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Abstract

In this work we generalize the construction of p-adic anticyclotomic L-functions associated
to an elliptic curve E/F and a quadratic extension K/F, by defining a measure u o attached
to K/F and an automorphic form. In the case of parallel 2, the automorphlc form is
associated with an elliptic curve E/F.

The first main result is a p-adic Gross-Zagier formula: if E has split multiplicative
reduction at p and p does not split at K/F, we compute the first derivative of the p-adic
L-function by relating it with the conjugate difference of a Darmon point twisted by a
character &. The proof uses the reciprocity map provided by class field theory as a natural
way to interpret conjugate differences of points in E(K,) as elements in the augmentation
ideal for the evaluation at the character &. This generalizes a result of Bertolini and
Darmon. With a similar argument, after discovering the work of Fornea and Gehrmann
on plectic points, we prove an exceptional zero formula which relates a higher order
derivative of y, s with plectic points.

We find an 1nterpolat1ng MeAsUre fg for u o attached to an interpolating Hida family
@ for ¢. Here Hey Can be regarded as a two variable p-adic L-function, which now includes
the weight as a variable. Then we define the Hida-Rankin p-adic L-function L,(¢}, &, k)
as the restriction of Ha to the weight space. Finally, we prove a formula which relates
the weight-leading term of L,(¢%, & k) with plectic points. In short, the leading term is an
explicit constant times Fuler factors times the logarithm of the trace of a plectic point.
This formula is a generalization of a result of Longo, Kimball and Hu, which has been
used to prove the rationality of a Darmon point under some hypotheses.
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Resum

En aquesta tesi generalitzem la construccié de funcions L p-adiques anticiclotomiques
associades a una corba elliptica E/F i una extensié quadratica K/F, definint una mesura
M associada a K/F i una forma automorfa. En el cas de pes paral-lel 2, la forma automorfa
s’associa a una corba el-liptica E/F.

El primer resultat és una féormula p-adica de Gross-Zagier: si E té reduccié multiplica-
tiva split a p i p descomposa a K/F, calculem la primera derivada de la funcié L p-adica
relacionant-la amb la diferéncia conjugada d’un punt de Darmon twistat per un carac-
ter £&. La demostracio utilitza 'aplicacié de reciprocitat de la teoria de cossos com una
manera natural d’interpretar les diferéncies conjugades de punts de E(K,) com elements
en l'ideal d’augmentaci6 de I'avaluacio en el caracter & Aix0 generalitza un resultat
de Bertolini i Darmon. Amb un argument semblant, després de descobrir el treball de
Fornea i Gehrmann sobre els punts pléctics, demostrem una féormula de zero excepcional
que relaciona una derivada d’ordre superior de Hess amb punts pléctics.

Trobem una mesura d’interpolacié Her DET A 1y associada a la familia Hida @) que
passa per ¢). Aqui Hey €S pot considerar com una funcié L de dues variables, que ara
inclou el pes com a variable. Aleshores definim una funcié6 L de Hida-Rankin p-adica
L,,(cpﬁ, &, k) com la restriccié de Hey A I’espai de pesos. Finalment, demostrem una férmula
que relaciona el terme principallde Ly(¢", & k) respecte al pes amb punts pléctics. En
resum, el terme principal és una constant explicita multiplicada per factors d’Euler i pel
logaritme de la traga d’un punt pléctic. Aquesta férmula és una generalitzacié d’un re-
sultat de Longo, Kimball i Hu, que s’ha utilitzat per demostrar la racionalitat d’un punt
de Darmon sota certes hipotesis.
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Chapter 1

Introduction

Some first examples

Historically, there are some reasons to believe that L-series or zeta functions link arith-
metic with analysis, linking local and global behaviour. The Riemann zeta function C(s)
is defined by the series C(s) = X, n~° which converge for s € C with Rs > 1. Rie-
mann showed that ((s) extends to a meromorphic function of C and proved its functional
equation. Euler gave another expression for ((s), its Fuler product

o= |(-p)~
p

where p runs over the primes of Z. It follows from the fundamental theorem of arithmetic.
Using the Euler product, Riemann linked the prime counting function 7t(x) with the zeroes
of {(s), and formulated the Riemann hypothesis, still open. Given a number field F/Q,
its Dedekind zeta function is defined similarly and also has an Euler product

Cr(s) = ), M = [ [(1-@w)™) !
acOr P

where a runs over the ideals of Op and p over the prime ideals. The class number formula
links several invariants of F with the behaviour of Cp(s) at s =1,

2" . (2m)"C - Regk -hk

lim(s - 1)Cr(s) =

(1.1)

w - v |dk|

where rg is the number of real embeddings of F into C, rg + 2rc = [F : Q], Regg is the
regulator of K, wg the number of roots of unity in K, hg the class number of K and dg
its discriminant.

The conjectures of Beilinson and Bloch-Kato, out of the scope of this text, are one of
the first general attempts to link the special values of L-functions with arithmetic, from
which the BSD conjecture can be regarded as an special case.

1.1 The BSD conjecture

Given an elliptic curve E/F of conductor 9t C Of, we have a natural geometric group law,
giving rise to its abelian group of F-rational points E(F). Mordell proved E(F) is finitely
generated and thus has finite Z-rank, this is the algebraic rank ra(E/F) of E. We can
also form its Hasse-Weil L-function with the following FEuler product

LEE,s) =] | (1-apgy* +937%) [ | (1- a0y (12)

pIN pI%



where each a, = a, g is given explicitly in terms the reduction type and the number of
rational points of E over Fy. The product converges absolutely on R(s) > 3/2 because
the a, have a controlled behaviour: they satisty Hasse’s inequality.

In few words, automorphic representations are generated by automorphic forms, which
are a generalization of modular forms. We say E is modular if there exists an automorphic
representation 7 for PGLo/F of parallel weight 2 such that

L (n,s - %) * L(E/F,s)

where = denotes that we ignore the archimedean factors. It is a classic result of Hecke that
the L-series L(f, s) associated to a modular form f € Si(I'g(N)) of level N has an analytic
continuation to C, and that its normalized L-function A(f,s) = N*/2(2r)~*T(s)L(f, s)
satisfies the functional equation

A(f,s)= ¢ A(f, k—s) (1.3)

Similar results (functional equation and analytic continuation) hold for automorphic rep-
resentations. The existence of the automorphic representation associated with E is now
known when F = Q by the modularity theorem, and also for most elliptic curves when F
is a totally real field, thus in these cases L(E/F,s) extends to an entire function.

However, in the 60s Birch and Swinnerton-Dyer formulated a conjecture based on
computational evidence, a prediction about the behaviour of L(E/Q, s) at s = 1, yet there
was no modularity, no Langlands programme to support whether the L-function is defined
at s = 1. The BSD conjecture can be stated by means of an equality which involves several
invariants of the elliptic curve as in (1.1), together with the claim that

raig(E/F) = ords—1 L(E/F, 5) (1.4)

That is, the algebraic rank is a computable number equal to the analytic rank, the order
of vanishing of L(E/K,s) at s = 1. The weak version of BSD conjecture only claims
equation 1.4 and the finiteness of the Tate-Shafarevich group, an invariant of E.

From (1.4) we observe that if the L-function vanishes then E(K) should be infinite,
and at least a K-rational point of infinite order should exist. Some of the progress in
proving partial versions of (1.4) use a set of special points, called Heegner points, that
emerge when K is a totally imaginary quadratic extension of a totally real field F and E
is modular and defined over F. In fact, for now the cases of rank 0 and 1 are the most
understood due to the results of Gross, Zagier and Kolyvagin and their use of Heegner
points.

1.2 p-adic L-functions

An automorphic form has an associated L-function, which as we have seen above con-
jecturally holds a lot of arithmetic information, but is inaccessible by current methods.
Much of the recent progress on this problem comes from proving results about p-adic
L-functions, rather than working with the L-function directly. These objects, which are
constructed in many different ways, in some sense interpolate the classic L-function. We
will later focus on one possible automorphic construction of a p-adic L-function, by re-
garding the twists of the L-function as the integral of the character y over a certain
measure.



In this approach the measure u determines the p-adic L-function, and to find its k-th
Taylor coefficient amounts to compute the image of p in I¥/T**! when it has a zero of
order k (see | |), where I is an ideal called the augmentation ideal. To illustrate this
idea, consider the following example. In the polynomial ring C[X] we can consider the
morphism C[X] — C given by X + 0, inducing the sequence

00— —>C[X] — C ——>10

where I = ker (X + 0). Then an element f € C[X] has a zero of order k at X = 0
when f €1 k and the coefficient of X¥ in f can be identified with its image in Ik 1k
One usual way to construct p-adic L-functions is through measures of Zy-extensions of

the base field F. There is a unique Z,-extension of Q, namely Qé,p where Qo p = Q(Cp)
is the field generated by the p”" roots of unity for all n > 1 and

Gal(Quy/Q) =ZX =AXY, A=Z/(p-1Z, T=Z,

For a general number field this does no longer hold (see | |). Apart from the cyclo-
tomic extension, an imaginary quadratic field K has an abelian Zy-extension L of K which
is anticyclotomic: L/Q is Galois and Gal(K/Q) acts on Gal(L/K) by —1. For now, there
have been constructions of both cyclotomic and anticyclotomic p-adic measures.

Cyclotomic case

The Mazur and Swinnerton-Dyer p-adic L-function L,(f, s) is defined through a measure
up of the cyclotomic Z,-extension of Q. Given a cusp form f € S2(N), it can be defined
as the p-adic Mellin transform

Ly(f,s)= /ZX expy (s log, y)dup(y) : C, — C,.

P

Since the p-adic exponential and logarithm are p-adic analytic, so is L,(f,s). Its inter-
polation property shows Ly(f,s) is related with the classical L-function: given a finite
character x : Z; — C* one has

/ZX xMdup(y) = e5(x, f) - L(f, x, 1),

P

where L(f, x,1) is the classical L-function twisted by this character and &,(x, f) some
Euler factor.

Later, Mazur, Tate and Teitelbaum formulated the p-adic version of the BSD conjec-
ture. One consequence of this conjecture is the exceptional zero conjecture: Ly(E,s) =
L,(f,s) has exactly one more extra zero at the critical point than L(E,s), when f is
attached to an elliptic curve E with split multiplicative reduction at p. In rank zero
situations it is now a theorem by Greenberg and Stevens and it states that in this case

L(E,1)

L)(E, 1) = L(E)- oF

(1.5)

where L(E) = log,(qe)/ord,(qE) is the L-invariant and )} the real period of E.

Note that since Ly(f,0) = /Z,f dup, when Ly(f,s) has a zero of order r at s = 0 its

Ir+1

Taylor coefficient can be found by computing the image of w, in I"/ where I is the



augmentation ideal, the kernel of integrating the constant function 1. More generally, if
R is a ring the R-valued measures of a topological space X form a ring Meas(X, R) and I
fits into the exact sequence

0 —— [ —— Meas(X, R) > R > ()

p—— [edu

Anticyclotomic case

Let K be a quadratic imaginary field over Q. In | : : |, Bertolini and Dar-
mon constructed the anticyclotomic p-adic L-function L,(E/K) associated to an elliptic
curve E/K with split multiplicative reduction at p and the anticyclotomic extension of K.
They proved an analogous Greenberg-Stevens exceptional zero formula if K/F splits, by
relating the derivative L, (E/K) at the critical point with the classical L-function and the
L-invariant similarly as in (1.5). Instead of using Hida families as Greenberg and Stevens,
the proof uses p-adic integration on Shimura curves. Also, they showed that when K/F
is inert the derivative Lj, (E/K) can be used to obtain a K-rational point in E(K). In fact,
the image ®rate(L;,(E/K)) by the Tate uniformization is a difference of conjugate Heegner
points ag;

CDTate(L;(E/K)) = &K — a_[( (1.6)

In the papers | ; | these results were generalized for higher weights.

1.3 Heegner points

The classical way to construct Heegner points on an (modular) elliptic curve E/Q of
conductor N is essentially to take the image of CM points of the modular curve Xo(N) of
level N using its modular parametrization ¢. The modular curve Xo(N) can be regarded
as the solution of the moduli problem (i.e. the corresponding functor is representable) of
classifying pairs (E’, C’) where E’ is an elliptic curve and C” a cyclic subgroup of order N
modulo isomorphism. If § = {z € C: Iz > 0} is the upper half plane and * = HUQU{co}
the extended upper half-plane, each T € $ has an associated elliptic curve E; = C/{1, T)
over C with endomorphism ring O;. From this it can be shown that

Xo(N)(C) = §7/To(N).

The ring Oy is either Z or an order of a quadratic imaginary field K/Q. In the last case T is
said to be a CM point; the theory of complex multiplication shows there is a finite number
of isomorphism classes of elliptic curves E; with O; = O for a fixed order O of a quadratic
imaginary field K, and that their j-invariants must be algebraic integers that generate
abelian extensions of K. This is a remarkable property; by evaluating transcendental
functions on certain arguments we obtain values that generate class fields in a systematic
way, an instance of a realization of Kronecker’s Jugendtraum.

Elliptic curves have a uniformization over C because E(C) can be regarded as a torus
C/A for some lattice A € C. There is an explicit parametrization ¢: if C/A ~ E(C) (and
c is Manin’s constant) then ¢ is given by

@ = Xo(N)(C) = $/To(N) C/A

(1.7)
T > cfl; 2mif(z)dz




where f = fp is a weight 2 modular form attached to E by modularity. The image of
a CM point lies in fact in the group of rational points E(H), where H is the ring class
field associated to Q. The construction can be carried out under certain conditions on K
and O, the Heegner hypothesis: the conductor of O C K is prime to N and the primes ¢
dividing N split in K/Q. For instance if the conductor of O is 1 then the point belongs
to E(H1) where Hy is the Hilbert class field of K.

This gives a quite general construction of algebraic points on E. The link between the L-
function of E and Heegner points was found by Gross and Zagier in the 80s. Their formula
relates the Néron-Tate pairing with the first derivative of L(E/K, s); if Px = Try, /xP1 is
the trace of a Heegner point of conductor 1 then

(Px,Px) = L'(E/K, 1)

where the equality is up to some explicit non-zero factor. In particular, Pk is non torsion
if and only if L’(E/K, 1) # 0. This connection was strengthened by Kolyvagin’s results; he
proved that if Px is non torsion then the Mordeil-Weil group of K-rational points E(K) has
rank 1. Altogether their results show that if E/Q has analytic rank < 1 then E satisfies
the weak BSD conjecture.

If one wants to relax the Heegner hypothesis, one must parametrize the elliptic curve
with a certain Shimura curve X+ n- instead, otherwise Px cannot be constructed. That is
one of the reasons for which we will work with algebraic groups associated to a quaternion
algebra, that we define in the next section. Here N*, N~ is an admissible factorization
of N. The complex points of Xy+ n- can be identified with a quotient of the upper half
plane $ by a discrete subgroup I'y+ n- of a quaternion algebra. The curve is also defined
over Q as Xo(N) and is the solution to another moduli problem. In this setting, Zhang
generalized the Gross-Zagier formula for Heegner points obtained from the Shimura curves

XN+,N—-

p-adic Heegner points

To obtain similar results to those of Gross, Zagier and Kolyvagin in other settings, for ex-
ample when K is not imaginary, one should first generalize Heegner points. Note however
that the algebraicity of Heegner points was provided by the theory of complex multipli-
cation, which is either absent or conjectural in the real setting; there are some intriguing
results for special cases and conjectures in this direction though, see | .

One first step is to phrase the construction of Heegner points differently, by using
modular symbols. Recall the modular parametrization ¢ : Xo(N) — E and denote by
A the free abelian group of divisors of $. Then there is a natural map i(f) attached to
f = fe from the degree zero divisors Ag on $ to C, namely

i:S9(N)
fr——si(f): (V=7 [ flz)dz)

Homro (N) (AOI C)

Since i(f) is [o(N)-equivariant, we have i(f) € Homr, (Ao, C) = HY(To(N), Hom(Ag, C))
and to evaluate an any point of § rather than only at Ag, we should try to lift i(f) to
Homr,(n)(A, C). Consider the short exact sequence associated to the degree map

0 > AV > A



The Hom(e, C) functor is contravariant, and exact in this case because C is an injective
Z-module, and we obtain

0 —> Hom(Z,C) ~ C — Hom(A,C) —— Hom(A% C) —— 0

Taking the long exact sequence of I'g(IN)-cohomology we obtain

- —— Homr(y)(A, C) —— Homrn)(A?,C) —— H'(Ix(N),C) — ---

The connecting morphism here is x(h) = fT "" h(z)dz and its cohomology class does
not depend on the choice of 7. It turns out the image of i(f) is a lattice Ay C C such
that E is isogeneous to C/Af. Rewriting the long exact sequence above but now applying
Homr(e, C/Af) we obtain by construction i(f) € ker c, so there exists a lift Iy of i(f) to
A. Historically, an element in Homr, (A%, M) = H(To(N), Hom(A%), M)) or rather is
restriction to the cuspidal degree zero divisors, was understood as a modular symbol. In
this work, we will call modular symbol to any cohomology class in H"(I'o(N), Hom(N, M))
for any T'g(N)-modules N and M. In §2.8 we will see automorphic analogues of these
cohomology classes.

This argument can be translated to the p-adic setting, by using the p-adic uni-
formizations of the elliptic curve and the modular curve. If p is a prime of F of split
multiplicative reduction for E then the Tate uniformization provides an isomorphism

DTate : C;;/qz > E(Cy) for some q € FF with |g], < 1. The Cy-points of Xo(N) can be
identified as a quotient of the p-adic upper half plane 9, = P! (Cp) - Pl(Qp)

Xo(N)(Cp) = Hp/T

for some subgroup I of the units of a definite quaternion algebra B/Q split at p i.e. there
is an isomorphism of algebras M2(Qp) ~ B, = B ®g Qp. It can be shown that f = fg
has a naturally attached element 1 of Homr(St(Qp), Z), where St(Qp) is the Steinberg
representation ' that we introduce in §2.4.1 and §4.1.1. Now we only need to use the
multiplicative integral instead, to account for the multiplicative nature of C;j / qZ. As

before, we first define the modular symbol for a degree zero divisor T — 7" € Ag of Hy:

X—1 , xy — T \¥r(u)
][1 x—T’duf(x)zllLr(nl—[ (x —T’) GC;
PHQp) Ueu u

where the limit is taken along coverings U of Pl(Qp) ordered by refinement and xi; € U.
This defines a morphism i : Homr(St(Qp), Z) — Homr(AY, Cy/ g%). Repeating the same
diagram above with these changes we obtain

Homr(St(Qp), Z)

. Koi
i

- — Homr (4, Cj/q%) — Homr(A), C/q%) —— H'(T,C}/q%) — -+

!By the Jacquet-Langlands correspondence, fr has an attached quaternionic analytic modular form
ge. In turn, ¢r has an attached harmonic cocycle cy, a function of the edges of the Bruhat-Tits tree
of PSL3(Qp), which can be regarded as a Z-valued measure of P! (Qp). For a complete exposition see

[Dar04].



By construction i € ker«, so there exists a lift I to arbitrary divisors A,. K* acts
on 9, by fractional linear transformations, and the points of 9, fixed by K = Q(a) are
those fixed by a, because Q acts trivially. If the image of a in M2(Q) is y = (ch Z) then
a point 7k fixed by a corresponds to an eigenvector of y because

() =eeral?)

The characteristic polynomial of y is the same as that of @, and so the eigenvalue ctx +d
and Tk lies in the quadratic extension K. If we assume without loss of generality that
a = ctg + d, modulo isogenies we can regard yx = If(Tk) € C;,‘/qZ as a point in E(C,),
and we say yk is a p-adic Heegner point of E. In fact it lies in K;j/qz ~ E(Kp), and it
coincides with the algebraic point constructed previously; yk is the image of the Heegner
point under the natural inclusion E(H) € E(Kp).

The natural analogue of Heegner points in the case F = Q and K real quadratic are
Darmon’s Stark-Heegner points. Darmon took the analytical construction of Heegner
points and translated it to a local setting, by using the analytic uniformization of E(K,)
as we have just explained, and obtained points of E(K, ) for some non archimedean place
V.

These elements have been progressively defined in other settings over the years by
Dasgupta, Greenberg, Sengun, Masdeu, Guitart and Molina for an arbitrary quadratic
extension K/F and an elliptic curve E over F. We will refer to the points constructed in
[ | as Darmon points. In the archimedean case the uniformization always exists,
and in the non archimedean case one imposes that E has split multiplicative reduction
at v to use the Tate uniformization. Conjecturally, these should be global points defined
over KP and satisfy a Shimura reciprocity law. Together with plectic points, which are yet
another generalization, they will be constructed in §4.1 with a similar diagram chasing.

Plectic points

As we will see in chapter 6, Gross-Zagier formulas for Darmon points consistent with
the rank 1 case of the BSD conjecture can be obtained, but until recently not much was
known in the case of rank > 2. In this direction, M. Fornea and L. Gehrmann came in
[ | with a novel and interesting construction which provides elements - plectic points
- in certain completed tensor products of elliptic curves, and stated p-adic Gross-Zagier
formulas for these elements. Their construction generalizes that of Darmon points in
§4.1.3, and requires the use of tensor products in both the local representations at p, the
local uniformizations E(Kjy) of the elliptic curve for a subset S of primes p of F above p,
and the groups of divisors.

Hida theory

In few words, this theory provides a framework to make sense of interpolating automorphic
or modular forms continuously. For introductions on this topic see | ; |-

Introduction

Historically, one of the first examples of p-adically interpolated objects are the Eisenstein



series. Bernoulli numbers By can be defined by the equality eXX_ T = 210 B,ﬂé—?. The

Kummer congruences assert that under some conditions on k and ¢

_1\ Bak _1\ B

1— 2k1)_5(1_ 2@1)_ a+l
( Po) ok P ) g medy

Let Egk(q) be the weight 2k Eisenstein series, E}, (9) = E2k(q) — ka_lEQk(qp) and define

the weight space as

W = Homeo (25, Z)) = Homz, uy(A, Z,)

Here W is endowed the topology of uniform convergence and A = Z[[Z;]] is the Iwasawa
algebra of Z;f. By regarding & € Z as the map z — z we can embed Z ¢ W, and for

h € W write z" := h(z). Similarly, for A € A we write A(h) for the image of A through
the corresponding specialization morphism h € Homgz,,_aig(A, Zy).

Serre noticed that the Fourier coefficients of E;l(q), regarded now as a formal power
series in ¢, are continuous Zy-valued functions when h varies in the even weights h € W
i.e. those h with (=1)" = 1. In particular, the constant term of Eox(q) is a rational
multiple of Bgk. This led him to the notion of p-adic modular forms, formal power series

f=) 00" € Qllqll

which are limits in the vy-metric of rational modular forms f,;, = 3., a4,,q" of SLa(Z).
That is, limy, inf, vy (an — ay,m) = 0.

Using these objects, Serre gave an alternative proof of the Kummer congruences. Nev-
ertheless, it can be shown that the spaces of p-adic modular forms are infinite dimensional
Banach spaces where the Hecke operators are not compact in general, so one cannot apply
the spectral theorem to obtain a basis of eigenforms as in the classical case. One first

idea to account for these obstructions is to focus on the ordinary subspace instead, as in
Hida’s work.

Hida families

Suppose that p is an odd prime and v,(N) = 1. An eigenform f € Sx(I'o(N)) is p-ordinary
when its Hecke eigenvalue A, by Up is in Z;j. In particular, the U, Hecke operator is
invertible when restricted to the p-ordinary subspace. One also says that f has slope m
when v, (Ap) = m.

