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quals he pogut superar els moments de crisi que inevitablement sorgeixen durant un

viatge tan llarg com aquest. Aprendre i treballar en companyia d’uns directors de tesi

com vosaltres ha estat un privilegi tant a nivell professional com personal.
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5. G. Pelegŕı, A. M. Marques, V. Ahufinger, J. Mompart, and R. Dias Second-order

topological corner states with ultracold atoms carrying orbital angular momentum in

optical lattices, Phys. Rev. B 100, 205109 (2019).

vii



viii

Other publications by Gerard Pelegŕı not included in this thesis:
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CHAPTER 1

Introduction

In the 1920’s, Bose [1] and Einstein [2, 3] formulated the statistical law that governs

the distribution of identical quantum particles with integer spin, known since then as

bosons. An immediate consequence of their finding was the prediction that, at very low

temperatures, bosonic systems experience a quantum phase transition into an exotic

state of matter known as Bose–Einstein condensate (BEC), in which all the particles

occupy a single quantum state and behave as a macroscopic coherent object. In atomic

systems, the critical temperature of the BEC transition can be estimated by comparing

the mean interatomic distance d with the de Broglie thermal wavelength λdB, which for

free particles is given by λdB = h/
√

2πmkBT , where m is the mass of the atoms, T

the temperature, kB the Boltzmann constant, and h the Planck constant. When T is

low enough that λdB ∼ d, the wave functions of the different atoms start to overlap,

setting in coherence effects in the system and thus enabling the formation of a BEC.

Bose–Einstein condensation was observed for the first time in 1937, when Kapitza [4]

and Allen and Misener [5] managed to cool liquid 4He until reaching its superfluid phase.

However, due to the strong interactions caused by the large density of this system, only a

small fraction of the particles were in the BEC phase. It became thus apparent that total

condensation was more likely to occur in very dilute systems with weak interactions, for

which the critical temperature of the BEC transition is several orders of magnitude lower

than the ∼ 2.17 K at which 4He becomes superfluid. After decades of improvements

in laser cooling techniques [6] (for which the 1997 Nobel prize in Physics was awarded

to Steven Chu, Claude Cohen-Tannoudji and William D. Phillips) and the additional

development of evaporative cooling protocols [7], almost full condensation was finally
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2 Chapter 1 – Introduction

reached in 1995, first with a gas of 87Rb [8] and shortly after with 7Li [9] and 23Na [10].

This milestone achievement was worth a second Nobel Prize, awarded in 2001 to Eric

Cornell, Carl Wieman and Wolfgang Ketterle. In order to operate in a regime where

interactions would not destroy the condensate, these alkali-atom BECs were realized

with extremely dilute gases (with densities on the order of ∼ 1012 − 1014cm−3), for

which the critical temperature of the transition is ∼ 100nK. A few years later, extended

cooling techniques were developed to reach the quantum degenerate regime in ultracold

fermionic gases [11–13]. Nowadays, BECs and degenerate Fermi gases are routinely

produced with a wide range of atomic species in laboratories all over the world, and

temperatures as low as 1 nK are within the experimental capabilities [14].

In spite of the extreme conditions under which they are produced, ultracold atom

systems offer a great degree of controllability through external electromagnetic fields.

An example of this is the possibility to tune with very high precision the strength of

the interatomic interactions (which, in general, can be considered to depend only on the

s− wave scattering length) by means of optical [15–17] or magnetic [18–20] Feshbach

resonances, enabling to explore in a single experiment the attractive, repulsive or even

non-interacting regime [21]. An impressive demonstration of the power of Feshbach

resonances is the realization in Fermi gases of the crossover between the Bardeen-Cooper-

Schrieffer state of Cooper pairs, which are characterized by a large pairing distance, to

a BEC formed by diatomic molecules of bosonic nature [22–24]. We also point out that,

besides having an unquestionable fundamental interest, BECs and cold atoms are very

well suited for a number of applications in sensing and metrology, ranging from the

measurement of magnetic fields [25], rotations [26], and gravitational forces [27], to the

fabrication of the most precise atomic clocks [28].

A very remarkable feature of ultracold atoms is that they can realize almost on-

demand quantum many-body systems when they are placed in the sine of optical lat-

tices, which are standing electromagnetic waves resulting from the interference between

counter-propagating laser beams. As a result of their far detuned interaction with the

atomic dipolar moment [29], optical lattices create effective periodic potentials for the

atoms, opening the door to the emulation of a vast amount of Hamiltonians of interest

in condensed matter physics in a very clean and versatile environment [30, 31]. The

first important demonstration of this possibility was the observation in 2002 of the

phase transition between the superfluid and Mott insulator regimes in a system of cold

bosons loaded in a three-dimensional optical lattice [32], which had been theoretically

predicted more than a decade earlier [33]. This system is well-described by the Bose-

Hubbard model [34], which is a simple but very rich model that accounts for the atom

hopping between the different sites of the lattice and the on-site interaction between

atom pairs. The transition was probed by changing the lattice depth, in such a way

that different ratios between the hopping rate and the interaction strength could be
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realized. In subsequent experiments, fermionic species were also trapped in optical lat-

tices [35–38] and the use of Feshbach resonances to tune the strength of the atom-atom

interactions was also demonstrated in these systems [16, 36, 37, 39, 40]. In recent years,

there have been many substantial advances that have pushed the degree of control over

ultracold atoms in optical lattices to an extraordinary level. To cite a few examples,

it is nowadays possible to create lattices with many different geometries [41–44] and

quasicrystals [45], to engineer artificial gauge fields [46–48] and spin-orbit coupling [49]

for neutral atoms, to probe the samples with single-site resolution using quantum gas

microscopes [50–55], to excite atoms beyond the first Bloch band [56–58] or to realize

models with different types of long-range interactions [59–61]. All these achievements

have consolidated ultracold atoms in optical lattices as an excellent platform to perform

quantum simulations [62], i.e., to mimick in a very well-controlled manner other quan-

tum systems of interest that are difficult to study, as originally suggested by Feynman

as early as in the 1980’s [63].

The study of topological phases is a prominent topic in condensed matter physics. In

the standard Landau-Ginzburg paradigm, phase transitions occur through the breaking

of some symmetry, which can be characterized by a local order parameter that takes

different values in the distinct phases [64]. This theory has proven to be very successful

in describing not only classical phase transitions like the ones experienced by water,

but also quantum critical phenomena such as, e.g., Bose–Einstein condensation [65].

Topological phases of matter, however, exhibit surprising properties that can not be

explained within this approach. The pioneering development of a theoretical framework

capable of describing these exotic states was worth the 2016 Nobel Prize in Physics,

awarded to David J. Thouless, F. Duncan M. Haldane and J. Michael Kosterlitz.

The essential ideas behind the description of these phases have been borrowed from

the mathematical discipline of topology, which studies the properties of geometric ob-

jects that remain unaltered under continuous deformations. From a topological per-

spective, a doughnut and a cup are equivalent because it is possible to continuously

transform one into the other, but they are different from a trophy because it would

be necessary to break them in order to open up another hole. Thus, the topologically

invariant quantity that distinguishes these objects is the genus, i.e., the number of holes

that can be used as a handle, which is g = 1 for the doughnut and the cup and g = 2 for

the trophy. According to the Gauss-Bonnet theorem [66], the genus can be computed as

an integral of the curvature of the surface, and can only be equal to a positive integer or

zero. It is, therefore, a global property of the object that does not depend on the details

of its surface. Analogously, topological phases of matter are characterized by global

order parameters, also called topological invariants, that are insensitive to local pertur-
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bations. In discrete systems, these invariants are usually defined as integrals over the

different bands that form the energy spectrum, and their values can only be changed by

deformations capable of closing the band gaps and opening them again. Thus, smooth

deformations can be regarded in this context as those that do not close any band gap

and, therefore, can not induce a topological phase transition, i.e., a change of the values

of the topological invariants [67].

One of the most remarkable examples of topological states of matter is the Integer

Quantum Hall Effect (IQHE), which was observed experimentally for the first time in

1980 in a two-dimensional semiconductor at very low temperature pierced by a mag-

netic field [68]. The IQHE consists on a very robust quantization of the transeverse

electric (or Hall) conductance in units of e2/h, where e is the elementary charge, that

does not depend on the microscopic details of the material [69, 70]. Two years after

its discovery, it was shown that the IQHE is originated by the direct correspondence

between the Hall conductance and the Chern number, a two-dimensional topological

invariant which is computed as a closed integral over the Brillouin zone and can only

take integer values [70]. The currents that give rise to the quantized conductivity are

transported by chiral edge states, which are protected by the topology of the bulk and

are therefore robust against local defects and perturbations. This mechanism, often

called the bulk-boundary correspondence, is common to a broader family of systems

known as topological insulators, which are materials that exhibit insulating properties

in their bulk but have conducting states at the edges [67].

Since the successful theoretical explanation of the IQHE, there have been many ad-

vances in the comprehension of topological insulators. In an early stage, it was commonly

accepted that topological states could only appear in the presence of a magnetic field

that breaks time-reversal symmetry. However, in 1988 Haldane proved this belief to be

wrong by proposing a simple model of non-interacting spinless electrons in a honeycomb

lattice without a magnetic field that has non-trivial topological properties [71]. The key

element of his proposal was the introduction of next-nearest-neighbour complex hopping

terms, which are responsible for the breaking of time-reversal symmetry. Almost two

decades later, Kane and Mele [72] demonstrated that the spin-orbit coupling can also

give rise to topological insulators with a global time-reversal symmetry, in what is known

as the quantum spin Hall effect. Shortly after its discovery, this effect was predicted [73]

and observed [74] in HgTe quantum wells and generalized to three-dimensional systems

[75–78]. Topological insulators have been systematically classified in terms of their di-

mensionality and protecting symmetries in a celebrated ”periodic table” [79]. Far from

experiencing a decay in scientific activity after this remarkable achievement, the study

of topological effects in condensed matter systems remains an active field of research, as

exemplified by the recent discovery of novel topological phases such as Weyl semimetals

[80], topological Anderson insulators [81], or higher-order topological systems [82].
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Ultracold atoms in optical lattices constitute a very flexible and controllable environ-

ment to implement and probe a variety of models of topological quantum matter [83].

The simulation of two-dimensional topological systems typically requires the presence

of spin-orbit coupling or strong magnetic fields, to which the atoms are insensitive due

to their charge neutrality. However, there exist strategies to engineer artificial gauge

fields for neutral atoms [84–86] which allow to produce effective magnetic fields that

would indeed be very difficult to reach in other systems [87, 88]. These approaches rely

on the imprinting of phase factors on the hopping amplitudes, which, according to the

Peierls substitution, encode the effect of a vector potential [89]. The two methods that

are most commonly employed to obtain these complex couplings consist on the use of

laser-assisted tunneling [84] and Floquet engineering [85, 90], which is based on applying

periodical modulations to the lattice with a period much smaller than any characteristic

time scale of the system and yields indeed topological states with singular properties

[91, 92]. Using these techniques, the Hofstadter [46, 47, 93] and Haldane [94] models

have been realized with ultracold atoms. Spin-orbit coupling can also be implemented

in cold atoms [49], allowing for the observation of the spin Hall effect [95]. Another

interesting possibility to simulate topological systems that can be exploited with ultra-

cold atoms is to take profit of synthetic dimensions [96, 97], i.e., mapping an internal or

motional atomic degree of freedom into an extra spatial direction. This approach has

been used, for instance, to obtain quantum Hall stripes from one-dimensional lattices

filled with bosons [98] and fermions [99] by associating hyperfine states with an effective

transverse direction, or to realize tailored one-dimensional topological models by map-

ping the momenta states of a BEC into spatial sites [100]. In addition to a vast toolbox

for designing topological models, ultracold atoms in optical lattices offer the possibility

to prepare topological states with high fidelity through dissipative engineering [101, 102],

to image them with high resolution by means of quantum gas microscopes [50–55], and

to directly probe topological invariants [93, 103–105]. We also note that ultracold atoms

offer a natural playground for the realization of strongly correlated topological phases

[106], which have been recently obtained with arrays of Rydberg atoms manipulated

with optical tweezers [107].

The focus of this thesis is on ultracold atoms carrying Orbital Angular Momen-

tum (OAM) and their potential use for quantum sensing, quantum simulation, and the

realization of topological phases of matter. The interest in these specific states is mo-

tivated by the important role that they play in the emergent field of atomtronics [108],

which aims at building neutral-atom analogues of electric circuits and to create novel
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devices that take profit of the unique properties of ultracold atoms. The basic building

blocks of these circuits are ring-shaped traps [109–116], which constitute closed loops

for matter waves that naturally support OAM states and their associated persistent

currents [117–121]. In these trapping geometries, OAM can be transferred to the atoms

using light beams [120, 122], by means of quenches [123] or by rotating a weak link

[121, 124], an approach which has been successfully employed to obtain the matter-wave

version of Superconducting Quantum Interference Devices (SQUIDs) [125–129]. Fur-

thermore, matter waves in toroidal traps offer potential uses in the sensing of rotations

[130–133]. In this thesis, we will explore the sensing applications of a device based

on a BEC trapped in a ring potential and prepared in an imbalanced superposition

of counter-rotating OAM states [134]. Alternatively, OAM states can be considered in

the context of optical lattices, where they are in a sense equivalent to the px and py
orbitals of the first excited Bloch band [58]. In these systems, OAM states could also be

created in the Mott insulator regime through shaking protocols [135, 136]. An interest-

ing property of ultracold atoms in OAM states is that their tunneling dynamics (which

can be studied either in arrays of ring potentials or in conventional optical lattices) is

governed by complex amplitudes, the phases of which can be modulated by tuning the

geometrical arrangement of the traps [137]. As we will show in this thesis, these tunable

complex hoppings provide an alternative way to engineer topological models with ul-

tracold atoms [138–140] and allow to perform flexible quantum simulations of spin−1/2

magnetic Hamiltonians related to the XY Z Heisenberg model [141].

Outline of the thesis

Before starting to describe the results of our research, in Chapter 2 we introduce the

main models and theoretical tools that we will use to investigate the different systems

under consideration. We start by reviewing two different approaches to the description

of ultracold gases that are valid for different regimes: the Gross–Pitaevskii equation

(GPE), which is a mean-field equation adequate for weakly interacting BECs at zero

temperature, and the Hubbard model, which provides a full quantum treatment of ul-

tracold atoms in optical lattices. Then, we introduce basic concepts that we will employ

in the characterization of topological phases. Specifically, we discuss the Berry phase

and its relation with one- and two-dimensional topological invariants, we outline how

these invariants are related to edge states and macroscopic observables, and we illustrate

the discussion with the Su-Schrieffer-Heeger model, which is the simplest example of a

one-dimensional topological insulator. Finally, we make extensive considerations about

the single-trap physics and tunneling dynamics of ultracold atoms in OAM states, which

constitute the common element to all the systems considered in the next Chapters.

In Chapter 3, we study in the context of the GPE a device consisting of a BEC
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trapped in a ring potential and prepared in an imbalanced superposition of counter-

rotating OAM modes. By computing numerically the time evolution of the system, we

show that the density profile of the BEC exhibits a minimal line that rotates due to

the non-linear interaction between the atoms. We analyse the equations of motion of

the probability amplitudes of the different OAM modes and we derive a model which

provides a simple relation between the frequency of rotation of the nodal line and the

strength of the atom-atom interactions. This relation opens the door to the use of the

device as a sensor of interactions, magnetic fields and rotations, for which we propose

a detailed experimental protocol to perform the corresponding measurements. Further-

more, we provide a method to prepare the imbalanced superposition of OAM states that

forms the initial state of the system and we carry out numerical simulations to examine

its validity.

In Chapter 4, we introduce a system consisting of an array of side-coupled cyllindri-

cally symmetric traps, where the tunneling dynamics of OAM states is governed by

complex hopping amplitudes. In particular, we consider a quasi one-dimensional lattice

with a diamond-chain geometry filled with non-interacting ultracold atoms loaded in

OAM states. We show that the phases that some of the tunneling amplitudes of the

tight-binding model that describes the system acquire due to the OAM degree of freedom

give rise to the equivalent of a net magnetic flux through the plaquettes of the chain.

This yields a topologically nontrivial band structure signalled by robust edge-localized

states which persist after the gap closing points, indicating the absence of a topological

phase transition in the system. We also demonstrate by means of successive analytical

mappings that this system constitutes a realization of a square-root topological insula-

tor. In addition, we discuss how a proper tuning of the tunneling parameters involved in

the dynamics may lead to the simultaneous flattening of all the bands. In this situation,

the system exhibits Aharonov-Bohm caging, a single-particle localization phenomenon

caused by destructive interference effects in periodic structures.

The effect of interactions in systems where ultracold atoms in OAM states experience

tunneling dynamics is addressed for the first time in Chapter 5. In particular, we study

a strongly correlated gas of ultracold bosons carrying OAM in arrays of side-coupled

cylindrically symmetric potentials. By means of second-order perturbation theory calcu-

lations, we show how these systems can be used to simulate a wide family of spin−1/2

models of quantum magnetism. By tuning the geometry of the system, the effective

spin couplings can be adjusted to realize several spin Hamiltonians of interest related

to a general XY Z Heisenberg model with external field. We also discuss how the rel-

ative strength of the effective couplings depends on the parameters of the lattice and

we analyse some of the phases that can be explored in realistic setups by tuning these

parameters. Finally, we make some considerations concerning the readout of spin states

and the stability of the system under ellastic collisions.
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After having introduced in the preceding Chapter the effect of interactions in lattices

filled with ultracold atoms in OAM states, in Chapter 6 we turn our attention back to the

diamond-chain lattice considered in Chapter 4 to examine a new scenario. Specifically,

we focus on the limit where all the bands are flat and we study the properties of two-

boson states in the presence of a weak attractive interaction. In this situation, the

kinetic energy is frozen and the interactions between single-particle states localized in

overlapping Aharonov-Bohm cages determine the shape of the two-body eigenstates.

We analyse the lowest-energy sector of the spectrum, which is composed of states in

which the two bosons occupy single-particle states belonging to the lowest flat bands.

We show that this sector can be divided in subspaces which are described by effective

models that can be rendered topologically non-trivial by tuning separately the strength

of the interactions in the different sites of the diamond chain. Thus, in the topological

phase, this system exhibits two-boson edge states that are in turn composed of compactly

localized single-particle modes. In the last part of the Chapter, we perform numerical

calculations to check our analytical predictions and to analyse the effect of deviations

from the flat-band and weakly interacting limits.

In contrast with the previous Chapters, where we mainly study quasi one-dimensional

arrays of traps, in Chapter 7 we consider a fully two-dimensional lattice. In particular,

we study the topological properties of a system consisting of a square lattice with unequal

intra- and inter-cell spacings filled with ultracold atoms loaded into OAM states. We

find that the band structure of the corresponding Hubbard model is topologically non-

trivial at first order, a fact signalled by the presence of edge states in the spectrum. More

interestingly, we show that this system also has second-order topological properties, as

indicated by the apparition of robust zero-energy states with a strong localization at the

corners of the lattice. Furthermore, we perform realistic numerical calculations which

demonstrate that these second-order topological effects can be observed in a wide range

of experimentally feasible parameters.

Finally, in Chapter 8 we summarize the main conclusions of this thesis and we provide

a brief outlook on further perspectives open by this work.



CHAPTER 2

Physical models and theoretical tools

In this Chapter, we provide a general overview of the main models and theoretical

tools that we will use throughout the thesis to investigate the different physical systems

under consideration. The first two sections are devoted to introducing the descriptions of

bosonic gases in two distinct regimes. In particular, in Sec. 2.1 we focus on the mean-field

modelling of Bose–Einstein Condensates through the Gross-Pitaevskii Equation, which

is adequate for bosonic gases formed by a large number of weakly-interacting particles

at zero temperature. In Sec. 2.2, we discuss the full quantum treatment with the Bose-

Hubbard model of systems formed by ultracold bosons trapped in optical lattices. In

Sec. 2.3, we change gears to review general concepts and techniques related to the

characterization of topological phases in discrete systems. We illustrate the discussion

with the specific example of the Su-Schrieffer-Heeger model, which is the simplest one-

dimensional model of a topological insulator. Finally, in Sec. 2.4 we analyse the physics

of ultracold atoms carrying orbital angular momentum in two-dimensional cylindrically

symmetric potentials, which constitute the common thread that relates all the systems

studied in this thesis, considering first a single atom in a single trap and then describing

the tunneling dynamics in side-coupled traps.

9
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2.1 Mean-field description of Bose–Einstein Con-

densates

In this section, we review a few aspects of the mean-field description of weakly-

interacting Bose–Einstein Condensates (BECs) at zero temperature, which is usually

done with the Gross–Pitaevskii Equation (GPE). First, we analyse in which situation

a three-dimensional bosonic gas can be considered to be in the mean field regime and

we outline the derivation of the GPE. After this, we comment briefly on the insights

about the superfluid properties of the BEC that can be gained by making a simple

analysis of the GPE and we introduce the main characteristics of persistent currents

in cylindrically symmetric geometries. Finally, we discuss under which conditions a

two-dimensional Bose gas can be described within the mean field approach and how the

GPE is modified in this case.

2.1.1 Gross–Pitaevskii equation

We consider a gas formed by N identical bosonic atoms of mass m and subjected

to an external potential Vext(~r). The atoms occupy a total volume V such that the

diluteness condition is fulfilled

r0 � d, (2.1)

where r0 is the range of the atom-atom interactions and d = (N/V )−1/3 is the mean dis-

tance between the atoms. In this situation, one can safely neglect interaction processes

involving three or more particles and consider only elastic collisions between pairs of

atoms caused by the two-body interatomic potential V (~r′ − ~r). Thus, the many-body

Hamiltonian of the system reads [65]

Ĥ =

ˆ
d3rΨ̂†(~r)

[
−~2∇2

2m
+ Vext(~r)

]
Ψ̂(~r)+

1

2

ˆ ˆ
d3rd3r′Ψ̂†(~r)Ψ̂†(~r′)V (~r′−~r)Ψ̂(~r)Ψ̂(~r′),

(2.2)

where Ψ̂(~r) and Ψ̂†(~r) are respectively the bosonic annihilation and creation field oper-

ators, which satisfy the commutation relations

[
Ψ̂(~r), Ψ̂†(~r′)

]
= δ(~r − ~r′), (2.3a)[

Ψ̂†(~r), Ψ̂†(~r′)
]

=
[
Ψ̂(~r), Ψ̂(~r′)

]
= 0. (2.3b)
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Making use of the Heisenberg picture, one obtains the following equation of motion for

the bosonic field operator

i~
∂Ψ̂(~r, t)

∂t
=
[
Ψ̂(~r, t), Ĥ

]
=

[
−~2∇2

2m
+ Vext(~r) +

ˆ
d3r′Ψ̂†(~r′, t)V (~r′ − ~r)Ψ̂(~r′, t)

]
Ψ̂(~r, t). (2.4)

The GPE can be derived from this general equation of motion by making assumptions

that are justified for dilute systems at very low temperatures. In order for the bosons

to form a BEC, the temperature T must be low enough that the thermal de Broglie

wavelengths of the atoms start to overlap, a situation that occurs when they become of

the order of the mean interatomic distance

d . λdB =
h

p
=

h√
2πmkbT

, (2.5)

where p is the momentum of the atom and kB the Boltzmann’s constant. Combining

Eq. (2.5) and the diluteness condition (2.1), we see that the relevant values of the mo-

menta of the atoms satisfy the condition pr0/h � 1. According to standard scattering

theory [142], for such low momenta the scattering amplitude is isotropic and indepen-

dent of the energy, and the two-body interactions are described by a single parameter:

the s−wave scattering length aS. Therefore, we can substitute the real interaction po-

tential V (~r′−~r) by a contact pseudo-potential which has the same low-energy scattering

properties as the original one

Veff(~r′ − ~r) =
4π~2aS
m

δ(~r′ − ~r) ≡ g3Dδ(~r′ − ~r). (2.6)

We note that aS can be either positive or negative (yielding repulsive or attractive in-

teractions, respectively) and can be tuned in a wide range of values using Feshbach

resonances [20]. Furthermore, assuming a large number of particles in the condensate

and considering the zero-temperature limit, we can neglect thermal and quantum fluc-

tuations in the bosonic field operator and substitute it by its mean value

Ψ̂(~r, t) = 〈Ψ̂(~r, t)〉+ δΨ̂(~r, t) ≈ 〈Ψ̂(~r, t)〉 ≡ Ψ(~r, t). (2.7)

The mean value of the field operator Ψ(~r, t) = |Ψ(~r, t)|eiS(~r,t), which is usually called

the condensate wave function, is a classical order parameter that can be interpreted

as the wave function of each of the bosons in the situation in which there is complete

condensation. Inserting Eqs. (2.6) and (2.7) into Eq. (2.4) and assuming that Ψ(~r, t)

varies slowly in the range of the interatomic interactions, we obtain a non-linear mean-

field equation that governs the dynamics of the condensate wave function, the celebrated
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GPE [143, 144]

i~
∂Ψ(~r, t)

∂t
=

[
−~2∇2

2m
+ Vext(~r) + g3D|Ψ(~r, t)|2

]
Ψ(~r, t), (2.8)

where the condensate wave function is normalized to the total number of particles,´
d3r|Ψ(~r, t)|2 = N . It can be easily checked that N is a conserved quantity under a

time evolution governed by the GPE [65]. The total energy, which is also a conserved

quantity of the system, is given by the functional

E =

ˆ
d3r

[
~2

2
|∇Ψ(~r, t)|2 + Vext(~r) +

g3D

2
|Ψ(~r, t)|4

]
. (2.9)

An additional condition of applicability of the mean-field approach is that the relation

d� ξ is fulfilled, where

ξ =
~√

2mng3D

=
1√

8πnaS
(2.10)

is the healing length, which corresponds to the distance at which the interaction and

kinetic energy terms of Eq. (2.9) balance.

By considering a stationary solution Ψ(~r, t) = Ψ(~r)e−iµt/~, we obtain the time-

independent version of the GPE[
−~2∇2

2m
+ Vext(~r) + g3D|Ψ(~r)|2

]
Ψ(~r) = µΨ(~r), (2.11)

where µ is the chemical potential of the system, i.e., the necessary energy to remove one

particle from the BEC.

2.1.2 Superfluidity and persistent currents

Bose–Einstein condensation is closely related to superfluidity, a macroscopic quan-

tum phenomenon by which substances can flow without dissipating energy. A simple

analysis of the GPE can provide an initial insight into this connection. By multiplying

Eq. (2.8) by Ψ∗(~r, t) and subtracting the complex conjugate, we obtain a continuity

equation for the condensate wave function Ψ(~r, t) = |Ψ(~r, t)|eiS(~r,t)

∂|Ψ(~r, t)|2

∂t
+∇ ·~j(~r, t) = 0, (2.12)

where we have introduced the current density

~j(~r, t) = − i~
2m

(Ψ∗∇Ψ−Ψ∇Ψ∗) =
~
m
|Ψ(~r, t)|2∇S(~r, t). (2.13)
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By direct analogy with classical hydrodynamic theory [65], we can define the velocity

field of the condensate as

~v(~r, t) =
1

|Ψ|2
~j(~r, t) =

~
m
∇S(~r, t), (2.14)

which fulfills the irrotationality condition ∇ × ~j(~r, t) = 0, a characteristic feature of

superfluids.

An interesting example of superfluidity in BECs are persistent circular currents [109,

117–121, 123, 126, 129, 145], which have been reported to flow without dissipation for

several seconds [119]. These currents are possible whenever the trapping potential has

cylindrical symmetry, in which case the GPE (2.8) admits solutions of the form

Ψ(~r) = |Ψ(r)|eiνϕ. (2.15)

Due to the single-valuedness of the wave function, ν must be an integer. Therefore, the

wave function (2.15) represents a state in which each of the N atoms forming the BEC

is in an eigenstate of the angular momentum operator L̂z = −i~ ∂
∂ϕ

with eigenvalue ~ν,

yielding a total angular momentum
〈
L̂z

〉
= N~ν. According to Eq. (2.14), the velocity

field associated with the condensate wave function (2.15) is

~v =
~
m

ν

r
êϕ, (2.16)

where êϕ is the azimuthal unit vector. Note that this law is quite different from the solid

rigid rotation, where the linear velocity is given by ~v = ~ω × ~r, with ~ω being a constant

angular velocity. The velocity distribution (2.16) is instead associated with a vortex,

which is characterized by a vanishing density at its center. The circulation around a

closed contour centred about the z axis is quantized in units of h/m:

˛
~v · d~l =

ˆ 2π

0

~
m

ν

r
rdϕ = ν

h

m
. (2.17)

The quantization of the circulation around the center of the vortex has been measured

both in systems where the vortices are induced by a rotating weak link [126] or emerge

stochastically through the Kibble-Zurek mechanism [123], and is a general feature of

BECs with more complicated density distributions including multiple vortices [146].

2.1.3 The two-dimensional Gross–Pitaevskii equation

A fundamental requirement for the existence of a BEC is that the one-body density

matrix 〈Ψ̂(~r)Ψ̂(~r)〉 has long-range order. While in three-dimensional systems true con-

densation always exists below a critical temperature Tc [65], at finite temperatures phase
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fluctuations in the field operator may destroy the long-range order in one-dimensional

[147] and two-dimensional [148] Bose gases, giving rise to quasicondensate phases. How-

ever, at T = 0 the fluctuations can be neglected and true condensation is also possible

in weakly-interacting low-dimensional systems [65]. When this occurs, under certain

conditions it is possible to obtain lower-dimensional versions of the three-dimensional

GPE (2.8). Here, we discuss the derivation of the two-dimensional GPE, which is the

main theoretical tool that we will use in Chapter 3.

We consider a Bose gas at T = 0 with a uniform density in the x − y plane and

confined in the z direction by a harmonic potential V (z) = mω2
zz

2/2, which has an

associated length scale az =
√

~/mωz. The condensate wave function can be written as

Ψ(z) =

√
n2f(z′)
√
az

, (2.18)

where z′ = z/az and n2 =
´
dz|Ψ(z)|2 = N/S, with N and S being respectively the total

number of atoms and the surface that the gas occupies in the x− y plane. Introducing

the Ansatz (2.18) into the time-independent GPE (2.11), we obtain an equation for f(z′)(
−1

2

∂2

∂z′2
+

1

2
z′

2
+ 4πazaSn2f(z′)2

)
f(z′) =

µ

~ωz
f(z′). (2.19)

In the azaSn2 � 1 limit, we can neglect the interaction term and approximate

the solution of Eq. (2.19) by the ground state of the axial harmonic potential,

f(z′) = (1/π1/4)e−z
2/2a2z , which fulfills the normalization condition

´
dz′|f(z′)| = 1.

Since the BEC is tightly confined along the z direction, the mean interatomic dis-

tance becomes d = 1/
√
n2. As a consequence of this, the ξ/d ratio turns out to be

ξ/d ∝
√
az/aS. In contrast with the three dimensional case, where this ratio scales as

ξ/d ∝ (naS)−1/6, in this two-dimensional scenario the quantity ξ/d is independent of

the density. Thus, the mean-field approach is justified as long as the condition aS � az
is fulfilled.

By treating the interaction term in Eq. (2.19) as a perturbation, we find that the

chemical potential of the system is given by

µ =
~ωz
2

+ g2Dn2, (2.20)

where we have defined the two-dimensional interaction parameter

g2D =
√

8π
~2

2m

aS
az
. (2.21)

If we now introduce a shallow potential V (x, y) such that the trapping frequencies along

the x and y directions are much lower than along z and the conditions aSazn2 � 1 and
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aS � az are satisfied, we can factorize the condensate wave function as

Ψ(~r) =
f(z′)
√
az
ψ(x, y) =

e−z
2/2a2z

π1/4
√
az
ψ(x, y). (2.22)

By inserting Eq. (2.22) into Eq. (2.11) and integrating over the z coordinate, we obtain

the time-independent two-dimensional GPE[
−~2∇2

2m
+ V (x, y) + g2D|ψ(x, y)|2

]
ψ(x, y) = µ′ψ(x, y), (2.23)

where we have defined the two-dimensional chemical potential µ′ ≡ µ− ~ωz/2.

2.2 Ultracold atoms in optical lattices

In this section, we describe some of the basic aspects of the physics of ultracold atoms

in optical lattices and their treatment with the Bose–Hubbard (BH) model. First, we

review the physics of a single particle in a one-dimensional periodic potential, as the

one created by two counter-propagating laser beams to form an optical lattice. Then,

we derive the single-band BH model, which describes a system of many interacting

cold bosons in an optical lattice, and we discuss its main phases. Finally, we briefly

explain how to address two practical examples of calculations using the BH model: the

exact diagonalization of the Hamiltonian and the calculation of the single-particle energy

bands in the tight-binding regime.

2.2.1 Single-particle properties

We start by considering the problem of a single particle of mass m in a periodic

potential. For simplicity, we assume that the lattice is one-dimensional, but the gener-

alization to higher dimensions can be done in a straightforward manner. This system is

described by the Hamiltonian

H0 = − ~
2m

∂

∂x
+ V (x), (2.24)

where the potential has the form V (x) = V (x + d) with d being the periodicity of the

lattice. As it is well known from solid state physics [149], Bloch’s theorem states that

the eigenstates of the Hamiltonian (2.24) are of the form

Ψn
k(x) = eikxunk(x); (2.25)

H0Ψn
k(x) = En

kΨn
k(x), (2.26)
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where unk(x) = unk(x + d) is a function with the same periodicity as the lattice, k is

a quantum number known as the quasimomentum and n is an integer labelling the

energy levels. The Bloch waves (2.26) are spatially delocalized eigenstates that can be

interpreted as plane waves modulated by the potential of the lattice through the function

unk(x). These states fulfill the orthonormality relation

ˆ
Ψn′∗
k′ (x)Ψn

k(x)dx = δn′nδk′k. (2.27)

As a consequence of Bloch’s theorem, the Bloch waves Ψn
k(x) also have the periodicity

of the lattice, Ψn
k(x) = Ψn

k(x+ d), and the relevant values of the quasimomentum are

restricted to the first Brillouin zone, k ∈ (−π/d, π/d]. Therefore, for each value of n

the energies form a band as a function of the quasimomentum k, the values of which

are restricted to the first Brillouin zone. Typically, these bands are separated by energy

gaps.

Bloch waves do not constitute the only possible basis for addressing the physics of

periodic potentials. A particularly useful alternative is provided by the Wannier func-

tions, which can be constructed by superposing Bloch waves according to the relation

wn(x− xi) =
1√
M

∑
k

e−ikxiΨn
k(x), (2.28)

where the sum runs over the first Brillouin zone and M is the number of minima of the

potential, i.e., of lattice sites. These functions are exponentially localized around the

minima of the potential xi and fulfill the orthonormality relation
ˆ
w∗n′(x− xi′)wn(x− xi)dx = δn′nδi′i. (2.29)

The general formalism presented so far can be applied to optical lattices, which are

periodic distributions of light created by the interference of counter-propagating laser

beams that can be used to trap cold atoms through the dipole force of light [29, 30]. In

one dimension, the effective potential that the atom sees has the form

V (x) = V0 sin2(kLx), (2.30)

where V0 is the lattice depth and kL = 2π/λ is the wave vector of the laser, which

defines a natural energy scale ER = ~2k2
L/2m. In Fig. 2.1 we show the band structure

associated with the potential (2.30) for different values of the ratio V0/ER. In the free

particle limit, V0 = 0, the band structure is gapless and corresponds to a quadratic

dispersion folded into the first Brillouin zone. Increasing the lattice depth V0 has the

effect of flattening the bands and widening the gaps between them. This behaviour,

which is more pronounced for the lower part of the spectrum, can be understood by
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considering the deep lattice limit V0 � ER. In this regime, the potential (2.30) can be

locally approximated by a harmonic trap

V0 sin2(kL(x− xi)) ≈ V0k
2
L(x− xi)2 =

mω2
o.l.(x− xi)2

2
, (2.31)

where we have defined the optical lattice trapping frequency

ωo.l. ≡
√

2V0k2
L

m
=

2
√
V0ER
~

. (2.32)

Therefore, in this limit the Wannier functions are harmonic oscillator eigenstates local-

ized at the minima of the potential and the energy spectrum is composed of flat bands

of energy En = (1/2 + n) ~ωo.l..

Figure 2.1: Band structure of a one-dimensional optical lattice, described by the poten-

tial (2.30), for different values of the lattice depth V0.

2.2.2 Bose-Hubbard model

After describing the physics of a single ultracold atom in an optical lattice, we are

now in a position to consider the many-body scenario. As we discussed in Sec. 2.1, if

the atomic gas is sufficiently cold and dilute we can assume that the only relevant inter-

actions are two-body s−wave collisions, in such a way that the many-body Hamiltonian

of the system can be written as

Ĥ =

ˆ
d~rΨ̂†(~r)

[
−~2∇2

2m
+ V (~r)

]
Ψ̂(~r) +

g

2

ˆ
d~rΨ̂†(~r)Ψ̂†(~r)Ψ̂(~r)Ψ̂(~r), (2.33)

where V (~r) is the generalization to any number of dimensions of the optical lattice

potential Eq. (2.30) and g is a parameter proportional to the s−wave scattering length
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whose exact expression depends on the dimensionality of the problem. The bosonic field

operator can be expanded in terms of the Wannier functions as

Ψ̂ =
∑
n

∑
i

wn(~r − ~ri)âni , (2.34)

where âni (ân†i ) is a bosonic operator associated with the annihilation (creation) of a

particle localized at site i and belonging to the nth band. These operators satisfy the

commutation relations

[
ân
′

i′ , â
n†
i

]
= δi′iδn′n, (2.35a)[

ân
′

i′ , â
n
i

]
=
[
ân
′†
i′ , â

n†
i

]
= 0. (2.35b)

Assuming that the lattice is sufficiently deep and that the temperature is low enough

that interband transitions are suppressed, the operator (2.34) can be restricted to a

single energy band. For illustrative purposes, we discuss here the standard BH model,

which is obtained by considering that the gas is confined to the lowest band and that the

tight-binding approximation is applicable, i.e., that the Wannier functions are localized

over a smaller distance than the separation between the lattice sites. Retaining only the

terms of the interaction part of the Hamiltonian (2.33) that describe collisions between

bosons occupying the same site, one arrives at the BH Hamiltonian

ĤBH = −
∑
i,i′

Ji,i′
(
â†i′ âi + â†i âi′

)
+

1

2

∑
i

Uin̂i(n̂i − 1)−
∑
i

µin̂i, (2.36)

where we have dropped for simplicity the band index from the lowest-band bosonic oper-

ators at site i and we have defined the bosonic number operator n̂i = â†i âi. For fermionic

atoms, an equivalent Hubbard model could be formulated [30] by taking into account

that the corresponding creation and annihilation operators fulfill anti-commutation rela-

tions instead of the commutation relations (2.35). In this case, many-body configurations

with more than one atom in the same internal state and in the same site are forbidden

due to the Pauli principle.

The first term of Eq. (2.36) describes the single particle hopping between sites i and

i′. The second one accounts for the on-site interactions between bosons occupying the

same site, yielding an energy Ui for each pair of bosons on every site i. Finally, the third

term accounts for the chemical potential, which is the necessary energy to remove one

boson from the lattice. The amplitudes of these terms appearing in Eq. (2.36) can be
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computed in terms of the lowest-band Wannier functions w(~r − ~ri) as

Ji,i′ =

ˆ
w∗(~r − ~ri)

[
−~2∇2

2m
+ V (~r)

]
w(~r − ~ri′)d~r, (2.37)

µi =

ˆ
w∗(~r − ~ri)

[
−~2∇2

2m
+ V (~r)

]
w(~r − ~ri)d~r, (2.38)

Ui = g

ˆ
|w(~r − ~ri)|4 d~r. (2.39)

Considering that all sites are equivalent and that, due to the exponential decay of the

Wannier functions, the tunneling processes are restricted to nearest neighbours, the BH

model is reduced to the simpler form

ĤBH = −J
∑
〈i,i′〉

(
â†i′ âi + â†i âi′

)
+
U

2

∑
i

n̂i(n̂i − 1)− µ
∑
i

n̂i, (2.40)

where the notation 〈i, i′〉 indicates that the sum runs over nearest-neighbouring sites.

We note that the total number of particles is conserved under the action of the BH

Hamiltonian, as can be checked by computing the commutator with the sum of the

particle number operators

[ĤBH,
∑
i

n̂i] = 0. (2.41)

2.2.3 Superfluid and Mott Insulator phases

A cold bosonic gas in an optical lattice described by the BH model (2.40) can be in

two distinct phases depending on the ratio between the interaction strength U and the

tunneling rate J [33, 34]. These phases can be intuitively understood by considering

the extreme limits U/J = 0,∞ in a one-dimensional lattice with M sites and filled with

N bosons, in such a way that r = N/M is an integer number. On the one hand, in

the non-interacting limit, U/J = 0, the bosons can hop freely and are thus delocalized

over the entire lattice. Therefore, the ground state of the system consists of a superfluid

many-body coherent state in which all the bosons occupy a single particle state equally

distributed through all sites

|Ψ〉SF =

(
1√
M !

