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Abstract
During the last decade, space-borne based Differential Synthetic Aperture Radar Inter-
ferometry (DInSAR), also known as Persistent Scatters Interferometry (Persistent Scat-
ters Interferometry (PSI)), and SAR data based Offset Tracking (OT) techniques have
matured to the widely used deformation monitoring tools. Compared with the conven-
tional ground deformation monitoring methods, Synthetic Aperture Radar Interferome-
try (InSAR) has the advantages of dense spatial sampling and large coverage, indepen-
dence of light and weather. Despite these advantages, according to Nyquist-Shannon
sampling theorem, phase unwrapping based InSAR has a deformation gradient limit for
retrieving deformation. Although higher resolution and longer wavelength could lessen
this innate restriction, some large deformations caused by earthquakes, landslides, minings
and volcanisms are still beyond the monitoring capability of InSAR. As complementary
to InSAR, OT with SAR amplitude images is an efficient tool for large ground defor-
mation monitoring. The offsets among pixels between two images can be obtained with
a simple cross correlation calculation. In general, the accuracy can be very high in the
presence of strong point-like scatterers or with the help of ad-hoc deployed Corner Reflec-
tor (CR). However, when the deformation is distributed these point-like targets cannot
be a good representation of the terrain deformation and even induce errors on the defor-
mation maps, known as Patch Like (PL), if their reflectivity strongly change along time.
These errors are clearly visible in the results, but they are difficult to detect with the
different error estimation methods, like the Signal-to-Noise Ratio (SNR) or similar. In
addition, the huge potential of polarization SAR data remains locked for the amplitude
information based OT technology. For example, to the best knowledge of the authors,
there is no single example of a polarization based image optimization method that has
been developed for OT processing. In this context, large gradient deformation ex-
traction algorithms for SAR/InSAR are crucial for improving the accuracy
of OT and extending the monitoring capability of InSAR. In this thesis, large
gradient deformation extraction algorithms have been investigated for OT and InSAR
applications.

Firstly, an External Model Deformation Decomposition based Persistent
Scatters Interferometry (EMDD-PSI) method has been proposed. This method
first uses interferograms generated from SAR Single Look Complex (SLC) images to
optimize the parameters of the external model. Then, the number of fringes in the original
interferograms are reduced by the modeled subsidence phase produced from the external
model to ease the PSI processing. Finally, the ground deformation is retrieved jointly
adding the external model and PSI results. The capabilities of the proposed method
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is demonstrated by 14 Radarsat-2 SAR images over the Fengfeng mining area (China).
The deformation obtained by the proposed method is evaluated by the leveling data.
Results have shown that after the optimization, the external model is able to mimic the
real deformation and the fringes of the interferograms can be reduced effectively. As a
consequence, the large gradient deformation can be better retrieved with the preservation
of the nonlinear subsidence term.

Second, to reduce the PL, a novel amplitude filter, i.e. the Pacth-Like Re-
duction (PLR), is developed. The proposed PLR reduces the PL effects by replacing
the pixels with extremely high amplitudes with zero. Three different SAR data sets and
in-field Global Positioning System (GPS) measurements are used to evaluate the perfor-
mance of the proposed method. The results show that PL effects can be reduced with the
proposed amplitude filter. The processing parameters of the improved OT are optimized
as well, considering both the relationship between the deformation resolution and the size
of matching template and the effect of different window functions in the final results.

Third, a polarization data based Amplitude Contrast Enhancement Offset
Tracking (ACE-OT) is proposed. The method first uses the Kennaugh matrix to
construct the optimal polarization formula with 6 optimal parameters. Then, the 6 opti-
mal parameters leading to the highest contrast are searched. Finally, amplitude contrast
enhanced SAR image can be obtained by the optimized polarization formula. The 31
quad-pol Radarsat-2 images covering Barcelona Airport and 20 dual-pol TerraSAR-X im-
ages are used to verify the proposed method. The enhancement result shows that the
contrasts of the amplitude images are increased, which also improves the correlation of
the image pair. Therefore, the ACE-OT can achieve better results than the OT with
unenhanced amplitude images.

To conclude, a PSI processing algorithm with external model and two improved OT
methods have been proposed in this thesis. I hope the work presented in this thesis
could make some contributions to the research area of “Large gradient deformation
extraction algorithms for SAR/InSAR”.
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Resumen
Durante la última década, la interferometŕıa diferencial basada en radares de apertura
sintética (Differential Interferometric Synthetic Aperture Radar, DInSAR) orbital, también
conocida como interferometŕıa de dispersión persistente (Persistent Scatter Interferome-
try, PSI), y las técnicas de seguimiento de desplazamiento (Offset Tracking, OT) basadas
en datos de radar de apertura sintética (SAR) han madurado hasta convertirse en una
de las más ampliamente utilizadas herramientas de monitorización de deformaciones. En
comparación con los métodos convencionales de monitorización de la deformación del
suelo, las técnicas DInSAR tienen las ventajas de un muestreo espacial denso y una
gran cobertura, independencia de la iluminación solar y del tiempo meteorológico. A
pesar de estas ventajas, según el teorema de muestreo de Nyquist-Shannon, las técnicas
interferométricas basadas en el desenrollado de fase tiene un ĺımite de gradiente de de-
formación para poder recuperarla. Aunque una resolución más alta y una longitud de
onda más larga podŕıan disminuir esta restricción innata, algunas grandes deformaciones
causadas por terremotos, deslizamientos de tierra, mineŕıa y volcanismo aún están más
allá de la capacidad de monitorización de DInSAR. Como complemento a DInSAR, OT
con imágenes de amplitud es una herramienta eficiente para la monitorización de grandes
deformaciones del suelo. Los desplazamientos entre ṕıxeles entre dos imágenes se pueden
obtener con un simple cálculo de correlación cruzada. En general, la precisión puede ser
muy alta en presencia de fuertes puntos de dispersión (blancos puntuales) o con la ayuda
de reflectores (Corner Reflectors, CR) desplegados ad-hoc. Sin embargo, cuando la defor-
mación es distribuida, estos blancos puntuales no pueden ser una buena representación
de la deformación del terreno e incluso inducen errores en los mapas de deformación,
conocidos como Patch Like (PL), si su reflectividad cambia fuertemente a lo largo del
tiempo. Estos errores son claramente visibles en los resultados, pero son dif́ıciles de de-
tectar con los diferentes métodos de estimación de errores, como el Signal-to-Noise Ratio
(SNR) o similares. Además, el enorme potencial de los datos SAR polarimétricos no se
explota en la tecnoloǵıa OT basada en información de amplitud. Por ejemplo, según el
mejor conocimiento del autor, no existe un solo ejemplo de un método de optimización de
imagen basado en polarización que se haya desarrollado para el procesado OT. En este
contexto, los algoritmos de extracción de deformación en presencia de grandes
gradientes para SAR/DInSAR son cruciales para mejorar la precisión de OT
y ampliar la capacidad de monitoreo de DInSAR. En esta tesis, se han inves-
tigado algoritmos de extracción de deformación en presencia de grandes gradiente para
aplicaciones OT e InSAR.

En primer lugar, se ha propuesto un método PSI basado en la descom-
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posición de la deformación con modelo externo (EMDD-PSI). Este método
primero utiliza interferogramas generados a partir de imágenes SAR Single Look Com-
plex (SLC) para optimizar los parámetros del modelo externo de deformación. Luego, el
número de franjas en los interferogramas originales se reduce por la fase de hundimiento
modelada producida a partir del modelo externo para facilitar el procesado PSI. Final-
mente, la deformación del terreno se recupera conjuntamente agregando el modelo ex-
terno y los resultados PSI. Las capacidades del método propuesto se demuestran con 14
imágenes Radarsat-2 SAR sobre el área minera de Fengfeng (China). La deformación
obtenida por el método propuesto es evaluada con los datos de nivelación precisa adquiri-
dos sobre el terreno. Los resultados han demostrado que después de la optimización, el
modelo externo puede imitar la deformación real y las franjas de los interferogramas se
pueden reducir de manera efectiva. Como consecuencia, la deformación de gran gradiente
se puede recuperar mejor conservando el término de hundimiento no lineal.

En segundo lugar, para reducir el PL, se desarrolla un nuevo filtro de
amplitud, es decir, la reducción a Pacth Like (PLR). El PLR propuesto re-
duce los efectos de PL reemplazando los ṕıxeles con amplitudes extremadamente altas
con ceros. Se utilizan tres conjuntos de datos SAR diferentes y mediciones del Sistema
de Posicionamiento Global (GPS) en el campo para evaluar el rendimiento del método
propuesto. Los resultados muestran que los efectos de PL se pueden reducir con el filtro
de amplitud propuesto. Los parámetros de procesado del OT mejorado también se opti-
mizan, considerando tanto la relación entre la resolución de deformación y el tamaño de
la plantilla coincidente como el efecto de las diferentes funciones de enventanado en los
resultados finales.

En tercer lugar, se propone una mejora del contraste de las imágenes de
amplitud para la mejora del procesado OT (Amplitude contrast Enhancement,
ACE-OT) basado en imágenes SAR polarimétricas. El método primero usa la
matriz de Kennaugh para construir la fórmula de polarización óptima con 6 parámetros
óptimos. Luego, se buscan los 6 parámetros óptimos que conducen al mayor contraste. Fi-
nalmente, la imagen SAR mejorada se puede obtener mediante la fórmula de polarización
optimizada. Las 31 imágenes Radarsat-2 quad-pol que cubren el Aeropuerto de Barcelona
y las 20 imágenes TerraSAR-X dual-pol se utilizan para verificar el método propuesto. El
resultado de la mejora muestra que los contrastes de las imágenes de amplitud aumentan,
lo que también mejora la correlación del par de imágenes. Por lo tanto, el ACE-OT puede
lograr mejores resultados que el OT con imágenes de amplitud no mejorada.

Para concluir, en esta tesis se ha propuesto una metodoloǵıa de procesado PSI con
modelo externo y dos métodos OT mejorados. Espero que el trabajo presentado en esta
tesis pueda hacer algunas contribuciones al área de investigación de “Algoritmos de
extracción de deformación de gran gradiente para SAR/InSAR”.
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Chapter 11
Introduction

Ground deformation monitoring is of great significance for human beings to explore and
protect the natural and their own living environment. Conventional point-based meth-
ods such as Global Positioning System (GPS), total station, and leveling are accurate
and reliable, but time and money consuming. Moreover, they are powerless in unreach-
able or dangerous areas. Meanwhile, as a remote sensing technique, Synthetic Aperture
Radar (SAR) has the advantages of efficiency and large coverage. Besides, due to its
longer signal wavelength than optical sensors, the active SAR sensors can obtain high-
quality images in any weather and illumination conditions. With the unprecedented de-
velopment of SAR missions (such as Sentinel-1, TerraSAR-X, ALOS-2, COSMO-SkyMed,
RADARSAT-2, PAZ, Gaofen-3 and ICEYE), large amounts of SAR data are or will be
available with short repeat cycles and wide swath modes. Differential Synthetic Aperture
Radar Interferometry (DInSAR) and Offset Tracking (OT) are two kinds of ground de-
formation measurements based on SAR data. Theoretically, DInSAR can provide results
with millimeter-level accuracy. However, large gradient deformation is one of its limi-
tations, because the phase changes between adjacent pixels are assumed within π. OT
is an effective supplement in this aspect because the phase is not employed. However,
OT suffers from various problems caused by changes of the ground features. Therefore,
DInSAR and OT need to be improved to cope with large deformations.

1



Chapter 1. Introduction

1.1 Persistent Scatters Interferometry (PSI) with Ex-
ternal Model

Differential Interferometric Synthetic Aperture Radar (DInSAR), also known as Per-
sistent Scatterer Interferometry (PSI), with its continuously improved algorithms, has
been widely applied to multiple cases like earthquakes [1–3], tectonic movements [4, 5],
landslides [6, 7], volcanisms [8–10], and evaluations of city ground [11], mining subsi-
dence [12,13] and building stability [14].

However, large deformation gradients may lead to inaccuracies of PSI monitoring
results. For PSI, the phase difference between two adjacent points, either in space or
time, are assumed to be within half a cycle in order to properly unwrap the phase. Large
deformation patterns can cause phase jumps in the interferograms larger than half a cycle
among pixels. Methods working with interferograms at full resolution, in comparison with
multi-look based ones, help to reduce the chances of having wrapped phases beyond the
half cycle limit, higher pixel densities help also to reduce the phase differences among
neighbouring points [15].

Saving resolution or increasing Persistent Scatter (PS)s density by lowering pixels
selection thresholds reduces the limitation of deformation gradient while reduces result
quality. Like topography phase cancellation, phase jumps can be estimated and eliminated
with the information provided by an external deformation model. This method can help
PSI to retrieve large gradient deformations without losing accuracy, as long as the external
models do not add extra phase jumps.

The missing integer phase cycles caused by large gradient deformations are calculated
through the Probability Integral Method (Probability Integral Method (PIM)) model, so
the deformation can be obtained completely [16]. This method does not discard the in-
formation monitored by InSAR, and, theoretically, it can get more detailed information.
However, it assumes that the phase differences other than those calculated by the PIM
model (including atmospheric errors, Digital Elevation Model (DEM) errors, and defor-
mation phases not simulated by PIM) are less than half a cycle. This is unreasonable.
The fringes of the interferograms may be too dense to allow calculating the deformation
correctly. Thus, like an external DEM is used to eliminate the fringes associated to the
topographic phase when generating the differential interferograms, PIM is used to reduce
the number of fringes associated to deformation [17]. However, the determination of some
parameters in the PIM model depends on the actual working face geological conditions
and mining conditions. Different geological mining conditions will cause a large estima-
tion error of the parameters, and when the estimated parameters are different from the
actual situation, it will cause a negative impact on the subsequent fitting estimation of
the model. Several methods have also been proposed to improve the performance of the
constant velocity model in large gradient deformation monitoring. The Gaussian velocity
model is used to estimate velocity fields and DEM errors [18]. This method can also fill
areas where PS/Distributed Scatterer (DS) points are sparse or absent, but it requires
the sinking area to be known. Still, a linear model is used, and the nonlinear deformation
can only be obtained by the residual phase. A third-order polynomial model is used to
solve the nonlinear deformation [19]. This method can obtain the obvious time series
deformation of non-linear characteristics, but the cubic polynomial is not applicable to
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all PS points as different subsidence phenomenon appears in different mining phases.

1.2 Offset Tracking (OT)

By detecting the offset of the pixels in the two images before and after the deformation,
OT can obtain the information of the surface deformation. Before SAR acquisitions,
OT was first applied on optical images [20, 21]. Remotely sensed data make it to be
an extraordinary geodetic approach for large-scale deformation measurement. However,
optical sensors can easily be affected by clouds and illumination situation. In contrast,
SAR sensors have proven their unprecedented ability and merits of withstanding severe
weather conditions, making SAR acquisitions robust for OT technology [22, 23]. The
accuracy of OT largely depends on the pixel size. Due to the launch of satellites with
high-resolution SAR sensors, the deformation monitoring accuracy of OT can even be
comparable to the phase measurement of InSAR [24]. In addition, OT technology has
high robustness in the incoherence area and can obtain large deformations that cannot
be monitored by InSAR.

Due to its robustness for dealing with cases in which large deformations are present,
amplitude image based Offset Tracking (OT) is widely used in the observation of glacier
movements [25], mining caused ground deformations [26], landslides [27] and volcanic
activity [28].

However, amplitude variations remain one of the major limitations for retrieval of
deformation signals from SAR stacks. One the one hand, the correlation overestima-
tion of reference and search window due to amplitude weighting leads to patch noise
appearing in the result, Patch Like (PL). This noise harms the observation of distributed
deformation and is not able to be detected by SNR indicators. On the other hand, as
more satellite sensors with polarimetric capabilities have been launched, pixel selection of
PSI is improved by Polarimetric Data based Phase Optimizing Methods (PDPOM) and
Polarimetric Data based Amplitude Optimizing Methods (PDAOM) [29–40]. By search-
ing the optimal solution from multidimensional space constructed from polarization data,
noise can be reduced and PS number is increased. But these methods cannot be trans-
planted to OT. For the amplitude optimization, PDAOM works with time series data,
while OT need optimization of each single image. In addition, the deformation obtained
with PSI is within one pixel, while OT detects offset of several pixels, which beyond the
ability of PDPOM and PDAOM.

1.3 Motivation and Objectives

The capabilities and limitations of PSI and OT are introduced in the previous part. The
two methods can be improved to better acquire large gradient deformation. For this
purpose, the research questions this thesis would like to cope with are:

• How to determine parameters of an external model to help PSI obtain large gradient
deformation without introducing error?

• How can the PL be eliminated or reduced in OT processing?
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• How to optimize the amplitude images by polarimetric data to improve OT result?

Corresponding to the research questions above, the research objectives are summarized
as follows:

I 1) Develop an interferogram based method to optimize the parameters of the exter-
nal model.

I 2) Discover the sources of the PL and exclude them.

I 3) Investigate a polarimetric optimization method for amplitude images.

1.4 Outline of the Thesis

The purpose of this thesis is to develop advanced algorithms for PSI and OT to improve
their result of large gradient deformation monitoring. According to the research goals, it
is structured as follows:

• Chapter 1 introduces the background and state-of-the-art of PSI obtaining large
deformation and OT techniques, as well as the outline of the thesis.

• Chapter 2 introduces the basic concepts related to this thesis, including SAR imag-
ing, Pauli decomposition, DInSAR basis, OT principles and the software used in
this thesis.

• In Chapter 3, an external model-based deformation decomposition PSI method is
proposed. The proposed method is explicitly evaluated in Fengfeng mining area,
China, with leveling data as the ground truth. The classical PSI and PSI with
unadjusted parameters are referred as comparison.

• Chapter 4 explains a middle amplitude reserving SAR OT method. The proposed
method reduces the PL effects by using only the mid-range amplitude pixels to
estimate the offset map between the image pair. In addition, an error estimation
method is introduced, which is independent of amplitude contrast.

