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A book is never finished, only abandoned.

Rewriting means refusing to capitulate in front

of the overwhelming imperfection.

No hay obras acabadas, sólo obras abandonadas.

Reescribir es negarse a capitular

ante la avasalladora imperfeccion.
(J. E. Pacheco citing Paul Valery)
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Abstract

The main target of this research is to develop a numerical model for debris flow

simulations. As it is known, in general, this kind of flows occur in steeped mountain

slopes. When dealing with the complete 3D physic system of equations that model

the phenomenon this singular characteristic has not special effect.

To simulate large events (typical scales in real world) is not possible to use the

complete equations (three dimensional, variable density, non-hydrotactic. . . ) so a

spacial dimension reduction is necessary combined with several simplifications to re-

duce the complexity of the system, along the present text previous works references

are introduced to justify the selected simplifying hypothesis.

During the mathematical manipulation of the equations, performed in order to

reduce the spacial dimension (3D → 2D), the real complexity of the problem emerges,

important consequences on the coordinate system appear. This means that, to obtain

a simpler version of the physical model of the phenomenon, complex mathematical

operations are needed.

In the approach presented in this work the complexity of the problem is reduced

in to manners:

• Applying direct physical hypothesis on the flow characteristics.

• Applying mathematical hypothesis.

An example of these physical simplifications could be the monophasic fluid hy-

pothesis. An example of the mathematical simplifications could be the fact of the
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curvature terms neglecting.

In this work the coordinate system selected for the model is named Proposed Co-

ordinates System (PCS), this coordinates system is based on the work of Bouchut and

Westdickenberg (2004) and Berger and Carey (1998a). The metric characteristics of

the system are calculated and important conclusions are extracted from the analy-

sis of the curvature terms. A link exist between the curvatures and the Christoffel

symbols, if the curvatures are discarded also the Christoffel symbols should be dis-

carded for model consistency. In the model governing differential equations, the use

of curvilinear coordinates (PCS) provokes the existence of metric source terms defined

as a Christoffel symbols functions. So, neglecting these terms the equations become

simplified.

Strictly talking the model is valid for steep but slowly varying slopes, where the

curvatures are very small, although in the real test cases used for validating the model,

the curvatures does not fit this condition. The rough approximation to the debris flow

process through simplified physics used in the model probably hides the low accu-

racy of the model in strongly curved areas. Many other different coordinates system

choices exist in the scientific literature, in this work some of them are commented

and analyzed.

Along the development of the model different problems appear and different strate-

gies and methodologies are proposed in order to overcome them. The first important

problem is related to the physics of the process, the debris flows tend to naturally

develop flow pulses, the flowing mixture stops and later is remobilized. The model

includes what is called ”stop and go” mechanism to capture this behavior.

The second problem is related with the boundary conditions, standard debris flow

hydrograph includes sharp gradients which can become flow shocks, in this work a new

methodology is proposed to introduce the boundary conditions in a way that shocks

are correctly solved also in the boundary of the computational domain, contrary to

the standard method of characteristics (Henderson, 1966; Abbott, 1966).
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The general family of the numerical methods selected to solve the resulting system

is the Finite Volume Method (FVM) using the Riemann solver. This approach is

extensively used in the debris flow simulation framework, so its selection is justified. In

order to fit the special requirements of the PCS coordinates system the methodology

developed by Rossmanith et al. (2004) and Rossmanith (2006) is used. This approach

solves the problem of the non-orthogonal coordinates in the FVM framework.

To validate the code analytical, experimental and real test cases are selected. The

model validation process is partial because the lack in analytical solutions, specially

for complex geometries.
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En primer lugar quiero agradecer al Profesor Allen Bateman su soporte en todas las

cuestiones profesionales y personales que han surgido a lo largo de este largo periodo

de trabajo conjunto. Indudablemente los principales responsables de la realización de

este trabajo y de todos los que se realizan dentro de UPC-GITS son él y su empuje.
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Introduction

Normally the numerical modeling starts from a known physical phenomenon described

by equations and establish a method to obtain reasonably accurate approaches to the

analytical solution. In most of the cases a simplification of the mathematical system

is necessary because the complexity of the problem, an example of this process is

the solution of hydraulic equations; the general problem is defined by the Navier-

Stokes system, due to the computational requirement of this equations in most of the

cases a simplified version is used, for example the Reynolds averaged Navier-Stokes

(RANS) (Pope, 2000), the Saint Venant equations (Barre de Saint Venant, 1871) or

the Bernoulli equations (Clancy, 1975).

The case of the debris flow is different, debris flows are heterogeneous mixtures

of sediment air and water, covering a wide range of natural processes, depending

on the characteristics and concentration of sediment and water. A great amount of

uncertainness exist in the phenomenon, there is no agreement in the detailed behavior

of the flow and the name “debris flow” incorporates remarkably different processes.

Any classification of debris flow includes this uncertainness (Coussot and Meunier,

1996; Takahashi, 1991). As a result, there does not exist a common physical model to

simulate this kind of events, every model is developed under certain hypothesis and

is adapted to solve some scenarios. The main classification parameters considered for

the models are:

1. Density: One of the most important challenges in debris flow modeling is the

simulation of the density evolution along the flow. A debris flow is a mixture of

solids and liquids, depending on the concentration, grain size distribution and

1
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solids composition we obtain different densities. Al these parameters change

along the flow evolution due to the entrainment (Benda and Cundy, 1990; Hungr

and Evans, 2004a), water infiltration (Iverson, 1997) and wood incorporation

(May, 1998). Recent approaches consider the water and sediment concentration

evolution using a biphasic description of the flow (Papa et al., 2004; Fraccarollo

and Capart, 2002; Cao et al., 2004; Spinewine and Zech, 2002; Brufau et al.,

2000) but, in general, these models are useful to simulate the transition from

water flow to debris flow in certain cases, for example dambreak problems.

More general models continue using constant density approach (Iverson and

Denlinger, 2001; Pitman et al., 2003; McDougall and Hungr, 2004; Rickenmann,

Laigle, McArdel and Hbl, 2006; Pudasaini et al., 2005; Pudasaini and Hutter,

2007).

2. Dimension: For a constant density flow, in general, the conservation laws equa-

tions system includes at least four conservations laws, three of them express

the momentum conservation (Newton second law) applied in spatial three di-

mensions, and the last equation expresses the mass conservation. For most

of the problems it is not possible to solve the full system and some kind of

simplification should be done. The first approach is to eliminate vertical or nor-

mal momentum conservation equations, then a bidimensional model emerges

(Iverson and Denlinger, 2001; Pitman et al., 2003; Pudasaini and Hutter, 2003;

Pudasaini et al., 2005), if two momentum equations are eliminated we obtain a

one dimensional model results (Pudasaini and Hutter, 2007).

3. Pore pressure: The debris flows are characterized as an heterogeneous mixtures,

involving multiphasic flows, containing fluids and solids. The complete analysis

of these processes includes the momentum transfer between the different phases

(Anderson and Jackson, 1967; Iverson and Denlinger, 2001). In the debris flow

there appears a solid fraction pressure and a liquid pressure, called the “pore

pressure”. Including the pore pressure improves the accuracy in debris flow

simulation (Iverson and Denlinger, 2001; Pudasaini et al., 2005).
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4. Rheology: The rheology is related to the constitutive equation of the mixture. If

a multiphasic model is selected every fraction has its own constitutive equation,

more or less accurate. If a monophasic model is selected the problem is more

complex, the mixture should be considered as a continuum medium with a

homogenous rheology, discarding any interation between different phases. The

challenge is to obtain this characteristic rheology.

The model developed in this document has the following characteristics:

• Constant density.

• Bidimensional.

• No pore pressure considered.

• Different rheologies are considered.

• Steep surfaces.

• Low curvature surfaces.

Several efforts have been devoted in order to define similar characteristics models

(Iverson et al., 2004; Pudasaini et al., 2005; Quecedo and Pastor, 2003; Bouchut et al.,

2003; Mangeney et al., 2007; Pitman et al., 2003). A couple of reasons motivate

the present work as an alternative to the previous ones. The model developed in

this document was planned as an engineering tool, also useful for research targets.

Thus, one of the main requirements was an easy input data definition and simple

configuration parameters.

Normally flexible and useful model means reduction in problem complexity and

multiple approximations. A large number of fluid dynamic problems are usually

solved using this kind of approximations. The ideal flow hypothesis is used for airfoils

simulation or Boussinesq hypotheses is used for buoyancy-driven flows. To avoid any
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loss of important physics in the debris flow description the simplifications should be

selected carefully and physically reasonable.

Dealing with debris flow normally means to deal with steep and slope topographies,

so the metrics in the model became one of the crucial points. How to introduce such

metrics and its relation to the topography has been one of the keystones of the model

presented here. In this sense the requirement was the use of simple DEM’s (Digital

Elevation Model) to define the topography. Several models are rigorously developed

from the mathematical point of view (Pudasaini and Hutter, 2003; Pudasaini et al.,

2005; Quecedo and Pastor, 2003) but this reduces the flexibility in the model used,

because they are adapted to a very specific scenario.

The constitutive equations are the second challenge in the model, in Iverson et al.

(2004) a complete description of the rheology is included, but a combined finite vol-

ume/finite element model is used for the stresses tensor. Such complexity goes beyond

the scope of the model presented here.

The topography and metrics analysis developed in this thesis follows the works

of Bouchut and Westdickenberg (2004) in the coordinate system adopted and Berger

and Carey (1998a) in the equation system simplification. The point of view adopted

in the rheologies question is classical (Rickenmann et al., 2003), considering the basal

friction as the main acting force on the flow.

After the model definition (equation system set) the next step is the discretiza-

tion. The FVM (Finite Volume Method) is adopted, in particular the Godunov

(1959) approach, based on the Riemann solvers (Toro, 1999; Roe, 1981; Harten, 1983;

Harten et al., 1983). This choice is typical in the context of hyperbolic equations and

lot of literature exists on the topic (LeVeque, 2002; Toro et al., 1994; Toro, 2001),

also for sediment-water mixtures (Brufau et al., 2000; Fraccarollo and Capart, 2002;

Fraccarollo et al., 2003; Ferreira et al., 2003).

As was commented previously in this text, the main target of this work is to obtain

a model useful for engineering calculations and research. Following these ideas some
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special features should be implemented in the model, first of all a new methodology

to introduce hydrographs as boundary conditions. This methodology should be able

to deal with shock waves (LeVeque, 2002) as boundary conditions. The standard

procedure for boundary conditions in hyperbolic equations is the MOC (Method Of

Characteristics) (Abbott, 1966) and is not able to deal with discontinuous solutions.

The second feature is the inclusion of internal boundary conditions in the calcu-

lation domain. Internal boundary conditions, in the context of SWE (Shallow Water

Equations), are any kind of control structures, weirs, gates, orifices, culverts, etc. To

be able to introduce these kind of elements in the hyperbolic equations framework it’s

necessary to define a new accuracy criterium, since the Courant one is not useful for

internal boundary conditions where the time doesn’t appear in the equations (weir

discharge equation, orifice flow equation, etc.).

Another element of central importance in debris flow is the entrainment (Egashira

et al., 2001; Rickenmann et al., 2003). The initial volume of a debris flow is usually

increased along the flow path. The basal erosion that triggers this phenomenon

is known as entrainment. In one of the real cases presented in this document (Pal

catchment) the initial volume was 500 m3 and the final deposition was around 5000m3.

This means that the ratio between initiation and deposition volumes could be typically

10 (Hungr and Evans, 2004a).

To try to include this phenomenon in the model a new approach is proposed

following the ideas presented in Fraccarollo and Capart (2002). A real test case is

included to validate this approach. Although the entrainment is considered as one

of the main problems in debris flow, it has not yet been used to classify the models

in the beginning of this section. This was due to the fact that almost none of them

includes this feature.

To validate the complete model several analytical and experimental test cases are

used. The problem concerning these validation cases is the lack in the existence of

completely bidimensional debris flow analytical solution. After the model validation

three different real cases are used to test the model.
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Collecting all the previously commented ideas the corresponding chapter structure

is:

1 Coordinate System Definition: Description of the reference coordinates system

adopted for the model, comparison to other alternatives. Description of the

metric elements necessary for the model.

2 Equations System Definition: Development from the conservation laws to the

selected equations system for the model.

3 Numerical Methods: Discretization of the equations using the FVM and Go-

dunov method.

4 Boundary conditions: A new approach to introduce the boundary conditions,

able to deal with discontinuous flows.

5 Accuracy Condition For Internal Boundary Conditions Alternative to Courant

stability criterium for internal boundary conditions.

6 Special Features of the Debris Flow Modeling: First for the entrainment cal-

culation a new approach is described. In the second place a method to adapt

internal friction angle to the static or dynamic value is presented. The third

feature is the Stop and Go mechanism used to simulate flow remobilizing.

7 Validation Test Cases: Analytical and experimental test cases.

8 Real Cases: Three different debris flow real test cases.



Chapter 1

Coordinate System Definition

In this chapter we will discuss the selection of a coordinate system that is useful

for steep slope flow computation. Different proposals from several authors will be

commented upon and finally, a curvilinear, local, non-orthogonal coordinates will

be proposed (Pudasaini and Hutter, 2007). All the metrics related to these coordi-

nates will be analyzed. In the proposed coordinates a link between curvatures and

Christoffel symbols will be found.

Some general characteristics of the steep slope terrain surfaces will be analyzed to

ensure the applicability of the proposed computations, these characteristics will be

related to the smoothness of the surface.

To demonstrate the qualities of the proposed coordinate system an example will

carried on. First a torus will be exposed, later steep slopes will be introduced achiev-

ing a steep slope high curvature surface. To evidence the reactions between curvature

and metrics a new surface will be introduced, distinguished by a high slope and low

curvature.

1.1 The Coordinate System Challenge

The debris flow phenomenon belongs to the multiphysics problems. This means that

different branches of the physics converges in the definition of the problem. In the

7
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present case, the fluid mechanics and solid mechanics are included, among others.

Normally in this kind of problems it is possible to write the complete equation system

but, as many other fluid problems, is not possible to numerically attack the solution.

So it’s necessary to reduce the complexity of the system in order to model it. One of

the typical techniques used in fluids to simplify the problem is the dimension reducing.

This procedure is based on decreasing the freedom degrees number of the problem,

using less independent variables, for example, it’s possible to find symmetry axes, free

jets problems (Pope, 2000) could be solved using axisymmetric coordinate systems,

with two dimensions instead of three.

Another typical method to suppress one dimension is to integrate along it, the

shallow water equations (Whitman, 1974) is a classical example. Before this inte-

gration process is carried on, it’s necessary to define some hypothesis on the system,

that guarantees the dependance of the removable coordinate on the remain ones. To

formulate this hypothesis is necessary to accomplish some conditions, and most of

them are related with the coordinate system definition.

For example, in the commented free jet case, if we want to use axisymmetric co-

ordinates is necessary to have a longitudinal coordinate coincident with the jet axis.

In the debris flow case, the main constrain in axes selection is related to the hydro-

static pressure gradient, the integration coordinate should be parallel to the pressure

gradient, otherwise the equations are not easily simplified (Pudasaini et al., 2005;

Wang et al., 2004; Iverson and Denlinger, 2001; Bouchut et al., 2003; Sivakumaran

and Dressler, 1989; Quecedo and Pastor, 2003), although other approaches have been

proposed (Denlinger and Iverson, 2004).

In the classical shallow water framework the integration coordinate is the vertical

direction, this is a consequence of the mild slopes of the terrain. In the steep slope

flows the hydrostatic pressure gradient is supposed to be in the terrain surface normal

direction (Iverson and Denlinger, 2001; Bouchut and Westdickenberg, 2004; Hungr,

1995; Pitman et al., 2003; Bouchut et al., 2003). The classification as steep slope flows

does not depend only in the terrain surface geometric slopes, it depends also in the
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flow condition. In Figure 1.1 is possible to see a case where coexist the steep slope

flow and the mild slope flow in the same topography.

α
θ

α

θ

a)

b)

Figure 1.1: Representation of a steep slope stream flowing into lake, along the upper
part of the stream a steep slope flow is found. In the lower part the reach bed is
underwater.

In Figure 1.1 the stream slope angle is defined as α and the angle defined between

the vertical and the hydrostatic pressure gradient is θ. In the figure, mild slope and

steep slope situations are found, in a) the slope angle α and pressure gradient θ are

presented and, as is shown, both are roughly equal and θ perpendicular to the free

surface. This is due to the fact that the free surface flow and the terrain surface are

almost parallel.

In b) different situation is shown, the free surface and bottom are not parallel,

the angle θ is near vertical, and the angle α is still steep. The integration coordinate

should be defined by θ not by α. As a consequence, the integration direction depends

on the flow situation. Following these ideas the integration coordinate evolves along

the simulation depending on the flow conditions.

It does not seem reasonable to continuously change the coordinates, as a function

of the flow state, so, to simplify the problem a constant integration direction is defined.

1. In shallow water models: (situation b) in Figure 1.1) the vertical direction is

selected, it’s based upon the hypothesis that the free surface and the streamlines

are almost horizontal, so vertical accelerations could be neglected.
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2. In steep slope flows: (situation a) in Figure 1.1) the direction normal to terrain

surface is selected as an integration direction.

Is not easy to establish where to use these different approaches, mainly because

the choice depends on the result of the simulation. It is responsibility of the modeler

to analyze the results in other to check the selected model hypothesis.

Recall that, as it was exposed, the mild slopes or shallow water conditions, are

not only related to topography, in the typical prismatic crossection found in a stream,

Figure 1.2, is possible to see in a) that the crossection bank slope αt is high, but the

longitudinal stream slope (αl) shown in b) is small. So in the typical shallow water

cases we also find steep geometric slopes.

αt
x

y

z

z

y

x

αl

a)

b)

Figure 1.2: Typical small slope channel where the shallow water hypothesis are valid,
but the transversal slopes αt are high.

Following the exposed ideas, from the theoretical point of view, it is possible to

define an algorithm to capture the right integration direction at every space point and

time, but it will be computationally too expensive. So, as it was explained, in general,

in step slope flows, the local terrain normal will be used as integration direction.

As a first conclusion of this chapter, the integration direction used will be the

terrain surface normal.
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1.2 Terrain Surface Smoothness

To compute local coordinates is not a trivial process, some advanced differential

geometry are necessary (Misner et al., 1973; do Carmo, 1976). All the techniques

developed in this chapter need to require the regularity of the topographic surface.

At least all the second derivatives are required to compute the metric elements, first

of all the terrain surface will be defined:

S (X, Y ) ∈ C
2
∀ (X,Y ) ∈ [Xmin, Xmax] × [Ymin, Ymax] (1.2.1)

where Ω = [Xmin, Xmax] × [Ymin, Ymax] is the problem domain expressed in the

global cartesian coordinates X, Y . In real world cases, the coordinates X, Y could be

understood as the projected UTM coordinates (Universal Transverse Merkator), these

coordinates are planar in front of the geographic coordinates (latitude, longitude),

that are curvilinear. In most of the recent debris flow simulations (International

Forum on Landslide Disaster Management 2007 Hong Kong), the terrain topography

is introduced as a DEM (Digital Elevation Model), this means a square uniform

distributed grid, so the terrain surface is not continuous, it’s formed by discrete

values. The model equations will include terrain surface first and second derivative,

to use a coherent terrain description we need a continuous and smooth surface. So, if

the terrain surface description is introduced by a DEM (e.g. in the model described

here), a methodology to convert it in a continuous surface it’s necessary.

It’s common to use directly the DEM as a computational mesh, the governing

equations will be discretizated based on it. Some components of the equations, as the

gradients, should be computed at the cell centers (known values in the DEM) and

many others at the cell interfaces (unknown values in the DEM). This means that

interpolated values for the terrain should be used, so, again, the defined interpolation

is a central question.
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1.2.1 Global Interpolation Approach

To achieve this surface smooth characteristic is not trivial. In one-dimensional prob-

lems it is possible to use any interpolation technique that fits the points and belongs

to C
2. For example a cubic spline interpolation to compute the slopes and curvatures,

but in multi dimensional problems it is not enough to use function defined by the

product of the one-dimensional interpolations along the different axes, is necessary to

implement a method like the RST (Regularized Spline Tension) defined by Mitasova

and Mitas (1993). In the RST method the the target of the proposed interpolation

is to fit two conditions:

The first condition is to guarantee that the interpolation fits the grid values

Zint(Xi, Yi) = Zi where Zint is the terrain surface interpolated value and Xi, Yi, Zi are

the coordinates of the grid points.

The second condition is related to the smoothness of the interpolation and is

expressed as the minimization of Eint, computed as the integral of the first, second

and third derivatives:

Eint =

∫

Ω

((
∂Zint

∂X

)2

+

(
∂Zint

∂Y

)2
)

dXdY +

∫

Ω

((
∂

2
Zint

∂X2

)2

+ 2

(
∂

2
Zint

∂X∂Y

)2

+

(
∂

2
Zint

∂Y 2

)2
)

dXdY +

∫

Ω

((
∂

3
Zint

∂X3

)2

+ 3

(
∂

3
Zint

∂X2∂Y

)2

+ 3

(
∂

3
Zint

∂X∂Y 2

)2

+

(
∂

3
Zint

∂Y 3

)2
)

dXdY .

(1.2.2)

These conditions are fulfilled with the interpolation:

Zint (X) = a +
N∑

j=1

λjR (X,Xj)

R (X,Xj) = −

{

ln

[(
|X - Xj|

2

)2
]

+ E1

(
|X - Xj|

2

)2

+ CE

}

.

(1.2.3)
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Where E1 is the exponential integral function, CE is the Euler constant (0.577. . . )

and X = (X, Y ). The computation of first and second derivatives is straight. As is

shown in Equation 1.2.3, the RST is a global interpolation, so, to solve it, it is

necessary to solve a linear equations system, being the number of unknowns λj equal

to the total number of points in the grid N , and being the size of the matrix N ×N .

Of course, for large grids it is almost impossible to solve the system, although being

linear equations interpolation. If the topography is modified during the calculations,

for example, to include basal erosion/deposition effects, the system should be solved

once again.

So, although the proposed interpolation is simple and very useful for the purposes

of this chapter, only in limited cases is an interesting alternative, because the inter-

polation computation takes more time than the hydrodynamic computation. This

solution is included as a standard curvature calculator inside the extended software

“GNU GRASS GIS”.

1.2.2 Local Interpolation Approach

Discarding the use of this exact solution for computation of first and second derivatives

of the terrain surfaces, a simpler solution is used (Travis et al., 1975), this solution

is useful for topographies available as DEM. The surface interpolation is based on a

local fitting function:

Zint (X, Y ) = aX
2 + bY

2 + cXY + dX + eY + f. (1.2.4)

As is clear, there are six different fitting parameters. So, in order to compute the

value of these adjustment coefficients, it is enough to use the local D8 neighborhood,

also known as Moore neighborhood, Figure 1.3.

The local point where the interpolation will be carried on is Z5, in this approach,

the fitting function could not accomplish Zint(Xi, Yi) = Zi in all the local cells (D8
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Z1 Z2 Z3

Z4 Z5 Z6

Z8
Z7 Z9

Figure 1.3: D8 Neighborhood.

domain), because we have 9 cell values and the interpolation function has 6 freedom

degrees. It is possible to solve the optimization problem defined in 1.2.4 using the

minimum squares approximation, and the obtained results for the D8 neighborhood

are:

a =
Z1 + Z3 + Z4 − Z6 − Z7 − Z9

6∆X2
−

Z2 + Z5 − Z8

3∆X2
,

b =
Z1 + Z2 + Z3 − Z7 − Z8 − Z9

6∆Y 2
−

Z4 + Z5 − Z6

3∆Y 2
,

c =
Z3 + Z7 − Z1 − Z9

4∆X∆Y
,

d =
Z3 + Z6 + Z9 − Z1 − Z4 − Z7

6∆X
,

e =
Z1 + Z2 + Z3 − Z7 − Z8 − Z9

6∆Y
,

f =
2 (Z2 + Z4 + Z6 − Z8) − (Z1 + Z3 + Z7 − Z9) + 5Z5

9
,

(1.2.5)

where ∆X, ∆Y are the cell size in X,Y directions. Now the locally interpolated

surface is defined and also the associated derivatives. Although we have an unique

value for the derivatives at the D8 center (Z5), the weakness of the approach emerges

if we try to compute the interpolated value at the interface between Z5 and Z2,

we could use the interpolation function centered at Z5, but also is possible to use

the interpolation function centered at Z2, the values obtained in both cases will be

different. So it is clear that the weakness of this approach is related to the lack of

uniqueness, compared to the global approach.
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First and second derivatives

In the following chapters the values of the terrain surface slopes and curvatures will be

used. To compute its values the terrain height function h (X, Y ) will be introduced.

In this section Zint was defined as a local interpolated function centered in Z5, but

for metrics calculations the continuous and smooth h function will be considered.

In the model the first and second derivatives of h are calculated centered on the

computational grid nodes, so the local interpolated function Zint could be used:

Zint(X, Y )
∣
∣
∣
(Xi,Yj)

≡ h(X, Y )
∣
∣
∣
(Xi,Yj)

(1.2.6)

Computing the first and the second derivatives is trivial, for example the obtained

values for the slopes in the center (Z5, X ≡ 0, Y ≡ 0) are:

∂h

∂X

∣
∣
∣
∣
Z5

= hX = d =
Z3 + Z6 + Z9 − Z1 − Z4 − Z7

6∆X
,

∂h

∂Y

∣
∣
∣
∣
Z5

= hY = e =
Z1 + Z2 + Z3 − Z7 − Z8 − Z9

6∆Y
.

(1.2.7)

If the weighting matrix is drawn, we obtain for the ∂h/∂X the matrix (Figure 1.4).

- 0

0

0

X∆X∆

- X∆

- X∆

X∆

X∆

Figure 1.4: D8 X first derivative weighting.

Also, the computation of h (X, Y ) second derivatives, used in metrics, is straight:

∂
2
h

∂2X
= hXX = a,

∂
2
h

∂2Y
= hY Y = b,

∂
2
h

∂X∂Y
= hXY = c. (1.2.8)

In Table 1.1 a summary table is presented:
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Derivative Value
hX d
hY e

hXX a
hY Y b
hXY c

Table 1.1: First and second derivatives of h (X,Y ) using the local interpolation ap-
proach.

1.3 Definition of Local Coordinate System

In this section, different coordinate systems will be described. Previously, to introduce

the model equations, a reference system was used. A suitable coordinate system

simplifies the obtained equation system.

1.3.1 Coordinate Systems Used In Debris Flow Simulations

For a complete review of the coordinate system problem see Pudasaini and Hutter

(2007). One of the first attempts to define coordinate system useful for this prob-

lem was proposed by Savage and Hutter (1989, 1991), in the original proposal the

equations were adequate for plane flow down inclined planes (Figure 1.5, a) case), the

x, y, z axes define the local coordinates.

This model was improved to compute straight channel with a slope varying bed

(Greve et al., 1994) in Figure 1.5, in the b) case, the improvement is shown, and finally

the model was modified to include transverse curvatures in the basal topography

(Gray et al., 1999; Pudasaini and Hutter, 2007), in Figure 1.5, in c) case, a general

example is shown.

As is clear in Figure 1.5, in the a), b) cases the integration coordinate (z) is normal

to the terrain surface. In the c) case the integration coordinate is normal just in the

channel axe. A big effort has been carried on to improve the model for dealing with

curved and twisted channels (Pudasaini and Hutter, 2003; Pudasaini et al., 2005).
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Figure 1.5: Three different approaches of the Savage and Hutter (1989) model (image
extracted from Gray et al. (1999)).

In Figure 1.6 the coordinate system is shown. In this case a Frenet Frame is used

(do Carmo, 1976), using the thalweg tangent as x direction, curvature as normal

z and the binormal as the third coordinate direction y. In that model the metric

curvatures of the longitudinal and lateral axes are considered. A complete review of

the different approaches to Savage-Hutter approach could be found in Wang et al.

(2004); Hutter et al. (2005); Pudasaini and Hutter (2007).

Another different approach is proposed by Quecedo and Pastor (2003), in that

work a natural topography is considered, and the coordinate system considered is the

Principal Directions Coordinate System. This coordinate system is defined using the

direction of the lines of curvature and the surface normal. As is known the lines of
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Figure 1.6: Coordinate system used by Pudasaini et al. (2005) (image extracted from
the reference).

curvature are defined by the eigenvectors of the curvature matrix (do Carmo, 1976),

and in a natural topography, using a DEM, is possible to approximate this directions

using numerical methods (Hameiri and Shimshoni, 2003).

In contrast with the Pudasaini et al. (2005) approach, where the Frenet Trihedron

was used, in the principal directions approach the coordinate system defined is called

Darboux Frame, and is also a classical approach. Anyway, in the Quecedo and Pastor

(2003) work, the principal directions are considered as constant along the proposed

test case, not depending on the local topography. A similar approach, but considering

the evolution of the principal direction could be found in Berger and Carey (1998a)

and in Sivakumaran and Dressler (1989).

One of the main reasons to use the principal directions as coordinates is that

the directions are orthogonal and also the metrics are simplified because curvature

tensor becomes a diagonal matrix. On the other hand, these curvilinear coordinates

are strongly dependent on the local topography details, so small modifications on the

terrain surface motive large distortions in coordinate directions.

The minimum curvature direction could be rotated notoriously due to the pres-

ence on a small topography sink or hill, these coordinate directions sudden evolution

provoke the formation of large valued terms in the curvilinear differential equations
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systems. An example of principal directions coordinate system will be shown in Sec-

tion 1.6.

Figure 1.7: Coordinate system used by Iverson and Denlinger (2001) (image extracted
from the reference).

Deserve study also, the proposal for coordinate systems in debris flow founded

in Iverson and Denlinger (2001), using again a longitudinal curved coordinate and a

transversal constant direction. This approach for the coordinate system definition is

similar to the one proposed by Greve et al. (1994). In Figure 1.7 it is possible to see

the defined coordinate system, again the local coordinates are defined as x, y, z, only

a curved x is considered, and the curvature radius expressed as rx.

The main limitation of these kind of approaches is the lack of versatility, the range

of application its far from natural topographies.

In dealing with general geometries, one of the most successful recent approaches

could be found in Bouchut and Westdickenberg (2004), also used in Bouchut et al.

(2003); Mangeney et al. (2007), in this approach a general coordinate system is de-

fined, with a wide range of applicability. The coordinate system proposed in this

work could be considered as a case of the general coordinate proposed by Bouchut
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Figure 1.8: Coordinate system defined by Bouchut and Westdickenberg (2004) (image
extracted from the reference).

and Westdickenberg (2004). In Figure 1.8 the coordinate system is presented, but is

a general description valid for a wide range of proposals. An interesting analysis of

Bouchut et al. (2003) could be found in Keller (2003).

Another completely different approach was carried out by Denlinger and Iverson

(2004); Iverson et al. (2004), a general cartesian coordinates systems was proposed,

avoiding the introduction of the complex metrics inherent to the curvilinear coordi-

nates, all the conservation system will be defined in the general cartesian coordinates,

with considerations related to the fact of the shallowness of the flow.

In Figure 1.9 the coordinate system is shown, the x, y, z coordinate system is not

local but global, so its the Cartesian Coordinate System, in our notation should be pre-

sented as X, Y, Z. One of the main particularities of the coordinate system proposed

in Denlinger and Iverson (2004) is related to the fact that the integration direction

is the cartesian Z, so unlike the previous cases where the integration direction was

always the terrain surface normal z.
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Figure 1.9: General coordinate system defined by Denlinger and Iverson (2004), (im-
age extracted from the reference).

1.3.2 Proposed Coordinate System (PCS)

As was commented previously, in the present work a particular case of the Bouchut

et al. (2003) general coordinate system is used. The coordinates are local and are

defined through the projection of the cartesian coordinates X, Y in the terrain surface.

This projection is carried by using the Z direction.

In this manner a local coordinates x, y are obtained, and, as will be commented

later, these local coordinates are not orthogonal, but at least are easily obtained. The

third local coordinate z is obtained as the normal to the local space defined by x, y.

In Figure 1.10 the PCS is shown. The terrain surface S is defined in cartesian

coordinates X,Y, Z. The coordinate direction X is projected over the surface S along

the direction Z, the result of this projection is the curve s1. Moreover the coordinate

Y is projected over the surface defining the curve s2.

Both surface curves s1, s2, are obtained projecting the global cartesian coordinates

X,Y . These curves, also, intersect in the surface point p (X, Y ). In this point (p ∈ S)

a local curvilinear coordinates x, y are defined, x is the tangent to curve s1 and y is

the tangent to curve s2.
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Figure 1.10: Proposed coordinate system.

So, both local tangent curves x, y and the normal direction z form the local coor-

dinate system (PCS). As was commented previously, most of the times, in real cases

the terrain topography is provided as an structured topographic grid (DEM), a kind

of uniformly distributed matrix were terrain height value is found. The strength of

the PCS is that follows the row/colum structure of a DEM.

In Figure 1.11 the DEM is presented over the Cartesian axes. The X, Y axis

define the rows and columns of the topographic grid defined by the Zi values. In PCS

when the first and the second derivatives need to be calculated, the local interpolation

approach defined in Section 1.2.2 could be used, the Table 1.1 summarizes the main

values.

One of the targets of the present model is to be simple and easy to use as an

engineering tool, it also includes the way how the topography is used. This chapter

analyzes the features of this simple coordinate system named PCS.
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Figure 1.11: Relation between DEM’s and PCS.