Then we have the identification

W =~ (Z/pZ)* X Zp ~Z[(p - VZX Z,

For each open U € W we define A(U) to be the set of analytic functions f on U i.e. if
V =UnN ({a} xZ,) and a € (Z/pZ)*, flv is a power series. A A-adic form is then a
formal g-expansion fo = >, a,q" for which there exists a neighborhood of k in W such
that its weight k specialization fr = ), a,(k)g" is a weight k, p-ordinary, normalized
eigenform. This is a first example of a Hida family, a formal g-expansion with coefficients
in a convenient Iwasawa algebra specializing to classical modular forms.

Iwasawa algebras come equipped with an universal character k that has an universal
property. As an example, for the group G = Zj with Iwasawa algebra A = Z,[[Z;]], the



universal property of A and k is that for any character yx : Z;f — C, the specialization
morphism p, fits in the following commutative diagram

k
Z;j — A
y‘ x (1.8)
CP

One of Hida’s main results is that p-ordinary eigenforms are always in some Hida family.

Overconvergent modular forms and the eigencurve

Coleman, by rephrasing Katz’s geometric definition of modular forms, showed that most
overconvergent modular forms of finite slope are in a p-adic family, generalizing Hida’s
result.

Although in our approach we do not seek a geometric interpretation of Hida families
but rather use them as interpolating objects, there is a nice geometric picture behind this;
the eigencurve defined by Coleman and Mazur. It is a rigid analytic curve with still many
unknown properties. This object was further generalized by Buzzard to eigenvarieties,
which deal with overconvergent quaternionic automorphic forms over totally real fields.

1.4 Overview of the main results

In this work we generalize the construction of p-adic anticyclotomic L-functions associated
to an elliptic curve E/F and a quadratic extension K/F, by defining in §5.1.1 a measure
o attached to K/F and an automorphic form of even weight vector

A

k+2=(ki+2,-- kg +2) €22,

where d = [F : Q]. In the case of parallel 2, the automorphic form is associated with an
elliptic curve E/F. Given a set of places S above p we will recall the construction of the
Fornea-Gehrmann plectic point Pg € ®p€S E(K,) attached to a finite order character &.

When S = {p} is a single place Pg is a Darmon point. In this parallel weight 2 setting,
we can define a measure Hos depending on S that can be regarded as the restriction of

B Write Iz for the augmentation ideal attached to the evaluation at &. The first main
A
result is a p-adic Gross-Zagier formula, namely

Theorem 6.1.1. Assume that E has split multiplicative reduction at p and p does not
split at K/F. Then Hop € Is. Moreover,

Moo = [0 : O] g orecy (ﬁz - Pg) mod Ig

where Oy and Oz are the groups of totally positive units and p-units, respectively.

In this result, the morphism ¢ o rec, provided by class field theory is a natural way
to interpret conjugate differences of points in E(K,) as elements in Iz. This relates the
difference of conjugate (twisted by &) Darmon points Pg with the first derivative of the

p-adic L-function, which generalizes result (1.6) of Bertolini and Darmon. With a similar



argument, after discovering the work of Fornea and Gehrmann in | | on plectic points,
we prove an exceptional zero formula which relates the r-th derivative of u S with plectic

points, namely
Theorem 6.2.1. Write S = S4 U S_, where S is the subset of places where E has

multiplicative reduction, and write Sy = S} US2, where S1 is the subset where K/F splits.
Then Hgs € Ig where ¥ = #S.. Moreover,

2 2
s = (-1)° - (057 : 0.7 es.(ms_, &5.) - @ o tecs, | 451 ® X0y - VP | mod I;*!

pes?2
where o, —1 stands for the conjugate difference, qst is the product of Tate uniformizers at
2
peSt O% is the group of positive S2-units and €s_(ms_, &s_) is an explicit Euler factor.

In §5.4 we will introduce the Hida families of automorphic modular symbols qb’; We
find an interpolating measure Mo for p o attached to an interpolating family CDﬁ for qbﬁ
(see (5.18)). Here Hqy can be regarded as a two variable p-adic L-function, which now
includes the weight as a variable. Then we define the Hida-Rankin p-adic L-function
Lp((pf\,é,k) in (6.12) as the restriction of Moy to the weight space. Finally, we prove a

formula which relates the weight-leading term of Lp(qbf{, &, k) with plectic points, namely

Theorem 6.3.2. Let I be the augmentation ideal for the weight parallel 2 specialization,
and S the set of primes p above p where E has multiplicative reduction and p does not
split at K. Then Lp(qbf{,cf,k) € I" where v = #S. Moreover

LP((PK/ (E/ k) = C : 1_[ ep(np/ Ep) : fas o TI'(P:;) (mOd Ir+1 ®Z Q)
PgS

where C is an explicit constant, €y(1ty, Ep) are explicit Euler factors, Tr is the natural
trace and lyg is the product at p € S of the natural p-adic logarithms attached to E.

That is, the leading term is an explicit constant C times Euler factors times the loga-
rithm of the trace of a plectic point. This result is a generalization of | , Theorem
5.1], which is used there to prove the rationality of a Darmon point under some hypotheses.

Setup and notation

For any field L we will write OQp, for its ring of integers, and denote O@ by Z. Let G, G’
be groups with G C G’, M a G-representation over a field L, and p an irreducible G’-
representation over L. We will write

M, := Homg (p |G, M) .

as representations over L.
For any ring R and an even number k, let $(k)r be the R-module of homogeneous
polynomials of degree k in two variables with coefficients in R, together with the following

GLa(R)-action; given y = (* Z)

Py o= oy 2 (- (5] (19)

10



Note that the factor (det )/)_k/ % makes the central action trivial.
Denote by V(k)r the dual space Homg(P(k)r, R). In the case R = C we set V (k) :=
V(k)c. Given a vector k = (k;) € (2N)" we define

V(k)g = ® V(ki)r
i=1

Note that, if n = d = [F : Q] and k = (k;) € (2N)? is indexed by the embeddings
0 : K <> Cof F, then V(k) := V(k)c has a natural action of G(Fe). The subspace V (k)
is fixed by the action of the subgroup G(F) € G(Fw).

Note that, if we fix Q < C,, we can associate to a prime p of F above p the set X,
of embeddings 5 : F <> Q such that vp (6(p)) > 0. Hence 6 € X, can be seen as an
embedding ¢ : F, — @p. We have fixed a bijection between embeddings ¢ : F < C

and G : Fy < C, for all p | p. Thus, for any k € (2N)? we have also a natural action of
PGL3(Fp) on V(k)@ .
P

Let p be any place above p, and assume that G(Fp) = PGLa(Fy). The fixed embedding
L KX > GLy(F) (1.10)

provides two eigenvectors vlp, vg € (Fp)? satisfying
ojuty) = A5,07, ojuF) = Az, Ap, A €Fy, FyEK (1.11)

The quotient A;p/i;p depends on the class t, € K /Fy = T(Fy) of t,. By abuse of notation
we will denote Az / /_\;p € F, also by t,. Write Kg for the minimum extension of F, where
all A lie. Hence Kﬁ = F, if p splits and Kg = K, otherwise. For any 0 € X, we will fix

once for all 7 : Kﬁ — @p such that & |r,= 0. Also by abuse of notation, we will write

o(ty) :==35(ty) € @p/ tp € T(Fy).

11
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Chapter 2

Automorphic forms

2.1 The ring of adéles

Since automorphic forms are functions on adélic points of an algebraic group, in our case
GL;y or the group of units of a quaternion algebra, we introduce the necessary notation
and define of the ring of the adeles. The adéles will also be used to describe Galois groups
using class field theory.

Let F be a number field of degree d over Q and OF its ring of integers. We will denote
by either oo or Xr the set of archimedean or infinite places of F i.e. classes of embeddings
0 : F — C of F into C modulo complex conjugation, the non trivial element of Gal(C/R).
Furthermore, sometimes p will denote the set of places of F above a rational prime p.
Note that the complex embeddings are paired up into one place, since either imo C R or
not. Given a place v let F, be the completion of F at v. The non archimedean or finite
places are the classes associated to the prime ideals p C Of i.e. those for which F, is
neither R nor C. For a finite place p denote by v, : F — Q its associated valuation, wy
a fixed uniformizer with v,(@p) = 1 and g, the cardinality of the residue field O ,/p. If
re, Sp are the number of real and complex places then rr + 2sp = d. If a place 0 € oo is
given by the class of an embedding ¢ : F < C, we write 7 | 0.

For a set of places S write

Fg:= HFV and FS = HFV

ves vgS
The ring of adéles is defined as the following restricted product

Ar =Fy X F
p=Fox| [ R
where the ~  imposes that elements have a finite number of p-components which are
not in Of ». The diagonal embedding provides a way to regard F as a subset of Af,
F —— Ar

ar— (a,a, )

For a set S of places define AIS: = Ar N FS. Since A; is a locally compact Hausdorff
topological group, we can use its associated Haar measure to integrate functions ¢ of
the ideles AZ. The defining properties of this measure are its inner and outer regularity,
invariance by left multiplication i.e.

p(g - X) = u(X), for any g € Af and Borel subset X

and uniqueness up to a constant. In particular, we have

/(p(t)dxt:/ d(yt)yd*t, Vye Ay
A% A%

13



2.2 Some algebraic groups associated to quaternion al-
gebras

Let K/F be a quadratic extension and X,,(K/F) be the set of archimedean places ¢ of F
that split at K. Then
un(K/F) = Zg(K/F) U ZE(K/F)

where Z%(K /F) is the set of real places of F which remain real in K and Zg(K /F) the set
of complex places of F. We will denote by u, rx/rr and s the cardinality of these three
sets so that u = rg/pr + sp. Analogously, we write Z%(K/F) for Xp\Xun(K/F).

A quaternion algebra B/F is a central simple algebra of dimension 4 over F. Let B/F
be a quaternion algebra for which there exists an embedding K < B, that we fix now.
Let X be the set of archimedean places v of F for which the quaternion algebra B splits
i.e. such that

B ® F, =~ Ms(F,)

We can define G an algebraic group associated to B*/F* as follows: G represents the
functor that sends any Op-algebra R to

G(R) = (Op 80, R)*/R*,

where Op is a maximal order in B that we fix once and for all. Similarly, we define the
algebraic group T associated to K*/F* by

T(R) = (O; ®0, R)*/R*,

where O, := Og N K is an order of conductor ¢ in Og. Note that T ¢ G. We denote
by G(Fe)+ and T(Fs)+ the connected component of the identity of G(Fs) and T(Fs),
respectively. We also define T(F); := T(F) N T(F)+ and G(F); := G(F) N G(Foo)+-

Given ¢ € Zr note that T(F;) = (O ®¢;,s Fo)*/F5 is either C*/R*,R* or C*. Define
T(Fs)o to be the intersection of all the connected subgroups N of 1 in T(Fs) for which
the quotient T(F,)/N is compact. Note that T(F;)/T(Fs)o = @N T/N is then compact.
The set T(F;)o depends on the ramification type of o, as is described in the following
table

raméggaetion T(Fs) | T(Fs)o | T(Fs)/T(Fgs)o
LR(K/F) | CYR*| 1 | C*/R*=S!
*2(K/F) R | Ry *1
LK/F) | | R 5

If 0 € Zyn(K/F), then only the second and third of the ramification types on the table
actually occur. For any set of infinite places X, we write T(Fx)o = [, T(F¢)o-

2.3 Results from Class Field Theory

Class field theory describes the abelian extensions of a local (e.g. a finite extension of Q)
or global fields (e.g. a number field) in terms of their arithmetic. Essentially, if F is a
global field it provides a surjective morphism from the idéles of F to the maximal abelian
extension of F. For a complete exposition on this topic see | |-

14



Let w be a place of M above a place v of F. Recall that given a finite abelian extension
M /F of number fields we can consider the Galois action of Gal(M/F) on the places w of
M; if w is archimedean then the action cw := ¢ o w is composition and if w = p is non
archimedean then the action is op = a(p). Then the decomposition group of w is defined
as the Galois subgroup which fixes w

D(w) = {0 € Gal(M/F) such that cw = w}

Local class field theory shows that this group is isomorphic to the local Galois group as-
sociated to w i.e. D(w) ~ Gal(My/Fy). The local reciprocity law induces an isomorphism
pr/k : Fo/Nmpg, p,(Mz) — Gal(My/Fo).

Then it turns out that one can glue the maps pr/k - they form an inverse system and
thus we can take the projective limit - to construct a surjective group morphism to the
absolute Galois group of the abelian closure of F, known as the Artin map

p: AX/F* — Gal(F*"/F)

This result allows one to regard Galois groups as a certain quotient of an adeélic group.
Note that given a Galois character y : Gal(F/F) — C of F we can construct a
character of A;, since by the above it can be regarded as a character of GL1(Af) =

T AP Gal (Fab /P) NG

This is an automorphic character, which generates a one dimensional irreducible repre-
sentation. They were first studied in depth by Tate, who essentially tackled the GL; case
of automorphic forms in his thesis by using Fourier analysis on the adéles. It can be seen
as a reformulation of Hecke’s work on the analytic continuation of the L-series associated
to a Grossencharakter and its functional equation.

2.4 Automorphic forms and representations for GL,

The theory of classical modular forms can be generalized in several directions: automor-
phic forms, Katz and overconvergent modular forms, Hida families, etc. One possible
motivation to do so was explained in §2.3.

We will work with automorphic representations of a quaternion algebra or GL2, and
regard them as group cohomology classes in the formalism Michael Spiess introduced in
his study of automorphic L-invariants (see | ). This approach does not rely on a
geometric picture, but rather uses group representation theory and allows one to change
the base field freely.

We remark that automorphic representations are not "representations" in the classical
sense, but rather an infinite (restricted) tensor product of local representations for each
place as we recall now below. For a complete exposition on this topic see | |.

Let k be a field. A group representation of G is a group morphism 7 : G — Aut(V)
where V is a k-vector space, and an irreducible representation has no proper invariant sub-
spaces. An intertwining map « : V — V’ between two representations (7, V), (1/, V’) is
a k-linear map that commutes with the group action i.e. the following diagram commutes
for every g € G

15



n(g)

\% |%
bk

Usually, some conditions are imposed on 7 to exclude wild or pathological represen-
tations. These conditions often have the same name but they are defined in a different
way, depending on whether the place is archimedean or non archimedean, although the
underlying idea is the same as exposed in the summary below.

2.4.1 Local factors at the non archimedean places

In this case, the group G, is PGLy(F,) where F is a number field and v a finite place of
F. If k = C, 7t is smooth if every v € V has open stabilizer, and a smooth representation
(1, V) of G, is admissible if for every compact subgroup K’ C G, the space of K’-fixed
vectors VK is finite dimensional. We will frequently use the Iwasawa decomposition of G,
to do explicit calculations with elements of G,. One can consider two notable subgroups
of Gy; the maximal compact subgroup of G,, which is K, = PGL2(Of,) where Of, is
the ring of integers of F,,, and the Borel subgroup of G, which is just the image in G, of
the subgroup of upper triangular matrices of GLo(F,). A representation is unramified if
dim V& = 1. Then the Iwasawa decomposition of G, is

G, =B, K, (2.1)

A construction that will appear frequently is the induced representation from a given
character. Note there is a natural action of G, on functions f : G, — C, the right reqular

action given by

(g f)x) = fxg)
Given a character y : FY — C* define B(x) as the following set of maps f : G, — C
which are smooth under the right action

B(x) = Indg:()() = {f : Gy = C such that f ((ﬂ Z) g) = x(@)x d) - f(g)}

By equation (2.1) we have B,\G, = K, so elements f € B(x) are determined by their
restriction to K, and y. Thus using that open compact subgroups are of finite index it
follows that B(x) an admissible representation; whether it is irreducible or not depends
on the character y. Then the irreducible admissible representations of G, are of four
kinds, and three of them are particular instances, subspaces or quotients of B(x):

1. The one dimensional representation induced by x’ o det where )’ is a character.

2. The principal series representation is an element in the isomorphism class of B(y)
when it is irreducible; this happens when x2 # | - |2 and x? # 1.

3. The special and Steinberg representations can be obtained in at least two ways from

B(x):

(a) If x2 = |- |2 then for some character x’ one has y = x”-|-|,. Then B(x) has a
one dimensional quotient where G, acts by x’ odet and an infinite dimensional
subrepresentation o(x’).

16



(b) If x2 = 1 then B(x) has a one dimensional submodule where G, acts by x odet
and an infinite dimensional quotient o’()x).

The subrepresentation in the first case and the quotient the second are isomorphic
ie. d(x’) = 0’(x). These are the special representations and the Steinberg is the
particular case in which y = 1; in that case x o det is trivial and we can construct
a model for the Steinberg that "works" for any ring

Str := {f : G, = R such that f(bg) = f(g) for all g € G,,b € B,} /R

Note we are modding out by the subspace of constant functions, that we identify
with R.
In general, any special representation is a twist of the Steinberg i.e. o(x’) = St® x’.

4. The supercuspidal representation, that cannot be obtained by induction from a
character as the previous ones.

2.4.2 Local factors at the archimedean places

In this case, G, is either PGLo(R) or PGL2(C) depending on whether the embedding
0 : F — C is real or complex, and G, is a Lie group. Now the maximal compact
subgroup K; C G, is either is the image in PGL2(R) of the orthogonal group Os(R) or
the image of the unitary group Us(C) in PGL3(C). The difference with respect to non
archimedean places is that one needs to introduce the notion of (g5, K,)-module developed
by Harish-Chandra, where g, is the Lie algebra of G,;. As a motivation for the notion of
(g, K)-module, suppose 1 : G, — GL(V) is a continuous representation of G,, where V
is a Hilbert space. An element v € V is C! if for all X € g = Lie(G) the derivative with
respect to X is defined i.e. if

R(X)o = 2 mlexp(tX)o) s

exists, where exp is the exponential map provided by the Lie theory of G,. The vector will
be CK if (X1) - - m(Xy)v is defined for all X; € g, and smooth if it is CF for every k > 1.
Here X acts on v by the infinitesimal action i.e. we have defined an action g — End V.
Let V™ be the space of smooth vectors. Then in general V* # V. This is because in
the non archimedean case, the group is locally profinite and admissible representations
when restricted to a maximal compact subgroup decompose as a direct sum of irreducible
representations of K appearing with finite multiplicity. Now G is neither compact nor
locally profinite when ¢ is archimedean. In order to classify them we use a different
notion of admissibility and the representation theory of compact groups. It can be roughly
summed up as follows: one can always assume the continuous representations are unitary,
finite dimensional when irreducible, and that every representation is completely reducible
i.e. is the direct sum of irreducible K-subrepresentations.

A (a0, Ky)-module is a complex vector space V with representations 7t : ¢ — End(V)
and 7 : K — GL(V) such that :

e Compatibility: The given representation m : ¢ — End(V) agrees with the in-
finitesimal action of K on smooth vectors V*°, and for X € g and k € K we have

n(k)n(X)m(k~1) = 7t ((Ad k)X).

o K-finiteness: V is a direct sum of finite dimensional representations of K
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In addition, it will be admissible if every isomorphism class of K-subrepresentation
appears with finite multiplicity.

There is a complete classification of irreducible admissible (g, K)-modules in the case
Go = PGLy(R). Since K = SO2(R) =~ R/2nZ, V = @, V[k] where ($5F -5inf) acts by
the character e on each V[k], which are the K-isotypic components of V. It turns out
that one can find an explicit basis, usually denoted by R, L, H, Z, for gc = g®r C, so that
RV[k] c V[k + 2] and LV[k] € V[k — 2] i.e. R,L raise or lower k respectively, and the
V[k] have dimension one at most. Similar results hold for PGLy(C), see | , §3].

After some considerations one shows there are at most three possibilities for V. Each
possibility is then constructed explicitly: the principal series, the discrete series, and the
finite-dimensional irreducible representations of PGLo(R). These last are a twist by a
1-dimensional character of the space of homogeneous polynomials in two variables, with

the action described in (1.9).

2.4.3 Local factors at ramified places

The above accounts for almost all places, but a quaternion algebra B over F is ramified
(i.e. B, # Ma(F))) in an even finite number of places of F. In this case the classification is
simple. There are only finite dimensional representations: for the non archimedean places
one dimensional representations induced by a character composed with the reduced norm
of B (similar to the non archimedean kind 1 of §2.4.1), and for the archimedean places
homogeneous polynomials in two variables with the GLy(C)-action given by (1.9). Here
BX acts through the morphism B} < (B, ®r C)* = GLy(C).

2.4.4 Definition of automorphic representation

Let I be a set and V; vector spaces indexed by i € I. Choose vg; € V; for almost every
i € I. Then the restricted tensor product of the V; with respect to the vg; is the space

’
® Vi := {®ierv; such that v; = vg; for almost every i}

iel

An irreducible admissible G(Ar)-module is a restricted tensor product

’
=@
v
where v runs over the places of F such that

e (T, Vo) is an irreducible admissible (geo, Koo )-module
e For a finite place v, (1, V}) is an irreducible admissible representation of G(F,).

e For almost every v, 7, is unramified, and the vectors mp, are in V.

An (irreducible) automorphic representation is an irreducible admissible G(Af)-module
isomorphic to a subquotient of L?(G(F)\G(AF)), the space of square-integrable functions
in G(F)\G(AF).
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Classical modular forms as automorphic forms

Classical modular forms are defined as certain functions on the complex upper half plane
9. Recall that $ = {z € C with J(z) > 0} and that GLy(R)+ acts on $ by fractional
lineal transformations

(a b) L. 1z b

c d|7 cz+d

2 2
In fact, it is its isometry group with respect to the Poincaré metric ds? = m. As

a semisimple Lie group, GLo(R); has an Iwasawa decomposition GLs(R), = KAN
where K = {(Cosg_sme)} is the stabilizer of i, A = {(rr_1) with » > 0} and N =

sinf cos0
{( 1 91‘) where x € R}. Modular forms are defined usually by satisfying a relation by ele-

ments of the discrete subgroup SLo(Z) € GL3(R),, which tessellates $ by ideal triangles,
or I'o(N) € SLo(Z), the congruence subgroup of upper triangular matrices modulo N.

Let x be a Dirichlet character modulo N, a morphism (Z/NZ)* — C*. It can be
extended to Z by setting x(n) = 0 when (1, N) # 1, and it induces a character on I'o(N)
by evaluating upper left entries i.e. x(y) = x(a) where y = (2%). A modular form of
weight k of level N and nebentypus x is an holomorphic function f : $ — C that is
holomorphic at infinity (i.e. having a Fourier expansion

f@) =) aug"

n>0

where g = exp(2miz)) satisfying

f(yz) = x(y) - j(y,2)" f(z) for all y € To(N)

where j(y,z) = cz+d if y = (?§). Note that j(y, z) satisfies the cocycle relation

v,z =iy, v'2)iy, 2)

A modular form is cuspidal if ag = 0. The set of cuspidal modular forms of weight k and
level N form a finite dimensional C-vector space Sk(N, x).

One can regard classical modular forms as automorphic forms, by translating some the
above objects to the adeles. The character y has an associated idelic character w, of

A(S /Q*. We can define Ko(N) as the subgroup of GLa(Z) of elements which are upper

triangular modulo N Z where Z = l_[p Zp. Then by the strong approximation theorem we
can write any element ¢ € GLa(Ag) as § = Yhek, with y € GL2(Q), heo € GL2(R)4, k €
Ko(N), and the adelization of an element f € Sk(N, x) can be defined as a function
pf: Gl (AQ) — C given by

P(8) = j (hoo, 1) f (hoo - i) @ (K)

It can be checked that ¢y is an automorphic form of GLg with central character w.