• Chapter 5 proposes a polarimetric data based amplitude contrast enhancement al-
gorithm for OT. The algorithm is validated with 31 Radarsat-2 images covering
Barcelona airport and 20 Terrsar-X images covering the mountainous area in China.
The amplitude contrast enhancement can improve the correlation between two im-
ages before and after the deformation, which is beneficial for OT processing.

• The conclusions and future research lines are summarized in Chapter 6.
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Chapter 22
Theoretical Basis

There are generally two methods based on SAR to monitor ground deformation. One is
differential interferometry based on adjacent phase continuity and its derived time series
method. The other is the shifted pixel matching based on the correlation between two
SAR images before and after deformation. This chapter aims to briefly introduce the
fundamentals of SAR, PolSAR, InSAR, DInSAR, and OT.

2.1 Synthetic Aperture Radar (SAR) Imaging

Radar systems can obtain information about scatterers by receiving the echoes of elec-
tromagnetic pulses transmitted at a specific Pulse Repetition Frequence (PRF). A SAR
system usually consists of an active microwave sensor and a mobile platform. The di-
rection in which the platform moves is azimuth, and in which the pulse is emitted is
range.

2.1.1 Range Resolution

The resolution in range direction Xr can be determined by the speed of light in vacuum
c and the pulse duration time τ or pulse bandwidth Bw:

Xr = τc/2 ' c/2Bw (2.1)

where a factor 2 is related to the round trip delay. Fewer pulse times and larger band-
widths result in higher resolution, the peak power has to be increased to preserve the
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same SNR. One typical solution is to use a chirp signal and the matched filter. The most
commonly used matched filter [41] consists of convolving the echo signal with a conju-
gated time-reversed replica of the transmitted signal. In this case, the ideal signal type
is a long Linear Frequency Modulate (LFM) pulse, also known as chirp [42]. For variable
frequencies, the bandwidth is defined as:

Bw = ατ (2.2)

where α is the chirp rate. Chirp signals and matched filters mean higher SNR and short
pulses. After range compression, the new range resolution is:

Xr = c/2Bw ' c/2ατ (2.3)

2.1.2 Azimuth Resolution

SAR is developed from Real Aperture Radar (RAR). For RAR systems, the azimuth
resolution depends on the 3 dB azimuth beam width of the antenna. Assuming that the
beam width is β, the radar wavelength is λ, and the physical length of the antenna in
azimuth is D, then the relationship between them can be expressed as:

β ' λ/D (2.4)

If the slant-range from the antenna to the target is R, then the real aperture azimuth
resolution Xa is:

Xa = Rβ ' Rλ/D (2.5)

It can be seen from Eq. 2.5 that the azimuth resolution of RAR is limited by the
antenna aperture size, the height of the flight platform, and the radar wavelength. Taking
ERS-1 as an example, its wavelength is 5.66 cm, the antenna size is 10 m in azimuth and
1 m in range. The orbital altitude is 782 km − 785 km, and the look angle is 23◦, which
means the R is about 853 km. From these data, we can know that the azimuth resolution
in the real aperture mode is about 4.8 km. To achieve an azimuth resolution comparable
to the range resolution, which is 12.5 m, the antenna length needs to be increased to
around 3858 m.

Overly large aperture antenna sizes are difficult to achieve, and SAR can solve this
problem. The principle of aperture formation is shown in Fig. 2.1, where Q is the target,
P1 and P2 are the positions where the radar first and last illuminates the target Q,
respectively.

Since the transmitted and received signals are coherent, the phase of the echo signal is
a function of time, determined by the distance between the target and the sensor. When
the sensor moves from P1 to P2, the relative motion between the target and the sensor
causes a change in the instantaneous frequency of the echo, that is, the Doppler shift.
When the sensor moves in a straight line at a constant speed, the azimuth echo signal is
similar to the chirp signal [43]. The received signal is pulse-compressed by an azimuth
matched filter to form a synthetic aperture LS from P1 to P2:

Ls ' Rλ/D (2.6)
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P1 P2

Ground target Q

V

𝐿𝐿𝑆𝑆

𝐿𝐿𝑆𝑆 𝐿𝐿𝑆𝑆

R

Fig. 2.1. Schematic diagram of the synthetic aperture.

In this case, the equivalent ground range covered by the beam is 2LS , and the beam
width is:

βs ' λ/2Ls = D/2R (2.7)

From Eq. (2.5) to Eq. (2.7), the resolution of the synthetic aperture in azimuth direc-
tion Xa is:

Xa = Rβs ' D/2 (2.8)

2.1.3 Geometric Distortions

Radar imaging is recorded based on the time it takes for the radar transmitted pulse
to return to the antenna. When side looking is applied,different objects are at differ-
ent distances from the radar antenna, and the signal returns to the antenna at different
times, allowing the recorded signals to be differentiated. If the signal is launched verti-
cally downward, objects symmetrical about the antenna will return to the radar antenna
at the same time, and their echo signals will be mixed together and cannot be distin-
guished. Therefore, imaging radars often use side looking imaging. However, limited by
the geometry of side looking, foreshortenings, layovers, and shadows can also result.

• Foreshortening. The foreshortening effect may be defined as the compression of
the slope towards the satellite when projected onto the slant range plane. This
effect is more pronounced as the local slope is closer to the incidence angle. The
extreme situation occurs when the two angles are equal, in which case the slope is
represented by a single point in the image.

• Layover. The layover distortion effect occurs when the angle of a slope facing the
radar exceeds the incidence angle. This inverse effect in the echo arrival order
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Fig. 2.2. Main SAR geometric distortions.(a) Foreshortening, (b) layover and (c) shadowing.

provokes those points located at higher elevations, which are closer to the radar,
to appear earlier in SAR images. From an intuitive point of view, the tops of the
mountains appear before the valleys.

• Shadowing. The shadowing effect occurs when a slope opposite to the radar has
a steeper slope than the incidence angle. This causes some parts to be not illu-
minated by the radar, the so-called shaded areas, and thus no reflectivity or phase
information from these points can be collected. Due to the absence of back-scattered
signals, the compressed radar image will exhibit extremely low amplitude values in
these areas.

2.2 Polarimetric SAR

One of the main characteristics of electromagnetic waves is the vectorial nature of their
electromagnetic field, i.e, the polarization. By exploiting different polarization combi-
nations of incident and reflected electromagnetic waves, the amount of information may
be increased, thus benefiting a large number of SAR applications such as offset tracking
or DInSAR [44]. This section provides some basic polarization knowledge to ease the
comprehension of this development.

2.2.1 Electromagnetic Wave Polarization

Electromagnetic waves, propagating in free space or other homogeneous isotropic non-
attenuating media, are properly described as transverse waves, meaning that a plane
wave’s electric field vector ~E and magnetic field ~H are in directions perpendicular to (or
“transverse” to) the direction of wave propagation; ~E and ~H are also perpendicular to
each other. By convention, the “polarization” direction of an electromagnetic wave is
given by its electric field vector.

Assuming a plane wave propagates along the z axis with frequency f . As a function
of time t and spatial position z, the instantaneous physical electric and magnetic fields
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can be written as:

~E(z, t) =

 ex
0
0

 ejωt · e−jkz (2.9)

~H(z, t) =

 0
hy
0

 ejωt · e−jkz (2.10)

~E × ~H = ~K (2.11)

where λ is the wavelength, T = 1/f the period of the wave, the wave number k =
2πn/λ, angular frequency ω = 2πf . It can be seen from (2.9), (2.10) and (2.11) that the
electric field ~E, the magnetic field ~H and their propagation direction ~K are orthogonal
to each other.

2.2.2 Polarization Ellipse

The electric field vector over an oscillation period can be plotted as an ellipse, as shown in
Fig. 2.3, corresponding to a particular state of elliptical polarization. Linear polarization
and circular polarization can be seen as special cases of elliptical polarization.

𝑥𝑥

𝑦𝑦

𝐴𝐴𝑥𝑥

𝐴𝐴𝑦𝑦

𝐴𝐴

𝑜𝑜
𝛹𝛹

𝜒𝜒

Fig. 2.3. Polarization ellipse in the cartesian coordinate system propagating in z direction.

One parameterization of the elliptical figure specifies the orientation angle Ψ, defined
as the angle between the major axis of the ellipse and the x axis along with the ellipticity
ε = a/b, the ratio of the ellipse’s major to minor axis. The ellipticity parameter is an
alternative parameterization of an ellipse’s eccentricity e =

√
1− b2/a2, or the ellipticity

angle χ = arctan b/a = arctan 1/ε, as is shown in Fig. 2.3.
Besides the geometrical parameters of the ellipse, the “handedness”, i.e., whether the

rotation around the ellipse is clockwise or counter clockwise, is also necessary to describe
a polarization state.
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2.2.3 Jones Vector

Full information on a completely polarized state is also provided by the amplitude and
phase of oscillations in two components of the electric field vector in the plane of po-
larization. The amplitude and phase information can be conveniently represented as a
two-dimensional complex vector (the Jones vector):

e =
[
a1e

iθ1

a2e
iθ2

]
(2.12)

where a1 and a2 the amplitude of the wave in the two components of the electric field
vector, θ1 and θ2 represent the phases. The product of a Jones vector with a complex
number of unit modulus gives a different Jones vector representing the same ellipse, and
thus the same state of polarization. The physical electric field, as the real part of the
Jones vector, would be altered but the polarization state itself is independent of absolute
phase. The basis vectors used to represent the Jones vector need not represent linear
polarization states (i.e. be real). In general, any two orthogonal states can be used,
where an orthogonal vector pair is formally defined as one having a zero inner product.

2.2.4 Four Basic Reflections

One of the many applications of polarimetric SAR data is to find physical interpretations
of reflections [45–48]. According to these studies, the reflection of electromagnetic waves
on various scatterers can generally be divided into four categories, shown in Fig. 2.4.

Diffuse scattering

Double bounce

Single bounce

Volume scattering

Fig. 2.4. Four different types of radar signal reflecting.

The first one is the single bounce, it is similar to optical specular reflection. This
scattering happens on smooth surfaces, such as calm water, dry riverbeds, and flat rocks.
Normally, the wave power after this reflection is weak, so the pixels with this reflection
are usually dark on the SAR images, unless the surface faces the antenna. The second
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one is the diffuse reflection, which occurs on rough surfaces with surface fluctuations
much larger than the incident wavelength, such as solidified volcanic lava, wavy water
surfaces, and crop-covered surfaces. Part of the wave power returns to the antenna after
this reflection, so the pixels are gray or white. The double bounce occurs between two
mutually perpendicular surfaces, such as dihedral, urban building walls, and sturdy tree
trunks. The reflected energy is very strong and appears light gray to white on the image.
The volume reflection occur on thin cylindrical scatterers in random directions, such as
areas of vegetation consisting of a large number of tree branches. The reflected energy is
weaker, but stronger than a single bounce.

2.3 Synthetic Aperture Radar Interferometry

2.3.1 Theory

The interferogram is the complex product of the master SLC image by the complex
conjugate of the slave SLC image. Assuming S1 and S2 are pixels at the same position
in the master and slave images, the result is:

I = S1S
∗
2 (2.13)

The phase information of I can be expressed as:

φint = φdef + φflat + φatm + φorb + φtopo + φnoise (2.14)

where φdef is the deformation phase, φflat is the flat earth phase, φatm is the atmo-
spheric phase, φorb is the orbit inaccuracies induced phase, φtopo is the topography
phase contribution, φnoise is from other noise such as misregistration, thermal noise, etc.

As can be seen in Fig. 2.5. A1 and A2 are the positions of the satellite antennas during
the two imaging. Target P is on the reference plane. The distances from the antenna to
target P are R1 and R2 respectively. The distances between the antennas and target P ′
are R′1 and R′2, respectively.

The phase of P is the flat earth phase φflat :

φflat = −4π
λ
B‖ = −4π

λ
B sin(θ −∆θ − α) (2.15)

The phase of P ′ is the combination of flat earth phase φflat and topography phase
φtopo , because P ′ is located on an undulating surface. The phase of P ′ can be expressed
as:

φP ′ = −4π
λ

(R′1 −R′2) = −4π
λ

(sin(θ − α)) = −4π
λ
B‖ −

4π
λ
B⊥∆θ (2.16)

The topography phase can thus be obtained:

φtopo = −4π
λ
B⊥∆θ = −4π

λ

B⊥
R1 sin θ0

h (2.17)
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Fig. 2.5. The principle of DInSAR.

2.3.2 Interferometric Decorrelation Sources

As can be seen with Eq. (2.14) that each interferogram contains phases caused by various
factors. For terrain displacement measurements, all but deformation and topography
phases are defined as decorrelation or phase degradation. The study of these factors is
very important because they have a direct influence on the accuracy of ground deformation
monitoring. The most used parameter to evaluate the quality of the interferometric phase
is the coherence estimator γ [57] [58] [59]:

|γ̂(m,n)| =

∣∣∣∑L1−1
m=0

∑L2−1
n=0 S1(i, j) · S∗2 (i, j)

∣∣∣√(∑L1−1
m=0

∑L2−1
n=0 |S1(i, j)|2

)(∑L1−1
m=0

∑L2−1
n=0 |S2(i, j)|2

) (2.18)

where L1 and L2 are the window sizes in range and azimuth, respectively, L = L1 × L2
is the number of pixels involved in a spatial averaging. The values of coherence vary in
the range [0, 1], with two extremes accounting for the two limit situations of data totally
uncorrelated and fully correlated, respectively.

Depending on the correlation distance, the sources of error can be divided into two
groups.

The large correlation length errors do not have any impact on the coherence:

• Atmospheric artifacts: The different atmospheric layers that the electromagnetic

12



2.4 - Differential Synthetic Aperture Radar Interferometry

wave crosses present variations on their refractivity indexes. This modifies its prop-
agation speed, causing a phase change in the interferometric phase term. The
typical correlation window of the artifacts is considered 1 km, despite some strong
and highly localized phenomena that could reduce this value but do not affect the
coherence for its low frequency behavior in space. There is a strong correlation
between topography and atmosphere as it can be parameterized through different
magnitudes that vary with the height as temperature, water vapor, and pressure.

• Orbit errors: The state vector of each acquisition can be inaccurate and the flat
earth component can appear as a phase ramp in the interferogram. However, the
new generation of SAR satellites presents a high positioning precision reducing the
impact of this kind of error.

The small decorrelation errors have a correlation length smaller than a regular coher-
ence estimation window and so affect the coherence [49,50]. They can be listed as

• Misregistration: Every image is acquired from a different point of view. If the whole
set of images is corregistrated with low accuracy, it would cause this error.

• Geometric decorrelation: The two images of an interferogram are acquired from
different looking directions. This means that they observe a slightly different part
of the range reflectivity spectrum. This effect is known as range spectrum shift.
Consequently, when generating the interferogram the non-common band contributes
as noise on the interferometric phase [51]. To avoid this decorrelation, every SLC
should be filtered before the generation of the interferograms.

• Doppler decorrelation: It is the azimuth equivalent of the spatial decorrelation. This
is caused by the different Doppler centroid frequencies between both acquisitions
which induces a frequency shift in the azimuth spectrum from one image to the
other.

• Volumetric decorrelation: This term is related to the penetration of the radar waves
into the illuminated scene. It analyzes the similarity between the backscattering
target response in the vertical direction between the images of the interferogram.
Consequently, it will strongly depend on the height target distribution within the
resolution cell as well as the radar wavelength and the scattering medium.

• Temporal decorrelation: This term accounts for the possible changes in the proper-
ties of the wavelength-scale scatterers of the scene from one image to the other.

• Thermal noise: This term depends on the SNR ratio.

2.4 Differential Synthetic Aperture Radar Interferom-
etry

The process of determining the deformation phase and removing other phase components
is DInSAR technology. Suppose P ′′ in Fig. 2.5 is the position of P ′ after deformation
during the satellite imaging interval, and the distance from A2 to P ′′ is R′′2 , assuming:
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R′′2 = R′2 + ∆r (2.19)

In the interferogram, the phase of P ′′ can be expressed as:

φP ′′ = −4π
λ

(R′1 −R′′2 ) = −4π
λ

(R′1 −R′2)− 4π
λ

∆r (2.20)

In the case of not considering the atmospheric phase and noise, the deformation phase
can be described as:

φdef = −4π
λ

∆r (2.21)

And the deformation obtained by DInSAR in Line of Sight (LOS) direction is:

∆r = − λ

4πφdef (2.22)

2.5 Persistent Scatterer Interferometry

In this thesis, the PSI processing in Chapter 3, the preparation of SLC data and regis-
tration in Chapter 4 and Chapter 5 are accomplished by SUBSIDENCE-GUI, which is
the software implementation of the Coherent Pixels Technique (CPT), and developed at
Universitat Politècnica de Catalunya (UPC). CPT consists of four main parts: interfero-
gram selection, pixel selection, linear deformation estimation and non-linear deformation
estimation [52] [53].

2.5.1 Interferogram and Persistent Scatterer Selection

The interferogram selection block determines the approach of interferogram generation
(e.g., the single-master or multi-master approach), and both spatial and temporal maxi-
mum baseline lengths allowed for interferograms. Details about this block can be found
in [54].

For the persistent pixel selection, the different criteria are basically divided into two
families: those working at full-resolutions, like amplitude dispersion, DA [55] or Temporal
Phase Coherence (TPC) [56], and those working with multi-looked interferograms which
rely on the coherence, γ. The former is, in principle, more suited to detect deterministic
targets while the latter is better suited for distributed ones. The coherence method is
introduced in Section 2.3.2.

