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Abstract

We consider some models of random graphs and directed graphs and investigate their
behaviour near thresholds for the appearance of certain types of connected components.

Firstly, we look at the critical window for the appearance of a giant strongly connected
component in binomial random digraphs. We provide bounds on the probability that the
largest strongly connected component is very large or very small.

Next, we study the configuration model for graphs and show new upper bounds on the
size of the largest connected component in the subcritical and barely subcritical regimes.
We also show that these bounds are tight in some instances.

Finally we look at the configuration model for random digraphs. We investigate the
barely sub-critical region and show that this model behaves similarly to the binomial
random digraph whose barely sub- and super- critical behaviour was studied by F.uczak
and Seierstad. Moreover, we show the existence of a threshold for the existence of a giant

weak component, as predicted by Kryven.



Resum

En aquesta tesi considerem diversos models de grafs i graf dirigits aleatoris, i investiguem
el seu comportament a prop dels llindars per 1'aparicié de certs tipus de components
connexes.

En primer lloc, estudiem la finestra critica per a 'aparicié d’'una component fortament
connexa en digrafs aleatoris binomials (o d’Erdgs-Rényi). En particular, provem diversos
resultats sobre la probabilitat limit que la component fortament connexa sigui sigui molt
gran o molt petita.

A continuacid, estudiem el model de configuracié per a grafs no dirigits i mostrem
noves cotes superiors per la mida de la component connexa més gran en els régims sub-
critics i quasi-subcritics. També demostrem que, en general, aquestes cotes no poden ser
millorades.

Finalment, estudiem el model de configuracio per a digrafs aleatoris. FEns centrem en
la regi6 quasi-subcritica i demostrem que aquest model es comporta de manera similar al
model binomial, el comportament del qual va ser estudiat per Luczak i Seierstad en les
regions quasi-subcritica i quasi-supercritica. A més a més, demostrem 'existéncia d’una

funcio llindar per a lexisténcia d'una component feble gegant, tal com va predir Kryven.
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CHAPTER 1

INTRODUCTION

1.1 Probabilistic Combinatorics and Thresholds

Probabilistic combinatorics is a relatively young area of maths which can trace its roots to
the work of Paul Erdés and co-authors approximately 70 years ago. Since then, the area
has developed in two different directions. The first of which involves existence proofs
utilising the probabilistic method whereby we use the simple fact that if a randomly
chosen object has a property with positive probability, then surely there must be an
object with this property. This is particularly useful as it is often incredibly difficult to
come up with explicit constructions of objects with a given property. A good example of
this is Erdés’ lower bound on the diagonal Ramsey number R(s, s) > 2%/2 [23] which was
proved with the probabilistic method and is much better than all explicit constructions,
none of which are even exponential in s.

The second direction involves properties of random combinatorial objects. Here we
sample a combinatorial object from some distribution and any parameter which one may
be interested in is now a random variable about which there are many natural questions
such as what is its expectation, variance etc. It is this direction which we shall follow in
this thesis and we will interest ourselves with thresholds in random graphs and directed
graphs.

If X = X, is a random combinatorial object with parameter, p(X) = p,(X,,) then we



say that r = r(n) is a threshold function for the property P if the following holds,

P(X, €P)—0asn— oo if p,(X,) < r(n)

P(X, € P) »>1lasn— o0 if p,(X,) > r(n)
Moreover, we will say that r is a sharp threshold if for any € > 0,

P(X,€P)—0asn— oo if p(X,) < (1 —e)r(n)

P(X,€P)—1lasn— o0 if p,(X,) > (1 +¢e)r(n)

In both of the above, we have statements of the form P(X,, € P) — 1 as n — oo. At some
points in the remainder of this thesis we shall refer to this as X,, having P asymptotically
almost surely (abbreviated as a.a.s.)

In this thesis we look at sharp thresholds for the existence of connected components
of linear size in various graph and directed graph models. We also look very closely in at
these thresholds and investigate the behaviour of the size of the largest connected com-
ponent within a (14 o(1)) factor of these thresholds. In the remainder of the chapter we
shall introduce the relevant random models and discuss the prior results on the behaviour

of the size of the largest component near such thresholds.

1.2 The Erdés Rényi Random Graph

The Erd6s Rényi model is the oldest random graph model and we shall denote it by
G(n,p). Tt is a graph on vertex set [n] = {1,2,...,n} formed by including each of the (Z:)
possible edges independently with probability p. Note that this is not the same model
originally introduced by Erdés and Rényi who considered the model G(n,m), where we
take a uniformly random graph on n vertices and m edges. The two models are however

essentially equivalent when one takes p = m/ (g) and in particular if P is any monotone



property, then lim,, . P(G(n,m) € P) = lim, . P(G(n,p) € P) (see [44, Section 1.4]
for example). As such, it is almost always preferable to work with G(n,p) due to its
desirable properties such as the independent edges and we shall phrase all result in this
section for G(n,p) however they all hold in G(n,m) with m = (})p.

The component structure of G(n,p) has been of interest since the model was first

introduced. In one of the first papers written on the model Erdés and Rényi [24] proved

the following result fully describing the component structure for almost all p.

Theorem 1.2.1. Let ¢ > 0 be constant, n € N and consider the model G(n,p) with

p = c¢/n. Then a.a.s.,

e If ¢ < 1, the largest component is a tree of size

fle,n) = C_ﬂ*_—‘fg)@ (log(n) — 2loglog(n));
o If ¢ = 1, the largest component is of order n??;

e If ¢ > 1, then the largest component has size g(c)n where g(c) is the unique solution
x>0o0f 1 —x =€, and all other components are of order at most f(c/,n’) for

some ¢ < 1 and n' = (1 — g(c))n.

The range ¢ < 1 is known as the subcritical regime while ¢ > 1 is referred to as the
supercritical regime. The behaviour of the size of the largest component as ¢ passes 1
going from subcritical to supercritical is known as the “double jump” and is perhaps one
of the most surprising properties of random graphs.

Following on from the work of Erdés and Rényi it is natural to ask what happens
if ¢ — 1 rather than ¢ = 1. The study of this range was started by Bollobas [7] and

Fuczak [52] who proved the following,

Theorem 1.2.2. Let n € N and take p such that np = 1 + &, where ¢ = ¢(n) — 0, and

define kg = 2 2log(n|e|?).

o If ne® — —oo then a.a.s. G(n,p) contains no component of size greater than k.



o If ne® — oo then a.a.s. G(n,p) contains a unique component of size greater than

ko. This component has size 2en(1 4 o(1)).

When ¢ < 0 in the above theorem we are in the barely subcritical region and ¢ >
0 is known as the barely supercritical regime. This only leaves the case where |¢| =
O(n~1/?). Note that if we take ¢ ~ n~/3 both bounds on the size of the largest component
from Theorem are of order n*? so by monotonicity it should be unsurprising that
the order of the largest component is n?/3 for this entire range. We call this range the
critical window and parameterise it as p = n=' + %3 for A € R. The size of the largest
component inside the critical window has the property that it is not strongly concentrated
as for all other ranges of p. In fact there is a continuous random variable X = X(\)
whose domain is all positive reals such that the size of the largest component of G(n, p)
is distributed as Xn*?. The exact distribution of X was determined by Pittel [69] and
explicit bounds on its tails were given by Nachmias and Peres [63]. Finally, the seminal
paper of Aldous [2] shows that the rescaled component sizes behave like the ordered
excursion lengths of a Brownian motion with parabolic drift.

Together all of these results provide a thorough description of the component sizes of
G(n,p). Furthermore, it provides a picture of what may be true in other random graph
models and thus far this picture appears to be correct. Other models appear to go from
a subcritical phase through barely subcritical, critical window, barely supercritical and
supercritical phases upon the correct choice of parameterisation. We describe how this
phase transition happens and our new results in some random graphs and directed graphs

in the following sections.

1.2.1 A digraph analogue: D(n,p)

The model D(n,p) also known as the binomial random digraph is a digraph analogue of
G(n,p). It is a digraph with vertex set [n] formed by including each possible directed edge

with probability p independently. Note that it is entirely possible to have edges in both



directions between a pair of vertices and this happens with probability p? for any given
pair. In digraphs there is more than one notion of connected component, in particular

there are the following 4 types.
Definition 1.2.3. Let G be a digraph and v a vertex of G then,

o the weak component containing v is the component containing v in the underlying

undirected graph;

e the out-component of v is the set of all vertices u such that there is a path from v

to u in G;

e the in-component of v is the set of all vertices u such that there is a path from u

to v in G,

e the strong component of v is the set of all vertices u such that there is both a path

from v to u and a path from u to v in G.

Due to the nature of D(n,p) it is simple to reduce the question of the weak, out and
in-components to studying components in G(n,p). Thus in D(n,p) the main topic of
study is the strong component structure. The strong component structure in D(n,p) is
surprisingly close to the component structure of G(n,p) which further reinforces the fact
that D(n,p) is a digraph analogue of this model.

The first results on D(n, p) were obtained independently by Karp [47] and FLuczak [53]

who showed
Theorem 1.2.4. Let ¢ > 0 be constant, n € N and define p = ¢/n. Then a.a.s.,
e If ¢ < 1, the largest strong component of D(n,p) is a cycle of length O(1) ;

e If ¢ > 1 then the largest strong component of D(n,p) has size g(c)?n where g(c) is

as defined in Theorem and all other components are cycles of length O(1).

Note that even the fraction of vertices in the largest component when the graph is

supercritical is similar to what is seen in G(n, p). The supercritical regime has particularly
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striking similarities - the constant is the square of what is seen in G(n, p). Intuitively this
is because one needs both a large in-component and a large out-component, each of which
happens with probability approximately g(c). Following on from this result, Luczak and
Seierstad [55] proved the following analogue of Theorem In this theorem a strongly
connected digraph is complez if it has more edges than vertices (so it contains multiple

cycles).

Theorem 1.2.5. Let n € N and ¢ = £(n) such that e — 0 as n — oo. Choose p so that

np = 1+ ¢ then,

If ne® — —oo then a.a.s. every strong component of D(n,p) is an isolated vertex

or a cycle of length O(1/|¢]).

If ne> — oo then a.a.s. D(n,p) contains a unique complex component of size

4e®n(1+ o(1)) and every other component is an isolated vertex or a cycle of length

O(1/e).

This leaves the study of the critical window which again can be found when p =
n~ 4+ An~%3. In this regime, Goldschmidt and Stephenson [3I] recently proved an Aldous-
type result by giving a scaling limit for the sizes of the largest components. This result
in addition to the scaling limit shows that the size of the largest strongly connected
component is in fact not concentrated and behaves like Xn!/? for a continuous random
variable X = X(A) which can take values on all of the positive real numbers. My
contribution to the study of D(n,p) was to prove bounds on the tails of this random

variable X. In particular, I proved the following results,

Theorem 1.2.6 (Lower Bound). Let 0 < § < 1/800, A € R and n € N. Let C; be the
largest strong component of D(n,p) for p = n=! + An~%3. Then if n is sufficiently large

with respect to 9, A,
P(|Cy| < on'/3) < 2e64, (1.1)

(log 2)2
4A[2 -

provided that ¢ <



Note that the constants in the above theorem have been chosen for simplicity and it
is possible to give a bound depending on both A and ¢ which imposes no restriction on

their relation to one another.

Theorem 1.2.7 (Upper Bound). There exist constants, ¢, > 0 such that for any
A > 0, € R the following holds. Let C; be the largest strong component of D(n,p) for

p=n"t+ 43, Then provided n is sufficiently large with respect to A, A,
P(|Cy| > Anl/?’) < Cean3/2+)\+A

where AT = max(\,0).

The main idea in the proof of Theorem is to apply Janson’s inequality in order
to show there is no cycle of length between én'/? and 6'/?n'/3 with probability which is
at most the bound given in (1.1). This immediately yields Theorem as a cycle is
strongly connected. The proof of Theorem [I.2.7] involves running an exploration process
from a large strongly connected subdigraph of D(n,p) to determine whether or not it is
a strongly connected component. This requires very good control of certain probabilities
and as such we adapt an enumeration of strongly connected digraphs by Pérez-Giménez
and Wormald [66] to count such digraphs.

The proofs of these theorems can be found in Chapter These result have been

published in [TI5].

1.3 The configuration model

The configuration model was introduced by Bollobés [6]. It is a model commonly used to
pick a random graph with a given degree sequence due to the simplicity of sampling from
it and the desirable property that conditionally on the generated graph being simple,
it is uniformly random among all graphs with this degree sequence which is often the

probability space one wants to study. Furthermore, Janson [41] proved that if the second
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moment of the degree sequence is not too large, the configuration model will produce a
simple graph with non-negligible probability. This is incredibly useful as it provides a
method of transference from the configuration model to the probability space where we

pick a graph with given degree sequence uniformly at random.

1.3.1 The configuration model for graphs

In this section, d,, = (di,...,d,) will be a degree sequence on n vertices and m =
%Zf:l d; edges and D,, will be the random variable obtained by picking an element of
d,, uniformly at random.

The configuration model with degree sequence d,, denoted CM(d,,) is formed by taking
d; “stubs” associated with the vertex ¢ for ¢« = 1,... n, choosing a perfect matching of
all 2m stubs uniformly at random to form the edges of CM(d,) and contract the stubs
associated with vertex ¢ for each ¢ to form the vertices.

It is a natural question to ask what degree sequences have a giant component and
whether there is an easy way to describe the threshold (in terms of the degree sequence)
above which we find a giant component. Molloy and Reed [58] determined such a thresh-

old in terms of the first two moments of D,,. Define
1 n
=Q(d,) = — d;(d; — 2).
Q= Q) = 3 d(di=2)

They showed that @) governs whether CM(d,,) has a giant component,
Theorem 1.3.1. Let d,, be a well behaved degree sequence, then

e If Q(d,) < 0 and maxd, = A,, then there exists a constant A such that a.a.s.

CM(d,,) has no component of size greater than AA?log(n).

e If Q(d,,) > 0, then there exist constants (,~ such that a.a.s. CM(d,,) has a com-

ponent of size at least (n and all other components have size at most ~ylog(n).



The definition of “well behaved” is somewhat complex and we shall not go into it here.
This result has subsequently been improved by other authors, for example [8] [43] [45].

If we consider degree sequences in which @ = o(1), then we cannot apply the result of
Molloy and Reed. Hatami and Molloy [35] located the critical window and the order of the
largest component inside of it subject to some weak conditions on the degree sequence.
Also, inside the critical window Dhara et. al. [I7] showed an Aldous-type result under the
assumption E(D2) = O(1). The same authors in a subsequent paper [18] also showed that
without this assumption it is possible for the configuration model to fall into a different
universality class.

Van der Hofstad, Janson and Luczak [37] considered the barely supercritical case when
Q >0, Q = o(l) and we do not lie in the critical window. In this case they were able
to show that the size of the largest component is strongly concentrated around a value
related to the survival probability of a Galton Watson process with offspring distribution
D, — 1, where D,, is the size biased distribution of D,,. We provide a complementary result
to this focussing on the barely subcritical regime, where we instead have ) < 0. We were
able to show that the components have size bounded above by the maximum possible
extinction time of a similar subcritical Galton Watson process as well as computing this

extinction time in some cases. Define

We showed the following a.a.s. upper bound on the size of the largest component in the

barely subcritical regime.

Theorem 1.3.2. Let € > 0. Let d,, be a degree sequence that satisfies A|Q| = o(R) and
E(D}) < AY2 If Q < —w(n)n"'3R?*/ for some w(n) — oo, then

P(LI(CM(dn)) (1+e¢ )C22 <|Q’3 )) —1-0(1). (1.2)

Note that we can transfer this result to the model in which we pick a random simple

9



graph with degree sequence d,, uniformly at random by applying the aforementioned
result of Janson [4I]. We prove this result by coupling the exploration process with a
Galton Watson process and maintaining very tight control on the extinction probability.
This control uses exponential tilting in combination with a new local limit theorem. A

full proof can be found in Chapter [3| This result is joint work with Guillem Perarnau.

1.3.2 The configuration model for digraphs

In this section, d,, = (d;;,d;}) = ((dy,d}), ..., (d;,d})) will be a directed degree sequence

n» n
on n vertices and m = > d; = >, df edges and D, will be the random variable
obtained by picking an element of d;, uniformly at random similarly define D;.

The directed configuration model with degree sequence &n, denoted DCM(&H), is
formed by taking d; “in-stubs” and d; “out-stubs” associated with the vertex i for
1 =1,...,n, choosing a perfect matching from the set of out-stubs to the set of in-stubs
uniformly at random to form the edges of DCM(&H) directing them from the out-stub to
the in-stub and contract the stubs associated with vertex ¢ for each i to form the vertices.

In the directed configuration model there are now two types of components whose

sizes cannot simply be deduced from the configuration model for graphs: the strong

components and the weak components.

Strong Components

The study of the strong component structure of the directed configuration model was
initiated by Cooper and Frieze [13]. They found the threshold for the existence of a giant

strongly component under certain conditions was the point () = 0 where we redefine

1 n B
0= &Y -1

Here we use () to draw the analogue with the threshold in the configuration model for

graphs. In particular, this is a very similar threshold to the undirected one.

10



The conditions under which this result have been improved over the years. Graf [32]
showed one can take a larger maximum degree than was assumed by Cooper and Frieze
and later, Cai and Perarnau [IT] showed that we only need to assume all second moments
are bounded to draw the conclusion of Cooper and Frieze.

In this thesis we give the first result about the size of the largest strongly connected
component where () = o(1). We define a pair of parameters related to the third moments

of the degree sequence,

1 n 1 n
—::—E dydi(d7 —1 R*::—E d;di(df —1
m — (] (2 ( 7 ) m — 7 7 ( (2
We investigate the barely subcritical regime and prove the following

Theorem 1.3.3. Let ]D)(CM((_LZ) be a random digraph from the directed configuration

1

model with well behaved degree sequence &n and suppose that nQ3(R™R")™! — —oc.

Then a.a.s., there are no complex components or cycles of length w(1/|Q|). Furthermore,

the probability that the kth largest cycle, C; has length at least o|Q|™! is

ga:/ ¢ dr.
o T

This is an analogue of a similar theorem proved by Luczak and Seierstad [55] for

where

D(n,p). We prove this theorem by splitting it into 4 pieces: cycles much longer than
1/|Q| which we show do not exist by an exploration process argument that there is no
out-component so large; cycles slightly longer than 1/|@Q| which we show are not present
by a first moment argument; complex components are also shown not to exist by a
first moment argument; finally to show the result on the length of the kth longest cycle
we apply the Chen-Stein method for Poisson approximation. The details can be found

in Chapter [4]
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Weak components

Similarly to the strong components of the directed configuration model, the weak compo-
nents have not received much attention. In this case it is perhaps due to the assumption
that it effectively behaved like the undirected case (see, e.g., [64]). Kryven [49] observed
that this assumption is wrong and predicted an alternative threshold for the appearance
of the giant weak connected component supported with an analytical but non-rigorous
approach based on generating functions for bounded directed degree distributions.

In this thesis we confirm that the location predicted by Kryven is correct (although

we shall write the location differently). In particular, define u; ; = E((D,,):(D,,

n n

);) (where

(x)e=2z(x—1)...(x—a+1)) and X := po1 = p1. Also let

P M1+ /H2,000,2
N A

Our main result is

-

Theorem 1.3.4. Let DCM(d,,) be a configuration model random digraph with degree
sequence &n Then the point p = 1 is a threshold for the existence of a weakly connected

component of linear order in DCM(d,,).

At first glance p may seem a mysterious parameter. The main idea of our proof is
that p is the leading eigenvalue of the mean matrix of a 2-type Galton Watson process
associated with the exploration of DCM(&H). Thus, p = 1 is simply the point at which
the associated process changes from subcritical to supercritical and thus should be where
one would expect the location of the threshold to be. We give a full proof of this result

in Chapter [} This result comes from joint work with Guillem Perarnau. An extended

abstract was published in [16].
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CHAPTER 2

THE CRITICAL WINDOW OF BINOMIAL
RANDOM DIGRAPHS

2.1 Introduction

Consider the random digraph model D(n,p) where each of the n(n — 1) possible edges
is included with probability p independently of all others. This is analogous to the
Erdgs-Renyi random graph G(n, p) in which each edge is again present with probability p
independently of all others. McDiarmid [57] showed that due to the similarity of the two
models, it is often possible to couple G(n,p) and D(n,p) to compare the probabilities of
certain properties.

In the random graph G(n,p) the component structure is well understood. In their
seminal paper [24], Erdds and Rényi proved that for p = ¢/n the largest component of
G(n,p) has size O(log(n)) if ¢ < 1, is of order ©(n*?) if ¢ = 1, and has linear size when
¢ > 1. This threshold behaviour is known as the double jump. If we zoom in further
around the critical point, p = 1/n and consider p = (1 +&(n))/n such that e(n) — 0 and
le(n)|?n — oo, Bollobas [7] proved the following theorem for |¢| > (21og(n))'/2n~1/3 which

was extended to the whole range described above by Luczak [52].

Theorem 2.1.1 (|7, 52]). Let np = 1 + ¢, such that € = ¢(n) — 0 but n|e|* — oo, and

ko = 272 1og(nle|?).
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i) If ne® - —oco then a.a.s. G(n,p) contains no component of size greater than k.

ii) If ne® — oo then a.a.s. G(n,p) contains a unique component of size greater than

ko. This component has size 2en(1 + o(1)).

Within the critical window itself i.e. p = n™' + An~%3 with A € R, the size of the
largest component C; is not tightly concentrated as it is for larger p. Instead, there exists
a random variable X; = X;(\) such that |C;|n"?/* — X; as n — oo. Much is known
about the distribution of X7, in fact the vector X = (Xj,..., X}) of normalised sizes of

2/3 converges to the vector of longest excursion

the largest k components i.e. X; = |C;|n~
lengths of an inhomogeneous reflected Brownian motion by a result of Aldous [2]. In a
more quantitative setting where one is more interested about behaviour for somewhat

small n, Nachmias and Peres [63] proved the following (similar results may be found

in [69, 73]).

Theorem 2.1.2 ([63]). Suppose 0 < 6 < 1/10, A > 8 and n is sufficiently large with

respect to A,d. Then if C; is the largest component of G(n,1/n), we have

i) P(|Cy| < |6n?/3]) < 1553/

A2(A—4)

11) P(|Cl| > An2/3) < %@_ 32

Note we have only stated the version of their theorem with p = n=! for clarity but it
holds for the whole critical window. Of course, there are a vast number of other interesting
properties of Cy, see [I], 42] 54] for a number of examples.

In the setting of D(n,p), one finds that analogues of many of the above theorems
still hold. When working with digraphs, we are interested in the strongly connected
components which we will often call the components. Note that the weak component
structure of D(n,p) is precisely the component structure of G(n,2p — p?). For p = ¢/n,
Karp [47] and Luczak 53] independently showed that for ¢ < 1 all components are of size
O(1) and when ¢ > 1 there is a unique complex component of linear order and every other

component is of size O(1) (a component is complex if it has more edges than vertices).
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The range p = (1+¢)/n was studied by Luczak and Seierstad [55] who were able to show
the following result which can be viewed as a version of Theorem for D(n,p),

Theorem 2.1.3 ([55]). Let np = 1 + ¢, such that € = e(n) — 0.

i) If ne® — —oo then a.a.s. every component of D(n,p) is an isolated vertex or a cycle

of length O(1/|¢]).

ii) If ne® — oo then a.a.s. D(n,p) contains a unique complex component of size

4e?n(1+ o(1)) and every other component is an isolated vertex or a cycle of length

o(1/e).

As a corollary Luczak and Seierstad obtain a number of weaker results inside the crit-
ical window regarding complex components. They showed that there are O,(1) complex
components containing O,(n'/3) vertices combined and that each has spread (2,(n'/?)
(the spread of a complex digraph is the length of its shortest induced path).

Our main result is to give bounds on the tail probabilities of |C;| resembling those of

Nachmias and Peres [63] for G(n,p).

Theorem 2.1.4 (Lower Bound). Let 0 < 6 < 1/800, A € R and n € N. Let C; be the
largest component of D(n,p) for p = n~' + An~%3. Then if n is sufficiently large with

respect to 0, \,
P(|Cy| < on*/3) < 2e6'/4, (2.1)

(log 2)?
4[N2

provided that ¢ <

Note that the constants in the above theorem have been chosen for simplicity and it
is possible to give an expression for (2.1) depending on both A and ¢ which imposes no

restriction on their relation to one another.

Theorem 2.1.5 (Upper Bound). There exist constants, ¢, > 0 such that for any

A > 0,\ € R, let C; be the largest component of D(n,p) for p = n~' + An~%/3. Then
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provided n is sufficiently large with respect to A, A,
P(|C1’ N Anl/B) < Ce—nA3/2+>\+A

Where AT = max(A,0).

A simple corollary of these bounds is that the largest component has size ©(n'/3).

This follows by taking 6 = o(1) in Theorem and A = w(1) in Theorem [2.1.5

Corollary 2.1.6. Let C; be the largest component of D(n, p) for p = n=' +An~%/3, Then,
Ci| = ©,(n'7?).

Recently some related results have been obtained by Goldschmidt and Stephenson [31]
who showed a scaling limit for the sizes of all the strong components in the critical random
digraph. This is analogous to the result of Aldous [2] in G(n, p) and allows one to deduce
that there is a limiting distribution for the random variable n~1/3|C;|. This distribution

can be described in terms of the total edge length of a directed multigraph related to

the Brownian continuum random tree. In principle versions of Theorems [2.1.4] and [2.1.5|

can be deduced from this result although the limit distribution is a little difficult to

work with. This author was only able to deduce that n='/3|C| is tight using the results

of Goldschmidt and Stephenson whereas Theorems [2.1.4] and [2.1.5] give us much more

explicit information about the tails of the random variable n='/3|C,|.

It should be noted that, in contrast to the undirected case, checking whether a set of
W of vertices constitutes a strongly connected component of a digraph D requires much
more than checking only those edges with at least one end in W. In particular, in order
for W to be a strongly connected component, it must be strongly connected and there
must be no directed path starting and ending in W which contains vertices that are not
in W. This precludes us from using a number of methods which have often been used to
study G(n,p). We therefore develop novel methods for counting the number of strongly

connected components of D(n,p) based upon branching process arguments.
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The remainder of this chapter is organised as follows. In Section we give a pair

of bounds on the number of strongly connected digraphs which have a given excess and

number of vertices. Sections [2.3] and contain the proofs of Theorems [2.1.4] and [2.1.5]

respectively in the case that p = n=!. The proof of Theorem in Section is a
relatively straightforward application of Janson’s inequality. The proof of Theorem
in Section is much more involved. We use an exploration process to approximate
the probability that a given subdigraph of D(n,p) is also a component. Using this we
approximate the expected number of strongly connected components of size at least An'/?
and apply Markov’s inequality. The adaptations required to handle the critical window

p=n"1+ An"*3 are presented in Section We conclude the chapeter in Section

with some open questions and final remarks.

2.2 Enumeration of Digraphs by size and excess

For both the upper and lower bounds on the size of the largest component, we need good
bounds on the number strongly connected digraphs with a given excess and number of
vertices. Where the excess of a strongly connected digraph with v vertices and e edges
is e —v. Let Y (m, k) be the number of strongly connected digraphs with m vertices and
excess k. The study of Y (m, k) was imitated by Wright 78] who obtained recurrences
for the exact value of Y (m, k). However, these recurrences swiftly become intractable
as k grows. This has since been extended to asymptotic formulae when & = w(1) and
O(mlog(m)) [66l [71]. Note that when k& = mlog(m)-+w(m), the fact Y (m, k) ~ (mq(q:ﬂl))

is a simple corollary of a result of Palésti [65]. In this section we give an universal bound

on Y (m, k) (Lemma [2.2.1)) as well as a stronger bound for small excess (Lemma [2.2.3)).

Lemma 2.2.1. For every m,k > 1,
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Proof. We will prove this by considering ear decompositions of the strongly connected
digraphs in question. An ear is a non-trivial directed path in which the endpoints may
coincide (i.e. it may be a cycle with a marked start/end vertex). The internal vertices
of an ear are those that are not endpoints. An ear decomposition of a digraph D is a

sequence, Ey, Fq, ..., E) of ears such that:

Ey is a cycle

The endpoints of E; belong to U;;}) E;

The internal vertices of E; are disjoint from U;_:t E;

k
Ui:O Ei=D

We make use of the following fact.

Fact 2.2.2. A digraph D has an ear decomposition with k£ 4 1 ears if and only if D is

strongly connected with excess k.

Thus we count strongly connected digraphs by a double counting of the number of
possible ear decompositions. We produce an ear decomposition with m vertices and £+ 1
ears as follows. First, pick an ordering 7 of the vertices. Then insert k£ bars between the
vertices such that the earliest the first bar may appear is after the second vertex in the
order; multiple bars may be inserted between a pair of consecutive vertices. Finally, for
each i € [k], we choose an ordered pair of vertices (u;, v;) which appear in the ordering
before the ith bar.