M∑
i=1

â†i

)N

|0〉 , (2.42)

where |0〉 stands for the vacuum state. In the superfluid state, the occupation numbers

of the different sites follow a Poissonian distribution. On the other hand, in the strongly

interacting limit, U/J = ∞, the tunneling processes are completely suppressed. Since

each pair of bosons on every site of the lattice yields an interaction energy U , the energy
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of the system is minimized by reducing as much as possible the number of bosons on

every site. Therefore, the many-body ground state, which is known as the Mott insulator

state, consists of all sites being equally occupied by r bosons

|Ψ〉MI =
M∏
i=1

1√
r!

(â†i )
r |0〉 . (2.43)

In this phase, the coherence is completely lost and the occupation number becomes a

precisely defined quantity. Thus, the Mott insulator state can be regarded as a localized

state in real space, whereas the superfluid state is composed of a single Bloch function

and is therefore completely localized in momentum space.

The phase diagram of the BH model for a fixed value of U as a function of J and

µ has a characteristic form of Mott lobes which have higher mean occupation numbers

as µ is increased [30]. The phase transition between the Mott insulator and superfluid

phases was probed by varying the lattice depth [32], in such a way that the regimes

U � J and U � J could be realized by implementing a shallow and a deep lattice,

respectively.

2.2.4 Fock basis and matrix representation

In order to deal with practical calculations of eigenstates and eigenenergies in the

context of the BH model, it is necessary to fix a basis that describes all the possible

many-body configurations of bosons in the different modes of the optical lattice (here,

we adopt a broad definition of mode that does not necessarily refer to physical sites

of the lattice, but can also include internal or external degrees of freedom that yield

generalized BH models). A convenient choice is to work in the Fock representation,

which is defined as the basis of eigenstates of the number operators associated with each

mode. Thus, the Fock states are labelled by the occupation of each of the single-particle

modes in the total many-body configuration of the optical lattice, |n1, n2, ..., ni, ..., nM〉,
and can be constructed by operating over the vacuum state as

|n1, n2, ..., ni, ..., nM〉 =
M∏
j=1

(a†j)
nj√
nj!
|0〉 , (2.44)

where M is the total number of modes of the lattice. The sum of the populations of

all the modes is the total number of bosons,
∑M

i=1 ni = N . The total number of Fock

states is given by the size of the Hilbert space

D(N,M) =

(
M +N − 1

N

)
=

(N +M − 1)!

N !(M − 1)!
. (2.45)
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By associating a label l to each Fock state, |l〉 ≡ |n1, ..., nM〉, we can construct a general

many-body state as a weighted sum of all the Fock states

|Ψ〉 =
D∑
l=1

cl |l〉 . (2.46)

Taking into account that the bosonic creation and destruction operators associated with

each mode act over the Fock states as

â†i |n1, ..., ni, ..., nM〉 =
√
ni + 1 |n1, ..., ni + 1, ..., nM〉 , (2.47a)

âi |n1, ..., ni, ..., nM〉 =
√
ni |n1, ..., ni − 1, ..., nM〉 , (2.47b)

and that the Fock states fulfill the orthonormality condition

〈n′1, ..., n′M |n1, ..., nM 〉 =
M∏
j=1

δn′jnj ⇒ 〈l
′ |l 〉 = δll′ , (2.48)

we can use the Fock basis to compute the matrix elements of the BH Hamiltonian,

H ll′

BH =
〈
l′
∣∣∣ĤBH

∣∣∣ l〉 =
〈
n′1, ..., n

′
M

∣∣∣ĤBH

∣∣∣n1, ..., nM

〉
. (2.49)

In this thesis, we will find the eigenstates and energies of the different BH models that

we will consider by diagonalizing exactly their associated matrices [150]. This approach

gives access to all the properties of the system, but it is limited by the rapid growth of

the Hilbert space size (2.45) with the total number of particles and modes. If we would

be interested in dealing with systems of large sizes, it would be more convenient to use

reduced Hilbert space methods based on matrix product state representations of the

many-body states [151].

2.2.5 Band structure in the tight-binding approximation

The BH model can be used to compute the single-particle spectrum by considering

a lattice with periodic boundary conditions. In this situation, it is possible to express

the bosonic creation and annihilation operators in terms of their Fourier components

â†j =
1√
Nc

√
d

2π

ˆ
BZ

â†ke
ikxjdk, (2.50)

âj =
1√
Nc

√
d

2π

ˆ
BZ

âke
−ikxjdk, (2.51)

where Nc → ∞ is the number of unit cells, d is the lattice spacing, xj = jd is the

position on the lattice of the jth site, and the BZ subindex indicates that the integrals are
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restricted to the first Brillouin zone, k ∈ (−π/d, π/d]. For simplicity, we have considered

a one-dimensional system, but Eqs. (2.50) and (2.51) can be readily generalized to higher

dimensions. Inserting these expansions into the BH Hamiltonian, one can obtain the

energy spectrum in quasimomentum space, which forms the tight-binding equivalent of

the band structure.

To illustrate the procedure, we consider the non-interacting BH Hamiltonian de-

scribing a uniform one-dimensional lattice, which is given by Eq. (2.36) for U, µ = 0. In

this case, the number of unit cells Nc coincides with the number of lattices sites M , so

using the expansions (2.50) and (2.51) we can write

ĤBH = −J
M∑
j=1

â†j âj+1 + â†j âj+1

= −J
M∑
j=1

d

2πM

ˆ
BZ

ˆ
BZ

dkdk′â†kâk′
(
eikxje−ik

′(xj+d) + e−ikxjeik
′(xj+d)

)
= −

M∑
j=1

J

M

ˆ
BZ

â†kdk
d

2π

ˆ
BZ

dk′âk′
(
eixj(k−k

′)e−ik
′d + e−ixj(k−k

′)eik
′d
)

= −
M∑
j=1

J

M

ˆ
BZ

dkâ†k

ˆ
BZ

dk′âk′δ(k − k′)
(
e−ik

′d + eik
′d
)

= −
M∑
j=1

J

M

ˆ
BZ

dkâ†kâk
(
e−ikd + eikd

)
= −2J

ˆ
BZ

dkâ†kâk cos(kd)dk. (2.52)

Therefore, in the tight-binding approximation the single-particle spectrum is composed

of a single energy band E(k) = −2J cos(kd). Although we have assumed periodic

boundary conditions in order to carry out the calculation, this dispersion relation also

fits the bulk spectrum of a system with open boundaries. In more sophisticated lattices,

such as the one- and two-dimensional ones that we will consider in Chapter 4 and

Chapters 6 and 7 respectively, there are as many energy bands in the spectrum as

modes per unit cell. In those cases, the Hamiltonian in quasimomentum space can be

written in terms of a k− dependent matrix, the eigenvalues of which are the energy

bands.

2.3 Topology in discrete systems

In this section, we introduce the general formalism used for the description of topo-

logical insulators. We start by discussing the Berry phase, which is a geometrical phase

acquired in the adiabatic motion of a particle in a closed circuit in parameter space.
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Then, we show how this phase can be used to define topological invariants in lattice

models with gapped spectra. As a first specific example of this connection, we define

the Chern number and we show how it can be used to explain the integer quantum Hall

effect. Finally, we introduce the Zak’s phase, which is the one-dimensional version of

the Berry phase, and we illustrate its use with the topological characterization of the

Su-Schrieffer-Heeger (SSH) model.

2.3.1 Geometrical phase in the adiabatic motion of a particle

Quantum states are always defined up to a global phase. In most cases, this factor

has no effect in the computation of observables and therefore plays no physical role.

However, as shown by Berry in a seminal paper [152], when the Hamiltonian depends

on some adiabatically varying parameters its eigenstates might acquire a geometrical

phase, the so-called Berry phase, which has a deep physical meaning. In particular, as

we show in this section, the Berry phase has a direct connection with the topological

properties of the system [153].

Let us consider a Hamiltonian H(R) that depends on a set of parameters R =

(R1, ..., Rn) that vary with time, R = R(t). We denote by |n(R)〉 the eigenstates of

H(R) at a given time t

H(R) |n(R)〉 = En(R) |n(R)〉 . (2.53)

Now we consider the time evolution of the state |n(R)〉 in the interval t ∈ (0, T ]. The

adiabatic theorem states that if the energy spectrum of the Hamiltonian remains gapped

around En(R) along the time evolution, i.e., if

|En(R)− En±1(R)| > 0 ∀R(t), (2.54)

and the variation of the parameters is slow compared to the frequencies associated with

the energy gaps, then the time-evolved state remains an instantaneous eigenstate of

Ĥ(R), picking only a phase factor

|ψ(t)〉 = e−i~
´ t
0 dt
′En(R(t′))eiϕn(t) |n(R(t))〉 . (2.55)

The first exponential in Eq. (2.55) is the usual dynamical phase factor that appears in

the time evolution of any eigenstate. Inserting Eq. (2.55) into the Schrödinger equation,

projecting it into the eigenstate |n(R)〉 and using the chain-rule relation d
dt
|n(R(t))〉 =

dR(t)
dt

∂
∂R
|n(R)〉, we find the following expression for the phase appearing in the second

exponential

ϕn =

ˆ
C

An(R) · dR, (2.56)
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where C denotes the contour that R(t) follows in parameter space and we have defined

the Berry connection as

An(R) = i

〈
n(R)

∣∣∣∣ ∂∂R
∣∣∣∣n(R)

〉
. (2.57)

The Berry connection is not a gauge-invariant quantity, as can be seen by applying the

gauge transformation

|n(R)〉 → eif(R) |n(R)〉

An(R)→ An(R)− ∂

∂R
f(R). (2.58)

Thus, one can always find a gauge transformation that cancels the phase ϕn for an

arbitrary contour with open ends. However, if one considers a contour consisting of a

closed loop in parameter space, i.e., such that R(0) = R(T ), then the fact that the

eigenstate |n(R)〉 must be single-valued imposes the following condition on the gauge

transformation

f(R(0))− f(R(T )) = 2πq, (2.59)

where q is an integer. Therefore, in this situation ϕn becomes a gauge-invariant quantity

known as the Berry phase or geometrical phase

γn =

˛
C

An(R) · dR. (2.60)

Applying Stokes’ theorem in Eq. (2.60), we can also compute the Berry phase as

γn =

‹
C

Ωn · dS, (2.61)

where the integral is performed over any surface enclosed by the closed loop C and we

have defined the Berry curvature

Ωn = ∇R ×An, (2.62)

which is a gauge-invariant quantity.

The above defined quantities can be understood intuitively by making an analogy

with classical electrodynamics. According to Eqs. (2.57)-(2.62), the Berry connection

and Berry curvature can be regarded respectively as a ’magnetic field’ and ’vector poten-

tial’ in R−space, and both of them can be used to compute a parameter-space ’magnetic

flux’, which corresponds to the Berry phase. In fact, the Berry phase can be directly

related to the Aharonov-Bohm effect [154], which consists in the acquisition of a phase

by a charged particle after completing a closed loop around a region in space threaded

by a magnetic flux.
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2.3.2 Berry phase and topological invariants

We now consider the Berry phase associated with the motion of a single particle in

a lattice. According to Bloch’s theorem, the eigenstates of a periodic Hamiltonian can

be written as

Ψn
~k
(~r) = ei

~k·~run~k(~r), (2.63)

where the quasimomentum ~k is defined in the first Brillouin zone and the Bloch function

un~k(~r) has the same periodicity as the lattice, un~k(~r) = un~k(~r + ~d), with ~d being the

Bravais lattice vector. Inserting the Ansatz (2.63) into the time-independent Schrödinger

equation, it can be readily seen that un~k(~r) fulfills the eigenvalue equation

H(~k)un~k(~r) =

[
(~p+ ~k)2

2m
+ V (~r)

]
un~k(~r) = En(~k)un~k(~r) (2.64)

where V (~r) = V (~r + ~d) is the lattice potential and we have used the real-space expres-

sion of the momentum operator ~p = −i~∇. Thus, in the context of the Berry phase

formalism, we can identify the components of the quasimomentum as the set of adia-

batic parameters R controlling the Hamiltonian H(~k) that describes the system. The

basis eigenstates of H(~k), which we denote as un~k(~r) in position representation and as∣∣∣un(~k)
〉

in ket notation, form energy bands En(~k) which have associated Berry phases

γn = i

ˆ
BZ

〈
un(~k)

∣∣∇~k∣∣un(~k)
〉
· d~k, (2.65)

where the subindex BZ indicates that the integral is evaluated over a closed loop in the

first Brillouin zone. We note that, in order for the expression (2.65) to be applicable,

En(~k) must be gapped for each value of ~k.

Chern number and integer quantum Hall effect

In two-dimensional lattice models, the Berry phase is proportional to the Chern

number. This quantity, which is defined as

Cn ≡
1

2πi

‹
BZ

Ωn(~k) · d~k =
1

2πi

ˆ
BZ

d2k

[〈
∂un~k
∂kx

∣∣∣∣∂un~k∂ky

〉
−
〈
∂un~k
∂ky

∣∣∣∣∂un~k∂kx

〉]
, (2.66)

with Ωn(~k) given in Eq. (2.62), is an integer topological invariant of the band n, i.e.,

it preserves its value under continuous deformations of the band as long as the gap is

kept open [152]. In the celebrated TKNN paper [70], Thouless, Kohmoto, Nightingale

and den Nijs used the Kubo formula to show that, when a two-dimensional system is at
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zero temperature and the Fermi energy lies in an energy gap, the Hall conductance σxy
is related to the Chern number according to the expression

σxy =
e2

h

∑
n∈occ.

Cn, (2.67)

where e is the elementary charge and the sum runs over the occupied bands. In the

TKNN paper, this general expression was applied to a tight-binding model describing

spinless fermions in a square lattice in the presence of a magnetic field known as the

Harper-Hofstadter model [155, 156]. By doing so, the authors obtained a successful

explanation of the Integer Quantum Hall Effect (IQHE). This effect, which consists in

the quantization in units of e2/h of the Hall conductivity, was first observed in a two-

dimensional electron gas at low temperatures pierced by a magnetic field [68]. According

to Eq. (2.67), every time that the Fermi energy crosses an energy band, the Hall conduc-

tivity varies in quantized jumps that can be evaluated by computing the Chern number

of each band. Since the Chern number is a topological invariant, this quantization of the

Hall conductivity is robust against any perturbation that does not close the band gaps.

In a finite system, the Hall current is transported through chiral edge states protected

by the non-trivial topology of the bulk bands. This is a manifestation of a phenomenon

ubiquitous to topological insulators known as the bulk-boundary correspondence [152],

which consists in the apparition of gapless states protected by some symmetry of the

system at the interface between a topological and a trivial insulator (notice that a topo-

logical insulator with open boundaries can be regarded as being in contact with the

vaccuum, which is a trivial insulator).

Zak’s phase

The Berry phase in one-dimensional lattices, also called Zak’s phase after the author

of the paper where it was first considered [157], is given by

γn = i

ˆ π
d

−π
d

dk

〈
un(k)

∣∣∣∣ ddk
∣∣∣∣un(k)

〉
, (2.68)

where d is the lattice spacing. In his seminal work [157], Zak showed that, in systems

with inversion symmetry, the Zak’s phase of a given band is restricted to the values

γn = 0, π (mod 2π), and it can only be changed by a variation of the parameters gov-

erning the Hamiltonian capable of closing the energy gap surrounding the band and

opening it again. Therefore, the Zak’s phase (2.68) can be used to characterize the

topology of the bands of inversion-symmetric one-dimensional lattice models. The total

Zak’s phase of a model describing a one-dimensional insulator is given by the sum of
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the phases of the occupied bands,

γ =
∑
n∈occ.

γn, (2.69)

and it is said to be trivial (non-trivial) if it takes the value γ = 0(π). According to

the bulk-boundary correspondence, a non-trivial value of the Zak’s phase in a periodic

(or infinite) system predicts the apparition of topologically protected edge states for a

system described by the same Hamiltonian but with open boundaries. Furthermore, the

Zak’s phase is related to macroscopic properties of the system such as, for instance, the

bulk polarization [158, 159]. In order to explain this connection, we consider the Bloch

eigenstates of the different bands of an insulator

|Ψn(k)〉 = |k〉 ⊗ |un(k)〉 = e−iα(k) 1√
M

M∑
j=1

eixjk |j〉 ⊗ |un(k)〉 , (2.70)

where M is the total number of sites, xj = jd is the position of the site j and α(k) is an

arbitrary phase. With them, we can construct Wannier states localized at the different

sites of the lattice [160]

|wn(j)〉 =

√
d

2π

ˆ π
d

−π
d

dkeiα(k)e−ixjk |Ψn(k)〉 , (2.71)

where the phase α(k) is chosen such that the wave functions are maximally localized.

In an electronic system, the center of the Wannier states 〈wn(j) |x̂|wn(j)〉 determines

the mean position of the electrons in each unit cell, which is in turn directly related to

the polarization. We can compute this quantity using the momentum-space expression

for the position operator x̂ = i ∂
∂k

〈wn(j) |x̂|wn(j)〉 = d
i

2π

ˆ π
d

−π
d

〈
un(k)

∣∣∣∣ ddk
∣∣∣∣un(k)

〉
+ dj = d

(γn
2π

+ j
)
. (2.72)

The total bulk polarization P of the system, which is defined as the sum of all the

displacements of the Wannier centers from the center of their respective unit cell (i.e.

〈wn(j) |x̂|wn(j)〉 − dj), multiplied by the elementary charge e and normalized by the

total number of sites N and the cell size d, is proportional to the sum of the Zak’s

phases of the occupied bands,

P =
e

2π

∑
n∈occ.

γn =
e

2π
γ, (2.73)

and is therefore quantized to the values P = 0, e/2.
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An alternative way to Eq. (2.68) for computing the Zak’s phase is provided by the

Wilson loop [160], which is defined as

Wn =
M−1∏
j=0

〈un(−π + j∆k) |un(−π + (j + 1)∆k)〉 , (2.74)

where we have set the lattice spacing d = 1 and we have defined the momentum-space

increment ∆k = 2π/M . In the limit of a large number of sites, M → ∞ and ∆k → 0,

each element of the Wilson loop becomes 〈un(−π + j∆k) |un(−π + (j + 1)∆k)〉 = eiφj ,

with φj being an infinitesimal phase. The Zak’s phase can then be computed as the

argument of the Wilson loop

γn = Arg
(

lim
M→∞

Wn

)
= lim

M→∞

N∑
j=0

φj. (2.75)

Since Wn is a gauge-independent quantity (i.e., it is invariant under gauge transfor-

mations |un(k)〉 → eif(k) |un(k)〉), Eq. (2.75) provides an efficient way for computing

numerically the Zak’s phase of a given band. In contrast, Eq. (2.68) involves the gauge-

dependent Berry connection i
〈
un(k)

∣∣ d
dk

∣∣un(k)
〉
, and is therefore less useful for practical

calculations.

2.3.3 The Su-Schrieffer-Heeger model

In order to illustrate some of the concepts previously introduced in this section, we

consider the simplest 1D model of a topological insulator, which is the one introduced

by Su, Schrieffer and Heeger (SSH) [161] to explain the formation of solitons in the

polyacetilene molecule. It is a tight-binding model describing spinless fermions in a

chain formed by unit cells with two sites, A and B, that are coupled by intra- and inter-

cell hoppings t1 and t2, as illustrated in the left part of Fig. 2.2 (a). The Hamiltonian

of this model reads

ĤSSH =
Nc∑
i=1

t1â
†
i b̂i + t2b̂

†
i âi+1 + h.c., (2.76)

where Nc is the total number of unit cells of the chain, and â†i and b̂†i are the operators

associated with the creation of a particle at the site A and B of the ith unit cell, respec-

tively. In addition to inversion symmetry, this model possesses also chiral symmetry,

i.e., it can be formulated in terms of two chains, formed respectively by the A and B

sites, that do not have any internal coupling. This symmetry ensures that the spectrum

is symmetric around zero-energy and is responsible for the topological protection of the

edge states [160]. These states can be understood intuitively by considering the fully
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dimerized limits, shown in the right part of Fig. 2.2 (a). For t1 6= 0, t2 = 0, the chain is

composed of Nc isolated dimers, which have two eigenstates of energies ±t1. However,

for t1 = 0, t2 6= 0, the chain is instead composed of Nc − 1 dimers with eigenenergies

±t2 in the bulk and two isolated zero-energy states at the edges. As we show here

below, these states are indeed topologically protected, and for general values of the cou-

plings fulfilling t2/t1 > 1, they show up in the spectrum as zero-energy states that are

exponentially localized.

Figure 2.2: (a) Sketch of the SSH model described by Eq. (2.76), with the unit cell

marked with a dashed box. The fully dimerized limits t1 = 0, t2 = 0, which correspond

respectively to the topological and trivial phase, are also illustrated. (b) Spectrum of

an open SSH chain formed by Nc = 200 unit cells as a function of the ratio t2/t1. The

topological edge states, which appear for t2 > t1 after the gap closing point t1 = t2, are

marked with red lines. (c) Density distribution of a zero-energy edge state corresponding

to a chain with Nc = 100 unit cells and couplings t2/t1 = 1.5.

In order to perform the topological characterization of the model, we write the

momentum-space version of the Hamiltonian (2.76) by Fourier-transforming the creation

and annihilation operators

ĤSSH =

˛
BZ

Ψ̂†kHkΨ̂kdk, (2.77)
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where we have defined Ψ̂† = (â†k, b̂
†
k) and the k-space Hamiltonian

Hk =

(
0 t1 + t2e

−ik

t1 + t2e
ik 0

)
. (2.78)

The chiral symmetry of the system is manifested in momentum space by the fact that

the k−space Hamiltonian fulfills the condition ΓHkΓ = −Hk, with Γ = diag{1,−1}.
Diagonalizing the matrix (2.78) we obtain the basis eigenstates and their corresponding

energy bands, which read

|u1(k)〉 =
1√
2

(√
t21 + t22 + 2t1t2 cos k

t1 + t2eik
|a(k)〉 − |b(k)〉

)
; E1(k) = −

√
t21 + t22 + 2t1t2 cos k

(2.79)

|u2(k)〉 =
1√
2

(√
t21 + t22 + 2t1t2 cos k

t1 + t2eik
|a(k)〉+ |b(k)〉

)
; E2(k) =

√
t21 + t22 + 2t1t2 cos k.

(2.80)

The Zak’s phases associated with these bands are γ1, γ2 = π for t1 < t2 and γ1, γ2 = 0

for t1 > t2. Therefore, as shown in Fig. 2.2 (b), the spectrum has no zero-energy edge

states for t2/t1 < 1. However, at the gap closing at t2/t1 = 1 there is a topological phase

transition and for t2/t1 > 1 edge states (signalled with red lines) appear in the gap

between the two bands. In Fig. 2.2 (c) we plot the density profile of one of these edge

states for a chain with Nc = 100 unit cells and t1/t2 = 1.5, showing its strong localization

at the edges of the chain. In an electronic system, if one would fill the available states

in the topological phase until E = 0 (i.e., the Fermi energy at T = 0), due to the edge

states the total charge distribution would have an associated polarization P = e/2.

2.4 Ultracold atoms in orbital angular momentum

states

In this section, we review the single-particle physics of ultracold atoms carrying Or-

bital Angular Momentum (OAM) in two-dimensional cylindrically symmetric potentials.

We start by addressing the problem of a single atom in a harmonic trap, for which the

wave functions of the OAM states can be derived analytically. We then generalize the

OAM states to trapping potentials with a ring shape, a geometry that is of great impor-

tance for the emerging field of atomtronics [108] and will appear repeatedly throughout

the next Chapters. Finally, we analyse the tunneling dynamics of ultracold atoms car-

rying OAM in systems of side-coupled cylindrically symmetric potentials. We show that

this dynamics is characterized by complex hopping amplitudes with phases that can be

tuned by modifying the geometry of the system.
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2.4.1 Two-dimensional harmonic oscillator

Let us start by considering a single ultracold atom of mass m trapped in a two-

dimensional isotropic harmonic potential of radial frequency ω. The time-independent

Schrödinger equation for this system reads

Ĥ |φ〉 =

[
p̂2
x + p̂2

y

2m
+
mω2(x̂2 + ŷ2)

2

]
|φ〉 = E |φ〉 . (2.81)

Noting that the Hamiltonian Ĥ is separable in the x and y variables, we can solve

Eq. (2.81) by defining the usual harmonic oscillator ladder operators [142] in x and y,

âx ≡
1√
2

(
x̂

σ
+
iσp̂x
~

)
; â†x ≡

1√
2

(
x̂

σ
− iσp̂x

~

)
; [âx, â

†
x] = 1, (2.82)

and

ây ≡
1√
2

(
ŷ

σ
+
iσp̂y
~

)
; â†y ≡

1√
2

(
ŷ

σ
− iσp̂y

~

)
; [ây, â

†
y] = 1, (2.83)

where we have defined the harmonic oscillator length σ ≡
√
~/mω. Since they act

over different spaces, all the commutators amongst x and y operators vanish. From

Eqs. (2.82) and (2.83), we define a new set of “+” and “−” operators

â+ ≡
1√
2

(âx − iây) ; â†+ ≡
1√
2

(
â†x + iâ†y

)
; [â+, â

†
+] = 1, (2.84)

â− ≡
1√
2

(âx + iây) ; â†− ≡
1√
2

(
â†x − iâ†y

)
; [â−, â

†
−] = 1, (2.85)

and their corresponding number operators and associated eigenstates

N̂+ ≡ â†+â+; N̂+ |n+〉 = n+ |n+〉 , (2.86)

since â†+ |n+〉 =
√
n+ + 1 |n+ + 1〉 , â+ |n+〉 =

√
n+ |n+ − 1〉 ,

N̂− ≡ â†−â−; N̂− |n−〉 = n− |n−〉 , (2.87)

since â†− |n−〉 =
√
n− + 1 |n− + 1〉 , â− |n−〉 =

√
n− |n− − 1〉 ,

where n+ and n− are integer numbers [142]. In terms of these operators, the Hamiltonian

takes the simple form

Ĥ = ~ω(â†+â+ + â†−â− + 1) = ~ω(N̂+ + N̂− + 1) (2.88)

Thus, the eigenstates of the two-dimensional harmonic oscillator are products of the

eigenstates of N̂+ and N̂−

|φ〉 = |n+〉 ⊗ |n−〉 ≡ |n+, n−〉 ; Ĥ |n+, n−〉 = ~ω(n+ + n− + 1) |n+, n−〉 . (2.89)
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Therefore, the energies associated with the different eigenstates are given by

E = ~ω(n+ + n− + 1).

In the basis of + and − states, the operator associated with the z component of the

angular momentum is also diagonal

L̂z = x̂p̂y − ŷp̂x = ~(â†+â+ − â†−â−) = ~(N̂+ − N̂−) (2.90)

From Eq. (2.90), it is clear that the action of the â†+ operator is to create an excita-

tion with an associated angular momentum ~, whereas the â†− operator creates a −~
excitation. Therefore, these operators generate states with a well-defined OAM. Such

states are characterized by two quantum numbers, namely the total number of excita-

tions n ≡ nx +ny, which determines the energy of the state, and the difference between

the number of + and − excitations ν ≡ n+ − n−, which determines the value of the z

component of the angular momentum. From these definitions, we see that for a given

value of n the possible values of ν are

ν = n, n− 2, n− 4, ...,−n+ 4,−n+ 2,−n.

The ground state wave function can be found by solving in position representation the

equations â+ |0, 0〉 = 0, â− |0, 0〉 = 0. By applying to it the â†+ and â†− operators as

many times as needed, the wave function of an eigenstate with a certain value of n and

ν can be generated. The wave functions of the three lowest energetic states are given

by

n = 0, ν = 0 : 〈~r |n+ = 0, n− = 0〉 = φ0
0(r, ϕ) =

1

σ
√
π
e−(r2/2σ2),

n = 1, ν = 1 : 〈~r |n+ = 1, n− = 0〉 = φ1
1(r, ϕ) =

r

σ2
√
π
e−(r2/2σ2)eiϕ,

n = 1, ν = −1 : 〈~r |n+ = 0, n− = 1〉 = φ−1
1 (r, ϕ) =

r

σ2
√
π
e−(r2/2σ2)e−iϕ.

These wave functions are eigenstates with eigenvalue ~ν of the L̂z operator, which in the

the polar coordinates (r, ϕ) is given by L̂z = −i~ ∂
∂ϕ

. We point out that the OAM states

with n = 1 are equivalent to the Wannier states of the p−band of an optical lattice in

the harmonic approximation [162].

2.4.2 Ring potentials

In general, any cylindrically symmetric potential can support eigenstates with a well-

defined OAM. In this thesis, we will consider many physical systems composed of ring

potentials, which can be experimentally realized by means a variety of techniques, such
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as optically plugged magnetic traps [109], static Laguerre-Gauss Beams [110], painting

[111, 112] and time-averaged potentials [113–115, 131, 163] or conical refraction [116].

The time-independent Schrödinger equation for the wave function φ(r, ϕ) of a single

atom of mass m in a ring potential of radius r0 and radial frequency ω reads[
−~∇2

2m
+
mω2(r − r0)2

2

]
φ = Eφ. (2.91)

Due to the cylindrical symmetry of the potential V (r) = mω2

2
(r−r0)2, Eq. (2.91) admits

solutions which are eigenstates of the L̂z operator, which take the general form

φνn(r, ϕ) = ψln(r)eiνϕ, (2.92)

where n ∈ N0 is an index that indicates the number of radial excitations and ν = ±l
is the winding number. Since the wave function is single-valued, l must be a natural

number. Plugging the Ansatz (2.92) into Eq. (2.91), we obtain an equation for the radial

part of the wave function ψln(r)

− ~
2m

[
d2ψln
dr2

+
1

r

dψln
dr

+
l2

r2
ψln

]
+
mω2(r − r0)2

2
ψln = Eψln (2.93)

In this thesis, we will be interested in solutions with no radial excitations and low values

of the OAM (typically, we will consider l = 1). Since the trapping potential has a

harmonic profile around the ring radius r0, the radial ground state is given in a good

approximation by a Gaussian with a maximum around r0,

φ0
0(r, ϕ) = ψ0

0(r) = Ce−α(r−r0β)2 , (2.94)

where C is a normalization constant, and α ∼ 1/2σ2 and β ∼ 1 are parameters that can

be precisely determined by means of a variational calculation [164]. Since the probability

density is concentrated at the vicinity of the minimum of the potential, in rings with

a radius r0 of the order of a few times σ or bigger we can assume that, for n = 0 and

low values of l, the centrifugal term l2

r2
ψln of Eq. (2.93) does not modify significantly the

radial profile of the wave function with respect to the one corresponding to the ground

state. In other words, we can make the approximation ψl0(r) ≈ ψ0
0(r), in such a way

that the total wave function of the angular momentum eigenstates reads

φν0(r, ϕ) = ψ0
0(r)eiνϕ. (2.95)

The energy of these states is given by

E(l) =

ˆ
d2r

[
V (r) |φν0(r, ϕ)|2 +

~2

2m
|∇φν0(r, ϕ)|2

]
=

ˆ
d2r

[
V (r)

∣∣ψ0
0

∣∣2 +
~2

2m

∣∣∣∣dψ0
0

dr

∣∣∣∣2
]

+ l2
~2

2m

ˆ
d2r

∣∣∣∣ψ0
0

r

∣∣∣∣2 = E0 + Ecl
2. (2.96)
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Thus, the total energy of the OAM eigenstates of a ring potential is the sum of the ground

state contribution, E0, and a centrifugal term, proportional to Ec = ~2
2m

´
d2r
∣∣∣ψ0

0

r

∣∣∣2,

which grows quadratically with l. Since ψ0
0 follows approximately a Gaussian distribu-

tion with its maximum at r0, Ec decreases for increasing values of the ring radius.

2.4.3 Tunneling dynamics of OAM states

After introducing the OAM eigenstates of two-dimensional harmonic and ring traps,

we now move on to characterize the dynamics of a single atom carrying OAM in arrays

of tunnel-coupled cylindrically symmetric potentials. Specifically, we review the study

of the cases of two side-coupled rings and three rings forming a triangle presented in

[137]. As we show below, the dynamics of such systems are well-described by few-state

models that contain all the necessary ingredients to formulate a general description of

arbitrary configurations of ring potentials. A key feature of these few-state models is

that they contain complex tunneling amplitudes whose phases can be modulated by

tuning the orientation between the traps.

Two side-coupled traps

We start by considering a single atom of mass m trapped in the system illustrated in

Fig. 2.3, which consists of two 2D ring potentials, named L and R from left and right,

of equal radial frequency ω and radius r0. The perimeters of the two rings are separated

by a distance d, which we assume to be large enough that the isolated eigenstates of L

and R are quasi-orthogonal.

Figure 2.3: Schematic representation of two side-coupled rings traps, named L and R, of

radius r0 with their perimeters separated a distance d. We denote as (rj, ϕj) the polar

coordinates with origin at the center of the ring j = L,R. ϕ0 is the origin of phases of

the wave functions of the OAM eigenstates of each ring, given by Eq. (2.97).
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Since the states with different OAM quantum number l are separated in energy, we

can study independently the dynamics of each manifold of eigenstates of the isolated

traps with a given value of l. Each of these manifolds is formed by four states, corre-

sponding to the angular momentum eigenstates of each ring with winding numbers ±l,
the wave functions of which are given by

φj±l(rj, ϕj) = 〈~r |j,±l 〉ψl(rj)e±il(ϕj−ϕ0), (2.97)

where (rj, ϕj) are the polar coordinates with origin at the center of the ring j = L,R

[see Fig. 2.3] and ϕ0 is a phase origin that can be chosen arbitrarily. Note that the l = 1

manifold of a system formed by two harmonic traps (i.e., two rings of r0 = 0) also has

four states with the generic form given by Eq. (2.97). Therefore, the arguments that we

will present for ring potentials also apply to harmonic traps for this particular case.

Within a given manifold of eigenstates of the two rings with a total OAM l, we can

write the total state of the atom as∣∣Ψl(t)
〉

= aL+l(t) |L,+l〉+ aL−l(t) |L,−l〉+ aR+l(t) |R,+l〉+ aR−l(t) |R,−l〉 , (2.98)

where, due to the normalization condition
〈
Ψl(t)

∣∣Ψl(t)
〉

= 1, the coefficients satisfy the

relation ∑
j=L,R

∑
ν=±l

|ajν |2 = 1. (2.99)

The dynamics within this restricted set of states is governed by a Four-State Model

(FSM) described by the Hamiltonian

Ĥ l
FSM =

∑
j,j′=L,R

∑
ν,ν′=±l

J j
′,ν′

j,ν |j, ν〉 〈j′, ν ′| . (2.100)

By introducing the expansion (2.98) into the Schrödinger equation, we can derive a set

of coupled equations that determine the time evolution of the probability amplitudes of

the different eigenstates of the manifold

i~
dajν
dt

=
∑

j,j′=L,R

∑
ν,ν′=±l

J j
′,ν′

j,ν aν
′

j′ , (2.101)

where the coupling parameters of the FSM are given by the following overlap integrals

J j
′,ν′

j,ν =

ˆ
d2rφj∗ν

[
−~2∇2

2m
+ V (~r)

]
φj
′

ν′ , (2.102)

where V (~r) is the total trapping potential of the system, which we consider to be the

truncated combination of the two potentials created by each ring

V (~r) =
mω2

2
min{(

√
(x− r0 − d/2)2 + y2 − r0)2,

√
(x+ r0 + d/2)2 + y2 − r0)2}.

(2.103)
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By analysing the global symmetries of the problem, we can gain analytical insight into

the properties of the parameters that govern the tunneling dynamics. In particular, the

system formed by the two rings presents x and y inversion symmetries, which act over

the OAM eigenstates (2.97) as

Mx : (x, y)→ (x,−y) ⇒ Mx(φ
j
±l) = e∓2ilϕ0φj∓l, (2.104a)

My : (x, y)→ (−x, y) ⇒ My(φ
j
±l) = e∓2ilϕ0e±ilπφk∓l, k 6= j. (2.104b)

Since Mx and My are global symmetries of the system, the Hamiltonian of the FSM

(2.100) must be invariant under their action. Using the symmetry transformations of

the OAM states, Eqs. (2.104), and the expressions for the couplings Eq. (2.102), it can

be shown that this invariance condition leaves only four independent parameters in the

Hamiltonian [137], which are:

• J j,±lj,±l ≡ El ∈ R, which is the common energy of the four OAM states of the

manifold.

• JL,∓lL,±l ≡ J l1e
±2ilϕ0 , with J l1 ∈ R, which is the self-coupling between two states

located in the same ring but with opposite winding numbers. This coupling is

induced by the global breaking of cylindrical symmetry in the system.

• JR,±LL,±l ≡ J l2 ∈ R, which is the cross-coupling between states localized in different

rings and with the same value of the winding number.

• JR,∓lL,±l ≡ J l3e
±2ilϕ0 , with J l3 ∈ R, which is the cross-coupling between states localized

in different rings and with a different value of the winding number.

Thus, we see that the tunneling amplitudes involving an exchange of the winding number

acquire phases that are related to the parameter ϕ0. However, in a system formed by

two rings these phases do not play any role because we can set the origin of phases to

any desired value. In particular, for ϕ0 = 0 all the couplings are real and Eq. (2.101)

can be written in a matricial form as

i~
d

dt


aL+l
aL−l
aR+l
aR−l

 =


El J l1 J l2 J l3
J l1 El J l3 J l2
J l2 J l3 El J l1
J l3 J l2 J l1 El



aL+l
aL−l
aR+l
aR−l

 ≡ H l
FSM


aL+l
aL−l
aR+l
aR−l

 . (2.105)

Although Eq. (2.102) provides a qualitatively correct description of the tunneling pa-

rameters, it is strictly valid for numerical computations only in the limit when all the

states are orthogonal. In the two-ring system that we have analysed, there is a small

but finite overlap between the wave functions, and therefore it is necessary to perform
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some orthogonalization procedure in order to obtain values of the coupling parameters

for which Eq. (2.105) reproduces accurately the dynamics observed with a full numerical

integration of the 2D Schrödinger equation. By analysing the eigenstates and eigenval-

ues of H l
FSM , we can derive a precise method for computing the tunneling amplitudes.

This matrix can be readily diagonalized, yielding the stationary states∣∣El
1

〉
=

1

2
(− |L,+l〉 − |L,−l〉+ |R,+l〉+ |R,−l〉), (2.106a)∣∣El

2

〉
=

1

2
(− |L,+l〉+ |L,−l〉 − |R,+l〉+ |R,−l〉), (2.106b)∣∣El

3

〉
=

1

2
(|L,+l〉 − |L,−l〉 − |R,+l〉+ |R,−l〉), (2.106c)∣∣El

4

〉
=

1

2
(|L,+l〉+ |L,−l〉+ |R,+l〉+ |R,−l〉), (2.106d)

with their corresponding energies

El
1 = El + J l1 − J l2 − J l3, (2.107a)

El
2 = El − J l1 + J l2 − J l3, (2.107b)

El
3 = El − J l1 − J l2 + J l3, (2.107c)

El
4 = El + J l1 + J l2 + J l3. (2.107d)

Our procedure starts by applying the imaginary time evolution algorithm to the ana-

lytical stationary states (2.106) to find the exact eigenstates
{
|Ẽl

1〉, |Ẽl
2〉, |Ẽl

3〉, |Ẽl
4〉
}

of

the two-ring system belonging to the OAM manifold that we are interested in. Since

we are dealing with excited states, this requires finding all the states with lower ener-

gies and subtracting at each time step the corresponding projections. Once we have the

eigenstates and their corresponding energies
{
Ẽl

1, Ẽ
l
2, Ẽ

l
3, Ẽ

l
4

}
, by inverting the relations

(2.107) we can compute the common energy and the tunneling parameters as

El =
1

4

(
Ẽl

1 + Ẽl
2 + Ẽl

3 + Ẽl
4

)
, (2.108a)

J l1 =
1

4

(
Ẽl

1 − Ẽl
2 − Ẽl

3 + Ẽl
4

)
, (2.108b)

J l2 =
1

4

(
−Ẽl

1 + Ẽl
2 − Ẽl

3 + Ẽl
4

)
, (2.108c)

J l3 =
1

4

(
−Ẽl

1 − Ẽl
2 + Ẽl

3 + Ẽl
4

)
. (2.108d)

The absolute and relative values of the tunneling amplitudes depend on the separation

between the rings, d, and their radius, r0. To illustrate this fact, in Fig. 2.4 we plot

the couplings of the OAM l = 1 manifold, which we have computed with the procedure

described above, as a function of d for rings of radius (a) r0 = 0, (b) r0 = 2.5σ and (c)
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r0 = 5σ, with σ =
√

~/mω. In all three plots, we observe that for short d the cross-

coupling that involves an exchange of the winding number, J1
3 , is appreciably larger

than the one that does not, J1
2 .

