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Abstract 

The evolutionary history of the human genome has been shaped by 

the selection of multiple elements in response to different 

environmental pressures. The analysis of regulatory adaptations and 

the particularities of sexual chromosomes are key to understanding 

the different evolutionary outcomes of some of these processes. In 

this thesis, we describe how recent selection has shaped the X 

chromosome in human populations, focusing on several selection 

candidates, the special X-linked inheritance properties and the role of 

regulatory elements. We also propose the relevant implication of 

human enhancers in tissue-specific regulatory programs. The 

expression of genes implicated in tissue-specific functions is seen to 

be regulated mainly by enhancers located in introns, while 

ubiquitously expressed housekeeping genes are predominantly 

controlled by intergenic enhancers. The evolutionary role of human 

miRNAs are also analyzed with special emphasis on their global 

patterns of diversity and their implication in population-specific 

prevalence in some of the most common human disorders. 
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Resumen 
 

La historia evolutiva del genoma humano ha sido configurada por la 

selección de numerosos elementos en respuesta a distintas presiones 

evolutivas. El análisis de adaptaciones regulatorias y de las 

particularidades de los cromosomas sexuales son clave para entender 

las distintas consecuencias de algunos de estos procesos. En esta tesis 

describimos cómo procesos de selección reciente han configurado el 

cromosoma X en distintas poblaciones humanas, centrándonos en 

varios candidatos bajo selección, sus propiedades hereditarias y el 

papel de elementos regulatorios. También describimos la relevancia 

de enhancers humanos en los programas regulatorios de tejidos 

específicos. La expresión de genes implicados en las funciones 

específicas de tejido aparece principalmente regulada por enhancers 

ubicados en intrones, por otro lado, genes implicados en el 

mantenimiento básico de la célula están predominantemente 

controlados por enhancers intergénicos. También analizamos el papel 

evolutivo de microRNAs humanos, con especial énfasis en patrones 

de diversidad globales y su implicación en prevalencias poblaciones 

de algunas de las enfermedades humanas más comunes. 
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Preface 

 

The main motivation that pushed me to start this PhD was not the 

future prospects of my professional career, or even the possibility of 

publishing first line articles, but curiosity. Human evolution is not 

only about the analysis of biological and molecular patterns, but also 

about the understanding of our past and the acknowledgement of the 

future trajectory of human societies in their biological and cultural 

context, ranging from collaboration and conflicts to religion and 

diseases. 

 

The work started with a general screening of positive selection using 

the last release of 1000 Genomes project, followed by a more in depth 

analysis of adaptive selection in the X chromosome. The door of new 

opportunities appears to dig into the world of microRNAs analysis 

and non-coding DNA evolution. The three different projects of this 

work share the common objective of shading light to different aspects 

of human genome evolution taking advantage of new data, new 

collaborations and facing new challenges. Putting all together looks 

like a complicated task when starting to draft the final thesis 

presentation. However, many shared questions, methodologies and 

interpretations emerge very easily. At the end, this work is a tiny dot 

on the vast landscape of human scientific adventure to understand 

genomic evolution and seeks answers about many questions related 

to biological evolution, and to Biology in general. 

 

Given the different issues this work is addressing and to put the 

different presented papers into context, I will introduce each one 

separately and list previous works and findings that make possible 

and worth these new analyses. Parts of this introduction are about 

biological knowledge - necessary even though not enough - to go 

forward with evolutionary analysis, others are about methodological 

tools and previous published results.  

 



To introduce the first paper on the detection of positive selection in 

the X chromosome, I will provide an overview of the hard and soft 

sweep model of selection and the methods to detect the signatures left 

by these processes. The special inheritance properties of the human 

X chromosome are then introduced in order to provide a context to 

the expected evolutionary patterns and differences in comparison 

with the autosomes. I also provide an overview of the different 

insights that researchers have obtained from the analysis of natural 

selection on the X chromosome during the last years. 

 

The second paper is contextualized by firstly introducing a 

summarized overview of the different elements implicated in the 

regulation of gene expression in complex organisms. The differential 

regulation of tissue-specific and housekeeping genes is described in 

order to provide a starting point to understand the sophistication of 

regulatory programs implicated in tissue identity. Then I introduce 

the detection and annotation of regulatory elements as the first step 

in the analysis of the evolutionary implications of gene regulation, 

which are hereunder summarized. 

 

The third paper constitutes an updated and comprehensive 

description of the human miRNA repertoire in terms of nucleotide 

diversity, selection signatures and human diseases. To introduce this 

part I provide an overall description of the origin, biogenesis, 

genomic properties and function of human miRNAs. Since the 

discovery of the first miRNA in 1993, the interest on the phenotypic 

consequences of miRNA genetic variation have produced an 

important amount of publications on the clinical and evolutionary 

relevance at population level, which I summarize in the last part of 

this introduction.  
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The detection of adaptive selection in human
populations

The origin of modern humans

Modern humans originated in Africa more than 200.000 years ago,
being the earliest remains of anatomically modern individuals
located in Ethiopia and dated to about 150-190 thousand years ago
(kya) (McDougall et al 2005). From there, the colonization of the
globe has meant one of the greatest challenges in our history. The
human diáspora across the globe started around 50-100 kya with the
Out-of-Africa event (OOA) when groups of Homo sapiens
abandoned Africa and started to spread across Eurasia, colonizing
almost all corners of the globe (Figure 1) (Nielsen et al 2017).
However, this hypothesis is still under controversy, since many
theories debate about the number of waves and the consecutive
movements that contributed to the human dispersal (Bergström et al
2021). In this travel humans encountered and admixed with other
species of hominins. Homo sapiens interacted with Neanderthals
and Denisovans during their global expansion. The current
knowledge states that all non-african populations present around 2%
of Neanderthal ancestry in their genomes, situating the timing of
admixture around 60 kya (Prüfer et al 2014, Vernot et al 2015). On
the other hand, Denisovan ancestry has been found only in some
populations, like Melanesians in Oceania with an ancestry that
ranges 3-6%, and southeast Asian populations, with 0.1-0.3% of
genetic material of the ancestor (Reich et al 2010, Skoglund et al
2011).
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Figure 1. Major migrations across the globe during the human diaspora (Nielsen
et al 2017).

The advent of sequencing technologies and its impact on
the study of human variation

Since the publication of the first draft of the human genome (Lander
et al 2001, Venter et al 2001), the development of next generation
sequencing technologies (NGS) has led to the progressive decrease
of the sequencing cost of individual genomes. Moreover, it
facilitated the emergence of multiple new platforms that integrate
different approaches and methods to increase the accuracy, speed
and sequencing depth of genomes (Goodwin et al 2016). As a
result, the implementation of these technologies has made it
possible to open multiple lines of research devoted to the discovery
of genetic variation and its role in human evolution and diseases.

Population genetic studies use several types of sequence variants,
mainly those that differ in a single nucleotide, called single
nucleotide polymorphisms (SNPs), and a more complex type of
variants that involve longer portions of the genome termed as
structural variants. The advent of sequencing projects like, the 1000
Genomes Project, has allowed the discovery of millions of single
nucleotide polymorphism (SNPs) and structural variants that
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became the source of thousands of published articles that shed light
on the evolutionary history of Homo sapiens and the origins of
multitude of genetic disorders (1000 Genomes Project Consortium
et al 2015, Sudmant et al 2015). This project was developed in three
different phases that involved an increment of the amount of data
used and the improvement of the methods applied to analyse the
human genetic variation. On its last release (phase III), the project
made use of samples coming from 2504 individuals of 26
populations worldwide that were sequenced using both
whole-genome sequencing (7.4X) and targeted exome sequencing
(65.7X). This collection of samples encompasses multiple genetic
backgrounds from Africa, East Asia, Europe, South Asia and the
Americas, which provided a wider selection of different ancestries
in comparison with other sequencing projects that present ethnic
bias towards certain genetic backgrounds (Sirugo et al 2019). The
amount of genetic variation described in this last phase also
increased with respect to previous releases. Variant discovery made
use of an integrated approach of 24 sequence analysis tools and
machine learning methods that allowed to identify high quality
variants from false positives, finally describing up to 80 million
variants. They studied the genetic diversity across the different
continental groups, providing a comprehensive description of how it
has been shaped through the evolutionary history of these
populations. The Out-of-Africa event (OOA) established the main
differentiation among the current human populations in terms of
genetic structure: non-Sub-Saharan African populations present a
remarkable decrease of diversity due to the demographic reduction
in the OOA bottleneck. Among other insights, they describe the
genetic background of these populations and the changes of
effective population sizes produced by their demographic dynamics
(Figure 2). In essence, the 1000 Genomes Project is currently the
most complete, unbiased and publicly available database of human
genetic variation described so far.
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Figure 2. (A) Human populations used in the third phase of the 1000 Genomes
Project. (B) Number of variant sites per individual genome. (C) Population size
estimation across human populations (1000 Genomes Project Consortium et al.
(2015)).

Adaptive selection in human populations

During the human diáspora, different factors contributed to shape
the diversity of populations: demographic events, introgression
from archaic hominins and processes of natural selection. The
population movements during the human expansion led different
groups of people to reach extreme climatic conditions, like the north
of Siberia, and remote geographic locations, like the Tibetan or the
Andian plateau. Among the major changes that experienced Homo
sapiens, the transition from hunter-gatherer tribes to agriculturalist
and pastoralist societies about 12.000 years ago became one of the
cornerstones in the evolution of modern humans. This transition led
Homo sapiens to a revolutionary development not only in biological
terms, but also in the social and cultural dimension. The new
conditions of this period of change led to massive increases of the
population growth, which were accompanied by the emergence of
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diseases, like infectious pathogens that took advantage of the
population density to spread out. The dietary habits also suffered
from massive changes. The cattle domestication allowed ancient
populations to consume milk and its derivatives in adulthood. Also,
the availability of resources and the introduction of new animal and
plant species in the agricultural societies allowed to avoid periods of
starvation.

The conquest of such territories and the introduction of these
massive changes made humans confront environmental pressures
that would shape the genetic configuration of our genome by the
action of natural selection.

Charles Darwin introduced the concept of natural selection in his
seminal work “On the Origin of Species by Means of Natural
Selection or the Preservation of Favored Races in the Struggle for
Life” in 1859. In a nutshell, environmental changes make species
and populations face selection pressures that lead to the essence of
the evolutionary game: “the survival of the fittest”. However, this
statement, coined by Herbert Spencer after reading Darwin’s book,
does not fit completely to modern biology. It requires the invocation
of both survival and reproductive fitness of individuals to interpret
the basic role of evolution: individuals that present the proper genes
to survive and reproduce under specific environmental conditions
would be the more adaptive and will transfer these genes to the
following generation. In this sense, positive selection, also called
adaptive selection, generates the increase in frequency of those
mutations that proffer a beneficial effect or phenotype in the
population. On the other hand, negative selection consists in the
purge of mutations whose effect is deleterious from the population.
This is the main force that drives the evolution of functional
elements, since it is more likely that a mutation generates a
damaging effect than a beneficial effect. Balancing selection is
another mode that maintains polymorphisms at a certain allele
frequencies, in this way it promotes the beneficial genetic diversity

7



of the affected locus. Therefore, the processes of adaptation are the
genetic response of species and populations to face changes in their
local environment. These processes ensure to increase the frequency
of those heritable traits that make individuals present a higher
fitness, while purging the traits that are detrimental to their
reproduction and survival.

Numerous cases of genes under positive selection have been
reported during the last decades. The most commonly detected
genes under selection are those implicated in adaptations to extreme
local conditions. The most well-known case of positive selection
was first described by Bersaglieri et al 2004, and reports the
selection of the lactase locus (LCT) in European populations
associated with the lactase-persistence trait, which allows humans
to consume milk in adulthood (Gerbault et al 2011). The transition
to agricultural societies seems to be the main driver for this
adaptation, a period when humans started to domesticate cattle and
use milk as one of the main sources of carbohydrates. Long has
been travelled since this discovery, and the current knowledge about
this gene describes the selection signature also in other regions, like
in west African populations (Tishkoff et al 2007). Recently, new
insights about this signature implicate a miRNA located in the same
locus and associated with metabolic traits, which suggests a
possible relationship between this past signature and the genetic
causes of current disorders like obesity and insulin resistance (Wang
et al 2020).

Other genes reported under positive selection are involved in
adaptations to high altitude (HIF, EGLN1, EPAS1), ultraviolet
exposure (SLC24A5, MC1R) and resistance against pathogens
(G6PD, APOL1), among many others (Fan et al 2016, Rees et al
2020) (Figure 3). However, adaptations to conditions in the past
might imply maladaptations to the conditions of modern societies.
The agricultural and industrial revolution that took place during the
last 10.000 years has solved many of the problems that
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hunter-gatherers would encounter. For example, ancient humans
adapted to famine periods by increasing the energy efficiency and
fat storage, adaptations that nowadays confront a very different
situation when resources are almost unlimited. As a consequence,
nowadays populations like Samoans present a high prevalence of
metabolic-related disorders like obesity and type 2 diabetes
(Minster et al 2016).

Figure 3. Examples of genes under positive selection found in different human
populations that suggest processes of adaptation to local environments (Fan et al.
2016).

Signatures of positive selection, the sweep model

The signatures of positive selection are characterized by
perturbations of the diversity in specific genomic regions that
deviate from the usual patterns under neutrality. The most studied
signature in selection scans is the so-called hard sweep. These
signatures appear when a de novo mutation emerges in a region and
the derived allele suddenly becomes adaptive in the local
environment, becoming strongly selected and raising its frequency
in the population in a short period of time. The linkage
disequilibrium that this position might present with its vicinity
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makes this allele to be inherited along with its surrounding sites,
increasing the frequency of long unbroken haplotypes that escape
from recombination. This is the well-known hitchhiking effect
which, during the selection process, “sweeps” the variation that
might be present in the genomic environment of the selected locus,
leaving behind a region with no variation. This mark is seen in
genomic regions as a pronounced valley of diversity where the peak
of homozygosity is located on the selected allele and progressively
decreases with distance (Figure 4).

Figure 4. Metrics of genetic diversity (panels a, b and c) and haplotype
homozygosity (panel d) showing the signatures of different types of selective
sweeps in comparison with the neutral expectations (Fu and Akey 2013).

During the sweep phase a single haplotype is present at high
frequency in the population, this signature is characteristic of this
type of strong selection process and is called “partial” or “ongoing
hard sweep”. After the selected allele is fixed in the population the
selective sweep is complete, where only a single haplotype
dominates and the region gets into a period of relaxed selection in
which, with time, starts to accumulate low frequency variants
(Figure 5). A clear example of this kind of selection appears when a
non-synonymous mutation affects a protein-coding gene and
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changes the sequence to a more adaptive version of the protein.
Now, the evident contrast of this type of signature with a neutral
background makes it one of the easiest marks to detect on a
genomic scan.

Figure 5. Different modes of positive selection based on the increase in
frequency of adaptive variants in one or more selected loci (Fu and Akey 2013).

However, what would happen if the selected allele was already
present in the population, at a certain frequency? In these cases, the
selected allele is placed in different haplotypic backgrounds and the
hitchhiking effect will generate another type of signature,
characterized by the presence of different haplotypes at moderate
frequency, a soft sweep. In this mode of selection, commonly
referred to as selection on “standing variation”, the wider collection
of sweeping haplotypes generates a weaker reduction of haplotype
diversity compared to hard sweeps, which leaves a narrower valley
of diversity in the selected locus. The level of haplotype diversity
depends on the frequency of the variant at the beginning of the
selection process; at higher frequencies we encounter a wider
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variety of haplotypes that will compound the signature. Other
modes of selection might also generate soft sweps, like the selection
of more than one de novo mutations in the same locus at the same
time, where the selected alleles increase the frequency of the
different sweeping haplotypes.

Selection might also act on multiple loci simultaneously. Polygenic
traits are widely analysed in GWAS studies, where several loci are
detected to be significantly associated with a phenotype. However,
each of these variants individually account for a small fraction of
the phenotypic variation in the population. In these cases, selection
processes might systematically affect multiple loci present in
standing variation and generate subtle frequency shifts. This
frequency fine-tuning is the basis for polygenic selection processes.
An intuitive example of this mode of selection occurs in
quantitative phenotypes, like height, one of the first traits associated
with polygenic selection on standing variation (Turchin et al 2012).

The patterns left by hard and soft sweeps are sometimes difficult to
differentiate. Depending on the degree of “softness”, which is
correlated with the number of sweeping haplotypes in the region, a
selection process on a de novo allele might resemble more a soft
sweep than a hard sweep (Messer et al 2012). So where is the limit
between these two types of signatures? At the end of the day,
genomic scans are just dealing with perturbations of the haplotypic
diversity in discrete regions of the genome characterized by the
composition of these sweeping haplotypes. It depends on the
selection coefficient of the new allele, its starting frequency, the
moment when the sweep is detected, the disruption of the
haplotypes by recombination, the presence of recurrent new
adaptive alleles, among other factors, which determine the identity
of the signal, which sometimes is impossible to disentangle. Also,
the perturbations on diversity in a certain region might influence the
surrounding sites generating signatures that mimic those seen in soft
and partial hard sweeps. The shoulder effect is a phenomenon that
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appears in the vicinity of hard sweeps (on its shoulders) that have
completed the selection process. According to Schrider et al 2015,
the regions on both sides of the selected locus might be affected by
recombination in a way that leaves sweeping flanking haplotypes at
intermediate frequencies, a signature similar to those left by soft
sweeps. This signature might also be mistaken by the haplotypic
pattern in a partial hard sweep, where the selected allele has not
reached fixation yet.

Therefore, studies that do not present a previous hypothesis about
the selection processes that might be undergoing in a certain region
(“hypothesis free” studies), like genomic scans, are likely to
encounter numerous cases of misclassified regions under positive
selection, either by interpreting a signal of positive selection
separated from the actual selected locus or by misidentify the mode
of selection. All these factors must be taken into account when
interpreting the putative signals of positive selection, and support
the candidates under selection with evidence that helps to reject
potential confounding or false positives.

Methods to detect genomic signatures of positive
selection

Numerous methods and statistical tests have been developed during
the last years to detect signals of positive selection in the genomes
of natural populations (Vitti et al 2013, Rees et al 2020). The design
of these statistical methods relies on the genomic properties of the
selection signature, which are correlated with the age of the
selection process (Figure 6).
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Figure 6. Time scales for signatures of selection that persist over varying time
scales (Sabeti et al. 2006).

The comparison of sequences between different species can be used
to look for nucleotide changes that alter the protein function,
providing evidence of positive selection undertaken millions of
years ago. For example, these signatures can be detected by
comparing the rate of non-synonymous substitutions per site with
the rate of synonymous substitutions per site between two lineages
(Ka/Ks). The excess of non-synonymous changes would suggest
that the gene has been affected by positive selection processes that
favour novel protein structures. We can also look for signatures of
positive selection within a species. Patterns of low genetic diversity
left by the linked effect of selected alleles (hitchhiking effect) are
associated with signatures left during the last 200.000 years. These
signals can be detected by looking at alterations of the site
frequency spectrum (SFS) compared to neutral expectations (Figure
7). In these regions the reduction of diversity is accompanied by the
emergence, with time, of low frequency variants, and this will be
reflected as an excess of rare alleles and fixed or nearly fixed
derived alleles. Examples of tests sensible to these kinds of
signatures are Tajima's D (Tajima F 1989) and Fu and Li’s D (Fu
and Li 1993). During the global human expansion, the geographical
separation of different groups of people subjected these populations
to different environmental pressures. The adaptation to these new
conditions selected phenotypic relevant alleles that appear as highly
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differentiated between populations. These differences in allele
frequencies provide evidence of positive selection but also might
reflect demographic events that took place in these populations
separately. There are different methods designed to detect these
population differences, like the Population differentiation scores
(Fst) (Figure 7).

Figure 7. Methods and statistical tests to capture signatures of recent positive
selection (Fan et al 2016).

One of the most used methods to detect recent selection (<30.000
years) is based on the detection of long unbroken haplotypes at high
and moderate frequencies in population-specific genomes. This is a
family of haplotype-based statistics that rely on phased genotypes,
this is when the polymorphism alleles are localized in each of the
two copies of the chromosome. The basis of this type of test is the
calculation of the extended haplotype homozygosity (EHH).
Introduced by Sabeti et al 2002, this test measures the decay, with
distance, of the genetic identity in a collection of haplotypes from a
variable position (core allele). This identity starts at 1 in the core
allele and decreases with distance at further distances from this
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position. In a scenario where an allele is under positive selection
and rapidly rises in frequency, like in a hard sweep, the hitchhiking
effect takes the linked sites along with the core allele and purges the
diversity in the surrounding of the selected allele. In this scenario
the decay of the haplotype homozygosity is slower than in the case
of an allele that drifts under neutrality, which presents a more
variable collection of haplotypes in the region. Now, when
analysing positions that are under positive selection, the area under
the EHH curve would be greater for the allele that has been selected
in comparison with the non-selected or neutrally drifting. This is the
foundation of the integrated haplotype score (iHS), introduced by
Voight et al 2006, which is designed to detect signatures that
resemble patterns left by ongoing hard sweeps. In this test, the
calculations are made at each variable position and rely on the
comparison of the area under the EHH curve for the set of
haplotypes that harbour the ancestral and derived alleles as the core
position. In a hard sweep, the EHH curve of the allele under
positive selection would dominate over the others, indicating the
presence of long unbroken sweeping haplotypes where this allele is
placed (Figure 8).
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Figure 8. Extended Haplotype Homozygosity (EHH) decay of sets of haplotypes
harbouring the ancestral (red) and derived (blue) alleles from a variable position
(core SNP). The EHH decay is faster in neutrally evolving SNPs (left) and much
slower in SNPs under positive selection (right). The bottom plots show the
identity of the haplotypes in the population.

A variation of the iHS test is the cross-population extended
haplotype homozygosity (XPEHH) described by Sabeti et al 2007,
which relies on the comparison of regions between populations.
While iHS is suited to detect hard sweeps that are in their way to
fixation, XPEHH detects sweeps that are fixed or nearly fixed in a
population A in comparison with drifting alleles in another
population B. Other methods that rely on the extension of
haplotypes in a population are designed to detect both hard and soft
sweeps. Ferrer-Admetlla et al 2014 describes the number of
segregating sites by length (nSL), a haplotype-based statistic similar
to iHS with the difference that it does not rely on a recombination
map to measure distances from a core allele. Instead, this statistic
calculates the length of the haplotype homozygosity from a core
allele by counting the number of segregating sites contained in the
segment of homozygous haplotypes in the entire sample. In this
way, nSL is more robust than iHS in terms of recombination and
mutation rate variation. H12 is another statistic suited to detect soft
sweeps that was introduced by Garud et al 2015 and adapted by
Torres et al 2018 (iHH12) to be more powerful to detect soft sweeps
than iHS. This test relies on the assumption that in a soft sweep
there are more than one haplotype at moderate frequencies that
contribute to the haplotype homozygosity in the region, in contrast
to a hard sweep where a single haplotype dominates over the others.
Therefore, in order to detect with better power regions under the
regime of soft sweeps, the statistic collapses the frequencies of the
two most frequent haplotypes into a single class, obtaining a higher
haplotype homozygosity score in those regions where there is more
than one haplotype at moderate frequency.

Limitations of selection studies
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Nowadays the study of local adaptation in humans remains
challenging for many reasons. The availability of genomic data,
biased towards specific population ancestries, is sometimes not
representative for small ethnic groups and indigenous populations.
This causes that most genetic studies favour the analysis of
populations of certain origin, like Europeans (Sirugo et al 2019).
This lack of representation in some human populations not only bias
the interpretation of the results but also underestimate the relevance
of disease-association studies and evolutionary processes that might
shed light on specific events in the history of Homo sapiens.

Demography is another factor that can cause distortions of the
neutral diversity in the genome. Populations might present an
underlying structure based on non-genetic factors like geography,
language, religion and social distribution. These might create
barriers among individuals and alter the random mating expected in
a population, and subsequently generate specific patterns of genetic
variation that alter the initial demographic assumptions. Population
movements and changes in population sizes can also generate
distortions of the genetic variability. Migrations from one
population to another can create genetic backgrounds product of
different ancestries. This higher complexity in their genetic
configuration can lead to situations where the variability within a
population is increased while the genetic differentiation with other
populations is decreased. Other examples of demographic events
are population expansions and bottlenecks. These cases present the
particularity that can create distortions of the genetic variability that
might mimic the signatures left by processes of natural selection.
Due to this increased complexity in the population dynamics, it is
important to adequate the demographic models used to evaluate the
empirical results in selection studies.

Also, the analysis of selection signatures, carried out by genomic
scans, normally lack the phenotypic information that allow to link
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the genomic signature with the environmental causes of adaptation.
Some evident phenotypes, like Mendelian traits, are easier to
associate with the selected allele. On the other hand, variation on
gene expression or polygenic traits are less intuitive to associate
with the locus under selection behind the hypothetical adaptation.

When performing “hypothesis free” studies, like genomic scans,
there is a realistic risk to report a given proportion of false positives
due to the influence of confounding factors, which hinders the
discovery of true candidates behind actual adaptations.

The human X chromosome

The sequence of the human X chromosome was first published by
Ross et al 2005 and recently completed by Miga et al 2020, where
the authors used ultra-long nanopore reads to resolve gaps at the
centromere and two segmental duplications. In mammals, the X and
Y chromosomes derive from a pair of homologous ancestral
chromosomes that diverged from each other during their evolution
approximately 180 Myrs ago (Abbott et al 2017). During this
process the ancestral Y chromosome degenerated and lost most of
its content, presenting recombination only with two small regions at
the tips of the X chromosome arms called pseudoautosomal regions
(PAR1 and PAR2) (Figure 9). However, recent studies on genetic
diversity in these X-Y recombining regions show that they might
not present strict boundaries as considered to date (Cotter et al
2016).
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Figure 9. Schematic representation of the evolution of sex chromosomes,
illustrated in a male heterogatmetic system (Abbott et al 2017).

Regarding the gene content, the human X chromosome is enriched
in brain-expressed and cancer-testis genes (CT genes). Around 10%
of X chromosome genes are CT, a class of genes found expressed in
a great number of cancer types and in normal testis. In contrast with
autosomal single-copy CT genes, the CT-X genes are organized in
families and are thought to have originated from duplication events.
The expansion of the CT-X genes seems to be in concordance with
their rapid evolution (Stevenson et al 2007), with families of genes
like MAGE and SPANX reported of being under strong positive
selection (Kouprina et al 2004), which suggests the evolutionary
advantages of this kind of genes in males. Also, it is of interest to
note that the X chromosome presents the largest gene of the human
genome, the dystrophin (DMD), spanning more than 2.2 Mb and
located in the locus Xp21.1 is responsible of the Duchenne and
Becker muscular dystrophy (Duan et al 2021).
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The differences in the X chromosome gene dosage between the XX
females and the XY males are compensated by the random
inactivation of one of the chromosomes, first hypothesized by Lyon
MF 1961. This mechanism, common to all mammals, takes place at
the early stages of female embryonic development. The X
chromosome inactivation is directed by the X inactivation center
(XIC), a cluster where various non-coding genes control the
transcriptional silencing of the inactivated chromosome (Xi). This
process is triggered by the XIST gene, a long non-coding RNA that
accumulates and coats in cis the future inactivated chromosome
(Barr body), serving as a scaffold to other protein complexes that
performs epigenetic modifications that finally cause the gene
silencing (Figure 10) (Lu et al 2017).

Figure 10. Detection of XIST with RNA-FISH technique in the inactivated X
chromosome (Xi). Coating process of Xi during the formation of the Barr body
and triggering of the transcriptional silencing (Fu et al 2017).

Female tissues are therefore quimeras where each cell harbours one
of the X chromosomes inactivated. However, during the last years,
several studies have demonstrated that this inactivation is not
complete for all the genes in the Xi. Some genes escape at a certain
degree from this inactivation, generating therefore sex-biased
expression patterns that could lead to dimorphic traits and
sex-specific diseases (Balaton et al 2016). The inactivation status of
a gene can be established by using different strategies, showing that
escape genes tend to cluster together and are enriched in the
pseudoautosomal region 1 (PAR1) (Balaton et al 2015). One of the
most recent studies on the X chromosome inactivation states that
around 23% of genes escape from this process (Figure 11)

21



(Tukiainen et al 2017). Among other conclusions, the authors show
that escape genes present different expression bias depending on the
region they belong to. In the pseudoautosomal region 1 (PAR1)
escape genes are mostly expressed toward males, while the genes
located in the non-pseudoautosomal region (nPAR), these are the
X-specific, present a female-biased expression. They also claim, by
analysing different types of data, that the incomplete X inactivation
is generally maintained and tightly controlled across tissues, but
present numerous cases of genes whose expression is variable
across populations and tissues, thus likely generating phenotypic
diversity in humans. Whether or not escape genes are subjected to
adaptive processes is still under discussion. Park et al 2010 reported
signals of strong purifying selection (Ka/Ks ratio) in escape genes
of primates. Among their conclusions, they suggest that this signal
is mainly driven by escape genes that present an homologous gene
in the Y chromosome, which evolve like autosomal genes and
therefore are subjected to the dominance of the other allele.
However, no other studies on adaptive selection have been
performed on human escape genes, where events in the recent
history of human populations might have left other kinds of
signatures.

Figure 11. Inactivation status of the human X chromosome genes (Tukiainen et al
2017)

The formation of the XX/XY sexual system in mammals has led to
differences in the inheritance patterns of the X-linked genes
compared with the autosomes. The hemizygosity of males, this is
the presence of only one copy of the X chromosome, imply that, in
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the course of human evolution, the human X chromosome spends
one third of the time in males and two thirds in females, which
generates a decompensation of the mutation rate between the sexes.
Spermatogenesis of males presents a higher rate of cell divisions,
where DNA replication is a major source of mutations, than the
oogenesis of females. However, the lower amount of time that the X
spends in males drives a lower mutation rate in comparison with the
autosomes. These differences yield to differences in the rate of
molecular evolution since the neutral divergence is lower for the
X-linked loci (Vicoso and Charlesworth 2006). The hemizygosity of
males also leads to a higher exposure of mutations in the X
chromosome. This is the reason why the number of X-linked
diseases is disproportionate in comparison with the whole genome.
Also, the phenotypic consequences of recessive mutations affect
directly to their evolutionary fitness and are more affected by
selection pressures in males than in females, where they are hidden
by the presence of the other allele. Therefore, recessive or partially
recessive beneficial mutations are more easily fixed, while recessive
deleterious mutations are more efficiently purged from the X
chromosome in comparison with autosomes.

This effect on the evolutionary dynamics of the X-linked loci is
known as the faster-X effect and states that processes of positive and
negative selection are more efficient in the X chromosome than in
autosomes. In humans, the consequences of this effect is seen when
comparing the divergence rate with chimpanzees, where the ratio of
Ka/Ks is overly higher for the X-linked genes than in autosomes
(Lu and Wu 2005). Furthermore, if we consider male-expressed
genes like testis-specific, the effect is more pronounced due to the
exclusive exposure of the mutation effect. Numerous studies have
reported evidence of the faster-X effect in the human lineage.
Veeramah et al 2014 used a MK-based framework that measures the
proportion of fixed nonsynonymous substitutions to demonstrate
that either positive or negative selection processes are significantly
enhanced in the X when compared with autosomes. In Hammer et al
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2010 the authors reported a correlation between the X/Autosome
diversity ratio and the genetic distance measured from genes in
human populations. This tendency exhibits a lower diversity near
X-linked genes in comparison with autosomes, a tendency that
increases with distance and reflects an enhanced selection effect that
leaves a more pronounced signature of low variation around
X-linked genes (Figure 12).

Figure 12. Nucleotide diversity as a function of genetic distance from genes
(Hammer et al. 2010)

A similar approach was used by Arbiza et al 2014 to analyse the
different forces that shape human diversity in the X and autosomes
in a greater number of populations. In the study, the ratio of X/A
diversity is seen proportional among the populations of the same
continental group, however this ratio is found reduced in
non-African populations compared to Africans. This reduction of
diversity is not explained by selection forces (diversity as a function
of genetic distance), since they are comparable between
populations. Other factors like demography (Out-of-Africa event)
are partially behind these patterns, however the authors conclude
that to fully explain these discrepancies more specific factors must
be considered, like male-dominating migrations or specific social
changes that influence reproductive success.
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In the study of selection signatures in the X chromosome, different
authors have reported specific patterns that differ from those seen in
the autosomes. Nam et al 2015 describes wide regions of low
diversity in different great ape species, including humans, that
evidence the presence of independent strong hard sweeps in specific
locations of the X chromosome. These extreme signals of low
diversity, in some cases spanning several megabases, are not seen in
autosomes and are partially overlapping between species, which
suggest a common factor that leads to these selection signatures. As
the authors suggest, the enrichment of testis-expressed ampliconic
genes in these regions might point to processes of meiotic drive
(Figure 13A). In another paper (Dutheil et al 2015), the authors
support these findings by identifying regions of low incomplete
lineage sorting (ILS) in different great ape species that are
compatible with recurrent selective sweeps. These regions are
enriched in ampliconic genes that are suggested to be positively
selected by the effect of meiotic drive. This, as the authors suggest,
might be behind hybrid incompatibilities between diverging
populations in the lineage of great apes, which could derive to
speciation processes (Figure 13B). Another study on positive
selection was comprehensively carried out in different human
populations by Casto et al 2010. In this study the authors identify
several regions with high population differentiation scores and
associated with signatures of hard sweeps captured by
haplotype-based statistics. A significant number of these signals fall
within cancer-testis genes, supporting the idea of selection in
spermatogenesis-related genes. Other regions were outliers of
previously reported genes like the dystrophin (Figure 13C) (DMD).
However, their main results focused on three outlier regions that
reflect patterns of positive selection in genes like EDAR2, related to
the well-known gene EDAR, found under positive selection in Asian
populations (Bryk et al 2008).
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Figure 13. (A) Nucleotide diversity patterns of the X chromosome across
different great ape species. Grey top squares indicate the presence of extreme
hard sweep signatures (Nam et al. 2015). (B) Nucleotide diversity landscape in
three human populations indicating the overlap between low incomplete lineage
sorting regions and diversity deserts (Dutheil et al. 2015). Table of candidates
under positive selection in the X chromosome and supporting selection signatures
analysed in Casto et al. 2010.