1.4 PCS Metrics

The differential geometry analyzes and describes all the elements necessary to define

coordinate systems. In this section the classical approach will be followed (do Carmo,

1976; Misner et al., 1973), different steps will be carried out:

• Tangent space

• First fundamental form

• Second fundamental form

• Curvature tensor

• Christoffel symbols

The reason to finalize at Christoffel symbols step will be clarified in the next

chapter.
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1.4.1 Tangent Space

The terrain surface is considered as a regular surface existing in three dimensional

space (S ∈ R
3). The smoothness of this surface has been analyzed in Section 1.2,

also an isomorphism is considered between the geographic coordinates (longitude,

latitude, UTM. . . ) and the terrain surface height, this means that at every geographic

coordinate only one elevation is found. Under these requirements a parametrization

is defined following the conditions established in Section 1.4:

X : U ⊂ R
2
→ S, X (u, v) = (X(u, v), Y (u, v), Z(u, v)) (u, v) ∈ U (1.4.1)

As has been defined previously X,Y, Z are the Cartesian coordinates, the curvi-

linear coordinates u, v are defined, in our proposed system, as u = X and v = Y .

Obtaining finally the parametrization:

X = (X,Y, h (X, Y )) , h (X, Y ) ∈ C
2 (U) (1.4.2)

Where h (X, Y ) is the terrain height function. At every point p ∈ S, a tangent

space Tp is defined by the subspace generated by the vectors:

Xu ≡ XX =

(

1, 0,
∂h

∂X

)

, Xv ≡ XY =

(

0, 1,
∂h

∂Y

)

(1.4.3)

Henceforth the partial derivatives of h will be defined using subscripts, for example

∂h

∂X
≡ hX . As was defined in Section 1.2, the vectors XX ,XY define the directions of

the tangents to the local curvilinear coordinates x, y. The third direction z is obtained

as the normal to the tangent space.

1.4.2 First Fundamental Form Ip

The first fundamental form Ip is related to the dot product of the curvilinear co-

ordinates tangents, it defines the covariant metric tensor gij, and also the inverse o
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contravariant metric tensor g
ij = (gij)

−1, in the present case the components of this

tensor in PCS are:

g11 = E = 〈XX |XX〉 =
(
1 + h

2

X

)

g12 = F = 〈XX |XY 〉 = hXhY

g21 = F = 〈XY |XX〉 = hY hX

g22 = G = 〈XY |XY 〉 =
(
1 + h

2

Y

)
.

(1.4.4)

As is obvious the tensor is symmetric, also an important question should be noted,

F is not zero, this means that the defined coordinate system is not orthogonal, this

fact has an essential importance in the future development of the equations system.

The components can be grouped in the tensor:

¯̄g =

(

(1 + h
2

X
) hXhY

hXhY (1 + h
2

Y
)

)

. (1.4.5)

The angle between both coordinates could be computed as:

cos α =
〈XX |XY 〉

|XX | |XY |

=
F

√

EG
=

hXhY

(1 + h
2

Y
+ h

2

X
+ h

2

X
h

2

Y
)
1/2

(1.4.6)

Where the metric norm |·| is defined as the square root of the dot product 〈·〉. So,

the system will be non orthogonal if hXhY is non zero; i.e. when either one or both

hX , hY are non zero. The area element is defined using the cross product as:

|XX × XY | =
√

EG − F 2 =
√

1 + h
2

X
+ h

2

Y
(1.4.7)

1.4.3 Second Fundamental Form IIp

The second fundamental form IIp is related to the second derivatives of the curvilinear

coordinates, as a starting point we need to compute them:
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XXX = (0, 0, hXX)

XY Y = (0, 0, hY Y )

XXY = (0, 0, hXY ) .

(1.4.8)

The second step is to compute the vector normal to the tangent space:

N =
XX × XY

|XX × XY |

,

XX × XY = (−hX ,−hY , 1)







N =
(−hX ,−hY , 1)

(1 + h
2

X
+ h

2

Y
)
1/2

. (1.4.9)

The second fundamental form it is obtained by quantifying the evolution of the

normal vector N along the tangent space:

e = 〈N|XXX〉 = −〈NX |XX〉 =
hXX

(1 + h
2

X
+ h

2

Y
)
1/2

,

f = 〈N|XXY 〉 = −〈NX |XY 〉 =
hXY

(1 + h
2

X
+ h

2

Y
)
1/2

,

g = 〈N|XY Y 〉 = −〈NY |XY 〉 =
hY Y

(1 + h
2

X
+ h

2

Y
)
1/2

.

(1.4.10)

1.4.4 Curvature Tensor

Now with all these values it is possible to compute the curvature tensor aij, which

defines the normal vector (N ≡ z) at certain point p ∈ S (Np) evolution along a

curve, dNp : Tp(S) → Tp(S), being and self-adjoint operator (do Carmo, 1976), so

there’s an orthonormal basis where the tensor becomes diagonal.

dN

(

u
′

v
′

)

=

(

a11 a12

a21 a22

)(

u
′

v
′

)

(1.4.11)

Where (u′
, v

′) are the curve tangent components in coordinates (u, v). A relation

exist linking the tensor aij and the first and second fundamental forms (do Carmo,

1976):
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−

(

e f

f g

)

=

(

a11 a12

a21 a22

)(

E F

F G

)

(1.4.12)

When the system 1.4.12 is solved, the results obtained in Equation 1.4.4,1.4.10

could be applied (do Carmo, 1976):

a11 =
fF − eG

EG − F 2
=

hXY hXhY − hXX (1 + h
2

Y
)

(1 + h
2

X
+ h

2

Y
)
3/2

a12 =
gF − fG

EG − F 2
=

hY Y hXhY − hXY (1 + h
2

Y
)

(1 + h
2

X
+ h

2

Y
)
3/2

a12 =
eF − fE

EG − F 2
=

hXXhXhY − hXY (1 + h
2

X
)

(1 + h
2

X
+ h

2

Y
)
3/2

a22 =
fF − gE

EG − F 2
=

hXY hXhY − hY Y (1 + h
2

X
)

(1 + h
2

X
+ h

2

Y
)
3/2

(1.4.13)

The curvature tensor has a great importance in this work, it has been one of

the most relevant terms not only in the steep slope but the general flow modeling

research and discussion (Bouchut and Westdickenberg, 2004; Denlinger and Iverson,

2004; Mangeney et al., 2007; Pudasaini et al., 2005; Berger and Carey, 1998a). Several

main geometric parameters are obtained from this tensor, (e.g. Gaussian Curvature

KG, Mean Curvature KM, Principal curvatures k1, k2).

The eigenvalues (k1, k2) of the curvature tensor (aij) define the directions of the

principal curvatures (eigenvectors), being both directions orthogonal, and, also, defin-

ing a reference coordinate system known as principal directions. This system will be

used in next sections, is also important to recall the fact that the curvatures in any

directions are always between (k1, k2), so principal curvatures are extreme values.

There are two principal values related to curvature, one of them is the principal

curvatures product, known as Gaussian curvature (KG = k1k2), also equal to the

determinant of the curvature tensor (KG = det(aij)). The second important value is

the mean curvature, defined as KM = 1/2(k1 + k2), also obtained as curvature tensor

trace. As is known, both elements, the determinant and the trace, are invariant, so
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are not depending on the selected coordinate system, are surface intrinsic values. The

values obtained for both curvatures in the PCS are:

KG =
hXXhY Y − h

2

XY

(1 + h
2

X
+ h

2

Y
)
2

(1.4.14)

KM =
hXX (1 + h

2

Y
) − 2hXY hXhY + hY Y (1 + h

2

X
)

(1 + h
2

X
+ h

2

Y
)
3/2

(1.4.15)

Observing these equations it is clear that a surface with large slopes (first deriva-

tive) and small slope variation, result in a very low values for both curvatures, Gaus-

sian and mean. And also we could relate both curvatures with the principal curva-

tures:

k1 = KM +
√

KM
2 − KG,

k2 = KM −

√

KM
2 − KG.

(1.4.16)

So, a low value of Gaussian and mean curvature results in a low value of principal

curvatures and viceversa (KG,K
M
≃ 0 ⇔ k1, k2 ≃ 0). As a conclusion of this section

it’s clear that small second derivatives and large first derivatives imply low curvature

values. This describes a surface where the slopes evolve slowly, defining a smooth

plane, equivalent to a mountain slope.

1.4.5 Christoffel Symbols

The last step in this section is to compute the second kind Christoffel symbols (Γk

ij
),

this tensor is symmetric in the lower subindexes. There are several ways to compute

the values of this tensor (do Carmo, 1976; Misner et al., 1973), for example using the

metric tensor (Section 1.4.2):

Γk

ij
=

1

2
g

αk

(
∂gαi

∂xj
+

∂gαj

∂xi
−

∂gij

∂xα

)

(1.4.17)
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Being g
αk the inverse of the metric tensor gαk. For a better understanding of

the obtained values, another approach will be used, relating the evolution of the

curvilinear coordinates to the tangent space. The starting point will be the three

compatibility equations:

XXX = ΓX

XX
XX + ΓY

XX
XY − eN,

XXY = ΓX

XY
XX + ΓY

XY
XY − fN,

XY Y = ΓX

Y Y
XX + ΓY

Y Y
XY − gN.

(1.4.18)

The next step is to compute the derivatives of the tangent space vectors:

XXX =







0

0

hXX







, XXY =







0

0

hXY







, XY Y =







0

0

hXY







. (1.4.19)

Then the the values obtained for XX ,XY in the Section 1.4.1 and the values for

e, f, g,N obtained in Section 1.4.3, are substituted, becoming the first equation:







0

0

hXX







= ΓX

XX







1

0

hX







+ ΓY

XX







0

1

hY







− hXX







−hx

−hY

1







1

(1 + h
2

X
+ h

2

Y
)

(1.4.20)

And operating:

ΓX

XX
=

hXXhX

(1 + h
2

X
+ h

2

Y
)
, ΓY

XX
=

hXXhY

(1 + h
2

X
+ h

2

Y
)
. (1.4.21)

The same operation are carried out with the second equation:







0

0

hXY







= ΓX

XY







1

0

hX







+ ΓY

XY







0

1

hY







− hXY







−hX

−hY

1







1

(1 + h
2

X
+ h

2

Y
)
.

(1.4.22)
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And also the results are obtained:

ΓX

XY
=

hXY hX

(1 + h
2

X
+ h

2

Y
)
, ΓY

XY
=

hXY hY

(1 + h
2

X
+ h

2

Y
)
. (1.4.23)

And finally with the third equation:







0

0

hY Y







= ΓX

Y Y







1

0

hX







+ ΓY

Y Y







0

1

hY







− hY Y







−hX

−hY

1







1

(1 + h
2

X
+ h

2

Y
)
.

(1.4.24)

With the results:

ΓX

Y Y
=

hY Y hX

(1 + h
2

X
+ h

2

Y
)
, ΓY

Y Y
=

hY Y hY

(1 + h
2

X
+ h

2

Y
)
. (1.4.25)

Grouping all the tensor together is possible to observe an interesting phenomenon:

ΓX

XX
=

hXXhX

(1 + h
2

X
+ h

2

Y
)
, ΓY

XX
=

hXXhY

(1 + h
2

X
+ h

2

Y
)
, ΓX

XY
=

hXY hX

(1 + h
2

X
+ h

2

Y
)
,

ΓY

XY
=

hXY hY

(1 + h
2

X
+ h

2

Y
)
, ΓX

Y Y
=

hY Y hX

(1 + h
2

X
+ h

2

Y
)
, ΓY

Y Y
=

hY Y hY

(1 + h
2

X
+ h

2

Y
)
.

(1.4.26)

Again we can conclude that small second derivatives and large first derivatives of

h(XY ) give very low Christoffel symbols, as was found in the curvatures section. The

components could be ordered defining matrix:

ΓX =





hXXhx

(1+h
2
X+h

2
Y )

hXY hx

(1+h
2
X+h

2
Y )

hXY hx

(1+h
2
X+h

2
Y )

hY Y hx

(1+h
2
X+h

2
Y )



 ,

ΓY =





hXXhy

(1+h
2
X+h

2
Y )

hXY hy

(1+h
2
X+h

2
Y )

hXY hy

(1+h
2
X+h

2
Y )

hY Y hy

(1+h
2
X+h

2
Y )



 .

(1.4.27)

This result will be very useful in the next chapter when the terms of the equations

will be discussed.



31

1.5 Existing Relation Between Curvatures and Christof-

fel Symbols in PCS

Two results will be presented linking in the PCS (Section 1.4) the curvatures to the

Christoffel symbols. The target of this proposition is to demonstrate that, under

certain assumptions related to the steepness, when curvatures are discarded, also

Christoffel symbols could be discarded. The second result will be presented demon-

strating that small curvatures imply small Christoffel symbols, while being the slopes

(first derivatives) not small.

Proposition 1.5.1. In the PCS, if the values of the Gaussian Curvature KG and

Mean Curvature KM vanish, being the terrain slopes not zero, then the second deriva-

tives of the terrain surface (hXX , hY Y , hXY ) are zero, and, therefore, Christoffel sym-

bols are also zero:

(KG,KM = 0) ⇔ (hXX , hY Y , hXY = 0) ⇔
(
Γk

ij
= 0

)
(1.5.1)

Proof. The second implication is obvious, just looking the the Christoffel symbols

values in our PCS (Equation 1.4.26) it is clear that when the first derivatives are not

zero, the values of the second derivatives and Christoffel symbols are strongly linked.

The first implication is more complex. The left going sense is simple, just substi-

tuting in Equation 1.4.14 and in Equation 1.4.15:

(hXX , hY Y , hXY = 0) ⇒ (KG, KM = 0) (1.5.2)

The right going sense should be demonstrated, first both curvature definitions

have to be recalled:
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KG =
hXXhY Y − h

2

XY

(1 + h
2

X
+ h

2

Y
)
2

KM =
hXX (1 + h

2

Y
) − 2hXY hXhY + hY Y (1 + h

2

X
)

(1 + h
2

X
+ h

2

Y
)
3/2

(1.5.3)

To obtain zero values the numerator should be zero, so:







0 = hXXhY Y − h
2

XY

0 = hXX

(
1 + h

2

Y

)
− 2hXY hXhY + hY Y

(
1 + h

2

X

)
(1.5.4)

And operating with the first term:

h
2

XY
= hXXhY Y → hXY = ±

√

hXXhY Y (1.5.5)

The product
√

hXXhY Y is real, so there are two options, both are positive or both

derivatives are negative.

1. Both are positive:

First Equation 1.5.5 is substituted in the second equation of Equation 1.5.4,

obtaining:

0 = hXX

(
1 + h

2

Y

)
∓ 2

√

hXXhY Y hXhY + hY Y

(
1 + h

2

X

)
(1.5.6)

And operating:

0 = hXX + hXXh
2

Y
∓ 2

√

hXXhY Y hXhY + hY Y + hY Y h
2

X
;

0 = (hXX + hY Y ) + hXXh
2

Y
∓ 2

√

hXXhY Y hXhY + hY Y h
2

X
;

0 = (hXX + hY Y ) +
(

hY

√

hXX ∓ hX

√

hY Y

)2

;

(1.5.7)
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And due to the values of second derivatives:

0 = (hXX + hY Y )
︸ ︷︷ ︸

>0

+
(

hY

√

hXX ∓ hX

√

hY Y

)2

︸ ︷︷ ︸

>0

(1.5.8)

The unique solution for this equation is hXX , hY Y = 0, and using Equation 1.5.5

the result is hXY = 0.

2. Both are negative (thanks to A. Herrero):

The starting point of the demonstration is similar:

0 = hXX + hXXh
2

Y
∓ 2

√

hXXhY Y hXhY + hY Y + hY Y h
2

X
;

0 = (hXX + hY Y )
︸ ︷︷ ︸

60

+ hXXh
2

Y
+ hY Y h

2

X
∓ 2

√

hXXhY Y hXhY
︸ ︷︷ ︸

>0

;
(1.5.9)

Let’s begin moving the positive part to the left side of the equality:

−hXXh
2

Y
− hY Y h

2

X
± 2

√

hXXhY Y hXhY = hXX + hY Y (1.5.10)

Then introduce negative signs in the square root:

−hXXh
2

Y
− hY Y h

2

X
± 2

√

(−hXX) (−hY Y )hXhY = hXX + hY Y (1.5.11)

And finally rearranging:

(√

−hXXh
2

Y
±

√

−hY Y h
2

X

)2

= hXX + hY Y 6 0 (1.5.12)

As a consequence, hXX , hY Y , hXY = 0, using 1.5.9.
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So as an important conclusion of this section, if the curvatures are discarded (flat

area), also the Christoffel symbols should be discarded.

Here the second result will be introduced, linking the magnitude of curvatures to

the magnitude of Christoffel symbols.

Proposition 1.5.2. In the PCS, being the terrain slopes not negligible, if the values

of the terrain height second derivatives hij ∀i, j ∈ {X, Y } are much smaller than the

first derivatives hi∀i ∈ {X,Y } then values of the Gaussian Curvature KG and Mean

Curvature KM are close to zero, and Christoffel symbols are also close to zero:

(KG,KM ≃ 0) ⇔ hij ≪ hk ∀i, j, k ∈ {X, Y } ⇔ Γk

ij
≃ 0 ∀i, j, k ∈ {X, Y } (1.5.13)

Proof. The proof is similar to the previous one, the first step is to modify the Christof-

fel symbols in order to express the dependence into the terrain surface derivatives:

Γ1

22
= hY Y

(1+h
2
X+h

2
Y )

1/2
hX

(1+h
2
X+h

2
Y )

1/2 , Γ2

22
= hY Y

(1+h
2
X+h

2
Y )

1/2
hY

(1+h
2
X+h

2
Y )

1/2 ,

Γ1

11
= hXX

(1+h
2
X+h

2
Y )

1/2
hX

(1+h
2
X+h

2
Y )

1/2 , Γ2

11
= hXX

(1+h
2
X+h

2
Y )

1/2
hY

(1+h
2
X+h

2
Y )

1/2 ,

Γ1

12
= hXY

(1+h
2
X+h

2
Y )

1/2
hX

(1+h
2
X+h

2
Y )

1/2 , Γ2

12
= hXY

(1+h
2
X+h

2
Y )

1/2
hY

(1+h
2
X+h

2
Y )

1/2 .

(1.5.14)

Also the curvatures will presented in the same manner:

K = hXX

(1+h
2
X+h

2
Y )

hY Y

(1+h
2
X+h

2
Y )

−

(

hXY

(1+h
2
X+h

2
Y )

)2

,

KM = hXX

(1+h
2
X+h

2
Y )

(1+h
2
Y )

(1+h
2
X+h

2
Y )

1/2 −
hXY

(1+h
2
X+h

2
Y )

2hXhY

(1+h
2
X+h

2
Y )

1/2

+ hY Y

(1+h
2
X+h

2
Y )

(1+h
2
X)

(1+h
2
X+h

2
Y )

1/2 .

(1.5.15)
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The second implication of Equation1.5.16 is obvious, just looking the the Christof-

fel symbols values in our PCS (Equation 1.5.14) it is clear that when the first deriva-

tives are far from zero (≫ 0), then the ratio between second and first derivatives

should be close to zero.

The first implication of Equation1.5.16 is more complex. The left going sense is

simple, just substituting in Equation 1.5.15:

(KG, KM ≃ 0) ⇐ hij ≪ hk ∀i, j, k ∈ {X, Y } . (1.5.16)

For the right going sense the process used in the Proposition1.5.1 will be followed.

The Equation1.5.4 becomes:







0 ≃

hXXhY Y − h
2

XY

(1 + h
2

X
+ h

2

Y
)
2

0 ≃

hXX (1 + h
2

Y
) − 2hXY hXhY + hY Y (1 + h

2

X
)

(1 + h
2

X
+ h

2

Y
)
3/2

(1.5.17)

The analysis carried out in second derivative terms hXX , hY Y sign becomes:

1. Both are positive:

The unique solution is

hXX

(1 + h
2

X
+ h

2

Y
)
1/2

≃ 0,
hY Y

(1 + h
2

X
+ h

2

Y
)
1/2

≃ 0. (1.5.18)

And as a consequence of the first part of Equation1.5.17:

hXY

(1 + h
2

X
+ h

2

Y
)
1/2

≃ 0. (1.5.19)
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As was commented in the proposition this result is obtained with the constrain-

ment in the first derivatives:

hX

(1 + h
2

X
+ h

2

Y
)
≫ 0,

hY

(1 + h
2

X
+ h

2

Y
)
≫ 0. (1.5.20)

2. Both are negative:

The unique solution is

hXX

(1 + h
2

X
+ h

2

Y
)
1/2

≃ 0,
hY Y

(1 + h
2

X
+ h

2

Y
)
1/2

≃ 0,
hXY

(1 + h
2

X
+ h

2

Y
)
1/2

≃ 0. (1.5.21)

The Proposition1.5.1 is useful for steep but not curved slopes, the requirements in

terms of slope in non zero first derivatives. The Proposition1.5.2 is useful for steep,

slow varying slopes, the requirements in terms of slope is non small first derivatives.

In general, for a mountain surface the curvature could not be neglected, it is a very

rough approximation.

1.6 Application Examples, Revolution Surfaces

In this section there are two examples, the first one is a real case application of all the

differential elements introduced in this chapter. A simple value for the terrain height

function h (X,Y ) will be provided and all the analytic equations obtained along the

chapter for metric elements will be used. In the second part of the section a steep

slope geometric example will be used, but considering two cases, low curvature and

high curvature.
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As it is clear, the first example is used to validate the analytic equations obtained

in the chapter, but this example is not adapted to debris flow conditions due to

the low slope. The purpose of the second example is to consider a “steep slope”

cases. An slope modified torus will constitute the “high curvature” scenario and a

new revolution shape will be the “low curvature” scenario. In this second case, the

Gaussian Curvatures will be reduced, the Chrisstoffel symbols obtained with the PCS

also will be reduced, as was concluded in the previous section. Nevertheless, using the

Principal Curvatures Coordinate system, the results are quite different, the value of

the different Chrisstoffel symbols does not decrease as it does in PCS. The vanishing

linking between curvatures and the Christoffel symbols is a feature of the

PCS, and it is not a general characteristic for coordinate systems.

The aim of these cases is to demonstrate that in the PCS if the curvatures are

negligible the Christoffel symbols too.

1.6.1 First Example: Torus

In the first part of this section, a torus geometry will be considered, all the metrics

of this element will be computed, using two different coordinate systems. First the

one proposed in this chapter, and the second will be the lines of curvature coordinate

system, so using principal directions as coordinates. The target of this step is to

show the application of the metrics to a real case. All the differential elements of this

surface are computed and plotted in Appendix A, an small part of this elements is

included in this section for text comprehension.

Torus Metrics in PCS

Here the metric elements will be applied on the torus geometry, the curvatures and

Chrisstoffel symbols will be computed. The equations used for torus parametrization

are:
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





x = X

y = Y

z = h(X, Y ) = −

√

r
2

2
−

(
r1 −

√

X2 + Y 2
)2

, (1.6.1)

where r1, r2 are the bend radius and the crossection shape radius. In Figure 1.12

the typical torus shape is shown, as was commented the surface reproduces a stream

bed only the bottom of the torus is considered.

x

y

z

r2

r1

Figure 1.12: Torus geometry, with r1 = 0.9 and r2 = 0.2.

Following Equation 1.4.14 is possible to compute the Gauss Curvature for the

torus using the PCS:

KG = −

−X
2 + r1

√

X2 + Y 2
− Y

2

r2 (X2 + Y 2)
. (1.6.2)

Also in Equation 1.4.15 the Mean Curvature is found, and the results for the torus

using the PCS are:

KM = -
1

2

−5r1X
2 + 2X2

√

X2 + Y 2
− 5r1Y

2

√

r2 (X2 + Y 2)
(
r2 − r

2

1
+ 2r1

√

X2 + Y 2
− X2

− Y 2
) ·

−2r2

√

X2 + Y 2
− r

3

1
+ 4r2

1

√

X2 + Y 2 + r1r2 + 2Y 2
√

X2 + Y 2

√

r2 (X2 + Y 2)
(
r2 − r

2

1
+ 2r1

√

X2 + Y 2
− X2

− Y 2
) .

(1.6.3)
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The plot for both curvatures can be found in the Appendix A. The next group of

metric elements are the Christoffel symbols, the results are too long to bee presented

here, as a sample, the result for the first symbol is:

ΓX

XX
= −

X
(
−r1 +

√

X2 + Y 2
)

r2 (X2 + Y 2)2
(
r2 − r1

2 + 2 r1

√

X2 + Y 2
− X2

− Y 2
)

·




−3 r1X

2
Y

2 + X
2
√

X2 + Y 2Y
2
− X

2
√

X2 + Y 2r2 − 3 r1Y
4+

+3
√

X2 + Y 2r1
2
Y

2
− r1

3
Y

2 + Y
4
√

X2 + Y 2 + r1Y
2
r2 −

√

X2 + Y 2r2Y
2



.

(1.6.4)

As is clear, this result is not simple. The graphical representation of this values

and are presented in the Figure 1.13.
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Figure 1.13: ΓX

XX
values for torus geometry, with r1 = 0, 2 and r2 = 0, 9.

As it’s known, principal curvatures are intrinsic properties, so the results are the

same in the principal directions reference system (see next section).

Torus Metrics in Principal Curvatures Coordinates

As was commented before two coordinate systems are considered, the first one is the

PCS, just using the directions of he cartesian coordinates. The second coordinate
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system is defined by the principal directions, so the coordinate axes are the lines of

curvature. The torus and the revolution surface are selected because it is trivial to

find the principal curvatures. In a general surface it is not trivial, in the case of the

torus, the parameterizations that define the curvature lines is obtained though the

conversion of Equation1.6.1 into polar coordinates:







x = (r1 + r2cos (φ)) cos (θ)

y = (r1 + r2cos (φ)) sin (θ)

z = r2 sin (φ)

, (1.6.5)

where θ ∈ (0, π) and φ ∈ (π, 2π). These two coordinates define the curvature lines

(revolution surface), in Figure 1.14 is possible to see both curvature lines.

x

y

z

x

θ

φ

Figure 1.14: Coordinates defined by lines of curvature (r1 = 0.2, r2 = 0.9).

In the principal directions coordinate system the Gaussian Curvature is:

KG =
cos (φ)

r2 (r1 + r2 cos (φ))
. (1.6.6)

In the Figure 1.15 the value of the Gauss curvature is presented, as is shown,

the maximum values are achieved near the boundary. The curvature values are in-

trinsic, so the figure is representative of both coordinate systems, the proposed one

(Equation A.4.1) and the principal curvatures one (A.4.2).
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Figure 1.15: Gauss curvature of the torus (r1 = 0.2, r2 = 0.9).

The Mean Curvature in the principal directions is:

KM =
1

2

2r2 cos (φ) + r1

r2 (r1 + r2 cos (φ))
. (1.6.7)

In the Appendix A, in the Figure A.10 the value of the Mean Curvature is pre-

sented, as is shown, the maximum values are achieved near the boundary. As in the

previous case, it is an intrinsic property, so the results are the same in both coordinate

systems (A.4.3, A.4.4).

The values of the principal curvatures obtained are:

k1 =
1

r2

,

k2 =
cos (φ)

r1 + r2 cos (φ)
.

(1.6.8)

One of the principal curvatures is related to the crossection shape radius (r2), and

the other to the radius of curvature of the bend (r1). In the Appendix A, in the

Figure A.11 the values of both principal curvatures are shown, it’s important to note

that the extreme values are in the shape boundary.

As in the PCS also the Christoffel symbols are analyzed, in this case only two

are different from zero, Γφ

θ θ
, Γθ

θ φ
, in Figure 1.16 the first one values are shown in the
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whole torus, for a determined case.

Γφ

θ θ
=

(r1 + r2 cos (φ)) sin (φ)

r2

,

Γθ

θ φ
= −

r2 sin (φ)

r1 + r2 cos (φ)
.

(1.6.9)
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Figure 1.16: Values of Γφ

θ θ
in the torus r1 = 0.9, r2 = 0.2.

The sense of this term is the centripetal force along the longitudinal coordinate,

it’s clear that depends on the curvatures radius.

1.6.2 Second Example: Steep Slope Revolution Surfaces

In the second part of this section, along the bend (torus), in the longitudinal direction,

a slope will be introduced, to guarantee the “steep slope” condition in the geometry.

With this longitudinal slope a “steep slope” and “high curvature” geometry will be

obtained. The geometry of this modified torus will be compared to a “steep slope”

and “small curvature” surface, in this case the a cubic revolution surface is selected.

Only several metric elements of this surface are included in this chapter, unlike the

previous example there is not an appendix collecting all the differential elements, but

the process to obtain them it’s clear.
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In this subsection the steep slope will be introduced in the torus to achieve “steep

slope” condition with “high curvature” and a new revolution geometry will created,

with the same slope but with “small curvature”, in order to compare the results

between both surfaces. The small curvature surface is created as a revolution surface

using a cubic polynomial. The coordinate transformation function for the torus with

slope are:







x = X

y = Y

z = h(X, Y ) = −

√

r
2

2
−

(
r1 −

√

X2 + Y 2
)2

− S0 arctan
(

Y

X

)
r1

, (1.6.10)

where S0 is the slope of the channel, and in the principal directions coordinates:







x = (r1 + r2cos (φ)) cos (θ)

y = (r1 + r2cos (φ)) sin (θ)

z = r2 sin (φ)−S0r1θ

, (1.6.11)

where θ ∈ (0, π) and φ ∈ (π, 2π). In Figure 1.17 the geometry of the modified

torus is shown, it is clear the longitudinal slope and also the semicircular crossection.
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Figure 1.17: Torus modified to include steep slope, in this case r1 = 0.9, r2 = 0.2 and
S0 = 0.3.

As has been explained previously, a low curvature surface will be introduced to

compare the values of the metric elements. In this case a revolution surface is pro-

posed, to guarantee the low curvature values a polynomial function is used, in this

case a cubic. The surface function in PCS is:







x = X

y = Y

z = h(X,Y ) =
(
r1 −

√

X2 + Y 2
)3

− r
3

2
− S0 arctan

(
Y

X

)
r1

. (1.6.12)

And the surface in the principal directions is:







x = (r1 + r2cos (φ)) cos (θ)

y = (r1 + r2cos (φ)) sin (θ)

z = (r2 cos (φ))3
− r

3

2
− S0r1θ

. (1.6.13)

Where θ ∈ (0, π) and φ ∈ (π, 2π). In Figure 1.18 the low curvature surface is

shown, the crossection is a cubic polynomial.

As in the standard torus case, now the principal directions coordinate system is

presented for both surfaces, the modified torus and the revolution surface, in the



45

x

y

z
0,0

0,25

0,5

0,75
-0,88

0,9 0,4 -0,1

1,0

-0,6

-0,68

-1,1

-0,48

-0,28

-0,08

Figure 1.18: Low curvature surface defined by a revolution surface produced with a
cubic polynomial, r1 = 0.9, r2 = 0.2 and S0 = 0.3.

Figure 1.19 both coordinate systems are presented.
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Figure 1.19: Principal directions coordinate systems for both surfaces, high curvature
torus in the left, and low curvature revolution surface in the right (r1 = 0.9, r2 = 0.2
and S0 = 0.3).

For the presented steep slope surfaces the metrics are computed, including, tangent

space, metric tensor, curvature tensor, principal curvatures and Christoffel symbols.

As was demonstrated in Section 1.5, for the PCS, if the curvatures are small, necessary

the Christoffel symbols are also small. But this is not true for other coordinate
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systems, for the principal directions coordinate system in Figure 1.20 is possible to

see the Γφ

θ θ
, as is clear the values are no small. This is due to the fact that the

centripetal force is strong due to bend curvature radius, on the other hand, in the

PCS the values are small.
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0,4
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0,9

-5,0

0,0x
y

Figure 1.20: Γφ

θ θ
results for the low curvature surface in the principal directions

reference system (r1 = 0.9, r2 = 0.2 and S0 = 0.3).

1.6.3 Example Conclusions

To compare the both coordinate systems (PCS and Principal Curvatures coordinates),

a table is presented (Table 1.2), the first column results correspond to the modified

torus, the second column corresponds to the low curvature surface, the polynomial

revolution surface.

In the Table 1.2 the combined results from PCS and principal directions are shown.

As is known curvatures are intrinsic parameters, so are equal for both coordinates

systems, the Christoffel symbols with X, Y, Z subindex refer to PCS, and symbols

with θ, φ refer to principal directions.

Based on the table its clear a curvature reduction, presented as Gauss curvature

and mean curvature reduction (KG, KM), changing the Gauss curvature to a less
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High curvature Low curvature
KG (-6.5, 4.4) (-0.4, 0.0)
KM (2.0, 3.0) (-0.6, 0.5)
k1 (4.7, 5.5) (-1.2, 0.1)
k2 (-1.2, 0.9) (0.2, 1.2)

ΓX

X Y
(-40, 40) (-0.1, 0.4)

ΓY

X Y
(-18, 17) (-0.4, 0.4)

ΓX

Y Y
(-14, 18) (-0.2, 1.7)

ΓY

Y Y
(-40, 40) (-0.1, 0.4)

ΓX

X Y
(-17, 16) (-0.3, 0.2)

ΓY

X Y
(-17, 14) (-0.3, 0.2)

Γφ

θ θ
(-4.6, 1.2) (-17, -4)

Table 1.2: Curvatures and Chrisstoffel symbols for the PCS and principal curvatures
coordinate system. Two scenarios are evaluated, low curvatures geometry and high
curvatures one.

off the 10 percent of the original value. Also the principal curvatures are strongly

reduced. In the PCS the Christoffel symbols are very low, in contrast, in the principal

directions coordinate system the Christoffel symbols are higher than in high curvature

surface (Γφ

θ θ
), from -4.6 to -17.

