfuerzo no es solo mı́o o de José Ramón, en gran medida es un esfuerzo de mi

esposa Natalia, quien me acompañó en este proyecto y me entrega su amor y apoyo d́ıa

a d́ıa. Sin ese pilar, nada de esto hubiera sido posible. Esa es la verdad. Nuestra familia

comenzó a crecer a medida que prograsaba en el trabajo de tesis, y mis 2 hijos, Pascuala y

Vicente, nacieron y crecieron durante estos años. En algunos años más, cuando tengan

la edad suficiente, quizás se aventuren a leer estas páginas, y eso despierte su motivación

por la generación de conocimiento y la curiosidad por la matemática, informática y los

algoritmos. Si están leyendo estas ĺıneas ahora mismo, y si recuerdan aquellas noches o

tardes en que su padre teńıa que trabajar en el ”doctorado”, acá está el fruto de todas

esas horas... Comencemos...

5

Contents

Abstract 3

Acknowledgements 5

List of Figures 11

List of Tables 17

1 Introduction 1

1.1 Context/Motivation . 2

1.2 Contributions of this Thesis . 6

1.3 Related articles . 6

1.4 Organization . 8

2 Theoretical Background and State-of-the-Art 9

2.1 Overview . 9

2.2 Classical Geostatistics . 10

2.2.1 Background . 11

2.2.1.1 Random variable . 11

2.2.1.2 Random function . 11

2.2.1.3 Stationarity hypothesis 11

2.2.1.4 Covariance and semivariogram 12

2.2.1.5 Kriging . 13

2.2.1.6 Sequential Gaussian Simulation 15

2.2.1.7 Sequential Indicator Simulation 16

2.2.2 Sequential implementations . 21

2.2.2.1 gamv . 22

2.2.2.2 sgsim . 23

2.2.2.3 sisim . 24

2.2.3 Parallel implementations . 25

2.3 LVA-based Geostatistics . 26

2.3.1 Background . 27

2.3.1.1 Anisotropic distance . 28

2.3.1.2 LVA field . 30

2.3.1.3 Connectivity graph . 30

7

Contents 8

2.3.1.4 Non-euclidean distance matrix 33

2.3.1.5 Multidimensional Scaling 33

2.3.2 Sequential implementations . 35

2.3.2.1 LVA-based Sequential Simulation 36

2.3.2.2 Connectivity graph . 39

2.3.2.3 Non-euclidean distance matrix 39

2.3.2.4 Multidimensional Scaling 40

2.3.3 Parallel implementations . 41

3 Methodology 43

3.1 GSLIB . 43

3.2 Application parameters . 46

3.2.1 Common parameters . 46

3.2.2 sgsim . 47

3.2.3 sisim . 48

3.2.4 sgs-lva and sisim-lva . 49

3.3 Development techniques . 50

3.3.1 Refactoring . 50

3.3.2 Profiling . 50

3.3.3 OpenMP parallelization . 53

3.3.4 CUDA parallelization . 53

3.4 Case studies . 53

3.5 Metrics . 59

4 Parallel Sequential Simulation 61

4.1 Context . 61

4.1.1 Random path . 61

4.1.2 Neighbour search window . 63

4.2 Algorithm . 64

4.3 Results . 72

4.3.1 sgsim . 72

4.3.2 sisim . 77

4.4 Analysis . 82

4.4.1 Efficiency . 82

4.4.2 Accuracy . 85

4.4.3 Computational resources . 85

5 Parallel Neighbour Search 87

5.1 Context . 87

5.1.1 GSLIB search methods . 87

5.1.2 kd-tree search methods . 89

5.2 Algorithm . 90

5.2.1 KDTree optimizations . 91

5.2.2 Parallel neighbour search . 93

5.3 Results . 96

5.3.1 Performance tests for parallel non LVA-based codes 96

5.3.2 Performance tests for parallel LVA-based codes 104

Contents 9

5.4 Analysis . 114

5.4.1 Accuracy . 114

5.4.2 Efficiency . 116

5.4.3 Computational resources . 127

6 Parallel LVA routines 129

6.1 Algebraic operations . 129

6.1.1 Context . 129

6.1.2 Memory access optimizations . 130

6.1.3 Intel MKL implementation . 132

6.1.4 Results . 134

6.2 Single Source Shortest Path . 139

6.2.1 Context . 139

6.2.2 OpenMP implementation . 139

6.2.3 CUDA implementation . 140

6.2.4 Hybrid OpenMP/CUDA implementation 141

6.2.5 Results . 142

7 Additional parallel applications 147

7.1 Context . 147

7.1.1 Baseline gamv implementation . 148

7.2 Algorithm . 149

7.2.1 CUDA implementation . 150

7.2.2 Hybrid OpenMP/CUDA implementation 154

7.3 Results . 156

7.3.1 Experimental results . 158

7.3.2 Analytical results . 163

7.3.3 Heuristic results . 166

7.4 Analysis . 168

8 Conclusions 171

8.1 Summary of results . 171

8.2 Future work . 173

Bibliography 175

List of Figures

1.1 Comparison between an isotropic (left) and constant anisotropic (right)
images. Extracted from Boisvert [2010]. 3

1.2 Example of locally varying anisotropy field (left) and sampled data (right)
showing a cross section through an oil reservoir with several stratigraphic
layers. 3

1.3 Comparison between an isotropic (left) and locally varying anositropic
(left) images, using LVA field and sampled data from Figure 1.2. 4

1.4 Left: Geological fold showing LVA with two points connected using a non-
euclidean distance. Right: Unfolding the domain highlights the natural
path between A and B Boisvert [2010]. Scale not available. 5

2.1 General workflows in both classical and LVA-based geostatistical methods. 10

2.2 General schema for kriging estimation. 14

2.3 Comparison between kriging estimation (top-left) and sequential gaus-
sian simulation (top-right). Values generated by each method through a
diagonal line (bottom). 17

2.4 Comparison between kriging estimation (top-left) and sequential gaus-
sian simulation (top-right). Values generated by each method through a
diagonal line (bottom). 20

2.5 Two scenarios of locally varying anisotropy, with layer, faults and folds.
Left: The Marmousie velocity model [Versteeg, 1994] for the subsurface of
the Kwanza Basin, Angola; Right: Folds in Cretaceous strata in the foot-
wall of the Lewis Thrust [Pollard and Fletcher, 2005], Canadian Rockies,
Canada. 27

2.6 Two scenarios of anisotropic distance calculation, using azimuth equal to
0◦ (left) and azimuth equal to 45◦ (right). 29

2.7 Synthetic visualization of a LVA field, represented by its major direction
on each location. 31

2.8 Dimensionality reduction using ISOMAP, extracted from Tenenbaum et al.
[2000]. (A) Original data belongs to a non-linear manifold (surface) on R3

and is connected through geodesic distances. (B) Graph representation of
the manifold. (B) Two dimensional embedding recovered using the method. 31

2.9 Synthetic visualization of different paths (green, blue and purple) con-
necting points A and B through the connectivity graph built using the
LVA field and a connectivity policy. 32

3.1 GSLIB applications and utilies. 44

3.2 Original main program for GSLIB applications. 45

3.3 Sample parameter file for sisim lva application. 46

11

List of Figures 12

3.4 Example of gprof output. 51

3.5 Example of Paraver output. 53

3.6 Conditioning sampled data from real continuous 3D mining diamond drill-
holes with copper grades. 55

3.7 Conditioning sampled data from synthetic categorical 3D dataset with 10
categories. 56

3.8 Conditioning sampled data from synthetic continuous 3D dataset with
cylindrical spatial distribution. 57

3.9 Conditioning sampled data from real categorical 3D mining diamond drill-
holes with lithology types. 58

4.1 All possible random paths for a 4× 4 gridded domain (4! = 24). 63

4.2 Four possible scenarios of data dependency in a 4 × 4 gridded domain
with a specific random path for node visiting. A: Non-conflicting nodes.
B: Non-conflicting nodes with a common predecessor. C: Non-conflicting
nodes with a common successor. D: Conflicting nodes. 64

4.3 Top: Random path index (top-right corner or each cell) and initial assign-
ment of level tags (only zeros for nodes with conditioning data). Bottom:
Final assignment of level tags, with different color for different levels. The
search lookup window in this example is a 3 × 3 square centered in the
node of interest. By walking through the random path and scanning the
max level tag in each window, adding 1 to it, the final assignment of levels
can be obtained. 67

4.4 Data dependency graph associated with the level tags and neighbour re-
lationships (follow-up of Figure 4.3). Left-most nodes correspond to level
0 (conditioning nodes), right-most nodes correspond to level 5. 70

4.5 Realization sample of the SGSIM case study. 73

4.6 Realization sample of the SISIM case study. 78

4.7 Relationship between efficiency of the parallelization and kriging neigh-
bours using 16 threads in all cases. 83

4.8 Number of grid nodes per level in SGSIM case. 83

4.9 Number of grid nodes per level in SISIM case. 84

4.10 Profile of SGSIM case using parallel code with 16 threads and 64 maxi-
mum kriging neighbours, obtained with Extrae/Paraver tools. 84

5.1 Spiral search example, centered in point 1. 89

5.2 kd-tree data structure, centered in point 1. 90

5.3 Sample execution of a search using KDTree code. 91

5.4 First optimization of routine process terminal node from KDTree im-
plementation. Branching reduction by removing if(rearrange) 92

5.5 Second optimization of routine process terminal node from KDTree im-
plementation. Loop unrolling applied in multidimensional squared eu-
clidean distance calculation. 92

5.6 OpenMP directive to allow multiple parallel searches using KDTree mod-
ule (single change in line 18). 94

List of Figures 13

5.7 Load balancing of workload through a block cyclic strategy for parallel
neighbour search. In this example, 4 threads are computing neighbours
of different blocks of points (block size equal to 10, domain size equal
to 80). Before processing a block of points, each thread should declare
as marked all previous points which are not marked yet by this thread
(gray color line). Variable nlast is used to indicate the starting index of
marked points for the next block. 95

5.8 Each thread processes its own cyclic blocks from Figure 5.7 (colored
blocks) and pass through other blocks marking the corresponding points
as simulated (grey lines). After all threads end their processing, an
OpenMP barrier is set, and after it the main thread finishes the level
computation. 96

5.9 Execution time [seconds] comparison between baseline sgsim parallel code
and adapted sgsim parallel code using the parallel neighbours search. . . 98

5.10 Speedup comparison between baseline sgsim parallel code and adapted
sgsim parallel code using the parallel neighbours search algorithm. Each
speedup curve is calculated as the time of a single-thread execution di-
vided by a multi-thread execution, using each code separately. 99

5.11 Execution time [seconds] comparison between baseline sisim parallel code
and adapted sisim parallel code using the parallel neighbours search al-
gorithm. 101

5.12 Speedup comparison between baseline sisim parallel code and adapted
sisim parallel code using the parallel neighbours search algorithm. Each
speedup curve is calculated as the time of a single-thread execution di-
vided by a multi-thread execution, using each code separately. 102

5.13 Speedup of parallel baseline codes versus parallel baseline with the parallel
neighbours search algorithm adapted. 103

5.14 swiss-roll : different views of sample points with LVA field dataset (sample).105

5.15 escondida: different views of sample drillhole points with LVA field dataset
(sample). 106

5.16 Slices of simulated domains for swiss-roll scenario using parallel LVA-
based SGS with different r1 ratio values from LVA field parameters. . . . 107

5.17 Top: Simulated domain for swiss-roll scenario using parallel LVA-based
SGS with r1 = 5 and two threshold views. Bottom: Similar view with
LVA parameter r1 = 0.2. 108

5.18 Slices of simulated domains for escondida scenario using parallel LVA-
based SISIM with different r1 ratio values from LVA field parameters.
. 109

5.19 Top: Simulated domain for escondida scenario using parallel LVA-based
SISIM. Bottom: Three categories of the simulation on top. 110

5.20 Execution time [seconds] and speedup results for swiss-roll scenario using
parallel LVA-based SGS code. 112

5.21 Execution time [seconds] and speedup results for escondida scenario using
parallel LVA-based SISIM code. 113

5.22 Efficiency of parallel executions for sgsim and sisim scenarios compared
against theoretical maximum speedup. In this case a maximum of 16
threads are used in order to compare results with a previous work from
Section 4.3. 118

List of Figures 14

5.23 Efficiency of parallel executions for swiss-roll and escondida scenarios
compared against theoretical maximum speedup. 119

5.24 Profile of sgsim non-LVA scenario using sgsim parallel code with 16
threads, obtained with Extrae/Paraver tools. 120

5.25 Comparison of Extrae/Paraver execution profiles between sgsim non-LVA
scenarios: baseline (top) and with parallel neighbour calculation (bot-
tom), using the same time scale. Baseline execution of simulation stage
uses a covariance lookup table, not included yet in the new parallel code. 120

5.26 Profile of swiss-roll scenario using sgs-lva parallel code with 20 threads,
obtained with Extrae/Paraver tools. 121

5.27 L1 (top), L2 (middle) and L3 (bottom) cache misses of swiss-roll scenario
using sgs-lva parallel code with 12 threads, obtained with Extrae/Par-
aver tools. 122

5.28 Points per level on both test scenarios, swiss-roll (396 initial conditioning
data) and escondida (2313 initial conditioning data). All points in the
same level are simulated in parallel by P threads. 123

5.29 Points per level on swiss-roll scenario using different percentages of initial
conditioning data (4% and 0.25%, from a total of 1,728,000 points). . . . 124

5.30 Speedup results for scenarios sgsim and sisim using 32 and 64 maximum
number of neighbours. 125

5.31 Speedup results for scenarios swiss-roll and escondida using 48 and 96
maximum number of neighbours. 126

6.1 Original usage of array coord ISOMAP in baseline code sgs-lva for co-
variance calculation used by kriging estimation. 131

6.2 Optimized usage of array coord ISOMAP trans in accelerated code sgs-lva
for covariance calculation used by kriging estimation. 132

6.3 Original usage of matrix-matrix and eigenvalue/eigenvector calculation in
baseline code sgs-lva for embedding Z generation. 133

6.4 Optimized usage of matrix-matrix product BTB calculation in baseline
code sgs-lva for embedding Z generation. 133

6.5 Optimized usage of matrix-matrix product BV calculation in baseline
code sgs-lva for embedding Z generation. 134

6.6 Execution time of optimized matrix-matrix product calculations BTB
and BV. 136

6.7 Speedup of optimized matrix-matrix product calculation in the case BTB. 136

6.8 Speedup of optimized matrix-matrix product calculation in the case BV. 136

6.9 Profile of embedding building routines obtained with Extrae/Paraver, in-
volving matrix-matrix product calculations BTB and BV. 137

6.10 Zoom in the profile of Figure 6.9, with focus on the eigenvalue and eigen-
vector calculation with DSYEV. 137

6.11 Execution time using hybrid OpenMP/CUDA execution, from 0% to 16%
of CPU usage (top), and from 84% to 100% of CPU usage (bottom). . . . 143

6.12 Profile of execution in the GPU device using NVIDIA Visual Profiler (first
zoom). 145

6.13 Profile of execution in the GPU device using NVIDIA Visual Profiler
(second zoom). 146

List of Figures 15

7.1 Top: Non-parallel computation through pairs of values. Bottom: Domain
decomposition using four thread blocks with 2 × 2 threads each (A11,
A21 and A22). The colors of the thread blocks are blue, pink, green and
orange, with pale and dark colors to differentiate computations performed
in the upper sub-matrix or lower sub-matrix. 151

7.2 Parallel computations in the first thread block (blue) using 2× 2 threads
per block. A22 is depicted transposed to facilite the reading. 152

7.3 Parallel computations in the second (pink color, left) and third thread
block (green color, right) using 2 × 2 threads per block. A22 is depicted
transposed to facilite the reading. 153

7.4 Left: Domain decomposition in the hybrid parallel algorithm, using OpenMP
(gray sub-domain) and CUDA (green sub-domain). Right: Different
timing distributions varying λ, using the hybrid parallel strategy with
OpenMP (gray) and CUDA (green). (A) Using only the GPU with
λ = 0%. (B) Execution acceleration using λ = 15%. (C) CPU domi-
nance against the GPU using λ = 20%. (D) Using only the CPU with
λ = 100%. 155

7.5 Sample semivariograms obtained using sgsim (top) and sisim (bottom)
scattered data sets. 158

7.6 Execution time using different values for λ, with 4, 8 and 16 threads in
sgsim scattered data set, using a GPU Tesla T4. Case studies with 1M
(top) and 2M (bottom) points. 159

7.7 Execution time using different values for λ, with 4, 8 and 16 threads in
sisim scattered data set, using a GPU Tesla T4. Case studies with 1M
(top) and 2M (bottom) points. 160

7.8 Execution time using different values for λ, with 4, 8 and 16 threads in
sgsim scattered data set, using a GPU Volta V100. Case studies with
1M (top) and 2M (bottom) points. 161

7.9 Execution time using different values for λ, with 4, 8 and 16 threads in
sisim scattered data set, using a GPU Volta V100. Case studies with
1M (top) and 2M (bottom) points. 162

7.10 Execution time of hybrid mode across different values of λ according to
Equations (7.6) and (7.7). 165

7.11 Speedup obtained with 3 approaches for sgsim and sisim case on two
GPU devices. 168

List of Tables

4.1 Parameters for SGSIM case study: grid sizes, search lookup window and
variography for all categories (parameter description can be reviewed in
Section 3.2). 73

4.2 Execution time of SGSIM with 102,400,000 grid nodes and maximum of
16, 32, 64 and 128 neighbours to infer conditional probability. 75

4.3 Percentage of execution time of non-parallel neighbour calculation of
SGSIM with 102,400,000 grid nodes and maximum of 16, 32, 64 and
128 neighbours to infer conditional probability. 75

4.4 Speedup of SGSIM with 102,400,000 grid nodes and maximum of 16, 32,
64 and 128 neighbours to infer conditional probability. 75

4.5 Execution time of SGSIM with 51,200,000 grid nodes and maximum of
16, 32, 64 and 128 neighbours to infer conditional probability. 75

4.6 Percentage of execution time of non-parallel neighbour calculation of
SGSIM with 51,200,000 grid nodes and maximum of 16, 32, 64 and 128
neighbours to infer conditional probability. 76

4.7 Speedup of SGSIM with 51,200,000 grid nodes and maximum of 16, 32,
64 and 128 neighbours to infer conditional probability. 76

4.8 Parameters for SISIM case study: grid sizes, search lookup window and
variography for all categories (parameter description can be reviewed in
Section 3.2) . 78

4.9 Execution time of SISIM with 100,800,000 grid nodes and maximum of
16, 32, 64 and 128 neighbours to infer conditional probability. 80

4.10 Percentage of execution time of non-parallel neighbour calculation of
SISIM with 100,800,000 grid nodes and maximum of 16, 32, 64 and 128
neighbours to infer conditional probability. 80

4.11 Speedup of SISIM with 100,800,000 grid nodes and maximum of 16, 32,
64 and 128 neighbours to infer conditional probability. 80

4.12 Execution time of SISIM with 50,400,000 grid nodes and maximum of 16,
32, 64 and 128 neighbours to infer conditional probability. 80

4.13 Percentage of execution time of non-parallel neighbour calculation of
SISIM with 50,400,000 grid nodes and maximum of 16, 32, 64 and 128
neighbours to infer conditional probability. 81

4.14 Speedup of SISIM with 50,400,000 grid nodes and maximum of 16, 32, 64
and 128 neighbours to infer conditional probability. 81

5.1 Default parameters for sgsim and sisim. 97

5.2 Default parameters for swiss-roll and escondida. 104

17

List of Tables 18

5.3 Contribution to speedup of neighbour search (NS) acceleration and par-
alellization on the swiss-roll and escondida scenarios. The initial parallel
code didn’t include parallel neighbour search, only calculation of distance
matrix, embedding and simulation were parallelized. Additionally, for
LVA-based SISIM, KDTree was adapted and included for execution. . . . 114

5.4 Execution time [seconds] of swiss-roll scenario with 20 threads and dif-
ferent values of control dimensions ksearch and kcova. 115

5.5 Speedup of swiss-roll scenario with 20 threads and different values of
control dimensions ksearch and kcova. 115

5.6 Mean Absolute Percentage Error [%] (MAPE from Eq. (3.4)) of swiss-roll
scenario with 20 threads and different values of control dimensions ksearch

and kcova. 115

5.7 Execution time [seconds] of escondida scenario with 20 threads and dif-
ferent values of control dimensions ksearch and kcova. 116

5.8 Speedup of escondida scenario with 20 threads and different values of
control dimensions ksearch and kcova. 116

5.9 Multiclass False Negative Rate [%] (MFNR from Eq. (3.9)) of escondida
scenario with 20 threads and different values of control dimensions ksearch

and kcova. 116

5.10 Profiling of executions [% of elapsed time] with baseline non-LVA codes.
Left: sgsim scenario using baseline non LVA-based SGSIM with 50×106

domain points, 48 maximum neighbours for kriging and 16 threads; total
elapsed time was 11 minutes and 25 seconds. Right: sisim scenario using
baseline non LVA-based SISIM with 50×106 domain points, 48 maximum
neighbours for kriging and 16 threads; total elapsed time was 37 minutes
and 21 seconds. 117

5.11 Profiling of executions [% of elapsed time] with baseline LVA codes. Left:
swiss-roll scenario using baseline LVA-based SGS with 1.7× 106 domain
points, 48 maximum neighbours for kriging and 1000 landmarks; total
elapsed time was 12 hours and 31 minutes. Right: escondida scenario
using baseline LVA-based SISIM with 1.7× 106 domain points, 48 maxi-
mum neighbours for kriging and 1344 landmarks; total elapsed time was
509 hours and 17 minutes (21 days and 5 hours). 117

5.12 Profiling of executions [% of elapsed time] with parallel refactored non-
LVA codes using 16 threads. Left: sgsim scenario using accelerated non
LVA-based SGSIM with 50×106 domain points, 48 maximum neighbours
for kriging; total elapsed time was 6 minutes and 10 seconds. Right: sisim
scenario using accelerated non LVA-based SISIM with 50 × 106 domain
points, 48 maximum neighbours for kriging; total elapsed time was 21
minutes and 26 seconds. 118

5.13 Profiling of executions [% of elapsed time] with parallel refactored LVA
codes using 20 OpenMP threads. Left: swiss-roll scenario using acceler-
ated LVA-based SGS with 1.7× 106 domain points, 48 maximum neigh-
bours for kriging and 1000 landmarks; total elapsed time was 1 hour 47
minutes. Right: escondida scenario using accelerated LVA-based SISIM
with 1.7 × 106 domain points, 48 maximum neighbours for kriging and
1344 landmarks; total elapsed time was 2 hours 37 minutes. 118

6.1 Default parameters for swiss-roll to test performance of Intel MKL routines.135

List of Tables 19

6.2 Execution time (seconds) for computing eigenvalues and eigenvectors of
BTB using three methods with different MKL routines. 138

6.3 Execution time (seconds) and speedup of sgs-lva obtained using cu-
Graph CUDA-based shortest path calculation. Single-thread baseline ex-
ecution takes 45060 seconds (12 hours and 31 minutes). 144

7.1 gamv parameters for different scattered data sets. Description of each
parameter can be reviewed in Deutsch and Journel [1998], Section III.1. . 157

7.2 Execution time (seconds) and speedup obtained using a GPU Tesla T4.
Experimental optimal values for sgsim case: λ∗exp = 2.0% (4 threads),
λ∗exp = 4.5% (8 threads), and λ∗exp = 8.25% (16 threads). Experimental
optimal values for sisim case: λ∗exp = 2.4% (4 threads), λ∗exp = 5% (8
threads), and λ∗exp = 9.25% (16 threads). 163

7.3 Execution time (seconds) and speedup obtained using a GPU Volta V100.
Experimental optimal values for sgsim case: λ∗exp = 0.8% (4 threads),
λ∗exp = 1.6% (8 threads), and λ∗exp = 3.2% (16 threads). Experimental
optimal values for sisim case: λ∗exp = 0.8% (4 threads), λ∗exp = 2% (8
threads), and λ∗exp = 4% (16 threads). 163

7.4 Execution time (seconds) and speedup obtained using optimized Fortran
code and multi-thread OpenMP parallelization. These results are com-
puted for benchmark purposes. 163

7.5 Execution time (seconds) and speedup obtained from sgsim and sisim

scattered data sets using a GPU Tesla T4. Kgpu, Kcpu and analytical
optimal λ∗ values. 165

7.6 Execution time (seconds) and speedup obtained from sgsim and sisim

scattered data sets using a GPU Volta V100. Kgpu, Kcpu and analytical
optimal λ∗ values. 166

7.7 Dichotomic search example for sgsim case with 2000000 points, starting
from λ0 = 10.55% using a GPU Tesla T4 and 16 OpenMP threads. . . . 167

7.8 Execution time (seconds) and speedup obtained from sgsim and sisim

scattered data sets using a GPU Tesla T4 (40 SM). Kgpu and Kcpu are
used to obtain λ0 and heuristicaly obtained optimal λ∗heuristic values. . . 167

7.9 Execution time (seconds) and speedup obtained from sgsim and sisim

scattered data sets using a GPU Volta V100 (80 SM). Kgpu and Kcpu are
used to obtain λ0 and heuristicaly obtained optimal λ∗heuristic values. . . 167

Chapter 1

Introduction

The concept of spatial variability can be understood in statistical terms as the distri-

bution of a particular phenomena with numerical or labeled values and geographical

coordinates in the space. Given a set of locations with values and geographical coor-

dinates, a classical problem regards the quantification of uncertainty of the unknown

values in the unsampled locations. The uncertainty can be modelled as the response of

several random variables geo-located in the unsampled locations, through their cumula-

tive distribution functions and statistical properties using all the available information

in the sampled locations.

Geostatistics offers a set of deterministic and statistical tools aimed at understanding and

modeling spatial variability. Exploratory data analysis, estimation and simulation are

among the most important topics in this field. Each of these topics involves several

techniques and methods, many of them with inner kernels that make heavy use of

computational resources. These kernels are based in classical algebraic vector operations,

such as direct solvers for linear systems and nearest neighbours search routines. In

large scale scenarios, where the number of unsampled locations is extremely large or

several nearest neighbours must be searched, the usage of acceleration techniques and

technologies is mandatory in order to obtain results in reasonable execution times.

The classical approach can be used in many applied cases where the values under study

show isotropic or regular trends of preferential directions. However in complex scenar-

ios the results obtained can be unrealistic since the underlying phenomena shows highly

anisotropic trends which can not be reproduced by the classical approach. These kind of

complex scenarios arise in geological modeling of faults and veins in mineral reserves, sed-

imentary deposits in oil and gas reservoirs, environmental modeling of pollution spread,

rain fall patterns or animal migration, and mobility patterns in highly populated urban

areas.

1

Introduction 2

We seek to make a contribution by optimizing and accelerating some of the classi-

cal algorithms in the field of geostatistics, together with new algorithms developed by

the research community, particularly in the field of geostatistics with locally varying

anisotropy (LVA). Our approach will be focused on increasing the performance of the

parallelizations and distributions of workloads obtained, as well as improve the algorith-

mic complexity of some of the proposed methods, implementations and case studies.

1.1 Context/Motivation

Classical geostatistical methods are based in two-point statistics, particularly covariances

and variograms Chilès and Delfiner [1999], Deutsch and Journel [1998]. These measures

can be inferred assuming stationarity, which means that the cumulative distribution

functions of any set of random variables in any locations are invariant under translation.

This assumption allows to apply repetitive sampling in different locations of the sampled

data, in order to obtain enough information to infer cumulative distributions.

In case of non stationarity, anisotropy is observed in the underlying phenomena. This

feature manifest itself as preferential directions of continuity in the phenomena, i.e.

properties are more continuous in one orientation than in another. If constant anisotropy

is present, a single trend or drift can be observed in the sampled data set or secondary

sources of information (Isaaks and Srivastava [1990]). In the case of local anisotropy, each

location of the domain in study presents different preferential directions of continuity

(Boisvert [2010], Boisvert and Deutsch [2011]). Figure 1.1 shows the contrast between an

isotropic (stationary) and a constant anisotropic (non stationary) images. Both images

were generated using a classical method (sequential gaussian simulation). In the left

image the structural pattern is independent of the direction in which is measured (omni

directional) and the right image shows a clear preferential direction in the west-east axis.

Figure 1.2 shows an example of a LVA field, where each node of the discretized domain

has an orientation. In this case the underlying phenomena consists in several strati-

graphic layers in an oil reservoir (Mariethoz and Caers [2014], part III, West Cost of

Africa reservoir). Since the layer is a continuous body with different trends in different

zones, the local anisotropy allows to capture all the geometrical and geological com-

plexities of the domain. Extremely large 3D discrete domains must be analyzed and

preprocessed in order to infer all field parameters in each domain node, making the oil

reservoir scenario one of the most challenging in terms of computational resources in-

vested. In order to visualize the limitations of classical methods, two simulated images

can be observed in Figure 1.3, using LVA field and sampled data shown in Figure 1.2.

The image in the left-side was generated using a classical method (sequential indicator

Introduction 3

Figure 1.1: Comparison between an isotropic (left) and constant anisotropic (right)
images. Extracted from Boisvert [2010].

simulation) and the image of the right-side using an LVA-based method. We can observe

structural differences between both images, with clear structures following the LVA field

in the right-side.

Figure 1.2: Example of locally varying anisotropy field (left) and sampled data (right)
showing a cross section through an oil reservoir with several stratigraphic layers.

Introduction 4

Figure 1.3: Comparison between an isotropic (left) and locally varying anositropic
(left) images, using LVA field and sampled data from Figure 1.2.

The LVA geostatistical approach, described in detail in Boisvert [2010], sets the initial

path for future developments in terms of numerical implementations that can potentially

scale to large scenarios. However, to the best of the author’s knowledge, no further anal-

ysis or public code improvements were developed since the initial article. This is in part

because non-standard algorithms, acceleration and distribution techniques must be ap-

plied to the inner kernels of the proposed LVA codes for geostatistical analysis. These

inner kernels can be clustered in two groups: the classical geostatistical inner kernels,

such as variogram computing, kriging estimation and sequential simulation Chilès and

Delfiner [1999], Deutsch and Journel [1998]; and dimensionality reduction techniques in

high-dimensional spaces, such as PCA, MDS Mardia et al. [1979], ISOMAP Tenenbaum

et al. [2000], locally linear embedding Roweis and Saul [2000], local tangent space align-

ment Zhang and Zha [2002], and others. Both groups are connected by the property of

positive definite covariance functions Curriero [2006]. In order to use the classical meth-

ods in contexts where LVA is present, non-euclidean distances must be used instead of

straight lines connecting different points in the domain. In Figure 1.4 we can observe

a geological fold where two points A and B are connected through a non-linear path,

where its length defines a non-euclidean distance. The non-linear path that connects

both points is the shortest path that follows the underlying LVA field. By computing the

non-euclidean distances between each pair of points in the domain of study, a distance

matrix is obtained. As mentioned in Curriero [2006], classical geostatistical methods can

be used only with euclidean distances to measure proximity, since positive-definiteness

of a covariance matrix is guaranteed. For this reason, the non-euclidean distance matrix

in Rd with d ∈ {2, 3}, must be transformed into a similar distance matrix generated

in a higher-dimensional space Rd with d >> 3 using euclidean distances. Each step

Introduction 5

in this process is highly intensive in compute and memory, since huge matrices must

be stored and processed in order to obtain the high-dimensional embedding of points

that produces a similar distance matrix. If large domains are being studied in Rd with

d ∈ {2, 3}, a prohibitive amount of computational resources will be necessary to ob-

tain a kriging estimation or a sequential simulation using an LVA field as proxy of the

underlying anisotropy.

Figure 1.4: Left: Geological fold showing LVA with two points connected using a non-
euclidean distance. Right: Unfolding the domain highlights the natural path between

A and B Boisvert [2010]. Scale not available.

Regarding previous works related to accelerate large scale geostatistical applications,

novel attempts in isotropic modeling have been reported in Vargas et al. [2007], Nunes

and Almeida [2010], Peredo et al. [2015a] and Rasera et al. [2015], in order to accelerate

classical methods using different algorithmic approaches combined with multi-core and

distributed architectures, particularly MPI and OpenMP. In terms of other geostatisti-

cal methods that can handle LVA features of the phenomena, Multiple Point Statistics

(MPS) Mariethoz and Caers [2014] has been one of the most active sub-fields in the last

decade in terms of development of accelerated and distributed codes. Novel attempts

have been reported in Mariethoz [2010], Straubhaar et al. [2011], Peredo and Ortiz

[2011], Tahmasebi et al. [2012] and Peredo et al. [2014], among many other authors.

Although MPS theoretically can generate models incorporating the LVA features of the

phenomena, the amount of training data that this family of methods needs to accom-

plish that goal can be prohibitive in many applications, particularly mining resources

and environmental modeling. The LVA approach can fulfill the needs of these kind of

applications, but further development is needed in order to achieve larger scenarios. It

is expected that many research opportunities arise in the topics of acceleration of classi-

cal algorithms and explorations in the new approaches related to LVA, particularly the

manifold learning algorithms.

Introduction 6

1.2 Contributions of this Thesis

The contributions of this thesis are related to accelerate and parallelize classical and

LVA-based geostatistical simulation methods, particularly sequential simulation, which

is one of the most common and computationally intensive methods in the field. This

fact was recently remarked by some of the main authors in the field, which shows the

relevance of this work today Gómez-Hernández and Srivastava [2021]. Two main parallel

algorithms are presented, both applied to classical and LVA-based sequential simulation

implementations. The first one is related to the parallel simulation of different domain

points, after rearranging the order of simulation but preserving the exact results of

a single-thread execution. The second algorithm is related to the parallel search of

neighbour points in the domain, which will be used to build data dependencies for

the parallel simulation of points. The main focus is on multi-core architectures using

OpenMP and optimization techniques applied to Fortran and C++ codes.

Additionally, acceleration and parallelization techniques were also applied to auxiliary

applications, such as variogram and shortest path calculation on hybrid CPU/GPU

architectures using Fortran, C++ and CUDA codes.

The overall results of this work are a set of applications that will allow researchers and

practitioners to accelerate dramatically the execution of their experiments and simula-

tions. These tools can be combined with other geostatistical tools, in order to improve

the existing landscape of open source codes that can be used in practical scenarions.

1.3 Related articles

Two research articles were published during this thesis, both related with parallel se-

quential simulations using classical and LVA-based codes:

• Oscar Peredo, Daniel Baeza, Julián M. Ortiz, and José R. Herrero. A path-level ex-

act parallelization strategy for sequential simulation. Computers and Geosciences,

110:10-22, 2018. https://doi.org/10.1016/j.cageo.2017.09.011

• Oscar Peredo and José R. Herrero. Acceleration Strategies for Large-Scale Sequen-

tial Simulations using Parallel Neighbour Search: non-LVA and LVA scenarios.

Computers and Geosciences, 160:105027, 2022. https://doi.org/10.1016/j.

cageo.2021.105027

A third research article is currently under development. It extends the work presented

in Chapter 7 of the thesis document. We plan to submit it to a proper journal shortly.

https://doi.org/10.1016/j.cageo.2017.09.011
https://doi.org/10.1016/j.cageo.2021.105027
https://doi.org/10.1016/j.cageo.2021.105027

Introduction 7

• Oscar Peredo and José R. Herrero. Hybrid CUDA/OpenMP Acceleration of Semi-

variogram Computation. To be submitted.

It is worth mentioning that the author contributed in different research articles in the

past, before starting this thesis, in order to increase the overall knowledge in geostatistics

in general:

• Oscar Peredo and Julián M. Ortiz. Parallel implementation of simulated annealing

to reproduce multiple-point statistics. Computers and Geosciences, 37(8):1110-

1121, 2011. https://doi.org/10.1016/j.cageo.2010.10.015

• Oscar Peredo, Julián M. Ortiz, José R. Herrero and Cristobal Samaniego. Tuning

and hybrid parallelization of a genetic-based multi-point statistics simulation code.

Parallel Computing 40(5-6):144-158, 2014. https://doi.org/10.1016/j.parco.

2014.04.005

• Oscar Peredo, Julián M. Ortiz and José R. Herrero. Acceleration of the Geostatis-

tical Software Library (GSLIB) by code optimization and hybrid parallel program-

ming. Computers and Geosciences, 85(A):210-233, 2015. https://doi.org/10.

1016/j.cageo.2015.09.016

• Oscar Peredo, Julián M. Ortiz and Oy Leuangthong. Inverse modeling of mov-

ing average isotropic kernels for non-parametric three-dimensional gaussian sim-

ulation. Mathematical Geosciences, 48(5):559-579, 2016. https://doi.org/10.

1007/s11004-015-9606-x

Additionally, previous research articles related with LVA applications were published on

conference proceedings of geosciences and geostatistics:

• Oscar Peredo, Felipe Navarro, Mauricio Garrido and Julián M. Ortiz. Incorporat-

ing distributed dijkstra’s algorithm into variogram calculation with locally varying

anisotropy. In 37th International Symposium APCOM 2015, pages 11621170. S.

Bandopadhyay, 2015.

