
 
 
 

 
 

 
 
 
 

 
	
  
 

 
 

Primordial black holes  
and their implications for Inflation 

 
Nikolaos Triantafyllou 

 
 
 
 

 
 
 
 
 
 

 
ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents condicions d'ús: La difusió 
d’aquesta tesi per mitjà del servei TDX (www.tdx.cat) i a través del Dipòsit Digital de la UB (diposit.ub.edu) ha estat 
autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats 
d’investigació i docència. No s’autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició 
des d’un lloc aliè al servei TDX ni al Dipòsit Digital de la UB. No s’autoritza la presentació del seu contingut en una finestra 
o marc aliè a TDX o al Dipòsit Digital de la UB (framing). Aquesta reserva de drets afecta tant al resum de presentació de 
la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora. 
 
 
ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La 
difusión de esta tesis por medio del servicio TDR (www.tdx.cat) y a través del Repositorio Digital de la UB 
(diposit.ub.edu) ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos 
privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro 
ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR o al Repositorio Digital de la UB. No se autoriza 
la presentación de su contenido en una ventana o marco ajeno a TDR o al Repositorio Digital de la UB (framing). Esta 
reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus contenidos. En la utilización o cita de 
partes de la tesis es obligado indicar el nombre de la persona autora. 
 
 
WARNING. On having consulted this thesis you’re accepting the following use conditions:  Spreading this thesis by the 
TDX (www.tdx.cat) service and by the UB Digital Repository (diposit.ub.edu) has been authorized by the titular of the 
intellectual property rights only for private uses placed in investigation and teaching activities. Reproduction with lucrative 
aims is not authorized nor its spreading and availability from a site foreign to the TDX service or to the UB Digital 
Repository. Introducing its content in a window or frame foreign to the TDX service or to the UB Digital Repository is not 
authorized (framing). Those rights affect to the presentation summary of the thesis as well as to its contents. In the using or 
citation of parts of the thesis it’s obliged to indicate the name of the author. 



Primordial black holes and their
implications for Inflation

Nikolaos Triantafyllou

Supervisors: Jaume Garriga Torres and Vicente Atal

Departament de Física Quàntica i Astrofísica

Facultat de Física

Universitat de Barcelona



Primordial black holes and their
implications for Inflation

Memòria presentada per optar al grau de doctor per la

Universitat de Barcelona

Programa de doctorat en Física

Autor: Nikolaos Triantafyllou

Directors: Jaume Garriga Torres i Vicente Atal

Tutor: Alberto Manrique Oliva



DECLARATION

This thesis is presented in accordance with the regulations of the University of

Barcelona (Aprovada pel CdG en sessió del 16març de 2012 i modificada pel CdG de

data 9maig i 19 de juliol de 2012,29 de maig i 3 d’octubre de 2013, 17 juliol de 2014,

16 de juliol de 2015, 15 de juny i 21 de novembre de 2016, 5 de desembre de 2017, 4

de miag de 2018 i 15 demaig de 2019 i 22 de juliol de 2019 ). The aforementioned

regulations permit the submission and presentation of a PhD thesis as a

"compendia of publications ". According to the regulations set by the University of

Barcelona, the PhD thesis must be comprised of 3 publications. This thesis

contains the necessary number of papers, rendering it eligible for submission and

presentation.

Nikolaos Triantafyllou Barcelona, July 2021

3



ACKNOWLEDGEMENTS

It is exceptionally hard for a small section to contain the gratitude and re-

spect I have for all of those people, who in one way or another, contributed

to the completion of this thesis. Firstly, I would like to express how indebted

I am to my PhD thesis advisor professor Jaume Garriga Torres and my co-

directorDr. Vicente Atal for creating an ideal environment forme to growas a

physicist and as a person. Now, completing a PhD is mostly about one’s hard

word, devotion and dedication but in my case a major factor that played

an instrumental part was the people with whom I shared my experiences

as a pre-doctoral student. Therefore, I would like to thank my colleagues

and friends, the inhabitants of office 4.10, Javi, Isa, Albert, Alan and Jairo

for supportingme andmostly for putting up withmy dancing around the

room. Secondly, I would like to thank the foundation of Caixa not only

for supporting me financially but also for granting me the opportunity to

meet this extraordinary group of people: Milena, Albert, Katie and Sarah

you brightened my days with your energy and laughters. I want to thank

my friend Aaron for his unwavering encouragement and also for the hourly

conversations we had about weird physical andmathematical topics while

listening to techno. Additionally, although it may sound cliché, I would like

to thankmy friends Anastasis, Christos, Pantelis, Basilis, Thomas, Tasos for

being there for me when Imost needed it. Finally, this goes tomy companion,

Anna, for bearing withme every step of this long journey and tomy beloved

family for their unremitting support and encouragement over all these years.

4



Dedicated to my grandparents

5



ABSTRACT

The standard cosmologicalmodel,ΛCDM,with the additionof anearly inflationary

phase, provides an accurate description of a nearly flat and homogeneous Uni-

verse, at large scales, which expands at an accelerated rate. Despite its vindication,

our knowledge of the components that trigger the early formation of structures

and drive the accelerated expansion of the Universe, that is, dark matter (DM) and

dark energy respectively, is severely limited, given their feeble interactions with the

other components of the Universe. A number of candidates from particle physics,

e.g weakly interactingmassive particles (WIMPs) or axions, have been proposed

to constitute DM, but so far there has been no evidence to support their existence.

However, the detection of a signal from the merger of a binary of black holes of

stellar masses, reinvigorated the interest in an old candidate for DM, namely pri-

mordial black holes (PBHs). These black holes behave as the ones sitting at the

end of stellar evolution, with the distinctive differences that they may form in

significant fractions even well before the appearance of the first stars, with masses

that may range from the Planckmass, to the order of MB H ∼ 1012 M¯. One possible

formationmechanism involves perturbations originating from the fluctuations of

a scalar field during inflation, that collapse after they re-enter the causal horizon

in a radiation ormatter domination era. The PBHs could easily form binaries in

the early Universe andmerge within our Hubble time, rendering them observable

by the current detectors LIGO/VIRGO. The work presented in this thesis focuses

on how such a population of PBHs could be utilised in order to elucidate certain

spectral features of curvature perturbations characterizing the initial state of the

Universe. Firstly, the effect of matter and radiation perturbations on the orbital

parameter distributions of PBH binaries is studied. These perturbations are shown

to provide a source of torque to the binary, particularly when their power spectrum

is enhanced at the comoving scale of the binaries, leading to the suppression of the

merger rate and subsequent relaxation of constraints on the PBH abundance. Sec-

ondly, the effect of primordial clustering on the distribution of orbital parameters

of PBH binaries is investigated with the use of a phenomenological model of local

non-Gaussianity. It is shown that due to themodal coupling of the perturbations,
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the merger rate and the stochastic background of gravitational waves (SBGW)

sourced bymerging PBH binaries, are altered. An immediate result of clustering

is that the observational constraint on the abundance of PBHs in DM is relaxed

considerably, allowing for significant fractions, even close to totality. Thirdly, the

possibility that the SBGW from themergers of massive PBHs could provide an ex-

planation for the recently detected isotropic signal by theNANOGrav collaboration

is considered. The presence of non-Gaussianity, sourced from a phase of constant

roll, is essential in order for suchmassive PBHs to evade the CMB µ-distortions

constraints, in which case they may have formed in small abundances, of order

0.1% with respect to DM. The present work aims to provide a more robust mod-

elling of the observational consequences of a population of PBHs in order to gain

more insight into the spectrum of primordial perturbations at small scales and

therefore into the initial conditions of the early Universe.
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RESUMEN EN ESPAÑOL

El modelo cosmológico estándar, ΛCDM, con una temprana fase de inflación, nos

proporciona una descripción precisa de un Universo casi plano y homogéneo a

gran escala, que se expande a un ritmo acelerado. A pesar de las evidencias obser-

vacionales, nuestro conocimiento del 95% de la energía del Universo, es decir, la

materia oscura (DM) y la energía oscura, está limitado por la falta de una detección

directa, debido enparte a la poca interacción, aparte de la gravitacional, que tienen

con el resto de la materia. La detección de la primera señal de un sistema binario

de agujeros negros, revitalizó el interés por un viejo candidato amateria oscura, los

agujeros negros primordiales (PBHs). Los PBHs han recibido atención dado que

se pueden formar con abundancias importantes durante el Universo temprano y

con una amplia gama de posibles masas. Esta tesis se centra en su empleo para

explorar el espectro de potencias de las perturbaciones de curvatura a escala pe-

queña. Primero, se estudia el efecto de las perturbaciones cosmológicas sobre los

parámetros orbitales de los sistemas binarios de PBHs. Cuando hay unameseta

de amplitud considerable en el espectro de potencia en las escalas de los sistemas

binarios, la tasa de fusión se ve afectada, relajando los limites de la abundancia

de PBHs. Segundo, semuestra que debido al acoplamientomodal de las pertur-

baciones, introducido por la presencia de no-Gaussianidad, se alteran la tasa de

fusión y el resultante fondo estocástico de las ondas gravitacionales (SBGW) y que

esto tambien resulta en la relajación de las restricciones de la abundancia de PBH.

Tercero, se considera la posibilidad de que el SBGWproveniente de los sistemas

binarios de PBHs supermasivos pueda proporcionar una explicación para la señal

detectada por NANOGrav. La presencia de no-Gaussianidad es esencial para que

estos PBHsmasivos eviten las µ-distorsiones de la CMB y se puedan haberse for-

mado en abundancias del orden ∼ 0,1%. Los PBHs constituyen una sonda única

para explorar las condiciones iniciales del Universo y este trabajo pretende aportar

unmodelaje más robusto de las consecuencias observacionales de una población

de PBHs.

8



Contents

1 Introduction 11

1.1 The CosmicMicrowave Background Radiation and theHot Big Bang

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Cosmological Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.1 Single field inflation in the slow-roll regime . . . . . . . . . . . 16

1.2.2 The primordial power spectrum . . . . . . . . . . . . . . . . . . 18

1.3 Primordial black holes as darkmatter . . . . . . . . . . . . . . . . . . . 24

1.4 Overview of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2 Solarmass PBHs and the LIGO/VIRGOmergers 41

2.1 Primordial black holes and enhanced cosmological perturbations . 43

2.2 Clustering of primordial black holes and non-Gaussianities . . . . . 80

3 Nanongrav and supermassive PBHs 105

4 Conclusions and future prospects 119

Bibliography 123

9





1 Introduction

Understanding the forces that drive the evolution of the Universe as well as the

intricate mechanisms that lead to the formation of the large structures we observe

today, such as stars and galaxies, have been the prime quests of cosmology. The

Hot Big Bangmodel offers a fairly accurate phenomenological description of the

evolution of the Universe and the formation of subsequent large scale structures,

from themoment of an initial singularity, to a radiation and thenmatter dominated

era up to a late epoch where dark energy is accelerating the expansion. Although

this description seems to offer a comforting picture, it does not address a number

of features of the Universe, such as its flatness and homogeneity at cosmological

scales. The introduction of a stage of accelerated expansion after the primordial

singularity, though, provided the ideal mechanism in order to explain these prop-

erties. This mechanism is called inflation and it could also provide the primordial

seeds of structure. In this Chapter, I will provide a simple layout of the fundamen-

tal ideas and principles of the cosmic inflation in its simplest form, namely the

slow-roll inflation and how it could provide the initial conditions of the ΛCDM

model. Also, I will discuss the natural embedding of primordial black holes in the

picture of cosmological inflation.

1.1 TheCosmicMicrowaveBackgroundRadiationandtheHotBigBang

model

The cosmic microwave background radiation, a coincidental detection by Pen-

zias andWilson in the 60s [1] that revolutionised the field of cosmology, offers us

the first glance of the Universe in an infant stage of evolution. The CMB photons

originated when the Universe started becoming transparent to radiation, around

t ∼ 370.000 years after the initial singularity, in the so called epochof recombination.
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At thatmoment the energy of the expandingUniverse has sufficiently cooled down

to scales of ∼1 eV, allowing for the abundant formation of neutral hydrogen atoms

and for the unhindered propagation of photons that have essentially decoupled

frommatter. The first mapping of the CMB radiation became available via the Cos-

mic Background Explorer (COBE) experiment [2], while in the years that followed

surveys from theWMAP [3] and Planck [4, 5] collaborations, have corroborated

the initial findings with increasing precision, pointing towards a black-body distri-

bution of the CMB radiation, with a homogeneous temperature that has redshifted

by today to T ≈ 2.7255 K [4, 6]. Thesemeasurements implied that our Universe is

homogeneous and flat at large cosmological scales (k . 1 Mpc−1).

Figure 1.1: Themap of temperature anisotropies in the CMB radiation as observed
by Planck collaboration. The plot was adapted from [5].

Additionally, the CMBmeasurements revealed that there are deviations from the

homogeneous and isotropic temperature distribution, of the order of ∆T /T ∼ 10−5,

as seen in Fig.1.1. The temperature anisotropies exhibited non-vanishing correla-

tions at angles θ > 2θhor,r ec ∼ 2.3◦, where θhor,r ec measures the angle subtended by

the comoving causal horizon at the time of recombination [7]. In what follows, I

introduce the twomain puzzles in the standard cosmological model, namely the

flatness and the horizon problems. The standard Big Bangmodel, equipped with
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a Friedman-Robertson-Lemaître-Walker (FRLW)metric, describes an expanding

Universe, which is homogeneous and isotropic and has originated from a singular-

ity around 13.7 billions years ago. Now, an important concept for the definition

of the causal structure, is the particle horizon τ 1 , i.e the maximum comoving

distance travelled by a photon from an initial time ti = 0 up to a time t , given by

τ=
∫ t

0
(aH)−1d (ln a), (1.1)

where a(t ) is the scale factor and H = ȧ
a is the Hubble rate. The particle horizon

calculated at the present time t0 can be thought of as a causal boundary between

the observable and unobservable parts of our Universe. As the Universe expands,

we expect the particle horizon to increase as well, meaning that we could receive

information from larger comoving distances. This can be seen also if we look at

the evolution of the comoving Hubble radius, (aH)−1, given by

(aH)−1 ∝ a(t )
1
2 (1+3w), (1.2)

wherew = P
/
ρ is the equation of state of the dominant component of theUniverse.

For any type of matter that satisfies the strong energy condition, namely ρ+3P > 0,

the increasing comoving Hubble radius will lead to the expansion of the causal

horizon τ, as

τ∝ a(t )
1
2 (1+3w). (1.3)

Now, the size of the particle horizon at the time of recombination will subtend an

angle in the sky given by

θhor,r ec =
τr ec

τ0 −τr ec
≈ 1p

1+ zr ec
∼ 2◦, (1.4)

where zr ec ∼ 1100. Therefore, regions in the sky that are separated by angles larger

than θhor & 2◦, could not have been in causal contact at the time of recombination.

The accurate measurements of the CMB have revealed, though, that points in the

sky, separatedbyangles larger thanθhor , exhibit anearlyhomogeneousdistribution

of temperature, leading to the horizon problem of Big Bang cosmology, presented

also in Fig.1.2.

1Theparticle horizon,with the speedof light c set to one is equivalent to the conformal time τdefined
in Eq1.1. Basically, τ is the time required for a photon to reach the farthest observable distance of
the Universe.
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Figure 1.2: The horizon problem and its inflationary solution. The vertical axis
represents the conformal time τ. The spacelike surface of recombination is repre-
sented here by the blue line. Note that two distant points on that surface couldn’t
have been in causal contact if the initial singularity was at τ= 0. Instead, the de-
crease of the comoving Hubble radius during an era of cosmic inflation, ensures
that the singularity is pushed to τi ni t →−∞ and now the green line at τ= 0 repre-
sents the end of inflation and the onset of the reheating of the Universe. It is easy
to see that any two points on the last scattering surface will have sufficient time to
reach causal contact, thus resolving the puzzle of CMB homogeneity.

Another conundrum of the Big Bang cosmology involves the observed flatness

of our Universe. In order to study the evolution of the spatial curvature of the

Universe, the Friedmann equation needs to be introduced as

1−Ω(a) = −K

(aH)2 , (1.5)

where K = 0,+1,−1 are the values for a flat, open or closed Universe respectively

andΩ(a) is the normalised energy density parameter defined by

Ω(a) = ρ(a)

ρcr i t
and ρcr i t ≡ 3M 2

PL H 2, (1.6)

with ρcr i t being the critical density for the Universe to be flat and MPL is the Planck

mass. The measure of the curvature, |1−Ω(a)|, and its evolution are tightly con-
nected with those of the comoving Hubble radius, (aH)−1, as it is easy to note from

Eq.(1.5). Now, we can see from Eq.(1.2) that if again the strong energy condition
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is satisfied, 1+3w > 0, then the comoving Hubble radius grows, implying that for

an initial value of Ω(a) > 1 the measure of curvature, |1−Ω(a)|, would increase,
whereas in the opposite case,Ω(a) < 1, it would decrease. Therefore, the fact that

the spatial curvature of the Universe is observed to be of order O (0.001) [4], really

close to being flat, poses an issue of initial conditions. By recasting Eq.(1.5) into

the form
dΩ

d(ln a)
= (1+3w)Ω(a)(Ω(a)−1)., (1.7)

we can see that indeed Ω(a) = 1 is an unstable solution [7]. If 1+3w > 0, then

the curvature |1−Ω(a)| would need to be a lot closer to one at earlier times, e.g

|1−Ω(aGU T )|. 10−55, where aGU T is the scale factor at the GUT energy scales [7].

This is the so called flatness problem.

A solution to both these problems that evades the need for any fine-tuning, is to

introduce a stage in the evolution of the Universe where the comoving Hubble

radius is shrinking [8, 9]. Such an era can be achieved via an early accelerated

expansion of the Universe, a period called cosmological inflation. In Section 1.2 I

willmotivatehow this solves theaforementionedproblemsandalsohow it provides

an explanation for the CMB temperature anisotropies.
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1.2 Cosmological Inflation

In this chapter I will present how cosmological inflation, specifically slow-roll

inflation, provides a mechanism that not only solves the horizon and flatness

problems but also produces an adiabatic, nearly scale-invariant power spectrum

of Gaussian distributed primordial perturbations.

Before delving into the dynamics of inflation, I would brieflymention the condi-

tions that need to be satisfied bymatter in order to achieve such an accelerated

expansion. As seen in Eqs.(1.1-1.3), the presence of a component that violates

the strong energy condition, 1+3w < 0, will lead to the initial singularity being

pushed tomuch earlier conformal times τi ni t →−∞ (see also Fig.1.2). Therefore,

correlated regions on super-horizon scales at the time when the CMB radiation

was emitted, could have been in causal contact earlier on. Similarly, the evolution

of the curvature with the scale factor a, given in Eq.(1.7), shows that for 1+3w < 0,

the Universe is attracted towards flatness,Ω(a) = 1. Therefore, the violation of the

strong energy condition, could guarantee the resolution of both the horizon and

flatness problem. Also, it is easy to note that if 1+3w < 0, then from Eq.(1.2) the

comoving Hubble radius (aH)−1 = (ȧ)−1 is shrinking, which leads to ä > 0. Thus, if

the dominant energy component has a sufficiently negative pressure, assuming a

positive-definite energy density ρ, then this will lead to an accelerated expansion.

1.2.1 Single field inflation in the slow-roll regime

Inflation takes place at very early times when energies are extremely high 2. One of

the simplest ways to achieve such a phase of accelerated expansion is to assume

that the energy density of the Universe is dominated by a scalar field, named

"inflaton", that could have an equation of state obeying 1+3w < 0. The single-field

inflationary model’s predictions of a homogeneous, isotropic and flat Universe at

large scales, exhibiting a spectrum of nearly scale-invariant, adiabatic Gaussian

perturbations, match very closely the current CMB observations.

2Since inflation took place in the early Universe when energies were extremely high, it qualifies as a
probe for high-energy physics that can not be accessed by terrestrial experiments, such as the ones
taking place in the Large Hadron Collider (LHC), but rather by surveys that intend to explore the
cosmological scales.
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We consider the field driving inflation to beminimally coupled to gravity and we

write its action as

S =
∫

d 4x
p−g

[
M 2

PL

2
R − 1

2
gµν∂µ∂νφ−V (φ)

]
, (1.8)

where g = det gµν, R is the Ricci scalar and V (φ) is the potential that is treated as an

unknown function of the field φ. The liberty to choose the functional form of the

potential, revealing our ignorance on the high-energy (UV) physics, has led to a

plethora of models that currently can be tested by experiments, either by trying to

map the anisotropies of CMB radiation, or by detecting the gravitational waves,

sourced by tensor modes of the curvature fluctuations (see below in Section 1.32),

or by any population of exotic inflationary byproducts, i.e domain walls, cosmic

strings or primordial black holes [10, 11, 12].

Now, the evolution of the scalar field φ and the Hubble parameter H , are given by

the Klein-Gordon and the Friedman equations, respectively defined as

φ̈+3Hφ̇+V,φ = 0 (1.9)

and

H 2 = 1

3M 2
PL

[
1

2
φ̇2 +V (φ)

]
, (1.10)

where the field φ is treated as a perfect fluid, homogeneous with no anisotropic

pressure, V,φ = dV
dφ and the dot is the derivative with respect the time variable t.

Assuming that the scalar field behaves as a perfect fluid, allows us to write its

equation of state, defined below Eq.(1.2), as

w =
1
2 φ̇

2 −V (φ)
1
2 φ̇

2 +V (φ)
. (1.11)

Then, it is easy to note that if the potential energy dominates the kinetic part, the

the equation of state fulfills the condition in Eq.(??) and inflation takes place. For

V (φ) À 1
2 φ̇

2 we can think of the scalar field as slowly rolling from a plateau of the

potential down to its minimum. In this slow-roll regime, the system of equations,

given by Eq.(1.9) and Eq.(1.10), is reduced to a first order one,

3Hφ̇≈−V,φ and H 2 ≈ V

3M 2
PL

. (1.12)
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The solution φ(t ) behaves as an attractor in the phase space (φ, φ̇), called the slow-

roll attractor, since its velocity φ̇= dφ
d t only depends on the shape of potential V (φ)

and not on the initial conditions. The scale factor takes the form a(t ) ∼ eH t , with

theHubble parameter H slowly varying for the duration of inflation. This analytical

solution resembles a de Sitter Universe, where theHubble parameter is now exactly

constant andw =−1. Anydeparture fromsuchadeSitter solutionwill bequantified

using either theHubble slow-roll parameters ε and η, or the equivalent potential

slow-roll parameters εV and ηV defined correspondingly as

ε≡− Ḣ

H 2 = φ̇2

2M 2
PL H 2

≈ M 2
PL

2

(
V,φ

V

)2

≡ εV and η≡ Ḧ

H Ḣ
−2

Ḣ

H 2 ≈ M 2
PL

2

|V,φφ|
V

≡ ηV ,

(1.13)

where V,φφ = d 2V
dφ2 and as a time variable, we use the number of e-folds the Universe

expanded during its inflationary phase, N [13, 7], defined as

N =
∫ a f

ai

d ln a ≈ 1

M 2
PL

∣∣∣∣∫ φ f

φi

V (φ)

V ′(φ)dφ

∣∣∣∣, (1.14)

where the approximate equality is a result of the use of (Eqs.1.13). Now, using the

definitions in Eq.(??), it is easy to see that the necessary conditions for inflation to

take place and the potential energy to dominate over the kinetic for sufficient time,

thus resolving the horizon and flatness problems, are ε¿ 1 and η¿ 1 (or equiva-

lently εV ¿ 1 and ηV ¿ 1). The comoving scale corresponding to our observable

Universe has exited the horizon around 40−60 e-folds before the end of inflation in

order to explain the homogeneity of the Universe at large scale observed by CMB

measurements.

1.2.2 The primordial power spectrum

The inflationary paradigm allows us to connect the quantum nature of the field,

present during a phase of inflation, with the origin of structure at cosmological

scales. The quantum nature of the inflaton field φ will give rise to differences,

δφ(t ,x) =φ(t ,x)− φ̄(t ), where φ̄(t ) is the background value of the field. These fluctu-

ations will be stretched to super-horizon scales, due to the accelerated expansion

and consequent shrinking of the Hubble horizon during inflation, re-entering the

18



Figure 1.3: The inflationary potential V (φ) with the field φ slowly rolling from its
plateau down to the true vacuum, where its kinetic energy will heat the universe,
filling it with particles, a process called reheating. The primordial perturbations
that have seeded the anisotropies we observe in the CMB power spectra, will have
exited the causal horizon at the early stages of inflation when φ=φC MB and they
will keep exiting until slow-roll approximation breaks down, ε∼ 1 and inflation
ends. The plot was taken from [13].

causal patch at later times of radiation or matter domination 3. This results in

differences in the amounts of inflation experienced by different regions,

δN =−H
δφ(t ,x)

φ̇
, (1.15)

that are subsequently translated into perturbations in the matter and radiation

distributions and consequently seed the temperature anisotropies of the CMB

radiation.

The generation and evolution of cosmological perturbations can be studied in the

Arnowitt-Deser-Misner (ADM) formalism [7]. The spacetime is decomposed in

3-dimensional hypersurfaces and one time dimension, while the line element of

the perturbed FRLW universe is written as

d s2 =−N 2d t 2 + gi j (d xi +N i d t )(d x j +N j d t ), (1.16)

3Note that when Imention that perturbations re-enter the causal horizon, I am referring to quantum
fluctuations during inflation that are stretched to acausal distances, only to re-enter in the causal
patch once the comoving Hubble radius matches their wavelength.
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with N (x) and Ni (x) being the lapse and shift functions respectively and gi j is the

metric of the 3-dimensional hypersurfaces. Now, we can choose a gauge where the

fluctuations in the inflaton are absorbed by themetric, δφ= 0, and also write the

metric with linearised perturbations as

gi j = a2(1−2ζ)δi j +a2hi j , (1.17)

where δi j is the 3-dimensional Kronecker symbol and hi j is a traceless and trans-

verse tensor that is related to the presence of primordial gravitational waves. The

only physical scalar mode of the perturbations is identified with ζ, which repre-

sents the curvature of φ= const time slices. This definition is physical, therefore

gauge-invariant. In a different gauge we can calculate ζ from the gauge invariant

combination

ζ=R− aH

φ̇
δφ, (1.18)

where −4∇2R is the Ricci scalar of the new constant-time slices [7, 13]. In this

discussion we have neglected the vector modes, since these are not generated to

linear order in scalar field inflationarymodels.

Firstly, in order to study the scalar perturbations we have to expand the action

Eq.(1.8) with respect to the physical degrees of freedom. Choosing ζ to represent

the scalar modes of the perturbations is convenient, since the former remains

constant on super-horizon scales, once themodes exit the causal horizon during a

period of slow-roll inflation. Thus, ζ naturally relates the primordial fluctuations

with the observed CMB anisotropies, opening a window to the early-timeUniverse.