This corresponds to a unique ear decomposition. The vertices in 7 before the first
bar are E, with its endpoint being the first vertex. The internal vertices of E; are the
vertices of m between the ith and ¢ + 1st bar. Furthermore, E; has endpoints u; and v;
and is directed from w; to v;. The orientation of every other edge follows the order 7.

Hence, there are at most

—_ ko 2k |
(m—i-k/j: 2)m2km!§(m+k])€|m m!
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ear decompositions. Note that each vertex of a strongly connected digraph is contained
in a cycle. Therefore each vertex could be the endpoint of Ej and hence at least m ear
decompositions correspond to each strongly connected digraph. Hence the number of

strongly connected digraphs of excess k£ may be bounded by

Y (m. k) < (m + E)fm®m!  (m + k) m**(m — 1)!
ST T Kl !

as claimed. O

Lemma 2.2.3. There exists C' > 0 such that for 1 < k < +/m/3 and m sufficiently large

we have,

m!m3k71

Y(m, k) < C’m.

(2.2)

The proof of the above lemma follows similar lines to the proof of Theorem 1.1 in [66]
to obtain a bound of a similar order. We then prove that this bound implies the above
which is much easier to work with.

First we introduce some definitions and notation from [66]. A random variable X has
the zero-truncated Poisson distribution with parameter A > 0 denoted X ~ T'P()) if it

has probability mass function

A f >,
]P)(X _ 2) _ il(er—1)
0 if 1 < 1.
Let D be the collection of all degree sequences d = (df,...,d} d,...,d ) such that

d,d- > 1 for each 1 < i < m and furthermore,

a2

zm: di = Zm: d; =m.
i—1 i—1

A preheart is a digraph with minimum semi-degree at least 1 and no cycle components.
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The heart of a preheart D is the multidigraph H (D) formed by suppressing all vertices
of D which have in and out degree precisely 1.
We define the preheart configuration model, a two stage variant of the configuration

model for digraphs which always produces a preheart, as follows. For d € D, define
T=T(d)={ie[m]:df +d >3}

First we apply the configuration model to 7' to produce a heart H. That is, assign
each vertex i € T d out-stubs and d; in-stubs and pick a uniformly random perfect
matching between in- and out-stubs. Next, given a heart configuration H, we construct
a preheart configuration @) by assigning [m] \ T' to E(H) such that the vertices assigned
to each arc of H are given a linear order. Denote this assignment including the orderings
by g. Then the preheart configuration model, Q(d) is the probability space of random
preheart configurations formed by choosing H and ¢ uniformly at random. Note that
each @ € Q(d) corresponds to a (multi)digraph with m vertices m + k edges and degree
sequence d.

As in the configuration model, each simple digraph with degree sequence d is produced
in precisely [, d!d;! ways. So if we restrict to simple preheart configurations, the
digraphs we generate in this way are uniformly distributed. Where in this case, simple
means that there are no multiple edges or loops (however cycles of length 2 are allowed).
We now count the number of preheart configurations. Let m’ = m/(d) = |T'(d)| be the

number of vertices of the heart. Then, we have the following
Lemma 2.2.4. Let d € D, then there are

m'(d) + k

_ k)!

—— (m+k)

preheart configurations.

Proof. We first generate the heart, and as we are simply working with the configuration
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model for this part of the model, there are (m’+ k)! heart configurations. The assignment
of vertices in [m] \ T to the arcs of the heart H may be done one vertex at a time by
subdividing any already present edge and maintaining orientation. In this way when we
add the ith vertex in this stage, there are m’ 4+ k+14—1 choices for the edge we subdivide.

We must add m — m' edges in this stage and so there are

m—m/

| bk 1)
htio1= MR DY
Em+ ! (' 1+ k1)

unique ways to create a preheart configuration from any given heart. Multiplying the
number of heart configurations by the number of ways to create a preheart configuration

from a given heart yields the desired result. U

The next stage is to pick the degree sequence, d € D at random. We do this by
choosing the degrees to be independent and identically distributed zero-truncated Poisson
random variables with mean A\ > 0. That is, d ~ TP(\) and d; ~ T'P()) such that the
family {d;,d; :i € [m]} is independent. Note that this may not give a degree sequence
at all, or it may be the degree sequence of a digraph with the wrong number of edges.

Thus we define the event X(\) to be the event that

id;r:zm:d; =m+ k.
=1 =1

We shall now prove the following bound,

Lemma 2.2.5. For any A > 0 we have

3k(m + k — D)(e* — 1)2m
\2(m+k)

Y (m, k) < P(S(\)). (2.3)

Proof. Let D be the random degree sequence generated as above and d € D, then

m dr A% A\2(m+k) T 1

2\
]WD:d):LLﬁmﬂ—ndg@L-m:(@—4ym£Lﬁug' (24)
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By definition of %(\), we have

Y PB(D=d)=P(2(),

deD

as all of the above events are disjoint. Thus, we may rearrange (2.4 to deduce that

Z H djklldf! - (eAQ&}_?C)mP(E()‘»' (2.5)

deD i=1

Lemma tells us that for a given degree sequence d, there are

m'(d) + k
m + k

" (m+k)!

preheart configurations. As each simple digraph with degree sequence d comes from
precisely []", dFld;! configurations, and m/(d) < 2k as otherwise the excess would be
larger than k, we can deduce that the total number of prehearts with m vertices and

excess k 1is

m'(d) + k 1 3k 4 1
E (— ! I I - E l
m+ k (m + )! LL g = (m+k)'m+k LL g (2:6)
deD =1 "t deD =1 "t 7

Note that any strongly connected digraph is a preheart and so (2.6) is also an upper
bound for Y'(m, k). Finally, combining ({2.5)) and ({2.6) yields the desired inequality. [

It remains to prove that (2.3)) can be bounded from above by (2.2)). To this end, we

prove the following upper bound on P(3(A)).

Lemma 2.2.6. For A <1,

For the proof of this lemma, we will use the Berry-Esseen inequality for normal ap-

proximation (see for example |75, Section XX.2|.)
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Lemma 2.2.7. Suppose X1, Xo,..., X, is a sequence of independent random variables
from a common distribution with zero mean, unit variance and third absolute moment
E|X]P=v<o0. Let S, = X1 + Xo+ ...+ X, and let G,, be the cumulative distribution
function of S, /v/n. Then for each n we have

y
G.(t) — ®(t)] < ——,
‘o;lelﬂgl (t) — @(1)| NG

where ® is the cumulative distribution function of the standard Gaussian.
Here, the explicit constant 1/2 in equation (£2.7)) was obtained by Tyurin [74].

Proof of Lemma[2.2.6 The in-degrees of the random degree sequence are chosen inde-
pendently from a truncated poisson distribution with parameter A. Thus, we want to
apply Lemma to the sum S,, = Y7 + Y, + ... +Y,, where the Y; are normalised
truncated Poisson random variables. So all we must compute are the first three cen-

tral moments of the truncated poisson distribution. Let Y ~ T'P()\), one can easily

compute that E(Y) = ¢, = e’ke_Al and Var(Y) = o3 = cy(1 + A — ¢y). Note that for

A <1 we have 1 < ¢\, < 2 and so as Y only takes integer values which are at least 1,

ElY —E(Y)]? =E(Y —c\)? + 2(cy — 1)*P(Y = 1). Computing this yields

2X' - 5M0 43N -\ X 3N £ W) 23N 2N | 2!
e —1 (er—1)2 =17 @ (er—1)

ElY —E(Y)]> = A+
One can check that this is bounded above by 2\ for A\ < 1.

The normalised version of Y is X = (Y —¢y)/ox. We have

3
Y—C,\
O\

1 2\
= —=ElY — o]’ <

]E|X|3:IE‘ = =1
I X

For A < 1 one can check ¢y < 1+ 2)/3, which allows us to deduce that o3 > \/3 (also

using Y > 1). Hence, E|X|* < 6/3X\71/2. Substituting into Lemma with G, the
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distribution of S,,/v/m,
sup |G, (1) — ®(1)] <

tcR -

Sk

The probability that the sum of the in-degrees is m + k is precisely

a m+ k —mcy G m-+k—1—mey
" 0,\\/5 " O',\\/m )

Following an application of the triangle inequality, we see that this probability is bounded

above by

6v/3 N 1 V3
Vaim o V2rmoy T VAm

As the event that the in-degrees sum to m + k£ and the event that the out-degrees sum

to m + k are independent and identically distributed events, we may deduce the bound,

147
< —.
— m

P(%(N)

Finally, we may prove Lemma [2.2.3|

Proof of Lemma[2.2.5 We choose A = 2k/m < 1 by assumption, then P(X(\)) < 147/2k
by Lemma Combining this with Lemma yields

Y(m, k) <

2m — 2/m 2m
441(m + k — 1)!/\_% er —1 < 441mIm3k—Lek™/m fer 1 (2.8)
2 A (2k)%F A

We use the inequality e* < 1+ x + 2?/2 + 23/4 which holds for all 0 < z < 1 to bound

(e —1)/A < 1+ A/2+ A2/4. Thus,

((6)\ . 1)/)\)2m < (1 + )\/2 + )\2/4)2m < em)\+m)\2/2 _ €2k+2k2/m.
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Then, we can use Stirling’s inequality, ev/2k — 1(2k — 1)?*~1e=2k+1 > (2k — 1)!, so that

€2k €2k 62

< <
(2k)% = (2k — 1)2-172 = (2k — 1)’

allowing us to rewrite the bound on Y'(m, k) as

441e® m!Im?3k-1
2 (2k—1)V

Y(m, k) <

where we used e**/™ < e!/3. Thus proving the lemma with C' = 441¢3/2. g

2.3 Proof of Theorem 2.1.4

In this section we prove a lower bound on component sizes in D(n,p). We give the
proof for p = 1/n for simplicity. The proof when p = n=' + An~%/3 is very similar, with
more care taken in the approximation of terms involving (np)™. See Section [2.5] for more

details.

Theorem 2.3.1. Let 0 < 6 < 1/800, then the probability that D(n,1/n) has no compo-

nent of size at least on'/3 is at most 26%/2.

To prove this we will bound from above the probability that there is no cycle of length

/3 and 6'/2n'/3. Let X be the random variable counting the number of cycles

between don
in D(n,1/n) of length between dn'/? and §'/2n'/3. Note that we may decompose X as a
sum of dependent Bernoulli random variables, and thus we may apply Janson’s Inequality

in the following form (see [44] Theorem 2.18 (i)]).

Theorem 2.3.2. Let S be a set and S, C S chosen by including each element of S in
S, independently with probability p. Suppose that & is a family of subsets of .S and for
A € S, we define 14 to be the event {A C S,}. Let p =E(X) and

A:% >3 E(lalg)

A#B,ANB#£0
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Then,
P(X =0) < e rta

To apply Theorem [2.3.2 we define S to be the set of edges of the complete digraph
on n vertices. Let A € S if and only if A C S is the set of edges of a cycle of length
between dn'/3 and 6'/2n'/3. Define X (m) to be the number cycles in D(n, 1/n) of length

m. We start by approximating the first moment of X.
Lemma 2.3.3. E(X) > log(1/§)/2

Proof. Let a = én'/? and b = §'/2n'/3. Then, we can write X as

Note that

BCxom) = (1) > o 29)

So, we may bound the expectation of X as follows

b b
E(X) =Y E(X(m)) > Z% > / i_x _ log(21/5)

m=a m=a

g

Let Z(m, k) be the random variable counting the number of strongly connected graphs
with m vertices and excess k in D(n,1/n). Directly computing A is rather complicated
so we will instead compute an upper bound on A that is a linear combination of the
first moments of the random variables Z(m, k) for m > a and k > 1. To move from the

computation of A to the first moments of Z(m, k) we use the following lemma,

Lemma 2.3.4. Fach strongly connected digraph D with excess k may be formed in at

most 27% ways as the union of a pair of directed cycles Cy and Cs.

Proof. Consider the heart H(D) of D. Recall that H(D) is the (multi)-digraph formed

by suppressing the degree 2 vertices of D and retaining orientations. As D has excess
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k, H(D) has at most 2k vertices. Furthermore, the excess of H(D) is the same as the
excess of D as we only remove vertices of degree 2. Thus H (D) has at most 3k edges.
Then, each edge of H(D) must be a subdigraph of either Cy, Cy or both. So there

are 33% = 27% choices for the pair C, 0y as claimed. O
We are now in a position to give a bound on A.
Lemma 2.3.5. A <log(2) for any ¢ € (0,1/800]

Proof. Let
H
K,,C

I

T(k) = {E(C)|C C Cil,

— —
where K, is the complete digraph on [n| and C} is the directed cycle of length k. For
a € I'(k) let I, be the indicator function of the event that all edges of « are present in a

given realisation of D(n,1/n). Also, define

Then, by definition,

ZZ (I.15)

06755 ang#0
Let T7%(t) be the set of 8 € T'(¢) such that aU 3 is a collection of m + k edges spanning

m vertices. Then,

I 5 3D 35 3 Db ol

s=a t=a a€el'(s) m=s k= 1[36ka (t)

oo m m

SYYYY Y Y

m=a k=1 s=a t= aaers)ﬂel—\mk()

i 2T*E(Z(m, k)), (2.10)

m=a k=1
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where the last inequality follows from Lemma Note that

B(Z(m. ) = ()54

by definition. We will use the following two bounds on Y (m, k) which follow immediately
from Lemma 2.2.11

o If k <m, then Y (m, k) < QKZLS:LW

ko, 2k

o If k > m, then Y (m, k) < 2!

This allows us to split the sum in (2.10) based upon whether £ < m or k > m to obtain

| /\

m=a k=m+1

Zme ( )zkm ml i +Z 3 27k( ) !
— E!m m
2b 00

Z 54pm Z Z 54em p

1 m=a km+1

IA

ak
1
m

3

log( /d

k=
)( 43267 _ 1 4 23328¢%5%) (2.11)
<= .

Where the 23328¢%52 term comes from noting k& > 2 in the range k > m + 1 and that for

x<1/2

oo
Z k< 222

k=2
As (2.11)) is increasing in 0, we simply need to check that the Lemma holds for 6 = 1/800
which may be done numerically.

O

Finally, to prove Theorem we substitute the values obtained for p and A in
Lemmas [2.3.3] and [2.3.5] respectively into Theorem [2.3.2] That is,

P(X — O) < e*lHrA < eflog(l/é)/2+log(2) — 251/2

So the probability there is no directed cycle of length at least 6n'/? is at most 26'/2 and,
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as cycles are strongly connected, this is also an upper bound on the probability there is

no strongly connected component of size at least dn'/3.

2.4 Proof of Theorem

In this section we prove an upper bound on the component sizes in D(n,p). Again, we
only consider the case when p = 1/n to simplify notation and calculations. The reader
is referred to Section for a sketch of the adaptations to extend the result to the full

critical window. The following is a restatement of Theorem for p=1/n.

Theorem 2.4.1. There exist constants ¢, > 0 such that for any A > 0 if n is sufficiently

large with respect to A, then the probability that D(n,1/n) contains any component of

1/3 _pA3/2

size at least An'/° is at most (e

We will use the first moment method to prove this theorem and calculate the expected
number of large strongly connected components in D(n,1/n). Note that it is important
to count components and not strongly connected subgraphs as the expected number of
strongly connected subgraphs in D(n,1/n) blows up as n — oo. Thus for each strongly
connected subgraph, we will use an exploration process to determine whether or not it is
a component.

The exploration process we use was initially developed by Martin-Lo6f [56] and Karp [47].
During this process, vertices will be in one of three classes: active, explored or unexplored.
At time t € N, we let X; be the number of active vertices, A; the set of active vertices,
E; the set of explored vertices and U; the set of unexplored vertices.

We will start from a set Ag of vertices of size X, and fix an ordering of the vertices,
starting with Ag. For step ¢t > 1, if X; 1 > 0 let w; be the first active vertex. Otherwise,
let w; be the first unexplored vertex. Define 7, to be the number of unexplored out-
neighbours of w; in D(n,1/n). Change the class of each of these vertices to active and

set wy to explored. This means that |E;| = ¢ and furthermore, |Uy| = n — Xy —t. Let
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Ny =n— X, —t— 1(X; = 0) be the number of potential unexplored out-neighbours of
wyyq i.e. the number of unexplored vertices which are not w;,,. Then, given the history
of the process, 7, is distributed as a binomial random variable with parameters N, ; and

1/n. Furthermore, the following recurrence relation holds.

thl -+ M — 1 if Xt,1 > O,
X, = (2.12)

M otherwise

Let 7 = min{t > 1 : X; = 0}. Note that this is a stopping time and at time 7; the
set F,, of explored vertices is precisely the out-component of Ay. If Ay spans a strongly
connected subdigraph Dy of D(n,1/n), then Dy is a strongly connected component if and
only if there are no edges from E,, \ Ay to Ag. The key idea will be to show that if X
is sufficiently large, then it is very unlikely for 7; to be small, and consequently it is also
very unlikely that there are no edges from E. \ A to Ag. This is encapsulated in the

following lemma.

Lemma 2.4.2. Let X, be the exploration process defined above with starting set of vertices

Ay of size Xo =m. Suppose 0 < ¢ < /2 is a fized constant. Then,

2\2
P(ry < em!?nt/?) < 9~ Faet-m? /22 O(m?n )

Proof. Define ¢ = em'?n'/? and consider the auxiliary process, X, which we define

recursively by

X, =m,

X=X, —1+W,fort>1,
where W; ~ Bin(n — t — 10m, p). Let 7 be the stopping time,

Ty = 1nf{t : Xt > 10m}
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We may couple the processes (X, X}) such that X} is stochastically dominated by X;
for t < 7. The coupling may be explicitly defined by setting 7, = W, + W, with
W, ~ Bin(10m — X;_1,p). Define another stopping time, 7; = min{t > 1 : X] = 0}.

Consider the following events

& = {n < em'*nt/?}
E = {1] < em'*n*/?}

E = {1, < em'/*n}/?}

And note that P(&;) < P(&) + P(&;) by our choice of coupling and a union bound (as
the coupling guarantees £ C & U E3). Thus we only need to bound the probabilities of
the simpler events & and &£;. We begin by considering &. To bound its probability we

consider the upper bound process M; defined by

M():m,

Mt:Mt_l—l—f‘BtfortZl,

where B; ~ Bin(n,1/n). It is straightforward to couple (X, M;) such that M, stochasti-
cally dominates X;. Furthermore, M; is a martingale. Hence, P(&3) < P(75 < em!/?n1/2)
where 75 is the stopping time, 7, = min{t : M; > 10m}. To bound the probability of &
consider the process Y; defined as Y; = m — X,. One can check that Y; is a submartingale.

As z — ™" is a convex non-decreasing function for any a > 0, we may apply Jensen’s
inequality to deduce that Z, = e and Z;5 = e*M* are submartingales. Also, 7, , Z;t >
0 for any ¢« € N. Starting with Z,, we may apply Doob’s maximal inequality [33]

Section 12.6] and deduce that

o _ E(Z,)
Pl min X <0 ) =P max Z, >¢e* | < (2.13)
0<t<g 0<t<g eam
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We may rewrite this by noting that

t
Yi=m-X,=t—Y W,=t—R,
=1

where R, is binomially distributed and in particular R¢ ~ Bin(l¢, p) for

eml/2n1/2

2

2
1€ = em?n?? — # — 10em3?nt/? +

Also, we choose = such that xI§ = £ —m. Then 1) may be rewritten as e”*“"E(Z; ) =
e E(e~fe). The next stage is to rearrange this into a form which resembles the usual

Chernoff bounds (for z < p). So, let
U3
Fla) = () = e (et 1 p)

Then, we choose a* to minimise f. Solving f’(a) = 0, we obtain the solution

Note = < p so, e™® < 1 and a* > 0 as desired. Thus,

== [(5=5) (=)
(i=20-0) () (2]
-0 =) ]

Which is the usual expression found in Chernoff bounds. As usual, we bound this by

writing

fla*) = e 9@
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and bound g, where

o) =g () +.0= s (1)

Computing the Taylor expansion of g we find that g(p) = ¢'(p) = 0. So, if ¢"(z) > 5 for

all x between p and p — h, then g(p — h) > Bh?/2. Furthermore,

As 0 < z < p, we have ¢"(z) > 1/x > 1/p. So, we deduce that g(z) > §°p/2 where
d =1 —z/p. All that remains is to compute 0. As defined earlier, we have zl{ =& —m

which for convenience we will write as

dig = €1~ M) (214)

Cn1/2

1

Also, as p = n~", and recalling the definition of [£ from earlier,

2
plé = em**nt/? — % + O(m3*n=1?2)

Cm1/2

- 5(1 ~ 5o O(mn1)> (2.15)

We divide (2.14) by (2.15) and as the Taylor expansion of 1/(1 —w) is _,. ",

1/2

T - 25 m'?  em!/? .

g cn =-1——— 4+ 1+ 0 2.16

Po1— g+ O(mn ) iz + iz +OmnT) (2.16)
From which we may deduce

(2 o c2)m1/2 B
So,
P(gg) S 67627”5 _ 67(2_8?32)2m3/2n_1/2+0(m2n_1) (2.18)
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We may proceed similarly for Z;', in particular we must still appeal to Doob’s maximal
inequality as we seek a bound over the entire process. In this case we end up with a
Bin(n&, p) distribution and are looking at the upper tail rather than the lower. We find
pné = & and

xn§:§+9m:£(1+i7:—11//22)

Thus,

x Omt/2

Substituting into the analogous bound,

27m3/2

2,
P(E) <e 3 < enl? (2.19)

Observe that P(&,) > P(£5)e™ ™) for 0 < ¢ < 1/2(1 + 3v/6). Thus, in the range we
are interested in, we may use 2P(&;) as an upper bound for P(&;) 4+ P(&;) and this proves

the lemma. O

We now compute the probability that any given strongly connected subgraph of
D(n,1/n) is a component. To do so, we use the simple observation that a strongly
connected subgraph is a component if it is not contained in a larger strongly connected

subgraph.

Lemma 2.4.3. There exist 8,7 > 0 such that of H is any strongly connected subgraph of
D(n,1/n) with m vertices. Then the probability that H is a strongly connected component

of D(n,1/n) is at most fe=(Fm*n=1/2+0(m*n 1)

Proof. We compute the probability that H is a component of D(n,1/n) by running the
exploration process X, starting from Ay = V(H). So, Xo = m. Once the exploration
process dies at time 77, any backward edge from E,, \ Ay to Ay gives a strongly connected
subgraph of D(n,1/n) which contains H. Let Y; be the random variable which counts
the number of edges from E, \ Ay to Ap. Note that for t > m, Y; ~ Bin(m(t — m),p).

Furthermore, H is a strongly connected component of D(n,1/n) if and only if Y, = 0.
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Let € > 0 and define the events A; for i = 1,...,r (where r ~ ¢/e for some ¢ > 1) to

be

A = {(i — Dem?n'? < 7 < iem*/*n!/?},

A1 = {r£m1/2n1/2 <n}

Clearly the family {A; : ¢ = 1,...,r 4+ 1} forms a partition of the sample space. So, by

the law of total probability,

r+1

By applying Lemma when 1 <4 <7 we find

2 22 .
P(A) < 2¢~ S w2 O )
T

Note that Y;, conditioned on A; stochastically dominates a Bin(m((i—1)em!'/?n'/2—m), p)

distribution. Therefore,

IED(Y;l _ 0|Az) S (1 _p)m((i—l)aml/in/z—m) < e—(i—1)£m3/2n71/2+O(m2n*1)

Combining the above and substituting into (2.20) yields

-2 2)2
£

]P(Y;l _ O) <2 Z 67((1'71)5+7(27;%.E Ym3/2n=1/24.0(m2n 1) + efrgmm/Qn*1/2+O(m2n71) (221)
i=1

Y

< (27 + 1)e” W22 0 (2.22)

for some v > 0 provided that ¢ is sufficiently small. The second term in (2.21)) is a result
of the fact P(A,;1) < 1. This proves the lemma and if one wishes for explicit constants,

taking e = 0.025, r = 45 works and gives § < 100, v > 0.06. O
The next stage in our proof is to show that a typical instance of D(n,1/n) has no
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component of large excess and no exceptionally large components. This will allow us
to use the bound from Lemma to compute the expected number of large strongly
connected components of D(n,1/n). The first result in this direction is an immediate

corollary of a result of Luczak and Seierstad [55].

Lemma 2.4.4 (|55]). The probability that D(n,1/n) contains a strongly connected com-

ponent of size at least n'/>loglogn is 0,(1).

The next lemma ensures that there are not too many cycles which enables us to prove
that the total excess is relatively small.

6

Lemma 2.4.5. The probability that D(n,p) contains more than n'/® cycles of length

bounded above by n'/?loglog(n) is 0, (1).

Proof. In this proof and subsequently we will use the convention that log(k)x is the
logarithm function composed with itself k times, while (log z)* is its kth power. We shall
show that the expected number of cycles of length at most n'/3log'® n is o(n'/%) at which
point we may apply Markov’s inequality. So let C' be the random variable which counts
the number of cycles of length at most n'/3log®n in D(n,1/n). We can calculate its

expectation as
nl/3 log<2) n

n1/3log(® n
n\ k! 1
E(C)= Y </<;)Epk§ > - (2.23)

k=1 k=1

We use the upper bound on the kth harmonic number H; < logk + 1, which allows us

to deduce that
1 (3) 1/6
E(C) < H, /3105, < 3 logn +1log"” n+1<logn=o(n""). (2.24)

Thus the lemma follows by Markov’s inequality. U

Corollary 2.4.6. The probability that D(n,1/n) contains a component of excess at least

n'/6 and size at most n'/3loglogn is 0,(1).

Proof. If D is any strongly connected digraph with m vertices and excess k, then note

that it must have at least k+1 cycles of length at most m. This can be seen by considering
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the ear decomposition of D. The first ear must be a cycle, and each subsequent ear adds
a path which must be contained in a cycle as D is strongly connected. So as we build the
ear decomposition, each additional ear adds at least one cycle. As any ear decomposition
of a strongly connected digraph of excess k has k + 1 ears, then D must have at least
k + 1 cycles.

Thus, if D has k cycles, it must have excess at most k — 1. So applying Lemma [2.4.5

completes the proof. O
Finally, we prove the main theorem of this section.

Proof of Theorem [2.4.1. Let C; be the largest strongly connected component of D(n, 1/n)

and L; = |C;|. We want to compute P(L; > An'/3). Define the following three events,

51 = {Ll 2 An1/3}
& = {An'? < Ly < n'Ploglog(n)}

& = {L; > n'?loglog(n)}

Clearly, & C & U &; and by Lemma P(&) = 0,(1). If F is the event that C; has
excess at least n'/% then by Corollary [2.4.6, P(€, N F) = 0,(1). All that remains is to

give a bound on P(& N F*). To this end let N(A) be random variable which counts the

number of strongly connected components of D(n,1/n) which have size between Anl/3

6

and n'/?loglogn and excess bounded above by n'/%. By Markov’s inequality, we may

deduce that P(&; N F¢) < E(N(A)). Computing the expectation of N(A),
n'/3log?(n) nl/6
n
ENA) = S Y (m)pmmm, BB, =0 Xp=m).  (2.25)

m=An1/3 k=0

In Lemma we showed that P(Y;, = 0| Xy = m) < BeF0m**n=2+0(m*n™) = Ajgq,
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using Lemma we can check that

nl/6

Z Y (m, k)p* < (m —1)! + C(m — 1)!(m?p)*/? sinh((m?’p)lﬂ), (2.26)
k=0

where the first term on the right hand side of (2.26]) comes from the directed cycles and
C' is the same constant as in Lemma [2.2.3] As sinh(z) < e* we can bound ({2.26) by

nl/6

ST ¥ (m, k)t < (m— )11+ O/~ 2em 1)
k=0

< 2(m — 1)ICm?/ 2 2em**n 2

Combining these bounds and using (:1) < n™/m! we deduce

nl/3log?(n) m
e <™ 5 (9 s )
m=Anl/3 ’

n1/3log?(n)

Z QBle/Q e_ymS/Qn_l/Q-&-O(an_l)

/2
m=Anl/3
nl/31log?(n)+1 2 Cm1/2
S/ ’ 1/2—67%’"3/2" " dm (2.27)
m=Anl/3 n

where 1) holds for all sufficiently large n. Now making the substitution z = mn=/3
we can remove the dependence of (2.27) on both m and n so that

log?(n)+n =1/ Y 3/2
E(N(A)) < 250/ o' 2em 2 dy

A
< 28C 22673 4y

A
6C [ 8BC  ,a3/2
_86¢ L, €t = 6—6_7A2 (2.28)
3y Jaad/ 3y

2

So, by Markov’s inequality P(&, N F¢) < Ce " where ¢ and 7 are the corresponding
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constants found in (2.28). So,

P(Ly > An'P) < P(E;NFO) + P(ENF) + P(&) = Ce ™ + 0,(1).