The evolution of the regulatory genome

The description of the lac operon by Jacob and Monod in 1961
supposed the first step in the study of gene regulation with the
discovery that genes can be regulated by other molecules. In the
case of the lac operon, Gilbert and Müller-Hill argued later in 1966
that such regulatory elements are other proteins that bind to the
lactose substrate and modulate the behaviour of the gene. These
studies extended the concept of proteins as control agents of gene
expression and not only enzymes, which set the field for the
development of the transcription factor paradigm of gene regulation
(Chen and Rajewsky 2007). The emergence of this concept was also
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the seed for the idea that genes might present multiple
combinatorial ways of being modulated, which increased the
complexity of how genetic information is used and managed by the
genome.

Soon, researchers started to think about the correlation of the
genomic content of organisms and their so-called “phenotypic
complexity” as a way to define the evolutionary sophistication of
certain species. This correlation did not appear to fit properly with
the expectations: how is it possible that organisms with similar
amounts of genes present different morphological complexities?

The discovery of gene regulation mechanisms in the second half of
the twentieth century brought to light the idea that, not only the
gene diversification between species, but the multiple combinatorial
patterns of such regulation is behind the potential diversity of
organism development and evolution. Britten and Davidson were
the first to propose in the 70’s that phenotypic diversity between
organisms might be mainly driven by changes in regulatory regions
and not only in the protein-coding sequences of genes. This theory
was extended by King and Wilson in 1975 to the differences
between humans and non-human primates, suggesting that the
question “What makes us human?” would be answered in the light
of regulatory changes as the main fuel for evolution. In the early
2000’s, a series of studies based on the comparison of gene
sequences that control differential traits between species, like the
presence of trichomes in Drosophila species or the morphological
differences between marine and freshwater fishes, suggested that no
coding changes are behind such differences, so cis-regulatory
changes must be the most likely cause. These studies reinforced the
idea that regulatory changes are the main drivers for morphological
evolution. This new perspective of how evolution works at genomic
level meant a dramatic crash among evolutionary biologists from
both sides of the question, as it was illustrated in the controversy
around these studies (Pennisi E. 2008). However, the idea that
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regulatory changes are behind most evolutionary innovations started
to displace the dominant concept of protein-coding changes as the
main evolutionary fuel. In this context the evo-devo paradigm
started to grow trying to respond to evolutionary questions from a
developmental perspective.

The structure of gene regulation

The typical transcriptional unit of unicellular eukaryotes, like
yeasts, depends on DNA sequences located at the 5’ side of the
transcription start site (TSS). The main region that triggers the
transcription of a gene is the core promoter, which typically
presents a sequence called TATA element, which serves as binding
site for the TBP proteins (TATA-binding protein). However, the
transcription activation only by the core promoter is weak and needs
the presence of other close and distal regulatory sequences. In some
cases, the transcription of the gene also requires the presence of
distal regulatory regions. These are activating sequences that
require the binding of other regulatory proteins (transcription
factors) to promote the transcription of the gene (Levine and Tjian
2003).

In the case of metazoans, the anatomy of transcriptional units is
more complex and responds to the multiple combinations of
elements and regions in the tissue and cell-specific regulatory
programs. In these genes the initiation of transcription by the RNA
polymerase II (Pol II) depends on more sequence elements apart
from the TATA-containing core promoter, like the initiator element
(INR) and the downstream promoter element (DPE). The
cis-regulatory elements (cREs) that regulate the gene transcription
are more diverse than in the case of unicellular organisms.
Enhancers are elements that contain short DNA motifs that bind
transcription factors which, by recruiting co-activators and
co-repressors, promote gene transcription. They can be found at the
5’ and 3’ regions, as well as in introns, which are normally
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constituted by sequences of ~500 bp in length and harbour binding
sites for several transcription factors. Other regulatory regions are
called tethering elements and hold binding sites for factors that
recruit distal enhancers to the core promoter. Insulators are another
type of element that create regulatory barriers and prevent the
cross-interaction between different regulatory domains and the
inappropriate regulation of genes by neighbouring enhancers. This
enhancer-promoter specificity is also achieved by the sequence
elements located in the promoters, like the TATA-containing
promoters or DPE-containing promoters, which are activated by
different enhancers. This is how long-range regulation is achieved
when activating the expression of distal transcriptional units.
However, the decoupling of enhancer-target contacts leads to
rerouted regulatory interactions and novel patterns of expression.
The distribution of such complex collections of regulatory elements
can span distances of hundreds of kilobases in mammals and are
responsible for the control of the transcription of a single gene
(Figure 14).

Figure 14. Anatomy of the canonical transcriptional units of unicellular
eukaryotes and metazoans (Levine and Tjian 2003).

The role of enhancers in complex organisms
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The first described enhancer was discovered in the SV40 virus
genome (Banerji et al 1981). Later on, in 1983, this kind of
regulatory element was described in animals (Banerji et al 1983)
and, from then, the study of their biochemical and functional
properties expanded to other organisms, preparing the ground for
the study of the evolutionary dimension of gene regulation. Active
enhancers are found in regions devoid of nucleosomes, which
allows for the access of transcription factors to DNA binding
motifs. Also, the sides of these regions are typically characterized
by the presence of the histone marks H3K4me1 and H3K27ac in
their amino termini, product of post-translational modifications.
Enhancers have demonstrated to be independent of the distance and
orientation of their target genes, and also of the genomic context
where they are located. Also, distal enhancers have shown to
interact with their target promoters by looping, creating interactions
spanning hundreds of kilobases. The regulatory role of enhancers in
controlling the transcriptional levels of their target genes shows
additive and redundant properties, this means that several
enhancers, in combination with their transcription factors, are able
to modulate the gene expression as a result of their combined
activity (Shlyueva et al 2014) (Figure 15).

Figure 15. Example of the combined regulatory activity of two different
enhancers on the transcription of the Gene X (Shlyueva et al. 2014).
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The characterization of regulatory elements in the
human genome

Massive efforts have been made to characterize in depth the
regulatory signals exhibited by DNA elements in the human
genome. One of the projects that have led this work is the
Encyclopedia of DNA elements (ENCODE), which integrates in its
last release (phase III) almost a million cis-regulatory element
candidates in the human genome and more than 300.000 in mouse
(ENCODE Project Consortium, 2020). During the development of
this database, which started in 2003 with the Pilot Project of
ENCODE, the collection of massive parallel sequencing techniques
and biological samples used to identify regulatory elements have
increased significantly, encompassing in the current release 503
biological cell and tissue types from more than 1369 biological
samples. The integration of different types of assays has allowed the
mapping of different genomic signatures involved in transcription
factor occupancy, DNA accessibility, 3D chromatin interaction,
among others.

One of the new features of the last ENCODE release is the
development of the Annotation and Mapping of promoters for the
analysis of Gene Expression (RAMPAGE). This new approach was
born due to the necessity of giving response to the continuously
expanding and highly diverse sea of RNA sequences in the
transcriptomes. They seek to identify transcriptional start sites
(TSS) of RNA sequences, measure the expression of
promoter-specific RNA species and characterize the isoforms of
such genes. Among other improvements and expanding datasets,
ENCODE invested lots of efforts to integrate DNA accessibility and
chromatin modification data to create a massive registry of
candidate cis-regulatory elements (cREs) in the human genome.
The different biochemical signatures exhibited by regulatory
elements (enhancers, promoters and insulators) and their activation
states were integrated, together with the annotation of TSSs,
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according to a classification scheme, resulting in the annotation of
926,535 human cCREs (7.9% of the whole genome). According to
the support of two different experimental evidence (high DNase
signals that indicate accessible DNA and one of the ChIP-Seq
signals (H3K4me3, H3K27ac, or CTCF)), this classification divided
the cCREs in three main annotation groups: enhancer-like
signatures (ELSs), promoter-like signatures (PLSs) and CTCF
elements. The ELSs are characterized by the presence of high
DNase and high H3K27ac signals and, depending on the proximity
to the TSS, they present low relative H3K4me3 signal (proximal,
closer than 2 kb from the TSS) or none at all (distal, further than 2
kb from the TSS). On the other hand, canonical PLSs present high
DNase and high H3K3me3 within the 200 bp of an annotated TSS.
Other signatures presenting the same peaks are thought to be
non-canonical promoters or other kinds of regulatory elements.
CTCF signatures together with DNase sites identify regions
belonging to insulators or with looping functions where the protein
CTCF participates (Figure 16). This registry of cREs is displayed in
a browser-like webtool in the publicly available ENCODE
application SCREEN, where they are integrated with other types of
data, like transcript expression profiles, chromatin looping signals
or transcription factor binding peaks, among others.
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Figure 16. Cis-regulatory elements (cREs) classification scheme by ENCODE,
the different combinations of DNase and ChIP-Seq signals provide the identity of
the candidate elements (ENCODE Project Consortium et al 2020).

Tissue-specific and housekeeping gene regulation

The comprehensive annotation of cis-regulatory elements in the
human genome, which greatly exceeds the number of protein
coding and noncoding genes, shows the extensive landscape of
regulatory possibilities that gene expression patterning exerts in cell
and tissue contexts. From this extensive repertoire of regulatory
sequences, each regulatory program selects a specific set of
elements to carry out the modulation of gene transcription.
However, the way these regulatory elements are chosen and the way
they function to orchestrate their combined regulatory functions that
confer the tissue identity and functionality is still under profound
study.

Many lines of evidence indicate that the selection of tissue-specific
sets of enhancers are directed by protein and signal-specific priming
events in the cell. The model of pioneer factors describes the
presence of DNA recognition motifs, associated with cell-specific
enhancers, susceptible to be bounded by lineage-determining
transcription factors (LDTFs) in the compacted chromatin (Zaret et
al 2008, Heinz et al 2015). This binding triggers the opening of
chromatin and initiates the activation of enhancers, which induces
tissue-specific transcription programs. In essence, the action of
these LDTFs precipitates the transition of enhancer elements from
their closed (inactivated) state, when they are buried within the
compacted chromatin, to a primed or poised state, where their DNA
sequence is accessible, in which they start to be available to be
bounded by other transcription factors. However, the action of these
LDTFs by themselves sometimes is not sufficient to initiate
regulatory programs of a certain cell type. Combined with these
LDTFs, there is also the action of other kinds of factors dependent
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on intra- and extracellular signalling events, like the members of
nuclear receptor families. These signal-dependent transcription
factors (SDTFs) may act as complementary factors for the LDTFs,
binding in previously initiated enhancer regions by the latter
(Samstein et al 2012, Heinz et al 2015). In this sense, the joint
action of these two kinds of factors is hierarchical, in which the
initiation of tissue-specific enhancer activation is firstly executed by
the LDTFs. However, the action of SDTFs might also be
independent of LDTFs, in the sense that they can trigger the de
novo selection of enhancers. In summary, the combined interaction
of these two kinds of factors and their binding to specific DNA
sequence motifs is responsible for the selection of the enhancers
that guide the execution of tissue-specific regulatory programs
(Figure 17).

Figure 17. The action of lineage-determining transcription factors (LDTFs) and
signal-dependent transcription factors (SDTFs) in the activation of tissue-specific
enhancers (Heinz et al 2015).

The concept of housekeeping gene has been around for various
decades already. Initially they were defined as genes that are
devoted to basic functions, necessary for the maintenance and
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survival of the cell. Therefore, they are expected to be expressed in
all tissues under normal conditions, regardless of their specific
identities, functions and external signals. Their genomic features are
also different from those that are tissue-specific. For example, they
are generally more compact, with shorter introns and exons, and
might harbour different profiles of other elements, like transposons.
The early detection of housekeeping genes allowed to compose lists
that served as a guide to identify the basal functions of the cell, as
well as internal controls for experimental assays that need a
constantly and widely expressed gene as a reference. However, the
early technology of microarrays presented significant limitations
that were partly resolved by the development of high throughput
sequencing technologies such as RNA-seq. In the post-genomic era,
this technology allowed to quantitatively measure the expression of
genes at a higher accuracy, regardless of their prior annotation, and
in a more diverse collection of tissues. This permitted the discovery
of a larger number of widely expressed loci, incrementing the
catalogs of housekeeping genes, but also the identification of basal
low expression levels throughout the genome. This means that the
expression of genes in all tissues was not an accurate proxy to
define a housekeeping gene, but it had also to consider the level to
which it is expressed and a low expression variability across
different tissues (Eisenberg et al 2014).

Although the regulation of both housekeeping and tissue-specific
genes in the human genome is poorly understood, different studies
have reported differential characteristics of this regulation. For
example, in Zabidi et al 2014 the authors reported that
enhancer-to-core-promoter specificities drive the differential
regulation of housekeeping and developmental tissue-specific
genes. They used self-transcribing active regulatory region
sequencing (STARR-seq) constructs to identify the regulation of
these two types of promoters across thousands of enhancers
described in Drosophila melanogasterS2 and ovarian somatic cells.
The comparison of the regulatory outcome in these promoters
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yielded two sets of different enhancers that presented a low overlap
between them, suggesting their specific interaction with the two
promoters. These two groups of enhancers showed differences in
their genomic distribution, housekeeping-specific enhancers (hkCP)
were highly proximal to the TSS and located near genes enriched in
basic cellular functions, while the tissue-specific enhancers (dCP)
were mainly located in intronic regions and next to genes enriched
in cell-type functions (Figure 18). The authors concluded that this
differential regulation was due to sequence specificities of the
core-promoters, whose regulation is mainly preferred by one of the
two types of enhancers.

Figure 18. Identification of housekeeping and tissue-specific enhancers in
different contexts (S2 and OSC). (A) High overlap between hkCP enhancers and
low overlap between dCP enhancers in two different tissues. (B) Genomic
location and GO enrichment of near genes to the two groups of enhancers (Zabidi
et al. 2014)
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The evolutionary role of regulatory elements in the
human genome

The advent of new generation sequencing technologies has made
possible the development of the regulatory field in increasing the
potential discovery of regulatory changes between different species.
However, this development has been accompanied by an inherent
difficulty of characterizing regulatory variation in comparison with
protein-coding changes. The latter are easier to analyse and interpret
since, once known the function of the gene, the mutation can be
linked more straightforwardly to the trait. On the other hand, DNA
regulatory changes are more difficult to pinpoint and trace back to
the trait or phenotypic advantage.

In the study of regulatory variation two different strategies can be
applied. Researchers might first identify the genomic sequence
changes present between, for example, humans and chimpanzees,
and then evaluate their potential functional repercussions. This
genotype-to-phenotype strategy is rooted in the comparative
genomics field which confronts the problem of identifying the
functionally relevant changes that might be involved in the
human-specific innovations. In the landscape of human-specific
changes we might face the distribution of the effects illustrated in
Figure 19. Most of these variants involve changes that do not
present any biological meaning due, for example, to neutral
substitutions or alterations in elements like transcription factor
binding sites (TFBS) or chromatin accessibility regions that are
compensated by other regulatory mechanisms and, therefore, they
do not generate an appreciable change. On the other side of the
distribution, we find the minor fraction of these changes that
generate large regulatory and expression changes and might be
subjected to positive selection processes.
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Figure 19. Hypothetical distribution of gene regulatory changes and their effect
in the human genome (Reilly and Noonan 2016).

The first studies on human-specific regulatory changes were based
on the comparison of multiple genomes and the identification of
highly conserved regions in vertebrates with an accumulation of a
remarkable number of changes in the human genome. These human
accelerated regions (HARs) are mostly noncoding and are enriched
near genes controlling developmental processes, like neurogenesis,
and therefore affecting regulatory regions like enhancers that
modulate the expression of such genes (Prabhakar et al 2006).
Several studies were conducted to identify the regulatory role of
these HARs, like in Kamm et al 2013, where the authors identified a
large number of highly accelerated regulatory regions affecting the
human gene NPAS3, involved in brain development, and therefore
might give rise to human-specific cognitive traits. Although a large
number of HARs have been identified to date, it is unlikely that
they account for most of the human-specific traits. Moreover, it is
still challenging to identify the specific traits in which they are
involved without integrating other strategies, like experimental
screenings.

Another strategy used in the analysis of regulatory variation among
species is based on the identification of the phenotype and the
consequent association with the genetic change
(phenotype-to-genotype). This phenotype-directed strategy is based
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on the development of multiple sequencing techniques that aim to
measure in a quantitative way the gene expression and regulatory
activity of specific cells and tissues. Gene expression methods, like
the analysis of microarrays or the more versatile RNA-seq, provided
the opportunity to characterize the expression profiles of different
tissue types and compare them across species. The activity of
regulatory regions can be measured with techniques like ChIP-Seq,
which combines chromatin immunoprecipitation with high
throughput sequencing in order to analyse histone modifications
associated with enhancers and promoters, or DNase hypersensitivity
techniques, which sought to identify chromatin accessibility regions
as a proxy for transcription factor binding in regulatory regions. All
these techniques aim to characterize the identity of different cell and
tissue types, since the expression and regulatory profiles serve as
fingerprints of the tissue-specific functionality, and compare them
across different biological states, individuals and species. These are
the foundations of the comparative functional genomics field.

The comparison of tissue-specific expression profiles among
different primate species, including humans, provides an important
source of insights into the evolutionary dynamics of gene
regulation. The comparison of expression profiles conducted by
diverse studies showed that gene expression patterns are overly
conserved among phylogenetically related species. This
evolutionary constraint is generally maintained across different
tissues, although the divergence exhibited in some is greater than in
others. The human brain has been the main focus of this kind of
analysis. Although the primate brain presents stable gene expression
levels, different studies have found particular deviations of such
patterns that might reflect evolutionary lineage-specific innovations
at regulatory level. In Brawand et al 2011, the authors used
RNA-seq-based transcriptome profiling to characterize six organs
across different mammalian species. They found different
evolutionary rates at expression level, including specific differences
in the X chromosome and primate brain, among others. The
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differences in primate brain were based on expression shifts of
functionally related genes, where the human lineage shows a
specific increase in expression of genes involved in neural
connectivity of the prefrontal cortex, suggesting the involvement of
these regulatory changes in human cognitive evolution (Figure 20).
Another source of transcriptional variation emerges from
differential alternative splicing across species. In this matter, studies
have reported that the transcription architecture of genes is
generally maintained across different tissues of the same species,
but highly variable among homologous tissues in different species
(Young et al 2015).

Figure 20. Lineage-specific expression shifts of modular brain-related genes
(Brawand et al. 2011).

Comparative studies on epigenetic signatures, like transcription
factor binding sites, histone modification levels and chromatin
accessibility also serve to identify the differential regulatory
programs that are behind the evolutionary diversification among
different species. For example, differential studies on signatures like
DNase hypersensitive sites locate lineage-specific epigenetic
signatures near genes that are differentially transcribed between
humans and other non-human primates. This regulatory landscape
reveals signatures that are gained and lost in specific lineages and
point to derived functions in each species (Gittelman et al 2015).
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Comparative studies focused on early developmental stages try to
identify the lineage-specific signatures responsible for the
morphogenesis differences across different species. In the case of
primates, these studies are a clear example on how the
diversification of regulatory regions were determinant on the
evolution of Homo sapiens. In Prescott et al 2015, the authors use
epigenomic profiling to analyse the diversification of cis-regulatory
elements in cranial neural cells from human and chimpanzee,
providing a collection of enhancers that present species-specific
activity and are candidates for the craniofacial diversification of
higher primates. Among other results, the authors measured the
genome-wide enrichment of H3K27ac marks, a typical signature of
enhancer activity, in orthologous enhancers between human and
chimp, reporting a remarkable number of species-biased elements.
These elements were found flanking genes whose expression is also
biased among primates and are involved in facial morphogenesis
(Figure 21).

Figure 21. Examples of human and chimp-biased enhancers showing H3K27ac
signals that indicate the activity of the region (Prescott et al 2015).

Small regulatory RNAs: miRNAs

The idea of RNA molecules as mere carriers of genetic information
from DNA to proteins has long changed in the last sixty years. The
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central dogma of biology initially proposed in 1958 by Francis
Crick (Crick FH 1958) established a one directional flow of genetic
information to their destiny in the function of proteins. It was not
until the 50’s that RNA biology started to gain more protagonism in
the cellular mechanisms between genes and proteins. The roles of
RNA molecules were upgraded not only to carriers of this
information (mRNA) but also to infrastructural sequences (tRNA)
essential for protein synthesis and structural compounds of
ribosomes with the discovery of rRNAs. In the following years
(Figure 22), the discovery of new classes of small RNA molecules
implicated in the machinery of alternative splicing of protein-coding
genes (snRNAs, snoRNAs) and the advent of the complexity of
heterogeneous nuclear RNAs (hnRNA) led to the proposal by
Britten and Davidson of the existence of RNA-based regulatory
networks in complex organisms (Britten and Davidson 1969). In the
80’s, the regulatory role of RNAs was complemented by the
discovery of their catalytic properties, which situated their
participation in cleavage reactions at post-transcriptional level,
among others. The first indication of the existence of miRNAs was
the discovery in 1993 of the loci lin-4 and let-7 (Lee et al 1993,
Reinhart et al 2000), and their regulatory role in the development of
the nematode Caenorhabditis elegans. At first sight these small
RNAs appeared as mere curiosities in the landscape of regulatory
sequences that began to be discovered in molecular biology, without
the impression that they take part in a much wider, diverse and
relevant group of regulatory players. It was not until 1998 that
miRNAs were upgraded to the position they belong as regulatory
sequences, in this year the complete picture of how miRNAs act
was revealed with the discovery of the RNA interference pathway
(RNAi) in plants and C. elegans (Fire et al 1998). This process was
described as a silencing mechanism driven by double stranded
RNAs (dsRNA) that are processed into short interfering RNAs
(siRNAs) able to perform regulatory activities at transcriptional and
post-transcriptional level. The detection of naturally endogenous
dsRNAs as stem-loop sequences, together with the protein
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machinery responsible for their processing (Dicer and Drosha) and
function (Argonaute proteins), finally confirmed the hypothesis that
miRNAs are a product of a maturation process that participate as
interfering sequences in gene silencing regulatory processes.

Figure 22. Timeline showing the main discoveries in the field of gene regulation
and the acknowledgment of the regulatory roles of RNA sequences (Morris and
Mattick 2014).

Biogenesis and function of miRNAs
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The discovery of the let-7 and lin-4 loci by Ambros and colleagues
lead to the description of miRNAs as short single-stranded RNA
sequences of about 22 nucleotides that serve as a guide for a
RNAi-related pathway of gene silencing at post-transcriptional level
(Lee et al 1993, Reinhart et al 2000). Similar to the ancestral
processing steps of the canonical RNAi pathway, miRNAs are first
transcribed in the nucleus as a stem-loop primary miRNA sequence
(pri-miRNA) (Figure 23A) that is recognised by the Microprocessor
machinery, which involves the participation of the Drosha protein.
This is an endonuclease with two RNase III domains that cleaves
the primordial sequence at both single-stranded arm extremes and
generates the subsequent stage of the sequence, a ~60 nucleotides
stem-loop called “precursor miRNA” (pre-miRNA). The current
knowledge of the internal canonical structure of the primordial
sequence describes essential cleavage points for these processing
proteins that are more or less robust to variations of the nucleotide
sequence, like wobbles, mismatches and bulges (Figure 23A,B).
This intermediate form is then transported to the cytoplasm by the
Exportin 5 and RAN-GTP, where it is further recognised and
processed by another endonuclease called Dicer. This protein cuts
the double-stranded part of the stem-loop at both extremes near the
loop, liberating the miRNA duplex formed by the main mature
miRNA sequence and its partner called “passenger” strand (Figure
23B). This double helix is then loaded into an Argonaute protein
(AGO) forming the RNA-induced silencing complex (RISC) which
separates both strands and expels the passenger miRNA when
returning to its relaxed conformation. The loaded miRNA is located
into a pocket of the protein serving as a template guide for the
complementary binding of target mRNAs (Figure 23C). A particular
region of the miRNA is involved in the recognition of the target site
of mRNAs, this is the seed region, a six-nucleotide portion at the 5’
extreme of the sequence (nucleotides 2-7) that establish a
Watson-Crick pairing with the 3’UTR region of target mRNAs
(Figure 23D) (Lewis et al 2003). An extended version of this seed
involves the nucleotide at position 8 (nucleotides 2-8), which
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increases the stability and establishes a stronger binding with the
mRNA (Lewis et al 2005). This is the most effective binding and
mediates most of the mRNA repression, however there are
alternative regions in the miRNA that complements the
miRNA:mRNA binding. Positions 13-16 correspond to a region that
can mediate a supplementary binding and compensate for potential
mismatches in the seed region that might awaken the
miRNA:mRNA binding (Grimson et al 2007). These are
non-canonical sites that, although not very effective, help to
increase the stability of the miRNA:mRNA complex and reinforce
the repression.

The annotation of human miRNAs

miRBase (Kozomara et al 2019) is the database of reference for
annotated miRNAs. In this repository, the constantly increasing
number of annotations already collect the miRNA repertories of 271
organisms, with a total of 38,589 miRNA hairpin entries in its last
release (v.22.1). The main source of sequence data used to annotate
miRNAs is author submission which, with the development of
high-throughput sequencing, has increased in number and depth,
permitting the annotation of miRNAs at low expression levels.
Since 2010 the database has been collecting datasets from deep
sequencing projects, which increased the miRNA profiling and the
identification of de bona fide annotations with the application of
quality criteria, like the presence of reads in both arms of the
hairpin. However, the curation of the database implies large
amounts of effort and time, and it is difficult to assess the accuracy
of some of the annotations. In the last releases, miRBase has
incorporated the annotation of “high confidence” miRNAs, which
increased the accuracy of an important fraction of the database. In
the case of human miRNAs, in its last release miRBase accounts for
1917 hairpin precursors, from which only 17 were categorized as
“low confidence”.
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miRNAs are organised in families according to the similarity of
their seed sequences, which is directly correlated with their
targeting preferences. The members of the same family normally
originated from duplication events, therefore these families are
evolutionary and functionally related, since they are involved in
similar biological processes (Wang et al 2016). However, not all the
members of a miRNA family originated from a single ancestral
sequence, since different miRNAs might present identical seed
regions product of convergent evolutionary processes. On the other
hand, commonly originated miRNAs might be placed in different
families when they present nucleotide differences among their seed
regions which, therefore, generates a change in their targeting
preferences.

Sometimes miRNAs might appear in tandem when their origin is
from local duplication. These consecutive miRNAs are transcribed
as polycistrons in the same pri-miRNA, which are further
processed. These agglomerations of evolutionary related miRNAs
are known as miRNA clusters and they are specifically considered
in evolutionary and functional studies. In the human genome,
different studies have identified numerous miRNA clusters
according to different criteria (Guo et al 2014, Wang et al 2016).
They are normally associated with related biological processes and
are involved in specific pathological traits in human populations. In
the human chromosome there are three main clustering hotspots that
reunite more than 30% of all the cluster members. Chromosomes 14
and 19 present the largest clusters of the human genome with more
than 40 members each, while the chromosome X holds smaller
clusters but more widespread in location.
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Figure 23. (A) Structural features and processing sites of a typical miRNA
hairpin. (B) Biogenesis and function of a typical miRNA. (C) Target recognition
and pairing propagation during the mRNA silencing process (D) Complementary
binding of the seed region with the different versions of the canonical target sites
in the mRNA 3’UTR. (Bartel DP 2018).
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miRNA targeting

miRNAs reach a tremendous targeting breadth in the human
genome. 3’UTR regions harbour an average of 400 conserved target
sites per miRNA family, and each miRNA might present more than
one target site in the same 3’UTR. It has been identified conserved
target sites in 3’UTR regions of more than 60% of human genes,
which together with the non-conserved target sites and their
non-canonical binding regions, like the 5’UTR and the CDS of the
mRNA, makes that virtually all the human transcriptome is under
the regulatory influence of miRNAs  (Bartel DP 2018).

The widespread presence of conserved target sites in the human
transcriptome makes it rather difficult to study the potential
spectrum of target genes that might present a single miRNA. The
experimental validation of miRNA targets is a very limited way to
decipher the regulatory scope of a miRNA due to its high economic
cost and relative slow determination. The alternative to the
experimental validation is the computational prediction of miRNA
target sites in mRNA sequences. During the last years a wide
variety of prediction softwares (Riffo-Campos et al 2016) have been
developed to cover the necessity to analyse the potential target
genes of miRNAs and determine the biological pathways they
might be involved. The first approach that these methods apply to
search for target genes is the identification of canonical sites of 7-8
nucleotides in the 3’UTR of mRNA that are complementary to the
seed of a certain miRNA family. This is a basic nucleotide pattern
search that reveals effective sites that a miRNA might use to
generate a significant repression. However, this basic search also
displays sites that are not effective and are reported as false
positives. Therefore, other sequence properties must be taken into
account to improve the accuracy of these predictions, like sequence
conservation. The conservation of both the seed region and the
target site makes it more likely that the complementary binding
takes place in the cellular context and produces an effective
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repression. However, even imposing this evolutionary constraint
criteria, each miRNA family might still hold thousands of target
sites probably populated by false positives. Other methods rely on
the spatial restrictions in the formation of the miRNA:mRNA
complex. For example, the PITA software (Kertesz et al 2007),
instead of relying on the sequence conservation of the target site, it
takes advantage of the role of the mRNA secondary structure and
the analysis of the energetic cost that permits the formation of the
miRNA:mRNA duplex. Therefore, the algorithm differentiates
those targets that thermodynamically favour the miRNA binding to
the target site and also takes into consideration those non-conserved
sites that might be involved in lineage-specific regulatory programs.
More sophisticated strategies are applied by programs like
TargetScanHuman (TSH) (Agarwal et al 2015). In its last release
(v7.2), TSH applied a total of 14 target and miRNA-specific
features to build a quantitative model of targeting efficacy. On the
miRNA side the model considers the different extended modes of
seed pairing that might participate in the site binding (Figure 23D),
taking into account the identity of the sites at positions 1 and 8.
Moreover, the target site abundance (TA) for a certain seed
sequence is determinant, since the lower is the number of TA the
less “diluted” is the repressive effect on the mRNA expression
levels. On the site side, the local AU content of the adjacent
regions, the presence of the 3’ supplementary pairing or the
predicted structural accessibility, among other features, might
increase the efficacy of the miRNA:mRNA binding. Broader
context features are also taken into account, like the 3’UTR length
or the presence of target sites in other parts of the open reading
frame.

The phylogenetic distribution of human miRNAs

The analysis of sequence homology across animal and plant
miRNAs led to the idea, time ago, that the miRNA system might
have evolved independently in the two kingdoms. This origin might
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be behind the differences in the processing and action between these
two groups of miRNAs. This lack of homology is also seen when
comparing other lineages, suggesting that this class of functional
elements might have present convergent pathways during their
evolutionary history. Several reports have estimated that the miRNA
system has independently evolved at least nine times. However,
other studies provide an alternative explanation to this lack of deep
conservation, which is the high rate of turnover of plant miRNAs.
The birth and death rates of these miRNAs are so high that they do
not have the chance to be found in other lineages. In any case, the
common or independent origin of animal and plant miRNAs is still
under debate. Although remarkable differences are found at
homology, structural and mechanistic level in the miRNA system,
scattered examples of relative similarities between these two
kingdoms provide reasons to reinforce the study of miRNAs in
more species and fully understand their origin (Moran et al 2017).

As previously noted, miRNAs have been present as a regulatory
system since the early periods of the metazoan (animal) evolution.
The number of orthologs harboured in the genomes of
representative lineages revealed a very low rate of miRNA
secondary loss (Figure 24A). This is reflected in a continuous
increase and significant bursts of newly emerged miRNAs at the
base of bilaterians and vertebrate groups (Berezikov et al 2011). In
vertebrates, the increase is more pronounced, with specific
expansions in the mammalian lineage that are reflected in the
current repertoire of human miRNAs. According to Iwama et al
2014, the human miRNA repertoire described in miRBase (release
18, November 2012) is the result of particular gene expansions that
took place in localized episodes of their evolutionary history. The
authors describe the presence of two peaks of accelerated miRNA
rate origination that gave rise to more than 80% of this repertoire
during mammalian evolution. These expansions are localized at the
beginning of the placental mammals lineage, with the origination of
~28% of human miRNA genes, and mainly in the primate lineage,
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with the emergence of more than fifty percent of the repertoire.
Moreover, they report that 28% of these miRNAs are specific to the
hominoid lineage, suggesting that the increment of miRNAs might
be significantly linked to the evolutionary trajectory of humans
(Figure 24B).

