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Chapter 1

INTRODUCTION

1.1 Motivation and problem statement

Notwithstanding the early promise of location- and context-aware applications

two decades ago (see e.g., Chen et al. (2000) for a survey of early systems),

only in the last decade we have witnessed the required technological and infras-

tructural enablers to truly unleash their potential (Bellavista et al., 2012; Pejovic

and Musolesi, 2015). For the technological enablers, the increasing availability

of a variety of context-capturing machinery, in which embedded sensors, local

processing and communication capabilities are combined, allows for large-scale,

high-volume capturing and streaming of a broad variety of context data. Exam-

ples notably include sensor-packed smart vehicles, mobile hand-held devices

(e.g., smart phones, tables) and smart, wearable devices (e.g., smart watches

and bracelets, sport trackers, smart clothing), which can effectively collect an indi-

vidual’s location, along with other relevant contextual information (e.g., Rana et al.

(2016)). A second technological milestone is the rapid evolution and proliferation

of powerful mobile hand-held computing devices, a condition sine qua non to run

full-fledged, context-aware applications (Hoseini-Tabatabaei et al., 2013).
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On the other hand, infrastructure-related enablers are now in place: fully rolled-

out communication networks (e.g., 3G and 4G) with resulting ubiquitous inter-

net access, and commercially available, economised cloud-based storage and

computing infrastructures (Varghese and Buyya, 2018), provide unprecedented

means to build the next-generation of context-aware applications and services,

based on multi-user, real-time and high-frequency input streams; real-time data

handling, processing and analytics; and real-time, location- and context-based

reactiveness (Bainomugisha et al., 2013). Indeed, we see a breakthrough of

such applications in various application fields, such as mobility and transportation

(e.g., Wan et al. (2014)), health (e.g., Solanas et al. (2014); Chang et al. (2017)),

tourism (e.g., Meehan et al. (2013), smart cities (e.g., Garcı́a et al. (2017); Sagl

et al. (2015)), smart homes (e.g., Alirezaie et al. (2017)), gaming (e.g., Pokemon

Go (Andone et al., 2017), to name but a few.

Nevertheless, due to their relative new and evolving supportive technologies,

building such applications is yet a laborious job. The client-side application needs

to deal with and be built around an additional, dynamically changing concern,

namely context in general and location specifically, while server-side handling of

context data, especially in large-scale multi-user deployments, needs to deal with

streaming data, big data issues, spatial analysis and reactiveness.

In this technological context, where context information is highly available, dif-

ferent types of applications leverage and combine sensor data with data regard-

ing social aspects to provide both services and entertainment in unprecedented

ways. A type of context-aware, location based application that is gaining popular-

ity worldwide are location-aware games. Location-aware games are games that

take place in the real world space, using the location as an important aspect of

the game, and often, but not always, require the user to move physically in space

(see Chapter 2). Digitally-enabled variants of these games often rely on the cap-

ture and analysis of context data produced and processed continuously during

the game development, and the user expects the outputs driving the game to be

produced in a timely manner. In such location-aware games, stream computing

will become a vital feature for multiple reasons. First, it will allow proper manage-

ment of huge volumes of incoming, varied data that these location-aware games
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continuously collect. Second, stream computing will permit to analyse players’

behavior and other game-related statistics to enable quick, dynamic adaptation

of the gameplay to the player’s needs, experience, and contextual environment.

If we look at location-aware games from the point of view of geographic in-

formation science, an impressive arsenal of techniques, methods and tools for

capturing, storing, managing, and processing spatial information has been de-

veloped over the past decades (Karimi (2017); De Smith et al. (2018); Worboys

and Duckham (2019). Vector-based and raster-based spatial operators are usu-

ally arranged together as automated geospatial workflows. Research works (e.g.

Granell et al. (2010); Granell (2014); Yue et al. (2016); Zhou et al. (2017); Guo

et al. (2018)) have made substantial progress over the past years to go well be-

yond desktop-based environments to bring geospatial workflows to the cloud and

distributed computing environments, contributing to the field of Geoprocessing

Web (Zhao et al., 2012; Hofer et al., 2018). To this regard, leading voices in the

field of geographic information science recently called for an entirely new brand of

geospatial platforms and systems to analyse and process real-time data streams

(Batty (2016); Jiang (2015); Miller and Goodchild (2015); Li et al. (2016)). In other

words, what served in the past and still serves for scenarios in which real time is

not necessary, does not fit well with scenarios that handle data streams such as

in location-aware game applications.

Cutting-edge research in analytical platforms to facilitate the measurement,

quantification and computation of real-time data related to location and contextual

aspects are still in their infancy, especially in support for spatial and temporal

dimensions of data streams (Galić, 2016). This thesis partially explores this need

in the hope of shedding some light.

1.2 Research objectives

In the context of location-aware games, our research project pursues to address

four fundamental research objectives.

The first research objective (RO1) is related to the existing support for the

spatial aspects in games, as a fundamental requirement in the design and im-
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plementation of location-aware games. In particular, the aim is to investigate how

(and which) spatial features are taken into account in the design and development

of location-aware games, more particularly, to steer game balance and gameplay.

The second research objective (RO2) is to identify and classify the measurable

spatial features that are relevant in the design of location-aware games. More

specifically, the aim is to propose a model that covers the different dimensions of

game metrics, particularly to support spatial features.

The third research objective (RO3) is to design and develop an operational

platform implementing the established theoretical principles (RO2) for game met-

rics. Hereby, we strive for the platform to exhibit good design and architectural

features (i.e., distributed, scalable, asynchrony, good abstractions), and the final

implementation to be easy to use for developers (i.e., easy to setup, to develop

with, to learn).

The final research objective (RO4) is to validate the proposed theoretical model

and its practical implementation, by applying it in different real-world scenarios,

both within and outside the field of location-aware games, and hereby demon-

strating the concrete benefits elaborated in RO3.

1.3 Research methodology

The methodology followed in this work consisted of an exploratory literature re-

view of metrics systems, with particular emphasis on the support for spatial met-

rics, in order to understand the current state of the art and gain awareness of the

features of the different systems. Through this analysis, we discovered the current

features supported in systems developed in both commercial and academic con-

texts. Based on this literature analysis, we divided the features into four functional

areas, namely, (i) Data collection and communication, (ii) Data representation,

(iii) Data analysis and reaction, and (iv) Data visualisation and reporting. These

functional groups were then used to perform a comparison between the systems

analysed. As we will present later in Chapter 2, the systems exhibit a wide variety

of implementations, targeting games with different characteristics, which allowed

us to gain a better understanding of the different aspects of these systems.
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The analysis served to identify the common functionalities and lacks encoun-

tered in this kind of systems, and at the same time evaluate the trade-offs and

challenges of the different implementations in the context of the target applica-

tion domains. The result of this research showed a clear lack of spatial support,

only provided in a few systems, through basic spatial operations. This served as

a starting point for designing a metrics platform, based on a model centered in

easing the definition of the required data structures and metrics functions, and

providing the required tools and functionalities for supporting advanced spatial

operations. Spatial support is provided for effectively processing, storing, and

analysing spatial data in the context of location-aware games; nevertheless, the

model designed is also usable for general-purpose systems, as we will show in

Chapter 5.

The platform is implemented using a modern stack of technologies that ensure

scalability. As part of this platform, we also provide an SDK for Android and Java

for interacting with the platform through a set of RESTful services, covering func-

tionalities for data submission, retrieval, as well as management operations. To

gain access to the platform’s data processing capabilities, the platform provides

APIs and a set of JavaScript based functionalities that allow interacting with the

user-provided data model through the metrics.

For validating the metrics model and the implemented supporting platform,

we have performed two experiments. The experiments consist of solving spatio-

temporal analysis problems in two different use cases using a wide range of func-

tionalities of the platform. The aim is to demonstrate the sufficiency of the metrics

model and the tools provided for externalising and supporting the spatio-temporal

processing, and evaluating its ease of use from the platform’s user perspective.

The first experiment focuses on re-implementing and evaluating an existing, fully

functional location-aware game (described in (Martı́ et al., 2012)) from a devel-

oper perspective. We compared the original code (without use of the platform)

and the re-implementation (with use of the platform), using evaluation features

such as learnability, asynchrony, scalability, and abstraction as a basis for com-

paring the advantages and trade-offs of the proposed platform (further details in

Section 5.1). These features are used to demonstrate the ease of setup and im-
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plementing commonly included features using the proposed model, and therefore

provide a critical perspective of its effectiveness for implementing location-aware

games. The second experiment used the proposed platform to collect and pro-

cess patients’ mobile-based location data during a therapy. It serves to show the

use of the framework beyond location-based games, in the context of location-

aware applications.

1.4 Contributions

In this document we present two main contributions, related with the metrics

model defined and the platform implemented for supporting the model. Additional

smaller contributions are derived from the process of the implementation of the

platform, related to supporting software produced.

1.4.1 Major contributions

Conceptual metrics model

The underlying idea of metrics is to measure monitored phenomena of interest

for users, independent of their application domain, e.g., research, urban planning,

software development. An essential requirement in doing so is to capture the

required data by means of flexible data models, since these phenomena may

require the collection of data of diverse nature, concerning different aspects a

user wants to monitor. Example of such aspects include application-environment

interaction, (location-aware) user interface interaction, user mobility, or any other

relevant data that are necessary to quantify the context.

The concept of metrics has been commonly associated with a sole function.

Here, we extend this concept to a model composed of three main elements: the

data model or structure, the analytic function, and associated action(s). As such,

the main strong points of the proposed conceptual model of spatio-temporal met-

rics, which addresses RO2, are:

• The model can be used in a wide range of location-aware games, allowing

the representation of diverse data structures and metrics functions for most
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cases.

• The model can be shared and reused by different applications and is plat-

form independent, allowing its consumption by different systems.

• Actions definition are part of the model, which allows the notification of inter-

ested parties in case information extracted from data is considered relevant.

Analytics platform for location-aware games

We present an analytics platform for defining and computing spatio-temporal,

context-aware metrics. The proposed concept of metrics is central to allow ap-

plication developers to define data requirements that capture relevant spatio-

temporal aspects of an observed phenomenon, collect the required (client- gen-

erated) data, and execute the associated function to process streams of collected

data. Based on the processed data, the analytics platform provides asynchronous

notifications for quick reaction in end-user applications, as well as post-hoc pro-

grammatic access and data visualisation features. Hereby, the analytics platform

acts as a service, allowing application developers to outsource the burden of han-

dling, analysing and interpreting context-related data. It suffices to communicate

relevant raw data to the platform to receive context-related event notifications,

based on the defined metrics. The platform is based on a cloud-based archi-

tecture, and is specifically designed to handle large amounts of data, perform

analysis over the collected data, and realise notifications in a decentralised way.

As such, the main strong points of the analytics platform, which addresses

RO3, are:

• defined at a sufficient level of abstraction to be able to support multiple

application domains, i.e., not application-specific;

• capable of handling spatial and non-spatial metrics; designed for intrinsic

support for streaming data collection and processing;

• use of an extended metrics model, including specification of necessary data

and its structure, a function to define a relevant context condition, and asso-

ciated action(s);
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• use of an open, declarative specification of metrics to reuse them in different

location-aware games (and more broadly, application domains).

1.4.2 Minor contributions

In addition to the process of designing and developing the analytics platform, a va-

riety of general, re-usable supporting software libraries have been also produced.

These libraries are general enough to be reused in a broader context, beyond the

use cases reported in this dissertation, and thus are important side-effect contri-

butions resulting from this work. The libraries implemented are the following:

• schemaconverters (see Appendix 6.2.3): This library was built with the pur-

pose of defining Cassandra tables structures from a JSON Schema. This is

achieved by converting the structure defined by the JSON schema to Cas-

sandra DDL statements. This means that by definition, the Cassandra table

is able to store schema compliant JSON objects seamlessly.

• geo-test-utils (see Appendix 6.2.3): spatial-related utils library used mainly

for testing purposes, contains functionalities for working with routes extracted

from GPX formatted files, and helps with sample routes useful for different

situations. For example, extracting points of a route in a given time interval,

or until a condition is met. The conditions can be, for example, until the route

enters an area delimited by a point and a radius or when the route points

abandon such an area. This library was used for developing the tests of the

platform geo-fencing functionalities, using real route data, but can also be

used in other contexts.

• actors (see Appendix 6.2.3): this library contains several functionalities that

can be also leveraged by software developers in other projects. The idea is

to provide crosscutting functionalities implemented through different types

of Akka actors. Functionalities include a simple abstract API for querying

and persisting data in databases. Based on this API, two implementations

are provided, one for MongoDB and another for Cassandra, as those are

the main databases the analytics platforms works with. Software develop-

ers can use the actors library, for example, to interact with the MongoDB
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database, used in the platform for retrieving the data related to the met-

rics definition and system configuration. The Cassandra implementation

for this actor (in project cassandra-persistence-actor) is used in the metrics

data ingestion and metrics data access through the REST API. Besides,

the library also include actors for sending push notifications through Google

Cloud Messaging platform.

Next to these reusable software libraries, a large amount of software artefacts

resulted from this dissertation, which are all freely available to the software com-

munity. The links to the source code repositories of these all these artefacts are

provided in Section 6.2.3 in Table 6.2.

1.5 Thesis organisation

The thesis is organised in the following chapters.

Chapter 2 addresses RO1. It is dedicated to analyse the state of the art re-

garding the existing definitions and elements for characterising gameplay through

the evaluation of game balance. It also investigates how (and which) spatial fea-

tures are taken into account in the design and development of location-aware

games.

Chapter 3 addresses RO2. It focuses on the identification and classification

of measurable spatial features that are relevant in the design of location-aware

games. More specifically, the aim is to propose a model that covers the different

dimensions of game metrics, particularly to support spatial features. The pro-

posed model takes a central role in the conceptual view of the analytics platform

and, consequently, in the implementation described in subsequent chapters.

Chapter 4 addresses RO3. Considering the platform as an ecosystem of ap-

plications and supporting tools, we discuss its implementation emphasising the

use of state-of-the-art big data processing and analytics technologies, and exhibit-

ing desirable architectural features (i.e., distributed, scalable, asynchrony, good

abstractions), and easy to use features for developers (i.e., easy to setup, to de-

velop with, to learn, shareable and reusable metrics). It also provides a discussion

comparing the implemented platform with the ones analysed in Chapter 2.
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Chapter 5 addresses RO4. Its focus is on experimentation and assessment.

The first part describes two experiments that uses the analytics platform. The

first consists of a location-aware game implemented with and without the platform,

and the second is an application of the platform beyond games, namely in the field

of mental health. The second part evaluates and discusses the first experiment

in more detail, in order to contemplate advantages and disadvantages of using

the platform for defining and computing spatio-temporal metrics in location-aware

games. Overall, the chapter aims to validate our findings presented in previous

chapters in real-world scenarios.

Finally, in Chapter 6, we present our conclusions, where we critically present

the results and possible improvements of the analytics platform.
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Chapter 2

BACKGROUND

In this chapter, we explore the fundamental concepts related to location-aware

games and the existing metrics classifications, and place of spatial metrics in the

metrics classifications proposed by different authors. We establish a common

understanding of such concepts and use it for performing a comparative analysis

between the existing tools regarding the spatio-temporal support they provide and

the features supported. We aim to use these results to collect the desired spatial

capabilities needed in the context of location-aware games and tackle the current

limitations exhibited by the existing tools.

2.1 Introduction

Within the varied landscape of games genres and applications (Avedon and Sutton-

Smith, 1971; Salen and Zimmerman, 2004; Ritterfeld et al., 2009; Johnson et al.,

2017; Pedreira et al., 2015; Duggan, 2017), location-aware games are games

that take place in the real world space, using the location as an important aspect

of the game, and often, but not always, require the user to move physically in

space. Since the first variants of digitally-enabled treasure hunting games, such

as geo-caching (Schlatter and Hurd, 2005; Duggan, 2017), location-aware games
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are gaining momentum and popularity. This culminated in the absolute success

story of Pokemon Go, which has/had an unprecedented usage and user com-

munity (Smith, 2017). In the literature, a wide variety of terminology is used to

denote location-aware games, or slightly more specific variants of them, such as

location-based games (Schlieder et al., 2006), pervasive or urban games (Dug-

gan, 2017), or geo-games (Schlieder et al., 2005), just to name a few. We discuss

definitions, terminology, and differences in terminology in detail in Section 2.2. In

this document, we use the term location-aware games, as most general term de-

noting games whose mechanics and rules are tightly coupled with the location,

surrounding context, and/or geography. Where these games are being deployed

and played clearly matters; the where may even turn out to be the most influential

factor for the success or failure of location-aware games.

As for regular games, an important success factor for location-aware games

is their playability. González Sánchez et al. defined playability as “a set of prop-

erties that describe the player experience using a specific game system whose

main objective is to provide enjoyment and entertainment, by being credible and

satisfying, when the player plays alone or in company” (González Sánchez et al.

(2009), p. 67). This multifaceted concept involves usability, user experience and

satisfaction, and the ability for users to achieve the game goals. As such, one of

the measures of playability is game balance. Keeping a game “balanced” involves

finding the right trade-off between important dimensions of a game, such as dif-

ficulty, challenges, progress, and incentives, which is ultimately reflected in the

level of user engagement with the game. Game balance is especially challeng-

ing for game designers as games are getting more complex and sophisticated,

both in a technical and narrative (i.e., storytelling) way. Therefore, it requires con-

stant re-evaluation and follow up. Existing research has therefore focused on the

evaluation of game balance. Jaffe et al. (2012) explored assessment methods

for games in general, while Kiefer and Matyas (2005) put the focus on spatio-

temporal design parameters involved in games. Central to the previous and other

methods for assessing game balance is to (continuously, on a regular basis or on

demand) capture data related to relevant aspects and features of the game. For

example, the movement of a player in the game scenario, the players interactions
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and their characteristics, and game rewards achieved by players can help to inves-

tigate and detect potential imbalances and deficiencies in the game. Game data

collection is not only relevant at the design stage, but most importantly while the

game is being “played” (deployed), to allow game designers to investigate and

monitor those game aspects and dimensions that are difficult to assess during

design time, such as user engagement level, among others.

The amount of data collected in games can be potentially big, depending on

how many aspects are to be tracked and the number of users/players playing. For

example, monitoring progress, access to resources, and players’ trajectories are

some aspects in which game developers might be interested. In order to normal-

ize and make it comparable, gathered data is processed by means of metrics(or

game metrics). The term metric has been broadly used in different contexts and

fields, such as urban studies (Reis et al., 2016), software engineering (Garcı́a et

al., 2017), ecology (Bhatti et al., 2017), and human computer interaction (Seaborn

and Fels, 2015; Nacke and Deterding, 2017), but in all cases, the rationale behind

metrics boils down to establishing a standard way of or common practice to de-

scribe certain relevant (high level) parameters of the game to be monitored, and

allow comparison of the collected data.

The interplay between metrics and location-aware games is the main focus

of this chapter. It is worthwhile to note that this research is not about game

metrics in general (e.g., El-Nasr et al. (2013b)). As location-aware games are

tightly-coupled to spatio-temporal dimensions, metrics for location-aware games

will necessarily handle spatio-temporal characteristics of monitored data. Thus,

geospatial data needs to be effectively collected, analyzed and computed. Spa-

tial metrics have received little attention so far in the literature (with outstanding

exceptions (Drachen and Schubert, 2013b)).

After an overview of the terminology and related concepts in Section 2.2, in

order to establish a common understanding about location-aware games and met-

rics, the main contributions presented in this chapter are covered in Sections 2.3

and 2.4:

• In Section 2.3, we analyze and compare the spatio-temporal support in data

handling and metric analysis for different existing commercial and academic
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game analytics platforms and tools, and their application to location-aware

games. The comparative analysis evaluates whether such platforms of-

fer the required features for collecting, processing and visualizing spatio-

temporal data. Next, we discuss current limitations of these platforms and

tools to set the basis for defining an analytics platform for location-aware

games.

• In Section 2.4, we propose a classification of spatially-related metrics, framed

in the realm of other non-spatial metric categorizations from the literature.

Our intent is to establish the desired spatial capabilities, which would allow

game developers to perform analysis that could otherwise not be done with

non-spatial game analytics.

Finally, we provide a discussion in Section 2.5 where we emphasize the need

of improved models for spatial metrics, and provide our vision of a platform for

supporting such models. While the scope of this chapter falls within the two afore-

mentioned contributions, our research objective is to use this analysis to set out

the conceptual platform (later analysed in Chapter 3) to enable metrics definition

and execution for location-aware games in terms of components, services and

required functionality, accompanied with the implementation (provided in Chapter

4) of an operational analytical platform to support the definition, monitoring and

computation of metrics for location-aware games.

14



2.2 Definitions and Terminology

In this section, we introduce related terms and definitions and set out a common

ground for subsequent sections.

2.2.1 Gameplay

Gameplay is a popular term used throughout the industry (Fürnkranz, 2011),

which “typically refers to the behavior of a game (e.g., the rules, difficulty, consis-

tency, fairness, goals, and constraints), rather than the presentation of the game

(e.g., graphics, artwork, and sound)” (Southey et al. (2005), p. 123). The role of

gameplay is well known and, as such, game designers have put a considerable

effort in designing, testing and refining gameplay. Quality assurance and playtest-

ing, a testing technique during the game design process where players (testers)

are asked to “think aloud” about their perception of different game aspects, are

crucial parts of the design and development process. The evaluation of gameplay

is a continuous process that leads to several cycles of adjustment and refinement

during a game’s life-cycle.

Prensky takes a motivational viewpoint in that gameplay is “all the doing, think-

ing and decision making that makes a game, either fun, or not. In a puzzle game,

the gameplay is the physical and mental activities in the puzzles. In a shooter, it

is the players and the opponents’ speed and abilities. In a strategy game it is the

available options and tactics” (Prensky (2002), p. 9). For the author gameplay

is also a dynamic, evolving concept that needs to be continuously considered as

it includes “not only providing engaging activities, characters, and situation but

also balancing and constantly adjusting the game so that it continually keeps the

player in the ‘flow zone’ ” (Prensky (2002), p. 9).

Other authors took complementary views of gameplay. For example, game

designers Rollings and Ernest (2003) defined gameplay as “one or more causally

linked series of challenges in a simulated environment”. This definition suggests

that gameplay also includes the actions that players take to address the chal-

lenges and accomplish the game goals. Costkyan (2002) focused on the user/-

player perception by stating that “a good gameplay keeps a player motivated and
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engaged throughout an entire game”.

From the aforementioned, and as acknowledged by Kiili (2005), gameplay

lacks a precise definition among the gaming community. It seems so broad that

related literature works have addressed it from distinct viewpoints and perspec-

tives. Nevertheless, there is a common belief of the importance of gameplay (or

overall game experience), and it is undeniable that “its significance should not be

underestimate” (Kiili, 2005). Typically, gameplay includes the game’s goals and

how to achieve them, the time to complete part(s) of the game, the “cost” (e.g.,

health, game money, resources), and the probability of succeeding. It is consid-

ered essential for the game to be “fun” and “enjoyable”, and the primary concern

for game developers is to improve gameplay. As such, they need to measure and

monitor those aspects and features of interest of the game, in order to improve

gameplay as a whole. The focus of this document —within the context of metrics

for location-aware games—is precisely on those aspects/features of gameplay

that either have spatio-temporal connotations or are suitable to be analyzed us-

ing spatio-temporal methods and techniques (as part of metric analysis).

2.2.2 Location-Based Games, Location-Aware Games and

Geo-Games

Schlieder et al. (2006) defined location-based games as those that “involve body

movements beyond figural space –that is, beyond the space of computer screens

and small 3D objects”. The authors highlighted the importance of locomotion or

movement “in vista space, typically a single room or sports field, or in environmen-

tal space, such as a neighborhood or city” (Montello (1993) defines vista space as

“space that can be visually apprehended from a single place without appreciable

locomotion and environmental space as space too large and otherwise obscured

to visually apprehend without considerable locomotion”), where the game takes

place. Other authors define location-based games differently (Jacob and Coelho,

2011; Coulton et al., 2008). For them, these games do not necessarily require

movement; they just need to take into account the user’s location and/or environ-

ment. Anticipating our argumentation line, we envision a more exclusive definition

of location-based games where user’s movement is an important but not manda-
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tory aspect of the game.

Kiefer and Matyas (2005) distinguished between location-based games and

geo-games, where the latter are a specific case of the former. According to the

authors, in geo-games “a fixed number of players move between a fixed number

of locations taking up and putting down resources when they reach a new location.

Resources cannot move around without any involvement of a player, which is one

basic constraint for geo-games”. The authors call this constraint “spatial coher-

ence”, and declare it a defining characteristic of geo-games. Apart from the spa-

tial coherence, Schlieder et al. (2005) identified temporal coherence as a second

constraint in geo-games. Temporal coherence asserts that performing an action

needs time at least as long as the synchronization interval, a predefined constant

for the game. Looking at the particular context of this definition though, the au-

thors were introducing a framework for location-based games covering boards

games. This context (board games) explains the (perhaps overly) restrictive def-

inition (i.e., fixed amount of players, focus on picking up or dropping resources,

resources that can only be moved by players, turn-based games). While a general

appreciation of spatial and temporal coherence as part of the game mechanics

makes sense, we do not share the focused view and narrow definition of geo-

games, which we think should be open to a larger array of location-based games

besides (geospatial) boardgames.

To avoid confusion with the restrictions associated, at least by some authors,

with location-based and geo-games, we use the term location-aware games in

this document, going beyond of players’ and resources’ position and/or move-

ment to cover an ample range of games where the game, and the players are

aware of their location and (possibly) surroundings (i.e., their environment and

the objects in it), and vice versa, the surrounding environment is aware of play-

ers. This broader definition includes any games where location plays a role, and

thus includes location-based and geo-games, as well as other games where loca-

tion (and environment) is important, such as pervasive or urban games (Duggan,

2017). In the remainder of this document, we embrace the term location-aware

game, unless the contrary is explicitly stated.
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2.2.3 Metrics in Location-Aware Games

In its mathematical interpretation, the term “metric” is equivalent to “a nonneg-

ative function describing the distance between neighboring points for a given

set” (Weisstein, 2017). Regardless of the target domain or discipline, the recur-

rent and invariable aspect of a metric is that is a function, i.e., it processes gath-

ered data to produce comparable results (indicators) for evaluation, monitoring and

decision-making processes. Applied to the gaming context, we find the following

definitions in literature (Table 2.1):

Table 2.1: Key aspects of metric definitions extracted from the literature.

Authors Metrics

Tychsen and Canossa (2008) “are numerical data obtained from user interaction with games”,
“denote a standard unit of measure”, and
“are utilized for quantitatively measuring and evaluating processes”.

Drachen and Canossa (2009) “are instrumentation data about the user behavior and user-game interaction”, and
“provide detailed quantitative information about the player (user) behavior”.

Hochleitner et al. (2015) “are interpretable measures of something, whereas telemetry is the raw data”, and
“represent telemetry data that have been transformed somehow”.

Fürnkranz (2011) “are the aspects of gameplay of interest to the designer”.

Medler et al. (2011) “are monitoring player behavior (e.g., logging in-game events)”.

Kaner and Bond (2004) “are measurement functions”.

Stanton et al. (2014) “are distance functions”.
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Table 2.1 shows a mixture of interpretations of what a metric is. In game

user research and games telemetry (Tychsen and Canossa, 2008; Drachen and

Canossa, 2009; Hochleitner et al., 2015; Fürnkranz, 2011; Medler et al., 2011),

a metric is termed both as “data used in” and as “data collected for evaluating”

an aspect of the game. As such, the term metric is equated to data collected or

data obtained, suggesting that metric (as a function) and (input or output) metrical

data are used interchangeably. A possible reason might be that in some cases,

raw acquired data is sufficient as a comparable metric, and further data analysis

and computation is not required. In such cases, it may be difficult to distinguish

between metric and metrical data.

To avoid aforementioned terminological inaccuracies, and establish and delim-

iting the scope and understanding of what a metric is in the context of location-

aware games, we first provide clarity on what we understand under “metric”. We

consider the most general definition for metrics is the mathematical definition,

which is coherent with the one in the software engineering field (Kaner and Bond,

2004). This definition reflects the fact that collected (metrical) data is raw infor-

mation, which in most cases is used for further evaluation rather than being the

metric itself. To clarify, consider as an illustrative example a metric that provides a

ratio of values, e.g., amount of movements per minute. Clearly, such a composite

metric needs to be calculated from basic data, i.e., movement derivation from sin-

gular sensor values, temporal average computation. Notice that data is dynamic

but re-usable (e.g., sensor data), whereas metrics are calculated for a specific

purpose (e.g., amount of movements per minute, amount of lateral movements)

and often static (i.e., execution of the same function over and over). Furthermore,

normalization of data among sessions, or even among games, through metrics is

what makes comparison of data possible.

Metrics are related to gameplay in the fact that they serve to measure certain

parameters of the game that are considered to, at least partly, assess gameplay.

While re-usable metrics are conceivable (e.g., total distance covered), it is unreal-

istic to think of a set of predefined metrics for measuring and assessing any facet

of gameplay, in any game. Especially in location-aware games, where location

and spatial context may notably influence which aspects of gameplay are going
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to be monitored and how. Consequently, the ability to support the design and cre-

ation of custom metrics is a quintessential feature for game analysts, designers

and developers, and a clear separation of concerns between metrics and metrical

data is therefore essential to allow game developers the degree of flexibility and

customization required for metric design and creation. In this document, we focus

on metrics, and associated geospatial data, which are relevant for games with a

spatio-temporal dimension; in other words, metrics for location-aware games.

With the concepts of “metrics” and “metrical data” clarified, and our focus on

their spatio-temporal dimension outlined, we subsequently study the support in

existing commercial and academic platforms for geospatial game metrics and

analysis.

2.3 Geospatial Support in Current Games

Analytics Platforms and Tools

Given the importance of measuring different aspects of games during design, de-

velopment and operational phases, several companies and research institutions

have invested significant resources in platforms and tools for metrical data col-

lection and analysis. Nevertheless, these commercial and academic tools are

strongly influenced by specific purposes and aims, or are general in scope and

cover only main scenarios and use cases. In either case, none of the surveyed

tools were specifically designed for location-aware games, that is, spatial and/or

spatio-temporal features were not natively included even though some support

and workarounds may exist. To the best of our knowledge, there is no tool or

platform to specifically handle metrics for location-aware games. In this chapter,

we conduct a comparative analysis of popular games analytics tools to examine

what is currently covered and, next, discuss limitations and missing features in

the realm of location-aware games.
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2.3.1 Background for Tool Comparison

The comparative analysis allowed us to identify a set of commonly available fea-

tures to ideally support game analysts and developers to be able to compute met-

rics. While analyzing the tools, we identified these features and grouped them into

four functional areas, which schematically form a conceptual architecture shown

in Figure 2.1 that frames the process for tool comparison.