• Oscar Peredo, Mauricio Garrido, and Julián M. Ortiz. Practical aspects of re-

sources modeling in presence of locally varying anisotropy. In 17th Annual Con-

ference of the International Association for Mathematical Geosciences IAMG 2015.

Schaeben, H., Tolosana-Delgado, R., van den Boogaart, K. G., van den Boogaart,

R., 2015.

https://doi.org/10.1016/j.cageo.2010.10.015
https://doi.org/10.1016/j.parco.2014.04.005
https://doi.org/10.1016/j.parco.2014.04.005
https://doi.org/10.1016/j.cageo.2015.09.016
https://doi.org/10.1016/j.cageo.2015.09.016
https://doi.org/10.1007/s11004-015-9606-x
https://doi.org/10.1007/s11004-015-9606-x

Introduction 8

• Oscar Peredo, José A. Garćıa, Ricardo Stuven and Julián M Ortiz. Urban dynamic

estimation using mobile phone logs and locally varying anisotropy.In Geostatistics

Valencia 2016, pages 949964. Springer, 2017.

1.4 Organization

This document is organized as follows. Chapter 2 presents the theoretical background

of classical and non-euclidean geostatistics, including implementation details of existing

applications. It also presents the state of the art of accelerated and parallel imple-

mentations of sequential simulation algorithms. Chapter 3 presents the methodology

used in this research, such as the main application library and source codes used for

development, common parameters for execution, development techniques, case studies

presented in different chapters and metrics used to compare results.

Chapter 4 presents the first contribution of this thesis, which is a parallel algorithm

for sequential simulation algorithms. Results using classical sequential gaussian and

sequential indicator simulation applications are presented. Chapter 5 presents the second

contribution of this thesis, which is a parallel algorithm for neighbour search in sequential

simulation methods. This algorithm is coupled with the parallel algorithm of Chapter

4, and it is implemented in classical and LVA-based applications.

In Chapter 6, two faster optimized libraries are used to accelerate other LVA specific

routines. An additional parallel application is presented in Chapter 7, which is a hy-

brid CUDA/OpenMP implementation of the semivariogram computation from classical

geostatistics. Finally, conclusions and future work are included in Chapter 8.

Chapter 2

Theoretical Background and

State-of-the-Art

2.1 Overview

In this chapter we will review the theoretical background of classical and LVA-based geo-

statistics, in the context of quantification of uncertainty of unknown values in unsampled

locations. As mentioned in the introductory chapter, uncertainty can be modelled as the

response of several random variables geo-located in the unsampled locations, through

their cumulative distribution functions and statistical properties using all the available

information in the sampled locations.

Figure 2.1 depicts the general workflows on both classical (euclidean) and LVA-based

(non-euclidean) geostatistics. Both workflows start with conditioning sampled data as

input (if exists), but in LVA we have an additional input denoted LVA field. On this

workflow, three additional steps are mandatory: non-euclidean distance matrix assem-

bling, multidimensional scaling and triangulation. After these specific steps, both work-

flows can perform similar compute kernels, namely sequential simulation, kriging and

variogram calculation.

In the next sections we will introduce mathematical details of these kernels, with special

focus on sequential simulation algorithms for both workflows. These algorithms are the

most challenging in terms of computational effort, allowing us to quantify uncertainty

in a more realistic way.

Variogram calculation will be revisited in a subsequent chapter, since it can be used as

a validation tool for simulated domains. Regarding the kriging compute kernel, there

are several fast and parallel implementations that have been published in the last years

Cheng [2013], Peredo et al. [2015a], so no further research was developed on this kernel.

9

Theoretical Background and State-of-the-Art 10

However, its description is included in the next section since it is used as inner kernel

by all sequential simulation algorithms.

Figure 2.1: General workflows in both classical and LVA-based geostatistical methods.

2.2 Classical Geostatistics

Geostatistical simulation provides an approach to quantify uncertainty over spatially

distributed variables. As mentioned in the introductory chapter, the classical geostatis-

tical approach is based on euclidean distances to measure proximity between points in

space. This aspect will be discussed in detail on Section 2.3. Additionally, well known

methods on this track are depending on the properties of the random function consid-

ered, which can be continuous or categorical. Both flavors of methods are discussed in

detail in the next section. Definitions are extracted from Deutsch and Journel [1998] for

any further reference.

Theoretical Background and State-of-the-Art 11

2.2.1 Background

2.2.1.1 Random variable

Any unsampled value on location u ∈ R3 can be modelled as a random variable denoted

Z(u). These random variables allow to model petrophysical, geophysical, geographical

and geological properties, among others. The cumulative distribution function (cdf) of

a continuous random variable Z(u) is denoted

F (u; z) = P{Z(u) ≤ z} (2.1)

with P(A) the probability of event A.

Additionaly, when the cdf is made specific to a particular information set, for instance,

the n closests neighbours with data values Z(uα) = z(uα), α = 1, . . . , n, a conditional

probability notation ”|(n)” is used

F (u; z|(n)) = P{Z(u) ≤ z|(n)} (2.2)

= P{Z(u) ≤ z|Z(uα) = z(uα), α = 1, . . . , n} (2.3)

and the distribution is denoted as conditional cumulative distribution function (ccdf).

2.2.1.2 Random function

A random function Z(u) is defined as a set of random variables defined over some field

of interest, such as {Z(u) : u ∈ Ω} with Ω ⊂ R3 a domain in study. As in random

variables, a random function is characterized by its cumulative distribution function

(cdf) denoted

F (u1, . . . ,uK ; z1, . . . , zK) = P{Z(u1) ≤ z1, . . . , Z(uK) ≤ zK} (2.4)

which allows to model the uncertainty about the value z across unsampled locations of

the domain Ω.

2.2.1.3 Stationarity hypothesis

A random function {Z(u) : u ∈ Ω} is said to be stationary within the domain Ω if

its multivariate cdf of Equation (2.4) is invariant under traslations of the K coordinate

vector uk, that is:

F (u1, . . . ,uK ; z1, . . . , zK) = F (u1 + h, . . . ,uK + h; z1, . . . , zK) (2.5)

Theoretical Background and State-of-the-Art 12

This equation implies invariance also for lower order cdf, including univariate and bi-

variate cdfs, and invariance of all their moments, specifically all covariances as described

in the next paragraph. In summary, the hypothesis of stationarity allows to infer the

unique stationary cdf F (z) = F (u; z) directly from the cumulative sample histogram

extracted from the sampled data at various locations of the domain Ω.

2.2.1.4 Covariance and semivariogram

The basic bivariate momentum is the covariance, extensively explained in Deutsch and

Journel [1998] (II.1.1 and II.1.2), defined as

C(u,u′) = E(Z(u)Z(u′))− E(Z(u))E(Z(u′)) (2.6)

By assuming the stationary hypothesis, the covariance between two points separated by

h can be defined as

C(h) = C(u,u + h) (2.7)

= E(Z(u)Z(u + h))− E(Z(u))2 (2.8)

Related with the stationary covariance, another bivariate statistic is the semivariogram,

defined as

γ(h) = C(0)− C(h) (2.9)

where C(0) is the stationary variance and C(h) is the stationary covariance defined

before.

Some well-known semivariogram models are:

• Spherical: defined by range a and sill c > 0

γ(h) =

 c

[
1.5 |h|a − 0.5

(
|h|
a

)3
]
|h| ≤ a

c |h| > a

(2.10)

• Exponential: defined by effective range a (distance at which γ(a) = 0.95c) and sill

c > 0

γ(h) = c

[
1− exp

(
−3|h|

a

)]
(2.11)

• Gaussian: defined by effective range a and sill c > 0

γ(h) = c

[
1− exp

(
−(3|h|)2

a2

)]
(2.12)

Theoretical Background and State-of-the-Art 13

• Power model: defined by a power 0 < ω < 2 and a positive slope c

γ(h) = c|h|ω (2.13)

When multiple effects or ”structures” are combined into one semivariogram model, a

nested model can be represented as a sum of multiple semivariogram models:

γ(h) =
K∑
i=1

γi(h) (2.14)

2.2.1.5 Kriging

The kriging algorithm [Chilès and Delfiner, 1999, Deutsch and Journel, 1998, Journel and

Alabert, 1989] was introduced to provide minimum error-variance estimates of unsam-

pled locations using available data. The traditional application of kriging is to provide

a regular grid of estimates that acts as a low-pass filter that tends to smooth out details

and extreme values of the original dataset. It is extensively explained in Deutsch and

Journel [1998] (IV.1). Simple Kriging (SK), in its stationary version, aims to obtain a

linear regression estimator Z∗SK(u) (Figure 2.2) defined as

Z∗SK(u) =

n∑
α=1

λα(u)Z(uα) +

[
1−

n∑
α=1

λα(u)

]
m (2.15)

where Z(u) is the random variable which depends on location u ∈ R3, m = E{Z(u)}, ∀u
is the location-independent (constant) expected value of Z(u) and λα(u) are weights

given by the solution of the system of normal equations:

n∑
β=1

λβ(u)C(uβ,uα) = C(u,uα), α = 1, . . . , n (2.16)

with {C(uα,uβ)}α,β=0,1,...,n the covariance matrix adding the sampled data u0 = u.

With the stationary assumption, the covariance can be expressed as a function C(h) =

C(u,u + h). Ordinary Kriging (OK) filters the mean m from the SK estimator of eq.

(2.15), imposing that the sum of weights is equal to one. The resulting OK estimator is

as

Z∗OK(u) =
n∑

α=1

λ(OK)
α (u)Z(uα) (2.17)

Theoretical Background and State-of-the-Art 14

Figure 2.2: General schema for kriging estimation.

with the weights λ
(OK)
α solution of the extended system:

n∑
β=1

λ
(OK)
β (u)C(uβ − uα) + µ(u) = C(u− uα), α = 1, . . . , n (2.18)

n∑
β=1

λ
(OK)
β = 1 (2.19)

with µ(u) a Lagrange parameter associated with the second constraint (2.19). It can be

shown that OK amounts to re-estimating, at each new location u, the mean m as used in

the SK expression. Thus the OK estimator Z∗OK(u) is, in fact, a simple kriging estimator

where the constant mean value m is replaced by the location-dependent estimate m∗(u)

(non-stationary algorithm with varying mean and constant covariance).

Initially, uncertainty quantification was addressed using kriging on any unsampled loca-

tion of the domain in study. OK or SK deliver the best linear unbiased estimate on u

(see Chapter 4 of Deutsch and Journel [1998] for a detailed description), Z∗(u), which

means that:

E{Z∗(u)} = E{Z(u)} (2.20)

Var{Z∗(u)} = Var{Z(u)} − σ2
∗(u) (2.21)

with σ2
∗(u) known as kriging variance:

σ2
∗(u) = C(0)−

n∑
α=1

λα(u)C(u,uα) ≥ 0 (2.22)

Theoretical Background and State-of-the-Art 15

The estimate value and variance can be used to define Gaussian-type confidence intervals,

such as

P{Z(u) ∈
[
z∗(u)− σ2

∗(u), z∗(u) + σ2
∗(u)

]
} ≈ 0.95 (2.23)

Equation (2.20) shows that no bias is been added by the estimator Z∗(u) and equation

(2.21) shows that the positive factor σ2
∗(u) reduces the value of the estimate variance.

This variance reduction indicates that the kriging method smooths the random function,

delivering unaccurate under/over estimations locally. The main reason of this behaviour

is the underlying nature of the kriging variance, which is independent of the sampled

data values (eq. (2.22)) on any unsampled location, and therefore tends to preserve the

smoothness across the domain.

2.2.1.6 Sequential Gaussian Simulation

In order to improve the uncertainty quantification process, the conditional cumulative

distribution function from eq. (2.3) should be infered, with additional steps applied

to the kriging method. Specifically, two approaches for ccdf inference can be taken:

Multivariate Gaussian or Indicator Kriging approach. Both approaches have specific

and common features, depending on the nature of the random variables and their cdfs.

The Multivariate Gaussian approach assumes that every random variable Z(u) is contin-

uous and the sample data histogram is normal, which implies that the random function

{Z(u) : u ∈ Ω} follows a gaussian distribution across all locations of the domain. If

this is not the case, a normal score transformation can be applied on the original z data

(see Section V.2.1 from Deutsch and Journel [1998]). With this transformation, the new

random function {Y (u) : u ∈ Ω} can be used instead of Z.

Sequential Gaussian Simulation method [Alabert, 1987, Isaaks, 1990] takes the Multi-

variate Gaussian approach and combines it with a stochastic simulation process. In this

stochastic method, equally probable joint realizations of the random variables defined by

the random function {Z(u) : u ∈ Ω} are ”drawed” or generated. At this point, typically

a gridded domain is considered, and L realizations are represented as

{z(l)(u) : u ∈ Ω}, l = 1, . . . , L (2.24)

The key aspect of the method is to allow previously simulated locations to be included

as conditoning sampled data in future inferences of the ccdf for unsampled locations.

The previous aspect assumes that there is a ”path” in which the locations are being

simulated and posteriorly can be considered as conditioning sampled data for subsequent

locations. This path is commonly known as the random path, which should be obtained

by reordering at random the one-dimensional natural indexation of the gridded locations

Theoretical Background and State-of-the-Art 16

(each location should be visited once, see Section 2.3.2.2 for details of this indexation).

On each visited location, a specified number of nearby neighboring conditioning sampled

data points is collected (originally sampled data and previously simulated data). After

that, a Simple Kriging estimation is computed, delivering mean and variance of Y ∗(u)

(eqns. (2.15) and (2.22)). With this estimated parameters, the ccdf (eqn. 2.3) can

be infered in order to draw a simulated value y(l)(u), with l = 1, . . . , L. The final

step is to back-transform the simulated values y(l)(u) using the inverse normal score

transformation, obtaining the values z(l)(u).

Differences between a kriging estimation and sequential gaussian simulation can be ob-

served in Figure 2.3. Each image was generated using the same conditional sampled

data, which corresponds to 2376 real 3D samples of copper grades from the Chilean cop-

per deposit Los Bronces Serrano et al. [1998]. Both images are plotted using the same

scale, and both have a diagonal line from bottom-left to top-right corner, where their

values were plotted through it. On the bottom plot we can observe the differences of each

value, were kriging estimate (red) shows the ”smoothness” described previously, and the

sequential gaussian simulation (green) shows a higher spatial variability of its value.

The simulated stochastic variability allows to quantify uncertainty on each unsampled

location, through the simulation of several images.

2.2.1.7 Sequential Indicator Simulation

An alternative approach to multivariate Gaussian is the Indicator Kriging approach. As

stated in Journel and Huijbregts [1978], the estimators that have been considered until

now are linear combinations of the available data, but we can go beyond this definition

if additional information is available. In order to expand the definition, mathemati-

cal functional analysis concepts are needed. Particularly, the concepts of conditional

expectation and indicator functions are relevant in order to describe Indicator Kriging.

Conditional expectation of a random variable Z(u) on sampled data (n) (same as in

Equation 2.3) is denoted

E{Z(u)|(n)} ∈ H (2.25)

where H is a Hilbert space over all random variables defined over the same domain with

the following scalar product 〈X,Y 〉 = E{XY } and norm ‖X‖ =
√
E{X2}.

Theoretical Background and State-of-the-Art 17

Figure 2.3: Comparison between kriging estimation (top-left) and sequential gaus-
sian simulation (top-right). Values generated by each method through a diagonal line

(bottom).

Indicator functions are random variables I(u) that can be defined from K mutually

exclusive categories sk, k = 1, . . . ,K. Each location u should belong to one and only

one of those K categories. In this case, the indicator of class sk on location u is denoted

Theoretical Background and State-of-the-Art 18

as

i(u; sk) =

{
1 u ∈ sk
0 u /∈ sk

(2.26)

In case of a continuous variable z(u), a discretization in K mutually exclusive classes

sk = (zk−1, zk], k = 1, . . . ,K can be interpreted in the same way as i(u; sk).

With both concepts at hand we can introduce two important results. We will assume

K = 2 for the sake of simplicity in the equations. If the variable to be simulated is

already categorical (binary with K = 2), namely i(u), then

P{I(u) = 1|(n)} = E{I(u)|(n)} (2.27)

On the other hand, if the variable to be simulated is continuous, namely z(u), its ccdf

can be written in terms of the corresponding indicator function as

P{Z(u) ≤ z|(n)} = E{I(u; z)|(n)} (2.28)

with I(u; z) = 1 if Z(u) ≤ z and 0 otherwise. Equations (2.27) and (2.28) show a

fundamental relation that allow to infer the ccdf of Equation (2.3) by estimating the

conditional expectation. Simple Kriging estimator (eq. (2.15)) of I(u) can be written

as

I∗SK(u; z) =
n∑

α=1

λα(u; z)I(uα; z) +

[
1−

n∑
α=1

λα(u; z)

]
E{I(u; z)} (2.29)

By identifying that

E{I(u; z)} = 1 · P{Z(u) ≤ z}+ 0 · P{Z(u) > z} (2.30)

= P{Z(u) ≤ z} (2.31)

equation (2.29) can be written as

I∗SK(u; z) =

n∑
α=1

λα(u; z)I(uα; z) +

[
1−

n∑
α=1

λα(u; z)

]
P{Z(u) ≤ z} (2.32)

Weights λα(u; z) are computed by solving the system of normal equations of Equa-

tion (2.16) using C(uβ,uα; z) instead of C(uβ,uα), which corresponds to the indicator

covariance at cut-off z. Using K categories or classes, requires to calculate K indica-

tor covariances C(uβ,uα; sk) and cdf values P{Z(u) ≤ sk}. Ordinary Kriging scenario

follows the same reasoning, but using equations (2.17), (2.18) and (2.19) instead.

Theoretical Background and State-of-the-Art 19

Similarly to sequential gaussian simulation, sequential indicator simulation method [Al-

abert, 1987] takes Indicator Kriging approach and combines it with a stochastic simula-

tion process. It also applies the key aspect described in Section 2.2.1.6, in order to allow

previously simulated locations to be included as conditioning data in future inferences

of the ccdf for unsampled locations. This is valid since Indicator Kriging equations are

still true when conditional data is used, as consequence of Equation (2.28).

An image generated with a sequential gaussian simulation method can be observed

in Figure 2.4. It was generated using 2376 real 3D samples of rock lithology from the

Chilean copper deposit Los Bronces Serrano et al. [1998]. The rock types in these samples

correspond to Granodiorite (15%, category 1), Diorite (69%, category 2) and Breccia

(16%, category 3). It contains a diagonal line from bottom-left to top-right corner, where

their category value were plotted through it. On the bottom plot we can observe the three

categories values. In this case, the non-linear nature of the simulated variable allows

to quantify uncertainty for additional features on each unsampled location, through the

simulation of several images.

In terms of usability, the case of categorical variables is particularly suited for high

variability deposits where transitions between facies show low correlation. Alternative

methods based on truncation of Gaussian random fields, namely Truncated Gaussian and

PluriGaussian simulation [Matheron et al., 1987], offer more flexibility to reproduce these

transitions Deutsch [2006], but are not as flexible when dealing with secondary variables

and trends [Yarus et al., 2012]. The method has been applied to the different areas in

Geosciences, such as geological modelling of ore deposits [de Souza and Costa, 2013,

Dimitrakopoulos, 1998, Dimitrakopoulos and Dagbert, 1993, Journel and Isaaks, 1984]

and oil reservoirs [de Almeida, 2010, dell’Arciprete et al., 2012, Dubrule and Damsleth,

2001, Pan, 1997], as well as in other fields such as rock fractures modelling [Dowd et al.,

2007], imaging [van der Meer, 1994], and soil science [Bierkens and Burrough, 1993,

Goovaerts, 2001], to name a few.

Theoretical Background and State-of-the-Art 20

Figure 2.4: Comparison between kriging estimation (top-left) and sequential gaus-
sian simulation (top-right). Values generated by each method through a diagonal line

(bottom).

Theoretical Background and State-of-the-Art 21

2.2.2 Sequential implementations

In this thesis, the main sequential (single-threaded) implementation studied and ana-

lyzed is the Geostatistical Software Library (GSLIB), originally presented by Deutsch

and Journel Deutsch and Journel [1998]. Some parts of this section are extracted from

Peredo et al. [2015a], which was published by the same author of this thesis. It has

been used in the geostatistical community for more than thirty years, and is one of the

most used still by academics and practioners in the field. It contains plotting utilities,

data transformation utilities, measures for spatial continuity (variograms), kriging es-

timation and stochastic simulation applications. Among these components, estimation

and simulation are two of the most used, and can be executed with large data sets and

estimation/simulation grids. Large scenarios require several minutes/hours of elapsed

time to finish, due to the heavy computations involved and its sequential implementa-

tion. Since their original development, these routines have helped many researchers and

practitioners in their studies, mainly due to the accuracy and performance delivered by

this package. Many efforts have been proposed to accelerate or enhance the scope of

the original package, WinGslib Statios LLC [2001], SGeMS Remy et al. [2009], HPGL

Savichev et al. and Pyrcz et al. being the most relevant efforts. SGeMS and HPGL

moves away from Fortran and implements Python and C/C++ code in conventional and

new algorithms. GeostatsPy mixes Python re-implementations of GSLIB routines with

wrappers to Fortran pre-compiled code. Although there is a significant gain with these

changes, for many practitioners and researchers, the simplicity of Fortran code and the

availability of an extensive pool of modified GSLIB-based programs makes it hard to

abandon this library.

According to GSLIB documentation Deutsch and Journel [1998], the software package

is composed by a set of utility routines, compiled and wrapped as a static library named

gslib.a, and a set of applications that call some of the wrapped routines. We will

refer to these two sets as utilities and applications. Typically, a main program and two

subroutines compose an application. The first subroutine is in charge of reading the pa-

rameters from the input files, and the second subroutine executes the main computation

and writes out the results using predefined output formats. Additionally, two structures

of static and dynamic variables are used by the main program and each subroutine:

an include file and a geostat module. The include file contains static variable decla-

rations, like constant parameters, fixed length arrays and common blocks of variables.

The geostat module contains dynamic array declarations, which will be allocated in

some of the subroutines with the allocate instruction. A utility is self-contained allowing

sharing variables with other utilities and applications through common block variable

declarations.

Theoretical Background and State-of-the-Art 22

In the next paragraphs, we will review the three main applications related with this

thesis, gamv, sgsim and sisim.

2.2.2.1 gamv

The gamv application calculates several spatial variability/continuity measures of a vari-

able, in an experimental way, using the available dataset as source. Available measures to

be calculated are: semivariogram, cross-semivariogram, covariance, correlogram, general

relative semivariogram, pairwise relative semivariogram, semivariogram of logarithms,

semimadogram and indicator semivariogram. The description of each measure can be

found in Deutsch and Journel [1998] (III.1). Among the most used, we can mention the

experimental semivariogram (theoretically defined in eq. (2.9), which is defined as

γ(h) =
1

2N(h)

N(h)∑
i=1

(Z(ui)− Z(ui + h))2 (2.33)

where h is the separation vector, N(h) is the number of pairs separated by h (with

certain tolerance), Z(ui) is the value at the start of the vector (tail) and Z(ui+h) is the

corresponding end (head). In Algorithm 19 we can see the main steps of the algorithm

implemented in gamv application. We can observe that the steps in this algorithm are

essentially the same regardless the measure to be calculated. For example, to calculate

the semivariogram (eq. 7.1) using just one variable, one direction h and 10 lags with

separation h = 1.0, first we iterate through all pairs of points in the domain Ω (loops

of lines 2 and 3 of Algorithm 19), then we have ten iterations in the next loops (line 4

with ndir = 1, nvarg = 1 and nlag = 10). In each iteration, we must check if some

geometrical tolerances are satisfied by the current pair of points (first condition of line

6) and then we must check if the separation vector between the points, (pi − pj), is

similar to the separation vector h multiplied by the current lag ilag and the separation

lag (h = 1.0). If both conditions are fulfilled, the pseudo-routine save statistics saves

the values of the variables in study into array β. In this case, only one variable is being

queried (hiv == tiv). For each type of variogram, the variables Vi,hiv and Vj,hiv may be

transformed using different algebraic expressions. In the case of the semivariogram, we

must save (Vi,hiv −Vj,hiv)
2. Finally, using the statistics stored in β, the pseudo-routine

build variogram saves the final variogram values in vector γ, which is stored in file

output.txt.

Theoretical Background and State-of-the-Art 23

Input:
(V,Ω): sample data base values V ∈ R|Ω|×m defined in a 3D domain Ω;
nvar: number of variables in study (nvar ≤ m);
nlag: number of lags;
h: lag separation distance;
ndir: number of directions;
h1, . . . ,hndir: directions;
τ1, . . . , τndir: geometrical tolerance parameters (azimuth and dip);
nvarg: number of variograms;
(type1, t1, h1), . . . , (typenvarg, tnvarg, hnvarg): variogram types, tail and head variables;

1 β ← zeros(nvar × nlag × ndir × nvarg)
2 for i ∈ {1, . . . , |Ω|} do
3 for j ∈ {i, . . . , |Ω|} do
4 for (id, iv, il) ∈ {1, . . . , ndir} × {1, . . . , nvarg} × {1, . . . , nlag} do
5 (pi,pj)← ((xi, yi, zi), (xj , yj , zj)) ∈ Ω× Ω
6 if (pi,pj) satisfy tolerances τid ∧ ||(pi − pj)− hid × il × h‖ ≈ 0 then
7 β ←save statistics(Vi,hiv ,Vi,tiv , Vj,hiv ,Vj,tiv ,typeiv)
8 end

9 end

10 end

11 end
12 γ ← build variogram(β)
13 write(output.txt,γ)

Output: Output file with γ values

Algorithm 1: Pseudo-code of gamv, measurement of spatial variability/continuity
(single-thread algorithm)

2.2.2.2 sgsim

The application sgsim implements the sequential gaussian simulation algorithm, as de-

scribed in Deutsch and Journel [1998] (V.2.3). It is considered as the most straight-

forward algorithm for generating realizations of a multivariate Gaussian field. Its main

steps can be viewed in Algorithm 2. The first step is to transform the original dataset

into a standard normally distributed dataset (line 1). Then a random path must be

generated, visiting all nodes of the simulation grid, for each simulation to be calculated

(line 3). At each location ixyz, a ccdf must be estimated by simple or ordinary kriging

(eqs. (2.15) and (2.16); (2.17), (2.18) and (2.19) using a maximum number of nearby

neighbours), and then a random variable must be drawn from the generated ccdf (lines

7 and 8). The next step is to translate the simulated value in the normal distribution

to the original distribution of the sample data (line 9). Finally, the back-transformed

scalar result is stored in a file output.txt using a system call (write) for each nodal

value (line 10).

Theoretical Background and State-of-the-Art 24

Input:
(V,Ω): sample data base values defined in a 3D domain;
γ: structural variographic models;
κ: kriging parameters (radius, max number of neigbours and others);
τ : seed for pseudo-random number generator;
N : number of generated simulations;
output.txt: output file;

1 Y ← normal score(V)

2 for isim ∈ {1, . . . , N} do
3 P ← create random path(Ω, τ)
4 Ytmp ← zeros(Y)
5 Ytmp ← assign(Y) //Sample data assignment
6 for ixyz ∈ {1, . . . , |Ω|} do
7 index← Pixyz

8 LocalNeighbours← search neighbours(index, κ)
9 p← kriging(index,LocalNeighbours, γ, κ)

10 Ytmp
index ← simulate(index, p, τ)

11 Vtmp ← back transform(Ytmp
index)

12 write(output.txt,Vtmp
index)

13 end

14 end

Output: N stochastic simulations stored in file output.txt

Algorithm 2: Pseudo-code of sgsim, sequential gaussian simulation program
(single-thread algorithm)

2.2.2.3 sisim

The application sisim implements the sequential indicator simulation algorithm, as de-

scribed in Deutsch and Journel [1998] (V.3.1). Its main steps can be viewed in Algorithm

3. The main steps are analogous to the sequential gaussian simulation algorithm, imple-

mented by the sgsim application. The differences with Algorithm 2 are the addition of

a category-based loop (line 6) and the usage of the pseudo-routine indicator kriging

instead of the tradidional kriging (line 7). This pseudo-routine calculates the Indicator

Kriging estimator described in eqn. (2.32) for simple or ordinary kriging versions.

Theoretical Background and State-of-the-Art 25

Input:
(V,Ω): sample data base values defined in a 3D domain;
C: number of categories to be reproduced;
γ1, . . . , γC : structural variographic models;
κ: kriging parameters (radius, max number of neigbours and others);
τ : seed for pseudo-random number generator;
N : number of generated simulations;
output.txt: output file;

1 for isim ∈ {1, . . . , N} do
2 P ← create random path(Ω, τ)
3 Vtmp ← zeros(V)
4 for ixyz ∈ {1, . . . , |Ω|} do
5 index← Pixyz

6 LocalNeighbours← search neighbours(index, κ)
7 for icut ∈ {1, . . . , C} do
8 picut ← indicator kriging(index,LocalNeighbours, γicut, κ)
9 end

10 Vtmp
index ← simulate(index, p1, . . . , pC , τ)

11 end
12 write(output.txt,Vtmp)

13 end

Output: N stochastic simulations stored in file output.txt

Algorithm 3: Pseudo-code of sisim, sequential indicator simulation program
(single-thread algorithm)

2.2.3 Parallel implementations

Regarding semivariogram parallel computation, loop parallelization techniques can be

applied in the main loops that traverses all pairs of points (lines 2 and 3 on Algorithm

19). A fast parallel implementation of gamv application was presented in Peredo et al.

[2015a], using OpenMP and MPI for load distribution in large scale scenarios. Additional

accelerations using hybrid GPU/CPU are presented in this thesis on Chapter 7.

Regarding sequential simulation methods, novel attempts have been reported in Dimi-

trakopoulos and Luo [2004], Vargas et al. [2007], Nunes and Almeida [2010], Peredo et al.

[2015a], Rasera et al. [2015] and Nussbaumer et al. [2018]. All of them using different

algorithmic approaches combined with multi-core and distributed architectures, particu-

larly MPI and OpenMP. A common parallelization framework for sequential simulation

was proposed in Mariethoz [2010]. In this article, three main approaches are character-

ized: realization, path and node level.

Realization level parallelization refers to distribute the generation of different realizations

or images over different threads of execution, either on a multi-core or distributed system

(line 2 on Algorithms 2 and line 1 on 3). This is a coarse-grained approach, which is

straighforward to implement since no costly modifications should be made in the inner

kernels of the methods, only that outer loop that traverses the realization identifier

should be adapted. An optimized parallel implementation using this approach was also

presented in Peredo et al. [2015a].

Theoretical Background and State-of-the-Art 26

Path level parallelization refers to distribute the simulation of points across the random

path selected. Different groups of points can be simulated in parallel by different threads

of execution, by applying domain decomposition or other grouping techniques. Initial

proposals were presented by Dimitrakopoulos and Luo [2004] and Vargas et al. [2007],

and later by Rasera et al. [2015], all of them with focus on sequential gaussian simula-

tion. Nussbaumer et al. [2018] presented a recent work which combines realization and

path level parallelization, also with focus on sequential gaussian simulation. This ap-

proach can be viewed as a fine-grained approach, which is considerably more difficult to

implement. The difficulty comes from the intrinsic nature of the method, that imposes a

sequential order of point simulation. If that order is changed in some way, approximate

results will be obtained with the risk of not being honoring the spatial variability/con-

tinuity measures of the conditioning sampled data (unwanted artifact generation in the

image). Additionally, both methods, gaussian and indicator simulation, intrinsically

need an efficient method to find nearest neighbours for each location to be simulated,

which imposes a challenge in the scalability of any parallel method proposed. On Chap-

ters 4 and 5 of this thesis we propose two main techniques that allow to accelerate and

parallize this approach on both methods.

Node level parallelization in the context of sequential simulation have not been explored

extensively, up to the author’s knowledge. The main reason is probably the lower scal-

ability that this approach can deliver, since the only possibilities are to parallelize the

inner routines for kriging (line 7 of Algorithm 2 and lines 6-8 of Algorithm 3). The reason

is that the size of the kriging systems that should be solved are limited by the number

of neighbours used to infer the ccdf, denoted (n) as the conditioning information. In

practice, the value of n will never be considerably larger.

2.3 LVA-based Geostatistics

Classical geostatistics can be used in many applied cases where the values under study

show isotropic or regular trends of preferential directions. However, in complex sce-

narios the results obtained can be unrealistic since the underlying phenomena shows

highly anisotropic trends which can not be reproduced by the classical approach. These

kind of complex scenarios arise in geological modeling of faults and veins in mineral

reserves, sedimentary deposits in oil and gas reservoirs, environmental modeling of pol-

lution spread, rain fall patterns or animal migration, and mobility patterns in highly

populated urban areas.

In the last section, we learn that the classical geostatistical approach is based on the

covariance and semivariogram to measure the spatial variability/continuity of the data.

It is also based on kriging estimates, which are used by stochastic simulation methods

Theoretical Background and State-of-the-Art 27

Figure 2.5: Two scenarios of locally varying anisotropy, with layer, faults and folds.
Left: The Marmousie velocity model [Versteeg, 1994] for the subsurface of the Kwanza
Basin, Angola; Right: Folds in Cretaceous strata in the footwall of the Lewis Thrust

[Pollard and Fletcher, 2005], Canadian Rockies, Canada.

to generate realizations or images of unsampled locations. At the heart of all these

computations resides the distance calculation that is the classical euclidean distance.

It is used to measure the separation vector h in semivariogram functions and also to

identify nearby neighbours around each location.

In this section, non-euclidean distance is introduced into the classical applications, with

the aim of represent the underlying anisotropic properties of the phenomena. These

properties are represented by the LVA field, which defines the non-euclidean distances

between each pair of points. Some definitions are extracted from Boisvert [2010] for any

further reference.

2.3.1 Background

A first property should be stated, regarding valid covariance functions C(h) to be used.

As stated by Matérn [1986], a covariance function is admissible (in the sense that can

be used for geostatistical purposes) if and only if it is positive definite. Concretely, for

locations u1, . . . ,un ∈ Ω and X =
∑n

i=1wiZ(ui), the variance of X should be positive:

n∑
i=1

n∑
j=1

wiC(ui,uj)wj > 0 (2.34)

for all possible choices of n and weights w1, . . . , wn.

If the distance used by the covariance function is non-euclidean, eqn. (2.34) might not

be valid. A counter example was presented by Curriero [2006], in which the domain is

a simple four point regular grid in R2 with unit spacing, and the points are represented

Theoretical Background and State-of-the-Art 28

by (xi, yi), i = 1 . . . 4. The non-euclidean distance is the city block metric,

ρij = |xi − xj |+ |yi − yj | (2.35)

This yields the following matrix of inter-point city block distances
0 1 1 2

1 0 2 1

1 2 0 1

2 1 1 0


which when used with the Gaussian covariance function 20exp(ρ2

ij/4), and nugget, sill,

and range parameters arbitrarily set at (0, 20, 4) respectively, results in the following

proposed covariance matrix,
20.00 15.58 15.58 7.36

15.58 20.00 7.36 15.58

15.58 7.36 20.00 15.58

7.36 15.58 15.58 20.00


The eigenvalues of this matrix are (58.52, 12.64, 12.64,−3.80), implying the Gaussian

covariance is no longer positive definite when used with the city block metric.

A workaround that can be developed to allow non-euclidean distances is based on trans-

form the non-euclidean distance matrix in Rd with d ∈ {2, 3}, into a similar distance

matrix generated in a higher-dimensional space Rd with d ≥ 3 using euclidean distances.

The basic concepts related with this transformation are defined below.

2.3.1.1 Anisotropic distance

The anisotropic distance between two points can be calculated using the following equa-

tion

d =

√(
dX
aX

)2

+

(
dY
aY

)2

+

(
dZ
aZ

)2

(2.36)

where di correspond to the euclidean distance across axis i and ai is denoted as the range

of anisotropy across axis i. A larger range in a particular direction effectively shortens

the distance between points in that direction. Additionally, axis rotations can be applied,

namely changes on the azimuth (or strike), dip or plunge angles. The azimuth consists

in a rotation α about the Z axis (count-clockwise), the dip β is a rotation about the X

axis (clockwise) and the plunge ϕ is a rotation about the Y axis (count-clockwise).

Theoretical Background and State-of-the-Art 29

In Figure 2.6 we can observe two scenarios, without azimuth rotation (α = 0◦) and with

azimuth rotation of α = 45◦. Three possible anisotropy distances can be computed:

• No anisotropy: aX = aY = aZ = 1 and azimuth α = 0◦. We can assume an

euclidean distance between points A and B equal to 1:

dAB =

√(
cos(60◦)

1

)2

+

(
sin(60◦)

1

)2

+

(
0

1

)2

(2.37)

= 1 (2.38)

• Anisotropy in XY directions without rotation: aX = 4, aY = aZ = 1 and α = 0◦.

Applying eqn. (2.36):

dAB =

√(
cos(60◦)

4

)2

+

(
sin(60◦)

1

)2

+

(
0

1

)2

(2.39)

≈ 0.545 (2.40)

• Anisotropy in XY directions with 45◦ azimuth rotation: aX = 4, aY = aZ = 1 and

α = 45◦. Applying eqn. (2.36):

dAB =

√(
cos(15◦)

4

)2

+

(
sin(15◦)

1

)2

+

(
0

1

)2

(2.41)

≈ 0.354 (2.42)

The last distance is smaller than the previous cases, which indicates that points A and

B are closer using this anisotropic distance.

