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I 

 

Abstract 

 

 

Cemented carbides, also referred to as hardmetals, have been the subject of intensive 

research and technological applications for past few decades, especially for metal 

cutting, mining and earth drilling industries. They are composite materials consisting 

of two interpenetrating networks of a hard and brittle ceramic phase (generally WC) 

embedded into a ductile metallic matrix. Such microstructure leads to an outstanding 

combination of hardness, wear resistance and toughness. As a result, they have 

consolidated as first choice materials for tools and components to be used in highly 

demanding applications, e.g. cutting or forming of metallic alloys, as well as mining 

operations. 

 

Several of the above applications also include exposure to chemically aggressive media, 

such as lubricants, chemical products, petrochemical and mine slurries, and seawater. 

Under these conditions, it has been shown that failure induced under applied load is 

accelerated, and corresponding service life may be significantly shortened. In this 

regard, several works have attempted to replicate – at the laboratory level – similar 

service-like conditions. Among them, the detrimental corrosion-related effects on 

tribological response and effective wear resistance of cemented carbides have aroused 

the greatest concern. However, investigations addressing similar information linking 

corrosion-induced damage and mechanical contact response at different length scales 
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are quite limited. 

 

Within the above framework, the first part of this thesis was devoted to carry out a 

systematic and comprehensive study about corrosion-induced damage and residual 

strength (damage tolerance) for four microstructurally different cemented carbides 

exposed to acidic, neutral and alkaline solutions. It is found that acidic medium led to 

higher corrosion rates and more significant strength degradation than those where 

neutral and basic ones were involved. Regarding corrosion mechanisms, it is evidenced 

that corrosion starts at binder pool centers and evolves towards binder/WC interfaces 

when exposed to acid solution. Meanwhile, corrosion is initially located at binder/WC 

interfaces and subsequently expands into the ceramic particles, when the material is 

immersed in a basic medium.  

 

The subsequent sections were focused on assessing the corrosion-induced changes on 

the mechanical contact response of cemented carbides through a wide range of length 

scales (increasing from 100s nanometers to 1000s microns). First, nanoindentation and 

nanoscratch techniques were employed to assess the influence of corrosion on the 

mechanical integrity of hardmetals. Changes in nanoindentation and nanoscratch 

response and damage scenario are discussed taking into consideration the effective 

microstructural assemblage remnant after corrosion action. It is concluded that 

dissolution of metallic phase becomes critical as it yields a mechanically unsupported, 

contiguous and binderless/porous, carbide network. Consequently, cracking, 
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fragmentation and easy removal of WC grains under contact loading is evidenced; and 

thus, mechanical integrity is effectively lessened.  

 

A similar investigation was then extended to a higher length scale range (from 10s to 

100s of microns in depth), combining relatively long corrosion times with pyramidal 

indentation and sliding contact (microscratch) experiments, in order to evaluate 

corrosion-induced changes on both load-bearing capability and damage scenario of a 

WC-Co hardmetal grade. The results reveal that mechanical contact strength and 

resistance to crack extension of the hardmetal grade studied are significantly reduced 

after exposure to corrosive media. Such lessening effects are found to be dependent on 

the ratio between indentation and/or scratch depth and thickness of the corroded layer. 

Alike pronounced corrosion influence is evidenced in surface and subsurface damage 

scenario. Here, a transition from well-defined cracking systems into a scenario 

consisting of multiple, branched and less shallow fissures is evidenced when comparing 

pristine and corroded specimens respectively.  

 

Finally, an even higher length scale (up to 1000s microns) was introduced in the study 

by combining Hertzian indentation technique and variable (but still relatively long) 

corrosion times. Corrosion effects on corresponding mechanical response and damage 

were assessed for three cemented carbides with metallic binders of different chemical 

nature. Results point out quite significant corrosion-induced changes on indentation 

stress-strain response and contact damage scenario. Such detrimental influence is found 
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to be dependent on both the ratio between indentation depth and thickness of the 

corroded layer as well as chemical nature of the binder. In this regard, critical loads for 

emergence and evolution of specific damage events - ring and radial cracks, and even 

specimen failure - are proposed as figures of merit for material selection under the 

combined action of corrosion and contact loading. Within this context, the hardmetal 

grade with Co-base binder and addition of Cr is found to be the best option, among the 

three cemented carbides considered in this part of the investigation. It points out the 

consideration of the synergic interaction between corrosion resistance and 

hardness/toughness correlation for microstructural design optimization of hardmetals 

under service-like conditions. 
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1 Introduction 

 

Cemented carbides, commonly referred to as hardmetals, are a group of powder 

metallurgical liquid-phase sintered composite materials. They are constituted by 

hard/brittle refractory carbides (e.g. WC) embedded in a soft/ductile metallic matrix 

(e.g. Co, Ni and/or Fe) [1]. The intrinsic composite nature of these materials permits to 

tailor unique combinations of mechanical properties by proper selection of carbide 

grain size and metallic binder content [1,2]. As a result, they have consolidated as first 

choice materials for tools and components to be used in highly demanding applications, 

such as cutting of metals and wood, forming of metallic alloys, rock drilling and mining, 

mechanical seals, structural components and wear parts [3].  

 

Many of the above applications often imply exposure of cemented carbide tools and 

components to various aqueous environments. Metal cutting commonly involves the 

use of coolants and lubricants, whereas wood cutting implies much more aggressive 

conditions (i.e. acid media) [4,5]. Lubricants are also required for many metal forming 

operations, such as wet wire drawing [6]. Drilling operations for oil and gas extraction 

place the downhole components into neutral or alkaline chloride environments, such as 

sea-water and sand-bearing liquids [7,8]. Under all these conditions, it has been shown 

that failure induced under applied load is accelerated, and corresponding service life 

may be significantly shortened.  
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From the viewpoint of the material itself, extensive research has proven that corrosion 

significantly affects microstructural and mechanical/tribological characteristics of 

cemented carbides [4,5,9–19]. However, critical review of open literature points out 

that observed detrimental corrosion-related effects are usually discussed in terms of the 

direct correlation existing between microstructure and macroscopic property/response 

exclusively. Furthermore, it should be considered that many applications of hardmetal 

tools and components frequently involve, besides corrosion, contact loads, repetitive 

impacts, abrasion and/or erosion too [3]. In this regard, there exist some investigations 

addressing the interaction between corrosion degradation and damage induced by 

mechanical contact, though their number is rather limited [4,9,16]. They have 

documented interesting and useful information from a material selection viewpoint, but 

it is clear that much deeper information is required if optimization of microstructural 

design against corrosion is aimed. This is particularly true concerning the changes that 

may be induced by corrosion on damage scenario and/or active micromechanisms, at 

both surface and subsurface levels, under applied load. Hence, it is the main objective 

of this doctoral thesis to assess and understand the influence of corrosion-induced 

changes on both load-bearing capability and damage scenario of cemented carbides, 

over a wide range of length scales (i.e. from 1s to 1000s of microns in width and depth). 

Within this context, two baseline aspects are proposed for defining microstructural 

design criteria towards optimization of the performance of cemented carbides under 

service-like conditions. First, the synergic consideration of basic mechanical properties 

(i.e. hardness and toughness) and corrosion resistance by means of analysis and 
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discussion of the combined interaction among them through concepts like damage 

tolerance. Second, the effective use of a wide spectrum of testing techniques: sharp and 

spherical indentation together with scratch, at macro-, micro- and nanometric levels. In 

order to achieve it successfully, additional specific objectives are pursued throughout 

the work, as follows: 

 

 To investigate the corrosion-induced damage and the corresponding residual 

strength of a set of microstructurally different cemented carbides exposed to three 

distinct corrosion media; 

 To assess and analyze surface/subsurface and mechanical integrity changes 

induced by exposure to corrosive media of a hardmetal grade, by means of 

nanoindentation and nanoscratch techniques. 

 To study the corrosion effects on both load-bearing capability and damage scenario 

of a hardmetal grade, using pyramidal indentation and sliding contact 

(microscratch) techniques. 

 To determine and analyze the corrosion-induced changes on the indentation stress-

strain response as well as in surface/subsurface damage scenarios of hardmetals, 

through implementation of spherical (Hertzian) indentation techniques. 

 

The thesis layout is schematically illustrated in Fig. 1.1. Following this introductory 

Chapter 1, a brief description of the cemented carbides is given in Chapter 2. It 

includes history and current status, microstructure, basic mechanical properties and 



1 Introduction 

 

4 

applications for these materials. The mechanical contact response and the corrosion 

behavior of hardmetals are presented and reviewed, as separate and independent 

subjects, in Chapters 3 and 4 respectively. In Chapter 5 the details of the research 

scope and objectives are given. Experimental details are described in Chapter 6, 

including microstructural and mechanical characterization of the investigated 

hardmetal grades, corrosion tests, techniques used for inducing contact damage at 

different length scales, as well as methodologies for inspecting and assessing damage 

scenarios at both surface and subsurface levels. Publications resulting as direct 

outcomes of this doctoral thesis are presented in Chapter 7. Main results and 

conclusions obtained in this investigation, as well as suggestions for future work are 

summarized in Chapter 8.  
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Fig. 1.1. Scheme illustrating the thesis layout. 

 



 

 

 

 



Assessment of corrosion-induced damage in the mechanical contact response of cemented carbides at different length scales 

7 
 

2 Cemented carbides: general description 

and basic mechanical properties 

 

2.1 Description and brief history overview 

Cemented carbides, often simply termed as hardmetals, belong to a group of ceramic-

metal composite materials that exhibit an extraordinary combination of hardness, 

strength, toughness and wear resistance [1,2,20]. Fig. 2.1 schematically shows an 

optimal combination of hardness (wear resistance) and toughness (strength) of 

hardmetals used in cutting tool classes [3]. Furthermore, this attractive feature makes 

cemented carbides forefront materials in many engineering and tooling applications, 

e.g. forming of metallic alloys, rock drilling, mining and tunneling industries [3]. 

 

 

Fig. 2.1. Schematic hardness (wear resistance)–toughness (TRS) relationship for 

cutting tool material classes [3]. 



2 Cemented carbides: general description and basic mechanical properties  

 

8 

Cemented carbides are conventionally synthesized by powder metallurgy routes. 

Among them, the ones involving liquid phase sintering are the methods most commonly 

used. In this regard, the blended powder mixture of tungsten carbide and binder is 

sintered in a vacuum furnace at temperatures ranging between 1350 and 1500 ℃ [21]. 

During the sintering process, liquid phase of the binder will cause some carbide 

particles to dissolve. As the mixture cools, tungsten carbide will precipitate out due to 

its low solubility, forming a heterogeneous material with significant phase separation, 

as shown in Fig. 2.2. 

 

 

Fig. 2.2. Images showing typical microstructure of cemented carbide by means of 3D 

FIB/FESEM serial sectioning and imaging. Here, lighter grain-like features are 

tungsten carbide (WC) and darker regions are the cobalt (Co) binder phase [20]. 

 

The development of cemented carbides began due to the search for suitable materials 

to replace very expensive diamond tools as wire drawing dies after the First World War 

[22]. They proved to be suitable for production of drawing dies, once the combination 

of WC and Co was developed. As a consequence, the first related patent was born in 
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1923 [23]. Three years later (in 1926), this new material was commercialized under the 

name “WIDIA”. Afterwards, cemented carbides started to replace high speed steels in 

cutting tools due to their improvement in wear resistance at high temperature [22]. 

 

After the Second World War, a huge market opened in the growing economies. 

Cemented carbides contributed as tool materials and construction parts to their 

industrial development, resulting in a significant rise in the global consumption of 

hardmetals. This growth trend has continued until now, as shown in Fig. 2.3 [24,25]. 

In such a graph, it is interesting to highlight a slowdown trend in annual output growth 

between 2007 and 2009, linked to the global economic crisis that took place during 

those years. It is estimated that the global cemented carbide output in 2015 was about 

70,000 tons, a year-on-year increase of 2% [25]. Such rise has been led by China, the 

country with the largest cemented carbide production in the world in recent years. In 

2018, China’s cemented carbide output was 38,500 tons, a year-on-year increase of 

about 11-12%, accounting for 38% of the global production [25].  

 

With respect to the global consumption of cemented carbides, it has followed a defined 

trend since many years ago. Considering data of 2008, as an example, it was reported 

that about 50,000 tons of tungsten (W content) were consumed by cemented carbides 

worldwide that year, accounting for about 60% of the world’s tungsten consumption  

(including recycled materials) [26]. Fig. 2.4 shows the distribution of general application    
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Fig. 2.3. Estimated worldwide production of hardmetals in the years from 1930 to 

2018 [24,25]. 

 

areas of cemented carbides [27]. In terms of tonnage, general wear parts account for the 

largest application areas (36%), followed by oil and gas industries (14%), automotive 

(13%), aerospace and defense (13%), mining construction (10%) and electronics (7%). 

 

 

Fig. 2.4. Distribution of application areas of cemented carbides [27].  
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WC-Co system is by far the most preferred choice for cemented carbide tools and 

components, due to the outstanding wetting and adhesion between the Co-base solid 

solution phase and WC during sintering [1,28]. In this regard, the hard and brittle WC 

particles are the main constituents of cemented carbides, which are the major 

contributor for their excellent hardness, strength and wear resistance. According to 

statistics, more than 98% of carbide grades contain WC, of which tungsten 

monocarbide WC accounts for the most important position of all hard phases in these 

materials [1].  

 

WC particles in hardmetals can have different sizes, from ultrafine up to extra coarse 

carbides (Table 2.1). The average grain size and distribution of the carbides are closely 

related to the properties of hardmetals, which may further determine their application 

fields [3]. For example, grades with grain size less than 1 μm are often chosen for light 

to medium-heavy roughing cuts due to their high hardness. Medium- and coarse-

grained cemented carbides provide a tradeoff between hardness and toughness, which 

may be used for heavier rough cutting. Finally, extra coarse-grained cemented carbides 

(over 6 μm) are often applied for making molds instead of cutting because of their 

relatively high toughness. 
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Table 2.1. Grain size classification of cemented carbides [3]. 

Grain size (μm) Designation 

˂ 0.2 Nano 

0.2-0.5 Ultrafine 

0.5-0.8 Submicron 

0.8-1.3 Fine 

1.3-2.5 Medium 

2.5-6 Coarse 

˃ 6 Extra coarse 

 

On the other hand, binder phase also plays a vital role in contributing to the excellent 

properties of cemented carbides, particularly in terms of toughness and impact 

resistance. In this regard, Co metal currently dominates the market as a binder because 

some unique properties, such as its favorable chemical bonding with tungsten carbide 

which results in a very low interfacial energy, nearly perfect wetting and very good 

adhesion in the solid state [29]. However, Co always undergoes a wavy and rising price, 

besides negative issues in terms of pollution and health. It yields continuous 

consideration of other iron group metals as potential substitutes for cobalt as metallic 

binder. Within this context, Fe and Ni are commonly proposed as ideal alternatives due 

to their low price, low pollution, and relatively good wettability with WC. It was 

reported that some of the properties of cemented carbides may be significantly 

improved by replacing Co-base binders by Ni ones, such as corrosion and oxidation 
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resistance [29,30]. Meanwhile, cemented carbides with Fe-rich binders have also 

shown improved properties such as higher hardness, abrasive wear resistance, 

toughness, and strength compared to Co-bonded hardmetals [31].  

 

 

2.2 Intrinsic mechanical properties of cemented carbides 

2.2.1 Hardness  

Hardness may be defined as the resistance of a material to exhibit plastic deformation 

when subjected to either mechanical indentation or abrasion. It is well known that 

hardness is one of the key parameters for most applications involving cemented 

carbides, e.g. machining tools, mining and drilling equipment, and components of 

valves designed to handle erosive slurries. In such applications, the in-service critical 

parameter, i.e. wear resistance, is directly related to hardness. As it is shown in Fig. 2.5, 

the abrasive wear resistance of different hardmetals shows varying degrees of 

improvement as their hardness values increase [32,33]. From a microstructural 

perspective, the hardness of cemented carbides generally rises as the volume fraction 

of the carbide phase increases and/or the mean carbide grain size decreases. In this 

regard, Lee and Gurland [34,35] pointed out that application of reciprocal rule of 

mixtures describes much better than the direct one, the influence of volume fraction of 

the carbide phase on the hardness of hardmetals (Fig. 2.6). They related it to the 

physical significance of the contiguity (a two-phase microstructural parameter) of the 
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hard phase for defining the effective hardness on composites with interpenetrated and 

continuous phase networks, as it is the case of hardmetals. 

 

 

Fig. 2.5. Variation of wear volume with hardness for ASTM B611 tests on range of 

hardmetals [33]. 

 

Regarding the hardness measurement of cemented carbides, the method most 

commonly used is the Vickers hardness (HV) test (ISO 3878). Nevertheless, Rockwell 

hardness of scale A test (ISO 3738, ASTM B294) is extensively used in industrial 

practice too. Knoop hardness (HK) test (ISO 22394) is also employed when the 

anisotropy of material is of interest, as it is the case in WC crystals [1,36]. For 

assessment of Vickers hardness, various load weights (e.g. 1, 10, 15, 20, 30, and 50 kgf) 

can be used, although the most common value is 30 kgf, corresponding value being 

expressed as HV30. The measured HV value typically ranges from 7 to 22 GPa, and in 

some cases (e.g. binderless WC, nano-grained hardmetal grades) it can even reach up 

to about 24 GPa [37–43]. Meanwhile, in order to determine the hardness of the 
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Fig. 2.6. Vickers hardness vs. carbide volume fraction in WC-Co for a wide range of 

the carbide grain size 0.9-4.52 mm [34]. 

 

constituent phases in a local range, nanoindentation testing has been frequently used in 

the past few decades [40,44,45]. 

 

2.2.2 Toughness 

Fracture toughness is also one of the major material characteristics to design 

applications and performance assessment of cemented carbides. It has been extensively 

reported that this property is affected by many factors, such as binder content, binder 

mean free path, mean carbide grain size, and macroscopic residual stress, among others 

[46–49]. Different from hardness, this parameter has been one of the most difficult to 

define because it largely depends on the history of materials testing. Consequently, a 

number of distinct testing methods have been introduced to assess the toughness of 

cemented carbides, e.g. Palmqvist indentation method, impact strength test on plane or 

notched bars, fracture mechanics protocols using either notched (Chevron or V-notch) 
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or pre-cracked specimens [50–55]. From all of these, Palmqvist indentation is the most 

time-saving and efficient test method, after consideration of the time needed for sample 

preparation and notch geometry control in the other testing protocols [56]. In this regard, 

Palmqvist initiated and developed the idea of assessing a toughness-like parameter by 

measuring the lengths of the fissures emanating from each of the four corners of a 

Vickers imprint [52]. Afterwards, Exner [57] defined a crack resistance parameter, W, 

based on the observed linear relationship between indentation load (P) and the sum of 

the radial (also called Palmqvist) cracks length at the corners of the Vickers impression:   

 

                                    =
4 c

P
W

a
                               (2.1)                                                                                                              

where P is the indentation load in N; and ac is the mean radial crack length in µm. 

 

Fig. 2.7 shows a typical linear relationship determined between mean radial crack 

length and applied indentation load for a WC-7.6%Co cemented carbide [52]. On the 

basis of the obtained Palmqvist toughness, Shetty et al. [52] further analyzed the 

resulting crack length-indentation load data in terms of relations characteristic of radial 

and fully developed radial/median (half-penny) crack geometries. As a result, these 

investigators proposed a simple correlation among indentation fracture toughness, 

length of the cracks emanating from imprints, and hardness for a wide range of WC-Co 

grades, according to: 

cIK HW=                            (2.2) 

 



Assessment of corrosion-induced damage in the mechanical contact response of cemented carbides at different length scales 

17 
 

 

Fig. 2.7. Relationship between mean radial crack length and applied indentation load 

for a WC-7.6%Co hardmetal grade [52]. 

 

where H is the hardness (N/mm2), β is a best-fit constant with value of 0.0889, and KIc 

is indentation fracture toughness (MPa*m1/2). 

 

As reported in the literature [58–60], the exceptional fracture toughness levels of 

hardmetals are mainly attributed to plastic stretching of crack-bridging ductile enclaves. 

When the indentation load reaches a critical value, cracks are induced and a 

multiligament zone develops at the crack wake, i.e. behind the crack tip [53,61,62]. It 

has been shown that this zone extends over a distance about five times the length scale 

of the microstructure (carbide grain size), and contains 2 to 4 ligaments in the direction 

of crack propagation [53,62]. Furthermore, the development of a multiligament zone 

means that there is an increasing crack propagation resistance (R-curve) behavior in 

hardmetals [63–66], whose size depends on the width and strength of the ligaments 

[63,67]. During subcritical crack extension, plastic deformation of these reinforcing 

ligaments is restricted to the binder regions that intersect the crack plane, and proceeds 
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through nucleation, growth, and coalescence of microcavities [53,59–62,66,68]. As the 

crack extends, a steady-state zone is formed, in which the ligaments bridging the crack 

pass through all stretching-up stages until the complete failure of the specimen (Fig. 

2.8) [66].  

 

 

Fig. 2.8. (a) FESEM micrographs illustrating crack-microstructure interactions at the 

crack wake of a stably propagated crack under monotonic loads and (b) estimated R-

curves for several microstructurally different WC-Co cemented carbides [66]. 

 

Toughness together with processing- or service-induced defects define another relevant, 

but this time extrinsic, mechanical property: strength. This is defined as the stress at 

which a hardmetal specimen results in unstable propagation of a crack, i.e. failure [69]. 

In general, it is referred to as transverse rupture strength (TRS), because it is commonly 

measured under bending [69]. It is not intrinsically linked to microstructure because it 

is very sensitive to flaws inherited from processing like pores, impurity inclusions, 
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lakes of binder, and abnormally large carbides or binderless agglomerates [70–73]. 

Moreover, sample preparation (e.g. cutting, grinding, polishing, edge chamfering, etc.) 

also significantly affects the measured TRS value, as it may result in different surface 

integrity scenarios, i.e. surface residual stresses, scratches, roughness or surface texture 

[37,57,71,73–75]. Furthermore, cracks (damage) induced during service will also exert 

a relevant influence on the measured TRS values. Mechanical testing of cemented 

carbides implies load bearing and deformation compatibility shared between the two 

constitutive phases. It yields complex scenarios, in terms of deformation and fracture 

micromechanisms, at micro- and nanometric length scales for both carbide and binder 

phases. These include plastic deformation (i.e. dislocations slip and pile-ups), binder 

phase transformation (from fcc to hcp), microcracking along carbide grain boundaries 

and through the carbide grains, and all of them may contribute and lead to the failure 

of hardmetals [34,37,76–79]. 

  



  

 

 

  



Assessment of corrosion-induced damage in the mechanical contact response of cemented carbides at different length scales 

21 
 

3 Contact response of cemented carbides 

 

The exceptional combination of hardness and toughness in cemented carbides is the 

intrinsic reason for their wide use in various engineering applications (e.g. cutting tools, 

forming dies, bearings, mining bits, etc.). Failure in such applications may be triggered 

by a number of mechanisms such as plastic deformation, brittle facture, fatigue and 

abrasion, which may be assisted to various degrees by corrosion, oxidation and other 

environmentally-related phenomena [80]. In such cases, contact loading plays a 

significant role on defining the critical design parameters for optimal material selection, 

e.g. wear resistance in the oil and gas extraction industry, or continuous solid particle 

impact (monotonic/cyclic loading) endured in underground and surface mining and 

rock drilling [81,82]. Contact loading may produce small fissures or microcracks that 

reduce the strength of brittle-like materials, or even directly lead to catastrophic failure 

(especially if overloading, impact, or cyclic loading are involved) [83,84]. It is therefore 

of crucial importance to understand the mechanics and mechanisms linked to contact 

loading in hard materials. Such knowledge will be relevant for analyzing and 

rationalizing first the process of introduction and evolution of extrinsic damage, 

induced during service-like conditions; and subsequently, its consequences on 

reliability and performance of hardmetal tools and components. 
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3.1 Spherical indentation  

Following the experimental methodology and analysis procedure introduced and 

extensively developed by Lawn’s group for studying ceramic materials using spherical 

indentation [85], the use of testing protocols based on Hertzian theory has proven to be 

quite successful on the assessment of mechanical response and induced damage under 

contact loading in both nude and coated cemented carbides [86–96]. In these studies, 

indentation has been conducted using spheres with curvature radii in the millimeter 

length scale. Thus, concentrated stresses are delivered such that: typical ‘‘blunt” in-

service conditions are simulated, indentation stress-strain curves may be attained; and 

damage evolution associated with increasing load or number of cycles can be examined. 

For hardmetals deformation and damage scenario involved on the surface of a 

monotonically indented specimen generally includes the following three different types: 

(1) irreversible “sink in” phenomenon at relatively low load level; (2) partial/full ring 

cracks formed around the contact area, when the indentation load exceeds a certain 

value; and (3) radial cracks, which tend to appear under a much higher load level than 

the former two cases. In this sense, the formation of incipient cracks is known as “quasi-

plasticity” and is related with the strain-hardening behavior in cemented carbides, 

involving thus flow of the binder and accommodation of plastic deformation in WC 

grains [88]. On the other hand, ring cracks are promoted by the tensile radial stresses 

and strains existing in the vicinity of residual imprints, while radial fissures are the 

result of positive hoop (circumferential) stresses [97,98]. In general, for hard and brittle-

like materials, the formation of radial cracks heralds the end of the service life of 
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engineering components [88]. 

 

As the indentation load increases, the introduced irreversible damage from deformation 

to fracture may be divided into three stages: initial elastic, elastic-plastic and fully 

plastic, as shown in Fig. 3.1 [88]. In this regard, the first stage is often predicted from 

Hertz relation. The oblique dashed line passing through the origin is the perfect elastic 

response calculated using the Hertz relationship, as expressed by the following equation 

[99]:  

      
3

4
m

Ea
P

kR
=                           (3.1) 

                                                          

where Pm is the mean contact pressure, E is Young’s modulus, a is the contact radius, R 

is the indenter radius, and k is a dimensionless constant given by: 

                        ( ) ( )2 29
1 1 '

16 '

E
k

E
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                 (3.2) 

where υ and υ' are Poisson’s ratios, and E and E' are Young’s moduli of the specimen 

and indenter respectively. 

 

As it is shown in Fig. 3.1, the indentation stress increases linearly versus indentation 

strain at the beginning of the deformation. Considering that the contact damage in the 

case of cemented carbides does not recover upon unloading, the Hertzian elastic 

behavior should be here called as pseudo-elasticity in the strict sense [88]. Regarding 

the elastic-plastic stage, it shows an obvious deviation of indentation stress-strain curve 

from the Hertzian elastic relation. Meanwhile, the hardmetal specimen experiences 
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quasi-plastic yielding and apparent strain hardening. In this sense, WC particles and 

binder phases successively undergo plastic deformation and even microcracks are 

formed to accommodate the continuous deformation (Fig. 3.2) [88]. In the last stage, 

even though the strain continues to rise, the indentation stress levels off. The damage 

scenario involved includes the break-up of WC grains and the formation of microcracks. 

As the applied load further increases, macro-ring crack and radial crack develop in the 

specimen at the end of the plastic deformation [88]. 

 

 

Fig. 3.1. Hertzian indentation stress-strain curve of WC-10 wt%Co, using a 

polycrystalline diamond indenter of 5 mm in radius. Note three deformation regimes: 

initial elasticity, elastic-plastic and fully plastic deformation [88]. 

 

The analysis of subsurface damage induced by Hertzian indentation test in cemented 

carbides is important to understand the deformation and damage mechanisms. In this 

regard, the bonded-interface technique (BIT) has proved to be quite successful in 

facilitating the analysis of subsurface damage by a number of research groups 

[85,89,92,94,100–104], as schematically outlined in Fig. 3.3. Typically, the damage 
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Fig. 3.2. Subsurface damage scenario in heavily damaged area related to the quasi-

plastic stage [88].  

 

scenario discerned from the cross-section of an indented hardmetal specimen may 

involve the appearance of cone crack coming from the curved surface, as shown in Fig. 

3.4. The corresponding high magnification observation in the heavily deformed zone 

may include deformation of binder phases and WC grains, as well as the occurrence of 

microcracks propagating along WC/WC boundaries or WC/Co interfaces (Fig. 3.2) 

[88]. In general, the deformation and fracture scenarios obtained from BIT 

methodology are more severe than that from integral specimens regarding emergence  

 

 

Fig. 3.3. Schematic illustration of bonded-interface technique [103]. 
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and propagation of microcracks at each specific loading condition [87,92,103,105]. The 

reason behind it is that the centerline of the indenter is over the gap between two halves 

in the bonded-interface condition, which cannot support the indenter adequately, and 

thus, the interface edges are more prone to collapse, leading to a corresponding shift of 

the maximum stress field away from the bonded-interface [103]. Since the interface 

edge is unsupported by the gap over its whole length, the weaker grain boundaries and 

friction would have a more pronounced effect than within the bulk of the material [103]. 

 

 

Fig. 3.4. Nomarski optical micrograph showing (cross-section view) contact damage 

features for a WC-10%Co hardmetal (clamped-interface) specimen under an applied 

load of 2000 N [92]. 

 

Considering that irreversible damage may be induced under contact loading conditions 

from both surface and subsurface levels, the useful lifetime of hardmetal tools and 

components involved must be affected, from the perspective of structural integrity. 

Within this context, Lawn and coworkers [83,106–111] have systematically and 

extensively investigated the structural integrity changes (e.g. strength lessening) 

resulting from Hertzian tests using spherical indenters. In these studies, the residual 

strength of the indented material is found to depend on the nature of the induced contact 



Assessment of corrosion-induced damage in the mechanical contact response of cemented carbides at different length scales 

27 
 

damage regarding both brittleness and toughness of the materials under consideration. 

The more brittle the material is, the more abrupt are the strength losses, once the critical 

load for cone crack initiation is reached. On the other hand, the tougher the materials 

are, the more gradual and continuous is the strength decrease, as microcracking 

associated with a quasi-plastic response develops. However, to the author’s knowledge, 

only two studies have been addressed to correlate strength reduction and contact 

damage in cemented carbides [86,92]. In these works, it is found that strength retention 

is improved as contact damage mode goes from brittle to quasi-plastic, and this 

transition directly depends on microstructure [92]. This provides useful guidelines for 

microstructural design seeking for higher damage tolerance (i.e. deformation prevailing 

over fracture as damage mode) in the industrial applications of hardmetals. 

 

 

3.2 Wear 

In addition to the fact that hardmetal tools and components may be exposed to the 

above-mentioned contact loading conditions, tribological aspects also play an important 

role from a design viewpoint. Main types of wear of cemented carbides, linked to some 

contact-like actions in service, are schematically shown in Fig. 3.5, and they may be 

classified in the following three categories: abrasion, sliding and erosion wear. Among 

them, abrasive wear usually takes place when the hard particles from the processed 

material (i.e. rock, metal, ceramic) are pulled across the surface of the tool or wear parts 
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(Fig. 3.5a and b) [112]. The resulting damage scenario may range from fine scratching 

to deep gouges. In this regard, the abrasion behavior shows a strong dependence on 

hardness of the cemented carbides (Fig. 3.6) [113]. In addition, size, shape and 

chemical nature of the abrasive significantly affect the magnitude of wear [112]. 