By expanding every term in Eq.(1.8) to the quadratic power of ζ and switching to

the conformal time τ, the action takes the form

S = 1

2

∫
dτd 3x

(
(v ′)2 − (∂i v)2 + z ′′

z

)
, (1.19)

where ′ is the differentiation with respect to τ and we have setMPL = 1, while using

theMukhanov-Sasaki variable v = z ζwith z = a
p

2 ε [14, 15, 16]. Differentiating the

quadratic action with respect to the variable v we arrive at the equation of motion

in Fourier space written as

v ′′
k−

(
k2 − z ′′

z

)
vk = 0. (1.20)
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TheMukhanov-Sasaki equation, as it is called, appears to be equivalent to the

equation of motion of the harmonic oscillator with the only difference that the

mass term, represented by
z ′′

z
= H

aφ̇

∂2

∂τ2

aφ̇

H
, (1.21)

induces a timedependence that reflects the interplaybetween the curvaturepertur-

bation and the time-dependent background. For modes with wavelengths larger

than the comoving Hubble horizon and k2 ¿|z ′′/z|, Eq.(1.20) has a growing solu-
tion vk∝ τ−1 resulting in ζk = constant. The next step in determining the solution

of Eq.(1.20) involves the usual process of quantizing the harmonic oscillator by

promoting the fields v and its conjugate momentum π≡ v ′ to quantum operators,

v̂ and π̂ respectively. The operator v̂ (the same expansion applies to π̂ equivalently)

can be expanded as follows

v̂ =
∫

d 3k
(2π)

3
2

[
â−
k vk (τ)e ık·x+ â+

k v∗
k (τ)e−ık·x

]
, (1.22)

where âk
− and âk

+ are the usual creation/annihilation operators that follow the

equal-time commutation relations 4

[â−
k , â+

k′ ] = δ(k−k′) and [â−
k , â−

k′ ] = [â+
k , â+

k′ ] = δ(k−k′) = 0. (1.23)

Themode functions vk (τ), v∗
k (τ) are solutions to theMukhanov-Sasaki equation

such that theWronskian is normalised to W (vk , v∗
k ) = v ′

k v∗
k − v ′∗

k vk = −ı. In time-

independent spacetimes, such asMinkowski, there is a unique way of defining a

ground state by demanding that the vacuum expectation value of the Hamiltonian
5 is minimised. Such a construction is not so useful when dealing with a time-

dependent background, e.g the quasi de-Sitter spacetime of slow-roll inflation,

where ωk = k2 − z ′′/z, because for each conformal time τ= τo there is a different

state that minimises the Hamiltonian, thus introducing a degree of uncertainty

when choosing the physical vacuum state. If we consider, though, that at very early

times, during inflation, |kτ|À 1, then the time dependence of the frequency ωk is

lifted and theMukhanov-Sasaki equation reduces to the one for Minkowski space,

4These commutation relations are derived from [v̂(τ,x), π̂(τ,y)] = ı ħ δ(x−y) and
[v̂(τ,x), v̂(τ,y)] = [π̂(τ,x), π̂(τ,y)] = 0.
5The Hamiltonian is written as Ĥ = 1

2

∫
d3x

[
π̂2 + (∂i v̂)2 − z′′

z
v̂2

]
.
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which is

v ′′
k +k2vk = 0. (1.24)

The solution that minimises the vacuum expectation value inMinkowski space is

vk = 1p
2k

e−ıkτ. Therefore, in the inflationary quasi-de Sitter space, by picking the

mode functions that satisfy the condition

lim
τ→−∞vk (τ) = 1p

2k
e−ıkτ, (1.25)

a unique vacuum state is defined, the Bunch-Davies vacuum state. Once the initial

conditions are unequivocally defined, the zero-point fluctuations of the quantized

scalar field v are given by

〈v̂kv̂k′〉 = 〈0|v̂kv̂k′ |0〉 = 〈0|(a−
k vk +a+

−kv∗
k )(a−

k′vk ′ +a+
−k′v∗

k ′)|0〉 = Pv (k)δ(k+k′), (1.26)

where Pv (k) = |vk |2 is the power spectrumof the perturbations of the field v . Switch-

ing variables to v = z ζ, allows us to exploit the fact that ζ is constant on super-

horizon scales in order to define the dimensionless power spectrum of primordial

perturbations at horizon crossing (k ∼ aH)

Pζ(k) = k3

2π2z2 Pv (k) = 1

4π2

H 4

φ̇2

∣∣∣∣
k=aH

= 1

8π2

H 2

ε

∣∣∣∣
k=aH

. (1.27)

Since Pζ(k) is only a function of k that varies slowly, it is customary to use a power-

law fit Pζ(k) = A(k0)
( k

k0

)ns−1, with the scale k0 being chosen as the pivot scale where

the errors coming from observations are minimised (for themeasurements of the

CMB anisotropies the pivot scale is k0 = 0.05M pc−1) [4] and the spectral index is

defined as

ns −1 ≡ d lnPζ
d lnk

. (1.28)

Now, for a quasi-de Sitter space, if we expand Eq.(1.20) with respect to the slow-roll

parameters ε¿ 1 and η¿ 1, keeping only the first order in the super-horizon limit

(|kτ|À 1), we find that the spectral index is given by

ns −1 =−2ε−η. (1.29)

This equation exemplifies how the slow-roll parameters quantify the deviation of

the Universe from a scale-invariant (ns = 1) de Sitter space. WMAP [3] and lately

the Planck collaboration [4], having conducted a very precise measurement of

22



the CMB temperature anisotropies, were able to detect such departures with a

red-tilted (ns < 1) power spectrum for the curvature perturbations and also place

stringent bounds on its spectral index at the 1-σ level, ns = 0.966±0.004 [4, 5].

Besides the scalar perturbations, we have also tensor modes described by the

traceless and transverse tensor hi j , defined below Eq.(1.16). Similarly, we can

expand the action Eq.(1.8) up to second order for hi j and write

S =∑
γ

1

2

∫
dτd 3k

[
(v ′

k,γ

)2 − (
k2 − a′′

a

)
v2

k,γ

)]
. (1.30)

The sum is over the polarisation of the tensor field γ= (+,×) and the normalised

field vk,γ =
a(t )

2
MPLhk,γ is used instead of the Fourier modes hk,γ. The equations of

motion of these tensor modes have the same form as Eq.(1.20), meaning that the

dimensionless power spectrum of the primordial gravitational waves calculated at

horizon crossing can be written as

Pt (k) = 2

π2

H 2

M 2
PL

∣∣∣
k=aH

. (1.31)

We note that Pt (k) = 2Ph(k) is the sum of the power spectra for themodes with the

two distinct polarisations and it only depends on the Hubble parameter at horizon

crossing. An important observational quantity that relates the amplitudes of both

scalar and tensor perturbations and can be used as a discriminator between the

predictions of various inflationary models, namely the tensor-to-scalar ratio, is

defined as

r = Pt (k)

Pζ(k)
= 8

M 2
PL

φ̇2

H 2 = 16 ε, (1.32)

where the Eq.(1.27) and Eq.(1.31) were used. Furthermore, the fact that the power

spectrum of tensormodes depends only on the Hubble rate at horizon crossing,

renders gravitational waves an ideal probe for the energy scale of inflation since

we have that

V 1/4 ∼
( r

0.01

)1/4
1016 GeV. (1.33)

The fact that the tensor-to-scalar ratio, as seen in Eq.(1.32), depends on ε, implies

that inflation produces an amplitude of the tensor modes that is subdominant to

the scalar one, a prediction that is corroborated by Planckmeasurements of the

CMB, where values of r < 0.1 are favoured by the data, also seen in Fig.1.4.
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One way to probe the existence of thesemodes involves looking at the signatures

of both scalar and tensor perturbations on the CMB linear polarisation field. In

general, the linear polarisation field of the CMB radiation can be decomposed into

twomodes, in particular into the so called the E and Bmodes. It was found that

the scalar and tensor modes leave distinct imprints on the angular CMB power

spectra, with the former creating onlyE-modeswhile the latter generatingB-modes

as well. Now, the presence of primordial B-modes reveals the existence of primor-

dial tensor modes. Such a signal, however, has not been detected, possibly due

to its inherently small amplitude and to various sources of background noise and

foreground contamination. Nonetheless, the combined data of temperature and

E-polarisation anisotropies fromPlanck [17] and theB-polarisationmeasurements

from BICEP/Keck Array (BK15) [18] have placed the tightest bounds on the tensor-

to-scalar ratio at the pivot scale kpi vot = 0.002 Mpc−1, reporting an upper limit of

r < 0.056 at the 95% confidence level. This immediately translates into an upper

bound on the energy scale of inflation V 1/4 < 1.6 ·1016 GeV, given by Eq.(1.33). Fur-

thermore, the values for ns − r coming from Planck, Baryon Acoustic Oscillations

(BAO) and BICEP/Keck Array, have already disfavoured somemodels with a power-

law potential, such as the chaotic models of inflation, pointing towards concave

potentials (where d 2V
dφ2 < 0 when CMB scales exit the horizon), as depicted in Fig.1.4.

Future measurements of CMB radiation by experiments such as PIXIE [19] and

LiteBIRD [20], aim to probe the tensor-to-scale ratio down to values of r ∼O (10−3).

On the other hand, a non-detection of primordial waves by those experiments will

disfavour models that have been allowed by current observations of CMB, such as

the Starobinskymodel [20].

1.3 Primordial black holes as darkmatter

Despite the undoubted success of the ΛC DM model to describe the Universe at

cosmological scales k . 1 Mpc−1, we still lack an accurate miroscopic description

of dark energy and dark matter (DM ), the two components that constitute almost

95% of the energy density of the Universe. The former has a negative pressure that

drives the accelerated expansion of the late Universe, whereas the latter one is
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Figure 1.4: Constraints on the tensor-to-scalar ratio r in terms of the spectral index
ns at the 95% confidence levelmeasured at thepivot scale k = 0.002 M pc−1. AΛCDM
model with negligible running of the spectral index ( dns

d lnk ≈ 0
) and a nearly scale-

invariant power spectrum of the tensor modes (satisfying the consistency relation
nt =−r /8) is assumed. The grey shaded region is the constraint coming fromPlanck
while the red and blue ones are due to (BK 15) and BAO accordingly. The coloured
solid lines indicate the theoretical predictions of a sample of inflationarymodels
allowing for an uncertainty in the number of e-folds until the end of inflation,
50 < N∗ < 60. The plot is adapted from [5].

responsible for seeding the formation of the observable large scale structure as

well as explaining the features of the CMB, seen in Fig.1.5.

One of the first indications of such a dark component of matter was found in the

rotation curves of stars or galaxies that were observed to stay flat even for large

distances from the galactic center or from the center of the cluster respectively.

Zwicky [21] in the 1930’s was one of the first to point that the inexplicably fast

orbits of the galaxies in the Coma cluster could be explained if there was a dark

matter component in order to create a larger gravitational pull. But it was not

until the systematic study of the orbits of stars in the Andromeda Nebula by Rubin

[22], revealing the same flat pattern in the rotation curves, that darkmatter started

being considered as an essential component of the cosmological paradigm.

A supplementary observational method used to probe the fraction in dark matter

is the use of weak-gravitational lensing. Mapping how the photon trajectories,
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coming from distant and bright sources as active galactic nuclei (AGN) or quasars,

are bent bymassive sources, such as galaxies or clusters of galaxies, has aided to

the unveiling of the spatial distribution of dark matter. These lensing data sets,

along with radio and X-ray emissions from the intergalactic hot gas, demonstrated

that galaxies aremoremassive than previously thought, withmost of their mass

residing in the dark matter halo extending up to 200 kpc [23, 24, 25]. Also, more

investigations in the years that followed, unveiled the rich structure of galaxies [26],

where clusters of galaxies are connected via filamentary tubes that could span up

to a few Mpcs [27, 28], corroborating the cosmic web picture of structure predicted

by the standard ΛCDMmodel.

The observations of the distribution of dark matter at intergalactic scales are con-

sistent with the former behaving as a cold, non-relativistic fluid with a dust-like

equation of state w = 0, interacting mainly gravitationally with standard matter.

Because of its pressurless nature, it started forming clumps before the time of

recombination, providing the primordial potential wells. This so called recombi-

nation time marks the era until when photons and baryons were tightly bound

in a highly energetic plasma. Now, the perturbations of the plasma that entered

the comoving Hubble horizon at z > zr ec exhibit an oscillatory behaviour, with a

decreasing amplitude, resulting in the distinctive peaks of the CMB power spec-

trum shown in Fig.1.5. On the other hand, the darkmatter component, which is

unaffected by the suppression from interactions with the baryon-photon plasma,

starts clumping 6 and gravitating regular matter, thus kickstarting the evolution of

structure at cosmological scales [30].

Currently, the twomostprominentparticle candidates fordarkmatter, fromthepar-

ticle physics perspective, are the weakly interactingmassive particles (WIMPs) and

the axions (or axion-like particles). The former, withmasses of order GeV−10 TeV,

have a freeze-out relic abundance that matches pretty closely the dark matter one

(WIMPmiracle), thus they were readily considered as a viable candidate for dark

6The study of the evolution of perturbations of the cold dark matter component in a radiation domi-
nated background on sub- and superhorizon scales reveals that the amplitude of the fluctuations
that enter in the causal horizon before radiation-matter equality will increase logarithimically
beforematter equality at zeq ∼ 3400, while afterwards it will start growing proportionally to the scale
factor. [29]
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Figure 1.5: Thepower spectrumof thefluctuations in the temperatureof the cosmic
microwave background radiation as observed by the ESA and Planck collaboration.
The measured red points follow perfectly the green curve, representing the pre-
dictions of the ΛCDM model, particularly for the angular scales smaller than 6◦,
whereas there is a 10% deviation for the larger distances due to the cosmic variance
effect. The shaded green region shows all the configurations of ΛCDM allowed by
the Planck data. The position of the first peak around ∼ 1◦ is consistent with a flat
Universe, while the position of the second and third ones do agree with a baryon
density of∼ 5% and darkmatter density around∼ 25% . Note the suppression of the
acoustic peaks for angular scales smaller than 0.2◦, originating from Silk damping
and free-streaming effects due to the mixture of energetic photons. The plot is
taken from [31, 32].

matter [33, 23, 34]. Although such weakly interacting particles have stimulated a

great deal of interest, since they could be found in supersymmentric extensions

of the Standardmodel (SUSY ), their existence still eludes any conclusive obser-

vational confirmation. The second most prominent particle candidate for dark

matter is the axion. The axion is a pseudoparticle produced after the spontaneous

breaking of a U (1) symmetry, introduced by Peccei and Quinn [35] in order to

resolve the strong-CP problem of quantum chromodynamics (QCD). Since that

initial proposal, various axion-like particles have been introduced (see [36, 37]

and references within for a review of the axion landscape) with amass spectrum

spanning numerous orders of magnitude. Despite the persistent efforts, there
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has not been any conclusive direct [38, 39] or indirect [40, 41] detection of any

such particle, same as for WIMPs, but instead stringent limits have been placed on

their possible ranges of mass as well as on the strength of their interactions with

Standardmodel particles or nuclei [34, 42].

Lastly, another prominent candidate for dark matter is a population of stellar rem-

nants (namely white dwarfs or neutron stars), faint stars (brown dwarfs) or any

other compact object that could reside in the haloes of the galaxies. Although

this seemed an intriguing possibility, the bounds on the baryon-to-photon ratio

n, derived from themeasurement of the abundances of light nuclei that formed

during the era of Big BangNucleosynthesis (BBN), prevent darkmatter from totally

consisting of a population ofmassive halo compact objects (MACHOs). Apart from

the constraints set by BBN, the abundance of MACHOs is further limited by sur-

veys of gravitational lensing. Since these faint objects were theorized to populate

a significant fraction of the halo of each galaxy, they could pose as possible ’dark’

sources of lensing. In order to test this idea, the fraction of our galaxy’s halo in

MACHOs was probed by observing the rate at which the light of stars in Milky

Way was lensed [43]. Since then, numerous surveys for microlensing events along

the line of sight of neighbouring satellite galaxies, i.e Large Maggelanic Clouds

(LMCs) orM31, such as the EROS [44] /
MACHO [45, 46] collaborations, have been

conducted, successfully constraining said abundance over a fairly largemass span,

10−7 M¯ . M . 10M¯. However, since the detection of MB H ∼O (10) M¯ merging

black holes by the LIGO/VIRGO collaboration [47], the interest for dark matter

being comprised of MACHOs, andmore concretely in the form of primordial black

holes, has heightened once again. The advantage of darkmatter being composed

of PBHs over stellarMACHOs lies in the fact that the former evade the bounds from

BBN, since they could originate from the collapse of adiabatic density perturba-

tions, which aremademainly of radiation and not somuch of baryons.

ItwasNovikovandZeldovich [48] alongwithHawkingandCarr [49, 50, 51],whofirst

envisioned that inhomogeneities in the energy density of the early Universe could

overcome the radiation pressure and collapse under their own gravity forming

primordial black holes. The mass of the collapsing region is of the order of the
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mass included in the comoving horizon at themoment of formation and is given

by the following approximate relation [52]

MPB H ∼ 1015
( t

10−23s

)
gr. (1.34)

PBHs forming around the QCD phase transition (t ∼ 10−5 s) would have masses

of the order of our Sun (M ∼ 1 M¯), whereas the one with a mass of 1015gr would

have evaporated by now [49] via Hawking radiation [53]. Additionally, the fact that

Eq.(1.34) offersmass support in the so called gaps of themass distribution of stellar

black holes, could be utilised as a strong observational indication for the primor-

dial origin of said size [54, 55]. More concretely, PBHs could populate the lower

mass gap set between the heaviest neutron stars and the lightest astrophysical

black hole, 2. MPB H
/

M¯ . 5 7 as well as the upper mass gap, 45. M
/

M¯ . 135 set

by pair production instabilities in the collapsing star [56, 57]. The LIGO/VIRGO

collaboration has detectedmergers [54, 55], where themass of one or both of the

binary components is found to fall within either mass gap, enforcing the idea that

their progenitors could consist of primordial black holes. Due to the observational

difficulties of disentangling the different channels of binary formation and statisti-

cally inferring the parameters of each of the components, there is still ambiguity

in determining the nature of the colliding objects, allowing for either a primordial

[58] or an astrophysical origin [59, 60, 61].

Generally, there is a plethora of mechanisms that could produce a cosmologically

interesting abundance of PBHs. These could range from inflationary curvature

fluctuations that collapse after they re-enter the horizon either during an early

matter [62, 63] or a radiation dominated era [64] in a single or multi-field infla-

tionary scenario[65, 66, 67], to phase transitions in the early Universe [68, 69, 70],

the collapse of topological defects of phase transitions, such as domain walls

[71, 72, 73, 74] and collisions of bubbles of false-vacuum [75, 76, 77]. In this the-

sis, I will focusmainly on PBHs originating from the first formation channel, e.g

7The lower mass limit is called the Tolman-Oppenheimer-Volkoff (TOV) limit for a non-rotating
neutron star and it is an analogue of the Chandrasekhar bound for themass of white dwarves. Its
precise value is not known since it depends on the equation of state of the neutron star but recent
andmore accurate estimations place it between 2.2 < MT OV /M¯ < 2.9. Observations of themass of
neutron stars have shown that neutron stars seem to approach the TOV limit, having masses of
the order MN S ∼ 2.4 M¯. Therefore, the possibility that neutron stars could populate that mass gap
could point to new physics.
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adiabatic curvature fluctuations with an amplitude above a certain threshold, of

order ζ∼O (1) that collapse soon after re-entering the horizon. But before I discuss

in more detail the general characteristics of such a population of PBHs, I would

like to brieflymention how they are embedded into the whole inflationary picture

andmore concretely into the single-field scenario.

As mentioned above, the amplitude of the power spectrum of curvature pertur-

bations, defined in Eq.(1.27), has been tightly constrained over the years by CMB

temperature anisotropies measurements (around the scale k0 = 0.05 Mpc−1) and

large scale structure surveys, to a value Pζ = 2.1 ·10−9 [4] at k . 1 Mpc−1. Now, we

know that the collapse of the overdensity under its own gravity is a non-linear

process that requires large values for the amplitude of the curvature perturba-

tions. Thus, in order for PBHs tomatch the DM abundance, the power spectrum

of the curvature perturbations needs to take a value Pζ(kPB H ) ∼ 10−2 [78, 79, 80] for

kPB H & 107 Mpc−1. Since the power spectrum at the cosmological scales is of order

Pζ(kC MB ) ∼ 10−9, we note that it needs to grow considerably, close to seven orders of

magnitude. That rapid amplification of the amplitude at small scales could not be

achieved by a single field slowly rolling down the inflationary potential. The reason

is that the slow roll parameters vary slowly, thus resulting in a nearly constant pri-

mordial power spectrum (see also the discussion below Eq.(1.21)). This, however,

could be achieved in inflationarymodels where the slowly-rolling inflaton field φ

reaches an inflection point [48, 81, 82, 83], where V,φ→ 0. Once the field reaches

either a flat region or a local maximum of the potential , its trajectory enters in an

ultra-slow-roll regime (USR) [84, 85] or a transient constant-roll phase (CR) [86]

(see Fig.1.6). There, the field’s velocity φ̇ decreases exponentially leading to an

enhancement of the primordial power spectrum, in the shape of a spiky feature, as

seen in Eq.(1.27) and depicted in Fig.1.7. This amplificationwill inevitably lead to a

violation of the slow-roll approximation at least at an order of O (1) [87, 81, 88]. An-

other effect that will further contribute to the amplification of the power spectrum

involves the evolution of the modes of ζk once they exit the comoving horizon.

More concretely, if the field φ reaches the plateau or local maximum, then the

acceleration term in the Klein-Gordon equation, Eq.(1.9), cannot be neglected,
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as it is assumed in the slow-roll approximation, since now it is compensating for

the friction term that drives the field evolution. In order to see that a spatially

flat direction of the potential and the field following a non-attractor trajectory

(i.e the ultra-slow-roll regime) for an adequate number of e-folds, can lead to the

enhancement of the power spectrum, we need to rewrite theMukhanov-Sasaki

equation, Eq.(1.20), with respect to ζk and N (given in 1.14) in the form [89]

d 2ζk
d N 2 + (3−ε+η)

dζk
d N

+
( k

aH

)2
ζk = 0. (1.35)

For super-horizon scales, where k ¿ aH , the third term in Eq.(1.35) is negligible

and the solution is given by

ζk =C1 +C2

∫
e−3N+ln H−lnεd N . (1.36)

Now, in slow-roll inflation the second termof Eq.(1.36) is exponentially suppressed,

leaving the curvatureperturbations constant as soonas theyexit the causal horizon,

as mentioned above. If the field enters an USR or a CR regime, then η.−6 [85, 90]

( where the equality is for USR), implying that 3−ε+η< 0. Therefore, the second

term in Eq.(1.36) corresponds to a growingmode of the solution once it exits the

comoving Hubble horizon, thus leading to the enhancement of the primordial

power spectrum.

Now that themechanism for the amplificationof thepower spectrum is introduced,

we can proceed with the description of the formation of PBHs. Generally, the

probability of PBH formation is reasonably well understood when the curvature

perturbation ζG is Gaussian distributed and the power spectrum has a sharp spike

at a particular scale k?. The power spectrum need not be strictly monochromatic,

since the spike could exhibit certain width. Now, provided that the IR and UV tails

fall off sufficiently, we can employ peak theory [91] in order to determine the typical

profile of high peaks, defined as

ψG (r ) ∝〈ζG (0)ζG (r )〉. (1.37)

This typical profile is proportional to the two-point function for ζG (r ), and thus

can be calculated for any given spectrum. Although there are fluctuations around

the typical profile, these are of the order of the r.m.s. fluctuations of the Gaussian
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random field. Hence, if we are considering peaks that are several standard devi-

ations high above the mean, as required in order not to overproduce PBHs, the

fluctuations will be subdominant. In this sense, the high peaks are approximately

spherically symmetric too.

Figure 1.6: An inflationary potential exhibiting a small barrier on its slope. As the
background field surpasses the barrier, it undergoes a transient phase of constant-
roll with φ̈/

Hφ̇≈ const . <−3, which significantly enhances the power spectrum of
curvature perturbations to the necessary amplitude for an abundant production
of PBHs. Here, δφ denotes the perturbation of the inflaton field calculated in the
flat gauge and it is evaluated at the time when the field overshoots the barrier
and enters into the slow-roll regime. Perturbations with −Hδφ

/
φ̇|SR >µ∗, where

µ∗ = 5
/

(6 fN L), could impede some regions, with the size of the comoving horizon,
from surpassing the local maximum of the potential, resulting in the formation of
false vacuum bubbles [86]. Naturally, the local relation in Eq.(1.39) breaks down
beyond that point. From the perspective of an observer inside the bubble, these
regions continue to inflate at a high rate, while for an external observer, these
bubbles will lead to the formation of PBHs, as soon as they enter the comoving
horizon during the radiation dominated epoch. The plot is adapted from [86, 92].

Note also that if the curvature perturbation ζ is not Gaussian, we can still calculate

the profile of the perturbation and formation probability, provided that the non-

Gaussianity is of the local type. This corresponds to the case where the curvature

perturbation ζ is a local function of a Gaussian distributed random field, already

defined as ζG ,

ζ= F [ζG ]. (1.38)
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In the inflationary context, and for the models we shall be interested in, ζG is

basically proportional to the inflaton field perturbation on flat slicings, as noted

also in Eq.(1.18) forR = 0, whose wavefunction is approximately Gaussian. Once

theprofileψG (r )hasbeendetermined,we can simplyfind thenon-Gaussianprofile

asψ(r ) = F [ψG (r )].

Figure 1.7: The power spectrum of curvature perturbations from the constant roll
potential, given in Fig.1.6, showing a strong enhancement at the comoving scale of
PBHs. The plot is adapted from [86].

As an example, a phase of constant-roll, where the inflaton overcomes a small

barrier on its way down the potential, also shown in Fig.1.6, leads to a non-linear

relation of the form [92]

ζ=− 5

6 fN L
ln

(
1− 6 fN L

5
ζG

)
, (1.39)

where fN L is determined in terms of the curvature of the potential at the barrier

[85, 93] as

fN L = 5

12

(
−3+√

9−12η
)

(1.40)

In an expansion at quadratic order, fN L is the well known local non-Gaussianity

parameter, but in the present context, the non-linear completion Eq.(1.39) plays

a significant role. In the case of CR, where the filed transverses a maximum of

the potential, there is a well defined exit of that phase, given by the moment in

which the field crosses the potential barrier (which can bemodelled with a simple
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quadratic function). Now, in the case of an USR phase, the way that the field exits

that regime in order to enter into a slow-roll one, needs to be further specified [94].

If the transition is smooth, fN L = 0 (this is a limit of the CR non-linear completion

for V,φφ = 0). If the transition between the USR and subsequent slow-roll phase is

abrupt(non-continuous), then fN L = 5/2.

The next issue that needs to be considered involves the probability of PBH forma-

tion. For this purpose, it is useful to introduce the so-called compaction function

[95, 96, 97] as

C (r ) = 1

3

[
1− (1− rζ′)2], (1.41)

where the prime ′ denotes the radial derivative and spherical symmetry is also

assumed. At superhorizon scales ζ is conserved and that also translates into a time-

independent compaction function. Physically, it can be shown that this function

is related to the volume averaged density contrast δ as

C (r ) = 1

2
(HR)2 δ (1.42)

Here, R is the aereal radius corresponding to the comoving coordinate radius r .

Note that δ itself depends on time, but such dependence is cancelled by the growth

of the aereal radius with the scale factor. Therefore, at the time of horizon crossing,

HR = 1 and C = δ/2, so we can think of the compaction function as the averaged

overdensity at the time of horizon crossing.

Furthermore, numerical simulations of the non-linear evolution of perturbations

and the subsequent formation of a PBH [98, 99, 100, 97] revealed that this phe-

nomenon is critical. Critical collapse is usually studied in terms of the compaction

function, since it provides a robust measure of the perturbation’s amplitude. Now,

for a given profile ψ(r ) of the overdensity, it is useful to introduce the radius at

which the compaction function exhibits a maximum, rm . Then, critical collapse

occurs when C (rm) exceeds a certain threshold Cth . It was soon realized that the

threshold lies in the narrow range 0.2 <Cth < 0.33 8 [78, 97, 100], with the dispersion

resulting from the dependence on the profileψ(r ) of the curvature perturbation.

Noticeably, it was shown that by taking another spatial average of the compaction

8The lower limit coincides with the analytical estimation known as the Harad-Yoo-Kohri thresh-
old [101].
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function over a volume defined by rm , as

C ≡ 3

r 3
m

∫ rm

0
R2C (r ) dR, (1.43)

the threshold for formation exhibited a universal behaviour for a broad class of

profiles of the perturbations [102, 92], taking the value

C th ≈ 1

5
. (1.44)

The criticality of the formation of a PBH is manifested in its mass, that follows a

scaling law

MPB H = K(ζ−ζc )γMH , (1.45)

where MH is themass of the horizon at the time of formation t f or m . The constants

K and γ depend on the profile of the high peak as well as on the equation of statew

and have values γ≈ 0.36 for w = 1
3 and 1.K. 10 respectively, for a a range of broad

and peaked profiles [103, 104]. Here, the curvature perturbation ζ is proportional

to the profile ψ(r ). In Eq.(1.45), ζ stands for the curvature perturbation at the

center of the overdensity, and ζc is the critical value for which C (rm) =Cth . Thus,

the criticality of gravitational collapse will lend support to a lowmass tail, even for

a narrowly spike in the power spectrum.

Now that the critical formation of a PBH is introduced, we can proceed to define

the fraction of the Universe’s energy content in such objects at the time of their

formation t f or m as

ΩPB H |t f or m
=

∫ ∞

ζc

MPB H (ζ)

MH
n(ζ)dζ, (1.46)

where n(ζ) is the number density of peaks of a height ζ and the term MPB H
MH

accounts

for the aforementioned criticality.

Now, if we assume a Gaussian probability distribution of the perturbations, then

n(ζ) is given by [91, 78]

n(ν) = k3
?

4π2ν
3e−ν

2/2θ(ν−νc ). (1.47)

where ν= ζc
σMPB H

and the variance of the perturbations, σMPB H , is defined by [105,

106]

σ2
MPB H

=
∫

d(lnk)Pζ(k). (1.48)
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Given that PBHsmay form at different epochs, the relevant observational quantity,

is the abundance of PBHs at the present time,ΩPB H

∣∣∣
t0

, described by the relation

[96]

ΩPB H

∣∣∣
t0

=
(

Meq

MH

)1/2

ΩPB H

∣∣∣
t f or m

, (1.49)

where Meq is the mass of the horizon at matter-radiation equality and time of

formation is parametrised via the horizonmass MH . The factor
(

Meq

MH

)1/2
accounts

for the fact that the energy density of matter evolves with the scale factor until

matter-radiation equality. Now, themass function is defined as [96, 107]

f (MPB H ) = 1

ΩPB H

dΩPB H

d MPB H
. (1.50)

Effects such as the critical collapse in Eq.(1.45) or a broadening of the spike in

the power spectrumwould skew and broaden themass function to lower masses;

keeping in mind that there is an upper limit on the PBH mass set by the mass

contained in the comoving Hubble horizon, when the physical scale of the pertur-

bation re-enters. On the other hand, late-time processes, such as PBHs accreting

on baryonicmatter or on their DMhaloes and hierarchical binarymergers in dense

globular clusters, would potentially shift the mass function towards its higher tail.

