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Abstract

Shear Alfvén instabilities are of the considerable interest in fusion plasma confinement
and in future burning plasmas. Mostly, these instabilities are driven by the energetic
particles (EPs) in fusion plasmas. Alfvénic instabilities can degrade EPs confinement,
heating efficiency by channelizing them, and the ignition margin. They can also
cause severe damages to the plasma-facing components (PFCs) through high heat
fluxes. Thus the investigations for their control, better performance and comprehensive
understanding are of the primary importance in burning plasmas. In this dissertation,
a detailed analysis of the experientially observed energetic particle-driven Alfvénic
instabilities in tokamak and stellarator plasmas using three dimensional numerical
tools based on the reduced MHD model has been carried out. To explain experimental
observations of Alfvén modes in TJ-II flexible heliac plasmas, we have compared
experimental results with the results obtained through theoretical model of shear
Alfvén waves in 3D toroidal geometry. Bifurcated MHD equilibria with 3D helical core
surrounded by an axisymmetric 2D mantle has been modelled for the ASDEX-Upgrade
(AUG) tokamak plasmas having safety factor around unity in the core region. Modelling
of effect of the formation of 3D helical core on Alfvén continuum structures in tokamak
plasmas shows continuum splitting and shifting around the frequency accumulation
point and the formation of additional frequency gaps.

The investigations presented in this thesis are divided into two parts. In the first
part for stellarator plasmas, modelling results for the steady and chirping states Alfvén
eigenmodes (AEs) together with the reversed-shear AEs are presented. Additionally,
wave particle interaction (WPI) studies are also developed using Monte Carlo transport
model based on the 3D equilibria for the TJ-II plasmas. The coexistence of chirping and
steady state modes has been assessed on the persistent appearance of the corresponding
combination of the toroidal (n) and poloidal (m) mode numbers through the rotational
transform sensitivity analysis both in iota lowering and iota rising TJ-II dynamic
plasmas. Frequency sweeping phenomenon of the Alfvén modes is modelled using
normal and non-monotonic (NM) iota profiles with radially extended low-shear and
radially localized strong-shear regions. Simulation results obtained with NM iota
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profile are in agreement with the experimentally found frequency sweeping modes by
covering a wide range of frequency from 115 to 295 kHz as compared with the normal
iota profile for which the modes are centred around 150 kHz. In addition, the modes
obtained using strong-shear NM iota profile also cover a wide frequency range starting
from more lower values from 36 to 216 kHz. In strong-shear NM iota profile, the
persistence of a mode on the variation in ιmin with the decrease of its radial width not
only increase its own stability but also serves as stable mode through which an iota
profile could be extracted using MHD spectroscopy principle. In the WPI calculations
the corresponding wave-particle resonance function suggest for low bounce harmonics
(p) the possibility of describing the non-linear evolution of the AEs in TJ-II by a sum
of two ion populations with different weighting factors, one of which is dominated by
drag and the other by diffusion. As the bounce harmonic increases, the resonance
region begins to expand and can cover a substantial area of the particle phase space.
When the bounce harmonics are further increased, this resonance region moves in the
direction of higher energy and pitch angle. This reduces the resonance range in the
low energy range of the phase space and further leads to its complete disappearance
there. Furthermore the 3D drift orbits have also been calculated for the both drag and
diffusion regions of the resonance function, which are qualitatively identical.

In the second part of the dissertation, for the tokamak plasmas a bifurcated MHD
equilibrium is reconstructed with formation of 3D helical core as saturated magnetic
axis and the remaining torus with an axisymmetric equilibrium. The formation of
helical core is associated with the 3D equilibrium in the tokamak 2D fusion device. In
the equilibrium calculations we find that the helically distorted MHD equilibria may
exist even for the axisymmetric devices if q = 1 rational surfaces are present. The
continuum calculations with the bifurcated equilibria lead to the frequency splitting
via coupling to adjacent n-1 continuum around an accumulation point. Our modelling
including 3D effects correctly reproduces the phenomenon of continuum frequency
splitting and provides a possible solution for the differences of few kHz in frequency
splitting, which remained unexplained with the 2D kinetic calculations. The pressure
scaling confirms the increase of helical excursion of the magnetic axis in equilibrium
reconstruction and hence the range of continuum frequency splitting. The existence of
low-frequency continua and its splitting around the frequency accumulation point are
in agreement with the experimental observations for the low-frequency modes.

This dissertation provides an extensive comparison of the experimental and mod-
elling results for the TJ-II stellarator plasmas along with the effect of the formation of
bifurcated MHD equilibria on Alfvén continua in AUG tokamak plasmas. We hope
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these findings will contribute to improve the understanding of operational regimes of
the 3D toroidal fusion systems in the future burning plasmas.





Abstract

Las inestabilidades de cizallamiento de Alfvén son de considerable interés para el
confinamiento de plasmas de fusión y para la combustión de futuros plasmas. En su
mayoría, estas inestabilidades son producidas por las partículas energéticas (EP) en los
plasmas de fusión. Las inestabilidades de Alfvé pueden degradar el confinamiento de
las EP, la eficiencia del calentamiento y el margen de ignición. También pueden causar
daños graves a los componentes en contacto con el plasma (PFC) a través de altos
flujos de calor. Por lo tanto, las investigaciones para su control, mejor rendimiento
y conocimiento son de importancia primordial en la combustión de plasmas. En esta
disertación, se llevó a cabo un análisis detallado de las inestabilidades de Alfvén obser-
vadas experimentalmente en los plasmas tanto en tokamaks como stellarators utilizando
herramientas numéricas 3D basadas en el modelo de MHD reducido. Para explicar las
observaciones experimentales de los modos Alfvénicos en plasmas helicoidales flexibles
de TJ-II, hemos comparado los resultados experimentales con los resultados obtenidos
a través del modelo teórico de ondas de cizallamiento de Alfvén en geometría toroidal
3D. Los equilibrios bifurcados MHD con núcleo helicoidal 3D rodeado por un manto 2D
axisimétrico se han modelado para los plasmas del tokamak ASDEX-Upgrade (AUG)
que tienen un factor de seguridad alrededor de la unidad en la región central. El
modelado del efecto de la formación de núcleo helicoidal 3D en estructuras continuas
de Alfvén en plasmas de tokamak muestra la división y el desplazamiento continuos
alrededor del punto de acumulación de frecuencia y la formación de espacios de frecuen-
cia adicionales. La investigación presentada en esta tesis se divide en dos partes. En la
primera parte para los plasmas de stellarators, se presentan los resultados de modelado
para los estados estables y chirping de los Alfvén eigenmodes (AEs) junto con los AEs
de cizallamiento invertido. Además, los estudios de interacción onda partícula (WPI)
también se desarrollan utilizando el modelo de transporte Monte Carlo basado en los
equilibrios 3D para los plasmas de TJ-II. La coexistencia de los modos de chirping
y estado estacionario se ha evaluado en la apariencia persistente de la combinación
correspondiente de los números de modo toroidal (n) y poloidal (m) a través del análisis
de sensibilidad de transformación rotacional tanto en plasmas dinámicos de TJ-II de
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disminución de iota como de aumento de iota . El fenómeno de barrido de frecuencia
de los modos Alfvénicos se modelan utilizando perfiles iota normales y no monotónicos
(NM) con regiones de baja cizalladura radialmente extendidas y de cizalladura fuerte
localizadas radialmente. Los resultados de la simulación obtenidos con el perfil de iota
NM están de acuerdo con los modos de barrido de frecuencia encontrados experimental-
mente al cubrir un amplio rango de frecuencia de 115 a 295 kHz en comparación con el
perfil de iota normal para el cual los modos se centran alrededor de 150 kHz. Además,
los modos obtenidos usando el perfil de iota NM de fuerte cizalladura también cubren
un amplio rango de frecuencia a partir de valores más bajos de 36 a 216 kHz. En el
perfil de iota NM de cizallamiento fuerte, la persistencia de un modo en la variación de
iotamin con la disminución de su ancho radial no solo aumenta su propia estabilidad
sino que también sirve como un modo estable a través del cual un perfil de iota podría
ser extraído utilizando el principio de espectroscopía de MHD. En los cálculos de WPI,
la función de resonancia de onda-partícula correspondiente sugiere para armónicos de
bajo rebote (p) la posibilidad de describir la evolución no lineal de los EA en TJ-II
por una suma de dos poblaciones de iones con diferentes factores de ponderación, uno
de los cuales está dominado por la resistencia y el otro por la difusión. A medida que
aumenta el armónico de rebote, la región de resonancia comienza a expandirse y puede
cubrir un área sustancial del espacio de fase de partículas. Cuando los armónicos de
rebote se incrementan aún más, esta región de resonancia se mueve en la dirección
de mayor energía y ángulo de inclinación. Esto reduce el rango de resonancia en el
rango de baja energía del espacio de fase y conduce a su completa desaparición allí.
Además, las órbitas de deriva 3D también se han calculado para las regiones de arrastre
y difusión de la función de resonancia, que son, cualitativamente, idénticas.

En la segunda parte de la disertación, para los plasmas de tokamak se reconstruye
un equilibrio MHD bifurcado con la formación de un núcleo helicoidal 3D como eje
magnético saturado y el toro restante con un equilibrio axisimétrico. La formación
de núcleo helicoidal está asociada con el equilibrio 3D en el dispositivo de fusión
de tokamak 2D. En los cálculos de equilibrio encontramos que los equilibrios MHD
distorsionados helicoidalmente pueden existir incluso para los dispositivos axisimétricos
si q = 1 están presentes superficies racionales. Los cálculos continuos con los equilibrios
bifurcados conducen a la división de frecuencia mediante el acoplamiento al continuo
n-1 adyacente alrededor de un punto de acumulación. Nuestro modelado que incluye
efectos 3D reproduce correctamente el fenómeno de división continua de frecuencia
y proporciona una posible solución para las diferencias de pocos kHz en la división
de frecuencia, que permaneció sin explicación con los cálculos cinéticos 2D. La escala
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de presión confirma el aumento de la excursión helicoidal del eje magnético en la
reconstrucción de equilibrio y, por lo tanto, el rango de división de frecuencia continua.
La existencia de continuas de baja frecuencia y su división alrededor del punto de
acumulación de frecuencia están de acuerdo con las observaciones experimentales para
los modos de baja frecuencia. Esta disertación proporciona una comparación exhaustiva
de los resultados experimentales y de modelado para los plasmas de stellarator del
TJ-II junto con el efecto de la formación de equilibrios bifurcados de MHD en Alfvén
continuos en plasmas de tokamak de AUG. Esperamos que estos hallazgos contribuyan
a mejorar la comprensión de los regímenes operativos de los sistemas de fusión toroidal
3D en los futuros plasmas de combustión.





Abstract

Afschuif (shear) Alfvén-instabiliteiten zijn van groot belang voor de opsluiting van
plasma’s in het fusieonderzoek en voor toekomstige brandende plasma’s. Meestal worden
in deze plasma’s, dit type instabiliteiten aangedreven door de energetische deeltjes
(EP’s). Alfvénic instabiliteiten kunnen de opsluiting van EP’s verslechteren door hun
verliezen te kanaliseren en bijgevolg de verwarmingsefficiëntie en de ontstekingsmarge
reduceren. Ze kunnen ook ernstige schade aan de plasma-gerichte componenten (PFC’s)
veroorzaken door de resulterende lokale hoge warmtefluxen.

Daarom is het onderzoek naar hun controle voor het bereiken van betere prestaties
en in het algemeen een beter begrip van deze instabiliteiten van primair belang voor
brandende plasma’s. In dit proefschrift is een gedetailleerde analyse gemaakt van
de experimenteel waargenomen Alfvéic instabiliteiten aangedreven door energetische
deeltjes in stellarator- en tokamakplasma’s.

Dit gebeurde met behulp van driedimensionale numerieke hulpmiddelen gebaseerd
op het gereduceerde MHD-model. Om experimentele waarnemingen van Alfvén-modi
in TJ-II flexibele heliac (stellarator type) plasma’s te verklaren, hebben we experi-
mentele resultaten vergeleken met de resultaten die verkregen werden via een theo-
retisch model van shear Alfvén-golven in 3D toroïdale geometrie. Vertakte (bifurcated)
MHD-evenwichten met een 3D-spiraalvormige kern omgeven door een asymmetrische
2D-mantel werd gemodelleerd voor ASDEX Upgrade (AUG) tokamak-plasma’s, waarbij
de veiligheidsfactor in het kerngebied ongeveer één was. Modellering van het effect van
de vorming van een 3D-schroefkern op Alfvén continuümstructuren in tokamak-plasma’s
toont het opsplitsen en verschuiven van het continuüm rond het frequentieaccumu-
latiepunt en de vorming van extra openingen in het frequentiespectrum.

Het onderzoek in dit proefschrift is opgedeeld in twee delen.
In het eerste deel worden voor stellarator-plasma’s, de modelleringsresultaten

voor Alfvén eigenmodes (AE’s) van het stabiele (steady-state) en tjilpende (chirping)
type gepresenteerd, samen met de omgekeerde-shear AE’s. Bovendien worden ook
studies van golfdeeltjesinteractie (WPI-wave particle interaction) ontwikkeld met behulp
van het Monte Carlo-transportmodel op basis van de 3D-evenwichten voor de TJ-
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II-plasma’s. De co-existentie van tjilpende en steady-state modi werd vastgesteld
op basis van het aanhoudend voorkomen van de overeenkomstige combinatie van de
toroïdale (n) en poloidale (m) mode nummers. Deze vaststelling gebeurde via de rotatie-
transformatiegevoeligheidsanalyse, zowel in iota-verlagende als iota-verhogende TJ-II
dynamische plasma’s. Het fenomeen van de variatie/veging van de frequentie (frequency
sweeping) van de Alfvén-modi werd gemodelleerd met behulp van normale en niet-
monotone (NM) iota-profielen met radiaal uitgebreide regio’s van lage afschuiving (low-
shear) en radiaal gelokaliseerde regio’s van sterke afschuiving (high-shear). Resultaten
van de simulaties verkregen met een NM iota-profiel zijn in overeenstemming met de
experimenteel gevonden modi met een vegende frequentie die een breed frequentiebereik
van 115 tot 295 kHz afdekken in vergelijking met het normale iota-profiel waarvoor
de modi gecentreerd zijn rond 150 kHz. Bovendien dekken de modi die zijn verkregen
met behulp van een NM iota-profiel met sterke afschuiving (high-shear) ook een
breed frequentiebereik eerder vanaf lagere waarden van 36 tot 216 kHz. Tijdens een
variatie in ιmin van een NM iota-profiel met sterke afschuiving (high-shear) blijft
een bepaalde mode aanhouden. De afname van de radiale breedte van deze mode
verhoogt de eigen stabiliteit. Op basis van deze stabiele mode kan ook een iota-
profiel worden geëxtraheerd met behulp van het MHD-spectroscopie principe. In de
berekeningen van de golfdeeltjesinteractie (WPI-wave particle interaction) suggereert
de overeenkomstige golfdeeltjesresonantiefunctie voor lage bounce-harmonischen (p)
de mogelijkheid om de niet-lineaire evolutie van de AE’s in TJ-II te beschrijven door
een som van twee ionenpopulaties met verschillende wegingsfactoren, één waarvan
wordt gedomineerd door de sleep (drag) en de andere door diffusie. Naarmate de
bounce-harmonische toeneemt, begint het resonantiegebied uit te zetten en kan het een
aanzienlijk gebied van de deeltjesfaseruimte bedekken totdat dit resonantiegebied bij
hoge bounce-harmonischen verdwijnt. Verder zijn de 3D-driftbanen ook berekend voor
de beide sleep- en diffusiegebieden van de resonantiefunctie, die kwalitatief identiek
zijn.

In het tweede deel van het proefschrift wordt voor de tokamak-plasma’s een vertakt
MHD-evenwicht gereconstrueerd met de vorming van een 3D-spiraalvormige kern als
verzadigde magnetische as en de resterende torus met een asymmetrisch evenwicht. De
vorming van een spiraalvormige kern wordt geassocieerd met het 3D-evenwicht in het
tokamak 2D-fusie-apparaat. In de evenwichtsberekeningen vinden we dat de schroe-
fvormig vervormde MHD-evenwichten kunnen bestaan, zelfs voor de asymmetrische
apparaten als er q = 1 rationale oppervlakken aanwezig zijn. De continuümberekenin-
gen met de vertakte evenwichten leiden tot de frequentiesplitsing via koppeling met
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een aangrenzend n-1 continuüm rond een accumulatiepunt. Onze modellering inclusief
3D-effecten reproduceert correct het fenomeen frequentiesplitsing van het continuüm
en biedt een mogelijke oplossing voor de verschillen van enkele kHz in de splitsing in
frequentie, die bij de 2D kinetische berekeningen onverklaard bleven. De scalering met
de druk bevestigt de toename van de schroefvormige uitslag van de magnetische as
bij evenwichtsreconstructie en daarmee het bereik van continuumfrequentiesplitsing.
Het bestaan van laagfrequente continua en de splitsing ervan rond het frequentieac-
cumulatiepunt zijn in overeenstemming met de experimentele waarnemingen voor de
laagfrequentiemodi.

Dit proefschrift biedt een uitgebreide vergelijking van de experimentele en mod-
elleringsresultaten voor de TJ-II stellarator plasma’s, samen met het effect van de
vorming van vertakte MHD-evenwichten op Alfvén continua in AUG tokamak-plasma’s.
We hopen dat deze bevindingen zullen bijdragen tot een beter begrip van de opera-
tionele regimes van de 3D torusvormige fusiesystemen in de toekomstige brandende
plasma’s. Het zal helpen om een beter begrip te ontwikkelen van de afschuif (shear)
Alfvén-instabiliteiten in 3D-fusiesystemen.
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Chapter 1

Introduction

This chapter provides a brief introduction to thermonuclear fusion and prominent
plasma confinement schemes. After that, motivations of this research work are provided
to highlight the importance and key issues of plasma confinement in the current 3D
fusion devices. Later this chapter also lists the research contributions and entails the
published work in peer reviews journals and work presented in leading conferences.
Finally it provides the thesis layout which describes the brief contents of the following
chapters.

1.1 Thermonuclear fusion

Thermonuclear fusion is process which produces enormous amount of the energy after
fusing light nuclei such as hydrogen isotopes. In nature this process works well in
stars and illuminate them for hundreds of years in a sustained manner. This process
produces energy with the difference of mass of fusion products from the fusing nuclei as
described by famous Einstein’s energy Equation (1.1). The prominent fusion reaction
is between the hydrogen isotopes Deuterium (D) and Tritium (T) which produces a
large amount of energy as given in Equation (1.2).

E = mc2/ (1.1)

D + T → 4He (3.5MeV ) + n (14.1MeV ) (1.2)

Energy is an important aspect in our lives and the industrialization of the planet
demands increasing level of energy day by day. The current available energy sources,
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which rely on fossil fuel such as oil, gas and coal that are not only getting depleted but
are also seriously harming this living planet. To meet the world’s increasing energy
demands and safety of the planet, newer discoveries of the efficient alternative energy
sources are the burning questions of century. Mankind always has learned though the
nature and therefore the human being has started to make an identical sun on the
earth through the controlled thermonuclear fusion reaction.

Different approaches have been investigated for the controlled fusion studies. On
earth the controlled fusion has been successfully achieved with two major approaches
termed as inertial confinement fusion (ICF) and magnetic confinement fusion (MCF).
In this thesis, the focus is on magnetic confinement fusion. The aim of magnetic
confinement fusion is to confine a mixture of hydrogen-isotope gas at temperatures in
the order of 10 keV (≈ 100 million K). If the density is high enough and the confinement
time is long enough then it would lead to net energy producing fusion reactions. The
hydrogen gas is ionized at this temperature, it is in the plasma state. A strong magnetic
field traps the charged particles of the plasma. Due to the Lorentz force, the particles
move circularly around the field lines, and this way they are not allowed to stream
freely in the direction perpendicular to the magnetic field. But along the field lines
they can move without restriction (apart from some very infrequent collisions). In
order to confine the particles in a finite space, the magnetic field lines are bent into a
shape of a torus (Figure 1.1).

This magnetic field can be realized by simple circular coils arranged along the torus
as shown in Figure 1.1. This figure shows the main coordinates and directions: the
toroidal direction is along the field lines, the poloidal direction is perpendicular to the
field lines.

One problem with this toroidal arrangement is that the magnetic field is not
homogeneous, and it causes the particles to drift in a way that polarizes the plasma and
degrades the confinement. More precisely, due to the inhomogeneity and the curvature
of the magnetic field, the positive and negative particles drift in opposite directions,
and this creates an electric field that drives both the electrons and the ions out of the
torus [7]. To circumvent this effect, the plasma has to have a helical field structure,
as shown in Figure 1.2. The helical field short-circuits plasma and thus prevents, the
formation of a strong electric field which then expels the particles from the container.
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Fig. 1.1 Schematic diagram of the Tokamak, with toroidal and poloidal filed coils.
(Image from CCFE - http://www.ccfe.ac.uk)

Fig. 1.2 A schematic diagram representing the helical resultant field from summing the
toroidal and poloidal fields. (Image from - www.efda.org)
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In helical magnetic configuration, both the toroidal and poloidal coordinates change
along a field line. After traversing a number of poloidal turns, a field line reconnects
on rational surfaces with its tail by forming a toroidal surface called as flux surface. A
typical flux surface is shown in Figure 1.3.

Fig. 1.3 Some of the nested magnetic flux surfaces and the magnetic field lines that
wind helically around the torus on these surfaces are depicted [1].