The amplitude dispersion DA can be obtained by:

DA = σA
mA

(2.23)

where mA and σA refer to the mean and standard deviation of the temporal amplitude
evolution, respectively.
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2.5.2 Linear Deformation Estimation Block (LDEB)

Starting from the differential interferograms and a map of selected Persistent Scatter Can-
didate (PSC)s, the Linear Deformation Estimation Block (LDEB) estimates the linear
deformation velocity v and the residual topographic error ε, which is due to inaccuracies
of the DEM employed for the generation of differential interferograms. This is accom-
plished by adjusting a linear model of v and ε to the data (i.e., the phases of differential
interferograms). This linear model, on interferogram level, of one pixel can be expressed
as

φmodel = 4π
λ
· T · v + 4π

λ
· Bn
r · sin(θ) · ε (2.24)

where λ is the wavelength, T and Bn are respectively the temporal and perpendicular
baselines of the interferogram, r the sensor-to-target distance, θ the local incidence angle.

The LDEB can be divided into three sub-blocks, i.e., Triangulation, Minimization and
Integration, as Fig. 2.6 shows:

Interferogram 
stack

PSCs 
map

Triangulation

Integration

Minimization

Phase increments

Linear velocity 
and DEM error

Linear increments

Fig. 2.6. Diagram for the estimation of the linear components of CPT.

1) Triangulation
Due to different phase offsets among differential interferograms, it is very difficult to

derive v and ε through (2.24) by using phases of individual pixels, directly. On the other
hand, the differential interferometric phases are wrapped and may contain atmospheric
artifacts, which can affect the adjustment of (2.24). These problems are overcome by
relating neighboring PSCs by the means of Delaunay triangulation, where the PSCs are
nodes and links between nodes are arcs. Then phase increments along arcs are calculated
on the interferogram level, and the phase increment along arcm,n of the i− th differential
interferogram can be expressed as

∆φi (Ti, Bn,i, xm, ym, xn, yn) = ∆φi (Ti, Bn,i, arcm,n) = φi (xm, ym)− φi (xn, yn)
(2.25)

where the (xm, ym) and (xn, yn) are locations of the two nodes (i.e., the two selected
pixels) forming this arc. In this way, CPT is able to work with interferometric phase

15



Chapter 2. Theoretical Basis

increments rather than absolute phases. On the other side, for the i − th differential
interferogram, the linear model along arcm,n can be derived as (2.26) according to (2.24)

∆φimodel (Ti, Bn,i, arcm,n) = 4π
λ
· Ti ·∆v (arcm,n) + 4π

λ
· Bn,i
ri · sin(θi)

·∆ε (arcm,n) (2.26)

where ∆v (arcm,n) and ∆ε (arcm,n) are respectively the linear velocity and DEM error
increment along arcm,n [54, 60].

2) Minimization
As ∆v (arcm,n) and ∆ε (arcm,n) are constants for all the interferograms, they can be

estimated by adjusting ∆φimodel to the data ∆φi. This is achieved through the minimiza-
tion of a designed cost function Γ (arcm,n) as

Γ (arcm,n) = 1
Nint

·
Nint∑
i=1

∣∣∣e−j∆φi(Ti,Bn,i,arcm,n) − e−j∆φ
i
model(Ti,Bn,i,arcm,n)

∣∣∣2 (2.27)

where Nint is the number of interferograms. This minimization is done in the complex
plane, thus, any kind of phase unwrapping on interferograms is not required at this step.
By doing this minimization from one arc to the other, increments of linear velocity and
DEM error of all arcs in the network can be obtained. Meanwhile, the model quality (or
model coherence) of each arc is calculated to asses the quality of its related solution (i.e.,
∆v and ∆ε). After this, to ensure final products’ reliabilities of LDEB, bad quality arcs
are eliminated by discarding those with model coherence values below a threshold [54,60].

3) Integration
From the arc increments obtained in the previous step, the linear displacement and

DEM error for each selected pixel are derived through an integration process. And then
this float solution can be fixed by using one or multiple pixels with known DEM errors
and linear velocities as tie points.

2.5.3 Non-linear Deformation Estimation Block (NLDEB)

The LDEB obtains linear component of the displacement, to retrieve a complete estima-
tion, the non-linear deformation has to be retrieved. This is completed by Non-linear
Deformation Estimation Block (NLDEB) of CPT, and it consists of two parts, i.e., atmo-
spheric artifacts estimation and temporal non-linear displacement estimation, as Fig. 2.7
shows.

1) Atmospheric artifacts estimation
The residual interferometric phase φres for each interferogram can be obtained by

subtracting the linear components obtained by LDEB from the differential interferometric
phase φ as

φres = φ− φmodel (2.28)

where φmodel is the linear model phase that can be obtained according to (2.24). Then
based on φres, the atmospheric phase can be isolated by taking advantage of its different
spatio-temporal frequency properties with that of the non-linear deformation component.
Particularly, the atmospheric phase can be considered as a spatial low-pass signal in each
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Fig. 2.7. Diagram for the estimation of the non-linear displacement of CPT.

interferogram (or image) and a white noise process in time. On the other hand, the
non-linear deformation presents a narrower spatial correlation window compared with
Atmospheric Phase Screen (APS) and presents a low-pass behavior in time. It is worth
noting that due to the white noise process of atmospheric artifacts, their frequencies fill the
whole temporal spectra and, thus, partially overlap with that of non-linear deformation.

Firstly, a low-pass spatial filtering is applied to the interferometric residue of each
interferogram and the filtered residue should become

φres,SLR = φnon−linear,SLR + φatm (2.29)

where φnon−linear,SLR is the Spatial Low Resolution (SLR) non-linear component of the
displacement, and φatm the APS as it is assumed to be low-pass in spatial domain and
not affected by the spatial filter.

After the spatial low-pass filter, an offset for each φres,SLR can be estimated through a
histogram analysis. And this new set of residual interferometric phases is easy to unwrap
since they should be very smooth in spatial as almost all fringes have been removed. Once
unwrapped the phase and removed an offset for each one of the residual interferograms, the
Singular Value Decomposition (SVD) is applied to transform the phase from differential
time domain to the image time one.

After the above inversion, the result is integrated with respect to the first image. And
then a high-pass temporal filter is employed to extract the image level APS term. Until
now, the atmospheric phase φAPS for each interferogram can be calculated. It is worth
noting that the high-pass cut frequency for the temporal filter should be set as the highest
possible frequency of the non-linear displacement.

2) Temporal non-linear displacement estimation
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Chapter 2. Theoretical Basis

Once the APS has been estimated, a new residual interferometric phase free of atmo-
spheric artifacts can be calculated as

φres,APSfree = φ− φmodel − φAPS − φoff = φnon−linear + φnoise (2.30)

where φAPS and φoff are the APS and phase offset estimated in the previous step,
φnon−linear the non-linear deformation component, and φnoise the interferometric phase
noise term. Then by employing a new SVD process on φres,APSfree of all the interfer-
ograms, the temporal phase profile corresponding with non-linear deformation can be
retrieved and converted to displacement. Finally, the total deformation is obtained by
adding the linear and non-linear terms together, as it is shown in Fig. 2.7.

2.6 The Probability Integral Method (PIM)

1

1/2 1/2

1/4 1/42/4
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Fig. 2.8. Theoretical model of particulate medium. (a) Theoretical model.(b) Distribution
of particulate movement probability.

The probability integration method, firstly proposed by Polish scholars, is a mining sub-
sidence simulation method based on stochastic medium theory [61]. It considers the
movement of particles, such as sand or tiny rock masses, as a random event, which makes
the relationship between particles irrelevant. The mining area can be divided into a num-
ber of differential units with the assumption that they are mined. The total impact of the
complete mining on the rock formation and the surface can be regarded as the integral
of the small impact generated during the mining of the differential units. As shown in
Fig. 2.8a, when the ball (named a1) on the first floor is taken away, one of the balls on
the second floor (a2 and b2) will fall, so the probability of falling for each of the two balls
is 1/2. Then, one of the balls on the third floor will fall, and the falling probabilities for
each of the three are 1/4, 2/4, and 1/4, respectively (in Fig. 2.8b).

On this basis, the differential equation of the probability distribution function of the
sinking event is obtained. The surface subsidence at point x is,

W (x) = Wmax

2 · [erf(
√
π

r
· x) + 1] (2.31)
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Where W (x) stands for the subsidence value at x; Wmax is the max value of the
subsidence curve; r is the major influencing radius; erf is the error function, and erf =

2√
π

∫ x
0 e
−η2

dη. The location of x = 0 is the coal mining boundary.

The integral can be extended to two dimensions. The length and width of the working
surface are l and L, respectively, then the subsidence value of point (x, y) on the surface
is,

W (x, y) =Wmax ×
1
2

{[
erf
(√

π
x

r

)
+ 1
]
−
[
erf
(√

π
x− l
r

)
+ 1
]}

× 1
2

{[
erf
(√

π
y

r

)
+ 1
]
−
[
erf
(√

π
y − L
r

)
+ 1
]}

= 1
Wmax

[W (x)−W (x− l)][W (y)−W (y − L)]

(2.32)

The parameters in Eq. (2.32) can be calculated as follows,



Wmax = qm cosα
r = H0

tan β
r1 = H1

tan β
r2 = H2

tan β
θ = 90o − k · α
l = L1 − 2S0

L = (L2−S1−S2) sin(180o−α−θ)
sin θ

W (x) = Wmax

2 · [erf(
√
π · xr ) + 1]

W (x− l) = Wmax

2 · [erf(
√
π · x−lr ) + 1]

W (y) = Wmax

2 · [erf(
√
π · yr1

) + 1]
W (y − L) = Wmax

2 · [erf(
√
π · y−Lr2

) + 1]

(2.33)

In Eq. (2.33), q is the subsidence coefficient, m is the mining thickness, α is the dip
angle of the coal seam, H0 is the average distance of the coal seam from the ground surface,
tan β is the tangent of main effect angle, r1 is the main influence radius of the downhill
direction, r2 is the main influence radius of the uphill direction, θ is the propagation angle
of extraction, k is the propagation coefficient of extraction, L1 is the length of the mining
face, L2 is the width of the mining face, l and L are the equivalent length and width of
the mining face, S0, S1, S2 are the deviations of the inflection point.

2.7 Offset Tracking (OT) Principle

The OT method itself is inspired by traditional optical image registration algorithms. As
shown in Fig. 2.9, OT obtains the offset by matching a reference template and a search
template of the same size. The reference template in the reference SAR image is fixed
and the search template is moved in the search SAR image to find the window that best
matches the reference template. The parameter describing the similarity between the
reference template and the search template is the cross correlation coefficient, and can be
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calculated by Eq. (2.34):

ρ(x, y) =

∣∣∣∣∣∣
∑
u

∑
v

(
I1(x, y)− Ī1

) (
I2(x+ u, y + v)− Ī2

)√∑
u

∑
v

(
I1(x, y)− Ī1

)2∑
u

∑
v

(
I2(x+ u, y + v)− Ī2

)2
∣∣∣∣∣∣ (2.34)

where ρ(x, y) represents the correlation coefficient. (x, y) are the coordinates of the center
pixel of the reference template in the reference image. (u, v) indicate the movements of
the search template. (x + u, y + v) are the coordinates of the center pixel of the search
template in the search image. I1, I2 represent the pixel intensity in the reference template
and the search template, respectively. I1, I2 indicate the mean of the pixel intensity in
the corresponding template window. The (u, v), which can lead to the maximum ρ(x, y),
is the offset of the pixel in the center of the reference template.
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Fig. 2.9. The principle of pixel tracking.

The pixel-tracking method is simple and computationally expensive. The computation
burden can be reduced by performing cross correlation in the frequency domain. The
monitoring accuracy is affected by factors such as pixel size, surface scattering properties,
template window size, and cross correlation factor. This method cannot be performed
if the surface scattering signal has no contrast or the contrast is very weak, such as a
flat desert without rocks or plants. The pixel-tracking method is not restricted by the
deformation gradient. Besides, it has strong phase decorrelation immunity. These two
advantages allow OT complements the InSAR method based on phase unwrapping.
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Chapter 33
EMDD-PSI: External

Model Deformation
Decomposition based
Persistent Scatters

Interferometry

As introduced in Chapter 1, several methods have also been proposed to improve the
performance of PSI in large gradient deformation monitoring. Inspired by the afore men-
tioned methods and also in order to avoid the above constraints, in this Chapter a new
method with less parameter dependence and better non-linear retrieving ability is pre-
sented, named as External Model Deformation Decomposition based Persistent Scatters
Interferometry (EMDD-PSI). To assess the performance of the proposed EMDD-PSI, it
has been tested with 14 Radarsat-2 images over Fengfeng mining area (China). The ben-
efits of the proposed EMDD-PSI have been evaluated and discussed. This Chapter is
organized as follows. Section 3.1 describes the principals and detailed procedures of the
proposed EMDD-PSI. In Section 3.2, data sets and study area are briefly introduced.
Then, the results obtained with the proposed and traditional methods are compared with
the ground truth in Section 3.3. In Section 3.4, some procedures and results are discussed.
Finally, conclusions are made in Section 3.5.
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3.1 Methodology
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Fig. 3.1. Overall processing scheme.

When PSI techniques try to monitor deformations with large gradients in a mining area,
one of the challenges is the error caused by the so-called phase saturation. When the
LOS deformation difference between two adjacent pixels exceeds λ/4 [62], with λ the
wavelength of the carrier frequency, the correct deformation cannot be retrieved. As
mentioned in Chapter 1, a proper model of the subsidence phenomena can be used to
reduce the phase difference among adjacent pixels. However, inaccurate model parameters
may introduce additional fringes in the interferograms instead of reducing them.

In this section, a method is proposed to increase the accuracy of PSI monitoring
of large gradient deformations by reducing the fringes of the interferograms, as shown
in Fig. 3.1. For the sake of clarity, the differential interferograms are referred to as
original interferograms. The subsidence maps generated by the PIM model are called
the model simulated maps. The proposed approach mainly consists of three steps: a)
optimize the adjustment of the model parameters using individually all or a subset of the
original interferograms and then generate model simulated maps, b) remove or reduce
the deformation fringes in all interferograms with the simulated maps and c) do the
PSI processing to the cleaned interferograms and obtain the residual deformation not
considered by the model, and finally generate the deformation time-series adding the
model simulated maps to the calculated residual deformations.

a) Parameter optimization
The purpose of parameter optimization is to make the model simulated deformation
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as close as possible to the original interferograms by adjusting the parameters of the PIM
model. Generally, there are two ways to obtain these parameters. One is by inversion
according to the ground subsidence value, the subsidence can be acquired by measure-
ment of DInSAR, GPS or leveling. While the other is from a-priori knowledge. All the
parameters are listed in Table 3.1 with their obtaining methods and effects.

Obviously, not all the parameters need to be optimized. The parameters obtained from
the measurements should not be changed because they represent the actual situation
of the working panel. According to [63], different working panels should be simulated
with different PIM parameters obtained by a-priori knowledge because of their different
geological structure and mining conditions. Similarly, not all the parameters from a-priori
knowledge need to be optimized either. Here mainly two factors are considered, one is
due to the simplification of the model, the other is ’the curse of dimensionality’.

Due to the simplification of the model, the coal seam is considered horizontal. Under
these circumstances, some parameters do not need to be optimized anymore, such as the
maximum sinking angle, which represents the influence caused by the tilt of the coal
seam. When the coal seam is horizontal, the maximum sinking angle is 90◦. Also, since
the horizontal deformation is ignored, the horizontal movement coefficient is not necessary
as its role is to calculate the maximum horizontal movement.

Inflection point offsets are used to determine the horizontal distance between inflection
points and the working panel boundaries. The tangent of main effect angle represents the
ratio between the depth and the distance from basin center to the inflection points. Once
the coordinates and depth of the working panel is determined, these parameters will have
the same influence on the basin, i.e. they are in same dimensionality. The four inflection
point offset correspond to the four boundaries of the working panel. Since the model is
considered symmetrical, it is enough to just optimize the tangent of the main effect only.
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Table 3.1: Obtaining method and effect of PIM parameters.

Parameters of PIM method of
obtaining Effect

Coordinates of the
working panel measurement Description of the location of the

mining activity

Mining depth measurement Description of the depth of the
mining activity

mining thickness measurement Description of the thickness the of
mining coal seam

coal seam dip angle measurement Description of the angle between
coal seam and horizontal plane

strike azimuth measurement Description of the mining
direction

sinking coefficient prior
knowledge

Determining the maximum
deformation value of the basin

horizontal movement
coefficient

prior
knowledge

Determining the horizontal
deformation value

tangent of main effect
angle

prior
knowledge

Determining the ratio of mining
depth to major influencing radius

inflection point offsets prior
knowledge

Determining the horizontal
distance between mining
boundary and inflection point

propagation angle of
extraction

prior
knowledge

Description the relationship
between inflection point offsets
and mining depth

maximum sinking angle prior
knowledge

Determining the relationship
between the working panel and
the point on the ground surface
with maximum subsidence value

Two additional offset parameters are added. They are not PIM parameters, but they
are used to correct the subsidence location to compensate for the impact of faults and
adjacent goafs. With the three PIM parameters, there are a total of five parameters
participating in the optimization. These five parameters are named as Parameters that
Can Be Optimized (PMCBO).