So, as was concluded before, in the PCS the link between curvatures and Christof-

fel symbols is strong. So, again is tested that in PCS a low curvature surface will

have also small Christoffel symbols value, and is not a general property, the principal

curvature directions were used to prove it.
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Chapter 2

Equations System Definition

In this chapter the adopted equations system will be defined, the target of this model

is to simulate debris flow, maybe equations definition is the most important work in

modeling steep slope flows. A large quantity of approaches exist, they go from simple

one dimensional models to biphasic three dimensional ones, eulerian and lagrangian,

in local coordinates and in global coordinates, from simple rheologies to complex

constitutive laws, etc.

As was described in the thesis introduction, in this work a monophasic approach

is considered, several different existing models for monophasic approach will be com-

mented within this chapter. Every model includes its own equation system, with

particularities that differentiate from the other existing models. Several elements

of the presented approach come from other existing models, along the text these

similarities will be commented.

2.1 Introduction

Following the work carried out in the previous chapter, now a equations system will be

defined. It’s clear that, this definition in debris flow, is a challenge. Still there are big

unknowns and uncertainty in the mechanics of the phenomenon, as was commented

in the thesis introduction, in the present model, a simplified version of the physics is

49
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considered.

Monophasic, constant density flow is modeled, simply considering the debris flow

as a continuum. This is a strong hypothesis. The test cases presented in this work

belong to the granular debris flows family. To model this kind of problems a com-

pletely different approach could be carried out using the available granular lagrangian

methods (Delannay et al., 2007; Azanza et al., 1999; MiDi, 2004), also complex mul-

tiphysics flows models exist as MFIX (Multiphase Flow with Interphase eXchanges),

(Anderson and Jackson, 1967) developed by NETL (National Energy Technology Lab-

oratory), including most of the elements present in the physics of the phenomenon,

solid fluid interaction, granular temperature, chemical reactions among other state of

art features.

The problem regarding these physical models is the requirement of a deep knowl-

edge on the material properties. In real cases, the nature of the debris materials is

not homogeneous, and neither the exact conditions in the moment of occurrences are

known. So, in controlled situations, as in the laboratory experiments, it is useful

to use the sophisticated multiphysics models. In real cases, perhaps the reasonable

limit is on the hydrostatic biphasic models (water phase also as pore pressure), used

for high sediment concentration (Iverson and Denlinger, 2001; Pitman and Le, 2005;

Pudasaini et al., 2005) and also for medium concentration (Spinewine and Zech, 2002;

Fraccarollo and Capart, 2002).

All these elements give sense to the implementation an use of simplified models,

as the one presented in this work. Once the medium is considered as homogeneous,

it remains the complexity of the constitutive laws in debris flows. Supposing the

solid liquid mixing as a special material implies the existence of a rheology relating

deformation tensor and stresses tensor. In many cases the behavior of the flow is

considered simply as Coulombian (Iverson, 1997; Savage and Hutter, 1989; Pudasaini

et al., 2005; Pudasaini and Hutter, 2007; Mangeney et al., 2007; Pitman et al., 2003),

obtaining enough accurate results.
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2.2 Methodology Description

The equations system will be based on the definition of the conservations laws. These

conservation equations will be the classic ones used in computational fluid dynamics

(CFD). As is known, in CFD, the complexity of the simulations restricts the applica-

tion of complete equation system to a small scale problems, far from the real natural

hazard scale.

To overcome this limitation a simplified model should be used, this simplification

implies the reduction of problem dimensions. To achieve this goal some hypothesis

should be used. For shallow flows the classic process to carry on the simplification

is through the flow depth integration (Whitman, 1974; Vreugdenhil, 1990; Abbott,

1979).

As has been commented, this described process is classic, but the particular use to

debris flow problems is not so simple. The main problem is related to the geometry,

normally shallow water flows are defined for mild slopes. On the other hand, in debris

flow problems, the geometries are terrain surfaces in mountain areas.

In Chapter 1 the coordinate system has been defined (PCS), this selected system

should be useful for steep slopes situations. One of the main research lines in de-

bris flow modeling is related to topography complexity (Pudasaini and Hutter, 2007;

Iverson et al., 2004; Bouchut and Westdickenberg, 2004; Gray et al., 1999; Bouchut

et al., 2003), in most of these works different approaches are used to include terrain

curvature effects.

The standard procedure for equations derivation implies:

1. Definition of the complete conservation laws as a equations system.

2. Application of the defined coordinate system to the equations.

3. Depth integration of the equations system.

4. Non-dimensionalizing equations using characteristic magnitudes.
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5. Simplification of the equations using the non-dimensional parameters.

6. Transform the equations back to dimensional form.

In this work, during the equations system derivation process, the coordinate sys-

tem used will be Principal Directions Coordinate System (see Chapter 1) and once

the system becomes defined, the proposed coordinate system (PCS) will be used.

This approach is selected in order to reduce the number of terms in the equations (an

orthogonal coordinates are preferable).

The reason for this methodology is that, in real debris flow test cases, it is diffi-

cult to define principal curvatures directions, but is easy to define the PCS. But for

differential equations manipulation is easier to use the principal directions because

the coordinates are orthogonal and also the curvature tensor is diagonal.

2.3 Definition of the Conservation Laws

In this section, the conservation laws will be defined using appropriated curvilinear

coordinates. The differential geometry defines the exact process for transformation of

differential equations between different coordinates systems, also including curvilinear

ones. The conservation laws used in this work will be mass conservation (continuity)

and momentum conservation (Newton second law of motion).

The central point in PDE (partial derivative equations) in curvilinear coordinates

is the covariant derivative. This element is equivalent to a partial derivative in carte-

sian coordinates (do Carmo, 1976; Aris, 1962), and it’s named the covariant derivative

of the contravariant vector field u
i(X). In our case the contravariant vector field is

the velocity field of the flow:

u
i

,j
=

∂u
i

∂xj
+ Γi

kj
u

k
, (2.3.1)
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where ui are the velocities in the curvilinear coordinate system, the k index it

is a dummy index and follows the Einstein convention. The methodology consist in

substitution of the partial derivatives with the covariant ones.

∂U
i

∂Xj

∣
∣
∣
∣
Cartesian

≡ u
i

,j

∣
∣
∣
Curvilinear

, (2.3.2)

where X
j are the cartesian coordinates, also presented as (X, Y, Z), Ui are the

velocities in cartesian coordinates and x
j are the curvilinear coordinates (u, v, w).

For the tensors (T) the procedure is similar, the covariant derivative for a tensor is

obtained:

T
ji

,j
=

∂T
ji

∂xj
+ Γj

kj
T

ki + Γi

kj
T

jk
, (2.3.3)

with varying indexes (j, k), so the transformation is:

∂T
ij

∂Xj

∣
∣
∣
∣
Cartesian

≡ T
ij

,j

∣
∣
∣
Curvilinear

. (2.3.4)

2.3.1 Continuity Equation

The first conserved property is the mass, expressed as the continuity equation:

∇ · U = 0 →

∂U
1

∂X
+

∂U
2

∂Y
+

∂U
3

∂Z
= 0, (2.3.5)

where U is the velocity vector, U
1
, U

2
, U

3 are the components in 3D Cartesian

coordinates and u
1
, u

2
, u

3 are the components in curvilinear coordinates. The Equa-

tion 2.3.2 is introduced in Equation 2.3.5.

∂U
1

∂X
+

∂U
2

∂Y
+

∂U
3

∂Z
= 0 → u

1

,1
+ u

2

,2
+ u

3

,3
= 0. (2.3.6)

And introducing Equation 2.3.1 the obtained result is:

∂u
1

∂x1
+ Γ1

k1
u

k +
∂u

2

∂x2
+ Γ2

k2
u

k +
∂u

3

∂x3
+ Γ3

k3
u

k = 0. (2.3.7)
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This result could be arranged regrouping terms to obtain:

∇ · u =
∂u

i

∂xi
+ Γj

ij
u

i = 0. (2.3.8)

This is the classical form of the continuity equation in curvilinear coordinates.

After some operations it is possible to transform this equation into more useful form

(Aris, 1962):

∇ · u =
1

√

|g|

∂

(

u
i
√

|g|

)

∂xi
= 0, (2.3.9)

where
√

|g| is the determinant of the covariant metric tensor gij.

2.3.2 Momentum Equation

A constant density, monophasic flow is considered. The constitutive equation will

be analyzed later to introduce the friction laws, so the momentum conservation is

expressed as:

∂U

∂t
+ (U · ∇)U +

∇ · τ

ρ
= g, (2.3.10)

where τ is the stresses tensor. The constitutive equation is not considered yet.

So a system equivalent to perfect fluid is used:

∂U

∂t
+ (U · ∇)U =

−∇P

ρ
+ g, (2.3.11)

where P is the pressure, ρ is the density and g the gravity vector (g
1
, g

2
, g

3
). This

equation is vectorial so it incudes three component equations, one for every cartesian

axis. In cartesian coordinates:

τ = τii = P. (2.3.12)
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To transform the system to curvilinear coordinates, the tensor τ in curvilinear

coordinates is defined as:

τ = τij = g
ij
P, (2.3.13)

where the pressure is expressed in physical units, so the term g
ij is necessary for

units consistency. Applying the same methodology used for continuity, the obtained

result for curvilinear coordinates is:

∂u
i

∂t
+ u

j
u

i

,j
= −

1

ρ

(
g

ij
P

)

,j
+ g

i
. (2.3.14)

Introducing the definition of the covariant derivative (Equation 2.3.1,2.3.3):

∂u
i

∂t
+ u

j

(
∂u

i

∂xj

+ Γi

kj
u

k

)

= −

1

ρ
g

ij
∂P

∂xj

+ g
i
. (2.3.15)

It is interesting to note that all the Christoffel terms related to pressure terms are

canceled out to the presence of g
ij, so the equations include only one pressure term.

Should be notice also, that now the gravity components (g
1
, g

2
, g

3
) are defined in

the curvilinear coordinates. This coordinates transformation is not a trivial process

(Pudasaini and Hutter, 2007), in AppendixB an example for PCS is presented.

The equation system defined by Equations 2.3.8 and 2.3.15 constitutes the starting

point for the model development.

A useful identity formally related to Equation 2.3.9 could be defined here, to be

applied with tensors. The stresses existing in momentum equation are a second order

tensor τ = τij, when the momentum conservation is written in conservative form, also

the convective term could be defined as tensor, joining convective term and stresses

the T tensor is defined, and the momentum equation becomes:

∂U

∂t
+ ∇ · T = g. (2.3.16)
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It is possible to compute the tensor divergence in curvilinear coordinates, using

the covariant derivative for tensors (Equation 2.3.3) a vectorial identity is obtained

(Aris, 1962), defined in the curvilinear coordinates space:

∇ · T =

(
∂T

ji

∂xk
+ Γj

kj
T

ki + Γi

kj
T

jk

)

Xi =

(

1
√

|g|

∂

∂xj

(√

|g|T
ji

)

+ Γi

kj
T

jk

)

Xi.

(2.3.17)

This important identity will be used later, as will be shown in next sections, the

final equations system could be expressed in Equation 2.3.16 form, so the identity

will be very useful.

2.4 Conservation Laws in Principal Directions Co-

ordinate System

In the previous chapter a coordinate system has been proposed (PCS), this system

uses the projection of the cartesian coordinates into the terrain surface. As is known,

the curvatures are intrinsic properties, not depending on the coordinate system, just

on surface shape.

In the present section, the equations system describing the conservation laws of

the phenomenon will be defined based on the Principal Directions Coordinate System,

the reason for the use of these coordinates as auxiliary reference system is to facilitate

the integration of the equations and simplification processes that will be carried out

later in this chapter.
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2.4.1 Metrics of the Principal Directions Coordinate System

The goal of this section is the application of Equations 2.3.8 and 2.3.15, so all the

metric elements included in the equations should be computed. The scheme of this

section is similar to that of the Section 1.4.

1. Coordinates definition.

2. Tangent space.

3. First fundamental form.

4. Second fundamental form.

5. Curvature tensor.

6. Christoffel symbols.

So the explanation will not be detailed. The first step is to define the coordinates

transformation functions, in this case a 3D coordinate system should be defined in the

flow volume (Ω ∈ R
3), but this flow volume will be located over the terrain surface

(S ∈ R
3), that will be defined using the same function used in the previous chapter:

X : U ⊂ R
2
→ S, X (u, v) = (X(u, v), Y (u, v), h(u, v)) (u, v) ∈ U. (2.4.1)

Being u, v the curvilinear coordinates in principal directions (how to calculate

it for a general topography could be found in Hameiri and Shimshoni (2003)) and

requiring h (u, v) ∈ C
2 (U), over this terrain surface, the 3D transformation function

will be constructed:

X̂ : W ⊂ R
3
→ Ω, X̂ (u, v, w) = (X(u, v, w), Y (u, v, w), Z(u, v, w)) (u, v, w) ∈ W.

(2.4.2)
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uX

N

S

du

dvdw

vX

u

v
X

Figure 2.1: Coordinates transformation function X definition.

So at the end, two different functions have been defined, X̂ to transform the three

dimensional space and X to transform the terrain surface. Introducing the surface as

the flow volume bed surface, the transformation X̂ becomes defined adding the depth

coordinate w in the surface normal vector direction N:

X̂ = (X + wN)

X̂ =
(
(X(u, v), Y (u, v), h (u, v)) + wN

)
, (u, v, w) ∈ W

(2.4.3)

N is the terrain surface normal vector (defined in the previous chapter). The

u, v coordinates are defined as principal directions, implying this that the normal

derivatives along vector (u′
, v

′) in basis (Xu,Xv) are computed as:

dN

(

u
′

v
′

)

= k1Xu + k2Xv. (2.4.4)

Here Xu,Xv are the surface S tangent vectors, in the principal directions u, v and

k1, k2 principal curvatures. Using the previous result and Equation 2.4.3, is possible

to define the tangent space for the 3D transformation (X̂):
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X̂u =
∂X̂

∂u
=

∂X

∂u
− k1w

∂X

∂u
= Xu (1 − k1w)

X̂v =
∂X̂

∂v
=

∂X

∂v
− k2w

∂X

∂v
= Xv (1 − k2w)

X̂w =
∂X̂

∂w
= N.

(2.4.5)

uX

E u∆

µ
uX

N

N

S

( )1
1E u k w∆ −

1

1

k

Figure 2.2: Detail of axes and metrics in principal direction u.

In Figure 2.2 the curvilinear axes in u crossection are shown. As is shown the

tangent vectors (Xu,Xv) change along the depth as functions of 1 − k1w and 1 − k2w.

The First Fundamental Form Ip for the surface transformation (X) is computed:

g11 = E = 〈Xu|Xu〉

g12 = F = 〈Xu|Xv〉 = 0

g21 = F = 〈Xv|Xu〉 = 0

g22 = G = 〈Xv|Xv〉

(2.4.6)

And also for the volume, taking into account the orthogonality of the coordinates

and obtaining the 3x3 symmetric tensor:
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ĝ11 = Ê = 〈X̂u|X̂u〉 = E (1 − k1w)2

ĝ12 = F̂ = 〈X̂u|X̂v〉 = 0

ĝ13 = 〈X̂u|X̂w〉 = 0

ĝ21 = F̂ = 〈X̂v|X̂u〉 = 0

ĝ22 = Ĝ = 〈X̂v|X̂v〉 = G (1 − k2w)2

ĝ23 = 〈X̂v|X̂w〉 = 0

ĝ31 = 〈X̂w|X̂u〉 = 0

ĝ32 = 〈X̂w|X̂v〉 = 0

ĝ13 = 〈X̂u|X̂w〉 = 1

(2.4.7)

It is immediate to compute the contravariant tensor:

ĝij =







Ê 0 0

0 F̂ 0

0 0 1







, ĝ
ij =








1
/

Ê 0 0

0 1
/

F̂ 0

0 0 1








(2.4.8)

For simplicity in the notation, also metric scaling elements for u, v are defined:

h1(w) =
√

Ê =
√

E (1 − k1w)

h2(w) =
√

Ĝ =
√

G (1 − k2w)
(2.4.9)

Then the covariant metric tensor determinant is easily computed
√

|ĝ| = h1h2.

Finally the Christoffel symbols are computed.







Γu

uu
=

1

h1

∂h1

∂u

Γv

uu
= −

h1

h
2

2

∂h1

∂v

Γw

uu
= h1k1E

(2.4.10)
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





Γu

vv
= −

h2

h
2

1

∂h2

∂v

Γv

vv
=

1

h2

∂h2

∂v

Γw

vv
= h2k2G

(2.4.11)







Γu

uv
=

1

h1

∂h1

∂v

Γv

uv
=

1

h2

∂h2

∂u

Γw

uv
= 0

(2.4.12)







Γu

ww
= 0

Γv

ww
= 0

Γw

ww
= 0

(2.4.13)







Γu

uw
= −

k1E

h1

Γv

uw
= 0

Γw

uw
= 0

(2.4.14)







Γu

vw
= 0

Γv

vw
= −

k2G

h2

Γw

vw
= 0

(2.4.15)

The components could be ordered as matrix:

Γu =







1

h1

∂h1

∂u

1

h1

∂h1

∂v
−

k1E

h1

1

h1

∂h1

∂v
−

h2

h
2
1

∂h2

∂v
0

−
k1E

h1
0 0







(2.4.16)

Γv =







−
h1

h
2
2

∂h1

∂v

1

h2

∂h2

∂u
0

1

h2

∂h2

∂u

1

h2

∂h2

∂v
−

k2G

h2

0 −
k2G

h2
0







(2.4.17)



62

Γw =







h1k1E 0 0

0 h1k1G 0

0 0 0







(2.4.18)

2.4.2 Continuity Equation in the Principal Directions Coor-

dinate System

In this section all the computed metrics will be applied into the continuity equation

(Equation 2.3.9).

1

h1h2

(
∂

∂u

(
h1h2u

1
)

+
∂

∂v

(
h1h2u

2
)

+
∂

∂w

(
h1h2u

3
)
)

= 0. (2.4.19)

And arranging:

∂

∂u

(
h1h2u

1
)

+
∂

∂v

(
h1h2u

2
)

+
∂

∂w

(
h1h2u

3
)

= 0. (2.4.20)

2.4.3 Momentum Equation in the Principal Directions Co-

ordinates System

The complete substitution of metric terms in momentum conservation equation (Equa-

tion 2.3.15) implies more than 15 terms for every momentum component, so just the

final simplified version is shown. First the momentum conservation in Xu direction:

h1

∂u
1

∂t
+ u

1
∂u

1
h1

∂u
+ u

2
∂u

1
h1

∂v
+ u

3
∂u

1
h1

∂w

=
h2u

2
u

2

h1

∂h2

∂u
− u

1
u

2
∂h1

∂v
+ k1Eu

1
u

3
−

1

h1ρ

∂P

∂u
+ h1g1

. (2.4.21)
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The first and second term in the R.H.S (Right Hand Side) correspond to cen-

tripetal acceleration. The Xv component of the system is:

h2

∂u
2

∂t
+ u

1
∂u

2
h2

∂u
+ u

2
∂u

2
h2

∂v
+ u

3
∂u

2
h2

∂w
=

=
h1u

1
u

1

h2

∂h1

∂v
− u

1
u

2
∂h2

∂u
+ k2Gu

2
u

3
−

1

h2ρ

∂P

∂v
+ h2g2

. (2.4.22)

And finally the Xw component:

∂u
3

∂t
+ u

1
∂u

3

∂u
+ u

2
∂u

3

∂v
+ u

3
∂u

3

∂w
+ Ek1h1u

1
u

1 + Gk2h2u
2
u

2 +
1

ρ

∂P

∂w
− g

3
= 0 (2.4.23)

2.5 Dimensionless Equations System

Once the equation system is defined, simplifications should be applied. This simpli-

fications are always related to dimensionless parameters analysis. In the steep slope

flows, traditionally it is possible to find two main parameters, in debris flow models

the parameter ε is the typical maximum depth-to-length H/L aspect ratio of a flow, a

purely geometric factor, first defined by Savage and Hutter (1989) and in most cases

the parameter is considered to be 0 < ε ≪ 1 (Iverson and Denlinger, 2001; Pudasaini

et al., 2005; Quecedo and Pastor, 2003; Bouchut and Westdickenberg, 2004).

In hydraulic models with curvature, the classical non-dimensional parameter ε is

defined by the maximum depth-to-curvature radius H/r ratio (Sivakumaran et al.,

1981; Sivakumaran and Dressler, 1989; Berger and Carey, 1998a) and considering it

as small or large value is possible to define models useful for low or high curvatures.

This apparent difference between hydraulic and debris flow models is not so deep,

to apply the debris flow ε to the equations terms involving curvature is also necessary
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to perform hypotheses on the scale of curvature. As example, in Bouchut and West-

dickenberg (2004), in the small slope variation model presented, it is possible to find

dNp ≃ O (ε), meaning that the curvatures are very small, so the curvature radius are

larger than depths, in a similar manner to the definition of ε used in curved hydraulic

models.

In the same direction, in Pudasaini et al. (2005) is possible to found λ = O (εα),

meaning λ the depth-to-curvature radius H/r ratio, so, at last, using a parametriza-

tion similar to the one used in curved hydraulic models.

In this work the method proposed by Berger and Carey (1998a) will be followed,

so as has been explained the non-dimensional parameter ε will be the square of

typical maximum depth-to-curvature radii (H/r)2. Once the equations are in non-

dimensional form the perturbation method in the solution will be applied.

2.5.1 Dimensionless Variables

As has been commented, the flow characteristic dimensions are: H the characteristic

depth and r the curvature radius, and also the relation between them ε. Selecting the

most suitable dimension for each variable the non dimensional variables are defined in

Table 2.1, where d is the flow depth, the distance from the bottom to the free surface

following the terrain normal direction.

The horizontal coordinates (u, v) are transformed into dimensionless form using

the curvature radius (r), but the vertical coordinate (w) is converted into dimen-

sionless form using the characteristic depth H. The horizontal velocities (u1
, u

2) get

dimensionless using the characteristic celerity (
√

gH). The pressure is scaled with

the hydrostatic pressure.

The next step in the dimensionless conversion i.e., the substitution of the values

of the table in the equations (Equation 2.4.20-2.4.23). First the continuity equation,

after some arrange the equation becomes:
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Non dimensional variable Definition

Coordinate α u/r

Coordinate γ v/r

Coordinate β w/H

Depth Y d/H

Velocity ũ
1

u
1
/√

gH

Velocity ũ
2

u
2
/√

gH

Velocity ũ
3

u
3
H

/
r
√

gH

Metric Ẽ E

Metric G̃ G

Pressure π P/ρHg

Curvature k̃1 k1H

Curvature k̃2 k2H

Time τ t
√

gH
/
H

Metric h̃1

√

Ẽ

(

1 − k̃1β

)

Metric h̃2

√

G̃

(

1 − k̃2β

)

Parameter ε (H/r)2

Table 2.1: Non-dimensional variables.

ε

{
∂

∂α

(

h̃1h̃2ũ
1

)

+
∂

∂γ

(

h̃1h̃2ũ
2

)}

+
∂

∂β

(

h̃1h̃2ũ
3

)

= 0. (2.5.1)

And also in the three momentum equations:

ε

{

h̃1

∂ũ
1

∂τ
+ ũ

1
∂ũ

1
h̃1

∂α
+ ũ

2
∂ũ

1
h̃1

∂γ
−

h̃2ũ
2
ũ

2

h̃1

∂h̃2

∂α
+ ũ

1
ũ

2
∂h̃1

∂γ
+

1

h̃1

∂π

∂α
− h̃1g̃1

}

+

+ũ
3
∂ũ

1
h̃1

∂β
− k̃1Ẽũ

1
ũ

3 = 0, (2.5.2)
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ε

{

h̃2

∂ũ
2

∂τ
+ ũ

1
∂ũ

2
h̃2

∂α
+ ũ

2
∂ũ

2
h̃2

∂γ
−

h̃1ũ
1
ũ

1

h̃2

∂h̃1

∂γ
+ ũ

1
ũ

2
∂h̃2

∂α
+

1

h̃2

∂π

∂γ
− h̃1g̃2

}

+

+ũ
3
∂ũ

2
h̃2

∂γ
− k̃2G̃ũ

2
ũ

3 = 0, (2.5.3)

ε

{
∂ũ

3

∂τ
+ ũ

1
∂ũ

3

∂α
+ ũ

2
∂ũ

3

∂γ
+ Ẽk̃1h̃1ũ

1
ũ

1 + G̃k̃2h̃2ũ
2
ũ

2 +
∂π

∂β
− g̃

3

}

+

+ũ
3
∂ũ

3

∂β
= 0. (2.5.4)

The last two terms in Equations 2.5.2 and 2.5.3 when arranged are:

. . . ũ
3

(
∂ũ

1
h̃1

∂β
− k̃1Ẽũ

1

)

,

. . . ũ
3

(
∂ũ

2
h̃2

∂β
− k̃2G̃ũ

2

)

.

(2.5.5)

The terms into the parenthesis could be linked, through the continuity equation,

to the vorticity of the flow in the u, v directions, in shallow flows the vorticity in these

directions is considered to be zero, see the details in Berger and Carey (1998a). In

the following analysis they will be neglected.

Over this non-dimensional system a perturbation analysis can be performed (Hinch,

1991), in vanish all the variables are expanded in terms of the parameter ε. This way

is easier to establish the importance of the curvature. The typical expansion of a non

dimensional variable is:

ũ
1 (α, γ, β, τ) = u

1

0
(α, γ, β, τ) + εu

1

1
(α, γ, β, τ) + ε

2
u

1

2
(α, γ, β, τ) + . . . (2.5.6)

Where the subindexes are to indicate the order of the term in the powers expan-

sion. The complete process will not be reproduced here, for the details check Berger

and Carey (1998a), where similar process using physical coordinates (Aris, 1962) is
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carried out. Once the terms have been grouped in powers of ε, several conclusions

could be achieved using the zero powers of ε.

1. From the continuity equation, along with the boundary condition that imposes

null vertical velocities in the bottom ( u
3
|
β=0

= 0), is obtained: u
3

0
= 0, so

in order zero the vertical (strictly speaking is defined as the surface normal)

velocities are zero.

2. Also is obtained ũ
1

0
= û

1

/(

1 − k̃1β

)

, where û
1 is the velocity in the bottom.

This result means that in order zero, the velocity distribution of ũ
1 is linear in

the depth.

3. And finally is obtained ũ
2

0
= û

2

/(

1 − k̃2β

)

, where û
2 is the velocity in the

bottom. This result means that in order zero, the velocity distribution of ũ
2 is

linear in the depth.

The next step is to work with the first order ε terms, in the continuity equation

the obtained result is:

∂

∂α

(

h̃1h̃2ũ
1

0

)

+
∂

∂γ

(

h̃1h̃2ũ
2

0

)

+
∂

∂β

(

h̃1h̃2ũ
3

1

)

= 0. (2.5.7)

So, the term relative to vertical component of the velocity (u3) is of order 1, while

the remain velocity variables are of order 0 in powers of ε. The same process for

momentum equations in α, γ gives:

h̃1

∂ũ
1

0

∂τ
+ ũ

1

0

∂ũ
1

0
h̃1

∂α
+ ũ

2

0

∂ũ
1

0
h̃1

∂γ
−

h̃2ũ
2

0
ũ

2

0

h̃1

∂h̃2

∂α
+ ũ

1

0
ũ

2

0

∂h̃1

∂γ
+

1

h̃1

∂π0

∂α
− h̃1g̃1

= 0, (2.5.8)

h̃2

∂ũ
2

0

∂τ
+ ũ

1

0

∂ũ
2

0
h̃2

∂α
+ ũ

2

0

∂ũ
2

0
h̃2

∂γ
−

h̃1ũ
1

0
ũ

1

0

h̃2

∂h̃1

∂γ
+ ũ

1

0
ũ

2

0

∂h̃2

∂α
+

1

h̃2

∂π0

∂γ
− h̃2g̃2

= 0. (2.5.9)
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It is clear that all the variables terms are of order 0. The third momentum

equation is obtained discarding the first order vertical velocities (u3

0
= 0), as was

concluded from the continuity equation:

Ẽk̃1h̃1ũ
1

0
ũ

1

0
+ G̃k̃2h̃2ũ

2

0
ũ

2

0
+

∂π0

∂β
− g̃

3
= 0. (2.5.10)

Again all the terms are of order 0. Two different parts appear, the first two terms

are the centripetal effects (dynamic), and the last one the hydrostatic contribution

(static). This equation will be integrated in order to obtain the pressure distribution

equation.

2.6 Depth Integration

The depth integration is the essential process to reduce equations system complexity.

First the integration is performed in the continuity equation and pressures. The depth

integration is a classical process and details could be found in Vreugdenhil (1990);

Whitman (1974), essentially, the methodology consists in successive application of

the Leibnitz rule. It’s interesting to note that the metric scaling elements h1, h2 are

functions of w coordinate, so also should be integrated along β. The results obtained

for continuity equation, expressed again in dimensional variables, are:

h1(d)h2(d)
∂d

∂t
+

∂

∂u

[
h2(0)h1(0)û1

k1

{(
k2 − k1

k1

)

log (1 − k1d) + k2d

}]

+

+
∂

∂v

[
h1(0)h2(0)û2

k2

{(
k1 − k2

k2

)

log (1 − k2d) + k1d

}]

= 0.

(2.6.1)

As was previously defined, d is the depth and it’s a function of d(u, v, t), û
1
, û

2

are the flow velocity components in the terrain surface. Notice that h1(0), h2(0) are

the metrics at the bottom. This result (Berger and Carey, 1998b) clearly includes the

effects of curvature as shown in Figure 2.2. It is obvious that the curvature influences

the capacity of flow accumulation along the depth, positive curvatures reduce the
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capacity and negative ones increases it. The conclusions 2,3 in Page 67 are also used,

describing a linear velocity profile, at least in a first order approximation.

This result includes the one obtained by Bouchut et al. (2003) for 1D model with

curvatures, although the non-dimensionalization is carried on based on the character-

istic flow length L instead curvature radius r. The notation is noticeably different but

when the Berger and Carey (1998a) result is simplified for one dimensional geometries

the demonstration is straight.

The result for the pressure is:

P (w) =
ρ

2

(
h1(0)û1

)2

{(
1

1 − k1d

)2

−

(
1

1 − k1w

)2
}

+

+
ρ

2

(
h2(0)û2

)2

{(
1

1 − k2d

)2

−

(
1

1 − k2w

)2
}

+ ρg
3
(d − w) .

(2.6.2)

The centripetal effects are included on pressure, and, in agreement to the theo-

retically predicted values, proportional to the velocity square values. It should also

be notice that (h1(0)û1
, h2(0)û2) are the physical components of the velocity at the

surface, transformed from curvilinear units to (m/s).

Before defining the model horizontal momentum equations some considerations

will be performed in order to simplify the problem conditions and to simplify the

numerical methods used to solve it.

2.7 Equations System Simplification

The Equation 2.6.1 exhibits the complexity of continuity equation in curvilinear co-

ordinates. The mass flux is affected by curvature and the model is far from the

shallow water equations (SWE). Also the pressure term introduces new nonlinearities

in momentum fluxes.
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It is very interesting to propose a model similar to SWE. An important back-

ground exists in the numerical solution of SWE. There is an vast knowledge on solu-

tion strategies for SWE. The finite volume methods based on Godunov (1959) have

great success in numerical modeling (LeVeque, 2002; Toro, 2001) and have become

widespread methods.

To remove the differences between the obtained model and SWE, in order to

develop a simpler equation model, the curvatures are considered small so the curvature

radii is considered large. This simplification is not so clear, there’s no evidence of

small curvatures in real topographies, as Bouchut and Westdickenberg (2004) affirm,

neglecting the curvatures defines a model valid only for small slope variations.
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Figure 2.3: La Guingueta test basin in Northern Pirinees.

In Figure 2.3 a real debris flow event basin is shown, it’s true that the characteristic

length of the event L (around one kilometer) is longer than the characteristic depth

H (around 1 meter), defining H/L ≃ 0.001, but this is not enough to guarantee the

low curvatures.
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Figure 2.4: Mean curvatures in La Guingueta basin.

A simplified curvature values are calculated (1/2 (hXX + hY Y )), the results are

shown in Figure 2.4. This simplified approximation computes the Hessian matrix

trace. In the figure it is clear that the spatial variability of metrics in real topographies

is large. It’s not possible to guarantee low values for curvatures. In this case it is not

possible to affirm that the extreme curvature values are real or topographic mistakes.

The red circle in Figure 2.4 shows the apex of the deposition cone, and the values in

that area are high, but it should be taken into account that an artificial encroachment

exists, modifying the natural values.

Neglecting the curvatures means to consider negligible principal curvatures k1, k2.

Important consequences come for this simplification, the linear velocity profile de-

scribed in conclusions 2, 3 in Page 67 turns into a constant velocity u
1 = û

1, u
2 = û

2,

equal to bed velocity. Also all the metric scales of the 3D transformation X̂ become

equal to the 2D surface transformation X metrics, then h1, h2 become constant in

depth Ê = E, Ĝ = G, ĝij = gij.