Toroidal magnetic fusion devices construct flux surfaces in order to define plasma
parameters. Characterization of the field lines traversing behavior is performed by
introducing the rotational transform. It is denoted by iota-bar, ι and defined as follows:
let ∆θn be the change of the poloidal angle after n toroidal turns, then, the rotational
transform is defined as

ι = lim
n→∞

1
n

∆θn (1.3)

which is the average change of the poloidal angle after a toroidal turn [8]. In tokamak
plasmas, the inverse of the rotational transform is used, which is called safety factor,
and denoted by symbol (q)

q = 2π/ι (1.4)

Stellarators [9] are capable of steady-state operation and they confine a plasma
using helical coils that rotate around the plasma torus. The stellarator configurations
generally lack axisymmetry because of the helicity of the external coil system. There
are variety of stellarator configurations such as the classical stellarator, the torsatron,
the heliac and the optimized stellarator. The basic difference among them is in the
magnetic parameters and the symmetry of the magnetic field strength B on the
magnetic surfaces. The classical stellerators as shown in Figure 1.4a consist of toroidal
coils and helical windings which are problematic from an engineering point of view,
such as being difficult to manufacture, assemble and repair. This design was modified
in the modular stellarators, where the toroidal coils and helical windings are combined
together, as shown in Figure 1.4b, which allows for optimization of the magnetic field.
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An example of such a configuration is Wendelstein 7-X in Germany. The advantage of
the stellarators comes from the capability of steady state operation. Their negligible
toroidal current diminishes current driven instabilities, such as disruptions and resistive
wall modes as compared to tokamaks.

(a) Classical stellarator (b) Modular stellarator

Fig. 1.4 Difference between stellarators

1.2 Motivation

In the development of fusion plasma physics, plasma heating is an important aspect.
Without proper heating level the achievement of fusion reactions becomes impossible.
In present-day fusion devices the plasma is heated by a number of external means
such as ion/electron resonance waves and neutral beams. Plasma heating through self-
generated fusion products is called as self-heating and it is of the primary importance
for any viable device which could achieve a sustained level in its performance. Only
a fraction of the power from fusion products remains available for plasma heating.
In a viable fusion device, extracting more energy than the injection remains primary
goal and reaching this point is termed as ignition condition in fusion physics. Fusion
products, such as Alpha particles which normally appear after fusing the hydrogen
isotopes can help to achieve ignition margins if their sufficient energy gets efficiently
absorbed into the background plasma. However, it is not easy to maintain enough
energy within the fusion chamber which can approach to ignition margins.

There can be many potential factors for the limited availability of fusion power for
the self-heating of background plasma in current fusion devices such as fewer fusion
reactions, pulsed operation scenarios and the lower density of Alpha particles due to
excluded Tritium (T) use. Besides of these operational limits, the MHD instabilities
in the range of Alfvén velocity also called Alfvénic instabilities are also responsible
for the limited fusion power available for self-heating. Alfvénic instabilities resonate
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with the energetic particles/ fast ions and channel out them from the device before
their release of energy to the background plasma and make them unavailable for the
heating purpose. Power balance calculations suggest that nearly the 20% of fusion
product power is necessarily required in order to achieve ignition margins in the fusion
devices [10]. Scientific aspects which inhibit to approach ignition margins and the
severe impact of channelled fast ions on the plasma facing components (PFCs) demand
state-of-the-art investigations of Alfvénic instabilities in fusion systems. The ultimate
goal of the sustained fusion reaction is possible with the comprehensive understanding
of the scientific aspects of energetic particle driven Alfvénic instabilities.

In this thesis, energetic particle driven Alfvénic instabilities are investigated for
the TJ-II Stellarator and ASDEX-Upgrade (AUG) tokamak using state-of-the-art
three dimensional (3D) numerical tools. In TJ-II stellarator the chirping, steady and
Reversed shear Alfvén modes have been observed experimentally, their analysis though
ab initio modelling have been required for better understanding of the physics behind
such instabilities in stellarator plasmas. In AUG tokamak and similar devices, the
helical core structures have been measured with the appearance of strong sawteeth
modes that can drive fast ions. Their impact on shear Alfvén modes has been considered
an important scientific problem which demands for the modelling of such phenomena
in order to better understand its physics. The outcome of these investigations can
be important for the future upcoming fusion devices such as the ITER and DEMO,
since 3D physics is pertinent in these devices [11]. In stellarator fusion devices which
are inherently disruption free, the fast ions mostly face interactions with the helical
Alfvén eigenmodes (HAEs) [12–14] and Global Alfvén eigenmodes (GAEs) [15]. Their
investigations are of the paramount importance in such helical plasmas. In fusion
systems besides the HAEs and GAEs, Reversed Shear Alfvén eigenmodes (RSAEs) [16]
also equally called Alfvén cascades (ACs) [17] are also of primary importance because
of their role in active MHD spectroscopy [18–20] to measure the rotational transform
(iota) [21] in stellarators and/or the safety factor (q) profile in tokamaks. RSAEs are
observed in most of the fusion devices as frequency sweeping modes and their finite
variations with time lead to the investigations of iota or q-profile.

In tokamaks which are inherently axisymmetric (2D) fusion devices since the
toroidal coordinate is considered invariant, however in optimized designs currently
the 3D internal and external effects have been experimentally observed/ added to
achieve the required level performance. Resonant magnetic perturbations are added
externally in tokamak plasmas to control and suppress the Alfvénic instabilities [22]
which transform the magnetic field structure of torus into 3D format by removing
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the axisymmetry of magnetic field. Saturated internal ideal kink-modes are present
in tokamak plasmas for the steep plasma pressure forming 3D helical core structures
as an equilibrium state, which perturbs field axisymmetry and transforms into 3D
field structure [23]. For the first time in this thesis, effect of such spontaneously
triggered helical core structures [24] on the Alfvénic instabilities is investigated for the
understanding of the low-frequency Alfvén eigenmodes (AEs).

It is believed that work developed in this thesis would certainly help to improve the
comprehensive understanding of burning plasma Alfvénic instabilities in fusion science.

1.3 List of publications

The following list of publications are the articles which are published or submitted for
the publication during this doctoral work carried out in this thesis.

• Allah Rakha, et al., Modelling of beam-driven Alfvén modes in TJ-II plasmas,
Nucl. Fusion 59 (2019) 056002.

• Allah Rakha, et al., Shear Alfvén wave continuum spectrum with bifurcated
helical core equilibria, Accepted in Nuclear Fusion August 2019.

• Allah Rakha, et al., Modelling of Alfvén cascade modes in stellarator plasmas,
Submitted to Nuclear Fusion 2019.

• Allah Rakha, et al., Modelling of Alfvén cascades in NBI heated stellarator
plasmas, Europhysics Conference Abstracts vol 42A P4.1004
(http://ocs.ciemat.es/EPS2018PAP/pdf/P4.1004.pdf), 2018.

1.4 Conference poster and oral presentations

Throughout the thesis I had the opportunity to present my work on the leading
conferences, this is the list of oral talks and posters which I have presented during the
course of my PhD studies.

• Poster, Modelling of reversed shear Alfvén modes in NBI heated stellarator
plasmas using reduced MHD model, 6th FuseNet PhD Event hosted by the ITER
Organisation, 07-09 November, 2018 Cadarache, France.
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• Poster, Modelling of Alfvén cascades in NBI heated stellarator plasmas, 13th
Carolus Magnus Summer School on Plasma and Fusion Energy Physics, September
03-14, 2018, DIFFER Eindhoven, The Netherlands.

• Poster, Modelling of Alfvén cascades in NBI heated stellarator plasmas, 45th
European Physical Society (EPS) Conference on Plasma Physics, July 02-06,
2018, Prague Czech Republic.

• Oral, Modelling of Alfvénic instabilities in complex toroidal geometries for fusion,
5th International BSC Doctoral Symposium, April 24-25, 2018 Barcelona, Spain.

• Oral, Modelling of Energetic Particle-Driven Alfvénic instabilities in TJ-II plas-
mas, Workshop on Fast Ion Physics, Jan 22-23, 2018 at IPP Greifswald, Ger-
many.

• Poster, Modelling of Alfvén modes properties in TJ-II plasmas, 17th European
Fusion Theory Conference (EFTC), October 09-12, 2017 Athens, Greece.

• Poster, Simulations of Alfvénic modes in TJ-II Stellarator, 4th International
BSC Doctoral Symposium, May 02-04, 2017 Barcelona, Spain.

• Poster, Modelling of Alfvén Eigenmodes in TJ-II Plasmas, Joint iCTP-IAEA
College on Plasma Physics, November 07-18, 2016 Trieste, Italy.

1.5 Dissertation structure

In this thesis, the modelling and simulation results using 3D numerical tools of the
experimentally observed Alfvén eigenmodes (AEs) in TJ-II Stellarator and AUG
tokamak are discussed. The logical approach employed to develop this thesis is
presented as follows. In chapter 1, the basic introduction of fusion science, motivation
of this specific research topic and list of contributions during my PhD studies are
provided. Introduction to the Alfvén waves and Alfvén eigenmodes (AEs) in cylindrical
and toroidal geometries along with the brief description of AEs both in tokamak
and stellarator plasmas is provided in chapter 2. The description of the reduced
MHD model for the investigation of AEs in 3D toroidal devices along with the MHD
equilibrium reconstruction numerical tool (VMEC) for the 3D toroidal devices with
closed flux-surfaces is provided in chapter 3. It also briefly discusses the numerical tools
for the Alfvén continuum calculations (STELLGAP) and modes structures (AE3D).
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Modelling and simulation of steady and chirping AEs are discussed in chapter 4
for the both iota rising and lowering TJ-II dynamic plasmas. The research findings
for the Alfvén cascade modes in TJ-II plasmas and possible recommendations for the
MHD spectroscopy usage for active and accurate finding of iota values are discussed
in chapter 5. The non-linear wave-particle interaction (WPI) modelled using Monte
Carlo transport model for the TJ-II plasmas is detailed in chapter 6. This chapter also
provides a brief description of the DELTA5D code used for the WPI modelling. In
the first part of chapter 7, a methodology for the reconstruction of bifurcated MHD
equilibria with the formation of 3D helical core in tokamak plasmas is provided. In
the second part, the effect of 3D helical core Alfvén continuum structures is described
and compared with 2D the kinetic calculations. Lastly, the chapter 8 provides the
overall summary of the research findings discussed in this thesis and also provides brief
recommendations for the future outlook in this field of research.





Chapter 2

Alfvén waves and Alfvén
eigenmodes

This chapter serves as an introduction to ideal MHD Alfvén waves and Alfvén eigen-
modes (AEs) in toroidal geometry. It is intended to give the reader a basic notion of
these MHD waves and the formation of such coherent structures/modes in toroidal
plasmas.

2.1 Alfvén waves in ideal MHD model

Ideal MHD model describes low-frequency electromagnetic transverse waves with an
analogy of transverse waves in a stretched string. These waves are called Alfvén waves
named after H. Alfvén who defined them for the first time in 1942 [25]. These waves
appear due to tension in magnetic ropes because of the frozen in flux property of the
conducting fluid (plasma) and propagate parallel to the magnetic field lines with an
Alfvénic speed.

The description of the MHD waves is provided with the ideal MHD model under
these limitations.

1. Electron inertia is neglected due to the MHD frequency being lower than electron
cyclotron and plasma frequencies

2. Debye length is small so plasma is considered quasi-neutral.

3. Electron motion is very fast than the time scales of interest and leads to eliminate
displacement current, therefore permittivity ϵ→ 0 in Maxwell equations.
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4. Plasma pressure is considered isotropic because of the adiabatic behaviour as
heat flow is slower than the MHD time scales

5. Plasma is treated as conducting fluid

6. Ideal Ohm law is employed

The moments of the ideal MHD model and Maxwell equations which describes MHD
waves are provided below.

∂ρm
∂t

+∇ · (ρmv⃗) = 0 [Continuity equation] (2.1)

ρm
dv⃗

dt
+∇P − J⃗ × B⃗ = 0 [Momentum equation] (2.2)

d

dt

(
P

ργ

)
= 0 [Equation of state] (2.3)

E⃗ + V⃗ × B⃗ = 0 [Ideal Ohm’s law] (2.4)

∇ · B⃗ = 0 [No magnetic monopoles] (2.5)

∇× B⃗ − µ0J⃗ = 0 [Ampere’s law] (2.6)

∂B⃗

∂t
+∇× E⃗ = 0 [Faraday’s law] (2.7)

where ρm is the mass density of the plasma, v⃗ is the fluid velocity, J⃗ is the plasma
current density, P is the plasma pressure, E⃗ and B⃗ are the electric field and magnetic
field respectively, the γ is a ratio of specific heats Cp/Cv and d

dt
= ∂

∂t
+ v⃗ · ∇ is the

convective derivative.
The MHD model is considered important for the reconstruction of the plasma equi-

librium configuration and for determining the stability of the reconstructed equilibrium.
It also provides a possibility of investigating the plasma waves and their limitations
which can support the stabilized plasma equilibrium. The investigations of the plasma
stability with the plasma waves is an active field of research in fusion plasmas since it
provides a basic understanding of the active plasma heating and diagnostic by launching
externally plasma waves.
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These equations are linearised by introducing an equilibrium time-independent part
and a small first-order time-dependent perturbation for the given quantities. Plasma
motion is neglected by considering V0 = 0, higher order perturbations are ignored
and fluid displacement vector ξ⃗(r⃗, t) is defined as v1 = ∂ξ⃗/∂t. After transforming
the perturbed quantities in terms of the ξ⃗, this system of equations is solved in an
eigenvalue equation for ξ⃗ in terms of the equilibrium quantities as follows,

ρ0
∂2ξ⃗

∂t2
= F (ξ⃗) with (2.8)

F (ξ⃗) = 1
µ0

[(
∇× B⃗

)
×
[
∇× (ξ⃗ × B⃗)

]
+
(
∇×

{
∇× (ξ⃗ × B⃗)

})
× B⃗

]
+∇

(
ξ⃗ · ∇p+ γp∇ · ξ⃗

)
(2.9)

A normal mode approach is used to reformulate the Equation 2.8 into an eigenvalue
equation to study the perturbations and waves of the plasma. In this approach the
time variation of all the perturbed quantities is considered as of the form Q̃((r), t) =
Q(r)e−ιωt. This formulation translates Equation 2.8 as follows,

−ω2ξ⃗ = 1
ρ0
F (ξ⃗) (2.10)

where ξ⃗ is no more a function of time. Equation 2.10 represents an eigenvalue system
with ω2 an eigenvalue with suitable boundary conditions of the ξ⃗. Solution of this
system obtained though ideal MHD formulation may result in either exponentially
growing modes for (ω2 < 0) or oscillatory waves for (ω2 > 0) . Before diving into the
geometrical dependencies for the explanation of the MHD waves, it is worth to briefly
discuss MHD stable normal modes for the homogenous plasma.

2.2 MHD Waves in the homogeneous plasma

In an infinite homogenous plasma with straight magnetic field defined as B = B0ez

with wave vector k = k⊥ey + k∥ez and normal mode represented as ξ̃ = ξeι(k·r−ωt) the
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ideal MHD eigenvalue equation becomes as,

ω2 − k2

∥v
2
A 0 0

0 ω2 − k2
⊥v

2
S − k2v2

A −k⊥k∥v
2
S

0 −k⊥k∥v
2
S ω2 − k2

∥v
2
S



ξx

ξy

ξz

 = 0 (2.11)

where vA =
√
B2/µ0ρ is the Alfvén speed and vS =

√
γp/ρ is the adiabatic sound

speed. Non-trivial solutions of these equations are the roots of the determinant of the
matrix are the dispersion relations given in the following quadratic equation,

(
ω2 − k2

∥v
2
A

) [
ω4 − (v2

S + v2
A)k2ω2 + (kk∥vSvA)2

]
= 0 (2.12)

In ideal MHD model while considering plasma compressibility three different types
of the waves are obtained because of the cubic polynomial in ω2 which describe the
plasma perturbations and modes of oscillation. Each solution represents a normal MHD
mode of the homogenous magnetized plasma. These are the fast magnetosonic (or
compressional Alfvén), slow magnetosonic and shear Alfvén (or torsional) waves. The
graphical representation of these three different types of waves in plasma displacements
ξ is shown in Figure 2.1 below. Brief description of the each of these MHD waves is

Fig. 2.1 Plasma displacement ξ in three types of MHD waves: Compressional Alfvén
(CA), Shear Alfvén (SA), and Slow Magnetosonic (SM) [2]

provided below.
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2.2.1 Shear Alfvén waves

The first root of the dispersion relation of Equation 2.12 corresponds to the shear
Alfvén wave that is completely independent of the k⊥ even when the k⊥ ≫ k∥. The
dispersion relation for these shear Alfvén waves is given below,

ω2 = k2
∥v

2
A (2.13)

These are incompressible transverse waves with both perturbed velocity and magnetic
field perpendicular to background magnetic field. They represent a balance between
plasma inertia and field line tension appearing due to the stretched magnetic field lines
frozen in flux. The group velocity of the Alfvén wave is always parallel to the magnetic
field and there is no communication across field lines. This allows adjacent lines of
force to shear across each other, lending the descriptive name shear to the Alfvén wave.

2.2.2 Fast magnetosonic waves

Two further branches of waves are obtained from the Equation 2.12 for the fast and
slow magnetosonic waves which appear due to the coupling of sound-waves with the
Alfvén waves. The fast magnetotactic waves appear due to the magnetic compression
of the waves and their phase speed is relatively higher than the shear Alfvén waves,
their dispersion relation comes together with the slow-magnetosonic waves as given
below,

ω2 = 1
2k

2
(
v2
S + v2

A

) 1±

√√√√1− 4
k2

∥

k2
v2
Sv

2
A

(v2
S + v2

A)2

 (2.14)

The equation with the positive sign of Equation 2.14 corresponds to the fast magne-
tosonic or magneto-acoustic wave. This is a compressional wave, and so ∇ · v1 remains
non-zero and the perturbed magnetic field has components both parallel and perpen-
dicular to the equilibrium field. A useful parameter characterising the equilibrium is
the plasma beta β. The plasma is considered in an equilibrium state when the force
balance condition J ×B = ∇P holds everywhere in the system. Plasma beta is defined
as the ratio of the plasma pressure to the magnetic pressure, β = 2µ2

0P/B
2.

In the low beta limit defined as β ∼ v2
S/v

2
A ≪ 1, the fast magnetosonic wave trans-

forms into compressional Alfvén wave or the fast wave and it propagates isotropically
with the Alfvén speed vA. Its dispersion relation is given as,

ω2 =
(
k2

∥ + k2
⊥

)
v2
A = k2v2

A (2.15)
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2.2.3 Slow magnetosonic waves

The smaller frequency branch from the second term in Equation 2.14 describes the
slow magneto-acoustic wave, this wave always oscillating at frequencies below that
of the Alfvén wave. It appears due to the coupling of the fluid compression with the
sound waves. Likewise the fast wave branch, the slow-wave is also polarized so that
the plasma pressure and the magnetic field are compressed. In the low beta limit the
slow wave reduces to the familiar ion sound wave in the parallel direction, ω2 ≈ k2

∥v
2
S,

it does not propagate in the perpendicular direction. In this case the mode is almost
longitudinal because k⊥ · v1 ≈ 0. The sound wave describes a basic oscillation between
the parallel plasma kinetic energy and the plasma internal energy.

An important difference between these waves is that the shear Alfvén waves have no
magnetic field induced parallel to the toroidal magnetic field, whereas the compressional
Alfvén waves do have a magnetic component parallel to B. In cylindrical plasmas the
compressional modes have a lower cutoff frequency below which these modes do not
exist. This is not a characteristic of the shear Alfvén waves, making these more easily
excited and studied in laboratory plasmas.

2.3 Alfvén waves in cylindrical geometry

It is important to discuss Alfvén waves in the cylindrical geometry because of its
practical similarities with the toroidal geometry and the formation of cylindrical modes
equally called Global Alfvén eigenmodes (GAEs). Cylinder is considered a simplified
form of the torus with radius R and length 2πR in which bending on the edges is
ignored however periodicity along the z-direction with period 2πR is retained. The
resulting plasma configuration is very similar to the screw pinch.

In a cylindrical screw pinch the magnetic field has two components, namely axial
and azimuthal and it remains non-uniform because of its curved geometry. The inverse
pitch of the magnetic field describing the winding ratio of the toroidal axial field to
the poloidal field, known as the safety factor, q is an important factor in the stability
of the screw pinch. In toroidal geometry, it measures the number of toroidal turns of
the field line for traversing one poloidal turn and is defined as,

q = rBz

RBθ

(2.16)

where r is the local minor radius, Bz is the axial magnetic field, and Bθ is the azimuthal
field. It is important to notice that q remains finite at magnetic axis (r = 0) since the
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poloidal field is proportional to r near the magnetic axis. A Taylor expansion of the
current density near magnetic axis, Jz(r) ≈ J0z + rJ ′

0z approximates the poloidal field
as Bθ ≈ 1

2rµ0
(
J0z + 2

3rJ
′
0z

)
. At limit r → 0, q at the magnetic axis (q0) becomes,

q0 = 2Bz

µ0RJ0z
(2.17)

In the toroidal geometry the axial and azimuthal magnetic fields will be toroidal
BΦ and poloidal Bθ fields respectively. q will be properly defined as a flux surface
averaged quantity instead of normal radial coordinate because in toroidal geometry
radial coordinate is translated into flux function as ρ =

√
ψ, where ψ is the radial flux

enclosed.
The eigenmodes of the periodic cylinder are defined by a radial eigenfunction

ξ(ψ) with frequency ω and the integer toroidal and poloidal wavenumbers, n and m,
respectively. The parallel wavevector is defined as,

k∥ = k ·B
B

= BΦ

BR
(n+m/q)

Since B = BΦ + Bθ and BΦ ≫ Bθ in periodic cylinder then the parallel wavevector
becomes,

k∥ ≈
1
R

(n+m/q) (2.18)

In cylindrical plasmas the Alfvén speed, vA is a function of the radial flux and varies
continuously along the radius from the magnetic axis to the plasma edge. The
continuous variation of the Alfvén frequency ωA for a particular wavevector k is called
the Alfvén continuum defined as,

ω2(r) = k2
∥v

2
A(r) (2.19)

2.3.1 Cylindrical shear Alfvén waves - Continuum modes

Shear Alfvén waves radially propagating in a cylindrical geometry form continuum
modes. Their propagation in an arbitrary cylindrical geometry is shown in Figure
2.2. It shows the continuum waves traverse in the radial extent and cross each other.
In cylindrical geometry these waves accommodate eigenmodes around their extrema
points or otherwise modes face strong continuum damping as shown in Figure 2.3.
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Fig. 2.2 Alfvén continuum structures for the discrete set of modes (m, n) in an arbitrary
cylindrical geometry [3]

Fig. 2.3 Alfvén continuum (left) and mode structures (right). (a) Mode with continuum
damping (b) mode lying beneath the continuum extrema [4]

.
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2.4 Alfvén waves in toroidal geometry

In an arbitrary cylindrical geometry the end losses become significant, therefore bending
a cylinder into a circular cross-section gives a torus of finite aspect ratio. This gives an
unavoidable 1/R dependence of the toroidal magnetic field. This dependence results
in the poloidal variation of magnetic field over a flux surface, which demands safety
factor computation as an average over the flux surface,

q = 1
2π

∮ r

R

BΦ

Bθ

dθ ≈ rBΦ

RBθ

The 1/R dependence of the B acts as periodic index of refraction for the variations
in poloidal magnetic field which leads to coupling of the continuum of different poloidal
harmonics at their degenerate localizations. For the lower values of a/R0 and identical
toroidal mode number (n), a poloidal harmonics ξm couples to its adjacent side band
ξm±1. This coupling at the degeneracy forms forbidden gaps in the Alfvén continuum
[26]. The formation of continuum gaps is a generic wave phenomenon analogous to
the Bragg reflection in a crystal lattice and the electron band gaps in semiconductors.
Frequency gaps in Alfvén continuum accommodate discrete modes which do not
encounter with continuum damping.