After the PMCBOs are defined, the next step is its optimization to better match the
model simulated deformation to the original interferograms. A brute force approach is
used, i.e. given a search range (max and min values) and step size for the parameters,
the values of all possible combinations are feeded into the PIM model to get all possible
simulated maps. Then the model simulated maps are transformed from deformation to
interferometric wrapped phases in radar coordinates to be consistent with the original
interferograms. After that, the phase difference between the simulated model maps and
the original interferograms is calculated to measure the degree of compliance of the model
for each parameter combination.
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In addition, only those PS pixels with a coherence beyond 0.6 and located within
the PIM simulated basin are used to calculate the phase difference. The average of the
absolute values of the phase differences is considered the metric to evaluate the agreement
between the simulated model maps and the original interferograms.

b) Fringes reduction
The purpose of reducing the number of fringes in the interferograms is to improve the

accuracy and reliability of the solution by reducing phase ambiguities among adjacent
points in the PSI processing. After obtaining the optimized PMCBOs, model simulated
maps are generated using PIM. After converting the model simulated subsidence values
into interferometric phases in radar coordinates, the cleaned interferograms are obtained
by subtracting the model phase from the original interferograms. The cleaned interfero-
grams are also mentioned as residual interferograms. Ideally, if the model simulated maps
were absolutely consistent with the original interferograms, that is, the phase difference
between both would be zero and all the fringes in the original interferograms would have
been removed. This situation is clearly unrealistic as both the model and their parameter
adjustment present limitations. In fact, the objective is to reduce the fringes under an
acceptable level not to remove them completely.

c) Deformation retrieval
CPT is applied to obtain the time-series deformation and subsidence velocity from the

residual interferograms, which is called the residual deformation information. This defor-
mation is added to the one simulated by the model to determine the complete deformation
time-series.
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3.2 Study Area and Data Set

3.2.1 Study Area

Fig. 3.2. Study area overview. Figure (a) shows the location of the study area.Figure (b)
shows the coverage of RADARSAT-2 images and the altitude of the study area. Figure (c)
shows the goafs, working faces, faults and leveling stations. The numbers around blue points
indicate the name of the leveling station.

The 15235 working face of the Jiulong mining area is selected as test site. It is located in
Fengfeng coalfield, Hebei Province (China), and surrounded by villages, industrial plants
and farmlands. The working face presents a length of 935 m in the strike direction, a
length of 142 m in the dip direction, an average coal mining thickness of 4.5 m, and an
average mining depth of 740 m. The inclination of the working face is between 12 ◦ and
15 ◦ with an average of 14 ◦. In the south of the study area, there is the 15221N working
face goaf, in the north is the northern boundary of the minefield, in the west is the DF4
fault and the Daqing waterproof coal pillar. Due to the proximity to the DF4 fault, there
may be some small faults in the west of the 15235 working face.

3.2.2 Data Set

14 ascending Radarsat-2 Stripmap images were collected from April 4th, 2015 to March
5th, 2016, with a HH polarization. The incidence angle ranges from 33.9 ◦ to 37.1 ◦.
The pixel resolution is approximately 2.66 m in the range direction and 2.91 m in the
azimuth one. Radarsat-2 works at C-band and has a revisit period of 24 days. The
wavelength of the carrier is 5.55 cm. DEM with pixels spacing of 10 m from the Shuttle
Radar Topography Mission (SRTM) is used to help with coregistration and remove the
topographic phase.
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The characteristics of the area of interest, barely urbanized and covered with high
vegetation, and the strong gradient deformation introduces a severe constraint on the
maximum temporal baseline that can produce useful interferograms. The interferograms
are generated using a Delaunay triangulation, where the maximum temporal baseline
has been set to 48 days while the maximum spatial baseline to 360 m. A total of 16
interferograms have been generated whose the details are summarized in Table 3.2.

Table 3.2: Parameters of interferogram pairs.

NnmberInterferograms
Pairs

Spatial
Baseline

Time
Base-
line

1 20150404–20150428 −99.1 m 24 d
2 20150404–20150522 83.8 m 48 d
3 20150522–20150615 50.1 m 24 d
4 20150615–20150802 −94.2 m 48 d
5 20150709–20150826 −116.9 m 48 d
6 20150826–20150919 109.1 m 24 d
7 20150826–20151013 8.9 m 48 d
8 20150919–20151013 −102.0 m 24 d
9 20151013–20151106 −50.6 m 24 d
10 20151013–20151130 −51.0 m 48 d
11 20151106–20151130 −10.1 m 24 d
12 20151106–20151224 −30.0 m 48 d
13 20151130–20151224 −20.5 m 24 d
14 20151130–20160117 30.5 m 48 d
15 20151224–20160117 −47.4 m 24 d
16 20160117–20160305 −39.0 m 48 d

In order to validate the DInSAR monitoring result, leveling data provided by China
University of Mining and Technology (CUMT) is used as ground-truth. It was collected
on April 24th, 2015 and March 4th, 2016, and the accuracy of the leveling data is better
than 1 mm. The position of the leveling stations are shown in Fig. 3.2 as blue points.
The station number gets higher from northeast to southwest in the strike direction and
from south to north in the dip direction.

3.3 Results

In this section, the performance of the proposed method is evaluated in terms of the
consistency of the model simulated maps and the original interferograms, the comparison
with the traditional PSI processing and, finally, the verification with the available ground-
truth data.

SUBSIDENCE-GUI, the software implementation of the CPT developed at UPC, is
used to perform the PSI processing. The details are introduced in Section 2.5. For the
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pixel selection step, the surface of the mining area is often covered by soil, so coherence
has been used to select the pixels with a 3× 3 multilook, in order to preserve resolution,
and a mean coherence threshold of 0.5. The phase standard deviation σ of the selected
coherence threshold and multi-look is 32◦.

3.3.1 Consistency of the Model Simulated Deformation Maps
with the Original Interferograms

Fig. 3.3 shows the wrapped phase maps of the 16 original interferograms generated from
the 14 SLC images (the first and fourth columns), simulated by PIM (the second and fifth
columns) and residual interferograms (the third and sixth columns), in radar coordinates.

Some of the original interferograms clearly show that there are two adjacent subsidence
basins. They are caused by working panels 15235 and 15221N. Compared with Universal
Transverse Mercator (UTM), the radar coordinate system is upside down. Therefore, in
Fig. 3.2 and Fig. 3.4, 15235 is located above 15221N, while in Fig. 3.3, 15235 is below
15221N.

It can be seen from the original interferograms that the sinking basin induced by the
15235 working face has an offset towards adjacent basins and faults. The borders of the
two mining basins are even connected together. In some interferograms fringes are barely
visible due to the poor quality of the phase, which is heavily decorrelated. Although
there are only two different temporal baselines (24 days and 48 days) in the data set, the
number of interferometric fringes varies widely along time, highlighting the non-linear
behavior of the subsidence pattern.

Some strange horizontal thick fringes appears in the interferogram 20151224-20160117.
Four possible reasons are examined: DEM error, ground surface change, groundwater
caused deformation and atmospheric artefacts. DEM is checked and its shape does not
match these features. Ground surface did not change so much during that time. There
are some villages in this area and the domestic water of local people is from groundwater
(it is normal in China). The decline of the groundwater may cause subsidence like this.
But if these fringes were caused by groundwater, the mining activities should affect the
groundwater, and the subsidence basins caused by groundwater and mining will become
a large one, instead of two separate basins. Since other possibilities are ruled out, and
the strange area is large enough (at least 3 km2), the most likely reason for the strange
fringes are atmospheric artifacts.

The model simulated maps are first back-geocoded from UTM coordinates into radar
coordinates, then phase wrapped. As it can be seen in Fig. 3.3, in contrast to the origi-
nal interferograms, the simulated basins do not develop towards surrounding basins and
faults, and they have the characteristics of a regular shape and neat boundary, while the
rest has a phase equal to 0. This is because the model considers the rock formations
above the working panel to have the same mechanical properties, and the information of
other goafs and faults is not considered.

In the residual interferograms, it can be seen that there are still small residual phases
distributed around the 15235 basin because the upper basin and faults are not considered
in the model. In general, the number of fringes has been reduced in the interferograms
showing clear and significant fringes. It can be clearly seen that the number of fringes in
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the lower basin has been reduced, which proves the accuracy of the model despite their
boundaries were not perfectly adjusted. It has to be kept in mind that the goal was to
reduce the high frequency fringes but cancelling them completely was not compulsory.
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Fig. 3.3. Phase maps of 16 original interferograms, model simulated deformation and resid-
ual interferograms in image coordinates. The acquisition dates of master image and slave
image of each interferogram is on the top, O indicates original interferogram, P means the
phase map is from PIM model and R represents the residual interferogram.
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Fig. 3.4. Deformation velocity maps of the study area in vertical direction. The white cross
symbol is the point with maximum deformation velocity.

3.3.2 Comparison with the Traditional Persistent Scatters Inter-
ferometry (PSI) Processing
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Fig. 3.5. Time series subsidence in LOS direction at the location with the maximum
subsidence value.

Fig. 3.4 shows the subsidence vertical velocity maps obtained with SUBSIDENCE-GUI
in UTM coordinates without and with the deformation model. The upper subsidence
basin, caused by the mining of 15235 working face, is the one that has been modeled. By
comparing the two figures, it can be seen that the PSs density and location are almost
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identical in both cases. The difference of mean coherence of the original and cleaned
interferograms in the subsidence area is only 0.03, which is too small to influence the
pixels selection step. The reason that the coherence has only a small improvement after
fringes removal is because the frequency of the fringes caused by mining are not extremely
high and the multi-look small, only 3×3. The key contribution of PIM model in this case is
to compensate the periods influenced by decorrelation instead of coherence improvement.

The characteristics of the mining area make it not specially suited for PSI processing.
In order to have an acceptable density of pixels, the coherence threshold has been set
to 0.5, a lower value than usual. This makes the results to be noisier but this loss of
precision is compensated by the large values of deformation. Results in stable areas are
almost identical with both approaches. As expected, the density of selected points is
higher in urbanized areas than in rural fields. The subsidence basins in the two figures
are not symmetrical. There is an offset to the southwest direction due to the influence of
nearby faults and adjacent goafs. The subsidence basin induced by 15235 in Fig. 3.4 (b)
is larger in extension and deformation values than in Fig. 3.4 (a). The rationale of the
differences will be detailed in Section 3.3.3

The comparison of the time-series deformation obtained with the two methods in the
location with the maximum subsidence velocity is shown in Fig. 3.5. As it can be seen,
the two time-series present the same trend but it is steepest when using the subsidence
model. They both have a slowly deformation rate tending to a stabilization from August
26th to September 19th, 2015. When the subsidence accelerates, from September 19th,
2015 to March 5th, 2016, the orange curve is almost a line, while the blue one shows
that the subsidence rate starts to slow-down. The behaviour of the blue line is consistent
with the law of sinking after the surface point is affected by underlying mining. The
deformation time-series are better retrieved thanks to the fringe reduction provided by
PIM, which considers the non-linear deformation.

3.3.3 Leveling Data Verification
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Fig. 3.6. Results comparison of different methods.
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The deformations obtained by PSI with and without PIM assistance are compared with
leveling data in Fig. 3.6. In the plots, the deformation retrieved with PIM without
parameter optimization is also included for comparison purposes. In order to be consistent
with the leveling data, the deformation results have been transformed from LOS to vertical
direction. As the subsidence measured by leveling is from April 24th, 2015 to March 4th,
2016, the deformation monitored by PSI has been limited to the period from April 28th,
2015 to March 5th, 2016. It can be seen that, the green and purple curves, PSI with PIM,
decrease faster than the red one, PSI with no model, in both dip and strike directions.
This is because, compared to traditional PSI, PIM reduces the number of interferometric
fringes in the sinking area, that is, the phase gradient. Thus, as the phase ambiguity of
the relationship among PS points is reduced, the network is more robust. Besides, part of
the deformation is a-priori retrieved by the external model. Therefore, the PSI processing
can achieve better results.

There are some differences with the leveling stations 1 to 19 in Fig. 3.6(a) because
the subsidence in the dip direction is also affected by another working face not included
in the model and so the subsidence is clearly underestimated. This results highlights the
importance on the selection of the proper model. Meanwhile, it can be seen that the
purple curve is shifted towards north and east compared to the green curve due to the
setted offset in parameter optimization. As it can be seen in Fig. 3.6(b), the purple curve
has a larger subsidence value than the green and blue ones. This is due to the unadjusted
parameters used that generate a basin with subsidence larger than the actual one. After
subtracting the over-modeled deformation, PSI obtains uplifts in the subsidence area
when retrieving deformation from the residual interferograms. But the over-modeled
deformation is so large that there is ambiguity among PSs in the residual interferograms,
therefore the uplifts cannot be obtained completely. Then, the retrieved uplifts are not
enough to neutralize the over-modeled deformation, so the final deformation is larger than
it actually is. The purple curve in Fig. 3.6(a) has no greater subsidence value because
the basin produced by unadjusted parameters is shifted away from the leveling station,
so the deformation value at the station becomes smaller.

Finally, the Root Mean Square Error (RMSE) of the three processing strategies is
calculated according to the ground truth. The RMSE of PSI without modeling, with non-
optimized and with optimized modeling are 11.47, 9.34 and 7.43, respectively. This means
that the accuracy of PSI with non-optimized modeling has increased by a 18.6% compared
to conventional PSI, the accuracy of PSI with optimized modeling has increased by a
35.2% compared to conventional PSI, and the accuracy of PSI with optimized modeling
has increased by a 20.4% compared to PSI with non-optimized modeling. The ground
truth demonstrates the effectiveness of the proposed method.
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3.4 Discussion

3.4.1 Analysis of the Relationship among PMCBOs
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Fig. 3.7. Parameter variation law.

In order to understand the effect of the parameters in the final results, Fig. 3.7 shows
the relationship between the error factor (the average of the absolute values of the phase
differences over the whole interferogram) and the sinking coefficient when the propagation
angle of extraction changes. The searching range is expanded to 0 ∼ 1 and the step size is
reduced to 0.01. It can be seen that as the sinking coefficient increases, the factor gradually
decreases and its fluctuation becomes smaller. Taking the curve of the propagation angle
of extraction of 90o as an example, the minimum values are obtained periodically at
0.15, 0.32, and 0.67, respectively. This periodic phenomenon is due to the use of the
wrapped phase for verification. The sinking coefficient controls subsidence value, after
transforming subsidence into wrapped phase, the simulated deformation from the integer
multiples values will have similar phases. Therefore, once one value of sinking coefficient
can minimize the error factor, so as its integer π multiples. This miscalculation can be
avoided by setting the minimum estimated sinking coefficient as the final optimized result.

When the the propagation angle of extraction is 83o, the sinking coefficient which
minimizes the error factor is 0.15. Fig. 3.8 shows the relationship between the error factor
and the propagation angle of extraction when the sinking coefficient is 0.15. It can be seen
that as the propagation angle of extraction increases, the error factor first decreases and
then increases, and the minimum value is obtained when the mining influence propagation
angle is 83o. It is worth noting that in Fig. 3.7, not all curves are at their minimum value
when the sinking coefficient is 0.15. For example, when the mining influence propagation
angle is 89o, the sinking coefficient that minimizes the average of the phase difference
is 0.68. When the propagation angle is 90o, the sinking coefficient which minimizes the
average value of the phase difference is 0.67. It is indicated that the optimal value of
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one parameter is affected by other parameters, which is why the brute force is used in
this section to optimize all values at the same time, instead of determining the optimal
parameters in turn, although that would cause a lower computational burden.
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Fig. 3.8. Relationship between phase difference and propagation angle of extraction.

3.4.2 Analysis of the Parameter Optimization

The searching range, step size and final optimization results of PMCBOs are shown in
Table 3.3. The setting of step size and search range need to consider the balance between
the calculation burden and the experiment accuracy.

It can be seen that, compared with the parameters before optimization, the sinking
coefficient, tangent of the main effect angle and the propagation angle of extraction be-
come smaller. Offset x and y change to 150 and 90 from 0, means the basin shifts 150 m
towards west and 90 m towards south.

The subsidence coefficient represents the ratio of the surface subsidence value to the
thickness of the coal seam. The non-optimized sinking coefficient represents the ratio of
the sinking value to the thickness of the coal seam when the ground surface becomes stable
and no longer sinks. In this experiment, the working surface was still being mined during
SAR imaging. The surface deformation during this time period was still continuous and
did not reach stability. Therefore, the surface deformation value was smaller than it is
when it is stable, so the corresponding sinking coefficient should be smaller.

35



Chapter 3. EMDD-PSI: External Model Deformation Decomposition based
Persistent Scatters Interferometry

Table 3.3: Optimization of PMCBOs.

sinking
coeffi-
cient

tangent of
main effect

angle

propagation
angle of

extraction

offset
x

offset
y

Maximum value 0.5 1.9 89 180 180
Minimum value 0.05 1.6 81 0 0

Step size 0.05 0.05 2 30 30
Number of
calculations 10 7 5 7 7

Optimal solution 0.15 1.75 83 150 90
Before optimized 0.68 2 85 0 0

The subsidence basin has expanded due to the influence of the surrounding faults and
goafs. The tangent of main effect angle represents the relationship between the depth of
the mining and the radius of the sinking basin. According to Eq. (2.33), r = H/tan β,
the tangent of the main effect angle becomes smaller, means the sinking basin becomes
larger. This is consistent with the actual situation.

When the inclined coal seam is mined, the inflection point is not directly above the
calculation boundary, but it presents an offset to the direction of the diphead. The angle
between the offset point and the ipsilateral calculation boundary and the horizontal line
in the downhill direction is the propagation angle of extraction. When the propagation
angle of extraction becomes smaller, it means the inflection point moves towards diphead.
The diphead direction is the direction in which the basin spreads.

The positive directions of the two offsets are the west and south directions, respectively.
These two directions are the direction of the fault and the adjacent goaf.

Compared to rock formations without the influence of other geological structures and
mining activities, the faults and goafs contain more pores and fractures. Once the sur-
rounding rock formations move, these pores and cracks are further compacted, causing
the surface to sink. When the faults and goafs are close to the mining working face, the
ground surface above them could be induced to sink. For coal mining, when the sink-
ing basin caused by the working face being mined and the sinking basin caused by the
further compaction of the rock are very close, they are connected together, it looks like
there is a displacement of the sinking basin caused by the mining face. Due to the lack
of information on adjacent working faces and faults, this experiment has only modeled
the 15235 working face. To compensate for the basin offset, two offset parameters are
set. It can be seen from Table 3.3 that the basins with optimized parameters have an
offset of 150m and 90m respectively in the west and south directions compared to the
basin without parameter optimization. This phenomenon can also be seen in Fig. 3.6.
Compared to the modeling of all surrounding geological structures and goafs, it is clear
that setting two offset parameters is more efficient, although there could be some slightly
shape mismatch. As it can be seen in the residual interferograms part of Fig. 3.3, there
are clear residual phases at the right of the modeled basin. Through the calculation of
RMSE in Section 3.3.3, it is shown that the benefits outweigh the disadvantages.
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3.5 Summary

In this section, a new method to extract large gradient deformation using PSI and an
external model is proposed. It is inspired by Fan’s fusion method [64]. The proposed
method uses the original interferograms to optimize the model parameters to reduce
the dependence of the monitoring results on the model parameters, and to improve the
consistency between the model simulation results and the interferograms.

