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Abstract

We consider some models of random graphs and directed graphs and investigate their

behaviour near thresholds for the appearance of certain types of connected components.

Firstly, we look at the critical window for the appearance of a giant strongly connected

component in binomial random digraphs. We provide bounds on the probability that the

largest strongly connected component is very large or very small.

Next, we study the con�guration model for graphs and show new upper bounds on the

size of the largest connected component in the subcritical and barely subcritical regimes.

We also show that these bounds are tight in some instances.

Finally we look at the con�guration model for random digraphs. We investigate the

barely sub-critical region and show that this model behaves similarly to the binomial

random digraph whose barely sub- and super- critical behaviour was studied by �uczak

and Seierstad. Moreover, we show the existence of a threshold for the existence of a giant

weak component, as predicted by Kryven.



Resum

En aquesta tesi considerem diversos models de grafs i graf dirigits aleatoris, i investiguem

el seu comportament a prop dels llindars per l'aparició de certs tipus de components

connexes.

En primer lloc, estudiem la �nestra crítica per a l'aparició d'una component fortament

connexa en dígrafs aleatoris binomials (o d'Erd®s-Rényi). En particular, provem diversos

resultats sobre la probabilitat límit que la component fortament connexa sigui sigui molt

gran o molt petita.

A continuació, estudiem el model de con�guració per a grafs no dirigits i mostrem

noves cotes superiors per la mida de la component connexa més gran en els règims sub-

crítics i quasi-subcrítics. També demostrem que, en general, aquestes cotes no poden ser

millorades.

Finalment, estudiem el model de con�guració per a dígrafs aleatoris. Ens centrem en

la regió quasi-subcrítica i demostrem que aquest model es comporta de manera similar al

model binomial, el comportament del qual va ser estudiat per �uczak i Seierstad en les

regions quasi-subcrítica i quasi-supercrítica. A més a més, demostrem l'existència d'una

funció llindar per a l'existència d'una component feble gegant, tal com va predir Kryven.
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CHAPTER 1

INTRODUCTION

1.1 Probabilistic Combinatorics and Thresholds

Probabilistic combinatorics is a relatively young area of maths which can trace its roots to

the work of Paul Erd®s and co-authors approximately 70 years ago. Since then, the area

has developed in two di�erent directions. The �rst of which involves existence proofs

utilising the probabilistic method whereby we use the simple fact that if a randomly

chosen object has a property with positive probability, then surely there must be an

object with this property. This is particularly useful as it is often incredibly di�cult to

come up with explicit constructions of objects with a given property. A good example of

this is Erd®s' lower bound on the diagonal Ramsey number R(s, s) ≥ 2s/2 [23] which was

proved with the probabilistic method and is much better than all explicit constructions,

none of which are even exponential in s.

The second direction involves properties of random combinatorial objects. Here we

sample a combinatorial object from some distribution and any parameter which one may

be interested in is now a random variable about which there are many natural questions

such as what is its expectation, variance etc. It is this direction which we shall follow in

this thesis and we will interest ourselves with thresholds in random graphs and directed

graphs.

If X = Xn is a random combinatorial object with parameter, p(X) = pn(Xn) then we
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say that r = r(n) is a threshold function for the property P if the following holds,

P(Xn ∈ P) → 0 as n→ ∞ if pn(Xn) ≪ r(n)

P(Xn ∈ P) → 1 as n→ ∞ if pn(Xn) ≫ r(n)

Moreover, we will say that r is a sharp threshold if for any ε > 0,

P(Xn ∈ P) → 0 as n→ ∞ if pn(Xn) ≤ (1− ε)r(n)

P(Xn ∈ P) → 1 as n→ ∞ if pn(Xn) ≥ (1 + ε)r(n)

In both of the above, we have statements of the form P(Xn ∈ P) → 1 as n→ ∞. At some

points in the remainder of this thesis we shall refer to this as Xn having P asymptotically

almost surely (abbreviated as a.a.s.)

In this thesis we look at sharp thresholds for the existence of connected components

of linear size in various graph and directed graph models. We also look very closely in at

these thresholds and investigate the behaviour of the size of the largest connected com-

ponent within a (1 + o(1)) factor of these thresholds. In the remainder of the chapter we

shall introduce the relevant random models and discuss the prior results on the behaviour

of the size of the largest component near such thresholds.

1.2 The Erd®s Rényi Random Graph

The Erd®s Rényi model is the oldest random graph model and we shall denote it by

G(n, p). It is a graph on vertex set [n] = {1, 2, . . . , n} formed by including each of the
(
n
2

)
possible edges independently with probability p. Note that this is not the same model

originally introduced by Erd®s and Rényi who considered the model G(n,m), where we

take a uniformly random graph on n vertices and m edges. The two models are however

essentially equivalent when one takes p = m/
(
n
2

)
and in particular if P is any monotone
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property, then limn→∞ P(G(n,m) ∈ P) = limn→∞ P(G(n, p) ∈ P) (see [44, Section 1.4]

for example). As such, it is almost always preferable to work with G(n, p) due to its

desirable properties such as the independent edges and we shall phrase all result in this

section for G(n, p) however they all hold in G(n,m) with m =
(
n
2

)
p.

The component structure of G(n, p) has been of interest since the model was �rst

introduced. In one of the �rst papers written on the model Erd®s and Rényi [24] proved

the following result fully describing the component structure for almost all p.

Theorem 1.2.1. Let c > 0 be constant, n ∈ N and consider the model G(n, p) with

p = c/n. Then a.a.s.,

� If c < 1, the largest component is a tree of size

f(c, n) = 1+o(1)
c−1−log(c)

(
log(n)− 5

2
log log(n)

)
;

� If c = 1, the largest component is of order n2/3;

� If c > 1, then the largest component has size g(c)n where g(c) is the unique solution

x > 0 of 1 − x = e−cx, and all other components are of order at most f(c′, n′) for

some c′ < 1 and n′ = (1− g(c))n.

The range c < 1 is known as the subcritical regime while c > 1 is referred to as the

supercritical regime. The behaviour of the size of the largest component as c passes 1

going from subcritical to supercritical is known as the �double jump� and is perhaps one

of the most surprising properties of random graphs.

Following on from the work of Erd®s and Rényi it is natural to ask what happens

if c → 1 rather than c = 1. The study of this range was started by Bollobas [7] and

�uczak [52] who proved the following,

Theorem 1.2.2. Let n ∈ N and take p such that np = 1 + ε, where ε = ε(n) → 0, and

de�ne k0 = 2ε−2 log(n|ε|3).

� If nε3 → −∞ then a.a.s. G(n, p) contains no component of size greater than k0.

3



� If nε3 → ∞ then a.a.s. G(n, p) contains a unique component of size greater than

k0. This component has size 2εn(1 + o(1)).

When ε < 0 in the above theorem we are in the barely subcritical region and ε >

0 is known as the barely supercritical regime. This only leaves the case where |ε| =

O(n−1/3). Note that if we take ε ∼ n−1/3 both bounds on the size of the largest component

from Theorem 1.2.2 are of order n2/3 so by monotonicity it should be unsurprising that

the order of the largest component is n2/3 for this entire range. We call this range the

critical window and parameterise it as p = n−1+λn−4/3 for λ ∈ R. The size of the largest

component inside the critical window has the property that it is not strongly concentrated

as for all other ranges of p. In fact there is a continuous random variable X = X(λ)

whose domain is all positive reals such that the size of the largest component of G(n, p)

is distributed as Xn2/3. The exact distribution of X was determined by Pittel [69] and

explicit bounds on its tails were given by Nachmias and Peres [63]. Finally, the seminal

paper of Aldous [2] shows that the rescaled component sizes behave like the ordered

excursion lengths of a Brownian motion with parabolic drift.

Together all of these results provide a thorough description of the component sizes of

G(n, p). Furthermore, it provides a picture of what may be true in other random graph

models and thus far this picture appears to be correct. Other models appear to go from

a subcritical phase through barely subcritical, critical window, barely supercritical and

supercritical phases upon the correct choice of parameterisation. We describe how this

phase transition happens and our new results in some random graphs and directed graphs

in the following sections.

1.2.1 A digraph analogue: D(n, p)

The model D(n, p) also known as the binomial random digraph is a digraph analogue of

G(n, p). It is a digraph with vertex set [n] formed by including each possible directed edge

with probability p independently. Note that it is entirely possible to have edges in both
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directions between a pair of vertices and this happens with probability p2 for any given

pair. In digraphs there is more than one notion of connected component, in particular

there are the following 4 types.

De�nition 1.2.3. Let G be a digraph and v a vertex of G then,

� the weak component containing v is the component containing v in the underlying

undirected graph;

� the out-component of v is the set of all vertices u such that there is a path from v

to u in G;

� the in-component of v is the set of all vertices u such that there is a path from u

to v in G;

� the strong component of v is the set of all vertices u such that there is both a path

from v to u and a path from u to v in G.

Due to the nature of D(n, p) it is simple to reduce the question of the weak, out and

in-components to studying components in G(n, p). Thus in D(n, p) the main topic of

study is the strong component structure. The strong component structure in D(n, p) is

surprisingly close to the component structure of G(n, p) which further reinforces the fact

that D(n, p) is a digraph analogue of this model.

The �rst results on D(n, p) were obtained independently by Karp [47] and �uczak [53]

who showed

Theorem 1.2.4. Let c > 0 be constant, n ∈ N and de�ne p = c/n. Then a.a.s.,

� If c < 1, the largest strong component of D(n, p) is a cycle of length O(1) ;

� If c > 1 then the largest strong component of D(n, p) has size g(c)2n where g(c) is

as de�ned in Theorem 1.2.1 and all other components are cycles of length O(1).

Note that even the fraction of vertices in the largest component when the graph is

supercritical is similar to what is seen in G(n, p). The supercritical regime has particularly
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striking similarities - the constant is the square of what is seen in G(n, p). Intuitively this

is because one needs both a large in-component and a large out-component, each of which

happens with probability approximately g(c). Following on from this result, �uczak and

Seierstad [55] proved the following analogue of Theorem 1.2.2. In this theorem a strongly

connected digraph is complex if it has more edges than vertices (so it contains multiple

cycles).

Theorem 1.2.5. Let n ∈ N and ε = ε(n) such that ε→ 0 as n→ ∞. Choose p so that

np = 1 + ε then,

� If nε3 → −∞ then a.a.s. every strong component of D(n, p) is an isolated vertex

or a cycle of length O(1/|ε|).

� If nε3 → ∞ then a.a.s. D(n, p) contains a unique complex component of size

4ε2n(1 + o(1)) and every other component is an isolated vertex or a cycle of length

O(1/ε).

This leaves the study of the critical window which again can be found when p =

n−1+λn−4/3. In this regime, Goldschmidt and Stephenson [31] recently proved an Aldous-

type result by giving a scaling limit for the sizes of the largest components. This result

in addition to the scaling limit shows that the size of the largest strongly connected

component is in fact not concentrated and behaves like Xn1/3 for a continuous random

variable X = X(λ) which can take values on all of the positive real numbers. My

contribution to the study of D(n, p) was to prove bounds on the tails of this random

variable X. In particular, I proved the following results,

Theorem 1.2.6 (Lower Bound). Let 0 < δ < 1/800, λ ∈ R and n ∈ N. Let C1 be the

largest strong component of D(n, p) for p = n−1 + λn−4/3. Then if n is su�ciently large

with respect to δ, λ,

P(|C1| < δn1/3) ≤ 2eδ1/4, (1.1)

provided that δ ≤ (log 2)2

4|λ|2 .

6



Note that the constants in the above theorem have been chosen for simplicity and it

is possible to give a bound depending on both λ and δ which imposes no restriction on

their relation to one another.

Theorem 1.2.7 (Upper Bound). There exist constants, ζ, η > 0 such that for any

A > 0, λ ∈ R the following holds. Let C1 be the largest strong component of D(n, p) for

p = n−1 + λn−4/3. Then provided n is su�ciently large with respect to A, λ,

P(|C1| > An1/3) ≤ ζe−ηA
3/2+λ+A

where λ+ = max(λ, 0).

The main idea in the proof of Theorem 1.2.6 is to apply Janson's inequality in order

to show there is no cycle of length between δn1/3 and δ1/2n1/3 with probability which is

at most the bound given in (1.1). This immediately yields Theorem 1.2.6 as a cycle is

strongly connected. The proof of Theorem 1.2.7 involves running an exploration process

from a large strongly connected subdigraph of D(n, p) to determine whether or not it is

a strongly connected component. This requires very good control of certain probabilities

and as such we adapt an enumeration of strongly connected digraphs by Pérez-Giménez

and Wormald [66] to count such digraphs.

The proofs of these theorems can be found in Chapter 2. These result have been

published in [15].

1.3 The con�guration model

The con�guration model was introduced by Bollobás [6]. It is a model commonly used to

pick a random graph with a given degree sequence due to the simplicity of sampling from

it and the desirable property that conditionally on the generated graph being simple,

it is uniformly random among all graphs with this degree sequence which is often the

probability space one wants to study. Furthermore, Janson [41] proved that if the second
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moment of the degree sequence is not too large, the con�guration model will produce a

simple graph with non-negligible probability. This is incredibly useful as it provides a

method of transference from the con�guration model to the probability space where we

pick a graph with given degree sequence uniformly at random.

1.3.1 The con�guration model for graphs

In this section, dn = (d1, . . . , dn) will be a degree sequence on n vertices and m =

1
2

∑n
i=1 di edges and Dn will be the random variable obtained by picking an element of

dn uniformly at random.

The con�guration model with degree sequence dn denoted CM(dn) is formed by taking

di �stubs� associated with the vertex i for i = 1, . . . , n, choosing a perfect matching of

all 2m stubs uniformly at random to form the edges of CM(dn) and contract the stubs

associated with vertex i for each i to form the vertices.

It is a natural question to ask what degree sequences have a giant component and

whether there is an easy way to describe the threshold (in terms of the degree sequence)

above which we �nd a giant component. Molloy and Reed [58] determined such a thresh-

old in terms of the �rst two moments of Dn. De�ne

Q = Q(dn) =
1

m

n∑
i=1

di(di − 2).

They showed that Q governs whether CM(dn) has a giant component,

Theorem 1.3.1. Let dn be a well behaved degree sequence, then

� If Q(dn) < 0 and maxdn = ∆n, then there exists a constant A such that a.a.s.

CM(dn) has no component of size greater than A∆2 log(n).

� If Q(dn) > 0, then there exist constants ζ, γ such that a.a.s. CM(dn) has a com-

ponent of size at least ζn and all other components have size at most γ log(n).
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The de�nition of �well behaved� is somewhat complex and we shall not go into it here.

This result has subsequently been improved by other authors, for example [8, 43, 45].

If we consider degree sequences in which Q = o(1), then we cannot apply the result of

Molloy and Reed. Hatami and Molloy [35] located the critical window and the order of the

largest component inside of it subject to some weak conditions on the degree sequence.

Also, inside the critical window Dhara et. al. [17] showed an Aldous-type result under the

assumption E(D3
n) = O(1). The same authors in a subsequent paper [18] also showed that

without this assumption it is possible for the con�guration model to fall into a di�erent

universality class.

Van der Hofstad, Janson and Luczak [37] considered the barely supercritical case when

Q > 0, Q = o(1) and we do not lie in the critical window. In this case they were able

to show that the size of the largest component is strongly concentrated around a value

related to the survival probability of a Galton Watson process with o�spring distribution

D̂n−1, where D̂n is the size biased distribution ofDn. We provide a complementary result

to this focussing on the barely subcritical regime, where we instead have Q < 0. We were

able to show that the components have size bounded above by the maximum possible

extinction time of a similar subcritical Galton Watson process as well as computing this

extinction time in some cases. De�ne

R = R(dn) =
1

m

n∑
i=1

di(di − 2)2.

We showed the following a.a.s. upper bound on the size of the largest component in the

barely subcritical regime.

Theorem 1.3.2. Let ϵ > 0. Let dn be a degree sequence that satis�es ∆|Q| = o(R) and

E(D4
n) ≤ ∆1/2. If Q ≤ −ω(n)n−1/3R2/3 for some ω(n) → ∞, then

P
(
L1(CM(dn)) ≤ (1 + ϵ)

2R

Q2
log

(
|Q|3n
R2

))
= 1− o(1) . (1.2)

Note that we can transfer this result to the model in which we pick a random simple
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graph with degree sequence dn uniformly at random by applying the aforementioned

result of Janson [41]. We prove this result by coupling the exploration process with a

Galton Watson process and maintaining very tight control on the extinction probability.

This control uses exponential tilting in combination with a new local limit theorem. A

full proof can be found in Chapter 3. This result is joint work with Guillem Perarnau.

1.3.2 The con�guration model for digraphs

In this section, d⃗n = (d−
n ,d

+
n ) = ((d−1 , d

+
1 ), . . . , (d

−
n , d

+
n )) will be a directed degree sequence

on n vertices and m =
∑n

i=1 d
−
i =

∑n
i=1 d

+
i edges and D−

n will be the random variable

obtained by picking an element of d−
n uniformly at random similarly de�ne D+

n .

The directed con�guration model with degree sequence d⃗n, denoted DCM(d⃗n), is

formed by taking d−i �in-stubs� and d+i �out-stubs� associated with the vertex i for

i = 1, . . . , n, choosing a perfect matching from the set of out-stubs to the set of in-stubs

uniformly at random to form the edges of DCM(d⃗n) directing them from the out-stub to

the in-stub and contract the stubs associated with vertex i for each i to form the vertices.

In the directed con�guration model there are now two types of components whose

sizes cannot simply be deduced from the con�guration model for graphs: the strong

components and the weak components.

Strong Components

The study of the strong component structure of the directed con�guration model was

initiated by Cooper and Frieze [13]. They found the threshold for the existence of a giant

strongly component under certain conditions was the point Q = 0 where we rede�ne

Q =
1

m

n∑
i=1

d−i (d
+
i − 1)

Here we use Q to draw the analogue with the threshold in the con�guration model for

graphs. In particular, this is a very similar threshold to the undirected one.
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The conditions under which this result have been improved over the years. Graf [32]

showed one can take a larger maximum degree than was assumed by Cooper and Frieze

and later, Cai and Perarnau [11] showed that we only need to assume all second moments

are bounded to draw the conclusion of Cooper and Frieze.

In this thesis we give the �rst result about the size of the largest strongly connected

component where Q = o(1). We de�ne a pair of parameters related to the third moments

of the degree sequence,

R− :=
1

m

n∑
i=1

d−i d
+
i (d

−
i − 1) R+ :=

1

m

n∑
i=1

d−i d
+
i (d

+
i − 1)

We investigate the barely subcritical regime and prove the following

Theorem 1.3.3. Let DCM(d⃗n) be a random digraph from the directed con�guration

model with well behaved degree sequence d⃗n and suppose that nQ3(R−R+)−1 → −∞.

Then a.a.s., there are no complex components or cycles of length ω(1/|Q|). Furthermore,

the probability that the kth largest cycle, Ck has length at least α|Q|−1 is

P
(
|Ck| ≥

α

|Q|

)
= 1−

k−1∑
i=0

ξiα
i!
e−ξα + o(1),

where

ξα =

∫ ∞

α

e−x

x
dx.

This is an analogue of a similar theorem proved by �uczak and Seierstad [55] for

D(n, p). We prove this theorem by splitting it into 4 pieces: cycles much longer than

1/|Q| which we show do not exist by an exploration process argument that there is no

out-component so large; cycles slightly longer than 1/|Q| which we show are not present

by a �rst moment argument; complex components are also shown not to exist by a

�rst moment argument; �nally to show the result on the length of the kth longest cycle

we apply the Chen-Stein method for Poisson approximation. The details can be found

in Chapter 4.
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Weak components

Similarly to the strong components of the directed con�guration model, the weak compo-

nents have not received much attention. In this case it is perhaps due to the assumption

that it e�ectively behaved like the undirected case (see, e.g., [64]). Kryven [49] observed

that this assumption is wrong and predicted an alternative threshold for the appearance

of the giant weak connected component supported with an analytical but non-rigorous

approach based on generating functions for bounded directed degree distributions.

In this thesis we con�rm that the location predicted by Kryven is correct (although

we shall write the location di�erently). In particular, de�ne µi,j = E((D−
n )i(D

−
n )j) (where

(x)a = x(x− 1) . . . (x− a+ 1)) and λ := µ0,1 = µ1,0. Also let

ρ =
µ1,1 +

√
µ2,0µ0,2

λ

Our main result is

Theorem 1.3.4. Let DCM(d⃗n) be a con�guration model random digraph with degree

sequence d⃗n. Then the point ρ = 1 is a threshold for the existence of a weakly connected

component of linear order in DCM(d⃗n).

At �rst glance ρ may seem a mysterious parameter. The main idea of our proof is

that ρ is the leading eigenvalue of the mean matrix of a 2-type Galton Watson process

associated with the exploration of DCM(d⃗n). Thus, ρ = 1 is simply the point at which

the associated process changes from subcritical to supercritical and thus should be where

one would expect the location of the threshold to be. We give a full proof of this result

in Chapter 5. This result comes from joint work with Guillem Perarnau. An extended

abstract was published in [16].
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CHAPTER 2

THE CRITICAL WINDOW OF BINOMIAL

RANDOM DIGRAPHS

2.1 Introduction

Consider the random digraph model D(n, p) where each of the n(n − 1) possible edges

is included with probability p independently of all others. This is analogous to the

Erd®s-Renyi random graph G(n, p) in which each edge is again present with probability p

independently of all others. McDiarmid [57] showed that due to the similarity of the two

models, it is often possible to couple G(n, p) and D(n, p) to compare the probabilities of

certain properties.

In the random graph G(n, p) the component structure is well understood. In their

seminal paper [24], Erd®s and Rényi proved that for p = c/n the largest component of

G(n, p) has size O(log(n)) if c < 1, is of order Θ(n2/3) if c = 1, and has linear size when

c > 1. This threshold behaviour is known as the double jump. If we zoom in further

around the critical point, p = 1/n and consider p = (1+ ε(n))/n such that ε(n) → 0 and

|ε(n)|3n→ ∞, Bollobás [7] proved the following theorem for |ε| > (2 log(n))1/2n−1/3,which

was extended to the whole range described above by �uczak [52].

Theorem 2.1.1 ([7, 52]). Let np = 1 + ε, such that ε = ε(n) → 0 but n|ε|3 → ∞, and

k0 = 2ε−2 log(n|ε|3).
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i) If nε3 → −∞ then a.a.s. G(n, p) contains no component of size greater than k0.

ii) If nε3 → ∞ then a.a.s. G(n, p) contains a unique component of size greater than

k0. This component has size 2εn(1 + o(1)).

Within the critical window itself i.e. p = n−1 + λn−4/3 with λ ∈ R, the size of the

largest component C1 is not tightly concentrated as it is for larger p. Instead, there exists

a random variable X1 = X1(λ) such that |C1|n−2/3 → X1 as n → ∞. Much is known

about the distribution of X1, in fact the vector X = (X1, . . . , Xk) of normalised sizes of

the largest k components i.e. Xi = |Ci|n−2/3 converges to the vector of longest excursion

lengths of an inhomogeneous re�ected Brownian motion by a result of Aldous [2]. In a

more quantitative setting where one is more interested about behaviour for somewhat

small n, Nachmias and Peres [63] proved the following (similar results may be found

in [69, 73]).

Theorem 2.1.2 ([63]). Suppose 0 < δ < 1/10, A > 8 and n is su�ciently large with

respect to A, δ. Then if C1 is the largest component of G(n, 1/n), we have

i) P(|C1| < ⌊δn2/3⌋) ≤ 15δ3/5

ii) P(|C1| > An2/3) ≤ 4
A
e−

A2(A−4)
32

Note we have only stated the version of their theorem with p = n−1 for clarity but it

holds for the whole critical window. Of course, there are a vast number of other interesting

properties of C1, see [1, 42, 54] for a number of examples.

In the setting of D(n, p), one �nds that analogues of many of the above theorems

still hold. When working with digraphs, we are interested in the strongly connected

components which we will often call the components. Note that the weak component

structure of D(n, p) is precisely the component structure of G(n, 2p − p2). For p = c/n,

Karp [47] and �uczak [53] independently showed that for c < 1 all components are of size

O(1) and when c > 1 there is a unique complex component of linear order and every other

component is of size O(1) (a component is complex if it has more edges than vertices).
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The range p = (1+ ε)/n was studied by �uczak and Seierstad [55] who were able to show

the following result which can be viewed as a version of Theorem 2.1.1 for D(n, p),

Theorem 2.1.3 ([55]). Let np = 1 + ε, such that ε = ε(n) → 0.

i) If nε3 → −∞ then a.a.s. every component of D(n, p) is an isolated vertex or a cycle

of length O(1/|ε|).

ii) If nε3 → ∞ then a.a.s. D(n, p) contains a unique complex component of size

4ε2n(1 + o(1)) and every other component is an isolated vertex or a cycle of length

O(1/ε).

As a corollary �uczak and Seierstad obtain a number of weaker results inside the crit-

ical window regarding complex components. They showed that there are Op(1) complex

components containing Op(n
1/3) vertices combined and that each has spread Ωp(n

1/3)

(the spread of a complex digraph is the length of its shortest induced path).

Our main result is to give bounds on the tail probabilities of |C1| resembling those of

Nachmias and Peres [63] for G(n, p).

Theorem 2.1.4 (Lower Bound). Let 0 < δ < 1/800, λ ∈ R and n ∈ N. Let C1 be the

largest component of D(n, p) for p = n−1 + λn−4/3. Then if n is su�ciently large with

respect to δ, λ,

P(|C1| < δn1/3) ≤ 2eδ1/4, (2.1)

provided that δ ≤ (log 2)2

4|λ|2 .

Note that the constants in the above theorem have been chosen for simplicity and it

is possible to give an expression for (2.1) depending on both λ and δ which imposes no

restriction on their relation to one another.

Theorem 2.1.5 (Upper Bound). There exist constants, ζ, η > 0 such that for any

A > 0, λ ∈ R, let C1 be the largest component of D(n, p) for p = n−1 + λn−4/3. Then
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provided n is su�ciently large with respect to A, λ,

P(|C1| > An1/3) ≤ ζe−ηA
3/2+λ+A

Where λ+ = max(λ, 0).

A simple corollary of these bounds is that the largest component has size Θ(n1/3).

This follows by taking δ = o(1) in Theorem 2.1.4 and A = ω(1) in Theorem 2.1.5.

Corollary 2.1.6. Let C1 be the largest component of D(n, p) for p = n−1+λn−4/3. Then,

|C1| = Θp(n
1/3).

Recently some related results have been obtained by Goldschmidt and Stephenson [31]

who showed a scaling limit for the sizes of all the strong components in the critical random

digraph. This is analogous to the result of Aldous [2] in G(n, p) and allows one to deduce

that there is a limiting distribution for the random variable n−1/3|C1|. This distribution

can be described in terms of the total edge length of a directed multigraph related to

the Brownian continuum random tree. In principle versions of Theorems 2.1.4 and 2.1.5

can be deduced from this result although the limit distribution is a little di�cult to

work with. This author was only able to deduce that n−1/3|C1| is tight using the results

of Goldschmidt and Stephenson whereas Theorems 2.1.4 and 2.1.5 give us much more

explicit information about the tails of the random variable n−1/3|C1|.

It should be noted that, in contrast to the undirected case, checking whether a set of

W of vertices constitutes a strongly connected component of a digraph D requires much

more than checking only those edges with at least one end in W . In particular, in order

for W to be a strongly connected component, it must be strongly connected and there

must be no directed path starting and ending in W which contains vertices that are not

in W . This precludes us from using a number of methods which have often been used to

study G(n, p). We therefore develop novel methods for counting the number of strongly

connected components of D(n, p) based upon branching process arguments.
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The remainder of this chapter is organised as follows. In Section 2.2 we give a pair

of bounds on the number of strongly connected digraphs which have a given excess and

number of vertices. Sections 2.3 and 2.4 contain the proofs of Theorems 2.1.4 and 2.1.5

respectively in the case that p = n−1. The proof of Theorem 2.1.4 in Section 2.3 is a

relatively straightforward application of Janson's inequality. The proof of Theorem 2.1.5

in Section 2.4 is much more involved. We use an exploration process to approximate

the probability that a given subdigraph of D(n, p) is also a component. Using this we

approximate the expected number of strongly connected components of size at least An1/3

and apply Markov's inequality. The adaptations required to handle the critical window

p = n−1 + λn−4/3 are presented in Section 2.5. We conclude the chapeter in Section 2.6

with some open questions and �nal remarks.

2.2 Enumeration of Digraphs by size and excess

For both the upper and lower bounds on the size of the largest component, we need good

bounds on the number strongly connected digraphs with a given excess and number of

vertices. Where the excess of a strongly connected digraph with v vertices and e edges

is e− v. Let Y (m, k) be the number of strongly connected digraphs with m vertices and

excess k. The study of Y (m, k) was imitated by Wright [78] who obtained recurrences

for the exact value of Y (m, k). However, these recurrences swiftly become intractable

as k grows. This has since been extended to asymptotic formulae when k = ω(1) and

O(m log(m)) [66, 71]. Note that when k = m log(m)+ω(m), the fact Y (m, k) ∼
(
m(m−1)
m+k

)
is a simple corollary of a result of Palásti [65]. In this section we give an universal bound

on Y (m, k) (Lemma 2.2.1) as well as a stronger bound for small excess (Lemma 2.2.3).

Lemma 2.2.1. For every m, k ≥ 1,

Y (m, k) ≤ (m+ k)km2k(m− 1)!

k!
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Proof. We will prove this by considering ear decompositions of the strongly connected

digraphs in question. An ear is a non-trivial directed path in which the endpoints may

coincide (i.e. it may be a cycle with a marked start/end vertex). The internal vertices

of an ear are those that are not endpoints. An ear decomposition of a digraph D is a

sequence, E0, E1, . . . , Ek of ears such that:

� E0 is a cycle

� The endpoints of Ei belong to
⋃i−1
j=0Ej

� The internal vertices of Ei are disjoint from
⋃i−1
j=0Ej

�

⋃k
i=0Ei = D

We make use of the following fact.

Fact 2.2.2. A digraph D has an ear decomposition with k + 1 ears if and only if D is

strongly connected with excess k.

Thus we count strongly connected digraphs by a double counting of the number of

possible ear decompositions. We produce an ear decomposition with m vertices and k+1

ears as follows. First, pick an ordering π of the vertices. Then insert k bars between the

vertices such that the earliest the �rst bar may appear is after the second vertex in the

order; multiple bars may be inserted between a pair of consecutive vertices. Finally, for

each i ∈ [k], we choose an ordered pair of vertices (ui, vi) which appear in the ordering

before the ith bar.

This corresponds to a unique ear decomposition. The vertices in π before the �rst

bar are E0 with its endpoint being the �rst vertex. The internal vertices of Ei are the

vertices of π between the ith and i + 1st bar. Furthermore, Ei has endpoints ui and vi

and is directed from ui to vi. The orientation of every other edge follows the order π.

Hence, there are at most

(
m+ k − 2

k

)
m2km! ≤ (m+ k)km2km!

k!

18



ear decompositions. Note that each vertex of a strongly connected digraph is contained

in a cycle. Therefore each vertex could be the endpoint of E0 and hence at least m ear

decompositions correspond to each strongly connected digraph. Hence the number of

strongly connected digraphs of excess k may be bounded by

Y (m, k) ≤ (m+ k)km2km!

k!m
=

(m+ k)km2k(m− 1)!

k!
,

as claimed. □

Lemma 2.2.3. There exists C > 0 such that for 1 ≤ k ≤
√
m/3 and m su�ciently large

we have,

Y (m, k) ≤ C
m!m3k−1

(2k − 1)!
. (2.2)

The proof of the above lemma follows similar lines to the proof of Theorem 1.1 in [66]

to obtain a bound of a similar order. We then prove that this bound implies the above

which is much easier to work with.

First we introduce some de�nitions and notation from [66]. A random variable X has

the zero-truncated Poisson distribution with parameter λ > 0 denoted X ∼ TP (λ) if it

has probability mass function

P(X = i) =


λi

i!(eλ−1)
if i ≥ 1,

0 if i < 1.

Let D be the collection of all degree sequences d = (d+1 , . . . , d
+
m, d

−
1 , . . . , d

−
m) such that

d+i , d
−
i ≥ 1 for each 1 ≤ i ≤ m and furthermore,

m∑
i=1

d+i =
m∑
i=1

d−i = m.

A preheart is a digraph with minimum semi-degree at least 1 and no cycle components.

19



The heart of a preheart D is the multidigraph H(D) formed by suppressing all vertices

of D which have in and out degree precisely 1.

We de�ne the preheart con�guration model, a two stage variant of the con�guration

model for digraphs which always produces a preheart, as follows. For d ∈ D, de�ne

T = T (d) = {i ∈ [m] : d+i + d−i ≥ 3}.

First we apply the con�guration model to T to produce a heart H. That is, assign

each vertex i ∈ T d+i out-stubs and d−i in-stubs and pick a uniformly random perfect

matching between in- and out-stubs. Next, given a heart con�guration H, we construct

a preheart con�guration Q by assigning [m] \ T to E(H) such that the vertices assigned

to each arc of H are given a linear order. Denote this assignment including the orderings

by q. Then the preheart con�guration model, Q(d) is the probability space of random

preheart con�gurations formed by choosing H and q uniformly at random. Note that

each Q ∈ Q(d) corresponds to a (multi)digraph with m vertices m+ k edges and degree

sequence d.

As in the con�guration model, each simple digraph with degree sequence d is produced

in precisely
∏m

i=1 d
+
i !d

−
i ! ways. So if we restrict to simple preheart con�gurations, the

digraphs we generate in this way are uniformly distributed. Where in this case, simple

means that there are no multiple edges or loops (however cycles of length 2 are allowed).

We now count the number of preheart con�gurations. Let m′ = m′(d) = |T (d)| be the

number of vertices of the heart. Then, we have the following

Lemma 2.2.4. Let d ∈ D, then there are

m′(d) + k

m+ k
(m+ k)!

preheart con�gurations.

Proof. We �rst generate the heart, and as we are simply working with the con�guration
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model for this part of the model, there are (m′+k)! heart con�gurations. The assignment

of vertices in [m] \ T to the arcs of the heart H may be done one vertex at a time by

subdividing any already present edge and maintaining orientation. In this way when we

add the ith vertex in this stage, there are m′+k+ i−1 choices for the edge we subdivide.

We must add m−m′ edges in this stage and so there are

m−m′∏
i=1

m′ + k + i− 1 =
(m+ k − 1)!