Additionally, the profile of the initial mass function of PBHs depends on the forma-

tion channel as well. For example, themass function of PBHs that originate from

the collapse of enhanced perturbations with a smooth and symmetric spike in

the power spectrum, is often parametrised as a lognormal function [108, 109, 110],

whereas other mechanisms, such as the collapse of scale-invariant perturbations

[51] or of cosmic strings [111, 112], results in a mass function that follows a power-

law f (MPB H ) ∝ Mθ between themasses (Mmi n , Mmax ), with the exponent θ depend-

ing on the equation of state [109].

A more refined formulation of the initial mass function and its evolution as well as

more accurate estimates of themass fraction of PBHs, f (MPB H ), is essential if we

want to accurately map the constraints on their abundance,ΩPB H |t0
, to bounds on

the small-scalepower spectrum,Pζ. In general, the constraints on themass fraction

span a wide range of masses (for updated summaries of constraints see [113, 114,

52, 111]) but here I will only list some of themost robust ones. For MPB H < 1015 gr
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the evaporation of PBHs and their contributions to the galactic and extragalactic γ-

ray backgrounds place tight limits of the orderΩPB H |t0
< 10−11, whereas black holes

of O (10 M¯) have been restricted by the LIGO/VIRGOmerger rates and the Planck

measurements of CMBanisotropies to abundances of order∼ 0.1%. Lastly, the grav-

itational and tidal effects of massive PBHs, with MPB H /M¯ > 104, on the formation

of large structures, such as globular clusters, as well as the accretion limits from X-

ray binaries, narrow the possible observational windows that could accommodate

PBHs as a viable candidate for the totality of DM. The refined andmore systematic

treatment of several observational constraints, particularly the ones coming from

femtolensing of γ-ray bursts [115] or optical microlensing events along the sight of

theMaggelanic clouds [116] and from the interaction of PBHswithmain-sequence

stars (white dwarfs and neutron stars) [113], has reintroduced the scenario that

PBHs with masses in the asteroid-Earth range, 10−16 . MPB H /M¯ . 10−10 could

constitute all of darkmatter [117]. A reappraisal of the bounds on the PBH abun-

dance, at masses around 1. MPB H /M¯ . 102, is also needed since effects, such as

an enhanced power spectrum of cosmological perturbations [118] or primordial

clustering [119], could relax considerably said constraints. I will expandmore on

these two last models on Chapter 2, where the aforementioned publications are

presented.

1.4 Overview of the thesis

This manuscript is a collection of the research conducted throughout my PhD. Its

goal is to employ PBHs in order to probe the primordial power spectrum and thus

the early-time Universe. Particularly, I explore how different features of such a

power spectrum, such as an enhanced plateau at the comoving size of binaries

at the time of their formation or a strong enhancement at the scale of solar mass

PBHs, as well as the modal coupling between the long and short wavelengths,

couldmitigate the severe bounds on the abundance of intermediate-mass PBHs

set from LIGO/VIRGO. Furthermore, the possibility that supermassive PBHs could

provide an explanation for the recently detected isotropic signal by theNANOGrav

collaboration [120] is considered.
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The thesis has the following structure. In Section 2.1 of Chapter 2, I study how

cosmological perturbations in radiation andmatter could alter the distributions

of orbital parameters by providing torque to the PBH binaries. In order to achieve

that, three different templates for an enhanced power spectrum of cosmological

perturbations at scales larger than k > 1 Mpc−1 are employed. Firstly, it is shown

that perturbations inmatter and radiationwith an amplified plateau in their power

spectrum at scales k ∼ 10 Mpc−1 are the primary source of torque to the binary for

any value of the abundance fPB H , whereas for a power spectrum that increases

monotonically up to the comoving sizes of the binaries at the time of their forma-

tion, the perturbations provide enough torque to relax the bounds on the abun-

dance of 30 M¯ PBHs sgnificantly. Lastly, a power spectrum that rises up to scales

smaller than the comoving size of the binary, exhibiting a narrow or a broad strong

enhancement at the 30 M¯ PBH formation scale, is considered. The contribution

of the cosmological perturbations to the peculiar velocities of PBHs is not found

to be significant for any relevant abundance of PBHs, unless the enhancement is

rather broad. Additionally, I present how an observable quantity, the universality

coefficient α, which is agnostic to the initial mass function of PBHs but associated

with their binarymerger rate, could provide insight into not only the amplitude

and spectral index of the primordial power spectrumbut also into themechanisms

that affect the binary formation and evolution. These results can be found in the

publication [118].

In Section 2.2, I study how primordial clustering affects the distribution of orbital

parameters of binary systems consisting of 30 M¯ PBHs. More precisely, the pri-

mordial clustering is induced by the presence of a local type of non-Gaussianity,

which will lead to different modes of the curvature perturbations being coupled. It

is found that for abundances of order 0.1% the clustering will have as an effect the

circularisation of the PBH binaries and the subsequent exponential suppression of

their merger rate observed at present time. This suppression inevitably relaxes the

constraints on the abundances of 30 M¯ PBHs set by LIGO/VIRGO observations.

An interesting feature of our phenomenological model for primordial clustering is

that the suppression of themerger rate gives rise to degeneracies in themodel’s

parameters, meaning that two different populations of PBHs are producing the
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samemerger rate. By considering the evolution of themerger rate with redshift as

well as the stochastic background of gravitational waves (SBGW) wemanage to lift

these degeneracies and disentangle the different PBH populations. The results of

this chapter are found in the publications [118] and [119] respectively.

In Chapter 3, I focus on the idea that PBHs, particularly the ones that are extraor-

dinarily massive, having amass around ∼ 1012M¯, could provide an explanation

for the isotropic signal that was detected in the pulsar timing data provided by

the NANOGrav collaboration. More concretely, we show that the peak of the

NANOGrav signal can be explainedwith the stochastic background of gravitational

waves sourced from themergers of stupendously massive PBHs, withmasses of

order ∼ 1011 −1012 M¯, finding that it could be explained by a PBH abundance of

∼ 0.1%. In order for such supermassive PBHs to exist, the bounds from the non-

detectionofCMBspectral distortionsneed tobe evaded. Since the amplitudeof the

curvature perturbations needed in order to achieve a certain abundance of PBHs

decreases as fN L increases, we show that for a single-field inflationarymodel with a

transient phase of constant roll and for fN L > 3, the constraints from µ-distortions

can be evaded. The results of this Chapter can be found in the publication [121].

Lastly, Chapter 4 gathers the results and presents possible pathways that can be

followed in order to expand upon said work.
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2 Solar mass PBHs and the

LIGO/VIRGOmergers

Thedetectionofmergingblackholeswithmassesoforder∼ 30 M¯ by theLIGO/VIRGO

collaboration, reinvigorated the interest in PBHs, both as a candidate of DM but

also as a viable explanation for a fraction of the aforementionedmergers. Since

the first successfully detected pair of colliding black holes [47] and the subsequent

addition of 10 moremerging events by the LIGO/VIRGO collaboration in the first

two runs (O1/O2) [122], another 34 confirmed events [123] (only of black holemerg-

ers)1, were added after the end of the third run (O3a) in 2019. Generally, there are

two prominent astrophysically-motivatedmodels for binary formation [127] and

evolution, namely the channel of the isolated binary evolution in galactic fields

and the dynamical capture channel of formation in dense clusters, i.e globular

clusters. They respectively predict an aligned and isotropic distribution of effective

spins for the merging BHs, but both models’ estimations of the magnitudes are

plagued by uncertainties having to dowith supernova natal kicks, angularmomen-

tum transfer and tidal effects [128, 129]. These channels of binary formation fail

though to completely account for the statistically inferred tendency of themerging

population towards low values of the effective spinχe f f
2 andmasses of∼O (10) M¯,

features that seem to be consistent with a significant fraction of these mergers

being primordial.

Now, the fact that PBHs from the collapse of inflationary fluctuations are shown

1More events with astrophysical significance pastr o > 0.5 have been reported in [124, 125, 126].
2The spin variable measured with the least ambiguity is χe f f = ~J1/M1+ ~J2/M2

M1+M2
·~L [130, 131, 132], where(

~J1,~J2
) are the angular momentum vectors, the masses (M1, M2) and~L is the orbital angular mo-

mentum.
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to exhibit an isotropic distribution of small spin amplitudes [133, 134], qualifies

them as a possible candidate for said coalescing population (except for a few

highmass events that have been confirmed to have a non-negligible spin values

[124, 125, 130]). Various hierarchical Baysesian analyses have been conducted in

order to discriminate between the different populations. These analyses employed

the posterior probability density functions of the effective spins and chirpmasses

Mchi r p , inferred from the growing catalogue of LIGO/VIRGOmergers and showed

that a single PBH population is disfavoured by the GWTC-2 data [135, 136, 137].

More refined investigations, based on amixed-population approach that encom-

passes also the different astrophysical models, such as the isolated and dynamical

capture channels mentioned above, demonstrated that there is a statistical signifi-

cance that a fairly considerable number of mergers, up to ∼ 27%, detected so far

could be of primordial origin 3 [141, 142, 143].

Additionally, another quantity that could be employed, besides the effective spin,

chirp mass and themass ratio (q = M2
/

M1), in order to discern the different popu-

lations, is themerger rate’s evolution with redshift. For PBHs, the rate increases

monotonically with redshift, whereas for the astrophysical one, there is a peak

around z ∼ 10 [141, 144] due to coalescences of Population III stars. The advent of

the third generation ground-based interferometric detectors, such as the Einstein

Telescope [145] and the Cosmic Explorer [146], will aid towards disentangling the

various binary formation channels and shed more light onto their origin, since

they will be able to probe the evolution of themerger rate up to redshifts z ∼ 50, de-

spite the increasing uncertainty for higher values of z [147], formasses of O (10 M¯).

Therefore, it is imperative to update and refine our phenomenological modeling

of the PBHmerger rate in order to exploit the breadth of the incoming data. Ac-

counting for a DM dress around a PBH binary [148], the effect of early clustering

structures on themerger rate [149, 150, 151] or the impact of early accretion on the

evolution of the spin distribution [152] are few of the effects that could be incorpo-

rated in our modelling of the evolution of PBH binaries, in an effort to reevaluate

3A direct detection of PBHs by the LIGO/VIRGO collaboration or any other ongoing or planned
experiment would have immediate consequences for the viability of the particle candidate of
DM, i.e WIMPs, since the existence of the former may restrain the latter to abundances that are
cosmologically negligible [138, 139, 140].

42



their contribution to the LIGO/VIRGO rate and thus to the energy content of the

Universe at present time [153, 154].

The papers presented in this Chapter [118, 119] introduce two effects that need to

be acknowledged, since they shape the surroundings within which the binary is

evolving. In the first paper, I present how enhanced perturbations, both inmatter

and radiation, at binary scales could relax the tight LIGO/VIRGO constraints on

the PBH abundance, while the observational prospect of a parameter that carries

information about the different mechanisms that can induce torque on the binary,

is discussed. In the second paper, a phenomenologicalmodel of clustering of PBHs

is presented, where themodal coupling between the short and long wavelengths

of the perturbations, sourced from the presence of a local type non-Gaussianity,

causes a suppression on themerger rate, relaxing considerably the bounds on their

abundance.

2.1 Primordial black holes and enhanced cosmological perturbations
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Abstract. The rate of merger events observed by LIGO/Virgo can be used in order to probe
the fraction f of dark mater in the form of primordial black holes (PBH). Here, we consider
the merger rate of PBH binaries, accounting for the effect of cosmological perturbations on
their initial eccentricity e. The torque on the binaries may receive significant contributions
from a wide range of scales, that goes from the size of the horizon at the time when the
binary forms, down to the co-moving size of the binary. Extrapolating the observed plateau
in the power spectrum PΦ ≈ 10−9 from cosmological scales down to the co-moving size of
binaries, the torque from perturbations is small. In this case, for f & 10−2, the distribution
of eccentricities is dominated by tidal torques from neighboring PBHs. On the other hand,
in scenarios where PBH are formed from adiabatic perturbations, it is natural to expect an
enhancement of PΦ at small scales, where it is poorly constrained observationally. The effect
can then be quite significant. For instance, a nearly flat spectrum with amplitude PΦ & 10−7

on scales smaller than ∼ 10 Mpc−1 gives a contribution 〈j2〉 ∼ 103PΦ, where j = (1− e2)1/2

is the dimensionless angular momentum parameter of the binaries. This contribution can
dominate over tidal torques from neighboring PBHs for any value of f . Current constraints
allow for a power spectrum as large as PΦ ∼ 10−5 at the intermediate scales 103–105 Mpc−1,
comparable to the co-moving size of the binaries at the time of formation. In particular, this
can relax current bounds on the PBH abundance based on the observed LIGO/Virgo merger
rate, allowing for a fraction f ∼ 10% of dark matter in PBH of mass ∼ 30M�. We investigate
the differential merger rate ∆Γ(m1,m2), as a function of the masses of the binary components,
and the corresponding “universality” coefficient [1] α = −(m1 + m2)2∂2 ln ∆Γ/∂m1∂m2.
For an enhanced power spectrum with spectral index p we find that α ≈ 30/(32 − 7p) for
0 < p . 2, and α ≈ 5/3 for p & 2. Such values may lie well outside the narrow range
α ≈ 1 ± 0.05 characteristic of tidal forces from neighboring PBHs. We conclude that, given
a large enough sample of events, merger rates may provide valuable information on the
spectrum of primordial cosmological perturbations at currently uncharted lengthscales.

Keywords: primordial black holes, cosmological perturbation theory, power spectrum,
inflation

ArXiv ePrint: 1907.01455

c© 2019 IOP Publishing Ltd and Sissa Medialab https://doi.org/10.1088/1475-7516/2019/09/043



J
C
A
P
0
9
(
2
0
1
9
)
0
4
3

Contents

1 Introduction 1

2 PBH binary formation and universality 3

2.1 Initial orbital parameters and the life-time of binaries 3

2.2 Merger rates 5

2.3 Tidal torque due to neighboring black holes 6

2.4 Universality in the mass dependence of the merger rates 10

2.5 PBH infalls and the universality coefficient 11

3 Cosmological perturbations 13

3.1 Perturbations in radiation 15

3.2 Adding matter perturbations 16

4 Effect of perturbations on the merger rates 17

4.1 Case A: nearly scale invariant cosmological perturbations 18

4.2 Case B: enhancement of the power spectrum at intermediate scales 20

4.3 Case C: steep spectrum at very small scales 27

4.4 Effect of a peak at the PBH scale 29

5 Summary and conclusions 31

1 Introduction

The detection of gravitational waves (GWs) from merging black hole binary systems has
revived interest in the idea that primordial black holes (PBHs) may be a viable candidate for
dark matter (DM). The abundance of PBHs is severely constrained for a wide range of masses
(see e.g. [2] and references therein), but it could still be significant both for sublunar and stel-
lar masses. In particular there is an active debate on wheter PBHs in the mass range recently
detected by LIGO/Virgo collaboration could account for a sizable fraction of DM [3, 4].

The observed merger rate [5–8] Γ ≈ 10–100 Gpc−3 yr−1 in the range ∼ 5–100M� has
recently been used in order to place limits on the PBH abundance [4, 9]. In such estimates, it
has been assumed that PBH are spatially uncorrelated at the time of formation, and that the
dominant contribution to the orbital angular momentum of the binaries originates from tidal
forces exerted by other black holes in the neighborhood, around the time when the binary
decouples from the Hubble flow [1, 11, 12]. With these assumptions, the observational upper
bound on the merger rate limits the fraction of PBHs in DM to f . 1%. Several refinements to
this estimate have been considered, including initial spatial correlations of the PBHs [13–16],
tidal forces from non-relativistic matter perturbations [9, 10, 17], as well as the effect of a
dark matter dress around the PBHs [18], with similar results for the bound on the PBH
abundances. In ref. [19], the effect of infalls of neighboring PBHs on the binary has been
studied, with the conclusion that this may significantly reduce the observed merger rate.
Also, N-body simulations for the formation and evolution of binaries [19] indicate that for
high f ∼ 1, the rate may be significantly reduced by disruption, through the interaction of
binaries with compact N-body systems.
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In this paper, we consider the effect of primordial cosmological perturbations on the
angular momentum of PBH binaries during the radiation dominated era. We note that,
even for a scale invariant spectrum of density perturbations, there is a wide range of scales
contributing to the torque. Moreover, the amplitude of the power spectrum PΦ is poorly
constrained beyond the scale of 10 Mpc−1, and it could be significantly larger than it is on
cosmological scales. In the present context this possibility seems rather natural, since some
scenarios for PBH formation1 rely on a prominent enhancement or “bump” in the power
spectrum at relatively short wavelengths, corresponding to the co-moving size of the horizon
at the time when PBHs form. In the inflationary context, the height and location of the
bump depend on specific features in the inflaton potential. For instance, in one field models,
the field may undergo a short period of ultra-slow roll or constant roll as it encounters local
extrema on its way down the potential [20–27]. While the amplitude of perturbations on
cosmological scales is of order PΦ ∼ 10−9, the r.m.s. amplitude at the bump should be
much larger, PΦ ∼ 10−3–10−2, so that PBHs can form in significant abundance. This is
a strong departure from scale invariance, and it seems plausible that in generic models of
this sort the power spectrum might be enhanced also at the scales interpolating from the
cosmological plateau down to the PBH scale, including the intermediate scales comparable to
the co-moving size of the binaries. Here, we shall be agnostic about the specific inflationary
dynamics, and will simply explore the consequences of an enhanced spectrum which we shall
model as a (piecewise) power law PΦ(k) ∝ kp. As we shall see, such an enhancement may
have potentially observable consequences. In particular, it may affect the differential merger
rate of binaries as a function of the component masses.

The paper is organized as follows. In section 2 we briefly review the formation of PBH
binaries and the distribution of orbital parameters, taking into consideration the effect of
neighbouring black holes but ignoring cosmological perturbations. It is in this context that
the universality coefficient α, which charaterizes the dependence of the merger rate on the
masses of the components, was first introduced [1]. Hence, this will be a useful reference
case. We also comment on PBH infalls and their effect on α.

In section 3 we discuss the effect of cosmological perturbations on the dimensionless
orbital angular momentum parameter j. In contrast with earlier analysis, here we include
the perturbations in radiation, whose effect dominates over that of matter perturbations for
binaries which decouple from the Hubble flow deep in the radiation era. For an enhanced PΦ

these tend to dominate the distribution of j.

In section 4 we consider the merger rates in three different scenarios: the nearly scale
invariant cosmological plateau (Case A), an enhanced spectrum at intermediate scales with
a moderate spectral index 0 < p . 2 (Case B), and a rather steep power spectrum p > 2,
peaked at scales smaller than the binary size (Case C). Our conclusions are summarized
in section 5.

Throughout the paper f will denote the fraction of dark matter in the form of PBHs,
and s will denote the cosmological scale factor, while a will denote the semi-major axis of
binaries. We adopt the convention that s = 1 at the time of matter-radiation equality. The
speed of light is set to c = 1.

1Not all scenarios for PBH formation require a bump in the power spectrum. For instance, PBH could be
created by active seeds such as relic domain walls or false vacuum bubbles produced during inflation [28–30],
rather than adiabatic perturbations. In such alternative scenarios, an enhancement in the spectrum of
cosmological perturbations does not seem to be a necessary feature. The same is true for PBH formation at
post-inflationary phase transitions (see e.g. [31–34] and references therein).

– 2 –



J
C
A
P
0
9
(
2
0
1
9
)
0
4
3

2 PBH binary formation and universality

In this section, we briefly review the case where the angular momentum of binaries is due to
the tidal torque from other PBHs in the vicinity, neglecting cosmological perturbations. We
also introduce the universality coefficient α [1], and we discuss how this may be affected by
the infall of neighboring PBH on binaries.

2.1 Initial orbital parameters and the life-time of binaries

Following [4, 11], let us assume a uniform distribution of PBHs, without any initial spatial
correlations.2 From a given PBH, the probability of finding the nearest neighbour at a certain
distance is given by

dP = e−XdX. (2.1)

Here X = nV is the product of the co-moving number density n times the co-moving vol-
ume V = (4/3)πx3, where x is the co-moving distance. We adopt the convention that the
cosmological scale factor is s = 1 at the time of matter-radiation equality.

We shall also assume that the PBH mass function is not too broad,3 allowing however
for some spread in the masses within an order of magnitude or so. The co-moving number
density takes the form n = fρeq/(2m̄), where f is the fraction of DM in the form of PBHs,
ρeq is the density at the time of equality, and m̄ is the average mass in the distribution. We
may then write

X = nV =
(x
x̄

)3
,

where

x̄ =

(
3m̄

2πfρeq

)1/3

. (2.2)

In a spherical region of radius x̄ we expect to find one PBH, on average, so the length scale
x̄ can also be thought of as a typical separation between PBHs.

A pair of black holes forms a binary when the relative kinetic energy due to the Hubble
flow becomes comparable to the gravitational binding energy between the two objects [4],

1

2
µH2s2x2 ∼ Gm1m2

sx
. (2.3)

Here, µ = m1m2/M is the reduced mass, where M = m1 +m2 is the total mass of the binary.
The above relation has to be satisfied before the end of the radiation era, since both sides will
scale as s−1 during matter domination. For x . x̄, and taking into account that ρ ≈ ρeq/(2s

4)
in the radiation era (s� 1), the relation (2.3) is satisfied when the cosmological scale factor
s is of order s ∼ λ(m̄/M) ≤ 1, where we have introduced

λ ≡ X

f
. (2.4)

2The effect of such an initial correlation has been discussed in refs. [14, 16].
3This is expected when PBH are formed from very high peaks of a Gaussian random field of density

perturbations [35, 36], even if the enhancement in the power spectrum has a sizable width. Unless the power
spectrum involves different explicit scales, high peaks of the random field tend to have a well defined shape,
which leads to a relatively narrow range of masses after gravitational collapse.
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More precisely, parametrizing the physical distance as d = χ(η;λ)x0, where x0 is the initial
co-moving separation, we may write

x = |~x| = χ(s)

s
x0. (2.5)

The numerical analysis in refs. [9, 19] shows that, that for binaries forming deep in the
radiation era (i.e. λ� 1), the function χ is self-similar

χ(s;λ) = λχ(s/λ; 1). (2.6)

Initially, the two PBH are following the Hubble flow, so that χ ≈ s, ~x ≈ ~x0 is approximately
constant, and the physical distance grows linearly in s. However, when the scale factor
reaches the value

s ≈ sb =
λ

3

(
2m̄

M

)
, (2.7)

the physical distance turns around and a bound system is formed with semi-major axis given
by [9]

a = 3βsb
x

2
=
β

2

(
2m̄

M

)( 3m̄

2πρeq

)1/3
λ4/3, (2.8)

where β ≈ 0.2. Introducing the dimensionless average mass parameter

m ≡ m̄

M�
, (2.9)

we have

a ≈ 1.8 · 10−7λ4/3m1/3

(
2m̄

M

)
H−1

eq , (2.10)

where we have used H−1
eq ≈ 0.9 · 1018 km.

In an environment with no external forces and torques, two PBHs which are initially at
rest would collide head-on due to gravitational attraction in a very short time-scale

∆t ∼ a2(GMa)−1/2 ∼ H−1
b . teq, (2.11)

comparable to the Hubble radius H−1
b at the time when the binary forms. However, the

binary system is immersed in a local tidal field, created by density perturbations and by
other PBHs in the neighborhood. These forces will exert a torque on the binary, giving it an
orbital angular momentum which avoids the head-on collision. The binary will then slowly
radiate its energy by emitting gravitational waves in a much longer timescale, before the final
merger occurs.

For a binary with initial orbital angular momentum ` per unit reduced mass, the life-
time is given by Peters formula [37]

t = t[j, a] ≡ 3

85

a4

G3m1m2M
j7, (2.12)

where dimensionless parameter j, is defined as

j ≡ `√
GMa

. (2.13)
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For an elliptic orbit with semi-minor axis b, we have j = b/a =
√

1− e2, where e is the
eccentricity. Note that j < 1. Using t = t0 ≈ 1.3 · 1023 km, we find that the binaries which
are merging today are characterized by

j = j0(λ) ≈ 1.6 · 10−3λ−16/21m5/21

(
M

2m̄

)(
4m1m2

M2

)1/7

, (2.14)

where we have used eq. (2.8) with β ≈ 0.2. The distribution of j in the ensemble of binaries
depends on the specific mechanisms which give the binaries their angular momentum.

2.2 Merger rates

In general, the differential number density of binaries per unit volume is given by

dnbin = dnMd
2F . (2.15)

Here
d2F ≡ dF(m1)dF(m2), (2.16)

where dF is the PBH mass distribution function, and dnM (m1,m2, X, j) is the distribution
of binaries with masses m1 and m2, initial separation of the partners characterized by X
and orbital angular momentum parameter j. The variable X is distributed as (2.1), so using
X = fλ, we have

dnM = Θ (M − λm̄) f2 ρm(t0)

2m̄
e−fλdP (j;λ)dλ, (2.17)

where dP (j;λ) is the distribution of j for given λ, fρm(t0)/m̄ is the number density of PBH
at the present time, ρm is the current matter density, and we have inserted a factor of 1/2
to avoid double counting of binaries. The Heavyside function restrics the range of λ since,
according to our earlier discussion around eq. (2.3), a given PBH will only be part of a binary
if the distance to the nearest PBH satisfies

λ .
M

m̄
. (2.18)

Otherwise the Hubble flow velocity always remains larger than the binding energy. If the
distribution of masses is not too wide, we have M ∼ 2m̄, and for f � 1 the exponential
factor e−fλ can be approximated by 1.

The intrinsic merger rate4 of PBH binaries per unit time and volume can be written as

dΓ(t0,m1,m2) = ΓM (t0)d2F (2.19)

where the rate at fixed total mass M = m1 +m2 is given by

ΓM (t0) =

∫
δ (t0 − t[j, a]) dnM . (2.20)

Using (2.12) in the argument of the delta function, we can perform the j integration to obtain

ΓM (t0) = f2 ρm
14m̄t0

∫ M/m̄

λmin

W (λ)dλ. (2.21)

4Here, and for the rest of this paper, we consider intrinsic merger rates, ignoring effects due to time delay
of events which occur at high redshift. These can be incorporated along the lines of ref. [19].
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Here, we have dropped the factor e−fλ, since as mentioned above this can be approximated
by unity in the relevant range of parameters. Also, we have introduced

W (λ) = j
dP (j;λ)

dj

∣∣∣∣
j=j0

, (2.22)

where j0 given by eq. (2.14) is the value of j for which the lifetime of the binary coincides
with the present age of the universe t0. The integral in (2.21) is in the range

λmin < λ .M/m̄, (2.23)

where the lower limit5 λmin ∼ 2 · 10−4m5/16 is determined from (2.14), taking into account
that we must have j0 ≤ 1.

The distribution dP (j;λ) depends on the mechanism which gives angular momentum
to the binaries. In general,

j = |~nb + ~cp| (2.24)

is the added contribution from torques due to neighboring PBHs, and from torques due to
cosmological perturbations. For the rest of this section we concentrate on jnb, while the effect
of cosmological perturbations will be discussed in the following sections.

2.3 Tidal torque due to neighboring black holes

Let us start by considering the effect of a single neighboring PBH, producing a tidal torque
on the binary. By integrating the torque over time, we have,

~ ∼ (~x×∆~g)
∆t√
GMa

, (2.25)

where ∆t is given in eq. (2.11). Here, and for the rest of this section, we suppress the
subscript nb from ~, since we are only dealing with the effect of neighboring PBHs. In
eq. (2.25), ~x = ~x2 − ~x1 is the relative co-moving separation between the members of the
binary and

∆~g = ~∇Φ(~x1)− ~∇Φ(~x2), (2.26)

is the tidal acceleration, expressed in terms of the Newtonian potential Φ created by the
neighboring PBH. If the gradients vary on a length scale much larger than the separation ~x,
the tidal acceleration can be expanded in powers of ~x and the leading term is given by ∆gk =
−Φ,kl x

l, where the spatial derivatives are with respect to the co-moving coordinates. If the
3rd black hole has a mass m3, and is at a co-moving distance y & x, then Φ ≈ Gm3/(sbx),
where sb is the scale factor around the time when the binary forms. The co-moving gradients
can then be estimated as |Φ,ij | ∼ (Gm3/sby

3)(3yiyj − δij), and Substituting in (2.25) with
a ∼ sbx we obtain

j = |~| = γ
jX
Y
. (2.27)

Here we have introduced the variable Y ≡ (y/x̄)3, characterizing the distance to the nearest
third PBH, and

jX = (m̄/M)X. (2.28)

5In the expressions which are given only by order of magnitude, and in the interest of brevity, we will often
omit the explicit dependence on the individual masses, assuming they are within one order of magnitude or
so from each other.
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Since the position of the third black hole is random, the distribution for Y is also given by

dP (Y ) = e−Y dY. (2.29)

The coefficient γ is given by

γ ≈ 1.5 | sin 2θ3|
m3

m̄
, (2.30)

where θ3 is the angle between the relative coordinate ~x and the position of the third black
hole ~y, that is, cos θ3 = x̂ · ŷ. The overall numerical factor in this expression is determined by
taking into consideration the time dependence in eq. (2.5) as the binary forms [1, 9, 12, 19].
Note that the average of γ over angle and mass distribution function is

γ̄ ≈ 1.