Two counter-propagating Alfvén waves with different poloidal mode numbers while
crossing rational surface of q lead to generate frequency gaps as shown in Figure 2.4
because of the dependence of parallel wave vectors k∥ on poloidal harmonics m and
periodicity θ. For specific plasma profiles, the frequency gap in the continuum may
extend along the whole plasma column. The frequency satisfied at the degeneracy of
the two counter-propagating poloidal harmonics m and m+ 1 is given as,

k∥mvA = −k∥m+1vA

1
R

(
n+ m

q

)
= − 1

R

(
n+ m+ 1

q

)

which leads to the safety factor for the degeneracy of two wave vectors,

|q| =
m+ 1

2
n

Because of the toroidicity induced gaps, the modes residing there are called Toroidal
Alfvén eigenmodes (TAEs). As TAEs lie in the gaps and they do not experience heavy
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Fig. 2.4 Generation of the frequency gap by the coupling of two different poloidal
harmonics [3].

continuum damping therefore, they are weakly damped modes. In a typical way, the
gap generation and the existence of the TAE gap are shown in Figure 2.5.

Fig. 2.5 Coupling of two different poloidal harmonics in a torus and the corresponding
TAE [4].

TAEs are both core and edge localized modes in the toroidal plasmas with an
estimated gap frequency of ω2 = (vA/2qR)2 and parallel wave vector |k∥| = 1/2qR. In
the plasma core, the TAEs can avoid continuum damping if their amplitudes remain
lower while crossing the continuum. The dispersion relation of TAEs shows the two
branches of the poloidal harmonics arise near top and bottom of the frequency gap.
The higher frequency branch has higher amplitude and lower one has smaller amplitude
in the mode structure of TAE formed by the two prominent poloidal harmonics.
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2.5 Alfvén eigenmodes in tokamak and stellarator
plasmas

The basic phenomenon of Alfvén modes is similar in tokamak and stellarator plasma
due to the fact that both devices have toroidal topology. Experiments have shown that
the TAEs and Elliptic Alfvén eigenmodes (EAEs), where the gaps are generated by
poloidal coupling, can be found in both types of devices. The extremum modes which
appear below or above an extrema of the Alfvén continuum are GAEs or Reverse Shear
Alfvén eigenmodes (RSAEs). They are also present both in tokamak and stellarator
plasmas. Three-dimensionality of stellarators can allow additional Alfvén modes to
appear. The modes induced due to the helicity of the stellarators are defined as Helical
Alfvén eigenmodes (HAEs) which normally appear at higher frequencies. In tokamaks
three-dimensional (3D) effects are present due to the saturated internal-kink modes and
external resonant magnetic perturbations which distort their axial symmetry, therefore
the investigations of 3D effects become important also for the tokamak plasmas.

In stellarators the lack of axial symmetry and strong shaping result in extended
Fourier harmonics of the magnetic field by giving birth to a variety of additional modes.
The extended set of Fourier harmonics in magnetic field makes an Alfvén continuum
more populated. Additional gaps may open and some may merge into each other in
Alfvén spectrum [27]. There can be global modes induced by helical coupling, where
both the toroidal and poloidal harmonics coupling are significant. These helical Alfvén
eigenmodes were first predicted theoretically [12], and later shown experimentally both
in W7-AS [28] and LHD [14].

Experiments have shown that Alfvén modes in TJ-II stellarator appear with multiple
poloidal and toroidal couplings in a wide frequency range over a wide set of plasma
parameters [29]. Upon excitation by energetic particles, these modes can become the
most relevant MHD activities in the plasma. Confinement of those energetic particles
which may excite AEs is an important optimization criterion in the 3D fusion devices.
In this thesis, the modelling and simulation are considered strong methodologies
because of their direct association with ab initio theories to investigate observed MHD
instabilities and their impact on the energetic particles confinement in fusion burning
plasmas.





Chapter 3

Reduced MHD Model and
Numerical Tools

This chapter briefly describes reduced MHD model followed by an explanation of the
employed numerical tools based on it, in order to investigate the MHD stability in
3D toroidal fusion systems. Numerical tools include the STELLGAP code which is
explained in this chapter both for the compressible and incompressible limits used for
the Alfvén continuum computation and AE3D code used to search for discrete Alfvén
eigenmodes (AEs). Prior to discuss these codes, a numerical model which calculates
an equilibrium for 3D fusion devices i.e. VMEC is discussed with its extension to
reconstruct the helical core equilibria for tokamak plasmas.

3.1 Reduced MHD model for the toroidal devices

The detailed derivations of the reduced MHD (RMHD) equations are provided in [30]
which are beyond the scope of this thesis, the starting equations for AEs in a 3D
equilibrium are the ideal MHD Ohm’s law and the vorticity equation written in terms
of the electrostatic potential φ,

∂δψ

∂t
= 1
B

(B · ∇φ) (3.1)

∇ ·
[
ρ

B

d

dt

(
∇φ
B

)]
= B · ∇

δJ∥

B
+ δB · ∇

J∥

B
(3.2)

where δψ is a perturbed poloidal magnetic flux. Inserting Equation (3.1) into
Equation (3.2) and defining perturbed quantities, δJ∥ = ∇2δψ and δB = ∇ζ ×∇δψ
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leads to the following eigenvalue equation,

ω2∇ ·
(

1
v2
A

∇φ
)

+ B · ∇
[ 1
B
∇2

(B
B
· ∇φ

)]
+∇ζ ×∇

(B
B
· ∇φ

)
· ∇

J∥

B
= 0. (3.3)

First term in this equation provides the inertia and the second provides the field-line
bending. Both of these terms are available in the continuum equations. However, an
additional third ballooning term in this equation describes the discrete AEs which
are not present in the continuum wave equations. The eigenmode solutions of φ for
this equation represent the discrete Alfvén modes and eigenvalues ω2 as the mode
frequencies.

In reduced MHD model, full MHD equations are transformed into a reduced
set of MHD equations by using wavelength ordering. In wavelength ordering, the
perpendicular wavelength of a perturbation is considered smaller than its parallel
wavelength i.e. λ⊥/λ∥ ∼ ϵ and ϵ ≪ 1 which serves an expansion parameter. This
wavelength ordering is defined for directions relative to a large-scale magnetic field.
Since this set of reduced MHD equations is independent of the aspect ratio ordering, it
can be applied on any general toroidal configuration. In this model the zeroth-order
quantities satisfy an equilibrium equation and do not vary with time. This is because
the expansion parameter (ϵ) has been defined by the anisotropy of the perturbed
response. Consequently no assumptions are made on the zeroth-order quantities.
Manifesting the MHD equilibrium and setting constraints to eliminate the fast time-
scale perpendicular waves, the reduced MHD equations have been formulated for the
evolution of scalar potential quantities on the time scales associated with the parallel
wave vector (shear-Alfvén wave time scale), which are important for the plasma stability
studies [30]. Energy conservation and divergence-free magnetic fields at the higher
orders of expansion parameter have also been maintained in this formulation.

3.2 Three dimensional MHD equilibrium solver
(VMEC)

The Variational Moments Equilibrium Code (VMEC) [31] is a numerical tool for
computing three-dimensional MHD plasma equilibrium. It is the workhorse equilibrium
reconstruction code for the stellarator devices. It obtains an equilibrium by using a
variational method to find a minimum of the system energy [31, 32]. It solves the ideal
MHD wave equations by iteratively minimising the energy functional over a toroidal



3.2 Three dimensional MHD equilibrium solver
(VMEC) 25

domain, using a steepest descent moment method. It computes a MHD equilibrium for
a static and an isotropic plasma. Moreover, it assumes the plasma is characterised by
nested and conserved magnetic flux surfaces. Therefore an equilibrium reconstruction
for the configurations with magnetic islands and chaotic magnetic structures is beyond
its scope. The equations solved iteratively in VMEC are the force-balance equation,
and Ampére’s and Gauss laws.

F = J×B−∇p = 0 [MHD force balance] (3.4)
∇×B = µ0J [Ampére’s Law] (3.5)

∇ ·B = 0 [Gauss Law] (3.6)

where F is a ‘residual MHD force’, which should vanish in the successful equilibrium
reconstruction.

The volume-averaged total plasma energy is given by

W =
∫ (

B2

2µ0
+ p

γ − 1

)
dV. (3.7)

Here first term corresponds to the magnetic energy, second is the kinetic energy, γ is
an adiabatic index and the integration covers the full plasma volume.

To satisfy the conditions B · ∇p = 0 and ∇ · B = 0 of MHD equilibrium, the
magnetic field is written in the contravariant form as,

B = ∇ζ ×∇Ψ +∇Φ×∇θ∗ (3.8)

where Ψ corresponds to the poloidal flux as radial parameter in tokamaks and Φ to
the toroidal flux as radial parameters in stellarators. The poloidal-like angle θ∗ is
θ∗ = θ + λ (Ψ, θ, ζ), with λ a poloidal periodic stream-function of θ and ζ with zero
average over magnetic surface used to make the field lines straight. It is considered for
the numerical reasons; the λ is used to normalize poloidal coordinate which allows the
truncation of its Fourier series at a finite number of harmonics. In VMEC coordinates
(s, u, v), where s = Ψ/Ψedge is the normalized flux, u = θ, and v = ζ, the position of
a guiding center (R,ϕ, Z) in terms of magnetic flux surfaces using Fourier series is
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represented as,

R =
∑
m,n

Rm,n (s) cos(mu− nNfpv) (3.9)

ϕ = v (3.10)
Z =

∑
m,n

Zm,n (s) sin(mu− nNfpv) (3.11)

where Nfp the number of field periods of the configuration and m and n are Fourier
harmonics of MHD modes. VMEC computes Rm,n(s) and Zm,n(s) Fourier harmonics
on a finite number of magnetic surfaces Si where i = l · · ·Ns and Rm,n(s) and Zm,n(s)
are only discrete functions of s. The Fourier harmonics for λ function which compute
Nsλm,n to transform VMEC coordinates into straight field line coordinates for the
desired number of flux surfaces are given by,

λ =
∑
m,n

λm,n (s) sin(mu− nNfpv). (3.12)

In the energy minimization process, VMEC looks for the set of flux surfaces with
possible the lowest energy state. On the realization of the minimum energy state a
stable ideal MHD equilibrium reconstruction is achieved. Important inputs in VMEC
are the pressure profile, safety factor/iota profile, or the plasma current density profile
and total enclosed magnetic flux edge. In addition, information regarding the initial
magnetic flux geometry regarded as magnetic configuration is also added as an input.
In order to specify magnetic boundary conditions, two different approaches are applied
as per desired physics: fixed boundary and free boundary. In free boundary cases,
the code is fed with specific locations and currents of the external coils. In such
calculations, the last closed flux surface (LCFS) is permitted to evolve. For fixed
boundary equilibrium reconstruction the Rm,n(s) and Zm,n(s) Fourier components of
the LCFS are specified as inputs, and the plasma boundary remains intact throughout
the energy minimization process. In practice, free boundary calculations are set initially
by providing specific current coil configuration and then the resulting edge flux and
LCFS are generally employed as a starting point in the fixed boundary cases, which
are relatively faster and more compact than the free boundary calculations.

3.2.1 MHD equilibrium solver VMEC for the helical core

In axisymmetric tokamak-like devices, the reconstruction of MHD equilibrium is
usually performed in 2D formulation of the Grad-Shafranov equation. The 2D MHD
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equilibrium reconstruction sufficiently provides a basis for MHD stability studies unless
the 3D structures are introduced in the calculations. External 3D perturbations in
the magnetic field are introduced in tokamak plasmas to achieve optimized plasma
performance [22]. In contrast to external perturbations, the internal 3D perturbations
referred to as helical or snake equilibria, have also been studied for different tokamak
devices i.e TCV [23], MAST [33], ASDEX Upgrade [34], JET [24] and ITER [35].
These perturbations arise as the plasma self-organise to the lowest MHD energy state.

The mathematical description of the 3D MHD equilibrium reconstruction with a
helical core using the 3D MHD equilibrium code VMEC [31] is based on the minimization
of the plasma energy W given by Equation (3.7). It solves an inverse equilibrium
problem in cylindrical coordinates to determine the distance from the major axis
R = R (s, u, v) and height above the mid-plane Z = Z (s, u, v), where 0 ≤ s ≤ 1 is
the radial variable corresponding to the normalized enclosed toroidal magnetic flux,
0 ≤ u ≤ 2π denotes the poloidal angle and 0 ≤ v ≤ 2π/Nfp is the toroidal angle where
Nfp is number of field periods around the torus.

The variation of energy with respect to time is given as

dW

dt
= −

∫∫∫
ds du dv

[
FR

∂R

∂t
+ FZ

∂Z

∂t
+ Fλ

∂λ

∂t

]

−
∫∫

s=1
du dv

[
R

(
p⊥ + B2

2µ0

)(
∂R

∂u

∂Z

∂t
− ∂Z

∂u

∂R

∂t

)]
(3.13)

The last integral in Equation (3.13) defines the forces responsible for the movement of
the plasma boundary. In fixed boundary calculations, the plasma-vacuum interface
remains fixed. Therefore, by definition these forces vanish. The R and Z components
of the MHD force are given FR = √g∇v × ∇Z · F and FZ = √g∇R × ∇v · F
corresponding to the projection of the full force F = j × B - ∇ · P. The λ force
term is binormal (normal to the field line on a flux surface) force projection given as
Fλ = −

(√
gB ×∇s · F/B2

)
, where λ is poloidal angle re-normalization parameter,

√
g is Jacobian and p = p∥ = p⊥ is the isotropic pressure.

This system of MHD equations is solved iteratively by applying an accelerated
steepest descent energy minimization scheme in VMEC. Fourier decomposition in the
periodic angular variables u and v is used and a finite difference scheme is incorporated
for the radial discretization. The radial force balance averaged over a flux surface is
considered as diagnostic for the convergence of the reconstructed equilibrium state. It
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is given by, 〈
Fs

Φ′(s)

〉
= −

〈
1

Φ′(s)
∂p∥

∂s
|B
〉
− ∂

∂s

〈
σBv√
g

〉
− ι(s) ∂

∂s

〈
σBu√
g

〉
(3.14)

where Φ is toroidal magnetic flux function, prime (′) denotes the derivative with
respect to s, σ = 1/µ0, Bu and Bv are poloidal and toroidal magnetic field covariant
components respectively and Fs is covariant representation of the radial force, while
ι(s) = 1/q the rotational transform of the magnetic field.

3.3 Numerical tools for Alfvénic instabilities

Based on the RMHD model, a set of numerical tools for the modelling of Alfvénic
instabilities in 3D toroidal fusion systems has been developed. These specific tools are
the Alfvén continuum solver (STELLGAP) [36] and AE3D [37] code for the modes
analysis. Their brief description along with important mathematical formulation is
provided in this section.

3.3.1 Alfvén continuum solver (STELLGAP) for 3D toroidal
systems

The calculation of the shear Alfvén continua for 3D toroidal systems over a range of
shapes and aspect ratios as a first step toward understanding Alfvénic instabilities are
performed using STELLGAP code. In 3D toroidal systems strong poloidal/toroidal
couplings of magnetic field introduce new continuum gap structures which are not
present in axisymmetric tokamaks. Low field period (Nfp) and low aspect ratio devices
result in strongly coupled toroidal mode families. The coupling of toroidal and poloidal
mode harmonics in shear Alfvén waves lead to open helical induced Alfvén gaps in 3D
fusion systems.

Compressible limit (STELLGAP)

For the analysis of shear Alfvén continuum and relevant gap structures, a specific
tool i.e. STELLGAP [36] in the incompressible and low β limit is employed in these
investigations. The detailed derivations used in STELLGAP are provided in [38]. The
governing equation of STELLGAP for the computation of the continuum structures is
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given as,

µ0ρmω
2 |∇ψ|2

B2 Eψ + B⃗ · ∇⃗
{
|∇ψ|2

B2

(
B⃗ · ∇⃗

)
Eψ

}
= 0 (3.15)

where ψ is the poloidal flux and Eψ is the covariant component of the electric field,
ρm is the mass density. In this equation the first term describes the wave’s inertia
and the second-term provides a restoring force (tension) via field-line bending. This
equation is valid for three-dimensional toroidal geometry in the incompressible limit.
This equation is solved using Boozer coordinates which are a special case of straight
field-line coordinates and preserve zeros of the (B · ∇) operator [39, 40]. Equation
3.15 is represented in Boozer coordinates using the parallel gradient operator (B · ∇)
and |∇ψ|2 as follows,

B · ∇ = 1
√
g

(
ι

2π
∂

∂θ
+ ∂

∂ζ

)
, (3.16)

|∇ψ|2 = gρρ
(
dψ

dρ

)2

. (3.17)

Where ρ is the normalized flux surface label, θ and ζ are the poloidal and toroidal
angles respectively, gρρ is the contravariant ρρ metric element and ι/2π is the rotational
transform. Fourier series representation of electric field Eψ, as Eψ = ∑

m,nE
m,n
ψ cos(mθ−

nζ) suggests that only an even parity of Eψ would be sufficient for the devices with
stellarator symmetry while preserving the zero frequency crossings of (B · ∇) parallel
gradient operator. Equation (3.15) can be represented for different poloidal (m) and
toroidal (n) mode numbers as a symmetric matrix eigenvalue equation after using
defined B · ∇, |∇ψ|2, Eψ, and multiplying by √g cos(mθ − nζ) and finally averaging
over flux surface.

ω2←→A x⃗ = ←→
B x⃗ (3.18)

where x⃗ is a vector having different components of Eψ and A, B both are symmetric
matrices. Equation (3.18) provides the Alfvén continuum structures by finding x⃗ =[
Em1,n1
ψ , Em2,n2

ψ , Em3,n3
ψ , · · ·

]T
and ω2 eigenfrequency. In STELLGAP, Equation (3.18)

is computed for all the relevant modes numbers (m, n) using the DGEGV routine from
the IBM ESSL library.

Incompressible limit (Extended STELLGAP)

This section describes the mathematical model used for the calculation of Alfvén and
Alfvén-acoustic continuum structures for the three dimensional systems. In this section
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a mathematical description and procedure to solve these equations for a general 3D
toroidal system is elaborated.

To investigate the full continuum spectrum of ideal MHD, an extension of the
STELLGAP solver [36] with slow-sound wave coupling [41] has been used. Computation
of the Alfvén continua with the coupling of slow-sound and Alfvén waves is viewed as
obligatory due to the low frequency oscillations in the experimental observations. Three
dimensional reduced MHD equations with the inclusion of parallel compressibility and
coupling Alfvén and magneto-acoustic waves for low beta toroidal plasmas have been
derived [42] for finite geodesic curvature of the magnetic field lines. The curvature Ks

of field lines is responsible for coupling between these two waves, since at vanishing Ks

the two waves decouple.
The inclusion of parallel compressibility into the system of equations allows us to

investigate, in addition to the shear Alfvén mode, the acoustic, geodesic acoustic and
coupled acoustic-shear Alfvén modes. These effects of compressibility are expected
to set a minimum frequency range at rational surfaces (k∥ = 0) for the continuum.
Following the approach of [43], the derived system of equations [42] is transformed
into an eigenvalue system in the extended STELLGAP code [44, 45]. This eigenvalue
system can be written as,

µ0ρmω
2 |∇⃗ψ|2

B2 + B⃗ · ∇⃗

 |∇⃗ψ|2(B⃗ · ∇⃗)
B2

 ξs + γpKs(∇⃗ · ξ⃗) = 0 (3.19)

Ksξs +
γp+B2

B2 + 1
µ0ρmω2γp(B⃗ · ∇⃗)(B⃗ · ∇⃗)

B2

 (∇⃗ · ξ⃗) = 0 (3.20)

In both equations, (∇⃗ · ξ⃗) is the plasma compressibility, magnetic surface displacement
is ξs = ξ⃗ · (B⃗ × ∇⃗ψ)/|∇ψ|2 and ∇⃗ψ = NfpF

′
p/2π∇⃗s , where ψ is the toroidal flux,

Nfp is field-period and F ′
p is derivative of the poloidal flux with respect to normalized

toroidal flux s per period. Ks is the geodesic curvature of the background magnetic
field given by,

Ks = 2κ⃗ ·
B⃗ × ∇⃗ψ

B2

with κ⃗ =
(⃗
b · ∇⃗

)
b⃗ and b⃗ = B⃗

B
(3.21)

Equations (3.19) and (3.20) are solved as a coupled system, expanding the unknowns
in a Fourier series in poloidal (m) and toroidal (n) mode numbers. This leads to a
matrix eigenvalue equation:

ω2←→A x⃗ = ←→
B x⃗ (3.22)
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where x⃗ is a vector containing the Fourier components of ξs and ∇⃗ · ξ⃗. With this set of
equations, the Alfvén and Alfvén-sound continuum is computed by STELLGAP for all
relevant mode numbers (m, n) using the DGEGV routine from the LAPACK library.