Typically, most of the surveyed platforms and tools follow a client-server archi-

tecture, in which the game clients collect raw data and transmit it to the server

platform for data storage and processing (i.e., metric computation). In the context

of games analytics, a client-server architecture eases computation and further

access to data by keeping data centralized and accessible through an abstrac-

tion layer, which typically takes the form of service endpoints or data access

APIs. Such centralized data availability is particularly important in the case of

multi-player systems, where data synchronization among multiple players needs

to be supported. Additional reporting and visualization of processed data (metric

outputs) are usually developed as extensions or add-on components to the analyt-

ical platform. The general conceptual architecture shown in Figure 2.1, which is

not yet intended to hypothesize an operational analytical platform for geospatial

metric processing, helps us to delimit the functional areas of existing and desir-

able features for the comparative analysis.
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Figure 2.1: Schematic architecture for (location-aware) games analytical platforms and

tools.

The first functional area is concerned with data collection and communication.

Both are basic operations of game clients, which collect raw data for monitoring

and tracking user interactions and behavior with(in) the game and transfer it (in-

volving data transformation and wrangling if required) to the analytical platform.

These two actions together are often termed as telemetry in the game commu-

nity (Drachen et al., 2013b), whereas the GIS community tends to use single

terms: data collection (or data gathering) plus data transferring. Game develop-

ers implement game clients coupled to specific game engines (e.g., Unity) or op-

erating systems (e.g., Android, iOS) using custom SDKs (Software Development

Kit) associated with the analytical platforms or tools.

The second functional area, data representation, is shared between the client

and server side developments of analytics platforms. It deals with the data model

to structure the monitored phenomena of the game. Game clients capture raw

data and instantiate data models accordingly. Analytical platforms compute met-

rics based in these shared data models, either as inputs or outputs.
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The third functional area, data analysis and reaction, resides at the server

side; they are the main tasks of a game analytical platform. The term analytic

refers to metrics computation i.e., the execution of distance functions over col-

lected data. Reaction is concerned with the ability of the platform to react when

certain conditions are met. Examples of reactions are callback and notification

mechanisms, or programmed actions that are being triggered subject to metric

outputs.

Finally, data visualization and reporting are the focus of the fourth functional

area. Game developers are often provided with monitoring and visualization tools

to explore processed data in varied forms (visual, table-form etc.) in order to make

informed decisions to improve overall gameplay.

All features of the surveyed tools and platforms fall within one of these four

functional areas. Beyond feature categorization, these functional areas can be

considered as main building blocks for conceptually defining an operational plat-

form for metric computation for location-aware games, in which spatial and/or

spatio-temporal support is a cross-cutting layer, thereby ensuring support for han-

dling spatial and/or spatio-temporal data and techniques in any of these functional

areas.

2.3.2 Comparative Analysis

In the following Tables 2.3–2.7, we compare popular platforms and tools for game

metric analytics, ordered by functional area. Table 2.2 summarises the relation

between functional areas and their features. Data representation is shared by the

client- and server-side functional areas.
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Table 2.2: Functional areas and contained features for game metrics.

Functional Areas Features

Data collection and communication

• Data collection strategies

• Data communication strategies

• Client-side development support

Data representation

• Default event (data model) types

• Custom event types definition

• Spatial support (for data modelling)

Data analysis and reaction Analysis

• Default metrics and games analysis

• Custom metrics definition

• Spatial support (for analysis)

Reaction

• Reactive rules

• Spatial support (conditions & actions)

Data visualisation and reporting

• (Open) Data Access

• Visual analytics

• Spatial support (for visual analytics)

With respect to the data collection and communication functional area, the

supported features encountered in the surveyed tools are described next, and

Table 2.3 summarizes the type of support for data collection and communication

per feature:

• Data collection. Strategies for data collection can be either time-based or
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event-based (Jimenez et al., 2011). The differentiation between the two is

mainly determined by the fact that data associated with the former strategy

is produced at high rates or does not exhibit high variabilities over short pe-

riods of time, while on the contrary, data required for event triggering is usu-

ally collected and produced “eventually”, based on a certain frequency or

as a result of an action in the game. The latter is therefore more meaningful

to game developers in the context of the game. An example of time-based

data collection is capturing user location at a certain frequency, while an ex-

ample of event-based data collection is the usage of a given weapon, which

can only be collected in case the player changes and selects the particular

weapon. Game analytics platforms usually do not distinguish between time-

and event-based data collection, which is considered a responsibility of the

game developer; they only provide facilities for defining event types and

communicating captured data (see further on), independent of their data

collection strategy. Indeed, all reviewed game analytical tools follow this

approach. We thus do not include data collection strategies in Table 2.3.

Nevertheless, the way data is collected may influence how it can be pro-

cessed, and therefore influence the choice of analytical methods. We visit

this later on in Section 2.3.3.

Another way of qualifying data collection is based on who, rather than how.

Drachen and Schubert (2013a) categorize collected data into player-derived

data and system-derived data. Player-derived data refers to data that, at

least partly, captures (some) player behavior. Four dimensions are hereby

considered relevant: who, what, when and where. Examples of player-

derived data include players’ items owned, position, trajectories, etc. We

go into more detail on the spatial dimensions of player-derived data when

discussing the data representation functional area further on in this section.

System-derived data refers to data generated by the game, and is useful for

e.g., monitoring technical issues (e.g., network balancing, bug tracking) or

the game as a whole. Game analytics engines do not distinguish between

player- and system-derived data; it is the responsibility of the game devel-

oper to define appropriate event types and communicate the relevant data
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to track.

• Data communication. It indicates how gathered data is imported or fed

into the analytical tool. As mentioned earlier, most of the surveyed tools

follow a common architectural pattern: a client part collects data, and a

server part performs analytical tasks and provides services for getting the

collected data and store it permanently into repositories. Mechanisms for

data communication, i.e, how gathered data is transferred from the client

to server, can be roughly classified in two groups: data streaming or data

upload. In case of data streaming, events are immediately streamed to

the server, as real-time reflection of events in the game is important (e.g.,

real-time game strategy) and overall system performance is not relatively

affected by the frequency of data transmission. It has the advantage of

enabling on-the-fly analysis over the streamed data.

On the other hand, in the data upload group, bits of data are gathered over

a certain (usually short) period of time, packaged together, and sent to the

server. It is useful in cases where events occur at high rates and/or involve

large amounts of data, and therefore immediate and frequent unitary com-

munication might disrupt system performance. On the downside, the lack of

live streamed data limits the possibility for real-time data analysis. Indeed,

this approach mainly serves analysis a posteriori, and often includes the

use of log files (or databases), and batch bulk updates to a server platform

for non-real-time analysis. The main reason for using this strategy for data

communication is that the amount of data produced could lead to undesir-

able levels of network load or decreased performance.

• Client-side development support. Supporting tools for game develop-

ment facilitate the integration of data communication protocols in game clients.

This is essential to free game developers from knowing the particularities of

the ways to transfer collected data to the analytics back-end platform. Com-

mercial tools mostly provide software development kits (SDKs) for target

mobile operating systems (e.g., iOs, Windows, Android) and game engines

(e.g., Unity, GameMaker Studio, etc.). REST Application Programming Inter-

26



faces (APIs) are another way to support game development, which are sup-

ported in varied programming languages (e.g., JavaScript, C#, Java). In

general, SDKs and REST APIs are often viewed as secondary features but

are extremely useful to make developers’ life easier for, e.g., being in com-

pliance with the protocol to validating and submitting collected data.

Table 2.3: Comparison of data collection and communication related features among aca-

demic and commercial tools for game analytics. NA/NS = Not Applicable, Not Specified

or Unknown.

Tool/Citation Data Communication Client-Side Development Support

WebTics (McCallum and Mackie, 2013) Streamed events HTTP clients

TRUE (Kim et al., 2008) Data Upload NA/NS

DataCracker (Medler et al., 2011) Streamed events NA/NS

Skynet (El-Nasr et al., 2013c) Streamed events NA/NS

GameAnalytics (gam, 2017) Streamed events
SDKs for Android, iOs, Xamarin, Unreal Engine,
Unity; REST API

HoneyTracks (hon, 2017) Streamed events SDKs for Android, iOS, Unity C#; REST API

Xsolla (xso, 2017) Data Upload HTTP

GameGuts (Albuquerque et al., 2014) Streamed events Java

DeltaDNA (deltadna, 2017) Streamed events
SDKs Unity, Android, iOs, GameMaker Studio;
REST API

Table 2.4 summarises the type of support for the functional area of data repre-

sentation in the surveyed tools, according to the following features:

• Default event types. Most surveyed platforms include the definitions of

events as logical data structures (data models), called event types. Some

of them provide default event types, of which each has an associated data

model and often, but not necessarily, related processing methods and/or

predefined metrics. For example, GameAnalytics (gam, 2017) provides a

“business” event type that is used to track (and validate) real-money trans-

actions in games. Based on this business event type, GameAnalytics sup-

ports various types of revenue metrics, such as average daily revenue per

daily active user or per paying user.

It is worth noting that the way game analytics platforms offer event types

influences their extensibility and customizability. The most common logi-
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cal data model for event types are records, with a fixed number of fields

that represent the monitored phenomenon. Record-based event types are

useful in many cases, where the data model is relatively static, and a num-

ber of event types are predefined for being used in previously known met-

rics. Another commonly used logical data model is based on arrays of key-

value pairs (e.g., DataCracker - see Medler et al. (2011)), which are more

versatile and customizable data models than those based on data records

mentioned above. From the surveyed game analytics platforms, McCallum

and Mackie (2013); El-Nasr et al. (2013c); hon (2017); gam (2017) provide

record-based; Medler et al. (2011); Kim et al. (2008); deltadna (2017); Al-

buquerque et al. (2014) provide key-value pairs 1 like event types; and xso

(2017) provides a combination of both.

• Custom event types. Contrary to default event types, custom event types

allow game developers to define their own data model to handle any type of

monitored aspect of the game. Custom event types provide high-level sup-

port for game-specific events, and the (composite) data they require. This

feature is linked to the definition of custom metrics (see the third functional

area below), as the combination of both gives game developers the freedom

to extend the capabilities of a game analytics platform to practically monitor

and compute any facet of a game. The support for this feature is varied

among the analysed platforms, although most of them restrict the creation

of new data models to those based exclusively on simple data types (i.e.,

boolean, string, integer). Support for more complex and nested data struc-

tures was practically inexistent. Reasons might be the absence of a flexible

processing model and/or rigid storage schemes to handle data structures

beyond that of a sequence of simple data types.

• Geospatial data support. As mentioned earlier, Drachen and Schubert

(2013a) categorised collected data for game analytics into player-derived

data and system-derived data. From the four dimensions for player-derived
1We consider structured documents like XML, as in the case of Kim et al. (2008), or even

unspecified structures that are dynamic (which is not always documented in commercial system)

and similar to arrays of key-value pairs for the purpose of this comparison.
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data (who, what, where, when), two are particularly relevant from the spatio-

temporal point of view: “where is this happening?” and “when (at what time)

is that happening?”, where this/that is any relevant (player-specific) event

in the game. For the former (where), the authors pointed to “the spatial

position, user location, movement, speed, orientation”. In case of games

where no avatars exist, location may refer to the screen coordinates when

users touch or swipe on the gaming device. The latter (when) looks for a

temporal reference, which may refer to actual or in-game time, point in time,

time interval, timespan, etc. As space and time are so tightly integrated

in games, custom data models for event types should ideally be able to

natively manage and store data structures to support the aforementioned

spatio-temporal characteristics.

That is why we envision the support for geospatial data as a cross-cutting

layer (see Figure 2.1), i.e., where spatio-temporal and/or spatial character-

istics of collected data are supported, either by default or by custom event

types. In practice, though, native support is scarce, and game developers

are mostly limited to create simple representation of space: pairs of co-

ordinates. To do so, we found two approaches in between the tools that

provide some support for capturing geo-spatial data. A first group of tools

(McCallum and Mackie (2013); Kim et al. (2008); Medler et al. (2011); El-

Nasr et al. (2013c); deltadna (2017) is able to capture coordinates as a pair

of simple attributes (location/space attributes), which is far from being able

to really handle geospatial data. A second group (gam (2017); xso (2017);

Albuquerque et al. (2014) does not provide explicit support, but is possible

to store the coordinates by mean of other mechanisms, usually custom at-

tributes. In these cases it is up to the developer to implement the best way

to store spatio-temporal information.
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Table 2.4: Comparison of data representation related features among academic and

commercial tools for game analytics. NA/NS=Not Applicable, Not Specified or Unknown.

Tool/Citation
Default Event
Types

Custom Event
Types

Geospatial Data
Support

WebTics (McCallum and

Mackie, 2013)
NA/NS Yes(simple)

Location/space

attributes

TRUE (Kim et al., 2008) NA/NS Yes
Location/space

attributes

DataCracker (Medler et al.,

2011)
NA/NS Yes (simple)

Location/space

attributes

Skynet (El-Nasr et al., 2013c) NA/NS Yes
Location/space

attributes

GameAnalytics (gam, 2017)

Resource,

Business,

Progression, Error

Yes (simple)
via custom

attributes

HoneyTracks (hon, 2017)
User, Session,

Business, Social
Yes (simple) NA/NS

Xsolla (xso, 2017)
Business, User,

System
Yes (simple)

via custom

attributes

GameGuts (Albuquerque et al.,

2014)
NA/NS

Yes

(simple-DSL)

via custom

attributes

DeltaDNA (deltadna, 2017) Many types Yes (simple)
Location/space

attributes

For the third main functional area, data analysis and reaction, we separately

discuss data analysis (Table 2.5) and reaction (Table 2.6). Relevant features for

data analysis extracted from the survey are:

• Default metrics and games analysis. All game analytic platforms support

a set of predefined metrics, algorithms and analysis tools that are available

to process collected data. Predefined metrics are re-usable and possibly

customizable metrics that address commonly measurable game aspects

and are to be used out of the box. Most (commercial) platforms focus on

monetary aspects (e.g., virtual money spent per session, amount of pur-

chases), yet some also offer other default metrics (e.g., related to user en-

gagement, mean time spent by a user in the game per day, social aspects
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such as invites and shares, or interaction with interface elements). Next to

default metrics, all platforms also provide algorithms and analysis tools that

can be used to analyze captured data, and/or to build more complex (cus-

tom) metrics with (see next bullet). For example, descriptive statistical meth-

ods are commonly offered (measures of central tendency, e.g., average,

median; measures of variability, e.g., standard deviation, etc.); as they are

common, we do not show these in Table 2.5. Further algorithms and anal-

ysis tools include funnels (i.e., a series of steps towards a certain goal, a

kind of behavior analysis), predictive analysis, events correlation, frequency

analysis, segments analysis (the user base can be segmented to target the

analysis on such segments, or make metrics comparison between different

segments, i.e., paid users, and trial users), A-B test (a method for comparing

two versions of the game, to determine which one performs better regarding

some criteria), OLAP Cubes (a technique for analyzing multi-dimensional

data), and Funnels (a technique for describing the navigation path followed

by users in a system). Note that visual analytics are considered within the

next functional area (Table 2.7).

• Custom metrics. Custom metrics allow developers to capture game-specific

analytics, or extend already available metrics. A custom metric is hereby

understood as a custom-defined distance function with an arbitrary level

of complexity. Developers have a certain specification mechanism to their

disposal (e.g., a restricted programming language), as well as the default

game analytics tools and methods (see previous bullet) available to define

their custom metric, and may extend default or other custom metrics. It is

similar to coding user functions in any programming language. Custom met-

rics may be using input data captured as default event types, yet often they

are based on custom event types as the underlying data model, required

to model or structure a particular phenomenon. As such, the definition of

custom metrics is linked to the ability to define custom event types. The pos-

sibility to specify new event types and custom metrics, beyond the default

ones, is obviously a desirable characteristic for an analytics platform.
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• Spatial analysis. As mentioned when discussing custom event types, we

consider geospatial data support, and spatial analysis support as cross-

cutting layers. With respect to metrics, this refers to regular metrics sup-

porting geospatial data types, and specific spatial analytical technique or

method supported or integrated in the analytics platform. As Table 2.5

shows, native support for spatial analysis is practically inexistent.

Table 2.5: Comparison of data processing and analysis related features among academic

and commercial tools for game analytics. NA/NS = Not Applicable, Not Specified or

Unknown.

Tool/Citation Default Metrics and
Custom
Metric

Spatial
Analysis

Game Analysis

WebTics (McCallum and

Mackie, 2013)

Simple events correlation,

frequency analysis
NA/NS NA/NS

TRUE (Kim et al., 2008) Video referencing NA/NS NA/NS

DataCracker (Medler et al.,

2011)
NA/NS NA/NS NA/NS

Skynet (El-Nasr et al., 2013c) Yes NA/NS Yes

GameAnalytics (gam, 2017) A/B-Tests, Funnels NA/NS NA/NS

HoneyTracks (hon, 2017)
Custom segments,

comparison, A/B-Tests
Yes NA/NS

Xsolla (xso, 2017) Aggregations, etc. NA/NS NA/NS

GameGuts (Albuquerque et al.,

2014)
Aggregations, custom Yes NA/NS

DeltaDNA (deltadna, 2017)
Funnels, Custom segments

predictions, etc.
NA/NS NA/NS

Once metrics or analytical functions are computed, the outputs are usable in

immediately, where game developers may program in-game reactions according

to observed behavior (e.g., of players), or a posteriori, where output data from

analysis is used for inspection, visualization or reporting. We treat the latter in

more detail in the next functional area, and focus here on the reaction dimension.

Reactions from the game system often take the form of programmed rules
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that usually define what actions to take (storage, notification, altering game pa-

rameters or mechanics, etc.) when certain conditions, which often depend on the

metric outputs, are met. As such, reactive behaviour can be regarded as reactive

rules, either programmed or declarative, which are composed of conditions and

actions. The ultimate aim for a game developer or analysts is to improve game-

play by provoking and/or incentivizing player behavior change through timely feed-

back/actions to players. Related features for reactive behaviour are depicted in

Table 2.6:

• Reactive rules. When certain logical conditions are met over the results

of data analysis, more specifically metric outputs, the system has the ability

to react by triggering purposeful actions. Typical actions with a specific aim

are data storage (where possibly only a subset of the outputs is stored;

supported by all surveyed platforms and thus not mentioned in Table 2.6) or

notifications (e.g., to game developers or players). Further actions are often

required to realize detailed, in-game consequences of observed behavior,

for example to perform additional data transformation over the outputs of

the metric or to trigger additional analytical tasks in cascade. In such a

case, the ability for a game developer to program custom reactive actions

is essential to optimize the game, and possibly trigger game mechanics

updates. Obviously, actual alterations to the game are within the real of the

game implementation, not the analytics platforms. If a platform supports

some form of reactive rules (i.e., logical conditions and consequent actions),

we specify the type of action (storage, notification, or custom) in Table 2.6.

• Geospatial support. Output data from metrics may contain geospatial

data structures, such as trajectories or polygons (e.g., representing the ge-

ographical area covered by a player). Such geospatial data may be subject

to meet certain spatial or spatio-temporal conditions (e.g., within, intersect,

crosses) to check, for example, whether a player’s traveled distance during

a game session is greater than 1 km, or the percentage of time a player re-

mained inside a delimited area (often called “fence”) is above average. Sim-

ilarly, triggered actions can also be spatially-enabled. For example, actions
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that redistribute monitoring points or recalculate (a metric’s) geofencing ar-

eas. For convenience, we split this feature into two columns in Table 2.6:

geospatial support for conditions and actions, respectively.

Table 2.6: Comparison of reaction related features among academic and commercial

tools for game analytics. NA/NS = Not Applicable, Not Specified or Unknown.

Tool/Citation Reactive Rules
Geospatial
Support

Geospatial
Support

(Conditions) (Actions)

WebTics (McCallum and

Mackie, 2013)
Notification NA/NS NA/NS

TRUE (Kim et al., 2008) NA/NS NA/NS NA/NS

DataCracker (Medler et al.,

2011)
NA/NS NA/NS NA/NS

Skynet (El-Nasr et al., 2013c) NA/NS NA/NS NA/NS

GameAnalytics (gam, 2017) NA/NS NA/NS NA/NS

HoneyTracks (hon, 2017) NA/NS NA/NS NA/NS

Xsolla (xso, 2017) NA/NS NA/NS NA/NS

GameGuts (Albuquerque et al.,

2014)
Custom NA/NS NA/NS

DeltaDNA (deltadna, 2017) NA/NS NA/NS NA/NS

The fourth and last functional area comprises data visualization and reporting,

and includes the following features (Table 2.7):

• Data access. Open access to data is useful to allow users to get access

and query observed data, metrics results, or both, for further analysis by

third-party tools. While this allows to harness the (extended) analytical

power of external tools, in case the capabilities of the game analytics plat-

form prove to be too general and/or insufficient, it also hinders integrability

for real-time analysis and reactive rules generation. Indeed, access to an-

alytical/output data is usually done for later off-line analysis. We broadly

contemplate two strategies for data access: the first is based on on-line in-

terfaces for querying analytical data (e.g., service end-points), and the other

to enable a full export or bulk download.
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• Visual analytics. It differs from games analysis in that the latter is thought

to be part of metric computation to process collected/observed data. Visual

analytical tools are situated at the end of the analytical pipeline (Figure 2.1),

taking metric outputs as input (possibly after data transformations) to carry

out in-depth analysis. Visual analytics comprises a large and varied arsenal

of data visualisation and inspection techniques (Dill et al., 2012; Fry, 2008),

in order to gain new insights and discover new patterns for game developers,

which would otherwise be difficult to detect and/or go unnoticed. Most of

the surveyed tools and platforms only support basic techniques, such as

different types of charts to visually summarise and aggregate data.

• Geospatial support. Similar to the geospatial support for game analysis

presented earlier, here we refer to specific spatial and spatio-temporal sup-

port for visual analytics, commonly referred to in literature as visual geoan-

alytics (Andrienko et al., 2010). Examples include visualization for moving

point datasets (e.g., players position in multiplayer games) or time series

(e.g., virtual land ownership or visibility over time). This area of research is

quite extensive and developed methods and techniques have been proven

to be effective for decision making (Andrienko et al., 2007). Only a few an-

alytical tools and platforms (e.g., El-Nasr et al. (2013c)) offer basic support,

in the form of map visualisation of simple data types like points or heatmaps

(density maps of spatial frequency).
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Table 2.7: Comparison of data reporting and visualization related features among aca-

demic and commercial tools for game analytics. NA/NS=Not Applicable,Not Specified or

Unknown.

Tool/Citation
(Output)
Data
Access

Visual Analytics
Geospatial
Support

WebTics (McCallum and

Mackie, 2013)
NA/NS NA/NS NA/NS

TRUE (Kim et al., 2008) NA/NS Reports NA/NS

DataCracker (Medler et al.,

2011)
NA/NS Charts, filtered reports NA/NS

Skynet (El-Nasr et al., 2013c) NA/NS Charts, filtered reports
Point maps,

heatmaps

GameAnalytics (gam, 2017) Yes
Charts, filters,

comparison
NA/NS

HoneyTracks (hon, 2017) Yes
Charts, reports, cohorts,

comparison
NA/NS

Xsolla (xso, 2017) Yes Charts, reports NA/NS

GameGuts (Albuquerque et al.,

2014)
NA/NS NA/NS NA/NS

DeltaDNA (deltadna, 2017) Yes
Charts, reports, funnels,

predictions
NA/NS

2.3.3 Limitations

Looking at Tables 2.3–2.7 we identify some limitations of the reviewed analytical

tools and platforms with respect to their geospatial support, and hence, to the

creation, computation and visualisation of metrics for location-aware games.

A first general observation is that virtually all columns that refer to “geospa-

tial support” are empty, i.e., geospatial characteristics and techniques are poorly

supported. This is a direct result of the fact that none of the surveyed tools and

platforms were specifically designed for defining and computing spatio-temporal

metrics. Nevertheless, while built-in support is largely missing, some platforms al-

low to treat simple geospatial concepts, such as data models to capture and store

location and points. In some platforms (Table 2.4), the definition of a data model
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for capturing location (e.g., player position) is straightforwardly possible, since a

position is a rather simple data structure (i.e., event type) composed of a pair of

coordinates. In most cases, default event types suffice as a point data model.

Other types of more complex geometries, such as lines, poly-lines, or polygons

are not mentioned or not supported. This suggests that the most popular game

analytical platforms are merely restricted to native point geometries.

Nevertheless, the ability to structure and manage a player’s position does not

necessarily imply that this bit of spatial information is properly exploited and an-

alyzed. Beyond of the simple visualization of player position onto a map (Ta-

ble 2.7), which represents a simple analysis method over point geometries, more

advance spatial analysis techniques like topological operators, are absent. This

deficiency—the lack of a geospatial toolbox and the support for complex geome-

tries beyond point data models—considerably limits the use of the surveyed an-

alytical platform for defining advanced custom metrics for location-aware games,

even though (non-spatial) games analysis and metrics are generally well cov-

ered (Table 2.5). We therefore argue that, to the best of our knowledge, spatio-

temporal analytical methods for metric computation are not the focus, and thus

not properly supported, in the current game analytical tools. Simply put, spatial

analysis is passed over in favor of mainstream analytics methods for traditional

metric scenarios in games (Table 2.5).

Another observation is whether there exists a relation between data collection

strategies and the subsequent type of game analysis supported. For example, if

a platform supports streamed events as an strategy for data communication (Ta-

ble 2.3), does it mean that stream computing (e.g., Garofalakis et al. (2016)) is

also covered? Does the platform meet the demand for fast monitoring and storage

of huge amounts of data in real-time? Unfortunately, we do not observe a clear

pattern with respect to this matter. Indeed, those platforms that claim to support

streamed events do not exhibit any type of real-time data analytics. Regardless

of the data communication strategies (data streaming, data upload), the type of

game analytics supported is quite homogeneous over the tools but constrained to

well-known, off-line, and non-spatial techniques for metric analytics (see El-Nasr

et al. (2013b)), especially for monitoring and measuring any variable related to
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the actual behavior of a player (gameplay). We may consequently argue that real-

time analytics and stream processing is a concern that requires support through-

out all functional areas.

We have just stated that the type of game analytics supported is quite homoge-

neous, in the sense that most tools and platforms offer pretty much the same core

set of game analysis techniques (see Table 2.5). The other side of the coin is the

support for user-defined or custom metrics. Here, the degree of personalisation

is quite marked, resulting in two opposed groups of tools. One group (McCallum

and Mackie (2013); Kim et al. (2008); Medler et al. (2011); El-Nasr et al. (2013c))

does not consider customisation at all, and thereby, custom metrics and associ-

ated data representations are not configurable (or the process of customisation

introduces a significant complexity and additional effort from the game developer).

The other group (gam (2017); hon (2017); xso (2017); Albuquerque et al. (2014);

deltadna (2017)) supports both custom event types and custom metrics, which

makes sense for the specification of user-defined metrics. Obviously, as we men-

tioned earlier, custom metrics as the way to specify new event types and custom

functions (metrics), beyond of default ones, is a desirable characteristic for game

analytics platforms.

In conclusion, what is missing for supporting metrics oriented to location-

aware games? Responding to this question is challenging since there is no native

analytical platform for location-aware games. Paradoxically, the ever-increasing

importance of the where and location in varied game genres (e.g., urban games,

adventure) situated in real places, is not being reflected with the same intensity in

the research and development of analytical platforms for spatio-temporal metrics

computation. Current trends suggest that both commercial and academic game

analytical tools are shyly glancing at the geospatial field, but there remains a lot

to be done, especially to cover (advanced) spatial analysis throughout all func-

tional areas. In the next section, we attempt to identify what spatial techniques

are required, by proposing a categorisation of spatial metrics, in order to facilitate,

promote and push for game analytical platforms (gradually) supporting various

types of spatio-temporal metric computation.
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2.4 Classification of Metrics for Location-Aware

Games

From the argumentation of the previous section we can summarise that location-

aware games and games in general share many aspects, specifically what con-

cerns measuring gameplay. This makes perfect sense as the improvement of

gameplay is a recurrent objective for game developers and analysts regardless of

the nature of game. However, we also remarked important differences between

the two, especially due to the fact that spatial analysis deals with the real-life di-

mensions of play, i.e, the actual location, environment and geography are defining

characteristics of the mechanics of location-aware games. Logically, spatial ana-

lytics techniques are required to compute and monitor spatial-related aspects of

the game. Nevertheless, our analysis showed that this is precisely the missing

feature in the game analytics platforms and tools considered in Section 2.3.

In this section, we propose a classification of spatially-related metrics for

location-aware games and position it with respect to other existing classifications

of non-spatial metrics. By doing so, we pursue two main objectives:

1. To make spatial metrics visible by placing them at the same level and em-

bedding them within the larger context of metrics for games. Higher visibility

may lead to the next generation of analytics platforms to support native spa-

tial data and spatially-related metrics, increasingly recognising the strategic

importance of managing location and spatial concepts in games.

2. To bring the gaming and GIScience research communities’ attention to

location-aware games as an interesting and relatively unexplored research

field, with ample possibility for additional research and practical tool devel-

opment that may directly impact applications in a wide variety of application

fields, such as (smart) cities (e.g., urban games), health (e.g., games to

stimulate physical activity) or sociology (e.g., games to stimulate social in-

clusion).
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2.4.1 Existing Metrics Classifications

As emphasised in Section 2.2, we focus on this document on metrics related to

gameplay, i.e., to evaluate game design, user experience and user behaviour.

Gameplay considers the player as the center of the metrics process. Drachen

et al. (2013a) exemplified this vision in their high-level classification for game

metrics (top part of Figure 2.2). Looking at the Gameplay box, the authors classi-

fied metrics for gameplay into three main groups: Interface, In-game and System.

Interface metrics are about interactions of the player with the game interface (e.g.,

interactions with menus and buttons, mouse sensitivity; In-game metrics cover

players’ actions and behaviors during the game (e.g., players’ position, their inter-

actions with game elements such as objects or resources); and System metrics

cover the actions game systems initiate to respond to player actions (e.g., refresh

game resources once a player reaches a pre-defined set of conditions).

