
Machine learning-based techniques for indoor
localization and human activity recognition through

wearable devices.

Ph.D. Thesis
Emilio Sansano Sansano

Supervisors: Dr. Raúl Montoliu Colás (Universitat Jaume I)
Dr. Óscar Belmonte Fernández (Universitat Jaume I)

Dissertation submitted to the Doctoral School in partial fulfillment of the
requirements for the Degree of Doctor by the University Jaume I

Castelló de la Plana (Spain)
November 2020



Doctoral Programme in Computer Science

Escola de Doctorat de la Universitat Jaume I

Machine learning-based techniques for indoor
localization and human activity recognition through

wearable devices.

Dissertation submitted by Emilio Sansano Sansano in fulfillment of the
requirements for the Degree of Doctor by the University Jaume I

Author Supervisor Supervisor
Emilio Sansano Sansano Raúl Montoliu Colás Óscar Belmonte Fernández

Castelló de la Plana (Spain)
November 2020



This work has been partially funded by:

• Spanish Ministry of Economy and Competitiveness: "Proyectos I + D Exce-
lencia" programme (TIN2015-70202-P)

• Spanish Ministry of Economy and Competitiveness: "Proyectos I + D Retos
investigación" programme (RTI2018-095168-B-C53)

• Spanish Ministry of Economy and Competitiveness: "Redes de Excelencia"
(TEC2015-71426-REDT)

• Jaume I University: "Research promotion plan 2017" programme (UJI-B2017-
45)





i

My family





iii

Publications

The present work is structured as a compendium of scientific publications that have
been published as papers in journals indexed by the Journal Citation Report (JCR),
or as book chapters published by a renowned publisher. This section enumerates
the four works that make up this thesis, including authors, title, journal/editorial,
D.O.I., and impact factor.

• Chapter 1:

Sansano-Sansano, Emilio; Montoliu, Raúl; Belmonte-Fernández, Óscar;
Torres-Sospedra, Joaquín.

Indoor Positioning and Fingerprinting: The R Package ipft.

The R Journal, 2019, vol. 11, núm. 1, p. 67-90 [142]

doi: 10.32614/RJ-2019-010

scopus: Q1 (2019) 9/227 in Statistics and Probability

jcr: Q1 (2019) 7/124 in Statistics and Probability

• Chapter 2:

Montoliu, Raúl; Sansano-Sansano, Emilio; Belmonte Fernández, Óscar;
Torres-Sospedra, Joaquín.

IndoorLoc Platform: A Web Tool to Support the Comparison of Indoor Posi-
tioning Systems. Geographical and Fingerprinting Data to Create Systems
for Indoor Positioning and Indoor/Outdoor Navigation, Academic Press, pp
225-247, 2019. [104]

isbn: 978-0-12-813189-3

doi: 10.1016/B978-0-12-813189-3.00012-5



• Chapter 3:

Sansano-Sansano, Emilio; Montoliu, Raúl; Belmonte Fernández, Óscar.

A study of deep neural networks for human activity recognition.

Computational Intelligence. 2020; 1– 27. [141]

doi: 10.1111/coin.12318

scopus: Q2 (2019) 63/146 in Computational Mathematics

jcr: Q4 (2019) 111/136 in Computer Science, Artificial Intelligence

• Chapter 4:

Sansano-Sansano, Emilio; Belmonte Fernández, Óscar; Montoliu, Raúl;
Gascó-Compte, Arturo; Caballer.Miedes, Antonio.

Multimodal sensor data integration for indoor positioning in Ambient Assisted
Living environments..

Mobile Information Systems, 2020, vol. 2020, article id: 5204158; [140]

doi: 10.1155/2020/5204158

scopus: Q2 (2019) 86/307 in Computer Networks and Communications

jcr: Q4 (2019) 118/156 in Computer Science, Information Systems

This thesis has been accepted by the co-authors of the publications listed above
that have waved the right to present them as a part of another PhD thesis.



v

Acknowledgments

First and foremost, I would like to express my most profound gratitude to my
supervisors Raúl and Óscar, for always giving me useful suggestions, strong
support, and inspiring talks during my Ph.D. studies. I’ll always feel lucky to have
had you as my directors.

I can not forget all the people that have been part of the GIANT group during
these years. Looking back to the first year in the group, I am surprised about how
much I have learned from all of you and the long way I have come through.

Last, but not at least, I am indebted to Henar and Aitana for supporting me and
sharing my worries, frustrations, and happiness. This thesis certainly would not
have been possible without the love, support, and understanding of my family.





vii

Introduction

Motivation

Indoor positioning is perceived as one of the upcoming major applications which
can be used in a wide variety of crucial location-based services, such as indoor
navigation in airports, hospitals or malls, tracking of goods in warehouses, or
assisted living systems for elderly care. While for outdoor environments Global
Satellite Navigation Systems (GNSS) have become de facto standard, there is
no equivalent system for indoor scenarios. Indoor positioning has been an object
of research for the last years but there is currently no agreed solution that can
compare to the performance of GNSS in outdoor environments.

Tracking technologies have several applications in contexts such as health
care, and research on this technology is on the increase. These technologies
often utilize wearable devices such as smartphones or smart-watches. However,
the cost and effort needed to develop and deploy a reliable positioning system
may become arduous for research purposes. Hence, effective, easy to use, and
low-cost solutions are needed.

This thesis approaches the study of several machine learning techniques to
improve the performance of indoor positioning systems, with a special focus on
wearable and low-cost devices. It also presents some tools designed to facilitate
the research in this field by means of the development of an open-source software
framework for indoor positioning-related research, and the creation of a web
platform committed to becoming a collaborative repository of data.



Background

Indoor Positioning Systems (IPS) use radio waves, magnetic field, acoustic sig-
nals, images, or other information collected by sensors to locate and track people
or objects inside buildings. In particular, RSSI (Received Signal Strength Indicator)
positioning systems are based on measuring the intensities of the received radio
signals of the emitting devices (beacons) that are available at a particular position.
Currently, the most widely used technology for indoor localization is WiFi, which
is readily available on almost all user devices. Since WiFi is commonly found
in many buildings, indoor tracking and navigation using RSSI from opportunistic
WiFi access points have been a rather common choice. Likewise, visible light and
BlueTooth can be used as other viable options.

The methods used to derive the position of the user/device from the RSSI
values can be divided into three general categories: proximity, triangulation, and
fingerprinting. The proximity-based methods use the RSSI to locate the user
assuming that the received signal with the highest value is from the closer emitter.
The triangulation-based methods use the RSSI values from three or more emitters
to estimate the distances to each of them based on a specific signal propagation
model. Finally, fingerprinting-based are based on the assumption that, for a
given indoor environment, a signal mapping exists, and that such map can be
reconstructed measuring the RSSI signal at discrete locations of the mapped
area. In the case of Wi-Fi fingerprinting, its main advantage relies on the fact
that there already is an existing Wi-Fi infrastructure in the majority of urban areas.
Therefore, the location of the user can be obtained without deploying any additional
equipment.

The RSSI fingerprinting localization approach requires two phases of operation:
a training phase, also known as off-line or survey phase, and a positioning phase,
sometimes referred to as on-line, runtime, or tracking phase. In the training phase,
multi-dimensional vectors of RSSI values (the fingerprints) are generated and
associated with known locations. These measurements are used to build a data
set (also known as radio map) that covers the area of interest. The given area
has to be divided into smaller parts and each is defined by one specific fingerprint,
which may be a time-consuming task, especially in large areas. The collected data
set can include, along with the collected RSSI values and the location coordinates,
many other useful parameters, as the device type used in the measurements



or its orientation. Later, during the positioning phase, an RSSI vector collected
by a device is compared with the stored data to generate an estimation of its
position. Obstacles, reflections, multi-path interference, environmental changes,
or device orientation are factors that affect signal propagation and can degrade
the performance of IPS based on Wi-Fi fingerprinting.

Being such a critical technology, one of the major requirements for indoor
localization systems is to use a technology that is readily available on the user’s
device. Furthermore, a future scenario where low access barriers and open
standards play an important role in granting interoperability is most desirable. This
is important for the wide-scale adoption of the technology. The first chapters
of this thesis are focused on presenting some works aimed in this direction. In
chapters 1 and 2 this work explores ways towards enhancing collaboration among
researchers in indoor positioning by contributing with open source tools and a
public repository of data. Allowing researchers easy access to an open-source
implementation of commonly-used techniques and algorithms in this field can
accelerate the progress of building complex, useful, and significant services on top
of state-of-the-art machine learning algorithms for indoor positioning. The same
considerations can be made about data. Since the recollection of quality data is
costly, the existence of a public repository with accurate, complete, consistent, and
reliable data may be an important help to researchers in this field.

One of the most relevant location-based services that indoor positioning tech-
nologies can offer is related to healthcare. The fact that virtually every country in
the world is experiencing growth in the proportion of older persons in their popu-
lation will accelerate an important social transformation in the coming decades.
Many key enablers for the optimization of healthcare systems depend upon the
implementation of more advanced systems in the healthcare industry, such as
location awareness for patients (e.g. with dementia), nurses, doctors, etc.

Due to underlying and often debilitating health conditions that are associated
with elderly people, aspects of everyday living can become physically and mentally
challenging for them. Technology can be integrated into the health care of senior
citizens to provide safe, high-quality lives, improve their health and happiness,
and enable a longer period of independent living. Assistive technical applications
should be easy to use, unobtrusive, suitably designed, and adaptable to changing
needs and individual preferences.

The ubiquity of smartphones and smart-watches, and the availability of different



wireless interfaces, such as Wi-Fi, 3G, and Bluetooth, make them an attractive
platform for indoor monitoring. Smart home-based behavioral data have already
been found to be useful in assisting older adults to live independently and to
monitor health state and the onset and progress of age-related diseases and
disorders such as dementia and Alzheimer’s disease. Psychological health in
older adults (loneliness, depression, or emotional states) has been assessed using
such data too. Nevertheless, the level of technology readiness for home health
monitoring technologies is still too weak to provide such services with reliable
performance.

Before-mentioned services can be built upon Artificial Intelligence technologies
such as Machine Learning and Deep Learning. In particular, Deep Learning has
achieved many advances in recent years, dramatically improving the state-of-the-
art in many artificial intelligence tasks like computer vision, language processing,
speech recognition, and many more. One of the essential advantages of deep
learning is its ability to automatically learn features from raw data. Traditionally, pro-
posed schemes for pattern recognition have relayed on the design of handcrafted
features. Although these schemes could achieve high accuracy, the requirement
for domain knowledge limits its scalability. Finding a good set of features from the
raw data is critical to isolate key information and highlight important patterns, but it
requires expert knowledge and it is difficult and time-consuming. Deep learning
eliminates the need for manual feature engineering.

To improve the accuracy and robustness of indoor positioning algorithms, data
from wearable embedded sensors, such as smartwatches or fitness bands, can
be leveraged to aid in the recognition of the user’s activity. Recognizing the activity
users are performing can be of much help to determine their position. Chapter 3
presents an extensive analysis among the most suited deep learning architectures
for activity recognition to compare their performance in terms of accuracy, speed,
and memory requirements.

Finally, chapter 4 is dedicated to showing how the use of other sensors available
in wearable devices can help to improve the accuracy of indoor positioning systems.
In the real world, indoor positioning accuracy is limited by the quality of the signals
in the environment. This is due to the fact that indoor environments constantly
experience dynamic changes, causing the radio signal strengths to fluctuate over
time, which weakens the signal-spatial correlations of the RF fingerprints. Many
things can interfere with signals and make the data incorrect. Things like walls,



human bodies, pockets, or even proximity to several emitting devices at once
can throw the measurements off. Furthermore, although many IPSs have been
proposed in the literature, most of these have been evaluated in non-representative
environments such as office buildings rather than in an operational environment.
Chapter 4 outlines the characteristics of an IPS aimed at characterizing the
behavior of elder people at their homes. Due to underlying and often debilitating
health conditions that are associated with elderly people, aspects of everyday living
can become physically and mentally challenging for them. Technology can be
integrated into the health care of senior citizens to provide safe, high-quality lives,
improve their health and happiness, and enable a longer period of independent
living. The system described in this chapter has been designed to be as less
intrusive as possible and has been tested in real environments. The work presents
the results of the experiments conducted to assess the performance of the system,
as well as some techniques that take advantage of the sensors included in low-cost
wearable devices to improve the positioning accuracy of the system.

Outline

The thesis is organized as follows:

Chapter 1 presents the R package ipft. This software has been developed
to provide both researchers and industry with an easily extensible open-source
framework for indoor positioning-related analysis, experimentation, and testing.
The package has been built around a collection of fundamental algorithms and
tools to manipulate, cluster, transform, create models and make estimations
using indoor localization fingerprinting data. All included algorithms are highly
customizable and extensible, allowing users to customize them with personalized
parameters and functions to adapt the working mode to their particular research
interests.

Chapter 2 presents the indoorloc platform, a public repository for comparing
and evaluating indoor positioning algorithms and data sets. The idea behind the
indoorloc platform is to serve as a collaborative repository for indoor positioning
benchmark data sets. The platform serves also as an introductory tutorial for
indoor positioning newcomers. It allows users to learn how some well-known
algorithms work, study the source code of those algorithms, test the methods, and
even upload results of the user’s methods to check the accuracy when comparing



against the results provided by other methods.

Chapter 3 presents an evaluation of the performance of several different Deep
Learning architectures for the specific task of Human Activity Recognition. The
study is conducted using a great variety of public data sets acquired from several
sources using a diversity of devices, such as smart-phones, smart-watches, or in-
ertial motion units, in different environments. The purpose of this work is to assess
the suitability of different deep learning architectures with respect, not only to their
general accuracy but also to their memory footprint and computational require-
ments, since these aspects are decisive when considering resource-constrained
wearable devices.

Chapter 4 presents a set of experiments designed to evaluate strategies to
increase the accuracy of Wi-Fi fingerprinting-based indoor positioning systems.
The experimental results show an improved room-level accuracy when using
strategies such as data scaling and the use of consecutive Wi-Fi scanning. The
results also demonstrate that the use of sensors such as Inertial Motion Units
along with the Wi-Fi fingerprints can help to significantly increase the performance
of indoor positioning systems. These techniques can be used to mitigate the
variability in space and time of the perceived intensity of radio-frequency signals
due to environment changing conditions. The results confirm that a more robust
positioning estimation can be derived when implementing such strategies.

Finally, 5 presents a general discussion on the results of the exposed works,
as well as a summary with the main conclusions that can be extracted from this
thesis. In light of these conclusions, it also presents an overview of possible future
lines of work.

Keywords: Indoor positioning, Machine learning, Deep learning, Ambient as-
sisted living, e-health, Big data.



xiii

Index

Introduction vii

1 Indoor Positioning and Fingerprinting: The R Package ipft 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem statement. Terminology and notation . . . . . . . . . . . . 4

1.3 An overview of the implemented algorithms . . . . . . . . . . . . . 7

1.4 Data wrangling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Positioning algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5.1 The ipfKnn function. . . . . . . . . . . . . . . . . . . . . . 13

1.5.2 The ipfProbabilistic function. . . . . . . . . . . . . . 20

1.5.3 The ipfProximity function. . . . . . . . . . . . . . . . . 25

1.5.4 Positioning algorithms comparison . . . . . . . . . . . . . . 28

1.6 Beacon position estimation . . . . . . . . . . . . . . . . . . . . . . 29

1.7 Data clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.8 Plotting functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.10 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.11 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2 IndoorLoc Platform: A web tool to support the comparison of indoor
positioning systems 39

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3 Overview of the platform . . . . . . . . . . . . . . . . . . . . . . . . 44



2.3.1 Data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3.2 Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.3.4 Dashboard . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.3.5 Implementation details . . . . . . . . . . . . . . . . . . . . . 49

2.4 Data sets included in the platform . . . . . . . . . . . . . . . . . . . 51

2.4.1 Wi-Fi based data sets . . . . . . . . . . . . . . . . . . . . . 51

UJIIndoorLoc . . . . . . . . . . . . . . . . . . . . . . . . . . 52

IPIN2016 Tutorial . . . . . . . . . . . . . . . . . . . . . . . . 53

Tampere University . . . . . . . . . . . . . . . . . . . . . . . 54

ALCALA2017 Tutorial . . . . . . . . . . . . . . . . . . . . . 54

2.4.2 AmbiLoc data set . . . . . . . . . . . . . . . . . . . . . . . . 55

2.4.3 magPIE data set . . . . . . . . . . . . . . . . . . . . . . . . 55

2.5 Methods included in the platform . . . . . . . . . . . . . . . . . . . 56

2.5.1 Deterministic-based approach . . . . . . . . . . . . . . . . 56

2.5.2 Probabilistic-based approach . . . . . . . . . . . . . . . . . 56

2.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.7 The platform in use . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3 A study of Deep Neural Networks for Human Activity Recognition 65

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3 Deep Learning architectures . . . . . . . . . . . . . . . . . . . . . 73

3.3.1 Deep Belief Networks . . . . . . . . . . . . . . . . . . . . . 73

3.3.2 Convolutional Neural Networks . . . . . . . . . . . . . . . . 75

3.3.3 Recurrent Neural Networks. . . . . . . . . . . . . . . . . . . 76

3.4 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.5 Experiments setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.5.1 Experiment setup . . . . . . . . . . . . . . . . . . . . . . . 85

3.6 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . 90

3.6.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90



3.6.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.6.3 Results reproducibility . . . . . . . . . . . . . . . . . . . . . 97

3.7 Conclussions and future work . . . . . . . . . . . . . . . . . . . . . 97

4 Multimodal sensor data integration for indoor positioning in Ambient
Assisted Living environments 99

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.3 System overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.3.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.3.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.3.3 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.4 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.5 Data exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.6 Experiments description . . . . . . . . . . . . . . . . . . . . . . . . 121

4.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.8 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . 130

4.9 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5 Discussion and Conclusions 131

5.1 Discussion and Conclussions . . . . . . . . . . . . . . . . . . . . . 131

A Related publications 137

A.1 Journals with impact . . . . . . . . . . . . . . . . . . . . . . . . . . 137

A.2 Conferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

A.3 Stays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Bibliography 147





xvii

Index of tables

1.1 Comparison of the algorithms’ accuracy on the dataset included in
the package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.2 Performance comparison of the model building functions . . . . . . 29

1.3 Performance comparison of the estimation functions on each model 29

2.1 Main characteristic of the UjiIndoorLoc data set. # stands for "num-
ber of" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.2 Main characteristic of the IPIN2016 Tutorial data set. # stands for
"number of" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.3 Main characteristic of the Tampere data set. # stands for "number of" 53

2.4 Main characteristic of the Alcalá2017 Tutorial data set. # stands for
"number of" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.5 Mean positioning error (in meters) of both methods on the UJIIn-
doorLoc data set. # stands for number of. . . . . . . . . . . . . . . 59

2.6 Mean positioning error (in meters) of both methods on the Tampere
data set. # stands for number of. . . . . . . . . . . . . . . . . . . . 60

2.7 Mean positioning error (in meters) of both methods on the IPIN2016
Tutorial data set. # stands for number of. . . . . . . . . . . . . . . 60

2.8 Mean positioning error (in meters) of both methods on the AL-
CALA2017 Tutorial data set. # stands for number of. . . . . . . . . 60

2.9 Value of RMID obtained for each data set. The data is ordered by
ascending RMID value. . . . . . . . . . . . . . . . . . . . . . . . . 62



3.1 Summary of previous works. Architectures are: deep belief net-
works (DBN), restricted Boltzmann machines (RBM), convolutional
neural networks (CNN), recurrent neural networks (RNN), long
short term memory networks (LSTM), gated recurrent unit net-
works (GRU) and deep feed-forward networks (FFN). Sensors are:
accelerometer (acc), gyroscope (gyr) and other types such as mag-
netometer, barometer, light, temperature, WiFi, etc (other). . . . . 72

3.2 Number of datapoints per dataset. Columns 1-12 represent each
activity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.3 DBN models. Table shows the number of hidden layers, the number
of units in each layer, and the number of trainable parameters of the
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.4 CNN models. Table shows the size of the filter for the first convolu-
tional layer of the models, the number of units in the fully connected
layers (fcl1 and fcl2), and the number of trainable parameters. . . . 88

3.5 LSTM, biLSTM and GRU models. All the models are composed of
three recurrent layers and a soft-max output layer. Table shows the
number of hidden units in each layer, and the number of trainable
parameters of the model. . . . . . . . . . . . . . . . . . . . . . . . 88

3.6 Accuracy and f1 for three classical machine learning algorithms on
the uci-har dataset using the set of features provided by the authors. 95

4.1 Data distribution for each data set . . . . . . . . . . . . . . . . . . 116

4.2 Accuracy and f1 metrics for k-means clustering of training data . . 118

4.3 Results of Wilcoxon signed rank test for algorithm comparison be-
tween RF and each other ML algorithm . . . . . . . . . . . . . . . 126

4.4 Results of Wilcoxon signed rank test for scaling strategy . . . . . . 126

4.5 Results of Wilcoxon signed rank test for majority vote strategy . . . 127



xix

Index of figures

1.1 During the on-line phase, once the radio map has been built, the
fingerprinting algorithm uses it to estimate the device’s position
by comparing the RSSI values heard by the device with the ones
stored in the radio map. . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Funtion ipfPlotEcdf. Empirical cumulative distribution function
of the error. The plot also shows the mean (red dotted line) and the
median (blue dashed line) of the errors. . . . . . . . . . . . . . . . 21

1.3 Funtion ipfPlotPdf. Probability density function. The plot shows
the normalized histogram of the errors and its density function. The
plot also shows the mean (red dotted line) and the median (blue
dashed line) of the errors. . . . . . . . . . . . . . . . . . . . . . . . 21

1.4 δ parameter for the probabilistic approach. This parameter sets the
width of the discretization steps. . . . . . . . . . . . . . . . . . . . 23

1.5 Location of fingerprints included in the ipftrain data frame. The
labels indicate the group indices. . . . . . . . . . . . . . . . . . . . 36

1.6 Estimated and actual positions of test observations 61, 62, 81 and
82 from the ipftrain data set. The circles indicate the actual
positions of the observations. The squares show the estimated
positions. The red arrows connect the actual positions with the
estimated ones. The dashed lines connect the estimated positions
with the k neighbors from which the location has been estimated,
represented by the crosses. . . . . . . . . . . . . . . . . . . . . . 36

2.1 Homepage of the Indoorloc platform . . . . . . . . . . . . . . . . . 45

2.2 Data sets section of the Indoorloc platform . . . . . . . . . . . . . . 46



2.3 Ranking webpage of the IPIN2016 Tutorial data set. Two experi-
ments have been included in the ranking, the first one (according
to the notes written by the contributor) using a probabilistic-based
algorithm and the second one using a knn-based method. . . . . . 48

2.4 Ranking webpage of the UjiIndoorLoc data set. . . . . . . . . . . . 49

2.5 Methods section of the Indoorloc platform . . . . . . . . . . . . . . 50

2.6 Example of the Dashboard section of the platform . . . . . . . . . 51

2.7 A possible R source code for the deterministic method . . . . . . . 57

2.8 A possible R source code for the probabilistic-based method . . . 58

3.1 Vanilla recurrent neural network cell scheme. . . . . . . . . . . . . 77

3.2 Long short-term memory cell scheme. Symbol ◦ represents the
element-wise (Hadamard) product. . . . . . . . . . . . . . . . . . . 79

3.3 Gated recurrent unit cell scheme. Symbol ◦ represents the element-
wise (Hadamard) product. . . . . . . . . . . . . . . . . . . . . . . . 80

3.4 Distributions of accelerometer and gyroscope signals. . . . . . . . 85

3.5 Per dataset heatmap of the maximum f1 (a) and accuracy (b) scores
for each architecture. The best score for each dataset is boxed in
dashed lines. The table also shows the percentage of performance
loss over the best architecture for each dataset. . . . . . . . . . . . 91

3.6 Per dataset heatmap of the time (a) taken to process an input and
memory footprint (b) for the best model for each architecture, in
percentage over the fastest. The best score for each dataset is
boxed in dashed lines. . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.7 F1 score and time of prediction for each model, as a percentage
over the simplest model. The grayed area represents the confidence
level interval. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.8 F1 score for each dataset and architecture when training with a
leave-one-out strategy. Error bars show the standard deviation of
the results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95



4.1 During the on-line phase, once the radio map has been built, the
fingerprinting algorithm uses it to estimate the device’s position
by comparing the RSSI values heard by the device with the ones
stored in the radio map. . . . . . . . . . . . . . . . . . . . . . . . . 105

4.2 Senior monitoring IPS overview. The smart-watch sends sensors
data to the smart-phone. An application installed in the smart-phone
is the interface through witch the user or the caregiver configures
the smart-watch. The smart-phone sends the data to a cloud server.
This server performs data analysis and can communicate with the
user through notifications. . . . . . . . . . . . . . . . . . . . . . . . 110

4.3 The application main screen shows detailed information about the
smart-watch status, the levels of physical activity of the user in the
previous hour, and other useful information from other active sensor
such as Wi-Fi or step counter. . . . . . . . . . . . . . . . . . . . . . 112

4.4 Confusion matrices for users’ clustered data. The vertical axis
represents true labels, the horizontal axis represents predicted
labels. (a) user 1, (b) user 2, (c) user 3, (d) user 4 . . . . . . . . . 117

4.5 Visualization of data using feature reduction algorithms (PCA, LDA
and t-SNE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.6 Silhouette metric for PCA, LDA and t-SNE algorithms. Dashed line
shows the average result for each user. . . . . . . . . . . . . . . . 121

4.7 Boxplot of the f1 metric for each classifier algorithm and each data
set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.8 Boxplot of the f1 metric for scaled and raw data. . . . . . . . . . . 125

4.9 Boxplot of the f1 metric for majority vote strategy versus considering
all Wi-Fi scans. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.10 f1 average increase versus prediction threshold (PT) for all values of
MISM. Each line represents a different data set and the confidence
interval of the result. The thick line marks the average value and its
confidence interval. . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.11 Results for stage 2; f1 average increase versus prediction threshold
(PT) for all values of MISM. Each line represents a different data
set and the confidence interval of the result. The thick line marks
the average value and its confidence interval. . . . . . . . . . . . . 129



5.1 Number of packages in the CRAN repository by year. . . . . . . . 132



Chapter 1

Chapter 1

Indoor Positioning and
Fingerprinting: The R Package ipft

Methods based on the Received Signal Strength Indicator (RSSI) fingerprinting are
at the forefront among several techniques being proposed for indoor positioning.
This paper introduces the R package ipft, which provides algorithms and utility
functions for indoor positioning using fingerprinting techniques. These functions
are designed for manipulation of RSSI fingerprint data sets, estimation of positions,
comparison of the performance of different positioning models, and graphical
visualization of data. Well-know machine learning algorithms are implemented in
this package to perform analysis and estimations over RSSI data sets. The paper
provides a description of these algorithms and functions, as well as examples of its
use with real data. The ipft package provides a base that we hope to grow into
a comprehensive library of fingerprinting-based indoor positioning methodologies.

1.1 Introduction

Intelligent spaces, as a particularity of the concept known as Ambient Intelligence
(AmI) [1, 165], where agents communicate and use technology in a non-intrusive
way, have an interest in both open and closed environments. Since people spend
90% of time indoors [76], one of the most relevant aspects of AmI is indoor
localization, due to the large number of potential applications: industrial and
hospital applications, passenger transport, residences, assistance to emergency
services and rescue, localization and support guide for the disabled, leisure



2 Introduction

applications, etc. It is expected that the global market for this type of location
will grow from USD 7.11 billion in 2017 to USD 40.99 billion by 2022 [129], being
among the key technologies in the future. This is a technology that has already
awakened but that in a short period of time will suffer a big explosion, as happened
with the systems of positioning by satellite in exteriors and its applications.

This paper introduces the R package ipft [137], a collection of algorithms
and utility functions to create models, make estimations, analyze and manipulate
RSSI fingerprint data sets for indoor positioning. Given the abundance of potential
applications for indoor positioning, the package may have broad relevance in fields
such as pervasive computing, the Internet of Things (IoT), or healthcare, among
many others.

The main progress in indoor location systems has been made during the last
years. Therefore, both the research and commercial products in this area are new,
and researchers and industry are currently involved in the investigation, develop-
ment, and improvement of these systems. We believe that the R language is a
good environment for machine learning and data analysis related research, as its
popularity is constantly growing 1, researchers related to indoor positioning have
explicitly selected R as developing framework for their experiments [121, 62, 118],
it is well maintained by an active community, and provides an ecosystem of good-
quality packages that leverage its potential to become a standard programming
platform for researchers. There are some open source applications and frame-
works to build indoor positioning services, such as FIND 2, Anyplace 3 or RedPIN
4, based on fingerprinting techniques but, as far as we know, there is not any
public framework or package that provides functions and algorithms to manipulate
fingerprinting data sets and experiment with positioning algorithms.

RSSI (Received Signal Strength Indicator) positioning systems are based on
measuring the intensities of the received radio signals of the emitting devices
(beacons) that are available at a particular position, and comparing them with a
previously built RSSI data set [81]. RSSI is used to measure the relative quality
of a received signal to a client device, and each chipset manufacturer is free to
define their scale for this term. The value read by a device is given on a logarithmic

1https://stackoverflow.blog/2017/10/10/impressive-growth-r/
2https://www.internalpositioning.com#about
3https://anyplace.cs.ucy.ac.cy
4http://redpin.org

https://stackoverflow.blog/2017/10/10/impressive-growth-r/
https://www.internalpositioning.com#about
https://anyplace.cs.ucy.ac.cy
http://redpin.org


Chapter 1 3

scale and can correspond to an instant reading or a mean of some consecutive
readings.

In this scenario, a fingerprint is an RSSI feature vector composed of received
signal values from different emitting devices or beacons, associated to a precise
position. In the last years, this technique is becoming increasingly important
for indoor localization [87, 66], since Wi-Fi is generally available in indoor envi-
ronments where GPS signals cannot penetrate, and the wireless access points
(WAPs) can be used as emitting devices [85]. Other types of indoor localization
RF emitters, such as Bluetooth [162], RFID [89], or Ultra Wide Band (UWB) [50],
can be also used in combination with Wi-Fi access points or as a standalone
positioning system.

The RSSI fingerprinting localization approach requires two phases of operation:
a training phase, also known as off-line or survey phase, and a positioning phase,
sometimes referred to as on-line, runtime, or tracking phase. In the training phase,
multi-dimensional vectors of RSSI values (the fingerprints) are generated and
associated with known locations. These measurements are used to build a data
set (also known as radio map) that covers the area of interest. This data set
can include, along with the collected RSSI values and the location coordinates,
many other useful parameters, as the device type used in the measurements or
its orientation. Later, during the positioning phase, an RSSI vector collected by a
device is compared with the stored data to generate an estimation of its position
(Figure 1.1).

Despite the increasing interest in RSSI positioning [170], this topic has not
been explicitly covered yet by any publicly available R package. The proposed
package has been developed to provide users with a collection of fundamental
algorithms and tools to manipulate RSSI radio maps and perform fingerprinting
analysis. While fundamental algorithms and similarity measurement functions
are implemented to provide the main framework for research and comparison
purposes, these are highly customizable, to allow researchers to tailor those
methods with their own parameters and functions.

This paper describes these algorithms and their implementation and provides
examples of how to use them. The remainder of the paper is structured as follows:
Section 1.2 defines the fingerprinting problem statement and the nomenclature that
will be used in the rest of the paper. An overview of the implemented algorithms is
given in Section 1.3. Section 1.4 outlines some data wrangling techniques included



4 Problem statement. Terminology and notation

Figure 1.1: During the on-line phase, once the radio map has been built, the
fingerprinting algorithm uses it to estimate the device’s position by comparing the
RSSI values heard by the device with the ones stored in the radio map.

in the package. Section 1.5 describes the implemented positioning algorithms.
Section 1.6 presents the included methods for access point position estimation.
Then, Section 1.7 discuses some tools and functions included to create clusters
or groups of fingerprints. Section 1.8 illustrates the use of the plotting functions
also included in the package. In all these sections, functions are described and
explored using practical examples, and particular emphasis is placed on how to
use them with real-world examples and data sets. Finally, the paper is summarized
in Section 1.9.

1.2 Problem statement. Terminology and notation

This section provides a brief and general introduction to the principles of finger-
printing positioning, as well as a description of the notation and terminology that
will be used in the next sections. The terms described here are related to general
concepts of fingerprinting techniques, while the remaining of the paper describes
the particular implementation of these concepts in the ipft package.

The main goal of the indoor localization techniques is to determine the position of
a user in an indoor environment, where the GPS signal might not be received. This
objective might require the use of existing infrastructure, the deployment of a new
one, the use of the so-called signals-of-opportunity [172], or even a combination



Chapter 1 5

of some of these techniques. Many of these techniques take advantage of the
radio-frequency signals emitted by devices, whose position can be known or
not, to estimate the user’s position from the perceived strength of these signals.
There are many kinds of devices that can be used for this purpose, such as Wi-Fi
access points, Bluetooth beacons, RFID or UWB devices, but for all of them, the
information provided for a given position, the fingerprint, can be stored as a vector
of received signal strength intensities (RSSI), whose length is determined by the
number of detected emitters.

A radio map, or a fingerprinting data set, is composed of a set of collected
fingerprints and the associated positions where the measurements were taken
and may contain some additional variables, such as the type of device used
or a timestamp of the observation, among any other useful data. Let D be a
fingerprinting data set. Then:

D = {F ,L}

where F is the set of collected fingerprints and L is the set of associated locations.

For research purposes, a fingerprinting data set is usually divided into training
and test sets. The training data set is used to store the fingerprints and location
data to create models of the environment that can be used to estimate the position
of a new fingerprint. The test data set is used to test the models obtained from the
training data, and to compute the errors from the results of the position estimation.

Let Dtrain be a training data set:

Dtrain = {Ftrain,Ltrain}

where

Ftrain =
{
λtr1 , λ

tr
2 , ..., λ

tr
n

}

Ltrain =
{
τ tr1 , τ

tr
2 , ..., τ

tr
n

}
Dtrain is composed of n fingerprints, stored as n vectors of RSSI measurements
(λtri , i ∈ [1, 2, ..., n]), and n locations (τ tri , i ∈ [1, 2, ..., n]), stored as vectors, repre-
senting the position associated with its correspondent fingerprint. Each fingerprint



6 Problem statement. Terminology and notation

consists of q RSSI values (ρtrh,i, h ∈ [1, ..., q]), where q is the number of beacons
considered when building the training set:

λtri =
{
ρtr1,i, ρ

tr
2,i, ..., ρ

tr
q,i

}
, i ∈ [1, ..., n]

and each associated position is composed of one or more values, depending on
the number of dimensions to be considered and the coordinate system used. The
position can be given as a vector of values representing its coordinates, although
on multi-floor and multi-building environments labels can be used to represent
buildings, floors, offices, etc. Let l be the number of dimensions of a position
vector. Then:

τ tri =
{
νtr1,i, ν

tr
2,i, ..., ν

tr
l,i

}
, i ∈ [1, ..., n]

The test data set is also composed of a collection of fingerprints associated
with known positions. This data set is used for testing purposes, during research
or during model building adjustments, to assess the model’s performance by
comparing its estimation of the positions with the ground truth.

The situation is different in real applications, where the goal is to estimate the
unknown position of the receiver given the RSSI values detected at a particular
location, using a previously built model. In this case, the test data set is just
composed of a unique fingerprint, and the objective is to estimate the actual
location of the receiver. Therefore, no information about its location is provided.

The test data set is composed of m observations:

Dtest = {Ftest,Ltest}

where

Ftest =
{
λts1 , λ

ts
2 , ..., λ

ts
m

}
Ltest =

{
τ ts1 , τ

ts
2 , ..., τ

ts
m

}
To be able to compare the test observations with the training fingerprints, the

number of RSSI values of its respective fingerprints has to be the same, and the
position in the RSSI vector must represent the same beacon in both data sets.



Chapter 1 7

Therefore, each one of the m observations of the test data set is composed of a
fingerprint with q RSSI values:

λtsj =
{
ρts1,j, ρ

ts
2,j, ..., ρ

ts
q,j

}
, j ∈ [1, ...,m]

and a location vector with the same spatial dimensions as the training location
vectors:

τ tsj =
{
νts1,j, ν

ts
2,j, ..., ν

ts
l,j

}
, j ∈ [1, ...,m]

The notation depicted above will be used in the remaining of the paper to
represent the fingerprinting data. Symbols i and j will be used to represent
iterations over the training and test data sets, respectively, while h will be used to
iterate over the beacons present in each fingerprint.

1.3 An overview of the implemented algorithms

This section presents an introduction to the main functions, included in the ipft
package, that implement fingerprinting-based indoor localization methods. The
package also provides two data sets for training and validation purposes that are
briefly described in this section. The package is available at textttCRAN and can
be installed like any other R package:

1 install.packages("ipft")

The package has to be loaded into the main environment to use it for the first
time in an R session:

1 library("ipft")

The ipft package implements three algorithms to build models to estimate the
position of a receiver in an indoor environment. Two of these implementations
are based on the well known k-Nearest Neighbors algorithm (knn) [37] to, given
an RSSI vector, select the k most similar training examples from the radio map.
The similarity between the RSSI value vectors can be measured, for example, as
the euclidean distance between them, but other distance functions may be used



8 An overview of the implemented algorithms

[157]. The selection of a method to compute this measure can be provided to the
function in two ways, either choosing one of the already implemented distance
measurements (euclidean, manhattan, etc.) or by way of a reference to a function
implemented by the user that returns the distance (the lower, the more similar
or ’closer’) between two matrices or vectors. Once the k neighbors are selected,
the location of the user is estimated as the weighted average of the neighbors’
positions.