Figure 24. (A) Phylogenetic distribution of the number of miRNA genes showing
different losses and expansions (Berezikov et al. 2011). (B) Two accelerated
peaks of new miRNA expansions in the placental and primate lineages (Iwama et
al. 2014).

The emergence of new miRNAs in the human genome

Multiple genomic sources of new miRNAs have been described in
the human genome and other species (Berezikov et al. 2011).
Annotation efforts relying on next generation sequencing
technologies have been applied in the discovery of new miRNA
sequences. Until now, hundreds of thousands of miRNA
hairpin-like sequences have been identified in the human genome,
however the confident annotation and evidence of the existence of
actual functional genes is reduced to a very small fraction. The
emergence of new miRNAs appears to be more likely than the
origination of new protein-coding genes. The fact that a large
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proportion of the human genome is transcribed, this is the pervasive
transcription (Jacquier A 2009), leads to the hypothetical existence
of multiple miRNA loci that are not conserved and might present a
functional role in human regulatory programs.

The emergence of new miRNAs might be just due to the existence
of a transcriptional locus whose RNA product is able to be folded
into a hairpin-like structure. The processing and function of a
miRNA is intimately associated with its secondary structure,
therefore all RNA sequences potentially of being recognized by the
miRNA processing machinery are susceptible to be finally
integrated as a functional miRNA in the regulatory networks. In this
sense, it is not surprising that the genome might be populated by
non-conserved transitional forms of hairpin-like sequences that are
either purged or gradually shaped by evolution until they become
structures recognisable by the Microprocessor machinery.
Microprocessor is the main point that restrains the processing of
hairpin-like sequences, however the downstream steps in this
pathway (Dicer processing, RISC loading) also constrains the
selection of the correct sequence to be ultimately processed as a
functional mature miRNA.

The main source of newly emerged miRNAs are gene duplication
events. In the human genome multiple cases of highly homologous
miRNA sequences are found to be evolutionarily related and
forming miRNA clusters, however duplicated sequences can also be
found in remote locations of the genome, like in different
chromosomes. As previously mentioned in this introduction, these
miRNA clusters are the result of an accumulation of locally
duplicated miRNAs that are found to be functionally related due to
their seed identity and targeting preferences. However, these
paralogous sequences are also susceptible to undergo processes of
neofunctionalization, when a duplicated sequence acquires novel
functions product of the emergence of mutations in their sequence,
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or subfunctionalization, when the duplicated sequence presents
different aspects of the ancestral function (Figure 25).

Other sources of new miRNA sequences are those pre-existing
transcriptional units that provide the raw material for the formation
of these hairpin structures (Figure 25). In the human genome,
around sixty percent of miRNAs are found within intronic regions,
where the presence of the mRNA promoter unit allows the
transcription of the miRNA itself. However, there are also a
remarkable amount of intronic miRNAs that present their own
promoter and their transcription is independent of the host gene. In
this sense, it is worth noting the different evolutionary properties of
the miRNAs whose transcription is ligated to their host genes. For
example, in França et al 2016 the authors describe the effect of host
gene ages on the expression patterns of intragenic miRNAs and
their evolutionary fate in the long term. In summary, miRNAs
hosted by old genes tend to present a broader expression breadth
than intergenic miRNAs. This would present evolutionary
advantages for young intragenic miRNAs, which would reach a
higher number of tissues, being in this way more efficiently selected
to be purged or incorporated in regulatory networks.
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Figure 25. Schematic representation of the different genomic sources of new
miRNAs (Berezikov et al 2011).

Genomic regions like those harbouring other RNA genes (e.g.
snoRNAs, lncRNAs) and transposable elements (TEs) are also
susceptible to be the source of new miRNAs. In the last case, TEs
are considered a source of genomic innovation due to their ability to
replicate and jump to other parts of the genome, carrying functional
regions, like regulatory elements, that could potentially be
incorporated into regulatory networks. Different evolutionary
episodes of miRNA expansions have been coupled to the parallel
emergence of transposable elements (Figure 25). This is the case of
the miRNA expansion in the primate lineage. Normally, the criteria
of computational predictions uses conservation as a feature to
confidently annotate potential new miRNAs and also exclude highly
repetitive regions like TEs to reduce the number of false positives.
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Considering this, Piriyapongsa et al 2007 argued that numerous
cases of TE-derived miRNAs might have been missed and used
their own computational approach to report numerous cases of these
kinds of miRNAs in the human genome. Petri et al 2019 use an
experimental approach to identify miRNA-target interactions and
examine their involvement in the regulatory networks of the human
brain. They report that many of these miRNAs are derived from L2
transposable elements and present complementary sequences, also
derived from this family of TEs, in the 3’UTR regions of many
protein coding genes. Several studies have reported evidence on the
role of the primate-specific Alu repeats in the origin of new
miRNAs and their target sites. For example, in Spengler et al 2014
the authors provide evidence of conserved and functional target
sites in Alu sequences located in mRNA 3’UTR regions that are
highly susceptible to be recognised by some human miRNAs. Also,
in Gu et al 2009 they identified several cases of miRNAs whose
transcription is regulated by the presence of Alu repeats. Although a
lot of experimental efforts must be applied to confidently annotate
human miRNAs, it is clear the relationship between repetitive
elements and the function of miRNAs in regulatory networks.

As previously noted, a large part of the mammalian genomes is
transcribed (pervasive transcription), and therefore any
transcriptional unit might be a potential source of de novo
emergence of novel miRNAs from unstructured transcripts. Under
these assumptions, it is clear that some of these newly emerged
hairpin-like structures can generate distorsions in regulatory
networks that might derive to deleterious effects. Chen and
Rajewsky 2007 describe a model of transcriptional control on those
newly emerged miRNAs and how they can evolve in this context.
This model postulates that young lineage-specific miRNAs are
expected to be expressed at low levels in a low number of tissues in
order to reduce the chances of accidental targeting with abnormal
effects. With time, deleterious interactions are eliminated and
positively selected miRNAs are incorporated in networks of higher
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order, incrementing their expression and acquiring a broader range
of targets in a larger number of tissues.

The effect of genetic variation in human miRNAs

In the second half of the 2000’s the first studies on genetic variation
in human miRNAs revealed an overall signature of conservation in
this class of genes and the potential consequences of naturally
occurring variants in their hairpin sequence (Iwai and Naraba 2005).
In Saunders et al 2007 the authors describe the occurrence of
sixty-five common variants in 49 precursor miRNAs. They
compared the hairpin-like sequence variation with their flanking
neutral regions and found a significant decrease of the SNP density
in the precursor sequence. They also found the seed as the region
with the lowest SNP density, indicating a strong evolutionary
constraint in this part of the miRNA (Figure 26A-C). Along with
previous studies (Chen and Rajewsky 2006) they also show how
miRNA target sites present a dearth of genetic variants in
comparison with adjacent non-targeted regions. This was presented
as an indication of the evolutionary constraints and, therefore, the
functional role of not only the seed, but also their complementary
sites at the 3’UTR regions of target genes. The functional
consequences of these variants were hypothesized along with these
discoveries. Georges et al 2007 exposed different arguments on the
effect of the inherited variation affecting the different levels of the
miRNA system. The presence of variants either in the seed region
and the target site of the miRNA might alter the miRNA:mRNA
interaction, originating changes in the targeting profiles and,
therefore, expression variation of their targets. Also, genetic
variants affecting the hairpin sequence might alter the processing of
the pri-miRNA or pre-miRNA, generating changes in their
expression profiles. Similar effects are expected when variants
occur in the coding sequence of the processing and silencing protein
machinery of the miRNA system.
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It was clear since the beginning of these studies that genetic
variation affecting the different dimensions of the miRNA system
would be a massive source of phenotypic variation and diseases not
only in humans, but also in other species (Georges et al 2006). In
addition, the analysis of the effect of genetic variation was
accompanied by analysis of these variants in terms of adaptive
selection. The alteration of the miRNA:mRNA interaction at any
level might generate regulatory disorders but also changes that
might be adaptive under certain conditions. In Saunders et al 2007
they already provide suggestive evidence of two miRNA-related
SNPs that might undergo processes of recent positive selection by
reporting long unbroken haplotypes in their loci. In Quach et al
2009 the authors provide supportive evidence of miRNAs subjected
to natural selection forces. They reinforce the idea of miRNA
hairpins as highly conserved sequences in the human genome and
how their structural modules present different levels of evolutionary
constraints that point to the functional relevance of these specific
regions (Figure 26D,E). They also make use of different
sequence-based neutrality tests to evaluate the participation of
human miRNAs in processes of positive selection. Among the 47
potential candidates that deviate from neutrality expectations, they
report several cases of miRNAs that present negative values of
Tajima’s D, indicative of an excess of rare alleles, and an
enrichment of high frequency derived variants captured by the Fay
and Wu’s H test (Figure 26F). These evidence indicate that these
candidates might undergo processes of positive selection, however
they note that these patterns might be also affected by demographic
events.

57



Figure 26. Genetic variation signatures in miRNA hairpins, functional regions
and target sites. (A) SNP density (SNPs/kb) in the precursor miRNA sequence
and flanking regions. (B) Schematic representation of a miRNA hairpin. (C) SNP
density (SNPs/kb) in the miRNA target sites and flanking regions (Saunders et al.
2007). (D) Overall signature of sequence conservation of miRNA hairpins. (E)
Levels of nucleotide diversity in the different miRNA regions. (F) Neutrality tests
(Tajima’s D and Fu & Li’s F) calculated in human miRNAs (Quach et al. 2009).

In the following years the study of genetic variation in different
human populations led to the description of multiple miRNA
candidates behind population-specific phenotypes associated with
miRNA-harbouring variants. These population disparities might be
the result of demographic events, but also of processes of adaptive
evolution. Some studies evaluate population differentiated miRNA
candidates that are behind prevalence in diseases like cancer, one of
the most common disorders associated with miRNAs. In
Rawlings-Goss et al 2014 the authors report some cases of miRNAs
with high population differentiation values (FST) that present
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different cancer susceptibilities. For example, they show that the
T-allele of rs12355840 (hsa-mir-202) is associated with an increase
of the miRNA expression and suggested to be protective against
breast cancer mortality. They found that this SNP is highly
differentiated between African and non-African populations, having
the individuals of African ancestry a lower T-allele frequency
compared to Asians and Europeans. This lower frequency is
associated with a lower miRNA expression and a weaker repression
of cancer-related genes, which increases the progression of breast
and ovarian cancers in African women (Figure 27). In another work,
Torruella-Loran et al 2016 found that, despite the low SNP density
within the mature and seed regions of human miRNAs, the high
degree of differentiation among populations in the seed indicates
processes of local adaptation that might create differences in their
targeting profiles. In particular, they describe population-specific
functional differences between three common miRNA SNPs
associated with cancer (hsa-miR-146a-3p, hsa-miR-196a-2,
hsa-miR-499). The presence of SNPs in the mature sequences of
these miRNAs affect the regulation of their target genes in a
dosage- and allele-dependent manner, which is suggested to result
in genetic susceptibilities to different cancers.

Figure 27. Population differentiation analysis of human miRNAs. (A) Pairwise
Fst calculations of human miRNAs between African and non-African
populations. Potential candidates under positive selection outstand as genomic
outliers. (B) Differences in frequency of the T allele of a highly differentiated
miRNA (miR-202) across populations (Rawlings-Goss et al 2014).

Together with the analysis of miRNA candidates, other authors have
put a focus on the potential adaptive processes of their target sites.
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For example, in Li et al 2012 the authors describe the differential
regulation of TYRP1, involved in skin pigmentation, driven by
miR-155 in human populations. In this analysis, they
experimentally validated the action of the target site SNPs rs683
and rs910 in mediating the TYRP1 preferential regulation in African
and Asian populations (YRI, CHB and JPT), which hold an almost
fixed derived allele, in contrast with European populations, where it
is segregated only at ~30%. Positive selection signatures at the
TYRP1 target sites of Africans and Asians support the idea that
adaptive selection processes mediate a stronger repression of
TYRP1 (Figure 28). In another work, Pandey et al 2016 report cases
of miRNAs that perform an Alu-mediated regulation of genes
involved in stress response. These genes present Alu repeats that
operate as target sites and hold signatures of positive selection in
specific human populations. The authors conclude that Alu repeats
might confer additional mechanisms of transcriptional modulation
that increase the regulatory plasticity of miRNA networks to be
adaptive under environmental changes.

Figure 28. Example of the effect of SNPs in the complementary binding between
miRNAs (e. miR-155) and the target mRNA. (A) Predicted target sites mediated
by the presence of the SNPs rs683 and rs910, which present different allele
frequencies among Africans (YRI) and Europeans (CEU). (B) Comparison
between the miR-155-mediated suppression of the ancestral (blue), derived (red)
and deleted variants of the target gene. The presence of population-specific
variants generates a differential gene suppression (Li et al. 2012).
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Objectives

The main objective of this thesis is the analysis and interpretation of
signatures of genetic variation driven by processes of positive
selection in different human populations. To study these selective
forces we have focused on protein-coding genes, regulatory RNA
sequences (miRNAs) and regulatory elements. In addition, we have
studied the role of human enhancers in tissue-specific regulatory
programs and how their genomic location is determinant in the
regulation of genes involved in tissue-specific functions.

1. In our first work, we aimed to analyse in depth the potential
signatures of positive selection of the human X chromosome in
populations from the three main geographical groups:
Sub-Saharan Africa, Europe and Asia. In this analysis we
accounted for the special inheritance properties of the X
chromosome and focused on selection signatures of genic and
non-genic regions, hypothesizing the role of regulatory elements
in selection processes.

2. In our second work, we studied the activation and targeting
patterns of enhancer-like signatures (ELSs) from the ENCODE
database in different human tissues. Our main goal was to
understand the role of the genomic location of these ELSs in the
differential regulation of tissue-specific and housekeeping genes
and how these patterns change throughout development.

3. The last work presented here is focused on the analysis of
signatures of genetic variation in the human miRNA repertoire.
The main objective of this analysis was to understand the
contribution of highly variable miRNAs in positive selection
processes and their relationship with human diseases.

63



64



III. RESULTS

65



66



Chromosome X-wide analysis of positive
selection in human populations: from common

and private signals to selection impact on
inactivated genes and enhancers-like signatures

Pablo Villegas-Mirón, Sandra Acosta, Jessica Nye, Jaume Bertranpetit and Hafid
Laayouni

Submitted for publication

Preprint citation reference:

Villegas-Mirón P, Acosta S, Nye J, Bertranpetit J, Laayouni H.
2021. Chromosome X-wide analysis of positive selection in human
populations: from common and private signals to selection impact
on inactivated genes and enhancers-like signatures. bioRxiv doi:
BIORXIV/2021/445399

67



68



Chromosome X-wide analysis of positive
selection in human populations: from common
and private signals to selection impact on
inactivated genes and enhancers-like signatures

Pablo Villegas-Mirón1, Sandra Acosta3, Jessica Nye1, Jaume Bertranpetit1 and
Hafid Laayouni1, 2*

1Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra,
Barcelona, Catalonia, Spain.
2Bioinformatics Studies, ESCI-UPF, Pg. Pujades 1, 08003 Barcelona, Spain.
3Dpt. Pathology and Experimental Therapeutics, Medical School, University of
Barcelona, Feixa Llarga, 08907, L’Hospitalet de Llobregat, Barcelona, Spain

* Correspondence: Hafid Laayouni (hafid.laayouni@upf.edu)

Keywords: Homo sapiens; hard and soft sweeps; neural development;
reproduction; enhancers; escape genes.

69

mailto:hafid.laayouni@upf.edu


70



Abstract

The ability of detecting adaptive (positive) selection in the genome
has opened the possibility of understanding the genetic bases of
population-specific adaptations genome-wide. Here we present the
analysis of recent selective sweeps specifically in the X
chromosome in different human populations from the third phase of
the 1000 Genomes Project using three different haplotype-based
statistics. We describe numerous instances of genes under recent
positive selection that fit the regimes of hard and soft sweeps,
showing a higher amount of detectable sweeps in sub-Saharan
Africans than in non-Africans (Europe and East Asia). A global
enrichment is seen in neural-related processes while numerous
genes related to fertility appear among the top candidates, reflecting
the importance of reproduction in human evolution. Commonalities
with previously reported genes under positive selection are found,
while particularly strong new signals are reported in specific
populations or shared across different continental groups. We report
an enrichment of signals in genes that escape X chromosome
inactivation, which may contribute to the differentiation between
sexes. We also provide evidence of a widespread presence of
soft-sweep-like signatures across the chromosome and a global
enrichment of highly scoring regions that overlap potential
regulatory elements. Among these, enhancers-like signatures seem
to present putative signals of positive selection that might be in
concordance with selection in their target genes. Also, particularly
strong signals appear in regulatory regions that show differential
activities, which might point to population-specific regulatory
adaptations.
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INTRODUCTION

The evolution of Homo sapiens has been strongly shaped by
positive selection in the last 100,000 years, by adaptations to
specific environments, diets, and cognitive challenges that modern
human populations encountered as they expanded across the globe.
Surviving such challenges has left remarkable footprints of
selection in the human genome, like in the lactase (LCT) locus in
European populations (Bersaglieri et al., 2004; Wang et al., 2020),
genes involved in skin pigmentation like MC1R (John et al., 2003)
or genes implicated in resistance to severe malaria infection like
CD40L and G6PD (Sabeti et al., 2002). Studying the evolutionary
processes that resulted from these adaptations can uncover which
path our ancestors travelled along to give rise to extant adaptations
of present human populations.

The development of new methods to study recent selection in
natural populations (Fan et al., 2016; Field et al., 2016; Pavlidis et
al., 2017) has settled genomic selection scans as one of the main
approaches to study the genetic origin behind such adaptations
(Mathieson et al., 2015; Casillas et al., 2018; Lopez et al., 2019;
Walsh et al., 2020). However, most of these scans have focused on
coding regions as the main target of selection and have attached
greater importance to the study of processes driven by de novo
mutations, that leave strong and more evident selection signatures
(classical hard sweeps). Although gene regulation is considered to
be the primary driver of phenotypic changes in the evolution of
Homo sapiens (King and Wilson, 1975), these strategies might have
overlooked standing variation in regulatory regions as the main
targets of rapid adaptations, which seem to be more likely selection
targets and are marked by more subtle signatures, like soft sweeps
(Fu and Akey, 2013; Scheinfeldt and Tishkoff, 2013; Messer and
Petrov, 2013).
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Selection on standing variation seems to be a more common mode
of selection and soft sweeps a more widespread signature in human
genomes (Hernandez et al., 2011; Schrider and Kern, 2017).
Multiple modes of selection can originate a soft sweep signature: on
standing variation, de novo mutation on multiple haplotypes and
recurrent origination of adaptive alleles (Schrider et al., 2015;
Hermisson and Pennings, 2017). However, sometimes patterns of
variation might exhibit different degrees of “softness” and, together
with confounding factors like demography or recombination,
display sweep-like signatures where the picture is not clear enough
so as to define a region under a specific selection regime (Messer
and Petrov, 2013). Therefore, sometimes it is difficult to
differentiate signatures due to hard or soft sweeps, and often linked
regions under selection may present properties of both types of
signals (Schrider et al., 2015).

The X chromosome, although it's been studied in terms of recent
positive selection in human populations (Casto et al., 2010;
Veeramah et al., 2014; Johnson and Voight, 2018), remains to be
addressed more completely, including selection on regulatory
regions and a focused analysis of signatures of selection on standing
variation. The X and Y chromosomes have different inheritance
models than the autosomes as well as different effective population
sizes, making the outcome of selection pressures inconsistent to the
rest of the genome. In order to study the X chromosome, these
different properties have to be taken into account and, to analyse the
selection events that took place, chromosome-specific demographic
models and region-specific recombination maps must be
incorporated to approximate a more realistic scenario.

The unique properties of the X chromosome, as compared with
autosomes, have been extensively studied (Vicoso and
Charlesworth, 2006; Mank et al., 2016; Meisel and Connallon,
2013). Dosage compensation of the X chromosome, the process that
allows XY males and XX females to cope with different gene copy
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numbers on the X, might lead to sex-specific patterns of selection.
This process involves the random transcriptional silencing of one of
the X chromosomes in females. However, this inactivation is not
complete for all the genes. Evidence suggests that around 23% of
the X-linked genes “escape” inactivation and express both
chromosomal copies (Balaton et al., 2015; Tukiainen et al., 2017),
leading to a sex-biased expression of these genes, which might be
responsible for dimorphic traits, and potentially, adaptations
associated with phenotypic diversity. Despite the few studies of
selection on these genes, some evidence indicates that these regions
have been under purifying selection (Park et al., 2010). Thus, it is of
interest to see whether positive selection has operated in these
regions and the relative importance that inactivation may have on
the process of natural selection.

The faster-X hypothesis (Meisel and Connallon, 2013) postulates
that selection occurs faster in genes on the X than in autosomes due
to the hemizygosity of males, this is supported by recent evidence
that found increased selection levels in the sexual chromosome
(Veeramah et al., 2014). Moreover, different effects of mutations in
males versus females have been well-established (Vicoso and
Charlesworth, 2006). The difference in the replication rate between
female and male germ lines favours this hypothesis. The higher
probability of suffering consequences due to deleterious and
adaptive mutations most likely has led to a different selection
process. Altogether, these factors may lead to specific patterns
which reflect the sex-biased evolution in humans.

In this study, we conduct a selection scan on the X chromosome of
15 human populations from three different continental groups
(Sub-Saharan Africa, Europe and Asia). We sought to identify
signatures of recent positive selection by considering hard and soft
sweeps. potentially affecting both coding and non-coding regions.
With this we aim to disentangle how positive selection has shaped
the diversity patterns in the X chromosome across the globe.
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MATERIALS AND METHODS

Genetic Data

Phased VCF files from the third phase of the 1000 Genomes Project
were downloaded from the project database (Auton et al., 2015).
These data are whole-genome (mean depth of 7.4X) and targeted
exome sequences (mean depth of 65.7X) with a total of 2,504
individuals across 26 different populations, covering three
continental groups. Due to the methodological complexity, only the
non-admixed populations of each geographical group were
analysed. In Africa: Esan (Nigeria, ESN), Gambian (Wester
Divisions in the Gambia, GWD), Luhya (Webuye, Kenya, LWK),
Mende (Sierra Leone, MSL), Yoruba (Ibadan, Nigeria, YRI);
Europe: Utah residents with northern and western European
ancestry (CEU), Finnish (Finland, FIN), British (England and
Scotland, GBR), Iberians (Spain, IBS), Toscani (Italy, TSI); and
Asia: Chinese Dai, (Xishuangbanna, China, CDX), Han Chinese
(Beijing, China, CHB), Southern Han Chinese (China, CHS),
Japanese (Tokyo, Japan, JPT), Kinh (Ho Chi Minh City, Vietnam,
KHV). We applied filters to remove duplicated variants found in the
X chromosome. These errors were reported to the 1000 Genomes
Project (www.1000genomes.org).

The X chromosome consists of both pseudoautosomal regions
(PAR) and non-pseudoautosomal regions (nPAR). Since the PAR
behaves differently and does not follow the same inheritance rules
than the rest of the X chromosome, we removed these regions
keeping only bi-allelic variants within the position range of the
nPAR region (~2.7-155.0 Mb) (Flaquer et al., 2008).

We reformatted the VCF file so that the ancestral allele was the
reference and the derived allele was the alternative. The human
ancestral alleles determined by their state in chimpanzee were
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downloaded from the 1000 Genomes Project mapped to human
reference GRCh37. We removed any SNP whose ancestral status
was unknown, resulting in a total of 2.852.479 SNPs from 1511
individuals (504 Africans, 503 Europeans, and 504 Asians).

We downloaded a population-combined genetic map of the nPAR
region (http://mathgen.stats.ox.ac.uk). This map was based on the
first phase of The 1000 Genomes Project (GRCh37). In order to use
the map for phase three data, we performed a linear interpolation of
the missing values using the command approx from the statistical
programming language R (R Core Team, 2020).

Neutral simulations

We used the msms software (Ewing and Hermisson, 2010) to
simulate neutral scenarios. For the X chromosome we implemented
a three-population demographic neutral model adapted from Henn
et al. (2015) for the continental populations Africa (AFR), Europe
(EUR), and Asia (ASI) with a mutation rate of 1.25x10⁻⁸ mutations
per base per generation (Henn et al., 2015), a generation time of 30
years, a recombination rate of 1.3x10-8 per nucleotide, and a
Watterson estimator θ (4Neμ) of 328.79. We chose a
three-population model due to the high similarity within continents,
with a mean sample size of AFR: 152, EUR: 153, and ASI: 149.
Since the effective population size of the X is ¾ the size of the
autosomes, we accounted for this by modifying the population
sizes, resulting in Ne for AFR: 23220, EUR: 2479, and ASI: 907.
We simulated multiple regions of 600 kb in order to reproduce the
total length of the X chromosome, by using the following
parameters:

msms -N 10538.25 -ms 454 254 -t 316.1475 -r 328.7934 600000
-I 3 152 153 149 0 -n 1 2.204 -n 2 3.2542 -n 3 7.4055 -g 2
56.61 -g 3 96 -ma x 0.3542 0.1462 0.3542 x 1.3562 0.1462
1.3562 x -ej 0.0464 3 2 -en 0.0464 2 0.2939 -em 0.0464 1 2
4.9314 -em 0.0464 2 1 4.9314 -ej 0.14022 2 1 -en 0.364 1 1
-oTPi 30000 25000 -tt -oAFS
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In order to contrast the results obtained for the X chromosome, we
analysed the complete set of autosomes in the human genome. The
same procedure to detect positive selection as for the X was
followed. To do so we performed the appropriate autosomal neutral
simulations and used the percentile 99th as extreme distribution
cut-off to compare the regions under positive selection. Also, the
Refseq gene annotation from the UCSC database table browser
(Karolchik et al., 2004) (downloaded June 2020) was considered.

Scan for signals of selection

Advances in the statistics used to detect selective sweeps allow for
the analysis of linkage disequilibrium decay (Pybus et al., 2015,
Biswas and Akey, 2006; Vallender, 2004; Sabeti et al., 2006; Garud
et al., 2015). These methods rely on detecting decreased variation
surrounded by a region with high linkage disequilibrium (LD). The
LD increases and the variation decreases as the frequency of the
selected allele rises in the population. Once the selected allele is
fixed, selection will relax, allowing for variation to recover through
new mutations and recombination. The extended haplotype
homozygosity (EHH) computes the probability that, at a given
distance from a core region, two randomly chosen chromosomes
carry homozygous SNPs for the entire interval. In this analysis we
made use of three different haplotype-based statistics that rely on
the EHH computation at a tested SNP, taking into account the
ancestral and derived allele state.

The integrated haplotype score (iHS) is the integral (Voight et al.,
2006) of EHH and is designed to detect incomplete hard sweeps.
These are signatures of recent, ongoing selection that are
characterized for presenting long blocks of homozygosity found in
haplotypes with a high frequency of derived alleles. We have used
two methods to detect signatures that resemble soft sweeps. The
integrated haplotype homozygosity pooled (iHH12) (Torres et al.,
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2018) is an adaptation of the H12 statistic by Pickrell et al. (2018)
and is able to detect signatures of both hard and soft sweeps, and the
number of segregating sites by length (nSL) (Ferrer-Admetlla et al.,
2014), a modification of iHS with a higher robustness to
recombination rate variation and with an increased power to detect
soft sweeps. These are the footprints left by selection processes that
target variants at intermediate frequencies. On the contrary to the
hard sweeps, that involve the fixation of a single de novo mutation
due to a specific environmental change, soft sweeps might be
generated by the selection of an allele that was drifting neutrally at
the moment of the change. Also, these footprints might appear when
different alleles are selected simultaneously at the same locus.
Therefore, the footprints left by this kind of process are not as
evident as the signatures left by the hard sweeps, since the diversity
reduction left by the sweep is lower. These tests for recent positive
selection are standardized (mean 0, variance 1) by the distribution
of observed scores over a range of SNPs with similar derived allele
frequencies. Here, we use the three tests, iHS, nSL and iHH12, to
detect selective sweeps in the X chromosome.

The candidate signals for selection may point to putative targets of
recent selection which are of particular interest in the study of
human evolution and may help to understand complex phenotypes
of medical relevance. The calculations of iHS, nSL and iHH12 were
computed with the software selscan (Szpiech and Hernandez,
2014), an application that implements different haplotype-based
statistics in a multithreaded framework. We allow for a maximum
gap of 20kb and keep only SNPs with a minor allele frequency
(MAF) higher than 5%. These parameters reduce the number of
false positives due to the presence of gaps in the data, however
special care must be taken when interpreting these results since
false positive rate could increase with other confounding factors.
The same procedure was applied on the simulated data in order to
compare the empirical distributions with a neutral score
background. The standardization was performed by the norm
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function within the selscan package for each population and test
separately. The calculations of the Tajima’s D scores in Figure 2
were performed by using the software package VCFtools (0.1.14)
with a non-overlapping 10kb sized window-based approach
(Danecek et al., 2011).

The program selscan considers ancestral and derived alleles
separately. iHS and nSL report positive values when the derived
allele is selected while negative values indicate the ancestral allele
is favoured (Szpiech and Hernandez, 2014). iHH12 makes no
distinction between the two allele states. Since a sweep may also be
produced by the hitchhiking of ancestral alleles with the selected
variant, absolute values were considered. The per-SNP scores were
summarized by using a position-based sliding window approach of
size 20kb with a 20% overlap (4kb). Windows with 20 SNPs or
fewer were removed. The mean scores were calculated in each test
in order to interpret the presence or absence of a selective sweep. To
search for candidate windows under positive selection, we
compared the distributions of the summary observed values to the
simulations and considered 99th and 99.9th percentiles in the
simulated distribution as critical values to have evidence against
neutrality. Empirical summary values over these thresholds were
considered as putative signals of positive selection. No p-values
were associated with the significance of these windows.

The haplotype structure in regions under putative positive selection
was determined with the program fastPHASE (Scheet and Stephens,
2006). This software applies a Hidden Markov Model (HMM) on
haplotype data to obtain the frequencies of a certain SNP to be in a
haplotype cluster according to the similarity between them, such
that the region is divided into a mosaic of clusters per population
that reflects the patterns of haplotypic variation.

In order to assess commonalities and differences across populations,
we identified the regions under selection that are in the extreme tail

80



of more than one population. Since a region under positive selection
can be captured by more than one test depending on the variable
degree of “softness” in its locus, the shared sweeping regions were
constructed by using the candidate windows reported in the extreme
99th percentile across the three selection tests. Sweeping regions that
overlap across more than two populations of the same continental
group were considered shared in that group.

Gene Ontology

We downloaded the Refseq gene annotations from the UCSC
database table browser (Karolchik et al., 2004) in June 2020 to
annotate the X chromosome. This annotation describes all the
transcripts including 5' and 3' untranslated regions (UTR), coding,
and non-coding genes. We merged these annotations with our
empirical data using Bedtools intersect (Quinlan and Hall, 2010).
We intersected our candidate windows under selection with the
annotated genomic regions to obtain a list of genes under putative
positive selection. Finally, an Overrepresentation Enrichment
Analysis (OEA) was performed on the most extreme top 100 genes
for each population with the online tool WebGestalt GSAT (Gene
Set Analysis Toolkit). The multiple testing was adjusted using the
Benjamini-Hochberg correction, accepting ontology terms with a
global false discovery rate (FDR) ≤ 0.05 as significant.

In order to focus on putative regions with the highest selection
scores, we selected the top windows that fall into the 99.9th

percentile. The SNPs contained in these windows were annotated
using the ANNOVAR program (Wang et al., 2010), which aggregates
the UCSC annotations: GWAS Catalog, CADD scores, GERP++
scores, Conserved transcription factor binding sites (TFBS) in the
human/mouse/rat alignment, segmental duplications, and clusters of
TFBS based on ChIp-seq data. In order to identify the most
interesting SNPs inside each region, we considered SNPs with an
individual selection value within the 1% extreme tail of the
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distribution (|iHS| and |nSL| ~ 2.5 in all populations, and iHH12 ~
(Africa: 4.1, Europe: 3.8 and Asia: 3.6)) and a PHRED-scaled
CADD score ≥ 10, which represents the whole genome 1% most
deleterious SNPs according to Kircher et al. (2014). Also, as a way
to prioritize SNPs located in regulatory regions, we explored the
potential effects of SNPs from both 99th and 99.9th top windows
within functional regions by using RegulomeDB (Boyle et al.,
2012). This database uses ENCODE data sets to annotate variants
that are likely to belong to a functional region and thus suggest
possible hypotheses to the SNPs within the selection signal. This
database presents a classification scheme that scores the variants
according to the support they have of functional elements. The
functional categories decrease with the relevance of each variant. In
this line, the category 1 corresponds with those variants that present
an eQTL and support from other ENCODE data, while the category
6 only presents a hit in a single motif.