The 15235 working face in the China Fengfeng mining area was used to evaluate the
presented method in this section. Experiments show that the PIM model with optimized
parameters can effectively reduce the fringes in the original interferograms. By reducing
the phase ambiguity between PS points and extracting partial deformation in a nonlinear
form, the PIM model can help PSI obtain more accurate time-series deformation. Through
the verification of the leveling data, the proposed method reduces the monitoring error
by 35.2% comparing to the traditional PSI, and by 20.4% comparing to PSI with non-
optimized modeling.

The methods and results of parameter optimization are discussed and analyzed. The
optimization of the model parameters can prevent surrounding geological structures and
goafs from effecting the modeling, and it can also avoid unsuitable parameters affecting
the final PSI results.

There are still open issues though. If the impact of geological structures and goafs on
the model could be removed, the modeling would be more accurate. The optimization
of the model parameters with high efficiency and high precision would allow a better
modeling result.
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Chapter 44
PLR: A filter for SAR
Amplitude Information
based Offset Tracking

Compared with DInSAR, offset tracking (OT) technology presents higher robustness in
incoherent areas and it has the capability to retrieve larger deformations. Therefore, al-
though less precise than DInSAR, OT is a powerful tool in situations when DInSAR fails.
In addition, with the unprecedented development of SAR missions, such as Sentinel-1,
TerraSAR-X, TanDEM-X, ALOS-2, COSMO-SkyMed, RADARSAT-2, PAZ, Gaofen-3,
the planned NISAR, the quantity and quality of SAR acquisitions are constantly improv-
ing. Low relative Doppler centroids, short spatial and temporal baselines contribute to
the higher accuracy and reliability of subsidence monitoring with any of the available
methodologies. Moreover, the accuracy of OT largely depends on the spatial imaging
resolution and correlation. Due to the launch of satellites with high-resolution SAR sen-
sors, a better monitoring accuracy can be achieved by OT if high correlation or signal to
clutter ratio is guaranteed [24].

The offset related to the mining induced ground deformation is usually continuous and
distributed. For the detection of this kind of offset, tracking methods based on the local
cross-correlation (CC) of amplitude patches, such as [65], can suffer of patch-like (PL)
artifacts that produce ghost deformations in the results. PLs usually appear when scatters
with very high amplitudes change location, reflectivity or simply disappear between the
two SAR images involved in the CC. The shape and size of PLs are usually the same as
the one of the patches involved. PLs are usually independent of the real deformation,
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and so, they have to be regarded as errors. To preserve the reliability of the deformation
results, PLs must be reduced as much as possible.

Studies like SPOT-CR and PT are addressed to avoid the influence of the Patch-Like
(PL) [66, 67]. Their rationale is tracking only the offset of pixels with stable scattering
characteristics. The initial processing steps are common to the traditional Persistent
Scatterer Interferometry (PSI). The images of the stack are co-registered using an external
DEM and the orbital information, which allows to remove the topographic component
of the interferograms and, thus, generate the differential interferograms. Firstly, stable
pixels are selected, then OT is performed using only these pixels in the CC. These methods
can effectively avoid the problem of scattering characteristic changes, the need of any
amplitude weighting and they can also reduce the computational burden. But, because
only a reduced number of pixels are usually selected, a lot of significant information may
be lost. Moreover, if the surface targets are mainly distributed scatterers, as it happen
in mining areas, there will be just few qualified pixels to be used for OT.

Instead of stable pixel selection an amplitude filter is proposed in this Chapter, which
would reduce the chances of PL effects by replacing those amplitudes higher than an
adaptive threshold with zeros. Therefore, it is named as the Patch Like Reduction (PLR)
filter.

In order to verify the feasibility of the proposed methodology and evaluate its per-
formance, it has been tested with TerraSAR-X data that covers a mountainous area in
Daliuta (China) where mining activity induced severe subsidence in the surface. The ad-
vantage of the proposed approach in terms of deformation monitoring has been assessed
and discussed. The deformation time-series have been compared with in-field ground GPS
measurements. Although there are no large deformations in Barcelona airport (Spain),
Andorra and Mexico city (Mexico), covered with Radarsat-2, TerraSAR-X and Sentinel-
1B data respectively, these data sets have been used to establish a method to determine
the PLR threshold from the images’ reflectivity histograms.

The Chapter is organized as follows. In Section 4.1, the conventional OT methods
are reviewed, and the causes of PL are identified. The proposed method is detailed in
Section 4.2. InSection 4.3, the data sets used to verify the performance of the method are
introduced. In Section 4.4 and Section 4.5, the performance of the method is evaluated
comparing the results with in-field GPS data. In addition, the impact of the key processing
parameters in terms of resolution and accuracy of the results are reviewed in order to
select those values that helps to produce better results. Finally, conclusions are given in
Section 4.6.

4.1 Review of the Conventional OT

4.1.1 Review of the Existing Imaging Matching Methods

After the co-registration of the master (primary) and slave (secondary) images (usually
with the help of an external DEM), OT detects the pixel offsets between them by searching
for the maximum value of the cross-correlation (CC) applied to small patches of the
images. We can divide the offsets into two types according to the scatterers characteristics:
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distributed offsets and single scatterer offsets. Distributed offsets will appear in areas
with distributed scatterers, this is when in each resolution cell there are many scatterers
contributing to the backscattering but none highlights over the others. They possess a
medium or low signal-to-noise ratio and can only be exploited if they form homogeneous
groups of pixels that are large enough. On the contrary, single scatterer offsets will appear
with deterministic scatterers, when in a resolutions cell there is a single scatterer that
is locally predominant over the rest. They are characterized by a high signal-to-noise
ratio and they can be processed individually. For example, the subsidence bowl caused
by mining activities will cause a distributed offset, neighbouring pixels should present
in principle similar behaviours. On the contrary, deterministic individual targets may
present the same behaviour or, under some circumstances, a completely different one. A
crane or a bulldozer can behave as a deterministic targets and can change its location
between two passes of the satellite and, as a consequence, the offset does not represent
the mining induced subsidence.

After the coarse registration of the primary and secondary images, OT detects the
pixel offset between both by searching for the maximum cross-correlation (CC) value.
Although based in the same principles, there are different CC calculation methods. Due
to its simplicity, the Normalized Cross-Correlation (NCC) is one of the most commonly
used. A window in the master image, named as reference template, is searched in the
slave image with a moving window, named as search template.

The NCC of the pixel in the center of the search template is calculated with,

NCC(i,j) =
∑
k,l

(
s(i+k,j+l) − µs

) (
r(k,l) − µr

)√∑
k,l

(
s(i+k,j+l) − µs

)2 (
r(k,l) − µr

)2 (4.1)

Where (i, j) indicates the pixel’s position in the search template, (k, l) the pixel’s
position in the reference template, r the pixel’s value of the reference template, s the
pixel’s value of the search template, µr the average value of the reference template and µs
the average value of the search template. In SAR applications, usually the normalization
is ignored.

The relative position of the CC peak indicates the bi-dimensional direction and mag-
nitude of the offset between the center pixels of the reference and the search templates.
The computational burden of this approach in the spatial domain is quite high. Since the
CC calculation is a convolution operation in the spatial domain, it can be converted to
a product in the spectral domain, which is a much more efficient way to determine the
CC [65]. Taking advantage of the Fast Fourier Transform (FFT),

CCF (i, j) = IFFT (F (u, v) ·G∗(u, v)) (4.2)

Where F (u, v) and G(u, v) are the reference and search templates in the spectral
domain,

F = FFT (|r|) ;G = FFT (|s|) (4.3)

∗ denotes complex conjugate and IFFT means the Inverse FFT. In this case, only the
amplitude of the complex images is used. By calculating CC in the frequency domain,
the computational efficiency can be greatly improved.
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In addition, the CC can be also calculated considering also the phase of the images.
CCFP is Eq. (4.2) but with,

F = FFT (r) ;G = FFT (s) (4.4)

Using the images’ phases can lead to better results only if the interferometric phase
quality is good. This is not usually the case on heavily decorrelated areas with strong
deformations, so in such scenarios it is better to work only with the amplitude.

In general, none of the above methods is significantly better than the other. NCC is
simple but time consuming. CCFP uses phase information, and naturally suffers from
problems when decorrelation is significant. CCF has a higher computational efficiency
but, as the others, it is easily affected by PL [68,69]. In this Chapter CCF is being used
and efforts have been dedicated to reduce the influence of PL in the results.

4.1.2 The Amplitude Distribution and its Influence

4.1.2.1 Amplitude Distribution

2°01′30″E

41
°1

7′
00

″N
41

°1
9′
00

″N

2°03′00″E 2°04′30″E

(a)

1°36′00″E

42
°3
2′
30

″N

1°34′00″E 1°38′00″E

42
°3
4′
30

″N

(c)

19
°1

5′
00

″N
19

°3
0′
00

″N

99°10′00″W99°25′00″W 98°55′00″W

(e)
0

1,000

2,000

3,000

4,000

0 100 200 300 400

Th
e 

nu
m

be
r o

f p
oi

nt
s

Amplitude

Airport
City
Mountain

(g)

(b) (d)

(f)

Fig. 4.1. Amplitude distribution curves of different ground features. The red rectangle in
Figure (a) (c) (e) is the coverage of SAR image. Figure (b) (d) (f) are the corresponding
SAR amplitude image. In Figure (a), there is an airport and some other human structures
in Barcelona, Spain.
Figure (c) contains a mountain located in the Principality of Andorra. Figure (e) covers the
Mexico City, which is one of the biggest cities in the world. Figure (g) shows the amplitude
distributions of these three different cases. The abscissa represents the amplitude value, and
the ordinate represents the number of the pixels with corresponding amplitude value.
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Fig. 5.6 shows the amplitude distribution of SAR images obtained by different sensors
with different incident angles, bands and imaging modes over different areas. The infor-
mation of each case is presented in Table 4.1. It can be seen from Fig. 5.6(g) that the
amplitude distribution obeys a Rayleigh distribution [70], and the scale parameter σ of
the Rayleigh distribution ranges from 30 (mountainous area) to 65 (city) due to different
backscattering amplitudes. The Rayleigh’s probability density function can be written
as,

p = x

σ2 e
−x2/(2σ2) (4.5)

while its cumulative function distribution as,

c = 1− e−x
2/(2σ2) (4.6)

In addition, it can be seen that the amplitude values of most pixels are between 0-200.
Small number of pixels leads to the large fluctuation of the blue curve in Fig. 5.6(g).

Table 4.1: Information of different sensors.

LF.
SP. Sensor Incident

angle Resolution polarization Image
mode Band Acquiring

date
Airport RST2 29◦ 5.1m∗4.7m HH Fine C Jan 20, 2010
Mountain TSX 39◦ 0.23m∗0.59m HH Staring X Jul 22, 2014

City Sentinel-
1B 44◦ 14.0m∗2.3m VV IWS. C May 26,

2017
’SP.’ is the abbreviation of ’Sensor parameter’. ’LF.’ is the abbreviation of ’Landform’. ’IWS.’ is the
abbreviation of ’ interferometric wide swath’. The format of resolution is azimuth∗slant-range.

4.1.2.2 Effect of Pixels with High Amplitude

If there is one or several pixels with very high amplitude with respect to the rest in the
reference window, the location of the peak of the correlation coefficient will be driven
by just these few pixels. Moreover, this phenomenon will last until the high-amplitude
pixel values are no longer located within the search window. The consequence is that
the detected offset will show constant values in a patch lasting the bidimensional size of
the correlation window. In some cases the offset can correspond to the real deformation
associated to the mining activity but, in others, just to independent changes on the
location or reflectivity of these bright pixels.

An OT experiment is carried out to demonstrate the influence of the high amplitude
values with two TerraSAR-X SLC images acquired on December 2nd, 2012 and March
22th, 2013, from the data set described in Section 4.3. The matching template size is set
as 64×64. No window function is applied. The offset along LOS direction and the two
amplitude images are shown in Fig. 4.2. It can be seen that these bright pixels causes, in
the best case, a loss of resolution in the offset map as a patch around them will have the
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same value, such as the situation in the black circle 3, or, in the worst, offsets not related
with the mining activity.

The quality of the OT result can be evaluated with any of the three mainstream
indicators: SNR [65], STD [71], and Q [25]. SNR, Std and Q are the commonly used
methods used to estimate the accuracy of OT, which can be respectively calculated by
Eq. (4.7), Eq. (4.8) and Eq. (4.9).

SNR = γmax

γ̄
(4.7)

σSTD =
√

3
2N

√
1− γ2

πγ
(4.8)

Q = γmax − γ̄
γ̄ − γmin

(4.9)

where γ is the CC result, γmax, γmin and γ̄ are the maximum CC, the minimum CC and
the average value of the CC in the estimation window, respectively. σSTD is the STD of
the pixel-offset estimation error in the unit of pixel, N is the number of samples in the
estimation window, Q is the quality of the estimation. It can be seen that all indicators
describe the result quality through γ. High γ means the reference template and search
template match well.

It can be seen from Fig. 4.2(l)-(n) that none of the three methods can detect the error
caused by PL. Some PL areas are reckoned reliable such as the situation in circles 1, 4
and 5. Fig. 4.2(o)-(q) shows the relationship between SNR, Std, Q values and the real
error obtained by GPS measurements, which also support this view. Because the bright
pixels do indeed have shifts, the correlation coefficient has retrieved the proper shifts
although they are not representative of the local subsidence. For highly contrasted areas
due to strong topography, such those with foreshortening or mountain ridges, γ can be
high but the offsets not accurate. All these offsets that do not represent the distributed
deformation caused by mining activities have to be eliminated or, at least, minimized.

4.1.3 Relationship between Amplitude Distribution and OT Ac-
curacy

In order to improve the accuracy of OT, pixels with higher amplitudes have to be removed
to reduce PL. So, it could be a good policy to replace them by a low amplitude value. A
priori, it is not clear which is the optimal upper threshold and if it can be selected case
independently. Different experiments have been carried out with the data sets detailed in
Table 4.1 in which mild or no deformation is expected and, thus, the average values of the
detected offsets can be regarded as a measure of the error. The datasets correspond to a
city, a mountainous area and an airport. The upper threshold for setting the amplitudes
to zero is increased from 90 to the max in steps of 30. As the amplitude distributions
are different in each area, the offset error is plotted as a function of the cumulative pixels
in Fig. 4.3. The cumulative values can be easily calculated from Eq. (4.6) using the
scale parameter σ of the distribution and the amplitude value. A cumulative value of
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0.9 indicates that the threshold is set to a value that sets to 0 the 10% of pixels with
the highest values. It can be seen that, for the three cases, near 0.992 the error reaches
the minimum and this can be established as a scenario-independent threshold. From
Eq. (4.6), the threshold can be thus set as a function of the scale parameter and the
cumulative threshold,

x =
√

2σ
√

ln (1/(1− cthr)) = 3.1σ (4.10)

The threshold would allow to remove the high amplitude pixels which are prone to
induce PL but with no impact in the accuracy of OT.

Proportion of remaining pixels

Er
ro

r

Fig. 4.3. Relationship between errors and the proportion of remaining pixels.

4.2 Proposed Method

The overall scheme of the proposed OT process is shown in Fig. 4.4(a). Similar to the
traditional OT, it mainly consists of a coarse registration [72], a base banding for the
proper interpolation [22] and the offset detection. The innovation of this Chapter is the
PLR amplitude filter applied to both the primary and secondary images to eliminate the
chances of PL in the results. The scheme of PLR is shown in Fig. 4.4(b).

On the one hand, Section II has demonstrated that the PLR can effectively reduce the
appearance of PL. On the other hand, in mining areas the relevant information is mainly
the distributed deformation. Therefore, it is reasonable to eliminate pixels with the
highest amplitude values in order to obtain offsets that represent the sought deformation.
According to the experiment in Section II-C, it is recommended to set the upper boundary
to ρ = 2.2σ. ρ is the threshold that makes the number of the retained pixels be the 92%
of all pixels.

The amplitude filter is defined as,
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Fig. 4.4. Scheme of the proposed methods. (a) Overall scheme of the OT process. (b)
Scheme of the amplitude filter.

AM(i,j) =
{
A(i,j), A(i,j) ≤ ρ
0, A(i,j) ≥ ρ

(4.11)

All pixels in the amplitude image are then divided into retained and discarded pixels.
The filtered image is obtained after replacing the values of the discarded pixels with 0.

4.3 Study Area and Data Sets

A deformation area located in Daliuta Town, China (shown in Fig. 4.5) is selected to
assess the performance of the proposed methods. This area is in the largest coal producing
region in China. The coal seam is thick and shallow with loose layers, which leads to a
so large deformation on the ground that is beyond the DInSAR monitoring capabilities.
The working panel of interest is named as 52304, with a length of 4,548 m, a width of
301 m, a depth of 235 m and a thickness of 7 m. It was started on November 1st, 2012
and terminated on March 25th, 2013.

Real Time Kinematic (RTK) GPS measurements were collected along the mining
direction and its perpendicular direction and will be used for the OT results validation.
The red circles in Fig. 4.5 represent the location of these 71 GPS stations. A total of 45 of
the stations are located along the mining direction and spaced 20 m while the remaining
26 are located along its perpendicular direction and spaced 25 m.