Calculating ¢ and v using the values for C, 3 and v in Lemmas [2.2.3| and [2.4.3| yields

¢ <2x 107 and > 0.03. O

2.5 Adaptations for the Critical Window

In this section we sketch the adaptations one must make to the proofs of Theorems [2.3.1

and such that they hold in the whole critical window, p = n='+An~*? where A € R.

2.5.1 Lower Bound

For Theorem the adaptation is rather simple. We will still apply Janson’s inequality
and so we only need to recompute p and A. Furthermore, the only difference in these
calculations comes from replacing the term n=""% by p™**, and in fact the p* in this

turns out to make negligible changes. In this light, Lemma changes to

Lemma 2.5.1.

B > —e% log(0)/2  ifA>0

— 2" 0g(8)/2  otherwise

~1/3)m by its lowest value

where the only difference in the proof is to bound (1 4+ An

depending on whether A > 0 or A < 0. We bound this via

es fo<z<?2
1+x>

e if —1< <0

N =

Furthermore, Lemma [2.3.5| changes to
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Lemma 2.5.2. For all sufficiently large n and small enough 6,

N €2 X og(2) if A >0

e log(2) otherwise

The proof again is almost identical with the only change being to approximate the
(np)™ term. This time we seek an upper bound so use the approximation 1 + x < e®
which is valid for any x. We still need to split depending upon the sign of A\ as for

the above constants we upper bound (np)™ by its largest possible value over the range

on < m < 26'?n. Combining Lemmas [2.5.1) and [2.5.2 with the relevant constraints on &

in relation to A yields Theorem [2.1.4]

2.5.2 Upper Bound

There is no significant (i.e. of order e*) improvement which can be made with our

current method of proof when A < 0. This is because the gains we make computing the
expectation in the proof of Theorem are cancelled out by losses in the branching
process considerations of Lemma [2.4.2

1

When A > 0 we cannot simply use our bound for p = n~" and thus an adaptation is

necessary. Note that by monotonicity in p, the results of Lemmas [2.4.2| and [2.4.3| remain

true for p = n=' + An~%3 with A > 0. The next adaptation which must be made is in

equation (2.23)) where now, the expectation becomes

nt/3 log(2) N pap—1/3 nl/3 log(Q) n (1 ))\
€ ogn AL 1/6
sO S > s 3 B <atogn <o)

Thus allowing us to deduce the result of Corollary as before. Finally all that remains
is to conclude the proof of Theorem [gnoring lower order terms, the only difference
to the proof compared to that of Theorem is in the computation of E(N(A)) where
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we must change the term (np)™. Thus the integral in (2.27) becomes

nl/Slog(2)n,+12 C 1/2
m _2,3/2,,—1/2 -1/3
/ OO 20 x5 g (2.29)

m=Anl/3 n1/2

This is much more complex than before due to the extra term in the exponent. However

we are still able to give a bound after making the obvious substitution ¢ = Zm?*?n~1/2 —
Amn~13 we obtain
8BC [° 1/2,,—1/2
Bv() < 2 [ e
3y 1A3/2-)A ml/2n—1/2 — ‘D\g—’y
< —1060/ e tdt = —10506_%A3/2+>\A (2.30)
T3y Jyaoaa 3y

which is of the claimed form. Note the second inequality holds for A sufficiently large

compared to .

2.6 Concluding Remarks

In this chapter we have proven that inside the critical window, p = n=' + An~%3, the
largest component of D(n,p) has size ©,(n'/?). Furthermore, we have given bounds on
the tail probabilities of the distribution of the size of the largest component. Combining
this result with previous work of Karp [47] and Luczak [53] allows us to deduce that

D(n,p) exhibits a “double-jump” phenomenon at the point p = n='.

However, there
are still a large number of open questions regarding the giant component in D(n,p).
Recently, Goldschmidt and Stephenson [3I] found a scaling limit for the sizes of all the
strong components in the critical random digraph. This scaling limit is a little difficult to

work with directly and so it would be interesting to know if there is a more explicit form

for the size of the largest component. In G(n,p) such a result was given by Pittel [69]

Question 1. Is there an explicit description of the limiting distribution of the largest

component of D(n,p)?
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Given the strong connection between G(n,p) and D(n,p), it seems likely that the
limit distributions, X* = n=2/3|C;(G(n,p))| and Y* = n=13|C;(D(n,p))| (where p =
n~' + Mn~%3) are closely related. For larger p, previous work [47, 54| has found that
the size of the giant strongly connected component in D(n,p) is related to the size of
the square of the giant component in G(n,p). That is, if |C;(G(n,p)| ~ a(n)n, then
|C1(D(n,p)| ~ a(n)?n. Note that the result found in Theorem is consistent with
this pattern as here we have an exponent of order A%?2 while for G(n,p) a similar result
is true with exponent A3 implying that the probability we find a component of size Bn?/®
in G(n,p) is similar to the probability of finding a component of size B>n'/? in D(n, p)

(assuming both bounds are close to tight). As such, we make the following conjecture to

explain this pattern.

Conjecture 2.6.1. If X* and Y* are the distributions defined above and X7\, X3 are

independent copies of X* then, Y* = X} X2\

Finally, we consider the transitive closure of random digraphs. The transitive closure
of a digraph D is ¢l(D) a digraph on the same vertex set as D and such that uv is an
edge of cl(D) if and only if there is a directed path from u to v in D. Equivalently,
cl(D) is the smallest digraph containing D such that the relation R defined by uRwv if
and only if wv is an edge is transitive. Karp [47] gave a linear time algorithm to compute
the transitive closure of a digraph from the model D(n,p) provided that p < (1 —&)n™?
or p > (14 ¢)n~L. For all other p this algorithm runs in time O(f(n)(nlogn)*?) where
f(n) is any w(1) function. Now that we know more about the structure of D(n,p) for

p close to n~!, it may be possible to adapt Karp’s algorithm and obtain a better time

complexity.

Question 2. Does there exist a linear time algorithm to compute the transitive closure

of D(n,p) when (1 —e)n™! <p < (1+e)n1?
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CHAPTER 3

BARELY SUBCRITICAL GRAPHS FROM THE
CONFIGURATION MODEL

3.1 Introduction

Let [n] == {1,...,n} be a set of n vertices. Let d,, = (di,...,d,) be a degree sequence
with m = Zie[n] d; an even positive integer. Without loss of generality, we will assume
that d; < --- < d,. Additionally, we may assume that d; > 1; if there are elements with
degree 0 we can remove them and study the remainder sequence. Let A = A, be the
maximum degree of d,,.

The configuration model, denoted by CM,, = CML,(d,,), is the random multigraph on
[n] generated by giving d; half-edges (or stubs) to vertex i, and then pairing the half-
edges uniformly at random. The uniform model, denoted by G,, = G,(d,), is the random
simple graph on [n] obtained by choosing a simple graph uniformly at random among all
graphs on [n| where vertex ¢ has degree d;. Throughout this chapter, all the results on
the uniform model will assume that the sequence d,, is graphical; that is, there exists at
least one graph on [n] with such degree sequence.

For any graph G on [n], let Li(G) denote the order of a largest component. A central
problem in random graph theory is to find a parameter of the model a such that L,
undergoes a phase transition at &« = «ag. The set of parameters is then divided into

subcritical (o < ayp), critical (a« = (1 + o(1))ap) and supercritical (o > «ap). A further
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problem is the study the critical window: that is, to find parameters 5~, 3", such that
L, behaves essentially the same for any « € (ag — 87, a9 + 1) and the critical region
is further divided into barely subcritical, ag — o > [~ and barely supercritical, where
a—ag > [T,

The main goal of this chapter is to study the largest component phase transition
Li(CM,) and L,(G,,) in the subcritical and the barely subcritical regimes. Generally
speaking, the study of configuration model is simpler due to the existence of a explicit
model with good independence properties. In contrast, most of the results existing for
G,, arise from CM], by observing that the probability that CM,, generates a simple graph
is sufficiently large.

In order to understand the phase transition, define

Q=Qu(d) = S didi ). (3.1
i€ln]
R=R,(d,) = % > di(di —2)” . (3.2)
i€ln]

In the first part of the chapter, we will focus on the case Q),, < 0. It is easy to check that
the bound on @, implies A,, = O(y/n) and m < 2n. Also note the implicit bound on
the maximum degree A,, = O(n"/ 3Ry %) obtained by just considering the contribution of
a vertex of maximum degree to R,,.

Let D,, be the degree of a uniform random vertex and let ﬁn be its size-biased distri-

bution; that is, for £ > 1,
A kP (D, =k
P (Dn - k;) _ B (Dn =) (3.3)

For b,h € N, let L(b,h) := {b+ hk : k € Z} be the integer lattice containing b with step
h. Let h, be the largest integer h such that P(D,, € L£(b,h)) = 1 for some b € N.

We will study the CM,, under the following mild conditions on the degree sequence:

Assumption 3.1.1. There exists a discrete random variable D supported on Zso such
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that
(i) D, — D in distribution;
(i) Qn — 0;

(iii) P(D ¢ {0,2}) > 0

(iv) if h is the largest integer such that P(D € L(b,h)) for some b € N, then h, = h for

all n.
(v) E(D}) < AY*

Remark 3.1.2. Conditions (i)-(iii) are usual in this setting. In particular, they imply
that R, is bounded away from zero, which will be often used in the proofs.

Condition (iv) simply asks that the limiting degree distribution D has the same step
as the random variables D,, which converge to it. This restriction is not particularly
strong and forbids no limiting degree sequence, only the way in which we converge to it.

Condition (v) is the most restrictive one. As @, = o(1), we have E[D?] = O(1),
which implies E[D!] = O(A2). Thus, this condition can be understood as a “polynomial
limitation” on the contribution of large degree vertices to the fourth moment. It would

be interesting to see up to which point a condition on the fourth moment is needed.

Our first result upper bounds the size of the largest component when @ is not too

large with respect to R.

Theorem 3.1.3. Let ¢ > 0. Let d,, be a degree sequence satisfying Assumption [3.1.1]
and A|Q| = o(R). If Q < —w(n)n"Y2R?3 for some w(n) — oo, then

P (Ll(CMn(dn)) (1+ e)@log ('Q|3 )> —1-0(1). (3.4)

Remark 3.1.4. As noted by [35], under the condition |Q|A = o(R) the critical window
is |Q| = O(n~'/3R?/3). Therefore, Theorem bounds the largest component in the

whole barely subcritical regime. See Section for further discussion.
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Let n:=n, = D,, — 2 and consider its moment generating function

@(0) = pn(0) =E [e"™] . (3.5)

Theorem is in fact a consequence of a more general result that does not require a

bound of @) in terms of R.

Theorem 3.1.5. Let ¢ > 0. Let d,, be a degree sequence satisfying Assumption [3.1.1]

and A, < nl/%. Let 6, € (0,1) be the smallest solution § of '(#) = 0. Define

_ 1 1o (log(ip(fp)) 1)/ H0DnT
T, = oo G lg( o (00) 1 E [D,e”"] ) (3.6)

If Bom > w(n)T, for some w(n) — oo, then
P(Li(CM,(d,)) < (14+¢€)T,) =1—-0(1). (3.7)

Remark 3.1.6. The value 6, exists and is bounded as n — oo. We have ¢(0) = 1
and ¢'(0) = Q < 0. Recall that n is supported in {—1,0,1,...}. By Assumption [3.1.1]
{D > 3} happens with positive probability and so if we define p := P(D > 3), then
P(n>1) >pand () > (1 —ple™? +pe’. So p(f) = oo as § — oo and it must at some

point have positive derivative. Thus, there exists 6y such that ¢'(6y) = 0.

It is interesting to understand if these results also hold in the uniform setting. One

can use the following result to transfer from CM,, to G,.

Theorem 3.1.7 (Janson [41I]). Let d,, be a degree sequence satisfying m = ©(n) and
E[D?] = O(1). Then

1
P i = - 2 )
(CM,(d,,) simple) = exp - Z d; | >0, (3.8)
1€[n]
and conditioned on being simple, CM,, has the same law as G,. Therefore, any result
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that holds with probability 1 —o(1) for CM,,(d,,), also holds with probability 1 —o(1) for
Gn(dy,).

As Theorem [3.1.3)and Theorem [3.1.5assume that Q,, < 0, we have that E [D2] = O(1)
and we can use Theorem to transfer their conclusions to G, provided that their
hypothesis are satisfied.

The second part of our chapter focuses on the size of the largest component in the
barely subcritical regime of G,, without further assumptions on the degree sequence. The
lack of a tractable model for G,, hampers its analysis and the upper bounds obtained are
weaker than the ones obtained for CM,, and probably not of the right order.

Let S, be a smallest set of vertices of largest degree that satisfies
S du(d,—2) <0 (3.9)
u€[n]\Sx
and define
m.=Y d,. (3.10)
vESk

In particular, if Q <0, then S, = () and m, = 0.
For any mg > 0 and @y < 0, we call d,, an (mg, Qo)-subcritical degree sequence if

there exists S C [n] with ) _od, < mg and

SN -2 <@

weln\S
Our most general result on G, is the following.

Theorem 3.1.8. Let d,, be an (my, Qp)-subcritical degree sequences for some parameters

satisfying mqo > 3m.., mo|Qo| > (A|Qo| + R) log <%> and Q2n > w(n)my for some
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w(n) — oo. Then,

OL1(Gn(dn)) = O(mo/|Qo]) = 1 = o(1) .

Remark 3.1.9 (Infinite degree variance). The main strength of Theorem is that
it applies to degree sequences with subcritical behaviour but infinite degree variance. To
our knowledge, the only results available in this setting are of the form L;(G,(d,)) =
o(n) [8, 45]. Note that, even if such whp results were available for CM,,, Theorem [3.1.7]

is not strong enough to transfer them to G,,.

Remark 3.1.10 (The @ < 0 case). To compare it with previous work, let us get more
explicit results for the case Q < 0 (i.e. E[D?] < 2E[D,]). In this case, m, = 0 and we
can choose @y = @ and my = (A + R/|Q)]) log <m) Also note that @ < 0 implies
R=0(A).

(a) If |@Q] is bounded away from zero, then all conditions in Theorem are satisfied

and

Li(Gy(dy,)) = O(Alogn) . (3.11)

(b) If |Q] = o(1), then we split depending on how R and A|Q| compare to each other.

(b.1) If A|Q| = O(R), then for any Q < —w(n)n~/3RY/3,

Li(Gn(d,)) = ( 52 log (”Q2)) , (3.12)

obtaining a weaker version of Theorem [3.1.3] under no additional assumptions.

(b.2) If R = O(A|Q]), then for any Q < —w(n)n~Y2AY2

L1(Gn(dy) = O (‘a log (”Q>> . (3.13)
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Remark 3.1.11. If Q%n = O(my), then the behaviour of G,, is no longer (barely) sub-

critical. Tt is interesting to study the size of the largest component in this case.

We finally provide the existence of infinitely many degree sequences that show the

tightness of some of our upper bounds.

Proposition 3.1.12. For any @ < 0, A = o(y/n) and logn = o(A), there exists a degree
sequence &n with An(an) = A, Qn(an) ~ @ and R = Rn(an) ~ A, such that
Oy (Gn(d,) > (1 + o<1))22i:” tog (3 ) =1~ o(1).

Remark 3.1.13. We can compare the lower bound in Proposition with our upper
bounds. The degree sequence an satisfies R ~ A, so A|Q| = O(R). In the case A <
n'/2-9 for some constant § > 0, the proposition gives a family of degree sequences for
which Equation (3.11)) is of the right order.

While Proposition is only stated for ) bounded away from zero, one could
similarly define degree sequences d,, for which Q = o(1), in which case A|Q| = o(R).
Provided that Q < —w(n)n~Y3R?*? for some w(n) — oo, one can obtain the lower

bound in Equation (3.90)) that coincides asymptotically with Theorem and, up to
logarithmic terms, with Equation (3.12)). (See Remark [3.5.3])

3.1.1 Previous work

The foundational paper of Erdds and Rényi [24] located the phase transition for the
existence of a linear order component in a uniformly chosen graph on n vertices and m
edges, G(n, m), showing that the order of the largest component undergoes a double jump
at m = n/2, in particular L;(G(n,m)) = O(logn) if m < cn and ¢ < 1/2, L;(G(n,m)) =
O(n?3) if m = n/2, and L1(G(n,m)) = ©(n) if m < cn and ¢ > 1/2. This result can
be easily transferred to the Binomial random graph G(n,p) with p = 2m/n, which has
become the reference model for random graphs. The size of the largest component in all

regimes is well understood, see e.g. Sections 4 and 5 in [36].
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The study of the phase transitions in random graphs with given degree sequences
was pioneered by Molloy and Reed [58]. The so-called Molloy-Reed criterion determines
the phase transition at () = 0, provided that the degree sequence satisfies a number of
technical conditions. The criterion has been extended to degree sequences with bounded
degree variance [43] and uniformly integrable sequences [§], providing the asymptotic
value of L; in the supercritical regime () > 0 in terms of the survival probability of a
branching process, similarly as it is G(n, p) case. Interestingly, the criterion is no longer
valid for general sequences of graphs due to the presence of high degree vertices (hubs) or
an extremely large number of degree 2 vertices. Joos et al. [45] gave an extended criterion
that determines whether any given sequence typically provides a linear order component.

While the behaviour of the largest component in the supercritical regime resembles
the simpler Erdés-Rényi model, this does not happen in the subcritical one, when @) <
0. Trivially, we have Li(G,) > A + 1 which could be much larger than logarithmic.
In [58] the authors showed that L;(CM,,) = O(A%logn) for subcritical sequences. More
precise results are known for power-law degree sequences. Durrett [21] conjectured[] that
if P(D,, = k) ~ ck™ for some v > 3 and ¢ > 0, then L;(CM,,) = O(A). In this setting,
v > 3 implies E[D}7'] = O(1). Pittel [70] showed that L;(CM,) = O(Alogn) for
subpower-law distributions. Janson [40] proved a strong version of the conjecture: if

P (D, > k) = O(k'™) for some > 3, then

A
Li(CML,) = — + o(n*0~D) (3.14)
Q]
For power-law distributions, whp we have A = ©(n'/0~Y), and the second term is

negligible. From the intuitive point of view, the largest component is obtained by starting
a subcritical branching process with expected offspring 1 4+ ) from each vertex adjacent
to the vertex of largest degree. The expected total progeny of such process is 1/|Q]. One

can interpret the result of Theorem in a similar spirit: in the largest component

'In fact, this was conjectured for a slightly different model where the degrees are i.i.d. copies of D,
conditioned on their sum being even.
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there might be at most O(my) edges and from each of these edges a piece of size O(1/|Qo|)
hangs. For Q < 0, can be compared to the weaker bound Equation that
holds regardless of the shape of the degree sequence tail. As shown in Remark for
general degree sequences Equation (3.11)) cannot be improved.

The critical regime has attracted a lot of interest in recent years |17, 18] 35} 37, 146 [72]
with several papers specialising on the finite second or finite third moment cases. Here
we focus on the results known for the barely subcritical regime.

Riordan [72] showed that if A = O(1) then Equation holds, even more, one has
asymptotic equality and control on the second order term. Theorem [3.1.5 can be seen
as a generalization of the upper bound in [72] to a wider class of sequences that allows
A — 00 as n — oo.

Hatami and Molloy [35] studied the critical window under some mild conditions on the
degree sequence. They showed that |Q| = O(n~"/3R?/3) is the critical window of CM,,.
Regarding the barely subcritical regime, for Q < —w(n)n"'/3R? with w(n) — oo, they

showed that whp

Li(CM,) = O Q/%) . (3.15)

One can check that Equation coincides in order with Equation at the bound-
ary of the critical window |Q| = ©(n~Y/3R%*3), while Equation (3.4) improves Equa-
tion in the whole barely subcritical regime, provided that Assumption holds.

Under infinite variance, the probability of CM,, being simple can be exponentially
small in n. Thus, only results that hold with exponentially high probability can be
transferred from CM,, to G, see e.g. [8]. Another approach is to study G, directly
using the switching method [45]. In both cases, the best bound given in the subcritical
regime is L;(G,) = o(n). Theorem [.1.§ provides the first explicit general bound to L,
at subcriticallity for infinite variance degree sequences. As discussed in Remark [3.1.13]

this bound cannot be substantially improved without further assumptions.
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It thus remains as an open question to determine the exact size of the largest com-
ponent in the (barely) subcritical regime. Hofstad, Janson and T.uczak conjectured that
Li(CM,) is concentrated in this regime [37]. Supported by the result of Riordan for
constant maximum degree, we conjecture that the upper bound in Equation is
asymptotically tight for all degree sequences that satisfy some mild assumption. Note
that certain condition on the degree sequence is needed, as for some particular subcritical

degree sequences L;(CM,,) is non-concentrated (see Remark [3.5.2)).

3.2 A local limit theorem

A local limit theorem estimates the probability distribution of a suitably rescaled sum
of independent random variables, by the density function of a Gaussian random vari-
able. Local limit theorems are a useful tool to determine the component size in random
graphs [63], [72]. For our application, we will need the step distribution to allow for the
existence of very large degree, as well as the fact that the degree sequence may be sup-
ported on an lattice with step different than 1. This prevents us from using classical
results such as Berry-Esseen Theorem (see [22] Theorem 3.4.9]). Our goal is to develop
a very precise local limit theorem which will allow us to deal with our step distributions.
Our result is based on previous local limit theorems by Doney [20] and Mukhin [61 60]
from which we derive more explicit error bounds. In particular the main result of this

section is following,

Theorem 3.2.1. Let X, Xs,..., X, be independent and identically distributed random
variables taking values on L(vg, k). Define S, = >"" | X,. Suppose that p =E(X;) = 0,

0? = Var(X;) and v = E| X[, and let (t) be the characteristic function of X;. Then,

h w? )’ 32hy h /Z
Su P(S, = w) — ——=-exp | — < + 2 NG 316
wEﬁ(nEf)o,h) ( ) V2mno? P ( 2no? on T 2 ()] ( )

To prove this theorem, we will require the following Fourier inverse theorems which
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can be found in the book of Durett [22].

Theorem 3.2.2 (Continuous Fourier Inverse Theorem). Suppose that X is a random
variable with characteristic function px(t). Suppose further that ¢x(t) is integrable,

then X is a continuous random variable with density function f(y) defined by

) = 5= [ e oxtit.

Theorem 3.2.3 (Discrete Fourier Inverse Theorem). Let X be a random variable with
characteristic function ¢x(t). Suppose that there exists h > 0 such that P(X € hZ) = 1.

Then for any a € hZ,

=13

P(X =a) I /_ e Moy (t)dt.

" or

=03

Finally, as we are interested in local limit theorems it will be useful to note that the

2
characteristic function of the standard normal distribution is given by N(t) = ez,

Proof of Theorem[3.2.1]. Let ¢(t) be the characteristic function of X; and ,,(t) the char-

acteristic function of S,. By basic properties of characteristic functions, it is easy to see

that 1, (t) = ¢(¢)". By Theorems [3.2.2] and [3.2.3| we may deduce that

V2mno? T ome?)  2r .

]P’(Sn—w)_Lexp( w_z) h /_ e“w(wn(t)—N(ta\/ﬁ))dt—% / " e N (1o /m) .

h

Therefore, by applying various forms of the triangle law we obtain the bound

‘]P’(Sn ) - exp (_w_:>' < / " ()~ N o) e+ / " N(toym)dt.
V2rno? 2no 2r J = T Jx 5

To bound the first integral in (3.17) we split it into three parts. For ¢ > 0 (which we

shall pick later) we have

/” b () — N(toy/m)|dt < / \wn(t)—N(ta\/ﬁ)]dtJrQ/h N(ta\/ﬁ)dt+2/h ()| dt

: B ) T (318)

=3
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The idea of this bound being that both ¢, (¢) and N(toy/n) only contribute a non-trivial
amount to the left hand side of (3.18)) for ¢ very close to 0. In bounding the first integral

of (3.18)) we will use the following lemma [67, Page 109, Lemma 1].

Lemma 3.2.4. Let X1,..., X, be independent random variables with E(X;) = 0, 0? =

Var(X;) and v; = E|X;|*. Define

— iaz I = Dic1 i T — > iy Xi
27 S T

Let f.(t) be the characteristic function of T,. Then,

1
4L,

|falt) — ez | < 16L, |t|36 3 for |t| < (3.19)

Clearly this is applicable in our setting, however we need to rescale first which allows

us to deduce
2

< t20'2n
U (t) — N(toy/n)| < 16ynltfPe” 5 for |t| < Z—.
f)/

So, for any € < 0?/(47) we have

/ () — N(toy/m)|dt < 16yn /

§16fyn/ |t]°e

16y
 o'n

T e S ar = 1A

—0o0

(3.20)

oin

The next step is to bound the second term of (3.18)). Note that we can combine this with
bounding the second term of (3.17)), so we require to give an upper bound on
1 o V2

/ Niovae= = | 5t = VIR (0,1) > cov). (3.21)

o,

We use the Chernoff’s bound for the standard normal distribution, P(N(0,1) > z)

IN
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and the simple inequality e=* < z~'/2 for z > 0, to obtain

\/% P(N(0,1) > eov/n) < 2V (3.22)

/ Nltovn)dt a\/_ eo’n

Choosing ¢ = 02 /(4v) and combining ([3.17), (3.18)), (3.20) and (3.22)), we find that for

any w € L(nvg, h),

h w? 72 16\ hy h [k
P(S, = w) — —— - <(Zy )2y n £y dt
‘ (Sh = w) Vorno? exp( 2710’2)‘ - (ﬂ' i ﬁ) P 7T/22 ()]

32hy h [
<=0y 2 / (). (3.23)

oin T

4y

Concluding the proof of the theorem. O

For the remainder of this section we will focus on bounding the integral term in the
RHS of (3.16). To this end we introduce the parameter Hp(X), which generalises a
similar parameter introduced by Mukhin [60] 61]. For a real-valued random variable X,
we define X* = X — X’ to be the symmetrisation of X, where X' is an independent copy
of X. Furthermore, for o € R define () to be the distance from « to the nearest integer.

Then for a random variable X and d € R we define the following parameters
H(X,d) :=E(X*d)*.

The parameter H(X,d) measures in a certain sense how close is X* to be a random
variable supported on a lattice with step 1/|d].

The following lemma from [60] will be useful.

Lemma 3.2.5. If o(t) is the characteristic function of the random variable X then

t t
AH (X, — ) <1—|o®)| < 2r*H [ X, — 24
(%.50) <1 lotol <20t (x5 ) (3.24)
We provide a full proof of the statement, for the sake of completeness.
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Proof. We look at the characteristic function of X*, ¢*(¢). Note that X* is by definition
symmetric around the origin and hence so is ¢*(¢t). Writing D(X*) for the domain of X*

which is discrete, we have

. B 80*(t) + (p*(—t) B eitx + e—itx . B .
e (t) = 5 = Z TP(X =x)= Z cos(tx)P(X* = x).
z€D(X*) z€D(X*)
(3.25)

As cos(x) is symmetric around 7 and periodic with period 27, we have the identity

cos(x) = cos (27r <%>> :

We can use this identity to rewrite (3.25]) as

s =3 cos (27 <;_i>> P(X* = 1). (3.26)

z€D(X*)
Consider the following bounds on cos(x) valid for x € [0, 7],

2 22
1—%§cos(w)§1—ﬂ—a;.

We can use this in combination with (3.26)) to deduce that

X*t\? X*t\?
1—27T2E<2 > §¢*(t)§1—8E< > (3.27)

T 21

Finally, by definition of X*, note that ©*(t) = p(t)o(—t) = |¢(t)|*. As |o(t)| € [0,1] we

may deduce that

t t
1-2m°H (X, — | <|o(t)| <1—-4H [ X, — (3.28)
2m 2m
which may easily be rearranged to give the statement of the lemma. U
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For D € N and a random variable X we define
Hp(X):= inf H(X,d) (3.29)

The following lemma of Mukhin [6I] bounds H(X,d) in terms of this new parameter,

Lemma 3.2.6. For any random variable X, d € R and D € N with 2D|d| < 1 we have
H(X,d) > 4AD?*|d*Hp(X).