“Escape” genes selection analysis

The putative selection signals were used to explore potential
signatures of recent positive selection in genes with X chromosome
inactivation (XCI) status. Several studies have cataloged XCI gene
status in order to categorize genes that escape inactivation (Balaton
et al., 2015; Carrel and Willard, 2005; Cotton et al., 2013). For this
analysis, the inactivation status was considered using the catalog by
Tukiainen et al. (2017), which includes a consensus of XCI statuses
from previous studies (Carrel and Willard, 2005; Cotton et al.,
2013) and extends it by creating a landscape of human XCI across
different tissues (GTEx project, v6p release) and individuals. The
integrated statuses of these studies fall into three categories: escape
(if “escape” and “variable”), variable (if “escape” and “inactive”),
and inactive (if “variable” and “inactive”). Contingency tables were
constructed based on selection (Selected/Not selected) and XCI
(Escape/Inactive) statuses. The independence among these
categories was tested with Fisher's exact test method.
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Regulatory regions under positive selection

The HACER database (Wang et al., 2019) was used to annotate
intergenic windows in order to study potential signals of positive
selection in enhancer-like regions. HACER annotates a total of
1,676,284 active enhancers (whole genome) detected by different
methods (GRO-seq, PRO-seq and CAGE) in numerous cell lines
and supported by different databases (VISTA, ENCODE
Enhancer-like Regions, The Ensembl Regulatory Build and
chromatin state segmentation by ChromHMM) which, integrated
with variation data, provides a useful resource to hypothesise about
the origin of non-genic signals of natural selection. In order to
reduce the noise and provide a higher confidence to our intergenic
signals, we have used the enhancers that at least are supported by
the annotation of one database which, in the X chromosome, leave a
total of 23790 active enhancers. In HACER, a given region can be
annotated as an active enhancer in different cell lines, targeting the
same closest gene but presenting slightly different coordinates. In
order to deal with the different cell-type-specific annotations we
created a "consensus" dataset of enhancers by using genomic
windows. We collapsed the multiple cell-type annotations to unique
enhancer coordinates when there are different overlapping enhancer
regions, active in different cell lines, targeting the same gene and
overlapping continuous windows. In this way we ended up with a
final dataset of 1322 consensus enhancers that we used to annotate
our intergenic signals. When extracting the top hits under positive
selection (99.9th percentile) we only took into account those
enhancers that are supported by 3 or more databases in the HACER
annotation, in this way we only considered high confidence
enhancers that might present signals of positive selection.

Luciferase analysis
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Enhancer peaks from the top candidates were selected upon the
ENCODE signals. Ancestral (A) and derived (D) haplotypes were
amplified by PCR from male (KDM6A: NA07357 (A), NA12003
(D); SH2D1A: NA18501 (D)) and female (SH2D1A: NA18502 (A);
HUWE1: NA18502 (A), NA18861 (D)) individuals, after checking
for homozygosity, using the following primers and the KAPA
high-fidelity Taq polymerase:

KDM6A (F): 5’-CATCAGAGCTCCTCTAGGCATGGGAGGGAGT-3’
KDM6A (R): 5’-TCATCTCGAGCCAGTAAGAACCTACTAGGGATCA-3’
HUWE1 (F): 5’-CATCATCTCGAGGACCAGCCACTGGGTGTAGT-3’
HUWE1 (R): 5’-TCATAAGCTTTAGGGTCCATGGTCTTCTGG-3’
SH2D1A (F): 5’-CATCATCTCGAGACAAATGTTATTGATTCCCTC-3’
SH2D1A (R): 5’-TCATAAGCTTCGACCTAAAAGAGTATA-3’

Cloning into the PGL4.10 luciferase clone was performed by using
XhoI, HindIII or SacI restriction enzymes. Renilla vector was used
to normalize the values as a control of transfection. Transfection
into 293T cells was performed by using Lipofectamine 3000
(Thermo Fisher, L3000001), using 100 ng of luciferase and 1ng of
Renilla control vector and maintained for 48 hours in OptiMEM.
Cells were harvested and luciferase activity was measured using the
Dual-GLO kit (Promega, E2920). Luciferase/renilla ratio calculated
in 4 replicates and 2 independent experiments.

RESULTS

We inferred recent positive selection in human X chromosomes
using genomic data from 1,511 individuals of 15 populations. We
conducted selection scans by applying the haplotype-based statistics
iHS, iHH12 and nSL, which were designed to detect signatures of
hard and soft sweeps (see Methods for details) and can be used as
complementary selection tools. To assess whether a region has
evolved under recent positive selection we performed coalescent
simulations with msms (Ewing and Hermisson, 2010) to build the
expected distributions under neutrality, considering human
demography and the particular ascertainment bias of our data. We
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observed a good fit of our neutral model by comparing the observed
site frequency spectrum (SFS) of the fifteen populations with their
neutral simulations (Supplementary Figure 1). Small deviations in
singletons are observed in some populations, but with a tight fit of
alleles segregating at intermediate and high frequencies.

Regions under putative positive selection

The per-SNP metric scores might reflect the presence of particularly
homozygous regions, which could indicate the location of a
selective sweep in the genome. In order to detect these signatures,
the selection scores were averaged separately across sliding
overlapping windows (see Methods; Supplementary Figure 2),
which in most populations show distributions with a larger tail as
compared with the simulations (Supplementary Figure 2A). We
considered two cut-offs based on the simulated data (99th and 99.9th)
in order to extract the putatively selected windows in the empirical
distributions (Supplementary Table 1).

Putative selective sweeps in regions under positive selection might
present different degrees of “softness”. As noted by different
authors, hard and soft sweeps are sometimes difficult to differentiate
(Messer and Petrov, 2013; Schrider et al., 2015), and regions under
selection might be captured by methods designed to detect both
selection processes at the same time. In order to study the signature
similarity in the regions under selection, we assessed the degree of
overlap between the signals reported by the three metrics. Under the
99th percentile in the global population, the general trend shows that
iHH12 presents a similar proportion of commonly targeted regions
as with iHS and nSL (~60%), while iHS targets fewer common
regions as with nSL (~36%). This could be expected since iHH12
and nSL are sensitive to both hard and soft sweeps (Ferrer-Admetlla
et al., 2014; Torres et al., 2018), and iHS depends on recombination
rate, which might differentiate these signals from nSL signals.
However, the signal overlap proves that some regions might present
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mixed properties of hard and soft sweeps, which could be due to the
mode of selection, the degree of softness or a linked selection effect
(Schrider et al., 2015).

We observed a larger proportion of signals that fall outside the
simulated distribution in the African populations in the three
selection tests, in comparison with non-Africans. These results are
in line with previous reports which show that the number of
detectable selective sweeps by haplotype-based statistics is
correlated with the effective population size (Johnson and Voight,
2018; Voight et al., 2006) (Supplementary Table 1). When
comparing both hard and soft selection processes we observed that
soft-sweep-like signals reported by nSL and iHH12 are more
abundant and widespread along the X chromosome, as was
previously reported at genomic level (Messer and Petrov, 2013;
Schrider et al., 2017).

The analysis reveals that high statistical values are clustered in
specific spots of the X chromosome, indicating the presence of
putative selective sweeps in these regions (Figure 1) (Voight et al.,
2006). The distribution of signals of selective sweeps along the X
chromosome is more similar between non-African than with
African populations in both selection processes, indicating a
common clustering of extreme signals among the different
out-of-Africa populations. This was noted by Pickrell et al. (2009)
and might reflect the common origin of the out-of-Africa
populations and must have been acquired since leaving the African
continent.
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Figure 1. Manhattan plots of the X chromosome showing the distributions of the
three selection tests used in the analysis. Some examples of genes found under
selection in continental groups (99th; coloured circles) are shown in the ideogram.
Candidates found in previous studies are indicated with (1).

Comparison with autosomes

The unique inheritance rules of the X chromosome might generate
different selection patterns as compared with the rest of the genome.
In order to contrast the X chromosome signatures, we assessed
selection on the autosomes of three populations of reference
(Yoruba, YRI; Utah residents with northern and western European
ancestry, CEU; Han Chinese, CHB) and compared the score
distributions in the three haplotype-based statistics (iHS, nSL,
iHH12). We see similar patterns of selective sweeps across the
different populations as in the X: a higher number of outlier regions
fall into the extreme tails of the autosomes in Africans (YRI) than
Europeans (CEU) or Asians (CHB) (Supplementary Table 2). As
seen in the X, a higher number of windows under selection are
captured by the statistics nSL and iHH12 in comparison with iHS
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across the autosomes, probably due to the higher presence of
soft-sweep-like signatures across the genome. One large difference
that stands out, is that the X chromosome exhibits a consistent
increase in the nSL extreme tail score distributions in non-African
populations (Supplementary Figure 3). We evaluated the nSL scores
in the top distribution quartile and decile, and found significant
differences between the X chromosome and the pooled scores of
autosomes (CEU, Kruskal Wallis: 36.04, p = 1.93e-09; CHB,
Kruskal Wallis: 93.62, p = 3.81e-22). These higher selection values
might be a reflection of the effect due to the haploid state in males
and the smaller effective population size of the X (Veeramah et al.,
2014; Johnson and Voight, 2018). However, it is difficult to
associate these differences with a higher selection efficiency due to
the faster-X effect, since the top 1% shows inconsistent distributions
across the genome due to the presence of extreme outliers. This
result might indicate that the faster-X effect is not properly captured
with these selection statistics and other causes might be behind the
differences seen in the distribution extreme tails.

Gene ontology in the candidate regions

Generally, the closest gene to the estimated sweep is considered the
best candidate for the target of selection. Putative selected regions
were annotated as genic (protein-coding and non-protein coding;
Supplementary File 1) where at least 1 bp of the window overlaps
with Refseq gene coordinates. We do note that some caution is
required when interpreting these results, as the strongest and widest
signals are likely to span more than the target of selection.

To determine which processes are likely under selective forces, we
performed a functional enrichment analysis with Webgestalt (Liao et
al., 2019) on the top 100 putatively selected genes across all
populations for the two selection regimes. There is a ubiquitous
enrichment in neural-related terms in the three continental groups
(Supplementary Table 3). In the two selection processes we report
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numerous synaptic and dendrite-related terms (e. “postsynaptic
membrane” (GO:0045211), “dendrite” (GO:0030425)) with genes
like DMD, IL1RAPL1 and GABRA3, among others. Neuron-surface
specific genes are also highly represented among the enriched terms
with kinases like CASK, channels (TRPC5) and neuroligins
(NLGN4X, NLGN3), which present their own term in numerous
populations (“neurexin family protein binding” (GO:0042043)).
However, for the African populations (Supplementary Table 3A)
“sulfuric ester hydrolase activity” (GO:0004065) and “endoplasmic
reticulum lumen” (GO:0004065) are consistently enriched
non-neurological terms represented by members of the arylsulfatase
family (ARS) and steroid sulfatase (STS) gene (Holmes, 2017).
These genes, which are involved in hormone metabolism and are
associated with X-linked diseases like chondrodysplasia punctata
(Franco et al., 1995) and ichthyosis (Basler et al., 1992), present a
strong signal of selection (99.9th) in African populations. We also
observe genes consistently selected in continental groups which do
not correspond with any enriched term, including
reproduction-related genes, like SPANX-A1/A2/C/D and
SPANX-OT1 in non-African populations. These genes belong to the
spermatogenesis-related gene family SPANX-A/D. This is a highly
paralogous hominin-specific group of genes which are expressed
post-meiotically in testis and some cancer types (Westbrook et al.,
2006) whose members were previously reported as positively
selected (Casto et al., 2010; Kouprina et al., 2004) and related to
male fertility (Urizar-Arenaza et al., 2020). We observe signals of
positive selection on the BMP15 gene, related to ovarian
insufficiency in women and subjected to positive selection in
Hominidae clade (Ahmad et al., 2017). Other
spermatogenesis-related genes (SAGE1, SEPT6, CDK16) and genes
involved in human fertility (ADGRG2, DIAPH2, FAM122C) also
appear in the highest scoring regions (99.9th) of our scans
(Supplementary File 3).

Shared sweeps in human populations
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Previous reports have shown that signatures of positive selection are
often shared between different human populations (Johnson and
Voight, 2018). Common evolutionary trajectories might generate
similar selective pressures which leave shared signatures of positive
selection. These common patterns might reveal important traits that
were crucial in the adaptation of ancestral populations. To that end,
we assessed the degree of sharing of the candidate regions under
putative positive selection. We considered the 99th percentile
candidates in the three selection tests and identified those regions
whose genomic coordinates overlap across multiple populations.
We found that 41% of the selective sweeps are unique to a specific
population, 38% are shared between populations of the same
continental group and 20% are shared across different continents.
These results are in line with previously reported selection patterns
(Johnson and Voight, 2018): common sweep events are more
frequent between closely related populations, and cross-continental
sweeps are rarer and more likely to result from common selective
pressures and older processes of positive selection.

Among the cross-continental selected regions we found that one of
the most commonly shared falls within the DMD (dystrophin) gene.
This is the largest gene in the human genome and is involved in the
stabilization of the sarcolemma and synaptic transmission. We
found multiple signatures of hard and soft sweeps across the 15
included populations, which together span a region which reaches
up to ~2Mb (Supplementary Figure 4A). The variable length of this
sweeping region might indicate that multiple selection events took
place in the three continental groups, which generated different
patterns that suit the two selection processes. Positive selection
signals were previously reported in several components of the
dystrophin protein complex (DPC) (Williamson et al., 2007) in
non-African populations and in DMD in Africans (Casto et al.,
2010). Our DMD results are complementary to these previous
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studies and validate evidence for adaptations in neurological and
muscle-related phenotypes in other populations.

Another globally shared region overlaps the F9 gene, which
encodes the coagulation factor protein FIX and is involved in
Hemophilia B. In this case, the F9 region harbours windows under
positive selection in the 99.9th percentile reported by iHH12, which
reflects a sweeping region that spans up to ~50kb (Supplementary
Figure 4B). A previous study reported coagulation factors
underwent positive selection in different clades (Rallapalli et al.,
2014), which might be a consequence of selective pressures due to
the direct relationship with the immune system and host-pathogen
interactions. Although the FIX factor has not been identified as
related to any selective pressure to date, it might be under recent
positive selection in human populations due to its role in the
coagulation system as the first line of defence against pathogens.

TENM1 gene

The most extreme signals in the analysis are reported by iHH12,
reaching in some cases values between 10 and 15 in African
populations (>99.97%). Patterns of soft and incomplete hard sweeps
might be a side effect of linked regions targeted by complete hard
sweeps, referred to as the “soft sweep shoulder” (Schrider et al.,
2015). A possible example of this is seen in the TENM1 gene,
which is the highest scoring region in the chromosome with an
iHH12 signal composed of two high peaks (Figures. 2A,B). This
gene is involved in neural development and is specifically
determinant for the synapse organization of the olfactory system. In
African populations this region exhibits a peak value of iHH12 >
40, while in non-African populations is hardly captured by iHH12
due to an excess of low minor allele frequency variants (MAF <
0.05), which are filtered out by selscan. iHS and nSL outlier
windows are also found within this region, suggesting the presence
of haplotype patterns which fit with both soft and hard sweep
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signatures. In order to elucidate the haplotype structure of this
region, we inferred clusters of similar haplotypes with fastPHASE
(Scheet and Stephens, 2006) on representative populations of the
three continental groups (CEU, CHB and YRI). Figure 2C shows
different long haplotypes at high frequency with the main presence
of two highly homozygous clusters overlapping the iHH12 peaks,
either in African or non-African populations. This pattern is
expected in regions that underwent selection processes and left
long, unbroken haplotypes where no recombination events
occurred. The two main clusters span ~300kb of the TENM1 gene
and their location suggests that an ancient strong selection event
took place in this region before the population split in the
out-of-Africa event. For confirmation, we calculated the Tajima’s D
statistic, which was designed to detect ancient complete sweeps
(Pybus et al., 2015), in all the populations. Figure 2B depicts the
spanning region which presents an ancient complete hard sweep
with windows that reach a Tajima's D ≤ -2 (1% extreme). This
suggests that, despite not observing iHH12 signals in non-African
populations, the underlying haplotype pattern reflects a signature of
positive selection that includes the global population. No clear
phenotype could be associated with this signal, however recent
evidence indicates mutations in TENM1 are linked with congenital
general anosmia (Alkelai et al., 2016), suggesting the potential for
olfactory adaptations. Previous studies have shown the importance
of the olfactory system in the evolution of Homo sapiens (Hoover,
2010), olfactory receptors were subjected to non-neutral selection
(Hoover, 2015) which accounts for population-specific phenotypic
variability (Trimmer et al., 2019). This evidence suggests that
olfactory receptors, and the associated neural system, might be
subjected to important adaptive processes in human evolutionary
history.
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Figure 2. Putative positive selection signal on the TENM1 gene. (A) Whole
chromosome iHH12 scores in the global sample. (B) Manhattan plot showing the
iHH12, iHS and Tajima’s D scores on the TENM1 gene region. (C) Clusters of
highly similar haplotypes (in red and orange) estimated by fastPHASE were
found in African (AFR) and non-African populations (nAFR). The different
colouring represents changes in the haplotypic composition through the region,
where each row represents a haplotype and each column a SNP.

Selection of X-inactivation escape genes

The incomplete inactivation of some genes, during the process of
gene dosage compensation in females, might expose these escapees
to sex-especific adaptive processes due its biased expression. We
wanted to investigate whether patterns of positive selection could be
detected amongst the genes that escape from the X chromosome
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inactivation. We obtained the X chromosome inactivation (XCI)
status in the combined set of populations from Tukiainen et al.
(2017). We considered 59 genes as “escape” and 381 genes as
“inactive”, keeping only genes with the strongest support. We
constructed contingency tables based on these categories
performing Fisher's exact test of independence between selection
and XCI status for different extreme tail thresholds of the selection
tests. We found that genes that escape from the X-inactivation had a
higher probability of being targeted by positive selection according
to two of the tests. This trend is significant for iHS, is marginally
significant for iHH12 and does not reach significance for nSL
(Supplementary Tables 4A,B). Notably, escape genes under positive
selection had similar proportions from iHS and iHH12 (19% and
20%, respectively; Supplementary Table 4A), however only reached
11% for nSL. This may suggest that escape genes are more likely to
be targeted by selection processes that leave signatures with a
degree of “softness” closer to hard sweeps rather than soft sweeps.

Supplementary Table 4C lists the genes under selection that escape
inactivation. On this list, we found enrichment in sulfuric ester
hydrolase activity (GO:0008484), due to the sulfatase group of
genes. Among these top candidates, we found four members of the
ARS family. Three of these members participate in bone and
cartilage matrix composition during development (ARSE, ARSD,
ARSF). These genes are associated with the X-linked
Chondrodysplasia Punctata, a syndrome that affects almost
exclusively females, and is characterized by abnormal embryo
development, including skeletal malformations, skin abnormalities
and cataracts (Franco et al., 1995).

The STS gene, also escaping inactivation, presents another highly
shared sweeping region among populations (iHS 99.9th percentile in
African populations and 99th percentile in Europeans and Asians). It
is associated with the X-linked Ichthyosis, a syndrome caused by a
placental steroid hormone deficiency and is characterized by skin
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and eye abnormalities (Basler et al., 1992). This gene was reported
to be one of the top female-biased genes differentially escaping
inactivation in Yoruba (YRI) (Johnston et al., 2008). As
hypothesized by Tukiainen et al. (2017) most of the escape genes
reported as under selection show female-biased expression,
suggesting these genes might be involved in some adaptive trait in
females.

Functional non-coding regions under positive selection

Previous studies have reported numerous signatures of positive
selection with an unknown coding genic cause. This might be
accounted by a high false positive rate in genomic scans but also by
the presence of signatures in non-genic regions, suggesting that
many true signals are located in non-coding, potentially regulatory
elements (Fraser, 2013; Enard et al., 2014).

In order to identify the strongest and most interesting candidates of
positive selection on the X chromosome, we evaluated the signals in
the 99.9th percentile and attempted to pinpoint the target of selection
within each signal by annotating SNPs with ANNOVAR (Wang et
al., 2010). A large portion of single nucleotide polymorphisms
(SNPs) over the 1% per-SNP score extreme tail are intergenic, in
addition, a large fraction fall within intronic regions for all statistics
(iHS: 0.29, iHH12: 0.32, nSL: 0.2), with few in exons or
untranslated regions. Combined Annotation Dependent Depletion
(CADD) scores (Kircher et al., 2014) were used to identify
functional variants according to their deleteriousness (see Methods).
After filtering by functionality (CADD ≥ 10), the majority of the
variants were excluded, however, the SNP composition remained
higher in intergenic regions (Supplementary Table 5), with an
average prevalence in signals reported by iHH12 and nSL in
non-African populations (Africa: ~0.62, Europe: ~0.72, Asia: ~0.9).
These results suggest that there is an excess in signals driven by
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intergenic SNPs that fall in non-annotated and potentially regulatory
regions.

Several intergenic regions are under positive selection in the
different continental groups (Supplementary Table 1). In order to
assess the functional impact of these signals, we explored the
overlap of the extreme SNPs within the 99.9th percentile windows
with RegulomeDB (Boyle et al., 2012) annotated elements. The
combined signals across all populations had higher proportions of
SNPs within an ENCODE element (iHS: 19.1%, iHH12: 26.3%,
nSL: 13%) compared to the whole chromosome (5.5%). This
enrichment is more prevalent for iHH12 signals, which may be due
to its power to detect both hard and soft sweep signatures. This
finding shows, as expected, intergenic regions under putative
positive selection are enriched in functional elements and likely
points to selection of regulatory processes.

Intergenic signals cluster around genic regions, suggesting a
regulatory function influencing surrounding genes. Under the 99th

percentile, we found instances of genic windows that overlap genic
and intergenic SNPs, this is more prevalent in iHH12 and nSL
statistics (iHS: 2%, iHH12: 5.7%, nSL: 4.4%) across all
populations. Since regulatory elements are expected to be found in
the extremes and within coding regions, we used the RegulomeDB
annotation to associate the signal of putative selection with any
potential regulatory function. In these overlapping regions we found
that the odds of intergenic SNPs overlapping a functional element is
higher than genic SNPs (Supplementary Table 6A) according to
iHH12 and nSL, moreover when considering extreme SNPs (99.9th)
these values reflected a much higher dominance of functional
intergenic SNPs in these tests (Supplementary Table 6B). These
findings indicate that the overlapping genic windows under
selection are more enriched in regulatory elements in their
intergenic portion, something that points to the presence of sweeps
in regulatory elements.
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This evidence suggests, as previously noted, amino acid changes
may play a less important role in recent adaptation and that
regulatory changes may drive a more important part of adaptation
events in recent human evolution (Fraser, 2013; Enard et al., 2014;
Grossman et al., 2013).

Enhancer-like signatures under positive selection

In order to analyse in more detail the regulatory roles of the regions
under putative positive selection, we intersected the intergenic
windows in the extreme tails with the enhancer coordinates
described in the Human Active Enhancer to interpret Regulatory
variants (HACER) database (Wang et al., 2019). Supplementary
Table 7 shows the overlapping/non-overlapping windows with
enhancer regions (in any cell line) in the 99th percentile extreme tail.
As the table shows, the intergenic regions under positive selection
are more probable (odds ratio values) to present overlapping
enhancers in the case of iHH12.

In several cases these enhancers were located close to genes also
reported as positively selected in the analysis. We wanted to
determine if this pattern is a by-product of the selection in adjacent
regions by genetic linkage (hitchhiking effect), or due to
independent selection processes on both elements, the enhancers
and their target genes. In order to deal with the different
cell-type-specific enhancers described in HACER we created a
consensus enhancer dataset (see Methods) with unique coordinates.
We pooled all the populations and selection tests in order to
maximize the statistical power of our analysis. A Chi-squared test
shows the dependency between the selection of the enhancers and
their target genes (p-value = 0.0021). However, despite the
dependency between these two variables we observe a higher
probability of both elements, the enhancer and its closest gene, as
being under positive selection (YY category) and not being under
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positive selection (NN category) than expected by chance
(Supplementary Tables 8A,B). We compared the mean distances
between the selected/non-selected enhancers and their
selected/non-selected closest genes. These distances do not seem to
support the physical genetic linkage as a possible explanation of this
association. It must be taken into account that the reported distances
are sometimes too large (~2.5Mb) to be the reason for selection by
hitchhiking of both elements. Therefore, the YY set of enhancers
and target genes must be regions that are jointly swept by
hitchhiking (most of them) combined with few regions that are
selected by independent processes. This suggests that selective
pressures might affect some genes and their regulatory elements in a
coordinated way, modifying not only their coding sequence but also
their expression level.

Next, we wanted to study the potential origin of some of the most
extreme intergenic signals and the regulatory effect of the sweeping
haplotypes in the different populations. We focused on the highest
scoring candidate enhancers (99.9th) and their closest genes
(Supplementary Table 9). Among these candidates, we found at
X:73,135,561-73,145,161 an iHS African-shared extreme signal
that overlaps an enhancer (Supplementary Figure 6) located in the
XIC region (X-inactivation center) and whose closest gene is JPX.
This region is active in five different cell lines according to HACER
(H1, HUVEC, HCT116, AC16, REH) and is supported by three
databases (Ensembl Regulatory Build, ENCODE Enhancer-like
Regions and ChromHMM). The gene JPX (~23kb away) is an
activator of the lncRNA XIST, which is involved in the X
chromosome inactivation. Among the potential causal variants of
this signal, the SNP rs112977454 reported as expression
quantitative trait loci (eQTL) by the Genotype-Tissue Expression
(GTEx) project, is the most likely candidate. In addition, this eQTL
has a CADD score of 9.018, close to the 1% pathogenicity threshold
(CADD = 10) used by Kircher et al. (2014), and an average derived
allele frequency (DAF) of 17% in African populations, while is
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absent from the rest of populations. This eQTL is also found
overlapping a transcription factor binding site (TFBS) in the
HUVEC cell line, which targets the JPX gene through the
transcription factors FOS, GATA2, JUN and POLR2A. No specific
phenotype is associated with this variant; however, these results
suggest that its segregation in African populations might influence
the transcription factor binding and affect the regulation of the JPX
gene.

Functional analysis of enhancers under positive selection

In order to explore the potential regulatory effect behind the
selection processes in the candidate enhancers (Supplementary
Table 9), we compared the regulatory activity of the putative
haplotype under selection with that of its ancestral sequence. To
perform this task, we analyzed the changes in the expression of the
reporter gene luciferase under regulation of the two ancestral and
derived haplotypes in some of these enhancers. This method allows
us to test all the potential causal variants independently on the
possibility of testing a passenger variant (not causal) of the sweep.
We tested the enhancer regions targeting the genes HUWE1,
KDM6A and SH2D1A (Figures 3A,B,C), which also harbor signals
of positive selection in their sequences. These genes are implicated
in intellectual dissability (HUWE1) (Giles and Grill, 2020) and the
Duncan disease (SH2D1A) (Sumegi et al., 2002), and, in the case of
KDM6A, this gene is reported as X-inactivation escapee by
Tukiainen et al. (2017), which makes it susceptible to participate in
sex-specific processes (Dunford et al., 2017, Itoh et al., 2019). In all
these cases, the enhancer region overlaps with more than one
potential causal SNPs, located almost all of them in the 99th

percentile of the selected populations. Ancestral and derived
haplotypes of the candidate enhancers were obtained from males of
the relevant population under selection and subsequently cloned in a
luciferase-reporter vector. Upon transfection in 293T cells,
significantly differential luciferase activity amongst the ancestral
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and derived haplotypes for HUWE1 and KDM6A enhancers was
observed, showing a clear distinction of the regulatory activity
between these two haplotypes (Figure 3D). Yet this analysis did not
show differential activity between the ancestral and derived form of
the SH2D1A enhancer. Although no specific phenotypes were able
to be assigned to the selection of these regions, our data suggest that
positive selection has contributed to the adaptation of different
human populations by differentially regulating the expression of
certain genes. Further studies will be needed to understand the
phenotypic consequences of such adaptations.

Figure 3. Candidate enhancers under putative positive selection. Manhattan plots
show the selection scores overlapping the enhancer coordinates (bottom red bars)
targeting SH2D1A (A), KDM6A (B) and HUWE1 (C) genes in YRI, CEU and
YRI populations, respectively. Although HUWE1 appears under positive selection
in Gambians (GWD) (Table S9) YRI individuals were used in the luciferase assay
instead, since the signal is also present in this population at 99th percentile. Red
dots correspond to enhancer overlapping SNPs. (D) Relative luciferase activity
comparisons between the ancestral and derived haplotypes in each of the
candidate enhancers. Significant differential activities are seen in HUWE1
(p-value = 5.75e10-8) and KDM6A (p-value = 0.004) enhancers.

DISCUSSION

In this analysis, we report a comprehensive analysis of recent
positive selection in the X chromosome of 15 non-admixed
sub-Saharan African, European and East Asian populations. We
have focused on the spectrum of signatures captured by the
selection statistics iHS, iHH12 and nSL, which are based on the
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detection of extended long haplotypes at moderately high and
intermediate frequencies (hard and soft sweeps). These three
statistics present different approaches and statistical power to detect
the different modes of selective sweeps. However, in some cases,
the similarity between the haplotypic patterns behind hard and soft
sweep signals might lead to the simultaneous detection of the same
selected region by these three methods. Results indicate
Sub-Saharan African populations have a higher proportion of
windows that fall outside the extreme simulation thresholds in
comparison with Europeans and Asians. This is directly related to
the effect of haplotype-based statistics, in which the number of
detectable windows under selection is correlated with the effective
population size (Johnson and Voight, 2018; Voight et al., 2006). In
contrast with iHS, a higher amount of soft sweep-like signatures is
presumably captured by nSL and iHH12 statistics. This was
previously noted by authors who claimed that regions targeted by
hard sweeps are much less common than soft sweeps (Messer and
Petrov, 2013; Schrider and Kern, 2017). Subtle changes of
frequency in multiple loci might be also behind numerous
quantitative adaptations that would require a more profound and
comprehensive analysis than the one conferred by the “sweep”
vision (Höllinger et al., 2019). Therefore, it is more likely that
genomes, and the human X chromosome in this case, are populated
by a greater number of signatures with different degrees of
“softness” that are misclassified or overlooked by most selection
statistics.

The faster-X effect is believed to act on the X chromosome when
the hemizygous state leads to a complete penetrance of mutations,
allowing for a quicker and stronger adaptive process. Differences
between autosomes and the X chromosome are seen for the nSL
statistic in non-African populations, which might suggest some kind
of effect that generates the skewed distributions. However, these
differences could not easily be associated with the faster-X effect,
due to the inconsistencies found in the top 1%. However, as
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previously noted by Arbiza et al. (2014), natural selection seems to
be a more powerful force in the sexual chromosome than in
autosomes, which might explain differences in X/Autosome
diversity in human populations. Particular selection events and
sex-biased processes might leave specific pronounced signatures in
the X chromosome, like we report in this paper. Nevertheless,
despite accounting for demography and different mutation rates in
our simulations, selection is not the only factor that could be
invoked to explain the differences in haplotype diversity.

We report signals of recent positive selection in particular regions of
the X chromosome. The difficulty of identifying clear signals from
particular selection processes relies on the mixed properties of most
signatures. In our scan most of the observed signals are captured by
more than one statistic. One of the most remarkable cases of
selection in our analysis is the TENM1 gene. This gene harbours a
region of ~300kb (Figure 2) with selection signals that indicate the
presence of a haplotype pattern indicating an old and strong event
of positive selection before the human populations split. Moreover,
the haplotype clusters inferred by fastPHASE show a clear
predominance of two types of sequences that might derive from a
whole unique sweeping haplotype that could be broken by
recombination in this hotspot region. Although the role of TENM1
selection might be linked to recent changes of the olfactory system,
the origin of the haplotype patterns seen in our analysis could have
more general implications for neural development. Genic regions
under putative positive selection seem to be dominated by genes
involved in neural development enriched processes. This is widely
reported by the three tests used and appear globally distributed in
the three continental groups. These findings fit the general picture
of previous evolutionary studies which describe the role of neural
genes in human recent history (Wei et al., 2019).

Commonalities with previous studies reinforce evidence of
X-linked selection in human populations. Despite differences in the
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approach, we found complementary results. Indeed, the great
diversity between populations in our study has confirmed
previously described signals, like selection in DMD or
reproduction-related genes like the SPANX family, and expanded the
findings in new populations and genes. It is of interest to remark on
the case of the SPANX members and other reproduction-related
genes reported above. It was previously mentioned the potential
importance of fertility-related genes in recent human history (Ramm
et al., 2014; Hart et al., 2018). The SPANX members, like other
cancer-testis (CT) genes (MAGE family in the 99th percentile), are
known to be under rapid evolution and appear to be subjected to
positive selection affecting their coding sequences (Kouprina et al.,
2004). Previous reports found members of the
spermatogenesis-related family SPATA to be under recent positive
selection and suggest that testis-enriched genes are the target of
population-specific selection (Schrider and Kern, 2017; Schaschl et
al., 2020). Other studies report specific ampliconic gene-enriched
regions in humans and other primates targeted by strong selective
sweeps, where meiotic drive and sperm competition seem to be a
potential explanation (Dutheil et al., 2015; Nam et al., 2015).
Although an important number of previously reported genes under
selection have been captured in our scan, it is important to note that
a high false discovery rate is expected from this “hypothesis free”
approach. Nonetheless, despite the likely presence of false
positives, our findings are in line with previous evidence and
supports the importance of reproduction and male fertility in recent
human evolutionary history.