In this Chapter, 19 spotlight TerraSAR-X SLC images are employed to obtain the
ground-deformation time series with a pixel spacing of 0.91×0.86 m (range × azimuth), a
heading direction of 189.53◦, a wavelength of 3.11 cm, a local incident angle of 42.43◦, a
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Fig. 4.5. Location and topography of the study area. The red rectangle in Figure(a) is on
behalf of the study area in this experiment. The red rectangle in Figure(b) means the SAR
image coverage. The yellow rectangles in Figure(b) and (c) represent the region of interest.
The cyan rectangle in Figure(c) is the location of a working panel. The red circles represent
the GPS station and the white letters and numbers are their names. The white arrow means
the mining direction.

revisit period of 11 days and with HH polarization,. These images were acquired during
the period from November 10th, 2012 to July 10th, 2013.

4.4 Results

In order to minimize the influence of the temporal decorrelation, images with the shortest
temporal baselines are related in consecutive pairs. The deformation time series are
obtained by integrating the deformation increments along consecutive pairs. SAR images
are base-banded before OT to allow the correct interpolation of the slave image. The size
of the search template is set to 64×64 pixels with a triangular window function to ensure
a narrow correlation peak and, at the same time, trying to preserve the deformation
resolution. Images are oversampled by a factor of 2 prior the cross correlation to reduce
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Fig. 4.7. Time series vertical deformation obtained by OT with PLR.

bias errors and noise [65].
If it is assumed that the deformation is mainly vertical [73], the detected slant-range

offsets are converted into vertical deformation with,

Ssub = Poffset ·Rsize

cos θ (4.12)

Where Poffset is the pixel range offset before and after the deformation in the range
direction, Ssub is the vertical deformation, θ the local incident angle and Rsize the pixel
size in the range direction. Azimuth offsets can not be related to a vertical deformation
and, thus, they are ignored in the time-series retrieval. Fig. 4.6 shows the displacements
in three directions measured by GPS from December 7th, 2012 to March 28th, 2013.
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Fig. 4.8. Time series subsidence profiles in the mining direction AA’ (a) and perpendicular
mining direction BB’ (b).

It can be seen that the horizontal deformation is only about one-tenth of the vertical
deformation. Its magnitude is very close to noise and error, thus it is difficult to extract
it effectively.

As Fig. 4.7 shows, the deformation area was growing with the mining activity from
November 10th, 2012 to March 11th, 2013. After March 11th, 2013 the shape of the
subsidence basin started to be stable. This temporal behaviour is consistent with the
reported mining activity.

Two profiles AA′, along the mining direction, and BB′, perpendicular to the mining
direction, are used to quantitatively analyze the mining induced subsidence. Their po-
sitions are marked in Fig. 4.7, and the deformation time series are shown in Fig. 4.8.
As it can be seen, the maximum subsidence value of curve AA′ changes greatly from
November 10th, 2012 to December 2nd, 2012. The deformation is up to 1.8 m during the
first 11 days while the average deformation rate is 164 mm/day. From November 21st,
2012 to December 2nd, 2012, the ground sinks up to 1.5 m with an average velocity is
136 mm/day. Such large deformation rate definitely exceeds the monitoring capabilities
of classical DInSAR techniques. In addtion, they may cause cracks, landslides and even
collapses on the surface. The maximum deformation value is 4.2 m when the ground
tended to be stable.

Different from the sinking evolution seen along AA′, changes along BB′ are not visible
at the beginning of the mining activity because the gallery had not reached yet their
position. The surface started to drastically experience subsidence from January 4th, 2013
to January 26th, 2013. Since BB′ is perpendicular to the mining direction, the sinking of
BB′ presents a bowl shape. This is different from the results in AA′, where the subsidence
develops from left to right.

BB′ has a relatively regular shape, while AA′ has many bends as the basin develops,
as shown in the black dashed rectangular boxes 1, 2 and 3 in Fig. 4.8. In rectangle 1,
the local uplift appears with the deformation increase. Usually and in order to reduce

50



4.5 - Discussion

surface subsidence caused by underground mining, the coal seams are not all dugout.
Some columnar coal is left behind to support the roof of the coal seam. The local uplift
may be caused by the support of these reserved coal pillars. The depression in rectangle 2
may represent a local collapse because its shape changes with the basin development and
lasts until the end. There is also a depression in rectangle 3, but it is smoother compared
with the one in rectangle 2. Besides, this depression was annexed by the deformation that
spread here, instead of keeping its shape until the end like the depression in rectangle
2. These phenomena indicate that the depression is not caused by a local collapse. One
possible explanation is that there was an underground cavity here, which was formed
naturally or caused by other mining activities. Subsequent geological activities activated
the void, compacted it, and caused the surface to sink.

4.5 Discussion

4.5.1 PL Elimination

Fig. 4.2(a) shows the location of different PLs in the results with the original processing
approach. The proposed PLR is applied and the results are shown in Fig. 4.9. For both
processings, the shape and size of the subsidence basins are very similar, but the proposed
filter can effectively eliminate PL effects.
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Fig. 4.9. OT results with the application of the proposed PLR filter. The positions of GPS
station are marked with Z7− Z50 and Q1−Q26.

Taking GPS as the ground truth, the root mean square errors (RMSE) of the two
OT results, with and without PLR, are calculated separately. In order to reduce location
errors, 3×3 averaging windows are set centered at the location in slant-range coordinates
of each GPS observing station. The 9 pixels averaged deformation is taken as the final
result to compare with the GPS measurements. The RMSE of the OT results with and
without the filter are 53.6 mm and 68.4 mm respectively, which means that the monitoring
accuracy has been improved 21.6% with the filter.

Fig. 4.10 demonstrates how the PLR is able to reduce PLs. One reference template
and its corresponding search template are selected on a stable position, marked with the
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Fig. 4.10. Comparison between the amplitude image before and after amplitude filtering.
Graph (a) and (b) show the reference template and search template without amplitude
filtering, graph (e) is their correlation map. Graph (c) and (d) show the same templates with
amplitude filtering, graph (f) is their correlation map. White lines in the middle of graph (e)
and (f) help locate the peak.

black circle 1 of Fig. 4.2(a), prone to generate PL. It can be seen that, the reference
template in Fig. 4.10(a) has a strong scatter whose amplitude dramatically changes in
Fig. 4.10(b), which causes an offset not related to deformation of the CC peak. After
PLR, other stable scatters dominate the correlation, so the highest peak appears, as
expected with an area with no deforation, in the center. Although the value of the
correlation coefficient is reduced, the amplitude filter avoids the influence of unexpected
ground feature changes and, therefore, reduces the chances of PL.

4.5.2 Deformation Resolution

It is well known that the selection of the template size is a compromise between defor-
mation precision, driven by the sharpness of the CC peak, and the deformation spatial
resolution. For the former the larger the better, as large correlation windows provide
better precision in the deformation values. For the latter it is just the contrary, short
correlation windows allow a better spatial deformation resolution but with less reliable
values. It has to be be noticed that the averaging effect of large windows causes that de-
tected offsets may be smaller than the real ones when deformation gradients are present.

A simulated reference template with random amplitude values ranging from 0 to 200 is
used to reveal the relationship between the template size, the deformation resolution and
the error. A deformation area, which size can be modified, with a uniform 1 pixel offset
is introduced in the search template. Then, the offset in the center of the deformation
area between both templates is detected and its SNR calculated as well.

Fig. 4.11 shows that the best offset estimations occur when the search template
and the deformation area have similar sizes, presenting also the highest SNR. Being
the deformation homogeneous, when the search window is increased compared with the
deformation area the offset starts to be underestimated and this underestimation increases
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Fig. 4.11. Relationship between the deformation resolution and the template size.

as the size difference enlarges. On the extreme with a tiny deformation area and a large
search window, the deformation is completely missed as the stable area dominates. The
behavior of the SNR is quite different, the worst SNRs are obtained when the deformation
area is around half of the search window. In this case, the CC has to adjust to two
different behaviors with similar weights in the process. On the other extremes, either
similar deformation area and search windows or small deformation area and large search
window, the deformation or the stable area dominates and so the SNR is the highest.

The results of different template sizes with a non-uniform deformation are shown in
Fig. 4.12. It is clear that small template sizes are able to follow the deformation variations
but with noisier estimations. Large template sizes lead to clearly less accurate results.

O
ff

se
t

Pixel

Fig. 4.12. Results of OT with different template sizes.

4.5.3 Effects of Different Window Functions

One way to keep the advantages of the large template while improving the accuracy at the
same time is the use of a window function on the templates. The triangular and hamming
windows have been tested and the results shown in Fig. 4.13. The improvement is obvious.
The triangular window leads to s smoother result, while the offset with hamming window
is closer to the real value.
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Fig. 4.13. Results of OT with different windows.

4.6 Conclusion

In this Chapter, the causes of the appearance of PL in deformation monitoring results
with OT have been studied. It has been found that the changes of high amplitude pixels
in the images disturb the cross correlation calculations. Thus, the elimination of these
high amplitude values can avoid, or at least reduces, the chances of PL. The selected
threshold for eliminating pixels has an impact on the quality of the final results. Setting
it too high does not affect the appearance of PL, setting it too low increase the noise of
the final results. Considering that amplitude SAR images follow a Rayleigh distribution
and using three different data sets, it has been found that eliminating the highest 0.08%
values produces the optimal results. Therefore, an amplitude filter named as PLR is
proposed. PLR reduces the PL by replacing the highest amplitude values with zero. In
order to have a image independent criterion, the threshold is defined as a function of the
scale parameter of the Rayleigh distribution.

To validate the feasibility of the proposed amplitude filter, it has been tested with the
TerraSAR-X data and the results validated with in-field GPS data acquired over Daliuta
area in China. It has been shown that with the filter the monitoring accuracy is improved
by a 21.6% with respect the non-filtered version of OT.

In addition, the effect of the different template size and tapering window functions
have been investigated. The template size is a compromise between deformation spatial
resolutions and accuracy and it can be determined according to the allowable error and the
desired deformation resolution. The tapering of the images with a window function prior
the cross-correlation can help to preserve the deformation resolution under the premise of
a given template size. The triangular window can make the results smoother than those
obtained with a Hamming window.
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Chapter 55
ACE-OT: Polarization

SAR Data based
Amplitude Contrast

Enhancement Algorithm
for Offset Tracking

Applications

As more SAR satellites with polarimetric capabilities are available, it is feasible to im-
prove OT performance taking advantage of polarimetry. As one of the few OT methods
using polarimetry, the polarimetric similarity tracking method was proposed to improve
the accuracy of OT [25]. The multiple offset results are obtained through different po-
larization channels, and the hypergeometric Bessel function is applied to estimate the
most likely result. This method can improve OT reliability and can be implemented into
any kind of multivariate remote sensing data such as multichannel optical images. How-
ever, the polarimetric data are simply regarded as simply redundant observations, while
the scattering information contained in them is not utilized. Another polarimetric data
based OT method proposed by Wang defined the cross correlation according to the vector
constructed by Pauli decomposition [27]. This method is able to exploit the scattering
information and improve the OT accuracy, but due to the characteristics of the Pauli
decomposition, the effect of the single scattering in the image is emphasized, while the ef-
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fect of the volume scattering and the double scattering is being reduced. Besides, instead
of doing optimization, the different kinds of reflections are simply added when calculat-
ing the correlation between two images, which does not fully exploit the potentiality of
polarimetric data.

For PSI, polarimetric data based amplitude and phase optimizing methods improve
the performance of deformation detection and characterization by increasing the density
and quality of valid pixels with respect to the single polarization case [29–32,34–40,74–79].
The main idea of polarimetric optimization is to construct a polarization space and find
the optimal projection of the polar vector in this space.

However, these optimization methods are not suitable for the OT case as they are
based on optimizing the phase quality. Compared with the phase, the amplitude is more
robust to the loss of coherence, which is the reason why OT is still a powerful alternative
to DInSAR despite its lower accuracy. Therefore, this paper does not consider coherence-
based phase optimization methods. For the methods where the optimization criterion
is the amplitude deviation [35, 36] the information of targets at more than two different
moments are required. The basic OT processing works with image pairs. Besides, the
optimization methods for DInSAR assume that the offset caused by the deformation is
very small, at least within one pixel. This assumption does not hold for the OT case.
The offset detected by OT could be several pixels. Therefore, the existing polarimetric
optimization algorithms for DInSAR are not suitable for OT.

For the amplitude information based OT, contrast is one of the most important in-
dicators to estimate the suitability of the images for the method. The cross-correlation
between two images can not be properly calculated if distinctive features are not present.
Image contrast, this is the energy distribution, is an effective quantitative indicator to
measure the presence of distinctive features in a SAR image. Larger contrasts imply
richer feature information. Therefore, inspired by Yang [80, 81], an amplitude optimiza-
tion method based on contrast enhancement is proposed in this paper. The method
improves the image contrast by searching the optimal polarization combination leading
to the largest contrast according to the scattering mechanisms of ground objects, and
therefore is named as Amplitude Contrast Enhancing Offset Tracking (ACE-OT).

Two different PolSAR data sets are used to assess the performance of the proposed
method. One is dual-pol TerraSAR-X images over Daliuta (China), which is affected
by strong mining-induced subsidence. The deformation time series are obtained by the
proposed ACE-OT. The other data set is quad-pol Radarsat-2 images acquired over the
Barcelona airport. Because the deformation in this area is too small to be detected by
OT, this data set is used for simulation experiments to evaluate the capability of the
proposed method on separating the scattering mechanisms and improving the amplitude
contrast.

The chapter is organized as follows. In Section 5.1, the proposed method is introduced.
The data set and result are described in Section 5.2. Some discussion are performed in
Section 5.3. Finally, conclusions are given in Section 5.4.

56



5.1 - Methodology

5.1 Methodology

The overall scheme of the proposed method is shown in Fig. 5.1(a). Similar to the con-
ventional OT, images need to be co-registered and base-banded before their interpolation
and cross correlation calculation. The scheme of the amplitude enhancement method is
shown in Fig. 5.1(b). One step is marked with a dotted line because it can only be applied
with quad-pol data. The amplitude filtering introduced in Chapter 4 is carried out before
the offset tracking processing.

Instead of only enhancing part of the image [80], the proposed method can improve the
contrast of the whole image. In the particular case of a monostatic system, as the sensors
considered in this paper, the cross-polar channels should be equal, i.e. SHV = SV H .

The enhancement algorithm is mainly composed of three steps: orientation elimina-
tion, similarity parameter acquisition and contrast optimization.

(a) (b)
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contrast 
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Reference  
image

Search 
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Offset map
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Fig. 5.1. Scheme of the proposed ACE-OT. (a) Overall scheme of the OT process. (b)
Subscheme of ACE-OT.

5.1.1 Orientation Elimination

The complex back scattering matrix S for a monostatic radar can be defined as [82–85]:

[S] =
[
SHH SHV
SV H SV V

]
(SHV = SV H) (5.1)

where SHH , SHV , SV H , SV V are the different polarimetric channels of the target response.
The subscript means the polarization of the received and transmitted signals.

It can be seen from Fig. 5.2 that after the reflection, the polarization ellipse of the
received signal is rotated by an angle ϕ with respect to the transmitted one. The angle
ϕ depends on the geometric relationship between the antenna and the target, and the
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Fig. 5.2. Polarization ellipse rotation of the target reflection with respect the transmitted
one.

properties of the target. Scattering matrices of some targets are orientation independent,
while others are not [86]. The ellipse orientation could change the phase information in
the received signals, it is thus necessary to eliminate it with Eq. (5.2)

[
S0] = [J(−ϕ)] · [S] · [J(ϕ)] =

[
S0
HH S0

HV

S0
V H S0

V V

]
(5.2)

where

[J(ϕ)] =
[

cosϕ − sinϕ
sinϕ cosϕ

]
(5.3)

The orientation ϕ can be obtained by the Huynen decomposition [86]

ϕ = 1
2 · arctan 2 · Re {S∗HV (SHH + SV V )}

|SHH − SV V |2
(5.4)

where Re means retaining the real part of a complex number and ∗ means complex
conjugate.

After the operation by Eq. (5.2), (5.3) and (5.4), the influence of the ellipse orientation
on the following calculations can be avoided. This step can not be applied to dual-pol
data because the orientation ϕ can not be determined with Eq. (5.4)

5.1.2 Similarity Parameters Acquisition

The proposed method defines three similarity parameters according to [80]. The first
two parameters r1 and r2 describe two basic scattering mechanisms: single reflection and
double reflection from a target, as shown in Eq. (5.5) and (5.6). r1 is large in calm sea
areas or smooth surfaces like roads, roofs or fields. r2 is small in the previous cases
but large in urbanized areas. The third parameter, r3, is the polarization entropy [87],
which is very good for measuring the randomness of targets like those affected by volume
scattering, shown in Eq. (5.7).
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2
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r3 = −
3∑
i=1

Pi log3 Pi (5.7)

Pi = λi∑3
k=1 λk

,

3∑
k=1

Pk = 1 (5.8)

kT = 1√
2

 S0
HH + S0

V V

S0
HH − S0

V V

2S0
HV

 (5.9)

T = 1
L

L∑
n=1

(kT · k+
T ) (5.10)

r3 can be obtained by Eq. (5.7), (5.8), (5.9) and (5.10). Where kT is the Pauli spin
matrix, λi the eigenvalues of the polarization coherence matrix T by singular value de-
composition, Pi the pseudo probability obtained from the eigenvalues, L the look number,
and + the Hermitian or conjugate transpose. In this paper, T is calculated with a 3× 3
averaging window.

The values of r1, r2 and r3 range from 0 to 1. The larger the parameter, the stronger
the corresponding reflection type. For example, a large r1 value represents that the
reflection is mainly a single bounce.