Figure 2.6: Two scenarios of anisotropic distance calculation, using azimuth equal to
0◦ (left) and azimuth equal to 45◦ (right).

Theoretical Background and State-of-the-Art 30

2.3.1.2 LVA field

Expanding the previous definition, we can have local definitions of anisotropic distance

on each location of the domain. This expansion will require the definition of a field of

anisotropic parameters, also denoted as the LVA field. According to Boisvert [2010],

the LVA field should contain 5 variables for each point in the domain: azimuth (or

strike), dip, plunge, ratio 1 and ratio 2. The rotation angles are the same as in the

previous definition of anisotropic distance. Ratio 1 or r1 is the proportion between the

rotated axis X and Y, and ratio 2 or r2 is the proportion between the rotated axis

Z and Y. For historical reasons, the axis X and Y are denoted the minor and major

directions respectively, and Z is denoted the vertical direction. With these parameters,

the anisotropic distance can be computed as

d(h) =
√

hTRTRh (2.43)

where R is the rotation matrix obtained with the LVA parameters of one of the extremes
of the vector

R(α, β, ϕ, r1, r2) =
cos(α) cos(ϕ)− sin(α) sin(β) sin(ϕ) − sin(α) cos(ϕ)− cos(α) sin(β) sin(ϕ) cos(β) sin(ϕ)

1
r1

sin(α) cos(β) 1
r1

cos(α) cos(β) 1
r1

sin(β)

1
r2

(− cos(α) sin(ϕ)− sin(α) sin(β) cos(ϕ)) 1
r2

(sin(α) sin(ϕ)− cos(α) sin(β) cos(ϕ)) 1
r2

cos(β) cos(ϕ)


(2.44)

Figure 2.7 shows a common visualization of the LVA field, which uses the major direction

as ”arrow” on each location, in order to represent the prescense of local anisotropy.

With all anisotropic distances computed between each contiguous locations, different

paths between non contiguous locations can be evaluated by adding each contiguous

contribution to the anisotropic distance along the path. In order to select the optimal

or ”shortest” path between two locations in the domain, a connectivity graph should be

created, using the contiguous anisotropic distances as edge weights on the graph.

2.3.1.3 Connectivity graph

The distance transformation proposed in Boisvert [2010] is based on the ISOMAP man-

ifold learning method from Tenenbaum et al. [2000] and its sparse version L-ISOMAP

from de Silva and Tenenbaum [2004]. Both methods were designed originally for dimen-

sionality reduction. Typically they ”learn” how to transform data in a high dimensional

space Rd with d ≥ 3 into a lower dimensional space typically Rd with d = 2. Figure

2.8 shows a classical example, known as ”swiss roll”, in which original three-dimensional

Theoretical Background and State-of-the-Art 31

Figure 2.7: Synthetic visualization of a LVA field, represented by its major direction
on each location.

data that lies into a two-dimensional manifold or surface (A) is transformed in to two-

dimensional data (C) preserving the geodesic distances between points. The interme-

diate step needed for this transformation is the contruction of the connectivity graph

identifying the shortest path on it (B) that allows to capture distance relations between

well separated points.

Figure 2.8: Dimensionality reduction using ISOMAP, extracted from Tenenbaum
et al. [2000]. (A) Original data belongs to a non-linear manifold (surface) on R3 and is
connected through geodesic distances. (B) Graph representation of the manifold. (B)

Two dimensional embedding recovered using the method.

The three basic steps in these methods are the connectivity graph building, non-euclidean

distance matrix assembly through shortest path calculations, and multidimensional scal-

ing through singular value decomposition (SVD). The main differences between ISOMAP

and L-ISOMAP, are related with the use of landmark points. Since both methods should

assemble a distance matrix, if a large number of points are being processed, the matrix

can be difficult or even computationally unfeasible to calculate. For instance, if we

have N = 106 original points, the upper triangular part of distance matrix will have

N × (N − 1)× 0.5 entries, approximately 5× 1011 entries (3.6TBytes assuming double-

precision types). For this reason a small subset of points, denoted landmarks, are used

as proxies to infer the distance between any pair of points. In the same example, if

Theoretical Background and State-of-the-Art 32

n = 1000 landmarks are used, the distance matrix will have n × (N − 1) × 0.5 entries

(3.7GBytes assuming double-precision types). An additional step is needed if landmark

points are used, in order to infer the distance between non-landmark points, a process of

triangulation is performed through extra algebraic operations over the resulting matrix.

As mentioned before, the initial structure that must be computed for L-ISOMAP method

is the connectivity graph over the domain Ω. Relevant parameters of this step are the

LVA field, denoted F , and the graph connectivity policy π. As commented in previous

Section 2.3.1.2, LVA field is processed to calculate local anisotropic distances between

contiguous points. If non-contiguous or mixed points should be considered for the local

anisotropic distances, those connectivity policies are defined in the policy π.

The pamaterer π is used to define the neighbourhood N for each domain point which

will be considered in the connectivity graph, i.e. for each neighbour an edge will be

added to the graph. In practical terms, the policy π consists of a value ∆ which sets

the number of separation edges (”hops”) in the regular grid. For instance, ∆ = 1

will set a neighbourhood N of at most 6 points located at 1 hop of separation. The

LVA field F defines a rotation matrix R := R(α, β, ϕ, r1, r2) (eqn. (2.44)) which was

previously computed for each domain point in order to calculate the local anisotropic

distance in each cell of the gridded domain. With the neighbourhood and rotation matrix

computed, for each neighbour, an edge is added to the graph. Each edge has weight

equal to d =
√

hTRTRh with h lag vector between the edge endpoints. The resulting

graph, denoted G, will contain all relevant connections between points, according to the

connectivity policy and local anisotropic distances computed previously. Several paths

can be traversed in order to connect two non-contiguous points (Figure 2.9)

Figure 2.9: Synthetic visualization of different paths (green, blue and purple) con-
necting points A and B through the connectivity graph built using the LVA field and a

connectivity policy.

Theoretical Background and State-of-the-Art 33

2.3.1.4 Non-euclidean distance matrix

Once the connectivity graph is already assembled, non-euclidean distances should be

calculated. Since L-ISOMAP method is being used, we can calculate distances between

landmarks and non-landmark points. Each distance is the result of a shortest path

computation on top of the connectivity graph, using one landmark point as origin and

every non-landmark point as destination. To perform this tasks, well-known Dijkstra

algorithm [Dijkstra, 1959] can be used, in its single-source shortest-path (SSSP) version.

This algorithm will return all shortest paths between the origin (a landmark point) and

every possible destination in the domain. In this way, the number of execution of SSSP

Dijkstra algorithm is equal to the number of landmark points used in the method. With

every distance already computed, the distance matrix D ∈ Rn×N can be assembled (only

its upper triangular part, since it is symmetric), where n is the number of landmarks

and N the total number of domain points.

2.3.1.5 Multidimensional Scaling

Based on the distance matrix D, the third step of the L-ISOMAP method is the com-

putation of the transformed points, also known as embedding Z. The method used by

Tenenbaum et al. [2000] and de Silva and Tenenbaum [2004] is Multidimensional Scaling,

described in detail in Mardia et al. [1979], which uses a singular value decomposition to

extract p eigenvalues and eigenvector from a special form of the distance matrix, defined

as inner-product matrix, and assembles Z based on those k objects. The definition for

squared distance matrices is as follows: for any distance matrix D ∈ Rn×n, let

A = (ars), ars = −1

2
d2
rs (2.45)

The inner-product matrix B is defined as

B = HAH (2.46)

where H = I− 1
n11′ is called the n× n centering matrix, and 1 is the vector of ones of

size n. The main result of the MDS method can be stated as a theorem:

Theorem 1 (MDS). Let D ∈ Rn×n be a distance matrix and define B by (2.46). Then D

is Euclidean if and only if B is positive semidefinite (p.s.d.). In particular, the following

results hold:

(a) If D is the matrix of Euclidean distances for a configuration of points U =

(u1, . . . ,un)T , then

brs = (ur − u)T (us − u) , r, s = 1, . . . , n (2.47)

Theoretical Background and State-of-the-Art 34

In matrix form (2.47) becomes B = (HU)(HU)T , so B ≥ 0. Note that B can be

interpreted as the ”centered inner product matrix” for the configuration U.

(b) Conversely, if B is p.s.d. with rank p then a configuration can be constructed as

follows. Let λ1 > · · · > λp denote the positive eigenvalues of B with corresponding

eigenvectors X = (x(1), . . . ,x(p)) normalized by

xT(i)x(i) = λi, i = 1, . . . , p. (2.48)

Then the points P, in Rp with coordinates xr = (xr1, . . . , xrp)
T (so xr is the r-

th row of X) have inter-point distances given by D. Further, this configuration

has centre of gravity x = 0, and B represents the inner product matrix for this

configuration.�

Point (b) of the theorem gives the explicit form of the data points in the new space, in

this case using the top p eigenvalues and corresponding eigenvectors. The transformation

can be represented as

[u1, . . . ,un] ∈ R3
D ∈ Rn×n

Z =


1√
λ1

xT(1)
...

1√
λp

xT(p)

 ∈ Rp, p ≤ n D′ ∈ Rn×n

where D ≈ D′, which means that the distances between points are similar either using

the original data ui with non-euclidean distances in R3, or using the transformed data

xi with euclidean distances in Rp.

This similarity allows to switch from the original data space to the new transformed

space in order to recover the euclidean distance for covariance function calculations or

nearby neighbour search. All classical geostatistical kernels and applications can be used

without violating the positive definiteness of the covariance functions.

An additional step discussed on de Silva and Tenenbaum [2004], is called distance trian-

gulation. In practice, n landmark points are used to calculate a squared distance matrix

D ∈ Rn×n (distances between landmarks). The output of MDS applied to this smaller

matrix is a p-dimensional (p ≤ n) embedding Z calculated only for the n landmark

points. The new coordinates x for a non-landmark point u are obtained by an affine

linear transformation of the vector au of its squared distances to the landmark points

Theoretical Background and State-of-the-Art 35

l1, . . . , ln:

au =


(u− l1)T (u− l1)

. . .

(u− l1)T (u− ln)

 (2.49)

The mean vector a is defined as

a =
1

n
(al1 + · · ·+ aln) (2.50)

and the matrix L∗p (pseudo inverse transpose of the p-dimensional embedding vectors):

L∗p =


√
λ1x

T
(1)

...√
λpx

T
(p)

 (2.51)

Finally, the affine transformation for u ∈ R3 is as follows:

x = −1

2
L∗p(au − a) (2.52)

which is a matrix-vector algebraic operation that can be applied to every non-landmark

point efficiently.

2.3.2 Sequential implementations

Regarding sequential (single-thread) implementations of LVA-based algorithms, the

baseline work was proposed by Boisvert and Deutsch [2011], in which three well known

applications were adapted to use LVA: variogram computation, kriging estimation and

sequential gaussian simulation. The original source code of the LVA-based applications

is based on Fortran and C++, and can be downloaded from the main authors website1.

Gutierrez and Ortiz [2019] contributed posteriorly with the implementation of sequential

indicator simulation, however, its usability was limited to small scenarios due to several

performance issues. All of these codes are based on the well known GSLIB code base

from Deutsch and Journel [1998]. As mentioned in Section 2.3.1.3, the existing LVA im-

plementations are based on the L-ISOMAP manifold learning method from Tenenbaum

et al. [2000].

In the rest of this section, specific details are presented about the implementations

of Boisvert and Deutsch [2011] and Gutierrez and Ortiz [2019], connecting theoretical

aspects from previous sections.

1http://www.ualberta.ca/~jbb/LVA_code.html

http://www.ualberta.ca/~jbb/LVA_code.html

Theoretical Background and State-of-the-Art 36

2.3.2.1 LVA-based Sequential Simulation

Algorithms 4 and 5 show the unified steps needed to generate sequential gaussian and

indicator simulations, using the LVA-approach. Both applications, denoted sgs-lva

and sisim-lva, are equivalent to the classical algorithms sgsim and sisim (Algorithms

2 and 3), the only major differences between them are the first 4 lines, where three

new pseudo-routines are called: build connectivity graph, build distance matrix

and build embedding. Each of them will be described in the next sections. Addi-

tional minor changes between the classical and LVA-based implementations are related

with extra parameters used in search neighbours and kriging routines. Since the

new coordinates calculated in the embedding Z should be used to compute euclidean

distances in Rp, it should be passed as parameter to the corresponding routines. Two

parameters can control the maximum number of dimensions used on neighbour search

distances and covariance distances, ksearch ≤ p and kcova ≤ p respectively. For in-

stance, if the landmark points ΩL is a sub-grid of dimensions 10× 10× 10, we will have

p ≤ 1000. Additionally, the user can select additional uppper bounds to this value, such

that kcova = 3 and kcova = 500, which means that the routine search neighbours will

use the first 3 dimensions of the embedding vectors in Z, and the routine kriging or

indicator kriging will use the first 500 dimensions of Z.

Theoretical Background and State-of-the-Art 37

Input:
(V,Ω): sample database values V defined in a 3D domain Ω;
ΩL: landmark 3D domain (subset of Ω) [Only LVA];
F: LVA field defined in Ω [Only LVA];
π: connectivity graph policy [Only LVA];
ksearch: maximum search distance dimensions [Only LVA];
kcova: maximum covariance distance dimension [Only LVA];
nmax: maximum neighbours for interpolation;
κ: local interpolation parameters;
τ : seed for pseudo-random number generator;
S: number of generated simulations;
output.txt: output file name

1 // Only LVA: First calculate the embedding using L-ISOMAP
2 G← build connectivity graph(Ω,F, π)
3 D← build distance matrix(G,Ω,ΩL)
4 Z ← build embedding(D)
5 //non-LVA and LVA: Then proceed with the simulation routines using the embedding to calculate

distances
6 Y ← normal score(V)
7 for isim ∈ {1, . . . , S} do
8 P ← create random path(Ω, τ) //Array with index random re-ordering
9 Ytmp ← zeros(Y)

10 Ytmp ← assign(Y) //Sample data assignment
11 for ixyz ∈ {1, . . . , |Ω|} do
12 index← Pixyz

13 LocalNeighbours← search neighbours(index, κ,Z, ksearch)
14 p← kriging(index,LocalNeighbours, γ, κ,Z, kcova, nmax)
15 Ytmp(index, isim)← simulate(index, p, τ)

16 end
17 Vtmp ← back transform(Ytmp)
18 write(output.txt,Vtmp)

19 end

Output: S stochastic simulations stored in file output.txt

Algorithm 4: Sequential Gaussian Simulation for LVA scenarios

Theoretical Background and State-of-the-Art 38

Input:
(V,Ω): sample database values V defined in a 3D domain Ω;
ΩL: landmark 3D domain (subset of Ω) [Only LVA];
F: LVA field defined in Ω [Only LVA];
π: connectivity graph policy [Only LVA];
ksearch: maximum search distance dimensions [Only LVA];
kcova: maximum covariance distance dimension [Only LVA];
nmax: maximum neighbours for interpolation;
C: number of categories to be reproduced;
γ1, . . . , γC : structural variographic models;
κ: local interpolation parameters;
τ : seed for pseudo-random number generator;
S: number of generated simulations;
output.txt: output file name

1 // Only LVA: First calculate the embedding using L-ISOMAP
2 G← build connectivity graph(Ω,F, π)
3 D← build distance matrix(G,Ω,ΩL)
4 Z ← build embedding(D)
5 //non-LVA and LVA: Then proceed with the simulation routines using the embedding to calculate

distances
6 for isim ∈ {1, . . . , S} do
7 P ← create random path(Ω, τ) //Array with index random re-ordering
8 Vtmp ← zeros(V)
9 Vtmp ← assign(V) //Sample data assignment

10 for ixyz ∈ {1, . . . , |Ω|} do
11 index← Pixyz

12 LocalNeighbours← search neighbours(index, κ,Z, ksearch)
13 for icut ∈ {1, . . . , C} do
14 picut ← indicator kriging(index,LocalNeighbours, γicut, κ,Z, kcova, nmax)
15 end
16 Vtmp(index, isim)← simulate(index, p1, . . . , pC , τ)

17 end
18 write(output.txt,Vtmp)

19 end

Output: S stochastic simulations stored in file output.txt

Algorithm 5: Sequential Indicator Simulation for LVA scenarios

Theoretical Background and State-of-the-Art 39

2.3.2.2 Connectivity graph

The implementation proposed by Boisvert and Deutsch [2011] to build the connectivity

graph can be viewed in Algorithm 6. It gets three input parameters: a 3D domain Ω

(gridded), the LVA field represented by the 5 anisotropy parameters for each domain

location (see Section 2.3.1.2) and the graph connectivity policy (see Section 2.3.1.3).

The algorithm loops through all domain locations (line 2), and for each location com-

putes the contiguous neighbours according to the connectivity policy π (line 3). This

operation doesn’t require complex computations since the domain is gridded, using the

one-dimensional natural indexation and coordinate indexes back and forth as required:

loc = (iz − 1) · nx · ny + (iy − 1) · nx+ ix (2.53)

iz = 1 + int

(
loc− 1

nx · ny

)
(2.54)

iy = 1 + int

(
loc− (iz − 1) · nx · ny

nx

)
(2.55)

ix = loc− (iz − 1) · nx · ny − (iy − 1) ∗ nx (2.56)

with nx, ny, nz the grid size on each respective dimension. For instance, using a

connectivity policy of 1, the corresponding contiguous neighbours of (ix, iy, iz) are

(ix ± 1, iy, iz), (ix, iy ± 1, iz) and (ix, iy, iz ± 1). After obtaining the neighbours, the

rotation matrix R should be computed for the location being processed (line 4). After

that, a loop through all contiguous neighbours can be traversed in order to calculate

the separation vector h between the neighbour and the center location (line 6), and

posteriorly apply the anisotropic distance calculation using R and h (line 7). The edge

between the neighbour and center location, denoted e (line 8), and the anisotropic dis-

tance d are stored in the graph array G (line 9). The final step consists in removing

redundant edges from the graph (line 11).

2.3.2.3 Non-euclidean distance matrix

The implementation proposed by Boisvert and Deutsch [2011] to build the non-euclidean

distance matrix can be viewed in Algorithm 7. The baseline implementation reads

two files from disk: nodes2cal.out (landmark points list) and grid.out (connectivity

graph) (lines 3 and 4). With both files loaded into memory, for each landmark point

a shortest path calculation must be performed through the connectivity graph G (line

6). This step is computed using Dijkstra’s shortest path algorithm [Dijkstra, 1959],

implemented in the C++ Boost Library [Boost.org, 2012]. All distances from a landmark

to all graph nodes are appended to the file dist cpp.out (line 7). As mentioned before,

the baseline implementation performs a system call to launch the execution of a compiled

Theoretical Background and State-of-the-Art 40

Input:
Ω: 3D domain Ω;
F: LVA field in each domain point of Ω;
π: graph connectivity policy;

1 G← ∅ //Empty graph
2 for ixyz ∈ {1, . . . , |Ω|} do
3 N ← Compute all neighbours of point ixyz according to policy π
4 R← Compute rotation matrix of point ixyz according to LVA field F
5 for neig ∈ N do
6 h← Lag vector between points ixyz and neig

7 d← Compute anisotropic distance between point ixyz and neig according to√
hTRTRh

8 e← {ixyz, neig} //Definition of graph edge with weight d
9 Add (e, d) to graph G

10 end
11 Remove redundant edges from G

12 end
13 Write G to file grid.out

Output: G in file grid.out

Algorithm 6: Routine build connectivity graph

C++ code with the Boost Library call to Dijkstra routine, and the data transfer between

Fortran and C++ is performed through expensive disk I/O communication.

Input:
grid.out: file with graph G based on domain points Ω;
nodes2cal.out: file with landmark points indices of ΩL

1 (N,n)← Read size of domain points N and landmark points n from nodes2cal.out

2 D← zeros(N,n)

3 NLandmark ← Read landmark point indexes from nodes2cal.out

4 G← Read connectivity graph from grid.out

5 for i ∈ NLandmark do
6 D:,i ← run dijsktra(i,G)
7 Write distances D:,i into file dist cpp.out

8 end

Output: File dist cpp.out

Algorithm 7: Routine build distance matrix

2.3.2.4 Multidimensional Scaling

The implementation proposed by Boisvert and Deutsch [2011] to build the multidimen-

sional scaling procedure can be viewed in Algorithm 8. The input of the algorithm is

file dist cpp.out, computed in Algorithm 7, that contains the shortest path distances

between landmark and domain points.

First, the file dist cpp.out is loaded into matrix D (line 2) and transformed into B

(line 3). After this step, matrix BTB is factorized using a Singular Value Decomposition

method, and the p ≤ n positive largest eigenvalues are selected, being n the number of

landmark points. Finally, the embedding Z is defined as the rows of the matrix Y with

Theoretical Background and State-of-the-Art 41

columns
√
λi
−1

Bvi for i ∈ {1, . . . , p} (lines 9 and 10), being vi the corresponding eigen-

vector of λi. Some of the algebraic operations of type matrix-matrix and matrix-vector

multiplication, together with the SVD method, are calculated using BLAS [Blackford

et al., 2002] and LAPACK [Anderson et al., 1999] routines, whose original source code

is included in a subfolder of the baseline implementation.

Input:
dist cpp.out: file with distance matrix values D;

1 (N,n)← Read size N of domain points Ω and size n of landmark points ΩL from dist cpp.out

2 D← Read distance matrix from dist cpp.out with size N × n
3 A← aij = − 1

2
d2
ij , ∀i ∈ {1, . . . , N}, ∀j ∈ {1, . . . , n}

4 Hn ← In − 1
n
Jn, with In identity matrix of size n and Jn matrix of all 1’s of size n

5 HN ← IN − 1
N

JN
6 B← HNAHn

7 (Λ,V)← eigen(BTB) // calculate eigevalues and eigenvectors
8 (Λ,V)← Select p ≤ n positive largest eigenvalues λ1 ≥ · · · ≥ λp > 0 of Λ with corresponding

eigenvectors V which satisfy

(
Bvi√
λi

)T (
Bvi√
λi

)
= 1 for all i ∈ {1, . . . , p}

9 Y ←
[

1√
λ1

Bv1 . . . 1√
λp

Bvp
]
∈ RN×p

10 Z ← {z1, . . . , zN} ⊂ Rp where zi is the i-th row of Y for all i ∈ {1, . . . , N}. The following
property holds: ‖zi − zj‖2 = dij , ∀i ∈ {1, . . . , N}, ∀j ∈ {1, . . . , n} (after row and column
reordering if necessary)

Output: Embedding Z ⊂ Rp, with p ≤ n

Algorithm 8: Routine build embedding

2.3.3 Parallel implementations

To the knowledge of the author, no public available parallel implementation of the

LVA-based geostatistical applications have been published or released. Initial attempts

were reported by Peredo et al. [2015b], were the Dijkstra sequential implementation was

replaced by its distributed/parallel version, without relevant performance improvements.

In the next chapters, parallel algorithms are presented, in order to accelerate key routines

and computations.

Chapter 3

Methodology

The main contribution of this thesis is to optimize and accelerate some of the classical

and LVA-based algorithms in geostatistics, particularly sequential simulation methods.

Baseline codes that will be accelerated are sgsim and sisim from classical methods (Al-

gorithms 2 and 3), and sgs-lva and sisim-lva from LVA-based methods (Algorithms

4 and 5). These codes are directly included or modified from the Geostatistical Software

Library (GSLIB) Deutsch and Journel [1998], which will be described in this chapter.

The methodology used to identify optimization points and parallel strategies in the base-

line codes is to calculate a profile of the execution for each code. Based on this profile,

improvements can be prioritized. The case studies are related with synthetic and real

three dimensional scenarios, where continuous and categorical variables should be simu-

lated by the corresponding methods, generating realizations or ”images”. Description of

parameters used by the simulation methods are included in this chapter. Later, specific

parameter values used on each scenario are described in each corresponding chapter.

Finally, performance metrics used in this thesis are also presented in this chapter.

3.1 GSLIB

GSLIB1 is composed by a set of utility routines written in Fortran 77/90, compiled

and wrapped as a static library named gslib.a, and a set of applications written in

Fortran 77/90 that call some of the wrapped routines. We will refer to these two sets

as applications and utilities. In Figure 3.1 we can observe a diagram of GSLIB differ-

ent applications and utilities, grouped according to their categories. Four main groups

of applications can be observed: variogram, kriging, simulation and others. The first

three groups are related with each specific algorithm or method: variogram calculation

1Direct link for source code download: http://www.statios.com/software/gslib90_ls.tar.gz

43

http://www.statios.com/software/gslib90_ls.tar.gz

Methodology 44

(Section 2.2.1.4), kriging estimation (Section 2.2.1.5) and stochastic simulation (Sec-

tions 2.2.1.6 and 2.2.1.7). The fourth group contains applications for plotting, data

manipulation and post-processing treatment of other applications.

Figure 3.1: GSLIB applications and utilies.

Typically, an application is composed by a main program and two subroutines (Figure

3.2). The first subroutine is in charge of reading the parameters from the input files,

and the second subroutine executes the main computation and writes out the results

using predefined output formats. Additionally, two structures of static and dynamic

variables are used by the main program and each subroutine: an include file and a

geostat module. The include file contains static variable declarations, such as constant

parameters, fixed length arrays and common blocks of variables. The geostat module

contains dynamic array declarations, which will be allocated in some of the subroutines

with the allocate instruction. A utility is self-contained allowing sharing variables with

other utilities and applications through common block variable declarations.

The above-mentioned structure is common to many applications and has advantages

and disadvantages. The user/programmer can easily identify each part of the code and

where the main computations are occurring. However, the use of implicit typing and

module/include variable declarations in the applications and utilities makes it difficult

to set up a data-flow analysis Aho et al. [2006] of all the variables in any state of the

execution. With this kind of analysis, the user/programmer can estimate the state of

the variables in different parts of the code, being able to know if a variable is alive or

Methodology 45

dead at some point of execution. From a final user perspective, this information can be

seen as irrelevant. However, from a programmer’s perspective, who intends to re-design

some parts of the code or accelerate the overall execution, the data-flow analysis is an

important step.

GSLIB application

1 module geostat

2 integer,allocatable :: ...

3 ...

4 end module

5

6 program main

7 use geostat

8 include ’application.inc’

9 call readparm(...)

10 call application(...)

11 end

Figure 3.2: Original main program for GSLIB applications.

Methodology 46

Parameters for SISIM_LVA

START OF PARAMETERS:

0 -1=continuous(cdf), 0=categorical(pdf)

3 -number thresholds/categories

1 2 3 -codes

0.147 0.688 0.165 -proportions 0.149 0.688 0.163

muestras5.dat -file with data

1 2 3 7 -columns for X,Y,Z, and variable

nodata.ik -file with soft indicator input

1 2 0 3 4 5 6 7 -columns for X,Y,Z, and indicators

0 -Markov-Bayes simulation (0=no,1=yes)

0.61 0.54 0.56 0.53 0.29 -calibration B(z) values

-1.0e21 1.0e21 -trimming limits

0.0 8.0 -minimum and maximum data value

1 0.0 -lower tail option and parameter

1 0.0 -middle option and parameter

1 0.0 -upper tail option and parameter

nodata.dat -file with tabulated values

3 0 -columns for variable, weight

0 -debugging level: 0,1,2,3

sisim.dbg -file for debugging output

sisim_lva.out -file for simulation output

1 -number of realizations

400 0.5 1.0 -nx,xmn,xsiz

600 0.5 1.0 -ny,ymn,ysiz

12 6.0 12.0 -nz,zmn,zsiz

27364556 -random number seed

48 -maximum original data for each kriging

48 -maximum previous nodes for each kriging

48 -maximum soft indicator nodes for kriging

1 -assign data to nodes? (0=no,1=yes)

1 3 -multiple grid search? (0=no,1=yes),num

0 -maximum per octant (0=not used)

400.0 400.0 400.0 -maximum search radii

0.0 0.0 0.0 -angles for search ellipsoid

300 150 60 -size of covariance lookup table

0 2.5 -0=full IK, 1=median approx. (cutoff)

0 -0=SK, 1=OK

1 0.05 -One nst, nugget effect

1 0.95 0.0 0.0 0.0 -it,cc,ang1,ang2,ang3

150.0 150.0 150.0 -a_hmax, a_hmin, a_vert

1 0.05 -Two nst, nugget effect

1 0.95 0.0 0.0 0.0 -it,cc,ang1,ang2,ang3

150.0 150.0 150.0 -a_hmax, a_hmin, a_vert

1 0.05 -Three nst, nugget effect

1 0.95 0.0 0.0 0.0 -it,cc,ang1,ang2,ang3

150.0 150.0 150.0 -a_hmax, a_hmin, a_vert

lva.dat -file containing the LVA grid

4 5 6 7 8 -LVA grid columns

400 0.5 1.0 -nx,xmn,xsiz

600 0.5 1.0 -ny,ymn,ysiz

12 6.0 12.0 -nz,zmn,zsiz

1 -noffsets for graph

2 - MDS? 2=L-ISOMAP 3=read dist

10 15 6 -number of landmark points in x,y,z

300 -max n of dim (set -1 to use max)

400.0 -maximum search radii

30 -max n of dimensions to use in search

Figure 3.3: Sample parameter file for sisim lva application.

3.2 Application parameters

Each GSLIB application should read a parameter file with specific parameters. In this

section we will describe relevant parameters for sgsim, sisim, sgs-lva and sisim-lva.

A sample parameter file can be viewed in Figure 3.3. For a complete description of

each parameter, see Deutsch and Journel [1998] section V.7.2. In some cases, expert

knowledge is needed to select proper values for them.

3.2.1 Common parameters

All applications share common parameters. They are described next:

Methodology 47

• File with conditioning sampled data:

Name of the file that contains conditioning data, characterized by each coodinate

(x, y, z) and each variable associated to it (1 or more variables can be included).

• Simulation domain size (gridded):

Three numbers by dimension should be declared: (ni, isiz, imn) with ni the num-

ber of points in dimension i, isiz the separation between points in the dimension,

and imn the minimum value in the dimension. Values of i are x, y and z.

• Number of simulations:

Number of simulated images to generate by the method.

• Pseudo random number seed:

Number used to initialize pseudo-random number generators for each method.

• Kriging type:

Type of kriging method to use: SK (eqn. (2.15)) or OK (eqn. (2.17)) mainly.

Other methods are out of the scope of this thesis.

• Number of neighbours for kriging:

Number of neighbours to search and be used by the kriging method selected.

• Maximum search radius and ellipsoid parameters:

Maximum radius on each axis to be used for neighbour search. Axis angle and

range for each axis can be defined in case of ellipsoidal search region to be used.

• Number of nested variographic structures and their parameters:

Number of covariance/semivariogram functions to be computed on each covariance

matrix entry for kriging estimation (eqns. (2.16) or (2.18)), according to eqn.

(2.14).

3.2.2 sgsim

Specific parameters for sgsim are described here:

• Z-score transformation flag:

Binary value that indicates if the normal score transformation should be applied

to the conditioning sampled data. If this value is false, it is assumed that the data

follows a standard normal distribution N(0, 1).

• File with transformation table:

Name of the file that contains the normal score transformation parameters as result

of a Z-score transformation applied on the conditioning data. It can be generated

Methodology 48

by the same method or in a previous transformation by other GSLIB application

(nscore).

• Multi-grid search flag:

Binary value that indicates if the multi-grid neighbour search method should be

applied. This method will be explained in detail in Chapter 5.

• Covariance lookup table size:

Three numbers that indicate the dimensions of a lookup table used to speedup the

covariance function calculation.

3.2.3 sisim

Specific parameters for sisim are described here:

• Continuous/categorical variable flag:

Binary value that indicates if the variable to be simulated is continuous or cate-

gorical.

• Number of thresholds/categories:

Number of mutually exclusive classes or categories to be simulated.

• Thresholds/labels for each class/category:

For each class or category, a number should be indicated. In case of a continuous

variable, thresholds between classes should be declared. In case of a categorical

variable, labels of each category should be declared.

• Simulation proportions:

Global cumulative distribution function (continuous case) or probability distri-

bution function (categorical case). One value for each class/category should be

declared.

• Markov-Bayes simulation flag and its parameters:

Binary value that indicates if Markov-Bayes [Deutsch and Journel, 1998] should

be used for simulation. This method is left out of the scope of this thesis.

• Multi-grid search flag:

Same as sgsim.

• Covariance lookup table size:

Same as sgsim.

Methodology 49

3.2.4 sgs-lva and sisim-lva

Specific parameters for sgs-lva and sisim-lva are described here:

• File with LVA field data:

Name of the file that contains LVA field data, characterized by each coodinate

(x, y, z) and each variable associated to it (Section 2.3.1.2).

• LVA field domain size:

Same as the simulation domain size (gridded). It should match with it since each

domain point should have anisotropic parameters.

• Number of offsets for connectivity graph:

Connectivity policy used to build the connectivity graph (π from Section 2.3.1.3).

• Multidimensional scaling flag:

Binary flag that indicates if the multidimensional scaling method should read the

distance matrix (Section 2.3.1.5) from an existing file or not.

• Number of landmark points by axis:

One number by dimension should be declared. Each number defined the sub-

grid to be used as landmark points. For instance, if a simulation domain grid of

nx×ny×nz is defined, a landmark grid of nxL×nyL×nzL will use domain points

defined as (
i ·
⌊
nx
nxL

⌋
, j ·

⌊
ny
nyL

⌋
, k ·

⌊
nz
nzL

⌋)
,

i ∈ {1, . . . , nxL}, j ∈ {1, . . . , nyL}, k ∈ {1, . . . , nzL} (3.1)

• Maximum number of dimensions for neighbour search:

Parameter nsearch as defined in Section 2.3.2.1.

• Maximum number of dimensions for covariance calculation:

Parameter ncova as defined in Section 2.3.2.1.

Methodology 50

3.3 Development techniques

In this section we will present some of the techniques used in the development of the

accelerated codes. A first key information is the operating system used for develop-

ment and testing all scenarios, which was Ubuntu Linux 18.04.6 LTS, using GCC and

Intel compilers gfortran 4.8.5, g++ 6.2.0 and ifort 13.1.1, depending on the code lan-

guage: Fortran or C++. In order to identify optimization points in the code and apply

parallelization code modifications, four steps are needed, which are described below.

3.3.1 Refactoring

First we have to re-design the application/utility code to identify the state of each

variable, array or common block during the execution. This step is necessary to enable

the user/programmer to identify the scope of each variable (data-flow analysis), in order

to insert OpenMP directives into the code in a smooth and easy way.

Code refactoring was previously applied to sgsim and sisim based on a previous work

published by Peredo et al. [2015a]. In case of sgs-lva and sisim-lva, an additional step

should be applied, since disk I/O communication and C++ code execution is performed

in the LVA base routines. Refactoring tasks are applied to the corresponding code

in order to optimize the execution. The proposed refactoring changes are in favor of a

unified in-memory execution (sequential and parallel) which improves performance, code

development, debugging and allows future modifications more easily. C++ code was

integrated as Fortran calls using C wrappers2 and the Fortran module iso c binding3

4.

3.3.2 Profiling

Initially, a high-level analysis consists in adding elapsed time measurement instructions

in specific parts of the code, such as initial and final lines of subroutines/functions/blocks

of code. With Fortran, the preferred intrinsic routine is system clock5 6, and with C++

the preferred function is time7 from the C Time library (time.h), both of them returning

the number of seconds from 00:00 Coordinated Universal Time (CUT) on January 1st

2Calling C++ from Fortran example: https://gist.github.com/Luthaf/4df78ca52b3caf7fbe0e
3Intel Fortran: https://www.intel.com/content/www/us/en/develop/documentation/

fortran-compiler-oneapi-dev-guide-and-reference/top/compiler-reference/

mixed-language-programming/standard-tools-for-interoperability/iso-c-binding.html
4GNU Fortran: https://gcc.gnu.org/onlinedocs/gfortran/ISO_005fC_005fBINDING.html#ISO_

005fC_005fBINDING
5Intel Fortran: https://www.intel.com/content/www/us/en/develop/documentation/

fortran-compiler-oneapi-dev-guide-and-reference/top/language-reference/

a-to-z-reference/s-1/system-clock.html
6GNU Fortran: https://gcc.gnu.org/onlinedocs/gfortran/SYSTEM_005fCLOCK.html
7https://www.cplusplus.com/reference/ctime/time/

https://gist.github.com/Luthaf/4df78ca52b3caf7fbe0e
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/compiler-reference/mixed-language-programming/standard-tools-for-interoperability/iso-c-binding.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/compiler-reference/mixed-language-programming/standard-tools-for-interoperability/iso-c-binding.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/compiler-reference/mixed-language-programming/standard-tools-for-interoperability/iso-c-binding.html
https://gcc.gnu.org/onlinedocs/gfortran/ISO_005fC_005fBINDING.html#ISO_005fC_005fBINDING
https://gcc.gnu.org/onlinedocs/gfortran/ISO_005fC_005fBINDING.html#ISO_005fC_005fBINDING
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/language-reference/a-to-z-reference/s-1/system-clock.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/language-reference/a-to-z-reference/s-1/system-clock.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/language-reference/a-to-z-reference/s-1/system-clock.html
https://gcc.gnu.org/onlinedocs/gfortran/SYSTEM_005fCLOCK.html
https://www.cplusplus.com/reference/ctime/time/

Methodology 51

1970. With this code instrumentation already in place, we can obtain a high-level view

of the most time consuming parts of the execution.

