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No digais que, agotado su tesoro,

de asuntos falta, enmudecio la lira;
podra no haber poetas; pero siempre
habra poesia.

Mientras las ondas de la luz al beso
palpiten encendidas,

mientras el sol las desgarradas nubes
de fuego y oro vista,

mientras el aire en su regazo lleve
perfumes y armonias,

mientras haya en el mundo primavera,
jhabra poesia!

Mientras la ciencia a descubrir no alcance
las fuentes de la vida,

y en el mar o en el cielo haya un abismo
que al calculo resista,

mientras la humanidad siempre avanzando
no sepa a dé camina,

mientras haya un misterio para el hombre,
jhabra poesia!

Mientras se sienta que se rie el alma,
sin que los labios rian;

mientras se llore, sin que el llanto acuda
a nublar la pupila;

mientras el corazén y la cabeza
batallando prosigan,

mientras haya esperanzas y recuerdos,
jhabra poesia!

Mientras haya unos ojos que reflejen
los ojos que los miran,

mientras responda el labio suspirando
al labio que suspira,

mientras sentirse puedan en un beso
dos almas confundidas,

mientras exista una mujer hermosa,
jhabra poesia!

—GuUsTAVO ADOLFO BECQUER
1836 — 1870






To all my friends around the world and to my soulmate, Angels






ABSTRACT

In this work we generalise clusters of points of a scheme to the relative
setting, that is, we introduce clusters of sections of a family. When the family
is smooth, we are able to show that there is a scheme parametrising its
clusters of sections of length r. We called it the universal scheme of clusters
of sections C1". Such schemes are a generalisation of Kleiman’s iterated blow
ups (which parametrise clusters of points).

We present the first steps towards an iterative construction of the scheme
CI"*! form CI". We show that there is a morphism F: CI'*! —CI" X -1 CI'
(related to blowing up the diagonal) and a stratification of Cl; x¢j, , Cl;
such that, via F, every irreducible component of Cl..1 is either (a) birational
to the closure of a stratum or (b) composed entirely of clusters whose (1+1)-
th section is infinitely near to the r-th. Moreover, each type (a) irreducible
component is a blow up of the closure of a stratum along a suitable sheaf of
ideals, which fails to be Cartier only on the diagonal.

In order to clarify such iterative construction, we characterise the mor-
phism F restricted to the union of type (a) irreducible components via a
universal property. It is a generalisation of blow ups, which we call the blow
up split section family. Roughly speaking, it combines the universal proper-
ties of blow ups and universal section families. We show that it exists under
finite and projective conditions and that it exhibits some sort of birationality
similar to F.

Meanwhile, we need to develop some auxiliary results and constructions
lacking in the bibliography. For example, we show that, under certain as-
sumptions, the blow up of a product of schemes along a locally principal
subscheme preserve the product form. Given a family of schemes m: X—Y
and a morphism o: X — T, we define (via a universal property) and prove
the existence of a scheme parametrising those sections of 7t contained in
some fibre of . We also define (via a universal property) and prove the
existence of a closed subscheme Z of Y such that o restricted to X xy Z is
constant along the fibres of the projection X xy Z— Z.
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CONVENTIONS AND TERMINOLOGY

“When | use a word,” Humpty Dumpty said in
rather a scornful tone, “it means just what |
choose it to mean —neither more nor less”

“The question is,” said Alice, “whether you can
make words mean so many different things.”
“The question is,” said Humpty Dumpty, “which is
to be master —that’s all”

—-Lewis CARROLL
Through the Looking—Glass

Let C be a small category and A, B objects of C. We denote the set of
arrows form A to B by C(A, B), the identity of A by 14 and the inverse of
an isomorphism f: A— B by f~!. By a one-to-one correspondence between
two sets we mean a one-to-one and onto map between them.

Let X, Y be schemes. We denote the underlying reduced subscheme of X
by Xied. Given a point x of X, we denote by k(x) its residue field, by {x} the
scheme Spec(k(x)) and by X the schematic image of the natural morphism
Spec(k(x))— X (see Definition 1.46).

Given a morphism f: X—Y and an open or closed subscheme Z of Y, we
denote by Im(f) the schematic image of f, by bl(Z, Y) the blow up of Y along
Z and by f~1(Z) the pullback of Z < Y by f (which is an open or closed
subscheme of X). Given a section 0: Y — X of f, we denote again by o the
closed subscheme of X image of 0. We denote by X;— X the blow up of X
along o.






INTRODUCTION

Infinitely near points are a nice and
old idea for describing singularities.

-EpuAarRDO CASAS-ALVERO
Singularities of Plane Curves

CLUSTERS OF SECTIONS

Infinitely near points appear already in the work of M. Noéther (introduced
in [50, 51]) and their geometry was extensively developed by Enriques ([ 16,
Book 1V]). A modern account was given by Casas-Alvero in [7], introducing
clusters of infinitely near points as the adequate notion to consider collec-
tions of infinitely near points. As usual in Algebraic Geometry, it becomes
natural, and for some applications necessary, to study algebraic families of
clusters of infinitely near points, which leads to the question of existence of
universal parameter spaces for them; these are Kleiman’s iterated blowups
first introduced in [38]. This memoir deals with families of clusters and their
parameter spaces in a relative setting, where sections of a family replace
points of a variety or scheme. Doing so, we follow the general philosophy
put forward by Grothendieck in his Eléments de Géometrie Algébrique”, but
at the same time we are motivated by possible applications to the study of
linear systems, see Future work.

Given a separated morphism 7t: X— Y, an ordered cluster, or for simplicity
a cluster, over tis an r-tuple (ty,...,t;) where t; is a Y-point of X; = X, and
where ti, for i > 1, is a Y-point of the blow up® X; of X;_7 along t;_1. When
t; is, in fact, a Y-point of the exceptional divisor of X; or of the pullback of
the exceptional divisor of X; for some j > 1, we say that t; is infinitely near
to t;. Since our definition differs from the standard one given in [7], some
remarks on the differences may be in order.

« In [7], Y is the spectrum of the field of complex numbers, and X is a
germ of complex surface. Generalising the definition to our relative
context is straightforward, but it will become clear in the course of
this work that some hypotheses on the morphism 7 are needed to
obtain a well-behaved notion.

+ When blowups commute, as is the case for blowups of surfaces along
non infinitely near points, it is natural to identify clusters which differ
only on the ordering of their points. Thus in the definition of [7] the

1 Classically, infinitely near points were defined by means of different birational transforma-
tions (e.g., the most used was ordinary quadratic transformations).
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points forming the cluster form a set (with a partial order given by
infinitely-near-ness) rather than an ordered tuple. However, for our
purpose of later dealing with families of clusters, reorderings which
may be admissible on general fibres need not extend to the whole
family. For this reason it becomes more natural to work with the
ordered version of clusters (and we follow the standard practice in the
literature on families of clusters in doing so).

Furthermore, [7] requires every point in a cluster to be infinitely near
to the first one (which is in fact the reason for the choice of the word
“cluster”). Again, since infinitely-near-ness between points may vary
among the clusters in a family, imposing this condition in the defini-
tion of cluster becomes a burden when working in family and is usually
avoided. The notion obtained by dropping it as we do is sometimes
called “multi-cluster” but for simplicity we will adhere to the conven-
tion of [58] and call these objects simply clusters.

Let us now explain the notion of a family of clusters over 7t parametrised
by a Y-scheme T, which we also call a T-family of clusters over 7. It can be
defined simply as a cluster (t1,...,t;) over the base change of 7t to X7 —T.
That is, a family of clusters is given by a sequence of blow ups

(XT)r—H - (XT)r cee Xt - —J—
X Y,

where the centre C; C (X7); of the blow up (Xt)i+1 — (X7);i is the image
of the section t; of (X1);— T. Given a Y-point of T, Y—T, and assuming
when needed that blow ups commute with base changes', the Cartesian

diagram
Xoi1 X, X Y
I .
(X1)rp1 —— (X7)s Xt T
"]
X Y

illustrates how the pull back by Y — T of the sequence of T-points (t1, ..., t)
is a cluster over 7. Thus, Y-points of T parametrise clusters over 7, and the
set of all such parametrised clusters form the T-family.

Starting from the morphism 7, Kleiman [38, Section 4.1, p.36] constructed
inductively a sequence of (separated) morphisms f.: X;11 — X; forr > 0
as follows.? Define fy: X7 — X to be m: X— Y. Now, assume f,_; defined.
Consider the Cartesian product of X; with itself over X;_1 and consider its

1 This is one of the main technicalities we face in this work.
2 We reproduce the construction word by word as it is done in [38].
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diagonal subscheme A, which is a closed subscheme because f;_j is separ-
ated. Define X;;1 to be the corresponding residual scheme and define f; to
be the composition of the structure map p and the second projection p;.

Xrp1=R(A, Xr xx, ; Xr)

|

Xy 21— Xy xx_ Xy —— A

-
fr—1 lpz

Xr1 Xy

r—1

This construction® is commonly known as Kleiman'’s iterated blow ups. Klei-
man’s motivation came from some enumerative formulas for multiple points
of the morphism 7; later in [30, Proposition 1.2, p.104], Harbourne realised
that, in a different context®, Kleiman’s iterated blowups could be used as
parameter spaces for rational surfaces with fixed Picard number, essentially
by parametrising clusters of fixed length over the morphism 7 : ]Pﬁ —
Spec(k).

The idea of using iterated blowups to parametrise clusters on smooth sur-
faces was further developed by Roé [58] for smooth surfaces 7t: X — Spec(k),
and by Kleiman and Piene [41] for smooth families t: X— S of geometric-
ally irreducible surfaces. It has found successful applications, especially in
relative dimension 2, not only for its original motivation to enumerative
geometry [38-40, 53, 54], but also in the study of linear systems of singular
curves, [31, 56, 57, 59], of adjacencies of singularity types [1], or moduli
spaces of polynomials [19]. The relations between Kleiman’s iterated blow
ups (the schemes X;) and Hilbert schemes of points (the components of the
Hilbert scheme y‘ﬁ[ﬁx/y parametrising Y-points of X) became a recurring
theme [17, 52, 56] which was clarified in [41].

Let now S be a ground scheme and assume that 7t is an S-morphism; in
this situation, rather than a sequence of arbitrarily near Y-points of the Y-
scheme X, a cluster over 7t can be understood as a sequence of arbitrarily
near sections of the S-morphism 7t. With this perspective, a family of clusters
over 7t parametrised by a S-scheme T must be a cluster of the base change
77 : XT— Y7 of mby T— S: this is what we call a T-family of section-clusters
over .. So now, the objects parametrising the clusters in the family are the
S-points of T, again if, when required, blow ups commute with base changes.

The whole purpose of this memoir is to develop the analogous machinery
of Kleiman’s iterated blowups in this relative setting. Our approach, taking
the point of view of universal families and representable functors, is closest
in spirit to that of [30] and [58], even though Harbourne goes even further

In [38], the schemes X, are called r-derived scheme of X—Y.

An r-fold point of 7t is a point which has the same image as r — 1 others. If 7t is an immersion,
for instance, one expects finitely many such points, so that they can be counted; but then
X has no Y-points and there are no clusters over 7. In Harbourne’s context instead, 7t is a
submersion (smooth).

5



INTRODUCTION

in the case of P2, considering isomorphisms between fibres of the universal
family and the corresponding moduli problem, which gives rise to a quotient
stack. We do not deal with these issues here.

Part of our representability results, with somewhat more restrictive hy-
potheses, have already appeared in print as [6]. An important intermediate
step to explicitly build the universal families of section-clusters, which we
call the blow up split section family (see below), has potential applications to
other algebro-geometric problems. Its definition and existence are explained
in the preprint [5], submitted for publication.

The organisation of this work in chapters is as follows. The main res-
ults are presented in the last chapter. The preceding chapters develop the
techniques and constructions motivated by the problem of representing the
functors under consideration, including the blow up split section family. We
next describe in detail the content of each chapter; for the sake of motivation,
we do it in reverse order.

CHAPTER 5. CLUSTERS IN FAMILY

Let S be a ground scheme and let t: X — Y be an S-morphism. In Sec-
tion 5.1, we give the formal definition of families of clusters of sections of 7.
We overcome the technicality that blow ups do not commute with arbitrary
base changes by imposing regularity conditions on 71, which lead us to the
notion of steady family, see Definition 5.15. Under such conditions, families
of section-clusters over 7t form a contravariant functor C[' : Schs — Set,
the functor of the parameter space problem for families of section-clusters,
introduced in Section 5.2. When it is representable, we denote the represent-
ing scheme by CI" and we call it the r-th universal scheme of section-clusters
over 7t (or 7-Ucs for short). We present the functor Cl" as a subfunctor of the
Hilbert functor Hilby s and we show that it is a subfunctor representable
by locally closed embeddings, see Lemma 5.21. This way we reduce the rep-
resentability of C[" to that of Hilby /s, which gives the following existence
theorem.

Theorem 5.19. Let S be a ground scheme and v > 1 an integer. Let : X—Y
be a steady S-family. IfY is proper and X is an at most countable disjoint union
of quasiprojective schemes, then the v-Ucs C1" over Tt exists and the scheme C1"
is an at most countable disjoint union of quasiprojective schemes.

Kleiman’s iterated blow ups X; can be identified as our CI" when Y — S
is the identity, that is Y = S. In Section 5.4 we show that, when Y — S is
smooth, similarly to Kleiman’s iterated blow ups, a recursive construction
of CI"*! from CI" is possible.

More precisely, there is a morphism F: CI'*! —CI" X -1 CI" and a strat-
ification of CI" x -1 CI", where the diagonal A is a distinguished stratum,
such that

1T+1

Corollary 5.38.1. Each irreducible component Z of C is either
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(a) composed entirely of clusters whose (v + 1)-th section is infinitely near
tother-thand F(Z) C A,

(b) birational to an irreducible component of the closure C of a stratum,

that is, F|z: Z — C decomposes as Z < ¢ — C where i is an open
embedding and C is a blowup of C whose centre fails to be Cartier only
on A. In particular, if C N A is empty, Z is an open subscheme of C.

We have a quite accurate explicit description of the strata, but not on the
sheaf of ideals centre of such a blow up.

CHAPTER 4. THE BLOW UP SPLIT SECTION FAMILY

Theorem 5.19 with more restrictive assumptions and Corollary 5.38.1 were
firstly obtained by hand and published as [6]. In this work, they are more
systematically presented, relying on a new notion, the blow up split section
family (or blow up §family for short), which we introduce in Chapter 4 with
the aim to shed light on such a recursive construction. In short, the mor-
phism from the union of all type (a) irreducible components to the whole
scheme CI" X -1 CI" is a blow up §family, which incorporates the strat-
ification of CI" x -1 CI" and strata-wise it is the corresponding blow up
(see Theorem 5.37 and Corollary 5.38.1).

We define the blow up §family and prove its existence in greater generality.
Let X and Y be S-schemes and Z a closed subscheme of Xy = X xgY.
The blow up §family of the projection 71: Xy — Y along Z is a X-scheme
9B -2 X such that the pullback of Z by (b x 1v):By — Xy is an effective
Cartier divisor of ‘By and satisfying a suitable universal property. Roughly
speaking, it combines the universal properties of the universal section family,
or Weil restriction, of 7t and of the blow up of Xy along Z. When Y = §,
we recover the classic blow up, but in general new phenomena may appear.
For example, the resulting morphism b X 1y is not necessarily birational or
even generically finite, see Section 4.1.

We prove that the blow up §family exists under some finiteness assump-
tions.

Theorem 4.3. Assume all the schemes locally Noetherian. If Xy is at most a
countable disjoint union of quasiprojective schemes over S, X— S is separated
andY — S is proper, flat and with geometrically integral fibres, then the blow
up §family of Tt along Z exists.

Our proof of Corollary 5.38.1 stated above uses the following analogous
result for blow up §families, which is our result on the structure for such
morphisms. It generalises the fact that a blow up is an isomorphism away
from its centre.

To state it we need to introduce some notation. Assume Y quasiprojective
over S. Let X = UgeqyXo be the flattening stratification of the morphism
Z — X. One of the strata, Xo which we call the core, plays a special role,
see Definition 4.7. Moreover, for every @, the points x € Xg for which
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Zy — (Xy)x = Yy is an effective Cartier divisor form a (possibly empty)
open subscheme of Xg; we denote it by Ug.

Theorem 4.8. Assume X connected, Y integral, Noetherian and projective and
flat over S. Assume that the blow up §family (B, b) of T along Z exists. Then,
the open subscheme B\ b~ (Xo) of B is isomorphic to LipUg.

The chapter ends with some examples.
These results are contained in the preprint [5], submitted for publication.

CHAPTER 3. BUILDING BLOCKS

In Chapter 3, we introduce the f-constantify (or f-constfy for short) closed
subscheme of Y —which is based on the functor Iso (see Definition 3.14) and
the notion of Ny-morphism (see Definitions 3.7 and 3.9)- and the universal
split section family, fundamental steps for the construction of the blow up
§family construction and the schemes CI".

Let X, Y and W be S-schemes and let f be an S-morphism from Xy =
X xsY to W. The f-constfy closed subscheme Y’ of Y satisfies that the
restriction flx«y’ is constant along the fibres of the projection X xy Y’ —Y’
plus a universal property. We prove its existence under weak assumptions.

Theorem 3.21. Let S be a ground scheme. Letp:X — Y and f: X — W be
S-morphisms. Consider the following Cartesian diagram.

Z 1%

s

X xy X 20 Woew

Set g: X xy X — Y. If W s separated over S and p is flat and proper, then
the f-constfy closed subscheme of Y exists and it is the scheme representing the
functor Isog.

The existence of the f-constfy closed subscheme of Y follows from the
representability of the functor Iso, which encodes the morphisms T —Y
such that Zt — X xy T is an isomorphism. The representability of this
functor has been studied in the literature, but explicit constructions for the
representing scheme are lacking. The class of Nj-morphisms is introduced
to fill this gap. The main property that allows an explicit description for
the representing scheme of Iso is that arbitrary schematic unions commute
with pullbacks by X1-morphisms, see Theorem 3.13.

Theorem 3.17. Let p: X—Y be a morphism and Z a closed subscheme of X.
Let Q) denote the set of closed subschemes W of Y such that Zyy — X is an
isomorphism and denote by L the closed subscheme ZywcoW of Y. If p is
N1 -projective, then the scheme X represents the functor Isog.

The f-constfy construction allow us also to describe, for now set theoret-
ically, where type (b) irreducible components of CI" emerge from, the ones
missing in the blow up §family.
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Coming back to the representability of the functor C[", it is based on
its identification with another functor we introduce, the split section family
(see Definition 3.24). It is a subfunctor of the functor of sections represent-
able by closed embeddings, which in turn is a subfunctor of a Hilbert functor
representable by open embeddings. The goal of this construction is to para-
metrise sections of a morphism 7t: X — Y, but just those sections whose
image is contained in some fibre of a morphism o: X—T. We consider «:
X—T as a morphism splitting the ambient space X by means of its fibres.
So, the universal split section family is the scheme solving the parameter
space problem of sections of 7t whose image is contained in some fibre of o.

Theorem 3.26. If S is Noetherian, T is separated, X is at most a countable
disjoint union of quasiprojective schemes over S, Y flat and proper over S, then
the universal split section family of 7t exists and its underlying scheme is locally
Noetherian and at most a countable disjoint union of quasiprojective schemes.

CHAPTER 2. TECHNICALITIES ON BLOW UPS

The construction of the blow up §family consists of three steps, first we
consider a blow up, second the universal split section family of such a blow
up and, as a final step, we blow up a product of schemes X x5 Y along a
locally principal subscheme, which we need to preserve the product form.
Hence, we need to study when the product form is preserved under blow
ups along locally principal subschemes, which we do in Section 2.1.

We formalise the idea that blowing up a locally Noetherian scheme along
a locally principal subscheme consists in shaving off those associated points
of the ambient scheme lying on the locally principal subscheme. We also
show that, assuming Y — S flat and with geometrically integral fibres, there
is a one-to-one correspondence between the associated points of X and those
of its base change X X Y. This all yields the following result.

Theorem 2.8. Assume all schemes are locally Noetherian. Let S be a ground
scheme. Let X > S and Y -% S be S-schemes. Let Z be a locally principal
subscheme of X xs Y. Assume that Y -2 S is flat and with geometrically
integral fibres. Then, there is a closed subscheme 1: W — X such that the
closed embedding iy: W x5 Y—X XY is the blow up of X X5 Y along Z.

If furthermore Y — S is an fpqgc morphism, for every S-morphism T LAY
for which the preimage of Z by hy,: T xs Y — X x5 Y is an effective Cartier
divisor, there is a unique morphism h: T— W such thatioh’ = h. Moreover,
hy: T xs Y—W XgY is the morphism given by the universal property of the
blow up iy.

Chapter 2 also includes an exposition of the conditions under which blow
ups do commute with arbitrary base changes.
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CHAPTER 1. ASSORTED PRELIMINARIES

Chapter 1 introduces the basic constructions, and the notation, widely used
in later sections. It also includes an original result, Section 1.3.1, which
explores the scheme-theoretic consequences of the set-theoretic definition
of a constant morphism. Namely, a map f: X — Y is constant if there is
a unique y € Y such that f(x) = y for every x € X, in this case, if f is a
morphism of schemes, we call f naively constant through the pointy. We
prove the following result.

Theorem 1.53. Let f: X — Y be a morphism with X quasi-compact. The
morphism f is naively constant through a pointyo of Y if and only if it factors
through a morphism Z—Y where the underlying topological space of Z is a
point and the underlying reduced subscheme Z,.q of the schematic closure Z
of Z—Y is equal to the schematic closure of Spec(k(yo)) — Y. Moreover, if
Yo is a closed point of Y, then the morphism Z—Y is a closed embedding.



FUTURE WORK

If we could first know where we
are, and whither we are tending,
we could then better judge what
to do, and how to do it.

—ABRAHAM LINCOLN
A House Divided

Due to the technical complexity of some of our results, it hasn’t been
possible to attack within the time span of elaborating this thesis the problems
which first motivated our study. We hope to be able in the near future to
address at least some of them.

Theorem 5.37 asserts that the underlying topological space of CI'*! can
be recovered from that of the blow up §family of CI" x -1 CI" (along a
suitable closed subscheme) and of the universal split section family of the
exceptional divisor of X[ ; (see Definition 5.16). At the end of Section 5.4,

we give evidences that the scheme structure of CI™""

may be recovered from
such two schemes. We hope that studying the effect of blow ups of a projec-
tive scheme on its Hilbert scheme, which would be interesting on its own,

could bring some insight on the problem.

The relationship between Kleiman’s iterated blow ups and Hilbert schemes
of points has been a recurring theme in applications, eventually clarified
in [41]. It is natural to hope that the analogous forgetful maps (eliminating
the ordering of the Y-points) from the universal schemes Cl, will be useful in
the study of the components of the Hilbert scheme ﬂ-ﬁ[ﬁx/g parametrising
sections of 7t. Some examples, like Example 5.42 and related computations,
suggest that the schemes CI" can be especially useful in the study of Cohen-
Macaulay Hilbert schemes.

As explained in [7], the whole set of infinitely near points of a Y-point t;
of 7t provides a sort of infinitesimal space which displays the local geometry
at t; of 7. So, Kleiman’s iterated blow ups encode all the infinitesimal in-
formation of the Y-scheme X, up to some order r, similarly to Semple towers
(see [11, 12, 44]) or Jet schemes (see [13, 36] and Nash’s original work [49]).
It would be interesting to explore the connections between these different
spaces, both in the absolute and in the relative settings.

As mentioned above, one of the successful applications of Kleiman’s it-
erated blowups has been to the study of linear systems of singular curves;
these applications often rely on the principle of semicontinuity, applied to
an appropriate relative divisor on X; 11— X; (see [31, 56, 57, 59]). Another
successful approach in that context, introduced by Ciliberto and Miranda
in [8, 9], is to apply the principle of semicontinuity to a relative divisor on
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a degeneration of the surface X, i.e., a family X’ — S whose general fibres
are isomorphic to X and with a fibre which splits as a union of two or more
components. It is then often simpler to analyse the system on the special
fibre, as it splits in two or more “smaller” systems. Using a degeneration for
such purposes involves the judicious choice of a set of sections of the de-
generation; since our work provides a natural universal parameter space for
such sets of sections (allowing infinitely near ones), it should be possible to
combine both approaches to obtain a better understanding of linear systems
of singular surfaces. The method of degenerations has also been applied to
the computation of “collisions” (that is, adjacencies in the Hilbert scheme of
points) in [10] but with important restrictions to the presence of infinitely
near points in the general fibres. The techniques now available might also
help eliminate such restrictions.



ASSORTED PRELIMINARIES

The opening is where you plan
your strategy. Where you place
your initial stones determines

the type of game you will play.

-RiIcHARD BozuLicH
The second book of GO

This chapter introduces well-known constructions and sets notation, widely
used in the later chapters.

1.1 CATEGORY THEORY.

This section introduces many constructions in Category Theory. Most of
them will be used with no reference. For a more detailed treatment of Sec-
tions 1.1.1 and 1.1.2, we refer to [55] and [43] for modern and friendly refer-
ences and to [46] as the classic reference. For a more detailed treatment of
Section 1.1.3, we refer to [18, Chapter 2, pp.13—40].

Unless otherwise stated, by a category we mean a locally small category,
that is, the collection of arrows between two objects always forms a set.

1.1.1  Representability and universal properties

A related classical antecedent [to
Yoneda’s lemma] is a result that
comforted those who were troubled by
the abstract definition of a group:
namely that any group is isomorphic to a
subgroup of a permutation group

—EMiLy RIEHL
Category Theory in Context

Representability of functors and universal properties (terminal and initial
objects) are central for us. This section reviews these two notions, from
Yoneda’s lemmas to their equivalence via the category of elements and the
constant functor.

Definition 1.1. A functor ¥ : C' — D is full (resp. faithful) if for every pair
of objects C and D of C the map C(C,C’) — D(¥ C, FC’) is surjective
(resp. injective). When F is both full and faithful it is called fully faithful
for short (see [55, Remark 1.5.8, p.31]).