Equation (3.22) is solved in straight field line Boozer coordinates. The use of
straight field line coordinates preserves the zeros of the B · ∇ operator when coupled
with a Fourier series representation of ∇⃗ · ξ⃗ to avoid the presence of singularities due to
the compressibility effects. The unknowns ξs and ∇⃗ · ξ⃗ are expanded in a Fourier series
over poloidal and toroidal angles, along with the coefficients in Equations (3.19) and
(3.20). Series resulting from the convolution of these product series is multiplied by
the individual Fourier test functions and integrated over each flux surface. This results
in block tridiagonal matrices with the block size equal to the number of Fourier modes.
An eigenvalue problem is then solved for each flux surface. A wide range of the Fourier
modes is implemented to cover the extended spectrum of shear Alfvén, acoustic and
coupled acoustic-shear Alfvén continua.

3.3.2 Alfvén eigenmode solver (AE3D) for 3D toroidal sys-
tems

For the discrete modes structures with radial extent investigations, a clustered frequency
model [37], i.e. the AE3D code in low β limit has been employed. AE3D is an
eigenvalue code, which computes Alfvén eigenmodes of finite radial extent along with
their eigenfrequencies in 3D equilibria using reduced MHD model for the shear Alfvén
waves in toroidal plasmas. As discussed in section 3.1, the basic equations in reduced
MHD model are the two fundamental laws, i.e. the ideal MHD Ohm’s law and the 3D
vorticity equations which lead to an eigenvalue problem given below,

ω2∇·
( 1
V 2

A

∇φ
)

+
(
B⃗ · ∇⃗

)  1
B
∇2

B⃗
B
· ∇φ

+∇ζ×∇
B⃗
B
· ∇φ

·∇J∥0

B
= 0. (3.23)

Where all perturbed quantities and φ are considered time-dependent as normal
modes e−iωt. AE3D solves this equation for the electrostatic potential φ of the eigen-
modes. It is an identical expression to the Equation (3.3), here first term provides an
inertia and second term is about the field-line bending. A large numbers of different
types of the modes are possible because of the different poloidal and toroidal couplings
instead of their singular radial structures therefore, a third ballooning term also be-
comes important in this formulation. To simplify Equation (3.23), it is multiplied by a
trial function φ̃ and integrated over the plasma volume. The resulting equation is solved
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using a Galerkin approach, where φ and φ̃ are expanded in a finite element (in radius)
and Fourier series (in poloidal/toroidal angles) representation. This mathematical
exercise results in a generalized matrix eigenvalue equation as,

Fy = λGy (3.24)

where λ = ω2 is an eigenvalue and F and G are the block tridiagonal matrices. The
eigenvector y is a column vector composed of the Fourier components of potential for
each flux surface as, y =

[
φρ1

m1,n1, φρ1
m2,n2, · · · , φρ2

m1,n1, φρ2
m2,n2, · · ·

]T
. AE3D can

solve the eigenvalue equation (3.24) fully or partially. While it is time consuming to
solve for the full spectrum of modes, a partial solution can be invoked by providing a
seed gap frequency around which a cluster of the modes can be found. AE3D achieves
faster performance for the partial solution by pre-specifying an eigenvalue (frequency)
for the eigenmodes search as a subset of all eigenvalues using a Jacobi-Davidson style
QZ (JDQZ) algorithm [46]. Instead of computing all the eigenvalues, JDQZ computes
just a subset, allowing for much faster run times. The target frequency is generally
chosen to be a gap frequency of interest from STELLGAP simulations.

Relationship among different parameters

The surface displacement ξs used in Chapter 2, the electric field Eψ and the potential φ
used in STELLGAP and AE3D codes respectively are all closely related to one another.
There are all perturbed wave quantities. The electric field and potential are related
through a spatial gradient operator as Eψ = −∇φ. In terms of the flux coordinates ψ,
θ, and ζ, the electric field is related as,

E = −
(
∂φ

∂ψ
∇ψ + ∂φ

∂θ
∇θ + ∂φ

∂ζ
∇ζ

)
. (3.25)

The plasma displacement and electric field are related through the ideal MHD Ohm’s
law,

E = −∂ξ
∂t
×B. (3.26)

Assuming time dependence and searching for the covariant component of electric field
the Equation (3.26) gives, Eψ = iωξs, where we have used ξs = ξ · (B×∇ψ) /|∇ψ|2.
Thus the relationship between the three different representations of the eigenmodes is
as follows,

Eψ ∼ −
∂φ

∂ψ
∼ iωξs. (3.27)



Chapter 4

Modelling of Steady and Chirping
Alfvén eigenmodes in TJ-II plasmas

The properties of hydrogen Neutral Beam Injection (NBI) driven Alfvén eigenmodes
(AEs) in the TJ-II flexible heliac are investigated using a reduced MHD model coupled
to a realistic MHD equilibrium. The simulation results of AEs frequency and radial
localization are found to be broadly consistent with experimental observations. The
simulation results show that an AE with the same poloidal and toroidal harmonics
persists under small variations in on-axis iota values, which is consistent with the
experimental observations.

This work has been published in:
[47] A. Rakha et al., Modelling of beam-driven Alfvén modes in TJ-II plasmas,

Nuclear Fusion 59 056002, 2019.

4.1 Overview of Alfvén modes in TJ-II plasmas

Fast particle driven Alfvénic instabilities can have a crucial impact on the efficient
heating of burning fusion plasmas. Stellarators are disruption-free steady-state helical
devices aiming at sustained magnetic fusion power. To solve the problem of plasma self-
heating with fusion-born alpha particles, the transport properties of the alpha particles
must be known with a high level of confidence. Alfvén eigenmodes (AEs) driven
unstable by fast particles represent a significant uncertainty in predicting the transport
of alpha particles. They must be investigated in detail in present-day experiments
since they may lead to losses of fast ions on plasma-facing components (PFCs) and
decrease the ignition margin. Modelling studies of AEs in three-dimensional (3D)
magnetic fusion systems are of primary importance due to observed 3D effects such
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as coupling effects across different toroidal mode numbers in both tokamaks [22] and
stellarators [48]. The calculation of Alfvén continuum and eigenmode structures are the
first steps to take in order to compare theory and experiment for the Alfvén stability
and confinement of energetic particles (EPs), enabling comparisons of modelling and
experimental results to assess the validity of the AE physics models. Among the
3D magnetic fusion devices, the physics of AEs in stellarators is quite different from
toroidally axisymmetric devices such as tokamaks due to different mode couplings
and mode families corresponding to the number of field period (Nfp) in the toroidal
direction of stellarators.

A number of numerical tools of varying complexity and approaches have been
developed to investigate Alfvénic instabilities and wave-particle interaction in 3D
geometries. For 3D linear ideal MHD continuum studies, the COBRA code [13] solves
linear ideal MHD in Boozer coordinates and CONTI code [49] computes the coupling
between Alfvén and sound waves in stellarator plasmas. For the investigations of
properties of AEs and interaction with EPs in 3D magnetic fusion systems the CKA
code [50] based on reduced MHD and finite Larmor radius effects and the BOA code
[13] also based on a reduced-MHD model solving an eigenvalue problem with symmetric
matrices have been developed. In this chapter, for 3D flexible heliac TJ-II plasmas,
the shear Alfvén continuum calculations are performed with the STELLGAP code
[36] based on the theoretical description given in [38]. The analysis of AEs is carried
out with the AE3D code [37], a clustered frequency solver for the computation of
eigenmodes centered on a specified target frequency. The centered frequency algorithm
of the AE3D code is based on application of the Jacobi-Davidson method to a reduced
MHD model [30]. This tool is more efficient by a factor of 102-103 in finding a subset of
eigenmodes around a unique input frequency as compared with conventional methods.
The 3D numerical tools employed for the investigation of AE instabilities have been
successfully applied previously to investigate such instabilities in MST[51], LHD[52]
and TJ-II [53, 54].

In the present work, the experimental findings in [5] have motivated the investigation
of AE properties in a dynamic configuration scan (iota varies during discharge) of TJ-II
stellarator. The iota, also known as rotational transform, in stellarators is proportional
to the inverse of the safety factor q, where q is equal to the number of toroidal transits
per single poloidal transit of a field line on a toroidal magnetic flux surface. During
the iota scan obtained by changing an external coil current, non-linear evolution of
the beam-driven AEs changed from bursting amplitude-sweeping frequency to steady
amplitude-steady frequency, and then back. The understanding of this behaviour is
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of importance because it would have direct implications on the type of alpha-particle
losses (pulsating or steady-state) in future 3D magnetic fusion systems.

This chapter is organized as follows: Experimental observations for the modelling
of modes are given in section 4.2. Section 4.3 explains the equilibrium calculation for
TJ-II dynamic discharges. Furthermore, the section 4.4 presents the simulation results
for both iota ramp-down and ramp-up cases. Finally, section 4.5 includes a summary
and concluding remarks.

4.2 Experimental Observations

TJ-II is a four field period (Nfp) = 4 flexible heliac with a low magnetic shear,
equilibrium magnetic field B0 = 0.95 T, major radius R0 = 1.5 m and averaged minor
radius ā ≤ 0.22 m. The flexibility of TJ-II allows the investigation of the properties
of AEs by setting-up static discharges, i.e. discharges with a magnetic configuration
[55], as well as dynamic discharges, i.e. discharges with a time-varying configuration
scan that shows a changing rotational transform profile [6]. In the TJ-II experiments
considered here, fast hydrogen ions are introduced in hydrogen plasmas by neutral
beam co-injection, tangential to plasma axis (zero tangential radius) with a beam
energy ENBI = 30 keV and injected power PNBI = 0.56 MW. In both discharges,
the NBI operates from 1100 to 1195 ms. These beam particles have a velocity of
VNBI ∼ 2.5 × 106 m/s satisfying VNBI ≥ VA/3 where VA is the Alfvén velocity. In
these experimental conditions, the slowing time of fast protons on electrons is of the
order of 30 - 40 ms and the characteristic time for pitch angle scattering is of the order
of a few ms. The critical energy below which pitch angle scattering becomes dominant
is about 10 keV.

In our investigations of AE properties in TJ-II, we focus on two low density
(n̄e = 1.0× 1019 m−3) L-mode discharges 29834 and 29839, for which VA = 5.12× 106

m/s. In both discharges, coexisting chirping and steady Alfvénic modes are observed.
The observed Alfvénic activity is shown in the corresponding spectrograms in figure 4.1
together with the zoom of observed modes revealing both chirping and steady modes.
In discharges #29834 and #29839, the magnetic configuration was scanned dynamically,
including iota profile, by varying the currents in the external coils during the discharges,
keeping all the other experimental settings unchanged. In discharge #29839, the iota
was ramped up, while in discharge #29834 the iota was ramped down. A heavy ion
beam probe (HIBP) [53] was used to investigate AEs. The HIBP data show that modes
are located around ρ = 0.55 and the frequencies of modes are around 295 kHz, where
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Fig. 4.1 Time evolution of AE modes with iota variation. (a) Poloidal field (Bpol)
spectrograms, measured by a Mirnov Probe (MP) in shot #29834 with iota ramp-down.
(b) Poloidal field (Bpol) spectrograms, measured by MP in shot #29839 with iota
ramp-up. Figures (c) and (d) show zooms of (a) and (b), respectively, focusing in the
time period of the mode transformation [5].

ρ is a normalized radial parameter defined as ρ =
√
ψtor and ψtor is the normalized

toroidal flux. The frequencies of these modes are confirmed with magnetic diagnostics
and by using cross coherence between different signals.
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Fig. 4.2 The temporal evolution of plasma density averaged over the central chord
line and plasma current. (a) central chord line averaged plasma density and (b) total
plasma current for the discharge #29834 and (c) central chord line averaged plasma
density and (d) total plasma current for the discharge #29839.

The temporal evolution of the central plasma density and current shows small
variations during the time windows of mode transformation as shown in figure 4.2.
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While these variations are small, they can contribute to the details of the mode
behaviour. Their effects have been studied in detail in other TJ-II experiments [6]. In
the numerical modelling presented in this chapter, we have only retained the dominant
iota variation in time as described later in section 4.3 while assuming that the variation
in the plasma density and current in time has a negligible effect on the mode behaviour.
As an extension of this work, we are investigating the effect of plasma current on the iota
profile and thereby on AEs. Preliminary results with monotonic and non-monotonic
iota profiles caused by finite plasma current are presented [56].

4.3 Equilibrium for TJ-II dynamic plasmas

We start our investigations with equilibrium reconstructions for TJ-II discharges #29834
and #29839. We perform the equilibrium reconstruction calculations using the VMEC
code [31] by taking into account the appropriate TJ-II magnetic geometries. VMEC
constructs an equilibrium by employing a variational method to find a minimum of the
system energy.

Since the experimental findings show a time evolution between chirping and steady
types of AEs and back in both cases, we focus our analysis on a number of time
slices that exhibit different mode activity in both discharges. The main part of our
simulations is carried out for time slices t = 1130 and 1135 ms in discharge #29834,
corresponding to steady and chirping modes, respectively, and for time slices t =
1150 and 1160 ms in discharge #29839, corresponding to chirping and steady modes,
respectively. In the rest of the chapter, our discussion relates to the results for these
time slices unless otherwise noted. However, we have also considered additional time
slices to check whether the trends emerging from the modelling hold in general. In the
following sections, we will clearly indicate when we are discussing the results of these
additional time slices instead the time slices given above.

The TJ-II fixed-boundary equilibria have been reconstructed under experimental
constraints for both discharges at the chosen times. The vacuum rotational transform
(ι/2π) profiles for the VMEC reconstructed equilibria based on experimentally selected
magnetic configuration for both discharges at the selected times are shown in figure 4.3.
Here, for each modelled equilibrium time slice, the input data has been averaged over
a short 1 ms long time window. The resulting iota profiles increase monotonically in
radius and range between 1.63 ≥ ι/2π ≤ 1.76.
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Fig. 4.3 Iota profiles for the four selected time slices for both iota ramp-up and
ramp-down discharges. These iota profiles are calculated with the VMEC converged
equilibrium.

4.4 Simulation results and discussions

After setting-up the plasma equilibrium using VMEC, the STELLGAP simulations
were performed to compute the Alfvén continuum. For the dominant toroidal mode
number (n), the results of shear Alfvén spectra are plotted for both discharges at the
selected times. To illustrate the computed Alfvén eigenmode properties, the simulated
electrostatic potential versus normalized radius from AE3D code are presented case by
case.

4.4.1 Simulation results for the ramp-down of iota in TJ-II

Alfvén continua calculated by the STELLGAP code for the discharge #29834 at t =
1130 and 1135 ms are presented in figure 4.4, where the dominant toroidal mode number
(n) is highlighted by colour coding. In both shear Alfvén spectra, there are clear gaps
visible about 250-350 kHz, which are considered as an initial frequency target for the
search of AEs. The AEs are computed with the AE3D code, and it is found that two
prominent modes with m = 11 and n = 19 and m = 9 and n = 15 appear with different
frequencies of 276 kHz shown in figure ( 4.5a) and 256 kHz figure ( 4.5b) at similar
radial location ρ = 0.65 in the steady AE-frequency case. Likewise, in the chirping
AE-frequency case, AEs with same mode numbers and higher frequencies of 292 and
287 kHz are found at radial location ρ = 0.75 as shown in figure 4.6. Comparison of
results in the iota ramp-down case shows that there is a small increase in frequencies
from the steady to chirping mode transition and the modes are also displaced radially
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outwards. The observed frequency increase is explained by the decrease of the density
at the outer radial positions.

Fig. 4.4 Shear Alfvén spectra for discharge #29834. (a) Alfvén continuum structures
for steady mode and (b) Alfvén continuum structures for the chirping mode.

Fig. 4.5 Alfvén eigenmodes for the steady mode in discharge #29834. (a) An AE
with three different sets of prominent mode numbers (m, n) having single dominant
frequency 276 kHz and (b) AE with two different sets of prominent mode numbers (m,
n) having single dominant frequency of 256 kHz.

The radial extent δρ of AEs was calculated as the Full Width at Half Maximum
(FWHM) of the simulated potential structures. For both discharges, our results show
that the radial extent of AEs shrinks from δρ = 0.11 in the chirping phase to a
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minimum of δρ = 0.04 during the steady phase. Thus, it can be suggested that the
modes calculated during steady phase are relatively more peaked than those in the
chirping phase, however for some modes, δρ has no significant difference between the
steady phase and the chirping phase. Simulations for an additional earlier time slice t

Fig. 4.6 Alfvén eigenmodes for the chirping mode in discharge #29834. (a) An AE
with two different sets of prominent mode numbers (m, n) having single dominant
frequency 292 kHz and (b) AE with two different sets of prominent mode numbers (m,
n) having single dominant frequency of 287 kHz.

= 1125 ms show the same prominent modes as for the time slices t = 1130 and 1135 ms.
At t = 1125 ms, the mode frequencies are 246 and 232 kHz and the mode is radially
located at ρ = 0.6. In conclusion, according to our modelling results, when the iota
is ramped down in discharge #29834 the prominent AE remains the same while its
frequency increases slightly and it moves to larger ρ. The modelled evolution of the
mode frequency is in agreement with experimental observations.

4.4.2 Simulation results for the ramp up of iota in TJ-II

In section 4.4.1, we have shown the results of ur modelling for the TJ-II discharge
#29834 with the ramp down of the iota. In this section we consider TJ-II discharge
#29839 with the opposite time variation in iota, i.e. iota ramp-up. Similar to discharge
#29834, here we also compute the Alfvén continuum for discharge #29839 using
STELLGAP at t = 1150 and 1160 ms exhibiting a chirping and steady mode, respec-
tively. Figure 4.7 displays the calculated continua with different colours representing
the different dominant toroidal mode numbers. The clear open gaps in the continuum
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structures at the cross coupling of n = 17 and 13 can be seen in both cases ranging in
the frequencies of 300 to 220 kHz with radial localization of ρ = 0.7 to ρ = 0.6. Again,
the frequency change is explained by the lower densities at outer positions.

Fig. 4.7 Shear Alfvén spectra for discharge #29839. (a) Alfvén continuum structures
for the chirping mode and (b) Alfvén continuum structures for the steady mode.

Again AEs are computed using the AE3D code and plotted in figures 4.8 and 4.9
for the chirping and steady modes respectively. It is interesting to note that in both
cases the two observed modes remain the same, i.e. their mode numbers m = 10 and n
= 17 and m = 8 and n = 13 are unchanged for the chirping and steady mode phases.
However, there is a decrease in the modes frequencies from 289 and 316 kHz in the
chirping case shown in figure 4.8 to 254 kHz in the case of steady mode shown in
figure 4.9, explained by the higher density values at the mode position. Moreover,
there is a radial inward movement of the mode from ρ = 0.7 to ρ = 0.55 when the AE
structure changes from a chirping mode to steady mode. We consider the modes with
m = 10 and n = 17 and m = 8 and n = 13 as the prominent modes consistent with
experimental results, despite the slight decrease in their frequency from 289 to 254
kHz.

Similarly as for the case with the iota ramp-down, we have extended our simulations
for discharge #29839 to an additional time slice t = 1170 ms with chirping AE activity
and at higher iota value. At this time slice, our results show that there are also two
different prominent modes. One of them having m = 8 and n = 13 is the same and the
second one with dominant mode numbers m = 12 and n = 21 is unique as compared
with the last two cases of discharge #29839. Both of these modes have the same
frequency of 334 kHz which is relatively higher than the prior cases at t = 1150 and
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Fig. 4.8 Alfvén eigenmodes for the chirping mode in discharge #29839. (a) An AE
with two different sets of prominent mode numbers (m, n) having single dominant
frequency 289 kHz and (b) AE with two different sets of prominent mode numbers (m,
n) having single dominant frequency of 316 kHz.

Fig. 4.9 Alfvén eigenmodes for steady mode in discharge #29839. An AE with two
different sets of prominent mode numbers (m, n) having single dominant frequency
254 kHz.

1160 ms. These modes are located radially further outwards at ρ = 0.8 than the modes
at the previous time points.

We have also carried out simulations to check the Alfvénic character of the modes.
For this purpose we have performed simulations at different electron densities. We
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Fig. 4.10 Frequency of the prominent modes as given by the AE3D code for discharge
#29839 as a function of the electron density compared with the Alfvénic density scaling
of the frequency as 1/√ne.

find that the calculated mode frequency scales as 1/√ne, which confirms the Alfvénic
character of the mode (c.f. Figure 4.10)

4.5 Summary and conclusions

Our 3D modelling results for dominant modes are summarized in table 4.1. We find
that the reduced MHD simulations agree with the mode characteristics as measured
by the heavy ion beam probe (HIBP) diagnostic in discharges #29834 and #29839 at
the specified times. The HIBP data show that modes are located around ρ = 0.55 and
the frequencies of modes are around 295 kHz. Good agreement between simulations
and experiments is found in the frequency and radial location of the modes.