(m′ + k − 1)!

unique ways to create a preheart con�guration from any given heart. Multiplying the

number of heart con�gurations by the number of ways to create a preheart con�guration

from a given heart yields the desired result. □

The next stage is to pick the degree sequence, d ∈ D at random. We do this by

choosing the degrees to be independent and identically distributed zero-truncated Poisson

random variables with mean λ > 0. That is, d+i ∼ TP (λ) and d−i ∼ TP (λ) such that the

family {d+i , d−i : i ∈ [m]} is independent. Note that this may not give a degree sequence

at all, or it may be the degree sequence of a digraph with the wrong number of edges.

Thus we de�ne the event Σ(λ) to be the event that

m∑
i=1

d+i =
m∑
i=1

d−i = m+ k.

We shall now prove the following bound,

Lemma 2.2.5. For any λ > 0 we have

Y (m, k) ≤ 3k(m+ k − 1)!(eλ − 1)2m

λ2(m+k)
P(Σ(λ)). (2.3)

Proof. Let D be the random degree sequence generated as above and d ∈ D, then

P(D = d) =
m∏
i=1

λd
+
i

d+i !(e
λ − 1)

λd
−
i

d−i !(e
λ − 1)

=
λ2(m+k)

(eλ − 1)2m

m∏
i=1

1

d+i !d
−
i !
. (2.4)
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By de�nition of Σ(λ), we have

∑
d∈D

P(D = d) = P(Σ(λ)),

as all of the above events are disjoint. Thus, we may rearrange (2.4) to deduce that

∑
d∈D

m∏
i=1

1

d+i !d
−
i !

=
(eλ − 1)2m

λ2(m+k)
P(Σ(λ)). (2.5)

Lemma 2.2.4 tells us that for a given degree sequence d, there are

m′(d) + k

m+ k
(m+ k)!

preheart con�gurations. As each simple digraph with degree sequence d comes from

precisely
∏m

i=1 d
+
i !d

−
i ! con�gurations, and m

′(d) ≤ 2k as otherwise the excess would be

larger than k, we can deduce that the total number of prehearts with m vertices and

excess k is

∑
d∈D

m′(d) + k

m+ k
(m+ k)!

m∏
i=1

1

d+i !d
−
i !

≤
∑
d∈D

(m+ k)!
3k

m+ k

m∏
i=1

1

d+i !d
−
i !
. (2.6)

Note that any strongly connected digraph is a preheart and so (2.6) is also an upper

bound for Y (m, k). Finally, combining (2.5) and (2.6) yields the desired inequality. □

It remains to prove that (2.3) can be bounded from above by (2.2). To this end, we

prove the following upper bound on P(Σ(λ)).

Lemma 2.2.6. For λ < 1,

P(Σ(λ)) ≤ 147

λm
.

For the proof of this lemma, we will use the Berry-Esseen inequality for normal ap-

proximation (see for example [75, Section XX.2].)
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Lemma 2.2.7. Suppose X1, X2, . . . , Xn is a sequence of independent random variables

from a common distribution with zero mean, unit variance and third absolute moment

E|X|3 = γ <∞. Let Sn = X1 +X2 + . . .+Xn and let Gn be the cumulative distribution

function of Sn/
√
n. Then for each n we have

sup
t∈R

|Gn(t)− Φ(t)| ≤ γ

2
√
n
, (2.7)

where Φ is the cumulative distribution function of the standard Gaussian.

Here, the explicit constant 1/2 in equation (2.7) was obtained by Tyurin [74].

Proof of Lemma 2.2.6. The in-degrees of the random degree sequence are chosen inde-

pendently from a truncated poisson distribution with parameter λ. Thus, we want to

apply Lemma 2.2.7 to the sum Sm = Y1 + Y2 + . . . + Ym where the Yi are normalised

truncated Poisson random variables. So all we must compute are the �rst three cen-

tral moments of the truncated poisson distribution. Let Y ∼ TP (λ), one can easily

compute that E(Y ) = cλ = λeλ

eλ−1
and Var(Y ) = σ2

λ = cλ(1 + λ − cλ). Note that for

λ < 1 we have 1 < cλ < 2 and so as Y only takes integer values which are at least 1,

E|Y − E(Y )|3 = E(Y − cλ)
3 + 2(cλ − 1)3P(Y = 1). Computing this yields

E|Y −E(Y )|3 = λ+
2λ4 − 5λ3 + 3λ2 − λ

eλ − 1
+
3(2λ4 − 3λ3 + λ2)

(eλ − 1)2
+
2(3λ4 − 2λ3)

(eλ − 1)3
+

2λ4

(eλ − 1)4

One can check that this is bounded above by 2λ for λ < 1.

The normalised version of Y is X = (Y − cλ)/σλ. We have

E|X|3 = E
∣∣∣∣Y − cλ

σλ

∣∣∣∣3 = 1

σ3
λ

E|Y − cλ|3 ≤
2λ

σ3
λ

= γ.

For λ < 1 one can check cλ < 1 + 2λ/3, which allows us to deduce that σ2
λ > λ/3 (also

using Y ≥ 1). Hence, E|X|3 ≤ 6
√
3λ−1/2. Substituting into Lemma 2.2.7 with Gm the
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distribution of Sm/
√
m,

sup
t∈R

|Gm(t)− Φ(t)| ≤ 3
√
3√

λm
.

The probability that the sum of the in-degrees is m+ k is precisely

Gm

(
m+ k −mcλ

σλ
√
m

)
−Gm

(
m+ k − 1−mcλ

σλ
√
m

)
.

Following an application of the triangle inequality, we see that this probability is bounded

above by

6
√
3√

λm
+

1√
2πmσλ

≤ 7
√
3√

λm
.

As the event that the in-degrees sum to m + k and the event that the out-degrees sum

to m+ k are independent and identically distributed events, we may deduce the bound,

P(Σ(λ)) ≤ 147

λm
.

□

Finally, we may prove Lemma 2.2.3.

Proof of Lemma 2.2.3. We choose λ = 2k/m < 1 by assumption, then P(Σ(λ)) ≤ 147/2k

by Lemma 2.2.5. Combining this with Lemma 2.2.6 yields

Y (m, k) ≤ 441(m+ k − 1)!

2
λ−2k

(
eλ − 1

λ

)2m

≤ 441m!m3k−1ek
2/m

(2k)2k

(
eλ − 1

λ

)2m

(2.8)

We use the inequality ex ≤ 1 + x + x2/2 + x3/4 which holds for all 0 ≤ x ≤ 1 to bound

(eλ − 1)/λ ≤ 1 + λ/2 + λ2/4. Thus,

((eλ − 1)/λ)2m ≤ (1 + λ/2 + λ2/4)2m ≤ emλ+mλ
2/2 = e2k+2k2/m.
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Then, we can use Stirling's inequality, e
√
2k − 1(2k − 1)2k−1e−2k+1 ≥ (2k − 1)!, so that

e2k

(2k)2k
≤ e2k

(2k − 1)2k−1/2
≤ e2

(2k − 1)!
,

allowing us to rewrite the bound on Y (m, k) as

Y (m, k) ≤ 441e3

2

m!m3k−1

(2k − 1)!
,

where we used ek
2/m ≤ e1/3. Thus proving the lemma with C = 441e3/2. □

2.3 Proof of Theorem 2.1.4

In this section we prove a lower bound on component sizes in D(n, p). We give the

proof for p = 1/n for simplicity. The proof when p = n−1 + λn−4/3 is very similar, with

more care taken in the approximation of terms involving (np)m. See Section 2.5 for more

details.

Theorem 2.3.1. Let 0 < δ < 1/800, then the probability that D(n, 1/n) has no compo-

nent of size at least δn1/3 is at most 2δ1/2.

To prove this we will bound from above the probability that there is no cycle of length

between δn1/3 and δ1/2n1/3. Let X be the random variable counting the number of cycles

in D(n, 1/n) of length between δn1/3 and δ1/2n1/3. Note that we may decompose X as a

sum of dependent Bernoulli random variables, and thus we may apply Janson's Inequality

in the following form (see [44, Theorem 2.18 (i)]).

Theorem 2.3.2. Let S be a set and Sp ⊆ S chosen by including each element of S in

Sp independently with probability p. Suppose that S is a family of subsets of S and for

A ∈ S, we de�ne IA to be the event {A ⊆ Sp}. Let µ = E(X) and

∆ =
1

2

∑∑
A ̸=B,A∩B ̸=∅

E(IAIB)
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Then,

P(X = 0) ≤ e−µ+∆

To apply Theorem 2.3.2, we de�ne S to be the set of edges of the complete digraph

on n vertices. Let A ∈ S if and only if A ⊆ S is the set of edges of a cycle of length

between δn1/3 and δ1/2n1/3. De�ne X(m) to be the number cycles in D(n, 1/n) of length

m. We start by approximating the �rst moment of X.

Lemma 2.3.3. E(X) ≥ log(1/δ)/2

Proof. Let a = δn1/3 and b = δ1/2n1/3. Then, we can write X as

X =
b∑

m=a

X(m)

Note that

E(X(m)) =

(
n

m

)
m!

m
pm ≥ 1

m
(2.9)

So, we may bound the expectation of X as follows

E(X) =
b∑

m=a

E(X(m)) ≥
b∑

m=a

1

m
≥
∫ b

a

dx

x
=

log(1/δ)

2

□

Let Z(m, k) be the random variable counting the number of strongly connected graphs

with m vertices and excess k in D(n, 1/n). Directly computing ∆ is rather complicated

so we will instead compute an upper bound on ∆ that is a linear combination of the

�rst moments of the random variables Z(m, k) for m ≥ a and k ≥ 1. To move from the

computation of ∆ to the �rst moments of Z(m, k) we use the following lemma,

Lemma 2.3.4. Each strongly connected digraph D with excess k may be formed in at

most 27k ways as the union of a pair of directed cycles C1 and C2.

Proof. Consider the heart H(D) of D. Recall that H(D) is the (multi)-digraph formed

by suppressing the degree 2 vertices of D and retaining orientations. As D has excess
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k, H(D) has at most 2k vertices. Furthermore, the excess of H(D) is the same as the

excess of D as we only remove vertices of degree 2. Thus H(D) has at most 3k edges.

Then, each edge of H(D) must be a subdigraph of either C1, C2 or both. So there

are 33k = 27k choices for the pair C1, C2 as claimed. □

We are now in a position to give a bound on ∆.

Lemma 2.3.5. ∆ ≤ log(2) for any δ ∈ (0, 1/800]

Proof. Let

Γ(k) := {E(C)|C ⊆
−→
Kn, C ∼=

−→
Ck},

where
−→
Kn is the complete digraph on [n] and

−→
Ck is the directed cycle of length k. For

α ∈ Γ(k) let Iα be the indicator function of the event that all edges of α are present in a

given realisation of D(n, 1/n). Also, de�ne

Γ =
b⋃

k=a

Γ(k).

Then, by de�nition,

∆ =
1

2

∑∑
α ̸=β,α∩β ̸=∅

E(IαIβ)

Let Γm,kα (t) be the set of β ∈ Γ(t) such that α∪ β is a collection of m+ k edges spanning

m vertices. Then,

2∆ =
b∑

s=a

b∑
t=a

∑
α∈Γ(s)

∞∑
m=s

∞∑
k=1

∑
β∈Γm,k

α (t)

pm+k

≤
2b∑
m=a

∞∑
k=1

m∑
s=a

m∑
t=a

∑
α∈Γ(s)

∑
β∈Γm,k

α (t)

pm+k

≤
2b∑
m=a

∞∑
k=1

27kE(Z(m, k)), (2.10)
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where the last inequality follows from Lemma 2.3.4. Note that

E(Z(m, k)) =
(
n

m

)
pm+kY (m, k)

by de�nition. We will use the following two bounds on Y (m, k) which follow immediately

from Lemma 2.2.1.

� If k ≤ m, then Y (m, k) ≤ 2km3km!
k!m

� If k > m, then Y (m, k) ≤ (2e)km2km!
m

This allows us to split the sum in (2.10) based upon whether k ≤ m or k > m to obtain

2∆ ≤
2b∑
m=a

m∑
k=1

27k
(
n

m

)
2km3km!

k!m
pm+k +

2b∑
m=a

∞∑
k=m+1

27k
(
n

m

)
(2e)km2km!

m
pm+k

≤
2b∑
m=a

1

m

∞∑
k=1

(54pm3)k

k!
+

2b∑
m=a

1

m

∞∑
k=m+1

(54em2p)k

≤ log(4/δ)

2
(e432δ

3/2 − 1 + 23328e2δ2) (2.11)

Where the 23328e2δ2 term comes from noting k ≥ 2 in the range k ≥ m+ 1 and that for

x ≤ 1/2
∞∑
k=2

xk ≤ 2x2

As (2.11) is increasing in δ, we simply need to check that the Lemma holds for δ = 1/800

which may be done numerically.

□

Finally, to prove Theorem 2.3.1 we substitute the values obtained for µ and ∆ in

Lemmas 2.3.3 and 2.3.5 respectively into Theorem 2.3.2. That is,

P(X = 0) ≤ e−µ+∆ ≤ e− log(1/δ)/2+log(2) = 2δ1/2

So the probability there is no directed cycle of length at least δn1/3 is at most 2δ1/2 and,
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as cycles are strongly connected, this is also an upper bound on the probability there is

no strongly connected component of size at least δn1/3.

2.4 Proof of Theorem 2.1.5

In this section we prove an upper bound on the component sizes in D(n, p). Again, we

only consider the case when p = 1/n to simplify notation and calculations. The reader

is referred to Section 2.5 for a sketch of the adaptations to extend the result to the full

critical window. The following is a restatement of Theorem 2.1.5 for p = 1/n.

Theorem 2.4.1. There exist constants ζ, η > 0 such that for any A > 0 if n is su�ciently

large with respect to A, then the probability that D(n, 1/n) contains any component of

size at least An1/3 is at most ζe−ηA
3/2
.

We will use the �rst moment method to prove this theorem and calculate the expected

number of large strongly connected components in D(n, 1/n). Note that it is important

to count components and not strongly connected subgraphs as the expected number of

strongly connected subgraphs in D(n, 1/n) blows up as n → ∞. Thus for each strongly

connected subgraph, we will use an exploration process to determine whether or not it is

a component.

The exploration process we use was initially developed by Martin-Löf [56] and Karp [47].

During this process, vertices will be in one of three classes: active, explored or unexplored.

At time t ∈ N, we let Xt be the number of active vertices, At the set of active vertices,

Et the set of explored vertices and Ut the set of unexplored vertices.

We will start from a set A0 of vertices of size X0 and �x an ordering of the vertices,

starting with A0. For step t ≥ 1, if Xt−1 > 0 let wt be the �rst active vertex. Otherwise,

let wt be the �rst unexplored vertex. De�ne ηt to be the number of unexplored out-

neighbours of wt in D(n, 1/n). Change the class of each of these vertices to active and

set wt to explored. This means that |Et| = t and furthermore, |Ut| = n − Xt − t. Let
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Nt = n − Xt − t − 1(Xt = 0) be the number of potential unexplored out-neighbours of

wt+1 i.e. the number of unexplored vertices which are not wt+1. Then, given the history

of the process, ηt is distributed as a binomial random variable with parameters Nt−1 and

1/n. Furthermore, the following recurrence relation holds.

Xt =


Xt−1 + ηt − 1 if Xt−1 > 0,

ηt otherwise

(2.12)

Let τ1 = min{t ≥ 1 : Xt = 0}. Note that this is a stopping time and at time τ1 the

set Eτ1 of explored vertices is precisely the out-component of A0. If A0 spans a strongly

connected subdigraph D0 of D(n, 1/n), then D0 is a strongly connected component if and

only if there are no edges from Eτ1 \ A0 to A0. The key idea will be to show that if X0

is su�ciently large, then it is very unlikely for τ1 to be small, and consequently it is also

very unlikely that there are no edges from Eτ1 \ A0 to A0. This is encapsulated in the

following lemma.

Lemma 2.4.2. Let Xt be the exploration process de�ned above with starting set of vertices

A0 of size X0 = m. Suppose 0 < c <
√
2 is a �xed constant. Then,

P(τ1 < cm1/2n1/2) ≤ 2e−
(2−c2)2

8c
m3/2n−1/2+O(m2n−1).

Proof. De�ne ξ = cm1/2n1/2 and consider the auxiliary process, X ′
t which we de�ne

recursively by

X ′
0 = m,

X ′
t = X ′

t−1 − 1 +Wt for t ≥ 1,

where Wt ∼ Bin(n− t− 10m, p). Let τ2 be the stopping time,

τ2 = inf{t : Xt > 10m}
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We may couple the processes (Xt, X
′
t) such that X ′

t is stochastically dominated by Xt

for t < τ2. The coupling may be explicitly de�ned by setting ηt = Wt + W ′
t with

W ′
t ∼ Bin(10m − Xt−1, p). De�ne another stopping time, τ ′1 = min{t ≥ 1 : X ′

t = 0}.

Consider the following events

E1 = {τ1 < cm1/2n1/2}

E2 = {τ ′1 < cm1/2n1/2}

E3 = {τ2 < cm1/2n1/2}

And note that P(E1) ≤ P(E2) + P(E3) by our choice of coupling and a union bound (as

the coupling guarantees E1 ⊆ E2 ∪ E3). Thus we only need to bound the probabilities of

the simpler events E2 and E3. We begin by considering E3. To bound its probability we

consider the upper bound process Mt de�ned by

M0 = m,

Mt =Mt−1 − 1 +Bt for t ≥ 1,

where Bt ∼ Bin(n, 1/n). It is straightforward to couple (Xt,Mt) such that Mt stochasti-

cally dominates Xt. Furthermore, Mt is a martingale. Hence, P(E3) ≤ P(τ ′2 < cm1/2n1/2)

where τ ′2 is the stopping time, τ ′2 = min{t : Mt > 10m}. To bound the probability of E2

consider the process Yt de�ned as Yt = m−X ′
t. One can check that Yt is a submartingale.

As x 7→ eαx is a convex non-decreasing function for any α > 0, we may apply Jensen's

inequality to deduce that Z−
t = eαYt and Z+

t = eαMt are submartingales. Also, Z−
t , Z

+
t >

0 for any i ∈ N. Starting with Z−
t , we may apply Doob's maximal inequality [33,

Section 12.6] and deduce that

P
(

min
0≤t≤ξ

X ′
i ≤ 0

)
= P

(
max
0≤t≤ξ

Z−
t ≥ eαm

)
≤

E(Z−
ξ )

eαm
(2.13)
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We may rewrite this by noting that

Yt = m−X ′
t = t−

t∑
i=1

Wi = t−Rt

where Rt is binomially distributed and in particular Rξ ∼ Bin(lξ, p) for

lξ = cm1/2n3/2 − c2mn

2
− 10cm3/2n1/2 +

cm1/2n1/2

2

Also, we choose x such that xlξ = ξ−m. Then (2.13) may be rewritten as e−αmE(Z−
ξ ) =

eαxlξE(e−αRξ). The next stage is to rearrange this into a form which resembles the usual

Cherno� bounds (for x < p). So, let

f(α) = eαxlξE(e−αRξ) =

[
eαx(pe−α + 1− p)

]lξ

Then, we choose α∗ to minimise f . Solving f ′(α) = 0, we obtain the solution

e−α
∗
=
x(1− p)

p(1− x)

Note x < p so, e−α
∗
< 1 and α∗ > 0 as desired. Thus,

f(α∗) = =

[(
p(1− x)

x(1− p)

)x(
x
1− p

1− x
+ 1− p

)]mt
=

[(
x
1− p

1− x
+ 1− p

)(
p

x

)x(
1− p

1− x

)x]mt
=

[(
p

x

)x(
1− p

1− x

)1−x]mt

Which is the usual expression found in Cherno� bounds. As usual, we bound this by

writing

f(α∗) = e−g(x)lξ
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and bound g, where

g(x) = x log

(
x

p

)
+ (1− x) log

(
1− x

1− p

)

Computing the Taylor expansion of g we �nd that g(p) = g′(p) = 0. So, if g′′(x) ≥ β for

all x between p and p− h, then g(p− h) ≥ βh2/2. Furthermore,

g′′(x) =
1

x
+

1

1− x

As 0 < x < p, we have g′′(x) ≥ 1/x ≥ 1/p. So, we deduce that g(x) ≥ δ2p/2 where

δ = 1− x/p. All that remains is to compute δ. As de�ned earlier, we have xlξ = ξ −m

which for convenience we will write as

xlξ = ξ

(
1− m1/2

cn1/2

)
(2.14)

Also, as p = n−1, and recalling the de�nition of lξ from earlier,

plξ = cm1/2n1/2 − c2m

2
+O(m3/2n−1/2)

= ξ

(
1− cm1/2

2n1/2
+O(mn−1)

)
(2.15)

We divide (2.14) by (2.15) and as the Taylor expansion of 1/(1− w) is
∑

i≥0w
i,

x

p
=

1− m1/2

cn1/2

1− cm1/2

2n1/2 +O(mn−1)
= 1− m1/2

cn1/2
+
cm1/2

2n1/2
+O(mn−1) (2.16)

From which we may deduce

δ =
(2− c2)m1/2

2cn1/2
+O(mn−1) (2.17)

So,

P(E2) ≤ e−
δ2p
2
lξ = e−

(2−c2)2

8c
m3/2n−1/2+O(m2n−1) (2.18)
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We may proceed similarly for Z+
t , in particular we must still appeal to Doob's maximal

inequality as we seek a bound over the entire process. In this case we end up with a

Bin(nξ, p) distribution and are looking at the upper tail rather than the lower. We �nd

pnξ = ξ and

xnξ = ξ + 9m = ξ

(
1 +

9m1/2

cn1/2

)
Thus,

δ =
x

p
− 1 =

9m1/2

cn1/2

Substituting into the analogous bound,

P(E3) ≤ e−
δ2p
3
nξ ≤ e

− 27m3/2

cn1/2 (2.19)

Observe that P(E2) ≥ P(E3)eO(m2n−1) for 0 < c <
√
2(1 + 3

√
6). Thus, in the range we

are interested in, we may use 2P(E2) as an upper bound for P(E2)+P(E3) and this proves

the lemma. □

We now compute the probability that any given strongly connected subgraph of

D(n, 1/n) is a component. To do so, we use the simple observation that a strongly

connected subgraph is a component if it is not contained in a larger strongly connected

subgraph.

Lemma 2.4.3. There exist β, γ > 0 such that if H is any strongly connected subgraph of

D(n, 1/n) with m vertices. Then the probability that H is a strongly connected component

of D(n, 1/n) is at most βe−(1+γ)m3/2n−1/2+O(m2n−1).

Proof. We compute the probability that H is a component of D(n, 1/n) by running the

exploration process Xt starting from A0 = V (H). So, X0 = m. Once the exploration

process dies at time τ1, any backward edge from Eτ1 \A0 to A0 gives a strongly connected

subgraph of D(n, 1/n) which contains H. Let Yt be the random variable which counts

the number of edges from Eτ1 \ A0 to A0. Note that for t ≥ m, Yt ∼ Bin(m(t −m), p).

Furthermore, H is a strongly connected component of D(n, 1/n) if and only if Yτ1 = 0.
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Let ε > 0 and de�ne the events Ai for i = 1, . . . , r (where r ∼ c/ε for some c > 1) to

be

Ai = {(i− 1)εm1/2n1/2 ≤ τ1 < iεm1/2n1/2},

Ar+1 = {rεm1/2n1/2 ≤ τ1}.

Clearly the family {Ai : i = 1, . . . , r + 1} forms a partition of the sample space. So, by

the law of total probability,

P(Yτ1 = 0) =
r+1∑
i=1

P(Yτ1 = 0|Ai)P(Ai) (2.20)

By applying Lemma 2.4.2 when 1 ≤ i ≤ r we �nd

P(Ai) ≤ 2e−
(2−i2ε2)2

8iε
m3/2n−1/2+O(m2n−1)

Note that Yτ1 conditioned onAi stochastically dominates a Bin(m((i−1)εm1/2n1/2−m), p)

distribution. Therefore,

P(Yτ1 = 0|Ai) ≤ (1− p)m((i−1)εm1/2n1/2−m) ≤ e−(i−1)εm3/2n−1/2+O(m2n−1)

Combining the above and substituting into (2.20) yields

P(Yτ1 = 0) ≤ 2
r∑
i=1

e−((i−1)ε+
(2−i2ε2)2

8iε
)m3/2n−1/2+O(m2n−1) + e−rεm

m/2n−1/2+O(m2n−1), (2.21)

≤ (2r + 1)e−(1+γ)m3/2n−1/2+O(m2n−1), (2.22)

for some γ > 0 provided that ε is su�ciently small. The second term in (2.21) is a result

of the fact P(Ar+1) ≤ 1. This proves the lemma and if one wishes for explicit constants,

taking ε = 0.025, r = 45 works and gives β < 100, γ > 0.06. □

The next stage in our proof is to show that a typical instance of D(n, 1/n) has no
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component of large excess and no exceptionally large components. This will allow us

to use the bound from Lemma 2.2.3 to compute the expected number of large strongly

connected components of D(n, 1/n). The �rst result in this direction is an immediate

corollary of a result of �uczak and Seierstad [55].

Lemma 2.4.4 ([55]). The probability that D(n, 1/n) contains a strongly connected com-

ponent of size at least n1/3 log log n is on(1).

The next lemma ensures that there are not too many cycles which enables us to prove

that the total excess is relatively small.

Lemma 2.4.5. The probability that D(n, p) contains more than n1/6 cycles of length

bounded above by n1/3 log log(n) is on(1).

Proof. In this proof and subsequently we will use the convention that log(k) x is the

logarithm function composed with itself k times, while (log x)k is its kth power. We shall

show that the expected number of cycles of length at most n1/3 log(2) n is o(n1/6) at which

point we may apply Markov's inequality. So let C be the random variable which counts

the number of cycles of length at most n1/3 log(2) n in D(n, 1/n). We can calculate its

expectation as

E(C) =
n1/3 log(2) n∑

k=1

(
n

k

)
k!

k
pk ≤

n1/3 log(2) n∑
k=1

1

k
(2.23)

We use the upper bound on the kth harmonic number Hk ≤ log k + 1, which allows us

to deduce that

E(C) ≤ Hn1/3 log(2) n ≤ 1

3
log n+ log(3) n+ 1 ≤ log n = o(n1/6). (2.24)

Thus the lemma follows by Markov's inequality. □

Corollary 2.4.6. The probability that D(n, 1/n) contains a component of excess at least

n1/6 and size at most n1/3 log log n is on(1).

Proof. If D is any strongly connected digraph with m vertices and excess k, then note

that it must have at least k+1 cycles of length at mostm. This can be seen by considering
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the ear decomposition of D. The �rst ear must be a cycle, and each subsequent ear adds

a path which must be contained in a cycle as D is strongly connected. So as we build the

ear decomposition, each additional ear adds at least one cycle. As any ear decomposition

of a strongly connected digraph of excess k has k + 1 ears, then D must have at least

k + 1 cycles.

Thus, if D has k cycles, it must have excess at most k− 1. So applying Lemma 2.4.5

completes the proof. □

Finally, we prove the main theorem of this section.

Proof of Theorem 2.4.1. Let C1 be the largest strongly connected component ofD(n, 1/n)

and L1 = |C1|. We want to compute P(L1 ≥ An1/3). De�ne the following three events,

E1 = {L1 ≥ An1/3}

E2 = {An1/3 ≤ L1 ≤ n1/3 log log(n)}

E3 = {L1 ≥ n1/3 log log(n)}

Clearly, E1 ⊆ E2 ∪ E3 and by Lemma 2.4.4, P(E3) = on(1). If F is the event that C1 has

excess at least n1/6 then by Corollary 2.4.6, P(E2 ∩ F) = on(1). All that remains is to

give a bound on P(E2 ∩ F c). To this end let N(A) be random variable which counts the

number of strongly connected components of D(n, 1/n) which have size between An1/3

and n1/3 log log n and excess bounded above by n1/6. By Markov's inequality, we may

deduce that P(E2 ∩ F c) ≤ E(N(A)). Computing the expectation of N(A),

E(N(A)) =

n1/3 log2(n)∑
m=An1/3

n1/6∑
k=0

(
n

m

)
pm+kY (m, k)P(Yτ1 = 0|X0 = m). (2.25)

In Lemma 2.4.3 we showed that P(Yτ1 = 0|X0 = m) ≤ βe−(1+γ)m3/2n−1/2+O(m2n−1). Also,
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using Lemma 2.2.3 we can check that

n1/6∑
k=0

Y (m, k)pk ≤ (m− 1)! + C(m− 1)!(m3p)1/2 sinh
(
(m3p)1/2

)
, (2.26)

where the �rst term on the right hand side of (2.26) comes from the directed cycles and

C is the same constant as in Lemma 2.2.3. As sinh(x) ≤ ex we can bound (2.26) by

n1/6∑
k=0

Y (m, k)pk ≤ (m− 1)!(1 + Cm3/2n−1/2em
3/2n−1/2

)

≤ 2(m− 1)!Cm3/2n−1/2em
3/2n−1/2

Combining these bounds and using
(
n
m

)
≤ nm/m! we deduce

E(N(A)) ≤
n1/3 log2(n)∑
m=An1/3

(
(np)m

m!

)(
2(m− 1)!Cm3/2n−1/2em

3/2n−1/2

)(
βe−(1+γ)m3/2n−1/2+O(m2n−1)

)

=

n1/3 log2(n)∑
m=An1/3

2βCm1/2

n1/2
e−γm

3/2n−1/2+O(m2n−1)

≤
∫ n1/3 log2(n)+1

m=An1/3

2βCm1/2

n1/2
e−

γ
2
m3/2n−1/2

dm (2.27)

where (2.27) holds for all su�ciently large n. Now making the substitution x = mn−1/3

we can remove the dependence of (2.27) on both m and n so that

E(N(A)) ≤ 2βC

∫ log2(n)+n−1/3

A

x1/2e−
γ
2
x3/2dx

≤ 2βC

∫ ∞

A

x1/2e−
γ
2
x3/2dx

=
8βC

3γ

∫ ∞

γA3/2

2

e−tdt =
8βC

3γ
e−

γA3/2

2 (2.28)

So, by Markov's inequality P(E2 ∩ F c) ≤ ζe−ηA
3/2

where ζ and η are the corresponding
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constants found in (2.28). So,

P(L1 ≥ An1/3) ≤ P(E2 ∩ F c) + P(E2 ∩ F) + P(E3) = ζe−ηA
3/2

+ on(1).

Calculating ζ and γ using the values for C, β and γ in Lemmas 2.2.3 and 2.4.3 yields

ζ < 2× 107 and η > 0.03. □

2.5 Adaptations for the Critical Window

In this section we sketch the adaptations one must make to the proofs of Theorems 2.3.1

and 2.4.1 such that they hold in the whole critical window, p = n−1+λn−4/3 where λ ∈ R.

2.5.1 Lower Bound

For Theorem 2.3.1, the adaptation is rather simple. We will still apply Janson's inequality

and so we only need to recompute µ and ∆. Furthermore, the only di�erence in these

calculations comes from replacing the term n−m−k by pm+k, and in fact the pk in this

turns out to make negligible changes. In this light, Lemma 2.3.3 changes to

Lemma 2.5.1.

E(X) ≥


−eλδ

2 log(δ)/2 if λ ≥ 0

−e2δ1/2λ log(δ)/2 otherwise

where the only di�erence in the proof is to bound (1 + λn−1/3)m by its lowest value

depending on whether λ ≥ 0 or λ < 0. We bound this via

1 + x ≥


e

x
2 if 0 ≤ x ≤ 2

e2x if − 1
2
≤ x ≤ 0

Furthermore, Lemma 2.3.5 changes to
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Lemma 2.5.2. For all su�ciently large n and small enough δ,

∆ ≤


e2δ

1/2λ log(2) if λ ≥ 0

eδλ log(2) otherwise

The proof again is almost identical with the only change being to approximate the

(np)m term. This time we seek an upper bound so use the approximation 1 + x ≤ ex

which is valid for any x. We still need to split depending upon the sign of λ as for

the above constants we upper bound (np)m by its largest possible value over the range

δn ≤ m ≤ 2δ1/2n. Combining Lemmas 2.5.1 and 2.5.2 with the relevant constraints on δ

in relation to λ yields Theorem 2.1.4.

2.5.2 Upper Bound

There is no signi�cant (i.e. of order eλA) improvement which can be made with our

current method of proof when λ < 0. This is because the gains we make computing the

expectation in the proof of Theorem 2.4.1 are cancelled out by losses in the branching

process considerations of Lemma 2.4.2.

When λ > 0 we cannot simply use our bound for p = n−1 and thus an adaptation is

necessary. Note that by monotonicity in p, the results of Lemmas 2.4.2 and 2.4.3 remain

true for p = n−1 + λn−4/3 with λ > 0. The next adaptation which must be made is in

equation (2.23) where now, the expectation becomes

E(C) ≤
n1/3 log(2) n∑

k=1

ekλn
−1/3

k
≤

n1/3 log(2) n∑
k=1

(log n)λ

k
≤ 2(log n)λ+1 = o(n1/6)

Thus allowing us to deduce the result of Corollary 2.4.6 as before. Finally all that remains

is to conclude the proof of Theorem 2.1.5. Ignoring lower order terms, the only di�erence

to the proof compared to that of Theorem 2.4.1 is in the computation of E(N(A)) where
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we must change the term (np)m. Thus the integral in (2.27) becomes

∫ n1/3 log(2) n+1

m=An1/3

2βCm1/2

n1/2
e−

γ
2
m3/2n−1/2+λmn−1/3

dm (2.29)

This is much more complex than before due to the extra term in the exponent. However

we are still able to give a bound after making the obvious substitution t = γ
2
m3/2n−1/2 −

λmn−1/3, we obtain

E(N(A)) ≤ 8βC

3γ

∫ ∞

γ
2
A3/2−λA

m1/2n−1/2

m1/2n−1/2 − 4λn−1/3

3γ

e−tdt

≤ 10βC

3γ

∫ ∞

γ
2
A3/2−λA

e−tdt =
10βC

3γ
e−

γ
2
A3/2+λA (2.30)

which is of the claimed form. Note the second inequality holds for A su�ciently large

compared to λ.

2.6 Concluding Remarks

In this chapter we have proven that inside the critical window, p = n−1 + λn−4/3, the

largest component of D(n, p) has size Θp(n
1/3). Furthermore, we have given bounds on

the tail probabilities of the distribution of the size of the largest component. Combining

this result with previous work of Karp [47] and �uczak [53] allows us to deduce that

D(n, p) exhibits a �double-jump� phenomenon at the point p = n−1. However, there

are still a large number of open questions regarding the giant component in D(n, p).

Recently, Goldschmidt and Stephenson [31] found a scaling limit for the sizes of all the

strong components in the critical random digraph. This scaling limit is a little di�cult to

work with directly and so it would be interesting to know if there is a more explicit form

for the size of the largest component. In G(n, p) such a result was given by Pittel [69]

Question 1. Is there an explicit description of the limiting distribution of the largest

component of D(n, p)?