13
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Definition 1.2. An equivalence between categories C' and D consists of
functors ¥ :C — D and G: D — C together with natural isomorphisms
1c = G¥ and 1¢c = F G. Categories C and D are equivalent if there is
an equivalence between them.’

Remark 1.2.1. Given a functor ¥ : C— D and two objects C, C’ of C, if
C, C’ are isomorphic then FC, F C’ are isomorphic as well. If moreover
F is fully faithful, then C, C’ are isomorphic if and only if FC, FC’ are
isomorphic.

Definition 1.3. A functor ¥ : C — D is essentially surjective on objects if

for every object D of D there is an object C of C such that D is isomorphic
to FC.

Theorem 1.4 below is well-known, we introduce it in order to clarify the
meaning of Yoneda’s lemma (see [55, Theorem 1.5.9, p.31]).

Theorem 1.4. A functor defining an equivalence of categories is fully faithful
and essentially surjective on objects. Assuming the axiom of choice, every
functor with these properties defines an equivalence of categories.

Definition 1.5. Let C be a category and C an object of C. The functor of
points of C, denoted by hc, is the contravariant functor on C with values in
Set, the category of sets, that sends an object D of C' to the set C'(D, C),
and an arrow f € C(D, D’) to the map
* . hc(D/) I hc(D)
gr———gof
Definition 1.6. Let C be a category. The Yoneda embedding is a covariant
functor on C' with values in the (non-necessarily locally small) category
SetC of functors on C with values in Set. Over objects, it is defined as
h: C— Set®
Cr——b hc,
and over arrows as sending (f: C— C’) € C(C, C’) to the following natural
transformation h¢ : hc — h¢r. Given an object D of C, the map h¢(D) is
fi @ he(D) — hc/(D)
gr———"fog
The following two lemmas are well-known, see [55, Theorem 2.2.4, p.57]
or [18, pp.13, 14].
Lemma 1.7 (Yoneda, weak version). Let C be a category. The Yoneda em-

beddingh : C' — SetC is a fully faithful functor.

Remark 1.7.1. By Remark 1.2.1 and weak Yoneda’s lemma, two objects C,
C’ of a category C are isomorphic if and only if the functors h¢ and hp are
isomorphic as well.

Two categories are equivalent when they are isomorphic as objects in the 2-category of
categories, functors and natural transformations.
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Lemma 1.8 (Yoneda). Let F : C— Set be a contravariant functor. Let C be
an object of C and & an element of F C. Given an object D of C, the map

(D) : he(D) —— F(D)
g——— F(g)(&)

is natural on D, that is it determines a natural transformation from hc to
F. Moreover, the assignment & — T; determines one-to-one correspondence

between F (C) and Set® (he, F).

Definition 1.9. Let F : C' — Set be a contravariant functor on a category
C with values in sets. A representation of F is a couple (C, &) with C an
object of C' and & an element of F C such thatts: hc — ¥ C (see Lemma 1.8)
is a natural isomorphism. The object C is called a representing object. The
functor F is called representable when such a representation exists. When
F corresponds to a parameter space problem, § is called a universal family.

For a category C, the collection of all representable functors form a full
subcategory of Set® and weak Yoneda’s lemma establishes that C'is equi-
valent to it.

Definition 1.10. Let C be a category and C an object of C'. The object C
is terminal (resp. initial) in C'if for every object D of C' there is a unique
arrow from D to C (resp. from C to D).

Given a category C, if there are two terminal objects C and C” in C, then
there is a unique arrow f in h¢(C’) and a unique arrow g in he/(C). The
arrows g o f and f o g are the corresponding identity arrows of C and C’
because these are the unique arrows in h¢(C) and he/(C’). That is, when it
exists, a terminal object is uniquely determined up to a unique isomorphism
and, taking some liberty with the language, terminal objects are usually
referred as the terminal object of a category.

Many times, we will define an object as the terminal object of a suitable
category. In this cases, we will emphasise the previous observation with the
sentence “by abstract nonsense such an object is uniquely determined up to
a unique isomorphism”.

Example 1.11. In the category Set, every set with one element is a terminal
object and between every pair of them there is a unique bijective map, so
we represent the terminal object of Set by {x}. In Set the empty set is an
initial object, there is a unique map from it to any set.

Example 1.12. In the category Rings, the zero ring, a ring with one ele-
ment where the additive and multiplicative neutral elements agree, is a
terminal object.

In the category Rings, the ring of integers Z is an initial object, given
a ring A, a homomorphism Z — A is determined by the image of 1 € Z,
hence there is a unique homomorphism Z — A.

15
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Example 1.13. By previous examples, the empty scheme, whose ring of
functions is the zero ring, is an initial object in the category of schemes.

And an immediate consequence is that Spec(Z) is a terminal object in the
category of affine scheme, and in fact it is a terminal object in the category
Sch, we leave the details on gluing morphisms.

Definition 1.14. Let F : C— Set be a contravariant functor on a category
C with values in sets. The category of elements of F, denoted by ff, is the
category whose objects are couples (C,n) with C an object of C and 1 an
element of F (C). Arrows (C,n) —(C’, 1) in ff are arrows f € C(C,C’)
such that F(f)(n’) =n.

Equivalently, the category /f may be defined as the comma category
between functors (h | F) or the opposite category to the comma category
(1 ] F) (see [46, Chapter lll] or [55, Exercise 1.3.vi, p.22 and §2.4, pp.66—72]).

Proposition 1.15. Let F : C — Set be a contravariant functor on a category
C with values in sets, C an object of C andn an element of F (C). The couple
(C,n) represents F if and only if it is the terminal object of/f.

Proof sketch. Assume that (C,1) represents F via a natural isomorphism
0: F — hc. Notice that 1 = 0(C)~'(1¢). Then, given an object (D, T) of
/f there is a unique morphism f € hc(D) such that 0(D)~'(f) = T and
this is the unique morphism in fﬂ-’ from (D, T) to (C,0).

Assume that (C,1) is a terminal object in ffF That is, given an object D
of C and an element T € ¥ (D) there is a unique morphism f € hc(D) such
that F (f)(t) =n. So,amap 6(D): F (D) — hc(D) is defined as sending
T€ F(D) tof € he(D), which is natural in D and in fact it is a natural
isomorphism. 0

Remark 1.15.1. The construction of the category /f translates objects
representing F into terminal objects. Given a category C, there is a functor
F ¢ solving the inverse problem, an object of C' is terminal if and only if it
represents F . Namely, the functor F ¢: C — Set sends every object to
the terminal object of Set and every arrow to the identity (it can be seen as
the constant diagram A,,: C — Set, see Example 1.22).

In general, such constructions are not inverse to each other. But there is
a case, with which we will work later (see Definitions 1.72 and 3.14), where
they almost are. Let C' be a subcategory of a category D. Consider the
following condition,

#. if D— Cisanarrow in D and C is an object of C, then D is also an
object of C, that is there are no arrows in D from objects outside C
to objects of C.

When C, D satisfy ¥, we may consider the characteristic (contravariant)
functor F : D — Set of C, that sends an object D of D to

{*} if D is an object of C
FD =

1) otherwise.
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And, by F, it is well defined over arrows in the obvious way. Then, clearly

JF=Cand Fc =TFlc.

The following definition and its subsequent lemma provide a standard

criterion for the representability of functors on the category of schemes
Sch.

Definition 1.16. Let F:Sch — Set be a contravariant functor on the
category of schemes with values in sets.

1. A subfunctor H{ C T is a rule that associates to every scheme T a
subset #H (T) C ¥ (T) such that the map F (f): F (T) — F(T’) maps
H(T) into H (T') for all morphisms f: T/ —T.

2. Let H C F be a subfunctor. The subfunctor H C F is representable
by open (resp. closed) (resp. locally closed) embeddings if for all pairs

(T,&), where T is a scheme and & € F(T) there is an open (resp.

closed) (resp. locally closed) subscheme Uz C T with the following
universal property:

(x) A morphism f: T'—T factors through Ug if and only if f*& €
H(T.

Lemma 1.17. Let F : Sch— Set be a contravariant functor on the category
of schemes with values in sets. Let H be a subfunctor of F representable by
open (resp. closed) (resp. locally closed) embeddings. If F is represented by
a scheme X, then H is also representable and the representing scheme is an
open (resp. closed) (resp. locally closed) subscheme of X.

Proof. We just show the case that # is representable by open embeddings.

Since we assume F representable, identifying F with hy, we may assume
that A is a subfunctor of hy representable by open embeddings. Hence,
for the couple (X, 1x), where 1x € hx(X), there is an open subscheme U
(obviously unique) satisfying the following universal property: A morphism
f: T— X factorises through U~ X if and only if f*1x = f € H(T). Now,
just observe that if f factorises through U~ X via a morphism g¢: T— U,
then g¢ € hy(T) is unique because U — X is a monomorphism. Hence,
there is an assignment f € AT with g; € hy(T) which defines a natural
transformation, and in fact a natural isomorphism. O

1.1.2  Pullbacks and pushouts

Just when | thought | was out,
THEY PULL ME BACK IN.

—-SiLvio DANTE imitates AL PAciINO
The Soprano

Pullbacks in the category of schemes and (its dual for affine schemes)
pushouts in the category of commutative rings with unity are one of our
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basic tools to construct new morphisms. This section introduces the categor-
ical notion of pullback and pushout, and proves some of their categorical
properties.

Definition 1.18. Let C be a category and D a small category (that is, the
objects of D form a set). A diagram in C' of shape D (or simply a diagram) is
a functor D:D—C.

Given a diagram ID:D— C, the indexing category D is usually thought
of as a formal category just shaping the diagram.

Remark 1.18.1. Diagrams in C with shape D form a category, it is simply
the category CP, which by [55, Remark 1.7.3, p.44] is locally small. That is,
natural transformations between two diagrams form a set.

Example 1.19. Let sq denote the category
[ [
[ J [ ]

with four objects and five non-identity arrows, which respect compositions.

/|

A diagram of shape sq corresponds to the common notion of a square dia-
gram that commutes. We will omit the diagonal arrow.

Example 1.20. Let pb denote the category

O—>0<——0

with three objects and two non-identity arrows with common codomain. A
diagram of shape pb corresponds to a pair of arrows with common codomain.

Example 1.21. Consider the category pb with labels a—b<«—cand 1—
2« 3. The objects of the category pb x pb are the ordered couples (a, 1),
(a,2), (a;3), (b,1)... And an arrow between two couples corresponds to
a pair of arrows in pb between the first and the second members of the
couples. So, the shape of a diagram indexed by this category is as follows.

(a,1) (b, 1) (c,1)

]

(a,2) (b,2) (c,2)

I

(a,3) (b,2) (c,3)

Example 1.22. Given any category D and an object C of a category C, the
constant diagram Ac :D — C' is the functor that sends every object to C and
every arrow to the identity of C. Furthermore, every arrow f: C—D in C
determines trivially a natural transformation As: Ac — Ap.
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Definition 1.23. Let C be an object of a category C. Let D:D — C be
a diagram. A cone (resp. cocone) with base D and vertex C is a natural
transformation n: Ac — D (resp. n:ID — Ac), where Ac:D — C'is the
constant diagram (see Example 1.22).

Example 1.24. Let C be a category and D an object of it. Given a diagram
ID:pb — C with image A — B «<— C, a cone 1} with base ID and vertex
D is given by three arrows Na:D — A, ng:D — B and n¢: D — C such
that D — B is equal to both compositions D — A — B and D — C — B.
Hence, the cone 1 is determined by the arrows na and ng, which may be
represented by the following diagram of shape sq.

D——A

|

C——8B

Example 1.25. Given a diagram ID:D — C, where D is the discrete cat-
egory (a category with no non-identity arrows) over a set, which we also
denote by D, a cone 1 with base ID is just a set of arrows of C' with common
domain. In this case, we call 1 a discrete cone with vertex C, where C is the
vertex of 1.

The cone 11 may also be seen as a diagram as follows. Consider a category
D’ constructed from D by adding formally an initial object, that is

So, the cone n is equivalent to the diagram ID’: D’ — C such that on objects
it acts as ID in D and it sends the new initial object to C. On arrows, it sends
a non-identity arrow e— D, where D is an object of D, tonp: C—ID(D).
Now it is even clearer that 1 corresponds a set of arrows {C— Dg}4eD-

Dually, a discrete cocone with vertex C is a cone with vertex C under a
diagram with base the discrete category D over a set. Similarly, it may be
seen as a diagram too, but the new category D’ is now constructed from D
by adding formally a terminal object, that is

D ° ° ° ° °

Definition 1.26. LetID:D — C' be a diagram. Then, there is a contravariant
functor

Cone(—,ID):C — Set

that sends an object C of C' to the set (see Remark 1.18.1) of cones with base
D and vertex C, and an arrow f: C— D to the map (A¢)*: Cone(D, D) —
Cone(C,ID). A limit of D is a representation of Cone(—, D).

19
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Dually, there is a covariant functor
Cone(ID,—):C— Set

that sends an object C of C to the set of cocones with base ID and vertex C,
and an arrow f: C— D to the map (A¢),: Cone(D,ID)— Cone(C,ID). A
colimit of D is a representation of Cone(ID, —).

Given a diagram ID: D — C, observe that, by Proposition 1.15, a limit
(resp. colimit) of D is a terminal (resp. initial) object of fCone(—,ID) (resp.
fCone(]D, =).

So, when it exists, by abstract nonsense a limit or a colimit of a diagram
D is uniquely determined up to a unique isomorphism.

Example 1.27. The limit (resp. colimit) of a diagram of shape pb is called
a pullback (resp. pushout) (see [46, §4, Pullbacks, p.71]). All the results that
follow about pullbacks have a co-version for pushouts reversing the arrows,
we omit the details. A category C admits pullbacks if the pullback of every
diagram of shape pb with values in C exists. Given a diagram ID: pb— C
with image A — B < C, when its pullback exists, the vertex is denoted
by A xg C and it is called again the pullback of A and C over B, or the
fibre product of the pullback of A by C — B. The arrows A xg C — A
and A xg C— C are called projections, and all the relevant arrows can be
summarised in a diagram of shape sq

A.XB C——A
|
C B,

which is called a Cartesian square. We usually emphasise a Cartesian square

with a little corner inside it as in the previous diagram. Furthermore, a
diagram ID:D — C'is called Cartesian if there is at least one functor ¥ :
sq — D injective on objects and, for all of them, the diagrams ID o F are
Cartesian squares.

Consider a cone 1 with base ID and vertex D (see Example 1.24). Since
the pullback is the terminal object in the category fCone(—,lD), there is a
unique arrow D — A xg C (which we denote by Nz xp 1nc) such that

(A(ﬂsXBnc))* : Cone(A XB C, ]D)*’COTle(D,]D)

maps the pullback A xg C ton.

Definition 1.28. Let C be a category admitting pullbacks and f: A — B
an arrow in C. Via the identity arrow of A and f, there is a cone over
the diagram A £ B <~ A with vertex A. We denote by Aa/p the arrow
1A Xp 1A, which is called the diagonal of A over B.

Example 1.29. For every category C and every arrow f: A— C of C, the
following diagram is Cartesian.

A—C

-
IAJ ch
A f

— 5 C
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Lemma 1.30 (Transtivity of pullbacks, see [46, Exercise 8, p.72]). Let C be a
category admitting pullbacks. Let A— B be an arrow of C. Let B— C<~—D
be a diagram in C' of shape pb. Then, the pullback of the diagram A — B «—

B x¢ D is isomorphic to the pullback of the diagram A — C <D obtained
by composition. In particular, given the following diagram,

X Y Z
X’ Y’ z'

if the right hand square is Cartesian, then the left hand square is Cartesian if
and only if so is the big one obtained by composition.

Proof. Since we may consider the following diagram of shape pb X pb,

A B B

JC te JC s JC

o e ]
1c

C C D

and limits commute with limits (see [55, Theorem 3.8.1, p.111]),

(A xc C) X@xcc) (BxcD)=(AxgB) x(cxec) (CxcD).
Hence, by Example 1.29, A xp (B x¢c D) = A x¢ D. O

Lemma 1.31 (Magic diagram, see [61, Exercise 1.3.S, pp.36, 37]). Let C be
a category admitting pullbacks. Let A — B be an arrow of C. Let C —

B <D and C— A <D be diagrams in C of shape pb. The arrow A — B
determines an arrow C X o D — C xg D, and moreover, the following diagram
is Cartesian.

CxaD—CxgD
|,

A
A L AXEA

Proof. Since we may consider the following diagram of shape pb x pb,

A—2LA C
W
A Bt B
W]
A—2LA D

and limits commute with limits (see [55, Theorem 3.8.1, p.111]),
(A XA A) X(axgA) (Cxg D) = (A xa C) XaxyB) (A xa D).

Hence, by Example 1.29, A X(ax,a) (C xg D) = C xa D. O
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Lemma 1.32. Let C be a category admitting pullbacks. Let f: A — B be
a monomorphism of C and C %> B an arrow of C. Consider the following
Cartesian square.

AxpC—3 5 A
r
Poo
C J B

The arrow p is also a monomorphism. Moreover, it is an isomorphism if and

only if there is an arrow C— A (obviously unique) whose composition with f
is g.

Proof. Given two arrows a,b: D — A xp C such that pa = pb, since fis a
monomorphism, qa = gb. Setting p’ = pa = pb and q’ = qa = qb, the
arrows p’ and q’ define a cone with base A— B <«—C and vertex D. Hence,
by the uniqueness of p’ xg q’, both arrows a and b are equal to it.

Now, if p is an isomorphism, the arrow C— A is the composition qp~'.
If there is an arrow h:C — A with f = gh, then the arrows h and 1¢
define a cone with base A— B «— C and vertex C. So, p(h Xp 1¢) = 1¢
by definition, then p(h xg 1¢c)p = p and, since p is a monomorphism,
(h xp 1c)p = 1axgc O

Definition 1.33. Given a category C and an object C of C, the slice category
over C (a particular case of a comma category), denoted by C¢, has for
objects arrows X— C of C' and for arrows (which are called C-arrows), say
from X — C to Y — C, arrows X — Y of C such that the composition
X—Y— C agrees with X— C.

Given a category C and an arrow g: C— D of C, pullbacks give a functor
P, the base change, on the slice category Cp with values in the slice cat-
egory Cc. It sends X— D to the projection X xp C— C, which is denoted
by X¢c — C or simply X¢. And a D-arrow f: X— Y is sent to f1: Xt — YT,
called the base change of f by C — D, defined by the following Cartesian
diagram, recall Lemma 1.30.

Xc fe Yc

<7
-
-
.
O———0O

1.1.3  Grothendieck topologies

This section aims to introduce the theory behind Corollary 1.45.1, a funda-
mental stone in all the forthcoming constructions. We refer to [47] and [60,
Tag 022A] for a deeper treatment of the subject.

Definition 1.34. Fix a category C admitting pullbacks. A Grothendieck topo-
logy is a category C together with a collection Cov(C') of discrete cocones
(see Example 1.25) with values in C' (see Example 1.25), which are called
coverings, satisfying the following conditions.


http://stacks.math.columbia.edu/tag/022A
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(1) If D — C is an isomorphism, then the discrete cocone {D — C}
belongs to Cov(C).

(2) Forevery covering {D;— C}; in Cov(C') and every arrow E— C of C,
the set of projections {D; x¢ E— E};, which form a discrete cocone,
belongs to Cov(C).

(3) For every covering {D;— C}; in Cov(C') and every collection on i of
coverings {E{j — Dj}j in Cov(C), the discrete cocone {Ei; — Clij,
obtained by composition, belongs to Cov(C).

Example 1.35 (The small classic topology). Let X be a topological space
and let Open(X) denote the category of open subsets of X, where arrows
U — V stand for inclusions U C V. Then, Open(X) with the set of discrete
cocones {U; — U}; such that U C U;U; form a Grothendieck topology.

In this case, given two arrows V— U and W — U, the pullback V xy W
is the intersection VN'W.

Example 1.36 (The global classic topology). The category of topological
spaces with the collection of discrete cocones {fi: U; — X}; such that each
fi is an open embedding and X C U;f;(U;) form a Grothendieck topology.

Notice that we must consider open embeddings in general, not just in-
clusions of open subspaces; otherwise condition (1) of Definition 1.34 is not
satisfied.

Example 1.37 (The small Zariski topology). It is the small classic topology
over the underlying topological space of a scheme.

Example 1.38 (The global Zariski topology). Let S be a ground scheme.
Then, Schs with the collection of families of S-morphisms {f;: U; — X};
such that each f; is an open embedding and X C U;f;(U;) form a Grothen-
dieck topology.

Given a covering {f;: U; — X}, the set {f;(l;)}; is an open cover of X in
the classic sense.

Definition 1.39. Let S be a ground scheme and X an S-scheme. An fpqc
covering of X (see [18, Definition 2.34, p.28] and [60, Tag 022B]) is a cocone
of S-morphisms {@;: U; — X}icr such that

1. every @; is a flat morphism and X C Uic19i(S;); and

2. for every affine open subscheme U of X, there is a finite set K, a map
k:K—1, and affine open subschemes V) of S,(y) for k € K such
that U = Uyek @) (Vi) )-

The fpqc topology over the category Schs is the Grothendieck topology
over Schs where the collection Cov(Schs) of coverings is given by the fpqc
coverings of any S-scheme (see [18, pp.27, 28])

We call a morphism X — S an fpgc morphism if the set {X — S} is an
fpqc covering of S.
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Remark 1.39.1. A morphism f:X— S is an fpqc morphism if and only if
it is flat and, for every affine open subscheme U of S, there is a finite set of
affine open subschemes V; of X such that U = U;if(U;). In particular, f is
faithfully flat, that is flat and surjective.

For Example 1.41 below, we recall the following definition.

Definition 1.40. A morphism X — S is quasi-compact if the preimage
of every affine open subscheme of S is a quasi-compact open subset of X
(see [20, Proposition and Definition 10.1, p.242] or [60, Tag 01K2]).

Example 1.41. For a quasi-compact morphism f: X— S, the preimage of
every affine open subscheme U of S (which is quasi-compact) is covered by
a finite set of affine open subscheme of X. Hence, if moreover f is faithfully
flat, then f is a fpqc morphism.

In fact, the abbreviation fpqc stands for “fidélement plat et quasi-compact”,
meaning faithfully flat and quasi-compact in French; which was the class
of morphisms used in Grothendieck’s original definition of the fpqc topo-
logy (which is slightly more restrictive than the nowadays standard Defini-
tion 1.39).

Example 1.42. If S = Spec(k), then every morphism f: X— S is flat and
the unique affine open subscheme of S, which is § itself, is covered by any
affine open subscheme of X. Hence, every morphism f: X — S is an fpqc
morphism.

Definition 1.43. Let C be a category admitting pullbacks. Let Cov(C') be
a Grothendieck topology over C'. A presheaf on C'is a contravariant functor
F :C — Set and it is a sheaf for the topology Cov(C) if for every covering
{Di— C}i in Cov(C) the following diagram is an equaliser.

TC*’HTDi:HT(DiXCDj)

i

Which means that for every (s;) € [ [; # D; satisfying p*s; = q*s; for all
i,j, where p: D; xc Dj — Dy and q:D; x¢ Dj — Dj are the projections,
there is a unique s € F C whose pullback by D; — C is s; for all i.

For a presheaf F : C— Set, when there is no confusion, given an arrow
t: Dy — C of a covering in Cov(C'), the image of an element s € F (C) by
F (1) is denoted by s|p,.

The same definition applies for a functor with values in any other category
D, besides Set, in this case it is called a sheaf with values in D for the
topology Cov(C).

Example 1.44. Given a functor F : Sch— Set, it is a sheaf for the global
Zariski topology (see Example 1.38) if for every scheme T and every open
covering T = [ J;c Ui, and for any collection of elements &; € F (U;) such
that &ilu;nu; = 5j|umuj there exists a unique element & € ¥ (T) such that
& = Elu, in F(Uy).
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1.2 THE SCHEME THEORETIC IMAGE

Theorem 1.45 below is a result on descent due to Grothendieck. For a proof,
we refer to [18, Theorem 2.55, p.34] (or [60, Tag 0303]). Grothendieck’s
original result is [23, B.1, Théoréme 2. (190-19)], which only applies to the
original definition of an fpqc cover (see paragraph below Example 1.41).

Theorem 1.45 (Grothendieck). A representable functor on Schs is a sheaf
in the fpgc topology.

Corollary 1.45.1. Let S be a ground scheme. Let t: X —T and f: X—Y be
S-morphisms and consider the two projections p, q: X x1 X— X. Assume that
70 is an fpqc morphism, then there is a morphism g: T—Y (obviously unique)
such thatf =gomifandonly iffop =foq.

Proof. The following diagram is an equaliser.

*

P
hy/s T—— hY/S X 4*: hy/g(X xs X). O
q

1.2 THE SCHEME THEORETIC IMAGE

In this section, we review the scheme theoretic version of the image of a
morphism, while we set the notation. But first as a warm up, we discuss a
bit about the subtle difference between o: Z<— X being a closed embedding
or a closed subscheme. Basically, when Z is a closed subscheme of X there
is a unique natural embedding 0:Z — X, but when 0:Z — X is a closed
embedding there may be many embeddings of Z into X, none of them more
natural than another.

For affine schemes the difference is clear: a closed subscheme corresponds
to the natural homomorphism A— A /I, where A is a ring and I an ideal of
A, and a closed embedding is just a surjective homomorphism A — B for
some rings A, B.

Definition 1.46. Let f:X — Y be a morphism of schemes. The scheme
theoretic image of f (or schematic image for short) is a closed subscheme
Im(f) of Y through which f factorises and satisfying the following universal
property: If f factorises through a closed embedding Z— Y, then Im(f) — Y
also factorises through it. We also call a diagram X— Im(f) <Y a scheme
theoretic image. Given an open subscheme U of X the schematic closure of
U in X is the schematic image of the open embedding U— X.