The first implementation, corresponding to the function ipfKnn, may behave
in a deterministic way, finding the k more similar neighbors using a deterministic
similarity function such as the euclidean or manhattan distances, or in a probabilis-
tic way, using similarity functions such as LDG (Logarithmic Gaussian Distance)
or PLGD (Penalized Logarithmic Gaussian Distance) [39], that are based upon
statistical assumptions on the RSSI measurement error. The similarity function
can be chosen from the set of implemented options or provided by the user via a
custom function. This implementation is discussed in Section 1.5.1.

The other implementation of the knn algorithm assumes a probabilistic nature
for the received signal distribution [133] and uses collections of many fingerprints
at each particular position, acquired during the training phase. Therefore, the
radio map is composed of several groups, where a group is a set of fingerprints
(vectors of RSSI values) that share the same location. Assuming that the RSSI
value for a specific beacon can be modeled as a random variable following a
normal distribution [58], any of these collections, or groups, of fingerprints can
be represented by the statistical parameters of this distribution, in this case, the
mean and the standard deviation. This implies that the original data set can be
transformed into a new type of data structure by storing the mean and the standard
deviation of every detected beacon for every group. All the original data for a group
is transformed into two vectors, one storing the means and the other the standard
deviations. The trustworthiness of the data in the new data set will depend on the
number of measurements for every location of the original data. It is assumed that
the more measurements for a particular location, the more reliable will be their
inferred statistical parameters.

The implementation of this probabilistic-based method takes the original radio
map and a set of group indices and fits these groups of measurements to a normal
(Gaussian) distribution for every beacon and every location so that the signal
intensity distribution is determined by the mean and the standard deviation of the



Chapter 1 9

Gaussian fit. Then, given a test fingerprint, the algorithm estimates its position
by selecting the k most probable locations, making explicit use of the statistical
parameters of the data stored in the radio map to optimize the probabilities in the
assignment of the estimated position by computing a similarity function based
on a summatory of probabilities. This approach is implemented through the
ipfProbabilistic function and is described in the Section 1.5.2.

Finally, the third implemented algorithm is based on a scenario where the
location of the beacons is known, and an estimation of the fingerprint position
can be made using the log-distance path loss model [144]. The strength of the
received signal at a particular point can be modeled as a function of the logarithmic
distance between the receiver and the emitter and some parameters related to the
environment properties and the devices’ characteristics. Therefore, as this method
uses an analytical model to evaluate the position, no radio map is needed to train
a model to compare fingerprints with, since the position might be estimated from
the fingerprint data and the position of the beacons. This method is implemented
by the function ipfProximity and is described in Section 1.5.3.

The previous functions ipfKnn, ipfProbabilistic and ipfProximity

create models based on the training data and parameters provided. These models
can then be evaluated using the ipfEstimate function, which internally detects
the algorithm to apply based on the model that receives as a parameter.

The package also includes data from the IPIN20165 Tutorial data set. In the
ipftrain data frame there are n = 927 observations, including the RSSI values
for q = 168 wireless access points, the location, expressed in Cartesian coordinates,
for the observation (x, y), and some other variables, such as timestamps for the
measurements or an identifier for the user who took the survey. The ipftest

data frame contains m = 702 observations with the same structure, for testing
and validation purposes. The fingerprints included in both data sets were taken
in the same building and the same floor. The ipfpwap data frame contains the
position of 39 of the WAPs included in the ipftrain and ipftest data sets. The
unknown positions of the remaining WAPs are stored as NA. The characteristics of
these data sets attributes are:

• RSSI values: Columns from 1 to 168. The values represent the strength
of the received signal expressed in decibels, on a scale that ranges from

5http://www3.uah.es/ipin2016/



10 Data wrangling

−30dBm to −97dBm in the training set, and from −31dBm to −99dBm in the
test set. The closer the value to zero, the stronger the signal.

• position: Columns 169 (X) and 170 (Y). The position given in Cartesian
coordinates, with its origin in the same corridor where the data was acquired.

• user id: A numeric value from 1 to 8 to represent each of the 8 users that
acquired the train data set. The test dataset was acquired by a different user,
represented by the value 0.

• timestamp: The UNIX timestamp of the observation, in seconds.

There are some other publicly available indoor location data sets that have been
used to develop and test this package and that are not included for size reasons,
as the UJIIndoorLoc Data Set [156] or the Tampere University data set [39].

The theoretical foundations of the algorithms and its uses are discussed in
detail in Section 1.5. A description of the functions ipfKnn, ipfProximity,
ipfProbabilistic and ipfEstimate is given while presenting some simula-
tions to show how these algorithms can be useful in practice.

1.4 Data wrangling

An RSSI fingerprint is a vector composed of signal strength measurements
from all the emitters received by a client device at a particular point and can be
measured in any unit of power. It is often expressed in decibels (dBm), or as
percentage values between 1-100, and can be a negative or a positive value.
Typically these values are stored as negative figures, where the strongest signals
are closer to zero.

Some algorithms are sensitive to the scale of the data. For example, Artificial
Neural Networks generally work better [80] with data scaled to a range between
[0, 1] or [−1, 1], since unscaled data may slow down the learning process and the
convergence of the network parameters and, in some cases, prevent the network
from effectively learning the problem. Thus, the first step before the data can be
fed to a positioning algorithm may involve some kind of transformation, depending
on the characteristics of the original data.

The data sets included in this package represent the RSSI data from a set of
wireless access points as negative integer numbers from −99 (weakest detected



Chapter 1 11

signal) to −30 (strongest detected signal). When the RSSI of a WAP is not
available, the value used is NA. This convention may be inconvenient for some
calculations. For example, a similarity measure between two fingerprints as the
euclidean distance will only take into account those WAPs that have been detected
in both observations, causing a loss of information that otherwise could be utilized.

The ipft package contains some functions to manipulate and wrangle raw
fingerprint data. The ipfTransform function mutates the given fingerprint data
into a new data set with a specified range for the RSSI signals. The signature of
the function is:

1 ipfTransform <- function(data, outRange = c(0, 1), outNoRSSI = 0,

inRange = NULL, inNoRSSI = 0, trans = "scale", alpha = 24)

where:

• data: The input data set with the original RSSI fingerprints.

• outRange: A numeric vector with two values indicating the desired range of
the output data.

• outNoRSSI: The desired value for not detected beacons in the output data.

• inRange: A numeric vector with two values indicating the range of signal
strength values in the input data. If this parameter is not provided, the
function will infer it from the provided data.

• inNoRSSI: The value given to a not detected beacon in the original data.

• trans: The transformation to perform over the RSSI data, either ’scale’ or
’exponential’.

• alpha: The α parameter for the exponential transformation.

The scale transformation scales the input data values to a range specified by
the user. The feature scaling is performed according to Equation 1.1:

ρouth,i =

a+ b · ρinh,i, if ρinh,i 6= inNoRSSI

outNoRSSI, otherwise
(1.1)



12 Data wrangling

b =
outMin− outMax

inMin− inMax

a = outMin− inMin · b

where:

– ρouth,i and ρinh,i are the output and input RSSI values, respectively, for the hth

beacon from the ith observation

– outMax and outMin are the maximum and minimum values, respectively,
specified for the output by the outRange parameter.

– inMax and inMin are the maximum and minimum values, respectively, of
the input data.

– outNoRSSI and inNoRSSI are the values assigned in the fingerprint to
represent a not detected beacon for the output and input data, respectively,
specified by the parameters outNoRSSI and inNoRSSI.

The exponential transformation [157] changes the data according to the next
equation:

ρouth,i =

exp(
pos(ρinh,i)

α
), if ρinh,i 6= inNoRSSI

outNoRSSI, otherwise

pos(ρinh,i) =

ρinh,i − inMin, if ρinh,i 6= inNoRSSI

0, otherwise

where α is a parameter for the exponential transformation. The authors establish α
as a case-based parameter and find that 24 is a good value for RSSI fingerprinting
data, but they did not study the effects of α in the transformed data.

The following code scales the ipftrain and ipftest data sets RSSI data,
stored in the columns 1:168, to a positive range of values, from 0 to 1, with NA
representing a not detected WAP. As a not detected WAP is represented by a NA

value in the original data, this has to be indicated to the function so it can transform
these values into the desired output:



Chapter 1 13

1 trainRSSI <- ipfTransform(ipftrain[, 1:168], outRange = c(0.1, 1),

inNoRSSI = NA, outNoRSSI = NA)

2 testRSSI <- ipfTransform(ipftest[, 1:168], outRange = c(0.1, 1),

inNoRSSI = NA, outNoRSSI = NA)

The ipfTransform function returns a new data set with the same structure
(vector, matrix, or data frame) as the input.

1.5 Positioning algorithms

This section describes three positioning algorithms implemented in the ipft

package. The examples illustrating each description are based on the data
previously scaled in Section 1.4.

1.5.1 The ipfKnn function.

The ipfKnn and ipfEstimate functions implement a version of the knn
algorithm to select the k nearest neighbors (the k more similar vectors from the
training set) to a given RSSI vector. Many different distance metrics [157] can be
used to compare two RSSI vectors and measure how ’near’ or similar they are.

The distance metrics implemented in the package include some typical functions,
as the L1 norm, or manhattan distance, or the L2, or euclidean distance. The Lu

norm between two fingerprints with indices a and b is defined as follows:

Lu =

(
q∑

h=1

|(ρh,a − ρh,b|u
)1/u

The package also implements some fingerprinting specific distance estimation
functions such as LDG and PLGD. The LGD between two RSSI vectors λtri and
λtsj of longitude q is given by:

LGD(λtri , λ
ts
j ) = −

q∑
h=1

log max(G(ρtrh,i, ρ
ts
h,j), ε)

where ε is a parameter to avoid logarithm of zero, as well as having one bea-
con RSSI value influence the LGD only above a certain threshold. G(ρtrh,i, ρ

ts
h,j)

represents the Gaussian similarity between ρtrh,i and ρtsh,j, defined as



14 Positioning algorithms

G(ρtrh,i, ρ
ts
h,j) =


1√
2πσ2

exp
(
− (ρtrh,i−ρ

ts
h,j)

2

2σ2

)
, if ρtrh,i 6= 0 and ρtsh,j 6= 0

0, otherwise

The σ2 parameter represents the shadowing variance [148]. Values for σ in the
range between 4 and 10 dBm are usually good for indoor scenarios [90].

The PLGD between two RSSI vectors λtri and λtsj of longitude q is given as:

PLGD(λtri , λ
ts
j ) = LGD(λtri , λ

ts
j ) + α(φ(λtri , λ

ts
j ) + φ(λtsj , λ

tr
i ))

where φ(λtri , λ
ts
j ) is a penalty function for the beacons that are visible in the ith

training fingerprint but not in the jth test fingerprint, φ(λtsj , λ
tr
i ) is a penalty function

for the beacons that are visible in the jth test fingerprint but not in the ith training
fingerprint, and are defined as follows:

φ(λtri , λ
ts
j ) =

q∑
h=1

Tmax − ρtrh,i, for 0 < ρtrh,i ≤ Tmax and ri = 0)

φ(λtsj , λ
tr
i ) =

q∑
h=1

Tmax − ρtsh,j, for 0 < ρtsh,j ≤ Tmax and rj = 0)

Tmax is an upper threshold for the strength of the signal, and α is a scaling factor.

The similarity measurement method can be chosen by means of the parameter
method, or by providing a custom function (parameters FUN and ...). The
signature of the ipfKnn function is:

1 ipfKnn <- function(train_fgp, train_pos, k = 3, method = ’

euclidean’, weights = ’distance’, norm = 2, sd = 5, epsilon =

1e-3, alpha = 1, threshold = 20, FUN = NULL, ...)

where:

• train_fgp: A data frame of n rows and q columns containing the fingerprint
vectors of the training set.

• train_pos: A data frame of n rows and l columns containing the positions
of the training observations.



Chapter 1 15

• k: The k parameter of the knn algorithm, the number of nearest neighbors
to consider.

• method: The distance metric to be used by the algorithm. The implemented
options are ’euclidean’, ’manhatan’, ’norm’, ’LGD’ and ’PLGD’

• weights: The weight function to be used by the algorithm. The implemented
options are ’distance’ and ’uniform’. The default ’distance’ function calculate
the weights from the distances as:

wj,t =
1

(1 + dj,t)Wj

where wj,t is the weight assigned to the tth (t ∈ [1..k]) neighbor of the
jth (j ∈ [1..m]) test observation, dj,t is the distance in the feature (RSSI)
space between the tth neighbor and the jth test fingerprint, andWj is a term
used to normalize the values so that the total sum of the k weights is 1.

The ’uniform’ function assigns the same weight value to each neighbor:

wj,t =
1

k

• norm, sd, epsilon, alpha, threshold: Parameters for the ’norm’,
’LGD’ and ’PLGD’ methods.

• FUN: An alternative function provided by the user to compute the distance.

• ...: Additional parameters for the function FUN.

For a training data set of n RSSI vectors (a data frame or a matrix named
tr_fingerprints) and a data set of n position vectors (a data frame or a matrix
named tr_positions), the code for fitting a knn model with a k value of 4 and
the manhattan distance as the distance measurement method is:

1 knnModel <- ipfKnn(tr_fingerprints, tr_positions, k = 4, method = ’

manhattan’)

This function returns an S3 object of class ipftModel containing the following
properties:

• params: A list with the parameters passed to the function.



16 Positioning algorithms

• data: A list with the fingerprints and the location data of the radio map.

To estimate the position of a new fingerprint, the ipfEstimate function makes
use of the previously obtained model. An ipfModel object holds the data model
needed by the ipfEstimate function to apply the selected algorithm and returns
an estimation of the test fingerprints positions. The signature of ipfEstimate is:

1 ipfEstimate <- function(ipfmodel, test_fgp, test_pos = NULL)

where:

• ipfmodel: An S3 object of class ipfModel.

• test_fgp: A data frame ofm rows and q columns containing the fingerprints
of the test set.

• test_pos: An optional parameter containing a data frame of m rows and l
columns with the position of the test observations.

The ipfEstimate function returns an S3 object of the class ipfEstimation
with the following elements:

• location: A m× l matrix with the predicted position for each observation
in the test data set.

• errors: If the actual location of the test observations is passed in param-
eter test_pos, and the data that represents the position is numeric, this
property returns a numeric vector of length n with the errors, calculated as
the euclidean distance between the actual and the predicted locations.

• confusion: If the actual location of the test observations is passed in
parameter test_pos, and the data that represents the position is a factor,
the estimation of the actual position is performed as a classification task,
and this property returns a confusion matrix summarizing the results of this
classification.

• neighbors: A m× k matrix with the indices of the k selected neighbors for
each observation in the test data set.



Chapter 1 17

• weights: A m× k matrix containing the weights assigned by the algorithm
to the selected neighbors.

The following R code shows an example of the usage of the ipfKnn function
with the data set included in the package. This example takes the data previ-
ously scaled and generates a positioning model from the input data trainRSSI

(the radio map) that is stored in knnModel. Then, the model is passed to the
ipfEstimate function, along with the test data, to get an estimation of the posi-
tion of the 702 test observations:

1 tr_fingerprints <- trainRSSI[, 1:168]

2 tr_positions <- ipftrain[, 169:170]

3 knnModel <- ipfKnn(tr_fingerprints, tr_positions, k = 7,

method = "euclidean")

4 ts_fingerprints <- testRSSI[, 1:168]

5 ts_positions <- ipftest[, 169:170]

6 knnEstimation <- ipfEstimate(knnModel, ts_fingerprints, ts_

positions)

Since the position of the test observations is known, the mean error for the 702
test observations can be calculated as follows:

1 > mean(knnEstimation$errors)

2 [1] 3.302739

The mean positioning error is one of the most common evaluation metrics used
in indoor positioning [87] to assess the system’s accuracy. This metric corresponds
to the average Euclidean distance between the estimated locations and the true
locations. As positions in the ipftrain and ipftest are expressed in meters,
this metric represents the average error in meters for this scenario.

The neighbors selected from the training data set for the 6 first test fingerprints
are:

1 > head(knnEstimation$neighbors)

2 [,1] [,2] [,3] [,4] [,5] [,6] [,7]

3 [1,] 71 176 126 125 127 771 130

4 [2,] 71 176 126 125 127 771 130

5 [3,] 465 914 915 913 217 77 218



18 Positioning algorithms

6 [4,] 465 914 915 176 913 461 217

7 [5,] 176 126 125 771 130 127 914

8 [6,] 77 914 915 217 176 465 218

where each row of the output corresponds to the indices of the k = 7 more
similar vectors from the training data set to the ith vector of the test data set.

As an example of how to use ipfKnn with a custom function, the next code
shows the definition of a C++ function that implements a modified version of the
manhattan distance. The function needs at least two parameters, the two matrices
representing the training and test data sets. A third parameter is here introduced
to represent a penalization value. This function penalizes the computed distance
between two RSSI measurements when one of the beacons is not detected
(represented by the value ∅), by multiplying the resulting distance by a factor F .
Given two fingerprints λtri and λtsj of length q, the myD distance is:

myD(λtri , λ
ts
j ) =

q∑
h=1

myd(ρtrh,i, ρ
ts
h,j),

where

myd(ρtrh,i, ρ
ts
h,j) =

|ρtrh,i − ρtsh,j|, if ρtrh,i 6= ∅ and ρtsh,j 6= ∅

|ρtrh,i − ρtsh,j|F, otherwise

The following code implements the myD function and shows an example of its
usage with ipfKnn, as well as the results obtained. The function is coded in C++
to improve its performance when using large data sets, although the method also
accepts custom plain R functions. The myD function assumes that the fingerprints
are in a positive range:

1 library(’ipft’)

2 library(’Rcpp’)

3 cppFunction(’

4 NumericMatrix myD(NumericMatrix train, NumericMatrix test, double F

= 2.0) {

5 NumericMatrix distanceMatrix(test.nrow(), train.nrow());

6 double d = 0, pv = 0, rssi1 = 0, rssi2 = 0;

7 for (int itrain = 0; itrain < train.nrow(); itrain++) {

8 for (int itest = 0; itest < test.nrow(); itest++) {



Chapter 1 19

9 d = 0;

10 for (int i = 0; i < train.ncol(); i++) {

11 rssi1 = R_IsNA(train(itrain, i))? 0 : train(itrain, i);

12 rssi2 = R_IsNA(test(itest, i))? 0 : test(itest, i);

13 pv = (rssi1 != 0 && rssi2 != 0)? 1 : F;

14 d = d + std::abs(rssi1 - rssi2) * pv;

15 }

16 distanceMatrix(itest, itrain) = d;

17 }

18 }

19 return distanceMatrix;

20 }’

21 )

22 customModel <- ipfKnn(tr_fingerprints, tr_positions, k = 1, FUN

= myD, F = 0.25)

23 customEstimation <- ipfEstimate(customModel, ts_fingerprints, ts_

positions)

24

25 > head(customEstimation$neighbors)

26 [,1]

27 [1,] 773

28 [2,] 773

29 [3,] 776

30 [4,] 773

31 [5,] 130

32 [6,] 130

The previous code outputs the selected neighbors for the first 6 observations in
the test data set. As the ts_positions data frame contains the actual location
of the observations, the absolute error committed by the model is returned in the
ipfEstimation object:

1 > head(customEstimation$errors)

2 [1] 5.708275 5.708275 5.708275 5.708275 3.380000 3.380000

And the mean error with this custom similarity function is:

1 > mean(customEstimation$errors)

2 [1] 3.297342



20 Positioning algorithms

An ipfEstimation object can be used directly to plot the Empirical cumulative
distribution function of the error (function ipfPlotEcdf()) and the Probability
density function (function ipfPlotPdf()). Figures 1.2 and 1.3 show the plots
obtained from the following code:

1 > ipfPlotEcdf(customEstimation)

2 > ipfPlotPdf(customEstimation)

The plotting functions included in the package are described in detail in Section
1.8.

1.5.2 The ipfProbabilistic function.

Given the limitations of sensors accuracy [91] and the irregular character of
signal propagation [3], the RSSI vector stored for a particular position cannot have
completely reliable and accurate information about the emitters signal strength.
This uncertainty is generally modeled by a normal distribution [58], but to do
so many readings of the signals at the same position are needed to obtain a
representative set of statistical parameters to model each RSSI present at that
position.

Thus, the initial collection of RSSI observations associated to a particular point is
transformed into a pair of vectors containing the means and the standard deviations
of the RSSI for each beacon, and then the complete training data is stored as a set
of statistical parameters that can be used to infer the location of a test observation
as the one that maximizes a probability function.

Let D̂train be the new training set obtained from the previous procedure:

D̂train =
{
F̂train, L̂train

}

F̂train =
{
λ̂tr1 , λ̂

tr
2 , ..., λ̂

tr
g

}

L̂train =
{
τ̂ tr1 , τ̂

tr
2 , ..., τ̂

tr
g

}
where F̂train is the set of statistical parameters obtained from the fingerprints of
the training set, g is the number of groups of fingerprints with the same associated



Chapter 1 21

Figure 1.2: Funtion ipfPlotEcdf. Empirical cumulative distribution function of
the error. The plot also shows the mean (red dotted line) and the median (blue
dashed line) of the errors.

Figure 1.3: Funtion ipfPlotPdf. Probability density function. The plot shows the
normalized histogram of the errors and its density function. The plot also shows
the mean (red dotted line) and the median (blue dashed line) of the errors.



22 Positioning algorithms

position, and L̂train is the set of positions associated to each group. Each one of
the g observations of the training data set is now composed of a fingerprint with q
values:

λ̂tri =
{
θtr1,i, θ

tr
2,i, ..., θ

tr
q,i

}
, i ∈ [1, ..., g]

θtrh,i ∼ N (µh,i, σ
2
h,i)

where µh,i and σ2
h,i are the mean and the variance, respectively, of the hth RSSI of

the ith group of original fingerprints.

Let ρtsh,j be the hth RSSI measurement of the jth test fingerprint (λtsj ), and let
µh,i and σ2

h,i be the mean and the standard deviation of the hth beacon distribution
obtained for the ith position from the training set. The probability p(i)h,j, of observing
ρtsh,j at the ith position is:

p
(i)
h,j =

∫ ρtsh,j+δ

ρtsh,j−δ

1

σh,i
√

2π
e
−
x−µh,i
2σ2
h,i dx

where δ is a parameter to allow the discretization of the normal distribution (Figure
1.4).

The set of all probabilities p(i)h,j, h ∈ [1, ..., q] obtained for a given test observa-
tion j, expresses the similarity between the observation measurement and the
training data for a particular location. An evaluation of the total similarity for every
location can be computed as a function of these individual probabilities, like its
sum or its product. In the ipft package, this algorithm is implemented by the
ipfProbabilistic and ipfEstimate functions, and by default uses the sum
of probabilities as default operator to evaluate the similarity:

ψ
(i)
j =

p∑
h=1

p
(i)
h,j

where ψ(i)
j is the similarity between the jth test observation and the ith distribution

from the training data set. The function to evaluate the similarity can be passed to
ipfProbabilistic as a parameter.

As well as the ipfKnn and ipfProximity functions, ipfProbabilistic
returns a ipfModel object with the same data structure seen in Section 1.5.1, but



Chapter 1 23

Figure 1.4: δ parameter for the probabilistic approach. This parameter sets the
width of the discretization steps.

with the difference that now the data property returns the probabilistic parameters
that define the fitted distributions for every group of fingerprints on the training set.
The clustering or grouping of the training data is performed by default over the
location data provided by the user, but this behavior can be customized by passing
a parameter with the columns over which to group the data, or by passing the
group indices directly. The ipft package implements two functions (ipfGroup()
and ipfCluster()) to perform clustering tasks. These functions are described
in Section 1.7.

The signature of the ipfProbabilistic function is:

1 ipfProbabilistic <- function(train_fgp, train_pos, group_cols = NULL,

groups = NULL, k = 3, FUN = sum, delta = 1, ...)

where train_fgp, train_pos and k have the same meaning and structure as
described in Section 1.5.1, and, given n observations in the training set:

• groups: is a numeric vector of length n, containing the index of the group
assigned to each observation of the training set. This parameter is optional.

• group_cols: is a character vector with the names of the columns to use as



24 Positioning algorithms

criteria to form groups of fingerprints. This parameter is optional.

• FUN: is a function to estimate a similarity measure from the calculated
probabilities.

• delta: is a parameter to specify the interval around the test RSSI value to
take into account when determining the probability.

• ...: are additional parameters for FUN.

The following code shows how to use the ipfProbabilistic function to
obtain a probabilistic model from the ipftrain and ipftest data sets. The
default behavior of ipfProbabilistic groups the training data attending at the
position of each observation, in this case, its x and y coordinates:

1 > probModel <- ipfProbabilistic(tr_fingerprints, tr_positions, k = 7,

delta = 10)

2 > head(probModel$data$positions)

3 X Y

4 1 -0.6 24.42

5 2 -0.6 27.42

6 3 0.0 0.00

7 4 0.4 0.00

8 5 0.4 3.38

9 6 0.4 6.81

Now the ipfModel$data property returns a list with 3 elements:

• means: a data frame with the means for every beacon and every group of
fingerprints.

• sds: a data frame with the standard deviations for every beacon and every
group of fingerprints.

• positions: a data frame with the position of each group of fingerprints.

To obtain an estimation from this model, the same code used in section 1.5.1
can be used to produce the estimated locations:

1 > ts_fingerprints <- ipftest[, 1:168]

2 > ts_positions <- ipftest[, 169:170]



Chapter 1 25

3 > probEstimation <- ipfEstimate(probModel, ts_fingerprints, ts_

positions)

and their errors and its mean value:

1 > mean(probEstimation$errors)

2 [1] 6.069336

An alternative function can be passed to ipfProbabilistic. The following
code uses the maximum value of the probabilities as the similarity measure and
passes a parameter to remove NAs from the data6:

1 > probModel <- ipfProbabilistic(tr_fingerprints, tr_positions, k = 9,

delta = 10, FUN = max, na.rm = TRUE)

2 > probEstimation <- ipfEstimate(probModel, ts_fingerprints, ts_

positions)

3 > mean(probEstimation$errors)

4 [1] 8.652321

1.5.3 The ipfProximity function.

When the location of the access points is known, it’s possible to estimate the
position of a fingerprint using the log-distance path loss model [144]. Given a set
of q beacons, and a fingerprint vector λ = {ρ1, ρ2, ..., ρq} of length q, this model is
expressed as:

ρh = P1m,h − 10α log10 dh − γ, h ∈ [1, 2, ..., q]

where ρh is the value of the received signal from the hth beacon, dh is the distance
from the observation to the beacon, P1m,h is the received power at 1 meter from
the emitter, α is the path loss exponent, and γ ∼ N (0, σ2

γ) represents a zero-mean
Gaussian noise that models the random shadowing effects of the environment.

6The ipfProbabilistic function takes into account the NAs contained in the data when
using the default function (sum), but the user needs to manage this situation when a custom
function is provided. In this example, the data is not previously transformed, is passed as it is, with
NAs for not detected WAPs, to illustrate this situation.



26 Positioning algorithms

The estimator of the distance between the emitting beacon and the position
where the signal is received is:

d̂h = 10
ρh−P1m,h

10α

This estimation follows a log-normal distribution that is:

ln d̂h ∼ N (ln dh, σ
2
d)

where σd = (σγln10)/(10α).

The mean and the variance of the distribution are:

E[d̂h] = dh e
σ2
d/2

Var[d̂h] = d2h e
σ2
d (eσ

2
d − 1)

Note that the variance grows quadratically with the distance, making the es-
timation less reliable as the distance becomes larger. Therefore, the distances
estimated from different beacons will have different accuracies. To take this into
account, the algorithm estimates the position of a fingerprint as a minimization
problem of the overall squared error of the estimated distances. The objective
function to minimize is:

min
τ
J =

p∑
h=1

ωh(d̂h − ‖sh − τ‖)2

where τ is the position that minimizes the function, that is, the estimated position,
q is the number of beacons present in the fingerprint, and ωh = 1/V ar[d̂h] are the
weights.

The functions ipfProximity and ipfEstimate implement this design, and
uses the Broyden-Fletcher-Goldfard-Shano algorithm (BFGS) [30, 46, 53, 145], a
quasi-Newton method, to minimize the previous function to make an estimation of
the fingerprint position. The accuracy of the estimation is strongly dependent on
the reliability of the emitters positions. When these positions are unknown, they
can be estimated with the function ipfEstimateBeaconPositions. Section
1.6 details the implementation and usage of this function. The ipfProximity

function returns an ipfModel object with the data needed by the ipfEstimate

function to estimate a fingerprint position.



Chapter 1 27

The signature of the ipfProximity function is:

1 ipfProximity <- function(bpos, rssirange = c(-100, 0), norssi = NA,

alpha = 5, wapPow1 = -30)

where:

• bpos: a matrix or a data frame containing the position of the beacons, in the
same order as they appear in fingerprints.

• rssirange: the range of the RSSI data in the fingerprints.

• norssi: the value used to represent a not detected beacon.

• alpha: the path loss exponent (α).

• wapPow1: a numeric vector with the received power at one meter distance
from the beacon (P1m,h). If only one value is supplied, it will be assigned to
all beacons.

In the following example, the goal is to estimate the position of the 702 fin-
gerprints included in the test set, using the known position of the WAPs and
the log-distance path loss model. The ipfpwap dataset contains the location
of 39 of the 168 wireless access points of the ipftrain and ipftest data
sets. The ipfProximity function returns a model that is used to estimate the
position of the fingerprints. As the real position of the test fingerprints is known,
this information can be also passed to the ipfEstimate function. Thus, the
returned ipfEstimation object will contain, along with the estimated positions,
the associated errors:

1 > proxModel <- ipfProximity(ipfpwap, alpha = 4, rssirange = c

(-100, 0), norssi = NA, wapPow1 = -32)

2 > fingerprints <- ipftest[, 1:168]

3 > positions <- ipftest[, 169:170]

4 > proxEstimation <- ipfEstimate(proxModel, ipftest[, 1:168], ipftest

[, 169:170])

5 > mean(proxEstimation$errors)

6 [1] 8.0444



28 Positioning algorithms

1.5.4 Positioning algorithms comparison

In a classical fingerprint-based positioning system, the radio map is constructed
in accordance with the positioning algorithm to be used in the online phase. The
knn algorithm follows a deterministic approach that performs well in most cases,
while the probabilistic method is based on the assumption that there is enough
training data for each particular position to obtain reliable parameters to model
a distribution for each signal at each survey location. As regards the proximity
algorithm, it is based on two assumptions; first, the ability to realistically simulate
the propagation model of the signal, and second, the known positions of the emitter
beacons. These conditions are not met in many scenarios, where changes in
occupation, for example, modify the propagation model and thus the performance
of the positioning system.

To illustrate the previous considerations, Table 1.1 shows the mean and the
quartile errors in meters for the implemented algorithms, computed using the
dataset included in the package. In this particular case, given the characteristics
of the training data, knn performs better than the rest.

Quartile error (m)
algorithm mean error (m) 0% 25% 50% 75% 100%

knn 3.3027 0.15172 1.46891 2.61281 4.08992 19.84650
probabilistic 6.0693 0.14289 3.26988 5.63051 8.19933 17.93031
proximity 8.0444 2.49865 5.71055 7.42602 9.88427 20.12029

Table 1.1: Comparison of the algorithms’ accuracy on the dataset included in the
package

To compare the performance of the proposed implementation of the previous
positioning algorithms, we ran a benchmark test of 1000 iterations on each function,
using the dataset included in the package. The results for the model fitting functions
are shown in Table 1.2. As can be seen, the proximity and knn algorithms are the
fastest, as expected, since their model fitting process basically consists in storing
the training data for later processing during the estimation stage. In contrast, the
probabilistic algorithm has to fit a normal distribution for each signal received at
each position, and thus, it takes longer to complete the process.

The outcomes are different when considering the results for the estimation



Chapter 1 29

function elapsed (sec) relative

ipfKnn 0.031 1.409
ipfProbabilistic 1035.446 47065.727
ipfProximity 0.022 1.000

Table 1.2: Performance comparison of the model building functions

function (Table 1.3). The position estimation for the probabilistic algorithm is
faster than the rest. For the knn algorithm, the estimation process could be
improved using clustering techniques to avoid comparing the test fingerprint with
all the instances in the training set. With regards to the estimation process
for the proximity algorithm, the fact that the result is computed by solving an
unconstrained nonlinear optimization through an iterative method highly penalizes
its performance.

model function elapsed (sec) relative

knn ipfEstimate 2508.079 2.998
probabilistic ipfEstimate 836.651 1.000
proximity ipfEstimate 28259.110 33.776

Table 1.3: Performance comparison of the estimation functions on each model

1.6 Beacon position estimation

If the actual position of the beacons is unknown, it can be estimated in many
ways from the RSSI data. Two basic methods for estimation of the beacons location
have been included in the ipft package through the ipfEstimateBeaconPositions
function. The ’centroid’ and the ’weighted centroid’ methods.

Both methods use the fingerprint data to guess the position of the beacons. Let
q be the number of beacons and τB be the set of beacons locations:

τB =
{
νB1,h, ν

B
2,h, ν

B
3,h

}
, h ∈ [1, 2, ..., q]

the position of the hth beacon is given by:



30 Beacon position estimation

τBh =

{
n∑
i=1

ωiν
tr
1,i,

n∑
i=1

ωiν
tr
2,i,

n∑
i=1

ωiν
tr
3,i

}
where n is the number of fingerprints in the training set. The value of ωi is:

ωi =
1

n

for the ’centroid’ method and:

ωi =
ρtrh,i∑n
l=1 ρ

tr
h,l

for the ’weighted centroid’ method. Since the biggest weights have to be assigned
to the strongest RSSI values, the fingerprint vector values should be positive, or at
least, positively correlated to the beacon received intensity. This is checked by the
function implementation so the input data is internally transformed to a positive
range when needed.

This is the signature of the ipfEstimateBeaconPositions function:

1 ipfEstimateBeaconPositions <- function(fingerprints, positions, method

= ’wcentroid’, rssirange = c(-100, 0), norssi = NA)

where:

• fingerprints: is a data frame with the fingerprint vectors as rows.

• positions: a data frame with the position of the fingerprints.

• method: the method to use by the algorithm, either ’centroid’ or ’wcentroid’.

• rssirange: the range of the signal strength values of the fingerprints.

• norssi: the value assigned in the fingerprints to a non detected beacon.

The following code uses the function ipfEstimateBeaconPositions with
the ’weighted centroid’ method to estimate the position of the wireless access
points, under the assumption that this position is unknown. Finally, the function
ipfProximity estimates the positions of the first 6 test fingerprints:



Chapter 1 31

1 > bc_positions <- ipfEstimateBeaconPositions(ts_fingerprints, ts_

positions, method = ’wcentroid’)

2 > proxModel <- ipfProximity(bc_positions, rssirange = c(0.1, 1),

norssi = NA)

3 > proxEstimation <- ipfEstimate(proxModel, fingerprints[1:6,],

positions[1:6,])

4 > proxEstimation$location

5 V1 V2

6 1 1.686950 12.02117

7 2 1.686950 12.02117

8 3 1.654255 10.91767

9 4 1.682121 10.96035

10 5 1.711448 10.88966

11 6 1.695007 10.09507

1.7 Data clustering

Clustering techniques can be used with the aim of enhancing localization perfor-
mance and reducing computational overhead [39]. The ipft package includes
some functions for cluster analysis and grouping of the fingerprinting and location
data. These functions can be used to create or detect clusters based on the
position of the observations, on its signal levels, or on any other criteria that might
be useful to group the data by. Performing RSSI clustering before the positioning
process groups a large number of reference points into various clusters that can
be used to perform first-level classification. This allows assessing the testing
point location by using only the fingerprints in the matched cluster rather than
the whole radio map. Furthermore, given the amplitude attenuation that building
partitions cause to electromagnetic signals, clusters usually can be related to
physical spaces such as buildings, floors, or even rooms.

The main function for clustering tasks is ipfCluster. The more basic usage
of the function takes the provided data and uses the k-means algorithm to classify
it into k disjoint sets of observations, by selecting a set of k cluster centers to
minimize the sum of the squared distances between the data vectors and their
corresponding centers.

The k-means clustering procedure begins with an initial set of randomly selected
centers and iteratively tries to minimize the sum of the squared distances. This



32 Data clustering

makes the algorithm very sensitive to the arbitrary selection of initial centers
and introduces variability in the results obtained from one execution to another.
Besides, the number of clusters has to be established beforehand, and that may
be inconvenient in some scenarios.

The signature of the ipftCluster function is:

1 ipfCluster <- function(data, method = ’k-means’, k = NULL, grid =

NULL, ...)

where

• data: is a data frame with the data to cluster. When using the k-means
method, the data frame must not contain any NA values.

• method: the algorithm used to create clusters. The implemented algorithms
are ’k-means’ for k-means algorithm, ’grid’ for clustering based on spatial
grid partition, and ’AP’ for affinity propagation algorithm.

• k: a numeric parameter for k-means algorithm.

• grid: a numeric vector with the size of the grid for the grid algorithm.

When using the default k-means algorithm, the function behaves as a wrapper
around the k-means function of the stats package, and therefore, the usage can
be further customized by passing extra parameters, as the number of iterations or
the algorithm to be used ("Hartigan-Wong" is the default).