41



Given the strong connection between G(n, p) and D(n, p), it seems likely that the

limit distributions, Xλ = n−2/3|C1(G(n, p))| and Y λ = n−1/3|C1(D(n, p))| (where p =

n−1 + λn−4/3) are closely related. For larger p, previous work [47, 54] has found that

the size of the giant strongly connected component in D(n, p) is related to the size of

the square of the giant component in G(n, p). That is, if |C1(G(n, p)| ∼ α(n)n, then

|C1(D(n, p)| ∼ α(n)2n. Note that the result found in Theorem 2.1.5 is consistent with

this pattern as here we have an exponent of order A3/2 while for G(n, p) a similar result

is true with exponent A3 implying that the probability we �nd a component of size Bn2/3

in G(n, p) is similar to the probability of �nding a component of size B2n1/3 in D(n, p)

(assuming both bounds are close to tight). As such, we make the following conjecture to

explain this pattern.

Conjecture 2.6.1. If Xλ and Y λ are the distributions de�ned above and Xλ
1 , X

λ
2 are

independent copies of Xλ then, Y λ = Xλ
1X

λ
2 .

Finally, we consider the transitive closure of random digraphs. The transitive closure

of a digraph D is cl(D) a digraph on the same vertex set as D and such that uv is an

edge of cl(D) if and only if there is a directed path from u to v in D. Equivalently,

cl(D) is the smallest digraph containing D such that the relation R de�ned by uRv if

and only if uv is an edge is transitive. Karp [47] gave a linear time algorithm to compute

the transitive closure of a digraph from the model D(n, p) provided that p ≤ (1− ε)n−1

or p ≥ (1 + ε)n−1. For all other p this algorithm runs in time O(f(n)(n log n)4/3) where

f(n) is any ω(1) function. Now that we know more about the structure of D(n, p) for

p close to n−1, it may be possible to adapt Karp's algorithm and obtain a better time

complexity.

Question 2. Does there exist a linear time algorithm to compute the transitive closure

of D(n, p) when (1− ε)n−1 ≤ p ≤ (1 + ε)n−1?
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CHAPTER 3

BARELY SUBCRITICAL GRAPHS FROM THE

CONFIGURATION MODEL

3.1 Introduction

Let [n] := {1, . . . , n} be a set of n vertices. Let dn = (d1, . . . , dn) be a degree sequence

with m :=
∑

i∈[n] di an even positive integer. Without loss of generality, we will assume

that d1 ≤ · · · ≤ dn. Additionally, we may assume that d1 ≥ 1; if there are elements with

degree 0 we can remove them and study the remainder sequence. Let ∆ = ∆n be the

maximum degree of dn.

The con�guration model, denoted by CMn = CMn(dn), is the random multigraph on

[n] generated by giving di half-edges (or stubs) to vertex i, and then pairing the half-

edges uniformly at random. The uniform model, denoted by Gn = Gn(dn), is the random

simple graph on [n] obtained by choosing a simple graph uniformly at random among all

graphs on [n] where vertex i has degree di. Throughout this chapter, all the results on

the uniform model will assume that the sequence dn is graphical ; that is, there exists at

least one graph on [n] with such degree sequence.

For any graph G on [n], let L1(G) denote the order of a largest component. A central

problem in random graph theory is to �nd a parameter of the model α such that L1

undergoes a phase transition at α = α0. The set of parameters is then divided into

subcritical (α < α0), critical (α = (1 + o(1))α0) and supercritical (α > α0). A further
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problem is the study the critical window: that is, to �nd parameters β−, β+, such that

L1 behaves essentially the same for any α ∈ (α0 − β−, α0 + β+) and the critical region

is further divided into barely subcritical, α0 − α > β− and barely supercritical, where

α− α0 > β+.

The main goal of this chapter is to study the largest component phase transition

L1(CMn) and L1(Gn) in the subcritical and the barely subcritical regimes. Generally

speaking, the study of con�guration model is simpler due to the existence of a explicit

model with good independence properties. In contrast, most of the results existing for

Gn arise from CMn by observing that the probability that CMn generates a simple graph

is su�ciently large.

In order to understand the phase transition, de�ne

Q = Qn(dn) :=
1

m

∑
i∈[n]

di(di − 2) , (3.1)

R = Rn(dn) :=
1

m

∑
i∈[n]

di(di − 2)2 . (3.2)

In the �rst part of the chapter, we will focus on the case Qn ≤ 0. It is easy to check that

the bound on Qn implies ∆n = O(
√
n) and m ≤ 2n. Also note the implicit bound on

the maximum degree ∆n = O(n1/3R
1/3
n ) obtained by just considering the contribution of

a vertex of maximum degree to Rn.

Let Dn be the degree of a uniform random vertex and let D̂n be its size-biased distri-

bution; that is, for k ≥ 1,

P
(
D̂n = k

)
=
kP (Dn = k)

m
. (3.3)

For b, h ∈ N, let L(b, h) := {b+ hk : k ∈ Z} be the integer lattice containing b with step

h. Let hn be the largest integer h such that P(Dn ∈ L(b, h)) = 1 for some b ∈ N.

We will study the CMn under the following mild conditions on the degree sequence:

Assumption 3.1.1. There exists a discrete random variable D supported on Z≥0 such
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that

(i) Dn → D in distribution;

(ii) Qn → 0;

(iii) P(D ̸∈ {0, 2}) > 0;

(iv) if h is the largest integer such that P(D ∈ L(b, h)) for some b ∈ N, then hn = h for

all n.

(v) E(D4
n) ≤ ∆

1/2
n

Remark 3.1.2. Conditions (i)-(iii) are usual in this setting. In particular, they imply

that Rn is bounded away from zero, which will be often used in the proofs.

Condition (iv) simply asks that the limiting degree distribution D has the same step

as the random variables Dn which converge to it. This restriction is not particularly

strong and forbids no limiting degree sequence, only the way in which we converge to it.

Condition (v) is the most restrictive one. As Qn = o(1), we have E[D2
n] = O(1),

which implies E[D4
n] = O(∆2

n). Thus, this condition can be understood as a �polynomial

limitation� on the contribution of large degree vertices to the fourth moment. It would

be interesting to see up to which point a condition on the fourth moment is needed.

Our �rst result upper bounds the size of the largest component when Q is not too

large with respect to R.

Theorem 3.1.3. Let ϵ > 0. Let dn be a degree sequence satisfying Assumption 3.1.1

and ∆|Q| = o(R). If Q ≤ −ω(n)n−1/3R2/3 for some ω(n) → ∞, then

P
(
L1(CMn(dn)) ≤ (1 + ϵ)

2R

Q2
log

(
|Q|3n
R2

))
= 1− o(1) . (3.4)

Remark 3.1.4. As noted by [35], under the condition |Q|∆ = o(R) the critical window

is |Q| = O(n−1/3R2/3). Therefore, Theorem 3.1.3 bounds the largest component in the

whole barely subcritical regime. See Section 3.1.1 for further discussion.
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Let η := ηn = D̂n − 2 and consider its moment generating function

φ(θ) := φn(θ) = E
[
eθηn

]
. (3.5)

Theorem 3.1.3 is in fact a consequence of a more general result that does not require a

bound of Q in terms of R.

Theorem 3.1.5. Let ϵ > 0. Let dn be a degree sequence satisfying Assumption 3.1.1

and ∆n ≤ n1/6. Let θ0 ∈ (0, 1) be the smallest solution θ of φ′(θ) = 0. De�ne

Tn :=
1

log(φ(θ0))
−1 · log

(
(log(φ(θ0))

−1)3/2

φ′′(θ0)1/2
E
[
Dne

θ0Dn
]
n

)
. (3.6)

If θ0m ≥ ω(n)Tn for some ω(n) → ∞, then

P (L1(CMn(dn)) ≤ (1 + ϵ)Tn) = 1− o(1) . (3.7)

Remark 3.1.6. The value θ0 exists and is bounded as n → ∞. We have φ(0) = 1

and φ′(0) = Q < 0. Recall that η is supported in {−1, 0, 1, . . . }. By Assumption 3.1.1,

{D ≥ 3} happens with positive probability and so if we de�ne p := P(D ≥ 3), then

P(η ≥ 1) ≥ p and φ(θ) ≥ (1− p)e−θ + peθ. So φ(θ) → ∞ as θ → ∞ and it must at some

point have positive derivative. Thus, there exists θ0 such that φ′(θ0) = 0.

It is interesting to understand if these results also hold in the uniform setting. One

can use the following result to transfer from CMn to Gn.

Theorem 3.1.7 (Janson [41]). Let dn be a degree sequence satisfying m = Θ(n) and

E [D2
n] = O(1). Then

P (CMn(dn) simple) = exp

− 1

m

∑
i∈[n]

d2i

 > 0 , (3.8)

and conditioned on being simple, CMn has the same law as Gn. Therefore, any result
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that holds with probability 1− o(1) for CMn(dn), also holds with probability 1− o(1) for

Gn(dn).

As Theorem 3.1.3 and Theorem 3.1.5 assume that Qn ≤ 0, we have that E [D2
n] = O(1)

and we can use Theorem 3.1.7 to transfer their conclusions to Gn, provided that their

hypothesis are satis�ed.

The second part of our chapter focuses on the size of the largest component in the

barely subcritical regime of Gn without further assumptions on the degree sequence. The

lack of a tractable model for Gn hampers its analysis and the upper bounds obtained are

weaker than the ones obtained for CMn and probably not of the right order.

Let S∗ be a smallest set of vertices of largest degree that satis�es

∑
u∈[n]\S∗

du(du − 2) ≤ 0 (3.9)

and de�ne

m∗ =
∑
v∈S∗

dv . (3.10)

In particular, if Q ≤ 0, then S∗ = ∅ and m∗ = 0.

For any m0 ≥ 0 and Q0 ≤ 0, we call dn an (m0, Q0)-subcritical degree sequence if

there exists S ⊆ [n] with
∑

v∈S dv ≤ m0 and

1

m

∑
w∈[n]\S

dw(dw − 2) ≤ Q0 .

Our most general result on Gn is the following.

Theorem 3.1.8. Let dn be an (m0, Q0)-subcritical degree sequences for some parameters

satisfying m0 ≥ 3m∗, m0|Q0| ≥ (∆|Q0| + R) log
(

nQ2
0

∆|Q0|+R

)
and Q2

0n ≥ ω(n)m0 for some
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ω(n) → ∞. Then,

∂L1(Gn(dn)) = O(m0/|Q0|) = 1− o(1) .

Remark 3.1.9 (In�nite degree variance). The main strength of Theorem 3.1.8 is that

it applies to degree sequences with subcritical behaviour but in�nite degree variance. To

our knowledge, the only results available in this setting are of the form L1(Gn(dn)) =

o(n) [8, 45]. Note that, even if such whp results were available for CMn, Theorem 3.1.7

is not strong enough to transfer them to Gn.

Remark 3.1.10 (The Q ≤ 0 case). To compare it with previous work, let us get more

explicit results for the case Q ≤ 0 (i.e. E[D2
n] ≤ 2E[Dn]). In this case, m∗ = 0 and we

can choose Q0 := Q and m0 := (∆+R/|Q|) log
(

nQ2
0

∆|Q0|+R

)
. Also note that Q ≤ 0 implies

R = O(∆).

(a) If |Q| is bounded away from zero, then all conditions in Theorem 3.1.8 are satis�ed

and

L1(Gn(dn)) = O(∆ log n) . (3.11)

(b) If |Q| = o(1), then we split depending on how R and ∆|Q| compare to each other.

(b.1) If ∆|Q| = O(R), then for any Q ≤ −ω(n)n−1/3R1/3,

L1(Gn(dn)) = O

(
R

Q2
log

(
nQ2

R

))
, (3.12)

obtaining a weaker version of Theorem 3.1.3 under no additional assumptions.

(b.2) If R = O(∆|Q|), then for any Q ≤ −ω(n)n−1/2∆1/2,

L1(Gn(dn)) = O

(
∆

|Q|
log

(
nQ

∆

))
. (3.13)
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Remark 3.1.11. If Q2
0n = O(m0), then the behaviour of Gn is no longer (barely) sub-

critical. It is interesting to study the size of the largest component in this case.

We �nally provide the existence of in�nitely many degree sequences that show the

tightness of some of our upper bounds.

Proposition 3.1.12. For any Q < 0, ∆ = o(
√
n) and log n = o(∆), there exists a degree

sequence d̂n with ∆n(d̂n) = ∆, Qn(d̂n) ∼ Q and R = Rn(d̂n) ∼ ∆, such that

∂L1(Gn(d̂n)) ≥ (1 + o(1))
2R

Q2
log
( n
R2

)
= 1− o(1) .

Remark 3.1.13. We can compare the lower bound in Proposition 3.1.12 with our upper

bounds. The degree sequence d̂n satis�es R ∼ ∆, so ∆|Q| = O(R). In the case ∆ <

n1/2−δ for some constant δ > 0, the proposition gives a family of degree sequences for

which Equation (3.11) is of the right order.

While Proposition 3.1.12 is only stated for Q bounded away from zero, one could

similarly de�ne degree sequences d̂n for which Q = o(1), in which case ∆|Q| = o(R).

Provided that Q ≤ −ω(n)n−1/3R2/3 for some ω(n) → ∞, one can obtain the lower

bound in Equation (3.90) that coincides asymptotically with Theorem 3.1.3 and, up to

logarithmic terms, with Equation (3.12). (See Remark 3.5.3.)

3.1.1 Previous work

The foundational paper of Erd®s and Rényi [24] located the phase transition for the

existence of a linear order component in a uniformly chosen graph on n vertices and m

edges, G(n,m), showing that the order of the largest component undergoes a double jump

at m = n/2, in particular L1(G(n,m)) = O(log n) if m ≤ cn and c < 1/2, L1(G(n,m)) =

Θ(n2/3) if m = n/2, and L1(G(n,m)) = Θ(n) if m ≤ cn and c > 1/2. This result can

be easily transferred to the Binomial random graph G(n, p) with p = 2m/n, which has

become the reference model for random graphs. The size of the largest component in all

regimes is well understood, see e.g. Sections 4 and 5 in [36].
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The study of the phase transitions in random graphs with given degree sequences

was pioneered by Molloy and Reed [58]. The so-called Molloy-Reed criterion determines

the phase transition at Q = 0, provided that the degree sequence satis�es a number of

technical conditions. The criterion has been extended to degree sequences with bounded

degree variance [43] and uniformly integrable sequences [8], providing the asymptotic

value of L1 in the supercritical regime Q > 0 in terms of the survival probability of a

branching process, similarly as it is G(n, p) case. Interestingly, the criterion is no longer

valid for general sequences of graphs due to the presence of high degree vertices (hubs) or

an extremely large number of degree 2 vertices. Joos et al. [45] gave an extended criterion

that determines whether any given sequence typically provides a linear order component.

While the behaviour of the largest component in the supercritical regime resembles

the simpler Erd®s-Rényi model, this does not happen in the subcritical one, when Q <

0. Trivially, we have L1(Gn) ≥ ∆ + 1 which could be much larger than logarithmic.

In [58] the authors showed that L1(CMn) = O(∆2 log n) for subcritical sequences. More

precise results are known for power-law degree sequences. Durrett [21] conjectured1 that

if P (Dn = k) ∼ ck−γ for some γ > 3 and c > 0, then L1(CMn) = O(∆). In this setting,

γ > 3 implies E [Dγ−1
n ] = O(1). Pittel [70] showed that L1(CMn) = O(∆ log n) for

subpower-law distributions. Janson [40] proved a strong version of the conjecture: if

P (Dn ≥ k) = O(k1−γ) for some γ > 3, then

L1(CMn) =
∆

|Q|
+ o(n1/(γ−1)) (3.14)

For power-law distributions, whp we have ∆ = Θ(n1/(γ−1)), and the second term is

negligible. From the intuitive point of view, the largest component is obtained by starting

a subcritical branching process with expected o�spring 1 +Q from each vertex adjacent

to the vertex of largest degree. The expected total progeny of such process is 1/|Q|. One

can interpret the result of Theorem 3.1.8 in a similar spirit: in the largest component

1In fact, this was conjectured for a slightly di�erent model where the degrees are i.i.d. copies of Dn

conditioned on their sum being even.
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there might be at most O(m0) edges and from each of these edges a piece of size O(1/|Q0|)

hangs. For Q < 0, (3.14) can be compared to the weaker bound Equation (3.11) that

holds regardless of the shape of the degree sequence tail. As shown in Remark 3.1.10, for

general degree sequences Equation (3.11) cannot be improved.

The critical regime has attracted a lot of interest in recent years [17, 18, 35, 37, 46, 72]

with several papers specialising on the �nite second or �nite third moment cases. Here

we focus on the results known for the barely subcritical regime.

Riordan [72] showed that if ∆ = O(1) then Equation (3.4) holds, even more, one has

asymptotic equality and control on the second order term. Theorem 3.1.5 can be seen

as a generalization of the upper bound in [72] to a wider class of sequences that allows

∆ → ∞ as n→ ∞.

Hatami and Molloy [35] studied the critical window under some mild conditions on the

degree sequence. They showed that |Q| = O(n−1/3R2/3) is the critical window of CMn.

Regarding the barely subcritical regime, for Q ≤ −ω(n)n−1/3R2/3 with ω(n) → ∞, they

showed that whp

L1(CMn) = O

(√
n

|Q|

)
. (3.15)

One can check that Equation (3.15) coincides in order with Equation (3.4) at the bound-

ary of the critical window |Q| = Θ(n−1/3R2/3), while Equation (3.4) improves Equa-

tion (3.15) in the whole barely subcritical regime, provided that Assumption 3.1.1 holds.

Under in�nite variance, the probability of CMn being simple can be exponentially

small in n. Thus, only results that hold with exponentially high probability can be

transferred from CMn to Gn, see e.g. [8]. Another approach is to study Gn directly

using the switching method [45]. In both cases, the best bound given in the subcritical

regime is L1(Gn) = o(n). Theorem 3.1.8 provides the �rst explicit general bound to L1

at subcriticallity for in�nite variance degree sequences. As discussed in Remark 3.1.13,

this bound cannot be substantially improved without further assumptions.
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It thus remains as an open question to determine the exact size of the largest com-

ponent in the (barely) subcritical regime. Hofstad, Janson and �uczak conjectured that

L1(CMn) is concentrated in this regime [37]. Supported by the result of Riordan for

constant maximum degree, we conjecture that the upper bound in Equation (3.7) is

asymptotically tight for all degree sequences that satisfy some mild assumption. Note

that certain condition on the degree sequence is needed, as for some particular subcritical

degree sequences L1(CMn) is non-concentrated (see Remark 3.5.2).

3.2 A local limit theorem

A local limit theorem estimates the probability distribution of a suitably rescaled sum

of independent random variables, by the density function of a Gaussian random vari-

able. Local limit theorems are a useful tool to determine the component size in random

graphs [63, 72]. For our application, we will need the step distribution to allow for the

existence of very large degree, as well as the fact that the degree sequence may be sup-

ported on an lattice with step di�erent than 1. This prevents us from using classical

results such as Berry-Esseen Theorem (see [22, Theorem 3.4.9]). Our goal is to develop

a very precise local limit theorem which will allow us to deal with our step distributions.

Our result is based on previous local limit theorems by Doney [20] and Mukhin [61, 60]

from which we derive more explicit error bounds. In particular the main result of this

section is following,

Theorem 3.2.1. Let X1, X2, . . . , Xn be independent and identically distributed random

variables taking values on L(v0, h). De�ne Sn =
∑n

i=1Xi. Suppose that µ = E(X1) = 0,

σ2 = Var(X1) and γ = E|X1|3, and let φ(t) be the characteristic function of X1. Then,

sup
w∈L(nv0,h)

∣∣∣∣P(Sn = w)− h√
2πnσ2

exp

(
− w2

2nσ2

)∣∣∣∣ ≤ 32hγ

σ4n
+
h

π

∫ π
h

σ2

4γ

|φ(t)|ndt. (3.16)

To prove this theorem, we will require the following Fourier inverse theorems which

52



can be found in the book of Durett [22].

Theorem 3.2.2 (Continuous Fourier Inverse Theorem). Suppose that X is a random

variable with characteristic function φX(t). Suppose further that φX(t) is integrable,

then X is a continuous random variable with density function f(y) de�ned by

f(y) =
1

2π

∫
R
e−ityφX(t)dt.

Theorem 3.2.3 (Discrete Fourier Inverse Theorem). Let X be a random variable with

characteristic function φX(t). Suppose that there exists h > 0 such that P(X ∈ hZ) = 1.

Then for any a ∈ hZ,

P(X = a) =
h

2π

∫ π
h

−π
h

e−itaφX(t)dt.

Finally, as we are interested in local limit theorems it will be useful to note that the

characteristic function of the standard normal distribution is given by N(t) = e−
t2

2 .

Proof of Theorem 3.2.1. Let φ(t) be the characteristic function of X1 and ψn(t) the char-

acteristic function of Sn. By basic properties of characteristic functions, it is easy to see

that ψn(t) = φ(t)n. By Theorems 3.2.2 and 3.2.3 we may deduce that

P(Sn = w)− h√
2πnσ2

exp

(
− w2

2nσ2

)
=

h

2π

∫ π
h

−π
h

e−itw(ψn(t)−N(tσ
√
n))dt−h

π

∫ ∞

π
h

e−itwN(tσ
√
n)dt.

Therefore, by applying various forms of the triangle law we obtain the bound

∣∣∣∣P(Sn = w)− h√
2πnσ2

exp

(
− w2

2nσ2

)∣∣∣∣ ≤ h

2π

∫ π
h

−π
h

|ψn(t)−N(tσ
√
n)|dt+h

π

∫ ∞

π
h

N(tσ
√
n)dt.

(3.17)

To bound the �rst integral in (3.17) we split it into three parts. For ε > 0 (which we

shall pick later) we have

∫ π
h

−π
h

|ψn(t)−N(tσ
√
n)|dt ≤

∫ ε

−ε
|ψn(t)−N(tσ

√
n)|dt+2

∫ π
h

ε

N(tσ
√
n)dt+2

∫ π
h

ε

|φ(t)|ndt

(3.18)
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The idea of this bound being that both ψn(t) and N(tσ
√
n) only contribute a non-trivial

amount to the left hand side of (3.18) for t very close to 0. In bounding the �rst integral

of (3.18) we will use the following lemma [67, Page 109, Lemma 1].

Lemma 3.2.4. Let X1, . . . , Xn be independent random variables with E(Xi) = 0, σ2
i =

Var(Xi) and γi = E|Xi|3. De�ne

Bn :=
n∑
i=1

σ2
i Ln :=

∑n
i=1 γi

B
3/2
n

Tn :=

∑n
i=1Xi

B
1/2
n

Let fn(t) be the characteristic function of Tn. Then,

|fn(t)− e−
t2

2 | ≤ 16Ln|t|3e−
t2

3 for |t| ≤ 1

4Ln
. (3.19)

Clearly this is applicable in our setting, however we need to rescale �rst which allows

us to deduce

|ψn(t)−N(tσ
√
n)| ≤ 16γn|t|3e−

t2σ2n
3 for |t| ≤ σ2

4γ
.

So, for any ε ≤ σ2/(4γ) we have

∫ ε

−ε
|ψn(t)−N(tσ

√
n)|dt ≤ 16γn

∫ ε

−ε
|t|3e−

t2σ2n
3 dt

≤ 16γn

∫ ∞

−∞
|t|3e−

t2σ2n
3 dt

=
16γ

σ4n

∫ ∞

−∞
|t|3e−

t2

3 dt =
144γ

σ4n
. (3.20)

The next step is to bound the second term of (3.18). Note that we can combine this with

bounding the second term of (3.17), so we require to give an upper bound on

∫ ∞

ε

N(tσ
√
n)dt =

1

σ
√
n

∫ ∞

εσ
√
n

e−
t2

2 dt =

√
2π

σ
√
n
P(N (0, 1) > εσ

√
n). (3.21)

We use the Cherno�'s bound for the standard normal distribution, P(N (0, 1) > x) ≤ e−
x2

2
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and the simple inequality e−x ≤ x−1/2 for x > 0, to obtain

∫ ∞

ε

N(tσ
√
n)dt =

√
2π

σ
√
n
P(N (0, 1) > εσ

√
n) ≤ 2

√
π

εσ2n
(3.22)

Choosing ε = σ2/(4γ) and combining (3.17), (3.18), (3.20) and (3.22), we �nd that for

any w ∈ L(nv0, h),

∣∣∣∣P(Sn = w)− h√
2πnσ2

exp

(
− w2

2nσ2

)∣∣∣∣ ≤ (72

π
+

16√
π

)
hγ

σ4n
+
h

π

∫ π
h

σ2

4γ

|φ(t)|ndt

≤ 32hγ

σ4n
+
h

π

∫ π
h

σ2

4γ

|φ(t)|ndt. (3.23)

Concluding the proof of the theorem. □

For the remainder of this section we will focus on bounding the integral term in the

RHS of (3.16). To this end we introduce the parameter HD(X), which generalises a

similar parameter introduced by Mukhin [60, 61]. For a real-valued random variable X,

we de�ne X∗ = X −X ′ to be the symmetrisation of X, where X ′ is an independent copy

of X. Furthermore, for α ∈ R de�ne ⟨α⟩ to be the distance from α to the nearest integer.

Then for a random variable X and d ∈ R we de�ne the following parameters

H(X, d) := E⟨X∗d⟩2.

The parameter H(X, d) measures in a certain sense how close is X∗ to be a random

variable supported on a lattice with step 1/|d|.

The following lemma from [60] will be useful.

Lemma 3.2.5. If φ(t) is the characteristic function of the random variable X then

4H

(
X,

t

2π

)
≤ 1− |φ(t)| ≤ 2π2H

(
X,

t

2π

)
(3.24)

We provide a full proof of the statement, for the sake of completeness.
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Proof. We look at the characteristic function of X∗, φ∗(t). Note that X∗ is by de�nition

symmetric around the origin and hence so is φ∗(t). Writing D(X∗) for the domain of X∗

which is discrete, we have

φ∗(t) =
φ∗(t) + φ∗(−t)

2
=

∑
x∈D(X∗)

eitx + e−itx

2
P(X∗ = x) =

∑
x∈D(X∗)

cos(tx)P(X∗ = x).

(3.25)

As cos(x) is symmetric around π and periodic with period 2π, we have the identity

cos(x) = cos
(
2π
〈 x
2π

〉)
.

We can use this identity to rewrite (3.25) as

φ∗(t) =
∑

x∈D(X∗)

cos

(
2π

〈
tx

2π

〉)
P(X∗ = x). (3.26)

Consider the following bounds on cos(x) valid for x ∈ [0, π],

1− x2

2
≤ cos(x) ≤ 1− 2x2

π2
.

We can use this in combination with (3.26) to deduce that

1− 2π2E
〈
X∗t

2π

〉2

≤ φ∗(t) ≤ 1− 8E
〈
X∗t

2π

〉2

(3.27)

Finally, by de�nition of X∗, note that φ∗(t) = φ(t)φ(−t) = |φ(t)|2. As |φ(t)| ∈ [0, 1] we

may deduce that

1− 2π2H

(
X,

t

2π

)
≤ |φ(t)| ≤ 1− 4H

(
X,

t

2π

)
(3.28)

which may easily be rearranged to give the statement of the lemma. □
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For D ∈ N and a random variable X we de�ne

HD(X) := inf
1

4D
≤d≤ 1

2D

H(X, d) (3.29)

The following lemma of Mukhin [61] bounds H(X, d) in terms of this new parameter,

Lemma 3.2.6. For any random variable X, d ∈ R and D ∈ N with 2D|d| ≤ 1 we have

H(X, d) ≥ 4D2|d|2HD(X).

We may now apply Lemma 3.2.5 to give an explicit upper bound on the integral

term in (3.16) as follows. Recall that X1 is a lattice random variable with step h. By

Lemma 3.2.5 and using ln(1/x) ≥ 1− x for x > 0,

∫ π
h

σ2

4γ

|φ(t)|ndt ≤
∫ π

h

σ2

4γ

e−n(1−|φ(t)|)dt ≤
∫ π

h

σ2

4γ

e−4nH(X, t
2π

)dt. (3.30)

Now, note that the upper limit of the integral in (3.30) is π/h. So, as (π/h)/(2π) = 1/(2h)

we may apply Lemma 3.2.6 with D = h and d = t/2π ≤ 1/2h to deduce that

∫ π
h

σ2

4γ

|φ(t)|ndt ≤
∫ π

h

σ2

4γ

e−
4nh2Hh(X)t2

π2 dt ≤
∫ ∞

σ2

4γ

e−
4nh2Hh(X)t2

π2 dt

=
π3/2

2h(nHh(X))1/2
P
(
N (0, 1) >

σ2h(nHh(X))1/2√
2πγ

)
≤ π3/2

2h(nHh(X))1/2
e
−σ4h2nHh(X)

4π2γ2 , (3.31)

where the �nal inequality follows by the Cherno�'s bound. This allows us to deduce,

once again using the inequality e−x < x−1/2, that this integral is bounded above as

∫ π
h

σ2

4γ

|φ(t)|ndt ≤ π5/2γ

h2σ2nHh(X)
.

This allows us to state the following corollary to Theorem 3.2.1.
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Corollary 3.2.7. Let X1, X2, . . . , Xn be independent and identically distributed random

variables taking values on L(v0, h). De�ne Sn =
∑n

i=1Xi. Suppose that µ = E(X1) = 0,

σ2 = Var(X1) and γ = E|X1|3. Then,

sup
w∈L(nv0,h)

∣∣∣∣P(Sn = w)− h√
2πnσ2

exp

(
− w2

2nσ2

)∣∣∣∣ ≤ 32hγ

σ4n
+

6γ

hσ2nHh(X1)
. (3.32)

To give an explicit upper bound on the error probability, we need to deduce that

Hh(X1) is bounded from below. For x = (x1, x2, . . . , xk) ∈ Zk, de�ne

w(x) := max
i ̸=ℓ̸=j

|xi − xℓ|
gcd(|xi − xℓ|, |xj − xℓ|)

.

Then the fact that Hh(X1) is bounded from below is implied by the following lemma,

Lemma 3.2.8. Let X be an integer valued random variable supported on a lattice of step

h and with atoms x1, . . . , xk not all contained in a non-trivial arithmetic progression of

the lattice. Then there exists an absolute constant C > 0 such that

Hh(X) ≥ C ·
mini∈[k] P(X = xi)

k(w(x)h)2

Proof. For d ∈ R, consider

D(X, d) := inf
α∈R

E⟨(X − α)d⟩2. (3.33)

By [61, Lemma 1], we have that D(X, d) ≤ H(X, d) ≤ 4D(X, d). Therefore,

Hh(X) ≥ min
1/4h≤d≤1/2h

D(X, d)

For all x ∈ Zk and β, d ∈ R, de�ne

S(x, β, d) :=
k∑
i=1

⟨β + xid⟩ (3.34)
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Cauchy-Schwartz's inequality implies that

D(X, d) := inf
α∈R

E⟨(X − α)d⟩2

= inf
β∈R

k∑
i=1

⟨β + xid⟩2P(X = xi)

≥ min
i∈[k]

P(X = xi) inf
β∈R

k∑
i=1

⟨β + xid⟩2

≥
mini∈[k] P(X = xi)

k
inf
β∈R

S(x, β, d)2. (3.35)

It thus su�ces to bound the in�mum of S when x and d are �xed. The derivative of S

with respect to β satis�es the following properties:

(i) it is well de�ned for all β such that ⟨β + xid⟩ ̸∈ {0, 1/2} for all i ∈ [k];

(ii) it is constant between any two consecutive values at which the derivative is unde-

�ned;

(iii) it takes integer values in {−k, . . . , k} anywhere where it is de�ned.

Thus, the minimum of S is attained at β0, for which the derivative is not de�ned. By

relabelling the xi, we may assume that ⟨β0+xkd⟩ ∈ {0, 1/2}. If ⟨β0+xkd⟩ = 1/2, plugging

it in (3.35) we would get the desired bound done. So we may assume that ⟨β0+xkd⟩ = 0,

and, in fact, we can choose β0 = −xkd. For i ∈ [k− 1], de�ne yi := xi−xk. As the xi are

not all contained in a non-trivial arithmetic progression then hcf(y1, y2, . . . , yk−1) = h.

By a simple extension of Bézout's Lemma there exist λi ∈ Z with |λi| ≤ w(x)h for all

i ∈ [k − 1] and λ1y1 + λ2y2 + . . .+ λk−1yk−1 = h. Now, using the identities ⟨tβ⟩ ≤ |t|⟨β⟩

for any t ∈ Z and ⟨β1 + β2⟩ ≤ ⟨β1⟩+ ⟨β2⟩, we obtain

inf
β∈R

S(x, β, d) =
k∑
i=1

⟨β0 + xid⟩ =
k−1∑
i=1

⟨yid⟩ ≥
k−1∑
i=1

⟨λiyid⟩
|λi|

≥

〈
k−1∑
i=1

λiyid

〉
w(x)h

=
⟨hd⟩
w(x)h

(3.36)
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Observing that ⟨hd⟩ = hd for all d ≤ 1/2h, we obtain,

Hh(X) ≥ min
1/4h≤d≤1/2h

D(X, d) ≥ min
1/4h≤d≤1/2h

mini∈[k] P(X = xi)

k

(
⟨hd⟩
w(x)h

)2

=
mini∈[k] P(X = xi)

16k(w(x)h)2
.

□

3.3 Barely subcritical regime for the con�guration model

3.3.1 Exploration process

In this section we introduce a process that given a vertex v ∈ [n] explores CMn starting

by the component containing v. We set a total order of the half edges as follows. For

every vertex v, consider an arbitrary order of its dv half-edges. Then, the half edges are

ordered, �rst by its corresponding vertex (using the total order on [n]) and then by the

order given within the half-edges incident to a vertex.

We will denote by Ft the history of the process at time t. With a slight abuse of

notation, we will assume that Ft is the subgraph formed by the partial matching at time

t. Note that the order of the pairings is determined by the knowledge of the matching.

The main random variable we would like to track is Xt = Xt(v), de�ned as the number

of unmatched half-edges incident to V (Ft) when the process started at v. Note that if

Xt = 0, there are no unpaired half-edges and thus Ft is a union of components of CMn

containing the component of v.

The exploration process of CMn starting at v ∈ [n] is de�ned as follows:

1) Let F0 be the single-vertex graph on {v} and X0 = dv.