Figure 2.4: Dependence of the J1
1 , J1

2 and J1
3 tunneling amplitudes on the trap separation

d for two ring potentials of radius (a) r0 = 0 (harmonic traps), (b) r0 = 2.5σ and (c)

r0 = 5.0σ. The insets show the values of the ratio J1
3/J

1
2 for the range of values of d

considered in the main plots.
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However, as the distance between rings is increased, they become closer until they

take approximately the same value, as shown in the insets of Fig. 2.4. Regardless of

the value of the inter-trap distance, the absolute value of the self-coupling J1
1 remains

approximately one order of magnitude lower than that of J1
2 and J1

3 .

Three traps in a triangular configuration

After analysing the case of two side-coupled ring potentials, we now consider the

system depicted in Fig. 2.5. It consists of three ring potentials, which we denote as

L,C,R (from left, central and right), of equal radius r0 and radial frequency ω that

form a triangle with a central angle Θ > π/3 and distances between the perimeters of

the rings dLC = dRC ≡ d and dLR = 2d sin(Θ/2).

Figure 2.5: Schematic representation of three rings traps of radius r0, named L, C and

R, forming an isosceles triangle with central angle Θ. The perimeters of the L and C

and R and C rings are separated by a distance d. The origin of phases ϕ0 is set along

the line that unites the L and C rings.

Within a manifold of eigenstates of the isolated rings with a well-defined OAM l, the

state of the system at any time can be written in the form∣∣Ψl(t)
〉

= aL+l(t) |L,+l〉+ aL−l(t) |L,−l〉+ aC+l(t) |C,+l〉
+ aC−l(t) |C,−l〉+ aR+l(t) |R,+l〉+ aR−l(t) |R,−l〉 . (2.109)

Since the tunneling amplitudes decay fast with the inter-ring separation [see Fig. 2.4],

we can consider that the L and R rings are decoupled, allowing us to describe the system
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as two sets of two side-coupled rings, L − C and R − C. As shown in Fig. 2.5, if we

set the origin of phases along the x axis, i.e., along the line that unites the L and C

traps, then in the (x′, y′) Cartesian coordinates of the R−C system the measured phase

origin is ϕ′0 = π−Θ. In this situation, the L−C couplings are real, whereas the R−C
couplings are complex numbers with phases e±2ilϕ0 = e∓2ilΘ. For any other choice of

the phase origin ϕ0, the relative phases between the complex couplings of the L − C

and R − C subsystems would also be e±2ilΘ, yielding an equivalent description of the

total three-ring system. Since the breaking of cylindrical symmetry in the C ring is

due to the presence of both the L and R rings, we can consider that its self-coupling

is the sum of the contributions of the two rings, JC,∓lC,±l = JL,∓lL,±l + JR,∓lR,±l = J l1(1 + e∓2ilΘ)

[137]. Following the same procedure as in the case of the two side-coupled rings, we can

describe the population dynamics of the states of the manifold in terms of a Six-State

Model (SSM) 

aL+l
aL−l
aC+l
aC−l
aR+l
aR−l


≡ H l

SSM



aL+l
aL−l
aC+l
aC−l
aR+l
aR−l


, (2.110)

where the Hamiltonian of the SSM reads

H l
SSM =



El J l1 J l2 J l3 0 0

J l1 El J l3 J l2 0 0

J l2 J l3 El J l1(1 + e−2ilΘ) J l2 J l3e
−2ilΘ

J l3 J l2 J l1(1 + e2ilΘ) El J l3e
2ilΘ J l2

0 0 J l2 J l3e
−2ilΘ El J l1e

−2ilΘ

0 0 J l3e
2ilΘ J l2 J l1e

2ilΘ El


. (2.111)

Thus, by manipulating the geometry of the system through the central angle Θ, one can

tune the value of the phases of the complex tunneling parameters. For the particular

case Θ = π/2l, there is a relative π phase between the tunneling parameters of the L−C
and R − C subsystems, causing the cancellation of the self-coupling at the central ring

JC,−lC,+l due to destructive interference.

In this thesis, we will consider physical systems consisting of arrays of 2D side-coupled

ring potentials with different geometrical arrangements. Such arrays of rings could

be experimentally implemented by means of several different techniques. Since they

were first proposed a few years ago [112, 163], time-averaged adiabatic potentials have

proven to be a powerful tool to trap ultracold atoms in on-demand potential landscapes

[113, 115, 131]. Recently, it has also been shown that digital micro-mirror devices allow

to create trapping potentials with arbitrary shapes [165], and in particular a double ring
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trap has been realized [129]. Both of these already demonstrated approaches could be

adapted to create lattices of ring potentials. Conical refraction, which is a phenomenon

that occurs when a focused light beam passes along one of the optical axes of a biaxial

crystal, has also been used to trap ultracold atoms in ring geometries [116]. With this

technique, arrays of ring potentials could be generated by reproducing with microlenses

the intensity pattern of a laser beam traversing a single crystal. Alternatively, the

combination of split lenses and spatial light modulators [166] could also be used to

implement arrays of light rings with any desired geometry. Using the OAM eigenstates

of each ring potential as the single-particle basis, we can formulate multi-orbital BH

models for lattices of rings analogous to the ones used to describe ultracold atoms in

excited energy bands of optical lattices [58, 162] with tunneling parameters that follow

the same rules as the ones of the three-ring system described in this section.





CHAPTER 3

Quantum sensing using imbalanced counter-rotating

Bose–Einstein condensate modes

In this Chapter, we study the implementation of a device capable of measuring

two-body interactions, scalar magnetic fields and rotations. The apparatus consists

of a Bose–Einstein Condensate (BEC) trapped in a cylindrically symmetric potential

and prepared in an imbalanced superposition of Orbital Angular Momentum (OAM)

l = 1 modes with opposite circulations. Quantum interference between the counter-

propagating modes gives rise to a rotating minimal line in the BEC density profile.

Harnessing the fact that, in the weakly-interacting regime, the angular frequency of the

rotation of this nodal line is related through a simple expression to the strength of the

two-body s-wave interactions, we propose an experimental protocol to use the system

for sensing purposes.

The Chapter is organized as follows. We start by briefly reviewing in Sec. 3.1 the dif-

ferent ways in which ultracold atoms are employed for applications in sensing of magnetic

fields and rotations. In the first part of Sec. 3.2 we describe in detail the physical system

that we consider and we derive the general equations of motion for the amplitudes of

the OAM modes in the context of the two-dimensional (2D) Gross–Pitaevskii Equation

(GPE). We then focus on the weakly-interacting regime, where we derive an analytical

model that yields a simple expression that relates the angular rotation frequency of

the minimal density line to the strength of the non-linear atom-atom interactions. In

Sec. 3.3 we take profit of this expression to propose a full experimental protocol to mea-

sure the interaction strength, which is proportional to the s-wave scattering length. The

43
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relation between the scattering length and the applied magnetic field given by Feshbach

resonances could be exploited to use the system as a novel type of scalar magnetometer

far from the resonant field or with a dilute enough BEC. We also outline the possibility

of using the system as a rotation sensor. In Sec. 3.4 we discuss and simulate the prepara-

tion of the initial state consisting of an imbalanced superposition of counter-propagating

OAM modes. Finally, in Sec. 3.5 we summarize the main conclusions of the Chapter.

3.1 Introduction

Pushing the limits of sensing technologies is one of the main challenges in modern

physics, opening the door to high-precision measurements of fundamental constants as

well as applications in many different areas of science. Specifically, the development of

highly-sensitive compact magnetic field sensors enables from detecting extremely weak

biologically relevant signals to localize geological structures or archaeological sites [167].

In this context, superconducting quantum interference devices (SQUIDs) [168, 169] and

atomic [25, 170–176] and nitrogen-vacancy diamond [177, 178] magnetometers are the

three main approaches that allow achieving, in a non-invasive way, unprecedented sen-

sitivity to extremely small magnetic fields.

In particular, the extraordinary degree of control of ultracold atomic systems [30, 31]

makes them ideal platforms for precision measurements [179]. There are basically two

types of ultracold atomic magnetometers depending on whether the magnetic field drives

the internal or the external degrees of freedom of the atoms. The former are typically

based on the detection of the Larmor spin precession of optically pumped atoms, while

the latter encode the magnetic field information in the spatial density profile of the

matter wave. Atomic magnetometers with BECs have been investigated, for instance,

by using stimulated Raman transitions [180], probing separately the different internal

states of a spinor BEC after free fall [181], or measuring the Larmor precession in a

spinor BEC [182–186]. In the latter case, sensitivity can be increased by probing spin-

squeezed states [187]. In [188], the possibility of taking profit of Feshbach resonances

to use a two-component BEC as a magnetometer has been outlined. Ultracold atomic

magnetometers based on detecting density fluctuations in a BEC due to the deformation

of the trapping potential have also been demonstrated [189–191].

Ring-shaped potentials for ultracold atoms are a particularly interesting trapping

geometry for quantum sensing [132] and atomtronics [108, 192, 193]. Ring potentials

are currently implemented by means of a variety of techniques [109–116, 131, 163]. In

fact, persistent currents have been observed in BECs confined in annular traps [119, 123]

and it has also been shown that their physical behavior is in close analogy to that of

SQUIDs [121, 124–129, 145, 194, 195]. It has also been suggested [113, 127] that BECs
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in this trapping geometry could be used as rotation sensors, which have already been

realized with superfluid 3He [196] and have been proposed for matter waves based on

the Sagnac effect [130, 131, 197, 198].

In this Chapter, we propose to use a BEC trapped in a 2D ring potential for mea-

suring non-linear interactions, scalar magnetic fields and rotations. We consider an

imbalanced superposition of counter-rotating OAM modes, whose spatial density distri-

bution presents a minimal line. A weak two-body interaction between the atoms of the

BEC leads to a rotation of the minimal atomic density line whose angular frequency

is directly related to the strength of such interactions. This phenomenon is somehow

reminiscent of the propagation of gray solitons, which originate in repulsively interacting

BECs due to a compensation between the kinetic and mean field interaction energies.

In this case, however, the minimal density line appears for attractive, repulsive or even

non-interacting BECs, and is a consequence of the interference between the counter-

propagating modes that takes place due to the circular geometry of the system.

3.2 Quantum sensing device

In this section we show how the system under study can act as a quantum sensing

device. In Sec. 3.2.1 we describe the physical system and we derive the equations of

motion of the amplitudes of the OAM modes in the context of the 2D GPE. Then, in

Sec. 3.2.2 we particularize these general equations of motion to an imbalanced superpo-

sition of counter-propagating OAM l = 1 modes in the weakly-interacting regime. By

doing so, we are able to obtain a simple relation between the rotation frequency of the

minimal density line and the strength of the atom-atom interactions that constitutes

the basis to harness the system for sensing applications.

3.2.1 Physical system

We consider a BEC formed by N atoms of mass m confined in the z direction by a

harmonic potential of frequency ωz and in the perpendicular plane by an annular trap of

radial frequency ω and radius R. We study the system in the limit of strong confinement

along the z direction; ωz � ω. As we discussed in Sec. 2.1 of Chapter 2, in the limit

azasn2 � 1, where as is the s-wave scattering length, n2 the two-dimensional density

of the BEC and az =
√
~/(mωz) the harmonic oscillator length along the z direction,

the 3D GPE can be restricted to the x− y plane by considering the profile for the BEC

order parameter along the z direction as a Gaussian of width az [65]. In doing so, the

3D two-body interaction parameter g3D = (N4π~2as)/m is transformed to its 2D form

g2D = (N
√

8π~2as)/(maz) (note that in these expressions we have taken the BEC wave
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Figure 3.1: Sketch of the physical system under consideration. A BEC formed by N

atoms is loaded in an annular trap, with a p+1 population of the state |+1〉 and p−1

population of |−1〉. The interference between these two counter-rotating modes yields

a minimum line in the probability density. R is the radius of the annulus and σ is the

width of the radial harmonic potential.

function to be normalized to 1). Thus, the 2D GPE that we will use to describe the

system reads

i~
∂Ψ

∂t
=

[
−∇

2

2m
+ V (r) + g2D|Ψ|2

]
Ψ, (3.1)

where

V (r) =
1

2
mω2(r −R)2 (3.2)

is the potential created by the ring and r is the polar radial coordinate, as shown in

Fig. 3.1. Furthermore, by expressing the distances in units of σ =
√

~/mω, the energies

in units of ~ω and time in units of 1/ω, we arrive at the following dimensionless form

of the 2D GPE, which is the one that we will use throughout the Chapter

i
∂Ψ

∂t
= HΨ =

[
−∇

2

2
+

1

2
(r −R)2 + g2d|Ψ|2

]
Ψ, (3.3)
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where all quantities are now expressed in terms of the above defined units and the

dimensionless non-linear interaction parameter is given by

g2d = Nas

√
8πmωz

~
. (3.4)

The system supports stationary states with a well-defined total OAM l and positive

or negative circulation, which we denote as |±l〉. The wave functions of the OAM

eigenstates are given by

〈~r |±l 〉 = φ±l(~r) = φ±l(r, ϕ) = ψl(r)e
±ilϕ, (3.5)

where ψl(r) is the corresponding radial part of the wave function. Their chemical po-

tential µl is independent of the sign of the circulation and is given by the eigenvalue of

the time-independent 2D GPE

Hφ±l =

[
−∇

2

2
+

1

2
(r −R)2 + g2d|φ±l|2

]
φ±l = µlφ±l. (3.6)

If the radius of the ring is large compared to the characteristic length of the potential,

R � σ, the radial wave functions of the OAM modes (3.5) are given in a very good

approximation by the ground state of the ring potential, ψl(r) ≈ ψ0(r). In this situation,

a general state of the BEC can be expressed in terms of the OAM modes as

Ψ(~r, t) =
lmax∑

m=−lmax

am(t)φm(r, ϕ) =
∞∑

m=−∞

am(t)
[
ψ0(r)emiϕ

]
, (3.7)

where lmax is the maximum value of the OAM quantum number that we consider in the

expansion. Since the OAM wave functions are normalized to unity,
´
φ∗mφnd

2r = δmn,

the amplitudes in the expansion (3.7) fulfill the constraint
∑

m |am(t)|2 = 1. Substitution

of the wave function (3.7) into the 2D GPE (3.3) yields (we drop the explicit dependences

on t and ~r)

∑
p

i
dap
dt
φp =

[
−∇

2

2
+ V (r) + g2d

∑
m,m′

ama
∗
m′φmφ

∗
m′

]∑
k

akφk

=

[
−∇

2

2
+ V (r) + g2d

∑
m

|am|2|φm|2 + g2d

∑
m 6=m′

ama
∗
m′φmφ

∗
m′

]∑
k

akφk

=

[
−∇

2

2
+ V (r) + g2d|ψ0|2

]∑
k

akφk + g2d

∑
k

∑
m 6=m′

ama
∗
m′akφmφ

∗
m′φk.

(3.8)
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From the expression (3.8), an equation of motion for each of the amplitudes can be

found by multiplying both sides by φ∗l and integrating over the whole 2D space

i
dap
dt

=∑
k

ak

{ˆ
d2rφ∗p

[
−∇

2

2
+ V (r) + g2d|ψ0|2

]
φk +

∑
m 6=m′

g2dama
∗
m′

ˆ
d2rφ∗pφmφ

∗
m′φk

}
=

∑
k

ak

{ˆ
d2rφ∗p

[
−∇

2

2
+ V (r) + g2d|φk|2

]
φk +

∑
m6=m′

g2dama
∗
m′

ˆ
d2r|ψ0|4eiϕ(m+k−m′−p)

}
.

(3.9)

Defining U ≡ g2d

´
rdrdϕ|ψ0(r)|4 and using

[
−∇2

2
+ V (r) + g2d|φk|2

]
φk = µkφk, we

finally arrive at the more compact expression

i
dap
dt

= µpap + U
∑
m6=m′

ama
∗
m′a(p+m′−m). (3.10)

The term U
∑

m6=m′ ama
∗
m′a(p+m′−m), which appears due to the presence of the interaction

term in the GPE, represents a non-linear coupling between different OAM modes. As

we will show in Sec. 3.2.2, this coupling between OAM states yields very rich dynamics

and is at the basis of the use of the system as a sensing device.

3.2.2 Dynamics of an imbalanced superposition of counter-

propagating OAM l = 1 modes in the weakly-interacting

regime

We now consider as the initial state of the BEC an imbalanced superposition of the

OAM l = 1 states with opposite circulations, |±1〉, i.e., a state of the form given by

Eq. (3.7) with weights |a±1(t = 0)| ≡ √p±1 fulfilling p+1 + p−1 = 1 and am(t = 0) = 0

for |m| 6= 1. Such a state could be realized, for instance, by directly transferring OAM

with a laser beam to the BEC [120, 122] or, as we will discuss in detail in Sec. 3.4, by

preparing the BEC in the ground state of the ring, imprinting a 2π round phase and

momentarily breaking the cylindrical symmetry of the potential to induce a coupling

between the degenerate states of positive and negative circulation [137, 199]. The wave

function of this initial state is given by

Ψ(t = 0) =
√
p+1φ+1(r, ϕ) + eiα

√
p−1φ−1(r, ϕ) = ψ0(r)(

√
p+1e

iϕ +
√
p−1e

iαe−iϕ), (3.11)

and its density profile reads

|Ψ(t = 0)|2 = |ψ0(r)|2(1 + 2
√
p+1p−1 cos(2ϕ− α)). (3.12)
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Due to quantum interference between the counter-propagating OAM modes, the angular

atomic density distribution has a minimal line at ϕmin = (π + α)/2, (3π + α)/2, as

sketched in Figure 3.1.

As we discussed in Sec. 3.2.1, in the presence of atom-atom interactions the differ-

ent OAM modes are connected through a non-linear coupling described by the second

term on the right hand side of Eq. (3.10). Since for the initial state considered here

al(0) = 0 ∀l 6= ±1, the only higher order OAM states that are directly coupled to the

initial state are those in which the non-linear part of (3.10) has terms such as a+1a
∗
−1a+1

or any other combination of amplitudes of OAM l = 1 modes. The only modes that have

terms of this type are the OAM l = 3 states. Higher odd OAM modes, l = 5, 7, ..., are

subsequently populated through coupling terms that contain combinations of amplitudes

of lower odd OAM modes. However, for this particular form of the initial state, the even

OAM modes, l = 0, 2, ..., cannot be excited because in their dynamical equations the

terms in
∑

m 6=m′ ama
∗
m′a(l+m′−m) always contain at least one even OAM amplitude and,

since the lowest even modes l = 0,±2 are not directly coupled to the l = ±1 modes,

none of the even modes will be populated during the time evolution.

We now focus on the weakly interacting regime, in which the energy difference be-

tween the OAM l = 1 and l = 3 states is much bigger than the non-linear interaction

strength, (µ3 − µ1) ≡ ∆� U , allowing us to set lmax = 3 in the expansion (3.7). This

condition is typically fulfilled for values of the interaction parameter of the 2D GPE

(3.3) g2d ∼ 1. In this situation, the dynamics is described in terms of a four-state model

(FSM) that is obtained by truncating Eq. (3.10) to the OAM l = 3 modes. The equa-

tions governing the time evolution of the probability amplitudes that are present in the

truncated model, namely a±1, a±3, can be written in a matrix form as

i
d

dt


a+1

a−1

a+3

a−3

 = HFSM


a+1

a−1

a+3

a−3

 , (3.13)

where the four-state model (FSM) Hamiltonian reads

HFSM/U =
µ1/U ρ+1−1 + ρ∗+1+3 + ρ−1−3 ρ∗+1−1 + ρ+1+3 + ρ∗−1−3 ρ+1−3 + ρ∗−1+3

ρ∗+1−1 + ρ+1+3 + ρ∗−1−3 µ1/U ρ∗+1−3 + ρ−1+3 ρ+1−1 + ρ∗+1+3 + ρ−1−3

ρ+1−1 + ρ∗+1+3 + ρ−1−3 ρ+1−3 + ρ∗−1+3 µ3/U ρ3+3−

ρ∗+1−3 + ρ−1+3 ρ∗+1−1 + ρ+1+3 + ρ∗−1−3 ρ∗+3−3 µ3/U

 ,

(3.14)

where ρ±i±j ≡ a±ia
∗
±j, with i, j = 1, 3, are the density matrix elements.
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Fig. 3.2(a) shows a typical temporal evolution of the populations of all the OAM

states involved in the dynamics considering as initial state an imbalanced superposition

of the |+1〉 and |−1〉 states in the weakly-interacting regime. The continuous lines have

been obtained by solving with a high-order Runge–Kutta method the FSM, Eq. (3.13),

and the insets show the comparison with the results obtained by a full numerical inte-

gration of the 2D GPE (points). We have performed this integration using a standard

Crank-Nicolson algorithm in a space-splitting scheme [200], i.e., we have introduced the

Trotter decomposition eiH(x,y)∆t ≈ eiH(x)∆teiH(y)∆t, where ∆t is the discrete time step,

that we have taken to be ∆t = 10−3. The grid used for the simulations has a spatial

discretization width ∆x = 2.4× 10−3 and a total of 1000 points in each dimension. For

all the populations, we find an excellent agreement between the results obtained with

the two different methods, with relative discrepancies typically on the order of 10−2.

Despite the fact that the populations of the different OAM states present only very

small fluctuations, the initial state is not in general a stationary state of the system

because the minimum appearing in the density profile rotates at a constant speed. This

fact can be appreciated in Fig. 3.2(b), where the density profile is shown for different

times. At t = 0, the density profile has a minimum density line at x = 0, and as time

marches on this line rotates in the x− y plane. The fact that the minimum density line

rotates means that there is a time-dependent relative phase α(t) between the a+1(t) and

a−1(t) coefficients, so that the state of the system evolves in time as

Ψ(~r, t) ≈ a+1(0)φ+1(~r) + a−1(0)eiα(t)φ−1(~r). (3.15)

The phase difference α(t) is due to the non-linear interaction, and can be understood

as a consequence of the presence of off-diagonal terms in the FSM Hamiltonian (3.14).

In Fig. 3.2(c) we plot the temporal evolution of the normalized real part of the ρ+1−1

coherence, which is related to the phase difference α(t) as

Re[ρ+1−1]

|ρ+1−1|
=

Re[a+1(0)a−1(0)e−iα(t)]

|a+1(0)a−1(0)|
= cosα(t). (3.16)

We observe that the real part of the coherence oscillates harmonically, which means that

α evolves linearly with time. The angular rotation frequency of the line of minimum

density can be calculated from the phase difference between the counter-propagating

OAM l = 1 modes as

Ω =
dϕmin

dα

dα

dt
=

1

2

dα

dt
(3.17)
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Figure 3.2: (a) Time evolution of the population of the states involved in the dynamics.

(b) Snapshots of the density profile for different instants of the dynamical evolution.

(c) Time evolution of the real part of the coherence between the |+1〉 and |−1〉 states.

In (a) and (c), the points correspond to the numerical simulation of the GPE, while

the continuous lines have been obtained by solving the FSM equations. The considered

parameter values are R = 5 and g2d = 1, for which U = 0.0128, µ1 = 0.529 and µ3 =

0.699, a+1(0) =
√
p+1 =

√
0.7 and a−1(0) =

√
p−1(0) =

√
0.3.
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From the FSM, we can obtain an expression for the oscillation frequency of ρ+1−1

by solving the von Neumann equation iρ̇ = [HFSM, ρ]. After assuming ρ+1+1 = p+1 and

ρ−1−1 = p−1 to be constant and neglecting all terms O(a2
±3(t)), we arrive at a linear

system of three coupled differential equationsρ̇+1−1

ρ̇∗+1+3

ρ̇−1−3

 = −i

U(p−1 − p+1) U(2p−1 − p+1) U(p−1 − 2p+1)

Up+1 ∆ + Up+1 2Up+1

−Up−1 −2Up−1 −∆− Up−1

ρ+1−1

ρ∗+1+3

ρ−1−3

 = M

ρ+1−1

ρ∗+1+3

ρ−1−3

 .

(3.18)

The characteristic frequencies k of the system of equations (3.18) are obtained by solving

the eigenvalue equation

det[M − 1k] = 0⇒ ik3 + ik(U∆ + ∆2 − p+1p−1U
2) + U∆2(p+1 − p−1) = 0. (3.19)

Since U � ∆ in the weakly interacting regime, the term proportional to p+1p−1U
2 can

be neglected in front of the others. The three eigenvalues that are obtained after solving

Eq. (3.19) are imaginary. In the weakly-interacting regime, the eigenmode associated

with the eigenvalue k0 = i|k0| of lowest modulus has a very predominant component of

ρ+1−1(t), allowing us to write ρ+1−1(t) ≈ ρ+1−1(0)ei|k0|t. Thus, according to Eq. (3.17),

the rotation frequency of the nodal line is ΩFSM = 1
2
|k0|, where the subscript indicates

that the rotation frequency has been obtained in the context of the FSM. In the limit

∆� ΩFSM, we can neglect the ik3 term in Eq. (3.19) and the rotation frequency of the

nodal line is given by

ΩFSM =
Un±1

2(1 + U
∆

)
, (3.20)

where we have defined the population imbalance n±1 ≡ (p+1 − p−1) ∈ [−1, 1]. Note that,

although the l = 3 states are nearly not populated during the dynamical evolution, the

parameter ∆, which contains the chemical potential µ3, plays a significant role in the

expression of the rotation frequency (3.20). Thus, these states must be taken into

account for an accurate description of the dynamics of the system.

In order to test the validity of the expression provided by the FSM, we have computed

the rotation frequency of the minimal density line using the 2D GPE for several values

of the parameters and compared the results with Eq. (3.20). In Fig. 3.3(a) we plot, for

different values of g2d and n±1, Ω computed using Eq. (3.20) (continuous lines) and the

full numerical integration of the 2D GPE (points). We observe an excellent agreement

between the two methods for low non-linearities and population imbalances. Fig. 3.3(b)

shows the relative error δΩ
ΩGPE

, where ΩGPE is the rotation frequency of the nodal line

obtained from the GPE and δΩ = |ΩFSM − ΩGPE|, as a function of the values of n±1 and

g2d used in the numerical simulation of the GPE. In the parameter region explored in

Fig. 3.3(b), which corresponds to values of the interaction strength g2d < 4, we find a

maximum relative error of 10−2.
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Figure 3.3: (a) Rotation frequency of the nodal line Ω as a function of g2d for different

values of n±1 obtained with the FSM (continuous lines) and full integration of the GPE

(points) (b) Relative error committed in the determination of Ω using Eq. (3.20) as a

function of the values of g2d and n1± used in the GPE simulation.

3.3 Quantum sensing protocol

In this section, we describe how the expression for the rotation frequency of the nodal

line provided by the FSM, Eq. (3.20), can be exploited to use the system as a sensor of

two-body interactions, magnetic fields and external rotations.
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3.3.1 Sensing of two-body interactions

Recalling that the parameter U of the FSM Hamiltonian (3.14) is given by

U = g2d

´
d2r|ψ0(r)|4 ≡ g2dI and assuming that we are in the regime of validity of the

FSM, Eq. (3.20) allows us to express the interaction parameter g2d as

g2d =
1

I

2Ω

n±1 − 2 Ω
∆

, (3.21)

where Ω is the observed frequency of rotation of the nodal line. The relation (3.21) con-

stitutes the basis to use the physical system under consideration as a quantum sensing

device. By determining the parameters appearing on the right hand side of Eq. (3.21),

one can infer the value of g2d and thus, from Eq. (3.4), the s-wave scattering. Next, we

describe how each of these quantities could be experimentally measured from fluores-

cence images of the BEC.

Rotation frequency of the minimum density line

The rotation frequency of the minimum density line, Ω, can be measured by direct

imaging in real time of the density distribution of the BEC [129]. If the coherence time

of the BEC is τ , in order for this measurement to be possible the condition Ωω & 1/τ

must be fulfilled, since otherwise the rotation would be so slow that it could not be

appreciated during the time that the experiment lasts. The conditions of validity of

the model impose an upper limit on the values of Ω that allow to measure g2d. As we

discussed in Sec. 3.2.2, if the interaction is too large, the assumptions of the FSM model

are no longer valid and it is thus not possible to relate the rotation frequency of the

nodal line to the non-linear interaction parameter using Eq. (3.21). However, as can be

seen in Fig. 3.3, for g2d < 4 the FSM predicts with high accuracy the value of Ω.

Population imbalance

The population imbalance between the two OAM l = 1 states, n±1, can be directly

determined by analysing the density profile of the BEC at any instant of the time evo-

lution. According to Eq. (3.12), the angular atom density distribution has two minima

and maxima with a separation of π/2 rad. Let us now consider the two integration

regions A1 and A2 shown in Fig. 3.4, which are arcs of radius ρ and angle 2θ centred

around a maximum and a minimum of intensity, respectively. The integrals of the atom

density (given by Eq. (3.12)) over A1 and A2 can be performed numerically and, for
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sufficiently small θ, they approximately yield

I1 =

ˆ
A1

d2r|Ψ|2 =

ˆ ρ

0

ˆ ϕmax+θ

ϕmax−θ
rdϕdr|Ψ|2 ≈ 2θ(1 + 2

√
p1+p1−)

ˆ ρ

0

rψ2
0(r)dr (3.22a)

I2 =

ˆ
A2

d2r|Ψ|2 =

ˆ ρ

0

ˆ ϕmin+θ

ϕmin−θ
rdϕdr|Ψ|2 ≈ 2θ(1− 2

√
p1+p1−)

ˆ ρ

0

rψ2
0(r)dr (3.22b)

Thus, combining (3.22a) and (3.22b) one can determine the product of populations as

p+1p−1 =

(
I1 − I2

2(I1 + I2)

)2

, (3.23)

which, together with the constraint p+1 + p−1 = 1, allows to determine the population

imbalance from a fluorescence image.

Figure 3.4: Example of A1 and A2 integration areas to experimentally determine the

population imbalance.

Integral of the radial wave function

A fluorescence image of the BEC also allows to compute the integral I =
´
d2r|ψ0(r)|4

that appears on the right hand side of Eq. (3.21). From equation (3.12), we can write

|Ψ|4 = |ψ0(r)|4
(
1 + 4

√
p+1p−1 cos(2ϕ− α) + 4p+1p−1 cos2(2ϕ− α)

)
. (3.24)
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From a fluorescence image, one can numerically perform the integral
´
d2r|Ψ|4 over the

whole space, which yields

ˆ
|Ψ|4rdrdϕ = (2π + 4πp+1p−1)

ˆ
|ψ0(r)|4rdr = (1 + 2p+1p−1)

ˆ
d2r|ψ0(r)|4. (3.25)

Therefore, the desired quantity can be calculated as

I =

ˆ
d2r|ψ0(r)|4 =

´
d2r|Ψ|4

1 + 2p+1p−1

. (3.26)

The product p+1p−1 appearing on the right hand side of Eq. (3.26) can be determined

using the previously described procedure to measure the population imbalance, see

Eq. (3.23).

Chemical potential difference

The chemical potential of the angular momentum states can be decomposed into its

kinetic, potential and interaction contributions. Since one can assume that the wave

functions take the form φ±l(~r) = ψ0(r)e±ilϕ, the potential and interaction contributions

will be the same regardless of l, while the kinetic contribution is given by

Ekin
l =

1

2

ˆ
d2r|∇φ±l(~r)|2 =

1

2

ˆ
d2r

[∣∣∣∣dψ0

dr

∣∣∣∣2 + l2
∣∣∣∣ψ0

r

∣∣∣∣2
]

= µ0 + l2Ec. (3.27)

Thus, the chemical potential difference is only due to the difference in the centrifugal

terms of the kinetic energy

∆ = µ3 − µ1 = Ekin
3 − Ekin

1 = 8Ec = 4

ˆ
d2r

∣∣∣∣ψ0(r)

r

∣∣∣∣2 . (3.28)

From Eq. (3.12), one can see that the integral (3.28) can be numerically performed after

determining |ψ0(r)|2 from a fluorescence image as |ψ0(r)|2 = |Ψ(r,ϕmin)|2
1−2
√
p+1p−1

.

In order to check the accuracy of the proposed experimental protocol, we have com-

puted g2d using Eq. (3.21) and determining all the parameters on the right hand side

following the above described numerical procedures using images of the integration of

the 2D GPE. Then, we have compared the obtained results with the ab initio values of

g2d used in the simulations. In Fig. 3.5 we plot the relative error δg2d/g2d committed as

a function of the ab initio values of g2d and n±1. In the region g2d ≈ 1 and n±1 ≈ 0.6,

the relative error is minimal and it reaches very low values, on the order of 10−5. The

maximum value of the relative error is about 10%, and is found for low values of n±1.

In our simulations, we have used a grid of dimensions 24σ × 24σ and 1000 points in
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each spatial direction. With higher grid precision, the relative error committed with the

proposed protocol could prove to be even lower.

Figure 3.5: Relative error committed in the determination of g2d using the full experi-

mental protocol described in the text as a function of the ab initio values of g2d and n±1

in the simulation.

Currently, there are different approaches to measure the s-wave scattering length

of ultracold atoms [201] such as those based on photoassociation spectroscopy, ballistic

expansion, and collective excitations. Our proposal constitutes an alternative to these

approaches where all the unknowns can be directly inferred from fluorescence images of

the BEC. However, the limit g2d < 4 obtained for the configuration discussed in Fig. 3.3

implies that for a BEC of, e.g., N = 104 atoms of 23Na, with a trapping frequency ωz of

a few hundreds of Hz, the maximum s-wave scattering length that could be measured

with high precision, e.g., with a relative error of 10−2, would be a few times the Bohr

radius.

3.3.2 Sensing of magnetic fields

Assuming that the total number of atoms N of the BEC and the trapping frequency

in the z direction ωz are precisely known quantities, Eqs. (3.21) and (3.4) together with

the protocols to measure n±1, I and ∆ allow to determine the scattering length aS. If

the scattering length depends somehow on the modulus B of an external magnetic field,

a change in B will be translated into a variation of Ω. Thus, the system could be used as

a scalar magnetometer by relating changes on the frequency of rotation of the minimal
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density line to variations of the modulus of the magnetic field. Taking into account

that I and ∆ are almost independent of g2d and thus of B in the regime of interaction

strengths for which the model is valid, combining Eqs. (3.4) and (3.20) we can evaluate

the sensitivity that this magnetometer would have as

dΩFSM

dB
=
n±1IN

√
8πmωz

~

2(1 + U(B)
∆

)2

daS
dB

. (3.29)

Since we must have U � ∆ in order for the model to be valid, we can define a threshold

limit for the sensitivity by taking U/∆ = 1 in (3.29). Defining the aspect ratio Λ ≡ ωz/ω

and changing the differentials in (3.29) by finite increments, we find the following upper

threshold for the sensitivity in magnetic field variations ∆Bth as a function of the change

in the rotation frequency of the nodal line ∆Ω

∆Bth =
8σ

n±1IN
√

8πΛ

1
daS
dB

∆Ω. (3.30)

From Eq. (3.30), we observe that the sensitivity is improved by having a large number

of condensed particles and a strong dependence of the scattering length on the magnetic

field modulus. However, since the parameter g2d ∝ Nas needs to be small in order for

the model to be valid, it is also required that the scattering length takes small values.

In the presence of a Feshbach resonance, the scattering length depends of the mag-

netic field modulus as

aS(B) = ãS

(
1− δ

B −B0

)
, (3.31)

where ãS is the background scattering length, B0 is the value of B at resonance and δ

is the width of the resonance. Thus, by placing the magnetic field close to the resonant

value B0, one could in principle meet both the requirement that the scattering length is

small and that it depends strongly on the magnetic field modulus. Combining Eqs. (3.30)

and (3.31) and assuming that close to the resonant field (B −B0) ≈ δ, we arrive at the

following expression for the magnetic field sensitivity

∆Bth =
8σ

n±1IN
√

8πΛ

δ

ãS
∆Ω. (3.32)

However, for most atomic species this procedure would have the inconvenience that

close to a Feshbach resonance the three-body losses are greatly enhanced, limiting the

lifetime of the BEC and hindering the measurement procedure. Nevertheless, some

atomic species such as 85Rb [18], 133Cs [21], 39K [202] or 7Li [19] have been reported

to form BECs that are stable across Feshbach resonances, so they could be potential

candidates for using the system as a magnetometer. Additionally, the BECs formed by



3.3 Quantum sensing protocol 59

these species have lifetimes on the order of a few seconds. Taking into account that the

trapping frequency ω, in units of which Ω is expressed, is typically of the order of a few

hundreds of Hz for ring-shaped traps, and considering typical values of Ω as the ones in

Fig. 3.3(a), in International System units Ω/2π ∼ 1Hz. This means that in the typical

time that an experiment would last, τ ∼ 1s, the minimum density line would perform

a few complete laps. Under the reasonable assumption that the fluorescence imaging

system could resolve angular differences on the order of ∼ 0.1 rad, incrementals in the

rotation frequency on the order of 10−2Hz could be measured. Thus, in the dimensionless

units of Eq. (3.30), sensitivites on the order of ∆Ω ∼ 10−4 could be achieved. These

atomic species have, however, the drawback that they typically form BECs with a low

number of particles, which limits the sensitivity to magnetic fields. Although it is outside

of the scope of this Chapter to give accurate values of the sensitivities that could be

achieved with this apparatus, making use of Eq. (3.32) and considering the experimental

parameters reported in [194], we have estimated that, in principle, this magnetometer

would allow to measure changes in the magnetic field on the order of a few pT at a

bandwidth of 1 Hz.

3.3.3 Sensing of rotations

Let us consider the case when the BEC is placed in a reference frame rotating at an

angular frequency Ωext, which is positive (negative) if the rotation is clockwise (counter-

clockwise). Now the dynamics is governed by the modified GPE [146]

i
∂Ψ

∂t
=

[
−∇

2

2
+ V (r) + g2d|Ψ|2 + iΩext

∂

∂ϕ

]
Ψ. (3.33)

The extra term iΩext
∂
∂ϕ

introduces an energy splitting ∆E = 2Ωextl between two counter-

propagating states with total OAM l. The ideal instance for using the system under

study as a sensor of rotations is the non-interacting limit g2d = 0. In that case, the effect

of the external rotation is to make the line of minimal density rotate at an angular speed

Ωext, which can be directly measured in experiments.

In the weakly interacting regime, the system under study can still be used as a sensor

of external rotations. In that case, the only difference in the dynamics with respect to

the case when there is no external rotation is that the rotation frequency of the nodal

line is shifted precisely by a quantity Ωext. Thus, if g2d is known and I, n±1 and ∆ are

measured using the protocol provided in Sec. 3.3.1, the system under consideration can

be used as a sensing device for external rotations by computing the external rotation as

Ωext = Ω − ΩFSM, where Ω is the rotation frequency of the nodal line observed in the

experiment and ΩFSM is given by (3.20).

The proposed setup constitutes an alternative to the two main lines of development
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of rotation sensors using ultracold atoms: the atomic-gas analogues of superconducting

quantum interference devices (SQUIDs) [121, 124–127, 129] and Sagnac interferome-

ters, see [197] for a review. Gyroscopes based on the Sagnac effect measure a rotation

rate relative to an inertial reference frame, based on a rotationally induced phase shift

between two paths of an interferometer and the low available atomic fluxes and low

effective areas are the main limiting factors of their sensitivity.

3.4 Initial state preparation

As a complement of the study of a quantum sensing device based on a BEC carrying

OAM in a ring potential presented in this Chapter, in this section we discuss some

possible strategies to prepare the initial state consisting of an imbalanced superposition

of counter-propagating OAM l = 1 states. As we outlined in Sec. 3.2.1, there are two

main possibilities to prepare such a state, namely:

i) Directly imprint to a BEC trapped in a ring potential the phase and density profiles

associated with the state given by Eq. (3.11).

ii) Prepare the BEC in one of the OAM modes, e.g. in state |+1〉 state, then deform

adiabatically the ring in order to induce a coupling with the |−1〉 state and finally

return adiabatically the ring potential to its original shape.

Next, we discuss separately the implementation of these two strategies.

3.4.1 Direct imprinting of the phase and density profiles

The most direct strategy to generate an imbalanced superposition of the OAM l =

1 counter-rotating modes is to imprint the corresponding density and phase profiles

onto the BEC by manipulating the trapping potential. The wave function of such a

superposition, which is given by Eq. (3.11), can be written as Ψ(r, ϕ) = |Ψ(r, ϕ)|eiβ(ϕ).