Following [1], we keep γ as an undetermined random variable of order one, over which we
can integrate at the end of the computation, if needed.

Taking into consideration (2.27) and (2.29), we have

dP (1)(j;λ) = γ
jX
j2

exp

(
−γ jX

j

)
dj. (2.31)

Here, the superindex in the probability distribution indicates that, for the time being, we are
considering the effect of the nearest neighboring PBH only. Then, we have

W (1)(λ) = j
dP (1)(j;λ)

dj

∣∣∣∣∣
j=j0

= Y0(λ)e−Y0(λ), (2.32)

where

Y0(λ) ≡ γ jX
j0(λ)

= γ

(
λ

λ∗

)37/21

. (2.33)

The characterisctic value

λ∗ ≈ 3.7 · 10−2f−21/37m5/37

(
M

2m̄

)42/37(4m1m2

M2

)3/37

, (2.34)

is essentially the peak of the function W (1)(λ). The rate (2.21) is plotted in figure 1 for a
range of values of f , and for different values of the mass m̄, assuming that m1 = m2 = m̄
and γ ≈ 1. The curves have a knee which separates two different regimes with a power law
behaviour in f . This can easily be understood analytically. The behaviour of the merger
rate depends on whether λ∗ is large or small, and this in turn depends on the value of f .

The behaviour of the merger rate below the knee (λ∗ � 1) corresponds to a low fraction
of DM in PBH, f � f∗, where

f∗ ∼ 3 · 10−3m5/21. (2.35)

Since λ . M/m̄ ∼ 1 � λ∗, we have Y0 � 1, and we may then neglect the exponential
dependence of the integrand in (2.21),∫ M

m̄

0
dλW (1) ≈ γ

∫ M
m̄

0

(
λ

λ∗

)37/21

dλ. (2.36)
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Figure 1. The dashed lines represent the merger rate Γ
(1)
M of PBH binaries [given by eq. (2.21) with

eq. (2.32)], as a function of f for different values of the mass. This estimate assumes that the initial
angular momentum is due to the closest neighbouring black hole, and naively counts all binaries with
the appropriate initial conditions for merging at the present time, as if they were in complete isolation.

The thick lines represent the merger rate Γ
(∞)
M [given by eq. (2.21) with eq. (2.44)], where torques from

all neighboring PBH are included. Solid and dashed curves nearly coincide, in agreement with the
notion that it is the closest PBH that gives the dominant contribution to the torque. The gray shaded
region corresponds to the merger rates observed by LIGO/Virgo. The approximation eq. (2.41) is also
shown as a dotted line for m = 1. Unless otherwise stated, we will use m1 = m2 = m̄ in all figures.

Since the lower limit of integration λmin ∼ 10−4 does not play a role, we have set it to zero
for simplicity. This leads to the estimate

Γ
(1)
M ∼

1.6 · 1011

Gpc3 yr
γf3m−26/21

(
M

2m̄

)16/21( M2

4m1m2

)1/7

, (low f) (2.37)

where we have used
ρm
M�t0

≈ 3 · 109 Gpc−3 yr−1. (2.38)

For an approximately monochromatic PBH mass function, the observational bound
Γ . 102 Gpc−3 yr−1 then leads to

f . 0.85 · 10−3m26/63. (2.39)

We conclude that, if the third black hole is the dominant source of orbital angular momentum,
then solar mass black holes, with m ∼ 1, can only account for a very small fraction of dark
matter, with f . 10−3. This is in agreement with the analysis of refs. [1, 4]. Note that, even
in the case m ∼ 1 the upper limit of the observational bound (2.39) satisfies the condition
f . f∗ only marginally.

Hence, let us now consider the complementary limit f & f∗. For λ � λ∗ we have
Y0(λ) = γ(λ/λ∗)

37/21 � 1, and due to the factor e−Y0 the integral (2.21) is effectively cut-off
at λ = λ∗ � 1. Therefore it is a good approximation to remove the upper limit of integration,
which doesn’t play a role, and then the integral scales as λ∗,∫ M

m̄

0
W (1)dλ ≈

∫ ∞
0

dλY0e
−Y0 ≈ 21

37
Γ

(
58

37

)
γ−21/37λ∗. (2.40)
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The rate can then be approximated as

Γ
(1)
M ∼

4 · 106

Gpc3 yr
f2(γf)−21/37m−32/37

(
M

2m̄

)42/37(4m1m2

M2

)3/37

. (higher f) (2.41)

The observational bound Γ . 102 Gpc−3 yr−1 then leads to the condition

f . 0.6 · 10−3m32/53, (2.42)

where, as in eq. (2.39), in this inequality we assume a nearly monochromatic PBH mass
function. In the mass range of LIGO/Virgo detections, m ∼ 30, the bound on the fraction
f of DM in PBH is limited to ∼ 0.5%, again in good agreement with [1, 4]. The analytic
estimate (2.41) is plotted in figure 1 as a dotted line for m = 1.

The previous considerations can be extended to the case where we include the torque
of all neighboring black holes, and not just the closest one. An expression for dP (∞)(j) due
to the cumulative effect of all PBHs in the neighborhood was derived in [1, 9, 19]. This has
the form of a power law distribution with a break at jX ≡ (m̄/M)X = (m̄/M)fλ:

j
dP (∞)(j;λ)

dj
=

(j/jX)2

(1 + (j/jX)2)3/2
. (2.43)

Note that at large j, the behaviour of (2.43) is similar to (2.31), where only the nearest
PBH is considered. However, at small j the distribution (2.31) vanishes exponentially in
1/j, while (2.43) has the form dP (∞) ∝ jdj. As pointed out in [1], the reason is that in
the case of a single PBH, the only way to reduce the torque on the binary is to place the
PBH sufficiently far. The probability for that decays exponentially in 1/j for large distance.
On the other hand, when many neighboring PBHs are involved, their added torques may
randomly produce a small effect, with a probability which is only phase space suppressed.
The dimensionless angular momentum ~ is in the plane orthogonal to the initial relative
separation ~x, so the corresponding measure is two dimensional d2~ = 2jdj, and the behaviour
dP ∝ jdj is expected. In conclusion, the distribution (2.31) does not provide a very good
description at small j, even if it is true that the nearest PBH gives the dominant contribution
to the torque.

Using (2.43) in (2.22) we have

W (λ) =
Ȳ0

(1 + Ȳ 2
0 )3/2

, (2.44)

where

Ȳ0 =
jX
j0

=

(
λ

λ∗

)37/21

, (2.45)

is the same as Y0 given in (2.33), with the coefficient γ replaced by its averaged value over
masses and directions, γ̄ = 1.

At low f , where λ∗ � 1, we have Ȳ0 � 1 throughout the range of integration in (2.21).
Hence, W ≈ Ȳ0, and the rate will be given by eq. (2.37). In other words, the inclusion of the
effect of an infinite number of neighbours does not change the merger rate:

Γ
(∞)
M ≈ Γ

(1)
M , (low f) (2.46)
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Also, at high f , where λ∗ � 1, the integral is dominated by λ ∼ λ∗ � M/m̄, so we can
approximate by extending the range of integration to infinity and evaluating in terms of
Euler’s Gamma function. Then one finds

Γ
(∞)
M ≈ 0.95Γ

(1)
M , (higher f) (2.47)

and the difference between the two cases is only by a very small change in the overall numerical
factor. In fact, the distributions (2.32) and (2.44) produce integrated merger rates which are
almost indistiguishable from one another (also for intermediate values of f ∼ 10−3), in
agreement with the notion that the nearest PBH gives the dominant contribution to the
torque (See figure 1). More importantly, the dependence of the merger rate on binary masses
is basically unaffected by the inclusion of an infinite number of neighbours. Let us now turn
to the characterization of such mass dependence.

2.4 Universality in the mass dependence of the merger rates

In principle, we cannot predict the mass dependence of the merger rates unless the ini-
tial mass distribution function dF(mi) is known. Unfortunately, the latter is model de-
pendent. However, a very interesting observation was made in ref. [1] which may by-
pass this difficulty. Noting that the rate in a given mass interval ∆m1, ∆m2 is given by
∆Γ(m1,m2) = ΓM (m1,m2)∆F(m1)∆F(m2), the expression

α ≡ −M2 ∂2

∂m1∂m2
ln[∆Γ(m1,m2)] (2.48)

is independent of the unknown distribution funcion F . It was argued in [1] that with a suffi-
ciently large sample of PBH merger events, of order 103, the coefficient α can be determined
observationally with accuracy of order 15%. This makes it a very attractive observable,
within reach of existing and upcoming gravitational wave detectors [38].

If neighboring PBHs are the only source of angular momentum for the binaries, the
coefficient α can readily be found from the expressions (2.37) and (2.41). The powers of
m1m2 in these expressions for the merger rate do not contribute to α, since after taking the
logarithm and the two derivatives with respect to m1 and m2 such terms drop out. This is
the same reason why α does not depend on the initial mass distribution functions F . The
only contributions to α come from powers of the total mass M . Hence, from (2.37), we have

α = 22/21, (lowf) (2.49)

and from (2.41) we have

α = 36/37. (higherf) (2.50)

This leads to the prediction of a “hidden universality” in the merger rate [1], where the
parameter α should be in the narrow range

0.97 . α . 1.05. (2.51)

As we shall see, this universality coefficient can be altered by different effects [see figure 9].
This may convey useful information about the actual circumstances surrounding binary for-
mation and evolution.
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Figure 2. The effect of PBH infalls onto binaries. The plot is the same as figure 1, but now excluding
all binaries with Y < Ymin = 2 since these are likely to be disrupted by the infall of neighbouring
PBHs. For comparison, the approximation eq. (2.41) is also shown as a dotted line for m = 1. Dashed
lines correspond to the crude approximation where only the closest PBH contributes to the torque,
whereas solid lines include the torque from all neighboring PBHs. Generally, the rate is suppressed
at large f by a factor of order e−Ymin . At low f the rate drops rather dramatically since it is hard
to give the binaries the necessary angular momentum unless there is a neighbour close enough to the
binary. However, as we shall see, this dramatic drop is avoided when the torque from cosmological
perturbations is included (see e.g. figure 4).

2.5 PBH infalls and the universality coefficient

Eq. (2.21) includes all binaries which have the appropriate initial conditions to merge at
the present time, provided that they remain in isolation for the rest of cosmic history. It
has been argued in [19] that this overestimates the rate, because some of the binaries may
be affected by the infall of neighboring PBHs, which could disturb the eccentricity or even
disrupt the binary. Note that binaries merging at the present time have a very low j, which
is given by eq. (2.14), j ∼ 10−3. PBH infalls would increase this value by a large factor,
making the life-time of the binary much larger than the age of the universe. On the other
hand, if the closest neighbour is at a distance such that Y &M/m̄, then the binary is in an
underdense region, and the neighbouring PBHs will not decouple from the Hubble flow to
fall onto it [12, 19].

To illustrate the potential impact of infalls as a function of f , let us start by using
a crude approximation where only the closest PBH contributes to the torque. Within this
approximation, we may compare the naive rate given by eq. (2.21) with the merger rate
of “pristine” binaries which are unaffected by infalls. This is achieved by restricting the
integration to the range where, say,

Y > Ymin =
M

m̄
. (2.52)

The result is illustrated in figure 2 (dashed lines). For that comparison, we assume a
monochromatic mass spectrum, and the lower limit of the integral in eq. (2.21) is taken
to be the value of λ that corresponds to Y0(λ) = M/m̄ = 2. For very low f ∼ 10−3, the lower
limit of integration becomes of order one, and for lower f the range of integration completely
disappears. This causes the sudden drop of the dashed curves in figure 2. On the other
hand the effect is not so dramatic for higher f & 10−3, amounting only to a moderate overall
factor of order 10 or so. The reason is simple to understand. According to the analysis of
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subsection 2.3, for f above the knee in the curves of figure 1, the rates are dominated by
binaries where the closest neighbor is at a distance Y0(λ∗) ∼ 1. In this case the factor e−Y0(λ)

acts as the effective cut-off of the integral (2.21) at the value λ∗ . 1. Hence, the effect of
restricting the range of integration to Y > Ymin = 2 is only a mild suppression by a factor of
order exp[−(Ymin − Y (λ∗))], where the exponent is of order 1.

Since PBH infalls have a sizeable impact on the merger rates, it important to consider
the overall effect of all neighboring PBH under the assumption that all of them are outside
the basin of attraction of the binary. This issue was considered in generality in ref. [19], where
the distribution dP (j;λ, Ymin) was calculated, by taking into account all neighboring PBHs,
and assuming that these are at a distance larger than Ymin from the binary. The result was
found in closed form in terms of integrals of Hypergeometric functions, and it is somewhat
cumbersome in general. However, the expression greatly simplifies in the limits Ymin → 0
and Ymin � 1, which are of our primary interest. For Ymin → 0, eq. (2.43) is recovered,
as expected, since in this case we do not exclude any of the binaries from the count. On
the other hand, for Ymin � 1, it was found that the distribution can be approximated as a
Gaussian

dP (j;λ, Y > Ymin) ≈ exp

(
− j2

σ2
nb

)
2jdj

σ2
nb

, (Ymin � 1) (2.53)

with variance

σ2
nb =

K

Ymin
j2
X . (2.54)

Here, K = 6〈m2〉/(5m̄2) ∼ 1, where the brackets indicate average over the mass distribution.
The approximation is already quite accurate for Ymin & 2, which is the range of our interest.

The differential merger rate is therefore given by

W (λ) = j
dP (j;λ, Y > Ymin)

dj

∣∣∣∣
j=j0

e−Ymin , (2.55)

where the factor e−Ymin accounts for the probability that the closest neighboring PBH is
further than Ymin. Here, and in what follows, we restrict attention to the regime where
f & f∗, which seems most relevant for observations. Then, we can approximate (2.21) by
removing the upper limit of integration and we have

∫ ∞
0

Wdλ ≈ 21

37
Γ

(
53

74

)
(Kγ̄2)−21/74λ∗Y

21/74
min e−Ymin , (2.56)

where we have used (2.45). The corresponding merger rate is plotted in figure 2 (solid lines),
for different values of the mass.

Let us now consider the universality coefficient α. If Ymin were independent of the
masses, then (2.57) would scale like λ∗, just like in eq. (2.40). In that case, we would recover
the value α = 36/37. However, since heavier binaries have a larger basin of attraction, Ymin
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scales as (2.52), and we have6

α =
36

37
+

21

74
≈ 1.26. (2.58)

The second term comes from M21/74 in (2.56). It is interesting to note that the factor e−Ymin ,
which is exponential in M , does not contribute to the parameter α, since it drops out after
taking two derivatives of log Γ with respect to the masses. We conclude that the effect of
infalls of neighboring PBHs onto binaries produces a significant shift of α towards a higher
value.7 Let us now turn our attention to the effect of cosmological perturbations. As we
shall see, the parameter α can also be sensitive to these.

3 Cosmological perturbations

In this section we consider the effect of cosmological perturbations on the eccentricity of PBH
binaries. In contrast with previous work, we include the effect of density perturbations in
radiation, which can be dominant for binaries with λ� 1, decoupling from the Hubble flow
deep in the radiation era.

Let us assume that primordial density perturbations are adiabatic and Gaussian. These
are completely characterized by the primordial power spectrum of a single scalar variable,
such as the temporal component of the metric perturbation in the longitudinal gauge [39],
often denoted by Φ. This variable plays the role of the Newtonian potential in the non-
relativistic limit. In Fourier space the gravitational potential is expressed as

Φ(~x, η) = (2π)−3/2

∫
Φ~k(η)ei

~k·~x d3k. (3.1)

For perturbations with kηeq � 1, entering the horizon well before equality(η � ηeq), radiation
dominates over dark matter and baryons. Neglecting the decaying mode on supercurvature
scales, the time dependence of such modes for η � ηeq is then given by [39]

Φ~k(η) ≈ Φ0
~k

[
G(kη/

√
3) + κs(η)H(kη/

√
3)
]
, (3.2)

where κ = ΩDM/ΩM ≈ 0.84 is the fraction of non-relativistic matter in the form of dark
matter, and the time dependence is given in terms of

G(x) ≡ 3

x2

[sinx

x
− cosx

]
, H(x) ≡ 9

2x2

[
C− 1

2
+ lnx

]
Θ(x− 1). (3.3)

6An analogous computation considering only the effect of the nearest PBH produces a somewhat different
answer, ∫

Wdλ ≈
∫
Y0e
−Y0dλ ≈ 21

37
γ−

21
37 λ∗

∫ ∞
Ymin

Y
21
37

0 e−Y0dY0 =
21

37
γ−

21
37 λ∗Γ(58/37, Ymin). (2.57)

Approximating Γ(58/37, Ymin) ≈ 1.25 Y
21/37
min e−Ymin for Ymin & 2, and using (2.52) we find α = (36 + 21)/37 ≈

1.54. However, it should be noted that here we are considering large Y , which corresponds to small j, and in
this regime it is not a good approximation to neglect the contribution from all other PBHs, as explained in
the paragraph following eq. (2.43).

7Aside from infalls, the simulations in ref. [19] also indicate that, for f & 0.1, binaries can be disrupted
during the matter dominated era by interaction with compact N-body systems. This effect can be particularly
important for f ∼ 1, where a sizable fraction of the binaries undergo interactions even before the time of
recombination. This effect is also likely to suppress the rates at high f , and further work is needed to assess
what fraction of the binaries may ultimately remain unaffected. In what follows, we shall simply ignore this
possibility, assuming that f is low enough for this effect to be unimportant.
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Here, C ≈ 0.577. The initial amplitudes Φ0
~k

of the gravitational potential on superhorizon
scales are Gaussian distributed, with variance given by

〈Φ0
~k
Φ0
~k′
〉 = σ2

Φ(k)δ(3)(~k + ~k′). (3.4)

The functions G and H represent the contribution of radiation and matter density pertur-
bations, respectively. Which one dominates the torque will depend on the time ηb when
binaries decouple from the Hubble flow, which in turn is related to the co-moving binary
size [see eq. (2.7)]. At early times, matter is subdominant, and the contribution of matter
perturbations to Φ is suppressed by the scale factor s = (η/ηeq) in front of H in eq. (3.3).
The factor Θ(x− 1) in H should not be taken too literally, it is just meant to indicate that
the expression is only valid after the modes cross the horizon, kηeq � 1, and the logarithmic
growth begins.

The angular momentum per unit reduced mass of the binary, ~̀, can be written as a
time integral of the tidal torque exerted by the gravitational potential. Denoting by ~x1(η)
amd ~x2(η) the co-moving positions of the two members of the binary, we have:

~̀= −
∫
~x(η)× [~∇Φ(~x2, η)− ~∇Φ(~x1, η)] s(η)dη, (3.5)

where ~x(η) = ~x2−~x1 is the relative co-moving coordinate, which is time dependent from the
time ηb when the binary decouples from the Hubble flow [see eq. (2.5)].

In order to calculate the variance of the angular momentum, we will work at lowest
order in the gravitational potential, so that inside the integrand in eq. (3.5) we can use the
unperturbed head-on trajectory, which we shall take along the z axis, with relative coordinate:

~x = xêz. (3.6)

Assuming that the center of mass is at the origin of coordinates, the positions of the two
PBHs are given by ~x2 = (m1/M)~x and ~x1 = −(m2/M)~x. Using (3.4) and (3.5) we have

〈`i`j〉 =
εzmiεznj

2π3

∫
σ2

Φ(k)kmknF
∗Fd3~k, (3.7)

where the indices i, j,m, n can only take values x or y and

F =
1

2

∫ ηeq

0
dηs(η)x[G(kη/

√
3) + κs(η)H(kη/

√
3)]
(
eikzx

m1
M − e−ikzx

m2
M

)
. (3.8)

Introducing spherical coordinates in momentum space, kx = k sin θ cosφ, ky = k sin θ sinφ,
kz = k cos θ, and integrating over φ, we have

〈`2〉 =
1

π2

∫
dkk4σ2

Φ(k)

∫ 1

−1
dw(1− w2)|F (k, x0, w)|2, (3.9)

where we have used 〈`2〉 = 〈`i`j〉δij = 2〈`x`x〉 and we have introduced the change of variable
w = cos θ.

To estimate the integral F we first note that the radiation G, and matter H terms make
their contribution at very different times. Consider a binary with initial separation x0 that
decouples from the Hubble flow at the conformal time ηb. From (2.8) and (2.10), these two
scales are widely separated, and parametrically related by

k−1
0 = x0 ∼ 5.4 · 10−6m1/3λ−2/3ηb � ηb. (3.10)
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In general, all perturbations make their contribution to the torque at times η . ηb. After
that, the binary starts oscillating, its co-moving size shrinks, and tidal gradients decay in
inverse proportion to the scale factor. Perturbations in radiation start oscillating once they
enter the horizon, and make most of their contribution to the torque at η ∼ k−1 . ηb,
while matter perturbations make their contribution near the time η ∼ ηb, regardless of their
wavelength.

3.1 Perturbations in radiation

Let us start by considering small binaries, for which λ ln(k0ηb) � 1. These form deep
in the radiation dominated era, at the time when s = sb(λ) ∼ λ � 1/ ln(k0η). In this
case, perturbations in radiation dominate over matter perturbations. From eq. (3.10), and
assuming masses in the stellar range, the logarithm is of order 10, and so this condition
requires λ� 0.1. In this regime, we can neglect s(η)H(kη/3) relative to G(kη/3) for η . ηb,
and we have

F ≈ x0

2

(
eikwx0

m1
M − e−ikwx0

m2
M

)∫ ηeq

0
dη sG

(
kη√

3

)
. (kηb & 1) (3.11)

Due to the oscillating nature of G for η � k−1, the integral is dominated by early times
η � k−1 . ηb, where x = x0χ(η)/s is approximately constant, x ≈ x0, and can be taken out
of the integral (3.8). Noting that∫ ηb

0
dηsG

(
kη√

3

)
=

9

k2ηeq

[
1− sinc

(
kηb√

3

)]
, (3.12)

it is clear that the contribution of modes outside the horizon at the time of binary formation,
kηb � 1, is suppressed. For modes with kηb � 1 we can approximate

|F |2 ≈ 81x2
0

k4η2
eq

sin2

(
kwx0

2

)
. (3.13)

Substituting in (3.9), and using∫ 1

−1
dw(1− w2) sin2

(
kwx0

2

)
=

2

3
[1−G(kx0)], (3.14)

where the function G is defined in (3.3), we have8

σ2
cp(rad) ≡ 〈j

2
cp〉 =

〈`2〉
GMa

≈ 2.2 · 103

∫
dk

k
PΦ(k)

[
1−G(kx0)

(kx0)2

] [
1− sinc

(
kηb√

3

)]2

. (3.16)

The subindex in jcp indicates that this is due to cosmological perturbations, as opposed
to the neighboring black holes which we considered in the previous section. Here we have
introduced the standard expression for the primordial power spectrum

PΦ(k) =
σ2

Φk
3

2π2
. (3.17)

8In determining the numerical coefficient in front of (3.16), we have used, from (2.2) and (2.8),

GMa = Gβλm̄x = Gβm̄
x4

0

fx̄3
= βx4

0
2πG

3
ρeq =

β

4
x4

0H
2
eq ≈

x4
0H

2
eq

20
. (3.15)

Also, we have used H2
eqη

2
eq ≈ 1. Note that we are using the convention where the scale factor is equal to unity

at the time of equality.
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In standard slow-roll inflationary scenarios, PΦ(k) is nearly independent of k. In that case,
the two factors in square brackets in eq. (3.16) play the role of the infrared and ultraviolet
cut-off which regulate the logarithmic behaviour of the integral. Note that

1−G(kx0)

(kx0)2
≈

{
1
10 , (kx0 � 1)

1
(kx0)2 . (kx0 � 1)

(3.18)

while

1− sinc

(
kηb√

3

)
≈

{
(kηb)

2

18 , (kηb �
√

3)

1. (kηb �
√

3)
(3.19)

Therefore, for a nearly flat power spectrum, the integral will be dominated by the range
η−1
b . k . k0 = x−1

0 ,

〈j2
cp〉 ≈ 2.2 · 102

∫ k0

√
3η−1
b

dk

k
PΦ ≈ 2.2 · 102 ln

(
k0ηb√

3

)
PΦ, (3.20)

where

ln

(
k0ηb√

3

)
≈ 9.6 + ln

[(
λ

0.3

)2/3 (m
30

)−1/3
]
. (3.21)

In the last approximate equality, we have used (3.10).

It may seem counterintuitive that the dispersion in j receives contributions from a wide
range of scales, since at the time ηb when the binary forms, the amplitude of the gravitational
potential for modes within the horizon falls off as k−2. However, the torque at wavelenths
larger than x0 depends on second derivatives of the potential, which brings in a factor of
k2. As a result, the contribution is independent of scale in the range we are considering.
Physically, the effect takes place well before the binary decouples from the Hubble flow, at the
time η . k−1. Hence, it seems appropriate to refer to this as the contribution of the peculiar
velocities of the PBHs to the orbital angular momentum at the time when the binary forms.

It is also worth noting that the prefactor in front of the logarithm is independent of the
parameters characterizing the binary. Each decade in wavelength gives the same contribution
to 〈j2〉, and the dependence on parameters such as massess and semi-major axis, is only
through the range of scales contributing to the logarithm. This is in contrast with the
contribution from matter perturbations, which we now review.

3.2 Adding matter perturbations

Matter perturbations can be included along similar lines. One difference is that their effect
on the binary occurs near the time ∼ ηb when the binary starts oscillating, and we cannot
ignore the time dependence of the separation x in the integral (3.8) which gives F (k, x0, w).
For kx0 � 1, this has a dependence on m1 and m2 which, unlike the radiation case, is hard
to disentangle in general.

For kx0 � 1, we may use the approximation

eikwx
m1
M − e−ikwx

m2
M ≈ ikwx, (3.22)

– 16 –



J
C
A
P
0
9
(
2
0
1
9
)
0
4
3

in the integral (3.8). With this approximation, the dependence on masses disappears and we
obtain the total contribution of radiation and matter perturbations as9

F ≈ ikw 9x2
0

k2ηeq

{
1 + 0.38λ

(
2m̄

M

)
[L0 + ln(kx0)]

}
, (3.23)

where

L0 ≡ ln(k0ηb/
√

3) + C− (1/2) ≈ 9.7. (3.24)

Here, we have used (3.21), neglecting the small logarithmic dependence in λ and m.

Substituting (3.23) in (3.9) and performing the w integration, we immediately find the
total variance of the orbital parameter due to long wavelength cosmological perturbations:

σ2
cp ≡ 〈j2

cp〉 ≈ 2.2 · 102

∫ k0

√
3η−1
b

dk

k

[
1 + 0.38λ

(
2m̄

M

)
[L0 + ln(kx0)]

]2

PΦ(k). (3.25)

The first term in the square brackets in (3.23) corresponds to radiation, while the second
one, accompanied by the factor of λ, corresponds to matter perturbations. The latter become
subdominant for sufficiently small λ . 0.27. In view of our earlier discussion in subsection 2.3,
for f � 3 · 10−3 the rates are dominated by small binaries, with λ . λ∗ � 1. Hence, it
appears that perturbations in radiation may be as relevant for observations as the matter
perturbations which have been considered in earlier analysis.

Let us now turn to a discussion of the effect of such perturbations on the merger rates.

4 Effect of perturbations on the merger rates

The size of binaries at the time of formation (shaded in gray in figure 3) is at intermediate co-
moving scales which are much smaller than those probed by CMB temperature anisotropies
or large scale structure. Indeed, from eqs. (2.8) and (2.10), we have

k0 =
1

x0
≈ 0.5 · 106(mλ)−1/3keq. (4.1)

Taking into account that λ is in the range (2.23), for stellar mass black holes m ∼ 1–100
we have k0 ∼ (105–107)keq, which corresponds to the present co-moving scale in the range10

k̄ ∼ (103 − 105) Mpc−1.