In addition, given a point x € X, we denote by X the schematic image of
the natural morphism Spec(k(x)) —X.

Remark 1.46.1. It is a standard result (see [20, Definition and Lemma 10.29,
p-251], [22, |, Chapitre 1, §9.5, p.176] or [60, Tag 01R5]) that the schematic
image of any morphism f exists, by abstract nonsense it is uniquely determ-
ined up to a unique isomorphism, but since it is a closed subscheme it is in
fact unique.

If f is quasi-compact, then the closed subscheme Im(f) of Y is defined
by the quasi-coherent Oy-ideal ker{ Oy — f,.Ox) (see [20, Proposition 10.30,
p-251], [22, |, Chapitre I, §9.5, p.176] or [60, Tag 01R5]).
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Remark 1.46.2. Fix a scheme Y and a monomorphism i:Z — Y (e.g. a
closed or open embedding). Since being an isomorphism is a local property
on the target, by Lemma 1.32, for a morphism f: X — Y, the property of
factorising through 1 is local on the source.

Lemma 1.47. Let X— XY be a schematic image andi:Z— Y a closed
subscheme. Then, the closed embedding Zx — X is an isomorphism if and only
ifsois ZY%X.

Proof. The closed embedding Zx — X is the base change of Zy — X by
X— X, hence if the latter is an isomorphism then so is the former. On the
other hand, if Zx — X is an isomorphism, via its inverse, the morphism
X—Y factorises through Z— Y. Then, by its universal property, the closed
embedding X — Y also factorises through Z Y and the claim follows from
Lemma 1.32. O]

Lemma 1.48 below is another standard result about schematic images
(see [20, Lemma 14.6, p.424], [60, Tag 081l] or [22, IV, Chapitre IV, Proposi-
tion 2.3.2, p.14]).

Lemma 1.48. LetS be a ground scheme and S’ — S a flat morphism. Let f:

X—Y be a quasi-compact morphism of S-schemes and X its schematic image.
The schematic image of the base change f': X' —Y' of f by S’ — S s the fibre
product X x5 S’.

Proposition 1.49. Let7t: X—Y be a separated morphism. Then, every section
0:Y— X of 1 is a closed embedding.

Proof. Consider the schemes X and Y as X-schemes via 1x and o respect-
ively, and as Y-schemes via 7t and mo 0 = 1y. Then, by Lemma 1.31, the
following diagram is Cartesian.

Y g X
r

O'J JlxXY(O'OT[)
Ax vy

X —— X xyX

Since 7: X — Y is separated, Ay y is a closed embedding and then o is a
closed embedding as well. O

1.3 SCHEME THEORETIC CONSTANT MORPHISMS
This sections paraphrases the common set-theoretic notion of a constant
map for morphisms of schemes.

Definition 1.50. Let S be a ground scheme. Let p: X— Y and f: X — W
be S-morphisms. Consider the following Cartesian diagram

Z %%

s

X sy X 20 W W
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where Ayy/s is the diagonal. We say that the morphism f is constant along
the fibres of p if the monomorphism Z— X Xy X is an isomorphism.

The standard (and maybe more intuitive) definition of a morphism f:
X — W being constant along the fibres of another morphism p: X —Y is
that the following diagram commutes.

XxyX —H . x

That is, the kernel, or equaliser, of the two morphisms f o q1,f o q; is the
whole scheme X xy X, which, by Lemma 1.32, is equivalent to Definition 1.50
(see [27, Définition 1.4.2, p.34 and Proposition 1.4.10, p.37]).

When the underlying topological space of Y is just a point, we recover the
set-theoretic notion of a constant map over the closed points of X. Indeed,
for every pair of closed points x,x’ of X, there is a point n of X xy X such
that q1(n) = x and q2(n) = x’/, hence, if f is constant along the fibres of p,

f(x) =foqi(n) =foqz(n) = f(x').

Remark 1.50.1. From the second definition, it follows straightforwardly
that, given an S-morphism f’: W— W’ if f is constant along the fibres of
p, then sois T/ o f. If furthermore f’ is a monomorphism, then the converse
also holds.

Remark 1.50.2. Given a morphism g: X’ — X, since the following diagram
is Cartesian,

z' Z \i%

T T e

X! s X! LWL X s X W Woxg W

if f is constant along the fibres of p, then f o g is constant along the fibres

ofpog.

Proposition 1.51. LetS be a ground scheme. Letp:X—Y and f: X— W be
S-morphisms. If p is an fpqc morphism (see Definition 1.39), then f is constant
along the fibres of p if and only if there is an S-morphism g:Y — W such that

f = gop. In this case, the morphism g is unique.

Proof. The condition that f is constant along the fibres of p is just stetting
that f belongs to the kernel of the two maps

47, 93 hyys(X) —hyys (X xy X),

where (1, q2: X Xy X — X are the projections. Hence, the claim follows
immediately form Corollary 1.45.1. O
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1.3.1  Naively constant morphisms

A constant map f: X—Y is commonly known as a map for which it exits a
unique Yy € Y such that f(x) =y for every x € X. In this section, we explore
the scheme-theoretic consequences of this set-theoretic definition.

Definition 1.52. We say that a morphism f: X — Y is naively constant
through a point yo of Y when f(x) = yy for all points x of X.

Theorem 1.53. Let f:X — Y be a morphism with X quasi-compact. The
morphism f is naively constant through a pointyo of Y if and only if it factors
through a morphism Z—Y where the underlying topological space of Z is a
point and the underlying reduced subscheme Z.q of the schematic closure Z of
Z—Y is equal toyy. Moreover, if o is a closed point of Y, then the morphism
Z—Y is a closed embedding.

Before proving Theorem 1.53, we characterise schemes whose underlying
topological space is a point and we illustrate the two fundamental steps of
our proof with two examples.

Proposition 1.54. Given a scheme Z, its underlying topological space is a
point if and only if Z is affine and the nilradical of its ring of functions R is a
maximal ideal. In particular, the ring R is local.

Proof. Consider a ring R for which Nil(R) is a maximal ideal. Since

Nil(R)= (] »

pESpec(R)

and it is a maximal ideal of R, it is the unique prime ideal of R.
Conversely, if there is a unique z € Z, then {z} = Z is the only open
neighbourhood of z, so it has to be affine, that is Z = Spec(R) for some ring
R. Now, the prime ideal g of R corresponding to z is the unique prime ideal
of R, so q is the nilradical of R and it is maximal. O

To illustrate the first step in the proof of Theorem 1.53 consider for every
natural number n the n-th fat point scheme X, that is the spectrum of R, =
kle]/(e™). The natural homomorphism @, :k[x] — Ry, gives a morphism
Xn — A]}(, which is naively constant and it factorises through X, itself,
notice that k[x]/ker(@y) = Ry, and that @;'((¢)) = \/ker(@n). When we

consider the scheme X defined as the finite disjoint union

xz]_[xn,

neN

for some finite set of natural numbers N, we may decompose the natural
morphism XHAH]( into the affine morphisms @y for alln € N, each one
again factorising through k[x]/ ker(@;) = R,,. But XHA[L just factorises
through

/() Ker(@n)) = Rmasir:

nenN
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The other required step is illustrated by the natural morphism from the
generic point 1 of an irreducible plane curve to Aﬁ. This morphism is na-
ively constant and it factorises through 1 itself. But now, the corresponding
homomorphism is @:k[x,y] — «(n) and k[x,yl/ker(¢) % «(n). In this
case @ factorises through

(klx, yl/ ker(@))p-1)-

Proof of Theorem 1.53. Consider the affine case, that is f: X — Y corres-
ponds to a homomorphism @: A— B such that there is a unique prime ideal
q of A (the one corresponding to the point yg of Y) for which @' (p) = g
for every prime ideal p C B. Set

R = (A/ker(¢))q.

Let us check that ¢ : A — B factorises naturally through R, that is (by the
universal property of localisations) if a € A \ g, then the image @(a) € B
is invertible. We show the contrapositive, so consider a € A for which
@(a) € B is non-invertible, then @(a) belongs to some prime ideal p of B
andac o7 '(p) =q.

Now, we show that R satisfies the condition of Proposition 1.54 and then
its spectrum is a point. Since radicals commute with preimages,

ker(@) = @' (Nil(B)).

Now, the ideal Nil(B) of B is the intersection of all the primes ideal of B
hence, since intersections commute with preimages,

Ver(o) =)o '(p) =a.

peX

In particular, q is the unique prime ideal of A; containing ker(¢) and then
R is a local ring whose nilradical is the maximal ideal.

For the general case, fix an affine open cover {U;}ic1 of X with U; =
Spec(B;) for some rings B;. Since X is assumed quasi-compact, we assume
the set I finite. Fix an affine open neighbourhood V of yp € Y, say V =
Spec(A) for a ring A, and denote by q the prime ideal of A corresponding
to yo.

By assumption, the set f(X) is {yo} which is a subset of V, so f factorises
through the open embedding V — Y and so do all the restrictions fly;.
Denote by @;: A— B; the homomorphism corresponding to fly, : Uj —V
and by a; its kernel. Now the desired scheme is the spectrum of

A
R:( )
Niai/q

For every i € I, by the affine case there is a morphism (A/a;)q — B;
which extends to a morphism @;: R — B; through the natural morphism
R— (A/ai)q given by the inclusion N;a; — a;. For every i € I, also by the
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affine case, /a; = q. So, since radicals commute with finite products and I
is finite,

ﬂai = ﬂ\/CTiZ q.
\/ iel iel

Hence, the spectrum of R is a point by Proposition 1.54.
Let us see that f: X— Y factorises through Spec(R) — Y (here Spec(R) —

Y is the composition Spec(R) — Spec(A)—Y). We just need to check that
the morphisms o : R — B; define a morphism X — Z, that is they agree
on overlaps. Fix two elements U; and U; of the cover {U;}; with non-empty
overlap. Let U be an affine open subscheme of U; N Uj, say U = Spec(C) for
some ring C, and consider the homomorphisms ¢;:B;— C and ¢;: B; —C
corresponding respectively to the open embeddings U — U; and U — ;.
So, by construction, the following diagram commutes.

ALBi

(pji Js

Now, it is straightforward to see that the following diagram also commutes.

A/(Niay) B;
|
B; C

and, since the localisation A/(Nja;) — R is an epimorphism, cj o a; =
C]' o (x]’.

To show that the subschemes Z,.q and Yo of Y are equal we just need to
show that

ker(A—R) =gq.

In fact, ker(A — R) = N;a; because A/ N; a;— R is injective, let us check
it. Observe that for every i € I the following diagram commutes.

A/ai
(A/ay)g — By

So, A/a; — (A/ai)q is injective for every i. For every i € I, the following
diagram also commutes.

A/N;aq A/q;
J |
R (A/ai)q

Then, ker(A/N; a;—R) C Nyker(A/Nj aj— A/a;) = 0.

Finally, if yo is a closed point, following with the same notation, the ideal
q of A is maximal and every ideal a; is g-primary. So, the nilradical of the
ring A/(MN;a;) is a maximal ideal. O
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1.4 HILBERT SCHEMES

1.4 HILBERT SCHEMES

In sum, Grothendieck’s method
of representable functors is like
Descartes’ method of coordinate
axes: simple, yet powerful. Here
is one hallmark of genius!

-STEVEN L. KLEIMAN
The Picard scheme

Hilbert schemes are the parameter space for flat families of closed sub-
schemes of quasiprojective schemes. The basic theory was developed by
Grothendieck in [25]. Later, Altman and Kleiman, in [2], carried out in de-
tail Grothendieck’s exposition, which leads them to similar existence results
with slightly different assumptions. For an alternative exposition, aiming to
be more accessible, see [18, Chapter 5, pp.107-158]. For a clear exposition
in the case of surfaces, see [48]. For another approach to Hilbert schemes
replacing finiteness assumptions by ones more combinatorial and aiming
for explicit equations see [29], which covers other approaches which also
aim for explicit equations as [35] and [21].

The existence of our principal constructions, the blow up split section
family and the universal scheme of ordered clusters of sections, relies on the
existence of Hilbert schemes. In fact, we merely realise these constructions
as locally closed subschemes of suitable Hilbert schemes.

In this section, we quickly review the basic definitions and existence res-
ults for Hilbert schemes.

Definition 1.55. We call a morphism X — S projective (resp. quasipro-
Jjective) if it is finitely presented and there is a locally free Os-module E of
constant finite rank together with a closed embedding (resp. a locally closed
embedding) X—IP(E) over S.

Definition 1.56. Let S be a ground scheme. Let X be a quasiprojective S-
scheme. The Hilbert functor of X is the functor on Schs with values in Set,
denoted by }ﬁ[ﬁx/s, which sends an S-scheme T to the set

Hilby /s(T) ={Z closed subscheme Xt with Z— T is proper and flat}.

Let k be a field, let X be a projective scheme over k, and let F be a coherent
sheaf on X whose support is proper over k. For each n > 0, define

[e.e]

E(F(m)) =) (—1)"dimy H'(X, F(n)).

i=0

There are distinct notions of a (quasi)projective morphism (see the discussions in [2, p.52]
and [18, §5.5.1, pp.126, 127]). For example, Definition 1.55 is equal to [2, Definition 2.1, p.63],
where they call such schemes strongly (quasi)projective. We introduce this class of morphisms
as finiteness conditions required for the existence of the Hilbert scheme, but all our existence
results remain true assuming that the required Hilbert schemes exist.
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Then, there is a polynomial ® € Qlz], called the Hilbert polynomial of &,
such that ®(n) = &(F(n)) for all n > 0. Given a closed subscheme Z of
X, the Hilbert polynomial of Z is the Hilbert polynomial of the sheaf of Ox-
ideals defining Z. The Hilbert polynomial is a numerical invariant, which
encodes a lot of information of the sheaf J. For example, its degree is equal
to the dimension of the support of F. It enjoys many useful properties, but
here we just review, with no proofs, the ones we are interested in. For a
detailed treatment we refer to [22, llly, Chapitre Ill, §2.5, pp.109-111 and
[11;, Chapitre Ill, §7.9, pp.76—-80] and [25, §2, pp.253-258].

Proposition 1.57. Letk be a field, let X be a projective scheme overk, and
let F be a coherent sheaf on X whose support is proper overk. Letk C K be
a base field extension. Then, the Hilbert polynomial of the extended sheaf Jx
on Xy is equal to the Hilbert polynomial of & on X.

Proposition 1.58. Let S be a ground scheme. Let f:X — Y be a flat and
projective S-morphism. Then, the Hilbert polynomial of the fibres of f is locally
constant on the points of Y.

Theorem 1.59 below is proved by Altman and Kleiman in [2, Theorem

2.6, p.66], where, by means of stronger notions of projectivity, they remove
the Noetherian assumptions from the original result given by Grothendieck
in [25, §3, pp-258—-266 (Théoréme 3.1, p.259)], see discussion in [2, p.52]. For
an alternative exposition under Noetherian assumptions see [18, Chapter 5,
pp-107-158].
Theorem 1.59 (Grothendieck). Let S be a ground scheme. Let X be a pro-
jective (resp. quasiprojective) S-scheme. Then, the functor Hilby /s Is repres-
entable and the representing S-scheme Hilby /s is at most a countable disjoint
union of projective (resp. quasiprojective) S-schemes. Furthermore, if S is
locally Noetherian, then so is Hilby s.

Such a decomposition of the scheme Hilby s is obtained as follows. For
every polynomial ® € Q[z], consider the subfunctor f]—[i[ﬁ%s of Hilbys,
which sends an S-scheme T to the set

as }ﬁ[ﬁx/s(T) : the Hilbert polynomial of the fibres of Z— T is @}.

By Proposition 1.58, the functor Hilby/s is representable if and only if all

the functors }ﬁ[ﬁ%s are representable, and, when they are representable,
the S-scheme representing ﬂ-[i[ﬁx/s is isomorphic to the disjoint union of

the schemes representing 5—[1‘[5?()/5.1

1.5 SECTIONS IN FAMILY

We review the universal section family, a scheme parametrising all sections
of a given morphism. We also state its main existence results as an open
subscheme of a suitable Hilbert scheme.

Notice that, in general, given two S-schemes X and Y, the functors h(x.;y)/s and
hx /s Uhy/g are not isomorphic.
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Definition 1.60. Let S be a ground scheme. Let t: X— Y be an S-morphism.

Let T be an S-scheme. A T-family of sections over Tt is a section o: Y7 — Xt
of the base change m1: X7 — Yy of m by T — S, that is an element of
SChYT (YT, XT).

Let X be an S-scheme and 1\ an X-family of sections over 7. The couple
(X,) is a universal section family of 7 (or Usf for short) if it satisfies the
following universal property: For every S-scheme T and every T-family of
sections o over 7, there is a unique S-morphism f: T — X such that the
following diagram is Cartesian,

Yr 2 X7 — Yp
r r
le lfx lfy (1.5.1)
Yy ¢ L Xz —2 Yy

or equivalently, such that fx o 0 =1 o fy.

Forexplicit examples of universal section family see Examples 5.40 and 5.42.

Remark 1.60.1. The collection of families of sections over 7t form a category
S, where objects are pairs (T, o) with T a S-scheme and o a T-family of
sections over 7. An arrow, from (T, o) to (T, 0’), is a morphism f: T— T’
such that fx o 0 = fy o 0/, or equivalently, such that o is the base change
of o/ by f.

If a Usf of an S-morphism 7t: X — Y exists, by abstract nonsense, it is
uniquely determined up to a unique isomorphism

Let S be a ground scheme. Given an S-morphism 71: X—Y, consider the
contravariant functor Sect,: Schs— Set corresponding to the parameter
space problem of sections of 7, defined as follows. For every S-scheme T,
set

Sect, T = {sections of t7: X7 — Y7} = SChYT (Y1, X71),

and for every S-morphism f: T’ — T, the map Sect,f: Sect T — Sect,T’
sends a T-family of sections o: Yy — X7 over 7 to its base change o7:
Y1, < X1/ by f, which is a T’-family of sections over 7t (see [24, II, C, n.2,
pp-380, 381, le foncteur “ensemble des sections”]).

Proposition 1.61. Let S be a ground scheme. Let t: X—Y be an S-scheme.
Let X be an S-scheme and\ a X-family of sections over T, that is\ € SectX.
The couple (X,\) represents the functor Secty if and only if it is the Usf of .

Proof. By construction, Sy is the category of elements of Sect,, then the
claim follows by Proposition 1.15. O

Let S be a ground scheme, 1: X—Y an S-morphism and T an S-scheme.

Given a T-family of sections o: YT < X1 over 7, notice that for every S-point
s:S— T of T, the base change 05: Y— X of 0 by s, thatis 0, = Sectx(s)(0),
can be identified with a section of 7.
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Corollary 1.61.1. Let S be a ground scheme. Let t: X—Y be an S-scheme.
If the Usf (X,\) of Tt exists, then the map hx(S) — Schy(Y, X) sending an
S-point s: S — X of X to the section of 7 corresponding to \ps determines a
one-to-one correspondence.

Proposition 1.62. LetS be a locally Noetherian ground scheme. LetTt: X—Y
be an S-scheme with X quasiprojective over S and Y proper and flat over S.
Then, the functor Sect is representable in the category of locally Noetherian
schemes and it is represented by an open subscheme of Hilbys. In particular,
the representing scheme is at most a countable disjoint union of quasiprojective
schemes.

In Section 3.1.2, after introducing the functor Iso, we show how repres-
entability of Iso can be used to prove Proposition 1.62, see proof after Re-
mark 3.16.2.

Remark 1.62.1. A natural question now is when Secty — Hilby s is also
representable by closed embeddings, that is, when the scheme representing
Sect is projective.

By definition, it is needed that, for every locally Noetherian S-scheme
T and every element Z € Hilby 5T, the open subscheme Uz of T to be
also a closed subscheme. By [60, Tag o5PF], that would be the case if the
morphism of Oy, -modules Oy, — (it o 7t7). Oz is surjective, but this almost
never happens.

For example, if 7t is affine, then (717), is exact, in particular right exact
and (7t1)«Ox — (i1 o 717) Oz is surjective, but we expect 7t to be surjective
and Oy, — (717)+Ox injective.

A trivial case is when 7t is an isomorphism, then the scheme representing
Sectr is a point corresponding to its inverse (its unique section), or also
corresponding to the connected component of the Hilbert scheme Hilby s
parametrising the whole scheme X as a subscheme of itself.

Proposition 1.62 can be easily extended to the case when the ambient
scheme X is at most a countable disjoint union of quasiprojective schemes.

Proposition 1.63. LetS be a locally Noetherian ground scheme. Lett: X—Y
be an S-scheme with X at most a countable disjoint union of quasiprojective
schemes over S andY proper and flat over S. Then, the functor Sect is rep-
resentable and the representing scheme is locally Noetherian and at most a
countable disjoint union of quasiprojective schemes.

Proof. Fix a decomposition | |;c; X; of X into a finite or countable disjoint
union of quasiprojective schemes. For every i € I, by Proposition 1.62,
the Usf (Xi,1;) of X; — Y exists and X; is at most a countable disjoint
union of quasiprojective schemes. So, X = | ];; X; is at most a countable
disjoint union of quasiprojective schemes and, setting 1 as the composition
of | J;cq i with the natural isomorphism Yy — | J;c; Yx, (see [20, Exercise
4.2, p-115]), the couple (X,1) is the Usf of 7. O
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1.5 SECTIONS IN FAMILY

1.5.1  Elementary constructions

In this section, we explore how the universal section family behaves under
some elementary transformations, as base changes or pullbacks. It is mostly
a warm up for Section 5.3.

Proposition 1.64. LetS be a ground scheme. Lett: X—Y be an S-morphism.
Let T— S be a morphism. Assume that the universal section family (X,1) of
7t exists. Then the universal section family of the T-morphism 1vr: X1 — YT is

(X1, 07).

Proof. Given a T-scheme T’ — T, clearly the image of the T-scheme T’ — T
by the functor

Sectr, : Scht— Set

and the image of the S-scheme T'— T — S by the functor
Sectr: Schs— Set

agree. Finally, by the universal property of pullbacks there is an isomorphism
Schs(T,X) = Schr(T',X71),

natural on T’. Hence, the scheme Xt represents the functor Sectr,. O

Proposition 1.65. LetS be a ground scheme. Lettt: X—Y and7t': X' —Y be
S-morphisms. Assume that the universal section families (¥X,\V) and (X', (')
of T and U exist. Then, the universal section family of the S-morphism Tt:
X Xy X' —Yis (:{ Xs :{,,1]) Xs 1])/)

Proof. Given an S-scheme T — S, composition with the projections X xy
X’— X and X xg X’ — X’ give a map

Sect=(T) — Sect(T) x Sect(T)

natural on T. Moreover, given to sections 0: Yy — Xt and ¢/: Y7 — X1,
since i1 0 0 = 1y, = 7 0 0, they determine a unique section o x ¢’:
Yr— X xy X’. That is, the previous map is bijective.

Finally, by Yoneda’s lemma (see Lemma 1.7) there is an isomorphism

Schs(T,X) x Schs(T,X") = Schs(T,X xs X)
natural on T. O

Proposition 1.66. Let S be a ground scheme. Let t: X —Y and ' : X' —
Y’ be S-morphisms. Assume that the universal section families (X,V) and
(X',0') of mand mt’ exist. Then, the universal section family of t: X x s X' —
Y X Y'is (:{Y’ XS :f\,(,ll)yf Xs 1])\//)
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Proof. By the following Cartesian diagram, it is an immediate consequence
of Propositions 1.64 and 1.65.

X xg X/ XY, X

Rk

Xy — Y Y g Y — Y

X T Y S O

Lemma 1.67. LetS be a ground scheme. Let X—Y be a S-morphism and T
an S-scheme. Consider the following Cartesian diagram.

Xt Yt T

X——-Y S
Then, there is a bijective map from Schy(Yt, X) to Schy, (Y1, X1) natural on
T.
Proof. Let 0 € Schy, (Y1,Xt) and f € Schy(Yt, X). Consider the follow-
ing diagram.

9

Xt —= Vg T

|

X" Y S

The composition of o with the projection X1 — X belongs to Schy(Yt, X).
Since, f € Schy(Yt,X), the product of f with the 1y, is well defined and it
is an element of Schy, (Y1, Xt). Clearly, these two constructions are natural
on T— S and mutually inverse. O

Proposition 1.68. Let S be a ground scheme. Let g:Y — S be a morphism.
Let F : Schy — Set be a representable functor represented by a pair (X,n),
where X is aY-scheme andn a natural isomorphism between F andhy. Denote
by 7t: X—Y the structure morphism, which is an S-morphism. Then, there is
a natural isomorphism

F o Py = Sect,
where P is the base change functor (see Definition 1.33).

Proof. Given an S-scheme T,
F oPy(T) = F(Ty).
The natural isomorphism 1 determines an isomorphism
F (Ty) = Schy(Ty,X)
natural on T. Now, by Lemma 1.67, there is a bijective map natural on T

Schy(Ty,X)HSChTY (Ty, X7) = Sect(T). ]
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1.5.2  Weil restrictions

Let Y — S be a morphism. Then, for every Y-scheme X - Y, the Weil
restriction of X with respect to Y — S is the contravariant functor, denoted
by Ry/s(X): Schs — Set, sending an S-scheme T— S to the set

Ry/s(X)(T) = Schy(YT,X).
This section shows Weil restrictions are equivalent to universal section fam-
ilies.
Theorem 1.69. Let Y — S be a morphism. Let X-">Y be a Y-scheme. The
Sfunctors Sect and Ry,s(X) are isomorphic.

Proof. It is an immediate consequence of Lemma 1.67. O

Theorem 1.70 below can be found in [4, Theorem 4, p.194].

Theorem 1.70. Let S be a ground scheme and t: X—Y an S-morphism. If
Y — S is finite locally free and, for every point s of S, every finite set P of points
on the fibre Xs of X— S is contained in an affine open subscheme of X, then
Sectys(X) is representable by a locally Noetherian quasiprojective S-scheme.