Secondly, a low-level analysis is conducted in order to study the run-time behavior of

the application using a system profiler tool. In our case we choose the Linux-based tools

gprof [Graham et al., 1982] and strace/ltrace [Johnson and Troan, 2004]. These tools

can deliver several statistics, among the most important are: elapsed time per routine,

elapsed time per line of code, number of system/library calls and number of calls per

routine. Figure 3.5 depicts the output of a gprof profiling of an application. With this

information, we can identify which lines of the application or used utilities are generating

overhead. We can modify some parts of the code using the profiled information. For

each modification, we must re-measure the elapsed time and statistics, in order to accept

or reject the modification.

Figure 3.4: Example of gprof output.

Methodology 52

Finally, a deeper level of analysis consists in the execution of performance analysis

tools, such as Extrae8 and Paraver9. As stated in the official website, Extrae is a

package devoted to generate trace-files for a post-mortem analysis based on different

events sampled from the application, operating system and hardware. Paraver allows

to have a qualitative global perception of the application behavior by visual inspection

and then to be able to focus on the detailed quantitative analysis of the problems.

Specifically, Extrae is a tool that uses different interposition mechanisms to inject probes

into the target application so as to gather information regarding the application per-

formance. The method used in this thesis is the linker preload, in which the current

operating systems allows injecting a shared library into an application before the ap-

plication gets actually loaded. If the library that is being preloaded provides the same

symbols as those contained in shared libraries of the application, such symbols can

be wrapped in order to inject code in these calls. In Linux systems this technique is

commonly known by using the LD PRELOAD environment variable. Extrae contains sub-

stitution symbols for many parallel runtimes, such as OpenMP (either Intel, GNU or

IBM runtimes), pthread, CUDA accelerated applications, and MPI applications. Re-

garding sampling mechanisms, Extrae can use signal timers and hardware performance

counters. These last counters are based on PAPI [Mucci et al., 1999] and PMAPI inter-

faces to collect information regarding the microprocessor performance. With the advent

of the components in the PAPI software, Extrae is not only able to collect information

regarding how is behaving the microprocessor only, but also allows studying multiple

components of the system (disk, network, operating system, among others) and also ex-

tend the study over the microprocessor (power consumption and thermal information).

Extrae mainly collects these counter metrics at the parallel programming calls and at

samples. It also allows capturing such information at the entry and exit points of the

user routines instrumented.

Paraver offers a minimal set of views on a trace. Performance information in Paraver

is presented with two main displays that provide qualitatively different types of infor-

mation. The timeline display represents the behavior of the application along time and

processes, in a way that easily conveys to the user a general understanding of the appli-

cation behavior and simple identification of phases and patterns. The statistics display

provides numerical analysis of the data that can be applied to any user selected region,

helping to draw conclusions on where and how to focus the optimization effort.

8https://tools.bsc.es/extrae
9https://tools.bsc.es/paraver

https://tools.bsc.es/extrae
https://tools.bsc.es/paraver

Methodology 53

Figure 3.5: Example of Paraver output.

3.3.3 OpenMP parallelization

Once an optimized sequential version of the application is released, we can add OpenMP

directives in the most time consuming parts of the code. Each directive defines a parallel

region, which will be executed by several threads, with a maximum defined by the

user. For each directive the user/programmer must study the data-flow of the variables

inside the parallel region, and specify if the variables will be shared or private. Specific

strategies that were applied to each application are described in detail in Chapters 4

and 5.

3.3.4 CUDA parallelization

In some special cases, a graphical processing unit (GPU) can be used to accelerate even

more some routines or functions. This functionality was implemented for the simulation

code sgs-lva and also for the variogram calculation code gamv. Experimental results

are described in Chapters 6 and 7, using a hybrid CPU-GPU execution with OpenMP

and CUDA parallelization.

3.4 Case studies

Two groups of case studies are included in this work: isotropic and anisotropic sim-

ulations. On both of them, continuous and categorical scenarios are presented, using

sequential gaussian and sequential indicator simulation to generate 3D images.

For these scenarios, four different conditioning sampled datasets were used:

1. Real continuous 3D mining diamond drillhole samples with information of 2376

points with copper grades described by Serrano et al. [1998] (Figure 3.6).

Methodology 54

2. Synthetic categorical 3D dataset of 3000 points with 10 categories generated by

truncation of a convoluted Gaussian kernel with a white noise random field ac-

cording to the procedure described by Peredo et al. [2016] (Figure 3.7).

3. Synthetic continuous 3D dataset of 17280 points with a cylindrical spatial distri-

bution (Figure 3.8). Additionally, a 3D swiss-roll-like LVA field can be attached.

4. Real categorical 3D mining lithology dataset with 4 categories, using the same

2376 points as in the previous dataset (Figure 3.9). Additionally, a 3D folded LVA

field can be attached.

Datasets 1 and 2 are reviewed in detail in Chapter 4, and datasets 3 and 4 are reviewed

in detail in Chapter 5.

Methodology 55

Figure 3.6: Conditioning sampled data from real continuous 3D mining diamond
drillholes with copper grades.

Methodology 56

Figure 3.7: Conditioning sampled data from synthetic categorical 3D dataset with 10
categories.

Methodology 57

Figure 3.8: Conditioning sampled data from synthetic continuous 3D dataset with
cylindrical spatial distribution.

Methodology 58

Figure 3.9: Conditioning sampled data from real categorical 3D mining diamond
drillholes with lithology types.

Methodology 59

3.5 Metrics

For each code optimization or parallelization applied, a set of metrics should be cal-

culated based on the execution of the modified code. Elapsed time (real-time clock),

speedup compared against baseline executions and accuracy of the results are measured

each time. The results are displayed in tables or figures, depending on the amount of

information that is being reported.

In some tests, serial and parallelizable parts of the code are measured (tser and tpar)

on the corresponding executions. With the percentage of serial time, an estimate of the

maximum theoretical speedup can be obtained using the following formula:

speedup(P) =
ttotal

tser +
tpar
P

=
1

f + 1−f
P

, with f =
tserial
ttotal

(serial fraction)

maxspeedup = lim
P→∞

1

f + 1−f
P

=
1

f

where P is the number of running processes or threads. The efficiency of a parallelization

using P running processes or threads is defined as

efficiency(P) =
speedup(P)

P
(3.2)

If the efficiency is small, the obtained speedup is not optimal, since the usage of the P

processes or threads is not achieving the peak performance (efficiency(P) ≈ 1).

Regarding accuracy of the results, two groups of metrics are used. The first group

measures differences in continuous values, such as those generated by sgsim. The most

important metrics in this group are the mean absolute error (MAE), mean absolute

percentage error (MAPE) and mean square error (MSE):

MAE(Z,Z∗) =
1

n

n∑
i=1

|zi − z∗i | (3.3)

MAPE(Z,Z∗) = 100× 1

n

n∑
i=1

∣∣∣∣zi − z∗iz∗i

∣∣∣∣ (3.4)

MSE(Z,Z∗) =
1

n

n∑
i=1

(zi − z∗i)2 (3.5)

The second group measure differences in categorical values, such as those generated by

sisim. In this group, binary classification metrics are used, such as the true positive

Methodology 60

rate (TPR) and false negative rate (FNR) for each category k:

TPR(Z,Z∗, k) =
|{i : zi = z∗i ∧ z∗i = k}|

|{i : z∗i = k}|
(3.6)

FNR(Z,Z∗, k) = 1− TPR(Z,Z∗, k) (3.7)

And their similar representations in multiclass scenarios, multiclass true positive rate

(MTPR) and multiclass false negative rate (MFNR):

MTPR(Z,Z∗) =

∑K
k=1 |{i : zi = z∗i ∧ z∗i = k}|∑K

k=1 |{i : z∗i = k}|
(3.8)

MFNR(Z,Z∗) = 1−MTPR(Z,Z∗) (3.9)

These last metrics measure the percentage of equal values (MTPR) and the percentage

if non equal values (MFNR) simulated across all points.

Chapter 4

Parallel Sequential Simulation

The first contribution of this thesis is described in the current chapter, which is related

with the parallel simulation of multiple locations without breaking the sequential or-

der imposed by the instrinsic nature of the sequential simulation algorithms. GSLIB

applications sgsim and sisim are modified accordingly, and two case studies are pre-

sented, using real and synthetic 3D datasets. Results of the parallelization proposed are

presented in the last section.

4.1 Context

In this section, a complementary view of the theoretical background of sequential simu-

lation is presented. The main concept of the sequential simulation family of algorithms,

such as 2, 3, 4 and 5, is based on the Bayes postulate applied to a joint probability dis-

tribution of several dependent variables [Devroye, 1986, Johnson, 1987]. The successive

application of Bayes postulate to the joint probability leads to a sequential backward

inference of marginals and posterior distributions, monotonically increasing the size of

the prior data set as different grid nodes are randomly visited and simulated. In order

to implement this approach, two key elements should be analyzed: the random path

used for simulation of grid nodes, and the neighbour search window used to infer the

conditional probability on each location.

4.1.1 Random path

Following ideas from [Journel and Alabert, 1989], let A1 and A2 be two random events

with joint probability P(A1, A2). Both events can be related with continuous or cate-

gorical random variables. For example, A1 can be the event Z(u) ≤ z related to the

random variable Z(u) ∈ R depending on the spatial location u ∈ R3 (e.g. copper grade

concentration at location u) and a threshold value z ∈ R. Similarly, A1 can be the event

61

Parallel Sequential Simulation 62

I(u) = 1 related to the indicator random variable I(u) ∈ {0, 1} (e.g. is the rock type

breccia at location u or not?). Applying Bayes postulate, the conditional probability of

event A2 knowing that event A1 has ocurred is given by:

P(A2|A1) =
P(A2, A1)

P(A1)
(4.1)

being P(A1) the marginal probability of A1 and P(A2, A1) being the joint probability of

events A2 and A1. More generally, any number of dependent events Aj , j = 1, . . . , N ,

can be sequentially simulated using the following expression:

P(AN , . . . , A1) = P(AN |AN−1, . . . , A1)

×P(AN−1|AN−2, . . . , A1)

. . .

×P(A3|A2, A1)

×P(A2|A1)

×P(A1) (4.2)

As commented before, each sequential simulation algorithm implements a method to

obtain a realization of the joint probability P(AN , . . . , A1) by applying Equation (4.2).

A first implementation element, the random path definition, as described in Section

2.2.1.6 and 2.2.1.7, is the explicit order in which the events Aj = {Z(uj) ≤ z} or

Aj = {I(uj) = 1}, with j = 1, . . . , N , are selected in the conditional probabilities of

Equation (4.2). For instance, if a gridded domain of 2 × 2 location points is defined,

4! = 24 possible visiting orders can be assigned to the random path selected. All 24

possible random paths can be viewed in Figure 4.1. By selecting one of these paths and

following the visiting order, Equation (4.2) can be realized.

Parallel Sequential Simulation 63

Figure 4.1: All possible random paths for a 4× 4 gridded domain (4! = 24).

4.1.2 Neighbour search window

The second element is the inference of the conditional probability P(Ak|Ak−1, . . . , A1),

for each k = 2, . . . , N . In order to infer the conditional cumulative density function

(ccdf), neighbouring data should be searched, which can be the initial conditioning

data or previously simulated data. The neighbour search process is defined by a search

window and a maximum number of neighbours to be considered. For this reason, at the

begining of the simulation process, only initial conditioning data is used to infer the ccdf

in the location being visited. As the simulation progresses, each new simulated location

is now considered as a potential conditioning data for the next locations to be simulated.

In this context, four possible data dependency scenarios can happen between two dif-

ferent nodes in the grid, as depicted in Figure 4.2 using a neighbour search window of

3×3. Scenario A happens when there are no common nodes between them, which means

that their simulation can be computed simultaneously if all previous nodes have been

simulated, according to the random path order. Scenario B happens when both nodes

share at least one neighbour, and that neighbour should be simulated before them. This

scenario is similar to scenario A, with the additional constraint that both nodes should

be simulated after the common neighbour node. Scenario C is similar to scenario B,

but in this case the common neighbour should be simulated after them. In this case,

the same constraint as scenario B will apply only if it is an initial conditioning data.

Finally, in scenario D each node is a neighbour of the other node, so the successor node,

which will be visited later in the random path, should wait until the previous node is

simulated.

Parallel Sequential Simulation 64

Figure 4.2: Four possible scenarios of data dependency in a 4×4 gridded domain with
a specific random path for node visiting. A: Non-conflicting nodes. B: Non-conflicting
nodes with a common predecessor. C: Non-conflicting nodes with a common successor.

D: Conflicting nodes.

With these scenarios in place, the proposed algorithm for parallelization of the sequential

simulation algorithm is described in the next section. The key idea is to run an initial

pass through the random path, identifying data dependencies between nodes, and assign

a ”level” to each of them. Afterwards, each node in the same level can be simulated in

parallel, because no data dependencies will arise between them.

4.2 Algorithm

The parallel version of the sequential simulation method is presented in Algorithm 9.

It is based on two stages. The first one related to node tagging in order to group all

nodes with non conflicting neighbourhoods. The second stage is the actual simulation,

similarly to the single-thread algorithm, with a different node loop formulation but the

same neighbourhood data and simulation method. The pseudo-routines, with their steps

detailed, are search neighbours push (Algorithm 10), build level (Algorithm 11),

order nodes by level (Algorithm 12) and search neighbours pop (Algorithm 13).

Regarding the first stage, in steps 7 and 8 of Algorithm 9 two arrays are defined,

Level and Neighbours, which will store the level tags and neighbours information

Parallel Sequential Simulation 65

Input:
(V,Ω): sample database values defined in a 3D domain;
κ: kriging parameters (radius, max number of neigbours and others);
τ : seed for pseudo-random number generator;
N : number of generated simulations;
output.txt: output file name;
T : number of threads

1 n← obtain max neighbour number(κ)
2 for isim ∈ {1, . . . , N} do
3 P ← create random path(Ω, τ)
4 Vtmp ← zeros(|Ω| × 1)
5 Vtmp ← assign(V) //Sample data assignment
6 //Stage 1
7 Level← zeros(|Ω| × 1)
8 Neighbours← zeros(|Ω| × n× 2) //store the neighbours local and global index
9 for ixyz ∈ {1, . . . , |Ω|} do

10 index← Pixyz

11 Neighbours(index)← search neighbours push(index, κ)
12 Level(index)← build level(index, κ,Neighbours)

13 end
14 IndexSort,LevelCount,LevelStart← order nodes by level(Level)
15 //Stage 2
16 for lev ∈ {1, . . . , max(Level)} do
17 lbegin← LevelStart(lev)
18 lend← LevelStart(lev) + LevelCount(lev)− 1
19 for ixyz ∈ {lbegin, . . . , lend} in parallel with T threads do
20 index← IndexSort(Pixyz)
21 LocalNeighbours← search neighbours pop(index, κ,Neighbours)
22 Vtmp(index)← simulate(index,LocalNeighbours)

23 end

24 end
25 write(output.txt,Vtmp)

26 end

Output: N stochastic simulations stored in file output.txt

Algorithm 9: Pseudo-code sequential simulation program (multi-thread algo-
rithm)

(local and global indices). A first pass through all nodes is performed between steps

9 and 13. The simulation random path is walked sequentially, scanning for neighbours

around the current node and storing basic information about them in the pseudo-routine

search neighbours push (Algorithm 10). This routine is the same as in the original

neighbour search from GSLIB, with the only difference that, instead of actually calcu-

lating the coordinates and other information about the neighbours, it only stores the

neighbours indices by pushing (copying) them into the array Neighbours. After the

neighbours have been calculated, a level tag is assigned to the current node according to

the pseudo-routine build level which scans for the maximum of all neighbours’ level

tags and adds 1 to that value (Algorithm 11). Initially all nodes with conditioning data

are assigned with level tag 0 and non informed nodes are assigned with level tag −1.

With this initial assignment, nodes with some conditioning data inside their search win-

dow are assigned with level tag 1, nodes with a level 1 neighbour are assigned with level

Parallel Sequential Simulation 66

tag 2, and so on. The last part of the first stage is at step 14 of Algorithm 9, where the

pseudo-routine order nodes by level performs a rearrangement procedure, storing the

indices of the new order in the array IndexSort, and the number of nodes and initial

index per level in the arrays LevelCount and LevelStart (Algorithm 12).

In Figure 4.3 an example of the level assignment is presented using a search lookup

window of size 3 × 3. Initially the conditioning data nodes are placed in the locations

6, 13, 15, 18, 24 and 25 of the random path (value in the top-right of each grid cell).

The level tag for those conditioning nodes is zero. Starting the assignment, the node in

location 1 is visited resulting in a level tag assignment of 1, since in its search lookup

window of 3 × 3 there are only nodes with level tags of 0 (neighbours in locations 13,

15 and 24). Similarly, nodes in locations 2, 3 and 4 are assigned with level tag 1. Node

in location 5 is assigned with level tag 2, since in its search lookup window a neighbour

with level tag 1 is located (neighbour in location 4). Node in location 7 is assigned

with level tag 1 (neighbour in locations 6 and 25 with level 0), and node in location 8 is

assigned with level tag 3 (neighbour in location 5 with level 2), and so on.

The second stage of Algorithm 9 involves the simulation in parallel of all nodes in the

same level, since no data dependencies arise between those nodes. For each level, as

shown in step 16, the initial and final indices are calculated, lbegin and lend re-

spectively in steps 17 and 18. The index of the node to be simulated is obtained

in step 20 using the re-ordered array IndexSort. In step 21 the pseudo-routine

search neighbours pop (Algorithm 13) is called, which essentially is a query to ex-

tract local neighbour indices from the array Neighbours, previously stored by using

search neighbours push in step 11 (Algorithm 10). With the local neighbour indices,

the coordinates are computed for each neighbour, and the simulation can be performed

in step 22 with the pseudo-routine simulate, which can be a mix of kriging, back-

transformations and pseudo-random sampling, according to the simulation method used.

Specifically, the steps for sequential gaussian simulation method are defined in lines 9, 10

and 11 from Algorithm 2, and the steps for sequential indicator simulation are defined

in lines 7 to 10 from Algorithm 3.

Parallel Sequential Simulation 67

Figure 4.3: Top: Random path index (top-right corner or each cell) and initial as-
signment of level tags (only zeros for nodes with conditioning data). Bottom: Final
assignment of level tags, with different color for different levels. The search lookup
window in this example is a 3× 3 square centered in the node of interest. By walking
through the random path and scanning the max level tag in each window, adding 1 to

it, the final assignment of levels can be obtained.

Parallel Sequential Simulation 68

In this work, OpenMP directives are included into the modified code. A synchronization

method must be used in order to keep the order of the levels being processed, since

threads can spend different time in the simulation of their assigned nodes, causing race

conditions when accessing neighbour values that are currently being simulated or not

simulated yet. A first alternative is to use the implicit OpenMP barrier declared at

the end of a parallel loop region. Since this barrier adds a major overhead to the

parallelization, a second alternative was chosen based on lock variables that control

when all neighbour nodes of a node being simulated are available (have a defined value).

A pseudo-code of this strategy is depicted in Algorithm 14, using an extra shared array

Lock with size |Ω| and values 1 or 0 indicating if the corresponding grid node has been

simulated or not. As the neighbour node indices are collected, each thread waits until

all neighbours have lock value Lock(i)=1, in order to get out of the waiting loop and

continue with the simulation steps.

Input:
index: grid node index;
κ: local interpolation parameters;
Neighbours(index): array with neighbour indices for grid node index;

1 m← obtain search window size(κ)
2 n← obtain max neighbour number(κ)
3 Offset← obtain spiral search offsets(κ) // distances between a centering location and each

other location inside the search window, ordered by a spiral path
4 numberOfLocalNeighbours← 0
5 for ind ∈ {1, . . . ,m} do
6 If numberOfLocalNeighbours ≥ n then Return
7 (i, j, k)← (indexx, indexy, indexz) + Offset(ind) // spiral node visiting centered in node

index

8 if (i, j, k) is inside the domain then
9 indexglobal← i+ (j − 1) ∗ nx+ (k − 1) ∗ nx ∗ ny

10 if node indexglobal has been previously simulated then
11 Neighbours(index)← {ind, indexglobal}) //local and global indexes
12 numberOfLocalNeighbours← numberOfLocalNeighbours + 1

13 end

14 end

15 end

Algorithm 10: Pseudo-routine search neighbours push. In this case, a spiral
search is being described, according to Deutsch and Journel [1998], Chapter II.4,
depicted in Figure 5.1.

Parallel Sequential Simulation 69

Input:
index: grid node index;
κ: local interpolation parameters;
Neighbours: array with neighbour indices of all domain nodes;
Level: array with level tags of all domain nodes;

1 // Obtain the number of valid neighbours for node index

2 numberOfLocalNeighbours← obtain total neighbour number(Neighbours(index))
3 maxLevel← −1
4 Level(index) = 0
5 for ind ∈ {1, . . . , numberOfLocalNeighbours} do
6 if Level(Neighbours(index, ind, 1)) > maxLevel then
7 maxLevel← Level(Neighbours(index, ind, 1)) //obtain level of neighbour using global

index

8 end

9 end
10 Level(index) = maxLevel + 1

Output: Level(index): level assigned to grid node index

Algorithm 11: Pseudo-routine build level

Input:
Level: array with level tags of all domain nodes;
IndexSort,LevelCount,LevelStart: arrays with the reordering of node visits using the

level tag as grouping identifier;

1 numberOfLevels← max(Level)
2 count← 0
3 lastCount← 0
4 LevelCount← zeros((numberOfLevels + 1)× 1)
5 LevelStart← zeros((numberOfLevels + 1)× 1)
6 for lev ∈ {0, . . . , numberOfLevels} do
7 LevelStart(lev + 1)← count + 1
8 LevelCount(lev + 1)← 0
9 for ixyz ∈ {1, . . . , |Ω|} do

10 if Level(ixyz) == lev then
11 count← count + 1
12 IndexSort(count)← ixyz

13 LevelCount(lev + 1)← LevelCount(lev + 1) + 1

14 end

15 end

16 end

Algorithm 12: Pseudo-routine order nodes by level

Input:
index: grid node index;
κ: local interpolation parameters;
Neighbours: array with neighbour indices

1 // Obtain the number of valid neighbours for node index

2 numberOfLocalNeighbours← obtain total neighbour number(Neighbours(index))
3 for ind ∈ {1, . . . , numberOfLocalNeighbours} do
4 indexglobal← Neighbours(index, ind, 0) //indexglobal is neighbour global index
5 LocalNeighbours(index, ind)← get coordinates(indexglobal)

6 end

Output: LocalNeighbours: neighbour coordinates of grid node index.

Algorithm 13: Pseudo-routine search neighbours pop

Parallel Sequential Simulation 70

Figure 4.4: Data dependency graph associated with the level tags and neighbour rela-
tionships (follow-up of Figure 4.3). Left-most nodes correspond to level 0 (conditioning

nodes), right-most nodes correspond to level 5.

Parallel Sequential Simulation 71

1 for lev ∈ {1, . . . , max(Level)} do
2 lbegin← LevelStart(lev)
3 lend← LevelStart(lev) + LevelCount(lev)− 1
4 for ixyz ∈ {lbegin, . . . , lend} in parallel do
5 LocalNeighbours← spiral search neighbours pop(Pixyz, κ,Neighbours)
6 // Wait until all local neighbours are ready with a defined value, Lock is shared array
7 ilock← 0
8 while ilock == 0 do
9 ilock← 1

10 for i ∈ {1, . . . , numberOfLocalNeighbours} do
11 ilock← ilock ∗ Lock(Neighbours(Pixyz, i, 1)) //global index
12 end

13 end
14 // Proceed to simulate the current node
15 Vtmp(Pixyz)← simulate(Pixyz,LocalNeighbours)
16 Lock(Pixyz) = 1 //Mark this node as unlocked for all other nodes waiting for it

17 end

18 end

Algorithm 14: Pseudo-code for thread synchronization using locks.

Parallel Sequential Simulation 72

4.3 Results

In this section, two cases are presented, including their execution times and speedup.

The base codes are sgsim and sisim from GSLIB, developed by Deutsch and Journel

[1998], and posteriorly code-optimized by Peredo et al. [2015a].

All runs were executed in a single-node machine with Ubuntu 14.04.5 LTS with 2 × 8-

cores Intel(R) Xeon(R) CPU E5-2673 v3 at frequency 2.40GHz, and a memory hierarchy

of 116GB RAM, 30MB L3 cache, 256KB L2 cache and 32KB/32KB L1d/L1i caches. All

programs were compiled using GCC gfortran version 4.8.4 supporting OpenMP version

3.1, with the options -O2 -march=native -ffast-math -ftree-vectorize in all cases

and -fopenmp in the multi-thread executions. All results are the average value of 5 runs,

in order to reduce external factors in the measurement.

4.3.1 sgsim

The case study for the parallel sgsim code uses a real mining 3D dataset of 2376 dia-

mond drill-hole samples with information of copper grade composites. In Figure 4.5 a

realization sample is depicted, with standardized values simulating the copper grades.

Table 4.1 contains all relevant parameters, such as grid sizes, search lookup windows

and variographic parameters. The local interpolation method is Ordinary Kriging.

Parallel Sequential Simulation 73

Figure 4.5: Realization sample of the SGSIM case study.

Parameter Values
nx× ny × nz {800× 800× 160, 400× 800× 160}
xsiz, ysiz, zsiz 0.5, 0.75, 0.9

max data for kriging {16, 32, 64, 128}
max search radii 300, 300, 300

size of covariance lookup table 201× 201× 201
number of structures and type 3,{spherical,exponential,gaussian}

Table 4.1: Parameters for SGSIM case study: grid sizes, search lookup window and
variography for all categories (parameter description can be reviewed in Section 3.2).

Parallel Sequential Simulation 74

The results are depicted in Tables 4.2 and 4.4 for the larger grid size with 800×800×160

nodes (102, 400, 000 nodes), and 4.5 and 4.7 for the smaller grid size with 400×800×160

nodes (51, 200, 000 nodes). We can observe in the speedup results that as the number

of maximum kriging neighbours increases, the achieved speedup using 16 threads also

increases. A key factor for this behaviour is related with amount of work that should be

done in the simulation part (lines 16 to 24 of Algorithm 9), which increases if a larger

maximum kriging neighbour value is used as parameter. As counterpart, the neighbour

calculation part (lines 7 to 14 of Algorithm 9), not parallelized, decreases its proportional

contribution to the overall elapsed time. The percentage of neighbour calculation time

using the larger grid is approximately 39.5%, 19.8%, 7.1% and 2.1% with 16, 32, 64 and

128 maximum kriging neighbours (Table 4.3). By using the smaller grid, this percentage

is approximately 39.1%, 21.6%, 7.2% and 2.2% respectively (Table 4.6). The neighbour

calculation is the most relevant contribution of the part of code that remains sequential,

which impacts in the maximum theoretical speedup that can be obtained. This topic

will be discussed extensively in Chapter 5.

Parallel Sequential Simulation 75

Threads
Elapsed
time [s]
16 neigs

Elapsed
time [s]
32 neigs

Elapsed
time [s]
64 neigs

Elapsed
time [s]

128 neigs

1 (gslib) 766.574 2743.532 14795.288 106393.643

1 (omp) 811.090 3036.122 16337.288 109554.268

2 (omp) 588.970 1823.014 8719.349 51280.557

4 (omp) 522.970 1217.604 5116.514 27401.376

8 (omp) 381.586 918.545 3235.145 15561.031

16 (omp) 362.666 743.966 2278.863 9175.207

Table 4.2: Execution time of SGSIM with 102,400,000 grid nodes and maximum of
16, 32, 64 and 128 neighbours to infer conditional probability.

Threads

Neighbour
calculation
time [%]
16 neigs

Neighbour
calculation
time [%]
32 neigs

Neighbour
calculation
time [%]
64 neigs

Neighbour
calculation
time [%]
128 neigs

1 (omp) 39.5 19.8 7.0 2.2

2 (omp) 55.2 32.7 13.5 4.7

4 (omp) 59.5 48.5 23.1 8.7

8 (omp) 81.3 65.5 36.7 15.7

16 (omp) 89.8 78.7 51.8 26.4

Table 4.3: Percentage of execution time of non-parallel neighbour calculation of
SGSIM with 102,400,000 grid nodes and maximum of 16, 32, 64 and 128 neighbours to

infer conditional probability.

Threads
Speedup
16 neigs

Speedup
32 neigs

Speedup
64 neigs

Speedup
128 neigs

1 (gslib) 1.00 1.00 1.00 1.00

1 (omp) 0.94 0.90 0.90 0.97

2 (omp) 1.30 1.50 1.69 2.07

4 (omp) 1.46 2.25 2.89 3.88

8 (omp) 2.00 2.98 4.57 6.83

16 (omp) 2.11 3.68 6.49 11.59

Table 4.4: Speedup of SGSIM with 102,400,000 grid nodes and maximum of 16, 32,
64 and 128 neighbours to infer conditional probability.

Threads
Elapsed
time [s]
16 neigs

Elapsed
time [s]
32 neigs

Elapsed
time [s]
64 neigs

Elapsed
time [s]

128 neigs

1 (gslib) 393.929 1453.179 7921.930 51726.258

1 (omp) 413.479 1497.249 7908.930 48939.258

2 (omp) 299.263 888.965 4148.421 26576.200

4 (omp) 235.154 600.941 2382.522 14121.606

8 (omp) 204.316 448.859 1474.447 7574.541

16 (omp) 190.589 371.572 989.462 4328.232

Table 4.5: Execution time of SGSIM with 51,200,000 grid nodes and maximum of 16,
32, 64 and 128 neighbours to infer conditional probability.

Parallel Sequential Simulation 76

Threads

Neighbour
calculation
time [%]
16 neigs

Neighbour
calculation
time [%]
32 neigs

Neighbour
calculation
time [%]
64 neigs

Neighbour
calculation
time [%]
128 neigs

1 (omp) 39.1 19.6 6.8 2.1

2 (omp) 55.4 32.4 12.8 4.0

4 (omp) 70.5 48.0 22.3 7.8

8 (omp) 81.9 64.8 36.0 14.4

16 (omp) 87.1 78.1 52.1 25.3

Table 4.6: Percentage of execution time of non-parallel neighbour calculation of
SGSIM with 51,200,000 grid nodes and maximum of 16, 32, 64 and 128 neighbours

to infer conditional probability.

Threads
Speedup
16 neigs

Speedup
32 neigs

Speedup
64 neigs

Speedup
128 neigs

1 (gslib) 1.00 1.00 1.00 1.00

1 (omp) 0.95 0.97 1.00 1.05

2 (omp) 1.31 1.63 1.90 1.94

4 (omp) 1.67 2.41 3.32 3.66

8 (omp) 1.92 3.23 5.37 6.82

16 (omp) 2.06 3.91 8.00 11.95

Table 4.7: Speedup of SGSIM with 51,200,000 grid nodes and maximum of 16, 32, 64
and 128 neighbours to infer conditional probability.

Parallel Sequential Simulation 77

4.3.2 sisim

A minor modification must be done in the base code sisim, in order to run simulations

on large domains (> 224 = 16, 777, 216 nodes). The array that stores the random path

visiting order, denoted order, is defined originally as a real structure. Since real is

a single-precision floating point representation, the maximum integer value that can be

represented with this data type is 224, since the size of the significant precision bits

is 24 [IEEE, 2008]. By changing the data type of order to integer, a maximum of

232 − 1 = 2, 147, 483, 647 nodes can be achieved.

The case study for the parallel sisim code uses a synthetic 3D dataset of 3000 random

samples with 10 categories generated by truncation of a convoluted Gaussian kernel with

a white noise random field according to the procedure described by Peredo et al. [2016]

(Figure 4.6 shows a realization using three categories). Table 4.8 contains all relevant

parameters, such as grid sizes, search lookup windows and variographic parameters.

In all cases the method of local interpolation was simple kriging, with the option full

indicator kriging active.

Parallel Sequential Simulation 78

Figure 4.6: Realization sample of the SISIM case study.

Parameter Values
nx× ny × nz {420× 600× 400, 210× 600× 400}
xsiz, ysiz, zsiz 9.5, 10.0, 3.0

max data for kriging {16, 32, 64, 128}
max search radii ∞,∞,∞

size of covariance lookup table 51× 51× 166
number of categories 10

number of structures and type 10,{spherical}

Table 4.8: Parameters for SISIM case study: grid sizes, search lookup window and
variography for all categories (parameter description can be reviewed in Section 3.2)

Parallel Sequential Simulation 79

The results are depicted in Tables 4.9 and 4.11 for the larger grid size with 420×600×400

nodes (100, 800, 000 nodes), and 4.12 and 4.14 for the smaller grid size with 210×600×400

nodes (50, 400, 000 nodes). Similarly to the SGSIM case, as the maximum number of

neighbours for kriging increases, the achieved speedup using 16 threads also increases

since the amount of work in the simulation part increases, and as consequence the

percentage of neighbour calculation time decreases proportionally. Using the larger grid,

the percentage is approximately 8.4%, 3.2%, 1.1% and 0.2% with 16, 32, 64 and 128

maximum kriging neighbours. By using the smaller grid, the percentage is approximately

8.9%, 3.4%, 0.9% and 0.2% respectively. These percentage of neighbour calculation are

considerably lower that these percentages of the SGSIM case, which indicates that the

speedup results obatined are higher.

Parallel Sequential Simulation 80

Threads
Elapsed
time [s]
16 neigs

Elapsed
time [s]
32 neigs

Elapsed
time [s]
64 neigs

Elapsed
time [s]

128 neigs

1 (gslib) 4755.103 22560.543 140548 1017870

1 (omp) 4522.103 21325.543 137425.264 1001197.200

2 (omp) 2533.220 11251.314 71605.673 511434.417

4 (omp) 1501.155 6221.798 36470.465 252730.204

8 (omp) 931.031 3399.888 18590.755 125209.547

16 (omp) 718.128 2332.582 10310.647 63913.105

Table 4.9: Execution time of SISIM with 100,800,000 grid nodes and maximum of 16,
32, 64 and 128 neighbours to infer conditional probability.

Threads

Neighbour
calculation
time [%]
16 neigs

Neighbour
calculation
time [%]
32 neigs

Neighbour
calculation
time [%]
64 neigs

Neighbour
calculation
time [%]
128 neigs

1 (omp) 8.4 3.2 1.0 0.2

2 (omp) 15.0 5.8 1.9 0.4

4 (omp) 25.2 10.6 3.4 0.9

8 (omp) 40.6 19.4 6.7 1.8

16 (omp) 52.8 28.3 13.4 3.5

Table 4.10: Percentage of execution time of non-parallel neighbour calculation of
SISIM with 100,800,000 grid nodes and maximum of 16, 32, 64 and 128 neighbours to

infer conditional probability.

Threads
Speedup
16 neigs

Speedup
32 neigs

Speedup
64 neigs

Speedup
128 neigs

1 (gslib) 1.00 1.00 1.00 1.00

1 (omp) 1.05 1.05 1.02 1.01

2 (omp) 1.87 2.00 1.96 1.99

4 (omp) 3.16 3.62 3.85 4.02

8 (omp) 5.10 6.63 7.56 8.12

16 (omp) 6.62 9.67 13.63 15.92

Table 4.11: Speedup of SISIM with 100,800,000 grid nodes and maximum of 16, 32,
64 and 128 neighbours to infer conditional probability.

Threads
Elapsed
time [s]
16 neigs

Elapsed
time [s]
32 neigs

Elapsed
time [s]
64 neigs

Elapsed
time [s]

128 neigs

1 (gslib) 2566.105 12093.603 73424.527 490844

1 (omp) 2456.625 11347.603 70250.527 487311.691

2 (omp) 1328.791 5850.835 34813.426 255689.720

4 (omp) 793.696 3191.038 18327.576 128435.340

8 (omp) 505.963 1824.460 9629.237 64432.234

16 (omp) 362.476 1091.702 5132.127 32454.387

Table 4.12: Execution time of SISIM with 50,400,000 grid nodes and maximum of
16, 32, 64 and 128 neighbours to infer conditional probability.

Parallel Sequential Simulation 81

Threads

Neighbour
calculation
time [%]
16 neigs

Neighbour
calculation
time [%]
32 neigs

Neighbour
calculation
time [%]
64 neigs

Neighbour
calculation
time [%]
128 neigs

1 (omp) 8.9 3.4 0.9 0.2

2 (omp) 16.5 6.6 1.9 0.5

4 (omp) 27.3 12.2 3.6 0.9

8 (omp) 42.6 22.1 6.9 2.0

16 (omp) 60.0 35.1 13.1 4.0

Table 4.13: Percentage of execution time of non-parallel neighbour calculation of
SISIM with 50,400,000 grid nodes and maximum of 16, 32, 64 and 128 neighbours to

infer conditional probability.