We may now apply Lemma to give an explicit upper bound on the integral

term in (3.16) as follows. Recall that X, is a lattice random variable with step h. By

Lemma and using In(1/x) > 1 —x for > 0,

t H h t
/  lp()[rdt < / e Py < / e Mg, (3.30)

4~ 4~ H

Now, note that the upper limit of the integral in (3.30)) is w/h. So, as (7w/h)/(27) = 1/(2h)
we may apply Lemma with D = h and d = t/27 < 1/2h to deduce that

" n " _4nh2H, (X)1? X ann?mH, ()12
L le@["dt < [ e Podt< | e =2 dt

4y 4y 4~

3/2 2hinH. (X 1/2
= 7T 12P(N(0,1)>U (n h( )) )
2h(nHy(X))Y V21
3/2 o4n2nH, (X)
il R (3.31)

S Sh(nHy (X))

where the final inequality follows by the Chernoff’s bound. This allows us to deduce,

once again using the inequality e™® < 2~/2, that this integral is bounded above as

% 7r5/27
H"dt< ——L .
ﬂ el < i

4y

This allows us to state the following corollary to Theorem [3.2.1]
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Corollary 3.2.7. Let X1, X5, ..., X,, be independent and identically distributed random
variables taking values on L(vg, h). Define S, = 3" | X;. Suppose that ;4 = E(X;) =0,
0? = Var(X;) and v = E|X;|*>. Then,

h w? )‘ 32h~y 6y
su P(S, = w) — exp [ — < + ) 3.32
wGE(n%o,h) ( ) v 2mno? P ( 2no? oin h0'2th(X1) ( )

To give an explicit upper bound on the error probability, we need to deduce that
Hy,(X1) is bounded from below. For x = (z1, 29, ..., x;) € ZF, define
i —

wiX) = max .
(x) i#t£5 ged(|x; — ol |z — )

Then the fact that H,(X;) is bounded from below is implied by the following lemma,

Lemma 3.2.8. Let X be an integer valued random variable supported on a lattice of step
h and with atoms x1,...,x, not all contained in a non-trivial arithmetic progression of
the lattice. Then there exists an absolute constant C' > 0 such that

o S

Proof. For d € R, consider
D(X,d) := in]g]E((X —a)d)?. (3.33)
ac

By [61, Lemma 1], we have that D(X,d) < H(X,d) < 4D(X,d). Therefore,

Hy(X)> min  D(X,d)

T 1/4h<d<1/2h
For all x € Z* and f3,d € R, define
k
S(x, B,d) = (B + x;d) (3.34)

i=1
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Cauchy-Schwartz’s inequality implies that

=1
k
> mi — )i )2
> flel[llf]l P(X = ;) érelﬂfa 2 (B + x;d)
minie[k] ]P(X = IEZ) . 2
> . .
> ! inf S(x, 5,d) (3.35)

It thus suffices to bound the infimum of S when x and d are fixed. The derivative of S

with respect to [ satisfies the following properties:
(i) it is well defined for all 8 such that (8 + x;d) & {0,1/2} for all i € [k];

(ii) it is constant between any two consecutive values at which the derivative is unde-

fined;
(iii) it takes integer values in {—k, ..., k} anywhere where it is defined.

Thus, the minimum of S is attained at [y, for which the derivative is not defined. By
relabelling the z;, we may assume that (Sy+zxd) € {0,1/2}. If (By+axd) = 1/2, plugging
it in we would get the desired bound done. So we may assume that (5 + zxd) = 0,
and, in fact, we can choose By = —xxd. For i € [k — 1], define y; := z; — x5. As the z; are
not all contained in a non-trivial arithmetic progression then hef(yy, ya, ..., yk—1) = h.
By a simple extension of Bézout’s Lemma there exist \; € Z with |)\;| < w(x)h for all
i€k —1] and \jy; + Aoya + ... + Mg—1yk—1 = h. Now, using the identities (t3) < |t|(5)

for any ¢t € Z and (B + fa) < (B1) + (52), we obtain

k k-1 k-1 ki:l Aiyid
: - _ (Aiyid) <z’=1 > (hd)
inf G, B, d) = 3 (o + i) = 3 (uid) 2 353 oo = weh

i=1 =1 i=1
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Observing that (hd) = hd for all d < 1/2h, we obtain,

Hy(X)> min  D(X,d)> min
1/4h<d<1/2h 1/4h<d<1/2h k

minepy P(X = ;) ( (hd) )2 _ mine P(X = ;)
w(x)h 16k(w(x)h)?

i

3.3 Barely subcritical regime for the configuration model

3.3.1 Exploration process

In this section we introduce a process that given a vertex v € [n] explores CM,, starting
by the component containing v. We set a total order of the half edges as follows. For
every vertex v, consider an arbitrary order of its d, half-edges. Then, the half edges are
ordered, first by its corresponding vertex (using the total order on [n]) and then by the
order given within the half-edges incident to a vertex.

We will denote by F; the history of the process at time ¢t. With a slight abuse of
notation, we will assume that F; is the subgraph formed by the partial matching at time
t. Note that the order of the pairings is determined by the knowledge of the matching.
The main random variable we would like to track is X; = X;(v), defined as the number
of unmatched half-edges incident to V' (F;) when the process started at v. Note that if
X; = 0, there are no unpaired half-edges and thus F; is a union of components of CM,,
containing the component of v.

The exploration process of CM, starting at v € [n] is defined as follows:

1) Let Fy be the single-vertex graph on {v} and X, = d,.
2) While V() # [1].

2a) If X; = 0, choose a uniformly unmatched half-edge and let u be the vertex
incident to it. Let F;yq be constructed from F; by adding {u} as an isolated

vertex, and let X;,1 = d,.
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2b) Otherwise, choose the smallest unmatched half-edge e incident to V(F;) and

pair it with a half-edge f chosen uniformly at random from all the unmatched

ones. Let u be the vertex incident to f.

i) Ifu ¢ V(F:), let Fiyq be constructed from F; by adding vertex u and edge

ef and let X; 1 = Xy +d, — 2.

ii) Otherwise, let F;;; constructed from F; by adding edge ef and let X;,1 =

X — 2.

Note that X, is measurable with respect to F;. We define the following parameters:

N1 = Xey1 — Xt

Xt+ Z du7

u¢V .Ft)

’U,¢V Fi)

1
—92)2.
R, = =1 Z dy(dy —2)?
ugV (F)

It is straightforward to check that if X; > 0, then

En | Ft)=Qr and E [(77t+1)2 | ]—“t] =R,

and if X; = 0, then

1 R
Elm | Rl =57 > d and  E[(m)? ]]—"t}>7t

P ugv(F)

although we will never study the process for ¢ such that X, = 0.

3.3.2 Stochastic domination and random sums

Recall the definition of T'= T,, given in Equation (3.6]).
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Define the distribution /3 as follows: for every ¢ € L .= {—1,0,1,...,n — 3},

i Pn=—1)— 27 ifl=-1,

P(B={() = - (3.40)
_m_P(n=1) if0>0.

Let ¢3(6), 07, Qp, Rz and Tp be defined as in Equations , , and

replacing 1 by 8. By the choice of 5 all main parameters are asymptotically equal to the

original ones.

Lemma 3.3.1. For every k > 0, we have go(ﬂk)(ﬁ) = (1+0(09))p™(0) + 0(by). Moreover,
Ty = (1+ o(1))T.

Proof. The first part of the lemma follows directly from

m 2T
m — 2T m — 2T

= (1+0(T/m))¢™ () + O(T /m)

0 (0) = E(8*e") = (1" e’) — (—1)ke™ (3.41)

= (1 + 0(60)) ™ (0) + o(8y). (3.42)

where in the last line we used the hypothesis 7' = o(mbp) in Theorem [3.1.5]

For the second part, we split into two cases. If A|Q| = o(R), we are in the setting
of Theorem B.1.3l In such case
Q3 Q?

57 ~ log(0(6)) ™,

log(¢5(9€>)_1 2R, " 2R

(see Section for the first and third equivalences) and the result follows from the first
part of the lemma.

Otherwise R = O(A|Q]). As R is bounded away from zero by Assumption and
A, < nt/C it follows that |Q| is of order at least n~/%. Again all we need to show is that

log (wﬁ(eg)) = (1+0(1)) log(¢(60)) " and then the rest will follow by the first part of
the lemma. We do this by bounding (o) — @5(6)).

62



Using e* > 1 4 x, we have
0=E[ne™ > El(1 +6n)] = Q + 6 R

and thus

0 <6< % = o(1). (3.43)

By construction, 3 stochastically dominates ) and it follows that go(ﬁk)(Q) > ®)(#) for all

k>0 and € > 0. In particular,
0<6) <8 (3.44)

Combining (3.41)) for £ = 0, (3.43) and (3.44),

(p(60) — %) < Z2(1 4 0(1)) = O (%) . (3.45)

0%y — »(6°) =
ps(ly) = ol0h) = —— -

As 3 is an increasing function with ¢%(0) = (140(1)) R and %(95) = 0, the fundamental

theorem of calculus implies

0o

T

(fo — O R < (1+ 0(1))/ @is(t)dt = (14 o(1))p,(bh) = O <—) . (3.46)

5 m
90

where the last equality follows from (3.42)).
We have [¢/(t)| < |Q] for all ¢ € [0,6y]; indeed, ¢’ is increasing with ¢'(0) = @ and
¢'(0p) = 0, Similarly as before, using (3.46]) we conclude that

o
o0~ o(65) = [ 0ar< n-aiiel=o (1) )

B
0
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Combining (3.45)) and (3.47),

ps(07) — (o) = O (%) . (3.48)

Recall that ¢'(0) = @ < 0. Using the inequality e* < 1+ 2z for x € [0, 1], we have

() seb (220

where the final inequality holds because ) < 0 implies R < 2A. It follows that 6y > ‘5%"

By using the fact that ¢'(¢) < 0 for all 6 € [0, 6,) and Taylor expansion of ¢(#) around

)

0 = 0, we obtain

k>2

oo <o () <1 Lo s B (1
(@

Y

Q*  2Q?
<1- 2t 4
=175 T BA-
2
<1- fg—A. (3.49)

where in the third inequality we used that E[n*] < 2A%! for all k£ € N, since Q < 0.
Using the bound (3.49)) in the definition of T' gives the simple upper bound 7' <
10A log(n). By our bounds on A and Q, T?|Q| = O(n""/®logn) = o(mR). Thus, substi-

tuting this into (3.48)), we have
3 1
pp(ly) — ¢(0o) =0 T (3.50)

By definition, log(p(fy)) " > 1/T. Therefore,

1+ 0(1)
T

©(fy) < e/’ =1-— (3.51)
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Combining (3.50) and (3.51),
) ! 8 -1
10g(@5(90)> ~ 1= ¢s(0) ~ 1= () ~ log(p(6h))

concluding the proof of the lemma.

g

Let (5¢)t>1 be a sequence of iid copies of 5. For s € N, define the stochastic process

Wy =W§ by Wy =s and fort >0

t
Wt+1 == Wt + ﬁt = s+ Zﬁz . (352)
=1

Define the stopping time
Ty = inf{t: WS =0} .

Let h be the largest possible common difference of a progression upon which the

limiting degree sequence D is supported, that is

h:=max{j: Ik s.t. P(D € L(k,j)) =1}

Lemma 3.3.2. For every t > T and s = s(n) we have

s Bs( n —12 (¢ 05))"
P (7 =t) < 2h - se (@5(05)) (6755(3—/3)) : (3.53)

Moreover, for every e > 0 we have that

0%s

P(r > (1 Ts) = _—
(TW —( +€) 5) o 5 [DneegDn] n

(3.54)
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Proof. The dependence on s is implicit in all the notation below. Define the following

sequences

Ii={b=(by,....0) €L": s+b+--+b =0}
(3.55)

Li={b=(by,....b;) €L, s+by+-+b>0Vie[t—1]}

We can write

PW,=0)=> [[PBi=0b) and P(m,=t)=> [[PB=b)  (3.56)

bel; i=1 bel, i=1

P(r, =t) < §]P>(Wt = 0) (3.57)

We will use exponential tilting to bound the probability that W, = 0, as in [63], [72].
Consider the probability distribution 5y defined for ¢ € L by
B P (B =1)

P(By=1{) = @ (3.58)

Let (Bg+)i>1 be a sequence of iid copies of fy. Define the stochastic process Wy, by

Wyo = s and for ¢t > 0

t
Wosr1 =5+ Boi- (3.59)
i=1
Algebraic manipulations give
P (W, = 0) = (p3(0))e*P(Wy, =0) . (3.60)

By definition of 05, E [505] =E [56595} = 0. We may write Wegt = s + 5S¢, where
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Sy = Z:f:l Y; and (Y;)icpy is a collection of iid copies of 595' In particular, we have

pu=EY;]=¢,(0)) =0,
©(0)
0s(05)

y=E[VP]<2+E[V] =

o’ =E[Y}] = (3.61)

205(03) + 5 (0)
0s(03)

where in the inequality, we have used that Y; > —1.

We will apply Corollary and show that the error term is negligible with respect
to the Gaussian probability. Recall that h is the step of the limiting distribution D,
which by Assumption is also the step of the distribution of Y;. Since h and Hy(Y))
(as defined in (3.29))) are constants, the order of the first error term in (3.32) is at most
the order of the second one, and it suffices to bound the latter. Assumption [3.1.1]implies

that 02 > P(D,, # 2) > 0 for large n, and that y = O(A'/2). Therefore, for any t > Tj

7o (G 2) ()

where we used that A = o(T) and T ~ Ty by Lemma [3.3.1]
Since P (Y; = —1) > 0, we may choose vg = —1. Thus, for sufficiently large n, we

conclude that for any w € L(—t, h),

2h
P(S; =w) < 3.62
(Se=w) < 70— (3.62)
We can now use (3.62)) with w = —s to obtain
1/2
2h [ ps(65)
P(Wygt=0)=P(S; = —s) < 3.63
( ot ) ( 3 )— \/2_7Tt (¢g<0g> ( )

Let us show that @g(6)) is close to 1. On the one hand, we will use the inequality

e’ < 1+ ze® for all x € R, with equality if and only if x = 0. Since P (5 = 0) # 1, by the
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choice of 6
0s(00) = E [6056} <14 0E [ﬁeegﬁ} =1 (3.64)

On the other hand, using e* > 1+x for 2 € R, that 6} is bounded on n and E [] = o(1),

we obtain
0s(00) > 1+ 600E[B] =1+ o(1) . (3.65)

-1
Thus, we use the asymptotic equivalence log (g05(6’€)> ~ 1 —@z(6).

Combining Equations (3.57)), (3.60)), (3.63) and (3.64)), we obtain

P(riy = 1) < 2h- s (8)) _%gf?)t |
proving the first part of the lemma.

For the second statement of the lemma, it suffices to prove it for small enough ¢, so
we may assume ¢ € (0,1). Observe that P (7, = t) # 0 implies that s = hk — ¢ for some
k € Z. Since vy = —1 and h are coprime, there are at most [1'/h] values t € [T] such
that P (75, = t) # 0.

As our bound on P (73}, = t) is decreasing on ¢, using Equation (3.64)) it follows that

~1/2 ‘95 (1+e)Tp
Plry > (19T = Y Bmy =1 <25 () LD TS 0y
t>(1+)Tg Tg >0
teL(—1,h)
8 -1/2 (¢ (96)) (14T sefos T3
= 2s¢0° (go'é(@ﬁ)) 373 =0l |
Ty (1 - 905(90)) E [DneeoD"] n
where in the last equality we used that T} ~ W log (T 52 g(e{j))—l/?E [DneegDn} n)

O
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3.3.3 Proof of Theorem [3.1.5]

Fix € > 0 sufficiently small. Define the stopping time 7x(v) as the number of edges in

the component of v, denoted by C(v). That is,

Tx(v) = inf{t : X;(v) =0} .

Note that for every ¢t < 2T A7x(v), the distribution § stochastically dominates 7;. Thus,

X;(v) is stochastically dominated by W;™.

Let 6 = €/3. It follows from Lemmas [3.3.1) and [3.3.2] that

P (7x(v) > (14 20)T) <P (1x > (1+8)Ts) <P (75 > (1+6)T3) = o ﬂ'z
E[DneeoD"] n

(3.66)

Let Z be the number of components of order at least (14 €)T. For any € > 0, we can

write

z=Y1c|=(1+oT=% IL'C(“)"CZ(U(;' T - % SO 1le) > (1+ T, (3.67)
C

v€[n] vE(n]

where the first sum is over the connected components of CML,.
Since C(v) is a connected subgraph, it has at least |C(v)| — 1 edges. Thus, the proba-
bility of |C(v)| > k is bounded from above by the probability 7x(v) > k — 1. Using Equa-

tion ([3.66) we obtain

1
<— P(rx(v) > (1+€T —-1)=0 deed”—o
;] E [DneegD"} n ;]

Theorem follows by Markov’s inequality on Z.
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3.3.4 Proof of Theorem [3.1.3

Recall that A|Q| = o(R) and that ¢(f) is the moment generating function of 7. Thus,
0(0) =1, ¢'(0) = Q, ¢"(0) = R and ¢ (0) < A*3R for all k& > 3. This implies that
the radius of convergence of ¢ (and so of any of its derivatives) is at least 2|Q|/R. So,

for any 6 with |0] < 2|Q|/R, we have

¢'(0) = ¢'(0) + 02"(0) + O(6%¢"(0)) = Q + IR + 0(Q) -

By the choice of 6y, we have ¢'(6y) = 0 and 6y ~ |Q|/R.

We can also write

92 (0 2
(00 = 90) + 00 (0) + PE0 o1y 1 - 2
2 2R
and
_ Q?
log(p(fo)) ' ~ = .
o8 (80)) " ~ o
Similar arguments give that ¢”(6p) ~ R.
Finally, observe that for any ¢ > 0,
E [DeP%] < E [Det929/F] = E [De’M] = O(1) . (3.68)

Using all previous estimations, we can write

2R |Qn
T ~ @log ( Rz :

It is straightforward to check that, in this case, the condition ym > w(n)T,, is equivalent
to Q < —w(n)n"Y3R?/3,

Note that the condition A, < n'/% is only required in Lemma in the case
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R = O(A|Q|). Thus, the desired result follows from Theorem without further

restrictions on the degree sequence.

3.4 Subcritical regime for the uniform model

3.4.1 Exploration process

We will use the exploration process described in [45] that, given Vy C [n], reveals the
components of G,, one by one starting with the components containing V.

We first describe the exploration process on fixed graphs where each vertex has an
order in its adjacency list. Precisely, an input is a pair (G, II), with G a graph on [n] and
II = (7y)vepm @ collection of permutations where 7, has length d, and induces a natural
order on the edges incident to v. The process constructs a sequence of sets Vo, C V; C ...
such that at time ¢ all the edges in G[V;] have been revealed. Similarly as before, we
define X; = Xy(v) = |E(V;, [n] \ V;)| to be the number of edges between the explored
and unexplored parts. If X; = 0, V; is a set of vertices forming a union of components,
including the ones intersecting V5. We also define E(A, B) to be the set of edges between

sets A and B, M, = > d, and we let L; be the number of vertices of degree 1 in

we[n]\Vy

(] \ Ve

The exploration process of (G,11) starting at Vo C [n] is defined as follows:
1) Let Xo = |E(Vy, [n] \ Vo)|-
2) While V; # [n],

2a) If X, = 0, choose a vertex u in [n]\ V; according to the degree distribution and

let w1 = u, ie. P(wg =u) = JC\ZJ—“t. Let Viy1 = ViU{wi} and Xyyq = dy,y, -

2b) Otherwise, choose v, the smallest vertex incident to at least one edge in [n]\V;

and let e, be the smallest edge in E(viy1, [n] \ V;). Let wyq be the endpoint
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of e;11 in [n] \ V. Expose all edges in F(w.1, V;). Let Viyy = ViU {wiy1} and

Xip =X, —1+d — |E(wig, V3)l.

We+1

There are two main differences between this exploration process and the one defined in
Section we explore vertex by vertex instead of edge by edge, and we start from a
set instead of a single vertex.

We will run the exploration process on an input (G, II) chosen uniformly at random
from all the inputs where G is a graph on [n] with degree sequence d,,. This is equivalent
to sampling G ~ G,, and, independently, letting IT = TI(d,,) be a collection of uniformly
and independent permutations of lengths (d,)ycjn). We will use the principle of deferred
decisions exposing the restriction of m,,,, onto E(v,q,[n] \ Vi) at time ¢. Let (F;)i>0
be the filtration of the space of inputs given by the history of the process just after
exposing the order on E(viiq,[n] \ V;). The random objects Xy, Vi, My, Ly, vi4q and
err1 are Fi-measurable, while wyyq is Fyy1-measurable. We will use P;(+) := P (- | ;) and
E;[-] = E[- | F] to denote respectively the probability and expected value conditioned
to F;.

3.4.2 Deterministic properties of the process

First of all, we may assume that my = o(n), as otherwise since |Qg| < 1, there is nothing

to prove. This implies that, m < 3n as Zwe[n]\s* d, < 2n.

Define
mo _ AlQo| + R
T = > log A 3.69
QT @ (3.69)
and
2
P R (OB, (3.70)

a AlQol + R~ Qo

The last condition imposed implies that 7' = o(|Q|m), we will use this bound repeatedly
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during the proof.
Let S be the set that certifies (mg, Qo)-subcriticality. We can always assume that
such set is formed by vertices of largest degrees. Note that our condition on my implies

that A = o(mg). So, we may also assume that

S d, > % , (3.71)

veSs

as increasing the set S can only decrease Q).

Throughout the proof, we will assume that

A= m{fﬁ}\{s dy > 2. (3.72)
wemn

Otherwise there are at most my vertices of degree at least 2 and any component has order

at most O(my) and we are done.
Lemma 3.4.1. Let v € [n] and set Vo = S U {v}. We have:
1S e du < 2QulT
2. N=o(%).
Moreover, for every t = O(T) we have:
4. ni(t) >nq/2;
5. My > m/3.

Proof. For Item [1] just observe that d, < A < mgy = |Qo|T.

For Ttem 2] since A’ > 2, my > 3m, and by Equations (3.9), (3.10) and (3.71), we

have

0> ) dy(dy—2) > —ng+ (A =2) Y dy > —ng+ (A = 2)(mp/2 —m,)
vE[n]\Sx weS\ Sy

From here it follows that A" = O(ny/mg) = o(ny/A).

73



For Item [4] observe that n; > |Qo|m and T = o(|Qo|m). So ni(t) > ny—1—t > ny /2.

For Ttem [5] by Equation (3.9) we have

0>Qm> —ng + Z dy =m —m, —2(ny +na) .

ve[n]\Sx
dy >3

Counting only the contribution of vertices of degree 1 or 2 to M;, we obtain

Mt2n1+2n2—m*—2tZ%—l—0(n)2

w3

]
3.4.3 Bounding the increments
Lemma 3.4.2. For any v € [n], any t = O(T) and any w € [n] \ V;, we have
duw
t
Moreover, if d, = 1
duw
Py(wiy = w) > (14 0(1))M : (3.74)
t

Proof. The proof uses an edge-switching argument. A switching is a local operation that
transforms an input into another one. Given an input (G, II) and two oriented edges (a, b)
and (c,d) with ab,cd € E(G) and ac,bd ¢ E(G), we obtain the new input by deleting
the edges ab and cd, and adding the edges ac and bd. Note that this operation preserves
the degree of each vertex and does not modify the permutations of the adjacency lists.
We will restrict to switchings that do not modify the edges within V; in order to switch
between inputs in F;.

Fix w € [n]\ Vi. If X; = 0, then w is chosen with probability d,/M;, so we may

assume that X; > 0. Let v;41, €41 and wyyq as described in the process. Given Fi, vi4q
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and e, are fixed, while w;, is a random vertex. Let A C F; be the set of inputs with
w1 = w and B = F; \ A. We will estimate the number of switchings between A and B
to prove the lemma.

We first proof Equation (3.73)). To switch from B to A, we need to switch the edges
(Ves1, wep1) and (w,u) for u € N(w) and there are at most d,, such switchings for each
input in B. To switch from A to B, it suffices to select the edges (vi11,w) and (z,y)
with « ¢ N(vi1) UV, and y ¢ N(w). By Lemma [3.4.1] there are at most AA’ + A’A =
o(ny1) = o(M,) oriented edges (x,y) with = € [n] \ V; that violate the previous condition.

Thus, there are at least (1 + o(1))M; switchings for each input in A. It follows that

AL Moy e

P —w)= .
e =) = 1278 < 18] = M,

We now prove Equation . Suppose that d,, = 1. To switch from A to B we must
choose the oriented edge (v;41,w) and an oriented edge (z,y) with z € [n]\ V;, otherwise
we would alter the edges within V;. It follows that there are at most M, switchings for
each input in A. To switch from B to A, we must choose the oriented edge (v;i1,w;s1)
and the unique oriented edge (w,u), where u is the only neighbour of w. Observe that if
either vy ;w or wy u is an edge of the graph, the switching is invalid. Instead of giving
a lower bound for the number of switchings of a fixed input in B, we will give a lower
bound for the average number of switchings over B. For each z € [n] \ (V; U {w}), let
B. be the set of inputs in B with w;; = 2. Given an input (G,II) and z € [n] \ V; with
d, = 1, we say that the input is x-good if vi112, zy ¢ E(G), where y is the only neighbour
of z; otherwise we call the input x-bad. Since d, = 1 and d, < A/, by Lemma [3.4.1], there
are at most A + A’A = o(ny) = o(ny(t)) vertices x for which a given input is z-bad. We
can generate a random input in B,, by first choosing one uniformly at random and then
permuting the labels of the vertices of degree 1 in [n]\ (V; U {z}). Thus, the probability

that a random input in B, is w-bad is o(1). If an input is w-good, switching (v;;1, wiy1)

75



with (w,u) yields an input in A. It follows that

Y S S 1
A+ B 14 B|/|A] T 14 (1 +o(1)M,

= (14 o(1)) o

]Pt (wt+1 = 'I,U) Mt

OJ
Define n; = d,,, — 2. Next result bounds the first and second moments of 7;.
Lemma 3.4.3. For any v € [n] and any t = O(T'), we have
By [041] < % and E; [(n1)’] <4R. (3.75)

Proof. Note that S°!_, dy, (dy, —2) > —t. Using Lemma and t = O(T') = o(|Qo|m),

t
Y du(dy—2)= > dw(dw—Q)—Zdwi(dwi—Q)§Q0m+t+1§Qozm§O.
=1

wen]\Vi wen]\Vo

(3.76)
Applying Lemma and M; < m,

1+ o0(1)

t

IA

Z dw(dw _2) < Q0/2'

wen]\V4

By [0e41] = Z (dp — 2)P(wi1 = w)
wen]\V;

Similarly, we can bound the second moment. By Lemma and Equation ([3.73),

B [(n1)’] = Y (dw = 2)Py(wy = w) < (HTOt(l)) 3" (dw—2)%du < 4R

wen)\Vi wen]\Vi
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3.4.4 Proof of Theorem [3.1.8

Let v := 80. Define the stopping time
x =7x(v) =inf{t: Xy =0} A (YT + 1),

where X} is obtained by starting the process with V5 = S U {v}. We omit the floor and
ceiling functions in this section for ease of notation.

Instead of studying X;, we focus on the stochastic process (Z;):>¢ defined by Z, =
2|Qo|T and for t € N

t
Zisy = Zp 4 a1 = 2QolT + D misa - (3.77)
i=0

Observe that Z; is F;-measurable. For any ¢ < 7x, we can bound the increments X;,; —

X, <d — 2 = n441. Therefore, for every ¢ < 7x(v) we have X, 1 < Zyyq.

Wi+41

Define the stopping time
Tz =Tz(v) =inf{t : Z, =0} N(vT + 1), (3.78)

where Z; is obtained by starting the process with V5 = S U {v}. Hence, 7x(v) < 72(v)
and it suffices to bound the latter from above.
Write g1 = (o1 — By [nea]) 1t < 77 and Spyq == >0 pir1. For every t < 75, we

can write

t
Zt+1 = 2|QO|T + St+1 + ZEZ [771'—}-1] . (379)

i=0

Since E; [pi41] = 0 for all i > 0, S; is a martingale with respect to F; with Sy = 0.
We will use the following Bennett-type concentration inequality for martingales due to
Freedman.

Lemma 3.4.4 ([29]). Let (Si)i>0 be a martingale with respect to a filtration (Fi)e>o
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with Sy = 0 and increments 1 = Spr1 — Sy Suppose there exists ¢ > 0 such that

max;>o |pe+1| < ¢ almost surely. For t > 0, define

t
V(t+1)=> Ei[(u)’] -
i=0
Then, for every a, 3 >0

A2
95y > a and V(t) < B for somet > 1 < exp (2(——?06!)) ‘

Deterministically, we have max;>o |pe+1] < A =t ¢. Moreover, by Lemma for all

t>0,

-
|
—

V() <Y B [(mi41)°1i < 72] <4AR(EAAT). (3.80)

i

Il
=)

Choose a = (7/3)|Qo|T and 8 = 4RyT. Thus, for all t > 0, V(¢) < [ deterministically
and, since |Qo| < 1, 2(8 + ca) < 8y(R + A|Qo|)T. By Lemma uniformly on the
choice of v € [n]

. 1T| Qo
72(R + AlQo

P (S; > « for some t) < exp <

|>> =0(1/)) . (3.81)

since vy > 72.
By Equation (3.75) we have 3277 " E; [:41] < (7/2)|Qo|T. Combining it with Equa-

tion (3.81]), we obtain uniformly on v € [n]
017(v) >~T =0Z; > 0 for all t < AT < 9S,r > (7/2 —2)|Qo|T = O (1/X) . (3.82)

since v > 12.