5.1.3 Contrast Optimization for Quad-pol Data

The Optimization of Polarimetric Contrast Enhancement (OPCE) can increase the con-
trast between two kinds of targets [85, 88, 89]. Assuming TA and TB are the average
scattering matrices of two ground targets, K̄(TA) and K̄(TB) are their Kennaugh matri-
ces. The Kennaugh matrix can be obtained according to,

K̄ =
〈
A∗4
(
[S0]⊗ [S0]∗

)
A−1

4
〉

(5.11)

where ⊗ represents the tensor product and A4 is,

A4 =


1 0 0 1
1 0 0 −1
0 1 1 0
0 j −j 0

 (5.12)
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The OPCE optimization consists on finding g = (1, g1, g2, g3)t and h = (1, h1, h2, h3)t
that maximizes the power ratio of TA and TB with constrains, i.e.,

maximize ht[K̄(TA)]g
ht[K̄(TB)]g

subject to g2
1 + g2

2 + g2
3 = 1

h2
1 + h2

2 + h2
3 = 1.

(5.13)

Yang. [80] assumed that the optimal function should contain the scattering character-
istics of the target. However, under normal circumstances, we cannot know the optimal
functional form. Therefore, Generalized Optimization of Polarimetric Contrast Enhance-
ment (GOPCE) assumes that the functional form includes two factors. One factor is the
received energy, which is mentioned in OPCE, and the other is the scattering character-
istics of the target. Same as h and g, x helps find the maximum power ratio of TA and
TB.

maximize
1
M

∑
TA

[∑3
i=1 xiri(TA)

]2
1
N

∑
TB

[∑3
i=1 xiri(TB)

]2 × ht[K̄(TA)]g
ht[K̄(TB)]g

subject to g2
1 + g2

2 + g2
3 = 1

h2
1 + h2

2 + h2
3 = 1

x2
1 + x2

2 + x2
3 = 1

(5.14)

where M and N denote the selected pixel numbers of TA and TB, respectively. It can be
seen from Eq. (5.14) that the contrast can be improved by enhancing the desired target
TA versus the undesired target TB.

For the OT applications, the contrast of the whole image needs to be enhanced instead
of only two kinds of targets. The contrast calculation proposed by Cumming [41] can be
applied as the optimizing criteria:

C =
E
(
|I|2
)

[E(|I|)]2 (5.15)

where I is intensity and E the mathematical expectation.To obtain the maximum con-
trast, the optimal equation is established according to GOPCE.
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OP =
[ 3∑
i=1

xiri

]2

× htm[K]gm

subject to g = (1, g1, g2, g3)t

h = (1, h1, h2, h3)t

x = (x1, x2, x3)t

g2
1 + g2

2 + g2
3 = 1

h2
1 + h2

2 + h2
3 = 1

x2
1 + x2

2 + x2
3 = 1

(5.16)

The optimal polarization states g, h, and x are the same as those of the GOPCE. The
maximum contrast can be achieved after finding these optimal states. From Eq. (5.16)
it is known that g, h, and x could be the coordinates of a point that is on a spherical
surface with a radius of 1 and a centered at the origin of coordinates, (0, 0, 0). Therefore,
the original 9 parameters to be optimized can be reduced to 6, i.e.,

g = (1, sinα cos θ, sinα sin θ, cosα)t

h = (1, sin β cos γ, sin β sin γ, cosβ)t

x = (1, sin δ cos ε, sin δ sin ε, cos δ)t
(5.17)

For a multi-parameter optimization problem, many approaches can be applied, such
as the Newton-Raphson method, quasi Newton method, and the Conjugate Gradient
Method (Conjugate Gradient Method (CGM)). Due to its low computational burden and
high computational efficiency, CGM [90] is applied to obtain g, h, and x for maximizing
the contrast in Eq. (5.15). The enhanced amplitude image can be generated once the
parameters g, h, and x are obtained.

5.1.4 Contrast Optimization for Dual-pol Data

Since dual-pol SAR is quite common as some polarimetric sensors can not provide full-pol
data, like Sentinel-1, it is necessary to consider their capabilities for contrast enhancement.
There are two kinds of combinations for dual-pol data: two co-polar channels (i.e., HH−
V V ) and a co-polar and a cross-polar channels (i.e., HH − V H or V V − HV ). As the
processing and the behaviour of the enhancement strongly depends on the presence of a
cross-polar channel, they will be presented separately.

5.1.4.1 Enhancement with HH − V V

The lack of cross-pol data makes impossible to eliminate the orientation. Consequently,
the contrast enhancement starts with the calculation of the similarity parameters. r1, r2
and r3 are defined as:
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r1 = |SHH + SV V |2

2
(
|SHH |2 + |SV V |2

) (5.18)

r2 = |SHH − SV V |2

2
(
|SHH |2 + |SV V |2

) (5.19)

r3 = −
2∑
i=1

Pi log2 Pi (5.20)

As in the quad-pol case, r3 is calculated by the pseudo probabilities obtained from
the eigenvalues of the polarization coherence matrix T. From Eq. (5.21) it is known that
due to the lack of the cross-pol data, kT becomes a two-dimensional vector, T thus turns
into a 2× 2 matrix. Therefore, only two eigenvalues can be obtained, instead of the three
of quad-pol data, and the pseudo probabilities are calculated with Eq. (5.22)

kT = 1√
2

[
SHH + SV V
SHH − SV V

]
(5.21)

Pi = λi∑2
k=1 λk

,

2∑
k=1

Pk = 1 (5.22)

Although values for r3 can be obtained, the absence of cross-pol data make them
potentially inaccurate and noisy. The entropy maps obtained from HH − V V data are
compared with those obtained with quad-pol data. Sections 5.2.2.2 and Section 5.3 show
and discuss the results. Therefore, this lack of reliability of r3 forces it to do not allow
its participation in the contrast enhancement.

The scattering matrix in this case becomes:

[S] =
[
SHH 0

0 SV V

]
(5.23)

With S the Kennaugh matrix [K] can be obtained. The optimization equation is
defined as:

OP =
[ 2∑
i=1

xiri

]2

× htm[K]gm

subject to g = (1, g1, g2, g3)t

h = (1, h1, h2, h3)t

x = (x1, x2)t

g2
1 + g2

2 + g2
3 = 1

h2
1 + h2

2 + h2
3 = 1

x2
1 + x2

2 = 1

(5.24)

62



5.2 - Data Sets and Results

Once the optimized equation is established, CGM is used to find g, h, and x that
maximize the contrast.

5.1.4.2 Enhancement with HH − V H or V V −HV

As there is only one co-polar channel, xx, r1 and r2 will be identical. Therefore, only r1
and r3 participate in the contrast enhancement. They are defined as:

r1 = |Sxx|2

2
(
|Sxx|2 + 2 |SHV |2

) (5.25)

r3 = −
2∑
i=1

Pi log2 Pi (5.26)

Pi = λi∑2
k=1 λk

,

2∑
k=1

Pk = 1 (5.27)

kT = 1√
2

[
Sxx
2Shv

]
(5.28)

The scattering matrix becomes:

[S] =
[
SHH SHV
SHV 0

]
or [S] =

[
0 SHV

SHV SV V

]
(5.29)

With S the Kennaugh matrix, [K] can be obtained. The optimization equation is
defined as:

OP = (x1r1 + x3r3)2 × htm[K]gm
subject to g = (1, g1, g2, g3)t

h = (1, h1, h2, h3)t

x = (x1, x3)t

g2
1 + g2

2 + g2
3 = 1

h2
1 + h2

2 + h2
3 = 1

x2
1 + x2

3 = 1

(5.30)

5.2 Data Sets and Results

5.2.1 Data Sets

To validate the proposed amplitude contrast enhancement method, two different scenarios,
an airport and a mountainous area, and two SAR data sets, have been selected. The first
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Fig. 5.3. Temporal average scatter mechanism maps obtained from quad-pol Radarsat-2
images. (a) Optical image from Google Earth. (b) Value of similarity parameter r1, related
to the measurement of single reflections. (c) Value of similarity parameter r2, related to the
measurement of double reflections. (d) Value of similarity parameter r3, i.e., polarization
entropy, related to the measurement of randomness. The features highlighted with orange,
magenta and blue rectangles in (a) are a farmland with vegetation, a road and a building,
respectively.
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Fig. 5.4. Relationship between amplitude and similarity parameters of different ground
features. Scatter plots of (a) amplitude vs r1, (b) amplitude vs r2, and (c) amplitude vs r3.

data set consists of 31 stripmap quad-pol Radarsat-2 images over the Barcelona airport
(Spain), acquired from June 2010 to July 2012. The resolution is 5.1 m in azimuth and
4.7 m in range. Radarsat-2 works at C-band and has a revisit period of 24 days. The
processing has been applied over an area of 902 × 602 pixels. Since the real deformation
is too small to be detected by OT, simulated offsets have been added to the images.

The other test site is located in Daliuta (China), a mountainous area affected by
large ground deformations caused by coal mining activities. The data set covering this
area consists of 20 TerraSAR-X SPOT dual-pol images (HH and V V ), acquired from
April 2014 to December 2014, with a resolution of 2.2 m in azimuth and 1.2 m in range.
TerraSAR-X works at X-band and has a revisit period of 11 days. The processing has
been applied over an area of 376 × 399 pixels.

Besides the PolSAR images, a SRTM DEM with a resolution of 90 m has been used
to help with the image co-registration [72].

5.2.2 Results

5.2.2.1 Results of Airport Test Site

Because the proposed method performs contrast enhancement based on the scattering
mechanism of the ground targets, it is very important whether the scattering types are
correctly retrieved. Fig. 5.3 shows the reflection types in the airport area, calculated from
the temporal average of the 31 Radarsat-2 images, as well as the optical image to help
recognize ground features. As expected, the value of r1 is large in airport runways, sea,
bare land, and roofs of large buildings, r2 is large in urbanized areas and r3 is large in
vegetated areas and areas with complex structures that induce volume scattering, such
as the airport terminal.

Three typical ground features (farmland with vegetation, roads, and buildings) are se-
lected to analyze their scattering characteristics. Their locations are marked with orange,
magenta, and blue rectangles in Fig. 5.3(a). The scatter plots between the amplitude and
the three similarity parameters are shown in Fig. 5.4. The average amplitudes of the two
co-polar and one cross-polar channels are used as the abscissa for all samples. It can be
seen that the three features present different amplitude distributions. The building has
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Fig. 5.5. Amplitude comparison before and after the application of the two contrast en-
hancements. The images are acquired on January 20, 2010. (a), (b) and (c) show the original
HH, V V and HV amplitudes (the file values no-radiometrically corrected), respectively. (d)
is the averaged amplitude from the four polarimetric channels, (e) is the AHE contrast en-
hanced amplitude, (f) is the ACE contrast enhanced amplitude. (d), (e) and (f) use identical
scale bars for a better comparison.

the largest concentration of low amplitudes while the farmland just the contrary. Usu-
ally, the buildings have high values in the amplitude image. In the case of the airport
however, due to the smoother roof and regular geometry, the building could have lower
amplitude values. At the same time, the building presents the highest dispersion of values
as the higher amplitudes also correspond to buildings. Both farm and road have a lower
dispersion of amplitudes.

From Fig. 5.4, one easily finds that r1 of the road presents the largest values, r2 of
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Fig. 5.6. Amplitude distribution for the original averaged polarimetric channels and the
contrast optimized with Adaptive Histogram Enhancement (AHE) and Amplitude Contrast
Enhancement (ACE) images.
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Fig. 5.7. Cross correlation comparison before and after contrast enhancements with January
15, 2011 and July 2, 2011 images. (a) is the cross-correlation obtained from the average
amplitudes of the original HH, V V and HV channels, (b) and (c) are the cross-correlation
maps obtained from the images enhanced with AHE and ACE, respectively.

the building is the largest and r3 of the farm is the largest. The scattering characteristics
of the three ground features in Fig. 5.4 are consistent with the results in Fig. 5.3, which
means r1, r2 and r3 can represent the single, double and random reflection, respectively.

After the validation of the scattering mechanism separation, the amplitude contrast
enhancement is applied to Radarsat-2 images and the result is shown in Fig. 5.5. There are
many methods to enhance image contrast, but as far as the authors know, they are based
on pure image processing and they do not consider or take advantage of the scattering
mechanisms information present in the data. A classical method called Adaptive his-
togram equalization (AHE) has been selected to compare with the proposed method [91].
Adaptive histogram equalization involves applying contrast enhancement based on the
local region surrounding each pixel. Each pixel is mapped to an intensity proportional
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Fig. 5.8. OT result. (a) is the simulated deformation in slant-range, (b) the deformation
obtained with the original averaged channels, (c) and (d) the deformation obtained with
images enhanced with AHE and ACE, respectively. (e) and (f) are a detailed view of the
HH channel amplitude acquired on January 15, 2011 and July 2, 2011, respectively. (g) is
the optical image of the same area from Google Earth. The red circle in (d) highlights a
swamp that causes a strong variation of the amplitude in the temporal time-span.
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Fig. 5.9. Simulated deformation time-series using Radarsat-2 data. There are 8 different
time spans. For each one 7 images are shown: the simulated slant-range deformation, the
deformation obtained from the averaged polarimetric channels and its error, deformation
obtained with AHE enhanced images and its error map, and, finally, deformation obtained
with ACE enhancement and its error map.

to its rank within the surrounding neighborhood. This method of automatic contrast
enhancement has proven to be broadly applicable to a wide range of images and to have
demonstrated effectiveness. The contrast of each polarimetric channel is around 1.25,
the contrast of their average amplitudes image is 1.12, while the AHE and ACE contrast
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Fig. 5.10. The error distributions of the proposed method and two benchmark methods,
calculated from the 8 time series simulated OT results with Radarsat-2 images.

are 1.74 (over the averaged amplitude image) and 2.76, respectively. Fig. 5.6 shows the
amplitude distributions for each case. AHE only changes the amplitude values from the
Rayleigh distribution to a continuous uniform distribution, without considering the scat-
tering mechanisms, thus the contrast improvement is not so obvious. It can be seen that
the airport runways and the sea area are brighter after AHE, while the received energy
from these areas was small in the original images. This is due to the fact that the contrast
enhancement is performed locally and based only on the averaged image. On the other
side, with ACE, the areas with strong scatters are emphasized, such as the airport termi-
nals and buildings, while the weak areas are emaciated, such as the airport runways, the
roads and swamp in the bottom of the image. From the amplitude image and the three
scatter mechanism maps we can see that there are many speckles in the farmland and
some roads. These speckles can be associated to small towers, small bridges, small piers
or even rocks which are highlighted by ACE, although they can also be noise in some
cases. Generally speaking, the enhancement of all the features presents in the amplitude
images lead to the improvement of contrast.

The cross correlations of the amplitude images with and without the enhancements
are calculated and shown in Fig. 5.7. The images were acquired on January 15, 2011, and
July 2, 2011. Fig. 5.7(a) shows the cross correlation calculated by the average amplitude
of the original HH, V V , and HV polarization data, and Fig. 5.7(b) and (c) shows the
cross correlation of the images enhanced by AHE and ACE respectively. It can be seen
that after AHE, the gradient near the peak of correlation is larger, which is beneficial for
offset tracking. However, the cross correlation coefficient also increase for almost the whole
map, meaning that the two amplitude images, although having larger contrast, become
more different after the enhancement. This is attributed to the contrast enhancement in
areas with random behaviours, like the sea, or low signal, like runaways. In the case of
ACE, the cross correlation peak is sharper and the gradient near the peak is increased,
while the cross correlation coefficient decreases elsewhere.

To demonstrate the advantage of the enhancement method, an OT processing is carried
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Fig. 5.11. Scatter mechanism maps derived from the averaged dual-pol polarimetric chan-
nels of TerraSAR-X dataset. (a) Optical image from Google Earth. (b), (c) and (d) are
the values of similarity parameters r1, r2 and r3. The features highlighted with in orange,
magenta and blue rectangles in are a farmland, a road and a building, respectively.

Fig. 5.12. Scatter plots of amplitude vs similarity parameters for different ground features.
(a), (b) and (c) are amplitude vs r1, r2, r3, respectively.

out with the same two images. A simulated offset in slant range direction is added on
the second as the real deformation is extremely weak. The template size is set to 64×64
pixels with no windowing. The simulated offset, and the offset obtained with the original
images, the images enhanced by AHE and ACE are shown in Fig. 5.8(a), (b), (c) and
(d) respectively. It can be seen that the shape of the offset area in (b), (c) and (d) are
similar to the simulated one, while it is clear that the result of ACE enhanced images is
smoother and has fewer abnormal values. Non-realistic offsets are obtained in the lower
left corners of Figure (b), (c) and (d), which belong to the sea. In an operational use
of the method, the sea should be masked. Another wrong result is located in the area
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Fig. 5.13. Amplitude comparison before and after the contrast enhancement. (a) and (b)
are the original HH and V V channels. (c) is the averaged channels. (d) and (e) are the
contrast enhanced images by AHE and ACE, respectively.
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Fig. 5.14. Deformation time-series maps obtained from TerraSAR-X data. The first two
rows are the deformation results obtained with the average image of the original HH and
V V channels. The middle two rows and the last two rows are obtained with images enhanced
by AHE and ACE, respectively.

highlighted with the red circle in Fig. 5.8(d) that is caused by dramatic changes on the
amplitude. It is obvious from (d)-(f) that vegetation has disappeared in winter and grew
up again in summer.