Concerning sliding wear, it normally involves two solid surfaces sliding over each other 

(Fig. 3.5c and d), with or without lubricant. It occurs in applications such as face seals 

and forging tools. In the case of erosion wear (Fig. 3.5e and f), damage scenario involves  

 

 

Fig. 3.5. Main types of wear discerned for hardmetals tools and components under 

common service-like conditions [112]. 
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the removal of material from the surface of hardmetal tools and components by the 

high-speed impact of either a liquid or a stream of hard particles carried in a fluid flow 

[112]. 

 

 

Fig. 3.6. Abrasion volume loss as a function of hardness for a range of WC-Co 

hardmetal grades [113]. 

 

In the past few decades, numerous laboratory studies have been conducted attempting 

to simulate the above-mentioned tribological conditions. In these works, the correlation 

between microstructural features and tribological response of cemented carbides has 

drawn the most attention [114–122]. Microstructural parameters such as WC grain size, 

binder content and width of WC grain size distribution were considered. In general, the 

influence of these parameters on the wear resistance has been rationalized on the basis 

of the effective hardness of the studied hardmetal grades. Wear mechanisms of 

cemented carbides have also been identified and discussed. Depending on the applied 

load, a series of different deformation and damage micromechanisms may be involved: 
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removal of binder phase, plastic deformation and damage within the remaining binder 

phase, accumulation of plastic strain in WC grains, fracture and fragmentation of 

individual WC grains, re-embedment of WC fragments in a Co-rich surface layer, 

cracking between WC grains, and the breakaway of unsupported WC grains. The 

damage scenario induced during a scratch test, from both top and cross-sectional views, 

in a hardmetal specimen is schematically described in Fig. 3.7 [123]. There, an obvious 

scratch groove and material pile-up are discerned, in which ploughing of the binder 

phase and fragmentation of carbides may be present [124]. The subsurface cracks 

induced by grooving (similar to the indentation of a brittle system) develop by forming 

lateral and median cracks underneath the plastic zone [52,123]. It should be noticed that 

investigations reviewed in this chapter are only the ones conducted under dry conditions.  

  

 

 

Fig. 3. 7. Schematic view of material removal in cemented carbide as a consequence 

of abrasive wear [123].  
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4 Corrosion of cemented carbides 

 

WC-Co composites often suffer from different degradation phenomena that seriously 

affect the performance and service-life of engineering structural parts. In this regard, 

many hardmetal applications involve exposure to chemically aggressive media, 

including a wide variety of corrosive environments such as lubricants, chemical and 

petrochemical products, and mine and sea waters [6,10,125–127]. Therefore, it is of 

crucial importance to have a comprehensive understanding of the corrosion behavior 

and corresponding mechanisms of cemented carbides, from the two-fold perspective of 

microstructural optimization for material selection and prevention of premature failure 

of tools and components. 

 

4.1 Characterization methods 

Immersion test and electrochemical measurement are the two most commonly used 

testing techniques for determining the corrosion behavior of cemented carbides. In the 

former, well-prepared samples (cut, ground and polished) are immersed in corrosive 

media for given time periods, at a constant temperature. The corrosion behavior of 

cemented carbides may then be assessed by means of: (1) inspection of the cross-section 

of corroded samples for determining the depth of the affected zone; (2) calculation of 

the corrosion rate using the measured weight loss corresponding to different exposure 

times; and (3) use of atomic absorption techniques to determine the amount of binder 
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dissolved in the corrosive media [4,16,128]. In the case of electrochemical tests, this 

technique includes a wide range of methods such as potentiostatic/galvanostatic 

polarization and cyclic voltammetry. They are used to characterize various aspects of 

the corrosion process, falling into two categories: corrosion rates and reaction 

mechanisms [4,6,129–136]. Existing literature related to the corrosion behavior of 

cemented carbides is mostly based on results obtained by using these two testing 

techniques. 

 

 

4.2 Corrosion behavior and mechanisms 

It is well known that coupling of two or more metals within a corrosive environment 

often leads to a galvanic corrosion when the less noble metal shows high dissolution 

rate, while the more noble metal remains protected [137]. Accordingly, cemented 

carbides can be considered to be a galvanic couple whose corrosion characteristics 

depend largely on the corrosion response of its constitutive phases [138]. In many 

aqueous environments, the electrode potential difference between WC grains (acting as 

the cathode) and binder phase (acting as the anode) leads to the formation of micro-

galvanic couples causing corrosion. In this sense, the dissolution content of W, C and 

other elements in the binder phase, such Co, is directly proportional to the standard 

potential value, and inversely proportional to the potential difference of the WC phase 

[135]. As reported in several studies [10,125,129,136,139–141], the binder phase is 
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preferentially attacked when exposed to acidic and neutral mediums (pH≤7), whereas 

it shows passivation behavior in alkaline solutions (pH＞7). This may be predicted by 

inspection of the Pourbaix diagram of cobalt (Fig. 4.1) [142]. Similarly, analysis of the 

Pourbaix diagram of tungsten indicates that it is unstable in alkaline condition (Fig. 

4.2). This is also in complete concordance with findings reported in the literature involving   

 

 

Fig. 4.1. Potential-pH diagram for the cobalt-water system at 25 ℃ [142]. 

 

 

Fig. 4.2. Potential-pH diagram for the tungsten-water system at 25 ℃ [142]. 
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investigations of the corrosion response of WC-based hardmetals when exposed to 

alkaline environments [11,135,140,141,143–147]. 

 

Regarding mechanisms, it is reported that the electrochemical corrosion process of WC-

Co hardmetals in acid media is linked to preferential dissolution of a thin Co layer at 

the WC/Co interface, which is accompanied by the formation Co3O4 and Co(OH)2 [135]. 

As the Co phase gradually dissolves, a slow corrosion reaction occurs to form WO3. 

This process is schematically illustrated in Fig. 4.3a. Interestingly, in the case of 

exposure to neutral solutions, the dissolution of metallic binder takes place in the core 

of binder pools rather than at the binder/carbide interface [16]. However, information 

on these different responses is quite limited; thus, further research in this subject is 

needed to corroborate and understand it. Concerning the corrosion process in alkaline 

solution, as it is shown in Fig. 4.3b, the pure Co thin layer and Co phase at the WC/Co 

 

 

Fig. 4.3. Schematic diagram of WC-Co hardmetal during corrosion process in (a) HCl 

and (b) NaOH solutions [135]. 
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interface are first oxidized, and then form Co(OH)2 . This corrosion product plays an 

important role in isolating the metallic binder from the corrosive media and impeding 

its dissolution further [135,148].  

 

 

4.3 Microstructural effects on the corrosion behavior of cemented carbides  

 

4.3.1 Binder composition 

In most instances, corrosion of hardmetals is reflected in the preferential attack of the 

binder phase, since it has lower electrode potential than the WC phase. It has been 

demonstrated that addition of alloying elements, such as Ni, V and Cr, into the Co 

binder phase generally improves the corrosion resistance. In this regard, Wentzel and 

Allen [149] found that an increase of Ni content yields a positive change of the Ecorr of 

the materials, and a sharp decrease of ic and ip-min. Such beneficial effects of Ni addition 

are supported by findings extensively reported in the literature [30,134,150–153]. 

Addition of Cr and V into the binder have also been proven to enhance the corrosion 

resistance of cemented carbides [139,146,154]. Regarding the former, Cr acts as an 

alloying element, leading to the formation of a mixed Co-Cr oxide layer which 

decreases the rate of dissolution of the binder when exposed to acidic and neutral 

environments. Fig. 4.4a-d show the effect of Cr addition on the corrosion mechanism 

of WC-Co hardmetal [155]. In the latter case, although dissolution of V in the binder 
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can also improve the corrosion resistance of hardmetals, no thin layer is formed 

between the binder and the WC grains (Fig. 4.4e) [139,154]. Furthermore, other 

investigations have also reported a positive effect related to Mo, Y, Ti and Ta addition 

into the binder phase in terms of corrosion resistance of cemented carbides [135,156–

158]. 

 

 

Fig. 4.4. Schematic view of the corrosion mechanisms of Cr-free (a),(b), Cr-

containing (c),(d) and V-containing (e) WC-Co hardmetals when exposed to corrosive 

environment [139,155]. 
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4.3.2 WC grain size 

The effect of WC grain size on the electrochemical corrosion resistance of cemented 

carbides has also drawn a lot of attention [10,140,152,159,160]. Table 4.1 lists data 

gathered from a detailed literature survey on the effect of average WC grain size on 

Ecorr and ip-min for WC-Co hardmetals. Tomlinson and Ayerst [159] reported that as the 

grain size increased from 1.4 to 3.0 μm, the passive current density of straight WC-6Co 

alloys significantly increased. However, Human and Exner [10,160] found that there 

was no significant difference among the polarization curves of the studied hardmetal 

grades with distinct grain sizes in the solution of 0.5 mol/L H2SO4. Such a finding is in 

agreement with the results obtained in the studies of Tomlinson and Linzell [152]. 

Kellner et al. [140] reported that the smaller the grain size, the higher the corrosion 

resistance. Through XRD analysis, they ascribed the higher corrosion resistance of the 

small-grained hardmetals to the higher amount of fcc Co, which has a better corrosion 

behavior than hcp Co due to its higher thermodynamic stability. Thus, there is not any 

clear picture on the effect of WC grain size on the corrosion behavior of straight WC-

Co cemented carbides. Nevertheless, it should be highlighted that neither materials nor 

electrolytes were the same in all these studies, rising then the uncertainty about this 

issue. 
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Table 4.1. Effect of average WC grain size on the Ecorr and ip-min of WC-Co alloy. 

Sample Main grain 

size/μm 

Ecorr/mV ip-min/(mA/cm2) Solution Reference 

WC-6%Co 1.4 -387 0.6 0.01mol/L H2SO4+ 

0.99mol/L Na2SO4 

pH=2.8 

[159]  

WC-6%Co 

 

3.0 

 

-378 

 

12.0 

WC-6%Co 1.4 -430 6.3 

0.01 mol/L H2SO4 + 

0.99 mol/L Na2SO4 

pH=2.55 

[152] 

WC-6%Co 4.8 -406 4.9 

WC-11%Co 1.4 -413 14.5 

WC-11%Co 5.1 -430 14.5 

WC-6%Co 4.0 -961 24.8 

1 mol/L NaOH [140] 

WC-6.5%Co-Cr3C2 1.8 -972 19.8 

WC-6%Co-Cr3C2-VC 1.2 -973 12.2 

WC-3.2%Co-1%Ni 0.8 -359 1.48 

WC-6%Co-Cr3C2 0.6 -958 7.68 

WC-10%Co 1.0 -330 8.0 

0.5 mol/L H2SO4 

[10] 

WC-10%Co 2.0 -330 - [160] 

WC-10%Co 5.0 -321 6.0 [10] 

WC-16.5%Co 2.1 -320 - 

0.5 mol/L H2SO4 [160] 

WC-16.5%Co 3.1 -315 - 
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5 Objectives 

 

Cemented carbides have consolidated as first choice hard materials for tools and 

components to be used in highly demanding applications, e.g. cutting or forming of 

metallic alloys, as well as mining operations [4]. Several of these applications also 

include exposure to chemically aggressive media, such as lubricants, chemical and 

petrochemical products, mines and seawater [4,6,127,161]. Under these conditions, it 

has been shown that failure induced under applied load is accelerated, and 

corresponding service life may be significantly shortened.  

 

Extensive research has proven that corrosion significantly affects microstructural and 

mechanical/tribological characteristics of cemented carbides. Regarding fracture 

behavior, it is of crucial importance to know how transverse rupture strength (TRS), 

one parameter usually recalled as material selection parameter for hardmetals, is 

affected by corrosion. There are only a few published reports concerning the correlation 

between corrosion and strength degradation. Tomlinson and Molyneux [9] found that 

corrosion in a pH = 1 solution at 20 ℃ for 24 h had no effects on the mean strength of 

hardmetals containing 6, 8 and 10% Co with small additions of Cr3C2 and VC. Pugsley 

et al. [4] concluded that exposure to a wood cutting environment has a detrimental 

influence on the strength of cemented carbides containing 6 and 10% Co. They 

rationalized it on the basis of localized corrosive attack which resulted in the formation 
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of stress raisers. Gant et al. [12] investigated the effect of the corrosive media with 

different pH values on TRS by immersing the specimens within a relative short time. It 

was found that a distinct corrosion damage was induced on the sample surface after 

being corroded in a stronger acidic solution, leading to a significant TRS degradation. 

In this case, failure was found to preferentially occur from corrosion pits. Similar result 

was also obtained and documented by Tarragó et al. [16]. Recently, Tang et al. [17] 

compared the corrosion and strength degradation behaviors of a binderless WC material 

with that exhibited by WC-Co grade in alkaline solution. Contrary to the results 

documented by Gant et al. [12], substantial strength degradation was discerned after 

exposure to alkaline medium. Furthermore, it was reported that TRS gap between the 

two materials was significantly narrowed for exposure times longer than 28 days. 

However, most of these studies have focused on either one particular hardmetal grade 

or a specific corrosive medium. As a consequence, it is quite difficult to derive a general 

relationship including microstructure and corrosive media. This leads to the first 

objective of the present study, which is to conduct a systematic and comprehensive 

investigation about corrosion-induced damage and residual strength (damage tolerance) 

of four microstructurally different cemented carbides exposed to three distinct 

corrosion media. In doing so, besides the mechanical response referred, electrochemical 

parameters are measured and corrosion damage scenario is analyzed. Information 

gathered is expected to be useful for defining microstructural design guidelines on the 

basis of damage tolerance, as a function of type of corrosive medium.  
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Concerning contact-load conditions, numerous efforts have been made to evaluate the 

combined action of corrosion and wear on hardmetals in the past few decades 

[12,14,118,119,162–167]. In these studies, testing approaches involving abrasion rigs 

or sliding contacts are often followed. Regarding the former, a micro-abrasion 

apparatus, which is modified on the basis of the ASTM G65 abrasion test method, has 

been employed [165], as schematically illustrated in Fig. 5.1. Hence, a series of 

abrasion-corrosion tests were conducted in the corrosive slurry with different pH values, 

ranging from 1.1 to 13 [12,163–166]. Several interesting findings have been 

documented. Under strongly acidic conditions (pH = 1.1), the effective removal of WC 

particles by binder dissolution appears to be a rate-controlling step to determine volume 

loss. Meanwhile, under weakly acidic conditions (pH = 2.6 and 6.3), there is more 

evidence of WC grains fracture and less binder dissolution. Finally, in neutral and 

alkaline conditions, the overall wear rates are hardly affected. Fig. 5.2 and Fig. 5.3 

show schematic descriptions of wear-corrosion phenomena during micro-abrasion process  

 

 

Fig. 5.1. Schematic diagram of the micro-abrasion apparatus [165]. 
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of sintered cemented carbide and sprayed tungsten carbide, respectively. Concerning 

the combination of corrosion and abrasion (scratch) test, it must be noticed the 

investigation conducted by Gee and co-workers in the last decade [14,118,119]. In such 

studies, a special micro-scratch test system was developed, as schematically shown in 

Fig. 5.4. Among the interesting findings reported by this research group, the evidence 

of structural collapse at the subsurface level together with irregular longitudinal scratch 

profiles, as a direct consequence of binder leaching, must be highlighted.  

 

Aiming to determine mechanical and tribological properties of cemented carbides at 

micro- and nanometric length scale, nanoindentation and nanoscratch techniques have 

been successfully implemented in previous studies. As a result, intrinsic hardness and 

elastic modulus of individual constituent phases have been measured [40,44,45]; 

microstructural effects on sliding contact, scratch and wear resistance have been 

evaluated [168–170]; and deformation, wear and material removal mechanisms have 

 

 

Fig. 5.2. Schematic of wear-corrosion processes occurring in the micro-abrasion 

system of cemented carbides [166]. 
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Fig. 5.3. Schematic of wear-corrosion process during micro-abrasion of sprayed 

hardmetal coating [166]. 

 

been documented and analysed [44,45,169,170]. Unfortunately, all the referred works 

have been conducted on pristine or virgin hardmetals; hence, information on how the 

limit state – in terms of failure or acceptable/unacceptable criteria from a structural 

integrity viewpoint – is affected by the damage induced by corrosion is completely 

missing for cemented carbides. Accordingly, a second objective of this work is to assess 

and analyse surface/subsurface and mechanical integrity changes induced by exposure 

to an acidic media of a hardmetal grade, by means of nanoindentation and nanoscratch 

techniques, i.e. within length scales ranging from 100s to 1000s of nanometers.  

 

Attempting to get closer to service-like conditions, extension of the second goal referred 

above towards higher length scales, i.e. from 10s to 200 of microns in depth, defines 

the third objective of this work. It consists of carrying out a systematic investigation on 

corrosion-induced changes on both load-bearing capability and damage scenario of a 

WC-Co hardmetal grade. In doing so, relatively long corrosion times as well as  

pyramidal indentation and sliding contact (microscratch) experiments are recalled for 
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evaluation of microstructure-property-corrosion correlations. The former implies 

existence of uniform and rather thick corrosion-affected layers, whereas the latter yields 

damage scenarios whose depth is similar to the length scale of the degraded surface 

layers. Under these conditions, well-developed cracking systems are induced; and thus, 

changes on the crack-microstructure interaction as a function of corrosion extension 

may be studied.  

 

 

Fig. 5.4. Schematic diagrams of (a) micro-tribology test system [116], and (b) model 

scratch-corrosion experiment [14,118,119].   

 

As mentioned in section 3.1, the testing protocol based on Hertzian theory has been 

successfully used for assessing the mechanical response and induced damage under 

contact loading in nude and coated cemented carbides [86–96]. In such studies, contact 

damage was introduced using spheres with curvature radii in the millimeter length scale. 

However, as before for other testing techniques, all these works have also limited their 

scope to evaluation of pristine or virgin hardmetals. Hence, once again, information 

addressing simultaneous action of contact loading, using spherical indentation, and 
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corrosive medium is quite scarce. In this regard, there is only one (and quite recent) 

study where the combined action of corrosion and repetitive contact loading is 

considered [171]. Thus, it is the final objective of this thesis to determine and analyse 

the changes observed in the indentation stress-strain response as well as in 

surface/subsurface damage scenarios of hardmetals by using Hertzian spherical 

indentation technique, after exposing them to an acidic medium for different times. 

Such investigation aims to complement work described above, as it focuses on an even 

higher length scale, i.e. up to 1000 of microns. In doing so, addition of chromium and/or 

substitution of cobalt by nickel within the chemical nature of the metallic binder are 

invoked as experimental variables.  
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6 Materials and characterization techniques 

 

6.1 Materials 

Seven WC-based hardmetal grades with different binders, in terms of both chemical 

nature and content, and carbide mean grain sizes were studied. All of them 

corresponded to experimental grades supplied by Hyperion Materials and Technologies. 

Specimen designation and microstructural characteristics including chemical 

composition and content (%wt.) of the metallic binder, mean grain size of WC particles 

(dWC), contiguity of the ceramic phase (CWC), and binder mean free path (λbinder) are 

listed in Table 6.1. Mean grain size was measured following the linear intercept method,  

 

Table 6.1. Designation and microstructural parameters of the hardmetals investigated. 

Specimen code wt.% Co wt.% Ni dWC (µm) CWC λbinder (µm) 

10CoUF 10 -- 0.39±0.19 0.46±0.06 0.16±0.06 

10CoC 10 -- 2.33±1.38 0.31±0.11 0.68±0.48 

10CoNiM 8 2 1.44±0.86 0.38±0.08 0.47±0.30 

9NiF -- 9 0.83±0.49 0.44±0.08 0.29±0.18 

6CoM 6  1.51±0.16 0.48±0.02 0.32±0.03 

6CoCrM 6  1.35±0.15 0.48±0.03 0.29±0.05 

6NiCrM 0.5 5.5 1.31±0.18 0.47±0.02 0.31±0.04 

Indexes UF, F, M and C are used for designing hardmetals with ultrafine, fine, medium and coarse mean 

grain sizes for the carbide phase, respectively. 
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using field emission scanning electron microscopy (FESEM) micrographs (Fig. 6.1). 

Meanwhile, carbide contiguity and binder mean free path were estimated from 

empirical relationships given in the literature [37,172]. A small amount of Cr3C2     

(< 1%wt.) was added as grain growth inhibitor in 10CoUF, 9NiF, 6CoCrM and 6NiCrM 

grades.  

 

 

6.2 Mechanical characterization 

Mechanical properties, including hardness (HV30) and Palmqvist indentation 

toughness (KIc) are listed for the materials studied in Table 6.2. Assessment of such 

properties for 10CoUF, 10CoC, 10CoNiM and 9NiF grades was done and reported in 

previous works by the research group [172–174]. Similar testing procedures were here 

implemented to determine such properties for the other three hardmetals under 

consideration. Hardness was measured using a Vickers diamond pyramidal indenter and 

applying a load of 294 N. At least ten indentations were carried out in each case, on 

diamond polished surfaces. Palmqvist indentation toughness was evaluated using 

Shetty et al.’s equation, taking into consideration the length of the cracks emanating 

from the corners of imprint left after Vickers indentation referred above [52].  
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Fig. 6.1. FESEM micrographs of investigated cemented carbide grades: (a) 10CoUF, 

(b) 10CoC, (c) 10CoNiM, (d) 9NiF, (e) 6CoM, (f) 6CoCrM, and (g) 6NiCrM. 
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Table 6.2. Basic mechanical parameters for cemented carbides studied. 

Specimen code HV30 (GPa) KIc (MPa*m1/2) 

10CoUF 15.7±0.6 10.4±0.3 

10CoC 11.4±0.2 15.8±0.3 

10CoNiM 11.6±0.1 15.3±0.3 

9NiF 13.2±0.2 11.5±0.2 

6CoM 16.0±0.2 11.1±0.2 

6CoCrM 15.9±0.1 11.0±0.3 

6NiCrM 15.1±0.1 10.0±0.3 

 

 

6.3 Corrosion behavior 

Corrosion behavior was studied by means of immersion test and electrochemical 

measurements. In the former, well-prepared hardmetal samples (cut, ground and 

polished) were immersed in a stirred corrosive media during variable periods of time, 

at a constant temperature. Their corrosion behavior was then determined on the basis 

of three different approaches [4,16,136]. First, examination of the cross-section of 

corroded samples aiming to measure the nature and depth of corrosion affected zone. 

Second, calculation of the corrosion rate using data attained from measurements of 

weight loss corresponding to different corrosion times. And third, measurement of 
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amount of dissolved binder by means of atomic absorption techniques. In the latter case, 

it included potentiostatic/galvanostatic polarization and cyclic voltammetry. In doing 

so, an electrochemical cell was used to generate voltage and current from chemical 

reactions or induce chemical reactions by the input of electrochemical signals. The most 

frequently used electrochemistry system is the three-electrode cell system, and the one 

employed in this study is shown in Fig. 6.2. There, the test specimen is the working 

electrode, a platinum wire is the counter electrode, and a silver/silver chloride (1M) 

electrode is used as the reference one.  

 

 

Fig. 6.2. Three-electrode electrochemical cell system. 

 

In this work, both immersion test and electrochemical measurement were employed 

with a two-fold purpose: introduction of corrosion damage in a “controlled” way and 

determination of the corrosion behavior of the hardmetal grades studied. Corrosion 

rates of the studied materials in different corrosive media (i.e. 0.1M HCl, 0.1M NaCl 

and 0.1M NaOH solutions) were calculated on the basis of measured weight loss and 

corrosion front depth as a function of corrosion time. On the other hand, regarding the 
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potentiodynamic polarization tests, open circuit potential (OCP) was carried out and 

Tafel extrapolation was used to determine corrosion potential (Ecorr), current density 

(icorr), and critical current density (ic).  

 

 

6.4 X-ray diffraction 

X-ray diffraction (XRD) is a rapid and non-destructive technique in materials science 

for determining atomic and molecular structure of a material. This is done by irradiating 

the material sample with incident x-rays, and then measuring the intensity and 

scattering angle of the x-rays scattered by the material. The intensity of the scattered x-

rays is plotted as a function of the scattering angle, and the structure of the material is 

determined from the analysis of the location, angle, and the intensities of scattered 

intensity peaks. 

 

Fig. 6.3 schematically shows the radiation-structure interaction taking place when x-

ray waves of a specific wavelength (λ) incide upon the atomic plane (hkl) in a crystalline 

structure with a plane spacing (dhkl). At a certain angle of incidence (θ), the periodic 

distribution of atoms on planes causes constructive interference of the coherent 

component of scattered radiation from the individual atoms, which is reflected by the 

detectable peaks in intensity. In this sense, Bragg’s law is well satisfied: 
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                            2 sinhkln d =                         (6.1) 

where n is an integral multiple, λ is the wavelength of the x-rays, dhkl is the spacing 

between a set of planes with (hkl) Miller indices and θ is the angle of incidence at which 

a diffraction peak is measured. 

 

In the present study, X-ray diffraction (Philips MRD) using Cu K-α (40 kV and 30 mA) 

radiation was employed to characterize the phase constitution before and after corrosion 

tests. 

 

 

Fig. 6.3. Illustration of Bragg’s law. 
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6.5 Assessment of mechanical contact response 

During the last 20 years, several techniques have become popular for measuring the 

mechanical response of cemented carbides when subjected to contact loading 

[40,45,86-88,92,115,175,176]. Among them, nanoindentation, nanoscratch, single 

point scratching and Hertzian indentation are the ones that have received most attention. 

 

6.5.1 Nanoindentation 

Nanoindentation is considered a fast and reliable technique for evaluation of local 

mechanical properties, such as hardness and elastic modulus, in very small volumes of 

material [177–179]. Fig. 6.4 schematically illustrates an experimental nanoindenter 

instrument. During nanoindentation testing, hardness and elastic modulus of the 

material are determined using the load-displacement data recorded (Fig. 6.5). It 

includes the key parameters for determining the referred properties, i.e. Fmax, peak 

indentation load; hmax, indenter displacement at peak load; and S, contact stiffness. 

 

In general, hardness (H) is defined as the ratio between the maximum load and the 

projected contact area (A) at peak load (Fmax), generated during the indentation testing: 

                                    maxF
H

A
=                              (6.2) 

where A is given by:  

                                   t cA k h=                                (6.3) 

where kt is geometric constant of the tip, and hc is the contact depth, which can be 
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defined as:  

                                 
maxc sh h h= −                              (6.4) 

where hmax can be experimentally measured, and hs is the elastic deflection of the 

surface at a specific contact perimeter which depends on the indenter geometry: 

                             max
s

F
h

S

 

=  
 

                         (6.5) 

where ε is a geometric constant of indenter [177]. 

 

Fig. 6.6 shows a cross section of an indentation, where the parameters used in above 

analysis can be easily identified. 

 

 

 

Fig. 6.4. (a) Schematic illustration of the experimental apparatus used to perform a 

nanoindentation test [178], (b) Berkovich tip: a pyramid with an equilateral triangle as 

the base area. 
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Fig. 6.5. Schematic representation of a load-displacement curve, highlighting key 

experimental parameters [177]. 

 

The reduced elastic modulus, Er, for the specimen/indenter system can be calculated by 

the following equation: 

( ) ( )2 21 11 s i

r s iE E E

 − −
= +                        (6.6) 

where Es and Ei are Young’s moduli, and vs and vi are Poisson’s ratios, of the tested 

specimen and the indenter, respectively. 

 

The reduced elastic modulus Er can also be determined as a function of the 

experimentally measured contact stiffness (S) and the contact area (A0), as expressed 

by: 

                                   
0 02

r

S
E

A




=                        (6.7) 

where β0 is a constant depending on the tip geometry [177]. 
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Fig. 6.6. Schematic representation of a section through an indentation [177].  

 

In order to measure the mechanical properties and integrity of very small volumes of 

cemented carbides, nanoindentation is probably the technique most frequently used, 

due to the relative easiness in testing. Compared with other techniques involving higher 

length scales, nanoindentation presents several advantages: measurements are local in 

the micron range and mechanical properties are depth-sensing. The latter allows to 

study and analyze evolution of them at different penetration depths, an interesting 

capability when surface degradation is involved.  

 

In addition to conventional nanoindentation, the equipment may also be used to conduct 

sliding contact tests. In this process, a series of parameters can be set, such as scratch 

length, normal load, scratch velocity, etc. In the normal configuration of the test, a 

diamond (Berkovich) stylus is drawn across the sample surface under an increasing 

load until some well-defined failure events occur. For the case of hardmetals, such 

experimental approach has been implemented to evaluate microstructural effects on 

sliding contact, scratch and wear resistance, as well as to document and analyze 

deformation, wear and material removal mechanisms [168–170]. Regarding the latter, 
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scratching has been recalled for emulating individual removal event in abrasive 

machining, with controllable parameters, such as load and penetration depth. 

Considering that penetration depth indeed represents the interaction between the 

diamond tip and the surface of the cemented carbide, changes on this parameter as a 

function of exposure time to corrosive medium may clearly be used for studying surface 

and mechanical integrity of corroded hardmetals at very small length scales, 

corresponding to incipient and/or effectively thin degraded layers.  

 

6.5.2 Pyramid (Vickers) indentation 

Vickers (pyramid) indentation is a method commonly used to evaluate hardness and 

contact damage induced by sharp tips in ceramic-based composites. It involves 

simultaneous lattice flow and cracking around the imprints generated, even at low loads 

[52,180–183]. Fig. 6.7 schematically shows damage scenarios of two different models 

discerned on the sample surface and underneath the indentation [184]. Vickers hardness 

of the tested materials can be calculated on the basis of the measured diagonal lengths. 

On the other hand, fracture toughness of a material may be estimated from the size of 

the crack emanating out of the corners of the corresponding imprint, assuming the mode 

of fracture is understood. For sharp indenters, lateral or median vents are formed. In the 

case of cemented carbides, median vents are formed in the underlying material and they 

may be classified in two types: Palmqvist and median cracks. Schematic of this 

indentation-induced crack system is shown in Fig. 6.7a. It is defined as a Palmqvist 
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crack geometry, a necessary condition for assessing fracture toughness through the 

equation proposed by Shetty and co-workers [52].  

 

In this study, corrosion-induced changes on the load-bearing capability and crack 

growth resistance of the studied hardmetal grade were assessed by means of Vickers 

indentation. A range of loads (2–294 N) were chosen to induce relevant irreversible 

deformation and damage, the latter in terms of defined crack systems as those described 

above. 

 

 

Fig. 6.7. Illustration of top and cross-sectional views of contact damage induced by 

Vickers indentation: (a) Palmqvist model, and (b) half-penny/median model [184].  
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6.5.3 Single point scratching 

Abrasion is a wear mode that may be described as an accumulation of individual single 

point abrasion event. Within this context, a number of investigations have attempted to 

simulate abrasive service-like conditions using single point scratch tests at the 

laboratory level [33,118,119,185–187]. In doing so, the corresponding deformation and 

damage scenarios and mechanisms have been well explored and understood. Fig. 6.8 

shows the schematic of the scratch testing and the crack systems developed during such 

a test [188].  