Later on we will work with the automorphic representation 7 associated to an elliptic
curve E; the local representation 71, at the archimedean places is a discrete series of weight
2, and at the non archimedean places is the principal series or the (possibly twisted)
Steinberg representation depending on whether E has good or multiplicative reduction at
v. The supercuspidal representation corresponds to the case of additive reduction.
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2.5 Automorphic forms as cohomology classes

Thus in few words, an automorphic form of G is a function G(Ar) — C which is G(F)-
invariant and has good properties. More precisely, let A(C) be the set of functions

f:GAp) = C (2.2)
which are

e right-U-invariant for some open subgroup Uy C G(AY)
e C® when restricted to G(F)
e right-Z,-finite and right-K;-finite for all 0 € X

where Z; is the center of the universal enveloping algebra of G(F;) and K, is the
maximal compact subgroup of G(F).

We can obtain an admissible representation of G(Afr) by letting G(Af) act by right
translation on A(C), and if G(F) acts by left translation instead then automorphic forms
are just G(F)-invariant elements of A(C).

If we only want to work with forms which generate a fixed local representation or a fixed
(900, Koo)-module at infinity, we can proceed as follows. Recall that a (geo, Koo )-module is

a tensor product
V=@
o

where V; is a (g5, Ky)-module or a finite-dimensional G(F,)-representation, depending
on whether 0 € Lg or 0 € Xf — Xp. Then given a (o, Koo )-module V we define

A*(V,C) := Hom(y_ k.)(V, A(C))

This notion can be further generalized, to fix representations at several places or change
the coefficients of the forms. Let H € G(F) be a subgroup, R a topological ring, and S
a finite set of places of F above p. The subgroup H will usually be G(F), G(F)+, T(F) or
T(F)4. For any R[H]-modules M, N let

there exists an open compact
ASYV®(M,N) := O : G(AEU‘”) — Homg(M, N), subgroup U C G(AISTU‘X’) ,
with ¢ () = ¢()
(2.3)
and let also ASY®(N) := ASY®(R, N). Then A°Y*(M, N) has a natural action of H and
G(AISTU‘X’), namely

(ho)(x) = h-o(h™'x),  (yP)(x) = p(xy),

where h € H and x,y € G(AIS:U‘X’).

As an example, let k € 27% be a weight vector and consider the (geo, Koo )-module
D(k) = X, Ds(ks) where Dg(k) is the discrete series of weight kg or V(ks—2), depending
on whether 0 € Xg or 0 € Lr — Lp (see §3 of | |). Then an automorphic form of
weight k defines a G(F)-invariant element of A*(D(k), C) that maps a generator of D(k)

to the automorphic form
® € H(G(F), A(D(k), ©)) (2.4)
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Conversely, any such @ defines an automorphic form of weight k. If V is a finite-
dimensional G(Fs)-representation then by lemma 2.3 of | ]

AZ(WV,C) = A*(V,C)

where V is the (goo, Koo )-module associated with V.

2.6 Eichler-Shimura for automorphic forms

Overview

The Eichler-Shimura morphism can be seen as a method to regard automorphic forms as
cohomological elements or cohomological modular symbols. Its first version establishes a
correspondence between I'-modular forms and the first cohomology group of I', where I'
is an arithmetic subgroup of SL2(Z). In other words, the sheaf of (holomorphic) differ-
ential forms on X(I') when regarded as a Riemann surface is isomorphic to the singular
cohomology of Y(I'), since X(I') is the compactification of Y(I') = 9/T.

The classical argument is geometric, based on a careful study of the canonical structure
of the modular curve Xy(N) as a moduli space, its Jacobian and the Hecke algebra of
So(N). Moreover,

Ma(I') ® () = H'(T, C)

For higher weight there is a natural generalization

Sk(N) > HY(T, V(k))
fr— (y — (P — /Zgzo P(l,—z)f(z)dz))

since V(0) = Hom¢(P(0)c,C) = C.

This classical vision can be generalized to the automorphic case using group cohomol-
ogy, as is done in | | without relying on a moduli or geometric description. If F = Q
the discrete series of weight k fits into the exact sequences

0 > D(k) > [(k)y* — V(k-2)* —— 0

where I(k)* is an appropriate induced representation and #+ is a choice of sign. By
(2.4), an automorphic form can be regarded as a G(F)-invariant element of A*(D(k), C)
le.
H® (G(F), A=(D(k), C))
Thus, the connecting morphism from the long exact sequence of group cohomology gives
an element of H'(G(F);, A®(V(k—2)))*. For arbitrary F something similar happens, the
discrete series of weight k € Z% are the kernel of a sequence,

0 —— D(k) > 11(k)" —— L(k)" > > (K —— V(k-2)" — 0
where V(k — 2) = ®0 V(ks —2), s = #Zp, I;(k)* are appropriate induced repre-
sentations, and A : G(F)/G(F); — %1 is a character. The Eichler-Shimura morphism

is regarded as the composition of connecting morphism of the underlying short exact
sequences.

ES" : HY(G(F), A*(D(k), C)) — H*(G(F)+, A*(V (k - 2)))*.
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2.7 Waldspurger’s formula in higher cohomology

We will first recall Waldspurger’s formula in its classic form. It can be regarded equiva-
lently as providing an expression for the leading term of the L-function of an elliptic curve
or an explicit relation between a toric period and local data. Although it has several
modern counterparts, as the proposed generalization in Gan-Gross-Prasad conjectures,
we use the one presented in | | for higher cohomology in the next sections.

Classic results and motivation

In equation 1.3 of the introduction, € is called the sign of the functional equation. Note
that ¢ = +1 since applying (1.3) twice gives €2 = 1. Suppose now F = Q and that K/F is
an imaginary quadratic field. Let E/Q be a modular elliptic curve of conductor N.

By considering the base change of E to K we obtain another sign ex = &(Eg) of the
corresponding functional equation. Under general Heegner hypothesis on the conductor
N = N*N~, that Nt is a product of primes split in K and N~ is a product of primes
inert in K and squarefree, we have

 (Ex) = —(-1y* /N

and for each case there are two well-known formulas that express the first non-trivial
coefficient of the L-series of E.

o If ex = —1, the even terms of the Taylor series are 0 thus the first non-trivial
coefficient is the value of L'(Eg,1). By considering the Shimura curve X(N*, N7)
associated to the quaternion algebra that ramifies precisely at N™, a product of
an even number of primes inert in K, the Yuan-Zhang-Zhang generalization of the
Gross-Zagier formula shows L’(Eg, 1) is related to Néron-Tate height of a CM point
in a Shimura curve,

(f, f) _ <903/K/(P3/K>NT
x| |0z /{1 deg

L' (Ex, 1) =

where @ : X(N*,N7) — E is a modular parametrization and yx is the Gal(Hk/K)-
trace of a CM point of X(N*,N7). Recall that ¢yk is the trace of a Heegner
point

o If ex = +1, Waldspurger showed that L(Eg, 1) is related very explicitly to CM
points in a Shimura set, which in this case is associated to a quaternion algebra
which ramifies precisely at N~ and oo, as follows

F ) o
jdx|? |0x/ {1}

L (EK/ ]-) =

where now P is Waldspurger’s toric period.

Automorphic analogues

In the automorphic side, Waldspurger’s formula relates certain periods with the critical
value of an automorphic L-function. Recall our setup: a number field F, a quadratic
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extension K/F, a quaternion algebra B/F with K < B and an irreducible automorphic
representation 7 on G = B*/F*. Given a character x on T(F) = K*/F*, for any ¢ € 1t
we can consider the following toric period

P(6, x) = / OBt
T(Ar)/T(F)

Note that since ¢ is a function of G(Ar) it can be restricted to the idéles of K, and that
the integral does not depend on the choice of a fundamental domain since x(#)¢(t) is
K*-invariant. Note that we have a linear functional

’
P e HomT(AF)(Tc X X, @) = l_[ HomT(pv)(nv & Xv, C)
v
The following results of Tunnel and Saito provide key information on the local spaces
Homrf,) (1, ® xv, C):
Theorem 2.7.1. We have multiplicity one
dimc HOI’IIT(FV)(HV ® Xv, C) <1

and if for any 11 irreducible representation of PGLxy(F,), 7l is its Jacquet-Langlands
transfer to By /F. then

dime HomT(pv)(ng ® xv, C) + dim¢ HomT(FV)(Tli ® xy,C) =1

Suppose now x is trivial. If @ comes from an elliptic curve E/Q of conductor N
then it can be shown that 7 = 0 when v { N, and if v|N then dimc HomT(pv)(ng ®
Xv,C) = 1if vI[N" and dimec Homy (1} ® xy,C) = 1 if v[N~. Together these imply
that dim Homr(Af)(t® x, C) = 1. Waldspurger formula then provides explicit expression
for the "ratio" of two elements in a one dimensional space: for an appropriate choice of
the Haar measure it asserts

Theorem 2.7.2 (Waldspurger). For some explicit constant C,

P(§,x)* = C L, x,1/2)- | v (1)

This relates P2 with a critical value of the classical L-function associated to the auto-
morphic representation 7 twisted by x and the local factors a;,

() 10) = /T (00, 6 (2.5)

which are 1 for almost every v. Note that in some cases, depending on whether the central
character of T and ) coincide, we may obtain a trivial equality 0 = 0. Again when y =1
and F = Q, the value L(m, x, 1/2) coincides with L(Eg,1). In fact

Corollary 2.7.3.

P(¢p, x) # 0 if and only if Homr(a,)(m® x) # 0 and L(n® x,1/2) # 0
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2.8 Automorphic cohomology classes

Let E/F be a modular elliptic curve. Hence, attached to E, we have an automorphic
form for PGLy/F of parallel weight 2. Let us assume that such form admits a Jacquet-
Langlands lift to G, and denote by 7 the corresponding automorphic representation.
Let s := #Xp. As shown in | | and overviewed in §2.6, once fixed a character
A : G(F)/G(F)y — =1, the image through the Eichler-Shimura isomorphism of such
Jacquet-Langlands lift provides a cohomology class in H*(G(F)4, A®(C))*, where the
super-index A stands for the subspace where the natural action of G(F)/G(F)+ on the
cohomology groups is given by the character A. Moreover, since the coefficient ring of the
automorphic forms is Z, such a class is the extension of scalars of a class

¢a € H*(G(F)+, A®(Z))".

Indeed, H*(G(F)+, A% (Z))®zC = H*(G(F)+, A®(C)) (see for example | , Proposition
4.6]). For general automorphic forms of arbitrary even weight (k+2) € (2N)?, the Eichler-
Shimura morphism provides a class

¢1 € H (G(F)+, A™(V()))".

The G(AY)-representation p over Q generated by ¢, satisfies p ®@C ~ ™ =7 |G(A;°)-
This implies that ¢, defines an element

@) € HY(G(F)+, AV (K))heo-

For any set S of places above p, write Vs := p |g(rs), with Vs = ®p€5 V,, and for any

ring R we denote by VSR = ® Vf the R-module generated by ¢). By | , Remark
2.1] we have that

@) € H(G(F)+, A (V(K))pew = H*(G(F)x, AP (Vs, V(K)o (2.6)

For any x° € p° :=p |G(A§UM), the image @, (x°) defines an element
¢3 € HY(G(F), A=V, V(D))"

We will usually treat gbi as an element of the cohomology group H*(G(F),, A%V (Vs, V(k)))*
since

HE(G(F)+, AX(VE, V(K)g)) ©5 C = HE (G(E)., AP (Vs, V(b))),

again by | , Proposition 4.6]. The classes gi)i are essential in our construction of
anti-cyclotomic p-adic L-functions, and plectic points.

If qb/\ is associated with an elliptic curve as above and x° € ps is now an element of
Z-module generated by the translations of ¢,, we can think qbi as an element

¢35 € H¥(G(F),, A°V™(VE, 2),

since the coefficient ring of 7 is Z. Similarly, we will sometimes regard p as a Q-
representation.
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Chapter 3

The fundamental class

3.1 Fundamental classes of tori

In this section we define certain fundamental classes associated with the torus T. Their
definition is a generalization to the one defined in | |; in the case of Darmon points
only one v-uniformization is needed, but for plectic points we will need to account for
several places p above one fixed prime p.

3.1.1 The fundamental class 1 of the torus

Let U = [],T(OF,) and denote by O := T(F) N U the group of relative units. Similarly,
we define O; := O N T(Fs)+ to be the group of totally positive relative units. By an
straightforward argument using Dirichlet Units Theorem

rankzO = rankzO; = (2rx/pr + rk/rc +25F — 1) = (rp +sp — 1) = rgyp R + SF = U.
We also define the class group
CUT)y == T(AR)/(T(F) - U - T(Feo)y) = T(AF)/(T(F)+ - U).
Note that the subgroup
T(Fs,, ko = RY = @)PEEOx@)PEED € T(Fy,,,5m) = R)FEE Py #2000

is isomorphic to R* by means of the homomorphism T(Fs)y — R* given by z
(log|oz|)sex, . (k/F)- Moreover, under this isomorphism the image of Oy is a Z-lattice
A C R"*, as in the proof of Dirichlet’s Unit Theorem.

We can identify A with its preimage in T(Fx, (k/r))o. Then T(Fy  (k/r))o/A is a u-
dimensional real torus. The fundamental class & is a generator of H, (T(Fx, (k/r))o//\, Z) ~
Z. We can give a better description of &: let M := T(Fy, (k/r))o = R*. The de Rham
complex QF  is a resolution for R. This implies that we have an edge morphism of the
corresponding spectral sequence

e: H(A,QY) — H"(A,R).
We identify any ¢ € H,(M/A,Z) with ¢ € H,,(A,Z) by means of the relation
/a) =e(w) N ¢, where w € HY(A, Qy) = Q?\A/A'
c

We can think of & € H, (A, Z) as such that:

e(w)NE = / w, for all w € H(A, Q). (3.1)
T(F)/A
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Note that
T(Feo)s = TXT(Fx, jp)o, T = (SFERK/PIHHECKIE), (3.2)
Let Oy 1 = O+ NT. Since Oy is discrete and T is compact, Oy T is finite.

Lemma 3.1.1. We have that Oy ~ AX Oy 1. In particular,

T(Foo)+/O+ = T(Fy,,x/F)o/ A XT/O4 1 (3.3)

Proof. The image of the morphism 7t|p, : Oy = T(Fw)+ 5 T(Fz,.(x/F)o is A by
definition. Since T = ker mt, ker t|p, = T N O4 = O4,1 and we deduce the following exact
sequence

mtlo,

0 > 0+,T > O+ > A > 0

Since A is a free Z-module, such sequence splits and the result follows. O

The group CI(T), fits in the following exact sequence
0 — T(F)+/O0s — T(A®)/U —— CUT), —> 0.

We fix preimages t; € T(AY) for every element t; € CI(T),+ and we consider the compact
set

F = Juu c T(ap)
i
It is compact because CI(T)+ is finite and U compact.

Lemma 3.1.2. For any t € T(Ar) there exists a unique 1 € T(F)/O+ such that
77t € T(Foo)s X F .

Proof. Since T(Fs)/T(Foo)+ = T(F)/T(F)4, given t = (feo,t®) € T(Af) there exists
y € T(F) such that yte € T(Fo)+. On the other hand, p(yt*U) = t; for some i. By the
definition of CI(T), there exists T € T(F)s such that Tyt®U = t;U. Hence

Tyt = (TYteo, TYEY) € T(Foo)s X tiU C T(Foo)s X F.

By considering the image of 771y ~! in T(F)/O., we deduce the existence of ;.
For the unicity, suppose there exist 7,1’ € T(F) with

(Ttoo, TtF) = Tt € T(Foo)y X F 2 T't = (T'teo, T't™)

Then 7717 = (Tte) (T'te) € T(Fo)s. On the other hand, Tt = t;u for some t; and
u e U, and T't* = f]-u’ for some Zj and u’ € U. So 771" = (?i)_lfju_lu’. This implies
t: = p(t;U) = p(?jll) = t;. By the construction of ¥, we must have t; = f]u Then
7 e UNT(F)NT(Feo)s = Oy O

The set of continuous functions C(¥, Z) has a natural action of O, given by translation.
The characteristic function 1# is O4-invariant. Consider the cap product

n=1sNE e Hy (O, C(F,2)), (3.4)
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where 1# € HY(O,, C(F,Z)) is the indicator function and & € H,(O,,Z) is the image of
¢ through the corestriction morphism.

For any ring R and any R-module M, write C2(T(Af), M) for the set of locally constant
M-valued functions of T(AF) that are compactly supported when restricted to T(AY). If
M is endowed with a natural T(F)-action, then we have a natural action of T(F) on

Lemma 3.1.3. There is an isomorphism of T(F)-modules

Indg(C(F, Z)) = CAT(Af), Z).

Proof. Since ¥ C T(AFf) is compact there is an O;-equivariant embedding

L C(F,Z) « . CUT(AF), Z)
¢ —— (1P)(teo, t™) = Lr(r,), (teo) - P(E™) - L (t™).

By definition, an element @ € Ind(T)(f)(C(T, 7)) is a function @ : T(F) — C(F,2Z)
finitely supported in T(F)/Oy, and satisfying the compatibility condition ®(tA) = A1 -
d(t) for all A € O;.

We define the morphism

¢ : Indy"(C(F, 2)) CUT(Ar), Z)
O > (D) = Xier(ryjo, t - (D))

The sum is finite because @ is finitely supported, and from the O,-equivariance of ¢
and the O,-compatibility it follows that it is well-defined and T(F)-equivariant.

By lemma 3.1.2, for all x € T(Af) there exists a unique 7, € T(F)/O; such that
Ty 'x € T(Fao)+ X F . Hence

P(@)(x) = t(D(1y)) (1" x) (3.5)
Then ¢ is bijective because

e It is injective: Suppose @(®@) = 0. Since Ty = Ty, for all y € T(Fe)+ X F, by (3.5)

p(P)(xy) = L(q)(Txy))(Txy_lx]/) = ‘(q)(Tx))(Tx_lxy) =0

Thus ((®(74)) = 0 is identically zero for all x € T(Ap). Then ®(t) = 0 for all
t € T(F) because ( is injective and 7; = t for all £ € T(F).

e It is surjective: Let ¢p € C2(T(AF),Z). By lemma 3.1.2
T(ap) = | | HT(Fe)sxF)
teT(F)/Os

Let
D(t)(x°) := p(t,tx®) = (t71 - p)(1,x%) € C(F,Z)

where t € T(F). There are finitely many #(T(Fw)+ X ) in the support of ¢, by
lemma 3.1.2 and because ¢ has compact support. Thus @(t) = 0 except for finitely
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many f. Note ¢ is T(Fw)+-invariant since it is Z-valued and T(Fe)o-invariant. For

X € T(AF)
PO)x) = Y uUPO)X) = D I (T xe) - D) - L ()
teT(F)/O4 teT(F)/O4
= > X)Ly (¥) = ()
teT(F)/ O+
Since ¢ is bijective the result follows. O

Thus, by Shapiro’s lemma one may regard

1 € Hu(T(F), CAT(AF), 2)).

The S-fundamental classes n°

In 3.1.1 we have defined a fundamental class 1. As shown in | |, by means of n we
can compute certain periods related with certain critical values of classical L-functions.
Nevertheless in | | different fundamental classes ¥ are defined in order to construct
Darmon points. We devote this section to slightly generalize the definition of 1P in
[ | and we will relate 7 and 1P in the next section.

Let S be a set of places p of F above p. Write S := S' U S2, being S' the set of places
p in S where T splits, T(Fy) = F}, and S? the set of places where T does not split. We
consider:

FS = |, 5:US, us =1(09), O35 = TTogs Ok, (3.6)

where 5; € T(AIS:U"O) are representatives of the elements of C1(T)3 and
CUT)S = T(AﬁUW)/(usT(P)+) . (3.7)

Let us consider also the set of totally positive relative S-units OF := U° N T(F);. Note
that we have an exact sequence

0 — T(Fs)/OST(OF,5) —> CI(T), —> CT)S —> 0 (3.8)

where OF s := [[es OF, -
It is clear that Z-rank of the quotient T(Fs)/T(OFs) is r = #S*. Moreover, we have
the natural exact sequence

0 —> O, — 05 — T(Fs)/T(Ors) (3.9)

Note that (3.9) and (3.8) imply that we have an exact sequence

0 —> O, —> 0} — T(Fs)/T(Of;s) —> CI(T). — CUT)§ — 0
(3.10)
This implies that the Z-rank of OF is r + u, since CI(T)4 is finite. Write H® := O3 /0.
The free part AIS—I of H® provides a fundamental class ¢® € H,(H®,Z). Indeed, the map

(Vp)pest : HS — R’
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given by the p-adic valuations identifies AISLI as a lattice in R”, hence we can proceed as

in the previous section to define ¢°. We can consider the image &° € Hu+r(0f,Z) of ¢5
through the composition

1—¢
¢ € H,(H®,Z) — H,(H®, H,(0+,Z)) — Hy4+(03,Z),

where & € H, (O, Z) is the fundamental class defined previously, and the last arrow is the
edge morphism of the Lyndon-Hochschild-Serre spectral sequence Hy(H 5, Hy(04,2)) =

Hp+q(0f,Z). We have, similarly as in Lemma 3.1.3,
CUT(ASY™),Z) = Tn dT(F)+C(TS,Z),

where C?(T(AISTU“’), M) is the set of M-valued locally constant and compactly supported
functions of T(Agu‘x’). Thus, the cap product 1¢s N &S provides an element

(a)
n° = Lyps N E° € Huy (03, C(F°, Z) = Huwr(T(F)y, CAT(AR),Z)),  (3.11)

where (a) follows from Shapiro’s Lemma.

Relation between fundamental classes
Since T(Fe)/T(Feo)+ = T(F)/T(F)+, there is a T(F)-equivariant isomorphism

¢ : CUT(Ar), M) — Indg(e) CAT(AY), M) = CAT(AY), M) @girir),) RIT(F)] (3.12)

given by @(f) := 2eT(F)/T(F), ((t71 f)lr(ax) ® t). Moreover, for any ring R
CUT(AT), R) = CAT(AR”™), R) ®r CAT(Fs), R) = CAT(Ap"™), CAT(Fs),R)), (3.13)

where CY(T(Fs), R) is the set of R-valued locally constant and compactly supported func-
tions on T(Fs), seen as T(F)-module by means of the diagonal embedding T(F) < T(Fs).
Putting these two identities together we obtain

CT(4r),Z) = Indyyy) (CUT(A),2) ®2 CUT(Fs), Z).

The following result relates the previously defined fundamental classes (see also | ,
Lemma 1.4]):

Lemma 3.1.4. We have that
#( tor) n=r1 ﬁUresT(F)

pes

tor

in Hy (T(F)., CAT(43°7),2) @ CUT(Fs), Z)) = Hu(T(F), CAT(Ar),Z), where HS
for the torsion subgroup of H®,

Zp = ]]-T(Fp) € HO(T(PP)/ C?(T(PD)/Z))/ Zf pe 52/
and z, € HY(T(Fy), CUT(Fs), Z)) is the class associated with the ezact sequence

0 —> CUT(Fy),Z) — CU(F,, 7)) 12— 0,

ifpe St
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Proof. Note that on the one hand that, if p € S!, the class z, has representative z,(t) =
lo;, — tlo,,. Hence zy(t) is characterized to be the function such that 3,z t"zp(t) =

L7(,), for all t € T(Fy) with vy(t) > 0. Thus, (@Des zp) (c®) is characterized so that

Z Y (® Zv) (%) = Lr(ry)-

yEAY peS
On the other hand, the exact sequence (3.8) implies
0 —> HS — T(Fs)/T(Op,s) —> W —> 0
where W := ker (C(T), — Cl(T)i), and note that

F= || su=]] || sl®xtT(Ors)=]| | 75 xt,T(Ors).