The modulus |Ψ(r, ϕ)| is given by Eq. (3.12), and the phase profile reads (we assume a

relative phase between the counter-propagating modes α = 0 for simplicity)

β(ϕ) = arctan

(
Im[Ψ(r, ϕ)]

Re[Ψ(r, ϕ)]

)
= arctan

(√
p+1 −

√
p−1√

p+1 +
√
p−1

tanϕ

)
(3.34)

This density and phase patterning could be done, for instance, by using highly pro-

grammable digital micromirror devices [165].
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3.4.2 Adiabatic deformation of the ring trap

The method described in the previous section might be difficult to implement exper-

imentally due to the high degree of precision required in the phase and density imprint-

ing. An alternative approach which does not demand such a fine control of the system is

to adiabatically deform the ring trap to induce a coupling between the counter-rotating

OAM modes. In order to do so one could, for instance, implement the following protocol

1. Load the OAM l = 1 state with clock-wise circulation, |+1〉, in a ring potential of

radius R. This could be done by preparing the BEC in the ground state of the ring

and then imprinting a 2π round phase with a Laguerre-Gaussian beam [120, 122].

2. Adiabatically deform the ring potential into an ellipse with the same area as the

original ring,

V (r, ϕ) =
1

2
(r − R̃(ϕ)), (3.35)

with

R̃(ϕ) =
R√

cos2 ϕ
a2

+ sin2 ϕ
b2

, (3.36)

such that ab = R2. The a and b semiaxes of the ellipse are varied in time according

to the relations

a(t) = R

(
1 + k

t

t
(1)
r

)
; b(t) =

R

1 + k t

t
(1)
r

(3.37)

where t
(1)
r is the total time of the adiabatic ramp and k is a factor that sets the

maximum eccentricity of the ellipse.

3. Keep the elliptic potential with semiaxes a = R(1 +k) and b = R/(1 +k) during a

hold time th in order to populate the counter-propagating OAM mode |−1〉 due to

the coupling induced by the breaking of the cylindrical symmetry of the potential

[137].

4. Adiabatically deform the semiaxes of the ellipse into their original form according

to the relations

a(t) = R

(
1 + k

(
1− t

t
(2)
r

))
; b(t) =

R

1 + k
(

1− t

t
(2)
r

) , (3.38)

where t
(2)
r is the total time of the second adiabatic ramp.
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We have performed numerical simulations of this protocol with the parameters k = 0.2,

ωt
(1)
r = ωt

(2)
r = 100 and ωth = 250 for different values of the ring radius R and g2d.

For rings of small radius, R . 5σ, we observe that the final state is an imbalanced

superposition of |1,±〉 OAM modes with very small populations of higher odd OAM

modes. In Fig. 3.6 (a) we plot, for a ring of R = 5σ, the time evolution of the populations

of the OAM l = 1, 3 states during the protocol for g2d = 0.5 and 1; and in Fig. 3.6 (b)

we show several snapshots of the density distribution for g2d = 0.5. For rings of larger

radius, the final state contains significant populations of higher odd OAM modes. An

example of this is shown in Fig. 3.7, which contains the same information as Fig. 3.6

but for a ring of R = 15σ. As can be seen in Fig. 3.7 (a), in this case the final state

contains a significant population of the |−3〉 state, and therefore, as shown Fig. 3.7 (b),

its density profile has two minimal density lines. In both Fig. 3.6 (a) and Fig. 3.7 (a),

it can be seen that the final population of the |−1〉 state is bigger for smaller values of

g2d.

The reason why higher OAM states are populated in bigger rings is that the energy

separation between OAM states decreases as the ring radius increases, as illustrated in

table 3.1. As we discussed in Sec. 3.3.1, the only difference in energy between the OAM

states comes from the centrifugal term of the kinetic energy. According to Eqs. (3.27),

(3.28), this term is smaller for bigger values of R because the amplitude of the ground

state wave function ψ0(r) is maximal around the radial position r = R. During the

process of adiabatic deformation of the potential, the total energy of the BEC is slightly

increased. When this slight increment is of the order of the energy separation between

the OAM modes, states with higher values of l become significantly populated. Although

a more detailed study of this effect is outside of the scope of this Chapter, the adiabatic

trap deformation protocol could in principle be optimized to selectively populate a

desired OAM state. Alternatively, one could design a faster scheme to obtain the desired

state based on shortcuts to adiabaticity [203].

R/σ Ec/~ω
5 2.13× 10−2

7.5 9.13× 10−3

10 5.07× 10−3

15 2.23× 10−3

20 1.25× 10−3

Table 3.1: Energy separation between the l = 1 and l = 0 OAM states for different

values of the ring radius.
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Figure 3.6: (a) Time evolution of the populations of the |±1〉 and |±3〉 OAM states

during the trap deformation protocol described in the main text. The instants A, B, C,

D correspond to ωt = 0, ωt
(1)
r , ω(t

(1)
r + th), ω(t

(1)
r + th + t

(2)
r ), respectively. (b) Snapshots

of the BEC density profile at the instants A, B, C, D for g2d = 0.5. The parameters of

the simulation are R = 5σ, ωt
(1)
r = ωt

(2)
r = 100, ωth = 250.
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Figure 3.7: (a) Time evolution of the populations of the |±1〉 and |±3〉 OAM states

during the trap deformation protocol described in the main text. The instants A, B, C,

D correspond to ωt = 0, ωt
(1)
r , ω(t

(1)
r + th), ω(t

(1)
r + th + t

(2)
r ), respectively. (b) Snapshots

of the BEC density profile at the instants A, B, C, D for g2d = 0.5. The parameters of

the simulation are R = 15σ, ωt
(1)
r = ωt

(2)
r = 100, ωth = 250.

3.5 Conclusions

In this Chapter we have studied the implementation of a quantum sensing device

based on a weakly interacting BEC trapped in a 2D ring potential. We have started

by deriving, in the context of the GPE description of the BEC, the general set of cou-

pled non-linear equations that govern the time evolution of the amplitudes of the OAM

modes. Then, we have focused on an initial state consisting of an imbalanced superposi-
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tion of the two counter-propagating OAM l = 1 modes in the weakly interacting regime.

The density profile of this state has a minimal line that rotates due to a time-dependent

relative phase between the counter-propagating modes induced by the non-linear cou-

plings. By comparison with a direct integration of the full 2D GPE, we have shown

that it is enough to restrict the general equations of motion to the OAM l = 1 and

l = 3 modes to obtain a very good description of the dynamics of the BEC. Within

this truncated model, we have obtained a simple analytical expression that relates the

atom-atom interaction strength to the rotation frequency of the minimal density line

Harnessing the latter analytical relation, we have proposed a protocol to use the

system as a sensor of two-body interactions in dilute BECs. The experimental deter-

mination of all the quantities involved in the measurement could be done by analysing

fluorescence images of the BEC density profile. We have tested the protocol by compar-

ing the numerical results of the analysis of the BEC density profiles with the ab initio

known values of the interaction strength used in the simulations. In the weakly inter-

acting regime, the protocol provides accurate estimations of the interaction strength.

In the presence of a Feshbach resonance, the system could also be used as a magnetic

field sensor by measuring the change in the rotation frequency of the nodal line induced

by variations of the s-wave scattering length caused by magnetic field fluctuations. For

atomic species with low three-body losses close to the resonant value of the magnetic

field, the sensitivity would be enhanced around this region. We have also discussed the

use of the device as a sensor of external rotations, which could be measured as the dif-

ference between the experimentally observed rotation frequency of the minimal density

line and the one predicted by the model.

Finally, we have discussed two possible ways to prepare the initial state consisting

of an imbalanced superposition of counter-propagating OAM l = 1 modes. The most

straightforward -although experimentally challenging- approach would be to directly

imprint the phase and density profiles corresponding to this state onto a BEC loaded

in the ground state of the 2D ring potential. Alternatively, one could initially load only

one of the OAM modes and induce a coupling with the mode with opposite circulation

by momentarily breaking the cylindrical symmetry of the potential. We have performed

full GPE numerical simulations which confirm the feasibility of this latter approach.





CHAPTER 4

Topological edge states and Aharonov-Bohm caging with ultracold

atoms carrying orbital angular momentum in a diamond chain

In this Chapter, we study the single-particle properties of a system formed by ul-

tracold atoms loaded into the manifold of l = 1 Orbital Angular Momentum (OAM)

states of an optical lattice with a diamond chain geometry. We find that this system has

a topologically non-trivial band structure and exhibits robust edge states that persist

across the gap closing points, indicating the absence of a topological transition. We dis-

cuss how to perform the topological characterization of the model with a generalization

of the Zak’s phase and we show that this system constitutes a realization of a square-root

topological insulator. In addition, we demonstrate that quantum interference between

the different tunneling processes involved in the dynamics may lead to Aharonov-Bohm

caging in the system.

The Chapter is organized as follows. In Sec. 4.1 we give a brief overview on recent

progress on the study of topological systems with ultracold atoms and photonic plat-

forms. In Sec. 4.2 we describe in detail the physical system that we consider and we

derive the tight-binding model that we use to describe its single-particle properties. We

also compute the band structure and discuss the differences with the model of a dia-

mond chain without the OAM degree of freedom. Next, we introduce three successive

analytical mappings that allow to unravel the main features of the model. In particular,

the basis rotation introduced in Sec. 4.3 decouples the original chain with two states

per site into two independent chains with one orbital per site and a net π flux through

the plaquettes. Then, in Sec. 4.4 we map each of these independent chains into a modi-

67
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fied Su-Schrieffer-Heeger (SSH) model. This mapping allows to understand the different

types of eigenstates of the system and the occurrence of Aharonov-Bohm caging in the

limit when all the bands are flat. To complete the analytical analysis of the model, in

Sec. 4.5 we perform a third mapping that allows to characterize the topology of the

system. In Sec. 4.6 we support the analytical findings discussed in the previous sections

with numerical results. Finally, in Sec. 4.7 we summarize our conclusions and outline

some further perspectives for this work.

4.1 Introduction

Since the observation of the quantum Hall effect in two-dimensional electron gases

[68, 106] and the discovery of its relation with topology [70], the study of systems

with non-trivial topological properties has become a central topic in condensed matter

physics. A very interesting example of such exotic phases of matter are topological

insulators [67], which are materials that exhibit insulating properties on their bulk but

possess a bulk-boundary correspondence that correlates non-trivial topological indices

of the bulk energy bands, such as, e.g., the Berry phase [152], with the existence of

conducting edge states under open boundary conditions. There are many different

types of topological insulators, which can be systematically classified in terms of their

symmetries and dimensionality [79].

In recent years, many efforts have been devoted to implementing topologically non-

trivial models in clean and highly controllable systems. Topological states have been

observed and characterized in light-based platforms [204] such as photonic crystals [205–

209] and photonic quantum walks [210, 211]. Ultracold atoms in optical lattices are also

a well-suited environment to implement topological phases of matter [83]. Remarkable

achievements in this platform include the realisation of the Haldane [94] and Hofstadter

[46, 47] models, the demonstration of a link between topology and out-of-equilibrium

dynamics [104], the observation of a many-body topological phase with Rydberg atoms

[107], the experimental measurement [103] of the Zak’s phase [157], the detection of

topological states [100, 212] or the observation of a topological Anderson insulator [81].

There are a wide range of further theoretical proposals for the observation of topological

phenomena in cold atoms [213–219], most of which are based around the realisation of

artificial gauge fields by laser dressing [46, 47, 220], or periodically driving the lattice

system [85, 89]. In both photonic and ultracold atom systems, the possibility to use

synthetic dimensions provides a powerful way to explore topological matter [96, 97].

In this Chapter, we explore topologically non-trivial multi-level models that arise

naturally for ultracold atoms in excited OAM states of a one-dimensional (1D) chain. We

study a concrete example of a diamond chain to demonstrate how this model is rendered
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topologically non-trivial due to relative phases in the tunneling amplitudes between

OAM l = 1 states with opposite circulations. Such a system could be experimentally

realized, for instance, by exciting the atoms to the p-band of a conventional optical lattice

[58, 135, 221, 222] or by optically transferring OAM [109, 122] to atoms confined to an

arrangement of ring-shaped potentials, which can be created by a variety of techniques

[109–114, 116]. Remarkably, we find that topological states exist regardless of the values

of the parameters of the model, with no topological transition across the gap closing

points. This system constitutes an unusual example of a topological insulator with

non-quantized values of the Zak’s phase due to the inversion axes not crossing the

center of any choice of unit cell [157]. In order to circumvent this difficulty, we make

use of a recently developed technique [223] to perform the topological characterization.

Furthermore, the model belongs to a new class of square-root topological insulators

[224, 225], in which the quantized values of the Zak’s phases are recovered after taking

the square of the bulk Hamiltonian. Fundamentally, this behaviour arises because the

OAM l = 1 states are equivalent to the px and py orbitals in optical lattices [58, 135, 221],

which have been shown to naturally display non-trivial topological properties in one-[222]

and two-[226, 227] dimensional systems due to the parity of their wave functions. In the

OAM l = 1 basis, the mechanism that yields topological properties is the appearance

of relative phases in the tunnelling amplitudes, which are controllable by tuning the

geometry of the lattice [137].

Additionally, a proper tuning of the inter-site separation and the central angle can

lead to Aharonov-Bohm caging, which consists in the confinement of wave packets due to

quantum interference [225, 228–231]. A distinctive advantage regarding the realization of

Aharonov-Bohm caging in this model is that, at variance with other proposals [225, 230–

232], one does not need to rely on creating synthetic gauge fields [84–86, 233] to produce

the magnetic flux required for Aharonov-Bohm caging. Instead, in our OAM l = 1 model

complex phases with values controlled by the central angle appear naturally in some of

the tunneling parameters [137, 234], giving rise to an effective magnetic flux.

4.2 Physical system

The physical system that we consider is depicted in Fig. 4.1. It consists of a gas

of ultracold atoms of mass m trapped in a quasi-1D optical lattice with the shape of

a diamond chain. The chain is formed by an integer number Nc of unit cells, each of

which has a central site A and two sites, B and C, equally separated from A and with

the lines connecting them to it forming a relative angle Θ. Each of the sites is the center

of a cylindrically symmetric potential with trapping frequency ω such as, for instance,

a ring-shaped trap of radius R that generates a potential V (r) = 1
2
mω2(r −R)2, where
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Figure 4.1: Schematic representation of the diamond chain optical lattice loaded with

ultracold atoms in the OAM l = 1 states considered in this Chapter. The directions

along which all the couplings are real are signalled with blue straight arrows, whereas

the red dashed arrows are drawn in the directions along which the tunneling couplings

involving a change in the circulation, i.e., those whose amplitude is J1 or J3 in Eq. (4.4),

acquire a π phase.

r is the radial coordinate about the centre of the trap. In the case R = 0, the ring trap

reduces to a harmonic potential. These potentials define a characteristic length scale

σ =
√

~/(mω). As shown in Fig. 4.1, we denote the distance between the perimeters of

nearest-neighbour rings as d, so that the unit cells are separated by a distance s =
√

2d.

The atoms may occupy the two states of total OAM l = 1 of each site, |ji,±〉, where i

is an index labelling the unit cell and j = A,B,C. Thus, the total field operator of the

system reads

Ψ̂ =
Nc∑
i=1;

∑
α=±

φAiα (rAi , ϕAi)â
i
α + φBiα (rBi , ϕBi)b̂

i
α + φCiα (rCi , ϕCi)ĉ

i
α, (4.1)

where

φjiα (rji , ϕji) = 〈~r |ji, α〉 = ψ(rji)e
αi(ϕji−ϕ0) (4.2)

are the wave functions of the OAM l = 1 states with positive/negative circulation

(α = ±) with respect to the center of each site ji, and âiα, b̂
i
α, ĉ

i
α are the annihilation

operators of these states at the sites Ai, Bi and Ci, respectively. In the expression of

the wave functions (4.2), (rji , ϕji) are polar coordinates with origin at the site ji and

ϕ0 is an absolute phase origin, which can be chosen arbitrarily. We will analyze the

non-interacting case, for which the Hamiltonian is

Ĥ =

ˆ
d~rΨ̂†

[
−~2∇2

2m
+ V (~r)

]
Ψ̂, (4.3)
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where the total potential of the lattice V (~r) can be taken in a good approximation as

the truncated combination of all the cylindrically symmetric potentials centered at each

of the sites forming the diamond chain. The Hamiltonian (4.3) describes the tunneling

dynamics of ultracold atoms between the different coupled traps of the diamond chain

restricted to the manifold of l = 1 OAM states of each site. In Sec. 2.4 of Chapter 2,

we have derived few-state models governing this type of dynamics in systems formed

by two and three side-coupled traps which are readily generalizable to larger arrays

of cylindrically symmetric traps. In the specific case of the diamond chain geometry

studied here, since the strength of the tunneling amplitudes decays rapidly with d [see

Fig. 2.4], it is a good approximation to consider coupling terms only between nearest-

neighbour sites [234]. Setting the origin of phases ϕ0 along the direction of the lines

connecting the sites Ci ↔ Ai ↔ Bi+1, so that complex factors e±2iΘ appear in the

tunneling amplitudes along the Bi ↔ Ai ↔ Ci+1 line that involve an exchange of the

OAM circulation. Therefore, the Hamiltonian (4.3) can be written in a second-quantized

form as

Ĥ = J1

∑
α=±

e−2αiΘb̂1†
α b̂

1
−α + ĉ1†

α ĉ
1
−α

+ J2

Nc∑
i=1

∑
α=±

[
âi†α (b̂iα + b̂i+1

α + ĉiα + ĉi+1
α )
]

+ h.c.

+ J3

Nc∑
i=1

∑
α=±

[
âi†α (e−2αiΘb̂i−α + b̂i+1

−α + ĉi−α + e−2αiΘĉi+1
−α )
]

+ h.c., (4.4)

where for simplicity we have dropped the OAM manifold index l = 1 from the tunneling

amplitudes. Note that for Θ . π/3, the Bi and Ci sites become sufficiently close to each

other that their coupling is no longer negligible in a nearest-neighbor approximation. In

what follows we set Θ = π/2, which translates into a π phase in the tunneling processes

involving a change in the circulation along the lines connecting the Bi, Ai and Ci+1

sites (indicated by red dashed arrows in Fig. 4.1). We point out that the Hamiltonian

(4.4) possesses inversion symmetry, so that the Zak’s phase associated with each of the

energy bands can only take the values 0 and π [157]. Nevertheless, due to the two-

fold degeneracy of its energy bands, which will be discussed below, a direct topological

characterization would overlook several new features of our model, which can only be

revealed and explained after lifting the degeneracies using the exact mappings detailed in

Secs. 4.3, 4.4 and 4.5. The time-reversal symmetry operation exchanges the circulation

of the states, thus acting on the operators as {âi(†)± , b̂
i(†)
± , ĉ

i(†)
± } → {â

i(†)
∓ , b̂

i(†)
∓ , ĉ

i(†)
∓ }, and

reverses the sign of the effective flux, e±2iΘ → e∓2iΘ. Therefore, the Hamiltonian (4.4)

describing our system is also time-reversal symmetric.

Note that the self-coupling amplitude J1 is only present at the left corners of the
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chain. This is due to the fact that these are the only sites of the chain that are connected

to only one site, whereas the rest of sites are connected to an even number of sites and,

for the central angle Θ = π/2, the contributions to the self-coupling amplitude coming

from the different sites interfere destructively [137]. Since the self-coupling at the left

edge of the chain is a small effect, for simplicity we will initially take J1 = 0 in the

following sections, and then return to the case of a non-zero value for J1 in Sec. 4.6.

As a starting point of our analysis of the system, we consider a diamond chain of

Nc → ∞ unit cells described by the Hamiltonian (4.3) and compute its band struc-

ture. To do this calculation, we employ the usual method of Fourier-expanding the

annihilation operators as (we consider an inter-cell separation s ≡ 1)

ôiα =
1√
Nc

√
1

2π

ˆ π

−π
dke−ikxi ôkα, (4.5)

where xi is the position of the ith cell along the direction of the diamond chain, k is

the quasi-momentum, o = {a, b, c} and α = ±. Since there are six states per unit cell

(two for each of the three sites), the spectrum has six energy bands. By plugging the

expansion (4.5) into the Hamiltonian (4.4), we can re-express it in k-space as

Ĥk =

ˆ
dkΨ̂†kHkΨ̂k, (4.6)

with Ψ̂†k = (âk†+ , â
k†
− , b̂

k†
+ , b̂

k†
− , ĉ

k†
+ , ĉ

k†
− ) and

Hk =



0 0 J2(1 + e−ik) J3(−1 + e−ik) J2(1 + e−ik) J3(1− e−ik)
0 0 J3(−1 + e−ik) J2(1 + e−ik) J3(1− e−ik) J2(1 + e−ik)

J2(1 + eik) J3(−1 + eik) 0 0 0 0

J3(−1 + eik) J2(1 + eik) 0 0 0 0

J2(1 + eik) J3(1− eik) 0 0 0 0

J3(1− eik) J2(1 + eik) 0 0 0 0


.

(4.7)

The model possesses also chiral symmetry, as can be seen by the fact that the

matrix Γ = diag{−1,−1, 1, 1, 1, 1} makes the k-space Hamiltonian fulfill the relation

ΓHkΓ = −Hk. The energy bands, which are given by the eigenvalues of Hk, appear in

three degenerate pairs

E1(k) = E2(k) = 0 (4.8a)

E3(k) = E4(k) = −2
√

(J2
2 + J2

3 ) + cos k(J2
2 − J2

3 ) (4.8b)

E5(k) = E6(k) = 2
√

(J2
2 + J2

3 ) + cos k(J2
2 − J2

3 ). (4.8c)

The band structure (4.8) always presents an energy gap of size 2
√

2J2 (for J2 < J3) or

2
√

2J3 (for J3 < J2). Two of the bands are flat regardless of the values of J2 and J3,
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and, in the J2 = J3 limit, which can be realized by setting a large value of d, all of the

six bands become flat. These facts are illustrated in Fig. 4.2, where the energy bands

(4.8) are plotted using realistic values of J2 and J3 computed for different values of d

and considering harmonic traps.

The band structure of the diamond chain in the l = 1 manifold presents some

differences with the one that would be obtained in the manifold of ground states (l = 0)

of each of the sites. In this manifold, there is only one state per site and one tunneling

amplitude J , which does not acquire any phases. The three energy bands that one

obtains in this system are E(k) = 0,±2
√

2J cos(k/2). Although there is a zero-energy

flat band like in the OAM l = 1 manifold, the other two bands touch at the points

k = ±π. However, if a flux through the plaquettes of the diamond chain is introduced,

a gap opening occurs [235]. As we will show in Sec. 4.3, the addition of the OAM degree

of freedom can be interpreted as the introduction of a net flux through the plaquettes

that causes the gap opening in the band structure, see Eqs. (4.8).

Figure 4.2: Energy bands of the diamond chain in the OAM l = 1 manifold computed

using the values of J2 and J3 that are obtained for harmonic potentials separated by

distances (a) d = 3.5σ, for which J3/J2 = 1.67, and (b) d = 6σ, for which J3/J2 = 1.13

[see Fig. 2.4 (a)].

4.3 Mapping into two decoupled diamond chains

Many features of the band structure can be understood by performing exact map-

pings of the diamond chain in the OAM l = 1 manifold into other models. We start by
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considering the following basis rotation

|Di,±〉 =
1√
2

(|Ci,+〉 ± |Bi,+〉) (4.9a)

|Fi,±〉 =
1√
2

(|Ci,−〉 ± |Bi,−〉). (4.9b)

In this rotated basis, the only non-vanishing matrix elements of the Hamiltonian (4.4)

are

〈
Ai,+

∣∣∣Ĥ∣∣∣Di,+
〉

=
〈
Ai,+

∣∣∣Ĥ∣∣∣Di+1,+
〉

=
√

2J2 (4.10a)〈
Ai,−

∣∣∣Ĥ∣∣∣Fi,+〉 =
〈
Ai,−

∣∣∣Ĥ∣∣∣Fi+1,+
〉

=
√

2J2 (4.10b)〈
Ai,+

∣∣∣Ĥ∣∣∣Fi,−〉 =
〈
Ai,−

∣∣∣Ĥ∣∣∣Di,−
〉

=
√

2J3 (4.10c)〈
Ai,+

∣∣∣Ĥ∣∣∣Fi+1,−
〉

=
〈
Ai,−

∣∣∣Ĥ∣∣∣Di+1,−
〉

= −
√

2J3. (4.10d)

The fact that only these couplings survive after the basis rotation (4.9) can be inter-

preted as a splitting of the original diamond chain with two states per site into two

identical and decoupled diamond chains, one in which the |Di,+〉 and |Fi,−〉 states are

coupled to the |Ai,+〉 states and another one in which the |Fi,+〉 and |Di,−〉 states

are coupled to the |Ai,−〉 states. These two chains, which we denote as H1 and H2

respectively, are depicted in Fig. 4.3 and are described by the Hamiltonians

H1 =
Nc∑
i=1

âi†+[
√

2J2(d̂i+ + d̂i+1
+ ) +

√
2J3(f̂ i− − f̂ i+1

− )] + h.c. (4.11a)

H2 =
Nc∑
i=1

âi†−[
√

2J2(f̂ i+ + f̂ i+1
+ ) +

√
2J3(d̂i− − d̂i+1

− )] + h.c., (4.11b)

where d̂i± and f̂ i± are the annihilation operators associated with the states |Di,±〉 and

|Fi,±〉, respectively.
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Figure 4.3: Sketch of the decoupled diamond chains H1 (a) and H2 (b) that are obtained

after performing the basis rotation (4.9).

Each of these two identical Hamiltonians has the same band structure (4.8) as the

original one, but with three bands instead of six because there is only one state per site.

This makes it possible to understand the degeneracy of the spectrum in the original

model, which is a consequence of the symmetry between the two OAM states with

different circulations. As shown in Fig. 4.3, the fact that in each chain one of the

couplings has an alternating sign can be regarded as a net π flux through the plaquettes

of each of the decoupled diamond chains. As we discussed in the previous section, this

effective net flux through the plaquettes explains the gap opening in the band structure.

4.4 Mapping into a modified SSH chain

We can gain further insight into the features of the band structure by performing a

second basis rotation, given for the H1 chain by

|Gi,+〉 =
1√

J2
2 + J2

3

(J2 |Di,+〉+ J3 |Fi,−〉) (4.12a)

|Gi,−〉 =
1√

J2
2 + J2

3

(J3 |Di,+〉 − J2 |Fi,−〉). (4.12b)



76 Chapter 4 – Topological edge states and AB caging in a diamond chain

For the H2 chain, an equivalent mapping can be defined by substituting F by D

everywhere in eqs. (4.12). Since the two chains are identical, from now on we will base

the discussion on the H1 chain and indicate the results that are obtained for the H2

chain.

The basis rotation (4.12) reduces even further the number of non-vanishing matrix

elements, which now are

〈
Ai,+

∣∣H1
∣∣Gi,+

〉
=
√

2
√
J2

2 + J2
3 ≡ Ω1 (4.13a)〈

Ai,+
∣∣H1

∣∣Gi+1,−
〉

=
2
√

2J2J3√
J2

2 + J2
3

≡ Ω2 (4.13b)

〈
Ai,+

∣∣H1
∣∣Gi+1,+

〉
=

√
2(J2

2 − J2
3 )√

J2
2 + J2

3

≡ Ω3 (4.13c)

As shown in Fig. 4.4 (a), the couplings (4.13) between the states (4.12) can be repre-

sented in a graphical way as a modified SSH model, consisting of the usual SSH chain

[161] with alternating strong (Ω1) and weak (Ω3) couplings and extra dangling sites

coupled to the chain with a strength Ω2.

Figure 4.4: (a) Sketch of the modified SSH chain that is obtained after performing the

basis rotation (4.12) on the H1 diamond chain that was obtained after the first basis

rotation (4.9). (b) Modified SSH chain in the Ω3 = 0 (J2 = J3) limit, where the bulk

sites become decoupled in trimers and an isolated dimer appears at the right edge.
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Thus, the Hamiltonian of this modified SSH chain reads

H1
SSH =

Nc∑
i=1

âi†+(Ω1ĝ
i
+ + Ω2ĝ

i+1
− + Ω3ĝ

i+1
+ ) + h.c., (4.14)

where ĝi± are the annihilation operators associated with the states |Gi,±〉. This modified

SSH model allows us to clarify the origin of the flat bands and the in-gap edge states.

Next, we discuss separately these two features of the model.

4.4.1 Flat-band states

Zero-energy states

First, let us consider the general case J2 6= J3 and therefore Ω3 6= 0, as shown in

Fig. 4.4 (a). In this case, two of the three energy bands of H1 are dispersive, but there

is always a zero-energy flat band. This band also appears in a diamond chain in which

the atoms occupy the ground state (l = 0) manifold, so its presence is insensitive to the

existence of a net flux through the plaquettes [235]. In order to understand better the

flat-band states of the OAM l = 1 manifold, let us first examine the simpler case of the

ground state manifold. In that manifold, there is only one tunneling amplitude J which

does not acquire any phase. Hence, by imposing in each cell i of the chain the condition

that the site Ai is not populated due to destructive interference, one finds a zero-energy

eigenstate localized in ith unit cell, given by 1√
2
(|Bi〉 − |Ci〉). Similarly, in the OAM

l = 1 manifold we can find zero-energy states by imposing the destructive interference

condition on the A sites. In the modified SSH chain picture, this is achieved by populat-

ing appropriately in every two unit cells the states |Gi,+〉, |Gi,−〉 and |Gi+1,−〉 in such

a way that there is destructive interference and neither the |Ai,+〉 nor the |Ai−1,+〉
states are populated. The states that fulfil this condition in every pair of consecutive

unit cells are

∣∣W 1
0,i

〉
=

1√
C

(
Ω3

Ω2

|Gi,−〉 − |Gi,+〉+
Ω1

Ω2

|Gi+1,−〉
)
, (4.15)

where C is a normalization constant. It can be readily checked that this is a zero-energy

eigenstate of the Hamiltonian (4.14). Additionally, at the left edge of the chain the

state |G1,−〉 is decoupled from the rest of states and therefore it is a zero-energy state

too. Similarly, in the H2 chain one can find a state
∣∣W 2

0,i

〉
such that H2

SSH

∣∣W 2
0,i

〉
= 0.

By reverting the basis rotations (4.12) and (4.9), one can find expressions for the states
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∣∣W 1
0,i

〉
and

∣∣W 2
0,i

〉
in the original basis of OAM l = 1 states

∣∣W 1
0,i

〉
=

1√
2Ω1

[J3(|Ci+1,+〉+ |Bi+1,+〉 − |Ci,+〉 − |Bi,+〉)

+J2(|Bi,−〉+ |Bi+1,−〉 − |Ci,−〉 − |Ci+1,−〉)] (4.16a)∣∣W 2
0,i

〉
=

1√
2Ω1

[J3(|Ci+1,−〉+ |Bi+1,−〉 − |Ci,−〉 − |Bi,−〉)

+J2(|Bi,+〉+ |Bi+1,+〉 − |Ci,+〉 − |Ci+1,+〉)] . (4.16b)

From the expressions (4.16), we observe that the most compact form of the localized

states doubles in size with respect to the ground state (l = 0) manifold, occupying four

sites instead of the two in the latter case and spanning two unit cells instead of one.

In Fig. 4.5 we show examples of numerical density plots of (a) zero-energy flat-band

states and (b) dispersive states in a diamond chain of Nc = 10 unit cells. The chain is

formed by harmonic traps with a separation between nearest-neighbour sites d = 6σ,

for which J3/J2 = 1.13. The two states of Fig. 4.5 (a) have no population at the central

(A) sites of the chain, and are expanded across all the unit cells of the lattice because

they contain components of many maximally localized states, given by Eqs. (4.16). The

state of the right panel of Fig. 4.5 (a) also contains a component of the zero-energy

decoupled mode localized at the left edge |G1,−〉 [see Fig. 4.4 (b)]. Fig. 4.5 (b) shows

the two degenerate ground states of the system, which belong to the dispersive bands

of lowest energy. Differently from the flat-band states of Fig. 4.5 (a), these states span

all the sites of the chain.

Figure 4.5: Numerical density profiles of (a) two states of the zero-energy flat band and

(b) the two degenerate ground states in a diamond chain of Nc = 10 units cells composed

of harmonic traps with an inter-site separation d = 6σ, for which J3/J2 = 1.13.
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Flat bands in the J2 = J3 limit

As we discussed when we computed the band structure, in the J2 = J3 limit (which

physically corresponds to having a large inter-trap separation d), the two energy bands

that are generally dispersive become flat with energies E = ±2
√

2J2. The corresponding

eigenstates can also be analytically derived in the modified SSH chain picture. In this

particular limit, we have Ω3 = 0 and Ω1 = Ω2 = 2J2. Thus, as shown in Fig. 4.4 (b),

each trio of states in two consecutive unit cells |Gi,+〉, |Ai,+〉 and |Gi+1,−〉 becomes

decoupled from the rest of the chain and forms a three-site system that can be readily

diagonalized. When doing so, apart from the zero-energy state that we have already

discussed one finds the two eigenstates∣∣W 1
±,i
〉

=
1

2

(
|Gi,+〉 ±

√
2 |Ai,+〉+ |Gi+1,−〉

)
, (4.17)

such that

H1
SSH(Ω3 = 0)

∣∣W 1
±,i
〉

= ±2
√

2J2

∣∣W 1
±,i
〉
. (4.18)

Similarly, in the H2 chain there are two states
∣∣W 2
±,i
〉

in every pair of consecutive unit

cells such that H2
SSH(Ω3 = 0)

∣∣W 2
±,i
〉

= ±2
√

2J2

∣∣W 2
±,i
〉
. By reverting again the basis

rotations (4.9) and (4.12), we find the following expressions for these states in the

original basis of OAM l = 1 states∣∣W 1
±,i
〉

=
1

4
[|Ci,+〉+ |Bi,+〉+ |Ci+1,+〉+ |Bi+1,+〉

+ |Ci,−〉 − |Bi,−〉 − |Ci+1,−〉+ |Bi+1,−〉]±
1√
2
|Ai,+〉 (4.19a)∣∣W 2

±,i
〉

=
1

4
[|Ci,−〉+ |Bi,−〉+ |Ci+1,−〉+ |Bi+1,−〉

+ |Ci,+〉 − |Bi,+〉 − |Ci+1,+〉+ |Bi+1,+〉]±
1√
2
|Ai,−〉 . (4.19b)

Like the zero-energy states, all these states are localized in two consecutive unit cells of

the original diamond chain, but now with the difference that they do not form destructive

interferences on the A sites and have thus non-zero energy values.

4.4.2 Aharonov-Bohm caging

Aharonov-Bohm caging is a phenomenon of localization of wave packets in a periodic

structure that occurs due to quantum interference. Although it was originally studied in

the context of tight-binding electrons in two-dimensional lattices threaded by a magnetic

flux [228], its occurrence has been predicted in other physical platforms. In particular,

it has been suggested and experimentally shown that Aharonov-Bohm cages can be
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realized in photonic lattices with a diamond-chain shape in the presence of artificial

gauge fields [225, 230, 231].

In the J2 = J3 limit (i.e., for large values of the inter-trap separation d), the system

studied here also presents Aharonov-Bohm caging. In this situation, the eigenstates

(4.19) are localized in the unit cells i and i + 1, forming two two-fold degenerate flat

bands of energies±2
√

2J2 in the spectrum of the full diamond chain. The states localized

at the central site of the ith cell, |Ai,±〉, can be expressed in terms of these flat-band

states as

|Ai,+〉 =
1√
2

(∣∣W 1
+,i

〉
−
∣∣W 1
−,i
〉)

(4.20a)

|Ai,−〉 =
1√
2

(∣∣W 2
+,i

〉
−
∣∣W 2
−,i
〉)
. (4.20b)

Let us now consider explicitly the time evolution of an initial state of the form

|Ψ(t = 0)〉± = |Ai,±〉 in the J2 = J3 limit:

|Ψ(t)〉± =
1√
2

(
ei2
√

2J2t
∣∣∣W 1/2

+,i

〉
− e−i2

√
2J2t
∣∣∣W 1/2
−,i

〉)
=

1√
2

[(
ei2
√

2J2t − e−i2
√

2J2t
) 1

4
(|Ci,±〉+ |Bi,±〉+ |Ci+1,±〉+ |Bi+1,±〉

+ |Ci,∓〉 − |Bi,∓〉 − |Ci+1,∓〉+ |Bi+1,∓〉) +
(
ei2
√

2J2t + e−i2
√

2J2t
) 1√

2
|Ai,±〉

]
=
i sin 2

√
2J2t

2
√

2
(|Ci,±〉+ |Bi,±〉+ |Ci+1,±〉+ |Bi+1,±〉

+ |Ci,∓〉 − |Bi,∓〉 − |Ci+1,∓〉+ |Bi+1,∓〉) + cos 2
√

2J2t |Ai,±〉 . (4.21)

From Eq. (4.21), we observe that the population oscillates coherently from the initial

state |Ai,±〉 to a combination of states belonging to the cells i and i + 1 with an

angular frequency 2
√

2J2, given by the absolute value of the energies of the flat-band

states. This coherent oscillation is illustrated in Fig. 4.6 (a), where we show different

snapshots of the density profile of a wave packet prepared initially in the state |A3,+〉
of a diamond chain of Nc = 5 unit cells in the J2 = J3 limit. More generally, since

the |Ai,+〉 and |Ai,−〉 states belong respectively to the decoupled chains H1 and H2,

any initial state consisting of a linear combination of them evolves in time by oscillating

coherently to the states |Bi,±〉, |Ci,±〉, |Bi+1,±〉 and |Ci+1,±〉, that is, it remains

confined in the Aharonov-Bohm cages of the diamond chain. This effect is illustrated

in Fig. 4.6 (b), which shows, for a chain of Nc = 5 unit cells in the J3/J2 = 1 limit,

the numerically computed time evolution of the population of the states |A3,+〉 (black

solid lines) and |A3,−〉 (blue dotted lines) and of the total sum of the populations of

the states |B3,±〉 , |C3,±〉 , |A3,±〉 , |B4,±〉 , |C4,±〉 (red dash-dotted lines) after taking
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Figure 4.6: Aharonov-Bohm caging in a diamond chain of Nc = 5 unit cells. (a) Snap-

shots at different times of the density profiles corresponding to the time evolution of a

wave packet initially prepared in the state |A3,+〉 in the perfect caging limit, J2/J3 = 1.

(b),(c) Numerically computed time evolution of the population of the states |A3,+〉
(black solid lines) and |Ai,−〉 (blue dotted lines) and of the total sum of the popula-

tions of the states |B3,±〉 , |C3,±〉 , |A3,±〉 , |B4,±〉 , |C4,±〉 (red dash-dotted lines) after

taking the initial state |Ψ〉 =
√

0.7 |A3,+〉 +
√

0.3 |A3,−〉. The tunneling parameters

fulfill the relations (b) J3/J2 = 1 and (c) J3/J2 = 1.1.

the initial state |Ψ〉 =
√

0.7 |A3,+〉 +
√

0.3 |A3,−〉. Although the caging effect is only

perfect in the J3/J2 = 1 limit, we still expect it to prevail during the initial stage of the

time evolution for values of the J3/J2 ratio sufficiently close to 1. In Fig. 4.6 (c) we plot

the time evolution of the same quantites as in Fig. 4.6 (b) considering the same system

and initial state, but taking now a ratio between the tunneling rates J3/J2 = 1.1. In

this situation, we observe that for times J2t . 2 almost all of the population remains

inside the cage. Then, the damping of the coherent oscillations of the populations of the

|A3,±〉 states starts to be more significant, and at the final time J2t = 10 the population

inside the cage represents about 40% of the total.
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4.4.3 In-gap edge states in the Ω3 = 0 limit

If one considers a chain of finite size, in the Ω3 = 0 (i.e., J2 = J3) limit there are two

states at the right edge of the chain, |GNc ,+〉 and |ANc ,+〉, forming a dimer which is

decoupled from the rest of the chain, as can be seen in Fig. 4.4 (b). Thus, at the right

edge of the chain there are two additional eigenstates∣∣E1
±
〉

=
1√
2

(|GNc ,+〉 ± |ANc ,+〉), (4.22)

such that

H1
SSH(Ω3 = 0)

∣∣E1
±
〉

= ±2J2

∣∣E1
±
〉

(4.23)

Similarly, in the H2 chain there are two edge eigenstates, H2
SSH(Ω3 = 0)

∣∣E2
±
〉

=

±2J2

∣∣E2
±
〉
. By reverting the basis rotations (4.9) and (4.12), we find the following

expressions for these edge states in the original basis of OAM l = 1 states∣∣E1
±
〉

=
1

2
√

2
(|CNc ,+〉+ |BNc ,+〉+ |CNc ,−〉 − |BNc ,−〉 ± 2 |ANc ,+〉) (4.24a)∣∣E2

±
〉

=
1

2
√

2
(|CNc ,−〉+ |BNc ,−〉+ |CNc ,+〉 − |BNc ,+〉 ± 2 |ANc ,−〉) (4.24b)

Since the energies of the flat band states are ±2
√

2J2, these edge states appear as in-

gap states in the energy spectrum, which is suggestive of a possible topological origin.