The following example will find k = 30 clusters of similar fingerprints in the
ipftrain dataset. First, the data set of fingerprints is transformed to eliminate
the NA values that represent a not detected beacon. Then, the data is passed to
the ipfCluster function to find the 30 clusters using the ’MacQueen’ algorithm:

1 > set.seed(1)

2 > cl_fingerprints <- ipfTransform(tr_fingerprints, inNoRSSI = NA,

outNoRSSI = 0)

3 > clusterData <- ipfCluster(cl_fingerprints, k = 30, iter.max =

20, algorithm = "MacQueen")

4 > head(clusterData$clusters)

5 [1] 3 3 3 3 3 3



Chapter 1 33

The outcome of the ipfCluster function is a list containing the indices of the k
clusters and its centroids. Given the previous example, clusterData$centers
will return the k centroids, and clusterData$clusters will return the cluster
index i ∈ [1, .., k] for every observation in ipftrain.

The ipfCluster function includes an implementation of the affinity propa-
gation (AP) algorithm [47] that can be used to estimate the number of distinct
clusters present in the radio map. AP does not require the number of clusters
to be determined before running it. It finds members of the input set, known as
’exemplars’, that are representative of clusters by creating the centers and the
corresponding clusters based on the constant exchanging of reading similarities
between the observations. This message-passing process continues until a good
set of centers and corresponding clusters emerges.

The following code uses AP clustering to find groups of similar RSSI vectors
from the ipftrain data set. With no further parametrization, it will classify the
RSSI data into 43 distinct clusters:

1 > clusterData <- ipfCluster(tr_fingerprints, method = ’AP’)

2 > dim(clusterData$centers)

3 [1] 43 168

Now, clusterData$centers holds the 43 ’exemplars’, those RSSI vectors
from the radio map that are representative of a cluster, and clusterData$clusters
contains the indices that link every observation of the data set with its assigned
cluster.

To perform a more simple grouping based on a precise set of variables, the
ipfGroup function provides a method to group the data by column name. The
function signature is:

1 ipfGroup <- function(data, ...)

where

• data: is a data frame with the data to group.

• ...: The variables to group the data by.



34 Plotting functions

The ipfGroup function returns a numeric vector with the same length as the
number of observations contained in the data data frame, containing the index of
the group assigned to each observation. The following example groups the data
according to the position of the observations, that in the ipftrain and ipftest

datasets are represented by the columns ’X’ and ’Y’:

1 > groups <- ipfGroup(ipftrain, X, Y)

2 > head(groups)

3 [1] 4 4 4 4 22 22

4 > length(unique(groups))

5 [1] 41

1.8 Plotting functions

Indoor positioning generally involves statistical analysis of datasets, and the
ipft provides some useful functions to produce graphs for exploring data. All the
graphic functions included in the package are built upon the ggplot2 package
[166], and return a ggplot object that can be plotted or further personalized with
custom labels, theme, etc.

The ipfPlotPdf and the ipfPlotEcdf have already been introduced in
Section 1.5.1. These functions will plot the probability density function and the
empirical cumulative distribution function, respectively. Both functions take an
ipfEstimation object to produce the plot, while the axis labels and plot tittle can
be also supplied by the parameters xlab, ylab and tittle. Their respective
signatures are:

1 ipfPlotPdf <- function(estimation, xlab = ’error’, ylab = ’density’,

title = ’Probability density function’)

2

3 ipfPlotEcdf <- function(estimation, xlab = ’error’, ylab = ’

cumulative density of error’, title = ’Empirical cumulative

density function’)

The function ipfPlotLocation will produce a plot of the location of the data.
The following code shows its signature and presents an example of its use. The
example calls the function with parameter plabel set to TRUE, to plot labels



Chapter 1 35

identifying each location, and reverseAxis set to TRUE to swap the axis. It also
modifies the resulting object by changing the default ggplot2 theme to the white
one. The result is shown in Figure 1.5.

1 ipfPlotLocation <- function(positions, plabel = FALSE, reverseAxis =

FALSE, xlab = NULL, ylab = NULL, title = ’’)

1 library(ggplot2)

2 ipfPlotLocation(ipftrain[, 169:170], plabel = TRUE, reverseAxis =

TRUE) + theme_bw()

The function ipfPlotEstimation plots the estimated position of the test
observations based on an ipfModel object and an ipfEstimation object,
as well as the actual position (parameter testpos), if known, and the position
of the k selected fingerprints from the training set used to guess its location
(parameter showneighbors). The green dots indicate the actual position of the
observations, while the black dots indicate the estimated ones. The blue lines
connect the estimated positions with the k neighbors from which the location has
been estimated, and the red arrows connect the actual position of the fingerprint
with the estimated one. The following code shows the function signature and
provides an example of its usage. The resulting plot is shown in Figure 1.6:

1 ipfPlotEstimation <- function(model, estimation, testpos = NULL,

observations = c(1), reverseAxis = FALSE, showneighbors = FALSE,

showLabels = FALSE, xlab = NULL, ylab = NULL, title = ’’)

1 library(ggplot2)

2 probModel <- ipfProbabilistic(ipftrain[, 1:168], ipftrain[, 169:170])

3 probEst <- ipfEstimate(probModel, ipftest[, 1:168], ipftest[,

169:170])

4 ipfPlotEstimation(probModel, probEst, ipftest[, 169:170],

observations = c(61:62, 81:82), reverseAxis = TRUE, showneighbors

= TRUE, showLabels = TRUE) + theme_bw()



36 Plotting functions

Figure 1.5: Location of fingerprints included in the ipftrain data frame. The
labels indicate the group indices.

Figure 1.6: Estimated and actual positions of test observations 61, 62, 81 and
82 from the ipftrain data set. The circles indicate the actual positions of
the observations. The squares show the estimated positions. The red arrows
connect the actual positions with the estimated ones. The dashed lines connect
the estimated positions with the k neighbors from which the location has been
estimated, represented by the crosses.



Chapter 1 37

1.9 Summary

In this paper, the package ipft is presented. The main goal of the package
is to provide researchers with a set of functions to manipulate, cluster, transform,
create models, and make estimations using indoor localization fingerprinting data.
This package enables researchers to use a well-established set of algorithms and
tools to manipulate and model RSSI fingerprint data sets, and also allows them to
customize the included algorithms with personalized parameters and functions to
adapt the working mode to their particular research interests.

In this work, some of the fundamental algorithms used in indoor fingerprinting
localization techniques have been formally presented and illustrated, while detailed
examples and information about its usage and implementation have been provided.

1.10 Future work

This package is an ongoing work, and future versions will implement new algo-
rithms and tools with the aim of providing a base framework for researchers, and
become a reference library for fingerprinting-based indoor positioning research.

In particular, future lines of work should consider the implementation of deep
learning-based algorithms. Many deep learning techniques can be exploited to try
to obtain better positioning performance. Recurrent neural networks could be used
to learn not only spatial but also temporal patterns of the received signals. Deep
autoencoders can be implemented as a way to encode fingerprints and reduce
their dimensionality to a few number of significant features. Their variational and
generative extensions can be of use to better model the stochastic nature of RSSI
data. These models can also be applied to generate new training data for deep
learning-based classifiers, increasing the robustness of positioning systems, and
trying to address problems caused by heterogeneity of devices.

1.11 Acknowledgements

The authors would like to thank the two anonymous reviewers for providing
useful feedback that helped to improve the paper.

This work has been partially funded by the Spanish Ministry of Economy and
Competitiveness through the "Proyectos I + D Excelencia" programme (TIN2015-



38 Acknowledgements

70202-P) and by Jaume I University "Research promotion plan 2017" programme
(UJI-B2017-45).



Chapter 2

Chapter 2

IndoorLoc Platform: A web tool to
support the comparison of indoor
positioning systems

The main objective of this document is to provide an introduction to the IndoorLoc
Platform, a web tool to support the comparison and the evaluation of indoor
positioning algorithms. The proposed web platform can be used to download data
sets, learn how some well-known algorithms work, study the implementation of
those algorithms, test the methods, and even upload indoor positioning estimations
of the user’s methods to check their accuracy in the same experimental conditions
than other methods already included in a ranking, among other functionalities.

This paper also shows a comparative study of the accuracy of two well-known
fingerprinting-based indoor localization algorithms using the data sets included in
the platform. This comparative study can be performed using the tools included in
the platform.

2.1 Introduction

Geolocation systems have been present during decades allowing navigation
services that guide users by car, foot or bicycle, and many others such as evacua-
tion services and social network services. The Global Navigation Satellite System
(GNSS) are able to provide these services in outdoor environments, but in most of
the situations, people spend a significant portion of their time in indoor environ-



40 Introduction

ments such as offices, undergrounds, shopping malls, airports, etc., where these
satellite-based positioning systems do not work. This is one of the reasons why
the development of new indoor positioning and navigation systems has attracted
the attention of many researchers in the last years.

This research effort has achieved the development of many different indoor
positioning technologies, being the ones based on RSSI (Received Signal Strength
Indicator) fingerprinting [65, 168, 60] among the most popular. This technique
is based on the measurement of the intensity of the received radio signals of
the emitting devices (beacons) that are available at a particular place and on the
comparison of this measurement with a previously built RSSI data set (also known
as radio map). In this scenario, a fingerprint is an RSSI feature vector composed of
received signal values from different emitting devices or beacons, associated to a
precise position. The similarity of the received signals (fingerprint) with some of the
stored fingerprints can be used to guess the approximate position on the subject.
This technique is becoming increasingly important for indoor localization, since
Wi-Fi is generally available in indoor environments where GPS signals cannot
penetrate, and the wireless access points (WAPs) can be used as opportunistic
beacons. Other types of indoor localization beacons (Bluetooth, RFID, etc.) can
also be used in conjunction with Wi-Fi access points or as a standalone positioning
system.

Many different approaches have been the object of research and many papers
have been published trying to solve this indoor localization problem. However, it is
very difficult to compare results from different approaches, since every research
presents its estimated results using its own experimental setup and measures, and
it is very difficult to reproduce the particularities of every single experiment. In the
Pattern Recognition and Machine Learning research fields, the common practice
is to test the results of each proposal using several well-known data sets [49]. This
allows researchers to fairly compare different methodologies in the literature. For
instance, the UCI Machine Learning Repository [86] and the web Kaggle [52] are
two well-known examples in this sense. However, in the fingerprint-based indoor
localization research field, there is a limited number of such kind of databases
[110, 158, 153, 155, 19, 99].

This paper consists of an introduction to the IndoorLoc Platform1, a web tool to

1http://indoorlocplatform.uji.es



Chapter 2 41

support the comparison and the evaluation of indoor positioning algorithms. The
platform is a centralized website where researchers can the following actions:

1. Access to a public repository of data sets for RSSI fingerprinting.

2. Upload indoor positioning estimations on experimental setups included in
the platform.

3. Include the estimation results in a ranking.

4. Analyze positioning methods.

5. Interact with the platform in a user-friendly environment to test the algorithms
and data sets included.

In order to show a real example of the platform usage, this paper also presents
a comparative study of the performance of two fingerprinting-based indoor local-
ization methods included in the platform when using four of the data sets also
included in the platform. All the experiments presented are easily reproducible
using the tools included in the platform.

The two methods shown differ in the methodology used to solve the indoor
localization problem. They are a deterministic-based and a probabilistic-based
method. The four data sets differ in the type of scenario where data has been
captured, as for instance: the number of samples, the size of the scenario, the
density of the samples, etc.

A preliminary version of this work was published (as a conference paper) in
[105]. This paper provides additional details of the IndoorLoc Platform, to help the
reader to be aware of the different possibilities of the proposed web platform.

The rest of the paper is organized as follows. Section 2.2 reviews related
work. Section 2.3 describes the main sections in which the platform is divided.
Sections 2.4 and 2.5 explain the data sets and methods, respectively, included
in the platform. Section 2.6 presents a set of experiments performed using the
algorithms and data sets included in the proposed platform. Section 2.7 describes
a real case of use of the usage of the platform during a fingerprinting-based indoor
positioning course. Finally, the most important conclusions arisen from this work
are presented in Section 2.8.



42 Related work

2.2 Related work

As it has been said in Section 2.1, most of the indoor positioning methods found
in the literature present the experiments using their own experimental setup. A
second related problem is that those data sets are not made available to the
research community, making it impossible to reproduce the presented results.
Both issues make a fair comparison of localization methods developed by different
groups not feasible in a rigorous manner, since scenarios may change in an
uncontrolled way.

A better way to compare positioning algorithms is to use the same experimental
setup, and for that purpose, the use of a repository of prerecorded data in a large
variety of buildings and contexts can be very useful. Some good examples of data
repositories in the machine learning community are the UCI Machine Learning
Repository [86] and Kaggle [52], both created for evaluating machine learning
algorithms with common databases.

Other alternatives are competitions where several research groups should pre-
pare their methods to obtain the best results using a common experimental setup,
or even the same prerecorded data. Some examples of competition are: Microsoft-
IPSN [92, 94, 95, 93], EvAAL [119] and EVARILOS [83]. The first off-site indoor
location competition was the third track of the EvAAL-ETRI Indoor Location compe-
tition [160], called Wi-Fi fingerprinting in large environments, which was held during
the Sixth International Conference on Indoor Positioning and Indoor Navigation
(IPIN’15). In this event, the competitors had access to the UJIIndoorLoc [158] data
set, which has been included in the proposed platform. A similar competition was
held in the Seventh International Conference on Indoor Positioning and Indoor
Navigation (IPIN’16) [159], where the data set used was more challenging since
data provided by all sensors embedded in typical smartphones were included,
acquired by different people moving in different types of buildings.

One of the main problems of such competitions is that when they finish, re-
searchers cannot continue improving their methods. In addition, the different data
sets are located on different web pages. The proposed web platform is focused
on providing a common place for researchers to access to fingerprint-related
data sets. Another of the main objectives is to provide a continuous competition
without deadlines. Therefore, researchers will have not time restrictions to test
their methods and submit their results to the platform.



Chapter 2 43

The most similar work to the IndoorLoc Platform is [83], where the authors
presented a web platform for evaluation of RF-based indoor localization algorithms
with two core services: one focused on the storage of raw data and the other
focused on automated calculation of metrics for performance assessment. They
also include an SDK for convenient access to the platform from MATLAB and
python. The two first characteristics are included in the proposed web platform.
The SDK is not needed in our case since users can directly interact with the web
platform to upload their results. The main differences in the proposed web platform
with respect to [83] are as follows:

1. It is more focused on fingerprinting methods.

2. It also includes a dashboard section where researchers can make experi-
ments using the methods and data sets included in the platform in a user-
friendly environment.

3. There is a ranking section where researchers can check the accuracy of their
method against the methods of other researchers. In addition, the proposed
web platform has been designed in order to easily upload new methods and
data sets.

The IndoorLoc Platform has been designed with a state-of-art visual style and
with a user-centered interface making access to all the elements of the platform
very intuitive. For instance, the home web page (see Figure 2.1) directly presents
the main sections of the platform. Another example is that users can download
a data set or upload a result with just a few mouse clicks. The platform is also
responsive, and will automatically adapt to the device screen used to access it.

In addition, the platform has a high formative component, because even a user
without programming knowledge can interact with the algorithms and data sets
included. Although, it will be the users with a high programming skill who will be
able to get better advantage of the platform because, probably, they will be able
to improve the results that can be obtained with the algorithms included in the
platform.



44 Overview of the platform

2.3 Overview of the platform

Figure 2.1 shows the homepage of the platform. The homepage displays
a summary of the contents of the four main sections in which the platform is
structured, while the menu in the upper section of the platform allows access to
each one of these sections.

The four main sections of the platform are as follows:

• data sets: This section is a repository of several data sets stored in the
platform. These data sets are available to download so users can use them
in their experiments.

• Ranking: In this section, users can upload the results of their own algorithms
to obtain an estimation of the accuracy of their methods when using the
data sets included in the platform. In addition, the results can be included in
the ranking, where the best results of each data set are showed sorted by
accuracy.

• Methods: This section presents a set of well-known algorithms so users can
study their implementation.

• Dashboard: In this section, users can test the algorithms included in the
platform, using some of the data sets included, in a user-friendly environment.

These sections are briefly described in the next subsections.

2.3.1 Data sets

Figure 2.2 shows the data sets section of the platform. The data sets section
displays the basic information about all the data sets included in the platform.
In addition, the links to download all the files related to each data set are also
included.

Each data set can be composed of up to four files:

• data set info: A pdf file with information and features about the data set.
The description includes the name of the donors, the contact information,
general information about the data set, a description of the files included, the
attributes description, the format of the result file and the citation request.



Chapter 2 45

Figure 2.1: Homepage of the Indoorloc platform

• Training set: A file with the samples to be used to train the localization
models. It includes the localization of the samples.

• Validation set: This file is similar to the training set file, and also includes
the localization of the samples. Should be used to assess the performance
of the localization model created using the training set data.

• Test set: This file is also used to assess the performance of the localization
model, but does not include the actual localization of the samples, only its
fingerprint. To obtain an estimation of the accuracy of the model, users can
run their methods to obtain an estimation of the localization of the samples of
the test set, and then upload their results to the platform to get an evaluation
of the performance of the model. The true localization of the samples are
stored in the platform.

The training, validation and test files have a comma-separated values (CSV)
file format. The three first files (info, training, and validation) are accessible to
everyone. Only registered users are allowed to access the test file. Not all the data



46 Overview of the platform

Figure 2.2: Data sets section of the Indoorloc platform

sets included in the platform have a validation set. In that case, users can use
techniques as Cross-validation [27] to assess the performance of the localization
model generated.

At the time of writing this article, there are six different databases included in the
platform. Four of them are related to the Wi-Fi fingerprinting indoor localization
problem. They are briefly described in Section 2.4.

Registered users can upload their own data sets following the instructions
provided by the platform. Before to be definitively added to the platform, each new
data set is rigorously examined by the administrators of the platform to ensure that
it has the required quality.

2.3.2 Ranking

One of the main objectives of the indoorloc web platform is to provide a tool
for the indoor localization community to compare their methods using well-known
data sets. This section has been devoted to this purpose. For each data set, a list
of the best methods, according to a figure of merit, is shown.



Chapter 2 47

Registered users are allowed to upload the results of their methods following the
instructions included in the description of the data set (see Section 2.3.1). Once
the results file has been uploaded, the platform calculates the figure of merit for
this data set using the estimated locations provided by the user and the ground
truth internally (and privately) stored in the platform. After the figure of merit is
calculated and displayed, users have the choice of including or not the result in
the ranking.

Each entry in the ranking has a description field, provided by the user, showing
info about the experiment performed to obtain such result, e.g. the parameters
used or the algorithm details.

Figure 2.3 shows the ranking page for the IPIN2016 Tutorial data set. At the
time that this text is written, the ranking is composed of two experiments performed
by the same user. According to the notes written by the user, the result of the
leader was obtained using the probabilistic method and the one in the second
position using a knn algorithm.

Figure 2.4 shows the ranking for the UjiIndoorLoc data set. In this case, the
four best results obtained in the third track of the EvAAL-ETRI Indoor Location
competition [160], where this data set was used, have been manually introduced
by the web creators to give a baseline reference.

2.3.3 Methods

This section shows some basic information about the methods included in the
platform. This information consists on the explanation of the method though R2

source code using comprehensible examples. In addition, links to the Dashboard
section, where users can test these methods, are also included.

At the time of writing this text, two methods have been included in the platform:
deterministic-based [16] and probabilistic-based [174]. They are described in
Section 2.5.

To add new methods to the platform, users must contact with platform adminis-
trators. Similarly to the data set case, each new method is rigorously examined by
the administrators of the platform to ensure that it has the required quality.

2https://www.r-project.org/



48 Overview of the platform

Figure 2.3: Ranking webpage of the IPIN2016 Tutorial data set. Two experiments
have been included in the ranking, the first one (according to the notes written by
the contributor) using a probabilistic-based algorithm and the second one using a
knn-based method.

2.3.4 Dashboard

In the Dashboard section, users can test the methods included in the platform,
using the data sets also included in the platform, in a friendly user interface.
Figure 2.6 shows an example of a dashboard for the UjiIndoorloc data set. In
particular, the user selected the building 0, floor 1, the validation set (to estimate
the locations), and the deterministic method. After clicking on the Estimate error
button, the platform internally estimates the location of the validation samples and
calculates some statistics, as the mean and the median of the estimation error.
It also shows one figure with the error histogram and density, and another figure
with the empirical cumulative density function.

Registered users are allowed to use their own data set using the methods
included in the platform. This data set must be formatted using a set of rules
specified in the web platform.



Chapter 2 49

Figure 2.4: Ranking webpage of the UjiIndoorLoc data set.

The platform can be easily improved adding more methods performance mea-
surements and with other kinds of figures, thanks to the R Shiny environment.

2.3.5 Implementation details

The platform has been implemented using these open-source tools:

• Django3: A Python web framework to build the web application. Django
follows the model-view-template (MVT) architectural pattern, and allows rapid
development of database-driven websites.

• Shiny4: An R package that eases the building of interactive web apps using
R code. The Shiny server hosts the apps on the platform that runs embedded
in the dashboard page.

3https://www.djangoproject.com/
4https://shiny.rstudio.com/



50 Overview of the platform

Figure 2.5: Methods section of the Indoorloc platform

• RMarkdown5: Documents created with the R Markdown technology are fully
reproducible, and use a notebook interface to weave together text and code
to produce elegantly formatted output. R Markdown uses multiple languages
including R, Python, and SQL.

• ipft R package[142] 6: This R package includes algorithms and utility func-
tions for indoor positioning using fingerprinting techniques. These functions
are designed for manipulation of RSSI (Received Signal Strength Intensity)
data sets, estimation of positions, comparison of the performance of different
models, and graphical visualization of data.

• Apache7: Open source HTTP web server that works on Unix-like systems
(BSD, GNU/Linux, etc.), Microsoft Windows, Macintosh, and other platforms,
and provides HTTP services in sync with the current HTTP standards.

5https://rmarkdown.rstudio.com/
6https://cran.r-project.org/web/packages/ipft/
7https://httpd.apache.org/



Chapter 2 51

Figure 2.6: Example of the Dashboard section of the platform

2.4 Data sets included in the platform

At the moment of writing this document, the platform includes six different data
sets, four of them dedicated to the Wi-Fi fingerprinting problem. They are briefly
introduced in the next sections.

2.4.1 Wi-Fi based data sets

In the four Wi-Fi based data sets, Wi-Fi fingerprints are characterized by the
detected Wireless Access Points (WAPs) and the corresponding Received Signal



52 Data sets included in the platform

Table 2.1: Main characteristic of the UjiIndoorLoc data set. # stands for "number
of"

# Buildings 3
# Floors 4-5
# WAPS 520

# training samples 19937
# validation samples 1111

# test samples 4900

Table 2.2: Main characteristic of the IPIN2016 Tutorial data set. # stands for
"number of"

# Buildings 1
# Floors 1
# WAPS 168

# training samples 927
# validation samples 0

# test samples 702

Strength Intensity (RSSI). The intensity values are represented as negative integer
values near to −100 dBm (extremely poor signal) to 0 dBm. The positive value
100 is used to denote when a WAP was not detected. Tables 2.1, 2.2, 2.3 and 2.4
show a summary of the main characteristics of each data set.

UJIIndoorLoc

The UJIIndoorLoc [158] database covers three buildings of Universitat Jaume I8

(Spain), with 4 or more floors and an area of almost 110000 m2. It can be used for
classification, e.g. actual building and floor identification, or regression, e.g. actual
longitude and latitude estimation. It was created in 2013 and 2014 by means of
more than 20 different users and 25 Android devices. The database consists of
19937 training/reference records and 1111 validation records. There is also a test
file where the ground truth is not accessible.

The 529 attributes contain the Wi-Fi fingerprint, the coordinates (latitude, lon-
gitude, floor) and Building ID, and other useful information such as the particular

8http://www.uji.es



Chapter 2 53

Table 2.3: Main characteristic of the Tampere data set. # stands for "number of"
# Buildings 2

# Floors 3-4
# WAPS 390-354

# training samples 1478-583
# validation samples 0

# test samples 589-175

Table 2.4: Main characteristic of the Alcalá2017 Tutorial data set. # stands for
"number of"

# Buildings 1
# Floors 1
# WAPS 152

# training samples 670
# validation samples 0

# test samples 405

space (offices, labs, etc.) and the relative position (inside/outside the space) where
the capture was taken, information about who (user), how (android device and
version) and when (timestamp) Wi-Fi capture was taken, among other information.
During the database creation, 520 different WAPs were detected. Thus, the Wi-Fi
fingerprint is composed of 520 intensity values.

This data set was used in the off-site track of the EvAALETRI Indoor Localiza-
tion Competition which was part of the Sixth International Conference on Indoor
Positioning and Indoor Navigation (IPIN’15) [160]. The best results obtained in the
competition have been included in the platform in the corresponding ranking.

Since the particular implementation of the localization methods included in the
platform assumes that all the samples are in the same building and floor, the
complete data set has been divided into 11 different data sets.

IPIN2016 Tutorial

As an alternative to the UJIIndoorLoc data set, the IPIN2016 Tutorial data set is
focused on the study of a small scenario. In particular, it covers a corridor of the



54 Data sets included in the platform

School of Engineering of the University of Alcalá9 (Spain). It is the place where
a tutorial on Wi-Fi fingerprinting was held during the IPIN2016 conference. The
database consists of 927 training/reference records and 702 test ones. The 177
attributes contain the Wi-Fi fingerprint (168 WAPs), the coordinates where it was
taken, and other useful information.

Tampere University

This database [38] covers two buildings of the Tampere University of technol-
ogy10 (Finland), with 4 and 3 floors, respectively. In the first building, there are
1478 training/reference records and 489 test ones. The 312 attributes contain the
Wi-Fi fingerprint (309 WAPs) and the coordinates (longitude, latitude, and height).
In the second building, there are 583 training/reference records and 175 test ones.
The 357 attributes contain the Wi-Fi fingerprint (354 WAPs) and the coordinates
(longitude, latitude, and height). An important difference of this data set, with
respect to the UjiIndoorLoc, is that in the former there is just one sample in each
training location, while in the latter the number of samples is between 10 and 30.

Data from the two buildings can be considered as two separate data sets,
with no relationship between respective WAP labels and real access points MAC
addresses, meaning that two columns with the same WAP name in either data set
may be assigned to different access points.

Similarly to the UJIIndoorLoc this data set has been divided into 7 different data
sets.

ALCALA2017 Tutorial

This data set was created during the 2017 Fingerprinting-based Indoor Position-
ing tutorial held in the School of Engineering of the University of Alcalá. Data were
acquired in the same corridor as the IPIN2016 Tutorial data set. The main differ-
ences between both data sets are: 1) a thinner grid was used to capture training
data; 2) some users made mistakes labeling the training fingerprints. These errors
have not been eliminated since it is a situation that can occur in a real scenario.
Users should take into account this situation in their methods.

The database consists of 670 training/reference records and 405 test ones. The

9https://www.uah.es/es/
10http://www.tut.fi/



Chapter 2 55

154 attributes contain the Wi-Fi fingerprint (152 WAPs) and the coordinates where
it was taken.

2.4.2 AmbiLoc data set

The AmbiLoc data set [117] is a collection of ambient radio fingerprints, collected
in multiple predefined locations across several testbeds. Instead of Wi-Fi signals,
the AmbiLoc data sets deals with ambient signals of opportunity, such as those
from broadcasting TV and FM radio stations or GSM networks, that are almost
always present on most indoor locations. This data set has been collected in
multiple testbeds, including large-scale and multi-floor buildings, over the course
of one year.

The platform provides some basic information of this data set and a link to the
original source of the data11.

2.4.3 magPIE data set

Magnetic field-based indoor positioning [84, 15, 101] is an infrastructure-less
approach which is based on the uniqueness of the disturbances in the magnetic
field produced by the structural elements present in a scenario. The uniqueness
of the disturbances can be used as a fingerprint since it is stable over time.

MagPIE is a publicly available data set for the evaluation of indoor positioning
algorithms that use magnetic anomalies [61]. This data set contains IMU and
magnetometer measurements along with ground truth position measurements with
centimeter-level accuracy. To produce this data set, the authors collected over
13 hours of data from three different buildings, with sensors both handheld and
mounted on a wheeled robot, in environments with and without changes in the
placement of objects that affect magnetometer measurements.

The platform provides some basic information on this data set and a link to the
original source of the data12.

11http://ambiloc.org/
12http://bretl.csl.illinois.edu/magpie/



56 Methods included in the platform

2.5 Methods included in the platform

Two different approaches are considered here for the fingerprinting-based lo-
cation process: a deterministic, or non-parametric method; and a statistical, or
parametric method. In the first, no statistical behavior is assumed, and the lo-
cation problem is solved according to a set of observations whose positions are
known; while the second method makes explicit use of distributions and statistical
parameters of the data stored in the radio map to optimize the probabilities in the
assignment of the estimated position.

2.5.1 Deterministic-based approach

The deterministic approach [16, 97, 157] relies on the well known k-Nearest
Neighbors algorithm (knn) [37] to, given an RSSI vector, select the k more similar
training examples from the radio map. The similarity between the RSSI value
vectors can be determined, for example, as the Euclidean distance between them,
but other distance functions can be used instead [157]. Once the k neighbors are
selected, the method estimates the location of the user by calculating the weighted
average of the neighbor’s positions.

Figure 2.7 shows a possible R source code of this method (with k = 3).
The R dataframe training.set contains the RSSI values and the localization
of the training points. The last two columns are the longitude (column name
LONG) and latitude (column name LAT) of those points. The validation.set
dataframe has the same structure. The complete description can be found at:
http://indoorlocplatform.uji.es/methods/knn/.

2.5.2 Probabilistic-based approach

Given the limitations of sensors’ accuracy and the complex character of signal
propagation, the RSSI vector stored for a particular position cannot have com-
pletely reliable and accurate information about the emitters’ signal strength. This
uncertainty has been usually modeled by a normal distribution [57], therefore many
readings of the signals at the same position are needed to obtain a representative
set of statistical parameters to model each RSSI present at that position. The
more measurements for a particular location, the more reliable will be their inferred
statistical parameters.



Chapter 2 57

1 k <- 3

2 n_observations <- nrow(training.set)

3 n_features <- ncol(training.set) - 2

4 distances <- matrix(0, 1, n_observations)

5 for (i in 1:n_observations) {

6 distances[1, i] <- sqrt(sum((training_set[i, 1:n_features] -

validation_set[1, 1:n_features])^2))

7 }

8 nearest <- order(distances)[1:k]

9 weights <- 1 / distances[nearest]

10 weights <- weights / sum(weights)

11 est.longitude <- sum(training.set$LONG[nearest] * weights)

12 est.latitude <- sum(training.set$LAT[nearest] * weights)

Figure 2.7: A possible R source code for the deterministic method

In the Probabilistic-based approach [57, 174, 96], the initial collection of RSSI
observations associated to a particular point is transformed into a pair of vectors
containing the means and the standard deviations of the RSSI for each beacon, and
then the complete training data is stored as a set of statistical parameters. Then,
given a test fingerprint, for each beacon, it is possible to estimate a probability
value that expresses the similarity between the observation measurement at this
beacon and the training data for a particular location. An evaluation of the total
similarity for every location can be computed as a function of these individual
probabilities.

The algorithm selects the k training samples with higher probability and, similarly
to the deterministic method, it estimates the location of the user by calculating the
weighted average of the selected samples positions.

Figure 2.8 shows a possible R source code of this method (with k = 3). Input
data has the same structure than in the deterministic method. The complete
description can be found at: http://indoorlocplatform.uji.es/methods/probabilistic/.



58 Experiments

1 library(dplyr)

2 k <- 3

3 delta <- 10

4 data.means <- training.set %>%

5 group_by(LONG, LAT) %>%

6 summarise_each(funs(mean))

7 data.sds <- training.set %>%

8 group_by(LONG, LAT) %>%

9 summarise_each(funs(sd))

10 n_max <- nrow(data.means)

11 n_waps <- ncol(data.means) - 2

12 p <- matrix(0, n_max, n_waps)

13 for (n in 1:n_max) {

14 n_means <- as.numeric(data.means[n, 3:(n_waps + 2)])

15 n_sds <- as.numeric(data.sds[n, 3:(n_waps + 2)])

16

17 for (j in 1:n_waps) {

18 o1 <- validation.set[1, j] - delta

19 o2 <- validation.set[1, j] + delta

20 p1 <- pnorm(o1, mean=n_means[j], sd=n_sds[j], lower.tail=

FALSE)

21 p2 <- pnorm(o2, mean=n_means[j], sd=n_sds[j], lower.tail=

FALSE)

22 p[n, j] <- p1 - p2

23 }

24 }

25 similarity <- rowSums(p)

26 similar <- order(similarity, decreasing=TRUE)[1:k]

27 weights <- similarity[similar]/sum(similarity[similar])

28 est.longitude <- sum(data.means$LONG[similar] * weights)

29 est.latitude <- sum(data.means$LAT[similar] * weights)

Figure 2.8: A possible R source code for the probabilistic-based method

2.6 Experiments

The two methods explained in Section 2.5 have been tested with the four Wi-
Fi-based data sets described in the Section 2.4, using the tools included in the
Dashboard section of the platform. Therefore, they are easily reproducible. All



Chapter 2 59

Table 2.5: Mean positioning error (in meters) of both methods on the UJIIndoorLoc
data set. # stands for number of.

Building Floor # samples Deterministic Probabilistic

0 0 17 4.26 7.83
0 1 17 5.65 6.77
0 2 60 6.06 5.79
1 0 105 9.62 11.26
1 1 147 7.65 20.42
1 2 132 5.40 8.99
1 3 140 8.16 11.0
2 1 20 6.64 10.09
2 2 19 7.96 9.07
2 3 19 3.88 4.57
2 4 22 12.50 21.31

Mean 704 7.18 10.64

possible combination of the parameters have been tested. Only the combination
of tuning parameters obtaining the best result is showed. In all cases, the test
data set has been used to assess the performance of the algorithms. The figure
of merit used to provide an estimation of the performance of the methods is the
mean localization error between the estimated position and the real one (internally
known by the platform) of all test samples.

Table 2.5 shows the results obtained using the UjiIndoorLoc data set. Note that
there is no data set for the building 0, floor 3 and for the building 2, floor 0, since
there are not samples for these floors in the test set.

Table 2.6 shows the results on the Tampere data set. In this case, only the results
obtained with the deterministic approach are showed, since the probabilistic-based
method can only be applied when there are enough samples at each position
to calculate the estimation of the statistical parameters needed for the correct
operation of this method.

Finally, Tables 2.7 and 2.8 show the results on the IPIN2016 Tutorial and
ALCALA2017 Tutorial data sets. In both cases, all the samples are in the same
building and floor, therefore it is not necessary to divide the data into subsets.

In the case of the UJIIndoorloc data set, the deterministic method provides



60 Experiments

Table 2.6: Mean positioning error (in meters) of both methods on the Tampere
data set. # stands for number of.

Building Floor # samples Deterministic

1 1 156 9.83
1 2 110 14.21
1 3 118 8.01
1 4 105 13.03
2 1 61 15.87
2 2 77 8.38
2 3 37 6.74

Mean 664 10.86

Table 2.7: Mean positioning error (in meters) of both methods on the IPIN2016
Tutorial data set. # stands for number of.

# samples Deterministic Probabilistic

702 4.21 3.55

Table 2.8: Mean positioning error (in meters) of both methods on the ALCALA2017
Tutorial data set. # stands for number of.

# samples Deterministic Probabilistic

405 5.03 2.53



Chapter 2 61

better results than the probabilistic one in almost all the cases. The differences in
the results obtained across buildings and floors depend on the quality of the radio
map capture at each scenario and also on the structural characteristics of each
scenario. According to the mean accuracy, the deterministic-based approach is
preferable.

There is also a high variability across buildings and floors in the results obtained
for the Tampere data set due to the same reasons than in the UJIIndoorloc data
set.

In the case of the IPIN2016 Tutorial and ALCALA2017 Tutorial, the results are
very similar and in both cases the probabilistic approach is preferable. Note that,
in the ALCALA2017 Tutorial data set, the difference is quite significant since the
probabilistic-based approach can deal with the unintentional mistakes introduced
by some of the data set creators. Results obtained for these data sets are better
than the ones obtained for the UJIIndoorloc and the Tampere data sets since the
scenarios of the Tutorial data sets correspond to small areas and more fingerprints
per m2 than the other two. Therefore position error is lower.

Table 2.9 shows the Radio Map Inherent Difficulty (RMID) value of each data
set [136]. This measure gives an estimation of the inherent difficulty of a radio
map to obtain accurate estimates. According to this value, IPIN2016 Tutorial and
ALCALA2017 Tutorial are scenarios where it is easier to obtain accurate results.
However, as confirmed by the results showed in Tables 2.5 and 2.6, the RMID
value of the UJIIndoorloc and Tampere data sets shows that both data sets are
quite complex and therefore, it is quite difficult to obtain positioning estimation with
high accuracy.



62 Experiments

Table 2.9: Value of RMID obtained for each data set. The data is ordered by
ascending RMID value.