5:€CIT)+ €W 5,eCIT)3 few
Hence
Z p Z V- ly = Z a- Z Lgs ® tilrops) | = Les ® Lr(rs),
BeA], TeH,, aeHS 1€T(F,)/T(OF 5)03

and so Z7€Hfor Y lg =1gs ® (®p€5 zp) (c®) implying that

1] N ﬂresT(F) (ﬂfs N ﬂresT(F) zp) NE&S = Z ylgs|NE

pes pes

= #(Hp,) - (Iy N &) = #(Hp,) -1,

and the result follows. O

For S = {p} = S2, we recover the definition 1° given in | |, and the previous
lemma relates it with 7.

3.2 Pairings

In order to relate the p-arithmetic cohomology groups defined in §2.8 and the homology
groups defined in §3.1, we will define certain pairings that will allow us to perform cap
products. For this purpose, we assume for the rest of this work the following hypothesis:

Hypothesis 3.2.1. Assume that g = Luyn(K/F). Hence, in particular, u = s and
G(F)/G(F)+ = T(F)/T(F)+.

As above, let S be a set of primes p above p. For any T(F)-modules M and N, let us
consider the T(F);-equivariant pairing

¢,y : CUT(ASY®), M) x AV=(M, N) >~ N,
F

(3.14)
(f, ¢) > (f, )+ 1= fT(AguO@)qb(t)(f(t))dxt,
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where d*t is the corresponding Haar measure. This implies that, once fixed a character
A G(F)/G(F)y =T(F)/T(F)+ — %1, it induces a well-defined T(F)-equivariant pairing

(") : Ind§§§;+c9(T(AgU°°),M) X ASY*(M,N)(A) — N,

(3.15)
<ZZeT(P)/T(F)+ fret, <i5> = [T(F) : T(F)+]™" Zsereyreey, b fe b O)e,

where A°Y®(M, N)(A) is the twist of the T(F)-representation APY*®(M, N) by the char-
acter A.
Assume that M = CY(T(Fs), R) ®g V, for a finite rank R-module V,

T(F -
IndTEF;+C? (T(A3Y™), M) = CAT(AF),R)®r V.

This implies that (3.15) provides a final T(F)-equivariant pairing

(-]) : CAT(AF), R) ®R V x AV®(CAT(Fs),R) ® V,N)(A) — N,

(fs® f*®@0|p) = [T(F) : T(F)41™" Xzereyre), Ax)™! fT(ASUm)fS(x, t) - p(t)(fs ® v)d*t.

(3.16)
All the pairings above induce cap products in H-(co)homology by their H-equivariance.
Now denote by fi the projection of f to the subspace

C?(T(Ap),R))\ = {f € C?(T(AF), R) with flT(Foo) = A} .
One easily computes that forv € V, f € CUT(Af), R) and ¢ € AV>(CY(T(Fs), R), N)(A)
(f ®0v|p) = (fa®v|Q) = (fa ITa=) ®V, P)+.

Since we can identify H*(G(F)4,®)* ~ H*(G(F), #(1)), we deduce that for all f ® v €
Hu(T(F), CUT(Ar), R) & V) and ¢ € HY(T(F),, AS®(CUT(Fs), R) & V, N)),

(f®0)N ¢ = (f180) N = (fi lrap) ) Nresyp) P €N, (3.17)

where res;g is the restriction morphism and the cap products are the induced by
+

(3.14),(3.16), respectively.
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Chapter 4

Darmon and plectic points

4.1 Construction of Darmon points

In this section we expose the construction of non-archimedean Darmon points given in
[ |. Throughout this section we will assume that S = {p}, T(F,) is non-split and
VZ = Stz(Fp). We will write

¢ = ¢S € HY(G(F)s, APIV(Stz(F,), 2))*,

the class associated with the elliptic curve E/F where u = X1 = Xp. Since E has split
multiplicative reduction at p, it admits a p-adic Tate’s uniformization at p.

4.1.1 Extensions of the Steinberg representation

Let $p = Ky \ Fp be the p-adic upper half plane and

X = Do, if T does not split at p,
P PY(Fy), if splits at p.

In any case, X, is endowed with a natural action of G(Fy) given by fractional linear

transformations,
+b
(a b) ayo (4.1)

c d Ccx+d

Let 1y, Tp € X, be the two fixed points by ((T(Fy)), where ¢ is the embedding fixed in
(1.10). We will assume that ((Ki) N P = F, hence in the split case Ty, Ty # 00 (see also
hypothesis 5.1.5). In fact, 7, and T, correspond to the two simultaneous eigenvectors of
all matrices ((t) because of the following identity.

ofi)f ) als). o)) o

being t > t and t > t the two embeddings K, < Cyp.

Assume that the local representation 7ty is Steinberg. Thus 7y is the quotient of the
induced representation Indgl modulo the constant functions. Let CO(P!(Fy),Z) be the set
of locally constant Z-valued functions of the projective line with the action (4.1). Since
G(F,)/P ~ P'(Fy), we can give a simple description of V#Z = Stz(Fy),

Stz(F,) = CY(PL(F,), Z)/Z.

Denote by Cov(X) the poset of open coverings of a topological space X ordered by
refinement. Let
Ay == Div(§p) and A) := Div?(H,) C A,
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the set of divisors and degree zero divisors. The multiplicative integral i is defined by

i : Hom(Stz(Fy), Z) Hom(A), KY) (43)
L (Zz 215 R, i:;idyll,(x))
where ()
u
][ ad ZQd[Jq;(x) = lim 1—[ (xu 22)
pLFp) X ~ Z1 UeCov(PL(F,)) detd Xu— 21
Here each x;; € U and 1 is the characteristic function of U.
In | | the multiplicative integral is described alternatively: for any topological
group M, write Sty := C(P1(Fp), M)/M. Then we have a natural morphism
Punv - Hom(Stz(Fy), Z) — Hom(Stry, FY),  @un(@)(f):=  lim [ ] flxy)? @)
UeCov(® (F) 1 g
(4.4)

For any multiplicative top. group M and any continuous character ¢ : Fif — M let

&) = {<¢,y> € C(GLa(Fy), M) X Z: ((S ’t‘) g) = 6ty - qb(g)} /(M,0).  (45)

Then the universal extension of Stpg is 8p§ = &(id) in the sense that, for any ¢ as above,

the morphism (y, ) = (y, {¢) provides a morphism ¢ : Epx — E(¢). If we define

ev(z) = (¢2,1), s (i Z) = cz+d €KL, (4.6)

then we have a natural morphism ev : A, — SK; and a commutative diagram

0 > Ag > Ay > 7 > 0
lev lev lld (4.7)
0 > StK;; Sl > 8[(;; > 7 > 0

The morphism (4.3) is then the composition ev® o @u,y, where ev® is the associated pull-
back.

4.1.2 p-adic uniformization
The morphism in (4.3) induces a G(F);-equivariant morphism
i AP (Stz(F,), Z) — APIV(AY, KY)

which induces morphisms in G(F);-cohomology. The degree map short exact sequence
0 — A) - Ay > Z — 0 and its associated long exact sequence in G(F)4-cohomology,
provides a commutative diagram

H*(G(F),, APIVo(Sty(F,), Z))YA

li \

-+ = HY(G(F)y, APIYU>(Ay, KO ——— HY(G(F);, APIVU2(AY, K))
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One can show that there exists g, € Fy such that c¢} € H"*Y(G(F)4, A (g%)). An

isogeny K3/ q% ~ E(K,) is expected (see | , Conjecture 3.8|): this has been verified
in many situations, see | | and | ]. Recall that the map p{P 3 xP gi)i defines
an element

D) € H*(G(F)+, APV (Stz(Fy), Q). (4.8)

Hence, if we write Eq(Ky) := E(Ky) ® Q, we can consider instead the diagram

H"(G(F)+, ATV (Stz(Fy), Q))p

P

o HYG(E)s, APV (A, Eg(Ky) — HY(G(E)s, APIS(AY, Eg(K)h —— HU(G(F),, APV (Eg(K)) — -

obtained reducing modulo q%, and by definition @, € kerc. This implies that there
exists an element

Wy € HY(G(F)y, AMIY=(A,, Eg(Ky)))) (4.9)
which maps to i®,. It is unique by | , Lemma 3.6 |. By | ]
H(G(F)y, API(Ay, Eg(Ky))' = HY(G(F),, A2 (A, E(K,))" €2 Q.

SO we can write

Iabi € Hu(G(F)wﬂ{p}Uoo(Am E(Kp)))/\,

for the image of x? € p{p} once we get rid of denominators.

4.1.3 Darmon points

Let T, € 9y be the point fixed by T(F) as in §4.1.1. Consider the following morphism of
G(F)+-modules
ey t ZIG(F)4 /T(F)1] ——— Ay

n-gT(F)y ——— n-g(1y)

(4.10)

It is well-defined because 7y is T(F)-invariant. Then composing by -|, induces a G(F),-
equivariant morphism

eyt AWYUR(AL, E(Ky)) — APIV(Z[G(F). /T(F).], E(Kp))

which in turn induces morphisms in the G(F);-cohomology. By | , Lemma 4.1]

APIV(Z[G(F), /T(F)+], E(Ky)) =~ colﬂd?g))f (ﬂ{p}um(E(KP))) '

Hence we obtain an element
P¥le, € HYT(F),, AP (E(K,)),

by Shapiro’s lemma. Here we regard A as a character of T(F)/T(F); since we have an
isomorphism G(F)/G(F)s+ =~ T(F)/T(F)+ induced by the natural embedding T < G and
the determinant.

Let g;? be the Galois group of the abelian extension of K attached to T(Af)/T(Fy).
Note T(Fy) is compact because p does not split in K. Then the Artin map factors through
the following map

AZ K< —— T(Fo)/T(Fe)s X T(AS)/T(E)T(F)+ = T(F)/T(F); X T(ALI™)/T(F),.
(4.11)
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and hence we have a decomposition into A-eigenspaces

ceLD= P H(TECTAr),). (4.12)
AT(F)/T(F)s—{x1}

Ifé&eC (Q]?,Z) is a locally constant character with & |1 )= A then we can consider its
A-component &, € H° (T(F)+, CO(T(AE}UW,Z))). We can define a twisted Darmon point

P! =(n"n&) Ny}l € E(Ky) ©2Z,

where the N are with respect to (-, )1 of (3.14).

These points are conjectured to be defined over abelian extensions of K (see | :
Conjecture 4.3|). Moreover, in the special case F is totally real and K is totally imaginary,
this construction fits with the p-adic construction of classical Heegner points. For a more
detailed description of these facts see §5 in | B

4.2 Fornea-Gehrmann plectic points

A plectic point will be defined as an element of the (completed) tensor product ®,E(Kjy),
and they owe their name to the plectic conjectures made by Nekovar and Scholl, see
[NS16].

In the case of Darmon points one had to assume that the local representation at p is
the special representation, which corresponds to the case of split multiplicative reduction
at p, while in the plectic approach of Fornea and Gehrmann we can allow the non split
reduction case. This is done by choosing an appropriate uniformization, as in (4.15).

Moreover, they are conjectured to be non-zero in rank r < [F : Q] situations, hence
they open the door to important progress towards the understanding of the Birch and
Swinnerton-Dyer conjecture in rank r > 2 situations, although we are restricted to the
case ¥ < [F : Q]. In this direction, they prove in | , Theorem 5.13| the analogous of
Theorem 6.1.1 with Darmon points replaced by plectic points. Our aim in the following
sections is to generalize their result adapting our proof of Theorem 6.1.1.

Let qb/s\ € H*(G(F);, ASY*(VZ,Z))" be the modular symbol associated with an elliptic
curve E/F as in §2.8, and S a set of finite places above p such that T does not split at
any p € S. We will assume that

G(Fs) = PGLy(Fs) and VZ = ® Stz(Fy)(ep), (4.13)
pes

where &, : G(Fp) — 1 is given by g > (£1)%detg.

4.2.1 S-adic uniformization

This section is analogous to §4.1.2 but for several primes, which requires an induction step.
For all p € S, the G(Fp)-invariant morphism (4.3) induces the G(Fy)-invariant morphism

iy : Hom(Stz(Fp)(¢p), Z) — Hom(A), KY)(¢y), (4.14)
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where (&p) denotes again the twist by the character e,. The restriction &, : T(Fp) — *1
is non trivial only if €, # 1 and T ramifies at p. Moreover, if H,/K, is the extension cut
out by &y, by | , Corollary 5.4|

E(K,) = {u € HY Jq%: w oWt q%}, 1 # 7 € Gal(H,, /Ky). (4.15)
Hence, we no longer have a Tate uniformization K}/g% ~ E(K;) but an isomorphism
K314y ~ E(Kp)e, = {P € E(He,); P = ex(7) - P}.
Thus, applying the same construction given in §4.1.2 one obtains
Wy € HY(G(F)s, AMIU2(Ay, Eg(Kp)e,)(€p))),

as in (4.9), where ¢, is now seen as a character of G(F) by means of the composition

G(F) = G(Fy) — +1.
If we consider another q € S, we can apply again | , Remark 2.1] to obtain

W) € HY(G(F)4, AWV (Ay, E(Ky)e,)(ep) ® Q)

= H"(G(F)+, AP IYU=(Stz(Fo)(eq) ® Ap, E(Kp)e,)(ep) ® Q).

After evaluating at certain xP € p{p"‘} and clearing denominators, we obtain
lP; € H"(G(F)4, ﬂ{p'Q}Uw(StZ(Fq)(gq) ® Ay, E(Kp)ep)(ep))/\-

From the definition given in (4.3), we deduce that (4.14) provides a G(F)-equivariant
morphism

fp : ﬂ{p'Q}Um(StZ(Fq)(gq)@’Ap/ E(Kp)ep)(gp)()\) — ﬂ{p'Q}U%(Ag‘@Ap/ K§®ZPE(KD)S,J)(5P,Q)(A)/

where (A) stands for the p-adic completion of the torsion free part and epq = &p - &.
Thus we can consider ipgbf\ € H“(G(F)Jr,ﬂ{p"‘]’u"o(Ag ® Ay, K5 ®z, E(Kp)e,)(ep,a)t. Let

M = I%(f ®z, EA(Kp)gp(ep,q) and consider the commutative diagram given by the degree
long exact sequences

C1

HY(G(E),, ABDIY2(A, @ Ay, M) —2s HU(G(E),, AFDI2(AL @ Ay, M) —Ss HIHL(G(E), , APAV2(A,, M)

l I l

HY(G(F)+, AP (Aq @ AY, M) —— HY(G(F);, APII2(A) @ AY, M)y —=> H'*L(G(F), APAU=(A), M))!

l l l

H"*L(G(F)s, APV (A, M)} H"*L(G(F)s, APAIV=(AY, M))* H"*2(G(F),, A= (M))*

Clearly iplpi is a preimage through @1 of ip,q(ﬁ)ﬁ’q € H*(G(F), ﬂ{p'Q}U“(A2®Ag, K;(@Zp

% % Z . . .
K;;))A modulo K;‘ ® qu7 where iy = iy 0 iy and

M= @) (x7) € HY(G(F)+, AP (Stz(Fp)(ey) ®z Stz(Fo)(eq), Z))*
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once we have the identification
Dy € HY(G(F)y, AWV (Stz(Fy)(ep), Q))) = H(G(F)s, AP D2 (Stz(Fy)(ep)@2Stz(Fo)(£q), Q)

of (4.8). Conjecture | , Conjecture 3.8 implies that caipqap)? lies in the line
7. A
qqp ®z, E(Kyp)e,(ep,q) € M, hence without loss of generality, we can assume that clipgbﬁ

.. Z ~ . . Z A
lies in q," ®z, E(Kp)e, (€p,q). The preimage of iyip} through @y modulo q," ®z, E(Kp)e, (€p,q)
provides, after taking p-isotypical components, a unique

Wy € HY(G(F)s, APIY®(Ay ® Ag, E(Ky)e, ®z, E(Kp)e, @z, Qp)(€n,0))5.
Repeating this construction for all places in S, one obtains
W) € H*(G(F)+, A% (As, E(Ks)es ®2z, Qp)(es))),

Here Ag := ®pes Ay, where the tensor product is taken over Z, 1’5\(K5)(SS = ®p€5 T-’j(I'(p)(Sp
where the tensor product is taken over Z,, and es := [],eg€p. After getting rid of

denominators, the image of x° € ps corresponding to q)f\ provides a class
Y3 € H'(G(F)+, A (As, E(Ks)es)(€5))

By construction, the restriction of gbf\ at Ag = ®p€5 Ag is the projection modulo

Dlnre & &

pes qeS\{p}

of
isg; € H'(G(F)., A™S(A, K)(es)!, K5 = K,
pes

where is = [[,eg ip is the morphism induced by (4.14) and the tensor product is taken
over Zy.
p

4.2.2 Plectic points

For all p € S, let T, € 9y be the point fixed by T(F) as in §4.1.3. The morphism of
G(F)+-modules

ZIG(F)+/T(F)s] — As;  n-gT(E)y—n (® gu) . (4.16)
peS
is well-defined and it induces a G(F);-equivariant morphism

AV®(Ag, E(Ks)e)(es) — AVR(Z[G(F)4/T(F)+], E(Ks)es)(es), ¥ ¢ |iry, -

Since we have (see | , Lemma 4.1|)

A ZIGE): [T(F)+], E(Ks)es)es) = colnd§E) (AS°(E(Ks)eo)(es))
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we obtain by Shapiro’s lemma

U8 |2y, € HYT(F)s+, ASY°(E(Ks)es)(e5))

Consider the subspace of functions

C(Gr, Qs := {f € C(Gr,Q), p*f Irrs)= é‘s} ,

where €5 : T(Fs) — %1 is now the product of the local e,. This is consistent with the

construction given in §4.1.3, since if S = {p} and &, = 1 then C(Gr,Q)*s = C(g;,@). In
this situation, the Artin map provides a decomposition:

cGrot= @ H (TP, COTE),Dles)). (17

AT(F)/T(F)r—{£1}
Given a locally constant character & € C(Gr, Z)S we can consider
Ex € HO (T(P)., COT(A5, D)(es)))
its A-component, and define the twisted plectic point
Pg = (1]5 N EA) NSl € E(Ks)es ®2 Z,

where again the cap product is with respect to the pairing (-, )+ of (3.14) twisted by es.

4.2.3 Conjectures

As with Darmon points in | , Conjecture 4.3|, it is conjectured that plectic points

come from certain rational points of the elliptic curve E. The corresponding conjectures
that can be found in | , §1.4].

Let & € C(Gr, Q)% be a locally constant character such that & I7(Fe)= A (namely,
&r # 0). Let Hg/K the abelian extension cut out by &. Since p*& |rrg)= €5, we can
embed Hs C H;. Moreover, if we consider

E(K): = {P € E(Hs) ®2Z; P’ =¢&(0)- P},
clearly E(K)s C E(Ky)e,. Fornea and Gehrmann consider the natural morphism
1p - E(K)g = E(Kyp)e, ®2Z — E(Ky)., ®2Z,
and, if we write r := #S, we define
r . 1 (P1) <o 1y, (P1)
det : /\ E(K)s — E(Ks)es; det(Py A --- A Py) :=det
i (Pr) - 1p,(Py)

Recall that our construction of Pg depends on the choice of a vector x° = ®;¢ SUso x5 € p°

corresponding to the modular symbol q)f\ The following conjecture is analogous to those
of | , §1.4]. Let &, : T(F,) — C* be the local characters corresponding to & via class
field theory.
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Conjecture 4.2.1. We have that Pg =0 unless [],¢s5000 ap(x5, &) # 0, where a, €
Homr(r, (1o ® &y, C) is the morphism of (2.5). In this case:

e Algebraicity and reciprocity law: There exists Re € N\" E(K)g such that

det Rg = Pg.

e Connection with BSD: Assume that rank(E(K)g) > r. If Pg # 0, we have that

rank(E(K)g) =7
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Chapter 5

p-adic L-functions

5.1 Anticyclotomic p-adic L-functions

In this chapter we will define the anticyclotomic p-adic L-functions associated with p, T
and the automorphic cohomology class

¢h € HY(G(F)., AP (Vp, V (k)

for an even weight k € 2N“ (here we choose S = p).

5.1.1 Defining the distribution

Let CE(T(FP)IQP) be the space of @p—valued locally polynomial functions of T(Fp) of

degree less than k. These correspond to the set of functions f : T(F,) — @p such that in
an small neighbourhood U of ¢, = (tp)y, € T(Fp)

fsp= > an@] ][] o™

Imo|< Plp o€ty

where m = (m,) € Z¢, an(U) € @p and s, € U. If we denote by C? the set of locally
constant functions, there is an isomorphism

1: CUT(F,), Q) ®5 P(k)g ® Q, — Ci(T(F,),Q,) (5.1)
defined by

e () Py — |ty = (tp)yyp = h(ty) [ | [ | Po (5 (0} +£,03)) o) F |

plp 0€Ly

It is T(Fp)-equivariant, indeed for any x, = (x,) € T(Fp),

Xp -1 (h o (X) po.) (t,) he (X) pg) (x;tp)

1

Il
=
—~~
=
= |
—_
[
=
N
~
Q
/\
At
——
Q
[l =3
+
>| =1
=1 =N
=1
—
h=]
Q
N B
v
v
QA
——
= 1
i =
=1
~—
5=
\/
)
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— - - —kg.
e ) [ ] ] Po (6 (1,00 + t025,08)) & (Mg, A o) 2
p|p 0€Xy

(- 1)t [T [ Po (5 (@0(E0) + £031(E0)) 0 (det(e(Z)Ey)
plp €Ly

-t | | [ (0elxp) - Po) (5 (0] + 108)) 0 (tp)%
plp o€y

Xp - @p))) (t,).

Let Gr be the Galois group of the abelian extension of K associated with T. By class
field theory, there is a continuous morphism

p: (T(F)/T(Fo)s X T(AY)) /T(F) = Gr. (5.2)

Let us consider the subset of C (T(Ap),@p):

z((xp-h)®

Cx(T(AF),Q,) = {f : T(AR) = Cx(T(F),Q,), locally constant},

and write also CK(QT,@p) for the subspace of continuous functions f : Gr — @p such

that p*(f) € CE(T(AP),@p). The pullback of p together with the cap product by n give
the following morphism

6 : Cu(Gr, Q) —— HOT(F), C{(T(4), Q) — H(T(F), Cee(T(A), Ty)).
(5.3)
where Ci o(T(AF), @p)) is the subspace of functions in Cx(T(AF), @p)) which are compactly
supported when restricted to T(AY). Note that 7 of (5.1) provides an isomorphism

Ce(T(A), ) = CAT(AY), Q) 85 Pk © T (5.4)
In order to define the distribution we need to construct a T(Fp)-equivariant morphism:
Sp = Op)pp : CAT(Fp), Q) — Vp, 8y : CUT(Fp), Q) — V. (5.5)
Given such a 6, we can directly define the distribution associated with
A
o € H' (G(F)., APU=(V,, V()g))
as follows:
/ gdpgr = 6(g) N 6;@;, for all g € Ck(ng@p) (5.6)
QT A
where the cap product is induced by the pairing (3.16) and
6+ AV, V(K)g) — A (CUT(E,), Q) &5 P05, T, )

is the corresponding T(F)-equivariant pullback.
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5.1.2 Admissibility
A continuous function f € C(T(Fy),Cp) is locally analytic if, for any x, = (xp)y, € T(Fp)
there exists a neighbourhood U of t, and a,(U) € @p such that

flu (sp) = Z a, (U) ]_[ ]_[ (0(sp) = a(xp))'e,  for all 5, = (s,)y), € U C T(Fp).