Furthermore, edge-localized states also appear for J2 6= J3, as illustrated in the numerical

profiles of Fig. 4.7, which correspond to a chain of Nc = 10 unit cells formed by harmonic

traps with a separation d = 6σ, for which J3/J2 = 1.13.

Figure 4.7: Numerical density profiles of two edge states in a diamond chain of Nc = 10

units cells composed of harmonic traps with an inter-site separation d = 6σ, for which

J3/J2 = 1.13.

In order to see if the model is indeed topologically non-trivial, we should compute

the Zak’s phases of the different bands [157]. However, this is not possible in the original

model (4.4) due to the degeneracy of the bands (4.8). In the mapped models (4.11) and
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(4.14) the bands are no longer degenerate, but there is no inversion symmetry and thus

the Zak’s phase is not quantized. It is therefore necessary to perform a third mapping

into an inversion-symmetric model in order to recover quantized Zak’s phases for the

bands, therefore allowing for a topological characterization of the model.

4.5 Mapping into a modified diamond chain and

topological characterization

In order to map the modified SSH chain H1 into a model that allows to compute

meaningful Zak’s phases, we take two consecutive unit cells, i and i+1, of this relabelled

chain and define a basis rotation into 6 new states, which we shall denote as |i, j〉
(j = 1, ..., 6), in the following way

|i, 1〉 =
1√
t21 + t22

(t2 |Gi+1,+〉 − t1 |Gi+1,−〉) (4.25a)

|i, 2〉 =
1√
t21 + t22

(t1 |Gi+1,+〉+ t2 |Gi+1,−〉) (4.25b)

|i, 3〉 = |Ai+1,+〉 (4.25c)

|i, 4〉 =
1√
t21 + t22

(t2 |Gi,+〉 − t1 |Gi,−〉) (4.25d)

|i, 5〉 =
1√
t21 + t22

(t1 |Gi,+〉+ t2 |Gi,−〉) (4.25e)

|i, 6〉 = |Ai,+〉 , (4.25f)

where the parameters t1 and t2 fulfill the relations 2t1t2 = Ω1Ω2 and t21 − t22 = Ω1Ω3.

After applying this rotation, a modified SSH chain of Nc unit cells gets mapped into

a modified diamond chain of Nc/2 unit cells with 6 states per unit cell and alternate

t1 and t2 hopping constants. The resulting chain has an integer or half-integer number

of unit cells depending on the parity of Nc. However, since there is no qualitative

difference between the two cases, from now on we restrict ourselves to the case when Nc

is even. The mapping process and the resulting modified diamond chain are illustrated

in Fig. 4.8. Note also that, under this mapping, the number of bands gets doubled (6

instead of 3) but the Brillouin zone is folded in half, such that one has the same number

of allowed energy states before and after the mapping, as expected. The Hamiltonian
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describing this modified diamond chain reads

Ĥ1
t1t2

=

Nc/2∑
i=1

â2†
i (t1â

1
i + t2â

4
i ) + â3†

i (t2â
1
i + t4â

4
i ) + h.c.

+

Nc/2∑
i=1

â5†
i (t2â

4
i + t1â

1
i+1) + â6†

i (t1â
4
i + t2â

1
i+1) + h.c., (4.26)

where âji are the annihilation operators associated with the states |i, j〉 (j=1,...,6). The

modified diamond chain (4.26) has inversion symmetry, and thus the Zak’s phases of its

bands are quantized.

Figure 4.8: Schematic representation of the mapping from the modified SSH H1 chain

into a diamond chain with alternate hoppings. The two possible choices for the inversion

symmetry axis within a given unit cell, under periodic boundary conditions, are also

shown. Note that neither of them are localized at the central axis of the unit cell.

The topological characterization of this model was addressed in [236]. As shown in

Fig. 4.8, the inversion symmetry axes are not in the center of the unit cells, and it is thus

necessary to use a generalized formula to compute the Zak’s phases of the bands [223].

Taking this issue into account, in [236] it was shown that the model of the modified

diamond chain with alternate hoppings hosts topologically protected edge states. Thus,

by reverting the mapping we can conclude that the edge states of the original diamond
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chain in the OAM l = 1 manifold (4.4) are topologically protected, so we expect them

to be robust against changes in the condition J2 = J3, and to disappear completely only

on the gap closing points J2 = 0, J3 6= 0 and J3 = 0, J2 6= 0. As we will discuss in more

detail in Sec. 4.6, after crossing these points the edge states also survive, implying the

absence of a topological transition in the model.

4.5.1 Square-root topological insulator

Alternatively, the topological characterization of the model obtained after the basis

rotation (4.25) can be performed by regarding it as a square-root topological insulator,

as described for a photonic system in [224, 225]. The k-space Hamiltonian of the model

of the modified diamond chain (4.26) reads (we take the inter-cell spacing s ≡ 1):

Ĥ1
t1t2

=
∑
k

b̂†kĤ
1
t1t2

(k)b̂k,

Ĥ1
t1t2

(k) =



0 0 t1 0 0 t2e
−ik

0 0 t2 0 0 t1e
−ik

t1 t2 0 t1 t2 0

0 0 t1 0 0 t2
0 0 t2 0 0 t1

t2e
ik t1e

ik 0 t2 t1 0


, (4.27)

where b̂†k = (b̂†k,1, b̂
†
k,2, b̂

†
k,3, b̂

†
k,4, b̂

†
k,5, b̂

†
k,6) and b̂†k,i is the bosonic creation operator acting at

the ith component of the momentum state k. Then, the model resulting from squaring

the bulk Hamiltonian (4.27) reads

[
Ĥ1
t1t2

(k)
]2

=

t21 + t22 2t1t2 0 t21 + t22e
−ik t1t2(1 + e−ik) 0

2t1t2 t21 + t22 0 t1t2(1 + e−ik) t22 + t21e
−ik 0

0 0 2(t21 + t22) 0 0 2t1t2(1 + e−ik)

t21 + t22e
ik t1t2(1 + eik) 0 t21 + t22 2t1t2 2t1t2

t1t2(1 + eik) t22 + t21e
ik 0 2t1t2 t21 + t22 0

0 0 2t1t2(1 + eik) 0 0 2(t21 + t22)


.

(4.28)

By inverse Fourier-transforming the k−space squared Hamiltonian (4.28), one arrives

at the following real-space squared Hamiltonian, which is composed of two independent
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terms[
Ĥ1
t1t2

]2

= Ĥ
LC

+ Ĥ
2LL
, (4.29)

Ĥ
LC

=

Nc/2∑
j=1

∑
i=3,6

2(t21 + t22)b̂†i,j b̂i,j +

Nc/2∑
j=1

2t1t2
(
b̂†3,j b̂6,j + b̂†6,j b̂3,j+1 + h.c.

)
, (4.30)

Ĥ
2LL

=

Nc/2∑
j=1

∑
i=1,2,4,5

(t21 + t22)b̂†i,j b̂i,j +

Nc/2∑
j=1

[
t21
(
b̂†1,j b̂4,j + b̂†5,j b̂2,j+1

)
+ t22

(
b̂†2,j b̂5,j + b̂†4,j b̂1,j+1

)
+ h.c.

]

+

Nc/2∑
j=1

t1t2
(
2b̂†1,j b̂2,j + 2b̂†4,j b̂5,j + b̂†1,j b̂5,j + b̂†2,j b̂4,j + b̂†4,j b̂2,j+1 + b̂†5,j b̂1,j+1 + h.c.

)]
. (4.31)

The first term, described by Ĥ
LC

, is a linear chain with inter-site coupling 2t1t2 and a

constant on-site potential 2(t21 + t22), as shown in the bottom of Fig. 4.9. This linear

chain is topologically trivial, meaning that one does not need to consider it in order

to account for the topological properties of the squared model as a whole. The other

subsystem, described by Ĥ
2LL

, is a two-leg ladder which has intra-leg couplings t21 and

t22 and inter-leg crossed and vertical couplings t1t2 and 2t1t2, respectively, as depicted at

the top of Fig. 4.9. The second inter-leg term couples sites within the same sublattice,

therefore chiral symmetry is lost under this squaring operation. As shown in Fig. 4.9,

it is possible to choose for this two-leg ladder inversion axes that cross the center of the

unit cell. Therefore, by applying the squaring operation we recover quantized values

of the Zak’s phases associated with the different bands, and we can compute them in

the usual way. The squared Hamiltonian (4.28) has the following squared energy band

structure

E2
1(k) = E2

2(k) = 0 (4.32a)

E2
3(k) = E2

4(k) = 2(t21 + t22 − t1t2
√

2(1 + cos k)) (4.32b)

E2
5(k) = E2

6(k) = 2(t21 + t22 + t1t2
√

2(1 + cos k)). (4.32c)

The dispersive squared energy bands E2
3(k) and E2

4(k) are due to the contribution of the

linear chain. In Fig. 4.10, the band structure (4.32) is shown for the choice of parameters

t2 = 0.2t1. Due to the degeneracy of the flat band, in order to perform the topological

characterization of the squared model we have to consider the cumulative Zak’s phases

through the Wilzcek-Zee formulation [225, 237],

γ1,2 =

ˆ π

−π
dkTr

(
A(k)

)
, (4.33)

A(k)ij = −i
〈
ui(k)

∣∣∣∣ ddk
∣∣∣∣uj(k)

〉
, (4.34)
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where the i, j = 1, 2 indices in the Berry connection element A(k)ij are restricted to

the flat band subspace with eigenstates {|u1(k)〉 , |u2(k)〉}. We find a non-trivial Zak’s

phase γ1,2 = π for all finite sets of (t1, t2), reflecting the topological nature of the edge

states. By taking the square-root operation, the topological properties of this squared

model are directly reflected in the original one.

Figure 4.9: Sketch of the tight-binding model obtained after squaring the bulk Hamilto-

nian of the modified diamond chain model (4.27). The upper and lower plots represent

respectively the two-leg ladder described by the squared Hamiltonian (4.31) and the

linear chain described by the squared Hamiltonian (4.30).

Figure 4.10: Band structure of the squared model (4.28). The relation between the

parameters is t2 = 0.2t1.
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4.6 Exact diagonalization results

In this section, we present numerical results that support the analytical predictions

that we have made through the band structure calculations and the three consecutive

mappings. Specifically, we have performed exact diagonalization of the single-particle

Hamiltonian of the diamond chain in the original basis of OAM l = 1 states, given

by Eq. (4.4). This technique provides access to both the energy spectrum and the

corresponding eigenstates of the system. We have considered chains formed by a few

tens of unit cells, a size which is enough to capture all the relevant features of the model.

Since there are two states per site, the dimension of the Hilbert space of a diamond chain

with Nc unit cells is dimH = 2N = 6Nc, where N = 3Nc is the total number of sites.

4.6.1 Energy spectrum of a diamond chain with open bound-

aries

Figure 4.11: Single-particle energy spectra of a diamond chain formed by Nc = 20 unit

cells [described by the Hamiltonian (4.4)] computed for harmonic traps separated by

distances d = 3.5σ (blue points), for which J3/J2 = 1.67, d = 4.5σ (green points), for

which J3/J2 = 1.28, and d = 6σ (red points), for which J3/J2 = 1.13 [see Fig. 2.4 (a)].

In Fig. 4.11 we show the energy spectra that one obtains by considering values of J2

and J3 corresponding to realistic calculations done with harmonic traps separated by

distances d/σ = 3.5, 4.5 and 6. We observe that, independently of the value of d, all

the energies appear in degenerate pairs. This is a consequence of the existence of two



4.6 Exact diagonalization results 89

decoupled identical chains, demonstrated by the first mapping Eqs. (4.9). As predicted

by the band structure Eqs. (4.8), for all the relative values of of J2 and J3 there is a

set of states with zero energy. We also observe that as d is increased and therefore the

J3/J2 = 1 limit is approached [see Fig. 2.4], a progressive flattening of the dispersive

part of the spectrum occurs. This is in accordance with Eqs. (4.8), which predict that

all the bands become flat in the J2 = J3 limit.

Even though the coupling parameters always fulfill the relation J3 > J2 in a real

physical system of tunnel-coupled traps [see Fig. 2.4], all the spectra plotted in Fig. 4.11

display 4 in-gap states, which have a correspondence with the edge states (4.24) that

appear naturally for each of the H1 and H2 modified SSH chains in the J2 = J3 limit.

For an inter-trap separation d = 6.0σ, for which J3/J2 = 1.13, the energies of these

in-gap states are very close to ±2J2, as predicted by the analysis of the modified SSH

chain. Moreover, one should note that the in-gap edge states of Fig. 4.11 can be exactly

mapped into the topological states of the squared model [225]. In Fig. 4.12 we show the

squared energy spectrum of an open chain with Nc = 40 unit cells in the original OAM

l = 1 model (which correspond to 20 unit cells and thus 60 sites in the modified diamond

chain model) for the same choice of parameters as in Fig. 4.10, with the appearance of

two edge states within the band gap. The other two edge states of the original OAM

l = 1 model correspond to those of the squared model that is obtained for the H2 chain.

Figure 4.12: Squared energy spectrum of an open chain with 40 unit cells (Nc = 20

unit cells in the original OAM l = 1 model). The relation between the parameters is

t2 = 0.2t1.

As the relative difference between J2 and J3 is increased (i.e., as d is decreased), the
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absolute value of the energies of these states increases. As we mentioned in Sec. 4.5,

these edge states only disappear at the gap closing points, which occur for the non-

physical values of the couplings J2 = 0, J3 6= 0 and J3 = 0, J2 6= 0. After crossing these

points, the edge states emerge again, indicating the absence of a topological transition in

the system. These facts are illustrated in Fig. 4.13, where we plot the energy spectrum

of a diamond chain of Nc = 80 unit cells keeping J2 fixed and varying the J3/J2 ratio in

the [−1.5, 1.5] range. The lines corresponding to the bulk and edge states are colored in

blue and red, respectively. We observe that the edge states are insensitive to the sign of

J3/J2 and only merge completely into the bulk in the gapless point J3/J2 = 0. If one

fixes J3 and varies the J2/J3 ratio, analogous results are obtained.

Figure 4.13: Energy spectrum of a diamond chain formed byNc = 80 unit cells [described

by the Hamiltonian (4.4)] as a function of the J3/J2 ratio for a fixed value of J2. The

bulk and edge states are indicated by blue and red lines, respectively.

4.6.2 Spatial distribution of the edge states for J2 6= J3

In order to verify that the topological edge states remain localized at the right edge

of the chain for J2 6= J3, we have computed their density profiles for different relative

values of J2 and J3 in a diamond chain of Nc = 20 unit cells. The results are shown in

Fig. 4.14. The sites have been assigned a number j according to the correspondences

Ci = 3i− 2, Bi = 3i− 1, Ai = 3i, i.e., the site j = 1 is the C site of the cell i = 1 and

the site j = 60 is the A site of the cell i = 20.
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Figure 4.14: Density profiles of one of the in-gap states (eigenstate number 39) of a

diamond chain with a total number of unit cells Nc = 20 computed for different relative

values of J2 and J3. The upper plot corresponds to the density distribution of the states

with negative circulation and the lower plot to the states with positive circulation.

We observe that in all cases the population of both the states with negative and pos-

itive circulation is exponentially localized at the right edge of the chain. As expected, as

the ratio J2/J3 deviates from 1 the edge states grow longer tails into the bulk. However,

as can be seen in Fig. 4.14, even in the case J2 = 0.25J3 the distribution shows a sharp

decay into the bulk. In realistic implementations, the case that deviates most from

J2 = J3 would correspond to harmonic traps very close to each other, as can be seen in

Fig. 2.4 (a). But even in that case, one would have an approximate relation between
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the couplings J2 ≈ 0.5J3, so one would observe narrowly localized edge states.

4.6.3 Effect of J1 at the edges

Finally, we discuss the effect of the self-coupling J1 at the left edge of the chain, which

we have neglected so far. This approximation is justified since typically |J1| � |J2|, |J3|
and the self-coupling term is only present at the two leftmost sites of the chain. However,

this term can be readily incorporated in the exact diagonalization scheme.

Figure 4.15: (a) Schematic representation of the left end of the modified SSH chain in

the presence of a non-zero value of J1 for J2 6= J3 (left), for which Ω3,Ω4 6= 0, and

for J2 = J3 (right), for which Ω3,Ω4 = 0. The on-site potential V = 2J1J2J3
J2
2+J2

3
shifts the

energies of 4 states with respect to the case J1 = 0. (b) Energy spectrum of a diamond

lattice with 20 unit cells and tunneling parameters J2 = J3 = −10J1. A total of 8 states,

which are indicated on the plot by blue circles, have small shifts with respect to the case

J1 = 0.

Before presenting the numerical results, let us retrieve the effect of the self-coupling
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term on the analytical mappings (4.9) and (4.12). Due to this term, the left edges of

the H1 and H2 chains are coupled because of the matrix elements
〈
D1,+

∣∣∣Ĥ∣∣∣F1,−
〉

=〈
D1,−

∣∣∣Ĥ∣∣∣F1,+
〉

= J1. In the modified SSH chain H1 obtained with the basis rotation

(4.12), this extra term translates into a coupling at the left end of the chain,

Ω4 =
〈
G1,−

∣∣∣Ĥ∣∣∣G1,+
〉

=
J1(J2

2 − J2
3 )

J2
2 + J2

3

, (4.35)

and an on-site potential also in the two sites at the left end of the chain

V =
〈
G1,+

∣∣∣Ĥ∣∣∣G1,+
〉

= −
〈
G1,−

∣∣∣Ĥ∣∣∣G1,−
〉

=
2J1J2J3

J2
2 + J2

3

≈ J1. (4.36)

These two extra terms are illustrated in Fig. 4.15 (a). In the J2 = J3 limit, the state

|G1,−〉 is an eigenstate of energy −V , and, if |J1| � |J2|, |J3|, due to the on-site po-

tential the energies of the isolated trimer formed by the states |G1,+〉 , |A1,+〉 , |G2,−〉
are approximately ±2

√
2J2 ∓ V/4 and V/2. In Fig. 4.15 (b) we show the spectrum cor-

responding to the tunneling amplitudes J2 = J3 = −10J1, with J1, V < 0. Due to the

contributions from the H1 and H2 chains, we observe that two states have energy −V ,

another two have energy V/2 and two states from each of the flat bands are shifted by a

quantity ≈ V/4. In summary, since the self-coupling is only present in two of the sites of

the chain and its amplitude is typically much lower than the one of the cross-couplings,

its effect is only to shift the energy of a few states by a small quantity and can thus be

safely neglected in a diamond chain with a large number of unit cells.

4.7 Conclusions

In this Chapter, we have explored the consequences of the addition of the OAM

degree of freedom in the physics of non-interacting ultracold atoms in an optical lattice

with a tunable geometry. Specifically, we have analysed the single-atom properties of

a diamond-chain optical lattice filled with a gas of ultracold atoms loaded into the

manifold of OAM l = 1 states. In this simple geometry, due to the angles between the

lines connecting the different sites, relative phases appear naturally in the tunneling

amplitudes between OAM states with opposite circulation. The appearance of these

phases has deep consequences in the physics of the diamond chain, which we have

unraveled by means of three consecutive analytical mappings.

First, we have performed a basis rotation which decouples the original diamond chain

with two OAM orbitals per site into two identical chains with only one state per site.

Each of these chains is threaded by a net π flux through each plaquette, which explains

the gap opening in the band structure. Then, we have introduced a second mapping
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that allows to re-interpret each of the decoupled chains in terms of a modified SSH

model with an extra dangling site per unit cell. This mapping allows us to explain in an

intuitive way the existence of a zero-energy flat band in the system and, for a certain

relation between the tunneling parameters, the flattening of the dispersive bands and the

occurrence of Aharonov-Bohm caging. Furthermore, we have used this model to predict

the appearance of in-gap edge states in the system, which are indicative of non-trivial

topology. In order to circumvent the lack of inversion symmetry in the mapped models

and therefore be able to perform the topological characterization of the system, we have

introduced a third mapping into a modified diamond chain. Making use of a recently

developed technique adapted for systems where the inversion axis is not centered around

the unit cell, we have computed the Zak’s phases of the different bands, finding that the

system is topologically non-trivial for any choice of the coupling parameters for which

the gap is open. We have also shown that the system can be regarded as a square-root

topological insulator.

Finally, we have performed exact diagonalization calculations that support the results

derived analytically. In particular, we have demonstrated numerically the existence of

in-gap states and we have confirmed that they remain localized at the right edge, as

predicted by their topological nature.

This work opens up many interesting perspectives. As a direct extension, in Chapter

6 we study the physics of two interacting bosons loaded in the manifold of OAM l = 1

states of the diamond chain. There, we show that in the Aharonov-Bohm cage limit,

i.e., when all the bands are flat, the system hosts two-body topological states. In

Chapter 7, we study a two-dimensional lattice of ring potentials with unequal intra-

and inter-cell separations. We show that in such a system the phases in the tunneling

amplitudes may give rise to second-order topological effects, signalled by the presence

of zero-energy corner modes. In Chapter 5, we consider a scenario with many strongly

interacting bosons loaded in OAM states. By tuning the geometry of the lattice (and

thus the phases of the tunneling amplitudes), such a system allows to engineer a variety

of effective spin-1/2 that are of interest for quantum magnetism.



CHAPTER 5

Quantum magnetism with ultracold bosons carrying orbital

angular momentum

In this Chapter, we study a gas of ultracold bosons loaded in Orbital Angular Mo-

mentum (OAM) states of an array of cylindrically symmetric potentials in the strongly

correlated limit. By means of perturbation theory calculations, we show how this system

can realize a variety of spin-1/2 models of quantum magnetism. We consider explicitly

the dependence of the effective couplings on the geometry of the system and demon-

strate that different models of interest related to a general XY Z Heisenberg model with

external field can be obtained. Furthermore, we discuss how the relative strength of the

effective couplings can be tuned and which phases can be explored in realistic setups.

Finally, we address questions concerning the experimental readout and implementation.

The Chapter is organized as follows. In Sec. 5.1, we give a brief overview on recent

progress on simulation of quantum magnetism with ultracold atoms in optical lattices

and we contextualize our work in this field of research. In the first part of Sec. 5.2, we

introduce the general Hamiltonian of the physical system that we consider. We then fo-

cus on the Mott insulator limit at unit filling, in which we show that the OAM degree of

freedom can be encoded in a spin-1/2 variable, and we describe in detail how to compute

the couplings that govern the effective spin model. Taking profit of these general calcu-

lations, in Sec. 5.3 we make concrete proposals to implement several spin-1/2 models of

interest by arranging the ring potentials in different geometries. In Sec. 5.4, we discuss

how the strength of the effective couplings can be tuned experimentally by varying the

separation between the ring traps and we analyse some of the phases of the effective

95
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models that can be realized by this process. In Sec. 5.5, we consider some aspects of

the experimental realization. In particular, we describe the readout of the OAM states

and we analyse their stability under collisional processes. Finally, in section Sec. 5.6 we

summarize the main conclusions of this work.

5.1 Introduction

Ultracold atoms in optical lattices provide a clean and highly tunable playground to

study a plethora of many-body phenomena [30, 31]. Recent years have witnessed impor-

tant breakthroughs that have pushed the degree of control over these systems to a very

precise quantitative level and have opened new routes towards the quantum simulation

of previously unexplored systems in a wide range of fields [62]. In particular, ultracold

atoms have proven to be a very powerful tool for exploring quantum magnetism in a form

originally inspired by solid state systems. Remarkable achievements of quantum simu-

lation of magnetism with ultracold atoms include the implementation of spin-frustrated

lattices [41, 238], extensive experimental studies of the magnetic properties of the Hub-

bard model [239–246], or the realization of high-resolution quantum gas microscopes for

bosonic [50, 51] and fermionic [52–55] atoms that have led to the observation of anti-

ferromagnetic order in a one-dimensional (1D) Ising chain [247], bound magnons in the

XXZ Heisenberg model [248], and spin-resolved dynamics [249–251]. There are also

proposals to realize spin models with strongly interacting ultracold bosons excited to

p−bands [252], and realizations of magnetic models with bosons in tilted optical lattices

[247, 253–256].

In this work, we show that strongly interacting ultracold bosons loaded into OAM

states of lattices of side-coupled cylindrically symmetric traps can realize a variety of

spin-1/2 models, including the XY Z Heisenberg model with or without external field.

In particular, we focus on the Mott insulator regime at unit filling, where each trap

is occupied by a single atom and a direct mapping between the OAM and spin-1/2

states can be performed. Recently, a proposal to realize such a state by periodically

modulating an optical lattice has been made [136]. Alternatively, this state could be

generated by optically transferring OAM [109, 122] to atoms confined to an arrangement

of ring-shaped potentials, which can be created by a variety of techniques [109–116, 129,

131, 163] and have proven to support long-lived persistent currents associated to the

OAM states [119, 123]. The mechanisms that yield these effective spin-1/2 models are

analogous to the ones described in [252], where it was shown that the XY Z Heisenberg

model can be realized with ultracold bosons in the p-bands of a two-dimensional optical

lattice [58, 221], which are equivalent to the OAM l = 1 states. Our proposal, however,

extends this to lattices made up of general cylindrically symmetric potentials such as
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ring traps, and is valid for higher OAM states. The new degree of control offered by

the flexibility in the arrangements of the traps opens up the possibility to engineer a

wide variety of spin models beyond the XY Z Heisenberg model and makes it possible

to modify the effective coupling parameters at the level of a single site.

5.2 Quasi one-dimensional ladder and effective spin-

1/2 model

For the sake of clarity, we start by considering the simplest quasi one-dimensional

lattice in which an effective spin-1/2 model of quantum magnetism can be obtained using

ultracold atoms carrying OAM, namely an array of equivalent ring-shaped potentials.

From the analysis of the second order processes that we will discuss for this system, the

generalization of the effective spin model to other quasi one-dimensional geometries and

to two-dimensional lattices is straightforward.

5.2.1 Physical system

The quasi one-dimensional system on which we focus consists of a gas of M ultracold

bosons of mass m trapped in a ladder of N identical ring-shaped potentials, labelled by

the index j. This can be constructed by concatenating N/2 two-ring unit cells, labelled

by the index i, as depicted in Fig. 5.1. All of the rings have the same radius R and

radial trapping frequency ω, which defines the natural length scale σ =
√

~/mω. The

outer parts of two rings belonging to the same unit cell are separated by a distance d,

and three consecutive rings form a triangle with a central angle Θ. The bosons may

occupy the two degenerate eigenstates of total OAM l ≥ 1 of each ring with positive or

negative circulation, |j,±l〉, the wave functions of which are given by

φj±l(rj, ϕj) = 〈~r |j,±l 〉 = ψl(rj)e
±il(ϕj−ϕ0), (5.1)

where (rj, ϕj) are the polar coordinates with origin at the center of the jth ring and

ϕ0 is an arbitrary origin of phases. The radial part of the wave function, ψl(rj), can

be approximated by the ground state of the jth ring potential, ψ0(rj). Under this

approximation, the energy of the modes of total OAM l is given by

E(l) = E0 + Ecl
2, (5.2)

where E0 is the energy of the ground state of the ring and Ec = ~2
2m

´
d2r
∣∣∣ψ0(r)

r

∣∣∣2 is

the centrifugal part of the kinetic energy. We assume that the motion of the bosons

is restricted to the manifold of states of total OAM l without coupling to other OAM
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Figure 5.1: Quasi one-dimensional ladder of ring potentials of radius R (labelled by the

index j) obtained by concatenating unit cells (labelled by the index i) formed by two

rings such that the central angle of the triangles formed by three neighbouring rings

is Θ. The origin of phases is taken along the direction 2i ↔ 2i + 1 (indicated with

blue straight arrows), so that the couplings are real along this direction and all hopping

phases appear in the 2i↔ 2i−1 links (indicated with red dashed arrows). The distance

between the closest points of two nearest-neighbour rings is d.

manifolds, an approximation that we will further justify in Sec. 5.5.2. In this situation,

the bosonic field operator of the system reads

Ψ̂l =
N∑
j=1

φj+l(rj, ϕj)â
j
+l + φj−l(rj, ϕj)â

j
−l, (5.3)

where âj±l are bosonic operators associated with the annihilation of the OAM states at

site j that satisfy the commutation relations

[âjα, â
j′

α′ ] = 0 (5.4a)

[âj†α , â
j′†
α′ ] = 0 (5.4b)

[âjα, â
j′†
α′ ] = δjj′δαα′ . (5.4c)

The Hamiltonian of the system can be decomposed into its single particle and interacting

parts

Ĥl =

ˆ
d~rΨ̂†l

[
−~2∇2

2m
+ V (~r)

]
Ψ̂l +

g

2

ˆ
d~rΨ̂†l Ψ̂

†
l Ψ̂lΨ̂l ≡ Ĥ0

l + Ĥ int
l , (5.5)

where V (~r) is the total trapping potential of the ladder, which can be approximated by

a truncated combination of all the ring potentials Vj(r) = 1
2
mω2(R − rj)2, and g is the

strength of the s−wave atom-atom interactions. The kinetic part of the Hamiltonian,

Ĥ0
l , describes the tunneling dynamics of the states of total OAM l between neighbouring
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rings as well as between the two degenerate states within the same ring, which we

reviewed in Sec. 2.4 of Chapter 2. Assuming that the central angle takes values Θ >

π/3, one can consider that only nearest-neighbour sites are coupled. By making this

approximation and choosing the origin of phases to be along the line that unites the

sites 2i↔ 2i+ 1, the single particle term of the Hamiltonian takes the form

Ĥ0
l = J l1

N∑
j=1

âj†+lâ
j
−l(1 + e−i2lΘ) + h.c.

+ J l2

N/2∑
i=1

â2i†
+l (â

2i+1
+l + â2i−1

+l ) + â2i†
−l (â

2i+1
−l + â2i−1

−l ) + h.c.

+ J l3

N/2∑
i=1

â2i†
+l (â

2i+1
−l + e−i2lΘâ2i−1

−l ) + â2i†
−l (â

2i+1
+l + ei2lΘâ2i−1

+l ) + h.c. (5.6)

Assuming that only on-site interactions take place, the interacting part of the Hamilto-

nian is given by

Ĥ int
l =

g

2

ˆ
d~rΨ̂†l Ψ̂

†
l Ψ̂lΨ̂l =

g

2

ˆ
d~r

N∑
j=1

[
φj∗+l(~rj)â

j†
+l + φj∗−l(~rj)â

j†
−l

]2 [
φj+l(~rj)â

j
+l + φj−l(~rj)â

j
−l
]2

=
g

2

N∑
j=1

ˆ
d~r|ψ0(r)|4

[
e−ilϕâj†+l + eilϕâj†−l

]2 [
eilϕâj+l + e−ilϕâj−l

]2
=
g

2

N∑
j=1

ˆ
d~r|ψ0(r)|4

[
e−2ilϕ(âj†+l)

2 + e2ilϕ(âj†+l)
2 + 2âj†+lâ

j†
−l

] [
e2ilϕ(âj+l)

2 + e−2iϕ(âj−l)
2 + 2âj+lâ

j
−l
]

=
U

2

N∑
j=1

(âj†+l)
2(âj+l)

2 + (âj†−l)
2(âj−l)

2 + 4âj†+lâ
j†
−lâ

j
+lâ

j
−l

=
U

2

N∑
j=1

n̂j+l(n̂
j
+l − 1) + n̂j−l(n̂

j
−l − 1) + 4n̂j+ln̂

j
−l, (5.7)

where we have defined U ≡ g
´
d~r|ψ0(r)|4 and the usual number operators n̂j±l ≡ âj†±lâ

j
±l.

5.2.2 Mott insulator phase and effective spin model

We now focus on the scenario in which the ladder is at unit filling, M = N , and

the interaction strength is positive and much larger than the tunneling amplitudes,

U � |J l1|, |J l2|, |J l3|. In this particular situation, the system is in a Mott Insulator phase,

in which the most energetically favoured states are those where all rings are occupied

by a single boson. Due to the OAM degree of freedom, the ladder has 2N such states,
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which correspond to all possible configurations of many-body states consisting on each

ring being occupied by a single boson in a OAM state of positive or negative circulation.

We can perform a direct mapping between these states and a spin-1/2 configuration by

identifying a spin up (down) for each ring with a boson in the state of positive (negative)

OAM circulation, i.e., |j,+l〉 ⇒ |↑〉j , |j,−l〉 ⇒ |↓〉j.
The physics of the ladder in the Mott Insulator phase can be described by an effective

model that incorporates interaction terms between the neighbouring spins induced by

the kinetic part of the Hamiltonian, Ĥ0
l , which we treat as a perturbation. To derive

the effective Hamiltonian, we define a projector M̂ to the Mott space of singly occupied

sites as well as the projector to the space orthogonal to this one, Ô = 1− M̂ . In terms

of these operators, the Schrödinger equation for a many-body state |Ψ〉 belonging to the

manifold of states with total OAM l, (Ĥ0
l + Ĥ int

l ) |Ψ〉 = E |Ψ〉, can be decomposed as

[252]

(ÔĤ0
l Ô + ÔĤ0

l M̂ + ÔĤ int
l Ô + ÔĤ int

l M̂) |Ψ〉 = EÔ |Ψ〉 (5.8)

(M̂Ĥ0
l Ô + M̂Ĥ0

l M̂ + M̂Ĥ int
l Ô + M̂Ĥ int

l M̂) |Ψ〉 = EM̂ |Ψ〉 . (5.9)

The terms M̂Ĥ int
l M̂ , ÔĤ int

l M̂ and M̂Ĥ int
l Ô are all identically zero: the first two ones for

computing two-body interactions in single-ocupied rings and the last one for computing

overlaps between orthogonal spaces. Taking this fact into account, we can combine eqs.

(5.8) and (5.9) to write

ĤeffM̂ |Ψ〉 = EM̂ |Ψ〉 , (5.10)

where the effective Hamiltonian reads

Ĥ l
eff = −M̂Ĥ0

l Ô
1

ÔĤ int
l Ô − E

ÔĤ0
l M̂ + M̂Ĥ0

l M̂. (5.11)

The physical action of the first term of the effective Hamiltonian is to connect a Mott

state to a state of the orthogonal space through the tunneling term of the original

Hamiltonian, associate an energy to this state in the orthogonal space according to

(ÔĤ int
l Ô − E)−1 and then take the state back to the Mott subspace. All the second

order processes induced by this term occur via intermediate states in which all the rings

are singly occupied except for one ring, say j, that is empty, and the ring j ± 1, that is

doubly occupied. Therefore, we restrict the orthogonal subspace to these states, which

can be compactly represented by the three possible two-spin states for the doubly oc-

cupied rings, namely {|↑↑〉j±1 , |↓↓〉j±1 , |↑↓〉j±1}. Furthermore, since we are in the Mott

insulator regime, we can assume that (ÔĤ int
l Ô − E)−1 ≈ (ÔĤ int

l Ô)−1. In the subspace

of states where only a single ring has double occupation, this operator takes the form

(ÔĤ int
l Ô)−1 = diag{1/U, 1/U, 1/2U}. The second term of the effective Hamiltonian,

M̂Ĥ0
l M̂ , takes into account the first order processes that occur within the subspace of

singly occupied states, which are due to the self-coupling amplitude J l1.
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The resulting effective Hamiltonian contains four types of processes. On the one

hand, there are three different kinds of second order processes induced by the effective

interaction: those in which the final states of the rings j and j ± 1 have 0, 1, or 2 spins

flipped with respect to the initial state. Furthermore, a single spin flip can also occur

via the first order process due to the self-coupling. Next, we compute separately the

amplitudes corresponding to each of the processes involving a different number of spin

flips. As we will show, the fact that the tunneling phases depend on the central angle of

the ladder Θ leads to non-trivial dependence of the effective model on the geometry of

the lattice. In order to use a language more natural to spin-1/2 systems, we define the

spin-flip operators σ±j = aj†±la
j
∓, which can be expressed in terms of the x and y Pauli

matrices as σ±j = 1
2
(σxj ± iσ

y
j ). We also define the z Pauli matrix as σzj = aj†+la

j
+l−a

j†
−la

j
−l

and the spin up and down projectors P ↑j = aj†+la
j
+l, P

↓
j = aj†−la

j
−l.

Processes involving no spin flips

The first type of interaction processes in the effective model are those in which the

initial and final states coincide, i.e., no spins are flipped. In Fig. 5.2 we show two

examples of such processes, one in which a boson at ring j = 2i tunnels to j = 2i + 1

and back and another one in which it tunnels to j = 2i−1 and back. In spite of the fact

that along the direction 2i ↔ 2i − 1 there are hopping phases in the tunneling terms

that exchange angular momentum, in the total second order processes they cancel out

because there have to be two opposite flips in order to come back to the initial state.

Thus, the total amplitude of these processes is the same regardless of the direction of the

interaction. For each pair of interacting rings, there are in total 16 different second order

processes not involving any total spin flip, which correspond to the 4 possible two-ring

spin configurations and the 4 possible doubly occupied virtual states that mediate the

interaction. Adding up all the amplitudes of these processes, we find that the part of

the effective Hamiltonian corresponding to these processes in a given pair of nearest-

neighbour rings j, j ± 1 reads

Ĥ l,0 flip
j↔j±1 = −

3
[
(J l2)2 − (J l3)2

]
2U

σzjσ
z
j±1 −

5
[
(J l2)2 + (J l3)2

]
2U

1. (5.12)

We note that these amplitudes do not depend on the position of the ring j inside the

unit cell where it belongs.



102 Chapter 5 – Quantum magnetism with ultracold bosons carrying OAM

Figure 5.2: Sketches and amplitudes of examples of second order processes not involving

any flipping of the spins with respect to the initial state. The processes can be mediated

by the site j+ 1 (upper plot) or j−1 (lower plot). Each process can also occur with the

same amplitude by having the site j doubly occupied in the intermediate state. 〈Ĥint〉
indicates the expectation value of the interacting Hamiltonian (5.7) over each state.

Processes involving one spin flip

The second type of interaction processes in the effective model are those in which a

single spin is flipped. The first way in which this can occur is by the action of the self-

coupling J l1. For each ring j, there are in total two of such processes, which correspond

to the flipping of a spin that is initially in the down or up state. Since they are of

first order, the total amplitude of these processes can be directly computed with the

Hamiltonian (5.6). In spin notation, it is given by J l1
[(

1 + ei2lΘ
)
σ−j +

(
1 + e−i2lΘ

)
σ+
j

]
=

J l1
[
σxj (1 + cos 2lΘ) + σyj sin 2lΘ

]
.

Additionally, a single spin can be flipped by means of second order processes. In

Fig. 5.3 we show two examples of such processes that lead to the flipping of a spin at

the ring j = 2i, one with a virtual interaction occurring at j = 2i + 1 and another one

mediated by the ring j = 2i − 1. In this case, the amplitudes of the processes depend

on the direction of the interaction: when they occur along j = 2i↔ 2i+ 1 they are real,

whereas along the line j = 2i↔ 2i− 1 a net hopping phase e±i2lΘ appears. Adding up

the amplitudes of all the different 12 second order processes that lead to the flipping

of a single spin and the two first order processes, we find that the part of the effective

Hamiltonian describing this type of interactions in the jth ring reads

Ĥ l,1 flip
j =

(
J l1 −

3J l2J
l
3

U

)[
σxj (1 + cos 2lΘ) + σyj sin 2lΘ

]
. (5.13)
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Again, the total amplitude does not depend on the position of the ring inside the unit

cell because all rings are coupled to a ring along each of the two directions with different

hopping phases. Nevertheless, it does depend on the geometry of the ladder through

the central angle Θ. For instance, for lΘ = π/2 (mod 2π), the single spin-flip amplitude

vanishes, whereas for lΘ = 0, π (mod 2π), it becomes Ĥ1flip
j =

(
2J l1 −

6J l2J
l
3

U

)
σxj .

Figure 5.3: Sketches and amplitudes of examples of second order processes involving the

flipping of a single spin with respect to the initial state. The processes can be mediated

by the site j+ 1 (upper plot) or j−1 (lower plot). Each process can also occur with the

same amplitude by having the site j doubly occupied in the intermediate state. 〈Ĥint〉
indicates the expectation value of the interacting Hamiltonian (5.7) over each state.