The gene dosage compensation of the X chromosome occurs in
females by the random inactivation of one of the copies during the
early stages of embryogenesis. However, this process of
transcriptional silencing is not complete for all the genes. Evidence
suggests that around 23% of the X-linked genes “escape”
inactivation and express both chromosomal copies. Most of these
genes are located in the pseudoautosomal region 1 (PAR1) and only
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a small fraction is distributed along the non-pseudoautosomal
region (nPAR) (Balaton et al., 2015; Tukiainen et al., 2017)
analysed in this study. Overall, our analysis shows an enrichment of
genes under selection which escape X-inactivation mainly driven by
hard-sweep-like signatures. These genes were previously described
as being under purifying selection (Park et al., 2010), however, no
evidence for positive selection has been reported until now.
Although one could argue that background selection might be
behind such a pattern, a recent study has shown that this kind of
selection is not expected to mimic the signatures left by selective
sweeps (Schrider, 2020). Therefore, these X-linked escape genes are
expression-biased between sexes and might be responsible for
sexual dimorphic traits, likely producing phenotypic diversity which
has been adaptive in females during human evolution. However,
more specific analyses on escape genes are needed in order to
establish a phenotypic cause for such potential adaptation.

A large fraction of regions under selection have no annotations. We
report significant evidence of intergenic regions with high selection
scores in the three selection tests, reflecting the presence of
signatures that fit the two selection processes we consider in this
analysis. Enrichment in the regulatory elements annotated by
RegulomeDB is seen globally in the two selection processes, with a
higher prevalence in regions exhibiting soft sweep-like signatures
(iHH12 and nSL signals). Sometimes genic regions might be
affected by the selection of the surrounding intergenic regions that
harbour regulatory elements. In our analysis a fraction of selected
windows classified as genic have intergenic portions that exhibit a
dominance of highly scored SNPs that overlap a functional
non-genic element reported by RegulomeDB.

A recent analysis of selection in enhancers revealed that
approximately 5.90% of the enhancers studied in different tissues
present signatures compatible with recent positive selection events
(Moon et al., 2019). Other cases of selection in enhancers have
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shown how a SNP subjected to positive selection is able to modify
the regulatory activity of the region in a population specific manner
(Nakayama et al., 2017). Having this in mind we used the HACER
database to study in more detail the potential role of selection in
active human enhancers. We show several cases of reported
enhancers under selection whose closest gene (also considered
target gene) is under putative positive selection in our analysis. This
result might reflect a linkage effect between these two elements;
however, we suggest that in some cases this is an indication of
concurrent selection of the gene and the regulatory region. We
report specific cases of putative positive selection signals in
enhancers that might drive population-specific regulatory changes.
African populations had a highly scoring hard sweep-like signature
in an enhancer located in the XIC region. Among the top SNPs we
find rs112977454 (99.96th percentile) as an eQTL highly segregated
in Africans which might affect the binding of transcription factors
that regulate the expression of the lncRNA JPX. This gene is a key
participant in the X chromosome inactivation as it promotes the
expression of XIST (Tian et al., 2010), which finally silences the
transcription by coating the chromosome into the Barr body. This is
an interesting candidate since it might affect the expression patterns
of genes that escape from the X-inactivation and thus play a role in
the potential adaptations of dimorphic traits hypothesized before.

In order to reveal the potential regulatory effect of our enhancers
under selection, we performed luciferase-based assays on three of
our top candidates that met the requirements to be cloned. HUWE1
and KDM6A enhancers exhibit a significant difference in the
luciferase activity between the two most differentiated haplotypes.
This effect clearly suggests a differential regulation of these genes
which might fit with the idea of population-specific selection
processes. The case of KDM6A is rather remarkable since it has
been associated with female-specific traits where its ability to
escape from the X-inactivation plays a significant role. The biallelic
expression of this gene seems to confer a protective effect in
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females in a wide range of cancer types, where males are more
exposed due to their hemizygous state (Dunford et al., 2017). The
same overexpression of KDM6A appears to be involved with sex
differences in autoimmune disease susceptibility, contributing to a
higher incidence of multiple sclerosis in females (Itoh et al., 2019).
Although we were not able to make a direct association between our
selection signals and these phenotypes, the evident effect of
selection in these enhancers and the potential role of adaptations in
escape genes suggest that selection might be behind secondary
processes that affect women and men in different ways. As for other
genomic scans, the power to detect regions under positive selection
in our analysis might leave behind more complete patterns that
explain in a more comprehensive way the potential adaptations
presented here. This, together with the inherent difficulty of
identifying the precise target of natural selection, make this type of
analysis a challenging aspect in the study of evolution.

Contribution to the field

We conducted a comprehensive analysis of positive selection in
human X chromosomes of 15 different human populations,
describing remarkable signals in genes involved in neural
development and reproduction, as well as extending evidence in
previously known gene selection candidates. We also report positive
selection in genes that escape X-inactivation and might be behind
sex-especific adaptive traits. Regulatory elements appear to be
significantly enriched in regions with high selection scores, which
provide evidence of the importance of gene regulation in driving
adaptation processes. Our work provides new evidence on how
positive selection has shaped the diversity of the human X
chromosome leading to potentially adaptive changes in recent
human history, however more profound and comprehensive analysis
and further functional studies are needed in order to understand the
phenotypic consequences behind such adaptations.
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Abstract

Tissue function and homeostasis reflect the gene expression
signature by which the combination of ubiquitous and
tissue-specific genes contribute to the tissue maintenance and
stimuli-responsive function. Enhancers are central to control this
tissue-specific gene expression pattern. Here, we explore the
correlation between the genomic location of enhancers and their
role in tissue-specific gene expression. We found that enhancers
showing tissue-specific activity are highly enriched in intronic
regions and regulate the expression of genes involved in
tissue-specific functions, while housekeeping genes are more often
controlled by intergenic enhancers, common to many tissues.
Notably, an intergenic-to-intronic active enhancers continuum is
observed in the transition from developmental to adult stages: the
most differentiated tissues present higher rates of intronic
enhancers, while the lowest rates are observed in embryonic stem
cells. Altogether, our results suggest that the genomic location of
active enhancers is key for the tissue-specific control of gene
expression.
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Introduction

Multiple layers of molecular and cellular events tightly control the
level, time and spatial distribution of expression of a particular
gene. This wide range of mechanisms, known as gene regulation,
defines tissue-specific gene expression signatures (Melé et al.,
2015), which account for all the processes controlling the tissue
function and maintenance, namely tissue homeostasis. Both the
level and spatio-temporal pattern of expression of a gene are
determined by a combination of regulatory elements (REs)
controlling its transcriptional activation. Most genes contributing to
tissue-specific expression signatures are actively transcribed in
more than one tissue, but at different levels and with distinct
patterns of expression in time and space, suggesting that the
regulation of these genes is different across tissues. Nevertheless,
approximately 10-20% of all genes are ubiquitously expressed
housekeeping genes, and they are involved in basic cell
maintenance functions (Pervouchine et al., 2015; Zabidi et al.,
2015; Eisenberg and Levanon, 2013).

cis-REs (CREs) are distributed across the whole genome, and their
histone signature correlates with the transcriptional control they
exert over their target genes (Chen et al., 2019; Hawkins et al.,
2010; Choukrallah et al., 2015). The activation of CREs depends on
several epigenetic features, including combinations of different
transcription factors’ binding sites, and it is positively correlated
with the H3K27ac histone modification signal (Heinz et al., 2015;
Heintzman et al., 2007). Epigenetic features in specific tissues may
change throughout the life-span of individuals. During
development, embryos undergo dramatic morphological and
functional changes. These changes shape cell fate and identity as a
result of tightly regulated transcriptional programs, which in turn
are intimately associated with CREs’ activity and chromatin
dynamics (Shlyueva et al., 2014; Bonev et al., 2017; Rand and
Cedar, 2003; Gilbert et al., 2003).
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Notably, key CREs known to regulate gene expression have been
reported to locate in introns of their target genes (Ott et al., 2009;
Kawase et al., 2011). However, it is unknown whether this is either
a sporadic feature associated with certain types of genes - for
instance long genes, such as HBB (β-globin) (Gillies et al., 1983) or
CFTR (Ott et al., 2009) -, a common regulatory mechanism to most
genes (Khandekar et al., 2007; Levine, 2010), or a pattern of
biological significance. To delve into this question, we analyzed the
genomic location of CREs across a panel of 70 adult and embryonic
human cell types available from the Encyclopedia of DNA
Elements (ENCODE) Project (Abascal et al., 2020).

Results

Enhancer-like regulatory elements define tissue-specific
signatures

We leveraged the cell type-agnostic registry of candidate
cis-Regulatory Elements (cCREs) generated for the human genome
(hg19) by the ENCODE Project. We focused on the set of 991,173
cCREs classified as Enhancer-Like Signatures (ELSs), defined as
DNAse I hypersensitive sites supported by the H3K27ac- epigenetic
signal, and assessed their presence-absence patterns across 43 adult
cell type-specific catalogues (Supplementary Table 1; see Methods).
We first explored the data with multidimensional scaling (MDS),
which uncovered tissue-specific presence-absence patterns
(Supplementary Fig. 1A). Indeed, the separation of samples driven
by ELSs’ activity was comparable to the one obtained from the
analysis of Genotype-Tissue Expression (GTEx) data (Melé et al.,
2015), with blood and brain as the most diverging tissues. This
suggests a correlation between gene regulatory mechanisms
orchestrated by ELSs and tissue-specific gene expression patterns,
which has been previously described (Pennacchio et al., 2007; Ernst
et al., 2011).
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Interestingly, we observed that the proportion of active ELSs
located in intergenic regions increases with the number of samples
in which ELSs are active (Fig. 1A), suggesting an unexpected role
for the genomic location of ELSs. Thus, to untangle the relationship
between the genomic location and cell-type specificity of ELSs, we
selected a subset of 33 samples that formed 9 main tissue groups,
supported by both hierarchical clustering and MDS proximity:
brain, iPSCs, blood, digestive system, intestinal mucosa,
fibro/myoblasts, aorta, skeletal/cardiac muscle and smooth muscle
(Figs. 1B-C; Supplementary Table 1, Samples’ Cluster). Tissues
represented by only one sample (ovary, thyroid gland, lung,
esophagus, spleen), or samples that did not cluster consistently with
their tissue of origin and function (endocrine pancreas, liver, right
lobe of liver, gastrocnemius medialis, bipolar neuron), were not
included in the subsequent analyses (Supplementary Table 1; see
Methods).

The fact that tissue-specific enhancer signatures contribute to the ad
hoc tissues’ functional clustering suggests a direct link between
ELSs’ activity and the regulation of tissue-specific functions (Fig.
1C). Thus, we set out to characterize tissue-specific enhancer
signatures and to compare them with regulatory mechanisms that
are common, i.e. shared among most tissues. Tissue-specific ELSs
were defined as those ELSs active in ≥ 80\% of the samples within
a given cluster and in at most one sample outside the cluster
(Supplementary Table 2; see Methods). For clusters with reduced
sample size (≤ 3), we required tissue-specific ELSs to be active
exclusively within the corresponding tissue cluster (see Methods).
The overlap of tissue-specific ELSs with samples from other
clusters (Fig. 1D) is consistent with the samples’ MDS proximity
observed in Fig. 1C, suggesting a functional relevance of the genes
regulated by shared ELSs. In addition, we identified a set of 555
ELSs active in 95% of the 33 samples, herein named as common
ELSs (Supplementary Table 2).
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Fig. 1. A: Highly-shared ELSs are more frequently located in intergenic regions.
The scatter plot represents the proportion of intergenic ELSs active in increasing
numbers of human adult samples. Error bars represent the 95% confidence
interval. B: Samples’ clustering defined by ELSs’ presence-absence patterns. The
heatmap depicts the binary distance between any pair of samples, based on the
activity of 921,166 ELSs from any annotated TSS. The correspondence between
samples and numbers is reported in Supplementary Table 1 in Supplementary
File.pdf. C: MDS distribution of human adult samples defined by ELSs’ activity.
Analogous representation to Supplementary Fig. 1A in Supplementary File.pdf
for the subset of 33 selected adult human samples. D: Tissue-specific ELSs. The
barplot represents the type of samples found within sets of brain-, blood- and
muscle-specific ELSs. Most tissue-specific ELSs are only active in the samples of
the corresponding cluster (“within-cluster”, black), but a few of them may be
active in at most one outer sample (i.e. a sample that does not belong to the tissue
cluster, coloured). IPSCs-, fibro/myoblasts-, digestive-, mucosa- and
aorta-specific ELSs are not represented, since we did not allow outer samples
given their small cluster sizes (see Methods).
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The genomic location of regulatory elements correlates with
their tissue-homeostatic functions

We next explored the genomic location of the sets of common and
tissue-specific ELSs. While common ELSs are preferentially
located in intergenic regions (58%, Fig. 2A), the majority of aorta,
muscle- and brain-specific ELSs fall inside introns (between 63 and
74%; Fig. 2A). These significant differences in genomic distribution
between tissue-specific and common regulatory elements
(Supplementary Table 3) are consistent with our initial observation
of a high sharing rate of intergenic ELSs across samples (Fig. 1A).
In contrast, the iPSCs, fibro/myoblasts, mucosa, digestive and blood
clusters - which comprise undifferentiated, non-specialized, highly
proliferative or more heterogeneous cell types, respectively -
showed a more even distribution of tissue-specific ELSs between
intergenic and intronic regions (Fig. 2A). Overall, we observed a
limited abundance of exonic ELSs (Fig. 2A, Supplementary Tables
3 and 4).

Genes harboring tissue-specific ELSs may present distinctive
features, including differences in gene and intron length. To rule out
any bias in our analyses, we compared these features between genes
hosting common and tissue-specific ELSs. While the number of
introns per hosting gene was comparable across groups
(Kruskal-Wallis p value test = 0.08), we reported significant
differences in gene and median intron length amongst tissues
(Kruskal-Wallis p value test < 2.2e-16; Supplementary Fig. S1B).
Nevertheless, we did not observe a correlation between such
differences and the presence of intronic ELSs (Supplementary Fig.
1B).

We subsequently explored whether the genes harboring
tissue-specific intronic ELSs perform functions associated with
maintenance of tissue homeostasis and response to stimuli. Indeed,
the enrichment of Gene Ontology (GO) terms associated with
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tissue-specific cellular components is consistent with the ELSs’
tissue identity (Supplementary Table 5). For instance, genes hosting
brain-specific ELSs perform functions associated with synapses and
axons, while in the case of muscle and blood we found significant
terms related to sarcolemma, actin cytoskeleton and contractile
fibers, and immunological synapses and cell membranes,
respectively. Conversely, genes harboring common ELSs reported
terms related to ordinary cell functions and membrane composition
(Supplementary Table 5). Although this suggests an implication of
intronic ELSs in tissue-specific functions, likely through
tissue-specific gene regulation mechanisms, there is no proven
evidence of intronic ELSs being direct regulators of their host
genes. To identify genes targeted by tissue-specific ELSs, we
integrated our ELS analysis with the catalogue of expression
Quantitative Trait Loci (eQTLs) provided by the Genotype-Tissue
Expression (GTEx) Project (Aguet et al., 2017). eQTLs provide
functional information about the changes of expression associated
with human variants. We leveraged eQTLs located in both intronic
and intergenic ELSs to identify their target genes. Among the
48,555 common and tissue-specific ELSs, 6,349 overlap with a
significantly associated eQTL-eGene pair, hereafter referred to as
eQTL-ELSs. The proportion of eQTL-ELSs was similar among the
tissue samples represented in the GTEx sampling collection,
ranging between 10 and 25% (Fig. 2B). In all annotated tissues,
gene regulation driven by eQTL-ELSs occurs predominantly in the
tissue where the ELS is specifically active (Fig. 2C). In line with the
above-mentioned results (Fig. 2A), highly specialized tissues such
as brain and muscle show the highest proportion of intronic vs
intergenic ELSs hosting eQTLs detected in the corresponding tissue
(Fig. 2B,C). Conversely, common eQTL-ELSs were more
frequently located in intergenic elements (32% vs 62%) (Fig. 2C).
GO enrichment analysis on the sets of target genes associated with
intronic and intergenic eQTL-ELSs showed a clear prevalence of
tissue-specific terms for those genes targeted by intronic rather than
intergenic eQTL-ELSs - for instance, muscle skeletal/cardiac:
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carbohydrate and amino acid metabolism; brain: cell projection and
microtubule cytoskeleton organization (Supplementary Table 6). In
contrast, common eQTL-ELSs do not show any significantly
enriched term neither in intronic nor in intergenic ELSs. Altogether,
these results suggest that intronic eQTL-ELSs are involved in the
regulation of genes associated with tissue-specific functions, while
intergenic ELSs are more devoted to tissue homeostatic processes.

Target genes of intronic ELS identified by HiC regulate
tissue-specific functions

The interaction between ELSs and promoters is central for the onset
of gene expression. These kinds of interactions are defined in each
tissue, and can be identified genome-wide through HiC-seq. Here,
we explored the ELS-promoter interactions reported by published
HiC datasets in relevant tissues, identifying tissue-specific ELS
target genes, and thus improving the annotations of ELSs-target
genes with respect to the eQTL analysis (Figure 2D,E) (Jung et al.,
2019; Lu et al., 2020; Mifsud et al., 2015). As in the case of
eQTL-ELSs, brain and muscle tissues show the highest proportion
of intronic vs intergenic ELSs intersecting HiC interacting
fragments detected in the corresponding tissue, while common
HiC-ELSs are enriched in intergenic regions (Fig. 2E). The GO
enrichment analysis reported an increase in relevant terms involved
in tissue-specific functional roles as well. Notably, intronic
HiC-ELS show better enrichment in tissue-specific terms (muscle-I
band and Z disc components; brain-pre/postsynaptic assembly and
organization; aorta-regulation of smooth muscle cell migration and
proliferation), while we observed a broader functionality of
intergenic ELSs’ interactions (brain-choline catabolic process and
copper ion homeostasis, amongst others) (Supplementary Table 7).
Moreover, common HiC-ELSs appear to target genes that are
enriched in housekeeping functions, like cell adhesion and
nucleosome organization (Supplementary Table 7). Overall, these
results on ELSs-promoter interactions further support that intronic
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ELSs regulate genes controlling tissue-specific functions, while
intergenic ELSs are more devoted to tissue homeostatic processes.

Fig. 2. A: Proportions of common and tissue-specific ELSs identified in the 33
selected human adult samples that overlap intronic, exonic and intergenic regions.
Error bars represent the 95% confidence interval. B: Proportion of eQTL-ELSs
with respect to the total amount of ELSs in each cluster. C: Number of intergenic
(Ing) and intronic (Intr) cluster-specific ELSs harboring eQTLs detected in the
analysed GTEx tissue samples except common and iPSC, which were annotated
with a composition of tissue-specific significant eQTLs (see methods). Coloured
cells represent the proportion of region-specific eQTL-ELSs over the total
amount of eQTL-ELSs per cluster. Significant differences were reached between
common and tissue-specific annotated eQTL-ELSs (Chi square test p ≤ 0.05),
showing that common annotated ELSs are highly associated with the intergenic
part. D: Proportion of HiC-ELSs with respect to the total amount of ELSs in each
cluster. E: Number of intergenic (Ing) and intronic (Intr) cluster-specific ELSs
overlapping HiC-based detected fragments in the analysed HiC tissue samples
except common, which was annotated with a composition of tissue-specific
significant HiC fragments (see methods). Coloured cells represent the proportion
of HiC-ELSs over the total amount of tissue-specific HiC-ELSs per cluster.
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Significant differences were reached between common and non-common
annotated HiC-ELS (Chi square test p ≤ 0.05).

Intronic ELS regulate the expression of hosting and non-hosting
genes

Next, we wanted to understand the relationship between the
tissue-specific intronic ELSs and their harboring genes. To do so we
focused on the gene expression pattern led by HiC-ELS interactions
with the target gene, as a proxy for direct regulation. Of note, the
proportion of intronic HiC-ELSs targeting their host genes was
comparable among most groups of samples, between 45 and 65%,
with the exception of muscle and blood that showed lower levels
(Fig. 3A). We compared the gene expression patterns of the
HiC-ELSs target genes depending on the type of ELS regulating
them: Intergenic, Intronic Host, Intronic Non-Host across all the
examined tissues (Fig. 3B). Hierarchical clustering of the genes
regulated by each of these three categories indicated that genes
regulated by their hosted intronic ELSs are the most efficient
category to define tissue-specific expression patterns, while the
non-host ELSs are the least efficient (Fig. 3B and Supplementary
Fig. 2). Added to that, the tissue clustering always distinguishes the
gene expression of the relevant tissue from the other tissue clusters,
supporting the importance of the target/host HiC-ELSs interactions
in tissue-specific gene expression. Most interestingly, HiC-ELSs
regulating the expression of the host gene are associated with
tissue-specific functions (Supplementary Table 8), with genes
involved in synaptic vesicle clustering and active zone organization
for the brain (e.g. PCDH17), regulation of cell division and
establishment of cell polarity for fibroblasts (e.g. TGFB2), cardiac
myofibril assembly and muscle fiber development terms for muscle
skeletal/cardiac (e.g. MEF2A) or regulation of smooth muscle cell
migration for aorta (e.g. DOCK5). However, those targeting the
expression of non-hosting genes are involved in tissue homeostatic
functions not uniquely associated with that tissue, indicating that
those genes are not expressed in a tissue-specific manner, although
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they are regulated by tissue-specific enhancers. For instance, the
brain presents significant terms related to protein
monoubiquitination (e.g. PDCD6) and the aorta non-host target
genes are involved in cellular response to endogenous stimulus (e.g.
TNC) (Fig. 3C). Overall, this suggests that the intronic location of
regulatory elements cannot be assumed as the regulation of the host
gene. Moreover, the identification of a relevant proportion of
non-host intronic ELSs suggests an advantage of the intronic
location for the regulation of tissue gene-expression, including
non-tissue-specific gene expression.

Fig. 3. A: Proportions of HiC-ELSs that target their host gene. These proportions
were calculated over the total amount of intronic HiC-ELSs per cluster. B:
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Z-score normalized median gene expression across GTEx tissue categories of the
HiC-ELSs target genes in the intergenic and intronic locations. Intronic
HiC-ELSs are divided into those that target their host gene (Host) and those that
target a gene different from their host (non-Host). Dendrograms show the
hierarchical clustering of target genes (rows) and GTEx tissue categories
(columns). C: Top three significantly enriched GO terms found in the host and
non-Host HiC-ELSs targeted genes. P-value (FDR corrected) is shown in each
enriched term.

The enrichment of transcription factor binding sites in
tissue-specific ELSs is independent of their genomic location

The activation of ELSs is a dynamic process depending, amongst
other factors, on its accessible chromatin to be bound by
transcription factors (TFs). Thus, tissue-specific gene expression
programs may be controlled by the underlying signature of
TFs-ELSs pairing (Schmitt et al., 2016). We next wondered whether
the specific distribution of ELSs, i.e. intronic vs intergenic, was
associated with a different transcription factor binding site (TFBS)
signature that could account for their tissue-specific activity. To this
purpose we explored the enrichment of TFBSs with HOMER
(Heinz et al., 2010) for intronic and intergenic ELSs independently
across tissues. Indeed, a distinct TFBS signature for each tissue in
both intronic and intergenic ELSs can be observed, supporting our
previous results that tissue-specific ELSs contribute significantly to
the regulation of tissue-specific functions. Notably, when delving
into each tissue’s TFBS signature, the intronic and intergenic
tissue-specific ELSs seem to have a different pattern depending on
the tissue. The number of enriched TFBS in intronic regions is
higher in highly specialized tissues such as the brain and the
muscle, and show no overlap between the intronic and intergenic
ELSs. The opposite picture is observed in common ELSs, where the
higher enrichment is observed in intergenic ELSs and there is no
overlap between the intronic and intergenic ELSs. An intermediate
pattern is observed for the highly proliferative tissues like iPSC,
fibroblasts, mucosa and blood, in which there is a higher shareness
of TFBS and the amount of enriched TFBS is similar between
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intronic and intergenic ELSs (Fig. 4A and Supplementary Table 9).
Amongst the TFBSs enriched in the tissue-specific intronic and
intergenic ELSs we find well-known TFs controlling tissue-specific
homeostatic events, such as FLI1 and RUNX in blood controlling
adult endothelial hemogenesis (Lis et al., 2017), and POU6F1
(Brn5), SOX4 and SOX8 in brain controlling the adult neural
plasticity (McClard et al., 2018) POU5F1 (Oct4) is required for
iPSCs. Still, with the exception of the TFs binding the enriched
TFBS in iPSC, most TFs are widely expressed across tissues (Fig.
4B). This distinct iPSC TF-ELS binding potential is supported by
previous data indicating that iPSC shares the epigenetic signature
with early developmental stages than with the original tissue prior
to reprogramming. Overall, the TFBS enrichment is different
between intronic and intergenic ELSs and amongst different tissues
but not the TFs gene expression pattern.
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Fig. 4. A: Barplots reporting the significantly enriched TFBSs in intronic and
intergenic tissue-specific ELSs. B: Z-score normalized median gene expression
across GTEx tissue categories of the TFs that bind the significantly enriched
TFBSs found in each cluster.

Dynamic location of ELSs throughout embryonic development
and maturation

Throughout embryonic development, tissues mature to fully reach
their functional capacity in adulthood, giving rise to several
tissue-specific homeostatic features that dramatically vary among
different tissues. For instance, blood comprises a wide number of
cell types characterized by heterogeneous functions and high
turnover. On the opposite side, we found highly specialized tissues
such as the muscle, that are formed by fewer cell types, mainly
dedicated to the same function and with limited cell division
capacity. During development, tissues share features involving
basic tissue homeostasis, proliferation and plasticity but also they
are already patterned to their adult functions. Still, whether the
regulatory features of a given adult tissue are reminiscent of their
developmental lineage and the features of the embryonic ELSs
remains largely unknown. To answer this question, we assessed the
activity of the 991,173 cell type-agnostic ELSs across 27 embryonic
samples (Supplementary Table 10). MDS analysis highlighted three
main groups of embryonic samples: stem cells (ESC), neural
progenitors, and a larger group of more differentiated cell types
(Fig. 5B; Supplementary Table 10, Samples’ Group). The three
groups of samples are associated with 3,112, 784 and 1,166 specific
ELSs, respectively (Supplementary Table 11). Although the
majority of these ELSs are active only within the corresponding
cluster, we reported that 26% of the neural progenitors-specific
ELSs are also active in one ESC sample (Supplementary Fig. 3A).
On the contrary, we identified only 94 ELSs common to all
embryonic samples (Supplementary Table 11). The proportion of
specific intronic ELSs is higher for neural progenitors and
differentiated tissues compared to ESC-specific and common ELSs
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(Fig. 5C), but lower with respect to clusters such as adult aorta and
brain samples (Fig. 2A). As in the case of adult samples, we
observed a scarcity of exonic ELSs (Fig. 5C, Supplementary Table
12), while we could not find significant associations between the
frequency of group-specific intronic ELSs and features of gene and
intron length (Supplementary Fig. 3B). Next, we wanted to validate
the dynamics of intronic vs intergenic active ELSs throughout
development, using brain development as a paradigm
(Supplementary Fig. 4A). To this purpose, we identified active
ELSs (H3K27ac+/H3K4me3-) in human ESCs and hESC-derived
NPCs and neurons, and assessed their degree of overlap with active
ELSs detected in ENCODE ESCs, NPCs and adult brain samples.
Active ELSs identified by ChIP-seq in ESCs, NPC and neurons
overlap with tissue-specific ENCODE ELSs for hESC (86%), NPC
(40%) and brain (53%) samples, respectively. Notably, the
proportion of active intronic ELSs increases with the degree of
differentiation of the samples (55% in ESC, 64% in NPC and 68%
in neurons) (Fig. 5D), validating the observed correlation between
active tissue-specific ELSs and their intronic location. For common
embryonic ELSs we find a high overlap (86% to 98%) with the
hESC-differentiation ChIP-seq, which includes known ELSs for
housekeeping genes, such as Actin-B (Supplementary Fig. 4B).
Expression of genes regulated by a single ELS correlates with the
activity of the ELS, being active in a tissue-specific manner in ESCs
or common to all ENCODE samples (Supplementary Figs. 4C-E).
Although H3K4me3 can be detected overlapping with the H3K27ac
in the hESC, NPC and neurons ChIP-seq samples, the
corresponding levels of H3K4me3 are much lower compared to
those observed at promoter regions (Supplementary Fig. 4F). When
analyzing the genes harboring developmental group-specific
intronic ELSs, we observed that they are enriched in functions
consistent with the corresponding adult tissue (Supplementary Table
13). For instance, the ones hosting neural progenitors-specific ELSs
are enriched in neural development-related terms, such as
axonogenesis and dendritic spine organization. Notably, genes
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harboring developmental common ELSs are enriched in protein
complexes like nBAF and SWI/SNF, known developmental
chromatin remodelers (Alver et al., 2017).

Fig. 5. Dynamic localisation of ELS through embryonic development. A.
Correlation between shareness amongst embryonic samples and intergenic
location of ELS (Spearman's correlation 0.36. Error bars represent the 95%
confidence interval). B. MDS of embryonic samples allow 3 groups according to
their ELS signature (neural tissue, stem cells and differentiated embryonic
tissues). C. The more differentiated embryonic tissue-specific ELSs have a higher
proportion of intronic ELSs while the common ELSs are preferentially intergenic.
D. Dynamics of the localisation of active ELSs during ESC-derived maturation
stages (hESC, neural progenitors (NPCs) and neurons), showing that ELSs
increasingly distribute in intronic regions as maturation advances.
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Lastly, in an attempt to define the amount of regulatory activity
shared by embryonic and adult samples as an indicator of the
reminiscent embryonic function in adult tissue homeostasis, we
computed, for specific and common embryonic ELSs, the number
of adult tissues in which they are found active. As expected,
whereas ELSs specific to ESCs and neural progenitors are active in
a limited set of adult samples, embryonic differentiated tissues
report a higher degree of shared regulatory activity with adult cell
types. Moreover, ELSs active in all embryonic samples (common)
are also active in the majority of adult samples (Supplementary Fig.
5). Overall, these results show that the genomic location of ELSs is
dynamic throughout development, and shifts towards an intronic
localization during tissue maturation.

Discussion

In this study, we show the central role of intronic Enhancer-Like
Signatures (ELSs) in the control of tissue-specific expression
signatures. Since Heitz described in 1928 (Heitz, 1928) euchromatin
as transcription permissive chromosomal regions enriched in genes,
and heterochromatin as inactive or passive chromatin regions, this
dual definition has been shaped throughout the years but it still
remains vastly correct (De Laat and Duboule, 2013; DeMare et al.,
2013; Ernst and Kellis, 2010). Intergenic regions are often
regulatorily silenced, and this happens more frequently in adult than
embryonic tissues (Heinz et al., 2015). The ENCODE project
reports that about half of the ELSs are intergenic, and 38% are
intronic (ENCODE SCREEN Portal:
https://screen-v10.wenglab.org/, section “About”). In our study, we
report an enrichment in intronic ELSs in the most specialized
tissues, which regulate genes involved in tissue-specific functions,
suggesting an important role of the genomic location of ELSs.
Opposite, in less specialized adult tissues and embryonic samples,
ELSs are not as frequently found in intronic elements as in highly
specialized tissues, suggesting that the maturation and tissue
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commitment correlates with the ELS distribution across the whole
genome. One could hypothesize that the enriched presence of
intronic ELSs in specialized tissues is advantageous for the control
of the gene expression signature of a particular tissue, for instance
granting ELSs accessibility in open DNA regions (genes) and
avoiding leaky activity of ELSs. Recently, active transcription and
nascent RNA have been associated with the maintenance of open
chromatin (Hilbert et al., 2021), a process that can be advantageous
to the presence of intronic ELSs in actively transcribed genes.
Introns have been long observed as gene expression regulators
throughout different mechanisms (Rose, 2019; Chorev and Carmel,
2012; Shaul, 2017). Introns regulatory potential has been longly
associated with the regulation of the host gene’s expression in
several different ways, often related to alternative splicing, intron
retention (Jacob and Smith, 2017), non-sense mediated decay
(Lewis et al., 2003), and even with the control of transcription
initiation via recruitment of RNA Polymerase II (Bieberstein et al.,
2012). However, here we found that, in most tissues, about half of
the ELSs located in introns do not regulate the expression of the
host gene, but of genes involved in important tissue homeostasis
functions, but whose expression is not restricted to that particular
tissue. This is important regulatory information since it disentangles
the presence of intronic ELSs from the regulation of the host gene,
opening new opportunities to identify the regulatory mechanisms
controlling tissue-specific gene expression. Overall, our results
suggest that the genomic distribution of tissue-specific active ELSs
is not stochastic and mainly overlaps with intronic elements. The
opposite happens to active ELSs common to all tissues. These
results suggest that intronic enhancers play a role in the regulation
of gene expression in a tissue-specific manner.

Methods

The ENCODE registry of candidate cis-Regulatory Elements
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The cell type-agnostic registry of human candidate cis-Regulatory
Elements (cCREs) available from the ENCODE portal corresponds
to a subset of 1,310,152 representative DNase hypersensitivity sites
(rDHSs) in the human genome with epigenetic activity further
supported by histone modification (H3K4me3 and H3K27ac) or
CTCF-binding data (https://screen-v10.wenglab.org; section
“About”). It comprises 991,173 Enhancer-Like Signatures (ELS),
254,880 Promoter-Like Signatures (PLS), and 64,099 CTCF-only
Signatures. In addition, cell type-specific catalogues are provided
for those cell types with available DNase and ChIP-seq ENCODE
data.