Data set Building Floor RMID

Alcalá2017 Tutorial 1 1 0.05
IPIN2016 Tutorial 1 1 0.08

UjiIndoorLoc 0 1 0.22
UjiIndoorLoc 0 0 0.23
UjiIndoorLoc 2 2 0.29
UjiIndoorLoc 1 2 0.33
UjiIndoorLoc 2 3 0.33
UjiIndoorLoc 0 3 0.34
UjiIndoorLoc 2 1 0.35
UjiIndoorLoc 0 2 0.36
UjiIndoorLoc 2 0 0.49
UjiIndoorLoc 1 3 0.65
UjiIndoorLoc 1 1 0.66

Tampere 1 4 0.67
UjiIndoorLoc 1 0 0.67
UjiIndoorLoc 2 4 0.70

Tampere 1 3 0.72
Tampere 1 2 0.77
Tampere 1 1 0.80
Tampere 2 1 0.89
Tampere 2 2 0.90
Tampere 2 3 0.91

Taking into account all the data sets, the mean localization error of the deterministic-
based method is 6.79 meters without including the results of the Tampere data set,
and 8.21 including it. The mean error of the probabilistic-based method is 9.47.
Therefore, according to the results, in general, it seems that the deterministic-
based method is preferable. However, taking into account the differences of
the four scenarios, the deterministic-based approach gets better results in big
scenarios with low density of data (UjiIndoorloc and Tampere data sets), while
the probabilistic based one is preferable in small ones with high density of data



Chapter 2 63

(IPIN2016 Tutorial and ALCALA2017 Tutorial data sets).

Note that the results obtained with the methods included in the platform can be
effectively improved using more sophisticated algorithms, and also using modern
machine learning techniques. For instance, the ranking of the UjiIndoorloc data
set include some better results than the presented in the Table 2.5, since they are
the best results obtained in the Wi-Fi fingerprinting in large environments (IPIN’15)
competition.

2.7 The platform in use

The performance of the platform was tested during the 2017 Fingerprinting-
based Indoor Positioning tutorial held in the School of Engineering of the University
of Alcalá. As an activity of the course, an indoor localization competition took place
using the ALCALA2017 Tutorial data set.

The 15 attendees were invited to use the platform to upload the results of
their proposals. Some of them used the Dashboard section of the platform to
test different parameter configurations of the localization methods included in the
platform, and others manually programmed their own method from the source
code provided by the course instructors. After a very competitive and exciting
competition, the winner team got an error of only 2.14 meters using a probabilistic
method. This result is even better than the best one that can be directly obtained
using the Dashboard included in the platform.

In general, tutorial attendees were able to easily use the platform, mainly the
data set download section, the Dashboard section and, obviously, the Ranking
sections. Almost no queries to the course introduction were produced, showing
the effective user-centered design applied to the platform.

2.8 Conclusions

In this paper, the IndoorLoc Platform has been presented. It is a public repos-
itory for comparing and evaluating indoor positioning algorithms. The proposed
web platform can be used to download data sets, learn how some well-known
algorithms work, study the source code of those algorithms, test the methods, and
even upload results of the user’s methods to check the accuracy when comparing
against the results provided by other methods already included in a ranking, among



64 Conclusions

other functionalities.

To present a real example of the usage of the platform, a comparative study of
the accuracy of two well-known fingerprinting-based indoor localization algorithms,
using four of the data sets included in the platform, have been also presented.
According to the results obtained, the deterministic-based approach gets better
results in big scenarios while the probabilistic based one is preferable in small
scenarios. These experiments are easily reproducible using the tools included in
the platform.

This web platform is an ongoing project, and future versions will implement
new algorithms and include more data sets, with the aim to provide an interesting
tool for researchers and become a reference web platform for indoor positioning
research. For this purpose, researchers are invited to include more methods and
data sets on the platform.

Acknowledgments

The authors gratefully acknowledge funding from the Spanish Ministry of Econ-
omy and Competitiveness in the projects: ‘Proyectos I+D Excelencia’ TIN2015-
70202-P and ‘Redes de Excelencia’ TEC2015-71426-REDT.



Chapter 3

Chapter 3

A study of Deep Neural Networks
for Human Activity Recognition

Human activity recognition and deep learning are two fields that have attracted
attention in recent years. The former due to its relevance in many application
domains, such as ambient assisted living or health monitoring, and the latter for its
recent and excellent performance achievements in different domains of application
such as image and speech recognition. In this paper, an extensive analysis
among the most suited deep learning architectures for activity recognition is
conducted to compare their performance in terms of accuracy, speed, and memory
requirements. In particular, convolutional neural networks (CNN), long short term
memory networks (LSTM), bidirectional LSTM (biLSTM), gated recurrent unit
networks (GRU) and deep belief networks (DBN) have been tested on a total
of ten publicly available datasets, with different sensors, sets of activities and
sampling rates. All tests have been designed under a multi-modal approach to
take advantage of synchronized raw sensor’ signals.

Results show that CNNs are efficient at capturing local temporal dependencies
of activity signals, as well as at identifying correlations among sensors. Their
performance in activity classification is comparable to, and in most cases better
than, the performance of recurrent models. Their faster response and lower
memory footprint make them the architecture of choice for wearable and IoT
devices.



66 Introduction

3.1 Introduction

The main goals of Human Activity Recognition (HAR) systems are to observe
and analyze human activities, and to interpret ongoing events successfully. There
are several application domains, such as video surveillance systems, ambient as-
sisted living (AAL) systems for smart homes, or health care monitoring applications,
that require a reliable activity recognition system.

HAR systems retrieve and process contextual data to classify human behavior
into a set of complex activities (i.e. standing, walking, jogging). Image-based HAR
analyzes human behavior using images or videos, which is generally considered a
highly intrusive technique. On the contrary, sensor-based HAR systems study the
motion data coming from wearable sensors such as accelerometers, gyroscopes,
RFID, and so on. Besides the inclusion of such sensors, the ubiquity and unob-
trusiveness of smart-phones and smart-watches, and the availability of different
wireless interfaces, such as Wi-Fi, 3G, and Bluetooth, make them an attractive
platform for human activity recognition.

A traditional HAR pipeline employs individual smart devices to collect raw data
from embedded sensors. Then, the associated activity is extracted from the data
by applying machine learning and data mining techniques. Typically, this process
has been divided into three components:

• Sensing: The system monitors an actor’s behavior by gathering relevant
data through a series of sensors, such as accelerometers or gyroscopes.

• Feature processing: The sensors’ data is processed into handcrafted fea-
tures that extract relevant and discriminative characteristics from the raw
data.

• Classification: The human activity is inferred by a machine learning model
designed to recognize an activity from the previously obtained features.

The aforementioned process can be simplified through the use of deep learning
(DL), a subfield of machine learning that has recently achieved large success.
Although the main concept of deep learning has been around for a few decades, it
has not been until lately that this technique has emerged, thanks to the achieve-
ment of its excellent empirical performance in several different domains of ap-



Chapter 3 67

plications such as speech recognition, image recognition, and natural language
processing [68, 98].

Deep learning finds features and classification boundaries through optimizing a
certain loss function, employing a deep neural network architecture. The typical
structure of a DL algorithm stacks multiple layers of simple neural network archi-
tecture to extract hierarchical abstractions. Each layer combines features derived
from previous layers and transforms them via a non-linear function to produce a
new feature set. This process builds a hierarchy where basic abstract features are
detected in the first layers of the network and are combined in the deeper ones to
form complex feature maps, giving the network the ability to automatically learn
the best features for a specific problem domain. This feature set is learned by the
model from the input data. There is no need for human intervention to manually
craft explicative features. The training process of deep learning algorithms can
extract key features from raw data and, at the same time, find the meaningful
patterns that characterize each category of data (different activities in the case of
HAR). This is the strong point of deep learning against traditional machine learning
approaches.

The ubiquity of wearable devices provides an excellent platform to detect what
activity is a user performing. In recent years, several works have explored the
problem of identifying human actions using inertial signals from body-worn devices.
Many of them investigated the use of manually engineered features extracted from
the data as the input to different classical machine learning algorithms. More
recently, the majority of research is centered on effectively applying DL to the
detection of human activities.

The present work provides a broad comparison of the performance of five
representative deep learning architectures for human activity recognition. The
comparative is based on a set of premises:

• The main goal of this work is to compare the different performance of various
deep learning architectures in the problem of human activity recognition
using raw inertial data. Thus, we avoid the use of engineered features.

• To provide a broader scope for comparison, we use a total of ten publicly
available benchmark datasets. The differences among the datasets, such as
the set of recorded activities, the subjects’ conditions, the sensors typology
(dedicated IMUs, smart-phones, and smart-watches) or the on-body sensor



68 Introduction

placements, provide us with an enormous quantity of heterogeneous data
that allows for reaching more meaningful and generalizable results.

• The data used for the experiments is composed of inertial signals from
accelerometers and gyroscopes from a variety of devices worn on several
positions, in different environments, and by various users.

• Previous works have shown that using accelerometer and gyroscope data
provides better results than using either alone. Therefore, the data used as
input to the algorithms is composed of the combined signals of both sensors.

• There is a significant number of different DL architectures, many of them
aimed to solve very specific problems. We limit our comparison to five
standard models that cover the majority of architectures used in recent works
in the field of HAR and DL.

• We conducted an extensive set of experiments using ten different publicly
available datasets containing motion data from accelerometer and gyroscope
sensors.

• We compared the general performance of five different deep learning archi-
tectures (DBN, CNN, LSTM, biLSTM, and GRU) on human activity recogni-
tion tasks.

• We compared the computational cost and memory footprint among the
best performing models of each architecture, to assess their suitability in
environments with a scarcity of resources, such as wearable and Internet of
Things (IoT) devices.

As far as we know, this is the first paper comparing the performance and
suitability of various DL architectures over such a large number of different datasets.
The diversity and heterogeneity of the considered data, acquired by different
people in several environments using diverse devices and procedures, enforces
the conclusions of this work.

The remaining of the paper is organized as follows: Section 3.2 describes
the related work on DL and human activity recognition. Section 3.3 provides a
brief introduction to DL and the basis of the DBN, CNN, and RNN architectures.
Section 3.4 describes the datasets used in the study. The experiments description,



Chapter 3 69

methodology, and setup are presented in Section 3.5. Results are presented and
discussed in Section 3.6. Finally, Section 3.7 presents the main conclusions.

3.2 Related work

Classical machine learning algorithms such as decision trees, Bayesian methods
(naïve Bayes and Bayesian networks), k-nearest neighbors, neural networks
(multilayer perceptron), support vector machines, fuzzy logic, regression models,
Markov models (hidden Markov models, conditional random fields) and classifier
ensembles (boosting and bagging) [77] have been used traditionally to address
human activity recognition tasks. In the last years, following the wave of deep
learning renaissance, several works have underlined the potential of a variety of
deep learning architectures for activity recognition, such as deep convolutional
neural networks (CNN), many types of deep feed-forward networks (FFN), such
as deep belief networks (DBN) and Restricted Boltzman Machines (RBM), and
different flavors of recurrent neural networks (RNN). These works show that DL
algorithms are generally better than classical methods for activity recognition, with
the added advantage of not requiring a preliminary stage of feature engineering.

Research on HAR using deep learning has been based on three different
main approaches. In [116] researchers compared various algorithms for feature
extraction using four datasets and accelerometer data. The results showed other
techniques such as PCA+ECDF outperformed Restricted Boltzmann Machines
[69] as feature extractors. Some later works [177, 4, 25, 123] employed DBNs and
RBMs in classification tasks. These works report better accuracy results compared
with traditional approaches such as k Nearest Neighbors (kNN), Support Vector
Machines (SVM), Hidden Markov Models (HMM), decision trees algorithms such
as C4.5, logistic regression, etc. A more recent work [63] shows good results
against classical algorithms but relies on a preprocessing stage to extract a set of
features from sensor raw data.

Convolutional neural networks [79] have achieved state-of-the-art results in
image recognition tasks, where the nearby pixels typically have strong relationships
with each other. Similarly, in the human activity recognition realm, adjacent
sensor readings are likely to be correlated. In multi-modal approaches, where
more than one sensor are used to characterize an activity, correlations among
distinct types of sensors may also have an impact on the correct interpretation of



70 Related work

data. The CNN approach applied to HAR classification tasks has been proved
to outperform previous state-of-the-art methods such as dynamic time warping
(DTW), hidden Markov models (HMM), and support vector machines (SVM),
among others. In one of the first works [42] to use CNN on raw sensor time-series
data for gesture recognition, researchers obtained better results than classical
methods, outperforming another deep learning model such as bidirectional LSTM.
In [176], researchers used a single convolutional layer architecture to classify
accelerometer data, giving some insights on the best values for some parameters,
such as the sampling layer pooling size, or the dropout and weight decay values
to prevent over-fitting and improve generalization. Later works, such as [173, 33,
72, 132, 175, 32, 106] use more complex CNN architectures, with three or more
convolutional layers, and explore the influence that the number of layers and other
parameters have on the classification performance. These experiments show
that increasing the number of convolutional layers increases the performance of
the model. The main conclusion to be drawn from the aforementioned works is
that CNNs are able to capture local dependencies, both among sensor axes and
among different sensors, and to build powerful features upon them that result in
a performance boost from previous non deep learning methods. These results
confirm that, although this architecture has been used prominently for computer
vision tasks, it is also relevant for sequence processing tasks, with the additional
benefit of their relatively cheaper computational cost.

Some recent works [82, 112, 55, 109] explore the performance of recurrent
neural networks [135] on HAR classification tasks. This architecture has been
specially conceived to work with sequential data, and thus, seems a good choice
for HAR, since the input data is typically composed of a series of sensor readings.
More advanced RNN architectures such as long short term memory (LSTM) units
[70] and gated recurrent unit (GRU) [36] have eased the use of this type of neural
networks, overcoming some important issues with the original RNN architecture.
One of the first works [82] used bidirectional LSTM (biLSTM) to exploit the fact
that activity recognition may depend on past and future context. The authors used
a concatenation of accelerometer and gyroscope information synchronized in time,
with no further feature engineering except the normalization of values between -1
and +1, as input to a biLSTM architecture. Authors in [112] used a combination
of LSTM and CNN to perform activity recognition tasks on sensor data acquired
from wearable devices. Their model outperformed previous results, including a



Chapter 3 71

CNN baseline, using the opportunity and skoda benchmark datasets. The use
of ensembles of LSTMs [55] has been explored, with better classification results
than previous deep learning models, including [112]. Finally, [109] compared the
performance of various LSTM models against CNN, sequential extreme machine
learning (ELM), and SVM on five benchmark datasets, obtaining good results and
demonstrating the suitability of RNN architectures for HAR.

As far as we know, there is only one work that compares the performance of
different deep learning architectures on HAR. In their paper, Hammerla et. al. [59]
measure the effectiveness of FFNs, CNNs, and two types of LSTM networks on
three datasets, analyzing the influence of hyper-parameters on the performance
of these algorithms, using accelerometer data as input. The conclusions of their
work showed that CNN models obtained the best results for repetitive activities,
while LSTM achieved better results on the opportunity dataset.

Table 3.1 shows a summary of previous works exploring deep learning effec-
tiveness on HAR. The table shows the number of datasets used to asses the
performance of the distinct algorithms, the deep learning architecture considered,
and the typology of sensors used to classify the activities. The vast majority of
previous studies use at least the accelerometer data, but many of them use it
in conjunction with the gyroscope data since the use of both sensors produces
better accuracy [169, 146]. Other elements such as magnetometers, light sensors,
radio frequency identification (RFID), barometers, temperature sensors, or WiFi
readings, are also used in some papers.

From the aforementioned works some conclusions can be drawn:

• Deep learning models that take into account local dependencies to build
descriptive features, such as CNN and RNN, seem more suitable for HAR
than fully connected models, since the data used as input for activity recog-
nition tasks consist of time series from sensor readings. On the contrary,
fully connected network architectures such as DBN assume that inputs are
independent of each other, so in order to model a time series it is necessary
some previous feature engineering to include temporal information in the
input data.

• Both RNNs and CNNs provide state-of-the-art performance. Although their
architectures can be over-engineered, and even combined, to boost their
classification scores, it remains unclear which type is more adequate for



72 Related work

Table 3.1: Summary of previous works. Architectures are: deep belief networks
(DBN), restricted Boltzmann machines (RBM), convolutional neural networks
(CNN), recurrent neural networks (RNN), long short term memory networks
(LSTM), gated recurrent unit networks (GRU) and deep feed-forward networks
(FFN). Sensors are: accelerometer (acc), gyroscope (gyr) and other types such
as magnetometer, barometer, light, temperature, WiFi, etc (other).

Authors and year Architectures Datasets Sensors
Plötz et al. (2011) [116] DBN 3 acc
Lefebvre et al. (2013) [82] LSTM 1 acc, gyr
Gjoreski et al. (2016) [51] CNN 2 acc
Zeng et al. (2014) [176] CNN 3 acc
Duffner et al. (2014) [42] CNN 1 acc, gyr
Yang et al. 2015 [173] CNN 2 acc, gyr, other
Chen & Xue (2015) [33] CNN 1 acc
Jiang & Yin (2015) [72] CNN 3 acc, gyr
Zhang et al. (2015) [177] DBN 3 acc
Ha et al. (2015) [56] CNN 2 acc, gyr
Alsheikh et al. (2016) [4] DBN 3 acc
Bhattacharya & Lane (2016) [25] RBM 3 acc, gyr, other
Ordóñez & Rogen (2016) [112] LSTM+CNN 2 acc, gyr, other
Hammerla et al. (2016) [59] FFN, LSTM, CNN 3 acc
Radu et al. (2016) [123] RBM 1 acc, gyr
Ronao & Cho (2016) [132] CNN 1 acc, gyr
Zebin et al. (2016) [175] CNN 1 acc, gyr
Ravi et al. (2016) [125] CNN 4 acc, gyr
Guan & Plötz (2017) [55] LSTM 3 acc, gyr, other
Murad & Pyun (2017) [109] LSTM 5 acc, gyr, other
Camps et al. (2018) [32] CNN 1 acc, gyr, other
Moya et al. (2018) [106] CNN 3 acc, gyr



Chapter 3 73

HAR tasks, both in terms of performance and resource consumption.

3.3 Deep Learning architectures

One of the core advantages of deep learning is its ability to automatically learn
features from raw data. Previously proposed schemes for HAR remained in the
conventional supervised learning paradigm that relies on the design of handcrafted
features. Although these schemes could achieve high accuracy, the requirement
for domain knowledge limits its scalability. Finding a good set of features from the
raw data is crucial to isolate key information and highlight important patterns, but it
requires expert knowledge and it is difficult and time-consuming. Deep learning
eliminates the need for manual feature engineering.

There are several different architectures for deep neural networks (DNN). In
general, they can be grouped into three main categories: Feed-Forward Networks,
Convolutional Neural Networks and Recurrent Neural Networks. Their main
characteristics are succinctly described in the next sections.

3.3.1 Deep Belief Networks

A deep belief network is composed of several fully connected layers. Its structure
is essentially the same as for a multi-layer perceptron (MLP), where the only
significative difference relies on the pretraining process. DBNs are formed by
stacking restricted Boltzmann machines. RBMs are fully connected shallow neural
networks composed by an input layer and a hidden layer, in which all the units are
binary and stochastic. In an RBM, the visible units represent the observations and
are connected to the hidden units using weighted connections. The nodes of any
single layer do not communicate with each other laterally.

Restricted Boltzmann machines are symmetrical bipartite graphs. Their training
process consists in learning to reconstruct data by themselves in an unsupervised
approach, making several forward and backward passes between the visible and
hidden layers. In the forward pass, the activations represent the probability of
an output given a weighted input x: p(a|x;w). In the backward pass, the result
is an estimation of the probability of inputs x given the weighted activations a:
p(x|a;w). These two estimates lead to the joint probability distribution of inputs x
and activations a: p(x, a).



74 Deep Learning architectures

The training strategy for RBMs involves the concept of activation energy Ei. If
there are n visible units and m hidden units, we can express the states of the
visible and hidden layers with vectors v and h. For a given state (v, h) the energy
in the RBM is:

E(v, h) = −
n∑
i=1

aivi −
m∑
j=1

bjhj −
n∑
i=1

m∑
j=1

viwijhj (3.1)

where ai is the bias of the ith visible unit, bj is the bias of the jth hidden unit, and
wij express the weight between the visible unit i and the hidden unit j.

The marginal probability of the units, namely, the probability that the given
weights will generate the visible units v is:

P (v) =
1∑

v,h e
−E(v,h)

∑
h

e−E(v,h) (3.2)

The training process works by updating the weights using the contrastive di-
vergence (CD) method to calculate the gradients. This method approximates the
gradients of the log-likelihood based on a short Markov chain started at the last
example seen. Each time CD is run, it’s a sample of the Markov Chain composing
the restricted Boltzmann machine. The weights are updated following the rule:

∆wij = ε(< vi.hj >data − < vi.hj >recon) (3.3)

where ε is the learning rate, < vi.hj >data represents the expectation of the
observed data and the results of the weights in the training set, and < vi.hj >recon

is the reconstruction distribution of the model.

Once all the RBMs of a DBN have been trained, the generative pretraining
stage is finished. Their weights are used as the initial weights of the DBN. The
generative pretraining process helps the discriminative training of the model to
achieve better generalization solutions [43]. This stack of RBMs might end with a
Softmax layer to create a classifier, or it may simply help cluster unlabeled data in
an unsupervised learning scenario.

DBNs can be used to classify human activities from raw sensor data by pretrain-
ing the network layers individually in an unsupervised way and then fine-tunning
the complete network with the backpropagation algorithm. In general, these archi-
tectures outperformed classical machine learning approaches, but today they are



Chapter 3 75

mostly out of favor and rarely used [54], at least for HAR classification tasks using
raw inertial data. There is an inherent difficulty for this type of architecture to learn
discriminative patterns from time-series data since it has separate parameters for
each input feature. This forces the model to learn all the rules that characterize
an activity separately at each position in the input, or in other words, at each time
step. As an example, since a step detection can occur at any time step in the
input data, in a feed-forward network architecture the detection of the step has to
be learned for each position in the input layer. By comparison, recurrent neural
networks share the same weights across several time steps, and the pooling layers
of convolutional neural network architectures provide partial invariance to small
local translations. These characteristics make them more appropriate for time
series classification.

3.3.2 Convolutional Neural Networks

Convolutional neural network architecture is inspired by the hierarchical structure
of the human visual cortex, which processes the visual information coming from
the eye through a series of ordered and inter-connected visual areas that perform
feature recognition, from simple edge detection in the first areas to more complex
shape structures in the higher levels [78]. CNNs have gained popularity due
to their ability to learn suitable representations and capture local dependencies
from images or temporal series. In the last few years, the use of deep CNN
models has led to very good performance on a variety of problems, such as
visual and speech recognition. Human activity recognition is also a good field for
convolutional architectures, especially when considering the translation invariance
and temporally correlated readings of time-series signals from activities, and their
hierarchical structure as a combination of small movements. Due to this potential
to identify the representative patterns of HAR’s signals, CNNs have recently been
applied to human activity recognition in many research papers.

The operation performed by a convolutional layer consists of an element-wise
product followed by a sum. The input, as a 2D matrix, is convoluted with a learnable
kernel, a 2D matrix of a particular size, in a sliding-window fashion. The result
of this operation forms the output feature map, which is another 2D matrix. Note
that more than one kernel can be applied to the input, hence the output will be
composed of as many feature maps as kernels are used. Different kernels will



76 Deep Learning architectures

perform different convolution operations on the inputs, such as edge detection
or sharpening. Each kernel can be considered as a specific feature detector, so
the key task when training a convolutional neural network is to get it to learn the
best kernels, those that extract the most meaningful features from the input. The
convolution layer operation for a two-dimensional input can be expressed as:

S(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n) (3.4)

where K represents the kernel and I is the input of size mxn.

After the convolution, a nonlinear activation function is applied to enable a
nonlinear transformation of the data. Then, a pooling layer is used to subsample
the data, by sampling one input out of every region it looks into. The most
commonly used subsampling strategy is max-pooling (taking the maximum value
of the input), but other strategies can be considered, such as average-pooling
(taking the average value of the input) or probabilistic pooling (taking a random
value from the input). Besides turning the input into a smaller representation of the
original data, the pooling layer makes the model invariant to small translations of
the input data. Therefore, the pooling layer does not do any learning but introduces
sparseness as well as translation invariance. Since it only considers the maximum
or the average value in a local neighborhood, a small distortion in the input will not
change the result of pooling.

Convolutional and pooling layers are the building blocks of convolutional neural
networks. Many convolutional and pooling layers can be stacked to form a deep
neural network architecture. These layers act as a hierarchical feature extractor,
each one building feature detectors over the outputs of the previous layer. The
lower layers obtain the local influence of the signals (for example, the character-
istics of each basic movement in human activity), while the higher layers obtain
a high-level representation features and patterns (for example, combinations of
several basic movements). CNN can exploit the local dependency characteristics
inherent in time-series sensor data and the translation-invariant nature of activities.

3.3.3 Recurrent Neural Networks.

Recurrent neural networks [135] are a family of neural networks specialized in
processing a sequence of values. They have the ability to capture long-distance



Chapter 3 77

Figure 3.1: Vanilla recurrent neural network cell scheme.

dependencies in the input stream, or, in other words, to remember information
about previous inputs. Recurrent neural networks have one or more cycles, so
it is possible to follow a path from a unit back to itself [73]. These cycles make
it possible for RNNs to model long-distance dependencies, as they can pass
information among time steps. When unfolded in time, an RNN can be seen
as a feed-forward multilayer neural network with all layers sharing the same
weights. The deepness of this unrolled network can be potentially infinite, as
each layer represents a step in time. Unrolling the network allows us to obtain a
standard computation graph on which to apply forward computation and backward
propagation, or backpropagation through time (BPTT) [130, 164, 107], to learn
the parameters of the network. An RNN receives a sequence as input, which is
processed in an internal loop over its elements (each sequence time step). In
each step of the loop, the internal state of the RNN, a sort of ’memory’ of previous
time steps, is combined with the current time step input to produce an output. This
operation can be expressed as follows:

ht = σh(wh[ht−1, xt] + bh) (3.5)

where wh represents the weights of the cell, xt is the input at current timestamp
t, σh is the activation function, and ht and ht−1 are the outputs (states) of the cell
at current and previous time steps, respectively. Figure 3.1 shows a scheme of the
inputs, outputs and operations that conform a RNN cell.

When a sequence has been processed, the internal state of the network is
initialized to zero before processing the next sequence. While processing the input
data, the recurrent layers generate an output for each time step in the sequence.
Since each output is based on the current and all previous time steps, the last
output will provide the most accurate prediction. This last output can be connected
to a soft-max layer to perform multi-class logistic regression, producing a probability



78 Deep Learning architectures

distribution over the activity class labels.

Vanilla RNN architecture introduces some critical issues, like the vanishing
gradient and the exploding gradient problems [24], which makes optimization
a great challenge. The vanishing gradient problem states that, given that for
traditional activation functions the gradient is bounded, when these gradients are
computed by backpropagation through the chain rule, the error signal decreases
exponentially within time steps. This makes it hard for RNN to account for long-
term dependencies since the weights will not be updated beyond a few time steps.
Depending on the activation function and the parameters used in the network,
the problem can be the opposite, and the gradients can grow exponentially. The
exploding gradient problem can be easily addressed by clipping the value of
gradients to a predefined threshold [114], but the vanishing gradient is more
problematic to correct. Regularization, the use of ReLU as the activation function,
and proper initialization of the weights can reduce the effect of the problem.

Some alternative RNN architectures have been developed to address such
issues. Long short term memory networks [70] and gated recurrent unit networks
[36] are known to be good solutions to bypass the vanishing/exploding gradient
problem and efficiently learn long-range dependencies. LSTMs are the most
widely RNN architectures used today to process sequential inputs like speech and
language. The operation of an LSTM cell can be described as follows:

it = σ(wi[ht−1, xt] + bi)

ft = σ(wf [ht−1, xt] + bf )

ot = σ(wo[ht−1, xt] + bo)

ct = ft ◦ ct−1 + it ◦ tanh(wc[ht−1, xt] + bc)

ht = ot ◦ tanh(ct)

(3.6)

where it, ft, ot are the output of the input, forget and output gates, respectively,
wi, wf , wo are the weights for the input, forget and output gates, respectively,
wc are the weights for the candidate layer, bi, bf , bo are the biases for the input,
forget and output gates, respectively, bc is the bias for the candidate layer, σ is the
sigmoid function, ht−1 is the output for the previous time step t− 1, xt is the input
at current time step t, ct−1, ct are the cell states at time steps t− 1 and t, ht is the
output of the cell at current time step t, and ◦ is the Hadamard product. Figure 3.2
shows a scheme of the inputs, outputs and operations that conform an LSTM cell.



Chapter 3 79

Figure 3.2: Long short-term memory cell scheme. Symbol ◦ represents the
element-wise (Hadamard) product.

GRUs are simplified versions of LSTMs. Compared to LSTM, GRUs have fewer
parameters and are usually used to conserve memory or computation time. The
main difference with LSTMs is that a single gating unit simultaneously controls the
forgetting factor and the decision to update the state unit. The operation of a GRU
cell can be described as follows:

zt = σ(wz[ht−1, xt] + bz)

rt = σ(wr[ht−1, xt] + br)

ht = zt ◦ ht−1 + (1− zt) ◦ tanh(wh[rt ◦ ht−1, xt] + bh)

(3.7)

where zt, rt are the output of the update and reset gates, respectively, wz, wr
are the weights for the update and reset gates, respectively, bz, br are the biases
for the update and reset gates, respectively, σ is the sigmoid function, ht−1 is the
output for the previous time step t− 1, xt is the input at current time step t, ht is the
output of the cell at current time step t, and ◦ is the Hadamard product. Figure 3.3
shows a scheme of the inputs, outputs and operations that conform a GRU cell.

3.4 Datasets

Focusing on a multi-modal approach by using a fusion of accelerometer and
gyroscope data may be useful in accuracy-sensitive applications with a complex



80 Datasets

Figure 3.3: Gated recurrent unit cell scheme. Symbol ◦ represents the element-
wise (Hadamard) product.

activity set, and allows for taking into account not only temporal dependencies but
also possible dependencies among sensors.

To conduct the experiments to assess the performance of different RNN and
CNN architectures, we used a total of ten publicly available datasets that have
been widely used within the community. These datasets contain continuous
sensor readings from inertial measurement units (accelerometers and gyroscopes)
worn by participants of the particular studies at different positions on their bodies
while performing typical tasks for human activity recognition. Some are realistic
benchmark datasets, such as the opportunity dataset, while others might not be
directly mirroring real-world situations but still are widely used in the research
community, such as the pamap2 dataset. The number of activities considered in
each dataset, as well as the class balancing, show substantial variability among
them, as shown in Table 3.2. This is usual for mobile application scenarios
where there is a preeminence of static activities, such as sitting or standing, over
dynamic activities such as walking or running. Examples of this scenario are health
assessments, where problematic activities or behaviors are the rare exceptions
within other more common activities.

For all the datasets we consider only recordings from on-body accelerometers
and gyroscopes. We created 100 samples-wide sliding windows from the raw
data, with 50% overlapping. Even though different overlap values can be used, an
overlap of 50% has been shown to produce reasonable results [18, 120, 169]. The



Chapter 3 81

Table 3.2: Number of datapoints per dataset. Columns 1-12 represent each
activity.
dataset 1 2 3 4 5 6 7 8 9 10 11 12 total
activemiles 13648 7020 1288 784 16304 3408 8404 - - - - - 50856
hhar 39226 41936 39237 45514 37464 33873 - - - - - - 237250
swell 2348 2348 2473 1455 1712 2264 - - - - - - 12600
fusion 8950 8950 8950 8950 8950 8055 8950 - - - - - 61755
usc-had 3744 2518 2685 2048 1904 1695 1000 2545 2290 3680 1552 1552 27207
mhealth 1200 1200 1200 1200 1200 1106 1148 1146 1200 1200 1200 384 13384
uci-har 2257 2059 1880 2359 2582 2567 - - - - - - 13704
pamap2 22548 21634 22126 26378 11110 19208 21610 13638 12210 20560 27886 5424 224332
opportunity 28481 8116 16972 2945 - - - - - - - - 56514
realworld 19375 22654 4695 31147 34777 27015 28987 27304 - - - - 195954

time span of the window is fixed for each dataset and depends on the sampling
rate of the raw data obtained from the sensors. For a rate of 50Hz, a window will
contain 2 seconds of sensory data.

The main characteristics of the datasets considered in this experiment are as
follows:

• Activemiles [126]: This dataset contains around 30 hours of labeled raw
data from real-world human activities performed by 10 subjects. The data
were collected using five distinct smartphones with independent device
configurations, sensor brands, and sampling rates. No limitations were put
on where the device was located (i.e., pocket, bag, or held in the hand).
Annotations record the start time, end time, and a label describing the
activity. For this work, both accelerometer and gyroscope raw data have
been downsampled to 50Hz.

• Fusion [146]: The Fusion dataset collected data for seven basic motion
activities in daily life (walking, running, sitting, standing, jogging, biking,
walking upstairs and walking downstairs) from ten participants. Every subject
performed each activity for 3–4 min, equipped with five smartphones on five
body positions (left and right jeans pockets, right upper arm, right wrist, and
right leg belt position). The same model of smartphone was used for all the
positions, with different orientations depending on the device location. The
data recorded included the readings from the accelerometer, the gyroscope,
and the magnetometer, all collected at a sampling rate of 50Hz.

• hapt (UCI HAR) [6]: The data in this dataset was recorded by 30 volunteer



82 Datasets

subjects who performed six different activities while wearing a waist-mounted
smartphone. The subjects performed a protocol composed of six basic
activities: three static postures (standing, sitting, lying) and three dynamic
activities (walking, walking downstairs, and walking upstairs). The raw ac-
celerometer and gyroscope tri-axial signals were sampled at a rate of 50
Hz.

• HHAR [151]: The Heterogeneity dataset for Human Activity Recognition
contains the readings of accelerometer and gyroscope sensors recorded
while users executed activities carrying smartwatches and smartphones. The
signals were sampled at the highest frequency the respective device allowed.
A total of six different activities (biking, sitting, standing, walking, stairs up
and stairs down) were performed by 9 subjects carrying 4 smartwatches, 2
on each arm, and 8 smartphones, all placed around the user’s waist. Each
participant conducted five minutes of each activity.

• MHealth [17]: Mobile Health dataset recorded 12 daily activities from 10 vol-
unteers of diverse profiles. This data was acquired by means of four different
types of sensors: 3 tri-axial accelerometer sensors, 2 tri-axial gyroscope
sensors, 2 magnetometer sensors, and 1 two-lead Electrocardiogram sensor,
at a sampling rate of 50Hz. The sensors were placed on the subject’s chest,
right wrist, and left ankle of the subjects.

• Opportunity [131]: The Opportunity Activity Recognition dataset consists of
annotated recordings from a total of 4 participants, who wore 7 IMUs and
12 accelerometers placed on various body parts, and were instructed to
carry out 18 different Activities of Daily Living (ADL), specifically focusing
on kitchen routine. The sampling frequency for all IMUs was 30Hz. Every
participant performed five different runs of the activities, following a loose
description of the overall actions to perform. We only use the 4 activities from
this dataset which are similar to the activities included in the rest of datasets;
Stand, Walk, Sit and Lie, taking into account only the on-body sensors.

• Pamap2 [128, 127]: The PAMAP2 Physical Activity Monitoring dataset con-
tains data from 18 different physical activities, performed by 9 subjects
wearing 3 inertial measurement units, attached to the hand, chest, and ankle,
and a heart rate monitor. The participants were instructed to carry out a total



Chapter 3 83

of 12 activities of daily living, plus 6 optional activities, covering domestic
routines and various sportive exercises (Nordic walking, running, etc). The
data was recorded from inertial measurement units located on the hand,
chest, and ankle of the participants, over a total of 10 hours.

• Swell [147]: This dataset contains raw accelerometer, magnetometer, and
gyroscope signals acquired by means of four smartphones placed on four
body positions: right jeans pocket, belt, right arm, and right wrist. It recorded
six different physical activities, performed by four participants, at a sampling
rate of 50Hz. The activities that the subjects conducted are walking, running,
sitting, standing, walking upstairs, and walking downstairs. The dataset
contains roughly 3-5 minutes of data per activity and participant.

• USC-HAD [178]: The USC human activity dataset is intended as a bench-
mark for algorithm comparison, particularly for health-care scenarios, and
consists of 12 basic human daily activities: walking forward, walking left,
walking right, walking upstairs, walking downstairs, running forward, jumping
up, sitting, standing, sleeping, in elevator up, and in elevator down. The
dataset was recorded by 14 subjects wearing a high-performance inertial
sensor device, with a tri-axial accelerometer and gyroscope, located on the
front right hip, at a sampling rate of 100Hz.

• RealWorld [152]: Realworld is a complete and realistic dataset that cov-
ers seven activities (climbing stairs down and up, jumping, lying, standing,
sitting, running/jogging, and walking) performed by fifteen subjects. Each
subject performed each activity roughly 10 minutes except for jumping (∼ 1.7

minutes). The dataset was recorded using seven wearable devices (smart-
phones and smartwatches) positioned on chest, forearm, head, shin, thigh,
upper arm, and waist. The devices were attached to the relevant body posi-
tions using a sports armband case, trouser pocket, shirt pocket, head belt,
or the bra. There was no further fixation of the device to closely resemble
their use in everyday life. The sampling frequency for all sensors was 50Hz.