ﬂENd plp o€y

Write Can(T (Fp), Cp) for the subspace of locally analytic functions. Note that Cx(T(F,), Cy) C
Can(T(Fp), Cp). Indeed, it is clear that o(ty)™ € C*(T(Fp), Cp) when m, is positive, but
when m, < 0,

m . ,

ott™ = 3 ("1 )ate "ot = ot € CuT(Ey), ).
i~0

Similarly as above, we consider

Can(T(AF),Cp) == {f : T(AIPT) — Can(T(Fp),Cp), locally constant} ¢ C(T(Af), Cp),
and Can(GT, Cp) = (p*)_lcan(T(AF)/ Cp)

In the previous section we have constructed a locally polynomial distribution
My € DiS%(QT,@p) = Hom(C@(QT,@p)f@p)-
In this section we aim to extend it to a locally analytic distribution
Byt € Distan(Gr, Cp) := Homen(Can(Gr, Cy), Cp).
Write also
Distx(T(Fy),Q,) := Hom(C,«(T(F,), Q,), Q,),

Distan(T(Fp), Cp) := Homept(Can,o(T(Fp), Cp), Cp).
Consider the open compact subsets

—Upla x
Up(a,n) = a ((OP,p + o >0K,p) /ng) c KX/F} = T(F,),

for any a € T(F,), where a is regarded as an element a = A,/A,; € F, as in (1.11). Note
that for all p | p, the Uy(a, n) generate a basis for the topology of T(Fy). Moreover, it
can be described as

Up(a,n) = {t € T(Fp); @y | (t —a)}.
We will assume that n € N if T(F,) does not ramify. If T(F,) ramifies we will choose by
1

convenience that n € % + N, understanding that LDE is the uniformizer of p%, the unique
prime ideal of K, above p.

Definition 5.1.1. For any p | p, a locally polynomial distribution u € Distk(T(Fp),@p)
is hy-admissible at p if for every a € T(Fy) there exists a fized constant Ay € C, only
depending on p, T and a neighbourhood of a such that

/ gdu € App_”h"O@p,
Up(a,n)

for anyn € N and g € CE(T(FP),O@]).
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Proposition 5.1.2. Let e, be the ramification index of p. If ephy < min{ks +1, o €

Ly}, a distribution p € DistK(T(Pp),@p) that is hy-admissible at every p | p can be
extended to a unique locally analytic measure in Distay(T(Fp), Cp) such that

/ gdp € Ay-p™"Oc,,
Uy(a,n)

for any g € Can(T(Fp),O@p) which is analytic in Uy(a, n).

Proof. Any locally analytic function is topologically generated by functions of the form

[Nl [kt

m
Xp—4a —
PZN(x) = ]lup(a/N)(x). ( iaN ) xXp,?, ac€ T(Fy),
p

where m € N* and

l\')l\k-

Xp " ke
((Dp ) _Gl;lp ( ) G(xp)

By definition, we have the values y(PZN) for every my < ks. If there exist T € £, such

that m; > ephy, we define [J(P&N

DY

) = lim; 0 a;,, Where
b mod @} jo<eph

~[m) _j(n-N)
2| (el
b_amod(D -

. i(n-N) e
B0 e

0€Xy o€,

and

The definition agrees with p when there exist T € L such that epyhy < m; < ki because
j(n—=N) b n .
@, p(P") = 0 when jz > ephy.
It can be checked similarly as in | , Proposition 2| that the sequence a,, is Cauchy,

hence the limit exists. It is clear by the definition that y(Pa N) €Ay p_NhDO@p for all m
and N. Hence, it extends to a locally analytic measure as described. O

2
Mr € GLQ(Kg) acts also on P(k)@ and V(k)@ since we have fixed embeddings G : Kg —
P P

p —
Let Mt = (Z%) € GL2(Q,) be the matrix given by the eigenvectors vf. Recall that

@p extending each 0. In the non-split situation, we will fix v} = (1, -7,) and Z)g = (-1, 1),
where 1y, Ty € Ki are the points fixed by the action of 1(Kj) on P!(K,) given by linear
fractional transformations. Note that, M;l - t, € PY(Fy), for all t, € T(Fy). Indeed,

1 T Tty + T
MT—l.,gpz_(Tp Tp).tpzu_
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Since t, = t,~! where 6 stands for the non-trivial automorphism of Gal(K,/F,), we obtain

=, -1
Tptp "+ Tp

=M1t
ol + 1 T "t

MT_l . tp =

which is in P!(F,) as claimed.
Write v, : C, — Q for the p-adic valuation satisfying v,(p) = 1.

Proposition 5.1.3. Assume that G(F,) = PGLa(Fy) for all p | p and there exists
ay € CJ such that the T(Fp)-equivariant morphism 6, = (6p)p)p of (5.5) satisfies for n
big enough

1 a .
CD”) MTép(]lllp(a,n)) = %C(‘Z/ n)v, T(Fy) splits,
P
(D]ﬁ3 S(D‘l; 1 . . -1
DI 200 ) ouum) = drcta,mV,  T(E) 15 nowsplt, s = -My~)(-a) € O,
P
S_lcag CD"; 1 . . -1 -1 -1
__n+m=p 6D(ﬂup(a,n)) = a_gc(a/ n)V, T(Fy) is non-split, s~ = (_MT (—Ll)) ep,
P

(5.7)
where m is the p-valuation of Ty =Ty, p = |vy(1—a)l, ifs € Of,, and p = [vp(aty —Tp)],
if s7 € p. Moreover, V € V, do not depend neither a nor n, and c(a,n) has p-adic
valuation only depending on a neighbourhood of a. If

k
epvp(ay) <min{ks +1, 0 € Ty}, where & = ap@F,

then the distribution Hor extends to a unique locally analytic p-adic distribution.
Remark 5.1.4. Note that
Tp—Tp= (5 +Tp)(1 —a) = (1+Tps 1)(aty — Tp).
This implies that |B| is bounded. Indeed, it is easy to show that f < max{m,m —v,(ty)}.

Proof. Let Cp, = (Cp)p € G(OF,) be finite index subgroup such that V' € VpCp for all
p | p. We have a well defined G(Fy)-equivariant morphism

6y : Hom (vp, V(k)@) SN coIndS;F”)(V(k)@)
where Oy ()(g)(P) := ¢(gV)(gP) and

LW bg) = {6 - Vg Flg0) = f(g) c € ).

colnd

Thus, we have a G(F);-equivariant morphism
Oy : APV, V (k)= ) — &Z{PU‘”( nd (v (k)= )) ~ A (V(k)— )C”
Vv . pr —Qp Ccoln Cp —Qp - —Qp .

By | , Proposition 4.6] we have that

A,C, AG —
H (GE), AWV k) )] = H (G, AV E))) ez T,
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hence up to a constant we can assume that

A,C A
oy ! € H (G(F)+,ﬂ°°(V(k)zp)) "= g (G(F)+,ﬂpu°" (coIndg;Fp)(V(K)Zp)))
(V(k)z admits an action of C, € G(OF,)).
On the other hand, let ¢ € Hom (V,,, Vi, ) such that Oy (¢) € coInd (V(k)Z ).

We compute for all m € N* with m, < kg,

up—a\" _g 1 Yo = 0@xa\"™" kom, | -
/u p(a’n)( — ) 1y 2 A8, p(uty) = (O Luyam) | M7 @(—U(@p)n x| det(Mr)

0€Ly

ol

_ a\._ —m Kk _nk
:(P(ép]lup(a,n)) MT ( ) 1®y k 7 |- det(Mg)"2 ~chn2

0€Xy

If T(F,) splits, we have 4, = (1 an) My € GLy(F,), hence
Y

u,—a\* _k cla,n _ —m
[ (5 bt = 8y ) 7 @Dt
Up(a,n) P (0{;)” : det(MT)i o€Xy

c(a,n) - o yka=to 4
= r v () (yan ) | Qs ™ | € =505,
(a;)”-det(MT)i gEL, prrr

m _k
where A, = C(a—’n)k. Since all such (uc‘;_na )_up 1, (a,n)(up) generate the space Cx(T(Fp), O@ ),
P - P

det(Mr)2
we obtain that 6},¢ is vp(a})-admissible for all p | p.

If T(Fp) does not split, we write s = —M (=a) = m" . Assume that n > 8, then
we have decompositions

1
( (Dag) MT = A(El, n))/s,n,

where
of scaﬁ 1;; .
Vo= F ®n+m g| € GLa2(Fy),  Ala,n):= ‘D’g_ﬁ g if s € Of,,
3 ’ _a?—pf e
1of  of " o1
Vsn 1= (—ch-an_ﬁ Pl € GLao(Fp), A(a,n):= —c(DDZ_ﬁ ety pom | if s7 €p.
P P aTy—Ty P

The matrices A(a, n)~! have bounded denominators. Indeed, the determinant is in O X,

by the definition of m, and the coefficients have valuation not less than €/2, where € = 0,
if T(Fyp) inert, and € = 1, if T(F,) ramifies. We obtain that

up —a\% _k cla,n _ —m
/ ( iD” ) up 2do, ¢(up) = (@,1) =@ (Vs IV) Yeu TA(a,n)7! ®y k ’
Up(a,n) (0( )n det(MT)2 0€Xy
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cla,n -m A
= 0y (p) (1) | Ala, 1 @ x| € —T0c,
(ay)" - det(Mr)?2 oer, prre

where A, are similarly as above with an extra control of the bounded denominators of
Ala,n)™? ® sex, Yoox k ™o The same argument as above shows that the distribution is
vp(a})-admissible for all p | p in this setting.

A
In summary, since qubA € H" (G(F)+, APYR (coIndG(Fp (V(k)ip))) , we deduce that

— A
5,0 € H' (T(F), A (DistT(F), T ) )y = @pla),

where superindex h, means vy(a})-admissible for all p | p. The result follows by Propo-
sition 5.1.2. 0

5.1.3 The morphism 0,

Assume that G(Fp) = PGLo(F,). As seen in the previous §, we want to construct a
morphism

Sp = Op)pp : CUT(Fp), Q) — V,, 8y : CAT(Fp), Q) — V.

satisfying relation (5.7).
Let us fix a place p | p, and let 7, be the local representation. From now on we will
do the following assumptions:

Hypothesis 5.1.5. Let P be the subgroup of upper triangular matrices, then we assume
that P N1(KY) = Fi\. Moreover we will assume that 1y is either principal series B({y) or
Steinberg o’ (Xyp) (see §2.4.1).

By the previous assumption, Vj is a quotient of

md$(%,)° = {f € GLy(F,) — Q, locally constant f ((’” Y ) g) =t (%) .f(g)},

X2

for a locally constant character {,. We construct

by : CAUT(Fy), Q) > Ind; (£,)°

£y (%)'f(t_l)f g= (" Lumerryy O

f o 6:(f) (8) :={ ) ¢ & Pk

where ¢ is the embedding fixed in (1.10). It is clearly T(Fp)-equivariant. Moreover, it
induces the wanted T (Fp)-equivariant morphism

5y : CUAT(Fy), Q) — V.

The following result is a generalization of | , Lemma 5.2| for more general induced
representations:
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Lemma 5.1.6. The morphism 0y is given by

_ . ) d—b Tp+d
Op: Co(T(Fp), Q) — Ind§ (%)% 6p(H(24) = %o ((c%fd)(c;p +d)) f (z;’::d)

In particular, if T(Fy) does not split then 0y is bijective.

Proof. From the relations

ofi)-a[s) ol

1) = ——

we deduce

Hence, if we have

a b X1y M (x1 v\ (tte—-Tp, TpTe(1—t)
= 1(t) = —— =
c d X9 Ty — Tp X9 t—1 Tp — Ty
where t = A¢/A; € T(F,), we obtain the identities

_ — — d _ _
d tlt, -7 — T+ %  Tp+d xo(t — 1A
L= P ad—bc = x1x9A: Ay, gl TP c= 2(—_)19

Thus, we obtain

a b\ . ((ad—bc) (t-1) Ty +d
5v(f)(c d) - XD( 2 t(Tp_?p)2)' (CTp-I-d)

cTp+d 1) (1 CTp+d
~ | (ad —bc) \cTp+d — T ctptd cTp+d
B Xp C2 (Tp - ?p)Q CTp + d !

and the result follows. m|

Let us check that it satisfies the relations (5.7): We aim to compute for n big enough:

Yan = ! an) Mr, if T(Fy) splits,
@y
o sl . . .
Ya,nép (luv(gln)) , $ Yan = ®g+m—ﬁ ’ it T(Fp) is non-split and s = —MT(—g) IS OFp/
ol of
Yan = n+mp—ﬁ "|, if T(Fy) is non-split and s = —~Mr(-a) ¢ Of,.
—@
p

48



Split case

1 -7,

Assuming that T(Fy) splits, we can choose Mt = (_1 7 ) Thus, we have
_ 1 M Tp= ATy ToTo(Ai=Ar) oy (1 1 -7
1

YanOp (1up(a,n)) @(t)Mr™) = 6p(Lu,(a,n) (m( A T)—’{f;_;ﬁ; )PP (53)

A To(l —a) — "t 1T, a1+ tyTp(@"t =1
6v(ﬂup(a,n)) ( t ( D( ) I P P p D( P )

- (Tp — Tp) l—a—-aopt™ aty, —Tp+ opt 1y
al Xn(@p)"
~ P ny—1 PAMD ~ (-1 -1
= — -1 a+ oyt = — . t -1 t7),

if n is bigger then the conductor of x,. We obtain that 0, satisfies (5.7) with ay =
)?D((Dp)_l and V = M1V, where

Vo(u(t)) = Zp(t™) - 1oy, (t7H).

Non-split case with s = —~Mr(-a) € O,

Write the bijective map

tTp_Tp
t—1

(P:T(FD)_)Pl(Fp); t|—>l(t)OO:

We compute for n —  bigger than the conductor of x

1 (mp—iﬁp Ty Tp(Ai—Ar) (wﬁ sl )

Tp — ?p /\t—xt Xpr—/\t?p (D:,H—m_ﬁ

B B
(™ 250005 (Luem) (48 = 6y (Luam) (

Xt(t_l) o) —1,T of sof
= 0Oy (Ilup(a,n)) (ﬁ( 1 _(P(ifl’))( p@zwr?—ﬁ)

n+m—-2B (1-a)? ¢
@y a  (t-1)?2

(p(t_l)(Dern—Qﬁ
Nk/r (1 - (1—a)1<pu—%p>)

et - )20,
Tpt oy - a)+ B

A

Xp

. ]lup(a,n) a+ o

o [ omtm26 (1-a)? ¢ 1 (1- a)cagﬁ
AN (=12 0 @i s ey
@y
. . [(@a-1)2%) . t _
= Rpl(@p)"™ - Xp( 28 "Xy (t-1) L1y (t 1) ’
o7 D

(a=1)*
i

where € = 0 if T(F,) is inert and € = 1 if it ramifies. Since v, ( ) = €, we obtain

that O, satisfies (5.7) with ap = £p(@p)~' and

V) = &y (ﬁ) A (7).
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Non-split case with s = —Mr(-a) ¢ O,

We compute for max{n — ,n —  + vy(7)} bigger than the conductor of x,

elof of Ae(t—1) (t) -1,7 slof of
(_@ngm{ﬁ P )613 (ﬂup(a,n)) (l(t)) = 6¥3 (ﬂup(a,n)) ( Tp _ ?p ((Pl _('DT(ZF{?) ) ( _@ngmp,ﬁ p)
n+m-2B (aty—7Ty)? ¢ _ - _
e o (T —at)a et ™)
= Xp m+n—2p ’ ﬂup(a’n) a+ (Dp n—ﬁ 1+7,s~ L
N [ _ etHna, @p " TpQ(tTl) + —
K/E (aty=Tp)"Hp=Tp) @p
B T T WS
A N - (G
@y
N . [laty =T t 1
= Ro(@p)"™™ - Ry (2—5 o\ Gooe) tee (7).
(Dp a
_7)2
Again since v, ((T”amf”) ) = €, we obtain that 0, satisfies (5.7) with a, and V as above.
(Dp S

Remark 5.1.7. By Proposition 5.1.3, using the above 0, the p-adic distribution e-
k

tends to a locally analytic measure if eyvp(ay) < minges, (ko +1) where aj, = )’ep((Dp)_lng.
If this is the case we say that qbi has non-critical slope.

5.1.4 Local integrals

Given the morphism 0, defined in §5.1.3, we aim to calculate in this section the following
integrals
[ e, o, (5.9
T(F,
where &, is a locally constant character, H C T(Of,) is an open and compact subgroup
small enough so that &, is H-invariant, d* is a Haar measure of T(Fy), and (-,-) is the
natural G(Fp)-equivariant pairing on V.

Since Ty is unitary, by | , Proposition 4.6.11| the character {p|- |_% is either uni-
tary or real. In our setting, the second case corresponds to the Steinberg representations,
namely {p, = %1.

If 2ol |_% is unitary, by | , Proposition 4.5.5] and | , Corollary 8.2| we have
a G(Fp)-invariant pairing

(-, ) : Ind§(%p)° X Ind§ (£p)" — C; (fi, fodx, = / fi(1(7)) - foa(7))d™z.
T(Fp)
We deduce

(t60(111), Su(11)) = /

T(F,

)6D(1tH)(Z(T)) - op(1p)(1(7))d ™
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_ / L(t™Y) - (e ™)d*t = vol(H) - Li(t).
T(E)

Thus we obtain
/ gp(t)<t5p(1H),5p(1H)>dXt = VOl(H)/ 5p(t)dxt = VOl(H)2-
T(Fp) H

If ¥y = £1 the computation is much more complicated but it can be found in | ,
§3.5]. Up to a constant depending on T, we have

w, _ | VOI(H)? - L(5, 1y, &) - L(=5, 7y, &)™, cond(&p) = 0,
. Ep(t)(top(1n), 0p(1g))d™t = { vol(E)? q”“?v, psSp 5/ Ttps Sp cond(éz) o

where, if we write a, = Yp(@p) = £1

(1- “D‘En(@p)q_s_%)_l(l - apép(wp)_lq_s_%)_l, T(F,) splits,
Lis,mp, &) =1 (L=q77%)7, T(F,) inert,
(1- (xpép(wg)q_s_%)_l, T(F,) ramifies.
(5.10)
Recall that in the ramified case (Dé denotes the uniformizer of K.
Let ] € G(F) such that ] - 1(t) = 1(f) - | for all t € T(F). We write | = (h ;;) -1(ty) for
some t; € T(Fy) and J; € Fi;. We compute

Jou()(t) = 8p(f)(t)-]) = 8u(F)J21(E) = T (%)'%(f)(l(t]-t_l)) = X» (%)'%(f*)(l(t)),

where f*(t) = f(t71t;). Since J? € FX, we deduce that {y (%) = +1. We aim to compute
as well the integral
[ e, s,

T(Fy)

Using the above computation

)ép(ﬂ(f@p(lH),]5p(1H)>dxf + Ep(t)(t0p(1H), Op(Lym))d™t

T(F, T(Fyp)

+ Ep(t)(top(1h), tlép(lH»dxt
T(Fy)

LE,(t) /T FCCCMENES

Thus, we obtain

+&p(ty) - vol(H)? - L(%, Tip, Ep) - L(—%/ Ty, &)1, cond(&p) =0,

Eo(t)(t0p(1n), JOu(1m))d™t = { +&y(ty) - vol(H)? - g™, cond(&p) = ng,.

T(Fy)
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5.1.5 Interpolation properties

As we have previously emphasized, we have to think of p o as a generalization of Bertolini-
A

Darmon anticyclotomic p-adic L-function. Hence it needs to have a link with the classical
L-function, namely, an interpolation property.

Definition 5.1.8. Let & € Ck(QT, p) be a locally polynomial character. Thus, in a
neighbourhood U of 1 in T(F,)

k k
P*é |LI (tp) = n 1_1 U(tp)mgl m= (mo)§ _3 <m< 3
plp 0€L,

We define the archimedean avatar of &:

E:Tap)/T(F)— 5 iy =pet)-[[[ o™ []] [ott™,
plp 0€Ly TEX® g7

once identified the set of embeddings o : F — C with |, Zy.

We will write p*& = [], & and & = Hv*p &y. The following results provides the
interpolation property of the distribution u nE
A

Theorem 5.1.9. Given a locally polynomial character & € Cr(Gr, C,), we have that

/ K(xv &) (57 CR) - ep(myp, &) - L2, 1, 8)2, pE lpra= A
Edy g m

A ’ p*é |T(Foo)¢ A,
where

Tofelko +1))!

‘ t ( |
(k __m) B l_[ (ka - mU); C(k) B n H0|T ks! ’

TECO

K(xP,&F) is an explicit constant depending on &P and the image of qu in PV,

L(1/2/ Tty, ép)_lz Ty # Stc(Fp)(i),
ep(mps Sp) = n ep(mty, &) €p(my, &p)° = ¢ L(=1/2,m, &), 1y = Ste(Fy)(£), condE, =0,
plp anL(l/Q, Ty, 613)_1; Tty StC(Fp)(i), COIldép = ng,

and Stc(Fp)(£) denotes the Steinberg representation twisted by the character g +
(il)vpdet(g)'

Proof. Let us consider the T(F)-equivariant morphism

¢ : (CUT(AF), C)® P(k)) ® A™(V(K)(A) — C*(T(AF), C);
P((f ®P)® ¢)(z,t) := f(z,1) - A2)™" - o(t) (P),

for all z € T(F») and t € T(A}), and the natural pairing (-, )1 : CYT(AF),C) x
C?(T(Ap),C) — C given by the Haar measure

(fi forr o= / Al t)folx, t)d*t,  n=[T(F): T(F)+], CC:=T(Feo)/T(Feo)+-

xeCC
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For any f € CY%(T(Af),C) and fo € CXU(T(Af),C), write f- fo = fp®fF andlet H C T(Fp)

be a small enough open compact subgroup so that f, is H-invariant, namely, f, =
2tyer(ry)/H fp(tp)le,n. If we consider the G(F)-equivariant morphism 6 : APYR(V,, V(K))(A) —
AX(V(k))(A) defined by

9(¢’)(§prgp) = (P(gp)(gpép(lH)); 3p € G(Fp)r g' € G(AZUOO)'

we compute using the concrete description of (:|-) given in (3.16):

@(f @ P,00), fobr = = /' £ D) A folz, 1) - 0(F) (P)d*t

zeCC

—ZMKOAWA PG H) - (k) - O(E)(0, (L 10) (P) AP,

zeCC (Fp)

0115H) Z A(z)_l'/T(Aiu"")fp(Z,tp) SO, () (fp)(P)d™t"

zeCC

Vol(H) - (f - f> ® P|5,6),
for all ¢ € APY®(V,,C),C)(A). Hence, we obtain by definition

— (N* * 4P _
/gT Edu gy =(p"'ENn) N, = 1(H)(CELJ&Z)A)FWU,

where the cap and cup products in the third identity correspond to the pairings (-, -)r
and @. In | , Theorem 4.25| an expression for ({ U chf\) N1 is obtained in terms of
the classical L-function:

~ 1 1
Euodhynn= K- (k—Km) L C(R) - L(1/2,m,8)7 - Tlpeo (x0)2, p*E I7(p0)= A
0, P°E It A,
(5.11)
where K € C is a non-zero explicit constant only depending on T and 7, x, € T, is the

image of quf{ in the corresponding local representation, and

L, )
t t)xy, a*t, 5.12
alxy) = () -L(/2, 700, &) /(F )Ev( )7ty ()xy, 0 (o)X )y ( )
are usual local factors appearing in classical Waldspurger formulas (see | | and | |

for more details).