Threads
Speedup
16 neigs

Speedup
32 neigs

Speedup
64 neigs

Speedup
128 neigs

1 (gslib) 1.00 1.00 1.00 1.00

1 (omp) 1.04 1.06 1.04 1.00

2 (omp) 1.93 2.06 2.10 1.91

4 (omp) 3.23 3.78 4.00 3.82

8 (omp) 5.07 6.62 7.62 7.61

16 (omp) 7.07 11.07 14.30 15.12

Table 4.14: Speedup of SISIM with 50,400,000 grid nodes and maximum of 16, 32,
64 and 128 neighbours to infer conditional probability.

Parallel Sequential Simulation 82

4.4 Analysis

In this section, a detailed analysis of the results is included. Regarding the SGSIM case

study, the parallelization shows an increase in speedup values in the largest scenarios

and underperforms in the smaller scenarios. SISIM shows higher speedup values thanks

to the lower fraction of neighbour calculation which results from an increase of work

in the simulation step (more kriging system solving in each node). Considering that

no additional libraries or external tools were used in the parallelization (with exception

of OpenMP), further gains can be achieved by reducing the serial time, which will be

discussed in Chapter 5.

4.4.1 Efficiency

Figure 4.7 shows the relationship between efficiency of the parallelization (Equation

(3.2)) and the maximum number of neighbours for kriging, according to the previous

results for SGSIM and SISIM using 16 threads from Tables 4.4-4.7 and 4.11-4.14. As

mentioned before, as the number of maximum kriging neighbours increases, the efficiency

increases as well. The lower efficiency obtained in the overall SGSIM results can be

explained in part by the relative small amount of computation involved in the execution

of these cases, compared against the SISIM case. The number of kriging computations

per node is exactly one, in contrast to SISIM where ten interpolations must be solved

(ten categories to simulate). As shown in Figure 4.8, a small number of grid nodes

are simulated in parallel in the first levels, which adds a large amount of overhead to

thread initialization, such as shared/private variables setup. The best result in terms of

efficiency for SGSIM is obtained using the largest maximum number of neighbours, 128,

which is directly related to higher number of computations in the local interpolations.

The efficiency obtained in all SISIM cases is higher than the SGSIM cases and can be

explained by the higher amount of computation involved in the parallel step while the

serial part is kept identical. As mentioned before, by using ten categories for simulation,

ten local interpolation systems must be solved for each grid node. Regarding the number

of grid nodes per level, since a larger number of levels contain sufficiently large number of

grid nodes (Figure 4.9), high parallel efficiency values are obtained with more than 90%

in almost all cases. The best result for SISIM is obtained using the largest maximum

number of neighbours, 128, for the same reasons as the best SGSIM case.

In Figure 5.24 we can observe an execution profile obtained with Extrae/Paraver tools,

in the SGSIM scenario using 16 threads. Each stage of the execution can be identified

approximately in this figure, using the ”State as is” visualization, which depicts the state

of execution of each thread. As stated in Table 4.6, the largest portion corresponds to

neighbour calculation (52.1%), which can be observed explicitly in the trace.

Parallel Sequential Simulation 83

Figure 4.7: Relationship between efficiency of the parallelization and kriging neigh-
bours using 16 threads in all cases.

Figure 4.8: Number of grid nodes per level in SGSIM case.

Parallel Sequential Simulation 84

Figure 4.9: Number of grid nodes per level in SISIM case.

Figure 4.10: Profile of SGSIM case using parallel code with 16 threads and 64 maxi-
mum kriging neighbours, obtained with Extrae/Paraver tools.

Parallel Sequential Simulation 85

4.4.2 Accuracy

Regarding numerical precision of the results, in SGSIM only small errors with absolute

value less than 1.0−6 are present, as a result of non-commuting floating-point operations

using the different order of simulation. As a reference, the results returned by SGSIM

are single-precision floats with 6 to 9 significant decimal digits [IEEE, 2008]. To obtain

the error values a simple node by node substraction is calculated between the simulated

values using the original SGSIM non-parallel code and the values obtained using the

parallel version, and then the histogram of errors is calculated. In the case of SISIM,

the results are exactly the same since integer values are rounded for all categories,

without small errors in lower decimal digits as SGSIM.

In comparison with other reported parallelization strategies, particularly Rasera et al.

[2015], the efficiency obtained is comparable only in the larger cases of SISIM with

64 or 128 maximum neighbours. However, the results reported must not be compared

directly, since different base codes and parameters were used. Since the proposed method

of this work aims to generate the exact same results as the non-parallel versions of the

simulation algorithms, the serial part of node reordering adds a major bottleneck if small

domains or small maximum neighbour number are used in the configuration parameters.

However, in some applications the exactness property can be particularly useful, like

audited practices in mineral and ore reserves estimation [JORC, 2012].

4.4.3 Computational resources

In terms of computational resources, the parallelization strategy uses a large amount

of memory to perform the level and neighbourhood storage in the current implemen-

tation version. The reason of this requirement is that many additional shared arrays

with the same dimension of the simulation array must be allocated, and also additional

space is needed by the neighbour information array Neighbours, extracted in the push

stage of the spiral search (Algorithm 10). In the largest cases, with approximately 100

million nodes and 128 maximum kriging neighbours, around 96GB of memory where

needed. This size comes largely from the array Neighbours which stores approxi-

mately 100, 000, 000 × 2 × 128 4-byte integers. With 16, 32 and 64 maximum kriging

neighbours, the memory usage is around 12GB, 24GB and 48GB respectively. Since sev-

eral cloud computing providers offer computational services at affordable prices, these

memory usage values are not prohibitive given the current technological trends. For

instance, a Linux virtual machine with 16 CPU-cores, 112GB RAM and 800GB of disk

can be rented by 1 dollar per hour [Microsoft Azure, 2021].

Chapter 5

Parallel Neighbour Search

The second contribution of this thesis is related with the neighbour search used in the

first stage of Algorithm 9. As described in Chapter 4, a key bottleneck that will allow

improving the performance metrics is the neighbour search for node tagging according to

their data dependency level. A parallel neighbour search method is described with details

in this chapter. Four applications are modified, the parallel versions of sgsim and sisim,

and two GSLIB-based applications, sgs-lva and sisim-lva. These last two applications

are adapted versions that allow the usage of LVA-based simulation, as described in

Section 2.3, and also will be adapted according to the parallel sequential simulation

method. Additional case studies are presented for the LVA-based scenarios, using real

and synthetic 3D datasets. Results of the parallelization proposed are presented in the

last section.

5.1 Context

The neighbour search is a mandatory process in the sequential simulation method that

needs to be computed before any kriging estimation. On each of the sequential simula-

tion algorithms proposed in Chapter 2 (Algorithms 2, 3, 4 and 5), the pseudo-routine

search neighbours is present. The implementation available on each of these algo-

rithms is described in detail on Deutsch and Journel [1998] Section II.4, where three

approaches are presented: exhaustive search, super-block search and spiral search.

5.1.1 GSLIB search methods

Each of the existing approaches scan nearby data, and define neighbours to be used for

kriging. Three conditions need to be fulfilled in order to be included as a neighbour:

87

Parallel Neighbour Search 88

• Only data points falling within a search ellipsoid centered at the location being

estimated are considered. This ellipsoid is defined in the parameters of each GSLIB

application (search radii in two or three directions).

• Only the closest data points, up to a maximum number parameter, are re-

tained. Closeness between points is measured by the euclidean distance (possibly

anisotropic).

• An octant search is available as an option to ensure that data points are taken on

all sides of the point being estimated. This is particularly important when working

in 3D with data often aligned along drillholes; an octant search ensures that data

are taken from more than one drillhole. An octant search is specified by choosing

the number of data to retain from each octant.

The first of the search approaches is exhaustive search, which is the simplest approach.

It consists in a systematic check of all sampled conditioning data and retain the closest

points that meet the three conditions noted above. This strategy is inefficient when

there are many data points and has been adopted only in the straightforward 2D kriging

program of GSLIB.

Super block search is the second search strategy, in which the data points are partitioned

into a grid network superimposed on the domain being considered. When estimating

any one location, it is then possible to limit the search to those data falling in nearby

super blocks. This search has been implemented in most GSLIB kriging and simulation

applications to search in non-gridded data points.

The last approach is called spiral search, which is defined only for searching on gridded

data points. Algorithm 10 depicts the steps of this approach, in the context of the parallel

sequential simulation method described on Chapter 4. The idea of this approach is to

visit the closest nearby grid nodes first and spiral away until either enough data have

been found or the remaining grid nodes are beyond the search limits. Figure 5.1 depicts

an example of this spiral path, traversing from point 1 to 5, assuming a search window

of 5× 5. In order to include non-gridded data points, an initial re-location process can

be applied, in which each non-gridded data point is placed in the closest grid location.

This search has been implemented in all GSLIB sequential simulation applications.

Parallel Neighbour Search 89

Figure 5.1: Spiral search example, centered in point 1.

5.1.2 kd-tree search methods

An additional algorithm included in the baseline implementations, particularly in

sgs-lva, is based on a kd-tree data structure [Bentley, 1975] to support fast search

of neighbours in the domain. The kd-tree (short for k-dimensional tree) data structure

consists in a binary tree in which every terminal node is a k-dimensional point. Figure

5.2 shows an example of a kd-tree construction using 9 data points. Since LVA-based

codes calculate euclidean distances between k-dimensional data points, with k ≥ 3,

kd-tree search methods are specially suitable in this case.

The current implementation used in the baseline code is the kd-tree neighbour search

method from Kennel [2004], denoted as KDTree. It is implemented entirely in Fortran

90, as a module with a set of public and private variables, data structures and routines.

Relevant variables in this module are bucket size (public), precision type (public), and

the tree search record of the current search (private). Bucket size controls the number of

data points that can be associated to a terminal node, allowing to combine a fast binary

search with an exhaustive scan inside each bucket. The precision type controls if the

floating-point type of variables in the module should be real(4) (single precision floats)

or real(8) (double precision floats). The tree search record keeps the internal tree node

where the search is actually running. This private variable will have an important role

in the parallel algorithm proposed in the next section.

Compared against existing GSLIB search methods, for large scenarios, kd-tree search

works faster due to its lower complexity. In case of exhaustive and spiral search, the

algorithmic complexity in the average case is O(N) with N the number of nodes in the

domain. In practice, both methods will scan for neighbours until the maximum number

Parallel Neighbour Search 90

is achieved. Spiral search is faster since it starts scanning in nearby grid nodes. On the

other hand, kd-tree search has algorithmic complexity O(logN) in the average case.

Figure 5.2: kd-tree data structure, centered in point 1.

Due to its lower algorithmic complexity, better software usability and its capabilities to

manage searches for k-dimensional data points, we will adapt the usage of the KDTree

implementation to every baseline code, and posteriorly those codes are adapted to run

parallel and faster neighbour searches.

5.2 Algorithm

The proposed algorithm is based on a combination of an optimized version of the sequen-

tial KDTree neighbour search described in Section 5.1.2, and a parallel implementation

presented in Algorithm 15, which is used in stage 1 of Algorithm 9. These search routines

were implemented on the four codes under study, non LVA-based sgsim and sisim, and

LVA-based sgs-lva and sisim-lva.

In case of sgs-lva, the neighbour search can be applied using KDTree search originally,

since the baseline code already uses it. However, in sisim-lva and non LVA-based sgsim

and sisim, the only options implemented are the original GSLIB methods exhaustive

search and spiral search. In these cases the first task was to adapt the original code

to include the KDTree method. In some cases, this modification already induced an

improvement in the execution time.

In the next section a detailed explanation of the sequential optimizations applied to

KDTree code are presented. After this description, the parallel algorithm is described

in Section 5.2.2.

Parallel Neighbour Search 91

5.2.1 KDTree optimizations

In the existing implementation of kd-tree data structure and related methods, denoted

KDTree, developed by Kennel [2004], the inner-most part of the computation should

calculate distances between the query point and all points inside a terminal node of the

tree. The points that are inside a fixed-size ball around the query points are marked as

neighbours until the maximum number is reached. Figure 5.3 depicts a sample search of

n neighbours using the routine kdtree n nearest around point from KDTree module.

We can observe the recursive call to the inner method search, which eventually calls

the terminal node processing routine process terminal node.

Figure 5.3: Sample execution of a search using KDTree code.

Using the command line profiler tool of gprof [Graham et al., 2004], we identify

lines in KDTree code which are top contributors in the sequential part of execu-

tion. In Figure 5.4, the left block contains parts of the original code from routine

process terminal node. The specific lines with a high contribution to execution time

are lines 2 and 3. A first optimization is related with a reorder of the code, where the

branching line if(rearrange) from line 6 is moved outside of the main loop. Addition-

ally, a specialization of the main loop should be included on both sides of the branch

(loops mainlooprea and mainloopnorea). With this optimization, we can reduce the

number of branch instructions from δ=node%u-node%l to only 1 (δ = 12 is the default

bucket size, and can be modified in the module variables). Considering that millions

of neighbour searches should be computed, and those searches will execute at least one

time this routine, the gain in execution time is considerable (see Section 5.3)

The second optimization is based on the unroll of the loop that computes the squared

distance between the query point and each potential neighbour, which again reduces the

Parallel Neighbour Search 92

number of branching instructions processed by the CPU. In Figure 5.5, the right block

contains the optimized code of the routine process terminal node (including the first

optimization). Lines 4 to 8 show the unrolling applied four times. The same unrolling

is applied to the similar loop mainloopnorea from line 15. With this optimization, we

can reduce the number of branching reduction but it is less evident since it will depend

on the dimension of the data points. In the LVA-based scenarios this is relevant since

dimensions can be in the order of k ≈ 1000. Non LVA-based scenarios won’t benefit

strongly since the dimension is k = 3 (unrolling should not be used).

Original code Optimized code

01 mainloop: do i = node%l, node%u

02 if (rearrange) then

03 sd = 0.0

04 do k = 1,dimen

05 sd = sd + (data(k,i) - qv(k))**2

06 if (sd>ballsize) cycle mainloop

07 end do

08 indexofi = ind(i)

09 else

10 indexofi = ind(i)

11 sd = 0.0

12 do k = 1,dimen

13 sd = sd + (data(k,indexofi) - qv(k))**2

14 if (sd>ballsize) cycle mainloop

15 end do

16 endif

17

18 ...

19

20 end do mainloop

01 if (rearrange) then

02 mainlooprea: do i = nodel, nodeu

03 sd = 0.0

04 do k = 1,dimen

05 sd = sd + (data(k,i) - qv(k))**2

06 if (sd>ballsize) cycle mainlooprea

07 end do

08 indexofi = ind(i)

09

10 ...

11

12 end do mainlooprea

13 else

14

15 mainloopnorea: do i = nodel, nodeu

16 indexofi = ind(i)

17 sd = 0.0

18 do k = 1,dimen

19 sd = sd + (data(k,indexofi) - qv(k))**2

20 if (sd>ballsize) cycle mainloopnorea

21 end do

22

23 ...

24

25 end do mainloopnorea

26 end if

Figure 5.4: First optimization of routine process terminal node from KDTree im-
plementation. Branching reduction by removing if(rearrange)

branch outside of the main loop, and duplicating it with specialized code.

Original code Optimized code
01 mainloop: do i = node%l, node%u

02 if (rearrange) then

03 sd = 0.0

04 do k = 1,dimen

05 sd = sd + (data(k,i) - qv(k))**2

06 if (sd>ballsize) cycle mainloop

07 end do

08 indexofi = ind(i)

09 else

10 indexofi = ind(i)

11 sd = 0.0

12 do k = 1,dimen

13 sd = sd + (data(k,indexofi) - qv(k))**2

14 if (sd>ballsize) cycle mainloop

15 end do

16 endif

17

18 ...

19

20 end do mainloop

01 if (rearrange) then

02 mainlooprea: do i = nodel, nodeu

03 sd = 0.0

04 do k = 1,4,dimen-3

05 sd = sd + (data(k,i) - qv(k))**2

06 sd = sd + (data(k+1,i) - qv(k+1))**2

07 sd = sd + (data(k+2,i) - qv(k+2))**2

08 sd = sd + (data(k+3,i) - qv(k+3))**2

09 if (sd>ballsize) cycle mainlooprea

10 end do

11 indexofi = ind(i)

12 ...

13 end do

14 else

15 mainlooprea: do i = nodel, nodeu

16 ...

17 end do mainlooprea

18 end if

Figure 5.5: Second optimization of routine process terminal node from KDTree
implementation. Loop unrolling applied in multidimensional squared euclidean distance

calculation.

Parallel Neighbour Search 93

5.2.2 Parallel neighbour search

With the optimized KDTree module at hand, we will review how to use it by multiple

parallel searches, following Algorithm 15. The parallel implementation is based on a

modified OpenMP-compliant version of KDTree search and a block cyclic decomposition

strategy of the random path. The block cyclic approach is necessary since an underlying

unbalance exists in the amount of work for neighbour search (early points require more

effort than later points).

Input:
Levels: array defined in Algorithm 9 (line 7);
Neighbours: array defined in Algorithm 9 (line 8);
|Ω|: number of points in 3D domain Ω;
P: random path defined in Algorithm 9 (line 3);
Z: embedding of point coordinates as defined in Algorithm 4 (line 4). For non-LVA

scenarios, the embedding is exactly the 3D coordinates in Ω;
ksearch: defined as input in Algorithm 4. For non-LVA scenarios, this value is 3;
nmax: defined as input in Algorithm 4;
T : number of parallel threads of execution;
b: block size

1 n← |Ω|
2 Level← zeros(n× 1)
3 Neighbours← zeros(n× nmax × 2) // Next loop runs in a parallel OpenMP region
4 for threadId ∈ {1, . . . , T} in parallel do
5 B ← dn/be
6 //Each thread will have a copy of its own KDTree structure

7 Tree← kdtree create(Z, nmax, ksearch)
8 //Block cyclic through blocks
9 nlast← 1

10 for iblock ∈ {1, . . . , B} do
11 nmin, nmax← (b− 1) ∗B ,min{b ∗B,n}
12 if iblock % T == (threadId− 1) then
13 for ixyz ∈ {nlast, . . . , nmin− 1} do
14 point marked(Tree,Pixyz)
15 end
16 nlast← nmax + 1
17 //Each thread computes the valid neighbours of each point
18 for ixyz ∈ {nmin, . . . , nmax} do
19 //Search and push operation to save neighbours in array

20 Neighbours(Pixyz)← search neighbours push(Pixyz, κ,Z,Tree, ksearch)
21 point marked(Tree,Pixyz)

22 end

23 end

24 end
25 omp barrier //Only thread 1 will compute the levels (intrinsically sequential)
26 if threadId = 1 then
27 for ixyz ∈ {1, . . . , n} do
28 Level(Pixyz)← build level(Pixyz, κ,Neighbours)
29 end

30 end

31 end

Output: Neighbours, Levels

Algorithm 15: Routine parallel neighbour search (KDTree-based)

Parallel Neighbour Search 94

In order to use the existing KDTree implementation, a key change involves the private

variable sr used internally in the module. It should be declared as threadprivate with

an OpenMP directive, as depicted in Figure 5.6, implying only one line (line 18). With

this change, different threads can create private search records on the same tree and

search independently for neighbours of different points in parallel (line 7 of Algorithm

15).

Original code Parallel code
01 module kdtree2_module

02 use kdtree2_precision_module

03 use kdtree2_priority_queue_module

04 !!!!!!!! PUBLIC DATA TYPE, CREATION, DELETION

05 public :: kdkind

06 ...

07 public :: kdtree2_create_v2

08 !!!!!!!! PUBLIC SEARCH ROUTINES

09 ...

10 public :: kdtree2_n_nearest_around_point

11 ...

12 !!!!!!!! PUBLIC GLOBAL VARIABLES

13 integer, parameter :: bucket_size = 12

14 ...

15 !!!!!!!! PRIVATE GLOBAL VARIABLES

16 private

17 type(tree_search_record), save, target :: sr

18

19 contains

20 !!!!!!!! ROUTINE DEFINITION

21 ...

22 end module kdtree2_module

01 module kdtree2_module

02 use kdtree2_precision_module

03 use kdtree2_priority_queue_module

04 !!!!!!!! PUBLIC DATA TYPE, CREATION, DELETION

05 public :: kdkind

06 ...

07 public :: kdtree2_create_v2

08 !!!!!!!! PUBLIC SEARCH ROUTINES

09 ...

10 public :: kdtree2_n_nearest_around_point

11 ...

12 !!!!!!!! PUBLIC GLOBAL VARIABLES

13 integer, parameter :: bucket_size = 12

14 ...

15 !!!!!!!! PRIVATE GLOBAL VARIABLES

16 private

17 type(tree_search_record), save, target :: sr

18 !$omp threadprivate(sr)

19 contains

20 !!!!!!!! ROUTINE DEFINITION

21 ...

22 end module kdtree2_module

Figure 5.6: OpenMP directive to allow multiple parallel searches using KDTree mod-
ule (single change in line 18).

In the next paragraph we describe in detail the steps of Algorithm 15. In order to

search for all neighbours of each location following the sequential random path in a

parallel multi-threaded way, each thread will create a private copy of the KDTree data

structure storing all domain gridded locations, depicted in line 7. Initially each tree

contains the same information, and only initial conditioning sampled data is marked (a

global logical array is used to mark each grid node as usable or not). As the algorithm

progresses, only previously simulated nodes or initial conditioning data (marked nodes)

are considered in KDTree searches, since the neighbour search should be compliant with

the sequential random path (see Section 4.1.1). This constraint is applied in lines 13

to 15 of the Algorithm 15, by setting as marked all previous nodes for each thread of

execution. By combining this strategy with a block cyclic distribution of iterations (lines

10 to 12 of Algorithm 15), the final workload is balanced through all threads, as shown

in Figure 5.7. In this figure, the random path index is presented from 1 to 80, with

blocks of size B = 10. Four threads are depicted, each one with a different color and

number. We can observe that threads 1, 2 ,3 and 4 start the execution with the same

value nlast = 1, however, before processing each block, thread 2 needs to mark points 1

to 10, thread 3 needs to mark points 1 to 20 and thread 4 needs to mark points 1 to 30,

depicted as a gray line. Continuing with the block cycling, the second block is proceesed

by each thread but this time the value of nlast is different for every thread, and the

Parallel Neighbour Search 95

marked nodes are depicted as the intermediate gray line. Figure 5.8 depicts each thread

processing blocks for neighbour search, mixed with marked nodes to be skipped. In lines

18 to 22 of Algorithm 15, the neighbour search calculation is executed, with a subsequent

marking step of the corresponding node. Line 25 depicts an OpenMP barrier which is

needed in order to wait for all threads before computing the levels of dependency. The

final steps, depicted in lines 26 to 30 of Algorithm 15, use the computed neighbours

to infer the level of each point, which indicates the degree of dependency of that point

on previously simulated or initial conditioning points. Specifically, initial conditioning

points are level 0 and a point is level n if the maximum level of all its neighbours is

n− 1.

Figure 5.7: Load balancing of workload through a block cyclic strategy for parallel
neighbour search. In this example, 4 threads are computing neighbours of different
blocks of points (block size equal to 10, domain size equal to 80). Before processing
a block of points, each thread should declare as marked all previous points which are
not marked yet by this thread (gray color line). Variable nlast is used to indicate the

starting index of marked points for the next block.

Parallel Neighbour Search 96

Figure 5.8: Each thread processes its own cyclic blocks from Figure 5.7 (colored
blocks) and pass through other blocks marking the corresponding points as simulated
(grey lines). After all threads end their processing, an OpenMP barrier is set, and after

it the main thread finishes the level computation.

In summary, the proposed algorithm re-formulates an intrinsically sequential part of

the sequential simulation method in geostatistics. The neighbour search computation in

this context has the additional complexity of accounting for previously simulated points

in the domain. Application of this algorithm is presented in the next section, with

promising results for non LVA and LVA based codes.

5.3 Results

This section is divided in two subsections. The first one shows performance tests of the

proposed implementation from Section 5.2 using two scenarios extracted from Section

4.3, with adapted parallel versions of non LVA-based sgsim and sisim respectively. In

the second subsection, performance tests of the proposed implementation are presented

for two LVA-based scenarios, using parallel LVA-based codes sgs-lva and sisim-lva.

5.3.1 Performance tests for parallel non LVA-based codes

In order to measure the performance of the proposed parallel algorithm, simulations are

generated using non LVA-based baseline codes sgsim and sisim, developed in Chapter

4. Both scenarios are denoted sgsim and sisim respectively. Scenario sgsim uses an

initial 3D dataset of 2376 diamond drill-hole samples with information of copper grade

composites. Scenario sisim uses a synthetic 3D dataset of 3000 random samples with

10 categories (see Section 3.4). The parameters in each scenario can be viewed in Table

5.1 and their descriptions in Section 3.2.

Parallel Neighbour Search 97

Parameter sgsim sisim

Domain nx× ny × nz 400× 400× 120 210× 600× 400

Max nodes for simulation {16, 32, 48, 64} {16, 32, 48, 64}
Kriging OK OK

Number of structures (type) 3 (spherical, exponential, gaussian) 10 (sphericals)

Table 5.1: Default parameters for sgsim and sisim.

All runs were executed in a single-node machine with Ubuntu 18.04.5 LTS with 2 ×
10-cores Intel(R) Xeon(R) CPU Silver 4210R at frequency 2.40GHz and a main memory

of 128 GB RAM. All Fortran programs were compiled using GNU Fortran version 4.8.5

supporting OpenMP version 3.1, with options -cpp -O2 -ffast-math -ftree-vectorize. Exe-

cution time results are depicted in Figures 5.9 and 5.11, and speedup results are depicted

in Figures 5.10 and 5.12.

In the sgsim scenario depicted in Figure 5.10 we can observe that the speedup increased

consistently accross all tests, using up to 16 threads (this number of threads is selected

in order to compare results from Section 4.3). Speedups using 16 threads between the

proposed implementation against the baseline version without parallel neighbour search

are 1.33×, 1.79×, 1.85× and 2.14× in cases with 16, 32, 48 and 64 maximum neighbours

for simulation respectively. However, it is important to notice that using lower numbers

of neighbours, such as 16 and 32, the execution time is considerably lower in the baseline

escenario using less than 8 and 4 threads of execution respectively. The reason for this

behaviour is the amount of work that needs to be done to initialize the KDTree parallel

structures, which in these cases is higher than the baseline search methods. On all other

cases the parallel adaptation has lower execution time than the baseline code.

Parallel Neighbour Search 98

Figure 5.9: Execution time [seconds] comparison between baseline sgsim parallel code
and adapted sgsim parallel code using the parallel neighbours search.

Parallel Neighbour Search 99

Figure 5.10: Speedup comparison between baseline sgsim parallel code and adapted
sgsim parallel code using the parallel neighbours search algorithm. Each speedup
curve is calculated as the time of a single-thread execution divided by a multi-thread

execution, using each code separately.

Parallel Neighbour Search 100

In the sisim scenario depicted in Figure 5.12 we can observe no significative differences in

speedup trends between the baseline and the new parallel adaptation. From Figure 5.12,

speedups using 16 threads between the proposed implementation against the baseline

version without parallel neighbour search are 1.55×, 2.42×, 3.06× and 4.11× in cases

with 16, 32, 48 and 64 maximum neighbours for simulation respectively. In this scenario

the execution time is consistently lower in the new parallel implementation. This can

be explained since this scenario involves more work (10 kriging linear systems should be

solved for each domain point versus only one linear system in sgsim), so the initialization

of KDTree structures is not significative in the execution time.

Finally, if we compare the aggregated contribution to speedup of the new parallel neigh-

bour search and additional optimizations, plus the previous parallelization work from

Chapter 4, against a single thread execution of the previous parallelization work, the

obtained speedups using 16 threads for sgsim scenario are 2.2×, 5.0×, 7.6× and 11.9×,

using 16, 32, 48 and 64 maximum neighbours respectively. Similarly for sisim scenario,

speedups using 16 threads are 7.8×, 20.3×, 32.7× and 50.4×, using 16, 32, 48 and 64

maximum neighbours respectively. A summary of the results can be viewed in Figure

5.13.

Parallel Neighbour Search 101

Figure 5.11: Execution time [seconds] comparison between baseline sisim parallel
code and adapted sisim parallel code using the parallel neighbours search algorithm.

Parallel Neighbour Search 102

Figure 5.12: Speedup comparison between baseline sisim parallel code and adapted
sisim parallel code using the parallel neighbours search algorithm. Each speedup
curve is calculated as the time of a single-thread execution divided by a multi-thread

execution, using each code separately.

Parallel Neighbour Search 103

Figure 5.13: Speedup of parallel baseline codes versus parallel baseline with the
parallel neighbours search algorithm adapted.

Parallel Neighbour Search 104

5.3.2 Performance tests for parallel LVA-based codes

The first scenario, namely swiss-roll, is based in the swiss roll testing scenario, which

is extensively used in the Machine Learning community [Tenenbaum et al., 2000]. In

our case, a 3D swiss roll is prepared, which is posteriorly transformed into a 3D LVA

field. A synthetic dataset of 17280 samples is designed and attached to the domain

as sample data. The second scenario, namely escondida, is based on real mining 3D

data of 2376 diamond drill-hole samples with information of copper grade composites

and lithologies per sample. In this case, a synthetic fold-like LVA field is used for

simulation. The parameters of each scenario are detailed in Table 5.2. A schema of

the LVA fields and the drillhole data are depicted in Figures 5.14 and 5.15. In Figures

5.16 and 5.17 we can observe simulated domains in the swiss-roll scenario using LVA-

based sgs-lva. In the fist figure, 6 slices of simulated domains are presented, each one

generated with different values of r1 ratio. The second figure shows two 3D simulated

domains generated with LVA fields with different r1 ratio values. In Figures 5.18 and 5.19

we can observe simulated domains in the escondida scenario using LVA-based sisim-lva,

with 4 categorical values. As in the previous figures, the first one shows 3 slices of

simlated domains each one generated with different values of r1 ratio. The second one

shows a 3D simulated domain generated with an LVA field.

Parameter swiss-roll escondida

Domain nx× ny × nz 120× 120× 120 148× 220× 52

LVA field nx× ny × nz same as domain same as domain

Graph connectivity (offset) 1 1

Landmarks nx× ny × nz 10× 10× 10 8× 12× 14

kcova {32, 64, 125, 250, 500, 1000} {42, 84, 168, 336, 672, 1344}
ksearch {32, 64, 125, 250, 500, 1000} {42, 84, 168, 336, 672, 1344}
Max nodes for simulation 48 48

Kriging SK SK

Number of structures (type) 1 (exponential) 4 (exponentials)

Table 5.2: Default parameters for swiss-roll and escondida.

Parallel Neighbour Search 105

Figure 5.14: swiss-roll : different views of sample points with LVA field dataset (sam-
ple).

Parallel Neighbour Search 106

Figure 5.15: escondida: different views of sample drillhole points with LVA field
dataset (sample).

Parallel Neighbour Search 107

Figure 5.16: Slices of simulated domains for swiss-roll scenario using parallel LVA-
based SGS with different r1 ratio values from LVA field parameters.

Parallel Neighbour Search 108

Figure 5.17: Top: Simulated domain for swiss-roll scenario using parallel LVA-based
SGS with r1 = 5 and two threshold views. Bottom: Similar view with LVA parameter

r1 = 0.2.

Parallel Neighbour Search 109

Figure 5.18: Slices of simulated domains for escondida scenario using parallel LVA-
based SISIM with different r1 ratio values from LVA field parameters.

Parallel Neighbour Search 110

Figure 5.19: Top: Simulated domain for escondida scenario using parallel LVA-based
SISIM. Bottom: Three categories of the simulation on top.

All runs were executed in a single-node machine with Ubuntu 18.04.5 LTS with 2 ×
10-cores Intel(R) Xeon(R) CPU Silver 4210R at frequency 2.40GHz and a main memory

of 128 GB RAM. All Fortran programs were compiled using Intel ifort version 13.1.1

supporting OpenMP version 3.1, with options -fpp -mkl -openmp -O3 -mtune=native -

march=native. All C++ programs were compiled using GCC g++ version 6.2.0 support-

ing OpenMP version 4.5, with options -Ofast -fopenmp -funroll-loops -finline-functions

-ftree-vectorize.

Figure 5.20 shows execution time and speedup of the LVA-based sgs-lva parallel code

for the swiss-roll scenario, using kcova = ksearch = 32 and kcova = ksearch = 1000

control dimensions. Figure 5.21 shows execution time and speedup of the LVA-based

sisim-lva parallel code for the escondida scenario, using kcova = ksearch = 42 and

kcova = ksearch = 1344 control dimensions. On both figures, speedup is computed

using the baseline sequential code (middle plot) and fully optimized code (bottom plot).

Differences in speedup values on both plots, can be explained by large differences in

Parallel Neighbour Search 111

elapsed time of the original baseline code and the optimized single threaded execution of

the OpenMP code. In case of sisim-lva, this effect reduces three orders of magnitude

the baseline execution time, mostly due to the refactoring of neighbour search using

KDTree instead of exhaustive search.

Finally, to illustrate the contribution of the neighbour search acceleration and paralleliza-

tion to the overall speedup, in Table 5.3 we can observe execution time and speedup

against the baseline code version for LVA-based sgs-lva and sisim-lva using k∗ = 1000

and k∗ = 1344 respectively. The purpose of this information is to show the relevance

of the acceleration and parallelization of the neighbour search, which allows to improve

the speedup an order of magnitude for each scenario. Special relevance has the inclusion

of KDTree search in LVA-based sisim-lva which delivered a single contribution of two

orders of magnitude in a sequential execution.

Parallel Neighbour Search 112

Figure 5.20: Execution time [seconds] and speedup results for swiss-roll scenario
using parallel LVA-based SGS code.

Parallel Neighbour Search 113

Figure 5.21: Execution time [seconds] and speedup results for escondida scenario
using parallel LVA-based SISIM code.

Parallel Neighbour Search 114

Version
swiss-roll
k∗ = 1000

time [seconds]

swiss-roll
k∗ = 1000
speedup

escondida
k∗ = 1344

time [seconds]

escondida
k∗ = 1344
speedup

Baseline 45060 1× 1833020 1×
Parallel except NS

1 thread
12132 3.71× 16438 111.51×

Parallel except NS
20 threads

8615 5.23× 8596 213.24×

Parallel except NS +
KDTree optimized

20 threads
1682 26.77× 1648 1111.91×

Parallel with NS +
KDTree optimized

20 threads
792 56.89× 1006 1822.08×

Table 5.3: Contribution to speedup of neighbour search (NS) acceleration and par-
alellization on the swiss-roll and escondida scenarios. The initial parallel code didn’t
include parallel neighbour search, only calculation of distance matrix, embedding and
simulation were parallelized. Additionally, for LVA-based SISIM, KDTree was adapted

and included for execution.

5.4 Analysis

According to the results presented in Section 5.3, two aspects of the proposed imple-

mentation are reviewed in detail in this section: accuracy and efficiency.

5.4.1 Accuracy

In terms of accuracy, all parallel codes match exactly the baseline results (assuming the

same parameters and the same neighbour search method), regardless of the number of

threads used in the execution. This level of accuracy is obtained as result of the explicit

replication of the random path simulations, although re-ordering non-conflicting nodes

in order to allow parallel simulation of nodes in the same level.

Particularly for LVA-based codes, by decreasing the values of control variables ksearch

and kcova (which define the number of dimensions to use for neighbour search and covari-

ance distance calculation), both parallel and baseline codes can achieve faster results,

but with lower accuracy values (compared against larger values of control variables).

It will be a final user’s decision if he or she can tolerate lower levels of accuracy. In

case of LVA-based sgs-lva (Figure 5.20), the accuracy loss comparing executions with

k∗ = 1000 versus k∗ = 32 is 44.19% measured as the mean absolute percentage error

from Equation (3.4).

In order to visualize the effect of a decrease in these control variables, early experiments

were calculated using initial versions of the parallel codes sgs-lva and sisim-lva. Ta-

bles 5.4, 5.5 and 5.6 show the elapsed time, speedup and accuracy of several simulations

Parallel Neighbour Search 115

using different values of ksearch and kcova. The version of parallel code corresponds to

an adaptation of the parallel simulation method described in Chapter 4, without the

parallel neighbour strategy and also without optimized KDTree code (third row of Ta-

ble 5.3). We can observe that reductions in kcova have higher impact than reductions

in ksearch in the overall numerical accuracy. As mentioned before, the final user should

decide if lower values of the control variables are allowed, but these results indicate that

lower values of ksearch should be selected instead of kcova.

ksearch
kcova

32 64 125 250 500 1000

32 837.11 822.05 844.21 829.43 831.87 870.28

64 810.21 1138.59 1150 1151 1155 1137

125 863.7 1064.45 1647.53 1630 1692 1712

250 794.38 1218.87 1749 2868.92 2831 3043

500 884.9 1090.6 1652 2963 4955 5129

1000 857.9 1098.12 1653 2859 4853 8615

Table 5.4: Execution time [seconds] of swiss-roll scenario with 20 threads and different
values of control dimensions ksearch and kcova.

ksearch
kcova

32 64 125 250 500 1000

32 52.62 53.59 52.18 53.11 52.95 50.62

64 54.37 38.69 38.30 38.27 38.14 38.74

125 51.00 41.38 26.73 27.02 26.03 25.73

250 55.45 36.14 25.18 15.35 15.56 14.47

500 49.78 40.39 26.66 14.86 8.89 8.58

1000 51.35 40.11 26.65 15.40 9.07 5.11

Table 5.5: Speedup of swiss-roll scenario with 20 threads and different values of
control dimensions ksearch and kcova.

ksearch
kcova

32 64 125 250 500 1000

32 44.19 37.27 27.45 19.88 13.97 8.48

64 44.19 38.99 28.52 20.25 14.1 8.32

125 44.19 38.99 27.86 18.16 11.58 5.72

250 44.19 38.99 27.86 16.32 9.18 3.14

500 44.19 38.99 27.86 16.32 7.96 1.81

1000 44.19 38.99 27.86 16.32 7.96 0.00

Table 5.6: Mean Absolute Percentage Error [%] (MAPE from Eq. (3.4)) of swiss-roll
scenario with 20 threads and different values of control dimensions ksearch and kcova.