2) While V (Ft) ̸= [n],

2a) If Xt = 0, choose a uniformly unmatched half-edge and let u be the vertex

incident to it. Let Ft+1 be constructed from Ft by adding {u} as an isolated

vertex, and let Xt+1 = du.
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2b) Otherwise, choose the smallest unmatched half-edge e incident to V (Ft) and

pair it with a half-edge f chosen uniformly at random from all the unmatched

ones. Let u be the vertex incident to f .

i) If u /∈ V (Ft), let Ft+1 be constructed from Ft by adding vertex u and edge

ef and let Xt+1 = Xt + du − 2.

ii) Otherwise, let Ft+1 constructed from Ft by adding edge ef and let Xt+1 =

Xt − 2.

Note that Xt is measurable with respect to Ft. We de�ne the following parameters:

ηt+1 := Xt+1 −Xt ,

Mt := Xt +
∑

u/∈V (Ft)

du ,

Qt =
1

Mt − 1

∑
u/∈V (Ft)

du(du − 2) ,

Rt =
1

Mt − 1

∑
u/∈V (Ft)

du(du − 2)2 .

(3.37)

It is straightforward to check that if Xt > 0, then

E [ηt+1 | Ft] = Qt and E
[
(ηt+1)

2 | Ft

]
= Rt , (3.38)

and if Xt = 0, then

E [ηt+1 | Ft] =
1

Mt

∑
u/∈V (Ft)

d2u and E
[
(ηt+1)

2 | Ft

]
≥ Rt

2
, (3.39)

although we will never study the process for t such that Xt = 0.

3.3.2 Stochastic domination and random sums

Recall the de�nition of T = Tn given in Equation (3.6).
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De�ne the distribution β as follows: for every ℓ ∈ L := {−1, 0, 1, . . . , n− 3},

P (β = ℓ) :=


m

m−2T
P (η = −1)− 2T

m−2T
if ℓ = −1 ,

m
m−2T

P (η = ℓ) if ℓ ≥ 0 .

(3.40)

Let φβ(θ), θ
β
0 , Qβ, Rβ and Tβ be de�ned as in Equations (3.1), (3.2), (3.5) and (3.6)

replacing η by β. By the choice of β all main parameters are asymptotically equal to the

original ones.

Lemma 3.3.1. For every k ≥ 0, we have φ
(k)
β (θ) = (1+ o(θ0))φ

(k)(θ) + o(θ0). Moreover,

Tβ = (1 + o(1))T .

Proof. The �rst part of the lemma follows directly from

φ
(k)
β (θ) = E(βkeθβ) =

m

m− 2T
E(ηkeθη)− 2T

m− 2T
(−1)ke−θ (3.41)

= (1 +O(T/m))φ(k)(θ) +O(T/m)

= (1 + o(θ0))φ
(k)(θ) + o(θ0). (3.42)

where in the last line we used the hypothesis T = o(mθ0) in Theorem 3.1.5.

For the second part, we split into two cases. If ∆|Q| = o(R), we are in the setting

of Theorem 3.1.3. In such case

log
(
φβ(θ

β
0 )
)−1

∼
Q2
β

2Rβ

∼ Q2

2R
∼ log(φ(θ0))

−1,

(see Section 3.3.4 for the �rst and third equivalences) and the result follows from the �rst

part of the lemma.

Otherwise R = O(∆|Q|). As R is bounded away from zero by Assumption 3.1.1 and

∆n ≤ n1/6, it follows that |Q| is of order at least n−1/6. Again all we need to show is that

log
(
φβ(θ

β
0 )
)−1

= (1 + o(1)) log(φ(θ0))
−1 and then the rest will follow by the �rst part of

the lemma. We do this by bounding φ(θ0)− φβ(θ
β
0 ).
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Using ex ≥ 1 + x, we have

0 = E[ηeθ0η] ≥ E[η(1 + θ0η)] = Q+ θ0R

and thus

0 < θ0 ≤
|Q|
R

= o(1). (3.43)

By construction, β stochastically dominates η and it follows that φ
(k)
β (θ) ≥ φ(k)(θ) for all

k ≥ 0 and θ ≥ 0. In particular,

0 < θβ0 ≤ θ0 (3.44)

Combining (3.41) for k = 0, (3.43) and (3.44),

φβ(θ
β
0 )− φ(θβ0 ) =

2T

m− 2T
(φ(θβ0 )− e−θ

β
0 ) ≤ 2Tθ0

m
(1 + o(1)) = O

(
T |Q|
mR

)
. (3.45)

As φ′′
β is an increasing function with φ

′′
β(0) = (1+o(1))R and φ′

β(θ
β
0 ) = 0, the fundamental

theorem of calculus implies

(θ0 − θβ0 )R ≤ (1 + o(1))

∫ θ0

θβ0

φ′′
β(t)dt = (1 + o(1))φ′

β(θ0) = O

(
T

m

)
. (3.46)

where the last equality follows from (3.42).

We have |φ′(t)| ≤ |Q| for all t ∈ [0, θ0]; indeed, φ
′ is increasing with φ′(0) = Q and

φ′(θ0) = 0, Similarly as before, using (3.46) we conclude that

φ(θ0)− φ(θβ0 ) =

∫ θ0

θβ0

φ′(t)dt ≤ (θ0 − θβ0 )|Q| = O

(
T |Q|
mR

)
. (3.47)
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Combining (3.45) and (3.47),

φβ(θ
β
0 )− φ(θ0) = O

(
T |Q|
mR

)
. (3.48)

Recall that φ′(0) = Q < 0. Using the inequality ex ≤ 1 + 2x for x ∈ [0, 1], we have

φ′
(
|Q|
5∆

)
≤ E

[
η

(
1 +

2|Q|η
5∆

)]
≤ Q+

2|Q|R
5∆

< 0

where the �nal inequality holds because Q < 0 implies R < 2∆. It follows that θ0 ≥ |Q|
5∆
.

By using the fact that φ′(θ) < 0 for all θ ∈ [0, θ0) and Taylor expansion of φ(θ) around

θ = 0, we obtain

φ(θ0) ≤ φ

(
|Q|
5∆

)
≤ 1− Q2

5∆
+
∑
k≥2

E[ηk]
k!

·
(
|Q|
5∆

)k
≤ 1− Q2

5∆
+

2Q2

25∆

∑
ℓ≥0

(
|Q|
5

)ℓ
≤ 1− Q2

10∆
. (3.49)

where in the third inequality we used that E[ηk] ≤ 2∆k−1 for all k ∈ N, since Q < 0.

Using the bound (3.49) in the de�nition of T gives the simple upper bound T ≤
10∆
Q2 log(n). By our bounds on ∆ and Q, T 2|Q| = O(n−5/6 log n) = o(mR). Thus, substi-

tuting this into (3.48), we have

φβ(θ
β
0 )− φ(θ0) = o

(
1

T

)
. (3.50)

By de�nition, log(φ(θ0))
−1 ≥ 1/T . Therefore,

φ(θ0) ≤ e1/T = 1− 1 + o(1)

T
(3.51)
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Combining (3.50) and (3.51),

log
(
φβ(θ

β
0 )
)−1

∼ 1− φβ(θ
β
0 ) ∼ 1− φ(θ0) ∼ log(φ(θ0))

−1,

concluding the proof of the lemma.

□

Let (βt)t≥1 be a sequence of iid copies of β. For s ∈ N , de�ne the stochastic process

Wt = W s
t by W0 = s and for t ≥ 0

Wt+1 = Wt + βt = s+
t∑
i=1

βi . (3.52)

De�ne the stopping time

τ sW := inf{t : W s
t = 0} .

Let h be the largest possible common di�erence of a progression upon which the

limiting degree sequence D is supported, that is

h := max{j : ∃k s.t. P(D ∈ L(k, j)) = 1}

Lemma 3.3.2. For every t ≥ Tβ and s = s(n) we have

P (τ sW = t) ≤ 2h · seθ
β
0 s
(
φ′′
β(θ

β
0 )
)−1/2 (φβ(θ

β
0 ))

t

t3/2
. (3.53)

Moreover, for every ϵ > 0 we have that

P (τ sW ≥ (1 + ϵ)Tβ) = o

 seθ
β
0 s

E
[
Dneθ

β
0Dn

] · Tβ
n

 . (3.54)
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Proof. The dependence on s is implicit in all the notation below. De�ne the following

sequences

It = {b = (b1, . . . , bt) ∈ Lt : s+ b1 + · · ·+ bt = 0}

Ît = {b = (b1, . . . , bt) ∈ It : s+ b1 + · · ·+ bi > 0,∀i ∈ [t− 1]}
(3.55)

We can write

P (Wt = 0) =
∑
b∈It

t∏
i=1

P (βi = bi) and P (τ sW = t) =
∑
b∈Ît

t∏
i=1

P (βi = bi) (3.56)

A variant of Spitzer's lemma [63, Lemma 9] implies that

P (τ sW = t) ≤ s

t
P (Wt = 0) (3.57)

We will use exponential tilting to bound the probability that Wt = 0, as in [63, 72].

Consider the probability distribution βθ de�ned for ℓ ∈ L by

P (βθ = ℓ) =
eθℓP (β = ℓ)

φβ(θ)
. (3.58)

Let (βθ,t)t≥1 be a sequence of iid copies of βθ. De�ne the stochastic process Wθ,t by

Wθ,0 = s and for t ≥ 0

Wθ,t+1 = s+
t∑
i=1

βθ,i . (3.59)

Algebraic manipulations give

P (Wt = 0) = (φβ(θ))
teθsP (Wθ,t = 0) . (3.60)

By de�nition of θβ0 , E
[
βθβ0

]
= E

[
βeβθ

β
0

]
= 0. We may write Wθβ0 ,t

= s + St, where
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St =
∑t

i=1 Yi and (Yi)i∈[t] is a collection of iid copies of βθβ0
. In particular, we have

µ = E [Y1] = φ′
β(θ

β
0 ) = 0 ,

σ2 = E
[
Y 2
1

]
=
φ′′
β(θ

β
0 )

φβ(θ
β
0 )
,

γ = E
[
|Y1|3

]
≤ 2 + E

[
Y 3
1

]
=

2φβ(θ
β
0 ) + φ′′′

β (θ
β
0 )

φβ(θ
β
0 )

.

(3.61)

where in the inequality, we have used that Y1 ≥ −1.

We will apply Corollary 3.2.7 and show that the error term is negligible with respect

to the Gaussian probability. Recall that h is the step of the limiting distribution D,

which by Assumption 3.1.1 is also the step of the distribution of Y1. Since h and Hh(Y1)

(as de�ned in (3.29)) are constants, the order of the �rst error term in (3.32) is at most

the order of the second one, and it su�ces to bound the latter. Assumption 3.1.1 implies

that σ2 ≥ P(D̂n ̸= 2) > 0 for large n, and that γ = O(∆1/2). Therefore, for any t ≥ Tβ

γ

σ2t
= O

(
1√
σ2t

·

√
∆

Tβ

)
= o

(
1√
σ2t

)
.

where we used that ∆ = o(T ) and T ∼ Tβ by Lemma 3.3.1.

Since P (Y1 = −1) > 0, we may choose v0 = −1. Thus, for su�ciently large n, we

conclude that for any w ∈ L(−t, h),

P(St = w) ≤ 2h√
2πtσ2

(3.62)

We can now use (3.62) with w = −s to obtain

P (Wθ0,t = 0) = P (St = −s) ≤ 2h√
2πt

(
φβ(θ

β
0 )

φ′′
β(θ

β
0 )

)1/2

(3.63)

Let us show that φβ(θ
β
0 ) is close to 1. On the one hand, we will use the inequality

ex ≤ 1+ xex for all x ∈ R, with equality if and only if x = 0. Since P (β = 0) ̸= 1, by the
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choice of θβ0

φβ(θ
β
0 ) = E

[
eθ

β
0 β
]
< 1 + θβ0E

[
βeθ

β
0 β
]
= 1 (3.64)

On the other hand, using ex ≥ 1+x for x ∈ R, that θβ0 is bounded on n and E [β] = o(1),

we obtain

φβ(θ
β
0 ) ≥ 1 + θβ0E [β] = 1 + o(1) . (3.65)

Thus, we use the asymptotic equivalence log
(
φβ(θ

β
0 )
)−1

∼ 1− φβ(θ
β
0 ).

Combining Equations (3.57), (3.60), (3.63) and (3.64), we obtain

P (τ sW = t) ≤ 2h · seθ
β
0 s
(
φ′′
β(θ

β
0 )
)−1/2 (φβ(θ

β
0 ))

t

t3/2
.

proving the �rst part of the lemma.

For the second statement of the lemma, it su�ces to prove it for small enough ϵ, so

we may assume ε ∈ (0, 1). Observe that P (τ sW = t) ̸= 0 implies that s = hk − t for some

k ∈ Z. Since v0 = −1 and h are coprime, there are at most ⌈T/h⌉ values t ∈ [T ] such

that P (τ sW = t) ̸= 0.

As our bound on P (τ sW = t) is decreasing on t, using Equation (3.64) it follows that

P (τ sW ≥ (1 + ϵ)Tβ) =
∑

t≥(1+ϵ)Tβ
t∈L(−1,h)

P (τ sW = t) ≤ 2seθ
β
0 s
(
φ′′
β(θ

β
0 )
)−1/2 (φβ(θ

β
0 ))

(1+ϵ)Tβ

T
3/2
β

∑
ℓ≥0

(φβ(θ
β
0 ))

ℓ

= 2seθ
β
0 s
(
φ′′
β(θ

β
0 )
)−1/2 (φβ(θ

β
0 ))

(1+ϵ)Tβ

T
3/2
β (1− φβ(θ

β
0 ))

= o

 seθ
β
0 s

E
[
Dneθ

β
0Dn

] · Tβ
n

 ,

where in the last equality we used that Tβ ∼ 1

logφ−1
β (θβ0 )

log
(
T

−3/2
β (φ′′

β(θ
β
0 ))

−1/2E
[
Dne

θβ0Dn

]
n
)
.

□
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3.3.3 Proof of Theorem 3.1.5

Fix ϵ > 0 su�ciently small. De�ne the stopping time τX(v) as the number of edges in

the component of v, denoted by C(v). That is,

τX(v) := inf{t : Xt(v) = 0} .

Note that for every t ≤ 2T ∧ τX(v), the distribution β stochastically dominates ηt. Thus,

Xt(v) is stochastically dominated by W dv
t .

Let δ = ϵ/3. It follows from Lemmas 3.3.1 and 3.3.2 that

P (τX(v) ≥ (1 + 2δ)T ) ≤ P (τX ≥ (1 + δ)Tβ) ≤ P (τ sW ≥ (1 + δ)Tβ) = o

 dve
θβ0 dv

E
[
Dneθ

β
0Dn

] · T
n

 .

(3.66)

Let Z be the number of components of order at least (1 + ϵ)T . For any ϵ > 0, we can

write

Z =
∑
C

1|C| ≥ (1 + ϵ)T =
∑
v∈[n]

1|C(v)| ≥ (1 + ϵ)T

|C(v)|
≤ 1

T

∑
v∈[n]

1|C(v)| ≥ (1 + ϵ)T , (3.67)

where the �rst sum is over the connected components of CMn.

Since C(v) is a connected subgraph, it has at least |C(v)| − 1 edges. Thus, the proba-

bility of |C(v)| ≥ k is bounded from above by the probability τX(v) ≥ k−1. Using Equa-

tion (3.66) we obtain

E [Z] ≤ 1

T

∑
v∈[n]

P (τX(v) ≥ (1 + ϵ)T − 1) = o

 1

E
[
Dneθ

β
0Dn

]
n

∑
v∈[n]

dve
θβ0 dv = o(1) .

Theorem 3.1.5 follows by Markov's inequality on Z.
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3.3.4 Proof of Theorem 3.1.3

Recall that ∆|Q| = o(R) and that φ(θ) is the moment generating function of η. Thus,

φ(0) = 1, φ′(0) = Q, φ′′(0) = R and φ(k)(0) ≤ ∆k−3R for all k ≥ 3. This implies that

the radius of convergence of φ (and so of any of its derivatives) is at least 2|Q|/R. So,

for any θ with |θ| < 2|Q|/R, we have

φ′(θ) = φ′(0) + θφ′′(0) +O(θ2φ′′′(0)) = Q+ θR + o(Q) .

By the choice of θ0, we have φ
′(θ0) = 0 and θ0 ∼ |Q|/R.

We can also write

φ(θ0) = φ(0) + θ0φ
′(0) +

θ20φ
′′(0)

2
+ o(1) ∼ 1− Q2

2R
.

and

log(φ(θ0))
−1 ∼ Q2

2R
.

Similar arguments give that φ′′(θ0) ∼ R.

Finally, observe that for any δ > 0,

E
[
DeDθ0

]
≤ E

[
De(1+δ)∆Q/R

]
= E

[
Deo(1)

]
= O(1) . (3.68)

Using all previous estimations, we can write

T ∼ 2R

Q2
log

(
|Q|3n
R2

)
.

It is straightforward to check that, in this case, the condition θ0m ≥ ω(n)Tn is equivalent

to Q ≤ −ω(n)n−1/3R2/3.

Note that the condition ∆n ≤ n1/6 is only required in Lemma 3.3.1 in the case
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R = O(∆|Q|). Thus, the desired result follows from Theorem 3.1.5 without further

restrictions on the degree sequence.

3.4 Subcritical regime for the uniform model

3.4.1 Exploration process

We will use the exploration process described in [45] that, given V0 ⊂ [n], reveals the

components of Gn one by one starting with the components containing V0.

We �rst describe the exploration process on �xed graphs where each vertex has an

order in its adjacency list. Precisely, an input is a pair (G,Π), with G a graph on [n] and

Π = (πv)v∈[n] a collection of permutations where πv has length dv and induces a natural

order on the edges incident to v. The process constructs a sequence of sets V0 ⊂ V1 ⊂ . . .

such that at time t all the edges in G[Vt] have been revealed. Similarly as before, we

de�ne Xt = Xt(v) = |E(Vt, [n] \ Vt)| to be the number of edges between the explored

and unexplored parts. If Xt = 0, Vt is a set of vertices forming a union of components,

including the ones intersecting V0. We also de�ne E(A,B) to be the set of edges between

sets A and B, Mt =
∑

w∈[n]\Vt dw, and we let Lt be the number of vertices of degree 1 in

[n] \ Vt.

The exploration process of (G,Π) starting at V0 ⊂ [n] is de�ned as follows:

1) Let X0 = |E(V0, [n] \ V0)|.

2) While Vt ̸= [n],

2a) If Xt = 0, choose a vertex u in [n]\Vt according to the degree distribution and

let wt+1 = u, i.e. P (wt+1 = u) = du
Mt

. Let Vt+1 = Vt∪{wt+1} and Xt+1 = dwt+1 .

2b) Otherwise, choose vt+1 the smallest vertex incident to at least one edge in [n]\Vt

and let et+1 be the smallest edge in E(vt+1, [n] \ Vt). Let wt+1 be the endpoint
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of et+1 in [n] \ Vt. Expose all edges in E(wt+1, Vt). Let Vt+1 = Vt ∪ {wt+1} and

Xt+1 = Xt − 1 + dwt+1 − |E(wt+1, Vt)|.

There are two main di�erences between this exploration process and the one de�ned in

Section 3.3.1: we explore vertex by vertex instead of edge by edge, and we start from a

set instead of a single vertex.

We will run the exploration process on an input (G,Π) chosen uniformly at random

from all the inputs where G is a graph on [n] with degree sequence dn. This is equivalent

to sampling G ∼ Gn and, independently, letting Π = Π(dn) be a collection of uniformly

and independent permutations of lengths (dv)v∈[n]. We will use the principle of deferred

decisions exposing the restriction of πvt+1 onto E(vt+1, [n] \ Vt) at time t. Let (Ft)t≥0

be the �ltration of the space of inputs given by the history of the process just after

exposing the order on E(vt+1, [n] \ Vt). The random objects Xt, Vt, Mt, Lt, vt+1 and

et+1 are Ft-measurable, while wt+1 is Ft+1-measurable. We will use Pt(·) := P (· | Ft) and

Et [·] := E [· | Ft] to denote respectively the probability and expected value conditioned

to Ft.

3.4.2 Deterministic properties of the process

First of all, we may assume that m0 = o(n), as otherwise since |Q0| ≤ 1, there is nothing

to prove. This implies that, m ≤ 3n as
∑

w∈[n]\S∗
dw ≤ 2n.

De�ne

T :=
m0

|Q0|
≥ ∆|Q0|+R

Q2
0

log λ (3.69)

and

λ :=
nQ2

0

∆|Q0|+R
≥ ω(n)

|Q0|
→ ∞ . (3.70)

The last condition imposed implies that T = o(|Q|m), we will use this bound repeatedly
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during the proof.

Let S be the set that certi�es (m0, Q0)-subcriticality. We can always assume that

such set is formed by vertices of largest degrees. Note that our condition on m0 implies

that ∆ = o(m0). So, we may also assume that

∑
v∈S

dv ≥
m0

2
, (3.71)

as increasing the set S can only decrease Q0.

Throughout the proof, we will assume that

∆′ := max
w∈[n]\S

dw ≥ 2 . (3.72)

Otherwise there are at most m0 vertices of degree at least 2 and any component has order

at most O(m0) and we are done.

Lemma 3.4.1. Let v ∈ [n] and set V0 = S ∪ {v}. We have:

1.
∑

u∈V0 du ≤ 2|Q0|T ;

2. ∆′ = o
(
n1

∆

)
.

Moreover, for every t = O(T ) we have:

4. n1(t) ≥ n1/2;

5. Mt ≥ m/3.

Proof. For Item 1, just observe that dv ≤ ∆ ≤ m0 = |Q0|T .

For Item 2, since ∆′ ≥ 2, m0 ≥ 3m∗ and by Equations (3.9), (3.10) and (3.71), we

have

0 ≥
∑

v∈[n]\S∗

dv(dv − 2) ≥ −n1 + (∆′ − 2)
∑

w∈S\S∗

dw ≥ −n1 + (∆′ − 2)(m0/2−m∗) ,

From here it follows that ∆′ = O(n1/m0) = o(n1/∆).
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For Item 4, observe that n1 ≥ |Q0|m and T = o(|Q0|m). So n1(t) ≥ n1−1− t ≥ n1/2.

For Item 5, by Equation (3.9) we have

0 ≥ Qm ≥ −n1 +
∑

v∈[n]\S∗
dv≥3

dv = m−m∗ − 2(n1 + n2) .

Counting only the contribution of vertices of degree 1 or 2 to Mt, we obtain

Mt ≥ n1 + 2n2 −m∗ − 2t ≥ m

2
+ o(n) ≥ m

3
.

□

3.4.3 Bounding the increments

Lemma 3.4.2. For any v ∈ [n], any t = O(T ) and any w ∈ [n] \ Vt, we have

Pt(wt+1 = w) ≤ (1 + o(1))
dw
Mt

. (3.73)

Moreover, if dw = 1

Pt(wt+1 = w) ≥ (1 + o(1))
dw
Mt

. (3.74)

Proof. The proof uses an edge-switching argument. A switching is a local operation that

transforms an input into another one. Given an input (G,Π) and two oriented edges (a, b)

and (c, d) with ab, cd ∈ E(G) and ac, bd /∈ E(G), we obtain the new input by deleting

the edges ab and cd, and adding the edges ac and bd. Note that this operation preserves

the degree of each vertex and does not modify the permutations of the adjacency lists.

We will restrict to switchings that do not modify the edges within Vt in order to switch

between inputs in Ft.

Fix w ∈ [n] \ Vt. If Xt = 0, then w is chosen with probability dw/Mt, so we may

assume that Xt > 0. Let vt+1, et+1 and wt+1 as described in the process. Given Ft, vt+1
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and et+1 are �xed, while wt+1 is a random vertex. Let A ⊆ Ft be the set of inputs with

wt+1 = w and B = Ft \ A. We will estimate the number of switchings between A and B

to prove the lemma.

We �rst proof Equation (3.73). To switch from B to A, we need to switch the edges

(vt+1, wt+1) and (w, u) for u ∈ N(w) and there are at most dw such switchings for each

input in B. To switch from A to B, it su�ces to select the edges (vt+1, w) and (x, y)

with x /∈ N(vt+1) ∪ Vt and y /∈ N(w). By Lemma 3.4.1, there are at most ∆∆′ +∆′∆ =

o(n1) = o(Mt) oriented edges (x, y) with x ∈ [n] \ Vt that violate the previous condition.

Thus, there are at least (1 + o(1))Mt switchings for each input in A. It follows that

Pt(wt+1 = w) =
|A|

|A|+ |B|
≤ |A|

|B|
≤ (1 + o(1))

dw
Mt

.

We now prove Equation (3.74). Suppose that dw = 1. To switch from A to B we must

choose the oriented edge (vt+1, w) and an oriented edge (x, y) with x ∈ [n] \Vt, otherwise

we would alter the edges within Vt. It follows that there are at most Mt switchings for

each input in A. To switch from B to A, we must choose the oriented edge (vt+1, wt+1)

and the unique oriented edge (w, u), where u is the only neighbour of w. Observe that if

either vt+1w or wt+1u is an edge of the graph, the switching is invalid. Instead of giving

a lower bound for the number of switchings of a �xed input in B, we will give a lower

bound for the average number of switchings over B. For each z ∈ [n] \ (Vt ∪ {w}), let

Bz be the set of inputs in B with wt+1 = z. Given an input (G,Π) and x ∈ [n] \ Vt with

dx = 1, we say that the input is x-good if vt+1x, zy /∈ E(G), where y is the only neighbour

of x; otherwise we call the input x-bad. Since dx = 1 and dz ≤ ∆′, by Lemma 3.4.1, there

are at most ∆+∆′∆ = o(n1) = o(n1(t)) vertices x for which a given input is x-bad. We

can generate a random input in Bz, by �rst choosing one uniformly at random and then

permuting the labels of the vertices of degree 1 in [n] \ (Vt ∪ {z}). Thus, the probability

that a random input in Bz is w-bad is o(1). If an input is w-good, switching (vt+1, wt+1)
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with (w, u) yields an input in A. It follows that

Pt(wt+1 = w) =
|A|

|A|+ |B|
=

1

1 + |B|/|A|
≥ 1

1 + (1 + o(1))Mt

= (1 + o(1))
1

Mt

□

De�ne ηt = dwt − 2. Next result bounds the �rst and second moments of ηt.

Lemma 3.4.3. For any v ∈ [n] and any t = O(T ), we have

Et [ηt+1] ≤
Q0

2
and Et

[
(ηt+1)

2
]
≤ 4R . (3.75)

Proof. Note that
∑t

i=1 dwi
(dwi

− 2) ≥ −t. Using Lemma 3.4.1 and t = O(T ) = o(|Q0|m),

∑
w∈[n]\Vt

dw(dw − 2) =
∑

w∈[n]\V0

dw(dw − 2)−
t∑
i=1

dwi
(dwi

− 2) ≤ Q0m+ t+ 1 ≤ Q0m

2
≤ 0 .

(3.76)

Applying Lemma 3.4.2 and Mt ≤ m,

Et [ηt+1] =
∑

w∈[n]\Vt

(dw − 2)Pt(wt+1 = w) ≤ 1 + o(1)

Mt

∑
w∈[n]\Vt

dw(dw − 2) ≤ Q0/2 .

Similarly, we can bound the second moment. By Lemma 3.4.1 and Equation (3.73),

Et
[
(ηt+1)

2
]
=

∑
w∈[n]\Vt

(dw − 2)2Pt(wt+1 = w) ≤ (1 + o(1))

Mt

∑
w∈[n]\Vt

(dw − 2)2dw ≤ 4R

□
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3.4.4 Proof of Theorem 3.1.8

Let γ := 80. De�ne the stopping time

τX = τX(v) = inf{t : Xt = 0} ∧ (γT + 1) ,

where Xt is obtained by starting the process with V0 = S ∪ {v}. We omit the �oor and

ceiling functions in this section for ease of notation.

Instead of studying Xt, we focus on the stochastic process (Zt)t≥0 de�ned by Z0 =

2|Q0|T and for t ∈ N

Zt+1 := Zt + ηt+1 = 2|Q0|T +
t∑
i=0

ηi+1 . (3.77)

Observe that Zt is Ft-measurable. For any t < τX , we can bound the increments Xt+1 −

Xt ≤ dwt+1 − 2 = ηt+1. Therefore, for every t ≤ τX(v) we have Xt+1 ≤ Zt+1.

De�ne the stopping time

τZ = τZ(v) := inf{t : Zt = 0} ∧ (γT + 1) , (3.78)

where Zt is obtained by starting the process with V0 = S ∪ {v}. Hence, τX(v) ≤ τZ(v)

and it su�ces to bound the latter from above.

Write µt+1 := (ηt+1 − Et [ηt+1])1t < τZ and St+1 :=
∑t

i=0 µi+1. For every t < τZ , we

can write

Zt+1 = 2|Q0|T + St+1 +
t∑
i=0

Ei [ηi+1] . (3.79)

Since Ei [µi+1] = 0 for all i ≥ 0, St is a martingale with respect to Ft with S0 = 0.

We will use the following Bennett-type concentration inequality for martingales due to

Freedman.

Lemma 3.4.4 ([29]). Let (St)t≥0 be a martingale with respect to a �ltration (Ft)t≥0
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with S0 = 0 and increments µt+1 = St+1 − St. Suppose there exists c > 0 such that

maxt≥0 |µt+1| ≤ c almost surely. For t ≥ 0, de�ne

V (t+ 1) :=
t∑
i=0

Ei
[
(µi+1)

2
]
.

Then, for every α, β > 0

∂St ≥ α and V (t) ≤ β for some t ≥ 1 ≤ exp

(
−α2

2(β + cα)

)
.

Deterministically, we have maxt≥0 |µt+1| ≤ ∆ =: c. Moreover, by Lemma 3.4.3 for all

t ≥ 0,

V (t) ≤
t−1∑
i=0

Ei
[
(ηi+1)

2
1i < τZ

]
≤ 4R(t ∧ γT ). (3.80)

Choose α = (γ/3)|Q0|T and β = 4RγT . Thus, for all t ≥ 0, V (t) ≤ β deterministically

and, since |Q0| ≤ 1, 2(β + cα) ≤ 8γ(R + ∆|Q0|)T . By Lemma 3.4.4, uniformly on the

choice of v ∈ [n]

P (St ≥ α for some t) ≤ exp

(
− γT |Q0|2

72(R +∆|Q0|)

)
= O (1/λ) . (3.81)

since γ ≥ 72.

By Equation (3.75) we have
∑γT−1

i=0 Ei [ηi+1] ≤ (γ/2)|Q0|T . Combining it with Equa-

tion (3.81), we obtain uniformly on v ∈ [n]

∂τZ(v) > γT = ∂Zt > 0 for all t ≤ γT ≤ ∂SγT > (γ/2− 2)|Q0|T = O (1/λ) . (3.82)

since γ ≥ 12.

Observe that if |C(v)| > (γ + 2)T , then τZ(v) ≥ τX(v) > γT . As in Equation (3.67),
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letting Z be the number of components of size larger than (γ+2)T and by Equation (3.82)

E [Z] ≤ 1

(γ + 2)T

∑
v∈[n]

P (|C(v)| > (γ + 2)T ) ≤ 1

T

∑
v∈[n]

P (τZ(v) > γT ) = O (1/ log λ) = o(1) .

Markov's inequality concludes the proof.

3.5 Proof of Proposition 3.1.12

Given ϵ ∈ (0, 1) and ∆ = ∆(n) = o(
√
n) with log n = o(∆), de�ne

ℓ =
⌊
(1− ϵ)

n

∆2

⌋
. (3.83)

Consider the degree sequence d̂n that contains n − ℓ vertices of degree 1 and ℓ vertices

of degree ∆. We may assume that the sum of the degrees is even, otherwise we may

add another vertex of degree 1. For the sake of simplicity, we will omit the �oor in

the de�nition of ℓ. Straightforward computations show that m = (1 + O( 1
∆
))n and

Q = −(1 + o(1))ϵ.

Let L ⊆ [n] denote the set of vertices of degree ∆. Let G∗ be the random subgraph

induced by CMn(d̂n) on L. Let G(L, p) be the Erd®s-Rényi random graph on the vertex

set L, where each edge in
(
L
2

)
is chosen independently with probability p. Let P∗(·) and

Pp(·) be the probability measures on (multi)graphs with vertex set L associated to G∗

and G(L, p), respectively, and let E∗ [·] and Ep [·] the expected value operator de�ned in

these probability spaces.

We brie�y sketch the proof. Most of the half-edges in d̂n are incident to vertices of

degree 1. So typically, all vertices in L will pair most of their half-edges with the ones

incident to V \ L and the order of the largest component in CMn(d̂n) will be of order at

least ∆L1(G∗) whp. To estimate L1(G∗), we will show that G∗ behaves like G(L, p∗) with

p∗ :=
∆2

n
= (1−ϵ)

ℓ
. Classic results on the subcritical regime of random graphs will give lower

bounds for L1(G(L, p∗)) that also apply to L1(G∗). We will �nally use Equation (3.8) to
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transfer the lower bound on the largest component from CMn(d̂n) to Gn(d̂n).

Precisely, we will show that certain small subgraphs in G∗ appear with the same

probability as in G(L, p∗). Let Zs be the number of isolated trees of size s in G∗. Paley-

Zygmund's inequality implies

P∗(Zs > 0) ≥ E∗ [Zs]
2

E∗ [Z2
s ]
. (3.84)

Lemma 3.5.1. For every s = O(log ℓ) we have,

E∗ [Zs] = (1 + o(1))Ep∗ [Zs]

E∗
[
Z2
s

]
= (1 + o(1))Ep∗

[
Z2
s

]
.

Proof. Choose S ⊂ L with |S| = s and any tree T with V (T ) = S. Let AT be the event

that S induces an isolated copy of T in L, which can be de�ned for G∗ and G(L, p).

Fix an arbitrary ordering of E(T ), e1, . . . , es−1. A realisation of T is a set of pairs of

half-edges {a1b1, . . . , as−1bs−1} such that the endpoints of ei are the vertices incident to

ai and bi. Let k(T ) be the number of realisations of T . If d1, . . . , ds is the degree sequence

of T , then
∑s

i=1 di = 2(s− 1) and

k(T ) =
s∏
i=1

∆!

(∆− di)!
= ∆2(s−1)

s∏
i=1

(
1 +O

( s
∆

))
= (1 + o(1))∆2(s−1) , (3.85)

since s2 = o(∆).

The event AT admits a partition into k(T ) subevents A1
T , . . . , A

k(T )
T depending on the

realisation of T . For i ∈ [k(T )], P∗(A
i
T ) is equal to the probability that CMn satis�es:

(1) the i-th realisation of T is in CMn;

(2) for every u ∈ S and every incident half-edge a not in the i-th realisation, a is paired

in CMn to a half-edge incident to V \ L.