Lemma 1.71 below is well-known (e.g., [45, Proposition 3.36 (b), p.109]).

Lemma 1.71. Let X be quasiprojective scheme over a ring A. Then, every
finite set P of points on X is contained in some affine open subscheme of X.

1.6 FLATTENING STRATIFICATION

The flattening stratification of a morphism X — § is a stratification L;S;
of S by locally closed subschemes (obviously unique) such that a morphism
T — S factorises through it if and only if X1 —T is flat.

One of its main uses is in the construction of the Hilbert scheme (see Sec-
tion 1.4). Indeed, fixing a polynomial ® € Qlz], via the Castelnuovo-
Mumford regularity, the functor 5—[1'[5;(()/5 can be seen as a subfunctor of
a suitable Grasmannian and the existence of the flattening stratification is
asserting that such a subfunctor is representable by locally closed embed-
dings (see [18, §5.5.4-6, pp.128, 129]). A posteriori, it is seen that the scheme
representing 5—[1'[5;‘()/5 satisfies the valuative criterion for properness, hence
it is projective (see [18, §5.5.7, p.130]).

Definition 1.72. Let S be a ground scheme. Let X — S be an S-scheme.
Consider the full subcategory Fx s of Schs whose objects are S-schemes
T— S such that X7 — T is flat. Since the base change of a flat morphism is
flat, the categories F s and Schs satisfy condition ¥ (see Remark 1.15.1).
So, we may consider the flattening functor for X — S, denoted by bby /s:
Schs— Set, defined as the contravariant characteristic functor of Fy/s in

Schg, that is given (T—S) an object of Schs,

(s} if X;—Tis flat,
box/s(T—S) =

0 otherwise.
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When X is (quasi)projective over S, given a polynomial ® € Q[t], we may
consider the subfunctor bb?()/s of the functor bby s, which sends (T—S) €
Schs to

{x} if XT—T is flat with Hilbert poly. @ on the fibres,

0 otherwise.

Similarly to the Hilbert functor, by Propositions 1.57 and 1.58, bbx s is rep-
resentable if and only if all the functors bb§‘<’/5 are representable, and, when
they are representable, the S-scheme representing bbx /s is isomorphic to the

disjoint union of the schemes representing bb%s.

Theorem 1.73 below is stated as in [2, Lemma (flattening) 2.3, p.64], which
is a generalisation (via the standard techniques of [22, IV3, Chapitre IV, §8,
pp-5-54]) to the not necessarily Noetherian case of [25, Lemma 3.4, p.262],
which in turn is the scheme theoretic version of [28, Exposé IV, Corollaire
6.11, p.104]. See [48, Lecture 8, p.55] for a detailed discussion but for Noeth-
erian schemes.

Theorem 1.73. Let S be a ground scheme. Let X be an S-scheme of finite
presentation, locally projective over S. Let ® € Q[t] be a polynomial. Then,
the functor bbsz /s Is representable and the representing scheme is a locally closed
subscheme So of S. That is, a morphism T— S factors through So — S if and
only if X1 — T is flat with Hilbert polynomial ® on the fibres.

Remark 1.73.1. When it exists, the underlying set of Sg is
{s € S: the Hilbert polynomial of X; is ®}.

Indeed, by definition, given a point s of Sg, the Hilbert polynomial of the
scheme X is ®@. On the other hand, given a point s of S such that the Hilbert
polynomial of Xs is @, since Xs — {s} is flat, by the universal property of
So, the morphism {s}— S factorises through S¢ — S.

Definition 1.74. Let S be a scheme. Consider a collection of closed subs-
cheme Z; of S indexed by a partially ordered set I such that, set theoretically,

s={Jz
iel
and for all i,j € I
Z; ﬂZj = U Zy.
k<1

Moreover, assume that for every point s of S there is an open neighbourhood
of s meeting only a finite number of schemes Z;. Set S; = Z; \ (ngizk). A
such collection of locally closed subscheme S; is said to be a scheme theoretic
stratification (or simply a stratification) of S. It determines a monomorphism

| |si—s
i€l

which is called the monomorphism associated to the stratification.
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Definition 1.75. Let X— S be a morphism. The flattening stratification of
X— S (which it is obviously unique, when it exists) is a stratification of S
whose associated monomorphism represents the functor by s.

Theorem 1.76. Let S be a Noetherian ground scheme. Let X be an S-scheme
projective over S. Then, the flattening stratification of X— S exists. Moreover,
it can be indexed by the Hilbert polynomial ® € QIt] of the fibres of each
strata with the partial order given by ® < ®' when ®(t) < ®'(t) for all
t > 0. So, each stratum S is the locally closed subscheme of S representing
b -

Remark 1.76.1. By [60, Tag 01]]], Theorem 1.76 extends straightforwardly
to the case S locally Noetherian.!

Remark 1.76.2. By [60, Tag o5UH (4)], Theorem 1.76 extends to S any
scheme and X— S proper and flat (but in this case the strata are not neces-
sarily indexed by the Hilbert polynomials of the fibres).

1 This remark completes the proof of [18, §5.5.6, p.129].
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TECHNICALITIES ON BLOW UPS

“At that time, blowups were the poor man’s tool to
resolve singularities.” This phrase of the late 21st century
mathematician J.H.®. Leicht could become correct. In
our days, however, blowups are still the main device for
resolution purposes.

-HERWIG HAUSER
Seven short stories on blowups and resolutions

Let X be a scheme. We recall that a locally principal subscheme of X is
a closed subscheme whose sheaf of ideals is locally generated by a single
element, whereas an effective Cartier divisor of X is a closed subscheme
whose sheaf of ideals is locally generated by a single regular element (see [32,
Remark 6.17.1, p.145], [20, Definition 11.24, p.301], [60, Tag 01WQ] or [22,
IV4, Chapitre IV, Définition 21.1.6, p.257 and Paragraphe 21.2.12, p.262]).
Given a effective Cartier divisor Z of X, we also call the closed embedding
Z— X an effective Cartier divisor.

Let Z be a closed subscheme of X. The blow up of X along Z, denoted
by b: bl(Z, X)— X, is a morphism such that b~ (Z) is en effective Cartier
divisor of bl(Z, X) and satisfying the following universal property: Given a
morphism f: T — X, if f71(Z) is an effective Cartier divisor of T, then it
factorises through b.

The scheme Z is called the centre of the blow up. Its preimage b~'(Z) is
called the exceptional divisor of the blow up and it is usually denoted by E.

Let J be the quasi-coherent Ox-ideal cutting out Z in X. The scheme
bl(Z, X) is

fPron(Rees(J)),

where Rees(J) = @®n>oJ™ is the Rees algebra of J (where 7% = Ox). The
morphism bl(Z, X) — X is given by the natural morphism of Ox-algebras

Ox —Rees(J).

So, it is clear that the exceptional divisor E is cut out by the invertible sheaf
O(1) of bl(Z, X), that is

E = Proj, (/7).

n>0

For more details see any introductory book on Algebraic Geometry (e.g., [32,
pp-28-31, pp.163—171], [20, pp.408-418] or [15, Chapter V.2, pp.162—192]).
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The residual scheme of Z in X is a construction close to the blow up. It is
defined as the scheme

R(Z,X) = Proj, (Sym(J)),

where Sym(J) = @~ Sym™(J) is the symmetric algebra of J. The natural
morphism of Ox-algebras

Ox — Sym(ﬂ)

gives a morphism p: R(Z, X) — X, which is an isomorphism off Z; in fact,
it is an isomorphism over every point of X at which J is invertible. The
preimage of Z by p is cut out by the invertible sheaf O(1) of R(Z, X), that is

p '(Z) = Proj, (Sym(J/7%)).
There is a natural surjective morphism of graded Ox-algebras
Sym(J) — Rees(9),
which gives a natural closed embedding
bl(Z,X)—R(Z,X).

The sheaf O(1) of R(Z, X) restricts to that of bl(Z, X).

In this chapter we state two facts on blow ups that we will need. The
first, to our knowledge is original. It states that under suitable assumptions,
the blow up of a product of schemes along a locally principal subscheme
preserves the product form. The second is not, it is a reformulation of when
blow up commutes with arbitrary base changes.

2.1 WHEN THE CENTRE IS LOCALLY PRINCIPAL

Let S be a ground scheme and X— S an S-scheme. We show that blowing
up a locally Noetherian scheme X along a locally principal subscheme Z
consists of shaving off those associated points of X lying on Z, Theorem 2.4.
Given aflat S-scheme Y — S with geometrically integral fibres, we show that
there is a one-to-one correspondence, preserving specialisations, between
the associated points of X and those of X xs Y, Lemma 2.6. This all yields
that the blow up of X X Y along any locally principal subscheme is again the
Cartesian product over S of Y with a closed subscheme of X, see Theorem 2.8.
In particular, blowing up X X5 Y along a locally principal subscheme pre-
serves the product form.

We use that the product form is preserved under such kind of blow ups
in the construction of the blow up split section family (see Chapter 4). In-
deed, such a construction consists in transforming a closed subscheme of a
product of schemes into an effective Cartier divisor, similarly to blow ups but
preserving the product form of the ambient scheme. So, after applying some



2.1 WHEN THE CENTRE IS LOCALLY PRINCIPAL

constructions, we end up with a locally principal subscheme of a product
of schemes X x5 Y, where we have absolute control over the scheme Y but
none for X (it is a locally closed subscheme of a suitable Hilbert scheme).
Hence, in Theorem 2.8 we summarise all the required conditions on Y —§
in order to apply it as the final step of the proof of Theorem 4.3.

Let f, g: X—Y be two morphisms and U an open subscheme of X. When
U is (topologically) dense in X, the equation fly = glv implies flx_, = glx,.,
but not generally f = g.

Example 2.1. Consider X affine given by the ring k[x,yl/(xy,y?). The
scheme X consists of a line with an embedded double point at the origin
p. Clearly, we may project X to a line (without the embedded point) and
embed this line into X again. The composition of these two morphisms gives
a morphism f: X — X which agrees with 1x on the (topologically dense)
open subscheme X\ {p}, but f # 1x.

This phenomenon motivates the following definition.

Definition 2.2. Let X be a scheme. An open subscheme U of X is scheme
theoretically dense in X (or schematically dense for short) if, for every open
subscheme V of X, the schematic closure of UNV in V is equal to V (see [60,
Tag 01RB] or [22, IV3, Chapitre 1V, Définition 11.10.2, p.171]).

Remark 2.2.1. In general, there are schemes X with open subschemes U
which are not schematically dense although U = X (see [60, Tag 01RC]). But,
when the ambient scheme X is locally Noetherian, every open embedding
is quasi-compact (see [60, Tag 010X] or [22, |, Chapitre I, Proposition 6.6.4,
p-153]) and then an open subscheme U — X is schematically dense if and
only if U = X (see [60, Tag 01RD] or [22, IV3, Chapitre IV, Remarque 11.10.3
(iv), p1711).

Remark 2.2.2. When X is locally Noetherian, the schematic union of the
schematic closures of all its associated points is equal to X. Hence, in
this case, an open subscheme U of X is schematically dense if and only
if Ass(X) C U

Proposition 2.3. Let X be a scheme and Z a closed subscheme of X. Let
i:U — X be the open subscheme complement of Z in X and b:U — X its
schematic closure. If Z is a locally principal subscheme of X, then the closed
embedding b: U~ X is the blow up of X along Z.

We are going to prove that if Z is an effective Cartier divisor of X, then
U = X (with no assumptions on X). For the locally Noetherian case, see [22,
IV, Chapitre IV, Corollaire 3.1.9, p.38].

Proof. Affine locally on X, we may assume Z defined by a principal ideal,
say (f) C A for some ring A and f € A. The open embedding U X is an
affine morphism because affine locally it is given by Spec(A¢) — Spec(A).
Therefore U — X is quasi-compact the sheaf X = ker(Ox — 1,0y is
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quasi-coherent and, by Remark 1.46.1, it defines the closed embedding b:
U—X.

Since the blow up, by its universal property, can be computed locally on
X, we may assume X = Spec(A) and Z defined by (f) C A. Then, the open
subscheme U of X is D(f) = Spec(A¢), the Oy-ideal X corresponds to the
ideal a = ker(A — Af) C A and the closed embedding b is given by the
natural homomorphism A—A/a.

When f € A is nilpotent, the subscheme U of X is the empty scheme.
Moreover, for all 1 > 0, the n-th graded components of the Rees algebra
of the ideal (f) of A are zero. Hence, the blow up of X along Z is also the
empty scheme.

Assume f € A non-nilpotent. The ideal a C A is Upen(0 : ™) (see [3,
Proposition 3.11.ii, p.41]). So, the closed subscheme b~'(Z) of U is an ef-
fective Cartier divisor because it is defined by the class of f in A/a which is
a non-zerodivisor. Let g: W — X be a morphism with g='(Z) an effective
Cartier divisor of W. Affine locally g is given by homomorphisms ¢: A —B
with @(f) € B a non-zerodivisor. Hence, a C ker(@) and g factors through
b. O

We have seen that blowing up along a locally principal subscheme is equi-
valent to taking the schematic closure of the open complement of such a
locally principal subscheme. But, when the ambient scheme is locally No-
etherian, there are no pathological associated points, see [60, Tag 020I], and
then, as Theorem 2.4 below shows, we can give a more explicit description of
the parts that are shaved off on the blowing up procedure, which will be use-
ful later. Namely, those associated points of the ambient scheme belonging
to the centre of the blow up.

As a preparation for Theorem 2.4 below, we make the following observa-
tions. Let x be an associated point of an affine scheme X, say X = Spec(A)
for some ring A, with x corresponding to a prime ideal p C A (that is, p
is an associated prime of A, or equivalently, the maximal ideal of the stalk
Oxx is an associated prime ideal).

Given an open subscheme U~ X, since for any y € U the stalks Ox and
(Oxlu)y are isomorphic, the sets Ass(X) N U and Ass(U) are equal (see [22,
IV, Chapitre IV, Proposition 3.1.13, p.39]).

In contrast, given a closed subscheme Z— X, say Z = Spec(A /1) for some
ideal I C A, the point x belongs to Z if and only if v/I C p. But now, the
sets Ass(X) N Z and Ass(Z) are unrelated in general. For example, the case
A = klx,yl/(xy,y?) and I = (y) C A shows that Ass(X) N Z Z Ass(Z)
is possible. Indeed, the scheme Z is A]}( with just one associated point, its
generic point, but the point p € X corresponding to the prime ideal (x,y) C
A belongs to Z and it is an associated point of X. Considering the same
scheme X, but now as a closed subscheme of Ai via the natural projection
k[x,yl — A, the same point p € X shows that Ass(X) € ASS(A@ NXis
also possible.
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Theorem 2.4. Let X be a locally Noetherian scheme and Z a locally principal
subscheme of X. Let Tz be the subset of X union of the underlying sets of X for
all x € Ass(X) N Z. Let'V be the complement of Tz in X. ThenV is an open
subscheme of X and its schematic closure V— X is the blow up of X along Z.

Proof. First of all, the subset Tz of X is closed because its intersection with
every Noetherian affine open subscheme of X is a union of finitely many
closed subsets (see [60, Tag 05AF] or [22, IV;, Chapitre 1V, Proposition 3.1.6,
p-37]). Hence V is an open subscheme of X.

Let U be the open complement of Z and U its schematic closure. Since Tz
is a closed subset of Z, U is an open subscheme of V and of V. We show that
UV is schematically dense, then the claim follows from Proposition 2.3.

By definition of Tz, Ass(X) N'U = Ass(X) NV and, by [22, IV, Chapitre
IV, Proposition 3.1.13, p.39], Ass(V) C Ass(X)NV. So, Ass(V) € U and
then U is a schematically dense subscheme of V by Remark 2.2.2. O]

Definition 2.5. Let k be a base field. A k-scheme X is called geometrically
integral if, for every field extension k — K, the scheme X is integral. A
morphism X — Y is called with geometrically integral fibres if, for every
point y of Y, the fibre X, —{y} is geometrically integral.

Remark 2.5.1. By [45, Chapter 3, Remark 2.9, p.go] and [62, Chapter III,
Corollary 1 of Theorem 40, p.198], an integral scheme over an algebraically
closed field is geometrically integral.

Lemma 2.6. Let S be a locally Noetherian ground scheme. Let X XS and
Y %S be locally Noetherian S-schemes. Letn € Ass(X), sets = f(n) € S
and consider the following Cartesian diagram.

(Ys)n — n}
|
Ys {s}

Assume that g is faithfully flat and with geometrically integral fibres. Then, the
scheme (Y )y, is integral and its generic point is mapped to an associated point
&n of X x5 Y by the natural monomorphism (Ys), — X xs Y. Furthermore, the
correspondence associatingmn € Ass(X) with &, € Ass(X x5 Y) is one-to-one
and preserves specialisations.

Proof. The scheme Y; is integral because we assume g with geometrically
integral fibres. Denote its generic point by u, and denote by I,, the image of

Ass(Spec(k(1) ®y(s) k(1))

by the natural monomorphism Spec(k(1) ®y(s) K(1y)) — X X5 Y. By [22,
IV,, Chapitre 1V, Proposition 3.3.6, pp.44, 45],

Ass(XxsY)= ] I
nEAss(X)

45
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So now, we will show that there is a unique point in Ass(Spec(k(n) ®y(s)
K(Hn))), and then its image to X x5 Y will be the desired point &,. Consider
the following Cartesian diagram.

Spec(k(n) @(s) K(Hn)) « (Ys)n {n}
{Hn} € Ys {s}

By [22, IV, Chapitre 1V, Corollaire 3.3.7, p.45], there is a bijective map
between Ass(Spec(k(n) ®y(s) K(1y))) and Ass((Ys)y), which has a unique
point since we assume g with geometrically integral fibres.

Now, we check that the correspondence
N € Ass(X) ~ & € Ass(X XsY)

preserves specialisations. Fix n,n’ € Ass(X), set s = f(n) and s’ = f(1’)
and denote respectively by pand p’ the generic points of the fibres Y and
Y,. Assume that 1 is a specialisation of 1/, that is 1 € 1/, or equivalently,
affine locally the prime ideal corresponding ton’ is contained in the prime
ideal corresponding to 1 (see [20, Example 2.9, p.44]). So, it is clear that s is
a specialisation of s’. Hence, we may consider the following diagram.

{aﬂ}*’{n}xs{u}g’?X?Ysﬁ X xsY

|

'} xg {n'}

|

{Evn’}

The schematic image of {&,,/} — X x5 Y is the schematic image of 1’ X7
Y57 — X X Y restricted to the schematic image of {E,n/}ﬂw X7 Y57 (see
transitivity of schematic images, [22, |, Chapitre |, Proposition 9.5.5, p.177]).
Hence, if the schematic image of {E,n/}aw X7 Y57 is the whole ambient
scheme, then the point {&;} is a specialisation of {&/}. It is not hard to see
that the following diagram is Cartesian.

{ﬂ'} ><s’Ys’g’WXS Y?/ Y? I
'} n’ s/ S

So, since (N} — 1’ < 7’ is a schematic image and Y — S is flat, by
Lemma 1.48, the schematic image of {n’} x/ Y¢s —1’ Xs Y57 is the whole
ambient scheme. O

Lemma 2.7. Let S be a ground scheme. LetY — S an fpqc morphism. Let
X be an S-scheme and i: W — X a closed embedding. Leth’:T — X be an
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S-morphism. Let : T x5 Y—W XsY be a morphism such that the following
diagram commutes.

TXSYLWXSY

b
X Xs Y
Then, there is a unique morphism h: T— W such that ¢ = hy.

Proof. Denote by p1: T XsY—T,px: X Xxs Y—Xand py: W xs Y —->W

the projections. Since the following diagram commutes,

TxsY 2% X g Y -2, X
h/
T
the morphism px o iy o @ is constant along the fibres of pt. Then, since
px oiy = iopw and iisa monomorphism, by Remark 1.50.1, the morphism
pw o @ is constant along the fibres of pt. By Proposition 1.51, there is a

unique morphism h: T — W such that hopt = pw o @. Consider the
following diagram.

Ty —2— Wy Y
r
JPT JPW l
T sw S
Since it commutes and both the right hand and the big squares are Cartesian,
so is the left hand. Hence, ¢ = hy. O

Theorem 2.8. LetS be a locally Noetherian ground scheme. Let XS and
Y -2 S be locally Noetherian S-schemes. Let Z be a locally principal subscheme
of X x5 Y. Assume that Y -2 S is flat and with geometrically integral fibres.
Then, there is a closed subscheme 1: W — X such that the closed embedding
iy: W xsY— X Xgs Y is the blow up of X x5 Y along Z.

If furthermore Y — S is an fpqgc morphism, for every S-morphism T LAY
for which the preimage of Z by hy,: T xs Y — X x5 Y is an effective Cartier
divisor, there is a unique morphism h: T— W such thatioh’ = h. Moreover,
hy: T xs Y—W Xg Y is the morphism given by the universal property of the
blow up iy.

Proof. Let Q) denote the set of points & € Ass(X x5 Y) such that & € Z. By

Theorem 2.4, the blow up of X x5 Y along Z is the schematic closure of the
open subscheme U— X x5 Y complement of the closed subset

=&
£eQ

Let p: X xs Y— X be the projection and denote by V the open subscheme
of X complement of the closed subset

U@

LeQ
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We claim that the schematic closure of the open embedding V — Xis
the desired closed subscheme W of X. Let us check it. Observe that g is
quasi-compact because S is locally Noetherian (see [60, Tag 010X]). Now,
since g is assumed flat, by Lemma 1.48, the schematic closure of the open
embedding V x5 Y < X x5 Yis V x5 Y. An associated point 1 of U is a
pointm € Ass(X x5 Y) such thatn & & for all £ € Q. Since the one-to-one
correspondence between Ass(X) and Ass(X xs Y) respects specialisations,
this is equivalent to p(n) € p(&) for all & € Q, which is equivalent ton €
P (V) = V x5 Y. Hence, Ass(U) = Ass(V xsY). Since & € p~' (p(&)),
the scheme V Xg Y is an open subscheme of U and then the schematic
closures of U and V x5 Y in X x5 Y are equal (see [22, IV, Chapitre 1V,
Proposition 3.1.13, p.39 and V3, Chapitre IV, Proposition 11.10.10, p.172]
or [60, Tag 083P]).

Assume that Y — S is an fpqc morphism and consider such an S-morphism
h’:T— X. By the universal property of the blow up iy, there is a unique
morphism @:T xs Y — W x5 Y such that iy o ¢ = h{. Now, the claim
follows from Lemma 2.7. ]

Remark 2.8.1. If the assumption Y— S with geometrically integral fibres
fails, then there is a point s of S and a field extension k(s) — K such that
(Ys)k is not integral. Setting X = Spec(K), the scheme X x5 Y'is (Ys)x and
it has at least one locally principal subscheme Z, which is not an effective
Cartier divisor. Hence, the blow up of X x5 Y along Z is not an isomorphism
and, if it is not the empty scheme (otherwise Theorem 2.8 is trivial), there
is no closed subscheme W of X such that W x5 Y« X x5 Y is such a blow

up.
2.2 CHANGING THE BASE

This section studies when blow ups commute with arbitrary base changes.
This question relies mostly on when the Rees algebra of a sheaf of ideals
commutes with taking inverse images. Consider the following situation.

Situation 2.9. Let S be a ground scheme and f: T— S a morphism. Let X
be an S-scheme of finite presentation, Z a closed subscheme of X flat over
S and J the corresponding quasi-coherent Ox-ideal.

The inverse image of J by fx: Xt — X'is the Ox, -ideal defining the closed
subscheme Zt of Xt (see Lemma 2.11). Moreover, from the assumption

Y. for every n > 0, the inverse image of J™ by fx is an Ox, -ideal,

follows straightforwardly that the blow up of X along Z commutes with
the base change T — S, with no additional assumptions on T — S (see
Theorem 2.12).

By Lemma 2.11, it may seem that in Situation 2.9 the assumption ¥ is
already satisfied, in fact this is stated as an exercise in [61, Exercise 24.2.0,
p.652], but there are counterexamples (see Remark 2.12.2).


http://stacks.math.columbia.edu/tag/01OX
http://stacks.math.columbia.edu/tag/083P
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Actually, failure of condition ¥ prevents many constructions from being
functorial without assuming some conditions on the involved schemes or
morphisms. In order to overcome this difficulty, we follow the idea in [38,
Proposition 2.4, p.31] or [41, Proposition 3.4, p.422], which is to restrict
to a case when the Rees algebra of J agrees with its symmetric algebra.
Then, since the symmetric algebra does commute with taking inverse images,
so does the Rees algebra. Nevertheless, our approach, Proposition 2.14, is
slightly different from [38, Proposition 2.4, p.31]. We restrict explicitly to
the case when the Rees and the symmetric algebras agree, which is called a
weakly linear embedding.

Lemma 2.10. Let f:X — Y be a morphism. LetJ be an Oy-ideal and n a
positive integer. If, fori = 1,m, the Ox-module f*(3') is an Ox-ideal, then
*(I) = (f*I)™.

Proof. Fori = 1,n, from the inclusion J*<— Oy, there is a natural morphism
of Ox-modules

f* (jl) == fﬁlji ®f710y OX"OX.

Clearly (and this is completely general), the ideal generated by the image
of f*(I") — Ox is the n-th power of the ideal generated by the image of
f*J— Ox. But by assumption f*(J}) — Ox are injective for i = 1,1, hence
*(I) = (f*I)™. O]

Lemma 2.11. In Situation 2.9, the inverse image of J by fx: X1 — X is a
quasi-coherent Ox -ideal and moreover, it corresponds to the closed embedding
ZT — XT.

Proof. Consider the fundamental exact sequence of Ox-modules for the
closed embedding i: Z—X.

0—J—0x —1.0z—0

By assumption, 1.0y is flat over S. Hence, by [20, Proposition 7.39 (1), p.194],
the following sequence of Ox,-modules is exact.