Discharges Modes (m,n) Frequency(kHz) Radial location(ρ)

#29834
(11, 19) & (9, 15) 276 (s), 256 (s) 0.65

292 (c), 287 (c) 0.75
(2, 3) 272 (c), 275 (s) 0.40 , 0.45

#29839 (10, 17) & (8, 13) 316 (c), 289 (c), 254 (s) 0.70 , 0.70 , 0.55
(8, 13) 251 (s), 334 (c) 0.55 , 0.80

Table 4.1 Summary of simulation results for the AE mode localizations and frequencies.
Here, s and c correspond to the steady and chirping types of modes, respectively.
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Simulations show that the case with iota ramping down in time moves the modes
towards the outboard side while a ramp-up in iota pushes them to the inboard side. The
inward movement of the modes suggests that EP confinement is improving. Moreover,
the AE frequencies show a ramp-up and ramp-down trend for iota ramp-down and ramp-
up, respectively. The combination of the toroidal (n) and poloidal (m) mode numbers
at different iota windows or, equivalently, at different time slices of discharge enhances
the confidence of appearance of same mode, in agreement with the experimentally
observed co-existence of the mode.



Chapter 5

Modelling of Alfvén cascade modes
in stellarator plasmas

In this chapter an explanation of the steps to model Alfvén cascades is followed by the
detailed analysis of the obtained results for the TJ-II plasmas. In TJ-II the frequency
sweeping modes in the Alfvén frequency range have been observed [6]. Modelling of the
observed phenomenon reveals the important features of the modes and their association
with the magnetic rotational transform (iota), which are the key outcomes of these
investigations.

This work has been published in:
[56] A. Rakha et al., Modelling of Alfvén cascades in NBI heated stellarator

plasmas, 45th EPS Conference on Plasma Physics 42A P4.1004, 2018.
[57] A. Rakha et al., Modelling of Alfvén cascade modes in stellarator plasmas,

Submitted to Nuclear Fusion

5.1 Overview

Alfvén frequency sweeping modes in stellarator plasmas with normal and reversed-shear
rotational transform are modelled using a reduced MHD model. We focus on a TJ-II
dynamic discharge in which a sequence of frequency sweeping modes with a frequency
sweeping range from 20 kHz to 140 kHz (A.V. Melnikov et al. 2014 Nuclear Fusion
54 123002) has been observed. We find that for the normal shear iota profile a lower
number of modes are present centred around 150 kHz of frequency while for radially
extended low shear non-monotonic (NM) iota profiles, an extended spectrum of Alfvénic
modes is present covering a wider range of frequency from 115 to 295 kHz. Similarly a
large number of discrete modes appear for relatively strong negative shear NM iota
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profiles having a frequency range from 36 to 216 kHz. Results for the NM iota profiles
with protracted discrete modes are in agreement with the extended frequency sweeping
experimental findings. With strong negative shear one of the prominent modes (m =
7, n = 10/11) becomes narrower in radial width. An iota profile with strong negative
shear and lower ιmin can therefore be considered more favourable for Alfvén eigenmode
(AE) stability. Comparison of this mode’s frequencies calculated using a standard
dispersion relation and modelled through AE3D shows an agreement with the selection
of ιmin values which supports the MHD spectroscopy calculations.

5.2 Introduction

Alfvénic instabilities driven by externally generated energetic particles (EPs) for
sustainable plasma heating and fusion-born alpha particles are of primary importance
in fusion plasmas. They can deteriorate plasma heating and the confinement of fast
particles, cause high heat fluxes on plasma facing components and decrease ignition
margin by transporting out the fusion products [58]. Reversed Shear Alfvén eigenmodes
(RSAEs), also called Alfvén cascades (ACs) [17, 18, 59, 60] are a special type of Alfvénic
instability that arises in the presence of a reversed-shear rotational transform profile.
Recently, the interest in reversed magnetic shear plasmas has increased significantly
because of the improved confinement conditions with the formation of internal transport
barriers (ITBs) [61] and magnetohydrodynamic (MHD) stability [62, 63]. In addition,
the ACs provide a unique diagnostic opportunity for the experimental estimation of the
safety factor (q) profile in tokamaks [18–20, 64] and rotational transform (1/q) profiles,
also called the iota (ι) profile, in stellarator plasmas [21, 65] because the time evolution
of mode frequencies is easily recognizable via MHD spectroscopy. The rotational
transform is defined as the number of poloidal transits per single toroidal transit of
a field line on a toroidal magnetic flux surface. MHD spectroscopy provides spectral
measurements of the Alfvénic activity and serves as a diagnostic tool for the plasma
by providing the temporal evolution of the safety factor or the rotational transform.
It has similarity to atomic spectroscopy and helioseismology for investigations of the
internal structure of the sun. The magnetic shear defines variations in the direction
of magnetic field, and in the presence of nested magnetic flux surfaces it is defined as
the radial gradient of the rotational transform. This structure is important for plasma
confinement properties and large-scale MHD instabilities.

ACs typically exhibit a quasiperiodic pattern of upward or downward frequency
sweeping as the local minimum of the inverse safety factor changes in time. Due to the
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time variation of the iota profile in stellarator plasmas, a rich spectrum of Alfvénic
instabilities has been found. For such instabilities the frequency changes very rapidly
in time. This is referred to as frequency sweeping when these rapid variations in
frequency are driven by changes in the equilibrium e.g. by changes in the iota profile
[16]. In a reverse-shear (RS) configuration, the upward sweep of AC frequency at
qmin > m/n may approach the toroidal Alfvén eigenmode (TAE) frequency as the
local minimum of iota drops in time while a downward sweep at qmin < m/n can lead
to the geodesic acoustic mode (GAM), where n(m) is the toroidal (poloidal) mode
number [59]. The ACs resemble Global Alfvén eigenmodes (GAE) since both are
cylindrical modes, typically dominated by a single poloidal mode, and since both may
exist just below or above the extrema of the shear Alfvén continua. On the contrary,
the reverse-shear (RS) modes localize around the extrema of the continua, while the
GAEs have radially extended structures [66].

The investigation of EP instabilities is an important goal in three-dimensional
(3D) fusion systems since 3D magnetic perturbations are present to some extent in
all toroidal magnetic fusion devices with the presence of external symmetry breaking
perturbations [? ] and non-axisymmetric effects [? ? ]. As stellarators are inherently
3D fusion devices, investigations and comprehensive understanding of such instabilities
in stellarator plasmas would certainly be beneficial for future fusion devices. RSAEs
have been observed in almost all working fusion devices including stellarators. In
the Large Helical Device (LHD), RSAEs are observed with non-monotonic rotational
transform profiles created with counter neutral beam (NB) drive [21]. In the TJ-II
stellarator frequency sweeping modes are observed also with NB injection [6]. Global
linear gyrokinetic simulations of reversed-shear LHD discharges [67] have been used to
study their properties. Since the temporal evolution of RSAEs is well described by
ideal MHD theory, a reduced MHD model [30] is used to investigate the experimentally
observed frequency sweeping phenomena and model their properties over varying ιmin.
This model solves reduced MHD equations as an eigenvalue problem by ignoring the
fast-scale perpendicular dynamics in a 3D toroidal system. Previously, this model has
been applied for the modelling of beam-driven EP instabilities in stellarators [47, 67],
Reversed Field Pinch (RFP) [51] and tokamaks [16]. Initial modelling results of ACs
for the TJ-II stellarator plasmas [56] suggest that the non-monotonic (NM) iota profile
supports the experimental observations.

The frequency sweeping modes have been observed in TJ-II stellarator plasmas, and
their frequencies have been modelled using a mathematical ansatz for the iota profile
as discussed in [6]. Despite this promising approach and the evidence of following an



48 Modelling of Alfvén cascade modes in stellarator plasmas

Alfvénic frequency dependence of plasma density (1/√ne), the fast frequency sweeping
of the observed modes remains unexplored. In this paper, we model the observed
frequency sweeping modes in TJ-II. These modelling results based on a non-monotonic
(NM) iota profile confirm the Alfvénic behavior of observed modes and also predict
the associated frequency sweeping phenomenon. We provide modelling results of AEs
with normal, radially extended low shear NM iota profiles and further extension with
the strong shear centrally localized NM iota profiles. The existence of large number of
modes with frequencies higher than GAEs and radially well localized mode structures
in the presence of NM iota profiles support the experimental observations of frequency
sweeping.

This chapter is organized as follows. In section 5.3 the experimental results for
TJ-II plasmas with frequency sweeping modes are provided. The section 5.4 describes
an equilibrium reconstruction for the modelled iota profiles. In section 5.5, simulation
results for both the Alfvén continuum and mode structures are discussed, and section
5.6 gives a summary and conclusions of the findings.

5.3 Experimental Observations

TJ-II is a four-field period flexible heliac with a major radius R = 1.5 m, an averaged
minor radius ā ≤ 0.22 m, and an equilibrium magnetic field of B0 = 0.95 T. Experiments
have been performed at the TJ-II stellarator to investigate the up or down frequency
sweeping of NBI-driven Alfvén eigenmodes by varying the magnetic configuration
during a discharge. The magnetic configuration has been linearly varied over a time
period of 60 ms by changing currents in helical coils [68]. The variations in iota profile
appear due to the variations in plasma current for different reasons (skin current,
dynamic configuration, changes in vertical/poloidal field, electron cyclotron current
drive [69] and neutral beam current drive). It has been observed that the changes in
the iota profile significantly vary the AE mode frequency, while the mode location does
not change much if these variations are relatively small.

A typical TJ-II discharge scenario with the dynamic magnetic configuration is
shown in Figure 5.1 [6]. In this scenario, the plasma is initially created and heated
with off-axis electron-cyclotron resonance heating (ECRH); following this the plasma is
heated with neutral beam injection (NBI) only. After the switching-off of ECRH, the
plasma is sustained only with NBI heating, which also increases the plasma density.
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Fig. 5.1 A typical TJ-II discharge scenario and the corresponding line averaged plasma
density evolution [6]

Fig. 5.2 Temporal evolution of (a) the plasma density and (b) current for TJ-II discharge
#27804
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We focus our analysis on TJ-II discharge 27804 where Alfvénic activity has been
observed with downwards frequency sweeping at t = 1165-70 ms. The frequency
sweeping modes are clearly visible in the plasma density spectrogram shown in Figure
5.3. The range of this fast downward frequency sweeping is from 150 kHz to 25 kHz
in the time span of only ∼ 10 ms. This observed sharp frequency sweeping at nearly
constant line averaged density n̄e = 1.8× 1019m−3 from t = 1165 to 1170 ms (Figure
5.2a) is expected because of the time varying iota profile induced through the relatively
small variation in plasma current (Figure 5.2b). The cross-coherence of Heavy Ion
Beam Probe (HIBP) and bolometer signals shows that the observed modes are radially
extended and they are located around (ρ ≈ 0.7). Here, ρ is a radial parameter which
is defined as ρ =

√
ψt, where ψt is normalized toroidal flux.

Fig. 5.3 Plasma density spectrogram measured by HIBP for TJ-II discharge #27804 [6]

In discharge 27804, the plasma current evolves in time during the time window (∼
10 ms) of mode sweeping as shown in Figure 5.2. These variations are ∆Ip = 0.35 kA
from t = 1165 to 1170 ms which can contribute to the details of the mode behaviour.
Experimentally the effects of this variation on the modes have been studied in detail
in reference [6]. In order to correctly model the experimental results we have carefully
employed the experimental plasma density and measured on-axis iota value for the
monotonic and non-monotonic iota profiles in our modelling calculations as discussed
in section 5.4.
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5.4 Equilibrium reconstruction

In the first step, MHD equilibrium calculations have been performed using the experi-
mental magnetic geometry and plasma parameters for the TJ-II discharge 27804 at t
= 1170 ms with an equilibrium solver VMEC [31]. VMEC iteratively solves the MHD
model using a variational method to find a minimum of the system energy for the
reconstruction of an equilibrium. It solves the MHD model assuming closed magnetic
flux surfaces and, therefore, does not allow any formation of stochastic structures of
the magnetic field.

Fig. 5.4 Normal (monotonic) and radially extended low-shear non-monotonic (NM)
rotational transform (iota) profiles for TJ-II discharge 27804 with an on-axis iota value
of ι(0) = 1.50.

When the frequency sweeping modes appeared in the TJ-II discharge 27804, the
on-axis iota value ι(0) was determined around 1.5 [6]. Therefore, we have considered
an on-axis iota of ι(0) = 1.50 for the reconstruction of plasma equilibrium with normal
(monotonic) and non-monotonic (NM) iota profiles. For the normal iota profile case, a
linear iota profile is considered with ι(0) = 1.5 for the reconstruction of fixed boundary
MHD equilibrium to model the experimentally observed frequency sweeping modes.
The Alfvén continuum and modal analysis given in section 5.5 with a small number of
modes could not explain the experimentally observed frequency sweeping phenomenon.
Therefore, we considered reversed shear NM iota profiles with radially extended low
shear and centrally localized relatively strong shear regions.

TJ-II fixed-boundary equilibria with radially extended low-shear NM iota profile
are achieved with ι(0) = 1.49, 1.50 and 1.51 (see Figure 5.4). Extended low shear
equilibria are computed to model a larger core area with reversed shear. Three distinct
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values of ι(0) are considered to investigate how sensitive the results of the extended
mode analysis are with respect to the on-axis iota value of the reversed shear iota
profiles. A similar extended low shear region was observed with the neutral beam
current drive (NBCD) in the Large Helical Device (LHD) [67] when Alfvénic activity is
present. The normal and low-shear NM iota profiles we have considered range between
1.50 ≥ ι/2π ≤ 1.6. In these low shear NM iota profiles, the low shear region radially
extends up to ρ ≈ 0.5 with a minimum located around ρ ≈ 0.4.

Fig. 5.5 Strong shear non-monotonic (NM) rotational transform (iota) profiles modeled
for the TJ-II discharge #27804 with on-axis iota value ι(0) = 1.50 and varying ιmin
from 1.4388 to 1.4594 around ρ = 0.45.

ι1 ι2 ι3 ι4 ι5 ι6 ι7

1.4594 1.4561 1.4527 1.4485 1.4450 1.4418 1.4388

Table 5.1 Minimum iota values i.e. ιmin for the strong shear NM iota profiles shown in
Figure 5.5

To investigate the effects of strong shear, equilibrium calculations are performed by
introducing strong shear in the iota profiles and keeping ι0 and iota edge = 1.5. Seven
similar strong shear NM iota profiles with varying ιmin shown in Table ?? radially
localized around ρ ≈ 0.45 as shown in Figure ?? are considered to investigate the ιmin
effect on the modes. This set of strong shear NM iota profiles is selected so that ιmin
remains lower than the 3/2 rational surface.
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5.5 Simulation results

Following the plasma equilibrium reconstruction, Alfvén continuum spectra for the
normal, radially extended low-shear NM and strong shear NM iota profiles are computed
using the STELLGAP solver [36] and their detailed discussion is provided in section
5.5.1. The analysis of the Alfvén modes with the AE3D [37] code for all three types of
iota profiles is provided in the section 5.5.2 which describes the nature of the modes,
their prominent modes numbers, frequencies and radial localization.

5.5.1 Alfvén continuum spectra analysis

The observed frequency sweeping Alfvénic modes are modelled using reduced MHD
simulations for the normal, low shear NM and strong shear NM iota profiles. In first
step, in order to examine possible continuum gaps, the Alfvén continuum structures are
calculated using STELLGAP [36]. These continuum calculations provide information
on the possible formation of frequency gaps and the likely radial localization of the
Alfvén modes at the gaps and extremum points in Alfvén continuum.

Fig. 5.6 Alfvén continuum structures for the normal/monotonic iota profile for discharge
27804. The color coding of continua represents the corresponding toroidal mode number
(n).

Alfvén continuum structures for the normal iota profile are plotted in Figure 5.6.
Figure 5.6 shows that the gaps form at frequencies of around 185 and 220 kHz and
radially lie at ρ of 0.7 and 0.5 respectively. While there are some low-frequency extrema
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present in these structures, due to their closed nature they are subject to the strong
continuum damping, which inhibit low-frequency modes. Because of the limited gaps
for the continuum calculated with the normal iota profile, this case is not useful for the
possibility of a larger number of modes over an extended frequency range. Calculations
with reverse shear NM iota profiles are therefore considered important for describing
frequency sweeping modes which have been reported in reverse shear helical plasmas
[21, 67].

Fig. 5.7 Alfvén continuum structures for the extended low shear NM iota profiles with
on-axis values of ι(0) = (a) 1.49, (b) 1.50 and (c) 1.51, while keeping all other parameters
of discharge 27804. The color coding of continua represents the corresponding toroidal
mode number (n).

In the second step, for modeling the observed frequency sweeping modes, a radially
extended low-shear NM iota profile (Figure 5.4) is used; similar iota profiles have been
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considered in previous investigations [67]. The corresponding continua for three similar
radially extended low-shear NM iota profiles with different on-axis iota ι(0) are plotted
in Figure 5.7. The continuum structures that form extrema and gaps in all three
continua are extended radially up to ρ ≈ 0.75 as the corresponding iota profiles are
extended. In addition, gaps and extremum points move radially outward and upward
in frequency as the ι(0) value increases from 1.49 to 1.51. Particularly, in the case
of ι(0) = 1.50 there are two wide gaps, the first between 5 kHz to 140 kHz and the
second between 170 kHz to 290 kHz; these are important since they provide possibility
of modes which may have larger frequency variations. Since the normal and one of the
low-shear NM iota profiles have ι(0) = 1.50, it seems reasonable to explain observed
frequency sweeping modes using wider continuum gaps with the low shear NM iota
profile.

In the third step, Alfvén continua are calculated while varying the minimum value
ιmin for the strong negative shear NM iota profiles (see Figure 5.5). Variation of ιmin
provides an opportunity to model an optimum iota profile scaling with the mode
frequency; this diagnostics methodology is referred as MHD spectroscopy [18].The
continuum structures for three out of seven iota profiles (ι1, ι4, and ι7) from left to
right cover significant differences between these continua and show all gap structures in
Figure 5.8. Three important gaps with frequencies in the range of 70-80, 140 and 210
kHz persist in all three continuum structures besides the extremum points. In addition
to the persistence of the gaps, they are core localized and radially extended up to ρ ≈
= 0.6. Towards the edge of plasma column the continuum structures do not form any
gaps. In these modeled continua a large number of the gaps appear which provide the
possibility of describing the large frequency range for the observed frequency sweeping
modes.

The comparison of the Alfvén continuum structures shows relatively fewer gaps
and extremum points for the normal iota profile, covering a short frequency range and
radial extent. While there are relatively wider spectrum of gaps and extremum points
across a wider frequency range and radial extent for both NM iota profiles.

This comparative study also highlights the effect of NM iota profile with the
generation of extremum points in the range of the low-frequency Alfvén continuum.
Comparison between the Alfvén continua of normal and NM iota profiles shows that
the gaps are radially very localized in normal iota profiles whereas for the NM iota
profiles the gaps or extemum points are radially extended in the core region of plasma
column. These radially localized and /or extended gaps accommodate a large number
of modes which support the observed frequency sweeping modes.
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Fig. 5.8 Alfvén continuum structures for the strong shear NM iota profiles with on-axis
value ι(0) = 1.50 for the (a) ι1, (b) ι4, and (c) ι7 profiles from left to right by keeping
all other parameters of discharge 27804. The color coding of continua represents the
corresponding toroidal mode number (n).

5.5.2 Alfvén modes analysis

In section 5.5.1, our modelling results of Alfvén continua for the TJ-II discharge 27804
with normal, low and strong shear NM iota profiles are provided. In this section we
provide mode analysis using reduced MHD clustered frequency solver AE3D for the
cases modeled. The mode analysis provides the potential profiles, radial localization,
mode frequencies and the combination of prominent toroidal ‘n’ and poloidal ‘m’ mode
numbers.
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Fig. 5.9 Scatter plot for frequencies and radial locations of the identical modes obtained
with the normal and low shear NM iota profiles with on-axis iota ι(0) = 1.50

Fig. 5.10 Alfvén modes with the (a) normal and (b) low shear NM iota profiles with
on-axis iota ι(0) = 1.50. The corresponding frequencies and prominent mode number
pairs (m, n) are shown as legend.

Simulations show that both in normal and NM low shear iota profiles with on-axis
iota ι(0) = 1.50 some identical modes are present. Their frequencies and radial positions
are shown in Figure 5.9. The modes are core localized for these iota profiles. However,
the number of modes increases and they cover a larger frequency range for the low
shear NM iota profile. The potential profiles of the modes (m = 7, n = 10) and (m =
9, n = 14) which appear in the both iota profiles are plotted in Figure 5.10. It shows
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the modes for the low shear NM iota profile are relatively extended radially up to
ρ ≈ 0.3 with frequencies 135 and 149 kHz while for normal iota profile similar modes
are present which are radially localized around ρ ≈ 0.1 and they have a frequency of
150 kHz.

Fig. 5.11 Scatter plots for frequencies and radial locations of the prominent modes
obtained with the low shear NM iota profiles with ι(0) = 1.49

The modal analysis for the three similar low shear NM iota profiles having different
ι(0) is shown in Figures 5.11,5.12, and 5.13. A large number of modes are present
in these low shear NM iota profile cases covering a wide range of radial extents up
to ρ ≈ 0.8 with frequencies up to 300 kHz. The number of modes decreases as ι(0)
increases from 1.49 to 1.51. The radial potential profiles of the representative modes
are presented in Figure 5.14. An identical mode (m = 7, n = 10/11) appears for these
three similar iota profiles, where as for ι(0) = 1.51 the n = 11 becomes prominent
instead of n = 10 because of the selection of the n+1 continuum. Qualitatively these
modes share identical frequencies, while their radial extents are unique. Most of these
modes are dominated by a single poloidal mode forming structures similar to the GAEs.
The modes with lower n i.e. n = 2 are extended over a wider radial extent and the
modes with higher n are relatively localized over their radial positions. Modes having
properties of a single poloidal dominance and their radial localization for the higher
n suggest that these modes are reversed shear AEs. One of the modes (m = 7, n =
10/11) which appears in all of three parts has frequencies of 115, 135 and 121 and 135
kHz with radial locations of ρ = 0.25, 0.3 and 0.15 and 0.55 respectively.
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Fig. 5.12 Scatter plots for frequencies and radial locations of the prominent modes
obtained with the low shear NM iota profiles with ι(0) = 1.50

Fig. 5.13 Scatter plots for frequencies and radial locations of the prominent modes
obtained with the low shear NM iota profiles with ι(0) = 1.51
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Fig. 5.14 Alfvén modes with the low shear NM iota profiles with ι(0) = (a) 1.49, (b)
1.50 and (c) 1.51. The corresponding frequencies and prominent mode number pairs
(m, n) are shown as legend.