Observe that if |C(v)| > (v + 2)T, then 77(v) > 7x(v) > T. As in Equation (3.67)),
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letting Z be the number of components of size larger than (v+2)7 and by Equation ({3.82))

E[Z] 7+2 ZIP|C )| > (v +2)T <_ZPTZ )>~T) =0 (1/log\) = o(1) .

vE[n] vEn]

Markov’s inequality concludes the proof.

3.5 Proof of Proposition 3.1.12

Given € € (0,1) and A = A(n) = o(y/n) with logn = o(A), define

0= L(1 - E)XQJ . (3.83)

Consider the degree sequence an that contains n — ¢ vertices of degree 1 and ¢ vertices
of degree A. We may assume that the sum of the degrees is even, otherwise we may
add another vertex of degree 1. For the sake of simplicity, we will omit the floor in
the definition of ¢. Straightforward computations show that m = (1 + O(x))n and
Q=—(1+0(1))e.

Let L C [n] denote the set of vertices of degree A. Let G, be the random subgraph
induced by CM,(d,,) on L. Let G(L, p) be the Erdds-Rényi random graph on the vertex
set L, where each edge in (é) is chosen independently with probability p. Let P.(-) and
P,(-) be the probability measures on (multi)graphs with vertex set L associated to G,
and G(L, p), respectively, and let E, [-] and E, [-] the expected value operator defined in
these probability spaces.

We briefly sketch the proof. Most of the half-edges in an are incident to vertices of
degree 1. So typically, all vertices in L will pair most of their half-edges with the ones
incident to V' \ L and the order of the largest component in CMn(an) will be of order at
least AL (G,) whp. To estimate L;(G,), we will show that G. behaves like G(L, p,) with

A (1 €)

pei= - = . Classic results on the subcritical regime of random graphs will give lower

bounds for L;(G(L,p.)) that also apply to L;(G.). We will finally use Equation (3.8)) to
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transfer the lower bound on the largest component from CM,,(d,) to G, (d,).
Precisely, we will show that certain small subgraphs in G, appear with the same
probability as in G(L, p,). Let Z; be the number of isolated trees of size s in G,. Paley-

Zygmund’s inequality implies

(3.84)
Lemma 3.5.1. For every s = O(log () we have,

E.[Z] = (14 0(1)E,, [Z]

E. [Z2] = (1+0(1))E,, 2] .

Proof. Choose S C L with |S| = s and any tree T" with V(T') = S. Let Ar be the event
that S induces an isolated copy of T"in L, which can be defined for G, and G(L, p).

Fix an arbitrary ordering of E(T), e1,...,es_1. A realisation of T is a set of pairs of
half-edges {a1b1,...,as_1bs_1} such that the endpoints of e; are the vertices incident to
a; and b;. Let k(T') be the number of realisations of T'. If dy, ..., d; is the degree sequence
of T, then Y7, d; =2(s—1) and

k(T) = H N H (1 +0 <i>> = (14 o(1))A2D (3.85)
(A —d;)! A

i=1

since s? = o(A).
The event Ar admits a partition into k(T) subevents AL, ... ,A;m depending on the

realisation of T. For i € [k(T)], P.(A%) is equal to the probability that CM,, satisfies:
(1) the i-th realisation of T is in CM,,;

(2) for every u € S and every incident half-edge a not in the i-th realisation, a is paired

in CM, to a half-edge incident to V' \ L.
Let r = s({—s)+(3). Fori € [k], consider the i-th realisation of T', let (a{b%, ... al_b._))
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be a sequence of pairings corresponding to E(7T) and let (a’b’,...,a.b’) be a sequence
of all nonpairings with at least one half-edge in S (we will assume dé is always incident
to S). Let B; be the event that aib! is a pairing for all [ < j A (s — 1) and aib! is not a
pairing for all s <[ <.

We can write

T)s 1 T
=> [P (dt; € E(CM,) | Bjy) [[ P (aid} ¢ E(CM,,) | B;-1)  (3.86)
i=1 j=1 Jj=s
Each term on the first product in Equation (3.86) is m—lO(s) = (1+0(2 + %)) %; so the

first product is

SHlP (50} € E(CM,) | Bj1) = <1 +0 (;i Z)) ! (3.87)

Jj=1

In order to estimate the probability of (2) (which is given by the second product in
Equation (3.86))), we compute the probability that each half-edge a incident to S is not

paired with half-edges in L. There are exactly sA — 2(s — 1) such events, and each has

probability 1 — Jrg(( AA)) = (1 - %) (1+ O(s2t)). Thus, we have
r , 7N sA—2(s—1) SA + ¢ SA
[Ie (s e sy 5 = (1-) (140 (250
j=s
A2\ ¥ 0 s s
—(1- = (s/t+s/A) S .5
(=5) e (o5 5))
— (L4 o(1)) (1= po) (3.88)

where we used that (1 —xz/N)¥ = (1—y/N)*eO @ vtv*0)/N?) with ¢ = 0,y = A, N = n/A,
and that A > s, > s°.

Plugging Equations (3.85)), (3.87) and (3.88) into Equation (3.86]), we obtain

P.(Ar) = (1L +o(1)p: " (1 — p.) =" = (14 o(1))P,. (Ar) -
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Adding over all sets S C L with |S| = s and over all trees T" with V(T") = S, we obtain
the first part of the lemma.

For the second part, choose S,S" C [m] with |S| = |S’| = s and any pair of trees T’
and 7" with V(T') = S and V(T") = S’. Note that P.(Ar, A7v) = 0 unless S = 5" and
T =T, or SNS ={. Suppose we are in the latter case, and let r = 2s(m — 2s) + (225).

Following similar computations as the ones we did for a single tree, we obtain
P.(Ar, Ar) = (1 + 0o(1))Pp, (Ar, Ar)

and adding over all pairs of sets and trees supported on these sets, the second part also

follows. O

The moments of Z; in G(L, p) are well-studied in random graph theory. Let I(\) = A\—
1—In X be the large deviation rate function for Poisson random variables with mean A > 0.
For A\=1—¢ any a < (I,)"' and sy = |alog (], we have E,, [Z2] = (1 + o(1))E,, [Z,,]
(see e.g. Lemma 2.12(i) in [30]). Combining this with Lemma [3.5.1] and Equation (3.84)),
whp G, has an isolated tree of size syg. As every vertex in L has degree A, there are
exactly Asg— 2(sp— 1) vertices of degree 1 that attach to the given tree. Therefore, whp
there exists a component in CM,,(d,,) of order (1 + o(1))As.

Observe that Iy = & + O(e?) and since Q = —(1 + o(1))e, we have I, = (1 +0(1))%2.
As E[D?] = 0O(1) and R ~ A, we can use Theorem to deduce that whp

L1(G(d,)) > (14 0(1))Ase > (1+ 0(1))22—}310g <%) :

This concludes the proof of the proposition.

Remark 3.5.2 (Concentration of Li(G,(d,))). Proposition [3.1.12{imposes the condition
A = o(y/n), or equivalently ¢ — oo as n — oo. If A 'is of order /n, it is easy to check
that the probability that G, = H is bounded away from 0 for every H of order ¢. Since

the size of the largest component is asymptotically equal to AL1(G,), L1(CM,(d,)) and
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Ll(Gn(an)) are not concentrated.

Remark 3.5.3 (The case @ = o(1)). The largest component of Erdds-Rényi is well-
studied in the barely subcritical regime (see e.g. Theorem 5.6 in [44]). If p = 1%@ with

€(f) > 0 and (713 < () < 1, then whp
Li(G(¢,p)) ~ 2€¢° log(€*0) . (3.89)

Let £ = (1 — ¢(n)) <z and define the degree sequence d, as before. Again, Q ~ —¢
and R ~ A. In particular A|Q| = o(R) holds.
Set p = 1%@ The same argument as in the proof of Proposition [3.1.12[ and Equa-

tion (3.89) gives

Li(Gn(dy)) > ALI(G(L,p) > (1+ 0(1))2€—§ log (Z—Z) > (1+ 0(1))2_}5103; (’%”) .

(3.90)

The condition €(¢) > ¢~/3 for the validity of Equation (3.89) is equivalent to Q <

—w(n)n"3R¥3, for some w(n) — oo.
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CHAPTER 4

BARELY SUBCRITICAL RANDOM DIGRAPHS
WITH A GIVEN DEGREE SEQUENCE

4.1 Introduction

4.1.1 The directed configuration model

Let d, = (d;,d}) = ((dy,d}), ..., (d7,dF)) be a directed degree sequence on n vertices
and let m,, = " d; = 3" d;. The directed configuration model on d,,, DCM = DCM(d,,)
introduced by Cooper and Frieze [13], is the random directed multigraph on [n] obtained
by associating with vertex ¢ d; in-stubs and d; in-stubs, and then choosing a perfect
matching of in- and out- stubs uniformly at random. This is a directed generalisation of
the configuration model of Bollobas [6] which since its introduction has become one of
the most widely used random graph models.

A strongly connected component in a digraph is a maximal sub-digraph such that
there exists a directed path between each ordered pair of vertices. In this chapter we will
consider the size of the largest strongly connected component in the barely subcritical
regime.

Let ny, be the number of copies of (k,¢) in d, and let A, = max(d; ,d;) be the

maximum degree of d,. Also, the following are parameters of the degree distribution

which govern the behaviour of the size of the largest strongly connected component.
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Definition 4.1.1.

1 < 1 < 1
n::—g d-df —1 R_::—E d-df(d; —1 R+::—E d-df(df —1
Q mn — (2 7 n mn — K3 K] ( 1 ) n mn — K2 K2 ( K] )

We shall assume the following conditions which ensure that the degree sequence is

suitably “well behaved”.

Condition 4.1.2. For each n, (d;,d)", = ((d;,d;})™)"_, is a sequence of ordered

7 ) )

pairs of non-negative integers such that > " | di = >°" | d. Furthermore, (p;;);5_; is a

probability distribution such that for some e, > 0,

i) n;j/n — p;; as n — oo for each 4,5 > 0,

i) my/n=pM — p= 2?3:1 1D = Zf;-:l JPij
iii) noo =0,

iv) >0 o +nio < (1—e)n,

v) nia < (1—e)n,

vi) A, <nl/S,

vii) R, R* > C.

It was shown by Cooper and Frieze [13] that @,, = 0 is the threshold for the existence of
a giant strongly connected component under some mild conditions on the degree sequence
similar to those observed in Condition [4.1.2]

For the remainder of the chapter, we shall omit the subscript on an,An etc. for
reasons of clarity. Let Ck(a) be the size of the largest strongly connected component
of the directed configuration model with degree sequence d. We shall write Cj, for this

quantity when the degree sequence is clear.

Our main result is the following,
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Theorem 4.1.3. Let DCM(d) be a configuration model random digraph with degree
sequence d and suppose that nQ?(R~RT)~! — —oco. With high probability, there are no
complex components or cycles of length w(1/|Q|). Furthermore, the probability that the

kth largest cycle has length at least Q| is

k—1 fi
IP’(|Ck| > %) =1-) =% 4o(1).

Where

In prior work, Luczak and Seierstad [55] considered the model D(n,p) which is a
random digraph model formed by including each possible arc with probability p inde-
pendently. They showed an analogous result to Theorem for p = (1 —€)/n with

e = o0(1) and £3n — oo in this model.

4.1.2 Previous work

The study of the giant component in random graph models was initiated by the seminal
paper of Erdés and Rényi [24] regarding the giant component in G(n, p). Since then the
appearance of a giant component in various models has remained an active topic of study
in the area.

When working with directed graphs, there are a number of types of connected com-
ponent which are of interest. In this chapter we concern ourselves with the strongly con-
nected components. The study of strongly connected components in random digraphs
began in the model D(n,p) where we include each possible edge with probability p in-
dependently. Karp [47] and Luczak [53] independently showed that when p = ¢/n, then
D(n,p) has all strongly connected components of size O(1) if ¢ < 1. If instead ¢ > 1
they showed that there exists a unique strongly connected component of linear order

with all other components of size O(1). The case p = (1 + ¢)/n with ¢ = o(1) and
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le]’n — oo was studied by Luczak and Seierstad [55]. They showed that if e3n — oo,

there is a unique strongly connected component of size 4¢?n and other components all of

size O(1/¢). When en — —oo they showed an analogue of Theorem [4.1.3}

Theorem 4.1.4. Let np = 1 — ¢ where ¢ — 0 but €3n — —oo. Assume a > 0 is a
constant and let X, denote the size of the sth largest strongly connected component.

Then, asymptotically almost surely, D(n,p) contains no complex components and

s—1
. . Na—Xg
JE&P(XS <ale)= ZO R
1=

where \, = [ <dz.

T

The so-called critical window, when p = (1 4+ An~'/3)/n has also been the subject of
some study. In [I5] the author showed bounds on the size of the largest strongly connected
component in this regime which are akin to bounds obtained by Nachmias and Peres for
G(n,p) [62]. Moreover, Goldschmidt and Stephenson [31] gave a scaling limit result for
the largest strongly connected components in the critical window.

The directed configuration model has also been studied previously. It was first studied
by Cooper and Frieze who showed that provided the maximum degree A < n'/'2/log(n)
then if @), < 0, there is no all strongly connected components are small and if Q),, > 0
there is a giant strongly connected component of linear size. The assumptions on the
degree sequence have subsequently been relaxed, Graf [32] showed A < n'/* is enough
to draw the same conclusion and Cai and Perarnau [11] improved this further to only
require bounded second moments. A scaling limit result was obtained at the exact point
of criticality, @, = 0 by Donderwinkel and Xie [19] in a very closely related model where

vertices’ degrees are sampled from a limiting degree sequence.
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4.1.3 Organization

The remainder of this chapter is arranged as follows, in Section we prove some auxil-
iary results on subgraph counting within the directed configuration model. Then, in Sec-
tion we enumerate certain types of strongly connected directed graphs of maximum
degree 4. In section Section we prove Theorem which we break down into a few
steps, first that there are no long cycles. Next that there are no complex components and
finally we compute the probability the kth largest component has size at least «/|Q)| via
Poisson approximation. We conclude the chapter in Section [4.5] with some open questions

and future work.

4.2 Subgraph Bounds

We calculate probabilities of given subgraphs in the configuration model. Welet (D_, D)
be the degree distribution, that is the random variable obtained by picking an element
of d uniformly at random.

Suppose that DCM has degree distribution (D_, D) define

L B 1 ) ) (X))

k=0 £=0

So that the i, ; and p; ; are the moments and factorial moments of (D_, D ) respectively.
We also define pt = p110 = jto1 which is the average degree. Furthermore, observe that
p11 = (14 Q) which is a fact we utilise in subsequent sections. We now state a general

upper bound on the probability of finding certain subgraphs in the configuration model.

Lemma 4.2.1. Let DCM be a configuration model random digraph with degree distribu-
tion (D_, D). Suppose further that DCM has n vertices and m edges. Let H be any
digraph with h vertices, k edges and degree sequence H = (h; j :i,j € N). Then the prob-

ability that a uniformly random injective map ¢ : V(H) — V(DCM) is a homomorphism
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15 bounded above by

P (1.0CM) = ot TT ol (41)

1,j€EN
Furthermore, the expected number of copies of H in DCM is bounded above by

nt(H,DCM) := %('H) (Z) p* (H,DCM). (4.2)

Proof. Note that follows immediately from ([£.1)). Thus we shall focus on the proof
of (4.1). Let ¢ : V(H) — V(DCM) be a fixed injective map. Arbitrarily order the edges
of H as Ey, Fs, ..., E) and for each edge F; define an event &; := {¢(E;) € E(DCM)}.
Then, v is a homomorphism if and only if every event &;,...,&; occurs. To simplify

notation, let F; = & and F; = & ﬂ;;ll &; for i > 2 and note that

Suppose that E; = a;b; for some a;,b; € V(H). Define s;, = |{j < i : a; = a;}| and
ti=|{j <i:b;=0b;}|. Thatis, s; and ¢; are the number of times that a; (resp. b;) has
previously appeared as the initial (terminal) vertex of an edge of H. Also, suppose that

V(E;) = ajb;.

Claim.

B(F) < min(d* (a;) — s;,0) min(d~(b}) — ;,0)
oo m+1—i

Proof. To see this, note that if d*(a}) < s;, then P(F;) = 0 as there are not enough stubs
at a; to create such a copy of H. Similarly if d* (b)) <t;, P(F;) = 0.

So, without loss of generality we may assume that (d*(a})—s;), (d~(b;)—t;) > 0. Now,
by definition of F; we have already chosen i — 1 edges of the configuration model and we
have precisely d* (a;) — s; out-stubs remaining at a, and d~(b;) —t; at b;. Now, consider the
random matching on the 2(m 4 1 — i) remaining stubs. The probability that we contain

any given a; — b, edge is (m+1—14)~'. There are (d*(a}) — s;)(d™ (b;) — t;) such potential
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edges. Thus the expected number of a; — b, edges is (d*(a}) — s;)(d™ (b)) —t;)/(m+ 1 —1).

The claim then follows by Markov’s inequality. U

Next we compute the probability that all of the F; occur simultaneously. Due to the

way in which we defined these events,

k
P(¢ is a homomorphism) = (ﬂ .7-') = H P(F,
i=1

To write down this probability succinctly, we will use the functions

fap(z,y) HH:U—l—l—z (y+1—7j)

=1 j=1

It is a simple computation to check that

P(N7) < @007 TT S @) diove)) (@3

veV(H)

Note that here we were able to remove the min function as if there are any negative
contributions to the product, then there is also a contribution of value 0 and furthermore,
there it is impossible for 1) to be a homomorphism in this case so that reduces to
0 < 0 in this case (which is clearly true).

To complete the proof, we extend the right hand side of equation to allow any
function ¢ : V(H) — V(DCM). Choosing an uniformly random function in this way
gives that the probability that a uniformly random injective function is a homomorphism

is bounded above by

(n) 1( o2l de<v i) (e (V(0)), Aoy (0(0)) (4.4)
IRk vV (H)=V(G) veV(H
= (n)hl(m)k Z H Fa ).t ) (Ao (Y (V) dieng (¥(v)) (4.5)

H)—-V(G)veV(H

In moving from injective functions to arbitrary functions between (4.4) and (4.5), we
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move from an intractable space of functions to a product space which naturally splits

over the vertices of H. This allows us to rewrite (4.5)) as

] g oo )

(n)n(m)s bV (H)=V(G) veV (H

1 —
h(m H Z de(v dl(v) d]D)(CM( ) d]D)(CM( )
veV(H) weV(G)
nh
(n)n(m)n H P, ( H Piy
")h UGV H) i,jEN
Which is the claimed upper bound, p™(H, DCM). O

We also need a lower bound on the probability that DCM contains a cycle.

Lemma 4.2.2. Let DCM be the configuration model random digraph with degree distri-
bution (D_, Dy) and mazimum degree A. Suppose further that DCM has n vertices and
m edges. Let H be a directed cycle with h vertices. Then the probability that a uniformly

random injective map ¢ : V(H) — V(DCM) is a homomorphism is bounded from below

by

ps (H,DCM) := a+or (1 - 2h2A2) (1 - h—AQ) . (4.6)

(n) en 2m
Proof. First, let us consider the probability of finding at least one edge from vertex u
of out-degree a to vertex v with in-degree b. We assume that we have not observed any
edges that affect either the out-degree of u or the in-degree of v and that DCM has m
edges. So let X be the number of edges between v and v and H;, our knowledge of DCM

up until now which consists only of a set of k edges which are present. Then,

P(X:O|Hk):(1_ma_k>(1_#>”'(1_m)

Where the final line follows by the inequality, (1 + )" < 1 —nz + ( )x which is valid
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for n € N and z > —1. This allows us to deduce that the probability of seeing an edge

t a_b a2b2
m

— 5. Now, looking at each edge of H in turn noting

between © and v is at leas

allows us to deduce that the probability ¢ is a homomorphism is at least

o S T ) 1)

—[n] =1

Where we consider the argument of ¢ modulo h in (4.7)). Also, note that one can factorise

the linear term in and bound the second occurrence of d;(i)d;f

(ir1) DY A% to get the

lower bound
h d- d+ Ag
o X (-5 (43)
2m
" gifhlsn] =1
The idea is to argue that we can swap the order of the product and sum in Equation (4.8))
without changing the result very much. To this end, let ®; be the set of functions

¢ : [h] = [n] such that
i) o([n])] =h—1,
ii) df,) # 0 for each j € [h].
iit) d;;) # 0 for cach j € [A].

Note that for any function ¢ ¢ U?:o ®, then Hl 1 gy dJr = 0. As a result of this we

observe that

h
Z Hdw i =D [T dowdbe

#:[h]—[n] D i=1

As well as the fact that

h h n h
S Mty = 3 H% (z) 4 Q)
=1

J=0 ¢c®; i=1 ¢:[hl—=[n

For a given function ¢ : [h] — [n] we define its weight as w(¢) := [, sy d+ . We also

define the weight of a set S of functions in the natural way as w(S) = Z¢Esw( ). Next,
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we shall apply switching arguments to bound the weights of the sets ®; relative to one
another.

Consider the auxiliary bipartite graphs, G; with parts ®; and ®;, 1. We connect ¢; € ®;
to @11 € ®;41 by an edge in G; if ¢; and ¢;, differ in precisely one coordinate. For each
¢; € ®; there are at most h? ways we can change one coordinate and decrease the size
of the image. In particular we may pick any of the h coordinates of ¢; and change it
to ¢;(j) for some j € [h]. So, Ag,(®;) < h% For each ¢; ;1 € ®;y1, we pick any of
the at least ¢ coordinates at which ¢;,; is not injective and choose a new image for this
coordinate. By Condition there are at least en/2 ways to choose the new image.
dg, (®iy1) > ien/2.

Combining these two results allows us to deduce that ien/2|®; 1| < e(G;) < h?|®,].
Upon rearrangement we find |®;| > =%[®;1|. Note that two functions ¢ and ¢ which
differ in one coordinate must also satisfy w(¢) < A%w(¢) and vice versa. Hence w(®;) >

snexzW(Piy1). This allows us to apply induction to deduce that

h h h h H2AZN I o
D2 H daoydiy = D w(@) < w(®o) (2 - > < 1%&'

j=0 ¢ped; i=1 j=0 =0 en

So, w(Py) > (1 — %)mh(l + Q)". Combining this with (4.8) allows us to deduce the
statement of the lemma, that the following is a lower bound on the probability of finding

a cycle at a specified position in DCM:

e (05
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4.3 Digraph Counting

In this section we will prove the following bound on the number of strongly connected
multi-digraphs with maximum degree 4. This is similar to [I5, Lemma 2.3] although we

a weaker bound suffices here allowing us to simplify the proof somewhat.

Lemma 4.3.1. Suppose that n,m,a,b € N such that n +a +b = m. Let N(n,a,b)
be the number of labelled strongly connected multi-digraphs with n vertices and degree

distribution given by

in-degree | out-degree | quantity
1 1 n—2a—>b
1 2 a
2 1 a
2 2 b

Then, we have the following bound,

N(n,a,b) < (3a+2b)(m - 1)! (afi b)

To prove this bound we will use the preheart configuration model of Pérez-Giménez
and Wormald [66] which we shall define as follows.

A preheart is a multi-digraph with minimum semi-degree at least 1 and no cycle
components. The heart of a preheart D is the multidigraph H (D) formed by suppressing

all vertices of D which have in and out degree precisely 1. For a degree sequence &, define
T=T)={veV:d () +d (v) >3}

To form the preheart configuration model, first we apply the configuration model to T to
produce a heart H. Given a heart configuration H, we construct a preheart configuration
@ by assigning V' \ T to E(H) such that the vertices assigned to each arc of H are given

a linear order. Denote this assignment including the orderings by ¢. Then the preheart
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configuration model, Q(a) is the probability space of random preheart configurations
formed by choosing H and ¢ uniformly at random.

It is easy to see that every strongly connected digraph is produced by the preheart
configuration model. Thus counting the number of possible outcomes from the preheart
configuration model gives an upper bound for the number of strongly connected digraphs
with the same degree sequence. We now count the number of preheart configurations

using |15, Lemma 2.4].

Lemma 4.3.2. In the preheart configuration model with n vertices, m edges and degree

sequence d. Let ' = |T(d)| be the number of vertices of the heart. Then there are a total

of

n+m-—n
MR
m

preheart configurations.

From this lemma, we may prove Lemma [4.3.1

Proof of Lemma[4.53.1] First, we choose the degree sequence. So note that there are at
most (alb) ways in which we can give a vertices in-degree 1 and out-degree 2, a vertices
in-degree 2 and out-degree 1, b vertices in-degree 2 and out-degree 2 and the remainder
in-degree 1 and out-degree 1. Having fixed this degree sequence, by Lemma [4.3.2 as

the heart contains 2a + b vertices and there are a + b more edges than vertices, the

number of strongly connected digraphs with this degree sequence is bounded above by

3a+2bm!

- . Hence the number of strongly connected digraphs with degree distribution as

in the statement of the lemma is at most

(3a + 2b)(m — 1)!( " )

a,a,b

as claimed. O
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4.4 Proof of Theorem 4.1.3

In this section we prove Theorem [4.1.3]and show that every strongly connected component
is a cycle and that these cycles are not particularly large. In particular this provides a
configuration model analogue of [55] Theorem 7|. Working with the configuration model
introduces several additional difficulties with the proof of this, foremost of these being
that we do not have enough control of the subgraph counts to compute the factorial
moments and show that they converge to those of a Poisson distribution. We will instead
use the Chen-Stein method for Poisson approximation which only requires good control
of the first moment and an upper bound on the second.

The proof of this theorem splits naturally into four parts. For functions f(n) >
g(n) which are defined such that f(n) = w(y/m/|Q|), f(n) = o(m|Q|/R~) and g(n) =
w(1/|Q|). Moreover for this section we shall assume that R~ > RT and if this is not the
case, we swap the orientations of all edges to get an equivalent digraph with R~ > R*

as desired. We will say that a cycle C'is
e Long if |C] > f(n),
e Medium if g(n) < |C| < f(n),
o Short if |C| < g(n).

First we will show that there are no long or medium cycles in the directed configuration
model. Next, we show that there are no complex components and finally we show the

result on the distribution of the length of the kth longest cycle.

4.4.1 Long Cycles

Lemma 4.4.1. DCM has no long cycles.

To show that there are no long cycles, it suffices to show that the out-component of
an arbitrary vertex is bounded above by f(n). Certainly, the longest cycle in a directed

graph is at most the size of the largest out-component and so the lemma follows.
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Thus, consider the following version of the branching process of Hatami and Mol-
loy [35] for the out-component in a digraph. For a vertex v we explore its out-component
in DCM as follows. We will have a partial subdigraph C; at time t consisting of the
vertices explored thus far. C} will consist of all in- and out-stubs of some vertices of
DCM together with a matching of some of the stubs. If there are unmatched out-stubs in
C; we will pick one at random and match it to some in-stub which yields an edge of C;.
We define Y; as the number of unmatched out-stubs in C;. Thus, Y; = 0 indicates that
we have explored an out-component in its entirety. Formally we define the exploration

process as follows.
e Choose a vertex v and initialise Cy = {v} and Yy = d* (v).

e While Y; > 0, choose an arbitrary unmatched out-stub of any vertex v € C}. Pick a
uniformly random unmatched in-stub and let u be the vertex to which this in-stub

belongs. Match these two stubs forming an edge of DCM.
— Ifu g Cp we add it so Cyyqy = Cy U {u} and Vi =Y, +dF(u) — 1.
- OtherWise, Ot+1 = Ct7 Y;—l—l = }/; — 1.

Note that this does not depend on how we have exposed C; so C; and Y, are Markov

processes. We define the following quantities.

o Dy ==Y, + > .0 d"(u), the number of unmatched out-stubs at time ¢. Note this

is also the number of unmatched in-stubs at time ¢.

e v, := () if C;_; and C, have the same vertex set. Otherwise it is the unique vertex

in Ct \ Ct+1'

~(u)dt (u
* Q= Zugctht( w

Note that initially @Q; = Q). Also, for unvisited vertices u ¢ (', the probability that we

explore u next is P(v;1 = u) = d_D—(t“). Hence, provided that Y; > 0, the expected change
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in Y; is

2uge, 4 (W)d" (u)
Dy

E(Yi — Yi|Cy) = Z P(vp1 = u)(d"(u) — 1) =
ugCt

1=Q. (4.9)

As long as ); remains close to () we expect that Y; is a random walk with drift approx-
imately (). So in particular, for our setting of () < 0, we expect that the random walk
will quickly return to 0. Thus, we shall start by showing that the drift parameter @), is
indeed close to ) with high probability. For this we shall use the following formulation

of the Azuma-Hoeffding inequality (see [44, Theorem 2.25|).