84 Experiments setup

3.5 Experiments setup

The purpose of this stage is to obtain labeled segments from the continu-
ous stream of data stored in each of the ten datasets used to evaluate the
different deep learning architectures. These segments are sliding windows
of sensor measurements, containing 100 consecutive readings from both
sensors, accelerometer, and gyroscope, for a particular activity, and with an
overlapping factor of 50%. The time span of the window depends on the sam-
pling rate at which the data was recorded. While for the opportunity dataset,
whose data was acquired at 30Hz, a window represents 3.33 seconds of a
particular activity, for the USC-HAD dataset, recorded at 100Hz, a window
is 1 second wide. Some authors add the magnitude of measurements (the
norm of the three-axis) as an additional input to reduce the effect of sensor
placement and orientation. This may increase the performance, but also the
computational requirements and the training time. Since this experiment is
intended to compare the performance of different architectures on the same
data, we keep things simple and use only standardized raw data as input,
with no further engineering.

Given the variety of sensors used in the benchmark datasets, with different
typologies and brands, and thus distinct sensitivity and measurement ranges,
it is convenient to scale the data to speed-up the convergence of DL algo-
rithms. We performed preliminary tests to determine the best option among
linear scaling in the range 0 to 1, linear scaling in the range -1 to +1, and
standardizing to 0 mean and 1 standard deviation. The latter option showed
the best results, with lower average convergence times for all architectures
except DBN. Therefore, once the windows are extracted from the dataset,
the values are standardized to have 0 mean and 1 standard deviation. In
the case of DBN, to be able to work with real-valued data we use Gaussian
distributed visible neurons and Bernoulli distributed hidden neurons in the
first RBM. Consequently, input data has to be scaled in the range of 0 to 1.

Figure 3.4 shows the resultant standardized distributions of accelerometer
and gyroscope values for each dataset. The gyroscope distributions look
similar, with the majority of values around zero, except for the mhealth
dataset, which shows great variability. The main reason for this might be the



Chapter 3 85

Figure 3.4: Distributions of accelerometer and gyroscope signals.

sensor used, a Shimmer3 IMU with an Invensense MPU9150 gyroscope,
with low RMS noise and good range, sensitivity, and resolution, in contrast
with low-cost smartphone’s sensors used in other datasets, combined with
the small size of the dataset and the big number of activities (12) recorded.
The accelerometer distributions present more diversity among datasets, with
many peaks spread along with the range of values.

3.5.1 Experiment setup

Apart from standardizing the raw data and concatenating the accelerometer
and gyroscope data together, sensor signals are used without employing
any prior feature extraction methods, which is in line with the majority of
recent deep learning-based analysis methods in HAR and with the objective
of this work to determine the capacity of various DL architectures to find
convenient features for recognition of human activities. All the models, except
for the DBN architectures, have been designed to receive as input the same
data. Each data point has a dimensionality of 100x6, which corresponds
to 100 timesteps with 6 readings each, one for axis and sensor. In the
case of DBNs, the input is reshaped to form a vector of 600 values. The
composition of the different models has been designed taking into account



86 Experiments setup

previous works, but with the goal of using only simple architectures that are
representative of each DL algorithm, to be able to compare the performance
of each different structure without over-engineering the design to obtain
state-of-the-art results. The guidelines when designing the models for each
of the different deep learning architectures considered are as follows:

– DBN: The sizes of the models range from 1 to 6 RBM layers. In previous
works [177, 4], researchers used layer sizes ranging from 256 to 2000
hidden units. We fixed the number of hidden units to an intermediate
value of 512, as it is showed in Table 3.3. Once pretrained, RBMs are
stacked forming a DBN that is then fine-tuned in a supervised way using
backpropagation algorithm, with the output of the last RBM connected
directly to a soft-max layer for classification.

– CNN: The models are composed of three 2D convolutional layers (with
convolutional and pooling stages) connected to a fully connected neural
network and a soft-max classifier. This three-layer convolutional archi-
tecture has been used in previous works, such as [173, 33, 132], with
good results for human activity recognition tasks. The filter sizes of the
first layer range from 19x3 to 3x3. The models are designed to study the
influence of the temporal size of the filter (the number of time steps it
encompasses) on the performance of the model. On the axis dimension
of the input, the filter of the first convolutional layer encloses the three
axes of each sensor, with a stride factor of 3. Consequently, this layer
will not take into account any dependency among sensors, but only
dependencies among axis of the same sensor. It is not until the last
convolutional layer that local dependencies between accelerometer and
gyroscope are taken into account. Table 3.4 shows the configuration
parameters for each CNN model. The last fully connected layer is sent
directly to a soft-max layer for classification.

– LSTM, biLSTM, and GRU: We use a similar architecture for all RNN
models. The models are three layers deep and the number of hidden
units ranges from 100 up to 600 for LSTM and GRU models, and from
100 to 500 for biLSTM models, as it is showed in Table 3.5. Previous
works [82, 109] used a similar architecture, with 100 hidden units per
layer. Other authors use more complex structures involving the use of



Chapter 3 87

Table 3.3: DBN models. Table shows the number of hidden layers, the number of
units in each layer, and the number of trainable parameters of the model.

number of hidden units number of
layers per layer parameters

1 512 312320
2 512 620032
3 512 927744
4 512 1235456
5 512 1543168
6 512 1850880

mixed architectures [55] such as CNNs combined with LSTMs. The last
prediction of the last recurrent layer is sent directly to a soft-max layer
for classification.

In order to avoid potential over-fitting, and also to reduce the influence that a
particular partition of data could have on the final result, we evaluated the
performance of each model using a random 5-fold stratified cross-validation
strategy. Prior to the training process of models, a test set, comprising 20%
of the total data points, is extracted from each dataset. This set will be later
used to assess the performance of the trained model. The remaining data
is randomly divided into 5 equally sized and mutually exclusive folds. On
each iteration, one fold is used as validation, and the remaining are used as
training data. Once all the validation folds have been used, the performance
is averaged among the five results obtained on the test set.

To further improve the training procedure and generalization performance,
the following regularization techniques have been used:

– Dropout [150]: It is a regularization strategy that removes non-output
units randomly from the original network, independently for each hidden
unit and for each training case. Thus, applying dropout to a neural
network is equal to sub-sampling a smaller and less complex neural
network from it. Dropout was performed in all fully connected layers and
in all recurrent layers, with a probability value of 0.5.

– Weight decay [115]: It is well known that more sparse neural networks



88 Experiments setup

Table 3.4: CNN models. Table shows the size of the filter for the first convolutional
layer of the models, the number of units in the fully connected layers (fcl1 and fcl2),
and the number of trainable parameters.

first fully fully number
filter connected connected of
size layer 1 layer 2 parameters

19x3 1536 100 1144676
17x3 1536 100 1176676
15x3 1536 100 1274212
13x3 1536 100 1306212
11x3 1536 100 748388
9x3 1536 100 845924
7x3 1536 100 943460
5x3 1792 100 673380
3x3 2816 100 742244

Table 3.5: LSTM, biLSTM and GRU models. All the models are composed of three
recurrent layers and a soft-max output layer. Table shows the number of hidden
units in each layer, and the number of trainable parameters of the model.

hidden units LSTM biLSTM GRU
per layer parameters parameters parameters

100 128400 256800 96300
200 496800 993600 372600
250 771000 1542000 578250
300 1105200 2210400 828900
350 1499400 2998800 1124550
400 1953600 3907200 1465200
450 2467800 4935600 1850850
500 3042000 6084000 2281500
550 3676200 – 2757150
600 4370400 – 3277800



Chapter 3 89

generalize better. Weight decay penalizes large weights and limits the
freedom of the model by adding an additional term in the weight update
rule, forcing weights to be closer to zero. Based on previous works,
such as [132], we chose a value of 0.00005 for weight decay.

– Early stopping: It is a simple technique that can be superior to other
regularization methods in many cases, e.g. [45]. The validation error
is used as an estimate of the generalization error, i.e., the validation
set is used to anticipate the behavior on the test set, assuming that
the error on both will be similar. The method consists in training the
model on the training set and evaluating its performance every epoch
on the validation set. Given an early stopping parameter k, the training
process stops when k epochs have passed without any performance
increase. The final performance metric is evaluated on the test set using
the model state that performed better on the evaluation set.

In the training process we use the AdaGrad [41] updating function, with a
learning rate of 0.005, and a mini-batch size of 1000 data points, except
for the most complex recurrent models, on which we used a mini-batch
size of 500. These parameters have been determined based on previous
experiments and precedent research works on deep learning and HAR. We
also used the cross-entropy as the loss function. As our evaluation metrics,
we employ both the accuracy and the f1-score, which is defined as the
harmonic mean of precision and recall:

f1 =
2 · precision · recall
precision+ recall

Since more than two classes are considered, we report the weighted average
of the individual f1-scores of all classes as the evaluation metric for each
model, in line with standard practices in HAR research [26], since it is more
resilient than accuracy on imbalanced datasets:

f̂1 =

∑c
i=1wif

i
1∑c

i=1wi

where c is the number of classes and wi is the weight (the number of in-
stances) of the ith class.



90 Results and discussion

3.6 Results and discussion

3.6.1 Results

The results obtained are summarized in Figure 3.5, which shows the best f1
and accuracy scores for each architecture and dataset. Using both metrics,
CNN performed better approximately if half of the datasets considered, while
GRU performed better on the rest. In all the experiments, DBN was the
worst-performing architecture.

Regarding the absolute scores obtained, one thing to note is that those
datasets whose signals showed more variability (see Figure 3.4), such
as mhealth, fusion, hapt or swell, achieved better general classification
scores than the rest, rounding a maximum score of 99%. This highlights the
important function that variability plays, making it easier for the models to
find meaningful correlations among sensor signals, and among those and
the correspondent activity, thus easing the discrimination among activities.

Figure 3.5 shows the performance loss in percentage over the best scores
for each dataset. In those cases in which GRU is the best performing
architecture, the average difference of performance over the CNN model
is 0.67%. On the contrary, in those cases in which the CNN model obtains
the best score, the best GRU model is 0.42% worse on average. The worst
performing architecture (DBN) is 6.04% worse, on average, over the best
architecture.

When comparing the speed and the memory footprint of the architectures,
DBN is the fastest architecture, while CNNs are the most efficient in terms of
memory use. Figure 3.6 shows the time that the best model of each architec-
ture takes to process an input and generate a prediction, as a percentage
over the time taken by the fastest model. In all cases the fastest architecture
is DBN, which was an expected result since their architecture, regardless of
the special training process, is the simplest.

Regarding memory footprint, Figure 3.6 shows the number of trainable
parameters, as a percentage over the number of parameters of the least
memory-consuming model, among the best for each architecture and dataset.
In nine of the ten datasets, the best CNN model has a smaller memory



Chapter 3 91

Figure 3.5: Per dataset heatmap of the maximum f1 (a) and accuracy (b) scores for
each architecture. The best score for each dataset is boxed in dashed lines. The
table also shows the percentage of performance loss over the best architecture for
each dataset.

footprint. The best performing LSTM model for each dataset needs an
average of 202% more parameters. The best GRU models have an average
of 312% more memory needs than the best CNN models.

As for the structure of the models of each architecture, Figure 3.7, shows
the influence of the number of hidden units on the model’s performance
and training time of the different architectures, as a percentage over the
performance of the simplest model. As might be seen in the figures, in the
case of recurrent models, the positive impact of increasing the number of
hidden units decreases as their number grows. Each step also increases
the network’s complexity, reaching a point where adding more units will not
increase the model’s performance. Obviously, each increase in complexity
causes a slowdown of the model along with a boost in the cost of training.
Bidirectional LSTM models give its peak of average performance at 450
hidden units, while GRU models average performance peaks at 500 hidden



92 Results and discussion

Figure 3.6: Per dataset heatmap of the time (a) taken to process an input and
memory footprint (b) for the best model for each architecture, in percentage over
the fastest. The best score for each dataset is boxed in dashed lines.

units and LSTM models at 550 hidden units.

Regarding the results obtained for the CNN models, Figure 3.7 shows the
impact of the temporal size of the first convolutional layer filter. The best
results are obtained with filters that are 11, 9, and 7 time steps wide, which
for a sampling rate of 50Hz will correspond to roughly 0.2 seconds. As for
the speed, the range between the worst and the best model (around 70%) is
narrower than the range in recurrent models (around 500%), showing that
changes in the filter size have a small impact on the speed of the model.

The results obtained for DBNs show that the best results are obtained with
3 hidden layers. As for the speed, as it can be expected, decreases as the
complexity of the model grows.

The k-fold stratified cross-validation strategy followed in these experiments
implies that the training, validation, and test sets have been drawn from
the same distribution. This is, variables that can influence the parameters



Chapter 3 93

Figure 3.7: F1 score and time of prediction for each model, as a percentage over
the simplest model. The grayed area represents the confidence level interval.

of the distribution for each set have been equally distributed, and patterns
found in the training set will probably be found in the test data as well, thus
facilitating the capacity of the trained model to achieve good results. One
simple example of this kind of variable can be the user who acquired the data.
Distinct users may show different peculiarities when performing activities,
and using data from all users when training allows the model to learn these
differences.

To assess the ability of the best-performing deep architectures to learn
significative patterns in these types of scenarios, we selected three datasets
to perform some additional tests. For each dataset, we trained the best
performing model from the best architectures with a leave-one-out strategy,
this is, we reserved the data from one user to evaluate the performance of
the model and used the rest of the data to train the model. This process
was repeated for each user. The reported result for each dataset and model
is the average f1 score for all users. The number of users varies from 10



94 Results and discussion

in the fusion and mhealth, to 30 users for the uci-har dataset. The results
are presented in Figure 3.8. Results show a big difference in the general
performance of deep models compared with previous results, where the
data on which they were tested was very similar to the data on which they
were trained. While these might be state-of-the-art models, with really high
performance, it would be only on the very specific distribution represented
by the training data. When used in a new task which might still be similar
to the one they were trained on, as is the case of new data from a new
user, they end up suffering a significant loss in performance. In these
circumstances, neural networks fail to form a general understanding of the
meaningful patterns that characterize each class. Combating this issue [111]
is a difficult problem that generally requires more data to train and/or specific
training procedures to prevent overfitting. Ironically, the use of engineered
features can help, to some extent, to prevent these issues. Using the same
leave-one-out strategy on the set of manually extracted features provided in
the uci-har dataset with a classic machine learning algorithm such as SVM
provides an average accuracy of 0.75. Although this simple test might not be
significative, it seems reasonable to consider that a good set of well-selected
features might be representative of the distinct characteristics of human
activities, and more resilient to changes in the environment such as the user
that is performing such activities.

Finally, in order to compare the performance of the trained deep learning
models with various classical machine learning algorithms we performed
some tests using the set of features provided in the uci-har dataset. Using
three different machine learning classifiers (support vector machines, 3-
nearest neighbors, and random forest) the results obtained were noticeably
inferior to those achieved by convolutional and recurrent networks. Table 3.6
shows the results obtained. The support vector machines classifier obtained
the best results.

3.6.2 Discussion

One of the key points of the CNN architecture is its shift-invariance property,
that enables a pattern in the input to be recognized in any position. This type
of DL architecture is able to successfully capture the temporal dependencies



Chapter 3 95

Figure 3.8: F1 score for each dataset and architecture when training with a leave-
one-out strategy. Error bars show the standard deviation of the results.

Table 3.6: Accuracy and f1 for three classical machine learning algorithms on the
uci-har dataset using the set of features provided by the authors.

algorithm accuracy f1
support vector machines 0.9504 0.9504
3 nearest neighbors 0.8907 0.8898
random forest 0.9253 0.9251

in raw sensor data structured as time series through the application of
relevant filters. The pooling layers contribute to providing limited scale
invariance properties, allowing for slight deformations in the input signals.
Given that different people may execute an action with distinct paces (e.g.,
an elder person may walk at a slower pace than a young person), this scale
deformation tolerance enables CNNs to effectively identify the pattern that
characterizes the activity regardless of its pace of execution. The temporal
size of the filter for the best models, of around 10 time steps, indicates
that there is no need to capture long-distance dependencies in the input
stream to obtain good results characterizing human activities. Architectures
designed to do so, such as RNN, do not perform consistently better than
CNN and have some disadvantages, such as their computational complexity
and higher memory needs.



96 Results and discussion

The unfolded computational graph of the RNN architecture results in the
sharing of parameters across the deep network structure. This facilitates the
use of the same parameters for different time steps, enabling the model to
efficiently learn discriminative patterns regardless of their position in the input
sequence. The results obtained with GRU models, which are comparable
to the results achieved by CNN models, validate the use of GRU for human
activity recognition tasks. This type of recurrent neural networks achieves
better results than LSTM and bidirectional LSTM, at least using simple vanilla
architectures, and come with the advantage of their relatively low cost in
terms of memory and computation resources, at least compared with other
recurrent architectures.

Finally, we see that the fully connected architecture of DBN limits their suit-
ability for time series classification tasks, at least without previous manual
feature extraction. The pretraining process using unlabeled data enables
initializing layer weights in a way that should make feasible extracting signif-
icant features from the raw data. But the patterns that define the different
activities can be present at any time stamp, and the fact that the weights are
not shared implies that those pattern detectors have to be learned for each
possible position in the input. However, since the availability of unlabeled
data is significantly higher, exploring ways of leveraging this information
to get better models is a research line on which these kinds of generative
models can have their application. Either DBN or other architectures such
as autoencoders or variational autoencoders could be employed as feature
extractors trained in an unsupervised process, and then connected to a CNN
or RNN model for fine-tuning with labeled data.

In summary, the results are compatible with the hypothesis that CNNs are
efficient at capturing local temporal dependencies of activity signals, and
are also capable of identifying multi-modal correlations among sensors.
Their performance in activity classification is comparable to, and in some
cases better than, RNNs. Their faster response and lower memory footprint
make them the architecture of choice for wearable and IoT devices, where
restrictions both in terms of power consumption, computational capabilities,
and memory availability might play a decisive role.



Chapter 3 97

3.6.3 Results reproducibility

To allow for the verification and validation of results, the software framework
implemented to run the experiments has been made publicly available. The
public repository 1 includes the log files of all the individual experiments
and results for each model and architecture, as well as the scripts used
to generate the plots and figures included in this paper. The software is
easily extensible and has been implemented with the aim to allow for the
reproducibility of the experiments included in this paper and to ease the
creation of new ones to effortlessly extend this research. The repository
provides details about the requirements, data sources, and how to run
experiments and create new ones. The datasets are not included in the
repository, although instructions on how to obtain them are provided.

The experiments were conducted on two identical machines with Intel(R)
Core(TM) i7-4790 CPU @ 3.60GHz, NVIDIA GeForce GTX 1080 Ti GPU
and running Ubuntu v17.10 as the operating system, using Pytorch version
0.3 and CUDA version 9.0. It took more than 4000 hours to complete the
total set of experiments.

3.7 Conclussions and future work

In this paper, we used a testbed of ten publicly available benchmark datasets
to compare the performance, speed, and complexity of five different archi-
tectures of DNNs on HAR classification tasks. The results show that CNNs
achieve very competitive performance scores with respect to GRU networks,
and better results than biLSTM, LSTM, and DBN models. Regarding memory
requirements, CNN is clearly the least memory demanding architecture.

The continuous progression of artificial intelligence into the mainstream due
to the advent of enabling technologies such as machine learning, smart
devices, cloud storage or high-speed networks, will require systems to be
able to provide real-time insights in key fields such as ambient assisted living
or health monitoring, often through the use of low-cost embedded devices

1https://github.com/esansano/dl-for-har-comparison

https://github.com/esansano/dl-for-har-comparison


98 Conclussions and future work

with strict restrictions on memory availability, power consumption, connec-
tivity, and computational capabilities. Overall, both in terms of speed and
memory requirements, the study allows confirming that CNNs are specially
appropriated for activity recognition tasks in such scarce resource scenarios.

Future work. Given the extensive quantity of HAR data available, we plan to
assess the possibility of using pre-trained models to speed up training and
improve the performance on datasets where few data is available, decreasing
thus the need for large volumes of new data and the time needed to adjust a
new model. Transfer learning [113] makes use of the knowledge acquired
by a model during the training process on a big dataset to solve a related
classification problem where few labeled data is available. For example, a
CNN can be trained with a big dataset such as pamap2 or realworld, or a
combination of both, and, once the training process has ended, be tuned to
classify classes from a dataset with a limited amount of data and a different
set of activities, such as uci-har or swell.

Acknowledgments

This work has been partially funded by the Spanish Ministry of Science,
Innovation and Universities through the “Proyectos I + D Retos investigación”
programme (RTI2018-095168-B-C53) and by Jaume I University “Research
promotion plan 2017” programme (UJI-B2017-45).

Financial disclosure

None reported.

Conflict of interest

The authors declare no potential conflicts of interest.



Chapter 4

Chapter 4

Multimodal sensor data
integration for indoor positioning
in Ambient Assisted Living
environments

A reliable Indoor Positioning System (IPS) is a crucial part of the Ambient
Assisted Living (AAL) concept. The use of Wi-Fi fingerprinting techniques to
determine the location of the user, based on the Received Signal Strength
Indication (RSSI) mapping, avoids the need to deploy a dedicated positioning
infrastructure but comes with its own issues. Heterogeneity of devices and
RSSI variability in space and time due to environment changing conditions
pose a challenge to positioning systems based on this technique.

The primary purpose of this research is to examine the viability of leveraging
other sensors in aiding the positioning system to provide more accurate
predictions. In particular, the experiments presented in this work show that
Inertial Motion Units (IMU), which are present by default in smart devices
such as smart-phones or smart-watches, can increase the performance
of indoor positioning systems in AAL environments. Furthermore, this pa-
per assesses a set of techniques to predict the future performance of the
positioning system based on the training data, as well as complementary
strategies such as data scaling and the use of consecutive Wi-Fi scanning



100 Introduction

to further improve the reliability of the IPS predictions. This research shows
that a robust positioning estimation can be derived from such strategies.

4.1 Introduction

The current increase in the population’s average age [75] leads to new
requirements in the healthcare domain, particularly in aspects such as
care-giving, home assistance, rehabilitation, early detection of diseases,
or physical support [163]. The need for assistance and healthcare to the
elderly is becoming more and more necessary for social as well as for
economic reasons. This trend urges affording suitable assistance systems
to improve the quality of life of older people [108] with the aim to help them
live an active and productive aging at an affordable cost [124].

Due to underlying and often debilitating health conditions that are associated
with elderly people, aspects of everyday living can become physically and
mentally challenging for them. Technology can be integrated into the health
care of senior citizens to provide safe, high-quality lives, improve their health
and happiness, and enable a longer period of independent living. Assistive
technical applications should be easy to use, unobtrusive, suitably designed,
and adaptable to changing needs and individual preferences.

Ambient Assisted Living (AAL) concept has been defined as a set of products
and services aimed to build intelligent environments in the assistance of
these groups of people [122]. One of the goals of AAL is to provide reliable
and meaningful information to health professionals, caregivers, psychologists
or family members. AAL applications consist of networks of heterogeneous
information appliances and smart artifacts that can assist people with special
needs in several areas such as daily task facilitation, mobility assistance,
health-care and rehabilitation, and social inclusion and communication. With
the help of Artificial Intelligence (AI), AAL facilitates the use of technology in
a non-intrusive way to support safe, high-quality, and independent lives for
the frail and elderly.

AAL platforms strongly rely on an accurate underlying localization system
in order to provide timely and reliable services to elderly users. Knowing
their position and actions is vital for medical observation, timely accident



Chapter 4 101

prevention, behavioral pattern characterization, or anomaly detection [34].

While the problem of localization in outdoor environments has been solved
by the use of satellite positioning systems such as GPS or Galileo, which
provide an acceptable level of accuracy and precision, indoor positioning
remains an open issue. Satellital signals are not available inside buildings,
since they are attenuated and scattered by roofs, walls and other building
elements, and are unable to reach the user’s device with enough intensity to
provide precise positioning services. Researchers and industry are currently
involved in the investigation, development, and improvement of reliable indoor
positioning systems. Although significant progress has been made, there is
not an accurate and widely accepted solution for this topic.

Indoor Positioning Systems (IPS) are systems that locate and track people or
objects inside buildings using radio waves, magnetic field, acoustic signals,
images, or other information collected by sensors [29]. A suitable IPS
system for AAL has to be able to localize the assisted person in an indoor
environment, with accuracy and performance high enough to reliably monitor
his/her activity and provide meaningful assistance and services. These
systems have to be deployed at the user’s living place, in real scenarios
where the particular constructive characteristics and peculiarities of the
building may affect the way that signals propagate. This type of scenarios are
very different from controlled experiments where environmental conditions
are known in advance. The fact that homes are diverse, with different layouts
and varied architectural particularities makes it complex, time-consuming,
and expensive to model the propagation of radio frequency signals each time
the positioning system has to be installed. Furthermore, technical proposals
for AAL should be easy to use, unobtrusive, and inexpensive, so deployment
has to be as simple as possible.

In order to predict the position of an agent in an indoor environment, tra-
ditional approaches rely on the construction of reliable models for signal
propagation, which is a complex topic. The performance of these methods
depends on the correct assumptions about the underlying rules governing
the observed signals. If the assumptions are wrong, the model will not de-
scribe the observations and will not be able to make solid predictions. On
the other hand, Machine Learning (ML) algorithms allow the identification of



102 Introduction

correlations in data sets without the need for a proper determination of the
underlying model. In other words, ML techniques treat the model as a black
box for which an explicit characterization is unknown. The training process
of the supervised ML algorithms is able to uncover meaningful and charac-
teristic patterns directly from the data and to build effective and predictive
models that perform well on unseen data.

Wi-Fi fingerprinting, which uses ML techniques to take advantage of an
already deployed infrastructure, is a good choice for such systems [143, 22].
Nevertheless, factors such as channel interference, sensor orientation, or
multipath propagation and fading introduce a level of indeterminacy in Wi-Fi
sensor readings, impacting negatively in the performance of this positioning
method [154]. In scenarios where accuracy at room level is enough to provide
relevant services, selecting an adequate classifier algorithm, and collecting
data appropriately can significantly improve precision. Furthermore, taking
into consideration readings from other sensors, such as Inertial Motion Units
(IMU), along with Wi-Fi fingerprints, can help to account for changes in the
user’s location, providing valuable information that can be utilized to improve
the IPS results.

This paper presents the results of a study to assess the impact on the IPS
performance of strategies based on the utilization of motion sensor readings
to detect user states. This work also presents some preliminary data study
techniques that can help to predict the quality of the data recorded by the
users, which directly affects the accuracy of the IPS system. Furthermore,
we also carried out a set of experiments to evaluate the effectiveness of a
series of actions aimed to reduce the influence of Wi-Fi signal uncertainty
and to select the most appropriate ML algorithm for the positioning system.
As a summary, the main contributions of this paper are as follows:

1. We perform a set of data analysis techniques that help to predict the
performance of the positioning system based on the characteristics of
the training data recorded by the user.

2. We assess the performance gain of considering readings from body-
worn inertial sensors to recognize room transitions.

3. We compare the impact of some strategies to increase the positioning



Chapter 4 103

performance of the positioning algorithms and to reduce uncertainty in
Wi-Fi signals.

4. We also compare the performance of four machine learning algorithms
in room-level indoor localization tasks.

A preliminary version of this work, entitled "Improving positioning accuracy in
Ambient Assisted Living environments. A multi-sensor approach." [138] was
presented at the 15th International Conference on Intelligent Environments
(IE19). With respect to the preliminary version, we have extended and
partially rewritten all sections. Furthermore, we have added a new section
dedicated to exploring data characteristics and their relationship with the
performance of the classification algorithms used in the experiments.

The organization of this paper is as follows: Section 4.2 shortly provides
context on Ambient Assisted Living and Indoor Positioning Systems. Section
4.3 presents an overview of the positioning system used to perform the
experiments. Section 4.4 presents a study of the data and discusses the
outcomes. Section 4.6 describes the experiments performed and Section 4.7
discusses their results. Finally, Section 4.8 underlines the main conclusions
of this work and explores possible future lines of research.

4.2 Background

General AI and Machine Learning (ML) based systems are being developed
and used in areas such as context-awareness, agent-based technologies or
computer vision, to provide more intelligent, flexible, natural and supportive
services for health-care. Some examples of how services based on AI and
ML techniques can be used in healthcare services are:

– Human Activity Recognition (HAR): Systems can combine data from
multiple sensors to recognize user’s activities and identify behavioral
patterns. The performance of daily activities can be used as a measure
of the cognitive and physical condition of the elderly [14, 8, 32].

– Anomaly Detection: Anomaly detection techniques can expose declining
health conditions. Changes and anomalies in the user behavior can
be of use in chronic diseases monitoring [35] and early depression



104 Background

detection [40], and can denote elder-specific illnesses such as cognitive
decline, Alzheimer, dementia or functional impairment [64, 48].

– Decision Support: Decision support systems assemble different types
of data from multiple patients and help doctors and healthcare profes-
sionals to organize their work, to analyze people personal needs or to
survey some common phenomenon.

Some of the key aspects of deploying an IPS for Ambient Assisted Living
are related to choosing the right positioning technology while implementing
the system in a passive, device-free, and unobtrusive way. This objective
might require the use of an existing infrastructure, the deployment of a new
one, the use of the so-called signals-of-opportunity, or even a combination of
some of these techniques. Many of these techniques take advantage of the
radio-frequency signals emitted by devices, whose position can be known
or not, to estimate the user’s position from the perceived strength of these
signals, the Received Signal Strength Indication (RSSI). RSSI is used to
measure the relative quality of a received signal to a client device. The value
read by a device is given on a logarithmic scale and can correspond to an
instant reading or a mean of some consecutive readings, but each chipset
manufacturer is free to define their own scale for this term. There are many
kinds of devices and technologies that can be used for positioning purposes,
such as Wi-Fi access points, Bluetooth beacons, Radio Frequency Identifi-
cation (RFID), or Ultra-Wide Band (UWB) devices [2]. The effectiveness of
these techniques can be improved by leveraging the use of other sensors
that are commonly present in wearable devices.

Beyond WiFi or Bluetooth signals, the use of the Earth’s magnetic field to
build an indoor positioning system has been explored in recent years in
several research works. Man-made constructions cause disturbances that
alter the magnetic field. These magnetic anomalies are location specific
and temporally stable, and can be leveraged to build an indoor positioning
framework. In many works, this approach is combined with other sensors to
enhance its performance. For example, in [149] authors use the magnetic
field along with opportunistic WiFi signals to achieve a 90 percentile accuracy
of 3.5 m for localization. The use of different deep learning architectures,
such as deep neural networks (DNN) or convolutional neural networks (CNN)



Chapter 4 105

has also been proved to achieve good localization accuracy [12, 9, 10].

Figure 4.1: During the on-line phase, once the radio map has been built, the
fingerprinting algorithm uses it to estimate the device’s position by comparing the
RSSI values heard by the device with the ones stored in the radio map.
(Icons made by Freepik from www.flaticon.com)

Using inertial sensors’ data has been applied previously to solve diverse
problems related to localization. In [5] authors present a pedestrian dead
reckoning tracking system that relies on two modules; a step counter and a
stride length estimator. Although the reported results are good, their solution
is based on a homogeneous walking, which can not be assumed in some
small indoor scenarios such as homes. Combining radio-frequency signals
along with other sensors’ data has been implemented in several previous
works. For example, Xie et. al. [171] achieve good accuracy in large indoor
buildings using magnetic field fingerprinting together with an augmented
particle filter. The use of particle filters to fuse data from various sensors has
been a common practice for indoor localization systems [180, 71], generally



106 Background

providing good results. In [67] authors use magnetic field readings along with
WiFi to create a Spatio-temporal signal fusion graph to identify crowd-flows
in large indoor scenarios such as malls or airports. This technique can be
applied to applications or services like advertisement and recommendation
or urban-flow monitoring systems.

Techniques used for indoor location can be divided into three general cate-
gories: proximity, triangulation, and fingerprinting [44].

– Proximity methods compare the RSSI value from different transmitters
and determine the position of the client assuming that the received
signal with the highest value is from the closest access point. The
accuracy is generally low and relates to the density of deployed beacons
and its signal range.

– Triangulation methods use the geometric properties of triangles to
determine the target location. When the position of at least three trans-
mitters is known, the position of the mobile node can be estimated
calculating its distance to each device. The difficulties come with the
task of finding the right model for transforming RSSI to distance. Trian-
gulation methods can be divided into two groups; lateration techniques
such as Time-of-Arrival (ToA), Time-Difference-of-Arrival (TDoA) or
Round-Trip-Travel-Time (RTTT), based on the measurement of the prop-
agation time, and angulation techniques such as Angle-of-Arrival (AoA),
based on the angle of the arrival wave. These technologies are not
available to inexpensive positioning infrastructures due to the need for
antenna arrays or time synchronization [31].

– Fingerprinting methods assume that, for a given indoor environment,
a signal mapping exists and that such map can be reconstructed mea-
suring the RSSI signal at discrete locations of the mapped area. In
the case of Wi-Fi fingerprinting, its main advantage relies on the fact
that there already is an existing Wi-Fi infrastructure in the majority of
urban areas. Therefore, the location of the user can be obtained without
deploying any additional equipment. Obstacles, reflections, multi-path
interference, environmental changes, or device orientation are factors
that affect the signal propagation [74] and can degrade the performance
of IPS based on Wi-Fi fingerprinting.



Chapter 4 107

Mapping fingerprinting assumes that an RSSI map exists, and it is con-
structed by measuring the RSSI at some locations of interest. The radio
map, or fingerprinting data set, is composed of a set of collected fingerprints
and the associated positions where the measurements were taken and may
contain some additional variables, such as the type of device used or a
timestamp of the observation, along with any other useful data. This stage in
which the data is acquired to construct the radio map is known as training,
off-line, or survey phase. During operation, once the radio map is completed,
the IPS will use this map as a database for location purposes [66]. This
stage is known as the online phase (see Fig. 4.1).

Determining the location of a receiver device at room level based on the
RSSI mapping can be seen as a classification problem, where the classes
are the mapped rooms and the features are the RSSI signals. However,
there are some issues that make it difficult to achieve good classification
performance in IPS. The main problems are caused by the heterogeneity of
devices and RSSI variability in space and time due to environment chang-
ing conditions. Regarding the former, since RSSI is a not standardized
indication of power level being received by a wireless device, any device
manufacturer may implement its measuring in a different way. Therefore,
RSSI value can vary depending on the hardware, software driver libraries,
operating system or software monitoring implementation. With respect to
the latter, RSSI is sensitive to dynamic environmental conditions such as
channel noise, interference, reflection, and attenuation. This can degrade the
performance of the IPS when circumstances change from the offline to the
online phase. There have been some proposals to tackle different aspects
of the heterogeneity problems. For example, in [179] authors find that the
relation in the order of RSS values from different APs at a fixed location is
more stable than the values themselves, and propose the use of an algorithm
that uses this relation to construct a more stable fingerprint. Other works [28]
propose hybrid systems based on the use of pyroelectric infrared sensors to
process sets of zone-based fingerprints with the goal of excluding outliers
due to device diversity or shadowing effects. Other authors [11] disregard
the traditional approach for fingerprinting and propose a system that exploits
the WiFi access points coverage area uniqueness and the coverage area
overlap to calculate the user’s current position while mitigating the impact of



108 Background

using heterogeneous devices.

Furthermore, collecting and maintaining a radio fingerprint database is a
high cost and time-consuming task. This cost can be reduced considerably
in household environments when room level positioning is enough to provide
most AAL services. In those cases, the training stage has to be performed
at least once in each room. In a typical house with 6 rooms, this process can
take 10-20 minutes.

The ubiquity of smart-phones and smart-watches, and the availability of
different wireless interfaces, such as Wi-Fi, 3G, and Bluetooth, make them
an attractive platform for indoor monitoring. Smart home-based behavioral
data have already been found to be useful in assisting older adults to live
independently and to monitor health state and the onset and progress of age-
related diseases and disorders such as dementia and Alzheimer’s disease
[7]. Psychological health in older adults (loneliness, depression, or emotional
states) has been assessed by means of such data too [13]. Nevertheless,
the level of technology readiness for home health monitoring technologies is
still low [88].

When choosing a particular device to implement an IPS in AAL, one of the
most important factors to consider is the fact that it has to be as unobtrusive
as possible and do not modify, disturb, limit or interfere in the user’s daily
activities or lifestyle. Most Wi-Fi fingerprinting location systems are based on
the use of a smart-phone. Nevertheless, to track the user location implies the
device to be permanently attached to the user, which may not be applicable
in home daily living. For instance, forgetting the device on the top of the
bedside table would point the IPS to assume that the user is still in bed.

Smart-watches can be seen as an extension of a smart-phone which looks
like a common watch. A smart-watch is always attached to the user, so it is
less likely to be forgotten on top of the bedside table than a smart-phone. In
addition, it is a non-obtrusive, relatively cheap, and easy to use tool, which
can also provide direct communication between the user and caregivers,
nurses, or general practitioners.

As most smart-phones do, smart-watches also embody several sensors such
as accelerometer, gyroscope, ambient light intensity, compass, and so on.
On the connectivity layer, most of them also embody Bluetooth, NFC, and Wi-



Chapter 4 109

Fi communications, which allows the use of Wi-Fi fingerprinting technology
as a suitable positioning candidate to be deployed in such devices. Moreover,
most of these devices also include a GPS chip. This sensor can be used
along with an IPS to provide the location of the user both outdoors and
indoors.