The effect over the pressure profile is immediate:
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P (w) = ρg
3
(d − w) . (2.7.1)

The pressure becomes the classical hydrostatic result, neglecting the centripetal

acceleration effects. The main difference with the SWE pressures is the corrected

gravity, instead g the pressure is computed using g
3

the projected value into the N

axis.

2.7.1 Continuity Simplification

Discarding curvatures in Equation 2.5.7 depth integration makes the continuity equa-

tion become formally equal to the SWE, but using curvilinear metrics:

h1h2

∂d

∂t
+

∂ (h2h1û
1
d)

∂u
+

∂ (h2h1û
2
d)

∂v
= 0. (2.7.2)

Several considerations could be carried on this equation:

Proposition 2.7.1. Discarding the curvature effects converts the definition of the

equation system in the direct application of covariant derivative to the SWE.

Proof. First lets recall the value of the metric determinant
√

|ĝ| = h1h2, introducing

this equivalence in Equation 2.7.2 we obtain:

√

|ĝ|
∂d

∂t
+

∂

(√

|ĝ|û
1
d

)

∂u
+

∂

(√

|ĝ|û
2
d

)

∂v
= 0. (2.7.3)

And rearranging:

∂d

∂t
+

1
√

|ĝ|

∂

(√

|ĝ|û
k
d

)

∂xk
= 0. (2.7.4)

Comparing this result to the Equation 2.3.9 it is clear that the obtained equation

is equal to the result of applying covariant derivative to the SWE continuity equation:
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∂d

∂t
+

∂
(
U

k
d
)

∂Xk
= 0 →

∂d

∂t
+

1
√

|ĝ|

∂

(√

|ĝ|û
k
d

)

∂xk
= 0. (2.7.5)

It is possible to go farther, using the continuity equation form described by Equa-

tion 2.3.8 to SWE we obtain:

∂d

∂t
+

∂ (ui
d)

∂xi
+ Γj

ij

(
u

i
d
)

= 0. (2.7.6)

Now, using PCS (Proposed Coordinate System), it is possible to apply the Propo-

sition 1.5.1 obtained in the Chapter 1 to simplify the equation:

∂d

∂t
+

∂ (ui
d)

∂xi
= 0. (2.7.7)

Being this result equal to the application of PCS to Bouchut and Westdickenberg

(2004) small slope variation continuity equation.

The physical justification for the equivalence of Equations 2.7.7,2.7.4 is due to the

fact that conservation could be defined over any projected version of topography and

fluxes, and PCS defines the projection of the problem in cartesian X,Y plane.

The continuity version finally used in the model is Equation 2.7.2, a physical

interpretation is now given.

The first step is to transform the equation into discrete form, substituting ∂ with

∆ and arranging it:

∆d +
∆t

(h1h2∆v∆u)

(
∆v∆

(
h2h1û

1
d
)

+ ∆u∆
(
h2h1û

2
d
))

= 0. (2.7.8)

Now some considerations should be applied, (h1h2∆v∆u) = A is the control vol-

ume area (Figure 2.5), h1û
1
d = F

1
, h2û

2
d = F

2 are the physical mass flows, and

h1∆u = L
1
, h2∆v = L

2 are the physical length of the control volume (Figure 2.5), so

substituting in the equation, the classical conservation law is obtained:



74

{{ uX

vX

1
h u∆

2
h

v
∆

1

1
u h

2

2
u h d

d

Figure 2.5: Control volume metrics and flows.

∆d = −

∆t

A

(
∆

(
L

1
F

1
)

+ ∆
(
L

2
F

2
))

. (2.7.9)

Taking into account the metrics simplification, the continuity equation imple-

mented in the model is:

∂d

∂t
+

1
√

|g|

∂

(√

|g|u
k
d

)

∂xk
= 0. (2.7.10)

2.7.2 Momentum Simplification

As has been concluded in the previous section, discarding curvatures transforms the

velocity profile in a constant, equal to the bottom velocity û
1
, û

2, also the pressure

becomes hydrostatic, with this considerations it is simple to obtain the u coordinate

momentum equation from Equation 2.5.8, recovering the dimensional form:

h1

∂û
1

∂t
+ û

1
∂û

1
h1

∂u
+ û

2
∂û

1
h1

∂v
−

h2û
2
û

2

h1

∂h2

∂u
+ û

1
û

2
∂h1

∂v
+

1

h1ρ

∂P

∂u
−h1g1

= 0. (2.7.11)



75

The first step is to check the hypothesis developed in the previous section, the

equality between the obtained equation and the direct application of covariant deriva-

tive to the SWE. In this case the starting point is the X momentum conservation in

SWE, it should be necessary to consider that the hydrostatic pressure comes from

the g
3

component of the gravity.

∂dU
i

∂t
+

∂ (dU
i
U

j)

∂Xj
+

1

2

∂ (g
3
d

2)

∂X i
= −g

i
d. (2.7.12)

Let’s transform the momentum equation into the non-conservative version:

U
i
∂d

∂t
+ d

∂U
i

∂t
+ U

i
∂ (dU

j)

∂Xj
+ dU

j
∂U

i

∂Xj
+ g

3
d

∂d

∂X i
= −g

i
d. (2.7.13)

And rearranging terms:

U
i

(
∂d

∂t
+

∂ (dU
j)

∂Xj

)

+ d
∂U

i

∂t
+ dU

j
∂U

i

∂Xj
= −d

(

g
3

∂d

∂X i
+ g

i

)

. (2.7.14)

The first part of the equation is the continuity equation, so it’s equal to zero.

d

(
∂U

i

∂t
+ U

j
∂U

i

∂Xj

)

= −d

(

g
3

∂d

∂X i
+ g

i

)

. (2.7.15)

And simplifying:

∂U
i

∂t
+ U

j
∂U

i

∂Xj
= −g

3

∂d

∂X i
− g

i
. (2.7.16)

The next step is to express it in curvilinear coordinates using the covariant deriva-

tive:

∂u
i

∂t
+ u

j
u

i

,j
+ g

3
d,i = −g

i
. (2.7.17)

The gravity components (g
1
, g

2
, g

3
) now are defined in curvilinear basis, recall

that the third component g
3

is equal in both basis. Now the values for the covari-

ant derivative (Equation 2.3.1) are substituted. Again the process involves a large
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quantity of terms due to the Christoffel symbols, at the end the simplified expression

obtained is:

∂u
i

∂t
+

u
j

hi

∂u
i
hi

∂xj
=

hju
j
u

i

h
2

i

∂hj

∂xj
−

1

h
2

i

g
3

∂d

∂xi

+ g
j
. (2.7.18)

Considering the hydrostatic pressure Equation 2.7.1 and the constant velocity

profile (ûi = u
i) the result corresponds to Equation 2.7.11 when i = 1. So again the

momentum equation is the direct transformation of SWE using covariant derivatives

for surface curvilinear coordinates.

The final version of momentum equation adopted in the model is the conservative

form, as has been shown, to apply the curvilinear coordinates it’s only necessary to

use the covariant derivative in the SWE. In the case of momentum the equation, it

could be expressed as tensor function (Equation 2.3.16), and then the tensor identity

Equation 2.3.17 could be used. First the SWE tensor should be defined:

T
ij = dU

i
U

j +
g

3

2
d

2
g

ij
. (2.7.19)

And introducing the identity into the the momentum equation:

∂ (dui)

∂t
+

1
√

|g|

∂

∂xj

(√

|g|T
ji

)

+ Γi

kj
T

jk = dg
i
. (2.7.20)

Now the last simplification could be applied, as has been concluded in the previ-

ous chapter, when the PCS is used, discarding the curvature imply discarding also

the Christoffel symbols, so if the coordinate system selected is PCS the momentum

equation could be written as:

∂ (dui)

∂t
+

1
√

|g|

∂

∂xj

(√

|g|T
ji

)

= dg
i
. (2.7.21)
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2.7.3 Model Equations

The equation system defined to use in agreement with PCS is:







∂d

∂t
+

1
√

|g|

∂

(√

|g|u
k
d

)

∂xk
= 0,

∂ (dui)

∂t
+

1
√

|g|

∂

∂xj

(√

|g|T
ji

)

= dg
i
,

T
ij = du

i
u

j +
g

3

2
d

2
g

ij
.

(2.7.22)

For a inclined ramp all the terrain surface second derivatives are zero (hij = 0

∀i, j ∈ {X,Y }) (case developed in Proposition 1.5.1), the metric tensor g becomes

constant and the equation system could be simplified:







∂d

∂t
+

∂
(
u

k
d
)

∂xk
= 0,

∂ (dui)

∂t
+

∂

∂xj

(
T

ji
)

= dg
i
,

T
ij = du

i
u

j +
g

3

2
d

2
g

ij
.

(2.7.23)

But for the small curvatures, or slowly varying slopes (case developed in Proposi-

tion 1.5.2) is not possible to consider
√

|g| as a constant. The proposition just says:

hij ≪ hk ∀i, j, k ∈ {X,Y }. The matrix 1.4.5 collects the components of the metric

tensor, and, as it shown, to be constant it requires hij = 0 ∀i, i ∈ {X, Y }. So the

small curvatures does not fit the inclined ramp condition.

The physical sense of the proposed system is simple (Equation 2.7.22), now the

coordinate system is in PCS, this coordinate system is not orthogonal, so the phys-

ical explanation of the equations should be adapted to a non orthogonal coordinate

system. Let’s begin writing the discrete form of the continuity equation:

∆d

∆t
+

1
√

|g|

∆
(√

gu
X

d
)

∆X
+

1
√

|g|

∆
(√

gu
Y
d
)

∆Y
= 0. (2.7.24)
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In PCS the curvilinear coordinates are (X,Y ), the scaling metrics are
√

E for X

and
√

G for Y . The area element is
√

|g| =
√

EG − F 2, F is the dot product of

XX ,XY , so F =
√

EG cos(α). Then
√

|g| =
√

EG sin(α), clearly a non orthogonal

control volume area.

Now let’s multiply all the equation by the area of the discrete volume in PCS

coordinates ∆X∆Y

√

|g|, and write the result in a conservative fashion:

∆
(√

|g|∆Y ∆Xd

)

∆t
+

[

∆Y

√

|g|u
X

d

]
X=max

X=min

+
[

∆X

√

|g|u
Y
d

]
Y =max

Y =min

= 0. (2.7.25)

The first term in the equation is the time evolution of depth inside the control

volume. In the Figure 2.6, the control volume measurements are in the X direction

L
X = ∆X

√

E, and in the Y direction L
Y = ∆Y

√

G. It’s clear that the X components

of fluxes in continuity equation (Equation 2.7.25) are:

∆Y

√

|g|u
X

d =
(

∆Y

√

G

)

sin(α)
(√

Eu
X

)

d.

And substituting:

∆Y

√

|g|u
X

d = L
Y sin(α)

(√

Eu
X

)

d.

Recall that
√

Eu
X is the physical magnitude of X velocity component. So the

X component of the continuity equation is the normal flux of d through the control

volume boundary L
Y .

In the same manner the Y component of the continuity equation expresses the

normal flux of depth d through the ∆X faces of the control volume. As it’s clear the

continuity equation in Equation 2.7.22 expresses the mass conservation in a control

volume defined by a non-orthogonal coordinates and with fluxes expressed in non

physical units. The same process could be carried on in the momentum equations.
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Figure 2.6: Control volume metrics and flows for PCS (non orthogonal).

2.8 Rheologies

In the previous section the equations system has been established supposing the flow

to be ideal. This means discarding the effects of constitutive law of the material. The

friction is presented in two fashions:

1. First it appears as an internal friction. From the physical point of view, these

internal stresses don’t reduce the global momentum of the fluid because it’s

transferred from point to point, although locally some points loss velocity, an-

other increase it. From the kinetic energy (K.E.) point of view it reduces the

energy, because K.E. depends on the velocity square, so, although the mo-

mentum is conserved, the new velocity distribution always tend to be more

homogeneous (if the velocity gradient is zero no internal stresses appear), and

more homogenous means decrease K.E.

2. The second effect of the constitutive law is the basal friction. This comes

from the interaction between fluid and the boundaries and it reduces the total

momentum of the flow and its energy.
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In all the forms it plays an important role on the debris flow process, the justifi-

cation to discard it along the equations system definition is to avoid its complexity

during the definition process.

2.8.1 The Stress Tensor

The rheology is a macroscopic abstraction of the real heterogenous flow physics. The

rheology, finally, appears in the conservation equations to replace the stress tensor,

to get the depth integrated models, this stress tensor should be also integrated. The

integration includes, as usual, the use of dimensional analysis. Through this analysis

some terms are discarded.

The first step is to define the stress tensor τ in cartesian coordinates, considering

it as symmetric:

τ = τij =







σ11 τ12 τ13

τ12 σ22 τ23

τ13 τ23 σ33







, (2.8.1)

this stress tensor appears in the momentum (Equation 2.3.10) as the term:

∇ · τ =
∂τij

∂Xi

.

The first row of the tensor acts in the X momentum equation, the second row

of the tensor acts in the Y momentum equation, and, finally the terms present in

the third row are included in the Z momentum conservation equation. The stresses

tensor (τ ) could be divided into spherical part and deviational one:

τij = P







1 0 0

0 1 0

0 0 1







+







σ11 − P τ12 τ13

τ12 σ22 − P τ23

τ13 τ23 σ33 − P







, (2.8.2)
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where P is the thermodynamic pressure used previously in the equations system

definition.

2.8.2 Tensor Simplification

The components of the stress tensor are not yet defined, but the simplification could

be carried out because it depends on characteristic dimensions of the flow (recall L

and H). The first step is to apply Equation 2.3.3 to the stresses tensor, to obtain the

curvilinear form:

τ
ji

,j
=

∂τ
ji

∂xj
+ Γj

kj
τ

ki + Γi

kj
τ

jk
. (2.8.3)

The curvilinear transformation of the stress tensor (Equation 2.8.3) has three

terms, the first is the stress tensor divergence in curvilinear coordinates. Following

the previous work carried out to define the equations system, the principal directions

(u, v, w) will be used as coordinate system, in principal directions coordinates the

tensor becomes:

τ = τij =







σuu τuv τuw

τuv σvv τvw

τuw τvw σww







(2.8.4)

There are two terms of the curvilinear transformation that include the Christoffel

symbols. One strategy to deal with this terms is to discard it in PCS. As was stated in

Chapter 1, when curvatures are discarded, Christoffel symbols could also be discarded.

The second option is to use dimensional analysis to discard them (Pudasaini et al.,

2005).

As has been stated previously, the stress tensor appears in the momentum (Equa-

tion 2.3.10) inside a divergence term, so its effects depend on the derivatives of the

tensor components, when the gradients of these components are low they can be dis-

carded. The characteristic scales of the flow (recall L, H) are used to simplify the
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stress tensor (Equation 2.8.4), for example in Iverson et al. (2004) and Pudasaini

et al. (2005), the gradients of the components τuw, τvw are considered negligible in the

w direction momentum equation, so just one term of the tensor survive (σww) in this

momentum equation.

This last hypothesis allows the depth integration in w direction, obtaining at the

end the hydrostatic pressure P as σww component. So the result for the w integration

is independent on the rheology selected, it depends on the shallow characteristics of

the flow. In Pudasaini et al. (2005) using the shallow characteristics of the flow, τuv

is also considered small for the u, v directions, so is discarded. Hypothesis relating

longitudinal and transversal velocities, indeed some kind of one dimensional restric-

tion, will ensure this last hypothesis. In Iverson et al. (2004) such hypothesis is not

used and a coupled stress model is used including the transversal stresses (τuv), as a

consequence, in that reference a sophisticated model coming from the Finite Elements

Method is used to solve the constitutive equation (Zienkiewicz and Taylor, 2000).

An extra hypothesis relating normal stresses is necessary before integration:

σuu = σww = P, σvv = σww = P.

This last hypothesis about normal stresses is not universally valid, it depends in

the rheologic model adopted, for example the hypothesis is valid for inviscid fluid or

for newtonian one, but not for Coulomb rheology:

So, when the simplification hypothesis are used, the stresses tensor used is equiv-

alent to:

τij = P







1 0 0

0 1 0

0 0 1







+







0 0 τuw

0 0 τvw

0 0 0







. (2.8.5)

The resulting matrix is not symmetric because the simplification hypothesis are

not symmetric in order to take advantage of the flow shallowness.



83

The Coulomb rheology has had a great success in depth integrated debris flow

modeling (Savage and Hutter, 1989; Iverson, 1997; Pudasaini et al., 2005; Pitman

et al., 2003; Pudasaini and Hutter, 2007), because it has interesting features, for

example its simplicity allows to carry on all the integration process on it e.g.: see

Pudasaini et al. (2005). The main difference over the normal stresses hypothesis

when Coulomb rheology is used is:

σuu = kuσww = kuP, σvv = kvσww = kvP,

where ku, kv are the active/passive pressure coefficients (Savage and Hutter, 1989).

2.8.3 Tensor Depth Integration

Before integration, extra hypothesis is necessary, the free surface stresses are consid-

ered zero, no wind effect. This allows to apply again the Leibnitz rule (Vreugdenhil,

1990; Iverson et al., 2004; Pudasaini et al., 2005) and finally obtain some extra terms

to add to the momentum equations defined in the model (Section 2.7.3):







∂d

∂t
+

1
√

|g|

∂

(√

|g|u
k
d

)

∂xk
= 0,

∂ (dui)

∂t
+

1
√

|g|

∂

∂xj

(√

|g|T
ji

)

= dg
i
−

1

ρ
τbi,

T
ij = du

i
u

j +
g

3

2
d

2
g

ij
.

(2.8.6)

The term τbi is the result of the depth integration of τuw, τvw in u, v momentum

equations and represents the bed friction (as the velocity, when is expressed in curvi-

linear coordinates system, the units are not physical ones). As has been defined,

pressure P is included in stress tensor (σii), so coming from the σuu, σvv the pres-

sure terms are found in tensor term T
ij as (g3

2
d

2
g

ij). The density ρ appearing in the

system, if not in physical units, should also consider the metrics of the coordinate
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system. Using the active/pasive coefficients the results obtained for the integrated

pressure term would be:

T
ij = du

i
u

j + ki

g
3

2
d

2
g

ij
.

Other nonlinear approaches to the rheology are non depth integrable problems,

useful for complete 3D models but far from the goal of the model presented here. An

example of this could be find in the bilinear rheology (Locat, 1997), to be applied in a

depth integrated models this rheology needs numerical approximation (Imran et al.,

2001).

In other cases the rheology is depth integrable but ends up in an implicit equation

without explicit computation, this means an iterative solver to obtain the bed shear

stresses values. An example of this situation if found in Bingham (1922), several

simplified approaches has been carried out to obtain explicit approximations (Fread,

1988; Pastor et al., 2004).

The approach followed here adds the rheology as a friction law only considering

the basal shear stresses, similar to Bouchut and Westdickenberg (2004),

2.8.4 Bed Shear Stresses Definition

Two terms (τbi) remain to be fix. To define these terms some theoretical considerations

will be exposed. For the description several hypothesis will be used.

1. The flow is considered as shallow, so vertical velocities and accelerations are

negligible.

2. The velocity will be considered parallel along the depth profile.

3. Only the velocity profile gradients will be taken into account.

4. The computed friction stresses are considered to be in opposition to movement.
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This last hypothesis is in disagreement with the hypothesis used in the devel-

opment of the equations system. During the depth integration of the momentum

equation, when the curvature is neglected, the velocity profile obtained is constant

and equal to the bottom components (û1
, û

1). To rectify this point, in the depth in-

tegration process is necessary to substitute the bottom velocities (ûi) with the depth

averaged velocities (ūi).

In this section some notation will be introduced, the velocity modulus will be

V =
√

uiujgij, the profile mean velocity velocity will be V̄ = 1

d

d∫

0

V dw. Recall that

the surface normal coordinate w is arch length, so gww = 1. The stresses τuw, τvw

module is represented by τ , and should be a function of u, v, w. After the depth

integration process, the bed shear stress τb will depend just on u, v.

Bingham

This rheology (Bingham, 1922) is useful for mudflows with an important presence of

fine fractions. This rheology has a yield stress τ0, under witch there’s no movement.

Once this threshold is exceeded a laminar region is found in the velocity profile bottom

and a solid body movement in the upper part of the profile.

τ = τ0 + µm

(
∂V

∂w

)

, (2.8.7)

where µm is the Bingham viscosity.

Herschel-Bulkley

The Herschel-Bulkley rheology (Herschel and Bulkley, 1926) as used by OBrien et al.

(1993) is similar to the Bingham one, but it uses an exponent:

τ = τ0 + k

(
∂V

∂w

)
n

, (2.8.8)
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The value of the index of fluid n exponent is located around 0.33 (Coussot and

Piau, 1995; Coussot et al., 1998), k is defined as consistency parameter, which is

different from the usual viscosity. From the consistency is possible to define some

kind of Herschel-Bulkley viscosity:

µHB = nk

(
∂V

∂w

)
n−1

. (2.8.9)

This model is useful for clays modeling.

Bagnold

The rheology proposed by Bagnold (1954) is the first approach for the dispersive

pressure. It is considered as a turbulent rheology, this means that is useful for high

Reynolds numbers.

τ = Cbdρ

[

(0.615/Cv)
(1/3)

− 1
]
−2

d
2

50

(
∂V

∂w

)2

, (2.8.10)

where d50 is the characteristic sediment diameter, Cbd is a constant an Cv is the

packed volume.

Coulomb

The Coulomb rheology is characteristic of solid materials (Zienkiewicz and Taylor,

2000), in most of the geomechanics computations these stresses are used. Also in

landslides modeling this is a classical approach. It has only one parameter, the

internal friction angle φ, the shear stresses are computed as a bed normal stress,

times tan φ. The bed normal stress σww is hydrostatic, so, in the bed σww = ρg3d,

finally the bed shear stress is:

τb = ρg3d tan φ. (2.8.11)
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In an improved approach the normal stresses should be corrected with the pressure

pore, but the model presented here is considered as monophasic, for example in

Iverson and Denlinger (2001) or Pudasaini et al. (2005). The main limitation of

Coulomb rheology is to be independent of velocity, so for slope higher that φ the flow

always accelerates.

Voellmy

Strictly speaking Voellmy approach is not a rheology, its a friction formula, it does

not come from the depth integration of a constitutive law, it has an empirical ap-

proach. This rheology was introduced by Voellmy (1955), for snow avalanches, it is a

combination of Coulomb and turbulent rheologies, so it has two terms:

τb = ρ

(

g3d tan (φ) + g
(
V̄ /C

)2
)

, (2.8.12)

where C is equivalent to Chezy friction factor.

Manning

Manning is a classical friction equation, It originally comes from hydraulics and has

something to do with the logarithmic turbulent profile. So, in some sense, it is related

to the mixing length theory.

τb =
ρgV̄

2
n

2

d1/3
, (2.8.13)

where n is the Manning friction coefficient.

2.8.5 Stresses depth integration

Some of the rheologic models described in the previous section come directly from

friction laws, so the bed shear stresses τb could be directly computed, in other cases
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the rheology should be integrated to compute bed shear as a function of depth d and

mean velocity V̄ .

Bingham

The integration of Bingham rheology depth integration results in (Chen, 1983):

V̄ =
τ0d

3µm

(

1 − 1.5
τb

τ0

+ 0.5

[
τb

τ0

]3
)

. (2.8.14)

In this case, is not possible to obtain an explicit form for the basal shear stress,

so an approximation should be used. We consider the Jin and Fread (1997) simplifi-

cation:

τb = τ0

[

1 +

(
3V̄

(0.74 + 0.656) (τ0/µm) d

) 1
0.15

]

. (2.8.15)

The error in this approach is less than 5%, a better fitting is obtained by Pastor

et al. (2004), with an error less than 3%:

3

2

(
τ0

τb

)2

−

(
57

16
+

6V̄ µm

τ0d

) (
τ0

τb

)

+
65

32
= 0. (2.8.16)

Being this last equation a second order polynomial with straight solution. This

last approach is used in the present model.

Herschel-Bulkley

For this rheology the same problem exist, the approximation defined by Jin and Fread

(1997) is used:

τb = τ0



1 +

(

(1/n + 1) (1/n + 2) V̄

(0.74 + 0.656/n) (τ0/k)1/n
d

) 1
1/n+0.15



 . (2.8.17)
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2.8.6 Rheology Selection

As has been shown a lot of different possibilities for friction law exist. To choose

between different options it is necessary to analyze the event. Some non-dimensional

parameters had been defined to quantify the influence of the different rheology terms.

Three different cases are explained here, the Bagnold number, the Savage number

and the friction number. This parameters are different combination of the three pos-

sible forces: viscous (Bingham, Herschel-Bulkley), granular (Voellmy) and frictional

(Coulomb).

In Table 2.2 the equations for the different non-dimensional numbers are shown,

Cs is the solids concentration in the mixture, in the saturated case it is equal to 1

minus the porosity. These formulas link an estimation of the acting forces in the flow,

normally debris flow are considered as heterogeneous mixing of water and sediments,

the viscous rheology of the water or mud is introduced using the viscosity µ, the

frictional character of the solid to solid contact is introduced using the internal friction

angle φ and finally the granular collisions are estimated using the Bagnold dispersive

pressure.

The limit values indicate the threshold beyond which the influence of the nu-

merator force is remarkably dominant, below these values the behavior should be

considered dominated by the denominator force.

Number Equation Forces Ratio Limit Value

Bagnold NBAG = Csρd
2

50

(
V̄

d

)/

(1 − Cs)µ Granular - Viscous 100

Savage NS = ρd
2

50

(
V̄

d

)2
/

ρg3d tan φ Granular - Frictional 0.1

Friction Nf = Csρg3d tan φ

/

(1 − Cs)
(

V̄

d

)

µ Frictional - Viscous 2000

Table 2.2: Non-dimensional numbers used to classify the rheology.

Evaluating these parameters it is possible to consider which is dominant force

acting in the flow, and choose the most suitable friction law. There is some intuitive
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consideration that should be taken into account, the differences that can limit the

use of the frictional equations (Voellmy . . . ) or viscous ones (Bingham . . . ) are their

behavior (Figure 2.7).

Figure 2.7: Stability criteria for different rheologies.

While the frictional Voellmy model needs a slope to start the motion of the mate-

rial with independence of the flow height, the Bingham and Herschel-Bulkley model

only needs a flow height to start moving; even if the material is in a horizontal plane.

This difference is very important, when a debris flow is modeled, and may explain

why Bingham rheology did often not fit very well during backanalysis of real events.



Chapter 3

Numerical Methods

In this chapter the numerical methods will be described. The standard Finite Volume

Method (FVM) is used to numerically solve the equations system defined in the

previous chapter. The FVM used here is able to deal with curvilinear coordinates.

An specific version of FVM in curvilinear coordinates could be found in Ross-

manith et al. (2004); Rossmanith (2006), this general approach will be followed.

3.1 Introduction

The equations system adopted in the previous chapter (Equations 2.8.6), expressed

in PCS is:







∂h

∂t
+

1
√

|g|

∂

(√

|g|u
k
h

)

∂xk
= 0,

∂ (hui)

∂t
+

1
√

|g|

∂

∂xj

(√

|g|T
ji

)

= hg
i
−

1

ρ
τbi

,

T
ij = hu

i
u

j +
g

3

2
h

2
g

ij
.

(3.1.1)

Important notation change has been introduced to regularize the nomenclature

(LeVeque, 2002; Toro, 2001), in the previous chapter the depth was defined using

d, from now to the end the depth will expressed using h. The velocity components

91
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in PCS are u = (u, v) in (X,Y ) coordinates. Recall that these velocities are not in

physical coordinates. Also,
√

|g| is the metric tensor norm, whose components are

gij and g1, g2, g3 are the components of the gravity vector g.

For the FVM the conservative variables vector should be defined. In our case

the vector is q ≡ q (X, Y, t), and is composed by q = (h, hu, hv). So the classical

conservative variables depth and unit discharge, are now expressed in curvilinear

coordinates. The unit discharges hu, hv are presented as the product of the non

physical variables h, u, v. This means that the units are not metric, except in the

normal to surface coordinate N, so the depth is in physical units.

Developing the equations, the system in PCS becomes:

1. Continuity:

∂h

∂t
+

1
√

|g|

[

∂
(√

ghu
)

∂X
+

∂
(√

ghv
)

∂Y

]

= 0 (3.1.2)

2. X Momentum:

∂ (hu)

∂t
+

1
√

|g|

[

∂

∂X

(
√

|g|

(

hu
2 +

g3

2
h

2
g

11

))

+
∂

∂Y

(
√

|g|

(

huv +
g3

2
h

2
g

12

))]

= hg1 −

1

ρ
τbX

(3.1.3)

3. Y Momentum:

∂ (hv)

∂t
+

1
√

|g|

[

∂

∂X

(
√

|g|

(

hvu +
g3

2
h

2
g

21

))

+
∂

∂Y

(
√

|g|

(

hv
2 +

g3

2
h

2
g

22

))]

= hg2 −

1

ρ
τbY

(3.1.4)
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3.2 Finite Volume Method

The FVM is a classical method to solve fluid problems, its strength comes from the

fact that it is based on the conservative form of equations. The classical control

volume uses the fixed grid to solve the equation, and the fluxes are the physical

fluxes.

Inside the FVM family, there are different approaches. However in the SWE

numerical methods, in the last years, the Godunov (1959) approach has achieved a

great success. This method solves a Riemann differential problem on control volume

faces (LeVeque, 2002; Toro, 2001).

3.2.1 Curvilinear Form of Conservation Equations

The starting point is the typical conservation equation used in fluids expressed in

integral form:

∂

∂t

∫

V

q (X, Y, t) dV +

∫

dV

f (q) · dS = 0, (3.2.1)

where V is the control volume, dV is the boundary of the control volume, so it

is a surface and dS is a differential of this boundary surface. The flux function is

represented by f ≡ f (q) and it is a tensor f
ij. In this equation the source terms

s are not considered. Applying the divergence theorem, the differential form of the

equation is obtained:

∂

∂t
q + ∇ · f (q) = 0. (3.2.2)

The flux tensor is divided in its curvilinear components f = (fX , fY ), and then the

conservation equation becomes (Equation 2.3.17):

∂

∂t
q +

1
√

|g|

∂

∂X
fX (X, Y,q) +

1
√

|g|

∂

∂Y
fY (X, Y,q) = ψ (X,Y,q) , (3.2.3)
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ψ being the source terms due to metrics (the physic source terms are not being

considered). In this case the Christoffel symbols, as has been explained in previous

chapters, could be discarded in PCS. Comparing this equation to the model equations

system (Equation 3.1.1) it is possible to define the fluxes in curvilinear coordinates,

including the metrics into the fluxes:

fX =







√

|g|hu
√

|g|
(
hu

2 + g3

2
h

2
g

11
)

√

|g|
(
hvu + g3

2
h

2
g

21
)







, fY =







√

|g|hv
√

|g|
(
huv + g3

2
h

2
g

12
)

√

|g|
(
hv

2 + g3

2
h

2
g

22
)







. (3.2.4)

The fact of including metrics into fluxes
(√

|g|

)

makes flux function explicitly

coordinates dependent, so a spatially varied flux is found f (X,q). This fact has

important consequences, there are two different approaches to deal with this situation,

the cell-centered flux functions and the cell-edge flux functions (Bale and LeVeque,

2002).

On the one hand, in the cell-centered flux functions, the spatially dependent term
(√

|g|

)

, is considered as constant in the cell, so discontinuities are found in the cell

boundaries. In the other hand, in the cell-edge flux functions approach, the spatial

dependent term
(√

|g|

)

is considered as constant in the interfaces, so a jump is found

in the cell center.

The problem found in the first approach is that a new flux solution should be

developed in the interfaces, because new discontinuous terms appear in the flux func-

tions (Bale and LeVeque, 2002). In the second proposal, a discontinuous fluxes appear

in cell center due to the
(√

|g|

)

jump, but on the contrary the standard flux solution

could be applied in the control volume interfaces.

In the presented model the second approach is used, because the metric derivatives
∂

√

|g|

∂X
,

∂

√

|g|

∂Y
are dependent on the Christoffel symbols, so in the PCS are neglected

and flux discontinuities in the cell center are not introduced. Recall that the source

terms are not being considered, they are grouped as:
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s =

(

hg1 −
1

ρ
τbX

hg2 −
1

ρ
τbY

)

. (3.2.5)

Also the conservative form (Equation 3.2.1) could be obtained in curvilinear co-

ordinates PCS for a control volume V = [Xmin, Xmax] × [Ymin, Ymax]:

∂

∂t

∫∫

V

q (X, Y, t)
√

|g|dXdY +
∑

Xmin,Xmax

∫

dV

fX (X, Y,q) · dY

+
∑

Ymin,Ymax

∫

dV

fY (X, Y,q) · dX = 0. (3.2.6)

3.2.2 Equations Discretization

First of all, the whole domain V = [Xmin, Xmax] × [Ymin, Ymax] is discretized:

Xi = Xmin +

(

i −
1

2

)

∆X,

Yj = Ymin +

(

j −
1

2

)

∆Y.