Selection of cCREs with enhancer-like signature (ELS) across
human samples

We downloaded the set of 1,310,152 cell type-agnostic cCREs for
human assembly 19 (hg19) from the ENCODE SCREEN webpage
(https://screen-v10.wenglab.org; file ID: ENCFF788SJC). From the
ENCODE portal
(www.encodeproject.org/matrix/?type=Annotation&encyclopedia_v
ersion=ENCODE+v4&annotation_type=candidate+Cis-Regulatory
+Elements&assembly=hg19), we retrieved cell type-specific
registries of cCREs for 43 adult and 27 embryonic human samples
with available DNase data and ChIP-seq H3K4me3 and H3K27ac
data. The ENCODE File Identifiers for the adult and embryonic
datasets are reported in Supplementary Table 1 and Supplementary
Table 8, respectively. No significant changes are expected upon
realignment to GRCh38, since main improvements with respect to
hg19 have been made in the representation of so-called alternate
haplotypes, with a small impact on the definition of genic and
intergenic regions (Church et al., 2015). We focused on the 991,173
cell type-agnostic cCREs with ELS activity, and generated a binary
table in which we assessed, for a given cCRE, the presence/absence
of ELS activity annotation (column 9 = "255, 205, 0") in each of the
43 adult and 27 embryonic samples. A binary distance matrix
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between all pairs of adult samples was used to perform
multidimensional scaling (MDS) in three dimensions. This resulted
in the selection of 33 adult samples, which form 9 tissue groups
well supported by hierarchical clustering (Figs. 1B-C) The same
procedure was applied, independently, to the embryonic samples. In
this case, IMR-90, mesendoderm, mesodermal cell, endodermal cell
and ectodermal cell samples were not included in subsequent
analyses.

Intersection of ELSs with genes, introns, exons and intergenic
regions

Genes, exons and introns' coordinates were obtained from
GENCODE v19 annotation
(https://www.gencodegenes.org/human/release_19.html). The
overlap between ELSs and genes, exons and introns was computed
using BEDTools intersectBed v2.27.1 (Quinlan and Hall, 2010).
The proportions of ELSs overlapping intronic segments (Figs. 2A,
5C) also include a limited set of ELSs overlapping both intronic and
exonic regions. On the other hand, we defined as exonic ELSs those
intersecting exclusively exonic regions (Figs. 2A, 5C). The overlap
of ELSs with intergenic regions was obtained by intersecting the
former with the genes’ coordinates using the BEDTools
intersectBed option -v.

Tissue-specific and common ELSs

Tissue-specific ELSs are ELSs active (see Methods section
Selection of cCREs with enhancer-like signature (ELS) across
human samples) in ≥ 80% of the samples within a given group of
samples (blood = 4/5; skeletal/cardiac muscle = 3/4; smooth muscle
= 3/4; brain = 6/7; stem cells = 5/6; neural progenitors = 5/6;
differentiated tissues = 8/10). Because of the small sample size, we
required iPSCs-, fibro/myoblasts-, digestive-, muscosa- and
aorta-specific ELSs to be active in 100% of the samples (either 2/2
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or 3/3). In addition, tissue-specific ELSs are active in 0 (iPSCs,
fibro/myoblasts, digestive, mucosa and aorta) or at most 1 (all other
groups) outer samples (i.e. samples outside of the considered
group). Common adult and embryonic ELSs are ELSs active in
95% and 100% of the samples, respectively (i.e. 31/33 and 22/22).
To rule out indirect effects of ELS activity related to promoter
regions, we discarded common and tissue-specific ELSs
overlapping any annotated Transcription Start Site (TSS, ± 2Kb) in
GENCODE v19.

Assessing enhancer regulatory activity with GTEx eQTL-eGene
significant pairs

ELSs were annotated by using the GTEx v7 (Aguet et al., 2017)
significant variant-gene pairs from 46 different tissues (number of
samples with genotype ≥ 70), available on the GTEx portal
(www.gtexportal.org) Only single-tissue eQTL-eGene associations
with a qval ≤ 0.05 were used. Similar GTEx tissues were grouped in
unique categories in order to consider the most complete catalogue
of eQTL-eGene pairs per group of samples. These categories were
named as follows: fibroblasts (Skin Not Sun Exposed Suprapubic,
Cells Transformed Fibroblasts), blood (Whole Blood, Spleen),
muscle skeletal/cardiac (Skeletal Muscle, Heart Atrial Appendage,
Heart Left Ventricle), brain subregions (all brain subregions,
Pituitary Gland, Nerve Tibial), Aorta (Artery Aorta), muscle smooth
(Artery Coronary, Artery Tibial), digestive (Liver, Pancreas, Small
Intestine Terminal Ileum, Stomach, Colon Sigmoid, Colon
Transverse, Esophagus Gastroesophageal Junction, Esophagus
Muscularis, Adipose Subcutaneous, Adipose Visceral Omentum),
mucosa (Esophagus Mucosa), gland (Adrenal Gland, Thyroid,
Minor Salivary Gland), breast (Breast Mammary Tissue), lung
(Lung), sexual (Ovary, Prostate, Testis, Uterus, Vagina). BEDtools
(Quinlan and Hall, 2010) was used to intersect the tissue-specific
ELSs’ coordinates with the cis-eQTLs’ positions in the considered
genomic locations (intronic and intergenic). We kept all
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eQTL-eGene pairs that were found significantly associated with the
matching eQTL-ELS’s tissue category (muscle skeletal/cardiac,
muscle smooth, fibro/myoblast, digestive, mucosa, brain, blood,
aorta). In the case of iPSCs-specific and common ELSs, we
considered those eQTL-eGene pairs that were significantly reported
in at least 50% of all the tissues. The resulting intersected ELSs
were considered as being responsible for the regulation of the
associated eGene. The functional enrichment of the ELSs’ target
genes was performed by the online utility WebGestalt (Liao et al.,
2019).

Assessing enhancer regulatory activity with HiC-based
significant fragment pairs from loop contacts

ELSs were also annotated by using significant HiC-based
interacting fragment pairs from three independent datasets (Jung et
al., 2019; Lu et al., 2020; Mifsud et al., 2015). Different primary
tissue and cell line samples were used to annotate each of the
tissue-specific ELS categories in our study, except muscle smooth
for which no HiC samples were found. As for the GTEx samples
groups in the previous section, we grouped the HiC samples in
unique categories in order to consider the most complete catalogue
of HiC fragment pairs per group of samples. These categories were
named as follows: Muscle skeletal/cardiac (Right ventricle (RV),
Right heart atrium (RA3), Psoas (PO3), left ventricle (LV)),
Fibro/myoblasts (Fibroblast cells (IMR90)), Brain (Hippocampus,
dorsolateral prefrontal cortex, cortext adult, Neuron), Blood
(GM12878+GM19240 lymphoblastoid cell line, CD34, GM12878),
iPSC (iPSC), Aorta (Aorta), Mucosa (Sigmoid Colon), Digestive
(Pancreas, Gastric tissue). In order to identify the significant
ELS-gene pairs BEDtools (Quinlan and Hall, 2010) was used to
intersect the HiC fragment coordinates with our ELSs in the
different genomic locations (intronic and intergenic) and, in those
cases in which the other fragment did not belong to any other ELS,
we intersected them with the GENCODE annotation (v19),
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inferring in this way the target genes of these ELSs. As for the
eQTL annotation, only the HiC-based ELS-gene interactions
associated with the matching HiC-ELSs’ tissue category were kept
(iPSC, muscle skeletal/cardiac, fibro/myoblast, digestive, brain,
blood, aorta), Mucosa and Muscle smooth tissue-specific ELSs
were removed from the analysis due to the lack of intersection with
significant fragment pairs and HiC sample tissues, respectively. In
the case of common ELSs we considered the ELS-gene pairs
reported in at least 50% of all the HiC tissue samples. After the
annotation of our ELSs we ended up with a collection of
enhancer-gene interactions where the target gene was considered as
being regulated by the interacting ELS. In order to define the
Host/Non-Host ELSs in Fig. 4A we identified the ELSs’ target
genes that are also the host gene of that ELS. If a particular ELS
presents among their target genes also its own host gene, that ELS is
classified as Host, if none of the target genes is hosting the ELS,
that element is classified as Non-Host. When considering the
interactions ELS-gene in Fig. 4B, we defined an interaction as Host
if the target gene is hosting that ELS, otherwise if the same ELS is
targeting a gene that is not hosting the element, that interaction is
classified as Non-Host. The target gene expression values were
obtained from the GTEx expression data (v7) and Z-score
normalized across the different GTEx tissue categories. The
hierarchical clustering analysis of the Host/Non-Host target genes
and GTEx tissue categories were performed with the R function
hclust. The functional enrichment analysis on the ELSs’ target
genes and Host/Non-Host target genes were performed by the
online utility WebGestalt (Liao et al., 2019).

cis-Regulatory Elements and Transcription Factor Binding Sites

Transcription factor binding sites (TFBSs) were predicted by using
the motif discovery software HOMER (Heinz et al., 2010) This
program performs a differential motif discovery by taking two sets
of genomic regions (findMotifGenome.pl script) and identifying the
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motifs that are enriched in one set of sequences relative to a
background list of regions. We analysed the tissue-specific ELSs'
binding motifs by considering the ELS regions from all the other
tissues as background. We searched for 6-mer and 7-mer length
motifs as a way to focus on enriched core motif sequences and
avoid redundancy from longer motifs with similar functions. A
hypergeometric test and FDR correction were applied for the motif
enrichment. Only significantly enriched motifs were considered in
the subsequent analysis. The functionality of the predicted TFBSs
was assessed by analysing the tissue-specific expression of the
transcription factors that bind to them. GTEx expression data (v7)
was analysed for those transcription factors whose TFBSs were
reported as significant by HOMER in all tissues and genomic
locations. In the expression analysis, some transcription factors
were removed due to the lack of expression data. Z-score
normalization was performed across the different GTEx tissue
categories in all transcription factors.

ChIP-seq data generation and processing

ChIP-seq data generation and processing was performed in hESC
line H9 (WiCell), hESC-derived neural progenitors (NPC) and
neurons. hESC were maintained in culture in mTESR (Stem Cell
Technologies) and NPC and neurons were obtained upon cerebral
organoid differentiation (Lancaster et al 2013). Briefly, 9000 H9
hESC were seeded in a low attachment 96-well (Corning) with
Rock Inhibitor in mTESR. After 6 days, organoids were induced in
induced media for another 6-8 days until the neuroepithelium was
detectable and subsequently transferred to the neural expansion in
matrigel. Organoids were disaggregated at day 30
post-differentiation and maintained in (N2B27 media supplemented
with EGF and FGF2). NPC were harvested after 2 passages.
Neurons were terminally differentiated in maturation media
(N2B27) for 3 more weeks. Cells were harvested with Cell
Dissociation Solution (ESC) and kept at -80C. DNA was

149



crosslinked with formaldehyde for 10 minutes at room temperature.
Fixation was stopped by incubating with PBS / 0.1 % Triton X100 /
0.125 M glycine for 5 minutes at room temperature and chromatin
was fragmented in a Q-sonica sonicator (15 minutes constant
sonication at 40% Amplitude). H3K27ac (Active Motif reference
39336) and H3K4me3 (Active Motif reference 39916) antibodies
were used for immunoprecipitation following the protocol
previously described (Perez-Lluch et al., 2015). ChIP libraries were
performed following Illumina procedures. Libraries were quantified
by Qubit (Thermo Fisher) and visualized in a Fragment Analyzer
(Agilent) previous to sequencing. Sequencing was performed in an
Illumina NextSeq500, single-end run, following the instructions of
the manufacturer. Data was processed using the ChIP-nf
(https://github.com/guigolab/chip-nf) Nextflow (DI Tommaso et al.,
2017) pipeline. Input samples were down-sampled to a number of
reads comparable to the ChIP samples with the tool seqtk
(https://github.com/lh3/seqtk). ChIP-seq reads were aligned to the
human genome assembly (GRCh37) using the GEM (Marco-Sola et
al., 2012) mapping software, allowing up to two mismatches. Only
alignments for reads mapping to ten or fewer loci were reported.
Duplicated reads were removed using Picard
(http://broadinstitute.github.io/picard/). Peak calling was performed
using Zerone (Cusco and Filion, 2016) with replicates handled
internally. Pile-up signal from bigWig files was obtained running
MACS2 (Zhang et al., 2008) on individual replicates. No shifting
model was built. Instead, fragment length was defined for each
experiment and used to extend each read towards the 3’ end (using
the --extsize option). Pile-up signal was normalized by scaling
larger samples to smaller samples (using the default for the
--scale-to option) and adjusting signal per million reads (enabling
the --SPMR option).

Gene expression analysis
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To validate gene expression regulation, target genes regulated by
intronic or intergenic ELS were selected upon the following criteria:
i) controlled by a single ELS active in brain (for tissue-specific) or
in common in the ENCODE analysis, ii) it shows
H3K27ac+/H3k4me3- peaks in relevant cell ChIP-seq validation, iii)
do not overlap with exons (Supplementary Table 14). RNA was
obtained from hESC, NPC and neuron pellets used for ChIP-seq.
Retrotranscription was performed using Superscript III
retrotranscriptase. qPCR was performed in 10 ng cDNA with the
Roche Sybr Green Master Mix. Primers used for qPCR are reported
in Supplementary Table 14). Gene expression is reported following
the relative expression of the DDCt method. GAPDH and ACTB
were used as reference genes. ACTB gene expression showed more
stability throughout the differentiation and therefore, it was used as
the reference gene for the analysis.

Data access

Newly generated ChIP-seq data are in the process of being
submitted to ArrayExpress  (https://www.ebi.ac.uk/arrayexpress/).
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Abstract

The occurrence of natural variation in human microRNAs has been
the focus of numerous studies during the last twenty years. Most of
them have been dedicated to study the role of specific mutations in
diseases, like cancer, while a minor fraction seek to analyse the
diversity profiles of microRNAs in the genomes of human
populations. In the present study we analyse the latest human
microRNA annotations in the light of the most updated catalog of
genetic variation provided by the 1000 Genomes Project. We show
by means of the in silico analysis of noncoding variation of
microRNAs that the level of evolutionary constraint of these
sequences is governed by the interplay of different factors, like their
evolutionary age or the genomic location where they emerged. The
role of mutations in the shaping of microRNA-driven regulatory
interactions is emphasized with the acknowledgement that, while
the whole microRNA sequence is highly conserved, the seed region
shows a pattern of higher genetic diversity that appears to be caused
by the dramatic frequency shifts of a fraction of human
microRNAs. We highlight the participation of these microRNAs in
population-specific processes by identifying that not only the seed,
but also the loop, are particularly differentiated regions among
human populations. The quantitative computational comparison of
signatures of population differentiation showed that candidate
microRNAs with the largest differences are enriched in variants
implicated in gene expression levels (eQTLs), selective sweeps and
pathological processes. We explore the implication of these
evolutionary-driven microRNAs and their SNPs in human diseases,
such as different types of cancer, and discuss their role in
population-specific disease risk.
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Introduction

MicroRNAs (miRNAs) are short (~22 nucleotides) single-stranded
regulatory non-protein-coding RNAs that perform a
post-transcriptional negative control of the expression of more than
60% of the whole human genome (Friedman et al. 2009). They are
involved in the control of almost every cellular process, including
development, differentiation, proliferation and apoptosis, and
present important roles in diseases. They are transcribed by RNA
polymerase II as primary sequences, which are later processed by
the proteins Drosha and Dicer into a miRNA duplex formed by two
mature miRNA strands, 5p and 3p (Ha et al. 2014). This mature
molecule is then loaded onto an AGO protein forming the
RNA-induced silencing complex (RISC), promoting the RNA
silencing by translation repression or mRNA degradation. Target
gene repression is accomplished by the partial sequence
complementarity between the target mRNA and the miRNA. In this
interaction, a perfect match between the miRNA seed region,
expanded across nucleotides 2-8 of the 5’ extreme, and the target
site, usually located within the mRNA 3’ untranslated region, is
needed (Lewis et al. 2005; Grimson et al. 2007; Bartel et al. 2009;
Berezikov 2011). Other positions of the mature sequence may
interfere in the mRNA binding, like the 3’ supplementary and
compensatory sites, that enhance the seed-matched binding
efficiency (Grimson et al. 2007; Friedman et al. 2009; Bartel 2018).

miRNAs have experienced multiple periods of fast turn over and
lineage-specific expansions through their evolutionary trajectory
(Lu et al. 2008; Iwama et al. 2012). Most of the current human
miRNAs originated in two accelerated peaks of miRNA expansion
that are reported during mammalian evolution: the first peak of new
miRNAs was located at the initial phase of the placental radiation,
while the second and highest peak was observed at the beginning of
the simian lineage, that originated more than a half of the current
repertoire (Iwama et al. 2012; Santpere et al. 2016). These miRNA
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expansions were implicated in the acquisition of new regulatory
tools that have been directly linked with animal complexity and
evolutionary innovations across all lineages (Hertel et al. 2006;
Heimberg et al. 2008; Wheeler et al. 2009).

miRNAs can be found either in intergenic regions or being hosted
by other elements, like protein-coding and non-coding genes or
repetitive elements like transposons. These are the genomic
contexts where hairpin-like transcripts initially emerge and are
gradually shaped by evolution until they become functional
miRNAs (Berezikov 2011). Differences in the genomic
environment and location of miRNAs are associated with different
evolutionary properties. For example, in França et al. 2016 the
authors show the association of the age of the host gene with the
breadth expression and evolutionary trajectory of recently emerged
hosted miRNAs. Duplication events are one of the main sources of
new miRNAs. These can be found close to each other when the
duplication is local, forming clusters that are found to be
evolutionary related and functionally implicated in similar
regulatory pathways (Wang et al. 2016). The origin of miRNAs and
their target sites are tightly related to the dynamics of transposable
elements (TE). These are sequences that jump, replicate and insert
in other parts of the genome, generating mutations. However, apart
from the damaging consequences of these changes, they can also
incorporate new functional regions in other genomic environments
(like miRNA target sites) and modify regulatory networks
(Feschotte 2008; Chuong et al. 2017). According to some authors
(Piriyapongsa et al. 2007; Qin et al. 2015; Petri et al. 2019), the
expansion of new miRNAs in the primate lineage gave birth to a
great number of TE-derived miRNAs, highlighting the importance
of transposons as a source of genomic innovation.

The computational analysis of human genetic variation has
traditionally been focused on protein-coding genes, being
non-protein coding sequences neglected from this kind of studies.
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However, in recent years, several reports have paid more attention
to the consequences of naturally occurring variation in miRNAs
(Cammaerts et al. 2015). A signature of purifying selection shapes
the miRNA diversity worldwide, revealing that human miRNAs are
highly conserved sequences that rarely accept changes in their
sequences (Quach et al. 2009), indeed miRNA expression and
functionality are usually tightly subjected to the presence of variants
within (Quach et al. 2009) and outside (Borel et al. 2011) their
hairpin. Sequence changes in the premature and loop regions might
generate distorsions in their folding and affect the expression and
maturation of the primary sequences (Fernandez et al. 2017).
Moreover, the occurrence of changes in the mature region and the
seed (Gong et al. 2012; Hill et al. 2014; Gallego et al. 2016; He et
al. 2018), which outstands as the most conserved region of the
hairpin, can dramatically affect the recognition of their target genes,
which is also affected by the presence of variants in their target sites
(Li et al. 2012). All these changes might induce massive rewirings
of the miRNA regulatory networks and alter the downstream
processes, inducing gene expression changes and phenotypic
variation that might degenerate in pathogenic processes (Sethupathy
and Collins 2008; Rawlings-Goss et al. 2014; Ghanbari et al. 2017;
Grigelioniene et al. 2019), but also be the origin of genetic
innovations responsible for phenotypic adaptations (Lu et al. 2012).
Several authors have reported population-specific variants that
affect different dimensions of the miRNA functionality (Saunders et
al. 2007; Torruella-Loran et al. 2016) and their target sites (Li et al.
2012) and might be involved in adaptation processes. More recently,
it has been reported a clear signal of adaptive evolution in a
metabolic-related miRNA responsible for adaptations to past famine
periods (Wang et al. 2020).

In this study we revisited the hosting and conservation patterns of
the most complete human miRNA catalog to date. We also
performed a comprehensive computational analysis of their
diversity patterns worldwide, considering the factors that might
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contribute the most to the configuration of this variation. We finally
studied the population differences and putative positive selection
signals of the variable miRNAs, and looked at the potential
consequences of this variation in terms of human diseases and
recent adaptation.

Results

The genomic context of miRNAs is associated with their
evolutionary age

To study the recent evolutionary history of human miRNA genes a
total of 1918 precursor miRNAs (miRBase v.22, March 2018) were
considered, from which 1904 remained after liftOver conversion to
the hg19 assembly (Supplementary Table S1). From these miRNA
precursors, 50.3% presented a complete annotation of their mature
sequences (5p and 3p), while the other half presented only a single
mature sequence identified in one of their arms (Fig. 1a and
Supplementary Fig. S1). First, we classified these 1904 miRNAs in
groups of conservation, according to their evolutionary age, by
adapting the categories from Iwama et al. (2013) and Santpere et al.
(2016) (see Methods). In total, 1623 (85.2%) miRNAs were
classified in four different conservation categories: Primates (985,
51.7%), Eutherians (421, 22.1%), Metatheria-Prototheria (63, 3.3%)
and conserved beyond mammals (154, 8%). The remaining
miRNAs (281, 14.8%) could not be classified due to the absence of
data or discrepancies between studies and were excluded from the
subsequent analyses (Supplementary Table S1).

Next, we classified miRNAs in different genomic contexts by
identifying the different elements that overlap their precursor
sequences. According to GENCODE 19 (v.29) we found that 483
(25%) miRNAs fell in intergenic regions (Intg), while 1421 were
located within protein coding genes (PC) (1217, 63.9%) and long
non-coding RNAs (LNC) (204, 10.7%), either presenting a single or
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multiple overlapping host genes. In our dataset we found that 856
(60%) intragenic miRNAs (protein coding and lncRNA) overlapped
introns of the host sequence, while 545 (38%) were located within
exonic regions. The remaining 20 (~1%) showed a mixture of
intronic/exonic locations (Supplementary Table S1). Further, we
used the last release of the RepeatMasker database (Smit et al.
2013-2015) to identify the different forms of transposable elements
(TEs) and repetitive sequences that host miRNAs. We found 660
(35%) miRNAs overlapping TEs alone or in combination with other
genes, while the remaining 1244 (65%) were either unmasked or
overlapping other forms of repetitive sequences and genes.
Interestingly, we found a strong correlation between the frequencies
of the TE-hosting miRNAs and their evolutionary age, being the
primate-specific group the one with the highest presence of
miRNAs in this context (440, 23.1%; Fig. 1b). Alu (67, 6.8%), L1
(54, 5.4%), TcMar (42, 4.2%) and the LTR elements ERV1 and
ERVL (36, 3.6%) were found mainly among the primate-specific
miRNAs, while hAT (3.3%) and L2 (28, 6.6%) elements were also
present in the eutherian group (Supplementary Table S2). It is of
interest to note that the contribution of MIR (15.3%) and DNA
elements like TcMar (14.8%) and hAT (12.8%) families to the
miRNA context is higher than to the whole genome (Supplementary
Fig. S2a).

We found that the genomic context increased in complexity when
different elements appeared hosting the same miRNA
simultaneously. We studied the integrated hosting of miRNAs
across the conservation groups considering the different
combinations of elements (Fig. 1c, Supplementary Table S3). This
shared hosting evidences the two main sources of miRNAs: protein
coding genes (796; 41.8%) and TEs (196; 10.2%), with 401
miRNAs presenting a combination of both (21%). As expected, the
genomic context is associated with the age of miRNAs (Chi square
test = 238.25, p = 2.2e-16). This association shows that
primate-specific miRNAs present a dominance of overlapping TEs
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in comparison with non-primate miRNAs, with the TE and TE + PC
hosting categories being the major contributors across
environments. On the other hand, lncRNAs are highly associated
with the miRNA context among the non-primate groups, mainly in
the group of miRNAs conserved beyond mammals (Supplementary
Fig. S2b).

We made use of the miRNA expression levels in 16 different human
tissues extracted from Panwar et al. (2017) (see Methods) to study
their correlation across groups of conservation. As seen in Fig. 1d,
the tissue specificity is higher at lower evolutionary ages, which
indicates the limited expression breadth of young miRNAs. Also,
the expression levels were correlated with age, having the more
conserved miRNAs an overall higher expression due to their
consolidated role in regulatory networks (Fig. 1e).

Due to the evolutionary relevance of the miRNA organization in the
genome, we revisited the clustering patterns of the miRBase
annotations. When studying the closeness between miRNAs, an
increment of distances ranging 1-10kb was found (Supplementary
Fig. S2c), which indicates a high accumulation of close miRNAs in
certain regions. According to this, we defined that two miRNAs
belong to the same cluster when they are located 10kb or closer
from each other. A total of 100 clusters were identified in the whole
genome (Fig. 1f and Supplementary Fig. S3), represented by 352
miRNA members. Two thirds of these clusters (64) were constituted
only by two genes, while 36 clusters presented more than two. Two
main clustering hotspots were observed in the chromosomes 14 (42)
and 19 (46), as previously reported by Guo et al. (2014), while the
X chromosome presented a similar amount of clustered miRNAs
(57) but more widespread in different smaller groups (Fig. 1f). A
total of 1552 miRNAs were located in isolated regions. We also
found a strong correlation between the clustering patterns of
miRNAs and groups of conservation (Fig. 1g). The more conserved
miRNAs tend to be found in clusters rather than in isolated regions,
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something likely related to the conserved role of clustered miRNAs
in similar biological processes (Berezikov 2011; Wang et al. 2016).

Fig. 1 Description of human miRNAs in terms of genomic context, evolutionary
age groups (see Methods), expression levels and clustering. (a) Description of the
miRNA hairpin regions identified and analysed in the study. Not all the primary
sequences present two mature sequences annotated by miRbase. When the two
mature sequences are not given (incomplete annotation), the precursor region is
extended from the first mature to the other flanking region. (b) TE-derived
miRNA frequencies across conservation groups (Primates, 1; Eutherians, 2;
Metatheria and Prototheria, 3; Conserved beyond mammals, 4). (c) Integrated
hosting of miRNAs that shows the combination of the different hosting elements
that overlap with miRNA sequences. The “Other” group is made with the minor
categories (PC+LNC and PC+LNC+TE) that represent less than 1% of the total
dataset (Supplementary Table S2). (d) Number of tissues where the miRNA is
expressed across evolutionary ages (e) Mean expression level (Reads per million
mapped reads; RPM) of miRNAs across evolutionary ages (f) Whole genome
clustering patterns of miRNAs. The upper plot represents the frequency of
miRNAs that belong to a certain cluster in each chromosome (Members) and the
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frequency of clusters in the whole genome (Clusters). The lower plot represents
the miRNA clusters per chromosome, according to the number of members and
their frequency among the clustered miRNAs. (g) Fraction of clustered and
isolated miRNAs across evolutionary ages

Nucleotide diversity of miRNAs is strongly shaped by their age,
genomic context and localization

The genetic variation of the miRNA dataset was analysed in the
different miRNA functional regions using human genetic variation
from the 1000 Genomes project (Fig. 1a; Auton A et al. 2015). A
total of 569 single nucleotide polymorphisms (SNPs) were located
in 466 miRNA precursors (26.1%), but when considering a region
of the same size at both sides of the precursor sequence (5’ and 3’
flanking regions) the number of SNPs increased to 1994 in 1026
miRNAs (55.9%). Therefore, more than half of the variability found
in our miRNAs comes from the neutral-like flanking regions. The
mature sequence is considered the most conserved and important
functional region of the miRNA, since it regulates the target gene
by binding to the 3’UTR mainly through the seed region. In our
dataset, 212 SNPs were present in 194 mature sequences (7.5%),
while 79 SNPs were present only in the seed region of 75 miRNAs
(2.9%).

To study the sequence variation of human miRNAs we analysed the
nucleotide diversity of 1904 miRNA precursor sequences described
in miRBase in the pooled population sample from the 1000
Genomes project. The genomic context refers to the environment
where miRNAs originally emerged, which might be determinant to
their level of variation. We calculated the global nucleotide
diversity (Pi) in the whole precursor sequence by considering the
age, location and clustering of the miRNAs (Fig. 2). We found
significant differences when comparing the Pi of miRNAs in the
different contexts (Kruskal-Wallis p = 0.013). Fig. 2a shows that
miRNAs harboured by TEs exhibit a significantly higher Pi than in
other genomic contexts. Next, we examined the TE-family specific
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diversity of the hosted miRNAs and wondered which TE families
contribute more to this high diversity (Supplementary Fig. S3a). We
performed a multiple linear regression analysis with the different
families as predictors and found that Alu and ERVL are
significantly associated with the increase of nucleotide diversity
(Alu, p = 0.013; ERVL, p = 5.11e-04).

As expected, the evolutionary age is another determinant factor in
the miRNA sequence diversity. We found that Pi presents a clear
correlation with the miRNA conservation (Fig. 2b; see Methods),
with significant differences among the different groups
(Kruskal-Wallis p = 2.373e-11). The highest diversity was seen in
the miRNAs classified as primate specific (group 1) and the lowest
in those conserved beyond mammals (group 4).

Regarding the clustering patterns of miRNAs, we found that
diversity differences between clustered and isolated miRNAs
reached significant levels (Wilcoxon p = 3.663e-10) (Fig. 2c)
which, as seen before, it might be a reflection of the higher
conservation of clusters due to their functionality in cooperative
processes (Wang et al. 2016; Kabekkodu et al. 2018) and also the
fact that most of the clustered miRNAs have originated after
common duplication events (Hertel et al. 2006).

Considering the above, sequence diversity levels of human miRNAs
seem to be driven by their location, age and genomic context. These
factors might also determine the presence of mutations in miRNA
sequences that could affect their expression, hairpin folding and
even their ability to bind their target genes and, therefore, be
determinant for their evolutionary trajectory. Because of that, we
wanted to study the integrated contribution of these factors to the
observed diversity differences. We applied a multiple linear
regression model to the diversity data and the different miRNA
categories (genomic context, evolutionary age and clustering). The
regression model showed that age (being primate specific, p =
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3.3e-03), clustering (being isolated, p = 3.6e-04) and genomic
context (not being intergenic, p = 0.015) are predictors significantly
associated with the increase of Pi in human miRNAs.

Fig. 2 Mean nucleotide diversity differences between miRNAs in different
annotation categories and functional regions. (a) Differences between the
genomic contexts where the human miRNAs are found. Wilcoxon pairwise
comparisons (Bonferroni corrected) show that transposable elements (TE) present
a significantly higher diversity than other environments (TE vs LNC, p = 0.022;
TE vs Intg, p = 0.022. (b) Differences across miRNA conservation groups (see
Methods). Primate-specific miRNAs (group 1) show a significantly higher
diversity in comparison with the others (1 vs 2, p = 0.00057; 1 vs 3, p = 0.0178; 1
vs 4, p = 3.93e.10; Wilcoxon pairwise comparisons, Bonferroni corrected).
Significant differences are also seen for the miRNAs conserved beyond mammals
(group 4) (4 vs 3, p = 0.0178; 4 vs 2, p = 2.6e-05; Wilcoxon pairwise
comparisons, Bonferroni corrected). (c) Differences between miRNAs found
isolated and organised in clusters. Isolated miRNAs are associated with a
significantly higher diversity than the members of clusters (Wilcoxon test, p =
3.663e-10). (d) Diversity comparison between the different functional regions
identified in the miRNA hairpins. The seed region (2-8 nucleotides) presents a
significantly higher diversity than other conserved regions (seed vs loop, p =
0.0011 and seed vs mat, p = 0.0056; Wilcoxon pairwise comparisons, Bonferroni
corrected). (e) Mean nucleotide diversity calculated in each relative position of
the precursor miRNA. The zoomed region correspond to the diversity per position
found in the mature sequence

174



An excess of diversity in the seed region is driven by a reduced
number of miRNAs

The analysis of the nucleotide diversity (Pi) across different miRNA
regions indicated an overall higher diversity in the precursor and
flanking regions compared to the rest of regions (Wilcoxon test p <
0.05). Surprisingly the loop region presented the lowest diversity of
the whole miRNA hairpin (Fig. 2d). This might reflect the
importance of this region in the hairpin folding, which is
determinant for the processing of the primary sequence. Previous
studies (Torruella-Loran et al. 2016) showed that the seed is the
most conserved region of the miRNA, which has been associated
with its functional relevance due its central role in target binding.
However, our results showed a higher Pi in the seed than in other
conserved regions, like the mature (outside seed) and the loop
(Wilcoxon pairwise comparisons p = 0.0011 and p = 0.0056,
respectively). It is worth noting that this level of diversity in the
seed comes from the variation of a small set of miRNAs (75, 2.9%),
showing that, indeed, most of the human miRNAs are conserved in
their seed. On the other hand, the seed region presented values of
SNP density similar to those in the mature outside the seed
(Supplementary Fig. S4b), which suggests that, considering the
values of nucleotide diversity, the seed region is more populated by
high frequency variants than the mature region. The region-specific
levels of diversity were studied in the whole range of minor allele
frequency (MAF), where the seed region was consistently found
with diversity levels below the mature region until a frequency ~
50% (Supplementary Fig. S4c). This shows that no bias in the
variant content is confounding these results. Overall, these data
suggest that the high diversity observed in this set of miRNAs
might be a consequence of the specific targeting of positive
selection processes, as discussed below.