 

In order to further understand the resistance of a material to experience irreversible 

deformation under sliding contact conditions, scratch hardness (Hs) value may be 

recalled [185]. Hs is generally defined as the hardness of a material when it is scratched 

by a stylus dragged in its surface under a given load. It is expected to be a better 

correlating parameter than the indentation hardness when assessing the tribological 

performance of many materials. During the scratch test, the stylus is allowed to plough 

into the test specimen up to a predetermined distance to form a groove. Then, the scratch 

hardness can be calculated as [189]: 

0

2

N
s

k F
H

w
=                            (6.8) 

where FN is the applied load, w is the scratch width, and k0 is a numerical constant 

which equals 8/π for styli having conical, spherical or parabolic tips [190].  
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Fig. 6.8. (a) Schematic illustration of the single point scratch process and different 

crack systems evolving during the process, and (b) side and front view of a symmetric 

probe used in scratch test [188]. In this figure, x indicates the scratch direction, FT and 

FV are the horizontal and vertical forces respectively, d is the penetration depth of the 

scratch, n is the outward unit normal to the probe material interface, A is the projected 

horizontal load bearing contact area, and p is the perimeter. 

 

6.5.4 Hertzian spherical indentation 

The experimental setup for Hertzian contact testing consists of indenting a flat surface 

of a studied specimen with a sphere indenter at a given load. During spherical 

indentation concentrated stresses are delivered such that typical ‘‘blunt” in-service 

conditions are simulated. Then, the mechanical integrity of materials may be assessed 
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on the basis of the damage scenario as a function of increasing applied load or number 

of cycles. Fig. 6.9 shows a schematic of the contact between a spherical indenter and 

deformed specimen as a result of a normal indentation load F. In this regard, the load-

bearing capability of the studied materials may be evaluated by measuring the residual 

depth (d0) of the indentation as a function of applied load. Data from Hertzian tests are 

usually presented in terms of contact pressure or indentation stress (p0) as well as the 

resulting indentation strain (ε0), e.g. Refs. [85,191]. Indentation stress is calculated by 

the equation:  

0 2

F
p

a
=                             (6.9) 

where F is the indentation load, and a is the radius of the contact circle. 

On the other hand, indentation strain is calculated as: 

0

a

R
 =                                (6.10) 

where R is the radius of the indenter. 

 

 

 

Fig. 6.9. Schematic diagram of the spherical indentation.  
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Fig. 6.10 presents a typical spherical indentation test on a hardmetal sample, using a 

servo-hydraulic universal testing machine. 

 

 

Fig. 6.10. Typical setup of a Hertzian spherical indentation test on a hardmetal 

sample. 

 

 

6.6 Microscopy 

Microscopy is a broad range technique involving the use of microscopes to determine 

microstructural characteristics (e.g. metallography, structure and phase constitution), 

discern and analyze features related to deformation and damage mechanisms, and 

conduct fractographic analysis. In this thesis, laser scanning confocal microscopy 

(LSCM) and field emission scanning electron microscopy (FESEM) were extensively 

used.  
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6.6.1 Laser scanning confocal microscopy 

Laser Scanning Confocal Microscopy (LSCM) became popular and increasingly 

important in the mid-1980s, due to the need for three-dimensional (3D) information in 

the plane of focus. Fig. 6.11 schematically shows the optical principle of LSCM [192]. 

In such an image, a laser beam is used to supply the excitation, which is emitted as a 

monochromatic light bundle. The excitation light provided by the laser is uniformly 

focused on a small spot of the test sample. Then, the fluorescence emitted by the sample 

is detected by a photomultiplier tube. Moreover, a mirror system is contained to make 

the laser beam scan across the plane of focus of the specimen (i.e. in x and y directions). 

The pinhole aperture between the sample and the detector is set for preventing the 

detection of out of focus fluorescence. With the help of computer data storage and 

processing, both 2-D and 3-D images can be obtained by using the different scanning 

types. Regarding the former, it can be done by an x-y scan. In the latter case, a 

consecutive series of x-y scans at different depths are taken in the specimen. The 

measurements are achieved by the microscope stage being repeatedly raised or lowered 

by a small distance (0.25-0.50 μm), and each time a new x-y scan is performed. 

 

In this thesis, the LSCM was extensively employed for determining the deformation 

and damage scenarios induced by indentation and scratch testing at different length 

scales. Appropriateness of using such technique was based on the consideration of 

clarifying the information difference from a three-dimensional view.  
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Fig. 6.11. Optical principle of laser scanning confocal microscopy (LSCM) [192].  

 

6.6.2 Field emission scanning electron microscopy 

Field emission scanning electron microscopy (FESEM) is a technique which permits 

the observation of a wide variety of information out of the sample surface, from 

nanometer to micrometer length scales. Fig. 6.12 shows the principle of FESEM 

operation [193]. It works with electrons with negative charge instead of light. These 

electrons are released by a field emission source and accelerated in a high electrical 

field gradient. Within the high vacuum column, these so-called primary electrons are 

focused and deflected by electronic lenses, to produce a narrow scan beam that 

bombards the specimen. As a result, secondary electrons are emitted from each spot on 

the specimen, the angle and velocity of which are determined by the surface structure 

of the test material. Subsequently, the secondary electrons are caught by a detector to 

produce an electronic signal that is finally amplified and transformed into a monitor or 

to a digital image.  
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Fig. 6.12. Schematic illustration of principle of FESEM operations [193]. 

 

 

6.7 Focused ion beam 

Focused ion beam (FIB) and combined FIB/FESEM dual systems have proved to be 

invaluable tools for in-situ observation of structural cross-sections, preparation of TEM 

lamella and atom probe specimens, generation of microstructural data in three 

dimensions, and nanofabrication of device and protypes [194–196]. Fig. 6.13 illustrates 

the operating principle of the FIB/SEM instrument [196]. During FIB milling, the 

focused ion beam removes material from the sample surface in a precise and controlled 

manner. With the combined use of FIB instrument and SEM (Fig. 6.13a), it can 

simultaneously monitor the milling process of the electron beam, and more importantly, 

perform non-destructive imaging of the sample surface compared to ion beam imaging. 

By accelerating and focusing an ionized gallium atom beam (i.e. with a high current 
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density) on the sample surface, the FIB system can be used to perform material removal 

at specific locations. The impinging ions can expel surface layer atoms from their 

positions by collision. Scanning the ion beam on the sample surface step by step can 

remove material layer by layer (Fig. 6.13b), which is the so-called ion milling process. 

In addition, the ion beam can also guide the deposition of materials in gas precursors 

that are released into the microscope cavity through a gas injection system (Fig. 6.13c). 

In this regard, the ion beam is usually generated by a source of liquid metal ions, of 

which the most popular ion species is gallium (Ga+) because of its low melting point, 

volatility, and vapor pressure. 

 

 

Fig. 6.13. Operating principle of a FIB/SEM microscope: (a) removal of material 

from the sample surface using a focused gallium ion beam, (b) ion beam milling, and 

(c) ion beam-assisted deposition [196]. 
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7 Articles presentation 

 

This Ph.D. thesis includes four sections involving: corrosion-induced changes on (1) 

residual strength, (2) small-scale mechanical integrity, (3) load-bearing capability and 

(4) Hertzian contact damage in cemented carbides. These sections correspond to 

Articles I, II, III and IV, respectively. 
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7.1 Article I  

 

Corrosion-induced damage and residual strength of WC-Co,Ni cemented carbides: 

influence of microstructure and corrosion medium 

Yafeng Zheng, Gemma Fargas, Elaine Armelin, Olivier Lavigne, Luis Llanes. 

 

The corrosion behavior of cemented carbides with binders of different chemical nature 

(Co and Ni) and carbides with distinct mean grain size (ultrafine and coarse) was 

studied. The investigation also included different corrosion media: acidic and neutral 

solutions containing chlorides and an alkaline one, as experimental variables. 

Immersion tests were performed to induce corrosion damage in a controlled way. 

Electrochemical parameters were measured together with a detailed inspection of the 

corroded surfaces. Microstructural influence on the tolerance to corrosion damage was 

evaluated in terms of residual strength. Results pointed out that corrosion rates were 

lower in the alkaline solution. In contrast, acidic media led to higher corrosion rates, 

especially for cemented carbides with Co, regardless the influence of carbide mean 

grain size. Corrosion damage resulted in strength degradation due to the formation of 

surface corrosion pits in acidic solution. In neutral and alkaline solutions, much less 

pronounced effects were determined. FIB/FESEM results revealed differences in 

corrosion-induced damage scenario. In acidic solution, corrosion starts at binder pool 

centres and evolves towards binder/WC interfaces. Meanwhile, corrosion in alkaline 

solution is initially located at binder/WC interfaces, and subsequently expands into the 

ceramic particles. 
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Abstract: The corrosion behavior of cemented carbides with binders of different chemical nature
(Co and Ni) and carbides with distinct mean grain size (ultrafine and coarse) was studied.
The investigation also included corrosion media (acidic and neutral solutions containing chlorides and
an alkaline solution) as experimental variables. Immersion tests were performed to induce corrosion
damage in a controlled way. Electrochemical parameters were measured together with a detailed
inspection of the corroded surfaces. Microstructural influence on the tolerance to corrosion damage
was evaluated in terms of residual strength. Results pointed out that corrosion rates were lower in
the alkaline solution. In contrast, acidic media led to higher corrosion rates, especially for cemented
carbides with Co regardless the influence of carbide mean grain size. Corrosion damage resulted in
strength degradation due to the formation of surface corrosion pits in acidic solution. In neutral and
alkaline solutions, much less pronounced effects were determined. Focused Ion Beam (FIB)/ Field
Emission Scanning Electron Microscopy (FESEM) results revealed differences in corrosion-induced
damage scenario. In acidic solution, corrosion starts at binder pool centers and evolves towards
binder/WC interfaces. Meanwhile, corrosion in alkaline solution is initially located at binder/WC
interfaces, and subsequently expands into the ceramic particles, developing a microcrack network
inside this phase.

Keywords: corrosion; cemented carbides; binder; grain size; damage tolerance

1. Introduction

Cemented carbides, usually referred to as hardmetals, are preeminent material choices for
extremely demanding applications, such as cutting and forming tools, mechanical seals, and mining
bits. The main reason behind this is the unique combination of hardness, toughness, and wear
resistance they exhibit. It results from their two-phase interpenetrated network as well as the intrinsic
properties of the ceramic particles and the metallic binder [1–5]. Many of the referred applications
often imply exposure of cemented carbides tools and components to chemically aggressive media
including a large variety of corrosive environments, such as lubricants, chemical and petrochemical
products, as well as mine- and sea-water (e.g., References [6–9]).
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Corrosion mechanisms in cemented carbides depend on a large number of factors, such as surface
state, corrosive medium, microstructural assemblage, and binder chemical nature. It has been found
that nickel, nickel-chromium, and nickel-cobalt binder exhibit higher corrosion resistance compared to
plain cobalt one, especially in acidic and neutral media. Under these conditions, metallic binders are
preferentially attacked, while ceramic phase is the one corroded in alkaline solution [10,11]. Regarding
the influence of grain size, it is difficult to extract clear conclusions from the literature. While some
authors report a negligible influence of the grain size on the corrosion behavior in acids [6], others have
found a direct correlation between passive current density and grain size in acidic solutions [12]. The
fact that neither materials nor the electrolytes were the same in these studies, increases the uncertainty
about this issue.

Performance and reliability of engineering components depend on how service-like conditions
may affect their properties. Several studies have shown detrimental corrosion effects on the effective
wear resistance of cemented carbides, as a result of synergic interactions among different degradation
phenomena [13–15]. Similar correlations have been reported regarding residual strength, measured
under either monotonic or cyclic loads [16–21]. However, most of these works have focused on either
one particular hardmetal grade or a specific corrosive medium. As a consequence, to draw generic
relationships including microstructure and corrosive medium aspects is not possible. Following
the above ideas, the corrosion-induced damage and the corresponding residual strength (tolerance)
behavior of four microstructurally different cemented carbides exposed to three distinct corrosion media
are studied here. In doing so, besides the mechanical response referred, electrochemical parameters are
measured as well as corrosion damage scenario is documented and analyzed. Information gathered is
expected to be useful for defining microstructural design guidelines on the basis of damage tolerance
as a function of type of corrosive medium.

2. Materials and Methods

Four hardmetal grades with different binder and carbide mean grain size were studied.
All materials were supplied by Hyperion Materials and Technologies. Hardness, fracture toughness
and main microstructural characteristics including specimen designations, binder content (%wt.),
mean grain size (dWC), contiguity (CWC) and binder mean free path (λbinder) are listed in Table 1.
Mean grain size was measured following the linear intercept method, using field emission scanning
electron microscopy (FESEM) micrographs. On the other hand, carbide contiguity and binder mean
free path were deduced according to empirical relationships given in the literature [2,22]. A small
amount of Cr3C2 (i.e., <1%wt.) was added in 10CoUF and 9NiF grades as grain growth inhibitor.

Table 1. Microstructural parameters, hardness and fracture toughness for the investigated cemented
carbides [20,23,24].

Specimen
Code %wt. Co %wt. Ni dWC (µm) CWC

λbinder
(µm)

HV30
(GPa) KIc (MPa)

10CoUF 10 - 0.39 ± 0.19 0.46 ± 0.06 0.16 ± 0.06 15.7 ± 0.6 10.4 ± 0.3
10CoC 10 - 2.33 ± 1.38 0.31 ± 0.11 0.68 ± 0.48 11.4 ± 0.2 15.8 ± 0.3

10CoNiM 8 2 1.44 ± 0.86 0.38 ± 0.08 0.47 ± 0.30 11.6 ± 0.1 15.3 ± 0.3
9NiF - 9 0.83 ± 0.49 0.44 ± 0.08 0.29 ± 0.18 13.2 ± 0.2 11.5 ± 0.2

Corrosion behavior was studied on the basis of the electrochemical response of the studied grades
in three different solutions: acidic (0.1M HCl), neutral containing chlorides (0.1M NaCl), and alkaline
(0.1M NaOH). The electrochemical tests were carried out using a VersaStatTM II potentiostat-galvanostat
(Princeton Applied Research, Oak Ridge, TN, USA.) and a standard three-electrode cell in which the
test specimen was the working electrode (area: 1.0 cm2), a platinum wire was the counter electrode, and
a silver/silver chloride electrode was used as the reference electrode. After immersion in the electrolyte,
the open circuit potential was stabilized for 30 min. Subsequently, the samples were polarized into the
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cathodic region at –500 mV. Then, the potential was increased towards the anodic region with a scan
rate of 600 mV/h in the positive direction up to 500 mV.

Immersion tests were performed to induce corrosion damage in a controlled way and to determine
the corrosion rates by gravimetric analysis. These tests were done at room temperature in the same three
solutions (stirred) as mentioned above. Weight loss was measured after immersion tests performed
from 1 to 240 h. Before and after immersion tests, the specimens were hand-cleaned using soapy water,
then ultrasonically cleaned for 15 min in ethanol, and subsequently dried in air. In this case, at least five
samples were tested for each material and solution. The specimens were weighted using an electronic
balance having a resolution of ±0.1 mg, and the corrosion rates were determined using Equation (1):

Corrosion(mm/year) = 87.6(
w

Aρt
) (1)

where w is the weight loss in mg; A is the surface area of the specimen in cm2; ρ is the density of the
material in g/cm3; and t is the corrosion time in hours.

After immersion tests, mechanical tests were carried out to assess the tolerance to corrosion-induced
damage—measured in terms of residual flexural strength—as a function of microstructure and corrosion
medium. Flexural strength (σr) was determined according to ASTM Standard C1161-13 by using a
fully articulating jig fixture in a four-point bending configuration, with inner and outer spans of 20
and 40 mm respectively [25]. Measurements were done on beam-like specimens (with dimensions of
4 mm × 3 mm × 45 mm) whose longitudinal edges were beveled before testing for avoiding stress
rising effects. A minimum of three specimens were tested for each corroded condition. Aiming to
define the “baseline” intrinsic flexural strength for each hardmetal grade studied, the same tests were
also conducted on uncorroded samples (eight tests per hardmetal grade). The equation used for the
strength calculation can be expressed as [25]:

σr =
3PL
4bd2 (2)

where P is break force in N; L is outer span in mm; b is specimen width in mm; and d is specimen
thickness in mm.

The mechanical study was complemented by fractographic inspection by means of optical
microscopy and FESEM. For each specimen, fracture initiation sites were identified at low magnification;
and then, strength-limiting flaws were further analyzed at higher magnifications. Finally, cross-sectional
samples were prepared by Focused Ion Beam (FIB) milling, using a dual bean Workstation. They were
used for evaluation of corrosion-induced damage at the subsurface level through FESEM imaging.

3. Results and Discussion

3.1. Corrosion Behavior

In immersion tests, the corrosion rates in acidic solution were higher for all studied cemented
carbides grades compared to neutral and alkaline ones, as shown in Figure 1. Table 2 gives the corrosion
rate values of investigated cemented carbides after immersion for 168 h in these three different media.
Coarse-grained cobalt grade, 10CoC, displayed in each solution the highest values, while 9NiF showed
the best corrosion resistance. The presence of small amount of chromium in 10CoUF grade together
with the ultrafine microstructure proved to be more effective than the presence of 2%wt. of nickel in a
coarse-grained cobalt grade, 10CoNiM. This result is in agreement with previous studies which pointed
out that during sintering chromium dissolves into the binder, resulting in a beneficial effect against
corrosion [26]. TEM analysis performed by Suttihiruangwong et al. [27] demonstrated the formation
of a passivating Co-based chromium oxide layer film at the binder surface, which strongly decreased
the rate dissolution of the binder, and hence improved the corrosion resistance of Cr-containing
cemented carbides.



Metals 2019, 9, 1018 4 of 11

Metals 2019, 9, x FOR PEER REVIEW 4 of 12 

 

For all studied grades and solutions, the corrosion rates decreased with increasing immersion 
time. In acidic and alkaline solutions, the corrosion rates sharply decreased after the first 6–8 h of 
immersion, remaining constant beyond 24 h. At the beginning of corrosion tests, the higher 
corrosion rate may be attributed to the relatively large area of the alloy exposed to the corrosive 
media. As the immersion progresses, the generated corrosion products gradually cover the surface 
of the alloy, which reduces the contact area between the alloy and the corrosive medium, thereby 
reducing the corrosion rate. For these two solutions, no layer of corrosion products was observed at 
the surface. In neutral solution, the reduction of the corrosion rate as a function of immersion time 
was observed to be more gradual for the coarse-grained cobalt grades, 10CoC and 10CoNiM. In this 
case, the presence of chloride ions enhances the formation of a corrosion product layer which seems 
to slow down the dissolution of cobalt. This layer does not protect the material from corrosion, as 
chromium, but hinders the dissolution process of cobalt. 

 

Figure 1. Corrosion rates as a function of immersion time for the studied cemented carbides in 
different solutions: (a) 0.1M HCl, (b) 0.1M NaCl and (c) 0.1M NaOH. 

Table 2. Corrosion rates of investigated cemented carbides after the immersion for 168 h. 

Specimen Code 
Corrosion Rate (mm/y) 

0.1M HCl 0.1M NaCl 0.1M NaOH 
10CoNiM 2.8 × 10−1 2.96 × 10−2 2.23 × 10−3 
10CoUF 2.7 × 10−1 8.67 × 10−3 1.19 × 10−3 
10CoC 3.8 × 10−1 4.12 × 10−2 4.77 × 10−3 
9NiF 5.97 × 10−2 4.76 × 10−4 1.09 × 10−3 

Figure 2 shows the obtained potentiodynamic polarization curves for the studied grades in the 
acidic, neutral and alkaline solutions. The electrochemical parameters measured for the studied 
cemented carbides are listed in Table 3. They include corrosion potential (Ecorr), corrosion current 
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Figure 1. Corrosion rates as a function of immersion time for the studied cemented carbides in different
solutions: (a) 0.1M HCl, (b) 0.1M NaCl and (c) 0.1M NaOH.

Table 2. Corrosion rates of investigated cemented carbides after the immersion for 168 h.

Specimen Code Corrosion Rate (mm/y)

0.1M HCl 0.1M NaCl 0.1M NaOH

10CoNiM 2.8 × 10−1 2.96 × 10−2 2.23 × 10−3

10CoUF 2.7 × 10−1 8.67 × 10−3 1.19 × 10−3

10CoC 3.8 × 10−1 4.12 × 10−2 4.77 × 10−3

9NiF 5.97 × 10−2 4.76 × 10−4 1.09 × 10−3

For all studied grades and solutions, the corrosion rates decreased with increasing immersion time.
In acidic and alkaline solutions, the corrosion rates sharply decreased after the first 6–8 h of immersion,
remaining constant beyond 24 h. At the beginning of corrosion tests, the higher corrosion rate may be
attributed to the relatively large area of the alloy exposed to the corrosive media. As the immersion
progresses, the generated corrosion products gradually cover the surface of the alloy, which reduces the
contact area between the alloy and the corrosive medium, thereby reducing the corrosion rate. For these
two solutions, no layer of corrosion products was observed at the surface. In neutral solution, the
reduction of the corrosion rate as a function of immersion time was observed to be more gradual for the
coarse-grained cobalt grades, 10CoC and 10CoNiM. In this case, the presence of chloride ions enhances
the formation of a corrosion product layer which seems to slow down the dissolution of cobalt. This layer
does not protect the material from corrosion, as chromium, but hinders the dissolution process of cobalt.

Figure 2 shows the obtained potentiodynamic polarization curves for the studied grades in the
acidic, neutral and alkaline solutions. The electrochemical parameters measured for the studied
cemented carbides are listed in Table 3. They include corrosion potential (Ecorr), corrosion current
density (icorr) measured using the Tafel method, and critical current density (ic), which refers to the
current density necessary to reach the passive or pseudo-passive potential. In acidic and neutral
solution, the grade with nickel as a binder, 9NiF, clearly displayed the noblest corrosion potential.
Meanwhile, coarse-grained cobalt grade, 10CoC, presented the most negative values. For this type
of microstructure, the corrosion potential was shifted to more positive values with the presence of
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2 wt.% of nickel as a binder, 10CoNiM. It is important to point out that although icorr is higher in
acidic solutions for 9NiF, ic was at least one order of magnitude lower than for the rest of the cobalt
grades. The addition of chromium in cobalt grades, 10CoUF, did not contribute to a better corrosion
response. As can be seen in Table 3, the Ecorr is moved in the noble direction. Likely, the apparent
transpassive region is shifted to higher potentials and lower ic, compared to the other grades. However,
at about +100 mV, the self-passivating layer underwent pitting corrosion and the surface response
became similar to the other cobalt grades. This phenomenon is supposed to be related to the fracture
of the protective oxide film referred above. Nevertheless, future works are needed to corroborate
it. Regarding the alkaline solution, no significant differences were observed among cobalt grades.
In this media, where the ceramic phase is easily corroded [10,11], the nickel grade showed the highest
current densities.
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Table 3. Electrochemical corrosion parameters of studied cemented carbide grades in acidic, neutral
and alkaline solutions.

Corrosive Media Specimen Code Ecorr (V) icorr (A/cm2) ic (A/cm2)

0.1M HCl

10CoUF −0.213 1.05 × 10−6 1.90 × 10−3

10CoC −0.237 9.27 × 10−7 1.90 × 10−3

10CoNiM −0.212 1.30 × 10−6 8.92 × 10−4

9NiF −0.084 1.54 × 10−5 2.11 × 10−4

0.1M NaCl

10CoUF −0.196 7.38 × 10−8 2.21 × 10−7

10CoC −0.322 5.05 × 10−6 3.67 × 10−4

10CoNiM −0.291 5.22 × 10−6 2.07 × 10−4

9NiF −0.124 5.20 × 10−7 -

0.1M NaOH

10CoUF −0.292 1.19 × 10−6 -
10CoC −0.278 1.12 × 10−6 -

10CoNiM −0.279 1.02 × 10−6 -
9NiF −0.274 1.20 × 10−5 -
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3.2. Residual Strength of Corroded Hardmetals

Retained strength was measured using samples subjected to immersion tests of 240 h in acidic,
neutral and alkaline solutions respectively (Figure 3b). Values are plotted as normalized strength
loss, using as reference baseline the strength exhibited by uncorroded specimens (Figure 3a). As it
can be observed, each studied corrosive medium induces relatively different strength losses, most
likely related to significant differences in the size and geometry of corrosion-induced damage acting as
critical flaws for fracture. HCl solution was found to be the most aggressive medium, i.e., flexural
strength for all studied grades, including the one with nickel as a binder, was significantly lessened.
The highest strength loss, 60% approximately, was observed for 10CoC. Meanwhile, for neutral and
alkaline solutions, retained strength was at least 80% in the worst-case scenario.

Aiming to analyze corrosion-induced damage promoting failure, a detailed inspection of fractured
surfaces was conducted by means of FESEM. In doing so, Figure 4 shows the fracture initiation sites
that were identified at low magnification together with the corresponding high magnification images
showing the strength-limiting flaws, in which corrosion pits and binderless carbide agglomerate act as
starting locations for subcritical crack growth until they reach a critical size where unstable fracture
takes place. Furthermore, the observations revealed clear differences between the corrosion-induced
damage as a function of the pH solution. In this sense, the affected depth from the surface for 10CoC in
acidic media was about 150 µm, Figure 5a, followed by the corroded zones from neutral and alkaline
medias, where the affected depths were close to 30 and 20 µm, respectively, as the maximum value,
Figure 5b,c. It reveals that corrosion affected zone act as critical points for starting fracture, and the
strength degradation shows a significant dependence on the depth of the corroded zone. A more
pronounced deterioration in the flexural strength is discerned as the corroded zone gets deeper.

Regarding carbide grain size in the neutral and alkaline solutions, the ultrafine-sized studied
grade was much more affected by corrosion-induced damage than the coarser ones. As reported
in previous investigations, sharp corrosion pits are formed in ultrafine-sized cemented carbides as
immersion time increases, which have a much more pronounced stress rising effect. Consequently,
higher strength loss was expected for ultrafine grades [19,20].
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3.3. FIB/FESEM Characterization of Corrosion-Induced Damage

A detailed inspection of transversal cut micrographs was conducted for all grades in the studied
media. As demonstrated in previous studies by the authors [19,20], the dissolution of metallic binder
in neutral solutions takes place in the core of binder pools rather than at the binder/carbide interface.
According to Figure 6, such damage emergence and evolution may be directly extrapolated to acidic
solutions. Here, the dissolution of metallic binders started from the center towards the carbide/binder
interface, independent of binder chemical nature (Co, Ni or CoNi) or grain size (coarse, fine or ultrafine).
Within this context, such observations yield further support to the hypothesis that binder dissolution
process is related to tensile thermal residual stress (TRS) state. On the other hand, they would discard
the hypothesis of Cr-enrichment effects at binder/WC interfaces [26–29]. TRS state emerges during
cooling from sintering temperature, due to the large difference on the coefficients of thermal expansion
between the carbide and binder phases. Indeed, Co has a coefficient of thermal expansion of about
twice that of WC, and consequently the binder phase is in tension while the WC particles are in
compression [30,31]. Therefore, the maximum tensile TRS are located in the center of the binder pools,
and consequently, stress corrosion effects are to be expected in these areas.



Metals 2019, 9, 1018 8 of 11

Metals 2019, 9, x FOR PEER REVIEW 8 of 12 

 

3.3. FIB/FESEM Characterization of Corrosion-Induced Damage 

A detailed inspection of transversal cut micrographs was conducted for all grades in the 
studied media. As demonstrated in previous studies by the authors [19,20], the dissolution of 
metallic binder in neutral solutions takes place in the core of binder pools rather than at the 
binder/carbide interface. According to Figure 6, such damage emergence and evolution may be 
directly extrapolated to acidic solutions. Here, the dissolution of metallic binders started from the 
center towards the carbide/binder interface, independent of binder chemical nature (Co, Ni or CoNi) 
or grain size (coarse, fine or ultrafine). Within this context, such observations yield further support 
to the hypothesis that binder dissolution process is related to tensile thermal residual stress (TRS) 
state. On the other hand, they would discard the hypothesis of Cr-enrichment effects at binder/WC 
interfaces [26–29]. TRS state emerges during cooling from sintering temperature, due to the large 
difference on the coefficients of thermal expansion between the carbide and binder phases. Indeed, 
Co has a coefficient of thermal expansion of about twice that of WC, and consequently the binder 
phase is in tension while the WC particles are in compression [30,31]. Therefore, the maximum 
tensile TRS are located in the center of the binder pools, and consequently, stress corrosion effects 
are to be expected in these areas. 

 

 
Metals 2019, 9, x FOR PEER REVIEW 9 of 12 

 

 

 

Figure 6. Micrographs showing corrosion damage-microstructure interactions on cross-section for 
the studied corroded grades in 0.1M HCl solution: (a) 9NiF (6 h), (b) 10CoNiM (6 h), (c) 10CoC (6 h) 
and (d) 10CoUF (5 min). 

It is well known that in alkaline solutions WC–Co cemented carbides show a different behavior 
compared to acidic or neutral solutions. In the former case, corrosion properties are controlled by the 
corrosion resistance of the WC grains [15,21,32,33]. In this work, exhaustive observations have been 
carried out in WC grains at increasing immersion time in 0.1 M NaOH. At low time exposures, the 
degradation of the WC grains has been discerned to start at the binder/WC interface which leaded to 
the formation of microcracks and their growth inside WC grains at increasing dwell time, Figure 7. 

 
Figure 7. Micrographs showing corrosion damage-microstructure interactions for 10CoC grade 
corroded in 0.1M NaOH during 240 h. 

Figure 6. Micrographs showing corrosion damage-microstructure interactions on cross-section for the
studied corroded grades in 0.1M HCl solution: (a) 9NiF (6 h), (b) 10CoNiM (6 h), (c) 10CoC (6 h) and
(d) 10CoUF (5 min).



Metals 2019, 9, 1018 9 of 11

It is well known that in alkaline solutions WC–Co cemented carbides show a different behavior
compared to acidic or neutral solutions. In the former case, corrosion properties are controlled by the
corrosion resistance of the WC grains [15,21,32,33]. In this work, exhaustive observations have been
carried out in WC grains at increasing immersion time in 0.1 M NaOH. At low time exposures, the
degradation of the WC grains has been discerned to start at the binder/WC interface which leaded to
the formation of microcracks and their growth inside WC grains at increasing dwell time, Figure 7.

Metals 2019, 9, x FOR PEER REVIEW 9 of 12 

 

 

 

Figure 6. Micrographs showing corrosion damage-microstructure interactions on cross-section for 
the studied corroded grades in 0.1M HCl solution: (a) 9NiF (6 h), (b) 10CoNiM (6 h), (c) 10CoC (6 h) 
and (d) 10CoUF (5 min). 

It is well known that in alkaline solutions WC–Co cemented carbides show a different behavior 
compared to acidic or neutral solutions. In the former case, corrosion properties are controlled by the 
corrosion resistance of the WC grains [15,21,32,33]. In this work, exhaustive observations have been 
carried out in WC grains at increasing immersion time in 0.1 M NaOH. At low time exposures, the 
degradation of the WC grains has been discerned to start at the binder/WC interface which leaded to 
the formation of microcracks and their growth inside WC grains at increasing dwell time, Figure 7. 

 
Figure 7. Micrographs showing corrosion damage-microstructure interactions for 10CoC grade 
corroded in 0.1M NaOH during 240 h. 
Figure 7. Micrographs showing corrosion damage-microstructure interactions for 10CoC grade
corroded in 0.1M NaOH during 240 h.

4. Conclusions

In this study, corrosion behavior was studied together with the effect of the corrosion-induced
damage on residual strength of cemented carbides with different binders and carbide grain size by
immersing them in acidic, neutral and alkaline solutions. The following conclusions may be drawn:

(1) Electrochemical and immersion tests revealed that nickel binder displays more noble corrosion
potential and critical current density compared to cobalt grades in acidic and neutral solutions
containing chlorides. In these conditions, the presence of small amounts of chromium improves
more the corrosion resistance of the materials than mixing nickel and cobalt as a binder.
No significant differences among studied grades were observed in alkaline solution.

