Sobolev Inequalities: Isoperimetry and Symmetrization Walter Andrés Ortiz Vargas

The first part of the thesis is devoted to obtain a Sobolev type embedding result for Besov spaces defined on a doubling metric space. This will be done by obtaining pointwise estimates between the special difference $f_{\mu}^{**}(t) - f_{\mu}^{*}(t)$ (called oscillation of f_{μ}^{*}) and the X-modulus of smoothness defined by

$$E_X(f,r) \coloneqq \left\| \oint_{B(x,r)} |f(x) - f(y)| d\mu(y) \right\|_X.$$

(here f_{μ}^{*} is the decreasing rearrangement of f, $f_{\mu}^{**}(t) = \frac{1}{t} \int_{0}^{t} f_{\mu}^{*}(s) ds$, for all t > 0 and X a rearrangement invariant space on Ω .

In the second part of the thesis, to obtain symmetrization inequalities on probability metric spaces that admit a convex isoperimetric estimator which incorporate in their formulation the isoperimetric estimator and that can be applied to provide a unified treatment of sharp Sobolev-Poincaré and Nash type inequalities.