(3.2.7)

Also the time is discretized:

t
n = tmin + n∆t. (3.2.8)

The Godunov method works with the cell average values for the variables, and in

curvilinear metrics, the value is computed using:

Qn

ij
≈

1
√

|g|
ij
∆X∆Y

∫
Yj+1/2

Yj−1/2

∫
Xi+1/2

Xi+1/2

√

|g|q (α, β, t
n) dαdβ, (3.2.9)

where
√

|g|
ij

is considered as the cell average value for
√

|g|. Also the fluxes are

discretized using the time average and cell boundary averaging:
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FX

i−1/2 j
≈

1

∆t∆Y

∫
t
n+1

tn

∫
Yj+1/2

Yj−1/2

fX
(
q

(
Xi−1/2, α, τ

))
dαdτ ,

FY

i j−1/2
≈

1

∆t∆X

∫
t
n+1

tn

∫
Xi+1/2

Xi−1/2

fY
(
q

(
β, Yj−1/2, τ

))
dβdτ .

(3.2.10)

In these equations the dependence of fluxes into coordinates is not explicitly

shown. It’s important to note that in these integrals the values for the metrics are

evaluated in the faces,
√

|g|
i−1/2 j

,

√

|g|
i j−1/2

, and are considered constant (cell-edge

flux functions). The source term could be also defined in discrete form, averaging in

the control volume and also in time:

Sij ≈

1
√

|g|
ij
∆t∆X∆Y

∫
t
n+1

tn

∫
Yj+1/2

Yj−1/2

∫
Xi+1/2

Xi+1/2

√

|g|s (q, α, β) dαdβdτ . (3.2.11)

The dependence of the source term on time is not explicit. This is through the

variables q. Comparing these results to the conservative form of the Equation 3.2.6,

the natural discretization form of the equation is:

Qn+1

ij
= Qn

ij
−

∆t
√

|g|
ij
∆X

(
FX

i+1/2 j
− FX

i−1/2 j

)

−

∆t
√

|g|
ij
∆Y

(
FY

i j+1/2
− FY

i j−1/2

)
+ ∆tSij. (3.2.12)

As has been commented the metrics are different in the cell center
√

|g|
ij

and

in the cell boundaries
√

|g|
i±1/2j±1/2

, so terms are not canceled. In the Godunov

method the integral fluxes (Equation 3.2.10) are computed using only the cell average

values (Equation 3.2.9), in the previous time step, at both sides of the control volume

boundary, this means that:

FX

i−1/2 j
≡ FX

i−1/2 j

(
Qn

i−1 j
,Qn

i j

)
,

FY

i j−1/2
≡ FY

i j−1/2

(
Qn

i j−1
,Qn

i j

)
,

Sij ≡ Sij

(
Qn

i j

)
.

(3.2.13)
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So the basic method is only first order in time and space. It is straight to define

higher order time explicit discretizations, using methods as Runge-Kutta. Also sec-

ond order in space could be achieved using high resolution TVD methods (Harten,

1983). Transverse fluxes could be computed to complete the second order accuracy

and increase the Courant stability criterion until C ≤ 1 (Rossmanith et al., 2004;

Rossmanith, 2006; LeVeque, 2002). The complete discretization using second order

corrections and source term discretization is (Rossmanith et al., 2004):

Qn+1

ij
= Qn

ij

−

∆t
√

|g|
ij
∆X

(
A

−

X
∆QX

i+1/2 j
+ A

+

X
∆QX

i−1/2 j

)

−

∆t
√

|g|
ij
∆Y

(
A

−

Y
∆QY

i j+1/2
+ A

+

Y
∆QY

i j−1/2

)

−

∆t
√

|g|
ij
∆X

(

F̃
X

i+1/2 j
− F̃

X

i−1/2 j

)

−

∆t
√

|g|
ij
∆Y

(

F̃
Y

i j+1/2
− F̃

Y

i j−1/2

)

−∆tSij. (3.2.14)

The first line of the discretization corresponds to local derivative, the second

and the third lines correspond to first order fluxes (A±

X
∆QX

i±1/2 j
,A

±

Y
∆QY

i j±1/2
, Sec-

tion 3.2.2), the fourth line are the spatial second order corrections (F̃
X

i±1/2 j
, F̃

Y

i j±1/2
,

Section 3.2.2) and finally the last line is the source term.

In the Godunov method the fluxes are computed solving the Riemann Problem in

the interface (Godunov, 1959; Toro, 1999), these problems are defined by:

∂

∂t
q +

∂

∂X
fX (X, Y,q) = 0,

q (X, t)

{

Q
i−1 j

if X < Xi−1/2

Q
i j

if X < Xi+1/2

(3.2.15)

For the Ymin, Ymax interfaces, and:
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∂

∂t
q +

∂

∂Y
fY (X, Y,q) = 0,

q (X, t)

{

Q
i j−1

if Y < Yj−1/2

Q
i j

if Y < Yj+1/2

(3.2.16)

For the Xmin, Xmax interfaces. The values of the first order fluxes are obtained

through the solution of these Riemann problems. The methodology to obtain these

values depend strongly in the approach selected to solve the Riemann problem. In

the present case, the equations system form a non-linear problem, so to achieve the

exact solution of the problem, is necessary to implement a non-linear iterative solver.

This kind of solvers are computationally expensive, so the equation system should

be linearized in order to reduce the time consuming. There are multiple linearized

solvers for Riemann problems, for example Roe (1981), HLLC (Toro et al., 1994),

Osher (Engquist and Osher, 1981), HLL (Harten et al., 1983).

Linearized Solver

In case of using a linearized solver the standard wave propagation method is used

(Rossmanith et al., 2004), the Riemann problems at the boundaries are substituted

by the linearized version, extracting the metrics out of the linearized flux matrix:

∂

∂t
q +

√

|g|
i−1/2 j

Ai−1/2 j

∂

∂X
(X, Y,q) = 0,

q (X, t)

{

Q
i−1 j

if X < Xi−1/2

Q
i j

if X > Xi−1/2

√

|g|
i−1/2 j

Ai−1/2 j ≈

∂fX
∂q

(
q

(
Xi−1/2, Yj, t

))
.

(3.2.17)

Linearized matrix A should accomplish several conditions (Roe, 1981), the first

order fluxes could be defined using:

Q
i j
− Q

i−1 j
=

M∑

p=1

α
p

i−1/2 j
rp

i−1/2 j
≡

M∑

p=1

W
p

i−1/2 j
, (3.2.18)
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A
−

X
∆QX

i−1/2 j
=

√

|g|
i−1/2 j

M∑

p: λ
p
i−1/2 j

>0

λ
p

i−1/2 j
W

p

i−1/2 j
,

A
+

X
∆QX

i−1/2 j
=

√

|g|
i−1/2 j

M∑

p: λ
p
i−1/2 j

<0

λ
p

i−1/2 j
W

p

i−1/2 j
,

(3.2.19)

where λ
p

i j
are the eigenvalues of the linearized hyperbolic problem (Equation 3.2.17),

rp

i j
are the eigenvectors, α

p

i j
are the coefficients of the jump across the discontinuity

projected in the eigenvectors base, and W
p

i−1/2 j
are the Riemann solution waves, in

the non linearized version of the Riemann problem is not possible to assume the exis-

tence of these waves (Bale and LeVeque, 2002). All the requirements over eigenvalues

and eigenvectors related to hyperbolic problems should be accomplished (LeVeque,

2002; Toro, 2001).

Some considerations should be introduced at this point, as has been shown in

Section 2.7.3,
√

|g| =
√

EG sin(α), if we introduce this in Equation 3.2.19

A
−

X
∆QX

i−1/2 j
=

√

Ei−1/2 j

√

Gi−1/2 j sin
(
αi−1/2 j

)
M∑

p: λ
p
i−1/2 j

>0

λ
p

i−1/2 j
W

p

i−1/2 j
. (3.2.20)

And sorting:

A
−

X
∆QX

i−1/2 j
=

√

Gi−1/2 j sin
(
αi−1/2 j

)
M∑

p: λ
p
i−1/2 j

>0

(√

Ei−1/2 jλ
p

i−1/2 j

)

W
p

i−1/2 j
.

(3.2.21)

The term
(
√

Ei−1/2 jλ
p

i−1/2 j

)

is the wave velocity in physical units λ̃
p

i−1/2 j
, recall

that in curvilinear coordinate systems the values are not in physic units , they should

be corrected using metric terms. In the same manner, multiplying both sides with

L
Y the total flux through the X control volume boundary is obtained:

∆Y A
−

X
∆QX

i−1/2 j
= L

Y sin
(
αi−1/2 j

)
M∑

p: λ
p
i−1/2 j

>0

λ̃
p

i−1/2 j
W

p

i−1/2 j
. (3.2.22)
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Coinciding with the ideas explained in Section 2.7.3. Of course, due to the non-

orthogonality of the coordinates, the angle between axes α, appears as a correction

to the flux.

Non-linear Solver

If the non-linear version of the problem is used the situation is a bit different, the

eigenvalues and eigenvectors could not be defined, so the waves and their velocities

could not be computed. Anyway, the solution to the Riemann problem between two

cell could be find, and from this solution, the solution in the interface Q⊥, and the

flux solution Fn

i+1/2 j
could be found.

Fi+1/2 j = fX
(
Q⊥

(
Qn

i j
,Qn

i+1 j

))
. (3.2.23)

Using this flux solution the first order terms could be computed:

A
−

X
∆QX

i−1/2 j
= fX

(
Q⊥

i−1/2 j

)
− fX

(
Q

i−1 j

)
,

A
+

X
∆QX

i−1/2 j
= fX

(
Q

i j

)
− fX

(
Q⊥

i−1/2 j

)
.

(3.2.24)

The problem in this case is related to the waves speed, because these speeds are

needed in the second order corrections, as LeVeque (2002) proposes the Rankine-

Hugoniot shock speeds could be used with a low error in the solutions and still

achieving the second order accuracy in the solution:

Wi−1/2 j = Q
i j
− Q

i−1 j
,

λi−1/2 j =
[
fX

(
Q

i j

)
− fX

(
Q

i−1 j

)]/(
Q

i j
− Q

i−1 j

)
.

(3.2.25)

In the present model solvers for the linearized and non linear problem are imple-

mented. For real test cases, due to the scale of the problem, a linearized solver is

recommended.
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Second Order Terms

Regarding to the second order correction terms appearing in Equation 3.2.14, the

flux limiting approach is used (LeVeque, 2002), so the correction fluxes are defined

through:

F̃
X

i−1/2 j
=

1

2

√

|g|
i−1/2 j

M∑

p=1

sign
(

λ
p

i−1/2 j

) (

1 −

∆t

∆X

∣
∣
∣λ

p

i−1/2 j

∣
∣
∣

)

W̃
p

i−1/2 j
, (3.2.26)

where W̃i j are the limited waves:

W̃
p

i−1/2 j
= W

p

i−1/2 j
φ

p

i−1/2 j
, (3.2.27)

where φ
p

i j
is the flux limiter (LeVeque, 2002; Toro, 2001). In the model the Min-

mod, Superbee, Van Leer and Monotonized Centered Limiter are implemented.

3.3 Riemann Problem Solution

As has been commented previously, in the presented model, linearized and non-linear

Riemann solvers are implemented, there are extensive literature on these solvers (LeV-

eque, 2002; Toro, 1999, 2001; Roe, 1981; Engquist and Osher, 1981) also applied to

debris flow equations (Pitman et al., 2003; Iverson and Denlinger, 2001; Brufau et al.,

2000). So it’s not necessary to go deeply into the details, but a general descrip-

tion should be carried out, especially taking into account that in the next chapter a

boundary conditions approach will be introduced based on the non linear Riemann

solver. So in the next section some general details about the Riemann solver for the

equations system will be explained.
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3.3.1 Orthonormalization

In the equations system definition the goal was to obtain a system similar to the SWE,

due to the important background existing in numerically solving this system. Finally

the obtained system was close to SWE, but defined in a non-orthogonal coordinate

system. So the Riemann problem is more complex than the classical one for SWE,

obtaining complicate eigenvectors and eigenvalues.

In order obtain a Riemann problem similar to the SWE, a local orthonormalization

is carried on. This operation is locally applied, because the metrics are curvilinear,

so the orthogonal basis is dependent on the coordinates. At every cell interface the

flows are transformed using orthonormal basis (Rossmanith et al., 2004; Rossmanith,

2006; Pons et al., 1998). Once the transformation is finished, the classical SWE in

cartesian basis are obtained, so the Riemann problem could be solved in a simple

way.

It’s important to note that the transformation is carried on using a rotation ma-

trix, but in general this matrix is not constant, so, the cell-edge flux functions hy-

pothesis means to consider this matrix as constant near the interface and discard the

derivatives of the rotation matrix in the Riemann problem solution.

Two different rotation matrix are obtained, one for the X axis:

q̃ =







1 0 0

0 g12
√

g22
0

0
√

g
√

g22

√

g22







· q =







1 0 0

0 F
√

G
0

0
√

F 2
−EG

√

G

√

G







·







h

hu

hv







, (3.3.1)

where q̃ are the variables in the orthonormal basis, so in physic units. In Fig-

ure 3.1 the basis defined for X axe is shown, a new coordinate direction X eX
is defined

orthogonal to XY , so orthogonal to the cell interface.

The second matrix is for the Riemann problem in the Y axis:
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YX
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°X
X

Figure 3.1: Orthonormal basis defined in the X axis, this base is used in the Riemann
problem solution.

q̃ =







1 0 0

0
√

g11

√
g

√
g11

0 0 g12
√

g11







· q =







1 0 0

0
√

E

√

F 2
−EG

√

E

0 0 F
√

E







·







h

hu

hv







, (3.3.2)

In the new orthonormal base the flux functions are:

f̃ eX
=







hũ

hũ
2 + g3

2
h

2

hṽũ







f̃eY
=







hṽ

hũṽ

hṽ
2 + g3

2
h

2







, (3.3.3)

ũ, ṽ being the velocities in the orthonormal coordinates X̃, Ỹ , for simplicity the

tildes will be omitted in the following sections.

3.3.2 Contact Discontinuity

The Equations 3.3.3 are the classical fluxes in SWE with a corrected gravity, these

bidimensional equations are solved with two different Riemann problems, one in the
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X direction and the second on the Y direction. As its known (LeVeque, 2002), in the

X direction the Y velocity v acts as a passive tracer, this means that the v values

don’t affect the Riemann problem solution. And the same situation occurs with the

X velocity in the Y Riemann problem.

These kind of hyperbolic equations that include a passive tracer, normally provoke

a contact discontinuity, this means a wave that is advected with the flow velocity, as

a material tracer. The remain Riemann waves are computed solving the traditional

one dimensional Riemann problem, so the computation is simplified.

So in the solver the classical SWE Riemann problem will be solved, and a contact

discontinuity will be added as an extra wave to include de second dimension in the

problem. In case of using a linearized solver, the Harten-Lax-Leer-Contact solver

(HLLC) (Toro et al., 1994) is defined to specifically deal with contact discontinuities.

3.3.3 SWE Riemann Problem Solutions

As has been explained, the solver is dimensional splitting, so every dimension is

solved with a different Riemann problem, in this section only the X dimension will

be exposed. First of all, the interface flux problem will recalled:

Fi+1/2 j = fX
(
q

(
Xi+1/2, Yj, t

))
,

Fi+1/2 j = fX
(
q⊥

(
Qn

i j
,Qn

i+1 j

))
,

Fi+1/2 j = fX
(
q⊥ (q

l
,q

r
)
)
,

(3.3.4)

Qn

i
is the vector of dependent variables at cell i at time step n, q⊥ is the depen-

dent variables vector in cell face, and it depends on the values at both sides of the

discontinuity
(
Qn

i
,Qn

i+1

)
, represented as q

l
,q

r
(subscript l and r indicates left side

and right side). Finally, the Riemann problem solves the hyperbolic equations system

between both side variable values q
l
,q

r
, to find the flux solution state q⊥ (q

l
,q

r
). The

boundary conditions are an exception because the dependent variables on either side
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of the Riemann problem are unknown. For example, in the downstream boundary,

the right values in the discontinuity q
r

are known and the left values q
l

have one

unknown dependent variable (subcritical regime).

q
l
=







h

hu

hv







i j

, q
r

=







h

hu

hv







i+1 j

. (3.3.5)

In the SWE Riemann problem there are two families of solution waves, the

Rankine-Hugoniot waves and the Riemann invariant waves, the first ones are a dis-

continuous waves, namely shocks and the second one are continuous waves, namely

rarefactions. The solution consists of two phase space values q
l
,q

r
connected to a

third phase space value q
m

by waves. Thus, a wave connects q
l
,q

m
and a wave con-

nects q
m

,q
r
. Every wave must belong to a family of waves. Each family has two

waves, thus, in every value in the phase space, we find four different waves: Shock λ1,

Shock λ2, Riemann λ1 and Riemann λ2. However, only some parts of these waves are

valid, this condition is imposed by entropy (Lax, 1972). Using the valid solutions

from Lax, we construct a solver by combining the different valid waves to obtain a

value q
m

, which is connected to a 1-wave in the left state of the Riemann problem

q
l
and a 2-wave in the right state of the Riemann problem q

r
. The valid waves that

connect q
l
to q

m
are (1-wave):

um =







ul + 2
(√

g3hl −

√

g3hm

)

hm < hl

ul − (hm − hl)

√

g3

2

(
1

hm

+
1

hl

)

hm > hl

(3.3.6)

The valid waves that connect q
m

to q
r

are (2-wave):

um =







ur − 2
(√

g3hr −

√

g3hm

)

hm < hr

ur − (hm − hr)

√

g3

2

(
1

hm

+
1

hr

)

hm > hr

(3.3.7)
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In Figure 3.2 all the possible waves that pass through a phase space point q are

shown, finally if this state q inside the phase space belongs to left side q
l
or right side

q
r

only two of the curves are valid. And, two accomplish the entropy condition, only

a piece of every curve is allowed.
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Figure 3.2: All the solution waves existing in a point of the phases space.

If the state is a left state, only Shock λ1, Riemann λ1 are available, and also one

half of these curves is valid. In Figure 3.3 the valid parts of the curves are shown, as

its clear combining these curves is always possible to find a crossing point.

It’s important to note the difference between q
m

and q⊥, the first one is the
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Figure 3.3: Entropically valid waves related to the left state q
l
and right state q

r
.

Riemann solution and the second one is the flux solution (flux at the control volume

face). This difference is essential for the proposed algorithm to solving boundary

conditions, if we solve a typical dambreak problem for t = 0, we obtain the (Stoker,

1957) solution, and the flux in the dam is q⊥
6= q

m
.

An example of the solution to the Riemann problem is shown in Figure 3.4, the

state q
m

is obtained as the crossing of the valid waves. As has been stated, once the

problem is solved, the flux solution q⊥ should be computed.

The computations of q⊥ depends on the structure of the solution, and the solution

state that remains on the interface normally corresponds to the piece of the of the

resulting waves that has zero velocity. It’s important to recall that the hyperbolicity

of the system guarantees the self-similarity of the solution, so along the time step

∆t the structure of the solution its constant, so the value of q⊥ its constant (if the

stability criterion is accomplished) (LeVeque, 2002).

In Figure 3.5 the structure of the solution is shown, the selected variable is the

depth, and it’s clear the existence of different waves and a standing state q⊥ in the
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Figure 3.4: Riemann problem solution q
m

, connecting left q
l
and right states q

r
.

cell interface, different from the problem solution q
m

.

The solution estate q
m

it’s a vector with three different components:

q
m

=







hm

hmum

hmvm







, (3.3.8)

the values for hm, um are obtained through Equations 3.3.6, 3.3.7, but vm it’s still

undefined, the values for this variables are obtained from the contact discontinuities

theory, so:

vm =

{

vl um < 0

vr um > 0
(3.3.9)

If a linearized solver is used, a wave and a speed are defined for the contact

discontinuity:
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Figure 3.5: Depth solution for Riemann problem at t = 0.1, q
l

= (25, 150), q
r

=
(7, 100) and the Riemann solution is q

m
= (9.9, 174.9), connecting to left and right

states.

λ
p

i+1/2 j
= um, rp

i+1/2 j
=







0

0

1







, W
p

i+1/2 j
=







0

0

vr − vl







. (3.3.10)

3.3.4 Final Remarks

The complete algorithm of the Godunov flux computation is:
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Dependent Variables







q
l
= Qn

i j

q
r

= Qn

i+1 j

↓

q
m

= Riemann Solver (q
l
,q

r
)

↓

q⊥ = q⊥(q
l
,q

r
,q

m
)

↓

Fn

i+1/2 j
= fX

(
q⊥

)

So the Riemann solver used in FVM must follow these steps, using linear or non

linear approach to compute the different elements. The Riemann solvers theory has

became classical, so there are a large amount of bibliographic references on the topic

(LeVeque, 2002; Toro, 1999, 2001).



Chapter 4

Boundary conditions

One of the central points in debris flow simulation is the introduction of the debris

volume. There are two main approaches:

• Introduce the volume as initial condition: useful if the triggering process is a

landslide and the initial position and depth is known. The principal restric-

tion is the whole basin simulation requirement, involving large computational

resources.

• Introduce the volume as a boundary condition hydrograph: useful for inchannel

debris and landslide debris. In the second case it’s necessary to transform the

landslide volume into discharge.

The first choice is straight, just to introduce the initial conditions and propagate

the flow. In the second case the problem is more complicated, the first step is the

debris hydrograph creation (Rickenmann, Laigle, McArdell and Hbl, 2006; Nakagawa

et al., 1999; Takaoka et al., 2006), and the second is the hydrograph propagation

(Scheidl and Rickenmann, 2009; Hübl and Steinwendtner, 2001; Rickenmann, Laigle,

McArdell and Hbl, 2006).

The model presented in this work is able to deal with both scenarios, however

the challenge is how to introduce debris flow hydrograph boundary condition. The

theory for hydrograph input is developed, but in most of the cases to be applied to

111
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continuous flow using the method of characteristics (Sarra, 2003; Henderson, 1966;

Abbott, 1966). For debris flow, the rising limb of the hydrograph is steep, and it is

not possible to guarantee the absence of shock waves in the boundary. So, a new

method is necessary to introduce the hydrograph in the right way.

In this chapter a new approach to introduce the boundary conditions in the FVM

framework is described. To illustrate the method the one dimensional version of the

SWE is used:

q =

(

h

hu

)

,







∂h

∂t
+

∂hu

∂X
= 0,

∂hu

∂t
+

∂

(

u
2
h + g3

h
2

2

)

∂X
= 0,

(4.0.1)

where X, t as an independent variables.

4.1 Introduction

The use of the finite volume method in hyperbolic problems has become more widespread.

The Godunov method and Riemann solvers have been combined to obtain high-

resolution methods capable of solving transcritical regimes (including subcritical and

supercritical areas). Simple problems used as test cases have boundary conditions that

make mathematical sense, such as reflecting or non-reflecting boundary conditions.

Under these conditions, the values of the dependent variables of the boundaries can

be found immediately. In real computations the boundary conditions have physical

sense and the dependent variables are not so easy to define. The intrinsic charac-

teristics of the hyperbolic problems make complex to define a well posed problem.

The boundary conditions imposed should accomplish the hyperbolic structure of the

problem.
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As an example, in the most typical shallow water equations (SWE) casses (sub-

critical regimes), the boundary conditions are the upstream discharge value and the

downstream water level. To apply boundary conditions, two upstream and two down-

stream dependent variables are needed. Therefore, the values of the unknown vari-

ables (upstream water level and downstream discharge) need to be interpolated. This

task is usually performed using the method of characteristics (MOC), but this involves

using two different numerical schemes to solve the problem: a finite volume method

inside the domain and the MOC at the boundaries. The problem is that MOC is

based on the solution of the strong form of the equations, so avoiding transcritical

regimes, thus, inside the domain the method can deal with transcritical regimes, and

at the boundaries the selected method is not able to deal with discontinuities.

This chapter proposes a new approach to introduce boundary conditions, in a way

that is consistent with a Riemann solver, making it unnecessary to use the MOC for

the boundaries. With this method, boundary conditions with shocks and rarefactions

can be used. This method determines which boundary conditions imply a well-posed

hyperbolic problem and which do not. In a similar work by Bateman (1993), the

transcritical boundary conditions problem was solved using a modified MOC.

4.2 Description of the Problem

In hyperbolic problems, the definition of boundary conditions is not trivial. The

number and application points of the conditions determine whether the problem is

well posed. The SWE system has two dependent variables and two equations. In

the domain, there are two different boundaries X1−1/2, Xn+1/2, and two unknowns on

every boundary. Depending on the problem it is necessary to impose one, two or none

boundary conditions on every domain boundary.

In hyperbolic problems, conditions should be imposed on the upwind side, which is

defined by the eigenvalues of the hyperbolic system. For SWE eigenvalues can be both
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positive, both negative, or one negative and one positive. These three cases define

zones in the phase space, the supercritical regime, inverse regime and subcritical

regime. If in a geometric domain we find different regimes we are dealing with a

transcritical regime, also it’s possible to find eigenvalues with zero value, this define

sonic points.

The boundary of the three different regime zones in the phase space is defined by

two curves. Crit+ is the boundary between subcritical zone and supercritical one,

and Crit- is the boundary between inverse and subcritical zones. These curves are

defined by an non-dimensional parameter, the Froude number:







Supercritical-Subcritical boundary Crit+

λ1 = 0 ⇒ u −

√

gh = 0

⇒ u =
√

gh ⇒

u
√

gh
= 1 = Froude number

Subcritical-Inverse boundary Crit−

λ2 = 0 ⇒ u +
√

gh = 0

⇒ u = −

√

gh ⇒

−u
√

gh
= −1

In a supercritical regime, boundary conditions should be defined on the upstream

boundary. In an inverse regime, boundary conditions should be imposed on the

downstream boundary. In the subcritical regime, one condition should be imposed

on the upstream boundary and one on the downstream boundary.

In a transcritical regime the number of conditions imposed on every boundary

depends on the regime zone were the boundary belongs. As mentioned above, to

solve a Riemann problem, we need to know the values of the dependent variables on

both sides of the problem.

In a supercritical or inverse regime, we find a boundary with all the conditions

imposed, the solution of the Riemann problem in this boundary should be the imposed
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Figure 4.1: Phase space with the zones defined for every regime, supercritical (dark
grey), inverse (grey) and subcritical (remain), in the figure we see and example of
Riemann problem and solution with all the values in the subcritical zone.

boundary conditions:

q
cc

= (hcc, (hu)
cc

) , (4.2.1)

where q
cc

is boundary conditions vector, composed by the imposed dependent

variables, depth hcc and unit discharge (hu)
cc

, to simplify the notation, in the next,

the brackets in the unit discharge will be omitted (hu)
cc

→ hucc. So to fulfill the

boundary condition, the Riemann flux solution should be q⊥ = q
m

= q
cc

, otherwise

is a not a well posed problem. The other boundary side has no boundary conditions

imposed; the Riemann problem solution should not depend on the unknown values.

This defines the well-posed problem condition.

The subcritical regime is different. In order to solve the Riemann problem, we

have one side of the problem with only one boundary condition imposed, so the

other one must be interpolated. A complete boundary conditions method should find



116

the unknown dependent variable value. It should be consistent with the imposed

boundary condition and the domain dependent variables.

First, the method should test the well-posed condition. Second, the method should

interpolate the values of the incomplete dependent variables. These problems have

traditionally been solved with the MOC, but this is not consistent with a Godunov

method capable of dealing with transcritical regimes.

4.3 General Description of the Solution Method

This method uses the Riemann problem solution structure to introduce the boundary

conditions in the domain. The method will use the Riemann solution structure to

test whether the boundaries are well posed, and it will use this structure to compute

the values of the incomplete boundary conditions (subcritical).

For supercritical and inverse regimes, is required the complete boundary with two

imposed conditions (hcc, hucc) to belong to the supercritical or inverse zone of the

phase space. Is also needed that the Riemann problem solution state q
m

, fulfills

another condition, depending on the regime, in order to guarantee that the flux

solution q⊥ = (hcc, hucc) is equal to the imposed boundary values.

For subcritical regimes, one dependent variable is imposed on each side of the

domain and the other needs to be interpolated. To find this unknown variable, the

method will impose that it belongs to the phases connected by valid waves to the inside

domain dependent variables values. Figure 4.2 shows an example of a subcritical

regime with a unit discharge hucc imposed in the upstream and the other dependent

variable hcc interpolated. The state (hc, hucc) is connected to the inside state q
r

by a

Riemann λ2 rarefaction.

The dependent variables values at both sides of the Riemann problem are:
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Figure 4.2: Interpolation of the boundary condition hcc from the inside state q
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the imposed boundary condition hucc.

q
r

= Qn

1
,

q
l
=

(

h?

hucc

)

.

Conceptually, this method finds the Riemann solution q
m

, but for the Godunov

method we need the flux solution q⊥. However, as we will see:

Proposition 4.3.1. In a subcritical regime, boundary conditions are well posed only

if q
⊥ = q

m
is fulfilled.

Proof. The demonstration is simple, if we impose a unique boundary condition (hcc or hucc),

the resulting flux should depend on the inside value (q
l
,q

r
) and on the boundary con-

dition value itself (hcc, hucc). The phase values connected by valid waves to the inside

state (q
l
,q

r
) have one degree of freedom, so by imposing one boundary condition
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(hcc, hucc), the value of the solution state q
m

is defined exactly As we will see, in

some cases the solution is undefined, but these cases are not mathematically well

posed.

So the flux solution q⊥ should therefore fulfill q⊥
∈ [q

m
,q

l
] or q⊥

∈ [q
m

,q
r
],

depending on the case (downstream or upstream conditions). In some cases, we will

find q⊥ = q
m

. However, other cases fulfill q⊥
∈ (q

m
,q

l
] or q⊥

∈ (q
m

,q
r
], such

as transcritical rarefactions. In these cases, the problem is not well posed because

q⊥
6= (hcc, hucc), so the boundary condition is not imposed.

4.4 Figures Used To Describe The Cases

To illustrate different situations in which this method can be applied, two different

figures will be used: one with the phase space (Figure 4.3) and another with a de-

pendent variable in the space domain (Figure 4.4). The latter will reproduce time

evolution of the waves produced in the phase space.

The graphs will contain the Riemann problem states q
l
,q

r
, the solution state

q
m

and the flux state q⊥. The valid waves connected to these states will also be

drawn. The continuous waves represent the rarefactions; q
l
connects to Riemann λ1

and q
r

connects to Riemann λ2.

The discontinuous lines represent the shocks; q
l

connects to Shock λ1 and q
r

connects to Shock λ2. We will also find two curves, Crit+ and Crit-, which define the

boundaries of the supercritical and inverse regime zones respectively (Figure 4.1), are

the eigenvalues of the hyperbolic system.

The result figure combining phase space and spatial domain is:



119

0 10 20 30

-80

-40

0

40

80

R iemann λ
1

R iemann λ
2

S hock λ
1

S hock λ
2

Crit+

Crit-

h
u
 (

m
2
/s

)

h (m)

  q

  q

  q
m

l

r

Figure 4.3: Phase space figure with the Riemann problem phase values q
l
,q

r
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solution state q
m

, the waves and the supercritical and inverse zones boundaries Crit+,
Crit-.

In the Figure 4.4, in the phase space the left state q
l

is a supercritical right

going flow, and the right state q
r

is a subcritical left going flow. After the collision

the resulting waves are presented in lower part, corresponding to t=0.1 s. The phase

space just show the paths, but is independent on the time, so to evidence the dynamics

is necessary to introduce the waves plot.

In the remainder analysis we will only consider upstream boundary because the

problem is symmetric for the downstream boundary, the upstream supercritical regime

is symmetric to the downstream inverse regime.

4.5 Supercritical And Inverse Regimes

The supercritical and inverse regimes implies imposing both dependent variable values

in the boundary, as we said before, we will deal with the upstream boundary. If we
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Figure 4.4: Phase space and waves obtained at t=0.1s.

find a supercritical regime, we obtain the left Riemann variables values from the

boundary conditions and the right Riemann values from the domain values.

q
r

= Qn

1
,

q
l
=

(

hcc

hucc

)

.

(4.5.1)

With all this information is possible to compute the Riemann solution and test

its validity. In Figure 4.5 is possible to see the Riemann solution for a upstream

supercritical boundary conditions, as a result we obtain q⊥ = q
cc

, so it’s a well posed

problem.

In Figure 4.6 we see an invalid supercritical upstream boundary condition; the flow

solution obtained in the upstream boundary q⊥ is not equal to the imposed boundary

conditions values q
cc

, its equal to q
m

instead, so this would not be a valid boundary

condition, supposed to be supercritical one. So it is not a well posed problem.
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Figure 4.5: Riemann problem solution for upstream supercritical regime obtained at
t=0.1s.

The imposed boundary condition is only valid if the Riemann solution q
m

accom-

plishes the positive shock speed condition:

hum − hucc

hm − hcc

> 0. (4.5.2)

So the slope of the line connecting q
cc

and q
m

should be positive.

In the inverse regime boundary conditions applied to upstream boundary, the right

Riemann problem values should be inside the inverse regime zone (Figure 4.1), if this

condition is fulfilled is not necessary to impose boundary conditions in this boundary.

If the inverse regime is imposed in the downstream boundary condition the con-

dition is:

hum − hucc

hm − hcc

< 0. (4.5.3)
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Figure 4.6: Invalid upstream supercritical boundary condition q⊥
6= q

cc
(waves at

t=0.1s).

4.6 Subcritical Regimes

As explained in Section 4.3 and described in Figure 4.2, applying subcritical boundary

conditions, means that only one of the dependent variables value is imposed, so the

other value should be interpolated from the valid Riemann problem curves. In the

upstream boundary the guest value should be obtained from the curves connecting

to q
r

(Figure 4.2). With the imposed value and the interpolated one we construct

q
cc

, and this point is in q
r

curves, so is the Riemann problem solution q
cc

= q
m

.