(2) Corrosion damage resulted in strength degradation on the basis of stress rising effects associated
with the formation of surface corrosion pits in acidic solution for all studied grades. In neutral
and alkaline solutions, corrosion effects on residual strength are less pronounced. Under these
conditions, the grade more affected by exposure to corrosion medium is the ultrafine one.

(3) In acidic solution, the binder was preferentially attacked. The binder dissolution started from the
center of binder pools, independent of binder chemical nature, and spreads to the edges until
binder phase was completely consumed. In alkaline solution, corrosion process was initially
located at the binder/WC interface. As exposure time increased, degradation evolved into
microcracks which propagated inside the WC phase, yielding finally a fragmented-like scenario.
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A B S T R A C T

In this work, the effect of corrosion-induced damage on the mechanical response of hardmetals was evaluated at
small length-scale by means of nanoindentation and nanoscratch techniques. Damage was introduced in a
controlled way through immersion of samples in acidic solution. It was found that surface degradation associated
with corrosion leads to strong reduction of elastic modulus and hardness, as compared to non-corroded samples.
Similarly, significant differences were observed in nanoscratch response, regarding not only the width and depth
of tracks but also the deformation mechanisms developed as contact load is progressively increased. Damage
emergence and evolution were evidenced in corroded surfaces at scratching loads significantly lower than for
non-corroded specimens. Changes in nanoindentation and nanoscratch response and damage scenario are dis-
cussed on the basis of the effective microstructural assemblage remnant after corrosion action. In this regard,
dissolution of metallic phase becomes critical as it yields as a result a mechanically unsupported, contiguous and
binderless/porous, carbide network. Consequently, cracking, fragmentation and easy removal of WC grains
under contact loading is evidenced; and thus, mechanical integrity is effectively lessened.

1. Introduction

WC-Co cemented carbides, usually referred to as hardmetals, are
found at the forefront of a wide range of engineering products that
operate under harsh working conditions. Indeed, cemented carbides are
the preferential choice in almost all the applications where the best
solution against combined wear, impact and corrosion is sought [1].
The main reason behind it is the exceptional combination of intrinsic
mechanical parameters (i.e. hardness and toughness), wear resistance
and damage tolerance exhibited by them, as a result of the extremely
different properties of their two interpenetrating constitutive phases:
hard, brittle carbides and a soft, ductile metallic binder [2–4]. How-
ever, despite their outstanding properties, WC-Co alloys suffer from
different degradation phenomena that seriously affect the performance
and service-life of engineering structural parts. In this regard, many
hardmetal applications involve exposure to chemically aggressive
media, including a wide variety of corrosive environments such as lu-
bricants, chemical and petrochemical products, and mine and sea

waters, among others (e.g. Refs [5–9]).
Resistance to corrosion is not to be considered as a well-defined

intrinsic material parameter; as it represents an observed qualitative
performance which depends on various internal and external factors.
From this perspective, the corrosion behavior of hardmetals has been
extensively investigated in recent decades using different testing
methodologies and addressing influence of multiple factors, such as
surface state, corrosive medium, microstructural assemblage and binder
chemical nature [5–22]. In these studies, it has been shown that: (1)
corrosive media preferentially attack the binder phase when exposed to
acidic and neutral environments; (2) in alkaline solution, the Co binder
exhibits a stable passivation, while the WC phase dissolves easily; (3)
damage by corrosion induced by acidic media is usually much more
pronounced than that of neutral and basic ones; and (4) a greater
amount of dissolution of the binder phase in acid solution eventually
results in the formation of the oxide layer of W and a region depleted in
Co, compared to the exposure in neutral and basic solutions.

Optimal performance of engineering components is based on
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laboratory experiments attempting to simulate service-like conditions.
Within this context, several studies have shown detrimental changes in
the tribological response and effective wear resistance of cemented
carbides as a result of the interaction among corrosion and other de-
gradation phenomena such as erosion and abrasion [23–26]. Further-
more, relevant corrosion effects on residual strength, under imposed
mechanical loads, have also been reported for hardmetals [27–32].
However, most of the above literature reports mainly address micro-
structure-medium-performance correlations from a macroscopic per-
spective, without in-depth analysis of damage micromechanisms in-
volved. Interesting exceptions are the relatively recent works by Gee
and coworkers [33–37] where degradation micromechanisms have
been studied by implementing model abrasion tests, complemented
with the use of advanced microscopic inspection techniques. This study
attempts to follow an alike approach by evaluating corrosion effects on
small-scale mechanical response of hardmetals. In this regard, na-
noindentation and nanoscratch techniques have been successfully im-
plemented for determining mechanical and tribological properties of
cemented carbides at micro- and nanometric length scales, as given by:
(1) measurement of intrinsic hardness and elastic modulus of individual
constituent phases [38–40]; (2) evaluation of microstructural effects on
sliding contact, scratch and wear resistance [41–43]; and (3) doc-
umentation and analysis of deformation, wear and material removal
mechanisms [39,40,42,43]. Unfortunately, all the referred works have
been conducted on pristine or virgin hardmetals; hence, information on
how the limit state – in terms of failure or acceptable/unacceptable
criteria from a structural integrity viewpoint – is affected by the da-
mage induced by corrosion is completely missing for cemented car-
bides. Within the above framework, it is the aim of this investigation to
assess and analyze surface/subsurface and mechanical integrity
changes induced by exposure to an acidic media of a hardmetal grade,
by means of nanoindentation and nanoscratch testing complemented
with combined use of Field Emission Scanning Electron Microscopy
(FESEM) and Focused Ion Beam (FIB).

2. Experimental aspects

A plain WC-Co hardmetal grade was chosen for this study. It was
supplied by Hyperion Materials and Technologies and is here referred
to as 6CoM. Key microstructural parameters of the material in-
vestigated, including binder content (%wt.), mean grain size (dWC),
contiguity (CWC) and binder mean free path (λbinder), are listed in
Table 1. Mean grain size was measured by the linear intercept method
(LIM), using FESEM micrographs. Carbide contiguity and binder mean

free path were estimated following empirical relationship given in the
literature [3,44].

Corrosion damage was induced in a controlled way by immersing
the hardmetal specimens in stirred 0.1 M HCl solution at room tem-
perature. A long exposure time (264 h) was selected, in order to obtain
significant changes at both surface and subsurface levels. Before and
after immersion tests, samples were hand-cleaned using soapy water,
then ultrasonically cleaned for 15 min in ethanol, and finally dried in
air. Corrosion effects were evaluated in terms of (1) existing phases,
before and after immersion tests, by means of X-Ray diffraction (XRD)
using Cu Kα (40 kV and 30 mA) radiation; and (2) microstructural
changes discerned by cross-sectional inspection using optical micro-
scopy (OM), laser scanning confocal microscopy (LSCM) and FESEM.
The latter also allowed assessment of surface and subsurface integrity of
corroded specimens.

Corrosion-induced changes on the mechanical properties were
evaluated at small-length scale. Nanoindentation and nanoscratch tests
were performed on both non-corroded (virgin and polished) and cor-
roded surfaces using a Berkovich diamond indenter. Indentations were
performed at a constant strain rate of 0.05 s−1, up to the maximum
displacement into surface or until reaching the maximum applied load
of 650 mN. In these tests, hardness (H) and Young's modulus (E) were
evaluated as a function of the penetration depth with a nanoindenter
unit, according to Oliver and Pharr's model [45]. A homogeneous array
of twenty-five indentations (5 by 5) were made on each sample and the
results were averaged. Meanwhile, scratch tests were carried out under
constant sliding contact rate (1 μm/s) while the indenter applied in-
creasing loads as it moved along the scratch length. Tests were run until
maximum load values of either 60 mN or 500 mN, along scratch lengths
of 60 or 200 μm respectively.

Deformation and damage scenarios induced by residual imprints
(nanoindentations) and tracks (nanoscratchs) were evaluated by in-
specting contact surface and corresponding subsurface regions through
a dual beam FESEM/FIB unit. Regarding cross-section examination,
prior to milling, a thin protective layer of platinum was deposited on
the region of interest to reduce waterfall effects, which affect the
quality of the images. Current and acceleration voltage of Ga+ source
was subsequently reduced down to a final polishing stage at 500 pA at
30 kV respectively.

3. Results and discussion

3.1. Microstructural changes induced by corrosion

Fig. 1 shows cross-sectional images obtained from OM and FESEM/
FIB for the corroded specimen. They reveal a homogeneously degraded
layer of about 450 μm in-depth (Fig. 1a). As evidenced in Fig. 1b, it is
mainly the result of a preferential attack of cobalt binder which leads to
a network of unsupported carbides throughout the affected layer. Such
a finding is consistent with literature reports on the corrosion of WC-
based hardmetals exposed to acidic media [15,17]. It is also in complete

Table 1
Microstructural parameters for the investigated cemented carbide.

wt% Co dWC (μm) CWC λbinder (μm)

6 1.51 ± 0.16 0.48 ± 0.02 0.32 ± 0.03

Fig. 1. Cross-section images illustrating (a) microscopic aspect and (b) microstructural changes of degraded layer, resulting after immersion in 0.1 M HCl solution for
264 h of the hardmetal grade studied.
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agreement with differences determined, before and after corrosion, in
XRD patterns of the material studied. As it is discerned in Fig. 2, cobalt
peaks observed in the pristine specimens are absent after corrosion.

3.2. Nanoindentation tests: mechanical response and deformation/damage
micromechanisms

Typical load-displacement (P-h) curves recorded from Berkovich
indentation tests are given in Fig. 3. It is clearly discerned that corro-
sion-induced damage has a significant effect on P-h behavior for the
studied grade. It translates in an obvious increase (about 300 nm) of

maximum penetration depth. Fig. 4 shows elastic modulus and hardness
values as a function of penetration depth for both non-corroded and
corroded surface conditions. Values are stabilised for penetration
depths larger than 500 nm. At lower depths, measured values display
considerable scatter due to scale effects (e.g. surface defects and
roughness). Mechanical properties of the studied grade are pronounc-
edly degraded due to the corrosion-induced damage. Young's modulus
of 679 GPa and hardness of 24 GPa obtained for the virgin condition are
in satisfactory agreement with those measured for similar grade at such
small length scale. It then validates the much lower values determined
for the corroded condition, 464 GPa and 15 GPa respectively, as a

Fig. 2. XRD patterns determined for the alloy studied: (a) before, and (b) after immersion test.

Fig. 3. Representative indentation P-h curves from Berkovich indentation for both surface conditions studied.

Fig. 4. (a) Young's modulus and (b) hardness values as a function of penetration depth for non-corroded (black) and corroded (blue) samples. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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genuine effect of the corrosion-induced changes.
Deformation and damage scenario is also observed to change dra-

matically when comparing virgin and corroded specimens, as shown in
Fig. 5. For the non-corroded condition, as expected, both hard and soft
phases exhibit effective deformation compatibility between them, with
very few fracture features (cracks) localized in WC grains (Fig. 5a).
When subjected to mechanical loads, relatively high fracture toughness
is beneficial for supressing and/or tolerating damage in structural
materials. In cemented carbides, the metallic Co-base binder is able to
deform by either mechanical twinning, dislocation slip and/or phase
transformation [46–48]. Hence, most of the deformation imposed is
absorbed for the metallic phase, avoiding then cracking of carbides. For
the corroded specimen, the dissolution of the metallic binder reduces
significantly load-bearing capability of the remnant microstructure, i.e.
a mechanically unsupported carbide skeleton. This translates in easy
removal of loose grains, as shown in Fig. 5b.

Above ideas are further supported by FIB/FESEM cross-sectional

inspection of residual imprints. As it is shown in Fig. 6, the surface and
mechanical integrity are significantly affected by corrosion. Different
from the non-corroded specimen, where effective load-sharing between
metal and ceramic phases is evidenced, the absence of the former in the
corroded sample yields a completely distinct scenario. Here, the brittle
carbide phase must accommodate all the irreversible deformation im-
posed through direct load transfer between neighboring grains. As a
result, local collapse of the unsupported (binderless and porous) carbide
network and intensified multiple cracking is discerned.

3.3. Nanoscratch tests: mechanical response and deformation/damage
micromechanisms

Scratch load-penetration depth curves resulting from nanoscratch
testing are presented in Fig. 7. As the load increases, both samples
exhibit a rising penetration depth, as expected. Scratching penetration
for a given applied load is significantly deeper for the corroded con-
dition. This is consistent with the mechanical response recorded during
nanoindentation. Under given nanoscratch condition, deeper penetra-
tion inevitably results in a larger damaged area, as it will be described
later.

Fig. 8 shows different post-scratch scenarios for both non-corroded
and corroded conditions. In general, it is clearly discerned that failure-
related events, i.e. spallation, cracking, etc., are much more pro-
nounced in the corroded specimen. Virgin specimen exhibits a higher
scratch resistance response, as concluded from the narrower and shal-
lower tracks. This also applies to damage tolerance, as related to spal-
lation and local chipping degree.

For non-corroded condition, a clear groove is discerned, where
debris and some crushed particles are found to pile-up at the corre-
sponding edges. This irreversible deformation and damage scenario is
extremely more pronounced for the corroded condition, mainly as a
result of a higher accumulation of the referred debris features. Thus,
track edges are rather ill-defined, although clearly linked to wider and
deeper tracks, for a given applied load level.

Fig. 5. Residual imprints obtained as a result of nanoindenting (up to maximum displacement into surface of 2000 nm) (a) non-corroded and (b) corroded surfaces.

Fig. 6. FIB cross-section of a Berkovich indented surface: (a) non-corroded and (b) corroded 6CoM.

Fig. 7. Typical penetration depth - scratch distance (under increasing applied
load condition) curves obtained for uncorroded and corroded specimens.
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Deformation and removal mechanisms along the scratch track were
inspected in detail by means of FESEM. Fig. 9 illustrates that damage
emerges earlier in the corroded specimen, as compared to the non-
corroded one and in terms of applied load, i.e. ~50 mN and ~ 65 mN
respectively. In the latter, changes are evidenced in terms of compatible
plastic deformation between both phases as well as localized micro-
fracture within contiguous carbide grains (Fig. 9a). In this regard, the
intrinsic toughening capability of the binder delays the generation of
carbide microfracture and avoids potential grain pull-out [35,42]. Si-
milar plastic deformation mechanisms are no longer discerned in
scratch tracks for corroded specimens, regarding both metallic and
ceramic phases. On the one hand, this finding is obvious as it is directly
related to the absence of the metallic binder. On the other hand, it is the

consequence of intensified stress at carbide/carbide contacts which
then promotes fracture over plasticity within the hard phase. Finally,
WC grains get severely fragmented and subsequently removed (Fig. 9b).

Evolution of damage scenario with increasing imposed load for both
non-corroded and corroded specimens is illustrated in Fig. 10. It is seen
that multiple and increasingly finer cracking of individual WC grains is
also reached in the non-corroded specimen. However, different from
the corroded case, WC fragments are then re-embedded into the de-
formed Co phase (Fig. 10a), in agreement with wear mechanisms de-
scribed in the literature [33–37,41,42,49,50]. In the corroded speci-
mens, early fragmentation of individual carbide grains directly evolves
into grain chipping, delamination and dislodging (Fig. 10b). At larger
length scales, as applied load increases a rougher morphology, as well
as a larger lump piling up near the groove edge, is also discerned.

In order to further document and understand the correlation be-
tween corrosion-induced damage and mechanical response degrada-
tion, a detailed cross-sectional inspection of scratch tracks was carried
out by means of FIB/FESEM. Fig. 11 shows images corresponding to
scratch tracks, at an applied load level of 225 mN, for non-corroded and
corroded surfaces. Clearly, two-phase built-up material piled-up can be
seen on the edge of the scratch track for the non-corroded surface. In
contrast, edge tracks for the corroded specimens are characterized for
large clumps of removed (and previously fragmented) carbide grains.
As it has been discussed above, after binder dissolution, mechanical
integrity of the remaining WC skeleton is significantly decreased; thus,
loose grains can be easily removed even by light abrasion.

For the applied load level under consideration (225 mN), thickness
of deformed zone discerned for the non-corroded specimen is around
2 μm (Fig. 11a). Within such affected zone, deformation and fracture
features are clearly discerned in both phases. When subjected to the
compressive stresses induced by sliding contact (scratching), plastic
deformation of Co binder first occurs close to interphase boundaries. As
imposed stress rises, extrusion, cracking and removal of the binder
phase (Figs. 11a-1 and 11a-2) takes place. A further increase of stress
induces WC microfracture and potential fragmentation of the individual
grains. For the corroded specimens, strain energy associated with
sliding contact is absorbed/released by means of two different de-
formation/fracture micromechanisms. On the one hand, loose WC
grains near track edges are removed without further damage (e.g.
cracking, chipping), as shown in Fig. 11b, due to lack of mechanical
support. On the other hand, multiple cracking and fragmentation of

Fig. 8. LSCM micrographs of two scratch tracks performed on (a) non-corroded and (b) corroded samples.

Fig. 9. FESEM images showing early damage features along the scratch track in
(a) non-corroded and (b) corroded samples.
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Fig. 10. Scratch track view associated with three different applied load levels: 125 mN, 250 mN and 375 mN, for (a) non-corroded and (b) corroded surfaces.

Fig. 11. FIB cross-sections of the scratch track corresponding to a load level of 225 mN in (a) non-corroded and (b) corroded surfaces.
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individual carbides is extensively observed, as a direct consequence of
load transfer through a contiguous and binderless (and porous) carbide
network. Furthermore, some compaction of the open structure at the
subsurface is also discerned by filling out of cavities with fragmented
carbides as well as potential rotation and collapse of remnant carbide
grains (Fig. 11b-1).

4. Conclusions

Corrosion effects on microstructural assemblage, small-scale me-
chanical response (under contact loading) and involved deformation/
fracture micromechanisms for a plain WC-Co hardmetal grade have
been investigated. From the results presented in this study, the fol-
lowing conclusions may be drawn:

(1) Immersion testing in an acidic solution results in a significant de-
gradation of surface/subsurface integrity of cemented carbides. In
this regard, effective changes in microstructural assemblage of the
material are discerned by FESEM/FIB inspection: from an inter-
penetrating two-phase network for the non-corroded composite to a
contiguous and binderless (i.e. with cavities in regions where
binder has been dissolved) carbide skeleton in the corroded mate-
rial.

(2) Corrosion in acidic media is found to be quite detrimental for the
mechanical integrity of the hardmetal alloy studied. Due to the
lower load-bearing capability of the referred mechanically un-
supported carbide network existing in the corroded cemented car-
bide, their elastic modulus, hardness and sliding contact (scratch)
resistance are significantly degraded, as compared to those ex-
hibited by the non-corroded hardmetal.

(3) Deformation/fracture micromechanisms are also significantly af-
fected by corrosion. As the metallic binder is leached out during
exposure to the acidic solution, its well-established toughening
capability in non-corroded hardmetals is also completely lost.
Consequently, deformation induced by the imposed loads must be
exclusively accommodated by the binderless and porous network of
carbide phase. It is done through multiple cracking and fragmen-
tation of individual grains. Furthermore, as re-embedment of them
into the metallic phase (as it occurs for the non-corroded speci-
mens) is no longer possible, it finally yields easy pull-out and re-
moval of the hard phase in the corroded material.

Acknowledgements

This work was financially supported by the collaborative Industry-
University program between Hyperion Materials & Technologies and
Universitat Politècnica de Catalunya, and partly funded by the Spanish
Ministerio de Economía y Competividad through Grant MAT2015-
70780-C4-3-P (MINECO/FEDER). Y. F. Zheng acknowledges the Ph.D.
scholarship received from China Scholarship Council. J. J. Roa ac-
knowledges the Serra Húnter programme of the Generalitat de
Catalunya.

References

[1] L. Prakash, Fundamentals and general applications of hardmetals, in: V.K. Sarin,
D. Mari, L. Llanes (Eds.), Comprehensive Hard Materials, Elsevier, UK, 2014, pp.
29–90, , https://doi.org/10.1016/B978-0-08-096527-7.00002-7.

[2] H. Exner, Physical and chemical nature of cemented carbides, Int. Met. Rev. 24
(1979) 149–173, https://doi.org/10.1179/imtr.1979.24.1.149.

[3] B. Roebuck, E.A. Almond, Deformation and fracture processes and the physical
metallurgy of WC-Co hardmetals, Int. Mater. Rev. 33 (1988) 90–110, https://doi.
org/10.1179/imr.1988.33.1.90.

[4] E. Jiménez-Piqué, M. Turon-Vinas, H. Chen, T. Trifonov, J. Fair, E. Tarrés, L. Llanes,
Focused ion beam tomography of WC-Co cemented carbides, Int. J. Refract. Met.
Hard Mater. 67 (2017) 9–17, https://doi.org/10.1016/j.ijrmhm.2017.04.007.

[5] A.M. Human, H.E. Exner, The relationship between electrochemical behaviour and
in-service corrosion of WC based cemented carbides, Int. J. Refract. Met. Hard
Mater. 15 (1997) 65–71, https://doi.org/10.1016/S0263-4368(96)00014-5.

[6] B. Bozzini, G.P. De Gaudenzi, M. Serra, A. Fanigliulo, F. Bogani, Corrosion beha-
viour of WC-Co based hardmetal in neutral chloride and acid sulphate media,
Mater. Corros. 53 (2002) 328–334, https://doi.org/10.1002/1521-4176(200205)
53:5<328::AID-MACO328>3.0.CO;2-G.

[7] R. Lu, L. Minarro, Y.-Y. Su, R.M. Shemenski, Failure mechanism of cemented
tungsten carbide dies in wet drawing process of steel cord filament, Int. J. Refract.
Met. Hard Mater. 26 (2008) 589–600, https://doi.org/10.1016/j.ijrmhm.2008.01.
009.

[8] Q. Zhang, Y. He, W. Wang, N. Lin, N. Li, Corrosion behavior of WC-Co hardmetals in
the oil-in-water emulsions containing sulfate reducing Citrobacter sp, Corros. Sci.
94 (2015) 48–60, https://doi.org/10.1016/j.corsci.2015.01.036.

[9] B. Bozzini, B. Busson, G.P. De Gaudenzi, C. Humbert, C. Mele, S. Tedeschi,
A. Tadjeddine, Int. J. Refract. Met. Hard Mater. 60 (2016) 37–51, https://doi.org/
10.1016/j.ijrmhm.2016.06.010.

[10] W.J. Tomlinson, C.R. Linzell, Anodic polarisation and corrosion of cemented car-
bides with cobalt and nickel binders, J. Mater. Sci. 23 (1988) 914–918, https://doi.
org/10.1007/BF01153988.

[11] S. Sutthiruangwong, G. Mori, Corrosion properties of Co-based cemented carbides
in acidic solutions, Int. J. Refract. Met. Hard Mater. 21 (2003) 135–145, https://
doi.org/10.1016/S0263-4368(03)00027-1.

[12] B. Schnyder, C. Stössel-Sittig, R. Kötz, S. Hochstrasser-Kurz, H. Siegenthaler,
Investigation of the electrochemical behaviour of WC-Co hardmetal with electro-
chemical and surface analytical methods, Surf. Sci. 566-568 (2004) 1240–1245,
https://doi.org/10.1016/j.susc.2004.06.102.

[13] S. Sutthiruangwong, G. Mori, R. Kösters, Passivity and pseudopassivity of cemented
carbides, Int. J. Refract. Met. Hard Mater. 23 (2005) 129–136, https://doi.org/10.
1016/j.ijrmhm.2004.11.006.

[14] C.F. Barbatti, F. Sket, J. Garcia, A. Pyzalla, Influence of binder metal and surface
treatment on the corrosion resistance of (W,Ti)C-based hardmetals, Surf. Coat.
Technol. 201 (2006) 3314–3327, https://doi.org/10.1016/j.surfcoat.2006.07.135.

[15] S. Hochstrasser, Y. Mueller, C. Latkoczy, S. Virtanen, P. Schmutz, Analytical char-
acterization of the corrosion mechanisms of WC-Co by electrochemical methods and
inductively coupled plasma mass spectroscopy, Corros. Sci. 49 (2007) 2002–2020,
https://doi.org/10.1016/j.corsci.2006.08.022.

[16] F.J.J. Kellner, H. Hildebrand, S. Virtanen, Effect of WC grain size on the corrosion
behavior of WC-Co based hardmetals in alkaline solutions, Int. J. Refract. Met. Hard
Mater. 27 (2009) 806–812, https://doi.org/10.1016/j.ijrmhm.2009.02.004.

[17] D.S. Konadu, J. Van der Merwe, J.H. Potgieter, S. Potgieter-Vermaak, C.N. Machio,
The corrosion behaviour of WC-VC-Co hardmetals in acidic media, Corros. Sci. 52
(2010) 3118–3125, https://doi.org/10.1016/j.corsci.2010.05.033.

[18] Q. Zhang, N. Lin, Y. He, Effects of Mo additions on the corrosion behavior of WC-
TiC-Ni hardmetals in acidic solutions, Int. J. Refract. Met. Hard Mater. 38 (2013)
15–25, https://doi.org/10.1016/j.ijrmhm.2012.12.003.

[19] N. Lin, Y. He, C. Wu, S. Liu, Y. Jiang, Influence of TiC additions on the corrosion
behaviour of WC-Co hardmetals in alkaline solution, Int. J. Refract. Met. Hard
Mater. 46 (2014) 52–57, https://doi.org/10.1016/j.ijrmhm.2014.05.009.

[20] L. Zhang, Y. Chen, Q.-L. Wan, T. Liu, W. Tian, Electrochemical corrosion behaviors
of straight WC-Co alloys: exclusive variation in grain sizes and aggressive media,
Int. J. Refract. Met. Hard Mater. 57 (2016) 70–77, https://doi.org/10.1016/j.
ijrmhm.2016.02.009.

[21] A.M. Ferro Rocha, A.C. Bastos, J.P. Cardoso, F. Rodrigues, M.G.S. Ferreira,
Corrosion behaviour of WC hardmetals with nickel-based binders, Corros. Sci. 147
(2019) 384–393, https://doi.org/10.1016/j.corsci.2018.11.015.

[22] X. Zhang, J. Zhou, C. Liu, K. Li, N. Lin, Effects of Ni addition on mechanical
properties and corrosion behaviors of coarse-grained WC-10(co, Ni) cemented
carbides Int, J. Refract. Met. Hard Mater. 80 (2019) 123–129, https://doi.org/10.
1016/j.ijrmhm.2019.01.004.

[23] H. Engqvist, U. Beste, N. Axén, The influence of pH on sliding wear of WC-based
materials, Int. J. Refract. Met. Hard Mater. 18 (2000) 103–109, https://doi.org/10.
1016/S0263-4368(00)00007-X.

[24] A.J. Gant, M.G. Gee, A.T. May, The evaluation of tribo-corrosion synergy for WC-Co
hardmetals in low stress abrasion, Wear 256 (2004) 500–516, https://doi.org/10.
1016/j.wear.2003.04.001.

[25] M.R. Thakare, J.A. Wharton, R.J.K. Wood, C. Menger, Exposure effects of alkaline
drilling fluid on the microscale abrasion-corrosion of WC-based hardmetals, Wear
263 (2007) 125–136, https://doi.org/10.1016/j.wear.2006.12.047.

[26] R.J.K. Wood, S. Herd, M.R. Thakare, A critical review of the tribocorrosion of ce-
mented and thermal sprayed tungsten carbide, Tribol. Int. 119 (2018) 491–509,
https://doi.org/10.1016/j.triboint.2017.10.006.

[27] W.J. Tomlinson, I.D. Molyneux, Corrosion, erosion-corrosion, and the flexural
strength of WC-Co hardmetals, J. Mater. Sci. 26 (1991) 1605–1608, https://doi.
org/10.1007/BF00544670.

[28] V.A. Pugsley, G. Korn, S. Luyckx, H.G. Sockel, W. Heinrich, M. Wolf, H. Feld,
R. Schulte, The influence of a corrosive wood-cutting environment on the me-
chanical properties of hardmetal tools, Int. J. Refract. Met. Hard Mater. 19 (2001)
311–318, https://doi.org/10.1016/S0263-4368(01)00059-2.

[29] V.A. Pugsley, H.-G. Sockel, Corrosion fatigue of cemented carbide cutting tool
materials, Mater. Sci. Eng. A 366 (2004) 87–95, https://doi.org/10.1016/j.msea.
2003.08.057.

[30] J.M. Tarragó, G. Fargas, E. Jimenez-Piqué, A. Felip, L. Isern, D. Coureaux, J.J. Roa,
I. Al-Dawery, J. Fair, L. Llanes, Corrosion damage in WC-Co cemented carbides:
residual strength assessment and 3D FIB-FESEM tomography characterisation,
Powder Metall. 57 (2014) 324–330, https://doi.org/10.1179/1743290114Y.
0000000115.

[31] J.M. Tarragó, G. Fargas, L. Isern, S. Dorvlo, L. Llanes, Microstructural influence on
tolerance to corrosion-induced damage in hardmetals, Mater. Design 111 (2016)

Y.F. Zheng, et al. International Journal of Refractory Metals & Hard Materials 84 (2019) 105033

7



36–43, https://doi.org/10.1016/j.matdes.2016.08.066.
[32] W. Tang, L. Zhang, Y. Chen, H. Zhang, L. Zhou, Corrosion and strength degradation

behaviors of binderless WC material and WC-Co hardmetal in alkaline solution: a
comparative investigation, Int. J. Refract. Met. Hard Mater. 68 (2017) 1–8, https://
doi.org/10.1016/j.ijrmhm.2017.06.003.

[33] M.G. Gee, Model scratch corrosion studies for WC/co hardmetals, Wear 268 (2010)
1170–1177, https://doi.org/10.1016/j.wear.2010.01.004.

[34] M.G. Gee, L. Nimishakavi, Model single point abrasion experiments on WC/co
hardmetals, Int. J. Refract. Met. Hard Mater. 29 (2011) 1–9, https://doi.org/10.
1016/j.ijrmhm.2010.04.009.

[35] J.C.P. Zuñega, M.G. Gee, R.J.K. Wood, J. Walker, Scratch testing of WC/Co hard-
metals, Tribol. Int. 54 (2012) 77–86, https://doi.org/10.1016/j.triboint.2012.02.
027.

[36] A.J. Gant, M.G. Gee, D.D. Gohil, H.G. Jones, L.P. Orkney, Use of FIB/SEM to assess
the tribo-corrosion of WC/co hardmetals in model single point abrasion experi-
ments, Tribol. Int. 68 (2013) 56–66, https://doi.org/10.1016/j.triboint.2012.11.
008.

[37] M. Gee, K. Mingard, J. Nunn, B. Roebuck, A. Gant, In situ scratch testing and
abrasion simulation of WC/co, Int. J. Refract. Met. Hard Mater. 62 (2017) 192–201,
https://doi.org/10.1016/j.ijrmhm.2016.06.004.

[38] M.G. Gee, B. Roebuck, P. Lindahl, H.-O. Andren, Constituent phase nanoindentation
of WC/Co and Ti(C,N) hard metals, Mater. Sci. Eng. A209 (1996) 128–136, https://
doi.org/10.1016/0921-5093(95)10099-7.