4.3 System overview

The Indoor Positioning System designed to perform these experiments is part
of the research project ’Senior Monitoring’ [100], which is aimed to provide
solutions for monitoring elderly people behavior and to detect short-term
issues (falls) as well as long-term issues (cognitive decay). The IPS consists
of a smart-watch, which is worn by the user who is being monitored, and a
paired smart-phone, which is used to configure and control the smart-watch
behavior and to communicate with a central cloud server (see Fig. 4.2). The
server stores the sensory data gathered through the smart-watch and offers
assistance to provide decision support services by performing analysis tasks
such as indoor positioning, activity recognition, or anomaly detection.

4.3.1 Hardware

The IPS described in this paper requires the use of a smart-watch attached
to the user’s wrist and a smart-phone that communicates with the former
through a user-friendly application in the following way:

– Smart-watch. The wearable device used is the model SmartWatch 3,
manufactured by Sony. This device runs Android Wear as its operating
system and embodies a Wi-Fi chip along with GPS, accelerometer, com-
pass, gyroscope, and ambient light sensors. Connectivity is supported
through Wi-Fi, NFC, and Bluetooth. The resolution of its 1.8" screen
is 320x320 pixels. This device runs an application that can be set up
to continuously scan for any nearby Wireless Access Points (WAP)
signal, as well as to record readings from some other sensors. This
application is controlled via a paired Android smart-phone that runs its
corresponding version of the application.



110 System overview

Figure 4.2: Senior monitoring IPS overview. The smart-watch sends sensors data
to the smart-phone. An application installed in the smart-phone is the interface
through witch the user or the caregiver configures the smart-watch. The smart-
phone sends the data to a cloud server. This server performs data analysis and
can communicate with the user through notifications.
(Icons made by Freepik from www.flaticon.com)



Chapter 4 111

– Smart-phone. The smart-watch is paired to a smart-phone that controls
its behavior. The smart-phone is used to configure some sensor options
such as scan intervals, number of consecutive scans, sensor activation,
etc. Both devices communicate through Bluetooth. All the smart-watch
readings are sent to a central server through the smart-phone. In case
the devices are not in range, the smart-watch buffers the data to be sent
when a network connection becomes available.

4.3.2 Software

The Android application that runs in the smart-watch is in charge of collecting
the sensor data. The configuration and behavior of this application are
controlled by means of its reciprocal application installed in the paired smart-
phone. Figure 4.3 shows the main screen of the smart-phone application.
This version of the software is used for research purposes, so it shows some
information relevant only to this purpose, along with general information that
is useful for end-users. The smart-phone is the interface through which the
elderly user can perform tasks such as checking the smart-watch status,
viewing his/her level of physical activity, observing the readings and status of
active sensors or responding to notifications delivered by his/her caregivers,
health professionals, psychologists or automatic healthcare services provided
by the analysis system.

The smart-phone sends the sensory data to a cloud server using the MQTT
protocol. The server stores the data for posterior analysis using Elasticsearch
as a NoSQL database. The data provided through user interaction, such as
login data or interaction through notifications, is sent to a REST cloud server
and stored in the same database.

4.3.3 Sensors

The goal of the structure described so far is to collect meaningful sensory
data to build systems able to provide reliable AAL services to its users. To
this end, the software previously outlined has been designed to make use of
the following sensors:



112 System overview

Figure 4.3: The application main screen shows detailed information about the
smart-watch status, the levels of physical activity of the user in the previous hour,
and other useful information from other active sensor such as Wi-Fi or step counter.



Chapter 4 113

The goal of the structure described so far is to collect meaningful sensory
data to build systems able to provide reliable AAL services to its users. To
this end, the software previously outlined has been designed to make use of
the following sensors:

– Wi-Fi. This sensor constitutes the base of the positioning system. The
smart-watch performs a given number of consecutive Wi-Fi scans every
minute. The default number of scans is 5, but this setting can be
modified through the smart-phone app. The procedure is described as
follows:

1. The app sends a startScan command to the Wi-Fi module to scan
for nearby AP signals.

2. The Wi-Fi module performs a scan and stores its results in the
cache. A notification is sent to the operating system.

3. The operating system notifies the app when a scan is completed.
The app then sends a getScanResults command to request the
scanning results stored in the cache.

When a scan is performed, the Wi-Fi module updates some data in the
cache while keeping some intact. Some WAPs may be present in the
scan results although they have not been detected in the most recent
scan. The details of the cache updating algorithm are unknown, but out-
dated data may persist during some scans. Moreover, in highly crowded
WAP environments, channel interference is very likely. This means that
some WAP signals, especially those whose RSSI is low, may appear
and disappear stochastically. Other circumstances such as heating, ven-
tilation, etc. have their own impact on the radio signals. Because of the
aforementioned conditions, signals collected from incorrect locations at
incorrect times are likely to happen, introducing errors in data analysis.
To minimize the impact of this behavior and lessen stochasticity, the
application completes a default number of 5 consecutive scans, each
one taking approximately one second to complete. For the smartwatch
model used in the experiments, these settings allowed for around 15
hours of battery duration, long enough to collect data during day time
and recharge the device during the night.



114 System overview

– Significant Motion Sensor. The user physical activity can be de-
termined with the use of inertial sensors such as accelerometer and
gyroscope. Both sensors are capable of measuring human motion and
estimate body position, allowing to determine the physical activity the
user is performing, such as walk, run, sit, etc [77]. The main drawback
of the use of these sensors in a smart-watch is its energy cost. Contin-
uously monitoring inertial readings keeps the system from going into
low power/sleep mode and drastically reduces the battery duration to
less than a whole day, which is a minimum requirement for monitoring
applications.

An alternative is the use of the Significant Motion Sensor (SMS), a
virtual sensor that uses the physical accelerometer, but only triggers
when it detects a motion that might lead to a change in the user’s
location. Thus, though this sensor does not allow to determine the
activity the user is performing, it provides a way to detect a possible
change in his/her location. Inversely, if the SMS has not been triggered
during an interval of time, it may be assumed that the user has not
changed its location during that period.

– Step counter. This sensor detects the number of steps taken by the
user since the last time the sensor was activated. The application
automatically resets the counter every day at midnight. Similarly to the
SMS, the step counter could help to detect intervals during which the
user is not walking.

– Activity recognition. In order to automatically monitor the user’s ac-
tivity, at least one inertial sensor, preferably the accelerometer, has to
be continuously monitored and its data analyzed in search of patterns
that characterize the activities of interest. This would cause a consid-
erable battery drain, seriously compromising the device’s usefulness.
To remedy this situation, the Android API allows registering for activity
recognition updates. To keep the power usage to a minimum, the ac-
tivity detection is done by periodically waking up the smart-watch and
reading short bursts of motion sensor data. It can detect if the user is
currently on foot, in a vehicle, on a bicycle or still, but the accuracy of
the prediction depends on the update interval. Larger interval values
will result in fewer activity detections, while smaller values will result in



Chapter 4 115

more frequent activity detections, but will consume more power. Each
detection result contains a list of activities sorted by a probability that
indicates how likely that activity is.

To prevent excessive battery use, the activity reporting service may stop
when the device is motionless for an extended period of time. Once the
device moves again, which is detected through the SMS, the service
will resume.

– Magnetic field. Geomagnetic fingerprinting (GF) is a technique that
maps disturbances of the Earth’s magnetic field caused by the metal
construction of buildings and uses this data to achieve indoor localization
through pattern matching [161].

The 3D magnetometer of the smart-watch measures the magnetic field
in its coordinate system. As the smart-watch may be oriented arbitrarily
in the user’s wrist, the measurements have to be transformed into the
coordinate system of the indoor plan, which can be done with the aid
of inertial sensors such as the accelerometer and the gyroscope. An
alternative to this transformation is to only use the module of the signals,
thus eliminating the need for other sensor reading but compromising
the quality of the localization.

Geomagnetic fingerprinting can be integrated with some other position-
ing technology in a sensor fusion system to improve localization. For
instance, Wi-Fi fingerprinting can be used to determine the location at
room level, and GF to estimate the most likely position within the room.

The smart-watch scans the magnetic field continuously and sends the
collected data to the server every minute.

4.4 Data

When the system is deployed in a home, users manually create the radio
map while wearing the smart-watch and following the indications of the
smart-phone application. The users first select a set of rooms and then
the software guides them to collect training data in certain points of the
selected rooms, such as the center or any commonly used location. When
this process finishes, the collected training data is sent to the server. During



116 Data exploration

Table 4.1: Data distribution for each data set
Data set WAPs Instances Room 1 Room 2 Room 3 Room 4 Room 5 Room 6
user1 Train

45
4900 800 (16.33%) 800 (16.33%) 800 (16.33%) 900 (18.35%) 800 (16.33%) 800 (16.33%)

user1 Test 29227 3909 (13.37%) 8930 (30.55%) 1214 (4.16%) 1010 (3.46%) 1870 (6.40%) 12294 (42.06%)
user2 Train

115
3600 800 (22.22%) 800 (22.22%) 500 (13.89%) 600 (16.67%) 900 (25.00%) -

user2 Test 36718 31700 (86.33%) 778 (2.12%) 2790 (7.60%) 0 (0.00%) 1450 (3.95%) -
user3 Train

93
3350 750 (22.39%) 1000 (29.84%) 500 (14.93%) 500 (14.93%) 600 (17.91%) -

user3 Test 74731 27444 (36.72%) 32065 (42.91%) 5779 (7.73%) 3488 (4.67%) 5955 (7.97%) -
user4 Train

36
2600 600 (23.08%) 600 (23.08%) 400 (15.38%) 600 (23.08%) 400 (15.38%) -

user4 Test 8322 5134 (61.69%) 328 (3.94%) 1125 (13.52%) 610 (7.33%) 1125 (13.52%) -

the system’s normal operation, the data acquired by the device sensors are
sent every minute to the paired smartphone, which in turn dispatches it to
the server to be stored and analyzed.

The data used to perform these experiments were collected by four users,
two males and two females, at their homes for two months. During this
period, the users manually reported many intervals of time at which they
where in a particular room performing activities of their daily living. This
labeled information constitutes the test data used to assess the accuracy of
the predictions. Table 4.1 shows some of the characteristics of each data set,
such as the number of data points for each room, the total number of access
points detected, or the number of rooms that were selected by each user.

4.5 Data exploration

Since data has been labeled at room level and given that usually rooms are
separated by walls that attenuate the perceived intensity of the WiFi signal,
the feature space of the data should reflect this, that is, we should be able
to find a way to separate the RSSI data into a number of clusters equal
to the number of labels. Each one of these clusters is formed by signals
that have high similarity among them but are dissimilar to signals in other
clusters. Therefore, we can have a measure of the predictive quality of the
data by finding these clusters and comparing them to the actual labels. The
more similar the clusters are to the labels, the more feasible it will be for a
machine-learning algorithm to find these discriminative patterns between
classes and achieve a good classification accuracy.

The well-known k-means clustering algorithm works by grouping data into a
given number of clusters by calculating the Euclidean distance among data



Chapter 4 117

instances and assigning each observation to the cluster with the nearest
mean. The algorithm iteratively minimizes within-cluster squared Euclidean
distances until the solution converges, that is, there are no changes from
the previous iteration, or until the maximum number of iterations have been
reached.

In order to find if the training data is well segmented and to know if we can
expect good classification accuracy, we apply the k-means algorithm to the
data from each user and then compare the obtained clusters with the actual
labels. Figure 4.4 shows four heatmaps with the results, with darker colors
representing higher room-cluster correlation and values denoting percentage.
A perfect correlation would show 100% on each diagonal value, this is, each
cluster being composed only by data from the correct label (room).

Figure 4.4: Confusion matrices for users’ clustered data. The vertical axis repre-
sents true labels, the horizontal axis represents predicted labels. (a) user 1, (b)
user 2, (c) user 3, (d) user 4

Since users usually did not spend the same time in all rooms, the train and
test data set may be imbalanced. Therefore, we adopt the f1 metric as the
metric for classification performance, since it is more resilient than accuracy
on imbalanced data sets:



118 Data exploration

Table 4.2: Accuracy and f1 metrics for k-means clustering of training data
user accuracy f1
user1 0.4769 0.4950
user2 0.8801 0.8792
user3 0.7674 0.7740
user4 0.4220 0.4291

f1 =
2 · precision · recall
precision+ recall

When more than two classes are considered, we report the weighted average
of the individual f1-scores of all classes as the evaluation metric for each
model:

f̂1 =

∑c
i=1wif

i
1∑c

i=1wi

where c is the number of classes and wi is the weight (the number of in-
stances) of the ith class.

The calculated metrics for each user, shown in table 4.2, can be seen as
a predictor of the quality of data. Higher values will indicate well defined
boundaries between classes, revealing potentially useful hidden predictive
information that will make it easier for a classifier to assign the correct room
to a new instance of data. From these results, it is clear that the k-means
clustering algorithm was able to find a better partitioning of the data space
for users 2 and 3 than for users 1 and 4. Therefore, we may expect better
classification results for these users.

Users 2 and 3 are also users with a higher number of WiFi access points
detected, which could partially explain the results obtained. Since the sen-
sor used to record the data is the same for all users and leaving aside
factors such as each particular house layout, which are unknown, we can
assume that the number of WAPs clearly influences the ability of the k-means
algorithm to differentiate between classes.

A visual representation can make it easier to detect meaningful patterns and
outliers in groups of data. To be able to find a structure in data in a way that



Chapter 4 119

can be visualized we need to reduce its dimensionality while trying to keep
most of the knowledge. There are many techniques available to automatically
reduce the complexity of high dimensional data. Some of these techniques
are:

– Principal Components Analysis (PCA) is an unsupervised technique
that finds the components that hold most of the variance (information)
of the data. Each component has both direction and magnitude. The
direction represents across which principal axes the data has most
variance, and the magnitude expresses the amount of variance that is
captured of the data when projected onto that axis. Each subsequent
principal component is orthogonal to the previous and has less variance.
The final result is a set of uncorrelated principal components.

– Linear Discriminant Analysis (LDA) identifies a suitable low-dimensional
representation of original data by finding not only the component axes
that maximize the variance of the data (PCA) but also the axes that
maximize the separation between multiple classes, thus maintaining the
class-discriminatory information. LDA is a supervised technique since it
needs label information to determine a suitable feature space in order
to distinguish between patterns that belong to different classes.

– t-Distributed Stochastic Neighbor Embedding (t-SNE) is an unsuper-
vised, non-linear technique primarily used for exploration and visualiza-
tion of high-dimensional data. It differs from PCA by preserving only
small pairwise distances or local similarities whereas PCA preserves
large pairwise distances to maximize variance. The algorithm calculates
a similarity measure between pairs of instances in the high dimensional
space and in the low dimensional space and tries to minimize the dif-
ference between these two similarity measures using gradient descent
and the Kullback-Liebler divergence (KL) as the cost function.

Figure 4.5 shows the visualization obtained for each user and algorithm.
PCA does not seem to reveal any clear pattern for any user. For users 2
and 3 there are some rooms that seem to be well segmented, but there’s still
some confusion with the remaining groups. With respect to LDA, it has been
able to find a good separation between classes for dataset 1, and specially



120 Data exploration

for 2 and 3. For user 4 the representation found looks more cluttered. And
finally, the t-SNE algorithm shows some structure for datasets 2 and 3, where
we can visualize a clear separation between some classes. On the other
hand, the plots corresponding to data from users 1 and 4 looks more chaotic.

Figure 4.5: Visualization of data using feature reduction algorithms (PCA, LDA
and t-SNE)



Chapter 4 121

In order to get a numeric evaluation of these figures, we use the Silhouette
metric [134]. The silhouette analysis can be used to study the separation
distance between the resulting clusters, as a measure of the quality of
clustering achieved. This value measures the space between clusters with a
value in the range -1 to 1. If cluster cohesion is good and cluster separation
is good, the value will be close to 1. On the other hand, if samples have
been assigned to the wrong clusters, the score will be near to -1. Figure 4.6
shows the values obtained for this metric for each one of the algorithms used
for visualization.

Figure 4.6: Silhouette metric for PCA, LDA and t-SNE algorithms. Dashed line
shows the average result for each user.

The conclusions that arise from these visualization and silhouette plots are
consistent with the results obtained with the k-means clustering. We can ex-
pect machine learning classifiers to have more difficulty finding discriminative
patterns for those data sets on which clustering and visualization techniques
have not been able to find significant differentiation among groups of in-
stances belonging to distinct rooms. In particular, silhouette values predict a
better classification accuracy for users 2 and 3 with respect to users 1 and 4,
for which the algorithm could not find clear boundaries between clusters.

4.6 Experiments description

The goal of the experiments is to evaluate the influence of a set of param-
eters in the accuracy of the positioning system, as well as to assess the



122 Experiments description

impact of considering the lack of motion as a constraint for its predictions.
Each experiment consists on the evaluation of the classification metric for a
particular data set and a given set of parameter values. The parameters that
will determine each experiment are the following:

– Classifier. A total of four classification algorithms have been tested:
Decision Tree (DT), k-Nearest Neighbors (kNN), Neural Net (NN) and
Random Forest (RF). The best parameters for each classifier where
determined through a series of tests before the experiments:

* DT: max. depth = 20

* kNN: k = 3, distance = euclidean

* NN: 5 hidden layers, units = 50, act = RELU

* RF: max. depth = 20, max nodes = 50

– Scaling. The RSSI values from the Wi-Fi fingerprints are usually in
the range (-100, -30). One common strategy [157] to ease the work
of classification algorithms and increase their performance is to scale
those values into the range (0, 1), where 0 would mean that the WAP
is not present in the fingerprint, and 1 would represent the maximum
value for a RSSI (see equation 4.1). We compare the performance of
this strategy against feeding the classifiers without pre-processing the
data.

RSSIscaled =
RSSI + 100

70
(4.1)

– Reducing stochasticity As stated in Section 4.3, the IPS described
in this work performs a number of consecutive scans to minimize the
impact of uncertainty in the RSSI values of Wi-Fi fingerprints. This scan
instances, five by default, are passed to the classifiers and the predic-
tions are determined by a majority vote. We assess the performance
impact of this strategy against classifying only the first scan instance.

– Minimum Interval without Significant Motion (MISM) To improve
indoor localization accuracy, specially in room level applications, motion
sensors can play an important role, since the detection of steps or any
significant motion could be used to discover transitions from one room to
another. If a body worn sensor does not register a significant motion in



Chapter 4 123

a given period of time, it can be supposed that the user has not changed
his/her location. In this scenario, all fingerprints received during this
interval must correspond to the same room. Knowing this, the most
reasonably procedure may seem to take the locations estimated by the
IPS for that period and assume that all occurrences correspond to the
location that occurs more frequently.

As an example, let’s consider the user gets into the living room and sits
on the sofa. Since the user was moving, we have a signal from the
SMS. Now she stays on the sofa for 30 minutes and then goes to the
bathroom. When she gets up from the sofa, we receive another signal
from the SMS. We know that she was in the same room for 30 minutes,
but we do not know which room it is. During this time, the WiFi sensor
has been sending signals every minute, so we have 30 fingerprints.
Let’s suppose now that inferring the position of the user from the WiFi
signals gives us these results: 22 in the living room, 6 in the kitchen, 2
in the bathroom. It is safe to assume, given the fact that we know that
she did not move, that she was in the living room?

The MISM parameter represents the minimum period to consider when
recognizing intervals at which the user has not made a significant
movement, and therefore, is supposed to be in the same room. We
considered 20 different intervals, between 10 and 200, in steps of 10
minutes.

– Prediction Threshold (PT) During the interval of time in which the user
stays in a particular room, the IPS generates a series of predictions,
specifically, one per minute. Due to the particularities of Wi-Fi signals,
environment changes or user orientation, the predictions produced
by the classification algorithm for this period may not be uniform and
contain different predicted rooms. If we assume that the user has
not changed his/her position, the best policy to determine the actual
position may be to select the most commonly occurring prediction. In
this experiment we evaluate the performance gain of following this
strategy, in relation to the ratio of the most occurring prediction over the
total number of predictions. To this end, we considered 50 values for
this ratio, in the range (0.50, 1.00) with a step value of 0.01. A ratio
value of 0.50 would correspond to a case where the most occurring



124 Results

prediction corresponds to the 50% of the IPS predictions. A ratio of
1.00 would correspond to a case where all predictions are equal. In this
case, there would not be any improvement when considering motion
sensors to amend the IPS predictions.

This configuration gives a total of 16000 experiment for each data set. This
figure is broken down as follows:

4 classifiers× 2 scaling × 2 maj.vote× 20 MISM × 50 PT = 16000

To compare results to determine the best parameter values we used the
Wilcoxon Signed-Rank Test [167], a paired difference test to evaluate the
mean ranks differences that we applied to the f1 metric.

4.7 Results

Figure 4.7 shows a boxplot presenting the results obtained for each classifier
on the four data sets. The Random Forest algorithm seems to perform better
in all scenarios. To detect significant differences between the performance
of the four algorithms and determine the most reliable option, we apply
Wilcoxon signed rank test as a statistical method for testing the differences
among the outcomes. The results of the test, comparing RF algorithm versus
each one of the remaining classification algorithms for each data set, are
shown in Table 4.3. In all cases, the Null Hypothesis (H0) of equivalence
of means can be rejected (p-value < 0.05). Therefore, the experimental
results show an improved performance in room detection when using the RF
algorithm.

These results also endorse the results obtained in Section 4.5. The Random
Forest classifier obtains better results in the test data for those data sets
that showed a significant structure or pattern when using a clustering or
visualization technique. In particular, the best results are obtained for users
2 and 3, that show an average f1 of 0.88 and 0.89, respectively. On the other
hand, results for users 1 and 4, with an average f1 of 0.83 and 0.76, also
confirm the intuition that the correlation between clustering groups and rooms
in training data is a good predictor for the performance of the positioning
system on test data.



Chapter 4 125

Figure 4.7: Boxplot of the f1 metric for each classifier algorithm and each data set.

Figure 4.8 displays a boxplot comparing the classification effectiveness of
scaled data versus raw data. Table 4.4 shows the results of the Wilcoxon
signed rank test used to compare the results. The outcome shows that for all
the data sets the Null Hypothesis (H0) can be rejected, showing that scaling
the data increments the performance of the algorithms.

Figure 4.8: Boxplot of the f1 metric for scaled and raw data.

With regards to diminishing the influence of the Wi-Fi signal stochasticity,
figure 4.9 displays a boxplot evaluating the use of the majority vote strategy
applied to the consecutive samples acquired by the Wi-Fi sensors during
each scan process. As is shown in Table 4.5, for all data sets the Null
Hypothesis is rejected, indicating that a majority vote strategy significantly
increments the accuracy of the positioning algorithm.



126 Results

Table 4.3: Results of Wilcoxon signed rank test for algorithm comparison between
RF and each other ML algorithm

Data set Algorithm p-value H0 rejection
user1 DT 3.2096× 10−165 Yes
user1 kNN 3.2359× 10−165 Yes
user1 NN 4.6380× 10−98 Yes
user2 DT 2.3567× 10−167 Yes
user2 kNN 2.0149× 10−165 Yes
user2 NN 1.5510× 10−163 Yes
user3 DT 3.3173× 10−165 Yes
user3 kNN 3.3194× 10−165 Yes
user3 NN 3.3259× 10−165 Yes
user4 DT 0.035 Yes
user4 kNN 2.1312× 10−165 Yes
user4 NN 4.9099× 10−131 Yes

Table 4.4: Results of Wilcoxon signed rank test for scaling strategy
Data set p-value H0 rejection
user1 0 Yes
user2 1.6835× 10−138 Yes
user3 0 Yes
user4 0 Yes



Chapter 4 127

Table 4.5: Results of Wilcoxon signed rank test for majority vote strategy
Data set p-value H0 rejection
user1 2.6553× 10−165 Yes
user2 1.1363× 10−166 Yes
user3 3.2828× 10−165 Yes
user4 2.6529× 10−164 Yes

Figure 4.9: Boxplot of the f1 metric for majority vote strategy versus considering
all Wi-Fi scans.

The previous tests helped to determine the best positioning algorithm and
strategies to improve the positioning accuracy. In order to assess the impact
of considering the SMS data to further improve the performance of the
IPS, we used scaling and majority vote strategies, and RF as the selected
classifier. Figure 4.10 shows the average performance increase obtained
depending on the value for the PT parameter, for all possible values of MISM.



128 Results

Figure 4.10: f1 average increase versus prediction threshold (PT) for all values of
MISM. Each line represents a different data set and the confidence interval of the
result. The thick line marks the average value and its confidence interval.

The averaged results show an f1 increase of around 3% in the range of
0.50 to 0.8. Therefore, results suggest that it is safe to assume the most
predicted class as the outcome for the positioning system for a given period
of time with no motion detected. Moreover, the performance increase is
mostly independent of the MISM parameter.

The results for each particular data set show more variability in the range of
PT between 0.5 and 0.7, where the accuracy cost of making an incorrect
prediction is greater. This variability may be caused by the different house
distribution of rooms on each data set. Spaces like open plan kitchen/din-
ing rooms may need additional information, such as the use of Bluetooth
beacons or magnetic field sensors, to help the IPS discriminate areas in
the same open space. Nevertheless, the maximum cost in the accuracy of
incorrect predictions is around 1%, and it occurs only for PT values lower
than 0.65. Hence, for PT values greater than 0.65, there is a general perfor-
mance increase in positioning system when using the SMS as an indicator
of room/position changes.

In the process of continuously improving the performance of the positioning
system, and with the goal of assessing the validity of these findings, we
scheduled a new round of data collection four months after the data used



Chapter 4 129

for the previous experiments were recorded. These new data sets were
recorded by seven elder users, two females and five males, who performed
the training process while following the indications showed by the application.
In the same way as with the previous data set, the process was conducted
at their homes, where they used the positioning system during a period that
varies between one and two months. Following the conclusions arisen from
the previous experiments, we used these new data to validate the method of
using the SMS as a landmark to detect possible room changes. The results
are shown in Figure 4.11.

Figure 4.11: Results for stage 2; f1 average increase versus prediction threshold
(PT) for all values of MISM. Each line represents a different data set and the
confidence interval of the result. The thick line marks the average value and its
confidence interval.

The results for the second stage show a similar pattern to the results shown
earlier, but with increased variability in the results in the range of PT between
0.5 and 0.7. In this interval, there is not a general gain in performance,
since the majority of the users report a decrease in the accuracy. This
behavior was already detected for two data sets in the first stage, and now
it happens for four out of seven users. As has been discussed earlier, this
drop of performance in this interval of PT values can be expected, since it
is risky assuming that the correct room can be predicted with only 50-65%
of occurrences in a given period of time. For PT values greater than 0.65,



130 Conclusions and future work

the results validate the proposed approach, since there is a general gain in
performance for all users.

4.8 Conclusions and future work

The experiments presented in this paper show an improved accuracy in
room detection when using strategies such as data scaling and the use
of consecutive Wi-Fi scanning. The results also demonstrate that the use
of a significant motion sensor along with the Wi-Fi fingerprints can help to
significantly increase the performance of indoor positioning systems.

As future work, more data from a variety of new users is being collected and
will be used to validate the conclusions of this work, while providing more
data to test new strategies such as the of the step counter and the activity
recognition API to improve positioning accuracy and the use of the magnetic
field readings to assess the possibility of determining the position of the user
within the room.

4.9 Acknowledgements

This work has been partially funded by the Spanish Ministry of Science,
Innovation and Universities through the "Retos Investigación" programme
(RTI2018-095168-B-C53) and by the Universitat Jaume I “Pla de promo-
ció de la investigació 2017” programme (UJI-B2017-45). Oscar Belmonte-
Fernández had a grant from the Spanish Ministry of Science, Innovation and
Universities (PRX18/00123) for developing part of this work.

A preliminary version of this work, entitled "Improving positioning accuracy
in Ambient Assisted Living environments. A multi-sensor approach." was
presented at the 15th International Conference on Intelligent Environments
(IE19). With respect to the preliminary version, we have extended and
partially rewritten all sections, and added a new section dedicated to explor-
ing data characteristics and their relationship with the performance of the
classification algorithms used in the experiments.

We also would like to thank Pilar Bayarri Iturralde for her contribution to the
organization of the experiments.



Chapter 5

Chapter 5

Discussion and Conclusions

5.1 Discussion and Conclussions

The main progress in indoor location systems has been made during the
last years. Therefore, both research and commercial products in this area
are new. Researchers and industry are currently involved in the investiga-
tion, development, and improvement of solid indoor positioning systems.
In chapters 1 and 2 we presented a set of tools aimed to propose a base
framework for fingerprinting-based indoor positioning researchers to learn
basic algorithms, contribute with new data sets, share methods and data
and build indoor positioning systems based on a robust open-source library.
These resources have been designed to be easily extensible, to allow fu-
ture versions to implement new algorithms and tools to provide a growing
reference for researchers.

The R language is a reliable environment for machine learning and data
analysis related research. As its popularity is constantly growing, many
researchers related to indoor positioning have explicitly selected R as the
framework on which to develop their experiments. Even though Python and
Matlab have traditionally been the languages of choice for many researchers
in the indoor positioning area, the R language is continuously growing and is
maintained by an active community. The number of packages available in the
CRAN repository has been growing exponentially since its creation (see Fig-
ure 5.1), providing a rich ecosystem of good-quality packages that leverage



132 Discussion and Conclussions

Figure 5.1: Number of packages in the CRAN repository by year.

the R language potential to become a standard programming platform for
researchers of all fields. Although there are some open source applications
and frameworks to build indoor positioning services, there is not any public
framework or package that provides functions and algorithms to manipulate
fingerprinting data sets and experiment with positioning algorithms.

The R package ipft is an open-source project to which any interested
researcher can contribute. It aims to make scientific research in the field
accessible to all levels, from amateurs or professionals. It has been designed
as a collection of algorithms and utility functions to create models, make
estimations, analyze and manipulate RSSI fingerprint data sets for indoor
positioning. Given the abundance of potential applications for indoor posi-
tioning, the package may have broad relevance for researchers in fields such
as pervasive computing, the Internet of Things (IoT), or healthcare, among
many others.

Future updates of the package may be focused on the implementation of
deep learning-based algorithms for indoor positioning. Many deep learning
techniques can be exploited to try to obtain better positioning performance.
Recurrent neural networks could be used to learn not only spatial but also
temporal patterns of the received signals. Deep autoencoders can be im-



Chapter 5 133

plemented as a way to encode fingerprints and reduce their dimensionality
to a few set of significant features. Variational and generative extensions of
the autoencoder architecture can be of use to better model the stochastic
nature of RSSI data. These models can also be applied to generate new
training data for deep learning-based classifiers, increasing the robustness
of positioning systems, and trying to address problems caused by the hetero-
geneity of devices and the various ways on which different devices interpret
RSSI signals.

To lower entry barriers and accelerate progress in research, as important as
the access to open-source frameworks is the availability of good quality data.
Acquiring indoor positioning data is a costly process that demands many
resources such as the availability of diverse devices or people to record
the data. Furthermore, open access to benchmark data sets is important
as a way for researchers to objectively measure how well they are doing
on a particular problem. The IndoorLoc Platform has been conceived as a
public hub for comparing and evaluating indoor positioning algorithms and
as an intent to assemble a public repository for all types of indoor positioning-
related data sets. The proposed web platform can be used to download
data sets, learn the basics of indoor positioning interacting with a set of
well-known algorithms and studying their source code, test the methods, and
even upload results of the user’s methods to check their accuracy against the
results provided by other methods already included in the ranking, among
other functionalities. As well as with the ipft package, the philosophy
behind this platform is that anybody, from researchers to industry, should
have access, and be able to contribute, to all the building blocks of indoor
positioning technologies, such as algorithms, software, and data, to study it,
modify it and redistribute it to others.

The performance of the platform was tested during the 2017 Fingerprinting-
based Indoor Positioning tutorial held in the School of Engineering of the
University of Alcalá. As an activity of the course, an indoor localization
competition took place using a data set already included in the platform. A
total of 15 teams participated in the contest either by uploading their results
or using the Dashboard section of the platform to test different parameter
configurations. In general, participants were able to easily use the platform,
mainly the Data set download, Dashboard, and Ranking sections. Almost no



134 Discussion and Conclussions

queries to the course introduction were produced, showing the effectiveness
of the user-centered design applied to the platform.

The second part of this thesis has been dedicated to the study and imple-
mentation of some building blocks to improve the performance of indoor
positioning systems. As has been stated in the introduction, accurately iden-
tifying the activity a user is performing can help indoor positioning systems
to increase their accuracy. For example, knowing that a person is climbing
up/down the stairs, or going up/down in an elevator, would limit the range of
possible locations in a known environment. Thus, certain activities can be
used as landmarks for user location, since they can only be performed at
certain locations. Besides using this information as a way to determine the
user’s position, it can also be exploited as a way to improve the robustness
of the positioning system over time. If by identifying an activity the system
is reasonably sure of the user’s position, it can use this information to col-
lect RSSI data at that location and automatically increment the size of the
radio map. Being able to detect activities with high accuracy can lead to a
collaborative building and maintenance of fingerprinting radio maps.

Human Activity Recognition and Deep Learning are both hot topics, and
as such, several works have used DL algorithms to build recognition ar-
chitectures with state-of-the-art performance. Chapter 3 provides a broad
assessment of the performance of five representative DL architectures for
human activity recognition. To improve the representativity of the study, the
algorithms have been evaluated on a great quantity of heterogeneous data,
using ten publicly available data sets with different characteristics. Even
though there are several papers assessing the performance of specific DL
algorithms for this task, this is the first study to include a comparison of the
performance of the five most prominent architectures, and in doing so on
such an extensive amount of data. The scope of the comparison is the ability
of different algorithms to capture patterns over the raw data, instead of using
pre-engineered features. In accordance with the principles of open science,
all the code used to perform the experiments has been published to allow
researchers to reproduce the experiments and assess the framework.

The final results obtained are not comparable in terms of accuracy with
previous works. This is not the goal of this work since many previous state-



Chapter 5 135

of-the-art papers present more complex Deep Learning approaches that
achieve very good results on their chosen data sets. The purpose of the study
is to compare results among the different models designed as representative
for different successful Deep Learning architectures. Therefore, even though
results may be artificially good given the closed world set up and the similar
distributions for training and test data, they are obtained under the same
conditions for all the assessed models. This allows for comparing the results
obtained to find out which models are better suited for the task, even though
the outcomes may not be comparable with state-of-the-art results.

One of the conclusions that arise from the work presented in chapter 3 is
that the particular architecture of convolutional neural networks enables a
pattern in the input to be recognized in any position. This type of deep
learning architecture can successfully capture the temporal dependencies in
raw sensor data structured as time series through the application of relevant
filters. Given that different people may execute an action with distinct paces
(e.g., an elder person may walk at a slower pace than a young person), this
scale deformation tolerance enables this architecture to effectively identify
the pattern that characterizes the activity regardless of its pace of execution.
Other architectures, such as RNN or DBN, do not perform consistently
better than CNN and have some disadvantages, such as their computational
complexity and higher memory needs. Thus, their performance, faster
response, and lower memory footprint make CNN the architecture of choice
for wearable and IoT devices, where restrictions both in terms of power
consumption, computational capabilities, and memory availability might play
a decisive role.

The results presented in Chapter 3 also reveal that when the amount of
data is big enough to enable deep learning algorithms to learn significative
patterns, their performance is much better than classical machine learning
algorithms such as support vector machines, k-nearest neighbors, or random
forest.

In addition to helping to recognize human activities, sensors embedded in
wearables and IoT devices can be leveraged to improve indoor positioning
systems in other ways. Especially, since embedded sensors usually have
limited computational power or battery limitations, using complex algorithms



136 Discussion and Conclussions

may be unsuitable. The experiments described in Chapter 4 demonstrate that
the use of a significant motion sensor along with the Wi-Fi fingerprints can
help to significantly increase the performance of indoor positioning systems.
The significant motion sensor has a low impact both in terms of computational
and energy requirements, which makes it a good option for wearable devices
with constant monitoring requirements, such as smart-watches or fitness
bands. Other strategies such as data scaling and the use of consecutive
Wi-Fi scanning can help as well to improve the accuracy of indoor positioning
systems.

Leaving aside the aforementioned viewpoints about performance, Chapter 4
also serves as a showcase for a real indoor positioning system infrastructure
deployment. In this case, the use case is the monitoring of older adults in
their homes. Part of the chapter is centered around explaining the technical
aspects and architecture of the deployment and the reasons behind design
decisions. For these set of experiments, deployment and training of the
positioning system was completed by experts, the researchers that designed
the system. However, since this deployment was meant as a first test
to assess the capacity and suitability of the proposed architecture, more
data from a variety of non-expert users should be collected to validate the
conclusions of this work.

Future work will be centered on testing other technologies for indoor local-
ization, such as Bluetooth Low Energy. While ease of deployment is an
important factor, using WiFi fingerprinting conditions the performance of the
system to the suitability of an infrastructure that can not be directly controlled.
Especially in the case of Ambient Assisted Living, the WiFi routers on which
the positioning system depends are out of the administration of the final
user. The quantity and position of the nearby WiFi base stations have a
significant impact on performance in such systems, introducing too much
uncertainty with respect to the expected performance of the positioning sys-
tem. A compromise solution between control of the infrastructure and ease
of deployment may be in the Bluetooth technology. Bluetooth Low Energy
beacons consume considerably less power than traditional Bluetooth, which
allows them to be considered as an alternative to WiFi access points since
they can be easily deployed inside the user’s house either using electrical
outlets or by means of attached batteries.