After investigating the Alfvénic instabilities for the monotonic and low-shear NM
iota profiles, further investigations with the relatively strong shear NM iota profiles
are performed. Seven similar iota profiles shown in Figure ?? with varying ιmin having
identical shapes and ι(0) = 1.50 are employed to investigate the effect of ιmin on the
modes. Figures 5.15 and 5.16 show that the frequency of prominent modes does not
vary much with variation in ιmin, although the finite variations are computed which
are an essence of the ιmin variations. Results are divided into two similar sets on the
basis of modes which appear in each set, since after the ι4 profile the mode numbers
get modified because of the selection of higher n+1 continua for those cases. Results
show a decrease in the number of the prominent modes as ιmin is decreased.
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Fig. 5.15 The variation of the frequencies with minimum value of iota ιmin of the
identical modes obtained with the strong shear NM iota profiles having ι(0) = 1.50 for
the iota profiles ι1 to ι3 of Figure 5.5.

Fig. 5.16 The variation of the frequencies with minimum value of iota ιmin of the
identical modes obtained with the strong shear NM iota profiles having ι(0) = 1.50 for
the iota profiles ι4 to ι7 of Figure 5.5.

The radial potential mode structures of the prominent modes for the relatively
strong shear NM iota profiles from ι1 to ι3 are plotted in Figure 5.17. Similarly with
the low shear NM iota profile case, the modes with relatively strong shear NM iota
profiles are dominated by a single poloidal harmonic and radially localized except
modes (m = 1, n = 2) and (m = 4, n = 6) which are radially extended over a wide
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region and characterized as GAEs. The mode (m = 4, n = 6) also seems to go through
a transition from GAE to RSAE after becoming radially localized for the ι3 case. Small
fluctuations in the frequencies of the modes (m = 4, n = 6) and (m = 7, n = 10) are
found among the ι1 and ι3 cases. Most of these modes are radially localized up to ρ =
0.6 except the GAEs. These modes cover a range of frequency from 49 to 216 kHz,
which is roughly consistent with the experimental findings.

Fig. 5.17 Alfvén eigenmodes (AEs) radial structures for the NM iota profiles (a) ι1
with ιmin = 1.4594 (b) ι2 with ιmin = 1.4561 and (c) ι3 with ιmin = 1.4527. The
corresponding frequencies and prominent mode number pairs (m, n) are shown as
legend.
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Fig. 5.18 Alfvén eigenmodes (AEs) radial structures for the NM iota profiles (a) ι4
with ιmin = 1.4485 (b) ι5 with ιmin = 1.4450 (c) ι6 with ιmin = 1.4418 and (d) ι7 with
ιmin = 1.4388. The corresponding frequencies and prominent mode number pairs (m,
n) are shown as legend.

The radial potential mode structures for the second set of strong shear NM iota
profiles results from ι4 to ι7 are plotted in Figure 5.18. There are four prominent
modes covering a wide range of frequencies from 36 to 206.65 kHz. Three of these
modes which are radially localized around ρ = 0.4 and their frequency decreases with
decreasing ιmin. These are characterized as RSAEs and one of them (m = 2, n = 3),
which is radially extended over a wider extent up to ρ = 0.9 increases in frequency
from 36 to 43 kHz as ιmin decreases. This mode is characterised as GAE.
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Fig. 5.19 Variation of the modeled frequency (using AE3D code) of the mode with ιmin
and its comparison with the calculated mode frequency (using analytical dispersion
relation).

Fig. 5.20 Variation of the mode width calculated as FWHM of mode amplitude with
ιmin

The frequency change of the modes (m = 7, n = 10/11) with the variation of the
ιmin is plotted in Figure 5.19. It shows for both of the modes (m = 7, n = 10/11),
the frequencies calculated with the dispersion relation of the shear Alfvén waves given
as ω = |m− (ιmin/2π)n|VA/R by using ιmin values and modeled through the reduced
MHD model by using strong shear NM iota profiles are consistent. There are differences
at low ιmin values between the frequencies of modeled and calculated modes, since in
these calculations we have focused on the lower frequencies of the modes and have
discarded the calculation of the higher frequency modes. Therefore, these differences
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can be accepted for this comparison. This comparison may provide a possible diagnostic
tool for the calculation of ιmin in fusion plasmas.

The radial width of the identical modes (m = 7, n = 10/11) is also calculated and
its variation with ιmin is plotted in Figure 5.20. This shows that the radial width of
these modes increases with the increasing ιmin values. Figures 5.17 and 5.18 show that
the amplitude of the computed modes qualitatively remains almost constant around 0.1
of the arbitrary units. This indicates that the strong shear drives the modes narrower
and more radially localized. The narrower modes do not drive energetic particles
radially due to a low region of interaction with fast ions. Therefore, strong shear NM
iota profiles with lower ιmin are considered favourable for the AE stability.

5.6 Summary and conclusions

A detailed analysis of the Alfvénic instabilities has been performed using the STELL-
GAP and AE3D codes for three different types of rotational transform profiles in the
low-field and low density TJ-II stellarator plasmas where frequency sweeping Alfvénic
activity was observed [6]. In the comparison of the results of normal and radially
extended low shear NM iota profiles, two similar core localized modes (m = 7, n =
10) and (m = 9, n = 14) appear with discrete frequencies. The frequency range of
the modes calculated using the low shear NM iota profile goes from 135 to 150 kHz
and is relatively larger than that for the normal iota profile where these modes are
centred around 150 kHz. This shows the results obtained using the low shear NM iota
profile explain better the frequency sweeping observed experimentally. Additionally,
finite variations in the on-axis iota value lead to shifted low-shear NM iota profiles.
Simulations with these iota profiles have found a variety of Alfvén modes covering
a similarly wide frequency range from 115 to 295 kHz. Radially extended GAE and
localized RSAEs are identified in these calculations covering a radial range up to ρ =
0.6. Radially localized RSAEs (m = 7, n = 10/11) appear with the frequencies of 115,
135 and 121 kHz and radial localization around ρ = 0.3 and 0.15 for ι(0) = 1.49, 1.50
and 1.51 respectively.

The investigations with relative strong shear NM iota profiles with varied ιmin have
confirmed the appearance of the same mode for each iota profile. In simulations, the
mode (m = 7, n = 10/11) appears for all of the seven strong shear NM iota profiles
radially localized around ρ = 0.45, which is the location of ιmin. The frequencies
obtained from AE3D simulations are consistent with the those calculated through
an analytical dispersion relation using ιmin. This mode’s consistency with similar
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NM iota profiles offers an opportunity to model ιmin. These calculations support the
development of MHD spectroscopy as a sensitive iota profile diagnostic technique for
future fusion devices where other methods may not be practical.

The modes obtained in these calculations have global structures and therefore can
be considered to impact the fast ion confinement and hence their heating efficiency.
In the modal analysis some cases show modulational effects from multiple competing
Alfvén modes with discrete frequencies. Modes with lower frequency and radially
extended global structures are characterized as GAEs while radially localized modes
with relatively higher frequency are identified as RSAEs. The width of the mode
(m = 7, n = 10/11) increases with increasing ιmin values; therefore, with strong
magnetic shear the mode becomes narrower and its frequency in each choice of ιmin
nearly remains constant.Since a narrower mode has a lower region for interaction with
energetic particles, it could possibly to reduce the radial transport of the energetic
particles. It shows that an iota profile with strong shear and lower ιmin becomes more
favourable for the stability of Alfvénic instabilities in the TJ-II plasmas.

In the future there is possibility of investigating these instabilities with the inter-
action of energetic particles by calculating their growth rates, amplitudes and three
dimensional mode structures.



Chapter 6

Wave-particle resonances in
stellarator plasmas

6.1 Overview

In this chapter, a resonance condition for the TJ-II stellarator has been evaluated
using 3D MHD equilibrium as an initial input besides the transformation into Boozer
coordinates and setting initial inputs as discussed in the coming part. In these
calculations the corresponding wave-particle resonance maps suggest for low bounce
harmonics (p) the possibility of describing the nonlinear evolution of the AEs in TJ-II
by a sum of two ion populations with different weighting factors, one of which is
dominated by drag and the other by diffusion. As the bounce harmonic increases, the
resonance region starts to expand and can cover over a significant area of the particle
phase space until this resonance region vanishes at high bounce harmonics.

This chapter is organized as follows: Briefly the Monte Carlo transport model
employed in the DELTA5D code is discussed in section 6.2. In section 6.3 the results for
wave-particle resonances in TJ-II are presented. Section 6.3 also includes a discussion on
two fast particle populations with different weighting factors as a possible explanation
for the observed non-linear evolution of the modes. Finally, section 6.4 includes the
concluding remarks.

This work has been published in:

[47] A. Rakha et al., Modelling of beam-driven Alfvén modes in TJ-II plasmas,
Nuclear Fusion 59 056002, 2019.
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6.2 Monte Carlo transport model

Energetic particle confinement in toroidal fusion devices with 3D perturbations is
important for plasma heating, current drive, ignition margin evaluation, steady-state
operation and device wall safety as wall heat loads in future ignited systems would be
considerable. Energetic particle confinement can especially be degraded by instabilities
such as fishbones and Alfvén modes that involve resonant wave-particle interactions.
Fast ions may channel out of the burning plasma through prompt losses or get scattered
into various loss regions. Resonance condition for these fast ions has been evaluated by
finding their toroidal ωφ and poloidal ωθ precession frequencies corresponding to one
of the resonating Alfvén eigenmode frequency and prominent mode numbers. For the
wave-particle resonant interaction studies we have used DELTA5D Monte Carlo code
[70, 71], which computes orbits and losses of fast ions using 3D MHD equilibria as an
input. This follows orbits in Boozer space using Hamiltonian guiding center equations
that are solved using an adaptive time step integrator. It is a guiding center orbit
trajectory code that can also include fluctuating TAE mode structures with chirping
frequencies. It performs ion transport calculations for both steady and chirping modes.
Pitch angle and energy scattering are included using a Langevin approximation [72] to
the collision operator and retaining the full velocity dependence of the collision terms.
In this model, particles can be followed outside of the last flux surface until a wall
intersection occurs. The derivation of these equations is considered beyond this thesis
work, which have been performed in [70].

This model launches an ensemble of energetic particles with an initial energy around
a specific toroidal location on a single interior flux surface randomly distributed in
pitch angle and in toroidal and poloidal angles. In calculations the particle energies are
approximated with with Maxwellian distribution. The different classes of orbits even
with large displacements of fast ions are then traced using Hamiltonian guiding center
equations. The B field is calculated over a large spectrum of the equilibrium Bm,n

Fourier modes. As the particles are traced up to the outermost flux surface beyond
that they start to leave the system, which are then reinitialized at the starting flux
surface to keep the particle density conserved.

6.3 Modelling of wave-particle interaction in TJ-II

To assess the phase space region of the neutral beam injected fast ions which provides
the main contribution to the wave-particle interaction, a resonance map of contours of,
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Ω ≡ ω − nωφ − p ωθ = 0 (6.1)

was computed with the particle-following code DELTA5D for the beam injection
geometry and magnetic equilibrium specific for the chosen time slices of interest. Here,
ωφ and ωθ are the toroidal orbit frequency and the poloidal precession frequencies of
the beam ions, respectively, n and ω are toroidal mode number and frequency of the
AE, respectively, and the integer p is the bounce harmonic.

Fig. 6.1 Contour plots of (a) poloidal orbit frequency ωθ and (b) the toroidal precession
frequency ωφ for the beam ions launched at ρ = 0.25.
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In stellarators, due to the lack of axisymmetry, the toroidal mode number n is
no longer a good quantum number since any specific toroidal mode can be coupled
through the equilibrium variation of the magnetic field to other toroidal mode numbers
displaced by Nfp, the field period number of the stellarator. Therefore, it is necessary
to characterize stellarator mode structures in terms of toroidal mode families [73, 74]
consisting of n±Nfp, n±2Nfp · · · . For any observed Alfvén instability, one of these n’s
will be dominant and this primary value of n is the one considered here for resonance
evaluations. For assessing the resonances for the AEs found at different radii, beam
particles were launched from the positions of ρ = 0.25, 0.55 and 0.75.

Fig. 6.2 Contour plots of (a) poloidal orbit frequency ωθ and (b) the toroidal precession
frequency ωφ for the beam ions launched at ρ = 0.55.
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For each value of ρ, fast hydrogen ions were launched in the range of energies 5 keV
< E < 20 KeV and pitch-angles 1 T< E/µ < 9 T. For every fast ion launched, the
corresponding drift orbit were computed assuming unperturbed particle motion, and
the characteristic frequencies ωφ and ωθ were found as 2D functions of fast-ion energy
and pitch-angle. The obtained 2D matrices for poloidal and toroidal frequencies of the
drift orbits are shown in figures 6.1- 6.3.

Fig. 6.3 Contour plots of (a) poloidal orbit frequency ωθ and (b) the toroidal precession
frequency ωφ for the beam ions launched at ρ = 0.75.

As ρ increases from 0.25 (Figure 6.1) to 0.55 (Figure 6.2), and then to 0.75
(Figure 6.3), the area of unconfined beam ions as indicated by the blue area expands,
effectively pushing the phase space area of confined beam ions down to lower energies.
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Using the calculated poloidal orbit frequency and the toroidal precession frequency,
one can now combine their 2D functions in the form (6.1) for various integer values of
p and for the frequency and toroidal mode number of the AE of interest.

The resulting 2D function is then the resonance map, showing the phase space
regions involved in the wave-particle resonance as a function of energy and pitch-angle.
Figure 6.4 shows resonance maps relevant to the core-localised AE with a frequency of
306.57 kHz, for a range of p values and n = 11 for beam ions launched at ρ = 0.25. This
high frequency core localized AE was considered a suitable candidate for resonance
calculations because of its characteristics similar to the Global Alfvén eigenmode (GAE)
having fewer poloidal couplings. The resonance maps for a relatively edge-localised
AE having frequency 316 kHz and toroidal mode numbers 13 and 17 are computed
to investigate the effect of higher frequency, toroidal mode number n and bounce
harmonic p on the resonance condition. In figure 6.5 the resonance maps for an AE
with a frequency of 316 kHz, for a range of p values and n = 13 for beam ions launched
at ρ = 0.25 are presented and figure 6.6 presents for similar results for n = 17.

The special shape of the resonance map in figures(6.4a, 6.5a, 6.6a) suggests a
natural division of the resonant ions in two phase space regions. Region 1 (orange oval)
is narrow in energy (3 keV < E < 4 keV), but insensitive to pitch angle, while region 2
(black oval) covers only a narrow range of pitch angles and extends in energy (5 keV <

E < 12 keV).
In region 1, the beam ions are affected by the electric field of the AEs and are

replenished due to the beam energy scattering and electron drag. In contrast to this,
the region 2 replenishes by pitch-angle scattering (with a diffusive collisional operator).
Therefore, in the case of the TJ-II resonance map, one arrives at the possibility of
describing the nonlinear evolution of the AEs by a sum of two ion populations with
different weighting factors, one of which is dominated by drag and the other by diffusion
for lower values of the bounce harmonic p. For higher values of p, the resonance zone
expands towards higher energy range covering a significant part of pitch angle region
and for further higher values of p, the resonance vanishes completely as shown in figures
( 6.4, 6.5, 6.6). It can also be noticed, for higher frequency and toroidal mode number
n there is wider spectrum of p values which is available for two regions dominated
resonance before reaching the zero resonance region.
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Fig. 6.4 Resonance maps Ω ≡ ω − nωφ − p ωθ = 0 for the core-localised AE with a
frequency of 306.57 kHz and n = 11 for beam ions launched at ρ = 0.25. Resonance
map for (a) p = 0 to 2, here the orange oval marks Region 1 which is narrow in energy,
but insensitive to pitch angle. The black oval marks Region 2 which covers a narrow
range of pitch angles and extends in energy, (b) the extended resonance region with p
= 5, (c) movement of resonance region towards higher energy for p = 6 and (d) no
resonance at p = 7.
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Fig. 6.5 Resonance maps for the edge-localised AE with a frequency of 316 kHz and n
= 13 for beam ions launched at ρ = 0.25. Resonance map for (a) p = 0 to 3 having two
regions of resonance similar to 6.4a (b) the extended resonance region with p = 6, (c)
movement of resonance region towards higher energy for p = 7 and (d) no resonance
at p = 8.
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Fig. 6.6 Resonance maps for the same mode as shown in 6.5 with n = 17. Resonance
map for (a) p = 0 to 5 having two regions of resonance similar to 6.5a (b) the extended
resonance region with p = 8, (c) movement of resonance region towards higher energy
for p = 10 and (d) no resonance at p = 11.
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Figure 6.7 shows the orbits for two selected resonant fast ions as given by DELTA5D
code in the drag and diffusion dominated regions of figure ( 6.4a). Similar fast ion
orbits were previously obtained with the ISDEP code for TJ-II [75, 76]. The modelled
orbits are broadly similar in both regions and exhibit full sampling in both the poloidal
and toroidal directions.
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Fig. 6.7 Orbit trajectories of two fast ions launched at ρ = 0.25 in TJ-II that are
resonant with the core-localised AE with a frequency of 306.57 kHz and p = 0 and
n = 11. (a) The orbits with E = 3.4 keV and E/µ = 4 T are those from Regions 1
and (b) the orbits with E = 5 keV and E/µ = 2 T are those from Regions 2, of the
resonance map shown in figure( 6.4a).

It was found earlier in [77, 78] that the type of the replenishment (by drag or
by diffusion) of an unstable energetic particle distribution determines the nonlinear
evolution of energetic particle-driven modes. In particular, it was shown that the
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drag-dominated distribution at the resonance could not give a steady-state evolution of
the mode. Further development of this theory was performed recently [79] to include
two species of the beam ions, one of which is reconstituted in the resonance area
by drag only, and the other by diffusion only. New nonlinear scenarios of the mode
evolution were found and, in particular, a transition from the steady-state nonlinear
AE evolution to the sweeping frequency (chirping) AEs as the proportion between the
two types of the resonating ions was varied slightly. It could be of particular interest
for future studies to investigate whether the iota variation in TJ-II experiments could
affect the proportion between the resonant beam particles in area I (drag-dominated
region) and area II (diffusion-dominated region) so the scenario observed in [79] is
reproduced.

6.4 Conclusions

We have displayed resonant wave-particle interaction (WPI) for the TJ-II plasmas
utilizing Monte Carlo transport model i.e. DELTA5D code [70, 71]. This model
calculates an enhanced energy transfer between the trapped energetic particles and
resonant wave. In these calculations a modelled global Alfvén mode with n = 11
and varying bounce harmonic p having frequency 306.57 kHz is considered for the
calculation of resonance function Ω using resonance condition. In our simulations, it
is found that if an energetic ion beam is launched relatively more radially outward
i.e. at higher ρ values then the 2D matrices for poloidal and toroidal frequencies of
the drift orbits allow an expansion in the area of unconfined beam ions, effectively
pushing the phase space area of confined beam ions down to lower energies. Using
the calculated poloidal orbit frequency and the toroidal precession frequency, one can
compute resonance function by combining their 2D functions in Equation (6.1) for
various integer values of p and for the frequency and toroidal mode number of the AE of
interest. In these calculations the corresponding wave-particle resonance maps suggest
for low bounce harmonics (p) the possibility of describing the non-linear evolution of
the AEs in TJ-II by a sum of two ion populations with different weighting factors, one
of which is dominated by drag and the other by diffusion. As the bounce harmonic
increases, the resonance region starts to expand and can cover over a significant area of
the particle phase space until this resonance region vanishes at high bounce harmonics.
The modelled orbits from each of the drag and diffusion sections of the resonance
function are identical in TJ-II stellarator and are compatible with the previous orbit
calculations [76].





Chapter 7

Shear Alfvén wave continuum
spectrum with bifurcated helical
core equilibria in tokamak plasmas

In this chapter Shear Alfvén continuum calculations are discussed due to the formation
of helical core structures in tokamak plasmas. In axisymmetric devices such as tokamaks,
at higher pressure internal-kink-like mode saturates around the magnetic axis and
forms helical structure while reaching an equilibrium state by modifying axisymmetric
(2D) equilibrium into the 3D equilibria. Investigations of the Alfvén modes in the
presence of such internal 3D structures are important due to presence of the strong
magnetic field at magnetic axis may affect the fast ion population. This work has been
published in:

[80] A. Rakha et al., Shear Alfvén wave continuum spectrum with bifurcated
helical core equilibria, Accepted in Nuclear Fusion August 2019

7.1 Overview

The radial structure of the continuum spectrum of shear Alfvén and Alfvén-acoustic
waves in the beta-induced Alfvén eigenmode (BAE)frequency range is modeled for
tokamak plasmas in the presence of 3D effects obtained from the bifurcated MHD
equilibrium reconstruction. Plasma compressibility and geodesic curvature effects
responsible for the low-frequency continuum spectrum calculations are invoked. In the
equilibrium calculations we find that the helically distorted MHD equilibria may exist
even for the axisymmetric devices if q = 1 rational surfaces are present. The continuum
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calculations with the bifurcated equilibria lead to a frequency splitting between the
highest frequency branch and the lowest frequency branch continua at the frequency
accumulation point. Radially localised shifting of modes happens via coupling of the
adjacent n-1 continuum around an accumulation point. Our modelling (including
3D effects) correctly reproduces the phenomenon of continuum frequency splitting
and provides a possible solution for the differences of few kHz in frequency splitting,
which remained unexplained with the 2D kinetic calculations (D. Curran etal. 2012
Plasma Physics and Controlled Fusion 54 055001). The pressure scaling confirms the
increase of helical excursion of the magnetic axis in equilibrium reconstruction and
hence the range of continuum frequency splitting. In our calculations, the existence of
low-frequency continua is in agreement with the experimentally observed low-frequency
modes.