In the literature, there exist various proposals for game metrics classification

mainly related to Interface and In-game groups, as these two accrue most of the

existing examples of game metrics. For example, Tychsen and Canossa (2008)

proposed four specific game metrics, namely navigation, interaction and narra-

tive metrics, which fall into the In-game group, and interfaces metrics, which are

quite similar to the Interface group. Besides, the authors strongly linked these

types of metrics to data collection strategies. Navigation metrics often require

data collection via time-based strategies (at regular rates), while interaction met-

rics are well suited for event-based data collection strategies. Nacke et al. (2014)

took a more social perspective of in-game metrics and proposed specific types

of game metrics such as social metrics (e.g., number of friends, of challenges,

etc.) and viral metrics (e.g., number of invitations, shares, kudos, etc.), among

others. The focus was to measure social aspects and behaviors of games, which

were often based on the Facebook platform, thereby capturing the strong social

dimension of this type of games. Bernhaupt and Mueller (2016) classified metrics

depending on genre/type of game they are used in. They distinguish between

generic gameplay metrics (for features that are common in all games, e.g., game

session time, total playing time), genre-specific gameplay metrics (for games in a

same category that share common features, e.g., in shooter-based games: time
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spent using a certain weapon), and game-specific gameplay metrics (metrics that

are based on game-specific unique features and that are custom designed, e.g.,

usage of special abilities of a character). This classification can be considered

orthogonal to Drachen et al. (2013a)’s classification, as it provides an alternative

view, according to context of use (type/genre of game) rather than functional con-

text (Interface, In-game, System), on the metrics landscape.

Figure 2.2: Spatial metrics classification embedded into existing classification of game

metrics centered on gameplay/player (extended from Drachen et al. (2013a)).

2.4.2 Spatial Metrics Classification

Rather than proposing a new classification, we consider Drachen et al. (2013a)’s

high-level, schematic classification as an appropriate starting point to embed spa-
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tial metrics within the realm of traditional metrics for gameplay. We hereby em-

phasise that both types of metrics can and should work in cooperation, and we

recognize the importance and impact the functional context (interface, in-game,

system) of metrics may have in practice (e.g., for game analytics platforms im-

plementations). As such, we extend Drachen et al. (2013a)’s classification to

include the spatial notions critical for location-aware games, see bottom part of

Figure 2.2. Nevertheless, we note that the inclusion of the spatial context of

location-aware games, and the spatial metrics that address them, requires a slight

re-interpretation of the three metric groups (Interface, In-game, System).

First, we note that the In-game and Interface categories need to be more

broadly interpreted. Furthermore, both are more tightly coupled and influence

each other. Indeed, in location-aware games, the real world may be (at least

partly) embedded in the game, whereby it influences or becomes the playing field.

In other words, the real world becomes part of the In-game context. Therefore,

In-game metrics need to address “regular” In-game features, yet also include

spatial metrics aimed at monitoring behaviour of a player in the real world, which

is possibly influenced by the surrounding environment. Furthermore, when real

and virtual worlds blend, metrics mixing virtual features with real-world (spatial)

features are necessary.

On the other hand, interactions with the game become tightly coupled with the

real world, as e.g., game resources (avatars, enemies, etc.) may be embedded

both in the virtual and the real world. For the latter case, they are strongly de-

pendent on the (spatial) characteristics of the real world. Therefore, while metrics

for Interface and In-game were treated in relative isolation in traditional games,

this is no longer exclusively the case in location-aware games. Notwithstand-

ing this tighter coupling between Interface and In-game contexts, both also still

exhibit distinctive features which may be studied independently. For example,

game developers may utilise location-based technology (e.g., augmented reality,

context-aware mobile interfaces), and as such, how players interact with the user

interface of the game application is still important and subject to monitoring within

the realm of Interface metrics.

The resulting classification in Figure 2.2 shows the newly added metrics groups,
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addressing geospatial features of location-aware games, along with their relation

to each other and to the original groups. The geospatially related groups refer to

what the target of the analysis of the metrics is, namely “Real & virtual world inter-

action”, “Spatial In-game” and “Spatial awareness”. Arrows among them denote

the interaction between these metrics, which can not always be seen in isolation.

For example, player’s actions (Real & virtual worlds interaction) in location-aware

games leave spatial footprints that can help to better explain player behaviour in

the game (Spatial in-game) than when that latter aspect is studied without spatial

context.

We hereby note that, from a GIScience point of view, the different types of

metrics defined in the well-known classification of de Smith et al. (2015) based

traditionally on univariate, bivariate, and multivariate spatial analysis, are applica-

ble. Choosing the right type of spatial analysis, based on the number of spatial

variables involved, is up to game developers/analysts and the scope of the metric.

For example, trajectory-related metrics can measure movement of a player, or a

group of players (clustering), or be used in combination with event data (number

of deaths, picked up resources, etc.). In these cases, the process of comput-

ing trajectories may involve one, two or more variables and thus require different

spatial techniques (see de Smith et al. (2015)), even though all these examples

belong to the same logical group of metrics (Spatial in-game). In other words,

our metrics are grouped based on functional context, just as in Drachen et al.

(2013a)’s original classification, rather than on the technicality of the used analy-

sis technique, as in de Smith et al. (2015).

2.4.3 Spatial Metrics

Spatial event types, i.e., (logical) data models that capture geospatial concepts,

along with geospatial processing algorithms and analysis tools, are essential to

support spatial metrics. Spatial metrics are particularly important for the Spatial

in-game group, where they use spatial properties of the player collected data

to compute and reason about the spatial behavior of players. Nevertheless, as

discussed throughout Section 2.3, support for geospatial event types and pro-

cessing is equally relevant for the Interface and System metrics groups, where
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they allow to take geospatial properties of interface- (e.g., where do game inter-

actions take place?) and system-related (e.g., where are system-related actions

taking place?) actions into account. In the remainder of this section, we discuss

different types of spatial metrics according to the spatial properties they utilize

(summary in Table 2.8), and primarily relate them to the most important metrics

group, Spatial in-game metrics.

• Location-based metrics (point-based metrics). This category includes

metrics that take into account specific locations (i.e., most often represented

by coordinates), for example, the location of a player or resource. Point-

based metrics are the simplest, yet they may reveal interesting properties

of the player, interface and game as a whole. For example, point-based

metrics may determine stationary behavior (e.g., an ”ambush” in a shooter-

based game); proximity or line of sight among and between players, re-

sources, and environmental features; and altitude difference or altitude-

related computations. Point-based metrics may reveal relevant game prop-

erties, such as significant locations (e.g., locations that attract players) or

imbalances (e.g., locations which provide an (unfair) advantage or disad-

vantage). Example papers supporting this type of metrics include Coulton

et al. (2008), where location-based metrics are employed to analyze play-

ers behavior in concrete location-based games. In particular, the distance

between players as they moved around the game area, and also the mean

distance from the average position, is used as a measure of “how adventur-

ous each player was during the game”. Some other examples are presented

in Drachen and Canossa (2011), in that location is used for analyzing where

deaths occur in the game, or where the users request help, for determining

those places where possible imbalances might be present. In Drachen and

Canossa (2009) the speed is used for determining spots in the game where

the player was less challenged.

• Trajectory metrics. This category includes metrics that take the trajec-

tory of the players (or resources) into consideration, for example, the dis-

tance between the trajectories of two players; the time spent in a trajectory;

rhumb; the convergence or divergence of trajectories; trajectory patterns;
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etc., can be candidates for metrics, or elements to consider in metrics.

Example papers supporting this type of metric include Hoobler et al. (2004),

where the player trajectory analysis can provide information about the play-

ers or team strategies, as well as resources (e.g., trajectories of fires/shots).

In Drachen and Schubert (2013a) the importance of trajectory analysis is

highlighted in order to detect bots, analyzing different types of user behav-

iors (cooperation, flock, etc.), and detection of user strategies that can be

indicators of game imbalance problems. Coulton et al. (2008) also used tra-

jectories as a basis for analysis of players behavior (and unusual behaviors)

during the game.

• Space-related metrics (area-related metrics). This category includes met-

rics which perform calculations based on areas, for example, in the centre,

forest, sea; overlapping/disjoint/contained areas (e.g., action radius); inclu-

sion/exclusion of a player/resource in an area (i.e., geofencing); explored/-

covered area; exploration speed; area exploitation; spreadness/distribution

of resources (i.e., rewards); and so on. Example papers supporting this

type of metrics include Hoobler et al. (2004), who suggested clustering tech-

niques for evaluating the distribution of game resources or for design vali-

dation (“planned for affordance”). This is especially important for location-

aware games, where access to resources usually involves a physical effort.

In Wallner and Kriglstein (2012) clustering techniques are used for identify-

ing areas where the users behave more fiercely in the game. Similarly, Wall-

ner and Kriglstein (2014) used clustering techniques for providing insights

about the distribution of changes in states of the game. In Drachen and

Canossa (2009) the analysis is based on comparing player’s behavior in se-

lected areas of the game. Finally, geofencing techniques are exemplified by

Map Attack (ESRI, 2017), while Martı́ et al. (2012) discussed its application

for noise pollution monitoring.
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Table 2.8: Summary of examples of spatial metrics.

Type Examples Example Papers

Point-based

Distance: between players’

position; mean distance from the

average position

Coulton et al. (2008)

Location: where (point cloud)

deaths occur, players request help;

where players are less challenged

Drachen and Canossa

(2011), Drachen and

Canossa (2009)

Trajectory
Analysis: distance, convergence,

etc. of either players’ or resources’
Hoobler et al. (2004)

Patterns: trajectory patterns for

user behaviour

Drachen and Schubert

(2013a); Coulton et al.

(2008)

Area-related
Clustering: clustering techniques

for resources/players distribution

Hoobler et al. (2004);

Wallner and Kriglstein

(2012)

Geofencing: inclusion/exclusion of

players/resources in a area (fence);

virtual urban zoning

ESRI (2017); Martı́ et

al. (2012)

2.5 Discussion

2.5.1 Spatial Metrics to Improve Gameplay in Location-Aware

Games

As it can be expected and was reasoned throughout this chapter, many of the

metrics used in regular games can also be used in location-aware games. Indeed,

it can be argued that general metrics in games are a subset of location-aware

games metrics. For example, metrics related to user engagement (daily game

usage, actions performed, levels played, time spent per session) or monetary

metrics (statistics about money spent in digital items) can be used in location-

aware games, as they are general enough to be used in most kind of games.
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Nevertheless, the particularities of location-aware games demand the inclusion of

spatial properties, both for existing metrics (e.g., for monetary metrics, statistics

about money spent at a specific location) and for specific (spatial) metrics (e.g.,

for game balance, the spatial distribution of player actions/events, such as deaths,

time spent, etc.).

Given the nature of the playground in location-aware games (real, physical

world), the changing conditions, and the characteristics of the terrain (i.e., type

of terrain, altitude, slope) can influence gameplay. Spatial metrics (see Sec-

tion 2.4.3) come into play to measure these characteristics, and encompass the

three previously mentioned types of spatial metrics. Although the conditions might

be the same for all players, in cases where the game can be played in different

places or times, the playground conditions can be determinant with respect to the

players’ performance and/or be a source of imbalance, e.g., assessing the “effort”

needed for reaching the resources (given the physical component that may be

involved with location-aware games), determining valid routes, etc. Terrain type,

altitude, weather conditions and so on can be monitored by spatial metrics to ex-

tract useful information, such as mean slope of the terrain, light conditions (day,

night), terrain visibility (e.g., open field, a city, a mountain, forest), humidity, tem-

perature, wind speed, altitude etc. For example, Herold et al. (2005a) evaluated

the role of spatial metrics in the context of urban land use change modeling. The

spatial metrics are defined as “measurements derived from thematic-categorical

maps, exhibiting spatial heterogeneity at a specific scale, and resolution.”

Player’s characteristics such as physical attributes and conditions (Jacob and

Coelho, 2011) (i.e., weight, locomotion characteristics), and geography aware-

ness/knowledge of the place where the game is taking place, can also be consid-

ered as contributing factors for the “effort or difficulty” the player has to employ to

participate in the game, and regardless of other types of games, are aspects to

consider when evaluating the playability and the engagement of the users.

The spatial awareness between players and the actual spatial dimension and

configuration of the game is significant in location-aware games. Again, this en-

compasses the three previously mentioned spatial metric types, and quantifies

the relation of the player with the geographical space, such as interaction with the
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map (map visibility, capacity for exploring/obtaining information about the map),

previous knowledge of the map/place, availability of the location and the location

device. For example, Kremer et al. (2013) empirically discussed how the spatial

decisions of a player (i.e., deciding which point of interest to visit next, or where

to start searching) have an impact in the overall learning experience.

Finally, on the downside, there exist difficulties and open issues in designing

location-aware games. Jacob and Coelho (2011) provide a concise account of

these difficulties: adapting the game to the player’s location; lack of availability of

location-based information; player’s fitness to game physical requirements; hard-

ware limitations; and data protection and privacy concerns. Besides, we add

software challenges for materialising location-aware games. With an increased

amount of (spatial) data to consider, location-aware games face the challenge

of managing, processing and taking into account such data in real time. While

massive on-line multi-player games have successfully coped with the challenge

of handling data of millions of players, the increased strain of the additionally mon-

itoring, processing and taking into account geospatial data provides a significant

software challenge, which yet needs to be addressed.

2.5.2 Implication for Future Geospatial Game Analytics

Platforms

In this chapter we have explored the literature for existing support, and catego-

rized and characterized spatial metrics. As further steps, we plan to develop

a conceptual platform that addresses all required features to measure spatio-

temporal aspects of location-aware games, as uncovered in this chapter, and

develop the actual platform. As such, let’s shortly discuss the implications of

the analysis and findings presented on the architecture and implementation of

geospatial analytics platform presented in this document.

As a first observation, scalability is an important factor to take into account,

as location-aware games may attract a potentially large number of players (e.g.,

Pockemon Go had thousands of daily active users (Smith, 2017)), with huge

amounts of data gathered. Evidently, the same is true for other classes of games,

such as (regular) massively multiplayer online games (MMOGs), yet the compu-
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tational complexity significantly increases for location-aware games as geospatial

data and computations come into play. In addition, the desired reactive capa-

bilities of the analytics platform, (e.g., perform notifications based on conditions

applied to the results of spatial metrics computations), puts an additional compu-

tational strain on future geospatial analytics platform. All of this has direct implica-

tions on the architecture of the system, which necessarily needs to deploy tech-

niques for big data and computational decentralization (e.g., data distribution, dis-

tributed computing, etc.) with associated technologies (e.g., distributed NoSQL

databases, such as Hadoop HBase or Cassandra, cluster computing frameworks,

such as Apache Spark).

Secondly, a rich built-in support for geospatial data representation and event

types, beyond simple point-based coordinates (e.g., spatio-temporal trajectories,

polygon, 3D objects, etc.), with associated geospatial computation methods, is

required. Offering such native support allows performance gains due to inter-

nal optimizations in storing and handling geospatial data, and easier use and

exploitation of geospatial features (by developers) through pre-defined geospa-

tial functions and metrics. A wealth of work in this respect is available in the

Geographical Information Science (GIScience) community (e.g., data storage op-

timizations, spatial algorithms), which can be re-used in the future geospatial

metrics framework. Furthermore, compatibility with existing standards may facil-

itate interfacing with and use of existing open source and commercial software

specialized in geospatial data storage and computations.

Thirdly, in extension to the previous point, extensibility is essential to support a

broad variety of location-aware scenarios (including those using potentially new or

upcoming technologies, such as augmented reality). While predefined geospatial

event types are important (e.g., for optimization purposes), a lack of extensibility

limits the flexibility of the system to handle unforeseen or changing requirements.

The envisioned platform should be flexible for modelling any type of data and

ideally provide convenient mechanisms to handle and propagate it to other plat-

forms components so that such information about data model can be purposed

for metric definition, computation, and validation. This implies support for custom

metrics definition, both native and custom event types and geospatial computa-
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tions. This level of integration necessarily requires a flexible architecture, which

allows data models and metric definitions to be accessible all over the platform

(i.e., both at client and server side). While this level of flexibility might carry some

negative implications (e.g., storage of arbitrary complex data models may impede

performance), the benefits would overpass by far the limitations incurred by lim-

ited extensibility, as generally found in the current state-of-the-art.

Finally, and hand in hand with custom event types as discussed in the previous

point, the future geospatial analytics platform should support custom geospatial

computation and custom metrics specification and execution at the server side,

accompanied by convenient tools and APIs to support developers in handling

the full metrics life-cycle (i.e., definition, execution, spatial analysis, interpretation

of results). In designing such tools and APIs, openness of data and analytics

services hereby need to be balanced with data privacy, as these may be suspect

to location-based data mining attempts/attacks (e.g., see Narain et al. (2017); Jia

et al. (2015)).
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Chapter 3

CONCEPTUAL DESIGN

In this chapter we present a high-level conceptualization and design of the

spatial analytics platform, using as a starting point the evaluation of the state

of the art presented in Chapter 2. We describe the components and services

necessary for the implementation of the platform functionality required to support

the definition and computation of (spatial) metrics for location-aware applications.

Here we offer a conceptual view of the analytics platform (Section 3.1) and the

conceptual model behind the spatio-temporal metrics (Section 3.2). Both serve

as the guidelines for the implementation of the platform described in Chapter 4.

3.1 Architectural view of the analytics platform

The analytics platform for computing spatio-temporal metrics presented here grew

out of our previous work in location-aware games, a specific class of location-

based applications (Karimi, 2013). In the previous Chapter 2, we have anal-

ysed existing game analytic platforms to assess their level of support of spatio-

temporal features for analytic processes. Results suggested that little support

is currently available, and existing solutions lack generality and re-usability. Al-

though a plethora of location- and context-aware systems can be found in the
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literature, existing solutions focus only on limited facets of a context-aware sys-

tem (Alegre et al., 2016). For example, some frameworks offer programming-level

support for context-aware applications (e.g., Kulkarni and Tripathi (2010), Guo et

al. (2011)). Other solutions are mostly designed for one particular application

field such as ambient assisted living (Forkan et al. (2014)), multimedia services

(Zhou et al. (2010)) and mobile social networks (Arnaboldi et al. (2014)). There-

fore, the common denominator is a lack of solutions to support both spatial and

non-spatial analytic computation for location- and context-aware applications. In

response to this lack, we conceptualise an analytics platform to enable the defi-

nition and execution of spatio-temporal metrics as part of location-aware applica-

tions. Therefore, in this section, we overview the conceptual architecture of the

proposed analytics platform at a high level of abstraction, while we delve further

into the implementation details and the technology stack on which the platform is

built in Chapter 4.

Figure 3.1 shows the architecture of the analytics platform, viewed as an

ecosystem of client- and server-side applications. The central part of the figure

shows the server side of the platform that is designed as a set distributed ap-

plications organised as (micro)services and backed by big data processing meth-

ods (Chen and Zhang, 2014). Both sides of the figure illustrate the client side as a

set of Web and mobile applications, communicating with the server-side through

service interfaces.

The conceptual logic of the server-side platform follows the lambda architec-

ture to integrate stream- and batch-processing at the same time. Lambda archi-

tecture refers to a big data processing architecture pattern that combines batch-

processing and fast- or stream-processing methods (Marz and Warren, 2015).

Shown in Figure 3.1 in the central box labelled as Microservices, the stream-

processing method is used in the Data ingestion microservice for storing collected

data. It depicts the flow of client-side collected data by various client applications

(right side of Figure 3.1), their buffering and routing, and finally their storage into

a (distributed) database (Data persistence microservice). This stream processing

pathway, which is represented in Figure 3.1 (in yellow) as a single circle but in-

deed contains distinct types of microservices, is logically decoupled from the com-
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Figure 3.1: Layered architecture of the analytics platform for computing spatio-temporal

metrics. The server-side platform is placed in the central part, whereby the client side

applications are on either side and communicate with the server-side through stateless

Application Programming Interfaces (APIs). Yellow denotes stream-processing methods,

and blue denotes batch-processing methods.

putational pathway (in blue), which utilizes the batch-processing model in order to

compute metrics and perform data analysis (Metrics computation microservice).

The Metrics computation microservice uses stored metrics definitions (Metrics

definition persistence microservice), generated by a client-side application (see

below), and includes other types of specific microservices (not depicted in Fig-

ure 3.1), such as metrics scheduler, evaluator and execution. This microservice

also produces notifications which are separately handled through Notifications mi-

croservices to end users (e.g., developers, designers). The decoupling between

data ingestion and metrics computation (coloured circles in Figure 3.1) promotes

a distributed big data architecture, while ensuring continuous data storage capa-

bilities, independently of the data analytical operations.

The client side includes two types of applications: management applications

(left side in Figure 3.1), which allow configuring metrics and visualizing metrics

results, and end-user applications (right side), which contribute application data

and receive metrics notifications. For the former, the first management applica-

tion is a one-stop Web (front-end) application 1 to set up, access, and manage all
1Available at https://gganalytics.geotecuji.org

53

https://gganalytics.geotecuji.org


running applications and metrics. Through a visual interface, application develop-

ers define, test and update metrics, including their defining characteristics such

as application and run-time scope, data requirements, and resulting actions. The

second management application is a Web-based visualisation & reporting appli-

cation, which allows the visualisation and inspection of metrics data and results.

Both management applications are targeted to application developers who decide

to rely on spatio-temporal metrics for their location-aware applications. The latter

type of client applications plays the role of both (raw) spatio-temporal data collec-

tors, necessary as input data for metrics computation, and data consumers, for

(push-based) notifications of the results of the computation of metrics.

In subsequent sections and chapters, we go into more details in the defining

features of the analytics platform, namely the conceptualization of the underlying

metrics model (Section 3.2), and the implementation of the platform (Chapter 4).

3.2 Conceptual model of spatio-temporal metrics

The central concept of the analytics platform is the notion of metrics. In general,

metrics are used to monitor or characterise natural or artificial phenomena. A met-

ric can be considered a function that takes input data and produces comparable

outputs, i.e., for comparing or contrasting similar phenomena and, thereby char-

acterising them. In economy, an illustrative example is the GNP (Gross National

Product) metric that is broadly used to compare economic development across

countries. In urban sciences, urban landscape metrics (Herold et al., 2005b) and

urban sprawl metrics (Sudhira et al., 2004) help urban planners and researchers

characterise urban dynamics to better understand how cities operate. In video-

games, metrics are must-have tools for game developers and designers to moni-

tor aspects of the game (e.g., game mechanics, strategies, user interface, player

behaviour) and consequently make informed decisions to improve overall game-

play experience (Sedig et al., 2017). Specifically in location-aware games, the

role of spatio-temporal metrics is as important as other metrics (Rodrı́guez-Pupo

et al., 2017), and more generally, in location- and context-aware applications,

spatio-temporal metrics can help developers to quantify and better understand
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the phenomena and dynamics that occur in real-world applications (El-Nasr et al.,

2013a; Nijholt, 2017).

The concept of metrics has been commonly associated with a sole function.

Here, we extend this concept to a model composed of three main elements: the

(input/output) data model or structure, the analytic function, and associated ac-

tion(s). The specification of the data model of the phenomenon to be monitored is

the only mandatory requirement to obtain a functional but minimal metrics model,

which can only be used to store incoming data compliant to the specified data

model (data ingestion in Figure 3.1). To fully harness the analytic power of the

platform, i.e., the metric computation phase in Figure 3.1, the other two elements

of the metrics model are needed too. Next, we describe each element in detail

(Sections 3.2.1 through 3.2.3) and compare our proposal with the literature (Sec-

tion 3.2.4).

3.2.1 Data model

The underlying idea of metrics is to measure monitored phenomena of interest

for users, independent of their application domain, e.g., researchers, urban plan-

ners, software developers. An essential requirement in doing so is to capture the

required data through flexible data models, since these phenomena may require

the collection of data of diverse nature, concerning different aspects a user wants

to monitor. Examples of such aspects include application-environment interac-

tion, user interface, user mobility, or any other relevant data that are necessary to

quantify the context.

Context matters

Because the interpretation of context varies depending on many factors (disci-

pline, view or dimension being analysed), establishing a clear meaning of context

is necessary to better understand what we mean by “quantifying the context”.

Context is “any information that can be used to characterise the situation of an

entity”, where an entity is “a person, place, or object that is considered relevant

to the interaction between a user and an application, including the user and ap-

plications themselves” (Dey, 2001, p. 5). One way to look at context is taking a
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social perspective. In this view, context emerges as a dynamic construct associ-

ated with the user’s current activity (Greenberg, 2001). Another way to examine

context is from a computational point of view, in which context is often seen as

an informational representation of an entity, and as such, developers know the

possible contexts beforehand, i.e., the possible range of potential situations, so

that associate actions can be a priori codified into a system. As in most context-

aware systems (Alegre et al., 2016), we prefer the computational view of context.

We take an informational representation of what might happen when monitoring

a phenomenon, i.e., the recognition of an event of interest and foreseen actions

in response to it. The metrics model allows application developers to design cus-

tomised data structures to capture the bits of interest (contextual data) of the

monitored phenomenon. Consequently, by defining custom functions over the

captured data (Section 3.2.2), these data can be processed, along with other

contextual data, to deliver actionable information (see Section 4.1.5).

For example, many location-aware games distinguish collected data from dif-

ferent users, play sessions and, even applications, in case various (game) appli-

cations coexist at the same time. In the proposed metrics model, the meaning

of user, session, and application is intentionally left to the application designer,

who is in charge of defining how these bits of contextual data are best used to

meet his/her needs. For example, a session can be defined as each time a player

opens the application (e.g., for sports monitoring applications) or when a user

performs a new search (e.g., in location-based recommender systems). Ses-

sions can also be applied to groups of users, for example, when various users

accomplish a certain goal (e.g., when a complete coverage is reached in par-

ticipatory sensing applications). In this case, all users share the same session.

Therefore, these contextual views can be adjusted in a way to favour data access,

aggregation, partitioning, and retrieval at metrics computation time, thus being a

determinant mechanism for selecting, contextualising or filtering potentially large

volumes of input data.

Equally important are the spatio-temporal features of context. Ensuring tempo-

ral order of collected data is vital for phenomena related to mobility, for example.

Monitoring the movement of users in location-aware applications to determine
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travelled distance or trajectory implies necessarily capturing contextual data in

the form of spatio-temporal features of movement (Andrienko et al., 2013). As

distance can be distorted in case collected points are temporally shuffled, spatio-

temporal features are key for input data consistency and ensuring reliable com-

putations of spatial-aware metrics. Next, we describe how specific data models

capture contextual data.

Variables and dimensions

Each phenomenon can be explored or studied from distinct viewpoints, depend-

ing on what a user wants to monitor. In location-aware applications, one of the

monitored phenomena is typically human location and movement, and the outputs

of the desirable metrics must be comparable over space and time for being able

to process and discover mobility patterns (Andrienko et al., 2013). As any real-life

phenomenon, human movement is a complex and multifaceted phenomenon that

requires multidimensional data. Accordingly, the proposed data model is driven

by variables and dimensions. A variable indicates the phenomenon of interest

(e.g., movement), while a dimension defines the required data model to capture

an aspect of that variable. For example, each dimension (orientation, temporal,

location, steps) of the variable movement, as represented in Figure 3.2, refers

to complementary aspects of the phenomenon of movement. Therefore, the pro-

posed data model is composed of multidimensional variables.

While variables refer to high-level views of the phenomenon to be monitored,

dimensions define the data structure of a variable. Dimensions can be classified

into default and custom (Figure 3.2). Default dimensions are data structures al-

ready provided by the analytics platform and ready to be used in the definition of

variables. Their intent is to handle contextual data, as for example spatio-temporal

features, partition and/or filtering of collected data. Examples are the temporal,

orientation and location dimensions to capture spatio-temporal features, and

the application, session, and user dimensions (grouped under application in

Figure 3.2), to enable data selection, filtering, and contextualisation (see below).

One key advantage of default dimensions is that their data is automatically col-

lected by the analytics platform.
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Figure 3.2: Representation of the relationship between the variable Movement and default

and custom dimensions.

While default dimensions in terms of data structures are given as such and al-

ways included in new variables, custom dimensions are up to developers to define.

Therefore, developers also need to specify (and implement) how to collect data

for custom dimensions, because the platform cannot do so automatically. Never-

theless, it provides convenient methods to help developers collect and manage

data according to the custom dimension’s data structure. Custom dimensions

can be based on any combination of predefined data types (e.g. string, number,

etc.), allowing more complex data structures such as nested or hierarchical data

structures. Implementation details about dimension definition and data collection

methods, and the supporting metrics SDK, are described in Section 4.1.2.

Default dimensions related to data selection and contextualisation (e.g. user,

session, application) allow to efficiently filter out and select collected data during

the analysis and processing phase. That’s why we state that a dimension guides

the definition of analytic functions, and not the other way around. The definition

of dimensions (data model) for structuring collected data comes first, and this

determines the type of analytic functions needed. This aspect is extremely im-
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portant in stream processing because input streams are dynamic, while functions

remain static, i.e. a continuous flow of input data is processed over and over by

the same function (Galić, 2016). As we explain next, a default dimension has as-

sociated default/predefined functions that are well suited to operate over its own

dimension’s data model, providing handy methods and utilities for developers to

handle, manage and process collected data. The following rules summarise the

semantics of variables and dimensions, and set the relationships to the other two

elements of the metrics model:

• A valid metrics model must contain at least one variable.

• A variable is composed of one or more dimensions.

• A dimension’s data model defines the data types and data structure of input

(collected) and output (processed) data.

• A dimension’s data model is queryable.

• A dimension’s data model is customisable and extensible to allow character-

isation of any phenomena of interest.

• A dimension can have associated default (or built-in) functions that operate

over the dimension’s data model.

3.2.2 Analytics functions

An analytics function takes captured data as input, structured according to the

dimension’s data model, and computes output data, which are also structured

according to the metrics’ output data model. Similar to default dimensions, default

analytics functions help developers to handle dimensions’ data structure. Default

dimensions come with default functions that remain at the developer’s disposal for

creating custom functions. For example, default functions pertinent to the default

dimensions application, session, and user are tasked with querying or filtering

out input data. Other default functions are optimised to handle dimension’s data

models, such as built-in functions related to the temporal dimension for filtering

and aggregating temporal data (data between dates range, time intervals, etc.),
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and for spatial data filtering and aggregation as well as for computing topological

operations (e.g. data within an area, buffering, union, intersect), associated to the

location dimension.

Figure 3.3: Representation of the relationships between dimensions, analytics functions,

and actions. Black arrows denote that custom functions may combine (compose) default

methods. Actions are only connected to the results of custom analytics functions.