Let r = s(ℓ−s)+
(
s
2

)
. For i ∈ [k], consider the i-th realisation of T , let (ai1b

i
1, . . . , a

i
s−1b

i
s−1)
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be a sequence of pairings corresponding to E(T ) and let (āisb̄
i
s, . . . , ā

i
rb̄
i
r) be a sequence

of all nonpairings with at least one half-edge in S (we will assume āij is always incident

to S). Let Bj be the event that a
i
lb
i
l is a pairing for all l ≤ j ∧ (s − 1) and āil b̄

i
l is not a

pairing for all s ≤ l ≤ r.

We can write

P∗(AT ) =

k(T )∑
i=1

s−1∏
j=1

P
(
aijb

i
j ∈ E(CMn) | Bj−1

) r∏
j=s

P
(
āij b̄

i
j /∈ E(CMn) | Bj−1

)
(3.86)

Each term on the �rst product in Equation (3.86) is 1
m−O(s)

=
(
1 +O( s

m
+ 1

∆
)
)

1
n
; so the

�rst product is

s−1∏
j=1

P
(
aijb

i
j ∈ E(CMn) | Bj−1

)
=

(
1 +O

(
s2

m
+
s

∆

))
1

ns−1
(3.87)

In order to estimate the probability of (2) (which is given by the second product in

Equation (3.86)), we compute the probability that each half-edge a incident to S is not

paired with half-edges in L. There are exactly s∆ − 2(s − 1) such events, and each has

probability 1− ℓ∆−O(s∆)
m+O(s∆)

=
(
1− ℓ∆

n

) (
1 +O( s∆+ℓ

n
)
)
. Thus, we have

r∏
j=s

P
(
fjf

′
j /∈ E(CMn) | Bj−1

)
=

(
1− ℓ∆

n

)s∆−2(s−1)(
1 +O

(
s∆+ ℓ

n

))s∆
=

(
1− ∆2

n

)sℓ
eO(s/ℓ+s/∆)

(
1 +O

(
s2

ℓ
+
s

∆

))
= (1 + o(1)) (1− p∗)

r−s+1 , (3.88)

where we used that (1−x/N)y = (1−y/N)xeO((x2y+y2x)/N2) with x = ℓ, y = ∆, N = n/∆,

and that ∆ ≫ s, ℓ≫ s2.

Plugging Equations (3.85), (3.87) and (3.88) into Equation (3.86), we obtain

P∗(AT ) = (1 + o(1))ps−1
∗ (1− p∗)

r−s+1 = (1 + o(1))Pp∗(AT ) .
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Adding over all sets S ⊂ L with |S| = s and over all trees T with V (T ) = S, we obtain

the �rst part of the lemma.

For the second part, choose S, S ′ ⊂ [m] with |S| = |S ′| = s and any pair of trees T

and T ′ with V (T ) = S and V (T ′) = S ′. Note that P∗(AT , AT ′) = 0 unless S = S ′ and

T = T ′, or S ∩ S ′ = ∅. Suppose we are in the latter case, and let r = 2s(m− 2s) +
(
2s
2

)
.

Following similar computations as the ones we did for a single tree, we obtain

P∗(AT , AT ′) = (1 + o(1))Pp∗(AT , AT ′) ,

and adding over all pairs of sets and trees supported on these sets, the second part also

follows. □

The moments of Zs inG(L, p) are well-studied in random graph theory. Let I(λ) = λ−

1−lnλ be the large deviation rate function for Poisson random variables with mean λ > 0.

For λ = 1− ϵ, any a < (Iλ)
−1 and s0 = ⌊a log ℓ⌋, we have Ep∗

[
Z2
s0

]
= (1 + o(1))Ep∗ [Zs0 ]

2

(see e.g. Lemma 2.12(i) in [30]). Combining this with Lemma 3.5.1 and Equation (3.84),

whp G∗ has an isolated tree of size s0. As every vertex in L has degree ∆, there are

exactly ∆s0− 2(s0− 1) vertices of degree 1 that attach to the given tree. Therefore, whp

there exists a component in CMn(d̂n) of order (1 + o(1))∆s0.

Observe that Iλ =
ϵ2

2
+O(ϵ3) and since Q = −(1 + o(1))ϵ, we have Iλ = (1+ o(1))Q

2

2
.

As E [D2] = O(1) and R ∼ ∆, we can use Theorem 3.1.7 to deduce that whp

L1(Gn(d̂n)) ≥ (1 + o(1))∆s0 ≥ (1 + o(1))
2R

Q2
log
( n
R2

)
.

This concludes the proof of the proposition.

Remark 3.5.2 (Concentration of L1(Gn(dn))). Proposition 3.1.12 imposes the condition

∆ = o(
√
n), or equivalently ℓ → ∞ as n → ∞. If ∆ is of order

√
n, it is easy to check

that the probability that G∗ = H is bounded away from 0 for every H of order ℓ. Since

the size of the largest component is asymptotically equal to ∆L1(G∗), L1(CMn(d̂n)) and
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L1(Gn(d̂n)) are not concentrated.

Remark 3.5.3 (The case Q = o(1)). The largest component of Erd®s-Rényi is well-

studied in the barely subcritical regime (see e.g. Theorem 5.6 in [44]). If p = 1−ϵ(ℓ)
ℓ

with

ϵ(ℓ) > 0 and ℓ−1/3 ≪ ϵ(ℓ) ≪ 1, then whp

L1(G(ℓ, p)) ∼ 2ϵ2 log
(
ϵ3ℓ
)
. (3.89)

Let ℓ = (1 − ϵ(n)) n
∆2 and de�ne the degree sequence d̂n as before. Again, Q ∼ −ϵ

and R ∼ ∆. In particular ∆|Q| = o(R) holds.

Set p = 1−ϵ(n)
ℓ

. The same argument as in the proof of Proposition 3.1.12 and Equa-

tion (3.89) gives

L1(Gn(d̂n)) ≥ ∆L1(G(ℓ, p)) ≥ (1 + o(1))
2∆

ϵ2
log

(
ϵ3n

∆2

)
≥ (1 + o(1))

2R

Q2
log

(
|Q|3n
R2

)
.

(3.90)

The condition ϵ(ℓ) ≫ ℓ−1/3 for the validity of Equation (3.89) is equivalent to Q ≤

−ω(n)n−1/3R2/3, for some ω(n) → ∞.
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CHAPTER 4

BARELY SUBCRITICAL RANDOM DIGRAPHS

WITH A GIVEN DEGREE SEQUENCE

4.1 Introduction

4.1.1 The directed con�guration model

Let d⃗n = (d−
n ,d

+
n ) = ((d−1 , d

+
1 ), . . . , (d

−
n , d

+
n )) be a directed degree sequence on n vertices

and let mn =
∑
d−i =

∑
d+i . The directed con�guration model on d⃗n, DCM = DCM(d⃗n)

introduced by Cooper and Frieze [13], is the random directed multigraph on [n] obtained

by associating with vertex i d−1 in-stubs and d+i in-stubs, and then choosing a perfect

matching of in- and out- stubs uniformly at random. This is a directed generalisation of

the con�guration model of Bollobás [6] which since its introduction has become one of

the most widely used random graph models.

A strongly connected component in a digraph is a maximal sub-digraph such that

there exists a directed path between each ordered pair of vertices. In this chapter we will

consider the size of the largest strongly connected component in the barely subcritical

regime.

Let nk,ℓ be the number of copies of (k, ℓ) in d⃗n and let ∆n = max(d−i , d
+
i ) be the

maximum degree of d⃗n. Also, the following are parameters of the degree distribution

which govern the behaviour of the size of the largest strongly connected component.
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De�nition 4.1.1.

Qn :=
1

mn

n∑
i=1

d−i d
+
i − 1 R−

n :=
1

mn

n∑
i=1

d−i d
+
i (d

−
i − 1) R+

n :=
1

mn

n∑
i=1

d−i d
+
i (d

+
i − 1)

We shall assume the following conditions which ensure that the degree sequence is

suitably �well behaved�.

Condition 4.1.2. For each n, (d−i , d
+
i )

n
i=1 = ((d−i , d

+
i )

(n))ni=1 is a sequence of ordered

pairs of non-negative integers such that
∑n

i=1 d
−
i =

∑n
i=1 d

+
i . Furthermore, (pi,j)

∞
i,j=1 is a

probability distribution such that for some ε, ζ > 0,

i) ni,j/n→ pi,j as n→ ∞ for each i, j ≥ 0,

ii) mn/n = µ(n) → µ =
∑∞

i,j=1 ipi,j =
∑∞

i,j=1 jpi,j,

iii) n0,0 = 0,

iv)
∑∞

i=1 n0,i + ni,0 ≤ (1− ε)n,

v) n1,1 ≤ (1− ε)n,

vi) ∆n ≤ n1/6,

vii) R−
n , R

+
n ≥ ζ.

It was shown by Cooper and Frieze [13] thatQn = 0 is the threshold for the existence of

a giant strongly connected component under some mild conditions on the degree sequence

similar to those observed in Condition 4.1.2.

For the remainder of the chapter, we shall omit the subscript on d⃗n,∆n etc. for

reasons of clarity. Let Ck(d⃗) be the size of the largest strongly connected component

of the directed con�guration model with degree sequence d⃗. We shall write Ck for this

quantity when the degree sequence is clear.

Our main result is the following,
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Theorem 4.1.3. Let DCM(d⃗) be a con�guration model random digraph with degree

sequence d⃗ and suppose that nQ3(R−R+)−1 → −∞. With high probability, there are no

complex components or cycles of length ω(1/|Q|). Furthermore, the probability that the

kth largest cycle has length at least α|Q|−1 is

P
(
|Ck| ≥

α

|Q|

)
= 1−

k−1∑
i=0

ξiα
i!
e−ξα + o(1).

Where

ξα =

∫ ∞

α

e−x

x
dx.

In prior work, �uczak and Seierstad [55] considered the model D(n, p) which is a

random digraph model formed by including each possible arc with probability p inde-

pendently. They showed an analogous result to Theorem 4.1.3 for p = (1 − ε)/n with

ε = o(1) and ε3n→ ∞ in this model.

4.1.2 Previous work

The study of the giant component in random graph models was initiated by the seminal

paper of Erd®s and Rényi [24] regarding the giant component in G(n, p). Since then the

appearance of a giant component in various models has remained an active topic of study

in the area.

When working with directed graphs, there are a number of types of connected com-

ponent which are of interest. In this chapter we concern ourselves with the strongly con-

nected components. The study of strongly connected components in random digraphs

began in the model D(n, p) where we include each possible edge with probability p in-

dependently. Karp [47] and �uczak [53] independently showed that when p = c/n, then

D(n, p) has all strongly connected components of size O(1) if c < 1. If instead c > 1

they showed that there exists a unique strongly connected component of linear order

with all other components of size O(1). The case p = (1 + ε)/n with ε = o(1) and
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|ε|3n → ∞ was studied by �uczak and Seierstad [55]. They showed that if ε3n → ∞,

there is a unique strongly connected component of size 4ε2n and other components all of

size O(1/ε). When ε3n→ −∞ they showed an analogue of Theorem 4.1.3:

Theorem 4.1.4. Let np = 1 − ε where ε → 0 but ε3n → −∞. Assume a > 0 is a

constant and let Xs denote the size of the sth largest strongly connected component.

Then, asymptotically almost surely, D(n, p) contains no complex components and

lim
n→∞

P(Xs < a/ε) =
s−1∑
i=0

λia
i!
e−λa ,

where λa =
∫∞
a

e−x

x
dx.

The so-called critical window, when p = (1 + λn−1/3)/n has also been the subject of

some study. In [15] the author showed bounds on the size of the largest strongly connected

component in this regime which are akin to bounds obtained by Nachmias and Peres for

G(n,p) [62]. Moreover, Goldschmidt and Stephenson [31] gave a scaling limit result for

the largest strongly connected components in the critical window.

The directed con�guration model has also been studied previously. It was �rst studied

by Cooper and Frieze who showed that provided the maximum degree ∆ < n1/12/ log(n)

then if Qn < 0, there is no all strongly connected components are small and if Qn > 0

there is a giant strongly connected component of linear size. The assumptions on the

degree sequence have subsequently been relaxed, Graf [32] showed ∆ < n1/4 is enough

to draw the same conclusion and Cai and Perarnau [11] improved this further to only

require bounded second moments. A scaling limit result was obtained at the exact point

of criticality, Qn = 0 by Donderwinkel and Xie [19] in a very closely related model where

vertices' degrees are sampled from a limiting degree sequence.
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4.1.3 Organization

The remainder of this chapter is arranged as follows, in Section 4.2 we prove some auxil-

iary results on subgraph counting within the directed con�guration model. Then, in Sec-

tion 4.3 we enumerate certain types of strongly connected directed graphs of maximum

degree 4. In section Section 4.4 we prove Theorem 4.1.3 which we break down into a few

steps, �rst that there are no long cycles. Next that there are no complex components and

�nally we compute the probability the kth largest component has size at least α/|Q| via

Poisson approximation. We conclude the chapter in Section 4.5 with some open questions

and future work.

4.2 Subgraph Bounds

We calculate probabilities of given subgraphs in the con�guration model. We let (D−, D+)

be the degree distribution, that is the random variable obtained by picking an element

of d⃗ uniformly at random.

Suppose that DCM has degree distribution (D−, D+) de�ne

µi,j = E(Di
−D

j
+), and ρi,j = E

( i−1∏
k=0

(D− − k)

j−1∏
ℓ=0

(D+ − ℓ)

)
.

So that the µi,j and ρi,j are the moments and factorial moments of (D−, D+) respectively.

We also de�ne µ = µ1,0 = µ0,1 which is the average degree. Furthermore, observe that

µ1,1 =
m
n
(1+Q) which is a fact we utilise in subsequent sections. We now state a general

upper bound on the probability of �nding certain subgraphs in the con�guration model.

Lemma 4.2.1. Let DCM be a con�guration model random digraph with degree distribu-

tion (D−, D+). Suppose further that DCM has n vertices and m edges. Let H be any

digraph with h vertices, k edges and degree sequence H = (hi,j : i, j ∈ N). Then the prob-

ability that a uniformly random injective map ϕ : V (H) → V (DCM) is a homomorphism
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is bounded above by

p+(H,DCM) :=
nh

(n)h(m)k

∏
i,j∈N

ρ
hi,j
i,j (4.1)

Furthermore, the expected number of copies of H in DCM is bounded above by

n+(H,DCM) :=
h!

aut(H)

(
n

h

)
p+(H,DCM). (4.2)

Proof. Note that (4.2) follows immediately from (4.1). Thus we shall focus on the proof

of (4.1). Let ψ : V (H) → V (DCM) be a �xed injective map. Arbitrarily order the edges

of H as E1, E2, . . . , Ek and for each edge Ei de�ne an event Ei := {ψ(Ei) ∈ E(DCM)}.

Then, ψ is a homomorphism if and only if every event E1, . . . , Ek occurs. To simplify

notation, let F1 = E1 and Fi = Ei| ∩i−1
j=1 Ej for i ≥ 2 and note that

k⋂
i=1

Ei =
k⋂
i=1

Fi.

Suppose that Ei = aibi for some ai, bi ∈ V (H). De�ne si = |{j < i : ai = aj}| and

ti = |{j < i : bi = bj}|. That is, si and ti are the number of times that ai (resp. bi) has

previously appeared as the initial (terminal) vertex of an edge of H. Also, suppose that

ψ(Ei) = a′ib
′
i.

Claim.

P(Fi) ≤
min(d+(a′i)− si, 0)min(d−(b′i)− ti, 0)

m+ 1− i

Proof. To see this, note that if d+(a′i) ≤ si, then P(Fi) = 0 as there are not enough stubs

at a′i to create such a copy of H. Similarly if d+(b′i) ≤ ti, P(Fi) = 0.

So, without loss of generality we may assume that (d+(a′i)−si), (d−(b′i)−ti) > 0. Now,

by de�nition of Fi we have already chosen i− 1 edges of the con�guration model and we

have precisely d+(a′i)−si out-stubs remaining at a′i and d
−(b′i)−ti at b′i. Now, consider the

random matching on the 2(m+ 1− i) remaining stubs. The probability that we contain

any given a′i− b′i edge is (m+1− i)−1. There are (d+(a′i)− si)(d
−(b′i)− ti) such potential
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edges. Thus the expected number of a′i− b′i edges is (d
+(a′i)− si)(d

−(b′i)− ti)/(m+1− i).

The claim then follows by Markov's inequality. □

Next we compute the probability that all of the Fi occur simultaneously. Due to the

way in which we de�ned these events,

P(ψ is a homomorphism) = P
( k⋂
i=1

Fi

)
=

k∏
i=1

P(Fi).

To write down this probability succinctly, we will use the functions

fa,b(x, y) :=
a∏
i=1

b∏
j=1

(x+ 1− i)(y + 1− j)

It is a simple computation to check that

P
( k⋂
i=1

Fi

)
≤ ((m)k)

−1
∏

v∈V (H)

fd−H(v),d+H(v)(d
−
DCM(ψ(v)), d

+
DCM(ψ(v))) (4.3)

Note that here we were able to remove the min function as if there are any negative

contributions to the product, then there is also a contribution of value 0 and furthermore,

there it is impossible for ψ to be a homomorphism in this case so that (4.3) reduces to

0 ≤ 0 in this case (which is clearly true).

To complete the proof, we extend the right hand side of equation (4.3) to allow any

function ψ : V (H) → V (DCM). Choosing an uniformly random function in this way

gives that the probability that a uniformly random injective function is a homomorphism

is bounded above by

1

(n)h(m)k

∑
ψ:V (H)↪→V (G)

∏
v∈V (H)

fd−H(v),d+H(v)(d
−
DCM(ψ(v)), d

+
DCM(ψ(v))) (4.4)

≤ 1

(n)h(m)k

∑
ψ:V (H)→V (G)

∏
v∈V (H)

fd−H(v),d+H(v)(d
−
DCM(ψ(v)), d

+
DCM(ψ(v))) (4.5)

In moving from injective functions to arbitrary functions between (4.4) and (4.5), we
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move from an intractable space of functions to a product space which naturally splits

over the vertices of H. This allows us to rewrite (4.5) as

1

(n)h(m)k

∑
ψ:V (H)→V (G)

∏
v∈V (H)

fd−H(v),d+H(v)(d
−
DCM(ψ(v)), d

+
DCM(ψ(v)))

=
1

(n)h(m)k

∏
v∈V (H)

∑
w∈V (G)

fd−H(v),d+H(v)(d
−
DCM(w), d

+
DCM(w))

=
nh

(n)h(m)k

∏
v∈V (H)

ρd−H(v),d+H(v) =
nh

(n)h(m)k

∏
i,j∈N

ρ
hi,j
i,j .

Which is the claimed upper bound, p+(H,DCM). □

We also need a lower bound on the probability that DCM contains a cycle.

Lemma 4.2.2. Let DCM be the con�guration model random digraph with degree distri-

bution (D−, D+) and maximum degree ∆. Suppose further that DCM has n vertices and

m edges. Let H be a directed cycle with h vertices. Then the probability that a uniformly

random injective map ϕ : V (H) → V (DCM) is a homomorphism is bounded from below

by

p−c (H,DCM) :=
(1 +Q)h

(n)h

(
1− 2h2∆2

εn

)(
1− h∆2

2m

)
. (4.6)

Proof. First, let us consider the probability of �nding at least one edge from vertex u

of out-degree a to vertex v with in-degree b. We assume that we have not observed any

edges that a�ect either the out-degree of u or the in-degree of v and that DCM has m

edges. So let X be the number of edges between u and v and Hk our knowledge of DCM

up until now which consists only of a set of k edges which are present. Then,

P(X = 0|Hk) =

(
1− a

m− k

)(
1− a

m− k − 1

)
. . .

(
1− a

m+ 1− k − b

)
≤
(
1− a

m

)b
≤ 1− ab

m
+
a2b2

2m2
.

Where the �nal line follows by the inequality, (1 + x)n ≤ 1 − nx +
(
n
2

)
x2 which is valid
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for n ∈ N and x ≥ −1. This allows us to deduce that the probability of seeing an edge

between u and v is at least ab
m

− a2b2

2m2 . Now, looking at each edge of H in turn noting

allows us to deduce that the probability ϕ is a homomorphism is at least

1

(n)h

∑
ϕ:[h]↪→[n]

h∏
i=1

(
d−ϕ(i)d

+
ϕ(i+1)

m
−

(d−ϕ(i)d
+
ϕ(i+1))

2

2m2

)
(4.7)

Where we consider the argument of ϕ modulo h in (4.7). Also, note that one can factorise

the linear term in 4.7 and bound the second occurrence of d−ϕ(i)d
+
ϕ(i+1) by ∆2 to get the

lower bound

1

(n)h

∑
ϕ:[h]↪→[n]

h∏
i=1

d−ϕ(i)d
+
ϕ(i)

m

(
1− ∆2

2m

)
(4.8)

The idea is to argue that we can swap the order of the product and sum in Equation (4.8)

without changing the result very much. To this end, let Φi be the set of functions

ϕ : [h] → [n] such that

i) |ϕ([n])| = h− i,

ii) d+ϕ(j) ̸= 0 for each j ∈ [h],

iii) d−ϕ(j) ̸= 0 for each j ∈ [h].

Note that for any function ϕ ̸∈
⋃h
i=0 Φi then

∏h
i=1 d

−
ϕ(i)d

+
ϕ(i) = 0. As a result of this we

observe that ∑
ϕ:[h]↪→[n]

h∏
i=1

d−ϕ(i)d
+
ϕ(i) =

∑
ϕ∈Φ0

h∏
i=1

d−ϕ(i)d
+
ϕ(i).

As well as the fact that

h∑
j=0

∑
ϕ∈Φj

h∏
i=1

d−ϕ(i)d
+
ϕ(i) =

∑
ϕ:[h]→[n]

h∏
i=1

d−ϕ(i)d
+
ϕ(i) =

(
n∑
i=1

d−i d
+
i

)h

= mh(1 +Q)h.

For a given function ϕ : [h] → [n] we de�ne its weight as w(ϕ) :=
∏h

i=1 d
−
ϕ(i)d

+
ϕ(i). We also

de�ne the weight of a set S of functions in the natural way as w(S) =
∑

ϕ∈S w(ϕ). Next,
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we shall apply switching arguments to bound the weights of the sets Φi relative to one

another.

Consider the auxiliary bipartite graphs, Gi with parts Φi and Φi+1. We connect ϕi ∈ Φi

to ϕi+1 ∈ Φi+1 by an edge in Gi if ϕi and ϕi+1 di�er in precisely one coordinate. For each

ϕi ∈ Φi there are at most h2 ways we can change one coordinate and decrease the size

of the image. In particular we may pick any of the h coordinates of ϕi and change it

to ϕi(j) for some j ∈ [h]. So, ∆Gi
(Φi) ≤ h2. For each ϕi+1 ∈ Φi+1, we pick any of

the at least i coordinates at which ϕi+1 is not injective and choose a new image for this

coordinate. By Condition 4.1.2 there are at least εn/2 ways to choose the new image.

δGi
(Φi+1) ≥ iεn/2.

Combining these two results allows us to deduce that iεn/2|Φi+1| ≤ e(Gi) ≤ h2|Φi|.

Upon rearrangement we �nd |Φi| ≥ εn
2h2

|Φi+1|. Note that two functions ϕ and ψ which

di�er in one coordinate must also satisfy w(ϕ) ≤ ∆2w(ψ) and vice versa. Hence w(Φi) ≥
εn

2h2∆2w(Φi+1). This allows us to apply induction to deduce that

h∑
j=0

∑
ϕ∈Φj

h∏
i=1

d−ϕ(i)d
+
ϕ(i) =

h∑
j=0

w(Φj) ≤ w(Φ0)
h∑
j=0

(
2h2∆2

εn

)j
≤ w(Φ0)

1− 2h2∆2

εn

.

So, w(Φ0) ≥ (1 − 2h2∆2

εn
)mh(1 + Q)h. Combining this with (4.8) allows us to deduce the

statement of the lemma, that the following is a lower bound on the probability of �nding

a cycle at a speci�ed position in DCM:

(1 +Q)h

(n)h

(
1− 2h2∆2

εn

)(
1− h∆2

2m

)
.

□
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4.3 Digraph Counting

In this section we will prove the following bound on the number of strongly connected

multi-digraphs with maximum degree 4. This is similar to [15, Lemma 2.3] although we

a weaker bound su�ces here allowing us to simplify the proof somewhat.

Lemma 4.3.1. Suppose that n,m, a, b ∈ N such that n + a + b = m. Let N(n, a, b)

be the number of labelled strongly connected multi-digraphs with n vertices and degree

distribution given by

in-degree out-degree quantity

1 1 n− 2a− b

1 2 a

2 1 a

2 2 b

Then, we have the following bound,

N(n, a, b) ≤ (3a+ 2b)(m− 1)!

(
n

a, a, b

)

To prove this bound we will use the preheart con�guration model of Pérez-Giménez

and Wormald [66] which we shall de�ne as follows.

A preheart is a multi-digraph with minimum semi-degree at least 1 and no cycle

components. The heart of a preheart D is the multidigraph H(D) formed by suppressing

all vertices of D which have in and out degree precisely 1. For a degree sequence d⃗, de�ne

T = T (d⃗) = {v ∈ V : d+(v) + d−(v) ≥ 3}.

To form the preheart con�guration model, �rst we apply the con�guration model to T to

produce a heart H. Given a heart con�guration H, we construct a preheart con�guration

Q by assigning V \ T to E(H) such that the vertices assigned to each arc of H are given

a linear order. Denote this assignment including the orderings by q. Then the preheart
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con�guration model, Q(d⃗) is the probability space of random preheart con�gurations

formed by choosing H and q uniformly at random.

It is easy to see that every strongly connected digraph is produced by the preheart

con�guration model. Thus counting the number of possible outcomes from the preheart

con�guration model gives an upper bound for the number of strongly connected digraphs

with the same degree sequence. We now count the number of preheart con�gurations

using [15, Lemma 2.4].

Lemma 4.3.2. In the preheart con�guration model with n vertices, m edges and degree

sequence d⃗. Let n′ = |T (d⃗)| be the number of vertices of the heart. Then there are a total

of

n′ +m− n

m
m!

preheart con�gurations.

From this lemma, we may prove Lemma 4.3.1.

Proof of Lemma 4.3.1. First, we choose the degree sequence. So note that there are at

most
(

n
a,a,b

)
ways in which we can give a vertices in-degree 1 and out-degree 2, a vertices

in-degree 2 and out-degree 1, b vertices in-degree 2 and out-degree 2 and the remainder

in-degree 1 and out-degree 1. Having �xed this degree sequence, by Lemma 4.3.2 as

the heart contains 2a + b vertices and there are a + b more edges than vertices, the

number of strongly connected digraphs with this degree sequence is bounded above by

3a+2b
m

m!. Hence the number of strongly connected digraphs with degree distribution as

in the statement of the lemma is at most

(3a+ 2b)(m− 1)!

(
n

a, a, b

)

as claimed. □
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4.4 Proof of Theorem 4.1.3

In this section we prove Theorem 4.1.3 and show that every strongly connected component

is a cycle and that these cycles are not particularly large. In particular this provides a

con�guration model analogue of [55, Theorem 7]. Working with the con�guration model

introduces several additional di�culties with the proof of this, foremost of these being

that we do not have enough control of the subgraph counts to compute the factorial

moments and show that they converge to those of a Poisson distribution. We will instead

use the Chen-Stein method for Poisson approximation which only requires good control

of the �rst moment and an upper bound on the second.

The proof of this theorem splits naturally into four parts. For functions f(n) ≫

g(n) which are de�ned such that f(n) = ω(
√
m/|Q|), f(n) = o(m|Q|/R−) and g(n) =

ω(1/|Q|). Moreover for this section we shall assume that R− ≥ R+ and if this is not the

case, we swap the orientations of all edges to get an equivalent digraph with R− ≥ R+

as desired. We will say that a cycle C is

� Long if |C| ≥ f(n),

� Medium if g(n) < |C| < f(n),

� Short if |C| ≤ g(n).

First we will show that there are no long or medium cycles in the directed con�guration

model. Next, we show that there are no complex components and �nally we show the

result on the distribution of the length of the kth longest cycle.

4.4.1 Long Cycles

Lemma 4.4.1. DCM has no long cycles.

To show that there are no long cycles, it su�ces to show that the out-component of

an arbitrary vertex is bounded above by f(n). Certainly, the longest cycle in a directed

graph is at most the size of the largest out-component and so the lemma follows.
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Thus, consider the following version of the branching process of Hatami and Mol-

loy [35] for the out-component in a digraph. For a vertex v we explore its out-component

in DCM as follows. We will have a partial subdigraph Ct at time t consisting of the

vertices explored thus far. Ct will consist of all in- and out-stubs of some vertices of

DCM together with a matching of some of the stubs. If there are unmatched out-stubs in

Ct we will pick one at random and match it to some in-stub which yields an edge of Ct.

We de�ne Yt as the number of unmatched out-stubs in Ct. Thus, Yt = 0 indicates that

we have explored an out-component in its entirety. Formally we de�ne the exploration

process as follows.

� Choose a vertex v and initialise C0 = {v} and Y0 = d+(v).

� While Yt > 0, choose an arbitrary unmatched out-stub of any vertex v ∈ Ct. Pick a

uniformly random unmatched in-stub and let u be the vertex to which this in-stub

belongs. Match these two stubs forming an edge of DCM.

� If u ̸∈ Ct we add it so Ct+1 = Ct ∪ {u} and Yt+1 = Yt + d+(u)− 1.

� Otherwise, Ct+1 = Ct, Yt+1 = Yt − 1.

Note that this does not depend on how we have exposed Ct so Ct and Yt are Markov

processes. We de�ne the following quantities.

� Dt := Yt +
∑

u̸∈Ct
d+(u), the number of unmatched out-stubs at time t. Note this

is also the number of unmatched in-stubs at time t.

� vt := ∅ if Ct−1 and Ct have the same vertex set. Otherwise it is the unique vertex

in Ct \ Ct+1.

� Qt :=
∑

u̸∈Ct
d−(u)d+(u)

Dt
− 1.

Note that initially Qt = Q. Also, for unvisited vertices u ̸∈ Ct, the probability that we

explore u next is P(vt+1 = u) = d−(u)
Dt

. Hence, provided that Yt > 0, the expected change
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in Yt is

E(Yt+1 − Yt|Ct) =
∑
u̸∈Ct

P(vt+1 = u)(d+(u)− 1) =

∑
u̸∈Ct

d−(u)d+(u)

Dt

− 1 = Qt. (4.9)

As long as Qt remains close to Q we expect that Yt is a random walk with drift approx-

imately Q. So in particular, for our setting of Q < 0, we expect that the random walk

will quickly return to 0. Thus, we shall start by showing that the drift parameter Qt is

indeed close to Q with high probability. For this we shall use the following formulation

of the Azuma-Hoe�ding inequality (see [44, Theorem 2.25]).

Theorem 4.4.2 (Azuma-Hoe�ding Inequality). Let (Xk)
n
k=0 be a martingale with X =

Xn, X0 = E(X). Suppose there exist constants, ck > 0 such that

|Xk −Xk−1| ≤ ck for all k ≤ n.

Then for any λ ≥ 0,

P(|Xn −X0| ≥ λ) ≤ 2 exp

(
− λ2

2
∑n

k=1 c
2
k

)
.

For t ≥ 1 de�ne Wt := Qt −Qt−1 − E(Qt −Qt−1|Ct−1). Also, we de�ne X0 = Q and

for t ≥ 1 let

Xt := X0 +
t∑
i=1

Wi = Qt −
t∑
i=1

E(Qi −Qi−1|Ci−1). (4.10)

It is a simple check that the Xt form a martingale. Furthermore, |Qt −Q| ≤ |Qt −Xt|+

|Xt − Q| so to bound the probability that |Qt − Q| is large, we show that |Qt − Xt| is

small and bound the probability that |Xt −Q| is large.

For the second of these, consider the auxiliary random variables

Q̃t :=

∑
u̸∈Ct

d−(u)d+(u)

Dt−1

− 1.

That is we change Qt to have the same denominator as Qt−1. As we assume that t ≤ m/2,
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Dt ≥ m/2 so combining this with the fact that |Dt −Dt−1| ≤ 1 we deduce that

|Qt − Q̃t| =
|Dt −Dt−1|

∑
u̸∈Ct

d−(u)d+(u)

DtDt−1

≤ 4

m
. (4.11)

Also, as there is at most one vertex whose contributions are removed in moving from

Qt−1 to Qt, then

|Qt−1 − Q̃t| ≤
4∆2

m
. (4.12)

Combining equations (4.11) and (4.12) gives an upper bound on |Qt − Qt−1| which we

may then use to bound the martingale di�erences almost surely,

|Xt −Xt−1| ≤
8∆2 + 8

m
≤ 16∆2

m
. (4.13)

Next, we will bound the terms E(Qt−Qt−1|Ct−1). It will be convenient to do this in two

stages utilising the auxiliary random variables Q̃t. So, �rst note that

0 ≤ E(Qt−1 − Q̃t|Ct−1) =
∑

u̸∈Ct−1

P(vt = u)
d−(u)d+(u)

Dt−1

≤
∑

u∈V (G)

(d−(u))2d+(u)

D2
t−1

≤
∑

u∈V (G)

4(d−(u))2d+(u)

m2
≤ 4R− + 4

m
. (4.14)

We can combine (4.14) with (4.11) to deduce that

|E(Qt −Qt−1|Ct−1)| ≤
4R− + 8

m
≤ 12R−

ζm
. (4.15)

This leaves us in a situation in which we can compare Xt and Qt,

|Xt −Qt| ≤
t∑
i=1

|E(Qi −Qi−1|Ci−1)| ≤
12R−t

ζm
. (4.16)
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So provided that t ≤ mζ|Q|
48R− we have |Xt −Qt| ≤ |Q|/4 and in particular, for any such t,

P
(
Qt −Q ≥ |Q|

2

)
= P

(
Qt −Xt +Xt −Q ≥ |Q|

2

)
≤ P

(
Xt −Q ≥ |Q|

4

)
≤ P

(
|Xt −Q| ≥ |Q|

4

)

Whereupon we can apply the Azuma-Hoe�ding inequality as X0 = Q. We can use the

bound from (4.13) for the ck. Substituting into Theorem 4.4.2 yields,

P
(
|Xt −Q| ≥ |Q|

4

)
≤ exp

(
− |Q|2m2

8192t∆4

)
≤ exp

(
−C|Q|mn−2/3 log(n)

)
. (4.17)

Where the second inequality in (4.17) comes from t ≤ mζ|Q|
48R− , ∆ ≤ n1/6 log−1/4(n) and

R− ≥ ζ. We could improve the dependence on ∆ by using Freedman's inequality [29] in

place of the Azuma-Hoe�ding inequality here however there are other points where we

require ∆ ≤ n1/6 and so this would only remove the log−1/4(n) term in Condition 4.1.2.