Theorem 4.4.2 (Azuma-Hoeffding Inequality). Let (Xj)}_, be a martingale with X =

X, Xo =E(X). Suppose there exist constants, ¢, > 0 such that
|Xk — Xk—l‘ S Cr for all k& S n.
Then for any A > 0,

)\2
P(| X, — Xo| 2 \) < 2exp (——) .
° QZkzl Ci

For t > 1 define W, := Q; — Qi1 — E(Q¢ — Q4—1|Cy_1). Also, we define Xy = @ and
for t > 1 let

X = Xo+ Z Wi = Q¢ — ZE(Qz — Qi—1|Ci—). (4.10)
=1 i—1

[t is a simple check that the X; form a martingale. Furthermore, |Q; — Q| < |Q; — Xi| +
| X — Q| so to bound the probability that |Q); — Q| is large, we show that |Q; — X;| is
small and bound the probability that | X; — Q] is large.

For the second of these, consider the auxiliary random variables

> uge, A (w)d ™ (u)
D4

@t = — 1.

That is we change @, to have the same denominator as ;1. As we assume that t < m/2,
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D; > m/2 so combining this with the fact that |D; — Dy 1] < 1 we deduce that

D1 = Dica e ) () _

~ 4
— = —. 4.11
Q.-G o » (1.11)

Also, as there is at most one vertex whose contributions are removed in moving from

Qi1 to Q, then
4N?

-
Combining equations (4.11)) and (4.12)) gives an upper bound on |@Q; — Q;_1| which we

may then use to bound the martingale differences almost surely,

Qi1 — Qi < (4.12)

2 2
8A —|—8<16A‘

| X — Xia| < <
m m

(4.13)

Next, we will bound the terms E(Q; — Q;—1|C;_1). It will be convenient to do this in two

stages utilising the auxiliary random variables @t. So, first note that

0<E@Qur - Qi) = 3, P(vt=u>—d_(?£(“) <> W

ugCr_1 ueV(G)
4(d~ 2d* AR™ +4

m? - m

ueV(G)

We can combine (4.14) with (4.11)) to deduce that

< 4R™ +8 < 12R™

E(Q; — Qi—1|Ci— . 4.15
E(Q: — QuaalCron) < =52 < 2 (4.15)
This leaves us in a situation in which we can compare X; and @,
t
12Rt
| Xy — Q] < ZZI IE(Qi — Qi—1]|Ci—1)| < em (4.16)
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So provided that ¢ < "4;%@ we have |X; — Q| <|Q|/4 and in particular, for any such ¢,

(0-0>2) (0 x+x-0>12)
<P( !Q\) ('X Q|>\Q!>

Whereupon we can apply the Azuma-Hoeffding inequality as X, = ). We can use the
bound from (4.13) for the c;. Substituting into Theorem yields,

P (|Xz‘ Q> |Q|) < exp (—%> < exp (—C|Q|mn **log(n)) . (4.17)

Where the second inequality in (4.17) comes from ¢ < Z?}'z , A < n'/Slog™"*(n) and
R~ > (. We could improve the dependence on A by using Freedman’s inequality [29] in
place of the Azuma-Hoeffding inequality here however there are other points where we

require A < n'/% and so this would only remove the log™/*(n) term in Condition m

Note mn=2/3 > m!/3/2 hence |Q|mn~%3 — oo and so for any large enough n,

P <Qt ’Q|) (Qt > %) <n% (4.18)

Now that we have shown that (), is concentrated around (), we can proceed to show that
DCM has no large components with high probability via a stopping time argument. We

will use the following version of Doob’s optional stopping theorem [77, Theorem 10.10]

Theorem 4.4.3 (Optional Stopping Theorem). Let X be a supermartingale and let 7

be a stopping time. Then X, is integrable and furthermore,
E(X,) < E(Xo)

whenever 7 is bounded.

So, now let us show that there is no component of size larger than f(n). For each

v € V(G) we shall consider the exploration process started at v. Recall that f(n) =
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o(n|Q|/R™) and so for sufficiently large n, f(n) < "<l

< Jg= Hence we have Q; < —|Q]/2
with high probability for each ¢t < f(n). Define the stopping time

7:=min{t > 0]Y; =0o0r Q; > —|Q|/2 or t = f(n)}

Recall that for ¢t < m¢|Q

wre we have E(Y, — Y1) = Q-1 < —[Q[/2. Thus, Yainer +

|Q| min(¢,7)/2 is a supermartingale. Clearly, 7 is bounded by f(n) so we may apply
Theorem t0 Yinin(e,r) + |@| min(t, 7)/2 from which we deduce that

E(YTJr%) < Yo = d*(v).

Upon rearrangement this yields,

By Markov’s inequality we can deduce

P(r = f(n)) < 22 1)

QL (n)

The only other way in which we could have Y, # 0 is if for some ¢ we have Q; > —|Q|/2. A

union bound allows us to deduce that this occurs with probability at most f(n)n=2 < n™!
So for any large enough n,

2d*(v) 1
P E0 S o T

Define Z as the number of vertices of DCM which lie in cycles of size at least f(n). Note
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that any such vertex must have out component of size at least f(n). Thus,

PG| > f(m) = B(Z 2 () < 200 < s 30 BIC0)] 2 fn)
veV (DCM)
1 2d*(v) 1 _m I )
=) 2 (it * ) = Tt * =

Thus there are no long cycles.

4.4.2 Medium Cycles

Lemma 4.4.4. DCM has no medium cycles.

Our next step is to apply Lemma to show there are no medium cycles. By

Lemma |4.2.1] the probability that DCM has a cycle of length h in any particular location

h, h
is at most % Thus the expected number of cycles of length A in G is at most

h! (n) nul mh (1+Q)h§(1+ h )h(1+Q)h

laut(Cp)| \o/ (n)n(m)n ~(m) h m—h h

9 h 1 h hQ—i—%
< (1+—h) 1+ e . (4.19)

m h - h

For any g(n) < h < f(n), we have 2h*/m < 4h?/n < h|Q|/2 as f(n) = o(n|Q|). Then,

the expected number of cycles of length between g(n) and f(n) is at most

f0) porz2 ) ne o he o
e m e €2 e Qg(n)
< < —dh = —d\=F | ————|. (4.20
Z h - h — /( ) h /Qg(n) A ! ( 2 > ( )
h=g(n) h=g(n) gin 2

Where E;(x) is the exponential integral function and the first equality follows by making
the substitution A = —Qh/2 (recall that @) < 0 and so this substitution preserves posi-
tivity). It is straightforward to bound 0 < Ej(z) < e*/x which allows us to conclude
that Ey(z) — 0 as x — oo. Note that g(n) = w(1/]|Q]) and so —Qf(n) — oo. Thus
the expected number of cycles in DCM of length at least g(n) is o(1). So by Markov’s

inequality, there are no such cycles with high probability.
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4.4.3 Complex Components

Lemma 4.4.5. DCM has no complex components.

We begin by defining digraphs S(a,b,c) and T'(a,b) for a,b,c € N. Let S(a,b,c) be
the digraph with a + b + ¢ — 1 vertices consisting of vertices u, v and three internally
disjoint paths. One of length a from u to v, one of length b from u to v and one of length
¢ from v to u. Let T'(a,b) be the digraph with a + b — 1 vertices consisting of two cycles,
one of length a, one of length b which intersect at a single vertex, u. We can use the
ear decomposition of a strongly connected digraph to deduce that if DCM contains any
complex components, then it contains a subgraph which is either a copy of S(a,b,c) or
a copy of T'(a,b). Note that both of these are the union of two cycles and and by the
results of the previous two sections, there are no cycles with more than g(n) vertices with
high probability. Thus we only need to show there are none of these motifs on at most
2¢g(n) vertices to deduce that there are none in DCM.

Unlike Tuczak and Seierstad [55], we must treat these cases separately as in the first
case, we have two vertices of degree 3 and the rest of degree 2 and in the second there
is one vertex of degree 4 in place of the degree 3 vertices which changes the result of
applying Lemma |4.2.1

First let us consider S(a, b, c¢). There are at most h*h! ways of finding such subgraphs
on h vertices (< h? ways of choosing path lengths connecting the two degree 3 vertices
and assuming the associated automorphism groups are all trivial gives this bound). Thus,
we may apply Lemma [4.2.1] to deduce that the expected number of such subgraphs in the

configuration model with parameters as in the statement of Theorem is at most

2g(n) nh 2g(n) h+1 2g(n)
R R* mht R Rt [* 2Q
h2h!u}1‘32p172p271 = E R*(1 + Q)h o r2e= dx
(4.21)

Where we eliminate the term 75— ) in the above in the same way as in (4.19). An integral

of the form seen in (4.21)) can be evaluated by integrating by parts twice to deduce the



following (where t > 0),

Y 2 2 2y 2y° 2
2 —tx - = -ty = =J =J < =
/Oxe s <t3+t2+t =P

16R~ Rt
m|Q[*

Thus the expected number of these subgraphs in DCM can be bounded above by —
0.

The second case is T'(a, b) where we have a degree 4 vertex. In this case there are at
most hh! such subgraphs on h vertices (< h choices of the two cycle lengths and assuming
the associated automorphism groups are all trivial gives this bound). Again we apply

Lemma to compute the expected number of such subgraphs of size at most 2¢(n)

which this time is at most

[\
[\

g(n) h g(n) h+1 2g(n)
RTA + RTA [*9 .
n hp Tt pas < T pe=h@Q < ve™ T dx (4.22)
(m)ps1r m

h=1 i (M)h m-Jo

Note we may pick either pso < ™R™A or RTA here by selecting which part of the
product d; (d; —1)d; (d} —1) to bound by A in computing ps » and so we pick the smaller
of the two. We may proceed similarly to before, integrating by parts which allows us to

bound integrals of the form found in [4.22] as

v 1 1y 1
2 —tx _ — _ —ty| — Z) < =
/O:Be 2 e <t2+t)_t2

— /‘
So, we can bound (4.22) above by fff;;‘% < 2(5;?/31;; m?/s — 0. Thus by Markov’s

inequality there are no copies of S(a,b,c) or T'(a,b) on at most 2g(n) vertices with high
probability. Combining Lemma and Lemma we deduce there are no cycles of
length at least g(n) with high probability. As any complex strongly connected digraph
contains a copy of at least one of these, we deduce that DCM contains no complex

components with high probability.
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4.4.4 Length of the kth largest cycle
Lemma 4.4.6. The kth longest cycle in DCM follows the distribution from Theorem[4.1.5

The idea now will be to apply a local coupling version of the Chen-Stein method
(see |25, Theorem 2.8]) to deduce that the number of cycles in DCM of length between
a/|Q| and g(n) converges to a Poisson distribution of mean £,. Let us start by stating

the version of the Chen-Stein method which we will apply,

Theorem 4.4.7. Let W = >"._. X; be a sum of indicator variables and let p; := E(X;).

el

For each ¢ € T', divide I\ {i} into two sets, I'{ and T'?". Define

Suppose that there exist random variables, W} and Wf defined on the same probability
space such that

LOW}Y) = L(Wi|X; =1) and L(W}) = L(W;).

7

Then,

dry(W, Po(E(W))) < min(LEW) ™) (piIE(Xi V7)) + E(X:Z) + pE|W} — Wﬂ)
i€l
(4.23)
Note that this lemma requires us to have a copy of W;|X; = 1. To create such a copy,

we will use the following lemma to couple the configuration model with itself conditioned

on the containment of a given subgraph.

Lemma 4.4.8. Let G = (AUB, E) be a balanced bipartite complete graph and let M be a
uniformly chosen random perfect matching of G. Suppose that aq,as, ..., a, are distinct
elements of A and by, by, ..., by are distinct elements of B. Then, the following procedure
gives a copy of M|(a1by, asbs, . .. axb, € M):

1. Sample an element M from M and set My = M.
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2. For each 1 <k:

o If a;b; is an edge of M;_1 set M; = M;_;.
o Otherwise, let a be the unique neighbour of b; and b, be the unique neighbour

Of a; mn Mi—l- Let Mz = (Mi—l \ {Clib,» a’bl}) U {Clibi7 G/b/}

That is My, is sampled uniformly from M|(a1by, asbhs, ..., axb, € M).

Proof. Note that it is sufficient to prove the lemma for k = 1 as if B = M|(a1by, azbs, ..., ax_1bx_1 €
M) then clearly, B|(arby € B) = M|(a1by, asbs, . .., arby € M). So, the general case fol-
lows by induction on the £ =1 case.

Now, we prove the lemma for £ = 1. To do so, we will show that each of the
(n — 1)! atoms of M|(a1b; € M) comes from precisely n atoms of M via this switching
approach. So let M be an atom of M|(a1b; € M) and let e = cd be an edge of M with
c € A,d € B. Now, consider the inverse switching, M — (M \ {ab, cd}) U {ad, bc} (note
if we chose the edge ab, then this is simply the identity M — M). Thus, for each atom
M of M|(a1by € M) there are n ways to get to an atom of M. Similarly we can show
that each atom of M is mapped to a unique element of M|(a;b; € M). Thus, as M has
the uniform distribution, so does the random variable obtained by our procedure above.

O

Note that this lemma does not allow us to generate the configuration model condi-
tioned on the existence of a subgraph specified in the usual way by the locations of its
vertices unless all of the involved vertices have in- and out-degrees at most 1. This is
due to the fact that Lemma |4.4.8| allows us to condition on which pairs of stubs are con-
nected rather than which pairs of vertices. Instead we shall condition on the existence of

principal subgraphs which we shall define as follows.

Definition 4.4.9. Let DCM be a configuration model random digraph with degree dis-
tribution (D_, D). Let M = M(DCM) be the associated perfect matching of in- and
out-stubs. A principal subgraph of DCM is an event of the form M’ C M where M’ is a

partial matching of in- and out-stubs.
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A similar notion was seen in [51] in which their canonical events are precisely the same
as our principal subgraphs. Furthermore, note that the event corresponding to a subgraph
in DCM may be written as a union of events corresponding to principal subgraphs. In
particular, the existence of the cycle vivy... v, in DCM can be written as the union
of TI5_, dpeyg(vi)dibeps(vi) events corresponding to principal cycles. For this reason, in
places where there may be some ambiguity as to whether we are dealing with principal
subgraphs or not, we shall refer to subgraphs in the usual sense as union subgraphs.

This leaves us in a setting to which we can apply Theorem [4.4.7] We shall show that
the number of cycles in DCM of lengths between «/|@Q| and g(n) is Poisson distributed
with mean &,. Let I' be the set of all principal cycles which have lengths between a/|Q)|
and g(n). For each C' € T and digraph J on the same vertex set and stubs as DCM
let Xc(J) be the indicator function that C'is a principal subgraph of J. Also, we split
['\ {C} into a set strongly dependent on C' and a set weakly dependent on C. Define the
strongly dependent set I'Z, to be the set of all principal cycles which share at least one
vertex with C. The weakly dependent set I'4 contains all of the other principal cycles,
it is the set of principal cycles which are vertex disjoint from C. Finally, we define W/,
to be W for an independent copy DCM' of the configuration model and mc to be
obtained from DCM' by applying a 4-cycle switching to each edge of C'in DCM in turn

and define Wé in the obvious way to be W for the digraph mc. That is,

We= > Xc(DCM) W = > Xo (DCMc)
Crery Crery
These variables clearly satisfy the assumptions of Theorem[d.4.7]and so we must bound the
expectations in the statement of the theorem to compute an upper bound on drv (W, Po(E(WV))).
The idea now is to reduce the whole problem to one of bounding the expected numbers
of certain subgraphs being contained in DCM, DCM’ and mc. For the remainder of

this section, we write X¢ for X¢(DCM) and pe = E(X¢) unless specified otherwise.
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We shall bound the three terms from (4.23]) one by one. First let us consider the term

=Y pcBXc+Zc)=>_ > pere (4.24)

cer CEeT C’elrg,U{C}
Note that the set, {C" € T't, U {C}} is the set of all cycles which share at least one
vertex with C'. Thus, the union of C' and C” is a strongly connected digraph (here we
allow multiple edges). In the computation of  we will use the following generalisation
of Lemma No changes are required to the proof of the lemma to generalise from

digraphs to multi-digraphs.

Lemma 4.4.10. Each strongly connected multi-digraph D with excess k may be formed

in at most 27% ways as the union of a pair of directed cycles C, and Cs.

Define = to be the set of all strongly connected multi-digraphs with vertices a subset
of V(DCM) such that all vertices have degrees d*(v) = d~(v) =1 or d™(v) =d (v) =2
with at least one vertex which has d*(v) = d~(v) = 2. Note that = is precisely the
set of multi-digraphs which can be formed as the edge disjoint union of the two cycles
C € I and " € I'},. Furthermore, note that the excess of a multi-digraph in = is
precisely the number of vertices which have d*(v) = d~(v) = 2. We let = be the set

Eh .= {F € Z||F| = h and excess(F) = k}. Moreover, for each F' € = define

H dﬁCM ; ° dDCM(”)d;(U) (4.25)

veV(F
Observe that for a given C,C’" whose union is F, t(F') is the number of pairs of principal
cycles 6, C" which are copies of the same cycles as C,C’. Thus, combining (4.25)) with

Lemma [4.4.10] allows us to bound 7 as follows,

2g(n) h

(DML I I T e (1.20)

CET C7els,u{C} a7 k=1 Fezh

Now, let AT be the set of all strongly connected labelled multi-digraphs with & vertices
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such that all vertices have degrees d*(v) = d~(v) = 1 or d(v) = d~ (v) = 2 with precisely

k vertices v such that d*(v) = d~(v) = 2. This allows us to write

Z t(F) Z Z H dpcp (v )i (v)dﬁcm(v)d;(v) (4.27)

FeEp FgAh ¢:V(F)—=V(DCM) veV (F)

Where the division by h! comes from the fact that A} distinguishes between digraphs
obtained from one-another by a permutation of the vertex set. Arguing similarly to
Lemma noting that we know the degree sequence of F' and using p11; = 2 (1+Q) <

=, we deduce that

Z H dpep (v d (v)df)&cm(v) #(©) < nhﬂ}flkﬂ% <m" Mz a1, 1
V(F)—V(DCM) veV (F)

Substituting into (4.27) and applying Lemma we find

(h+k)! h ok (hR) (2R
Zt h' k' mh:u];Z:ul]lC_ h+k 2]{7 k' mh:u’;Q:ull

Fezh

h+ k)%
< ﬁmhuézm 1- (4.28)

To finish, we note that ((m — h — k)"*) = (1 + o(1))m"** as h + k = o(m!/?), this
allows us to substitute the bound found in (4.28) into (4.26) where we deduce

< (1+o(1) 2169 209t Juz. Z Z T (4.29)

Part of the expression in (4.29) is in the form of an exponential sum. Evaluating this
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sum allows us to deduce that n = o(1).

2g(n) 2 )

2169(n) a0 ek 432g(n)2 gy 200 7k22
< +o(l)————= e ™11 < (140(1))—F——~L22 ™ = o(1).
"= W ML h; ( (1)) mpi 1 (1)

Where we deduce that this is o(1) in the same way as when we bound (4.22)).

Next we shall consider the term,

0:=Y E(XcZc)=>»_ Y  E(XcX() (4.31)
cer Cer C’elg,u{C}
So note that E(XcX¢) is the probability that both C' and C” are simultaneously present.
Furthermore, note that C' U C" is a strongly connected (not necessarily simple) digraph
with maximum degree at most 4. Thus we can use a similar strategy to the one used
to bound 7. So define © to be the set of all strongly connected multi-digraphs F' with
V(F) C V(G) and A(F) < 4. Furthermore for a,b € N, define

62717 = {F S ®||F| = h,nl’g(F) = TLQJ(F) = CL,TLZQ(F) = b}

Where we define ©f, = (). Define t(F) for F' € © in the same way as (4.25)). Then, ¢(F)
for a given construction, F' = C U C' from a pair of principal cycles, ¢(F') is again the
number of pairs of principal cycles 6, C" which are copies of the same cycles as C,(C".

Thus, if we apply Lemma [4.4.10| we get the following bound on 6,

o) b 27+ (F)
I S) SE T RN 35 3 ol DS . L B
Cer Crers, h=1% a=0 b=0 Feek,

Now, we define Ava to be the set of all strongly connected labelled multi-digraphs F' with
h vertices such that ny1(F) =h —2a — b, ny12(F) = n91(F) = a and nyo(F) = b. (Note
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Al = A}). Thus, arguing as previously,

Z Z Z H A (0) 7O g (0) ) (4.33)

Feol, FeAh F)—=V(DCM) veV (F

Again, we may argue similarly to Lemma 1| to deduce that for F' € A" b

d (v v 2a+b
Z H dpen (v dB(CM( ) 4k < m"ud M5 1 o 2#1( )
6V (F)—V (DCM) veV (F)

We can substitute this into (4.32) and apply Lemma to find

3a+2b (h+a+b)! [ h —(2a-+b)
Z t<F)§h+a+b A a,a,b mﬂ12ﬂ21ﬂ22ﬂ11
Feel,

Sa+2b_, ., h3r? -
< 3 0 alalb] M o415 113 2401, e

3a+20 1 [2h3 2h2 b
_va+t N;,2M2,1 2.2 mh (4.34)

Note that this bound is a sum of two terms due to the factor 3a + 2b in (4.34). So we
will split this bound into ¢,(F) + #,(F') in the obvious way. This allows us to bound
0 < 6, + 0, by only considering the ,(F') or t,(F) terms which will be convenient for us.
We substitute the bound from into and use that (m — h —a — b)"+e+t =

(14 o(1))m"*et? to deduce

2g(n) h h 213 a 2 b
3a 2-27°h7 g o a2 54h7 s o
Ha S (]. + O E E E F lalp] ( mlu2 - (435)
h:ﬁ a=0 b=0 L1 ’
2g(n) h h 213 a 2 b
2 2'27h,u12[1,21> (54h ,UZQ)
0, < (1+o0(1 § E § — ( e 2 4.36
( h=1& a=0 b=0 h alalbl myi M 0

Note that in both cases we can evaluate the two inner sums in terms of exponential
functions and modified Bessel functions of the first kind. However the latter of these is

a little difficult to work with, hence we will replace the ala! with (2a)! allowing us to use
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hyperbolic trigonometric functions instead. In particular, we have

29(n) h h 213 a 2 b
3 1 8 - 27°h° iy ofin,1 54h* 12 2
Ha < 1 1 _ ) ) )
<+ ))hza ;;h@a—l)!b!( my M
=157 a=0 b= )
2g(n) 2
h 2h3 54h“pg 9
— (1+o(1)162v2 3 [ 2ER21 Gy, (54, /%) e
s 1,1 1,1
3 3 216g(n)2pg,
< (1+0(1))648 Mf’“’lsmh 216 Mf”” e T (437)
my 4 myy g

Where the final inequality follows from the fact that y/z, sinh(z) and e® are all increasing

for x > 0. Bounding 8, is similar,

R h a b
2 1 8- 272h3M1 2121 54h2u2 2
0, < (1 1 - = :
esrom 3 33 b () (G
2h3 54h2u2,2
2,2 cosh (54 M1,22M2,1) o AL
ho o 11 \/ mpy
“TQ
2 3 2169(n)? o o
< (14 o)z 12z g (916 My“m ¢ (4.38)
mi1,1 mpyq

Both (4.37) and (4.38)) are o(1) which follows from the facts that

2 3
g(n) K22 50 and g(n) H1,2H21

5 — 0.
mpiyn My

The first of which we showed in (4.30) and the latter follows directly from the assumption

that g(n)® = o). Hence 6 = o(1). Finally, we will bound the terms,

ke = E[W,L — WY, (4.39)
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We note that unlike in bounding 1 and 6 we will not need to look at the sum over C' € I’
in computing the bound. This is due to the fact that ko depends on a much more global
structure than the terms pcE(X¢ 4+ Z¢) and E(X¢Z¢). For the bounding of k¢, the first
thing to observe is that due to the choice of coupling and T'S, we have W > W2, This
is because all of the edges which are removed by the switchings are incident to a vertex
of C' and therefore none of the principal cycles containing these edges are in I' which
are the cycles contributing to W2 > WA. This enables us to bound k¢ by computing the
number of expected cycles from ', which are added by the switchings.

In order to add a cycle C” with the switchings over 4-cycles which produce mc

from DCM the following must be true for some £,
e All but k£ edges of ¢’ must be present in DCM.
e k of the edges of C' must add these edges after applying the switching.

Now let us compute the probability that this event comes to pass. So let us fix k£ edges
missing from C’ which we match up with & of the edges of C' which will be used to add
them when we apply the switching. So if one such edge is e = uv and this is matched
with ¢ = u/v/, in order for the switching to add e, before switching we must have edges
wv’ and u'v present in G (note that because the edges are directed we do not need to
consider the alternate switching using wu’ and vv’ like we would if working with graphs).
Hence in total there are |C’| + k edges which we must find in DCM before switching in
order that C' is a cycle of mc. The probability we find these edges is ((m)|cr+) "
Now, let us count how many such structures there are which produce the same union
cycle as C’. As C'is a principal cycle, we know exactly which stubs we use for it and so
there is no contribution to the number of copies from vertices of C. However there are
d*(u)d™ (v) switchings which add the union edge uv and so the number of ways in which

the switching structure with a union cycle which is that of C’ can be found is

I ¢ @dtw).

veV (C")
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Thus for any fixed set of missing edges for the union cycle with the same edges as C’ and
choice of edges from C' with which we add these edges, the expected number of additional

principal cycles after the switchings is

1

e d~(v)d*(v). (4.40)
(m) |k eV

There are (‘i') ways to pick the edges of C' which we switch over to add the missing edges
of C'. Also there are ('i,‘) ways to pick the missing edges of C’ and k! ways to assign
edges of C' to missing edges of C’. Thus, when we sum over principal cycles C’, missing
edges of C' and C" and matchings of the missing edges, we find the expected number of

such structures is at most

1 IC1\ (R k! 3
E|WL — Wi < - ( )()— d-(v)dt(v). (4.41
LS EDVED I S D 113 el | IACLACRD
e T == v

Applying standard bounds on binomial coefficients and falling factorials and taking ver-
tices from V(G) for |C’| with replacement rather than without allows us to bound (4.41])

as follows

(n)

|C|khk 1
E|WL — WA < (1+o(1 Z 1+ Q)"
=1a1
9(71) e\C\h 1
<(1 1 _—
<o) Y S
=
o(n)? 2g(n)?
< LI (e(nf — 1) < 29()°1QI _ o(1). (4.42)
« am
Where we note that g(n)?/m < 1 allows us to use the bound e* — 1 < 2z in (4.42)).
So ke < kK = o(l) for all C where Kk = 29(23??;'@‘. Finally, note that this implies

Y cerPokc < KE(W). We subsequently show that E(W) < &, + o(1) from which it

follows that ) .. pokc = o(1) as &, is a constant independent of n. Using this and the
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fact that 1,6 = o(1), we conclude that

dy (W, Po(E(W))) = o(1).

Note that W is the number of cycles of DCM of length between o/|Q| and g(n). By Lemmal[d.4.1]
and Lemma the probability that there are any longer cycles is o(1). Thus, if
W’ is the number of cycles of DCM of length at least o/|Q|, drv(W’, Po(E(W))) =
dry(W, Po(E(W))) + o(1) = o(1). To show that the mean of the corresponding Pois-
son distribution can be taken to be &, note that dpv(Po(\), Po(u)) < |A — p| holds for
all \, u > 0. This follows from coupling Bin(n, A\/n) and Bin(n, u/n) by coupling their
constituent Bernoulli trials and noting that dpv(Bin(n, A/n), Po()\)) = 0,(1). Thus it
suffices to show that E(W) = ¢, + o(1). Note that W is the number of cycles in DCM of
lengths between o/|@Q| and g(n). Thus upper bounding E(W) may be done in the same
way as the proof of Lemma However, we can be more careful than we are in (4.20)

as in this case 2h?/m = o(1), so this line can be replaced by

9 h+2 90 hQo(n) 00 ,hQ 50 oA
< < (1 1 —dh = (1 1 —d\ =&, 1).
L > < () | Grdn = (o) [ Smdn = o)
h:@ h:@ QI

(4.43)
Next, we lower bound E(W) by &, — o(1). In order to do this we will use Lemma [4.2.2]

in combination with the inequality

1—a> e for g <

[\:>|>—l

This allows us to deduce that the probability of finding a cycle of length between «o//|Q)|

and g(n) is at least

g; ( )% (1 B 2}552) (1 - Z—f) 2 5 wdmﬂ;) (4.44)
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Now, that the exponent in the above is equal to hQ) — o(1) follows from the assumption

g(n) = o(1/|Q*). Thus in analogy with (4.43), we deduce that (4.44) is at most

=

g(n oh@—o(1) % ,hQ 00 o=
(14 0(1)) > (1—0(1))/ Cdh = (1—0(1>>/ Cih =g o))

h= Q

Q

o

(4.45)

Combining (4.43)) and (4.45)) we deduce that E(WW) = &, + o(1) as required.