Returning to the example of human movement as the monitored phenomenon,

the variable movement aggregates default dimensions (location, orientation,

temporal, application, session, and user) and other custom dimensions to

capture specific aspects of movement (e.g., number of steps) and/or application

context (e.g., player progress in the game). While a dimension’s data model

is queryable (i.e., filtering or selecting data subsets), functions are composable,

meaning that custom functions can aggregate default functions to define more so-

phisticated computations, as the black arrows illustrate in Figure 3.3. For example,

to compute the travelled distance based on the number of steps, the custom func-

tion will call existing spatial and temporal functions (from the respective location

and temporal default dimensions) to calculate linear distance over a sequence of
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temporally ordered spatial points (steps). Thus, the metrics model represents an

elegant but extremely powerful approach to reuse dimensions and associated an-

alytics functions to characterise spatio-temporal phenomena without introducing

new conceptual constructs or computational artefacts. In summary, when cre-

ating a custom analytics function, developers have at their disposal functionality

available for:

• accessing and navigating through the data fields and nested structures of

the dimensions’ data models, making input data of each declared variable

accessible from the execution environment of an analytics function. This

requires data access methods in place to get to both input data and output

data, being the latter specially useful to get access to the history of metrics

outputs, for example, to calculate statistics over historical data or compare

current results to past results;

• contextualising input data through the application, session and user de-

fault dimensions; Slightly different combinations of operators from these de-

fault dimensions permit to conveniently select, query, and filter data relevant

to the current execution context and needs of an analytics function (see Sec-

tion 4.1.5);

• operating and filtering over temporal data through the temporal default di-

mension. Temporal filtering can be contextualised, for example, to retrieve

“data belonging to variable movement for the current user and current ses-

sion of the application over the last five minutes”. This functionality is cross-

cutting to any declared variable as the proposed metrics model always in-

cludes the temporal dimension and associate functions;

• operating and filtering over spatial data through the location default di-

mension. This is important for enabling geospatially related functionality

in the analytics platform. Built-in spatial functions are based on spatial al-

gorithms and methods from external libraries (e.g. Turf.js as we will see in

Section 4.1) to, for instance, calculate measurements (area, distance, cen-

troid, etc.) and transformations (convex hull, simplification, etc.). Spatio-

temporal operations for trajectory analysis are also included to compute
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average/max/min speed, travelled distance, number of points within a tra-

jectory, spent time to travel it, among others;

• performing descriptive statistics measures of tendency that are traversal

to any metrics definition such as average, maximum, minimum, as so on.

These functions are not tied to any dimension but taken for granted as built-

in operations embedded in the analytics platform; and

• composing and reusing existing analytics functions in the definition of new

analytics functions.

Built on top of the variable and dimensions rules (Section 3.2.1), the following

statements summarise the semantics of the analytics functions in the context of

the metrics model:

• An analytics function’s return type must conform to the data model repre-

senting output data.

• An analytics function is reusable and composable.

• An analytics function is customisable and extensible to allow computation of

any phenomena of interest.

3.2.3 Actions

An action defines what to do with the result of the execution of an analytics func-

tion. An action’s input is the return value of an analytics function. An explicit

definition of a custom action is optional in the metrics model, but a default action

is always data persistence, since the analytics platform always stores the results

of the analytics function for future use.

Notification is another type of supported action. Using simple reactive rules

(if-then rules), users can specify when an action is triggered (Rodrı́guez-Pupo et

al., 2017). For example, a user gets notified only if the output is greater than a

given threshold. Notification actions are especially interesting because they allow

the platform to be in continuous interaction with users, the physical environment

and other systems that interact with it. Notification actions are also customisable,
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i.e., a developer can choose the delivery method (e.g., push 2, post3), the target

audience (i.e., the current user, current session or the entire application, for broad-

casting notifications), and the content or payload to be sent out (e.g., containing

the result of the calculation or informational messages). Note that the target audi-

ence of the notifications is in coherence with the context, which is a cross-cutting

concept across the system.

As in the previous two elements of the metrics model, we add a new rule to

complete the set of statements that characterise the proposed metrics model:

• A metrics model is the sum of variables-dimensions, analytics functions, and

actions.

3.2.4 Situating the analytics platform in the literature

In this section, we compare the innovative aspects of the proposed metrics model

and the analytics platform with related literature. Indeed, context modelling and

representation have been an extensively researched topic. For example, Kaenam-

pornpan et al. (2004) established conceptual key elements that have an influence

on a user’s activities in a ubiquitous computing world. The focus is on modelling

user’s activity into the context. This is also a defining characteristic of the pro-

posed model, as the model is particularly designed to capture spatio-temporal

features of contextual data, which are relevant in location-aware applications, ac-

tivity theories and ubiquitous computing. Bolchini et al. (2007) analysed 16 con-

text models in relation to supported characteristics for context representation and

formalisation. The focus of this review of approaches for context modelling and

representation is indeed heavily biased towards semantic formalism and schema,

much in line with the active research lines at that moment.

In Alegre et al. (2016), the authors reviewed methodologies and techniques for

developing context-aware systems, and proposed a two-axis classification based

on the modalities of interaction with context-aware systems: active/passive vs.

execution/configuration. Next, we take the active/passive configuration axis for

delimiting the scope of the proposed conceptual model, while below we situate
2Mobile push notifications
3HTTP POST to a defined url
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the analytical platform regarding the active/passive execution axis. In an active

configuration interaction, a system “is able to learn from the user preferences in

order to autonomously evolve his rules for future behavior” (Alegre et al., 2016,

pp. 58). In the passive configuration, a user “is involved in the manual person-

alisation of his/her preferences, likes, and expectations of the system” (Alegre et

al., 2016, pp. 58). The proposed model falls into the passive configuration type,

which allows developers to interact with the context-aware system (see for exam-

ple Section 4.1.1) to manually set up any aspect of the model, from the variables

and dimensions to custom analytical functions and actions. The configuration

effort required is drastically reduced since a developer can reuse a wide range

of default dimensions, analytical functions and actions already implemented and

integrated into the analytics platform. Rather than being a pure passive configura-

tion, the proposed conceptual model indeed defines a guided passive configura-

tion interaction with the system, as the developer is supported in the configuration

process by the platform’s built-in functionality (e.g., use of default dimensions, see

section 3.2.1).

According to the active/passive execution axis, active execution means that

“the system acts autonomously depending on the context”, while in passive execu-

tion users “specify how the application should change in a specific situation” (Ale-

gre et al., 2016, pp. 58). The analytics platform belongs to the passive execution

type since developers (users) specify the analytics functions and actions that best

fit the aspect that’s being monitored and, therefore, the platform will take the ac-

tions that the developer wants. As said above, between the two edges –active

and passive–, there is a wide range of possibilities. The proposed analytics plat-

form tends to be a passive execution in terms of interactive levels but incorporates

many active elements such as methods for automated data collection pertinent

to default dimensions (see Section 4.1.2). In this way, no specialised developer

knowledge is needed to manage and collect data associated with the default di-

mensions, as the analytics platform smoothly manage them. On the other hand,

the passive nature of the platform provides other benefits, since developers under-

stand better how the platform works, as they specify their own analytical functions

and, therefore, the confidence towards the platform also increases.
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Chapter 4

IMPLEMENTATION

In this chapter, we describe the implementation of the conceptualisation of the

analytics platform defined in Chapter 3. A substantial part of the chapter is de-

voted to the data workflow through the components and microservices to enable

the computation of spatio-temporal metrics (Section 4.1). As the assessment of

the analytics platform is vital, we cover it on two different levels. In Section 4.2, we

perform a conceptual comparison with the literature, considering the key features

of the platform, which were initially listed in Chapter 2. Next, we will compare two

different implementations of the same location-aware game, one with the platform

and one without the platform, to assess the differences between them in Chap-

ter 5.

4.1 Data Workflow and implementation of the

analytics platform

This section puts the conceptual metrics model, explained in Chapter 3, into prac-

tice. It explains the implementation of the analytics platform, bringing a set of

state-of-the-art software technologies, components, services, tools, and underly-

ing big data processing and analytic systems (e.g., Spark, Kafka) together to re-
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alise an analytics platform for integrating and computing spatio-temporal metrics.

The rest of the section deepens relevant features of the platform that are espe-

cially significant for developing large-scale, context-aware architectures and appli-

cations. Subsequent subsections expands specific parts of the conceptual archi-

tecture (Figure 3.1) initially described in Section 3.1. In particular, Section 4.1.1

details the definition of a metric according to the metrics model. Sections 4.1.2

and 4.1.4 describe how the first element (data model) of the metrics model is

being used for data collection and data ingestion into the analytics platform, re-

spectively. Collected data is transferred to the analytics platform through stan-

dardised data services (Section 4.1.3). In Section 4.1.5, we describe the metrics

computation phase, which uses the three elements of the metrics model. Lastly,

in Section 4.1.6, we highlight a supporting tool to retrieve and visualise the input

and output data of metrics.

4.1.1 Metrics definition specification

Metrics definition is a core concept of the platform and is extensively used by

components both in the back-end and front-end. The metrics definition specifi-

cation aims to express, in a declarative way, both the data model of the metrics

model (variables and dimensions) and the computational behavior (metrics func-

tions and actions). However, some components of the platform use the metrics

model for distinct purposes and so each one pays attention to specific elements of

the metrics model. This varied usage imposes the following design requirements

to design the metrics definition specification:

• Sharing: The specification must be declarative to facilitate sharing, both

between different components of the platform or across applications, but

also between designers and developers. This implies a trade-off needs to

be found between a machine readable and human readable format.

• Validation: The specification format must be easily validated regardless of

the chosen technology stack (client libraries, third party systems, etc.).

• Completeness: The specification must be “complete”, i.e. it must contain

all the required elements (variables definitions, actions, metrics functions,
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scopes) for the platform to operate, without the need for additional informa-

tion or artefacts (beyond configuration aspects that are not reusable by its

nature, such as passwords and identity-related data).

• Flexible: The specification must be flexible enough to represent the most

varied data models to meet the various computational requirements of the

user problem domain.

To fulfill the previous requirements, we use the JSON open standard file for-

mat and the JSON schema vocabulary for validation. JSON is a widely used

text-based representation format for lightweight data exchange among several

public services on the Internet. It counts with excellent support in most platforms

and technology stacks. It also has a fair degree of (human) readability, which

facilitates sharing and editing.

Regarding validation, the JSON schema allows to specify a set of rules for

validating the represented data structures related to variables and dimensions,

functions, and actions. As the JSON Schema is supported by several libraries,

programming languages and platforms (i.e., Java, C# 1), a way for external, third-

party systems (i.e., tools) and services to validate the metrics definition JSON-

formatted documents is implicitly provided. Yet, as metrics functions are coded

in a programming language, they can not be validated directly against a JSON

schema, and therefore need to be executed and interpreted by processing com-

ponents of the platform.

With respect to completeness, beyond the cross-platform features of the for-

mat, this aspect has a strong relation to the design of the analytics platform, i.e.,

it must be able to deal with the metrics definition specification as a whole, mean-

ing that no dependencies are kept behind the scenes that might restrain the use

of the specification document in a different context (using the analytics platform).

For this reason, all of the elements required by the system must be included

(specified) in the schema.

As already mentioned, the popularity and abundance of supporting tools for

JSON further motivated its choice. For example, several libraries exist for visu-
1Some implementations are listed at https://json-schema.org/implementations.html
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ally representing JSON Schemas (JsonForms.IO 2, SchemaForm 3, RactJson-

SchemaForm 4 and JsonForm 5; we use the latter in the implementation of the

metrics definition tool). JSON is widely used not only by front-end libraries but

also by back-end ones, where several data storage technologies are “aligned”

with and support it. Examples are MongoDB, that accepts JSON as input data,

and Apache Cassandra that has good support for JSON-encoded data input and

output. Both database systems are used in the analytics platform; MongoDB is

used for storing metrics definition files, while Cassandra is used for keeping the

collected metrics data. In addition, JSON is used for defining the data structures

(through JSON schema) and the actual data exchange with the REST services.

Metrics definition schema

The metrics definition schema should provide the flexibility for the user to specify

the data structures needed to solve the problem at hand (see Chapter 3). As a

consequence, a metrics definition data model must be able to represent different

types of data structures, with different levels of complexity (i.e., data structure

depth) to address a wide range of problem domains. Flexibility also favors the

integration with existing systems, as the outputs of other systems can be (poten-

tially) more easily integrated or converted to the metrics definition schema.

The JSON schema of the metrics definition provides a formal specification to

structure the data. Figure 4.1 focuses on the top-level properties of the metrics

definition schema as explained below:

• Variables: are used to represent high-level views of the phenomenon to be

monitored (Section 3.2.1) and are composed by dimensions. For example,

a variable movement can be composed by dimensions location, direction

and time.

• Metrics: allow to specify and describe metrics functions (Section 3.2.2).

They take as input datasets based on the data structures defined in the
2https://jsonforms.io/
3http://schemaform.io/
4 https://github.com/mozilla-services/react-jsonschema-form
5https://github.com/jsonform/jsonform
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Figure 4.1: Representation of the top-level properties of the metrics definition schema.
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variables. An example of metrics could be in this case the speed.

• Scopes: are used to represent a logical partition of the data, that can be

reused in different metrics functions. More specifically, scopes are used as

a convenient utility to define frequently used data across different metrics

functions. For example, a scope could be defined for selecting the data of

users with an age over 60 years.

• Actions: allow to specify actions to perform upon the computation results of

the metrics functions. As mentioned in Section 3.2.3, they also involve the

evaluation of the results to assess whether or not an action should trigger.

An example of action could be to send a push notification in case speed is

over 5 km/h.

Variables and dimensions definition

Variables are conceptualised as a set of dimensions, each describing a facet of

the data. For example, the variable movement of the player contains dimensions

such as his location and his orientation. This structure has implications in the

static representation and dynamic behavior of the platform, for example, at data

collection time, variable instances (i.e., objects containing the dimensions as at-

tributes) are validated according to the their specification (schema) and sent to

the back-end as a data object (or record in some systems). Other components

of the platform use variables to produce the corresponding specification in the

back-end storage. For example, to define and create tables (also called column

families), and data types (user-defined types or UDTs) in Cassandra.

In the specification of the dimensions we have addressed structural aspects

such as their type (either complex or simple), representational aspects such as

their description and title, and we have also included information related to data

collection. For data collection, dimensions are categorized in those provided by a

user (or produced as a result of user interactions) and those supplied by a specific

provider component and, therefore, produced by a client application system. The

implementation of the dimensions takes into account the previous aspects by

permitting certain specialisations to simplify the definition of variables:
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• Provided dimension (provided-dimension): Its value is not expected to be

obtained as a result of an interaction with the user, but otherwise supplied

by software artifacts, such as sensors and system components. Besides,

it also allows defining which software component will provide the values of

the dimensions at run-time. Its type must be specified as a JSON Schema.

• Provided default dimension (provided-default-dimension): It is a special-

ization of the previous one to declare dimensions such as location and ori-

entation, which do not require to define a type. Its representation and, ulti-

mately, interpretation is up to the user (i.e., the developer), although defaults

are provided for convenience.

• Complex Custom dimension (complex-custom-dimension): It is provided

by the user or developer (i.e., possibly coming from an interaction with the

user or as an output of a running task producing data). Its type must be

specified as a JSON Schema.

• Simple Custom dimension (simple-custom-dimension): It is mainly used

to ease the specification of dimensions of simple types, for example, integer

and string. It does not require a JSON schema to specify its type.

In contrast to the previous types of dimensions, which are explicitly defined,

there is a special type of dimensions that is implicitly defined in each variable

and therefore is always included when submitting data to the platform. Implicit

dimensions can be categorized into two groups. A first group is related to the

context (see Section 3.2.1), and includes the following dimensions: application,

user and session, which are of type string (due to its versatility). They define the

context associated with the data. Indeed, the context is a crosscutting concept

used in the whole platform: computation, data, and notifications are all driven by

context. Later, in Section 4.1.5, we will show how we use it in the computation

model and its role in partitioning the data.

The second group of implicit dimensions includes the time (ISO-8601 format-

ted), a global unique identifier (GUID) timeid used as the identifier the data object,

and previd, which refers to the identifier of the previous data object produced or
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collected, if any. The identifiers are especially relevant for the algorithms that deal

with location, where the order and sequence of data objects sent to the platform

are crucial. Although the time dimension could have been used for identifying the

data object, in general, it is not possible to guarantee to be unique in a context

(given that the context could involve several players) and, therefore, it would not

be of much help for identifying consecutive locations.

Metrics functions

The metric functions specify how to process the data collected (e.g., speed, total

distance, pace). They are specified through the metrics property in the metrics

definition schema. The metrics functions properties include an identifier, used

for invoking the function, the programming language for implementing the metric

function, and the code itself. To define the output type, the specification requires

to declare the schema of the output of the function, which is used for preparing

the database for storing the results. At the moment only JavaScript is supported

for implementing metric functions.

The specification does not allow the definition of input parameters of the metric

functions. The input data of the functions must be variables (data) defined in the

metric definition file, results of metric functions, or scopes, which the platform

treats in the same way as a variable.

Scopes

As mentioned earlier, scopes are a mechanism to subset data in order to be

reused across different metrics functions, for example, data for players with low

performance, can be filtered and reused through the scope “lowPerformanceUsers”.

To define scopes, it is required to provide through the code property a function

for querying data, possibly from one or more of the variables defined. Besides,

the user must provide a name (e.g., “lowPerformanceUsers”), which can be used

later to refer to the specific scope from the code of metric functions.
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Actions

Actions are used to act upon the completion of metric functions evaluation. In

actions, the output of the metric functions are used for two purposes: as data

for evaluating conditions for triggering notifications, and for obtaining the payload

of such notifications. This process involves executing code6, which is specified

through the property filter, to determine whether the action should be triggered.

The actions also need to specify a target for resulting notifications. The supported

targets include the current user, the application, and the session (as defined by

the values current user, current session and current application). As can

be noted, available targets are defined in coherence with the context. That is,

there is a correspondence between the context setup during the configuration of

client applications (e.g., a mobile application) and the target defined in actions.

This allows referring to the clients (e.g. a running mobile application) belonging

to the current context. For example, if a group of players is in a game session, no-

tifying the current session, would send a notification to the users (e.g. players)

in this game session, excluding other users not involved in that specific session,

although they might have the game or application installed.

In this regard, two types of notifications are supported, push notifications,

widely used in the context of mobile applications, and URL post notifications7,

which are intended for a broader range of use cases (for example, while inter-

acting with third party systems). Finally, the notification payload, which contains

additional information related to the conditions that originated the notification, is

extracted from the return value of the action filter property. Examples of how to

define and use actions are provided in subsequent sections.

In summary, the metrics definition specification has a central role in the plat-

form. It is used as a single source of information about data involved in the metrics

computation, the processing, and the actions to be taken upon metrics execution

completion. Besides, as we will see in Section 4.1.2, the metrics definition is also

used in the client side for dynamically loading data providers, and checking the

completeness and validity of the collected data to be submitted to the data inges-
6As in the case of metric functions only JavaScript is supported at the moment
7An HTTP post message with a body carrying the notification payload.
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tion services. In the back-end, the metrics definition is used as the specification

of the code to be executed, the actions, and the storage structure. Being en-

coded as a JSON formatted file, all these aspects of the platform can be tracked

and versioned in a single place, which provides a single source of changes in the

definition of an application.

Tools for working with the metrics definition schema

To define metrics, a user (developer) defines a metrics definition file that is compli-

ant with the metrics definition schema. Although JSON format is human-readable,

it is far from ideal for editing fairly complex structures that are required to be com-

pliant with a certain schema. To assist users in this task, the metrics definition

tool was developed to ease the creation and edition of metrics definition files.

Figure 4.2: Elements in blue are involved in the definition, set-up, and storage of an

instance of the metrics model using the metrics definition (front-end) tool.

The metrics definition tool8 is part of a web-based application that plays a

dual role. On the one hand, it is a one-stop catalogue to access the metrics
8Available at https://gganalytics.geotecuji.org.
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definitions for the different applications. This function is reflected in steps 1-2 in

Figure 4.2. In step 1, a user sets up a few application-level, general configuration

parameters, including, for example, the configuration needed for enabling push

notifications. The metrics definition tool interacts with a layer of RESTful web

services which expose convenient functionality for application management (step

2). These services store the configurations and the metrics definition in a Mon-

goDB database (step 5), separated from the actual metric data. This enables the

separation of concerns, as the configuration data and the data collected by the

client not only have different purposes, but also will be involved in processes with

different computational requirements.

These RESTful services are explained in more detail in Section 4.1.3. Besides

the general, application-wide configurations, the web-based application also al-

lows users to define a new instance of the metrics model using the metrics def-

inition tool, which is the focus of this section. This second functionality is re-

flected through steps 3-5 in Figure 4.2. In step 3, a user specifies the main ele-

ments of the metrics model (namely, variables, dimensions, metrics functions, and

scopes). The metrics definition tool (Figure 4.3) helps users in this task. A result-

ing metrics definition file is then forwarded to public RESTful services for metrics

management (step 4) and subsequent persistence into the back-end MongoDB

database (step 5). As we described above, the metrics definition file and collect-

ed/processed data are stored separately. While metrics definition files (and other

application-related configuration data) are stored in a MongoDB database, flows

of input data and processed data (metrics results) are persisted into a Cassandra

distributed database. The choice for each is motivated by a different set of require-

ments. MongoDB provides high flexibility concerning the model stored (in contrast

to traditional relational databases, which pose a more rigid schema), which is

what we pursue to store and access a variety of application-level data. On the

other hand, Cassandra supports high throughput to handle and store streams of

incoming data, which is the goal of the data ingestion phase (see Section 4.1.4).

The difference in objectives of both databases are clearly visible in the experimen-

tal configuration, where we run a single instance of the MongoDB database, but

three instances of the Cassandra database to be able to cope with rapidly and
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massively incoming data.

Figure 4.3: Screenshot of the metrics definition tool to specify variables and dimensions.

The metrics definition tool’s options faithfully reflect the intention and structure

of the metrics model (Section 3.2). It consists of a Variables tab for defining

variables and dimensions; the Metrics tab for specifying the code of the custom

metric functions; and the Action tab to specify the code corresponding to actions

based on the results of the metric function (see Figure 4.3).

Besides the three main elements of the model, the tool includes additional fea-

tures for exploring the data, both the collected data and the output of the metrics

computation. Specifically, it offers two types of views, that are intended to show

the general aspects of the data (i.e., time, application, session, user): one for

presenting the data in a tabular form, and another that allows to display the same

data on a map if location data is available, thereby allowing to visualize the spatial
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properties of the data. The tool accesses the data through services, which are

exposed for all client applications (including potential third party, better tailored

applications).

Within the Scopes tab, the tool provides support for defining scopes, which

permits users to pre-define queries over the collected input data and function out-

puts to generate subsets of data to be reused by the metrics functions, during the

metrics computation process. Scopes are intended to define more sophisticated

queries than the filtering methods accessible through userSession, session, and

application as seen in Section 3.2.2. The resulting JSON document completely

specifies and documents metrics, and can be seen as a novel way to share and

reuse metrics, as the contained dimensions (data models), metrics functions and

actions are openly available so that these metrics definitions may be re-purposed,

reproduced, modified, or replicated in other applications and scenarios. This is

a contribution towards the establishment of comparable metrics for mobility, for

example, confirming recent open calls: “[there is a need for] measurable metrics

for making comparisons over place and time.” (Miller and Tolle, 2016, p. 452).

4.1.2 Data collection through Metrics SDK

A fundamental role of a client application is to gather (contextual) data, validate

it, package it according to the data structures defined through the metrics model,

and transfer it to the server-side analytics platform. Figure 4.4 summarises the

elements of the platform directly involved in the data collection task. Only steps

1-4 are concerned with data collection; steps 5 and 6 are involved in the data

ingestion phase explained in Section 4.1.4.

Data collection is carried out in two phases (Figure 4.4). The first phase

is explained here, while the second phase is described in Section 4.1.3. The

first phase occurs in the client application, represented by steps 1-3, where the

Metrics SDK is central. The Metrics SDK is a convenient API library to help

developers integrate data collection functionality into their client applications. It

provides methods to collect and validate data against the metrics model (step 1,

Figure 4.4), provides supporting methods to package and encode captured data

into JSON-formatted metrics messages according to the metrics schema (step
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Figure 4.4: Metrics SDK embedded in client applications is used for data collection and

transfer to the server-side platform. Coloured in blue the elements involved in the data

collection phase.

2), allows to transfer them to the server-side platform (step 3) through data inges-

tion RESTful services (step 4). For Android9, the Metrics SDK also takes care of

persistence and re-trial of data collection requests in case of failure.

All these tasks only require the first element of the metrics model (variables

and dimensions) and the initial configuration setup of the client application (i.e.,

a valid specification of user, session and application as seen in Section 3.2.1).

It is worth recalling here the distinction between default and custom dimensions

(Section 3.2.1). In contrast to default dimensions, whose data structures are auto-

matically filled by the Metrics SDK (e.g., GPS-based positioning, or other mobile

phone sensor data), the data model of a custom dimension necessarily has to be

populated by the developer (using custom code). For example, in the case of the

movement variable, which contains the custom dimension steps, its value must

be provided by the developer, by implementing interaction with a step counter

sensor (Nagpal, 2016).
9At the time of writing, the Metrics SDK only supports the Android platform, but as it encapsu-

lates and abstracts the interaction with the supporting implementation language through RESTful

services, it can be easily expanded to other platforms (e.g., iOS) and implementation languages.
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Listing 4.1 shows different ways of setting up and using the Metrics SDK. It

is necessary to provide the context to a singleton object which injects it to the

data objects before sending them to the back-end services. In the listing below,

configuration is included during the initialization of the Android application, but it

is not a mandatory requirement. Nevertheless, initialization is always necessary

before sending data to the back-end.

p u b l i c c lass MapTestAppl icat ion extends A p p l i c a t i o n {

@Override

p u b l i c vo id onCreate ( ) {
super . onCreate ( ) ;

/ / Set up user , session and a p p l i c a t i o n .

f i n a l S t r i n g a p p l i c a t i o n = ” app−47f2e1b5a3c44404 ” ;

f i n a l S t r i n g session = ” session7 ” ;

f i n a l S t r i n g user = ” user1 ” ;

Andro idMet r icsApi . i n i t ( t h i s , new Met r icsConf ig ( ) {
p u b l i c S t r i n g getUser ( ) {

r e t u r n user ;

}

p u b l i c S t r i n g getSession ( ) {
r e t u r n session ;

}

p u b l i c S t r i n g g e t A p p l i c a t i o n ( ) {
r e t u r n a p p l i c a t i o n ;

}
} ) ;

}}

Listing 4.1: Configuring and initializing the AndroidMetricsApi instance.

The configuration consists of indicating the application, session, and user the

data belongs to (i.e., defining the context). Once configured, the Metrics SDK can

send data along with the appropriate context, which serves as coordinates for the
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data in the platform (see Section 3.2.1). The application id is obtained through

the metrics definition tool (Figure 4.3) and is generated by the platform when a

new application is created. It is a globally unique identifier that serves to identify

all the data collected in the context of an application. The user and the session

values are left to the developer to decide as they might depend on the game using

the SDK. As we have already mentioned in Chapter 3, the session value can be

used for the purpose of partitioning the collected data.

After initialization, it is possible to start collecting and sending data to the back-

end services. The Metrics SDK takes care of the details of data collection by

automatically obtaining the provided dimension’s data. For submitting the data,

the Metrics SDK API provides the notion of tracker. A tracker is an object that

allows sending metrics data from the client and enforces the developer to provide

the custom dimensions values required.

Tracker t r a c k e r = Andro idMet r icsApi . ge t Ins tance ( ) . ge tDefau l tT racker

( ) ;

/ / F i l l custom dimensions wi th data

Map<St r ing , Object> dimsValues = new HashMap<>() ;

dimsValues . put ( ” no iseSt rength ” , 20) ;

dimsValues . put ( ” no iseLevel ” , ” Level1 ” ) ;

t r a c k e r . send ( ” noise ” , dimsValues ) ;

Listing 4.2: Data submitted through a Tracker. Note that Trackers are requested to

a singleton instance of AndroidMetricsApi.

Listing 4.2 shows how to use the Tracker to send data of the variable noise

to the back-end services. This variable is composed of two custom dimensions:

noiseStrength and noiseLevel. All the data related to the custom dimensions

must be provided at once; otherwise, the Metric SDK raises an error indicating

that data are not complete. The tracker provides a low-level API that is com-

pletely dynamic, which means that the API does not provide hinting assistance

for the actual dimensions to be supplied. The Metrics SDK does not know how

to directly send noise because variables are defined dynamically by the user. To

illustrate this, for example, an expression like tracker.sendNoise(noiseStrength,

noiseLevel) would not be valid, as the tracker API is provided for the general case.
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The actual implementation is illustrated by the code in Listing 4.2 (last line), which

is a general approach but also has the inconvenient of providing less support to

the developer.

As indicated in Section 3.2.3, actions can be configured to trigger push notifica-

tions to client applications. Notifications are associated with context’s properties

(i.e., user, application, session), so the receiver has access to the context. The

bottom line is that context is a global concept and applies from the computation

to the client applications. Thus, the results of a computation in a specific context

are notified to instances of client applications running in that same context. This

permits fine-grained feedback based on contextual properties.

Notifications contextualized with application, session, and user data, will reach

different instances or groups of instances of client applications (i.e., Android game

or application). For example, if an action triggers a notification for a specific user,

only the instances of client applications associated with that user get notified. The

same applies to the session and application. The Metrics SDK handles the details

of subscribing to the channels needed to receive notifications and provides the

necessary functionality for developers to attach handlers containing application’s

logic code. The Metrics SDK receives back-end notifications by an event-based

subscription mechanism. The events supported are, unsurprisingly, application,

session, and user events. These events are mapped to the notification config-

uration of the actions created during the metrics definition (through the metrics

definition tool, Figure 4.3).

For event subscription, the method registerReceiver takes an input parame-

ter of type MetricsEventsReceiver, which provides different types of event han-

dlers depending on the scope of the events to be handled. The Metrics SDK

has three interfaces implementing MetricsEventsReceiver, which are designed

to limit the scope (i.e., application, session, and user) of the event handled. List-

ing 4.3 shows the subscription process to the different types of events.