Note mn−2/3 ≥ m1/3/2 hence |Q|mn−2/3 → ∞ and so for any large enough n,

P
(
Qt −Q ≥ |Q|

2

)
= P

(
Qt ≥ −|Q|

2

)
≤ n−2. (4.18)

Now that we have shown that Qt is concentrated around Q, we can proceed to show that

DCM has no large components with high probability via a stopping time argument. We

will use the following version of Doob's optional stopping theorem [77, Theorem 10.10]

Theorem 4.4.3 (Optional Stopping Theorem). Let X be a supermartingale and let τ

be a stopping time. Then Xτ is integrable and furthermore,

E(Xτ ) ≤ E(X0)

whenever τ is bounded.

So, now let us show that there is no component of size larger than f(n). For each

v ∈ V (G) we shall consider the exploration process started at v. Recall that f(n) =
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o(n|Q|/R−) and so for su�ciently large n, f(n) ≤ mζ|Q|
48R− . Hence we have Qt ≤ −|Q|/2

with high probability for each t ≤ f(n). De�ne the stopping time

τ := min{t ≥ 0|Yt = 0 or Qt ≥ −|Q|/2 or t = f(n)}

Recall that for t ≤ mζ|Q|
48R− we have E(Yt − Yt−1) = Qt−1 ≤ −|Q|/2. Thus, Ymin(t,τ) +

|Q|min(t, τ)/2 is a supermartingale. Clearly, τ is bounded by f(n) so we may apply

Theorem 4.4.3 to Ymin(t,τ) + |Q|min(t, τ)/2 from which we deduce that

E
(
Yτ +

|Q|τ
2

)
≤ Y0 = d+(v).

Upon rearrangement this yields,

E(τ) ≤ 2
d+(v)− E(Yτ )

|Q|
≤ 2d+(v)

|Q|
.

By Markov's inequality we can deduce

P(τ = f(n)) ≤ 2d+(v)

|Q|f(n)

The only other way in which we could have Yτ ̸= 0 is if for some i we have Qi ≥ −|Q|/2. A

union bound allows us to deduce that this occurs with probability at most f(n)n−2 ≤ n−1.

So for any large enough n,

P(Yτ ̸= 0) ≤ 2d+(v)

|Q|f(n)
+

1

n
.

De�ne Z as the number of vertices of DCM which lie in cycles of size at least f(n). Note
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that any such vertex must have out component of size at least f(n). Thus,

P(|C1| ≥ f(n)) = P(Z ≥ f(n)) ≤ E(Z)
f(n)

≤ 1

f(n)

∑
v∈V (DCM)

P(|C+(v)| ≥ f(n))

≤ 1

f(n)

∑
v∈V (DCM)

(
2d+(v)

|Q|f(n)
+

1

n

)
=

m

|Q|f(n)2
+

1

f(n)
= o(1)

Thus there are no long cycles.

4.4.2 Medium Cycles

Lemma 4.4.4. DCM has no medium cycles.

Our next step is to apply Lemma 4.2.1 to show there are no medium cycles. By

Lemma 4.2.1, the probability that DCM has a cycle of length h in any particular location

is at most
nhµh1,1

(n)h(m)h
. Thus the expected number of cycles of length h in G is at most

h!

|aut(
−→
Ch)|

(
n

h

)
nhµh1,1

(n)h(m)h
=

mh

(m)h

(1 +Q)h

h
≤
(
1 +

h

m− h

)h
(1 +Q)h

h

≤
(
1 +

2h

m

)h
(1 +Q)h

h
≤ ehQ+ 2h2

m

h
. (4.19)

For any g(n) ≤ h ≤ f(n), we have 2h2/m ≤ 4h2/n ≤ h|Q|/2 as f(n) = o(n|Q|). Then,

the expected number of cycles of length between g(n) and f(n) is at most

f(n)∑
h=g(n)

ehQ+ 2h2

m

h
≤

f(n)∑
h=g(n)

e
hQ
2

h
≤
∫ ∞

g(n)

e
hQ
2

h
dh =

∫ ∞

−Qg(n)
2

e−λ

λ
dλ = E1

(
− Qg(n)

2

)
. (4.20)

Where E1(x) is the exponential integral function and the �rst equality follows by making

the substitution λ = −Qh/2 (recall that Q < 0 and so this substitution preserves posi-

tivity). It is straightforward to bound 0 ≤ E1(x) ≤ e−x/x which allows us to conclude

that E1(x) → 0 as x → ∞. Note that g(n) = ω(1/|Q|) and so −Qf(n) → ∞. Thus

the expected number of cycles in DCM of length at least g(n) is o(1). So by Markov's

inequality, there are no such cycles with high probability.

102



4.4.3 Complex Components

Lemma 4.4.5. DCM has no complex components.

We begin by de�ning digraphs S(a, b, c) and T (a, b) for a, b, c ∈ N. Let S(a, b, c) be

the digraph with a + b + c − 1 vertices consisting of vertices u, v and three internally

disjoint paths. One of length a from u to v, one of length b from u to v and one of length

c from v to u. Let T (a, b) be the digraph with a+ b− 1 vertices consisting of two cycles,

one of length a, one of length b which intersect at a single vertex, u. We can use the

ear decomposition of a strongly connected digraph to deduce that if DCM contains any

complex components, then it contains a subgraph which is either a copy of S(a, b, c) or

a copy of T (a, b). Note that both of these are the union of two cycles and and by the

results of the previous two sections, there are no cycles with more than g(n) vertices with

high probability. Thus we only need to show there are none of these motifs on at most

2g(n) vertices to deduce that there are none in DCM.

Unlike �uczak and Seierstad [55], we must treat these cases separately as in the �rst

case, we have two vertices of degree 3 and the rest of degree 2 and in the second there

is one vertex of degree 4 in place of the degree 3 vertices which changes the result of

applying Lemma 4.2.1.

First let us consider S(a, b, c). There are at most h2h! ways of �nding such subgraphs

on h vertices (≤ h2 ways of choosing path lengths connecting the two degree 3 vertices

and assuming the associated automorphism groups are all trivial gives this bound). Thus,

we may apply Lemma 4.2.1 to deduce that the expected number of such subgraphs in the

con�guration model with parameters as in the statement of Theorem 4.1.3 is at most

2g(n)∑
h=1

nh

(m)h+1

h2h!µh−2
1,1 ρ1,2ρ2,1 =

R−R+

m

2g(n)∑
h=1

mh+1

(m)h+1

h2(1 +Q)h−2 ≤ R−R+

m

∫ 2g(n)

0

x2e
xQ
2 dx

(4.21)

Where we eliminate the term mk+1

(m)k+1
in the above in the same way as in (4.19). An integral

of the form seen in (4.21) can be evaluated by integrating by parts twice to deduce the
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following (where t > 0),

∫ y

0

x2e−tx =
2

t3
− e−ty

(
2

t3
+

2y

t2
+

2y2

t

)
≤ 2

t3
.

Thus the expected number of these subgraphs in DCM can be bounded above by 16R−R+

m|Q|3 →

0.

The second case is T (a, b) where we have a degree 4 vertex. In this case there are at

most hh! such subgraphs on h vertices (≤ h choices of the two cycle lengths and assuming

the associated automorphism groups are all trivial gives this bound). Again we apply

Lemma 4.2.1 to compute the expected number of such subgraphs of size at most 2g(n)

which this time is at most

2g(n)∑
h=1

nh

(m)h+1

hµh−1
1,1 ρ2,2 ≤

R+∆

m

2g(n)∑
h=1

mh+1

(m)h+1

he−hQ ≤ R+∆

m

∫ 2g(n)

0

xe−
xQ
2 dx (4.22)

Note we may pick either ρ2,2, ≤ m
n
R−∆ or m

n
R+∆ here by selecting which part of the

product d−i (d
−
i −1)d+i (d

+
i −1) to bound by ∆ in computing ρ2,2 and so we pick the smaller

of the two. We may proceed similarly to before, integrating by parts which allows us to

bound integrals of the form found in 4.22 as

∫ y

0

x2e−tx =
1

t2
− e−ty

(
1

t2
+
y

t

)
≤ 1

t2
.

So, we can bound (4.22) above by 4R+∆
m|Q|2 ≤ 4(R+R−)2/3

m2/3ζ1/3|Q|2
∆

m1/3 → 0. Thus by Markov's

inequality there are no copies of S(a, b, c) or T (a, b) on at most 2g(n) vertices with high

probability. Combining Lemma 4.4.1 and Lemma 4.4.4 we deduce there are no cycles of

length at least g(n) with high probability. As any complex strongly connected digraph

contains a copy of at least one of these, we deduce that DCM contains no complex

components with high probability.
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4.4.4 Length of the kth largest cycle

Lemma 4.4.6. The kth longest cycle in DCM follows the distribution from Theorem 4.1.3

The idea now will be to apply a local coupling version of the Chen-Stein method

(see [25, Theorem 2.8]) to deduce that the number of cycles in DCM of length between

α/|Q| and g(n) converges to a Poisson distribution of mean ξα. Let us start by stating

the version of the Chen-Stein method which we will apply,

Theorem 4.4.7. Let W =
∑

i∈ΓXi be a sum of indicator variables and let pi := E(Xi).

For each i ∈ Γ, divide Γ \ {i} into two sets, Γsi and Γwi . De�ne

Zi :=
∑
j∈Γs

i

Xj and Wi :=
∑
j∈Γw

i

Xj.

Suppose that there exist random variables, W 1
i and W̃ 1

i de�ned on the same probability

space such that

L(W̃ 1
i ) = L(Wi|Xi = 1) and L(W 1

i ) = L(Wi).

Then,

dTV(W,Po(E(W ))) ≤ min(1,E(W )−1)
∑
i∈Γ

(
piE(Xi + Zi) + E(XiZi) + piE|W̃ 1

i −W 1
i |
)

(4.23)

Note that this lemma requires us to have a copy of Wi|Xi = 1. To create such a copy,

we will use the following lemma to couple the con�guration model with itself conditioned

on the containment of a given subgraph.

Lemma 4.4.8. Let G = (A∪B,E) be a balanced bipartite complete graph and let M be a

uniformly chosen random perfect matching of G. Suppose that a1, a2, . . . , ak are distinct

elements of A and b1, b2, . . . , bk are distinct elements of B. Then, the following procedure

gives a copy of M|(a1b1, a2b2, . . . , akbk ∈ M):

1. Sample an element M from M and set M0 =M .
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2. For each i ≤ k:

� If aibi is an edge of Mi−1 set Mi =Mi−1.

� Otherwise, let a′i be the unique neighbour of bi and b
′
i be the unique neighbour

of ai in Mi−1. Let Mi = (Mi−1 \ {aib′i, a′ibi}) ∪ {aibi, a′ib′i}.

That is Mk is sampled uniformly from M|(a1b1, a2b2, . . . , akbk ∈ M).

Proof. Note that it is su�cient to prove the lemma for k = 1 as if B = M|(a1b1, a2b2, . . . , ak−1bk−1 ∈

M) then clearly, B|(akbk ∈ B) = M|(a1b1, a2b2, . . . , akbk ∈ M). So, the general case fol-

lows by induction on the k = 1 case.

Now, we prove the lemma for k = 1. To do so, we will show that each of the

(n− 1)! atoms of M|(a1b1 ∈ M) comes from precisely n atoms of M via this switching

approach. So let M be an atom of M|(a1b1 ∈ M) and let e = cd be an edge of M with

c ∈ A, d ∈ B. Now, consider the inverse switching, M → (M \ {ab, cd}) ∪ {ad, bc} (note

if we chose the edge ab, then this is simply the identity M → M). Thus, for each atom

M of M|(a1b1 ∈ M) there are n ways to get to an atom of M. Similarly we can show

that each atom of M is mapped to a unique element of M|(a1b1 ∈ M). Thus, as M has

the uniform distribution, so does the random variable obtained by our procedure above.

□

Note that this lemma does not allow us to generate the con�guration model condi-

tioned on the existence of a subgraph speci�ed in the usual way by the locations of its

vertices unless all of the involved vertices have in- and out-degrees at most 1. This is

due to the fact that Lemma 4.4.8 allows us to condition on which pairs of stubs are con-

nected rather than which pairs of vertices. Instead we shall condition on the existence of

principal subgraphs which we shall de�ne as follows.

De�nition 4.4.9. Let DCM be a con�guration model random digraph with degree dis-

tribution (D−, D+). Let M = M(DCM) be the associated perfect matching of in- and

out-stubs. A principal subgraph of DCM is an event of the form M ′ ⊆ M where M ′ is a

partial matching of in- and out-stubs.
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A similar notion was seen in [51] in which their canonical events are precisely the same

as our principal subgraphs. Furthermore, note that the event corresponding to a subgraph

in DCM may be written as a union of events corresponding to principal subgraphs. In

particular, the existence of the cycle v1v2 . . . vk in DCM can be written as the union

of
∏k

i=1 d
−
DCM(vi)d

+
DCM(vi) events corresponding to principal cycles. For this reason, in

places where there may be some ambiguity as to whether we are dealing with principal

subgraphs or not, we shall refer to subgraphs in the usual sense as union subgraphs.

This leaves us in a setting to which we can apply Theorem 4.4.7. We shall show that

the number of cycles in DCM of lengths between α/|Q| and g(n) is Poisson distributed

with mean ξα. Let Γ be the set of all principal cycles which have lengths between α/|Q|

and g(n). For each C ∈ Γ and digraph J on the same vertex set and stubs as DCM

let XC(J) be the indicator function that C is a principal subgraph of J . Also, we split

Γ \ {C} into a set strongly dependent on C and a set weakly dependent on C. De�ne the

strongly dependent set ΓsC to be the set of all principal cycles which share at least one

vertex with C. The weakly dependent set ΓwC contains all of the other principal cycles,

it is the set of principal cycles which are vertex disjoint from C. Finally, we de�ne W 1
C

to be WC for an independent copy DCM′ of the con�guration model and D̃CMC to be

obtained from DCM′ by applying a 4-cycle switching to each edge of C in DCMC in turn

and de�ne W̃ 1
C in the obvious way to be WC for the digraph D̃CMC . That is,

WC =
∑
C′∈Γw

C

XC′(DCM′) W̃ 1
C =

∑
C′∈Γw

C

XC′(D̃CMC)

These variables clearly satisfy the assumptions of Theorem 4.4.7 and so we must bound the

expectations in the statement of the theorem to compute an upper bound on dTV(W,Po(E(W ))).

The idea now is to reduce the whole problem to one of bounding the expected numbers

of certain subgraphs being contained in DCM, DCM′ and D̃CMC . For the remainder of

this section, we write XC for XC(DCM) and pC = E(XC) unless speci�ed otherwise.
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We shall bound the three terms from (4.23) one by one. First let us consider the term

η :=
∑
C∈Γ

pCE(XC + ZC) =
∑
C∈Γ

∑
C′∈Γs

C∪{C}

pCp
′
C (4.24)

Note that the set, {C ′ ∈ ΓsC ∪ {C}} is the set of all cycles which share at least one

vertex with C. Thus, the union of C and C ′ is a strongly connected digraph (here we

allow multiple edges). In the computation of η we will use the following generalisation

of Lemma 2.3.4. No changes are required to the proof of the lemma to generalise from

digraphs to multi-digraphs.

Lemma 4.4.10. Each strongly connected multi-digraph D with excess k may be formed

in at most 27k ways as the union of a pair of directed cycles C1 and C2.

De�ne Ξ to be the set of all strongly connected multi-digraphs with vertices a subset

of V (DCM) such that all vertices have degrees d+(v) = d−(v) = 1 or d+(v) = d−(v) = 2

with at least one vertex which has d+(v) = d−(v) = 2. Note that Ξ is precisely the

set of multi-digraphs which can be formed as the edge disjoint union of the two cycles

C ∈ Γ and C ′ ∈ ΓsC . Furthermore, note that the excess of a multi-digraph in Ξ is

precisely the number of vertices which have d+(v) = d−(v) = 2. We let Ξk be the set

Ξhk := {F ∈ Ξ||F | = h and excess(F ) = k}. Moreover, for each F ∈ Ξ de�ne

t(F ) :=
∏

v∈V (F )

d−DCM(v)
d−F (v)d+DCM(v)

d+F (v) (4.25)

Observe that for a given C,C ′ whose union is F , t(F ) is the number of pairs of principal

cycles C̃, C̃ ′ which are copies of the same cycles as C,C ′. Thus, combining (4.25) with

Lemma 4.4.10 allows us to bound η as follows,

η =
∑
C∈Γ

∑
C′∈Γs

C∪{C}

pCpC′ ≤
2g(n)∑
h= α

|Q|

h∑
k=1

∑
F∈Ξh

k

27kt(F )

(m− h− k)h+k
(4.26)

Now, let Λhk be the set of all strongly connected labelled multi-digraphs with h vertices
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such that all vertices have degrees d+(v) = d−(v) = 1 or d+(v) = d−(v) = 2 with precisely

k vertices v such that d+(v) = d−(v) = 2. This allows us to write

∑
F∈Ξh

k

t(F ) =
1

h!

∑
F∈Λh

k

∑
ϕ:V (F )↪→V (DCM)

∏
v∈V (F )

d−DCM(v)
d−F (v)d+DCM(v)

d+F (v) (4.27)

Where the division by h! comes from the fact that Λhk distinguishes between digraphs

obtained from one-another by a permutation of the vertex set. Arguing similarly to

Lemma 4.2.1, noting that we know the degree sequence of F and using µ1,1 =
m
n
(1+Q) ≤

m
n
, we deduce that

∑
ϕ:V (F )↪→V (DCM)

∏
v∈V (F )

d−DCM(v)
d−F (v)d+DCM(v)

d+F (v) ≤ nhµh−k1,1 µ
k
2,2 ≤ mhµk2,2µ

−k
1,1.

Substituting into (4.27) and applying Lemma 4.3.1 we �nd

∑
F∈Ξh

k

t(F ) ≤ k

h+ k

(h+ k)!

h!

(
h

k

)
mhµk2,2µ

−k
1,1 =

k

h+ k

(
h+ k

2k

)
(2k)!

k!
mhµk2,2µ

−k
1,1

≤ (h+ k)2k−1

(k − 1)!
mhµk2,2µ

−k
1,1. (4.28)

To �nish, we note that ((m − h − k)h+k) = (1 + o(1))mh+k as h + k = o(m1/2), this

allows us to substitute the bound found in (4.28) into (4.26) where we deduce

η ≤ (1 + o(1))

2g(n)∑
h= α

|Q|

h∑
k=1

27k

mh+k

(h+ k)2k−1

(k − 1)!
mhµk2,2µ

−k
1,1

≤ (1 + o(1))
216g(n)µ2,2

m

2g(n)∑
h= α

|Q|

h∑
k=0

108kh2kµk2,2
mkk!µk1,1

. (4.29)

Part of the expression in (4.29) is in the form of an exponential sum. Evaluating this
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sum allows us to deduce that η = o(1).

η ≤ (1 + o(1))
216g(n)µ2,2

mµ1,1

2g(n)∑
h= α

|Q|

e
108h2µ2,2

mµ1,1 ≤ (1 + o(1))
432g(n)2µ2,2

mµ1,1

e
432g(n)2µ2,2

mµ1,1 = o(1).

(4.30)

Where we deduce that this is o(1) in the same way as when we bound (4.22).

Next we shall consider the term,

θ :=
∑
C∈Γ

E(XCZC) =
∑
C∈Γ

∑
C′∈Γs

C∪{C}

E(XCX
′
C) (4.31)

So note that E(XCXC′) is the probability that both C and C ′ are simultaneously present.

Furthermore, note that C ∪ C ′ is a strongly connected (not necessarily simple) digraph

with maximum degree at most 4. Thus we can use a similar strategy to the one used

to bound η. So de�ne Θ to be the set of all strongly connected multi-digraphs F with

V (F ) ⊆ V (G) and ∆(F ) ≤ 4. Furthermore for a, b ∈ N, de�ne

Θh
a,b := {F ∈ Θ||F | = h, n1,2(F ) = n2,1(F ) = a, n2,2(F ) = b}

Where we de�ne Θh
0,0 = ∅. De�ne t(F ) for F ∈ Θ in the same way as (4.25). Then, t(F )

for a given construction, F = C ∪ C ′ from a pair of principal cycles, t(F ) is again the

number of pairs of principal cycles C̃, C̃ ′ which are copies of the same cycles as C,C ′.

Thus, if we apply Lemma 4.4.10 we get the following bound on θ,

θ =
∑
C∈Γ

∑
C′∈Γs

C

E(XCXC′) ≤
2g(n)∑
h= α

|Q|

h∑
a=0

h∑
b=0

∑
F∈Θh

a,b

27kt(F )

(m− h− a− b)h+a+b
(4.32)

Now, we de�ne Λha,b to be the set of all strongly connected labelled multi-digraphs F with

h vertices such that n1,1(F ) = h− 2a− b, n1,2(F ) = n2,1(F ) = a and n2,2(F ) = b. (Note
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Λh0,k = Λhk). Thus, arguing as previously,

∑
F∈Θh

a,b

t(F ) =
1

h!

∑
F∈Λh

a,b

∑
ϕ:V (F )↪→V (DCM)

∏
v∈V (F )

d−DCM(v)
d−F (v)d+DCM(v)

d+F (v) (4.33)

Again, we may argue similarly to Lemma 4.2.1 to deduce that for F ∈ Λha,b,

∑
ϕ:V (F )↪→V (DCM)

∏
v∈V (F )

d−DCM(v)
d−F (v)d+DCM(v)

d+F (v) ≤ mhµa1,2µ
a
2,1µ

b
2,2µ

−(2a+b)
1,1 .

We can substitute this into (4.32) and apply Lemma 4.3.1 to �nd

∑
F∈Θh

a,b

t(F ) ≤ 3a+ 2b

h+ a+ b

(h+ a+ b)!

h!

(
h

a, a, b

)
mhµa1,2µ

a
2,1µ

b
2,2µ

−(2a+b)
1,1

≤ 3a+ 2b

h
2a+b

h3a+2b

a!a!b!
mhµa1,2µ

a
2,1µ

b
2,2µ

−(2a+b)
1,1

=
3a+ 2b

h

1

a!a!b!

(
2h3µ1,2µ2,1

µ2
1,1

)a(
2h2µ2,2

µ1,1

)b
mh (4.34)

Note that this bound is a sum of two terms due to the factor 3a + 2b in (4.34). So we

will split this bound into ta(F ) + tb(F ) in the obvious way. This allows us to bound

θ ≤ θa + θb by only considering the ta(F ) or tb(F ) terms which will be convenient for us.

We substitute the bound from (4.34) into (4.32) and use that (m − h − a − b)h+a+b =

(1 + o(1))mh+a+b to deduce

θa ≤ (1 + o(1))

2g(n)∑
h= α

|Q|

h∑
a=0

h∑
b=0

3a

h

1

a!a!b!

(
2 · 272h3µ1,2µ2,1

mµ2
1,1

)a(
54h2µ2,2

mµ1,1

)b
(4.35)

θb ≤ (1 + o(1))

2g(n)∑
h= α

|Q|

h∑
a=0

h∑
b=0

2b

h

1

a!a!b!

(
2 · 272h3µ1,2µ2,1

mµ2
1,1

)a(
54h2µ2,2

mµ1,1

)b
(4.36)

Note that in both cases we can evaluate the two inner sums in terms of exponential

functions and modi�ed Bessel functions of the �rst kind. However the latter of these is

a little di�cult to work with, hence we will replace the a!a! with (2a)! allowing us to use
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hyperbolic trigonometric functions instead. In particular, we have

1

a!a!
≤ 4a

(2a)!
and

1

a!(a− 1)!
≤ 4a

(2a− 1)!
.

Looking �rst at θa we get the bound

θa ≤ (1 + o(1))

2g(n)∑
h= α

|Q|

h∑
a=0

h∑
b=0

3

h

1

(2a− 1)!b!

(
8 · 272h3µ1,2µ2,1

mµ2
1,1

)a(
54h2µ2,2

mµ1,1

)b

= (1 + o(1))162
√
2

2g(n)∑
h= α

|Q|

√
hµ1,2µ2,1

mµ2
1,1

sinh

(
54

√
2h3µ1,2µ2,1

mµ2
1,1

)
e

54h2µ2,2
mµ1,1

≤ (1 + o(1))648

√
g(n)3µ1,2µ2,1

mµ2
1,1

sinh

(
216

√
g(n)3µ1,2µ2,1

mµ2
1,1

)
e

216g(n)2µ2,2
mµ1,1 . (4.37)

Where the �nal inequality follows from the fact that
√
x, sinh(x) and ex are all increasing

for x > 0. Bounding θb is similar,

θb ≤ (1 + o(1))

2g(n)∑
h= α

|Q|

h∑
a=0

h∑
b=1

2

h

1

(2a)!(b− 1)!

(
8 · 272h3µ1,2µ2,1

mµ2
1,1

)a(
54h2µ2,2

mµ1,1

)b

= (1 + o(1))108

2g(n)∑
h= α

|Q|

hµ2,2

mµ1,1

cosh

(
54

√
2h3µ1,2µ2,1

mµ2
1,1

)
e

54h2µ2,2
mµ1,1

≤ (1 + o(1))432
g(n)2µ2,2

mµ1,1

cosh

(
216

√
g(n)3µ1,2µ2,1

mµ2
1,1

)
e

216g(n)2µ2,2
mµ1,1 (4.38)

Both (4.37) and (4.38) are o(1) which follows from the facts that

g(n)2µ2,2

mµ1,1

→ 0 and
g(n)3µ1,2µ2,1

mµ2
1,1

→ 0.

The �rst of which we showed in (4.30) and the latter follows directly from the assumption

that g(n)3 = o( m
R−R+ ). Hence θ = o(1). Finally, we will bound the terms,

κC := E|W̃ 1
C −W 1

C |. (4.39)
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We note that unlike in bounding η and θ we will not need to look at the sum over C ∈ Γ

in computing the bound. This is due to the fact that κC depends on a much more global

structure than the terms pCE(XC +ZC) and E(XCZC). For the bounding of κC , the �rst

thing to observe is that due to the choice of coupling and ΓsC we have W̃ 1
C ≥ W 1

C . This

is because all of the edges which are removed by the switchings are incident to a vertex

of C and therefore none of the principal cycles containing these edges are in ΓwC which

are the cycles contributing to W̃ 1
C ≥ W 1

C . This enables us to bound κC by computing the

number of expected cycles from ΓwC which are added by the switchings.

In order to add a cycle C ′ with the switchings over 4-cycles which produce D̃CMC

from DCM the following must be true for some k,

� All but k edges of C ′ must be present in DCM.

� k of the edges of C must add these edges after applying the switching.

Now let us compute the probability that this event comes to pass. So let us �x k edges

missing from C ′ which we match up with k of the edges of C which will be used to add

them when we apply the switching. So if one such edge is e = uv and this is matched

with e′ = u′v′, in order for the switching to add e, before switching we must have edges

uv′ and u′v present in G (note that because the edges are directed we do not need to

consider the alternate switching using uu′ and vv′ like we would if working with graphs).

Hence in total there are |C ′| + k edges which we must �nd in DCM before switching in

order that C is a cycle of D̃CMC . The probability we �nd these edges is ((m)|C′|+k)
−1.

Now, let us count how many such structures there are which produce the same union

cycle as C ′. As C is a principal cycle, we know exactly which stubs we use for it and so

there is no contribution to the number of copies from vertices of C. However there are

d+(u)d−(v) switchings which add the union edge uv and so the number of ways in which

the switching structure with a union cycle which is that of C ′ can be found is

∏
v∈V (C′)

d−(v)d+(v).
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Thus for any �xed set of missing edges for the union cycle with the same edges as C ′ and

choice of edges from C with which we add these edges, the expected number of additional

principal cycles after the switchings is

1

(m)|C′|+k

∏
v∈V (C′)

d−(v)d+(v). (4.40)

There are
(|C|
k

)
ways to pick the edges of C which we switch over to add the missing edges

of C ′. Also there are
(|C′|
k

)
ways to pick the missing edges of C ′ and k! ways to assign

edges of C to missing edges of C ′. Thus, when we sum over principal cycles C ′, missing

edges of C and C ′ and matchings of the missing edges, we �nd the expected number of

such structures is at most

E|W̃ 1
C −W 1

C | ≤
g(n)∑
h= α

|Q|

min(|C|,h)∑
k=1

1

h

∑
C′⊆G;|C′|=h

(
|C|
k

)(
h

k

)
k!

(m)h+k

∏
v∈V (C′)

d−(v)d+(v). (4.41)

Applying standard bounds on binomial coe�cients and falling factorials and taking ver-

tices from V (G) for |C ′| with replacement rather than without allows us to bound (4.41)

as follows

E|W̃ 1
C −W 1

C | ≤ (1 + o(1))

g(n)∑
h= α

|Q|

∞∑
k=1

|C|khk−1

k!mk
(1 +Q)h

≤ (1 + o(1))

g(n)∑
|C′|= α

|Q|

e
|C|h
m − 1

|C ′|

≤ g(n)|Q|
α

(
e

g(n)2

m − 1

)
≤ 2g(n)3|Q|

αm
= o(1). (4.42)

Where we note that g(n)2/m < 1 allows us to use the bound ex − 1 ≤ 2x in (4.42).

So κC ≤ κ = o(1) for all C where κ = 2g(n)3|Q|
αm

. Finally, note that this implies∑
C∈Γ pCκC ≤ κE(W ). We subsequently show that E(W ) ≤ ξα + o(1) from which it

follows that
∑

C∈Γ pCκC = o(1) as ξα is a constant independent of n. Using this and the
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fact that η, θ = o(1), we conclude that

dTV(W,Po(E(W ))) = o(1).

Note thatW is the number of cycles of DCM of length between α/|Q| and g(n). By Lemma 4.4.1

and Lemma 4.4.4, the probability that there are any longer cycles is o(1). Thus, if

W ′ is the number of cycles of DCM of length at least α/|Q|, dTV(W ′, Po(E(W ))) =

dTV(W,Po(E(W ))) + o(1) = o(1). To show that the mean of the corresponding Pois-

son distribution can be taken to be ξα note that dTV(Po(λ), Po(µ)) ≤ |λ − µ| holds for

all λ, µ ≥ 0. This follows from coupling Bin(n, λ/n) and Bin(n, µ/n) by coupling their

constituent Bernoulli trials and noting that dTV(Bin(n, λ/n), Po(λ)) = on(1). Thus it

su�ces to show that E(W ) = ξα+ o(1). Note that W is the number of cycles in DCM of

lengths between α/|Q| and g(n). Thus upper bounding E(W ) may be done in the same

way as the proof of Lemma 4.4.4. However, we can be more careful than we are in (4.20)

as in this case 2h2/m = o(1), so this line can be replaced by

g(n)∑
h= α

|Q|

ehQ+ 2h2

m

h
≤

g(n)∑
h= α

|Q|

ehQ+o(1)

h
≤ (1+o(1))

∫ ∞

α
|Q|

ehQ

h
dh = (1+o(1))

∫ ∞

α

e−λ

λ
dλ = ξα+o(1).

(4.43)

Next, we lower bound E(W ) by ξα − o(1). In order to do this we will use Lemma 4.2.2

in combination with the inequality

1− x ≥ e−x−x
2

for x ≤ 1

2
.

This allows us to deduce that the probability of �nding a cycle of length between α/|Q|

and g(n) is at least

g(n)∑
h= α

|Q|

h!

h

(
n

h

)
(1 +Q)h

(n)h

(
1− 2h2∆2

εn

)(
1− h∆2

2m

)
≥

g(n)∑
h= α

|Q|

(1 + o(1))

h
eh(Q−Q2

2
) (4.44)
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Now, that the exponent in the above is equal to hQ− o(1) follows from the assumption

g(n) = o(1/|Q|2). Thus in analogy with (4.43), we deduce that (4.44) is at most

(1 + o(1))

g(n)∑
h= α

|Q|

ehQ−o(1)

h
≥ (1− o(1))

∫ ∞

α
|Q|

ehQ

h
dh = (1− o(1))

∫ ∞

α

e−λ

λ
dλ = ξα − o(1).

(4.45)

Combining (4.43) and (4.45) we deduce that E(W ) = ξα + o(1) as required.

4.4.5 Putting it all together

We can deduce the statement of the theorem from the previous sections as follows. First

we apply Lemma 4.4.1, Lemma 4.4.4 and Lemma 4.4.5 to deduce there are no cycles with

length at least ω(1/|Q|) or complex components. Then, we can apply Lemma 4.4.6 to

deduce that the distribution of the number of cycles with at least α/|Q| vertices converges

to a Poisson distribution with mean ξα from which the statement that

P
(
|Ck| ≥

α

|Q|

)
= 1−

k−1∑
i=0

ξiα
i!
e−ξα + o(1)

follows immediately as the above is simply the probability that a Poisson(ξα) distribution

is at least k (plus the o(1) term).

4.5 Concluding Remarks

In this chapter, we showed that the largest component of the directed con�guration

model is of order |Q|−1 when nQ3(R−R+) → −∞ and found the distribution of the size

of the kth largest component for any k. In a subsequent work [14] we shall show that

under similar conditions to those in this chapter that for degree sequences such that

nQ3(R−R+)−1 → ∞ the largest component is of order nQ2(R−R+)−1. This quantity

matches the 1/|Q| we �nd in this chapter if n|Q|3(R−R+)−1 → c for some constant c

and suggests that one may �nd a critical window phenomenon for degree sequences with
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such parameters. Note that in particular this is precisely the critical window of D(n, p)

(looking at typical degree sequences from the model D(n, p)). Moreover, the recent result

of Donderwinkel and Xie certainly seems to indicate that the point Q = 0 lies inside a

critical window.

An interesting question for further study would be to ask about the joint distribution

of the largest strongly connected components in the directed con�guration model with

parameters as in this chapter. The fact that we �nd

P
(
|Ck| ≥

α

|Q|

)
= 1−

k−1∑
i=0

ξiα
i!
e−ξα + o(1)

seems rather suggestive of an underlying Poisson process. As such we make the following

conjecture.

Conjecture 4.5.1. Let DCM be a directed con�guration model with parameters as

in Theorem 4.1.3 and suppose the sizes of its components in descending order are given

by the random variables Z1 ≥ Z2 ≥ . . .. Suppose further that X1 ≤ X2 ≤ . . . are the

points of a Poisson process of rate 1 and Y1 ≥ Y2 ≥ . . . are the unique positive solutions

to

Xi =

∫ ∞

Yi

e−x

x
dx.