In Figure 4.7 is imposed an upstream boundary condition hucc = 100m2/s, inter-

polating this value in the q
r

curves is obtained the depth hcc = 20 m, these two values

form the boundary values vector q
cc

. When we solve the Riemann problem (q
cc
,q

r
),

is obtained the Riemann solution q
m

= q
cc

. To be a well posed problem is necessary

q⊥ = q
m

= q
cc

, in the problem solved in Figure 4.7 this is achieved. If q⊥
6= q

cc
then

the discharge or the depth are not the imposed ones so is not a well posed problem.
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Figure 4.7: Upstream subcritical boundary condition imposed (waves at t=0.1s).

Figure 4.8 shows another upstream subcritical boundary condition hcc = 10 m,

the interpolated condition is hucc = −22m2/s. Now the solution is connected using a

rarefaction instead a shock (Figure 4.7). Is a well posed problem because q⊥ = q
cc

.

As the previous case is possible to find invalid boundary conditions, in subcritical

regime it occurs when q⊥
6= q

m
, in Figure 4.9 is possible to see an example, the

imposed boundary value is hcc = 14 m, the interpolated one is hucc = 125m2/s.

As it’s shown in the figure q⊥
6= q

m
so q⊥

6= q
cc

, this is not well posed problem

case. The condition to achieve q
cc

= q
m

= q⊥ in subcritical regimes is:

hucc − hur

hcc − hr

> 0. (4.6.1)

So the line connecting the right values and the boundary values q
cc

should have

positive slope. For the downstream boundary this condition is:

hucc − hul

hcc − hl

< 0. (4.6.2)
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Figure 4.8: Upstream subcritical boundary conditions (waves at t=0.1s).

4.7 Solution Algorithm

The type of algorithm depends on the type of boundary condition to be imposed. It

does not depend on the regime inside the domain.

4.7.1 Supercritical Regime

If the supercritical boundary condition is imposed in the downstream boundary, it’s

only necessary to check that the inside domain values q
l
are inside the supercritical

regime zone (Figure 4.1).

If this condition is imposed in the upstream boundary the steps are:

1. Check that the imposed values of the dependent variables q
cc

are included in

the supercritical regime zone in the phase space.
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Figure 4.9: Invalid upstream subcritical boundary condition (waves at t=0.1s).

2. Impose the boundary conditions (q
l
= q

cc
) and solve the Riemann problem

(q
l
,q

r
) and find q

m
.

3. Check condition 4.5.2 to test q⊥ = q
l
= q

cc
.

4.7.2 Inverse Regime

If the inverse boundary condition is imposed in the downstream boundary, it’s only

necessary to check that the inside domain values q
r

are inside the inverse regime zone

(Figure 4.1).

If this condition is imposed in the upstream boundary the steps are:

1. Check the imposed values of the dependent variables q
cc

are included in the

inverse regime zone in the phase space.
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2. Impose the boundary conditions (q
r

= q
cc

) and solve the Riemann problem

(q
l
,q

r
) and find q

m
.

3. Check condition 4.5.2 to test q⊥ = q
r

= q
cc

.

4.7.3 Subcritical Regime

To define the subcritical regime algorithm, previous steps must be carried out. In

this regime, we impose one boundary condition with a dependent variable (hcc or

hucc) and we interpolate the other dependent variable (hucc or hcc). To interpolate

the unknown dependent variable, we use the waves that connect the known variables

(Figure 4.2). However, the curves are not injective (the shapes are parabolic), so a

new criteria is necessary to select the right choice.

This new criteria comes from a limitation; the interpolated state must not be

inside the supercritical or inverse regime zones, because if it were it would not be a

subcritical condition. Excluding the zones that correspond to supercritical or inverse

regimes, the remaining part of the curves is injective. Thus, the mathematical and

hydraulic problems are coupled. The limit state is the intersection between the state

solution curves and the Crit+ and Crit- curves. This intersection defines the points

(hc,huc).

For an upstream condition, our boundary condition dependent variables must

fulfill (Figure 4.10):

hcc > hc,

hucc > huc.

(4.7.1)

Fulfilling this condition the boundary variable values are therefore outside of the

inverse regime zone.
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If we impose a downstream boundary condition, the dependent variables must

fulfill the symmetric condition, now computing hc,huc as intersection between the

valid wave’s curves and the Crit- curve:

hcc > hc,

hucc < huc.

(4.7.2)

This limitation imposes a maximum for the negative discharges for upstream and

positive discharge for downstream boundary conditions. If we try to impose a up-

stream boundary condition inside the forbidden zone, we don’t obtain a well posed

problem q⊥
6= q

m
⇒ q⊥

6= q
cc

(Figure 4.11).

In hydraulic terms, this condition means that neither the upstream outflow dis-

charge may exceed the critical discharge.

The algorithm is as follows:

1. Determine the values of hc and huc as interpolation limits.
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Figure 4.11: Invalid upstream subcritical boundary condition (waves at t=0.1s).

2. Considering these limitations, find the unknown dependent variable that corre-

sponds to the known dependent variable imposed as a boundary condition. The

result of this step is q
m

.

3. Check that state q
m

is not in the supercritical or subcritical zone, because that

would indicate a compatible but complete boundary condition (which is only

valid for supercritical and inverse regimes).

4. At this point, we know that q⊥
∈ [q

m
,q

r
] or q⊥

∈ [q
m

,q
l
]. We only need to

check that q
m

= q⊥.

Sufficient conditions to fulfill 4) are the conditions 4.6.1 and 4.6.2 defined in Sec-

tion 4.6.

Let us conceptually interpret these limitations. Condition 1) imposes that the

boundary conditions at least have an influence inside the domain (upwind). Condi-

tion 3) imposes that the condition may not be complete, because that would imply
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imposing two values for dependent variables, which is not valid for subcritical regimes.

4.8 Results

In this section we compare the results obtained simulating channel flow with the

new boundary conditions method and using the traditional method of characteristics

(MOC). This test case involves a channel 10 meters long and 1 meter wide. The

initial conditions are water at rest, 1 meter depth. The boundary conditions are an

upstream discharge of 1 cubic meter per second and a downstream water level of 2

meters. When the simulation starts the channel shows two different waves coming

from channel boundaries, upstream wave due to instantaneous inflow increasing and

downstream wave due to water level instantaneous rising.

4.8.1 Subcritical Regime

The upstream inflow originates a water level rising and the downstream water level

rising originates a downstream inflow (negative discharges).

Figure 4.12 and Figure 4.13 are different time results showing the commented

behaviors. It’s possible to see both waves traveling along the channel, the wave orig-

inated by the downstream boundary condition is stronger than upstream originated

one. At time 1.3 s we find the collision between both waves near the channel center.

In the next time step profiles is possible to see the depth fixed at the downstream

boundary but the downstream discharge changes in a big range because it’s not a

fixed boundary condition.

When the boundary conditions are imposed, shocks come from the boundaries, and

keep unaltered until the wave traveling from the opposite node arrives. Figure 4.14

shows the changes over time in the depth and discharge in the upstream boundary
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Figure 4.12: Depth and discharge in the channel at four different times.

and in the first node next to the boundary. In the upper axes are showed the values

at the upstream boundary and in the lower axes are showed the values in the internal

node. The upstream boundary keeps the imposed discharge boundary condition while

the depth changes and the internal node follows these values.

Figure 4.15 shows the time evolution of the variables in the upstream boundary.

There are two curves, the red one are the values in the boundary, and the blue one

are the values in the internal node next to boundary. The boundary curve is always

at 1 cubic meter per second discharge because it is imposed, and it changes the depth

to adapt to the inside domain situation. The blue line changes over time until it

reaches a steady state, as does the whole channel, in the imposed boundary conditions,

discharge 1 m3
/s and depth 2 m. It could happen that along the simulation (transient)

the imposed boundary conditions are wrong because the hyperbolic problem becomes

not well posed, in this situation the computation should stop or use special condition

like critical depth.
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Figure 4.13: Three states of the channel in the first seconds.

4.8.2 MOC Boundary Conditions Approach

To compare the results obtained using the traditional MOC and the values obtained

using the new approach, we compare the time evolution of depth and discharge in the

upstream boundary. In Figure 4.16 the values in the boundary and in the internal

node are showed, as in the previous section. Is possible to see a instability when the

first wave coming from downstream collides to the upstream boundary, this is due

to the fact that MOC don’t considers shock waves, so is not able to deal with these

kind of situation. Along the time, when the flow becomes smooth the differences are

less important, but this confirms the hypothesis that the proposed method is useful

to impose boundary conditions in shock situations.

In Figure 4.17 we see the comparison of the values obtained in the first node using

both methods. The differences between the new approach and the classical MOC are

clear; there are some instabilities in the depth and discharge values.
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Figure 4.14: Time evolution in the variables in the upstream boundary and in the
node next to the upstream boundary.

4.9 Conclusions Of The Chapter

The proposed method combines a filter, which ensures that only well-posed problems

are defined, and a method for interpolating the unknown dependent variables in par-

tial boundary conditions (subcritical regimes). The method is based on the Riemann

problem solution and is optimal for the Godunov method, it allows discontinuities as

boundary conditions to be introduced.

The method can immediately be extended to one-dimensional Euler equations, but

more research is required before it can be extended to multidimensional problems.

The method is computed using an exact Riemann solver because is not computa-

tionally expensive, so the combination with approximate Riemann solvers should be
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Figure 4.16: Time evolution in the variables in the upstream boundary and in the
node next to the upstream boundary.
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Chapter 5

Accuracy Condition For Internal
Boundary Conditions

Sometimes in the computational domain special elements are found, these special

elements are not governed by the differential equations system, they follow closure

relations, i.e. in hydraulics, inside the computational mesh structures like walls, weir,

bridges, gates. . . could be found. Closure relations normally link the values of the

different dependant variables without using differential equations. For example in

the k − ǫ model the turbulent viscosity νt is defined using the closure relation:

νt = Cµ

k
2

ǫ
, (5.0.1)

where k the turbulent kinetic energy and ǫ the viscous dissipation. In hydraulics,

multiple closure relations could be found. For example for a gate flow the relation:

hu = Cd (∆h)1/2
, (5.0.2)

where the discharge (hu) is related to the water level drop (∆h), it fixes the

discharge through the gate.

In hyperbolic problems, such as the one presented in the present thesis, a stabil-

ity criterium has been defined for the numerical solution, i.e. CFL limit (Courant-

Friedichs-Lewy) in the maximum time step. The solution to a hyperbolic problem is

137
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self-similar, this means that during the time step the solution in the interfaces does

not evolve, obtaining a first order in time scheme in the Godunov (1959) approach.

The closure relations are different, the shape of the functions is not established

and the smoothness of the relations is not clear, the time does not appear explicitly

so, due to the mathematical form of the closure relations, an accuracy criteria for

closure relations should be defined, to guarantee that the closure relation is fulfilled

along the time step.

Through the Lax equivalence theorem (Lax and Richtmyer, 1956) its clear that

a link exist connecting the convergence, stability and consistency. The accuracy in

convergence is therefore related to the stability in the solution. This stability link

will be revealed with an example in 5.3.

5.1 Introduction

The proposed method is based on the connection of the dependant variables to the

time, so the presence of the variables in the closure relation provokes an implicit

relation to the time. To guarantee the fitting of the closure relation (accuracy) during

the time step the smoothness of the function is necessary. The main question is “How

smooth should be the closure relation to guarantee the fitting during one time step?”.

Or on the other hand, the question could be “How short should be the time step to

guarantee the fitting of the closure function shape?”.

So, as a first idea, a link exist between the smoothness of the closure relation and

the time step used. Following this idea a new criterium to fix the maximum time

step is proposed and an example will be shown, applying the method to a hydraulic

control structure represented by a complex closure relation.
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5.2 Accuracy Criterium

In the model there are independent variables time and space (x, y, z, t) ∈ R. Let us

suppose that there are two different dependent variables (p (x, y, z, t) , q (x, y, z, t)) ∈

R. A computational grid is defined on the independent variables, under this assump-

tions a closure relation q = f (p) is defined at some cell interface. Let’s suppose that

the spectrum of the relation is defined by F (k), where k ∈ R is the wave number

(2π/λ), where λ is the wave length, and the spectrum is computed using the Fourier

transform:

F (k) =

∫
+∞

−∞

f (p) e
−ikpdp (5.2.1)

Proposition 5.2.1. The closure relation f is fulfilled only if the difference in the

values of p at both sides of time step (∆p) is less than π/kMAX , where kMAX is the

maximum wave number of the Fourier spectrum:

∆p 6
π

kMAX

(5.2.2)

Proof. The proof is obtained by applying the Shannon-Nyquist Sampling Theorem

(Shannon, 1949), this theorem fixes a minimum sampling frequency to reproduce a

signal.

“...If a function x(t) contains no frequencies higher than B hertz, it is

completely determined by giving its ordinates at a series of points spaced

1/(2B) seconds apart....”

The kMAX is equivalent to the maximum frequency B existing in the closure

relation function f :
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kMAX = 2πB, (5.2.3)

here the frequency should be understand not in time coordinate t, but in the

dependent variable p instead. Substituting this in Equation 5.2.2, the proof is finished.

This theorem provides a sufficient condition to fit the closure relation. Using a time

step ∆t short enough to guarantee Equation 5.2.2, the accuracy of the simulation is

fulfilled.

So its necessary to known which is the maximum wave number kMAX existing in

the function f , and as high this value is as short the time step should be to guarantee

the accuracy in the function fitting. In most of the functions the spectrum is almost

continuous, so there’s not limit in the wave number k, to avoid

5.2.1 Methodology To Fulfill Accuracy

Once the condition has been stated an algorithm is proposed to accomplish it.

1. Define the closure equation function f ≡ f (p).

2. Compute the Fourier spectrum of the function F (k).

3. Define a maximum frequency threshold for the function kMAX (Equation 5.2.3).

4. Fix the maximum variable step to reach the defined frequency ∆p.

5. Use a lowpass filter with the frequency threshold (kMAX) to modify the closure

function f obtaining the filtered version f̄ .

6. During the simulation compute the maximum time step ∆t to obtain ∆p.
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7. Compare the ∆t to the Courant stability time step, select the most restrictive

one.

8. Along the simulation the filtered function f̄ could be exactly reconstructed

from the sampled values using the Whittaker Shannon interpolation formula

(Whittaker, 1935):

sinc (x) =

{

1, t = 0
sin(πx)

πx
, t 6= 0

(5.2.4)

5.2.2 Local Time Stepping

When the most restrictive time step is found in the closure relation accuracy criterium,

the local time step could be used. This means that in the whole model the Courant

stability time step is used, but in the elements in the neighborhood of the closure

relation a different time step is used. This last time step is the one that allows to

guarantee the accuracy in the closure function computation.

This technic avoids the new restriction in time step to be extended to the whole

domain, increasing dramatically the computation cost of the modeling.

Also more sophisticated techniques could be used, the frequency filter could be

applied in a piecewise fashion, this means to apply different thresholds to different

parts of the closure function, allowing the maximum time step to be adapted to the

requirements of the function smoothness.

5.2.3 Bivariate Closure Relations Extension

The theory has been explained for a closure relation depending in one variable, for

example the free weir discharge (Figure 5.1), hu is computed using the upstream

depth of the weir h, so hu = f (h).
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hhu

Figure 5.1: Step in channel, it behaves as a weir.

In hydraulics bi-dimensional closure relations are classical, for example a sub-

merged weir (Figure 5.2, left side), where the discharge through the structure depends

on the water level upstream and downstream of the structure. In the right part of

the Figure 5.2 the closure equations are shown, every line corresponds to different h2

values, so for every upstream water level a curve is defined.

hu

h1

h

hu

h
1

2

Figure 5.2: Step in channel, it behaves as a weir.

This means that the relation is hu = f (h1, h2), so the accuracy condition should

be extended to include these bivariate relations. The modification is direct, first the

bi-dimensional Fourie transform should be introduced, using the variables p, q:

F (k1,k2) =

∫
+∞

−∞

∫
+∞

−∞

f (p, q) e
−ik1p

e
−ik2qdpdq . (5.2.5)
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And now the accuracy condition is equal to the previous one but imposing different

restrictions on the time step depending on the maximum frequency of every variable.

{

∆p 6
π

k1 MAX
,

∆q 6
π

k2 MAX
,

(5.2.6)

where k1 MAX , k2 MAX are the maximum wave numbers for the dependent variables

respectively.

5.3 Practical Example

In this section an example of the proposed algorithm will exposed. In this case the

one-dimensional SWE will be used:

q =

(

h

hu

)

,







∂h

∂t
+

∂hu

∂X
= 0,

∂hu

∂t
+

∂

(

u
2
h + g3

h
2

2

)

∂X
= 0,

(5.3.1)

where X, t are an independent variables and h, hu are the dependent variables.

This equation will be applied in the whole domain except in a cell interface, where a

modified weir equation will be used:

hu = f (h) = sin (4π (h − 3))
(
1.3h−3

− 1
)

+
∣
∣1.3h−3

− 1
∣
∣ . (5.3.2)

The modifications of the equation are introduced to obtain a complex, nonlinear

equation, to demonstrate the effect of the proposed algorithm. In Figure 5.3 the

graph of the Equation 5.3.2 is shown. Its clear that the shape of the curve is not

simple.
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Figure 5.3: Discharge equation for the hypothetic weir.

As has been stated in the methodology description, once the function is defined,

the spectrum of the equation should be analyzed. In this case, in Figure 5.4, the result

is shown. Here the spectrum’s upper limit is 30 Hz. However the cutting frequency

is selected to be 2.5 Hz, because most of the information is considered to be in the

lower part of the spectrum, below this frequency.

Once the threshold frequency is selected the sampling of the signal at double

frequency is carried on, the result of this sampling is shown in Figure 5.5. The

output is a series of values, at 5 Hz, i.e. this means 5 values per depth meter (h).

Once the sampling is finished the new filtered closure function f̄ (h) will be con-

structed, for this construction the Equation 5.2.4 is used.

In Figure 5.6 the filtered function f̄ is shown, the construction of f̄ using the sinc

functions is carried on as a sum of infinite terms, in the figure, the blue line is the

reconstructed function using the first 21 samples, and the red line is the next sinc

function associated to the sample number 22, this last function should be added to

the blue line, and move to the next sample (23).

In the lower part of Figure 5.6 the reconstructed function f̄ is presented. The
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Figure 5.4: Energy spectrum of the discharge equation.

reconstruction uses the first 21 function f samples. The original function f is com-

pared. It is clear that the filtered version of the function fits well the original equation,

although it is created using a few amount of discrete samples.

The Figure 5.7 shows the existing error between the filtered version and the origi-

nal one, recall that only the first 21 terms of the series are used in the reconstruction

of the shown function.

With the original function f and the filtered version f̄ a test case will be carried

on, first using the standard version with the Courant time step restriction and the f

weir equation, and the second case will be computed using the proposed algorithm

and the filtered weir equation f̄ . Recall that the threshold frequency was 2.5 Hz,

this means that the accuracy criterium is fulfilled with a double frequency, so 5 Hz,

therefore, as agreed in Equation 5.2.2, the maximum depth increments per time step

should be 0.2 meters.
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Figure 5.5: Sampling of the discharge equation using a 5 Hz frequency.

The test case is a ten meters long channel, with an initial condition of water at

rest with a 2 meters depth. The weir is introduced in the middle of the channel,

with 5 meters upstream and 5 meters downstream. The boundary conditions are

corresponding to a subcritical regime, downstream 2 meters depth and upstream 5

m2/s.

In Figure 5.8 the channel scheme with the weir is shown, also the results obtained

at t = 0.6s are shown. The boundary conditions have a constant discharge of 5 m2/s,

so as it’s shown in the results, a wave is coming from the upper part of the channel,

because the initial conditions were water at rest.

In the time evolution of the solution, the wave achieves the weir and when the
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Figure 5.6: Reconstruction of the signal using a low pass filter. The red line is the
sample reconstruction using sinc function and the blue line is the cumulative signal
obtained adding the previous samplings (created with “Samprecon”, developed by
Tor Ramstad, Anders Gjendemsjo, 2003).

water level is below 3 m the discharge is null, so a filling process is carried on in

the weir upstream part, until it reaches 3 meters. When this value is reached the

discharge initiates, always fitting the weir discharge equation.

In the first case, as was commented, the new accuracy criterium is not used, then

the time step is defined using the CFL condition. The discharge over the weir is

computed using the original function equation f , at some time steps, the depth step

is larger than 0.3 meters (> 0.2m), this means fail to fulfill the accuracy criterium,

and also for this especial test case instability.
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Figure 5.7: Error in the discharge equation reconstructed using a low pass filter.

This instability is due to the fact that a bat curve fitting implies jumps between

different periods in the discharge equation (Figure 5.3) and a strongly discontinuous

discharge, so, at the end, a instable discharge is obtained.

In Figure 5.9 the different results in the weir are shown, in the upper part the

depths time series is shown, the instability is evident, continuous jumps appear in the

depth. In the middle graph the discharge appears, its clearly unstable, with strong

jumps and discontinuities. To try to analyze the discharge curve fitting a plot of

depth vs. discharge is done in the lower part of the figure. The shape of the line

recalls vaguely to the original curve (Figure 5.3), but with strong mistakes.

On the other hand, in the second test case the proposed accuracy algorithm is

used, the results could be found in the Figure 5.10, the results are completely different,

in this case the depth and the discharges are stable and continuous and the modified

curve f̂ its perfectly fitted.
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Figure 5.8: Test case results obtained at t = 0.6s, the black thick line is the weir
position.

5.4 Conclusion Of The Chapter

The proposed accuracy criterium improves the computation in the internal boundary

conditions, its straight to adapt it to multidimensional equations and could also avoid

the instabilities due to the internal boundary condition.
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Figure 5.9: Results for discharge equation using the non corrected stability criterion.
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Figure 5.10: Results for discharge equation using the corrected stability criterion.



152



Chapter 6

Special Features of the Debris
Flow Modeling

The main governing equation of the debris flow modeling have been defined in Chap-

ter 2. Also the rheology details have been stated. However there are still some special

elements related to the steep slope flow modeling that should be implemented in the

model to increase the performance of the results. This chapter includes a couple of

these different elements.

6.1 Introduction

In this chapter we consider three main aspects of debris flow modeling. They are:

1. Stop and go mechanism

2. Entrainment process

3. Rheology adaptation

The first one, the “Stop and Go” mechanism is the implemented method to sim-

ulate the deposition of the material during the flow. Rheologies that imply yield

stress (e.g. Bingham, Voellmy, Herschell Bulkley. . . ), characterize the stop and go

mechanism in debris flow.
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Once the fluxes are computed, maybe the results make us thought that a cell was

not moving. So, the material was deposited. In this case the computations have to

be repeated until the fluxes are only computed in moving cells.

This creates a problem of iterating numerical method. As it is clear, to iterate

means to increase the computational time. However there is no guarantee of success or

convergence. To avoid this additional load an algorithm is developed and implemented

in the model.

The second feature refers to the entrainment process, this is one of the major

unknowns in the debris low modeling. Although it plays an important role in the

process. Several references could be found in Hungr and Evans (2004b), the total

material mobilized in a debris flow event could be the 6 or 7 times the initial volume.

A very basic approaches are introduced in the model as a first step in the entrainment

modeling research.

The third question is related to the rheology evolution. In granular media me-

chanics, it is known that the friction laws may depend on the velocity of the process,

at least the static internal friction and the dynamic one are considered (Da Cruz,

2004; MiDi, 2004). This fact is introduced in the friction laws, the internal friction

angle existing in granular rheologies (Coulomb, Voellmy) evolves with the velocity,

following the previous idea. In Pudasaini and Kr

”oner (2008) is shown that the rheology depends on the flow configuration and flow

dynamics.

6.2 Stop and Go

Due to the dynamics of the flow and the rheology, the material may stop its motion

due to friction, or, start the motion again influenced by the surrounding activities.

This is not easily handled in an explicit scheme, and it is important to apply some

numerical restrictions in order to have a good evaluation. The problem is to define:
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the meaning of cell repose state. It is not only a zero velocity cell. In an explicit

method the fluxes at the cell faces are evaluated first, and then the frictional term is

calculated. If the friction force is sufficient to stop the flow at the cell, it should stop.

However, in this calculation process the cell moves and the material flows.

To avoid this numerical problem we have to define which cells are in repose state.

The model presented operates in the following way: the model determines which cell

is in motion or repose state, and calculates only those cells that really are in motion.

Whether a cell with a zero velocity will be in motion or repose state depends on the

surrounding cells flow dynamics. For this, a cell is in motion if the following three

conditions are satisfied:

1. The cell was in motion in the last time step,

2. If the cell was stopped: Some of the neighborhood cells were in motion in the

last time step. The presented model uses an explicit scheme controlled by the

Courant number. Any wave or information that enters in a cell is incapable

to flow throughout the front face of the same cell, because of the Courant

restriction. This means that, any motion in a neighborhood cell can activate a

zero velocity cell until the next time step. This is a chain process that activates

cells through the neighborhood cell.

3. If the cell was stopped, a second check: The geometric slope of the free surface

of the material is greater than the internal friction angle of the material. When

the numerical models uses frictional rheologies the material tends to stop with

higher slopes than the internal friction angle of the bed. The model incorporates

a recalculation of zones in which the angle of the material is greater than the

internal friction angle, until all the surfaces have less or equal slope to that of

the material friction angle.

With this technique it is possible to in motion cells that had been stop before

but receive material with sufficient momentum from the neighborhood cells. In a
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Figure 6.1: La Guingueta case.“Stop and Go” example initial conditions.

complicated process a cell can be moved and stopped more than once; close to real

phenomena.

Figure 6.2: Time evolution of the stopped cells, the black color are stopped cells and
the grey color are moving cells.

To illustrate the operation of the algorithm we will see an example, some results
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of “La Guingueta” event, which will be explained later. In this simulation there’s a

first pulse that runs until it stops in the fan. Over this deposition we introduce a new

pulse (Figure 6.1). This new pulse runs until the fan apex and collides with the first

deposition. In this collision we observe a remobilization of the first pulse deposit. In

Figure 6.2 it is possible to see different times for the collision. The time 0 seconds

is the release time of the second pulse. The black color are the cells that contains

stopped material, and the gray ones contains flowing material. As is shown in the

figure the contact with flowing material changes the state of the cells from “stopped”

to “flowing”, the total amount of moving material is increased until it stops again.
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Figure 6.3: Time evolution of the stopped cells in the fan area.

In the Figure 6.3 a graph of the remobilization evolution is presented. The stopped

cells are presented as % of the total fan area. As mentioned before the time 0 s. is

the release time of the second pulse. As it is shown in the figure, until the 650 s.

the first pulse is still stopping, the 17% of the fan area becomes stopped. After that

time, the second pulse arrives and remobilizes the 50% of the previously stopped

cells, being the new stopped area less than the 8.5%. The second pulse arrives with

different waves. After the 900 s. the stopped area increases again, until the end of

the simulation (2000 s.).

It is important to note that this method is strictly conservative, the change in
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material state does not introduce new momentum or volume.

6.3 Entrainment Implementation

One of the most important factors that characterize debris flows is the basal incor-

poration or entrainment (Rickenmann et al., 2003). A volume of a few cubic meters

of initial mass motion can incorporate, in some circumstances of slope and types of

material, ten times or more the initial volume mobilized (Egashira et al., 2001). The

bed stress of the flow can be sufficiently higher to incorporate part of the bed into

the flow. We used two different approximations: static and dynamic.

Figure 6.4: Entrainment: left static approach, right dynamic approach.

The static approach considers a static equilibrium with the terrain, in which the

active forces and the resistance forces are in equilibrium. That is:

τres = τu, (6.3.1)

where τres is the resistance force of the material due to the internal friction of the

particles, and τu is the active force. If one uses the Mohr-Coulomb failure law for

infinite slope, Equation 6.3.1 can be described as:

c + cos θ [hρs − hwρw] g tan φent = hρsg sin θ, (6.3.2)
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in which c is the cohesion, ρs, ρw soil and water bulk densities respectively, hw the

water depth due to the water table level, and φent the internal friction angle of the

bed material. Because the model uses a homogeneous material, it cannot distinguish

different materials (water and sediment). The water and sediment mixture is modeled

solely by a bulk density ρ, even for the basal material. On the other hand, the acting

forces to provoke a basal movement are the shear flow stress and the weight of the

basal material that is incorporated in the flow (Figure 6.4 left). The relationship

between the active and resistant forces is

c + cos θ [h + hent] ρg tan φent = τf + hentρg sin θ, (6.3.3)

where hent is the depth of the incorporated material (entrainment or erosion

depth), and τf is the friction stress due to the flow movement (weight of the flow

in the flow direction). The entrainment conditions can be established as:

τf > c + cos θhρg tan φent, cos θ tan φent > sin θ. (6.3.4)

This implies that the active forces have to be greater than the resistance forces to

provoke basal erosion. Fulfilled the condition 6.3.4 is straight to calculate hent:

hent =
τf − (c + cos θhρg tan φent)

ρg (cos θ tan φent − sin θ)
. (6.3.5)

Once the depth of entrainment hent has been calculated, it is necessary to conserve

the momentum of the cell induced by the new mass. Obviously the resultant velocity

diminishes due to entrainment.

For the dynamic equilibrium approach (Figure 6.4 right), the hypothesis is nearly

the same to the static approach, which assumes that the resistance of the material

is Coulomb type. If the active forces are greater than the resistance, entrainment

occurs. The difference is that the newly incorporated material is accelerated with the

mean velocity of the flow, and then the quantity of newly incorporated mass depends

on the availability of momentum, i.e.,
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∂z

∂t
=

1

ρV
(τf − τres), (6.3.6)

in which ∂z

∂t
is the velocity of entrainment, τres the resistance force of the mate-

rial and V the mean flow velocity. Fraccarollo and Capart (2002) represented this

methodology by:

∂z

∂t
=

1

ρV
(τf − c − (1 − λ) cos θhρg tan φent), (6.3.7)

where the formulation includes a parameter λ (Iverson and Denlinger, 2001) to

define the pore pressure that varies between 0 (dry debris) and 1 (completely saturated

debris). This parameter indicates which part of the pressure corresponds to the

effective stress and which part to the pore pressure. Note that in Equation 6.3.4 the

factor (1 − λ) is the multiple of tan φent.

It is difficult to estimate values for λ, because this parameter is related to pore

pressure. Pore pressure plays an important role in debris flow dynamics (Iverson and

Denlinger, 2001; Savage and Iverson, 2003) and it evolves in time as well as changes

from head to tail. As a consequence, the application of a constant value for λ is a

rough but common approximation (Pudasaini et al., 2005). The limitations of this

approach is analyzed by Savage and Iverson (2003) and Iverson and Denlinger (2001).

To achieve accuracy in the calculation of λ, it is necessary to use complex equations.

Thus, an advection diffusion system should be solved (Iverson and Denlinger, 2001).

Due to the uncertainty in its calculation, in our model, a constant value of this

parameter is used to calculate the entrainment rate. Since the values of λ are low in

granular debris flow, we adopt a value of 0.3 (Pudasaini et al., 2005).

The active force in the bed is evaluated from the rheology of the material and the

resistance force due to Coulomb relationship. Thus, if one uses the Coulomb model

as rheology the difference between the two forces is zero. To avoid this problem, the

present model uses different values for the internal friction angles of the flow and the

basal material.
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Figure 6.5: Channel used to test the entrainment computation.

To validate the dynamic approach, some preliminary computations were made

using theoretical cases. A horizontally 800 m long channel was defined including in

the first 100 m a steep slope with inclination of 40 ◦ followed by part of 4 ◦ inclined

(Figure 6.5). The initial amount of material was 100 m3, the material is planed at

the upper part of the channel. Erosion depth is not limited at depth along the whole

channel. The entrainment was tested using the Voellmy fluid model and different

rheological parameters (φ,C).

Then the total amount of newly incorporated material from the bed was calculated

for different φent values. Figure 3b shows the influence of the friction angle of the bed

material on the flow volume for two different Voellmy configurations. The rheology

is used to calculate τf :
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A

{

C = 10

tan (φ) = 0.065
, B

{

C = 20

tan (φ) = 0.065
. (6.3.8)

The parameter ER (Entrainment Rate) relates the final flow volume to the initial

one. In Figure 6.6 the results obtained for the A Voellmy configuration are shown,

the parameter φent has an important influence in the total entrainment.
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Figure 6.6: Results obtained with the configuration A, for different value of φent.

The second configuration (B) results are shown in Figure 6.7, as its clear the total

volumes obtained are clearly lower than the previous ones, so both, Chezy parameter

and entrainment friction angle are important for the total volume.

However, it should be mentioned that, if the static approach would have been

used, the entrainment angle φent could not have been smaller than the slope angle

θ. If this occurs, an unstable situation is reached, with a infinite amount of eroded

material. In the presented case the dynamic approach was applied.

In Figure 6.8 the time evolution of the flow volume is shown, the erosion occurs at
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Figure 6.7: Results obtained with the configuration B, for different value of φent.

the beginning of the event, so in the steeped part of the channel, the case presented

is A with φent = 35 ◦, the total volume at the end of the simulation is 250 m3.

In Figure 6.9 the eroded profile and the final deposit are presented, the maximum

erosion is 2.8 meters, and it’s clear that the deposition initiates when the channel

slope is smaller than Voellmy configuration parameter φ.