Processes involving two spin flips

The third and last type of interactions in the effective model are those that lead to

the simultaneous flipping of two spins. Two examples of such processes are shown in

Fig. 5.4. As in the case of single spin-flip processes, along the j = 2i↔ 2i− 1 direction

hopping phases appear, whereas in the j = 2i ↔ 2i + 1 directions all the tunneling

amplitudes are real. In this case, there are no total phase cancellations and the sum

of the amplitudes of these processes depends on the direction along which the bosons

interact. Adding up the 8 possible processes that lead to the simultaneous flipping of

two spins in the final states, we find that the part of the effective Hamiltonian that

accounts for these interactions in a given pair of rings reads

Ĥ l,2 flip
2i↔2i+1 = −(J l2)2 + (J l3)2

2U
σx2iσ

x
2i+1 −

(J l2)2 − (J l3)2

2U
σy2iσ

y
2i+1 (5.14)
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Ĥ2flip
2i↔2i−1 =− (J l2)2 + cos 4lΘ(J l3)2

2U
σx2iσ

x
2i−1

− (J l2)2 − cos 4lΘ(J l3)2

2U
σy2iσ

y
2i−1

− sin 4lΘ(J l3)2

2U

[
σx2iσ

y
2i−1 + σy2iσ

x
2i−1

]
. (5.15)

As in the case of the processes leading to a single spin flip, the amplitude of the in-

teractions along the 2i ↔ 2i − 1 direction depends on the geometry of the ladder. For

central angles such that lΘ = 0, π/2, π (mod 2π), the two-spin flip processes have equal

amplitude along the 2i↔ 2i− 1 and 2i↔ 2i+ 1 directions.

Figure 5.4: Sketches and amplitudes of examples of second order processes leading to

the simultaneous flipping of two spins with respect to the initial state. The processes

can be mediated by the site j+1 (upper plot) or j−1 (lower plot). Each process can also

occur with the same amplitude by having the site j doubly occupied in the intermediate

state. 〈Ĥint〉 indicates the expectation value of the interacting Hamiltonian (5.7) over

each state.
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Benchmark of the effective model

Taking into account all the processes and summing over all sites, the effective Hamil-

tonian of a ladder with a central angle Θ reads

H l
eff =

∑
ladder

Ĥ l,0 flip
j↔j±1 + Ĥ l,1 flip

j + Ĥ2flip
2i↔2i+1 + Ĥ2flip

2i↔2i−1

=
N∑
j=1

(
J l1 −

3J l2J
l
3

U

)[
σxj (1 + cos 2lΘ) + σyj sin 2lΘ

]
−

N/2∑
i=1

(J l2)2 + (J l3)2

2U
σx2iσ

x
2i+1 +

(J l2)2 − (J l3)2

2U
σy2iσ

y
2i+1

−
N/2∑
i=1

(J l2)2 + (J l3)2 cos 4lΘ

2U
σx2iσ

x
2i−1 +

(J l2)2 − (J l3)2 cos 4lΘ

2U
σy2iσ

y
2i−1

−
N/2∑
i=1

(J l3)2 sin 4lΘ

2U

[
σx2iσ

y
2i−1 + σy2iσ

x
2i−1

]
−

N/2∑
i=1

3
[
(J l2)2 − (J l3)2

]
2U

σzi
(
σz2i+1 + σz2i−1

)
. (5.16)

Since its effect is just to cause a global shift in the energy, we have not included the term

in Eq. (5.2) proportional to the identity matrix. Note also that in Eq. (5.16) we have not

taken into account the effect of the boundaries, where some second order processes are

not possible and therefore the effective amplitudes are modified. Nevertheless, these ef-

fects can be neglected by assuming Periodic Boundary Conditions (PBC) or considering

a ladder with a large number of sites N .

In order to check that the effective Hamiltonian (5.16) is correct, we have computed

the time evolution of an initial state consisting of all spins being in the ”up” state with

both the spin−1/2 effective Hamiltonian, given by Eq. (5.16), and the full Bose–Hubbard

model, described by Eqs. (5.5), (5.6) and (5.7). In Fig. 5.5 we plot the expectation value

of the z Pauli matrix acting on the site j = 1 computed with the two methods. We

have considered a ladder formed by M = 6 sites with PBC, in such a way that all sites

are equivalent, and filled with N = 6 bosons in the Mott insulator regime and with a

central angle (a) lΘ = 0.48π and (b) lΘ = 0.90π. For both values of lΘ, we observe

an excellent agreement between the calculations performed with the full Bose-Hubbard

Hamiltonian (blue solid lines) and the effective model (red dots). Although in Fig. 5.5

the interaction parameter is U/100 = J l2 = J l3, for values of the interaction parameter

as low as U/20 ∼ J l2, J
l
3 we still observe a good agreement between the two methods.
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Figure 5.5: Time evolution of the expectation value of σz1 after setting in a ladder of

M = N = 6 and with PBC an initial state consisting of all spins being in the ”up”

state, computed with the full Bose-Hubbard Hamiltonian (blue solid lines) and the

effective spin model (red dots). The central angle of the ladder is (a) lΘ = 0.48π and

(b) lΘ = 0.9π and the parameters of the model fulfill the relations J l2 = J l3 = −0.2J l1,

U = 100J l2.

5.3 XY Z models

In the previous section, we have shown that by tuning the central angle of the

ladder Θ, the amplitudes of the second order processes that govern the effective spin

model can be varied. Furthermore, these amplitudes can be modified locally in each

ring. Therefore, by modifying the geometry of the lattice of rings a range of quantum

magnetic models can be engineered. Next, we give examples of geometric arrangements

of the ring potentials that lead to interesting effective spin-1/2 models related to the

XY Z Heisenberg model.

5.3.1 XY Z model without external field

For central angles Θl
s = (2s+ 1)π/2l, with s ∈ N, the single-spin flip term Eq. (5.13)

vanishes at all rings and the two-spin flip amplitude along the direction where hopping

phases appear, Eq. (5.15), becomes equal to that along the direction where all couplings

are real, Eq. (5.14). In this situation, the Hamiltonian of the effective spin-1/2 model

reads

Ĥ l
eff(Θl

s) =
N∑
j=1

J lxxσ
x
j σ

x
j+1 + J lyyσ

y
jσ

y
j+1 + J lzzσ

z
jσ

z
j+1, (5.17)
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where the effective couplings are given by

J lxx = −(J l2)2 + (J l3)2

2U
(5.18)

J lyy = −(J l2)2 − (J l3)2

2U
(5.19)

J lzz = −
3
[
(J l2)2 − (J l3)2

]
2U

. (5.20)

The Hamiltonian (5.17) is equivalent to the one of the Heisenberg XY Z model without

external field, which is a prominent model of quantum magnetism and it is exactly

solvable [257].

5.3.2 XY Z model with external field

For values of the central angle Θ = 2Θl
s, the single-spin flip amplitude contains

only σx one-body terms and the two-spin flip term remains isotropic. Thus, for these

particular values of Θ the effective model of the ladder becomes

Ĥ l
eff(2Θl

s) =
N∑
j=1

J lxxσ
x
j σ

x
j+1 + J lyyσ

y
jσ

y
j+1 + J lzzσ

z
jσ

z
j+1 + hlσxj , (5.21)

with

hl = 2J l1 −
6J l2J

l
3

U
. (5.22)

The Hamiltonian (5.21) corresponds to a XY Z Heisenberg model with an external field

hl along the x direction. In the system of p− orbital bosons described in [252], the

external magnetic field is created by the imbalance between the px and py interaction

strengths and on-site energies, while in the ladder of rings loaded with OAM states that

we consider here it arises as a consequence of the geometry of the system.

5.3.3 XY Z model with staggered fields

By tuning the geometry of the ring potential lattice, it is also possible to obtain

effective models in which the spin-1/2 Hamiltonian is not uniform across all sites. As an

example of a system in which this effect can be engineered, we consider the ladder with

four sites per unit cell and a central angle lΘ = π/2 depicted in Fig. 5.6. At sites Ai and

Ci, the single-spin flip terms cancel. The Bi and Di sites behave as if they belonged to a

ladder of central angle lΘ = π, but due to their different orientations there is a relative

π phase between the amplitudes of their single-spin flip terms. Choosing the origin of
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Figure 5.6: Ladder of ring potentials with four sites per unit cell. The origin of phases

is taken along the direction Ci ↔ Di ↔ Ai+1 (indicated with blue straight arrows), so

that the couplings are taken real along this direction and all hopping phases appear in

the Ai ↔ Bi ↔ Ci links (indicated with red dashed arrows). The distance between the

closest points of two nearest-neighbour rings is d.

phases along the line Ai ↔ Bi ↔ Ci, the effective spin Hamiltonian of this system reads

H l
eff(lΘ = π/2) =

∑
j

J lxxσ
x
j σ

x
j+1 + J lyyσ

y
jσ

y
j+1 + J lzzσ

z
jσ

z
j+1 + hl

(
σxBi − σ

x
Di

)
. (5.23)

In the model (5.23), the external magnetic fields appear in a staggered pattern only at

the Bi and Di sites.

5.4 Control over parameters and quantum phases

through the trap geometry

In this section, we describe how the effective parameters of the spin−1/2 models can

be tuned by modifying the size of the ring potentials and the separation between them.

We also discuss the different phases of the XY Z model without external field [given by

Eq. (5.17)] that can be explored with the system and we analyse their robustness against

deviations of the central angle of the ladder from the values Θl
s that yield the effective

model (5.17). Although we focus on the case of l = 1 OAM states, our considerations

can be generalized to other OAM manifolds in a straightforward manner.
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5.4.1 Control of the effective model parameters

In Sec. 2.4 of Chapter 2 we showed that the relative values of the couplings {J l1, J l2, J l3}
depend on the ring radius R and the separation between rings d. As can be seen in

Fig. 2.4, for small values of the inter-ring distance (of the order of a few times σ), J1
3

is several times larger than J1
2 . As shown in Fig. 5.7 (a), which corresponds to a ring

of R = 5σ, in the most extreme limit of this regime the couplings of the effective model

fulfill the relation J1
xx ≈ −J1

yy = −J1
zz/3. For rings of smaller radius, as the ring of

R = 2.5σ corresponding to Fig. 5.7 (b), J1
2 and J1

3 are more similar at small values of

d, and therefore the ratio |J1
zz|/|J1

xx| is smaller. However, for both values of R there is a

range of inter-ring separations for which the condition 3J1
yy = J1

zz > −J1
xx holds. In this

region, the XY Z model without external field is in an anti-ferromagnetic phase in the

z direction [258]. As d is increased, J1
3 and J1

2 become more similar, until the critical

point Jzz = −Jxx is reached. This point, which is signalled with dashed vertical lines in

Figs. 5.7 (a) and (b), marks the transition to a ferromagnetic phase in the x direction

[258]. In the limit of very large d, J1
3 = J1

2 and therefore J1
zz = J1

yy = 0.

The behaviour of the J1
1/J

1
3 ratio as a function of d is shown in Fig. 5.7 (c) for rings

of R = 2.5σ and R = 5σ. For small values of d, J1
1 has the same sign as J1

3 and is

of the same order. As d is increased, J1
1/J

1
3 decreases until zero, and then it remains

small and negative. As shown in the inset of Fig. 5.7 (c), this behaviour of the J1
1/J

1
3

ratio translates into the effective field h1 being positive at small values of d, and as d is

increased decreasing to a minimum negative value and finally remaining negative and

with an approximately constant value. Therefore, by tuning d it is possible to choose

the sign of the external magnetic field in the effective model, or even make it vanish.

5.4.2 Properties of the obtainable quantum phases

In order to analyse numerically the phases of ladders with different central angles Θ,

we have performed exact diagonalization in systems of up to N = 16 spins with PBC.

If a quantum critical point exists, we expect that the energy gap ∆ between the ground

and first excited state scales with the system size as ∆ ∼ 1
N

[253]. Therefore, we have

searched for the critical point by plotting, for ladders of different sizes, the quantity

∆N as a function of the inter-ring separation d and looking at the point where all the

lines intersect. In order to confirm directly the presence of the transition point between

the z−antiferromagnetic and the x−ferromagnetic phases, we have also computed for a

ladder of N = 16 spins with PBC the ground state correlations between two fixed spins

as a function of d.
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Figure 5.7: Dependence of the effective couplings of the XY Z model on the inter-ring

separation d for rings of (a) R = 5σ and (b) R = 2.5σ. The dashed vertical lines mark

the value of d for which |J1
xx| = |J1

zz|. (c) Dependence of the ratio J1
1/J

1
3 on the inter-ring

separation. The inset shows the dependence of h1 on the inter-ring separation taking

U/J1
3 = 20 for all values of d.
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Figure 5.8: Upper plots in (a) and (b): dependence of the energy difference between the

ground and first excited states on the inter-ring distance d for ladders of different sizes

formed by rings of radius R = 2.5σ. Lower plots in (a) and (b): correlations between

spin 1 and 9 in a ladder of N = 16 spins with PBC formed by rings of R = 2.5σ. In (a)

the central angle of the ladder is Θ = 0.5π and in (b) Θ = 0.48π. For all values of d,

the parameters of the model fulfill the relation U = 50(J1
2 + J1

3 ).

In Fig. 5.8 (a) we show the results of these two analyses for a ladder formed by rings

of R = 2.5σ, filled with bosons in l = 1 OAM states and with a central angle Θ = 0.5π,

which is described by the XY Z model without external field (5.17). The upper plot

shows the dependence of ∆N on d for different system sizes. As expected, all the lines

intersect at the value of d for which |J1
zz| = |J1

xx|, where the phase transition occurs. As

shown in the lower plot, in the z−antiferromagnetic phase, the zz correlation is higher

than the xx one. As d increases, the zz correlation decays and the xx one increases, until

they reach the same value at an inter-ring distance that coincides with the corresponding

one for the critical point.

In Fig. 5.8 (b), we perform the same analysis for a ladder as in Fig. 5.8 (a) but with

a central angle Θ = 0.48π. According to Eq. (5.16), for this central angle the effective

model incorporates one- and two-spin terms that are not present in the XY Z model
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without external field that is realized for Θ = 0.5π. Due to this effect, in the upper plot

we observe that there are two points where the ∆N lines intersect, which correspond to

|J1
zz|/|J1

xx| ≈ 1.34, 0.76 and d ≈ 1.47σ, 2.30σ. The one that occurs for a smaller value of

d corresponds to a point where the zz and xx correlations become equal. Therefore, it

marks the transition between the z−antiferromagnetic and the x−ferromagnetic phases.

This transition occurs at a smaller value of d than in the ladder with a central angle

Θ = 0.5π because of the presence of the magnetic field along the x direction. For values

of the central angle more deviated from 0.5π, the presence of the magnetic field destroys

the z−antiferromagnetic phase and the transition does not occur. The other point where

the ∆N curves intersect occurs at a larger value of d, and coincides with the inter-ring

distance for which the external magnetic field h1 vanishes.

5.5 Experimental considerations

In this section, we address several questions concerning the experimental implemen-

tation of the system. In particular, we discuss the readout of the states and we analyse

the stability of the OAM states under collisional processes.

5.5.1 Experimental readout of the spin states

Making use of a scheme of two-photon stimulated Raman transitions in the Lamb-

Dicke regime analogous to the one discussed in [252], the OAM states of a single site

could be addressed separately. By tuning the frequencies of the lasers, side-band tran-

sitions between the ground state of the ring potential and the ±l OAM states could be

induced. Once the OAM states are encoded in the internal atomic states, a quantum

gas microscope [50, 51] could be used to read the spin states of the effective models with

single-site resolution.

In order to select a specific OAM mode, two different approaches could be followed.

As pointed out in [252], one option would be to choose the laser beams such that their

wave vector difference is oriented along the x or y direction. In that manner, the lasers

would only interact with states that have nodes along the x or y axes, which can be

expressed as symmetric or anti-symmetric superpositions of OAM modes. Alternatively,

with the aid of e.g. spatial light modulators, one could also make a small adiabatic

deformation of the ring trap in order to break cylindrical symmetry and induce an

energy splitting between the dressed OAM states such that they can be independently

resolved.
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5.5.2 Collisional stability of the OAM states

An important question concerning the feasibility of the experimental realization of

the system is whether collisional processes may cause transitions between states with

different OAM that invalidate the assumption that all the atoms remain always in the

same OAM manifold [259]. These collisional processes are described in the Born ap-

proximation by the operator

Û =
g

2

ˆ
d~rΨ̂†Ψ̂†Ψ̂Ψ̂, (5.24)

where Ψ̂ =
∑∞

l=0 Ψ̂l is the full bosonic field operator of the lattice, given by the sum

of all the field operators of the different OAM manifolds (5.3). In order to analyse the

stability of the OAM states under the most relevant collisional processes, it is enough

to restrict ourselves to the examination of two-boson states in a single ring. This is

because in the strongly interacting regime that we consider, the role of tunnelling is

significantly reduced and the collisional interactions are dominated by on-site processes.

In the opposite limit where atoms are delocalised, we would have to consider the full

Bloch band widths. To simplify the analysis, we only consider collisions in which the

total OAM of each of the atoms changes at most by one unit, which are the most

relevant ones. In order to describe these processes, it is enough to expand the bosonic

field operator as

Ψ̂ = Ψ̂l−1 + Ψ̂l + Ψ̂l+1 =
l+1∑

m=l−1

â−mφ−m(~r) + âmφm(~r). (5.25)

Note that since we are considering a single ring we have dropped the j index that labels

the site. Due to the azimuthal part of the wave functions φ±m(~r) [see Eq. (5.1)], the Û

operator Eq. (5.24) only yields non-zero matrix elements between two-boson states in

which the sum of the circulations of the two bosons is the same. Using the expansion

Eq. (5.25) and neglecting all the terms that yield null matrix elements, we can write the

Û operator as

Û =
U

2

(
(â†+l)

2 + 2â†+(l−1)â
†
+(l+1)

)
(â+l)

2

+
U

2

(
2â†+lâ

†
−l + 2â†+(l−1)â

†
−(l−1) + 2â†+(l+1)â

†
−(l+1)

)
(2â+lâ−l)

+
U

2

(
(â†−l)

2 + 2â†−(l−1)â
†
−(l+1)

)
(â−l)

2

+ h.c., (5.26)

where the U parameter is the same as in Eq. (5.7). The operator Eq. (5.26) yields 4

transitions from the 3 possible two-boson initial states |i〉 to final states |f〉 in which
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the atoms are in different OAM manifolds. In table 5.1 we summarize the values of

the matrix elements of the transitions and the total energies of the initial and final

states, which are computed as the sum of their interaction energies, given by
〈
i
∣∣∣Û ∣∣∣ i〉

and
〈
f
∣∣∣Û ∣∣∣ f〉, and the sum of the single-particle energies E(l) of the two bosons, given

by Eq. (5.2). Since the separation between the OAM energy levels is anharmonic,

the allowed transitions between two-boson states that are not within the same OAM

manifold are in general off-resonant, contributing to the stability of the Mott insulator

state. From table 5.1, we observe that the lowest energy differences between the initial

and final states are of the order of U ± Ec, whereas the transition matrix elements are

of the order of U . Thus, in order to minimize the importance of these transitions, the

Ec/U ratio should be maximized. This may be done by using rings of radius R . 2.5σ

and setting the interaction strength g to a value as small as possible, but still large

enough that the system is in the Mott insulator phase. Moreover, since we are assuming

that the gas of ultracold atoms is in the Mott insulator phase at unit filling, the ground

state has only very small contributions from states with more than one atom per site.

Therefore, the occurrence of these collisional processes is suppressed in the first place

by the population distribution of the many-body states in the ground state [56].

|i〉 |f〉
〈
i
∣∣∣Ĥ∣∣∣ i〉 〈

f
∣∣∣Ĥ∣∣∣ f〉 〈

f
∣∣∣Û ∣∣∣ i〉

1√
2
â†+lâ

†
+l |0〉 â†+(l−1)â

†
+(l+1) |0〉

U
2

+ 2[E0 + Ecl
2] 2[U + E0 + Ec(l

2 + 1)] U

â†+lâ
†
−l |0〉 â†+(l−1)â

†
−(l−1) |0〉 2[U + E0 + Ecl

2] 2[U + E0 + Ec(l − 1)2] 2U

â†+lâ
†
−l |0〉 â†+(l+1)â

†
−(l+1) |0〉 2[U + E0 + Ecl

2] 2[U + E0 + Ec(l + 1)2] 2U
1√
2
â†−lâ

†
−l |0〉 â†−(l+1)â

†
−(l−1) |0〉

U
2

+ 2[E0 + Ecl
2] 2[U + E0 + Ec(l

2 + 1)] U

Table 5.1: Summary of the possible initial and final states in the collisional processes,

their energies and the transition matrix elements.

5.6 Conclusions

In this Chapter, we have studied the physics of ultracold bosons carrying OAM in

arrays of cylindrically symmetric potentials in the Mott insulator phase at unit filling.

In this regime, the degree of freedom corresponding to the circulation of the OAM states

can be mapped to a spin−1/2 variable. By tuning the relative phases in the tunneling

amplitudes, which depend on the orientation between the traps, the system can be used

to simulate a variety of spin−1/2 models of quantum magnetism.

First, we have computed by means of second-order perturbation theory the explicit

dependence of the effective couplings on the relative angle between the traps. We have
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benchmarked the calculation by comparing, in a system of small size, the spin dynamics

obtained with the effective model and the full Bose-Hubbard Hamiltonian. Then, we

have discussed how, by tuning the geometry of the lattice, different models of interest

such as the XY Z model with uniform or staggered external fields can be obtained.

Besides engineering different spin−1/2 models by tuning the geometry of the lattice,

the system also allows to adjust the relative strength between the effective couplings by

changing the radius of the ring traps and their separation. We have shown that this fact

can be exploited in realistic experimental set-ups to explore two distinct phases of the

XY Z model without external field. Furthermore, we have analysed the effect of small

changes of the relative angle between the traps on these phases.

Concerning the experimental implementation of the system, we have introduced

single-site addressing techniques that might allow to retrieve the state of each individual

spin. We have also analysed the collisional stability of the system and concluded that

the anharmonic energy spacing between OAM states introduced by the ring geometry

extends the lifetime of the Mott state.





CHAPTER 6

Interaction-induced topological properties of two bosons carrying

orbital angular momentum in flat-band systems

In this Chapter, we extend the study of the diamond chain filled with ultracold atoms

carrying Orbital Angular Momentum (OAM) performed in Chapter 4 to incorporate the

effect of interactions. Specifically, we consider two-boson states in a lattice with weak

attractive on-site interactions in the limit where all the bands are flat. In this situation,

the effective mass becomes infinite and the properties of the system are solely determined

by the interactions between overlapping single-particle localized eigenstates. We focus on

the lowest-energy subspaces of the spectrum, which are composed of two-body states in

which the two bosons occupy states belonging to the two lowest degenerate flat bands.

By projecting the Hamiltonian into these bands, we derive effective models for these

subspaces and we show that topologically non-trivial phases with their corresponding

two-boson edge states can be obtained.

The Chapter is organized as follows. In Sec. 6.1 we give an overview on recent studies

on the topological properties of two-body states, and we briefly discuss the peculiarities

of flat-band lattices with geometric frustration such as the one that we consider in this

work. In Sec. 6.2 we describe in detail the physical system and we identify the lowest-

energy subspaces of two-boson states. In Sec. 6.3, we derive effective models for the two

subspaces of lowest energy by restricting the Hamiltonian to the two degenerate lowest

flat bands. Each of these two effective models for two-boson states can be reinterpreted

as single-particle lattice models with hopping amplitudes that depend on the strength

of the on-site interactions of the original Hamiltonian. Making use of this picture, we

117
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analyse the topology of the effective models and we show that it can be rendered non-

trivial by tuning independently the interaction strength in the odd and even unit cells

of the lattice. In Sec. 6.4 we present exact diagonalization calculations that support the

analytical predictions made in Sec. 6.3 and confirm the presence of in-gap two-boson edge

states in the topological phase. We also examine numerically the effects of deviations

from the weakly interacting and flat-band limits. Finally, in Sec. 6.5 we summarize the

main conclusions of this Chapter and we outline further research directions.

6.1 Introduction

Over the last years, there has been an increasing interest in the study of few-body

states in periodic potentials. Besides being fascinating by themselves, the properties of

these states are relevant for the physics of ultracold atoms in optical lattices [30, 31]. In

turn, these systems constitute an ideal platform to explore few-particle phenomena under

flexible and well-controlled conditions. The first observation of long-lived bound pairs

of repulsively interacting atoms in optical lattices [260], also known as doublons, has

been followed by a number of experimental [261–263] and theoretical [264–275] studies

of these exotic two-body states, which can also be implemented in photonic systems

[276, 277].

In recent years, the study of topological phases of matter has been the focus of

much attention. One of the main features of these quantum phases is the existence of a

bulk-boundary correspondence, which correlates the non-trivial topological indices of the

bulk energy bands with the presence of robust edge modes. The properties of topological

materials, which can be explored with cold atoms [83] and photonic systems [204], are

well understood at the single-particle level [67, 79]. However, due to the difficulty of

defining topological invariants in strongly correlated systems [278], much less is known

about the effect of interactions on these quantum phases. Recently, several works have

concentrated on the topological properties of two-body states [236, 263, 279–288], with

the long-term aim of paving the path to a better comprehension of topological phases in

a many-body interacting scenario [289]. A distinctive advantage that these small-sized

systems offer is that it is often possible to map the problem of two interacting particles

in a lattice into a single-particle model defined in a different lattice, the topological

characterization of which can be performed with the usual tools [236, 281, 282, 285].

In this Chapter, we study the topological properties of two-boson states in a system

that is topologically non-trivial at the single-particle level. Specifically, we consider the

diamond-chain lattice that we studied in detail in Chapter 4 in the limit in which all the

bands are flat. In this situation, quantum interference leads to the localization of non-

interacting particles in small regions of the lattice, giving rise to the Aharonov-Bohm
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caging effect [225, 231] and to a rich variety of quantum phases in the many-body case

[290]. This localization effect is a general feature of flat-band systems [291], wherein a

strong frustration occurs due to the large degeneracies between localized eigenstates and

the role of the kinetic energy becomes irrelevant. This peculiar feature is responsible

for the appearance in such systems of a number of quantum states determined solely

by the interactions and the geometry of the lattice [292–302], including topologically

non-trivial phases [232, 303–306]. In this work, we focus on the limit of weak attractive

interactions, in which the low-energy properties of the system can be studied by pro-

jecting the Hamiltonian to the lowest flat bands [292–295]. By mapping the subspaces

of two-boson states of lowest self-energy into single-particle models, we show that the

system has a topologically non-trivial phase. In a diamond chain with open boundaries,

this topological phase is benchmarked by the presence of robust in-gap states localized

at the edges, which are in turn composed of bound pairs of bosons occupying localized

single-particle eigenstates.

6.2 Physical system

The physical system that we consider is the quasi-1D optical lattice with a diamond

chain shape formed by ring potentials of radius R with a nearest-neighbour separation

d and filled with ultracold bosons loaded into OAM l = 1 states that we studied in

Chapter 4. The new element here is the introduction of a weak attractive on-site inter-

action between the bosons, which is generically described by the Hamiltonian Eq. (5.7).

For reasons that will become clear in Sec. 6.2.2, we let the interaction strength take the

value UA < 0 in the A sites of each cell, and U1 < 0 and U2 < 0 in the B and C sites

of odd and even unit cells, respectively. In Chapter 4, we showed that the kinetic part

of the Hamiltonian is given by Eq. (4.4). For simplicity, we neglect the self-coupling

term J1, which only appears at singly connected sites. As we argued in Sec. 4.6.3, this

approximation does not affect significantly the results. Thus, the total Hamiltonian of

the system reads
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Ĥ = Ĥkin + Ĥint; (6.1)

Ĥkin = J2

Nc−1∑
i=1

∑
α=±

[
âi†α (b̂iα + b̂i+1

α + ĉiα + ĉi+1
α )
]

+ h.c.

+ J3

Nc−1∑
i=1

∑
α=±

[
âi†α (b̂i+1

−α − b̂i−α + ĉi−α − ĉi+1
−α )
]

+ h.c., (6.2)

Ĥint =
UA
2

Nc∑
i=1

n̂ai+ (n̂ai+ − 1) + n̂ai− (n̂ai− − 1) + 4n̂ai+ n̂
ai
−

+
U1

2

[Nc/2]∑
i=1

∑
j=b,c

n̂j2i+ (n̂
j2i−1

+ − 1) + n̂
j2i−1

− (n̂
j2i−1

− − 1) + 4n̂
j2i−1

+ n̂
j2i−1

−

+
U2

2

[Nc/2]∑
i=1

∑
j=b,c

n̂j2i+ (n̂j2i+ − 1) + n̂j2i− (n̂j2i− − 1) + 4n̂j2i+ n̂j2i− , (6.3)

where i labels the unit cell, âi†α , b̂
i†
α and ĉi†α are the annihilation operators associated with

the OAM states of circulation α at the sites Ai, Bi and Ci, respectively, Nc is the total

number of unit cells, [Nc/2] denotes the integer part of Nc/2, and in Eq. (6.3) we have

defined n̂jiα ≡ ĵi†α ĵ
i
α, with α = ± and j = {a, b, c}. The operators ĵi†α and ĵiα satisfy the

usual bosonic commutation relations

[ĵiα, ĵ
′i
′

α′ ] = 0, (6.4a)

[ĵi†α , ĵ
′i
′†
α′ ] = 0, (6.4b)

[ĵiα, ĵ
′i
′†
α′ ] = δjj′δii′δαα′ . (6.4c)

6.2.1 Flat-band localized eigenstates

Let us start by addressing the kinetic part of the Hamiltonian, Eq. (6.2). We focus

on the J2 = J3 ≡ J limit, which, as we discussed in Sec. 2.4 of Chapter 2, can be

approximately realized by setting a large value of d and using rings with a large radius.

As we explained in Sec. 4.2 of Chapter 4, in this limit the band structure Eq. (4.8) is

composed of three two-fold degenerate flat bands of energies

E1
− = E2

− = −2
√

2J, (6.5)

E1
0 = E2

0 = 0, (6.6)

E1
+ = E2

+ = 2
√

2J. (6.7)
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In Sec. 4.4 of Chapter 4, we also discussed the presence of in-gap states with energies

E = ±2J localized at the right edge of the diamond chain. These states, which are

given by Eq. (4.24), can be removed from the single-particle spectrum by cutting the A

site of the last unit cell, as shown in Fig. 6.1 (a). From now onwards, we will assume

that there are no single-particle edge states in the lattice.

The eigenstates belonging to each of the flat bands can be expressed as compact

modes that are completely localized in two consecutive unit cells. Retrieving Eqs. (4.16)

and (4.19), we can write the following expressions for the bosonic creation operators

associated with the modes localized in the i and i+ 1 unit cells belonging to the lower,

zero-energy and upper bands

Ŵ 1†
−,i =

1

4

(
− 4√

2
âi†+ + b̂i†+ − b̂

i†
− + ĉi†+ + ĉi†− + b̂i+1†

+ + b̂i+1†
− + ĉi+1†

+ − ĉi+1†
−

)
,

Ŵ 2†
−,i =

1

4

(
− 4√

2
âi†− − b̂

i†
+ + b̂i†− + ĉi†+ + ĉi†− + b̂i+1†

+ + b̂i+1†
− − ĉi+1†

+ + ĉi+1†
−

)
,

Ĥkin

(
Ŵ

1/2†
−,i |0〉

)
= −2

√
2J
(
Ŵ

1/2†
−,i |0〉

)
. (6.8)

Ŵ 1†
0,i =

1

2
√

2

(
−b̂i†+ + b̂i†− + ĉi†+ + ĉi†− − b̂

i+1†
+ − b̂i+1†

− + ĉi+1†
+ − ĉi+1†

−

)
,

Ŵ 2†
0,i =

1

2
√

2

(
b̂i†+ − b̂

i†
− + ĉi†+ + ĉi†− − b̂

i+1†
+ − b̂i+1†

− − ĉi+1†
+ + ĉi+1†

−

)
,

Ĥkin

(
Ŵ

1/2†
0,i |0〉

)
= |0〉 . (6.9)

Ŵ 1†
+,i =

1

4

(
4√
2
âi†+ + b̂i†+ − b̂

i†
− + ĉi†+ + ĉi†− + b̂i+1†

+ + b̂i+1†
− + ĉi+1†

+ − ĉi+1†
−

)
,

Ŵ 2†
+,i =

1

4

(
4√
2
âi†− − b̂

i†
+ + b̂i†− + ĉi†+ + ĉi†− + b̂i+1†

+ + b̂i+1†
− − ĉi+1†

+ + ĉi+1†
−

)
,

Ĥkin

(
Ŵ

1/2†
+,i |0〉

)
= −2

√
2J
(
Ŵ

1/2†
+,i |0〉

)
. (6.10)

In Fig. 6.1 (b) we show graphic representations of the states localized in two consecutive

unit cells of the diamond chain created by the operators (6.8), (6.9) and (6.10). Since

each of these states spans a plaquette formed by the sites {Ai, Bi, Ci, Bi+1, Ci+1}, a

diamond chain with Nc unit cells has Nc − 1 completely localized modes of each type.

Using the linearity of the commutation operation and applying the relations (6.4), it can

be readily shown that the only non-zero commutators between flat-band annihilation

and creation operators are

[Ŵ 1
±,i, Ŵ

1†
±,i] = [Ŵ 2

±,i, Ŵ
2†
±,i] = [Ŵ 1

0,i, Ŵ
1†
0,i] = [Ŵ 2

0,i, Ŵ
2†
0,i] = 1. (6.11)
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Figure 6.1: (a) Schematic representation of the diamond-chain shaped optical lattice

considered in this Chapter. As in Chapter 4, each of the sites corresponds to a ring

potential of radius R. The blue and red lines mark respectively the directions along

which the couplings are real or acquire a π phase, respectively. We remove the A site

from the last unit cell in order to avoid the presence of single-particle edge states in the

spectrum. (b) Sketches of the maximally localized flat-band eigenstates (6.8), (6.9) and

(6.10) indicating the relative weights of each of the OAM states at the different sites.

In the absence of interactions, many-body eigenstates can be constructed by applying

consecutively any of the creation operators (6.8), (6.9), (6.10) to the vacuum state |0〉. As

they will be useful for the forthcoming discussion, we also write explicitly the expressions

of the creation operators of the states of the original OAM basis in terms of those of the

flat-band localized modes
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âi†+ =
1√
2

(
Ŵ 1†

+,i − Ŵ
1†
−,i

)
, (6.12a)

âi†− =
1√
2

(
Ŵ 2†

+,i − Ŵ
2†
−,i

)
, (6.12b)

b̂i†+ =
1

4

(
Ŵ 1†
−,i−1 + Ŵ 2†

−,i−1 + Ŵ 1†
−,i − Ŵ

2†
−,i +

√
2Ŵ 1†

0,i−1 +
√

2Ŵ 2†
0,i−1

−
√

2Ŵ 1†
0,i +

√
2Ŵ 2†

0,i + Ŵ 1†
+,i−1 + Ŵ 2†

+,i−1 + Ŵ 1†
+,i − Ŵ

2†
+,i

)
, (6.12c)

b̂i†− =
1

4

(
Ŵ 1†
−,i−1 + Ŵ 2†

−,i−1 − Ŵ
1†
−,i + Ŵ 2†

−,i +
√

2Ŵ 1†
0,i−1 +

√
2Ŵ 2†

0,i−1

√
2Ŵ 1†

0,i −
√

2Ŵ 2†
0,i + Ŵ 1†

+,i−1 + Ŵ 2†
+,i−1 − Ŵ

1†
+,i + Ŵ 2†

+,i

)
, (6.12d)

ĉi†+ =
1

4

(
Ŵ 1†
−,i−1 − Ŵ

2†
−,i−1 + Ŵ 1†

−,i + Ŵ 2†
−,i +

√
2Ŵ 1†

0,i−1 −
√

2Ŵ 2†
0,i−1

−
√

2Ŵ 1†
0,i −

√
2Ŵ 2†

0,i + Ŵ 1†
+,i−1 − Ŵ

2†
+,i−1 + Ŵ 1†

+,i + Ŵ 2†
+,i

)
, (6.12e)

ĉi†− =
1

4

(
−Ŵ 1†

−,i−1 + Ŵ 2†
−,i−1 + Ŵ 1†

−,i + Ŵ 2†
−,i −

√
2Ŵ 1†

0,i−1 +
√

2Ŵ 2†
0,i−1

−
√

2Ŵ 1†
0,i −

√
2Ŵ 2†

0,i − Ŵ
1†
+,i−1 + Ŵ 2†

+,i−1 + Ŵ 1†
+,i + Ŵ 2†

+,i

)
. (6.12f)

As we saw in Sec. 4.4 of Chapter 4, a direct consequence of the fact that the OAM states

can be expressed as combinations of completely localized eigenmodes is the appearance

of Aharonov-Bohm caging, i.e., the confinement of single-atom wavepackets in small

regions of the lattice due to quantum interference. In the non-interacting limit, a many-

body state will also experience this effect since each atom evolves independently. In

recent investigations, it has been shown that Aharonov-Bohm caging can also survive

in the presence of small mean-field interactions [307, 308].

6.2.2 Two-boson states with on-site interactions

After reviewing the single-particle properties of the system, we are now in a position

to examine the effect of the on-site interactions, described by Eq. (6.3), on the low-

energy properties of two-boson states. In the absence of interactions there are many

possible ground states, which have an energy E = −4
√

2J and consist of the two bosons

occupying any of the localized modes belonging to the lowest flat bands. However, the

introduction of an attractive interaction changes this scenario. From Eq. (6.3), it is

clear that whenever two or more bosons occupy the same site an interaction term arises.

Therefore, Ĥint yields non-zero matrix elements between two-boson states formed by

localized modes which overlap to some extent. We concentrate on the case in which the

interaction strength is much smaller than the size of the band gap, |UA|, |U1|, |U2| �
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2
√

2J , in such a way that the bands do not mix and the low-energy properties of the

system can be examined by projecting Ĥint into the lowest flat bands. If the lattice would

host edge states, the weakly interacting condition would be slightly more stringent and

would read |UA|, |U1|, |U2| � 4
√

2J − 2(1 +
√

2)J ≈ 0.8J . Due to the effect of the

on-site interactions, the total space of non-interacting two-boson ground states, which

we denote as H, can be divided into the following 4 subspaces according to the values

of the self-energies of their states:

1) H1 ≡
{
Ŵ n†
−,iŴ

m†
−,k |0〉

}
, with n,m = 1, 2; i = 1, ..., Nc − 1 and |k − i| ≥ 2.

This is the subspace of states where the two bosons occupy localized modes separated

by two unit cells or more. In these configurations there is no overlap between the two

particles, and therefore the interaction energy is zero,〈
0
∣∣∣Ŵ n
−,iŴ

m
−,kĤintŴ

n†
−,iŴ

m†
−,k

∣∣∣ 0〉 = 0. (6.13)

2) H2 ≡
{
Ŵ n†
−,iŴ

m†
−,i+1 |0〉

}
, with n,m = 1, 2 and i = 1, ..., Nc − 2.