[39] A. Duszová, R. Halgaš, M. Bľanda, P. Hvizdoš, J. Morgiel, Nanoindentation of
WC–Co hardmetals, J. Eur. Ceram. Soc. 33 (2013) 2227–2232, https://doi.org/10.
1016/j.jeurceramsoc.2012.12.018.

[40] J.J. Roa, E. Jimenez-Pique, C. Verge, J.M. Tarragó, L. Llanes, Intrinsic hardness of
constitutive phases in WC–Co composites: Nanoindentation testing, statistical
analysis, WC crystal orientation effects and flow stress for the constrained metallic
binder, J. Eur. Ceram. Soc. 35 (2015) 3419–3425, https://doi.org/10.1016/j.
jeurceramsoc.2015.04.021.

[41] S. Ndlovu, K. Durst, M. Göken, Investigation of the sliding contact properties of WC-

Co hard metals using nanoscratch testing, Wear 263 (2007) 1602–1609, https://
doi.org/10.1016/j.wear.2006.11.044.

[42] H.Q. Sun, R. Irwan, H. Huang, G.W. Stachowiak, Surface characteristics and re-
moval mechanism of cemented tungsten carbides in nanoscratching, Wear 268
(2010) 1400–1408, https://doi.org/10.1016/j.wear.2010.02.014.

[43] T. Csanádi, M. Novák, A. Naughton-Duszová, J. Dusza, Anisotropic nanoscratch
resistance of WC grains in WC–Co composite, Int. J. Refract. Met. Hard Mater. 51
(2015) 188–191, https://doi.org/10.1016/j.ijrmhm.2015.03.005.

[44] J.M. Tarragó, D. Coureaux, Y. Torres, F. Yu, I. Al-Dawery, L. Llanes, Implementation
of an effective time-saving two-stage methodology for microstructural character-
ization of cemented carbides, Int. J. Refract. Met. Hard Mater. 55 (2016) 80–86,
https://doi.org/10.1016/j.ijrmhm.2015.10.006.

[45] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and
elastic modulus using load and displacement sensing indentation experiments, J.
Mater. Res. 7 (1992) 1564–1583, https://doi.org/10.1557/JMR.1992.1564.

[46] V.K. Sarin, T. Johannesson, On the deformation of WC-Co cemented carbides,
Meter. Sci. 9 (1975) 472–476, https://doi.org/10.1179/030634575790444531.

[47] B. Roebuck, E.A. Almond, A.M. Cottenden, The influence of composition, phase
transformation and varying the relative F.C.C. and H.C.P. phase contents on the
properties of dilute Co-W-C alloys, Mater. Sci. Eng. A 66 (1984) 179–194, https://
doi.org/10.1016/0025-5416(84)90179-4.

[48] C.H. Vasel, A.D. Krawitz, E.F. Drake, E.A. Kenik, Binder deformation in WC-(Co,Ni)
cemented carbide composites, Metall. Mater. Trans. A 16 (1985) 2309–2317,
https://doi.org/10.1007/BF02670431.

[49] M. Gee, A. Gant, B. Roebuck, Wear mechanisms in abrasion and erosion of WC/co
and related hardmetals, Wear 263 (2007) 137–148, https://doi.org/10.1016/j.
wear.2006.12.046.

[50] J. Heinrichs, M. Olsson, S. Jacobson, Surface degradation of cemented carbides in
scratching contact with granite and diamond-the roles of microstructure and
composition, Wear 342 (2015) 210–221, https://doi.org/10.1016/j.wear.2015.08.
024.

Y.F. Zheng, et al. International Journal of Refractory Metals & Hard Materials 84 (2019) 105033

8



Assessment of corrosion-induced damage in the mechanical contact response of cemented carbides at different length scales 

 

99 
 

7.3 Article III  

 

Indentation and scratch testing of medium-grained WC-6%wtCo: corrosion 

effects on load-bearing capability and induced damage 

Yafeng Zheng, Gemma Fargas, Olivier Lavigne, Luis Llanes. 

 

In this work, corrosion effects on the indentation and scratch response of a WC-6%Co 

hardmetal are investigated. Experimental variables include relative long corrosion 

times as well as indentation and scratch testing conditions, yielding damage scenarios 

whose depths are similar to length scale of the degraded surface layers. It is found that 

load-bearing capability and crack extension resistance of the cemented carbide grade 

studied are significantly reduced after exposure to corrosive media. This is related to 

relevant changes within the microstructural assemblage of the material, from an 

effective bulk ceramic-metal composite into a porous layer consisting of a binderless 

carbide network on top of a pristine-like hardmetal substrate. However, such lessening 

effects are found to be dependent on the ratio between indentation and/or scratch depth 

and thickness of the corroded layer. Hence, relative changes decrease as corrosion time 

increases, and no differences are discerned after seven days of immersion. Similar 

pronounced corrosion influence is evidenced in surface and subsurface damage 

scenario resulting after indentation and scratch tests. In this regard, a transition from 

well-defined cracking systems into a scenario consisting of multiple, branched and less 

shallow fissures is evidenced when comparing pristine and corroded specimens 

respectively. The experimental fact that referred cracking features for corroded 

specimens are confined within the porous-like degraded layers points out that it is the 

result of small length-scale interaction between cracks and the cavities within the 

binderless WC skeleton, left after the metallic binder has been leached away. 



 

 

 

 



 

101 
 

 

 

 

 

Article III 

 

 

Indentation and scratch testing of medium-grained     

WC-6%wtCo: corrosion effects on load-bearing 

capability and induced damage 

 

Y.F. Zheng  

G. Fargas  

O. Lavigne  

L. Llanes 

 

 

 

Ceram. Int. 46 (2020) 17591-17598 

 

 

 

 

 

 

 

 

Reprinted with permission. ©2020 Elsevier 
  



 

 

  



Contents lists available at ScienceDirect

Ceramics International

journal homepage: www.elsevier.com/locate/ceramint

Indentation and scratch testing of a WC-6%wtCo cemented carbide:
Corrosion effects on load-bearing capability and induced damage

Y.F. Zhenga,b, G. Fargasa,b, O. Lavignec, L. Llanesa,b,∗

a CIEFMA - Department of Materials Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal Besòs-EEBE, Barcelona, 08019, Spain
b Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal Besòs-EEBE, Barcelona, 08019, Spain
cHyperion Materials and Technologies, 08107, Martorelles, Spain

A R T I C L E I N F O

Keywords:
Corrosion
Load-bearing capability
Damage
Indentation
Scratch
Cemented carbide

A B S T R A C T

In this work, corrosion effects on the indentation and scratch response of a WC-6%Co hardmetal are investigated.
Experimental variables include relative long corrosion times as well as indentation and scratch testing conditions
yielding damage scenarios whose depths are similar to length scale of the degraded surface layers. It is found that
load-bearing capability and crack extension resistance of the cemented carbide grade studied are significantly
reduced after exposure to corrosive media. This is related to relevant changes within the microstructural as-
semblage of the material, from an effective bulk ceramic-metal composite into a porous layer consisting of a
binderless carbide network on top of a pristine-like hardmetal substrate. However, such lessening effects are
found to be dependent on the ratio between indentation and/or scratch depth and thickness of the corroded
layer. Hence, relative changes decrease as corrosion time increases, and no differences are discerned after seven
days of immersion. Similar pronounced corrosion influence is evidenced in surface and subsurface damage
scenario resulting after indentation and scratch tests. In this regard, a transition from well-defined cracking
systems into a scenario consisting of multiple, branched and less shallow fissures is evidenced when comparing
pristine and corroded specimens respectively. The experimental fact that referred cracking features for corroded
specimens are confined within the porous-like degraded layers points out that it is the result of small length-scale
interaction between cracks and the cavities within the binderless WC skeleton, left after the metallic binder has
been leached away.

1. Introduction

WC-Co cemented carbides, usually referred to as hardmetals, consist
of two interpenetrating networks of their metallic and ceramic con-
stitutive phases [1]. The intrinsic composite nature of these materials
permits to tailor unique combinations of mechanical properties by
proper selection of carbide grain size and metallic binder content [2,3].
As a result, they have consolidated as first choice materials for tools and
components to be used in highly demanding applications, e.g. cutting or
forming of metallic alloys, as well as mining operations [4].

Several of the above applications also include exposure to chemi-
cally aggressive media, such as lubricants, chemical products, petro-
chemical and mine slurries, and seawater [5–8]. Under these condi-
tions, it has been shown that failure induced under applied load is
accelerated, and corresponding service life may be significantly shor-
tened. In this regard, extensive research has proven that corrosion

significantly affects microstructural and mechanical/tribological char-
acteristics of cemented carbides. Regarding the former, it is well-known
that the original microstructural scenario is changed, through dissolu-
tion of different individual phases depending on acidic or basic nature
of the media [9–14]. Concerning the latter, it is established that rup-
ture, wear and fatigue resistance of corroded hardmetals decrease
[5,10,15–21]. One reason behind it is the pronounced stress rising ef-
fect of corrosion pits. Another one is a lower load-bearing capability
linked to an unsupported carbide skeleton resulting from removal of the
binder phase.

Critical review of most of the above works points out that observed
detrimental corrosion-related effects are usually discussed on the basis
of the direct correlation existing between microstructure and macro-
scopic property/response exclusively. Although this knowledge is in-
teresting and useful from a material selection viewpoint, additional
information is required if microstructural design against corrosion is
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aimed. This is particularly true concerning the changes that may be
induced by corrosion on damage scenario and/or active micro-
mechanisms, at both surface and subsurface levels, under applied load.
In this regard, an outstanding exception is the investigation conducted
by Gee and coworkers in the last decade [18,22,23]. In such studies,
they combined model single point abrasion (scratch) experiments and
advanced characterization techniques to document and rationalize the
influence of corrosion on corresponding damage micromechanisms.
Among their interesting observations, the evidence of structural col-
lapse at the subsurface level together with irregular longitudinal scratch
profiles, as a direct consequence of binder leaching, must be high-
lighted. A similar approach has been recently followed by Zheng et al.
[24] to assess and analyze surface/subsurface and small-scale me-
chanical integrity changes induced by exposure to an acidic media of a
hardmetal grade. Such study included nanoindentation and nano-
scratch testing together with inspection by means of Field Emission
Scanning Electron Microscopy (FESEM). Lower mechanical properties
were determined for the corroded cemented carbide investigated. This
finding was discussed on the basis of the effective microstructural as-
semblage remnant after corrosion action. In this regard, and in agree-
ment with the findings of Gee and coworkers, dissolution of the metallic
phase was found to yield a mechanically unsupported, contiguous and
binderless/porous, carbide network. As a final consequence, cracking,
fragmentation and easy removal of WC grains under contact loading
was observed on the corroded hardmetal.

It is the aim of this study to conduct a systematic investigation on
corrosion-induced changes on both load-bearing capability and damage
scenario of a WC-Co hardmetal grade. Different from the nanomecha-
nical study referred above, this investigation focusses on a higher
length scale (from 10s to 100s of microns in depth) as it includes re-
latively long corrosion times as well as pyramidal indentation and
sliding contact (microscratch) experiments applying loads ranging from
5 to 300 N. The former implies existence of uniform and rather thick
corrosion-affected layers, whereas the latter yields damage scenarios
whose depth is similar to length scale of the degraded surface layers.
Under these conditions, well-developed cracking systems are induced;
and thus, changes on the crack-microstructure interaction as a function
of corrosion extension may be studied.

2. Material and experimental aspects

The investigated material is a plain WC-Co supplied by Hyperion
Materials and Technologies. Binder content is 6%wt and mean value of
carbide grain size is about 1.5 μm, as measured by linear interception
using FESEM micrographs.

Corrosion damage was induced in a controlled way by immersing
the hardmetal specimens in stirred 0.1 M HCl solution at room tem-
perature during variable time periods: one (1D), three (3D), seven (7D)
and eleven (11D) days. Weight loss was measured during the immersion
tests. Corrosion rate was determined according to the following equa-
tion:

=Corrosion mm year w
Aρt

( / ) 87.6( )
(1)

where w is the weight loss in mg; A is the surface area of the specimen
in cm2; ρ is the density of the material in g/cm3; and t is the corrosion
time in hours. Phase characterization, before and after corrosion tests,
was conducted by means of FESEM and X-Ray diffraction (Philips MRD)
using Cu K-α (40 kV and 30 mA) radiation. Microstructural changes
induced by corrosion take place at both surface and subsurface levels.
In this regard, corrosion effects on surface integrity was evaluated
through examination of carefully prepared (cut, ground and polished)
transverse sections by means of laser scanning confocal microscopy
(LSCM) and FESEM.

Load-bearing capacity was investigated under two different loading
conditions: indentation and sliding contact (scratch) using pyramid

(Vickers) and conical (Rockwell) diamond indenters, respectively.
Range of loads used was different in both cases: 2–294 N in the former
and 5–60 N (at a loading rate of 50 N/min) in the latter. They were
chosen such to induce relevant irreversible deformation and damage,
including radial cracks out of the corners of the indentation imprints as
well as cracks and spallation in scratch tracks. At least three tests were
performed for each material and loading condition. Load-bearing cap-
ability associated with indentation tests was assessed in terms of
Vickers hardness by measuring length of diagonals. On the other hand,
irreversible deformation resistance under sliding contact conditions was
evaluated in terms of an apparent scratch hardness (Hs) value, calcu-
lated as [25]:

=H P
πw

  8
s

s
2 (2)

where Ps is the applied scratch load in N; and w is the corresponding
scratch width in μm. Scratch testing unit used (CSM Revetest) is
equipped with an optical microscope which was set for measuring track
width corresponding to a given applied load value.

An extensive and systematic inspection of the damage scenario was
carried out. At the surface level, morphologies of residual imprints and
scratch tracks were observed using LSCM and FESEM. Regarding pyr-
amidal indentation tests, they yield nucleation and extension of cracks
out of the corners of residual imprints. Relative length of induced cracks
is related to effective toughness of the microstructural assemblage; and
thus, indirectly to their damage tolerance, a key parameter for optimal
microstructural design of hardmetals. Hence, corrosion effects on ef-
fective toughness were assessed by measuring the length of the induced
cracks using optical photographs acquired by LSCM. Crack extension
resistance (W) was then calculated using the following equation [26]:

=W P
a4 (3)

where P is the indentation load in N; and a is the mean radial crack
length in μm.

Subsurface evolution of indentation and scratch damage with in-
creasing load was examined by conducting specific tests on “clamped-
interface” specimens. In doing so, the procedure followed included five
sequential stages [27,28]. First, pristine and corroded specimens were
transversally cut to obtain different halves corresponding to each spe-
cific condition. Second, these two half-surfaces were put into a mold of
bakelite, with the original top surfaces facing each other, and the cut
section was ground and polished. Third, this mold was mechanically
broken and, once more, the two halves were put into another mold of
bakelite, with the newly polished surfaces clamped face-to-face. Fourth,
uncorroded and corroded surfaces were indented (under applied load of
294 N) and scratched (up to 60 N) near the surface trace of the interface
- keeping an equal distance between interface and either indentation
imprint or end of scratch track, respectively. Fifth, the two parts were
mechanically separated again, and polished cross-sections of corre-
sponding half-surfaces were finally examined using LSCM. Here, special
attention was paid to examine subsurface damage introduced by in-
dentation and scratches done on the top surface of the “clamped-in-
terface” specimens.

3. Results and discussion

3.1. Corrosion-induced changes at both surface and subsurface levels

Fig. 1 shows top-view and cross-sectional micrographs from cor-
roded samples. As expected from the relatively long corrosion times
investigated, microstructural changes are uniformly distributed at both
surface and subsurface regions. In this regard, longer immersion times
yield more relevant changes on microstructural assemblage as well as
deeper corrosion fronts. Direct measurement of corrosion front depth
indicates a linear correlation with time, in agreement with the
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relatively constant corrosion rates determined (using weight loss data),
within the exposure time studied in this work, i.e. between 1 and 11
days (Fig. 2). Detailed microstructural observation and analysis carried
out by FESEM and XRD (Fig. 3) pointed out that corrosion mainly af-
fects the metallic binder. This is leached away yielding a simple carbide
skeleton as the effective microstructural scenario for the degraded
surface layer in the corroded specimens.

3.2. Corrosion effects on load-bearing capability of hardmetals

Pyramidal indentation and scratch tests were performed on the
surface of non-corroded and corroded specimens to induce irreversible
deformation. Representative images of residual imprints and scratch
tracks for pristine and corroded conditions are shown in Figs. 4 and 5.
They are less pronounced but better defined in the uncorroded material.
On the other hand, discrete failure-related events such as chipping or

spallation, are rather discerned for the corroded conditions.
Fig. 6 shows the residual indentation depth as a function of applied

load for all the conditions studied. As expected, penetration increases as
the applied load gets higher. On the other hand, clear corrosion effects
are discerned in terms of a lower load-bearing capability of the exposed
material. Similar observations may be done from experimental data
collected from sliding contact tests, as shown in Fig. 7. In general,
mechanical response lessening increases for longer immersion times.
However, relative changes are much less pronounced after 3 days of
exposure to corrosive solution, and no differences are discerned after 7
days of immersion.

Similar corrosion effects are found on measured Vickers and ap-
parent (scratch) hardness values, as shown in Fig. 8 and Table 1, re-
spectively. Within the experimental scatter, Vickers hardness decreases
from 17 to 18 GPa for the uncorroded material to 11–12 GPa for the 7D
and 11D corroded conditions. The latter then represents the effective
load-bearing capability of the unsupported WC skeleton. This statement
is sustained by the fact that variable and intermediate hardness values

Fig. 1. FESEM top-view (a) and LSCM cross-sectional (b) micrographs of corroded samples: Microstructural aspect at the surface and subsurface of corroded layers for
different corrosion times.

Fig. 2. Average corrosion front depth and corrosion rate as a function of im-
mersion time.

Fig. 3. XRD analysis for non-corroded and corroded (11D) samples.

Y.F. Zheng, et al. Ceramics International 46 (2020) 17591–17598

17593



are measured for 1D and 3D corroded conditions, depending on the
imposed load. Such a trend is also evidenced when analyzing scratch
hardness data, although here higher relative differences between pris-
tine and corroded specimens are found. It would point out a higher
sensitivity of irreversible deformation resistance of the hardmetal to
corrosion-induced changes under the more complex loading state in-
volved in sliding contact. In general, these experimental results high-
light the lessening effect of corrosion on load-bearing capability of the
hardmetal, as well as the dependence of the measured mechanical re-
sponse on the ratio between indentation and/or scratch depth (and
associated plastic zone) and thickness of the corroded layer, as it will be
discussed below.

After being exposed to the 0.1 M HCl solution, the microstructure
assemblage of the corroded zone becomes loose and porous due to the
dissolution of the metallic phase [18,19,21]. Thus, the corrosion af-
fected zone may be effectively described as a porous film adhered to a
substrate consisting of the non-corroded hardmetal (Fig. 1). As a con-
sequence, the contact response of the corroded samples becomes largely
dependent on the thickness of the degrades layer, which is directly
related to the exposure time. In order to understand this effect, a re-
lative indentation depth (R) parameter, defined by the ratio between
indentation depth and layer thickness, is recalled to account for the
effect of coating thickness on measured mechanical properties [29–33].
In practice, it is assumed that substrate response does not affect the
measured mechanical properties of the coating, as far as R is lower than
0.1 [34]. However, for a soft porous film on a hard substrate, it has been
reported that such critical R value can even reach 0.3, because a higher
capability of the porous film to confine plastic deformation within it
[30]. The indentation depth (also measured by LSCM in this study) to
layer thickness ratios for the different corroded samples and applied
loads are included in Fig. 8. Slight deviation from average hardness
value measured in the 7D and 11D cases should be attributed to in-
dentation size effects, as widely reported in the literature [35,36]. On
the other hand, hardness data gathered for 1D and 3D corroded spe-
cimens indicates an obvious “substrate effect” linked to the non-cor-
roded hardmetal supporting the corroded layer. In this regard, higher

Fig. 4. LSCM micrographs of indentation imprints performed under applied load of 24.5 N on (a) non-corroded sample, and corroded specimens with different
exposure times: (b) 1D, (c) 3D and (d) 7D.

Fig. 5. LSCM micrographs of two scratch tracks performed on (a) non-corroded
and (b) corroded (7D) samples, with increasing load ranging from 35 N to 60 N.

Fig. 6. Indentation depth as a function of applied load for uncorroded and
corroded (for different exposure times) specimens.
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hardness values are measured as applied load increases or thickness of
corroded layer decreases. Within the experimental scatter of the results,
data measured for 1D and 3D exposed specimens would indicate re-
lative indentation depths about 0.2–0.3 as critical for intrinsic assess-
ment of the effective hardness of corroded layers, i.e. without being
affected by the mechanical response of the substrate. This will support
the idea of describing the corroded specimens as systems consisting of a
porous ceramic layer on top of a very hard composite substrate.

Aiming to further document and analyze corrosion effects on me-
chanical integrity at the surface of the hardmetal studied, length of
cracks emanating from imprint corners (Fig. 4) were measured for each
tested condition. Determined mean values are plotted as a function of
applied load in Fig. 9. A linear relationship was found in all the cases.
The longer the exposure to the corrosive media, the higher the slope,
pointing out a clear detrimental effect of corrosion on crack extension
resistance (Fig. 10), i.e. on Palmqvist or indentation toughness [26,37].
Nevertheless, it should be underlined that relevance of lessening effects

on crack extension resistance decays over the first 3 days of immersion,
and tends to stabilize for longer times (7 and 11 days).

Resistance against cracking phenomena of hardmetals is closely
related to the energy expended in the constrained plastic stretching of
Co binder ligament as cracks extend [38–40]. The higher the volume
fraction of the binder phase, the more pronounced is the toughening
due to ductile ligament reinforcements, as well as the corresponding

Fig. 7. Scratch (a) penetration depth (Pd) and (b) width as a function of applied load for non-corroded and 7-day corroded specimens.

Fig. 8. Hardness and ratio between indentation depth and corroded layer
thickness (R) as a function of applied load, for samples immersed in the cor-
rosive solution during different times.

Table 1
Apparent scratch hardness data, measured under applied load of 50 N, for the
different specimens studied. Corresponding Vickers hardness, measured under
applied load of 49 N, are also listed for comparison purposes.

Condition HS (50 N)
(GPa)

HV5(49 N)
(GPa)

0D 23. 3 ± 0.5 17.1 ± 0.4
1D 10.5 ± 0.8 12.8 ± 0.3
3D 8.1 ± 0.8 12.2 ± 0.4
7D 8.1 ± 0.9 11.2 ± 0.3
11D 8.8 ± 0.9 10.9 ± 0.2

Fig. 9. Mean length of radial cracks, emanating from imprint corners, as a
function of applied load for the pristine and corroded specimens investigated.

Fig. 10. Crack resistance as a function of immersion time for the different
specimens studied.
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crack growth (R-curve) resistance [41,42]. Once corroded, there is a
loose and porous WC skeleton left. Hence, effective removal of the
ductile metallic phase implies that the referred toughening effect is no
longer operative; and thus, energy required for subcritical crack pro-
pagation is lowered. As the corrosion time (corrosion front depth) in-
creases, value of crack extension resistance decreased from 928 to
564 kJ/m2. The transition from sharp changes at relatively short times
into a rather stable lessening rate of crack extension resistance must be
linked to the effective influence of the uncorroded substrate on the
surface cracking phenomena discerned. As it was discussed above when
analysing hardness data, substrate effects on the mechanical response of
the material are expected to vanish gradually as the ratio between in-
dentation depth and thickness of the corroded layer gets lower, i.e. as
exposure time to corrosive media gets longer.

3.3. Corrosion effects on damage scenario induced during indentation and
scratch tests

Similar to the findings reported on mechanical response, i.e. Vickers
and scratch hardness as well as crack extension resistance; corrosion
effects on damage induced under applied load are also extreme. It is
clearly illustrated by comparing developed damage in non-corroded
and corroded samples. In the case of pyramidal indentation (Fig. 11),
opposite to the sharp and shallow cracks discerned in the non-corroded
hardmetal, damage at the subsurface of the corroded conditions evolves
from defined cracks close to the surface into branched ones as they
growth into the bulk. Similarly, comb-like crack propagating paths
underneath the scratch tracks are completely different for uncorroded
and corroded conditions (Fig. 12). Systematic inspection - by control-
ling the distance between the scratch end and the edge - allows to
discern that as the indenter gets closer to the edge, damaged zone
changes from a well-defined cracking system for the uncorroded con-
dition into a multiple-cracking scenario confined within the porous-like
degraded layer for the corroded conditions. In agreement with previous
studies on sintered steels exhibiting a relative large intrinsic porosity
[43], cracks fork off within the corrosion layer aiming to follow easy
paths of interconnected pores (Figs. 11b–1, 11c-2 and 12b). As a result,
small-scale branching, interconnection and lateral crack growth parallel
to the surface are evidenced, pointing out a potential development of
macro-spalling like failures.

The above described damage scenarios at the subsurface of corroded
hardmetals subjected to either indentation or scratch are linked to the
effectiveness of a small length-scale interaction between cracks and the
cavities within the binderless WC skeleton [44]. In this regard, effective
pores - left after binder has been leached away - act not only as an
assemblage of many small stress concentrators but also as crack pre-
cursors [45]. Hence, as load is applied and main cracks propagate

downwards, additional microstructurally short cracks nucleate at the
referred pores and then propagate steadily out of them. From a me-
chanic viewpoint, the microcracking phenomena taking place in front
of main fissures translates into crack wake shielding from the applied
stress intensity factor [46]. It induces a decrease of the effective crack
tip stress intensity factor, yielding as a result multiple branched cracks
arrested at lower depths or following lateral-like paths parallel to the
surface [47]. This would explain that uncorroded condition show fewer
but shallower and deeper cracks than the corroded conditions (Figs. 11
and 12).

4. Conclusions

A systematic investigation of corrosion-induced changes on both
load-bearing capability and damage scenario of a WC-Co hardmetal
grade has been conducted. The study attempted to focus on indentation
and scratch testing conditions yielding damage scenarios whose depths
were similar to length scale of uniform and relatively thick (from 10s to
100s of microns) corroded layers. The following conclusions may be
drawn:

(1) The corroded cemented carbide studied exhibits a lower load-
bearing capability and crack extension resistance than the pristine
one. These relative corrosion-induced lessening effects decreases as

Fig. 11. Cross-section view of cracking phenomena resulting from pyramidal indentation under an applied load of 294 N for specimens previously exposed to
corrosion media during different times: (a) pristine, (b) 3 days, and (c) 11 days.

Fig. 12. Subsurface cracking scenario induced by scratching in (a) non-cor-
roded and (b) corroded samples.
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exposure time increases, and no differences are discerned after 7
days of immersion. This trend is evidenced for both indentation and
scratch tests, although a higher sensitivity of irreversible deforma-
tion resistance to microstructural changes introduced by corrosion
is observed under sliding contact conditions. Vickers hardness of
significantly corroded specimens decreases down to 11–12 GPa, i.e.
about 60% the reference one determined for the uncorroded sam-
ples. From a mechanical viewpoint, such value may then be taken
as the effective load-bearing capability of the unsupported WC
skeleton.

(2) The contact response of the corroded hardmetals is largely depen-
dent on the thickness of the degraded layer, which is directly re-
lated to the exposure time. In this regard, the corroded specimens
may be described as systems consisting of a porous ceramic layer on
top of a very hard composite substrate. Within this context, relative
indentation depths lower than 0.2–0.3 of corroded layer thickness
are determined as required testing conditions for effective assess-
ment of the intrinsic hardness of corroded layers, i.e. without being
affected by the mechanical response of the substrate.

(3) Significant corrosion effects on contact response are also evidenced
in the damage scenario resulting, at both surface and subsurface
levels, after indentation and scratch tests of the hardmetal studied.
Independent of testing conditions, damaged zone changes from
well-defined cracking systems for the uncorroded condition into
multiple branched fissures confined within the porous-like de-
graded layers for the corroded ones. Cracks within the binderless
and porous carbide network are discerned to get arrested at lower
depths or following lateral-like paths parallel to the surface. Such
scenario should be linked to the effectiveness of a small length-scale
interaction between cracks and the cavities within the binderless
WC skeleton, yielding as a final result the development of macro-
spalling like failures at the edges of both indentation imprints and
scratch tracks.
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A B S T R A C T

In this study, the influence of corrosion on the mechanical response and damage induced under Hertzian in-
dentation is assessed for three cemented carbides with metallic binders of different chemical nature. Corrosion
degradation is introduced in a controlled way, before subsequent spherical indentation testing, by immersing
specimens in a stirred acidic medium. Results reveal quite strong corrosion effects on indentation stress-strain
response and contact damage scenario. Such detrimental influence is found to be dependent on both the ratio
between indentation depth and thickness of the corroded layer as well as chemical nature of the binder. In this
regard, critical loads for emergence and evolution of specific damage events (i.e. ring and radial cracks, and even
specimen failure) are proposed as figures of merit for material selection under the combined action of corrosion
and contact loads. Within this context, the hardmetal grade with Co-base binder and addition of Cr is found to be
the best option, among the three cemented carbides studied in this investigation. It points out the consideration
of the synergic interaction between corrosion resistance and hardness/toughness correlation for microstructural
design optimization of hardmetals under service-like conditions. These statements are supported by the relevant
corrosion-induced changes also observed, by means of advanced characterization techniques, in terms of de-
formation/failure micromechanisms at both surface and subsurface levels.

1. Introduction

Cemented carbides are a group of powder metallurgical liquid-phase
sintered composite materials consisting of brittle refractory carbides of
the transition metals (e.g. WC, TiC, TaC) embedded in a metallic matrix
[1]. The intrinsic ceramic-metal composite nature of these materials, in
practice commonly referred to as hardmetals, together with optimized
microstructural assemblages yield outstanding combinations of high
hardness and strength together with excellent wear resistance [2–4].
This makes cemented carbides forefront materials in several en-
gineering and tooling applications, such as metal cutting and forming,
mining bits, rock drilling, mechanical seals, structural components and
wear parts [5].

Many of the above applications frequently expose cemented car-
bides to harsh working conditions that involve corrosive aqueous media
together with contact loads, impacts and fatigue, abrasion and/or
erosion, etc. [5]. In those cases, defects resulting from environmental-
assisted degradation (e.g. leaching and removal of metallic binder,

microcracks and/or loosening/dislodging of carbides, among others)
are often identified as main reasons for the shortened service life of
hardmetal tools and components, e.g. Refs. [6–9].

The corrosion behavior of WC-base cemented carbides has been
extensively investigated in recent decades, mainly focusing on the in-
fluence of several extrinsic and intrinsic factors, such as surface state,
corrosive medium, microstructural assemblage and binder chemical
nature (e.g. Refs. [10–24]). In these studies, several interesting findings
have been documented. First, metallic binders are preferentially at-
tacked in acidic and neutral environments, while ceramic phase is the
one corroded in alkaline solution. Second, corrosion damage induced
by acidic media is more pronounced than that resulting from exposure
to neutral and basic ones. Third, larger dissolution of the binder phase
in acid solution eventually results in the formation of a W-base oxide
layer and a region depleted in Co, different from the scenario found
when the cemented carbides are exposed to neutral and basic solutions.