Finally, the dynamic entrainment approach was tested in one test case (Cardemeller

torrent at Pal), because of detailed field data on initial and final volume of the debris

flow. The other two cases were simulated without the entrainment approach in order

to simplify modeling.
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Figure 6.8: Volume evolution with the time, for the case A, with φent = 35 ◦.
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6.4 Rheology adaptation

If the simulations use the Voellmy rheology for numerical modeling, the front incli-

nation of the final deposit is normally similar to the Voellmy parameter φ. However,

φ-values are far from the static dry internal friction angle, φstat, which governs the

slopes in the deposit boundaries of debris. In order to simulate this behavior the

Voellmy parameter φ has to be changed dynamically during the simulation. This

φ-adaptation is of crucial relevance during the accumulation phase, when the flow is

near to stop. The model implements a correction of this feature increasing the φ-

value, if flow velocity is lower than a selected limit V1 (Figure 6.10). The magnitude

of φ changes linearly from the initial friction angle to the static dry internal friction

angle.

Figure 6.10: Voellmy internal friction angle φ evolution with the volocity.
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Chapter 7

Validation Test Cases

In the previous chapter all the elements of the model have been defined, in the present

chapter some calibration cases are used to validate the model. Previously to the

application of the model to real cases it should be tested and calibrated. In validation

process several errors and inaccuracies are found. Some of them correspond to code

bugs and the remain ones belong to model theoretical background weakness. In the

previous chapters several hypothesis were applied to develop and simplify the physics

of the model. Every hypothesis constrains the model applicability range, specially

dealing with curved surfaces.

7.1 Introduction

It is known that the analytical solutions for nonlinear SWE are only obtained for

some especial cases, one dimensional flows with some restrictions on the slopes and

the friction approaches. There are no analytical solution for a purely bi-dimensional

debris flow. So, analytical solutions for the one dimensional cases will be used. Also

an experimental results obtained in the USGS laboratory and in the UPC-GITS

laboratory are used to test the model.

• Analytical, ideal, frictionless, flat, dambreak.

• Analytical one-dimensional dambreak with steep slope and friction.
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• Experimental UPC-GITS bi-dimensional dambreak.

• Experimental USGS bi-dimensional debris flow.

7.2 Ideal Dambreak Scenario

The first validation test is the frictionless, flat surface, dambreak. The solution to

this problem was first given by Stoker (1957), the dam is placed at the coordinate

x = 0.0 (see Figure 7.1) and the test case initial conditions are:

g = 9.81, hl = 1, hul = 0, hr = 0.5, hur = 0,

where the values with the l subindex refers to the variable at the left side of the

dam, on the contrary the r subindex refers to the values found in the right side of the

dam. As its shown in the initial conditions, the gate at 0.5 m coordinate acts as a

dam, separating the upper part of the channel, with a 1 m depth and the lower part

of the channel with 0.5 m depth.

x

h

-0.5 0.0

l

hr

0.5

Figure 7.1: Dambreak problem used to test the Stoker analytical solution.
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All the framework previously developed, related to the Riemann solver could be

applied here to obtain, numerically, the solution to the proposed dambreak. In Fig-

ure 7.2 the problem is solved and the resulting waves shown, the solution is composed

by two different functions, a shock in the right side and a rarefaction in the left.
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Figure 7.2: Solution to the dambreak problem proposed, a shock wave and a rarefac-
tion are found connecting the initial states at both sides of the dam. The description
of the figure curves could be found in Chapter 4.

The obtained Riemann problem solution (Whitman, 1974; Stoker, 1957)is:

q
m

=

(

hm

hum

)

=

(

0.7269 m

0.6712 m2/s

)

. (7.2.1)

Using this values is possible to compute the different velocities to construct the

waves, first the shock wave velocity:

λ2 = (hur − hum) / (hr − hm) = 2.9579 m/s. (7.2.2)
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As was explained in the corresponding chapter, the SWE nonlinear problem so-

lutions, in general, could not be expressed as a waves sum, this is the case of the

rarefaction presented in the left side of the solution, there is not a characteristic

speed of the wave, two different velocities are found for the rarefaction instead.

λa =
√

ghl,

λb =
hum

hm

−

√

ghm.

(7.2.3)

These three different velocities (Equations 7.2.2, 7.2.3) define the position of the

characteristic points in the solution:

xa = 0.5 − λa, xb = 0.5 − λb, xc = 0.5 + λ2. (7.2.4)

These characteristic points and the corresponding solutions could be seen in the

Figure 7.3, compared to the numerical solution obtained using the model. The version

used was the first order one, the excessive diffusion of the first order discretizations

appears clearly, specially in the shock neighborhood.

In the following example the second order discretization is used to avoid the ex-

cesive diffusion ad to obtain best fitting of the theoretical solution.

7.3 Dambreak Scenario With Friction And Slope

The dam-break scenario presented by Mangeney et al. (2000) involves movement of

debris in a wide channel inclined by θ. The resistance to the debris flow generated

on the channel bed is characterized by an angle of friction, φ. In Figure 7.4 the

geometrical description is shown, the problem is a dambreak case, but with especial

features, a slope and also basal friction.

The proposed case is similar to the previous one, but the dry situation is found in

the right side of the dam, when the slope and the internal friction angle are discarded,

the solution moves from the Stoker (1957) to the Ritter (1892).
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Figure 7.3: Comparison of the theoretical results to the numerical ones, the test case
is the classical Stoker (1957) dambreak solution, the simulation is using the first order
approach.

In Mangeney et al. (2000) the analytical solution for the problem with slope and

internal friction angle is found:

h (t) =







H x 6 −xr

1

9g cos gθ

(
2c0 −

x

t
−

1

2
mt

)2

− xr < x < xl

0 xl 6 x

(7.3.1)

Where:

xr = c0t +
1

2
mt

2
,

xl = 2c0 −

1

2
mt

2
,

m = g (cos θ tan φ − sin θ) ,

c0 =
√

gH cos θ.

(7.3.2)

Here one principal test was carried out, where the initial depth of debris H is

taken as 10 m, the channel bed inclination, θ, and the angle of friction, φ, are taken
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H

θ

x

h

Internal friction angle

φ

Figure 7.4: Geometrical description of the case proposed by Mangeney et al. (2000),
the geometry has a constant slope θ and the material has an internal friction angle φ.

as θ = 30 ◦ and φ = 25 ◦ respectively. Simulated flow profiles were calculated at every

10-second interval, up to 30 seconds after the dam removal. Another test case was

calculated to compare results for θ = 0 ◦ and φ = 0 ◦, but taking the initial depth as

H = 20 m.

In our first example, flow movement was simulated for an initial depth of debris

of 20 m, a horizontal channel and zero friction at the bed (Figure 7.5a). The flow

profile simulated by the numerical model at 10 s indicates that numerical results are

identically as the analytical ones. In our second example, the initial depth of debris

was taken as 10 m, the channel inclination as θ = 30 ◦ and the basal friction angle

as φ = 25 ◦. Figure 7.5b illustrates flow profiles at 10, 20 and 30 s indicating some

minor differences between numerical and analytical results. These differences may

affect maximum front velocity of a granular flow, but seem to be acceptable for our

debris flow simulations. In contrast to the previous example, here the second order

space corrections have been introduced to improve the results. Differences between

the numerical results and analytical solution could be reduced by applying a Runge-

Kutta temporal discretization.



173

-400 -200 0 200 400 600

Horizontal distance (m)

0

4

8

12

16

20
Fl

ow
 d

ep
th

 (
m

)

Numerical solution
FLATModel
Analytical Solution 
(Mangeney et al. 2000)

-200 0 200 400 600 800 1000

Horizontal distance (m)

0

2

4

6

8

10

10 s 20 s

b)a)

30 s

 

Figure 7.5: Comparison between analytical solutions of one-dimensional dam-break
scenarios and numerical results calculated by the numerical model. a) Dam-break
characterized by an initial flow depth of 20 m and material of zero bed friction across
a horizontal surface. b) Dam-break characterized by an initial flow depth of 10 m and
material of φ = 25 ◦ bed friction across a surface inclined by θ = 30 ◦.(Figure courtesy
of M. Hürlimann)

7.4 Bi-dimensional Dambreak

In this test case an experimental dambreak with water is carried on. The configuration

of the setup is adapted to evidence the bi-dimensional characteristics of the flow,

more details about this experiment could be found in Bateman et al. (2006), all

the experiments where developed by the UPC-GITS team Fluvial Morphodynamic

Laboratory.

7.4.1 Experimental Setup

We studied the changes over time in water-surface position (height) caused by sud-

denly opening the gate. The experiment involved high-speed movements in the water
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surface, which were recorded with two different digital cameras: a high-speed Basler

camera and a medium-speed Lumenera camera.

0.4

CAMERA 60fps

HIGH SPEED

CAMERA 1000fps

2.0

0
.4

GATE

2.4

3.94

PLATFORM

FLUME

FIXED GATE

Figure 7.6: Flume and platform set-up and the positions of cameras, with dimensions
in cm.

A flume filled with water was controlled by a sluice gate and connected directly

to a platform, as shown in Figure 7.6. The platform was initially dry. The gate was

removed manually from its original position and water flowed from the flume to the

platform. The flume used in the experiment was 9 m long, 40 cm wide and 60 cm

high. The flume ended at a platform 4 m long, 2.4 m wide and 60 cm tall. In this

experiment, the effective flume length was just 2 m (see Figure 7.6). A fixed volume

of water was held between two gates about 2 m apart. This part of the flume was

connected to the platform by a manual sluice gate. A 50 cm deep volume of water

was held.

Between 5 and 10 parallel laser beams were placed vertically over the platform,

generating lines perpendicular to the flume axis in order to obtain cross-sections of

the water surface. The water was mixed with milk at a concentration of 2% so that

it would reflect the laser beams and make it possible to take photographs. Higher

concentrations of milk caused more reflection, and lower concentrations allowed the

light to penetrate the mixing fluid to a greater degree. We tried out different mixtures

and found that the minimum concentration of milk was about 2% by volume. This
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allowed us to use as little milk as possible and obtain strips of light that were not too

thick, thus preventing them from overlapping.

The Basler camera can capture images at up to 1000 fps with a resolution of

1200x1000 pixels or more, depending on the frame size. The Basler camera used

normal Nikon lenses that produce high-quality images without optical aberration.

The Lumenera camera had higher luminescence than the Basler because its lens had

higher luminescence and also because the Basler’s minimum shooting frequency was

higher. The Lumenera had a wide-angle lens, which caused significant image defor-

mation, which had to be corrected. A new MATLAB code was produced to correct

this aberration.

Figure 7.7: Lasers and general view of the experimental set-up in the channel plat-
form.

A series of photographs of the light reflecting from the mixture were taken and

processed. The idea was to obtain different cross-sections of the surface using the

laser beams, in order to reconstruct the surface at each time step. We could not

use many lasers because the beams could have overlapped and the numerical process

would have failed. A minimum distance was therefore maintained between lasers.
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The channel platform has a dots mesh drawn (see Figure 7.7). The lasers follow

the rows defined by these dots. In the Figure 7.7 is possible to see the light and a

couple of cardboard boxes used to check the calibration distances scaling.

7.4.2 Camera Position

The cameras were placed in such a way that the projection of the laser beams in the

flow surface did not cross at any time. They needed to be able to perceive water-

level fluctuations accurately. In our experiments, the camera angle ranged from 20 to

30◦. The camera distance depended on the area being analyzed, neither the distance

nor the angle mattered because the camera needed to be calibrated and there were

intrinsic values throughout the process.

7.4.3 Camera Calibration

Once the aberration had been corrected, the camera needed to be calibrated. As

mentioned above, at least six points must be identified in the space of known coor-

dinates and correlated with six points in the photograph in order to determine the

M projection matrix (Bateman et al., 2006). As a calibration object, we used a

meshed box located in a known position (Figure 7.8). The points in the space used to

calibrate the camera were located throughout the volume of study in order to avoid

extrapolation problems that would increase the estimation error. We used a set of

points taken from different positions of the meshed object in the area of interest.

7.4.4 Detection Of Laser Beams

There are various techniques for finding the pixels that belong to a laser beam in a

photo. Depending on the quality of the photograph, the layout of the laser beams, the

contrast of the beams, the background of the image and other factors, one technique
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may be better than another. All techniques require a pre-filtering or post-filtering

process. In the present analysis two different techniques were used, detection by

maximum and morphological image treatment, which were applied to both cameras

that observed the experiment from different positions. Frontal (Basler) and lateral

(Lumenera) points of view were used in the subsequent analysis, as shown in Fig-

ure 7.6.

The frontal view had certain advantages over the lateral view. The main advantage

lies in the layout of the laser beams in the photograph. It was easy to apply an

intuitive technique to detect the maximum of the column of pixels (by colour index),

which match up with the laser beams.

Figure 7.8: Meshed box used in the calibration procedure.

The image resolution of the Basler camera was higher than Lumenera’s one. The

study area occupied the entire frame and it was possible to obtain more information

about the process. However, in this specific example, the frontal view presented a

difficulty: the image could not describe the lateral flow depth gradients as well as

images from the lateral view do.

First, we corrected the photograph by refining it. Due to the fact that the illumi-

nation condition was poor, the Basler took the photographs with an electronic gain
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that introduced some noise, which appeared as fine vertical highlight lines, a low pass

FIR filter was used to smooth the image, suppressing the light noise. Then a simple

algorithm to detect maximums is used and the the image converted to binary, on the

binary domain successive operations were carried on until the different laser pieces

are connected with accuracy defining the real laser lines.

 

Figure 7.9: Comparison between the original Basler camera image (left) and the
results obtained after filtering (right).

In the Figure 7.9 the comparison between the original image and the obtained

result is shown, all the line pieces present in the image are connected forming the

laser lights.

For the second camera, Lumenera, a morphological function to detect contours

were used. The obtained results were very interesting for the analysis of the fan

expansion area, due to the position and angle of the camera. But as will be seen in

the results analysis these areas do not accomplish the SWE hypothesis, so were not

useful for the comparison with the numerical results.
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7.4.5 Results

After the image processing, the water free surface is obtained and the results could

be compared to the experimental ones, the configuration selected for the model is:

1. Computational mesh 1 cm2.

2. Exact SWE Riemann solver.

3. Second order in space scheme using minmod limiter (LeVeque, 2002; Toro,

2001).

4. Transversal Riemann solver to obtain complete second order in bi-dimensional

flow (LeVeque, 2002).

5. Results output every hundredth of second.

The first step to compare results is to transform the local results of the image

processing in full domain results, this means to interpolate the free surface from the

known points to the whole domain (Figure 7.10, Figure 7.11). Splines were used to

carry out this step.

Figure 7.10: Position of the free surface obtained by the laser image processing, the
results are lines.
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Figure 7.11: Interpolated results for the whole domain.

The next step is to compare the experimental results with the numerical ones

obtained by using the model (Figure 7.12). The time step selected is 2.45 s. To

compare the results two different operations were carried out. The first one is to

subtract the depths between the experimental and the numeric in order to compare

the differences. And the second one is to delimitate the wet area of the platform. This

is important because one of the targets of the work was to validate the drying/wetting

process of the model.

 
  

Figure 7.12: Numerical results obtained using the model.

Figure 7.13 shows the behavior of the absolute error, which is calculated as the

experimental data minus the numerical data. The numerical and experimental data
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fit quite good throughout the area of study. The unique regions where the results are

not in agreement are those which fail to meet the SWE conditions. Two regions were

defined, due to the shallowness hypothesis there are areas were the conditions are

clearly not fulfilled, specially in the gate neighborhood (Figure 7.13). A threshold is

defined to establish these areas, sectors with error higher than the 40% are discarded,

being less than the 7% of the total area.

Nevertheless, the comparison shows that the data has a mean error of 13.9%

throughout the area of study. If a new threshold of 20% is used to discard areas non

SWE areas, the data that has a mean error of 9%, being the discarded area less than

the 15% of the total domain.

There are especial places were, due to the flow configuration, the numerical results

are far from the experimental ones. But the problem related to these points is not in

the numerical solution, is in the equations system applicability. As has been stated

during the equation system definition, its necessary to introduce multiple approxima-

tions to simplify the equations, these approximations are not valid in some areas of

the experiment domain, specially close to the dam gate, there the flow vertical profile

is complicaded, the velocities along the vertical are not parallel, so the approach of

the mean velocity introduces large error in the results.

The mixture of water and milk flowed very quickly across the platform, producing

a jet flow that increased in width from 0.4 to 2.4 m. The front of the flow moved very

quickly, close to 3.42 m/s, which was much faster than the theoretical value of 2.21

m/s given by the Ritter solution.

Also the questions related to the hydrostatic pressure are complicated. There are

places with an important vertical acceleration. So, in these places the flow pressures

are lower than the predicted ones. It is worth to notice that in SWE framework, the

pressures and the free surface dynamics are linked.

Another comparison between experimental and numerical data is carried out. This

comparison concerns to flow expansion in the platform. Figure 7.14 shows all data



182

 
 

 

 

 

Figure 7.13: Depth difference between the experimental and numerical results, .

 

Figure 7.14: Differences in the platform in the dry condition.

below a height of 2 mm. The resulting flow expansion angles are 36 and 23◦ for the

numerical and experimental data respectively. The experimental flow fan opens faster

than the numerical one.

7.5 Experimental Debris Flow

This is the first calibration case with bi-dimensional behavior, these results were ob-

tained in Iverson et al. (2004), to calibrate the numerical model proposed in Denlinger

and Iverson (2004). In the experiment, a dambreak with sand is carried out. The



183

size of the sand is between 0.5-1 mm, the bulk density is 1550 kg/m3 and the internal

friction angle φ is 43 degrees. The flow surface during the experiment and the final

deposition area is measured.
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Figure 7.15: Topography of the experiment. Flow from left to right.

The channel dimensions were 0.2 meter width and 1 meter long. In the upper

part, a gate exist, containing the dam 300 cm3 of sand. The material of the channel

is formica upstream to the gate. The remaining channel is made of urethane. For

the basal stress computations the friction angle between the sand and the different

channel materials is computed. The friction angle between urethane and sand is

19.85 ◦. The friction angle between formica and sand is 23.47 ◦.

In the Figure 7.15 the basal topography is shown, the maximum level is 0.25 me-

ters high, the mean slope is 31.6 ◦, over the friction angle between urethane and sand.

The comparisons between simulation results using two different basal friction angles

and data from the flume experiment are given by isopach maps of flow depth at differ-

ent times (Figure 7.16). Model predictions match qualitatively well to the dynamic

characteristics of the sand avalanche. Simulation results show higher fluidification

mobility.

A second run was carried out introducing the active/passive pressure coefficients
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(see Page 83). The implementation was simple. Passive coefficient for flow compres-

sion and active coefficient for flow expansion. The results where poor, instability

was introduced due to the discontinuity in pressure. The method proposed in Hungr

(1995) includes a kind of inertia in the pressure coefficient, avoiding the discontinu-

ities. Similar methods are proposed in Pudasaini and Hutter (2007); Iverson et al.

(2004).

Experiment results Simulation results 

  

 

 

2              4

 flow depth (cm)

 

0.51 s 0.51 s 

1.97 s 1.97 s 

8.0 s 8.0 s 

Figure 7.16: Comparison between the laboratory experiment of a sand avalanche (left
column) and numerical results calculated by the model (right column). Flow depth
is plotted on a topographic base with a contour interval of 1 cm.

In continuation, we present an example to see how our stop-and-go approach

can be visualized for the same simulation run as described above. This is shown in

Figure 7.17 where green (bright) color indicates cells in movement and red (dark)

color shows cells with no movement.

The simulation times forward from left to right and from top to bottom. The time

step between images is 0.12 seconds.



185

 

 

 

Figure 7.17: Visualization of the stop-and-go approach implemented in the model
at different time steps using a basal friction angle of 19.85 ◦. Green (bright) color
indicates cells in movement and red (dark) color shows cells with no movement.
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Chapter 8

Real Cases

In this chapter some real applications of the model will be shown, all the cases belong

to the Catalonia geographic space (North East Spain). The procedure carried on to

apply the model consist in the “back analysis”. This means that the data about the

debris flow event is collected a posteriori and then some different configurations are

testes until good agreement to the measurements is obtained.

As will be clear in the sequent, for the Catalonia environment, there is a char-

acteristic rheology that fits the behavior of the events. This agreement allows, in a

second stage, to use the model with predictive character.

8.1 Introduction

Because of the particular characteristics of the Mediterranean climate that affect the

Northeastern part of the Iberian Peninsula, debris flows do not occur as frequent as

in other mountainous areas. Generally, debris flows can be triggered by two different

types of rainfall events:

1. Short and locally restricted rainstorms of high to very high intensity that happen

during summer.

2. Rainfall episodes of moderate to high intensity that affect a large area during

187
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one or few days in late summer and autumn (Corominas et al., 2002; Hürlimann

et al., 2003).

In the present study, three events have been selected for numerical simulation of

the model. They took place at different locations in the Eastern Axial Pyrenees and

the Catalan Prelitoral Mountain range (Figure 8.1). These events probably represent

the three most important debris flows that occurred in our study area during the last

30 years, but unfortunately field data are limited. Thus, our simulations only provide

general patterns on flow dynamics of these events.

Figure 8.1: Location of the three drainage basins.(Figure courtesy of M. Hürlimann)

8.2 La Guingueta
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8.2.1 Field Data

The Jou torrent near La Guingueta village drains the largest of the three selected

catchments covering 4.4 km2. The drainage basin is situated in the Eastern Ax-

ial Pyrenees (Figure 8.1) and bedrocks consist of shales. However, the basement

rocks only crop out in the lower section, while the rest is covered by till deposits or

periglacial materials.

Figure 8.2: Jou Torrent at La Guingueta, topographic map indicating the surveyed
flow path of the event.(Figure courtesy of M. Hürlimann)

The Jou debris flow was also provoked by the 1982 floods and a total rainfall

amount of 154 mm in 24h which was measured at a nearby rain gauge. In the night

from November 7 to November 8, three surges transported a total volume of about

30000 m3 to the fan (Figure 8.2). Field data indicated that two major failures in

the higher port of the catchment transformed into debris flows, but most of the

accumulated material was eroded in the glacial or periglacial deposits (Bru et al.,

1984). The accumulation zone of the debris flow covered a large area of the fan and

damaged several houses and roads of La Guingueta village.
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Figure 8.3: La Guingueta fan picture.(Photography courtesy of M. Hürlimann)

8.2.2 Simulation Results

Field data indicate that two principal initiation zones caused the debris flow (Fig-

ure 8.2). During the numerical modelling, each initial volume was released at the

same moment and assumed to be 15000 m3, which gives a total mobilized mass of

30000 m3 (Figure 8.4 Left). The simulations were carried out over a topographic grid

with a cell size of 2 m. Voellmy fluid model was applied again and the best-fit flow

properties were µ = tan (φ) = 0.1, C = 10 m1/2/s.

Apart from the extent and the depth of the initially mobilized mass, Figure 8.4

Left also indicates the calculated depths of the final deposit. While the extension

of the inundated area obtained by the simulation coincides rather well with the one

observed in the field, accumulated depths of material seem to be affected again by

the uncertainties related to the DEM. As in the previous case, these errors can be

explained by the fact that a DEM representing actual conditions was used for the

input relief.

Such a topographic error provoked that the maximum depth computed for the

final deposit was 3.4 m. However, this maximum value was only limited to one point

located inside the artificial channel, which was constructed after 1982. Thus, the



191

Figure 8.4: Simulation results of the debris flow occurred in the Jou torrent at
La Guingueta using Voellmy fluid model

(
µ = tan (φ) = 0.1, C = 10 m1/2/s

)
. Left:

Depth of initiation zone and of final deposit. Right: Maximum flow velocity.

legend used for Figure 8.4 Left and Figure 8.6 Left ranges from 0 to 2 m. This range

more or less coincides with the depth of the deposit observed after the debris-flow

event. In Figure 8.4 Right, the maximum calculated flow velocity is illustrated.

Results indicate that maximum velocity is limited to the steep and strongly con-

fined section just upstream of the fan apex. There, maximum velocity of more than

9 m/s was calculated (the legend in Figure 8.4 is limited to 6 m/s). The sensitivity

analysis of the different flow resistance laws and their rheological parameters generally

confirmed previous results.

Figure 8.5 Left compares the extension of the final deposit obtained on one side by

the best-fit Voellmy parameters
(
µ = tan (φ) = 0.1, C = 10 m1/2/s

)
and on the other

side by a higher φ-value of 0.14. As it could be supposed, the final deposit is shorter
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Figure 8.5: Simulation results of the debris flow occurred in the Jou torrent at La
Guingueta using Voellmy fluid model. Left: Extensions of final deposits computed
by different Voellmy parameters (Case 1: µ = tan (φ) = 0.1, C = 10 m1/2/s; Case 2:
µ = tan (φ) = 0.14, C = 10 m1/2/s). Right: Zone affected by simulations using

different Herschel-Bulkley parameters (Case 1: τ0 = 1 kPa, k = 1 (Pa s)1/3; Case

2: τ0 = 1 kPa, k = 0.1 (Pa s)1/3; Case 3: τ0 = 0.5 kPa, k = 0.1 (Pa s)1/3; Case 4:

τ0 = 0.3 kPa, k = 0.1 (Pa s)1/3.

using a higher friction angle. So, the value of this parameter is rather delicate and

strongly affects the total extension of the debris-flow deposit.

Additionally, simulation runs applying Herschel-Bulkley rheology were carried out

(Figure 8.5 Right). As already observed in the Font de la Llum event, a viscous flow

resistance law is not able to simulate such a type of debris-flow. Grain sizes of the till

and periglacial materials include gravels to boulders in a silty matrix (Bru et al., 1984),

which support the hypothesis of a granular debris flow. A large range of parameters

were tested, but no good agreement was received and specially the flow cross-section
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Figure 8.6: Correction of front inclination of final deposit modifying the φ-value
(see text for detailed explanations). Left: Comparison of extensions of final de-
posit for normal Voellmy model and corrected Voellmy model using in both cases
µ = tan (φ) = 0.1, C = 10 m1/2/s. Static friction angle was 35 ◦. Right: Computed
depths of final deposit along the profile illustrated in Figure 8.6 Left (green line).

area and lateral expansion angle of the deposit on the fan have a behavior far from

the one observed.

Finally, the simulation results obtained on the fan help to visualize the effect of

the correction referring to the front slope of the final deposit. Figure 8.6 Left shows

the extension of the final deposit calculated using the Voellmy fluid model without

the correction (called “Voellmy” in Figure 8.6 Left) and the corrected Voellmy fluid

model (called “Corrected Voellmy”).

The corrected model changed the initial friction angle φ = 5.7,◦ into the static

frictional angle φstat = 35,◦ for the critical velocities of V1 = 0.3 m/s and V2 = 0.1
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m/s (see Figure 6.10). The improvement of this implementation is clearly visible in

Figure 8.6 Right, where longitudinal profiles at the front of the final deposit profile are

illustrated. Only the corrected Voellmy model can simulate the typical steep fronts

that are generally visible at debris-flow deposits.

8.3 Montserrat

8.3.1 Field Data

The Font de la Llum catchment covers a small area of 0.46 km2 at the eastern flank

of Montserrat massif. The massif is situated about 30 km northwest of Barcelona in

the Catalan Pre-litoral Mountain range (Figure 8.1) and maximum altitudes reach

about 1250 m a.s.l. From a geological point of view, the bedrock of the drainage

basin involves sequences of conglomerates, sandstones and lutites, which are locally

covered by a colluvium layer. The higher part of the basin is characterized by very

steep slopes with inclinations of up to 60◦, while the lower part includes a smooth

morphology with small slope angles (Figure 8.7).

The selected event was triggered on June 10, 2000, by an extremely intense thun-

derstorm, which provoked a failure of the colluvium deposit in the highest part of

the massif. The advective rainstorm lasted about 4 hours including a maximum in-

tensity of ∼ 80 mm/h and accumulated about 160 mm rainfall. Field observations

and interpretation of aerial photographs indicate that the initially failed mass of the

terrain was rapidly transformed into a flow. Another characteristic was that almost

the entire superficial deposit was incorporated into the flow.

A total volume of about 10,000 m3 was estimated in the elongated accumulation

zone (Figure 8.7). The morphologic and sedimentologic characteristics observed in

the field suggest that the event descended the torrent in various surges of hypercon-

centrated flows and/or debris flows.
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Figure 8.7: Font de la Llum torrent at Montserrat, topographic map indicating the
flow path of the event simulated.(Figure courtesy of M. Hürlimann)

8.3.2 Simulation Results

The model simulated the event at Font de la Llum as one surge of 10,000 m3. The

high-quality digital elevation model available was transformed into a grid of 0.3 m

cell size and runs were carried out at this precision.

First, the three flow resistance laws were compared and a sensitivity analysis of

the rheological parameters was carried out. Many different simulation runs were

executed and both the extension and the depth of the final deposit were compared

with the data observed in the field. The results of this comparison indicate that the

most realistic simulations were obtained by the Voellmy fluid model and material
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Figure 8.8: Montserrat picture.(Photography courtesy of A. Bateman)

properties of µ = tan (φ) = 0.13, C = 10 m1/2/s (Figure 8.9 Left). In contrast, no

good agreement with the real deposit shape was obtained applying Bingham model.

Figure 8.9 Right illustrates outcomes calculated for τ0 = 0.75 kPa, µm = 0.450 Pa s

and ρ = 1500 kg/m3. First approximations of τ0 could be calculated using the

equilibrium equation for Bingham flows (Figure 2.7). The depth of the final deposit

is about 1.5 m and the slope in this area is 5.7 ◦. So, an initial approximation of a

value for τ0/ρ should be about 1.4 m2/s2.

Previous studies applying viscous rheology proposed values for τ0/ρ of 0.4 m2/s2

(Chen and Lee, 2002), 0.1 to 0.5 m2/s2 (Rickenmann and Koch, 1997) or 0.1 to 1

m2/s2 (Pastor et al., 2004). The same references also propose values for viscosity

(µm/ρ), which should be around 0.05 m2/s (in our case, the best-fit value was 0.3
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Figure 8.9: Backanalysis of the Font de la Llum event at Montserrat. Left:Depth
of final deposit computed by best-fit Voellmy fluid model (µ = tan (φ) = 0.13 and
C = 10 m1/2

/s). Right: Depth of final deposit computed by best-fit Bingham model
(τ0 = 0.75 kPa, µm = 0.450 Pa s).

m2/s). Finally, Herschel-Bulkley rheology was tested using parameter values pro-

posed by previous works (Coussot et al., 1998). Once more, very poor results were

computed using many different parameter combinations for Bingham and Herschel-

Bulkley rheologies(µm/ρ = 0.1 − 1 m2/s, k/ρ = 0.05 − 1 m2/s5/3 and n = 0.33).

Although this backanalysis does not include additional information on other im-

portant data such as flow velocity or flow area observed at some points in the trajec-

tory, the outcome indicates that the event may be characterized by a granular flow

behaviour.
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Figure 8.10: Backanalysis of the Font de la Llum event at Montserrat. Comparison
between Voellmy and best Herschel-Bulkley.

Additionally, some detailed results of the Voellmy simulation are presented illus-

trating only the final part of the flow. This part includes the end of the steep section

and the smooth section of the elongated accumulation area. Figure 8.11 Left illus-

trates maximum flow velocity and Figure 8.11 Right shows maximum flow depth.

Simulation results reveal that the debris flow or hyperconcentrated flow reached lo-

cally a maximum velocity of about 16 m/s at the end of the steep section, while

velocity strongly decreases in the lower smooth section, where accumulation starts.

This local maximum velocity slightly surpasses the estimates obtained by the
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Figure 8.11: Backanalysis of the Font de la Llum event at Montserrat. Left: Maxi-
mum velocity applying the same Voellmy parameters as in a). Right: Maximum flow
depth applying the same Voellmy parameters as in a). The lines and the numbers
are the cross sections used to calculate hydrographs.

application of the superelevation approach (Johnson and Rodine, 1984), which gave

about 12 m/s for the average front velocity at the same position. Regarding simulated

flow depth, maximum values of more than 8 m were computed at the end of the steep

section, where the flow is strongly confined and flow width is very small. Maximum

flow depth rapidly decreases in the accumulation and values generally range from 0.2

m to 2 m. The runs of the Font de la Llum event also provided illustrative data on

how the stop-and-go mechanism could be simulated by the model. Figure 8.12 shows

different hydrographs at the three successive sections 5, 6 and 7. All these sections

are located in the accumulation zone of the torrent, where the stop-and-go effect was

clearly visible during numerical modeling.
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Figure 8.12: Hydrographs of Montserrat event illustrating the Stop and Go phenom-
ena. Sections 5, 6 and 7 (see Figure 8.11).

It can be seen that flow hydrographs of the first two sections exhibit only one

peak, nevertheless the hydrograph of section 7 shows two peaks. These two peaks are

illustrated in Figure 8.13 together with the curve indicating the evolution of the flow

area. Both peaks present discharges of ∼ 12 m3/s, but the second peak is the result

of an important deposit failure upstream. The red circle in Figure 8.13 points out a

small local failure, which can be clearly noted as a negative evolution of the flow area

previous to the larger peak.

The La Guingueta case exhibits flow pulses in the fan area, but there were three

different flow surges. In the Montserrat case there were also small pulses (see section

7) but there were not different surges. This behavior is classical in non linear flow

dynamics, where the flow tends to form pulses, specially in high velocity flows.