The angular momentum of PBH binaries may be affected by the power spectrum PΦ of
cosmological perturbations over a very wide range of scales. As illustrated in figure 3, such
power spectrum is poorly constrained on scales smaller than 3 Mpc−1, and here we would
like to explore the consequences this uncharted territory might have on the merger rate of

9In order to obtain the numerical coefficient in front of the matter contribution, we have used [9, 19]∫ 1

0
ds(χ2/s2) ≈ 0.3λ(2m̄/M) to do the intergral of the second term in (3.8). Also, we have used κ ≈ 0.84

for the ratio of dark matter density to the total non-relativistic matter density, and we have ignored the slow
logarithmic dependence in η. Since the integral is dominated by η ∼ ηb, we have used the value η = ηb inside
the logarithm in the mode function H.

10Throughout this paper, we adopt the convention that the scale factor s is equal to 1 at the time of equality.
Thus, to avoid confusion, we will refer to the present day wave number by k̄ = zeqk. Note that relations such
as eq. (4.1) between k0 and keq are valid in both conventions, since the factor of zeq applies to both sides of
the equation.
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Figure 3. Current bounds on the power spectrum PΦ of cosmological perturbations (see e.g. [40, 41]).
Aside from the constraints from µ−distorsions of the CMB, we also display the pulsar timing array
(PTA) and LISA bounds, which constrain the production of gravitational waves from scalar perturba-
tions at second order in perturbation theory. The PBH bound near the top of the figure is intended to
represent the level at which the probability of PBH formation would high enough to be in conflict with
current constraints on their cosmic abundance. We consider the effect of cosmological perturbations
on the merger rate of PBH binaries in three different cases, labeled as case A, B and C, consistent
with the observational constraints. The vertical shaded band corresponds to the scales k0 character-
istic of binaries which would be merging at the present time, in the mass range m ∼ 1–100. The
vertical dashed line corresponds to the pivot scale kB ≈ 5 · 103 Mpc−1 in eq. (4.8). For illustration,
in dashed red line we plot the power spectrum of an inflationary model, which raises steeply with
spectral index p ≈ 4 up to a scale kC ≈ 3 · 106 Mpc−1, leading to a rather broad peak spanning one
order of magnitude or so. This corresponds to a model [41] where the inflaton goes from slow roll
to fast roll and then back to slow roll, through a discrete sequence of values of the second slow roll
parameter η (see figure 10 of [41]).

binaries.11 For this purpose, let us consider three distinct behaviours which may capture the
generic effect of an enhanced power spectrum at small scales. These are labeled case A, B
and C in figure 3. Let us consider them in turn.

4.1 Case A: nearly scale invariant cosmological perturbations

Consider a nearly scale invariant power spectrum of the form

PΦ ≈ AΦ

(
k

k∗

)ns−1

. (4.2)

This is consistent with observations of the CMB and large scale structure on cosmological
scales, down to k̄ ∼ 3 Mpc−1, with ns ≈ .97, AΦ ≈ .97 · 10−9 and k̄∗ ≈ 0.05 Mpc−1 [42]. A
minimal assumption we can make, consistent with standard slow roll inflationary models, is

11In figure 3, we are ignoring bounds which are related to the abundance of ultra-compact mini-halos. Such
constraints depend on the nature of dark matter, and could be absent in certain models (e.g. if dark matter
belongs to a hidden sector). For a recent discussion, see [40] and references therein.
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Figure 4. Here we plot the merger rate as a function of f (thick lines) for different values of m,
assuming a scale invariant spectrum of cosmological perturbations with amplitude PΦ ∼ 10−9 (Case
A). At small f , cosmological perturbations control the angular momentum of binaries merging today.
The knee at f ∼ 10−2 arises because at higher f the effect of neighboring PBHs becomes dominant.
Here we have used Ymin = 2 for the infall radius. For comparison, we include the dotted line,
corresponding to the analytic estimate (2.41) which ignores cosmological perturbations and binary
infalls (here we use m = 1).

that the nearly flat spectrum can be extrapolated down to the co-moving size of binaries.
Since the tilt is rather small, we may approximate PΦ ≈ const. over the range of interest.

Using (3.25) we then find

σ2
cp = 〈j2

cp〉 ≈ 2.1 · 103

[
1 + 3.7λ

(
2m̄

M

)
+ 4.5λ2

(
2m̄

M

)2
]
PΦ. (4.3)

Assuming the CMB normalization PΦ ≈ 10−9, we have σ2
cp ∼ (2–9)10−6. Hence, for moderate

values of λ, cosmological perturbations may easily provide an angular momentum comparable
to j0, given in (2.14), necessary for binaries to have a life-time comparable to the age of the
universe. Still, neighboring PBH contribute to j with variance given by (2.54) [19],

σ2
nb ≈

K

4Ymin
f2λ2

(
2m̄

M

)2

, (Ymin & 2), (4.4)

where we are excluding binaries which may be disrupted by a PBH at distances smaller than
Ymin. Thus, at low f the effect of neighboring PBHs on the angular momentum is negligible
compared to that of cosmological perturbations, while the latter effect can become important
only at higher f . This is illustrated in figure 4.

To better understand the relative importance of the two effects, it is illustrative to look
at the differential merger rate in the integrand in eq. (2.21):

W (λ) = 2
j2
0

σ2
e−

j20
σ2 e−Ymin, (4.5)

where σ2 = σ2
nb + σ2

cp.
The function W (λ) for Case A is plotted in thick lines in the left pannel of figure 5, for

different values of f , and m = 30. At low f . 10−2, the effect of neighboring PBHs is negli-
gible. This corresponds to the values below the knee in figure 4. In this case figure 5 shows
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that for the low amplitude cosmological plateau with PΦ ≈ 10−9 the dominant contribution
to W is at λ ∼ 1. This value corresponds to a time of binary formation ηb ∼ ηeq. Even
at this relatively late time the effect of relativistic matter perturbations has a noticeable
effect on the position of the peaks. For comparison, we plot in dotted lines the case where
perturbations in radiation are ignored. At higher f ∼ 10−1 we see from figure 5 that the rate
is dominated by lower λ ∼ 0.1. For such values of λ, binaries decouple earlier in time, when
perturbations in radiation would be more important than those in non-relativistic matter.
But in fact, both are negligible, since for such low values of f , the variance in j is dominated
instead by the torque from neighboring PBHs. The situation is different when we consider
an enhanced power spectrum (Case B), which is plotted in the right pannel of figure 5.

Before moving on to a discussion of enhanced power spectra, let us consider the pa-
rameter α in the presence of the standard scale invariant spectrum of cosmological perturba-
tions (4.2). Note that the variance (4.4) dominates at high f , whereas the last term in (4.3)
dominates at low f . Both terms have exactly the same dependence on λ and on the masses.
They only differ in the explicit dependence of the variance on Ymin, which is absent at low f .
Hence, by the same argument which lead us to eq. (2.58), it is straightforward to conclude that

36

37
< α <

36

37
+

21

74
, (4.6)

where the lower and upper bounds correspond to the limiting behaviours for low and high f
respectively.

4.2 Case B: enhancement of the power spectrum at intermediate scales

Bounds on the amplitude of the power spectrum above k̄ ∼ 10 Mpc−1 are rather loose. The
absence of CMB spectral distortions gives an upper bound at intermediate scales in the range
k̄ ∼ 10–105 Mpc−1 [40, 45]

PΦ . 10−5, (4.7)

several orders of magnitude higher than the nearly scale invariant plateau observed on cos-
mological scales.

Hence, let us consider a generic power spectrum of the form

PΦ(k) = BΦ

(
k

kB

)p
, (0 ≤ p < 2) (4.8)

where for convenience we choose the pivot scale to be kB = 5 · 105keq, corresponding to the
present co-moving scale of 5 · 103 Mpc−1. From eq. (4.1), this is by order of magnitude the
co-moving size of the binaries, and we see from figure 3 that the power spectrum can be
rather high at those scales, allowing for an enhanced amplitude up to BΦ . 10−5. Let us
now discuss the impact of this enhancement as a function of p. Here we focus on p < 2,
leaving the discussion of steeper power spectra for the next subsection.

The case p = 0 is special, since the variance σ2
cp depends logarithmically on the width of

the plateau in the power spectrum. For illustration, let us consider a scale invariant spectrum
of amplitude BΦ between the scale kmin = 103keq and kmax & 107keq. Then, using (3.25),
we find12

σ2 (p=0)
cp = 〈j2

cp〉 ≈ 1.2 · 103

[
1 + 5.2λ

(
2m̄

M

)
+ 7.5λ2

(
2m̄

M

)2
]
BΦ. (4.9)

12In this estimate, we neglect a small subleading dependence in λ andm, assuming | ln [(λ/0.3)(m/30)] |�16.
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Figure 5. The left pannel shows the differential rate W in the integrand of eq. (2.21), for m = 30
and different values of f , in the case of a scale invariant spectrum of cosmological perturbations with
amplitude PΦ = 10−9 (Case A). The curves move from right to left with increasing values of f .
At low f . 10−2, cosmological perturbations give the dominant contribution to j,, while for higher
f , cosmological perturbations are subdominant compared with the effect of neighboring PBHs. The
thick curves include both matter and radiation perturbations, while perturbations in radiation are
ignored in the dotted curves. We see that perturbations in radiation cause a shift of the peak towards
smaller λ, which means that the binaries which are merging today decouple from the Hubble flow
somewhat earlier. The right pannel corresponds to an enhanced power spectrum, which is nearly
scale invariant at intermediate scales (Case B). In this case, cosmological perturbations provide
the dominant contribution to the angular momentum of binaries which are merging today, for all
values of f . The differential rate W is plotted for a power spectrum amplitude BΦ = 106 and three
different values of f in thick lines. The three cases are degenerate, which implies that cosmological
perturbations, and not the neighboring PBHs, provide the dominant torque. Note that W peaks at
λ ∼ 0.05. This corresponds to binaries which decouple from the Hubble flow deep in the radiation
dominated era, when perturbations in non-relativistic matter are small relative to the perturbations
in the radiation fluid. This is confirmed by the curves in dotted lines, where perturbations in radiation
have been ignored, and which are quantitatively different (the curves with f . 10−2 are degenerate
in this case). Dominance of radiation perturbations grows even stronger at higher values of BΦ.

Comparing with (4.4), it is clear that for f . 0.1 cosmological perturbations will dominate
over the effect of neighboring PBH for amplitudes Bφ & 10−7, which are well within the
range allowed by observational constraints. This is illustrated in the right pannel in figure 5,
where we see that the rate is dominated by λ . 0.1 Hence, we may approximate

σ2 (p=0)
cp ≈ 1.2 · 103BΦ. (BΦ & 10−7) (4.10)

Using (2.14) we then have

j2
0

σ2
≈

(
λ

λ
(p=0)
B

)−32/21

, (4.11)

where

λ
(p=0)
B =

[
2.1 · 10−9

BΦ

(
M

2m̄

)2(4m1m2

M2

)2/7
]21/32

m10/32. (4.12)

For sufficiently high Bφ & 10−7 we have λ
(p=0)
B � 1, and we can ignore the upper limit of

integration in (2.21). Then we have:

ΓM (t0) ≈ ρm
M�t0

f2

14m

21

32
Γ

(
11

32

)
λ

(p=0)
B e−Ymin , (4.13)
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Figure 6. The thick lines represent the rates corresponding to a nearly scale invariant spectrum
which is enhanced to the saturate the observational bound, PΦ . 10−5, at the intermediate scales
10–105 Mpc−1. This corresponds to Case B with p ≈ 0, discussed in subsection 4.2, and we have used
Ymin = 2. The dotted line shows the analytic expression (4.17) for m = 1.

and using (2.38) and (4.10) we have

ΓM (t0) ≈ 7.8 · 104f2

Gpc3 Yr

m−11/16

σ21/16

(
M

2m̄

) 21
16
(

4m1m2

M2

)3/16

e−Ymin . (4.14)

We note that the same parametric dependence is obtained if we simply assume that all
binaries are born equal, with the same initial dimensionless angular momentum13 j∗ ∼ σ.
From (4.14) we have ΓM ∝M15/16e−Ymin , and therefore

α =
15

16
≈ 0.93, (p = 0) (4.16)

which is significantly lower than the values in the range (4.6), corresponding to the cosmologi-
cal plateau. The difference comes from the fact that for the enhanced spectrum, perturbations
in radiation dominate over matter perturbations, and this changes the mass dependence of
merger rates. For PΦ ≈ 10−5, and for a monochromatic spectrum, we have

Γ(t0) ≈ 1.6 · 106f2m−11/16e−Ymin Gpc−3 yr−1. (p = 0) (4.17)

This turns out to be an excellent approximation to the numerical result which is plotted in
figure 6. In the mass range 30–100 solar masses, the LIGO bound on the merger rate requires
f ∼ 5–9%, where we have used Ymin ≈ 2. Hence, the bound on f is significantly relaxed
compared to the case without cosmological perturbations.

13Indeed, if all binaries have the same j = j∗, then the rate is determined by those binaries whose semi-
major axis is such that j0(λ) = j∗. Assuming, for simplicity, a monochromatic PBH mass spectrum, this

determines λ = λ0 = 1.3 · 10−4j
−21/16
∗ m5/16. Hence, we have

Γ(t0; j∗) =
fρm
4m̄

∫
δ(t0 − t[a; j∗])e

−XdX ≈ 1.8 · 104f2m
−11/16

j
21/16
∗

Gpc−3 yr−1e−Ymin , (4.15)

where we used t ∝ a4 ∝ λ16/3 and X = λf in order to do the integration over X by using the Dirac delta
function. This matches eq. (4.14) for j∗ ≈ 0.33 σ.
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For 0 < p < 2, the integral in (3.25) is dominated by k ≈ k0. As we have just seen for
the case of p = 0, when the amplitude of cosmological perturbations is enhanced, it is the
perturbations in radiation that dominate, and in this case we know that the contribution of
modes with k & k0 can also be important. This is given by eq. (3.16). Defining

ψ(p) =

∫ ∞
0

dk

k

(
k

k0

)p [1−G(kx0)

(kx0)2

]
= 3 cos

(πp
2

) Γ[p− 3]

p− 5
, (4.18)

and using (4.8) in (3.16) we have

σ2
cp ≈ 2.2 · 103ψ(p)

(
k0

kB

)p
BΦ

[
1 + 3.7λ

(
2m̄

M

)]2

. (4.19)

For the purpose of keeping track of the relative importance of radiation versus matter pertur-
bations, here we have included the effect of matter perturbations up to the time η = ηb, which
corresponds to the second term in square brackets in eq. (4.19). Matter perturbations can
contribute to the angular momentum for some time after ηb, when the two PBHs forming the
binary start falling towards each other. Here we have not included this contribution, which
in principle can have a more complicated mass dependence. However, by order of magnitude,
this effect is comparable to the contribution up to the time ηb. This characterization suffices
in order to check whether perturbations in radiation are dominant or not. The numerical
coefficient ψ(p) is represented in figure 7, where we can see that ψ > 0.44 for all values of p,
and that it diverges near both ends of the interval 0 < p < 2. Such divergences correspond
to the infrared and ultraviolet logarithmic divergences in the integral (3.16), respectively. In
practice, these are cut-off by the finite range where the power spectrum has the specified
behaviour, as we discussed for the case p = 0. Here, we shall simply consider a generic p ∼ 1,
which is not too close to 0 or 2, so that ψ ∼ 1. In this case, we obtain

σ2 (p)
cp ≈ 0.97 · 103 ψ(p)

0.44

[
1 + 3.7λ

(
2m̄

M

)]2

(mλ)−p/3
(

106keq

2kB

)p
BΦ. (p ∼ 1) (4.20)

In order to estimate the merger rates, let us first start by neglecting matter perturbations
in (4.20). Using (2.14), we have

j2
0

σ2
≈

(
λ

λ
(p)
B

) 7p−32
21

, (4.21)

with

λ
(p)
B =

[
2.7 · 10−9

BΦ

(
0.44

ψ(p)

)(
M

2m̄

)2(4m1m2

M2

)2/7
] 21

32−7p

m
10+7p
32−7p , (4.22)

where we have set kB = 5 ·105keq. For BΦ & 106 and m . 100, we find that λ
(p)
B � 1. This is

consistent with the assumption that perturbations in radiation dominate over perturbations

in matter, since the peak of the differential rate W (λ), given by (4.5), occurs at λ ∼ λ(p)
B � 1.

For 0 . p . 1, the integral in (2.21) quickly converges for λ� λ
(p)
B and the upper limit

of integration becomes irrelevant. In this case we have

ΓM (t0) ≈ ρm
M�t0

f2

14m

(
21

32− 7p

)
Γ

(
11− 7p

32− 7p

)
λ

(p)
B e−Ymin . (0 . p . 1) . (4.23)
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Figure 7. The coefficient ψ(p), introduced in eq. (4.18), is represented as a function of the spec-
tral index p. The behaviour near the edges of the interval are due to the logarithmically divergent
behaviour of the momentum integral in (4.18), both for p = 0 and p = 2. These divergences are
regulated by the finite range of wavelenghts contributing to the integral. Near p = 0, the divergence
is infrared and has been taken into consideration in eq. (4.9), where a few orders of magnitude in k
contribute to the integral. Consequently, the logarithm is of order ∼ 10. Similarly, near p ≈ 2, the
behaviour of ψ(p) should be regulated at ψ(p) . 10, since no more than a few orders of magnitude
in k will contribute to the corresponding ultraviolet logarighmic divergence, from the scale k0 to the
scale kmax where the power spectrum reaches its maximum value.

As p approaches the value 11/7, the ratio given in (4.21) approaches the behaviour (j2
0/σ

2) ∝
λ−1, and the integral (2.21) becomes logarithmically divergent at large λ. This is regulated
by the finite range of λ. Indeed, for 1 . p . 2, the integral (2.21) is dominated by the interval

λ
(p)
B . λ < λm. Here, λm ∼ 0.3 is the value for which matter perturbations start becoming

important. At that point, the behaviour of the integrand switches to (j2
0/σ

2) ∝ λ−3+ 7p−11
21 ,

which rapidly converges. Hence, in that case we can approximate

ΓM (t0) ≈ ρm
M�t0

f2

14m
ln
[
λm/λ

(p)
B

]
λ

(p)
B e−Ymin , (1 . p . 2) . (4.24)

Let us now consider the “universality” coefficient α, defined in eq. (2.48). From (4.23)
or (4.24), we immediately obtain

α ≈ −M2∂2
m1,m2

ln[λ
(p)
B ] ≈ 30

32− 7p
, (0 . p . 2) (4.25)

where in the case (4.24) we have ignored the subleading logarithmic dependence on M (we
will comment on this subleading correction below).

Factoring out the f2 and Ymin dependence in ΓM , as

ΓM ≈ Γ̃(p)f2e−Ymin Gpc−3 Yr−1, (4.26)

we have represented the approximations (4.23) and (4.24) in figure 8 as dashed lines (for
the case m = 1). For comparison, we numerically calculate the rate which is obtained when
we include, in addition to the effect of perturbations in radiation, the torque exerted by
non-relativistic matter perturbations up to the time η ≈ ηb when the binary decouples from
the Hubble flow. The latter torque corresponds to the second term in square brackets in
eq. (4.19). The numerical result for m = 1 and m = 30 is depicted in thick lines in figure 8.
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Figure 8. The merger rate Γ̃(p) with the f and Ymin dependence factored out, as in eq. (4.26), for
BΦ = 10−5. The dashed lines represent the approximations (4.23) and (4.24), where the torque from
non-relativistic matter perturbations is neglected. Here, we use the value m = 1. The thick lines
correspond to the numerical evaluation of the rate, for m = 1 and m = 30, including the torque
of matter perturbations up to the time η = ηb when the binary decouples from the Hubble flow.
The dotted lines correspond to the analytic estimate given in eq. (4.28), which is a very accurate
approximation. All curves are for a monochromatic mass distribution.

Note that the approximations (4.23) and (4.24) can be imprecise, by up to a factor of 2 or so
in the region p ∼ 1, due to the fact that we have neglected the effect of matter perturbations,
which can affect the merger rates by a sizable fraction even if they are subdominant.

A much better analytic approximation to the numerical result can be obtained by keep-

ing the effect of matter perturbations in σ2
cp. Using λ

(p)
B � 1, we may approximate

∫ 2M
m̄

0
Wdλ ≈ 2

∫ ∞
λ

(p)
B

(
λ

λ
(p)
B

) 7p−32
21 [

1 + 3.7λ

(
2m̄

M

)]−2

dλ. (4.27)

Here, we have neglected the integrand for λ . λ
(p)
B , since this is a small interval where W is

suppressed relative to its peak value at λ ∼ λ(p)
B , and we have also neglected the exponential

factor in W for λ & λ
(p)
B , since the exponent is small in this range. The integral in the right

hand side can be calculated in terms of the incomplete Euler’s β function. Expanding this

function for small λ
(p)
B we find

Γ̃(p) ≈ ρm
M�t0

λ
(p)
B

14m

 21

11− 7p
+

[
3.7

(
2m̄

M

)
λ

(p)
B

] 11−7p
21 π 32−7p

21

sin
(
π 32−7p

21

)
 . (4.28)

The analytic approximation (4.26) with (4.28) is plotted in figure 8 in dotted lines for m = 1
and m = 30. We find that it reproduces the full numerical result plotted in thick lines, with
very good accuracy in the full range of p. The term in round brackets contains additional
dependence on m1 and m2 which is not present in (4.23), and this will contribute a correction
∆α to the expression (4.25), given by

∆α = −M2∂2
m1,m2

ln

∣∣∣∣∣∣
[
3.7

(
2m̄

M

)
λ

(p)
B

] 11−7p
21 (32− 7p)

21 sinc
(
π 11−7p

21

) − 1

∣∣∣∣∣∣ . (4.29)
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Figure 9. The “universality” coefficient α, defined in (2.48), is plotted as a thick line for an enhanced
power spectrum with spectral index p and amplitude BΦ & 10−6 at scales comparable to the co-moving
size of the binaries. This coefficient is given by eq. (4.25) in the range 0 . p . 2. For comparison,
the case where cosmological perturbations are neglected and the torque of binaries is entirely due
to neighboring PBHs corresponds to the horizontal shaded interval, given in eq. (2.51), or to the
horizontal dotted line when binaries for which the nearest PBH has Y < Ymin ∼ 2 are excluded from
the count. The latter are likely to be severely affected by infalls, as discussed around eq. (2.58). The
shade around the thick line corresponds to the correction ∆α given in eq. (4.29), where we have taken
m̄ = 20 and m1 ∼ m2 ∼ 20. For 2 . p . 4, and λC � 1 we have α ≈ 5/3 [see the discussion around
eq. (4.41)]. The shade around the horizontal line α ≈ 5/3 corresponds to ∆α taken from the analytic
estimate (4.39), with CΦ ≈ 10−3 and kC = 107keq.

This correction turns out to be rather small, and typically ∆α . 0.05− 0.1, unless the mass
ratio is hierarchical. The reason can be understood as follows. The mass dependence comes
from the term in square brackets in (4.29),[(

2m̄

M

)
λ

(p)
B

] 11−7p
21

∝Mβ(m1m2)γ . (4.30)

The exponents β and γ happen to be very small β, γ . 0.1 in the range of interest. Then,
unless one of the two masses is hierarchically smaller than the total mass M , we have ∆α ∝
β+O(β2, βγ, γ2) ∼ β. The correction ∆α is plotted in figure 10 for p = 1.8, m̄ = 10M�, and
a range of values of m1 and m2. Note that |∆α| . 0.08, unless we consider the region where
m1 � m2. We have checked that for the case of similar masses m . 30, we have |∆α| . 0.08
in the full range 0.2 . p . 1.8

We conclude that, in the range 0 . p . 2 the spectral index p determines the parameter
α, which may range from 15/16 ≈ .93 up to 5/3 ≈ 1.66. This is represented in figure 9. A
measurement of α may therefore provide valuable information on the primordial perturbation
power spectrum at intermediate scales. Note that the value of α is independent of the
amplitude of perturbations, as long as this amplitude is sufficiently large14 BΦ & 10−6.

14At low amplitudes, B . 10−7 the torque from matter perturbations becomes as important as that from
radiation perturbations. In general, in this case, the dependence of ΓM on M does not necessarily factor out
as a power of M . Still, if we make the assumption that the torque from matter perturbations is dominated
by the contribution from times up to ηb, then using (4.19) and neglecting the first term in square brackets
(which is due to radiation perturbations), we find α = 72/(74 − 7p), which is larger than 36/37 ≈ 0.97 and
smaller than 6/5 = 1.2. This is a narrower range than allowed by perturbations in radiation.
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Figure 10. The correction ∆α in eq. (4.29), for p = 1.8, and m̄ = 10M�, as a function of m1 and
m2 > m1 (expressed in solar masses). The correction is small unless the mass ratio is hierarchical
(m1 � m2), corresponding to the region near the left boundary of the plot.

It should also be pointed out that the bound on f from the observed merger rates can be
considerably relaxed by the enhanced power spectrum at intermediate scales. For instance,
if we take m = 30 and BΦ = 10−5, then from figure 8 we have Γ̃(p) . 105. Consequently, for
a monochromatic PBH mass function, the bound

Γ(t0) ≈ Γ̃(p)f2e−Ymin Gpc−1 Yr−1 . 102 Gpc−1 Yr−1, (4.31)

with Ymin ≈ 2 is satisfied for f . 0.1.15

4.3 Case C: steep spectrum at very small scales

Consider a power spectrum with spectral index p & 2 up to some high scale kC . In this case,
the contribution of perturbations to the angular momentum of binaries will be dominated
by k ∼ kC , rather than k ∼ k0, and it is convenient to parametrize by using kC as the pivot
scale:

PΦ(k) = CΦ

(
k

kC

)p
. (p > 2, k . kC) (4.32)

From the constraints in figure 3, and assuming kC ≥ 107keq, we require

CΦ ≡ PΦ(kC) . 10−2–10−3. (4.33)

The case with p < 2 was discussed in the previous subsection, with the correspondence

CΦ = BΦ

(
kC
kB

)p
, (4.34)

between the prefactors in (4.8) and (4.32). Here we concentrate in the case p > 2. The
specific form of PΦ(k) for k & kC will not be important, as long as it grows slower than k2,
or that it decays for k > kC .

From (3.16), the contribution of radiation perturbations to the variance of j is dominated
by wavelengths shorter than the binary size x0, and is given by

σ2
cp(rad) ≈ 2.2 · 103

∫ kC

k0

dk

k
PΦ(k)

1

(k2x2
0)
≈ 2.2

p− 2

(
CΦ

10−3

)(
k0

kC

)2

. (4.35)

15For smaller values of the power spectrum, in the range 10−7 < BΦ < 10−5, the merger rate scales approx-
imately in proportion to λ

(p)
B ∝ B

−21/(32−7p)
Φ . This translates into the bound f . 0.1(Bφ/10−5)21/(64−14p).
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In the last step we have neglected the contribution from the lower limit of integration, as-
suming that p is not too close to 2. As we discussed in the previous subsection, we can easily
incorporate the torque of matter perturbations up to the time η = ηb, which gives a combined
total of

σ2
cp ≈

2.2

p− 2

(
CΦ

10−3

)(
kB
kC

)2

(mλ)−2/3

[
1 + 3.7λ

(
2m̄

M

)]2

. (4.36)

Here we have used k0/kB = (mλ)−1/3, with kB = 5 · 105keq.
Given that Cφ is bounded above by (4.33), the factor (kB/kC)2 will considerably sup-

press the effect of cosmological perturbations unless kC is not too far from the intermediate
scale kB. Eq. (4.36) can be compared with de contribution of neighboring PBH to the torque,
given in (4.4)

σ2
nb ≈

K

4Ymin
f2λ2

(
2m̄

M

)2

∼ 10−1λ2f2, (4.37)

where in the last step we use the fiducial values K ∼ 1, M ∼ 2m̄ and Ymin ≈ 2. For p not
too close to 2, and m ∼ 30, the effect of cosmological perturbations can only be dominant
for a narrow range of kC :16

107keq ≤ kC . 2 · 107f−1(p− 2)−1/2m−1/3keq. (4.38)

Hence, the existence of a window for kC where σnb � σcp requires f � 1.
Following similar steps as in subsection 4.2, we find that the expected merger rate of

binaries will be given by (4.26), with

Γ̃(p) ≈ ρm
M�t0

λC
14m

([
3.7

(
2m̄

M

)
λC

]−1/7 6π/7

sin (6π/7)
− 7

)
. (λC � 1) (4.39)

Here,

λC ≡

[
1.2(p− 2)10−6

(
kC
kB

)2(10−3

CΦ

)]7/6(
M

2m̄

)7/3(4m1m2

M2

)1/3

m4/3. (4.40)

This leads to a value of the universality coefficient which is given by (4.25) with p = 2. That is

α ≈ 5

3
. (λC � 1) (4.41)

Eq. (4.41) corresponds to the thick horizontal line in the range p > 2 in figure 9. Note,
however, that the approximation (4.39) requires λC � 1 (since it is obtained by Taylor ex-
panding an incomplete Euler beta function in small λC). The merger rates for kC = 107keq

are plotted in figure 11, where it can be seen that the approximation (4.39) plotted as dashed
lines, agrees very well with the numerical result plotted in thick lines, for m . 30. For higher
values of kC or higher values of m, we are outside the regime λC � 1, and the approximation
is not valid. Nonetheless, the behaviour of the merger rates from the numerical result is
similar for all masses up to m . 100. In particular, we find that f should be less than a
few percent in the whole range m = 1–100. This is in contrast with the results for Case B
(p < 2), where values of f as large as 10% can be consistent with the observed merger rates.
In spite of the high amplitude of the power spectrum, the effect in Case C is not as significant
as in case B, since perturbations are now on scales smaller than the binary size.