7.2 Introduction

In fusion plasmas, fast ions in the MeV energy range may have velocities comparable
with Alfvén velocity directed along the magnetic field lines, which can satisfy conditions
of effective resonance and energy exchange between Alfvén waves [81]. Shear Alfvén
Waves (SAW) form a continuous spectrum which in the presence of symmetry breaking
non-uniformities such as toroidicity or ellipticity is modified to exhibit Alfvénic gaps.
In this context two types of Alfvénic instabilities exist: (1) energetic particle continuum
modes (EPMs)[82], dwelling in the Alfvén continuum and having frequencies in the
range of the continuum and (2) discrete Alfvén eigenmodes (AEs) [83] with frequencies
inside the SAW gaps. Given the strong continuum damping due to the collisionless
dissipation of SAWs in non-uniform equilibria and their low absorption threshold for
entering into an unstable state [84, 85], the question arises about the significance of
continuum radial structures for the tokamak stability problem. Understanding the
impact of the helical core on the modification of SAW continua may have potential
implications for Alfvénic instabilities in burning plasmas and identify new issues in
approaching the ignition margin.

In tokamak plasmas, the SAW continuum gets modified due to the interaction with
low frequency MHD fluctuations, such as magnetic island and helical core. Previously,
theoretical investigations for the Alfvén continuum have been made in the presence
of magnetic islands [86]. In this chapter, we have tried to investigate the effect of
the helical core on the continuous spectrum. The helical core is an internal three-
dimensional (3D) structure in non-uniform axisymmetric MHD equilibria regarded as
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a saturated ideal internal kink mode and/ or a deformation of the magnetic axis. The
helical excursion of the magnetic axis in a tokamak equilibrium appears because of the
peaked pressure profile in the presence of a safety factor q passing through unity. The
bifurcated equilibria are the combination of an axisymmetric part and a spontaneously
triggered internal helical distortion of the magnetic axis, which are also called snakes
in tokamaks [24] and in reversed field pinches (RFPs) single helical axis states (SHAx)
[87]. The 3D helical deformation of the equilibrium destroys the symmetry properties of
the tokamak. In highly elongated plasmas, the disappearance of sawtooth oscillations
and the persistence of a saturated ideal internal kink m = 1, n = 1 mode with q is
in the vicinity of unity also can cause the existence of such helical deformations [88].
Plasmas with such special conditions are called hybrid plasma scenarios [89], which
often trigger Alfvénic magnetohydrodynamic (MHD) instabilities such as EPMs [90],
long-lived modes (LLMs) [91], and internal kinks or fishbones. Studies have shown
that the 3D helical distortion during hybrid scenario operation is very large, which
is confirmed by a complete flattening of strong NBI induced toroidal flow in the core
region [92]. When the helical equilibrium is formed by an internal kink m = 1, n = 1
mode, the fast ions orbits become more complex with stonger radial drifts [91, 92].

In fusion plasmas, the sawtooth crashes are associated with the appearance of
MHD instabilities such as saturated internal kinks [93] and continuous modes [94].
Studies have shown that the sawteeth disappear or transform into internal kink-like
modes [93]. Observation of the low-frequency MHD modes during a sawtooth crash
in ASDEX Upgrade (AUG) discharges has motivated employing saturated internal
kink-like modes as helical distortions for further investigations of Alfvénic instabilities.
AUG is a medium size divertor tokamak with a major and minor radius of 1.65 and
0.5 meters, respectively. At AUG, various ICRH-driven instabilities in the BAE and
sub-BAE frequency range have been observed during monster sawtooth crashes [95, 96].
Understanding these instabilities, their impact on EP transport and their importance
on sawtooth stabilisation is an outstanding issue in the view of predicting the sawtooth
cycle properties in various ITER scenarios. In reference [96] a careful kinetic analysis
has been carried out in order to understand the complex frequency evolution of these
modes during a sawtooth cycle. Most of the aspects have been clarified such as the
origin of the low (∼ 10kHz) and high (∼ 70kHz) frequency branches, the mode number
inversion (higher toroidal mode numbers appear at lower frequencies) and the frequency
evolution during the sawtooth cycle. The gyro-kinetic dispersion relation [95, 97, 98] has
been solved with the LIGKA code [98, 99] and compared to experimental measurements
highlighting the importance of a kinetic analysis, in particular the role of diamagnetic
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effects [96]. However, 3D effects had not been included, and the question arises as to
whether the presence of a helical core can modify the shear Alfvén continuum in a way
to explain the remaining differences (see Fig. 7 and discussion at the end of section 2.4
of reference [96]).

So far, the effects of a helical core on calculations of Alfvén continuum have received
very little attention. In our work, the helical core is modeled as a static helical distortion
of the equilibrium because of its typical low oscillation frequency as compared with
the SAWs in AUG. Bifurcated tokamak equilibrium states are modeled using a 3D
ideal MHD equilibrium solver VMEC [31] and it is generally found that the m = n =
1 helical magnetic axis is displaced most at the position of qmin [91]. It is therefore
clear that the Alfvén continuum needs to be modeled using a realistic 3D equilibrium
magnetic field geometry. The shear Alfvén continuum is modeled by using an extended
continuum solver (STELLGAP) [44, 45]. STELLGAP has been previously used for
the modelling of continuum structures in stellarators [47, 67], RFPs [51] and tokamaks
[16]. It is based on the reduced MHD model for 3D devices including effects of finite
plasma compressibility and geodesic curvature. An equivalent set of reduced MHD
equations for the low beta plasmas have been earlier used in similar tools COBRAS
[100] and CONTI [49, 50] for the modelling of sound-Alfvén continua of 3D systems.
Low frequency gaps in SAW continuum opened by the plasma compressibility and
geodesic curvature are responsible for BAEs and beta-induced acoustic-Alfvén modes
(BAAE). Coupling of the SAW with helical core distortion forms a linear model of
SAW dynamics in a non-uniform equilibrium.

This chapter is organized as follows. In section 7.3, the experimental details of the
AUG discharges are provided. In section 7.4 the details of the reconstruction of 3D
helical core MHD equilibria are provided. Alfvén continuum calculations for the 2D
and 3D equilibria are provided in section 7.5 and, finally, the summary and conclusions
are provided in section 7.6.

7.3 Experimental Observations

At the AUG tokamak experiments were conducted to investigate the low-frequency
Alfvén instabilities. It has been observed that these modes appear during the sawtooth
cycle and in the region surrounding with q = 1 surface [95]. The appearance of
low-frequency modes around the region of q = 1 during sawtooth cycle suggests
possible helical core formation. In order to estimate the upper limit of the effect of the
helical core, an AUG discharge #20488 with monster sawtooth crashes is chosen. This
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discharge dates back to 2005 when the vessel wall was only ∼ 50% covered with tungsten
W tiles. Similar discharges were repeated in 2009, however the sawtooth period was
shorter and the pressure gradient at q = 1 before the sawtooth was slightly smaller,
which has led us now to perform a pressure sensitivity scan in these calculations.

Fig. 7.1 Frequency spectrogram for discharge #20488 from t = 1.72 to 1.78 seconds.
Strong BAE mode activity during monster sawtooth crashes is measured with Mirnov
coils.

Fig. 7.2 BAE and low-frequency mode activity for discharge #25546 from t = 2.0 to
2.265 seconds measured with the core-localized soft X-ray channels.

In Figure 7.1, the BAE mode evolution in discharge #20488 as measured with
magnetic diagnostics is displayed. At this time high resolution Soft X-Rays (SXR)
system was not available. In the case of discharge #25546 the BAE and low-frequency
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modes measured with the core SXR channels are shown in Figure 7.2. The classification
of the observed modes as BAEs and low-frequency modes and the splitting of several
modes using the kinetic model has already been provided in [96]. The detailed
experimental findings for the discharges #20488 and #25546 are published in [95] and
[96] respectively.

In Fig. 1 of reference [96] the low-frequency mode activity during two sawtooth
cycles from t = 1.91 to 1.98 s for discharge #25546 as measured with a core (ρ ≈ 0.24)
soft x-ray channel is shown. In these results ρ is a normalized radial parameter
defined as ρ =

√
ψpol and ψpol is the normalized poloidal flux. Here, we focus on the

high-frequency BAE branch at ∼ 70kHz with the toroidal mode numbers n = 3 to 6.
One can observe that the mode frequencies directly after a sawtooth crash are almost
degenerated, whereas during the sawtooth cycle they start to split. This observation has
been explained with the raise of the pressure gradient and the corresponding downshift
of the kinetic continuum (see Fig. 12 of reference [96]). This implies that higher mode
numbers are shifted downwards more strongly than lower mode numbers. Towards the
end of the cycle, the mode-frequency splitting starts to disappear, probably due to the
sawtooth precursors, as discussed in section 2.4 of reference [96]. Despite the success
of this model, it is interesting to try to understand the remaining differences of 2 to 5
kHz in frequency splitting, especially towards the end of the sawtooth cycle. It should
be noted, that it is assumed that the evolution of the BAE continuum accumulation
point is a proxy for the evolution of the global BAE mode [101]. Based on an ASDEX
Upgrade equilibrium reconstruction for discharge #20488 (and the practically identical
discharge #25546 discussed in [96]) a pressure scan is performed that is intended to
model the increase in the core pressure after a sawtooth crash.

7.4 Bifurcated MHD equilibrium reconstruction

The saturated internal-kink mode is dominated by m = 1, n = 1, surrounding the
magnetic axis and leads to the helical equilibria. They distort the symmetry properties
in the plasma core area by forming a 3D helical core surrounded by an axisymmetric
2D mantle. Plasma equilibria with a 3D helical core and axisymmetric boundary are
defined as bifurcated helical equilibrium states.

In our studies, we have modeled a bifurcated helical equilibrium by introducing a
small perturbation in the magnetic axis for AUG-tokamak discharge #20488, which
has q in the vicinity of unity in the core region of the tokamak. Two sister equilibria,
one axisymmetric and another helical are calculated simultaneously using an identical
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boundary with the VMEC code [31]. The q-profile of the discharge #20488 presented
in Figure 7.3 is used as an input to the VMEC code together with the plasma boundary,
peaked pressure profile (Figure 7.4) and an initial perturbation in the magnetic axis.
The q-profile in Figure 7.3 shows the extended region of low shear up to ρ = 0.4 and q
close to one. These are the principal requirements for the formation of a helical core.

Fig. 7.3 Safety factor (q) profile of ASDEX-Upgrade discharge #20488.

Fig. 7.4 Plasma pressure profile of AUG discharge #20488. Here pexp is the experimental
pressure and remaining four profiles are the scaled pressures.
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Fig. 7.5 Poloidal cross-section of the toroidal magnetic flux surfaces for helical core
equilibria with δH = 0.37 at five toroidal angles φ = 0, π/2, π, 3π/2, 2π (left to right).
The deformations in flux surfaces are helical excursions of the bifurcated equilibrium
while preserving the plasma boundary
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The reconstructed equilibrium having the bifurcated behavior can be assessed
through the progression of modified magnetic flux surfaces. The magnetic flux surfaces
are plotted in the Figure 7.5, which clearly shows modifications in those flux surfaces
around the torus, which are clear signals of the helical core formation near the magnetic
axis. The saturated state of the magnetic axis can be characterized as an m = 1 and
n = 1 perturbation, the internal kink mode. It can be seen that while qualitatively
the helical formation is similar, it changes its orientation along the toroidal angle. In
comparison with these flux shape variations, the axisymmetric equilibrium calculations
display continuous magnetic flux surfaces with no deformation across the whole torus
as shown in Figure 7.6. In these calculations, identical pressure, inverse rotational
transform (q-profile) and plasma boundary are imposed. The only difference is the
removal of the seed perturbation of the magnetic axis, which is added for the helical
core calculations to allow the magnetic axis transform to a saturated internal-kink
mode, if necessary conditions permit [23].

Fig. 7.6 Poloidal cross-section of the magnetic flux surfaces at two different toroidal
angles φ = 0, π/2 and π/2, π for the axisymmetric equilibria. In axisymmetric
equilibrium both contours have exactly matching flux surfaces and the magnetic axis.
Here the magnetic axis is represented with blue and green colors.

In the comparison of magnetic flux surfaces contours at two different toroidal angles,
the results for axisymmetric case are shown in Figure 7.6, which confirm the zero level
of distortion in the flux surfaces. On the other hand, the 3D helical core comparison
given in Figure 7.7 for the two identical toroidal angles provides the proof of relative
excursion of magnetic axis due to helical core formation and simultaneous existence
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of two equilibria solutions, one with helical equilibrium in plasma core and second
with axisymmetric equilibrium in the rest of contour are confirmed. This comparison
shows the qualitative excursion of the magnetic axis at two different toroidal angles
and highlights the regions of closely packed magnetic flux surfaces due to the helical
core formation.

Fig. 7.7 Poloidal cross-section of the magnetic flux surfaces at two different toroidal
angles φ = 0, π/2 and π/2, π helical core equilibria with δH = 0.37. In both graphs,
the excursion of the magnetic axis is clear and represented by red and black symbols
and the magnetic flux surfaces are represented by magenta and black color lines. The
red and black color dashed lines are the theta contours.

The convergence of the reconstructed equilibria has been investigated by using the
volume averaged residual horizontal force FR as a function of number of iterations as
shown in Figure 7.8. The significant drop in FR along the number of iterations confirms
the convergence of helical core formation results. As in previous investigations [24],
the normalized radial force balance given in the Equation (3.14) has been used as a
diagnostics for the convergence of the equilibrium state by reaching to the value of the
order of 10−8. In our results, with the number of flux surfaces equal to 799, we have
achieved a similar level of convergence in around 20 000 iterations for the experimental
pressure. In the higher pressure calculations, we have used around 40 000 iterations to
achieve the converged results for 500 radial grid points.

We have also modeled the excursion of the helical core δH defined in Equation (7.1)
with the number of iterations. It is found that the helical core saturates at an identical
number of iterations for different radial resolutions. In previous studies the saturation
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Fig. 7.8 The volume averaged horizontal force FR evolution with number of iterations

of the helical core with a higher number of radial grid points [102] and the increase
in the helical core with the increase in number of iterations [34] has been associated
with the convergence of helical core equilibria. In our results presented in Figure 7.9,
the helical core for the lower number of iterations remains smaller, and after reaching
a sufficient number of iterations as defined by the threshold given in [102], it grows
rapidly and eventually saturates. At this point the helical core becomes fully resolved.

Fig. 7.9 Dependence of helical core size δH on number of iterations Nit for different
levels of radial resolution Nr

The quantitative measure of the helical excursion of the reconstructed equilibria
can be provided with a parameter δH [24] defined as

δH =

√
R201(s = 0) + Z201(s = 0)

a
(7.1)
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Here R01(Z01) corresponds to the Fourier amplitude of the R (Z) components of the
m = 0, n = 1 mode at the magnetic axis s = 0 (a = 0.4 meters is the effective
plasma minor radius). In this work the helical excursion of the magnetic axis has

Fig. 7.10 The magnetic axis helical distortion parameter δH as a function of the pressure
normalized to the experimental pressure.

been calculated with respect to the plasma pressure as shown in Figure 7.10, as the
peaked plasma pressure has been considered an important parameter in the formation
of helical structures. Results computed with fixed boundary equilibrium calculations,
show that the helical excursion of the magnetic axis increases with the increase in the
plasma pressure up to a certain limit, from δH = 0.37 for the experimental pressure
to δH = 0.7 for 1.75 times of the experimental plasma pressure. When the plasma
pressure is increased further, the helical excursion decreases due to the fixed boundary
nature of the equilibrium calculations. In a fixed boundary equilibrium model, the
Shafranov shift at the maximum plasma pressure already distorts the magnetic flux
surfaces strongly enough and leaves no room for their further stretching. Therefore, a
further excursion of the helical core is not possible at the higher plasma pressures.

7.5 Alfvén continuum results and discussions

Alfvén continuum calculations have been performed for the experimentally observed
radially extended low-shear q-profile plasmas using axisymmetric and non-axisymmetric
MHD equilibria as discussed in section 7.4. Two different cases, one with axisymmetric
(2D) and the second one with helical (3D) equilibria have been investigated. In Alfvén
continuum calculations the parallel plasma compressibility γ = 1.6 is employed for the
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low frequency Alfvén continuum calculations. In these calculations, we have limited
the selection of toroidal mode numbers (n) from 1 to 6, since a similar range of n was
measured in the experiments.

7.5.1 Alfvén continuum calculations with axisymmetric 2D
equilibria

Axisymmetric equilibrium calculations for tokamaks are straightforward because ideal
tokamaks are inherently axisymmetric (2D) devices. Alfvén continua using an axisym-
metric equilibrium are calculated for n = 1 to 6. The Alfvén continuum structures for
the full radial extent and frequencies up to 475 kHz are shown in Figure 7.11.

Fig. 7.11 Alfvén continuum structures with axisymmetric (2D) equilibrium for discharge
#20488.
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In these continuum structures a frequency gap appears in the full plasma column.
The gap is wide in the core and becomes narrower towards the edge. These structures
are similar for all toroidal mode numbers, including their resonant extrema points.

Fig. 7.12 Zoom of Alfvén continua in Figure 7.11. Different colors represent the
corresponding toroidal modes number (n)

For the six toroidal mode numbers considered here, the Alfvén continuum structures
at ρ ≈ 0.23 approach an accumulation point as shown in Figure 7.11 around the q = 1
rational surface exhibited in Figure 7.3. Zooming in on these structures in Figure 7.12
shows that all continua accumulate around a single frequency of 35 kHz and there is
no splitting in the frequency range. These characteristics of non-splitting frequency at
the accumulation point around rational surfaces are the hallmarks of axisymmetric
continua. Here, we define frequency splitting (∆f) as the difference between the highest
frequency branch and the lowest frequency branch in the continuum structures around
the frequency accumulation point caused by the 3D effect of the helical core. We will
study this frequency splitting in detail in section 7.5.2 below.
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It should be noted that in the experiment the BAE mode frequency was observed
at 60-70kHz. The remaining difference after taking into account the Doppler shift ∼
3kHz [96] can be attributed to a different model for the plasma compressibility: here
the value of γ = 1.6 is used where as in [96] the more sophisticated kinetic expression
was used. Nevertheless, the frequency splitting due to 3D effects is not expected to
change significantly due to the choice of this parameter.

7.5.2 Alfvén continuum calculations with bifurcated helical
core equilibria

The continuum structures using helical 3D equilibria have been investigated for the
same discharge for the five different pressures (Figure 7.4) as discussed in the section
7.4.

Fig. 7.13 Alfvén continuum structures with 3D helical core equilibrium having δH = 0.37
for discharge #20488
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The helical core excursion shown in Figure 7.10 is strongly dependent upon the
plasma pressure. The Alfvén continuum calculations are performed to investigate the
effect of helical core size, since in the experimental investigations a peaked pressure
profile was measured after the sawtooth crashes. Simulation results of Alfvén continua
for the experimental pressure with an m = 1, n = 1 helical core and δH = 0.37 are
presented in Figures 7.13 and 7.14. For the maximum achieved helical core size of
δH = 0.7 the Alfvén continua are presented in Figures 7.15 and 7.16.

There are a number of significant differences in the Alfvén continua computed using
bifurcated MHD equilibria with the Alfvén continua computed using an axisymmetric
equilibrium. They include: frequency splitting in Alfvén continua, shifting of the modes
at the frequency accumulation point and the appearance of helical Alfvén eigenmodes
(HAE) gaps. In following, we discuss the differences in detail.

Fig. 7.14 Zoom of Alfvén continua in Figure 7.13. Different colors represent the
corresponding toroidal modes number (n)
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Alfvén continua computed using helical equilibrium and having exactly equivalent
plasma parameters as the axisymmetric calculations is shown in Figure 7.13. Around
the frequency accumulation point at ρ ≈ 0.23 there is a noticeable splitting in the
frequency range of continua as shown in Figure 7.14. Following the definition of
frequency splitting, we have the highest frequency branch at f = 36.4 kHz with toroidal
mode number n = 5 and the lowest frequency branch at f = 33.4 kHz with toroidal
mode number n = 6, resulting in ∆f = 3 kHz. The radial shifting in the mode
structures via coupling to the n-1 continuum structures around an accumulation point
is also clearly shown in Figure 7.14 e.g. a mode n = 1 converts to an n = 6 mode in
the range 0.218 ≤ ρ ≤ 0.238, then it reverts back to a n = 1 mode at higher ρ.

The radial shifting in mode structures is associated with the change in k∥ due to
the 3D excursion of magnetic axis. Due to the helical contribution, for the small k∥ at
the accumulation point, the smaller non-axisymmetric sideband terms compete with
the axisymmetric terms and become prominent. Close to k∥ = 0 they become more
significant. This prominence of non-axisymmetric sidebands at smaller k∥ values leads
to a radial shifting of modes around the accumulation point.

In figure 7 of [96], the shifting of the Alfvén continua relative to each other have
also been modeled using a kinetic Alfvén model. They observed that the modes with
higher n were shifted downwards after a few seconds of observation due to the strong
diamagnetic frequency. Similarly, we have computed the shifts in Alfvén continua
around the frequency accumulation point with the formation of helical core equilibria
with a saturated 3D magnetic axis.