0 — (fx)*J — (fx)*Ox — (fx)*1.0z — 0

Now, (fx)*Ox = Ox, (see [20, Remark 7.10, p.180]) and then (fx)*J is an
Ox,-ideal. Moreover, (fx)*1,0z = (i1)+O0z, and then (fx)*J is the Ox,-
ideal cutting out Zt— Xr. ]

Theorem 2.12. In Situation 2.9, assuming ¥, the formation of the blow up

bl(Z, X) of X along Z commutes with base change T— S
bl(ZT, XT) = bl(Z, X) Xs T.

Proof. Denote by Jt the Ox,-ideal defining the closed subscheme Zt of X7.
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By definition, the blow up of X along Z is the relative projective spectrum
of the Ox-algebra ®,J™. By functoriality, there is a natural isomorphism

fProj((fX)*<@f]”)> = Proj <@T‘> xx XT

n>0 n=0

(see [22, I, Chapitre Il, Proposition 3.5.3, p.62]). The functor (fx)* is left
adjoint to (fx)«, hence it commutes with colimits (see [20, Proposition 7.11,
p.181] and [55, Theorem 4.5.3, p.138]), so

(fx)*(EB J“) =P T

n>0 n>0

By Lemmas 2.10 and 2.11, for all n > 0, (fx)*(I") = ((fx)*I)"™ = (I1)™
Finally, relative projective spectra do not depend on low degrees (see [20,
§13.7, p-378] and [32, Chapter I, Exercise 2.14 (c), p.81]). O

Remark 2.12.1. In the proof of Lemma 2.11, we have showed that assump-
tion ¥ would be satisfied if the Ox-modules Ox/I™ are flat over S for all
n > 0. This is another approach unexplored to our knowledge.

Remark 2.12.2. Let 71y and 7, be two distinct planes in Aj meeting along
aline S. Let X be the union of 717 and 77 in Ai, so S is the singular locus
of X. Consider a line Z contained in 717 and intersecting S in exactly one
point p. Consider a projection X— S onto S, whose restriction to Z is still
surjective. This example is in Situation 2.9 and, even more, X — S is also
flat. But the blow up of X along Z does not commute with the base change
{p}—S.

The pathology in this example is that the stalk of the normal sheaf of Z
in X at p has rank two. Moreover, even though p is a singular point of X, it
is smooth on each irreducible component 77, 77 of X and the normal sheaf
at p of ZNmy in 7 has still rank two. But, whereas the normal sheaf of
the fibre Z, = {p} in X, has again rank two, the normal sheaf of Z, in both
irreducible components of X, has just rank one.

Let us see how this affects on blowing up. The blow up of X, along Z,, is
the disjoint union of two lines, the blow up morphism is the projection onto
Xy, hence its fibre at p is the disjoint union of two points.

In contrast, the blow up of X along Z is an isomorphism away from p, but
its fibre at p is a whole projective line ]P]L corresponding to the projectivisa-
tion of the normal bundle of Z at p.

Giving coordinates, it is straightforward to see that in fact the inverse
image of the second power of the ideal defining Z in X is not an ideal of the
corresponding ring.

Definition 2.13. Let 0:Y — X be a closed embedding and J the quasi-
coherent Ox-ideal cutting out its schematic image. If the natural morphism
of Ox-modules

Sym"™(J) —J"
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is an isomorphism for all n > 0, then o is called a weakly linear embedding.
If furthermore it is an isomorphism for all n > 0, then o is called a linear
embedding, see [37].

Proposition 2.14. Let S be a ground scheme. Let X be an S-scheme and o
Z— X a closed embedding. Then, the formation of the blow up X of X along

the image of 0 commutes with base change T — S,
(X)or = Xo x5 T
ifo: L—X, o1: L1 — X7 are weakly linear and Z— S is flat.

Proof. Denote by J the quasi-coherent Ox-ideal cutting out the schematic
image of 0. By Lemma 2.11, the quasi-coherent Ox, -ideal J1 corresponding
to o7:Z1— X7 is the inverse image of J by fx. It is well-known that sym-
metric powers commute with taking inverse images (see [20, §11.1, pp.287,
288]), that is, since 0 and o1 are assumed weakly linear, for all n > 0,

(fx)*(T™) = (fx)* (Syme 3) = Symg, ((fx)*J) = Symg, Jr = ()"
And the claim follows from Theorem 2.12. O

Remark 2.14.1. We have seen that when o:Z— X is weakly linear, then
the blow up of X along Z is the relative projective spectrum of the symmetric
algebra of J. If Z— S is flat, from the fundamental exact sequence of the
closed embedding Z — X follows that J is flat over S if and only if so is X.
Hence, since the symmetric power functor preserve flat modules (see [42,
Proposition 2.3, p.101]), if 0: Z— X is weakly linear and both X, Z are flat
over S, then the blow up X, of X along the image of o is again flat over Z.
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All'in all it’s just another brick in the wall
All'in all you’re just another brick in the wall

-ROGER WATERS
Another Brick in the Wall (Part 2)

In this chapter, we introduce two handy constructions, which will be ex-
tensively used. As far as we know, all results of this sections are new, except
for Section 3.1.2, where we review two well-known cases for the represent-
ability of the functor Iso, Theorems 3.15 and 3.16.

Let S be a ground scheme. Let p: X—Y and f: X— W be S-morphisms.
Set-theoretically, the morphism f is constant along the fibres of the mor-
phism p if, for all point y of Y, the restriction of f to Xy, the morphism
flx, : Xy — W, is constant. Although f is not constant along the fibres of
P, we may consider the (possibly empty) set Y’ of points y of Y for which
the morphism f|Xy is constant. The first construction is the f-constantify (or
f-constfy for short) closed subscheme of Y, which is the scheme-theoretic
construction of Y’.

Let m: X — Y and a: X — T be morphisms. The second construction is
the universal split section family. It parametrises sections of w: X—Y, but
just those sections whose image is contained in some fibre of oc: X—T. We
consider oc: X— T as a morphism splitting the ambient space X by means
of its fibres. So, the universal split section family is the scheme solving the
parameter space problem of sections of 7t split by o.

3.1 CONSTFYING MORPHISMS

Let S be a ground scheme. Let p: X — Y and f: X — W be S-morphisms.
The goal of this section is to study S-morphisms T—Y for which the com-
position Xt —> X—>W is constant along the fibres of the projection Xt —T.
Theorem 3.21, an immediate consequence of Theorem 3.17, shows that they
form a category with a final object, which is a closed subscheme of Y. We call
it the f-constantify (or f-constfy for short) closed subscheme of Y (see Defin-
ition 3.20).

We introduce the functor Iso (see Definition 3.14) mainly to study this
category, but it will also have some other applications, in the study of the
geometry of the blow up split section family (see Theorem 4.8) or the uni-
versal (split) section families (see Theorems 3.19 and 5.30).

The representability of the functor Iso has been studied in the literature,
but explicit constructions for the representing scheme are lacking. To this
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end (see Theorem 3.17), we introduce the class of ¥;-projective morphisms,
Definition 3.9, and its main property, Theorem 3.13. Namely, that arbit-
rary schematic unions of closed subschemes commute with X;-projective

pullbacks.

3.1.1 Base change of schematic unions

In this section, we introduce X;-projective morphisms to show that arbit-
rary schematic unions of closed subschemes commute with N;-projective
pullbacks.

Definition 3.1. Let R be a ring. An R-module M is Mittag-Leffler if the
natural homomorphism

pMer ][ [JQ—][MerQs

i€l i€l
is injective for every family of R-modules (Q; |1 € I).

Example 3.2. For example, finitely presented modules are Mittag-Leffler. A
finitely generated module is Mittag-Leffler if and only if it is finitely presen-
ted. Projective modules are also Mittag-Leffler, in particular, so are free
modules.

On the other side, a typical example of a non-Mittag-Leffler module is Q
as a Z-module. Indeed, consider the family of Z-modules Q,, = Z/nZ. So,
[[,Q®z Qn = 0. But, Q is a subring of Q ®z [ [,, Qn. Since Q is flat as a
Z-module, applying Q ®z _ to the injective homomorphism Z— [ [,, Qn,
we get Q—>Q @z [],, Qn.

For more examples see [60, Tag 059Q].

We are interested in Mittag-Leffler modules which moreover are flat. In [33],
there is a complete characterisation of such modules as N1-projective mod-
ules, which motivates Definition 3.7 below (see [33, Corollary 2.7, p.3443 and
Corollary 2.10, p.3444]). We review the main definitions and results for the
convenience of the reader.

Definition 3.3. Let R be a ring, and M a R-module. Let k be a regular
uncountable cardinal. A direct system C of submodules of M is said to be a
K-dense system in M. if

(1) Cis closed under unions of well-ordered ascending chains of length
smaller than k, and

(2) every subset of M of cardinality smaller than « is contained in an
element of C.

Theorem 3.4 (see [33, Corollary 2.7, p.3443]). LetR be aring and M a module.
Then, M is Mittag-Leffler if and only if there is an ¥1-dense system in M
consisting of countably generated pure projective modules.


http://stacks.math.columbia.edu/tag/059Q
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Definition 3.5. Let R be a ring, and let k be a regular uncountable cardinal.
An R-module M is said to be k-projective if there is a k-dense system C
consisting of projective modules generated by less than k elements.

Theorem 3.6 (see [33, Corollary 2.10, p.3444]). LetR be a ring. An R-module
M is flat and Mittag-Leffler if and only if it is ¥y -projective.

Definition 3.7. We say that an homomorphism @: A — B is X1 -projective
if B is an N;-projective A-module via .

Lemma 3.8. Let A— B be an X1 -projective homomorphism. Then, for every
family of ideals {ax}ren of A,

B- ﬂa;\: ﬂB-Cl)\.

AEA AEA

Proof. Since B is a flat A-module, the following sequence is exact.

0——B@aMertn —— BoAA—">Bax [[A/ar
AEA

So, B-Myay = ker(a). Now, since B is a Mittag-Leffler A-module, the
natural homomorphism

p:B®a HA/O}\ﬂHB@AA/C@\
AEA AEA

is injective. Hence, ker() = ker(po o) = M\B - a,. O

Definition 3.9. Let f: X—Y be morphism. An affine cover of f is a couple
(U, V) where U = {Uy}; is an affine open cover of Y and V = {Vy;};; is a
collection of affine open covers {V;}; of £~1(U;) for ever i. An X -projective
cover of f is an affine cover (U, V) of f such that for every i, j the homomorph-
ism corresponding to Vi; — U; is Ny-projective. We say that f: X —Y'is
N1 -projective, if it admits an N{-projective covering.

Remark 3.9.1. The existence of an N{-projective cover of f does not imply
that every affine cover of f is N-projective. The existence of an ¥{-projective
cover can be computed locally on the target, since the union of ¥;-projective
covers is again an N1-projective cover. The property of being ¥1-projective is
stable under pullbacks by affine morphisms. But in general, since preimages
do not preserve affineness, it is not clear whether NX;-projectivity of mor-
phisms is preserved under arbitrary pullback or base changes (even though
flat and Mittag-Leffler modules ascend along arbitrary ring maps).

Example 3.10. Let k be a field. Let X, Y be k-schemes. Then, the projection
X xx Y — X'is Nj-projective. Fix affine covers U = {Ui}, {Vj} of X, Y
respectively. Then, the set V = {U; x Vj} is an affine cover of X x Y and the
couple (U, V) is an Ny-projective covering of X X Y— X. Let us check it.
For every 1,j, the projection U; x V; — U; corresponds to the natural
homomorphism A — A ®x B for some k-algebras A, B. So, A®Q B is a
free A-module and free modules are flat (well-known) and Mittag-Leffler

(see [60, Tag 059Q]).

55


http://stacks.math.columbia.edu/tag/059Q

56

BUILDING BLOCKS

Example 3.11. In fact, in Example 3.10 we have seen that every morphism
f: Z— S which, affine locally can be given by homomorphisms A — B with
B a free A-module, is NXq-projective. In particular, if f is an affine morphism
such that the Os-module .07 is locally free.

Notation 3.12. Let X be a scheme. Consider a family of closed subschemes
Y1 of X cut off by a family of quasi-coherent Ox-ideals {J1};. We denote by
21Yy its schematic union, that is, the closed subscheme of X corresponding
to the quasi-coherent Ox-ideal (), J;.

Theorem 3.13 below is the main property for which we introduce ;-
projective morphisms. It asserts that arbitrary schematic unions of closed
subscheme commute with X;-projective pullbacks.

Theorem 3.13. Let X — Y be an N-projective morphism. Then, for every
family {Y\}1 of closed subschemes of Y, the closed subschemes Xy y, and Z Xy,
of X are equal.

Proof. Fix an Nj-projective covering ({U;},{Vi;}) of X—Y. We check that
for every 1,j the closed subschemes (Xg,v,) N Vij and (Z1Xy,) N Vi of Vi
are equal.

Fix i,j and denote respectively by A and B the rings of functions of U;
and Vj;. Every closed subscheme Y; N U; of U, is given by an ideal a; of A.
The closed subschemes (Xz,y,) N Vi and (X1 Xy, ) N Vi of Vi; are given re-
spectively by the ideals MB - a; and B - Nya;. But since B is an ¥;-projective
A-module by assumption, by Lemma 3.8, such ideals are equal. O

3.1.2 The Iso functor

Let S be a ground scheme. Let X — Y be an S-morphism. In this section,
we study morphisms T — S for which the base change X1 — Y7 is an
isomorphism. We review that sending T to the set of such morphisms defines
a functor, Definition 3.14, and the main cases where the representability of
such a functor has been studied, Theorems 3.15 and 3.16.

We use the introduced class of N{-projective morphisms to give an explicit
description of the representing scheme, Theorem 3.17. To finish, we show
(via Hilbert schemes) that when X is flat over S, the functor Iso is isomorphic
to the functor b® for a suitable polynomial ®.

Definition 3.14. Let p: X—Y and Z— X be morphisms. Consider the full
subcategory of Schy consisting of Y-schemes T — Y such that Z1 — Xt
is an isomorphism. Since isomorphisms are stable by base change, such
categories satisfy condition T (see Remark 1.15.1) and we define Isorz,:
Schy— Set as their contravariant characteristic functor. That is, it sends
an Y-scheme T—Y to

{x} if Zr— Xt is an isomorphism,

Isog(T) =

@  otherwise.
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Let us illustrate the definition of the Isog functor in the easiest case in
which it is representable by an affine algebraic scheme. Fix a base field k, con-
sider the rings A = k[A,...,An] and R = A @ k(x1,...,xm], and assume
X = Spec(R), Y = Spec(A) and p: X—Y given by the natural homomorph-
ism A — R. A closed subscheme Z of X is given by polynomial equations
{pi = 0} withp; € R. So, when we wonder for which (A1,...,An) € k™ the
equations {p; = 0} are satisfied forall (x1,...,%xm) € k™, we write down the
polynomials p; as elements of A[x1,...,xm]. That is, p; = Zj a;‘xj, where
i=01.sm), a} € Aand ¥ = xj]‘ x%‘{‘ Then, for the (A1,...,An) €
k™ satisfying {(1;L = 0};; the polynomials p; are identically zero and the
equations {p; = 0}; are satisfied for all (x1,...,xm) € k™.

A bit more formally, consider the closed subscheme W of Y given by the
equations {(1;L = 0};j. We are just saying that the base change of the closed
embedding Z<— X by W< Y is an isomorphism and that W is the “biggest”
closed subscheme of Y with this property. In this case, W represents Isofz.

Remark 3.14.1. Notice that a closed embedding has a section if and only if
it is an isomorphism. Hence, if Z— X is a closed embedding, then Iso% =
Sectz—x = Rx/y(Z) (see Sections 1.5 and 1.5.2).

Remark 3.14.2. If the functor 1505 is representable by an open or closed
subscheme Y’ of Y, the underlying set of Y’ is

w = {y € Y such that Z,— Xy is an isomorphism}.

Indeed, if a point y of Y belongs to Y’, then Z, — Xy is the base change
of (the isomorphism) Zy: — Xy by y —Y’, hencey € w. If y € w, then,
by the universal property of the closed embedding Y’ < Y, the morphism
{y}—Y factorises through Y’ < Y. Hence, y belongs to Y.

There are two main different cases when the representability of the functor
I.sof) has been studied. We state them for the convenience of the reader.

The following can be found in [60, Tag o7Al].

Theorem 3.15. Letp: X—Y be a morphism and Z— X a closed embedding.
If p is of finite presentation, flat, and pure, then ISU% is representable and the
representing scheme Y’ is a closed subscheme of Y. Moreover, if Z—Y is of
finite presentation, then so is Y'—Y.

Theorem 3.16 below, by Proposition 1.15, is equivalent to [18, Theorem
5.22 (b), p.132].

Theorem 3.16. Letp:X— Y and Z— X be morphisms. If Y is Noetherian,
Z— X is projective and Z, X are proper and flat over Y, then Isorz, is repres-
entable in the category of locally Noetherian Y-schemes and the representing
scheme Y’ is an open subscheme of Y.

Remark 3.16.1. By [60, Tag 01)]], Theorem 3.16 extends straightforwardly
to the case Y locally Noetherian.!

1 This remark completes the proof of [18, Theorem 5.23, p.133].
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Remark 3.16.2. Notice that a proper morphism onto a locally Noetherian
scheme is of finite presentation (trivially) and pure (see [60, Tag 05K3]).
Hence, if Y locally Noetherian and furthermore Z— Xis a closed embedding,
by Theorem 3.15, the scheme Y’ representing Iso% is a union of connected
components of Y.

The representability of the functor Sect, claimed in Proposition 1.62 can
now be easily established as a corollary:

Proof of Proposition 1.62. We show that Sect, is a subfunctor of Hilby s
representable by open embeddings, then the claim follows by Theorem 1.59
and Lemma 1.17

Given an S-scheme T, denote by pt: Yt — T the base change of the
structure morphism, which is flat and proper because so is Y — S. Given
(0:Y7T— X71) € SectxT, the composition pt o 7t1 0 0 is again pT, hence it
is flat and proper and, since ¢ is a closed embedding (see Proposition 1.49),
o itself is an element of Hilby,sT. So, we have defined an injective map
Sect T— Hilby,sT, which is clearly natural on T, that is we have showed
that Sect, is a subfunctor of 7—[1'[5)(/5.

Now, we show that Sect; — ﬂ-ﬁfﬁx/g is representable by open embed-
dings. An element Z € Hilby 5T corresponds to a closed embedding 1i:
Z — Xt such that the composition Z— X1 — T is proper and flat. By Re-
mark 1.76.1, there is an open subscheme Uz of T representing the functor
ISO\Z(THT and by Proposition 1.15 it satisfies the following universal property:
For every locally Noetherian T-scheme T’, the base change i’: Z1/ — Xt/
of i by T"— T composed with 7ty : X1/ — Y7/ is an isomorphism (that is, i’
can be identified with a section of 7ty/) if and only if T'— T factors through
UZ‘—>T. L]

Theorem 3.17. Letp: X—Y be a morphism and Z a closed subscheme of X.
Let Q) denote the set of closed subschemes W of Y such that Zyy — X is an
isomorphism and denote by ¥ the closed subscheme ywwcoW of Y. Ifp is
N -projective, then the scheme L represents the functor Isorz,.

By Proposition 1.15, a closed subscheme Y’ of Y represents the functor
1505 if and only if a morphism T—Y factorises through Y/ <Y whenever
the closed embedding Zt— Xt is an isomorphism.

Proof of Theorem 3.17. For every W € Q), the isomorphism Zy — Xy is an
X-morphism, hence the closed embeddings Zyy — X and Xy, — X corres-
pond to the same closed subscheme of X. Therefore, the schemes Xy cqZw
and Xy Xy are the same subscheme of X and, by Theorem 3.13, the closed
embedding Z(s ) X(z,) is an isomorphism, in fact an X-isomorphism. So,
if a morphism T—Y factorises through X, the closed embedding Z1 — Xt
is an isomorphism.

Now, given a morphism T—Y such that the closed embedding Z1— Xy
is an isomorphism, by Lemma 1.47, the schematic image T of T— Y is a
closed subscheme of Y belonging to Q. Hence, the closed embedding T Y
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factorises (obvious uniquely) through £ — Y and then, by composition, so
does T—Y. O

Theorem 3.18. LetS be a locally Noetherian ground scheme. Letp:X—Y be
an S-morphism, with X quasiprojective over S, and let Z be a closed subscheme
of X. Ifp is projective and flat andY Noetherian and connected, then the Hilbert
polynomial of the fibres of p is constant, say equal to ©. If furthermoreY is
separated over S, then the functors [SOIZ, and bb%)/y are isomorphic. Moreover,
they are representable and the representing scheme is a closed subscheme Y'
of Y whose underlying set is

{y € Y such that Z,,— Xy is an isomorphism}.

Proof. Since p is projective (in particular, proper) it is pure and of finite
presentation (see Remark 3.16.2). Hence, by Theorem 3.15, the functor I.sorz,
is representable by a closed subscheme Y’ of Y. By [22, lll, Chapitre I,
Proposition 7.9.11, Corollaire 7.9.13, p.79 ] the Hilbert polynomial of the
fibres of p is constant. Therefore, there is a natural transformation from
Isog to bb%)/y. Instead of giving its inverse explicitly, we will relegate its
existence to powerful well-known constructions. Indeed, we will show that
the scheme Y’ is the fibre product of Y with suitable Hilbert schemes and
that such fibre product satisfies the universal property determining bb%y
(see Proposition 1.15). Notice that this is also a proof by its own that I.sog
is representable in this case.

Consider the Hilbert functor }[X/s of X— S and fix a morphism (T —
Y) € hy(T). By Lemma 1.31, the following diagram is Cartesian.

XXYT‘—>XX5T

J i J (3.1.1)

Y2 vy
Then, since Y — S is separated, X Xy T <— X xg T is a closed embedding.
Since p: X— Y is flat and proper, so is its pullback X xy T—T by T—Y,
which is equal to the composition of X Xy T X xs T with the projection
X x5 T—T. Hence, X xy T belongs to Hxs(T) and now it is straightfor-
ward to see that sending (T—Y) € hy(T) to X xy T € Hy/5(T) defines a
natural transformation n: hy%ﬂ-[x/s.

Consider the Hilbert functor # 7,5 of Z— k. We claim that the functor
Iso% is isomorphic to the fibre product hy X}[X/S .7‘[2/5, where hyﬁﬂ-[x/s

is the natural transformation 1 just defined, and 7‘[2/5 ‘—»ﬂx/g is the nat-
ural closed embedding. Then, it is representable because Hx /s and H 75 are
representable (see [18, Theorem 5.14, p.127]) and the representing scheme
is a closed subscheme of Y because j‘[z/s is a closed subfunctor of }[X/S
(see [18, Lemma 5.17 (ii), p.127]).

Let us check that Iso% is isomorphic to hy X gr Hz/s. Fix a morphism
X/S

(T—Y) € [50%(—]—). So, the base change Z xy T — X xy T of Z — X
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by T— Y is an isomorphism. Now, it is almost immediate to see that the
couple ((T—Y),Z xy T) is an element of hy(T) X }[Z/S(T) and
}[X/S(T)

such assignment defines a natural transformation T from hy X}[X/S}[Z/s

to Isorz,.

Fix a couple ((T — Y), A) belonging to hy(T) x Hzs(T), that

}[X/S(T)
is, X Xy T and A are isomorphic as X-schemes. Then, since A is a closed
subscheme of Z xg T, via the projection Z xg T— Z we get an X-morphism
from X xy T to Z. So, by Lemma 1.32, the closed embedding Z xy T —
X xy T is an isomorphism, (T—Y) € IsorZ,(T) and such assignment defines
a natural transformation o from ISO]EZ, to hy X gr Hyjs.
X/S

Clearly by construction, the natural transformations T and o are inverse
to each other.

Let Hx, Hz denote respectively the schemes representing the functors
}[X/S and }[Z/g. By weak Yoneda’s lemma, Lemma 1.7, there are morphisms
Y— Hy, Hz < Hx and Y’ — Hj corresponding to the Equation (3.1.1). So,
the following diagram is Cartesian.

Y —— Hz

]

Y —— Hx
Notice that the morphisms Y — Hy, Y’ — Hy factorise through the stratum
corresponding to the Hilbert polynomial @.

Let T — Y be a morphism such that Zt — T is flat and the Hilbert
polynomial of the fibres is @. Again Z is a closed subscheme of Z xg T and
Z1t — T is proper because Z— Y is so, hence Z1 € }[Z/ST- Then, by the
universal property of Hz, there is a unique morphism T— Hz such that Zt
is the pullback by it of the universal family of Hz. Finally, by the universal
property of the pullback, there is a unique morphism T— Y’ such that the
corresponding diagram commutes.

Now, for every point y of Y’, the closed embedding Z, — Xy is an iso-
morphism. Moreover, by Remark 1.73.1, the underlying set of Y’ is

{y € Y such that the Hilbert polynomial of Z is ®}.

Hence, if y ¢ Y’, then the Hilbert polynomial of Z,, is different from the one
of Xy and Z,— Xy is not an isomorphism. O

Let S be a ground scheme. As a first application, we will show how to
retrieve the universal section family of an S-morphism 71: X—Y restricted
to a closed subscheme Z of X from the universal section family of 7.

Theorem 3.19. Let S be a ground scheme. Let t: X— Y be an S-morphism
and i: Z — X a monomorphism. Assume that the universal section family

-1
(X, V) of m exists. Then, the functors Sect,, and 1501\1()36 (Z:) are isomorphic.

—
In particular, they are equivalently representable and, when they are represent-

able, they are represented by the same scheme.
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Proof. Let T be an S-scheme. Given a T-family of sections o: Yt — Z7 of
7|z, by Lemma 1.32, the pullback ¢ of Zt— Xt by it o 0 is an isomorphism.
Since it o 0 is a T-family of sections of 71, by the universal property of (X, ),
there is a unique morphism fs: T — X such that {1 = iy o 0. Now, it is
straightforward to check that the base change of ' (Zx) < Yz by f is
the isomorphism @. Hence,

IsoY " “¥(T) = ().