In Figure 8.14 the hydrographs for the initial crossections are shown, its clear that

the discharge peak it is reduced in few meters, the extreme value of the discharge is
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Figure 8.13: Hydrographs of Montserrat event illustrating the Stop and Go phenom-
ena. Evolution of the flow area and the discharge at section 7 indicating remobilization
of material (see Figure 8.11).

due to the very steep slope in the upper part of the stream, that provokes a very

high velocity and the extreme discharge, after the upper part the velocity is rapidly

reduced.

Although the peak discharge values in these sections seem to be excessive, there

were data that supports these extreme values. The stream crosses a road through

a kind of culvert. The road and the culvert were completely destroyed. Also the

bedrock appears in the upper part of the stream as a proof of the extreme shear

stresses occurred during the event. The superelevation approach indicates extreme

velocities in the upper part bend.

In Figure 8.15 flow positions obtained at different time steps are shown. In the

upper part of the domain the velocities are very high and the distance between the

different time steps is high. In the lower part the velocity is reduced and the distances

also are reduced.

In this case the model results do not fit quite well the event data. It is not clear
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Figure 8.14: Hydrographs of Montserrat event in the first crossections of the stream
(see Figure 8.11).

that the event was a pure debris flow. Probably it was a mixture of hyperconcentrated

sediment transport and debris flow. It means that a single rheology is not able to

model the whole event. A more sophisticated model is necessary to improve the

results accuracy. The absence of channel levees in the lower part of the surveyed

cross sections indicates that provably the flow was more diluted and there was an

aggradation process in the channel.
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Figure 8.15: Different time steps obtained with the Voellmy best fit.

8.4 Pal

8.4.1 Field Data

The Cardemeller catchment near Pal is situated in the Principality of Andorra and

covers an area of 1.7 km2 (Figure 8.1). From a geological point of view, the drainage

basin is settled in the Eastern Axial Pyrenees and the basement principally consists

of Devonian and Cambro-Ordovician rocks including meta-limestones, phyllites and

slates. Bedrock is generally covered by superficial deposits of glacial origin and col-

luvium.
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Figure 8.16: Cardemeller torrent at Pal, topographic map indicating the flow path of
the event.(Figure courtesy of M. Hürlimann)

The initiation of the debris flow took place in a road cut excavated in colluvium and

mobilized several hundred cubic meters (Figure 8.16). The debris flow was provoked

during the widespread floods of November 7/8, 1982. A total rainfall amount of

about 180 mm in 48 h was estimated for the Pal area using nearby rain gauges that

unfortunately only recorded the total daily precipitation.

The initial slope failure rapidly transformed into a debris flow and strongly in-

creased volume by important entrainment of material along the flow path. A final

volume of about 5000 m3 was calculated by field observations just after the event. The

accumulation zone of the debris flow covered the higher part of the fan and destroyed

the road at the fan apex (Figure 8.16).

8.4.2 Simulation Results

The main purpose of the backanalysis of the Cardemeller debris flow was the validation

of the implementation of basal entrainment into the model. In each simulation a start
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Figure 8.17: Picture of Cardemeller torrent at Pal .(Photography courtesy of M.
Hürlimann)

volume of 500 m3 was released at the road cut, where initial failure occurred in 1982

(Figure 8.16). The topographic grid used at this catchment included rectangular cells

of 1 m size.

Preliminary simulations showed that the Voellmy fluid model provided again most

reasonable results (Bateman et al., 2007). In this case, the rheological parameters of

the final runs were µ = tan (φ) = 0.22 and C = 12 m1/2
/s.

Regarding the analysis on basal erosion the parameter φent, which governs the

entrainment condition, was assumed to be φent = 31 ◦. This value would correspond

to a pore pressure parameter of 0.3 and an internal friction angle of 40 ◦ (Equa-

tion 6.3.7), which coincide with the ones proposed by (Iverson and Denlinger, 2001)

and (Pudasaini et al., 2005).

General results on the flow dynamics of the Cardemeller debris flow are presented
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Figure 8.18: Backanalysis of the debris flow occurred in the Cardemeller torrent at
Pal applying Voellmy fluid (µ = tan (φ) = 0.22 and C = 12 m1/2

/s). Left: Maximum
flow velocity. Right: Maximum flow depth.

first, while the sensitivity analysis on the basal entrainment will be described later.

Figure 8.18 Left shows maximum velocity and Figure 8.18 Right illustrates maximum

flow depth. Maximum flow velocity reaches about 7 m/s in the higher confined section,

whereas maximum flow depth greater than 2 m can be observed at several points along

the flow path.

The extension of the final deposit (Figure 8.19 Left) coincides more or less with the

area observed just after the event by field data (see Figure 8.16). Most differences can

be explained by the topographic information used for the simulation. Since an actual

digital elevation model (DEM) was incorporated, significant variation can appear

between this DEM and the pre-event relief. This discrepancy especially affects the

depth of the final deposit, which is strongly related to morphologic anomalies. All
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Figure 8.19: Backanalysis of the debris flow occurred in the Cardemeller torrent at
Pal applying Voellmy fluid (µ = tan (φ) = 0.22 and C = 12 m1/2

/s). Left: Depth
of final deposit. Right: Erosion depth calculated along flow trajectory using the
dynamic approach and φbed = 31 ◦.

these uncertainties, however, do not alter the runs analyzing the effect of entrainment,

because erosion was limited to the higher part of the flow path.

Figure 8.19 Right shows the erosion depth computed in the higher section of the

path. Simulation results indicate that maximum entrainment occurs at steep and

confined points, where erosion depths of up to 2 m were calculated. A curious feature

is the step-and-pool morphology, which is associated with the areas of erosion. This

fact seems to be correlated with both the torrent width and some kind of retrogressive

scour.

Apart from the erosion depth along the flow path, the evolution of the flow total

volume with time was computed (Figure 8.20). The blue line indicates the general
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ent

Figure 8.20: Effect of entrainment during the Cardemeller debris flow applying the
dynamic approach and different values of φent, evolution of debris-flow volume with
time.

value of φent = 31 ◦. The initial volume of 500 m3 strongly increases in the first

phase of the event, because the debris flow passes through the steep section. The

principal part of the total computed volume of about 4100 m3 was reached after only

400 seconds, while very small entrainment occurs afterwards.

The final volume underestimates the total volume after the event, but this error

can be fixed by a small reduction of φent-value, as we will see in the following. A

sensitivity analysis of the parameter φent was carried out, in order to obtain an idea

of its influence on the erosion rate. Figures 8.20 compares the previously commented

results using φent = 31 ◦ with five other φent-value and Figure 8.21 summaries the

results correlating the final volume with the φent-value applied.

Both Figures 8.20, 8.21 indicate the strong influence of φent on the erosion rate,

especially for values smaller than about φent = 30 ◦. A similar non-linear behavior
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Figure 8.21: Effect of entrainment during the Cardemeller debris flow applying the
dynamic approach and different values of φent, relation between φent, final volume of
debris flow.

was already observed in the theoretical runs illustrated in Figure 6.6. As a concluding

remark, we can state that a total final volume of about 5000 m3, which was estimated

for the Cardemeller debris flow, would have been computed applying a φent-value of

about φent = 30.5 ◦. Such a friction angle of the channel bed material may be rather

small, but detailed laboratory or in-situ tests would be necessary to exactly validate

this parameter.
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Conclusions

A debris flow model has been developed. Different steps have been carried out:

beginning with the equations definition and ending with the real test cases valida-

tion, passing through the software implementation. The proposed model is specially

adapted to steep slopes scenarios. The main constrain of the model is the requirement

of low ratio between terrain surface second derivatives and first derivatives. This ratio

is equivalent to terrain surface low curvatures or slowly varying slopes.

Compared to the existing debris flow models, the strength of the here presented

one is the simplicity in input data setup. Just a DEM (Digital Elevation Model) is

necessary in order to define the topography and no preprocessor in necessary to adapt

to the model coordinate system. The coordinate system used by the model is named

PCS (Proposed Coordinate System) and is a particularization of the coordinates

defined in Bouchut and Westdickenberg (2004).

The classical mass and momentum conservation laws are used as main modeling

equations. The present model is a depth integrated model. It solves two dimensional

differential equations. The complexity of model development is related to the depth

integration process over general curved surfaces.

Several practical issues of the model implementation are also addressed. An algo-

rithm for the flow stop and go mechanism (remobilization) is included in the model.

Also basal entrainment calculation approaches are included among other particular

features.

The validation of the model seems to be fulfilled, running different analytical,

211
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experimental and real test cases. As is common in fluid dynamics, there is not an

analytical solution for a complete debris flow problem, so simplified ones are used

instead.

From every chapter a conclusions list is presented:

Regarding the coordinate system definition (Chapter 1):

1. For steep slope modeling, the terrain surface normal is selected as integration

direction.

2. The proposed coordinate system (PCS), keeps the cartesian coordinates X, Y

as curvilinear coordinates (u, v), and the surface is defined as Z = h(X, Y ).

3. In the PCS, when the second derivative of the terrain surface function are lower

than the slopes (first derivative) the principal curvatures are small (hij ≪ hi ⇒

KG, KM ≃ 0 ⇒ k1, k2 ≃ 0).

4. In the PCS, when the second derivative of the terrain surface function are lower

than the slopes (first derivative) the Christoffel symbols are small (hij ≪ hi ⇒

Γk

ij
≃ 0).

5. In the PCS, if the values of the Gaussian Curvature KG and Mean Curvature

KM are null, being the terrain slopes not null, then the second derivatives of

the terrain surface function (hXX , hY Y , hXY ) are null, and, therefore, Christoffel

symbols are also null:

(KG, KM = 0) ⇔ (hXX , hY Y , hXY = 0) ⇔
(
Γk

ij
= 0

)

6. Discard the curvatures in the equations justifies also discarding the Christoffel

symbols.

Regarding the equation system definition (Chapter 2):
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1. The model equations system is defined based on the mass conservation and

momentum conservation.

2. An homogeneous, constant density flow is considered, so the model approach is

monophasic.

3. A non-dimensionalization of the equations system is carried out using charac-

teristic variables of the flow:

• A flow length L

• A depth H

• Curvature radius r

4. The perturbation method is used to simplify the equations.

5. In zero order approach, the vertical velocities are null for shallow flows.

6. In first order approach the velocity profile along the depth is linear for shallow

flows.

u
1

0
= û

1
/
(1 − k1β)

u
2

0
= û

2
/
(1 − k2β)

7. In first order approach the pressure includes centripetal terms:

P (w) =
ρ

2

(
h1(0)û1

)2

{(
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)2
}

+ ρg3 (d − w)

8. The dimension of the model is reduced by the depth integration.

9. Supposing small curvatures (k1, k2 ≃ 0) simplifies the integrated equation sys-

tem, reduces the metric complexity:
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• The velocity profile becomes constant

• The pressure becomes hydrostatic, neglecting the centripetal effects

• 2D bed surface metrics are equal to the flow 3D volume metrics: Ê = E,

Ĝ = G, ĝij = gij.

10. Discarding the curvature effects converts the definition of equation system in

the direct application of covariant derivative to the SWE. Equal to compute

SWE in curved manifolds (Rossmanith et al., 2004).

11. The equations system obtained in the model before introducing the rheology is:







∂d

∂t
+

1
√

|g|

∂
(√

gu
k
d
)

∂xk
= 0

∂ (dui)

∂t
+

1
√

|g|

∂

∂xj

(√

|g|T
ji

)

= dgi

T
ij = du

i
u

j +
g3

2
d

2
g

ij

12. The shallow flow hypothesis influences in the rheology, several terms of the stress

tensor could be discarded through geometrical arguments. These discarded

elements include internal stresses.

13. The pressure P and the bed shear stresses τbi are the terms that depend on the

rheology, the first comes from the integration of τii and the second from τi3.

Regarding the numerical methods applied to solve the equations system

(Chapter 3):

1. The Finite Volume Method (FVM) is used to discretize the equations, the metric

term is included into the flux function.

2. The cell-edge flux functions (Bale and LeVeque, 2002) are used in the FVM

discretization.
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3. A high resolution discretization is implemented, using TVD limiters: Minmod,

Superbee, Van Leer and Monotonized Centered Limiter (LeVeque, 2002).

4. Linearized (Roe, HLLC, Osher) and non-linear solvers are implemented in the

model (LeVeque, 2002).

5. A locally orthonormal axes are defined to solve the Riemann problem at the

control volume interfaces, in these coordinates the equations system becomes

equal to the SWE with a corrected gravity. So the classical SWE solver is used.

Regarding the boundary conditions introduction (Chapter 4):

1. A new method to introduce boundary conditions is described in Chapter 4.

2. It combines a filter, which ensures that only well-posed problems are defined,

and a method for interpolating the unknown dependent variables in partial

boundary conditions (subcritical regimes).

3. The method is based on the Riemann problem solution and is optimal for the

Godunov method.

4. It allows discontinuities such as boundary conditions to be introduced.

5. The method can immediately be extended to one-dimensional Euler equations,

but more research is required before it can be extended to multidimensional

problems.

6. The method is computed using an exact Riemann solver because it is not com-

putationally expensive, so the combination with approximate Riemann solvers

should be researched.

Regarding the accuracy in internal boundary conditions calculation

(Chapter 5):
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1. When a control structure is introduced in the computational domain of the

model a internal boundary condition is established, this control structure is

regulated by a closure relation. In this function the smoothness is related to

the maximum time step.

2. A new accuracy criterium for the internal boundary condition is introduced,

allowing to guarantee the fulfillment of the structure characteristic curve.

3. This proposed criterium adds a new time step constrain to add to the Courant

stability restriction.

4. The new accuracy criterium is tested and validated.

Regarding to the special features of the model (Chapter 6):

1. Three different special features are included in he model:

(a) Stop and go mechanism: Algorithm to establish the deposition of the flow.

(b) Entrainment process: Approach used to compute the basal entrainment of

material into the flow (see Equation 6.3.7).

∂z

∂t
=

1

ρV
(τf − c − (1 − λ) cos θhρg tan φent) (8.4.1)

(c) Rheology adaptation: A filter to select between the static internal friction

angle and the dynamic friction angle.

Regarding to the validation using analytical, experimental and real

cases (Chapter 7):

1. Four different test cases were carried out to validate the code:

(a) Analytical, ideal, frictionless, flat, dambreak.

(b) Analytical one-dimensional dambreak with steep slope and friction.
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(c) Experimental UPC-GITS bi-dimensional water dambreak.

(d) Experimental USGS bi-dimensional sand flow.

Being the numerical results in good agreement with the predicted ones. A

problem exist in the definition of a complete bi-dimensional analytical solution

for SWE. Without this analytical solution bi-dimensional models validation is

not possible.

2. The agrement in the ideal dambreak analytical solutions is good, the results

fit well with the predicted values. The test case was solved using first order

approach in the discretization. The principal error appears in rarefaction wave

due to the poor accuracy of the first order model. The values for the shock

wave are accurate.

3. The dambreak test case with slope and friction is solved with a second order

approach. The numerical results fit almost exact values of the analytical solu-

tion. The reason for this good agreement is related to the fact that the solution

is mainly formed by a rarefaction wave, and with the second order approach

these waves are well fitted.

4. A 2D validation case was carried out in the UPC-GITS experimental facilities.

The free surface of the flow was captured using laser technologies.

5. The mean depth error in the numerical simulation of the experiment was 13.9%,

and on the 80% of the domain the error is less than 7%.

6. In the sand flow experimental test case (USGS), the agreement in the shapes of

the final deposit is good. Also the numerical transient results fit well with the

experiment.

Regarding the real cases (Chapter 8):

1. Three different real cases were analyzed with the model: “La Guingueta”, Pal,

Montserrat.
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2. To fit the real data the back analysis technic is used.

3. Regarding “La Guingueta” case:

• The total volume was 30000 m3, divided in two different initiation points.

• The selected cell size was 2 m.

• The rheology adaptation special feature was used.

• The best-fit results were obtained using the Voellmy rheology with the

parameters µ = tan (φ) = 0.1, C = 10 m1/2/s.

• The maximum depth values were around 2 m and the maximum velocities

9 m/s.

• The final deposit fits well the real case surveyed data.

4. Regarding Montserrat case:

• The total volume was 10000 m3.

• The selected cell size was 0.3 m.

• The best-fit results were obtained using the Voellmy rheology with the

parameters µ = tan (φ) = 0.13, C = 10 m1/2/s.

• The maximum depth values were around 0.2-2 m and the maximum veloc-

ities 16 m/s, other methodologies suggest a real maximum velocity around

12 m/s.

• The maximum discharge was over 90 m3/s.

• The final deposit fits well with the real case surveyed data, but indicates

that probably the event was between hyperconcentrated flow and debris

flow.

5. Regarding Pal case:

• The initial volume was 500m3.
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• The entrainment approach was used in this simulation.

• The maximum erosion allowed was fixed in 2 meters.

• Regarding the analysis on basal erosion the parameter φent, which governs

the entrainment condition, the value was assumed to be φent = 31 ◦.

• Using this parameter the total material volume at the end of the simulation

was lightly under 5000 m3.

• The selected cell size was 1 m.

• The best-fit results were obtained using the Voellmy rheology with the

parameters µ = tan (φ) = 0.22, C = 12 m1/2/s.

• The maximum velocity were around 7 m/s.

• The final deposit fits well with the real case surveyed data.



Future Works

In this chapter some future research lines will be proposed. In author’s opinion more

effort should be given to improve the knowledge in debris flow mechanics. Numeri-

cal methods for fluids are being developed in agreement with other disciplines, but

heterogeneous flows are a central point of debris flow research.

The development of computational hardware opens the door to the birth of com-

plete 3D models, so the future of coordinate integrated models is not so clear. One of

the problem is the data availability of the real phenomenon. Complete model without

detailed data input is not possible.

Some future and immediate research lines should be as follows:

1. Following the debris flow experimental activities developed at the Laboratorio

de Morfodinmica Fluvial in the UPC and from literature review (Iverson and

Denlinger, 2001; Pudasaini and Hutter, 2007) it seems that pore pressure plays

an important role in the debris flow phenomenon. A state of the art model

for real events probably should include this variable, although the necessary

parameters for the modeling of pore pressure requires complex elements like

pressure diffusion (Baum et al., 2008). The existing literature about these

parameters is limited.

2. The fact of using the constant density hypothesis reduces significantly the ap-

plicability range of the model, so the inclusion of variable density would result
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in a powerful model but also would require the integration of variable-density

entrainment equations and variable density rheology law.

3. The proposed cases were mainly granular flows, it seems to be necessary the

introduction of dense rapid granular flows rheologies (Delannay et al., 2007;

Azanza et al., 1999; MiDi, 2004), where concepts like granular temperature are

used to model the flow mechanics. The main limitation of these models are the

exclusion of water, so it comes into conflict with the pore pressure inclusion.

4. In the constitutive equations analysis, some terms of the stress tensor are dis-

carded, this includes the internal stresses, following the methodology introduced

by Iverson et al. (2004). A more complex rheological should be introduced to

improve results, probably, as in the commented reference other numerical meth-

ods should be used for dealing with the complete stress tensor.

5. As it is known, using structured grids as computational mesh simplifies the data

input construction but limits the flexibility of the model. In this case the real

events have an associated topography, with small scale elements that should be

better captured using unstructured mesh. The translation of the code to this

type of meshes would increase its flexibility and accuracy.



Appendix A

Torus example

In this appendix the torus example used in Chapter 1, Section 1.6, is presented. The

amount of figures and equations suggest splitting the chapter creating this appendix.

Every metric element is presented as an equation with the corresponding graphical

representation.

The sections presented in this appendix are:

• First Fundamental Form Ip

• Second Fundamental Form IIp

• Torus Christoffel Symbols.

• Torus Intrinsic Metrics.

Every section has a subsection for PCS and for Principal Curvatures Coordinates.

The metric intrinsic elements are:

• Mean and Gaussian curvatures.

• Principal curvatures.
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All the metric intrinsic elements are common in both coordinate systems, that’s

why they are not associated to a particular coordinate system choice.

The equations used for torus parametrization in PCS are:







x = X

y = Y

z = h(X,Y ) = −

√

r
2

2
−

(
r1 −

√

X2 + Y 2
)2

(A.0.1)

Where r1, r2 are the bend radius and the crossection shape radius.

The equations used for torus parametrization in Principal Curvatures Coordinates

are:







x = (r1 + r2cos (φ)) cos (θ)

y = (r1 + r2cos (φ)) sin (θ)

z = r2 sin (φ)

(A.0.2)

Where θ ∈ (0, π) and φ ∈ (π, 2π), these two coordinates define the curvature lines.

A.1 First Fundamental Form Ip

The first fundamental form Ip is related to the dot product of the curvilinear co-

ordinates tangents, it defines the covariant metric tensor gij, and also the inverse o

contravariant metric tensor g
ij = (gij)

−1.

A.1.1 PCS

In the present case the components of this tensor in PCS are:
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g11 = E =
r2X

2 + r2Y
2
− r

2

1
Y

2 + 2 r1

√

X2 + Y 2Y
2
− Y

2
X

2
− Y

4

(
r2 − r

2

1
+ 2 r1

√

X2 + Y 2
− X2

− Y 2
)
(X2 + Y 2)

g12 = F =

(
−r1 +

√

X2 + Y 2
)2

XY
(
r2 − r

2

1
+ 2 r1

√

X2 + Y 2
− X2

− Y 2
)
(X2 + Y 2)

g21 = F

g22 = G =
r2X

2 + r2Y
2
− r

2

1
X

2 + 2 r1

√

X2 + Y 2X
2
− X

4
− Y

2
X

2

(
r2 − r

2

1
+ 2 r1

√

X2 + Y 2
− X2

− Y 2
)
(X2 + Y 2)

(A.1.1)

A.1.2 Principal Curvatures Coordinates

In the present case the components of this tensor in Principal Curvatures Coordinates

are:

g11 = E = (r1 + r2 cos (φ))2

g12 = F = 0

g21 = F

g22 = G = r
2

2

(A.1.2)

A.2 Second Fundamental Form IIp

The second fundamental form IIp is related to the second derivatives of the curvilinear

coordinates.

A.2.1 PCS

In the present case the components of this tensor in PCS are:
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e = −

(

−r1
3
Y

2
− 3r1Y

4
− 3X

2
r1Y

2 + r1r2Y
2

+ (X2
Y

2 + Y
4
− r2Y

2
− X

2
r2 + 3r1

2
Y

2)
√

X2 + Y 2

)

·

(
r2 − r1

2 + 2r1

√

X2 + Y 2
− X

2
− Y

2
)−3/2

(X2 + Y
2)

−3/2

√
r2

r2−r1
2+2r1

√

X2+Y 2
−X2

−Y 2

(A.2.1)

f =Y X

(

−3X
2
r1 − 3r1Y

2 + r1r2 − r1
3

+ (X2 + 3r1
2 + Y

2)
√

X2 + Y 2

)

·

(
r2 − r1

2 + 2r1

√

X2 + Y 2
− X

2
− Y

2
)−3/2

(X2 + Y
2)

−3/2

√
r2

r2−r1
2+2r1

√

X2+Y 2
−X2

−Y 2

(A.2.2)

g = −

(

−3X
2
r1Y

2
− X

2
r1

3 + X
2
r1r2 − 3X

4
r1

+ (3r1
2
X

2
− r2Y

2
− X

2
r2 + X

2
Y

2 + X
4)
√

X2 + Y 2

)

·

(
r2 − r1

2 + 2r1

√

X2 + Y 2
− X

2
− Y

2
)−3/2

(X2 + Y
2)

−3/2

√
r2

r2−r1
2+2r1

√

X2+Y 2
−X2

−Y 2

(A.2.3)

A.2.2 Principal Curvatures Coordinates

In the present case the components of this tensor in Principal Curvatures Coordinates

are:

e =

(
r1

2 + 2r1r2 cos (φ) + r2
2(cos (φ))2

)
cos (φ) r2

√

r2
2(r1 + r2 cos (φ))2

f = 0

g =
r2

2 (r1 + r2 cos (φ))
√

r2
2(r1 + r2 cos (φ))2

(A.2.4)
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A.3 Torus Christoffel Symbols

In this section the Christoffel symbols are calculated.

A.3.1 PCS

The Christoffel symbols equations and graphical representations in PCS are:

ΓX

XX
= −

X
(
−r1 +

√

X2 + Y 2
)

r2 (X2 + Y 2)2
(
r2 − r1

2 + 2 r1

√

X2 + Y 2
− X2

− Y 2
)

·




−3 r1X

2
Y

2 + X
2
√

X2 + Y 2Y
2
− X

2
√

X2 + Y 2r2 − 3 r1Y
4+

+3
√

X2 + Y 2r1
2
Y

2
− r1

3
Y

2 + Y
4
√

X2 + Y 2 + r1Y
2
r2 −

√

X2 + Y 2r2Y
2





(A.3.1)

Graphical representation of this values are presented in the Figure A.1.
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Figure A.1: ΓX

XX
values for torus geometry, with r1 = 0.9 and r2 = 0.2.

ΓY

XX
= −

Y
(
−r1 +

√

X2 + Y 2
)

r2 (X2 + Y 2)2
(
r2 − r1

2 + 2 r1

√

X2 + Y 2
− X2

− Y 2
)

·

(

−r1
3
Y

2
− 3r1Y

4
− 3X

2
r1Y

2 + r1r2Y
2

+ (Y 4 + X
2
Y

2
− X

2
r2 − r2Y

2 + 3r1
2
Y

2)
√

X2 + Y 2

) (A.3.2)



228

Graphical representation of this values are presented in the Figure A.2.
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Figure A.2: ΓY

XX
values for torus geometry, with r1 = 0.9 and r2 = 0.2.

ΓX

XY
= −

Y X
2
(
−r1 +

√

X2 + Y 2
)

r2 (X2 + Y 2)2
(
r2 − r1

2 + 2 r1

√

X2 + Y 2
− X2

− Y 2
)

·

(

−3X
2
r1 − 3r1Y

2 + r1r2 − r1
3

(3r1
2 + X

2 + Y
2)
√

X2 + Y 2

) (A.3.3)

Graphical representation of this values are presented in the Figure ??.

x

y

x y

-1.1

-0.6

-0.6

-0.35

0.0

0.25

0.4 0.5

0.4

0.9

1.0

0.5

0.0-0.6 0.90.4-1.1

Figure A.3: ΓX

XY
values for torus geometry, with r1 = 0.9 and r2 = 0.2.
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ΓY

XY
= −

XY
2
(
−r1 +

√

X2 + Y 2
)

r2 (X2 + Y 2)2
(
r2 − r1

2 + 2 r1

√

X2 + Y 2
− X2

− Y 2
)

·

(

−3X
2
r1 − 3r1Y

2 + r1r2 − r1
3

(3r1
2 + X

2 + Y
2)
√

X2 + Y 2

) (A.3.4)

Graphical representation of this values are presented in the Figure A.4.
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Figure A.4: ΓY

XY
values for torus geometry, with r1 = 0.9 and r2 = 0.2.

ΓX

Y Y
= −

X
(
−r1 +

√

X2 + Y 2
)

r2 (X2 + Y 2)2
(
r2 − r1

2 + 2 r1

√

X2 + Y 2
− X2

− Y 2
)

·

(

−3X
2
r1Y

2
− X

2
r1

3 + X
2
r1r2 − 3X

4
r1

+ (X4 + X
2
Y

2
− X

2
r2 + 3r1

2
X

2
− r2Y

2)
√

X2 + Y 2

) (A.3.5)

Graphical representation of this values are presented in the Figure A.5.

ΓX

Y Y
= −

Y
(
−r1 +

√

X2 + Y 2
)

r2 (X2 + Y 2)2
(
r2 − r1

2 + 2 r1

√

X2 + Y 2
− X2

− Y 2
)

·

(

−3X
2
r1Y

2
− X

2
r1

3 + X
2
r1r2 − 3X

4
r1

+ (X4 + X
2
Y

2
− X

2
r2 + 3r1

2
X

2
− r2Y

2)
√

X2 + Y 2

) (A.3.6)

Graphical representation of this values are presented in the Figure A.6.
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Figure A.5: ΓX

Y Y
values for torus geometry, with r1 = 0.9 and r2 = 0.2.
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Y Y
values for torus geometry, with r1 = 0.9 and r2 = 0.2.

A.3.2 Principal Curvatures Coordinates

In this case only three Christoffel symbols are different from zero, and two of them

are symmetric, Γφ

θ θ
, Γθ

θ φ
, Γθ

φ θ
, in Figure A.7 the first one values are shown in the whole

torus, for a determined case.

Γφ

θ θ
=

(r1 + r2 cos (φ)) sin (φ)

r2

Γθ

θ φ
= −

r2 sin (φ)

r1 + r2 cos (φ)

Γθ

φ θ
= −

r2 sin (φ)

r1 + r2 cos (φ)

(A.3.7)
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Figure A.7: Values of Γφ

θ θ
in the torus r1 = 0.9, r2 = 0.2.

The sense of this term is the centripetal force along the longitudinal coordinate,

it’s clear that depends on the curvature radius of the bend. In Figure A.8 the values

of Γθ

θ φ
, Γθ

φ θ
are shown for the determined case.
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x
y

Figure A.8: Values of Γθ

θ φ
in the torus r1 = 0.9, r2 = 0.2.
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A.4 Torus Intrinsic Metrics

A.4.1 Gauss curvature

Following Equation 1.4.14 is possible to compute the Gauss Curvature for the torus

using the PCS:

KG = −

−X
2 + r1

√

X2 + Y 2
− Y

2

r2 (X2 + Y 2)
(A.4.1)

In the principal directions coordinate system the Gaussian Curvature is:

KG =
cos (φ)

r2 (r1 + r2 cos (φ))
(A.4.2)

In the Figure A.9 the value of the Gauss curvature is presented, as is shown,

the maximum values are achieved near the boundary. The curvature values are in-

trinsic, so the figures are equal for the both coordinate system, the proposed one

(Equation A.4.1) and the principal curvatures one (A.4.2).
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Figure A.9: Gauss curvature of the torus (r1 = 0.9, r2 = 0.2).
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A.4.2 Mean curvature

In Equation 1.4.15 the Mean Curvature is found, and the results for the torus using

the PCS are:

KM = -
1

2

−5r1X
2 + 2X2

√

X2 + Y 2
− 5r1Y

2

√

r2 (X2 + Y 2)
(
r2 − r

2

1
+ 2r1

√

X2 + Y 2
− X2

− Y 2
) ·

−2r2

√

X2 + Y 2
− r

3

1
+ 4r2

1

√

X2 + Y 2 + r1r2 + 2Y 2
√

X2 + Y 2

√

r2 (X2 + Y 2)
(
r2 − r

2

1
+ 2r1

√

X2 + Y 2
− X2

− Y 2
)

(A.4.3)

The Mean Curvature in the principal directions is:

KM =
1

2

2r2 cos (φ) + r1

r2 (r1 + r2 cos (φ))
(A.4.4)

In the Figure A.10 the value of the Mean Curvature is presented, as is shown,

the maximum values are achieved near the boundary. As in the previous case, it’s

an intrinsic property, so the results are the same in both coordinate systems (A.4.3,

A.4.4).
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Figure A.10: Mean curvature of the torus (r1 = 0.9, r2 = 0.2).

A.4.3 Principal curvatures

The values of the principal curvatures obtained are:
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k1 =
1

r2

k2 =
cos (φ)

r1 + r2 cos (φ)

(A.4.5)

One of the principal curvatures is related to the crossection shape radius (r2), and

the other to the radius of curvature of the bend (r1). In the Figure A.11 the values of

both principal curvatures are shown, it’s important to note that the extreme values

are in the shape boundary.
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Figure A.11: Values of the principal curvatures (k1, k2) in the torus (r1 = 0.9, r2 =
0.2).
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Gravity Vector in PCS

In this appendix an example of the gravity vector coodinates transformation in pre-

sented, the PCS is selected, so gravity vector changes from the Catersian basis to

PCS basis.

The first step is to define the transformation matrix from PCS to Cartesian, this

matrix is constructed usign the PCS basis vectors:

Xu =







1

0

hX







, Xv =







0

1

hY







, N =
1

(1 + h
2

X
+ h

2

Y
)
1/2







−hX

−hY

1







. (B.0.1)

And the transformation matrix is:

TPCS C =









1 0 −
hX

(1+h
2
X+h

2
Y )

1/2

0 1 −
hY

(1+h
2
X+h

2
Y )

1/2

hX hY

1

(1+h
2
X+h

2
Y )

1/2









. (B.0.2)

The inverse transformation matrix is obtained through matrix inversion:
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TCPCS =









hXhY

(1+h
2
X+h

2
Y )

−
hXhY

(1+h
2
X+h

2
Y )

hX

(1+h
2
X+h

2
Y )

−
hX

(1+h
2
X+h

2
Y )

1+h
2
X

(1+h
2
X+h

2
Y )

hY

(1+h
2
X+h

2
Y )

−

(1+h
2
X+h

2
Y )

1/2 −
hY

(1+h
2
X+h

2
Y )

1/2
1

(1+h
2
X+h

2
Y )

1/2









(B.0.3)

With the matrix B.0.3 is possible to transform the gravity vector:

g
C

=







0

0

g







, g
PCS

= g
C
· TC PCS =

g

(1 + h
2

X
+ h

2

Y
)







−hX

−hY

−(1 + h
2

X
+ h

2

Y
)
1/2







.

(B.0.4)
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Barre de Saint Venant, A. (1871), ‘Théorie et equations générales du mouvement

non permanet des eaux courantes’, Comptes Rendus des séances de l Académie des
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