For the extreme helical excursion of δH = 0.7, which happens at 1.75 times the
experimental pressure, the computed Alfvén continuum structures are presented in
Figure 7.15. In this case, the frequency gap around the plasma axis decreases by 20 kHz
as compared with the Alfvén continuum calculated at the experimental pressure and
helical core equilibria (Figure 7.13). The maximum frequency of the Alfvén continuum
drops to 410 kHz from 475 kHz with minimum of 32 kHz. The splitting in the frequency
range around the accumulation point ρ ≈ 0.23 has also increased to 5 kHz, which
corresponds to the difference between thethe highest frequency branch f = 32.6 kHz
with toroidal mode number n = 4 and the lowest frequency branch f = 27.6 kHz with
toroidal mode number n = 1 as shown in Figure 7.16. In our analysis, for lower (δH =
0.37) as shown in figure 7.14, the continuum of each n is shifted with the adjacent lower
continuum of n− 1 around the frequency accumulation point. Only the continuum of
n = 1 changes with the continuum of n = 6 due to our selection of a maximum toroidal
mode of n = 6 in the STELLGAP code. In figure 7.16 with strong helical deformation
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(δH = 0.7) this type of mode transitioning around the accumulation point from n to n-1
no longer holds, this can be due to the stronger helical distortion resulting in further
radial stretching of the accumulation point. The radial drift of the accumulation point
is associated with the increase in the Shafranov shift due to the higher plasma pressures
[103].

Fig. 7.15 Alfvén continuum structures with 3D helical core equilibrium having δH = 0.7
in discharge #20488, where pressure is scaled to 1.75 times

Coexistence of modes with similar n over a significant radial extent is associated
with the existence of radially extended rational surfaces and the saturation level of
the helical excursion of the magnetic axis. These factors mutually tend to maintain
smaller k∥ around the radially localized accumulation point; additionally for higher
δH the frequency accumulation point becomes radially extended as seen in figure 7.16.
As mentioned earlier, under these conditions the frequency shifting phenomenon and
prominence of the non-axisymmetric sidebands undergo the radial transition of the
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Fig. 7.16 Zoom of Alfvén continua in Figure 7.15. Different colors represent the
corresponding toroidal modes number (n)

modes which leads to the coexistence of modes over a wide radial extent since the
accumulation point at stronger δH gets stretched in radius. The successive transition of
the modes happens as shown in figure 7.16, in the mode n = 2 branch which converts
into a n = 1 mode in the range 0.205 ≤ ρ ≤ 0.236, and beyond ρ ≈ 0.236 it again
changes into an n = 3 mode. Later it transforms back to n = 1 and finally reverts back
to n = 2. These successive transitions of the mode can be due to the radial extension
of the frequency accumulation point at the stronger helical core (δH = 0.7), as they
are not present for the lower helical excursion of (δH = 0.37) as shown in figure 7.14.

The dependence of frequency splitting around ρ ≈ 0.23 on the helical core size is
shown in Figure 7.17. It shows that splitting in frequency (∆f) increases with the
helical core size. It is very low, around 0.5 kHz for small δH = 0.22 values and reaches
5 kHz for the maximum helical core size of δH = 0.7.
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Fig. 7.17 Alfvén continuum frequency splitting with helical core size around ρ ≈ 0.23
when toroidal mode numbers n = 1 - 6 have been taken into account in the calculations.
If a larger number of n’s had been included in the calculations, the ∆f could have
been different.

Around the frequency splitting accumulation point, the radial variation of the
Alfvén continuum extrema remains unchanged at the lower values of the helical core
size δH as shown in Figure 7.18. However a small increase of ρ = 0.025 has been noticed,
which suggests that frequency splitting appears with a very small radial excursion
of continua. For the maximum achieved helical core excursion (δH = 0.7), a small
difference of ρ = 0.016 between the continua minimum and maximum frequencies shows
that the frequency splitting is accompanied with a small movement of the accumulation
point in radius.

Alfvén continuum calculations for the different levels of the helical core equilibria
have been performed. The dependence of the Alfvén frequency gaps on δH , formed by
the extrema of n = 6 continua with helical equilibria, around the plasma axis and at
two further out radial locations is shown in Figure 7.19. Alfvén gaps at these three ρ
values show a decreasing tendency for further increases in helical core strength beyond
δH = 0.37. Around the plasma axis (ρ ≈ 0), the continuum gaps are narrower than
the gaps around ρ ≈ 0.23 and wider than the gaps ρ ≈ 0.35. Alfvén gaps for ρ ≈ 0 at
δH = 0 and δH = 0.37 are comparable having around 280 kHz frequency and for the
maximum helical excursion δH = 0.7, the gap is 255 kHz.
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Fig. 7.18 Radial variation of the frequency splitting accumulation point with helical
core excursion

Fig. 7.19 Alfvén frequency gap variation with the helical core size at three different
radial locations

At the frequency splitting radial location ρ ≈ 0.23, the Alfvén gap is larger for
the axisymmetric case (δH = 0) having a frequency of 420 kHz as compared with the
increasing values of δH . The Alfvén gap around ρ ≈ 0.23 decreases with an increase
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in δH = 0.37 to 0.7 and reaches to 365 kHz for largest helical core size. However
for δH = 0.22 the gap is relatively smaller. It is also noticeable that at ρ ≈ 0.23,
the continuum gaps at δH = 0 and δH = 0.37 are comparable. The decrease in
the Alfvén frequency gap has been encountered for higher values of ρ, at the radial
location ρ ≈ 0.35 the frequency gap decreases around in the range of 126 kHz for
the axisymmetric case. Contrary to the gap around ρ ≈ 0.23, the Alfvén gap around
ρ ≈ 0.35 follows a decreasing trend from δH = 0.22 to 0.7 and reaches to 80 kHz for the
maximum helical core size δH = 0.7. In this case it is also noticeable, the Alfvén gaps
at δH = 0 and δH = 0.37 are not alike as they were in the case of ρ ≈ 0.23. The lower
maxima of continuum structures for the formation of these gaps remained constant
around 190 kHz except for δH = 0.22 at which it decreased to 160 kHz. The gaps
calculated at δH = 0.22 correspond to the twice the experimental plasma pressure.
The increased plasma pressured decreases helical core excursion and hence the Alfvén
gaps at all three radial locations. These results show that the Alfvén frequency gap
is strongly influenced by the helical core size and also varies along the minor radius.
Close to the plasma axis ρ ≈ 0, the gap is smaller than at ρ ≈ 0.23 and as ρ increases
from ρ ≈ 0.23 to 0.4 the Alfvén frequency gap also decreases as shown in Figures 7.11,
7.13 and 7.15.

In these results, three major gaps have been found as characterized by their
frequencies. In low frequency region the gap is identified with the BAE gap which
is generated by the plasma compressibility and geodesic curvature. In between the
two identical toroidal mode numbers, a wider gap has been found due to the adjacent
poloidal mode couplings, therefore it is called TAE gap. At relative farther radial
location and higher frequency a gap also forms, which is identified as the EAE gap.
These results show that the TAE gap is the largest gap and has its maximum value
around the frequency accumulations point ρ ≈ 0.23 and it decreases at the outer radii.
Thus it is expected that not only the BAE physics is modified but also the TAE (odd
and even) and EAE mode frequencies which will be investigated elsewhere.

In comparison with 2D results given in Figures 7.11 and 7.12, a distortion in
the continuum structures δfAC around ρ ≈ 0.35 has been noticed (Figures 7.13 and
7.15), which appears only when the helical core 3D equilibrium is employed. We have
inferred δfAC as conversion of the mode from one toroidal mode number to another;
this generates localised gaps between the different continuum spectra along the radius
starting from ρ ≈ 0.35. Distortion in the Alfvén continuum provides an information
about the formation of the localised gaps between different continua and the mode
conversion which are absent in the axisymmetric calculations.
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The maximum radial extent to which the effect of δfAC is modelled with the helical
excursion δH is shown in figure 7.20. This shows, for smaller helical core (δH = 0.22),
the distortion in continua ranges up to ρ ≈ 0.42 staring from ρ ≈ 0.35 and it reaches
up to ρ ≈ 0.56 (figure 7.15) for the maximum achieved helical core size. It generates
localised frequency gaps in radius between the different branches of continua. These
are Helical Alfvén Eigenmode (HAE) gaps since they emerge due to the coupling of
continuum branches from different n’s. Up to δH = 0.7, the radial extension around
0.35 ≤ ρ ≤ 0.56 of the HAE gaps between different continua suggests that they are
radially extended modes. At δH = 0.7, radially localized closed HAE gaps also appear
around ρ ≈ 0.56.

Fig. 7.20 Variation in the radial extent of the Alfvén continuum distortion with helical
core size

As per HAE definition [36], n couples to n±δnNfp and m with m±δm, where n and
m are toroidal and poloidal mode numbers, Nfp is field period and δn, δm are integer
mode displacements, therefore the coupling between successive n’s is possible; this leads
to open gaps between different n continua. In our calculations, for a significant helical
excursion of δH = 0.7, initially an n = 6 mode (in red) converts to n = 5 (yellow) and
then n = 4 (green) and generates a radially extended gap with the internal mode n = 5
frequency (yellow) which then converts to n = 6 (red), following to n = 4 (green) and
back to n = 5 as function of radius. These gaps are limited in radial extent associated
with the radial extension of q = 1 rational surfaces as shown in figure 7.3.
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tokamak plasmas

Effects of the 3D density inhomogeneities on the Alfvén spectrum for tokamak
plasmas [104] lead to the coupling of different n Alfvén continuum is possible. Specifi-
cally, when the toroidal inhomogeneity is prominent these couplings produce new gaps
where the continua of the two toroidal harmonics were degenerate in the homogeneous
case. Similarly, for in helical equilibria the continuum spectrum is distorted, with the
generation of additional gaps caused by the coupling of successive n in radius.

This splitting of Alfvén continua with helical core size is helpful to explain the
experimental observations: first one has to note that lower mode numbers have lower
accumulation points for the acoustic-Alfvén modes (see e.g. fig 13 of [96]). However, the
BAE modes observed in the experiment show the inversion of the mode numbers from
the kinetic simulations [95]. Towards the end of the sawtooth cycle the splitting of the
modes remains in the model whereas it disappears experimentally (see t = 1.98 of fig 7
in reference [96]). Before the crash, the core pressure is at its maximum, and despite
some sawtooth precursors it remains large in the last 10 ms before the crash. The
modification of the BAE accumulation points due to the helical core suggest that the
splitting should decrease since it cancels the ’inverse diamagnetic’ splitting discussed in
reference [96]. In addition, also a small radial shift of the BAE accumulation point due
the helical core is observed (see fig. 16 [96]), changing the kinetic BAE accumulation
point because of radial profile (mainly Ti and Te) effects. Thus, the combination of
helical core (∼ 3-5kHz shift) and diamagnetic downshift may go hand in hand to
explain the experimental observations. Very demanding global kinetic 3D calculations
would be needed to investigate this question more quantitatively.

7.6 Summary and conclusions

Investigations for the Alfvén continuum spectra of helically distorted MHD equilibrium
have been carried out for improved understanding of observed low-frequency Alfvénic
modes in tokamak plasmas. First, we have carried out the bifurcated MHD equilibrium
investigations for the tokamak plasmas using a 3D numerical tool (VMEC). Identical
sets of parameters have been employed in the reconstructions of axisymmetric (2D) and
helical core (3D) equilibria, with the only difference being a small seed perturbation
in the magnetic axis. The formation of the helical core has been associated with
a saturated internal-kink m = 1, n = 1 mode [93] which determines its excursion
level. In previous studies [96], a kinetic model has been applied to the experimental
findings. We find that near rational surfaces having q = 1, the Alfvén continuum splits
into multiple frequencies and the continuum of n couples with that of n-1. However,
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despite the promising results, the kinetic model [96] alone could not well describe
the remaining differences of the 2 to 5 kHz in the frequency splitting. Results for
the Alfvén continuum calculations obtained with the extended STELLGAP solver
including the 3D effects of helical core equilibria, explain these few kHz differences
in the frequency splitting, and confirm the frequency splitting phenomenon around
q = 1 rational surfaces. The continua obtained with gaps opened by the plasma
compressibility and geodesic curvature are in the range of frequencies of Alfvénic (BAE)
and mixed acoustic-Alfvénic (BAAE) modes, which support the experimental findings
of low-frequency modes.

The sensitivity studies with pressure variation show that the helical excursion of
the equilibrium increases with increasing plasma pressure and eventually it drops at
extreme pressures due to the fixed boundary equilibrium calculations. Fixed boundary
reconstruction has been considered sufficient in these calculations because of the desired
plasma pressure scaling. The continuum results show that the frequency splitting
around the accumulation point also increases with increases in the helical excursion.
The accumulation point does not vary in radius with the plasma pressure. The
distortion in the continua along the radial extent starting from ρ ≈ 0.35 has been
found, which is also an effect from the helical core equilibria.

Finally, it is concluded that these new results are comparable with the experimental
findings discussed in [96], with the confirmation of frequency splitting in Alfvén contin-
uum via coupling of adjacent n continua around an accumulation point. Additionally,
the issue of few kHz differences in the frequency splitting is addressed and explained
by including 3D effects. Furthermore, the formation of additional low-frequency gaps
due to the coupling of acoustic-Alfvén waves are also addressed in our calculations.





Chapter 8

Conclusions and perspectives

8.1 Summary and conclusions

In this thesis, the shear Alfvén continua and discrete Alfvén eigenmodes (AEs) on
three dimensional (3D) equilibria have been modelled using 3D numerical tools for the
tokamak and stellarator plasmas. Modelling of the steady and chirping AEs, Alfvén
cascade modes and the continuum calculations with the helical perturbation of the
magnetic axis are the main research areas in this thesis. Comparison of the modelling
results obtained using reduced MHD formulation [36, 37] with experimental findings
not only benchmark these numerical results but also provide grounds for the concrete
solutions of the problems in burning plasmas.

After theoretical description of shear Alfvén waves and mathematical models/tools,
in chapter 4 we have modelled the coexistence of the chirping and steady AEs in the
TJ-II geometry with dynamic discharges [47]. Fixed boundary equilibria reconstruction
have been computed using a 3D equilibrium solver [31] using experimental plasma
parameters and with appropriate rotational transform profiles for the iota rising (IR)
and lowering (IL) dynamic discharges. In the IR case, we found two prominent modes
(m = 8, n = 13) and (m = 10, n = 17) for both chirping and steady types of the modes
with decrease in frequency from chirping to steady transition and radially inward
localization of the steady modes. Similarly in the IL case, there also are two prominent
modes (m = 9, n = 15) and (m = 11, n = 19) with decrease in frequency from chirping
to steady states and more inward radial localization of the steady modes. These results
suggest that the steady modes are more inward radially localized and their frequencies
are relatively lower than the coexisting chirping modes. These modelling results are
comparable to the experimental findings.
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In chapter 5, for the first time we have modelled the Alfvén cascade modes for
the TJ-II plasmas [56, 57] in which frequency-sweeping Alfvén modes were observed
experimentally [6] using three different types of the rotational transform profiles i.e.
normal, radially extended low shear non-monotonic (NM), strong shear NM iota profiles
each having on-axis iota ι(0) = 1.5. In these calculations radially extended GAE and
localized RSAEs are identified. For the normal and radially extended low shear NM
iota profiles, two similar core localized modes (m = 7, n = 10) and (m = 9, n = 14)
appear with discrete frequencies. The frequency range of the modes calculated using
low shear NM iota profile covers from 135 to 150 kHz and is relatively larger than the
normal iota profile for which these modes are centred around 150 kHz. This shows the
results obtained using low shear NM iota profile explain better the frequency sweeping
experimental observations. Results obtained through this modelling, with additional
low-shear identical NM iota profiles obtained by slight variation in on-axis iota values,
also observe similar frequency range from 115 to 295 kHz. An identical mode (m = 7, n
= 10/11) appears in the calculations with relatively strong shear NM iota profiles with
varying ιmin radially localized around the ιmin radial position. Frequencies obtained
3D modelling tools are consistent with the frequencies calculated using an analytical
dispersion relation. This mode’s consistency with similar NM iota profiles offers an
opportunity to model the ιmin. These calculations support the development of MHD
spectroscopy as a sensitive iota profile diagnostic technique for the future fusion devices
where other methods may not be practical due to high neutron flux.

The modes obtained in these calculations have global structures and therefore can
be considered to impact the fast ion confinement and hence their heating efficiency.
In modes analysis some cases show modulational effects of multiple competing Alfvén
modes having discrete frequencies. Modes with lower frequency and radially extended
global structures are characterized as GAEs and radially localized ones with relatively
higher frequency as RSAEs.

In chapter 6, we have modelled the resonant wave-particle interaction (WPI) for the
TJ-II plasmas using Monte Carlo transport model i.e. DELTA5D code [70, 71]. In this
model the enhanced energy transfer between wave and particles is implemented. In our
calculations we consider one modelled mode with n = 11 and varying bounce harmonic
p having frequency 306.57 kHz to model the resonant condition. In our simulations
we find that if the energetic ion beam is launched relatively more outward radially
i.e. at higher ρ values then the 2D matrices for poloidal and toroidal frequencies of
the drift orbits allow an expansion in the area of unconfined beam ions, effectively
pushing the phase space area of confined beam ions down to lower energies. Using
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the calculated poloidal orbit frequency and the toroidal precession frequency, one can
compute resonance function by combining their 2D functions in Equation (6.1) for
various integer values of p and for the frequency and toroidal mode number of the AE of
interest. In these calculations the corresponding wave-particle resonance maps suggest
for low bounce harmonics (p) the possibility of describing the nonlinear evolution of
the AEs in TJ-II by a sum of two ion populations with different weighting factors, one
of which is dominated by drag and the other by diffusion. As the bounce harmonic
increases, the resonance region starts to expand and can cover a significant area of the
particle phase space until this resonance region vanishes at high bounce harmonics.
The modelled orbits from each of the drag and diffusion sections of the resonance
function are identical in TJ-II stellarator and are compatible with the previous orbit
calculations [76].

In chapter 7, we have modelled for the first time the observed low-frequency Alfvén
instabilities with the helical core formation in ASDEX Upgrade (AUG) tokamak plasmas
[80]. Initially we reconstructed bifurcated MHD equilibrium for the tokamak plasmas
using a 3D numerical tool (VMEC) as a prerequisite for the further calculations. The
bifurcation of MHD equilibrium due to the saturation of the magnetic axis quantitatively
identical to the saturated internal-kink (m = 1, n = 1) mode leads to the formation of
3D helical structures along with the axisymmetric boundary. Reconstruction of the
bifurcated 3D helical core equilibria serves as perturbation which affects the Alfvén
continuum structures. Previously, a kinetic model [99] was applied to such observations
[96], despite of finding the Alfvén continuum splitting this model could not describe
the differences of few kHz in such frequency splitting. We have again confirmed
these frequency splitting with the helical core equilibria using an extended version
of the Alfvén continuum solver (STELLGAP) [45] around q = 1 rational surfaces.
The obtained continua with gaps opened by the plasma compressibility and geodesic
curvature are in the range of frequencies of Alfvénic (BAE) and mixed acoustic-Alfvénic
(BAAE) modes, which support the experimental findings of low-frequency modes.

Pressure sensitivity scan suggests the increase in helical excursion with the increase
of plasma pressure, at higher pressures the helical excursion decreases because of
the fixed boundary equilibrium calculations. Here, the fixed boundary equilibrium
reconstruction has been considered sufficient because of the observed plasma pressure.
It is also worth to notice that continuum splitting around the frequency accumulation
point also increases with the increase in the helical core size. These results are
comparable with the experimental findings as discussed in [96], with the confirmation
of frequency splitting in Alfvén continuum around an accumulation point. Additionally,
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the formation of low-frequency gaps due to the coupling of acoustic-Alfvén waves is
also compatible with the experimentally observed BAEs.

8.2 Future perspectives

Despite the comprehensive modelling analysis of the Alfvénic instabilities in TJ-II
flexible heliac in dynamic plasmas, there are still possibilities to extend such modelling
efforts to build a comprehensive understanding of coherent MHD instabilities in 3D
fusion plasmas. Here few of the important areas are highlighted for the consideration
of the next-step modelling.

Modelling of Alfvénic instabilities driven by energetic ions using their practical
distribution functions is an active field of research in many fusion devices, therefore
investigations utilizing different possible fast ions distribution would add to understand
the drive and impact in such 3D systems. There is possibility of investigating these
instabilities with the interaction of energetic particles by calculating their growth rates,
amplitudes and three dimensional mode structures. Further investigations for the mode
structures are possible for the low-frequency modes with the use of Alfvénic-acoustic
coupling model in the AE3D code.

These numerical tools can be upgraded by introducing an interaction of energetic
particle with Alfvén instabilities. The drive of these modes due to the interaction of
fast ions with the iota profile and plasma parameters is an important aspect to be
evaluated. Calculation of the modes growth rate on the account of fast ions distribution
would enhance the applicability of these numerical tools in 3D toroidal devices. While
calculating the modes structures and their prominent mode numbers, AE3D code can
be upgraded by introducing the low-frequency sound-wave coupling with the Alfvén
waves, which can help to investigate the acoustic (BAE) and Alfvén-acoustic (BAAE)
modes structures and their growth rates at lower frequency range.

Investigations using free-boundary equilibrium both in stellarator and tokamak
plasmas would be an interesting opportunity to find the effect of relaxing last closed flux
surface (LCFS) on these instabilities. It is possible that the free-boundary calculations
would allow the continuum gaps to extend relatively beyond the plasma column and
would track the saturation levels of the Alfveénic modes. In the case of helical core
formation, free-boundary equilibrium calculations would allow to extend the plasma
pressure scaling and its effect on the helical core excursion. This will then allow to
model Alfvén modes for scaled plasma pressure and extended helical core excursion,
which will in return provide pressure scaling in such plasmas.
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Such investigations can also be extended for the introduction of the magnetic islands
in fusion devices due to the formation of magnetic stochastic regions in the MHD
equilibrium. The investigations of the island induced Alfvén (IAEs) modes have not
been considered in this thesis, which can also be considered in the future outlook.

In the wave-particle interaction (WPI), it would be interesting to investigate whether
the iota variation in TJ-II experiments could affect the proportion of the resonant
beam particles between the two different areas of the computed resonance function i.e.
drag-dominated region and diffusion-dominated region to see if the scenario observed
in [79] is reproduced.
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