On the other hand, given a morphism T — X such that the base change
of U~ 1(Zx)— Yz by it is an isomorphism, the inverse of this isomorphism
gives a T-family of sections Y7— Zr. ]

3.1.3 The constfy closed subscheme

Finally, everything is ready to quickly present the constfy closed subscheme.

Definition 3.20. Let S be a ground scheme. Let p: X —Y and f: X —W
be S-morphisms. Let Y’ be a closed subscheme of Y. We call Y’ a f-constfy
closed subscheme of Y, if the morphism flx,, : Xys — W is constant along
the fibres of the projection Xy,— Y’ and it satisfies the following universal
property: A morphism T — Y factorises through Y’ < Y if and only if
(X1 —X)*(f) is constant along the fibres of the projection X1 —T.

If a f-constfy closed subscheme exists, by abstract nonsense it is uniquely
determined up to a unique isomorphism and therefore it is unique.

Remark 3.20.1. Consider the following Cartesian.

Z \"%

_c

fxyf

XXy X —— W xgW

Consider Z as a Y-scheme. For every morphism T — Y, the following dia-
gram is Cartesian (see Lemma 1.30).

Lt Z \i%

r r
fxsf
XT XTXT%XXYX%WXSW

A

Theorem 3.21. Let S be a ground scheme. Letp:X—Y and f: X — W be
S-morphisms. Consider the following Cartesian diagram.

Z W

s

X sy X 20 W W
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Set g: X xy X — Y. If W is separated over S and p is flat and proper, then
the f-constfy closed subscheme of Y exists and it is the scheme representing the
functor Isog,

Proof. Since W is separated, Z— X xy X is a closed embedding and, since p
is flat and proper, so is g: X xy X—Y. Hence, by Theorem 3.15, the functor
Isog is represented by a closed subscheme Y’ of Y.

By Remark 3.20.1, it is clear that Zy, — (Xys Xy, Xyr) is an isomorph-
ism, and then flx, is constant along the fibres of the projection Xy, —Y’.
Furthermore, by the universal property of Y’ and again by Remark 3.20.1,
it is clear that a morphism T— Y factorises through Y’ < Y if and only if
Z1— (X1 %71 X7) is an isomorphism, that is, if and only if (X7 — X)*(f) is
constant along the fibres of the projection X1 —T. O

Remark 3.21.1. Let S be a ground scheme. Let p: X — Y and f: X — W
be S-morphisms. Let Z— X be a closed subscheme of X. In this situation,
we may compose the constructions of the f-constfy closed subscheme of
Y and the closed subscheme of Y representing the functor Iso%. Assuming
existence, it is straightforward to see that both possible ways of composing
such constructions give the same closed subscheme of Y.
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3.2 SPLIT SECTIONS IN FAMILY

In this section we study a variant of the universal section family. Consider
the following situation.

Situation 3.22. Let S be a Noetherian ground scheme. Let X,Y and T be
S-schemes with Y — S an fpqc morphism. Let m: X— Y and «: X—T be
S-morphisms. Denote by 7t": X— Y7 the product of 7t and «.!

fpqc
- S

Our goal is parametrise sections of 71: X — Y, but just those sections
whose image is contained in some fibre of oc: X— T. We consider oc: X—T
as a morphism splitting the ambient space X by means of its fibres. So,
the universal split section family is the scheme solving the parameter space
problem of sections of 7t whose image is contained in some fibre of «.

Definition 3.23. Consider Situation 3.22. Let T’ be an S-scheme and q:
X1/ — X the projection. We say that a T’-family of sections o over 7t is
T-split, if the morphism Y7, -5 X7/ -3 X-% T is constant along the fibres of
the projection p: Y1/ — T'. In this case, we also call o a T'-family of T-split
sections over Tt.

XT/ g YT/ T/
P
X u Y S

Let Q) be an S-scheme and 1 a )-family of T-split sections over 7. We call
the couple (2),1V) a universal T-split section family of Tt (or T-Ussf for short)
if it satisfies the following universal property: For every S-scheme T’ and
every T’-family of T-split sections o over 71, there is a unique S-morphism h:
T’ —9) such that hx o 0 =1 o hy, or equivalently, such that the following
diagram is Cartesian.

YT/ < l XT/ T YT/
r r
hyl lhx lhy
Yy s Xy — Yy

1 The morphism 7t/ plays no role until Proposition 3.27.
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Remark 3.23.1. Let T” be an S-scheme and o’ a T”'-family of T-split sec-
tions over 7. As it happens for families of sections over 7, the collection of
families of T-split sections over 7t form a category S} where an arrow from
o to 0/, denoted by (T’,0) — (T”,0’), is a morphism h: T” — T’ such
that hx o 0’ = hy o 0, or equivalently, such that ¢’ is the base change of
o by h. This is the same notion of an arrow in the category of families of
sections over Tt (see Remark 1.60.1 and the proof of Proposition 1.61), that
is, the category S} is a full subcategory of Si.

If a T-Ussf exists, by abstract nonsense it is uniquely determined up to a
unique isomorphism.

Remark 3.23.2. Since Y— S is an fpgc morphism, so is Y7/ — T’ and, by
Proposition 1.51, a T'-family of sections o over 7t is T-split if and only if
there is a (unique) S-morphism f: T’ — T such that xo qo o = fop, orin
other words, if and only if T’ is a T-scheme and p is a T-morphism, where
Y7/ is a T-scheme via xo q o 0.

Let q":Xt» —T" and p’: Yr» — T” be the projections and f": T" —T
the unique morphism such that x o q’ o ¢/ = f’ o p’. Then, if a morphism
h:T” — T’ determines an arrow (T’,0) — (T, 0’) of families of T-split
sections, then, by the uniqueness of f, the following diagram commutes.

Definition 3.24. In Situation 3.22, we define Sectl:Schg — Set, the
contravariant functor corresponding to the parameter space problem of T-
split sections over 71, as follows. For every S-scheme T’, set

Sect)T' = {0 € Sect(T') such that o is T-split} C Schy, (Y1, X71),

and for every S-morphism f: T — T/, the map Sect f: Sect [ T’ — Sect T”
sends a T’-family of T-split sections o: Y1 — X7/ over 7 to its base change
ot : Yy — Xtn by f, which clearly is a T”-family of T-split sections over 7t.

Lemma 3.25. Consider Situation 3.22. Assume that the Usf (X,\’) of t exists
(so, X is an S-scheme and \' is a section of mx: Xy — Yy satisfying the
corresponding universal property). Denote by q:Xx — X the projection. If the
(cco q op’)-constfy closed subscheme %) of X also exists, then the T-Ussf of

7 is the couple (), ) where p = V'ly,.

Proof. By construction the couple (2),1) is a 2)-family of T-split sections
over 7t. So, we just need to check that it satisfies the required universal
property.

Let T’ be an S-scheme and o a T’-family of T-split sections over 7t. Since
it is a T’-family of sections over 71, by the universal property of (X,1’),
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there is a unique morphism h’/: T’ — X such that the following diagram is
Cartesian.

YT/‘ g XT/ T,
r r
Jh'y lhx lh’
Ve P Xy x
l(xoq
T

By assumption o is T-split, that is x 0o q" 0 0: Y1/ — T (where q": X7/ — X
is the projection) is constant along the fibres of the projection Y1/, but q' =
q o h{ so that the restriction (x o qo ll)/)|YT/ is constant along the fibres of
Y1:— T’. Hence, by the universal property of 9), there is a unique morphism
h:T/—9) whose composition with the closed embedding ) — X ish’. 0

Theorem 3.26. Consider Situation 3.22 with S locally Noetherian. If T is
separated, X is at most a countable disjoint union of quasiprojective schemes
over S and Y proper and flat over S, then the T-Ussf of Tt exists and its under-
lying scheme is locally Noetherian and at most a countable disjoint union of
quasiprojective schemes.

Proof. By Proposition 1.63, the Usf (X,1{’) of 7 exists and X is locally No-
etherian and at most a countable disjoint union of quasiprojective schemes.
Denote by q: Xx — X the projection. Now, since Y — S is of finite present-
ation, flat and proper (in particular, it is also pure see Remark 3.16.2), so is
Yx — X. Hence, by Theorem 3.21, the (&0 g 0 ’)-constfy closed subscheme
of X exists and the claim follows from Lemma 3.25. ]

Proposition 3.27. Consider Situation 3.22. Let f: T'—T be an S-morphism.
Let 0: Y1/ — X1/ be a T'-family of sections over t. Denote by p: Yt — T’ and
q: X1/ — X the projections. Then, ¢ is T-split with x o qo o = fop if and
only if fy = m’ o (q o 0), that is if and only if the following diagram commutes.

<\T
| l

\ .
: e ,

YT/

I
I
I
||
T

P

Proof. Since morphisms to Yt are determined by their composition with the
projections YT — T and YT —Y, from o being T-split with xoqoo=fop
follows straightforwardly that fy =7’ o (q o 0).

If fy = 7’ o (q o o), then composing with the projection Yr—Y follows
that fop = & o q o o and, by Remark 3.23.2, o is T-split. O
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Remark 3.27.1. Notice that o is equal to the product of (q o o) and p and
7t is the composition of 71" with the projection YT — Y. Hence, the T’-family
of sections o over 7t is completely determined by (q o o) and t’. Moreover,
by Proposition 3.27, the morphism f allows us to check at once whether o
is T-split or not. So, for convenience in the forthcoming sections, whenever
fy = m’ o (q o 0), we will refer also to a couple ((q o 0),f) as a T'-family of
T-split sections over 7t’. Moreover, when the T-Ussf (2), 1) of 7t exists, there
is the corresponding morphism h:2)— T (and the projection q’: Xy — X),
in this case we also call the triplet (), q’ o, h) the T-Ussf of 7’.
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Consider the following situation.

Situation 4.1. Let S be a locally Noetherian ground scheme. Let X, Y be
locally Noetherian S-schemes with Y — S an fpqc morphism. Consider
the scheme Xy = X X5 Y and denote by t: Xy — Y and «: Xy — X the
projections. Let Z be a closed subscheme of Xy.

7 clemb, XY o4 X

fpqc
Y Pq S

The main result of this chapter is Theorem 4.3, which asserts the exis-
tence of the blow up split section family of the projection Xy —Y along Z
(see Definition 4.2) under suitable assumptions. The blow up split section
family is a generalisation of blow ups, as such Theorem 4.8 is the correspond-
ing generalisation of the well-known fact that a blow up is an isomorphism
away from its centre.

Definition 4.2. Consider Situation 4.1. Let B be an S-scheme and b: 8 —
X an S-morphism.

(by)! (zr) ‘ By - B
|
ya Xy X

We call the couple (B, b) a blow up split section family of Tt along Z (or blow
up §family for short) if (by)™'(Z) — By is an effective Cartier divisor and it
satisfies the following universal property: For every S-morphism g: T—X
for which (gy)™'(Z) — Ty is an effective Cartier divisor, there is a unique
morphism h: T— B such that b o h = g. Analogously to classic blow ups,
we call Z the centre of the blow up §family and b='(Xy) the exceptional
divisor in By.

For examples see Section 4.1, in particular Example 4.12, which is com-
puted by hand.

If a blow up §family exists, by abstract nonsense it is uniquely determined
up to a unique isomorphism.

Theorem 4.3. Consider Situation 4.1. If moreover Xy is at most a countable
disjoint union of quasiprojective schemes over S, X — S is separated andY — S
is proper and with geometrically integral fibres, then the blow up §family of 7
along Z exists.
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Proof. Consider the blow up bl : bl(Z, Xy) — Xy of Xy along Z. The scheme
bl(Z, Xy) is again at most a countable disjoint union of quasiprojective
schemes over S. Hence, by Theorem 3.26, the X-Ussf (), 1, v) of bl(Z, Xy) —
Y exists (so, : Yo —bl(Z, Xy), v:Q) — X are morphisms such that blo =
vy and the scheme Q) is locally Noetherian and at most a countable disjoint
union of quasiprojective schemes).

Finally, since the preimage of Z by vy is the preimage by \{ of the ex-
ceptional divisor in bl(Z, Xy), it is a locally principal subscheme of Yy and,
by Theorem 2.8, there is a closed subscheme ‘B of ) such that the closed
embedding By — Yy is the blow up of Yy along (vy)~'(Z). Denote by b:
B — X the restriction of v to 5.

Now, it is straightforward to check that the couple (8, b) is the blow up
§family of 7t along Z. It follows by applying iteratively the universal proper-
ties of the objects used to construct B and, at the last step, Theorem 2.8. [

The blow up §family can be defined, and a suitable version of Theorem 4.3
proved, when in Situation 4.1 the square is not necessarily Cartesian. Nev-
ertheless, we restrict to this case for the sake of simplicity and because this
is the unique case we will use. Furthermore, Theorem 4.8 below uses that
such square is Cartesian.

Consider Situation 4.1 assuming X connected and Y integral and projective
over S. In this situation, we may state Theorem 4.8 below, the generalisation
to blow up §families of the well-known fact that a blow up is an isomorphism
away from its centre. We need to introduce some notation and, for the con-
venience of the reader, we also introduce Lemma 4.4 below, which extracts
the parts of [18, Lemma 9.3.4, p.258] and [60, Tag 062Y] we are interested in.

Lemma 4.4. Let X be a ground scheme. Let X’ be a flat X-scheme locally of
finite presentation (e.g., if X is locally Noetherian). Let Z be a closed subscheme
of X and z a point of Z with image x in X.

(a) If Z— X is locally of finite presentation and flat, and the fibre Z,— X,
is an effective Cartier divisor, then Z is an effective Cartier divisor of X'
in an open neighbourhood of z. In particular, if all the fibres Z, — X,
are effective Cartier divisors, then Z is an effective Cartier divisor of X’.

(b) If Z is a locally principal subscheme of X' and all the fibres Z, — X,
are effective Cartier divisors, then Z is an effective Cartier divisor of X'

and flat over X.

Notation 4.5. Consider Situation 4.1 assuming X connected and Y projec-
tive over S (so Xy— Xis also projective). The flattening stratification of the
morphism Z— X is a finite stratification

X =UoeoXo

by locally closed subschemes such that for every @, the pullback of Z—X
by X¢ — X is flat and the Hilbert polynomial of the fibres is constant equal
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to @, and moreover, a morphism T — X factorises through UpXp — X if
and only if the projection Z1 — T is flat (see Section 1.6).

Since Xy — Xis flat and projective and X is connected, the Hilbert poly-
nomial of its fibres is constant, say equal to @y € Q[t]. By Theorem 3.15
and Remark 3.16.2, the functor ISO)Z(Y*,X is representable by a closed sub-
scheme Xy of X. Observe that, by Remark 3.14.2, the underlying sets of
X, and Xg are equal. In fact, under slightly stronger assumptions they are
isomorphic, see Theorem 3.18.

By Lemma 4.4 (a), for every @, the points x € X¢ for which Z, — (Xy)x =
Yy is an effective Cartier divisor form a (possibly empty) open subscheme of
Xo; we denote it by Ug.

We present a simple example showing that, with no extra assumptions,
even if all the fibres Z, — (Xy)x are effective Cartier divisors, Z is not
necessarily an effective Cartier divisor of Xy. Consider X an affine line, Aﬂl
for some base field k. Consider Y the projective line ]P]lK over k. For Z any
closed point z of Xy, every fibre Z, — (Xy)y is either @‘—»ﬂ’l(z) or {Z}‘—»]P]L,
which both are effective Cartier divisors.

Denote by X the image of z by Z— X and set X; = X\ {x¢} and X; =
{x0}. Regarding Notation 4.5, observe that X = X; LI X; is the flattening
stratification of Z— X because, for i = 1,2, the scheme Zy, is flat over Xj,
and moreover it is an effective Cartier divisor in (Xy)x,.

Remark 4.5.1. By [26, Théoréme 2.1 (i), p.231], if furthermore Y is smooth
over S, the open subscheme Ug of Xg is also a closed subset. Hence, Ug is
either the empty scheme or a union of connected component of X¢.

Definition 4.6. Consider Situation 4.1 assuming X connected and Y projec-
tive over S. We call a point x of X type I if x belongs to some Ug and type
Il otherwise. In particular, if Y is smooth over S, by Remark 4.5.1, each con-
nected component of each stratum Xg is filled up with either type | or type
Il points. In this case, we also call respectively each connected component
of each stratum type [ or type II.

Definition 4.7. Consider Situation 4.1 assuming X connected and Y projec-
tive over S. Consider also Notation 4.5. We call the scheme X, the core of
the blow up §family of 7t along Z.

Theorem 4.8. Consider Situation 4.1 assuming X connected andY integral
and projective over S. Consider also Notation 4.5. Assume that the blow up
§family (B,b) of 7t along Z exists. Then, the open subscheme B\ b~ (X,) of
B is isomorphic to LpUg.

Proof. Denote by E the exceptional divisor in By, that is E = (bx)~"(Z).
The closed subscheme b~ (Xy) of B represents the functor ISOE%YH%, hence
B\ b~ '(X) is the set of points b € B for which Ey, < Y is not an
isomorphism. Then, since E — By is an effective Cartier divisor and Y
is integral, B \ b~ (Xp) is the open subset corresponding to the set of
points b € B for which Ey, — Yy is an effective Cartier divisor. Then,

69



70

THE BLOW UP SPLIT SECTION FAMILY

by Lemma 4.4 (b), EN(B\ b (Xo)) — B \ b~ (Xo) is flat and then, by the
universal property of the flattening stratification, there is a unique morphism
B\ b (Xg) — LpXe (whose image clearly is contained in LigpUg) such
that the corresponding diagram commutes. Hence, it factorises through
UpUgp — UpXe via a unique morphism &: (8 \ b 1(Xo)) — UpUgp.

Now, by construction and by Lemma 4.4 (2), Z,us — XugUg IS an
effective Cartier divisor, hence, by the universal property of (B, b), there is
a unique morphism LipUgp — B (whose image is contained in B\ b~ (Xo)
because Ug, is empty) such that the corresponding diagram commutes. So
finally, UgpUgp — ‘B factorises through a unique morphism ¢: Up Up —
(B\b(Xo))-

Now, it is straightforward to check that & and € are mutually inverse. [

Corollary 4.8.1. Consider Situation 4.1 assuming X connected and Y integral
and projective over S. If there is no point x of X such that the fibre Z,, — Yy
is an isomorphism, then the blow up §family of 7t along Z exists and it is the
natural morphism LUy — X.

Proof. In this case the core of the blow up §family is empty. O

Corollary 4.8.2. Forevery irreducible component B of B, ifb(B) Z Xo, then
B is birational to an irreducible component of the closure of a stratum Xg.

More explicitly, blg: B— X¢ decomposes as B <> B/ L/% where i is an open
embedding and b’ is a blow up morphism whose centre fails to be Cartier only
on the core Xy. In particular, if the closure of the stratum X, for some Hilbert
polynomial @, does not intersect Xo, then bl is an open embedding.

Now, we present an example showing that in Remark 4.5.1 the assumption
X smooth over S is required. It is based in Hartshorne’s example of a flat
family of rational normal curves with a singular fibre [32, Example 9.8.4,
p.259]. We focus on the relevant affine chart. Set A = k[a], R = k[x,y, z]
and B = (A ®k R)/I where

I= (az(x+1)—z2, ax(x+1) —yz, xz— ay, yz—xz(x+1)).

Consider X = Spec(B), S = Spec(A) and X — S given by the natural
homomorphism A— B. Since A is a pid and A— B has no torsion, B is a
flat A-module and X— S is flat. It is not hard to check that X is singular at
the origin (a,x,y,z), hence X— S is not smooth.

Observe that when a # 0,

%(Z- (ay —xz) +x- (az(x+1)—z2)) =ax(x+1)—yz

%((ay +xz) - (ay—xz)—xz-(az(x+1)—z2)) =y?—x*(x+1).

Hence, when a # 0, the fibre X, of the family X — S corresponds to the
ring R/1,, where

I, = <ay—xz, az(x—H)—zz),
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which is a rational normal curve. Instead, the fibre Xy at a = 0 corresponds
to the ring R/Ip where

Iy = (zz,yz,xz,yz —x*(x+ 1)>,

which is nodal curve with a non-reduced structure at the origin. Now, con-
sider C = (R®g A)/]J where

] = (x, y, a—z).

Observe that I C J. Indeed, except az(x +1)— 22, all the other generator
of I belong to the ideal (x,y) and

a? (x)+(a+z) (a—z)=a*(x+1) -2~

Consider Z = Spec(C), which corresponds to a line C = k[a,z]/(a — z),
and consider Z— X given by the natural homomorphism B — C. So, the
composition Z— S is flat and smooth. Now, when a # 0, the fibre Z, of
Z— S is a point corresponding to the ring R/]J, where formally J, = ] but
now a is an element of k, that is

R/Ja = klzl/(a—2z).

Observe that when a # 0,

%(—(a—i—z) (a—2)+(@(x+1) =) =x

e - bz—ay) =y
hence Jo/1q = (z— a) C R/I, where z— a is a non-zerodivisor of R/1,
and then Z,— X, is an effective Cartier divisor. Instead, when a = 0, the
ideal Jo is (x,y,z), and the ideal Jo/Ip = (x,y,z) C R/Ij is generated by
zerodivisors and it is not even principal. Hence, Zy— X is not an effective
Cartier divisor.

Observe that the ring of functions of Z; is reduced, since Zy is a flat limit
of a family of single simple points, but it is also possible to get a non reduced
scheme as a flat limit of effective Cartier divisor. Indeed, consider the ideal
(x,y,a%? —z%) C R®y A, which also contains 1. It corresponds to a family
in X flat and non-smooth over S, for which the fibre at a # 0 is a union of
two simple points (which form an effective Cartier divisor of X,), but the
fibre at a = 0 is a double point (which is not an effective Cartier divisor of

Xo).

4.1 EXAMPLES

In this section, we recover two classic constructions, the classic blow up
(see Proposition 4.10) and an example of a small resolution, both as particular
cases of the blow up §family.
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We also present an example showing that the blow up §family may also be-
have quite different from such classic constructions, namely, the dimension
of the ambient scheme may decrease.

Example 4.9 (The classic blow up). The following proposition shows the
classic blow up as a particular case of the blow up §family.

Proposition 4.10. Consider Situation 4.1. Assume that there is a closed sub-
scheme W of X such that Z = Wy. Let b:8 — X be the blow up of X along
W. Then, the couple (*B,b) is the blow up §family of m: Xy —Y along Wy. In
particular, when 3 = 1s, the blow up §family agrees with the classic blow up.

Proof. It follows straightforwardly from the fact that Y — S is flat and blow
ups commute with flat base changes (see [60, Tag 0805]). O

Example 4.11 (The dimension may decrease). We show an example of the
blow up §family where an irreducible ambient space breaks down into two
irreducible components and the dimension of one of them decreases by one.

Consider 8§ = P}, x P2, , and Z C § the graph of [u:v] € P! — [u:

XY,z
v:0] € P2, that is Z = V. (z,vx —uy).
By Corollary 4.8.1, the blow up §family of the projection §—TP! along Z
is the stratification of IP? by the standard affine chart P\ V, (z) and V, (z).

Example 4.12 (Small resolution). We present an example where the blow
up §family along a natural centre becomes a small resolution. It indicates the
possibility that the blow up §family would offer a procedure to systematise
small resolutions.

Let k be a field and consider the variety Aﬁ parametrising matrices

“-(22)

and the closed subvariety D C A* where the rank of M is not maximal,
or equivalently where the determinant of M is zero. Consider the variety
8§ = IPL\, x D and its incidence subvariety

Z={(]\,M) € $: MAt = 0}.

It is a classic result that the projection § — D restricted to Z is a small
resolution of D. It turns out that the blow up §family of the projection
8— P! along Z is isomorphic to Z and then again an small resolution of D.

Observe that, by Theorem 4.8, the variety D \ {0} is an open subvariety of
such a blow up §family. But we do not retrieve the whole ambient variety
from this result. Instead, we replicate the construction of the blow up §family
in Theorem 4.3.


http://stacks.math.columbia.edu/tag/0805

4.1 EXAMPLES

First, let us construct the following quasiprojective varieties V;,. Let S
denote the standard graded polynomial ring k[u,v] and S,, its degree n
part. So, we define V,, C P(S,, X Sy, X Sy,) as the quasiprojective variety
corresponding to triplets of forms with no common roots.

The blow up Sof§ along Z may be given globally by the equations xa — zb
andya —wb in 8§ x ]Pll,b.

Now, we describe the closed subvariety of the universal section family of
§ — P! corresponding to “constfy” by § —D. Namely, it is the disjoint
union X for all integers n of the closed subvarieties X, of D x V;, determined
by the equations on the coefficients given by the identities of polynomials,

xA—zB =0
yA—wB =0

where [A : B] € V,, (see example after Definition 3.14). The resulting mor-
phism b’: X— D is for each component X, the composition of the closed
embedding X;, — D X V;, and the projection D x V, —D.

It is straightforward to see that given ((x,y,z, w), [A : B]) € X, either
the forms A, B are constants or (x,y,z,w) = 0. That is, foralln > 1,
Xn = {0} x Vy, and

X =Xo [T ([Tt0}x Va)

n>1

where Xo = Z. So, the pullback (1p1 x b’)71(Z) is an effective Cartier
divisor in P! x X, and the whole IP' x X, for alln > 1. Hence the blow up
of P! x X along the locally principal (1p1 x b’)71(Z) is P! x X, and then
the blow up §family of $—IP' along Z is b’[x,: Xo—D.
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CLUSTERS IN FAMILY

Let S be a ground scheme and 7t an S-morphism. In this chapter, we intro-
duce the main notions of this memoir, length-r clusters over 7t (see Defini-
tion 5.7), families of clusters (see Definitions 5.8 and 5.9) and their parameter
spaces CI" (see Definition 5.16). Our construction of such parameter spaces
requires that certain blow ups commute with arbitrary base changes. To this
end, we need to impose some regularity conditions on 7, which leads us to
the notion of steady S-family (see Definition 5.5).*

We define the schemes C1" via universal properties, so our first result, The-
orem 5.19, is its existence under finiteness assumptions on 7t. In Section 5.4
we show that the blow up §family is the iterative step relating the scheme
CI"*! with the scheme CI", Theorem 5.37. More precisely, the blow up §fam-
ily B of CITCIT,] CI" along a suitable closed subscheme is a closed subscheme
of CI'™! (see Corollary 5.35.1), which parametrises pairs of clusters of 7t and
their flat limits. There also is a closed subscheme (CI'"')¢ of CI'*! para-
metrising those clusters of 7t whose 1 4 1-th section is infinitely near to the
r-th (see Theorem 5.30). And Theorem 5.37 shows that (CI"™"),eq is a closed
subscheme of B + (CI'™)g.