16In the case of cosmological perturbations, the merger rate for p > 2 is dominated by the values of λ where
the behaviour of the variance (4.36) changes from σ2

cp ∝ λ−2/3 to σ2
cp ∝ λ4/3. This happens at λ ∼ 1/3, and

we use this in the relation σcp & σnb in order to estimate the upper limit of the range (4.38).
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Figure 11. The merger rates for Case C, with power spectrum amplitude CΦ = 10−3 at kC = 107keq,
and with p = 4. The thick lines correspond to the numerical evaluation of the rates for different values
of the mass, while the dashed lines correspond to the analytic estimate (4.39), which is a very good
approximation for m . 30. Note that the rate has only a very mild dependence on the mass, at least
up to m . 102. Despite a large amplitude of primordial perturbations, the effect on the merger rate is
not as significant as in Case B, since now the perturbations are on scales smaller than the binary size.

4.4 Effect of a peak at the PBH scale

The mechanism of PBH formation from adiabatic perturbations relies on a prominent en-
hancement in Pφ, with a maximum at some co-moving scale kPBH with amplitude

PΦ(kPBH) ∼ 10−3–10−2. (4.42)

This is enough to produce PBHs in significant abundance, in regions where high peaks in the
Gaussian random field of cosmological perturbations reach non-linear values above a certain
threshold. As discussed in refs. [35, 36], PBH formation does not occur when kPBH crosses
the horizon, but slightly later, when the scale

rm ∼ 3 k−1
PBH (4.43)

crosses the horizon.17 The mass of the black hole is typically equal to the mass within the
horizon at that time, so that 2GM = H−1

rm , and we have

kPBH ≈ 3 · 109m−1/2keq. (4.44)

Comparing with eq. (4.1) this corresponds to lengthscales which are shorter than the co-
moving size of the binary, by three orders of magnitude or so, corresponding to the present
co-moving wave-number of order

k̄PBH ∼ 3 · 107m−1/2 Mpc−1. (4.45)

On a logarithmic scale, this is not too far from the intermediate scales discussed in subsec-
tion 4.2, and hence it is natural to ask about the consequences of this peak on the merger
rates, in the light of our earlier results.

17The scale rm corresponds to the maximum of the so-called compaction function C(r), which characterizes
the averaged overdensity as a function of the distance to its center. The approximate factor of 3 in (4.43)
depends somewhat on the shape of the overdensity profile, which for amplitudes well above the standard
deviation is in turn determined by the form of PΦ(k). For instance, for a monochromatic power spectrum,
PΦ(k) ∝ δ(k− kPBH), we have rm ≈ 2.7 k−1

PBH. On the other hand, the strong overdensity causes a non-linear
distortion of the spatial metric which affects the relation between co-moving and physical distance. Generically,
the combination of these non-linear effects gives a mass of the black hole which is ∼ 10 times bigger than the
mass within the unperturbed horizon at the time when kPBH crosses it. Hence the factor of 3 in (4.44).
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For illustration, in figure 3 we include an example extracted from [41], where the en-
hancement of the power spectrum is obtained from a period where the inflaton goes from slow
roll to ultra-slow roll and back to slow roll, through a discrete set of values of the second slow
roll parameter η. This model may be somewhat artificial, but it will be useful for illustrative
purposes since it includes several features which may be present in more general cases. The
curve includes a steep growth with PΦ ∝ kp from the cosmological plateau up to a very high
value PΦ ∼ 10−3, at k ∼ kC , as in Case C. This is followed by a less steep part up to some
maximum value kPBH, corresponding to the scale of PBH formation. Finally, the spectrum
decays for k > kPBH.

It has been argued that p = 4 corresponds to the theoretical upper bound for the spectral
index for a wide class of inflationary one field models [41]. Values in the range 3 . p . 4 are
easily obtained in the case where the enhancement is due to a short period of ultra-slow roll
and constant roll inflation. The upper bound can be saturated in relatively simple models
where the constant roll phase has a sufficiently negative value of the slow roll parameter η
(see e.g. [44]). For p & 2, the regime where cosmological perturbations dominate over the
effect of neighboring PBHs is given by eq. (4.38), which requires

f . 6.7 · 10−3 m1/6

√
p− 2

(
kPBH

kC

)
. (p & 2) (4.46)

Here we have used (4.44). For a sizable value of the fraction of dark matter in the form of
PBHs, say f & 10−2, cosmological perturbations will only play a role if the peak of the power
spectrum is rather broad, with kPBH & 10 kC . Conversely, for a narrow peak with kPBH ∼ kC
and sizable f & 10−2, the eccentricity of binaries is determined by the tidal forces from neigh-
boring PBHs. Broad peaks in the power spectrum are not necessarily generic, but as shown
by the example in figure 3, they can in principle be obtained in phenomenological models.

The merger rate of binaries is plotted in the left pannel of figure 12 for different values
of the mass, for the case of a broad peak which raises steeply with p = 4 up to the scale
kC ≈ 108keq, and then proceeds with moderate slope to the maximum at kPBH = 10kC ≈
109keq. In this case the analytic approximation (4.39) does not apply, since λC & 1 in the
relevant range of f . The effect of cosmological perturbations is only significant for low masses
m . 1. For the case of a narrow peak with p = 4, which raises from low values with a steep
spectral index to all the way to the PBH scale kPBH = kC ≈ 109keq, the merger rate is
plotted in the right pannel of figure 12, where we see that the effect of the narrow peak is
completely insignificant.

For less steep spectral index 0 < p . 2, the growing part of the spectrum corresponds
to Case B. The condition that cosmological perturbations provide the dominant source of
torque on binaries can be derived along similar lines, and is given by

f . 21−p 101− 3p
2 mp/12

(
kPBH

kC

)p/2
. (0 . p . 2) (4.47)

This is much less restrictive on f than (4.46). Indeed, for p . 1, the condition does not
significantly restrict the fraction f , even for the case where kC ≈ kPBH.18 The effect of such
a feature in the power spectrum is described in subsection 4.2.

18Note, however, that in order to interpolate between the cosmological value PΦ ∼ 10−9 and the peak value
PΦ ∼ 10−3 in the span of wavelengths which goes from 10 Mpc−1 to 107 Mpc−1, we need p & 1. Incidentally,
for p = 1 the value of the “universality” parameter α which is obtained when cosmological perturbations
provide the dominant torque (see figure 9) is quite similar to the value 1.26 which corresponds to a dominant
torque from neighboring PBHs (at a distance larger than the infall radius Ymin), so for this particular value
of p it seems harder to distinguish one mechanism from the other.
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Figure 12. The thick lines in the left pannel represent the merger rates for a steep power spec-
trum of cosmological perturbations with p = 4, and a broad peak spanning from kc ≈ 108keq to
kPBH ≈ 109keq, with amplitude CΦ ≈ 10−3 and different values of the mass. Since the peak only af-
fects very small scales and has no power at intermediate scales, we have added a cosmological plateau
with normalization Pφ ≈ 10−9, representing a minimal contribution we may expect for k < 107keq.
For reference, the dashed lines represent the case where only the flat plateau with cosmological nor-
malization is taken into consideration, as in Case A. The effect of the steep bump can be significant
for low mass PBHs m ∼ 1, but not for higher masses. In the right pannel, we consider the case with
kC = kPBH = 109keq, corresponding to a sharp peak at the PBH scale. The effect of the steep bump
is completely negligible in this case.

5 Summary and conclusions

We have studied the effect of cosmological perturbations on the merger rate of PBHs in the
stellar mass range. The effect can be quite significant depending on the amplitude of the
power spectrum at different scales.

For a scale invariant spectrum with amplitude PΦ ≈ 10−9 (Case A), matter perturba-
tions have a dominant effect on the eccentricity of binaries for f . 10−2, while for larger f
the distribution of j is actually dominated by tidal torques from PBHs in the vicinity. In
this case, the merger rates would be greater than the current LIGO/Virgo bounds unless the
fraction of dark matter in the form of PBH is rather small, of the order f . 10−2 for PBHs
with m ∼ 30.

On the other hand, PΦ could be much larger at scales 10–105 Mpc−1 (Case B). For
instance, we find that a nearly flat spectrum with amplitude PΦ & 10−7 within such scales
leads to a dimensionless angular momentum with mean squared value

〈j2
cp〉 ∼ 103PΦ, (5.1)

which is mostly due to perturbations in the radiation fluid. For a nearly flat PΦ, the variance
of j is almost independent of the mass of the PBH and the size of the binaries. There is only
a mild subleading logarithmic dependence on such parameters, which accounts for the range
of scales contributing to the effect, from the co-moving size of the binary to the co-moving
size of the horizon at the time when the binary forms. The situation is different when we
have a tilted spectrum, of the form PΦ ∝ kp, (p . 2), in which case the variance of j depends
on binary size and masses. In this case the effect is determined by the amplitude of PΦ near
the co-moving scale of the binaries k ∼ k0, which is in the intermediate range 103–105 Mpc−1.
The bound from spectral distorsions in the CMB caused by dissipation of acoustic modes
requires PΦ . 10−5 at such scales [45]. In the situation where this bound is saturated, the
torque can be large enough to significantly suppress the merger rate to a level consistent with
LIGO/Virgo observations even for f ∼ 10%.
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An even stronger enhancement of the power spectrum may occur at scales beyond
105 Mpc−1. These are smaller than the co-moving size of the binaries, but they can contribute
to the peculiar velocities of the PBHs and hence to the initial orbital angular momentum.
For a steep power spectrum (Case C), with spectral index p & 2 up to some short wavelength
kC & 107keq, the contribution to 〈j2〉 is dominated by the shortest scales k ∼ kC , rather
than k ∼ k0. The observational upper bound PΦ(kC) . 10−3–10−2 is comparable to the
amplitude which is necessary to produce PBH in significant abundances by the collapse of
adiabatic perturbations. For generality, we may assume that beyond kC , the power spectrum
can still grow slightly (say, with a much lower spectral index p′ . 2), by a factor of a few,
up to a maximum value at the scale which we may call kPBH, corresponding to the scale
which dominates PBH formation (see figure 3). In this case, and assuming PΦ(kC) ∼ 10−3,
the effect on the orbital parameter of binaries is of order 〈j2〉 ∼ (k0/kC)2, and becomes
irrelevant unless kC . 103k0. Since k0 < 105keq while kPBH ∼ 109keq for PBH in the stellar
mass range, the effect of the steeply rising power spectrum on the eccentricity of binaries
will only be important if this is crowned by a broad peak with a maximum at kPBH & 10kC .
The corresponding effect on the merger rates is somewhat intricate in general, but it is only
significant at low masses. For m . 100, the bound on the fraction of dark matter can relaxed
to f . 2 · 10−2 due to this effect, for sufficiently low kC ∼ 107keq. Interestingly, in this
regime the merger rate becomes almost independent of m (see figure 11). This is in contrast
with the standard situation where the angular momentum is supplied by a neighboring PBH,
where we have Γ ∝ m−32/37.

We have also investigated the dependence of merger rates on the constituent masses,
with particular attention to the universality coefficient α [1]. This is rather insensitive to
the unknown initial PBH mass distribution function, and can be determined observationally
with some precision (of order 15% given a sufficiently large number of PBH merger events
∼ 103 [1, 38]). It seems therefore of great empirical relevance for PBH scenarios. Our
results for α are summarized in figure 9. In the case where cosmological perturbations
are subdominant relative to the torque from neighboring PBH, it was argued in [1] that
α ≈ 1 ± 0.05 (this is displayed as a horizontal shading in figure 9). We point out, however,
that this narrow range shifts to α ≈ 1.26 once the effect of PBH infall onto binaries is taken
into consideration, by excluding disturbed binaries from the merger count (after the infall
these binaries are likely to have a much larger lifetime than the present age of the universe).19

On the other hand, in the case where cosmological perturbations dominate the variance of j,
the coefficient α ranges from 15/16 to 5/3 depending on the value of the spectral index p [see
figure 9]. In this case, the value of α is unaffected by infalls. We conclude that, as a matter of
principle, an accurate measurement of merger rates of PBH might carry some information on
the circumstances surrounding PBH binary formation, including the amplitude and spectral
index of primordial perturbations on very short wavelengths or the effect of PBH infalls.

In turn, any information on the primordial power spectrum which may be obtained
through a measument of α would constrain the underlying inflationary dynamics, from the
scale of binaries down to the scale of PBH. This might complement other possible probes

19The shift of α in the case where cosmological perturbations are subdominant is due to the factor Y
21/74
min

in eq. (2.56). Note that the merger rates have an additional exponential dependence on the infall radius Ymin.
Such dependence drops out from the universality coefficient α due to the linearity of Ymin in the total mass M
[see eq. (2.52)]. The assumption of linear behaviour seems very reasonable [12, 19], but may require further
validation from numerical simulations, since any departures from it may have a significant effect on α. This
study is outside the scope of the present work and is left for further research.
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on the amplitude of PΦ at small scales, such as upcoming searches for spectral distortions in
the CMB, or pulsar timing array constraints [40, 41, 43].

There are several directions in which our study could be extended. It was recently
pointed out in [18] that for f � 1 a dark matter dress may develop around PBH before
they form binaries, and that this would affect the semi-major axis and the eccentricity of
binaries after the first few oscilations which shake off most of the dark matter cloud. It was
also shown that the effect on the merger rates is nonetheless small. In the present context,
the effect may be even smaller, since in the presence of enhanced cosmological perturbations
the merger rate is dominated by much smaller binaries forming deeper in the radiation era,
when the halo around each PBH has had less time to accrete. Nonetheless, it might be
interesting to be more quantitative about this effect, taking also into consideration the case
of constituent masses which differ by a sizable factor, in order to assess the possible impact
on α. Finally, it was pointed out in [19] that for f & 0.1 binaries can be disrupted by collision
with compact N-body systems, which may substantially deplete the population of pristine
binaries. Investigation of these issues seems to require further simulations, and remains an
interesting direction of research.
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constraints for extended mass functions, Phys. Rev. D 96 (2017) 023514 [arXiv:1705.05567]
[INSPIRE].

[3] S. Bird et al., Did LIGO detect dark matter?, Phys. Rev. Lett. 116 (2016) 201301
[arXiv:1603.00464] [INSPIRE].

[4] M. Sasaki, T. Suyama, T. Tanaka and S. Yokoyama, Primordial Black Hole Scenario for the
Gravitational-Wave Event GW150914, Phys. Rev. Lett. 117 (2016) 061101
[arXiv:1603.08338] [INSPIRE].

[5] LIGO Scientific and VIRGO collaborations, GW170104: Observation of a 50-Solar-Mass
Binary Black Hole Coalescence at Redshift 0.2, Phys. Rev. Lett. 118 (2017) 221101 [Erratum
ibid. 121 (2018) 129901] [arXiv:1706.01812] [INSPIRE].

[6] LIGO Scientific and Virgo collaborations, Observation of Gravitational Waves from a
Binary Black Hole Merger, Phys. Rev. Lett. 116 (2016) 061102 [arXiv:1602.03837] [INSPIRE].

– 33 –



J
C
A
P
0
9
(
2
0
1
9
)
0
4
3

[7] LIGO Scientific and Virgo collaborations, GW151226: Observation of Gravitational Waves
from a 22-Solar-Mass Binary Black Hole Coalescence, Phys. Rev. Lett. 116 (2016) 241103
[arXiv:1606.04855] [INSPIRE].

[8] LIGO Scientific and Virgo collaborations, Binary Black Hole Mergers in the first Advanced
LIGO Observing Run, Phys. Rev. X 6 (2016) 041015 [arXiv:1606.04856] [INSPIRE].
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1 Introduction

The merger rate of binary black holes observed by LIGO provides one of the strongest
constraints for the presence of Primordial Black Holes (PBH) of masses O(1−100) M� [1–4].
Assuming that PBHs follow an initial Poissonian spatial distribution — and that binaries are
isolated objects (see [5–7] for caveats) — it has been found that PBH binaries merging today
are mainly formed in the radiation dominated Universe [3, 8], and that they can account
for a small fraction of the dark matter (DM) in this range of masses, of the order of a few
percent [3, 9].1 A related constraint, although weaker in this mass range, comes from the
non-observation of a stochastic background of gravitational waves (GWs), generated from
past binary mergers [13, 14].

Poissonian spatial distributions for PBHs arise if the density field is a Gaussian random
field with a spiky power spectrum [15–17] (for earlier discussions, see [18]). On the contrary,
if PBH arise from non-Gaussian perturbations, then their distribution will not be Poissonian.
In particular, a coupling between small and long wavelengths of the density perturbations,
or the modulation of the density field by a secondary field, can result in a clustered spatial
distribution [19–23]. Its effect on the merger rate of late and early time binaries has been
estimated in [4, 17, 24–27], and on the stochastic background of gravitational waves in [28].
Other effects can alter the merger rate, such as enhanced large scales perturbations [9, 29, 30],
three-body [6, 7] and many-body interactions [5] and PBH mass accretion [31]

In this paper we re-examine the question of how an initial clustering of PBH can affect
the bounds on their abundance coming from present and past merger rate of binaries. Clus-
tering enhances the local density of PBHs and so it has been usually found that the allowed
fraction of PBH to DM, fPBH, is smaller than that of a Poissonian initial distribution (see
e.g. [28]). As we will show, this is only the case in the limit in which fPBH is very low. For
larger abundances, the present merger rate drops, and larger values of fPBH are allowed with

1PBHs of masses around 10−16−10−11 M� can still form all of the dark matter under these assumptions [10]
(see [11, 12] for recent reviews on the constraints for the presence of PBHs in all the mass ranges).
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respect to the Poissonian case. This degeneracy, i.e. the fact that the same merger rate can
be achieved with different values of fPBH, can be disentangled either by directly measur-
ing the merger rate as a function of redshift (possible with future experiments like Cosmic
Explorer [32] or Einstein Telescope [33]), or by measuring the stochastic GW background
created by past mergers (possible with current experiments like LIGO/Virgo [1]).

We will show explicitly how this works in a specific model for the clustering, in which
the reduced local threshold for gravitational collapse, ν(x), is a local parameter linearly
related to a secondary field ψ(x). This simple model will allow us to analytically compute
the correlation function ξ(r) encoding the properties of the clustering. In particular, we will
show how a comparison between the present merger rate and the stochastic GW background
can help us disentangle the initial distribution of PBHs.

We will begin in section 2 by calculating the PBH abundance and correlation function for
a simple model of non-Gaussianity, inducing clustering. We will then compute in section 3
its effect on the present and past merger rates, and show in section 4 how LIGO/Virgo
capabilities in measuring the stochastic background of gravitational waves can determine the
initial distribution of PBHs. Throughout this paper we use natural units, G = c = 1.

2 The PBH abundance and correlation function

Clustering appears if the local properties of the overdensity field δ(x) are space dependent.
The probability of forming a PBH can then be modeled as depending on a “secondary” field
ψ(x). This effect might either come from an actual field different from the overdensity field, or
from a long wavelength modulation of the overdensity field itself, resulting from a self-coupling
of long and short scales as happens e.g. in local models of non-Gaussianity [34]. In both
cases, the field ψ(x) acts as a long wavelength modulation of the small scale perturbations
δ(x), inducing a local change on the variance σδ(x) ≡ σδ(ψ(x)), and/or on the threshold for
collapse into a BH, δc(x) ≡ δc(ψ(x))). Assuming that both fields are independent and that
δ(x) is locally Gaussian, then the probability for forming a BH depends on the local reduced
threshold ν(x) ≡ δc(x)/σδ(x) in the following way2

P local
1 =

1

2
erfc

(
ν(x)√

2

)
. (2.1)

This means that local changes in δc or σδ are in practice indistinguishable. The total proba-
bility for a given region to form a BH, that we denote P1, is obtained by integrating over the
configurations of the field ψ(x), that we assume to be a Gaussian random field. Similarly we
can define P local

2 (r), the joint probability of having two black holes at a distance r, given that
the local reduced thresholds at x1 and x2 are given by ν(x1) and ν(x2). This is given by [38]

P local
2 (r) =

1

4
erfc

(
ν1√

2

)
+

1

4
erfc

(
ν2√

2

)
+

sgn (ν1) sgn (ν2)− 1

4

− T

ν1,
ν2 − ωδ(r)ν1

ν1

√
1− ω2

δ (r)

− T
ν2,

ν1 − ωδ(r)ν2

ν2

√
1− ω2

δ (r)

 ,

(2.2)

2For simplicity we compute the abundance of PBHs and the correlation function that encodes the clustering
using the Press-Schechter formalism. More accurate criteria for the formation of PBH can be obtained from
the statistics of peaks [35], although we do not expect qualitatively differences with the results obtained here.
The statistics of peaks has been recently revisited to count for peaks in the so-called compaction function [36],
which is the object that controls the critical collapse for the formation of a BH [37].
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where ωδ(r) = 〈δ(x1)δ(x2)〉/〈δ(0)2〉 is the reduced correlation function of δ(x), νi = ν(xi)
and T (z, a) is the Owen T-function [39]

T (z, a) ≡ 1

2π

∫ a

0
dt
e−

(1+t2)z2

2

1 + t2
. (2.3)

The total P2(r) can be found by integrating this expression over the fields ψ1 ≡ ψ(x1) and
ψ2 ≡ ψ(x2) inducing the spatial dependence on νi(x).

The clustering of PBHs can be encoded in the N -point correlation functions ξ(N)(r),
that measure the excess probability, relative to an uncorrelated distribution, of finding N −1
black holes at distances r1, . . . , rN−1 from a BH at r = 0. This is then given by

ξ(N)(r1, . . . , rN−1) =
PN (r1, . . . , rN−1)

PN1
− 1 . (2.4)

As we will see, the merger rate of BHs depends on all the N -point correlation functions (as
shown in (B.15) of appendix B). However in some cases all that information is contained in
the 2-point correlation function ξ(2)(r) ≡ ξ(r). Whenever this is not possible, we will show
that the use of ξ(r) can nevertheless provide useful insights into the qualitative behaviour of
the mergers.

In the following we briefly discuss the Gaussian case.

2.1 Gaussian case

The Gaussian case is recovered if we turn-off the field ψ(x). In this case ν1 = ν2 = νg, where
νg ≡ δc,g/σδ is space independent (and δc,g is the threshold for collapse in the Gaussian case).
Then we get

P1 =
1

2
erfc

(
νg√

2

)
and P2(r) =

1

2
erfc

(
νg√

2

)
− 2T

(
νg,

√
1− ωδ(r)
1 + ωδ(r)

)
, (2.5)

and the 2-point correlation function ξ(r) is given by3

ξ(r) = 2

T (νg, 1)− T

(
νg,

√
1− ωδ(r)
1 + ωδ(r)

)
P 2

1

. (2.6)

This expression is exact, valid for any νg and ωδ. Simpler expressions can be obtained in the
regime for which ν is large or small [15, 40]. For example, for large ν, which is the relevant
limit for PBH formation, we can make use of the expansion

T (ν, a) ∼ 1

4
erfc

(
ν√
2

)
− 1

2π

e(−1+a2)ν2/2

ν2a(1 + a2)
+O

(
e−ν

2

ν4

)
, (2.7)

and then ξ(r) is given by [15]

1 + ξ(r) ∼ (1 + ωδ(r))
3
2

(1− ωδ(r))
1
2

exp

(
ν2
g

ωδ(r)

1 + ωδ(r)

)
. (2.8)

In the following we will present a simple model for which the correlation function in the
non-Gaussian case can be computed.

3Some properties of Owen T-functions can be found in [38].
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2.2 A simple model for clustering

Here we consider a simple model of clustering were the parameter ν(x) is linearly related to
the secondary field ψ(x) as4

ν(x) = νg (1 + βψ(x)) , (2.9)

where β denotes the strength of the coupling between ψ(x) and δ(x). With this simple model
we can solve for P1 and P2(r) exactly, getting (see appendix A)

P1 =
1

2
erfc

[
νg√

2

1√
1 + α2

]
, (2.10)

P2(r) =
1

2
erfc

(
νg√

2

1√
1 + α2

)
− 2T

(
νg√

2

1√
1 + α2

,

√
1− ω̄
1 + ω̄

)
. (2.11)

Here

α ≡ δc,gβ
(
σψ
σδ

)
and ω̄(r) =

ωδ(r) + α2ωψ(r)

1 + α2
, (2.12)

where σψ and σδ stands for the variance of the long and short wavelength perturbations
respectively. Let us notice that the effective coupling is determined by α, which not only
takes into account the coupling between both fields (given by β), but is also sensitive to the
relative amplitude of the variances. By comparing (2.10) and (2.11) with the expressions
found for the Gaussian case (2.5), we see that this model is equivalent to a Gaussian model
with the replacements

νg → ν̄ =
νg√

1 + α2
and ωg → ω̄ . (2.13)

This is actually true for all N -point probabilities, as shown in the appendix A. In particular,
this implies that in this model the total abundance is amplified with respect to the Gaussian
case. For concreteness let us choose a two-point correlation function for ωδ and ωψ as given
from a peaked power spectrum at both scales. In particular we choose5

Pi(k) = σ2
i kiδ(k − ki) (2.14)

where i = (δ, ψ). Here the short mode kδ contributes to the formation of the PBHs and the
long mode kψ modulates the amplitude of the short one. As both ψ(x) and δ(x) are Gaussian
random fields, their two-point correlation function ξi(r) is given by [35]

ξi(r) =

∫
d ln kPi(k)

sin(kir)

kir
. (2.15)

We then have that

ωi(r) =
sin (kir)

kir
. (2.16)

In figure 1 we show how ξ(r) varies as a function of the strength of the coupling α (left
panel), the relative scales between the short and long wavelengths, γ ≡ kψ/kδ, and the

4This relation can be seen as the first order term of a Taylor expansion in the field ψ(x) around ψ = 0. Let
us note that if ψ = 0 corresponds to an extremum of ν(ψ), then the expansion would start at second order in
ψ(x). It might then be interesting to study generalizations of this model, even if in principle we would expect
similar qualitative effects on the merger rate. We thank Jaume Garriga for pointing this out.

5This is the power spectrum for the density fluctuation evaluated at the time when the small scales
perturbations δ enters the horizon.
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Figure 1. The two-point correlation function ξ(r) for the linear model (2.9) and for power spectra
given by the delta functions (2.14). Left) The correlation function ξ(r) as we vary the strength of
the coupling α between δ(x) and ψ(x). For α � 1, the Gaussian case is recovered. Here we fix
γ = 10−3. Right) The correlation function ξ(r) as we vary the hierarchy between the short and large
wavelengths, given by γ ≡ kψ/kδ. We fix α = 1. In both left and right panels we choose ν̄ = 6.8 and
kδ ' 2.5×106 Mpc−1, which corresponds to a present PBH abundance of fPBH = 10−3 for BHs of
masses M = 30M�. The orange region (xmin, xmax) indicates the scale of binaries that merge today
(t ∼ 14Gyr). The first drop in the correlation function corresponds to the size of the BH, RBH ∼ k−1

δ ,
so the region below this point reflects the autocorrelation of δ(r). The second drop corresponds to
the typical scale of the secondary field Rcl ∼ k−1

ψ and it defines the clustering length of the PBHs.
Beyond Rcl the correlation is effectively zero so the distribution becomes Poissonian.

fraction of DM in form of PBHs, fPBH ≡ ΩDM/ΩPBH. Let us note that for the Gaussian
case, corresponding to α = 0 or γ = 1, all the N -point correlation functions are zero for
r > RBH, meaning that the distribution of BHs is Poissonian [15, 17]. On the other hand
as can be seen in figure 1, in the non-Gaussian regime there is a region for r > RBH where
the 2-point correlation is constant and possibly large. This plateau is a consequence of the
nearly constant correlation function ω̄ induced by the long wavelength perturbation. For N
BHs within this region, it is possible to calculate their N -point correlation function for large
thresholds. These are given by [41]

1 + ξ(N)(ω̄, ν̄) ∼ (1 + (N − 1)ω̄)N−
1
2

(1− ω̄)
N−1

2

exp

(
Nν̄2

2

(N − 1)ω̄

(1 + (N − 1)ω̄)

)
, (2.17)

which is valid when ω̄ ∈ (−1/(N − 1), 1). For N = 2 we have

1 + ξ(2)(ω̄, ν̄) ∼ (1 + ω̄)
3
2

(1− ω̄)
1
2

exp

(
ν̄2 ω̄

(1 + ω̄)

)
. (2.18)

In general not all the BHs determining the properties of the binary will necessarily be within
this region, since the N -point correlation eventually vanishes for r > 1/kψ. This estimate
provides then an upper bound for the amplitude of their correlation.