The product K(xP, &) = K- [Tygpueo a(xg)% is a constant only depending on x? and
&P. We can apply the formulas obtained in §5.1.4 to compute that, up to a constant factor
depending on T(Fy),

a(0p(1f,)) L(1/2, my, Ep)_lrl Tty # Ste(Fp)(2),
ol(H)? L(-1/2,mp, &)™, mp = Ste(Fp)(£), condyy =0,
Vv P q”XL(1/2,7'cp,£p)‘1, Ttp = Ste(Fp)(£), condyp = ny,
and the result follows. O

Remark 5.1.10. If 1y, = Stc(Fp)(x) and &y is unramified, we observe in (5.10) that
if Ep(@p) = ap = 1 we obtain that L(—1/2,7,,&p)™Y = 0. This phenomena is known
as exceptional zero and the aim of the following chapters is to relate this exceptional
zeroes with points in the extended Mordell-Weil group.
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5.2 p-adic L-functions attached to modular elliptic curves

We have constructed an admissible distribution u o of Gr attached to an automorphic
A

modular symbol qf)ﬁ In case of parallel weight 2, we can also consider a modular symbol

(P/S\ € Hu(G(F)+/ ﬂoous(VS/ @))A/

where S is any non-empty set of places p above p. Hence, the same formalism as above
applies to construct an admissible distribution associated with qb/S\

| s =o@ 05308, 5’13
T
where

5 : CY(Gr, @) — HUT(F), COT(Ar),Q,)) — H,(T(F), CAT(AF), Q)

and
6s: CUT(Fs), Q) = Vs;  ds =] | op.
pes

We can also study the admissibility in this setting, obtaining analogously as in Remark
5.1.7, that if eyup(ap) = epvp(Tp(@p)~!) < 1 where V,, is a quotient of Indg)?p, then Hos
extends to a distribution that is locally analytic at places p € S.

5.3 Overconvergent modular symbols

In this section we extend non-critical modular symbols to overconvergent modular sym-
bols. We will describe our admissible distributions in terms of the corresponding over-
convergent modular symbols.

5.3.1 Distributions

Let us consider

Ly={(x,y) € Or, x Or; (x,y) g pxp},  Ly=|]Le

p

For any complete Zy-algebra R, and any continuous character x, : O; — R*, let us
P

consider the space of homogeneous functions
Cy, (L, R) = {f : L, — R, continuous s.t. f(ax,ay) = xp(a)- f(x,y), forace O;_fp} .
We write Dy, (R) for the R-dual space of Cy, (L, R), namely,
Dy(R) := Hom(Cy, (£, R), R).
For any continuous extension {, : F;j — R* of x,, we can consider the induced

representation

X2

Indg()'fp) = {f : G(Fp) = R, continuous , f ((x1 y)g) =X (i—;) f(g)} ,
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A choice of the extension {, provides a natural G(Fp)-action on C X;Q(LP,R) since we
have an isomorphism

@p : Cyo2(Lp, R) — Indg (Ry) (5.13)

given by

X1y _ A [*1 _
([ L) 6 =50 (2) e maain, k= (0 ) e Graos),
This provides a well defined G(F,)-action on DX;Q (R) depending on the extension .

Definition 5.3.1. To provide an extension % : F;( — R* it suffices to choose a tuple

a* = (a})p|p, where a;, € R*. Indeed, the extension depends on a choice afy = )’Ep(@p)_1 €
R*, for the fized uniformizers @,. We will denote by DX;Q(R)Q* the space DX;Q(R) with
the action of G(F) provided by the corresponding extension.

Remark 5.3.2. Given the extension % : F;j — R*, we can directly describe the action
of § € G(Fp) on f € CX;Q(LP,R) compatible with ¢;,. Indeed, for (c,d) e Ly,
(gf)e,d) = Rp(x) 7 - Rp(det g) - f(x7'(c, d)g), (5.14)
where x € F is such that xHe,d)g € L.
Assume that R € C,, and x is locally analytic. We can define the subspace C ;;2 (Ly,R)

k
of locally analytic functions. If we also assume that x,(a) = a2 )(g(a), for some k € 2N¥
and some locally constant character )(2, then we can consider the subspace Ci_Q (Lp,R)
4

of locally polynomial functions of homogeneous degree k. If x, = )(2 then the subspace
is CO_, (Lp, R) the set of locally constant functions. For any extension {, as above, we
X

p
define

Indg()?p)* =@p (C;pQ(LPI R)) ’ where * =0, an, k.
We also write D}Q (R) for the dual space of C:(z (,l:p, R), where * = k, 0, and write D?(IEQ (R)
p p ;

k
2

for the continuous dual of C;‘;Q (Lp,R). If we write Yp(a) = a~ )’52(11) for some locally

constant character )?2, we have G(Fj)-equivariant isomorphisms
i : Ind§ ()" ®r P(k)r — Ind§(£,)~,

where x (f ® P) (i Z) =f (i Z) -P(c,d) - (ad - bc)_%, and

K" Di_Q(R)Q* — Hom (Indg(fg)o, V(k)R) ,
p

k
where a* = (a})p with &, = R)(@p) ' @5 .
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5.3.2 Admissibility
As above, we fix a locally polynomial character x, = (xp)y : O;(p — C, where xp(a) =

k
a2 Xg(a), for some k € 2N? and some locally constant character Xp = ()(g)p. For any
b€ O, me N’ and n € N, let us consider the homogeneous locally analytic functions

o 8o € €, (Ly, Oc,):

m — bx mn —m _
Jon(X,Y) = (y m ) 00 Ly (),
P
x —by\F 2
gb_n(x’ y) ( CD” ) yﬂ ’ Xg(]/)_Z ' ﬂVp(b,n)(xr y)/
P

where

Up(b,n)={(x,y) e Ly; x € O;fp, yx'=b mod @y},
Vo(b,n)={(x,y)e Ly; y € Oxp, xy™'=b mod @y }.
It is clear that if m < k the functions f;ﬂ—n and gbﬂn form a basis of CiQ (Ly,Cp). Moreover,
’ ’ »
any locally analytic function in C?{?Q(Lp,cp) with support in Uy(b, n) (resp. Vy(b, n))

can be written as a series ), amfbﬂn (resp. X aﬂgbmn), where the coefficients a,, tend to

0.

Definition 5.3.3. A distribution u € Df—(_Q(Cp) is hp-admissible at p if for every
14
b € Or, there exists a fized constant Ay € C, only depending on p such that

/ fdu e App_"h"()cp, / fdu e App_”h"()cp,
U,(b,n) Vp(b,n)

for anyn € N and f € C}%;Q(Lp,()@p).

We choose a* = (a})y, with a} € C;f, and we consider the G(Fj)-representation
k

]D__2(Cp)g*.
Xp

Lemma 5.3.4. Let hy = (hy), where hy = v,(ay). We write Di_Q(CP)Z‘Z - Di_Q(CP)g*
4 - r
for the subspace of hy-admissible distributions at every p | p. Then Di—z(cp)zf is G(Fp)-
tmovariant. ’

Proof. By (5.14) the action of G(OF,) on C)E(‘Q (Ly, C,) fixes C}%_Q (L, Oc,) (notice that
P P
Xp(OF,) € Oép). Moreover,

a b

b ), d—ﬁc%p
' (C d)EG(Opp).

14 pa—b M

Together, this implies that G(OF,) - Dﬁ_g (CP)ZT C Di_Q (CP)Z’Z.
4 - P -
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Again by equation (5.14),

@ " _ [ Rp(@p) ™ - F(x, 0;™y): ou(y) =7 = m,
( 1) Flry) = { Ro(@p)"2 - F(@'"x,037y); vply) =7 < m.

Thus, if we write
@ " @ "
Iu:( p 1) (f']luqa,n)) (x, y), IV:( p 1) (f']lv(ﬁ"“) (/y)

we obtain for every f € C)K(’Q (£Ly, Oc,),
p

(a;)m ' f(x/ @;m]/) : :H-U(ﬁ(DT,n+m)(xl y)

I - (a;)m—m)p(ﬁ) .f(wgp(ﬁ)x, mgv(ﬁ)—my) . lu(ﬁ71®?’n+m_20p(ﬁ))(xl y); vp(B) <m,
(ap)™" - f(@y'x, ¥) - Lvpay,n-m) (X, ¥); vp(B) > m.

Iy

Hence if we write r = v,(B) and

ju= [ ga) M v= [ ()"
Up(B,n) Vo(B,m)

then for any p € Df—(_2 (CP)Z’:,
; a

Ju = (ay)" / flx, @, y)dp | € ()" Agp™ MO, = Ayp™Oc,,
Upay n+m)

(fl,l(ﬁ‘hp%",nﬂn—Qr) f(cD;x,cD{,_my)dy)

(a’{])Qr—m

c (oz;;)m_QrApp_(n+m_2r)hpOCp = App—”hv()cp; r<m,

Jv =
(fv(ﬁm;’”,n—m)f(@?x/y)dﬂ) m ) s
@y € (ay) " App *Oc, = App™""Oc,; r>m.
We conclude that (©* 1 )_m ‘D;Q (Cp)g’j - Di;? (Cp)ZZ. By Cartan decomposition
@ —-m
am=UamﬂpJ G(OF,).
meN
Hence, the result follows. O

Lemma 5.3.5. If we assume that exhy, < min{ks; + 1, 0 € Xy} for all p | p, then any
ye Di_z(Cp)Zf lifts to a unique locally analytic distribution € D;?Q(Cp)a*.
4 - 14 -

Proof. The proof is completely analogous to that of Proposition 5.1.2. By definition,
the values pu( famN) and [J(gamN) are given for every m < k. We proceed to define p( famN)

when there exist T € L, such that m; > eyhy, and the rest of values y(gamN) can be

defined analogously: we write p( faﬂN) = limy, o 4y, where

m-j
b - - j(n— '
v B S () ()

b mod @} jo<ephy
b =a mod (D{J\’
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The definition agrees with p when there exist T € L, such that epyhy < m; < ki because
(n—N)

@

is Cauchy, hence the limit exists. Since the functions famN and gﬂmN topologically generate

u(fy ) % 0 when j; > eyh,. The usual computations show that the sequence ay,

C;r_lz(.ﬁp,Cp), this defines a locally analytic measure extending the locally polynomial
P

distribution u. O

5.3.3 Lifting the modular symbol
Assume that 7, is principal series or special for all p | p. Thus, we have a projection
A C C ~ A
r:Indg()(g)OeVpp:®Vp, )(gznxg,
plp plp

as G(Fp)-representations for some locally constant character )A(g : F;f — C;j. Write )(2

for the restriction of )?2 to O>< . Moreover, we consider the locally polynomial character

Xy =z 2)(0 Fy — C and x, its restriction to O><
Under the above assumptlons the modular symbol

A
O € H' (G(F)., APY=(V,, V(B)e, )

satisfies

§ A
o) € 1Y (GOEY, A (maG(70)°, V(b)) 5 he (G(F)+,ﬂ”u°° (Dﬁﬁ(cp)y))

=~

where a* = (a})p with o} = ) (@p) '@y = Fp(@p)7!
Proposition 5.3.6. Assume that for all p | p we have ey - vy(ay) < min{ks +1, 0 €

A
Yy}, then any cohomology class qbﬁ € H" (G(F)+, ﬂPUOO(Vp, V(k)@p)) extends to a unique

A
o e 1" (G<F>+,WU°°<D;;2<CP>@>) .

Namely,
K] = 1o, € H (GUF), A (SR, V(E)))

Proof. We write xy = [T, xp. IfV = xp(x)~ - lox ><()Fp(x y) € C( 0)- L(Ly,Cp), by
equation (5.14)

1 b\ b1\

A — m A — m —
ot = (1 ) (Vo) rett = (0 1) (veumetn).
p p
As in the proof of Proposition 5.1.3, let us consider the G(Fp)-equivariant morphism

oy : D +(Cy)y = Hom (IndG(;zﬂ)O V(k)c ) — colnd (”)(V(k) ),
Ov(p)(Q)(P) := p(gV)(gP),
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where C, C G(Opp) is a small enough subgroup of classes of matrices upper triangular

modulo p. We compute, for any u € Df—(_Q(Cp)ge such that Oy (u) € coInd(C;:Fp )(V(E)OCP),
r

s = () L[ ) -
- d . V . yliyk-m
/up(b,n)fb’” ! ap / )

R|—

m 1\"
s = () [ Lo )
/vp(b,n) 8ot ayp
1

Q

where hy = vp(a}). Since fbmn and gbﬂn generate the functions in ngz(Lp,Ocp) with
support in Uy(b, n) and Vy(b, n) respectively, we deduce u € ]D)%_2 (Cp)Zf, with b, = (hy)y.
; a
By | , Proposition 4.6] we have that

- A,Cp . A,C,
H* (G(F), AV(K)G,)) " = H* (G(F), A (V(Ko)) @0, C,
hence up to a constant we can assume that
* 4P u 0o ACp u Uoo G(Fp) A

0vr° ) € H (G(F), AV (K)os,)) " = H (G(F)., A (colnd (. (VK)o )

By the above computation, this implies that
k h A
r'¢l e H (G(F)+,WU°° (D)—(_Q(R)Djj)) .
p @

Hence, the result follows from Lemma 5.3.5. O

5.3.4 Relation with p-adic L-functions
Attached to the modular symbol ()‘Z)f]\, we have a unique overconvergent cohomology class

A
B < 1 Gy, (D2,

On the other side, we have a fundamental class
n € Hy(T(F), Cc(T(AF), Z))

The formula used to define 6, in (5.8) extends to

Op Can,c(T(Fp)/ Cp) - Indg()?p)an = Canz(Lpr p)

29



Hence, for any f € Can(Gr, Cp), we can define the cap-product with respect to the pairings

of §3.2 .
((p*f)nm) N5, (),
where

p*f € HYT(F), Can(T(AF), Cp)),
5%($h) € H (G(F)., APV (Distan(T(Fy), Cp))) ",

P € HulT(F), Cane(T(Ar), Cp) = Hy T(E), Ind[\7) C2 (T(AE™), Cane(T(E,), C)) ).

The following result follows directly from the definitions:

Theorem 5.3.7. Assume that for all p | p we have

ep - vp(ay) = ey Up()?v(@p)_l) <min{ks; +1, 0 € Ly},

A
and let qgi € H* (G(F)+,ﬂpu°°(D2?X2(Cp))) be the extension of qbﬁ provided by Propo-
Xy

sition 5.3.0. Then we have that
/QT fdugr = ((p"f) ) 0 8,(Ph),

for any locally analytic function f € Can(Gr, Cp).

5.4 Hida families

From now on we will assume that the modular symbol Qbf\ € H"(G(F)y, APY=(V,, vV (k)
is ordinary, namely, the attached distribution is 0-admissible. By Proposition 5.1.3 this

is to state that the valuations of &}, = Ro(@y)™t = cD%m)%g(ch)_l are zero for all p | p. We
are convinced that our work can be generalized to the finite slope situation by working
with locally analytic distributions. From now on we will work with continuous functions
and measures, namely bounded distributions, instead of locally analytic functions and
admissible distributions.

Let Ar be the Iwasawa algebra associated with O;fp, and let

be the universal character. Recall that kj is characterized by the following property: For
any complete Zy-algebra R, and any continuous character xp : O;fp — R*, there exists a
morphism py, : Ap — R such that x, = py, oky.

Let a = (ap)p, where ay € A¥. Note that Dkf (AF)a satisfies that, for any such a pair
(R, Xp), we have a natural G(Fj)-equivariant morphism

Dk;Q(AF)g ®py, R — DX§2(R)2*’ (5.15)

where a* = py (a).
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5.4.1 Lifting the form to a family

In this ordinary setting, Proposition 5.3.6 states that the modular symbol qi)z lifts to an
~ A

overconvergent modular symbol qbi € H" (G(P)+,ﬂl’ UOO(DXl:z(O@p)Q*)) . Assume that

there exists a = (ap)p, with ay € Af such that p,,(ap) = a}. This defines an extension 12;9
of the universal character k,. Hence, the specialization map p,, provides a morphism

HY (G(F).,., ﬂPUOO(Dk;Q(AF)Q))A — H" (G(P)+,ﬂPU°°(DkE2(AF)g))A ®P)(p Ocp (5.16)

P)(p j

A
H (G(P)+,ﬂPU°°(DX;2(0Cp)@) .
In this section we will discuss the existence of both a that specializes a* and a class

A N
CDf\ e H* (G(F)+,ﬂPUoo(]Dk;2 (Ap)g)) lifting the overconvergent modular symbol (j)ﬁ

Local systems and group cohomology

Given a compact subgroup C C G(AY’), we can construct the locally symmetric space
Yc := G(F)+\G(Feo)+ X G(AF)/CoC,
where Cy is the maximal compact subgroup of G(Fe)+. When F is totally real and C is
small enough, Y¢ is in correspondence with the set of complex points of a Shimura variety.
Let C, := C N G(Fp). Given a Cy-module V, we can define the local system
V := G(F)+\ (G(Foo)+ X G(AT) X V) /CoC — Y,
where the left G(F)4-action and right Co,C-action on G(Af) X V is given by

V(8o0r 8, 0)(Coo, €) = (¥ §ooCoo, Y€, ¢y '),

being ¢, € Cp the p-component of ¢ € C.
A locally constant section of the local system V amounts to a function s : G(AY) - V
such that s(g™) = c,s(yg™c), for all y € G(F)+ and ¢ € C. Indeed, such a function

provides the well defined section
YC _>(V, g (goo/gools(goo))

Let us consider the coinduced representation
G(Fp) _
CoInde PV ={f:G(EFy) > V; f(gpcp) =cp 1f(8p)z gp € G(Fp), cp € Cp},
with G(Fp)-action (h,f)(gp) = f(hp_lgp), h, € G(Fp). Thus, to provide such an s is
equivalent to provide an element

fel
8 € HO (G(F),, AP (colndl. V)", 8(g")(8p) = 5(8p, 8"),

where CP :=C ﬁG(AI’iUOO). Hence, we can identify the cohomology of the sheaf of local sec-

tions of V with the CP-invariant subgroup of the group cohomology of ﬂPU“(COIndg(Fp )V),
p
namely,
cr

H*(Ye, V) = HF (G(P)+,ﬂpu°°(colnd§f ”)V)) . (5.17)
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Families and the eigencurve

Given a Zp-algebra R, write C(OF,, R) and D(OF,, R) for the set of R-valued continuous
functions and its continuous dual, respectively. Write 7, C G(F,) the usual Iwahori
subgroup

OF  Or,
plp P TR
Given a continuous character xp, : Of — R, one can define a y-action on C(OF,, R) by
P

O

means of the formula

(o)) = (22

a +cx) 'Xp(detip)-;(;Q(a +cx), ip = (Z Z) €l, fe C(OF,,,R).

This provides the usual action on D(OFf,, R) given by (i,p)(f) = /J(ip_lf). We write
Dy, (Or,, R) for the space endowed with the above action of Z,. Such an action can be
extended to the semigroup Zp'l of inverses of

Of O,

L, = 1_[ p,  Zp:=PGLy(Op,) N (@pOp Or ) /OF,

plp

Indeed, if we write (a) = W € Oy for any a € F/, the action is defined by
plp @p

b+ dx
a+cx

(gpf)lx)=f ( ) - Xp ((det gp)) -xer(a +cx), g =("%) ez,

Hence it makes sense to consider the action of the matrices (‘Dp i), i € Of,/p, defining
Hecke operators Uy.

Remark 5.4.1. We have a morphism
2 - Y
C(Or, R) = Ca(Lp, R fr—= flr,y) = (072 £ (2] - 10z 20, (v, 1),

satisfying for all k = (¢ Z) € G(OF,)

R . bx +d
(kf)(x, y) = xp(det k)-f((x, y)k) = f ( —

ax + cy)')("’(det k)'XIZQ(ax"'Cy)']l(O;pxOpp)k—l(x/ v).

In particular it is Iy-equivariant with respect to the above action. More generally, given
g=(fh) ey
g'8fley) = Rpla)?- Ry (detg) - gf(a(x,y)g™")

)A(,g(oz)_2 . )?p_l(det Q) g7 ( (dx —cy,ay — bx)) ,

1
a det(g)

by (5.14), where a € F) is such that a'(x,y)g™t € L,. Sincea € O;p and ¢ € [, @y,
a necessary condition for (dx —cy,ay —bx) being in 1-“;;(0;< X OF,) is x € OF . Since the
P P

support ofgj\‘ is precisely O;(p X Of,, we conclude that x € O?p and

b de b
Uy (z - E) = vp(ay — bx) > vp(dx — cy) = v, (d - c%) =0y ( tﬂ(g) +c (E - %)) :

X
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Thus, L € %+ det(¢)OF, and a = 1. Hence, if we write U(g) := %+ det(8)OF,, we

X
compute,

— dx — —b
§7'gf(x,y) ??p‘l(de’“g)'?(52(x Cy)'(gf)(ay x)']l”(g)(%)

det(g) dx —cy
Xp ({det g)) Xy ((detg)) ——
=/ (%) ' ;(p(det ) Ry (x) - L) (%) = m f - Lug(x, ).

The classical strategy to construct the eigenvariety is to consider finite slope subspaces
for the action of U, of the locally analytic analogues of cohomology spaces

H*(Yc, Dx, (OF,, Ar)),

where Dy, (Opp, AF) is the local system associated with D, (Opp, Ar)and C C G(AZUOO) is
a compact open subgroup such that C, = Z,,. Since our setting is ordinary, it is enough for
us to consider Dy, (OF,, Ar). A connected component of the eigenvariety passing through
7t provides a system of eigenvalues for the Hecke operators in Ar.

Once we have a system of eigenvalues, in particular eigenvalues a, for the Uy-operators,
a different and challenging problem is to provide eigenvectors living in the space of coho-
mology H"(Yc, Dk, (OF,, Af))}. If F is totally real, then one can make use of the étaleness
of the eigenvariety to prove the existence of such families in middle degree k = u (see
| , Theorem 2.14] for the case G = PGLg2, and notice that techniques of | :
§2.5] can be extended to general G). For arbitrary number fields F the situation is more
complicated (see | | or | |). Since these questions are beyond the scope of this
work, we will directly assume the existence of a family CDZ € H"(Yc, D, (Or,, Ap))MHe=a
and we will address the reader to the previous references for details in each concrete
situation. By Equation (5.17)

A,CP
H"(Yc, Dy, (Op,, AP o= = HY (G(E),, A*(colnd " Dy (Or,, Ap) =),

where the action of Uy, on ¢ € IndZG.p(Fp )ka (Or,, AF) is given by
1 1
1 i 1 i
wotg= Y, (1 a) o (gp o) ) .
i€0p, /P

Remark 5.4.2. Given a € Op, /p" write g, = (1 ng ). For any

¢ € colnd. " Dy (Of,, Ap)Hv=")

P

1
d = — d i_l ’
Lp% Ple)= o /0 F b(g8i™)

it 1s clear that

P
by the definition of U,. Applying this fact inductively, we deduce

1
d =~ d a_lr
/O o= | (™)

for all a € Of,[v". This implies that the integrals fOF dd(g) characterize the element ¢.
r
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Proposition 5.4.3. We have a G(Fp)-equivariant isomorphism.
~ G(F _
Dy2(Af)a —> colnd Ip( "Dy, (OF,, Ap)H=,

where a = (ap)y.
Proof. By Remark 5.4.1, we have a Zy-equivariant morphism
res : Dy 2(Ar)a — Di, (O, Ap): / f)d(resi)(z) = / Flx, y)dux, ).
4 OFp ?p XOFp

Hence it provides a well defined G(F;)-equivariant morphism

G(F _
¢ Dia(Ap)a — colndy 'Dig (O, Ar),  @()(8y) = res(gy ™)

Let us check that the image lies in the subspace where U, acts like ap: If we write
gi=('a,), then by Remark 5.4.1,

i SR = Ji e (557)

i€0F, /P

= > / gifd (3igy™"11)

i€Or, /» ¥ OFp

= > /O g 'gifd (gy7'p)

iEOFp/p

= k(@)™ Z / fLisod (857 1)

i€Or, [ OFP
= ap- / fd (gp7'1) = ap- / f(@2)de(p)(gp)(z).
Opp OFP

Thus Uy(@()) = ap - @(u). This implies that we have a well defined G(F)-equivariant

morphism
Dy (A nd "Dy (O, Ap)Ue=
¢ : Dig2(Ap)a — colnd =" Dig (O, Ap)=*~.
It is clearly injective since the vanishing of ¢(u) in particular implies that the distribution
g vanishes when restricted to (O x Op,)G(Op,) = L.
4
Let us consider the function fy € CkEQ (Ly, Ar), defined by fo(x,y) = k;2(x) . 10;p (x).