In case of LVA-based sisim-lva (Figure 5.21), the accuracy loss comparing executions

with k∗ = 1344 versus k∗ = 42 is 11.07% measured as the multiclass false negative rate

from Equation (3.9). Nonetheless, the proposed parallel codes deliver the same results as

the baseline for any fixed value of the control variables. Note that using the new parallel

codes, simulations are executed much faster. Therefore, performing computations for

low values of the control variables in search of a reduction of the execution time becomes

meaningless when the accuracy loss is high.

Parallel Neighbour Search 116

Similarly to sgs-lva case, early experiments were calculated using initial versions of the

parallel code sisim-lva. Tables 5.7, 5.8 and 5.9 show the elapsed time, speedup and

accuracy of several simulations using different values of ksearch and kcova. Unlike the

previous case, if lower values of the control variables are allowed, these results indicate

that lower values of kcova should be selected instead of ksearch. The reason of this

behaviour is that categorical values are simulated in this case, so numerical accuracy

is less sensitive to variations in the parameters, which is not the case using continuous

values.

ksearch
kcova

42 84 168 336 672 1344

42 1073,47 1220,85 1073,8 1086,65 1112,97 1179,43

84 1098,63 1495,45 1432,43 1456,27 1486,73 1495,97

168 1174,55 1514,7 2283,69 2242,73 2238,97 2270,47

336 1209,34 1535,82 2369,87 3420,79 3405,61 3470,72

672 1282,15 1604,53 2349,54 3464,45 5450 3746

1344 1283,06 1668,35 2402,35 3500,69 5588 8596

Table 5.7: Execution time [seconds] of escondida scenario with 20 threads and differ-
ent values of control dimensions ksearch and kcova.

ksearch
kcova

42 84 168 336 672 1344

42 1707,57 1501,43 1707,04 1686,85 1646,96 1554,16

84 1668,46 1225,73 1279,66 1258,71 1232,92 1225,31

168 1560,61 1210,15 802,66 817,32 818,69 807,33

336 1515,72 1193,51 773,47 535,85 538,24 528,14

672 1429,65 1142,40 780,16 529,09 336,33 489,33

1344 1428,63 1098,70 763,01 523,62 328,03 213,24

Table 5.8: Speedup of escondida scenario with 20 threads and different values of
control dimensions ksearch and kcova.

ksearch
kcova

42 84 168 336 672 1344

42 11.07 8.87 8.92 9.06 8.87 9.04

84 8.46 8.25 8.53 8.51 8.76 8.56

168 7.51 6.85 6.54 6.59 6.66 6.67

336 7.18 6.26 6.18 6.81 6.23 6.36

672 6.55 7.89 5.97 5.64 5.81 4.45

1344 6.28 5.97 5.95 4.86 3.91 0.00

Table 5.9: Multiclass False Negative Rate [%] (MFNR from Eq. (3.9)) of escondida
scenario with 20 threads and different values of control dimensions ksearch and kcova.

5.4.2 Efficiency

In terms of the achieved efficiency by the proposed parallelization, in Tables 5.12 and

5.13 we can observe a detailed profile of the refactored codes using 16 OpenMP threads

in sgsim and sisim, and 20 OpenMP threads in swiss-roll and escondida scenarios,

Parallel Neighbour Search 117

all executions using a maximum of 48 neighbours per simulation, and k∗ = 1000 and

k∗ = 1344 respectively on each LVA-based scenario. It is worth mentioning that these

tables are very different from the initial baseline profiling in Tables 5.10 and 5.11, where

the most relevant part was the neighbour calculation plus simulation as a whole. Now,

the relevant parts for non LVA-based scenarios are neighbours calculations for sgsim and,

again, simulation for sisim. For LVA-based scenarios, the relevant parts are distance

calculation, neighbours calculation and simulation (embedding building is not relevant

after applying optimizations in matrix operations and memory accesses). On non LVA-

based scenarios, both results have efficiencies of 62% and 63% respectively. On LVA-

based scenarios, both results have efficiencies of 42% and 44% respectively. These results

are acceptable for these applications since the baseline code and algorithms were not

designed originally to run on parallel architectures. Additionally, Figures 5.22 and 5.23

contain efficiency percentages for non LVA-based scenarios for values of up to 16 threads,

and LVA-based scenarios for values up to threads.

Execution step
%ttotal
(sgsim)

%ttotal
(sisim)

Read params 1.311 0.004

Neighbours calculation 68.965 26.092

Simulation 24.535 72.216

Write out 5.187 0.012

Table 5.10: Profiling of executions [% of elapsed time] with baseline non-LVA codes.
Left: sgsim scenario using baseline non LVA-based SGSIM with 50 × 106 domain
points, 48 maximum neighbours for kriging and 16 threads; total elapsed time was 11
minutes and 25 seconds. Right: sisim scenario using baseline non LVA-based SISIM
with 50×106 domain points, 48 maximum neighbours for kriging and 16 threads; total

elapsed time was 37 minutes and 21 seconds.

Execution step
%ttotal

kcova = ksearch = 1000
(swiss-roll)

%ttotal
kcova = ksearch = 1344

(escondida)

Read params 0.012 0.001

Connectivity graph building 0.233 0.001

Distance matrix building 10.341 2.178

Embedding building 9.831 5.134

Neighbours calc. + Sim. 79.576 96.585

Write out 0.006 0.001

Table 5.11: Profiling of executions [% of elapsed time] with baseline LVA codes.
Left: swiss-roll scenario using baseline LVA-based SGS with 1.7× 106 domain points,
48 maximum neighbours for kriging and 1000 landmarks; total elapsed time was 12
hours and 31 minutes. Right: escondida scenario using baseline LVA-based SISIM with
1.7×106 domain points, 48 maximum neighbours for kriging and 1344 landmarks; total

elapsed time was 509 hours and 17 minutes (21 days and 5 hours).

Parallel Neighbour Search 118

Execution step
%ttotal
(sgsim)

%ttotal
(sisim)

Read params 1.807 0.101

Neighbours calculation 46.240 15.111

Simulation 43.325 84.395

Write out 8.695 0.391

Table 5.12: Profiling of executions [% of elapsed time] with parallel refactored non-
LVA codes using 16 threads. Left: sgsim scenario using accelerated non LVA-based
SGSIM with 50×106 domain points, 48 maximum neighbours for kriging; total elapsed
time was 6 minutes and 10 seconds. Right: sisim scenario using accelerated non LVA-
based SISIM with 50× 106 domain points, 48 maximum neighbours for kriging; total

elapsed time was 21 minutes and 26 seconds.

Execution step
%ttotal

kcova = ksearch = 1000
(swiss-roll)

%ttotal
kcova = ksearch = 1344

(escondida)

Read params 0.03 0.01

Connectivity graph building 0.09 0.06

Distance matrix building 61.81 51.40

Embedding building 3.99 4.59

Neighbours calculation 15.20 10.22

Simulation 18.84 33.71

Write out 0.05 0.01

Table 5.13: Profiling of executions [% of elapsed time] with parallel refactored LVA
codes using 20 OpenMP threads. Left: swiss-roll scenario using accelerated LVA-based
SGS with 1.7 × 106 domain points, 48 maximum neighbours for kriging and 1000
landmarks; total elapsed time was 1 hour 47 minutes. Right: escondida scenario using
accelerated LVA-based SISIM with 1.7× 106 domain points, 48 maximum neighbours

for kriging and 1344 landmarks; total elapsed time was 2 hours 37 minutes.

Figure 5.22: Efficiency of parallel executions for sgsim and sisim scenarios compared
against theoretical maximum speedup. In this case a maximum of 16 threads are used

in order to compare results with a previous work from Section 4.3.

Parallel Neighbour Search 119

Figure 5.23: Efficiency of parallel executions for swiss-roll and escondida scenarios
compared against theoretical maximum speedup.

In Figure 5.24 we can observe an execution profile obtained with Extrae/Paraver tools of

sgsim non-LVA scenario using 16 threads. Each stage of the execution can be identified

approximately in this figure, using the ”State as is” visualization, which depicts the state

of execution of each thread. As stated in Table 5.10, the largest portions corresponds

to neighbours calculation and simulation. Figure 5.25 depicts a comparison between

the baseline from Chapter 4, and adapted non-LVA code sgsim with parallel neighbour

calculation. We can observe that the neighbour calculation part was accelerated by

using the parallel strategy which improves the overall execution. A small difference can

be observed between simulation stage on both profiles, which is explained by the usage

of a covariance lookup table in the baseline code. The usage of this lookup table will be

included in future versions of the new code.

In Figure 5.26 we can observe an execution profile obtained with Extrae/Paraver tools

of swiss-roll LVA scenario using 20 threads. As stated in Table 5.13, the largest por-

tion corresponds to distance matrix building, followed by neighbours calculation and

simulation. Additionally, in Figure 5.27 we can observe the cache misses at the three

architectural levels L1, L2 and L3. We can observe a higher number of cache misses

in L1 for distance matrix building and simulation stages, which indicate more mem-

ory operations accesing non-reusable locations. For L2 and L3 levels, distance matrix

calculation also contributes with the highest number of cache misses.

Parallel Neighbour Search 120

Figure 5.24: Profile of sgsim non-LVA scenario using sgsim parallel code with 16
threads, obtained with Extrae/Paraver tools.

Figure 5.25: Comparison of Extrae/Paraver execution profiles between sgsim non-
LVA scenarios: baseline (top) and with parallel neighbour calculation (bottom), using
the same time scale. Baseline execution of simulation stage uses a covariance lookup

table, not included yet in the new parallel code.

Parallel Neighbour Search 121

Figure 5.26: Profile of swiss-roll scenario using sgs-lva parallel code with 20 threads,
obtained with Extrae/Paraver tools.

Parallel Neighbour Search 122

Figure 5.27: L1 (top), L2 (middle) and L3 (bottom) cache misses of swiss-roll scenario
using sgs-lva parallel code with 12 threads, obtained with Extrae/Paraver tools.

Parallel Neighbour Search 123

The achieved speedup and efficiency obtained on both scenarios can be explained mostly

by three factors: 1) intrinsic efficiency of external libraries (C++ Boost and Intel MKL),

2) different sizes in the initial conditioning datasets, and 3) amount of work performed

in the simulation step.

Factor 1 impacts only on LVA-based scenarios, and depends explicitly on the perfor-

mance delivered by the external libraries (this topic is covered in Chapter 6). Even

though further optimizations can be done in these libraries, it is left out of the scope of

this work. In any case, on both scenarios we obtained similar performance since these

executions only depend on the number of domain points, number of landmarks and LVA

additional parameters, which remain on the same orders of magnitude across scenarios.

Regarding factor 2, also impacting only on LVA-based scenarios, in Figure 5.28 we can

observe the number of points assigned to each level, using a maximum of 48 neighbour

points per simulation for both scenarios. In the swiss-roll scenario, 396 initial condition-

ing points are used, which results in a larger point-level curve, and translates into more

overhead (resulting in less speedup and efficiency) due to multi-thread contingency and

context switching from level to level. On the contrary, in the escondida scenario, 2313

initial conditioning points are used, which results in a shorter curve, and consequently

less overhead (resulting in more speedup and efficiency). We can infer that a large

number of initial conditioning data will generate a short point-level curve with better

speedup and efficiency at lower execution time. In Figure 5.29 we can observe different

point-level curves for the same scenario with equal parameters, except the number of

initial conditioning data points. Curves using 48 maximum neighbours and 4% and

0.25% of initial conditioning data (continuous blue and orange curves) exemplify this

phenomenon.

Figure 5.28: Points per level on both test scenarios, swiss-roll (396 initial conditioning
data) and escondida (2313 initial conditioning data). All points in the same level are

simulated in parallel by P threads.

Parallel Neighbour Search 124

Figure 5.29: Points per level on swiss-roll scenario using different percentages of
initial conditioning data (4% and 0.25%, from a total of 1,728,000 points).

Regarding factor 3, which impacts on both non LVA and LVA-based scenarios, we can

identify two cases: keeping constant versus increasing the maximum number of neigh-

bours to use for simulation. Assuming the maximum number of neighbours doesn’t

change, the amount of work in the simulation step can be increased by assembling and

solving more kriging linear systems per simulation point. This situation occurs on non

LVA-based and LVA-based SISIM implementations, since for each category, a kriging lin-

ear system should be assembled and solved per each simulation point. In sisim scenario,

10 categories are simulated, which result in 10× more work per simulation compared

against sgsim scenario. In escondida scenario, 4 categories are simulated, which results

in 4× more work per simulation point compared against swiss-roll scenario. The in-

crement of work per simulation point doesn’t change the form of the point-level curve,

but it will impact on performance by delivering better speedup and efficiency values, at

higher execution time. Multi-threaded execution becoming more efficient as the prob-

lem becomes larger (more computing needed) is a well-known behaviour denoted weak

scalability (the reader can refer to the definition of Gustafson’s law from Hennessy and

Patterson [2012] or the original reference from Gustafson [1988]). On the other hand,

if the maximum number of neighbours increases, the amount of work in the simulation

step will be increased automatically, since the size of the kriging linear systems will in-

crease accordingly. Figure 5.30 shows the speedups obtained using 32 and 64 neighbours

as the maximum values for sgsim and sisim scnearios. Similarly, Figure 5.31 shows the

equivalent using 48 and 96 as the maximum for the swiss-roll and escondida scenarios.

On all figures we can observe an increment of the speedup values when higher number

of neighbours are used. A slight decline in the speedup trend can be observed only for

escondida using 96 neighbours, which is caused by overhead in the execution due to

multicore contingency and higher memory usage overall.

Parallel Neighbour Search 125

Figure 5.30: Speedup results for scenarios sgsim and sisim using 32 and 64 maximum
number of neighbours.

Parallel Neighbour Search 126

Figure 5.31: Speedup results for scenarios swiss-roll and escondida using 48 and 96
maximum number of neighbours.

Parallel Neighbour Search 127

5.4.3 Computational resources

In terms of computational resources, it uses all the arrays and data structures similarly

to the main algorithm of Chapter 4. Additionally, the parallelization strategy uses a

large amount of memory to perform the parallel neighbour search in the current im-

plementation version. The most memory consuming structure is the KDTree tree that

should be replicated by each thread in their private memory, which roughly needs the

same amount of space to store the embedding coordinates (grid nodes × landmark nodes

× floating-point type size). For this reason, LVA-based scenarios could only be tested

up to 1.7 million approximately, using almost all memory space (120 GB RAM in the

test machine). As explained in Chapter 4, several cloud computing providers can of-

fer virtual instances with even larger RAM memory sizes, so this usage pattern is not

prohibitive given the current technological trends.

In the next chapter, we will review additional acceleration topics needed only by LVA-

based codes. The effects in performance delivered by these additional topics were already

included in the results presented in this chapter, but their detailed description was left

aside in their own chapter.

Chapter 6

Parallel LVA routines

As described in Algorithms 4 and 5, three extra tasks are needed to execute LVA-based

methods: build a connectivity graph, build a distance matrix and build the final embed-

ding to use for further distance calculations. In this chapter we will review acceleration

aspects related with the last two tasks, where parallel algebraic operations and paral-

lel shortest path computation are included. Even though these contributions do not

represent an advancement in terms of algorithmic contributions, their integration in the

parallel LVA-based codes sgs-lva and sisim-lva represent a significant impact towards

their adoption from scholars and practicioners of Geostatistics.

6.1 Algebraic operations

6.1.1 Context

In the baseline implementation of sgs-lva1, several algebraic optimizations can be

applied, which can be divided in two groups: memory access optimizations and use of

an optimized BLAS implementation. The first group is related with an extensive analysis

of memory access in Fortran arrays, which should follow column-major order. Although

this optimization is basic, it is worth to mention in its own section, due to the amount

of different Fortran codes that will be modified. The second group is related specifically

with the embedding building described in Algorithm 8. Usage of Intel MKL matrix-

matrix and eigenvalue/eigenvector calculation is presented, in replacement of intrinsic

Fortran routines or non-optimized versions of the same algebraic operations.

1https://sites.ualberta.ca/\simjbb/LVA_code.html

129

https://sites.ualberta.ca/$\sim $jbb/LVA_code.html

Parallel LVA routines 130

6.1.2 Memory access optimizations

As described in Algorithm 4, lines 2, 3 and 4 represent the building steps of the embed-

ding Z. In terms of code, the embedding is stored in a two dimensional array denoted

coord ISOMAP. This array is used to store intermmediate calculations in the routines

building distance matrix and building embedding, and finally it contains the mul-

tidimensional coordinates of each domain point. In lines 13 and 14 of the same algo-

rithm, the array coord ISOMAP is accessed several times to calculate euclidean distances

between multidimensional points.

The main problem with this array is that the original allocation instruction is

real*8, allocatable, dimension (:,:) :: coord_ISOMAP

...

allocate(coord_ISOMAP(NODES,xyzland))

being NODES the number of domain points and xyzland the number of landmark points.

This memory allocation doesn’t follow the optimal access pattern when covariance cal-

culation is computed for kriging estimation. Figure 6.1 shows the lines of code used

for this task. In lines 6 to 13, euclidean distance between coord ISOMAP(ind1,1:dim)

and coord ISOMAP(ind2,1:dim) is computed, and in lines 25 to 30 the squared eu-

clidean distance is computed between data points coord ISOMAP(ind1,d tree+1:dim)

and coord ISOMAP(index,d tree+1:dim).

On each of these memory accesses, the pattern is as follow

coord_ISOMAP(i,j)

...

coord_ISOMAP(i,j+k)

which doesn’t follow the column-major order defined in Fortran, contrary to

coord_ISOMAP(j ,i)

...

coord_ISOMAP(j+k,i)

and consequently generates many more cache memory misses, increasing the overall

execution time.

The solution implemented to avoid this issue was to introduce a transposed array denoted

coord ISOMAP trans, allocated as

real*8, allocatable, dimension (:,:) :: coord_ISOMAP_trans

...

allocate(coord_ISOMAP_trans(xyzland,NODES))

Parallel LVA routines 131

01 do i=1,nclose

02 ind1=results(i).idx

03 do j=i,nclose

04 ind2=results(j).idx

05 dist=

06 sqrt(

07 sum(

08 (

09 coord_ISOMAP(ind1,1:dim) -

10 coord_ISOMAP(ind2,1:dim)

11)**2

12)

13)

14 call cova3_1D(dist,1,nst,MAXNST,c0,it,cc,aa,cmax,

15 a(neq*(i-1)+j))

16 a(neq*(j-1)+i) = a(neq*(i-1)+j)

17 end do

18 end do

19 ...

20 do i=1,nclose

21 ind1 = results(i).idx

22 vra(i,:)=sim(ind1,:)

23 if(d_tree/=dim) then

24 dist=results(i).dis +

25 sum(

26 (

27 coord_ISOMAP(ind1,d_tree+1:dim) -

28 coord_ISOMAP(index,d_tree+1:dim)

29)**2

30)

31 else

32 dist=results(i).dis

33 end if

34 dist=sqrt(dist)

35 call cova3_1D(dist,1,nst,MAXNST,c0,it,cc,aa,cmax,r(i))

36 end do

Figure 6.1: Original usage of array coord ISOMAP in baseline code sgs-lva for co-
variance calculation used by kriging estimation.

and each memory access to coord ISOMAP is changed for compliant column-major order

memory access to coord ISOMAP trans, as depicted in Figure 6.2. Early tests showed

speedup improvements between 1.5× and 3× only introducing the memory access op-

timization. Although it consists in a simple and basic optimization, it is an important

step in any performance improvement analysis, specially if baseline legacy sub-optimal

codes are used as starting points.

Parallel LVA routines 132

01 do i=1,nclose

02 ind1=results(i).idx

03 do j=i,nclose

04 ind2=results(j).idx

05 dist=

06 sqrt(

07 sum(

08 (

09 coord_ISOMAP_trans(1:dim,ind1) -

10 coord_ISOMAP_trans(1:dim,ind2)

11)**2

12)

13)

14 call cova3_1D(dist,1,nst,MAXNST,c0,it,cc,aa,cmax,

15 a(neq*(i-1)+j))

16 a(neq*(j-1)+i) = a(neq*(i-1)+j)

17 end do

18 end do

19 ...

20 do i=1,nclose

21 ind1 = results(i).idx

22 vra(i,:)=sim(ind1,:)

23 if(d_tree/=dim) then

24 dist=results(i).dis +

25 sum(

26 (

27 coord_ISOMAP_trans(d_tree+1:dim,ind1) -

28 coord_ISOMAP_trans(d_tree+1:dim,index)

29)**2

30)

31 else

32 dist=results(i).dis

33 end if

34 dist=sqrt(dist)

35 call cova3_1D(dist,1,nst,MAXNST,c0,it,cc,aa,cmax,r(i))

36 end do

Figure 6.2: Optimized usage of array coord ISOMAP trans in accelerated code
sgs-lva for covariance calculation used by kriging estimation.

6.1.3 Intel MKL implementation

The second group of algebraic optimizations is related with the usage of specialized

libraries to perform matrix-matrix and eigenvalue/eigenvector computations. Particu-

larly, we introduce the usage of Intel MKL library in the baseline code sgs-lva. As

described before, the main routine that computes this kind of operations is related with

the embedding building depicted in Algorithm 8. At code level, this algorithm is im-

plemented as depicted in Figure 6.3. In line 4 a matrix-matrix multiplication is applied

using the native operation matmul, coupled with transpose (BTB from line 7 of Algo-

rithm 8). Immediately after that, eigenvalue/eigenvector calculation is computed using

the routine eig, which internally calls LAPACK [Anderson et al., 1999] method DSYEV2.

2http://www.netlib.org/lapack/explore-html/d2/d8a/group__double_s_yeigen_

ga442c43fca5493590f8f26cf42fed4044.html

http://www.netlib.org/lapack/explore-html/d2/d8a/group__double_s_yeigen_ga442c43fca5493590f8f26cf42fed4044.html
http://www.netlib.org/lapack/explore-html/d2/d8a/group__double_s_yeigen_ga442c43fca5493590f8f26cf42fed4044.html

Parallel LVA routines 133

Finally, a sequence of matrix-vector multiplications are applied in lines 9 to 14 between

arrays coord ISOMAP and vectors (Bvi from lines 8 and 9 of Algorithm 8).

01 subroutine MDS_ISOMAP(...)

02 ...

03 !!! B^T*B

04 subB2=matmul(transpose(coord_ISOMAP),coord_ISOMAP)

05 ...

06 call eig(subB2,evalues,vectors,ubound(subB2,1))

07 ...

08 !!! B*V

09 do i=1,NODES

10 do j=1,dim

11 vec_temp(j)=sum(coord_ISOMAP(i,:)*vectors(:,j))

12 end do

13 coord_ISOMAP(i,1:dim) = vec_temp

14 end do

15 ...

16 end subroutine MDS_ISOMAP

Figure 6.3: Original usage of matrix-matrix and eigenvalue/eigenvector calculation
in baseline code sgs-lva for embedding Z generation.

In these three cases, a routine from Intel MKL library is used instead, specifically DGEMM3

and DSYEV. In case of DSYEV the change is transparent since it is already calling the

same LAPACK method, so only changes in the Makefile are needed (remove LAPACK

objects compiled from source and add link to the library instead). In case of DGEMM,

Figure 6.4 depicts its usage instead of line 3 from Figure 6.3, and Figure 6.5 depicts its

usage instead of lines 7 to 12 from Figure 6.3.

1 M=xyzland

2 K=NODES

3 N=xyzland

4 ALPHA=1.0

5 BETA=0.0

6

7 CALL MKL_SET_NUM_THREADS(num_threads)

8 CALL DGEMM(’T’,’N’,M,N,K,ALPHA,

9 coord_ISOMAP,K,coord_ISOMAP,K,BETA,subB2,M)

Figure 6.4: Optimized usage of matrix-matrix product BTB calculation in baseline
code sgs-lva for embedding Z generation.

3http://www.netlib.org/lapack/explore-html/d1/d54/group__double__blas__level3_

gaeda3cbd99c8fb834a60a6412878226e1.html

http://www.netlib.org/lapack/explore-html/d1/d54/group__double__blas__level3_gaeda3cbd99c8fb834a60a6412878226e1.html
http://www.netlib.org/lapack/explore-html/d1/d54/group__double__blas__level3_gaeda3cbd99c8fb834a60a6412878226e1.html

Parallel LVA routines 134

01 M=NODES

02 K=xyzland

03 N=dim

04 ALPHA=1.0

05 BETA=0.0

06 allocate(coord_ISOMAP_out(M,N))

07

08 CALL MKL_SET_NUM_THREADS(num_threads)

09 CALL DGEMM(’N’,’N’,M,N,K,ALPHA,

10 coord_ISOMAP,M,vectors,K,BETA,coord_ISOMAP_out,M)

11

12 coord_ISOMAP(:,1:dim) = coord_ISOMAP_out

13 deallocate(coord_ISOMAP_out)

Figure 6.5: Optimized usage of matrix-matrix product BV calculation in baseline
code sgs-lva for embedding Z generation.

Alternative methods can be applied to compute the eigenvectors and eigenvalues of BTB.

The first alternative uses the symmetric rank-k operation DSYRK4 applied on B, which

allows us to obtain the upper or lower part of BTB. With this operation we can skip the

first matrix-matrix multiplication using DGEMM to compute BTB, and posteriorly we can

still use DSYEV with the corresponding parameter UPLO equal to ’U’ or ’L’ accordingly.

A second alternative is based on the singular value decomposition operation DGESVD5

applied on B. With this operation we can skip the first matrix-matrix multiplication

DGEMM and also the posterior call to DSYEV. By computing the singular values and vectors

of B = UΣVT , the eigenvalues and vectors of BTB can be computed as follows:

BTB = VΣTUTUΣVT

= V(Σ2)VT (6.1)

Comparative tests using both alternative methods are presented in the next section.

6.1.4 Results

In order to measure the performance of the parallel methods, we will use the swiss-roll

scenario described in Section 5.3.2 with parameters described in Table 6.1. With these

parameters, the matrix B of Algorithm 8 will have dimensions N = 1, 728, 000 and

n = 1000.

All runs were executed in a single-node virtual machine with Ubuntu 18.04.5 LTS with

32-cores Intel(R) Xeon(R) CPU at frequency 2.30GHz and a main memory of 118 GB

4http://www.netlib.org/lapack/explore-html/d1/d54/group__double__blas__level3_

gae0ba56279ae3fa27c75fefbc4cc73ddf.html
5http://www.netlib.org/lapack/explore-html/d1/d7e/group__double_g_esing_

ga84fdf22a62b12ff364621e4713ce02f2.html

http://www.netlib.org/lapack/explore-html/d1/d54/group__double__blas__level3_gae0ba56279ae3fa27c75fefbc4cc73ddf.html
http://www.netlib.org/lapack/explore-html/d1/d54/group__double__blas__level3_gae0ba56279ae3fa27c75fefbc4cc73ddf.html
http://www.netlib.org/lapack/explore-html/d1/d7e/group__double_g_esing_ga84fdf22a62b12ff364621e4713ce02f2.html
http://www.netlib.org/lapack/explore-html/d1/d7e/group__double_g_esing_ga84fdf22a62b12ff364621e4713ce02f2.html

Parallel LVA routines 135

Parameter swiss-roll

Domain nx× ny × nz 120× 120× 120

LVA field nx× ny × nz same as domain

Graph connectivity (offset) 1

Landmarks nx× ny × nz 10× 10× 10

kcova 1000

ksearch 1000

Max nodes for simulation 48

Kriging SK

Number of structures (type) 1 (exponential)

Table 6.1: Default parameters for swiss-roll to test performance of Intel MKL rou-
tines.

RAM. The cloud provider in this case is Google Cloud Platform [Google, 2021], and

the virtual machine is a n1-standard-32 with CPU platform Intel Haswell. All Fortran

programs were compiled using Intel Fortran ifort version 2021.2.0 supporting OpenMP

version 5.1, with options -fpp -mkl -qopenmp -O3 -mtune=native -march=native.

In terms of performance improvement, by default the Intel MKL library will use the

maximum number of parallel threads available in the operating system, which is why we

set a guardrail by setting MKL SET NUM THREADS equal to the number of threads defined at

execution time in the environment variable OMP NUM THREADS. By using a single-thread,

the baseline execution time is 566 seconds for BTB from line 7 of Algorithm 8, and 6362

seconds for BV from lines 8 and 9 of Algorithm 8. Figure 6.6 depicts the execution

time using the optimized code based on Intel MKL library implementation of DGEMM.

Figures 6.8 and 6.7 depicts speedup values compared against the baseline single-thread

execution. We can observe that a considerable gain in performance (7.0× and 69× using

1 OpenMP thread, and 81× and 557× using 16 OpenMP threads) is achieved just by

using Intel MKL for these two algebraic operations. If a large number of threads are

used, it is more difficult to keep increasing the speedup since less work is assigned to

each thread and more overhead is generated to synchronize all threads. This fact can

be observed in the profiles of Figures 6.9, where the computation of BTB and BV

contains several synchronization steps at the end of each thread execution (red states in

the profiles). For completeness, Figure 6.10 depicts the computation of the eigenvalues

and eigenvectors using DSYEV, which shows several calls to inner routines such as DGEMM

and DTRMM.

Parallel LVA routines 136

Figure 6.6: Execution time of optimized matrix-matrix product calculations BTB
and BV.

Figure 6.7: Speedup of optimized matrix-matrix product calculation in the case BTB.

Figure 6.8: Speedup of optimized matrix-matrix product calculation in the case BV.

Parallel LVA routines 137

Figure 6.9: Profile of embedding building routines obtained with Extrae/Paraver,
involving matrix-matrix product calculations BTB and BV.

Figure 6.10: Zoom in the profile of Figure 6.9, with focus on the eigenvalue and
eigenvector calculation with DSYEV.

Parallel LVA routines 138

As an end-to-end performance test, the MKL library is integrated in the code sgs-lva

from Chapter 5, in order to measure the overall performance impact in the application.

The scenario simulated in this test is swiss-roll using 17280 sample conditioning data

points. Two versions of this code were executed using 20 threads, with and without the

integrated MKL code. The version without MKL integration for embedding calculation

uses the original code from Figure 6.3. The execution time for embedding calculation

without MKL integration was 6321 seconds, and the execution time obtained with MKL

integration was 68 seconds. Regarding the overall execution time, without MKL inte-

gration it was 7507 seconds, and with MKL integration it was 625 seconds.

Regarding the alternative methods using DSYRK and DGESVD, although both of them

can improve some aspects of the computation, no significant improvements are obtained

empirically. In the first alternative, the use of DSYRK effectively reduces the number of

operation by half compared against DGEMM, which reduces the execution time according

to Table 6.2. In the second alternative, the usage of DGESVD improves the numerical

stability of the problem, however it increases the overall execution time in this part of

the application. Based on these results, the usage of DSYRK can improve the execution

of this part, making it a feasible alternative in case of even more acceleration is needed

in this part or larger scenarios are being studied. It is left as future work the usage

of improved versions of singular value decomposition instead of DGESVD, such as HQRRP

[Martinsson et al., 2017] or randUTV [Martinsson et al., 2019].

N Threads

Elapsed
time [s]

N threads
DGEMM+DSYEV

Elapsed
time [s]

N threads
DSYRK+DSYEV

Elapsed
time [s]

N threads
DGESVD

1 143.346 79.142 196.611

2 71.181 45.343 104.482

4 41.463 26.135 71.649

8 34.743 20.099 58.915

16 22.565 18.198 62.089

Table 6.2: Execution time (seconds) for computing eigenvalues and eigenvectors of
BTB using three methods with different MKL routines.

The integration of the MKL library accelerates dramatically the execution of the em-

bedding calculation step, speeding up the overall execution as a consequence (12× in

the end-to-end test). Its SIMD computation model and the multithreading capabili-

ties, makes this library suitable for being integrated in any further test and additional

implementations (in the next section, the MKL integration is active on all tests).

Parallel LVA routines 139

6.2 Single Source Shortest Path

6.2.1 Context

A brief description of the sequential implementation used in the baseline code is included

in Section 2.3.2.3. More specifically, the current baseline codes sgs-lva and sisim-lva

execute a system call to a compiled C++ application with the sequential implementation

of the Boost Library. This application implements the steps described in Algorithm 7,

by using routines from the Boost Graph Library:

#include <boost/graph/adjacency_list.hpp>

#include <boost/graph/graph_traits.hpp>

#include <boost/graph/dijkstra_shortest_paths.hpp>

In line 6 of this algorithm, the routine dijkstra shortest paths is called in order to

return the shortest distances through an undirected graph G from node i to every other

node. In line 7 we can observe an I/O operation to write/append those distances in a

file named dist cpp.out, which can be large (in the order of GB) if large domains are

being simulated.

As a first task, before acceleration, a refactor is neeeded in orded to unify the execu-

tion, avoiding I/O communication through files. This is mentioned in Section 3.3.1,

through the integration of C++ code into Fortran using C wrappers and the Fortran

module iso c binding. In the next two sections, we will describe details about the

parallelization of Algorithm 7 using OpenMP, CUDA and a hybrid approach.

6.2.2 OpenMP implementation

The OpenMP implementation of Algorithm 7 is based on a straight-forward split of

the landmark point loop in line 5 across T threads involved in the parallel execution.

Algorithm 16 depicts the modified steps in order to use OpenMP. The split was im-

plemented inside a parallel region where each thread defines lower and upper indices

to traverse in the loop (lines 5 to 8). In this parallel region, G and coordsIsomap

should be shared among all threads, in order to reduce the memory usage in this ap-

plication. No block cyclic strategies are needed to balance the workload. The reason

for this is that each iteration comprises the same amount of work, which is a single

run of dijkstra shortest paths starting in a specific landmark point (line 10). After

shortest path calculation, the result should be saved in the shared array coordsIsomap

(line 11).

Parallel LVA routines 140

Input:
edges: two dimensional array with edges defining graph G;
weights: one dimensional array with edge weights (distances) defining graph G;
nodes2cal: one dimensional array with landmark points indices of ΩL;
coordsIsomap: multi-dimensional array with embedding coordinates from Z;
(N,n): size of domain points N and landmark points n;

T : number of parallel threads;
1 D← zeros(N,n)

2 NLandmark ← Load from array nodes2cal

3 G← Load from arrays edges and weights

4 // array coordIsomap and graph G are shared among threads
5 for threadId ∈ {1, . . . , T} in parallel do
6 B ← d n

T
e

7 nmin, nmax← (threadId− 1) ∗B,min{threadId ∗B,n}
8 for j ∈ {nmin . . . , nmax} do

9 i← NLandmark(j)
10 D:,i ← run dijsktra boost(i,G)
11 Save D:,i into array coordsIsomap

12 end

13 end

Output: Array coordIsomap with shortest distances between landmarks and domain points

Algorithm 16: Routine build distance matrix using OpenMP and refactored
code

It is important to notice that only this implementation was included in the results

presented in Section 4.3 and 5.3. Additional parallel versions, such as using CUDA or

hybrid OpenMP/CUDA were implemented a posteriori as experimental improvements.

6.2.3 CUDA implementation

An alternative implementation is based on CUDA, specifically using the cuGraph6 li-

brary. It belongs to the RAPIDS78 open source software project, that enables several

data science and analytics pipelines entirely on GPUs. The implementation proposed

doesn’t split the landmark loop of line 5 from Algorithm 7. Instead, it uses a specialized

routine from the library, named sssp, and additional routines from the libraries:

#include <cugraph/algorithms.hpp>

#include <cugraph/graph.hpp>

Algorithm 17 describes the modified steps in order to use CUDA. Its steps are similar

to the OpenMP version of the previous section, with key differences in the memory

allocation. The distance matrix D and graph G should be defined in the GPU device

and also in the CPU host (lines 1, 2 and 4). As mentioned before, no split of the

landmark loop is applied, instead of that, a GPU device routine is executed to search

6https://github.com/rapidsai/cugraph
7https://rapids.ai/
8https://www.nvidia.com/en-us/deep-learning-ai/software/rapids/

https://github.com/rapidsai/cugraph
https://rapids.ai/
https://www.nvidia.com/en-us/deep-learning-ai/software/rapids/

Parallel LVA routines 141

for shortest distances (line 6). After that, the resuting matrix should be copied back

from the GPU device to the CPU host (line 7), and posteriorly the result should be

saved in the array coordsIsomap (line 8).