Then we have that

(|Q|Z1, |Q|Z2, . . .) → (Y1, Y2, . . .) as n→ ∞.

Note that the above is also an open question for D(n, p) with p = (1−ε)/n and ε→ 0,

ε3n→ ∞.
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CHAPTER 5

WEAK COMPONENTS OF THE DIRECTED

CONFIGURATION MODEL

5.1 Introduction

The study of the component structure of random graphs with given degrees, and in

particular of the con�guration model (cm), was pioneered by the work of Molloy and

Reed [58], who provided a criterion to determine if a degree sequence typically produces

a linear order connected component (known as the giant) or its largest component has

sublinear order. Since then, it has become one of the central topics in random graph

theory [8, 28, 35, 43, 45, 59].

Directed models are much less understood. A strongly connected component (scc) of

a directed graph is a maximal sub-digraph in which there exists a directed path between

any ordered pair of nodes. Newman, Strogatz and Watts [64] initiated the study of the

directed con�guration model (dcm), and located the threshold for the existence of a giant

scc. Later, Cooper and Frieze [13] provided a rigorous proof for the existence of such

threshold under certain conditions of the degree sequence. This problem has been recently

revisited by the �rst and the third author [11], extending the range of applicability of the

result. The component structure of the directed Erd®s Rényi model and of other random

directed graphs has been extensively studied [12, 15, 47, 55].

A weakly connected component (wcc) of a directed graph is a maximal sub-digraph
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in which there exists an path from every node to every other node. wccs naturally arise

in areas such as epidemiology [26], data mining [48] or communication networks [10]. In

the physics community, the study of weakly connected components has been neglected

under the assumption that it e�ectively behaves like the undirected case (see, e.g., [64]).

Kryven [49] observed that this assumption is wrong and predicted an alternative threshold

for the appearance of the giant wcc, supported with an analytical but non-rigorous

approach based on generating functions for bounded bi-degree distributions. The aim of

this chapter is to provide a formal proof for the existence of the giant wcc threshold in

the directed con�guration model under the much weaker assumption of bounded second

moments.

Let [n] := {1, . . . , n} be a set of n vertices. Let d⃗n = ((d−1 , d
+
1 ), . . . , (d

−
n , d

+
n )) be

a bi-degree sequence with mn :=
∑

i∈[n] d
+
i =

∑
i∈[n] d

−
i . Let ∆n := maxi∈[n]{d−i , d+i }.

The directed con�guration model (dcm), DCM = DCM(d⃗n), is the random directed

multigraph on vertex set [n] generated by assigning d−i in half-edges (heads) and d+i out

half-edges (tails) to vertex i, and then choosing a uniformly random matching between the

set of heads and the set of tails. Let nk,ℓ := {i : (d−i , d+i ) = (k, ℓ)}. Let Dn = (D−
n , D

+
n ) be

the degree pair of a vertex chosen uniformly at random, that is P (Dn = (k, ℓ)) = nk,ℓ/n.

Let (d⃗n)n≥1 be a sequence of bi-degree sequences. Unless speci�ed otherwise, we will

consider sequences that satisfy the following:

Condition 5.1.1. There exists a discrete probability distribution D = (D−, D+) on Z2
≥0

with λk,ℓ := P (D = (k, ℓ)) such that we have:

(i) convergence in distribution:

lim
n→∞

nk,ℓ
n

= λk,ℓ, for every k, ℓ ∈ Z≥0; (5.1)

(ii) convergence of expected values:

lim
n→∞

E[D−
n ] = lim

n→∞
E[D+

n ] = E[D−] = E[D+] =: λ ∈ (0,∞); (5.2)
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(iii) convergence of second moments: letting (x)a := x(x − 1) . . . (x − a + 1), for all

i, j ∈ N and i+ j = 2,

lim
n→∞

E[(D−
n )i(D

+
n )j] = E[(D−)i(D

+)j] =: µi,j ∈ (0,∞), (5.3)

De�ne the in- and out-size biased distributions of D, denoted by Din and Dout respec-

tively, by

P (Din = (k − 1, ℓ)) =
kλk,ℓ
λ

, P (Dout = (k, ℓ− 1)) =
ℓλk,ℓ
λ

. (5.4)

Consider the random matrix

Ξ =

D−
out D+

out

D−
in D+

in

 , (5.5)

where Dout and Din are independent. Condition 5.1.1 implies that Ξ has a �nite mean

matrix

M :=
1

λ

µ1,1 µ0,2

µ2,0 µ1,1

 , (5.6)

with largest eigenvalue

ρ :=
1

λ

(
µ1,1 +

√
µ2,0µ0,2

)
. (5.7)

Let q = (q−, q+) be the extinction probability vector of a 2-type branching process with

o�spring Ξ.

Let Wn be the largest wcc in DCM. (If there is more than one such wcc, we choose

an arbitrary one among them as Wn.) Let v(Wn) and e(Wn) be the number of vertices

and edges in Wn, respectively. Our main result is that the existence of a giant wcc

undergoes a phase transition at ρ = 1:
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Theorem 5.1.2. Suppose that (d⃗n)n≥1 satis�es Condition 5.1.1. If ρ > 1, then

v(Wn)

n
→ η ∈ (0, 1], and

e(Wn)

n
→ ζ ∈ (0, λ], (5.8)

in probability, where

η :=
∑
k,ℓ≥0

λk,ℓ(1− qk−q
ℓ
+), and ζ :=

∑
k,ℓ≥0

kλk,ℓ(1− qk−q
ℓ
+) =

∑
k,ℓ≥0

ℓλk,ℓ(1− qk−q
ℓ
+). (5.9)

If ρ < 1, then

v(Wn)

n
→ 0, and

e(Wn)

n
→ 0, (5.10)

in probability.

Remark 5.1.3 (Comparison with strongly connected components). The scc's of DCM

have been studied in [11, 13] under Condition 5.1.1. Denote by Sn the largest scc. Then,

if µ1,1 > λ,

v(Sn)
n

→ ηscc :=
∑
k,ℓ≥0

λk,ℓ(1− rk−)(1− rℓ+), (5.11)

where r− and r+ are extinction probabilities of branching processes with o�spring distri-

butions D−
out and D

+
in, respectively. If µ1,1 < λ, then

v(Sn)
a(n)

→ 0, (5.12)

for any a(n) → ∞ as n → ∞. So, the existence of a giant scc undergoes a phase

transition at µ1,1 = λ.

Our results combined with (5.11) and (5.12) indicate that the �separation� between

the thresholds for the appearance of a wcc and a scc giant in DCM is solely determined

by the second moments of the marginals of the bi-degree distribution, and independent

from the correlation between in- and out-degrees. A formal way to state it is through

bond percolation. For any p = p(n) ∈ [0, 1], denote by DCMp(d⃗n) the p-percolated

directed con�guration model obtained by sampling DCM(d⃗n) and independently retain
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every directed edge with probability p. Given a degree sequence d⃗n, we de�ne its p-

thinned version d⃗pn as the random degree sequence where the degree Dp
n of a uniformly

random vertex satis�es

P (Dp
n = (k, ℓ)) =

∑
a≥k
b≥ℓ

(
a

k

)(
b

ℓ

)
pk+ℓ(1− p)a+b−(k+ℓ)P (Dn = (a, b)) .

It is easy to show that DCMp(d⃗n) is distributed in law as DCM(d⃗pn), where d⃗pn is condi-

tioned on having the same number of heads and tails (for an undirected analogue of this

result, see e.g. Lemma 3.2 in [27]).

De�ne pscc =
√

λ
µ1,1

and pwcc =
√

1/ρ =
√

λ
µ1,1+

√
µ2,0µ0,2

, and note that pwcc < pscc.

Combining the previous results, we have the following two-point threshold phenomenon:

� if p ∈ [0, pwcc): with high probability (whp) no a giant wcc exists.

� if p ∈ (pwcc, pscc): whp a giant wcc, but no giant scc exists;

� if p ∈ (pscc, 1]: whp a giant scc exists;

So, for all degree sequences, there is a non-trivial regime where typically we see a giant

wcc but no giant scc. If d⃗n satis�es µ1,1 = λ, then pwcc does not depend on the

in-/out-degree correlation, formalising the separation intuition given above.

Remark 5.1.4 (The Community Con�guration Model). Motivated by the presence of

clustering in real-world complex networks, recently the Borgs et al. have introduced the

community con�guration model (ccm) [9, 68], extending the Coloured Con�guration

Model of Kryven [4, 50]. In the ccm, each half-edge is assigned a colour in [k], and a

permutation matrix of size k × k provides the rules for matching the colours. The DCM

can be seen as a particular case of the CCM with k = 2 and permutation matrix

0 1

1 0

.

In an upcoming work, we will study the component structure of the ccm in the general

setting.
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Remark 5.1.5 (Conditions on degree sequences). Theorem 5.1.2 fails for sequences with

in�nite second moment. For instance, let ∆ = n1/2+ϵ for ϵ > 0 and consider the degree

sequence with one vertex with degrees (∆, 0) and all other vertices with degrees (1, 0)

or (0, 1). Then the largest eigenvalue of the mean matrix Mn de�ned in (5.51) satis�es

ρn → ∞ but clearly the largest wcc has order O(n1/2+ϵ).

Under Condition 5.1.1, Theorem 5.1.2 can be transferred to simple random digraphs [5].

If the second moments diverge, then the probability that the DCM is simple goes to 0 as

n→ ∞ and a di�erent approach is needed to obtain results in the simple setting.

5.2 Multitype branching processes

Fix p ∈ N. We write 0 and 1 for the all zeros and all ones row vectors of length p,

respectively. Let ea be 0 with the a-th component changed to 1. For any ω ∈ R, we

write ω = ω1. For any two vectors x,y, we write x < y (or x ≤ y) to denote that x is

less (or less or equal) than y in each component, and x ̸< y (or x ̸≤ y) otherwise. Let

Ξ = (ξij) be a random p × p matrix with entries in Z≥0 in which rows are independent.

Let (Ξ(m; t)))m≥1,t≥0 be independent and identically distributed (iid) copies of Ξ. Let

z = (z1, . . . , zp). For i ∈ [p], de�ne the generating function

hi(z) =
∑

k1,...,kp≥0

P
(
∩j∈[p]{ξij = kj}

) ∏
j∈[p]

z
ξij
j , (5.13)

and h(z) = (h1(z), . . . , hp(z)).

Denote by mij :=
∂hi
∂zj

(1) = E [ξij] and by M = (mi,j) the mean matrix. We say that

M is �nite if mi,j <∞ for all i, j. We say that M is irreducible if for every pair i, j there

exists t ∈ N such that (M t)i,j > 0. Let ρ be the largest eigenvalue of M . Let u and v

be the right and left eigenvectors of M of eigenvalue ρ with the convention that vu⊤ = 1

and u1⊤ = 1.

A p-type branching process starting at a ∈ [p] with o�spring distribution Ξ is a

123



stochastic process

(X(a)(t) = (X
(a)
1 (t), . . . , X(a)

p (t)))t≥0, (5.14)

de�ned as follows:

X
(a)
j (t) =


1a=j (t = 0)∑

i∈[p]
∑X

(a)
i (t−1)

m=1 ξij(m; t− 1) (t ≥ 1)

Note that

E[X(a)(t)] = eaM
t (5.15)

We call a process irreducible if its mean matrix is irreducible.

If X(a)(t) ̸= 0 for all t ∈ N, then the branching process is said to survive; otherwise,

it is said to become extinct. Let s(a) = P
(
∩t≥0{X(a)(t) ̸= 0}

)
and q(a) = 1 − s(a). Write

s = (s(1), . . . , s(p)) and q = (q(1), . . . , q(p)) = 1− s.

We will use the following results about p-type branching processes:

Lemma 5.2.1 (Theorem VIII.3.2 in [3]). Suppose M is �nite, irreducible and non-

singular. Then,

i) if ρ ≤ 1, q = 1;

ii) if ρ > 1, q < 1 and q is the only solution of h(z) = z with q < 1.

Lemma 5.2.2 (Theorem 2.1 in [38]). Suppose that M is �nite, strictly positive and

nonsingular, and ρ > 1. Then there exists a sequence γt with

lim
t→∞

(γt)
1/t = ρ−1, (5.16)

and non-negative random variables W (a) for a ∈ [p] such that

lim
t→∞

γtX
(a)(t) = W (a)v, (5.17)
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in probability. Moreover, W (a) is absolutely continuous in (0,∞) and P
(
W (a) = 0

)
= q(a).

Remark 5.2.3. Note that the normalising sequence γt is independent of the starting

type.

5.2.1 Supercritical processes conditional on extinction

In this section we study supercritical multitype branching processes conditional on ex-

tinction. Supercritical branching processes conditional on extinction are still branching

processes [39] and we now describe the relevant parameters.

Let Exta denote the extinction event with an initial particle of type a; i.e., limt→∞X(a)(t) =

0. We denote by Ext the extinction event, regardless of the initial type. Let P̂ (·) :=

P (· | Ext). In order not to condition on an event of probability zero, we will impose

q > 0 throughout the section.

The conditioned process with law P̂ (·) is a subcritical irreducible branching process

X̂(a)(t) with o�spring Ξ̂ that has generating function

ĥ(z) = q−1h(qz) (5.18)

where we slightly abuse the notations by letting

q−1 := (1/q(1), . . . 1/q(p)), and qz := (q(1)z(1), . . . , q(p)z(p)). (5.19)

Let M̂ be the mean matrix of the process, which can be explicitly computed as follows:

m̂i,j =
q(j)

q(i)
∂hi
∂zj

(q). (5.20)

Let ρ̂ < 1 be the largest eigenvalue of M̂ .

We �rst prove the following result on supercritical p-type processes that do neither

grow quickly nor become extinct.
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Theorem 5.2.4. Fix p ∈ N and a ∈ [p]. Let (X(a)(t))t≥0 be an irreducible p-type branch-

ing process with o�spring distribution Ξ and mean matrix M with ρ ∈ (1,∞) and q > 0.

Let γt be the normalising sequence in Lemma 5.2.2 and de�ne tω := inf{t ≥ 0 : (γt′)
−1 ≥

ω for all t′ ≥ t}. Then there exist constants c, C > 0 depending on Ξ such that

cρ̂t ≤ P
(
∩ti=1[0 ̸= X(a)(i) < ω]

)
≤ Cρ̂t−tω , for all t ≥ 1, ω ≥ t. (5.21)

Proof. First we shall prove the upper bound. It su�ces bound from above the probability

that X(a)(t) < ω conditional on X(a)(t) ̸= 0. De�ne r
(a)
t := P

(
X(a)(t) < ω | X(a)(t) ̸= 0

)
and rt = (r

(a)
t )a∈[p]. Let Y (a)(t) :=

∑
j∈[p]X

(a)
j (t) be the random variable which tracks

the total size of the t-th generation. Now, by de�nition of tω and absolute continuity of

W (a),

P
(
X(a)(tω) ̸< ω | X(a)(tω) ̸= 0

)
≥ P

(
Y (a)(tω) ≥ pω | X(a)(t) ̸= 0

)
(5.22)

≥ P
(
Y (a)(tω) ≥ pω

)
≥ P

(
Y (a)(tω) ≥ p(γtω)

−1
)

≥ P
(
p(γtω)

−1 ≤ Y (a)(tω) ≤ 2p(γtω)
−1
)
> c

(a)
0 , (5.23)

where c
(a)
0 > 0. So r

(a)
tω < 1− c

(a)
0 and rtω < 1.

We claim that r
(a)
t decreases exponentially in t with base approximately ρ̂, for t ≥ tω.

De�ne r
(max)
t := maxa∈[p] r

(a)
t . Let Z(a)(t) ≤ X(a)(1) be the vector giving the number

of children of the initial particle that have progeny in the t-th generation, and write

z(a)(t) =
∑

j∈[p] Z
(a)
j (t). The following holds,

r
(a)
t ≤

∑
j∈[p]

P
(
Z(a)(t) = ej | z(a)(t) > 0

)
r
(j)
t−1 + P

(
z(a)(t) ≥ 2 | z(a)(t) > 0

)
(r

(max)
t−1 )2 .

(5.24)

Indeed, either there is only one child of the initial particle with surviving progeny at the
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t-th generation and the probability that a child with type j has surviving progeny is rjt−1,

or there are at least two children, each having probability of surviving progeny at most

r
(max)
t−1 independently from each other.

Let ot := (P
(
z(a)(t) ≥ 2 | z(a)(t) > 0

)
)a∈[p] be the probability vector of having at least

two children with progeny at time t. Moreover, de�ne the matrix M̃(t) = (m̃j,a(t)) by

letting m̃j,an(t) := P
(
Z(a)(t) = ej | z(a)(t) > 0

)
. Then, we can write (5.24) in matrix form

as

rt ≤ rt−1M̃(t) + (r
(max)
t−1 )2ot . (5.25)

As rtω < 1, rt decreases in t. Thus to bound the growth rate of the vector rt it su�ces to

bound the entries of M̃(t). De�ne s
(a)
t := P

(
z(a)(t) > 0

)
to be the probability the process

survives up to time t and note that s
(a)
t = 1 − ha(1 − st). Recall that Exta denotes the

extinction event with initial particle of type a. The probability of the survival at time t

satis�es the following,

s(a) ≤ s
(a)
t = P (Extca) + P

(
z(a)(t) > 0,Exta

)
= s(a) + (1− s(a))P

(
z(a)(t) > 0 | Exta

)
≤ s(a) + (1− s(a))ρ̂t , (5.26)

where the �nal inequality follows by Markov's inequality and the fact that ρ̂ is the leading

eigenvalue of M̂ as de�ned in (5.20).

If we condition on X(a)(1), the events �a given particle x on the �rst generation has

progeny at time t� are mutually independent each happening with probability s
(j)
t−1, where

j is the type of x. Therefore, Z(a)(t) is the st−1-thinned version of X(a)(1) (that is; for

each j ∈ [p], we consider that each children of the initial particle counted by X
(a)
j (1) is

also counted by Z
(a)
j (t) independently with probability s

(j)
t−1) and so,

m̃j,a(t) = P
(
Z(a)(t) = ej | z(a)(t) > 0

)
=

P
(
Z(a)(t) = ej

)
P (z(a)(t) > 0)

=
s
(j)
t−1

s
(a)
t

∂ha
∂zj

(1− st−1) (5.27)
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Using the multivariable Taylor expansion and (5.26), we have

∂ha
∂zj

(1− st−1) =
∂ha
∂zj

(1− s) +O(ρ̂t).

Substituting it into (5.27) and using (5.26) again allows us to deduce that

m̃j,a(t) =
s(j)

s(a)
∂ha
∂zj

(1− s) +O(ρ̂t) (5.28)

Recall the de�nition of M̂ in (5.20), and observe that M̃(t) = PM̂P−1 + O(ρ̂t)J , where

P is a diagonal matrix with entries paa = q(a)/s(a) and J is the all-ones matrix. Thus

the asymptotic behaviour of the eigenvalues of M̃(t) is the same as the ones of M̂ . In

particular its largest eigenvalue is ρ̂(1+O(ρ̂t)). So, by (5.25) the vector rt has exponential

growth rate at most ρ̂(1 +O(ρ̂t)) as t goes to in�nity, so

rt ≤ rtω ρ̂
t−tω

t∏
i=tω

(1 +O(ρ̂i)) ≤ Cρ̂t−tω1 ,

concluding the proof of the upper bound.

Next, we give a proof of the claimed lower bound. For i ∈ [t], let X̃(a)(i) ≤ X(a)(i) be

the subprocess of the elements that have some surviving progeny. For the lower bound,

consider the following events:

E
(a)
1 = [X̃(a)(t)1⊤ = 1], E

(a)
2 =

[
∩ti=1[0 ̸= X(a)(i) < ω]

]
. (5.29)

In words, E
(a)
1 is the event that, starting with an individual of type a, at time t there is

exactly one particle that has surviving progeny.

Instead of bounding from below the probability of E
(a)
2 , we will give a lower bound

for the probability of E(a) := E
(a)
1 ∩ E(a)

2 . Write

P
(
E(a)

)
= P

(
E

(a)
1

)
P
(
E

(a)
2 | E(a)

1

)
. (5.30)
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We start by computing P
(
E

(a)
1

)
. Conditioning on that an element of X(a)(i) belongs

to X̃(a)(i) is equivalent to conditioning on that the progeny of at least one of its children

survives. So, conditional onX(a)(i) surviving, X̃(a)(i) is a branching process with o�spring

distribution Ξ̃ = (ξ̃a), the s-thinned version of Ξ, conditioned on being non-zero. Similarly

to before, let m̃j,a := P (ξa = ej | Extca) = P
(
ξ̃a = ej

)
. So, as in (5.28),

m̃j,a =
s(j)

s(a)
∂ha
∂zj

(1− s) ,

and M̃ = (m̃a,j) = PM̂P−1 has largest eigenvector ρ̂. We can conclude that

P
(
E

(a)
1

)
= P

(
Extca,∩ti=1[X̃

(a)(i)1⊤ = 1]
)
= s(a)eaM̃

t1⊤ (5.31)

Note that M is irreducible and hence so is M̃ . By the Perron-Frobenius theorem, the

largest eigenvalue, ρ̂ of M̃ is simple and has associated left eigenvector ṽ1 that is positive

and satis�es ṽ11
⊤ = 1. Moreover, there exist α(a) > 0 and β

(a)
j such that we may write

ea = α(a)ṽ1 +

p∑
j=2

β
(a)
j ṽj ,

where the ṽj extend ṽ1 to an orthogonal basis. Thus if λ2 is the second largest eigenvalue

of M̃ (in absolute value), |λ2| < ρ̂ < 1 and we have

eaM̃
t1⊤ = α(a)ρ̂tṽ11

⊤ +
k∑
j=2

β
(a)
j ṽjM̃

t1⊤

= α(a)ρ̂t ± |λ2|t
∣∣∣∣∣
k∑
j=2

β
(a)
j ṽj1

⊤

∣∣∣∣∣
= (1 +O((|λ2|/ρ̂)t))α(a)ρ̂t . (5.32)

We may deduce from (5.31) that P
(
E

(a)
1

)
≥ (1 + o(1))s(a)α(a)ρ̂t.

When we condition on E
(a)
1 , the tree is a spine u0, u1, . . . , ut of length t where we

attach at independent p-type branching processes to each ui. For i ∈ [t], and if a and
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j are the types of ui and ui+1 respectively, the process attached to ui is constructed as

follows: (i) the root ui has o�spring distribution ξa − ej conditional on ξa ≥ ej, and (ii)

any other particle has o�spring distribution Ξ̂. Note that the number of children of ui is

stochastically dominated by 1 + ξa1
⊤, so it has �nite expectation and variance; we will

use it in the computations below.

By Markov's inequality, from (5.32) we can deduce that for i ∈ [t],

E(X(a)(i)1⊤ | E(a)
1 ) = 1+O(1)

i−1∑
x=0

E(X̃(a)(x)1⊤) = 1+O(1)
i−1∑
x=0

eaM̃
x1⊤ ≤ 1+

i−1∑
x=0

O(ρ̂x) = O(1) ,

where the �rst term O(1) accounts for the expected number of children of each element

of the spine.

Let C̃(a)(t) = (c
(a)
j1j2

(t)) where c
(a)
j1j2

= E[X̃(a)
j1

(t)X̃
(a)
j2

(t)], denote the second moment

matrix of X̃(a)(t). In particular C̃(a)(0) = e⊤a ea and C̃
(a)(1) is the second moment matrix

of ξ̃a. We can write (see e.g. (4.3) in Harris [34])

C̃(a)(i) = (M̃⊤)iC(a)(0)M̃ i +
i∑

x=1

(M̃⊤)i−x

∑
j∈[p]

Var(ξ̃j)E[X̃(a)
j (x− 1)]

 M̃ i−x

We will estimate 1C̃(a)(i)1⊤. The �rst part can be simpli�ed using (5.32)

1(M̃⊤)iC(a)(0)M̃ i1T = (eaM̃
i1T )T (eaM̃

i1T ) = O(ρ̂2i)

and writing VarmaxΞ̃ = maxj,j1,j2(Var(ξ̃j))j1,j2 each term of the second part is

1(M̃⊤)i−x

∑
j∈[p]

Var(ξ̃j)E[X̃(a)
j (x− 1)]

 M̃ i−x1⊤ = O(ρ̂x)(M̃ i−x1⊤)⊤

∑
j∈[p]

Var(ξ̃j)

 (M̃ i−x1⊤)

= O(ρ̂2i−xVarmaxΞ̃)
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Thus, we can bound the variance

Var(X̃(a)(i)1⊤) ≤ 1C̃(a)(i)1⊤ = O(ρ̂iVarmaxΞ̃)

and compute the variance of the conditional process

Var(X(a)(i)1⊤ | E(a)
1 ) = O(1)

i−1∑
x=0

Var(X̃(a)(x)1⊤) = O(VarmaxΞ̃) = O(1) ,

The �rst term O(1) comes from the o�spring variance of the root in the spine, and the

last equality follows from the fact that the tensor Var(Ξ̃) can be computed as a function

of h and its derivatives evaluated at q < 1 and h has radius of convergence at least 1, so

VarmaxΞ̃ <∞.

By Chebyshev's inequality and the choice of ω ≥ t,

P
(
(E

(a)
2 )c | E(a)

1

)
≤

t∑
i=1

P
(
X(a)(i)1⊤ ≥ ω | E(a)

1

)
≤

t∑
i=1

Var(X(a)(i)1⊤ | E(a)
1 )

ω2
= O

(
t/ω2

)
= o(1).

(5.33)

Thus, we can conclude that

P
(
E(a)

)
≥ (1 + o(1))s(a)α(a)ρ̂t ≥ cρ̂t , (5.34)

for some c > 0, which concludes the proof of the theorem. □

We will use the previous theorem to prove the following.

Lemma 5.2.5. For a ∈ [p], let (X(a)(t))t≥0 be an irreducible p-type branching process

with o�spring distribution ξ and mean matrix M with ρ ∈ (1,∞). Let

T (a)
ω := inf{t : X(a)(t) ̸< ω}. (5.35)
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Then for all ε > 0 and as ω → ∞, and letting t1 = (1 + ε) logρ ω

P
(
T (a)
ω ≤ t1

)
→ 1− q(a), (5.36)

and

P
(
T (a)
ω ∈ (t1,∞)

)
→ 0. (5.37)

Proof. We �rst prove (5.37). By Theorem 5.2.4, there exist constants C > 0 and ρ̂ ∈ (0, 1)

such that for all ε > 0,

P
(
T (a)
ω ∈ (t1,∞)

)
≤ P

(
∩t1i=1[0 ̸= X(a)(i) < ω]

)
≤ Cρ̂(1+ε) logρ ω−(1+o(1)) logρ ω−1 = o(1),

(5.38)

where we used that tω = (1+o(1))
log γ−1

tω

log ρ
= (1+o(1)) logρ ω, by (5.16) and the de�nition of

tω. Note that Theorem 5.2.4 can only be applied if q > 0, however this is only necessary

for the lower bound, not the upper one.

To prove (5.36) it su�ces to show that P
(
T

(a)
ω > t1

)
→ q(a), and by (5.38), we have

P
(
T (a)
ω > t1

)
= P

(
[T (a)
ω > t1] ∩ [X(a)(t1) = 0]

)
+ P

(
[T (a)
ω > t1] ∩ [0 ̸= X(i)(t1) < ω]

)
= P

(
[T (a)
ω > t1] ∩ [X(a)(t1) = 0]

)
+ P

(
∩t1i=1[0 ̸= X(a)(i) < ω]

)
= P

(
[T (a)
ω > t1] ∩ [X(a)(t1) = 0]

)
+ o(1). (5.39)

Let Y (a)(t) =
∑t

i=0X
(a)(i)1⊤ be the total progeny up to time t. Recall that Exta

is the event that X(a) becomes extinct eventually, i.e. limt→∞ Y (a)(t) < ∞. If q(a) =

P (Exta) = 0, then (5.39) is o(1) and we are done. So let us assume that q(i) > 0. Then

P
(
[T (a)
ω > t1] ∩ [X(a)(t1) = 0]

)
≤ P

([
Y (a)(t1) ≤ p(1 + t1)ω

]
∩ [X(i)(t1) = 0]

)
≤ P

(
Y (a)(t1) ≤ p(1 + t1)ω

∣∣ Exta)P (Exta)

→ P (Exta) = q(a), (5.40)
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since the supercritical branching process conditioned on becoming extinct is a subcritical

process and so it has �nite total progeny a.s. [76] and ω → ∞.

To lower bound (5.39), note that Y (a)(t) < ω implies T
(a)
ω > t. Thus,

P
(
[T (a)
ω > t1] ∩ [X(a)(t1) = 0]

)
≥ P

(
[Y (a)(t1) < ω] ∩ [X(a)(t1) = 0]

)
= P

(
Y (a)(t1) < ω

)
− P

(
[Y (a)(t1) < ω] ∩ [X(a)(t1) ̸= 0]

)
.

(5.41)

Using again the �nite progeny argument, we have that

P
(
Y (a)(t1) < ω

)
≥ P

(
Y (a)(t1) < ω

∣∣ Exta)P (Exta) → P (Exta) = q(a). (5.42)

We will use Lemma 5.2.2 to conclude. By (5.16), we have that t1 ≥ (1+ ϵ/2)
log γ−1

t1

log ρ
, so

(γt1)
−1 ≥ ρ(1−ϵ/2)t1 ≥ ω1+ϵ/2. Moreover, the chosen left eigenvector v is positive. Recall

that t1 = t1(ω). For all δ > 0 and by (5.17)

lim
ω→∞

P
(
Y (a)(t1) < ω

∣∣ X(a)(t1) ̸= 0
)
≤ lim

ω→∞
P
(
X(a)(t1) < ω

∣∣ X(a)(t1) ̸= 0
)

= lim
ω→∞

P
(
0 ̸= X(a)(t1) < ω

)
P (X(a)(t1) ̸= 0)

≤
P
(
0 ̸= W (a)v < δ1

)
1− q(a)

.

Since δ > 0 is arbitrary and W (a) is absolutely continuous in (0,∞), we have

P
(
Y (a)(t1) < ω

∣∣ X(a)(t1) ̸= 0
)
→ 0. (5.43)

Putting (5.43) and (5.42) into (5.41), and then putting it together with (5.40) into (5.39),

gives the desired lower bound. □

The previous result can be generalized to multiple iid branching processes.

Corollary 5.2.6. Let d = (d1, . . . , dp) ∈ Zp+ and {X(a)(t, 1), . . . ,X(a)(t, da)}a∈[p] be a

collection of mutually independent irreducible p-type branching processes with o�spring
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distribution Ξ and mean matrix M with ρ ∈ (1,∞).

Let

T (d)
ω := inf

{
t :
∑
a∈[p]

∑
d∈[da]

X(a)(t, d) ̸< ω
}
. (5.44)

Then for all ε > 0 and ω → ∞, and letting t1 = (1 + ε) logρ ω

P
(
T (d)
ω ≤ t1

)
→ 1−

∏
a∈[p]

(q(a))da . (5.45)

and

P
(
T (d)
ω ∈ (t1,∞)

)
→ 0. (5.46)

Proof. For a ∈ [p] and d ∈ [da], let T
(a)
ω (d) be the stopping time de�ned in (5.35) for

X(a)(t, d). By Lemma 5.2.5

P
(
T (d)
ω > t1

)
≤ P

(
∩a∈[p] ∩d∈[da] {T (a)

ω (d) > t1}
)

=
∏
a∈[p]

∏
d∈[da]

P
(
T (a)
ω (d) > t1

)
→
∏
a∈[p]

(q(a))da ,

and, writing D =
∑

a∈[p] da, ω
′ = ω

D
, so logρ ω

′ = logρ ω −O(1), we have

P
(
T (d)
ω > t1

)
≥ P

(
∩a∈[p] ∩d∈[da] {T

(a)
ω′ (d) > t1}

)
=
∏
a∈[p]

∏
d∈[da]

P
(
T

(a)
ω′ (d) > t1

)
→
∏
a∈[p]

(q(a))da .

This proves the �rst part of the lemma, the second part can be proven analogously

using (5.37). □
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5.3 Exploring the weak component

We will use a breath-�rst search (bfs) digraph exploration process on the weak compo-

nents of DCM starting at a vertex v ∈ [n]. This is equivalent to the usual bfs process

on the graph obtained by removing the directions of the edges in DCM.

For I ⊆ [n], let E±(I) be the set of heads/tails incident to the nodes in I. Let E± :=

E±([n]). For E ⊆ E±, let V(E) be the set of nodes incident to E ; we use V(e) = V({e}).

Let H be a partial pairing of half edges in E±. Let P±(H) ⊆ E± be the set of heads/tails

which are paired in H. Let V(H) = V(P±(H)). Let F±(H) := E±(V(H)) \ P±(H) be

the unpaired heads/tails which are incident to V(H). Let EH denote the event that H is

a subgraph of DCM. We will explore the graph conditioning on EH .

We start from an arbitrary vertex v ∈ [n] \ V(H). In this process, we create random

pairings of half-edges one by one and keep each half-edge in exactly one of the four

states � active, paired, fatal or undiscovered. Let A±
i , P±

i , F±
i and U±

i denote the

set of heads/tails in the four states respectively after the i-th pairing of half-edges, and

Ai = A−
i ∪ A+

i . Initially, let

A±
0 = E±({v}), P±

0 = P±(H), F±
0 = F±(H), U±

0 = E± \ (A±
0 ∪ P±

0 ∪ F±
0 ). (5.47)

Then set i = 1 and proceed as follows:

(i) Let e∗i be one of the half-edges that became active earliest in Ai−1 with ∗ ∈ {−,+}

and let ♯ ∈ {−,+} \ {∗}.

(ii) Pair e∗i with a half-edge f ♯i chosen uniformly at random from E ♯ \ P♯
i−1. Let P∗

i =

P∗
i−1 ∪ {e∗i } and P♯

i = P♯
i−1 ∪ {f ♯i }.

(iii) If f ♯i ∈ F ♯
i−1, then terminate; otherwise if f ♯i ∈ A♯

i−1, then A∗
i = A∗

i−1 \ {e∗i }

and A♯
i = A♯

i−1 \ {f ♯i }; and if f ♯i ∈ U ♯
i−1, then A∗

i = (A∗
i−1 ∪ E∗(vi)) \ {e∗i } and

A♯
i = (A♯

i−1 ∪ E ♯(vi)) \ {f ♯i }, where vi = V(f ♯i ).
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(iv) If Ai= ∅ terminate; otherwise, F±
i =F±

i−1, U±
i =E± \ (A±

i ∪P±
i ∪F±

i ), i = i+1 and

go to (i).