5.1 CLUSTERS

We start fixing the notion of a family, the class of morphisms for which we
will parametrise its families of clusters of sections.

Definition 5.1. Let S be a ground scheme and 7t: X—Y a morphism. We
call 7t an S-family if it is an S-morphism, fpqc and separated, the S-schemes
XandY are of finite type, Y is irreducible and the generic fibre of 7t is integral.
The scheme Y is called the base and the scheme X the ambient space.

Example 5.2. When S is a base field k and X, Y are affine, then 7t corres-
ponds to a faithfully flat homomorphism of k-algebras of finite type ¢:
A — B, where the nilradical nj of A is a prime ideal and B/@(n) is integral.

This notion, for us, is still too wild. We need to impose some regularity
conditions on the families that we consider (see Sections 2.2 and 5.2), which
leads us to the notion of a steady family, Definition 5.5 below.

Definition 5.3. Let S be a ground scheme. Let 7t: X — Y be an S-family.
We call 7t splitting weakly linear (or that 7t splits weakly linear), if all its
sections (which are closed embeddings, see Proposition 1.49) are weakly
linear (see Definition 2.13).

This is an almost ad-hoc definition imposing that “when we require it”, blow ups commute
with arbitrary base changes.
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Lemma 5.4. Let S be a ground scheme. Let t: X — Y be a splitting weakly
linear S-family. Let o be a section of . Then, the morphism Xz — Y is an
S-family.

Proof. The morphism Xy — Y is separated, surjective and, by Remark 2.14.1,
flat. Finally, the generic fibre 11 of X¢ — Y is integral because, by Proposi-
tion 2.14, 1 is a blow up of the (integral) generic fibre of 7. O]

Definition 5.5. Let S be a ground scheme. Let 7t: X — Y be an S-family.
We call 7t long splitting weakly linear if, for every sequence of blow ups

X X1 e X

whose centre C; C Xj is the image of a section X; — Y, the S-families
Xi—Y split weakly linear. We call 7t steady if it is universally long splitting
weakly linear, that is, for every morphism T— S, the T-family 7tr: X1 — Yt
is long splitting weakly linear.

Example 5.6. If a closed subscheme Z of a locally Noetherian scheme X is
local complete intersection, that is the quasi-coherent Ox-ideal J correspond-
ing to Z can be locally generated by a regular sequence, then the symmetric
and the Rees algebra of J are isomorphic, (the original result is due to Hun-
eke, see [34, Theorem 3.1, p.269], or more recently [14, Exercise 17.14 (a),
p-445]). In a Noetherian ring an ideal generated by a regular sequence can
be generated by a d-sequence (see [34, Examples of d-sequences (1), p.1]
and [14, Exercise 17.6, p.442]). So, examples of steady S-families m: X—Y
are:

« Tris smooth: Smooth is stable by base change and a section of a smooth
morphism is local complete intersection,

+ the schemes X and Y are smooth over S: A smooth subscheme of a
smooth scheme is local complete intersection and smooth is stable by
base change.

Definition 5.7. Let t: X—Y be a separated morphism. Given a sequence
of blow ups

X1 X, .. X5 Xy =X

whose i-th centre C; C X is the image of a section t; of X; —Y, we call the
sequence (t1,...,t;) an ordered cluster over Tt (or for short a cluster over 7).
We call the integer 1 the length of the cluster.

Let S be a ground scheme and 7t: X—Y a separated S-morphism. Notice
that, since a section of 7tis an S-morphism for free, the notion of clusters over
7t is independent from considering 7t as a morphism or as an S-morphism.

Usually, clusters over 7t are interpreted as a sequence of arbitrarily near
Y-points of the Y-scheme X. From this point of view, families of clusters
over 7t are parametrised by Y-schemes T and the clusters in the family are
parametrised by the Y-points of T. That leads to Definition 5.8 below.



5.1 CLUSTERS

Our new, and more general, point of view consists in interpreting a cluster
over Tt as a sequence of arbitrarily near sections of the S-morphism 7t. Hence
now, families of clusters over 7t are parametrised by S-schemes T and the
clusters in the family are parametrised by the S-points of T. This leads to
Definition 5.9 below.

Definition 5.8. Let X—Y be a separated morphism. Let T be a Y-scheme.
A T-family of clusters of points over 7t (or of point-clusters for short) is an
ordered cluster over the projection X —T.

Definition 5.9. Let S be a ground scheme. Let 7t: X — Y be a separated
S-morphism. Let T— S be a morphism. A T-family of clusters of sections
over Tt (or of section-clusters for short) is an ordered cluster over the base
change m7: X7 — Y7t of mby T—S.

Although not immediately obvious, there is a vast difference between
families of point-clusters and of section-clusters.

For example, consider clusters of length one. The scheme parametrising
families of point-clusters over a Y-scheme X — Y always exists, indeed it
is simply the scheme X itself. In contrast, the scheme parametrising fam-
ilies of section-clusters over an S-morphism 7t: X — Y is, when it exists,
the universal section family of 7t, which is typically infinite dimensional
(see Section 1.5)

As another example, consider the absolute case when S is the spectrum
of a field k. On one side, we consider clusters over a k-scheme X — k.
So, every ordered pair of distinct closed points (p, q) of X can be identified
with a cluster over X, simply consider the sequence (p, q’), where q’ is the
preimage of q by the blow up of X along p.

On the other hand, we consider clusters over a k-morphism t: X—Y. So
now, given an ordered pair of sections (0, T) of 71, we may consider the strict
transform T of T by the blow up X of X along o, but T is not necessarily a
section of X;— Y. In fact, it is not hard to see that T determines a section of
Xs— Y if and only if o xx T (the intersection of o and T in X) is an effective
Cartier divisor of 0. This phenomenon motivates the following definition.

Definition 5.10. Let t: X— Y by a morphism. We say that a pair of sections
0,0’ of 7t is admissible (or o is admissible with respect to 0”) if 0 xy ¢ is
an effective Cartier divisor of o, or equivalently, of ¢’

When the scheme Y is smooth integral and of dimension one, there are no
restrictions on the admissible pairs of sections. We will see examples where
the existence of non-admissible pairs of sections has drastic consequences.
Namely, the dimension of the parametrising scheme may decrease as we
enlarge the length of the clusters to parametrise, see Example 5.40. As an
immediate consequence, given integers s < 1, in general we will not be able
to recover the scheme parametrising section-clusters of length s from that
of length 1.

We finish defining some elementary but handy manipulations of clusters.
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Definition 5.11. Let S be a ground scheme. Let t: X—Y be an S-scheme.
Let t = (t1,...,t;) be a cluster over 7t and

Xri1 Xy —2 > X, X5 X; =X

its corresponding sequence of blow ups. The switch down of t, denoted by
tl, is the length-(r — 1) cluster (t1,...,t,—2,bot;) over 7.
Given a section t,11:Y — X;41 of Xi11 — Y, the extension of t by t.,1,
denoted by t U 1, is the length-(r + 1) cluster (ty,...,t;, t,11) over 7.
Given an integer 1 < s < 1, the truncation of t at s, denoted by t[s, is the
length-s cluster (t1,...,ts) over 7.

Notice that, given another cluster t’" = (t{,...,t;) over 7 with sequence
of blow ups

/ / / !
1 X, ... X5 X;=X
if, for some s < T, the truncations t|s and t’|s are equal, then X; = X{ for all
i=1,...,s+ 1. That allows the following definition.

Definition 5.12. Let S be a ground scheme. Let 7t: X—Y be an S-scheme.
Lett = (t1,...,t), t" = (t],...,t]) be clusters over 7t with t|,_; = t'|,_1.
We say that the pair t,t’ is admissible (or t admissible with respect to t') if
the pair of sections t,, t] is admissible.

5.2 PARAMETRISING FAMILIES OF CLUSTERS

Let t: X — Y be a separated morphism. Kleiman [38, Section 4.1, p.36]
constructed inductively a sequence of (separated) maps fy: X; 1 — X; for
r > 0 as follows.! Define fy: X; — Xg to be 1: X — Y. Now, assume f,_;
defined. Consider the Cartesian product of X; with itself over X;_; and
consider its diagonal subscheme A, which is a closed subscheme because
fr_1 is separated. Define X;;1 to be the corresponding residual scheme
(see introduction to Chapter 2) and define f; to be the composition of the
structure map p and the second projection p;.

Xe1=R(A, X; xx,_, X¢)

|

Xy 2 Xy xx,_ Xy —— A

-
fr—1 l lpz

er1 Xr

r—1

In this section, we generalise Kleiman’s construction of iterated blow ups
to parametrise families of section-clusters. We define the functor for the
parameter space of families of section-clusters, C/, and we show that it is

1 We reproduce the construction word for word as it is done in [38].
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a subfunctor of a suitable Hilbert functor representable by locally closed
embeddings, reducing its representability to that of such a Hilbert functor.

In general, families of section-clusters do not necessarily form a functor,
nor even a category. Notice that this is already the case for families of point-
clusters. In order to define the functor Cl or a morphism between families of
section-clusters, we need to iteratively construct a sequence of morphisms
(Proposition 5.14 synthesises both iterative steps). The obstruction we face is
that blow ups do not commute with arbitrary base changes (see Section 2.2).
Our procedure to overcome this difficulty is not original, indeed we will im-
pose regularity conditions on the involved S-families (namely, we work over
steady S-families, see Definition 5.5) as for example, Kleiman and Piene [41],
who restrict to smooth morphisms or, more similar to us, Kleiman [38] who
imposes conditions implying that blow ups are considered just along loc-
ally complete intersection closed subschemes. Nevertheless, our approach
is slightly different. Steady S-families can be seen as an ad-hoc definition,
imposing the weakest assumptions required to develop the whole theory
(define the functor C/ and the category of families of section-clusters) from
our approach. But, to our knowledge, the only examples of steady S-families
are the ones given in the works of Kleiman and Piene, or very similar.

For convenience in the construction of a morphism between families
of section-clusters and the functor for the parameter space of families of
section-clusters, Cl, we introduce the following two classes of morphisms.

Definition 5.13. Let S be a ground scheme. Let 7t: X—Y be a separated S-
morphism. Let f: T’ —T be an S-morphism. Let (t1,...,t;) and (t{,...,t])
be respectively T and T’ families of cluster of sections over 7t. Given an
integer 1 < s < 1, we call a morphism g: X! — X an s-lift by sections of f
if the following diagram commutes.

va Jg (5.2.1)

Yy ot X
Given an integer 1 < s < 1+ 1, we call a morphism g: X! — X an s-lift
by projections of f (which is obviously unique, when it exists) if the following
diagram is Cartesian.

X! —— Yy
r
QJ ny (5.2.2)

Xs — Y7

Remark 5.13.1. If a morphism ¢: X! — X is the s-lift by projections
of f, then it is an s-lift by sections of f if and only if Diagram (5.2.1) is
Cartesian, that is t is the base change of ts by f or, with another notation,
t{ = Sectx,—>y, f(0s), where Xs— Y7 is considered as a T-morphism (see
Lemma 1.30).
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Remark 5.13.2. The 1-lift by projections of f: T’ — T always exists, it is fx.

XT/ = X]/ _—> YT/

o7 e

X1 =Xj YT

Proposition 5.14. Let S be a ground scheme andr > s > 1 integers. Let T:
X—Y be a steady S-family. Let f: T'—T be an S-morphism. Let (t,...,t,)
and (t{,...,t]) be respectively T and T’ families of section-clusters over 7. If
the s-lift by sections and projections g: X, — X of f exists, then the (s + 1)-lift

of T by projections also exists. We will denote it by 0¢(g): X!

s+1 — Xst1.

Proof. By Remark 5.13.1 and Proposition 2.14 the scheme X[ ; is X1 X7 T’
and then 0¢(g) is just the projection. O

Definition 5.15. Let S be a ground scheme. Let t: X — Y be a steady S-
family. Let T and T’ be S-schemes. Lett = (t1,...,t;) and t’ = (t{,...,t])
be respectively T and T’ families of cluster of sections over 7t. A morphism
of families of section-cluster (or a cs-morphism for short), denoted by f:
(T/,t') — (T,t), is an S-morphism f: T’ — T such that, for every i =
1,...,7, the morphism fy: X-I’HXi, defined recursively as follows, is an i-lift
by sections of f.

The initial morphism fy is fx: X1/ — X7, which, by Remark 5.13.2, is the
1-lift by projections of f. The assumption that f; is the 1-lift by sections
gives, by Proposition 5.14, the existence of the 2-lift by projections 0¢(f7):
X3 — Xz of f. Set f, = 0¢(f1). Again, the assumption that f; is also the
2-lift by sections allows to iterate the process.

Clearly, cs-morphisms are stable by composition and identities are cs-
morphisms. So, when 7t is steady, families of section-clusters over 7t form a
category Cl,; where arrows are cs-morphisms.

Remark 5.15.1 below is the key point for the iterative construction of the
schemes parametrising families of section-clusters. It shows that families
of split sections are the step relating families of section-clusters of lengths r
and 4+ 1.

Remark 5.15.1. Let S be a ground scheme. Let 71: X — Y be a steady S-
family. Let Tand T’ be S-schemesand t = (t1,...,t;)andt’ = (t{,...,t/,;)
be respectively T and T’ families of cluster of sections over 7. Given a
cs-morphism f: (T',t/|,) — (T,t), forall i = 1,...,r the morphisms f;:
X{ — X; are the i-lift by sections and projections of f. In particular, so is
fr: X! — X; and, by Proposition 5.14, the (v 4 1)-lift by projections f,;1:
Xy+1— Xy41 of f exists. The following diagram commutes,

trt fri
Y1 — Xl — Xy

o~

Yy —— VY7
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and then the couple (f;11 o tyy1,f) is a T'-family of T-split sections over
Xy — Yt. Moreover, the T’-family of T-split sections (f. 7 o t..1,) over 7t
determines the section t; 1, since ty 11 = (fr1 0 trp1) Xyy 1y,

Definition 5.16. Let S be a ground scheme and r > 1 an integer. Let 7:

X—Y be a steady S-family. The r-th universal scheme of families of section-
clusters over Tt (or -Ucs for short), denoted by (CI", "), is the terminal object
of the category of length-r families of section-clusters, Cl,. Thatis, Cl" is an
S-scheme, T" is a length-r CI"-family of section-clusters of over 7t and they
satisfy the following universal property: For every S-scheme T and every
length-r T-family of section-clusters t over 7, there is a unique morphism
f: T— CI" such that it is a cs-morphism f: (T,t)— (CI",1").

If an 7-Ucs over 7t exists, by abstract nonsense, it is uniquely determined
up to a unique isomorphism. When the r-Ucs (CI",T") over 7t exists, we
denote the corresponding sequence of blow ups by

bIT bl b1

X X; =X

T
T+1

and the composition o bljo---obli : X[, ; —Y by m ;.

Definition 5.17. Let S be a ground scheme. Given a steady S-family 7:

X — Y, consider the contravariant functor C[, : Schs — Set (sometimes
we will omit the indices T or 7t) corresponding to the parameter space prob-
lem of families section-clusters over 7t of length 1 defined as follows. It sends
an S-scheme T to the set of sequences of morphisms

C[;T = {T-families of section-clusters over 7t of length r}.

Given an S-morphism f: T'— T, we build a map C[ f sending a T-family of

section-clusters t = (t1,...,t;) € C[,T to a T’-family of section-clusters

t' = (t],...,t]) € CL,T' forwhichf:T’— Tisacs-morphism f: (T’,t') —

(T, t). So, the category of elements of CL]. will be the category Cl,.
Consider the sequence of blow ups corresponding to t,

X1 X, Xy = Xr.

Fors =1,...,T, we construct recursively the section t/ and the morphism
fs at the same time as follows. Assume that t’|s and the cs-morphism f:
(T’,t'ls) — (T, t|s) are defined. Consider the sequence of blow ups corres-
ponding to t'[,

! X! X| = Xy

s+1
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/
S

Xs41 of f is defined and we may consider the following Cartesian diagram.

In particular, by Remark 5.15.1, the (s + 1)-lift by projections fg;1:X

+177

(ts+1 /

Yo h
/ %1
Vi X
) (5-2:3)

Y1/
1 / T

Y1

/
s+1

Setting t'|s 11 = t'[s U (ts41)7/, thatis t/, | = (ts41)71/, we have defined a
length-(s + 1) T'-family of section-clusters and a cs-morphism

f: (T/s t/|s+1 ) - (Ts t|S+] )

Hence, we can iterate the process and, by Remark 5.13.2, we can initiate the
construction with an empty T’-family of section-clusters and f; = fx.

Remark 5.17.1. The functor C[:T forr = 1is equal to the functor of sections
Sect of 7. So, they are equivalently representable and, if they are repres-
entable, the representing schemes are isomorphic. That is, if they exist, the
Usf (X,1) of 7t and the 1-Ucs (CI', ') over 7 are isomorphic as families of
sections over T, or equivalently, as families of section-clusters over 7t.

Remark 5.17.2. Consider 7t as a Y-morphism, where Y — Y is the iden-
tity, let us denote 7t by f: X — Y in order to distinguish this two cases.
Assume that f is a steady Y-family. Given a Y-scheme T, a T-family of
section-clusters over f is a T-family of point-clusters over f. So, the functor
Cl: Schy— Set is the functor for the parameter space problem of point-
clusters over f. It is well known that, when they exist, Kleiman’s iterated blow
ups by : X; — Y represent the functor C[; (see [30, Proposition .2, p.104] and
[41, Proposition 3.4, p.422]). Setting by g: Y — S the structure morphism of
Y, the functor C]_is equal to C[} o Py, where P is the base change functor
(see Definition 1.33). Hence, by Proposition 1.68, C'[:T = Secty, .

Theorem 5.18. Let S be a ground scheme andr > 1 an integer. Lett: X—Y
be a steady S-family. Then, a family of section-clusters over Tt represents the
functor C[; if and only if it is the v-Ucs of .

Proof. By construction, the category Cl of families of section-clusters over
7t with cs-morphisms as morphisms is the category of elements of C[;.
Hence, the claim follows from Proposition 1.15. O

Let S be a ground scheme. Let t: X— Y be a steady S-family. Let T be an
S-scheme and t a T-family of section-clusters over 7. Then, to every S-point
s:S—T of T, we may associate a cluster ts over 7. Indeed, a cluster over 7t
is just an S-family of section-clusters over 7t. Hence, since the composition
S—T— S is the identity, C/" (S— T)(t) is an actual cluster over 7.
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Corollary 5.18.1. If the r-Ucs (C1",T") over 7 exists, the map sending an
S-point s of CI" to the length-r cluster T, over Tt forms a one-to-one corres-
pondence between C1'(S) and the set of length-r clusters over 7.

Theorem 5.19. Let S be a locally Noetherian ground scheme and v > 1
an integer. Let 1: X — Y be both a steady S-family and a steady Y-family
(considering Y as a Y-scheme via the identity). If X is at most a countable
disjoint union of quasiprojective schemes over S andY is proper and flat over S,
then the r-Ucs (C1",T") over 7 exists and the scheme C1" is locally Noetherian
and at most a countable disjoint union of quasiprojective schemes.

Proof. Let us denote 7t as a Y-morphism by f: X— Y in order to distinguish
it. Consider Kleiman’s iterated blow ups b,:X; — Y for the morphism
X — Y. In this situation the functor C[;: Schy — Set is defined and the
Y-scheme X; represents it. Hence, by Remark 5.17.2, C[ . = Secty, . Observe
that X; is at most a countable disjoint union of quasiprojective scheme so,
by Proposition 1.62, Secty, is representable. O

Whereas Kleiman’s iterated blow ups provide the representability of the
relevant functors, the result is somewhat unsatisfactory, because it hides the
relationship between CI'™! and CI" under the application of the functor of
sections to Kleiman’s iterated blow up. Now, we shall develop the machinery
necessary for an iterative presentation of the schemes CI", which will lead
to a slightly more general second existence result.

Notation 5.20. Let S be a ground scheme. Let 71: X — Y be a steady S-
family. Let T be an S-scheme and t a T-family of section-clusters over 7 of
length r+ 1. Then, the truncation t|, and switch down t| of t are T-families
of section-clusters over 7 of length r. If the r-Ucs (CI",T") over 7t exists,
truncation and switch down give rise to two cs-morphisms

pi ¢ (T, th) —— (CI',T")
by : (T,t]) —— (CI',7").

For simplicity, in the particular case that the couple (T, t) is the (r+ 1)-Ucs
of 71, we will omit the subindex in the previous notation.

Remark 5.20.1. By the unicity of the cs-morphisms p}{ and by, given a
morphism f: T’ —T, setting t’ = C[;Hf(t),

Pl = plof L =blof.

Remark 5.20.2. If furthermore, the (r — 1)-Ucs over 7 also exists, then
r—1

p1_1 opi =Pt © by ascs-morphisms.

Lemma 5.21. Let S be a ground scheme andr > 1 an integer. Let t: X—Y
be a steady S-family. If the r-Ucs (C1",T") of 7t exists, then the functors C[:r]
and Sectgy 1 (see Definition 3.24) are isomorphic. That is, given an S-scheme
T, there is a one-to-one correspondence between T-families of C1"-split sections
overTt,_; and T-families of section-clusters of lengthr + 1 overt, and moreover
it is natural on T.
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Proof. Fix an S-scheme T. We will construct a natural transformation
1 T
n:Ccly — Sectyr

and show it is a natural isomorphism by means of its inverse L.
Given an element t = (ty,...,t,11) € C[;HT, by Remark 5.15.1, the
couple

(((p¥L~otr+1), pI)

is an element of Sectg:T (for pi: (T, tly) — (CI',T") see Notation 5.20).
Set n7(t) as this couplze. To check that this map is natural on T, fix an
S-morphism f:T" — T and set t’ = (t1,...,t/ ;) = C[THf(t). By Re-
mark 5.20.1, pj, = py o f, and by functoriality of C[H], (pi)r = (p)rofr.
Hence, 1/ sends t’ to the couple

(Do frotsy), (piof)).

For the other side, by definition, the map Sectgf sends 7 (t) = (((pf)ro
tr41), pi) to the couple ((p] o tr o fy), (pf o f)). So, we just need to check
that (p} o f)r ot] = p{ o t; o fy, which is clear by definition of t/, see Dia-
gram (5.2.3).

An element of the set Sect%rT is a T-family of Cl"-split sections (o, g)
over 7, ;: X[, ;— Y7, thatis 0: YT — X[ _; and g: T—CI" are S-morphisms
such that

T _
41 00 = gy.

Sett = C[rg(’tr) and tyy1: Y7 — X;41 as the product of o and 1y,.

T
Yerr

By construction, t.;1 is a section of X; — Y. Hence, the extension t LI t; 1
belongs to C[;H (T). Set ur((o,g)) = tUty1. To check that this map is
natural on T, fix an S-morphism f: T'—T. By definition, the image of the
couple (o, g) by Sectgf is the couple ((0 o fy), g o f). On the other hand,

setting t/ = (L™ f(tUt,) = (t],...,t/,,),

U f(tut) = AL Ut = O (gof)(t) Ut
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Hence, we just need to check that tr/+1 is the product of 0o fy with 1y,
but this is clear because the following diagram commutes.

1
Y —— X, —— Y
r r
fy lfm fy
tr
YT —— Xip Y1
r
o Jgr+1 ngY
i 1
T T+
T4+1 YCIT

Now, by Remark 5.15.1, it is clear that 1 and p are mutually inverse. O

Theorem 5.22. Let S be a locally Noetherian ground scheme andr > 1 an
integer. Let 1: X—Y be a steady S-family. If X is at most a countable disjoint
union of quasiprojective schemes over S andY is proper and flat over S, then
the r-Ucs (CI', ") over m exists and the scheme C1" is locally Noetherian and
at most a countable disjoint union of quasiprojective schemes.

Proof. By induction on 1. For v = 1, Remark 5.17.1 and Proposition 1.63 say
that the 1-Ucs over 7t exists. It is its Usf, which it is locally Noetherian and
at most a countable disjoint union of quasiprojective schemes.

Now, Lemma 5.21 and Theorem 3.26 provide the induction step. O

5.3 ELEMENTARY CONSTRUCTIONS

This section is devoted to two results on families of section-clusters. The first
construction is the generalisation for families of section-clusters of Proposi-
tion 1.64. The other two results of Section 1.5.1 do not generalise to families
of section-clusters since, in general, taking the preimage of the image of a
closed subscheme enlarges it.

The second result of this section, which is its motivation, relates the para-
meter spaces for clusters of different lengths, so it is particular for families
of section-clusters.

Theorem 5.23. Let S be a ground scheme. Let t: X—Y be a steady S-family.
Let T— S be a morphism. Assume that the T-th universal scheme of section-
clusters (CI",T") of 7t exists. Set T = C[,(Cl} — CI")(t"). Then the r-th
universal scheme of section-clusters of the (steady) T-family tr: X1 — Y71 is
(CIT, T7).