App l i ca t ionMet r i csEventsRece iver appEventReceiver = new

App l i ca t ionMet r i csEventsRece iver ( ) {
@Subscribe

vo id onMet r i csApp l i ca t ionEvent ( App l i ca t ionEven t event ) {
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/ / a p p l i c a t i o n ’ s l o g i c code f o r a p p l i c a t i o n event

}
}

SessionMetr icsEventsReceiver sessionEventReceiver = new

SessionMetr icsEventsReceiver ( ) {
@Subscribe

vo id onMetr icsSessionEvent ( SessionEvent event ) {
/ / a p p l i c a t i o n ’ s l o g i c code f o r session event

}
}

UserMetr icsEventsReceiver userEventReceiver = new

UserMetr icsEventsReceiver ( ) {
@Subscribe

vo id onMetr icsUserEvent ( UserEvent event ) {
/ / a p p l i c a t i o n ’ s l o g i c code f o r user event

}
}

/ / subscr ibe t rough the API s i n g l e t o n ob jec t

Andro idMet r icsApi . r eg i s t e rRece i ve r ( appEventReceiver ) ;

Andro idMet r icsApi . r eg i s t e rRece i ve r ( sessionEventReceiver ) ;

Andro idMet r icsApi . r eg i s t e rRece i ve r ( userEventReceiver ) ;

Listing 4.3: Registering for notifications in the Android Metrics SDK.

Besides the functionality for handling notifications, the Metrics SDK also of-

fers notifications when data is submitted. This event is registered in a similar

way to that of back-end notifications, as illustrated in Listing 4.4. Here, the event

object (an input parameter of the function onMetricsDataSubmitted) contains de-

tails about the data submitted and its status. For example, it includes information

indicating if the data submission was successful, if failed, or if it was retried. This

provides a developer a handler to take proper action in each case. By default, the

Metrics SDK internally manages the failure by storing failed requests and retrying

them later. It is worth mentioning that the singleton object AndroidMetricsApi is
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an assembly of components (using Dagger 10) providing features such as serial-

ization, default data providers, communication and client-side local storage, which

can be tailored using new implementations.

/ / c rea te the event rece i ve r

Metr icsEventsReceiver . SubmitAct ionReceiver submitDataEventReceiver =

new Metr icsEventsReceiver . SubmitAct ionReceiver ( ) {
@Subscribe

@Override

p u b l i c vo id onMetr icsDataSubmit ted ( AndroidDataSubmit ter .

SubmissionDataEvent event ) {
i f ( event . getStage ( ) == AndroidDataSubmit ter . SubmissionStage .

SENT) {
DataU t i l s . Locat ion l o c a t i o n = event . ge tLocat ion ( ) ;

Log . d (TAG, S t r i n g . format ( ” Locat ion : %s ” , l o c a t i o n ) ) ;

}
}

}

/ / r e g i s t e r the rece i ve r

Andro idMet r icsApi . r eg i s t e rRece i ve r ( submitDataEventReceiver ) ;

Listing 4.4: Registering for data submission event.

In summary, the analytics platform provides a set of comprehensive functions

for data collection. Collected items may be either observational data, contex-

tual data, or any combination thereof, to enable the enrichment of raw collected

data with contextual data for different purposes such as data validation at collec-

tion time or for supporting posterior analysis. Default context data is provided by

the Metrics SDK, including the configured context and extra data for identifying

uniquely the data11 (an id, previously collected data id, and a timestamp).

Furthermore, the Metrics SDK’s methods help developers perform data val-

idation and data enrichment tasks before packaging the resulted data into the

metric’s data model (Step 2, Figure 4.4). While data validation, against the data
10https://github.com/google/dagger
11Globally unique identifiers (GUID) are used
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definition specification, is available by default, even for custom dimensions, the

developer may implement additional and custom validation tasks. These data col-

lection and validation tasks should be viewed as initial steps of the data workflow

to transform raw data into actionable information derived from metrics execution.

4.1.3 Back-end Services (REST) API

While Section 4.1.2 refers to the client side functionality for data collection, such

data need to be submitted to a set of back-end services. The second phase just

presents more details about the server-side REST API services, illustrated by the

REST API box in Figure 4.4.

Client applications operate and interact with the analytics platform through a

set of RESTful web services 12. These services are grouped into well-delimited

functional categories. App(lications) management services (Table 4.2) and Met-

rics management services (Table 4.1) are used for managerial tasks, for initial

set-up and for managing new or existing metrics definition specifications respec-

tively, as seen in Section 4.1.1. Another type of services are the Metrics execution

services (Table 4.5), which give users full control on scheduling metrics execution

on demand (Section 4.1.5) since event-based scheduling can only be configured

through the Scheduler actor (Section 4.1.5). Data retrieval services (Table 4.4)

are public end-points to allow third-party tools to download and/or access input

and processed data for visualization and reporting purposes (Section 4.1.6). Fi-

nally, Data ingestion services (Table 4.3) are of interest for data collection (step 4,

Figure 4.4). These services are also documented through an endpoint by means

of the OpenApi swagger specification 13. Note the use of { and } for denoting the

URL path parameters used in the URLs of the services in next tables.
12Available at https://metrics-api.geotecuji.org/docs
13Open API specification https://swagger.io/docs/specification
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Table 4.1: Metrics management services.

Method Url Description

POST /api/v1/create-metrics/{appid} Creates the metrics definition of the

specified application.
POST /api/v1/delete-metrics/{appid} Deletes the metrics definition of the

specified application.
POST /api/v1/invalidate-metrics-cache Invalidates the metrics cache for all the

applications.
POST /api/v1/invalidate-metrics-

cache/{appid}
Invalidates the metrics cache for the

specified application.
GET api/v1/metrics-exist/{appid} Allow checking if the metric definition

exists for an application.
GET /api/v1/metrics-schema Returns the metrics schema. This is

useful mainly for tools (i.e., editing the

schema definitions files).
GET /api/v1/metrics/{appid} Gets the metrics definition of the

specified application.
GET /api/v1/test-submit/{appid} Tests that the submission functionality is

working properly.
GET /api/v1/test/{appid} Test method to help checking the state of

services for the application.
POST /api/v1/update-metrics/{appid} Updates the metric definition of a given

application (specified by appid path

segment).
POST /api/v1/submit-

data/{appid}/{variable}
Allow the submission of data for the

specified variable and application id.
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Table 4.2: Application management services.

Method Url Description

GET /api/v1/application-exist/{appid} Checks if the application with the

specified appid (i.e., application id)

exists.
GET /api/v1/applications Gets the applications definition data.

GET /api/v1/applications-editor-

template

Returns a template ’json-chema’ useful

for editing applications. This is intended

to be used by tools for easing

applications configuration.
GET /api/v1/applications/{appid} Gets the application by its appid

POST /api/v1/create-application/ Creates an application.

POST /api/v1/delete-application/{appid} Deletes a given application, identified by

the application id.
POST /api/v1/update-application/{appid} Updates the data associated with a given

application.

Table 4.3: Data ingestion services.

Method Url Description

POST /api/v1/submit-

data/{appid}/{variable}
Allow the submission of data for the

specified variable and application id.
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Table 4.4: Data retrieval services.

Method Url Description

GET /api/v1/data/{appid}/{datasource} Gets the data of a given datasource (i.e.,

variable or metric output), for the

application specified, the datasource

name, and filters. The filters allowed

(through query string) at this time are,

session, and user, as the application can

be extracted from the url path.
GET /api/v1/datasources/{appid} Shows the datasources available for a

given application.
GET /api/v1/metrics-

data/{appid}/{metric}
Gets the data associated to the specified

metric, given the application, the metric

name, and some filters. The filters

allowed (through query string) are

session, and user, as the application can

be extracted from the url.
GET /api/v1/variable-

data/{appid}/{variable}
Gets the data belonging to the specified

variable given the application, the

variable name, and some filters. As in

other services, the filters allowed

(through query string) at this time are,

the session and the user.
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Table 4.5: Metrics execution services.

Method Url Description

POST /api/v1/create-exec-

params/{appid}
Creates or updates the execution

parameters for the application specified.
POST /api/v1/delete-exec-

params/{appid}
Deletes the configuration associated to

the application specified.
GET /api/v1/exec-params-editor-

template

Returns a template ’json-chema’ useful

for editing execution parameters. This

functionality is mostly intended to be

used by tools.
GET /api/v1/exec-params-exist/{appid} Checks if the execution parameters for

the application specified are already

defined.
GET /api/v1/exec-params/{appid} Gets the configured execution

parameters for the application specified.
POST /api/v1/update-exec-

params/{appid}
Updates the execution parameters

configured for the specified application.
GET /api/v1/run-details/{appid} Returns some details about metrics

definition of the applications specified

(i.e., the variables, and the metrics).
GET /api/v1/run-params-editor-

template/{appid}
Returns a template ’json-chema’ useful

for tools related to editing run parameters
POST /api/v1/run/{appid} Triggers the execution of the metrics of

the specified application, based on the

configuration provided in the body.

Apart from services used to interact with the back-end and submit data, ad-

ditional “utilities” services have been developed to help render and edit associ-

ated service’s parameters (e.g., configuration data, other REST endpoints param-

eters). Examples of such services, which follow the same naming convention

with the suffix template, are exec-params-editor-template and run-params-editor-

template. These two services return a JSON schema that indicates how to auto-

matically build the user interface14 and to provide input parameters of the services
14This can be achieved by using a JSON Schema editor library.
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update-exec-params/{appid} and run/{appid}, respectively. Besides the proper-

ties required, the schema includes representational elements such as title and

the rendering format. Such representational elements are used, for example, in

the labels and descriptions of the properties editors or validators for the input

properties.

4.1.4 (Fast) Data ingestion

Steps 4-6 in Figure 4.4 cover the data ingestion phase to ensure streams of col-

lected data reach and are properly stored in the back-end clustered database.

In this section, we look into the data ingestion microservice (step 5, Figure 4.4)

to examine the pair of contained components as depicted in the central part of

Figure 4.5 below.

Figure 4.5: Data flow, implemented tools and involved micro-services in the Data inges-

tion phase. Step numbers are the same than in Figure 4.4.

The first component is the (Kafka) messaging system, which ensures reliable

handling (receive, buffer, route) of the incoming flow of data. The message sys-

tem emits and exchanges messages, which contain the metrics data payload,

through a Kafka topic to which connector applications can subscribe in order

to handle/process the data stream. One such connector application is the self-

developed persistence component, which connects to the (Kafka) messaging sys-

tem and persists the messages in the (Cassandra) database. It is implemented

as an Akka actor-based application (Roestenburg et al., 2015) and internally con-

tains two main elements. The first element is an (Akka) Streams Kafka Con-
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sumer 15 that subscribes to the (Kafka) messaging system, and forwards mes-

sages (i.e., metrics data) to the second element, an (Akka) actor called WriterAc-

tor for performing data persistence into the back-end Cassandra database. This

latter actor is aware of the database structure and selects the appropriate table(s)

for persistent storage. The data, through the context, includes the information

needed to decide where the data should be stored in the back-end database.

Before inserting data originating from an application for the first time, the Writer-

Actor retrieves the metrics definition specification with the application’s variables

schema and converts it to the appropriate Cassandra statements that permit the

insertion of (JSON-encoded) data messages. This process is based on the fact

that the entire JSON schema of all incoming data to the platform is known and

included during the design phase of the metrics definition. For creating such struc-

tures, the persistence actor uses the names of the variables and the application

so that it is linked by a naming convention, which also facilitates the subsequent

inspection and querying of the data.

The aforementioned connector application furthermore doubles for other pur-

poses besides data persistence; it also has the responsibility to notify changes in

the data belonging to different variables. For example, when data associated to a

variable, changes, the connector application emits notifications with messages (in

a ”data-changed” Kafka topic), which include the coordinates of the data changed

(i.e., variable name, application, session, and user). This allows (additional) data

consumers, for example, to account for the data entering to the platform or for the

overall monitoring of the platform.

The back-end database (step 6, Figure 4.5) stores both (collected) input data

and output data (i.e., results of the metrics functions). It consists of a Cassan-

dra database configured as a cluster of (experimentally) 3 nodes (for replication),

where each node holds both data related to variables and output data. The data

is kept in separate tables for the different variables and metrics functions, and

named in a way that avoids clashing between applications. Hereby, it allows to

seamlessly scale up, adding additional nodes, as the stress on the data persis-
15https://doc.akka.io/docs/akka-stream-kafka/current/home.html (accessed on 9 Jan-

uary 2019)
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tence increases with the increasing amount of supported client applications, the

number of variables, and/or the number of end-users. Cassandra (Carpenter and

Hewitt, 2016) is the distributed database management system of choice for fast

data ingestion because of its high availability, reliability, and performance traits for

storing high volumes of data. Besides, it also offers good integration with big data

processing frameworks like Apache Spark, as we discuss next.

Performing computation on data where the order is important, such as loca-

tion data associated with activities, imposes several challenges. This is partic-

ularly important in the context of big data applications, where the computation

usually takes place in a distributed environment, and it is therefore necessary to

deal with partitioned data. Most programming models and their implementations

for processing big data rely on parallel computing. This is the case of MapRe-

duce (Dean and Ghemawat, 2008). It is based on two functions (which can be

considered phases): execution of the map function in parallel, and execution of

the reduce function over the results of the map function. In such a context, the

sort operation is considered to have a high cost, due to the potential data shuffle

necessary by the algorithm. Order is an important property of location data, and

especially for activity or trajectory data, where information is based on the order of

the locations that are collected and then processed. For example, to compute the

distance covered by an activity, the order in which the locations are considered

is crucial, because a different order would produce different results. In the ana-

lytics platform, we solve this problem guaranteeing that data is inserted in order,

by using the clustering order feature of Cassandra 16. Through this technique,

and with other features related to Spark connector for Cassandra 17, we can over-

come some of the problems related to the order of data. Besides, we also include

the properties previd and timeid (Section 4.1.2) integrated in our metrics data

model for providing information about the continuity of the data. With these prop-

erties, we can determine during the computation the order in which sequences of

locations are processed.
16https://www.datastax.com/dev/blog/we-shall-have-order
17 How the Spark connector works https://academy.datastax.com/units/how-spark-cassandra-

connector-reads-data?resource=how-spark-cassandra-connector-reads-data
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4.1.5 Metrics computation

The metrics computation phase comprises a set of microservices that work collab-

oratively. Figure 4.6 highlights the main microservices involved in this phase, for

comparison with previous figures; Figure 4.7 shows the configuration of the met-

rics computation phase in more detail, whereby numbered elements correspond

in both figures.

Figure 4.6: Coloured in blue microservices involved in the metric computation phase.

The scheduler is responsible for triggering metrics executions. It can be set

programmatically through the Metrics execution services (step 2, Figure 4.7), or

can also be called from the one-stop front-end management application. The

scheduler supports event-based and on-demand scheduling. Event-based schedul-

ing triggers metrics execution based on the occurrence of an event, e.g., the ar-

rival of (new) data into the database. In practical terms, a metrics execution is

not performed every time an event occurs, but a minimum (but configurable) time

is set between executions to avoid degraded execution performance as a result

of a sudden peak of events occurring simultaneously. On-demand scheduling

allows to immediately execute a metrics based on a manual request. This way,

client applications can force a metrics calculation, regardless of the execution of

event-based scheduling.
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The dispatcher is a router aimed to send metrics execution tasks, as sched-

uled by the scheduler, to (a set of) evaluator(s). The dispatcher performs mes-

sage buffering and load balancing tasks, selecting and dispatching evaluators

to perform evaluation tasks based on the current load and statistical (historical)

performance information.

The evaluator (s), the central element of the metrics computation box in Fig-

ure 4.7, is responsible to coordinate and carry out the execution of metrics ac-

cording to the metrics model introduced in Section 4.1.1. It is implemented as a

set of components (actors), which work together and are duplicable to allow dis-

tributed execution. The evaluator handles incoming metrics execution requests

from the dispatcher. First, Metrics Conversion takes place: the relevant metrics

definition specification is retrieved from the persistent storage (or from cache, for

efficiency), as reflected in step 4, Figure 4.7. The declarative metrics specifi-

cations are then converted into executable (JavaScript) code. This is a partial

conversion, because the metrics descriptions already contain executable code

representing the metrics function and/or action function. It also prepares and sets

up the current context, that will drive the execution and data accessed during met-

rics function computation. Next, the Dependency Analyser takes the JavaScript

code and analyses dependencies to generate a directed dependency graph, in

which functions and datasets are nodes, and an edge represents a dependency

between a function node and dataset node or between two function nodes (e.g.,

when a custom function composes or calls another custom function). This depen-

dency information is useful, for example, for a variable-driven execution, e.g., the

execution of all the functions depending on the variable movement. Prior to the

metrics execution, the Execution Planner transforms the dependency graph into

an execution plan and runs it (using EclairJs 18 on the Spark platform).

Finally, once the results of the metrics execution (more accurately: execution

of metrics functions) are in place, two actions are carried out with the results.

First, the results are persisted by the Data Persistence (step 5, Figure 4.7): the

Result Handler inserts data into or retrieves data from the corresponding back-

end database. This handler abstracts from the concrete database implementa-
18https://github.com/EclairJS/eclairjs
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tion to prepare data manipulation statements (e.g., inserts), which are executed

by specialized components (actors), allowing abstraction from specific database

parlance and distributed / redundant persistence.

Second, results are also passed to the Rules Engine Execution component to

check whether an action needs to be executed. Actions are specified as if-then

rules (in the metrics definition specifications), based on the results of metrics

functions execution. In case one or more rules trigger, the associated action(s) is

executed by the Action Handler, and the Notification Handler is notified to carry

out notification task(s) (step 6, Figure 4.7) based on the chosen notification con-

figuration (see Section 3.2.3).

All of the components mentioned above are actor-based microservices im-

plemented as Akka actors using Apache Spark to exploit its Resilient Distributed

Dataset (RDD) model and inherent processing capabilities (Zaharia et al., 2016b).

Server-side computation model and supporting functions

So far, we have shown the basic mechanisms of the engine to execute the code

defined in the metrics definition. Nothing has been said about how to access and

use data during metrics computation. In this section, we explore the server-side

computation model and provide usage examples.

Metrics functions are allowed to access data belonging to the current applica-

tion (i.e., through the variables defined, and using the mechanisms for accessing

the partitioned data) as well as calling/invoking other metrics. At its core, the

metrics functions use the EclairJs API, a port of Apache Spark API that runs on

top of Java Scripting API 19. This means that although the code is implemented

in JavaScript, it is actually running on top of the Java virtual machine, the native

environment for Apache Spark applications.

For server-side programming, the platform provides a JavaScript library con-

taining a series of functions grouped in three libraries: coreutils, metricsutils, and

geoutils. Most of these functions aim to ease the access to the structure of data,

while others allow the use and manipulation of data (see Figure 3.3). For exam-
19https://docs.oracle.com/javase/8/docs/technotes/guides/scripting/prog_guide/

api.html
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ple, through these functions, a developer can easily access location data and the

variables and dimensions according to the metrics definition.

In particular, the coreutils library provides core functions to access the internal

structures at a low level and helps debug applications, for example, providing

logs and basic assertions functionalities. The metricsutils library, probably the

most important, encapsulates all the functions related to the interaction with data,

metrics functions, results, and context (see next section).

Finally, the geoutils library provides core geo-related functions, including ge-

ofencing and geostatistics (basic route analysis), among others. For advanced

geo-spatial analysis tasks, we rely on TurfJs library 20, which implements a vari-

ety of geospatial analysis methods. TurfJs methods can be used in the context

of metricsutils and EclairJs (Spark API) for performing advanced spatio-temporal

analysis over the collected data.

Data access in metrics functions

The implementation of metrics functions often requires the access to application

data; for example, the value of a particular variable declared in the metrics defini-

tion or the results of a metrics function. The back-end microservices provide ways

to do this. They internally create RDDs (Spark Resilient Distributed Datasets) for

the variables declared in the metrics definition; they also partition the data of vari-

ables by filtering the properties of the current context. Listing 4.5 shows how to

count the elements of the variable movement. The single code line remarks two

key aspects of coding metrics. The first is that the very names of the variables

defined in the metrics definition are used directly for coding. The second is that

the methods of the function libraries provided as part of the Spark library can be

invoked on the variables as they are converted to Spark datasets.

var count = movement . count ( ) ;

Listing 4.5: Usage of variable movement.

20https://turfjs.org/
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Listing 4.6 shows the use of the EclairJs API for low-level access to the dimen-

sions declared in the metrics definition. Note the use of the functions map and

fieldIndex that belong to RDD and Row Spark classes. In Listing 4.6, userSes-

sion.movement is a Spark dataset and, therefore, the invocation of the method

toRDD is necessary to use the RDD functionalities. Any other dimension (also

known as field in the Spark terminology) can be accessed similarly. Take the

example of the variable movement, with the default dimension location and the

custom one steps. To access the dimension steps is then required the code in

Listing 4.7. Similarly, the custom dimension time is accessible by the convenient

methods MetricsUtils.getTimeDefault, and MetricsUtils.getTimeStr (Listing 4.8).

var l o c a t i o n s = userSession . movement . toRDD ( ) .map( function ( row ) {
var l a t l o n = M e t r i c s U t i l s . getAsLatLon (

row , row . f i e l d I n d e x ( ” l o c a t i o n ” ) ) ;

return l a t l o n ;

} ) ;

Listing 4.6: Using the RDD functionalities on a variable.

var onlySteps = userSession . movement . toRDD ( ) .map( function ( row ) {
var steps = row . get ( row . f i e l d I n d e x ( ” steps ” ) ) ;

return steps ;

} ) ;

Listing 4.7: Accessing dimensions on a variable using RDD row functionalities.

var userSessionTimes = userSession . movement . toRDD ( ) .map( function ( row ) {
var t ime = M e t r i c s U t i l s . getTimeDefaul t ( row ) ; // As JS Date obj

var t imeSt r = M e t r i c s U t i l s . getTimeStr ( row ) ; // As ISO string

return t ime ;

} ) ;

Listing 4.8: Accessing time dimension through MetricsUtils.getTimeDefault, and

MetricsUtils.getTimeStr functionalities.
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As the computation model is based on EclairJs, the Spark API (more specifi-

cally, the ported functionalities) is available and accessible from the metrics func-

tions. Listing 4.9 shows how to obtain basic statistics about the dimension steps

of the variable movement by using the Spark Dataset describe function:

var movStats = movement . descr ibe ( ’ steps ’ ) ;

Listing 4.9: Using describe (Spark Dataset) function on a variable.

Metrics context usage in metrics

As already referred to in the realm of location-aware games in Section 3.2.1, con-

text is a crosscutting concept in the entire analytics platform and is materialized

in several ways across the platform. For example, in the data collection phase,

context is used to establish links between parts of data to further extract infor-

mation about the underlying relationships or characteristics of such data. These

relationships can be used to investigate the behaviour of users in a given activity

within a common environment. For example, users who share the same game

session can have a different behavior pattern than two users playing separately

in a context of a game. In a location-aware game for marketing purpose, shar-

ing a session (depending on the location-aware game design) can imply that a

given marketing promotion reached both users who belong to a certain age group,

share some common interests, etc.

Therefore, across the platform, we enable functionality to refer to and access

data, in order to later perform notifications based on the contextual information

extracted. In the process of defining metrics functions code, the metrics context

is accessible through the variable mc. Listing 4.10 shows how to access the

context properties of the variable mc.

// mc contains the metrics context.

var a p p l i c a t i o n = mc. a p p l i c a t i o n ;

var user = mc. user ;

var session = mc. session ;
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var execid = mc. execid ;

Listing 4.10: Accessing the context on the server side.

Besides the known context properties, Listing 4.10 includes execid (i.e., an

execution id). This property of the metrics context is a globally unique identifier

(GUID) assigned by the evaluator at the beginning of the metrics computation

(Section 4.1.5) and is later kept as a property of the results of the metrics compu-

tation. In consequence, all metrics outputs derived from the execution of a metric

function, and other metrics which depend on it, share the execution id.

Internally, the context variable is set up at the beginning of the computation. It

is extracted either from the context of the variable triggering the computation or,

in case the execution is triggered manually, from the context specified by the user

through the user interface. It is, therefore, the programmer’s choice to operate

with the data referring to the context or not (i.e., work with contextualized data).

This decision depends on the problem at hand; in any case, all the data of the

application is available in the metrics functions.

The analytics platform also includes specific objects to access data filtered

by the properties of the metrics context (which we could think of as contextual-

ized data). To define them we use a simple naming convention: application,

session ,and userSession. These objects resemble different scopes of the data.

The application object contains the datasets for all the variables filtered by the

application property of the current metrics context (mc). The session object con-

tains the data belonging to the current session (i.e., filtered by mc.session and

mc.application). The userSession object contains the data of the variables fil-

tered by the application, session, and user in the metrics context. The syntax

pattern is <context-data-object>.<variable>. We chose this nomenclature to pro-

vide a straightforward way to refer to a partition of the collected data that naturally

matches different data “views” of the current context.

Listing 4.11 shows some examples of filtered-based access to context data.

For example, movementsInSessionForUser is initialised by filtering the current ap-

plication, session and user context of the variable movement, while movementsI-

nApp is only filtered by the current application context.
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// Filtering by current application , session and user context.

var movementsInSessionForUser = userSession . movement ;

// Filtering by current application and session context.

var movementsInSession = session . movement ;

// Filtered by current application context.

var movementsInApp = a p p l i c a t i o n . movement ;

Listing 4.11: Accessing variables filtered by context.

Filtering

Filtering is an important aspect of handling data. In the analytics platform, a set of

methods are provided to ease filtering tasks, mainly related to the temporal aspect

of the data. Built on top of the ad-hoc filtering capabilities of the Spark/EclairJS

API, we add a layer for filtering data by time, based on the knowledge of the

structure of the variables and the context data. Time-related filtering methods

include:

• MetricsUtils.last() filters data by a time period (e.g., 3 hours, 25 minutes)

immediately before the time of the current metrics context (mc).

• MetricsUtils.range() filters data by a time range.

• MetricsUtils.dataForLast() filters data by a time period before a reference

time.

• MetricsUtils.centered() filters data in a time period centered on a reference

time.

Listing 4.12 shows some examples of the previous methods.

var rdd = userSession . movement ;

// Last 5 hours

var datasetLast5Hours = M e t r i c s U t i l s . l a s t ( rdd , 5 , ” hours ” ) ;
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// Between timeBegin and timeEnd

var t imeBegin = . . . ; var timeEnd = . . .

var datasetInRange = M e t r i c s U t i l s . range ( rdd , t imeBegin , timeEnd ) ;

// Time window of 30 hours centered on referenceTime

var referenceTime = . . . ;

var datasetCentered = M e t r i c s U t i l s . centered ( rdd , referenceTime , 30 , ”

hours ” ) ;

Listing 4.12: Examples of time-based filtering.

Note that the previous time filtering methods apply to any dataset (RDD) in

the metrics function, including datasets associated to all the variables and met-

rics functions defined, using the metrics context. This eases the filtering compu-

tation referred to a specific time window. Besides, these methods are useful for

defining scopes (see Section 4.1.1), which can be reused through different metric

functions.

Location handling and geo-related functions

As we have mentioned in previous chapters, it is possible to include a spatial

default dimension of type location in variables. To help access location data

declared in a location dimension, the platform provides the method MetricsU-

tils.getLatLonsRDD(). This method returns a new RDD containing location in-

formation necessary to perform a variety of geo-spatial analyses. The order in

which location data is processed is important in most cases. For example, order

is critical while handling trajectory data, because it is necessary to ensure that

the locations to be processed are consecutive in time. The analytics platform pro-

vides convenient methods for extracting location data from variables, and verify

that data points are consecutive based on the properties previd and timeid.

• MetricsUtils.isNextLocation() determines if a given location is the next loca-

tion of another.

• MetricsUtils.isPrevLocation() determines if a given location is the previous
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location of another.

The MetricsUtils library also includes methods for performing spatial analysis

over location data, as well as key conversion methods to the GeoJson format.

Listing 4.13 shows examples of the next methods.

• MetricsUtils.isInside() computes if a point is inside a geometry.

• MetricsUtils.lineDistanceLocal() computes the Euclidean distance between

two points of the trajectory.

• MetricsUtils.lineStringFromLocationsRDDLocal() returns the RDD list of points

of a trajectory as a GeoJson lineString object.

• MetricsUtils.geoStats() provides statistics about sequences of locations or

trajectories.

Note that the ”Local” suffix in some of the above method names denotes the

operation executes locally instead of in parallel. In local mode, the RDD is col-

lected (which means the RDD will be materialized21) before performing the com-

putation and, therefore, this operation should be used with caution.

var rdd = userSession . movement ;

var l o c a t i o n s = M e t r i c s U t i l s . getLatLonsRDD ( rdd ) ;

p r i n t ( ” Count o f f i l t e r e d l o c a t i o n s : ” + l o c a t i o n s . count ( ) ) ;

// Distance

var l i n e S t r i n g D i s t a n c e = M e t r i c s U t i l s . l i neD is tanceLoca l ( l o c a t i o n s ) ;

// List of points (trajectory)

var l i n e = M e t r i c s U t i l s . l ineStr ingFromLocat ionsRDDLocal ( l o c a t i o n s ) ;

// GeoStats

var s t a t s = M e t r i c s U t i l s . geoStats ( rdd ) ;

p r i n t ( ” Number o f po in t s : ” + s t a t s . count ) ;

21This is the term used in Spark for the process of executing the RDD and later collecting the

data in one node.
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p r i n t ( ” d is tance : ” + s t a t s . d is tance ) ;

p r i n t ( ”mean speed : ” + s t a t s . meanSpeed ) ;

Listing 4.13: Using GeoStats in the metrics functions.

In the context of location-aware games, the concept of geo-fences is frequently

used. Geo-fences are virtual areas of different shapes (circles, rectangles, etc.),

which are often virtually linked to physical features/places of the urban environ-

ment like a landmark or building. Events can be triggered when tracked objects

(cars, bikes, pedestrians) cross, enter, or exit those geo-fences, opening the pos-

sibility for enabling new types of interaction between the urban feature or place

and nearby users (e.g., Fechner et al. (2016); Törnros et al. (2016)).