Regarding industrial applications involving both corrosion and
contact loading of hardmetal tools, components and wear parts (e.g. oil
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and gas extraction industry as well as underground/surface mining and
rock drilling), several works have attempted to replicate – at the la-
boratory level – similar service-like conditions. Among them, the det-
rimental corrosion-related effects on tribological response and effective
wear resistance of cemented carbides have aroused the greatest con-
cern, mainly addressing microstructure-performance correlation from
macroscopic and microscopic perspectives, e.g. Refs. [25–30]. A quite
interesting outcome from these studies is the detailed understanding
acquired on the damage mechanisms at the micro- and nanometric
dimensions: cracking, fragmentation and easy removal of WC grains
under (sliding) contact, directly associated with the mechanically un-
supported, contiguous and binderless/porous carbide network left after
exposure to corrosive media of the studied hardmetals. However, si-
milar information linking corrosion-induced damage and contact me-
chanical response at relatively higher length scales is quite limited
[31,32]. To fill this lack of knowledge, the present study aims to
evaluate the influence of corrosion-induced changes on the contact
damage response of cemented carbides, by implementing spherical in-
dentation tests.

Following the experimental methodology and analysis procedure
introduced and extensively developed by Lawn's group for studying
ceramic materials using spherical indentation (see. Ref. [33] for a de-
tailed review), the use of testing protocols based on Hertzian theory has
proven to be quite successful on the assessment of mechanical response
and damage induced under contact loading in both nude and coated
cemented carbides [34–44]. In these studies, indentation has been
conducted using spheres with curvature radii in the millimeter length
scale. Thus, concentrated stresses are delivered over a small area of
specimen surface such that typical “blunt” in-service conditions are
simulated, indentation stress-strain curves may be attained, and da-
mage evolution associated with increasing load can be examined.
However, all the above studies have limited their scope to testing of
pristine or virgin hardmetals. Hence, information on how the damage
induced by corrosion may affect contact response for cemented carbides
is completely lacking. Within the above framework, it is the aim of this
investigation to determine and analyze the changes observed in the
indentation stress-strain response as well as in surface/subsurface da-
mage scenarios of hardmetals, after exposing them to an acidic media
for different times. In doing so, addition of chromium and/or sub-
stitution of cobalt by nickel within the chemical nature of the metallic
binder are invoked as experimental variables. Besides the mechanical
study based on Hertzian indentation testing, the research is com-
plemented with the combined use of advanced characterization tech-
niques for assessment of surface and subsurface features.

2. Materials and experimental procedures

Three different medium-grained (between 1.3 and 1.5 μm in size)
WC-base cemented carbides were investigated, and the corresponding
microstructures are illustrated in Fig. 1. They were a set of experimental
hardmetal grades supplied by Hyperion Materials and Technologies.
Main microstructural and basic mechanical parameters, including
binder content (%wt.) and addition (or not) of Cr3C2, mean grain size
(dWC), hardness (HV30) and Palmqvist indentation toughness (KIc) are
detailed in Table 1. Mean size of WC grains was measured following the
linear intercept method, using images acquired by means of Field
Emission Scanning Electron Microscopy (FESEM). Hardness and in-
dentation toughness were measured using a Vickers diamond pyramidal
indentation and applying a load of 294 N. At least ten indentations were
carried out for each grade, on diamond polished surfaces. Palmqvist
indentation toughness (KIc) was evaluated using Shetty et al.'s Eq. [45].

Different levels of corrosion damage were introduced in a controlled
way through simple immersion of specimens in stirred 0.1 M HCl so-
lution at room temperature. In doing so, a constant volume of solution
(250 ml) was employed for each condition, and stirring was conducted
by using a magnetic rod with a rotation speed of 300 rpm. Samples

exposed to acidic medium during 72, 168 and 264 h were used for
determining the corrosion behavior of the investigated hardmetal
grades. It was done by measuring the average corrosion front depth, out
of cross-sectional views, using laser scanning confocal microscopy
(LSCM). Furthermore, the interaction between corrosion damage and
microstructure was inspected by means of Focused Ion Beam (FIB) and
FESEM.

Assessment of the mechanical contact response by means of sphe-
rical indentation, in uncorroded and corroded specimens, was the main
experimental activity in this study. Hertzian tests were conducted in a
servo-hydraulic testing machine by using hardmetal indenters with a
curvature radius (R) of 2.5 mm. Monotonic loading was conducted
following a trapezoidal waveform, at a loading rate of 30 N s−1 and
applying the full test force during 20 s. Applied loads ranged from 500
to 4000 N. At least three indentations were made at each load level.
After mechanical testing, the contact radius (a) and residual indentation
depth were measured, by means of LCSM, from the remnant im-
pressions at each given load (P) after unloading. LSCM was also em-
ployed, under Nomarski illumination, for discerning surface damage
produced by Hertzian contacts. Furthermore, critical loads for typical
damage scenarios discerned in uncorroded and corroded specimen
surfaces were determined in such inspection. Additionally, a high
magnification inspection and analysis of damage features was carried
out by means of FESEM.

Subsurface evolution of the indentation damage, with increasing
corrosion time and applied load, was examined by conducting specific
tests on “clamped-interface” specimens. The procedure followed for this
examination is schematically outlined in Fig. 2. It includes five se-
quential stages [33,37,40,42,46–50]. First, pristine and corroded spe-
cimens were transversally cut to obtain different halves corresponding
to each specific condition. Second, these two half-surfaces were set up
together (into a mold of bakelite with the original top surfaces facing
each other), and then ground and polished. Third, this mold was me-
chanically broken and the two halves were clamped again (this time
into another mold of bakelite with the newly polished surfaces set up
face-to-face). Fourth, uncorroded and corroded specimens were in-
dented symmetrically across the surface trace on the interface. Fifth,
once more time the two parts were mechanically separated, and po-
lished cross-sections of corresponding half-surfaces were finally ex-
amined using LSCM and FESEM.

3. Results and discussion

3.1. Influence of microstructural phase assemblage on corrosion resistance

Fig. 3 shows cross-sectional micrographs for the three hardmetal
grades studied, after exposure to the acidic solution during 72, 168 and
264 h, respectively. They reveal significant microstructural changes
uniformly distributed at the surface and subsurface regions. As ex-
pected, longer immersion times yield more relevant changes as well as
deeper corrosion fronts. Fig. 4 shows the measured values for the
thickness of the degraded layer as a function of corrosion time. A linear
relationship between corrosion front depth and time is discerned for the
three cemented carbides studied. From the experimental data gathered,
it is clear that Cr-containing grades (6CoCrM and 6NiCrM) are more
resistant to the acidic medium than the Cr-free grade (6CoM). The
corrosion rate of the latter (≈ 1.7 μm/h) is about four times higher than
those exhibited by the other two cemented carbides (≈ 0.4 μm/h). Such
a finding is in complete agreement with previous works by different
research groups [11,13,14,16,17,21,23,32,51]. On the other hand, re-
placing most of the Co with Ni within the binder does not seem to
improve corrosion resistance. This finding may be described as
somehow unexpected, because it has been systematically reported that
higher nickel content in the metallic binder yields superior perfor-
mance, in terms of electrochemical figures of merit as well as less de-
gradation depth under similar testing conditions (e.g. Refs.
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[10,12,13,18]). Possible reasons for the results here attained could be
ascribed to the relatively low binder content of the hardmetal grades
and/or the relatively long corrosion times under consideration. How-
ever, evaluation and analysis of these single-side corrosion issues are
beyond the scope of this study.

Detailed FIB/FESEM inspection of the cross-sections points out that
discerned changes are mainly the result of a preferential attack of the
metallic binder phases, which leads to porous/binderless WC skeletons
throughout the affected layer. Very interesting, in the case of the Cr-
containing hardmetal grades, part of the binder phase still remained
undissolved near the surface of the specimen even after long exposure
to 0.1 M HCl solution (264 h), as shown in Fig. 5b and c. Meanwhile,

Fig. 1. FESEM micrographs of investigated cemented carbide grades:(a) 6CoM, (b) 6CoCrM, and (c) 6NiCrM.

Table 1
Microstructural and basic mechanical parameters for cemented carbides stu-
died.

Specimen code wt%
binder

Addition of
Cr3C2

dWC

(μm)
HV30
(GPa)

KIc

(MPa⁎m1/2)

6CoM 6Co No 1.5 ± 0.2 16.0 ± 0.2 11.1 ± 0.2
6CoCrM 6Co Yes⁎ 1.4 ± 0.2 15.9 ± 0.1 11.0 ± 0.3
6NiCrM 5.5Ni-

0.5Co
Yes⁎ 1.3 ± 0.2 15.1 ± 0.1 10.0 ± 0.3

⁎ Samples 6CoCrM and 6NiCrM contain a similar small amount of Cr3C2

(i.e. < 0.5%wt.)

Fig. 2. Schematic representation of the bonding interface technique (BIT) procedure followed for sample preparation, in order to inspect and analyze the subsurface
(cross-section) damage induced under Hertzian contact stresses.
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binder phase in the Cr-free grade is totally dissolved under similar
testing conditions, leading to a completely binderless carbide skeleton
(Fig. 5a). It may be rationalized by the fact that during sintering process
of 6CoCrM and 6NiCrM hardmetal grades, chromium dissolves into the
binder, leading to formation of a passivating binder-based chromium
oxide layer which strongly inhibits the dissolution of the binder in
acidic media [17,52].

3.2. Corrosion effects on the mechanical response under contact loading

Fig. 6 shows the residual indentation depth as a function of applied
load for all the conditions studied. As expected, independent of hard-
metal grade as well as pristine/corroded condition, the irreversible
deformation gets more pronounced as indentation load increases. On

the other hand, clear corrosion effects are discerned in terms of larger
residual indentation depths of the materials previously exposed to the
acidic medium.

Regarding experimental data analysis, it should be pointed out that
data from Hertzian tests are usually presented in terms of contact
pressure or indentation stress (p0) as well as the resulting indentation
strain (ε), e.g. Refs. [33,53]. Such approach was also implemented in
this study. In doing so, p0 and ε were calculated as P/πa2 and a/R,
respectively. Fig. 7 shows the corresponding indentation stress-strain
(p0-ε) curves measured for uncorroded and corroded specimens. Ex-
perimental data shown in Figs. 6 and 7 are limited to contact strains
higher than 10%, as circumferential edges surrounding impressions
were hard to define accurately for applied indentation loads below
1500 N. Within such stress-strain range, the mechanical response as-
sessed for the hardmetals studied is similar to those reported in pre-
vious studies, and must be linked to quasi-plastic deformation phe-
nomena [35–37,40]. An “apparent strain hardening” behavior is
discerned in all the curves. Furthermore, a detrimental effect of cor-
rosion on the load bearing capability of the three cemented carbides is
evidenced, and it becomes more pronounced as exposure time is longer.
However, such lessening effect – as given by lower relative differences
between curves of uncorroded and corroded conditions – is less pro-
nounced for 6CoCrM and 6NiCrM hardmetals, as it could be expected
from their higher corrosion resistance as compared to the one exhibited
by the Cr-free grade (6CoM).

Indentation stress-strain response seems to significantly depend on
the depth of the corrosion affected zone. From a physical viewpoint, the
degraded load-bearing capability evidenced must be attributed to the
generation of porous/binderless corroded layers after corrosive ex-
posure [28–31], as shown in Fig. 5. In this regard, based on recent
findings reported by the authors for sharp indentation and scratch
testing of corroded hardmetals [31], the degraded layer is not expected
to play a significant role in the plastic yielding onset until its thickness
reaches a certain value. Within this context, considering the over-
lapping of indentation stress-strain curves in Fig. 7b and c, it may be
stated that corroded layers resulting from exposure to 72 h for 6NiCrM

Fig. 3. Microstructural changes and induced degradation, after immersion in 0.1 M HCl solution (for 72, 168 and 264 h), discerned in cross-section images of (a)
6CoM, (b) 6CoCrM, and (c) 6NiCrM samples.

Fig. 4. Corrosion front depth as a function of exposure time, and corresponding
degradation rates (slope) for the investigated hardmetal grades.
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Fig. 5. FIB micrographs showing corrosion damage-microstructure interactions for (a) 6CoM, (b) 6CoCrM and (c) 6NiCrM samples immersed in 0.1 M HCl solution
for 264 h.

Fig. 6. Residual depth as a function of applied indentation load for uncorroded and corroded specimens for the three hardmetal grades studied: (a) 6CoM, (b)
6CoCrM, and (c) 6NiCrM.
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and 6CoCrM grades are thin enough, such that whole quasi-plastic
deformation is still controlled by the uncorroded substrate. Such ex-
perimental finding is sustained by the very low ratio between layer
thickness (about 25 μm) and indenter radius (2.5 mm), which would
lead to maximum shear stresses placed within the base material
[54,55]. On the other hand, as the thickness of the corrosion layer in-
creases (from tens to hundreds of microns), the quasi-plastic deforma-
tion tends to be confined within the corroded layer. This is pointed out
as the main reason for rationalizing the higher relative discrepancies
among indentation stress-strain curves of pristine and corroded speci-
mens, as corrosion time gets longer. For the extreme degradation con-
dition (i.e. after exposure to acidic media for 264 h), indentation stress
decay – measured on the basis of plateau values reached in the curves -
is maximum for 6CoM (about 23%), intermediate for 6NiCrM (20%),
and minimum for 6CoCrM (13%).

3.3. Corrosion effects on the evolution of surface damage induced by
spherical indentation

The evolution of surface damage, from inelastic deformation to
fracture, was assessed by means of an extensive and detailed visual
inspection using LSCM. In agreement with previous studies
[34–36,39,40], contact damage in pristine hardmetals was found to
evolve, once residual imprints were already evidenced, from an initial
partial ring crack which developed into a full ring crack as the in-
dentation load increases (Fig. 8). Within this context, at load levels
(higher than 2250 N) well-above the plastic yielding onset of the in-
vestigated hardmetal grades, the residual tensile radial stresses and
strains at the regions close to the impression contour become large
enough for inducing circumferential cracks at the surface of the tested
specimens. Theoretical analysis of the residual surface stress

distribution produced in a flat surface by a spherical indenter [56]
points out that these residual stresses develop as the result of the su-
perposition of elastic unloading stresses onto the stress at maximum
load when the specimen has deformed plastically. Furthermore, it is
stated that they move beyond the contact radius, so cracks would be
expected to appear at a/R > 1. However, this was not discerned in this
study, as ring cracks were found to nucleate just at the contour of the
indentation imprint. Although reason for such discrepancy is unclear, it
may be related to the undefined elastic-to-plastic transition within the
mechanical response exhibited by cemented carbides [34–37,39],
which could finally affect the effective residual stress state existing in
the vicinity of the residual imprints. As it is extensively reported in the
literature, irreversible deformation induced under contact loading in
these materials – as well as in other “tough” ceramics - is not driven by
conventional plastic deformation mechanisms, i.e. slip by dislocation
movement. Instead, in those materials such transition is associated with
quasi-plasticity phenomena, where internal shear-driven defects or
faults with friction at sliding interfaces (e.g. microcracks) are com-
monly recalled for rationalizing it [35,36,39,40]. The fact that such
discrepancy between theoretical analysis and experimental evidence is
even more noticeable for corroded specimens (as it may be seen in
Fig. 9) will support such hypothesis. In these degraded samples, binder
is leached out at both surface and subsurface levels, yielding an effec-
tively porous layer which enhances then the “quasi-plasticity” compo-
nent in the contact damage response of the material under considera-
tion [50]. Finally, and still analyzing the behavior of uncorroded
specimens, it must be highlighted that under the experimental load
conditions investigated (up to 4000 N) radial cracks outside the im-
print, as an additional damage characteristic, were not observed in any
of the hardmetal grades tested.

For the corroded cemented carbides, besides the similar evolution

Fig. 7. Hertzian indentation stress-strain curves of (a) 6CoM, (b) 6CoCrM and (c) 6NiCrM hardmetal grades, as a function of corrosion time.
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discerned in terms of ring cracks, radial fissures and even specimen
breakage were evidenced as additional damage features/scenarios
under loading conditions evaluated in this study. Furthermore, critical
loads for producing (partial/full) ring and radial cracks decrease as the
corrosion time gets longer (Fig. 9). As reported in the literature [57],
the critical load for emergence of ring cracks and the fracture toughness
of the material are quadratically related. For cemented carbides, this
means that such critical load level should be closely linked to micro-
structural parameters defining their toughening capability, i.e. volume
fraction of the binder phase and/or carbide grain size. After exposure to
acidic media, microstructural assemblage is degraded. Effective re-
moval of the ductile metallic phase yields a loose and porous WC ske-
leton. Hence, the well-established toughening mechanism, based on
ligament reinforcement mechanism [58–61], is no longer operative at
the surface (and subsurface) level for corroded cemented carbides.
Accordingly, the energy required for crack emergence and extension is
lowered. On the other hand, as it was discussed above, the load-bearing
capability of the studied hardmetal grades significantly depends on the
thickness of the corroded layer. For relatively short exposure times (e.g.
72 h), corroded layers are rather thin, and the whole plastic deforma-
tion is mainly linked to the uncorroded hardmetal beneath it, which
then effectively acts as a supporting substrate. As immersion time rises,
the imposed deformation is shared by a thicker degraded layer and the
uncorroded substrate. Finally, after 264 h immersion, deformation gets
finally confined in the corroded layer; and thus, deformation and da-
mage scenarios observed are those intrinsically related to the me-
chanical response of the binderless WC skeletons. Considering the loose
and porous WC networks left after the binder is leached away, the shear

stress during the unloading may be more likely to cause the initiation of
radial cracks in the edge of the plastic zone. In this regard, residual
porosity - after binder has been removed - acts not only as an assem-
blage of many small stress concentrators but also as crack precursors
[62]. Indeed, such porous-like nature of the degraded layer must also be
responsible for the interesting observation that initiation of these radial
cracks is found to be located within the contact zone (Fig. 9), instead of
outside it – as a simple extension outwards of the previously developed
ring cracks, as it could be expected. Within this context, porosity is
speculated to play a critical role not only by affecting the effective re-
distribution of the resulting residual stresses and strains after unloading
(as recalled above), but also by introducing changes in the quasi-plastic
damage scenario, i.e. local compaction and structural breakdown, fol-
lowed by possible intrusion of material into the binderless cavities or
growth and coalescence of interpore cracks [50]. In general, for ceramic
materials, the formation of radial cracks heralds the end of the service
life of engineering components [36]. Thus, it may be stated that pre-
mature failure will appear during the service of hardmetal tools and
components involving corrosion and impact loading conditions si-
multaneously.

The information experimentally gathered and discussed above is
summarized in Fig. 10. Representative images of identified damage
events (symbols) in uncorroded and corroded specimens are also in-
cluded in such a figure. For all the uncorroded specimens damage
evolution is quite similar. As applied load is increased within the range
of 2000–4000 N, incipient cracks emerge, propagate and coalesce,
yielding full ring fissures at a load level of 3500 N in the three cases.
Minor differences are observed in terms of resistance to generation of

Fig. 8. Pristine (uncorroded) cemented carbides: damage features induced by spherical indentation under different applied loads (2500, 3000 and 4000 N).
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the incipient cracks. In this regard, Co-base grades show a slightly
better behavior, possibly affiliated to their higher hardness-toughness
(Table 1) correlation, as compared to the one exhibited by the 6NiCrM
grade. Nevertheless, it is worth noting that partial/full ring cracks in
6CoM and 6NiCrM grades are somehow more visible than those ob-
served in 6CoCrM, under the same loading condition (Fig. 8). Con-
cerning the specimens previously exposed to acidic media and then
tested, Fig. 10 clearly points out the lessening effects of corrosion on the
resistance to nucleation and development of contact damage. This is
quite clear in terms of both lower critical loads for the emergence of
incipient cracks, and more severe damage evolution scenarios, in
agreement with works published recently [31,32]. Regarding the
former, it can be directly attributed to binder removal and the con-
sequent loss of the main (intrinsic) toughening mechanism in the ma-
terials under consideration, as discussed above. The latter is supported
by the observation of radial cracking and even specimen breakage as
the applied load rises (Fig. 9), phenomena only discerned in pristine
cemented carbides under much higher load levels (> 20,000 N, using a
rigid indenter of 5.08 mm in radius) [36].

Following the above ideas, the load levels required for discerning
the distinct damage events previously documented and discussed (i.e.
incipient ring crack, full ring crack, radial crack, specimen breakage)
are here proposed as merit figures for material selection under service-
like conditions involving both corrosion and contact loads. Within this
context, the results of this work indicate the 6CoCrM hardmetal grade
as the best option among the three cemented carbides studied. Direct
comparison with 6CoM points out that addition of chromium is a key
factor, as it is helpful not only in refining the microstructure but also in

improving the corrosion resistance (Table 1 and Fig. 4). On the other
hand, analysis of the responses exhibited by 6CoCrM and 6NiCrM
grades allows to assess the relevant and compromising influence of
chemical nature of the binder. In this regard, even though replacement
of Co with Ni seems to yield a less pronounced microstructural de-
gradation, at least at the microstructural length scale (Fig. 5), due to
exposure to acidic medium, it is clear that contact mechanical response
of corroded 6NiCrM specimens is lower than the one exhibited by si-
milarly degraded 6CoCrM specimens (Figs. 9 and 10). This is particu-
larly true when referring to damage events taken place at relatively
higher load levels, such as emergence of radial fissures and specimen
breakage. These relative differences in contact damage response should
also be intrinsically related to higher hardness-toughness correlations
exhibited by WC-Co systems, as compared to WC-Ni ones, as com-
mented before.

In order to further understand corrosion effects on surface de-
formation and damage mechanisms for the hardmetal grades studied, a
detailed inspection at heavily deformed zones was carried out by means
of FESEM. Fig. 11 shows images corresponding to residual imprints
after indenting uncorroded and corroded 6NiCrM specimens to a load
level of 3500 N. Concerning the uncorroded condition, a well-devel-
oped full ring crack is discerned, due to tensile radial stresses and
strains existing in the vicinity of the residual imprints [63]. Fig. 11a-1
shows that the crack path mainly transverses the two-phase micro-
structure, following binder regions – close to binder/carbide interfaces
– and/or WC grain boundaries. The indented zone shows a slightly
damaged scenario involving several plastically deformed WC grains
marked by blue arrows (evidenced by the slip lines on their surfaces)

Fig. 9. Corroded (after 168 h immersion) cemented carbides: damage features induced by spherical indentation under different applied loads (3000, 3500 and
4000 N).
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and some edge broken particles marked by red arrows (Fig. 11a-2).
Under effective compression loading, plastic deformation occurs pre-
ferentially in the binder phase. Meanwhile, the WC carbide starts to
deform when the motion of dislocations in the binder phase is hindered
due to work hardening [64–67]. For the corroded specimen, under si-
milar loading conditions (Fig. 11b-1), in the vicinity of the residual
impression a radial crack (yellow arrows) intersects a ring crack (light
blue arrows). Meanwhile, due to the dissolution of the binder phase,
radial crack appears as well-developed, accompanied by significant WC
grain removal in the crack propagation path (Fig. 11b-2). In this regard,
radial cracks seem to initiate within the contact zone, and then spread
out from underneath the residual impression and propagate outwards,
away from the impression contour. This observation is consistent with
previous studies regarding spherical indentation test performed on
pristine hardmetal at a quite high load level [36]. On the other hand,
the damage scenario near the residual impression center is significantly
different from the one evidenced in the uncorroded specimen. As it may
be seen in Fig. 11b-3, besides plastic deformation many WC particles
exhibit cracks and are even fragmented. Moreover, micrometric cavities
are often evidenced, as a result of carbides dislodged during the contact
load test. Hence, required accommodation of the imposed irreversible
deformation results in deformation of single WC grains, particle
cracking and fragmentation, as well as small-scale local collapse of the
unsupported (binderless and porous) carbide network [30].

3.4. Subsurface damage scenario: Inspection of indented “clamped-
interface” specimens

Microstructural changes induced at the subsurface level were as-
sessed by preparing and indenting “clamped-interface” specimens.
Fig. 12 shows FESEM images of indentation damage scenarios at a low
load level (750 N), for both non-corroded and corroded conditions. For
the pristine hardmetal, a conventional crack-microstructure interaction,
involving fissures extending throughout metallic binder regions is evi-
denced (Fig. 12a) [58–60]. On the other hand, for the corroded speci-
mens, the damage scenario is dominated by carbides overlapping over
each other, as well as grains pulled-out in the heavily damaged zone
(Fig. 12b). This is directly related to the poor subsurface integrity as-
sociated with the porous-like and binderless corroded layer, which is
not able to provide sufficient load-bearing capability. Furthermore,
angles of cone-like cracks are less acute and defined in the deformed
zone of the corroded condition. In ceramic materials, such a trend has
been found as R-curve (crack growth resistance) behavior gets less
pronounced [68]. Hence, considering that R-curve behavior is directly
related to ductile ligament reinforcement behind the crack tip in pris-
tine hardmetals (e.g. Refs. [60,61]), above experimental findings
should be attributed to the absence of toughening mechanisms related
to the binder in the degraded layer [68].

Fig. 13 shows images corresponding to the subsurface damage sce-
nario at a relatively high load level (1500 N) for both non-corroded and
corroded conditions. For the pristine specimen, the deformed zone is
mainly composed of WC grains with a large density of slip bands

Fig. 10. Damage evolution diagram for (a) 6CoM, (b) 6CoCrM, and (c) 6NiCrM samples as a function of indentation load and corrosion time. Main damage features
ascribed to each symbol (no cracks, partial ring crack, full ring crack, radial crack, and specimen breakage) are shown within the legend, including images of
representative events.
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(Fig. 13a-1). Although it cannot be ascertained from the shown mi-
crograph, it may be speculated that plastic deformation of binder phase
also plays a key role in this process [36,39,67]. Concerning the cor-
roded specimen, the damage scenario is dominated by microcracks in
the degraded layer, i.e. quite different from that found in the virgin
material (Fig. 13b-1). In this regard, due to the removal of the ductile
metallic phase, microcracks are more likely to initiate and propagate. It
may be rationalized by considering the direct consequences of the
binder being leached out. On one hand, leached binder leaves effective
pores which may act as stress concentrators and crack precursors within
binderless WC skeleton. On the other one, lack of binder implies that
toughening mechanisms associated with ductile ligament reinforcement
are now completely absent; and thus, energy required for subcritical
crack propagation is effectively much lower than for the pristine con-
dition [30–32]. Hence, induced microcracks may lead to catastrophic
failure of the specimen as they propagate, interact and finally coalesce
to form long cracks [31–33,50,69,70]. However, it is interesting to

highlight that there is not any cracking feature in the region below the
interface between the uncorroded and corroded zone (Fig. 13b-2). It
indirectly sustains the large load-bearing and toughening capability of
the cemented carbides (pristine condition) investigated, through energy
absorption by quite effective deformation mechanisms of their two
constitutive phases: the binder metallic phase and the ceramic WC
grains.

Finally, when comparing the deformation and fracture scenarios
obtained from BIT (Figs. 12 and 13) with that from the integral (bulk)
specimen discussed above, it is clear that the former is more severe than
the latter regarding emergence of microcracks at each specific loading
condition. This is consistent with previous studies reported in the lit-
erature [42,48]. In the clamped specimens, the centerline of the in-
dentation is at the artificial interface between the two halves, which
cannot support the indenter as effectively as in a real bulk material.
Thus, the interface edges are more prone to collapse, leading to a cor-
responding shift of the maximum stress field away from the bonded-

Fig. 11. FESEM images of indented areas (residual imprints) for 6NiCrM specimens under applied load of 3500 N: (a) uncorroded and (b) corroded (72 h).

Fig. 12. Hertzian indentation damage discerned on the side view of indentation of one of the two halves of the bonded specimens in: (a) non-corroded 6NiCrM at load
of 750 N, and (b) corroded 6CoCrM (72 h of corrosion) at load of 500 N.
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interface. In this sense, since the interface edge is unsupported by the
gap over its whole length, the weaker grain boundaries and friction
would have a more pronounced effect than within the bulk of the
material [42,48].

4. Conclusions

The influence of corrosion on mechanical response and damage
scenario under Hertzian indentation for cemented carbides with binders
of different chemical nature has been investigated. From the experi-
mental findings and corresponding analysis, the following conclusions
may be drawn:

1) Corroded cemented carbides exhibit a lower load-bearing capability
than pristine ones. This is reflected by an increased indentation
depth at a given applied load, i.e. a lower stress-strain response. In
general, corrosion-induced lessening effects are found to depend on
the ratio between indentation depth and thickness of the corroded
layer; and thus, on the effective substrate-like role played by the
underneath non-corroded hardmetal. In this regard, as exposure
time to acid medium gets longer, the resulting and continuously
thicker corroded layer gradually substitutes the uncorroded

substrate as main responsible for controlling the quasi-plastic de-
formation induced by the indentation. As a consequence of the
higher intrinsic corrosion resistance of hardmetal grades containing
Cr (6CoCrM and 6NiCrM), as compared to the the Cr-free grade
(6CoM), such detrimental effects are more pronounced in the latter
than in the former.

2) The detrimental influence of corrosion is particularly evidenced in
terms of contact damage: lower critical loads for the emergence of
incipient cracks, and more severe evolution scenarios at the surface
level. Considering these parameters as figures of merit for material
selection, the hardmetal grade 6CoCrM is then proposed as the best
option, as compared to the other two cemented carbides studied, for
applications involving corrosion and contact loads. Such a finding
points out the synergic and compromising effect of corrosion re-
sistance linked to Cr addition and higher hardness-toughness cor-
relation affiliated to Co (within the context of WC-Co systems, as
compared to WC-Ni ones) for achieving an optimized performance
under service-like conditions.

3) Significant corrosion effects on contact response are also evidenced
at the subsurface level, in terms of deformation/damage micro-
mechanisms. In this regard, the deformation-shared scenario com-
monly evidenced in pristine hardmetals is found to change into one

Fig. 13. 6NiCrM “clamped-interface” specimens indented at a load level of 1500 N: micrographs of subsurface damage for (a) uncorroded, and (b) corroded (168 h)
conditions. The FESEM images are the enlarged views of the corresponding square areas, where black, green, light blue, and purple represent the damage scenario in
the severely deformed area of the uncorroded sample, the corroded area, the area near the corrosion front, and the uncorroded area below the corrosion front,
respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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dominated by microcracks, emerging and evolving from cavities
within the porous/binderless WC skeletons left after corrosion. At
relatively high loads and independent of chemical nature of the
binder, it finally yields radial fissures and even specimen failure
under spherical indentation testing.
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8. Results and conclusions 

 

8.1. Summary of the results and discussion 

This Ph.D. thesis is devoted to investigate the influence of corrosion on the mechanical 

response and damage of cemented carbides at different length scales, including changes 

in microstructural integrity, residual strength, small-scale mechanical integrity, load-

bearing capability, Hertzian indentation strain-stress behavior and corresponding 

damage scenarios. It has been structured in four main sections, and the main findings 

are summarized as follows:   

 

8.1.1 Corrosion-induced damage and residual strength of cemented carbides: influence 

of microstructure and corrosion medium 

The corrosion-induced damage and the corresponding residual strength (damage 

tolerance) behavior of four microstructurally different cemented carbides exposed to 

three distinct corrosion media were studied. In doing so, besides the mechanical 

response referred, electrochemical parameters were measured as well as corrosion 

damage scenario was documented and analyzed. Information gathered is expected to 

be useful for defining microstructural design guidelines on the basis of damage 

tolerance as a function of type of corrosive medium. 
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As reported in Article I, the corrosion rates in acidic solution were higher for all studied 

cemented carbides grades compared to neutral and alkaline ones. Coarse-grained cobalt 

grade, 10CoC, displayed in each solution the highest values, while 9NiF showed the 

best corrosion resistance. The presence of small amount of chromium in 10CoUF grade 

together with the ultrafine microstructure proved to be more effective than the presence 

of 2%wt. of nickel in a coarse-grained cobalt grade, 10CoNiC. For all studied grades 

and solutions, the corrosion rates decreased with increasing immersion time.  