4.4.5 Putting it all together

We can deduce the statement of the theorem from the previous sections as follows. First
we apply Lemma Lemma[4.4.4] and Lemma to deduce there are no cycles with
length at least w(1/|Q|) or complex components. Then, we can apply Lemma to
deduce that the distribution of the number of cycles with at least o/|Q| vertices converges

to a Poisson distribution with mean &, from which the statement that

k=1 .
P (|Ck| > %) =1- Z,—ae*&“ +o(1)

follows immediately as the above is simply the probability that a Poisson(&,) distribution

is at least k (plus the o(1) term).

4.5 Concluding Remarks

In this chapter, we showed that the largest component of the directed configuration
model is of order |Q|™! when nQ?*(R™R") — —oo and found the distribution of the size
of the kth largest component for any k. In a subsequent work [14] we shall show that
under similar conditions to those in this chapter that for degree sequences such that
n@Q*(R"R*)™' — oo the largest component is of order n@Q?(R™R™)~!. This quantity
matches the 1/|Q| we find in this chapter if n|Q]*(R"RT)™' — ¢ for some constant ¢

and suggests that one may find a critical window phenomenon for degree sequences with
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such parameters. Note that in particular this is precisely the critical window of D(n,p)
(looking at typical degree sequences from the model D(n,p)). Moreover, the recent result
of Donderwinkel and Xie certainly seems to indicate that the point (Q = 0 lies inside a
critical window.

An interesting question for further study would be to ask about the joint distribution
of the largest strongly connected components in the directed configuration model with

parameters as in this chapter. The fact that we find

o k—1 ¢
11»(|ck\ > @> —1- Z:; et o(1)

seems rather suggestive of an underlying Poisson process. As such we make the following

conjecture.

Conjecture 4.5.1. Let DCM be a directed configuration model with parameters as
in Theorem [4.1.3] and suppose the sizes of its components in descending order are given
by the random variables Z; > Z, > .... Suppose further that X; < X5, < ... are the

points of a Poisson process of rate 1 and Y; > Y5 > ... are the unique positive solutions

Xi = / ¢ dx.
Y; X

to

Then we have that

(1Q|Z1,|Q|Zs, . ..) = (Y1,Ys,...) as n — oc.

Note that the above is also an open question for D(n, p) with p = (1—¢)/n and € — 0,

e3n — oo.
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CHAPTER 5

WEAK COMPONENTS OF THE DIRECTED
CONFIGURATION MODEL

5.1 Introduction

The study of the component structure of random graphs with given degrees, and in
particular of the configuration model (CM), was pioneered by the work of Molloy and
Reed [58], who provided a criterion to determine if a degree sequence typically produces
a linear order connected component (known as the giant) or its largest component has
sublinear order. Since then, it has become one of the central topics in random graph
theory [8] 28|, 35l 43, [45] 59).

Directed models are much less understood. A strongly connected component (SCC) of
a directed graph is a maximal sub-digraph in which there exists a directed path between
any ordered pair of nodes. Newman, Strogatz and Watts [64] initiated the study of the
directed configuration model (DCM), and located the threshold for the existence of a giant
scc. Later, Cooper and Frieze [I3| provided a rigorous proof for the existence of such
threshold under certain conditions of the degree sequence. This problem has been recently
revisited by the first and the third author [11], extending the range of applicability of the
result. The component structure of the directed Erd6s Rényi model and of other random
directed graphs has been extensively studied [12] 15 [47, B3].

A weakly connected component (WCC) of a directed graph is a maximal sub-digraph
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in which there exists an path from every node to every other node. wCCs naturally arise
in areas such as epidemiology [26], data mining [48] or communication networks [10]. In
the physics community, the study of weakly connected components has been neglected
under the assumption that it effectively behaves like the undirected case (see, e.g., [64]).
Kryven [49] observed that this assumption is wrong and predicted an alternative threshold
for the appearance of the giant wcc, supported with an analytical but non-rigorous
approach based on generating functions for bounded bi-degree distributions. The aim of
this chapter is to provide a formal proof for the existence of the giant wccC threshold in
the directed configuration model under the much weaker assumption of bounded second
moments.

Let [n] == {1,...,n} be a set of n vertices. Let d, = ((dy,d}),...,(d;,d)) be

n’»’’n

a bi-degree sequence with m,, = >, df = >, di. Let A, = maxiep{d;, d }.
The directed configuration model (DcM), DCM = DCM(d,), is the random directed
multigraph on vertex set [n] generated by assigning d; in half-edges (heads) and d; out
half-edges (tails) to vertex ¢, and then choosing a uniformly random matching between the
set of heads and the set of tails. Let ng, == {i: (d;,d]) = (k,0)}. Let D, = (D,;, D;}) be

[

the degree pair of a vertex chosen uniformly at random, that is P (D,, = (k,{)) = ng¢/n.

Let (d,),>1 be a sequence of bi-degree sequences. Unless specified otherwise, we will

consider sequences that satisfy the following:

Condition 5.1.1. There exists a discrete probability distribution D = (D=, D) on Z2,

with Ay =P (D = (k,{)) such that we have:

(i) convergence in distribution:

lim “&¢ — Mg, for every k,l € Zso; (5.1)

n—oo N

(ii) convergence of expected values:

lim E[D;] = lim E[D] = E[D"] = E[D*] = X € (0, 0); (5.2)

n—oo n—oo

119



(iii) convergence of second moments: letting (z), = z(x — 1)...(x — a + 1), for all

1,7€ Nand 1+ 5 = 2,

lim E[(D;,):(D3);] = E(D)(DV);] = iy € (0, 00), (5.3)

n—00

Define the in- and out-size biased distributions of D, denoted by D;, and D, respec-

tively, by
kX D)
P(Dy = (k—1,0) = A’“ﬁ P (Dows = (k, 0 — 1)) = A’“. (5.4)
Consider the random matrix
Do_ut Dg_ut

(1]
I
ot
&

Dy D

where D, and D;, are independent. [Condition 5.1.1| implies that = has a finite mean

matrix

1 | H11 Hoz2

H20 Hi11

with largest eigenvalue

1
P= (11,1 + /B2ofto2) - (5.7)

Let q = (¢—, q+) be the extinction probability vector of a 2-type branching process with
offspring =.

Let W, be the largest wcc in DCM. (If there is more than one such wcc, we choose
an arbitrary one among them as W,,.) Let v(W,) and e(W,,) be the number of vertices
and edges in W, respectively. Our main result is that the existence of a giant wcc

undergoes a phase transition at p = 1:
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Theorem 5.1.2. Suppose that (d,),>1 satisfies|Condition 5.1.1, If p > 1, then

v(Wh) N eWy)

€ (0,1], and — ¢ € (0, ], (5.8)

wn probability, where

= Mel=d"dh), and (= kel —d"d}) = Y Ol — ¢t }). (5.9)

k>0 k>0 k,£>0

If p <1, then

— 0, (5.10)
in probability.

Remark 5.1.3 (Comparison with strongly connected components). The scc’s of DCM

have been studied in [I1} 3] under Condition 5.1.1} Denote by S,, the largest scc. Then,

if M1 > >\7

U(S — Msce = Z Aie(1 — " )(1— 7“_,_) (5.11)

k,£>0
where r_ and r, are extinction probabilities of branching processes with offspring distri-

butions D, and D; respectively. If y; 1 < A, then

— 0, (5.12)

for any a(n) — oo as n — oo. So, the existence of a giant SCC undergoes a phase
transition at p;; = A

Our results combined with and indicate that the “separation” between
the thresholds for the appearance of a wCC and a sccC giant in DCM is solely determined
by the second moments of the marginals of the bi-degree distribution, and independent
from the correlation between in- and out-degrees. A formal way to state it is through
bond percolation. For any p = p(n) € [0,1], denote by DCMP(&R) the p-percolated

directed configuration model obtained by sampling D(CI\\/JI((L) and independently retain
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every directed edge with probability p. Given a degree sequence &n, we define its p-
thinned version &ﬁ as the random degree sequence where the degree D of a uniformly

random vertex satisfies

p(0; = () =3 () ({)rH 1= 08 (0, = (@)

a>k
b>4

It is easy to show that ]DD(CMp(an) is distributed in law as DCM(d?), where d? is condi-
tioned on having the same number of heads and tails (for an undirected analogue of this
result, see e.g. Lemma 3.2 in [27]).

Define pgo = ,/ﬁ and pyee = \/1/p = 4 /W#W’ and note that pyee < Psoc.

Combining the previous results, we have the following two-point threshold phenomenon:
e if p € [0, pwee): with high probability (whp) no a giant wcc exists.
e if p € (Pwee, Pscc): Whp a giant WCC, but no giant SCC exists;
e if p € (psce, 1]: whp a giant SCC exists;

So, for all degree sequences, there is a non-trivial regime where typically we see a giant

wcc but no giant scc. If d,, satisfies p1; = A, then pycc does not depend on the

in- /out-degree correlation, formalising the separation intuition given above.

Remark 5.1.4 (The Community Configuration Model). Motivated by the presence of
clustering in real-world complex networks, recently the Borgs et al. have introduced the
community configuration model (ccMm) [9 68|, extending the Coloured Configuration
Model of Kryven [4, 50]. In the ccMm, each half-edge is assigned a colour in [k], and a

permutation matrix of size k x k provides the rules for matching the colours. The DCM

01
can be seen as a particular case of the CCM with £ = 2 and permutation matrix

10

In an upcoming work, we will study the component structure of the CCM in the general

setting.
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Remark 5.1.5 (Conditions on degree sequences). [[heorem 5.1.2|fails for sequences with

infinite second moment. For instance, let A = n'/?*¢ for € > 0 and consider the degree
sequence with one vertex with degrees (A,0) and all other vertices with degrees (1,0)
or (0,1). Then the largest eigenvalue of the mean matrix M, defined in (5.51)) satisfies

pn — 00 but clearly the largest Wcc has order O(n'/%¢).

Under|Condition 5.1.1} [Theorem 5.1.2|can be transferred to simple random digraphs [5].

If the second moments diverge, then the probability that the DCM is simple goes to 0 as

n — oo and a different approach is needed to obtain results in the simple setting.

5.2 Multitype branching processes

Fix p € N. We write 0 and 1 for the all zeros and all ones row vectors of length p,
respectively. Let e, be 0 with the a-th component changed to 1. For any w € R, we
write w = wl. For any two vectors x,y, we write x < y (or x <y) to denote that x is
less (or less or equal) than y in each component, and x £ y (or x £ y) otherwise. Let
E = (&;) be a random p X p matrix with entries in Zs( in which rows are independent.

Let (2(m;t)))m>1.4>0 be independent and identically distributed (iid) copies of Z. Let

z = (z1,...,2p). For i € [p], define the generating function
&ij
hi(z) = Y P(Mepdéi =k} [] 57 (5.13)
1, kp>0 J€lp]

and h(z) = (hi(2), ..., hy(2)).

Denote by m;; = 3—2(1) = E[¢;] and by M = (m; ;) the mean matrix. We say that
M is finite if m; ; < oo for all 4, j. We say that M is irreducible if for every pair 4, j there
exists t € N such that (M?);; > 0. Let p be the largest eigenvalue of M. Let u and v
be the right and left eigenvectors of M of eigenvalue p with the convention that vu' =1

and ul’ = 1.

A p-type branching process starting at a € [p] with offspring distribution = is a
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stochastic process

(XO(t) = (X[, .., X (0)rso, (5.14)
defined as follows:
]—a:' (t = 0)
xPm=4"
XY (t—1
Zie[p] Zm;1(t )fz‘j (m;t—1) (t>1)
Note that
E[X@(t)] = e, M" (5.15)

We call a process irreducible if its mean matrix is irreducible.

If X(@(¢) # 0 for all ¢ € N, then the branching process is said to survive; otherwise,
it is said to become extinct. Let s =P (Nyo{X@(t) # 0}) and ¢! =1 — 5. Write
s=(sM, ..., s®)and q=(¢M,...,¢P)=1—s.

We will use the following results about p-type branching processes:

Lemma 5.2.1 (Theorem VIIL.3.2 in [3]). Suppose M is finite, irreducible and non-

singular. Then,

i)ifp<l,q=1;
i) if p>1, q <1 and q is the only solution of h(z) = z with q < 1.

Lemma 5.2.2 (Theorem 2.1 in [38]). Suppose that M s finite, strictly positive and

nonsingular, and p > 1. Then there exists a sequence 7y, with
. 1yt _ -1
i () /5 = p™, (5.16)
and non-negative random variables W'® for a € [p] such that

lim 7, X (t) = W@y, (5.17)

t—o00
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in probability. Moreover, W) is absolutely continuous in (0,00) and P (W(a) = 0) = ¢,

Remark 5.2.3. Note that the normalising sequence 7, is independent of the starting

type.

5.2.1 Supercritical processes conditional on extinction

In this section we study supercritical multitype branching processes conditional on ex-
tinction. Supercritical branching processes conditional on extinction are still branching
processes [39] and we now describe the relevant parameters.

Let Ext, denote the extinction event with an initial particle of type a; i.e., lim,_,o, X(@(t) =
0. We denote by Ext the extinction event, regardless of the initial type. Let If”() =
P(- | Ext). In order not to condition on an event of probability zero, we will impose
q > 0 throughout the section.

The conditioned process with law P () is a subcritical irreducible branching process

X (@) (t) with offspring = that has generating function
h(z) = q 'h(qz) (5.18)
where we slightly abuse the notations by letting

qat=1/¢W,. . . 1/¢"), and qz = (¢WzV . PP, (5.19)

Let M be the mean matrix of the process, which can be explicitly computed as follows:

) Oh.,
q i
= —(q). 5.20
m; ; g 0z, (q) ( )
Let p < 1 be the largest eigenvalue of M.

We first prove the following result on supercritical p-type processes that do neither

grow quickly nor become extinct.
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Theorem 5.2.4. Fizp € N and a € [p]. Let (X9 (t));>0 be an irreducible p-type branch-

ing process with offspring distribution = and mean matriz M with p € (1,00) and q > 0.

Let v, be the normalising sequence in and define t, = inf{t > 0: ()" >

w for all t' > t}. Then there exist constants ¢,C > 0 depending on = such that
cp' <P (NI4[0# XW6) <w]) <Cpt,  forallt> 1w >t (5.21)

Proof. First we shall prove the upper bound. It suffices bound from above the probability
that X(®(¢) < w conditional on X(®(t) # 0. Define rl® =P (X@(t) < w | X@(t) £ 0)
and r, = (1)aep. Let YO(t) := > il X}a) (t) be the random variable which tracks
the total size of the ¢-th generation. Now, by definition of ¢, and absolute continuity of

Wi,

P (X@(t,) £ w | XW(t,) #0) > P (Y (t,) > pw | XD (t) £ 0) (5.22)
> P (Y (ty) > pw)
>P(Y(t) > ply,) ™)
>P (p(e,) " < YO(t) < 2p(7e,) ) >, (5.23)

where i > 0. So ¥ < 1—¢{” and r, < 1.

We claim that rt(a) decreases exponentially in ¢ with base approximately p, for ¢t > ¢,,.
Define r{™™) = MaX,e(p] r{”. Let Z@(t) < X@(1) be the vector giving the number
of children of the initial particle that have progeny in the ¢-th generation, and write

A9(t) = 32 Z1(t). The following holds,

r® <SP (ZO() = e | 29(t) > 0) r? + P (A1) > 2| 29(1) > 0) ()2
J€lp]
(5.24)

Indeed, either there is only one child of the initial particle with surviving progeny at the
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t-th generation and the probability that a child with type j has surviving progeny is 7“{_1,
or there are at least two children, each having probability of surviving progeny at most
rffx) independently from each other.

Let o, == (P (2“(t) > 2| 2(9(t) > 0))qaep be the probability vector of having at least
two children with progeny at time ¢. Moreover, define the matrix M(t) = (1;4(t)) by
letting M q, (t) == P (Z@(t) = e; | 2 (t) > 0). Then, we can write (5.24) in matrix form

as

r, <1 M(t) + (1™, . (5.25)

Asr;, <1, r; decreases in t. Thus to bound the growth rate of the vector r; it suffices to
bound the entries of M(t). Define s§“) :=P (29 (t) > 0) to be the probability the process
survives up to time ¢ and note that sﬁ‘” =1— he(1 —s;). Recall that Ext, denotes the
extinction event with initial particle of type a. The probability of the survival at time ¢

satisfies the following,

s@ < s\ =P (Ext) + P (2 (t) > 0, Ext,)
= s + (1 - s“HP (29(¢) > 0 | Ext,)

< 5@ 4 (1 —s@)pt (5.26)

where the final inequality follows by Markov’s inequality and the fact that p is the leading
cigenvalue of M as defined in (5.20).

If we condition on X(® (1), the events “a given particle z on the first generation has
progeny at time t” are mutually independent each happening with probability sg)h where
j is the type of . Therefore, Z(¥)(t) is the s,_;-thinned version of X(®(1) (that is; for
each j € [p], we consider that each children of the initial particle counted by X J(»a)(l) is
also counted by ZJ(“) (t) independently with probability si{)l) and so,

P (Z@(t) = e;) s, Ohg

Mja(t) =P (ZW ) =e; | 29(t) > 0) = PLO0 S 0) — 4@ 0, (1—s1) (5.27)
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Using the multivariable Taylor expansion and ({5.26)), we have

Oh,
aZj

Oh,
azj

(1 —si1) = S —=(1—5)+0(p").

Substituting it into (5.27) and using (5.26)) again allows us to deduce that

5@ Oh,,

_ @8_%(1 —s)+ 0(p) (5.28)

Mj.q
Recall the definition of M in (5.20), and observe that M(t) = PMP~' + O(p').J, where
P is a diagonal matrix with entries p,, = ¢(¥/s(® and J is the all-ones matrix. Thus
the asymptotic behaviour of the eigenvalues of M (t) is the same as the ones of M. In
particular its largest eigenvalue is p(14+O(p")). So, by (5.25)) the vector r; has exponential

growth rate at most p(1 4+ O(p")) as t goes to infinity, so
t
r, <r g [+ 00 < i,
i=t.,

concluding the proof of the upper bound.

Next, we give a proof of the claimed lower bound. For i € [t], let X(@ (i) < X(®(4) be
the subprocess of the elements that have some surviving progeny. For the lower bound,

consider the following events:
EY = [X@1)1T =1],  EY =[N0 #XD4) < w]]. (5.29)

In words, EYI) is the event that, starting with an individual of type a, at time ¢ there is
exactly one particle that has surviving progeny.
Instead of bounding from below the probability of Eéa), we will give a lower bound

for the probability of E@ = E 0 E. Write
P(E®) =P (E@) P (E§“> | Ef‘”) . (5.30)
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We start by computing P (Efa)). Conditioning on that an element of X()(4) belongs
to X(“)(i) is equivalent to conditioning on that the progeny of at least one of its children
survives. So, conditional on X (@ () surviving, X(® (4) is a branching process with offspring

distribution = = (€,), the s-thinned version of Z, conditioned on being non-zero. Similarly

to before, let m;, =P (&, =e; | Ext;) =P (éa = ej>. So, as in (5.28]),

Myja =

and M = (M) = PMP~! has largest eigenvector p. We can conclude that

P (Ef“)) —P (Extg, N, [X@ ()17 = 1]) = s@e, N1'1T (5.31)

Note that M is irreducible and hence so is M. By the Perron-Frobenius theorem, the
largest eigenvalue, j of M is simple and has associated left eigenvector ¥, that is positive

and satisfies ¥,17 = 1. Moreover, there exist o/ > 0 and 6](-@) such that we may write
p
€, = a(a)vl + Zﬁ]('a)vj 5
j=2

where the v; extend v; to an orthogonal basis. Thus if A, is the second largest eigenvalue

of M (in absolute value), |\s| < p < 1 and we have

k
eaMtlT — Oé(a)pAti"/,llT + Zﬁj(a){}]Mt]-T
7j=2

k
SR
j=2

= (1+0((|Al/p)"))ap" . (5.32)

— Oé(a)ﬁt:i: |>\2|t

We may deduce from (5.31)) that P (E@) > (14 0(1))s@al®pt,
When we condition on Efa), the tree is a spine ug, uy,...,u; of length ¢ where we

attach at independent p-type branching processes to each w;. For i € [t], and if a and
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j are the types of u; and wu;,1 respectively, the process attached to u; is constructed as
follows: (i) the root w; has offspring distribution &, — e; conditional on &, > e;, and (ii)
any other particle has offspring distribution =. Note that the number of children of u; is
stochastically dominated by 1 + &,17, so it has finite expectation and variance; we will
use it in the computations below.

By Markov’s inequality, from (5.32)) we can deduce that for i € [¢],

i—1 i—1 i—1

E(X@ ()17 | EY) = 1+0(1) Y EX@(@)17) = 140(1) Y e 117 < 143 0(5) = 0(1) ,

=0 =0 =0

where the first term O(1) accounts for the expected number of children of each element

of the spine.

Let C@(t) = (%, (1)) where ¢\ = E[X ()X ¥ (t)], denote the second moment

J132 J1J2 J1 J2

matrix of X(@(¢). In particular C®(0) = e] e, and C® (1) is the second moment matrix

of £,. We can write (see e.g. (4.3) in Harris [34])

C@(i) = (MTYCOO)M + Y (M)~ [ Y Var(§)E[X " (@ —1)] | M
z=1 J€lp]

We will estimate 1C®(7)17. The first part can be simplified using (5.32)

LM TYC@(0)MT = (e, M 17T (e, M1T) = O(p*)

and writing Var,..= = max; ;, ;,(Var(€;));, ;, each term of the second part is

Var( £ X(a x—1 Mi=21T = O(p® Ml r1h’ Var( 5 ]\/[i_””lT
J J
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Thus, we can bound the variance
Var(X@(1)17) < 1C@ ()17 = O(p Varpn=)
and compute the variance of the conditional process
Var(X@ ()17 | B\ Z\/ar 17) = O(Vargma=Z) = O(1) |

The first term O(1) comes from the offspring variance of the root in the spine, and the
last equality follows from the fact that the tensor Var(Z) can be computed as a function
of h and its derivatives evaluated at q < 1 and h has radius of convergence at least 1, so
Varmaxé < 00.

By Chebyshev’s inequality and the choice of w > ¢,

P <(E< E(a) ZP< (17 > w| E<a) zt: Var(X@ ()17 | E(”) _ 0t/u)

w2
=1
(5.33)
Thus, we can conclude that
P (E(“)) > (14 0(1))s@Da @ pt > ¢pt | (5.34)
for some ¢ > 0, which concludes the proof of the theorem. O

We will use the previous theorem to prove the following.

Lemma 5.2.5. For a € [p], let (X9 (t));>0 be an irreducible p-type branching process

with offspring distribution & and mean matriz M with p € (1,00). Let

T\ = inf{t : X9(t) £ w}. (5.35)

w
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Then for all e > 0 and as w — oo, and letting t, = (1 + ¢) log,w
P (T <t;) = 1—q, (5.36)

and

P (T € (t1,00)) — 0. (5.37)

Proof. We first prove (5.37). By[Theorem 5.2.4] there exist constants C' > 0 and p € (0,1)

such that for all € > 0,

P (Toga) c (tlu OO)) < P (ﬂ?:l[O 7& X(a)<i) < w]) < Cﬁ(1+e)logpw7(1+o(l))logpwfl _ 0(1)’
(5.38)
where we used that ¢, = (1+0(1))% = (14+0(1))log,w, by (5.16) and the definition of

log p

t,,- Note that [Theorem 5.2.4] can only be applied if q > 0, however this is only necessary

for the lower bound, not the upper one.

To prove ((5.306)) it suffices to show that P (TUS“) > tl) — ¢, and by (5.38), we have

P (T > t) ([T > 6] N [X@(t) = 0]) + P ([T > ] N[0 # XD (t)) < w])

P
P ([T > ] N [X@ () = 0]) + P (N1, [0 # X (4) < w])
P

([T > t] N [X@(t1) = 0]) + o(1). (5.39)

Let Y@(t) = S0 X@(4)17 be the total progeny up to time . Recall that Ext,
is the event that X(® becomes extinct eventually, i.e. lim; . Y@ (t) < co. If ¢ =

P (Ext,) = 0, then (5.39) is o(1) and we are done. So let us assume that ¢/ > 0. Then

P ([T > )N [X9(t) =0]) <P ([Y@(t) <p(l+t)w] N[XD(t) = 0])
<P(YO(t) <p(1+t)w | Ext,) P (Ext,)

— P (Bxt,) = ¢, (5.40)
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since the supercritical branching process conditioned on becoming extinct is a subcritical
process and so it has finite total progeny a.s. [76] and w — oc.

To lower bound (5.39), note that Y(®(¢) < w implies T4 > ¢. Thus,

P ([TLE“) >t N[X@(t) = O]) > P ([Y(a)(tl) <w]N[X9(t) = 0])
=P (Y9t) <w) -P(YH) <w]N[XD(H)#0]).
(5.41)
Using again the finite progeny argument, we have that
P (Y(“) (t) <w)>P (Y(“) (t1) <w | Ext,) P (Ext,) = P (Ext,) = q\. (5.42)

oz~
We will use |[Lemma 5.2.2|to conclude. By (.16]), we have that ¢; > (1 —1—6/2)1 210 5o

logp ?

()7t > pl=</2t > y1+</2 Moreover, the chosen left eigenvector v is positive. Recall

that t; = t;(w). For all 6 > 0 and by (5.17)

m P (Y 9(t) <w | X9(t) #0) < lim P(X9(t) <w | X9(t) #0)

w—00 w—00
i B (0 #£X@(t) < w)
T b P(X@(4) £ 0)
(a)
<IP’(0;£W v < 61) |
- 1— q(‘l)

Since § > 0 is arbitrary and W is absolutely continuous in (0, 00), we have

P (Y () <w| X (t) #0) = 0. (5.43)

Putting (5.43) and (5.42) into (5.41]), and then putting it together with (5.40) into (5.39)),

gives the desired lower bound. U

The previous result can be generalized to multiple iid branching processes.
Corollary 5.2.6. Let d = (dy,...,d,) € Z% and {X@(t,1),...,X@(t,d,)}acpy be a
collection of mutually independent irreducible p-type branching processes with offspring
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distribution = and mean matriz M with p € (1, 00).

Let
7@ = inf{t: Y S XOt,d) # w}. (5.44)
!

a€lp] d€[d,

Then for all e > 0 and w — oo, and letting t; = (1 +¢€) log,w

P (TS <) — 1= [ (g™ (5.45)
a€lp]
and
P (T € (t1,00)) — 0. (5.46)

Proof. For a € [p| and d € [d,], let TS”(d) be the stopping time defined in (5.35) for

X(@(t,d). By [Lemma 5.2.5

P (TSY > t1) <P (Nacp) Nacian {T57(d) > t1})

=II I] P(@") > t:)

a€lp] deldq]

— H (q(a) )da s
a€(p]

and, writing D = d,, w =%, s0log, W =log,w— O(1), we have
a€lp] D 4 4

P (Tu()d) > tl) >P (ﬁae[p] Ndelda] {Tu(j)(d) > t1}>

~TI I <T£f‘)(d) > tl)

a€lp] d€[dq)

- [T @)™
aclp

This proves the first part of the lemma, the second part can be proven analogously

using ((5.37)). O
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5.3 Exploring the weak component

We will use a breath-first search (BFS) digraph exploration process on the weak compo-
nents of DCM starting at a vertex v € [n]. This is equivalent to the usual BFS process
on the graph obtained by removing the directions of the edges in DCML.

For Z C [n], let ££(Z) be the set of heads/tails incident to the nodes in Z. Let £* =
EX([n]). For £ C &%, let V(&) be the set of nodes incident to £; we use V(e) = V({e}).
Let H be a partial pairing of half edges in £*. Let PE(H) C £* be the set of heads//tails
which are paired in H. Let V(H) = V(P*(H)). Let FX(H) = EX(V(H)) \ P*(H) be
the unpaired heads/tails which are incident to V(H). Let Ey denote the event that H is
a subgraph of DCM. We will explore the graph conditioning on Ey.