As part of the analytics platform, the function MetricsUtils.geoFences returns

a list of states (e.g., inside, outside) that express the relationship between a se-

quence of locations and a geo-fence. This method also returns the pattern dis-

covered, i.e., entering or exiting the geo-fence. Listing 4.14 clarifies the use of

geo-fences.

var rdd = userSession . movement ;

var l o c a t i o n s = M e t r i c s U t i l s . getLatLonsRDD ( rdd ) ;

// Geo-fence computation

var r e s u l t = M e t r i c s U t i l s . geoFences ( rdd , M e t r i c s U t i l s . LatLonTime (

g e o u t i l s . getLatLon ( l a t , lon ) , t ime ) , rad ius ) ;

p r i n t ( ” Po in ts analyzed i n t r a j e c t o r y ” , r e s u l t . count ) ;

p r i n t ( ” Last s t a te : ” + r e s u l t . s t a t e ) ; // inside/outside

p r i n t ( ” Number o f l o c a t i o n i n l a s t s t a te : ” + r e s u l t . s t a te coun t ) ;

p r i n t ( ” Previous s ta te : ” + r e s u l t . p rev s ta te ) ; // inside/outside

p r i n t ( ” Pa t te rn : ” + r e s u l t . pa t t e rn ) ; // just_entered/just_exited

Listing 4.14: Use of geo-fences in metrics functions.
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Metrics results

Metrics functions must return a value that complies with the output schema de-

clared in the metrics definition (Section 3.2). Metrics results are stored once they

are returned and kept for evaluation during the actions execution. The analytics

platform supports two ways of returning results: either the calculated value is

directly returned or by calling the method MetricsUtils.resultWith. This function

binds the context with the payload. Listing 4.15 shows an example of the latter

case, while Listing 4.16 contains the associated output schema.

var met r i csResu l t = { ” sampleProperty ” : ” proper tyValue ” ,

” sampleProperty1 ” : ” proper tyValue1 ” } ;

return M e t r i c s U t i l s . r e s u l t W i t h ( met r icsResu l t , mc) ;

Listing 4.15: Returning metrics results.

{
” $schema ” : ” h t t p : / / json−schema . org / d r a f t −04/schema# ” ,

” type ” : ” ob jec t ” ,

” p r o p e r t i e s ” : {
” sampleProperty ” : { ” type ” : ” s t r i n g ” } ,

” sampleProperty1 ” : { ” type ” : ” s t r i n g ” }
} ,

” a d d i t i o n a l P r o p e r t i e s ” : fa lse
}

Listing 4.16: Corresponding schema to the result returned in Listing 4.15.

Actions

As introduced in Section 3.2.3, actions perform notifications based on the results

of the metrics function computation. The implementation of actions comprises a

condition (filter), a target, and a type. The type can be either PUSH or POST,

which indicates the method used for the notification. The target aims at defining

the scope of the action such as application, session, or user. For example, in
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the context of the location-aware games, a target could be all the players of the

application, a group of users playing in a game session, or even a specific user.

Actions are evaluated and executed once the scheduled metrics functions are

evaluated (Section 4.1.5). As a consequence, action filters can use the metrics

results while evaluating the conditions for triggering notifications. For doing this,

the value of the last execution of the metrics function is obtained by accessing the

property <metricsFunctionName>.<value>.

To illustrate the previous idea, Listing 4.17 shows a filter defined on a thresh-

old of the result of simpleMetric metrics function. Note that the first parame-

ter of MetricsUtils.actionResult is a Boolean value specifying if a notifica-

tion should be sent, while the actionPayload parameter indicates its payload.

The context passed with the variable mc (namely, metrics context) permits to

deliver notifications to the right recipients. Otherwise, it is indicated by calling

MetricsUtils.noAction(). Accessing the value of metrics results is also possi-

ble by simply using the expression complexMetric.value, for example.

i f ( s imp leMet r i c . value > 100) {
var actionPayLoad = { ” sampleProperty ” : ” proper tyValue ” , ”

sampleProperty1 ” : ” proper tyValue1 ” } ;

// Notify if fist parameter is true

return M e t r i c s U t i l s . ac t i onResu l t ( true , act ionPayload , mc) ;

} else {
return M e t r i c s U t i l s . noAct ion ( ) ;

}

Listing 4.17: Example implementation of a filter function for an action.

4.1.6 Metrics output visualisation

Visual analytics tools are key to support decision making processes (Andrienko et

al., 2010). The same is true for metrics evaluation. In the conceptual architecture

of the analytics platform (Figure 3.1), data visualisation and reporting tools are

situated at the end of the analytical pipeline, taking metrics outputs as input to
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potentially carry out in-depth analysis. These visualisation tools gain access to

metrics outputs through the data retrieval services introduced in Section 4.1.2. In

this case, these RESTful services access the clustered database, which implies

that both input and output data are available to this type of client applications.

Rather than building sophisticated visual analytical tools, the focus has been

on making data accessible and easily reachable through public endpoints, so de-

velopers can download data and create custom visualisations with their preferred

environments and tools. Notwithstanding, we still developed a default, generic

visualisation tool. The tool supports both map-based (Figure 4.8) and tabular-

based visualisations (Figure 4.9) of collected data and metrics outputs, and per-

mits the download of data in various open formats (e.g., CSV, JSON, GeoJSON).

Figure 4.8: Map-based visualisation of collected trajectory data stored in the analytics

platform.

4.2 Discussion and comparison with existing

platforms

In Chapter 2, we surveyed a varied set of academic and commercial tools for

game analytics based on a set of functional areas and key features per area that
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Figure 4.9: Tabular-based visualisation of the data in Figure 4.8.

helped us to perform the comparative analysis. Both the functional areas and the

features are presented globally in Table 2.2 and in detail per each functional area

in Tables 2.3–2.7. In this section, we analyse the analytics platform presented

in this thesis based on these same functional areas and features as in Chapter

2. Table 4.6 summarises the characterisation of the implemented analytics plat-

form regarding these functional areas and features, which allows us to compare

it against the tools seen in Chapter 2. The following discussion is organised per

functional area.

Regarding the data communication and collection, we implemented an event-

based data collection strategy and supported streamed events as communication

approach. The platform provides an SDK that eases external client applications to

interact with it and helps in the handling of communications and event messages

conforming with the event types defined through the metrics definition variables

in the back-end. As we showed earlier in this chapter, the SDK functionalities sig-

nificantly simplify the client-side development of Android applications. Besides,

managerial and data access services are described through the Open API speci-

fication, which allows a well-defined interaction with the platform. The Open API

specification provides a support mechanism to allow developers to generate a

wide variety of client applications based on different programming languages and

107



Table 4.6: Functional areas support in the game metrics analytics platform.

Functional Areas Features Support

Data collection and communication

Table 2.3

Client-side development support
REST API available for data communication.

Described through an Open API specification.

SDK provided for Android.

Data communication strategies Streamed Events.

Data collection strategies Event based.

Data representation

Table 2.4

Default event (data model) types Partially, all event types must be defined, but default dimension types are provided.

Custom event types definition
Yes, through Variables and dimensions.

Custom dimensions specified through JSON Schema.

Spatial support (for data modelling) Yes, mainly location and space attributes.

Data analysis and reaction

Tables 2.6 and 2.5

Reactive rules Storage, Notification and Custom.

Spatial support (conditions & actions)
Yes, several operators available for conditions.

Actions supported through the data submission API.

Default metrics and games analysis Yes, some default metrics are provided.

Custom metrics definition Yes, using Javascript and EclairJs.

Spatial support (for analysis) Yes, TurfJs functionalities available.

Data visualisation and reporting

Table 2.7

(Open) Data Access Yes, REST API.

Visual analytics Tables.

Spatial support (for visual analytics) Routes and Point Maps.

third-party platforms (e.g., JavaScript, Powershell, Ruby, to mention a few 22).

This Open API specification differs from the functionalities provided by the SDK

in that the latter provides support not only to interact with the backed-end ser-

vices, but also for the handling of notifications, communication, and data collec-

tion related functionalities such as data submission failure handling, and default

dimensions providers.

In comparison with other tools in Table 2.3, the features of the analytics plat-

form pertinent to the support of client-side development clearly stand out. Fea-

tures such as the REST API, the provided SDK and the description through

Open API, provides improved client-side development support when compared

with other systems. We attribute this difference to the design requirements of the

systems analysed, which in some cases targeted data collection and processing

for specific, in-house systems, and had no intention to cover a wider audience.

It should be also noted that some tools in the analysis were designed and im-

plemented in a different “technological” context, where some of the features and

supporting technologies were not fully developed or popularized at the time and,

therefore, their acceptance was not as wide as it is today. This conditions the

development of tools (i.e., libraries, frameworks), languages, and protocols used,

as a basis for the construction of software in general.
22Example code generation tools: https://swagger.io/tools/swagger-codegen/
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When it comes to the data representation functional area, our analytics plat-

form offers significant flexibility for data representation, by allowing the developers

and designers to specify versatile data structures through a custom event type

model. Considering that the custom event types can be defined dynamically, ap-

plication re-build and deployment is not necessary while defining the event types.

A set of default types of dimensions helps with the custom event types definitions.

The spatial support in this model is provided in different ways, for example with the

inclusion of spatial dimensions in the variables (both location and orientation are

supported), and through the use of custom dimensions to encode spatial data. In

this context, complex spatial data is supported in the back-end platform through

the use of Turf.js. The tools discussed in Chapter 2 provided spatial support

through location/space attributes, and to some extent, our platform uses a similar

approach. The difference lies in that our platform is more flexible and extensible

because other spatial attributes can be included through custom dimensions of

the GeoJson encoded data. In addition, our platform employs standard formats

like GeoJson, which is fully supported by the spatial capabilities of the platform.

In regards to the data analysis, we have included default metrics that range

from general purpose statistics to more spatial-related ones. All these metrics

have in common, on one hand, a shared model that can be adopted by others

(as data structures) and, on the other hand, computations are described and

defined in a portable, human-readable format that does not imply the need of re-

building the application while incorporating new changes. Most of these features

are driven by the design decision to provide the ability to define custom metrics

through the use of JavaScript, and offer functionalities that “understand” the un-

derlying data model, as described through variables and dimensions. Besides,

concerning spatial support, we have provided tools for supporting spatial analy-

sis, a feature that has received scarce attention in the tools for game analytics

seen in Chapter 2, see Table 2.5. In our platform, we developed spatial function-

alities by including Turf.js23 as a base library, which provides to some extent a

level of spatial support (GeoJson format, build-in spatial operations) that covers

most functionalities widely used in the context of location-aware games.
23https://turfjs.org/
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Reaction is supported using notifications through widely used channels such

as HTTP and PUSH notifications which eases the integration with third-party tools

and systems. Notifications can be conditioned through rules that can involve non-

spatial and spatial data produced by computation tasks. As presented in Chapter

2 and summarised in Table 2.6, these features are barely provided in most of the

tools analysed, as they only support notifications in some cases.

The implemented analytics platform is intended to be a general-purpose sys-

tem, yet with specific support for spatial analysis too. In the functional area of

data visualisation and reporting, we followed this approach and provided general-

purpose visualization tools, both for spatial and non-spatial data. These tools al-

low data inspection, basic data filtering by the properties of the context (i.e., user,

session, application). The platform provides ways to export and access collected

and processed data (metric results) to be ingested by sophisticated third-party

data visualization tools. Data access for external tools is based on a REST API

that is documented through Open API (Swagger) specification. Regarding data

access, the features included in our platform are similar to the ones provided by

some systems, as summarised in Table 2.7, while in the field of visual analytics,

we have not implemented advanced tools (as in the case of some of the systems

compared). We have only including basic support for visualizing tables and, in

the spatial aspect, only basic visualisation of locations and routes.

In summary, the analytics platform has implemented an architecture for sup-

porting a large number of features related to data collection, processing and stor-

age. It inherently promotes scalability, such as through streamed data collection,

distributed data storage, and a scalable computation framework for enabling dis-

tributed data processing. Although the platform is able to handle any type of

user-collected data, the geospatial aspect of the data is particularly important in

the context of location-aware games. We have implemented a set of features to

ease the collection, storage, and processing of geospatial data. The platform han-

dles both general-purpose data and spatial data, by providing a model based on

variables and dimensions, which are crosscutting concepts with materialization in

different aspects of the platform. These high-level abstractions make the platform

re-usable for various applications domains, requiring only the definition of the data
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model and the metrics through the built-in tools and support services of the plat-

form. In comparison with the systems analysed in Chapter 2, the platform stands

out in two ways: the back-end services provide spatial support while using a scal-

able data processing framework, and include spatial related functionalities (such

as geofencing ones) that are commonly used in the context of location-aware

games. Besides, the platform incorporates features related to reaction that, in

most aspects, are not supported in the analysed platforms and tools.
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Chapter 5

EXPERIMENTATION AND
ASSESSMENT

It is commonly known that the evaluation of a framework or platform is in-

herently difficult (Jogalekar and Woodside (2000); Neuman (1994); Duboc et al.

(2007)), as it needs to assess subjective properties such as scalability, code ab-

straction, ease of use, etc. In this chapter, we embark on a multi-faceted assess-

ment of the analytics platform. First, we qualitatively discuss the global platform’s

design and architecture towards technically desirable features and ease of use

(Section 5.1). Second, we evaluate the platform’s applicability in two real-world

cases in two different domains, to demonstrate its use in different application ar-

eas, and to assess the aforementioned features and the platform’s use from a

developer perspective. The real-world case studies consist of a game to acquire

noise measurements and an application for mental health. For the former, an

experiment is set up, whereby the game was implemented with and without the

analytics platform, followed by a qualitative comparison and discussion. The lat-

ter case study shows the versatility of the analytics platform and its application

beyond location-aware games.
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5.1 Discussion of Features of the Analytics

Platform

In Section 1.2, as part of the research objectives R03 and R04, we indicated the

main features for the platform to address. For this discussion, we grouped them

into those belonging to implementation and architectural related characteristics of

the platform and those referring to the ease of use of the platform from a developer

perspective. Our purpose in this section is to present how the analytics platform,

as a whole, addresses each of these features. In what follows, we first define the

implementation and architectural related features (asynchrony, scalability, and the

use of high-level abstractions) and discussed them in the context of the platform.

Next, we dive into the ease of use features encompassing ease of setup, ease

of development and learnability, and discussed how they globally applied to the

analytics platform.

Asynchrony refers to the ability of the platform to handle and run requests

asynchronously. Unlike synchronous requests, these are treated in independent

execution threads and processes (in distributed systems, as it is the case of our

platform implementation) and do not block the client application (or other inter-

nal components in the server side of the analytics platform) while the requested

process is being executed. The analytics platform supports asynchronous re-

quests by providing services that handle incoming requests (e.g., metrics execu-

tion and data submission requests) and deliver other requests to other microser-

vices where the actual processing is performed, as explained in Sections 4.1.4

and 4.1.5. At a low level, this feature is supported by the asynchronous nature of

actors provided by the Akka framework. Both RESTful services and backend

microservices (see Figure 4.6) implementations are based on actors perform-

ing processing tasks in an Akka cluster. In addition, asynchrony is assisted by

the notification services (also shown in Figure 4.6) that asynchronously deliver

responses (through the defined actions) for metrics computation requests (e.g.,

notifications in case of the metrics processing).

Another feature is scalability (Duboc et al., 2007), which refers to the ability to

handle an increasing volume of work (e.g., requests, computation, etc.) without
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degrading performance of the analytics platform. The platform tackles it by being

implemented as a distributed system, where data ingestion and metrics process-

ing tasks are separated and these services form a cluster that support multiple

service instances. Thereby, it is possible to configure the platform for running

several data ingestion services (note that these services can be part of different

processes and even be deployed in different hosts) and metrics processing mi-

croservices. This confers horizontal scalability to the platform to adapt to different

request volumes. Internally, specialised Akka actors handle messages between

actors (belonging to the services) in a cluster. These actors use routing1 and bal-

ancing mechanisms for handing requests to the different services instances (i.e.,

actors in services running in the cluster). Database scalability is also achieved by

using Cassandra distributed data storage (Abramova et al., 2014). Finally, from

the perspective of data processing, we have used Apache Spark in our platform

to leverage Spark’s big data processing capabilities (Inoubli et al., 2018) and pro-

cessing model (Zaharia et al., 2016a). Apache Spark has become one of the

most important framework for implementing big data applications with applicabil-

ity in several fields, as some papers show (Nothaft et al., 2015; Freeman et al.,

2014).

Abstraction is the last implementation and architectural related feature. It

refers to the extent to which the underlying metrics model is either specific and

geared to a particular domain or application (e.g., the Noise Battle game), or it can

be widely applied to a variety of applications domains. In the analysis provided in

Chapter 3, we presented the concept of variables and dimensions (see Section

3.2.1) as a data representation model for the platform, metrics and actions for

processing and results handling. This model fits well in most problems in the con-

text of location-aware games. During the implementation of the platform, these

abstractions have materialized in different components of the platform, and have

proven to be useful to support advanced aspects of the platform (e.g., storage,

data processing, client side data validation, etc.).

Besides the implementation and architecture related features, one of our ob-

jectives was to create a platform that would be easy to use for developers, favor-
1More information at: https://doc.akka.io/docs/akka/current/cluster-routing.html
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ing the reuse of the definitions created in the application domain of location-aware

games and applications. Through the metrics definition, we designed a represen-

tation of the abstractions provided that can be easily created and maintained by

using the tools provided and that, at the same time, is readable and shareable

between different systems. We chose a representation based on widely used

formats for favoring specifically the reuse of the model for varied purposes. The

platform itself does intensive use of the metric representation (the metrics defini-

tion files). Data ingestion, storage, the client Metrics SDK, and processing ser-

vices leverage different aspects of the metrics representation for data structure

definition, validation, processing and scheduling.

The second group of features falls into the category of ease of use. It com-

prises a set of features to alleviate, from the perspective of the developer, the

complexity of development of a solution: ease of setup, ease of development and

learnability.

Ease of setup is related to how easy would be for a developer to setup an

application on top of the platform. It comprises the necessary steps to make the

platform usable by a client application for data collection and analysis. For using

the platform, it is necessary to create a new application through the metrics defi-

nition tool provided. This tool also allows to setup aspects related to notifications,

such as the keys for using the Google Cloud Messaging (GCM) services and the

metrics itself. These steps are assisted by the metrics definition tool. Clients appli-

cations setup is also facilitated as the Metrics SDK for Android, which is published

in a repository to facilitate task of including the library in the Android applications.

The setup needed in the client application is related to the configuration of the

notifications (which requires a key provided from Google services). Besides, it is

also necessary to configure the application id (provided when creating the appli-

cation in the metrics definition tool), the session and user information, during the

SDK library initialization.

From the programming point of view, the platform provides access to the data

collected in a way that is coherent with the metrics model proposed, easing the

adoption of the platform. Therefore, ease of development is supported by a set of

functionalities that are related to the creation of location-aware games, easing the
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implementation of spatial related features. Adding new functionalities to the appli-

cations is achieved by including new metrics functions, a process that does not

require redeployment of the application, as the metrics functions are evaluated dy-

namically by the platform. For the development of client applications, we provide

an SDK for Android. It offers a set of functionalities that are also coherent with the

metrics model proposed. This way we have tried to keep a common set of con-

cepts through all the components of the platform. For example, variables are the

main data structure for the data collection functionalities offered and the context

must be established for the SDK before submitting data to the platform. The SDK

loads and keeps the metrics definition in the client applications at startup and

upon data submission, the data is then validated based on the metrics definition

specification. Besides, the Android SDK (see Section 4.1.2) simplifies the de-

velopment by offering functionalities that reduce the amount of boilerplate code

needed for an application to interact with the metrics platform such as notifica-

tions handling, automatic sensor data collection and data submission handling

(i.e., error and retrial).

Learnability is the last ease-of-use feature. As a key element of usability

(Grossman et al., 2009), learnability alludes to the capacity of the analytics plat-

form and the metrics definition tool to allow the developer to learn how to use/code

on it. Note that we do not treat usability as a criterion due to the broad scope of

the term. In the platform, we favor learnability by providing users/developers with

tools for creating the different elements of the metrics, as well as providing a few

abstractions for defining the data model and the processing requirements of the

problem at hand. The simplest problems that do not require specialized data

types, for example, can be modeled through the metrics definition tool with ease.

More complex scenarios can be implemented through the same tools by using

open, well-known formats (e.g., using JSON schema). Regarding processing,

the learnability is favored through the use of JavaScript as the base language for

defining the metrics functions, and Apache Spark API, which since few years has

become popular and widely adopted as a platform of choice for big data process-

ing. Due to its popularity, Apache Spark programming model is well known and

documented in the field of big data processing. Furthermore, it is worth noting
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that we have kept a common set of concepts (variables, dimensions) through the

platform, which can ease the understanding of different aspects of the systems.

For example, the notion of context is reused in the client side in aspects such as

the notifications handling and client application setup.

5.2 The Noise Battle Experiment

5.2.1 Design and setup

Rather than monitoring and recording internal indicators of the analytics platform,

we focus attention on how the analytics platform support developers in the cre-

ation and development of client applications, i.e., location-aware games. In other

words, if the platform improves and eases the tasks of development and moni-

toring of location-aware games. The strategy was to implement the same client

application with and without the analytics platform and to observe differences be-

tween the two. For this, we rescued a previous game development prior to the

analytics platform, which did compute spatial metrics too. Logically, the next step

was to adapt it to be compatible with the analytics platform. We considered de-

velopers as the primary end users. This means that the platform was tested and

evaluated in terms of how easy it was to create useful client applications and

spatio-temporal metrics on top of it.

In what follows, we report on two variants of the same experiment. The first

one is the original Noise Battle location-aware mobile game, which has been

published elsewhere (Martı́ et al., 2012). Implemented by the author, the app

computes spatial metrics as part of the gameplay. As we will show later, that

implementation is pre-platform. Subsequently, we came up with the concept of

spatial metrics and the analytics platform as explained in the previous chapters.

Once the analytics platform was implemented, two post-platform experiments fol-

lowed. The fist one was the relaunch of the Noise Battle game in connection with

the analytics platform. The before and after of the Noise Battle app is described in

Section 5.2.2. The second experiment is only post-platform (Section 5.3). It aims

to validate the versatility of the analytics platform to cover cross-domain applica-
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tions and experimental use cases. In section 5.2.3, we compare the two versions

of the Noise Battle game and discuss differences.

5.2.2 Experiment

The Noise Battle game (Martı́ et al., 2012) is a multiplayer location-based game

for the collection of noise measures using a mobile phone’s microphone in a city.

It was created in the context of a workshop held in the University Jaume I of

Castellón de la Plana, Spain. The workshop’s goal was to propose and discuss

research ideas and prototype applications for participatory collection of urban

noise measurements to contribute to the University of Münster’s Open Noise Map

platform (Schweizer et al., 2011), much like the Open Street Map platform for

noise pollution.

The general idea of the game is to engage players in “battle” for conquering

the city while collecting noise measurements and rewards around the city. For this

purpose, the city is divided into grid cells of equal size, called blocks, with multi-

ple rewards distributed in each block (see Figure 5.1). For collecting rewards, the

player must take noise measurements within a few meters around the location of

the reward. Noise measurements (in dB) are taken with the microphone sensor

of the mobile devices. Importantly, the action of taking measurements also im-

plies that the player obtains the ownership of the block (regardless of obtaining

a reward or not), or could appropriate it from the previous owner, and therefore

“conquer” it. At the same time, the player accumulates points that can be used to

send noises or sounds to enemies’ phones.

Depending on the state of the block in which the user takes the measurements,

the game rewards with different scores. The block’s state is configurable as part

of the gameplay. By default, if a player takes a measurement with a “better” value

than the previous used to conquer the block, the player is awarded 15 points.

If the block was not previously conquered, the number of points awarded is 10.

In contrast, if the taken measurement is “worse” than the existing one, only 3

points are awarded. The criteria for determining if a measurement is better or

worse is based on the noise level (dB) in the block. That is, greater levels of

noise is considered better. Noise level is normalized by the underlying noise
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Figure 5.1: Original interface of the Noise Battle location-based game. The city map

denotes the battle field and each grid cell the block to conquer.
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collection library called NoiseDroid2. A player can lose ownership of a block if no

measurements are taken in a certain amount of time (e.g., a few days).

Figure 5.2 shows the game in action. Each player has assigned a unique

color. When a player conquers a block, he gets a better noise measurement

than the actual one, that block is coloured with the player’s colour. Not all blocks

have got the same importance, geographically speaking. Special blocks for noise

monitoring are strategically distributed over the city in points of interest such as

schools and hospitals due to scientific, social or urban planning reasons. There,

players can collect special rewards (shown in Figure 5.2 with a chest icon), which

give 20 points to the player.

Figure 5.2: NoiseBattle in action. Coloured cells represent blocks conquered by different

players. Players are assigned unique colors at the beginning of the game. Chest icon

denotes relevant points of interest for noise monitoring.

The rewarding system aims to encourage regular and up-to-date measure-
2NoiseDroid source code can be found in the project noise-battle in Section 6.2, under the

folder noisedroidlib
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ments taken from different players and encourages spatial distribution of the mea-

surements over the city area. During the game, notifications are essential. The

game notifies the players whenever one of their blocks is under attack because

other players are collecting noise measurements there, and therefore that block

is most likely to be conquered. Besides, notifications serve as a mechanism for

sending (sharing) noise/sounds between the players. We refer to Martı́ et al.

(2012) for additional description of the gameplay of the Noise Battle game.

Pre-platform implementation

The original implementation of the Noise Battle game uses a service layer of

SOAP services3, which in turn rely on PostgreSQL4 (with PostGIS5) and Hiber-

nate spatial6 for storing the games’ geotagged noise measurements. The game’s

architecture is illustrated in Figure 5.3. Spatial computation required by the game

setup is necessarily performed by the spatial extensions of the back-end Post-

greSQL/PostGIS database. These spatial extensions support a great deal of spa-

tial data types for storing and handling spatial data, such as Geometry and its

specializations (i.e., Polygons, Polylines). Besides, these extensions include an

extensive set of spatial methods, ranging from simple methods to create geome-

tries to more complex operations such as geometry simplification or topological

relations between geometries.

For the implementation of the game setup, we used spatial operations, for ex-

ample, to create the battlefield (i.e., city grid cell), to determine the block a player

is taking a measurement in, and to check the proximity of a player to a rewarding

item. Each of these operations was represented by a spatial query against the

database. Listing 5.1 shows an example of a spatial query to determine the block

in which a player has measured the noise level.

The game client was implemented as an Android application. It displays a

grid over a city map, and uses the GPS sensor and microphone of the mobile

device to collect spatially-referenced noise measurements. From an implementa-
3Implemented using Apache Axis
4https://www.postgresql.org/
5https://postgis.net/
6http://www.hibernatespatial.org/
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Figure 5.3: Architecture of the pre-platform Noise Battle game.

s e l e c t b . * from observa t ion o , b lock b , game g

2 where o . game instance = : ins tance

and o . game id = : gameId

4 and g . game id = o . game id

and b . a rea id = g . a rea id

6 and s t Con ta ins ( b . bbox , o . coord ina tes )

and o . o b s e rv a t i o n i d = : observa t ion

Listing 5.1: SQL Query using the spatial extensions to obtain the block where the

observation was collected.

tion perspective, the game setup is straightforward. When a player collects a new

observation in a block, the back-end services determine which block is affected

and searches for the owner (if any). If the block is not owned (conquered) yet (i.e.,

no measurements registered yet), the game immediately assigns it to the current

player, updating his score according to the rewarding system. In case the block

was already conquered by another player, new and old noise measurements are

compared. If the new noise measurement beats the old one, the block’s owner-

ship is assigned to the new player (updating his/her score accordingly). Other-

wise, the ownership of the block in battle does not change.

Both gathered measurements and the state of the game (gameplay) were

stored in a set of relational tables in the back-end database (Figure 5.4). Most

122



of the tables are used to support the game setup, such as users, (game) areas,

rewards, and blocks. Another group of tables, though, covers the game state

such as the tables status, status of rewards, noise levels sent, observation, and

conquered blocks. Each group of tables is briefly described below.

Game setup related tables are:

• game: Is the actual instance or game session in which players can enter for

the battle. Games have an associated area, and as a consequence, a set

of blocks.

• area: Defines a template of the game where the instances of the game

(game sessions) can take place. This is usually one per city, although there

are no restrictions for the number of areas in the same place.

• block: Defines a block as the minimal space unit which users can conquer

by taking measurements. Blocks are subdivisions of an area.

• game rewards: Defines a template for the distribution of rewards associ-

ated with an area.

• observation: Keeps the information about noise measurements collected

by the players in a game session and the different elements of the mea-

surement (e.g., observation id, user id, game id, coordinates, time stamp,

game instance, morale, avg morale, noise value, min noise, max noise, avg noise,

other data).

• users: Keeps the players involved in the game.

Game state related tables are:

• status: Represents the state of the game, which is defined as conquered blocks,

observation, noise send, and status rewards.

• conquered blocks: Represents the state of the blocks, containing the cur-

rent player holding the ownership of the block.

• noise send: Contains information about the noises/sounds exchanged be-

tween the players.
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• status rewards: Contains the rewards obtained by the players in the game.

• game statistics: Stores general game statistics of the game sessions.

Figure 5.4: Table relations of the pre-platform Noise Battle game. Dotted border denotes

game state related tables. Solid border denotes game setup related tables.

Post-platform implementation

The goal of the Noise Battle experiment is to compare the original implementation

with an implementation of the game using the analytics platform. For a fair com-

parison, the new version must completely support the game setup of the original

one. As the game setup does not change, the focus here is on the implementation

approach of the post-platform Noise Battle game.

The key to the implementation is to replace all (spatial) analytics of the original

Noise Battle game with equivalent functionality offered by metrics of the analytics

platform. To achieve this, the back-end services to perform score calculations ev-

ery time a new noise observation is submitted were replaced by metrics services

in the analytic platform. Therefore, as a first step, we mapped (or replicated) the

structure of the database tables (Figure 5.4) to variables in the analytics platform.

Secondly, we created metrics for calculating the scores that a player obtained
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while collecting/submitting noise observations. As a result, the services layer of

the pre-platform implementation served as a bridge for consuming the metrics

services exposed by the analytics platform, while maintaining the same service

interfaces to interact with the original Noise Battle mobile application (Figure 5.5).

Therefore, this approach does not utilise the Metrics SDK seen in Section 4.1.2

for data collection. Instead, it uses an intermediate layer of REST services to

make the pre-platform data structures compatible with the new ones, requiring in

practice fewer modifications.

Figure 5.5: Post-platform implementation of the Noise Battle game uses only the analyt-

ics platform, leaving aside the Metrics SDK.

For the first step of the mapping, we observe the fact that the values in the

state-related tables in the original implementation (dashed border boxes in Fig-

ure 5.4) were the result of the execution of the score evaluation algorithms over an

incoming observation. For example, the conquered blocks are the result of jointly

evaluating the level of accuracy of the submitted noise observation, the current

value (if any), and the game state in terms of game objects (i.e., blocks, players,

rewards, etc.), which are stored in the game setup related tables (solid border

boxes in Figure 5.4). In the context of the analytics platform, this means that a

new state of the game can be understood as the result of a metric computation

and, consequently, the output definition of the metrics should contain the same

information present in the relevant state-related tables of the original implementa-

tion. Thus, we created the variables observations, areas, blocks, gameRewards

and users resembling the structure of the tables in Figure 5.4.