 

Taking residual strength of corroded samples into consideration, each studied corrosive 

medium induced relatively different strength losses, most likely related to significant 

differences in the size and geometry of corrosion-induced damage acting as critical 

flaws for fracture. HCl solution was found to be the most aggressive medium. The 

highest strength loss, 60% approximately, was observed for 10CoC. Meanwhile, for 

neutral and alkaline solutions, retained strength was at least 80% in the worst-case 

scenario. 

 

A detailed inspection of fractured surfaces, conducted by means of FESEM, revealed 

clear differences between the corrosion-induced damage as a function of the pH 

solution. Regarding carbide grain size in the neutral and alkaline solutions, the 

ultrafine-sized studied grade was much more affected by corrosion-induced damage 

than the coarser ones. Sharp corrosion pits were formed in ultrafine-sized cemented 

carbides as immersion time increases, which have a much more pronounced stress 
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rising effect. Consequently, higher strength loss was measured for the ultrafine grade. 

 

Regarding micromechanisms, a detailed inspection of transversal cut micrographs 

permitted to evidence that dissolution of metallic binder in acidic and neutral solutions 

takes place in the core of binder pools rather than at the binder/carbide interface. 

Meanwhile, in alkaline solutions WC-Co cemented carbides showed a different 

behavior compared to acidic or neutral solutions. Exhaustive observations pointed out 

that at low time exposures in 0.1M NaOH, the corrosion of the WC grains was discerned 

to start at the binder/WC interface which led to the formation of microcracks and their 

growth inside WC grains at increasing dwell time. 

 

8.1.2 Corrosion-induced changes on the mechanical integrity of cemented carbides at 

small length scales 

Nanoindentation and nanoscratch testing, complemented with combined use of FESEM 

and FIB, were implemented for assessing and analyzing surface/subsurface and 

mechanical integrity changes induced by exposure to an acidic media of a hardmetal 

grade. 

 

Results reported in Article II showed that small-scale mechanical properties of the 

studied grade were pronouncedly degraded due to the corrosion-induced damage. 

Young's modulus of 679 GPa and hardness of 24 GPa measured for the virgin condition 

were found to decrease to much lower values for the corroded condition, i.e. 464 GPa 
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and 15 GPa respectively. Deformation and damage scenarios were also observed to 

change dramatically when comparing virgin and corroded specimens. Regarding the 

former, both hard and soft phases exhibited effective deformation compatibility 

between them, with very few fracture features (cracks) localized in WC grains. 

Meanwhile, dissolution of the metallic binder yielded as a remnant microstructure, i.e. 

a mechanically unsupported carbide skeleton, which then reduced significantly the 

load-bearing capability of the corroded cemented carbide.  

 

From the nanoscratch tests, it was clearly discerned that failure-related events, i.e. 

spallation, cracking, etc., were much more pronounced in the corroded specimen. Virgin 

specimen exhibited a higher scratch resistance response, as concluded from the 

narrower and shallower tracks. This also applied to damage tolerance, as related to 

spallation and local chipping degree. On the other hand, damage emerged earlier in the 

corroded specimen, as compared to the non-corroded one in terms of applied load. Here 

changes were evidenced in terms of absence of compatible plastic deformation between 

both phases (intrinsic to the toughening capability of the now removed binder) as well 

as localized microfracture within contiguous carbide grains. FIB/FESEM inspection 

revealed that for non-corroded and corroded surfaces, two-phase built-up material 

could be seen on the edge of the scratch track for the non-corroded surface. In contrast, 

edge tracks for the corroded specimens were characterized for large clumps of removed 

(and previously fragmented) carbide grains. It supported the fact that effective 

mechanical integrity of the remaining WC skeleton was significantly decreased, 
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yielding then easy removal of loose grains even by light abrasion. 

 

8.1.3 Corrosion effect on the load-bearing capability and induced damage of cemented 

carbides 

The nanomechanical study referred in the previous section was extended to higher 

length scales (from 10s to 100s of microns in depth) by exposing the hardmetal studied 

to longer corrosion times and by using pyramidal indentation and sliding contact 

(microscratch), under applied loads ranging from 5 to 300 N, as discriminative testing 

techniques. The former implied the existence of uniform and rather thick corrosion-

affected layers, whereas the latter yielded damage scenarios whose depths were similar 

to the length scale of the degraded surface layers. Under these conditions, well-

developed cracking systems were induced; and thus, changes on the crack-

microstructure interaction as a function of corrosion extension could be studied.  

 

Results reported in Article III indicated that damage scenarios got more pronounced, 

regarding discerned failure-related events such as chipping or spallation for the 

corroded conditions. Moreover, Vickers hardness was found to decrease from 17-18 

GPa for the uncorroded material to 11–12 GPa for corroded conditions corresponding 

to exposure times of 7- and 11- days. The latter then represents the effective load-

bearing capability of the unsupported WC skeleton. This statement was sustained by 

the fact that variable and intermediate hardness values were measured for corroded 

conditions resulting after exposure times of 1- and 3- days, depending on the imposed 
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load. Such a trend was also evidenced when analyzing scratch hardness data, although 

here higher relative differences between pristine and corroded specimens were found. 

It would point out a higher sensitivity of irreversible deformation resistance of the 

hardmetal to corrosion-induced changes under the more complex loading state involved 

in sliding contact. 

 

Aiming to further document and analyze corrosion effects on mechanical integrity at 

the surface of the hardmetal studied, length of cracks emanating from imprint corners 

were measured for each tested condition. It was found that the longer the exposure to 

the corrosive media, the higher the slope, pointing out a clear detrimental effect of 

corrosion on crack extension resistance. Nevertheless, it should be underlined that 

relevance of lessening effects on crack extension resistance decayed over the first 3 

days of immersion, and tended to stabilize for longer times (7 and 11 days). 

 

Furthermore, corrosion effects on damage scenario induced during indentation and 

scratch tests were analyzed focusing on crack-microstructure interaction. In the case of 

pyramidal indentation, opposite to the sharp and shallow cracks discerned in the non-

corroded hardmetal, damage at the subsurface of the corroded conditions evolved from 

defined cracks close to the surface into branched ones as they grew into the bulk. 

Similarly, comb-like crack propagating paths underneath the scratch tracks were 

completely different for uncorroded and corroded conditions. Systematic inspection – 

by controlling the distance between the scratch end and the edge – allowed to discern 
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that as the indenter got closer to the edge, damaged zone changed from a well-defined 

cracking system for the uncorroded condition into a multiple-cracking scenario 

confined within the porous-like degraded layer for the corroded conditions. 

 

8.1.4 Corrosion-induced changes on Hertzian contact damage in cemented carbides 

Aiming to evaluate corrosion effects on the mechanical integrity of hardmetals at even 

higher length scales, closer to those involved under service-like conditions, spherical 

indentation was implemented to document and analyze the changes observed in the 

indentation stress-strain response after exposing different grades to an acidic media for 

different times. In doing so, addition of chromium and/or substitution of cobalt by 

nickel within the chemical nature of the metallic binder were invoked as experimental 

variables. Besides the mechanical study, the research was complemented with the 

combined use of advanced characterization techniques for assessment of surface and 

subsurface features. 

 

Results reported in Article IV revealed that indentation stress-strain response seemed 

to significantly depend on the depth of the corrosion affected zone. From a physical 

viewpoint, the degraded load-bearing capability evidenced must be attributed to the 

generation of porous/binderless corroded layers after corrosive exposure. On the other 

hand, as the thickness of the corrosion layer increased (from tens to hundreds of 

microns), the quasi-plastic deformation tended to be confined within the corroded layer. 
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This was pointed out as the main reason for rationalizing the higher relative 

discrepancies among indentation stress-strain curves of pristine and corroded 

specimens, as corrosion time gets longer. For the highest aggressive corrosive condition 

(i.e. after exposure to acidic media for 264 h), indentation stress decay – measured on 

the basis of plateau values reached in the curves – was maximum for 6CoM (about 

23%), intermediate for 6NiCrM (20%), and minimum for 6CoCrM (13%).  

 

The evolution of surface damage, from inelastic deformation to fracture, was assessed 

by means of an extensive and detailed visual inspection using LSCM. Contact damage 

in pristine hardmetals was found to evolve, once residual imprints were already 

observed, from an initial partial ring crack which developed into a full ring crack as the 

indentation load increases. For the corroded cemented carbides, besides the similar 

evolution discerned in terms of ring cracks, radial fissures and even specimen breakage 

were evidenced as additional damage features/scenarios under loading conditions 

evaluated in this study. Furthermore, critical loads for producing (partial/full) ring and 

radial cracks decreasd as the corrosion time gets longer. Within this context, the results 

of this work indicate the 6CoCrM hardmetal grade as the best option among the three 

cemented carbides studied.  

 

In order to further understand corrosion effects on surface deformation and damage 

mechanisms for the hardmetal grades studied, a detailed inspection at heavily deformed 

zones was carried out by means of FESEM. Concerning the uncorroded condition, a 
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well-developed full ring crack was discerned, due to tensile radial stresses and strains 

existing in the vicinity of the residual imprints. The crack path mainly transversed the 

two-phase microstructure, following binder regions – close to binder/carbide interfaces 

– and/or WC grain boundaries. The indented zone showed a slightly damaged scenario 

involving several plastically deformed WC grains and some edge broken particles. For 

the corroded specimen, under similar loading conditions, damage features were not only 

more pronounced but also included a new type: radial cracks. Due to the dissolution of 

the binder phase, these appear as well-developed fissures, accompanied by significant 

WC grain removal in the crack propagation path, which finally resulted – in some cases 

– in rupture of the tested specimens. 

 

 

8.2 General conclusions 

 

 Electrochemical and immersion tests revealed that nickel binder displays more 

noble corrosion potential and critical current density compared to cobalt grades in 

acidic and neutral solutions containing chlorides. In these conditions, the presence 

of small amounts of chromium improves more the corrosion resistance of the 

materials than mixing nickel and cobalt as a binder. No significant differences 

among studied grades were observed in alkaline solution. 
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 Corrosion damage resulted in strength degradation on the basis of stress rising 

effects associated with the formation of surface corrosion pits in acidic solution for 

all studied grades. In neutral and alkaline solutions, corrosion effects on residual 

strength are less pronounced. Under these conditions, the grade more affected by 

exposure to corrosion medium is the ultrafine one. 

 

 In acidic solution, the binder was preferentially attacked. The binder dissolution 

started from the center of binder pools, independent of binder chemical nature, and 

spreads to the edges until binder phase was completely consumed. In alkaline 

solution, corrosion process was initially located at the binder/WC interface. As 

exposure time increased, corrosion evolved into microcracks which propagated 

inside the WC phase, yielding finally a fragmented-like scenario. 

 

 Immersion testing in an acidic solution results in a significant degradation of 

surface/subsurface integrity of cemented carbides. In this regard, effective changes 

in microstructural assemblage of the material are discerned by FESEM/FIB 

inspection: from an interpenetrating two-phase network for the non-corroded 

composite to a contiguous and binderless (i.e. with cavities in regions where binder 

has been dissolved) carbide skeleton in the corroded material. 

 

 Corrosion in acidic media is found to be quite detrimental for the mechanical 

integrity of the hardmetal alloy studied. Due to the lower load-bearing capability 
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of the referred mechanically unsupported carbide network existing in the corroded 

cemented carbide, their small-scale elastic modulus, hardness and sliding contact 

(scratch) resistance are significantly degraded, as compared to those exhibited by 

the non-corroded hardmetal. 

 

 Deformation/fracture micromechanisms are also significantly affected by 

corrosion. As the metallic binder is leached out during exposure to the acidic 

solution, its well-established toughening capability in non-corroded hardmetals is 

also completely lost. Consequently, deformation induced by the imposed loads 

must be exclusively accommodated by the binderless and porous network of 

carbide phase. It is done through multiple cracking and fragmentation of individual 

grains. Furthermore, as re-embedment of them into the metallic phase (as it occurs 

for the non-corroded specimens) is no longer possible, it finally yields easy pull-

out and removal of the hard phase in the corroded material. 

 

 Corroded cemented carbides exhibit lower load-bearing capability and crack 

extension resistance than pristine ones. These relative corrosion-induced lessening 

effects decreases as exposure time increases, and no differences are discerned after 

7 days of immersion. This trend is evidenced for both indentation and scratch tests, 

although a higher sensitivity of irreversible deformation resistance to 

microstructural changes introduced by corrosion is observed under sliding contact 

conditions. Vickers hardness of significantly corroded specimens decreases down 

to about 60% the reference one determined for uncorroded samples. From a 
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mechanical viewpoint, these measured values may then be taken as the effective 

load-bearing capability of the unsupported WC skeleton. 

 

 The contact response of the corroded hardmetals is largely dependent on the 

thickness of the degraded layer, which is directly related to the exposure time. In 

this regard, the corroded specimens may be described as systems consisting of a 

porous ceramic layer on top of a very hard composite substrate. Within this context, 

relative indentation depths lower than 0.2–0.3 of corroded layer thickness are 

determined as required testing conditions for effective assessment of the intrinsic 

hardness of corroded layers, i.e. without being affected by the mechanical response 

of the substrate. 

 

 Significant corrosion effects on contact response are also evidenced in the damage 

scenario resulting, at both surface and subsurface levels, after indentation and 

scratch tests of the hardmetal studied. Independent of testing conditions, damaged 

zone changes from well-defined cracking systems for the uncorroded condition 

into multiple branched fissures confined within the porous-like degraded layers for 

the corroded ones. Cracks within the binderless and porous carbide network are 

discerned to get arrested at lower depths or following lateral-like paths parallel to 

the surface. Such scenario should be linked to the effectiveness of a small length-

scale interaction between cracks and the cavities within the binderless WC skeleton, 

yielding as a final result the development of macro-spalling like failures at the 

edges of both indentation imprints and scratch tracks. 
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 The degraded load-bearing capability after corrosion is also reflected by an 

increased indentation depth at a given applied load, i.e. a lower stress-strain 

response. In general, corrosion-induced lessening effects are found to depend on 

the ratio between indentation depth and thickness of the corroded layer; and thus, 

on the effective substrate-like role played by the underneath non-corroded 

hardmetal. In this regard, as exposure time to acid medium gets longer, the resulting 

and continuously thicker corroded layer gradually substitutes the uncorroded 

substrate as main responsible for controlling the quasi-plastic deformation induced 

by the indentation. As a consequence of the higher intrinsic corrosion resistance of 

hardmetal grades containing Cr (6CoCrM and 6NiCrM), as compared to the the 

Cr-free grade (6CoM), such detrimental effects are more pronounced in the latter 

than in the former. 

 

 The detrimental influence of corrosion is particularly evidenced in terms of contact 

damage: lower critical loads for the emergence of incipient cracks, and more severe 

evolution scenarios at the surface level. Considering these parameters as figures of 

merit for material selection, the hardmetal grade 6CoCrM is then proposed as the 

best option, as compared to the other two cemented carbides studied, for 

applications involving corrosion and contact loads. Such a finding points out the 

synergic and compromising effect of corrosion resistance linked to Cr addition and 

higher hardness-toughness correlation affiliated to Co (within the context of WC-

Co systems, as compared to WC-Ni ones) for achieving an optimized performance 
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under service-like conditions. 

 

 Relevant corrosion effects on contact response are also discerned at the subsurface 

level, in terms of deformation/damage micromechanisms. In this regard, the 

deformation-shared scenario commonly evidenced in pristine hardmetals is found 

to change into one dominated by microcracks, emerging and evolving from cavities 

within the porous/binderless WC skeletons left after corrosion. At relatively high 

loads and independent of chemical nature of the binder, it finally yields radial 

fissures and even specimen failure under spherical indentation testing. 

 

 

8.3 Impact and perspectives  

The main outcome of this Ph.D. thesis is the in-depth knowledge attained about the 

effects of corrosion-induced damage on the mechanical integrity and load-bearing 

capability of cemented carbides with distinct microstructures at different length scales. 

The study as a whole permits to point out guidelines for microstructural design of these 

materials under combined consideration of corrosion and mechanical contact as 

service-like conditions. It includes the assessment of the evolution of microstructure-

property-performance interrelations due to the degradation of the material under severe 

working conditions. Although this thesis represents a well-defined step in this direction, 

more extensive research should be conducted for covering additional service-like 

conditions. Within this context, future work should also include consideration of 
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synergistic effects among different damage mechanisms. 

 

In this thesis relevant attention was paid to document and analyze the influence of 

corrosion damage induced by acidic solution on the mechanical contact response of 

cemented carbides. Results reported in Article I reveal that basic solution may cause 

detrimental damage in the WC phases, where the corrosion process was initially located 

at the binder/WC interface, and then evolved into the ceramic phase as the corrosion 

time increased. Therefore, future work should be recalled for exploring how this 

corrosion damage induced under basic media affects the mechanical contact response 

of cemented carbides. 

 

Regarding extrinsic damage evaluated in this thesis, it was exclusively introduced by 

monotonic loading, as it was reported in Articles II, III and IV. Considering that some 

applications of hardmetal tools and components involve contact loads of cyclic nature, 

changes on the contact fatigue resistance induced by corrosion should also be proposed 

as future work.  

 

Finally, the influence of different corrosive media on the damage tolerance behavior of 

cemented carbides was evaluated by the retained strength of corroded specimens 

(Article I). Considering service conditions involving the combined action of corrosion 

and impact loads (monotonic/cyclic), it would be meaningful to assess how such 

extrinsic damage affects the effective strength of cemented carbides. In this regard, 
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evaluation of residual strength of corroded and contact-damaged specimens may be 

proposed as a suitable approach for rationalizing the influence of microstructure on the 

damage tolerance behavior of cemented carbides.  

 



Assessment of corrosion-induced damage in the mechanical contact response of cemented carbides at different length scales 

145 
 

References 

 

[1] H.E. Exner, Physical and chemical nature of cemented carbides, Int. Met. Rev. 

(1979) 149–173. 

[2] J. García, V.C. Ciprés, A. Blomqvist, B. Kaplan, Cemented carbide 

microstructures : a review, Int. J. Refract. Met. Hard Mater. 80 (2019) 40–68. 

[3] L. Prakash, Fundamentals and general applications of hardmetals, in: V.K. Sarin, 

D. Mari, L. Llanes (Eds.), Compr. Hard Mater., Elsevier, 2014: pp. 29–90. 

[4] V.A. Pugsley, G. Korn, S. Luyckx, H.G. Sockel, W. Heinrich, M. Wolf, H. Feld, 

R. Schulte, The influence of a corrosive wood-cutting environment on the 

mechanical properties of hardmetal tools, Int. J. Refract. Met. Hard Mater. 19 

(2001) 311–318. 

[5] V.A. Pugsley, H.G. Sockel, Corrosion fatigue of cemented carbide cutting tool 

materials, Mater. Sci. Eng. A 366 (2004) 87–95. 

[6] R. Lu, L. Minarro, Y.-Y. Su, R.M. Shemenski, Failure mechanism of cemented 

tungsten carbide dies in wet drawing process of steel cord filament, Int. J. Refract. 

Met. Hard Mater. 26 (2008) 589–600. 

[7] E.O. Cobo, R.A. Suárez Baldo, J.B. Bessone, Corrosion of chromium plated 

rotor in drilling fluid, Surf. Coat.Tech. 122 (1999) 39–43. 

[8] B. Lu, Erosion-corrosion in oil and gas production, Res. Rev. Mater. Sci. Chem. 

2 (2013) 19–60. 

[9] W.J. Tomlinson, I.D. Molyneux, Corrosion, erosion-corrosion, and the flexural 

strength of WC-Co hardmetals, J. Mater. Sci. 26 (1991) 1605–1608. 

[10] A.M. Human, H.E. Exner, The relationship between electrochemical behaviour 

and in-service corrosion of WC based cemented carbides, Int. J. Refract. Met. 

Hard Mater. 15 (1997) 65–71. 

 



References 

 

146 

[11] H. Engqvist, U. Beste, N. Axen, The influence of pH on sliding wear of WC-

based materials, Int. J. Refract. Met. Hard Mater. 18 (2000) 103–109. 

[12] A.J. Gant, M.G. Gee, A.T. May, The evaluation of tribo-corrosion synergy for 

WC-Co hardmetals in low stress abrasion, Wear 256 (2004) 500–516. 

[13] S. Hochstrasser(-Kurz), Y. Mueller, C. Latkoczy, S. Virtanen, P. Schmutz, 

Analytical characterization of the corrosion mechanisms of WC-Co by 

electrochemical methods and inductively coupled plasma mass spectroscopy, 

Corros. Sci. 49 (2007) 2002–2020. 

[14] A.J. Gant, M.G. Gee, D.D. Gohil, H.G. Jones, L.P. Orkney, Use of FIB/SEM to 

assess the tribo-corrosion of WC/Co hardmetals in model single point abrasion 

experiments, Tribol. Int. 68 (2013) 56–66. 

[15] C. Yi, H. Fan, J. Xiong, Z. Guo, G. Dong, W. Wan, H. Chen, Effect of WC 

content on the microstructures and corrosion behavior of Ti(C, N)-based cermets, 

Ceram. Int. 39 (2013) 503–509. 

[16] J.M. Tarragó, G. Fargas, L. Isern, S. Dorvlo, E. Tarres, C.M. Müller, E. Jiménez-

Piqué, L. Llanes, Microstructural influence on tolerance to corrosion-induced 

damage in hardmetals, Mater. Des. 111 (2016) 36–43. 

[17] W. Tang, L. Zhang, Y. Chen, H. Zhang, L. Zhou, Corrosion and strength 

degradation behaviors of binderless WC material and WC-Co hardmetal in 

alkaline solution: a comparative investigation, Int. J. Refract. Met. Hard Mater. 

68 (2017) 1–8. 

[18] W. Qiu, Y. Liu, J. Ye, H. Fan, Y. Qiu, Effects of (Ti,Ta,Nb,W)(C,N) on the 

microstructure, mechanical properties and corrosion behaviors of WC-Co 

cemented carbides, Ceram. Int. 43 (2017) 2918–2926. 

[19] Q. Mao, Q. Yang, W. Xiong, S. Li, M. Zhang, L. Ruan, Corrosion behavior of 

Ni3Al-bonded TiC-based cermets in H2SO4 and NaOH solutions, Ceram. Int. 44 

(2018) 13303–13312. 

[20] E. Jiménez-Piqué, M. Turon-Vinas, H. Chen, T. Trifonov, J. Fair, E. Tarrés, L. 

Llanes, Focused ion beam tomography of WC-Co cemented carbides, Int. J. 

Refract. Met. Hard Mater. 67 (2017) 9–17. 



Assessment of corrosion-induced damage in the mechanical contact response of cemented carbides at different length scales 

147 
 

[21] P.C. Angelo, R. Subramanian, Powder metallurgy: science, technology and 

applications, New Delhi: PHI learning Pvt. Ltd., 2008. 

[22] H.M. Ortner, P. Ettmayer, H. Kolaska, The history of the technological progress 

of hardmetals, Int. J. Refract. Met. Hard Mater. 44 (2014) 148–159. 

[23] K. Schröter, DRP 420.689: sintered hard metal alloy and procedure for its 

fabrication, US1549615 (1923). 

[24] P. Ettmayer, H. Kolaska, H.M. Ortner, History of hardmetals, in: V.K. Sarin, D. 

Mari, L. Llanes (Eds.), Compr. Hard Mater., Elsevier, 2014: pp. 3-27. 

[25] L.Y. Zhou, China’s cemented carbide output increased by 11.59% year-on-year 

in 2018, accounting for 38% of global output, China Metall. News. (2019). 

[26] W.D. Schubert, E. Lassner, W. Bohlke, Cemented carbides – a success story, 

ITIA Newsletter, June 2010 

[27] P.K. Katiyar, P.K. Singh, R. Singh, A.L. Kumar, Modes of failure of cemented 

tungsten carbide tool bits (WC/Co): a study of wear parts, Int. J. Refract. Met. 

Hard Mater. 54 (2016) 27–38. 

[28] A.F. Lisovsky, N. V Tkachenko, V. Kebko, Structure of a binding phase in re-

alloyed WC-Co cemented carbides, Int. J. Refract. Met. Hard Mater. 10 (1991) 

33–36. 

[29] J.M. Tarragó, C. Ferrari, B. Reig, D. Coureaux, L. Schneider, L. Llanes, 

Mechanics and mechanisms of fatigue in a WC-Ni hardmetal and a comparative 

study with respect to WC-Co hardmetals, Int. J. Fatigue 70 (2015) 252–257. 

[30] W. Midlands, Nickel in hardmetals, Int. J. Refract. Met. Hard Mater. 11 (1993) 

137–149. 

[31] G. Gille, J. Bredthauer, B. Gries, B. Mende, W. Heinrich, Advanced and new 

grades of WC and binder powder – their properties and application, Int. J. Refract. 

Met. Hard Mater. 18 (2000) 87–102. 

[32] A.J. Gant, M.G. Gee, Abrasion of tungsten carbide hardmetals using hard 

counterfaces, Int. J. Refract. Met. Hard Mater. 24 (2006) 189–198. 

[33] M.G. Gee, A.J. Gant, B. Roebuck, Wear mechanisms in abrasion and erosion of 

WC/Co and related hardmetals, Wear 263 (2007) 137–148. 



References 

 

148 

[34] H.C. Lee, J. Gurland, Hardness and deformation of cemented tungsten carbide, 

Mater. Sci. Eng. 33 (1978) 125–133. 

[35] J. Gurland, A structural approach to the yield strength of two-phase alloys with 

coarse microstructures, Mater. Sci. Eng. 40 (1979) 59–71. 

[36] D.N. French, D.A. Thomas, Hardness anisotropy and slip in WC crystals, Trans. 

Met. Soc. AIME 233 (1965) 950–952. 

[37] B. Roebuck, E.A. Almond, Deformation and fracture processes and the physical 

metallurgy of WC-Co hardmetals, Int. Mater. Rev. 33 (1988) 90–112. 

[38] P. Ettmayer, Hardmetals and cermets, Annu. Rev. Mater. Sci. 19 (1989) 145–

164. 

[39] K. Jia, T.E. Fischer, B. Gallois, Microstructure, hardness and toughness of 

nanostructured and conventional WC-Co composites, Nanostruct. Mater. 10 

(1998) 875–891. 

[40] M.G. Gee, B. Roebuck, P. Lindahl, H.-O. Andren, Constituent phase 

nanoindentation of WC/Co and Ti(C,N) hard metals, Mater. Sci. Eng. A 209 

(2002) 128–136. 

[41] A. Michalski, D. Siemiaszko, Nanocrystalline cemented carbides sintered by the 

pulse plasma method, Int. J. Refract. Met. Hard Mater. 25 (2007) 153–158. 

[42] Z.Z. Fang, X. Wang, T. Ryu, K.S. Hwang, H.Y. Sohn, Synthesis, sintering, and 

mechanical properties of nanocrystalline cemented tungsten carbide – a review, 

Int. J. Refract. Met. Hard Mater. 27 (2009) 288–299. 

[43] A. Mukhopadhyay, B. Basu, Recent developments on WC-based bulk 

composites, J. Mater. Sci. 46 (2011) 571–589. 

[44] A. Duszová, R. Halgaš, M. Bľanda, P. Hvizdoš, F. Lofaj, J. Dusza, J. Morgiel, 

Nanoindentation of WC-Co hardmetals, J. Eur. Ceram. Soc. 33 (2013) 2227–

2232. 

[45] J.J. Roa, E. Jiménez-Piqué, C. Verge, J.M. Tarragó, A. Mateo, J. Fair, L. Llanes, 

Intrinsic hardness of constitutive phases in WC-Co composites: nanoindentation 

testing, statistical analysis, WC crystal orientation effects and flow stress for the 

constrained metallic binder, J. Eur. Ceram. Soc. 35 (2015) 3419–3425. 



Assessment of corrosion-induced damage in the mechanical contact response of cemented carbides at different length scales 

149 
 

[46] P. Kenny, The application of fracture mechanics to cemented tungsten carbides, 

Powder Metall. 14 (1971) 22–38. 

[47] N. Ingelstrom and H. Nordberg, The fracture toughness of cemented tungsten 

carbides, Eng. Fract. Mech. 6 (1974) 597–607. 

[48] R.A. Cutler, A.V. Virkar, The effect of binder thickness and residual stresses on 

the fracture toughness of cemented carbides, J. Mater. Sci. 20 (1985) 3557–3573. 

[49] S.I. Cha, S.H. Hong, G.H. Ha, B.K. Kim, Mechanical properties of WC-10Co 

cemented carbides sintered from nanocrystalline spray conversion processed 

powders, Int. J. Refract. Met. Hard Mater. 19 (2001) 397–403. 

[50] J.R. Pickens, J. Gurland, The fracture toughness of WC-Co alloys measured on 

single-edge notched beam specimens precracked by electron discharge 

machining, Mater. Sci. Eng. 33 (1978) 135–142. 

[51] R.K. Viswanadham, T.S. Sun, E.F. Drake, J.A. Peck, Quantitative fractography 

of WC-Co cermets by Auger spectroscopy, J. Mater. Sci. 16 (1981) 1029–1038. 

[52] D.K. Shetty, I.G. Wright, P.N. Mincer, A.H. Clauer, Indentation fracture of WC-

Co cermets, J. Mater. Sci. 20 (1985) 1873–1882. 

[53] L.S. Sigl, H.F. Fischmeister, On the fracture toughness of cemented carbides, 

Acta Metall. 36 (1988) 887–897. 

[54] Y. Torres, D. Casellas, M. Anglada, L. Llanes, Fracture toughness evaluation of 

hardmetals: influence of testing procedure, Int. J. Refract. Met. Hard Mater. 19 

(2001) 27–34. 

[55] S. Sheikh, R. M’Saoubi, P. Flasar, M. Schwind, T. Persson, J. Yang, L. Llanes, 

Fracture toughness of cemented carbides: testing method and microstructural 

effects, Int. J. Refract. Met. Hard Mater. 49 (2015) 153–160. 

[56] F. Sergejev, M. Antonov, Comparative study on indentation fracture toughness 

measurements of cemented carbides, Proc. Est. Acad. Sci. Eng. 12 (2006) 388–

398. 

[57] H.E. Exner, The influence of sample preparation on Palmqvists method for 

toughness testing of cemented carbides, Trans Met Soc AIME 245 (1969) 677–

683. 



References 

 

150 

[58] A.G. Evans, R.M. McMeeking, On the toughening of ceramics by strong 

reinforcements, Acta Metall. 34 (1986) 2435–2441. 

[59] L.S. Sigl, P.A. Mataga, B.J. Dalgleish, R.M. McMeeking, A.G. Evans, On the 

toughness of brittle materials reinforced with a ductile phase, Acta Metall. 36 

(1988) 945–953. 

[60] J.M. Tarragó, E. Jiménez-Piqué, L. Schneider, D. Casellas, Y. Torres, L. Llanes, 

FIB/FESEM experimental and analytical assessment of R-curve behavior of 

WC-Co cemented carbides, Mater. Sci. Eng. A 645 (2015) 142–149. 