Note that ]l/(_):p = fo. Then it is clear that the translates g,fo, where g, € G(Fp),
topologically generate Ck;2 (Lp, Ar). Thus, we can define

Y coIndJG.p(Fp)ka(Opp,AF)U":"p — DkEQ(AF)gl /Lp(gpfo)dyb(@ = /Op do(gp)-

P

It is easy to check that the morphism 1 is G(Fy)-equivariant, indeed, for h, € G(F)

[ i = [ oty g = [ g = [ g o).
L, Or Ly Ly

p
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We also have to check that it is well defined, namely, given any linear relation ); ¢;h; fo =
2.j hjfo we have that

Zc,- /LP hi fod(¢p) = Z‘cj /LP 1 fod ().

But such relations are G(F,)-generated by
_ L @y 1 _ 1 -1
fO - a 1 fO - a gl fO/
P i€Op, p P i€0p, [P

Hence, by Remark 5.4.2, the morphism 1) is well defined since

/. (o) = / 0= 3 /O 16(1)

“a X[, o= 3 [ s i)

P i€O0F, /v Or, i€OF, [P

We compute

J, st o g = [ aptig= [

F

Toy,d (gp~'1) = / (&pfo)du,
Ly

hence 1 o @(u) = p. Moreover, for all g, € G(Fp),

1

n

1 - — _
a—g/% dp o P(§)(gpga ") = _/z,, Loy, d(8agp™ ¢(¢))

ap

/ 4 0 P(D)(gy)
H+D"Opp

1 _ 1 _
= a—,;/LP(gpga Ho)dy(¢) = F/F dp(gpga")

p JOF,
/ 46(5,),
a+p”01:p

by Remark 5.4.2. Hence ¢ o 1(¢) = ¢ and the result follows.

O

The above result together with equation (5.17) implies that we have an isomorphism
A s
H" (G(F),, A (Dica(Ap)a)) —> H(Yc, D, (Or,, Ap)y o=,

Thus, the assumption on the existence of a classical family q)ﬁ € H"(Yc, D, (Or,, Ap))MHe=a
ensures the existence of the lift

QJZ e H* (G(P)Jr,ﬂpUOO(Dk;g(Ap)g))A (5.18)
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5.4.2 p-Iwasawa algebras

Let Ay :=Zp[[OF ]] the p-Twasawa algebra with universal character ky. For any continu-
P
ous character xp : O;_f — R*, we consider the space of homogeneous measures
P

Dy,(R) = Homen(Cy, (Ly, R),R), Dy, (Ap)’ = {u € Dy, (Ay) = (p1p)(1) = 0},

where the specializations py, : Dk, (Ap) — Dy, (R) are defined analogously as in (5.15).
Recall that any extension l’;p : F — A7 of the universal character provides an isomor-

phism Ckgz(Lp,Ap) 4 Indg(ﬁp) as in (5.13), and this provides an action of G(F,) on

Dic2(Ap). If we write ap = kp(@p)™! as usual, then we denote the space with such an
action by Dy (Ap)a,-

Lemma 5.4.4. If pi(ap) = 1, then the subspace Dkgz(Ap)O is G(Fp)-invariant. We will
denote the subspace with the corresponding action by Dk;2(Ap)gv.

Proof. Given u € ka(/\p)0 we have to check that gu € ]ka(/\p)O for all g € G(F,). By
G(Fp)-equivariance
(prgm(1) = (gp1)(1) = (pru)(g™'1).

But if p1(ap) = 1 we have p1Cx,(Lp, Ap) 4 Indg(l), and @p(1) is G(Fy)-invariant. Hence

¢711 =1 and the result follows. m]

Throughout the rest of this section we will assume that pj(ap) = 1, hence we are in
the setting of the above Lemma. Write I, for the augmentation ideal

I = ker (Ap LR Zp) . (5.19)
There is a natural isomorphism
O ®22Z, = O — L/I};  aw (kyla) - 1)+ 1.
Since p1(ap) = 1, the above isomorphism can be extended to a character

bo, KX — /1% as (ky(a) - 1)+ 2

Remark 5.4.5. For any y € Z, f € CkZ(Lp,O;p) C CkZ(Lp,Ap) and any p €
ka(Ap)();

/ fdpu €I, C Ay
L ’

Indeed, since f has values in Oy , we have that p1f = 1. Hence
P

P1 (/ fdpkyy) :/ ldp1u =0,
Ly b L,

by the definition of Dkv(/\p)o.
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Lemma 5.4.6. Given f € Ckzl (Lp,O;p) and fy € Ckzz (.Ep,O?v)7 we have

/ (fi-f2) dp,va b = / frdpyn p +/ fodp,v2pp mod I%
Ly P Ly P Ly D
for any p € Dy, (Ay)°.
Proof. Let fo € Cy, (LD,O;p). For example, we can choose
ky(c), if(c,d) € OF xXOF,
fle,dy={ © O,
o(d), otherwise.

If ¢ : £, — PY(F,) is the natural projection,

. fi / -
d iU = lim — | (X d i
/Lp fl pkg o UecCov(PL(Fy)) Z (fO l (u) I (0))] fO pkz :

Uel

. fi /
= 1 —_— * i d 7
et e > ( I (xu) - Py (Pfl(u)fo H

Uel
since pyvi fo = foyi. For any B € I, write B for its image in Ip/I2, and write M = u(fy) € L.
P
Since af = pi(a) - B for any a € A,, we obtain

— : fi
iAoy vi i — iM = 1 : -1 Lu).
/1: pf pgp—pgM=_  lm > (( I (xu) prp(lu)

Uel

Hence

/ (fl : f2) deZﬁleLl - pkz1+y2M = lim ((%) (XU) — 1) . PlH(lu)

1
» UeCov(PL(Fy)) =T 0

im 3 (%)(xu)—l + (jf%)(xu)—l pruCiu)

1
UeCov(B(Fy) o=, 5 ;

/ fldpkyl[.l - pky1M + / depkyz[.l - pksz.
z p p z p p

Finally, result follows from the fact that pkgM = yM. Indeed, under the group isomor-

phism é;p ~ [,/ I% the specialization Py on I,/ I% corresponds to raising to the y-th power
A%

on OFp' O

Remark 5.4.7. Since O;(D = Ug,-1 - (1 +p), where ug,-1 are the (qy — 1)-th roots of
unity, we have

A kD
X _ X ~ X X
OFp—OFU®ZZp—1+pcOFpC—>Ap.

Thus, we can think of ly, and the functions in E(ly,) as having values in éﬁ, CAJ.
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Lemma 5.4.8. We have a well defined G(Fy)-equivariant morphism
Iy Dkgg(/\p)gv — Homy, (E(¢7), I/13)
given by
= [ ot 3] dperstesd) moa

where (° Z) € GLy(Or,).

Proof. The morphism is well defined since for any other ()‘\1; )l\’:i) € GL2(Of,) there
exist (1) € GL2(Op,) such that (X/C /I{;) = ("%)(2%). Moreover ry(u) is a group
homomorphism by Lemma 5.4.6.

For any (¢, y) € 8(€3p), we write (ﬁ(c,d) =¢(75) € Ckiy(.Ep,O?p). If we fix (c,d) €
Ly, and ¢ € G(F,), we choose k € GLa(OF,) such that (78)g = (™ £, )k for some
X1,Y,x2 € Fy. Thus, we obtain

(gD, d) = (o 'gppi)(c, d) = ppd (i Z)kpwd—bc)y

wﬁ((i Z)g)kp(ad—bcw:@pé((“ 32) k)kp(ad—bc)y

. i .
k, (%) (k) - ky(det(k)) Vky(ad —be)? = ky (x2)% (k) - kol(det(g)) ™

o[ 2] #) Btcerten = tgon * ) Eutaerion

Since plﬁp(det(g))y = 1, we obtain,

wtgwon = [ ol §)dpersucc.n = [ (g 16xe Dot

pikp(det(g))” - /L (87'¢) (i Z)dpk—w(c,d):L(u)(g‘1¢,y)
(gre()(@, y)-

Hence the G(Fp)-equivariance follows. O

5.4.3 Relation between Iwasawa algebras

At the beginning of §5.4 we have introduced the general Iwasawa algebra Ap, and in
§4.1.1 we have defined the p-Iwasawa algebra Ay. In this section we will explore relations
between both.
Since we have a natural continuous character
x aan) ook o
Op, — OFp — Ap,
we obtain using the universal property of A, an algebra morphism ¢, : Ay — Ap. Simi-

larly, the character
aray

k
X X v X
OF —"0f = A,
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provides another algebra morphism d, : Ap — A,. It is clear that ¢, is a section of dy,
namely, dy o 1, = id. The existence of such sections implies that Af = [Ty, A}
If I C Af is the augmentation ideal

I=ter (A 25 2,),

then t(I;) € I. Indeed, the morphism A, = Ar 2 Zy corresponds to the character
1: O?p — 1, hence pj o 1y = p1. Thus, for any ty(s) € tp(Ip), we have
p1(ta(s)) = p1otp(s) = p1s =0,

therefore 1p(s) € 1.
We have a natural morphism

X Cu (Lo, M) — Cio (L, M), X for— [ [ ofe)

plp plp plp

Let a = (ap)p, with a, € AF providing an extension 12,, of the universal character k,. We
will assume throughout the next chapters that a, € A7 C A>F<. This will imply that the
induced morphism

X) Cio/(Ly, Av)a, — Ci)(Ly, Ara
plp
is G(Fp)-equivariant. In fact, under the assumption

k) =[w (ﬁp(xp)), for all x = (x,)p € FJ.
plp
For any set S of primes dividing p and any ng = (1y)pes € Z°, write
apag’ k
k;s : OI)_fp — 1—[0;» iy 1_[ Of_fp SN AF.
pesS peS

Thus, we can consider the subspaces

D, (AF)® = {u € Dy, (Ap) : prit =0, for all p € S},
4

where 17 € Z{alP.9#P} i5 the element with all components 1. By Lemma 5.4.4, if we assume
that p1(ay) = 1 for all p € S, this defines a G(Fj)-invariant subspace denoted by D, (Ap)g.

Proposition 5.4.9. Write plﬁp = (Xp)p and assume that Xy =1 for all p € S (equiv-
alently p1(ap) = 1). We have a well defined G(Fy)-equivariant morphism

rs : Dy2(Ap); — Homyg, (@ Ind§ (2,) ® () E(E2), 1"/ 1r+1)

pgs peS
given by
b r
1560 | R #s() ® R yp>) - [ TTstcoda[Tos(22 5] dogsntcrdr moar=,
P¢S pes Lﬂ P¢S pes P P P
where (1) € GLy(OF,), r = #8 and y = (yy)yes € Z°.
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Proof. We write L\, := [q4p Lp- Note that

/L n fD(Cp/ dp) 1_[ ¢D (iz ZE) de—z{J(C, d)

P pgS peSs

b b
= L rlfv(cw dy) 1—[ Pq (ZZ dZ) ' /L» P (Zz di) de;!!J(C,d),

P\p pgS q#p
and it is clear by definition that dp vu(c, d) | £,€ D, 2w (Ap)” ®a, Ap. Thus
4 P

ap by
do. - ,d
/qubp (Cv dv) Prgriie )Lq

Applying a straightforward induction we obtain that

/L [ [ focn dn | | (Zz Zz) dp, vule,d) € [ | w@)Ar c I

P pgS pes pesS

€ 1p(Ip)AF ®, Dkiy“ (Ag)°, qa €S\ {p}.

Moreover, by Lemma 5.4.8 the expression rs defines a well defined G(Fp)-equivariant
group homomorphism. O

Write Ap, C Ay for the subgroup of Gal(K,/Fyp)-invariant divisors, namely, the even
degree divisors generated by those of the form 7 + 7. Write Agp for the degree zero

subgroup. Let

Or =0y, &) =QREW), F=QF®Zy), Stz (Fs) = (X)Stz, (Fy),

pesS pesS pesS pesS
where tensor products are taken with respect to Z¥, and
— 0 ._ 0 — —
b @ =@ St D B = D
pesS pesS pesS pesS

where the tensor products are with respect to Z. Since (51)_5 ~ I,/ Ig, we have a well defined
p

morphism
é;( SN I?‘/IT’+1.
This provides via fa, : F; — (5;( a morphism
A Za A
b B2 85 61 — 1y, (5.20)
Note that @uny and ev of (4.4) and (4.6) extend to
Qunv Hom(Sth(Fs),Zp) — Hom (Stpg,ﬁg) , evg : Ag — 8K§

Similarly as in (4.3), the composition evg © Quny provides a morphism

Hom(Stz, (Fs), Zp) > Hom(A2, KY)

Y | Qpes(z20 = 21,0) = gy, ccov @ (Fs) Rpes [uyen, (xup_zl,p

(5.21)
where Cov’(P!(Fs)) := [Tpes Cov(P!(Fp)) and each xyu, € Uy. For any zy € Ay, we recall
the functions ¢, : G(Fp) — Ky of (4.6).

XUp—22,p )lp(]luv))
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Proposition 5.4.10. Write pll’;p = (Zp)p, V° = (X)WS Indg()?p), and assume that
Xp =1 forall p € S. We have G(F})-equivariant morphisms

&vs : Hom (VS ®E(2),I' /1“1) — Hom (VS ® Ar,, I’ /1“1) ,

US ® ®(€ap(¢)zv : (Pip)r 1))) ’

pes

P = (Us®®(zv+zv)'—>§0

pes

making the following diagram commutative

sesors HOm(VE @ Apg, I'/17) Hom(VS ® A%, I' /"))
S /
Dk;2 (AF)Q 01 gaST

eV; O@unv

Homyg, (VS ® Stz,(Fs), Zp) Hom(V° ® Ags, 1’5?)

Proof. The G(F,)-equivariance of évs is clear by the definitions. Given u € Dkf (Ap)g,
we compute

lag ((evg O Pyny © pl) () (US ® ®(Zp,1 —Zp2+Zp1— Zp2) ) =

pes

¢Zp1¢i 1) s
= lim l ST ) (xgy, )P (@@ Tuy)
{Uy}peCov/ (BL(Fs) ® 1_[ (¢Zp,2¢2p,2 !

peS Uyel,

= lim 1—[ Lpfap 1—[ (—(PZD'1 qbzm) (xup)Pl(.U)(US@]lun) mod [

(U} eCov'(B1(Fs)) | g tretsy \ P2 P22

= 1_[ la, (—¢Zp'l¢zp'1 ) dp1(u)(vs) mod "1

PL(Fs) pes ¢Zp,2¢)2v,2
— S (sz,l (Piv,l = S - -
=rs(u) [v° ® ® ba, | ———|,0]| =evsors(p) [0 ® ®(zp,1 —Zp2+Zp1— Zp2) |-
pes P2y P22 pes

Hence, we obtain the required commutativity of the diagram. O

5.4.4 p-adic periods and L-invariants

Fix a prime p | p and let ¢} € H*(G(F);, A™(Stz(Fy), Z))* be a modular symbol
associated with an elliptic curve E/F with multiplicative reduction at p. The short exact
sequence

0—A)— Ay, —Z—0,

provides a connection morphism
H"(G(F)s, APS(AY, Ky — H* N (G(F)s, AP (K
Moreover, the commutative diagram (4.7) shows that

c(ev* o Pun)®), € H*'(G(F)y, A=(g))" € H (G(F),, A™(F),
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for some g, € F). The generalized Oda’s conjecture (| , Conjecture 3.8]) asserts
that, in fact, the elliptic curve E/F, is isogenous to the Tate curve defined by the quotient

ﬁp/‘?%'
Theorem 5.4.11. Let @f{ € H”(G(F)+,ﬂpum(Dkgz(Ap))ap)/\ be a family lifting gbf\

Then R
[av(qp) = 1 € O;:-(p.

Proof. Since CDf\ specializes to the Steinberg representation, we have in fact
@} € H'(G(F)+, A" (Di2(Ap)g,)"

If we consider the exact sequence

res 0

HY(G(F)s, A™(Ap,, F)Y' = H*(G(F)+, AP(AL , FY)Y' — H*(G(F)y, APV (F))),
by Proposition 5.4.10,
res(6v o )@Y = by, (ev* 0 Quny) P} | A

This implies that
gapc(eV* © (Punv)ﬂbi |Ag =0.
p
Since c(ev* o (punv)qbi |A2 lies in H”+1(G(F)+,ﬂpu°°(qu))/\, we deduce f,,(qy) = 1 from
p

the fact that (j;f is torsion free. O
P

Remark 5.4.12. As showed in §5.4.1, the elements a, € Ar are the eigenvalues of the
Uy-operators acting on the Hida family. By definition

[ap((Dp) = ap_l — 1 € Ip/lg
Thus, the relation la,(qy) = 1 implies
ordy(qp) (ap™" = 1) +log,(gy) = 0 mod I3.

We obtain that the image of ay—1 in Ip/Ig is given by the L-invariant Ly = log,(qp)/ordp(qy).
With the formalism previously described, we have showed that the derivative of ay, —1 with
respect to the weight variable is given by the L-invariant L,. In the classical setting,
this is a key result due to Greenberg-Stevens towards the exceptional zero conjecture (see

[¢595]).

5.4.5 2 variable p-adic L-functions

A
Let gbf\ € H* (G(F)JH&Z{PUOO(VP,V(E)CP)) be an ordinary cohomology class generating

an automorphic representation 7. By Proposition 5.3.6, qbi provides an overconvergent
cohomology class

P u Ueo A
O € H' (G(F)., AVS(D 2(Cy)))
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for some locally polynomial character )(p_l. Assume that we have the extension ﬁp of the
universal character k, and an element

A
@, & H' (G(F),, A"y (Ar)a))

mapping to (ﬁﬁ through the morphism p,, of (5.16). Similarly as in Theorem 5.3.7, we
can define the distribution Hop as

| fuey = @m0, feci@nan

where 0, is defined as in (5.8):
AP
8p - Ce(T(Ep), Ap) —> ndS(k,) = Cie2 (L, AF)-
Indeed, we can think 6;(@?) and p*f N1 as elements

5,(@) € H"(G(F):, APV™(Meas(T(Fy), Ar))”,

PN € HT(F),CT(4r), Ap) = Hy (T(F), Indyiy) CO (T(AL"), CUT(Fy), Ap)) ).

hence the pairing (3.15) applies and the cap-product is well defined. The measure Ho? is

considered as the 2-variable p-adic L-function since its specialization at different weights
0, : O;fp — C, provides different measures pg, (Hfbﬁ ) of Gr. In particular

Py (Ha?) = Bt

by Theorem 5.3.7. Thus ugp interpolates Wop as the weight varies.
A A
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Chapter 6

Main results

Throughout this chapter we will assume that the automorphic representation is attached
to an elliptic curve E/F.

6.1 A p-adic Gross-Zagier formula

As in §4.1, let us assume that S = {p} and G(F,) = PGLa(Fy), Vg = Stz(Fy) and T does

not split at p. We have seen in §5.2 that we can construct a measure Mg attached to a

modular symbol (j)f\ In this setting the distribution is 0-admissible, hence bounded.
Let & € C(Gr,C) be as above with p*&|r,) = A. If we also assume that &, = 1, we

have by Remark 5.1.10

Write Meas(Gr, Cp) for the space of measures of C(Gr, C,), i.e. bounded distributions
of G endowed with the natural group law

/QT F(s * p2) = /g T /g Fla B (). (6.1)

Thus, B lies in the kernel Iz of the algebra morphism €; given by integration, defined
by the exact sequence

0

Y
~

€
. > Meas(Gr, C,) —— C > 0 (6.2)

Since &, = 1 the character & descends to a character of Q;ﬁ, denoted the same way. In
4.1.3 we have constructed Darmon points Pé € E(K,) ®z Z associated with &. We aim to
relate the image of M in Ig/ Ig with Pg‘. In order to do that, we introduce the following
well-defined morphism

Q:Grozl — Ig/I; Jg, fdp(0) = &)1 f(0) = £(1), o€gr.

(6.3)
Denote by (x + X) the nontrivial element of Gal(K,/F,). Since g € F, we can regard the

difference ﬁg — Pg as

P, -PYeT(Fy)®zZ,  T(F) =K} /Ff={xeKS & x=1}cK, (6.4)

and we can consider its image through the natural morphism provided by the Artin map
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Theorem 6.1.1. The image of Mot in Ig/lg s given by

_ =p
Hor = [0 : 0417 g orecy (Pg - Pg) mod Ig.

Proof. Let At := Z|G(F)/T(F)] and A% the kernel of the degree map deg : A7 — Z.
The normalizer of T(F) in G(F) is T(F) = | where J? € T(F), moreover, T, = [T,. Since T,
is T(F)-invariant one can construct a G(F)-module morphism

AL s A0
Zz’gi'T(F) —— 2 & Tp

The morphism in (4.3) restricts to a G(F)-equivariant morphism Hom(Stz(Fy), Z) —
Hom(AY, K3). Thus, we obtain the following diagram for M = K} or K;;/qZ

¢} € H*(G(F), AMIY=(Stz(Fy), Z)(1))

|

H*(G(F), APV=(AY, M)(M))

H"(T(F), APIV=(M)(A))

since AR (A, M)(A) = coInd?élf;(ﬂ{p}Um(M)(A)).
By definition reS(IPKh,,) = iKﬁ((PK) mod g%, and P; =n"Né&n ¢X|Tp. By the same

construction of 4.1.3, let ﬁg =n"nén Il)élfp where -|;p is defined as in (4.10) but the
evaluation is at T, instead. Thus,

—p ,
P =Pl =n"NENEV(ik:d)),

where ﬁz — Pg is seen in T(Fp) ® Z,

EV : APIVS(AL, KX)(A) > colndy(p) (API=(KF)(1)

fr———EV(f): (h,&") > A(h) - f(h~'g")(h"']T(F) = h™'T(F))
and I, gP € G(F) X G(AP}Y*) Then one can take the composition

BV o igy : APIU2(Stz(Fy), Z)(A) — colndy ) (ﬂ{p}U“(T(Fp))(A))

and
1]T
(Evoig@) iy =am-f T e

Since ¢ := @ orecy is a group homomorphism, by Lemma 5.1.6,

xu = Tp | PN
[ kX Py = .
(e o EV o ig; (¢)) (g") ffl( e dw)(g) WGC%%”[E (xU — Tp)
— P ]l g p 6 g >(- p g ,
(LleCov(Pl(Fv))L;uqb(g )(Au)- ( ) P(g°)(0pt) = 6,¢(g")(f)
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where 63,¢(g") is extended to a p-adic measure of T(Fy) using Riemann sums, and ¢ is
seen as an element of C(T(Fp);IX/I?().