Additional changes are needed in the Makefile of the project, in order to compile CUDA

codes and link with cuGraph library application. In order to identify and commit these

changes, an exhasutive revision of cuGraph testing cases using C++ was done.

Input:
edges: two dimensional array with edges defining graph G;
weights: one dimensional array with edge weights (distances) defining graph G;
nodes2cal: one dimensional array with landmark points indices of ΩL;
coordsIsomap: multi-dimensional array with embedding coordinates from Z;
(N,n): size of domain points N and landmark points n;

1 Dcpu ← zeros(N,n)
2 Dgpu ← zeros(N,n) // memory allocation on GPU device through thrust library

3 NLandmark ← Load from array nodes2cal

4 Ggpu ← Load from arrays edges and weights // memory allocation on GPU device through
cugraph::Graph object

5 for i ∈ NLandmark do
6 Dgpu

:,i ← run dijsktra cugraph(i,Ggpu) // operation executed on GPU device

7 cudaMemcpy(Dcpu
:,i ,D

gpu
:,i) // cudaMemcpy is needed to extract the result from GPU device to

CPU host
8 Save Dcpu

:,i into array coordsIsomap

9 end

Output: Array coordIsomap with shortest distances between landmarks and domain points

Algorithm 17: Routine build distance matrix using CUDA and refactored code

6.2.4 Hybrid OpenMP/CUDA implementation

An experimental feature was developed, which allows the combined execution between

the CPU and GPU, through the OpenMP and CUDA implementations from the previous

sections. Algorithm 18 depicts the modified steps in order to use hybrid OpenMP/CUDA

implementation. The key parameter is λ which represents the percentage of landmark

points that should be processed by the GPU device. With this parameter, two parallel

threads are spawned, one to execute the CUDA-based method from Algorithm 17 (line

5), and the other to execute OpenMP-based method from Algorithm 16 (line 9). In

case of OpenMP, two additional threads are needed to manage the parallel executions

(OMP NUM THREADS should be increased by 2), and also nested active parallel regions

should be activated with at least 2 levels (OMP MAX ACTIVE LEVELS environment variable

greater or equal to 2).

The hybrid approach is designed to explore potential advantages when the CPU can also

process a part of the workload. As we will see in the next section, marginal gains are

observed using hybrid execution according to the performance tests presented. However,

Parallel LVA routines 142

Input:
edges: two dimensional array with edges defining graph G;
weights: one dimensional array with edge weights (distances) defining graph G;
nodes2cal: one dimensional array with landmark points indices of ΩL;
coordsIsomap: multi-dimensional array with embedding coordinates from Z;
(N,n): size of domain points N and landmark points n;
λ: percentage of workload to process by the CPU;

1 // array coordIsomap is shared among threads for threadId ∈ {1, 2} in parallel do
2 // Each thread will process in parallel GPU and CPU blocks
3 if threadId = 1 then
4 // GPU block

5 Process CUDA-based build distance matrix for the first (1− λ) ∗ n landmark points

6 end
7 if threadId = 2 then
8 // CPU block

9 Process OpenMP-based build distance matrix for the last λ ∗ n landmark points

10 end

11 end

Output: Array coordIsomap with shortest distances between landmarks and domain points

Algorithm 18: Routine build distance matrix using OpenMP/CUDA and
refactored code

it is an interesting case that can be exploited in future applications or scenarios, not

exclusively for LVA-based geostatistical simulations.

6.2.5 Results

In this section we present execution time measurements of the parallel single source

shortest path implementation, using only OpenMP, only CUDA or a hybrid OpenM-

P/CUDA implementation. We use as baseline the LVA-based code sgs-lva using 1000

landmark points, with the shortest path calculation implemented in C++ using the

Boost Graph Library. The parallel implementations are described in Sections 6.2.2,

6.2.3 and 6.2.4.

All runs were executed in a single-node virtual machine with Ubuntu 18.04.5 LTS with

32-cores Intel(R) Xeon(R) CPU at frequency 2.30GHz and a main memory of 118 GB

RAM. The cloud provider in this case is Google Cloud Platform [Google, 2021], and

the virtual machine is a n1-standard-32 with CPU platform Intel Haswell. The sys-

tem contains 2× NVIDIA Tesla P100 GPUs, with CUDA version 11.0 and driver ver-

sion 450.51.06. All Fortran programs were compiled using Intel Fortran ifort ver-

sion 2021.2.0 supporting OpenMP version 5.1, with options -fpp -mkl -qopenmp -O3

-mtune=native -march=native. All C++ programs were compiled with GNU C++

compiler g++ version 9.4.0 supporting OpenMP version 4.5, with options -fopenmp

-mcmodel=medium -Wall -Wextra -pedantic -Ofast -funroll-loops -finline-functions -

ftree-vectorize. All CUDA programs were compiled with NVIDIA nvcc release 11.0

Parallel LVA routines 143

version V11.0.194, with several options mostly extracted from RAPIDS cuGraph test-

ing Makefile files.

Execution time results are showed in Figure 6.11. It presents results of hybrid executions,

ranging from λ equal to 0% (CUDA-only) to 16% on the top image, and from λ equal to

84% to 100% (OpenMP-only) on the bottom image. OpenMP tests were executed using

16 and 32 threads. CUDA tests were executed using a single Tesla P100 GPU device.

We can observe that on each test, the CUDA only implementation is faster than the

OpenMP-only. Performance improvements are obtained using the hybrid implementa-

tion in ranges near λ = 6% using 16 OpenMP threads. However, the additional speedup

with respect to the CUDA-only implementation is only 1.032×, which is not conclusive

enough to be considered better than the only CUDA execution. Performance obtained

by the best hybrid implementeation is 3.40× using 16 OpenMP threads and 2.43× using

32 OpenMP threads.

Figure 6.11: Execution time using hybrid OpenMP/CUDA execution, from 0% to
16% of CPU usage (top), and from 84% to 100% of CPU usage (bottom).

Parallel LVA routines 144

As mentioned in Table 5.13 from Section 5.3, computing the distance matrix takes the

largest portion of the execution time using the fully accelerated versions of LVA-based

simulation codes sgs-lva and sisim-lva. By analyzing the execution profile of Figures

6.12 and 6.13, obtained with nvprof and NVIDIA Visual Profiler, the largest part of

execution inside the GPU corresponds to the kernel SSSP cuGraph routines relax edges

with 41% and populate frontier and preds with 33%.

Similarly to the previous section, as an end-to-end performance test, the cuGraph CUDA

library is integrated in the code sgs-lva in order to measure the overall performance

impact in the application. Table 6.3 shows the elapsed time and speedup obtained

using different number of threads with the integrated cuGraph code versus the baseline

code (which already was optimized and uses the MKL library for algebraic operations,

according to Section 6.1).

N Threads
Elapsed
time [s]

N threads

Speedup
Baseline/
N threads

Elapsed
time [s]

N threads
+ CUDA

Speedup
Baseline/
N threads
+ CUDA

Speedup
N threads/
N threads
+ CUDA

1 5761 7.821 1763 25.558 3.267

2 3052 14.764 975 46.215 3.130

4 1677 26.869 594 75.858 2.823

5 1404 32.094 521 86.487 2.694

8 984 45.792 414 108.840 2.376

10 854 52.763 385 117.038 2.218

16 685 65.781 349 129.111 1.962

20 629 71.637 343 131.370 1.833

Table 6.3: Execution time (seconds) and speedup of sgs-lva obtained using cuGraph
CUDA-based shortest path calculation. Single-thread baseline execution takes 45060

seconds (12 hours and 31 minutes).

Based on the results presented in this section, the adoption of CUDA in the shortest

path calculation for distance matrix building can improve the performance considerably,

which opens new ways to accelerate the overall execution.

Additional parallel applications 145

Figure 6.12: Profile of execution in the GPU device using NVIDIA Visual Profiler
(first zoom).

Additional parallel applications 146

Figure 6.13: Profile of execution in the GPU device using NVIDIA Visual Profiler
(second zoom).

Chapter 7

Additional parallel applications

A parallel implementation of the semivariogram computation is presented using multi-

core processors coupled with a GPU as hardware accelerator. The implementation is

based on OpenMP and CUDA and gamv application from GSLIB library is used as

baseline. Several tests are shown, calculating semivariograms for one and two millions

of scattered data points. Scalability and elapsed time results are reported, using double-

precision floating point arithmetic on a multi-core CPU coupled with two models of

GPU devices: Tesla T4 and Volta V100. Finally, an analytical model is presented to

estimate the optimal point used to split the workload between both systems.

7.1 Context

The measurement of spatial variability or continuity of a variable in a geographic region

of study is a key step in any geostatistical analysis. Inference of the spatial structural

model (semivariogram) has been a constant challenge, since its definition can affect

further processes, such as uncertainty quantification of variables in space. In order to

minimize the degree of uncertainty involved, the inference process must be as accurate

as possible, attaining all spatial variations and patterns given the current sample data.

In the particular case of large scattered data sets, this task can be cumbersome and

error-prone, and even prohibitive when large grids of nodes are analyzed. Even though

not all industrial or academic case studies will have this particular constraint, there are

still some scenarios where the task of spatial structure inference in large grids must be

computed as accurate and fast as possible. One of these scenarios arises with the advent

of parallel and distributed large-scale applications. In these cases, the geostatistical

codes can generate estimations and simulations on large grids in affordable execution

time, with almost the same numerical precision as the non-parallel codes. By using

parallel two-point statistics, such as sequential simulation methods (see Sections 2.2.1.6

147

Additional parallel applications 148

and 2.2.1.7), or parallel multi-point statistics [Mariethoz, 2010, Peredo and Ortiz, 2011,

Peredo et al., 2014, Straubhaar et al., 2011, Tahmasebi et al., 2012], many large-scale

realizations can be generated. In this scenario, structural validation, cross-validation

or comparison between different realizations of large-scale results becomes prohibitive.

Another similar scenario is related with the usage of large-scale unstructured grids for

estimation and simulation, as mentioned by Manchuk et al. [2005], Zaytsev et al. [2016]

and Biver et al. [2017]. If millions of estimated/simulated scattered nodes must be

spatially analyzed to test the validity of the predictions, a fast method that allows

that task becomes essential. Large unstructured grids are intrinsically more difficult

to analyze since they are by definition irregular, which can increase the computational

work needed to obtain insights about the spatial structure.

In this chapter, a hybrid parallel implementation of the semivariogram computation is

presented, designed to run in CPUs and GPUs simultaneously. A similar approach was

presented in Section 6.2.4, in the context of LVA-based codes and shortest path calcu-

lation for distance matrix calculation. The current implementation for CPU is based

in OpenMP and the implementation for GPU is based on CUDA. With this hybrid

parallel approach, large datasets can be processed fast in order to obtain an experimen-

tal semivariogram. Additionally, since GPUs are designed to be energy-efficient, lower

computing costs can be reached at higher performance rates.

In the next section, a description of the non-parallel version is presented, using as base

code the gamv routine from GSLIB library[Deutsch and Journel, 1998]. Section 7.2 the

parallel versions based on CUDA and OpenMP/CUDA are described, implemented in

the same base code. Finally, results are shown in terms of execution time and speedup.

7.1.1 Baseline gamv implementation

The gamv routine calculates several spatial continuity measures, in an experimental

way, using the available dataset as source. Available measures to be calculated are:

semivariogram, cross-semivariogram, covariance, correlogram, general relative semivar-

iogram, pairwise relative semivariogram, semivariogram of logarithms, semimadogram

and indicator semivariogram. The description of each measure can be found in Deutsch

and Journel [1998] (III.1). The semivariogram is one the most used, which is defined

assuming stationarity as

γ(h) =
1

2N(h)

N(h)∑
i=1

(Z(ui)− Z(ui + h))2 (7.1)

where h is the separation vector, N(h) is the number of pairs separated by h (with

certain tolerance), Z(ui) is the value at the start of the vector (tail) defined in the

Additional parallel applications 149

geographical location ui and Z(ui + h) is the corresponding value at the end (head)

defined in the translated geographical location ui + h. In Algorithm 19 we can see a

simplified version of the algorithm implemented in gamv, using a single variable and

direction. We can observe in lines 3 and 4 that a triangular iteration space must be

traversed in order to compare all possible pairs of locations (ui,uj). For each pair,

denoted tail and head, the approximate distance between each location is measured and

compared with a lag separation kh, as shown in lines 5 and 6. Without loss of generality

and for the sake of simplicity, tolerance parameters in the tail and head separation are

not included in this algorithm. If the separation between the tail and head is similar to

kh, statistics related to spatial measure type τ are computed between Z(ui) and Z(uj),

and stored in the array β. These operations are encapsulated in the pseudo-routine

save statistics, which has different spatial measures implemented, indexed by τ . The

steps of the algorithm are essentially the same regardless of the spatial measure to be

calculated. For instance, to calculate the semivariogram of equation 7.1, the squared

differences (Z(ui) − Z(uj))
2 must be stored in β. For each separation lag indexed by

k, the statistics are accumulated in β(k), for instance β(k) = β(k) + (Z(ui)− Z(uj))
2.

Finally, using the statistics stored in β, the pseudo-routine build variogram computes

the final spatial measure values in vector γ, which is stored in file output.txt.

Input:
Separation vector h;
Number of lags #lags;
Spatial measure type τ ;
Set of geographical locations {u1, . . . ,un} with values Z(ui);

1 Ω← {u1, . . . ,un} ;
2 β ← zeros(#lags);
3 for i ∈ {1, . . . , |Ω|} do
4 for j ∈ {1, . . . , i} do
5 for k ∈ {1, . . . ,#lags} do
6 if ||(uj − ui)− kh‖ ≈ 0 then
7 save statistics(β, k,Z(ui),Z(uj), τ);
8 end

9 end

10 end

11 end
12 γ ← build variogram(β, τ);
13 write(output.txt,γ);

Output: Output file with γ values

Algorithm 19: Simplified pseudo-code of gamv, measurement of spatial variabili-
ty/continuity (single-thread algorithm)

7.2 Algorithm

Two implementations are presented, a fully CUDA version and a hybrid OpenM-

P/CUDA version. A fully OpenMP version was previously published by Peredo et al.

Additional parallel applications 150

[2015a], so no further analysis was done on this specific version. Nevertheless, the hybrid

version is based on this previous implementation, with slight modifications that allow

the distribution of workload between the CPU and GPU.

7.2.1 CUDA implementation

The parallel implementation of the semivariogram computation is based on the fact that

all statistics between pairs of points computed by the pseudo-routine save statistics

of Algorithm 19 (line 7) can be performed independently. By allowing parallel computa-

tion of pair statistics, the array β can be computed faster. The parallelization pattern in

this case is known as domain decomposition or partitioning [Wilkinson and Allen, 2005],

and is based on the division of the initial data of the problem and the parallel processing

upon the divided data by multiple tasks. The values β(k) for each k are computed in

parallel by aggregating several results obtained in small sub-domains. For this particular

problem, the CUDA framework is specially well-suited, since it is designed to manage

massive amounts of threads to perform parallel tasks efficiently in the GPU.

Figure 7.1-top depicts the non-parallel computation between pairs of points (denoted

as pairs hence forward) acoording to the triangular iteration space defined by loops in

lines 3 and 4 of Algorithm 19. In this case, the indexes are ranging from i ∈ {1, . . . , N}
and j ∈ {1, . . . , i}, with N = 8 and a total of 36 pairs. The processing order of all pairs

is indexed by a number from 1 to 36 following a row-wise order. The domain, in this

case the triangular matrix, say A, is partitioned in three parts, two smaller triangular

sub-matrices A11 and A22 and a smaller square matrix A21 with sides bN/2c, as shown

in Figure 7.1-bottom for N = 8. Using this domain decomposition, the CUDA grid of

thread blocks is defined to fit inside the sub-matrix A21. In this case, four 4 blocks

(blue, pink, green and orange) with 2 × 2 threads each can be launched. Each thread

will perform two or three computations, one in the sub-matrix A21 and the others in

some of the triangular sub-matrices. Following the diagram of Figure 7.1-bottom, the

first thread of the first block will process the pair with index 11 in A21 (dashed dark

blue/pale blue), and the pairs with indexes 1 (dark blue) and 15 (pale blue) in the other

sub-matrices. The second thread will process the pair with index 12 (pale blue) and

20 (pale blue). The third thread will process the pair with index 16 (dark blue) and 2

(dark blue), and so on.

In Figure 7.2 a diagram of the computation flow for the first thread block (blue) is

depicted. Each thread, represented by a different colored arrow, traverses through the

corresponding pairs and computes statistics of two pairs (red and gray arrows) or three

pairs (yellow and white arrows). The same flows are depicted in Figure 7.3 for the

second (pink) and third thread blocks (green). In these cases, only two computations

Additional parallel applications 151

Figure 7.1: Top: Non-parallel computation through pairs of values. Bottom: Domain
decomposition using four thread blocks with 2×2 threads each (A11, A21 and A22). The
colors of the thread blocks are blue, pink, green and orange, with pale and dark colors
to differentiate computations performed in the upper sub-matrix or lower sub-matrix.

are performed by each thread, allowing to calculate statistics of two pairs of locations.

The total number of threads to be launched must be equal to the number of elements of

A21, i.e. equal to the size of the smaller square matrix defined by the domain partition-

ing. Since each GPU device has specific parameters regarding the maximum number

of threads per block and maximum number of blocks to be launched, the maximum

Additional parallel applications 152

scenario to be handled by the proposed parallelization will depend on those parameters

and the available hardware to be used.

Figure 7.2: Parallel computations in the first thread block (blue) using 2× 2 threads
per block. A22 is depicted transposed to facilite the reading.

The steps of the CUDA based parallelization are described in Algorithm 20. The first

step is the definition of the grid of blocks and the number of threads per block that must

fit in A21, bN/2c × bN/2c threads with N = |Ω| (lines 3 and 4). After that, all threads

belonging to all blocks in the grid are executed in parallel, and each thread is responsible

of computing statistics on two or three pairs of locations. The local indexes in A21,

denoted as (i∗, j∗), are computed according to the thread and block indexes previously

defined (pseudo routine compute indexes small square in line 6). For completeness,

the global indexes in the large square matrix with dimensions N × N are denoted as

(i, j). In the example of Figure 7.1-bottom, the local index (i∗, j∗) = (0, 0) is assigned

to the pair 11 with global index (4, 0); the local index (0, 1) is assigned to the pair 12

with global index (4, 1); and so on. In sub-matrix A21, pairs are processed using the

global indexes (i, j) = (i∗ + |Ω|/2, j∗), since the row indexes of A21 start in |Ω|/2 (lines

7 to 12). Pairs in A11 are processed using the global indexes (i, j) = (i∗, j∗), since both

indexes start at 0 (lines 13 to 16). Next, pairs in A22 are processed using the global

indexes (i, j) = (i∗ + |Ω|/2, j∗ + |Ω|/2), since both indexes start at |Ω|/2 (lines 17 to

24). The diagonal values in A11 are processed using the global indexes (i, j) = (i∗, i∗)

(lines 18 to 21). This last step is complemented with the processed pair from the lower

Additional parallel applications 153

triangular sub-matrix, because if i∗ = j∗ then the global indexes (i∗ + |Ω|/2, i∗ + |Ω|/2)

and (i∗, i∗) are processed, as shown for the pairs 11 and 17 from Figure 7.1-bottom.

For each block of threads, all statistics computed by those threads are accumulated in

shared arrays stored in each block’s shared memory, which are then aggregated in a

device global memory array copied into the host array β.

Figure 7.3: Parallel computations in the second (pink color, left) and third thread
block (green color, right) using 2× 2 threads per block. A22 is depicted transposed to

facilite the reading.

Additional parallel applications 154

Input:
Separation vector h;
Number of lags #lags;
Spatial measure type τ ;
Set of geographical locations {u1, . . . ,un} with values Z(ui);
(nthreads.x, nthreads.y) dimensions of each thread block;(⌊

|Ω|/2
nthreads.x

⌋
,
⌊
|Ω|/2

nthreads.y

⌋)
dimensions of thread block grid;

1 Ω← {u1, . . . ,u|Ω|} ;
2 β ← zeros(#lags);
3 T ← nthreads.x× nthreads.y;

4 B ←
⌊
|Ω|/2

nthreads.x

⌋
×
⌊
|Ω|/2

nthreads.y

⌋
;

5 for all threads t ∈ {1, . . . , T} in all blocks b ∈ {1, . . . , B} do
/*Initialize local indexes in A12*/

6 (i∗, j∗)← compute indexes small square(t, b) ;
/*Compute global indexes from local indexes*/

7 (i, j)← (i∗ + |Ω|/2, j∗) ;
8 for k ∈ {1, . . . ,#lags} do
9 if ||(uj − ui)− kh‖ ≈ 0 then

10 save statistics(β, k,Z(ui),Z(uj), τ);
11 end

12 end
13 if i∗ > j∗ then
14 (i, j)← (i∗, j∗);
15 Repeat lines 8 to 12 with the updated indexes (i, j);

16 end
17 else if i∗ ≤ j∗ then
18 if i∗ == j∗ then
19 (i, j)← (i∗, i∗);
20 Repeat lines 8 to 12 with the updated indexes (i, j);

21 end
22 (i, j)← (j∗ + |Ω|/2, i∗ + |Ω|/2);
23 Repeat lines 8 to 12 with the updated indexes (i, j);

24 end

25 end
26 γ ← build variogram(β, τ);
27 write(output.txt,γ);

Output: Output file with γ values

Algorithm 20: Simplified pseudo-code of gamv-cuda, measurement of spatial vari-
ability/continuity (multi-thread CUDA algorithm)

7.2.2 Hybrid OpenMP/CUDA implementation

The hybrid parallelization is based on the CUDA parallel algorithm described in the

previous section, coupled with OpenMP multi-thread processing, as depicted in Algo-

rithm 22. The strategy in this case is to split the triangular matrix from Figure 7.1-left

into two sub-domains, as depicted in Figure 7.4-left. The parameter λ ∈ [0, 1] controls

the amount of work to be performed in the CPU, leaving the remaining 1 − λ portion

to be performed in the GPU. Both workloads are executed concurrently using CUDA

Streams [NVIDIA Corporation, 2017], which allows to run two overlapping compute ker-

nels in the CPU and GPU. The CUDA parallelization strategy is the same as described

in the previous section, but applied to a smaller triangular sub-matrix (lines 4 and 5 of

Additional parallel applications 155

Algorithm 22). The only difference is the grid of thread blocks provided to the CUDA

kernels. In this case, the grid of thread blocks has size
⌊

((1−λ)|Ω|)/2|
nthreads.x

⌋
×
⌊

((1−λ)|Ω|)/2
nthreads.y

⌋
,

and the thread indexes must be translated by λ|Ω| in the X and Y dimensions. The

OpenMP parallelization strategy consists in a parallel loop traversing the index j from

1 to λ|Ω|, where each thread processes a chunk of rows, each one ranging from j to |Ω|
(Algorithm 21, called from line 6 of Algorithm 22). Each parallel part stores their results

in separate arrays, βOMP and βCUDA respectively, which are added and processed to

build the spatial measure γ (line 8 of Algorithm 22). In Figure 7.4-right we can observe

different distributions of the execution time for each workload, using different values of

λ. The objective of the hybrid parallel strategy is to exploit all resources of the machine,

not only the GPU, resulting in a faster execution where the processing power of the CPU

can handle some of the workload otherwise delivered to the GPU. For instance, example

(B) of Figure 7.4-right shows a scenario where the overall execution time is reduced by

delegating 15% of the workload to the CPU. The optimal value for λ must be estimated

according to the hardware features of each system, and also after empirical validation

testing different values of λ.

Figure 7.4: Left: Domain decomposition in the hybrid parallel algorithm, using
OpenMP (gray sub-domain) and CUDA (green sub-domain). Right: Different tim-
ing distributions varying λ, using the hybrid parallel strategy with OpenMP (gray) and
CUDA (green). (A) Using only the GPU with λ = 0%. (B) Execution acceleration
using λ = 15%. (C) CPU dominance against the GPU using λ = 20%. (D) Using only

the CPU with λ = 100%.

Additional parallel applications 156

Input:
Separation vector h;
Number of lags #lags;
Spatial measure type τ ;
Set of geographical locations {u1, . . . ,un} with values Z(ui);
Portion of work to be performed in CPU λ;

1 Ω← {u1, . . . ,u|Ω|} ;
2 βOMP ← zeros(#lags);
3 for j = 1 to λ|Ω| in parallel (OpenMP) do
4 for i = j to |Ω| do
5 for k ∈ {1, . . . ,#lags} do
6 if ||(uj − ui)− kh‖ ≈ 0 then
7 save statistics(βOMP , k,Z(ui),Z(uj), τ);
8 end

9 end

10 end

11 end

Output: Vector βOMP with computed statistics

Algorithm 21: Simplified pseudo-code of OpenMP part from gamv-cuda-omp

Input:
Separation vector h;
Number of lags #lags;
Spatial measure type τ ;
Set of geographical locations {u1, . . . ,un} with values Z(ui);
Portion of work to be performed in CPU λ

1 Ω← {u1, . . . ,u|Ω|} ;
2 βOMP ← zeros(#lags);
3 βCUDA ← zeros(#lags);

//Work offloaded to the GPU using CUDA Streams to overlap CPU work

4 Modify Algorithm 2 by replacing |Ω|/2 for ((1− λ)|Ω|)/2 (shrinking), adding λ|Ω| to each
component of (i, j) (translation) and returning the statistics vector β instead of writing the
variogram results;

5 βCUDA ← Compute previously modified Algorithm 2 with parameters h, #lags, τ ,

{(ui, Z(ui) : i = 1, . . . , n}, (nthreads.x, nthreads.y) and
(⌊

((1−λ)|Ω|)/2
nthreads.x

⌋
,
⌊

((1−λ)|Ω|)/2
nthreads.y

⌋)
;

//Work processed in parallel with OpenMP in the CPU

6 βOMP ← Compute Algorithm 3 with parameters h, #lags, τ , {(ui, Z(ui) : i = 1, . . . , n} and λ;
7 Synchronize the offloaded CUDA Stream and the CPU processing;
8 γ ← build variogram(βOMP + βCUDA, τ);
9 write(output.txt,γ);

Output: Output file with γ values

Algorithm 22: Simplified pseudo-code of gamv-cuda-omp, measurement of spatial
variability/continuity (multi-thread CUDA/OpenMP algorithm)

7.3 Results

Two methods are presented to show the results of the proposed hybrid parallelization.

The first one is based on a set of experiments using a pre-defined search space for λ in

each case study. This can give us an initial estimation of the speedup values that can be

obtained with the application. The second method is based on an analytical expression

Additional parallel applications 157

to infer the optimal value for λ, with an additional heuristic to search the optimal value

in practical scenarios.

The case studies presented in this section use scattered data extracted at random from

large-scale simulations with approximately 100 million grid nodes (800× 800× 160 and

420×600×400), generated using parallel versions of the classical simulation codes sgsim

and sisim, developed by Deutsch and Journel [1998] and parallelized as described in

Chapter 4. Two random scattered data sets were extracted from each grid (1M and 2M

locations, with M=106). The parameters used in each data set are depicted in Table 7.1,

and some samples of obtained semivariograms are depicted in Figure 7.5. For each data

set, three execution modes were compared: Fortran-based single-thread classical imple-

mentation of gamv as described in Deutsch and Journel [1998]; CUDA-based multi-thread

parallelization; and hybrid CUDA/OpenMP parallel implementation. Additionaly, all

executions are compared against a benchmark implementation using optimized Fortran

code and multi-thread OpenMP parallelization as described in Peredo et al. [2015a].

Data sets sgsim sisim

variogram type exponential indicator categorical (10 categories)

lags 40 20

lag separation 20 5

lag tolerance 5 1

azimuth, dip (0,0) (0,0)

tolerance (90,90) (90,90)

bandwidth (20,20) (20,20)

Table 7.1: gamv parameters for different scattered data sets. Description of each
parameter can be reviewed in Deutsch and Journel [1998], Section III.1.

All runs were executed on two cloud virtual instances. The first one, g4dn.8xlarge,

using double-precision floating point arithmetic in a single-node machine with Ubuntu

18.04.5 LTS, with a 32-core Intel(R) Xeon(R) CPU E5-2690 v3 at frequency 2.60GHz,

and a memory hierarchy of 112GB RAM, 30MB L3 cache, 256KB L2 cache and

32KB/32KB L1d/L1i cache. A single Tesla T4 GPU is attached to the system, with

40 streaming multiprocessors (SM) and CUDA driver version 11.0. The second one,

g5.8xlarge, using double-precision floating point arithmetic in a single-node machine

with Ubuntu 18.04.5 LTS, with a 32-core Intel(R) Xeon(R) CPU E5-2686 v4 at fre-

quency 2.30GHz, and a memory hierarchy of 240GB RAM, 45MB L3 cache, 256KB L2

cache and 32KB/32KB L1d/L1i cache. A single Volta V100 SXM2 GPU is attached to

the system, with 80 streaming multiprocessors and CUDA driver version 11.0. Details of

these machines can be found in technical documents from the cloud computing provider

Amazon Web Services [AWS, 2021].

Additional parallel applications 158

Figure 7.5: Sample semivariograms obtained using sgsim (top) and sisim (bottom)
scattered data sets.

All programs were compiled using GCC gfortran version 7.5.0 supporting OpenMP

version 4.5, with the options -O3 -cpp in all cases and -fopenmp in the OpenMP multi-

thread executions. The CUDA programs were compiled using NVIDIA nvcc release

11.0, version V11.0.221, with the options -m64 -c -O3 -arch=sm 35.

7.3.1 Experimental results

Initially, experimental values for λ need to be calculated. In order to do that, execution

time results are depicted in Figures 7.6, 7.7, 7.8 and 7.9. On each figure, we can observe

the execution time using different values of λ, ranging from λ = 0% to 12.5%, with

different steps between 0% to 0.1%, 0.1% to 1.6%, 1.6% to 3.2%, 4% to 6%, and 6.25%

to 12.25%. For each scattered data set, the same experimental optimal values, denoted

λ∗exp, are obtained consistently, independently of the size of the scattered dataset. In

sgsim scenario and using the Tesla T4 GPU, using 4 OpenMP threads the experimental

minimum estimate is λ∗exp = 2.0%, using 8 threads the value is λ∗exp = 4.5%, and using

Additional parallel applications 159

16 threads the value is λ∗exp = 8.25%. Results for sisim scenario using the Tesla T4

GPU, using 4, 8 and 16 threads are 2.4%, 5.0% and 9.25% respectively. Results for

sgsim using the Volta V100 and 4, 8 and 16 threads are 0.8%, 1.6%, 3.2% respectively,

and results for sisim using the Volta V100 and 4, 8 and 16 threads are 0.8%, 2.0% and

4.0% respectively.

The results of the executions in single-thread, CUDA and hybrid mode (best scenario)

can be viewed in Tables 7.2 and 7.3. OpenMP benchmark results, using optimized

code from Peredo et al. [2018], can be viewed in Table 7.4. These codes have been

compiled and executed in the instance g4dn.8xlarge. Single-thread GSLIB sequential

code was compiled and executed in the instance g4dn.8xlarge (2.60GHz), and the

same execution time was used to benchmark executions in the instance g5.8xlarge

(2.30GHz). It is expected to adjust the experiments according to the execution time in

the instance g5.8xlarge, to be included in the final version of the document, but in

any case, speedup results should be higher according to the CPU frequency difference

of both instances.

Figure 7.6: Execution time using different values for λ, with 4, 8 and 16 threads in
sgsim scattered data set, using a GPU Tesla T4. Case studies with 1M (top) and 2M

(bottom) points.

Additional parallel applications 160

Figure 7.7: Execution time using different values for λ, with 4, 8 and 16 threads in
sisim scattered data set, using a GPU Tesla T4. Case studies with 1M (top) and 2M

(bottom) points.

Additional parallel applications 161

Figure 7.8: Execution time using different values for λ, with 4, 8 and 16 threads in
sgsim scattered data set, using a GPU Volta V100. Case studies with 1M (top) and

2M (bottom) points.

Additional parallel applications 162

Figure 7.9: Execution time using different values for λ, with 4, 8 and 16 threads in
sisim scattered data set, using a GPU Volta V100. Case studies with 1M (top) and

2M (bottom) points.

Additional parallel applications 163

Case # points N Threads
GSLIB
(Single
thread)

CUDA
(Tesla
T4)

Hybrid
(Tesla T4

+
N threads)

Speedup
CUDA/
Hybrid

Speedup
GSLIB/
CUDA

Speedup
GSLIB/
Hybrid

sgsim 1,000,000 4 26050 60.12 59.35 1.01 433.301 438.920
sgsim 1,000,000 8 26050 60.12 55.5 1.08 433.301 469.369
sgsim 1,000,000 16 26050 60.12 51.32 1.17 433.301 507.599
sgsim 2,000,000 4 103783 238.11 238.59 0.99 435.861 434.984
sgsim 2,000,000 8 103783 238.11 220.26 1.08 435.861 471.184
sgsim 2,000,000 16 103783 238.11 203.32 1.17 435.861 510.441

sisim 1,000,000 4 2938 23.456 23.680 0.99 125.255 124.070
sisim 1,000,000 8 2938 23.456 22.220 1.05 125.255 132.223
sisim 1,000,000 16 2938 23.456 20.443 1.14 125.255 143.716
sisim 2,000,000 4 11754 94.363 90.113 1.04 124.561 130.436
sisim 2,000,000 8 11754 94.363 84.863 1.11 124.561 138.505
sisim 2,000,000 16 11754 94.363 78.486 1.20 124.561 149.759

Table 7.2: Execution time (seconds) and speedup obtained using a GPU Tesla T4.
Experimental optimal values for sgsim case: λ∗exp = 2.0% (4 threads), λ∗exp = 4.5% (8
threads), and λ∗exp = 8.25% (16 threads). Experimental optimal values for sisim case:
λ∗exp = 2.4% (4 threads), λ∗exp = 5% (8 threads), and λ∗exp = 9.25% (16 threads).

Case # points N Threads
GSLIB
(Single
thread)

CUDA
(Volta
V100)

Hybrid
(Volta V100

+
N threads)

Speedup
CUDA/
Hybrid

Speedup
GSLIB/
CUDA

Speedup
GSLIB/
Hybrid

sgsim 1,000,000 4 26050 30.16 28.96 1,04 863.726 899.516
sgsim 1,000,000 8 26050 30.16 28.57 1,05 863.726 911.795
sgsim 1,000,000 16 26050 30.16 27.78 1,08 863.726 937.724
sgsim 2,000,000 4 103783 110.21 107.75 1,02 941.684 963.183
sgsim 2,000,000 8 103783 110.21 106.14 1,03 941.684 977.793
sgsim 2,000,000 16 103783 110.21 102.96 1,07 941.684 1007.993

sisim 1,000,000 4 2938 12.51 12.35 1.01 234.852 237.894
sisim 1,000,000 8 2938 12.51 12.18 1.02 234.852 241.215
sisim 1,000,000 16 2938 12.51 12.18 1.02 234.852 241.215
sisim 2,000,000 4 11754 42.79 41.90 1.02 274.690 280.525
sisim 2,000,000 8 11754 42.79 41.30 1.03 274.690 284.600
sisim 2,000,000 16 11754 42.79 39.82 1.07 274.690 295.178

Table 7.3: Execution time (seconds) and speedup obtained using a GPU Volta V100.
Experimental optimal values for sgsim case: λ∗exp = 0.8% (4 threads), λ∗exp = 1.6% (8
threads), and λ∗exp = 3.2% (16 threads). Experimental optimal values for sisim case:

λ∗exp = 0.8% (4 threads), λ∗exp = 2% (8 threads), and λ∗exp = 4% (16 threads).

points N Threads

sgsim

Optimized
OpenMP

(N threads)

sisim

Optimized
OpenMP

(N threads)

sgsim

Speedup
GSLIB/
OpenMP

sisim

Speedup
GSLIB/
OpenMP

1,000,000 4 1336 371 19.498 7.919
1,000,000 8 669 186 38.938 15.795
1,000,000 16 336 94 77.529 31.255
2,000,000 4 5347 1493 19.409 7.872
2,000,000 8 2675 747 38.797 15.734
2,000,000 16 1342 376 77.334 31.260

Table 7.4: Execution time (seconds) and speedup obtained using optimized Fortran
code and multi-thread OpenMP parallelization. These results are computed for bench-

mark purposes.