This is the set of states in which the localized modes of the two atoms are localized in two

consecutive unit cells, in such a way that they share the sitesBi+1 and Ci+1. Therefore, in

order to compute their self-energy we need to take into account the products of creation

operators acting on these sites contained in the expansion of Ŵ n†
−,iŴ

m†
−,i+1. Using the

expressions for the modes of the lowest-energy bands (6.8) and retaining only the terms

that are relevant for the computation of the self-energy, we can write

W 1†
−,iW

1†
−,i+1 =

1

16
(b̂i+1†

+ b̂i+1†
+ − b̂i+1†

− b̂i+1†
− + ĉi+1†

+ ĉi+1†
+ − ĉi+1†

− ĉi+1†
− ), (6.14a)

W 2†
−,iW

2†
−,i+1 =

1

16
(−b̂i+1†

+ b̂i+1†
+ + b̂i+1†

− b̂i+1†
− − ĉi+1†

+ ĉi+1†
+ + ĉi+1†

− ĉi+1†
− ), (6.14b)

W 1†
−,iW

2†
−,i+1 =

1

16
(−b̂i+1†

+ b̂i+1†
+ + b̂i+1†

− b̂i+1†
− + ĉi+1†

+ ĉi+1†
+ − ĉi+1†

− ĉi+1†
− ), (6.14c)

W 2†
−,iW

1†
−,i+1 =

1

16
(b̂i+1†

+ b̂i+1†
+ − b̂i+1†

− b̂i+1†
− − ĉi+1†

+ ĉi+1†
+ + ĉi+1†

− ĉi+1†
− ). (6.14d)

Using the expansions (6.14), we find that the self-energy of the states belonging to H2

is given by 〈
0
∣∣∣Ŵ n
−,iŴ

m
−,i+1ĤintŴ

n†
−,iŴ

m†
−,i+1

∣∣∣ 0〉 =

{
U1

32
if i is even

U2

32
if i is odd

(6.15)

3) H3 ≡
{

1√
2
Ŵ n†
−,iŴ

n†
−,i |0〉

}
, with n = 1, 2 and i = 1, ..., Nc − 2.
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This subspace is formed by the two-boson states in which both atoms occupy the same

single-particle state. Since the localized modes overlap completely, there are interaction

terms coming from the contributions of the sites Ai, Bi, Ci, Bi+1 and Ci+1. Using again

the expansions (6.8) and keeping only the relevant terms for the computation of the

self-energy, we find

W 1†
−,iW

1†
−,i√

2
=

1

2
√

2
âi†+â

i†
+

+
1

16
√

2

(
b̂i†+b̂

i†
+ + b̂i†−b̂

i†
− − 2b̂i†+b̂

i†
−

)
+

1

16
√

2

(
b̂i+1†

+ b̂i+1†
+ + b̂i+1†

− b̂i+1†
− + 2b̂i+1†

+ b̂i+1†
−

)
+

1

16
√

2

(
ĉi†+ĉ

i†
+ + ĉi†−ĉ

i†
− + 2ĉi†+ĉ

i†
−

)
+

1

16
√

2

(
ĉi+1†

+ ĉi+1†
+ + ĉi+1†

− ĉi+1†
− − 2ĉi+1†

+ ĉi+1†
−

)
, (6.16a)

W 2†
−,iW

2†
−,i√

2
=

1

2
√

2
âi†−â

i†
−

+
1

16
√

2

(
b̂i†+b̂

i†
+ + b̂i†−b̂

i†
− − 2b̂i†+b̂

i†
−

)
+

1

16
√

2

(
b̂i+1†

+ b̂i+1†
+ + b̂i+1†

− b̂i+1†
− + 2b̂i+1†

+ b̂i+1†
−

)
+

1

16
√

2

(
ĉi†+ĉ

i†
+ + ĉi†−ĉ

i†
− + 2ĉi†+ĉ

i†
−

)
+

1

16
√

2

(
ĉi+1†

+ ĉi+1†
+ + ĉi+1†

− ĉi+1†
− − 2ĉi+1†

+ ĉi+1†
−

)
. (6.16b)

Using the expansions (6.16), we find that the self-energy of the states of H3 is given by

〈
0

∣∣∣∣ 1√
2
Ŵ n
−,iŴ

n
−,iĤint

1√
2
Ŵ n†
−,iŴ

n†
−,i

∣∣∣∣ 0〉 =
UA
4

+
3 (U1 + U2)

64
. (6.17)

4) H4 ≡
{
Ŵ 1†
−,iŴ

2†
−,i |0〉

}
, with i = 1, ..., Nc − 2.

This subspace is formed by two-boson states in which the two atoms are localized in

the same plaquette but occupy orthogonal states, each belonging to one of the two

degenerate bands. As in the case of the H3 subspace, the two particles share 5 different

sites. The terms of the expansion of the two-body state relevant for the computation of
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the self-energy read

W 1†
−,iW

2†
−,i =

1

2
â†i,+â

†
i,−

+
1

16

(
−b̂†i,+b̂

†
i,+ − b̂

†
i,−b̂

†
i,− + 2b̂†i,+b̂

†
i,−

)
+

1

16

(
b̂†i+1,+b̂

†
i+1,+ + b̂†i+1,−b̂

†
i+1,− + 2b̂†i+1,+b̂

†
i+1,−

)
+

1

16

(
ĉ†i,+ĉ

†
i,+ + ĉ†i,−ĉ

†
i,− + 2ĉ†i,+ĉ

†
i,−

)
+

1

16

(
−ĉ†i+1,+ĉ

†
i+1,+ − ĉ

†
i+1,−ĉ

†
i+1,− + 2ĉ†i+1,+ĉ

†
i+1,−

)
. (6.18)

Using this expansion, we find that the self-energy of the states belonging to H4 is〈
0
∣∣∣Ŵ 1
−,iŴ

2
−,iĤintŴ

1†
−,iŴ

2†
−,i

∣∣∣ 0〉 =
UA
2

+
3 (U1 + U2)

32
. (6.19)

From Eqs. (6.15), (6.17), (6.19), and bearing in mind that UA, U1, U2 < 0, we see that

the subspace in which the states have a lowest self-energy is H4, followed by H3. In

the next section, we will derive effective models for these subspaces and we will discuss

their topological properties.

6.3 Effective models for the lowest-energy subspaces

We can obtain effective models for the subspaces of two-boson states with lowest

self-energy by projecting the Hamiltonian (6.1) into the two lowest flat bands. In order

to do so, we remove from the expansions (6.12) all the contributions from higher bands

and define a new set of operators

ˆ̄ai†+ = − 1√
2
Ŵ 1†
−,i, (6.20a)

ˆ̄ai†− = − 1√
2
Ŵ 2†
−,i, (6.20b)

ˆ̄bi†+ =
1

4

(
Ŵ 1†
−,i−1 + Ŵ 2†

−,i−1 + Ŵ 1†
−,i − Ŵ

2†
−,i

)
, (6.20c)

ˆ̄bi†− =
1

4

(
Ŵ 1†
−,i−1 + Ŵ 2†

−,i−1 − Ŵ
1†
−,i + Ŵ 2†

−,i

)
, (6.20d)

ˆ̄ci†+ =
1

4

(
Ŵ 1†
−,i−1 − Ŵ

2†
−,i−1 + Ŵ 1†

−,i + Ŵ 2†
−,i

)
, (6.20e)

ˆ̄ci†− =
1

4

(
−Ŵ 1†

−,i−1 + Ŵ 2†
−,i−1 + Ŵ 1†

−,i + Ŵ 2†
−,i

)
. (6.20f)

By plugging in Eq. (6.1) the projected OAM operators (6.20) instead of the original

ones, we obtain a Hamiltonian expressed in the basis of the single-particle eigenstates
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and restricted to the two degenerate flat bands of lowest energy. As expected, the kinetic

part of the projected Hamiltonian is diagonal and reads

ˆ̄Hkin = −2
√

2J
Nc−1∑
i=1

Ŵ 1†
−,iŴ

1
−,i + Ŵ 2†

−,iŴ
2
−,i. (6.21)

The interaction part of the projected Hamiltonian contains products of the type
ˆ̄ji†α

ˆ̄ji†α
ˆ̄jiα

ˆ̄jiα and ˆ̄ji†α
ˆ̄ji†α

ˆ̄ji−α
ˆ̄ji−α, with j = {a, b, c} and α = ±. Therefore, it yields terms

that involve products of operators that belong to the H2, H3 and H4 subspaces. How-

ever, after a long but straightforward calculation it can be shown that all the coupling

terms cancel out and separate projected Hamiltonians can be written for each of these

subspaces. In the next subsections, we present the effective models that are obtained

for the two lowest-energy subspaces, i.e., H4 and H3.

6.3.1 H4 subspace

Introducing the projected OAM operators (6.20) into Eq. (6.3), we find that the

projected interaction Hamiltonian contains the following terms consisting of products

of operators associated to the H4 subspace

ˆ̄HH4
int =

(
UA
2

+
3 (U1 + U2)

32

)Nc−1∑
i=1

Ŵ 1†
−,iŴ

2†
−,iŴ

1
−,iŴ

2
−,i

+
U1

32

[Nc/2]−2∑
i=1

(
Ŵ 1†
−,2iŴ

2†
−,2iŴ

1
−,2i+1Ŵ

2
−,2i+1 + h.c.

)
+
U2

32

[Nc/2]−1∑
i=1

(
Ŵ 1†
−,2i−1Ŵ

2†
−,2i−1Ŵ

1
−,2iŴ

2
−,2i + h.c.

)
. (6.22)

The first term of Eq. (6.22) is associated with the self-energy of the states of the H4

subspace, Eq. (6.19), whereas the other two terms correspond to hoppings between two-

boson states belonging to neighbouring plaquettes induced by the overlap between the

localized modes, as shown in Fig. 6.2 (a). By mapping the two-body states of H4 into

single particle states according to the definition |i〉 ≡ Ŵ 1†
−,iŴ

2†
−,i |0〉, we can compute all

the matrix elements of Eqs. (6.21) and (6.22) over the two-boson states of H4 and write

an effective single-particle tight-binding model for this subspace

HH4
eff = VH4

Nc−1∑
i=1

|i〉 〈i|+ t1

Nc/2−2∑
i=1

(|2i〉 〈2i+ 1|+ h.c.) + t2

Nc/2−1∑
i=1

(|2i− 1〉 〈2i|+ h.c.) ,

(6.23)

where we have defined VH4 ≡
(
−4
√

2J + UA
2

+ 3(U1+U2)
32

)
, t1 ≡ U1

32
and t2 ≡ U2

32
. As

illustrated in Fig. 6.2 (b), Eq. (6.23) describes a Su-Schrieffer-Heeger (SSH) chain with
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a unit cell formed by two sites that correspond to neighbouring plaquettes of the original

diamond chain. The intra- and inter-cell hoppings of this chain are given by t2 and t1
respectively, and the energy of all sites is shifted by a uniform potential VH4 .

Figure 6.2: Effective model for the H4 subspace. (a) Original states of H4 in the

diamond chain. The blue squares framed in dashed lines indicate the plaquettes where

the states are localized. In the sites with a darker blue shade, neighbouring states

overlap and interact with a strength U1 or U2. (b) Effective SSH chain describing the

H4 subspace. The blue shaded area indicates the unit cell, which is formed by two

neighbouring plaquettes of the original diamond chain. (c) Band structure of the SSH

chain for values of the interaction parameters {UA/J = −0.2, U1/J = −0.2, U2/J =

−0.2} (left plot), {UA/J = −0.2, U1/J = −0.2(0), U2/J = 0(−0.2)} (middle plot), and

{UA/J = −0.2, U1/J = −0.2(−0.1), U2/J = −0.1(−0.2)} (right plot). In the middle

and right plots, we also indicate the value of the Zak’s phases of the bands for each case.

By Fourier-transforming the Hamiltonian (6.23), we find that the two energy bands
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of this model are given by

E1
H4

(k) = VH4 −
√
t21 + t22 + 2t1t2 cos k, (6.24a)

E2
H4

(k) = VH4 +
√
t21 + t22 + 2t1t2 cos k. (6.24b)

The shape of the band structure (6.24) is shown in Fig. 6.2 (c) for different values of the

hopping parameters. As shown in the left plot, for the particular case t1 = t2 the gap

closes at k = ±π. As can be seen in the middle plot, for t1 = 0 or t2 = 0 the bands are

flat and separated by a gap. In the general case t1 6= t2, which is illustrated in the right

plot, both bands are dispersive and the gap remains open. In the situations where there

is an energy gap, the relative value of the hopping parameters determines the topological

properties of the system. If |t1| < |t2|, the Zak’s phases of the bands are γ1
H4

= γ2
H4

= 0

and the system is in a topologically trivial phase. On the other hand, if the values of the

hoppings are such that |t1| > |t2|, the Zak’s phases are γ1
H4

= γ2
H4

= π and the system is

in a topological phase. Thus, by introducing the different interaction strengths U1 and

U2 at B and C sites of odd and even unit cells respectively, we are able to control the

shape of the band structure and to render the H4 subspace topologically non-trivial.

According to the bulk-boundary correspondence, in the topological phase we expect a

chain with open boundaries to display two edge states of energy VH4 in its spectrum.

Remarkably, these edge states consist of bound pairs of bosons and are induced by the

interplay between the strength of different on-site interactions in a system where the

kinetic energy plays no role due to the fact that all the bands are flat.

6.3.2 H3 subspace

Doing the same procedure as in the case of the H4 subspace, we find that the part of

the interaction Hamiltonian projected to the two lowest flat bands containing products

of operators associated to the H3 subspace reads

¯̂
HH3

int =

(
−4
√

2J +
UA
4

+
3(U1 + U2)

64

)Nc−1∑
i=1

Ŵ 1†
−,iŴ

1†
−,i√

2

Ŵ 1
−,iŴ

1
−,i√

2
+
Ŵ 2†
−,iŴ

2†
−,i√

2

Ŵ 1†
−,2Ŵ

2†
−,i√

2

+
3 (U1 + U2)

64

Nc∑
i=1

(
Ŵ 1†
−,iŴ

1†
−,i√

2

Ŵ 2
−,iŴ

2
−,i√

2
+ h.c.

)

− U1

64

[Nc/2]−2∑
i=1

∑
n,m=1,2

(
Ŵ n†
−,2iŴ

n†
−,2i√

2

Ŵm
−,2i+1Ŵ

m
−,2i+1√

2
+ h.c.

)

− U2

64

[Nc/2]−1∑
i=1

∑
n,m=1,2

(
Ŵ n†
−,2i−1Ŵ

n†
−,2i−1√

2

Ŵm
−,2iŴ

m
−,2i√

2
+ h.c.

)
. (6.25)
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The first term of Eq. (6.25) corresponds to the self-energy of the states belonging to

H3, Eq. (6.17), and the other ones can be regarded as pair-tunneling terms induced by

the interactions at the sites where the single-particle localized modes interact. More

specifically, the second term corresponds to a coupling between two-boson states local-

ized at the same site but belonging to different bands, and the third and fourth terms to

hoppings between states localized in neighbouring plaquettes belonging to the same and

different bands, respectively. By mapping the two-body states of H3 into single-particle

states according to |i, 1〉 ≡ 1√
2
Ŵ 1†
−,iŴ

1†
−,i |0〉 and |i, 2〉 ≡ 1√

2
Ŵ 2†
−,iŴ

2†
−,i |0〉, we can combine

all the non-zero matrix elements of (6.25) and (6.21) over two-boson states of H3 and

write an effective single-particle model for this subspace

ĤH3
eff = VH3

Nc∑
i=1

(|i, 1〉 〈i, 1|+ |i, 2〉 〈i, 2|) +
3 (t1 + t2)

2

Nc∑
i=1

(|i, 1〉 〈i, 2|+ h.c.)

− t1
2

[Nc/2]−2∑
i=1

∑
n,m=1,2

(|2i, n〉 〈2i+ 1,m|+ h.c.)

− t2
2

[Nc/2]−1∑
i=1

∑
n,m=1,2

(|2i− 1, n〉 〈2i,m|+ h.c.) , (6.26)

where VH3 ≡
(
−4
√

2J + UA
4

+ 3(U1+U2)
64

)
and t1, t2 are defined in the same way as in

Eq. (6.23). As illustrated in Fig. 6.3 (a), Eq. (6.26) describes a Creutz ladder [309] with

a unit cell formed by two legs, each of which corresponds to the two states of H3 localized

in each plaquette, |i, 1〉 and |i, 2〉. The intra-leg coupling is given by 3(t1+t2)
2

, and the

inter-leg hoppings are − t1
2

or − t2
2

depending on the parity of the unit cell. Additionally,

the energy of all sites is shifted by a uniform potential VH3 . By Fourier-transforming

the Hamiltonian (6.26), we find the following energy bands

E1
H3

(k) =
3(t1 + t2)

2
+ VH3 −

√
t21 + t22 + 2t1t2 cos k, (6.27a)

E2
H3

(k) =
3(t1 + t2)

2
+ VH3 +

√
t21 + t22 + 2t1t2 cos k, (6.27b)

E3
H3

(k) = E4
H3

(k) = −3(t1 + t2)

2
+ VH3 . (6.27c)

In Fig. 6.3 (c) we plot the band structure (6.27) for different values of the hopping

parameters. As long as t1 6= t2 there is an energy gap between the dispersive bands

E1
H3

(k) and E2
H3

(k), which only become flat in the cases t1 = 0 or t2 = 0, as shown

in the middle plot of Fig. 6.3 (c). Whenever the gap remains open, if |t1| < |t2| the

Zak’s phases of the bands are γ1
H3

= γ2
H3

= γ3
H3

= γ4
H3

= 0 and the system is in a

topologically trivial phase. On the other hand, if the relation between the values of the
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hopping parameters is |t1| > |t2|, the Zak’s phases are γ1
H3

= γ2
H3

= π, γ3
H3

= γ4
H3

= 0

and therefore H3 is in a topologically non-trivial phase.

Thus, the H3 and H4 subspaces share the same topological phase diagram as a

function of the values of U1 and U2. In the non-trivial regime |U1| > |U2|, we expect

that in a lattice with open boundaries the spectrum of H3 displays two edge states with

energy 3(t1+t2)
2

+VH3 , which are of the same nature as those that H4 exhibits in the same

situation.

Figure 6.3: (a) Effective Creutz ladder describing the H3 subspace. The blue shaded

area framed in dashed lines indicates the unit cell, which is formed by two neigh-

bouring legs that are in turn composed of the two states of the original diamond

chain loacalized in each plaquette. (b) Band structure of the Creutz ladder for

values of the interaction parameters {UA/J = −0.2, U1/J = −0.2, U2/J = −0.2}
(left plot), {UA/J = −0.2, U1/J = −0.2(0), U2/J = 0(−0.2)} (middle plot), and

{UA/J = −0.2, U1/J = −0.2(−0.1), U2/J = −0.1(−0.2)} (right plot). In the mid-

dle and right plots, we also indicate the value of the Zak’s phases of the bands for each

case.
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6.4 Exact diagonalization results

In this section, we present exact diagonalization results that support the analysis

of the lowest-energy subspaces that we have performed by projecting the Hamiltonian

to the two lowest degenerate flat bands. We also explore numerically the effects of

deviations from the weakly-interacting and flat-band limits. In our calculations, we

consider a full diamond chain formed by Nc unit cells and therefore 3Nc − 1 sites (for

reasons that we explained before, we remove the A site from the last cell), and filled

with N = 2 bosons. Although the dimension of the Hilbert space corresponding to this

system is (N+M−1)!
(M−1)!N !

, where M = 2× (3Nc − 1) is the number of available single-particle

states, we focus on the first 3(Nc−1) states of the spectrum. Of these, the Nc−1 states

of lowest energy correspond to the H4 subspace, and the remaining 2(Nc − 1) states to

the H3 subspace.

6.4.1 Energy spectra and topological edge states

In Fig. 6.4 we show, for a diamond chain of Nc = 21 unit cells with interaction

strengths |UA|, |U1|, |U2| ∼ 10−2J , the energy spectra obtained by exact diagonalization

of the full Hamiltonian Eq. (6.1) (red empty dots), the effective Hamiltonian of the

H4 subspace Eq. (6.23) (green dots) and the effective Hamiltonian of the H3 subspace

Eq. (6.26) (blue dots). We observe that both effective models fit very well with the results

obtained by tackling the full system. The exact diagonalization results also confirm

the predictions about the topological behaviour of the system. When the interaction

strengths fulfill the relation |U1| < |U2|, which is the case shown in Fig. 6.4 (a), the

system is in the topologically trivial phase and therefore there are no states inside the

gaps. In contrast, in Fig. 6.4 (b), which corresponds to coupling strengths fulfilling

|U1| > |U2|, the system is in the topological phase, as reflected by the presence of two

states inside the gaps between the two bands of H4 and the two lowest bands of H3.

In Fig. 6.5 (a) and Fig. 6.5 (b) we plot respectively the total density profiles (i.e., the

sum of the populations of the two OAM states at each site) of the in-gap states of the

H4 and H3 subspaces that appear in the exact two-boson spectrum of Fig. 6.4 (b). As

one expects because of their topological origin, these states are strongly localized at the

unit cells of the edge of the diamond chain. In the density profiles of both states, we

observe that the population peaks occur at the A sites. This fact can be explained by

taking into account that the completely localized modes corresponding to the lowest

bands, Eqs. (6.8), have four times more population on the A sites than on the B and C

sites. Accordingly, the edge states of Fig. 6.5, which are formed of bound pairs of these

modes, also concentrate their population on these sites.
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Figure 6.4: Low-energy sector of the spectrum of a diamond chain of Nc = 21 unit

cells with open boundaries filled with 2 bosons (red empty dots), compared against

the spectra of the SSH model describing the H4 subspace (green dots) and the Creutz

ladder describing the H3 subspace (blue dots). The parameters of the system are (a)

{UA/J = −0.02, U1/J = −0.02, U2/J = −0.01} and (b) {UA/J = −0.02, U1/J =

−0.01, U2/J = −0.02}.

Figure 6.5: Density profiles of the in-gap states that appear in the spectrum of the full

diamond chain plotted with red empty dots in Fig. 6.4 (b). The state plotted in (a)

belongs to the H4 subspace and the one displayed in (b) to the H3 subspace. The sites

have been assigned a number j according to the same correspondences as in Chapter 4,

i.e., Ci = 3i − 2, Bi = 3i − 1, Ai = 3i, where i labels the unit cell

.
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6.4.2 Deviations from the weakly-interacting regime

In the derivation of the effective model for the lowest-energy two-boson states of the

diamond chain performed in Sec. 6.3, we have assumed that the interaction strength is

much smaller than the gap between the bands, |UA|, |U1|, |U2| � J , in such a way that the

contributions from higher bands can be neglected. In the previous subsection, we have

shown that for values of the interaction strength |U/J | ∼ 10−2 the effective models that

are derived from this approximation work very well. By means of exact diagonalization

calculations, we can examine to which extent the effective models reproduce the features

of the low-energy sector of the full spectrum when the interaction strength is of the order

of the band gap. In Fig. 6.6 we show, for a diamond chain of Nc = 21 unit cells in which

|U1| > |U2|, a comparison between the exact two-boson spectrum (red empty dots)

and the effective models of the H4 (green dots) and H3 (blue dots) subspaces. The

order of magnitude of the interaction strength is (a) |U/J | ∼ 10−1 and (b) |U/J | ∼ 1.

Although the quantitative disagreement between the effective models and the exact

spectrum increases with the interaction strength, the models provide a good qualitative

description of the lowest energetic two-boson states. In particular, in the exact spectra

of Fig. 6.6 (a) and (b), the H4 and H3 subspaces are well separated in energy, the bands

of each subspace maintain the shape predicted by the corresponding effective models,

and, since the system is in the topological phase, there are in-gap states.

Figure 6.6: Low-energy sector of the spectrum of a diamond chain of Nc = 21 unit

cells with open boundaries filled with 2 bosons (red empty dots), compared against the

spectra of the SSH model describing the H4 subspace (green dots) and the Creutz ladder

describing the H3 subspace (blue dots). The parameters of the system are (a) {UA/J =

−0.2, U1/J = −0.2, U2/J = −0.1} and (b) {UA/J = −2, U1/J = −2, U2/J = −1}.
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Figure 6.7: Density profiles of the in-gap states that appear in the the full diamond chain

spectra plotted with red empty dots in Fig. 6.6. The states plotted in (a) belong to the

H4 subspace and the ones plotted in (b) to the H3 subspace. The red lines correspond

to the parameters {UA/J = −0.2, U1/J = −0.2, U2/J = −0.1} [same as in Fig. 6.6 (a)]

and the green ones to {UA/J = −2, U1/J = −2, U2/J = −1} [same as in Fig. 6.6 (b)].

The sites have been assigned a number j according to the same correspondences as in

Chapter 4, i.e., Ci = 3i − 2, Bi = 3i − 1, Ai = 3i, where i labels the unit cell.

In Fig. 6.7 (a) and (b) we plot respectively the density profiles of the in-gap states

of H4 and H3 that appear in the exact spectra of Fig. 6.6. As in the case of interaction

strengths |U/J | ∼ 10−2 shown in Fig. 6.7, we observe that these states are localized at

the unit cells of the edges of the diamond chain. We also notice that the edge localization

of the states is more acute for higher values of the interaction strength.

Therefore, introducing interaction strengths of the order of the band gap does not

affect the qualitative behaviour of the lowest-energy sector of the spectrum. As a matter

of fact, it has the effect of favouring the edge localization of the in-gap states, which is

the main signature of the topological phase.

6.4.3 Deviations from the flat-band limit

Throughout this Chapter, we have assumed that the system is in the situation where

all the bands of the Hamiltonian (6.2) are flat, which occurs when the two couplings

between OAM states J2 and J3 are equal. However, as illustrated in Fig. 2.4, in a real

system this limit is never actually reached because J3 is always slightly larger than J2.

Thus, it is relevant to examine the effect of deviations from the J2 = J3 limit in the low-

energy properties of the system that we have analysed in this Chapter. In the situation

when J2 6= J3, the kinetic part of the Hamiltonian projected to the lowest flat bands



136 Chapter 6 – Interaction-induced two-boson topological states

reads

ˆ̄Hkin =−
√

2(J2 + J3)
Nc−1∑
i=1

Ŵ 1†
−,iŴ

1
−,i + Ŵ 2†

−,iŴ
2
−,i

+
(J3 − J2)√

2

Nc−1∑
i=1

(
Ŵ 1†
−,iŴ

1
−,i+1 + Ŵ 2†

−,iŴ
2
−,i+1 + h.c.

)
. (6.28)

Due to the off-diagonal term of Eq. (6.28), which corresponds to a single-particle hop-

ping between adjacent localized eigenmodes, it is no longer possible to derive effective

single-particle models for the different subspaces of two-boson states. However, we can

perform exact diagonalization calculations over the full Hamiltonian Eq. (6.1) to ex-

amine numerically to which extent the features of the system that we observe in the

flat-band limit survive. In Fig. 6.8 we plot, for a diamond chain of Nc = 21 in which

|U1| > |U2|, the 3(Nc − 1) lowest energetic two-boson states for different values of the

J3/J2 ratio.

Figure 6.8: Low-energy sector of the spectra of two-boson states of a diamond chain

formed by Nc = 21 unit cells for different values of the J3/J2 ratio. The interac-

tion parameters are (a) {UA/J2 = −2, U1/J2 = −2, U2/J2 = −1} and (b) {UA/J2 =

−0.2, U1/J2 = −0.2, U2/J2 = −0.1}. The dashed boxes 1 and 2 in (a) mark respec-

tively the position that the in-gap states of the H4 and H3 subspaces would have in the

flat-band limit.

Fig. 6.8 (a) corresponds to the |U | > (J3−J2) regime, i.e., when the energy deviations

from the flat-band limit are smaller than the interaction strength, whereas in Fig. 6.8

(b) the deviations are of the same order as the interactions, |U | ∼ (J3− J2). In Fig. 6.8

(a), the positions in the spectrum that the in-gap states of the H4 and H3 subspaces

would have in the flat-band are signalled with the dashed boxes 1 and 2, respectively.
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In this plot, we observe that for J3/J2 ≤ 1.2 the separation between H4 and H3 is still

clear and each of the subspaces preserves its in-gap states. For J3/J2 = 1.3, the two

subspaces are still separated in energy, but the in-gap states only persist in H4. Finally,

for the case J3/J2 = 1.5 of Fig. 6.8 (a), and also for all the values of the J3/J2 ratio in

Fig. 6.8 (b), the two subspaces merge and all the in-gap states are absorbed into the

bulk.

Figure 6.9: Density profiles of the states inside (a) the dashed box 1 of Fig. 6.8 and

(b) the dashed box 2 of the same figure. The interaction parameters are {UA/J2 =

−2, U1/J2 = −2, U2/J2 = −1}. The sites have been assigned a number j according to

the same correspondences as in Chapter 4, i.e., Ci = 3i − 2, Bi = 3i − 1, Ai = 3i, where

i labels the unit cell.

In Fig. 6.9 (a) and (b) we plot respectively the total density profiles of the states

inside the dashed boxes 1 and 2 of Fig. 6.8 (a). The states that lie inside gaps preserve

their localization at the edges, displaying longer decays into the bulk as the J3/J2 ratio

increases.

From this brief analysis of the effects of deviations from the flat-band limit, we

can conclude that for sufficiently low values of the difference between the J3 and J2

couplings (compared to the interaction strength |U |), the main characteristics of the low-

energy sector of the spectrum, i.e., the separation between the H4 and H3 subspaces

and the presence of topological edge states in the |U1| > |U2| regime, are preserved.

For instance, in the case examined here in which the parameters of the system are

{UA/J2 = −2, U1/J2 = −2, U2/J2 = −1}, these characteristics are still clearly observed

for J3/J2 = 1.2. As shown in Fig. 2.4, this value of the J3/J2 ratio can be realized for

realistic values of the radius of the rings and the separation between them.
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6.5 Conclusions

In this Chapter, we have extended the analysis of the optical lattice with a diamond-

chain shape introduced in Chapter 4 by examining the low-energy properties of two

bosons with weak attractive interactions in the Aharonov-Bohm caging regime, that is,

in the limit where all the bands are flat and the single-particle eigenstates consist of

completely localized modes. As a main result, we have found that this system has a

topological phase in which in-gap edge states formed by bound pairs of bosons appear

in the spectrum of a chain with open boundaries.

In order to gain analytical insight on the properties of this system, we have first

concentrated on the regime in which the interactions are much smaller than the gap

between the flat bands. In this situation, the Hamiltonian can be projected into the two

lowest degenerate bands. Within the space of two-boson states restricted to the lowest

bands, we have identified the two subspaces of lowest self-energy, which are composed

of states in which the two bosons are localized in the same plaquette. Taking profit of

this fact, we have mapped these two-boson states into single-particle states and derived

non-interacting tight-binding models for describing each of the two subspaces. These

two effective models, which can be interpreted respectively in terms of a SSH chain and a

Creutz ladder, have a topological phase which can be obtained by tuning separately the

strength of the interactions on the odd and even unit cells of the lattice. In principle,

this could be done by means of a modulated electric or magnetic field that induces

Feshbach resonances of the desired amplitude in each type of sites.

In order to check the analytical predictions, we have performed exact diagonalization

calculations over the full Hamiltonian of the diamond chain and compared the low-energy

sector of the spectrum with the results obtained by solving the effective models. We

have found that, in the weakly-interacting regime, the effective models have an excellent

agreement with the exact spectrum of the lattice filled with two bosons and predict

correctly the presence of edge states in the topological phase. Finally, we have studied

numerically how the properties of the system are modified in the presence of stronger

attractive interactions and when the bands are not completely flat. In the former case,

we have found that the effective models still provide a good qualitative description of

the low-energy properties of the system and that the edge localization of the in-gap

states is actually more pronounced for stronger interactions. In the latter case, we have

observed that the topological edge states are preserved for values of the deviation from

the flat-band limit that correspond to realistic values of the tunneling couplings.

As this is an initial analysis of the system, a number of further questions can be ad-

dressed. Analytical calculations in the flat-band limit incorporating higher-band states

could be performed in order to explain the behaviour of the system in the presence of

stronger interactions. The dynamics of the system and its interplay with topology could
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be studied. Another interesting direction is to generalize the analytical and numerical

studies of two-boson states to a lattice with a higher filling.
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the



CHAPTER 7

Second-order topological corner states with ultracold atoms

carrying orbital angular momentum in optical lattices

In this Chapter, we study the topological properties of ultracold atoms loaded into

Orbital Angular Momentum (OAM) states of a two-dimensional (2D) square optical lat-

tice with unequal intra- and inter-cell spacings. We demonstrate that this system consti-

tutes an example of a 2D higher-order topological insulator, displaying in its spectrum

one-dimensional (1D) edge states and zero-dimensional corner states that are correlated

with the topological properties of the bulk. We show that the topologically non-trivial

regime can be explored in a wide range of experimentally feasible values of the parame-

ters of the physical system. Furthermore, we propose an alternative way to characterize

the second-order topological corner states based on the computation of the Zak’s phases

of the bands of first-order edge states.

The Chapter is organized as follows. In Sec. 7.1, we introduce the recently developed

concept of higher-order topological insulators and give a brief overview on the main

advances in this topic. In Sec. 7.2, we describe the physical system and derive the

Hamiltonian that governs the tunneling dynamics of ultracold atoms carrying orbital

angular momentum in the 2D optical lattice. We also introduce a basis rotation that

decouples the full system with two orbitals per site into two independent and equivalent

lattices with one orbital per site, and we analyse the band structure of these resulting

subsystems. In Sec. 7.3, we perform the topological characterization of the model.

First, we discuss the weak topological properties that give rise to the edge states, and

we then move on to analyse the second-order effects, which are manifested through the

141
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presence of zero-energy modes localized at the corners of the lattice. We also propose an

alternative way to predict the presence of corner states by computing the Zak’s phases

of the bands of first-order edge states and we analyse the protecting symmetries of the

corner states. Finally, in Sec. 7.4 we summarize the main conclusions of this work.

7.1 Introduction

Over the last decades, the study of topological insulators has become one of the

most active fields in condensed matter physics [67, 310]. In these materials, the bulk-

boundary correspondence establishes a relation between the topological properties of

the insulating bulk and the presence of robust states at the boundaries of a finite sys-

tem. Traditionally, this bulk-boundary correspondence has been considered in first-order

D-dimensional topological insulators, where non-trivial bulk topological indices yield

(D − 1)-dimensional boundary states. In recent seminal works [82, 311], this concept

has been extended to higher-order topological insulators (HOTIs), which display bound-

ary modes localized in D − n dimensions, with n ≥ 2. Since their discovery, HOTIs

have attracted a lot of theoretical interest [82, 311–328] and have been experimentally

demonstrated in several physical platforms such as metamaterials [329, 330], microwave

[331], topolectrical [332] and LC [333] circuits or solid state bismuth samples [334].

In this work, we propose a scheme to realize a 2D HOTI with zero-energy corner

modes using ultracold atoms in optical lattices. These systems have proven to be a

very versatile platform to create a variety of topological phases of matter [48, 83] in

1D [81, 100, 103, 212, 335] and 2D [46, 47, 94] settings. Our proposal is based on

the use of OAM states, which are supported by any cylindrically symmetric potential.

For concreteness, we focus our discussion on ultracold atoms trapped in arrays of ring

potentials, which can be implemented by a variety of techniques [109–114, 116] and

where OAM can be directly transferred to the atoms using focused light beams [120,

122]. Alternatively, OAM states can also be created in conventional optical lattices

by exciting the atoms to the p-band [57, 58, 135, 221] or periodically modulating the

lattice amplitude [136]. The distinctive advantage of OAM states is that they give rise

to complex tunneling amplitudes in a natural way [137, 234], constituting an alternative

to artificially engineered gauge fields [84, 85, 89, 233]. The relative phase between these

complex tunneling amplitudes can be tuned by modifying the geometry of the system.

Taking advantage of this fact, we consider a lattice in which the arrangement of the

relative phases allows one to decouple the full model with two OAM states per site into

two independent lattices with only one orbital per site. These lattices are just rotated

versions of each other and thus share the same topological phases, giving rise to non-

trivial topology in the global system. The latter is signalled by the presence of both
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edge states, related to weak topological properties, and zero-energy corner states, which

are due to second-order topological effects.

7.2 Physical system

The physical system that we consider consists of a gas of non-interacting ultracold

atoms of mass m trapped in a 2D lattice with a unit cell formed by four sites, which

we denote {A,B,C,D}, as depicted in Fig. 7.1. Each of the sites is the center of a

ring-shaped optical trap of radius R, and the intra- and inter-cell separations between

the outermost parts of the rings are s and s′, respectively. Each of these ring traps

creates a potential V (r) = 1
2
mω2(r−R)2, which defines a radial length scale σ =

√
~
mω

,

where ω is the radial frequency and ~ the reduced Planck’s constant. These potentials

support modes with an integer OAM l.

Figure 7.1: Sketch of the 2D lattice of rings of radius R considered in this work. The unit

cells are formed by 4 rings, named {A,B,C,D}, with intra- and inter-cell separations

between their outermost parts given by s and s′, respectively.

For concreteness, in this work we focus on the particular case in which the atoms

may occupy the two degenerate OAM l = 1 states with positive or negative circulation

of each ring potential of the lattice, but all our considerations could be generalized to

higher OAM states in a straightforward manner. We denote the OAM l = 1 states with
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positive and negative circulations as |Oi,j,±〉, where i, j are indices that indicate the

horizontal and vertical positions of the unit cell and O = {A,B,C,D} labels the site.

The wave functions of these states are given by

φ
Oi,j
± (rOi,j , ϕOi,j) = 〈~r |Oi,j,±〉 = ψ(rOi,j)e

±i(ϕOi,j−ϕ0), (7.1)

where (rOi,j , ϕOi,j) are the polar coordinates with origin at the site Oi,j and ϕ0 is an

absolute phase origin, which can be chosen arbitrarily. The tunneling dynamics of the

OAM states has been reviewed in Sec. 2.4 of Chapter 2, where we showed that there are

only three independent tunneling amplitudes whose absolute and relative values depend

on the radius of the rings R and the distance between them s [see Fig. 2.4]. We denote

these amplitudes as: i) J1(R, s), which corresponds to the self-coupling at each site

between the two OAM states with opposite circulations, and ii) J2(R, s) and J3(R, s),

which correspond to the cross coupling between OAM states in different sites with equal

or different circulations, respectively. Note that we have dropped the OAM manifold

index l = 1 from the tunneling amplitudes for simplicity. The origin of phases ϕ0 plays

the role of inducing complex factors e±2iϕ0 in the tunneling amplitudes which correspond

to processes involving exchange of the OAM circulation, i.e., J1(R, s) and J3(R, s). In

the lattice depicted in Fig. 7.1, destructive interference between neighbouring sites with

different phases in the tunneling amplitudes causes the self-coupling terms J1 to vanish

[137]. Choosing ϕ0 along the line that unites the sites Ai,j ↔ Bi,j, the couplings along

the perpendicular direction Ai,j ↔ Ci,j acquire a relative π phase and the Hamiltonian

of the non-interacting system reads

Ĥ = J2

∑
i,j

∑
α=±

âi,j†α (b̂i,jα + ĉi,jα ) + d̂i,j†α (b̂i,jα + ĉi,jα )

+ J ′2
∑
i,j

∑
α=±

âi,j†α (b̂i−1,j
α + ĉi,j−1

α ) + d̂i,j†α (b̂i,j+1
α + ĉi+1,j

α )

+ J3

∑
i,j

∑
α=±

âi,j†α (b̂i,j−α − ĉ
i,j
−α) + d̂i,j†α (−b̂i,j−α + ĉi,j−α)

+ J ′3
∑
i,j

∑
α=±

âi,j†α (b̂i−1,j
−α − ĉi,j−1

α ) + d̂i,j†α (−b̂i,j+1
−α + ĉi+1,j

α )

+ H.c., (7.2)

where we have defined J2 ≡ J2(R, s), J3 ≡ J3(R, s), J ′2 ≡ J2(R, s′), J ′3 ≡ J3(R, s′) and

the annihilation operators ôi,j± , with o = {a, b, c, d}, associated with the states |Oi,j,±〉.
The single-particle properties derived from the Hamiltonian (7.2) are independent of

the quantum statistics. However, in some cases we will compute quantities that involve

occupation by a single atom of consecutive quantum levels. In those instances, we will

assume a spinless fermionic species, because non-interacting bosons would accumulate

into the lowest-energy state.
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7.2.1 Decoupling into two independent and equivalent lattices

In order to simplify the treatment of the model, we consider a new basis formed by the

symmetric and anti-symmetric combinations of OAM states with opposite circulation

at each site

|Oi,j, S〉 =
1√
2

(|Oi,j,+〉+ |Oi,j,−〉), (7.3)

|Oi,j, A〉 =
1√
2

(|Oi,j,+〉 − |Oi,j,−〉). (7.4)

The density profiles of the symmetric and anti-symmetric combinations resemble those of

px and py orbitals, respectively. In this rotated basis, the non-vanishing matrix elements

of the Hamiltonian (7.2) are〈
Ai,j, S

∣∣∣Ĥ∣∣∣Bi,j, S
〉

=
〈
Ci,j, S

∣∣∣Ĥ∣∣∣Di,j, S
〉

= J2 + J3, (7.5a)〈
Ai,j, S

∣∣∣Ĥ∣∣∣Ci,j, S〉 =
〈
Bi,j, S

∣∣∣Ĥ∣∣∣Di,j, S
〉

= J2 − J3, (7.5b)〈
Bi,j, S

∣∣∣Ĥ∣∣∣Ai+1,j, S
〉

=
〈
Di,j, S

∣∣∣Ĥ∣∣∣Ci+1,j, S
〉

= J ′2 + J ′3, (7.5c)〈
Ci,j, S

∣∣∣Ĥ∣∣∣Ai,j+1, S
〉

=
〈
Di,j, S

∣∣∣Ĥ∣∣∣Bi,j+1, S
〉

= J ′2 − J ′3, (7.5d)〈
Ai,j, A

∣∣∣Ĥ∣∣∣Ci,j, A〉 =
〈
Bi,j, A

∣∣∣Ĥ∣∣∣Di,j, A
〉

= J2 + J3, (7.5e)〈
Ai,j, A

∣∣∣Ĥ∣∣∣Bi,j, A
〉

=
〈
Ci,j, A

∣∣∣Ĥ∣∣∣Di,j, A
〉

= J2 − J3, (7.5f)〈
Ci,j, A

∣∣∣Ĥ∣∣∣Ai,j+1, A
〉

=
〈
Di,j, A

∣∣∣Ĥ∣∣∣Bi,j+1, A
〉

= J ′2 + J ′3, (7.5g)〈
Bi,j, A

∣∣∣Ĥ∣∣∣Ai+1,j, A
〉

=
〈
Di,j, A

∣∣∣Ĥ∣∣∣Ci+1,j, A
〉

= J ′2 − J ′3. (7.5h)

Therefore, the basis rotation decouples the lattice with two OAM orbitals per site de-

scribed by the Hamiltonian (7.2) into two independent lattices with only one symmetric

or anti-symmetric orbital per site
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Ĥ = ĤS + ĤA, (7.6)

ĤS =
∑
i,j

t1(âi,j†S b̂i,jS + ĉi,j†S d̂i,jS ) + t′1(b̂i,j†S âi+1,j
S + d̂i,j†S ĉi+1,j

S )

+
∑
i,j

t2(âi,j†S ĉi,jS + b̂i,j†S d̂i,jS ) + t′2(ĉi,j†S âi,j+1
S + d̂i,j†S b̂i,j+1

S )

+ H.c., (7.7)

ĤA =
∑
i,j

t2(âi,j†A b̂i,jA + ĉi,j†A d̂i,jA ) + t′2(b̂i,j†A âi+1,j
A + d̂i,j†A ĉi+1,j

A )

+
∑
i,j

t1(âi,j†A ĉi,jA + b̂i,j†A d̂i,jA ) + t′1(ĉi,j†A âi,j+1
A + d̂i,j†A b̂i,j+1

A )

+ H.c., (7.8)

where we have defined the new coupling constants t1 ≡ J2 + J3, t
′
1 ≡ J ′2 + J ′3, t2 ≡

J2 − J3, t
′
2 ≡ J ′2 − J ′3. The lattices of symmetric and anti-symmetric orbitals described

by the Hamiltonians (7.7) and (7.8) are represented in Figs. 7.2 (a) and (b), respectively.