Previous reports on miRNA targeting (Grimson et al. 2007;
Wheeler et al. 2009) show that not only the seed region but also
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certain positions in the mature sequence are involved in target
binding. To further analyse the variation in the miRNAs, nucleotide
diversity was studied at position basis in the whole precursor
sequence (Fig. 2e). As expected, the general pattern shows that the
mature sequences are located in a valley of diversity, which
confirms their overall conservation. Different levels of diversity are
seen in the mature sequence. More specifically a decrease in
diversity is seen at the 3’ end, corresponding to the region known as
participating in the complementary binding of mRNAs.

Highly differentiated miRNA SNPs are enriched in signals of
positive selection and expression variation

The excess of diversity found in the seed region may respond to
particular processes of positive selection that generate frequency
shifts at population level. These population-specific changes could
affect the miRNA binding to the target gene and change the
targeting profiles. In this line, we wanted to study the
population-specific patterns of diversity found within the miRNA
seed regions. In Supplementary Fig. S5 we show the Pi values of
the seed regions from a total of 60 miRNAs presenting genetic
variants (DAF >= 5%) calculated in each of the 26 populations of
our study. The clustering pattern of diversity sharing among
populations reflects the similarities of demographic and potential
evolutionary histories in the same continental group. As expected,
African populations (AFR) are clustered separately from the other
populations, showing the highest differentiation probably due to the
Out-of-Africa event. A higher diversity sharing is seen among the
non-African populations. There are some clear continental-specific
groups of miRNAs that might be the result of demographic
dynamics and/or genetic drift, but also of local processes of positive
selection on certain alleles. Considering the group-specific
membership of miRNA alleles we found that 37% (22) are
exclusively present in AFR, while 13% (8) are found in
non-Africans, private or shared among other groups (European
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(EUR), American (AMR), EastAsian (EAS) and South Asian
(SAS)). The other alleles are shared between African and
non-African populations (50%, 30), being 21 (35%) present in all
continents.

Next, mean population differentiation (Fst) values across all possible
population comparisons were calculated for the different miRNA
regions (Fig. 3a). As shown, the seed presents an overall Fst score
higher than the rest of the mature sequence in almost all the
compared groups. This tendency is stronger in comparisons
including AFR populations than non-African ones. Although
demographic dynamics are generally the main cause in the existing
differentiation between populations, the high Fst values in the seed,
compared to other conserved regions like the mature (outside seed)
and the loop, suggest that this region could have been particularly
targeted by processes of positive selection. Surprisingly, in contrast
with the overall low diversity values seen before, the loop region
also exhibits particularly high Fst scores in some comparisons,
especially in the AFR vs SAS populations.

Further, we evaluated the potential functionality of the precursor
region-specific SNPs by contrasting their overall Combined
Annotation Dependent Depletion (CADD) score distributions, a
statistic designed to measure the deleteriousness of human variants
(Rentzsch et al. 2019). As shown in Fig. 3b, the CADD scores
associated with the loop and seed regions are slightly higher than
the rest of the precursor sequence, although non-significant. This
evidence reinforces the idea that these regions are specifically
implicated in processes potentially involved in adaptive selection.

We wanted to examine the extent to which the top Fst scoring SNPs
participate in putative signatures of recent positive selection. We
focused on signals characterized by the presence of long haplotypes
at high (ongoing hard sweeps) and moderate frequencies (soft
sweeps) in individual populations, detected by the statistics
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integrated haplotype score (iHS) (Voight et al. 2006) and the
number of segregating sites by length (nSL) (Ferrer-Admetlla et al.
2014) (see Methods). We pooled the SNP set (100, 16%) that
showed extreme Fst values (>99%) in the whole miRNA precursor
sequence in all population comparisons, and explored their
involvement in selective sweeps. Among these top SNPs we found
that 23% and 18% present extreme iHS and nSL scores (≥ 2),
respectively, in at least one population, while the proportion of
highly scoring SNPs in the whole dataset is only 13.8% (iHS) and
11.5% (nSL). This result suggests that highly differentiated SNPs in
the precursor miRNA sequence are more likely to be found in
genomic regions that hold signatures consistent with recent positive
selection signatures (iHS Chi square test = 11.29, p = 7.77e-04; nSL
Chi square test = 6.74, p = 9.38e-03).

Nucleotide changes in regions involved in miRNA sequence
processing (pre, loop) and target binding (mature, seed) might affect
the regulation of their target genes and, therefore, generate
expression variation that could lead to genetic disorders, but also to
phenotypic adaptations. We used the Genotype-Tissue Expression
(GTEx) Project catalog (v7) of associated eQTL-eGene pairs to
study the potential impact of our miRNA-harbouring top SNPs in
gene expression variation (Aguet F et al. 2017). Among the top 100
SNPs in the precursor sequences, 54% (54) are reported as
significant expression Quantitative Trait Loci (eQTLs) by GTEx,
while the 24.7% (154) are found in the whole SNP dataset. Also, we
used the most recent release of the genome-wide association studies
(GWAS) catalog (v1.0) (Buniello et al. 2019) to evaluate the extent
to which these highly differentiated SNPs are associated with
genetic diseases and traits. In this case, 5% (5) of the top SNPs
present significant associations in GWAS studies, while only 1.7%
(11) are found in the whole SNP dataset. These results indicate that
highly differentiated miRNA-harbouring SNPs are more likely to be
reported as significant eQTLs (Chi-square test = 33.994, p =
5.528e-09) and GWAS associated SNPs (Chi square test = 6.7841, p

178



= 9.19e-03), which suggests their implication in expression
variation and human diseases.

Fig. 3 Analysis of Fst values across miRNA regions and candidates. (a) Mean Fst
values per miRNA region across all population comparison groups. The Fst
values were calculated in all the variant regions. (b) Combined Annotation
Dependent Depletion (CADD) scores distributions, as a measure of the predicted
level of deleteriousness of the variants, across miRNA regions (c) Manhattan plot
showing the mean Fst values per miRNA mature sequence in the three
comparisons of reference. Two Fst thresholds were used to extract the potential
miRNA candidates under positive selection (1% and 5%). (d) Heatmap showing
the per-SNP Fst values of the variants found in the mature outside seed (14) and
seed (10) region of the top 5% miRNA candidates, where the columns correspond
to SNPs and rows to all possible population comparisons (243)

miRNA recent evolution might be driven by targeted processes
in their seed  related to positive selection and disease

In order to identify potential miRNA candidates under the selection
pressures of local adaptations, we calculated mean Fst values in the
whole mature sequence. Fig. 3c shows the genome wide distribution
of mature-specific Fst values in the three comparisons of reference
(Utah Europeans (CEU) vs Han Chinese (CHB), CEU vs Yoruba
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(YRI) and CHB vs YRI), where three miRNAs are found in the top
1% (hsa-miR-1269b, hsa-miR-412-3p, hsa-miR-4707-3p) and 22
above the 5% (Table 1). Surprisingly the three most divergent
miRNAs belong to conservation groups older than primate specific,
which suggests that these population-specific changes might
respond to potential adaptations that affect well-established
regulatory pathways. These candidate miRNAs harbour 10 SNPs
within their seed regions (10 miRNAs) and 14 SNPs in other
positions of the mature sequence (14 miRNAs). As seen in Fig. 3d,
seed-harboring SNPs like rs2273626 (hsa-miR-4707-3p) present the
most extreme Fst scores in the candidate mature sequences and reach
top values (>99.98%) in the whole miRNA distribution. Among
these, seven SNPs in both seed (rs6771809, rs77651740,
rs28655823, rs2273626, rs2168518, rs7210937, rs3745198) and
mature regions (rs56790095, rs73239138, rs404337, rs2155248,
rs61992671, rs12451747, rs73410309) were reported by GTEx as
significantly associated to gene expression variation.
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Table 1. Top 5% miRNA candidates of different ages and genomic contexts
under putative positive selection. The Max. Fst value represents the maximum
mean Fst of the mature sequence among the three comparisons of reference. The
selection test values (iHS and nSL) correspond to the population that exhibit the
maximum value of the mature (left) and seed SNP (right). The CADD column
provides the predicted deleteriousness scores (see Methods) of the mature (left)
and seed SNP (right). Disease association for most of the candidates are indicated
in the disease column and some examples are described in the main text: AD
(Alzheimer's disease; (2) Satoh et al. 2015), AML (acute myeloid leukemia; (58)
Cattaneo et al. 2015), BC (breast cancer; (7) Danková et al. 2020, (12) Sarabandi
et al. 2021, (19) Li et al. 2020, (20) Wang et al. 2018, (21) Kim et al. 2012, (22)
Gao et al. 2018, (33) Choupani et al. 2019, (35) Ahmad and Shah 2020, (37) Zhao
et al. 2016, (48) Li et al. 2019, (67) Darvishi et al. 2020, (81) Qi et al. 2015),
CAD (coronary artery disease; (36) Fragoso et al. 2019, (43) Mir et al. 2019, (46)
Li et al. 2015), CC (colon cancer; (11) Mao et al. 2017, (21) Kim et al. 2012, (40)
Zhu et al. 2020), CRC (colorectal cancer; (4,5) Slattery et al. 2018, (6) Kijima et
al. 2017; (15) Bu et al. 2015, (61) Cojocneanu et al. 2020, (69) Dai et al. 2017,
(76) Yan et al. 2017), DM1 (type 1 diabetes mellitus; (34) Ibrahim et al. 2019,
(55) Delić et al. 2016, (56) Li et al. 2018), EM (endometriosis; (29) Xu et al.
2017), ESC (esophageal squamous cell carcinoma; (18) Zhang et al. 2013, (42) Bi
et al. 2020), GB (glioblastoma; (3) Zhou et al. 2020), GC (gastric cancer; (8) Li et
al. 2017, (24) Torruella‐Loran et al. 2019, (25) Arisawa et al. 2012, (26) Kurata
and Lin 2018, (47) Ding et al. 2019, (57) Dong et al. 2015, (63) Cai et al. 2016,
(68) Zhang et al. 2017, (77) Ni et al. 2015, (78) Yan et al. 2017, (79) Peng et al.,
2010, (80) Wang et al 2013), GM (glioma; (32) Yang et al. 2020, (50) Ji et al.
2020), HC (hepatocellular carcinoma; (9) Min et al. 2017, (10) Xiong et al. 2015,
(16) Wang et al. 2019, (17) Zhao et al. 2020, (27) Oura et al. 2019, (60) Liu et al.
2019, (64) Wang et al. 2014), HD (Huntington disease; (73) Reed et al. 2018),
HNC (head and neck squamous cell carcinoma; (28) Petronacci et al. 2020, (74)
Fadhil et al. 2020), LAC (laryngeal carcinoma; (65) Yuan et al. 2020), LC (lung
cancer; (13) Jin et al. 2018, (14) Wang et al. 2020; (30) Othman et al. 2013, (31)
Liu et al. 2018, (38) Wang et al. 2017, (44) Ghanbari M et al. 2014, (45) Ghanbari
M et al. 2017, (52) Yang et al. 2020, (66) Wang et al. 2020, (71) Pan et al. 2016),
MY (myeloma; (59) Zhang et al. 2019), OC (ovarian cancer; (23) Chong et al.
2015, (33) Choupani et al. 2019), OPSCC (oral and pharyngeal squamous
carcinoma; (51) Chen et al. 2016), OS (osteosarcoma; (39) Martin-Guerrero et al.
2018, (72) Sun et al. 2015, (75) Xu et al. 2014), OSCC (oral squamous cell
carcinoma; (49) Xu et al. 2019), PC (prostate cancer; (21) Kim et al. 2012, (54)
Wang et al. 2020), PD (Parkinson disease; (1) Beecham et al. 2015), PF (pleural
fibrosis; (53) Wang et al. 2019), POAG (open-angle glaucoma; (41) Ghanbari, et
al. 2017), RC (renal carcinoma; (70) Li et al. 2014), UR (urolithiasis; (62) Liang
et al. 2019).

As seen before, the presence of SNPs in the seed region might lead
to variations of the miRNA targeting profiles. In order to evaluate
the degree of change that a single SNP might generate, we adapted
the TargetScanHuman (Agarwal et al. 2015) pipeline to predict the
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allele-specific targets of the seed-variant candidates. When
comparing the sets of target genes due to the ancestral and derived
alleles we observed that, among the top ten miRNAs with SNPs in
their seed, only two present a cosine similarity (see Methods) above
70% (hsa-miR-10524-5p and hsa-miR-4513), while the other
candidates fall below 23%. This indicates the dramatic target shift
that a single SNP generates and might be involved in regulatory
adaptations (Table 2).

Mature ID SNP AA DA Targets
(AA)

Targets
(DA)

Overlappin
g targets

Cosine
similarity

hsa-miR-938 rs12416605 C T 2678 2594 573 0.22
hsa-miR-4472 rs28655823 G C 3257 835 322 0.19
hsa-miR-4513 rs2168518 G A 2532 2693 2118 0.81
hsa-miR-1269b rs7210937 G C 2437 3167 626 0.23

hsa-miR-4707-3p rs2273626 C A 1167 2592 356 0.20
hsa-miR-4741 rs7227168 C T 3665 2231 676 0.23

hsa-miR-4781-3p rs74085143 A G 2339 2724 558 0.22
hsa-miR-6796-3p rs3745198 C G 2331 2855 484 0.19
hsa-miR-6826-5p rs6771809 C T 3191 2032 517 0.20
hsa-miR-10524-5p rs77651740 G T 2853 3332 2234 0.72

Table 2. TargetScanHuman predicted target genes of the seed-variant miRNA
candidates. Two sets of target genes were predicted for each candidate holding
both ancestral (AA) and derived alleles (DA). The overlap between these two lists
of target genes is provided and the similarity is estimated with the cosine
similarity (see Methods)

Next, we wanted to examine these candidate miRNAs with SNPs
showing the highest population differentiation more in depth. We
reviewed the literature looking for particular phenotypes in human
populations and potential regulatory processes where these variants
might be associated with. Among the ten miRNA candidates with
SNPs located in the seed, all except one (hsa-miR-10524-5p) have
been related to disease and, specially, with different types of cancers
(Table 1), showing some of them differences among populations
attributable to genetic risk factors, like in breast cancer (BC),
colorectal cancer (CRC) and gastric cancer (GC) (Sung et al. 2021).
Particularly, three of these miRNAs (hsa-miR-4472, hsa-miR-4513
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and hsa-miR-6826-5p) were associated with BC, two
(hsa-miR-4472 and hsa-miR-4741) with CRC and two
(hsa-miR-938, hsa-miR-4513) with GC. In four out of the nine
miRNAs related to disease the miRNA association was linked to the
presence of the variant (rs12416605 in hsa-miR-938, rs7210937 in
hsa-miR-1269b, rs2168518 in hsa-miR-4513 and rs2273626 in
hsa-miR-4707-3p) (Table 1). When considering the 14 miRNAs
candidates with SNPs located in the mature regions we observed
that, all except one, for which no previous data have been reported
(hsa-miR-6811), have been previously related to disease (Table 1).
Among the associations with cancers showing differences on their
risk among populations, five (hsa-miR-196a-3p, hsa-miR-646,
hsa-miR-1269a, hsa-miR-6826-5p and hsa-miR-8084) have been
associated with BC, five (hsa-miR-196a-3p, hsa-miR-646,
hsa-miR-1269a, hsa-miR-6071 and hsa-miR-6826-5p) with CRC,
and four (hsa-miR-196a-3p, hsa-miR-646, hsa-miR-1269a and
hsa-miR-1304-3p) with GC. In four out of the 13 miRNAs related
to disease the miRNAs association was linked to the presence of the
variant (rs11614913 in hsa-miR-196a-3p, rs61992671 in
hsa-miR-412-3p, rs6513497 in hsa-miR-646 and rs73239138 in
hsa-miR-1269a) (Table 1).

In particular, for rs11614913 in hsa-miR-196a-3p (Fst = 0.24) the
derived T allele has been associated with a decreased risk of
different types of cancers, including breast and gastrointestinal
cancers, principally in Asian populations. The frequency of the
derived T allele is higher in East Asians (~ 54%) than in Europeans
(CEU ~ 44%) and remarkably higher than in Africans (~13%)
which may explain differences in the presentation of these types of
cancer among populations and would agree with selective processes
in this SNP. Similarly, for rs12416605 in hsa-miR-938 (Fst = 0.21),
the derived T allele has been reported as a protective factor for the
susceptibility to suffer a diffuse subtype of gastric cancer with the
finding of a higher frequency of the T allele in Europeans compared
with Asians (~29% vs. ~2%), which would agree with the reported
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higher predisposition to gastric cancer in Asian populations
(Torruella-Loran et al. 2019). In this regard, also the T allele of
rs73239138 in hsa-miR-1269a (Fst = 0.22) has been significantly
associated with a decreased risk of gastric cancer in a chinese
population (Table 1).

Although most of the literature is centered on cancer diseases, other
pathologies showing population differences worldwide have been
linked to some of these miRNA candidates and SNPs. The T allele
of rs11614913 in hsa-miR-196a-3p (highest frequency in Asian
populations: 54%) shows a pleiotropic effect being not only
associated with cancer but also with the risk of developing coronary
artery disease (CAD) (Fragoso et al. 2019), as well as the T allele of
rs2168518 in hsa-miR-4513 (highest frequency in European
populations: 61%), which has been strongly associated with
increased susceptibility to CAD and other related pathologies and
physiological states showing risk differences among populations
such as glucose homeostasis, blood pressure, and age-related
macular degeneration (Mir et al. 2019; Ghanbari et al. 2014 and
2017; Li et al. 2015).

Additionally, among the SNP candidates with the highest Fst scores
in the top 1% is rs2273626 (Fst = 0.57), located in the seed region of
hsa-miR-4707-3p. A neuroprotective role for the derived T allele in
the progression of glaucoma has been reported (Ghanbari et al.
2017), which goes in line with the negative association of
rs2273626 with the disease (Springelkamp et al. 2017). This SNP
shows a derived allele frequency of ~3% in African populations and
more than 50% in non-Africans (Fig. 4a), which would be in
agreement with the higher incidence of glaucoma in Africans
(Abu-Amero et al. 2015). Furthermore, the extended haplotype
homozygosity (EHH) decay on this variant indicates the presence of
longer haplotypes harbouring the derived allele in non-African
populations (Fig. 4b), which is consistent with the occurrence of
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positive selection processes favouring the neuroprotective allele
since the Out-of-Africa event.

Fig. 4 Analysis of signatures of positive selection in the candidate SNP
rs2273626. (a) World wide MAF distribution of rs2273626. (b) Extended
haplotype homozygosity (EHH) decay in both ancestral and derived alleles of
rs2273626 (upper plot) and haplotype patterns around the ancestral and derived
alleles (bottom plot) in Utah Europeans (CEU), Han Chinese (CHB) and Peruvian
(PEL) populations

Discussion

The increasing discovery of naturally occurring variation in the
human genome, together with the improvement in annotation
strategies of non-protein coding genes, has made it possible to study
the potential consequences of mutations in the human miRNAs. As
a dense layer of post-transcriptional regulation, miRNAs are
expected to be highly susceptible to the occurrence of mutations in
their sequences. However, in this analysis, along with previous
studies (Carbonell et al. 2012), we discuss the unexpected level of
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variation in the critical regions of these regulatory molecules and its
possible relationship with evolutionary processes associated with
disease.

We implemented a computational pipeline to annotate and analyse
the nucleotide diversity and selection signatures of the most updated
catalog of genetic variation from 1000 Genomes Project (phase III),
in the most complete collection of annotated human miRNAs to
date (miRBase, v.22). We integrated the analysis of miRNA
variation with the most sophisticated software for target prediction
to date, TargetScanHuman, which was adapted to predict
allele-specific target genes in seed-harbouring SNP miRNAs. This
method, unlike others previously published (Riffo-Campos et al.
2016), incorporates multiple features from target conservation to
sequence context to generate more accurate prediction scores. As a
result, this provided a robust approach to compare the allele-driven
targeting and estimate the extent of the shift generated in the gene
target profiles of seed-harbouring SNP miRNAs. We also integrated
novedous statistical methods sensitive to different modes of
selective sweeps (hard and soft) to capture a wider range of
selection signatures than previously reported for human miRNAs.

Until now very few studies have considered the integrated role of
the different genomic factors that might have shaped the global
diversity of the human microRNAome (Gallego et al. 2016). Here
we show that the expansion of new miRNAs in the primate lineage,
their location in the genome and the role of hosting transposable
elements are significantly associated with the increase in miRNA
diversity, something that might be related with the evolutionary
boost of the miRNA system in the human genome. Furthermore,
against the common belief, here we report a global excess of
variation in the seed, which appears as the most diverse among the
traditionally conserved functional regions of miRNAs. This is in
contrast with the low diversity found in the loop, which evidences
the evolutionary constraints due to its role in hairpin folding. This
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evidence stresses the importance of the secondary structure in
maintaining the stability of the RNA molecule and determining the
balance between miRNA biogenesis, particularly binding of the
miRNA with the Drosha-DGCR8 complex, and miRNA turnover
(Han et al. 2006; Guo et al. 2015). Moreover, the population
differences found in these two regions are among the highest in the
whole precursor sequence, something compatible with targeted
evolutionary-driven processes that might be implicated in
regulatory advantages. These processes are evaluated in the present
study by identifying a global enrichment in positive selection
signals (selective sweeps) among the highest differentiated SNPs
across populations, showing the potential of these miRNAs and
their regulatory networks to drive population-specific adaptations in
agreement with some previously reported works (Quach et al.,
2009; Li et al. 2012; Torruella-Loran et al. 2016).

Either by changing their targeting profiles or modifying their
expression levels, it is clear that miRNA networks are more
versatile to sequence changes than reported until now. We show that
a significant fraction of human miRNAs participate in gene
expression variation driven by the presence of eQTLs in their
sequences. This goes in line with the regulatory plasticity that
miRNAs have proven to hold and that might be determinant in
adaptive changes at regulatory level. However, the phenotypic
consequences of adaptive changes in these molecules are far to be
properly understood. The great target breadth of miRNAs and the
massive complexity of their regulatory networks make changes in
their sequences affect multiple pathways simultaneously. Therefore,
selective forces that rewire these networks might also be behind
population-specific susceptibilities to different disorders. In this
line, here we show that human miRNAs are also enriched in
variants associated with specific human traits and diseases reported
by GWAS studies. In this paper we provide a collection of miRNA
alleles that were reported to affect individuals differently depending
on their genetic ancestries.
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In this regard, some of the miRNAs with SNPs showing the highest
population differentiation have been found associated with diseases
that show different population prevalence worldwide. One of the
clearest examples is the case of rs12416605 in hsa-miR-938, whose
derived T allele has been reported to confer protection against the
diffuse subtype of gastric cancer (GC) through one of its targets, the
chemokine CXCL12 (Torruella-Loran et al. 2019), reported as
playing a critical role in cell migration and invasion (Izumi et al.
2016). This cancer seems to be promoted by the amplified
repression of CXCL12, mediated by the rs12416605 ancestral C
allele (Torruella-Loran et al. 2019), which makes C-allele carriers
more susceptible to develop GC metastasis. This would be in
agreement with the finding of a higher frequency of the T allele in
European compared with Asian populations, which is reflected by a
high‐global fixation index (Fst), and may influence the existing
geographical clinical differences between Asian and non-Asian
populations (Lin et al. 2015).

Among non-cancer diseases we found the T alleles of rs11614913 in
hsa-miR-196a-3p and rs2168518 in hsa-miR-4513, associated with
increased susceptibility to coronary artery disease (CAD). Although
this disease seems to be highly dependent on environmental factors,
with over 60% of current cases occurring in developing countries
(Beltrame et al. 2012), population differences in CAD susceptibility
are envisaged. In that context, the most striking finding is for
primary open-angle glaucoma (POAG), a complex
neurodegenerative disorder, dependent on environmental and
genetic factors, that causes irreversible blindness and affects
approximately 70 million people worldwide. Recent studies report a
highly biased prevalence of the disease towards individuals with
African ancestry, followed by Asians and Europeans (Abu-Amero et
al. 2015). Several genes have been found associated with the
progression of the disease by diverse GWAS studies. Among them,
the caspase recruitment domain family member 10 (CARD10)
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seems to confer a neuroprotective role by increasing the survival
and proliferation of retinal ganglion cells (Khor et al. 2011), whose
apoptosis is enhanced in POAG. In Ghanbari et al. (2017), the
authors demonstrated by allele-specific in vitro validation that the
rs2273626 derived T-allele generates a lower repression of
CARD10. A weaker binding to the target seems to be behind this
expression change, which we further validated with
TargetScanHuman, reporting a greater repression score by the
ancestral allele (0.632) than the derived allele (0.124). The authors
suggest that the neuroprotective role of CARD10 in the progression
of glaucoma is associated with this lower repression, supported by
the negative association of rs2273626 with the disease
(Springelkamp et al. 2017). Here we report that the allele-specific
regulation of CARD10 through hsa-miR-4707-3p might contribute
to the ethnic disparities prevalence of POAG and that this
differential regulation is driven by processes of positive selection
that promote the neuroprotective role of rs2273626 derived T-allele
in non-African populations.

Here we show that, despite the strong selective pressures that
maintain miRNA conservation, several miRNA variants might have
suffered the effect of positive selection and may account for
phenotypic diversity among human populations being, in some
cases, related to disease. Even though we identify some of these
miRNA variants and, in certain cases, functional data shows
allele-specific regulation of specific target genes, the extent to
which most of these miRNA mutations contribute to differences in
disease risk among populations remains to be investigated. One of
the main limitations of the analysis of positive selection in miRNAs
is their small size. Haplotype-based statistics like iHS and nSL rely
on the detection of long unbroken haplotypes that might span
thousands of base pairs on both sides of the selected locus, which
hinder the identification of the true target of selection. The intronic
origin of a substantial number of human miRNAs also makes
difficult the identification of the causal genomic locus of the

190



selection signature, potentially being originated either by the
miRNA or the hosting gene. The conclusive evidence to understand
the contribution of miRNAs to the recent evolutionary history of
humans is the experimental validation of the genotype-phenotype
association. However, the multiple potential targets of miRNAs and
the side effects generated by sequence changes in the non-selected
cellular processes makes this validation a difficult task. New
methods and more data are needed to fill this gap between the
genetic change and the phenotypic adaptation.

Materials and Methods

Human miRNA coordinates and functional region annotation

The human miRNA genomic coordinates were downloaded from
the last release of the miRBase annotation database (v.22, March
2018) (Kozomara et al. 2019, http://www.mirbase.org/). This
dataset contains the coordinates of 1918 human miRNA precursor
transcripts and their mature sequences that were converted to hg19
genome assembly with liftOver (Hinrichs et al. 2006). From this
conversion, four miRNA genes were dropped from the original
dataset, and 10 were not able to be located in any chromosome,
being also removed and leaving a total of 1904 precursor sequences.
A custom script was designed to extract the individual functional
regions of each miRNA. As shown in Fig. 1a we differentiated the
“seed” region (positions 2-8), the mature (“mat”) region outside the
seed, the “loop” (region between two mature sequences) and the
precursor regions (5’ and 3’ sides) outside the mature and loop. We
also considered precursor flanking regions on both sides (5’ and 3’)
of each miRNA hairpin, having the same length as the whole
precursor sequences. An additional category was created in order to
accommodate the regions that overlap between different miRNAs
(“ovlp”), these miRNAs are treated differently due to the difficulty
of analysing the overlapping regions. In the analysis of
region-specific diversity the miRNAs with “ovlp” regions (71) were

191



discarded. A different degree of mature annotation is seen in the
miRBase transcripts: 959 transcripts out of the 1904 (50.3%)
present both mature sequences annotated (5p and 3p arms),
allowing to completely describe the different regions of the
precursor sequences. However, in 945 transcripts (49.7%) only one
mature sequence is reported. In these cases, the description of the
whole precursor sequence is limited to the boundaries of the single
mature described (the specific boundaries of the loop region are not
able to be defined). Therefore, when extracting the functional
regions of the miRNA genes, the precursor region is considered as
the whole portion that encompasses from the end of the given
mature sequence to the start of the opposite flanking region (this
would retain as "precursor" the "loop" region, the unannotated
mature region and the actual premature region of that arm). The
"loop" region is only extracted when the two mature sequence
coordinates are given. These inconsistencies in the annotation of the
miRNA transcripts are taken into account throughout the analysis
(Fig. 1a).

Computational analyses of genomic context, evolutionary age
and clustering annotation

A computational pipeline was used to integrate the tools to annotate
miRNAs, locate variants in the miRNA sequences and perform the
statistical calculations for the analysis of diversity, positive selection
and target prediction. This pipeline was adapted to work in a high
performance computing (HPC) environment based on the cluster
management and job scheduling system SLURM. In order to obtain
the genomic context of miRNAs, we intersected the GENCODE 19
protein coding gene and lncRNA gene annotations (v.29) (Frankish
et al. 2019) with the miRNA coordinates with the multipurpose
software Bedtools (Quinlan et al. 2010), which allow us to find
coordinate overlaps between two or more sets of genomic regions
with a minimum overlap of 1bp (Bedtools intersect functionality).
The RepeatMasker open-4.0.5 database (repeat library 20140131)
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(Smit et al. 2013-2015), which looks for interspersed repeats and
low-complexity DNA (simple repeats, microsatelites), was also
used in order to define the overlap of miRNAs with repetitive
elements. miRNAs were classified based on their evolutionary age
by merging the classifications obtained in Iwama et al. (2013) and
Santpere et al. (2016). We grouped the miRNAs in the following
categories: Primate-specific (group 1, previous 5 to 12 groups in
Iwama et al. (2013)); Eutherians (group 2, previous 1 to 4);
Metatheria and prototheria (group 3, previous -1 to 0) and
Conserved beyond mammals (group 4, previous -2 to -3). The
remaining 281 miRNAs were non-classified due to absence of data
or discrepancies between the two studies in their evolutionary age.
In order to obtain the miRNA clusters, a python-based custom script
was designed to calculate the closest distance of each miRNA to
any other in the same strand and chromosome. We defined miRNA
clusters as groups of two or more miRNA genes separated by 10000
bp or less (Guo et al. 2014). The contributions of the genomic
context, evolutionary age and clustering to the nucleotide diversity
were obtained by applying a multiple linear regression model (lm),
which is based on the programming language R (R Core Team
2020) and seeks to estimate the relationships between these factors
(predictors) and the response variable (diversity).

miRNA genetic variation and nucleotide diversity

Human variation data from The 1000 Genomes project (third phase)
(Auton A et al. 2015) was used to annotate the human miRNA
dataset. 26 different human populations accounting for a total of
2504 individuals were considered in the analysis, including the
admixed populations from South Asia (SAS) and the Americas
(AMR). We used the last version of the program BCFtools (v.1.11)
(Danecek et al. 2021), for processing and analysing high-throughput
sequencing data, to extract the variants located within the miRNA
sequences. Only biallelic SNPs with a MAF greater or equal than
1% in individual populations and 0.5% in the global population
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were taken into account. In the case of unnamed variants, these
were kept and corrected by using the physical position preceded by
"rs_" as provisional SNP ID. When computing the derived allele
frequency and haplotype-based statistics, the human ancestral
alleles annotated in the original VCF files were used to format the
REF and ALT fields and the corresponding genotypes of the
individuals. Any SNP whose ancestral status was unknown or did
not match with the reference or alternative alleles were removed
from the dataset. The overall pairwise mismatches per SNP (pi)
were calculated with BCFtools in the whole miRNA SNP dataset,
after that the nucleotide diversity (Pi) per region was computed by
obtaining the diversity per nucleotide in the whole length (L) of
each functional region (Pi = pi/L). In this way we consider each
category of region (flank, pre, mat, seed, loop) as a single sequence
instead of calculating the nucleotide diversity in the regions of the
individual miRNAs. The nucleotide diversity per position was
calculated by aligning the precursor transcripts of the whole
miRNA dataset and obtaining the mean pi value at each site. In this
analysis, the “ovlp” regions were not taken into account due to the
difficulty of interpreting the diversity properties of such overlaps.