3 Merger rate

Now we consider the effect of the clustering on the merger rate of binaries. When the torque
of the binary (preventing a head-on collision) is provided by a third BH, we need to consider
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the probability density function to find the nearest BH at distance x and the next-to-nearest
BH at distance y from a reference BH at r = 0. We call this distribution Q(x, y) and in
general it takes the following form (see appendix B)

Q(x, y) = 16π2n2x2y2G0(x)G1(y) exp

[
−4πn

(∫ x

0
G0(z)z2dz +

∫ y

x
G1(z)z2dz

)]
Θ(y − x) ,

(3.1)
with n the comoving number density of BHs and where Gm(r), the m-particle conditional
pair correlation function, refers to the conditional probability of finding a BH at radius r
given that there is one at r = 0 and m additional BHs in the interior of the region of radius
r [42]. The functions Gm(r) depend on all the N -point correlation functions and so in general
they are hard to determine. However in some cases they take simple forms. For a Poissonian
distribution, the presence of a BH at any given position is independent on the absence or
presence of BHs at any other position implying Gm = 1. Then, for a Poissonian distribution
Q(x, y) takes the following form (see e.g. [8])

Q(x, y) = 16π2x2y2n2 exp

[
−4π

∫ y

RBH

nz2dz

]
Θ(y − x) . (3.2)

Here RBH is the radius of the BH at6 r = 0. Under certain conditions, a non-Poissonian
distribution can also be written as in (3.2), provided that the comoving number density is
promoted to a local density

n→ n(r) = n g2(r) with g2(r) ≡ 1 + ξ(r) . (3.3)

In particular, if the N -point correlation functions ξ(N) satisfy

1 + ξ(N)(r1, . . . , rN−1) =

N−1∏
i=1

(1 + ξ(ri)) , (3.4)

then Gm(r) = g2(r) for all m and Q(x, y) takes the form [17] (see also appendix B)

Q(x, y) = 16π2x2y2n(x)n(y) exp

[
−4π

∫ y

RBH

n(z)z2dz

]
Θ(y − x) . (3.5)

This is for example the case for biased Gaussian distributions, as our model, with a constant
and small correlation function ξ(N) [43]. In the case in which the correlation functions ξ(N)

are larger than expected from the separability condition (3.4) we expect to have

Gn(r) ≥ g2(r) . (3.6)

For some distributions this inequality can be shown to hold explicitly [44–46]. Using the
bounds found in e.g. [45, 47], it can be shown that for small radius G0(r) ' g2(r). For
larger radius, and because the probability of finding a void decreases, we expect G0 to be
an increasing function of r. This would then imply that G0(r) ≥ g2(r) at all relevant scales
(we also expect the same to happen for G1(r)). Then the expression (3.5) becomes either an
upper or a lower bound, depending on whether the linear or the exponential term in (3.1)
dominates. In the rest of the paper, we test whether (3.4) holds using the N -correlation

6As shown in figure 1, for r < RBH, the function ξ(r) measures the autocorrelation of δ(r).
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function as given by (2.17), for N up to the expected number of BHs in the volume where
the correlation is non-vanishing.

In the following we will compute the merger rate as given by the simple expression (3.5),
taking into consideration that this expression will be an upper or lower bound for the true
merger rate for large correlations, as explained above.

In order to find the merger rate at a given time t, we need to integrate Q(x, y) over the
positions (x, y). Binaries that merge today were initially separated by a comoving distance
x in the interval (xmin, xmax). The distance xmax is the maximum distance such that a
pair of BHs can form a binary system, and can be found by imposing that the mass of the
binary system is larger than the background mass within a volume whose radius is the initial
separation of the binary [3, 5]. This radius is maximised at matter-radiation equality and
then xmax is given by7

xmax '
(
M

ρeq

)1/3

, (3.7)

where M = m1 + m2 is the total mass of the binary, ρeq is the background energy density
at matter-radiation equality. The distance xmin is the distance below which a binary with
any orbital parameter would have already merged. The time t for an orbit to collapse with
dimensionless angular momentum8 is given by [48]

t =
3

85

r4
x

ηM3
j7 with j = (x/y)3 , (3.8)

where rx is the semi-major axis of the binary and η ≡ m1m2/M
2 is the symmetric mass

ratio. Then, for a given semi-major axis, the longest possible time for a binary to merge is
if they have initially a circular orbit (j = 1). The semi-major axis rx is proportional to the
physical distance at the time the binary decouples from the Hubble flow. We then need to
find the scale factor adec at which the condition

M = ρ(a)r3 (3.9)

is satisfied, where ρ(a) is the total energy density at radiation domination. Using aeq = 1,
we find

rx =

(
x

xmax

)3

x , (3.10)

and so

xmin =

(
85 ηM3 t

3x4
max

)1/16

xmax . (3.11)

For each position x within (xmin, xmax) there is a corresponding y such that the merging time
is t, as given by eq. (3.8). For t = t0 the present age of the Universe, and m1 = m2 = 30 M�,
xmin ' 4× 10−5 Mpc and xmax ' 9.6× 10−4 Mpc. By integrating Q(x, y) over this interval
we find the total merger rate per unit time at a given time t. In order to find the merger
rate per unit time and volume element, we multiply by the total density of PBHs, n̄. This
is found by integrating n(r) in (3.3) over a Hubble patch and dividing by the total volume.
As the radius of the Hubble patch under consideration is much bigger than Rcl ∼ k−1

ψ , the

7Slightly different estimates for xmax are obtained depending on whether the volume is defined in cartesian
or spherical coordinates.

8More precisely j = c (x/y)3, where c is a factor O(1). We choose c = 1.
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Figure 2. Left) For large clustering, γ � 1, the merger rate in eq. (3.5) (in black) becomes either
an upper bound or lower bound of the unknown true merger rate (depicted here in red), depending
on whether the linear or the exponential term in (3.1) dominates. For the Poissonian case (blue),
the linear term always dominates. Right) Present merger rate from (3.5) for a monochromatic mass
spectrum with m = 30 M�, as a function of fPBH and γ for α = 1. In the grey band we show
the present rate of binary mergers as determined by LIGO/Virgo observations. We distinguish two
branches, branch A which is linked to the Poissonian case (γ = 1), and branch B that appears
as a result of the drop in the merger rate for large fPBH and small γ. Above the dotted line the
condition (3.4) holds, and the true merger rate is accurately described by (3.5). Below that line, the
merger rate depicted here is either an upper or lower bound of the true merger rate, depending on
whether this rate is an increasing or decreasing function of fPBH (as seen in the left panel). This limit
is shown as a dashed line, where we show the position of the maximum of the merger rate. From here
we deduce that the positions of branch A and B below the dotted line should be displaced towards
smaller values of fPBH. This implies that, for a given γ, the merger rate consistent with LIGO/Virgo
will happen for smaller fPBH than shown here.

contribution of ξ(r) to the average number density of PBH is negligible, and so n̄ ' n. By
using (3.7) the number density is related to fPBH by

n̄ =
fPBH

xmax
3
. (3.12)

Then, the merger rate at a given time t is

dR

dt
=
n̄

2

∫ xmax

xmin

Q(x, y(x, t))

∣∣∣∣dydt (t, x)

∣∣∣∣dx , (3.13)

where the factor 1/2 avoids overcounting the binaries. In figure 2 we show the merger rates
for the linear model (2.9), with the power spectra given by (2.14). We fix α = 1 and show
the merger rate as a function of fPBH and γ ≡ kψ/kδ. The Poissonian case corresponds to
γ = 1 (in such case there is no long wavelength modulation). From figure 2 we see that while
for the Poissonian case the merger rate increases monotonically with fPBH, for the clustered
distribution (γ � 1) the rate increases with increasing fPBH only until a certain value of
fPBH. For fPBH & 10−3 and γ . 10−2, the merger rate decreases with increasing fPBH. The
drop is due to the fact that the exponential term in (3.5) dominates, which is never the case
in the Poissonian case (if we would consider an unphysical fPBH > 1 we would eventually
also notice the exponential drop in this case).

To understand the reason behind the drop in the merger rate, we recall that binaries
merging today were initially separated by a distance x inside the interval (xmin, xmax), as
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Figure 3. Distribution of the comoving distance of the nearest BH in a Poissonian and in a clustered
distribution of BHs, for parameters giving the same present rate ((γ = 1, fPBH = 4.6 × 10−3) in the
Poissonian case and (γ = 10−3, fPBH = 2.2× 10−5) for the clustered distribution). The distributions
are normalized so that they can be easily compared in the same figure. For a Poissonian distribution,
most of BHs are separated by a distance x > xmax. For a clustered distribution, most of BHs are
separated by a distance x < xmin. BHs at a distance in the interval (xmin, xmax), shown in grey, can
merge by today (provided the third BH provides the right amount of torque).

depicted in figure 3. In the Poissonian case, BHs have a mean separation x̄ much larger than
xmax. Few of them would have a separation x . xmax � x̄, then forming a binary. These
binaries merge today if their orbits were initially very eccentric (otherwise, their merging time
is too large). As fPBH increases, the typical distance between two BHs diminishes and then it
is more likely for them to have a separation x . xmax. Then the merger rate increases. The
picture changes for the clustered distribution. For small γ, the typical distance to the nearest
BH is smaller than xmin. That is, binaries merging today are, contrary to the Poissonian
case, rare binaries separated by a distance x & xmin � x̄. These will merge today if their
initial orbits are circular (otherwise their merging time is too short). As fPBH increases,
the typical distance between two BHs becomes even smaller, and so it is more rare to have
binaries separated by a distance larger than xmin. This explains the drop of the merger rate
for f > 10−3 in the small γ region.9 In figure 3 we show the typical distance of two BHs
in the Poissonian and in the clustered regimes. In an intermediate regime there are two
local maxima of the distribution. That behaviour is better seen by looking at the angular
momentum of the binaries, that we show in figure 4.

The fact that the merger rate can drop as we increase fPBH for clustered distributions
means that the rate observed by LIGO/Virgo is, for small and constant γ, consistent with
two different values of fPBH.10 This is the origin of the two branches of parameter space
consistent with LIGO/Virgo that we see in figure 2. One is connected to the Poissonian case
(γ = 1), and we call it branch A. We call branch B the one resulting from the decrease in the

9As we have already said, this drop in the merger rate would also be visible in the Poissonian case if we
would allow fPBH to be much larger that unity. In that hypothetical case, the typical distance of a binaries
goes from being much larger than xmax, to be much smaller than xmin.

10For very small fPBH and γ, the rate still increases with fPBH, since, while the area under the curve in
figure 3 is more or less constant with fPBH, there is a prefactor proportional to the total abundance of PBHs
in eq. (3.13) that dominates the estimation of the total rate.
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Figure 4. Distribution of initial angular momenta for binaries merging today. Here we see three
cases in branch A in which most binaries are eccentric (corresponding to a Poissonian distribution, in
orange), circular (corresponding to a fully clustered distribution, in green) and mixed (corresponding
to the intermediate case, in blue).

rate at large clustering (γ < 10−2) and large fPBH. In branch A and in the Poissonian case
(γ = 1), as we previously explained, most binaries merging today were initially very eccentric.
As γ decreases, and the probability to form a BH increases at small radii, a new population
of BH appears with mean distance smaller than xmin. At some point as we move in branch
A these two populations of binaries coexist, and we have a mixed population of binaries. In
order to assess the relative abundances of both excentric and circular orbit populations we
need to determine the probability distribution of j for binaries merging at time t, P (j|t),
which can be related to Q(x, y) as

P (j|t) = S(t)−1Q(x(j, t), y(j, t))

∣∣∣∣∂(x, y)

∂(j, t)

∣∣∣∣ , (3.14)

where x(j, t) and y(j, t) can be found from eq. (3.8) and S(t) is a normalization factor. Notice
that for a given merging time, the allowed separation of binaries (xmin, xmax) translates into
possible values for j in the interval (jmin, 1) with jmin = (xmin/xmax)16/7. In figure 4 we
show the distribution of angular momenta for three cases having the same present merger
rate (R ' 50 Gpc−3 yr−1). These three cases follow a mostly Poissonian, clustered or mixed
distribution of BHs. In the mixed case, there are two populations of circular and eccentric
binaries contributing equally to the present merger rate. The degeneracy between branch
A and B is broken if we consider the merging history. In figure 5 we show the merger rate
as a function of redshift, for four different parameters for which the present merger rate is
the same (two of them belong to branch A — solid lines — and two belong to branch B —
dashed lines). While the merging history can then help us disentangle whether binaries come
from branch A or B, the differences within each branch are less noticeable, in particular for
the case of branch A. In principle there is a range of parameters for which the present merger
rate can be explained with fPBH = 1, around γ ' 0.01 in figure 2. We should however be
cautious since at large fPBH most of the binaries are disrupted under the influence of others
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Figure 5. Merger rate as a function of redshift z for two different families of parameters. All of them
have the same present merger rate, consistent with LIGO/Virgo, but different values for fPBH. Solid
lines corresponds to parameters in the branch A ((f = 2.2 × 10−5, γ = 10−3) and (f = 4.5 × 10−3,
γ = 10−1)), and dashed lines corresponds to parameters in branch B ((f = 1, γ = 1.3×10−2) and (f =
10−2, γ = 10−3)). Note that, as we explained in the previous section, because we expect branch A and
B to be displaced towards smaller fPBH below the dotted line in figure 2 these curves should correspond
to larger values of γ than the ones quoted here. For example for fPBH = 1, we expect γ > 1.3× 10−2.

PBHs [5], thus yielding smaller present merger rates.11 A quantitative estimation on how
this effect changes the rate is however only possible by the use of numerical simulations.

A direct detection of the merger rate as a function of redshift will of course first con-
tribute in determining whether these binaries are of primordial origin or not. For astrophys-
ical binaries, the merger rate drops for z > 2 and then dies off. These different histories
might be directly disentagled with more events in the LIGO/Virgo channel [49] and with
future experiments like the Cosmic Explorer [32] or Einstein Telescope [33] (see e.g. [50]). At
last, let us note that the merger rate in branch B is several orders of magnitude larger that
of branch A. For such large rates, the gravitational waves created by the binaries would be
strongly lensed by other PBHs, leading to signatures that might explain some features of the
LIGO/Virgo events [51, 52].

The integrated effect of the merging history can also be deduced by looking at the
stochastic background of gravitational waves, which we discuss in more detail in the following
section. As we will show, when LIGO/Virgo acquires full capability, a detection of the
stochastic background will make it possible to distinguish between these different merging
histories.

4 The stochastic background of binary mergers

The energy released by binaries that have already merged contribute to a stochastic back-
ground of gravitational waves. The energy density of the stochastic background ΩGW can be

11Let us note however that for slightly larger γ, a merger rate larger by many orders of magnitude can be
achieved. Thus it is possible that there is a γ > 0.01 for which the merger rate is consistent with fPBH = 1,
even if most of the mergers are disrupted at early times.
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Figure 6. Stochastic background of gravitational waves. We choose the same parameters as in
figure 5, having the same present merger rate. The solid grey indicates the current LIGO/Virgo
bounds whereas the dashed line indicates the projected final sensitivity [63].

expressed in terms of the critical density ρc as

ΩGW ≡
1

ρc

dρGW

d log ν
(4.1)

where ρGW is the energy density at a given frequency ν. The contribution coming from early
formed binaries can then be expressed as (see e.g. [14])

ΩGW =
ν

ρcH0

∫ z∗

0

RPBH(z)

(1 + z)E(z)

dEGW

dνs
(νs)dz (4.2)

where dEGW/dνs is the GW energy spectrum of the merger and νs is the frequency in the
source frame, related to the observed frequency as νs = (1 + z)ν. The function E(z) ≡
H(z)/H0 = [Ωr(1 + z)4 + Ωm(1 + z)3 + ΩΛ]1/2. Black holes of m ∼ 102 M� were formed at
z∗ ∼ 1010, and so this is the maximum redshift at to which we possibly integrate the relation
above (even though the integrand stops contributing much earlier).

As can be seen from figure 6, under the hypothesis that all mergers are of primordial
origin, LIGO/Virgo will be able to disentangle the initial orbits of the binaries.

The energy released as GWs can be deduced from its waveform. This has been modeled
for the inspiral, merger, and ringdown phases of BHs binary mergers, and fitted through
numerical simulations [53, 54]. For non-precessing binaries, as it is the case for solar mass
PBHs [55–57], it takes the following form (see also [58, 59])

dEGW

dνs
(νs) =

π2/3M
5/3
c

3


ν
−1/3
s for νs < ν1

ω1ν
2/3
s for ν1 ≤ νs < ν2

ω2
σ4ν2s

(σ2+4(νs−ν2)2)
2 for ν2 ≤ νs < ν3

0 for ν3 ≤ νs

(4.3)
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where νi ≡ (ν1, ν2, σ, ν3) = (aiη
2 + biη + ci)/(πM), M = m1 + m2 is the total mass, Mc

is the chirp mass (M
5/3
c = m1m2M

−1/3), and η = m1m2M
−2 is the symmetric mass ratio.

The parameters ai, bi and ci can be found in [53], and (ω1, ω2) are chosen such that the
spectrum is continuous. In the template (4.3) the three regimes corresponds, towards larger
frequencies, to the inspiral, merging and ringdown phases, and for 30 M� they correspond to
νi = (135, 271, 79, 387) Hz.

In figure 6 we show the stochastic background of gravitational waves for a set of pa-
rameters producing the same present merger rate. We take (Ωr,ΩΛ,Ωm) as determined by
the Planck satellite [60]. On the one hand, let us note that the shape of the stochastic back-
ground of gravitational waves coming from astrophysical binaries is qualitatively very similar
to the one coming from branch A and from a Poissonian distribution of PBHs [61, 62], and
thus a very careful comparison should be done in order to discriminate between the two. On
the other hand, the signal from branch B features oscillations — residuals of the oscillations
in the merger rate — that might act as a smoking gun for this type of distribution.

5 Discussion and conclusions

We have presented a model for initial clustering of PBHs and computed the merger rates
of binary black holes. We have shown that because of the clustering the merger rate can
decrease as the fraction of black holes increases, inducing a degeneracy in the value of fPBH

for which a certain merger rate is obtained and opening the possibility that all DM is in
the form of PBHs of stellar mass. We have showed that the detection of the stochastic
background (within the projected sensitivity of LIGO/Virgo) should be able to break this
degeneracy, determining the initial distribution of PBHs.

While in this paper we have discussed the constraints coming from the present and
past merger rates, there are other constraints that put bounds on the abundance of PBHs at
these scales. Depending on the mass function of the PBHs, more observables related to binary
mergers can be used to confront with LIGO/Virgo data, such as the mass ratios, total mass
and chirp mass [64]. Additionally, other observables not related to binaries can be used, such
as distortions in the Cosmic Microwave Background (CMB) [65, 66], gravitational lensing
of Type IA Supernova [67], pulsar timings [68], and the survival of star clusters [69]. In
general we expect these constraints to be alleviated by the presence of clustered distributions
(see e.g. [4, 70, 71]), however a quantitative analysis taking into account the full space of
parameters that we have considered here is still lacking.

Our analysis is based on binary orbits induced by a third BH. For large values of fPBH,
as well as highly clustered distributions, this assumption might not hold. We thus expect
some changes in the quantitative results for some of the parameters of the theory, when N-
body effects are considered. Moreover, we used an estimate for the merger rate that assumes
the separability condition eq. (3.4), and we identified the regions of parameter space where
this estimate is accurate, or provides a lower or upper bound of the true merger rate. This
is sufficient for having a qualitative understanding of the possible merger histories at large
clustering. A quantitative estimate can be obtained by calculating explicitly the probability
of finding nearest neighbours at a given position, by applying e.g. the analytic techniques
of [42, 45, 47]. These issues can also be tackled by using numerical simulations to determine
the initial distribution of BHs and by looking at their time evolution (see e.g. [78] for recent
considerations on these problems). These lines of research will be further pursued in future
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work. Let us note that both of these effects make the merger rate drop for larger abundances,
and thus both contribute in opening the window for having all the DM as stellar PBHs.
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A N-th point distribution of PBHs

In this appendix we compute the probability of having N primordial black holes at the points
x1, . . . , xN for the case where the local critical threshold for collapse follows a linear relation
with the secondary field ψ

ν(xi) = νg (1 + βψ(xi)) = νg + αµ(xi) , (A.1)

where we have defined α ≡ νgβσψ and µ(xi) = ψ(xi)/σψ. We denote by P local
N (x) the proba-

bility of having N primordial black holes at points x1, . . . , xN given that the local threshold
for collapse has a value ν(x1), . . . , ν(xN ). We denote this probability by P local

N (x1, . . . , xN ).
By using threshold statistics12 we write this probability as

P local
N (x1, . . . , xN ) =

∫ ∞
ν(xN )

dηN · · ·
∫ ∞
ν(x1)

dη1P
(N) (η,Ωδ) . (A.2)

Here we introduced the quantity P (N)(η,Ωδ), the joint probability density of the δ-field with
correlation matrix Ωij

δ = ωδ(rij) if i 6= j and 1 if i = j. Here rij = |xi − xj |. We also defined
the vector η = (η1, . . . , ηN ), ηi = δ(xi)/σδ. The explicit form for P (N)(η,Ωδ) is

P (N) (η,Ωδ) =
1

(2π)N/2 (det Ωδ)
1/2

exp

(
−1

2
ηTΩ−1

δ η

)
. (A.3)

The quantity P local
N (x1, . . . , xN ) is a conditional probability. To obtain the total probability

of finding PBH at the points x1, . . . , xN we need to integrate over the configurations of the
secondary field ψ(x). Therefore, we have

PN (x1, . . . , xN ) =

∫ ∞
−∞

dµN · · ·
∫ ∞
−∞

dµ1P
(N) (µ,Ωψ)P local

N (x1, . . . , xN ) , (A.4)

where µ and Ωψ are analogous to η and Ωδ for the secondary field ψ. By using the change
of variables

η̃ =
η − αµ√
1 + α2

, ν̃ =
αµ√

1 + α2
(A.5)

12The main result of this appendix also applies to peak theory.
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and defining the new covariance matrices Ω̃δ = (1 + α2)−1Ωδ and Ω̃ψ = α2(1 + α2)−1Ωψ we
can write eq. (A.4) as

PN (x1, . . . , xN ) =

∫ ∞
−∞

dN µ̃√
(2π)N det Ω̃ψ

∫ ∞
ν̄

dN η̃√
(2π)N det Ω̃δ

e−
1
2

(η̃+µ̃)T Ω̃−1
δ (η̃+µ̃)− 1

2
µ̃T Ω̃−1

ψ µ̃

(A.6)
where we used the notation dNz = dzN · · · dz1 and we have defined ν̄ = νg/

√
1 + α2. By

using the following known result for gaussian integrals

1

(2π)N

∫ ∞
−∞

dNze−iy
T z− 1

2
zTMz =

1√
(2π)N detM

e−
1
2
yTM−1y , (A.7)

we can write

PN (x1, . . . ,xN ) =

∫ ∞
−∞

dN µ̃

∫ ∞
ν̄

dN η̃

∫ ∞
−∞

dNη′

(2π)N

∫ ∞
−∞

dNµ′

(2π)N
e−iµ̃

Tµ′−i(η̃+µ̃)T η′− 1
2
µ′T Ω̃ψµ− 1

2
η′T Ω̃δη

(A.8)
We can first integrate over µ̃ giving us a factor of (2π)NδN (µ′ + η′) allowing us to perform
automatically the integral on µ′. Then, we are left with

PN (x1, . . . , xN ) =

∫ ∞
ν̄

dN η̃

∫ ∞
∞

dNη′

(2π)N
e−iη̃

T η′− 1
2
η′(Ω̃δ+Ω̃ψ)η . (A.9)

By defining

Ω̄ ≡ Ω̃δ + Ω̃ψ =
Ωδ + α2Ωψ

1 + α2
(A.10)

and using again the identity (A.7) we end up with

PN (x1, . . . , xN ) =

∫ ∞
ν̄

dη̃N · · ·
∫ ∞
ν̄

dη̃1P
(N)
(
η̃, Ω̄

)
. (A.11)

But this is just the probability of finding N primordial black holes at the points x1, . . . , xN if
the overdensity field was a single gaussian field with correlation matrix Ω̄ and the threshold
for the collapse was ν̄. There exist “closed forms” for the some values of N .

For P1(x1) we have

P1(x1) =
1

2
erfc

(
ν̄√
2

)
, (A.12)

and for P2(x1, x2) we have [39]

P2(x1, x2) =
1

2
erfc

(
ν̄√
2

)
− 2T

(
ν̄,

√
1− ω̄(r)

1 + ω̄(r)

)
, ω̄(r) =

ωδ(r) + α2ωψ(r)

1 + α2
, (A.13)

where r = |x1 − x2| and T (z, a) is the T-Owen function defined as [39]

T (z, a) ≡ 1

2π

∫ a

0
dt
e−

(1+t2)z2

2

1 + t2
. (A.14)

For a = 1, a simpler form can be found [38]

T (z, 1) =
1

8
erfc

(
− z√

2

)
erfc

(
z√
2

)
. (A.15)
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B Nearest neighbours distance distributions

Here we follow the notation and approach of refs. [42, 45, 47]. For a homogeneous distribution,
the N -point density is given by

ρN (x1, . . . , xN ) = ρNgN (x1, . . . , xN ) (B.1)

where gN (x1, . . . , xN ) is the N -point correlation function. For the homogeneous system
ρ1(x1) = ρ = constant.

We are interested in the following probability

Q(x, y)dxdy ≡ given that there is a PBH at some position (could be the origin),
the probability that the nearest PBH lies at a distance between x and x+ dx and
the second nearest PBH lies at a distance between y and y + dy.

To compute it, we need to define some quantities.

Hn(r)dr ≡ given that there is a PBH at the origin, the probability that the n-th
nearest PBH lies at a distance between r and r + dr

for n ≥ 1. Clearly, from the above definition we have

H2(y) =

∫ y

0
Q(x, y)dx . (B.2)

So, if we manage to express H2(y) as eq. (B.2) we can obtain an expression for Q(x, y).
We define the following regions:

Ω(r) ≡ the volume of a sphere of radius r encompasing the reference PBH.

s(r)dr ≡ the volume of the spherical shell of a sphere of radius r.

Let us now introduce more quantities

En(r) ≡ given that there is a PBH at some position (the origin), the probability
that the region Ω(r), encompassing the central PBH, contains n additional PBHs.

ρs(r)Gn(r)dr ≡ given that there are n PBHs in the region Ω(r) (in addition to
the central PBH), the probability that PBHs are contained in the shell s(r)dr
surrounding the central PBH.

The function Gn(r) is a conditional pair correlation function. Note that if all the correlation
function can be expressed as products of the 2-point, then Gn(r) = g2(r), with g2(r) the pair
correlation function (denoted by G(r) in ref. [17]). By the above definitions, we can write then

Hn(r)dr = ρs(r)Gn−1(r)En−1(r)dr . (B.3)

Moreover, Hn(r)dr and En(r) are related by

Hn(r)dr = −
n−1∑
i=0

∂Ei(r)

∂r
dr , or

n−1∑
i=0

Ei(r) = 1−
∫ r

0
Hn(r′)dr′ . (B.4)

Let us first find an expression for H1(x). By using eq. (B.2) we can write eq. (B.3) as

− ∂E0(x)

∂x
= ρs(x)G0(x)E0(x) =⇒ E0(x) = exp

(
−
∫ x

0
ρs(x′)G0(x′)dx′

)
. (B.5)
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The lower bound acually should be RBH, but we can set it later. The lower limit is set by
imposing the condition that E(0) (or E(RBH)) is one, since for sure there will be no PBHs
(apart from the central one). Then we can write H1(x) as

H1(x)dx = ρs(x)G0(x) exp

(
−
∫ x

0
ρs(x′)G0(x′)dx′

)
dx (B.6)

This is normalized, no matter the lower bound. Indeed if we consider the variables X =∫ x
0 ρs(x

′)G0(x′)dx′ then

H1(X)dX = exp(−X)dX , X ∈ (0,∞) (B.7)

Let us now compute H2(y) in a similar way. Note that

H2(y) = H1(y)− ∂E1(y)

∂y
(B.8)

Then we can write eq. (B.3) as

∂E1(y)

∂y
+ ρs(y)G1(y)E1(y) = H1(y) (B.9)

This is a first order ODE for E1(y) and can be solved by the use of the integrating factor.
Consider the integrating factor

I(y) = exp

(∫ y

0
ρs(z)G1(z)dz

)
(B.10)

and multiply eq. (B.9) by I(y). Then we can write it as

∂I(y)E1(y)

∂y
= I(y)H1(y) (B.11)

So

E1(y) = exp

(
−
∫ y

0
ρs(z)G1(z)dz

)(∫ y

0
H1(x) exp

(∫ x

0
ρs(z)G1(z)dz

)
dx+ C

)
(B.12)

where C is a constant to be determined. Observe that now we have that E1(0) = 0 (or
E1(RBH) = 0) since the probability of having one PBH inside the volume Ω(0) (or Ω(RBH))
is zero. Then we require C = 0. Hence we can write eq. (B.3) as

H2(y) =

∫ y

0
ρ2s(x)s(y)G0(x)G1(y) exp

[
−
(∫ x

0
ρs(z)G0(z)dz +

∫ y

x
ρs(z)G1(z)dz

)]
dx

(B.13)
where we used eq. (B.6), we put the ρs(y)G1(y)e−

∫ y ρs(y)G1 factor inside the x integral and
used the fact that x < y. Therefore we can write Q(x, y) as

Q(x, y) = ρ2s(x)s(y)G0(x)G1(y) exp

[
−
(∫ x

0
ρs(z)G0(z)dz +

∫ y

x
ρs(z)G1(z)dz

)]
Θ(y − x) .