Both models possess chiral and x and y reflection symmetries, and one can be obtained

from the other by applying a C4 rotation.

Doing the same procedure of Fourier-transforming the annihilation and creation

operators as described in Sec. 2.2 of Chapter 2, we obtain the following k-space bulk

Hamiltonians for the symmetric and anti-symmetric lattices

HS =


0 0 t1 + t′1e

−ikx t2 + t′2e
−iky

0 0 t2 + t′2e
iky t1 + t′1e

ikx

t1 + t′1e
ikx t2 + t′2e

−iky 0 0

t2 + t′2e
iky t1 + t′1e

−ikx 0 0

 , (7.9)

and

HA =


0 0 t2 + t′2e

−ikx t1 + t′1e
−iky

0 0 t1 + t′1e
iky t2 + t′2e

ikx

t2 + t′2e
ikx t1 + t′1e

−iky 0 0

t1 + t′1e
iky t2 + t′2e

−ikx 0 0

 , (7.10)

where we have used the basis ordering {A,D,B,C} in order to make manifest the chiral

symmetry of the models.
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Figure 7.2: Sketches of the 2D lattices of (a) symmetric and (b) anti-symmetric combi-

nations of OAM orbitals, which are described respectively by the Hamiltonians (7.7) and

(7.8). Band structures of the (c) symmetric and (d) anti-symmetric lattices. The pa-

rameters of the physical lattice are R = 2.5σ, s = 4σ and s′ = 2σ, for which the coupling

parameters of the symmetric and anti-symmetric lattices are t1/t
′
1 = 0.09, t2/t

′
2 = 0.03,

t′2/t
′
1 = −0.16.

The corresponding energy bands are given by

E1
S = −E4

S = −
√
t21 + t′21 + 2t1t′1 cos(kx)−

√
t22 + t′22 + 2t2t′2 cos(ky), (7.11a)

E2
S = −E3

S = −
√
t21 + t′21 + 2t1t′1 cos(kx) +

√
t22 + t′22 + 2t2t′2 cos(ky), (7.11b)

and

E1
A = −E4

A = −
√
t22 + t′22 + 2t2t′2 cos(kx)−

√
t21 + t′21 + 2t1t′1 cos(ky), (7.12a)

E2
A = −E3

A = −
√
t22 + t′22 + 2t2t′2 cos(kx) +

√
t21 + t′21 + 2t1t′1 cos(ky). (7.12b)
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The band structures (7.11) and (7.12) are gapped at zero energy if the couplings fulfill

either the relation |t1 − t′1| > |t2 + t′2| or |t2 − t′2| > |t1 + t′1|. Owing to the dependence of

the tunneling couplings J2(3) on the radius of the rings and their separation [see Fig. 2.4],

these conditions are fulfilled for a wide range of experimentally reasonable values of R, s

and s′. This is exemplified in Fig. 7.2 (c) and (d), where the gapped band structures of

the symmetric and anti-symmetric lattices that are obtained for the coupling parameters

corresponding to rings of radius R = 2.5σ with intra- and inter-cell separations s = 4σ

and s′ = 2σ are shown.

The Hamiltonians (7.7) and (7.8) differ from the minimal model of a topological

quadrupole insulator proposed in [311] by the fact that the cells of the lattices are not

threaded by a net flux and have distinct staggering patterns for the coupling parameters

along the x and y directions (t1 ↔ t′1 and t2 ↔ t′2). In a sense, this mimics the effect

of a finite magnetic flux, in what concerns the opening of the energy gap around zero

energy. As such, this system can also display second-order topological corner states and

quadrupole moment. In Sec. 7.3, we discuss the topological properties of the model and

show how they manifest themselves through the presence of edge and corner states in

finite systems. Since the lattices of symmetric and anti-symmetric orbitals are equiv-

alent, it is enough to analyse only one of them in order to characterize the full model

with two OAM orbitals per site. In the following, we will focus the discussion on the

lattice of symmetric orbitals. Although it is not necessary to experimentally distinguish

between symmetric and anti-symmetric orbitals in order to observe the properties of

the system that we shall discuss, we note that in other physical platforms supporting

px and py orbitals it is possible to manipulate separately the lattices described by the

models (7.7) and (7.8). In the p-band of a conventional optical lattice [58], this could

be done by using lasers with different intensities along x and y, in such a way that the

gaps between the s and p bands would be different along each direction and the energies

of the px and py orbitals would be shifted. Energy shifting and separate manipulation

of the px and py orbitals has also been demonstrated in an artificial electronic lattice

[336], which is another physical platform where the model studied in this work could be

implemented.

7.3 Topological properties

Let us consider a lattice of symmetric orbitals as the one depicted in Fig. 7.2 (a)

formed by Nx and Ny unit cells along the x and y directions, respectively. In the limit

of zero intra-cell couplings, t1 = t2 = 0, corner and edge states appear naturally in this

lattice. The four corner sites are completely decoupled from the rest of the system, and

therefore they arise as zero-energy states in the spectrum. Moreover, the horizontal edges
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Figure 7.3: (a) Full energy spectrum of a symmetric lattice of Nx ×Ny = 16× 16 unit

cells, with its corresponding bulk states (blue dots), horizontal and vertical edge states

(red dots), and zero-energy corner states (black dots). (b) Density profiles of a vertical

edge state (left plot), a horizontal edge state (middle plot) and a corner state (right plot).

The A, B and C labels mark the position of the states in the spectrum. The parameters

of the physical lattice are R = 2.5σ, s = 4σ and s′ = 2σ, for which the coupling

parameters of the symmetric lattice are t1/t
′
1 = 0.09, t2/t

′
2 = 0.03, t′2/t

′
1 = −0.16.

are composed of Nx − 2 isolated dimers with internal coupling t′1. Thus, the spectrum

also has 2Nx−4 vertical edge states, of which one half have energy t′1 and the other half

−t′1. Similarly, the y edges host 2Ny − 4 horizontal edge states, of which one half have

energy t′2 and the other half −t′2. All of these states have a topological origin, and are

therefore present in the energy spectrum beyond the limit of null intra-cell couplings.

This is illustrated in Fig. 7.3 (a), which shows the spectrum of a lattice of 16× 16 unit

cells formed by rings of radius R = 2.5σ and inter- and intra-cell separations s = 4σ and

s′ = 2σ, for which the coupling parameters fulfill the relations |t′1| > |t1|, |t′2| > |t2| and
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are such that all the gaps are open. While the corner states remain at zero energy, the

horizontal and vertical edge states (labeled according to the direction over which they

decay) change their energies with respect to the t1 = t2 = 0 limit and form dispersive

bands. Examples of the density profiles of the corner modes and vertical and horizontal

edge states are shown in Fig. 7.3 (b), where it can be appreciated that the three different

types of states are exponentially localized.

The topological mechanisms that give rise to the edge and the corner states are

different. On the one hand, the former are weak topological states, i.e., they can be

regarded as a juxtaposition of 1D topological states, and are therefore characterized

by the 2D generalization of the Zak’s phase [337]. On the other hand, the latter are

due to second-order topological effects [311]. Thus, in the next subsections we discuss

separately these two different mechanisms, and we then combine all the results to fully

characterize the topological phase diagram of the model.

7.3.1 Weak topology and edge states

The model under consideration does not constitute a Chern insulator [67, 310], since

it has a vanishing Chern number. This is a consequence of the fact that the model is

invariant under both time-reversal and inversion symmetry. The former implies that

the Berry curvature of each band is an odd function of ~k, Ωn(~k) = −Ωn(−~k), while

the latter imposes that it must be an even function of ~k, Ωn(~k) = Ωn(−~k). In order

to satisfy both constraints simultaneously the Berry curvatures must vanish everywhere

in quasimomentum space, implying that the Chern number is 0 for all energy bands

[153]. Therefore, the presence of edge states in the energy spectrum must be explained

in terms of another topological index.

According to the modern theory of polarization [159], the edge states are related to

the polarization properties of the bulk. In turn, these properties are directly related

to the topology of the model, which can be characterized using the Wilson-loop ap-

proach. This formalism, which was developed in the context of solid state physics, can

be directly adapted to systems of ultracold atoms in optical lattices by identifying the

negative/positive charges with bright/dark peaks in the atomic density distributions.

Let us consider the Bloch functions |uiS(k)〉, which are the eigenvectors associated

with the energy bands Ei
S defined in Eqs. (7.11). From them, we define the Wilson-loop

operators along the x and y directions Wx(ky) and Wy(kx), the matrix elements of which

are given by
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Wi,j
x (ky) =

N−1∏
n=0

〈
uiS(kx + n∆k, ky)

∣∣ujS(kx + (n+ 1)∆k, ky)
〉
, (7.13)

Wi,j
y (kx) =

N−1∏
n=0

〈
uiS(kx, ky + n∆k)

∣∣ujS(kx, ky + (n+ 1)∆k)
〉
, (7.14)

where N is the number of discrete points along each of the directions in k−space and

∆k = 2π
N

. The indices of the matrix elements run in the range i, j = 1, ..., Nocc, where

Nocc is the number of occupied bands. The symmetric lattice described by the Hamil-

tonian (7.7) has two bands below the gap centered around zero energy. Therefore, for

a non-interacting spinless fermionic gas Nocc = 2 at half filling. Since the Wilson-loop

operators are unitary in the thermodynamic limit (where N → ∞ and ∆k → 0), their

eigenvalues are complex numbers of modulus 1. From the Wilson-loop operators, we

define the Wannier Hamiltonians [311]

HWx(ky) = − i

2π
lnWx(ky), (7.15)

HWy(kx) = − i

2π
lnWy(kx), (7.16)

whose eigenvalues and eigenvectors are denoted as νjx(ky), ν
j
y(kx) and |νjx(ky)〉 ,

∣∣νjy(kx)〉
(j = 1, ..., Nocc), respectively. The eigenvalues at each point in k−space are known as

the Wannier centers, and the set of all the Wannier centers form the so-called Wannier

bands [311]. Finally, the x and y bulk polarizations can be computed from the Wannier

bands as

Px =
1

2π

Nocc∑
j=1

ˆ 2π

0

dkyν
j
x(ky) ≡

Nocc∑
j=1

P j
x (mod 1), (7.17)

Py =
1

2π

Nocc∑
j=1

ˆ 2π

0

dkxν
j
y(kx) ≡

Nocc∑
j=1

P j
y (mod 1). (7.18)

In the N →∞ limit, the polarizations can also be computed as P j
x = 1

2π
γjx, P

j
y = 1

2π
γjy,

where γjx and γjy are the 2D generalizations of the Zak’s phase of the band j,

γjx =
i

2π

ˆ
BZ

dk
〈
ujS(k) |∂kx|u

j
S(k)

〉
, (7.19)

γjy =
i

2π

ˆ
BZ

dk
〈
ujS(k)

∣∣∂ky ∣∣ujS(k)
〉
. (7.20)

Our model has reflection symmetry in the x and y directions. In this situation, the 2D

Zak’s phases are quantized to 0 or π, and therefore the total polarizations can only be

0 or 1/2 for both directions.
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For the lattice of symmetric orbitals all the bands have the same values of the 2D

Zak’s phases. Provided that all the gaps are open, these are

(γjx, γ
j
y) =


(0, 0) if t1 > t′1, t2 > t′2
(π, 0) if t1 < t′1, t2 > t′2
(0, π) if t1 > t′1, t2 < t′2
(π, π) if t1 < t′1, t2 < t′2.

(7.21)

Regardless of the values of the coupling parameters, the total polarizations of a non-

interacting spinless fermionic system vanish both at half filling (two lower bands occu-

pied) and unit filling (all bands occupied). However, if the x(y) 2D Zak’s phases of each

band are non-trivial, horizontal (vertical) edge states appear in the energy spectrum of

an open lattice. In Fig. 7.4 we plot the energy spectrum of a lattice of Nx×Ny = 10×10

unit cells formed by rings of radius R = 2.5σ as a function of the inter- and intra-cell

separations, keeping their sum constant at the value s + s′ = 6σ. For s < s′, the cou-

plings fulfill the relations t1 > t′1, t2 > t′2. Thus, the system is in the (γjx, γ
j
y) = (0, 0)

phase and no edge or corner states appear in the spectrum. At s′ = s, the intra- and

inter- cell couplings have equal strength and the middle gap closes at zero energy. For

s > s′, the relations between the couplings are inverted with respect to the case s < s′.

Therefore, the system enters the (γjx, γ
j
y) = (π, π) phase and horizontal and vertical edge

states (red lines) as well as zero-energy corner state (black lines) appear in the spec-

trum. The horizontal edge states lie within the gap centered around zero energy and

are always detached from the bulk. In contrast, the vertical edge states appear within

bulk bands for 3σ < s . 3.8σ. For inter-ring separations larger than s ' 3.8σ, the lower

and upper gaps become larger and most of the vertical edge states lie within these gaps

[as can also be seen in the energy spectrum for s = 4σ in Fig. 7.3(a)].



7.3 Topological properties 153

Figure 7.4: Energy spectrum of an open symmetric lattice of 10× 10 unit cells formed

by rings of radius R = 2.5σ as a function of the inter-ring separation. Blue, red and

black curves correspond to bulk, edge and corner states, respectively.

One-dimensional reduced models

The edge states can also be understood from a different perspective. By Fourier-

transforming the Hamiltonian of the lattice of symmetric orbitals (7.7) along only the x

(y) direction, quasi-one dimensional vertical (horizontal) models with coupling param-

eters that depend on kx (ky) are obtained. The Hamiltonians of these models read

Ĥver
S (kx) =

∑
j

{(
t1 + t′1e

−ikx
) [
âj†S b̂

j
S + ĉj†S d̂

j
S

]
+ t2

[
âj†S ĉ

j
S + b̂j†S d̂

j
S

]
+t′2

[
ĉj†S â

j+1
S + d̂j†S b̂

j+1
S

]}
+ H.c., (7.22)

Ĥhor
S (ky) =

∑
i

{
t1

[
âi†S b̂

i
S + ĉi†S d̂

i
S

]
+ t′1

[
b̂i†S â

i+1
S + d̂i†S ĉ

i+1
S

]
+
(
t2 + t′2e

−iky
) [
âi†S ĉ

i
S + b̂i†S d̂

i
S

]}
+ H.c., (7.23)

where the ôiS and ôjS operators are respectively the y and x Fourier transforms of ôi,jS .

Sketches of the vertical and horizontal 1D models are shown in Fig. 7.5 (a) and (b),
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respectively. At kx, ky = 0,±π, all the couplings in both 1D models become real. At

these points, one can define the basis rotations∣∣Gj
S,±

〉
=

1√
2

(∣∣AjS〉± ∣∣Cj
S

〉)
, (7.24a)∣∣F j

S,±
〉

=
1√
2

(∣∣Bj
S

〉
±
∣∣Dj

S

〉)
, (7.24b)

and ∣∣Gi
S,±

〉
=

1√
2

(∣∣AiS〉± ∣∣Bi
S

〉)
, (7.25a)∣∣F i

S,±
〉

=
1√
2

(∣∣Ci
S

〉
±
∣∣Di

S

〉)
. (7.25b)

After these basis rotations, the non-vanishing matrix elements of the vertical and hor-

izontal Hamiltonians are〈
Gj
S,±

∣∣∣Ĥver
S (kx = 0)

∣∣∣Gj
S,±

〉
= ±(t1 + t′1), (7.26a)〈

F j
S,±

∣∣∣Ĥver
S (kx = 0)

∣∣∣F j
S,±

〉
= ±(t1 + t′1), (7.26b)〈

Gj
S,±

∣∣∣Ĥver
S (kx = 0)

∣∣∣F j
S,±

〉
= t2, (7.26c)〈

Gj
S,±

∣∣∣Ĥver
S (kx = 0)

∣∣∣F j±1
S ,±

〉
= t′2, (7.26d)

and 〈
Gi
S,±

∣∣∣Ĥhor
S (ky = 0)

∣∣∣Gi
S,±

〉
= ±(t2 + t′2), (7.27a)〈

F i
S,±

∣∣∣Ĥhor
S (ky = 0)

∣∣∣F i
S,±

〉
= ±(t2 + t′2), (7.27b)〈

Gi
S,±

∣∣∣Ĥhor
S (ky = 0)

∣∣∣F i
S,±

〉
= t1, (7.27c)〈

Gi
S,±

∣∣∣Ĥhor
S (ky = 0)

∣∣∣F i±1
S ,±

〉
= t′1. (7.27d)

At kx, ky = ±π, the matrix elements are the same except for the diagonal ones, which

become ±(t1−t′1),±(t2−t′2). As illustrated in Fig. 7.5, the fact that only these couplings

are present allows to re-express each of the 1D models as two decoupled Su-Schrieffer-

Heeger (SSH) chains [161] with different on-site potentials, which are described by the

Hamiltonians

Ĥver
S (kx = 0) =

∑
j

V 1
+

[
ĝj†S,+ĝ

j
S,+ + f̂ j†S,+f̂

j
S,+

]
+
{
t2ĝ

j†
S,+f̂

j
S,+ + t′2ĝ

j†
S,+f̂

j+1
S,+ + H.c.

}
+
∑
j

V 1
−

[
ĝj†S,−ĝ

j
S,− + f̂ j†S,−f̂

j
S,−

]
+
{
t2ĝ

j†
S,−f̂

j
S,− + t′2ĝ

j†
S,−f̂

j+1
S,− + H.c.

}
,

(7.28)
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and

Ĥhor
S (kx = 0) =

∑
j

V 2
+

[
ĝi†S,+ĝ

i
S,+ + f̂ i†S,+f̂

i
S,+

]
+
{
t1ĝ

i†
S,+f̂

i
S,+ + t′1ĝ

i†
S,+f̂

i+1
S,+ + H.c.

}
+
∑
i

V 2
−

[
ĝi†S,−ĝ

i
S,− + f̂ i†S,−f̂

i
S,−

]
+
{
t1ĝ

i†
S,−f̂

i
S,− + t′1ĝ

i†
S,−f̂

i+1
S,− + H.c.

}
,

(7.29)

where we have defined the on-site potentials V 1
± ≡ ±(t1 + t′1) and V 2

± ≡ ±(t2 + t′2).

Figure 7.5: (a) Sketch of the vertical 1D model obtained by Fourier-transforming the

symmetric lattice Hamiltonian (7.7) along the x direction (a) and along the y direction

(b). The hopping amplitudes in the directions indicated by black arrows are the com-

plex conjugates of those corresponding to the directions indicated by red arrows. The

decoupled SSH chains that are obtained for kx, ky = 0 are also depicted.

When t2 < t′2 (i.e., when γjy = π), the vertical SSH chains are in the topological

phase and in-gap edge states with energies V 1
± appear in their spectrum. Similarly,

when t1 < t′1 (i.e., when γjx = π) the horizontal SSH chains display edge states with

energies V 2
±. Although the mappings to two decoupled SSH models can only be made for

kx, ky = 0,±π, in the topological phase these edge states also appear for intermediate

values of the quasi-momenta. This is illustrated in Fig. 7.6 (a) and (b), which show

respectively the spectra of the vertical and horizontal 1D reduced models as a function

of the kx and ky quasi-momenta, and where the edge states are marked with red lines.

All the red lines of the spectra of Fig. 7.6 are two-fold degenerate, meaning that each

of the 1D models has four edge states in the topological phase. Since the 1D vertical
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(horizontal) model has been obtained from assuming periodic boundary conditions in the

x(y) direction of the original lattice, its edge states correspond to vertical (horizontal)

edge states in the original 2D model. Therefore, the analysis of the reduced 1D models

serves as a way to characterize the weak topological properties of the full 2D lattice. In

the following section, we will discuss how the analysis of the bands that the edge states

of the 1D models form as function of kx and ky can be used as a way to characterize the

second-order topological properties of the model.

Figure 7.6: Energy spectra of (a) a vertical chain obtained by Fourier-transforming the

Hamiltonian of the 2D symmetric lattice (7.7) along the x direction and (b) a horizontal

chain obtained by Fourier-transforming the Hamiltonian of the 2D symmetric lattice

(7.7) along the y direction. In both cases the chains have 50 unit cells and blue (red)

curves correspond to bulk (edge) states. Each curve of edge states is doubly degenerate.

Note that the bulk continua in (b) are much broader than in (a), where bulk states

are nearly degenerate at each kx. The parameters of the physical lattice are R = 2.5σ,

s = 4σ and s′ = 2σ, for which the coupling parameters of the symmetric lattice are

t1/t
′
1 = 0.09, t2/t

′
2 = 0.03.

7.3.2 Second-order topological effects and corner states

In the (γjx, γ
j
y) = (π, π) phase, a finite lattice has four zero-energy corner states. By

introducing a small perturbation that breaks the chiral symmetry, this degeneracy is

lifted and the states become localized at specific corners. In this situation, at half filling

of the symmetric lattice (which, due to the degeneracy between the symmetric and anti-

symmetric orbitals, corresponds to unit filling of the physical sites of the original model
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Figure 7.7: Atomic density distribution of a symmetric lattice of Nx×Ny = 16×16 unit

cells for a non-interacting spinless fermionic gas at half filling. The parameters of the

physical lattice are R = 2.5σ, s = 4σ and s′ = 2σ, for which the coupling parameters of

the symmetric lattice are t1/t
′
1 = 0.09, t2/t

′
2 = 0.03, t′2/t

′
1 = −0.16. A small perturbation

that breaks the chiral symmetry has been introduced in the numerical calculations.

with two OAM states per ring), only two of the corner states are populated and the

total density distribution has bright and dark peaks at the corners. This is exemplified

in Fig. 7.7, where we plot the total density distribution of a half-filled lattice, defined

as the square modulus of the state

|Ψ〉 =

D/2∑
j=1

|αj, S〉 , (7.30)

whereD = 4NxNy is the total number of sites of the lattice and |αj, S〉 are the eigenstates

of the Hamiltonian of the lattice of symmetric orbitals, Eq. (7.7), ordered from lower

to higher energy. These density peaks are analogous to charge concentrations in an

electronic system, and thus give rise to the atomic analogues of the edge polarizations

and quadrupole moment.

Recently, a successful method to characterize the topological quadrupole moment has

been proposed [311]. In order for a finite topological quadrupole moment to arise, at least

two bands have to be occupied at half filling, as is the case in our model. Nevertheless,

a necessary condition for the procedure to work is that the x and y mirror symmetries

do not commute. In the minimal model for a bulk quadrupole insulator studied in [311],

this non-commutativity between the reflection symmetries is achieved by introducing

a π flux in each plaquette through alternating signs in the vertical couplings. In our

model, however, the inversion symmetries commute and the quadrupole moment can

not be characterized following the recipe presented in [311]. One way to circumvent this
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(γjx, γ
j
y) Horizontal edge states Vertical edge states Corner states qxy

(0, 0) No No No 0

(π, 0) Yes, γxedge = 0 No No 0

(0, π) No Yes, γyedge = 0 No 0

(π, π) Yes, γxedge = π Yes, γyedge = π Yes 1
2

Table 7.1: Possible combinations of values of the 2D Zak’s phases of the bulk and the

Zak’s phases of the bands of edge states of the 1D horizontal and vertical models. The

last two columns indicate the presence of corner states in the 2D lattice under open

boundary conditions in both the x and y directions and the values of the quadrupole

moment defined in (7.31).

difficulty is to redefine the quadrupole moment per unit area as

qxy =
1

2
P̃xP̃y, (7.31)

P̃x(y) =
∑
j∈O

P j
x(y), (7.32)

where O defines the set of occupied bands (O = {1, 2} in our case) and P̃x(P̃y) is the

direct sum of the polarizations along the x(y) direction. Eq. (7.31) implies that the bulk

quadrupole moment is qxy = 1
2

in the (γjx, γ
j
y) = (π, π) phase, that is, when both vertical

and horizontal edge states are present, and qxy = 0 otherwise. This is in accordance with

our numerical calculations and allows to regard qxy as the topological index associated

with the appearance of corner states. The polarization Px(y) at half filling is related to

P̃x(y) as Px(y) = P̃x(y) mod 1. In our model we have Px(y) = 0 for both P̃x(y) = 0 (trivial

phases) and P̃x(y) = 1 (non-trivial phase), that is, the system is not polarized at half

filling in either direction, which is why Px(y) cannot be used in the definition of qxy, since

it is insensitive to transitions between different second-order topological regimes.

Alternatively, the presence of edge polarizations and a finite quadrupole moment can

also be tested by analysing the 1D models that are obtained by Fourier-transforming

the 2D lattice along the x or y direction, Eqs. (7.22) and (7.23), respectively. As we

discussed in Sec. 7.3.1, the horizontal and vertical edge states of the 2D lattice can

also be seen as edge states of these 1D models. If one considers chains with finite sizes

in the y (x) direction and periodic boundaries in the x (y) direction and diagonalizes

them as a function of kx (ky), four bands of edge states (coming in two-fold degenerate

pairs, see Fig. 7.6) are obtained if the original 2D lattice has bands with non-trivial

2D Zak’s phases in the x (y) axis. The degeneracy of the edge bands can be lifted by

introducing a small perturbation that breaks the chiral symmetry, allowing to compute

their Zak’s phases, γxedge and γyedge. A non-trivial Zak’s phase in the edge states indicates

the presence of “edge of edge” states (i.e., corner states) and a finite quadrupole moment
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at half filling for a non-interacting spinless fermionic gas. The topological behavior of

our model as a function of the values of the 2D Zak’s phases in (7.19) and (7.20) is

summarized in Table 7.1. The only topological phase of the bulk in which the edge

bands have non-trivial Zak’s phases is (γjx, γ
j
y) = (π, π). Thus, the simultaneous non-

triviality of the Zak’s phases of edge bands of the 1D models γxedge, γ
y
edge is in one to one

correspondence with the appearance of corner states and a finite quadrupole moment

in an open 2D lattice. More specifically, each pair of symmetric edge bands with a

non-trivial 1D Zak’s phase has two zero-energy corner-states associated with it. Each

of these states is shared by a vertical and a horizontal edge band. Therefore, the four

corner states that appear at zero energy are associated with the four occupied bands of

edge states at half filling, of which two correspond to the 1D horizontal model and two

to the 1D vertical model.

Symmetry protection of the corner states

Before concluding, let us briefly discuss the symmetries that are responsible for

the topological protection of the corner states. While the quantization of the bulk

polarizations Px, Py and the quadrupole moment qxy is ensured by the x and y mirror

symmetries, it is the chiral symmetry of ĤS that protects the corner states. This can be

justified by taking into account the fact that the spectrum of a Hamiltonian is symmetric

around zero energy in the presence of chiral symmetry, implying that the zero-energy

corner modes are eigenstates of the chiral operator [160]. Therefore, the corner states

are not affected by perturbations that preserve the chiral symmetry.

In Fig. 7.8 (a) we illustrate two different kinds of perturbations. On the one hand, we

consider an on-site potential V acting only on the corners of the lattice, which preserves

the x and y reflection symmetries but breaks the chiral symmetry. On the other hand,

we substitute in two of the corners the couplings of the model by a different one named

t3. This perturbation has an opposite effect to V , i.e., it breaks the reflection symmetries

but preserves the chiral one. In Fig. 7.8 (b) we plot the spectrum of a finite lattice as

a function of V leaving the corner couplings unchanged. As V increases, the energy

of the corner modes (black line) increases until they merge into the bulk. Fig. 7.8 (c)

shows the spectrum of the same lattice as in Fig. 7.8 (b) but for V = 0 and increasing t3
until it reaches the value t3 = t′1, which is the largest coupling of the symmetric lattice.

Since this perturbation preserves the chiral symmetry, all corner states, including the

two localized around the corners with perturbed edge couplings t3, remain locked at

zero energy regardless of the value of t3.
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Figure 7.8: (a) Sketch of the different types of perturbations described in the main text:

on-site potential V at the corners, which preserves the reflection symmetries but not the

chiral one, and modified t3 coupling in two of the corners, which has an effect opposite

to V . (b) Spectrum of a lattice of 10× 10 unit cells as a function of V leaving the

corner couplings unchanged. (c) Spectrum of the same lattice as in (b) as a function

of t3 keeping V = 0. The parameters of the physical lattice are R = 2.5σ, s = 4σ and

s′ = 2σ, for which the coupling parameters of the symmetric lattice are t1/t
′
1 = 0.09,

t2/t
′
2 = 0.03, t′2/t

′
1 = −0.16.

7.4 Conclusions

In this Chapter, we have shown that ultracold atoms carrying OAM in arrays of

cylindrically symmetric potentials can be used to implement a second-order topological

insulator. Specifically, we have considered a 2D square lattice with unequal intra- and

inter-cell spacing between nearest-neighbour traps. This system displays both weak and
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second-order topological properties. Owing to the bulk-boundary correspondence, the

former manifest themselves in a finite system through the appearance of horizontal and

vertical edge states, while the latter are signalled by the presence of zero-energy corner

modes and a quantized quadrupole moment.

The topological properties of the system can be more directly analysed by perform-

ing a change of basis that decouples the original model with two states per site into two

independent lattices with one px− or py−like orbital per site, formed respectively by

symmetric and anti-symmetric combinations of the OAM states. In each of these sub-

systems, the presence of 1D edge states in the spectrum of an open lattice is correlated

with the value of the 2D Zak’s phase, which is computed in the bulk. Alternatively,

these edge states can be understood in terms of the topological properties of the two

1D reduced models that are obtained by imposing periodic boundary conditions along

one of the directions while keeping the other open.

We have shown that for experimentally realistic parameters the system can display

zero-energy corner modes associated with the non-trivial second-order topological phase.

An expression for the quantized quadrupole moment, involving a quantity defined as the

direct sum of the polarizations of the occupied bands, has been identified as the relevant

second-order topological index. A complementary approach to the topological charac-

terization of the corner states, related to an analysis of the Zak’s phases of the bands of

edge states that appear in the 1D reduced models as a function of the quasimomentum,

has been shown to be consistent with the former.

In an experimental implementation, the edge and corner states could be prepared by

first populating only the corresponding sites of the lattice in the limit of zero intra-cell

couplings and then adiabatically turning them on, as done in [100] to obtain the edge

states of the SSH model in a system of ultracold atoms. The half-filled state, in which

the quantized quadrupole moment is manifested through the density distribution, could

be realized using a gas of spin-polarized fermions formed by as many atoms as sites

has the lattice, in such a way that the states with energy below the Fermi level would

be consecutively occupied. In order to image these states, a quantum gas microscope,

which provides real-space images with single-site resolution [50–53], could be employed.

We note that the topological edge states of the SSH model have been imaged in systems

of ultracold atoms in optical lattices both in momentum [100] and real [212] space.





CHAPTER 8

Conclusions and outlook

The aim of this Chapter is to summarize the most important conclusions of the work

presented in this dissertation and to provide an outlook of future lines of research.

This thesis has revolved around the investigation of different systems with the com-

mon characteristic of being formed by ultracold atoms carrying Orbital Angular Mo-

mentum (OAM) in cylindrically symmetric potentials. Our interest has been mainly

focused on three different aspects of OAM states: their potential use for sensing pur-

poses, their applications as quantum simulators of models of quantum magnetism, and

the possibilities that they offer for realizing topological phases of matter.

Before entering into the details of our research, in Chapter 2 we have introduced

the main models and tools that we have used throughout the next Chapters. We have

started by reviewing the mean-field description of Bose–Einstein condensates (BECs)

provided by the Gross–Pitaevskii equation (GPE) and the full quantum treatment of

ultracold atoms in optical lattices through the Hubbard model. Then, we have discussed

basic concepts related to the characterization of topological phases of matter. Finally,

we have analysed the physics of a single ultracold atom carrying OAM in a single trap

and in multiple side-coupled potentials. In this last part, we have shown that the

tunneling dynamics of ultracold atoms in OAM states is governed by hopping amplitudes

which are accompanied by complex phase factors that can be adjusted by modifying the

geometrical arrangement of the traps.

Prior to delving into the applications that these complex tunnellings have, in Chap-

ter 3 we have considered a BEC trapped in a single ring potential. The system, which

163
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we have described in the context of the two-dimensional GPE, is initially prepared in

a superposition of counter-rotating OAM l = 1 modes with unequal populations. By

directly integrating the GPE, we have found that the density profile of this state ex-

hibits a rotating minimal line. We have derived a simple expression that relates the

frequency of this rotation to the strength of the atom-atom interactions, showing an

excellent agreement with the GPE results in the weakly-interacting limit. Taking profit

of this relation, we have proposed protocols to use the system as a device for sens-

ing two-body interactions, magnetic fields and rotations. Finally, we have provided a

method to prepare the initial imbalanced superposition of OAM modes based on the

adiabatic deformation of the ring trap and we have checked its feasibility by means of

numerical simulations. This work could be continued in several different directions. On

the one hand, the performance of the sensing device could be further analysed in terms

of the Fisher information [132]. It would also be interesting to study the dynamics of the

OAM modes when the system is prepared in a superposition of higher OAM modes, in

a regime of stronger atom-atom interactions, and for the case of a two-component BEC

trapped in a ring potential [338, 339]. Another possibility is to investigate the non-linear

tunneling dynamics [340] of BECs carrying OAM in configurations of side-coupled traps

[341].

In the following Chapters, we have focused our attention on different configurations

of side-coupled cylindrically symmetric traps where ultracold atoms are loaded in OAM

states. In such scenarios, the complex amplitudes involved in the tunneling dynamics

may give rise to topological effects and open up interesting possibilities for the simulation

of relevant spin−1/2 models.

First, we have studied in Chapter 4 a quasi-one dimensional lattice with a diamond-

chain shape in the non-interacting limit. Making use of consecutive analytical mappings,

we have shown that the complex nature of the hopping amplitudes yields an effective

π flux through the plaquettes of the chain. As a consequence of this, the energy bands

have a topologically non-trivial structure that persists everywhere in parameter space, as

evidenced by the presence of robust edge states that do not vanish after crossing the gap

closing points. The topological characterization has been carried out with techniques

specially adapted to lattices where the inversion axis is not at the center of the unit

cell. Alternatively, the Wilzcek-Zee formulation can be employed to describe the model

as a square-root topological insulator. We have also made use of the mappings to

reveal the shape of the different types of eigenstates of the system. Furthermore, we

have demonstrated that a proper tuning of the tunneling parameters may lead to an

energy spectrum composed entirely of flat bands. In this limit, the system exhibits

Aharonov-Bohm caging, a destructive interference effect that prevents the propagation

of wave packets through the lattice. In future studies, the fate of the Aharonov-Bohm

caging effect with OAM states could be investigated both in the context of mean-field



165

interactions described by the GPE and of a full quantum treatment with the Bose-

Hubbard model in a many-body scenario [307, 308]. Other possible continuations of

this work include examining the topological properties of ultracold atoms carrying OAM

in different geometries, considering interacting systems with higher fillings, or studying

non-equilibrium situations involving time-dependent calculations.

The effect of interactions in a full quantum treatment of atoms carrying OAM has

been introduced in Chapter 5, where we have employed a Bose-Hubbard model to analyse

a family of systems consisting of arrays of cylindrically symmetric potentials with a

flexible geometry filled with strongly correlated bosons. We have focused on the Mott

insulator regime at unit filling, for which one can establish a correspondence between

OAM and spin−1/2 states. By means of second-order perturbation theory, we have

computed explicitly the dependence of the effective spin−1/2 couplings on the shape

of the lattice. This dependence is rooted in the variation of the phases accompanying

the tunneling amplitudes that occurs when the geometry of the system is changed. We

have then demonstrated that by properly arranging the traps, the system can realize

different spin models of interest in condensed matter physics related to a general XY Z

Heisenberg with or without external fields. We have also shown how by tuning the

geometry of the lattice one can adjust the relative strength of the effective couplings

and explore different quantum phases. Finally, we have discussed techniques to retrieve

the state of each individual spin and we have analysed the collisional stability of the

system, reaching the conclusion that the use of ring potentials extends the lifetime of

the Mott state. A direct extension of this work would be the derivation of an effective

model for the case of fermionic atoms. Moreover, different scenarios leading to models

describing different physics could be investigated. For instance, one could consider a

strongly interacting system with a filling slightly below unity, where additional first-order

terms would be needed to be taken into account, or a commensurable Mott insulator

state with more atoms per site.

In Chapter 6 we have revisited the diamond chain of Chapter 4 adding the effect of

attractive interactions. In particular, we have considered a lattice filled with two weakly

interacting bosons in the limit where all the bands are flat. In this situation the single-

particle spectrum is formed by highly degenerate localized states and the two-body

physics is solely determined by the interactions. We have focused on the lowest-energy

sector of the spectrum, which is formed by two-body configurations in which the two

bosons occupy states belonging to the two lowest degenerate flat bands. Considering

that the interaction strength can be tuned separately in the different sites of the lattice,

we have derived effective single-particle models that describe the two subspaces of states

with lowest self-energy. These effective models have a topological phase for which edge

states appear in the middle of the energy gaps. These two-boson edge states are in

turn composed of confined single-particle modes, and thus exhibit two simultaneous
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localization effects. By means of exact diagonalization calculations, we have checked

the accuracy of our analytical predictions and we have shown that the edge states are

robust against deviations from the flat band and weakly interacting limits.

Differently from the preceding Chapters, in Chapter 7 we have investigated a gen-

uinely two-dimensional setup consisting of a square lattice with unequal intra- and

inter-cell separations filled with non-interacting ultracold atoms carrying OAM. We have

shown that this system constitutes an example of a higher-order topological insulator,

displaying both first- and second-order topological phases. The former are signalled in

the spectrum by the presence of one-dimensional states exponentially localized at the

edges of the lattice, whereas the second-order topology is correlated with the appearance

of zero-energy states strongly confined in the corners. By means of numerical calcula-

tions with realistic coupling parameters, we have demonstrated that the second-order

topological effects can be observed in a wide range of experimentally feasible conditions.

In addition, we have analysed the symmetry protection of the corner states and we have

proposed an alternative way to predict their presence based on the computation of the

Zak’s phases of the bands of first-order edge states. As a final remark, we note that

the models describing both this system and the diamond chain without interactions of

Chapter 4 could be realized with other platforms supporting non-interacting OAM states

or p orbitals, such as artificial electronic lattices [336], photonic waveguides [204, 342]

or polariton resonators, where the edge states of the Su-Schrieffer-Heeger model have

already been observed [208].
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Letters 96, 030401 (2006).
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(2018).

[302] M. Tovmasyan, S. Peotta, L. Liang, P. Törmä, and S. D. Huber, Physical Review
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[333] M. Serra-Garcia, R. Süsstrunk, and S. D. Huber, Physical Review B 99, 020304

(2019).

[334] F. Schindler, Z. Wang, M. G. Vergniory, A. M. Cook, A. Murani, S. Sengupta,

A. Y. Kasumov, R. Deblock, S. Jeon, I. Drozdov, H. Bouchiat, S. Guéron, A. Yaz-
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