Appendix 137

Appendix A

Related publications

This Appendix is a summary of the related works in which I have participated
during my Ph.D. studies, that were not included in previous chapters. Section
A.1 shows a relation of papers, led by my thesis directors, that have been
published in journals indexed by the Journal Citation Report (JCR), and in
which I have contributed to a greater or lesser extent. Section A.2 presents
the posters and conference papers in which I have been involved during
this period. Finally, section A.3 resumes the work I did during my stay at
NaverLabs Europe for five months in 2019.

A.1 Journals with impact

A radiosity-based method to avoid calibration for indoor
positioning systems

Belmonte-Fernández, Óscar; Montoliu, Raúl; Torres-Sospedra, Joaquín;
Sansano-Sansano, Emilio; Chía-Aguilar, Daniel

Expert Systems with Applications, 2018, vol. 105, p. 89-101 [21]

doi: 10.1016/j.eswa.2018.03.054

jcr: Q1 (2018) 24/134 in Computer Science, Artificial Intelligence

scopus: Q1 (2018) 12/195 in Artificial Intelligence



138 Appendix

This work proposes the use of the radiosity model to describe the WiFi signal
propagation in indoor scenarios. The use of an analytical propagation model
allows generating the WiFi radio map used for fingerprinting indoor location
systems, reducing acquisition costs in terms of time and people involved in
that task. The proposed technique is based on the following hypothesis:

1. Given that WiFi radio waves are an electromagnetic signal, its propaga-
tion model can be simulated using the radiosity model.

2. A WiFi radio map can be analytically obtained from the radiosity model.

3. Walls are the most important structural elements to have into account
when calculating the radiosity map of the WiFi signal.

The radiosity-based method provides the RSSI level for each point in the
floor plan, avoiding the need to manually sampling RSSI WiFi signals at
different positions to create the radio map. Additionally, removing manual
data acquisition reduces the cost of creating WiFi maps. This might ease
the use of positioning-based Expert Systems development in big scenarios
where WiFi sampling is a high time-consuming task.

Experimental results, based on well known machine learning algorithms
commonly used in expert systems development, showed that the accuracy
of the presented method is close to the manual acquisition of data. Even
in those cases where positioning systems are already working, the results
presented in this paper show that adding new samples from the radiosity
map to real samples improves the final accuracy in almost 10

Indoor Positioning for Monitoring Older Adults at Home:
Wi-Fi and BLE Technologies in Real Scenarios

Montoliu, Raúl; Sansano-Sansano, Emilio; Gascó-Compte, Arturo; Belmonte-
Fernández, Óscar; Caballer-Miedes, Antonio

Electronics 2020, 9(5), 728 [103]

doi: 10.3390/electronics9050728

jcr: Q2 (2019) 125/266 in Engineering, Electrical & Electronic

scopus: Q3 (2019) 376/670 in Electrical and Electronic Engineering



Appendix 139

This paper presents a real case of applying an indoor localization system for
monitoring older adults in their homes. It showcases some of the problems
that arise when real non-expert users deploy an indoor localization system
and discuss some strategies to deal with such situations. This indoor local-
ization system is part of a bigger project called Senior Monitoring, which is
focused on the monitoring of older adults to study behavioral patterns as a
tool for early detection of some degenerative diseases such as Alzheimer
among others. The system may be useful for healthcare professionals, formal
and informal caregivers, and families, especially in an aging society in which
the number of older persons and people living alone is increasing.

Participants wear a smart-watch to collect samples using several sensors
included in the device. The system has been designed to allow end-users
to deploy it in their own homes easily. The performance of the positioning
system will depend on the ability of the users to perform this task correctly.
The evaluated system has been tested using two different technologies to
provide indoor localization; WiFi and Bluetooth Low Energy. The results ob-
tained suggest that the Bluetooth Low Energy-based approach is preferable
in the proposed task.

Anomaly Detection in Activities of Daily Living with Linear
Drift

Belmonte-Fernández, Óscar; Caballer-Miedes, Antonio; Chinellato, Eris;
Montoliu, Raúl; Sansano-Sansano, Emilio; García-Vidal, Rubén

Cognitive Computation 2020 [20]

doi: 10.1007/s12559-020-09740-6

jcr: Q1 (2018) 25/134 in Computer Science, Artificial Intelligence

scopus: Q1 (2019) 60/636 in Computer Science Applications

Recognition of changes in Activities of Daily Living (ADL) is a key aspect for
e-health applications and is mainly performed by applying machine learning
techniques to data provided by an in-home sensor network. In some cases,
changes in ADL can signal a change in the person’s health, either physical or



140 Appendix

cognitive. Physical deterioration can be gradual, as well as cognitive decay,
and may be difficult to detect.

This work models ADL as circular normal probability distributions and as-
sesses the validity of this approach by performing experiments on two public
datasets. In order to detect a change point in ADL, this study proposes ex-
tending the CUSUM algorithm in a way that enables the detection of a linear
trend in such activities and using the Maximum Likelihood Estimation (MLE)
algorithm to estimate the change point. Some examples of the application of
the proposed method are: detection and estimation of the onset of cognitive
or physical decline in monitored older adults, detection and estimation of a
change in ADL as a result of a change in the medication.

The validity of these schemes is assessed through a set of extensive sim-
ulations that cover two main cases: abrupt change and linear drift change.
Experimental results show the validity of the method in detecting and esti-
mating the change point in time.

A.2 Conferences

A novel methodology to estimate a measurement of the
inherent difficulty of an indoor localization radio map

Sansano-Sansano, Emilio; Montoliu, Raúl; Torres-Sospedra, Joaquín.

Published in: 2017 8th International Conference on Indoor Positioning and
Indoor Navigation (IPIN) [139]

Date of Conference: 18-21 Sept. 2017

doi: 10.1109/IPIN.2017.8115939

The variables used to measure indoor localization methods’ accuracy are
dependent on the radio map used to test them. The estimated error for a
positioning technique strongly depends on the characteristics of the scenario
where it has been tested. Variables such as the dimmensions of the scenario,
the number of available beacons or their positions, among many others, may
affect the expected error for a given data set. Thus, since the estimated error
not only depends on the method performance, but it is strongly related to



Appendix 141

the scenario attributes, a definitive conclusion on the method’s performance
cannot be obtained. This makes it hard to compare different methods’ results.

This work presents a novel methodology to obtain a measure of the inherent
difficulty of a scenario to obtain accurate localization results when testing an
indoor positioning method. The proposed indicator can be used to obtain a
difficulty measure from a fingerprinting data set. This indicator will show if
the precision obtained with a positioning method, using that data set, can
be considered a reliable measurement of the method’s performance. It
can be used to provide a measurement of how difficult it would be to get a
good position estimation using a given data set of fingerprints. Therefore, it
provides a fairer way to compare the performance of two different algorithms
evaluated in different environments, as long as the difficulty of the respective
radio maps used to test their accuracy is similar. It can also be used as a
metric to measure the impact of any modification of the radio map, as the
addition or removal of observations.

A New Methodology for Long-Term Maintenance of WiFi
Fingerprinting Radio Maps

Montoliu, Raúl; Sansano-Sansano, Emilio; Belmonte-Fernández, Óscar;
Torres-Sospedra, Joaquín.

Published in: 2018 9th International Conference on Indoor Positioning and
Indoor Navigation (IPIN) [102]

Date of Conference: 24-27 Sept. 2018

doi: 10.1109/IPIN.2018.8533825

Despite the benefits of WiFi fingerprinting techniques, one of the main
problems of this technique for indoor positioning systems is the radio map
maintenance. It is well known that the creation of the radio map is a tedious
and long-time task. Besides, if after its creation, some access points are
removed from the environment, the accuracy of the system can be dramati-
cally affected. The fingerprint used to locate the user could be composed
of values produced by a set of access points different from the one used to
create the radio map. A common approach to deal with this situation is to



142 Appendix

use just the common access points received at the two different moments in
time. This process discards the use of some useful information and therefore,
the accuracy of the IPS can be drastically reduced.

This work proposes a new methodology to deal with this problem using
regression-based imputation techniques. The main hypothesis is that there
is a relationship in the signal strength values obtained for each access point
with respect to the other existing access points in the environment. The
regression techniques can take advantage of these correlations to impute
a valid RSSI value for the removed access point. This paper presents an
extensive set of experiments comparing different imputation techniques to
demonstrate the benefits of using the proposed approach, showing that it can
reduce the localization error in almost one meter with respect to a well-known
solution.

Improving Positioning Accuracy in Ambient Assisted Liv-
ing Environments. A Multi-Sensor Approach

Sansano-Sansano, Emilio; Belmonte-Fernández, Óscar; Montoliu, Raúl;
Gascó-Compte, Arturo; Caballer-Miedes, Antonio; Bayarri-Iturralde, Pilar

Published in: 2019 15th International Conference on Intelligent Environments
(IE) [138]

Date of Conference: 24-27 June 2019

doi: 10.1109/IE.2019.00004

The primary purpose of this research is to examine the viability of leveraging
other sensors in aiding a WiFi fingerprinting-based positioning system to
provide more accurate predictions. In particular, the experiments presented
in this paper show that the use of Inertial Motion Units (IMUs), which are
present by default in smart devices such as smart-phones or smart-watches,
can increase the performance of indoor positioning systems in AAL environ-
ments. Furthermore, this paper assesses complementary strategies such as
data scaling and the use of consecutive WiFi scanning to further improve the
reliability of the indoor positioning systems’ predictions. This research shows
that a robust positioning estimation can be derived from such strategies.



Appendix 143

Moreover, this can be done without compromising important aspects such
as battery duration or unobtrusiveness. This work also explores possible
actions to reduce the influence of WiFi signal uncertainty as well as to select
the most appropriate machine learning algorithm for the positioning system.

The results obtained from the set of experiments presented in this work
show an improved accuracy in room detection when using strategies such
as data scaling and the use of consecutive WiFi scanning. The results
also demonstrate that the use of a significant motion sensor along with the
WiFi fingerprints can help to significantly increase the performance of indoor
positioning systems.

Evaluation of Crowdsourcing Wi-Fi Radio Map Creation in
a Real Scenario for AAL Applications

Belmonte-Fernández, Óscar; Gascó Compte, Arturo; Sansano-Sansano,
Emilio; Quinde, Mario; Giménez Manuel, José Ginés; Augusto Juan Carlos.

Published in: 2019 15th International Conference on Intelligent Environments
(IE) [23]

Date of Conference: 24-27 June 2019

doi: 10.1109/IE.2019.00005

Technology can be integrated into the health care of senior citizens to provide
safe, high-quality lives, improving their health and happiness, and enabling
a longer period of independent living. Indoor positioning technologies are
destined to play an important part in these applications.

One of the main drawbacks of WiFi fingerprinting methods is the temporal
cost involved in creating a radio map. Crowdsourcing strategies have been
presented as a way to minimize the cost of radio map creation. This research
presents an extensive study of the issues involved when using crowdsourcing
strategies for that purpose. The results provided by extensive experiments
performed in a real scenario by three users during two weeks show how join-
ing data gathered by different users can improve the accuracy performance
of a WiFi-based indoor location.



144 Appendix

To prevent issues related to device diversity, the same device model was
used by all users. To assess the location accuracy, the KNN, Bayes Network,
and Random Forest machine learning algorithms have been tested. The
results obtained in this study allow us to conclude that crowdsourcing data
improves the accuracy of the location. The results show the feasibility of
crowdsourcing data to create radio maps for the indoor location. One the
second hand, accuracy decay along time was reported.

Senior Monitoring: A Real Case of Applying a WiFi
Fingerprinting-based Indoor Positioning Method for Peo-
ple Monitoring

Montoliu, Raúl; Sansano-Sansano, Emilio; Gascó-Compte, Arturo; Bel-
monte Fernández, Óscar; Caballer-Miedes, Antonio.

Published as Work-in-Progress paper in: 2019 10th International Conference
on Indoor Positioning and Indoor Navigation (IPIN) [100]

Date of Conference: 30 September - 3 October 2019

This work showcases a real example of applying a Wi-Fi fingerprinting-based
indoor localization system for monitoring elder people in their homes. The
presented system is part of a broad project called Senior Monitoring where
the main aim is to monitor elders to study behavioral patterns as a tool for
early detection of some cognitive decay diseases. Since the system is used
by real users, many situations can not be controlled by system developers
and can be a source of errors. This study presents some of the problems
arisen when real non-expert users use localization systems, and discuss
some strategies to deal with such situations.

The experiments were conducted by 17 volunteers for two months on average
in real scenarios, where the conditions are not controlled by the researchers.
Participants had to create the radio map of his/her own house following
the instructions provided by the system’s developers. The present work
contributes to a better understanding of the difficulties and problems that
arise when implementing an indoor positioning system in real scenarios with
real users.



Appendix 145

A.3 Stays

NAVER Labs Europe

NAVER Labs Europe in Grenoble (France), supervised by Dr. Boris Chidlovskii
from 18 March 2019 to 14 August 2019

During this stay, I worked on the development of an indoor positioning sys-
tem based on the fusion of data from inertial sensors along with data from
other sensors such as WiFi, barometer, or magnetic field. The system imple-
ments a deep learning-based pedestrian dead reckoning (deep PDR) model
that provides an estimation of the relative position of the user and a WiFi
fingerprinting module that provides a prediction of the user’s absolute posi-
tion. Both predictions, relative and absolute, are fused using a Kalman filter,
and then projected on the possible paths taking into account the physical
constraints (corridors, doors, etc.) of the environment.

The system took part in the off-site smartphone-based positioning track of
the IPIN2019 competition, where the goal is to recreate a path traversed by
a person holding a conventional modern smartphone, based on the readings
from the smartphone’s sensors. The system finished in second place of a
total of 15 participants.



146 Bibliography



Bibliography 147

Bibliography

[1] AARTS, EMILE and WICHERT, REINER: «Ambient intelligence». In:
Technology guide, pp. 244–249. Springer, 2009. doi: https://doi.org/
10.1007/978-3-540-88546-7_47.

[2] AL-AMMAR, MAI A; ALHADHRAMI, SUHEER; AL-SALMAN, ABDULMALIK;
ALARIFI, ABDULRAHMAN; AL-KHALIFA, HEND S; ALNAFESSAH, AHMAD

and ALSALEH, MANSOUR: «Comparative survey of indoor positioning
technologies, techniques, and algorithms». In: Cyberworlds (CW),
2014 International Conference on, pp. 245–252. IEEE, 2014.

[3] ALI, ABDUL HALIM; RAZAK, MOHD RAZIFF ABD; HIDAYAB,
MUZAIYANAH; AZMAN, SYUWARI ASHRAF; JASMIN, MOHD ZAIM MOHD

and ZAINOL, MOHD AZMIR: «Investigation of indoor WIFI radio sig-
nal propagation». In: Proceedings of the Symposium on Industrial
Electronics and Applications, (ISIEA’10), pp. 117–119, 2010. doi:
https://doi.org/10.1109/ISIEA.2010.5679486.

[4] ALSHEIKH, MOHAMMAD ABU; SELIM, AHMED; NIYATO, DUSIT; DOYLE,
LINDA; LIN, SHAOWEI and TAN, HWEE-PINK: «Deep Activity Recog-
nition Models with Triaxial Accelerometers.» In: AAAI Workshop:
Artificial Intelligence Applied to Assistive Technologies and Smart
Environments, , 2016.

[5] ALZANTOT, MOUSTAFA and YOUSSEF, MOUSTAFA: «UPTIME: Ubiq-
uitous pedestrian tracking using mobile phones». In: 2012 IEEE
Wireless Communications and Networking Conference (WCNC), pp.
3204–3209. IEEE, 2012.



148 Bibliography

[6] ANGUITA, DAVIDE; GHIO, ALESSANDRO; ONETO, LUCA; PARRA,
XAVIER and REYES-ORTIZ, JORGE LUIS: «A Public Domain Dataset
for Human Activity Recognition using Smartphones.» In: Proceedings
of the European Symposium on Artificial Neural Networks (ESANN’13),
, 2013.

[7] ARAMENDI, ANE ALBERDI; WEAKLEY, ALYSSA; GOENAGA,
ASIER AZTIRIA; SCHMITTER-EDGECOMBE, MAUREEN and COOK, DI-
ANE J: «Automatic assessment of functional health decline in older
adults based on smart home data». Journal of biomedical informatics,
2018, 81, pp. 119–130.

[8] ARIFOGLU, DAMLA and BOUCHACHIA, ABDELHAMID: «Activity recogni-
tion and abnormal behaviour detection with recurrent neural networks».
Procedia Computer Science, 2017, 110, pp. 86–93.

[9] ASHRAF, IMRAN; HUR, SOOJUNG; PARK, SANGJOON and PARK, YONG-
WAN: «DeepLocate: Smartphone Based Indoor Localization with a
Deep Neural Network Ensemble Classifier». Sensors, 2020, 20(1), p.
133.

[10] ASHRAF, IMRAN; HUR, SOOJUNG and PARK, YONGWAN: «Application
of Deep Convolutional Neural Networks and Smartphone Sensors for
Indoor Localization». Applied Sciences, 2019, 9(11), p. 2337.

[11] ——: «Indoor positioning on disparate commercial smartphones using
Wi-Fi access points coverage area». Sensors, 2019, 19(19), p. 4351.

[12] ASHRAF, IMRAN; KANG, MINGYU; HUR, SOOJUNG and PARK, YONG-
WAN: «MINLOC: Magnetic Field Patterns-Based Indoor Localization
Using Convolutional Neural Networks». IEEE Access, 2020, 8, pp.
66213–66227.

[13] AUSTIN, JOHANNA; DODGE, HIROKO H; RILEY, THOMAS; JACOBS,
PETER G; THIELKE, STEPHEN and KAYE, JEFFREY: «A smart-
home system to unobtrusively and continuously assess loneliness
in older adults». IEEE journal of translational engineering in health
and medicine, 2016, 4.



Bibliography 149

[14] AVCI, AKIN; BOSCH, STEPHAN; MARIN-PERIANU, MIHAI; MARIN-
PERIANU, RALUCA and HAVINGA, PAUL: «Activity recognition using
inertial sensing for healthcare, wellbeing and sports applications: A
survey». In: 23th International conference on architecture of computing
systems 2010, pp. 1–10. VDE, 2010.

[15] B. LI, C. RIZOS, T. GALLAGHER and DEMPSTER, A.G.: «Using Geo-
magnetic Field for Indoor Positioning». In: Proceedings of the Interna-
tional Global Navigation Satellite Systems Society IGNSS Symposium,
, 2013.

[16] BAHL, PARAMVIR and PADMANABHAN, VENKATA N.: «RADAR: an
in-building RF-based user location and tracking system». In: Proceed-
ings of the 19th Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM’00), pp. 775–784, 2000.

[17] BANOS, ORESTI; GARCIA, RAFAEL; HOLGADO-TERRIZA, JUAN A;
DAMAS, MIGUEL; POMARES, HECTOR; ROJAS, IGNACIO; SAEZ, ALE-
JANDRO and VILLALONGA, CLAUDIA: «mHealthDroid: a novel frame-
work for agile development of mobile health applications». In: Pro-
ceedings of the International Workshop on Ambient Assisted Living
(IWAAL’14), pp. 91–98. Springer, 2014.

[18] BAO, LING and INTILLE, STEPHEN S: «Activity recognition from user-
annotated acceleration data». In: Proceedings of the IEEE Interna-
tional Conference on Pervasive Computing (PerCom’04), pp. 1–17.
Springer, 2004.

[19] BARSOCCHI, P.; CRIVELLO, A.; ROSA, D.L. and PALUMBO, F.: «A mul-
tisource and multivariate dataset for indoor localization methods based
on WLAN and geo-magnetic field fingerprinting». In: Proceedings of
the seventh Conference on Indoor Positioning and Indoor Navigation
(IPIN’16), , 2016.

[20] BELMONTE-FERNÁNDEZ, ÓSCAR; CABALLER-MIEDES, ANTONIO;
CHINELLATO, ERIS; MONTOLIU, RAÚL; SANSANO-SANSANO, EMILIO

and GARCÍA-VIDAL, RUBÉN: «Anomaly Detection in Activities of Daily
Living with Linear Drift». Cognitive Computation, 2020, pp. 1–19.



150 Bibliography

[21] BELMONTE-FERNÁNDEZ, OSCAR; MONTOLIU, RAÚL; TORRES-
SOSPEDRA, JOAQUÍN; SANSANO-SANSANO, EMILIO and CHIA-
AGUILAR, DANIEL: «A radiosity-based method to avoid calibration
for indoor positioning systems». Expert Systems With Applications,
2018, 105, pp. 89–101.

[22] BELMONTE-FERNÁNDEZ, ÓSCAR; PUERTAS-CABEDO, ADRIAN;
TORRES-SOSPEDRA, JOAQUÍN; MONTOLIU-COLÁS, RAÚL and
TRILLES-OLIVER, SERGI: «An indoor positioning system based on
wearables for ambient-assisted living». Sensors, 2017, 17(1), p. 36.

[23] BELMONTE-FERNÁNDEZ, Ó.; GASCÓ-COMPTE, A.; SANSANO-
SANSANO, E.; QUINDE, M.; MANUEL, J. G. G. and AUGUSTO, J. C.:
«Evaluation of Crowdsourcing Wi-Fi Radio Map Creation in a Real Sce-
nario for AAL Applications». In: 2019 15th International Conference
on Intelligent Environments (IE), pp. 30–36, 2019.

[24] BENGIO, YOSHUA; SIMARD, PATRICE and FRASCONI, PAOLO: «Learn-
ing long-term dependencies with gradient descent is difficult». IEEE
transactions on neural networks, 1994, 5(2), pp. 157–166.

[25] BHATTACHARYA, SOURAV and LANE, NICHOLAS D: «From smart
to deep: Robust activity recognition on smartwatches using deep
learning». In: Proceedings if the IEEE International Conference on
Pervasive Computing and Communication Workshops (PerCom’16),
pp. 1–6, 2016.

[26] BHATTACHARYA, SOURAV; NURMI, PETTERI; HAMMERLA, NILS and
PLÖTZ, THOMAS: «Using unlabeled data in a sparse-coding framework
for human activity recognition». Pervasive and Mobile Computing,
2014, 15, pp. 242–262.

[27] BISHOP, CHRISTOPHER M.: Pattern Recognition and Machine Learn-
ing (Information Science and Statistics). Springer-Verlag New York,
Inc., 2006.

[28] BITEW, MEKUANINT AGEGNEHU; HSIAO, RONG-SHUE; LIN, HSIN-PIAO

and LIN, DING-BING: «Hybrid indoor human localization system for



Bibliography 151

addressing the issue of RSS variation in fingerprinting». International
Journal of Distributed Sensor Networks, 2015, 11(3), p. 831423.

[29] BRENA, RAMON F; GARCÍA-VÁZQUEZ, JUAN PABLO; GALVÁN-TEJADA,
CARLOS E; MUÑOZ-RODRIGUEZ, DAVID; VARGAS-ROSALES, CESAR

and FANGMEYER, JAMES: «Evolution of indoor positioning technolo-
gies: A survey». Journal of Sensors, 2017, 2017.

[30] BROYDEN, CG: «A new double-rank minimisation algorithm. Prelim-
inary report». In: Notices of the American Mathematical Society,
volume 16, p. 670. American Mathematical Society 201 Charles ST,
Providence, RI 02940-2213, 1969.

[31] CAFFERY, JAMES J and STUBER, GORDON L: «Overview of radiolo-
cation in CDMA cellular systems». IEEE Communications Magazine,
1998, 36(4), pp. 38–45.

[32] CAMPS, JULIÀ; SAMÀ, ALBERT; MART\’\IN, MARIO; RODR\’\IGUEZ-
MART\’\IN, DANIEL; PÉREZ-LÓPEZ, CARLOS; AROSTEGUI, JOAN

M MORENO; CABESTANY, JOAN; CATALÀ, ANDREU; ALCAINE, SHEILA;
MESTRE, BERTA and OTHERS: «Deep learning for freezing of gait
detection in Parkinson’s disease patients in their homes using a waist-
worn inertial measurement unit». Knowledge-Based Systems, 2018,
139, pp. 119–131.

[33] CHEN, YUQING and XUE, YANG: «A deep learning approach to
human activity recognition based on single accelerometer». In: IEEE
international conference on Systems, man, and cybernetics (SMC’15),
pp. 1488–1492. Institute of Electrical and Electronics Engineers (IEEE),
2015.

[34] CHIARINI, GIOVANNI; RAY, PRADEEP; AKTER, SHAHRIAR; MASELLA,
CRISTINA and GANZ, AURA: «mHealth technologies for chronic dis-
eases and elders: a systematic review». IEEE Journal on Selected
Areas in Communications, 2013, 31(9), pp. 6–18.

[35] CHIAUZZI, EMIL; RODARTE, CARLOS and DASMAHAPATRA, PRON-
ABESH: «Patient-centered activity monitoring in the self-management
of chronic health conditions». BMC medicine, 2015, 13(1), p. 77.



152 Bibliography

[36] CHUNG, JUNYOUNG; GULCEHRE, CAGLAR; CHO, KYUNGHYUN and
BENGIO, YOSHUA: «Empirical evaluation of gated recurrent neural
networks on sequence modeling». arXiv preprint arXiv:1412.3555,
2014.

[37] COVER, T. and HART, P.: «Nearest Neighbor Pattern Classification».
IEEE Transactions on Information Theory , 1967, 13(1), pp. 21–27. doi:
https://doi.org/10.1109/TIT.1967.1053964.

[38] CRAMARIUC, A. and LOHAN, E.S.: «Open-access WiFi measurement
data and Python-based data analysis», 2016.
http://www.cs.tut.fi/tlt/pos/meas.htm

[39] CRAMARIUC, ANDREI; HUTTUNEN, HEIKKI and LOHAN, ELENA SI-
MONA: «Clustering benefits in mobile-centric WiFi positioning in
multi-floor buildings». In: Proceedings of the 6th International Confer-
ence on Localization and GNSS (ICL-GNSS’16), pp. 1–6, 2016. doi:
https://doi.org/10.1109/ICL-GNSS.2016.7533846.

[40] DORYAB, AFSANEH; MIN, JUN KI; WIESE, JASON; ZIMMERMAN, JOHN

and HONG, JASON: «Detection of behavior change in people with
depression». In: Workshops at the Twenty-Eighth AAAI Conference
on Artificial Intelligence, , 2014.

[41] DUCHI, JOHN; HAZAN, ELAD and SINGER, YORAM: «Adaptive subgra-
dient methods for online learning and stochastic optimization». Journal
of Machine Learning Research, 2011, 12(Jul), pp. 2121–2159.

[42] DUFFNER, STEFAN; BERLEMONT, SAMUEL; LEFEBVRE, GRÉGOIRE

and GARCIA, CHRISTOPHE: «3D gesture classification with convolu-
tional neural networks». In: Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP’14),
pp. 5432–5436. Institute of Electrical and Electronics Engineers (IEEE),
2014.

[43] ERHAN, DUMITRU; BENGIO, YOSHUA; COURVILLE, AARON; MAN-
ZAGOL, PIERRE-ANTOINE; VINCENT, PASCAL and BENGIO, SAMY:
«Why does unsupervised pre-training help deep learning?» Journal of
Machine Learning Research, 2010, 11(Feb), pp. 625–660.

http://www.cs.tut.fi/tlt/pos/meas.htm


Bibliography 153

[44] FARID, ZAHID; NORDIN, ROSDIADEE and ISMAIL, MAHAMOD: «Re-
cent advances in wireless indoor localization techniques and system».
Journal of Computer Networks and Communications, 2013, 2013.

[45] FINNOFF, WILLIAM; HERGERT, FERDINAND and ZIMMERMANN,
HANS GEORG: «Improving model selection by nonconvergent meth-
ods». Neural Networks, 1993, 6(6), pp. 771–783.

[46] FLETCHER, ROGER: «A new approach to variable metric algorithms».
The computer journal , 1970, 13(3), pp. 317–322. doi: https://doi.org/
10.1093/comjnl/13.3.317.

[47] FREY, BRENDAN J and DUECK, DELBERT: «Clustering by passing
messages between data points.» Science, 2007, 315(5814), pp. 972–
976. doi: https://doi.org/10.1126/science.1136800.

[48] GALAMBOS, COLLEEN; SKUBIC, MARJORIE; WANG, SHAUNG and
RANTZ, MARILYN: «Management of dementia and depression utilizing
in-home passive sensor data». Gerontechnology: international journal
on the fundamental aspects of technology to serve the ageing society ,
2013, 11(3), p. 457.

[49] GARCÍA, S.; MOLINA, D.; LOZANO, M. and HERRERA, M. F.: «A Study
on the Use of Non-parametric Tests for Analyzing the Evolutionary Al-
gorithms’ Behaviour: A Case Study on the CEC’2005 Special Session
on Real Parameter Optimization». Journal of Heuristics, 2009, 15(6),
pp. 617–644.

[50] GIGL, THOMAS; JANSSEN, GERARD J.M.; DIZDAREVIC, VEDRAN;
WITRISAL, KLAUS and IRAHHAUTEN, ZOUBIR: «Analysis of a UWB
Indoor Positioning System Based on Received Signal Strength». In:
Proceedings of the 4th Workshop on Positioning, Navigation and Com-
munication (PNC’07), pp. 97–101, 2007. doi: https://doi.org/10.1109/
WPNC.2007.353618.

[51] GJORESKI, HRISTIJAN; BIZJAK, JANI; GJORESKI, MARTIN and GAMS,
MATJAŽ: «Comparing deep and classical machine learning methods



154 Bibliography

for human activity recognition using wrist accelerometer». In: Pro-
ceedings of the IJCAI 2016 Workshop on Deep Learning for Artificial
Intelligence, volume 10, 2016.

[52] GOLDBLOOM, A.; HAMNER, B.; MOSER, J. and CUKIERSKI, M.: «kag-
gle: Your Home for Data Science», 2017.
https://www.kaggle.com/

[53] GOLDFARB, DONALD: «A Family of Variable-Metric Methods Derived
by Variational Means». Mathematics of Computation, 1970, 24(109),
pp. 23–26. doi: https://doi.org/10.1090/S0025-5718-1970-0258249-6.

[54] GOODFELLOW, IAN; BENGIO, YOSHUA and COURVILLE, AARON: Deep
Learning. MIT Press, 2016.
http://www.deeplearningbook.org

[55] GUAN, YU and PLÖTZ, THOMAS: «Ensembles of deep lstm learners for
activity recognition using wearables». Proceedings of the ACM on In-
teractive, Mobile, Wearable and Ubiquitous Technologies (IMWUT’17),
2017, 1(2), p. 11.

[56] HA, SOJEONG; YUN, JEONG-MIN and CHOI, SEUNGJIN: «Multi-modal
convolutional neural networks for activity recognition». In: Proceedings
of the IEEE International Conference on Systems, Man, and Cyber-
netics (SMC’15), pp. 3017–3022. Institute of Electrical and Electronics
Engineers (IEEE), 2015.

[57] HAEBERLEN, A.; FLANNERY, E.; LADD, A.M.; RUDYS, A.; WALLACH,
D.S. and KAVRAKI, L.E.: «Practical Robust Localization over Large-
scale 802.11 Wireless Networks». In: Proceedings of the 10th Annual
International Conference on Mobile Computing and Networking (Modi-
Com’04), pp. 70–84, 2004.

[58] HAEBERLEN, ANDREAS; FLANNERY, ELIOT; LADD, ANDREW M.;
RUDYS, ALGIS; WALLACH, DAN S. and KAVRAKI, LYDIA E.: «Practi-
cal Robust Localization over Large-scale 802.11 Wireless Networks».
In: Proceedings of the 10th Annual International Conference on Mo-
bile Computing and Networking (MobiCom’04), pp. 70–84, 2004. doi:
https://doi.org/10.1145/1023720.1023728.

https://www.kaggle.com/
http://www.deeplearningbook.org


Bibliography 155

[59] HAMMERLA, NILS Y; HALLORAN, SHANE and PLOETZ, THOMAS:
«Deep, convolutional, and recurrent models for human activity recogni-
tion using wearables». arXiv preprint arXiv:1604.08880, 2016.

[60] HAN, DONGSOO; JUNG, SUK HOON; LEE, MINKYU and YOON, GI-
WAN: «Building a Practical Wi-Fi-Based Indoor Navigation System».
IEEE Pervasive Computing, 2014, 13, pp. 72–79.

[61] HANLEY, D.; FAUSTINO, A. B.; ZELMAN, S. D.; DEGENHARDT, D. A.
and BRETL, T.: «MagPIE: A Dataset for Positioning with Magnetic
Anomalies». In: Proceedings of the 2017 International Conference on
Indoor Positioning and Indoor Navigation (IPIN’17), , 2017.

[62] HARBICHT, ANDREW B.; CASTRO-SANTOS, THEODORE; ARDREN,
WILLIAM R.; GORSKY, DIMITRY and FRASER, DYLAN J.: «Novel,
continuous monitoring of fine-scale movement using fixed-position
radiotelemetry arrays and random forest location fingerprinting».
Methods in Ecology and Evolution, 2017, 8(7), pp. 850–859. doi:
http://dx.doi.org/10.1111/2041-210X.12745.

[63] HASSAN, MOHAMMED MEHEDI; UDDIN, MD ZIA; MOHAMED, AMR and
ALMOGREN, AHMAD: «A robust human activity recognition system
using smartphone sensors and deep learning». Future Generation
Computer Systems, 2018, 81, pp. 307–313.

[64] HAYES, TAMARA L; ABENDROTH, FRANCENA; ADAMI, ANDRE; PAVEL,
MISHA; ZITZELBERGER, TRACY A and KAYE, JEFFREY A: «Unobtru-
sive assessment of activity patterns associated with mild cognitive
impairment». Alzheimer’s & Dementia, 2008, 4(6), pp. 395–405.

[65] HE, SUINING and CHAN, S. GARY: «Wi-Fi Fingerprint-based Indoor
Positioning: Recent Advances and Comparisons». IEEE Communica-
tions Surveys & Tutorials, 2016, 18(3), pp. 466 – 490.

[66] HE, SUINING and CHAN, S. H GARY: «Wi-Fi fingerprint-based in-
door positioning: Recent advances and comparisons». IEEE Com-
munications Surveys & Tutorials, 2016, 18(1), pp. 466–490. doi:
https://doi.org/10.1109/COMST.2015.2464084.



156 Bibliography

[67] HE, SUINING and SHIN, KANG G: «Crowd-Flow Graph Construction
and Identification with Spatio-Temporal Signal Feature Fusion». In:
IEEE INFOCOM 2019-IEEE Conference on Computer Communica-
tions, pp. 757–765. IEEE, 2019.

[68] HINTON, GEOFFREY; DENG, LI; YU, DONG; DAHL, GEORGE E; MO-
HAMED, ABDEL-RAHMAN; JAITLY, NAVDEEP; SENIOR, ANDREW; VAN-
HOUCKE, VINCENT; NGUYEN, PATRICK; SAINATH, TARA N and OTH-
ERS: «Deep neural networks for acoustic modeling in speech recog-
nition: The shared views of four research groups». IEEE Signal
Processing Magazine, 2012, 29(6), pp. 82–97.
https://doi.org/10.1109/MSP.2012.2205597

[69] HINTON, GEOFFREY E; OSINDERO, SIMON and TEH, YEE-WHYE: «A
fast learning algorithm for deep belief nets». Neural computation, 2006,
18(7), pp. 1527–1554.

[70] HOCHREITER, SEPP and SCHMIDHUBER, JÜRGEN: «Long short-term
memory». Neural computation, 1997, 9(8), pp. 1735–1780.

[71] HUANG, HE; LI, WEI; LUO, DE AN; QIU, DONG WEI and GAO, YANG:
«An improved particle filter algorithm for geomagnetic indoor position-
ing». Journal of Sensors, 2018, 2018.

[72] JIANG, WENCHAO and YIN, ZHAOZHENG: «Human activity recognition
using wearable sensors by deep convolutional neural networks». In:
Proceedings of the 23rd ACM international conference on Multimedia,
pp. 1307–1310. ACM, 2015.

[73] JORDAN, MICHAEL I: «Serial order: A parallel distributed processing
approach». In: Advances in psychology, volume 121, pp. 471–495.
Elsevier, 1997.

[74] KAEMARUNGSI, KAMOL and KRISHNAMURTHY, PRASHANT: «Proper-
ties of indoor received signal strength for WLAN location fingerprint-
ing». In: Mobile and Ubiquitous Systems: Networking and Services,
2004. MOBIQUITOUS 2004. The First Annual International Confer-
ence on, pp. 14–23. IEEE, 2004.

https://doi.org/10.1109/MSP.2012.2205597


Bibliography 157

[75] KANASI, ELENI; AYILAVARAPU, SRINIVAS and JONES, JUDITH: «The
aging population: demographics and the biology of aging». Periodon-
tology 2000, 2016, 72(1), pp. 13–18.

[76] KLEPEIS, NEIL E.; NELSON, WILLIAM C.; OTT, WAYNE R.; ROBINSON,
JOHN P.; TSANG, ANDY M.; SWITZER, PAUL; BEHAR, JOSEPH V.;
HERN, STEPHEN C. and ENGELMANN, WILLIAM H.: «The National
Human Activity Pattern Survey (NHAPS): a resource for assessing
exposure to environmental pollutants». Journal Of Exposure Analysis
And Environmental Epidemiology , 2001, 11, pp. 231 EP –. doi: http:
//dx.doi.org/10.1038/sj.jea.7500165.