7.3.2 Analytical results

In order to understand the intrinsic relation between different values for λ and the

overall performance, a key concept is the total number of pairs of points processed by

the method. As depicted in Figure 7.4, if N scattered datapoints are being processed,

Additional parallel applications 164

the total workload can be represented as

Wtotal =
N ∗ (N + 1)

2
(7.2)

the GPU and CPU workloads as

Wgpu = (1− λ)2Wtotal (7.3)

Wcpu = Wtotal − (1− λ)2Wtotal

= (1− 1 + 2λ− λ2)Wtotal

= (2λ− λ2)Wtotal (7.4)

With this definitions, the execution time of the hybrid mode can be expressed as

Thybrid(Wtotal) = max{Tgpu(Wgpu), Tcpu(Wcpu)} (7.5)

with Thybrid, Tgpu and Tcpu the execution time of each mode applied to each specific

workload. If we assume that the execution time is a linear function of the workload,

Equation (7.5) can be expressed as

Thybrid(Wtotal) = max{Kgpu(1− λ)2Wtotal,Kcpu(2λ− λ2)Wtotal}

= KgpuWtotal max

{
(1− λ)2,

Kcpu

Kgpu
(2λ− λ2)

}
(7.6)

The values of Kgpu and Kcpu can be interpreted as the experimental speedup rate ob-

tained on each system. In our case, since the Tesla T4 GPU contains 40 SM1, we can

consider Kgpu ≈ 1
40 and Kcpu ≈ 1

T where T is the number of threads used by the CPU

(4, 8 or 16). Based on this assumption, we have

Kcpu

Kgpu
> 1 (7.7)

In order to find the value of λ that minimizes Equation (7.6), Figure 7.10 depicts the

constraint that should be fulfilled:

(1− λ)2 =
Kcpu

Kgpu
(2λ− λ2) (7.8)

By solving the previous equation, the minimum values for λ are (only solutions in range

[0, 1] are allowed):

λ∗analytic =
Kgpu +Kcpu ±

√
(Kgpu +Kcpu)Kcpu

Kgpu +Kcpu
(7.9)

1https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/

turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf

https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf

Additional parallel applications 165

Figure 7.10: Execution time of hybrid mode across different values of λ according to
Equations (7.6) and (7.7).

By applying the analytical expression from Equation (7.6), we obtain analytical optimal

values, denoted λ∗analytic, described in Tables 7.5 and 7.6. Kgpu and Kcpu are calcu-

lated from speedup measurements reported in Tables 7.5 and 7.6, columns ”Speedup

GSLIB/CUDA” and ”Speedup GSLIB/OpenMP” respectively (K is the inverse value

of the speedup reported in each case). For each value λ∗analytic inferred by the analytical

expression with the prior speedup value, an execution was tested, obtaining its specific

elapsed time and speedup against the sequential GSLIB execution.

Case # points N Threads Kgpu Kcpu λ∗analytic[%]
Elapsed
time [s]

Speedup
GSLIB/
Hybrid

sgsim 1000000 4 0.002278 0.051287 2.149 56.61 460.166

sgsim 1000000 8 0.002130 0.025681 3.906 56.26 463.028

sgsim 1000000 16 0.001970 0.012898 6.860 54.31 479.653

sgsim 2000000 4 0.002298 0.051522 2.159 241.52 429.707

sgsim 2000000 8 0.002122 0.025775 3.879 234.12 443.289

sgsim 2000000 16 0.001959 0.012930 6.810 220.14 471.440

sisim 1000000 4 0.008059 0.126582 3.039 24.02 122.314

sisim 1000000 8 0.007562 0.063492 5.471 23.00 127.739

sisim 1000000 16 0.006958 0.031994 9.370 21.17 138.781

sisim 2000000 4 0.007666 0.127032 2.887 90.21 130.295

sisim 2000000 8 0.007219 0.063556 5.237 86.35 136.120

sisim 2000000 16 0.006677 0.031989 9.043 79.93 147.053

Table 7.5: Execution time (seconds) and speedup obtained from sgsim and sisim

scattered data sets using a GPU Tesla T4. Kgpu, Kcpu and analytical optimal λ∗ values.

Additional parallel applications 166

Case # points N Threads Kgpu Kcpu λ∗analytic[%]
Elapsed
time [s]

Speedup
GSLIB/
Hybrid

sgsim 1000000 4 0,001111 0,051285 1,066 28.29 920.820

sgsim 1000000 8 0,001096 0,025681 2,069 27.73 939.415

sgsim 1000000 16 0,001066 0,012898 3,894 25.89 1006.179

sgsim 2000000 4 0,001038 0,051520 0,992 98.58 1052.779

sgsim 2000000 8 0,001022 0,025774 1,926 96.12 1079.723

sgsim 2000000 16 0,000992 0,012930 3,628 90.14 1151.353

sisim 1000000 4 0.004257 0.126276 1.644 14.29 205.598

sisim 1000000 8 0.004257 0.063308 3.202 14.04 209.259

sisim 1000000 16 0.004257 0.031994 6.056 13.22 222.239

sisim 2000000 4 0.003640 0.127020 1.402 45.44 258.670

sisim 2000000 8 0.003640 0.063552 2.746 44.85 262.073

sisim 2000000 16 0.003640 0.031989 5.246 42.68 275.398

Table 7.6: Execution time (seconds) and speedup obtained from sgsim and sisim

scattered data sets using a GPU Volta V100. Kgpu, Kcpu and analytical optimal λ∗

values.

7.3.3 Heuristic results

Analytical results need at least two prior executions to estimate λ∗analytic, using only the

GPU device and using only the CPU cores. A drawback of this requirements is that

the only-CPU execution probably will take much more time than what we are trying to

optimize. In real applications, several runs of semivariogram calculation can be executed

by researchers and practicioners over different simulated domains with the same amount

of points (hundresds of simulations that should be statistically analyzed using gamv).

Based on this empirical usability feature, an heuristic is proposed to search quickly for

the heuristic optimal value λ∗heuristic. It is based in the same analytical equations (7.6)

and (7.7), but instead of using two prior executions, it uses a starting value λ0 obtained

using Kgpu = 1
#SM and Kcpu = 1

#Cores . After this, a binary search can be applied in

the direction towards λ = 0 first, or posteriorly towards λ = 1 if needed. Sequential

iterations can be applied to update λk for k > 0. In Table 7.7 we can observe seven

steps of a binary search starting from λ0 = 10.55%. The optimal value λ∗heuristic in this

case is obtained in step k = 5.

Tables 7.8 and 7.9 show columns Kgpu and Kcpu based on the SMs and Cores of each

system, elapsed time and speedup, after applying the heuristic in each case after different

number of iterations of the dichotomic search. The stopping criteria is set in k = 7

iterations or until the execution time is faster than the experimental execution time.

Additional parallel applications 167

k Step applied λk Elapsed time [s]

0 λ0 10.55 251,11

1 λ1 = λ0

2
5.27 226,76

2 λ2 = λ1

2
2.63 239,00

3 λ3 = λ1+λ2

2
3.95 231,88

4 λ4 = λ1+λ3

2
4.61 228,64

5 λ5 = λ1+λ4

2
4.94 223,91

6 λ6 = λ1+λ5

2
5.11 224,46

Table 7.7: Dichotomic search example for sgsim case with 2000000 points, starting
from λ0 = 10.55% using a GPU Tesla T4 and 16 OpenMP threads.

Case # points N Threads Kgpu Kcpu λ∗
heuristic[%] Iterations

Elapsed
time [s]

Speedup
GSLIB/
Hybrid

sgsim 1000000 4 0.025 0.2500 2.326 7 57.77 450.926
sgsim 1000000 8 0.025 0.1250 4.356 7 55.1 472.777
sgsim 1000000 16 0.025 0.0625 7.742 7 51.04 510.384
sgsim 2000000 4 0.025 0.2500 2.326 7 230.6 450.056
sgsim 2000000 8 0.025 0.1250 4.084 8 217.98 476.112
sgsim 2000000 16 0.025 0.0625 8.226 11 201.38 515.359

sisim 1000000 4 0.025 0.2500 2.908 7 23.19 126.693
sisim 1000000 8 0.025 0.1250 5.445 7 22.15 132.641
sisim 1000000 16 0.025 0.0625 11.613 7 20.33 144.515
sisim 2000000 4 0.025 0.2500 2.326 7 88.59 132.679
sisim 2000000 8 0.025 0.1250 4.356 7 84.39 139.282
sisim 2000000 16 0.025 0.0625 9.677 7 77.73 151.216

Table 7.8: Execution time (seconds) and speedup obtained from sgsim and sisim

scattered data sets using a GPU Tesla T4 (40 SM). Kgpu and Kcpu are used to obtain
λ0 and heuristicaly obtained optimal λ∗heuristic values.

Case # points N Threads Kgpu Kcpu λ∗
heuristic[%] Iterations

Elapsed
time [s]

Speedup
GSLIB/
Hybrid

sgsim 1000000 4 0.0125 0.2500 0.903 7 24.54 1061.532
sgsim 1000000 8 0.0125 0.1250 1.745 7 23.89 1090.414
sgsim 1000000 16 0.0125 0.0625 3.267 7 22.32 1167.114
sgsim 2000000 4 0.0125 0.2500 0.903 7 90.08 1152.120
sgsim 2000000 8 0.0125 0.1250 1.745 7 87.48 1186.362
sgsim 2000000 16 0.0125 0.0625 3.267 7 81.63 1271.383

sisim 1000000 4 0.0125 0.2500 1.054 8 10.44 281.417
sisim 1000000 8 0.0125 0.1250 2.036 8 10.19 288.321
sisim 1000000 16 0.0125 0.0625 3.811 8 9.64 304.771
sisim 2000000 4 0.0125 0.2500 0.903 7 31.04 378.672
sisim 2000000 8 0.0125 0.1250 2.036 7 34.92 336.597
sisim 2000000 16 0.0125 0.0625 3.811 7 32.8 358.353

Table 7.9: Execution time (seconds) and speedup obtained from sgsim and sisim

scattered data sets using a GPU Volta V100 (80 SM). Kgpu and Kcpu are used to obtain
λ0 and heuristicaly obtained optimal λ∗heuristic values.

Based on these results, we can conclude that the proposed model of Equations (7.6) and

(7.7) is a good analytical tool to estimate the optimal λ which splits the workload in

the hybrid execution mode of the parallel gamv application. It is expected that the pro-

posed hybrid parallelization method can be applied to other applications, specificically

in triangular symmetric computing scenarios, such as gamv. The developed model for

optimal λ and its corresponding practical heuristic to search it, can be used to accelerate

even more this type of applications.

Additional parallel applications 168

7.4 Analysis

The results of Section 7.3 show that the hybrid mode outperforms the CUDA-only mode

in the majority of tests, specially after applying the proposed heuristic. A summary of

the speedup results using three different approaches can be observed in Figure 7.11. We

can observe differences between both GPU devices, being the Volta V100 faster than

the Tesla T4 on all tests. Additionally, the heuristic approach delivers faster executions

than the other approaches (the stop criteria was set until the execution time is faster

than the experimental execution time). If several executions of the application need

to computed, following the optimal λ obtained after a few steps of the heuristic is a

reasonable strategy to accelerate the overall workload. If only a single execution needs

to be computed, using CUDA-only mode or estimate λ0 are sub-optimal strategies, but

they doesn’t require computing priors which involves more execution time.

Figure 7.11: Speedup obtained with 3 approaches for sgsim and sisim case on two
GPU devices.

In terms of numerical accuracy, all implementations use double-precision floating-point

arithmetic, and there are no numerical differences with respect to the original GSLIB

results. The reason of this accuracy level is that the exact same operations are applied

on each multi or single thread execution. The application doesn’t have stochastic or

random operations internally, so each execution delivers the same results.

Additional parallel applications 169

In terms of computational resources, the CUDA and hybrid parallelization uses a GPU

device which defines the performance of the results according to its architectural features.

Some of the results showed in this work are computed using a GPU model Tesla T4,

which can be viewed as prohibitive since its market price is approximately 3000 USD 2.

However, the prices can be dramaticaly reduced by renting compute instances in cloud

computing services, such as Microsoft Azure, Google Cloud or Amazon Web Services.

For instance, in this work we choose the instance g4dn.8xlarge from Amazon Web

Services which allocates a virtual machine with the same specifications described in the

previous section, with a Tesla T4 device attached, for approximately 2 USD an hour3.

2https://www.amazon.com/s?k=tesla+t4+gpu
3https://calculator.aws/#/createCalculator/EC2

https://www.amazon.com/s?k=tesla+t4+gpu
https://calculator.aws/#/createCalculator/EC2

Chapter 8

Conclusions

The present work focuses on improving the performance of a classical geostatistical sim-

ulation method: sequential simulation. Specifically, performance improvements were

applied to two well-known methods: Sequential Gaussian and Sequential Indicator Sim-

ulation. Both methods were accelerated on two algorithmic modes: classical and non-

euclidean mode. The approach followed to allow non-euclidean mode is through Locally

Varying Anisotropy (LVA) represented by an additional LVA field defined as input in

the specific applications.

This final chapter first reviews all the important results achieved in this dissertation,

and later discusses future work that will follow from our research.

8.1 Summary of results

Parallel sequential simulation

The first task developed in order to accelerate the execution of sequential simulation

methods was to decouple the computation of neighbours and the execution of stochastic

simulation based on those neighbours. By doing this, the proposed parallel algorithm

classifies each grid point according to its level of dependency from other points, and

performs parallel simulation of points in the same level. The main applications adapted

to this parallel algorithm were sgsim and sisim, both part of the GSLIB library for

classical geostatistics, a well known tool in the applied geostatistics community. Best

results were obtained by computing the simulations using wide search windows of 128

neighbours on each scenario (12× and 15× speedup respectively, both using 16 OpenMP

threads). This contribution was published in the scientific journal Computers and Geo-

sciences, and it served to open the path in our research.

171

Conclusions 172

Parallel neighbour search

A key bottleneck discovered in the initial contribution was related with the neighbour

search. This was the first step that needed to be computed in the proposed parallel

sequential simulation algorithm, and in many scenarios (small or mid size search win-

dows) it was one of the largest contributors in the overall elapsed time. The second

task in this work was accelerating the neighbour search of the proposed algorithm. The

proposed search method is based on parallel kd-tree searches where previously simulated

points are marked, and only marked points can be elegible to be selected as neighbours.

Additional code optimizations were applied to the baseline code, and classical and non-

euclidean scenarios were tested. The main applications adapted were classical sgsim

and sisim, following the initial parallel method, and non-euclidean LVA-based sgs-lva

and sisim-lva, using the same simulation methods. Regarding sgsim and sisim, best

performance results were obtained using 64 neighbours as window search, with 12×
and 50× speedup respectively. Regarding sgs-lva andsisim-lva, best performance

results were obtained using 48 neighbours as window search and 1000/1344 landmark

points, with 56× and 1822× speedup respectively. This last result was possible after a

careful adaptation of the kd-tree search method to the baseline sisim-lva code, which

improved the sequential execution by 111×. This contribution has been published in

the scientific journal Computers and Geosciences, and it consolidated the research path

initiated with the first article.

Parallel LVA routines

Two acceleration aspects of LVA-based applications were also analyzed and accelerated:

parallel Dijsktra computation and parallel algebraic operations. Parallel Dijkstra com-

putation was used in the LVA-related method that build the non-euclidean distance

matrix required by the non-euclidean simulation methods. Parallel algebraic opera-

tions were used in the LVA-related method that build the multidimensional embedding

that contains the coordinates in the p-dimensional space. These coordinates can be

used to compute euclidean distances instead of non-euclidean distances in equivalent

three dimensional space. Significant performance improvements were obtained by using

optimized libraries in the applications, combined with the previous parallel methods,

allowing us to speed-up the execution of LVA-based simulations.

Additional parallel applications

The last result is related with an additional parallel application, namely the semivari-

ogram calculation in large domains. A CUDA-based and hybrid OpenMP/CUDA im-

plementations were developed, allowing us to calculate fast spatial statistics in large

domains, which can be used to validate statistical and structural similarities between

simulated 3D images. The development of this accelerated application was intended as

a helper tool when large simulations are being generated and fast statistical checks are

Conclusions 173

needed. An analytical model is proposed to estimate the optimal value used to split the

workload between GPU and CPU.

8.2 Future work

Four main open research areas have been identified during the development process of

this work:

• CUDA adaptation of parallel algorithms:

Significant performance improvements can be obtained by switching the parallel

framework from OpenMP to CUDA, particularly for parallel simulation of points in

the same dependency level. CUDA-based algebraic operations can also be included

in future versions of the parallel applications presented in this work (leveraging

available functionality in libraries such as cuBLAS, cuSOLVER or similar).

• Approximation methods applied to sequential simulation:

The approach developed in this work follows the standard generation of stochas-

tic simulations by strictly visiting all domain points in a specific order defined at

random initially. Every simulated node can be used in future iterations as con-

ditioning data for neighbour non-simulated points. Potential methods that allow

us to relax this constraints, in an approximate way, can be explored using the

applications presented in this work as baseline.

• Accelerated LVA-based algorithms:

The baseline LVA-based application selected in this work is based on the L-

ISOMAP method for multidimensional scaling. Several other methods can be

explored to expand the non-euclidean distances in three dimensions to euclidean

distances in p dimensions: locally-linear embedding (LLE), local tangent space

alignment (LTSA), t-distributed stochastic neighbor embedding (t-SNE), autoen-

coder neural networks, etc.

• Improve usability:

Python and R wrappers can be developed to serve as interfaces to Fortran and

C++/CUDA compiled applications. Additionally, cloud environments can be pre-

pared in order to allow potential users to execute large computations remotely and

without extra costs.

Bibliography

A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques,

and Tools (2nd Edition). Addison Wesley, August 2006.

F. Alabert. Stochastic Imaging of Spatial Distributions using Hard and Soft Information.

Master’s thesis, Stanford University, 1987.

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,

A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’

Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, third edi-

tion, 1999. ISBN 0-89871-447-8 (paperback).

AWS. Amazon Web Services Platform Price Calculator (December 2021). https://

calculator.aws/, 2021.

J. L. Bentley. Multidimensional binary search trees used for associative searching. Com-

mun. ACM, 18(9):509517, sep 1975. ISSN 0001-0782. doi: 10.1145/361002.361007.

M. F. P. Bierkens and P. A. Burrough. The indicator approach to categorical soil data.

Journal of Soil Science, 44(2):361–368, 1993.

P. Biver, V. Zaytsev, D. Allard, and H. Wackernagel. Geostatistics on Unstructured

Grids, Theoretical Background, and Applications, pages 449–458. Springer Interna-

tional Publishing, Cham, 2017.

L. S. Blackford, A. Petitet, R. Pozo, K. Remington, R. C. Whaley, J. Demmel, J. Don-

garra, I. Duff, S. Hammarling, G. Henry, et al. An updated set of basic linear algebra

subprograms (blas). ACM Transactions on Mathematical Software, 28(2):135–151,

2002.

J. B. Boisvert. Geostatistics with Locally Varying Anisotropy. PhD thesis, University of

Alberta, 2010.

J. B. Boisvert and C. V. Deutsch. Programs for kriging and sequential gaussian simula-

tion with locally varying anisotropy using non-euclidean distances. Comput. Geosci.,

37(4):495–510, Apr. 2011.

175

https://calculator.aws/
https://calculator.aws/

Bibliography 176

Boost.org. Boost C++ libraries. 2012. URL http://www.boost.org.

T. Cheng. Accelerating universal kriging interpolation algorithm using cuda-enabled

gpu. Comput. Geosci., 54:178183, apr 2013. ISSN 0098-3004. doi: 10.1016/j.cageo.

2012.11.013. URL https://doi.org/10.1016/j.cageo.2012.11.013.

J.-P. Chilès and P. Delfiner. Geostatistics : modeling spatial uncertainty. Wiley series

in probability and statistics. Wiley, New York, 1999. ISBN 0-471-08315-1. URL

http://opac.inria.fr/record=b1098313. A Wiley-Interscience publication.

F. C. Curriero. On the use of non-euclidean distance measures in geostatistics. Mathe-

matical Geology, 38(8):907–926, 2006.

J. A. de Almeida. Stochastic simulation methods for characterization of lithoclasses in

carbonate reservoirs. Earth-Science Reviews, 101(3-4):250 – 270, 2010.

V. de Silva and J. B. Tenenbaum. Sparse multidimensional scaling using landmark

points. Technical report, Stanford, 2004.

L. E. de Souza and J. F. C. Costa. Sample weighted variograms on the sequential

indicator simulation of coal deposits. International Journal of Coal Geology, 112:

154 – 163, 2013. Special issue on geostatistical and spatiotemporal modeling of coal

resources.

D. dell’Arciprete, R. Bersezio, F. Felletti, M. Giudici, A. Comunian, and P. Renard.

Comparison of three geostatistical methods for hydrofacies simulation: a test on allu-

vial sediments. Hydrogeology Journal, 20(2):299–311, 2012.

C. V. Deutsch. A sequential indicator simulation program for categorical variables with

point and block data: Blocksis. Computers & Geosciences, 32(10):1669 – 1681, 2006.

C. V. Deutsch and A. G. Journel. GSLIB: Geostatistical Software Library and user’s

guide. Applied geostatistics series. Oxford Univ. Press, New York, NY, 2. ed. edition,

1998.

L. Devroye. Non-Uniform Random Variate Generation. Springer, 1 edition, Apr. 1986.

E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathe-

matik, 1:269271, 1959.

R. Dimitrakopoulos. Conditional simulation algorithms for modelling orebody uncer-

tainty in open pit optimization. International Journal of Surface Mining, Reclamation

and Environment, 12(4):173–179, 1998.

http://www.boost.org
https://doi.org/10.1016/j.cageo.2012.11.013
http://opac.inria.fr/record=b1098313

Bibliography 177

R. Dimitrakopoulos and M. Dagbert. Sequential Modelling of Relative Indicator Vari-

ables: Dealing with Multiple Lithology Types, pages 413–424. Springer Netherlands,

Dordrecht, 1993.

R. Dimitrakopoulos and X. Luo. Generalized sequential gaussian simulation on group

size ν and screen-effect approximations for large field simulations. Mathematical Ge-

ology, 36:567591, 2004. doi: 10.1023/B:MATG.0000037737.11615.df.

P. A. Dowd, C. Xu, K. V. Mardia, and R. J. Fowell. A comparison of methods for the

stochastic simulation of rock fractures. Mathematical Geology, 39(7):697–714, 2007.

O. Dubrule and E. Damsleth. Achievements and challenges in petroleum geostatistics.

Petroleum Geoscience, 7(S):S1–S7, 2001.

J. Gómez-Hernández and R. Srivastava. One step at a time: The origins of sequential

simulation and beyond. Mathematical Geosciencies, (53):193–209, 2021. doi: https:

//doi.org/10.1007/s11004-021-09926-0.

Google. Google Cloud Platform Price Calculator (December 2021). https://cloud.

google.com/products/calculator, 2021.

P. Goovaerts. Geostatistical modelling of uncertainty in soil science. Geoderma, 103

(1–2):3 – 26, 2001. Estimating uncertainty in soil models.

S. L. Graham, P. B. Kessler, and M. K. Mckusick. gprof: A Call Graph Execution

Profiler. SIGPLAN Not., 17(6):120–126, June 1982.

S. L. Graham, P. B. Kessler, and M. K. McKusick. Gprof: A call graph execution profiler.

SIGPLAN Not., 39(4):4957, Apr. 2004. ISSN 0362-1340. doi: 10.1145/989393.989401.

URL https://doi.org/10.1145/989393.989401.

J. L. Gustafson. Reevaluating amdahl’s law. Communications ACM, 31(5):532533, May

1988.

R. Gutierrez and J. Ortiz. Sequential indicator simulation with locally varying anisotropy

simulating mineralized units in a porphyry copper deposit. Journal of Mining Engi-

neering and Research, 1(1):1–7, 01 2019. doi: 10.35624/jminer2019.01.01.

J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach.

Morgan Kaufmann, Amsterdam, 5 edition, 2012. ISBN 978-0-12-383872-8.

IEEE. IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008, pages 1–70,

Aug 2008.

E. Isaaks. The application of monte carlo methods to the analysis of spatially correlated

data. Master’s thesis, 1990.

https://cloud.google.com/products/calculator
https://cloud.google.com/products/calculator
https://doi.org/10.1145/989393.989401

Bibliography 178

E. H. Isaaks and R. M. Srivastava. An Introduction to Applied Geostatistics. Oxford

University Press, USA, Jan. 1990.

M. E. Johnson. Multivariate Statistical Simulation. John Wiley, New York, NY, 1987.

M. K. Johnson and E. W. Troan. Linux Application Development (2nd Edition).

Addison-Wesley Professional, 2004.

JORC. Australasian code for reporting of exploration results, mineral resources and

ore reserves (the JORC Code, 2012 Edition): Report prepared by the Joint Ore

Reserve Committee of the Australasian Institute of Mining and Metallurgy, Australian

Institute of Geoscientists and Minerals Council of Australia, 2012. URL http://www.

jorc.org/.

A. Journel and F. Alabert. Non-gaussian data expansion in the earth sciences. Terra

Nova, 1:123 134, 1989.

A. G. Journel and C. J. Huijbregts. Mining geostatistics / [by] A. G. Journel and Ch.

J. Huijbregts. Academic Press London ; New York, 1978. ISBN 0123910501.

A. G. Journel and E. H. Isaaks. Conditional indicator simulation: Application to a

saskatchewan uranium deposit. Journal of the International Association for Mathe-

matical Geology, 16(7):685–718, 1984.

M. B. Kennel. Kdtree 2: Fortran 95 and c++ software to efficiently search for near

neighbors in a multi-dimensional euclidean space, 2004.

J. Manchuk, O. Leuangthong, and C. V. Deutsch. Direct Geostatistical Simulation on

Unstructured Grids, pages 85–94. Springer Netherlands, Dordrecht, 2005.

K. V. Mardia, J. T. Kent, and J. M. Bibby. Multivariate Analysis. Academic Press,

1979.

G. Mariethoz. A general parallelization strategy for random path based geostatistical

simulation methods. Computers & Geosciences, 36(7):953 – 958, July 2010. ISSN

0098-3004. doi: 10.1016/j.cageo.2009.11.001. URL http://dx.doi.org/10.1016/j.

cageo.2009.11.001.

G. Mariethoz and J. Caers. Multiple-point Geostatistics: Stochastic Modeling with Train-

ing Images. Wiley-Blackwell, 2014.

P. Martinsson, G. Quintana Ort́ı, N. Heavner, and R. van de Geijn. Householder

qr factorization with randomization for column pivoting (hqrrp). SIAM Journal

on Scientific Computing, 39(2):C96–C115, 2017. doi: 10.1137/16M1081270. URL

https://doi.org/10.1137/16M1081270.

http://www.jorc.org/
http://www.jorc.org/
http://dx.doi.org/10.1016/j.cageo.2009.11.001
http://dx.doi.org/10.1016/j.cageo.2009.11.001
https://doi.org/10.1137/16M1081270

Bibliography 179

P. G. Martinsson, G. Quintana-Ort́ı, and N. Heavner. randutv: A blocked randomized

algorithm for computing a rank-revealing utv factorization. ACM Trans. Math. Softw.,

45(1):4:1–4:26, Mar. 2019. ISSN 0098-3500. doi: 10.1145/3242670. URL http:

//doi.acm.org/10.1145/3242670.

B. Matérn. Spatial variation (2nd Edition). Springer, New York, 1986.

G. Matheron, H. Beucher, C. de Fouquet, A. Galli, D. Guerillot, and C. Ravenne.

Conditional Simulation of the Geometry of Fluvio-Deltaic Reservoirs, pages 123–131.

Society of Petroleum Engineers, 1987.

Microsoft Azure. Microsoft Azure Price Calculator (December 2021), Sept. 2021. URL

https://azure.microsoft.com/en-us/pricing/calculator/.

P. J. Mucci, S. Browne, C. Deane, and G. Ho. Papi: A portable interface to hardware

performance counters. In In Proceedings of the Department of Defense HPCMP Users

Group Conference, pages 7–10, 1999.

R. Nunes and J. A. Almeida. Parallelization of sequential gaussian, indicator and direct

simulation algorithms. Computers & Geosciences, 36(8):1042 – 1052, 2010.

R. Nussbaumer, G. Mariethoz, M. Gravey, E. Gloaguen, and K. Holliger. Accelerating

sequential gaussian simulation with a constant path. Comput. Geosci., 112:121–132,

2018. doi: 10.1016/j.cageo.2017.12.006. URL https://doi.org/10.1016/j.cageo.

2017.12.006.

NVIDIA Corporation. CUDA C/C++ Streams and Concurrency (Decem-

ber 2021). https://developer.download.nvidia.com/CUDA/training/

StreamsAndConcurrencyWebinar.pdf, 2017.

G. Pan. Conditional simulation as a tool for measuring uncertainties in petroleum

exploration. Nonrenewable Resources, 6(4):285–293, 1997.

O. Peredo and J. M. Ortiz. Parallel implementation of simulated annealing to reproduce

multiple-point statistics. Computers & Geosciences, 37(8):1110–1121, 2011.

O. Peredo, J. M. Ortiz, J. R. Herrero, and C. Samaniego. Tuning and hybrid paralleliza-

tion of a genetic-based multi-point statistics simulation code. Parallel Computing, 40

(5):144–158, 2014.

O. Peredo, J. M. Ortiz, and J. R. Herrero. Acceleration of the Geostatistical Software

Library (GSLIB) by code optimization and hybrid parallel programming. Computers

& Geosciences, 85, Part A:210 – 233, 2015a.

http://doi.acm.org/10.1145/3242670
http://doi.acm.org/10.1145/3242670
https://azure.microsoft.com/en-us/pricing/calculator/
https://doi.org/10.1016/j.cageo.2017.12.006
https://doi.org/10.1016/j.cageo.2017.12.006
https://developer.download.nvidia.com/CUDA/training/StreamsAndConcurrencyWebinar.pdf
https://developer.download.nvidia.com/CUDA/training/StreamsAndConcurrencyWebinar.pdf

Bibliography 180

O. Peredo, J. M. Ortiz, and O. Leuangthong. Inverse modeling of moving average

isotropic kernels for non-parametric three-dimensional gaussian simulation. Mathe-

matical Geosciences, 48(5):559–579, 2016.

O. Peredo, D. Baeza, J. M. Ortiz, and J. R. Herrero. A path-level exact parallelization

strategy for sequential simulation. Computers & Geosciences, 110:10 – 22, 2018.

O. F. Peredo, F. Navarro, M. Garrido, and J. M. Ortiz. Incorporating distributed

dijkstras algorithm into variogram calculation with locally varying anisotropy. In

37th International Symposium APCOM 2015, pages 1162–1170. S. Bandopadhyay,

2015b.

D. Pollard and R. Fletcher. Fundamentals of structural geology. Cambrige University

Press, 2005.

M. Pyrcz, J. H., A. Kupenko, W. Liu, A. Gigliotti, T. Salomaki, and J. Santos. Geostat-

spy python package. https://github.com/GeostatsGuy/GeostatsPy. last checked:

29.11.2021.

L. G. Rasera, P. L. Machado, and J. F. C. Costa. A conflict-free, path-level parallelization

approach for sequential simulation algorithms. Computers & Geosciences, 80:49 – 61,

2015.

N. Remy, A. Boucher, and J. Wu. Applied Geostatistics with SGeMS: A User’s Guide.

Cambridge University Press, 2009.

S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear em-

bedding. SCIENCE, 290:2323–2326, 2000.

V. Savichev, A. Bezrukov, A. Muharlyamov, K. Barskiy, D. Nasibullina, and R. Safin.

High performance geostatistics library. https://github.com/hpgl/hpgl. last

checked: 29.11.2021.

L. Serrano, R. Vargas, V. Stambuk, C. Aguilar, M. Galeb, C. Holmgren, A. Con-

treras, S. Godoy, I. Vela, M. A. Skewes, and C. R. Stern. The Late Miocene

to Early Pliocene Rio Blanco-Los Bronces Copper Deposit, Central Chilean An-

des. In Andean Copper Deposits: New Discoveries, Mineralization, Styles and Met-

allogeny. Society of Economic Geologists, 01 1998. doi: 10.5382/SP.05.09. URL

https://doi.org/10.5382/SP.05.09.

Statios LLC. WinGslib Installation and Getting Started Guide. Website, 2001.

URL http://www.statios.com/WinGslib/GettingStarted.pdf. last checked:

29.11.2021.

https://github.com/GeostatsGuy/GeostatsPy
https://github.com/hpgl/hpgl
https://doi.org/10.5382/SP.05.09
http://www.statios.com/WinGslib/GettingStarted.pdf

Bibliography 181

J. Straubhaar, P. Renard, G. Mariethoz, R. Froidevaux, and O. Besson. An improved

parallel multiple-point algorithm using a list approach. Mathematical Geosciences, 43

(3):305–328, 2011.

P. Tahmasebi, M. Sahimi, G. Mariethoz, and A. Hezarkhani. Accelerating geostatistical

simulations using graphics processing units (gpu). Computers & Geosciences, 46:51 –

59, 2012.

J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for

nonlinear dimensionality reduction. Science, 290(5500):2319, 2000.

F. van der Meer. Sequential indicator conditional simulation and indicator kriging ap-

plied to discrimination of dolomitization in ger 63-channel imaging spectrometer data.

Nonrenewable Resources, 3(2):146–164, 1994.

H. S. Vargas, H. Caetano, and M. Filipe. Parallelization of sequential simulation pro-

cedures. In Proceedings of the Petroleum Geostatistics. EAGE (European Association

of Geoscientists and Engineers). EAGE, 2007.

R. Versteeg. The marmousi experience: Velocity model determination on a synthetic

complex data set. The Leading Edge, 13:927–936, 1994.

B. Wilkinson and C. Allen. Parallel Programming: Techniques and Applications Using

Networked Workstations and Parallel Computers. An Alan R. Apt book. Pearson-

/Prentice Hall, 2005.

J. M. Yarus, R. L. Chambers, M. Maucec, and G. Shi. Facies simulation in practice:

Lithotype proportion mapping and plurigaussian simulation, a powerful combination.

In Geostatistics Oslo 2012. Springer Netherlands, 2012.

V. Zaytsev, P. Biver, H. Wackernagel, and D. Allard. Change-of-support models on

irregular grids for geostatistical simulation. Mathematical Geosciences, 48(4):353–369,

May 2016.

Z. Zhang and H. Zha. Principal manifolds and nonlinear dimension reduction via local

tangent space alignment. SIAM Journal of Scientific Computing, 26:313–338, 2002.

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context/Motivation
	1.2 Contributions of this Thesis
	1.3 Related articles
	1.4 Organization

	2 Theoretical Background and State-of-the-Art
	2.1 Overview
	2.2 Classical Geostatistics
	2.2.1 Background
	2.2.1.1 Random variable
	2.2.1.2 Random function
	2.2.1.3 Stationarity hypothesis
	2.2.1.4 Covariance and semivariogram
	2.2.1.5 Kriging
	2.2.1.6 Sequential Gaussian Simulation
	2.2.1.7 Sequential Indicator Simulation

	2.2.2 Sequential implementations
	2.2.2.1 gamv
	2.2.2.2 sgsim
	2.2.2.3 sisim

	2.2.3 Parallel implementations

	2.3 LVA-based Geostatistics
	2.3.1 Background
	2.3.1.1 Anisotropic distance
	2.3.1.2 LVA field
	2.3.1.3 Connectivity graph
	2.3.1.4 Non-euclidean distance matrix
	2.3.1.5 Multidimensional Scaling

	2.3.2 Sequential implementations
	2.3.2.1 LVA-based Sequential Simulation
	2.3.2.2 Connectivity graph
	2.3.2.3 Non-euclidean distance matrix
	2.3.2.4 Multidimensional Scaling

	2.3.3 Parallel implementations

	3 Methodology
	3.1 GSLIB
	3.2 Application parameters
	3.2.1 Common parameters
	3.2.2 sgsim
	3.2.3 sisim
	3.2.4 sgs-lva and sisim-lva

	3.3 Development techniques
	3.3.1 Refactoring
	3.3.2 Profiling
	3.3.3 OpenMP parallelization
	3.3.4 CUDA parallelization

	3.4 Case studies
	3.5 Metrics

	4 Parallel Sequential Simulation
	4.1 Context
	4.1.1 Random path
	4.1.2 Neighbour search window

	4.2 Algorithm
	4.3 Results
	4.3.1 sgsim
	4.3.2 sisim

	4.4 Analysis
	4.4.1 Efficiency
	4.4.2 Accuracy
	4.4.3 Computational resources

	5 Parallel Neighbour Search
	5.1 Context
	5.1.1 GSLIB search methods
	5.1.2 kd-tree search methods

	5.2 Algorithm
	5.2.1 KDTree optimizations
	5.2.2 Parallel neighbour search

	5.3 Results
	5.3.1 Performance tests for parallel non LVA-based codes
	5.3.2 Performance tests for parallel LVA-based codes

	5.4 Analysis
	5.4.1 Accuracy
	5.4.2 Efficiency
	5.4.3 Computational resources

	6 Parallel LVA routines
	6.1 Algebraic operations
	6.1.1 Context
	6.1.2 Memory access optimizations
	6.1.3 Intel MKL implementation
	6.1.4 Results

	6.2 Single Source Shortest Path
	6.2.1 Context
	6.2.2 OpenMP implementation
	6.2.3 CUDA implementation
	6.2.4 Hybrid OpenMP/CUDA implementation
	6.2.5 Results

	7 Additional parallel applications
	7.1 Context
	7.1.1 Baseline gamv implementation

	7.2 Algorithm
	7.2.1 CUDA implementation
	7.2.2 Hybrid OpenMP/CUDA implementation

	7.3 Results
	7.3.1 Experimental results
	7.3.2 Analytical results
	7.3.3 Heuristic results

	7.4 Analysis

	8 Conclusions
	8.1 Summary of results
	8.2 Future work

	Bibliography