Listing 5.2 shows the declaration of the observations variable with multiple di-

mensions. In particular, an observation has got the default dimension location

125



that refers to the position where the noise was collected. By using and declaring

location in this way, an hypothetical implementation of a mobile client through the

Metrics SDK (for Android) would fill automatically it by capturing GPS coordinates

directly. Note that, as said earlier, we did not implement a new game client but

used the old client implementation, replacing all (spatial) analytics of the original

Noise Battle game with equivalent by metrics running on the analytics platform.

Returning to Listing 5.2, some of the remaining dimensions represent a range of

noise parameters such as maxNoise, minNoise and morale, while others are per-

tinent to the game setup (areas, blocks, gameRewards). In summary, all of these

dimensions can be defined either using the metrics definition tool (Figure 4.3), or

writing manually a declarative metrics-schema compliant JSON file, as shown in

Listing 5.2.

” va r i a b l e s ” : [{
”name” : ” observat ions ” ,

” d e s c r i p t i o n ” : ” Var iab le f o r c o l l e c t i n g the noise data ” ,

” dimensions ” : [

{ ” type ” : ” l o c a t i o n ” } ,

{ ”name” : ” observa t ion Id ” , ” type ” : ” i n t e g e r ” , ” d e s c r i p t i o n ” : ” ” } ,

{ ”name” : ” user Id ” , ” type ” : ” i n t e g e r ” , ” d e s c r i p t i o n ” : ” ” } ,

{ ”name” : ” gameId ” , ” type ” : ” i n t e g e r ” , ” d e s c r i p t i o n ” : ” ” } ,

{ ”name” : ” gameInstance ” , ” type ” : ” i n t e g e r ” , ” d e s c r i p t i o n ” : ” ” } ,

{ ”name” : ” morale ” , ” type ” : ” double ” , ” d e s c r i p t i o n ” : ” ” } ,

{ ”name” : ” avgMorale ” , ” type ” : ” double ” , ” d e s c r i p t i o n ” : ” ” } ,

{ ”name” : ” noiseValue ” , ” type ” : ” i n t e g e r ” , ” d e s c r i p t i o n ” : ” ” } ,

{ ”name” : ” minNoise ” , ” type ” : ” double ” , ” d e s c r i p t i o n ” : ” ” } ,

{ ”name” : ” maxNoise ” , ” type ” : ” double ” , ” d e s c r i p t i o n ” : ” ” } ,

{ ”name” : ” avgNoise ” , ” type ” : ” double ” , ” d e s c r i p t i o n ” : ” ” } ,

{ ”name” : ” otherData ” , ” type ” : ” s t r i n g ” , ” d e s c r i p t i o n ” : ” ” }
]} ,

. . .

Listing 5.2: Metric schema specification of the variable observations.

For the second step of the mapping process, modelling the back-end methods

of the original Noise Battle game, we have created four metrics for calculating
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the new state of the different aspects of the game: calculateStatus that internally

calls the metrics calculateConqueredBlocks and calculateStatusRewards, which

update the state of the conquered blocks and the state of rewards in the game, re-

spectively. The last metric function calculateGameStatistics summarizes the infor-

mation of the game and the players. Both metrics functions, calculateConquered-

Blocks and calculateStatusRewards, take as input a noise observation to deter-

mine the new state in the game; the data structure of the outputs (See Listing 5.3)

is similar to the original game’s tables conquered blocks and status rewards.

{
” type ” : ” ob jec t ” ,

” a d d i t i o n a l P r o p e r t i e s ” : fa l se ,

” p r o p e r t i e s ” : {
” conqueredBlockId ” : { ” type ” : ” i n t e g e r ” } ,

” user Id ” : { ” type ” : ” i n t e g e r ” } ,

” gameId ” : { ” type ” : ” i n t e g e r ” } ,

” b lock Id ” : { ” type ” : ” i n t e g e r ” } ,

” numTimesConq ” : { ” type ” : ” i n t e g e r ” } ,

” measuresTaken ” : { ” type ” : ” i n t e g e r ” } ,

” gameInstance ” : { ” type ” : ” i n t e g e r ” } ,

” wasConquered ” : { ” type ” : ” i n t e g e r ” } ,

} ,

” requ i red ” : [

” b lock Id ” ,

” conqueredBlockId ” ,

” gameId ” ,

” gameInstance ” ,

” measuresTaken ” ,

” numTimesConq ” ,

” user Id ” ,

” wasConquered ”

]

}

Listing 5.3: Output schema of the conquered blocks metric function.

Listing 5.4 shows the code of the metric function calculateConqueredBlocks
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that calculates the values of the current state as output.

function wasConquered(allObservationsInAffectedBlock) {

2 var sameBlockObs = allObservationsInAffectedBlock.take (2);

var firstObs = sameBlockObs [0];

4 var secondObs = sameBlockObs [1];

return MetricsUtils.getFieldValue(firstObs , "noisevalue")

6 < MetricsUtils.getFieldValue(secondObs , "noisevalue"

);

}

8

var blocks = session.blocks; // Observation for this game instance

10 var lastObservations = MetricsUtils.getRDD(session.observations).

take (1); // Ordered , current and prev work as expected

12 var location = GeoUtils.getLatLon(MetricsUtils.getRowData(

lastObservations [0]).latlon);

var affectedBlocks = blocks.filter(function (row , location) {

14 var bboxFieldData = MetricsUtils.getFieldValue(row , "bbox");

var bbox = bboxFieldToBbox(bboxFieldData);

16 var point = GeoUtils.createPoint(location);

var value = GeoUtils.isInside(point , turf.bboxPolygon(bbox));

18 return value;

}, [location ]);

20

var affectedBlock = affectedBlocks.take (1) [0];

22 var bboxFieldData = MetricsUtils.getFieldValue(affectedBlock , "bbox

");

var affectedBlockBBox = bboxFieldToBbox(bboxFieldData);

24

var allObservationsInAffectedBlock = session.observations.filter(

function(row , bbox) {

26 var data = MetricsUtils.getRowData(row);

var point = GeoUtils.createPoint(data.latlon);

28 var inside = GeoUtils.isInside(point , turf.bboxPolygon(bbox));

return inside;

30 }, [affectedBlockBBox ]); // Ordered , current and prev work as

expected
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32 // Get the conquered block

var conqueredBlocks = calculateConqueredBlocks.history.filter(

34 function (row , session , blockId) {

var blockGame = MetricsUtils.getFieldValue(row , "session");

36 return blockGame == session;

},[mc.session , affectedBlock.blockId ]).collect ();

38 var conqueredBlock = conqueredBlocks.length ==0? null:

conqueredBlocks [0];

40 var measuresTaken = conqueredBlock != null ? conqueredBlock.

measuresTaken + 1: 1;

var score = 0;

42

// If already mine (user mc.user), then include measures taken

44 var mine = conqueredBlock !=null? conqueredBlock.userId == mc.user:

false;

var numTimesConq = conqueredBlock != null? conqueredBlock.

numTimesConq: 1;

46

if (!mine) {

48 var conquered = wasConquered(allObservationsInAffectedBlock)

if (conquered) { numTimesConq ++;}

50 }

52 var result = {

"conqueredBlockId": conqueredBlock.blockId ,

54 "userId": mc.user ,

"gameId": mc.session ,

56 "blockId": conqueredBlock.blockId ,

"numTimesConq": numTimesConq ,

58 "measuresTaken": measuresTaken ,

"gameInstance": mc.session ,

60 "wasConquered": conquered ?1:0

};

62

return MetricsUtils.resultWith(result);

Listing 5.4: Metric function calculateConqueredBlocks calculating the new state of the

game.
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Code in Listing 5.4 relies on a few assumptions. The context is modeled in

such a way that the context session property refers to the gameInstance in the

original Noise Battle game (the instance of the game taking place in an area).

This makes sense as the players choose to play (battle) in a given area/city (i.e.,

a game instance), and this can be seen as a “game session” which several play-

ers share. Besides, the context’s user property is the actual userId in the game,

which is a natural equivalence. As the variable blocks contains the blocks of

the games, the blocks for the current game instance are accessible through ses-

sion.blocks. Similarly, the observations of all players in the current game instance

are accessible through session.observations.

Following this argumentation line, the access to the location of an observation

is done by calling the utility method GeoUtils.GetLatLon(), and the affected block

is determined by computing the blocks that contain the observation’s location

(note the use of GeoUtils.isInside(...) in Listing 5.4, line 18). After selecting the

affected block, the method finds all the observations in the game instance to

determine whether or not it is better than the lastObservation (Listing 5.4, lines

26-32). Whether a block is conquered is determined by selecting the metrics

outputs for the current affected block and the current session.

1 if (calculateConqueredBlocks.value.wasConquered) {

var actionPayLoad = calculateConqueredBlocks.value

3 // To do a notification , the first parameter below must be True

return MetricsUtils.actionResult(true , actionPayload , mc);

5 } else

return MetricsUtils.noAction ();

Listing 5.5: Actions filter sample code.

Finally, regarding notifications, the analytics platform can set up the rules for

notifying the players in the different situations we mentioned earlier. Listing 5.5

shows how an action sends a notification using the output of the metric function

as the notification’s payload. In particular, this action notifies all users about a

newly conquered block, including in the payload convenient information such as

blockId, conqueredBlockId, and the number of measuresTaken. This information
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can be used for updating the game playground representation. The entire code

in Listing 5.5 is specified in a JSON fragment as Listing 5.6 illustrates. Note how

the action target property is set to the current session, which refers to the current

game instance, and the action type is a push notification.

” ac t i ons ” : [{
” i d ” : ” not i fyConqueredBlock ” ,

” l a b e l ” : ” not i fyConqueredBlock ” ,

” d e s c r i p t i o n ” : ” ” ,

” f i l t e r ” : {
” code ” : ” . . . ” ,

” language ” : ” j a v a s c r i p t ” } ,

” t a r g e t ” : ” cu r ren t sess ion ” ,

” type ” : ” p u s h n o t i f i c a t i o n ”

} ]

Listing 5.6: JSON definition of an action to notify conquered blocks.

Our previous discussion in this section has focused on changes made in the

back-end implementation, that may not affect the client application implementa-

tion directly. To this respect, though, there are important changes related to the

way the requests for data submission are handled in the post-platform implemen-

tation. A major difference is that the post-platform implementation handles the re-

quests for data submission asynchronously (see Section 4.1.2). Therefore, when

the client application sends a new noise observation, the platform does not wait

until the calculation of the new game state (i.e., the metrics results) is ready and

available to be included in the response. This approach for asynchronous request

handling in the analytics platform is incompatible with the original version of the

client application, which needs modifications for the post-platform implementation

of the Noise Battle game. Instead, results containing the new state is received

through notifications.

For the client to work properly, two strategies can be implemented. The first

one is to get the new state from the notification payload, once the metrics compu-

tation is finished, which is the most convenient as the client application waits for
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the notification to render the new state. The other alternative includes pooling the

back-end data access services (Table 4.4) for collecting the latest results, which is

less convenient since there is no guarantee that the metrics computation is com-

plete and ready to return the results. In this particular experiment, however, the

client application of the Noise Battle game remained intact. Changes were only

required in the back-end side of the implementation as explained above. There-

fore, the two alternatives mentioned above apply to general situations in which a

client application would have been rebuilt.

5.2.3 Assessment

For the analytics platform, we established a set of features to adhere to, both

from a implementation point of view and from the developer’s perspective in Sec-

tion 1.2 (RO3), and we globally discussed these features for the analytics platform

in Section 5.1. In this section, the assessment strategy is based on the concrete

case study of the Noise Battle game (Section 5.2.2), whereby we compare the

pre-platform and post-platform implementations and discuss them driven by the

aforementioned desirable features.

Unlike the pre-platform implementation, when it comes to asynchrony, the

post-platform implementation does handle asynchronous requests. Even though

the original application could have been implemented asynchronously, at addi-

tional cost of the developer, this comes as an inherent feature with the analyt-

ics platform (Chapter 4), free of additional burden to the developer. Asynchrony

also has a positive impact on the scalability of the application (server-side), since

memory-demanding resources such as network connections are not occupied

during the computation of multiple game states. This is particularly important in

scenarios in which a large number of users concurrently play in different game

sessions, as is typically the case in multi-player location-aware games.

An example of inherent asynchrony in the analytics platform is the use of Met-

rics Execution Services (Section 4.1.3). When a request is received to execute a

metrics through the front-end (REST) Metrics Execution Services, it forwards the

request to an actor system to process it, and immediately returns a response to

the client (original requester) with information on the progress of the task and how
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to retrieve the results once they are ready (e.g., logs containing the progress).

The data produced can be later accessed through the data access APIs or re-

ceived through notifications.

Regarding scalability, the post-platform implementation relies on a technol-

ogy that is intrinsically scalable by design. It permits to scale out (horizontally)

and scale up (vertically). The analytics platform exhibits the former by means of

adding more nodes to augment the computational resources as additional strain

is put on the system. For example, as the data storage of the platform (Sec-

tion 4.1.4) is built upon the Cassandra distributed database (Lakshman and Malik,

2010), it offers features for large scale data handling over multiple nodes. For the

latter case, scaling up, it refers to adding resources to a single node. Regarding

processing, for example, the analytics platform achieves high levels of scalability

through Apache Spark7 at the expense of using the Spark programming model.

This means that a developer must use the Spark API for data processing to ben-

efit from the parallelism and scalability Spark offers. The JavaScript processing

APIs in Section 4.1.5 uses the Spark API to access and process collected data.

In terms of abstraction, the analytics platform is based on a conceptual ar-

chitecture, with a well-founded conceptual model of spatio-temporal metrics (see

Chapter 3). The fundamental abstractions of this model are variables, dimensions

and the metric context, used throughout the platform, and powerful enough to rep-

resent a wide range of virtual and real-world phenomena. The implementation of

the model is combined with boilerplate code that involves the main methods that

are often required in any client implementation, reducing thus the complexity of

developing on top of the analytics platform and providing great flexibility. For

example, the use of variables and dimensions allows even to code in different

languages (i.e., database DDL commands, data transfer objects, etc.) and ab-

stracting from the programming language of choice. For example, variables and

dimensions eases the creation of database entities, the validation of the data in

the back-end REST services, and the creation of the dimension providers the re-

quired in the client application (by the Metrics SDK). The data access services are

also consistent with the variables and dimensions, and hence fully compliant with
7https://spark.apache.org/
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the conceptual model of spatio-temporal metrics (Section 3.2). For example, the

analytics platform offers a service to access a certain application variable or met-

rics result. The later contrasts dramatically with the pre-platform implementation,

in which there is a service for accessing the game status.

If we look at the easy-of-use features, ease of setup may be measured by

the number of artifacts needed to get a working implementation done, the pre-

platform implementation required to deploy the binaries for the back-end services,

which in the post-platform implementation are unnecessary. In addition, the post-

platform implementation does not require a back-end database, as it is already

supplied by the analytics platform and can be shared between different client

applications.

If we pay attention to the ease of development, the analytics platform pro-

vides the developer with a simple yet powerful conceptual data model, flexible

and customisable metrics logic, and a range of utilities (a software development

kit, libraries, methods and functions) to facilitate development. Particularly, the

platform offers support for seamlessly representing, handling and storing data

related to monitored phenomena, and advanced spatial analysis support for pro-

cessing the acquired data streams (i.e., through the underlying Turf.js library).

The analysis functions in the original implementation, for example to evaluate

score and to compute whether a block was conquered, included code for updating

the tables in the database. If, as a result of evaluating a new observation, a new

block was conquered, a function added the data of the block conquered in the

conquered blocks table and updated accordingly the score in the status table. All

of this is implemented seamlessly in the post-platform game as a result of the

way the problem is modeled, using the abstractions and utilities of the analytics

platform.

Regarding the complexity of developing the algorithm to calculate the new

state in the post-platform implementation, it is somehow comparable, if not more

complex. This extra complexity might be due to the use of “unfamiliar” APIs. For

example, in the original implementation, a standard way for data access was im-

plemented, namely using an Object Relational Mapping framework (Lorenz et

al., 2017) (i.e., Hibernate), which eased the interaction of the algorithm with enti-
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ties stored in the database. This is a “natural” way of accessing and interacting

with data, since ORM data are treated as objects and collections. On the other

hand, the new implementation requires knowledge of the Spark concepts and

API, and the analytics platform’s API and model for data access and process-

ing. Although Spark API eases the distributed processing, its model inevitably

imposes programming assumptions while developing. One of such assumptions

is that it needs to be considered whether data is locally available or processed in

a different JVM during implementation8.

A key aspect to consider is the availability of development and debugging

tools. In the original implementation, mostly based on Java, an ecosystem of

mature, third-party tools was available to support debugging, code edition, code

assistance, etc. In contrast, the post-platform implementation still lacks advanced

development assistance such as code completion. In the new platform implemen-

tation, despite the fact that the language of choice is JavaScript and a heap of

supporting tools for code development are available, we have to consider that

JavaScript is used through the Java scripting API (i.e., on top Java JVM) and de-

bugging is then supported through a small set of powerful tools, compared with

the browser debugging tools and traditional JavaScript tools. On the positive side,

as in other development environments, the analytics platform provides basic test-

ing capabilities (i.e., custom sample data generation capabilities, location data

generation based on GPX, a GPS exchange format for track files9). Moreover,

we have also developed tools for helping with testing such as the submission of

test data to the platform (See Appendix 6.2.3). Also, the analytics platform incor-

porates integrated tools to support development. An example is the metrics defi-

nition tool (Section 4.1.1), which provides basic syntax highlighting and de facto

validation of variables and dimensions against the metrics-definition schema.

Finally, when it comes to learnability, the original back-end implementation

involved several technologies. For example, the list of REST services was cre-

ated using the Jersey framework10 and the Java programming language, which
8See example at http://spark.apache.org/docs/latest/rdd-programming-guide.html#

understanding-closures-
9https://www.topografix.com/gpx.asp

10https://eclipse-ee4j.github.io/jersey/
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facilitated routing and data serialization of input and output parameters. For data

access, the back-end service layer was implemented with Hibernate11 and the

Hibernate Spatial extension, together with PostGIS12, which in turn requires ad-

vanced knowledge in spatial databases and spatial operators. The combination

of varied technologies in the same tool, and the need to interact directly with them,

placed a great barrier for the developer in the sense of having advanced skills in

all of these technologies.

The post-platform implementation keeps the set of technologies to a minimum

and, instead, provides a set of high-level concepts and abstractions. These high-

level concepts refer to the conceptual model of spatio-temporal metrics seen in

Section 3.2. Variables, dimensions, metrics context, and so on, are crosscutting

concepts in the sense that they are used coherently throughout the analytics plat-

form (e.g., data structures design, data access). A few specific conceptualisations

related to the methods provided for the metrics implementation (Section 4.1.5) are

necessary too. The rest of elements such as back-end services and notifications

are provided by the analytics platform and, for the most part, they only require a

minimum configuration.

This approach allows the developer to concentrate on the development of the

metrics functionality rather than on the surrounding technology. On the downside,

greater abstraction implies that a developer must have profound knowledge about

these abstractions, the mapping of these abstractions and conceptual artifacts

of the analytics platform into a particular gaming domain. In other words, the

developer needs to get familiar with the analytics platform, which may represent

a steep learning curve for developers at the beginning, though arguably milder

compared to the myriad of technologies required to achieve similar functionality.

5.2.4 Summary

Table 5.1 summaries the assessment features in terms of asynchrony, scalability,

abstraction, ease of setup, ease of development and learnability, with respect to

the original pre-platform implementation and the post-platform implementation of
11http://hibernate.org/
12https://postgis.net/
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the Noise Battle game experiment.

5.3 Beyond games: Mental health experiment

The second experiment was developed in cooperation with a team of psycholo-

gists of the LABPSITEC research group of the Universidad Jaime I13. It consisted

of a Web and mobile application as an intervention for patients diagnosed with

agoraphobia disorder. In the experiment, users (emulating patients) were pro-

vided with a mobile app that tracked their position in order to study their daily

activities in three different periods: morning, afternoon, and night. Collected data,

including user’s location, was sent to the analytics platform on a regular basis (5

minutes). The following behavior was studied: time spent outside and at home,

the travelled distance when going out and the number of times the user enters

and exits home.

Before starting the treatment, the therapist configured the application by adding

the user’s home location (coordinates) and a threshold radius. The resulting cir-

cular area represented the user’s home surroundings, where, for the treatment,

the user was considered to be at home. The user was also asked to do additional

configuration in the mobile application once he/she was at home. During this con-

figuration (at users’ home), the app collected Wi-Fi fingerprints (i.e., measures of

the “visible” Wi-Fi endpoints, identified by their SSID (Group et al., 2007) and their

signal strength) to improve the accuracy of detecting when a user was at home

(i.e., reducing false positives). During the treatment, the data collected included

GPS coordinates, an identifier of the experiment, and a value called “coincidence”

(see below).

To study the desired behavior using the analytics platform, two variables were

defined to store the necessary collected data: userLocation, and userConfig. The

userLocation variable is used to store the user’s current location and his location

history, and the coincidence value. The coincidence dimension denoted the “visi-

bility” or “presence” ratio between the visible Wi-Fis at any moment and the ones

collected during initial setup by the user. In practice, this ratio was obtained by
13http://www.labpsitec.uji.es/
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Table 5.1: Pre-platform vs post-platform implementation of the Noise Battle game.

Features Post-platform (analytics platform) Pre-platform (original)

Asynchrony Asynchronous model for handling requests: Requests are
immediately handled and processed by the backend
microservices (backed by distributed actor model system).
Clients do not receive immediate results for the requests
but through notifications mechanisms. .

Synchronous requests. Once the
request is submitted to the server,
it synchronously handles it, which
involves requesting data from the
database, the client has to wait for
response.

Scalability Scalable underlying systems: Apache Spark, use of a
Distributed Database (Cassandra) and distributed actor
model system (with o) in the back-end for handling
incoming data and distributing the workload in different
nodes. Separated data ingestion and data processing
pipelines.

Non-scalable underlying systems
setup: Java-based back-end
services, Postgres database,
synchronous handling of incoming
data. Equivalent support requires
additional effort from developer.

Abstraction High-level concepts are used for modeling the problems
(e.g., variables, dimensions, notifications). Abstracts
aspects of the such as storage, data exchange, and
formatting (how is data sent to the system), as well as
validation and formatting in the client through the use of
an SDK. Provide high-level guidelines regarding sensor
data collection (e.g., location and orientation) throughout
the use of default providers.

Ad-hoc implementation of entities
for the game. Ad-hoc tables for
storage. Custom implementation
for data transmission and
collection. In summary, low-level,
limited reusable abstractions are
used.

Ease of setup Requires setting up the SDK library, including elements
such as application, session and user. Integration with
Google Cloud Messaging is required.

Only Google Cloud Messaging is
required to be configured. Other
elements belonging to the
application.

Ease of
development

Computation model based on Spark API (through
Eclairjs), and a platform custom metrics library. Support
for several spatial-related functionalities: geofences and
Turf.js for advanced spatial analysis support. More
complexity, as Spark API is inherently more complex.
Less support for debugging the metrics included by users
though the tools provided (i.e., the metrics definition tool).
Included testing support using sample data generation
and location data mocking through GPX data
consumption.

Computation model based on Java
back-end services. Support for
several spatial related
functionalities is available through
PostGis. Development might be
less complex due to the more
”familiar” client-server model.
Support for debugging is available
through existing Java tools (i.e.,
IntelliJ, Netbeans, Eclipse, etc.).

Learnability Declarative, and crosscutting data model (in the sense
that it is used across the system), using a formal
specification (metrics definition JSON schema).
Script-based computation model using Apache Spark API.
It is not necessary to compile or package to deploy new
metrics. The use of external tools is possible as a REST
API is provided for submitting both data model and
processing specifications. Access to results through Data
access services is provided.

Ad-hoc data model, including the
tailored database entities and data
transfer objects. Java-based
back-end services computation
model. Rebuild and redeployment
is needed when changes occur in
the computation or the data model.
Ad-hoc REST API is implemented
for submitting and accessing the
data.
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evaluating a distance function that defined the level of similarity between the Wi-Fi

fingerprint gathered in real time and the reference Wi-Fi fingerprints taken during

configuration. This mechanism helped identify when the user was at home be-

cause GPS signal shows high inaccuracy in indoor environments. A third dimen-

sion included in the userLocation variable is a unique identifier for labelling the

experiment. The second variable userConfig was aimed to register configuration

data of the experiment. It included several dimensions such as the experiment id,

the user’s home location and radius, the number of days of the experiment and of

the baseline period (a calibration phase prior to the treatment itself).

Using these variables, a single (custom) metric function was defined to extract

the desired information (i.e., time inside/outside home, distance walked, number

of times exiting/entering home) about the users’ daily behaviour from their col-

lected data (i.e., GPS coordinates and Wi-Fi fingerprints). This metrics function

is summarized (in natural language) in the following steps:

1. Divide the collected data by the morning-afternoon-night periods (from 00:00

to 8:00, from 8:00 to 16:00, and from 16:00 to 00:00).

2. For each period, process the sequence of user’s locations to determine:

(a) Whether the user was inside or outside home.

(b) The desired output values, i.e., time inside/outside, distance walked

and number of times the user enters and leave home are calculated.

sq lContex t . udf ( ) . r e g i s t e r ( ” sess ion batch ” , function ( t imeCol , l o c a t i o n )

{
var r e s u l t = ” ” ;

//timezone calculation

var t imeSt r = M e t r i c s U t i l s . ge tF ie ldVa lue ( l oca t i on , ’ t ime ’ ) ;

var timeZone = moment . parseZone ( t imeSt r ) . u t c O f f s e t ( ) ;

var m time = moment ( Date . parse ( t imeCol ) ) . u t c O f f s e t ( timeZone ) ;

var h = m time . hour ( ) ;

//classification

i f ( h >= 0 && h < 8) r e s u l t = ”0−8” ;
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else i f ( h >= 8 && h < 16) r e s u l t = ”8−16” ;

else r e s u l t = ”16−24” ;

return r e s u l t ;

} , DataTypes . Str ingType ) ;

Listing 5.7: Analytic function to divide data into three periods.

To divide the collected location data (step 1) in periods of 8 hours (i.e., 0h-8h,

8h-16h, and 16h-24h), a Spark SQL query was used14, as shown in Listing 5.7.

To determine if the user was at home (step 2 (a)), we analysed the location data

and classified it “at home” or “not at home”. Listing 5.8 shows the function im-

plementation to transform users’ location data into trajectory data. In this case,

both geographical proximity and fingerprints-based coincidence parameters are

used. A location belongs to the user’s home when the collected point is within the

configured home area (through the function MetricUtils.isInsidePointRadius()) or

the coincidence had to be greater than a threshold of 0.8. Note that even if the

function MetricUtils.isInsidePointRadius() indicates that the location is not within

the defined area, which could be the case when users are inside their home with

poor GPS signal, the coincidence can indicate the contrary, and the user would

be considered at home.

sq lContex t . udf ( ) . r e g i s t e r ( ’ l o c D e t a i l s ’ , function ( l oca t ionCo l , t ime id ,

prev id , t ime , userHomeLocation , radius , co inc idence ) {
var l a tLon = ( l oca t i onCo l == nul l ) ? nul l : M e t r i c s U t i l s .

s t ruc tAsLatLon ( l oca t i onCo l ) ;

l a tLon . t ime id = t ime id ;

la tLon . p rev id = prev id ;

la tLon . t ime = M e t r i c s U t i l s . toTime ( t ime ) . getTime ( ) ;

var la tLonRadius = { ” po i n t ” : M e t r i c s U t i l s . s t ruc tAsLatLon (

userHomeLocation ) , ” rad ius ” : rad ius } ;

var atHome = true ;

i f ( ! c o r e u t i l s . isUndef inedOrNul l ( la tLonRadius ) ) {
atHome = M e t r i c s U t i l s . i s Ins idePo in tRad ius ( latLonRadius , la tLon )

| | ( co inc idence > 0 .8 ) ;

}

14https://spark.apache.org/sql/
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l a tLon . atHome = atHome ;

return JSON. s t r i n g i f y ( la tLon ) ;

} , DataTypes . Str ingType ) ;

Listing 5.8: Determining the location of the user (at home/not at home).

After partitioning and classifying the location data, the algorithm calculates

the desired output values (step 2 (b)). In Listing 5.9, each conditional statement

calculates output variables taking into account if the user was at home (and its

previous state) based on the sequence of locations. For example, when the user

was at home, the number of locations (indoors), the total distance (indoors), and

the time at home were increased accordingly.

i f ( i s I n s i d e && ( prevState == i n s i d e ) ) {
//was inside and remains inside.

lastSegmentTimeInside += l a s t D i f f ;

t ime Ins ide += l a s t D i f f ;

t o t a l D i s t a n c e I n s i d e += las tD i s tance ;

} else i f ( ! i s I n s i d e && ( prevState == outs ide ) ) {
//was outside and remains outside

lastSegmentTimeOutside += l a s t D i f f ;

t imeOuts ide += l a s t D i f f ;

t o ta lD i s tanceOuts ide += las tD i s tance ;

}
else i f ( ! i s I n s i d e && ( prevState == i n s i d e ) ) {

//exited

maxInside = Math .max( maxInside , lastSegmentTimeInside ) ;

lastSegmentTimeInside = 0;

t o t a l D i s t a n c e I n s i d e += ha l fD is tance ;

to ta lD i s tanceOuts ide += ha l fD is tance ;

t ime Ins ide += hal fT ime ;

t imeOuts ide += hal fT ime ;

coun tEx i t i ng ++;

} else i f ( i s I n s i d e && ( prevState == outs ide ) ) {
//entered

maxOutside = Math .max( maxOutside , lastSegmentTimeOutside ) ;

lastSegmentTimeOutside = 0;
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t o t a l D i s t a n c e I n s i d e += ha l fD is tance ;

to ta lD i s tanceOuts ide += ha l fD is tance ;

t ime Ins ide += hal fT ime ;

t imeOuts ide += hal fT ime ;

countEnter ing ++;

}

Listing 5.9: Determining the resulting properties when user at home/not at home.