[61] V.D. Krstic, On the fracture of brittle-matrix/ductile-particle composites, Philos. 

Mag. A 48 (1983) 695–708. 

[62] L.S. Sigl, H.E. Exner, Experimental study of the mechanics of fracture in WC-

Co alloys, Metall. Trans. A 18A (1987) 1299–1308. 

[63] P.A. Mataga, Deformation of crack-bridging ductile reinforcements in 

toughened brittle materials, Acta Metall. 37 (1989) 3349–3359. 

[64] Y. Torres, R. Bermejo, L. Llanes, M. Anglada, Influence of notch radius and R-

curve behaviour on the fracture toughness evaluation of WC-Co cemented 

carbides, Eng. Fract. Mech. 75 (2008) 4422–4430. 

[65] Y. Torres, J.M. Tarrago, D. Coureaux, E. Tarrés, B. Roebuck, P. Chan, M. James, 

B. Liang, M. Tillman, R.K. Viswanadham, K.P. Mingard, A. Mestra, L. Llanes, 

Fracture and fatigue of rock bit cemented carbides: mechanics and mechanisms 

of crack growth resistance under monotonic and cyclic loading, Int. J. Refract. 

Met. Hard Mater. 45 (2014) 179–188. 

[66] J.M. Tarragó, D. Coureaux, Y. Torres, D. Casellas, I. Al-Dawery, L. Schneider, 

L. Llanes, Microstructural effects on the R-curve behavior of WC-Co cemented 

carbides, Mater. Des. 97 (2016) 492–501. 

[67] G.R. Odette, B.L. Chao, J.W. Sheckherd, G.E. Lucas, Ductile phase toughening 

mechanisms in a TiAl-TiNb laminate composite, Acta Metall. Mater. 40 (1992) 

2381–2389. 

 

 



Assessment of corrosion-induced damage in the mechanical contact response of cemented carbides at different length scales 

151 
 

[68] J.M. Tarragó, E. Jiménez-Piqué, M. Turon-Vinas, L. Rivero, L. Llanes, I. Al-

Dawery, L. Schneider, Fracture and fatigue behavior of cemented carbides: 3D 

FIB tomography of crack-microstructure interactions, Int. J. Powder Metall. 50 

(2014) 1-10. 

[69] A.V. Shatov, S.S. Ponomarev, S.A. Firstov, Fracture and strength of hardmetals 

at room temperature, in: V.K. Sarin, D. Mari, L. Llanes (Eds.), Compr. Hard 

Mater., Elsevier, 2014: pp. 301-343. 

[70] E.A. Almond, B. Roebuck, Defect-initiated fracture and the bend strength of 

WC-Co hardmetals, Met. Sci. 11 (1977) 458–461. 

[71] B. Roebuck, The tensile strength of hardmetals, J. Mater. Sci. 14 (1979) 2837–

2844. 

[72] E.A. Almond, Deformation characteristics and mechanical properties of 

hardmetals, in: Sci. Hard Mater., Springer, 1983: pp. 517–561. 

[73] D.R. Moyle, E.R. Kimmel, Effect of coarse WC grains on transverse rupture 

strength of fine grain hardmetals, in: 12th Int. Plansee Semin., 1989: pp. 311–

320. 

[74] H.E. Exner, J. Gurland, A review of parameters influencing some mechanical 

properties of tungsten carbide-cobalt alloys, Powder Metall. 13 (1970) 13–31. 

[75] B. Roebuck, Notched bend tests on WC-Co hardmetals, J. Mater. Sci. 23 (1988) 

281–287. 

[76] J. Dusza, Ľ. Parilák, J. Diblḱ, M. Šlesár, Elastic and plastic behaviour of WC-Co 

composites, Ceram. Int. 9 (1983) 144–146. 

[77] C.H. Vasel, A.D. Krawitz, E.F. Drake, E.A. Kenik, Binder deformation in WC-

(Co, Ni) cemented carbide composites, Metall. Trans. A 16A (1985) 2309–2317. 

[78] D.J. Rowcliffe, V. Jayaram, M.K. Hibbs, R. Sinclair, Compressive deformation 

and fracture in WC materials, Mater. Sci. Eng. A 105 (1988) 299–303. 

[79] L.I. Aleksandrova, V.P. Bondarenko, M.G. Loshak, Metallographic aspects of 

deformation and fracture of hard alloys under compression, Powder Metall. Met. 

Ceram. 44 (2005) 489–498. 

 



References 

 

152 

[80] J. Larsen-Basse, Effect of composition, microstructure, and service conditions 

on the wear of cemented carbides, J. Met. 35 (1983) 35–42. 

[81] L. Nøkleberg, T. Søntvedt, Erosion in choke valves-oil and gas industry 

applications, Wear 186–187 (1995) 401–412. 

[82] J. Küpferle, A. Röttger, W. Theisen, Fatigue and surface spalling of cemented 

carbides under cyclic impact loading – evaluation of the mechanical properties 

with respect to microstructural processes, Wear 390–391 (2017) 33–40. 

[83] K.S. Lee, S.K. Lee, B.R. Lawn, Contact damage and strength degradation in 

brittle/quasi-plastic silicon nitride bilayers, J. Am. Ceram. Soc. 81 (1998) 2394–

2404. 

[84] E. Jiménez-Piqué, L. Llanes, M. Anglada, Resistance to contact deformation and 

damage of hard ceramics, in: V.K. Sarin, L. Llanes, D. Mari (Eds.), Compr. Hard 

Mater., 2014: pp. 367–383. 

[85] B.R. Lawn, Indentation of ceramics with spheres: a century after Hertz, J. Am. 

Ceram. Soc. 81 (1998) 1977–1994. 

[86] E. Tarrés, Y. Torres, M. Anglada, L. Llanes, Daño por contacto hertziano en 

carburos cementados WC-Co: influencia de la microestructura y de los 

parámetros de contacto, Anales Mecánica de la Fractura 22 (2005) 300–305. 

[87] H.B. Zhang, Z.Z. Fang, J.D. Belnap, Quasi-plastic deformation of WC-Co 

composites loaded with a spherical indenter, Metall. Mater. Trans. A 38 (2007) 

552–561. 

[88] H.B. Zhang, Z.Z. Fang, Characterization of quasi-plastic deformation of WC-Co 

composite using Hertzian indentation technique, Int. J. Refract. Met. Hard Mater. 

26 (2008) 106–114. 

[89] E. Tarrés, G. Ramírez, Y. Gaillard, E. Jiménez-Piqué, L. Llanes, Contact fatigue 

behavior of PVD-coated hardmetals, Int. J. Refract. Met. Hard Mater. 27 (2009) 

323–331. 

[90] L. Llanes, E. Tarrés, G. Ramírez, C.A. Botero, E. Jiménez-Piqué, Fatigue 

susceptibility under contact loading of hardmetals coated with ceramic films, 

Procedia Eng. 2 (2010) 299–308. 



Assessment of corrosion-induced damage in the mechanical contact response of cemented carbides at different length scales 

153 
 

[91] H. Zhang, Q. Lu, L. Zhang, Z.Z. Fang, Dependence of microcrack number 

density on microstructural parameters during plastic deformation of WC-Co 

composite, Int. J. Refract. Met. Hard Mater. 28 (2010) 434–440. 

[92] A. Góez, D. Coureaux, A. Ingebrand, B. Reig, E. Tarrés, A. Mestra, A. Mateo, 

E. Jiménez-Piqué, L. Llanes, Contact damage and residual strength in hardmetals, 

Int. J. Refract. Met. Hard Mater. 30 (2012) 121–127. 

[93] R.B. Collier, K.P. Plucknett, Spherical indentation damage in TiC-Ni3Al 

composites, Int. J. Refract. Met. Hard Mater. 30 (2012) 188–195. 

[94] J. Yang, F. García Marro, T. Trifonov, M. Odén, M.P. Johansson-Jõesaar, L. 

Llanes, Contact damage resistance of TiN-coated hardmetals: beneficial effects 

associated with substrate grinding, Surf. Coat. Tech. 275 (2015) 133–141. 

[95] C. Jin, K.P. Plucknett, Hertzian indentation response of TiC-316L stainless steel 

cermets, Int. J. Refract. Met. Hard Mater. 72 (2018) 172–182. 

[96] I. El Azhari, J. García, F. Soldera, S. Suarez, E. Jiménez-Piqué, F. Mücklich, L. 

Llanes, Contact damage investigation of CVD carbonitride hard coatings 

deposited on cemented carbides, Int. J. Refract. Met. Hard Mater. 86 (2020) 

105050. 

[97] D.F. Diao, K. Kato, K. Hokkirigawa, Fracture mechanisms of ceramic coatings 

in indentation, J. Tribol. 116 (1994) 860–869. 

[98] F.B. Abudaia, J.T. Evans, B.A. Shaw, Spherical indentation fatigue cracking, 

Mater. Sci. Eng. A 391 (2005) 181–187. 

[99] B.R. Lawn, R. Wilshaw, Indentation fracture: principles and applications, J. 

Mater. Sci. 10 (1975) 1049–1081. 

[100] F. Guiberteau, N.P. Padture, B.R. Lawn, Effect of grain size on Hertzian contact 

damage in alumina, J. Am. Ceram. Soc. 77 (1994) 1825–1831. 

[101] H. Cai, S.M.A. Kalceff, B.R. Lawn, Deformation and fracture of mica-

containing glass-ceramics in Hertzian contacts, J. Mater. Res. 9 (1994) 762–770. 

[102] B.A. Latella, B.H. O’Connor, N.P. Padture, B.R. Lawn, Hertzian contact damage 

in porous alumina ceramics, J. Am. Ceram. Soc. 80 (1997) 1027–1031. 

 



References 

 

154 

[103] H. Helbawi, L. Zhang, I. Zarudi, Difference in subsurface damage in indented 

specimens with and without bonding layer, Int. J. Mech. Sci. 43 (2001) 1107–

1121. 

[104] P. Miranda, A. Pajares, F. Guiberteau, Y. Deng, B.R. Lawn, Designing damage-

resistant brittle-coating structures: I. bilayers, Acta Mater. 51 (2003) 4347–4356. 

[105] K. Yang, G. Xian, H. Zhao, H. Fan, J. Wang, H. Wang, H. Du, Effect of Mo 

content on the structure and mechanical properties of TiAlMoN films deposited 

on WC-Co cemented carbide substrate by magnetron sputtering, Int. J. Refract. 

Met. Hard Mater. 52 (2015) 29–35. 

[106] B.R. Lawn, S.M. Wiederhorn, H.H. Johnson, Strength degradation of brittle 

surfaces: blunt indenters, J. Am. Ceram. Soc. 58 (1975) 428–432. 

[107] H. Cai, M.A. Stevens Kalceff, B.M. Hooks, B.R. Lawn, K. Chyung, Cyclic 

fatigue of a mica-containing glass-ceramic at Hertzian contacts, J. Mater. Res. 9 

(1994) 2654–2661. 

[108] B.R. Lawn, S.K. Lee, I.M. Peterson, S. Wuttiphan, Model of strength 

degradation from Hertzian contact damage in tough ceramics, J. Am. Ceram. Soc. 

81 (1998) 1509–1520. 

[109] I.M. Peterson, S. Wuttiphan, B.R. Lawn, K. Chyung, Role of microstructure on 

contact damage and strength degradation of micaceous glass-ceramics, Dent. 

Mater. 14 (1998) 80–89. 

[110] Y.G. Jung, I.M. Peterson, A. Pajares, B.R. Lawn, Contact damage resistance and 

strength degradation of glass-infiltrated alumina and spinel ceramics, J. Dent. 

Res. 78 (1999) 804–814. 

[111] S.K. Lee, B.R. Lawn, Role of microstructure in Hertzian contact damage in 

silicon nitride: II, strength degradation, J. Am. Ceram. Soc. 81 (2005) 997–1003. 

[112] M.G. Gee, A.J. Gant, B. Roebuck, K.P. Mingard. Wear of hardmetals,, in: V.K. 

Sarin, D. Mari, L. Llanes (Eds.), Compr. Hard Mater., Elsevier, 2014: pp. 363–

383. 

 

 



Assessment of corrosion-induced damage in the mechanical contact response of cemented carbides at different length scales 

155 
 

[113] M.G. Gee, B. Roebuck, A. Gant, Abrasive wear testing with the ASTM B611 

and modified ASTM G65 rotating wheel test systems, in: 16th Int. Plansee Semin. 

High Perform. PM Mater., Reutte, Austria, 2005: pp. 1235–1249. 

[114] K. Jia, T.E. Fischer, Abrasion resistance of nanostructured and conventional 

cemented carbides, Wear 200 (1996) 206–214. 

[115] H. Engqvist, S. Ederyd, N. Axén, S. Hogmark, Grooving wear of single-crystal 

tungsten carbide, Wear 230 (1999) 165–174. 

[116] M.G. Gee, A.D. Gee, A cost effective test system for micro-tribology 

experiments, Wear 263 (2007) 1484–1491. 

[117] B. Roebuck, A.J. Gant, M.G. Gee, Abrasion and toughness property maps for 

WC/Co hardmetals, Powder Metall. 50 (2007) 111–114. 

[118] M.G. Gee, L. Nimishakavi, Model single point abrasion experiments on WC/Co 

hardmetals, Int. J. Refract. Met. Hard Mater. 29 (2011) 1–9. 

[119] M.G. Gee, Model scratch corrosion studies for WC/Co hardmetals, Wear 268 

(2010) 1170–1177. 

[120] J. Heinrichs, M. Olsson, S. Jacobson, Surface degradation of cemented carbides 

in scratching contact with granite and diamond-the roles of microstructure and 

composition, Wear 342–343 (2015) 210–221. 

[121] J. Heinrichs, M. Olsson, S. Jacobson, Initial deformation and wear of cemented 

carbides in rock drilling as examined by a sliding wear test, Int. J. Refract. Met. 

Hard Mater. 64 (2017) 7–13. 

[122] H. Wang, M. Gee, Q. Qiu, H. Zhang, X. Liu, H. Nie, X. Song, Z. Nie, Grain size 

effect on wear resistance of WC-Co cemented carbides under different 

tribological conditions, J. Mater. Sci. Tech. 35 (2019) 2435–2446. 

[123] Y. Ahn, N.G. Cho, S.H. Lee, D. Lee, Lateral crack in abrasive wear of brittle 

materials, JSME Int. J. 46 (2003) 140–144. 

[124] H. Liao, B. Normand, C. Coddet, Influence of coating microstructure on the 

abrasive wear resistance of WC/Co cermet coatings, Surf. Coat. Tech. 124 (2000) 

235–242. 

 



References 

 

156 

[125] B. Bozzini, G.P. De Gaudenzi, M. Serra, A. Fanigliulo, F. Bogani, Corrosion 

behaviour of WC-Co based hardmetal in neutral chloride and acid sulphate 

media, Mater. Corros. 53 (2002) 328–334. 

[126] Q. Zhang, Y. He, W. Wang, N. Lin, C. Wu, N. Li, Corrosion behavior of WC-

Co hardmetals in the oil-in-water emulsions containing sulfate reducing 

Citrobacter sp., Corros. Sci. 94 (2015) 48–60. 

[127] B. Bozzini, B. Busson, G.P. De Gaudenzi, C. Humbert, C. Mele, S. Tedeschi, A. 

Tadjeddine, Corrosion of cemented carbide grades in petrochemical slurries. Part 

I - electrochemical adsorption of CN ,̄ SCN  ̄and MBT: a study based on in situ 

SFG, Int. J. Refract. Met. Hard Mater. 60 (2016) 37–51. 

[128] J.R. Davis, ASM specialty handbook: tool materials, Ohio: ASM international, 

1995. 

[129] S. Sutthiruangwong, G. Mori, Corrosion properties of Co-based cemented 

carbides in acidic solutions, Int. J. Refract. Met. Hard Mater. 21 (2003) 135–145. 

[130] B. Bozzini, G.P. De Gaudenzi, A. Fanigliulo, C. Mele, Electrochemical 

oxidation of WC in acidic sulphate solution, Corros. Sci. 46 (2004) 453–469. 

[131] D.S. Konadu, J. van der Merwe, J.H. Potgieter, S. Potgieter-Vermaak, C.N. 

Machio, The corrosion behaviour of WC-VC-Co hardmetals in acidic media, 

Corros. Sci. 52 (2010) 3118–3125. 

[132] A.B. Oliveira, A.C. Bastos, C.M. Fernandes, C.M.S. Pinho, A.M.R. Senos, E. 

Soares, J. Sacramento, M.L. Zheludkevich, M.G.S. Ferreira, Corrosion 

behaviour of WC-10% AISI 304 cemented carbides, Corros. Sci. 100 (2015) 

322–331. 

[133] P.K. Katiyar, N.S. Randhawa, Corrosion behavior of WC-Co tool bits in 

simulated (concrete, soil, and mine) solutions with and without chloride 

additions, Int. J. Refract. Met. Hard Mater. 85 (2019) 105062. 

[134] A.M.F. Rocha, A.C. Bastos, J.P. Cardoso, F. Rodrigues, C.M. Fernandes, E. 

Soares, J. Sacramento, A.M.R. Senos, M.G.S. Ferreira, Corrosion behaviour of 

WC hardmetals with nickel-based binders, Corros. Sci. 147 (2019) 384–393. 

 



Assessment of corrosion-induced damage in the mechanical contact response of cemented carbides at different length scales 

157 
 

[135] S. Guo, R. Bao, S. Li, Y. Ye, E. Zhu, W. Wang, Y. Zhang, H. Chen, Y. Ye, The 

role of Y2O3, Cu, Mo and Mo2C additives on optimizing the corrosion resistance 

of WC-6Co cemented carbide in HCl and NaOH solutions, J. Alloys Compd. 

827 (2020) 154269. 

[136] G. Fargas, C.M. Müller, D. Sosa, J. Tarragó, E. Tarrés, J. Fair, L. Llanes, 

Influence of the microstructure on corrosion induced damage of WC-Co 

cemented carbides, Powder Metall. 63 (2020) 174-179. 

[137] A.M. Human, The corrosion of tungsten carbide based cemented carbides, 

Doctoral Thesis, Technical University of Darmstadt, Darmstadt (1994). 

[138] N. Sacks, The wear and corrosive-wear response of tungsten carbide-cobalt 

hardmetals under woodcutting and three body abrasion conditions, Doctoral 

Thesis, Universität Erlangen-Nürnberg, Erlangen (2002). 

[139] S. Sutthiruangwong, G. Mori, R. Kösters, Passivity and pseudopassivity of 

cemented carbides, Int. J. Refract. Met. Hard Mater. 23 (2005) 129–136. 

[140] F.J.J. Kellner, H. Hildebrand, S. Virtanen, Effect of WC grain size on the 

corrosion behavior of WC-Co based hardmetals in alkaline solutions, Int. J. 

Refract. Met. Hard Mater. 27 (2009) 806–812. 

[141] L. Zhang, Y. Chen, Q.L. Wan, T. Liu, J.F. Zhu, W. Tian, Electrochemical 

corrosion behaviors of straight WC-Co alloys: exclusive variation in grain sizes 

and aggressive media, Int. J. Refract. Met. Hard Mater. 57 (2016) 70–77. 

[142] M. Pourbaix, Atlas of electrochemical equilibria in aqueous solutions, Houston: 

NACE International/Brussels: Cebelcor, 1966. 

[143] M.R. Thakare, J.A. Wharton, R.J.K. Wood, C. Menger, Exposure effects of 

alkaline drilling fluid on the microscale abrasion-corrosion of WC-based 

hardmetals, Wear 263 (2007) 125–136. 

[144] M.R. Thakare, J.A. Wharton, R.J.K. Wood, C. Menger, Exposure effects of 

strong alkaline conditions on the microscale abrasion-corrosion of D-gun 

sprayed WC-10Co-4Cr coating, Tribol. Int. 41 (2008) 629–639. 

[145] U. Beste, S. Jacobson, A new view of the deterioration and wear of WC/Co 

cemented carbide rock drill buttons, Wear 264 (2008) 1129–1141. 



References 

 

158 

[146] F.J.J. Kellner, M.S. Killian, G. Yang, E. Spiecker, S. Virtanen, TEM and ToF-

SIMS studies on the corrosion behavior of vanadium and chromium containing 

WC-Co hard metals in alkaline solutions, Int. J. Refract. Met. Hard Mater. 29 

(2011) 376–383. 

[147] N. Lin, Y. He, C. Wu, S. Liu, X. Xiao, Y. Jiang, Influence of TiC additions on 

the corrosion behaviour of WC-Co hardmetals in alkaline solution, Int. J. Refract. 

Met. Hard Mater. 46 (2014) 52–57. 

[148] W.A. Badawy, Electrochemical behaviour of cobalt in aqueous solutions of 

different pH, J. Appl. Electrochem. (2000) 693–704. 

[149] E.J. Wentzel, C. Allen, The erosion-corrosion resistance of tungsten-carbide 

hard metals, Int. J. Refract. Met. Hard Mater. 15 (1997) 81–87. 

[150] E.J.Wentzel, C.Allen, Erosion-corrosion resistance of tungsten carbide hard 

metals with different binder compositions, Wear 181–183 (1995) 63–69. 

[151] T.A. Fabijanić, M. Kurtela, I. Škrinjarić, J. Pötschke, M. Mayer, Electrochemical 

corrosion resistance of Ni and Co bonded near-nano and nanostructured 

cemented carbides, Metals 10 (2020) 1–12. 

[152] W.J. Tomlinson, C.R. Linzell, Anodic polarization and corrosion of cemented 

carbides with cobalt and nickel binders, J. Mater. Sci. 23 (1988) 914–918. 

[153] H. Scholl, B. Hofman, A. Rauscher, Anodic polarization of cemented carbides 

of the type [(WC,M): M = Fe, Ni or Co] in sulphuric acid solution, Electrochim. 

Acta. 37 (1992) 447–452. 

[154] J.E. Cho, S.Y. Hwang, K.Y. Kim, Corrosion behavior of thermal sprayed WC 

cermet coatings having various metallic binders in strong acidic environment, 

Surf. Coat. Tech. 200 (2006) 2653–2662. 

[155] P.K. Katiyar, A comprehensive review on synergy effect between corrosion and 

wear of cemented tungsten carbide tool bits: a mechanistic approach, Int. J. 

Refract. Met. Hard Mater. 92 (2020) 105315. 

[156] Z. Guo, J. Xiong, M. Yang, X. Song, C. Jiang, Effect of Mo2C on the 

microstructure and properties of WC-TiC-Ni cemented carbide, Int. J. Refract. 

Met. Hard Mater. 26 (2008) 601–605. 



Assessment of corrosion-induced damage in the mechanical contact response of cemented carbides at different length scales 

159 
 

[157] R.M. Genga, L.A. Cornish, G. Akdogan, Effect of Mo2C additions on the 

properties of SPS manufactured WC-TiC-Ni cemented carbides, Int. J. Refract. 

Met. Hard Mater. 41 (2013) 12–21. 

[158] W. Ji, B. Zou, Y. Liu, C. Huang, P. Guo, Frictional behavior and wear resistance 

performance of gradient cermet composite tool materials sliding against hard 

materials, Ceram. Int. 43 (2017) 7816–7826. 

[159] W.J. Tomlinson, N.J. Ayerst, Anodic polarization and corrosion of WC-Co 

hardmetals containing small amounts of Cr3C2 and/or VC, J. Mater. Sci. 24 (1989) 

2348–2352. 

[160] A. Human, H.E. Exner, Electrochemical behaviour of tungsten-carbide 

hardmetals, Mater. Sci. Eng. A 209 (1996) 180–191. 

[161] U. Beste, T. Hartzell, H. Engqvist, N. Axén, Surface damage on cemented 

carbide rock-drill buttons, Wear 249 (2001) 324–329. 

[162] American Society for Testing and Materials. ASTM G65-00: standard test 

method for measuring abrasion using the dry sand/rubber wheel apparatus. West 

Conshohocken: ASTM; 2000. 

[163] P.H. Shipway, S. Wirojanupatump, The role of lubrication and corrosion in 

abrasion of materials in aqueous environments, Tribol. Int. 35 (2002) 661–667. 

[164] A.J. Gant, M.G. Gee, A.T. May, Microabrasion of WC-Co hardmetals in 

corrosive media, Wear 256 (2004) 954–962. 

[165] P.H. Shipway, L. Howell, Microscale abrasion – corrosion behaviour of WC-Co 

hardmetals and HVOF sprayed coatings, Wear 258 (2005) 303–312. 

[166] M.R. Thakare, J.A. Wharton, R.J.K. Wood, C. Menger, Investigation of micro-

scale abrasion-corrosion of WC-based sintered hardmetal and sprayed coating 

using in situ electrochemical current-noise measurements, Wear 267 (2009) 

1967–1977. 

[167] M.G. Gee, K.P. Mingard, A.J. Gant, H.G. Jones, FIB/SEM determination of sub-

surface damage caused by micro-tribology scratching of WC/Co hardmetal 

samples, in: M. De Graef, H. F. Poulsen, A. Lewis, J. Simmons, G, Spanos (Eds.), 

Proc. 1st Int. Conf. 3D Mater. Sci., Wiley, 2016: pp. 25–30. 



References 

 

160 

[168] S. Ndlovu, K. Durst, M. Göken, Investigation of the sliding contact properties of 

WC-Co hard metals using nanoscratch testing, Wear 263 (2007) 1602–1609. 

[169] H.Q. Sun, R. Irwan, H. Huang, G.W. Stachowiak, Surface characteristics and 

removal mechanism of cemented tungsten carbides in nanoscratching, Wear 268 

(2010) 1400–1408. 

[170] T. Csanádi, M. Novák, A. Naughton-Duszová, J. Dusza, Anisotropic 

nanoscratch resistance of WC grains in WC-Co composite, Int. J. Refract. Met. 

Hard Mater. 51 (2015) 188–191. 

[171] J.J. Roa, S. Simison, J. Grasso, M. Arcidiacono, L. Escalada, F. Soldera, J. 

Garcia, A.D. Sosa, Cyclic contact fatigue of cemented carbides under dry and 

wet conditions: correlation between microstructure, damage and electrochemical 

behavior, Int. J. Refract. Met. Hard Mater. 92 (2020) 105279. 

[172] J.M. Tarragó, D. Coureaux, Y. Torres, F. Wu, I. Al-Dawery, L. Llanes, 

Implementation of an effective time-saving two-stage methodology for 

microstructural characterization of cemented carbides, Int. J. Refract. Met. Hard 

Mater. 55 (2016) 80–86. 

[173] J.M. Tarragó, J.J. Roa, V. Valle, J.M. Marshall, L. Llanes, Fracture and fatigue 

behavior of WC-Co and WC-CoNi cemented carbides, Int. J. Refract. Met. Hard 

Mater. 49 (2015) 184–191. 

[174] J.M. Tarragó, S. Dorvlo, J. Esteve, L. Llanes, Influence of the microstructure on 

the thermal shock behavior of cemented carbides, Ceram. Int. 42 (2016) 12701–

12708. 

[175] H. Engqvist, U. Wiklund, Mapping of mechanical properties of WC-Co using 

nanoindentation, Tribol. Lett. 8 (2000) 147–152. 

[176] M.G. Gee, R.J.K. Wood, J. Walker, J.C.P. Zun, Scratch testing of WC/Co 

hardmetals, Tribol. Int. 54 (2012) 77–86. 

[177] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and 

elastic modulus using load and displacement sensing indentation experiments, J. 

Mater. Res. 7 (1992) 1564–1583. 

 



Assessment of corrosion-induced damage in the mechanical contact response of cemented carbides at different length scales 

161 
 

[178] N. Barbakadze, S. Enders, S. Gorb, E. Arzt, Local mechanical properties of the 

head articulation cuticle in the beetle Pachnoda marginata (Coleoptera, 

Scarabaeidae), J. Exp. Biol. 209 (2006) 722–730. 

[179] B. Bhushan, Nanomechanical characterization of solid surfaces and thin films, 

in: B. Bhushan (Ed.), Nanotribology and Nanomechanics, Springer, 2017: pp. 

177–251. 

[180] R.D. Dukino, M. V. Swain, Comparative measurement of indentation fracture 

toughness with Berkovich and Vickers indenters, J. Am. Ceram. Soc. 75 (1992) 

3299–3304. 

[181] H. Li, R.C. Bradt, The effect of indentation-induced cracking on the apparent 

microhardness, J. Mater. Sci. 31 (1996) 1065–1070. 

[182] G.D. Quinn, P. Green, K. Xu, Cracking and the indentation size effect for Knoop 

hardness of glasses, J. Am. Ceram. Soc. 86 (2003) 441–448. 

[183] J. Wade, S. Ghosh, P. Claydon, H. Wu, Contact damage of silicon carbide 

ceramics with different grain structures measured by Hertzian and Vickers 

indentation, J. Eur. Ceram. Soc. 35 (2015) 1725–1736. 

[184] K. Fan, J.Y. Pastor, J. Ruiz-Hervias, J. Gurauskis, C. Baudin, Determination of 

mechanical properties of Al2O3/Y-TZP ceramic composites: influence of testing 

method and residual stresses, Ceram. Int. 42 (2016) 18700–18710. 

[185] M.G. Gee, Low load multiple scratch tests of ceramics and hard metals, Wear 

250–251 (2001) 264–281. 

[186] K.P. Mingard, M.G. Gee, EBSD examination of worn WC/Co hardmetal 

surfaces, Wear 263 (2007) 643–652. 

[187] M. Gee, K. Mingard, B. Roebuck, Application of EBSD to the evaluation of 

plastic deformation in the mechanical testing of WC/Co hardmetal, Int. J. Refract. 

Met. Hard Mater. 27 (2009) 300–312. 

[188] A. Nisar, K. Balani, Role of interfaces on multi-length scale wear mechanics of 

TaC-based composites, Adv. Eng. Mater. 19 (2017) 1–10. 

 

 



References 

 

162 

[189] American Society for Testing and Materials. ASTM G171: standard test method 

for scratch hardness of materials using a diamond stylus. West Conshohocken: 

ASTM; 2017. 

[190] G. Sundararajan, M. Roy, Hardness testing, in: G. Sundararajan, M. Roy (Eds.), 

Encycl. Mater. Sci. Technol., Elsevier, Oxford, 2001: pp. 3728–3736. 

[191] A.C. Fischer-Cripps, B.R. Lawn, Indentation stress-strain curves for “quasi-

ductile” ceramics, Acta Mater. 44 (1996) 519–527. 

[192] B.M. Gadella, T. Van Haeften, K. Van Bavel, J.A. Valentijn, Multi-photon 

excitation microscopy for advanced biomedical imaging, Vet. Sci. Tomorrow. 

(2003). 

[193] J.I. Goldstein, D.E. Newbury, J.R. Michael, N.W.M. Ritchie, J.H.J. Scott, D.C. 

Joy, Scanning electron microscopy and X-ray microanalysis, Springer, 2017. 

[194] P.R. Munroe, The application of focused ion beam microscopy in the material 

sciences, Mater. Charact. 60 (2009) 2–13. 

[195] R. Wirth, Focused ion beam (FIB) combined with SEM and TEM: advanced 

analytical tools for studies of chemical composition, microstructure and crystal 

structure in geomaterials on a nanometre scale, Chem. Geol. 261 (2009) 217–

229. 

[196] A. Rigort, J.M. Plitzko, Cryo-focused-ion-beam applications in structural 

biology, Arch. Biochem. Biophys. 581 (2015) 122–130. 

 