Let Fv(0) be a rooted forest composed of |E−(v)|+|E+(v)| isolated nodes (called roots)

corresponding to the half-edges incident to v. Given Fv(i − 1), Fv(i) is constructed as

follows: if f ♯i ∈ U ♯
i−1, then construct Fv(i) from Fv(i− 1) by adding

∣∣∣E±(vi) \ {f ♯i }
∣∣∣ child

nodes to the node representing e∗i , each of which represents a half-edge incident to vi

di�erent from f ♯i ; otherwise, let Fv(i) = Fv(i−1). For each e ∈ E±(v), we denote by Fe(i)

the tree corresponding to e at time i. We assign two labels to each non-root node. First,

we assign the label head if the node corresponded to a head in E−, and tail otherwise.

Second, as all nodes correspond to the half-edges in (P±
i \ P±

0 )∪A±
i , we assign the label

active or paired accordingly.

If it is the last step where a half-edge at undirected distance t from v is paired, then

Fv(it) satis�es: (i) the height is t, as a rooted forest; (ii) the set of actives nodes is the

t-th level. We call a rooted forest F incomplete if it satis�es (i)-(ii). We let p(F ) be the

number of paired nodes in F .

5.3.1 Size biased distributions

We recall some notation in [11]. The in- and out-size biased distributions of Dn and D

are de�ned by

P ((Dn)in = (k − 1, ℓ)) =
knk,ℓ
mn

, P ((Dn)out = (k, ℓ− 1)) =
ℓnk,ℓ
mn

, (5.48)

P (Din = (k − 1, ℓ)) =
kλk,ℓ
λ

, P (Dout = (k, ℓ− 1)) =
ℓλk,ℓ
λ

. (5.49)

Then, by (i) of Condition 5.1.1, (Dn)in → Din and (Dn)out → Dout in distribution.

Consider the sequence of random matrices (Ξn)n≥0, de�ned by
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Ξn =

(Dn)
−
out (Dn)

+
out

(Dn)
−
in (Dn)

+
in

 (5.50)

with mean matrix

Mn =
1

λ

E[D−
nD

+
n ] E[(D+

n )
2]

E[(D−
n )

2] E[D−
nD

+
n ]

 (5.51)

having largest eigenvalue ρn and largest left eigenvalue vn, with the usual convention. Let

qn = (q−n , q
+
n ) be the extinction probability vector for the 2-type process with o�spring

Ξn.

By Condition 5.1.1, we have

(i) Ξn converges in distribution to Ξ as de�ned in (5.5);

(ii) Mn converges to M as de�ned in (5.6) and both are �nite and irreducible;

(iii) ρn converges to ρ, the largest eigenvalue of M ;

(iv) qn = (q−n , q
+
n ) converges to q = (q−, q+), the extinction probability vector for the

2-type process with o�spring Ξ.

Moreover, both Mn and M are �nite and irreducible.

5.3.2 Coupling with branching processes

We will de�ne two new sequences Ξ↑
n and Ξ↓

n that, asymptotically, will stochastically

dominate and be stochastically dominated by Ξn. This will allow to couple the digraph

exploration process with the 2-type branching processes de�ned in Section 5.2.

WriteX =

x11 x12

x21 x22

 and Z =

0 0

0 0

 the zero matrix. Let xmax = max1≤i,j≤2{xi,j}.

For β > 0 su�ciently small, consider the distributions Ξ↓
n = Ξ↓

n(β) and Ξ↑
n = Ξ↑

n(β) de-

137



�ned by

P
(
Ξ↓
n = X

)
=


c↓P (Ξn = X) if P (Ξn = X) ≥ n−2βand xmax ≤ nβ

0 otherwise

(5.52)

P
(
Ξ↑
n = X

)
=


c↑P (Ξn = X) X ̸= Z

c↑P (Ξn = Z) + n−1/2+2β X = Z

(5.53)

where c↓ and c↑ are normalising constants.

Convergence of the seconds moment of Dn in Condition 5.1.1 implies that c↓, c↑ =

1 + O(n−β), M↑
n,M

↓
n = (1 + o(1))Mn having largest eigenvalues ρ↑n, ρ

↓
n = (1 + o(1))ρn

and that q±,↑n , q±,↓n = (1 + o(1))q±n . Thus, these new distributions mimic the asymptotic

behaviour of Ξn in distribution and in mean.

Let GW
(d1,d2)
Ξ = (GW

(1)
Ξ (1), . . . ,GW

(1)
Ξ (d1); GW

(2)
Ξ (1), . . . ,GW

(2)
Ξ (d2)); be d1+d2 inde-

pendent 2-type Galton-Watson trees with o�spring distribution Ξ, the �rst d1 ones start-

ing with a particle of type 1 (which we associate to heads), and the last d2, starting with a

particle of type 2 (associated to tails). Let F = (T (1)(1), . . . , T (1)(d1);T
(2)(1), . . . , T (2)(d2))

be an incomplete rooted forest with d1 + d2 components. We denote by GW
(d1,d2)
Ξ

∼= F

the event that for each j ∈ {1, 2} and i ∈ [dj],

i) T (j)(i) is a root subtree of GW
(j)
Ξ (i);

ii) all paired nodes of T (j)(i) have the same degree in GW
(j)
Ξ (i); and

iii) elements of GW
(j)
Ξ (i) of type 1 and 2 correspond to nodes labelled as heads and

tails in T (j)(i), respectively.

We will need the following coupling lemma, which is a 2-dimensional version of [11,

Lemma 5.3]. We omit its proof as it follows from an analogous argument.

Lemma 5.3.1. Let β > 0 be su�ciently small and let H be a partial pairing with

|V(H)| ≤ n1−6β. Let v ∈ [n] \ V(H) with d−v = d1 and d+v = d2. For every incom-
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plete forest F with p(F ) ≤ nβ paired nodes, we have

(1− o(1))P
(
GW

(d1,d2)

Ξ↓
n(β)

∼= F
)
≤ P (Fv(p(F )) = F | EH) ≤ (1 + o(1))P

(
GW

(d1,d2)

Ξ↑
n(β)

∼= F
)
.

(5.54)

5.4 Expansion probability

Given x, y ∈ [n] an undirected walk of length t is a sequence

(x = v0, e0), (f1, v1, e1), . . . , (ft−1, vt−1, et−1), (ft, vt = y)

such that vi ∈ [n] for i ∈ {0, . . . , t}, ei, fi ∈ E±(vi) and ej−1 is paired with fj for all

j ∈ [t].

We say that a half-edge f is at undirected distance t from v ∈ [n] if the shortest

undirected walk from v to V(f) has length t. If it is clear from the context, we use distance

instead of undirected distance. Denote by N±
t (v) (and N±

≤t(v)) the set of head/tails at

distance (at most) t from v.

Fix

ω := log6 n, t0 := logρ ω = O(log log n). (5.55)

Let tω(v) be the expansion time of v de�ned as

tω(v) := inf
{
t ≥ 1 : max{

∣∣N−
t (v)

∣∣, ∣∣N+
t (v)

∣∣} ≥ ω
}
. (5.56)

Given H a partial pairing of E± and I ⊆ [n], we consider the following event:

A1(v, ε) := [tω(v) ≤ (1 + ε)t0]. (5.57)

The �rst lemma in this section shows that the probability this event happens is close to

the survival probability of a branching process.

139



Lemma 5.4.1. Assume that ρ > 1. Fix k, ℓ ∈ N , ε ∈ (0, 1/2) and β su�ciently small.

Then uniformly for all choices of partial pairing H and v ∈ [n] that satisfy |V(H)| ≤ nβ

and (d−v , d
+
v ) = (k, ℓ), as n→ ∞,

P (A1(v, ε) | EH) = (1 + o(1))(1− (q−)k(q+)ℓ). (5.58)

Proof. Let t1 = ⌊(1 + ε)t0⌋. De�ne

A2(v,H) :=
[
N−

≤tω(v)∧t1(v) ∩ F−(H) = ∅
]
∩
[
N+

≤tω(v)∧t1(v) ∩ F+(H) = ∅
]

In words, this is the event that the in- or out- neighbourhood of v intersects H before

the explosion time and before t1.

Let Fk,ℓ,t,ω be the class of incomplete rooted forests F with k trees having root labelled

by head and ℓ trees having root labelled by tail, of height at most t and such that all

levels have less than ω nodes with the same label (here we understand `level' as the

set all nodes at a given distance from any of the roots). For F ∈ Fk,ℓ,t,ω, we have

p(F ) ≤ ωt1 = O(log7 n). Let β = γ/100.

Let (X(1)(t, 1), . . . ,X(1)(t, d1);X
(2)(t, 1), . . . ,X(2)(t, d2)) be independent 2-type branch-

ing processes with o�spring distribution Ξ↓
n(β) and extinction probability vector (q

(1),↓
n , q

(2),↓
n ).

Recall that q
(1),↓
n → q− < 1 and q

(2),↓
n → q+ < 1 and the de�nition of T

(d1,d2)
ω given
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in (5.44). By Corollary 5.2.6 and Lemma 5.3.1, the LHS of (5.58) is

P (A1(v, ε) ∩ A2(v,H) | EH) = 1−
⌊ωt⌋∑
m=0

∑
F∈Fk,ℓ,t,ω

p(F )=m

P (Fv(m) = F | EH)

≥ 1− (1 + o(1))

⌊ωt⌋∑
m=0

∑
F∈Fk,ℓ,t,ω

p(F )=m

P
(
GW

(k,ℓ)

Ξ↓
n(β)

∼= F
)

= 1− (1 + o(1))P
(
T (k,ℓ)
ω > t1

)
= 1− (1 + o(1))

(
1− P

(
T (k,ℓ)
ω ≤ t1

))
= 1− (1 + o(1))

(
1− (1− (q(1),↓n )k(q(2),↓n )ℓ)

)
= (1 + o(1))(1− (q−)k(q+)ℓ).

(5.59)

where we used that q± < 1 in the last equality. The analogous lower bound follows from

a similar argument, using Ξ↑
n(β) instead.

It su�ces to show that A2(v,H) is a likely event. Recall that Condition 5.1.1 im-

plies that ∆ = max{∆−,∆+} = o(n1/2). At step i of the bfs exploration process, the

probability that f ♯i ∈ F ♯
i = F ♯(H) is upper bounded by

p :=
|F ♯

i |
mn − |P♯

i |
≤ ∆|V(H)|
mn − i− |P♯

0|
= o(n−1/2+β) ,

as at most K := ωt1 = O(log7 n) edges are paired when exposing A1(v, ε). Thus, the

probability that at least one forbidden half-edge is paired is at most the probability that

a binomial random variable with parameters K and p is at least 1. Thus,

P ((A2(v,H))c) ≤ P (Bin(K, p) ≥ 1) ≤ Kp = o(1) . (5.60)
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Combining (5.59) and (5.60), we conclude

P (A1(v, ε) | EH) = P (A1(v, ε) ∩ A2(v,H) | EH) +O (P ((A2(v,H))c | EH))

= (1 + o(1))(1− (q−)k(q+)ℓ).

where we use again that q± < 1. □

The next result follows immediately by applying Lemma 5.4.1 twice, once on u with

H the empty graph, and once on v with H being the neighbourhood of u generated up

to time tω(u) ∧ (1 + ε)t0, which is small by de�nition.

Corollary 5.4.2. Assume that ρ > 1. Fix ε ∈ (0, 1/2) and distinct u, v ∈ [n]. As

n→ ∞,

P (A1(u, ε) ∩ A1(v, ε)) = (1 + o(1))(1− (q−)d
−
u (q+)d

+
u )(1− (q−)d

−
v (q+)d

+
v ). (5.61)

The following lemma shows that expansions are unlikely to happen very late.

Lemma 5.4.3. Assume that ρ > 1. Fix k, ℓ ∈ N , ε ∈ (0, 1/2). Then uniformly for all

choices of v ∈ [n] with (d−v , d
+
v ) = (k, ℓ) and as n→ ∞,

P
(
∩ti=1[0 < |N ∗

i (v)| < ω], ∗ ∈ {−,+}
)
≤ ρ̂t−O(log logn) for any t ≥ 1. (5.62)

In particular,

P (tω(v) ∈ ((1 + ε)t0,∞)) = o(1). (5.63)

Proof. Let ω′ = ω/(k + ℓ). We have

P
(
∩ti=1[0 < |N ∗

i (v)| < ω], ∗ ∈ {−,+}
)
≤

∑
e∈E±(v)

P
(
∩ti=1[0 < |N ∗

i (e)| < ω′], ∗ ∈ {−,+}
)

(5.64)

where N±
t (e) is de�ned as the set of head/tails at distance t from e.
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We use the same ideas as in the proof of Lemma 5.4.1, without the need to condition

on EH and only for one tree. Let T±
t,ω be the class of incomplete rooted trees T having

root labelled by head/tail, of height t and such that every level has less than ω nodes of

each label. For any head e ∈ E−(v) (similarly for any tail in E+(v)), using Theorem 5.2.4

and Lemma 5.3.1 we have that

P
(
∩ti=1[0 < |N ∗

i (e)| < ω′], ∗ ∈ {−,+}
)
=

⌊ω′t⌋∑
m=t−1

∑
T∈T−

t,ω′
p(F )=m

P (Fe(m) = T )

≤ (1 + o(1))

⌊ω′t⌋∑
m=t−1

∑
T∈T−

t,ω′
p(F )=m

P
(
GW

(1)

Ξ↑
n(β)

∼= T
)

= (1 + o(1))P
(
∩ti=1[0 ̸= X(1)(i) < ω]

)
≤ (1 + o(1))Cρ̂t−tω′

= ρ̂t−O(log logn).

(5.65)

where we used that tω′ = (1 + o(1)) logρ ω
′ = (1 + o(1)) logρ ω = O(log log n). The proof

follows by plugging the last bound into (5.64), and noting that k, ℓ = O(1). For (5.63),

we set t = (1+ ε)t0 in (5.65) and conclude similarly. Alternatively, we can conclude from

(5.46). □

Next, we estimate the number of vertices that have �nite expansion time.

Proposition 5.4.4. Assume that ρ > 1. Let

LV := {v ∈ [n] : tω(v) <∞} and LE :=
{
e ∈ E+ : v(e) ∈ LV

}
. (5.66)

Then

E[|LV |]
n

→ η,
E[|LV |2]
n2

→ η2,
E[|LE|]
n

→ ζ, and
E[|LE|2]
n2

→ ζ2 (5.67)
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where η and ζ are de�ned as in (5.9). Thus, |LV |/n→ η and |LE|/n→ ζ in probability.

Proof. As q < 1 and
∑

k,ℓ≥0 λk,ℓ = 1, we have η ∈ (0, 1]; similarly ζ ∈ (0, λ]. Fix

ε ∈ (0, 1/2) and de�ne

LV (ε) := {v ∈ [n] : tω(v) < (1 + ε)t0} and LE(ε) :=
{
e ∈ E+ : v(e) ∈ LV (ε)

}
.

(5.68)

which satisfy LV (ε) ⊆ LV and LE(ε) ⊆ LE.

Given v ∈ [n] with (d−v , d
+
v ) = (k, ℓ), by Lemma 5.4.1 with H the empty graph

pk,ℓ := P (v ∈ LV (ε)) = P (A1(v, ε)) = (1 + o(1))(1− (q−)k(q+)ℓ). (5.69)

Since there are nk,ℓ such nodes, by (i) of Condition 5.1.1 and using the dominated con-

vergence theorem, we have

E[|LV (ε)|]
n

=
∑
k,ℓ≥0

nk,ℓ
n

pk,ℓ = (1 + o(1))
∑
k,ℓ≥0

nk,ℓ
n

(1− (q−)k(q+)ℓ) → η, (5.70)

E[|LE(ε)|]
n

=
∑
k,ℓ≥0

knk,ℓ
n

pk,ℓ = (1 + o(1))
∑
k,ℓ≥0

knk,ℓ
n

(1− (q−)k(q+)ℓ) → ζ. (5.71)

On the other hand, Lemma 5.4.3 implies that E[|LV \ LV (ε)|] = o(n) and by Condi-

tion 5.1.1, the number of tails incident to LV \ LV (ε) is o(n), so E[|LE \ LE(ε)|] = o(n).

This completes the proof of the expected values in (5.67).

For the second moment, choose distinct u, v ∈ [n]. By Corollary 5.4.2 we obtain

E[|LV (ε)|2]
n2

=
1

n2

(
E[|LV (ε)|] + (1 + o(1))

∑
u̸=v

(1− (q−)d
−
u (q+)d

+
u )(1− (q−)d

−
v (q+)d

+
v )
)

= o(1) + (1 + o(1))
∑

k,ℓ,k′,ℓ′≥0

nk,ℓnk′,ℓ′

n2
(1− (q−)k(q+)ℓ)(1− (q−)k

′
(q+)ℓ

′
)

→ η2. (5.72)
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The same argument shows that E[|LE(ε)|2]/n2 → ζ2. Also note that

E[|LV |2 − |LV (ε)|2] ≤ 2nE[|LV \ LV (ε)|] = o(n2).

and similarly E[|LE|2−|LE(ε)|2] = o(n2). This concludes the proof of the second moments

in of (5.67). □

5.5 Connectivity of large sets of edges

In this section we show that any reasonably large pair of sets of edges will have a path

between them. The main result of this section is the following.

Proposition 5.5.1. Uniformly over all choices ε, γ > 0, partial pairings H and sets

X ,Y ⊆ E±\P±(H) such that |V(H)| < n1−γ and |X |, |Y| ≥ log2 n,

P
(
dist(X ,Y) > (1 + ε) logρ n | EH

)
= o(n−2). (5.73)

It will su�ce to �nd a path from X to Y constrained to only use vertices of bounded

degree. To this end, for α > 0 which we shall choose later, let K ∈ N be su�ciently large

such that (
1− α

4

)
E(D−

in
) ≤ E(D−

in
1(D−

in
< K, D+

in
< K))) ≤ E(D−

in
) (5.74)

with the same holding true with D+
in
, D−

out, D
+
out in place of D−

in
. By Condition 5.1.1, it is

straightforward to check that such a K exists.

We split X into X = X− ∪ X+ where X− := X ∩ E−, X+ := X ∩ E+. Moreover, let

L± be the set of heads and tails incident to vertices with at least K heads or K tails.

Let N+
0 (X ) := X+, N−

0 (X ) := X− and for t ≥ 1 we de�ne recursively,

N+
t (X ) = {e+ ∈ E+ \ (L+ ∪N+

<t(X ) ∪ F+(H))

| ∃f ∗ ∈ N ∗
t−1(X+), f ♯ ∈ E ♯(v(e+)), f ♯ ̸= e+, f ∗f ♯ is a pair}

(5.75)
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Similarly, we can de�ne N−
t (X ).

Lemma 5.5.2. Uniformly over all choices ε, γ, α > 0, partial pairings H and X ⊆

E±\P±(H) such that |V(H)| < n1−γ and |X | ≥ log2 n, and for all t ≤ log(1+α)ρ(n
1−γ/|X |),

P
(
(|N−

t (X )|, |N+
t (X )|) = (1± α)t(|X−|, |X+|)M t | EH

)
= 1− o(n−2). (5.76)

Proof. For t ≥ 1 let d±t := |N±
t (X )|. Furthermore, we let E−

t , E
+
t respectively denote the

events

(1− α)(µ1,1d
−
t−1 + µ2,0d

+
t−1)

λ
≤ d−t ≤

(1 + α)(µ1,1d
−
t−1 + µ2,0d

+
t−1)

λ
,

(1− α)(µ0,2d
−
t−1 + µ1,1d

+
t−1)

λ
≤ d+t ≤

(1 + α)(µ0,2d
−
t−1 + µ1,1d

+
t−1)

λ
.

De�ne Et := E−
t ∩E+

t and note that the desired event is implied by ∩tj=1Ej. Thus, if

we show that P
(
Ec
t | EH ∩

[
∩t−1
j=1Ej

])
= o(n−3), a union bound over all t concludes the

proof of (5.76).

If |X | ≥ n1−γ there is nothing to prove. Otherwise, the event ∩t−1
j=1Ej implies that

d±t−1 ≤ n1−γ and
∑t−1

j=0(d
−
j + d+j ) + |V(H)| = O(n1−γ).

We run the exploration process described in Section 5.3 starting from X in order

to show that the neighbourhoods of X have appropriate sizes. We make the following

modi�cations to it:

� Start the process with A±
0 := X±.

� In (iii) if e∗i ∈ L∗, we let A±
i = A±

i \{e±i }.

� In (iii) if e∗i ∈ F∗(H), rather than terminate the process, we let A±
i = A±

i \{e±i }

and proceed.

This adapts the process to generate a collection of trees rooted in the set X . Note that

the union of the t-th level of all such trees comprises N+
t (X ) ∪ N−

t (X ). Moreover, a

vertex v of a tree T is in N+
t (X ) if its unique neighbour u in the (t − 1)-st level of the
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tree is such that u⃗v is an edge in DCMn. Similarly it is in N−
t (X ) if this edge is instead

v⃗u.

As we run the bfs, we can split the exploration into epochs. Recall that it is the last

step of the t-th epoch i.e., the �rst time at which all of the stubs at distance at most t

from X have been paired. Note that i0 = 0 and that the number of stubs activated in

the t-th epoch is d−t+1 + d+t+1. Let X±
i = |A±

i | − |A±
i−1| + 1. The only way in which we

can activate new stubs in the i-th step is if f ♯i ∈ U ♯
i−1\L♯. In this case we activate all the

stubs in E±(vi) except f
♯
i . Thus,

X∗
i = |E∗(vi)|1(f ♯i ∈ U ♯

i−1 \ L♯)

X♯
i = (|E ♯(vi)| − 1)1(f ♯i ∈ U ♯

i−1 \ L♯) .

Let Hi−1 be a history of the process under which EH ∩
⋂t−1
j=1Ej holds (assuming that i

is in the t-th epoch). Suppose that ∗ = + (that is, we match a tail in the (t− 1)-th level

with a head), then for all (k, ℓ) ∈ {0, 1, . . . , K − 1}2,

P
(
(X−

i , X
+
i ) = (k − 1, ℓ) | Hi−1

)
=

∑
f−∈U−

i−1\L− 1(dv(f−) = (k, ℓ))

mn − |P−(H)| − (i− 1)

≥
∑

f−∈E−\L− 1(dv(f−) = (k, ℓ))

mn

−
|E−\U−

i−1|
mn

≥ max{P ((Dn)in = (k − 1, ℓ))− n−γ/4, 0}

:= b−n,(k,ℓ) ,

where (Dn)in is de�ned as in (5.48). Similary, if ∗ = −, we have

P
(
(X−

i , X
+
i ) = (k, ℓ− 1) | Hi−1

)
≥ max{P ((Dn)out = (k, ℓ− 1))− n−γ/4, 0}.

For the sake of simplicity, below we will assume that at time i we have ∗ = +. Write

b− =
∑K−1

i,j=0 b
−
n,(i,j) and note b− ∈ [0, 1]. Let X↓

i and X
↑
i be independent random variables
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on Z2
≥0 with distributions

P
(
X↓
i = (k − 1, ℓ)

)
=


1− b− + b−n,(1,0), if (k, ℓ) = (1, 0)

b−n,(k,ℓ), if 1 ≤ k, ℓ ≤ K − 1

0 otherwise

, (5.77)

and

P
(
X↑
i = (k − 1, ℓ)

)
=


b−n,(k,ℓ), if 0 ≤ k, ℓ ≤ K − 1 and (k, ℓ) ̸= (K − 1, K − 1)

1− b− + b−n,(K−1,K−1), if (k, ℓ) = (K − 1, K − 1)

0 otherwise

.

(5.78)

Note that X↓
i ≤ (Xi | Hi−1) ≤ X↑

i . Furthermore, the mean vectors satisfy

E(X↓
i ) = (1 + o(1))E(Din1(D

−
in < K, D+

in < K))−K2n−γ/4 ≥
(
1− α

2

)
E(Din) =

(
1− α

2

)
(µ2,0, µ1,1),

E(X↑
i ) = (1 + o(1))E(Din1(D

−
in < K, D+

in < K))−K2n−γ/4 ≤
(
1 +

α

2

)
E(Din) =

(
1 +

α

2

)
(µ2,0, µ1,1),

where the �nal inequalities follow from (5.74). The analysis with ∗ = − is identical,

replacing (k − 1, ℓ) by (k, ℓ− 1) and (µ2,0, µ1,1) by (µ1,1, µ0,2); we omit it.

As X↓
i and X↑

i are bounded random variables we may apply Hoe�ding's inequality.

Furthermore, note that there are d−t−1 and d
+
t−1 stubs in the t-th epoch such that ∗ = −

and ∗ = +, respectively. Thus,

P
(
d−t < (1− α)

µ1,1d
−
t−1 + µ2,0d

+
t−1

λ
| Hit−1

)
≤ P

 it∑
i=it−1+1

(
(X↓

i )
− − E((X↓

i )
−)
)
>
α

2

µ1,1d
−
t−1 + µ2,0d

+
t−1

λ


≤ exp

(
−
α2(µ1,1d

−
t−1 + µ2,0d

+
t−1)

2

8K2λ2(d−t−1 + d+t−1)

)
= o(n−3)

as d−t−1+d
+
t−1 ≥ |X | ≥ log2 n by Hit−1 . The analogous results also hold for d+t . Moreover,
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in the same way by considering (X↑
i )

−,

P
(
d−t > (1 + α)

µ1,1d
−
t−1 + µ2,0d

+
t−1

λ
| Hit−1

)
= o(n−3) .

and similarly for d+t . □

Proof of Proposition 5.5.1. Let α, β > 0 and de�ne tX := ⌈log(1−α)ρ(n1/2+β/|X |)⌉ as well

as tY := ⌈log(1−α)ρ(n1/2+β/|Y|)⌉. If α and β are su�ciently small with respect to ε, then

tX + tY + 1 ≤ (1 + ε) logρ n.

If a stub inN±
<tX

(X ) is paired to a stub inN±
<tY

(Y), then we are done and dist(X ,Y) ≤

tX + tY . Let assume otherwise and recall that the matrix M is positive and has leading

eigenvalue ρ. Hence, by the Perron-Frobenius theorem, ρ−tM t → u⊤v where u and v are

the dominant right and left eigenvectors of M respectively (chosen such that vu⊤ = 1).

For δ > 0 which we shall take to be arbitrarily small, let Bδ = u⊤v − δJ , where J

is the all 1s matrix. By Lemma 5.5.2 and the choice of tX , for any δ > 0 it follows that

with probability at least 1− o(n−2)

(|N−
tX
(X )|, |N+

tX
(X )|) ≥ (1−α)tX (|X−|, |X+|)M tX ≥ n

1
2
+β

(
|X−|
|X |

,
|X+|
|X |

)
Bδ =: (c−X , c

+
X )n

1
2
+β

(5.79)

Similarly, de�ne c±Y for the set Y . The probability that there is no pairing betweenN±
tX
(X )

and N±
tY
(Y) is at most

(
1− c−Xn

1/2+β

mn

)c+Yn1/2+β (
1− c+Xn

1/2+β

mn

)c−Yn1/2+β

= o(n−3).

Therefore the probability that dist(X ,Y) > tX + tY + 1 is o(n−3) which proves (5.73).

□
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5.6 Proof of Theorem 5.1.2

In this section we conclude the proof of our main theorem.

5.6.1 Supercritical case

Suppose that ρ > 1, here we will prove (5.8). We �rst show that most of the vertices

in LV belong to the same wcc. Fix ε and recall the de�nition of LV (ε) in (5.68).

Let x, y ∈ LV (ε), then there exists tx, ty ≤ (1 + ε)t0 such that both X = N±
tx (x) and

Y = N±
ty (y) have size at least ω. Moreover, the graph H induced by N±

≤tx(x) ∪ N±
≤ty(y)

satis�es |V(H)| ≤ 4(1 + ε)ωt0 = O(log7 n). So we may apply Proposition 5.5.1, to

conclude that there exists a sequence of edges connecting X and Y . It follows that x and

y belong to the same wcc, and by the proof of Proposition 5.4.4, whp this component

has order at least |LV (ε)| = (1 + o(1))ηn and size at least |LE(ε)| = (1 + o(1))ζn.

We now bound from above the order and size of the wcc that contains LV (ε). Fix

δ > 0. For K ∈ N, let SK be the set of vertices with either in-degree or out-degree at

least K. Fix K large enough so that
∑

v∈SK
(d+v + d−v ) ≤ δn. The existence of such K is

guaranteed by Condition 5.1.1. ;in particular, by the convergence of the second moments

we can choose K = o(δ−1/2). Observe that |SK | ≤ δn.

Choose v /∈ LV ∪ SK and let us compute the probability that v belongs to the same

wcc as LV (ε). If it does, as all vertices in LV (ε) appear in a neighbourhood of v, we have

that |N−
t (v)|, |N+

t (v)| ∈ (0, ω) for all t ≤ |LV (ε)|/2ω. By Lemma 5.4.3 the probability of

this event is at most ρ̂|LV (ε)|/2ω−O(log logn) = o(n−1). By a union bound over all vertices,

we have that whp, no such vertex v exists. Thus, there are at most |SK | ≤ δn vertices

not in LV that belong to the wcc containing LV (ε). It follows that this component has

order at most |LV |+ δn, which is at most (η + 2δ)n whp. Similarly, the size of the wcc

is at most (ζ + δ + 2Kδ)n = (ζ + o(δ1/2))n. Since δ can be made arbitrarily small, we

conclude the proof of (5.8).

Following the same arguments, the previous proof shows that any other component
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has size at most logc n, for some constant c > 0.

5.6.2 Subcritical Case

We �nish by proving (5.10). We shall consider the order of all of the components of the

random digraph. De�ne C(v) to be the component of DCM which contains v. The result

is implied by the following,

Lemma 5.6.1. If ρ < 1 then whp

∑
v∈[n]

|C(v)| = o(n2). (5.80)

Proof of (5.10). Suppose for a contradiction that there is a component C0 with |C0| ≥ εn.

Then,
∑

v∈[n] |C(v)| ≥ |C0|2 ≥ ε2n2 contradicting Lemma 5.6.1. □

Proof of Lemma 5.6.1. Fix a vertex v ∈ [n] and denote by Nt = N−
t (v) ∪N+

t (v) its t-th

neighbourhood. Let β > 0 be su�ciently small. We shall call v big if any of the following

is true and small otherwise:

i) d−v + d+v ≥ nβ/3;

ii) |Nt| ≥ nβ/2 for some t ∈ N;

iii) |Nt0| ≥ 1 for t0 =
logn

log(1/ρ)
.

All small vertices are contained in components of order at most K = nβ/2h0 = o(n).

We bound the probability of each way in which v can be big in turn. To bound

i), let I be a uniformly random element of [n]. Using the bounded second moment

in Condition 5.1.1, we have

P
(
d−I + d+I ≥ nβ/3

)
≤ P

(
d−I ≥ nβ/3/2

)
+ P

(
d+I ≥ nβ/3/2

)
= O(n−2β/3) . (5.81)
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So we may assume that d−v + d+v ≤ nβ/3 and bound ii) and iii) using branching

processes. Let (Xt)t≥1 be the total size of the t-th generation of GW
(d−v ,d

+
v )

Ξ↑
n(β)

, as de�ned

in Subsection 5.3.2. Determining whether v is big or small requires revealing at most

K = O(nβ/2 log n) half-edges. Therefore, we can use the coupling of neighbourhoods

with multitype Galton-Watson trees in Lemma 5.3.1 to compute the probability v is big,

and we will study the latter.

Write d = (d−v , d
+
v ). Recall the de�nition of the mean matrix M in (5.6) with largest

eigenvalue ρ. Choose ε > 0 small enough. The Frobenius norm of the t-th power satis�es

∥M t∥ ≤ Cρ(1−ε)t for some C = C(ε). We have

E(Xt) = dM t1⊤ ≤
√
2∥d∥∥M t∥ ≤

√
2Cnβ/3ρ(1−ε)t. (5.82)

By Markov's inequality and union bound over t ≥ 1, we bound the probability of ii):

P
(
∃t : Xt ≥ nβ/2

)
≤
∑
t≥1

P
(
Xt ≥ nβ/2

)
≤

√
2Cn−β/6

∑
t≥1

ρ(1−ε)t = O(n−β/6). (5.83)

Finally, we bound the probability of iii). By Markov's inequality,

P (Xt0 ≥ 1) ≤
√
2Cnβ/3ρ(1−ε)t0 = O(nε+β/3−1). (5.84)

Combining (5.81), (5.83) and (5.84), we deduce that the probability a vertex is big is

o(1).

We thus have

E

∑
v∈[n]

|C(v)|

 ≤ E

∑
v∈[n]

(
|C(v)|1(v small) + |C(v)|1(v big)

) ≤ nK+o(1)n2 = o(n2).

So (5.80) holds with high probability by Markov's inequality. □
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CHAPTER 6

CONCLUDING REMARKS

In this thesis we have proven a number of new results on thresholds for the giant compo-

nent in various models of random graphs and digraphs. This contributes to the picture

of what the threshold looks like however there are many questions that still remain in all

of the models which we have studied and we describe some of these questions here.

Firstly, in D(n, p) we have proved tail bounds on the size of the largest component in

the critical window. The recent result of Goldschmidt and Stephenson [31] complements

our result by also proving that there is a scaling limit for the rescaled size of the largest

components. A fully explicit description of the random variable X such that the largest

component is of order Xn1/3 would be a great addition to these two results. Perhaps

a result similar to Pittel's [69] in G(n, p) may be possible. Also, recall that the size of

the largest component in the barely subcritical case was solved by �uczak and Seierstad.

They also showed that the next k components for any �nite k are also of the same order

as the �rst in this regime. As such a natural question to ask is whether there is a scaling

limit for the joint distribution of the components in descending order.

In the con�guration model for graphs we proved a bound on the size of the largest

component in the barely subcritical regime. This is the �rst result in this regime which

is better than o(n). There are certainly improvements which could be made to the

assumptions which we use. In particular it would be interesting to know whether it

is possible to remove the condition on the fourth moment or if we could increase the
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maximum degree for which our result works. Also, in the critical window Dhara et.

al. [17] showed that if the third moment of the degree sequence is �nite then there is a

Brownian motion type scaling limit. It would be interesting to know how far this can be

extended to in�nite third moment.

In the con�guration model for digraphs, we have two results. First, we showed a

result on the barely subcritical regime for the giant strongly connected component. We

found the size and structure of these components. In an upcoming work [14] we show

that there is a complementary result for the barely supercritical regime. The question of

exactly what happens inside the critical window is still an open question however. We

also found the threshold for a giant weakly connected component con�rming a prediction

of Kryven [49]. At present this is the only result on the weak component in the directed

con�guration model. As such the questions of what happens in the barely subcritical,

critical window and barely supercritical ranges as well as precisely where these ranges lie

are all still open.
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