A simulated deformation time series is added to the 31 Radarsat-2 images mentioned
in Section 5.2.1. The deformation rate is set to be linear. After the image enhancement
and masking of sea and error prone areas, OT is applied with a template size of 64×64
pixels. The deformation time series over time are obtained and shown in Fig. 5.9. The sea
area and the noisy area encircled in red in Fig. 5.8(d) have been masked. The image pair
used corresponds to the deformation period indicated at the bottom of each deformation
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Fig. 5.15. Scatter mechanism maps obtained from the temporally averaged Radarsat-2 dual
co-polar data, {HH, V V }. (a), (b) and (c) are the values of similarity parameters r1, r2 and
r3. The zoom of the areas encircled in black are shown in the rectangles labeled 1 to 4 in
(d), 5-8 are the same areas shown in Fig. 5.3 (d) as references.
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Fig. 5.16. Scatter mechanism maps obtained from the temporally averaged Radarsat-2 dual
cross-pol data, HH−V H and V V −HV . (a) and (b) are the values of similarity parameters
r1 and r3 calculated with V V −HV . (c) and (d) are the values of similarity parameters r1
and r3 calculated with HH − V H.
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Fig. 5.17. Histograms of the ACE contrast enhancement using different combinations of
polarimetric channels.

map. For each time span, the first column shows the simulated offset. The second is the
offset obtained with averaged images while the third is the error, the difference between
the retrieved deformation values and the real ones. The fourth is the offset obtained with
images enhanced by AHE, and the fifth is the error. Finally, the sixth ad seventh are the
results with the images enhanced by ACE. Deformation maps have color-scales ranging
from -2 to +2 pixels while error maps from -0.5 to +0.5 pixels. Results for eight different
periods are shown. The template size has a direct impact on the capability of OT to
monitor non-spatially uniform deformations. These estimation errors are more noticeable
in areas with larger deformation gradients, like the boundaries of the deformation bowl.
Due to the averaging effect, some bias in the results can be found in areas with non-
uniform deformation. The best results are obtained with ACE, no artifacts can be found
outside the deformation bowl and the shape and values of deformation are determined
with an acceptable degree of precision, around ± 0.2 pixels, for an OT estimation. The
results with the original averaged images present artifacts outside the deformation bowl
and their shape and values are not as precise as with ACE. Finally, AHE results are not
satisfactory as well. The shape of the deformation bowl is worse estimated and the error
values present a larger deviation.

The histograms of the error of the last time-span of Fig. 5.9,20100613-20120626 are
shown in Fig. 5.10. It can be observed that the error distribution is not symmetric and
biased to positive values. As expected, the ACE error histogram is the one that presents
the lower dispersion, followed by the original averaged images and, closely, by AHE. The
mean error for each case is -0.002,0.076 and 0.008 with error standard deviations of 0.073.
0.155 and 0.214, respectively. Clearly ACE is the method that provides the best results
while AHE has the largest standard deviation of all.

5.2.2.2 Results in a Mountainous Area

The temporal average scattering mechanism decomposition results of mountainous area
in Daliuta with 20 dual-pol HH−V V TerraSAR-X images are shown in Fig. 5.11. Single
reflections mainly happen on roads, farmlands with no vegetation, and valley flat areas.
Double reflections distribute in hillsides, ridges, and building areas. The acquired entropy
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is noisy and inaccurate due to the lack of cross-polar data. This is the reason that entropy
does not participate in the enhancement processing for the HH − V V case.

Same as in the airport test site, the scatter plots between the average amplitude
and the similarity parameters of the three typical ground features (farmland, road, and
building) are shown in Fig. 5.12. Compared with the farmland in the airport test site,
the vegetation in the mountainous area is sparser and its height is lower, therefore the
reflection is mainly single bounce. Although the amplitude difference between the three
typical ground features in mountainous areas is small, it can still be seen that the group
separation is clear in Figure (a) and (b). The lack of cross-polarization data leads to the
confusion of different features about entropy.

It can be seen in Fig. 5.13 that the averaging do not improve the contrast. AHE and
ACE make the building in the middle of the image sharper. On the other side, the road
is clearer with ACE. Overall, the optimization effect is not as significant as in the airport
test site due to the lack of cross-pol data. In addition, the contrast of the original data
in the mountainous area is not as high as in the urbanized area.

After the enhancement, OT is applied to detect the deformation caused by coal mining.
SAR images are base-banded before OT to accommodate the azimuth-varying spectra
inherent to the spotlight mode and perform an alias-free interpolation. The size of the
search window is set to 64× 64 pixels to ensure a narrow correlation peak while retaining
the deformation resolution.

The oversampling factor is set to 64 prior to cross correlation to reduce bias errors and
noise [65]. The offset is converted, assuming that deformation is vertical, into subsidence,
Ssub, with,

Ssub = Poffset ·Rsize

cos θ (5.31)

where Poffset is the measured offset in pixels before and after the deformation in the
slant-range direction, θ is the local incident angle and Rsize the pixel size in the range
direction. The assumption that the deformation is vertical is realistic as the horizontal
movement caused by underground mining is usually very small, about one-tenth of the
vertical deformation [26].

Fig. 5.14 shows the subsidence time-series. The image pairs are the same as the
deformation period indicated at the bottom of each deformation map. The first two rows
are the result obtained with averaged images. The middle two rows and the last two rows
are obtained with images enhanced by AHE and ACE, respectively. The deformation
trends of the three result sets are similar, although the results with the first two sets are
noisier and with more aretifacts outside the deformation bowl. It can be seen from the
results that the deformation area was growing to the right during the entire observation
period, and can be divided into two parts. The first sinking area resembles a triangle
as a whole and was formed from April 5, 2014 to May 19, 2014. The subsidence values
in this area are relatively large, reaching a maximum value close to 4 m. The second
sinking area is strip-shaped and began to develop on May 19, 2014. The sinking area
reached its maximum in early July 2014. After that, the sinking area remained basically
unchanged, but the sinking values continued to increase. From the shape and development
of the second sinking area, it can be seen that this is a typical underground mining caused
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deformation. The coal seams in this area are thick and shallow. Therefore, it is speculated
that the first sinking area was caused by mining at the same working face, but the surface
collapsed, resulting in drastic changes in deformation and irregular shapes at the beginning
of the observation.

5.3 Discussion

The proposed ACE-OT can improve the OT performance by the images contrast en-
hancement. The enhancement performance mainly depends on the capacity to separate
the different scattering mechanisms. Since the current satellite SAR sensors can have up
to four different polarization combinations (quad-pol HH−V V −V H−HV and different
dual-pol combinations, HH − V H, V V −HV or HH − V V ), it is necessary to compare
their performance and evaluate the limitations of the dual-pol cases when extracting the
similarity parameters. The 31 quad-pol Radarsat-2 images mentioned in Section 5.2.1 are
used to simulate the different dual-pol combinations.

Fig. 5.15 shows the reflection mechanisms obtained considering only co-pol data, HH−
V V . From Eq. (5.5), (5.6), (5.18) and (5.19) it can be found that the HH and V V data
can distinguish single and double bounce effectively. However, due to the lack of cross-pol
data, r1 and r2 are larger than those obtained by quad-pol data. The entropy obtained by
the co-pol data has the same trend as the one obtained by the quad-pol data, the runways
and bare land have low entropy values, while the buildings and land with vegetation have
high entropy values. However, the lack of cross-pol data causes that many details are
lost. For example, all boundaries become blurred and the lanes disappear. In addition,
the entropy values in the black circles 1-4 in figure (c) are inconsistent with those from
quad-pol data in Fig. 5.3. On the top of the black rectangle 5 and in the center of the
black rectangles 6-7 in Fig. 5.15 (d), the entropy values obtained by quad-pol data are
lower than those of its surroundings but it is just the opposite with HH − V V data. For
quad-pol data, in the black rectangle 8 there is bare land, that has low entropy values,
that is surrounded by a vegetated area, with high entropy values. On the contrary, the
results with dual-pol data of rectangle 4 show almost pure noise. These indicate that the
lack of co-pol data not only causes a loss of details in the entropy map but also erroneous
results.

Fig. 5.16 shows the scatter mechanisms obtained by HH−V H and V V −HV dual-pol
data according to Eq. (5.25) and (5.26). It can be seen that the obtained single bounce
contributions in Figure (a) and (c) are similar to the results obtained with quad-pol data,
but the values of r1 obtained by cross-pol data are smaller. For a small part of the
farmlands (in the black circles 1, 2), the roads (in the black circle 4), and the parking
lot (in the black circle 5), they have large r1 values. But according to Fig. 5.3, quad-pol
data shows that single bounce is weak and double bounce strong, which indicates that the
HH − V H and V V −HV data cannot effectively distinguish between single and double
bounce in these areas. Besides, in other areas r1 values obtained by HH − V H and
V V −HV data are inconsistent with each other. For example, in the black circle 3, the
road has a lower single reflection value in Fig. 5.16 (a) than in Fig. 5.16 (c). This means
that in these dual-pol combinations, the information of phase between the two channels
cannot be unambiguously associated with scattering mechanisms. In other words, we
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measure the reflected wave features (which depend on the incident polarisation), not the
target features [92].

The entropy obtained from HH−V H or V V −HV data is similar to the one obtained
by the quad-pol case, but some details are lost, and the values of r3 obtained by cross-
pol data are larger. For example, the boundary between the cement pavement and the
aircraft runway in the black circle 6 is blurred, but it is perfectly clear in Fig. 5.3 (d).

The histograms of the optimized contrast for the four different polarization combina-
tions plus HH are shown in Fig. 5.17. The contrast is calculated with Eq. (5.15) using
a 3 × 3 moving averaging window. As it can be seen in Fig. 5.17, the initial image con-
trast represented by HH can be improved with the use of polarimetric data. The largest
improvement is achieved with quad-pol data, followed by the dual-pol data with co-polar
channels and finally the dual-pol with one co-polar and one cross-polar channels, almost
with identical performance. Dual-pol with co-polar channels allows to better determine
the reflection properties than the other dual-pol cases. Overall, the single reflection and
double bounce obtained by two co-polar data are accurate. Although the entropy is
unsatisfactory, it does not participate in the enhancement processing.

5.4 Summary

An Amplitude Contrast Enhancement (ACE) method taking advantage of polarimetric
diversity is proposed in this paper in order to improve the performance of the images cross-
correlation based OT deformation estimation. This method, which is inspired by [80],
looks for the best combination of polarimetric reflection mechanisms to achieve the highest
amplitude contrast in the images.

Two SAR data sets, one with 31 fully polarimetric Radarsat-2 images and the other
with 20 dual polarization Terrasar-X images, have been used to evaluate the performance
of the proposed method. The first dataset have been acquired over the Barcelona airport
(Spain) while the second one over a mountainous mining area in Daliuta (China).

As benchmark, ACE has been compared with another contrast enhancement method.
Among the different methods, the Adaptive Histogram Enhancement (AHE) has been
selected as it works locally, which makes it comparable to ACE that does the same. The
results show that the simulated offset added to the airport images can be better retrieved
with ACE than with AHE. The former considers the scattering characteristics of the
pixels when improving the contrast while the latter treats the data as a simple black
and white image. The comparison of the original and retrieved deformation time-series
has demonstrated the positive impact of the proposed contrast enhancement method in
the performance of OT. Similarly, the large deformations caused by the coal mining
activity in the mountainous area of Daliuta have been better obtained with ACE than
with the original averaged polarimetric channels or AHE. The results have shown that
subsidence values have reached values of almost 4 m in only 33 days. The comparison
of the error maps for the three approaches indicates that ACE is able to provide more
consistent results. Although the three methods are quite able to estimate the shape of the
deformation bowl and their values, the results with the original images and AHE show
non-consistent deformations throughout the deformation map. Non-consistent results
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mean deformations that appear in a particular time interval but disappear in the next
one, which obviously are not realistic.

The enhancing performances of the different polarization combinations, quad- and
dual-pol, are discussed and analyzed. Firstly, the accuracy of the scatter mechanism ex-
traction is validated. Among all dual-pol cases, HH −V V combination presents the best
performance obtaining the single and double reflections. The other dual-pol combina-
tions, one co-polar and one cross-polar, can be quite inaccurate in some areas. Secondly,
the performances among the different polarization combinations are then compared. As
expected, quad-pol data achieves the highest contrast optimization. The performances of
the combinations of one co-pol and one cross-pol data, HH − V V , are almost identical
and clearly inferior to the combination of the two co-polar data, HH − V V .
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Chapter 66
Conclusions and Future

Lines

6.1 Main Conclusions

This PhD thesis is dedicated to improve the algorithms for obtaining large-gradient sur-
face deformation based on SAR data. To this end, related researches have been carried
out and three methods are proposed to optimize the existing algorithms. Specifically, a
deformation resolving algorithm based on InSAR and an external model is proposed in
Chapter 3, named as EMDD-PSI. In Chapter 4, an amplitude filtering method for
distributed deformation detection is proposed to overcome the PL, and is named as PLR.
To increase the cross correlation between the master and slave images for offset tracking,
an contrast enhancement method is proposed in Chapter 5, named as ACE-OT.

The main experimental results and conclusions in this thesis could be summarized as
follows:

• Large gradient deformation extraction based on InSAR and an external
model
In Chapter 3, an improved InSAR algorithm based on external models is proposed,
named as EMDD-PSI. The algorithm first obtains the prior deformation phase
by the external model, and then subtracts the prior deformation phase from the
wrapped differential interference phase to obtain the residual phase. The residual
phase is used to optimize the prior model parameters. Afterwards, the residual
phase is unwrapped to obtain the residual deformation. The final deformation can
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be obtained by adding the residual deformation and the prior deformation together.
The proposed method is verified with 14 ascending Radarsat-2 Stripmap images,
acquired from April 4th, 2015 to March 5th, 2016. The test area is located in
Fengfeng mining area, China, where the maximum subsidence velocity is about 44
cm/year, beyond the capability of PSI. Besides, the deformation area is covered
by vegetation, which would reduced the density of PSs. These two reasons lead to
phase aliasing, making it difficult to obtain the correct deformation. The proposed
method can reduce or even eliminate the possibility of phase aliasing by separating
part of the deformed phase from the original differential interferogram. The prior
model is a nonlinear model, which is conducive to extracting nonlinear information.
The results show that EMDD-PSI can effectively extract the deformation whose
gradient exceeds the capability of PSI, and can retain the non-linear characteristics
of the deformation. Ground truth also has verified the effectiveness of EMDD-PSI.
For the parameter optimization, the brute force is applied for its simplicity. The
whole optimization process is convergent, and the optimized parameters can leads
to the minimum residual phase.
The results of this part demonstrate that the EMDD-PSI method is an effective
method for obtaining large gradient deformations.

• Amplitude filtering
In Chapter 4, the distribution of SAR amplitude image and its influence on 6 dif-
ferent OT method has been analyzed and discussed, and a conclusion is reached: for
the distributed deformation detection, pixels with too high and too low amplitude
values will affect the detection accuracy. Based on this situation, an amplitude fil-
ter is proposed. The filter determines the amplitude retention interval based on the
characteristics of the amplitude distribution, and the amplitude value of the pixel
outside the retention interval is replaced with 0. To verify the proposed method,
19 spotlight TerraSAR-X SLC images are employed to monitor ground deformation
with pixel spacing of 0.91 × 0.86 m. These images were acquired from November
10, 2012 to July 10, 2013. A deformation area located in Daliuta Town, China is
selected to assess the performance of the proposed method. This area is the largest
coal producing region in China, where the maximum subsidence value is about 4.2
m.
The GPS data is used as the ground truth. The results show that the proposed
amplitude filter can reduce or eliminate PL effectively, which means it can improve
OT accuracy for obtaining distributed deformation. The monitoring accuracy is
increased by 21.6% w.r.t. the OT method without amplitude filter.

• Amplitude contrast enhancement based on polarization data
In Chapter 5, inspired by [80], a contrast enhancement algorithm based on polar-
ization data is proposed. By recombining the energy of different scattering char-
acteristics of scatterers, it achieves the purpose of enhancing the contrast of the
amplitude image, thereby improving the accuracy of OT. First, the method of
extracting the scattering characteristics from different polarization combinations
is discussed. Then an optimizing formula is proposed to achieve the purpose of
enhancing the amplitude contrast. It is worth noting that due to the incomplete
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polarization information, the scattering features extracted by the dual polarization
data may be not correct and noise is increased, which could weaken the optimization
effect.
Time series Radatsat-2 and Terrasar-X data are used to verify the proposed method.
An artificial area and a mountainous area are selected as the region of interest. Ex-
periments show that the Pauli decomposition can effectively distinguish different
scattering characteristics. The contrast enhancement algorithm can increase the
characteristics of strong scatterers and weaken distributed scatterers. In addition,
the coherence of the image pair with enhanced contrast will be significantly en-
hanced, and the gradient near the peak of the Correlation Coefficient (CC) coeffi-
cient will also increase, which is conducive to improving the accuracy and reliability
of OT.
To conclude, Chapter 3 answer the first research question of this thesis, i.e., “How
to determine parameters of an external model to help PSI obtain large gradient
deformation without introduce error?”. The second research question “How can the
PL be eliminated or reduced in OT processing?” is partially answered by Chapter
4. The last one “How to optimize polarimetric data to improve OT result?” has
been answered by Chapter 5.

6.2 Future Research Lines

The presented work in this thesis all have a certain improvement in the acquisition of
large gradient deformation based on SAR data, but there are still some open issues that
are worth continuing to study. The main points are listed below.

• The selection of models participating PSI processing
Although PIM is a good model to describe the deformation caused by the un-
derground coal mining, for other factors that cause surface deformation, such as
volcanoes, earthquakes, landslides, etc., PIM cannot describe them well. The trans-
ability of external models could be a problem worth studying to apply EMDD-PSI
to other cases. On the one hand, a more general model can be applied. This model
should be able to describe all the causes of surface deformation, so EMDD-PSI can
be applied to various scenarios, but the accuracy of the model may be limited. On
the other hand, looking for suitable models for each deformation cases could be an
option. Such a workload would be large and it would require knowledge of various
disciplines, but the accuracy of the model will be higher, comparing to applying an
universal model.

• Deep learning based OT and InSAR fusion for large gradient deformation
monitoring
Phase aliasing is an inevitable problem for InSAR when the movement of ground
surface is vigorous. As a recent hot topic, deep learning technology can predict the
missing phase cycle by training with a large number of samples. There is already
research studying phase unwrapping to solve this problem. However, OT is not
introduced into this field. Although the accuracy is far lower than InSAR, in some
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incoherence area OT has better performance. On the other hand, more input data
could make the learning model smarter. Therefore, deep learning based OT and
InSAR fusion may be a good solution for large gradient deformation monitoring.
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