We start from an arbitrary vertex v € [n] \ V(H). In this process, we create random
pairings of half-edges one by one and keep each half-edge in exactly one of the four
states — active, paired, fatal or undiscovered. Let AF, P, FF and UF denote the
set of heads/tails in the four states respectively after the i-th pairing of half-edges, and
A; = A7 U AF. Initially, let

Ay = E5({v}), Py =PH(H), Fo = F*(H), Uy = EX\ (A7 UPy UF).  (5.47)

Then set © = 1 and proceed as follows:

(i) Let ef be one of the half-edges that became active earliest in A;_; with x € {—,+}

and let § € {—, +}\ {x}.

(ii) Pair e with a half-edge f* chosen uniformly at random from £\ P% . Let P* =

Py U{er} and Pf =PL, U {ff}.

(i) If f* € F.,, then terminate; otherwise if f* € A’ |, then A* = A* , \ {e’}
and A* = A"\ {f'}; and if ff € U*,, then A7 = (A7, UE*(v;)) \ {e} and
Ab = (AL UE () \ { [}, where v; = V(f}).

2
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(iv) If A;= () terminate; otherwise, Fi* =F;" |, UF=EF\ (AFUPFUFF),i=i+1and

go to (i).

Let F,(0) be a rooted forest composed of |£~(v)|+|ET (v)] isolated nodes (called roots)
corresponding to the half-edges incident to v. Given F,(i — 1), F,(i) is constructed as
follows: if f* € U’ |, then construct F,(i) from F,(i — 1) by adding |E%(v;) \ {f*}| child
nodes to the node representing e}, each of which represents a half-edge incident to v;
different from f7; otherwise, let F,(i) = F,(i—1). For each e € ££(v), we denote by F,(i)
the tree corresponding to e at time i. We assign two labels to each non-root node. First,
we assign the label head if the node corresponded to a head in £, and tail otherwise.
Second, as all nodes correspond to the half-edges in (P \ Py) U.AF, we assign the label
active or paired accordingly.

If 2; is the last step where a half-edge at undirected distance t from v is paired, then
F,(i;) satisfies: (i) the height is ¢, as a rooted forest; (ii) the set of actives nodes is the
t-th level. We call a rooted forest F' incomplete if it satisfies (i)-(ii). We let p(F') be the

number of paired nodes in F.

5.3.1 Size biased distributions

We recall some notation in [II]. The in- and out-size biased distributions of D,, and D

are defined by

P((Dn)ln = (k - 1>£)) = mn7 ) P((Dn>out = (k,ﬁ - 1)) = mn7 ’ (548)
P (D= (k—1.0) = 5L B(Dy = (k0 — 1)) = D2 (5.49)

Then, by (i) of [Condition 5.1.1} (D) — Di, and (Dy)out — Dot in distribution.

Consider the sequence of random matrices (Z,,),>0, defined by
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Dncju Dng_u
= _ [P (D 550

(Dn)in (Dn)ii
with mean matrix

1 (E[D; D] E[(D;)? )
A El(D;)2 E[D; D]

having largest eigenvalue p,, and largest left eigenvalue v,,, with the usual convention. Let

a» = (q,,q") be the extinction probability vector for the 2-type process with offspring

—_
—

—in

By [Condition 5.1.1} we have

(i) =, converges in distribution to = as defined in (5.5));
(ii) M, converges to M as defined in (5.6)) and both are finite and irreducible;
(iii) pn converges to p, the largest eigenvalue of M;

(iv) q, = (g, ,q}) converges to q = (¢, q"), the extinction probability vector for the

2-type process with offspring =.

Moreover, both M,, and M are finite and irreducible.

5.3.2 Coupling with branching processes

We will define two new sequences =! and =} that, asymptotically, will stochastically

dominate and be stochastically dominated by =,,. This will allow to couple the digraph
exploration process with the 2-type branching processes defined in

11 T12

Write X = and Z = the zero matrix. Let 2yax = maxi<; j<o{®;;}.
Ta1 T2 00
For 8 > 0 sufficiently small, consider the distributions =F = = (3) and = = =1 () de-
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fined by

P(E,=X) ifP(Z,=X)>n?Pand 2., <0
P(=h=X)= (5.52)
0 otherwise
)
(= —
P(Efl:X): P (=2, = X) X #£7 (559
AP(E,=2)4+n"1**2 X =27
\

where ¢ and ¢! are normalising constants.

Convergence of the seconds moment of D, in [Condition 5.1.1| implies that c*, ¢l =

1+ 0P, M}, M} = (1 + o(1))M, having largest eigenvalues p!, pt = (1 + o(1))p,
and that ¢=1, ¢¥+ = (1 + 0(1))¢E. Thus, these new distributions mimic the asymptotic
behaviour of =,, in distribution and in mean.

Let GWY) — (W (1), ... .GWD(d)): GWE (1),...,GWE (dy)); be dy +ds inde-
pendent 2-type Galton-Watson trees with offspring distribution =, the first d; ones start-
ing with a particle of type 1 (which we associate to heads), and the last ds, starting with a
particle of type 2 (associated to tails). Let ' = (T™M(1),..., TW(dy); TP (1),...,T®(dy))

be an incomplete rooted forest with d; + dy components. We denote by eWird®) ~ p

the event that for each j € {1,2} and i € [d;],
i) TU(i) is a root subtree of GWY)(4);
i) all paired nodes of 7V (i) have the same degree in GW(Ej) (7); and

iii) elements of GWg)(i) of type 1 and 2 correspond to nodes labelled as heads and

tails in 7V (4), respectively.

We will need the following coupling lemma, which is a 2-dimensional version of |11}

Lemma 5.3]. We omit its proof as it follows from an analogous argument.

Lemma 5.3.1. Let 8 > 0 be sufficiently small and let H be a partial pairing with

V(H)| < n'"%. Let v € [n] \ V(H) with d; = dy and df = dy. For every incom-
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plete forest F with p(F) < n” paired nodes, we have

(1—o(1))P (GW(ECQ(’Z? o F) <P(F,(p(F)) = F | Eg) < (14 o(1))P (ngf{é;? >~ F) .

(5.54)

5.4 Expansion probability

Given z,y € [n] an undirected walk of length ¢ is a sequence

(JU =, €0), (f1,v1,€1),- .., (ftflavtfbetfl)a (frve =1y)

such that v; € [n] for i € {0,...,t}, e;, fi € EX(v;) and e;_; is paired with f; for all
J € [t]

We say that a half-edge f is at undirected distance t from v € [n] if the shortest
undirected walk from v to V(f) has length ¢. If it is clear from the context, we use distance
instead of undirected distance. Denote by N;"(v) (and NZ,(v)) the set of head/tails at
distance (at most) ¢ from v.

Fix

w = log®n, to = log,w = O(loglogn). (5.55)

Let t,(v) be the expansion time of v defined as

tw(v) =inf {t > 1 : max{|N; (v)|,

N @)} > w} . (5.56)

Given H a partial pairing of £* and Z C [n], we consider the following event:

Aj(v,e) = [t,(v) < (14 &)t (5.57)

The first lemma in this section shows that the probability this event happens is close to

the survival probability of a branching process.
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Lemma 5.4.1. Assume that p > 1. Fiz k,{ € N, € € (0,1/2) and 8 sufficiently small.
Then uniformly for all choices of partial pairing H and v € [n] that satisfy |V(H)| < n®
and (d;,dF) = (k,{), as n — oo,

P(Ay(v,€) | Bx) = (1+o(1)(1 = (¢)"(a")") (5.58)
Proof. Let t; = [(1 + ¢€)to]. Define
Ag(v, H) = [NZ s (0) VF(H) = 0] 0V N2, )0, (0) O FF(H) = 0

In words, this is the event that the in- or out- neighbourhood of v intersects H before
the explosion time and before ;.

Let §r ¢ be the class of incomplete rooted forests F' with k trees having root labelled
by head and ¢ trees having root labelled by tail, of height at most ¢ and such that all
levels have less than w nodes with the same label (here we understand ‘level’ as the
set all nodes at a given distance from any of the roots). For F' € Fpet., we have
p(F) < wt; = O(log" n). Let 8 =/100.

Let (XMW (¢,1),..., XD (¢t dy); XP(t,1),...,X?(t,dy)) be independent 2-type branch-

1.4 (2).4

ing processes with offsprmg distribution =} (/) and extinction probability vector (g5 ™", gn

Recall that qn g g~ < 1 and q( g gt < 1 and the definition of Tih) given
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in (5.44). By |Corollary 5.2.6{ and [Lemma 5.3.1] the LHS of (5.58)) is

|wt)
P(Ai(v,e) N Ag(v, H) | Eg) =1-Y Y P(F,(m)=TF|Ey)

m=0 FEF,e,t,w
p(F)=m

lwt]

>1-(14+0(1)Y. Y ]P’(GW(E’;"&)%F)

m=0 FEFx ¢,t,w
pUE)=m (5.59)
=1—(1+o(1)P (T > )

=1—(1+0(1)) (1 - P (T < ;)

=1—(1+o0(1)) (1—(1— (g™ @)

=1+ o)1 —(¢7)* (g™

where we used that ¢& < 1 in the last equality. The analogous lower bound follows from

a similar argument, using = (/) instead.

It suffices to show that As(v, H) is a likely event. Recall that [Condition 5.1.1| im-

plies that A = max{A~, A"} = o(n'/?). At step i of the BFS exploration process, the

probability that fl-ﬁ € }"f = F*(H) is upper bounded by

F__ApH)|
my, — |PH = m, —i— |P|

_ 0(n’1/2+’6)

Y

as at most K = wt; = O(log" n) edges are paired when exposing A;(v,e). Thus, the
probability that at least one forbidden half-edge is paired is at most the probability that

a binomial random variable with parameters K and p is at least 1. Thus,

P((A2(v,H))?) <P (Bin(K,p) > 1) < Kp=o0(1) . (5.60)
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Combining (5.59)) and (5.60)), we conclude

P(Ai(v,e) | En) =P (Ai(v,e) N Ay(v, H) | Egr) + O (P ((A2(v, H))* | En))

= (1+0(1))(1 = (¢7)*(¢")").

where we use again that ¢& < 1. O

The next result follows immediately by applying [Lemma 5.4.1| twice, once on u with

H the empty graph, and once on v with H being the neighbourhood of u generated up

to time t,(u) A (1 + €)to, which is small by definition.

Corollary 5.4.2. Assume that p > 1. Fiz ¢ € (0,1/2) and distinct u,v € [n]. As

n — 0o,

P (Ai(u,8) N Ar(v,€) = (1 +o(1)(1 = (q7)™ (@")™)(1 = (¢)™ (¢")™).  (5.61)

The following lemma shows that expansions are unlikely to happen very late.

Lemma 5.4.3. Assume that p > 1. Fiz k,0 € N, € € (0,1/2). Then uniformly for all

choices of v € [n] with (d;,d}) = (k,£) and as n — oo,

P (N[0 < [NF(v)] < w] % € {—,+}) < pr-OUelsm for any t > 1. (5.62)
In particular,
P(t,(v) € (1 + e)ty,0)) = o(1). (5.63)

Proof. Let w' = w/(k + ¢). We have

P (N0 < V()] <wlxe{—+}) < D P(NL[0 <IN (o)) <] % € {—+))

ecEE(v)

(5.64)

where A= (e) is defined as the set of head/tails at distance ¢ from e.
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We use the same ideas as in the proof of [Lemma 5.4.1] without the need to condition
on Ey and only for one tree. Let wa be the class of incomplete rooted trees 1" having

root labelled by head /tail, of height ¢ and such that every level has less than w nodes of

each label. For any head e € £~ (v) (similarly for any tail in £ (v)), using [Theorem 5.2.4|
and we have that

PN <IN <wlxe{—+h) = 3 3 P(R(m) =T)

A
—_
_l’_
@)
=
N

=
—

)

=
NG
=

12

N
N—

— (14 o(1)B (N[0 # XV (i) < w])

< (1+o0(1))Cp'ter

_ ~t—0O(loglogn
= pt=Olloglogn)

(5.65)

where we used that ¢, = (1 + o(1))log,w’ = (1 + o(1))log,w = O(loglogn). The proof
follows by plugging the last bound into (5.64), and noting that k, ¢ = O(1). For (5.63),
we set t = (1+¢)tp in and conclude similarly. Alternatively, we can conclude from
(5.46)). O

Next, we estimate the number of vertices that have finite expansion time.

Proposition 5.4.4. Assume that p > 1. Let

Ly ={ven]:t,(v)<oc} and Lp={cc& :v(e)eLy}. (5.66)
Then
2 2
), B o By B Lo e
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where n and ¢ are defined as in (5.9). Thus, |Ly|/n — n and |Lg|/n — ¢ in probability.

Proof. As @ < 1 and }; ,oqAre = 1, we have n € (0,1]; similarly ¢ € (0,A]. Fix
e € (0,1/2) and define

Ly(e) ={ven]:t,(v)<(l+e)tg} and Lg(e):={eec &' v(e) € Ly(e)}.
(5.68)
which satisfy Ly (¢) C Ly and Lg(e) C L.

Given v € [n] with (d;,d}) = (k,{), by [Lemma 5.4.1| with H the empty graph

Pre =P (v e Ly(e)) =P (Ai(v,e)) = (1 +o(1))(1 — (¢7)"(¢")"). (5.69)

Since there are ny, such nodes, by (i) of [Condition 5.1.1f and using the dominated con-

vergence theorem, we have

E[| Ly (¢)]] _ Z Mpk,z = (1+0(1)) Z W(l _ (q*)k(qu)e) — (5.70)

" k,£20 ki
Ell£ kn kn B
k,£>0 k.00

On the other hand, [Lemma 5.4.3 implies that E[|Ly \ Ly (¢)|] = o(n) and by
tion 5.1.1) the number of tails incident to Ly \ Ly () is o(n), so E[|Lg \ Le(e)]] = o(n).

This completes the proof of the expected values in ((5.67)).

For the second moment, choose distinct u, v € [n]. By |Corollary 5.4.2| we obtain

FIEVON _ L @iey @+ (0 + o) 20 - @) () - ()% (7))

uFv

n2
’ ’

—o()+(1+0(1) Y - () ")) - () ()

k0K £/ >0

S (572
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The same argument shows that E[|£g(e)|*]/n® — ¢2. Also note that
E[lLv|* = |Lv(e)]’] < 2nE[ILv \ Ly (e)[] = o(n?).

and similarly E[|Lg|*—|Lg(¢)[?] = o(n?). This concludes the proof of the second moments

in of (5.67). O

5.5 Connectivity of large sets of edges

In this section we show that any reasonably large pair of sets of edges will have a path

between them. The main result of this section is the following.

Proposition 5.5.1. Uniformly over all choices €,y > 0, partial pairings H and sets

X,V CEX\PH(H) such that [V(H)| < n'™ and |X|,|Y| > logn,
P (dist(X,Y) > (1+¢)log,n | Ey) = o(n™?). (5.73)

It will suffice to find a path from X to ) constrained to only use vertices of bounded
degree. To this end, for « > 0 which we shall choose later, let K € N be sufficiently large
such that

(1-)EDL) < E(DLLD; < K, D < K))) < E(Dy) (5.74)

+ - +
in’ Doutu Dout

with the same holding true with D in place of D; . By |Condition 5.1.1 it is

straightforward to check that such a K exists.

We split X into X = X~ UXT where X~ =X NE, X" := XNET. Moreover, let
L* be the set of heads and tails incident to vertices with at least K heads or K tails.
Let N7 (X) := X", Ny (X):= X and for t > 1 we define recursively,

NF(X) ={ef € EF\(LTUNL(X)UFT(H))
(5.75)

|3 € N7y (), fF € E(u(eh)), f* # e*, f*f is a pair)
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Similarly, we can define N, (X).
Lemma 5.5.2. Uniformly over all choices €,v,a > 0, partial pairings H and X C
EX\P(H) such that [V(H)| < n*™" and | X| > log®n, and for all t <log ,,,(n'~7/|X]),

P (N (X)L V(X)) = (L o) (| [AT)M' | Ey) =1 —o(n). (5.76)

Proof. For t > 1 let dif := |N;5(X)|. Furthermore, we let E; , E;" respectively denote the

events

(1 — o) (paad_y + poody ;) (1 + o) (prad_y + poody ;)

<d; < ;

A A
(1 — ) (po2dyy + pandy ;) < gt < (1+ o) (po2dyy + pady ;)
A -t = A '

Define E; := E; N E;” and note that the desired event is implied by ﬂ?zlEj. Thus, if

we show that P (Ef | Ey N [N/Z}E;]) = o(n™?), a union bound over all ¢ concludes the

proof of (5.76]).
1

If |X| > n'~7 there is nothing to prove. Otherwise, the event ﬂ?;lEj implies that
dE, < n'= and YN (d5 +dF) + [V(H)| = O(n!—).

We run the exploration process described in starting from X in order
to show that the neighbourhoods of X have appropriate sizes. We make the following

modifications to it:
e Start the process with A7 := X%
e In (iii) if e € £*, we let AF = A7 \{ef}.

e In (iii) if e/ € F*(H), rather than terminate the process, we let AF = AF\{eF}

and proceed.

This adapts the process to generate a collection of trees rooted in the set X'. Note that
the union of the t-th level of all such trees comprises N;"(X) U N; (X). Moreover, a

vertex v of a tree T is in N;"(X) if its unique neighbour w in the (¢ — 1)-st level of the
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tree is such that ub is an edge in DCM,. Similarly it is in A" (X) if this edge is instead
vl

As we run the BFS, we can split the exploration into epochs. Recall that ¢; is the last
step of the t-th epoch i.e., the first time at which all of the stubs at distance at most ¢
from X have been paired. Note that ip = 0 and that the number of stubs activated in
the t-th epoch is d,\; + d/,;. Let X = |AF| — |Af,| + 1. The only way in which we
can activate new stubs in the i-th step is if f* € &* |\ L. In this case we activate all the

stubs in £*(v;) except ff. Thus,

X; = |E () |L(ff €U\ LF)

XF = (1€ )| = DU(ff e U\ L) .
Let H;_1 be a history of the process under which Ey N ﬂ;;ll E; holds (assuming that ¢

is in the ¢-th epoch). Suppose that * = + (that is, we match a tail in the (¢ — 1)-th level

with a head), then for all (k,¢) € {0,1,..., K —1}?,

Zf—eu;l\c— L(dy(s-) = (K, 0))
my — [P~ (H)| = (i = 1)
> Zf—es—\c— L(dy(s) = (K, 0)) _ €7 \U|

My my

P((X;, X)) = (k—1,0) | H; ) =

> max{P ((D,)im = (k — 1,£)) —n /%, 0}
= by k)
where (D,,)i is defined as in (5.48)). Similary, if * = —, we have

P ((X;,Xj-) = (k,f - 1) | Hi—l) > maX{P((Dn)out = (k7£ - 1)) - n—’Y/4’ 0}

For the sake of simplicity, below we will assume that at time ¢ we have * = +. Write

b- = ZzKJ_:lO b, ;) and note b~ € [0, 1]. Let X and X] be independent random variables
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on Z%, with distributions

(

L= b 40,0 if (k0) = (1,0)

P (Xf = (k- M)) =1 ey if 1<k (<K-1, (5.77)
0 otherwise
\
and
.
b;(k’(z), if0<k(<K-1and (k,¢)#(K—-1,K—-1)
P (X? = (k- 1,6)) = 10 40, ey (RO =(K—-1,K-1)
0 otherwise
\
(5.78)

Note that X < (X; | H,_1) < X]. Furthermore, the mean vectors satisfy

E(X}) = (1+0(1)E(DuL(Dy, < K, D < K)) = K*n ™/ > (1= 5 ) E(D) = (1= 5) (120 110):

E(X]) = (1+ o()E(Dul(Dy, < K, Dfy < K)) = K*n ™% < (14 S ) E(Du) = (1+ 5 ) (20, 110),

where the final inequalities follow from ([5.74]). The analysis with * = — is identical,
replacing (k — 1,¢) by (k,¢ — 1) and (u20, 1) by (111, fo2); we omit it.

As Xj and X;r are bounded random variables we may apply Hoeffding’s inequality.
Furthermore, note that there are d;_ , and d;” | stubs in the ¢-th epoch such that * = —

and x = +, respectively. Thus,

d 4 d df
P(dr < (-t etn g ) cp (30 ((xh) - (o)) » G
i=ig_1+1

o (1 ady g + poody )? 3
< — : : =o(n-
< exp ( SK2N(d_, +d ) ) o(n™")

as d;_, +d | >|X| >log’n by H;, ,. The analogous results also hold for d;". Moreover,
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in the same way by considering (XZT )7,

=o(n7?%).

d; d
P (d; > (14 o)ttt t‘”;m’o =1 Hl)

and similarly for d;. O

Proof of Proposition [5.5.1 Let o, f > 0 and define t* := [log(, ), (n'/*™?/|X|)] as well
as t¥ := [log(;_n),(n'**?/|Y|)]. If o and J are sufficiently small with respect to e, then
t* +1Y +1 < (1+¢)log,n.

If a stub in N'&

<tX

(X) is paired to a stub in thy (), then we are done and dist(X,)) <
t* +tY. Let assume otherwise and recall that the matrix M is positive and has leading
eigenvalue p. Hence, by the Perron-Frobenius theorem, p~tM* — u'v where u and v are
the dominant right and left eigenvectors of M respectively (chosen such that vu' = 1).

For § > 0 which we shall take to be arbitrarily small, let B’ = u'v — §.J, where J
is the all 1s matrix. By Lemma and the choice of t¥, for any ¢ > 0 it follows that

with probability at least 1 — o(n=2)

— + N (v +\ At 3+8 (X)X 6 _. (1= H)p3tB
(N (L IV 2 (1=a)™ (12 DM 2 o (o ) BT = (e e’
(5.79)
Similarly, define ci for the set ). The probability that there is no pairing between /\/'ti (X)

and N3 (Y) is at most
c§n1/2+ﬁ

mp mp,

Therefore the probability that dist(X,Y) > t¥ + ¥ + 1 is o(n™?) which proves (5.73).

+.1/24+8
cyn

g
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5.6 Proof of [Theorem 5.1.2

In this section we conclude the proof of our main theorem.

5.6.1 Supercritical case

Suppose that p > 1, here we will prove (5.8). We first show that most of the vertices
in Ly belong to the same wcc. Fix € and recall the definition of Ly () in (5.68).
Let 7,y € Ly (), then there exists #,,t, < (1 + €)t, such that both X = N (z) and

Y= ./\/'tf(y) have size at least w. Moreover, the graph H induced by NZ; (z) U ;[ty (v)

satisfies |[V(H)| < 4(1 + €)wty = O(log"n). So we may apply [Proposition 5.5.1] to

conclude that there exists a sequence of edges connecting X and Y. It follows that z and

y belong to the same WccC, and by the proof of [Proposition 5.4.4] whp this component

has order at least |Ly ()| = (1 + o(1))nn and size at least |Lg(e)| = (14 o(1))(n.
We now bound from above the order and size of the wccC that contains Ly (¢). Fix
0 > 0. For K € N, let Sk be the set of vertices with either in-degree or out-degree at

least K. Fix K large enough so that > ¢ (d +d;) < dn. The existence of such K is

guaranteed by [Condition 5.1.1] ;in particular, by the convergence of the second moments

we can choose K = o(67'/2). Observe that |Sx| < on.
Choose v ¢ Ly U Sk and let us compute the probability that v belongs to the same

wcc as Ly (). If it does, as all vertices in Ly (¢) appear in a neighbourhood of v, we have

that [N (v)|, N (v)] € (0,w) for all t < |Ly(g)|/2w. By |[Lemma 5.4.3|the probability of

|/2w=0(loglogn) — 4(p~1), By a union bound over all vertices,

this event is at most plcv©)
we have that whp, no such vertex v exists. Thus, there are at most |Sk| < dn vertices
not in Ly that belong to the wcc containing Ly (¢). It follows that this component has
order at most |Ly| + dn, which is at most ( + 20)n whp. Similarly, the size of the wcc
is at most (¢ + 8 4+ 2Kd0)n = (¢ + 0o(6/?))n. Since § can be made arbitrarily small, we
conclude the proof of (5.8)).

Following the same arguments, the previous proof shows that any other component
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has size at most log®n, for some constant ¢ > 0.

5.6.2 Subcritical Case

We finish by proving (5.10). We shall consider the order of all of the components of the
random digraph. Define C(v) to be the component of DCM which contains v. The result

is implied by the following,

Lemma 5.6.1. If p < 1 then whp

> 1C()] = o(n?). (5.80)

vE[n]

Proof of (5.10)). Suppose for a contradiction that there is a component Cy with |Cy| > en.

Then, 3°,cpy [C(v)] > |Cof?* > e*n? contradicting [Lemma 5.6.1} O

vE[n

Proof of [Lemma 5.6.1 Fix a vertex v € [n] and denote by N; = N, (v) UN;" (v) its t-th
neighbourhood. Let 8 > 0 be sufficiently small. We shall call v big if any of the following

is true and small otherwise:
i) dy +df >nP3,

i) |NV;| > n?? for some t € N;

iii) |Ni| > 1 for to = &7

All small vertices are contained in components of order at most K = n?/2hy = o(n).
We bound the probability of each way in which v can be big in turn. To bound

i), let I be a uniformly random element of [n]. Using the bounded second moment

in [Condition 5.1.1, we have

P (d; +dj >n"?) <P (df >nP?/2) + P (df >nP/?/2) = O(n ") . (5.81)
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So we may assume that d; + df < n”/3 and bound ii) and iii) using branching

processes. Let (X;);>1 be the total size of the ¢-th generation of GW(:C?T(’;)D, as defined

in [Subsection 5.3.2l Determining whether v is big or small requires revealing at most

K = O(n®?logn) half-edges. Therefore, we can use the coupling of neighbourhoods
with multitype Galton-Watson trees in to compute the probability v is big,
and we will study the latter.

Write d = (d,,d}). Recall the definition of the mean matrix M in (5.6) with largest

v

eigenvalue p. Choose € > 0 small enough. The Frobenius norm of the ¢-th power satisfies

| M| < Cpt=2) for some C' = C(g). We have
E(X,) = dM1"T <V2|d||||M!]| < V2CnP3 -2, (5.82)
By Markov’s inequality and union bound over ¢ > 1, we bound the probability of ii):

P(3t: X, >n?) <Y P (X, >n?) < V200 0N " pm9 = O(n ). (5.83)

t>1 t>1

Finally, we bound the probability of iii). By Markov’s inequality,
P (X, > 1) < V2003150 — O(nsth/3-1), (5.84)

Combining (5.81)), (5.83)) and (5.84), we deduce that the probability a vertex is big is
o(1).
We thus have

E(>S lcw)l| <E|Y (\C(v)]]l(v small) + |C(v)|1 (v big)) < nK-+o(1)n? = o(n?).
vE[n] vE[n]

So (5.80)) holds with high probability by Markov’s inequality. O
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CHAPTER 6

CONCLUDING REMARKS

In this thesis we have proven a number of new results on thresholds for the giant compo-
nent in various models of random graphs and digraphs. This contributes to the picture
of what the threshold looks like however there are many questions that still remain in all
of the models which we have studied and we describe some of these questions here.
Firstly, in D(n,p) we have proved tail bounds on the size of the largest component in
the critical window. The recent result of Goldschmidt and Stephenson [31] complements
our result by also proving that there is a scaling limit for the rescaled size of the largest
components. A fully explicit description of the random variable X such that the largest

1/3 would be a great addition to these two results. Perhaps

component is of order Xn
a result similar to Pittel’s [69] in G(n,p) may be possible. Also, recall that the size of
the largest component in the barely subcritical case was solved by Luczak and Seierstad.
They also showed that the next k components for any finite k£ are also of the same order
as the first in this regime. As such a natural question to ask is whether there is a scaling
limit for the joint distribution of the components in descending order.

In the configuration model for graphs we proved a bound on the size of the largest
component in the barely subcritical regime. This is the first result in this regime which
is better than o(n). There are certainly improvements which could be made to the

assumptions which we use. In particular it would be interesting to know whether it

is possible to remove the condition on the fourth moment or if we could increase the
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maximum degree for which our result works. Also, in the critical window Dhara et.
al. [I7] showed that if the third moment of the degree sequence is finite then there is a
Brownian motion type scaling limit. It would be interesting to know how far this can be
extended to infinite third moment.

In the configuration model for digraphs, we have two results. First, we showed a
result on the barely subcritical regime for the giant strongly connected component. We
found the size and structure of these components. In an upcoming work [14] we show
that there is a complementary result for the barely supercritical regime. The question of
exactly what happens inside the critical window is still an open question however. We
also found the threshold for a giant weakly connected component confirming a prediction
of Kryven [49]. At present this is the only result on the weak component in the directed
configuration model. As such the questions of what happens in the barely subcritical,
critical window and barely supercritical ranges as well as precisely where these ranges lie

are all still open.
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