Proof. Given a T-scheme T’ —T, clearly the image of the T-scheme T’ —T
by the functor

Clr, :Schy— Set
and the image of the S-scheme T’— T — S by the functor

Cl,.:Schs— Set
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agree. Finally, by the universal property of pullbacks, there is an isomorph-
ism

Schs(T',CI") = Sch(T',CL})
natural on T’. Hence, the scheme CI} represents the functor C[;T. O

Theorem 5.24. LetS be a ground scheme. Let t: X—Y be a steady S-family.
Assume that s < 1 and that the r-th and s-th universal schemes of section-
clusters (CI",1") and (CI*,t%) of m exist. Lett:S — CI* be an S-point of
CI®. Consider the length-s clustert = (t1,...,ts) = Cl*t(7®) and denote its
corresponding sequence of blow ups by

Xs+1 Xs X; =X.

Denote the composition Xs+1— Y by .. Consider also the following Cartesian
square,

cLs S
r

o

cr—P . cr

where p is the composition p* o ---op'™! (see Notation 5.20). Set T, =
(01,...,07) = C[;(Cl{_s — CI')(T") and Ty ° = (0g¢41,...,0). Then,
the couple (Cl{°,t} *) is the (v — s)-th universal scheme of section-clusters

of Tt Xgp1 — Y.

Proof. Given an S-scheme T and a length-(r —s) T-family of section-clusters
over T,

(U1 eensUr),

it can be extended uniquely to a length-r T-family of section-clusters over
T,

(01,0003 05, UgiTyennsUr).

Hence, by the universal property of (CI",t"), there is a unique morphism
T—CI" such that CLJ(T—CI")(T") = (07,..., Os, Ugi T, . . ., Uy).
Observe that, since T'|; = C[..p(T*), by functoriality of C[,

CL(CI* —S)(t) = (o71,...,0%).

So, by the universal property of (CI%,T*), the composition T — CI" > CI®
is equal to T — S - CI°. Hence, there is a unique morphism T — CII~*
(the product of T— CI" and T— S) such that C; *(T— CLII*)(1} %) =
(uer],...,uT). [
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5.4 TOWARDS AN ITERATIVE CONSTRUCTION

LOS QUE CONOCEMOS

NUESTRAS PROPIAD

LIMITACIONES SABEMOS
8x5

Todo Mafalda

Fix a ground scheme S. Fix a steady S-family 7t: X— Y with Y integral and
Y — S projective, smooth and with geometrically integral fibres. Assume
that, foreachs = r—1,r, v+ 1, the s-th universal scheme of section-clusters
(CI®,t*) over 7t exists. So, we may consider the sequence of blow ups

bls b,
SLXs L X§ = Xers,

s
s+1

whose j-th centre C]-s - X]-S is the image of the section Tjs of T[)?‘:XJ?‘ﬂY. We

T

1 — XJ, so denote its exceptional divisor by E.

will focus on the blow up X

In this section, we show that the blow up §family is the iterative step
to construct CI'*" from CI". More precisely, there is a stratification of
Cl; xc1, , Cl; such that every irreducible component of Cl.1; is either (a)
birational to the closure of an irreducible component of a stratum or (b) com-
posed entirely of clusters whose (v + 1)-th section is infinitely near to the
T-th, see Chapter 5 and Corollary 5.38.1. So, each type (a) irreducible com-
ponent is an open subscheme of a blow up of an irreducible component of the
closure of a stratum along a suitable sheaf of ideals. The blow up §family is
the morphism from the union of all type (a) irreducible components (with a
non-necessarily reduced structure) to the whole scheme Cl,. x¢j, , Cl,. That
is, it incorporates the stratification of Cl; X ¢, , Cl; and strata-wise it is the
corresponding blow up (see Theorem 5.37 and Corollary 5.38.1).

We also show that type (b) irreducible components form the CI"-Ussf of
E — Y, so its general member corresponds to a cluster t over 7T whose
(r+ 1)-th section t, is a section of the corresponding exceptional divisor,
which is not a flat limit of sections not contained in such exceptional divisor.

Notation 5.25. Consider CI" as an (CI""')-scheme via the morphism pr_1 :
CI" — CI'™' (see Notation 5.20). We will use several times the scheme
Cl" x o1 CI', so we lighten up its notation to (CI")?, and fix the notation
q1,q2: (CI")2—CI" for the projections over the first and the second factor
respectively.

For s = r— 1,7, consider an S-scheme T, a T-family of section-clusters
t = (t1,...,ts11) over 7t and its corresponding sequence of blow ups

Xs42 Xs+1 Xs e X1 = Xr.
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The cs-morphism p{: (T, tls) — (CI°, T°) (see Notation 5.20) induces a mor-
phism

(PY)s+1: Xss1 =X

We denote by y; the composition

ts+1 (pf)er]
Yy Xoi1 X5,

For s = 1, we denote by E (which is a locally principal subscheme of YT)
the pullback by y¢: YT — X[ of the exceptional divisor E in X[ ;.
In the particular case that (T,t) is the (v 4 1)-Usc (CI'"!, T"1) of 71, we

denote yir+1 simply by y: Y1 — X7 and Er1 by Eq.

Observe that by Lemma 5.21 and Remark 3.27.1, the triplet (cr+1y, r)
is the CI'-Ussf of X[ ; — Y.

Lemma 5.26. The scheme (CI")? represents the functor Sectg{.

Proof. Given an S-scheme T, we build a bijective map
nr:SectGy (T)— Schs(T, (CI)?),

which will be obviously natural on T.

An element ofSect%r (T) is a couple of morphisms (3, f) with : YT — X
and f: T— CI" such that 7l o B = fy. Observe that the couple ((p™'); o
B, (p™ ' of))is a T-family of (CI"~)-split sections over 71, Hence, since
by Lemma 5.21 and Remark 3.27.1, the triplet (CI", yr,p™ ") is the (CI"')-
Ussf of i1 : X7~ — Y1, there is a unique morphism g: T — CI" such
that

'r—1)

(P" )roB =vrogy (5.4.1)

T—

(andp™~'of=p"Tog).

So, we set N7(B,f) as (f x -1 g): T— (CI")2. Now, it is clear that f is
determined by the morphism T — (CI")2. Finally, by Remark 5.15.1 and
Equation (5.4.1), the morphism T— (CI")? also determines f3. O

Notation 5.27. Consider the natural transformation
n:Secty — Schs(T, (CI')?)

defined in the proof of Lemma 5.26. The preimage of 1(¢r)2 by N2 is
a couple of morphisms, Y x5 (CI")> — X' and (CI")?2 — CI". By construc-
tion, the morphism (CI")2 — CI" is the projection q; (recycling notation,
if we define fit(p,f) = g X1 f, then the morphism (CI")2 —CI" in the
preimage of 12 by Tl(¢r)2 is q2). We denote the other morphism by p:
Y x5 (CI")? — X

Note that the couple (bI% oy, p™) is an (CI't")-family of CI"-split sections
over T, that is 7} o (bl; oy) = (p")y. Hence, by Lemma 5.26, there is a
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unique morphism F: CI'*!' — (CI")? such that the following diagram com-
mutes.

Y T
YCIT“ XT-H

J Fy lblﬁ

Y xs (CI')2 —2— XT

The morphisms p and F could seem obscure, but they reveal its nature
once considered acting over S-points. We may identify an S-point ¢ of (CI")?
with an ordered pair of clusters (t,t’) over 7 such that t|,_; = t'|,_;. An
S-point of X] may be identified with a couple (u,p) where u is a length-r
cluster over 7tand p is a point of the last but one scheme of the corresponding
sequence of blow ups of u. So, slightly abusing notation, given an S-point y

of Y,

p(y,c) = (L.t (y)).

An S-point of CI"*" may be identified with a length-(r + 1) cluster v over
S0

F(v) = (vl v)).

Moreover, following with this notation,

Yy, v) = (v, v(y)).

We fix the following notation for every S-scheme T and T-family of section-
clusters t over .

Notation 5.28. We denote by Tg the closed subscheme of T for which the
closed embedding Yt, — Y7 is the blow up of Yt along E; (see Theorem 2.8).

Notation 5.29. We denote by Tg the closed subscheme of T representing
the functor ISO\EéHT (see Theorem 3.17).

We denote by v and v the respective restrictions of y: Y r1 — X7
tO Y(Clr+] )B and Y(C1T+] )E.

Theorem 5.30. Letpg: (CI"*")g — CI" denote the restriction ofp": cr+l—
CI" to (CI')g. The triplet ((CI™)g, v, pe) is the CI"-Ussf of g : E— Y.

Proof. We will check that it satisfies the required universal property. Given
an S-scheme T and a T-family of CI"-split sections (o, f) over E— Yy (that
is 0:Yr — E, f: T — CI" such that fy = 7¢ o 0), composing o with the
closed embedding £ — X[ _;,
section family of X]_; — Y. Hence, by the universal property of the triplet
(CI'*y,p"), there is a unique morphism g: T— CI'"" such that y o gy is
L @nd f—pTog)
The base change of Et<— Y r+1 by g is exactly the pullback of E— X

it determines a unique T-family of CI"-split

the composition of o with E— X

T
T+1

by v o gy. Hence, since y o gy factorises through E — X[, via o, by
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Lemma 1.32 such a base change is an isomorphism. Then, by the universal
property of the closed embedding (CI'"")g < CI"*! (inherited from repres-
enting the functor Iso), there is a unique morphism T— (CI"*'); satisfying
the required property. O

Theorem 5.31. The couple (CIEH,VB) satisfies the following universal prop-
erty. For every S-scheme T and T-family of section-clusters t over 7t such that
E¢ is an effective Cartier divisor of Yt, there is a unique morphism f: T — CIIT;F]

such that vy = yg o fy.

Proof. Consider an S-scheme T and a T-family of section-clusters t over 7t
such that E; is an effective Cartier divisor.

By the universal property of (CI"*!, T"1), there is a unique morphism g:
T—CI""! such that t = C[ f(t*"), in particular y; =y o gy.

By the universal property of the blow up Y41y — Yo, there is a
unique morphism h: Yt — Y1y such that gy is the composition of h
with Y(Cl”‘)g — Y¢pr+1. Finally, Lemma 2.7 asserts that there is a unique

morphism f: T— (CI"*1) such that h = fy. O

Proposition 5.32. Let T be an S-scheme. Lett be a T-family of section-
clusters over mt. There are unique morphisms gg:Tg — (CI'™g and gE:

Te — (CI")g such that yilyx <1, = VB © (98)y and Yilyxst: = Ve © (gE)y-

Proof. Setting tg = Cl »(Tg > T)(t), the morphism ¢, is the composition
of v with the closed embedding Tg — T. By construction E¢, is an effective
Cartier divisor of Y7, hence the existence and uniqueness of gg comes from
Theorem 5.31.

Since the pullback of E¢ < Yt by Y7, is an isomorphism, we may consider
its inverse. It gives a Tg-family of Cl"-split sections of E— Yr. Hence, the
existence and uniqueness of gg comes from Theorem 5.30. O

Let us fix a bit of additional notation. Consider the blow up §family
(B,1b) of the projection Y xs (CI")?> — (CI")? along p~' (Im(t})). Notice
that Im(77) is the centre of the blow up X[, ; — X{. By construction, its
preimage by by: Yy —Y x5 (CI")? is an effective Cartier divisor. Hence, by
the universal property of the blow up X[ ; — X[, there is a unique morphism
B:Yy— X[ ; suchthat f = poby.

Now, the couple ({3, q1 o b) is a B-family of CI"-split sections of X]_ ; —
Ycrr. Hence, by the universal property of (CI''!,y,p") there is a unique
morphism G:%B — CI"*! such that =y o Gy.

Lemma 5.33. The morphisms b, F and G satisfy the relationb = Fo G.

Proof. Since poby = poFyo Gy = po (Fo G)y, by the universal property
of (CI")%,p,q1),b =FoG. O

Proposition 5.34. The core of the blow up §family of (*8,b) is the diagonal
A of (CI")2.
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Observe that, identifying an S-point ¢ of (CI")? with a pair of clusters
t,t" over 7 with t|,_1 = t|,_1, the fibre of p~'(Im(1})) — (CI")? at c is
isomorphic to Im(t,) NIm(t/). By Remark 3.14.2, the underlying set of such
a core and A have to be equal.

Proof of Proposition 5.34. We show that the closed embedding i: A< (CI")?
represents the functor Isos:((é'l?(;rl(cmz.
p o iy is equal to that of T, so p o iy factorises through Im(T]) and then,
by Lemma 1.32, the pullback of Im(T]) — X] by p o iy (which is the base
change of p~' (Im(1})) — Y x5 (CI")? by i) is an isomorphism.

Now, given a morphism f: T — (CI")? such that (p~'(Im(1%)))T — Yt
is an isomorphism, the composition of q; o f: T— CI" with A< (CI")? is
equal to f. O

By construction, the image of

Theorem 5.35. The couple (B, [3) satisfies the same universal property as the
couple ((CI'"1)g,vg) (see Theorem 5.31).

Proof. Consider an S-scheme T and a T-family of section-clusters t over 7
such that E; is an effective Cartier divisor.

By the universal property of (CI"*!, T71), there is a unique morphism g:
T—CI""! such that t = CL f(T"*"), in particular y; =y o gy.

The pullback of p~' (Im(T)T) by the composition Fy o gy is Ey, an effective
Cartier divisor of Y1 by assumption (see Notation 5.27). Hence, by the uni-
versal property of the blow up §family (28, b), there is a unique morphism

f: T—*B such that Fo g = b o f. Now, assuming gy = Gy o fy, and then
pofy=yoGyofy=vogy =yt

To check that gy = Gy o fy, by the universal property of (CI"*!,y,p"), we
just need to check that their compositions with y agree. So now, we are
wondering whether the two morphisms, y o gy and y o Gy o fy from Yt
to X[, agree. But, by the universal property of the blow up X[ ; — X[,
we just need to check that their compositions with this blow up morphism

agree, which is straightforward. O
Corollary 5.35.1. The morphism G5 —CI'*" is a closed embedding.

Proposition 5.36. Let T be an S-scheme. Lett be a T-family of sections-
clusters over 7. If T is integral, then it is equal to either Tg or Tg.

Proof. Since, by assumption, T and Y are integral, the locally principal subs-
cheme E; of Yt is either an effective Cartier divisor or the whole scheme Y.
So, in the former case the blow up Y1, < Yt is an isomorphism and in the
latter the scheme T itself represents the functor ISO\E(;;,T. O

Theorem 5.37. Let T be an S-scheme. Lett be a T-family of sections-clusters
over 1. The scheme Tieq is a closed subscheme of the schematic union Tg + Tg.
In particular, the underlying topological spaces of B + (CI'" )¢ and CI"*" are
homeomorphic.
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Proof. By Proposition 5.36 every irreducible component of T, with its re-
duced structure, is a closed subscheme of either Tg or Tg. ]

Consider the flattening stratification

(cr? = Jemg

(0]

of p~!(Im(TF)) — (CI")? (see Section 1.6). From now on, assume Y smooth
over S. So, the connected components of the strata are type | or type Il,
see Definition 4.6.

By Proposition 5.34, A — (CI")? is a type Il stratum. Slightly abusing
notation let us set

(Cr?=au | | (€ (5.4.2)
oeQ’

as the disjoint union of the connected components of the strata and call its
components strata again. By Theorem 4.8 and Corollary 4.8.2, denoting by
Q the set of indices for all type | strata, b gives an isomorphism

B\b ' (A) = |_| (CIN3,.
Oe

Proposition 5.38. An S-point c of a type I stratum (Clr)é corresponds to an
admissible pair of clusters over Tt (see Definition 5.12).

Proof. Since (Clr)(zD is separated over S, c is a closed embedding. So, clearly
by construction and by Lemma 4.4 (a), the base change p~' (Im(1I)). — Y
of p~1(Im(T7)) — Y x5 (Clr)(zb by ¢c:S — (Clr)(zp is an effective Cartier
divisor. O

Corollary 5.38.1. Each irreducible component Z of CI'"! is either

1. composed entirely of clusters whose (v + 1)-th section is infinitely near
to the r-th (that is, Z C (CI"*")g and F(Z) C A),

2. birationalto an irreducible component of the closure C of a type | stratum,
that is, F|z: Z— C is a blowup map whose centre fails to be Cartier only
on A. In particular, if CN A is empty, Z = C.

Proof. Follows immediately from Corollary 4.8.2 and Theorem 5.37. O

We finish showing, with a small example, that in fact we expect the
schemes B + (Cer )¢ and CI'™" to be isomorphic. Consider an S-scheme T
and a T-family of section-clusters t over 7t. The scheme T is a closed subs-
cheme of T, for which yt|yTE is a Te-family of C1"-split sections over E— Y.
Observe that, once we get the closed subscheme Tg of T, there is another
natural (and maybe more intuitive) way to obtain a closed subscheme of
T parametrising C1"-split sections of E — Y. Namely, as the schematic
closure of the open embedding (T \ Tg) < T, let us call it T{. These two
constructions are equivalent in some cases, but to our knowledge, in general
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there are just closed embeddings Teq— (Tp U Téi) — (TgUTg)—T. Let us
show it with a couple of examples unrelated to section families.

We consider Y — S the identity of the spectrum of a base field k, so the
projection YT — T is just the identity and the scheme Tg is equal to E¢. One
obtains an example where Tg = T{ by taking T equal to the spectrum of
A = kix,yl/(xy) and E¢ is the principal subscheme determined by x €
klx,yl/(xy). In this case, the closed embedding Tg < T corresponds to
the natural homomorphism A— A/(y) and both, T and T}, coincide the
spectrum of A/(x). But if we replace A with A= k[x,yl/(y% xy), then Tﬁl
is empty whereas the schemes Te+Tgand T are equal.

5.5 EXAMPLES

In this section, we collect a few simple examples of ™-Ucs for r = 1,2 over
families of surfaces (defined over a base field k), whose behaviour differs
from Kleiman’s iterated blow ups in distinct ways. We consider families 7t:
X — Y with Y and X projective; by Theorem 5.19 the r-Ucs (CI", ") of 7
exists for all 1 > 1. Throughout this section, notation of Section 5.4 forr = 1
is fixed. Finally, if (X,) is the Usf of 7t, by Remark 5.17.1 the scheme clis
isomorphic to X. So, we will refer to the elements of Cl' as sections and of
CI? as clusters.

Example 5.39 (New components). We show a family for which (C1%)g has
infinitely many connected components, whose clusters can not be obtained
as the strict transform of flat limits of pairs of sections of 71, or in other words,
those are also connected components in CI%.

Consider a smooth projective family 7t: X — Y of relative dimension 2
with Y a smooth curve.

The irreducible components of CI' are classified by the degree of the
images of sections of 7t and there are at most finitely many components for
each degree. So, there are at most countably many irreducible components
Ta of CI' with d € N.

For any pair of integers d, d” > 0, there is a positive integer which bounds

the degree of the O-cycle intersection of any pair of sections in Tq X Tgy.

Given an integer i > 0, we denote by D; the locally closed subscheme of
(C1")2 consisting of pairs of sections whose intersection is a 0-cycle of degree
i. Foreachi,d,d’ > 0, set Di g4 = Di N (Tq x Tas), which is either empty
or an irreducible and connected component of Dj. So, the stratification
Equation (5.4.2) is given by

(c"? =AU | | Diga-
i,d,d’

There are no restrictions on the admissible pairs of sections because the
base is smooth and of dimension one. So, A< (CI')? is the unique type II
stratum and for every i,d, d’ > O there is an irreducible component Z; 4 4/
of CI? birational to the closure of Digar-
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Now assume, for simplicity, Y = ]P]L for some field k. For each section o
of 71, the exceptional divisor Es in the blow up X;— X is a rational surface
isomorphic to the projectivisation of the normal bundle of ¢ in X, which (for
some a,b € Z, say with b > a) is isomorphic to P(Op1(a) & Op1 (b)), the
Hirzebruch surface Fy,_q. So, setting e = b — a, there are two divisors C, F
in Eg such that

Pic(Ey) = Z[C] + Z[F]

with C2 = —¢, F2 = 0 and CF = 1 (see [32, Chapter V, Theorem 2.17,
p-379]). Observe that any irreducible curve of E4, say linearly equivalent to
D =nC+mFforsomen, m € Z, intersects every fibre (E;),, at exactly one
point for every p € ]PHL if and only if 1 = D - F = n. That is, an irreducible
curve of E is the image of a section ofXGHIP]L if and only if it is irreducible
and linearly equivalent to C +mF, with m = 0 or m > e. The sections of
Es — ]PH]« are in correspondence with non-reduced schemes supported at
o in X, via direct images and strict transforms. Since o has a fixed degree,
there are finitely many possible degrees for non-reduced schemes supported
at o obtained as flat limits of pairs of sections ofXHIP]L.

Hence, there are infinitely many irreducible components in (CI%)g, one
for each m > e or m = 0, and infinitely many of them are filled up with
clusters which are not limits of points of any Z; 4 4/

Example 5.40 (The dimension may decrease). This example illustrates that
the dimension of the schemes parametrising clusters may decrease as we
enlarge the length of the clusters to parametrise. The phenomenon is due
to the admissibility restriction on pairs of sections, which does not exist in
the absolute setting, or when the base is a integral smooth curve.

Consider as a family the projection on the second factor 7t: ]Pﬁ X Pﬁﬂ
]Pﬁ, for some field k. The scheme Cl' is a union of irreducible connected
components C4 with d > 0, each one isomorphic to the open subscheme of
P(k[u,v, w]fl) corresponding to triplets of forms with no common roots.

Lemma 5.41. Given two morphism f, g:]Pﬁ H]Pﬁ, with f non-constant, the
intersection Z of the graphs of f and g in ll’ﬁ X ]Pﬁ is not an effective Cartier
divisor of the graph of f.

Proof. The graphs of f and g are varieties of dimension two in a four dimen-
sional ambient space, hence in general they intersect in a codimension 2
subvariety. It is not hard to see that this is always the case. O

By Lemma 5.41, a pair of sections of 7t is admissible if and only if both
sections are constant. Given a closed point ¢ of Cl? with image F(c) =
(0,7) € (C1')%, the couple (o, T) can be either an admissible pair of sections
of 7t (then, both o, T are constant) or T is a section of the exceptional divisor
Ey in the blow up Xy — X. If 0 is constant, say with image q € IPZ, then
Xs = bl(q,IP?) x IP? and E; — P is isomorphic to the projection P} x
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]Pﬁ — ]Pﬁ, which admits only constant sections. Finally, when o is non-
constant, EUHIPﬁ admits no sections. Hence,

Cl* = bl(Ap2,P? x P2).

Example 5.42 (Non-unique centre). This example (a particular case of Ex-
ample 5.39 explicitly computed) illustrates that the ideal sheaf, centre of a
blow up F|z:Z— C (see notations Corollary 5.38.1), need not be the ideal
sheaf of AN C in C nor unique (in this case, the singularities of C allow
different centres for the same blow up morphism).

Fix a line L in the three dimensional projective space ]Pi over a field k. We
consider as a family the ]PHL pencil of planes containing L. The ambient space
is the quasiprojective variety X = ]Pi \ L. There are several equivalent ways
to describe the projection 7t: XHIP]L, via Grasmannians, the tangent space
of a nondegenerated quadric containing L, the blow up bl : bl(L,IP}) — P}
and more. Consider ]Pi as the homogeneous spectrum of R = klx, y, z, w]
and, via a linear change of coordinates if it is needed, assume L cut out by
a=(x,y). So,

m: X IPJL

x:y:z:wl——[x:y]

and the fibre X,, for a point p = [ox : B] € P is the plane cut out by Bx — oy
minus L.

The image of a section of 7tis a projective rational curve, disjoint to L, that
intersects every plane Xip at one point. So, it is simply a line disjoint to L
and every line disjoint to L determines a section of 7t. Hence, Cl' is the open
subvariety of the Grasmannian G of lines in P corresponding to the lines
not meeting L. This open subvariety is the complement of the tangent space
of G at L, which is isomorphic to A?, say with ring of functions kla, b, ¢, d].
We may pick a parametrisation which associates a point 0 = (a,b,c,d) €
CI' the line

LG:SpeC< ax+by —z > cX.
cx+dy—t

So, the morphism p:IP]f§ x (C1")2—Cl' xX sends
(he:v], (a,b,c,d), (a’,b’,c’,d")

to
((a,b,c,d), [u:v:au+bv:cu+dvl).

Set W =V((a—a’)(d—d)—(b—b")(c—c’)) c CI' xCI'. Givenp #
p’ € CI', the lines Ly, L,/ meet if and only if (p,p’) € W and in this
case they always meet at a simple point. Hence, the flattening stratification
Equation (5.4.2) is given by

cl' xcl' = AL (W\ A)LWE,
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Now, we focus on the irreducible component Z of CI*> dominating the
stratum W\ A. The variety X} is given by

V(ulax +by —z) — v(ex +dy —w)) C Cl' xX x P,

where [v : u] are the coordinates of IP]L. The morphism p restricted to the
stratum IP]L x (W\ A) extends to X}. Over the coordinates [v : pl, it is
[a—a’:b—Db'lor[c—c’:d— d’] depending on which is well-defined,
and, in case both are, they are equal since (a,b,c,d,a’,b’,c’,d’) belongs
to W. But the morphism p does not extend to the diagonal. To see this,
consider the blow up of (C1')? along the ideal (a — a’,b—b’), that is

Vin(a—a')—w(b—1b")) C (C1')* x P},

where [w : 1] are the coordinates of IP]L. The strict transform W of W under
this blow up is a small resolution of W. Now, we can lift the morphism p to
W x IP]}( HX?, over the coordinates [v : ] it is just [w : n]. That implies
W = Z, because any two distinct points of W give two distinct sections of
X} H]Pﬂ]( and the dimensions agree. Observe that the ideal is not unique,
the ideal (¢ —¢’,d — d’) also works.
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There is no conflict between the individual and the social
instincts, any more than there is between the heart and the
lungs: the one the receptacle of a precious life essence, the other
the repository of the elements that keeps the essence pure and
string. The individual is the heart of society, conserving the
essence of social life; society is the lungs which are distributing
the element to keep the life essence —that is, the individual-
pure and strong.

-EMMA GOLDMAN
Anarchism: What It Really Stands For

My pussy tastes like Pepsi cola.
-LANA DEL REY
Cola
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