Pathogenicity and disease associations of miRNA variants

The catalog of Combined Annotation Dependent Depletion
(CADD) scores (Rentzsch et al. 2019) provides a quantitative way
to measure the deleteriousness of single nucleotide polymorphisms
(SNPs) in the human genome by prioritizing the functionality and
diseases causing variants. This catalog was used to assess the level
of pathogenicity of miRNA-harbouring SNPs as aproxy of their
functionality. According to Kircher et al. (2014) a threshold of
PHRED-scaled CADD score ≥ 10 is normally used to discern the
1% most deleterious SNPs of the whole human genome. We also
leveraged the GWAS (v1.0) catalog (Buniello et al. 2019) to
evaluate the participation of miRNA-harbouring SNPs in human
traits.
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Calculation of Fst, iHS and nSL scores

Population fixation indexes (Fst) were computed by using the
Hudson estimator of the Fst statistic, which is not affected by the
sample size and does not overestimate the Fst scores in comparison
with others (Bhatia et al. 2013), in all the variant miRNAs. The
calculations were performed by pairwise comparison between the
26 populations used from the 1000 Genome project dataset. These
Fst scores were normalized by frequency by performing a linear
regression of the estimator values and the global MAF, the residual
values were used as the final Fst scores. We extended the analysis of
selection with two haplotype-based statistics: iHS (Voight et al.
2006) and nSL (Ferrer-Admetlla et al. 2014). These tests rely on the
detection of blocks of homozygosity by the EHH statistic (Extended
Haplotype Homozygosity) introduced by (Sabeti et al. 2002). A
recent positive selection signal is found when these blocks present
moderately high or intermediate frequency of derived alleles. The
iHS test is designed to detect ongoing hard sweep signals,
signatures characterized by the presence of a single sweeping
haplotype at high frequency in their way to fixation. On the other
hand, nSL was designed to detect either ongoing hard and soft
sweep signatures with a greater power than iHS. In the case of soft
sweeps, these are signatures of selection on standing variation,
where more than one haplotype is sweeping at intermediate
frequencies. The calculations of iHS and nSL were computed with
the software selscan (Szpiech et al. 2014), an application that
implements different haplotype-based statistics in a multithreaded
framework. We allowed for a maximum gap of 20kb and kept only
SNPs with a minor allele frequency (MAF) higher than 5%. This
statistic is standardized (mean 0, variance 1) by the distribution of
observed scores over a range of SNPs with similar derived allele
frequencies. The standardization was performed in each population
separately by using the norm function, also contained in the selscan
package (Voight et al. 2006).
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Target predictions

The program TargetScanHuman (TSH, release 7.2) (Agarwal et al.
2015) was used to perform the miRNA target predictions. The
perl-based pipeline used by the authors
(http://www.targetscan.org/cgi-bin/targetscan/data_download.vert72
.cgi), together with the ViennaRNA package (Lorenz et al. 2011),
were implemented locally and adapted to our needs of performing
predictions from a custom miRNA dataset. This pipeline is
composed by three different steps: (i) target site identification
across the set of 3’UTR regions of the human genome, (ii) the
probability of conserved targeting (Pct) calculations and (iii) the
calculations of the context++ scores, which integrates different
genomic features implicated in targeting efficiency. miRNA
families and species information were downloaded from the
targetscan.org Data Download page. In order to calculate the Pct

parameters, the 3’UTR dataset from the GENCODE version 19
(Ensembl 75) was obtained as a 84-way alignment from the same
download page. As described in Agarwal et al. (2015), only the
longest 3’UTR isoform of each gene was used as representative
transcripts. In order to account for the miRNA variation in the target
predictions, the variable positions in the miRNA seed regions
(ancestral and derived states) were considered and incorporated into
the TSH pipeline. Two different miRNA datasets were obtained
when accounting for the ancestral and derived alleles of the SNPs
found in the seed regions. As described in Agarwal et al. (2015), the
accumulated weighted-scores per target gene were calculated as the
sum of the individual target site weighted-scores, which is the final
score associated with each target gene. As suggested by the authors,
in order to remove the potential false positives we applied a custom
per-site-based filtering strategy. Since negative weighted scores are
associated with mRNA repression, only the per-site weighted scores
below zero are considered and, from these, the per-miRNA 50th
percentile was used as threshold to obtain the putative true target

196



sites in each miRNA. In order to analyse the overlap between the
predicted targets of the derived and ancestral miRNA alleles we
used the cosine similarity (Hill et al. 2014), which is calculated by
the total number of overlapping genes divided by the square root of
the product of the number of targets of both alleles.

Analysis of expression levels and expression variation

The catalogue of expression Quantitative Trait Loci (eQTLs)
provided by the Genotype-Tissue Expression (GTEx) Project
(Aguet F et al. 2017) was used to assess the implication of
miRNA-harbouring variants in expression variation. Expression
data from 16 different human tissues (bladder, blood, brain, breast,
hair follicle, liver, lung, nasopharynx, pancreas, placenta, plasma,
saliva, semen, serum, sperm and testis) was taken from Panwar et
al. (2017). We used 2085 mature miRNAs from this dataset for
which evolutionary age was available. Reads per million (RPM)
values were analyzed for each mature miRNA separately, whose
conservation status were determined by the precursor molecule
following the classification criteria described before. A miRNA was
considered to be expressed in a specific tissue when its reads were
unequal to zero in at least one sample from that tissue. For the
comparative analyses of the expression levels among conservation
groups we took the total number of reads in the 16 tissues for all the
miRNAs within each group.
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Discussion

The first two decades of the twenty-first century have witnessed
revolutionary advances in a multitude of ambits of the human
dimension. The exponential development of computing and
sequencing technologies during the last twenty years has put
humans in a very unique and interesting position in our history, with
the acknowledgment of the complexity of our genome and its
relationship with phenotypic traits and local environments. The
publication of the first draft of the human genome was just the
beginning of an increasing emergence of computational, sequencing
and statistical methods devoted to disentangle the diversity of
elements, genetic changes and regulatory interactions that have
driven the evolutionary trajectory of Homo sapiens.

The study of natural selection in human populations has been
possible due to the application of these sequencing technologies to
groups of people from diverse genetic backgrounds. Although the
ethnic bias in projects that seek to catalog human variation is still a
subject to be fully addressed by research institutions, the extent
currently reached by available human genetic data has made
possible the analysis of signatures left by natural selection in
virtually all the globe. A project of reference used in this kind of
analysis is the 1000 Genomes Project which, as described in the
introduction of this thesis, offers a very complete description of the
genetic variation in a wide range of human populations. An
example of the use of this database in the analysis of selection
signatures is the recent creation of a publicly available population
genomics-oriented genome browser called PopHuman (Casillas et
al. 2018). This work, listed as part of the projects developed during
my thesis, catalogues a series of metrics that seek to describe the
population-specific nucleotide diversity and selection signatures,
among others.

221



Nevertheless, the analysis of signatures of natural selection has
suffered from a traditional preference of focusing on protein-coding
genes, since their signatures generally outstand in genomic scans
and are revealed as clear outliers from a neutral background. They
can also be linked more easily to phenotypic traits that help to
understand the underlying causes of these adaptations. The
remarkable impact of coding mutations and the relatively simple
interpretation of their consequences have positioned these
signatures as the protagonists of these screenings. However, the
early predictions made by King and Wilson in 1975 about the major
role of gene regulation in the evolution of the Homo sapiens seems
to have been gradually fulfilled during these last years. Again, as
the major discovery engine in recent molecular biology, high
throughput sequencing technologies have revealed the complexities
of the regulatory genome with projects like ENCODE, which
provides an increasing and rich catalog of regulatory elements in
different human tissues.

In the first work presented in this thesis, “Chromosome X-wide
analysis of positive selection in human populations: from common
and private signals to selection impact on inactivated genes and
enhancers-like signatures”, we addressed both the analysis of
X-linked signatures of positive selection using the most updated
catalog of genetic variation in human populations (1000 Genomes,
phase III), and the overly implication of regulatory regions in
adaptive processes in the sexual chromosome. In this study we
wanted to cover the necessity of capturing not only the classical
hard sweep signatures but also other modes of selection not well
represented in genomic scans as the previous ones, like signatures
characterized by the presence of multiple sweeping haplotypes (soft
sweeps). We generated a comprehensive catalog of positive
selection signals across the three main continental groups
(Sub-Saharan Africa, Europe and East Asia), which resulted in sets
of genes overly enriched in neural development and
reproduction-related processes. This catalog implies an extension of
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previously reported lists of genes under positive selection, with the
remarkable presence of a global signature of ancient selection in a
key gene involved in neural development in the olfactory system,
the TENM1. Two of the main characteristic phenomena in the X
chromosome are represented in our selection scan: the faster-X
effect and the incomplete inactivation of female-biased genes. In the
comparison with autosomes, the X chromosome reveals slightly
stronger signatures of positive selection, which corroborate the
possibility of higher efficiency of selection processes due to the
hemizygous state of males. Also, the set of escape genes identified
by previous studies seem to be specifically targeted by hard sweep
signatures, which indicates a potential advantageous effect of
female traits driven by the overexpression and higher exposure of
these incompletely inactivated genes. The implication of regulatory
elements in selection processes are comprehensively addressed in
this study. The overly description of selection signatures in
non-genic parts of the X chromosome is revealed as caused by the
presence of regulatory elements. We specifically analysed the
regulatory effect of three of the top enhancer candidates under
positive selection. The luciferase-based assays we performed
revealed that there are population-specific distributions of
haplotypes that drive differential regulatory activities in different
geographic locations, something that indicates local processes of
adaptive evolution at regulatory level.

Apart from participating in processes of adaptive evolution at
population level, cis-regulatory elements (cREs) have long been
believed to play a key role in the control of basic cellular functions
and the determination of tissue identity. Considering that all cell
types in an organism present the same genetic information, how the
different temporal and spatial regulatory programs are carried out in
order to generate such a wide repertoire of tissue-specific functions?
A factor that seems to contribute to the tissue-specific regulatory
control is the genomic location of cREs, in particular the role of
elements identified by enhancer-like signatures (ELSs). Different
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reports have associated the regulation of key genes by enhancers
located in their introns. Also, studies in Drosophila show a
distinctive location signature of enhancers that perform a
differential regulation of tissue-specific and housekeeping genes.

In the second work of this thesis, “Enrichment in intronic enhancers
controlling the expression of genes involved in tissue-specific
functions and homeostasis”, we delved into this question by
analysing the genomic location of a collection of human ELSs
reported by the ENCODE project in a tissue-specific manner. In this
work, we reported a correlation between highly shared active
enhancers across tissues and their presence in intergenic regions.
This seemed to indicate that enhancers that regulate ubiquitously
expressed genes tend to be located in intergenic regions. The
patterns of enhancer activation allowed us to classify these ELSs in
different tissue-specific clusters, which showed a preferential
location for introns in the case of highly specialized tissues like
muscle and brain, while the majority of common enhancers fall
within intergenic regions. The analysis of eQTLs from the GTEx
project and enhancer-promoter loop contacts from HiC datasets
allowed to identify the potential target genes of these enhancers.
This analysis revealed that intronic enhancers tend to regulate genes
involved in the specific processes of the tissue where they are
active, while intergenic enhancers are more devoted to regulate
genes with more basic cellular functions. The regulation of
tissue-specific processes seems to be more efficient by those
enhancers that are hosted by their target genes. The expression
patterns of these tissue-specific interactions identify more
remarkably the identity of the tissue and, added to that, the role of
these hosting target genes revealed a higher enrichment in
tissue-specific functions. On the other hand, enhancers regulating
non-host genes appear controlling broader homeostatic processes
not only associated with tissue-specific functions but also with basic
cellular maintenance processes. This regulatory specificity of
intronic enhancers is not exclusive of adult tissues. Our results on
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embryonic samples indicate that the genomic location of enhancers
is a dynamic feature that experiences a shift towards intronic
regions through development. The preferential location of
enhancers in intronic regions seems to play an evolutionary
advantageous role in terms of regulatory efficiency. The chromatin
accessibility of these active enhancers might facilitate the
transcription of their hosting target genes and therefore contribute to
the establishment of tissue-specific regulatory programs.

The human regulatory genome does not only depend on the
interplay of cis-regulatory elements in the transcriptional control of
gene expression. The emergence of the “omics” methodologies by
the mid 90’s created a new way of doing biology. In this context, the
traditional way of understanding gene regulation as unidimensional
processes was definitely drowned by the model of regulatory
networks and complex systems. In this new paradigm, the usage of
genetic information by the genome started to be understood as the
result of the cross-talk between multiple dimensions of regulatory
control. One of the levels that has arisen during the last years as an
essential regulatory layer in the cell is the post-transcriptional level.
In this line, the advent of high throughput sequencing technologies
has revealed a vast and complex transcriptional landscape populated
by a multitude of RNA sequence species that participate in
numerous biological processes of the post-transcriptional
dimension. One of the most studied classes of post-transcriptional
regulatory players are the miRNAs, which constituted a burst of
functional innovation in the human lineage. This class of RNAs
forms a dense, diverse, temporal and location faceted layer of
regulation that presents a potential ability to fine-tune gene
expression programs in order to make regulatory networks adaptive
to multiple changes in the environment.

In the third part of this thesis, “Signatures of genetic variation in
human microRNAs point to processes of positive selection related to
population-specific diseases”, we have focused on the role of this
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class of small RNAs in the regulatory adaptations of human
populations. In this study we performed a comprehensive
description of the diversity profiles of the most recent human
miRNA repertoire annotated to date. Firstly, we wanted to delve
into the question of what genomic and evolutionary features might
drive the nucleotide diversity in the human miRNAs. Our results
suggest that miRNA genomic location and evolutionary age are the
main factors that contribute to the increase of miRNA diversity. The
emergence of new miRNAs in the primate lineage, the presence of
transposable elements in their genomic context and their location
outside clusters appear as the main contributors of this diversity. As
a proxy for conservation, nucleotide diversity also exhibits
differential signatures in the different functional regions of
miRNAs. The seed region, traditionally considered as the most
conserved part of the sequence due to its crucial role in target
recognition, outstands in our study as the most diverse among the
conserved miRNA regions (loop, mature outside the seed and seed).
This higher level of genetic variation indicates the capacity of
miRNAs to accept nucleotide changes in this part of the sequence,
which potentially reshape their targeting profiles and regulatory
behaviour. The analysis of population differentiation scores (Fst)
supports this hypothesis by showing the highest Fst values across
population comparisons in the seed and loop regions, being the
latter an essential part devoted to the proper folding of the sequence.
These highly differentiated miRNAs are therefore candidates of
being under positive selection since frequency shifts in different
populations might be a response to adaptive processes in their local
environments. We show that the top differentiated SNPs are indeed
enriched in signals of expression variation (eQTLs), signatures of
recent positive selection reported by haplotype-based statistics (iHS
and nSL) and associated with human diseases (GWAS). Given the
high overlap between miRNA locations and coding gene regions,
signatures of positive selection may be, at least in part, the result of
gene adaptation and not specific selection signals of miRNAs.
Further analysis is needed to assess this result and identify specific
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miRNAs signals of selection. We further evaluated the implication
of the top differentiated miRNAs in adaptive processes and human
diseases. As expected, most of our top 5% candidates present a
remarkable shift of their targeting profiles, suggesting massive
regulatory changes driven by these miRNAs. Also, these candidates
seem to participate in different types of cancers with remarkable
differences in population prevalence and glaucoma, which appears
associated with the candidate miR-4707-3p and presents remarkable
susceptibility differences among African and non-African
populations.

Limitations and caveats

It is worth mentioning the limitations that this work presents in their
methodologies and interpretation of the results. Like in many other
genomic scans, the identification of true selection signals in the X
chromosome is a rather difficult task. The appropriate association
between the genomic signal of a putative selective sweep with the
phenotypic effect behind the selection process is the major
bottleneck of this kind of “hypothesis free” studies. The usual next
step, upon the identification of a candidate region under positive
selection, is the experimental validation of the phenotypic effect.
The validation of genic signals are normally focused on specific
non-synonymous changes, which is the most likely type of variant
that generates an appreciable phenotypic effect. However, the
identification of the true target of selection (causal variant) would
be rather complicated due to the presence of many other variants in
the region under selection. The validation of selection signatures in
regulatory regions presents additional difficulties. As described in
Chapter 1, we performed a luciferase-based assay of the top
candidate signals captured in human enhancers. We found a
significant differential activity between the ancestral and derived
haplotypes in different populations, which indicates the phenotypic
effect of the selective sweep at regulatory level. Although the most
probable target of enhancers are the closest gene, they may present
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other targets located in further genomic locations. Therefore the
selection processes behind the change in the enhancer activities
remain obscure due to the complexity of the regulatory interactions
that a particular enhancer may have, and the extent in which its
activity may affect.

The analysis of the role of enhancers in tissue-specific regulatory
programs presented in Chapter 2 depends partially on the
availability of association datasets between the enhancer and the
target gene. In our study we used two different approaches to infer
these regulatory interactions: eQTLs, which provides indirect
evidence of the genes affected by the enhancers, and the more direct
HiC loop contacts, based on the physical interaction between the
enhancer and the target promoter. Our results indicate a clear
association between intronic enhancers and the regulation of genes
implicated in tissue-specific functions. However, for some tissues,
we were not able to obtain HiC-based interactions and provide a
more detailed implication of enhancers in the regulation of their
specific genes. In this line, the statistical power of this study would
increase significantly if more interaction datasets were added to the
analysis and, therefore, we would provide a more complete picture
of the tissue-specific regulatory programs.

The limitations described for Chapter 1 are extensive to the analysis
of noncoding regulatory sequences in general and miRNAs in
particular. As described in Chapter 3, human miRNAs are predicted
to target thousands of genes and form dense networks of regulatory
interactions. Therefore, the identification of the regulatory pathways
where these population-specific changes are implicated is rather
difficult. Adaptive changes in ancient populations are sometimes
associated with maladaptations to current environments. Also, due
to the complexity of miRNA regulatory networks, the phenotypic
advantage that a genetic change confers to the population might be
also implicated with other regulatory pathways, generating
pathological consequences. However, in this context we could still
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identify probable phenotypic consequences of some of these
changes, being most of them related to common diseases with
population-specific prevalence. The signatures of genetic variation
found in our work might likely correspond to processes of positive
selection, but also the frequency shifts generated by demographic
events like bottlenecks or expansion are likely affecting the
interpretation of these results. A comprehensive analysis of not only
the miRNA sequence changes, but also the target site variation,
would approximate the interpretation of signals of selection to more
accurate hypotheses. Additionally, the experimental validation of
these changes would identify the true target of selection and narrow
the interpretation behind the potential phenotypic effect.

Future perspectives

There is no doubt that the exponential improvement in sequencing
and computational technologies during the last two decades has led
us to remarkable breakthroughs in the understanding of the
evolutionary history of Homo sapiens. However, the current
knowledge on the complexity of the human genome and the
incompleteness of genetic information in a multitude of populations
suggests that we are still dealing with the tip of the iceberg that
remains to be fully understood.

In this thesis we have delved into the implication of the X
chromosome in processes of positive selection and the role of the
regulatory genome at both miRNA and enhancer levels in processes
of regulatory adaptation and tissue-specific control. However, a
more comprehensive analysis of the noncoding genome in selection
studies are required to generate a faithful picture of the evolutionary
implication of such regions. The remarkable presence of GWAS and
selection signals outside genes suggests that there is still much work
to be done in order to disentangle the role of these parts of the
genome in traits like complex diseases. The experimental validation
of these signals is the true bottleneck in this kind of analysis. In this
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line, the development of massive experimental screening
methodologies would accelerate the discovery of true targets of
positive selection. However, the complexity of regulatory processes
would still hinder the proper association with the phenotype behind
the adaptation signal.

The expansion of the sample catalogs, the development of artificial
intelligence (AI) and the constant increase of computational power
are our allies in the task of deciphering the dark corners of our
genome. Deep learning techniques are already providing
evolutionary models with an unprecedented level of sophistication.
The application of these methodologies in the discovery of subtle
signals of positive selection, like those left by regulatory
adaptations or polygenic selection, would completely change the
paradigm of natural selection studies. Added to that, the
development of quantum computing would lead us, in a near future,
to horizons of knowledge very difficult to predict. In any case, one
of the convergent outcomes of this technological progress is the
development of personalized medicine. Although significant
improvements must be made in the legal, social and ethical aspects
of this new paradigm, it is clear that these advances would mean a
key step in the evolution of human societies.
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Supplementary Figure 1. Comparison of site frequency spectrums between
empirical and simulated data across all populations. Fixed sites have been pruned.
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Supplementary Figure 2. A) iHS, iHH12 and nSL distributions (dashed lines as
simulated scores) and B) QQ plots of the window-based score distributions in the
three geographical groups (Sub-Saharan Africa, Europe, Asia). The QQ plots
indicate an overall agreement between the observed and simulated scores. An
enrichment of high values in some groups (iHH12 ~ 30) are due to the presence
of extreme outliers in the empirical distribution (≥99%), this can be seen in the
density plots by the long tail towards positive values.
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Supplementary Figure 3. Comparison between nSL extreme tail distributions of
autosomes and the X chromosome.
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Supplementary Figure 4. Sweeping regions under putative positive selection in
the three continental groups in the dystrophin gene (DMD; A) and coagulation
factor 9 (F9; B). The reported sweeps are a result of merging the overlapping
windows under positive selection in the 99th in all the statistics used (iHS, iHH12
and nSL).

Supplementary Figure 5. Manhattan plot showing the putative positive selection
signal in African populations reported by iHS in the enhancer located at ~23kb
from the JPX gene. Marked in red is the SNP rs112977454 reported as eQTL by
GTEx. Colour bars at the bottom represent the active enhancers in five different
cell lines. Legend shows the window-based score where the SNPs belong to.
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Supplementary Table 1. Windows under putative positive selection in the
extreme simulated 99th and 99.9th percentiles across the 15 populations under
study and the three selection statistics accounting for hard and soft sweeps (iHS,
iHH12 and nSL).
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Supplementary Table 2. Windows under putative positive selection in the
extreme simulated 99th percentiles in the human autosomes of the three
populations of reference (YRI, CEU and CHB) across the three selection statistics
accounting for hard and soft sweeps (iHS, iHH12 and nSL).
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Supplementary Table 3A. Significant GO terms of the top 100 genes across all
the Sub-saharan African populations in the three selection tests used in the
analysis. We consider FDR < 0.05 as significant. In the table, we present the
population ID, the tests where the term is reported as significant, the GO term ID,
the term description and the corrected FDR value.
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Supplementary Table 3B. Significant GO terms of the top 100 genes across all
the European populations in the three selection tests used in the analysis. We
consider FDR < 0.05 as significant. In the table, we present the population ID, the
tests where the term is reported as significant, the GO term ID, the term
description and the corrected FDR value.
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Supplementary Table 3C. Significant GO terms of the top 100 genes across all
the Asian populations in the three selection tests used in the analysis. We consider
FDR < 0.05 as significant. In the table, we present the population ID, the tests
where the term is reported as significant, the GO term ID, the term description
and the corrected FDR value.
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Supplementary Table 4A. Contingency tables of escape genes under selection
reported by the three selection statistics across three extreme percentiles (95th, 99th

and 99.9th). Two categories were used: escape/inactive and selected/non-selected.

Supplementary Table 4B. Fisher’s tests applied to the contingency tables. iHS
reports significant p-values across the three extreme percentiles with increasing
odds ratios (OR). iHH12 and nSL do not show significant enrichment in escape
genes, however the odds are in line with those in iHS in five out of the six
comparisons, suggesting the presence of selection but with lack of significance
probably due to a sample effect.

Supplementary Table 4C. Escape genes reported by iHS as being under positive
selection in each continental group across the extreme percentiles.
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Supplementary Table 5. SNPs with a selection score within the 1% extreme and
with CADD score ≥ 10 in the 99.9th percentile across all populations (Intergenic
(Int), Intronic (I), Exonic (E), Downstream (D).

Supplementary Table 6A. RegulomeDB annotation of the 99th percentile genic
windows with intergenic overlap and the odds ratio (OR) between genic and
intergenic SNPs within functional elements. All populations are considered.
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Supplementary Table 6B. RegulomeDB annotation of the 99th percentile genic
windows with intergenic overlap when considering extreme scoring SNPs
(per-SNP 1% extreme tail). iHH12 and nSL show a significant OR increment in
comparison with iHS.

Supplementary Table 7. Overlapping and non-overlapping intergenic windows
under putative positive selection on enhancer regions reported by HACER in any
cell line (see Methods) across the three continental groups. Odds ratio (OR) of
intergenic and overlapping windows shows a significant increment mainly in
iHH12 across all populations.

Supplementary Table 8. Contingency tables of both observed and expected pairs
of enhancer/target-gene in the following categories: Selected enhancer and
selected gene (YY), Selected enhancer and non-selected gene (YN), Non-selected
enhancer and selected gene (NY), Non-selected enhancer and non-selected gene
(NN). A Chi square test is applied to study the dependency of both variables (Chi
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sqr value = 9.44; p-value = 0.0021).

Supplementary Table 9. Top enhancer regions under putative positive selection
(99.9th percentile). The genes marked as "**" are found under selection in
sequence in the 99.9th percentile and in the same continental group, the genes
marked as "*" are found under selection as well but in a different continental
group.

Supplementary File 1 is deposited in the Biorxiv repository associated to the
preprint:

Villegas-Mirón P, Acosta S, Nye J, Bertranpetit J, Laayouni H.
2021. Chromosome X-wide analysis of positive selection in human
populations: from common and private signals to selection impact
on inactivated genes and enhancers-like signatures. bioRxiv doi:
BIORXIV/2021/445399
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Supplementary Fig. 1. A: Multidimensional scaling (MDS) representation of the
dissimilarities among the 43 human adult samples based on the pattern of activity
of ELS-cCREs. The binary distance between a given pair of samples was
computed considering presence/absence vectors of the 991,173 ELS cCREs. The
correspondence between samples and numbers is reported in Supplementary
Table 1 in Supplementary File.pdf. B: Features of genes hosting intronic ELSs in
each cluster of adult samples: (1) number of introns per hosting gene, (2) length
of hosting gene, (3) median intron length per hosting gene

269



Supplementary Fig. 2. Z-score normalized median gene expression across GTEx
tissue categories of the HiC-ELSs target genes of the intergenic and intronic
HiC-ELSs in digestive, fibroblast and muscle skeletal/cardiac tissues. Intronic
HiC-ELSs are divided into those that target their host gene (Host) and those that
target a gene outside their hosting region (non-Host). Dendrograms show the
hierarchical clustering of target genes (rows) and GTEx tissue categories
(columns).
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Supplementary Fig. 3. A: Group-specific ELSs in embryonic samples
(analogous to Fig 1D). The barplot represents the type of outer samples observed
within sets of ESCs-, differentiated tissues- and neural progenitors-specific ELSs.
B: Features of genes hosting either common or specific intronic ELSs identified
in embryonic samples (analogous to Supplementary Fig. 1B in Supplementary
File.pdf): (1) number of introns per hosting gene, (2) length of hosting gene, (3)
median intron length per hosting gene.
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Supplementary Fig. 4. A: Scheme depicting the differentiation protocol of the
ESC into NPC and neurons. B: Overlap between ENCODE common ELSs and
H3K27ac, H3K4me3 common ELS from ESC, NPC and neurons ChIP-seq. C-E:
Gene expression analysis in hESC and ESC-derived neurons of genes targeted by
ENCODE and ChIP-seq overlapped ELSs in common (C), ESC (D) and neurons
(E). Relative quantification was performed against hESC gene expression values
and the reference gene was ACTB. This analysis was performed in triplicates. F:
Pile-up signal of the H3K4me3 for common ELS in ESC, NPC and Neurons in
each of the ChIP-seq replicate showing that signal is more intense in the
promoters (blue), and ELSs overlapped with adult (orange) and embryo (green)
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common ENCODE ELSs. In the TSS the signal is reduced beyond the 2kb
distance used as a filter for the ChIP-seq samples, as reflected by the diminished
signal detected in the analyzed ELSs, suggesting low promoter activity in the
selected ELSs.
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Supplementary Fig. 5. Overlap of intronic ELSs between embryonic and adult
tissues. Stem Cell (ESCs) and Neural progenitor intronic ELSs are not present in
any or very little adult samples (60 adult samples) independently if they are
intronic or intergenic. Instead most of the embryonic common ELSs, especially
those intergenic, are also active in adult tissues. Intermediate distribution is
observed from differentiated embryonic tissues.
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Supplementary Table 1. ENCODE catalogues of cell type-specific candidate
cis-Regulatory Elements (cCREs) for 43 human adult samples. The accession
number (ENCODE File ID) allows to uniquely identify the catalogue on the
ENCODE portal (https://www.encodeproject.org/). The color palette was inspired
by the Genotype Tissue Expression (GTEx) Project.
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Supplementary Table 2. [upper panel] Number of ELSs that are specific to each
of the 9 clusters of 33 selected human adult samples. Tissue-specific ELSs are
those active in 100% (iPSC, fibro/myoblasts, digestive, mucosa and aorta) or ≥
80% (all other clusters) of the samples within a cluster. In addition, they are
active in 0 (iPSC, fibro/myoblasts, digestive, mucosa and aorta) or at most 1 (all
other clusters) outer sample (i.e. a sample that does not belong to the considered
cluster). [lower panel] Number of ELSs active in ≥ 95% (i.e. n = 31) of the 33
selected human adult samples (common ELSs).
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Supplementary Table 3. For each cluster of samples we assessed, with Fisher’s
exact test, significant differences in the proportions of common vs tissue-specific
ELSs that overlap intronic, exonic and intergenic regions. P value
(FDR-corrected), odds ratio and confidence interval are reported for each test.
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Supplementary Table 4. Number of genes whose introns and/or exons intersect
tissue-specific and common ELSs identified in adult samples.
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Supplementary Table 5. Significantly enriched GO terms (Biological Process)
associated with genes hosting intronic ELSs identified in adult samples. Only the
top five enriched terms are shown.
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Supplementary Table 6. Significantly enriched GO terms associated with the
intergenic and intronic eQTL-ELSs’ target genes. Only the three top enriched
Biological Process (BP) terms are shown for each analysis, when no BP terms are
found Molecular Function (MF) and Cellular Component (CC) terms are shown
instead.

280



Supplementary Table 7. Significantly enriched GO terms associated with the
intergenic and intronic HiC-ELSs’ target genes. Only the three top enriched
Biological Process (BP) terms are shown for each analysis, when no BP terms are
found Molecular Function (MF) and Cellular Component (CC) terms are shown
instead.
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Supplementary Table 8. Significantly enriched GO terms associated with the
target genes of HiC-ELSs’ that are host and non-host of these ELSs. Only the five
top enriched Biological Process (BP) terms are shown.
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Supplementary Table 9. Transcription factors corresponding to the significantly
enriched transcription factor binding sites (TFBSs) reported by HOMER in each
group of ELSs and genomic location.
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Supplementary Table 10. ENCODE catalogues of cell type-specific candidate
cis-Regulatory Elements (cCREs) for 27 human embryonic samples. The
accession number (ENCODE File ID) allows to uniquely identify the catalogue
on the ENCODE portal (https://www.encodeproject.org/).
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Supplementary Table 11. [upper panel] Number of ELSs that are specific to
each of the 3 groups of 22 selected human embryonic samples. Group-specific
ELSs are active in ≥ 80% of the samples within a group, and in at most 1 outer
sample (i.e. a sample that does not belong to the considered group). [lower panel]
Number of ELSs active in 100% of the 22 selected human embryonic samples
(common ELSs).

Supplementary Table 12. For each group of samples we assessed, with Fisher’s
exact test, significant differences in the proportions of common vs group-specific
ELSs that overlap intronic, exonic and intergenic regions. P value (FDR-
corrected), odds ratio and confidence interval are reported for each test.

Supplementary Table 13. Number of genes whose introns and/or exons intersect
group-specific and common ELSs identified in embryonic samples.
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Supplementary Table 14. Significantly enriched GO terms associated with the
genes harboring intronic ELSs identified in embryonic samples. Only the top
three enriched terms are shown in each analysis (BP: Biological Process; CC:
Cellular Component; MF: Molecular Function).
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Supplementary Table 15. Selection of brain-specific and common ENCODE
ELSs overlapping with hESC-derived neural maturation ChIP-seq. Target gene is
identified by HiC interaction and only genes regulated by one ELS in our
ENCODE analysis are selected. The ELSs coordinates and the ELS ID, as well as
the genomic location (intronic vs intergenic) and the nature of the targeted genes
(host or non-host) are shown in the 5th and 6th column. The presence of peaks on
the neural maturation ChIP-seq experiment is shown and the primers used for
gene expression analysis are also shown in the last column.
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Supplementary Fig. S1 Number of miRNAs per chromosome that present both
mature sequences in their hairpin (complete annotation) and only one mature
sequence in one of their arms (incomplete annotation)

Supplementary Fig. S2 (a) Frequencies of transposable elements described by
the RepeatMasker database (v4.0.5) in the whole genome and found overlapping
miRNA sequences. (b) Chi square residuals associated with each of the genomic
context categories across conservation groups. Dendrograms show the
hierarchical clustering performed across rows (genomic context) and columns
(conservation). (c) Cumulative frequency of the closeness found between
miRNAs (distance to the closest miRNA) in each chromosome. The increase of
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frequency in chromosomes 14, 19 and X show groups of highly close miRNAs
that correspond to the main clustering hotspots in the human genome

Supplementary Fig. S3 Genomic location of human miRNA clusters
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Supplementary Fig. S4 (a) Nucleotide diversity of miRNAs hosted by the
different families of transposable elements. The “Others” category is made by
minor categories represented by less than 1% of the total miRNAs. (b) SNP
density per functional region calculated in the whole miRNA dataset. (c) Mean
nucleotide diversity of the miRNA functional regions across the SNP MAF range
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Supplementary Fig. S5 Heatmap showing the mean nucleotide diversity values
per population of the seed regions harbouring one or more SNPs of the whole
dataset. The dendrograms represent the hierarchical clustering performed on the
miRNAs (rows) and populations (columns)
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Supplementary Tables S1, S2 and S3 are deposited in the Biorxiv repository
associated to the preprint (Supplementary File 2):

Villegas-Mirón P, Gallego A, Bertranpetit J, Laayouni H,
Espinosa-Parrilla Y. 2021. Signatures of genetic variation in human
microRNAs point to processes of positive selection related to
population-specific disease risks. bioRxiv doi:
https://doi.org/10.1101/2021.05.24.445417
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