(B.14)
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Gn will depend on all the N -point correlation functions gN . Indeed we can write En as [42]

En(r) =
1

n!

[(
∂

∂t

)n(
1 +

N−1∑
i=1

ti

i!
ρi
∫
gi+1 (r12, . . . , r1i)

i+1∏
k=2

Θ (r − |r1k|) dr1k

)]
t=−1

,

(B.15)
where r1i = r1 − ri. If the separability condition (3.4) holds, then

E0(r) = exp

(
−
∫
ρs(z)g2(z)dz

)
, (B.16)

E1(r) =

[∫
ρs(z)g2(z)

]
exp

(
−
∫
ρs(z)g2(z)dz

)
, (B.17)

which combined with eqs. (B.5), (B.6) and (B.12) give

G0(r) = G1(r) = g2(r) . (B.18)
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3 Nanongrav and supermassive

PBHs

Besides being a favorable candidate for DM as well as a possible explanation for a

considerable fraction of the LIGO/VIRGOmerger events (see [113, 155, 68] for a list

of cosmological and astrophysical conundra that could be potentially resolved by

PBHs), PBHs have been also proposed to form or provide the seeds for the super-

massive black holes that have been observed in galactic nuclei at very high shifts,

z ∼ 7 havingmasses of order M ∼ 109 M¯ [156, 157]. Currently, there are twomain

astrophysical pathways that can provide the seed mass of order 10−105 M¯; the

intermediate mass Population III stars at z ∼ 15−20 that grow by accreting at the

super-Eddington limit or byhierarchical binarymergers and thedirect gravitational

collapse of massive gas clouds, M ∼ 106 M¯ around the same redshifts [158]. These

models fail, though, to provide a convincing solution to the mysterious origin

of such supermassive black holes. Firstly, the number of quasars that accrete at

the super-Eddington limit at high z have been constrained by observations [159],

while the spatial distribution of black holes originating from the direct collapse

of gas clouds seems incompatible with the one of themassive black holes at large

redshifts. PBHs, on the other hand, could pose as a viable candidate for these

supermassive compact objects in the galactic centers, or act as an intermediate-

mass primordial seed that can reach such sizes, M & 109 M¯ via accretion. The

former scenario, where PBHs could formwith such highmasses, a non-Gaussian

distribution of enhanced perturbations needs to be considered in order for the

constraints, coming from the CMB temperature anisotropies and spectral distor-

tions, to be evaded [160, 161, 162, 121]. In the latter case, PBHs originating from a

Gaussian distribution withmasses around MPB H . 104 M¯, could form the seeds

105



of the supermassive black holes and grow close to 12 e-folds, eventually migrating

to the center of galaxies [157, 163].

In this Chapter, I present a model that predicts the existence of a population of

stupendounslymassive PBHs, with M ∼ 1012 M¯, namely a locally non-Gaussian

model with a spike feature in the primordial power spectrum that evades the

constraints set by the non-detection of CMB spectral distortions by COBE/FIRAS.

The recently detected signal by NANOGrav, which points towards a stochastic

background of gravitational waves, is used in order to constrain the abundance of

such a population.
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1 Introduction

The NANOGrav collaboration has recently reported evidence for a signal consistent with a
gravitational wave background of frequency ν ∈ (2.5×10−9, 1.2×10−8) Hz and amplitude at
1-σ confidence level ΩGW ∈ (3×10−10, 2×10−9). If the signal is modelled as ΩGW ∝ (ν/ν?)ξ,
the tilt ξ ∈ (−1.5, 0.5) at ν? = 5.5 nHZ and at 1-σ confidence level [1].

The nature of the signal has still to be confirmed with further observations and analysis
(e.g. whether it is really a gravitational wave (GW) and whether it is of stochastic origin
or not), but since a potential GW detection might have tremendous consequences for our
understanding of the Universe, it is important to investigate the potential implications of
such discovery. A suggestion of particular interest entails the signal being related to a popu-
lation of primordial black holes (PBHs) [2], which might be an important constituent of our
Universe (for recent reviews, see e.g [3, 4]). In this line, several possible interpretations of
the NANOGrav signal being the gravitational background induced by large scalar perturba-
tions responsible for PBH formation has been proposed [5–12].1 In these works it has been
shown that the signal could be accommodated by a population of sublunar, solar, or slightly
supersolar PBHs.

A quite different possibility, although historically one of the first to be conceived for
explaining a signal at such frequencies [16], is that it corresponds to the stochastic back-
ground resulting from the past mergers of large black holes, with masses M > 106M�. This
possibility was studied in [1, 18] where the distributions of the binaries was inspired from
astrophysical models.

Here we show that BH-inspirals accounting for NANOGrav could be of primordial origin.
For this to happen, their mass should be ∼ 1011 − 1012M�, and so they enter in the class
of so-called “Stupendously Large Black Holes” (SLABs) [19]. Their abundance with respect
to dark matter, f ≡ ΩPBH/ΩDM, should be at the O(0.1%) level in order to explain the
observed amplitude.

While primordial SLABs are heavily constrained by spectral distortions, we will show
that a proper account of the non-Gaussianities (NG) arising in single-field inflation models
leading to PBH production can easily relax these constraints. For these abundances, the
lower limit on the mass, M > 1011M�, is obtained from dynamical constraints of large scale
structure (LSS) (for a recent review on this topic, see [19]).

1For general considerations on the link between PBHs and the stochastic background from binary mergers,
see e.g. [13–15].
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2 Mergers of SuperMassive Black Holes and their Stochastic Gravitational
Wave Signal

The energy released by BH binaries contribute to a stochastic background of gravitational
waves, whose energy density ΩGW is given by (we use c = G = 1) [17, 20]

ΩGW ≡
1
ρc

dρGW
d log ν

= ν

ρcH0

∫ z∗

0

RBH(z)
(1 + z)E(z)

dEGW
dνs

(νs)dz (2.1)

where ρGW is the energy density at a given frequency ν, ρc is the critical density, dEGW/dνs
is the GW energy spectrum of the merger, RBH is their merger rate at redshift z and νs is
the frequency in the source frame, related to the observed frequency as νs = (1 + z)ν. The
function E(z) ≡ H(z)/H0 = [Ωr(1+z)4 +Ωm(1+z)3 +ΩΛ]1/2, and the GW energy spectrum
of the merger is [21]

dEGW
dνs

(νs) = π
2
3M

5
3
c

3



ν
−1/3
s νs < ν1

ω1ν
2/3
s ν1 ≤ νs < ν2
ω2σ4ν2

s

(σ2+4(νs−ν2)2)2 ν2 ≤ νs < ν3

0 ν3 ≤ νs

(2.2)

where νi ≡ (ν1, ν2, σ, ν3) = (aiη2 + biη+ ci)/(πMt), Mt = m1 +m2 is the total mass of binary
system, Mc is the chirp mass (M5/3

c = m1m2M
−1/3
t ), and η = m1m2M

−2
t is the symmetric

mass ratio. The parameters ai, bi and ci can be found in [21], and (ω1, ω2) are chosen such
that the spectrum is continuous. Note that eq. (2.2) describes all the stages of the merger.
All these stages are relevant for describing the peak and decay of the stochastic background,
which will be important for the fits that we present in the following section.2 In the following
we use a monochromatic population for the PBH binaries.

The merger rate RBH(z) depends on the formation channel of the binary system. If
these are formed from primordial fluctuations, then it will further depend on the their initial
distribution, which might be Poissonian (if perturbations are Gaussian [22–24]), or clustered
(if departures from Gaussianities are large [25–30]).

While we will deal with non-Gaussian primordial fluctuations, the effect on their merger
rate is going to be negligible since in the minimal model of inflation that we will consider here
there is no large variance at large scales that can source a spatial modulation in the number
density of PBHs. We consider thus a merger rate as coming from a Poissonian distribution
of PBHs and a monochromatic mass function (M ≡ m1 = m2), that is [31]3

RBH(t) = 8π2n̄3
∫ xmax

xmin
x2y2

∣∣∣dydt (t, x)
∣∣∣dx , (2.3)

2On the other hand, if we are interested in describing only the IR tail of the stochastic background, it is
enough to consider the circular inspiraling phase described by frequencies ν < ν1, as done e.g. in [18].

3In eq. (2.3) we have neglected an exponential factor that is irrelevant in this case but can be very important
when large scale correlations are present [30].
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Figure 1. The stochastic background of binary mergers. In grey we show the 1-σ region consistent
with NANOGrav signal.

where n̄ is the comoving number density of BHs, y = x (x/xmin)
16
21 , where xmin and xmax are

the minimum and maximum distances of the binaries such that they merge at time t [32],

xmax '
(
Mt

ρeq

) 1
3

and xmin =
(

85 ηM3
t t

3x4
max

) 1
16

xmax , (2.4)

with ρeq the background energy density at matter-radiation equality.4 In figure 1 we show
how the NANOGrav signal can be fitted with the stochastic GW signal given by eq. (2.1). It
can be attributed to the peak of the signal if PBHs are of masses M ∼ (5× 1011 − 1012)M�
and make a fraction f ∼ (2− 4)× 10−3 of the total DM. The infrared tail of the stochastic
background has a spectral index ξ = 2/3, and is thus within the 2-σ interval determined by
observations. Thus BHs of M < 5× 1011M� and f > 2× 10−3 could also provide a good fit.
However, as we will see in the next section, these become in conflict with LSS constraints. In
figure 1 we show the smallest mass that provides a fit to NANOGrav that is not in tension
with LSS constraints. The combination of both constraints imply M ∼ (2× 1011 − 1012)M�
and f ∼ (2− 4)× 10−3.

While such large BHs have yet to be observed in nature (the largest reported BH has a
mass 7× 1010M� [35]), the presence of more massive BHs is not ruled out.5 In the following
we discuss limits on the fraction of PBHs of this range of masses, most notably the spectral
distortion and large scale structure bounds.

4Recently BHs described by the so-called Thakurta metric have been studied [33]. In that description, and
due to a constant energy flow towards the BHs, their masses are time dependent, which alters their merger
rate. Since in the cosmological setup that we are interested there is no fluid sustaining this mass grow, these
BHs are not the ones that we are interested in (see also [34]).

5For astrophysical considerations on their presence, see [36].
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3 Spectral distortions, non-Gaussianities and LSS

Spectral distortions provide the most stringent bound for the presence of PBHs in the mass
range M = (104 − 1012)M�. The large fluctuations necessary for the production of PBHs
dissipate through Silk damping and might leave a large imprint in the CMB as departures
from a black-body spectrum.6 In particular, these primordial inhomogeneities are constrained
by a non-detection of µ distortions, which from COBE/FIRAS is bounded to be smaller than
9× 10−5 [39].

The amplitude of the µ distortions depends on both the scale and the variance of the
power spectrum of the scalar perturbations [40]. Both of these are related to the abundance
of PBHs, and so constraints on µ distortions can be used to constraint the presence of PBHs.
From here it has been deduced that PBHs in the mass range (6 × 104 − 5 × 1013)M� are
excluded [41] (for earlier application of this idea, see [42, 43]).

These constraints can be relaxed if NG are considered [44, 45]. The abundance of PBH
is most sensitive to the ratio ν ≡ ζc/σ, and NG might change both σ, the variance of the
perturbations, and ζc, the critical threshold for collapse. In general the role that NG plays in
determining the threshold for collapse has been neglected, and only the effect coming from
changes in the PDF has been considered [12, 44, 45]. However, the threshold for collapse de-
pends on the shape of the overdensity [46–52], and non-Gaussianities modify its shape [53–56].

For example, if we consider local models of NG, for which the curvature perturbations
ζ are related to a Gaussian variable ζG with a local function ζ = F (ζG), the profile of an
overdensity is simply F (ζG(r)), where ζG(r) is its shape as given by a Gaussian random
field [57]. Then the treshold for collapse can be simply determined numerically (with public
codes [51]) and/or analytically [52].

Note that since local models of NG can be written in terms of an underlying Gaus-
sian field, it is not necessary to find how the PDF changes by the local transformation for
computing the abundances. It is actually sufficient to count the regions for which the image
of the underlying Gaussian field is above the threshold of collapse. That is, if ζcNG is the
critical value for collapse of the NG profile, we can define its counterpart in the underlying
Gaussian field, µc, given by µc ≡ F−1(ζcNG). Then, if the PBH abundance for a Gaussian
field is βG ∼ e−(ζcG)2

/σ2
G with ζcG the treshold for the Gaussian field, then the abundance of

PBHs in the local NG theory is simply given by βNG ∼ e−µ
2
c/σ

2
G .

It is thus fortunate that in the case of single-field inflationary models producing a spike
in the power spectrum (necessary for a controled production of PBHs), the NGs are of the
local type. Its precise shape and amplitude were established in [53], and are given by

ζ = −µ∗ log
(

1− ζg
µ∗

)
(3.1)

where µ∗ is related to the curvature of the local maxima that the inflaton field traverses,
as [53, 58]

µ∗ = −3 +
√

9− ηV |max (3.2)

where ηV ≡ V ′′/V , with V (φ) the inflaton potential, and where ′ denotes derivatives with
respect to inflaton field φ. The parameter ηV in eq. (3.2) is to be evaluated at the local
maxima of the potential. As the field overcomes the local maxima it enters a stage of

6A natural exception are models in which the PBHs are not associated to an enhancement of the power
spectrum (like [37, 38]). These models are thus essentially unconstrained by spectral distortions measurements.
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constant-roll, perturbations are largely amplified and the abundance of PBHs increases. The
local transformation eq. (3.1) is a non-perturative completion of the well known perturbative
version F (ζG) = ζG + (3/5)fNLζ

2
G [56]. Thus, we can relate the parameter µ∗ to fNL, as

µ∗ = 5
6fNL

. (3.3)

The local transformation eq. (3.1) induces a change in the shape of the overdensity field with
respect to a Gaussian field. In [56] it was determined how the threshold for collapse changes
as the parameter µ∗ (or equivalently fNL) varies. For a peaked power spectrum growing as
k4, as expected in single-field inflationary models [59], we find7

µc =
{

0.663− 0.183fNL + 0.0169f2
NL fNL < 5

5/(6fNL) fNL > 5
(3.4)

Thus, as the amplitude of the NG is increased (which in terms of the potential means that
the hill that the inflaton must traverse is more and more spiky), the threshold for collapse
diminishes. Note that in the non-perturbative template described here the change in the
threshold is more important than in its perturbative version F (ζG) = ζG + (3/5)fNLζ

2
G [56].

Also, since the threshold is found here in terms of ζ, we avoid complications related to
additional NGs from the non-linear relation between curvature and density perturbation.

For determining the spectral distortions it is necessary to calculate the variance of the
non-Gaussian field.8 This is given by

σ2 = 1√
2πσ2

0

∫ µ∗

−∞
log

(
1− ζg

µ∗

)2
e
−

ζ2
g

2σ2
0 dζg − 〈ζ〉2 . (3.5)

The amplitude of the µ distortion is related to the amplitude and scale of a perturbation
as [40]

µ ' 2.2σ2
[
exp

(
− k?

5400

)
− exp

(
−
(
k?

31.6

)2)]
. (3.6)

Here the wavenumber k? is in M−1
pc . Assuming a monochromatic mass function -a good

approximation for peaked power spectra- k? is related to the mass of the PBH as [60]

k? ' 7.5× 105γ
1
2

(
g

10.75

)− 1
12
(

M

30M�

)− 1
2
. (3.7)

Here γ is the ratio between the mass of the BH and the mass enclosed within the horizon
H = ak−1, and g is the number of relativistic species (we fix g = 10.75). For simplicity we
take γ = 1, knowing that we expect some departures from unity from the fact that the BH
collapse is a critical phenomena [61], and because the size of the overdensity undergoing the
collapse is typically some factors larger than ak−1 [48, 49].

The fraction of PBH to DM, f , is related to their primordial abundance as [60]

β ' 10−8γ−
1
2

(
g

10.75

) 1
4
(ΩDM

0.27

)−1 ( M

30M�

) 1
2
f . (3.8)

7Actually there are no large differences at the level of the threshold if we had considered a power spectrum
given by a δ function. For details, see [56].

8This turns out to be very close to the Gaussian variance, since the logarithm in eq. (3.1) only affects
profiles close to µ∗, which are very rare with respect to the typical profiles of ζ.
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Figure 2. Limits on the abundance of PBHs coming from the non observations of µ distortions in the
CMB and from large scale structure considerations. We can see that for fNL & 3, PBHs with the mass
and abundance appropiate to fit NANOGrav are not constrained by µ distortions. However, for these
abundances, the formation of clusters imposes M > 2× 1011M�. The region in black corresponds to
the fits shown in figure 1.

The abundance can be calculated using the standard peak theory [57], since we mention
previously that we can always refer to the underlying Gaussian field.9 For the case of a
monochromatic power spectrum, it is simply given by [48, 49]

β ' µ3
c

σ4
0

exp
(
− µ2

c

2σ2
0

)
. (3.9)

Here µc is the threshold of the underlying Gaussian field, and σ0 its variance. In figure 2
we show the constrains from the FIRAS limit on µ, and how they vary with increasing non-
Gaussianity parameter fNL. For fNL > 3 these constraints can be avoided. Interestingly,
fNL > 3 sets the limit above which most PBHs are baby Universes, resulting from trapped
regions in the false vacuum of the potential [56]. Let us note that by considering a power
spectrum growing as k4, we should also worry about the constraints at scales larger than the
peak of the power spectrum, since those are also constrained by the bounds on µ distortion.
In this respect, we should note that by virtue of a duality between the background before
and after the peak in the power spectrum, the amplitude of the non-Gaussianity remains
constant during the transition [58, 63]. Thus, the most critical test concerning µ distortions
is at the scale of the peak, k?, irrespective of the steepness of the power spectrum. Note
also that in similar inflationary scenarios than the one we describe here, there might be an
additional source of µ distortions, coming from shock waves of an expanding bubble of false
vacuum in the thermalized fluid [64]. In our case, when the BH corresponds to regions in the
false vacuum (fNL > 3), the energy of the false vacuum is larger than the background energy

9It has been shown that computing the abundances using the compaction function gives a similar result
for peaked power spectra [62].
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density and so the bubble does not expand from the point of view of an outside observer and
thus there are no such shock waves.

Limits from µ distortions are not the only ones constraining PBHs of these masses. The
effects of gas accretion in the thermal history of the Universe might also be important. For
this range of masses, their effect was studied in [65]. In the simplified model considered there,
for an efficiency ε < 0.03, f ∼ 10−3 is allowed. We note that these constraints should be
updated considering more recent studies, that however mostly focused in M < 104M� (see
e.g. [66, 67]).

We can also consider dynamical constraints. Massive PBHs could destroy galaxies in
clusters [68] and/or trigger an undesirably early formation of cosmic structure [69]. In figure 2
we show the limits coming from the formation of dwarf galaxies up to clusters of galaxies.
For example, in the mass range M ∼ (3 × 1010 − 1014)M�, the strongest limit comes from
the formation of clusters of galaxies, and reads [69]

f <
M

1014M�
for 3× 1010M� < M < 1014M� . (3.10)

These constraints are fully consistent with fitting NANOGrav with the peak of the stochastic
background, but put limits on the fits coming from its tail, fixing M > 2 × 1011M�. All
in all, these constraints imply that the NANOGrav signal can be explained if M ∼ (2 ×
1011 − 1012)M�, f ∼ (2− 4)× 10−3 and fNL > 3. Note that for these parameters the signal
is no longer well described by a power law in the relevant range of frequencies, and thus
motivates an extension of the templates used in [1, 18] to assess the significance of the fits.
We also expect some spectral differences in the stochastic background coming from binaries
of astrophysical versus primordial origin due to their different merger history. As shown
in [71] for the specific case of larger frequencies, these differences might be disentangled with
future experiments like SKA for the nHz range.

4 Conclusions

We have provided an explanation of the NANOGrav signal as coming from the binary mergers
of Stupendously Large Black Holes, of masses in the range M ∼ (2 × 1011 − 1012)M�. For
a mild non-Gaussianity resulting from the dynamics of single field inflation, the spectral
distortions constraints can be avoided. For the abundance needed to explain NANOGrav,
f ∼ 10−3, the dynamical constraints fix their mass to be M > 2× 1011M�.

These results provide yet another motivation for studying the presence of SLABs, and
illustrate the importance of non-Gaussianities and their connection to the formation mecha-
nism of PBHs for determining bounds on their presence.

Finally, we should indicate that in this work we have neglected the mass evolution of
the PBHs. Since most of the signal from the stochastic background comes from late mergers,
the mass evolution could be important (see e.g. [70]). Then it would be necessary to invoke
PBHs of smaller masses for having a late time signal at the frequencies of NANOGrav. While
large values of fNL can easily be obtained to surpass the µ distortion limits [53], bounds on
LSS are more difficult to overcome. Considering that at the moment bounds from LSS and
gas accretion are only order of magnitude constraints for such masses, a deeper examination
of them should be pursued for a more robust model selection.
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4 Conclusions and future

prospects

Primordial black holes, particularly the ones that could originate from the collapse

of non-linear perturbations at their horizon re-entry, constitute an excellent probe

of the power spectrum at small scales and therefore could be used to partially

reconstruct the inflationary potential beyond the ∼ 7 e-folds constrained bymea-

surements of CMB anisotropies and surveys of the large scale structure. Over the

years, a number of possiblemechanisms of formation have been proposed predict-

ing a significant abundance of PBHs for a broad range of masses, from tiny ones,

10−18 M¯, up to stupendously massive ones with& 1010 M¯. In some cases, PBHs

were even proposed to comprise the totality of DM, in the range of asteroidmasses

10−16 . MPB H /M¯ . 10−10, after the reappraisal of the observational constraints on

their abundance [117, 164].

ThesePBHs couldhavedifferent observational signatures dependingon theirmass,

or equivalently on the time of their formation; a population of evaporating light

PBHs or one accreting at the super-Eddington limit at high redshifts, would alter

the thermal and ionisation history of the Universe, whereas stellar PBHs could

form binaries andmerge within a Hubble time, thus emitting gravitational waves

detectable by LIGO/VIRGO. These constraints, though, seem to overlook certain

aspects of the formation and evolution of the PBHs, such as the fact that PBHs

could be formedhaving a broad rather than anarrowmass function, being spatially

clustered or that they could accrete from an early epoch, leading to ambiguous

upperboundson the fractionofdarkmatter inPBH.Accounting for any typeofnon-

Gaussianities will also provide us with amore robust theoretical understanding of
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the threshold of formation on different cosmological settings.

The work collected in Chapter 2 focuses on processes that could alter the evolu-

tion of O (10 M¯) PBH binaries with the subsequent reappraisal of the constraints

on their abundances. More precisely, in [118], the effect of matter and radiation

perturbations on the distribution of orbital parameters of PBH binaries, is inves-

tigated for three distinct profiles of an enhanced power spectrum at small scales.

The first example is that of a scale-invariant power spectrum at the CMB scales,

while the second template is an enhanced power spectrum at the intermediate

scales, i.e at the comoving size of the binary at the time of its formation, and lastly

a power spectrum that is considerably enhanced at comoving scales similar to

the ones associated with the formation of 30 M¯ PBHs. The effects of enhanced

cosmological perturbations were neglected in previous analyses, resulting inmore

severe bounds on the abundance of PBHs in DM [165]. Their inclusion provides an

extra source of torque to the binary, competing the one of the nearest PBH, leading

to a different distribution of binary lifetimes and thusmerging history. The effect

of cosmological perturbations is shown to be prominent for lower abundances,

relaxing the constraints on 30 M¯ PBHs to f ≤ 0.1 for an enhanced power spectrum

at binary scales. Surprisingly, it is found to be subdominant for a power spectrum

which is enhancedatPBH formation scales, unless this feature is ratherbroad. Note

also that for f & 0.1 binaries can be disrupted by collision with compact N-body

systems [166], whichmay substantially deplete the population of primordial bina-

ries. This effect could lead to the complete evasion of bounds on the abundance of

PBHs. Further investigation of these effects seems to require numerical simula-

tions, and remains a rather interesting line of research. Additionally, I introduce

the " universality " parameterα, defined in [167], as an observational probe in order

to disentangle the two channels for providing torque to the binary. The advent of

ground-based gravitational wave detectors and the accumulation of reliable data

of mergers in the next 5 years will result in an accurate, up to O (15%), estimation of

the parameter α, granting us the opportunity to explore the dynamical evolution

of said binaries.

The second publication [119] presented in Chapter 2, studies the effect of a non-
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Poissonian spatial distribution of PBHs on their merger rate distribution. By em-

ploying a simple phenomenological model of clustering, such as the one shown in

Eq.(2.2), themerger rate actually is shown to drop really sharply for larger fractions

of DM in PBHs ( f & 10−3). The fact that the merger rate could be quenched at high

abundances has been also reported in [166, 168]. There, by the use of numeri-

cal simulations also, they showed that their estimates for the rate could not be

trusted for abundances f > 0.1, since the effect of PBH clusters that form even be-

forematter-radiation equality [169, 149, 170] on the distribution ofmergers cannot

be neglected. This suppression for larger abundances f , leads to the appearance of

degeneracies between themodel’s parameters, since two different populations of

PBHs could yield the samemerger rate. Two observational approaches that could

disentangle any such degeneracies are explored; namely the evolution of merger

rate with redshift probed by upcoming ground-based interferometers, such as the

Einstein Telescope or LISA [171], up to z ∼ 30 and the detection of the stochastic

gravitational waves background by the LIGO/VIRGO collaboration.

The constraints on the abundance of PBHs withmasses larger than the ones in the

galactic centers, MPB H & 105 M¯, aremainly due to the spectral µ-distortions of the

CMB. The physics of accretion, particularly for masses larger than 104 M¯ is not

very well known. Whether the black hole is accreting via a disk [163, 172] or until

redshifts smaller than z . 300 (when the CMB radiation is still sensitive to energy

injections [163]), will affect the estimation of the abundances at the corresponding

scales [173]. Additionally, in Chapter 3, I argue that a more thorough evaluation of

these bounds is really relevant, since a population of such stupendously large PBHs

could explain the isotropic signal detected by theNANOGrav collaboration. More

precisely, the peak of the signal was fitted with the amplitude and spectral index of

the stochastic background of gravitational waves frommergers of binaries systems

of PBHs withmasses 1011 −1012 M¯, where it was found that an abundance ∼ 0.1%

could explain such signal. A non-Gaussian inflationary model with a constant roll

phase could accommodate for a population of stupendously massive PBHs that

evade the CMB spectral distortions. It is shown that for moderate values of fN L

( fN L & 3), the bounds from µ-distortions are evaded, given that for increasing fN L
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the threshold for formation is decreasing. These results are presented in [121].

Future experiments, such as LISA or the third generation of interferometric de-

tectors Einstein Telescope and Cosmic Explorer, aim to detect the gravitational

remnants of mergers of larger masses and at higher redshifts [174]. Mapping the

spatial distribution of the coalescences and cross-correlating themwith the po-

sitions of galaxies, using surveys of the large scale structures [175], or intensity

mappings of the neutral hydrogen [176] from forthcoming experiments such as

Square Kilometer Array Observatory [177] respectively, will yield insight into the

nature of the progenitors (whether they are primordial or stellar). Furthermore, if

any binary is observed tomerge at redshifts higher than the appearance of the first

population of stars (PopIII ), around z ∼ 20 [178], then this would be an irrefutable

proof of their primordial origin. If such a primordial compact object is detected,

then this would be an important milestone in early Universe cosmology.
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