The results of executing the previous metric (Listing 5.9) was encoded as a

string containing data encoded as a JSON object. The Listing 5.10 depicts the

results as a JSON array. Note that in this case, the metrics function calculates

various output values, and the output data is a complex structure, represented

by a string containing JSON object(s), rather than an object. This represents a

trade-off, where performance was gained at the expense of simplicity. Indeed,

all calculated output values require the same input data, which only needs to be

iterated once by the single metrics function, yet on the other hand, the output data

structure is generic, which prevents the use of ad-hoc data processing capabilities

supported by the analytics platform (i.e., filtering). Alternatively, we could have

used three metrics functions, one for each output to calculate, with corresponding

simple output structures. Also in other cases, it may be needed to create a string

of JSON object(s) as output structure, for example, when the exact structure of

the output is unknown beforehand or when the output data structure depends

directly on the metrics calculation.

[{
” session ” : ” session1 ” ,

” maxTimeConsecutiveOutside ” : 0 ,

” t ime Ins ide ” : 0 ,

” repeatedLocat ions ” : 2 ,

” maxTimeConsecutiveInside ” : 0 ,

” experiment ” : ” experiment2 ” ,

” experimentDate ” : 1 ,

” coun tLoca t ions Ins ide ” : 0 ,

” max time ” : ”2018−01−09T19 :22:26.093Z” ,

” coun tEx i t i ng ” : 0 ,
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” t o t a l D i s t a n c e ” : 1867.9506215357012 ,

” minSpeed ” : 0.007252697434780406 ,

” t imeOuts ide ” : 2513.3579999999997 ,

” t o t a l D i s t a n c e I n s i d e ” : 0 ,

” countLocat ionsOuts ide ” : 11 ,

” countEnter ing ” : 0 ,

” batch ” : ”16−24” ,

” countLocat ions ” : 11 ,

”maxSpeed ” : 5.332015396697649 ,

” to ta lD i s tanceOuts ide ” : 1867.9506215357012 ,

” min t ime ” : ”2018−01−09T18 :29:09.709Z” ,

” a p p l i c a t i o n ” : ” app−608724ac9ae3b56d ” ,

” user ” : ” user1 ” ,

” l o c a t i o n s ” : [{
” acc ” : 5 ,

” t ime id ” : ” fbc1ccea−f56a−11e7−82 f f −580203040506 ” ,

” a l t ” : 110.53965081833303 ,

” atHome ” : false ,

” lon ” : −0.07102740882230436,

” t ime ” : 1515522549709,

” l a t ” : 39.99290583105257

} ]

} , { . . . } ]

Listing 5.10: Metrics result example as a JSON array containing elements properties

To monitor and assess the evolution of users, therapists were provided with a

web-based tool to visualise the results derived from the execution of the previous

metrics functions. Among the visualisations provided, two stand out. Figure 5.6

shows the number of collected locations per period (morning-afternoon-night) and

per category for multiple users. Some bars are low because of the lack of col-

lected data due to distinct impediments such as restrictions on the execution of

background services 15 16 in Android-based devices, and dying battery, out of cov-
15 Background Execution Limits: https://developer.android.com/about/versions/oreo/

background
16Android background location limits: https://developer.android.com/about/versions/

oreo/android-8.0-changes
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erage, etc. Figure 5.7 illustrates in detail the behavior of a user during the day,

where colored bars represent when a user was at home (blue) or away (orange)

during one day.

Figure 5.6: Locations collected per periods for three users.

Figure 5.7: Categorised locations during the day for a sample user.

When it comes to the implementation, the metrics functions used a different

set of Spark API methods and utils methods provided in the analytics platform

than the ones used in the Noise Battle experiment (Section 5.2.2). For example,

methods such as geofencing related functionalities to calculate trajectory proper-

ties (the distance and relation of a trajectory with the patient’s home) and Spark

SQL functionalities.

In summary, this second experiment, a real-world case study in mental health,

demonstrated the versatility of the analytics platform, the underlying metrics con-

cepts, and its applicability beyond the field of location-aware games, namely, in
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the context of an application for the treatment of patients with agoraphobia. A va-

riety of geo-data was collected (i.e., GPS coordinates and WiFi-fingerprints), and

geo-related methods were used to implement metric functions over these data to

check certain spatial properties of users with respect to their home.

145



Chapter 6

CONCLUSIONS

In this chapter we provide the conclusion of this work by answering the research

questions proposed in Chapter 1. We also summarize the contributions and ex-

pose the limitations of the framework implemented.

6.1 Summary

In games, monitoring and understanding player-game interaction, in-game ac-

tions and events are crucial to ensure a balanced game and enjoyable gameplay.

In location-aware games, the physical location of the player(s) and game artefacts

are key components of the game and, therefore, location- and context-related

phenomena need to be taken into account. To convert these collected data into

relevant, actionable information, metrics are used. Several research works and

commercial platforms exist that allow game developers to address the different

aspects involved in metrics definition and deployment: data specification and col-

lection, metrics definition and calculation, analysis and visualization. Through-

out this document, we have focused specifically on spatio-temporal metrics for

location-aware games.

To unambiguously set the context, we first discussed definitions of location-

aware games, metrics, and related terms in Chapter 2. We also conducted a lit-

erature review regarding the support of spatio-temporal features in existing game

analytics platforms. We characterised the surveyed platforms in four functional ar-
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eas: data collection and communication, data representation, data analysis and

reaction, and data visualization and reporting. For each area, we discussed and

analysed their defining features, paying special attention to the spatial character-

istics as required by location-aware games. As a result, our analysis revealed a

clear lack of support for spatio-temporal metrics in existing platforms.

To fully understand the needs of spatial metrics, we subsequently analysed in

Chapter 2 the spatial metrics in the realm of game metrics, and proposed a clas-

sification for spatial metrics integrated in existing taxonomies of game metrics:

real and virtual world interactions (related to user interface, regarding both the vir-

tual and real-world interactions), spatial in-game (related to player’s actions and

behavior in the game, both in the virtual and real-world) and spatial awareness

(regarding spatially-related decisions and actions the game initiates). With our

proposal of an extended classification, we underlined the importance of geospa-

tial features in location-aware games on one hand, and emphasise their relation

with regular game metrics, and throughout all aspects of games in general. In-

deed, the specific nature of location-aware games requires spatial and temporal

dimensions that may justify extending traditional metrics (e.g., tracking the loca-

tion of monetary transactions) or defining new ones (e.g., difficulty with respect to

physical terrain features).

In this setting, we next elaborated three types of spatial metrics, namely point-

, trajectory- and area-based metrics, which are particularly relevant for in-game

behavior, provided examples and discussed difficulties. In addition to general dif-

ficulties in implementing location-aware games as reported by Jacob and Coelho

(2011) (taking into account players’ location, availability of location-based data,

players’ fitness, data protection and privacy concerns), we identified one key is-

sue related to the lack of suitable (scalable) platforms to support geospatial fea-

tures in the integration and computation of game-related metrics.

Finally, in Chapter 2, we discussed the implications of the conducted anal-

ysis of existing game analytics platforms in the design of a new generation of

platforms to support geospatial features required by location-aware games. The

main observations and implications were:

• Scalability, both with respect to the data and computational requirements,
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suggesting support for big data handling and processing.

• Need for built-in data representation and event type support, with associated

compatibility with existing methods and tools.

• Platform extensibility, requiring an open and flexible platform architecture.

• Custom metrics support and supporting APIs and analysis tools.

• Balancing analytical strength with privacy concerns, as the latter are equally

important and sensitive in the design and deployment of location-aware

games.

In Chapter 3, we presented the architectural view of the analytics platform

based on the insights from the previous Chapter 2. We discussed the conceptual

and architectural decisions made to address the requirements for the integration

and computation of spatio-temporal metrics. A central aspect was the definition

of the conceptual model of spatio-temporal metrics. That conceptual model is

composed of three parts. First the data model in which variables and dimensions

allow designers to create personalised, versatile and sophisticated data struc-

tures to account for spatial and temporal data needs. The second part are the

metrics functions, which operate over and compute game-relevant information

from the data collected structured according to the data model definition. The last

part of the conceptual model are the actions, which allow designers to trigger ac-

tions (e.g., notifications) when certain conditions are met. All in all, the proposed

data model encapsulates all the necessary elements that a metric needs, allows

designers to compose simple metrics into more complex metrics, and allows de-

signers to share and reuse the definition of metrics since metrics are described

in an open metrics specification.

In Chapter 4, we described the implementation of the analytics platform which

takes into account the features identified and discussed in Chapter 2 and puts in

practice the conceptual model of spatio-temporal metrics proposed in Chapter 3.

The platform allows application developers to define data requirements, to collect

required (client-generated) data, and to define and execute metrics that capture

relevant non-spatial, spatial and temporal aspects of the monitored phenomena.
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It thus performs analysis over the collected data, and carries out actions and notifi-

cations. Technically, the cloud-based, distributed platform is specifically designed

to handle large amounts of (streaming) data, spatial and non-spatial data, and to

scale well under increasing amount of data and metrics computations.

in Chapter 5, we presented an assessment of the analytics platform. First,

we described an experiment where a location-aware game for collecting noise

data in a city was developed with and without the analytics platform, and both

implementations were qualitatively discussed from a developer’s point of view,

considering several implementation- and usability-related aspects. Second, we

showed that the analytics platform can be regarded as domain agnostic, and is

applicable beyond location-aware games, by implementing a mobile application

as part of a mental health treatment, calculating various metrics relevant in this

context.

6.2 Contributions

6.2.1 Scientific contributions

As we anticipated in Section 1.4, the main contributions of this work are twofold:

a metrics model proposed for describing context-aware, spatial enable metrics;

and the implementation of the analytics platform to collect and process spatio-

temporal data based on the metrics model.

The main features of the proposed conceptual model of spatio-temporal met-

rics are:

• The model can be used in a wide range of location-aware games, allowing

the representation of diverse data structures and metrics functions for most

cases.

• The model can be shared and reused by different applications and is plat-

form independent, allowing its consumption by different systems.

• The model includes the definition of actions which to react (notify) under

(custom) circumstances related to collected or processed data.
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In summary, the proposed model allows to abstract all facets related with

spatio-temporal metrics from the particular application domain, by providing the

required data structures (i.e., input data required), the processing specifications

(i.e., how to extract the information required), and ultimately, how to evaluate and

act upon the findings on the information extracted. This proposed model, in con-

junction with the tools and libraries provided, can be used for rapidly collecting

and processing data compliant with the model.

The analytics platform as a software artifact, using state-of-the-art technolo-

gies and exhibiting important features such scalability and spatio-temporal pro-

cessing capabilities, is the second main contribution of this dissertation. Its main

features are summarised as follows:

• The platform handles an extended metrics model for defining and computing

spatio-temporal data, metrics functions, and actions.

• The platform supports data intensive applications that require computations

of spatio-temporal metrics by offering data handling, storage, analysis, inter-

pretation, and notification as a service.

• The platform provides tools (e.g., Metrics SDK, the metrics definition tool,

among other developed tools) and mechanisms (REST APIs) for the inte-

gration of third-party components for data collection and processing.

• The platform taps into the growing amounts of contextual information streams,

to provide meaningful contextual information at the application level.

• The platform applies a big data oriented architecture, uses recommended

programming models and techniques (e.g., actor-based programming, pub-

lish/subscribe and reactive programming) and extensively uses big data

technologies (Kafka, Akka, Spark, Cassandra). This architecture is inher-

ently designed for separation and decoupling of concerns (e.g., data inges-

tion and storage, data processing, metrics computation), scalability and high

volume data handling and processing.
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6.2.2 Scientific publications

The scientific publications directly derived from the thesis are listed below, the

most recent ones at the top.

• RODRÍGUEZ-PUPO, LUIS E.; GRANELL, CARLOS and CASTELEYN, SVEN

(2019). An Analytics Platform for Integrating and Computing Spatio-Temporal

Metrics. ISPRS International Journal of Geo-Information, 8(2). ISSN 2220-

9964. 10.3390/ijgi8020054.

https://www.mdpi.com/2220-9964/8/2/54

We described the analysis and implementation of the analytics platform, and

discussed the core conceptual features implemented in the platform. Be-

sides, we showed the supporting applications and tools implemented as

part of the platform. The article entirely links to Chapter 4 and part of Chap-

ter 3.

• RODRÍGUEZ-PUPO, LUIS E.; CASTELEYN, SVEN and GRANELL, CARLOS

(2017). On Metrics for Location-Aware Games. ISPRS International Journal

of Geo-Information, 6(10). 10.3390/ijgi6100299.

We analysed and discussed how existing game analytics platforms address

spatio-temporal features of location-aware games. We also proposed a clas-

sification of spatial metrics, embedded in an existing categorization in the

literature, and discussed three types of spatial metrics-point-, trajectory- and

area-based metrics. The article entirely links to Chapter 2 and part of Chap-

ter 3.

• MIRALLES, IGNACIO; GRANELL, CARLOS; RODRÍGUEZ-PUPO, LUIS E.; CASTE-

LEYN, SVEN and HUERTA, JOAQUÍN (2017). Games, Health and the City:

Developing Location-Aware Games for Leveraging the Most Suitable Places

for Physical Activity. En: Extended Abstracts Publication of the Annual Sym-

posium on Computer-Human Interaction in Play, CHI PLAY ’17 Extended

Abstracts, pp. 239–245. ACM, New York, NY, USA. ISBN 978-1-4503-5111-

9. 10.1145/3130859.3131313.

http://doi.acm.org/10.1145/3130859.3131313
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We described the technical development of a location-aware game for pro-

moting physical activity in relation to the urban environment, and designed

an experiment with real users. This work informed the development of the

analytics platform.

• KHOI, N. M.; RODRÍGUEZ-PUPO, L. E. and CASTELEYN, S. (2017). Citi-

zense A generic user-oriented participatory sensing framework. En: 2017

International Conference on Selected Topics in Mobile and Wireless Net-

working (MoWNeT), pp. 1–8. ISSN null. 10.1109/MoWNet.2017.8045954.

We analysed the requirements of a multi-purpose participatory sensing frame-

works to ease the generation of context-aware, multi-purpose participatory

sensing campaigns. This work informed the (client-side) SDK Metrics tool

described in Chapter 4.

• MENDOZA-SILVA, GERMÁN MARTÍN; RODRÍGUEZ-PUPO, LUIS ENRIQUE; TORRES-

SOSPEDRA, JOAQUÍN and HUERTA-GUIJARRO, JOAQUÍN (2016). Solutions

for signal mapping campaigns of Wi-Fi networks. En: JIIDE 2016 Barcelona

(27-30/09/2016), .

We studied software solutions to enable users to participate in campaigns

to collect WiFi signal samples, and explored signal intensities of the de-

tected WiFi access points. This work informed the development of the men-

tal health experiment described in Section 5.3.

• GARCÍA-MARTÍ, IRENE; TORRES-SOSPEDRA, JOAQUÍN and RODRÍGUEZ-PUPO,

LUIS ENRIQUE (2014). A comparative study on VGI and professional noise

data. En: Joaquı́n Huerta-Guijarro; Sven Schade and Carlos Granell-Canut.

(Eds.), Connecting a Digital Europe through Location and Place. Proceed-

ings of the AGILE’2014 International Conference on Geographic Information

Science., AGILE Digital Editions. ISBN 978-90-816960-4-3.

http://repositori.uji.es/xmlui/handle/10234/98489

We showed the results of an experiment in which user-gathered noise obser-

vations were comparable in quality to professional data. This work is directly

related to the development and testing of the Noise Battle game reported in
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Section 5.2.2.

• MARTÍ, IRENE GARCIA; RODRÍGUEZ, LUIS E; BENEDITO, MAURICIA; TRILLES,

SERGI; BELTRÁN, ARTURO; D ÍAZ, LAURA and HUERTA, JOAQUÍN (2012).

Mobile application for noise pollution monitoring through gamification tech-

niques. En: International Conference on Entertainment Computing, pp. 562–

571. Springer, Berlin, Heidelberg.

We presented an approach for gathering noise pollution data that combined

mobile devices and gamification techniques. This work links directly to the

design and development of the Noise Battle game in Section 5.2.2.

• GARCÍA-MARTÍ, IRENE; RODRÍGUEZ-PUPO, LUIS ENRIQUE; BENEDITO-BORDONAU,

MAURICIA; TRILLES, SERGIO; BELTRÁN-FONOLLOSA, ARTURO; D ÍAZ-SÁNCHEZ,

LAURA and HUERTA-GUIJARRO, JOAQUÍN (2012). Aplicación móvil para la

monitorización de la contaminación acústica en entornos urbanos a través

de técnicas de Gamificación. En: JIIDE 2012: III Jornadas Ibéricas de In-

fraestructuras de Datos Espaciales. Madrid, Octubre 2012, .

We presented an approach for gathering noise pollution data that com-

bined mobile devices and gamification techniques, and the architecture of a

location-aware game implementation. This work links directly to the design

and development of the Noise Battle game in Section 5.2.2.
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6.2.3 Software artefacts

Table 6.1: Software projects.

Project Description/URL

actors
Implementation and base classes for defining messages
types and actors used in persistence, notifications, etc.

cassandra-persistence-actor
Implementation of an Akka actor for persistence in
Cassandra.

geo-test-utils

Common classes including a set of geofences-related
utils. Includes reference and sample trajectories,
algorithms for producing different geofencing situations
etc., used for testing.

common-gpx
Utils and classes used for loading GPX formatted sample
tracks.

k8s
Artifacts related to deployment of platform (Services
databases, documentation).

labsitec-project Source files related to Labpsitec experiment.
metrics-android-sdk Metrics Android SDK library.
metrics-common Common utils for working with metrics definitions

metrics-core
Library containing the core functionalities, core data
model (i.e metrics definition), used in Android SDK and
backend services.

metrics-data-ingestion Project containing the data ingestion services.

metrics-engine
Project containing the backend services (metrics
executions, metrics result data storage, etc.).

metrics-engine-frontend
Project for the web tool for editing metrics definitions,
application configuration and visualization tools.

metrics-integrations
Repository containing commands used in different areas,
Cassandra, Kafka, etc.

metrics-server-common
Common functionalities shared between server side
projects (i.e metrics-services and
metrics-engine-frontend projects).

metrics-services Project containing Rest services interface of the system.
metrics-tools Client tool created for interacting with the services.

noisebattle
Set of projects containing all NoiseBattle related
applications (Android App, backend services, data,
commands etc.).

schemaconverters
extension of the library json-schema-core1 for converting
a JSON schema definition to a DDL command in
Cassandra.
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Table 6.2: Software projects source code.

Project Description/URL

actors https://bitbucket.org/metricsappsteam/actors

cassandra-persistence-actor
https://bitbucket.org/metricsappsteam/

cassandra-persistence-actor

geo-test-utils
https:

//bitbucket.org/metricsappsteam/geo-test-utils

common-gpx https://bitbucket.org/metricsappsteam/common-gpx

k8s
https:

//bitbucket.org/metricsappsteam/metrics-k8s

labsitec-project
https://bitbucket.org/metricsappsteam/

labpsitec-project

metrics-android-sdk
https://bitbucket.org/metricsappsteam/

metrics-android-sdk

metrics-common
https:

//bitbucket.org/metricsappsteam/metrics-common

metrics-core
https:

//bitbucket.org/metricsappsteam/metrics-core

metrics-data-ingestion
https://bitbucket.org/metricsappsteam/

metrics-data-ingestion

metrics-engine
https:

//bitbucket.org/metricsappsteam/metrics-engine

metrics-engine-frontend
https://bitbucket.org/metricsappsteam/

metrics-engine-frontend

metrics-integrations

metrics-server-common
https://bitbucket.org/metricsappsteam/

metrics-server-common

metrics-services
https:

//bitbucket.org/metricsappsteam/server-metrics

metrics-tools
https:

//bitbucket.org/metricsappsteam/metrics-tools

noisebattle

https://bitbucket.org/metricsappsteam/

noisebattle_commons

https://bitbucket.org/metricsappsteam/

noisebattle-commons-geo

https://bitbucket.org/metricsappsteam/

noise-battle-db

https://bitbucket.org/metricsappsteam/

noisebattle-server

https:

//bitbucket.org/metricsappsteam/noisebattle

schemaconverters
https:

//bitbucket.org/metricsappsteam/shemaconverters
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6.3 Research objectives answered

We posed the four research objectives (RO) of the thesis (Section 1.2) and or-

ganised this document in such a way that each of the central chapters addresses

one of the RO (Section 1.5). Next, we briefly summarise to what extent we have

addressed each of the RO.

RO1 was aimed to investigate how (and which) spatial features are taken into

account in the design and development of location-aware games, more partic-

ularly, to steer game balance and gameplay. In Chapter 2 we addressed RO1

by conducting an exploratory literature review of existing game analytic platforms

and tools to study in deep their most important features and their spatial sup-

port. We found that the analysed platforms and tools exhibited poor or no support

for spatial features. Based on the review, we identified four functional areas, 1/

data collection, 2/ data representation, 3/ data analysis and reaction, and 4/ data

visualization and reporting. For each functional area, we identified and grouped

different features and measurable spatial aspects of metrics evaluation in the con-

text of location-aware games. As a result, we established a classification of the

spatial metrics to help designers in the process of designing and implementing

location-aware games. Figure 2.2 summarised the proposed spatial metrics clas-

sification which is built on top of existing classification of game metrics centered

on gameplay/player perspective.

RO2 was aimed to identify and classify the measurable spatial features that

are relevant in the design of location-aware games. More specifically, the aim was

to propose a model that covers the different dimensions of game metrics, partic-

ularly to support spatial features. Chapter 3 attempted to answer RO2. Through

the literature examined in Chapter 2, we realised that different authors had pre-

sented distinct definitions of what a metric is. Some authors understood metrics

as “raw data” collected for measuring a given phenomenon where others used a

mathematical definition. We took the latter approach and defined metrics in the

scope of our research as a “mathematical function” and extended it in the context

of location-aware games for including both data structure aspects, and actions

related to the metrics functions. The result was the conceptual model of spatio-
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temporal metrics whose main benefits are that it accounts for spatial features and

it allows to be reused and shared in order to promote knowledge sharing.

RO3 was aimed to design and develop an operational platform implement-

ing the establish theoretical principles (RO2) for game metrics, while addressing

typical challenges in location-aware games, such as scalability and ease of use.

Chapter 4 attempted to meet RO3. There, we designed and implemented an ana-

lytics platform that uses as a basis the proposed metrics model (RO2), addressing

the functional areas extracted from the literature review and analysis (RO1), with

specific strategies to face challenges in current location-aware games such as

scalability and ease of use.

RO4 was aimed to validate the proposed theoretical model and its practical im-

plementation, by applying it in different real-world scenarios. Chapter 5 puts the

focus on RO4 by demonstrating the feasibility of the analytics platform through two

different case studies. In the first case study, an experiment was set up, whereby

we compared the pre-platform and post-platform implementation of Noise Bat-

tle, a location-aware game aimed to collect noise samples throughout the city

(Section 5.2.2). We established a set of evaluation criteria from the developer’s

perspective, and then discussed both implementations according to each of the

evaluation criteria (see Table 5.1). In the second case study, we applied the an-

alytics platform in a mental health application for patients suffering agoraphobia.

The two real-world applications show the generality of the analytics platform, and

its feasibility to be used in different domains.

6.4 Limitations

Main limitations in this research are related to the implementation of the analytics

platform, due mainly to the extent of the project and the evolution of software

artefacts it relies on. Next, we overview the most important problems we faced

during the development of the platform, grouping them into implementation and

validation limitations.
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6.4.1 Implementation limitations

The open source big data technologies we used to implement the analytics plat-

form (e.g., Akka, Kafka, Spark, Cassandra, Docker) are at the forefront of techno-

logical developments in the field and, therefore, constantly evolve, which imposes

many integration challenges. These technologies are inherently complex, due

to the distributed nature of some of them and the interactions required for the

platform to work. Most of the problems we found were related to stability issues

with publicly available Kafka images in our on-premises environment, apparently

related to networking issues. Regarding data storage, we faced and diagnosed

issues while retrieving data as JSON in Cassandra due to an old JSON handling

library (after reporting2, a fix was provided by the Cassandra maintainers, and we

needed to update the libraries in our docker images3). Regarding the usage of

EclairJs, several compatibility issues arose during the implementation, as shared

libraries between the different technologies (i.e., Spark client library and EclairJS

library were not in the same version). We also found compatibility issues re-

lated to the usage of JavaScript libraries (i.e., Turf.js, and Moment.js) in our setup,

mostly related to the Turf.js library, due to the restricted support of the JavaScript

features provided by the Java Scripting API.

The analytics platform was developed with Spark deployed and running in

local mode. The Spark local mode is intended for testing and demonstration

purposes, and the execution of programmes in local mode seamlessly runs in a

cluster environment. However, given the complex technology stack we used, the

configuration and setting up of the cluster mode was complicated, and we did

experience difficulties switching from local to cluster mode.

The data specification of variables and outputs through JSON schema has lim-

itations. Although the platform supports the specification of complex structures,

it is mainly limited to nested structures. This is due to the fact that the conver-
2The issue report can be found at: https://issues.apache.org/jira/browse/

CASSANDRA-13949
3Details about the issue were to maintainers though the repositories https://github.com/

lrodriguez2002cu/cassandra-issue-images and https://github.com/lrodriguez2002cu/

cassandra-issue-tests
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sion library (see project schemaconverters in Appendix 6.2.3) implemented for

translating the JSON-based data schema to Cassandra DDL statements cannot

support varying structures4 as supported by the JSON schema specification.

Supporting schema evolution would mean to have several running instances

of metrics models depending on slightly different variations of variables and di-

mensions, which will further complicate the implementation. For the time being,

schema evolution is not yet supported. This means that once the variables and

dimensions are set and the supporting structures in the database are created,

introducing modifications in such structures are currently not possible. Schema

evolution remains future work.

As mentioned in Section 4.1.5, the execution of metrics functions can be

driven by data changes, in which case evaluators only need to execute such

functions depending on (one or more) changes in data. An early implementation

of this feature exists, but it is under development. Pending aspects are related, for

example, to the high frequency of the data sent, since the activated metrics func-

tions must be limited to avoid overloading the platform. Ideally, the time at which

data changes are accelerated for a given variable must be configurable, since

different variables may have different rates of data change and a delay applied to

all variables may affect those that do not change as frequently.

Debugging is supported by the centralized logs of the platform, which can be

accessed through the web-based visualisation tool (Section 4.1.6) during metrics

trials. Besides, developers can run on-demand, user-defined metrics to test their

functionality and check logs in case of failure. Tests, both unit tests5 and inte-

gration tests6 are key mechanisms for debugging too. As part of the software

repositories provided, we include tests examples for validating the metrics execu-

tion that can be used by developers, but using it requires including the test in the

code and rebuilding for executing the test. Despite the support for metrics debug-

ging, it is still insufficient and metrics executions remain hard to debug. Therefore,
4For example, JSON schema supports structures of type ”any of” and ”one of” when referring

to the fields an object can have. See JSON schema reference: https://json-schema.org/

understanding-json-schema/reference/combining.html
5A definition can be found at https://martinfowler.com/bliki/UnitTest.html
6 https://martinfowler.com/bliki/IntegrationTest.html
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as a future enhancement, some of the debugging and testing functionalities devel-

oped could be put together in a separate library for helping developers implement,

test and maintain authored metrics more easily.

6.4.2 Validation limitations

In the implementation of the platform we are using systems and libraries that

support scalability at various levels. For example, Cassandra for storing data,

and Apache Spark for computing. We use these systems to provide scalability

to the analytics platform, as a feature that we identified as necessary in the con-

text of location-aware applications. Nevertheless, the example applications we

have implemented do not allow to asses the scalability to a full extent. A set of

experiments targeting specific aspects such as storage, data ingestion, and met-

rics evaluation should have been implemented for validating the scalability of the

system.

While developing the platform, several tests have been implemented across

the different projects (see Appendix 6.2.3). For example, unit tests have been

focused on JavaScript functionalities provided by the analytics platform (e.g., time

handling and data access). Besides, we have used test frameworks specifically

targeting these systems (e.g., Akka TestKit7) and implemented libraries (e.g., geo-

test-utils and geofences-common project), which provide utils and sample routes

for testing, using real trajectory data. We have used this data to test metrics

functions with sample spatial data in the analytics platform, mainly for geofences

and spatial capabilities. Despite the effort made in software testing, many more

tests are still needed given the complexity of the platform. Specifically, given

the different systems involved in the platform, more integration tests should be

included, for testing the system end to end.

6.5 Future work

While several smaller technological improvements are planned on the platform,

we foresee to continue the development of the analytics platform in two main lines.
7https://doc.akka.io/docs/akka/current/testing.html
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One is to truly support stream processing (Garofalakis et al., 2016). While data

streams are partially covered during the data ingestion process, stream process-

ing is a current limitation of the proposed analytics platform during the metrics

computation phase. The other line is related to performance analytics tools. Data

regarding the platform’s performance should be more rigorously collected. Per-

formance data can be shown in visual real-time dashboards to give an overview

of the system resource usage such as per-application usage and per-user usage

so that administrators can detect critical performance bottlenecks and possibly

update the platform’s configuration to mitigate them (e.g., adding more hosts and

nodes to the cluster). Besides, users (e.g., developers implementing the metrics)

would benefit from performance data as they would have the necessary informa-

tion to pinpoint and improve the metrics implementations.

On a final note, future improvements related to the limitations exposed above

are possible. While metrics schema evolution is difficult to address properly in

the current implementation of the platform, we believe it is feasible to find a so-

lution that offers a fair trade-off between backward compatibility and the addition

of new fields in the data models. Besides, the issues related to data schema

complexity require the extension of the implemented schema conversion library

(project schemaconverters, Section 6.2.3) to deal with complex data schema (e.g.,

JSON schema of the metrics functions output). We also believe that data ac-

cess limitations can be overcome by implementing tools that allow bulk-copy data

to cloud-enable, big data storage providers (e.g., Google Cloud storage8 or Mi-

crosoft Azure Storage Accounts9).

8Google Cloud Storage: https://cloud.google.com/storage/
9Azure Storage Accounts: https://docs.microsoft.com/en-us/azure/storage/common/

storage-account-overview
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A Abbreviations

The following abbreviations are used in this manuscript:

API Application Programming Interface

CSV Comma separated value

DDL Data Definition Language

GeoJSON Geo related schema and types for using in JSON

GPS Global Positioning System

GPX GPS Exchange format

GUID Globally Unique Identifier

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

NoSQL Term used to denote non relational databases

POST Request method belonging to HTTP protocol

RDD Resilient Distributed Dataset

REST Representational State Transfer

SDK Software Development Kit

UDT Cassandra user defined type

WIFI A trademarked term related to IEEE 802.11x family of standards
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móvil para la monitorización de la contaminación acústica en entornos urbanos
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