For any h* € C?(T(Aﬁp}uw),Cp) the pairing (h", £ 0 EV o igx(¢))+ € IX/I)Z( of (3.14) is
represented by the distribution that maps f € C%(Gr, Cp) to

/I:(A”) hp(tb) . 6;¢(tp)(p*fp _ p*fp(l))dxtp — <hp ® p*fp’ 6’;¢>+
since 550 (")(fo(1)) = £o(1) - G(E*)(1) = 0. Thus

This implies that given f € C%(Gr, Cp) such that p*f Ir@an=p*E |T(A};)7 by lemma 3.1.4

/g fd ((p o recy (ﬁg - P;)) = ((r]p N Ei) N p*fp) N 5;(1)?\
= (" 1) N (& ®ph)) N 510)
(a)
=02 : 0,107 1 (0°f Iriam) N 8307 = [OF: O4] /QT Fdityy,

where the cap product (n* N Ei) N p*fy is taken with respect to (3.13) and (a) follows

from (3.17). This shows that a representative of ¢ o recy (ﬁg —Pg) agrees with M
at all functions f € C(Gr,C,) satisfying p*f |T(A§): p*& |T(A}_i)' Thus the difference

4

W= gy = @ orecy (ﬁg - Pg) vanishes at the subspace

CelGr,Cp) = {F € CGr.Co) p'f Iriap€ Cop Irap)-

Clearly, u’ € I¢, but it is easy to show that

o _ | fQ), feCear,Cp);
W=k og, /ngd(SE = { 0, fe CE(QT,C;J)- (6.6)
Since clearly 6¢ € I¢, we conclude that p’ € Ig and the result follows. O

Remark 6.1.2. The morphism ¢ o recy : T(Fp) ®2 Z — Ig/Ig vanishes at T(F).
Indeed, we have seen in the above proof that the class of a measure in Ig/Ig depends on

the image of functions in Ce(Gr,Cp) (indeed such a class is a local attribute), and for
such a f € Ce(Gr, Cp)

/ngd (@ orecp(y)) = p Ex(y) ™ - flrecy(y) = f(1) = p*&a(y) ™ frec®(y™)) = f(1) = 0,

for all y € T(F), where rec? : T(A;) — Gr is the natural morphism.
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6.2 Exceptional zero formulas

Let S be a set of primes above p and assume that G(Fs) = PGL2(Fs) and V, is ordinary
at any p € S. Let Hos be the measure of Gr constructed in §5.2. We can write

VE= (R Stz(Fp)(e) @ (R)VE,  where  VE # Stz(F)(#), for any g € S_.
peS, peS_

If we write r := #S,, Remark 5.1.10 makes us think that Hgs € I’ for all & € CYGr, Z)"s+
with & [r.,)= A. Moreover, Mazur-Tate interpretation realizes the image of Hos in

17/ as the r-th derivative of the corresponding p-adic L-function. Hence following the
philosophy of the p-adic BSD conjecture, such image must be related to the extended
Mordell-Weil group of E. Precisely, this is the content of Theorem 6.1.1 when S = {p},
VE = Stz(Fy) and T does not split at p, since Darmon points are supposed to generate the
extended Mordell-Weil group in these rank 1 situations. In | , Theorem A|, Fornea
and Gehrmann prove a similar result with plectic points, when S = S, and T is inert at
any p € S. Our aim in this section is to adapt the proof of Theorem 6.1.1 to establish the
general result for arbitrary S, Vg and T.
Write S; = SL U S2, where

Si :={p € S,, T splits in p}, S_% ={q € S;, T does not split in q}.

Recall that the construction of (j))s\ (and thus y¢§) depends on the choice of x5 € Y™,

For any q € S_ we choose x, € V% such that a(x,) = 1, where as in proof of Theorem

5.1.9
L(1,1,)
&q(1) - L(1/2, g, &4) J1(,)

is the local factor appearing in Waldspurger’s formula. Recall that this can be done
because the Euler factor at q does not vanish. For any p € S1, we choose x, € Stz(Fy)(ep)
to be the image of 1, , € CO(PL(Fy), Z), once we identify T(Fy) = F as a subset of PL(F,)
by means of t + 1(t) * co. Thus, we can write

2 2 2
X =x0® ® Xp ® ® xXq € p5Y® c g,

pesi qeS_

a(xe) = Ea(t){ma(t)xq, Ttq(Jo)Xa)ed™t,

2 N —
Write Pg* € E(KS)652 ®z Z for the plectic point associated with x5t € 7StV For pEeE 5_2H
+

there exists an automorphism o, € Gal(H,/F,) that coincides on E(Ky)e, = K;/q% with
the non-trivial automorphism of K,. Hence, the following point can be seen as an element

of T(Fs2) := @ pes2 T(Fy)
s2 2 A
Q" = 1_[(0p —1)|P;* e T(Fs2),
pes?
where again (A) stands for the p-adic completion of the non-torsion part. In case S2 = 0,

. eyl b (14d;)
we write Qg =L(1/2,m, P &)z HPESJ{ %'
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The product of morphisms ¢ o rec, given in (6.3) and (6.5) provides a morphism
@ orecg, : f(F5+) ®y 7 —> Ig/IgH. (6.7)

If we write €s_(ms_, &s_) for the epsilon factor appearing in Theorem 5.1.9 at primes
q € S_, we obtain:

Theorem 6.2.1. For all & € CY(Gr, Z)"s+ with & IT(F)= A, we have that Hos € Ig and
the image of Hos in Ig/lg” is given by

_ s 53 -1 53 r+1
Hos = (=1 [0 O] -es (15, &5 ) - @ o recs, (q51®Q5) mod I,

where gg1 = ®p651 gy € YA’(Fsi) is the product of Tate periods and s = #S1.

Proof. Step 1: Let us consider the subspace of functions
Ce(Gr, Cp) = {f €Clgr,.Cy), o'f |T(A§;)€ Cop'e |T(A§)}'

Recall that qb/s\ is by construction the image of x € ¥ through ®; of (2.6). Let qbi*

be the image of x ® ®qu_ Xq € S Using Theorem 5.1.9, since locally constant
characters are dense and a(x,) = 1, we deduce

/ fapgs = es (s, &) / fapgse, (6.8)
Gr Gr A

for all f € Ce(Gr,Cp) such that f |1 y= Es_. Over Ce(Gr, Cp), this characterizes Hos
in terms of Hss

Step 2: For any p € Sy, any group M and any finite rank Z,-module N, we can
consider the diagram

H™(G(F)+, A%+Y=(M @ Stz(Fy)(ey), N))*

liv \
Hm(G(P)+/ ﬂ&UOO(M ®z AO KX ®Zp N)(gp))/\ - Hm+1(G(F)+; ﬂs+uoo(M; I%;( ®Zp N)(gp))/\,

where the vertical arrow arises from (5.21) and the horizontal arrow is the connection
morphism of the degree long exact sequence. We write ig, for the composition of iy, for

all pe S2, and c¥ , ¢+t ... ci+s=1 wwhere S1 = {py,---, ps}. Thus,

p1r Tp2 Ps

is, @3 € H'P(G(E)y, ATV2 (A%, KY ® FY))(es, )

52’

Let us consider the G(F)-equivariant morphism

EV : AS+U® (AL KX ®F><1)()\ €s,) — colnd¢E) (;7(5"*}0"(1(X ®FX1)(/\ €S+))

s327 T(F)

fr— (1,8%) > es.(h) - Ah) - F(h7'85) (@ ez (715 — ')
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where h, g € G(F) X G(AS+Y®). Since we are evaluating at divisors of the form k=17, —
h='1, it is easy to show that the image of qbi" lies in T(Fs,). Thus, by Shapiro,

EVig, @5 € H'*(T(F);, ASY(T(Fs,))(es,)".

We claim that
842— S,y S-% -1 Sy : Sy T L4
15 ©Q; = #(0/07) - ne)nEVis.¢) e T(Fs) 922 (69)

Indeed, by functoriality and the description of the multiplicative integral given in §4.1.1,

we have that s s G(F
E\/'Z.SJr(]b/\+ = E\/YZ‘S?_(,Dunv(,b)\Jr U U I'GST((F)):Cp,

pes!

where @,y is the morphism of (4.4), ¢, € HY(G(F), Stpx) is the class associated with the
extension &px of (4.5), and

Punwdy € H'(G(F),, A* (VS © Stp;l,ﬁgi(esl)))% Stps = ) st
+ + pGS}_

is the corresponding push-forward. In fact, | , Conjecture 3.8] can be interpreted
as

S+ _ S+ ord
qounv¢A U U Cp = qSl ® ¢)\ U U CD 4
pest pesSt

where cgrd € HY(G(F),Stz(Fp)) is the class associated with the extension (see | :

§6.1])

Stz(Fy) ——— &Ez(Fy)
f— (f(g7'*),0)

and

s X

Ez(Fp) = {(cj),y) € C(GLa(Fy), Z) X Z: ¢ (( t) 8) =y op(t) + <P(g)} /(Z,0).

For p € S, write 7, and T, for the points in P!(F,) fixed by T(Fp) as in §4.1.1. Thus, if
we write

d+ 7T, -
M) , (6.10)

a b
=vp(d+7Tp- —( +1)-1 )
o1 (c d) 0u(d + %0~ (03 + 1) - 1oy, (dﬂp_c
the element (¢1, 1) € Ez(Fy) is a generator mapping to 1 under the natural G(F)-morphism

&Ez(Fy) — Z. Hence the cocycle resg((lf)) cgrd has representative

ey (B)(x) = (1= HPr(x) = (1 - 1) ((vp +1)- Ilop,v) (x - %p)

x_Tp
X—T
= 1 (IL —t1l )dx "1,
(/T(Fp) 0r (1) {thor, = FThoy, | 47t X —Tp
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for all t € T(F). We compute, recalling the definition of z, of Lemma 3.1.4,

(T]SJr N EA) N EVier /S\

. G(F)+ _or
st ® (ns+ N&ynN EVlsqu U U resT((F)) ord
pest

st ® n% N U resT(F) zp N &L mEVZSQ(P/\
peS1

i (Of*/sz)tOr 51 ® (nsf n EA) n E\/'isngiz,

where the third equality follows from Lemma 3.1.4 and the second from the fact that

q)(xSUp)(Cgrd(t)) — /Y:(F ) :H‘OF,p(T) . CD(xSUP) (T]lOp,p — tTlOp,p) d*t

/T - (Imm,(r) — tﬂoprp(f)) (x5 (Tﬂop,p) .

[z o6 o 10, )@,
T(Fy)

for any ® € APIVSYUC(St5(F,), M), = ASY®(M), and x5V € pSUP If 2 = @, the same
arguments used in the interpolation formula (Theorem 5.1.9) together with the fact that

-1 -1
a(lo,,) = % (as seen in the proof of | , Theorem 7.5]) proves the claim (6.9)
’ “Hy

in this case. If S_% # 0, we apply the same arguments used in the proof of Theorem 6.1.1
2 2
to obtain (1]53 N E)\) N EVngrqb/Sf = Qg*, and to deduce the claim (6.9).
Step 3: Similarly as in (6.10), if p € S} and we write

d+’fp'c
d+1t,-c ]IOFrv(d”v'C)
a b . ) , (6.11)

<f31(c d)=<d+fv'c>'(d+—fp.c

the element (¢y,1) € Epx is a generator mapping to 1 under the natural G(F)-morphism

G(F)

Sz — Z. Hence the cocycle res g

Cp has representative

X—'fp
- Tp ) e (X_Tv )

- Tp

cp(D)(x) = (1 = )pa(x) = (1~ t) (

= t]ltOFv(x w) .

4

x_’fp _Tp

x Tp) (x _ Tp)z;o(t)(ﬁjg) _ Tp)zp(t)(%)

€ T(F) - (x

for all t € T(F). Therefore, we can consider the composition

EV o igx : AV (VE,Z)(A) — colndﬁ((g (ﬂs+u°°(StFxl , f(Fsz)(esJ)(/\)) ,
» + st +

and the cocycle cq1 = ®p651 cp: T(F) — Stpxl, obtaining
+ + S+

7

=\ Sz (42 ) (g5 ) (L)
: i _ . Xu T u-m
(BV 0 ix(9)) (1(g™) (es: () = ecm []&)a ( )

UelU peS,
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where y = ()/p)pes}r € T(F), ay € T(F); and s(p) = =1 if p € SL and 1 otherwise (recall

that zy = lr,) for p € S%). Since ¢ = [Tpes, &y 1= @ o recs, is a product of group
morphisms ¢, that vanish at T(F) by Remark 6.1.2,

(Vo (0)(s) [es1() =, Jm (—1)5Z</>(g5+)(ﬂu>-l_[(zp(m-ep)(xu_ﬂ)

UeCov(PL(Fs,)) e peS, U T

= (-1)°¢(g™) (® Op(lp N Zp)(%o)) = (_1)56*s+¢(gs+) (1—[ (&N Zp)(?’v)) ,

PES, PES,

where 6§+¢( Qp) is extended to a p-adic measure of the compactly supported functions in

T(F,) using Riemann sums, and ¢ is seen as an element of H(T(F), C(T(Fp),lg/lg)) by
Remark 6.1.2. Since @ is a group homomorphism, we have that

/Q fd (l_[ fp(tp)) = p&(ts,) ™ - p'flts,) = fF(1) = es,(ts,) ™ - p"fts,) = f(1),

peES,

where ts, = (ty)p € T(Fs,). Thus, for any h%+ € C?(T(AZS:+U°°),CP) the element

(-1)° <h5+,[ oEVo 1K§(¢)) (CSJ{(Z))>+ c Ig/Igﬂ

obtained by means of (3.14) is represented by the distribution that maps f € C%(Gr, Cp)
to

A(A5+) hS+(t5+) . 6’;+qj(t5+) (® Zp(Z)(ES;lP*f& _ f(l))) A%#P

pES,

_ <h5+ & (es. 7 pfs. = ) R 5, 6’;+q>> '

peS,

This implies that, for any f € Cg*(QT,Cp) ={f € Cc(Gr,Cp), p°f lrrs )= P*E IT(rs)}

/gT fd ((p o recs, (qs}r ® ng))

O o a5 i ns)
T

o 0o (@ s
+ Uy PES,
tor

= (17105 0.1 (N p ) N 5 95 = F- (10 ) N1 85 65

= (<17 [0 0,1 /g Faps..
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by Lemma 3.1.4 and (3.17), since (N p*&) N 65§37 = [, Edpys. = 0.
+ A
Step 4: Analogously as in Theorem 6.1.1, combining the previous calculation with
S - S?
(6.8), we deduce that p’ := Hos —(=1)%-[07" : O] ' €s_(ms_, &) - porecs, (qsi ®Q; )
vanishes at Cs(Gr, Cpy). Clearly, y’ € I¢ and u’ = u’ % 0g, where

[ £, £ #CelGr,Cy)
/gT Jdbe = { 0, feCilGr ).

Since clearly 6¢ € I¢, we conclude that p’ € Ig” and the result follows. O

6.3 The Hida-Rankin p-adic L-function

Let & : Gr — Z* be a locally constant character such that p*& I7(F)= A. Using the
natural ring homomorphism Z € Ar ® Z, it can be seen as a function in C(Gr, Ar ® Z).
We consider

Lp(¢§,£,k) = / 5dy®§ € Ar ®7 Z. (6.12)
Gr
For any weight 0, € Ap(C,) = Hom(Af, Cp), we write
LP(¢§/ E/ Gp) = PQP(LP(¢§/ E/k)) € CP'

We can think of Lp((pf]\, &, k) as a restriction of the two variable p-adic L-function Hot to
the weight variable.

Assume as in the above section that qbf)\ is ordinary (where S = p), and let qgf)\ be
its associated overconvergent modular symbol. We will also assume that there exists a
family CDi passing through qgﬁ, hence we can construct the Hida-Rankin p-adic L-function
Lp((j)i, &, k) associated with (I)ﬁ. Recall the augmentation ideals I, I, fitting in the exact
sequences

0 >~ ] ~ Ap -

>Z, —> 0 and 0 —> I, —> A,

> Zp > ()
Let S be a set of primes p above p such that:

e T does not split at any p € S.

e The representation VﬁZ is Stz(Fp)(eyp) for all p € S.

e We have that p*& |1rg)= €s |7(rs)-

As discussed in §5.4.4, for any p € S one can identify E(Kp)e, with K;(/q%. For any
point P € E(Ky)e,, we can think its trace P + Pe E(Fp)e, as an element

P +D e Fy/q3" C E(Fy)., = {P € E(H,,); P" = &y(1)- P, P =P},

where H,, /K, is the extension cut out by &,. Hence, by Theorem 5.4.11 it makes sense
to consider

la, 0 Tr(P) := by (P + P) € I,/I2.

This implies that, given a plectic point Pg et (Ks)es ®z Z, we can consider

by 0 Tr(P?) := (ﬂ la, o Tr | (P2) € I' /T @7 Z.

pes
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where 7 := #8S.

Remark 6.3.1. Recall that ¢§ € H*(G(F), APY>(VS ®z, Vs v ,Zp)(A)), where V is a

Z
product of twisted Steinberg representations and V° = ®q¢5 . Since for any v° € VS
we have a G(F)-equivariant morphism

APR(VS @7 V', Z,) — ANV, 2y — (oY),
with
¢(US)(85)(US) = qb(gp)(gp\svs ® US)/ Us € VS/ gs = (gP\SI gp) € G(ASUOO)/

we can consider ({)K(vs) € H”(G(F),ﬂsu‘”(Vg,Zp)(A)). By means of qbz(vs) and a char-
acter & we can construct the corresponding plectic point (depending on vs)

P?(0°) € E(Ks)es ®z Z.

Let Pg = Pg(v(s)) be the plectic point corresponding to vg € V5 such that a(v(s),q) =1
for all g € p\S, where the pairing a is that of (5.12). Recall the Euler factors €,(mty, &p)
introduced in §5.1.5. The following theorem is a p-adic Gross-Zagier formula for the
Hida-Rankin p-adic L-function:

Theorem 6.3.2. Assume that r = #S # 0. Then we have that

Ly(¢", & k) el @2 Q.

Moreover,

Lp(¢h, & k) =

Y0500 1—[ ep(Tty, &) - bas 0 Te(PY) (mod I'! @7 Q). (6.13)

p¢s
Proof. Since @, € H"(G(F), APV (Dy2(A)a)(1)) is such that

p1(P}) € HY(G(F), APY>(V® @z, Stz, (Fs)(es), Zy)(A));  V° = ® V.,
q¢S

the family lies in fact in

) € H'(G(F), A (Dy2(ADS(E)A), 2" = (e(7 ) -ay),-

Hence we can apply rs and evg of Propositions 5.4.9 and 5.4.10 and we obtain
&vs o 1 (cpj) € H'(G(F), APV(V® @z, Ar,, I' /1) (e5)(M))

Let Ar := Z[G(F)/T(F)]. Since 7, and T, are T(F)-invariant, one can construct a
G(F)-module morphism

Ar —— Aps = R)pes Ar, © As = R yes Ao
28+ T(F) i ®pes gi - (Tp + Tp)
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The morphism evgo@uny restricts to a G(F)-equivariant morphism Hom(Stz, (Fs)(¢s), Zy) —
Hom(Ag, ﬁ?)(es), where A% is the set of degree zero divisors in Ar. Thus, for all 5 € V°
we obtain the following diagram for M = ﬁg or M = ®pes 4 q ®pes EA(Fp)gp =
E(FS)ES

¢! (v°%) € H'(G(F), ASV™(Stz, (Fs)(es), Zy)(A)

l(puniv

H"(G(F), AV (Epz, M)(e5)(1)) H"(G(F), AY=(Strx, M)(es)(4))

lev|AT l

H'(T(F), A= (M)(es)(A)) ———— H"(G(F), A°**(A}, M)(es)(A)

since ASY°(Ar, M)(A) = coInd?((lf))(ﬂSU“(M)(/\)) If M = @5 F/9%, we have

tlllat (p}llmivqbi(vs) extends to an element ¢h (%) € H”(G(F),ﬂSU“(SF;,M)(es)(/\)). It is
clear that

Tr (pg(vs)) =S N & Nev oy 3(0%) € E(Fs)es ®Z.

If we apply the logarithm fa, : M — I"/I"*1 by Proposition 5.4.10 we have that
fa o Tt (Pg(vs)) 5 NELN fagev oy $L0%) =15 N Ex Nev |ay rs @ (0%).

where ev |, rs® (0%) € HY(T(F), ASY°(I" /I"*1)(e5)(A)) is defined as in Remark 6.3.1.

Write (-) for the reduction modulo I"*'. Let @ € ﬂpu‘x’(Dkgz(Ap)gp) and let f° =
frs ® fP € CAT(AIY™),Z), where fns € CUT(Fps),Z) and fP € CUT(AL™),Z).
Moreover, assume that H C T(Fp\S) is a compact subgroup small enough so that fp\s =
2 f\s(®) - Ly If we write 52 = ®p€p\5 Op, we compute the pairing (3.14):

(S ev |ag rsP(B5(La))) = /

T(A2V®)

(Fs ® £7) (1) e Lay rs@(B5 (L))"t

- [ / )+ (655 079) (@)

xéS(ILH) ® (§§)(’cp + Tp)) d*xd*z

pesS

= Vol(H)/ ff’(z) rs®(z)

6S(fp\5) ® ® €ap((PTp(PTp) 1)) d*z

pes

= Vol(H)/ f”(z) / 65(fp\5) nfap (c7p+d)(c7p+d)) dpk 1.D(z)d*z

pes

@ v
: (_11()2; . £(2)- / 550s) - [ [0 (et + Dt + D) dp, s @@z

pesS
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—

D) vol(H)
(=1) T(APY®
vol(H)

(=D Jrea

)fp(z) : /L 6§(fp\5) . 1_[ k=t ((ctp + d)(cTp + d)) dpk%SCD(z)dxz

pes

—
o
~

vol(H)
(=1

where (a) follows from Corollary 5.4.6, (b) follows from the fact that ka,(x)—fs,(x) € I2 by
definition of £,,, and (c) follows from Lemma 5.1.6. Hence by Lemma 3.1.4 and relation
(3.17), we obtain

pUm)f P(z) - ©(2) (% (fp\s ® ﬂT(Fs)))dXZ = (fS ® L1(ks), 0,D)-,
F

Lo(¢h, &, k) = ((p*&) nn) N &3(@F) = [0F - 0417 (075 ® £5) N (7° N yqry))) N 53 (D)

_ (-1)" s . P<S _ (-1)"
- (03 : O,] - vol(H) T 0CANCY lar rsq)A(ép(]lH)) - [0S : O,] - vol(H)

Since qf)ﬁ(tvs) = tqbi(vs), for all t € T(Fp\s), the morphism

Ly 0Tt (pg CH! H))) .

v,bs VS — T /I 0, ° — lo o T (Pg(vs)) ,

satisfies 5 (t0°) = p*&(t)~1 -5 (v°) for all t € T(Fp\s)- By the results of Saito and Tunnel
(Theorem 2.7.1, see also | 1Ll ]), the space

HOIHT(FP\S)(VS ® p*E, Ir/Ir+1 ®7z @)

is at most one dimensional. Moreover, in §5.1.5 we have introduced the pairing
a(01,09) = / prE(t)(tor, Joa)d™t € Homyr, ) (V° ® p'e, Q)% = Q.
T(Fp\S)

By Saito-Tunnel, we have that
Y3 (5, (1n)) = ¢°(07) - (65 (1m), v5)-
Moreover, also by Saito-Tunnel,

a(v’, 6?(]1;1)) = a(vg, 62(]111)) - a(v°, vg).

From the symmetry of a, we deduce a(ég(]lH), 08) = a(ég(]lH), 65(1H))%, and the result
follows from the computations of §5.1.4. O
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