[77] LARA, OSCAR D; LABRADOR, MIGUEL A and OTHERS: «A survey on
human activity recognition using wearable sensors.» IEEE Communi-
cations Surveys and Tutorials, 2013, 15(3), pp. 1192–1209.

[78] LECUN, YANN; BENGIO, YOSHUA and HINTON, GEOFFREY: «Deep
learning». nature, 2015, 521(7553), p. 436.

[79] LECUN, YANN; BOSER, BERNHARD; DENKER, JOHN S; HENDER-
SON, DONNIE; HOWARD, RICHARD E; HUBBARD, WAYNE and JACKEL,
LAWRENCE D: «Backpropagation applied to handwritten zip code
recognition». Neural computation, 1989, 1(4), pp. 541–551.

[80] LECUN, YANN; BOTTOU, LEON; ORR, GENEVIEVE B. and MÜLLER,
KLAUS ROBERT: Efficient BackProp. pp. 9–50. Springer Berlin
Heidelberg. ISBN 978-3-540-49430-0, 1998. doi: https://doi.org/10.
1007/3-540-49430-8_2.

[81] LEE, JOO-YUB; YOON, CHEAL-HWAN; PARK, HYUNJAE and SO, JUNG-
MIN: «Analysis of Location Estimation Algorithms for Wifi Fingerprint-
based Indoor Localization». In: Proceedings of the 2nd International
Conference on Software Technology (SoftTech’13), pp. 89–92, 2013.

[82] LEFEBVRE, GRÉGOIRE; BERLEMONT, SAMUEL; MAMALET, FRANCK

and GARCIA, CHRISTOPHE: «BLSTM-RNN based 3D gesture classifi-
cation». In: Proceedings of the International Conference on Artificial
Neural Networks (ICANN’13), pp. 381–388. Springer, 2013.



158 Bibliography

[83] LEMIC, F.; HANDZISKI, V.; WIRSTROM, N.; VAN HAUTE, T.; DE

POORTER, E.; VOIGT, T. and WOLISZ, A.: «Web-based platform for
evaluation of RF-based indoor localization algorithms». In: In Proceed-
ings of the 2015 IEEE International Conference on Communication
Workshop (ICCW’15), , 2015.

[84] LI, B.; GALLAGHER, T.; DEMPSTER, A.G. and RIZOS, C.: «How
feasible is the use of magnetic field alone for indoor positioning?»
In: 3th International conference on Indoor Positioning and Indoor
Navigation, , 2012.

[85] LI, BINGHAO; SALTER, JAMES; DEMPSTER, AG and RIZOS, CHRIS:
«Indoor positioning techniques based on wireless LAN». In: Proceed-
ings of the 1st IEEE International Conference on Wireless Broadband
and Ultra Wide-band Communications (AusWireless’06), pp. 13–16,
2006.
https://opus.lib.uts.edu.au/bitstream/2100/170/1/

113_Li.pdf

[86] LICHMAN, M.: «UCI Machine Learning Repository», 2013.
http://archive.ics.uci.edu/ml

[87] LIU, HUI; DARABI, HOUSHANG; BANERJEE, PAT and LIU, JING:
«Survey of wireless indoor positioning techniques and systems».
IEEE Transactions on Systems, Man and Cybernetics Part C: Ap-
plications and Reviews, 2007, 37(6), pp. 1067–1080. doi: https:
//doi.org/10.1109/TSMCC.2007.905750.

[88] LIU, LILI; STROULIA, ELENI; NIKOLAIDIS, IOANIS; MIGUEL-CRUZ, AN-
TONIO and RINCON, ADRIANA RIOS: «Smart homes and home health
monitoring technologies for older adults: A systematic review». Inter-
national journal of medical informatics, 2016, 91, pp. 44–59.

[89] LIU, YONGBO; DU, HUAICHANG and XU, YE: «The Research and
Design of the Indoor Location System Based on RFID». In: Pro-
ceedings of the 4th International Symposium on Computational In-
telligence and Design (ISCID’11), pp. 87–90, 2011. doi: https:
//doi.org/10.1109/ISCID.2011.123.

https://opus.lib.uts.edu.au/bitstream/2100/170/1/113_Li.pdf
https://opus.lib.uts.edu.au/bitstream/2100/170/1/113_Li.pdf
http://archive.ics.uci.edu/ml


Bibliography 159

[90] LOHAN, ELENA SIMONA; KOSKI, KAROLIINA; TALVITIE, JUKKA and
UKKONEN, LEENA: «WLAN and RFID Propagation channels for hy-
brid indoor positioning». In: Proceedings of the 4th International
Conference on Localization and GNSS, (ICL-GNSS’14), , 2014. doi:
https://doi.org/10.1109/ICL-GNSS.2014.6934184.

[91] LUO, JIAYOU and ZHAN, XINGQUN: «Characterization of Smart Phone
Received Signal Strength Indication for WLAN Indoor Positioning Ac-
curacy Improvement». Journal of Networks, 2014, 9(3), pp. 739–746.
doi: https://doi.org/10.4304/jnw.9.3.739-746.

[92] LYMBEROPOULOS, D.; CHOUDHURY, R.R.; YANG, X. and SEN, S.:
«Microsoft Indoor Localization Competition (IPSN’14)», 2014.
https://www.microsoft.com/en-us/research/event/

microsoft-indoor-localization-competition-ipsn-2014

[93] LYMBEROPOULOS, D.; LIU, J.; BOCCA, M.; SEQUEIRA, V.; TRIGONI,
N. and YANG, X.: «Microsoft Indoor Localization Competition - IPSN
2017», 2017.
https://www.microsoft.com/en-us/research/event/

microsoft-indoor-localization-competition-ipsn-2017

[94] LYMBEROPOULOS, D.; LIU, J.; YANG, X.; NAGUIB, A.; ROWE, A.;
TRIGONI, N. and MOAYERI, N.: «Microsoft Indoor Localization
Competition (IPSN’15)», 2015.
ttps://www.microsoft.com/en-us/research/event/

microsoft-indoor-localization-competition-ipsn-2015

[95] LYMBEROPOULOS, D.; LIU, J.; ZHANG, Y.; DUTTA, P.; YANG, X. and
ROWE, A.: «Microsoft Indoor Localization Competition—IPSN 2016»,
2016.
https://www.microsoft.com/en-us/research/event/

microsoft-indoor-localization-competition-ipsn-2016

[96] MADIGAN, D.; EINAHRAWY, E.; MARTIN, R. P.; JU, WEN-HUA; KR-
ISHNAN, P. and KRISHNAKUMAR, A. S.: «Bayesian indoor positioning
systems». In: Proceedings of the 24th Annual Joint Conference of the

https://www.microsoft.com/en-us/research/event/microsoft-indoor-localization-competition-ipsn-2014
https://www.microsoft.com/en-us/research/event/microsoft-indoor-localization-competition-ipsn-2014
https://www.microsoft.com/en-us/research/event/microsoft-indoor-localization-competition-ipsn-2017
https://www.microsoft.com/en-us/research/event/microsoft-indoor-localization-competition-ipsn-2017
ttps://www.microsoft.com/en-us/research/event/microsoft-indoor-localization-competition-ipsn-2015
ttps://www.microsoft.com/en-us/research/event/microsoft-indoor-localization-competition-ipsn-2015
https://www.microsoft.com/en-us/research/event/microsoft-indoor-localization-competition-ipsn-2016
https://www.microsoft.com/en-us/research/event/microsoft-indoor-localization-competition-ipsn-2016


160 Bibliography

IEEE Computer and Communications Societies (INFOCOM’05), pp.
1217–1227, 2005.

[97] MARQUES, NELSON; MENESES, FILIPE and MOREIRA, ADRIANO:
«Combining similarity functions and majority rules for multi-building,
multi-floor, WiFi positioning». In: Proceedings of the 2012 International
Conference on Indoor Positioning and Indoor Navigation (IPIN’12), pp.
1–9, 2012.

[98] MIKOLOV, TOMÁŠ; DEORAS, ANOOP; POVEY, DANIEL; BURGET,
LUKÁŠ and ČERNOCK\‘Y, JAN: «Strategies for training large scale
neural network language models». In: Workshop on Automatic Speech
Recognition and Understanding (ASRU’11), pp. 196–201. Institute of
Electrical and Electronics Engineers (IEEE), 2011.

[99] MOAYERI, N.; ERGIN, O.; LEMIC, F.; HANDZISKI, V. and WOLISZ, A.:
«PerfLoc: An Extensive Data Repository for Development and a Web-
Based Capability for Performance Evaluation of Smartphone Indoor
Localization Apps». In: Proceedings of the 27th IEEE International
Symposium on Personal, Indoor and Mobile Radio Communications
(PIMRC’16), , 2016.

[100] MONTOLIU, R; SANSANO-SANSANO, E; GASCO, A; BELMONTE-
FERNÁNDEZ, O and CABALLER, A:. «Senior Monitoring: A Real Case
of Applying a WiFi Fingerprinting-based Indoor Positioning Method for
People Monitoring».

[101] MONTOLIU, R.; TORRES-SOSPEDRA, J. and BELMONTE, O.: «Mag-
netic Field based Indoor Positioning Using the Bag of Words
Paradigm». In: Proceedings of the International Conference on Indoor
Positioning and Indoor Navigation (IPIN’16), , 2016.

[102] MONTOLIU, RAÚL; SANSANO-SANSANO, E; BELMONTE-FERNÁNDEZ,
OSCAR and TORRES-SOSPEDRA, JOAQUÍN: «A new methodology for
long-term maintenance of wifi fingerprinting radio maps». In: 2018
International Conference on Indoor Positioning and Indoor Navigation
(IPIN), pp. 1–7. IEEE, 2018.



Bibliography 161

[103] MONTOLIU, RAUL; SANSANO-SANSANO, EMILIO; GASCÓ, ARTURO;
BELMONTE-FERNÁNDEZ, OSCAR and CABALLER, ANTONIO: «Indoor
Positioning for Monitoring Older Adults at Home: Wi-Fi and BLE Tech-
nologies in Real Scenarios». Electronics, 2020, 9(5), p. 728.

[104] MONTOLIU, RAUL; SANSANO-SANSANO, EMILIO; TORRES-SOSPEDRA,
JOAQUÍN and BELMONTE-FERNÁNDEZ, ÓSCAR: «IndoorLoc Platform:
A Web Tool to Support the Comparison of Indoor Positioning Systems».
In: Geographical and Fingerprinting Data to Create Systems for Indoor
Positioning and Indoor/Outdoor Navigation, pp. 225–247. Elsevier,
2019.

[105] MONTOLIU COLÁS, RAUL; SANSANO-SANSANO, EMILIO; TORRES-
SOSPEDRA, JOAQUÍN and BELMONTE, ÓSCAR: «IndoorLoc Platform:
A Public Repository for Comparing and Evaluating Indoor Positioning
Systems». In: Proceedings of the 2017 International Conference on
Indoor Positioning and Indoor Navigation (IPIN’17), , 2017.

[106] MOYA RUEDA, FERNANDO; GRZESZICK, RENÉ; FINK, GERNOT A;
FELDHORST, SASCHA and TEN HOMPEL, MICHAEL: «Convolutional
neural networks for human activity recognition using body-worn sen-
sors». In: Informatics, volume 5, p. 26. Multidisciplinary Digital Pub-
lishing Institute, 2018.

[107] MOZER, MICHAEL C: «A focused backpropagation algorithm for tempo-
ral». Backpropagation: Theory, architectures, and applications, 1995,
p. 137.

[108] MURABET AMINA, EL; ANOUAR, ABTOY; TOUHAFI, ABDELLAH and
TAHIRI, ABDERAHIM: «Towards an SOA Architectural Model for AAL-
Paas Design and Implimentation Challenges». International Journal
of Advanced Computer Science and Applications, 2017, 8(7).

[109] MURAD, ABDULMAJID and PYUN, JAE-YOUNG: «Deep recurrent neural
networks for human activity recognition». Sensors, 2017, 17(11), p.
2556.



162 Bibliography

[110] NAHRSTEDT, K. and VU, L.: «CRAWDAD Dataset uiuc/uim (v. 2012-
01-24)», 2012.
http://crawdad.org/uiuc/uim/20120124

[111] NEYSHABUR, BEHNAM; BHOJANAPALLI, SRINADH; MCALLESTER,
DAVID and SREBRO, NATI: «Exploring generalization in deep learn-
ing». In: Advances in Neural Information Processing Systems, pp.
5947–5956, 2017.

[112] ORDÓÑEZ, FRANCISCO JAVIER and ROGGEN, DANIEL: «Deep convo-
lutional and lstm recurrent neural networks for multimodal wearable
activity recognition». Sensors, 2016, 16(1), p. 115.

[113] PAN, SINNO JIALIN and YANG, QIANG: «A survey on transfer learning».
IEEE Transactions on knowledge and data engineering, 2010, 22(10),
pp. 1345–1359.

[114] PASCANU, RAZVAN; MIKOLOV, TOMAS and BENGIO, YOSHUA: «On
the difficulty of training recurrent neural networks». In: Proceedings of
the 30th International Conference on Machine Learning (ICML’13), pp.
1310–1318, 2013.

[115] PLAUT, DAVID C and OTHERS: «Experiments on Learning by Back
Propagation.» Technical Report, Computer Science Department,
Carnegie-Mellon University, 1986.

[116] PLÖTZ, THOMAS; HAMMERLA, NILS Y and OLIVIER, PATRICK: «Fea-
ture learning for activity recognition in ubiquitous computing». In:
Proceedings of the International Joint Conference on Artificial Intelli-
gence (IJCAI’11), volume 22, p. 1729, 2011.

[117] POPLETEEV, ANDREI: «AmbiLoc: A year-long dataset of FM, TV and
GSM fingerprints for ambient indoor localization». In: Proceedings of
the 2017 International Conference on Indoor Positioning and Indoor
Navigation (IPIN’17), , 2017.

[118] POPLETEEV, ANDREI; OSMANI, VENET; MAYORA, OSCAR and MATIC,
ALEKSANDAR: «Indoor localization using audio features of FM ra-
dio signals». In: International and Interdisciplinary Conference on

http://crawdad.org/uiuc/uim/20120124


Bibliography 163

Modeling and Using Context, pp. 246–249. Springer, 2011. doi:
https://doi.org/10.1007/978-3-642-24279-3_26.

[119] POTORTÌ, F.; BARSOCCHI, P.; GIROLAMI, M.; TORRES-SOSPEDRA, J.
and MONTOLIU, R.: «Evaluating indoor localization solutions in large
environments through competitive benchmarking: The EvAAL-ETRI
competition». In: Proceedings of the Sixth Conference on Indoor
Positioning and Indoor Navigation (IPIN’15), , 2015.

[120] PREECE, STEPHEN J; GOULERMAS, JOHN YANNIS; KENNEY, LAU-
RENCE P J and HOWARD, DAVID: «A comparison of feature extraction
methods for the classification of dynamic activities from accelerometer
data». IEEE Transactions on Biomedical Engineering, 2009, 56(3), pp.
871–879.

[121] QUAN, YIMING; LAU, LAWRENCE; JING, FAMING; NIE, QIAN; WEN,
ALAN and CHO, SIU-YEUNG: «Analysis and machine-learning
based detection of outlier measurements of ultra-wideband in an ob-
structed environment». In: 2017 IEEE 15th International Conference
on Industrial Informatics (INDIN), pp. 997–1000. IEEE, 2017. doi:
https://doi.org/10.1109/INDIN.2017.8104909.

[122] QUEIRÓS, ALEXANDRA; SILVA, ANABELA; ALVARELHÃO, JOAQUIM;
ROCHA, NELSON PACHECO and TEIXEIRA, ANTÓNIO: «Usability, ac-
cessibility and ambient-assisted living: a systematic literature review».
Universal Access in the Information Society , 2015, 14(1), pp. 57–66.

[123] RADU, VALENTIN; LANE, NICHOLAS D; BHATTACHARYA, SOURAV; MAS-
COLO, CECILIA; MARINA, MAHESH K and KAWSAR, FAHIM: «Towards
multimodal deep learning for activity recognition on mobile devices». In:
Proceedings of the ACM International Joint Conference on Pervasive
and Ubiquitous Computing (PUC’16), pp. 185–188. ACM, 2016.

[124] RASHIDI, PARISA and MIHAILIDIS, ALEX: «A survey on ambient-
assisted living tools for older adults». IEEE journal of biomedical and
health informatics, 2013, 17(3), pp. 579–590.

[125] RAVI, DANIELE; WONG, CHARENCE; LO, BENNY and YANG, G: «A
deep learning approach to on-node sensor data analytics for mobile or



164 Bibliography

wearable devices». IEEE Journal of Biomedical and Health Informatics,
2016.

[126] RAVI, DANIELE; WONG, CHARENCE; LO, BENNY and YANG, GUANG-
ZHONG: «Deep learning for human activity recognition: A resource
efficient implementation on low-power devices». In: Proceedings of
IEEE 13th International Conference on Wearable and Implantable
Body Sensor Networks (BSN’16), pp. 71–76. Institute of Electrical and
Electronics Engineers (IEEE), 2016.

[127] REISS, ATTILA and STRICKER, DIDIER: «Creating and benchmarking
a new dataset for physical activity monitoring». In: Proceedings of the
5th International Conference on Pervasive Technologies Related to
Assistive Environments (PETRA’12), p. 40. ACM, 2012.

[128] ——: «Introducing a new benchmarked dataset for activity monitoring».
In: Proceedings of the 16th International Symposium on Wearable
Computers (ISWC), pp. 108–109. Institute of Electrical and Electronics
Engineers (IEEE), 2012.

[129] RESEARCH and MARKETS: «Indoor Location Market by Component,
Deployment Mode, Application, Vertical and Region - Global Forecast
to 2022». Research and markets, 2017.
https://www.researchandmarkets.com/reports/

4416241/indoor-location-market-by-component-deployment

[130] ROBINSON, A J and FALLSIDE, FRANK: The utility driven dynamic
error propagation network. University of Cambridge Department of
Engineering, 1987.

[131] ROGGEN, DANIEL; CALATRONI, ALBERTO; ROSSI, MIRCO; HOLLECZEK,
THOMAS; FÖRSTER, KILIAN; TRÖSTER, GERHARD; LUKOWICZ, PAUL;
BANNACH, DAVID; PIRKL, GERALD; FERSCHA, ALOIS and OTHERS:
«Collecting complex activity datasets in highly rich networked sensor
environments». In: Proceedings of the seventh International Confer-
ence on Networked Sensing Systems (INSS’10), pp. 233–240. Institute
of Electrical and Electronics Engineers (IEEE), 2010.

https://www.researchandmarkets.com/reports/4416241/indoor-location-market-by-component-deployment
https://www.researchandmarkets.com/reports/4416241/indoor-location-market-by-component-deployment


Bibliography 165

[132] RONAO, CHARISSA ANN and CHO, SUNG-BAE: «Human activity recog-
nition with smartphone sensors using deep learning neural networks».
Expert Systems with Applications, 2016, 59, pp. 235–244.

[133] ROOS, TEEMU; MYLLYMÄKI, PETRI; TIRRI, HENRY; MISIKANGAS,
PAULI and SIEVÄNEN, JUHA: «A Probabilistic Approach to WLAN
User Location Estimation». International Journal of Wireless Informa-
tion Networks, 2002, 9(3), pp. 155–164. doi: https://doi.org/10.1023/A:
1016003126882.

[134] ROUSSEEUW, PETER J: «Silhouettes: a graphical aid to the interpreta-
tion and validation of cluster analysis». Journal of computational and
applied mathematics, 1987, 20, pp. 53–65.

[135] RUMELHART, DAVID E; HINTON, GEOFFREY E and WILLIAMS,
RONALD J: «Learning representations by back-propagating errors».
nature, 1986, 323(6088), p. 533.

[136] SANSANO, E.; MONTOLIU, R. and TORRES-SOSPEDRA, J.: «A Novel
Methodology to Estimate a Measurement of the Inherent Difficulty
of an Indoor Localization Radio Map». In: Proceedings of the 2017
International Conference on Indoor Positioning and Indoor Navigation
(IPIN’17), , 2017.

[137] SANSANO, EMILIO: ipft: Indoor Positioning Fingerprinting Toolset ,
2017.
https://cran.r-project.org/web/packages/ipft/index.

html

[138] SANSANO SANSANO, E.; BELMONTE-FERNÁNDEZ, O.; MONTOLIU, R.;
GASCÓ-COMPTE, A.; CABALLER MIEDES, A. and BAYARRI ITURRALDE,
P.: «Improving Positioning Accuracy in Ambient Assisted Living En-
vironments. A Multi-Sensor Approach». In: 2019 15th International
Conference on Intelligent Environments (IE), pp. 22–29, 2019.

[139] SANSANO-SANSANO, E; MONTOLIU, RAÚL and TORRES-SOSPEDRA,
JOAQUÍN: «A novel methodology to estimate a measurement of the

https://cran.r-project.org/web/packages/ipft/index.html
https://cran.r-project.org/web/packages/ipft/index.html


166 Bibliography

inherent difficulty of an indoor localization radio map». In: 2017 In-
ternational Conference on Indoor Positioning and Indoor Navigation
(IPIN), pp. 1–8. IEEE, 2017.

[140] SANSANO-SANSANO, EMILIO; BELMONTE-FERNÁNDEZ, ÓSCAR; MON-
TOLIU, RAÚL; GASCÓ-COMPTE, ARTURO and CABALLER-MIEDES,
ANTONIO: «Multimodal Sensor Data Integration for Indoor Position-
ing in Ambient-Assisted Living Environments». Mobile Information
Systems, 2020, 2020.

[141] SANSANO-SANSANO, EMILIO; MONTOLIU, RAÚL and BELMONTE FER-
NÁNDEZ, ÓSCAR: «A study of deep neural networks for human activity
recognition». Computational Intelligence, 2020.

[142] SANSANO-SANSANO, EMILIO; MONTOLIU COLÁS, RAUL; BELMONTE,
ÓSCAR and TORRES-SOSPEDRA, JOAQUÍN:. «Indoor Positioning and
Fingerprinting: The R Package ipft».

[143] SCHINDHELM, CORINA K and MACWILLIAMS, ASA: «Overview of
indoor positioning technologies for context aware AAL applications».
In: Ambient Assisted Living, pp. 273–291. Springer, 2011.

[144] SEYBOLD, J.S.: Introduction to RF Propagation. Wiley, 2005.

[145] SHANNO, D. F.: «Conditioning of Quasi-Newton Methods for Function
Minimization». Mathematics of Computation, 1970, 24(111), pp. 647–
656. doi: https://doi.org/10.1090/S0025-5718-1970-0274029-X.

[146] SHOAIB, MUHAMMAD; BOSCH, STEPHAN; INCEL, OZLEM DURMAZ;
SCHOLTEN, HANS and HAVINGA, PAUL J M: «Fusion of smartphone
motion sensors for physical activity recognition». Sensors, 2014, 14(6),
pp. 10146–10176.

[147] SHOAIB, MUHAMMAD; SCHOLTEN, HANS and HAVINGA, PAUL J M:
«Towards physical activity recognition using smartphone sensors». In:
Proceedings of the IEEE 10th international conference on Ubiquitous
intelligence and computing and 10th international conference on au-
tonomic and trusted computing (UIC/ATC’13), pp. 80–87. Institute of
Electrical and Electronics Engineers (IEEE), 2013.



Bibliography 167

[148] SHRESTHA, SHWETA; TALVITIE, JUKKA and LOHAN, ELENA SIMONA:
«On the fingerprints dynamics in WLAN indoor localization». In: Pro-
ceedings of the 13th International Conference on ITS Telecommunica-
tions (ITST’13), pp. 122–126, 2013. doi: https://doi.org/10.1109/ITST.
2013.6685532.

[149] SHU, YUANCHAO; BO, CHENG; SHEN, GUOBIN; ZHAO, CHUNSHUI; LI,
LIQUN and ZHAO, FENG: «Magicol: Indoor localization using pervasive
magnetic field and opportunistic WiFi sensing». IEEE Journal on
Selected Areas in Communications, 2015, 33(7), pp. 1443–1457.

[150] SRIVASTAVA, NITISH; HINTON, GEOFFREY; KRIZHEVSKY, ALEX;
SUTSKEVER, ILYA and SALAKHUTDINOV, RUSLAN: «Dropout: A Simple
Way to Prevent Neural Networks from Overfitting». Journal of Machine
Learning Research, 2014, 15, pp. 1929–1958.
http://jmlr.org/papers/v15/srivastava14a.html

[151] STISEN, ALLAN; BLUNCK, HENRIK; BHATTACHARYA, SOURAV; PREN-
TOW, THOR SIIGER; KJÆRGAARD, MIKKEL BAUN; DEY, ANIND; SONNE,
TOBIAS and JENSEN, MADS MØLLER: «Smart devices are different:
Assessing and mitigatingmobile sensing heterogeneities for activity
recognition». In: Proceedings of the 13th ACM Conference on Em-
bedded Networked Sensor Systems (SenSys’15), pp. 127–140. ACM,
2015.

[152] SZTYLER, TIMO and STUCKENSCHMIDT, HEINER: «On-body localiza-
tion of wearable devices: An investigation of position-aware activity
recognition». In: Proceedings of the IEEE International Conference
on Pervasive Computing and Communications (PerCom’16), pp. 1–9.
Institute of Electrical and Electronics Engineers (IEEE), 2016.

[153] TALVITIE, J.; LOHAN, E.S. and RENFORS, M.: «The effect of cov-
erage gaps and measurement inaccuracies in fingerprinting based
indoor localization.» In: Proceedings of International Conference on
Localization and GNSS 2014 (ICL-GNSS’14), , 2014.

[154] TORRES, JOAQUÍN; BELMONTE, ÓSCAR; MONTOLIU, RAÚL; TRILLES,
SERGIO and CALIA, ANDREA: «How feasible is WiFi fingerprint-based

http://jmlr.org/papers/v15/srivastava14a.html


168 Bibliography

indoor positioning for in-home monitoring?» In: Intelligent Environ-
ments (IE), 2016 12th International Conference on, pp. 68–75. IEEE,
2016.

[155] TORRES-SOSPEDRA, J.; RAMBLA, D.; MONTOLIU, R.; BELMONTE, O.
and HUERTA, J.: «UJIIndoorLoc-Mag: A New Database for Magnetic
Field-Based Localization Problems». In: Proceedings of the Sixth
Conference on Indoor Positioning and Indoor Navigation (IPIN’15), ,
2015.

[156] TORRES-SOSPEDRA, JOAQUIN; MONTOLIU, RAUL; MARTINEZ-USO,
ADOLFO; AVARIENTO, JOAN P.; ARNAU, TOMAS J.; BENEDITO-
BORDONAU, MAURI and HUERTA, JOAQUIN: «UJIIndoorLoc: A new
multi-building and multi-floor database for WLAN fingerprint-based
indoor localization problems». In: Proceedings of the 5th International
Conference on Indoor Positioning and Indoor Navigation (IPIN’14), pp.
261–270, 2015. doi: https://doi.org/10.1109/IPIN.2014.7275492.

[157] TORRES-SOSPEDRA, JOAQUÍN; MONTOLIU, RAÚL; TRILLES, SERGIO;
BELMONTE, ÓSCAR and HUERTA, JOAQUÍN: «Comprehensive analysis
of distance and similarity measures for Wi-Fi fingerprinting indoor
positioning systems». Expert Systems with Applications, 2015, 42(23),
pp. 9263–9278.

[158] TORRES-SOSPEDRA, JOAQUÍN; MONTOLIU, RAÚL; USÓ,
ADOLFO MARTÍNEZ; AVARIENTO, JOAN P.; ARNAU, TOMAS J.;
BENEDITO-BORDONAU, MAURI and HUERTA, JOAQUÍN: «UJIIn-
doorLoc: A new multi-building and multi-floor database for WLAN
fingerprint-based indoor localization problems». In: Proceedings of
the 2014 International Conference on Indoor Positioning and Indoor
Navigation (IPIN’14), pp. 261–270, 2014.

[159] TORRES-SOSPEDRA, JOAQUÍN; JIMÉNEZ, ANTONIO R.; KNAUTH, STE-
FAN; MOREIRA, ADRIANO; BEER, YAIR; FETZER, TONI; TA, VIET-
CUONG; MONTOLIU, RAUL; SECO, FERNANDO; MENDOZA-SILVA, GER-
MÁN M.; BELMONTE, OSCAR; KOUKOFIKIS, ATHANASIOS; NICOLAU,
MARIA JOÃO; COSTA, ANTÓNIO; MENESES, FILIPE; EBNER, FRANK;



Bibliography 169

DEINZER, FRANK; VAUFREYDAZ, DOMINIQUE; DAO, TRUNG-KIEN and
CASTELLI, ERIC: «The Smartphone-Based Offline Indoor Location
Competition at IPIN 2016: Analysis and Future Work». Sensors, 2017,
17(3).

[160] TORRES-SOSPEDRA, JOAQUÍN; MOREIRA, ADRIANO; KNAUTH,
STEFAN; BERKVENS, RAFAEL; MONTOLIU-COLÁS, RAÚL; ÓSCAR

BELMONTE-FERNÁNDEZ; TRILLES, SERGIO; NICOLAU, MARIA JOAO;
MENESES, FILIPE; COSTA, ANTONIO; KOUKOFIKIS, ATHANASIOUS;
WEYN, MARTEEN and PEREMANS, HERBERT: «Realistic Evaluation of
Indoor Positioning Systems Based on Wi-Fi Fingerprinting: The 2015
EvAAL-ETRI Competition». Journal of ambient intelligence and smart
environments, 2017, 9, p. 263–279.

[161] VANDERMEULEN, DRIES; VERCAUTEREN, CHARLES and WEYN,
MAARTEN: «Indoor localization using a magnetic flux density map
of a building». In: The Third International Conference on Ambient
Computing, Applications, Services and Technologies, pp. 42–49, 2013.

[162] WANG, YAPENG; YANG, XU; ZHAO, YUTIAN; LIU, YUE and CUTHBERT,
LAURIE: «Bluetooth positioning using RSSI and triangulation meth-
ods». In: Proceedings of the 10th IEEE Consumer Communications
and Networking Conference, (CCNC’13), pp. 837–842, 2013. doi:
https://doi.org/10.1109/CCNC.2013.6488558.

[163] WANG, ZHIHUA; YANG, ZHAOCHU and DONG, TAO: «A review of
wearable technologies for elderly care that can accurately track indoor
position, recognize physical activities and monitor vital signs in real
time». Sensors, 2017, 17(2), p. 341.

[164] WERBOS, PAUL J: «Generalization of backpropagation with application
to a recurrent gas market model». Neural networks, 1988, 1(4), pp.
339–356.

[165] WERNER, WEBER; RABAEY, JAN and AARTS, EMILE H.L. (Eds.):
Ambient intelligence. Springer-Verlag Berlin Heidelberg, 2005. ISBN
978-3-540-27139-0. doi: https://doi.org/10.1007/b138670.



170 Bibliography

[166] WICKHAM, HADLEY: «ggplot2». Wiley Interdisciplinary Reviews:
Computational Statistics, 2011, 3(2), pp. 180–185. doi: https://doi.org/
10.1002/wics.147.

[167] WILCOXON, FRANK: «Individual comparisons by ranking methods».
Biometrics bulletin, 1945, 1(6), pp. 80–83.

[168] WU, CHENSHU; YANG, ZHENG; LIU, YUNHAO and XI, WEI: «WILL:
Wireless Indoor Localization without Site Survey». IEEE Transactions
on Parallel and Distributed Systems, 2013, 24(4), pp. 839–848.

[169] WU, WANMIN; DASGUPTA, SANJOY; RAMIREZ, ERNESTO E; PETER-
SON, CARLYN and NORMAN, GREGORY J: «Classification accuracies
of physical activities using smartphone motion sensors». Journal of
medical Internet research, 2012, 14(5).

[170] XIAO, JIANG; ZHOU, ZIMU; YI, YOUWEN and NI, LIONEL M.: «A Survey
on Wireless Indoor Localization from the Device Perspective». ACM
Computing Surveys, 2016, 49(2), pp. 1–31. doi: https://doi.org/10.
1145/2933232.

[171] XIE, HONGWEI; GU, TAO; TAO, XIANPING; YE, HAIBO and LV, JIAN:
«MaLoc: A practical magnetic fingerprinting approach to indoor lo-
calization using smartphones». In: Proceedings of the 2014 ACM
International Joint Conference on Pervasive and Ubiquitous Comput-
ing, pp. 243–253, 2014.

[172] YANG, CHUN; NGUYEN, THAO and BLASCH, ERIK: «Mobile positioning
via fusion of mixed signals of opportunity». IEEE Aerospace and
Electronic Systems Magazine, 2014, 29(4), pp. 34–46. doi: https:
//doi.org/10.1109/MAES.2013.130105.

[173] YANG, JIANBO; NGUYEN, MINH NHUT; SAN, PHYO PHYO; LI, XIAOLI

and KRISHNASWAMY, SHONALI: «Deep Convolutional Neural Net-
works on Multichannel Time Series for Human Activity Recognition.»
In: Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI’15), volume 15, pp. 3995–4001, 2015.



Bibliography 171

[174] YOUSSEF, MOUSTAFA and AGRAWALA, ASHOK: «The Horus WLAN
Location Determination System». In: Proceedings of the 3rd Inter-
national Conference on Mobile Systems, Applications, and Services
(MobiSys’05), pp. 205–218, 2005.

[175] ZEBIN, TAHMINA; SCULLY, PATRICIA J and OZANYAN, KRIKOR B: «Hu-
man activity recognition with inertial sensors using a deep learning
approach». In: Proceedings of the IEEE Sensors conference (SEN-
SORS’16), pp. 1–3. Institute of Electrical and Electronics Engineers
(IEEE), 2016.

[176] ZENG, MING; NGUYEN, LE T; YU, BO; MENGSHOEL, OLE J; ZHU,
JIANG; WU, PANG and ZHANG, JOY: «Convolutional neural networks
for human activity recognition using mobile sensors». In: Proceedings
of the 6th International Conference on Mobile Computing, Applications
and Services (MobiCASE’14), pp. 197–205. Institute of Electrical and
Electronics Engineers (IEEE), 2014.

[177] ZHANG, LICHENG; WU, XIHONG and LUO, DINGSHENG: «Recognizing
human activities from raw accelerometer data using deep neural net-
works». In: Proceedings of the IEEE 14th International Conference on
Machine Learning and Applications (ICMLA’15), pp. 865–870. Institute
of Electrical and Electronics Engineers (IEEE), 2015.

[178] ZHANG, MI and SAWCHUK, ALEXANDER A: «USC-HAD: a daily activity
dataset for ubiquitous activity recognition using wearable sensors».
In: Proceedings of the ACM Conference on Ubiquitous Computing
(UbiComp’12), pp. 1036–1043. ACM, 2012.

[179] ZHENG, ZENGWEI; CHEN, YUANYI; HE, TAO; LI, FEI and CHEN, DAN:
«Weight-RSS: A calibration-free and robust method for WLAN-Based
indoor positioning». International Journal of Distributed Sensor Net-
works, 2015, 11(4), p. 573582.

[180] ZHU, NAN; ZHAO, HONGBO; FENG, WENQUAN and WANG, ZULIN: «A
novel particle filter approach for indoor positioning by fusing WiFi and
inertial sensors». Chinese Journal of Aeronautics, 2015, 28(6), pp.
1725–1734.


	Introduction
	Indoor Positioning and Fingerprinting: The R Package ipft 
	Introduction
	Problem statement. Terminology and notation
	An overview of the implemented algorithms
	Data wrangling
	Positioning algorithms
	The ipfKnn function.
	The ipfProbabilistic function.
	The ipfProximity function.
	Positioning algorithms comparison

	Beacon position estimation
	Data clustering
	Plotting functions
	Summary
	Future work
	Acknowledgements

	IndoorLoc Platform: A web tool to support the comparison of indoor positioning systems
	Introduction
	Related work
	Overview of the platform
	Data sets
	Ranking
	Methods
	Dashboard
	Implementation details

	Data sets included in the platform
	Wi-Fi based data sets
	UJIIndoorLoc
	IPIN2016 Tutorial
	Tampere University
	ALCALA2017 Tutorial

	AmbiLoc data set
	magPIE data set

	Methods included in the platform
	Deterministic-based approach
	Probabilistic-based approach

	Experiments
	The platform in use
	Conclusions

	A study of Deep Neural Networks for Human Activity Recognition 
	Introduction
	Related work
	Deep Learning architectures
	Deep Belief Networks
	Convolutional Neural Networks
	Recurrent Neural Networks.

	Datasets
	Experiments setup
	Experiment setup

	Results and discussion
	Results
	Discussion
	Results reproducibility

	Conclussions and future work

	Multimodal sensor data integration for indoor positioning in Ambient Assisted Living environments
	Introduction
	Background
	System overview
	Hardware
	Software
	Sensors

	Data
	Data exploration
	Experiments description
	Results
	Conclusions and future work
	Acknowledgements

	Discussion and Conclusions
	Discussion and Conclussions

	Related publications 
	Journals with impact
	Conferences
	Stays

	Bibliography

		2020-11-10T11:09:29+0100
	OSCAR BELMONTE FERNANDEZ - NIF:25404062X


		2020-11-10T12:05:19+0100
	RAUL|MONTOLIU|COLAS


		emiliosansano@gmail.com
	2020-11-10T12:37:11+0100
	EMILIO SANSANO SANSANO - NIF:52795648E
	I am the author of this document




